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Chapter 1

Introduction

Twentieth century theoretical physics has been dominated by two major achievements
which both revolutionized the way of thinking in physics: quantum mechanics and the
theory of relativity.

The theory of relativity, written down by Einstein between 1905 and 1916, states that the
laws of physics should be the same for all observers in the universe and must therefore be
formulated in a covariant (observer independent) way. The theory of relativity consists
of two parts: the theory of special relativity, which reformulates and corrects Newtonian
mechanics at relativistic velocities (near the speed of light) and the theory of general
relativity, which describes gravity in an observer independent way by introducing the
concept of curved spaces.

Quantum mechanics, formulated in the nineteen twenties and thirties, is the theory that
describes the behaviour of particles at (sub)-atomic scales, and is therefore the theory
to be used if one is dealing with elementary particles. The main point of quantum
mechanics is that some quantities in Nature do not have the continuous behaviour
as described in classical mechanics, but turn out to be quantized, i.e. they can only
take some discrete values. Furthermore there exist fundamental uncertainty relations:
physical quantities can no longer be determined with the same accuracy as in classical
mechanics, but due to quantum uctuations the theory should be formulated in terms
of probabilities.

Both theories, relativity and quantum mechanics, have become the pillars of modern
physics and (general) covariance and quantum behaviour should be the basic ingredients
of every fundamental theory. However, each of the two theories is only valid in its
own speci�c range: relativity does not incorporate quantum e�ects needed to describe
elementary particles at relativistic velocities, nor has quantum mechanics the necessary
covariant formulation in order to be observer independent. It is therefore logical to look
for a better formulation, a new theory which incorporates these two properties and of
which both relativity and quantum mechanics are special limits.

Quantum �eld theory (formulated between the thirties and the sixties) was a �rst at-
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tempt to formulate a relativistic description for elementary particles. It made use of
the concept of gauge invariance, which was inherited from classical electromagnetism.
Gauge invariance is a symmetry which states that there are more degrees of freedom
(�elds) in the theory than physically relevant variables: the physically relevant vari-
ables are built from the degrees of freedom, the so-called gauge �elds, but di�erent
gauge �elds give rise to the same expression for the physical variables. Gauge trans-
formations relate the gauge �elds that build up the same physical variable, thereby
dividing them into equivalence classes of identical physics. The physical variables, and
therefore the theory, are (by construction) invariant under the gauge transformations.
A gauge invariant formulation is thus in a sense a kind of over-description of the theory,
but it can be used as a tool to calculate the physical quantities: at every point in space
one can choose the form of the gauge �eld that is most convenient to solve a particular
problem.

In the nineteen seventies, the Standard Model took form as the generally accepted way
to describe elementary particles and their interactions: quarks and leptons were identi-
�ed as the basic constituents of matter and photons, gluons and vector bosons as gauge
particles that transmit the strong and electro-weak interactions. These interactions are
governed by the gauge group SU(3)� SU(2) � U(1), which at low energies is sponta-
neously broken to SU(3)� U(1) via the Higgs mechanism. The Higgs boson, of which
the potential is responsible for the spontaneous symmetry breaking, accounts for the
masses of the particles in the Standard Model.

The Standard Model is a very successful model, for various reasons. It gives an ele-
gant and powerful description of the strong and the electro-weak interactions, making
use of the principle of gauge invariance. Furthermore it agrees to a very high accu-
racy with experimental results, and made some predictions which were later veri�ed in
experiments.

In spite of this success, there are reasons to believe that the Standard Model is not
the end of the story. These are not experimental reasons, since the Standard Model
agrees very well with experiments, but theoretical reasons to believe the theory is not
complete. A �rst indication comes from the theory itself: if the Standard Model is
really the �nal and fundamental theory of particles and interactions, how come that
there are still so many free parameters left? The masses of the particles, the mixing
angles and the coupling constants of the interactions, all play an important role in the
Model, but are not predicted by it. Their exact values are inserted by hand in order
to agree with experiment. A fundamental theory would be more convincing if it could
explain why all these parameters have the values we measure.

A second reason is more fundamental: although the Standard Model is the quantum
�eld theory of the strong and electro-weak interactions, and therefore incorporates both
a quantum and a (special) relativistic description of these interactions, it does not take
the gravitational interactions into account. In other words, the Standard Model is a
successful uni�cation of special relativity and quantum mechanics, making use of gauge
theories, but not of general relativity. There still does not exist a good theory which
deals with the quantum aspects of gravity, or vice versa, gives a good description of the
gravitational interaction between two elementary particles. This problem, the search
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for the theory of quantum gravity, has become an important challenge in modern high
energy physics.

From the point of view of experiment, there is no direct problem: the gravitational
interaction is much weaker than the strong or the electro-weak interaction so that in
any realistic experiment it can be ignored completely. This is the reason why the
Standard Model agrees so well with experiment: gravitational e�ects on elementary
particles can simply not be measured with the present technology.

Yet, on theoretical grounds, one can argue that at a certain point the present theory
will no longer hold: at higher energy scales, the gravitational interaction becomes in-
creasingly important, and near the Planck-mass MP it can no longer be ignored. The
Planck-mass is the energy scale at which the Schwarzschild radius RS = 2mGN=c

2 of a
particle becomes equal to its Compton wave length �C = h=mc :

MP =

r
hc

2GN
� 1019 GeV=c2 : (1.1)

The Schwarzschild radius of an object of mass m is the limit beyond which the object
has to be compressed in order to become a black hole and the Compton wave length is a
measure for the quantum uncertainty in the position of a particle. So at the Planck-scale
the structure of space-time gets interwoven with quantum uncertainties and a theory
of quantum gravity is needed. Note the the Planck-mass can be expressed in terms of
three fundamental constants of Nature: Planck's constant h, the speed of light c and
Newton's gravitational constant GN .

The energy scales corresponding to the Planck-mass are many orders of magnitude
beyond the reach of present accelerators (the LHC, being built in Geneva, will be able
to perform experiments at energies around 1:5�104 GeV), so in constructing a theory of
quantum gravity, one will have to rely strongly on theoretical arguments and intuition,
instead of following experimental indications.

The reason why it is so di�cult to construct a quantum theory of gravity is that
gravity is not renormalizable. Newton's gravitational constant, which is the coupling
constant of gravity, has dimensions of (mass)�2 (in units where c = ~ = 1), such that
the e�ective, dimensionless coupling constant GNE

2 is proportional to the square of
the energy of a given process. For higher and higher energies, the coupling will grow
arbitrarily large and lead to divergences in perturbation theory that become larger in
every order and make the theory di�cult to handle at high energies. E�ectively this
means that something goes wrong in the short distance (= high energy) behaviour of
the theory and that there is a cut-o� beyond which the theory is no longer valid.

A parallel can be drawn between the non-renormalizability of gravity and of the four-
fermi theory for the weak interaction. Both theories su�er from the same kind of
problems due to a dimensionful coupling constant. In the case of the weak interactions
the problem was solved by replacing the four-fermi theory by the SU(2)� U(1) gauge
theory of electro-weak interactions, where the divergences were smoothed by the intro-
duction of gauge bosons that spread out the interaction and weaken the short distance
behaviour.
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A logical attempt therefore would be to write gravity as a gauge theory for a new
kind of symmetry, namely supersymmetry. This is a symmetry that relates bosons and
fermions and associates to each particle a new particle of the opposite type. There is
still no experimental evidence for the existence of supersymmetry: none of the extra
particles predicted by supersymmetry has ever been observed. Therefore, if it exists, it
has to be broken at low energies.

In spite of the lack of experimental evidence, many physicists believe that supersymme-
try is an important ingredient for a description of quantum gravity: a local version of
supersymmetry induces invariance under general coordinate transformations and thus
leads to a theory with dynamical gravitational �elds. In other words, a locally super-
symmetric quantum �eld theory is a supersymmetric version of general relativity. Field
theories with local supersymmetry are generally called supergravity theories.

Furthermore it was observed that supersymmetry softens the divergences in a quan-
tum �eld theory. Since fermionic contributions to perturbative loop calculations have
opposite signs compared to bosonic contributions, it was hoped that in this way the
di�erent divergences might cancel each other and give a �nite result. However this
turned out much more di�cult to show than was �rst thought and people have more
or less abandoned the idea that divergence cancellation might work in quantum �eld
theory.

Since local supersymmetry alone is not su�cient to remove the divergences in gravity, a
bigger step is needed. This is done by string theory, a theory that has as a starting point
the idea that all elementary particles are not point-like, as we intuitively used to think,
but one-dimensional objects, strings with a certain spatial extension. The theory has
a natural cut-o� built in at short distances, since the interactions are now spread out
over the length of the string. In this way the short-distance behaviour is softened. The
di�erent oscillation modes of the string should correspond to the various elementary
particles that we know from the Standard Model, that are predicted by supergravity
and many more.

Introducing supersymmetry in string theory, one obtains the so-called superstring. The
reason for introducing supersymmetry is that the simplest model, the bosonic string,
which has only bosonic degrees of freedom, contains \unphysical" states in its spec-
trum. These are called tachyons and have the strange property that their mass squared
is negative. However, this undesirable feature can be eliminated by introducing super-
symmetry. Indeed, the superstring does not su�er from this problem, and at the same
time it contains fermionic degrees of freedom, which the bosonic string did not have.

The short distance behaviour of superstring theory is better than that of most quan-
tum �eld theories: it can be shown [32] that the superstring scattering amplitudes are
ultraviolet �nite. Whereas in quantum �eld theory perturbative calculations are done
by computing Feynman diagrams, the perturbation expansion in string theory is a sum
over the topologies of the two-dimensional world sheet which the string sweeps out in
space. This means that in every order there is only one \diagram" to be considered (in
a theory of closed strings), this in contrast to quantum �eld theory, where the number
of diagrams increases rapidly with the order.
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Important progress was made when it was realized [166, 136] that the superstring theory
has massless states of spin two, which could be identi�ed as the gravitons, the gauge
particles of gravity. The identi�cation of the graviton in the string spectrum also sets
the length scale of the string: the typical size of a string should be of the order of
the Planck-length LP , the Compton wave length of a particle with mass equal to the
Planck-mass:

LP =

r
GNh

c3
� 10�35 m: (1.2)

Note that present accelerators can probe distances down to about 10�18 m, so this
explains why nothing has been noted of the stringy extendedness of elementary particles.

After what became known as the �rst superstring revolution (1984-1985), string theory
really began to be considered as a serious candidate for a unifying theory. It turned out
that there exist (only) �ve consistent versions, called the Type I string, the Type IIA,
Type IIB, Heterotic E8 � E8 and Heterotic SO(32) string, which all have well-de�ned
perturbation expansions and di�er in their �eld content and the amount of space-time
supersymmetry. Consistency in the quantization requires each of the �ve string theories
to live in a ten-dimensional space-time.

The fact that the space-time is required to have ten dimensions, and not four, as we
are used from general relativity or quantum �eld theory, is not such a big problem as
it might seem. The explanation is that six of the ten dimensions are compact and very
small (in fact of the order of the Planck-length [99]), so they cannot be detected at
low energies. A technique, called dimensional reduction, is known to rewrite the ten-
dimensional theory as an e�ectively four-dimensional one in order to make contact with
our experimentally observable world.

Depending on how this dimensional reduction is performed, all kind of gauge symme-
try groups can appear, some of which resemble the Standard Model at low energies.
But there are many di�erent reductions possible, leading to many low energy e�ective
theories and many di�erent vacua, and it is not at all clear why the universe as we see
it has precisely four dimensions (and not any other number smaller than ten) and why
precisely one particular reduction scheme should be preferred to others. A fundamental
theory like string theory should be able to give a natural answer to these questions.

Another problem of string theory (which is maybe related to the previous ones) is
that little more of it is known than a perturbative description. Glances into the non-
perturbative regime have only recently become possible, since what is called the second
superstring revolution, which started in the mid nineties. Then a new concept was
introduced in string theory, namely the duality symmetries. In fact dualities might be
one of the fundamental principles to understand string theory.

Dualities are symmetry transformations that relate di�erent compacti�cations of a the-
ory, di�erent regimes and even di�erent string theories to each other. There are many
di�erent types of duality transformations, but the ones we treat in this thesis are the
most important ones: T -duality and S-duality. The other types of dualities can mostly
be related to combinations of these two.

T -duality stands for target space duality, the duality on the space-time through which
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the string moves. It relates small volumes to large ones and therefore physics of small
scales to physics of large scales. Suppose one of the dimensions of the target space is
rolled up into itself (for example as in a process of dimensional reduction) and forms a
circle of radius R. A string running around in this compact dimension will have discrete
momentum and energy states. In particular, the smaller the radius of the circle, the
higher the energy of the string states. On the other hand, the string can also wind a
number of times around this compact dimension. Since the energy of the string is also
proportional to its length, the string winding states become more and more energetic
as the radius of the circle becomes bigger and the string itself longer.

Now it turns out that energy levels of a string moving around on a circle with small
radius correspond exactly to the energy levels of a string wound around a large circle and
vice versa. In general, a string which is moving with momentumm and is wound n times
around a circle of radius R, is equivalent to another string, moving with momentum n
and wound m times around another circle of radius ~R = �0=R, where �0 is a constant
related to the length of the string.

The duality transformation that relates these two descriptions is called T -duality and
the two backgrounds (one with a compact dimension of radius R and the other of radius
�0=R) are called T -dual. The string (and hence the observer) doesn't see whether it
is in the �rst or in the second case, so it seems that there exists a kind of symmetry
R ! �0=R between large and small scales. If the size of a compact dimension shrinks
beyond a certain size (R = �0), the theory behaves essentially as if in a dual description
the dimension would be increasing again. This is an indication that the space-time at
the Planck-scale may be very di�erent from what we are intuitively used to.

It is clear that in this way many di�erent compacti�cations can be related. If we perform
a dimensional reduction over d dimensions of radiiRa (a = 1; :::; d), the obtained vacuum
is physically equivalent to a dimensional reduction over coordinates of radii ~Ra, if the
radii Ra and ~Ra are related via T -duality and permutations in the index a. In this way
T -duality divides the di�erent vacua into equivalence classes and, although it does not
say which vacuum is preferred to others, at least it reduces the problem signi�cantly.

Not only can di�erent compacti�cations of a speci�c theory become equivalent via T -
duality, also the di�erent theories themselves can be related via this procedure. As
we will show later on in this thesis, the dimensionally reduced version of one theory
compacti�ed over a circle of radius R can be mapped onto the dimensionally reduced
version of a di�erent theory, which has been compacti�ed over a circle of radius �0=R.
In this way the Type IIA and the Type IIB theory and the Heterotic E8 � E8 and
SO(32) can be related to each other: one theory compacti�ed on a small volume is
equivalent to the other theory compacti�ed on a large volume.

Another duality that has been conjectured to exist, is the strong/weak coupling duality
or S-duality. In perturbation theory only the weak-coupling regime of string theory
can be explored but as the coupling grows too strong perturbative calculations break
down and trustworthy results are hard to obtain. S-duality might give insight in the
strong-coupling regime since it relates the strong and weak coupling regions of theories
to each other. If the S-duality conjecture holds, a string theory A with �elds �A and
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coupling constant gA can be rewritten in terms of another string theory B with dual
�elds ~�B and coupling constant gB = 1=gA. In this way, non-perturbative calculations
in one theory can be translated into perturbative calculations in the other theory. There
are strong reasons to believe that in this way the strong coupling limit of the Type I
theory corresponds to the weak coupling limit of Heterotic SO(32) theory (and vice
versa) and that the Type IIB theory is S-self dual, i.e. S-duality relates the strong and
the weak coupling limits within the same theory.

The strong coupling limits of Type IIA and Heterotic E8�E8 are even more surprising:
although these two theories are both ten-dimensional, as are all other string theories,
in their strong coupling limit an extra, eleventh dimension appears. This is possible
because this extra eleventh dimension is compact and its size is related to the ten-
dimensional coupling constant. So at weak coupling the eleventh dimension is very
small and in fact invisible, but as we let the coupling grow this extra dimension unfolds.

This discovery drew the attention back to eleven-dimensional supergravity, a theory
which was known already from the times before string theory, when people still thought
supergravity might lead to the theory of quantum gravity. However, eleven-dimensional
supergravity was always neglected because of its possible non-renormalizability and the
fact that one cannot obtain a chiral spectrum as in the Standard Model, where left and
right handed components of �elds behave di�erently under symmetry transformations.
With the rise of string theory, it was considered an irrelevant curiosity, since all string
theories live in ten dimensions and no connection to eleven-dimensional supergravity
was found. Now that it turns out that some string theories have an eleven-dimensional
limit, D = 11 supergravity gains importance as a possible low-energy e�ective theory
for this strong-coupling limit.

We see that the duality symmetries weave a web of duality transformations between
the di�erent string theories and even eleven-dimensional supergravity: they are all
interconnected via T or S-duality. This feeds the idea that the various string theories are
in fact not the really fundamental theories, but rather di�erent perturbation expansions
around di�erent vacua of one and the same underlying theory. This is an attractive
and elegant idea, that explains both the wide variety of duality relations between the
di�erent theories, as well as the fact why we �nd no less then �ve versions of what we
thought was the unifying, fundamental theory.

However, the other side of the picture is that it is not clear at all what this underlying
theory looks like. It is usually referred to asM-theory (where theM can stand for many
things, such as Membrane, Mother, Matrix, ...), but little more of it is known then that
it has eleven-dimensional supergravity as its low-energy e�ective theory and that it is
supposed to be the strong coupling limit of Type IIA and Heterotic E8 �E8 theory. A
lot of work is done nowadays to get a better picture of what M -theory actually is.

An important role in checking the M -theory conjecture and the duality relations be-
tween the di�erent theories is played by the solutions of the equations of motion of the
theory. In general, they appear as extended objects, objects with one or more spatial
extension and are referred to as p-branes, where p stands for the dimensionality of the
object: p = 0 is a particle, p = 1 is a string, p = 2 a membrane, ... Many of these
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p-branes occur as solitons in the theory, i.e., not as solutions of perturbative calcula-
tions, but as topological defects which are very heavy and strongly interacting at weak
coupling.

An example of such a brane is the solitonic �ve-brane, an object that has �ve spatial
directions and carries a magnetic charge. Isolated magnetic charges have never been
observed but occur typically in solitonic objects. This is in contrast to electrically
charged objects which are considered to be the fundamental objects of the theory, since
they appear in perturbation theory: they are light and weakly interacting at small
coupling.

In an early version of S-duality a conjecture was made stating that, for a theory of
electrically and magnetically charged particles, a dual formulation exists where the role
of fundamental and solitonic particles is reversed: in the dual formulation the funda-
mental particles are the ones with magnetic charge, while the solitons are electrically
charged. Furthermore, since the Dirac quantisation condition states that electric charge
e and magnetic charge q are related via their inverses q � 1=e, the strong coupling limit
of one theory corresponds to the weak coupling limit of the dual theory and vice versa:
strongly interacting solitons in the fundamental theory can be viewed as weakly inter-
acting fundamental particles in the dual theory.

In string theory, the fundamental, electrically charged object that interacts weakly at
small coupling is the fundamental string, while the heavy, strongly interacting magnetic
object is the solitonic �ve-brane. The string theory version of the electric/magnetic
duality conjecture is the string/�ve-brane duality, which states that the strongly inter-
acting string is dual to the weakly interacting �ve-brane. Instead of starting o� with
a theory for strings, we could have written down a theory for elementary �ve-branes
that has string-like solitons (however, the problem with this dual formulations is that
it is not clear how to quantize such an elementary �ve-brane). More generally, every
p-brane in D dimensions has a dual (D � p� 4)-brane of the opposite charge (electric
vs. magnetic) and coupling (strong vs. weak).

Another type of extended objects that appear in string theory is the so-called Dirichlet-
brane, or short D-brane. D-branes arise in the T -dual formulation of open strings:
it turns out that open strings can also be described as strings whose end-points are
attached to theseD-branes. AllD-branes are related to each other via T -duality and the
strings attached to them make it possible to study their dynamics using familiar string
perturbation theory. Furthermore, upon dimensional reduction to lower dimensions,
D-branes might give insight into the microscopic description of the quantum states of
black holes.

It was also realised that if Type IIA theory is really a compacti�ed version of an eleven-
dimensional theory, all solutions of Type IIA should be interpretable as reductions of
eleven-dimensional objects. Indeed, it turns out that the fundamental object of D = 11
supergravity is a membrane, rather than a string, but upon dimensional reduction over
one of the directions in which this membrane is oriented, a string-like object is found,
which can be identi�ed with the fundamental string solution of the Type IIA theory.
Also the other Type IIA solutions (the solitonic �ve-brane, the D-branes, etc.) can be
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obtained from eleven-dimensional objects after dimensional reduction.

The fact that all these types of p-branes turn up in string theory has given rise to
questions concerning the very nature of the theory: why call it string theory if there
exist dual, equivalent formulations in terms of (for example) �ve-branes and if one of
the theories entering in the duality web, D = 11 supergravity, does not even have a
string-like solution, but a membrane? Why should in such a variety of objects, strings
be more fundamental then other ones? Terms such as \p-brane democracy" and \Is
string theory a theory of strings?" have become common amongst string theoreticians.
It is hoped that M -theory will deal with these questions, but one of the reasons why
it is so hard to formulate it, is that we do not know in terms of which objects the
description is best given.

In this thesis, some of the aspects of the duality symmetries within string theory are
discussed. This is done by looking at three main parts: the target space theory, the
solutions and the world volume theory.

The target space action is the low-energy e�ective action of string theory, as seen from
the space-time in which the theory lives, if one integrates out the massive modes. The
action one obtains is one of supergravity theories, so that supergravity can be seen
as a low-energy approximation of string theory. We will work often with these target
space actions. They have many symmetries, which help us to understand the full string
theory, even if these symmetries may not be completely conserved up to the level of the
full theory. Also indications of the existence of the duality transformations between the
various string theories are already present in the low-energy e�ective actions.

The equations of motion of the low-energy e�ective action give rise to the solutions. The
duality transformations between these solutions, discussed above, are manifestations of
the duality relations between the di�erent string theories. Using the dualities on the
solitonic solutions, one can get insight in the non-perturbative regime of the theory,
while on the other hand looking at the duality relations between the solutions one can
perform tests to check the conjectured dualities between the theories.

The dynamics of these solutions is described by the world volume actions. So in order to
get a good understanding of the solutions it is necessary to look at their world volume
actions. Also here there exist all kinds of duality relations between the world volume
actions, much as they exist between the solutions themselves.

This thesis is organized as follows: in Chapter 2 we give a general introduction to string
theory, the world volume theory and the dynamics, the di�erent types of string theories,
the target space action and the di�erent solutions. In Chapter 3 we present T - and S-
duality and show how they act at the level of the world volume, the target space actions
and the solutions. We determine the strong coupling behaviour of the di�erent theories
and sketch the duality web between the actions and the solutions. We also explain how
dimensional reduction is performed.

After these two introductory chapters, we will look in more detail at the di�erent as-
pects of string theory. In Chapter 4 we study the target space actions, their symmetry
groups and the duality relations, both in ten, nine, six and �ve dimensions. Chapter
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5 is about the solutions of the target space actions and more speci�cally intersections
of two or more p-branes. First a kind of stability condition is determined for an in-
tersection of two such branes, and then this condition is used to construct and classify
intersections consisting of more then two intersecting branes. Dimensional reductions
of these intersections lead to new solutions in lower dimensions. The world volume
theory is studied in Chapter 6. An overview is given of the world volume actions of the
di�erent solutions and the duality relations between them will be demonstrated at the
level of these world volume actions. At the end of this chapter, the world volume action
of one particular solution, namely the Kaluza-Klein monopole, is constructed, making
use of the duality relations between the monopole solutions of the solitonic �ve-brane
solution.
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Chapter 2

String Theory

In this chapter we will give a general introduction to various aspects of string theory.
We review in section 2.1 the basic string dynamics, introducing the sigma models of
the classical bosonic string and the superstring. In section 2.2 we will look at the low
energy e�ective actions of the various types of superstring theories, and in section 2.3
attention will be paid to the di�erent solutions that arise in these theories.

A general introduction to the di�erent aspects of string theory can be found in [78, 95,
105, 114, 127], for a review on string solutions and p-branes we refer to [61, 151].

2.1 World Volume Theory

Let us consider a classical bosonic string, moving in a D-dimensional Minkowski space,
represented by the coordinates X� and the at metric ��� = diag[1;�1;�1; :::;�1].
While moving through space, the string sweeps out a two-dimensional surface � which
we call the world sheet of the string, and which can be parametrised by the two-tuple
�i = (�; �), where � is a time-like parameter of the string and � parametrises the length.

In analogy with the point particle, we can write down an action which describes the
dynamics of the string, that is proportional to the surface of the world sheet:

S = �T
Z
�

d2�
q
j det(@iX�(�k)@jX�(�k)��� )j: (2.1)

The action (2.1) is called the Nambu-Goto action for the bosonic string.

The constant T is the string tension and has the dimension of (mass)2 . Note that the
X� are functions of � and �, and give the embedding of the string in the D-dimensional
space-time. They are described by a two-dimensional �eld theory on the world sheet.
They induce a metric gij on � via the expression gij = @iX

�@jX
���� , so we see that

(2.1) is indeed proportional to the surface of �.
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There exists also another action which is, at least classically, equivalent to (2.1), but
does not have the non-linearity caused by the square root:

S = �T
2

Z
d2�

p
jj ij@iX�@jX

���� : (2.2)

This action, called the Polyakov action [131] (though �rst introduced in [55, 35]), makes
use of the metric ij on the world sheet as an independent but non-dynamical variable.
We will see later that it can be gauged away completely. Its equation of motion de�nes
the energy-momentum tensor

Tij = � 1

T

1pjj �S

�ij
= 1

2@iX
�@jX� � 1

4ij
kl@kX

�@lX� = 0: (2.3)

Taking the determinant of the matrix equation Tij = 0 and taking the square root, we
�nd q

j det(@iX�@jX�)j = 1
2

p
jjkl@kX�@lX�; (2.4)

which gives the relation between the Nambu-Goto and the Polyakov action. Let us now
discuss the symmetries of the Polyakov action. First of all, Eqn (2.2) is, just as (2.1),
invariant under reparametrisations of the world sheet (�; �) ! (f1(�; �); f2(�; �)), as
it should be. Since parametrisations (�; �) of the world sheet do not have a physical
meaning and are in principle arbitrary, no physical result can depend on them. Fur-
thermore, Eqn (2.2) has an extra symmetry which is intrinsically related to the fact
that we are dealing with strings, one dimensional objects: the Weyl-rescaling. Only on
a two-dimensional world sheet, is

pjj ij invariant under
ij ! �(�) ij : (2.5)

We can use these local symmetries to gauge away the world sheet metric and write (2.2)
in a simpler form. Making use of the reparametrisation invariance, we can write locally
ij = 
(�) �ij , the at world sheet metric times a conformal factor, and scale away this
conformal factor via the Weyl invariance. We then end up with the action of the free
bosonic string.

S = �T
2

Z
d2� �ij @iX

�@jX�; (2.6)

for which we can easily calculate the equation of motion of X�. This turns out to be
the two-dimensional free wave equation

(@2� � @2�)X
� = 0; (2.7)

with the well-known solution

X�(�; �) = X�
+(� + �) +X�

�(� � �); (2.8)

X�
+(� +�) and X

�
�(� ��) being arbitrary functions for the left and right moving modes

on the string.
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We still have to impose boundary conditions on Eqn (2.7). At this point, we have
to distinguish between two topologically di�erent types of strings: the open string,
which is a string with free endpoints, and the closed string, which has no ends1. For
closed strings we impose periodic boundary conditions X�(�; �) = X�(�; � + 2�). The
Fourier expansion of Eqn. (2.8) for the closed string, satisfying these periodic boundary
conditions, is then given by

X�
�(� � �) = 1

2x
� + 1

2�T p� (� � �) + i
2

1p
�T

X
n6=0

1
n a�n e

�in(���);

X�
+(� + �) = 1

2x
� + 1

2�T p� (� + �) + i
2

1p
�T

X
n6=0

1
n ~a�n e

�in(�+�): (2.9)

x� and p� are the position and momentum of the center of mass and the a�n and ~a�n
the Fourier coe�cients of the oscillation modes of the string. Reality of X� requires
that (a�n)

y = a��n and (~a�n)
y = ~a��n. The oscillation modes provide the string with extra

dynamical degrees of freedom which distinguish the string from a point particle.

For the open string the boundary conditions come from the surface term in the variation
of (2.6) between �i and �f (where we took �X�(�i) = �X�(�f ) = 0):

�T
Z
d� �X�@�X�

����=�
�=0

= 0: (2.10)

This condition can be satis�ed in two ways. The most obvious one is the Neumann
boundary condition

Neumann : @�X
�
����=�
�=0

= 0; (2.11)

because of its SO(D � 1; 1) Poincar�e invariance. Its physical meaning is that there is
no momentum ow out of the string at both endpoints.

The Dirichlet boundary condition

Dirichlet : �X�
����=�
�=0

= 0 () X�
����=�
�=0

= C�; (2.12)

with C� a constant vector, looks a bit strange at �rst sight, since it implies that the
endpoints of the open string are �xed in space. However it will turn out that this is
indeed a physically relevant boundary condition.

Suppose an open string satis�es Neumann boundary conditions in all but one direction,
and Dirichlet boundary conditions in one direction X1. This means that there is a
(D�2)-dimensional hyperplane X1 = C in the Minkowski space to which the endpoints
of the string are attached. This hyperplane is called a \Dirichlet-brane" or D-brane,
because of the Dirichlet boundary conditions on the string. The interactions with open
strings make the D-brane a dynamical object that, as we will see later, will play an
important role in non-perturbative string theory.

1A string theory with open strings also contains closed strings, since the joining and splitting of
open strings can lead to closed ones. The reverse is not true. For the open string we will choose the
parametrisation � = [0; �], while for closed strings � = [0; 2�].
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The Fourier expansion of the open string solution to (2.7), satisfying Neumann or
Dirichlet conditions is given by

X�
N (�; �) = x� + 1

2�T p� � + i
2

1p
�T

X
n6=0

1
n a�n e

�in� cosn�; (2.13)

X�
D(�; �) = x� + 1

2�T p� � + i
2

1p
�T

X
n6=0

1
n ~a�n e

�in� sinn�; (2.14)

where X�
N satis�es the Neumann conditions and X�

D the Dirichlet conditions.

At this point it would be logical to go beyond the purely classical analysis and try
to quantize the bosonic string. Making use of techniques as conformal invariance and
BRST-quantisation, one can compute the physical spectrum of this string theory and do
string scattering amplitude calculations. However, these calculations go beyond the aim
of this introduction. For a discussion of conformal symmetry and the BRST-formalism
to compute string spectra, we refer to [74, 84]. Let us make some remarks though,
which are worth mentioning because of their later relevance or because they complete
the general picture.

First of all, a calculation of the spectrum of the bosonic string reveals that this string
theory can only consistently be quantised in a 26-dimensional space-time. D = 26
is therefore called the critical dimension for the bosonic string and strings that live
in other then the critical dimension are called non-critical strings. The fact that the
dimensionality of the space-time is not a free parameter, but given by the theory is
one of the nice surprises of string theory. Since string theory pretends to be the �nal,
unifying theory, it also should be able to determine the precise value of quantities that
entered as free parameters in other theories. It might be worrisome, however, that the
number of dimensions, predicted by the bosonic string, di�ers so much from our \real",
four-dimensional world. We will see that for other types of string theories, the number
of dimensions will be lower, and that there exist techniques to make contact with the
familiar D = 4 world.

A more worrying problem is the fact that in the spectrum of the bosonic string a tachyon
appears, a particle with an imaginary mass, that moves faster than the speed of light.
This will mess up the causality structure of the theory and is therefore an undesired
feature. The problem is due to the fact that we are dealing with the bosonic string.
Introducing the fermions in the right way will eliminate the tachyon from the spectrum.

Let us therefore make our string model a bit more realistic by also introducing fermions
in the theory. We do this by allowing fermionic �elds in the two-dimensional �eld theory
on the world sheet, which will get the interpretation of \fermionic modes" of the string.
As it turns out, these fermionic modes give rise to fermion �elds in space-time. Let us
consider the action:

S = �T
2

Z
d2�

h
@iX

�@iX� + i � ��i@i �

i
: (2.15)

Here,  � is a Majorana spinor on the world sheet that transforms as a vector under the
SO(D � 1; 1)-Lorentz group of the Minkowski space. The �i are the two-dimensional
Dirac matrices.
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The action (2.15) is invariant under a symmetry transformation that interchanges the
bosonic and fermionic �elds in the theory, the supersymmetry transformations

�X� = i�� �;

� � = �i@iX
��; (2.16)

where � is a constant spinor. Because of the invariance under these supersymmetry
transformations, the string model we are considering is called the superstring.

Note that we wrote the action (2.15) in the so-called conformal gauge, where the world
sheet metric is already gauged away (compare with (2.6)). Therefore the �elds in
(2.15) have to obey certain constraints, such as the vanishing of the energy momentum
tensor (as in (2.3)) and the conserved supersymmetry current. Though important in
the general formulation of superstring theory, these constraints do not enter in the rest
of our discussion, so we will not consider them.

The equations of motion and the dynamics of the bosonic part of (2.15) are the same
as for the bosonic string. So let us concentrate on the fermionic part. Varying (2.15)
with respect to � � gives the equations of motion

�i@i 
� = 0; (2.17)

and the boundary conditions
� ��1� �

����=�
�=0

= 0: (2.18)

In order to solve these equations it is convenient to choose a basis in which the Dirac
matrices �i are real:

�0 =

�
0 1
�1 0

�
; �1 =

�
0 1
1 0

�
; (2.19)

and to decompose  � into two real valued components

 � =

�
 ��
 �+

�
: (2.20)

 �+ and  �� are the left and right moving fermionic modes on the world sheet. The
equations of motion can then be rewritten as:

(@� � @�) 
�
+ = 0 ;

(@� + @�) 
�
� = 0 : (2.21)

Let us �rst look at the solution of these equations for the case of the open string. We
see that the boundary condition

 �� � �� �  �+ � +�

����
0
= 0 (2.22)

is satis�ed if  �+ = � �� and � �+ = �� �� at � = 0; �. Since an overall sign in
the boundary conditions in irrelevant, we can set without loss of generality  �+(0) =
 ��(0). What remains to be �xed is the boundary condition at � = �. There are two
possibilities:
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1. Ramond (R) boundary conditions:  �+(�) =  ��(�). The solution of (2.21, 2.22)
then yields

 �� =
1p
2�T

X
n

b�n e
�in(���); n 2 Z: (2.23)

2. Neveu-Schwarz (NS) boundary conditions:  �+(�) = � ��(�). Eqn (2.21, 2.22) is
then solved by

 �� =
1p
2�T

X
r

c�r e
�ir(���); r + 1

2 2 Z: (2.24)

String excitations coming from world sheet �elds satisfying R-boundary conditions,
will manifest themselves as fermionic �elds from the space-time point of view, while
excitations of �elds satisfying the NS-boundary condition will appear as bosonic �elds.

For closed strings we can impose either periodic or anti-periodic boundary conditions
on each component  �+ and  �� separately:

1. Periodic boundary conditions (R)  ��(0) =  ��(�):

 �� =
1p
2�T

X
n

d�n e
�in(���); n 2 Z (2.25)

2. Anti-periodic boundary conditions (NS)  ��(0) = � ��(�):

 �� =
1p
2�T

X
r

f�r e�ir(���); r + 1
2 2 Z: (2.26)

So in total there are four possible combinations of left and right movers, each satisfying
either one of the above boundary conditions: NS-NS, NS-R, R-NS and R-R. Excitations
of the  � for which the di�erent components satisfy NS-NS or R-R conditions, appear
in the space-time as bosonic �elds, whereas the ones that have NS-R or R-NS conditions
manifest themselves as fermions.

The supersymmetry on the world sheet also induces supersymmetry transformations
between the fermion and the boson �elds in the space-time. For open strings this is
N = 1 (so supersymmetry with one space-time supersymmetry generator) and for closed
strings N = 2 supersymmetry (except for some special cases, as we will see in the next
section).

The supersymmetry transformations (2.16) enable us to remove the tachyon we found in
the spectrum of the bosonic string. Furthermore the number of space-time dimensions
for the superstring is reduced to D = 10. From a phenomenological point of view, this
is still a very high dimensional space, but as we will see in the section 3.1.2, there exist
techniques to compactify over a number of dimensions to make contact with our D = 4
world.

Until now we have only considered strings moving in a Minkowski space, but in the end
we are interested in strings moving in spaces with more general background �elds, for
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example some curved space-time characterized by a metric g�� . In section 2.2 we will
give the most general covariant two-derivative action. These more general backgrounds
complicate considerably the theory.

To perform string calculations one often uses perturbation expansions. One such is an
expansion in �0, a parameter with dimension of (length)2, which is related to the string
tension via �0 = 1

2�T . It introduces a fundamental length scale
p
�0, which is the string

scale, where stringy e�ects become important. Most of the time, we will work in the
so-called \zero-slope limit"2 �0 ! 0, unless mentioned di�erently. This corresponds
to the string tension T ! 1, so the size of the string shrinks to zero and it can be
approximated by a point particle.

A second perturbation expansion is the expansion in the string coupling constant (given
by the expectation value of the dilaton �eld e�, which we will introduce in the next
section). This expansion counts the number of loops in string scattering processes, and
thus the genus of the world sheet �. In fact this is the string generalisation of the
Feynman diagrams in quantum �eld theory.

2.2 Target Space Action

Let us now for a moment go back to the bosonic string and try to write down a string
moving in a more general space-time than the Minkowski space we have considered in
the previous section. The most general covariant action we can write down with two
world sheet derivatives is the non-linear sigma model action

S = � 1

4��0

Z
d2�

n�p
jjijg��(X)� "ijB��(X)

�
@iX

�@jX
�

��0
p
jj �(X) R(2)

o
: (2.27)

This is the action of a string moving through a background characterized by a metric
g�� , an antisymmetric tensor B�� , called the axion, and a scalar �eld � called the
dilaton. R(2) is the Ricci scalar of the two-dimensional world sheet metric ij and "

ij

the fully antisymmetric tensor in two dimensions.

For a constant mode of the dilaton �0, the last term in (2.27) is a topological term
which is proportional to the Euler characteristic

�(�) =
1

4�

Z
�

d2�
p
jj R(2) = 2� 2g; (2.28)

where g is the genus (number of holes) of the surface �. In other words, the last term in
(2.27) counts the number of loops in the string scattering diagrams. A g-loop diagram in
the (Euclidean) path integral gets weighted by a factor (e�)2�2g and the string coupling
constant can be identi�ed with the expectation value of e�.

2The name zero-slope limit comes from the fact that �0 is the proportionality constant between the
angular momentum J of a rotating string with energy E and the square of the energy, so the slope of
the plot J(E2).
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The di�erence between the actions (2.2) and (2.27) is that the latter does not turn into
the action (2.6) in the conformal gauge ij = 
(�) �ij , which makes it a non-trivial
two-dimensional �eld theory and forces us to a perturbation expansion in �0, if we want
to do quantum calculations.

The �rst two terms of (2.27) are invariant under Weyl rescaling (2.5) at the classical
level, but the demand that Weyl invariance should hold at the quantum level forces
the �-functions of the �elds to vanish. This is because the �-functions give the scale
dependence of the couplings of the various �elds, so Weyl invariance (and therefore scale
invariance) implies � = 0.

The conditions for Weyl invariance to hold are then, at �rst non-trivial order in �0 and
at tree level in the loop expansion [38]:

�g�� = R�� � 2r�@��+
9
4H���H�

�� +O(�0) = 0;

�B�� = r�H
�
�� � 2H�

��@�� +O(�0) = 0; (2.29)

1
�0�

� = 1
�0 (D � 26) + 3

�
R+ 4(@�)2 � 4r2�+ 3

4H���H
���
�

+O(�0) = 0:

Here R�� and R are the Ricci tensor and Ricci scalar for the background metric g��
and r� the covariant derivative on the space-time. H��� is the rank three �eld strength
tensor of B�� :

H��� = 1
3 (@�B�� + @�B�� + @�B��) = @[�B��]; (2.30)

and is invariant under the gauge transformations �B�� = @[���].

The physical interpretation of these constraints is that they can be seen as the equations
of motion of the action

S = 1
2

Z
dDx

p
jgje�2�

�
� (D � 26)

3 �0
�R+ 4(@�)2 � 3

4H���H
���

�
+O(�0); (2.31)

This action is called the low-energy e�ective action or target space action, because it
describes the massless modes of slowly varying X�'s, as �elds in the target space, the
space in which the string moves. It can therefore be seen as a low energy approximation
of string theory. For strings living in their critical dimensional space, the (D�26)-term
in the third equation of (2.29) and in the action (2.31) drops out. From now on we will
suppose that this is always the case.

The fact that the space-time metric g�� appears as a dynamical �eld, via the Ricci
tensor, is the �rst indication we meet that gravity is contained in string theory. In
fact (2.31) is the action for 26-dimensional gravity coupled to tensor and scalar �elds.
Higher orders in �0 or string loop expansion will give rise to more terms in (2.31), and
therefore predict corrections to general relativity. For a deeper analysis to higher order
corrections, particularly for the Heterotic string, we refer to [155] and references therein.

The same procedure for computing the low-energy e�ective action can also be done
for the supersymmetric string (2.15). It turns out that the low-energy description for
the superstring is 10-dimensional supergravity, a locally supersymmetric quantum �eld
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theory. As already mentioned in the previous section, the N = 1 world sheet supersym-
metry induces N = 2 space-time supersymmetry, i.e. a supersymmetry transformation
with two space-time supersymmetry generators. The di�erent ways these space-time su-
persymmetries can be introduced in the theory give rise to di�erent types of superstring
theories and di�erent low energy e�ective actions:

� Type I: This is a theory of open strings. Closed strings however are also included
in this theory because two interacting open strings can join and form a closed one.
The boundary conditions for the open string eliminate one of the supersymmetries
and break the original N = 2 to N = 1 supersymmetry. At the endpoints of the
string charges can be attached, inducing a Yang-Mills gauge group in the theory.
Consistency at the quantum level only allows SO(32) as Yang-Mills group.

The bosonic part of the low energy e�ective action of the Type I string is given
by the bosonic part of N = 1; D = 10 supergravity [41, 19, 42]

SI =
1
2

Z
d10x

p
jgj
h
e�2�

�
�R+ 4(@�)2

�
� 3

4H
2
(3) +

1
4e

��F I
(2)F(2)I

i
; (2.32)

where we used the sub-index to indicate the rank of the �eld strength tensor. F I
(2)

is the �eld strength of the vector �eld corresponding to the SO(32)-group and
transforms under the adjoint representation of the group.

� Type IIA: This is a theory of closed strings only. The two space-time supersym-
metries appear with opposite chirality, so the string itself is non-chiral and has
N = 2 supersymmetry. There is no freedom to introduce a Yang-Mills group, but
in the bosonic �eld content we see, besides the metric, axion and dilaton of Type
I, also a one-form A(1) and a three-from gauge �eld C(3) [93, 71, 40]:

SIIA = 1
2

Z
d10x

p
jgj
n
e�2�

h
�R+ 4(@�)2 � 3

4H
2
(3)

i
+ 1

4F
2
(2) +

3
4G

2
(4) +

1
64

"(10)p
jgj@C(3)@C(3)B(2)

o
; (2.33)

with F(2) and G(4) the �eld strengths of the gauge �elds A(1) and C(3) respectively
and "(10) the ten-dimensional fully anti-symmetric tensor. The NS-NS �elds,
satisfying double anti-periodic boundary conditions (2.26) on their world sheet
fermions, appear di�erently in the above action as the R-R �elds, satisfying double
periodic boundary conditions (2.25). The �elds of the NS-NS sector have an
explicit dilaton coupling via the factor e�2�, while the R-R �elds are not multiplied
by this factor. The R-R �elds appear in the action (2.33) as the bosonic �elds
necessary to extend N = 1 to N = 2 supersymmetry. Their di�erent dilaton
coupling means that they correspond to a higher order in string coupling constant.
As we will see later, the solutions that couple to these R-R �elds do not belong
to the perturbative spectrum.

� Type IIB: This is also a theory for closed strings with N = 2 supersymmetry,
though this time with two supersymmetries that have the same chirality, so the
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theory is chiral. Again it is impossible to introduce Yang-Mills groups and besides
the NS-NS �elds that appear in the same way as in Type IIA, the R-R sector

consists of a scalar `, a two-form gauge �eld B
(2)
�� and a self-dual four-form gauge

�eld D+
����. Due to the self-duality condition of the four-form, it is impossible

to write down a covariant low energy e�ective action for this theory 3. The �eld
equations of Type IIB supergravity can be found in [138]. In [17] an action is
given in which the self-duality condition is not used, but is put in by hand as an
extra equation of motion for the four-form:

SNSD
IIB = 1

2

Z
d10x

p
jgj
n
e�2�

h
�R+ 4(@�)2 � 3

4 (H(1))2
i

� 1
2 (@`)

2 � 3
4 (H(2) � `H(1))2 � 5

6F
2
(5)(D) (2.34)

� 1

96
p
jgj"

ab"(10)D(4)H(a)H(b)
o
;

F (D+)�1:::�5 =
1

5!
pjgj "�1:::�10F (D+)�6:::�10 : (2.35)

F����� and H(2)
��� are the �eld strengths of D+

���� and B
(2)
�� .

� Heterotic string: This string theory makes use of the fact that for closed strings
the left and the right moving sectors are independent. The left moving sector can
be taken to be the left moving modes of the purely bosonic string, while for the
right moving sector we take the modes from the superstring [79]. Since only one
sector is supersymmetric, the Heterotic string has N = 1 supersymmetry. This
is however enough already to remove the tachyon from the bosonic spectrum.
A Yang-Mills gauge group arises from the compacti�cation of the bosonic sec-
tor on a 16-dimensional compact space, in order for the 26-dimensional bosonic
string to match up with the superstring, living in 10 dimensions. Again quantum
consistency restricts the gauge group to SO(32) or E8 �E8.

The bosonic part of the low energy e�ective action is given by

SHet =
1
2

Z
d10x

p
jgj e�2�

h
�R+ 4(@�)2 � 3

4H
2
(3) +

1
4F

I
(2)F(2)I

i
: (2.36)

Type I, Type IIA, Type IIB, Heterotic SO(32) and Heterotic E8 �E8 are the only �ve
consistent superstring theories in ten dimensions. Note that the metric, the dilaton
and the axion appear in the same way in all string theories, except in Type I. We will
therefore refer to this part of the action as the common sector.

Although the critical dimension for superstrings to live in is D = 10, there does exist a
supergravity theory in eleven dimensions. This has always been a mysterious subtlety,
since on the one hand there seems to be an intimate relation between superstrings and
supergravity theories, yet on the other hand this D = 11 supergravity does not have a
string theory counterpart of which it is the low energy e�ective action. We do mention

3However, see also [52]
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it here though, because of the importance it has in a unifying description of the above
string theories, as we will see in the next chapter.

� D = 11 Supergravity: Eleven dimensions is the highest number of dimensions
for a supergravity theory to live in4. D = 11 supergravity turns out to be a unique
theory with N = 1 supersymmetry. In its bosonic sector it has a �eld content
consisting of a metric and a three-form gauge �eld C��� and the action can be
written as [47]

SD=11 =
1
2

Z
d11x

p
jgj
�
�R+ 3

4G
2(C) + 1

384
1p
jgj �

(11)C@C@C

�
: (2.37)

In Chapter 3 and Chapter 4 we will investigate the relations between these di�erent
supergravity actions and the symmetries they have. But let us �rst take a look at the
solutions in string theory coming from these actions.

2.3 Solutions

Before we study in detail the solutions that appear in string theory, let us �rst focus on
a special feature that occurs for �eld theories that have extended supersymmetry. We
will see that then there exist states with special properties, namely states whose mass
is related to their charge. The importance of these states is that they do not get any
quantum corrections, so the semi-classical result is already exact.

The supersymmetry generators QI form an algebra which is typically of the form
fQ;Qg = �P�, but for theories with more then two generators (so I : 1; :::; N � 2),
in the presence of a soliton solution, a central charge term ZIJ is present besides the
usual momentum term P�,:

fQI
�; Q

J
�g = ���P��

IJ + ZIJ
�� (2.38)

The central charge term arises as a boundary term in the supersymmetry algebra and
has a non-zero value of solutions with non-trivial topological charges (solitons). It can
therefore be thought of as the electric or magnetic charge of the soliton solution.

The presence of the central charge puts a bound on the mass of the particles. Because
of the positivity of the supersymmetry algebra, the expectation value of (2.38) becomes
(schematically)

h j fQ;Qg j i = h j H j i+ h j Z j i � 0; (2.39)

with H the Hamiltonian of the system. The �rst term on the right-hand side of (2.39)
is then the energy (or the mass) of the state j i, and the second term its charge. So
(2.39) actually states that the mass of a particle is bounded from below by its charge:

M � jZj: (2.40)

4For supergravity theories in dimensions higher then eleven, �elds with spin greater then two appear
[118], and it is not clear how to deal with these higher spin �elds in an adequate way.
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This inequality is called the Bogomol'nyi bound or BPS-bound. It was �rst derived
in the context of 't Hooft-Polyakov monopoles by Bogomol'nyi [33] and Prasad and
Sommer�eld [132], and later generalized to supersymmetric theories [165].

There exist particular states that saturate the above inequality (2.39), i.e. for states that
have the minimal possible mass, the above inequality turns into an equality. This hap-
pens if a state j 0i is annihilated by some of the supersymmetry generators,QI0 j 0i = 0.
The mass of such a state is completely determined by its charge:

M = jZj: (2.41)

States that saturate the BPS-bound are called BPS-states. A special feature of these
states, besides their mass formula, is that they form representations of the supersym-
metry algebra which are shorter (lower-dimensional) than the usual representations.
This can be understood from the fact that since they get annihilated by some of the
generators, fewer di�erent states appear in each multiplet. But this also implies that
they are protected by supersymmetry from quantum corrections [165]: any quantum
correction (perturbative or non-perturbative) would break up the mass-charge relation
(2.41) and break the multiplet structure of the BPS-states. But since states always
appear in multiplets and quantum corrections cannot change a short multiplet in a long
(normal) one, BPS-states have to stay in their short multiplet representation and hence
do not receive quantum corrections. Their relations and properties even hold if we let
the coupling constant grow strong and perturbation theory no longer holds. Therefore
BPS-states will turn out to be a very important tool to investigate the behaviour of
theories at strong coupling (see Chapter 3).

Let us now have a look at solutions of the equations of motion of the actions (2.32) -
(2.36). Amongst the various solutions of supergravity theories, there exists the class
of spatially extended objects, called p-branes, where p refers to the dimensionality of
the object (p = 0 would be a particle, p = 1 a string, p = 2 a membrane, ...). These
extended objects appear because of the fact that in string theory the central charge of
the supersymmetry algebra is in general a (p+1)-form antisymmetric tensor gauge �eld
ZIJ
�1:::�p+1 , rather then a Lorentz-scalar and the BPS-state carrying the (p + 1)-form

charge is typically a p-brane or, as we will see, a (D � p � 4)-brane. For a detailed
analysis of what kind of extended solutions correspond to each central extension of the
supersymmetry algebra, we refer to [91].

We will discuss in the rest of this section some speci�c, \elementary" solutions that can
be interpreted as the \fundamental" objects of string theory and supergravity. The fact
that they can be interpreted as a single (fundamental) object is because they are all
characterised by a single harmonic function H(x), which determines their position in
the target space. From now on we will restrict ourselves to the bosonic part only of the
theories. In a �rst approach we will look at the solutions of the equations of motions of
the common sector, since these will later reappear in the various theories. In a second
step we will concentrate on solutions that occur in speci�c theories. For the general
p-brane solution of the supergravity action, as a function of the spatial extension of the
brane, the dimension of the space-time and the dilaton coupling of the gauge �eld, we
refer to [16] and the references therein.
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The variation of the action

S = 1
2

Z
d10x

p
jgj e�2�

h
�R+ 4(@�)2 � 3

4H
2
i

(2.42)

with respect to the di�erent �elds g�� ; B�� and � gives

[g�� ] : R�� � 2r�@��+
9
4 H���H�

�� = 0;

[�] : R � 4r�@
��+ 4(@�)2 + 3

4H
2 = 0; (2.43)

[B�� ] : r�(e
�2�H���) = 0:

Since the action (2.42) is derived as a low energy e�ective action of a string moving in a
curved space-time, it is not unreasonable to look for a string-like solution to Eqns (2.43),
i.e. a solution that has an extension in one spatial and one time direction. Therefore it
must have a two-dimensional Poincar�e invariance times an eight-dimensional rotational
symmetry: P2 � SO(8). Such a solution, satisfying Eqns (2.43) is given in [50]5:

F1 =

8<
:

ds2 = H�1(dt2 � dx21)� (dx22 + :::+ dx29)
e�2� = H
B01 = H�1

(2.44)

The function H is a harmonic function of the coordinates (x2; :::; x9):

H = 1 +
c

r6
; r =

q
x22 + :::+ x29: (2.45)

In particular x1 is an isometry direction and we can indeed interpret (2.44) as a string
(a one-dimensional extended object) oriented in this x1-direction. The solution (2.44)
is generally referred to as the fundamental string (F1). The sub-space spanned by the
coordinates (x2; :::; x9) is called the transverse space of the string and the directions
(t; x1) the world volume directions.

A closer look at the solution (2.44) and the harmonic function H = 1 + c
r6 reveals

that the F1 is singular for r ! 0. Of course one always has to be very careful with
singularities in particular coordinate systems, since they can be just an artifact of the
chosen coordinates. But an analysis, done in [151], reveals that the fundamental string
does indeed have a (time-like) singularity6, which invites us to put a \material" string at
the singularity by adding a delta-function source term to the supergravity action (2.42).
Such a source term we already encountered, namely the non-linear sigma model (2.27),
which describes the dynamics of the string. So we can say that the fundamental string
solution (2.44) is a solution of the equations of motion of the combined \supergravity-
matter" system

S =
1

2�2

Z
d10x

p
jgj e�2�

h
�R+ 4(@�)2 � 3

4H���H
���
i

5A detailed derivation of this solution and the following ones and their supersymmetry can be found
in [61].

6Though not in the coordinates given above. In order to see the singularity, one has to use an
analytic extension of these coordinates. For a detailed analysis of the space-time structure of various
p-branes and their Penrose diagrams, we refer to [151].
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+
T

2

Z
d2� "ijB��(X) @iX

�@jX
� :

We can choose the parametrisation of the string source to be (X0; X1; Xm) = (�; �;~0)
and ij = �ij , so that all equations of motion reduce to

@n@nH(xm) = �2T �(xm): (2.47)

This gives us the relation between the constant c in the harmonic function H(xm), the
string tension T and the coupling constant of general relativity �2:

c =
�2 T

3 
7
; (2.48)

where 
7 is the volume of the unit 7-sphere around the string.

Although (2.44) is a purely bosonic con�guration, it still preserves half of the super-
symmetry of the theory. This can happen if not only the fermionic �elds, but also their
variations under supersymmetry transformations vanish for some Killing spinor �. For
the N = 1 case we have for the dilatino � and the gravitino  �:

� � = D��+
3
8 H���

��� � = 0;

�� = �@�� �+
1
4 H���

��� � = 0: (2.49)

In particular, for the F1 this gives a condition for �:

(1 + 01) � = 0: (2.50)

This condition de�nes in fact a projection operator on � that breaks half of the super-
symmetry and preserves the other half. This partial breaking of supersymmetry is due
to the fact the the F1 is a BPS-state. This can be shown, comparing the mass per
unit length, de�ned as the integral over the (00)-component of the energy-momentum
tensor,

M =

Z
V8

T 00 d8x = 2�2T (2.51)

to the electric charge conserved via the equations of motion of the two-form gauge �eld
B�� :

e =

Z
V8

@mH
01md8x =

Z
S7
H01idSi = 2�2T : (2.52)

There is also another way that the gauge �eld B�� can carry a conserved charge, but
this time the charge is topologically conserved, not dynamically via the equations of
motion.

q =

Z
S3

"mnpHmnp d
3x: (2.53)

While (2.52) is the generalisation to higher dimensions and higher forms of the electric
charge in Maxwell theory, (2.53) would correspond to the generalisation of the magnetic
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charge as it occurs in the Dirac monopole, a solitonic object in the context of electro-
magnetism. So also in the context of string theory, we expect the object that carries
the magnetic charge as given in (2.53) to correspond to a solitonic object.

Indeed, a solution of the Eqns (2.43) carrying magnetic charge is given by [39, 63]

S5 =

8<
:

ds2 = dt2 � dx21 � :::� dx25 �H(dx26 + :::+ dx29)
e�2� = H�1

Hmnp = "mnpr@rH (m;n; p; r : 6; :::; 9):
(2.54)

The harmonic function H depends this time on the coordinates xm = (x6; :::; x9), so
we can interpret the solution as an object that has spatial extensions in the (x1; :::; x5)-
directions, i.e. it has �ve plus one world volume directions and four transversal ones.
We therefore refer to solution (2.54) as the solitonic �ve-brane (S5).

One can show [151] that there exist coordinate frames in which the S5 is completely
singularity-free, so no source term is needed. The S5 is really a solitonic object in the
sense that it corresponds to a topological defect with a large mass per unit volume,
rather then with an elementary excitation of the vacuum. In fact one can show that
the S5 is a BPS-state, so it conserves half of the supersymmetry and the Bogomol'nyi
bound (2.41) between the mass and the magnetic charge is saturated.

Although the S5 is non-singular and a source term is not needed, we can still write
down an e�ective action which describes the dynamics of the �ve-brane. Just as for
the F1, the e�ective action of the S5 consists of two parts: a kinetic term, written in
the form of a Born-Infeld (BI) term, which induces a metric on the �ve-brane, and a
Wess-Zumino (WZ) term which gives the coupling to the gauge �eld. For the N = 1
�ve-brane this is:

S = �T
2

Z
d6� e�2�

q
j det(@iX�@jX�g��)j

+ T
6!

Z
d6� "i1:::i6 @i1X

�1 ::: @i6X
�6C�1:::�6 : (2.55)

C�1:::�6 is the dual (magnetic) potential of B�� . More generally, every (p + 1)-form
potential can equivalently be written as a (D � p � 3)-form, since their �eld strength
tensors are related via Poincar�e duality

F�1:::�(p+2) =
1

(D � p� 2)!

1pjgj "�1:::�(p+2)�(p+3):::�DF�(p+3):::�D : (2.56)

The factor e�2� in the kinetic term of (2.55) states that we are dealing with a solitonic
object, whose mass is inversely proportional to the square of the coupling constant:

MS5 � 1

g2
: (2.57)

This means that for weak coupling, so in the perturbative regime, the �ve-brane becomes
very massive.
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Let us now look at the solutions of the Type IIA/B theories (2.33) - (2.34). Again
we encounter the fundamental string and the solitonic �ve-brane, because the common
sector is contained in both Type II strings. However, due to the presence of the R-R
gauge �elds, there exists a entirely new class of solutions that are charged with respect
to these �elds: the so-called Dirichlet-branes or D-branes [128].

Dp-branes (0 � p � 8) arise as hyperplanes in space-time to which the endpoints of
open fundamental strings can be attached. Such a string ending on a Dp-brane satis�es
Dirichlet boundary conditions in (9� p) directions, constraining it to live on the world
volume of the D-brane [129]. The strings attached to the D-brane describe uctuations
on the surface of the brane and make the D-branes dynamical objects, rather then static
hypersurfaces. The strings can interact with each other or with strings approaching the
brane and then scatter o� closed strings [82]. The D-branes appear as solutions of the
equations of motion of both Type II theories in the form

Dp =

8><
>:

ds2 = H� 1
2 (dt2 � dx21 � :::� dx2p)�H

1
2 (dx2p+1 + :::+ dx29)

e�2� = H
p�3
2

F
(R�R)
012:::pm = @mH

�1 (m : p+ 1; :::; 9):

(2.58)

Again H is a harmonic function that depends on the transverse coordinates xm =

(xp+1; :::; x9). F
(R�R)
012:::pm is the �eld strength of the R-R p-form gauge �eld that carries

the R-R charge of the brane. Note that for p � 3 we have used the equivalent expression
for the �eld strength, in terms of the magnetic (dual) potential (2.56).

Dp-branes with even p (D0; D2; D4; D6) couple to odd-form gauge �elds and therefore
occur in Type IIA theory, while p-odd branes (D1; D3; D5; D7), coupling to even-form
gauge-�elds, occur in Type IIB.

From (2.56) we see that the Dp-branes with p < 3 carry an electric charge, and the Dp-
branes with p > 4 a magnetic charge. The D3-brane is dyonic, i.e. it has both electric
and magnetic charge, due to the self-duality condition of the D+

���� in Type IIB. These
charges can be calculated in the same way as for the F1 and S5 in (2.52)-(2.53). Again
the Bogomol'nyi bound is saturated

MDp � 1

g
� QR-R: (2.59)

The inverse coupling constant in the mass formula indicates that the D-branes also
belong to the non-perturbative spectrum, though their solitonic character is not as
strong as for the S5.

The dynamics of the D-brane are described by a sigma model type of action [109, 68],
which also plays the role of source term for the equations of motion. The BI-term
describes the coupling of the NS-NS �elds with a world volume vector Vi and the WZ-
term gives the coupling to the R-R gauge �elds [68, 77]:

S = �T
2

Z
dp+1� e��

q
jdet(gij +Fij)j

+ T
(p+1)!

Z
dp+1� "(p+1)

h
C(p+1) + C(p�1)F + C(p�3)F2 + :::

i
(2.60)
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where gij is the pull-back of the metric on the world volume and Fij the �eld strength
of the vector �eld Vi:

gij = @iX
�@jX

�g�� ;

Fij = @iVj � @jVi � @iX
�@jX

�B�� : (2.61)

The C(p+1) are the di�erent (p+ 1)-form R-R �elds in a uniform notation. The inter-
pretation of the world volume vector Vi is that of a U(1)-potential of a charged particle
on the world volume of the D-brane. Charge conservation of the NS-NS two-form at
the end of an open string ending on a D-brane is only maintained if there is an electric
ux on the world volume coming out of the endpoint of the string. So the endpoints
manifest themselves on the brane as charged particles, with a potential Vi associated
to them [153].

Note that in the Type I action (2.32) the three-form �eld strength H��� occurs in the
same way as the R-R �elds of Type IIA/B. The string and �ve-brane solutions of Type I
should therefore be compared to the D1 and D5, rather than to the fundamental string
or the solitonic �ve-brane.

The equations of motion of the D = 11 supergravity action (2.37) do not contain an F1
or S5 solution (2.44, 2.54), but the three-form gauge �eld C��� suggests that there has
to be a two-brane and its eleven-dimensional magnetic dual, a �ve-brane, that couple to
C. Indeed such an electrically charged membrane (M2) [65] and a magnetically charged
�ve-brane (M5) [81] have been found7:

M2 =

(
ds2 = H�2

3 (dt2 � dx21 � dx22)�H
1
3 (dx23 + :::+ dx210)

C012 = H�1 (2.62)

M5 =

(
ds2 = H�1

3 (dt2 � dx21 � :::� dx25)�H
2
3 (dx26 + :::+ dx210)

G(C)mnpr = "mnprs@sH (m;n; p; r; s : 6; :::; 10);
(2.63)

In many aspects these M -branes are much the same as their ten-dimensional coun-
terparts (in fact in the next chapter we will see how they are related): the harmonic
function H depends on the transversal coordinates xm, they saturate the Bogomol'nyi
bound and break half of the supersymmetry. The M2 is singular and needs a source
term [30], while the M5 is a solitonic object that is very heavy at weak coupling.

Besides the above mentioned p-brane solutions, there exist two more solutions to both
string theory and D = 11 supergravity that are characterized by a single harmonic
function and can therefore also be considered as fundamental objects of string theory
and supergravity. We will encounter them often in the following chapters. They are
special in the sense that they already occur as solutions of pure gravity, so they only
consist of a non-trivial metric. Furthermore they do not have the typical two-block
structure of world volume and transverse directions of p-branes. Therefore they can not
be interpreted as \brane"-like solutions.

7The namesM2 andM5 come from the fact that D = 11 supergravity sometimes is calledM-theory.
Thus the p-branes that arise in M-theory are called M-branes.
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dim 0 WD 1 2 3 4 5 6 KKD 7 8
D = 11 W11 M2 M5 KK11

IIA D0 W10 F1 D2 D4 S5 D6 KK10 D8
IIB W10 F1=D1 D3 S5=D5 KK10 D7
Het W10 F1 S5 KK10

I W10 D1 D5 KK10

Table 2.1: The solutions of the various string theories and D = 11 supergravity.

The �rst one is the D-dimensional gravitational wave or Brinkmann wave (WD) [36],
propagating in the z = x1 direction:

WD : ds2 = (2�H)dt2 �Hdz2 + 2(1�H)dtdz � (dx22 + :::+ dx2(D�1)); (2.64)

and the second the Kaluza-Klein monopole in D-dimensions (KKD) [150, 80]:

KKD : ds2 = dt2 � dx21 � :::� dx2(D�5) �H�1(dz +Amdxm)
2 �Hdx2m: (2.65)

H is a harmonic function that depends in the case of the wave on the coordinates
t+ z; x2; :::; xD�1 and in the case of the monopole on xm (m = D�3; D�2; D�1) and
not on z. The z-direction is a compact isometry direction in order for the monopole to
be non-singular. After a Kaluza-Klein compacti�cation in this z-direction, one ends up
with a (D � 5)-brane, with a magnetic charge, which in the case of a �ve-dimensional
monopole KK5 corresponds to a Dirac-monopole type particle. This explains its name.

Also Ai depends on xm and the relation with H is given by:

Fmn = @mAn � @nAm = "mnp@pH: (2.66)

As mentioned above these solutions do not have a two-block structure due to o�-diagonal
terms in the metric, which makes it di�cult to distinguish between world volume and
transverse directions. We will choose, for later convenience, the z-directions in the
case of the wave to be a world volume direction, but in the case of the Kaluza-Klein
monopole a transverse direction.

Table 2.1 gives an overview of the di�erent solutions we encountered in the various
theories. In Chapter 3 we will see that these theories are related to each other via
duality transformations. This means that there also must exist duality relations between
the di�erent solutions and the world volume actions that describe their dynamics. We
will investigate in more detail these duality relations in Chapter 5 and see that under
certain conditions di�erent solutions can be superposed in a kind of \bound state". The
relations between the world volume actions will be studied in Chapter 6.
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Chapter 3

Duality

String theory is a very powerful tool in the attempt to �nd a unifying description of
all interactions. However the theory, as it was known till the early nineties (i.e. as was
briey described in the previous chapter), has some problems. First of all, the theory
is only de�ned at the perturbative level, as a Feynman \sum-over-histories" approach,
without an understanding of the dynamical principles that form the theory and that
allow one to go beyond perturbation theory. A second problem is the fact that, although
techniques are known to come down from the ten-dimensional superstring world to our
phenomenologically observable four-dimensional world, these techniques give rise to
many degenerate ground states, parametrized by the scalars (moduli) that appear in
these reductions. It is not at all clear which of these compacti�cations corresponds to
a model that looks like something we know from experiments (the Standard Model)
and why Nature chooses precisely this vacuum. But maybe the most annoying feature
is that on the one hand string theory claims to be a unifying theory of gravity and
quantum �eld theory, yet on the other hand �ve di�erent versions of string theory are
known: Type I, Type IIA, Type IIB, Heterotic SO(32) and Heterotic E8�E8. So there
seem to exist �ve di�erent uni�cation candidates and �ve di�erent ways to formulate
a theory involving quantized gravity, which is not an appealing idea for a uni�cation
theory.

In the early nineties, the second \superstring revolution"1 introduced the concept of
\dualities", which indicated the possibility to solve many of the above problems at
once: it was realised that a certain theory A, compacti�ed on a large volume, could be
equivalent to a theory B, compacti�ed on a small volume, or that a theory C at weak
coupling could be mapped to a theory D at strong coupling. In this way, it was possible
to regard di�erent vacua as being equivalent, �nd a more unifying description for the
di�erent string theories and to get insight into the physics beyond the perturbative
level.

1The �rst superstring revolution was the one in the mid eighties, when it was realized that the above
mentioned string theories are the only consistent ones and that these have a well de�ned perturbation
expansion.
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In this chapter we will give an overview of the di�erent duality symmetries in string
theory. In Section 3.1 we will present a duality that acts on the target space of the
string, the Target Space Duality or T -duality. In section 3.2 we discuss the duality
that relates the strong and weak coupling regime of the di�erent theories, the so-called
S-duality (Strong/Weak coupling duality). In section 3.3 we will present the unifying
picture as it stands at this moment.

General references for string dualities are [141, 58, 158, 67, 162, 101, 104, 56, 148] .

3.1 Target Space Duality

Target Space duality, or for short T -duality, is a symmetry transformation that relates
di�erent string backgrounds to each other. It was �rst introduced at the level of the
bosonic sigma model in the presence of an isometry as a Z2-symmetry that interchanges
certain components of the metric with certain components of the axion [37]. The general
T -duality transformations are intimately related with the idea of dimensional reduction
via the appearance of the non-compact O(d; d + n) groups. Their importance lies in
the fact that T -duality gives a way to divide the many degenerate ground states in
T -duality classes of equivalent physics. For extensive reviews about T -duality in string
theory, we refer to [75, 3].

3.1.1 T -duality in World Volume Theory

The T -duality transformation rules can be derived from the non-linear sigma model
(2.27):

S = � 1

4��0

Z
d2�

p
jj ij@iX �̂@jX

�̂g�̂�̂

+
1

4��0

Z
d2� "ij @iX

�̂@jX
�̂B�̂�̂ : (3.1)

Suppose that the background �elds g�̂�̂ and B�̂�̂ are independent of one embedding
coordinate X , so the D-dimensional indices �̂ can be split into the index x of the
isometry direction and the indices of the (D � 1) remaining directions: �̂ = (x; �).

We can then consider the derivative of the isometry coordinate @iX to be an independent
�eld Vi by adding a Lagrange multiplier ~X and rewriting (3.1) as

S = � 1

4��0

Z
d2�

p
jj ij

h
@iX

�@jX
�g�� + 2@iX

�Vj g�x + ViVj gxx

i
+

1

4��0

Z
d2� "ij

h
@iX

�@jX
�B�� + 2Vi@jX

�Bx�

i
(3.2)
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The equation of motion of ~X states that Vi = @iX and relates action (3.2) to action
(3.1). On the other hand, solving the equation of motion of Vi and substituting in (3.2),
we �nd the dual action, in terms of the dual coordinates ~X �̂ = (X�; ~X):

S = � 1

4��0

Z
d2�

p
jj ij@i ~X �̂@j ~X

�̂~g�̂�̂

+
1

4��0

Z
d2� "ij @i ~X

�̂@j ~X
�̂ ~B�̂�̂ : (3.3)

This is again a non-linear sigma model action for a string moving in the dual background
�elds ~g�� and ~B�� , where the relation between the original and the dual �elds is given
by the so-called T -duality rules [37]:

~g�� = g�� � (gx�gx� �Bx�Bx�)=gxx;

~B�� = B�� � (gx�Bx� � gx�Bx�)=gxx;

~gx� = Bx�=gxx; (3.4)

~Bx� = gx�=gxx;

~gxx = 1=gxx :

The transformation rule for the dilaton cannot be obtained via the equation of motion
of Vi, but by demanding that the conformal invariance of (2.27) at order (�0)0 can be
found back in the dual action. The dilaton transforms as

~� = �� 1
2 log jgxxj: (3.5)

The T -duality rules relate two geometrically di�erent, but dynamically equivalent sets of
background �elds: although the geometry of the space is altered, the physical properties
of the model are unchanged under the duality transformation. Let us illustrate this with
some simple examples for the closed and the open string in some simple backgrounds.

Suppose a closed string is moving in a at space-time where one coordinate X is a
circle of radius R. The metric is of the form g�̂�̂ = diag[1;�1;�1; :::;�R2=�0], all other
background �elds are set equal to zero.

The boundary conditions on X �̂ are given by

X�(�; � + 2�) = X�(�; �);

X(�; � + 2�) = X(�; �) + 2�mR; (3.6)

where m is an integer that indicates how many times the string is wound around the
compact direction X . The periodicity of X forces the momentum in this direction to
be quantized: eiPX should be single valued for X and X + 2�R, so P = n=R. The
solution of the equation of motion (2.7) for the string, satisfying the above boundary
conditions, is

X �̂
� :

(
X�
� as in (2.9);

X� = 1
2x+

q
�0

2 P� (� � �) + oscillations ;
(3.7)
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where X �̂
+ and X �̂

� are de�ned as in (2.8) and

P� =
1p
2

�p�0
R

n � Rp
�0

m
�
: (3.8)

We see that the expressions for P� are invariant under simultaneous interchange of
R $ �0=R and m $ n [103, 135], and since the on-shell mass condition is given by
M = (P �̂P�̂ + oscillator terms), also the spectrum is invariant under this interchange.
The string does not see whether it is wound m times around a circle with small radius R
while having a momentum n, or n times around a circle with large radius �0=R having
momentum m.

It is not di�cult to show that an R ! �0=R transformation is in fact a T -duality
transformation where the compact direction X is dualized into the dual coordinate
~X = X+ � X�. The inversion of the radius seems to suggest that there exists a
\minimal length" R =

p
�0, at the string scale: going beyond this \minimal length"

would give the same physics as at large length scales.

For an open string, freely moving in a at space with one compact dimension X = 2�R
(i.e. satisfying Neumann boundary conditions @�X

�̂ = 0), we can rewrite (2.13) as

(X �̂ = X �̂
+ +X �̂

� and P = n=R):�
X�
� as in (2.13);

X� = 1
2x� 1

2C + 1
2�

0 n
R (� � �) + 1

2

P
n

1
n ~a�n e

in(���):
(3.9)

Again we can dualize X into ~X = X+ �X� and we �nd [129]:

~X = C + �0 nR � + 1
2

X
n

1
n ~a�n e

in� sinn�: (3.10)

This is the solution (2.14) for the equations of motion of a string satisfying Dirich-
let boundary conditions. It turns out that T -duality has interchanged the Neumann
boundary conditions @�X j�=��=0 = 0 for Dirichlet conditions @� ~X j�=��=0 = 0 in the dualized
direction: where for the freely moving string (2.13) the zero-modes of the string were
independent of �, here the zero-modes in the ~X direction are independent of � . This
means that the endpoints of the string are �xed in the ~X-direction:�

~X(0) = C;
~X(�) = C + 2n� ~R :

(3.11)

The string is attached to a (D�2)-dimensional hypersurface ~X = C, while it can wind n
times around the the compact dimension ~X of radius ~R = �0=R. This hypersurface is in
fact the D-brane we encountered as a solution of the equations of motion in Section 2.3.

3.1.2 Dimensional Reduction

Before we study the e�ect of T -duality on the low energy e�ective action of string
theories, let us �rst make a small intermezzo about dimensional reduction and com-
pacti�cation.
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In Chapter 2 we mentioned that superstring theory only can be quantized consistently
if the string lives in a ten-dimensional space-time. However, if we want our theory to be
\realistic", we have to be able to make contact with the phenomenologically observable
world, which is four-dimensional: we have to �nd a way to hide away six dimensions and
to rewrite high-dimensional results in terms of low-dimensional ones. This can be done
through compacti�cation. Suppose that six of the ten dimensions are compacti�ed over
a very small volume, with length scales of the order of the Planck-scale, such that they
are invisible at low energies or at large length scales. The ten-dimensional manifold
is a product of a four-dimensional space-time times a six-dimensional compact space:
M10 =M4�K6. We can translate the ten-dimensional theory to an e�ective theory in
four dimensions, where the precise form of the e�ective theory depends on the geometry
of the compact manifold. This idea is sometimes called Kaluza-Klein compacti�cation,
because Kaluza and Klein tried to write electromagnetism and general relativity in four
dimensions as a single theory of pure gravity in �ve dimensions [97, 107].

There exist an in�nite number of compact manifolds K over which we can compactify,
but only a limited number of these give useful results for string theory2. The compacti-
�cation we will study in this section and mostly use in the rest of this work, is the most
simple case, namely the compacti�cation over a d-dimensional torus T d. Compacti�ca-
tions over more complicated manifolds, such as K3 or Calabi-Yau manifolds, may give
phenomenologically more relevant results (chiral fermions, a Minimal Supersymmetric
Standard Model, ...), but torus compacti�cation will already be su�cient for the fea-
tures we are interested in, namely the symmetry groups of compacti�ed theories and
the relations between di�erent supergravity actions. Properties of a more complicated
compacti�cation will be discussed in Chapter 4, when we study the symmetries of Type
IIA/B, compacti�ed on K3.

If the �elds of the uncompacti�ed theory depend on the compact coordinates, then extra
massive states appear in the lower-dimensional theory. This can be seen in a simple
example: suppose a �eld �̂(x̂�̂) in a at D-dimensional space-time with one compact
dimension x obeys the equations of motion3

@�̂@�̂�̂(x̂
�̂) = @�@��̂(x̂

�̂) � @x@x�̂(x̂
�̂) = 0: (3.12)

Since the �eld �̂(x̂�̂) depends on all coordinates x̂�̂, in particular also on the compact
coordinate x, we can perform a separation of variables and do a Fourier expansion of
�eld in the x-coordinate. This corresponds to an expansion of �̂(x̂�̂) in modes of the
quantised momentum in the compact direction:

�̂(x̂�̂) =
X
n

�n(x
�) e

inx
R ; (3.13)

where R is the radius of the compact dimension. The equation of motion for the

2It turns out that only the compacti�cations that preserve some amount of supersymmetry are
consistent. Compacti�cations that break all supersymmetry give rise to theories that do not have a
well de�ned perturbation theory.

3From now on we will use the notation that hatted �elds and indices are higher-dimensional ones
and unhatted ones lower-dimensional. It should be clear from the context in which dimension each
�eld (hatted or unhatted) lives.
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coe�cient �n(x
�) of the n-th mode is now of the form

@�@� �n(x
�) + n2

R2 �n(x
�) = 0; (3.14)

which is the Klein-Gordon equation (2+M2
n)�n = 0 for a �eld with massMn = n=R. So

the di�erent modes of the �eld �̂ manifest themselves in lower dimensions as an in�nite
tower of states with masses equal to the quantised momentum. The proportionality
constant is the inverse radius of the compact direction 1=R. These modes are called
the Kaluza-Klein modes of �̂. If R ! 1, so upon decompacti�cation, the massive
states become massless and form a continuous spectrum. For small R (comparable to
the Planck-length) however, the states with n 6= 0 are very massive, with masses of the
order of the Planck-mass.

At low energies, or equivalently at length scales much bigger then the size of the compact
dimension, only the massless lowest mode can be detected. Since in the low energy
e�ective actions of string theory the massive string modes have already been integrated
out, it is therefore consistent to exclude also the massive Kaluza-Klein modes from the
theory. This is the same as removing the dependence of the D-dimensional �elds on
the compacti�ed coordinates. Throughout this section we will suppose that this is the
case.

The precise way the higher-dimensional �elds reduce to lower dimensions is determined
by gauge invariance: a general coordinate transformation in higher dimensions will man-
ifest itself as a lower-dimensional general coordinate transformation and gauge symme-
tries. The reduction rules are given in [136, 46, 115]: let us derive them for some typical
examples.

Suppose a D-dimensional metric ĝ�̂�̂ is independent of d coordinates. Coordinate trans-
formations of the metric give:

�ĝ�̂�̂ = �̂�̂ @�̂ĝ�̂�̂ + @�̂�̂
�̂ĝ�̂�̂ + @�̂ �̂

�̂ĝ�̂�̂: (3.15)

We can split the D-dimensional indices �̂ in �̂ = (�; a) with 0 � � � D � d � 1 and
1 � a � d and compactify over the coordinates xa. The di�erent components of ĝ�̂�̂
then transform as:

�ĝab = �� @�ĝab ;
�ĝ�a = �� @�ĝ�a + @��

�ĝ�a + @��
bĝba ;

�ĝ�� = �� @�ĝ�� + @��
�ĝ�� + @��

�ĝ�� + @��
aĝa� + @��

aĝ�a ;| {z }
g.c.t in (D�d)

| {z }
\internal"

(3.16)

where we also took the �̂�̂ independent of xa. The variations look like the transformation
rules for a set of scalars, vectors and a metric under (D�d)-dimensional general coordi-
nate transformations plus some extra variations coming from the internal components
�a.

In order to get rid of these extra terms, we de�ne the (D � d)-dimensional quantities
Gab; A

a
� and g�� as:

Gab = ĝab;
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Aa
� = ĝab ĝ�b; (3.17)

g�� = ĝ�� � ĝabĝ�aĝ�b;

where ĝab are the components of the inverse metric. It is easy to see that these �elds
transform in the correct way as a set of 1

2d(d + 1) scalars, d vectors and one metric
under the (D�d)-dimensional general coordinate transformations. Furthermore the D-
dimensional transformations induce a U(1)-gauge transformation on the vector �elds:
�Aa

� = @��
a. The vectors Aa

� are usually called Kaluza-Klein vectors, and the scalars
Gab the moduli of the compacti�cation, since they parametrise the internal space.

The anti-symmetric tensor �eld B̂�̂�̂ transforms, besides under general coordinate trans-

formations as in (3.15), also under the ten-dimensional gauge transformation �B̂�̂�̂ =

@[�̂�̂�̂]. The variations of the di�erent components yield:

�B̂ab = �LB̂ab;

�B̂a� = �LB̂a� + @��
bB̂ab � @��a; (3.18)

�B̂�� = �LB̂�� + @[��
aB̂a�] + @[���];

where with �L we mean the variation under (D � d)-dimensional general coordinate
transformations. In (D � d) dimensions we therefore obtain a set of 1

2d(d � 1) scalars
Bab, d vectors Ba� and a rank-two anti-symmetric tensor B�� , given as functions of
the D-dimensional �elds by:

Bab = B̂ab;

Ba� = B̂a� � ĝcbĝc�B̂ab; (3.19)

B�� = B̂�� + ĝabĝa[�B̂�]b � 2 ĝabĝcdĝa[� B̂bc ĝ�]d :

Again all these �elds transform in the proper way and Ba� behaves like a U(1)-gauge

�eld under the remnant gauge transformation of B̂�̂�̂ : �Ba� = @��a. Ba� is usually
called the winding vector, since one can show that it couples to string states that are
wound a number of times around the compact dimension xa. The scalars Bab span,
together with the Gab, the moduli space of toroidal compacti�cations.

Let us now look at the reduction of the action of the common sector (2.42). For
simplicity, we only reduce from ten to nine dimensions, since all typical and interesting
features can already be found in this example. Later on we will study more extensively
the reductions of the various superstring actions over more dimensions.

Suppose all �elds in the ten-dimensional action (2.42)

S = 1
2

Z
d10x

p
jĝj e�2�̂

h
�R̂+ 4(@�̂)2 � 3

4Ĥ
2
i

(3.20)

are independent of the coordinate x, over which we are going the reduce.

At this point it is convenient to write the metric ĝ�̂�̂ locally as a at metric:

ĝ�̂�̂ = ê�̂
�̂ ê�̂

�̂ �̂�̂�̂ ; (3.21)
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where ê�̂
�̂ is the ten-dimensional vielbein, which relates the curved indices �̂ to the

at ones �̂. The vielbein transforms under Lorentz transformations, therefore we can
choose a gauge in which the vielbein is of the form

ê�̂
�̂ =

�
e�

� kA�

0 k

�
; (3.22)

where e�
� is the nine-dimensional vielbein. This corresponds to a choice for the reduc-

tion rules

ĝ�� = g�� � k2A�A� ; B̂�� = B�� +A[�B�] ;

ĝx� = �k2A� ; B̂x� = B� ;
ĝxx = �k2 :

(3.23)

For the gauge choice (3.22), we have thatp
jĝj = det(ê�̂

�̂) = k det(e�
�) = k

p
jgj: (3.24)

So if we take for the reduction rule of the dilaton4

�̂ = �+ 1
2 log k; (3.25)

we see that
pjĝj e�2�̂ =pjgj e�2�. It can be shown that the �rst two terms of (3.20)

reduce like

�R̂ + 4(@�̂)2 = �R + 4(@�)2 � (@ log k)2 + 1
4k

2F��(A)F
�� (A); (3.26)

while the axion �eld strength Ĥ�̂�̂̂ = ê�̂
�̂ ê�̂

�̂ ê̂
�̂ Ĥ�̂�̂�̂ decomposes as:

Ĥ��x = 1
3k e�

� e�
�F��(B) ;

Ĥ�� = e�
� e�

�e
�
h
@[�B��] +

1
2A[�F��](B) +

1
2B[�F��](A)

i
; (3.27)

= e�
� e�

�e
� H��� = H�� :

So after dimensional reduction, (3.20) takes the form

S = 1
2

Z
d9x

p
jgj e�2�

h
�R + 4(@�)2 � 3

4H
2 � (@ log k)2

+ 1
4k

2F 2(A) + 1
4k

�2F 2(B)
i
: (3.28)

Note that the reduced action is invariant under nine-dimensional general coordinate
transformations, as it should be, and under the U(1)-symmetries �A� = @��; �B� =
@��, provided that the reduced axion transforms as:

�B�� = @[���] + @[��B�] �A[�@�]�: (3.29)

Furthermore the action has an O(1; 1)-symmetry, which is a direct product: O(1; 1) =

SO"(1; 1) � Z
(S)
2 � Z

(T )
2 . Just as in the case of the Lorentz group, this non-compact

4The higher dimensional analogue for this reduction rule is �̂ = �+ 1
2
log jGabj.
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group consists of four disconnected parts, of which only the subgroup of proper, time-
orientation preserving transformations SO"(1; 1) is continuously connected to the iden-
tity. The other parts (the improper and/or non-orthochronous transformations) are

connected via the mapping class group Z
(S)
2 �Z

(T )
2 .

The continuous scale transformation SO"(1; 1) scales the �elds A�; B� and k with a
factor � > 0 according to their weight under this scale transformation:

A� ! � A�; B� ! ��1B�; k ! ��1k: (3.30)

The discrete subgroup Z
(S)
2 ips the sign of the vector �elds, while the Z

(T )
2 -symmetry

is generated by an interchange of the vector �elds and an inversion of k:

~A� = B�; ~B� = A�; ~k = k�1: (3.31)

Using (the inverse of) the reduction rules (3.23), we can easily see that this symme-
try (3.31) corresponds in ten dimensions to the T -duality transformation (3.4). The
O(1; 1) is therefore called the T -duality group, which parametrises the moduli space of
compacti�cations: the modulus k is directly related to the size of the compact dimension

k =
p
jĝxxj = Rp

�0
: (3.32)

Di�erent values of k label di�erent compacti�cations, which are related via the O(1; 1)

transformations. However T -duality (Z
(T )
2 ) states that compacti�cation over a radius R

is equivalent to compacti�cation over a radius 1=R, so the points k and k�1 in moduli

space are equivalent. Also the sign of the vector �elds is irrelevant (Z
(S)
2 ), so the moduli

space of inequivalent compacti�cations is given by

O(1; 1)

Z
(T )
2 �Z

(S)
2

= SO"(1; 1): (3.33)

In this simple example of compacti�cation over one dimension, all generic features of
toroidal compacti�cation are present. In the next subsection we will study more general
compacti�cations over d dimensions in the presence of n Abelian vector �elds. This will
give rise to bigger O(d; d + n) groups and more complicated coset structures, but the
same features will reappear. For an extensive study of the symmetry transformations
of the dimensionally reduced action (3.28), we refer to [27].

3.1.3 T -duality in the Target Space Action

Let us now look at T -duality in the full low energy e�ective string theory actions. We
will start with the Heterotic string theories. Their action is given by (2.36)

S = 1
2

Z
d10x

p
jĝj e�2�̂

h
�R̂+ 4(@�̂)2 � 3

4Ĥ�̂�̂�̂Ĥ
�̂�̂�̂ + 1

4 F̂
I
�̂�̂ F̂

�̂�̂
I

i
: (3.34)
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The F̂ I
�̂�̂ are the �eld strengths of the SO(32) or E8 � E8 gauge �elds V̂ I

�̂ ; the axion

�eld strength Ĥ�̂�̂�̂ contains a Chern-Simons term:

F̂ I
�̂�̂ = @�̂V̂

I
�̂ � @�̂ V̂

I
�̂ � fKL

I V̂ K
�̂ V̂ L

�̂ ;

Ĥ�̂�̂�̂ = @[�̂B̂�̂�̂] � 1
2

h
V̂ I
[�̂F̂�̂�̂]I +

1
3fIKLV̂

I
[�̂V̂

K
�̂ V̂ L

�̂]

i
: (3.35)

The gauge transformations of the Yang-Mills groups are given by:

�V̂ I
�̂ = @�̂�

I + fKL
I�KV̂ L

�̂ ;

�B̂�̂�̂ = V̂ I
[�̂@�̂]�I : (3.36)

Dimensional reduction over T d yields an action with a (10�d)-dimensional metric, axion
and dilaton, d Kaluza-Klein vectors Aa

�, d winding vectors B�a, Yang-Mills vectors V I
�

and moduli Gab; Bab and `
I
a coming from the reduction of the metric, the axion and the

Yang-Mills �elds in 10 dimensions. The precise reduction rules will be given in (4.9).

In a generic point in the moduli space, the `Ia have a non-zero expectation value and
via a Higgs mechanism they will give masses to the vector �elds in the Yang-Mills
group. Only the Abelian �elds V m

� in the Cartan sub-algebra will remain massless after
reduction. For both SO(32) and E8 � E8 this Cartan sub-algebra is 16-dimensional,
so both groups break to U(1)16. The low energy e�ective action therefore contains
(2d + 16) Abelian vector �elds, which form a U(1)(2d+16) gauge group. Furthermore
these Abelian �elds �t into a global O(d; d + 16)-group representation such that the
action can be written as [136, 115]:

S = 1
2

Z
d10�dx

p
jgj e�2�

h
�R+ 4(@�)2 � 3

4H���H
���

+ 1
8Tr(@�M@�M�1)� 1

4F i
��M

�1
ij F��j

i
; (3.37)

where

F i
��(A) = @�Ai

� � @�Ai
�;

H��� = @[�B��] +
1
2Ai

[�Fj
��](A)Lij ; (3.38)

Ai
� =

0
@ Aa

�

B�a

V m
�

1
A ; Lij =

0
@ 0 l1d 0

l1d 0 0
0 0 � l116

1
A :

The d(d+16) moduli Gab; Bab; `
m
a are combined into the symmetric (2d+16)�(2d+16)

matrixM�1, satisfyingM�1LM�1 = L, where L is the invariant metric on O(d; d+16).

Di�erent values of the moduli correspond to di�erent radii of the torus and therefore
to di�erent compacti�cations. The moduli parametrise the d(d+16)-dimensional coset
space O(d; d+ 16)=(O(d)�O(d + 16)) of di�erent compacti�cations [119].

It is easy to see that (3.37) is invariant under general O(d; d+ 16) transformations

A0
� = 
A�; (M�1)0 = 
M�1
T ; 
TL
 = L: (3.39)
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This O(d; d+16) is not a symmetry of the full string theory, since quantum corrections
will break the group structure. An analysis at the level of the sigma model shows
[119, 120] that the allowed (2d + 16) vector �elds charges of the string states form a
(2d+16)-dimensional, even self-dual lattice and the symmetry group of the full theory
should leave this lattice invariant. The transformations that preserve this lattice form
the discrete O(d; d + 16;Z)-group, the sub-group of O(d; d + 16)-transformations with
integer parameters which is conjectured to be a symmetry of the full string theory. In
fact this O(d; d+16;Z) is the generalization of the T -duality transformations (3.31) and
(3.4) and is usually called the T -duality group. It relates compacti�cations over di�erent
tori as equivalent ones. The moduli space of inequivalent toroidal compacti�cations is
therefore given by the coset

O(d; d + 16)

O(d) �O(d + 16)

,
O(d; d + 16;Z): (3.40)

Note that this is the moduli space for both the SO(32) as E8 � E8 theory. In fact
the two theories correspond to two distinct points in this moduli space and can be
continuously connected [73]. This means that they are two manifestations of one and
the same Heterotic theory and can be mapped one into the other via T -duality.

A similar thing happens for the N = 2 theories Type IIA and Type IIB: although
the two theories look very di�erent in ten dimensions, upon reduction over a circle the
massless spectrum of the two theories precisely coincides: besides the NS-NS sector
(3.28), they both have a scalar, a vector, a two-form and a three-form gauge �eld in
their R-R sector5:

Type IIA : fÂ(1)
x ; Â

(1)
� ; Ĉ��x; Ĉ��� g

Type IIB : f ^̀; B̂
(2)
x� ; B̂

(2)
�� ; D̂+

���xg:
(3.41)

Furthermore their low energy e�ective actions can be mapped on to one and the same
Type II action in nine dimensions [26],

S = 1
2

Z
d9x

p
jgj
(
e�2�

h
�R + 4(@�)2 � 3

4 (H
(1))2 � (@ log k)2

+ 1
4k

2F 2(A) + 1
4k

�2F 2(B)
i

+ 1
4

�
F (1) + `F (2)

�2
� 1

2 k
�1(@`)2 + 3

4 k G
2

�34 k�1
�
H(1) + `H(2)

�2)
(3.42)

� 1
64

Z
d9x "(10)

�
@C@CB + @C@B(a)@B(b)"ab + 2 @CA(a)@B(a)B

�@CA(a)A(b)@BB"ab
�
;

5The four-form gauge �eld D̂+
���� is not an independent �eld in nine dimensions, but is completely

determined by the self-duality condition (2.35) and can therefore be ignored.
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provided that one uses two di�erent reduction schemes for each theory. For the Type
IIA theory the relation between the action (2.33) and the above action is given by the
reduction rules

ĝ�� = g�� � k2A�A� ; B̂�� = B
(1)
�� +A[�B�] ;

ĝx� = �k2A� ; B̂x� = B�;

ĝxx = �k2; �̂A = �+ 1
2 log k;

Â
(1)
x = `; Â

(1)
� = A

(1)
� + `A�;

Ĉ�̂�̂�̂ = C���; Ĉ��x =
2
3 (B

(2)
�� �A

(1)
[� B�]) ;

(3.43)

while for the Type IIB theory the relation between the ten and the nine-dimensional
�elds is given by

Ĝ�� = g�� � k�2B�B� ; B̂(1)�� = B
(1)
�� �A[�B�];

Ĝx� = �k�2B� ; B̂(1)x� = A�;

Ĝxx = �k�2; �̂B = �� 1
2 log k;

B̂(2)�� = B
(2)
�� +A

(1)
[� B�]; B̂(2)x� = A

(1)
� ;

D̂���x =
3
8 (C��� �A

(a)
[� B

(a)
��] � "abA

(a)
[� A

(b)
� B�]); ^̀= `:

(3.44)

The fact that Type IIA and Type IIB can be mapped on to the same Type II theory
means that in ten dimensions they are di�erent embeddings of one and the same theory
which become equivalent after compacti�cation on circles S1A and S1B , where the relation
between the two compacti�cation radii is given by:

RAp
�0

=
p
jĝxxj = k = 1p

jĜxxj
=

p
�0

RB
: (3.45)

In other words the limits, k !1 (Type IIA) and k ! 0 (Type IIB) are di�erent limits
in the moduli space of the Type II theory in nine dimensions. Furthermore, a careful
analysis [57, 51] of the fermionic part of the action reveals a change in chirality of the
fermions, which is necessary to relate the non-chiral Type IIA to the chiral Type IIB
theory.

The relation between the �elds of both theories in ten dimensions can be read o� from
(3.43) and (3.44):

Ĉx�� = 2
3

h
B̂(2)�� + 2B̂(2)x[�Ĝ�]x=Ĝxx

i
;

Ĉ��� = 8
3D̂x��� + "abB̂(a)x[�B̂(b)��] + "abB̂(a)x[�B̂(b)jxj�Ĝ�]x=Ĝxx ;

ĝ�� = Ĝ�� �
�
Ĝx�Ĝx� � B̂(1)x� B̂(1)x�

�
=Ĝxx ;

B̂
(1)
�� = B̂(1)�� + 2B̂(1)x[�Ĝ�]x=Ĝxx ;
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ĝx� = B̂(1)x� =Ĝxx ; B̂
(1)
x� = Ĝx�=Ĝxx

Â
(1)
� = �B̂(2)x� + ^̀B̂(1)x� ; ĝxx = 1=Ĝxx ;

�̂A = �̂B � 1
2 log (�Ĝxx) ; Â

(1)
x = ^̀:

(3.46)

These transformation rules look very similar to the T -duality rules (3.4), though this
time the T -duality transformation is not a symmetry of the action, but a transformation
that takes us from the Type IIB to the Type IIA action [26]. The inverse transformation
from the Type IIA to the Type IIB action can easily be constructed in the same way.

We see that from the O(1; 1)-symmetry group of the common sector (3.28), only the

SO"(1; 1) � Z
(S)
2 survives as a symmetry of the action (3.42), while the Z

(T )
2 , which

corresponds to (3.46), is a map from Type IIA to Type IIB and vice versa.

In a generalization to reduction over d dimensions, the T -duality group is O(d; d;Z)
and the moduli parametrise the coset O(d; d)=(O(d) � O(d)). The moduli space of
inequivalent compacti�cations is given by

O(d; d)

O(d) �O(d)

,
O(d; d;Z): (3.47)

3.1.4 T -duality between Solutions

In the previous subsection we have seen that some of the string theories may be con-
nected via T -duality, at least at the level of the string e�ective action. This implies
that also T -duality transformations should exist between the solutions of these actions.

However, in the derivation of the T -duality rules (3.4) we intrinsically made use of
the fact we were doing a duality transformation on a string-like solution: only on a
two-dimensional world volume can a scalar X be dualized to another scalar ~X. From
this procedure it is not clear how to generalize these rules to the extended objects we
encountered in section 2.3.

Nevertheless there exists another, even more general way of deriving the T -duality rules,
which in fact we already used, when we showed the T -duality between Type IIA and
Type IIB theory: if we can map two actions (solutions) via di�erent ways of dimensional
reduction (one over a circle with radius R and the other over a circle with radius 1=R)
on to the same action (solution) one dimension lower, then we can say that the two
actions (solutions) are connected via T -duality and the T -duality rules can be read o�
in the same way that we derived the Type II rules (3.46). In fact this procedure is more
general, since not only do we �nd the transformation rules for all the participating �elds
(besides the NS-NS �elds that enter in (3.4) also the rules for the R-R �elds), but also
this allows us to make T -duality transformations between objects of di�erent spatial
extension, while before we could in principle only go from string-like solutions to string-
like solutions. The technique of performing T -duality via dimensional reduction will be
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studied more accurately in Chapter 6, where we will use it to prove the duality relations
between the di�erent world volume actions of solutions connected via T -duality.

Using the reduction rules (3.23) and (3.25), one easily sees that the reduction of the
fundamental string solution (2.44)

F1 =

8<
:

ds2 = H�1(dt2 � dx21)� (dx22 + :::+ dx29)
e�2� = H
B01 = H�1

(3.48)

over the world volume direction x1 gives rise to a nine-dimensional point particle solution

m0 =

8>>>>><
>>>>>:

ds2 = H�1dt2 � (dx22 + :::+ dx29)

e�2� = H
1
2

k = H�1
2

B0 = �H�1

B�� = A� = 0 ;

(3.49)

while the reduction of the ten-dimensional gravitational wave (2.64)

W10 : ds2 = (2�H)dt2 �Hdz2 + 2(1�H)dtdz � (dx22 + :::+ dx29) (3.50)

over the propagation direction z of the wave gives

m~0 =

8>>>>><
>>>>>:

d~s2 = H�1dt2 � (dx22 + :::+ dx29)

e�2~� = H
1
2

~A0 = �H�1

~k = H
1
2

~B�� = ~B� = 0 :

(3.51)

We see that these two point particle solutions are actually the same if one identi�es

~A� = B�; ~B� = A�; ~k = 1=k: (3.52)

Note that this is precisely the nine-dimensional T -duality transformation (3.31). Also
direct application of the ten-dimensional rules (3.4) maps the F1 to the W10 and vice
versa. Note that a T -duality transformation in a transverse direction leaves the string
and the wave solution invariant.

The same procedure can be followed for the solitonic �ve-brane (2.54) and the Kaluza-
Klein monopole (2.65): reduction of the S5 over a transverse direction gives a new
�ve-brane solution in nine dimensions

mS5 =

8>>>>><
>>>>>:

ds2 = dt2 � dx21 � :::� dx25 �H(dx26 + :::+ dx28)

e�2� = H� 1
2

Fmn(B) = "mnp @pH

k = H
1
2

B�� = A� = 0 ;

(3.53)
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while the reduction of the KK10 over the isometry direction z yields

m ~S5 =

8>>>>><
>>>>>:

d~s2 = dt2 � dx21 � :::� dx25 �H(dx26 + :::+ dx28)

e�2~� = H� 1
2

Fmn( ~A) = "mnp @pH

~k = H�1
2

~B�� = ~B� = 0 :

(3.54)

Again the two solutions can be identi�ed, using (3.52), which proves the T -duality
between the S5 and the KK10. A T -duality transformation in a world volume direction
leaves both solutions invariant.

It thus turns out that the solutions of the equations of motion of the common sector
are related amongst each other via T -duality. This is not so strange, since we showed
in Subsection 3.1.2 that the common sector (3.20) itself is invariant under T -duality.
Let us now look at how the D-brane solutions, the solutions of Type IIA/B, transform
under this duality.

T -duality is an important feature in the theory of D-branes: we already saw that a T -
duality transformation on a freely moving open string changes the boundary conditions
of the string and attaches it to a D-brane. But also the D-branes themselves are
related [129]: applying T -duality on a string attached to a Dp-brane (so satisfying
(p + 1) Neumann conditions and (9 � p) Dirichlet conditions) will change one of the
Neumann conditions to a Dirichlet one or vice versa, so after the transformation the
string will be attached to a D(p�1) brane. This should of course be visible at the level
of the Dp-brane solutions (2.58) of the equations of motion [18].

Indeed, a straightforward application of the duality rules (3.4) on the D-brane solution
(p : 0; :::; 8)

Dp =

8><
>:

ds2 = H� 1
2 (dt2 � dx21 � :::� dx2p)�H

1
2 (dx2p+1 + :::+ dx29)

e�2� = H
p�3
2

F
(R-R)
012:::pm = @mH

�1 (m : p+ 1; :::; 9);

(3.55)

inverts the metric component of the direction in which the T -duality is performed and
changes a world volume direction into a transverse one and back. Also the dilaton and
gauge �eld dependence change in the right way to obtain a D(p� 1)-brane. The exact
form of the transformation rules for the R-R �elds can be found in [18]. The fact that
Dp-branes with p even (odd) get mapped to p-odd (even) branes corresponds to the
fact that T -duality is a map from Type IIA(B) to Type IIB(A) theory.

3.2 Strong/Weak Coupling Duality

Another type of duality symmetry which has been found in string theory is the S-
duality or Strong/Weak coupling duality, so called because it relates the strong and
weak coupling limits of theories to each other. The importance of S-duality is that it
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gives a way to go beyond perturbation theory and to obtain a good picture of what
string theory is like at strong coupling.

At small values of the coupling constant g, perturbative calculations give a reasonably
good understanding of the theory: the weak coupling limit of the theory has a number
of electrically charged, elementary states which can be handled in perturbation theory
and some magnetically charged, solitonic states, which are very massive and strongly
coupled (cfr. F1 and S5 in section 2.3). For large values of g these perturbative
techniques break down and reliable results are much more di�cult to obtain.

The idea of S-duality now is that in the large coupling limit the situation might be
reversed: it is conjectured by Montonen and Olive [117] that when g !1, the elemen-
tary, weakly coupled states are the magnetically charged ones and the strongly coupled,
massive, solitonic states are electrically charged.

In other words, the Olive-Montonen conjecture states that at strong coupling the theory
can be reformulated in terms of new, dual �elds and a new coupling constant, such that
it is again a weakly coupled theory in this dual formulation. This symmetry is believed
to be exact for theories that have N = 4 supersymmetry [165], and to hold for some
special cases with N = 1; 2 supersymmetry as well [143].

The interchange of electric and magnetic charge is very much connected to the inter-
change of strong and weak coupling through the Dirac quantization rule: the electric
and magnetic charges of a state are a measure of how strongly the state interacts with
other states and have therefore the role of coupling constants. Since due to the Dirac
quantization rule magnetic charge is inversely proportional to electric charge, an elec-
tric/magnetic duality is equivalent to a strong/weak coupling duality.

In this section we will review some examples in string theory where S-duality is found
and applied to get new results. We will start by looking at the S-duality symmetry
in the Heterotic string, compacti�ed on a six-torus. Then we will study the strong
coupling limits of the di�erent string theories and make contact with eleven dimensional
supergravity.

3.2.1 The Heterotic String in Four Dimensions

The dimensional reduction over a six-torus T 6 of the low energy e�ective action (2.36)
of the Heterotic string gives N = 4 supergravity coupled to Yang-Mills theory in four
dimensions. The bosonic part of the four-dimensional action contains a metric, a dilaton
and an axion, 28 Abelian vector �elds and 132 scalars (3.37):

S = 1
2

Z
d4x

p
jgj e�2�

h
�R+ 4(@�)2 � 3

4H���H
���

+ 1
8Tr(@�M@�M�1)� 1

4F i
��M

�1
ij F��j

i
; (3.56)

where F i
�� ; H��� and M�1

ij are de�ned as in (3.38). As argued in Subsection 3.1.3,
the vector and scalars transform under the O(6; 22) group, which is a symmetry of the
action.
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There is yet another symmetry, which is a symmetry of the equations of motion, not
of the action (3.56). This can be seen if we rewrite the above action by introducing a
scalar �eld  and a rescaled metric gE�� via

H��� = � 1p
jgj e

2�"���� @� ; (3.57)

gE�� = e�2� g�� : (3.58)

The scalar  is the Poincar�e dual of the anti-symmetric tensor B�� , as in (2.56). The
new metric gE�� is called the Einstein metric since this is the canonical metric that
appears in the Einstein-Hilbert action. The metric g�� we have been using until now is
usually called the string metric.

In terms of these new �elds, the action (3.56) can be rewritten as

S = 1
2

Z
d4x

p
jgEj

h
�RE � 1

2(�2)2
(@� @��) + 1

8Tr(@M@M�1)

� 1
4�2F iM�1

ij Fj � 1
16�1F iLij

�Fj
i
; (3.59)

where we combined the scalars  and e�2� in one complex scalar

� = �1 + i�2 =  + ie�2� ; (3.60)

and
�F��i = 1p

jgEj "
���� F i

�� : (3.61)

It can be shown that the equations of motion of the above action are invariant under
the SL(2;R) transformation [149, 146, 139]:

� ! a�+ b

c�+ d
; ad� bc = 1

F i
�� ! (c�1 + d)F i

�� + c�2(ML)ij
�Fj

�� : (3.62)

More precisely, the equations of motion of the vector �elds and their Bianchi identities
can be written schematically as

Eqns of motion: D�[�(MLF + i�F)� ��(MLF � i�F)] = 0
Bianchi identity: D�[(MLF + i�F)� (MLF � i�F)] = 0

(3.63)

and it is straightforward to calculate that under an SL(2;R) transformation (3.62) these
two equations get mapped one into another. The equations of motion of all other �elds
are left invariant.

If we consider the particular SL(2;R) transformation where the group parameters have
the values a = d = 0 and b = �c = 1, we �nd the transformation

�! � 1

�
; F i

�� ! ��1F i
�� � �2(ML)ij

�Fj
�� : (3.64)
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For �1 = 0 this corresponds to a strong/weak coupling symmetry, where the electric
�elds of F i

�� get interchanged with the magnetic ones of
�F i

�� , together with an inversion

of the string coupling constant e� ! e��.

So the low energy limit of the four-dimensional Heterotic string, compacti�ed on T 6,
has a symmetry which relates the strong coupling regime of the theory with its weak
coupling regime. This is an example of the Olive-Montonen conjecture embedded in
the context of string theory.

It is known that quantum e�ects break the SL(2;R) symmetry to the discrete subgroup
SL(2;Z) [149, 145], the group of SL(2;R) transformation with integer parameters and
in analogy with the T -duality group O(d; d+n;Z) of Narain, this SL(2;Z) is conjectured
to be a symmetry of the full string theory [66]. This is a very bold conjecture, since
SL(2;Z) is clearly a non-perturbative symmetry, as we can see already in (3.64).

However Sen was able to present indications that this is indeed the case [147] by showing
that the charge spectrum of the theory and the BPS mass formula are invariant under
SL(2;Z) transformations. Furthermore he could identify elementary string excitations
and known solitons as being SL(2;Z) transforms of each other and therefore �tting in
SL(2;Z) multiplets.

In [142, 147] a low energy e�ective action was presented, which has a manifest SL(2;R)
symmetry with O(6; 22) as a symmetry of the equations of motion. This action is
obtained by dimensional reduction of the ten-dimensional \dual" (six-form) action [63],
where the SL(2;Z) appears as the T -duality group of the reduced dual action. This
hints at another type of duality, namely the string/�ve-brane duality [152, 64], which
states that in ten dimensions string theory is equivalent to a theory of �ve-branes, that
couple naturally to the six-form potential, which is the Poincar�e dual (2.56) of the axion.
In this duality the O(6; 22;Z) and the SL(2;Z) appear on the same footing [142]: a
symmetry of the action in one theory is a symmetry of the equations of motion in the
other and vice versa. Their role gets interchanged and we can talk of a \duality of
dualities".

3.2.2 Strong Coupling Limits of String Theories

Let us now look at the strong coupling limits of each of the string theories presented in
section 2.2 and see whether S-duality can help us to �nd these limits.

From (2.32) and (2.36), we see that the Type I and the Heterotic SO(32) string are
quite similar: they have the same (bosonic) �eld content, the same gauge group SO(32),
and the same amount of supersymmetry. However the vector �elds and the two-form
anti-symmetric tensor are coupled in di�erent ways to the dilaton in the two theories.
The di�erence becomes more clear if we rescale the string metric to go to the Einstein
frame:

gE�� = e��=2 g�� : (3.65)
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The actions (2.32) and (2.36) in this frame yield

SI = 1
2

Z
d10x

p
jgEj

h
�RE � 1

2 (@�)
2 � 3

4 e
� H2 + 1

4 e
�=2F 2

i
; (3.66)

SHet = 1
2

Z
d10x

p
jgEj

h
�RE � 1

2 (@�)
2 � 3

4 e
�� H2 + 1

4 e
��=2F 2

i
:

We see that the di�erence between the Type I and the Heterotic SO(32) low energy
e�ective action is the sign of the dilaton: the transformation �! �� takes one action
into the other. This seems to suggest that the strong coupling limit of the Heterotic
string is the Type I string and vice versa [163].

There is more evidence to support this idea: the fundamental string solution in the
Heterotic theory, which couples to the axion, can be shown to coincide with the D-
string of Type I theory, which couples to the R-R two-form. The same goes for the
Heterotic S5 and the Type I D5 [49, 90]. Furthermore after compacti�cation to nine
dimensions the points in moduli space of the Heterotic string, for which an enhancement
of the gauge symmetry occurs, correspond exactly to the points where the perturbative
description of Type I theory breaks down [130].

Type IIB theory is manifestly SL(2;R) invariant [92]. This can be seen best by rewriting
the Type IIB action (2.34) in the Einstein-frame metric (3.65):

SIIB = 1
2

Z
d10x

p
jgEj

h
�RE +

1
4Tr(@N@N

�1)� 3
4H(a)NabH(b)

� 5
6F

2
(5)� 1

96
p
jgEj"

ab"(10)D(4)H(a)H(b)
i
; (3.67)

where Nab is the SL(2;R) matrix

Nab =
1

�2

� j�j2 ��1
�1 1

�
(3.68)

and � = �1 + �2 = `+ ie��.

In this form, the action is invariant under the SL(2;R) transformation [26, 17]

H(a) = !ab H(b);

N 0
ab = ! N !�1; (3.69)

! =

�
a b
c d

�
;

ad � bc = 1:

The transformation rule for the complex scalar � is as in (3.62)

�! a�+ b

c�+ d
; (3.70)

which implies again an S-duality symmetry �! ��1. For a = d = ` = 0 and b = �c = 1
we have

e� ! e��; B(1) ! B(2); B(2) ! �B(1): (3.71)
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Note however that this S-duality is di�erent from the one given in (3.62), in the sense
that here the transformation does not interchange the �eld strength H with its Poincar�e
dual H ! �H, but mixes the NS-NS form with the R-R form and vice versa. The
strong/weak coupling duality can be understood as the interchange of states from the
perturbative (NS-NS) sector with states from the non-perturbative (R-R) sector. In
particular, the Type IIB fundamental string gets mapped to the D1-brane and the
solitonic �ve-brane to the D5.

The behaviour of the Type IIA theory at strong coupling is rather di�erent from the
way the Heterotic, Type I or Type IIB behave. Type IIA at strong coupling does not
get related to a di�erent, previously known string theory, but it turns out that there
is an intimate relation with D = 11 supergravity and a not yet well formulated theory,
called M -theory.

At the level of the low energy e�ective action, the connection between the Type IIA
action (2.33) and the D = 11 supergravity action (2.37) is that the former is a simple
dimensional reduction of the latter over a circle S1 [93, 71, 40]. Using the conventions
of [26], the reduction rules between ten and eleven dimensions are:

ĝxx = �e 43�; Ĉ��x =
2
3B�� ;

ĝ�x = �e 43�A(1)
� ; Ĉ��� = C���;

ĝ�� = e�
2
3�g�� � e

4
3�A

(1)
� A

(1)
� :

(3.72)

We see that the ten-dimensional R-R vector A
(1)
� is actually the Kaluza-Klein vector

from the reduction and the Kaluza-Klein scalar, the measure of the compacti�cation
radius, is given by the ten-dimensional dilaton �. But in ten dimensions the dilaton is
associated with the coupling constant of the theory. We therefore see that the Type
IIA (perturbation) theory is nothing other than an expansion around the zero-radius
limit of eleven dimensions. On the other hand, in the strong coupling limit of Type
IIA theory (thus for large values of the dilaton), an eleventh dimension unfolds, which
previously in perturbation theory could not be seen [163]:

R11 = e
2
3� = g

2
3 : (3.73)

If the idea that Type IIA is really a dimensional reduction of something eleven dimen-
sional holds also beyond the level of the low energy e�ective action, then this means
that the (non-perturbative) spectrum of the Type IIA theory should contain all kinds
of Kaluza-Klein modes coming from the wrapping of the eleven-dimensional solutions
around the compact dimension. It was shown [163] that these modes would have masses
inversely proportional to the coupling constant and therefore they could be identi�ed
with the Type IIA D-branes.

In fact the whole spectrum of Type IIA fundamental objects can be given an eleven-
dimensional interpretation [156]: using the reduction rules (3.72), one sees that the
Type IIA fundamental string can be understood as the eleven dimensional M2-brane
wrapped around the compact dimension (double dimensional reduction), while the D2-
brane is the direct reduction (reduction over a transverse direction) of the same M2-
brane. The same goes for the D4 and the S5-brane in type IIA, which turn out to be
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Figure 3.1: The relation between D = 10 IIA and D = 11 solutions: Vertical lines
imply direct dimensional reduction, diagonal lines double dimensional reduction. The
shadowed area indicates the relationship between known ten-dimensional solutions and
a conjectured 9-brane in D = 11.

the double and direct reductions of the M5. The reduction of the eleven-dimensional
gravitational wave W11 yields again a gravitational wave W10 in ten dimensions upon
reduction over a transverse direction and a massive D0-brane if one reduces over the
propagation direction of the wave. In the same way the Kaluza-Klein monopole KK11 in
eleven dimensions gives rise to a ten dimensional monopole KK10 and a D6-brane upon
reduction over a world-volume coordinate or the isometry direction z, respectively.

Only the interpretation of the Type IIA D8-brane is still mysterious: it is believed to
be related to the equally mysterious eleven-dimensional 9-brane upon double reduction
of the latter. Direct reduction of the 9-brane would give ten-dimensional Minkowski
space6. In Figure 3.1 the relations between the various ten and eleven-dimensional
solutions is summarized.

Also the strong coupling limit of Heterotic E8 � E8 theory (2.36) is believed to be
D = 11 supergravity [85], though this time the Heterotic theory turns out to be a
compacti�cation ofD = 11 supergravity on a interval with length L, or equivalently on a
circle sector S1=Z2. The eleven-dimensional space-time consists of two nine-dimensional
hyperplanes, separated by the interval of length L. On the two boundaries, gauge �elds
of E8 live and in the limit L! 0, a ten-dimensional theory with E8�E8 gauge symmetry
is recovered. As in the case of Type IIA theory, the ten-dimensional coupling constant
is related to the compact dimension by L = g2=3.

If Type IIA supergravity (2.33) and Heterotic E8 �E8 theory (2.36) are the weak cou-
pling limits of D = 11 supergravity and the low energy limit of their respective string
theories, we could ask the question: \What is the strong coupling limit of Type IIA
(Het E8�E8) string theory?" or equivalently, \Of which theory is D = 11 supergravity
the low energy limit?". This is conjectured to be M -theory, a non-perturbative, fun-
damental theory, which is believed to unify the various known string theories in one
picture, although little more is known about it than that it has D = 11 supergravity as
its low energy e�ective theory.

In the next section we will discuss the unifying picture and the roleM -theory is believed
to play.

6Comments on the conjectured 9-brane and the relation with the D8 have been given in [130, 22,
86, 125, 129, 61, 21].
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3.3 General Picture

In the previous sections we have encountered two kinds of duality transformations: the
T -duality which relates di�erent string compacti�cations with each other and the S-
duality that maps the strong coupling limit of a theory to the weak coupling limit of
another (or, in the case of Type IIB and D = 4; N = 4 Heterotic theory the same)
theory.

These duality symmetries shed new light on the problems that arose in string theory
up to the beginning of the nineteen nineties:

� The wide variety of possible compacti�cation manifolds and the di�erent degene-
rate string vacua that follow from them. It is not clear which of all these vacua
corresponds to our phenomenologically observable D = 4 world and why precisely
this vacuum is the preferred one to be picked out.

� The di�culties to extend the known string theories beyond the perturbative level
at which they are formulated. Little was known about a non-perturbative formu-
lation or the basic dynamical principles that lie at the basis of string theory.

� The fact that �ve di�erent versions exist of the theory which claims to be the
\�nal" uni�cation of gravity and all other fundamental interactions in Nature. It
was believed (hoped) that sooner or later some of these theories would turn out
to be inconsistent and/or equivalent to other ones, so that in the end one �nal
version of string theory would be left over.

The surprising fact of the duality symmetries is that they were able to solve many
(though certainly not all) of these problems, or at least to make some remarkable
progress.

T -duality showed that di�erent compacti�cations in string theory can be considered to
be equivalent: upon dimensional reduction on a d dimensional torus T d, for example,
the T -duality group O(d; d + n;Z) maps a given point in the moduli space (i.e., a
given string vacuum) to a di�erent point in moduli space with equivalent dynamics and
equivalent physics as the �rst one. All vacua can thus be classi�ed in T -duality classes
and the moduli space of inequivalent compacti�cations is given by the coset

M =
O(d; d + n)

O(d) �O(d + n)�O(d; d + n;Z)
: (3.74)

Non-toroidal compacti�cations will give rise to other T -duality groups and other mo-
duli spaces, but the main principles will be the same as in the easier case of toroidal
compacti�cation.

S-duality gives insight into the strong coupling regimes of theories: the S-duality group
SL(2;Z) is intrinsically a non-perturbative symmetry, since it acts non-trivially on the
coupling constant of the theory. Under this symmetry the strong coupling regime of
a theory gets mapped to the weak coupling regime of another theory and vice versa.
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Figure 3.2: Duality relations between the various string theories in ten dimensions and
M-theory in eleven dimensions: the arrows indicate dimensional reduction from D to
D�1 dimensions, the dotted lines represent an S-duality and a straight lines T -duality.

Strong and weak coupling regimes therefore turn out to be di�erent, but equivalent
formulations of the same underlying theory. This yields a simple and elegant way to go
beyond the level of perturbation theory: non-perturbative results in one theory can be
computed in the other theory by simple perturbative calculations.

But perhaps the most striking issues of the concept of dualities is that the �ve, pre-
viously known string theories all turn out to be equivalent and in a rather surprising
way interconnected via these dualities: T -duality relates the Type IIA and Type IIB
theories in the presence of an isometry: one theory compacti�ed on a circle of radius
R gives exactly the same physics as the other theory compacti�ed on a circle of radius
1=R. The two theories are just di�erent limits in moduli space of the same underlying
theory. The same goes for Heterotic SO(32) and Heterotic E8�E8 theory. Furthermore
the strong coupling limit of Heterotic SO(32) coincides with the weak coupling limit of
Type I strings (and vice versa), while the strong coupling of Type IIA and Heterotic
E8 � E8 both are conjectured to give a new theory, called M -theory, that has eleven
dimensional supergravity as its low energy limit. Type IIB theory is believed to be S{
self-dual, in the sense that its strong coupling limit is again the same Type IIB theory.
A schematique picture of the relations between these theories can be seen in Figure 3.2.

The relations between the various string theories also imply connections between the
solutions of their low energy e�ective actions: in Figure 3.1 we already showed how the
Type IIA solutions were connected to the solutions of D = 11 supergravity, but also
within ten dimensions the various solutions are related via dualities: T -duality connects
all D-branes of Type IIA and Type IIB with each other, the wave with the fundamental
string and the solitonic �ve-brane with the Kaluza-Klein monopole. S-duality connects
the F1 with the D1 and the S5 with the D5 of theories that are each other's S-dual.
Furthermore Poincar�e duality (2.56) relates p-branes with a (6� p)-brane, i.e. the Dp-
brane with the D(6� p)-brane and the F1 and the S5. These relations can be seen in
Figure 3.3.

The fact that all these theories are related has led to the idea that they are not the
fundamental theories we are looking for, but that all �ve string theories and D = 11
supergravity are di�erent limits of one and the same underlying theory, calledM -theory.

57



D7D1

D2

D3

D4

D5

D6

S5

IIB

Com F1W

W M2 M5

D0IIA

KK

KK

(D8)

D=11

Figure 3.3: Duality relations between the di�erent solutions of string theory in ten
dimensions and M-theory in eleven dimensions: the arrows indicate dimensional re-
duction from D to D � 1 dimensions, the dotted lines represent an S-duality and a
straight lines T -duality

The di�erent string theories and eleven dimensional supergravity can then be thought
o� as di�erent perturbation expansions in di�erent points of the moduli space of M -
theory, characterized by the value of the coupling constant and the size of the compact
dimensions. A full picture of what M -theory itself looks like is not yet known, though
serious attempts are being made using techniques of Matrix-theory [12]. It is believed to
have membrane and �ve-brane solutions, to be non-perturbative,... In fact, the idea of
M -theory being the fundamental, underlying theory even has brought the name string
theory in question, since strings no longer play a preferred role in this picture.

In the following Chapters we will apply the techniques of duality symmetries and duality
transformations on the various aspects of string theory and supergravity: in Chapter 4
we will study the symmetries of the target space actions of string theories in more detail
and �nd duality relations between them in dimensions lower than ten. In Chapter 5
we will look at the solutions of the supergravity actions and in particular the bound
states they can form, and in Chapter 6 we study the duality transformations between
the e�ective actions of the solutions, �nding that also these are related in the same way
as the solutions themselves.
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Chapter 4

Target Space Actions

In Section 3.1 we already discussed briey the global symmetries of the low energy
e�ective actions of the common sector, the Heterotic and Type IIA/B theories. In this
chapter we will study in more detail these discrete and non-compact symmetries. We
will look in Section 4.1 at the symmetries of theories after compacti�cation over one
dimension, since here most of the properties of (toroidally) compacti�ed theories are
present in a simple form. In Section 4.2 we will �nd the same properties in the duality
relations between the six-dimensional Heterotic, Type IIA and Type IIB theory at the
level of the target space actions.
This chapter contains results presented in [27] and [14].

4.1 Duality Symmetries in Ten and Nine Dimensions

In this section we look in detail to the symmetry properties that arise from the dimen-
sional reduction of the low energy e�ective string action from ten to nine dimensions.
First we discuss the symmetry group of the common sector and explain the origin of
the di�erent symmetry transformations. Then we look at how the group structure
gets enhanced, c.q. broken, in the presence of (Abelian) vector �elds in the case of the
Heterotic string or R-R �elds in the case of the Type IIA/B theory.

4.1.1 Symmetries of the Common Sector

As discussed in Section 3.1, dimensional reduction over a circle already shows many
of the interesting features of toroidal compacti�cation. Let us therefore look in more
detail at the dimensionally reduced D = 9 common sector action (3.28):

S(9) = 1
2

Z
d9x

p
jgj e�2�

h
�R + 4(@�)2 � 3

4H
2 � (@ log k)2
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A

-A

-B B

Figure 4.1: Each discrete symmetry of the square corresponds to a symmetry acting on
the two vectors A and B. The four sides of the square correspond to the pairs (A;�A)
and (B;�B).

+ 1
4k

2F 2(A) + 1
4k

�2F 2(B)
i
; (4.1)

H��� = @[�B��] + 1
2A[�F��](B) + 1

2B[�F��](A):

As mentioned earlier, this action has a manifest global O(1; 1)-symmetry, coming from
the dimensional reduction, which decomposes in a subgroup of proper O(1; 1) transfor-
mation and a mapping class group:

O(1; 1) = SO"(1; 1)x �Z
(S)
2 �Z

(T )
2 : (4.2)

The di�erent subgroups act on the Kaluza-Klein scalar k and the vector �elds A� and
B� as

SO"(1; 1)x : k ! ��1k; A� ! � A�; B� ! ��1B�;

Z
(S)
2 : k ! k A� ! � A�; B� ! � B�;

Z
(T )
2 : k ! k�1: A� ! B�; B� ! A�

(4.3)

The SO"(1; 1)x�Z(S)
2 -symmetry comes from the fact that the action (4.1) was obtained

via a dimensional reduction over x of the ten-dimensional action (3.20), and is therefore
invariant under reections and rescalings in the compact x-direction:

Z
(S)
2 : x0 = �x;

SO"(1; 1)x : x0 = � x:
(4.4)

It is not di�cult to see that these ten-dimensional transformations act on the nine-
dimensional �elds as in (4.3).

The appearance of the Z
(T )
2 , the T -duality transformation (3.4), cannot be explained

from the point of view of dimensional reduction, and is di�cult to interpret, ignoring
the stringy character of the action (4.1). We refer to the discussion in Section 3.1.

In addition to the two discrete groups given above, there exists yet another Z2 transfor-

mation, which we call Z
(A)
2 because of the fact that it acts on the axion and the winding
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Name g�� B�� A� B� e� k S(9)

SO"(1; 1)x 0 0 1 �1 0 �1 0

SO"(1; 1)y �1 �1 0 �1 � 5
4

1
2 �1

R� 0 0 0 0 1 0 �2

Table 4.1: Weights of the common sector �elds under the two SO"(1; 1) symmetries of
the action S(9) and the R� which scales the action in nine dimensions.

vector:
Z
(A)
2 : B0

�� = �B�� ; B0
� = �B�: (4.5)

This Z
(A)
2 does not commute with Z

(T )
2 and therefore the three Z2's together combine

into the non-Abelian dihedral group D4, the group of symmetry transformations of
a square with undirected sides: every D4-transformation on the vectors A� and B�

corresponds to a transformation that leaves a square with sides (A;�A) and (B;�B)
invariant (see Figure 4.1). The only D4-transformation that acts non-trivially on the

scalar k is Z
(T )
2 .

Furthermore there are two more non-compact symmetries, SO"(1; 1)y and R�
1, which

scale the action but leave the equations of motion invariant. Their interpretation will
become clear later on in this section, in the context of the symmetries of the Type II
theory. The weights of the �elds under the various scale transformations is given in
Table 4.1. The full group of symmetries the equations of motion is then given by

SO"(1; 1)x � SO"(1; 1)y � R� � D4 : (4.6)

In the presence of �elds that do not belong to the common sector, such as vector �elds
in the case of the Heterotic theory, or R-R �elds in the case of Type IIA/B theory, part
of the symmetry gets broken. How much the symmetry gets broken depends on the
situation. Let us therefore discuss each of the two cases separately.

4.1.2 Symmetries of the Heterotic Theory

In the presence of an (Abelian) vector �eld V̂�, the situation changes in two ways: the

extra Chern-Simons term in the axion �eld strength tensor will break the Z
(A)
2 symmetry

(and thus the D4), while on the other hand the Abelian vector �eld combines with the
A� and B� into the bigger reduction group SO"(1; 2)x.

1With R we denote the additive group of real numbers, which is isomorphic to SO"(1; 1). However
we reserve the notation SO"(1; 1) for groups that can combine with their mapping class group into a
full O(1; 1).
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We start our analysis from the action of the ten-dimensional Heterotic string in the
presence of one Abelian vector �eld:

S = 1
2

Z
d10x

p
jĝj e�2�̂

h
�R̂+ 4(@�̂)2 � 3

4Ĥ
2 + 1

4 F̂�̂�̂(V̂ )F̂
�̂�̂(V̂ )

i
; (4.7)

where the three-form �eld strength is of the form

Ĥ�̂�̂�̂ = @[�̂B̂�̂�̂] � 1
2 V̂[�̂F̂�̂�̂](V̂ ) : (4.8)

In principle, there is an ambiguity in the relative sign between @B̂ and the Yang{Mills
Chern{Simons term V̂ F̂ (V̂ ). In fact, there are two theories whose only di�erence is

this relative sign and which are related by the change of sign of B̂�̂�̂ (Z
(A)
2 ), which is

no longer a symmetry of each separate theory. Therefore, the group D4 is broken to

Z
(T )
2 � Z

(S)
2 in each theory. In fact Z

(A)
2 is a duality transformation that brings us

from one theory to the other, exactly as happens in the Type II duality (3.46) (see also
[26]). From the sigma-model point of view, these theories are related by a change of the
sign of B̂�̂�̂ and the simultaneous interchange of left- and right-movers. For the sake of
de�niteness, we will work with the above choice of relative sign.

Following the standard rules for dimensional reduction in the presence of vector �elds
[115]

ĝ�� = g�� � k2A�A� ; B̂�� = B�� +A[�B�] + `A[�V�] ;

ĝx� = �k2A� ; B̂x� = B� +
1
2 ` V� ;

ĝxx = �k2 ; �̂ = �+ 1
2 log k ;

V̂x = ` ; V̂� = V� + `A� ;

(4.9)

we obtain the nine-dimensional action, which is the generalisation of (4.1):

S = 1
2

Z
d9x

p
jgj e�2�

�
�R + 4(@�)2 � 3

4H
2 �

h
(@ log k)2 +

1

2k2
(@`)2

i

+ 1
4

�
(2k2 + `2)2

4k2
F 2(A) + k�2F 2(B) +

`2

k2
F (A)F (B)

�

+F (V )

��
2k2`+ `3

4k2

�
F (A) +

`

2k2
F (B)

�
(4.10)

+ 1
4

�
k2 + `2

k2

�
F 2(V )

�
:

This can be written in a manifestly O(1; 2) invariant notation (3.37) [115]:

S = 1
2

Z
d9x

p
jgj e�2�

n
�R+ 4(@�)2 � 3

4H
2

+ 1
8Tr

�
@�M

�1@�M
�� 1

4F i
��(A)MijF��j(A)

o
; (4.11)
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Name g�� B�� A� B� e� k ` V� S(9)

SO"(1; 1)y �1 �1 0 �1 � 7
4 � 1

2 � 1
2 � 1

2 0

R� 0 0 0 0 1 0 0 0 �2

SO"(1; 1)� 0 0 1 �1 0 �1 �1 0 0

Table 4.2: Weights of the �elds under the two SO"(1; 1) duality symmetries of the action
of the nine-dimensional Heterotic string and the R� which scales it.

where H���; F i
�� and Ai

� are as in (3.38) and M�1 is the O(1; 2)-matrix

M�1
ij =

0
BBBB@
�(2k2 + `2)2=4k2 �`2=2k2 �(2k2`+ `3)=2k2

�`2=2k2 �1=k2 �`=k2

�(2k2`+ `3)=2k2 �`=k2 �(k2 + `2)=k2

1
CCCCA : (4.12)

Let us now analyse in detail the di�erent symmetries of this theory. First of all, the
SO"(1; 1)y � R� of (4.6) can be extended straightforwardly to the action (4.10). The
weights of the �elds are given in Table 4.2.

The dihedral group D4 gets broken to the mapping class group of O(1; 2), namely

Z
(S)
2 � Z

(T )
2 , which now, due to the presence of the vector �eld is of the form:

Z
(S)
2 :

8<
:

A0� = �A� ; B0
� = �B� ;

(k2)0 = (k2); `0 = �` ;
(4.13)

Z
(T )
2 :

8><
>:

~A� = B� ; ~B� = A� ;

~k2 = 4k2

(`2+2k2)2 ;
~̀= 2`

`2+2k2 :

The interpretation of these Z2 transformations is the same as in (4.3): Z
(S)
2 corresponds

to a change of sign of the compact direction and Z
(T )
2 corresponds to the T -duality

transformations, which now in ten dimensions appear as a generalization of (3.4):

~̂g�� = ĝ�� +
�
ĝxxĜx�Ĝx� � 2ĜxxĜx(�ĝ�)x

�
=Ĝ2

xx ;

~̂
B�̂�̂ = B̂�̂�̂ � Ĝx[�Ĝ�]x=Ĝxx ;

~̂gx� = (�ĝx�Ĝxx + ĝxxĜx�)=Ĝ
2
xx ;

~̂
Bx� = (Ĝx� � B̂x�)=Ĝxx ;
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~̂gxx = ĝxx=Ĝ
2
xx ; (4.14)

~̂
� = �̂� 1

2 log jĜxxj ;
~̂
V x = �V̂x=Ĝxx ;

~̂
V � = V̂� � V̂xĜx�=Ĝxx ;

where Ĝ�̂�̂ is an \e�ective metric"

Ĝ�̂�̂ = ĝ�̂�̂ + B̂�̂�̂ � 1
2 V̂�̂V̂�̂ ; (4.15)

which transforms under Z
(T )
2 in the following particularly simple form:

~̂
G�� = Ĝ�� � Ĝx�Ĝ�x=Ĝxx ;

~̂
Gxx = 1=Ĝxx ;

~̂
Gx� = Ĝx�=Ĝxx ;

~̂
G�x = �Ĝ�x=Ĝxx :

(4.16)

Note that for V̂�̂ = V� = ` = 0, (4.13) and (4.14) reduce to the known T -duality
transformations (3.4) and (4.3).

We next consider the continuous SO"(1; 2)x transformations. It is convenient to �rst
consider the so(1; 2) Lie algebra with generators J3; J+ and J�:

[J3; J+] = J+ ; [J3; J�] = �J� ; [J+; J�] = J3 : (4.17)

The generators J3; J+ and J� can be represented by 3� 3 matrices

J+ =

0
@ 0 0 �1
0 0 0
0 �1 0

1
A ; J� =

0
@ 0 0 0

0 0 �1
�1 0 0

1
A ; J3 =

0
@ 1 0 0
0 �1 0
0 0 0

1
A :

The exponentiation of J3; J+ and J� leads to the following SO"(1; 2) group elements:

exp�J3 =

0
@ e� 0 0

0 e�� 0
0 0 1

1
A ;

exp�J� =

0
@ 1 0 0

1
2�

2 1 ��
�� 0 1

1
A ; (4.18)

exp J+ =

0
@ 1 1

2
2 �

0 1 0
0 � 1

1
A :

An arbitrary SO"(1; 2) group element 
 can be written as the product of these basis
elements. Using the fact that the vectors A�; B� and V� transform in the fundamental
representation of SO"(1; 2) and the scalars as (M�1)0 = 
M�1
T (see (3.39)), one can
verify that the transformations in the basis above induce three transformations in nine
dimensions.
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First of all, the transformation generated by J3 in nine dimensions is just the scale
transformation SO"(1; 1)x of previous sections and corresponds to a general coordi-
nate transformation (g.c.t.) x ! e�x. The weights of the various �elds under this
transformation are given in Table 4.2.

We next consider the transformation generated by J�. The nine-dimensional rules are
given by

A0� = A� ; (k2)0 = k2 ;
B0
� = B� � �V� +

1
2�

2A� ; `0 = `+ � ;
V 0
� = V� � �A� :

(4.19)

The corresponding transformation of the ten-dimensional �elds is

V̂ 0
x = V̂x + � ;

B̂0
x� = B̂x� � 1

2�V̂� : (4.20)

All other �elds are invariant. It turns out that this transformation is a particular �nite
U(1) gauge transformation, under which also the axion transforms (cfr: (3.35)):

V̂ 0
�̂ = V̂�̂ + @�̂� ;

B̂0
�̂�̂ = B̂�̂�̂ + V̂[�̂@�̂]� ; (4.21)

with the parameter � given by � = �x.

Finally, we consider the transformation generated by J+. The transformation rules in
nine dimensions are given by:

A0� = A� +
1
2

2B� � V� ; (k2)0 =
�

4k
4+4`+(`2+2k2)2

�2
;

B0
� = B� ; `0 = 4`+2(`2+2k2)

4+4`+(`2+2k2)2 ;

V 0
� = �B� + V� :

(4.22)

For the (complicated) expression for these transformations in ten dimensions we refer to
[27]. This transformation cannot be interpreted as a g.c.t. or a gauge transformation in

ten dimensions. Together with the T -duality transformation Z
(T )
2 , it forms the O(1; 2)-

subgroup Z
(T )
2 � O(2) of solution generating transformations [144, 83]. Note that the

subgroupZ
(T )
2 �O(2) = O(1)�O(2) corresponds exactly to the subgroup that is factored

out in the Narain coset O(1; 2)=(O(1) � O(2)) of inequivalent compacti�cations [119]

we encountered in Section 3.1. Therefore, the Z
(T )
2 �O(2) transformations parametrise

the elements within each class of equivalent compacti�cations of (4.7). Acting with
these transformations on a given solution, generates all other solution within the same
equivalence class.

More generally, one can show [144, 83] that for a dimensionally reduced action with an
O(d; d+ n) symmetry, the transformations belonging to the O(d)�O(d+ n) subgroup
are non-trivial solution generating transformations, while the coset O(d; d+n)=(O(d)�
O(d+ n)) corresponds to the coset of gauge transformations.
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Name C��� g�� B
(1)
�� B

(2)
�� A

(1)
� A� B� k ` e� S

Rbrane 1 1 1 1 0 0 1 1
2 0 1

4 3

SO"(1; 1)x�y 0 1 1 �1 �1 1 0 � 1
2 �2 7

4 0

SO"(1; 1)x+y 0 1 1 1 �1 �1 2 3
2 0 3

4 2

Z
(S)
2 � + � + + � + + � + +

Table 4.3: Weights of the D = 9 Type II supergravity �elds and action under SL(2;R)�
SO"(1; 1)x+y � Rbrane � Z

(S)
2 .

4.1.3 Symmetries of Type IIA/B

As we have seen in section 3.1, Type IIA and Type IIB theory in the presence of an
isometry are related via the Type II T -duality rules (3.46) [26]. Therefore they also
have the same symmetry group [27]:

SL(2;R) � SO"(1; 1)x+y � Rbrane �Z
(S)
2 : (4.23)

The SL(2;R) group is a symmetry of the action. From the Type IIB point of view it is
the manifest SL(2;R) symmetry (3.69)-(3.70) of the original theory [92, 26, 17], while
from the point of view of the Type IIA it is a part of the symmetry group coming from
the dimensional reduction of the eleven dimensional supergravity theory: the group of
two-dimensional general coordinate transformations GL(2;R) = SL(2;R)�SO"(1; 1)�
Z2.

2

The SL(2;R) contains one particular subgroup of scalings: SO"(1; 1)x�y, corresponding
to the eleven-dimensional g.c.t. x ! e�x ; y ! e��y. This is of course the particular
combination of the scaling symmetries SO"(1; 1)x and SO"(1; 1)y of the previous sec-
tions. Another (linearly independent) combination is the SO"(1; 1)x+y, which scales the
�elds and the action and corresponds to the eleven-dimensional g.c.t. x! e�x ; y ! e�y.
The Rbrane is a symmetry that can already be found back in eleven dimensions and that
scales the action, giving each �eld a weight according to its mass dimension [27]. Fi-

nally, Z
(S)
2 corresponds to improper g.c.t.s in the internal space, for instance x ! �x

(up to SL(2;R) rotations) [85]. The weights of the di�erent nine-dimensional �elds are
summarized in Table 4.3.

The discrete Z
(S)
2 is the only part that remains from the dihedral group D4 in (4.6).

The Z
(A)
2 -symmetry is broken by the topological term in (3.42), and the Z

(T )
2 is the

Type II T -duality (3.46), which is not a symmetry of the nine-dimensional Type II

2Schwarz [140] and Aspinwall [7] interpreted the presence of the SL(2;Z) symmetry of the Type IIB
string as the SL(2;Z)modular invariance of the torus on which the D = 11 supergravity is compacti�ed
in order to relate this to the Type IIB theory.
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T

IIA IIBT

e

Figure 4.2: The Type II T -duality in ten dimensions describes a map between the Type
IIA and Type IIB theory. The reduction to D = 9 of the Type IIA (Type IIB) is indicated
with e (T)

action (3.42), but relates the ten-dimensional Type IIA and Type IIB with each other.
Instead of being a symmetry of a single theory, it is a map between two di�erent theories,
which can be constructed relating the two di�erent reduction schemes (3.43) and (3.44)
to each other (see Figure 4.2)

We will call these two reduction schemes e and T respectively, the reason for this being
that the reduction scheme T is the T -dual formulation (3.31) of the reduction scheme
e, when restricted to the common sector3.

An advantage of this notation is that one can easily see the Z2 group structure:

T (IIB ! IIA)� T (IIA! IIB) = l1(IIA! IIA) ;

T (IIA! IIB)� T (IIB ! IIA) = l1(IIB ! IIB) : (4.24)

This is due to our notation of the reduction formulae, which is such that, when re-
stricted to the common sector, each reduction scheme (and its inverse) is in one-to-one
correspondence with a speci�c Z2{symmetry of the action (4.1).

The above analysis can also be repeated for the more complicated case of D = 5; 6. The
six-dimensional Type IIA/B theories compacti�ed on K3 are in the same way T -dual to
each other upon reduction to �ve dimensions. Furthermore they can be related to the
Heterotic theory compacti�ed on a four-torus T 4, which will give rise to bigger discrete
duality groups.

3Upon truncation of the R-R �elds, the Type II theories reduce to the common sector (4.1) and

Z
(T )
2 becomes a symmetry of the action.
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4.2 Duality Symmetries in Six and Five Dimensions

In this section we will discuss the duality symmetries between the Heterotic, Type IIA
and Type IIB theory in six and �ve dimensions. We will see that all three are related to
each other via a string/string/string triality structure [62, 100]. Just as in the previous
section we will start with the symmetries of the common sector, then present the six-
dimensional form of each of the theories and reduce them to the same �ve-dimensional
theory. In the end we will construct duality maps between the various theories.

4.2.1 The Common Sector

The common sector of the Heterotic, Type IIA and Type IIB theory in six dimensions
is given by

S(6) = 1
2

Z
d6x

p
jĝj e�2�̂

h
�R̂+ 4(@�̂)2 � 3

4Ĥ
2
i
: (4.25)

The special thing about six dimensions is that the equations of motion corresponding
to the common sector are invariant under so-called string/string duality transforma-
tions [60, 61, 163]. These transformations are easiest formulated in the (6-dimensional)
Einstein-frame metric

ĝE�� = e��̂ĝ�� ; (4.26)

which is invariant under the string/string duality transformations. The action for the
common sector in the Einstein-frame metric is given by:

S(6) = 1
2

Z
d6x

p
jĝEj

h
�R̂� (@�̂)2 � 3

4e
�2�̂Ĥ2

i
: (4.27)

It is not di�cult to see that the equations of motion of the above action are invariant
under:

�̂0 = ��̂ ; Ĥ 0 = e�2�̂ �Ĥ ; (4.28)

where �Ĥ is the Poincar�e dual (2.56) of the axion �eld strength Ĥ :

�Ĥ�̂�̂�̂ � 1

3!
p
jĝj "�̂�̂�̂�̂�̂�̂ Ĥ

�̂�̂�̂ : (4.29)

This string/string duality is the six-dimensional analogue of the strong/weak coupling
duality (3.64), or equivalently the string/�ve-brane duality in ten dimensions. It states
that in the strong coupling limit of the six-dimensional common sector the fundamental
string gets related to the solitonic string, the direct reduction of the solitonic �ve-brane.

We now discuss the reduction to �ve dimensions, assuming there is an isometry in
the x-direction. Using both in D = 6 as well as D = 5 the string{frame metric, the
6-dimensional �elds are expressed in terms of the �ve-dimensional ones as follows:

ĝxx = �e�4�=
p
3 ;

ĝx� = �e�4�=
p
3A� ;
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ĝ�� = g�� � e�4�=
p
3A�A� ; (4.30)

B̂�� = B�� +A[�B�] ;

B̂x� = B� ;

�̂ = �� 1p
3
� :

Note that for later convenience we have renamed the Kaluza-Klein scalar k2 = e�4�=
p
3.

The reduced action in the (�ve-dimensional) string frame metric is given by

S(5) = 1
2

Z
d5x

p
jgj e�2�

h
�R+ 4(@�)2 � 3

4H
2 � 4

3 (@�)
2 (4.31)

+e�4�=
p
3F (A)2 + e4�=

p
3F (B)2

i
;

with H��� as in (4.1).

We next use the fact that �ve dimensions is special in the sense that in this dimension
the antisymmetric tensor B�� is Poincar�e dual to a vector C� [163, 164]:

H��� � 1

3
pjgj e2� "�����F (C)�� (4.32)

In terms of this vector C� the action is given by:

S(5) = 1
2

Z
d5x

p
jgj e�2�

h
�R+ 4(@�)2 � 4

3 (@�)
2 + e4�F (C)2

+e�4�=
p
3F (A)2 + e4�=

p
3F (B)2

�
(4.33)

� 1
2

Z
d5x "(5) A @B @C :

To study the symmetries of the dimensionally reduced action it is convenient to use the
(�ve-dimensional) Einstein frame metric

gE�� = e�4�=3g�� ; (4.34)

so that the action becomes

S(5) = 1
2

Z
d5x

p
jgEj

h
�R� 4

3 (@�)
2 � 4

3 (@�)
2 + e�4~QC �~�=3F (C)2

+ e�4~QA�~�=3F (A)2 + e�4~QB�~�=3F (B)2
�

(4.35)

� 1
2

Z
d5x "(5)A @B @C ;

where ~� =
�
�; �

�
and

~QA =
�p

3; 1
�
;

~QB =
��p3; 1� ; (4.36)

~QC =
�
0;�2� :
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Figure 4.3: Each proper discrete symmetry of the cube corresponds to a symmetry acting
on the three vectors. The six faces of the cube correspond to the pairs (A;�A); (B;�B)
and (C;�C).

Given the above form of the dimensionally reduced action, it is not di�cult to analyse
its discrete duality symmetries. It turns out that on the 3 vectors one can realize
the 24-element �nite group C=Z2 where C is the so-called cubic group. The easiest
way to see how this group is realized is to write a cube, like in Figure 4.3, with faces
(A;�A); (B;�B) and (C;�C).
The reason that we only consider the 24 proper symmetries and not the full 48-element
cubic group is that only the proper elements leave the last (topological) term in the
action (4.35) invariant. The proper cubic group has elements of order 2 and 3.4 An
example of a 2-order element is the reection around the diagonal vertical plane that
connects the right-front of the cube to the left-back of the cube. An example of a
3-order element is given by a (counter-clockwise) rotation of 120 degrees with axis the
line going from the upper right corner at the front to the lower left corner at the back
of the cube. Each of the 24 proper discrete symmetries of the cube naturally leads to a
discrete symmetry acting on the 3 vectors. For instance, the 2{ and 3{order elements
given above induce the following discrete symmetries acting on the vectors, respectively:

A0 = B ; B0 = A ; C 0 = C ;

A0 = B ; B0 = C ; C 0 = A : (4.37)

To see which discrete group is realized on the 2 scalars, it is easiest to write the 3
vectors ~QA; ~QB and ~QC as the corners of an equilateral triangle, like in Figure 4.4.
It was pointed out by Kaloper [96] that on the scalars one can realize the 6-element
dihedral group

D3 = C=
�
Z2�Z2�Z2

�
; (4.38)

i.e., to every 4 symmetries acting on the vectors one relates a single symmetry acting
on the scalars. The action of the 6 elements of D3 on the scalars is given by:

e : �0 = � ;

4The full cubic group also has elements of order 4. An example of such a 4-order element is a
rotation of 90 degrees with axis the line going from the center of the lower face to the center of the
upper face of the cube.
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Figure 4.4: Each symmetry of the equilateral triangle corresponds to a symmetry acting
on the two scalars. The three corners of the triangle are given by the three vectors
~QA; ~QB and ~QC de�ned in eq. (4.36).

�0 = � ;

T : �0 = �� ;
�0 = � ;

S : �0 = 1
2� +

1
2

p
3� ;

�0 = 1
2

p
3� � 1

2� ;

TS : �0 = � 1
2� +

1
2

p
3� ;

�0 = � 1
2

p
3� � 1

2� ; (4.39)

ST : �0 = � 1
2� � 1

2

p
3� ;

�0 = + 1
2

p
3� � 1

2� ;

TST : �0 = 1
2� � 1

2

p
3� ;

�0 = � 1
2

p
3� � 1

2� :

Note that all D3-transformations can be obtained as products of two elements, T and
S, where the T-element corresponds to the usual T -duality transformation (3.31) and
the S-element corresponds to the string/string duality (4.28). By TS we mean the
symmetry that is obtained by a composition of T and S as follows:

�00 = 1
2�

0 + 1
2

p
3�0 = � 1

2� +
1
2

p
3� : (4.40)

To every element of D3 corresponds 4 elements of C=Z2 acting on the 3 vectors. The
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e T S ST TS TST

e e T S ST TS TST
T T e TS TST S ST
S S ST e T TST TS
ST ST S TST TS e T
TS TS TST T e ST S
TST TST TS ST S T e

Table 4.4: Group multiplication table of the 6-element dihedral group D3.

speci�c transformations of the vectors are given by5

e : A0 = A ; B0 = B ; C 0 = C ;

T : A0 = B ; B0 = A ; C 0 = C ;

S : A0 = A ; B0 = C ; C 0 = B ;

TS : A0 = B ; B0 = C ; C 0 = A ; (4.41)

ST : A0 = C ; B0 = A ; C 0 = B ;

TST : A0 = C ; B0 = B ; C 0 = A :

Finally, for the sake of completeness we give the complete group multiplication table of
D3 in Table 4.4.

4.2.2 D = 6 Heterotic, Type IIA and Type IIB Theory

In this Subsection we describe the actions and symmetries of the six-dimensional Het-
erotic compacti�ed on T 4 and Type IIA and Type IIB theory compacti�ed on K3.

The toroidally compacti�ed Heterotic theory was already discussed in subsection 3.1.3:
its �eld content consists of the usual metric, axion and dilaton, 24 Abelian vector �elds
and 80 scalars parametrising an O(4; 20)=(O(4)�O(20)) coset. They can be combined
into a O(4; 20)-matrix M̂�1, satisfying M̂�1LM̂�1 = L, where L is the O(4; 20)-metric
(3.38). The Heterotic action has six-dimensional N = 2 supersymmetry and can be
written in the string-frame in an manifest O(4; 20)-invariant way:

SHet =
1
2

Z
d6x

p
jĝj e�2�̂

h
�R̂+ 4(@�̂)2 � 3

4Ĥ�̂�̂�̂Ĥ
�̂�̂�̂

+ 1
8Tr

�
@�̂M̂@�̂M̂�1�� F̂ (V̂ )i�̂�̂M̂

�1
ij F̂ (V̂ )

�̂�̂j

�
; (4.42)

where Ĥ is de�ned as in (3.38).

5We only give 6 elements of C=Z2. To every element below one can associate 3 more elements by
changing (in 3 possible ways) two signs in the given transformation rules.
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In order to rewrite this theory in D = 5, we make the following Ansatz for the reduction
scheme:

e :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ĝxx = �e�4�=
p
3 ;

ĝx� = �e�4�=
p
3A� ;

ĝ�� = g�� � e�4�=
p
3A�A� ;

B̂�� = B�� +A[�B�] + `iV j
[�A�]Lij ;

B̂x� = B� � 1
2`

iV j
�Lij ;

�̂ = �� 1p
3
� ;

V̂ i
� = V i

� + `iA� ;

V̂ i
x = `i ;

M̂ = M :

(4.43)

Just as in the previous subsection the axion B�� can be dualized to a vector C� via the
formula:

H��� =
1

3
p
jgj e

2�"�����F (C)�� : (4.44)

The dimensionally reduced action in the (�ve-dimensional) string-frame is given by

S = 1
2

Z
d5x

p
jgj e�2�

h
�R+ 4(@�)2 + 1

8Tr
�
@�M@�M�1�

+e4�F (C)2 � F (A)I��M�1
ij F (A)��J

i
(4.45)

� 1
4

Z
d5x "(5)C @AI @AJLIJ ;

where L is the invariant metric on O(5; 21). The O(5; 21)-vectors AI (I = 1; � � � ; 26)
are given by

AI
� =

0
@ A�

B�

V i
�

1
A : (4.46)

The explicit expression of the O(5; 21)-matrix M in terms of the 105 scalars �; `i and
the 80 scalars contained in the O(4; 20) matrix M is given by

M�1 =

0
B@ �e�4�=

p
3 + `i`jM�1

ij � 1
4e

4�=
p
3`4 1

2e
4�=

p
3`2 `iM�1

ij � 1
2e

4�=
p
3`2`j

1
2e

4�=
p
3`2 �e4�=

p
3 e4�=

p
3`j

`iM�1
ij � 1

2e
4�=

p
3`2`j e4�=

p
3`j M�1

ij � e4�=
p
3`i`j

1
CA

where `2 � `i`jLij and `i � `jLij . These scalars parametrise the coset O(5; 21)=
�
O(5)�

O(21)
�
.

The action (4.45) de�nes the Type II theory in 5 dimensions. It clearly contains the
common sector given in (4.33). This may be seen by imposing the following constraints:

`i = V i
� = 0 ; M�1

ij = �ij : (4.47)

Now, we will compare this result to the actions of the Type IIA/B theories, compacti�ed
on K3. K3 is a four-dimensional manifold that can be best seen as an orbifold of the
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four-torus T 4: it can be obtained from the T 4 after identi�cation of the points on the
torus that are mapped to each other under the Z2 transformation x

a ! �xa on the
coordinates. It has 16 �x-points (points that under the Z2 are mapped to themselves)
and an 80-dimensional moduli space of inequivalent string compacti�cations

SO(4; 20)

SO(4)� SO(20)� SO(4; 20;Z)
: (4.48)

Reduction over K3 breaks exactly half of the supersymmetry the theory would have if
it were compacti�ed on T 4.

The �eld content of the Type IIA theory reduced over K3 to 6 dimensions is identical
to the Heterotic theory. Furthermore the reduction over K3 breaks half of the super-
symmetry, such that we �nd also here six-dimensional N = 2. The action, however, is
di�erent. Instead of a Chern-Simons term inside Ĥ , the action contains an additional
topological term as compared to the Heterotic action. We thus have

SIIA = 1
2

Z
d6x

p
jĝj e�2�̂

h
�R̂+ (@�̂)2 � 3

4Ĥ�̂�̂�̂Ĥ
�̂�̂�̂ (4.49)

+ 1
8Tr
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@�̂M̂@�̂M̂�1�� e2�̂F̂ (V̂ )i�̂�̂M̂

�1
ij F̂ (V̂ )

�̂�̂j

�

� 1
8

Z
d6x "(6) B̂ @V̂ i @V̂ jLij :

Just as in the ten-to-nine reduction of Type IIA/B in the previous section, the six-
dimensional Type IIA action can be mapped onto the same �ve-dimensional Type II
action (4.45) as the Heterotic theory, provided we use a di�erent reduction scheme for
the Type IIA theory:

S :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ĝxx = �e�2��2�=
p
3 ;

ĝx� = �e�2��2�=
p
3A� ;

ĝ�� = e�2�+2�=
p
3g�� � e�2��2�=

p
3A�A� ;

B̂�� = B�� +A[�C�] ;

B̂x� = C� ;

�̂ = ��+ 1p
3
� ;

V̂ i
� = V i

� + `iA� ;

V̂ i
x = `i ;

M̂ = M :

(4.50)

The �ve-dimensional antisymmetric tensor B�� is dualized to a vector B� via the rela-
tion

H��� =
1

3
pjgj e2�+4�=

p
3 "�����

h
F (B)�� + `iF (V )j��Lij + `2F (A)��

i
: (4.51)

The �eld content of the Type IIB theory on K3 is given by a metric, 5 self-dual anti-
symmetric tensors, 21 anti-self-dual anti-symmetric tensors and 105 scalars. The 105
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scalars parametrize an O(5; 21)=
�
O(5) � O(21)

�
coset and are combined into the sym-

metric 26� 26 dimensional matrix M̂ satisfying the condition M̂�1LM̂�1 = L where
L is the invariant metric on O(5; 21). The theory has N = 2 supersymmetry.

Due to the (anti-)self-duality of the tensor �elds, a covariant action is hard to write
down6, but omitting the self-duality constraint, a non-self-dual action can be con-
structed. We �nd that in the Einstein-frame the non-self-dual Type IIB action is given
by

SIIB = 1
2

Z
d6x

p
jĝEj

h
�R̂+ 1

8Tr
�
@�̂M̂@�̂M̂�1�+ 3

8Ĥ
I
�̂�̂�̂M̂�1

IJ Ĥ
�̂�̂�̂J

i
; (4.52)

where ĤI
�̂�̂�̂ = @[�̂B̂

I
�̂�̂]. The �eld equations corresponding to this action lead to the

correct Type IIB �eld equations, provided that we substitute by hand the following
(anti-)self-duality conditions for the antisymmetric tensors B̂I (I = 1; � � � ; 26):

ĤI = LIJM̂�1
JK

�ĤK : (4.53)

In order to extract the common sector out of the Type IIB theory, it is necessary to use
a particular parametrisation of the matrix M̂�1 in terms of the 105 scalars, thereby
identifying a particular scalar as the Type IIB dilaton �̂. This dilaton may then be used
to de�ne a string-frame metric ĝ�̂�̂ via (4.26). We use the following parametrisation:

M̂�1 =

0
B@ �e�2�̂ + ^̀i ^̀jM̂�1

ij � 1
4e

2�̂ ^̀4 1
2e

2�̂ ^̀2 ^̀iM̂�1
ij � 1

2e
2�̂ ^̀2 ^̀

j

1
2e

2�̂ ^̀2 �e2�̂ e2�̂ ^̀j
^̀iM̂�1

ij � 1
2e

2�̂ ^̀2 ^̀
j e2�̂ ^̀j M̂�1

ij � e2�̂ ^̀i ^̀j

1
CA ; (4.54)

where 80 scalars are contained in the O(4; 20) matrix M̂�1, 24 scalars are described by

the ^̀a and where �̂ is identi�ed as the Type IIB dilaton.

The common sector is then obtained by imposing the constraints:

B̂i
�̂�̂ = 0 ; (i = 3; � � � ; 26) ; ^̀i = 0 ; M̂�1

ij = �ij : (4.55)

The (anti-)self-duality conditions (4.53) reduce to

Ĥ(2) = �e�2�̂ �Ĥ(1) : (4.56)

Substituting the constraints (4.55) and the constraint (4.56) back into the Type IIB
action (4.52) one obtains the standard form of the action for the common sector in
the Einstein metric as given in (4.27). Having identi�ed the Type IIB dilaton it is
straightforward to convert this result to the string-frame metric as given in (4.25).

The above discussion for the Type IIA theory also applies to the Type IIB theory. We
�nd that the dimensional reduction of the Type IIB theory leads to the same D = 5
Type II theory (4.45) as the dimensional reduction of the Heterotic and Type IIA theory

6However, see [52].
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provided we use the following dimensional reduction formulae for the Type IIB �elds:

ST :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ĝxx = �e2�+2�=
p
3 ;

ĝx� = �e2�+2�=
p
3C� ;

ĝ�� = e�2�+2�=
p
3g�� � e2�+2�=

p
3C�C� ;

B̂I
�� = BI

�� + C[�AI
�] ;

B̂I
x� = AI

� ;

�̂ = 2p
3
� ;

^̀i = `i ;

M̂ = M :

(4.57)

Note that due to the (anti-)self-duality relations (4.53) both B̂I
�� as well as B̂I

x� get

related to the 5-dimensional vector �elds AI
�. The dimensionally reduced expression for

the (anti-)self-duality condition (4.53) states that the 26 anti-symmetric tensors BI
��

and the 26 vector AI
� are not independent degrees of freedom, but each other's Poincar�e

dual:

H���K = � 1

3
p
jgj e

�2� "�����MKILIJF (A)J�� : (4.58)

Now that we are able to map the three di�erent six-dimensional theories, Heterotic,
Type IIA and Type IIB, onto one and the same �ve-dimensional Type II theory, we can
use these reduction formulae to construct discrete duality transformations between the
di�erent theories in six dimensions, as an analogue of the Type IIA/B T -duality in ten
dimensions. This will be done in the next subsection.

First we should make a remark about the symmetries of the Type II action (4.45): the
action is clearly invariant under the group

O(5; 21) = SO"(5; 21)�Z
(S)
2 �Z

(T )
2 ; (4.59)

where the mapping class group Z
(S)
2 �Z(T )

2 is the straightforward generalization of the
nine-dimensional Heterotic case (4.13):

Z
(S)
2 : A0I
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(4.60)
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8>>>><
>>>>:
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`0i = N�1(e�4�=
p
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jk L
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2`
2`i)

with N = (e�8�=
p
3 � e�4�=

p
3`j`kM�1

jk + 1
4`

4). All other �elds remain invariant.

The breaking of the symmetry group of the common sector C=Z2 to the above mapping
class group is the �ve-dimensional analogue of the breaking of the dihedral group D4

in D = 9 to Z
(S)
2 � Z

(T )
2 in the presence of vector �elds. If we restrict ourselves to
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transformations that act non-trivially on the scalars, we see that the D3-group of the

common sector gets broken to Z
(T )
2 .

4.2.3 Type II Dualities

The fact that it is possible to compactify the Heterotic, Type IIA and Type IIB action
onto the same Type II action in �ve dimensions, means that the three theories in
six dimensions are intimately related. On one hand, we have the string/string duality
between Heterotic and Type IIA theory [60, 163], while on the other hand the T -duality
between Type IIA and Type IIB theory on K3 can be constructed in the same way as
in nine dimensions [26]. Together they form a web of string/string/string \triality"
transformations [62]. These transformations can now be constructed via the di�erent
reduction schemes that map the three theories onto the same one in �ve dimensions.

The presence of the T -duality symmetry (4.60) in �ve dimensions means that to each
reduction formula given above we can associate a T -dual version, in the way that the
Type IIB reduction scheme (3.44) was the T -dual of the Type IIA reduction scheme
(3.43). Its explicit form is obtained by replacing in the original reduction formula
each �ve-dimensional �elds by its T -dual expression. The T -dual reduction formula so
obtained should lead to the same action in �ve dimensions. This is guaranteed by the
fact that the �ve-dimensional action is invariant under T -duality. We will indicate the
T -dual versions of the reduction formulae constructed in the previous section as follows:

e! T ; S! TS ; ST! TST : (4.61)

Again we have named the di�erent reduction schemes by the group elements of D3,
since they are each other's D3-transforms (4.39)-(4.41) when restricted to the common
sector.

We thus obtain six di�erent reduction formulae which correspond to the three down-
pointing arrows in Figure 4.5. Similarly, there are six inverse reduction (decompacti�-
cation) formulae which go opposite the vertical arrows in Figure 4.5. These decompact-
i�cation formulae will be indicated by the inverse group elements (e�1;T�1;S�1; :::)
and can be constructed easily from the reduction formulae. The claim is now that,
using these six reduction and decompacti�cation formulae only, one is able to construct
in a simple way all the discrete dualities that act within and between the Heterotic,
Type IIA and Type IIB theories that are indicated in Figure 4.5.

Each discrete duality symmetry has been given a name which corresponds to the proper
combination of reduction and decompacti�cation schemes and, when restricted to the
common sector, the duality becomes the corresponding D3 duality symmetry that acts
in the common sector.

To show how the dualities of Figure 4.5 may be constructed, starting from the di�erent
reduction and decompacti�cation formulae, it is instructive to give a few examples.

1. The T -duality that acts within the Heterotic theory is obtained by �rst reducing
the theory using the e reduction formulae given in (4.43) and then using the
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H IIA IIB

TS

T

S T

ST ST

TST

e T S TS ST TST

TSTT S

Figure 4.5: The 3 down-pointing arrows indicate the six possible ways to map the three
D = 6 theories (Heterotic, Type IIA, Type IIB) onto the same D = 5 Type II theory.
Each reduction formula is indicated by a (boldface) element of D3. As explained in the
text these six reduction formula and their inverses may be used to construct the explicit
form of all the discrete D = 6 dualities that are indicated in the �gure.

T -dual decompacti�cation formulae, de�ned in (4.61), i.e.

T (H ! H) = T�1 � e = T : (4.62)

The duality rules are the uplifted form of (4.60).

2. The S-duality that maps the Heterotic onto the Type IIA theory is obtained
by �rst reducing the Heterotic theory via e and next decompactifying the D = 5
theory via S�1. As Figure 4.5 shows there are three other possibilities, one of them
gives the same answer while the other two are related to the ST map indicated
in Figure 4.5:

S(H ! IIA) = S�1 � e = S�1 = S ;

S(H ! IIA) = (TS)�1 �T = ST�T = S ; (4.63)

(ST )(H ! IIA) = S�1 �T = S�T = ST ;

(ST )(H ! IIA) = (TS)�1 � e = ST� e = ST :

The S-duality map corresponds to the known D = 6 string/string duality rule
[60, 163]. We �nd that the S-duality rules are given by (using the string-frame
metric):

Ĝ�̂�̂ = e�2�̂ĝ�̂�̂ ;

�̂ = ��̂ ; (4.64)

Ĥ�̂�̂�̂ = e�2�̂ �ĥ�̂�̂�̂ ;

where the other �elds are invariant. The capital �elds are Type IIA and the
small-script �elds Heterotic. To derive this string/string duality rule one must
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also use the two dualization formulae (4.44) and (4.51). Note that one may only
derive a string/string duality rule for Ĥ and not B̂. This is of course related to
the fact that from the six-dimensional point of view the string/string duality is a
symmetry of the equations of motion only.

3. The S-duality that acts within the Type IIB theory is obtained by �rst reducing
the Type IIB theory with ST and then decompactifying with (TST)�1. The
other way round gives the same answer:

S(IIB ! IIB) = (TST)�1 � ST = TST� ST

= STS� ST = S ; (4.65)

S(IIB ! IIB) = (ST)�1 �TST = TS�TST

= TS� STS = S ;

where we have used the multiplication properties of the group D3.

The S-duality rules can be written covariantly in a six-dimensional way, i.e., in
terms of the �̂{indices, in contrast to the T -duality, whose presence requires the
existence of a special isometry direction. We �nd that the S-duality is given by
a particular O(5; 21)-transformation with parameter 
 given by 
 = L, where
L is the at O(5; 21) metric given in (3.38). In components, its action on the
antisymmetric tensors and scalars is given by

Ĥ
0(1)
�̂�̂�̂ = Ĥ

(2)
�̂�̂�̂ ;

Ĥ
0(2)
�̂�̂�̂ = Ĥ

(1)
�̂�̂�̂ ;

Ĥ 0a
�̂�̂�̂ = LabĤ

b
�̂�̂�̂ ; (4.66)

e�2�̂
0

= e�2�̂
�
e�4�̂ � e�2�̂

0 ^̀a ^̀bM̂�1
ab + 1

4`
4

��1
;

^̀0a =
e�2�̂ ^̀cM̂�1

cd L
da � 1

2
^̀2 ^̀a

e�4�̂ � e�2�̂ ^̀a ^̀bM̂�1
ab + 1

4
^̀4
;

M̂ = M̂�1 :

Note that, when restricted to the common sector, this duality transformation
indeed reduces to the standard S-duality rule given in (4.39)-(4.41).

4. We deduce from Figure 4.5 that there is not only a T -duality that acts within
the Heterotic theory but also a T -duality that maps the Type IIA theory onto
the Type IIB theory. This is then the analogue of the Type IIA/B T -duality
in ten dimensions [26]. It may be obtained in the following two ways from the
reduction/decompacti�cation formulae:

T (IIA! IIB) = (ST)�1 � S = TS� S = T ;

T (IIA! IIB) = (TST)�1 �TS = TST�TS = T : (4.67)
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Following our method described above we �nd the following expression for this
duality transformation:

�̂ = �̂� 1
2 log(�ĝxx) ;

Ĝxx = 1=ĝxx ;

Ĝx� = b̂x�=ĝxx ;

Ĝ�� = ĝ�� �
�
ĝx�ĝx� � b̂x�b̂x�

�
=ĝxx ; (4.68)

B̂(1)
x� = ĝx�=ĝxx ;

B̂(1)
�� = b̂�� �

�
ĝx�b̂x� � ĝx� b̂x�

�
=ĝxx ;

B̂i
x� = v̂i� � v̂ixĝx�=ĝxx ;

^̀i = v̂ix ;

M̂ij = m̂ij ;

where the capital �elds are Type IIB and the small-script �elds are Type IIA

�elds, respectively. Note that the duality transformations of B̂
(2)
�̂�̂ and B̂i

�� are
not given. Their transformation rules follow from the ones given above via the
the self-duality conditions (4.53).

5. Finally, we observe that ST is a 3-order element of D3. This means that starting
with the Heterotic theory and applying the ST -duality three times we should get
back the Heterotic theory. In the diagram of Figure 4.5 this is seen as follows:
The �rst ST duality brings us to the Type IIA theory, the second one brings us
from the Type IIA to the type IIB theory. Finally, to perform the last ST -duality
we observe that ST = (TS)�1, i.e., this duality brings us back from the Type IIB
theory to the Heterotic theory via the opposite direction of the oriented arrow at
the top of the diagram.

Clearly, the above given examples are not all the D3 string/string/string triality trans-
formations. The other transformations can be constructed in the same way as the
transformations above.

These six-dimensional duality relations are, just as the duality map in ten dimensions, an
indication that the various string theories are di�erent manifestations of the underlying
M -theory (section 3.3). Di�erent compacti�cations of di�erent limits become equivalent
and can be related via duality transformations. Figure 4.5 can therefore be compared
to Figure 3.2 in section 3.3.
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Chapter 5

Solutions

In this chapter we will study the extended object solutions of the ten- and eleven-
dimensional low energy e�ective action, presented in Section 2.3, and more particularly,
solutions that consist of more then one object: the so-called intersections or superposi-
tions of various extended objects.

The interest in these intersections lays in the fact that, after dimensional reduction, they
give rise to various new single-brane solutions in lower dimensions. As we will see later
on in this chapter, these lower-dimensional single-brane solutions di�er in the way they
are coupled to the dilaton, which is determined by the number of branes in the original
ten- or eleven-dimensional intersection. So in order to have an overview of the lower-
dimensional p-branes, it is necessary to have a classi�cation of the p-brane intersections
that reduce to these. A special interest has risen recently in those intersections that
reduce to black holes, because the number of micro-states of a black hole (which is a
measure for its entropy) is determined by the number of intersections that reduce to
this black hole [154].

In Section 5.1 we study the conditions two objects should satisfy in order to form
a stable con�guration, we classify the di�erent intersection classes and compute the
amount of supersymmetry of the intersections. In Section 5.2 we use the conditions for
stable two-object intersections to construct multiple intersections, consisting of more
then two objects per con�guration. Again we will give a classi�cation of the intersection
classes for di�erent numbers of objects involved, and determine the maximum number of
objects in a con�guration. In Section 5.3 we construct new, lower-dimensional solutions
from the obtained ten and eleven-dimensional intersections.

The results presented in this chapter are a summary of [15, 20, 21].
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5.1 Pair Intersections of Extended Objects

In this section we will study the conditions for two fundamental objects to combine into
a two-object intersection. We start with the intersection of two D-branes in Subsection
5.1.1, and generalize the results to any two fundamental objects in Subsection 5.1.2.

5.1.1 D-brane Pair Intersections

The elementary Dirichlet p{brane solutions in ten dimensions are characterized by a
single function H that depends on the (9 � p) transverse coordinates and is harmonic
with respect to these variables. In the string-frame metric, the solution with p (0 �
p < 9) is given by (2.58):

Dp =

8><
>:

ds2 = H�1
2 (dt2 � dx21 � :::� dx2p)�H

1
2 (dx2p+1 + :::+ dx29)

e�2� = H
p�3
2

F
(R�R)
012:::pm = @mH

�1 (m : p+ 1; :::; 9):

(5.1)

For even (odd) p this metric corresponds to a solution of IIA (IIB) supergravity.

We have seen in Section 3.1 that T -duality relates the various D-branes to each other.
If one assumes an isometry direction x, the only non-trivial T -duality rule involving the
metric is given by (3.46)1:

~gxx = 1=gxx : (5.2)

Clearly, under this duality transformation the metric of a Dirichlet p-brane becomes
that of a (p+ 1)-brane if the duality is performed over one of the transverse directions
of the p-brane. In other words, one of the transverse directions of the p-brane has
become a world volume direction of the (p + 1)-brane. It is of course also possible to
perform T -duality in an orthogonal direction and change a world volume coordinate
into a transverse one. However, in this case one has be careful, since then we have to
suppose that the harmonic function after dualization depends on the direction in which
we have dualized and it is not guaranteed that this is the case.

It is convenient to represent every coordinate that corresponds to a world volume di-
rection by � and every direction transverse to the brane by �. We thus obtain the
following representation of the metric of a Dp-brane solution:

ds2 = �j � ::: �| {z }
p+1

9�pz }| {
� � ::: � : (5.3)

Note that the �rst � on the left hand side represents the time direction, which is
necessarily a world volume direction. It is easy to see that acting with T -duality on
this metric, a � changes into a � or vice versa. This representation will turn out to be
very useful in the study of intersection solutions.

1The T -duality rules for the R-R �elds can be found in [18].
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We will study a special type of intersections: the so-called orthogonally intersecting

threshold BPS bound states. These are intersections where each participating brane
corresponds to an independent harmonic function Hi in the solution. Furthermore, the
branes intersect each other orthogonally and the forces between the di�erent branes
vanish [161], so that there is no potential energy. The total energy of the intersection
is the sum of the energy of each brane separately. The precise form of such a solution
is given by the harmonic function rule [160], which prescribes how products of powers
of the harmonic functions Hi of the intersecting branes must occur in the composite
solution. In particular, it implies that if one removes one of the N branes of the
con�guration (i.e., one of the Hi is set equal to one), a solution with (N�1) intersecting
branes is obtained. Solutions satisfying these intersection conditions have been studied
extensively in the literature [124, 160, 106, 15, 70, 102, 125, 43, 161, 4, 123, 20, 6, 5, 21].
We will not consider non-threshold bound states, branes at angles, rotating branes or
transversely boosted branes. For this we refer to [134, 48, 121, 34, 44, 159].

Let us now study in detail the pair intersections and derive the conditions necessary
to form a stable solution of the equation of motion. An Ansatz describing the (string
frame) metric of a D(p+ r)-brane intersecting a D(p + s)-brane over p coordinates, is
given by [160]:

ds2 = (H1H2)
�1=2 ds2p+1 �

�H1

H2

�1=2
dx2s

�
�H2

H1

�1=2
dx2r � (H1H2)

1=2 dx2m : (5.4)

The harmonic function H1 describes the (p+ r)-brane, while H2 describes the (p+ s)-
brane. It is easy to see that this Ansatz satis�es the harmonic function rule: the metric
of a single D-brane is recovered upon setting the other harmonic function equal to one.
We will denote this solution of a D(p+ r)-brane and a D(p+ s)-brane intersecting over
p coordinates as �

p jD(p+ r); D(p+ s)
�

(5.5)

We see that the coordinates naturally split into three parts: (1) the overall world
volume coordinates xi; (i = 0; :::; p), which are common to the two branes, (2) the
overall transverse coordinates xm, with m = 1; :::; 9� p� r� s, which are orthogonal to
both branes and (3) the other coordinates xa with a : 1; :::; n = r + s which are called
relative transverse coordinates and are transverse to one brane but parallel to the other
one. Using the notation of (5.3), we can write an intersection of the type (5.4) as:

ds2 =

� � � � � � � � � � � : H1

� � � � � � � � � � : H2 :| {z }
xi

| {z }
xa

| {z }
xm

(5.6)

Every column represents a direction x�, which can be either common world volume
(xi), relative transverse (xa) or overall transverse (xm).

The labels p; r and s in the con�guration (5.4) have to ful�ll certain conditions: �rst
of all p+ r+ s � 9 for the obvious reason that we only have 9 spatial dimensions to �ll.
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n = 2
(0j0,2) (0j1,1)
(1j1,3) (1j2,2)
(2j2,4) (2j3,3)
(3j3,5) (3j4,4)
(4j4,6) (4j5,5)
(5j5,7) (5j6,6)
(6j6,8) (6j7,7)
(7j7,9) (7j8,8)

n = 6
(0j0,6) (0j1,5) (0j2,4) (0j3,3)
(1j1,7) (1j2,6) (1j3,5) (1j4,4)
(2j2,8) (2j3,7) (2j4,6) (2j5,5)
(3j3,9) (3j4,8) (3j5,7) (3j6,6)

n = 4
(0j0,4) (0j1,3) (0j2,2)
(1j1,5) (1j2,4) (1j3,3)
(2j2,6) (2j3,5) (2j4,4)
(3j3,7) (3j4,6) (3j5,5)
(4j4,8) (4j5,7) (4j6,6)
(5j5,9) (5j6,8) (5j7,7)

n = 8
(0j0,8) (0j1,7) (0j2,6) (0j3,5) (0j4,4)
(1j1,9) (1j2,8) (1j3,7) (1j4,6) (1j5,5)

Table 5.1: The tables of the T -duality classes of intersecting con�gurations of two D-
branes in ten dimensions. Via T -duality one can move horizontally and vertically within
a table. Only the tables with n = 4 and n = 8 correspond to threshold solutions to the
equations of motion.

Furthermore we only want to combine objects which come from the same theory (Type
IIA or Type IIB), so r and s have to be both odd or both even. In other words r + s
has to be an even number n.

A T -duality transformation on a con�guration (5.6) acts in a certain direction, changing
in the column corresponding to that direction every� for a � and vice versa. In general,
a (p jp+ r; p+ s)-con�guration can transform under T -duality in two ways: either the
T -duality is performed in a relative transverse direction�

p j p+ r; p+ s
�! �

p
��� p+ (r � 1); p+ (s� 1)

�
; (5.7)

and the duality interchanges a relative transverse direction of one object with a relative
transverse direction of the other object. The second possibility is that the T -duality is
applied to an overall transverse direction or a common world volume direction�

p j p+ r; p+ s
�! �

p� 1
��� (p� 1) + r; (p� 1) + s)

�
: (5.8)

In either case (5.7) or (5.8) the number r + s = n remains constant, so that n can be
used to label the four di�erent classes, as given in Table 5.1 [15, 70]. Within each class
we can move horizontally or vertically via the T -duality transformations: horizontal
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movements correspond to a T -duality transformation in a relative transverse direction
(5.7), while vertical movements are generated by T -duality transformations of the type
(5.8).

For the Ansatz for the dilaton we take the product of the dilaton expressions for each
brane separately:

e�2� = (H1)
p+r�3

2 (H2)
p+s�3

2 : (5.9)

In this way the harmonic function rule is satis�ed in a straightforward way. Furthermore
it is guaranteed that (5.9) transforms correctly under the T -duality rule for the dilaton
(3.5) to give the right dilaton expression of the T -dual intersection (5.7) or (5.8).

The expression for the R-R gauge �elds can easily be obtained by the requirement
that, if one of the harmonic functions is set equal to one, the intersecting con�guration
should reduce to one of the D-brane solution (5.1). The explicit form of the R-R gauge
�elds is most easily given by using a formulation where the magnetic con�gurations are
described by magnetic (dual) potentials. This leads us to consider the Lagrangian

L =
p
jgj
�
e�2�

h
R� 4(@�)2

i
+

(�)p+r+1
2(p+ r + 2)!

F 2
(p+r+2) +

(�)p+s+1
2(p+ s+ 2)!

F 2
(p+s+2)

�
;

(5.10)
where it is understood that in the �eld equations one imposes the constraint that F(8�p)
is the dual of F(p+2). In particular, F(5) is self-dual. Pseudo-Lagrangians of this form
have been discussed in [17]. It is also understood that the two kinetic terms for the
gauge �elds become identical if r = s.

We next distinguish three di�erent cases:

� Case 1: Both harmonic functions depend on the overall transverse directions xm.
The R-R gauge �elds are given by

F
(1)
0���p1���rm = @mH

�1
1 ; F

(2)
0���p1���sm = @mH

�1
2 : (5.11)

� Case 2: The functionH1 depends on the overall transverse directions xm, whereas
H2 depends on its relative transverse directions xa. The R-R gauge �elds are given
by

F
(1)
0���p1���rm = H�

2 @mH
�1
1 ; F

(2)
0���p1���sa = @aH

�1
2 : (5.12)

� Case 3: Both harmonic functions depend on their (own) relative transverse di-
rections xa and xb. The R-R gauge �elds are given by

F
(1)
0���p1���rb = H�

2 @bH
�1
1 ; F

(2)
0���p1���sa = H�

1 @aH
�1
2 : (5.13)

The � in Case 2 and the �; � in Case 3 are arbitrary (real) parameters that cannot be
�xed by the Bianchi identities. We will determine them via the equations of motion.

So far, we have only applied T -duality to generate the Ansatz (5.4), (5.9), (5.11{5.13) for
intersecting D-brane con�gurations, without really knowing whether they correspond
to solutions to the equations of motion. Our next task is to determine which of these
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con�gurations corresponds to a (supersymmetric) solution of the Lagrangian (5.10).
Substituting our Ansatz into the vector �eld and dilaton equation2, we see that [14]:

� Case 1 can only be a solution for n = 4,

� Case 2 for n = 4 and � = 0

� Case 3 requires that n = 8 and � = � = 1.

Con�gurations in our Ansatz with n = 2; 6 relative transverse directions do not appear
as solutions of the equations of motion. Non-threshold bound states with 2 relative
transverse directions have been argued to exist [45], but it is not clear whether these
solutions are of the form given above.

It turns out that the Cases 1 and 2 can naturally be combined into a more general
con�guration where H1 only depends on the overall transverse directions, as before,

but where H2 is given by the sum of two harmonics H
(a)
2 ; H

(b)
2 , which depend on the

overall and relative transverse directions, respectively, i.e.

H2(xm; xb) = H
(a)
2 (xm) +H

(b)
2 (xb) : (5.14)

We will now investigate the supersymmetry of these solutions. For a single D-brane the
supersymmetry condition is �� = � � = 0, where � is the dilatino and  � the gravitino
in the IIA/IIB supergravity multiplet. Their variations (in the string frame) are given
by (compare to (2.49)):

� � = @��� 1
4!

ab
� ab�+

(�)p
8(p+ 2)!

e� F�1:::�p+2 
�1:::�p+2� �

0
(p) = 0 ;

�� = �(@��)�+
3� p

4(p+ 2)!
e�F�1����p+2 

�1����p+2 �0(p) = 0 ; (5.15)

where �0(p) = � for p = 0; 4; 8; �0(p) = 11� for p = 2; 6; �0(p) = i� for p = 7 and �0(p) = i�?

for p = 1; 5. Substituting the single D-brane solution into the above equation leads to
the condition

�+ 01���p �0(p) = 0 ; (5.16)

which de�nes a projection operator on � that breaks half of the supersymmetry.

Now consider the intersection of a (p + r)-brane with a (p + s)-brane. Then the two
supersymmetry conditions corresponding to the (p + r)-brane and (p + s)-brane are
given by

�+ 01���p+r�0(p+r) = 0 ;

�+ 01���p+s�0(p+s) = 0 ; (5.17)

2The case that only intersecting 3-branes are involved is special since for this case the dilaton
equation is trivially satis�ed. By applying T{duality one can relate this case to the other cases and
show that the same restrictions as given below apply.
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respectively. Each one breaks half of the supersymmetry. Combining the two super-
symmetry conditions we get

�0(p+r) = (�) 12 r(r+1)r+s�0(p+s) : (5.18)

We now distinguish four cases in which the two spinors in the above equation are given
by (�; �); (�; 11�); (i�; i�) or (i�; i�

?), respectively. All four cases lead to the consistency
condition that 2r+s = 1, or

n = 4 or 8 : (5.19)

This reproduces the result of [129], where it is stated that the only supersymmetric (1/4
of the supersymmetry is unbroken) pair intersections are the ones with r+s = 0 mod 4.

We next extend this analysis and consider the Killing spinor equation that follows from
�� = 0 for the case that we substitute the complete intersecting con�guration and not
only the separate D-brane con�gurations. In the string{frame we obtain the following
equation from �� = 0:

�(@��) � + 1
4 (3� p� r) e�F

(1)
0���p+r�

0���p+r� �0(p+r)

+ 1
4 (3� p� s) e�F

(2)
0���p+s�

0���p+s� �0(p+s) = 0 : (5.20)

Substituting the explicit form of the general intersecting con�guration (5.4), (5.9), (5.11-
5.13) into the above Killing spinor equation leads, for case 1 to n = 4, for Case 2 to
n = 4; � = 0 and for Case 3 to n = 8; � = � = 1 [14]. This nicely agrees with our earlier
�nding that only these con�gurations can be solutions to the equations of motion.

Summarizing, we come to the following conclusions: there exist three types of D-brane
pair intersections in ten dimensions satisfying the Ansatz (5.4), (5.9), (5.11-5.13), each
conserving one quarter of the original supersymmetry. The three types of intersections
di�er in the dependence of the harmonic function on the coordinates and in the number
n of relative transverse directions in the intersection, which labels the T -duality classes
of intersections:

1. both harmonic functions depend on the overall transverse coordinates xm. The
only allowed intersections are the ones that have n = 4 relative transverse direc-
tions. The gauge �elds are of the form (5.11).

2. one of the harmonics depends on the overall transverse coordinates, while the
other depends on its relative transverse directions. Also here the only allowed
intersections are the ones in the n = 4 class. The gauge �elds are of the form
(5.12) with � = 0.

3. both harmonic functions depend on their relative transverse directions. Now the
intersections must have n = 8 relative transverse coordinates and the gauge �elds
are of the form (5.13) with � = � = 1.

In the next subsection we will try to generalize these results to M -brane intersections
in eleven dimensions and ten-dimensional intersections that also involve other objects
than D-branes.
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common wv. relative trv. overall trv.

(0jM2;M2) � (0jF1; D2) (0jD2; D2)
(1jM2;M5) (0jF1; D4) (1jF1; S5) (1jD2; S5)

(1jD2; D4)
(3jM5;M5) (2jD4; D4) (3jD4; S5) (3jS5; S5)
(1jM2;W) (0jF1; D0) (1jF1;W ) (1jD2;W )
(1jM5;W) (0jD4; D0) (1jD4;W ) (1jS5;W )

(2jM2;KK) (1jF1;KK) (2jD2;KK) (2jD2; D6)
(5jM5;KK) (4jD4;KK) (5jS5;KK) (5jS5; D6)
(0jM2;KK) � (0jF1; D6) (0jD2; D6)�

(0jD2;KK)
(3jM5;KK) (2jD4;KK) (3jD4; D6) (3jS5; D6)�

(3jS5;KK)

(1jW ;KK) (0jD0;KK) (1jW;KK) (1jW;D6)
(4jKK;KK)a (3jKK;KK)a (4jD6;KK)� (4jD6; D6)
(4jKK;KK)b (3jKK;KK)b (4jD6;KK) (4jD6; D6)�

Table 5.2: Pair intersections in D = 11 and their reductions to D = 10 with dependence
on overall transverse coordinates: the �rst column represents the pair intersections in
D = 11, reductions to non-trivial solutions in D = 10, obtained by compacti�cation in
di�erent directions (common world volume, relative transverse and overall transverse)
with respect to the branes, are indicated in the remaining columns. The D = 10 solutions
marked with � are not of the usual harmonic form.

5.1.2 General Pair Intersections

The results of subsection 5.1.1 can be easily be uplifted to eleven dimensions, since the
relations between the ten-dimensional Type IIA D-brane solutions and the solutions of
D = 11 supergravity are known [156] (see Figure 3.1). On the other hand, dimensional
reduction of the intersections in D = 11 yields new ten-dimensional intersections that
do not only contain D-branes, but also fundamental strings, solitonic �ve-branes, waves
and monopoles.

In Tables 5.2 and Table 5.3 we summarize the results on the pair intersections [21].
The two independent harmonic functions of the pairs in Table 5.2 depend on the overall
transverse coordinates3. For the pairs in Table 5.3 both harmonic functions must depend
on the relative transverse coordinates.

In the �rst three rows of Table 5.2 we list the intersections of M2- and M5-branes

3Here we will not consider the case where one of the harmonic functions in the intersections depends
on the relative transverse directions. Their intersections are the same as for the case where the two
harmonic functions depend on the overall transverse coordinates.
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[125, 160] and their reductions to ten dimensions:

(0jM2;M2) =
� � � � � � � � � � � �

� � � � � � � � � � � (5.21)

(1jM2;M5) =
� � � � � � � � � � � �

� � � � � � � � � � � (5.22)

(3jM5;M5) =
� � � � � � � � � � � �

� � � � � � � � � � � (5.23)

As an example, we will discuss the (1jM2;M5) con�guration and its di�erent compacti-
�cations to ten dimensions. Reduction over x1 gives (0jF1; D4) in ten dimensions. For
the relative transverse directions the possibilities are: either reduction over x2, giving
(1jF1; S5), or reduction over one of the directions x3; : : : ; x6, giving (1jD2; D4). Finally,
one can impose an isometry in one of the overall transverse directions by restricting the
dependence of the harmonic functions to three coordinates. Reduction over such a
direction gives (1jD2; S5).
The next two rows represent the addition of a wave (2.64) to the D = 11 M -branes.
The z-direction of the wave must be placed in the world volume of the M -brane. The
dependence of the harmonic functions is only on the directions transverse to the M -
brane, so that the wave does not propagate. The metric for these two D = 11 pairs can
be represented by4:

(1jM2;W) =
� � � � � � � � � � � �

� z � � � � � � � � � (5.24)

(1jM5;W) =
� � � � � � � � � � � �

� z � � � � � � � � � (5.25)

The next four rows in Table 5.2 denote the pairs involving oneM -brane and one Kaluza-
Klein monopole (2.65). The metric for these four cases takes on the form

(2jM2;KK) =
� � � � � � � � � � � �

� A1 A2 A3 z � � � � � � (5.26)

(5jM5;KK) =
� � � � � � � � � � � �

� A1 A2 A3 z � � � � � � (5.27)

(0jM2;KK) =
� � � � � � � � � � � �

� A1 A2 A3 z � � � � � � (5.28)

(3jM5;KK) =
� � � � � � � � � � � �

� A1 A2 A3 z � � � � � � (5.29)

As we see, there are two possibilities. The z-direction of the Kaluza-Klein monopole
can be placed either in a direction transverse to ((2jM2;KK) and (5jM5;KK)) or in
the world volume of the M -brane ((0jM2;KK) and (3jM5;KK)). The solutions (5.26)
and (5.27) have also been given in [160, 43]. For these, the reduction to D = 10 is
straightforward. Note that the reduction over an overall transverse direction can be

4Note that we extend the notation (pjp + r; p + s) to include waves and monopoles with the un-
derstanding that the world volume directions of the \W-brane" are given by t; z (see (2.64)), and the
transverse directions of the \KK-brane" are given by the isometry direction z and the coordinates in
which the Kaluza-Klein vector is oriented. These directions (called xm in (2.65)) will be denoted by
Am.
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either over a direction indicated by z, or, by imposing an additional isometry, in the
direction of a component of the vector �eld.

In the solutions (5.28) and (5.29) the harmonic functions depend only on the two overall
transverse coordinates, so that the Kaluza-Klein monopole has one additional isometry
direction (indicated by A1). In both of these solutions the reduction over the rela-
tive transverse A1 and z directions yields, after a coordinate transformation, the same
result5.

The last three rows of Table 5.2 correspond to intersections of Kaluza-Klein monopoles
and waves. The possibilities are shown in (5.30-5.32)6. Note that there are two ways
to intersect two Kaluza-Klein monopoles, both with a �ve-dimensional common world
volume. In solution (5.31) the two harmonic functions depend on a single coordinate
(x1), in (5.32) on two coordinates (x1; x2).

(1jW ;KK) =
� � � � � � z1 � � � � �

� A1 A2 A3 z2 � � � � � � (5.30)

(4jKK;KK)a =
� � A1 A2 A3 z � � � � � �

� B1 � � z B5 B6 � � � � (5.31)

(4jKK;KK)b =
� � A1 A2 A3 z1 � � � � � �

� B1 B2 � � B5 z2 � � � � (5.32)

The solution (5.31) solves the equations of motion, since it is the known ten-dimensional
solution (4jD6; D6) lifted up to D = 11. The con�guration (5.32) must be a solution
because, after reduction over a common world volume direction, it can be related to a
known solution involving two solitonic �ve-branes via the following T -duality chain in
D = 10:

(3jS5; S5)! (3jS5;KK)! (3jKK;KK)b : (5.33)

Similarly, the intersection of a wave and a Kaluza-Klein monopole can be obtained from
ten dimensions by �rst constructing an intersection in D = 10 of a D1-brane with the
solitonic �ve-brane and performing a T -duality in the direction of the string:

(0jD1; S5)! (0jD0;KK) ; (5.34)

and by lifting this to eleven dimensions.

In Table 5.3 we consider intersections in which the two harmonic functions depend on the
relative coordinates. There is one pair involving only M5 [70], and �ve pairs involving
Kaluza-Klein monopoles. Some of these con�gurations and their generalization to non-
orthogonal intersections were discussed in [69].

Below we present the metric of these pairs in the usual, short-hand way. The pairs
involving Kaluza-Klein monopoles are each related to known solutions through D = 10,
so that we can be sure that they solve the equations of motion. For example, (2jKK;KK)

5For a more detailed discussion of the possible dependences of the harmonic function of the monopole
on one or two coordinates only, we refer to [21]. In general one can say that upon reduction of the
monopole solution KKD over any transverse direction z or xm one always �nds a magnetic (D � 5)-
brane.

6Solution (5.30) was presented in [160].
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common wv. relative trv. overall trv.

(1jM5;M5) (0jD4; D4) (1jD4; S5) (1jS5; S5)
(0jM2;KK) � (0jD2;KK) (0jD2; D6)

(0jF1; D6)�
(1jM5;KK) (0jD4;KK) (1jS5;KK) �

(1jD4; D6)
(3jM5;KK) (2jD4;KK) (3jS5;KK) (3jS5; D6)

(3jD4; D6)�
(2jKK;KK) (1jKK;KK) (2jD6;KK) �
(4jKK;KK) (4jKK;KK) (4jD6;KK) (4jD6; D6)�

(4jD6;KK)�

Table 5.3: Pair intersections in D = 11 and their reductions to D = 10 with dependence
on relative transverse coordinates. The reductions indicated by a � are not expressed in
a standard way in terms of harmonic functions.

can be reduced to (1jKK;KK) in ten dimensions and applying T -duality twice, in the
directions z1 and z2, we �nd

(1jKK;KK)! (1jS5;KK)! (1jS5; S5) ; (5.35)

and this can be lifted up to (1jM5;M5), which is a known solution. The intersections
of Table 5.3 are of the form:

(1jM5;M5) =
� � � � � � � � � � � �

� � � � � � � � � � � (5.36)

(0jM2;KK) =
� � � � � � � � � � � �

� A1 A2 A3 z � � � � � � (5.37)

(1jM5;KK) =
� � � � � � � � � � � �

� A1 A2 A3 z � � � � � � (5.38)

(3jM5;KK) =
� � � � � � � � � � � �

� A1 A2 A3 z � � � � � � (5.39)

(2jKK;KK) =
� � A1 A2 A3 z1 � � � � � �

� � � � � z2 B6 B7 B8 � � (5.40)

(4jKK;KK) =
� � A1 A2 A3 z1 � � � � � �

� � � B3 B4 B5 z2 � � � � (5.41)

Let us �nally make a remark about the ten-dimensional intersections that are not char-
acterized by the usual harmonic functions. They come from regular eleven-dimensional
intersections, but fall out of the usual Ansatz by the way we have reduced to D = 10.
They are indicated in Table 5.2 and Table 5.3 by a �.

As an example, consider the reduction of (5.31). The harmonic functions depend on
x1, the gauge �eld components can be chosen to be all zero except A2 and B5, which
then depend on x3 and x6, respectively. It is not di�cult to see that this satis�es the
condition (2.66) on the o�-diagonal components of the metric.

91



Reduction over z gives (4jD6; D6), but also reduction over x2 is possible. This gives
a D = 10 con�guration which has the properties of (4jD6;KK), but the �elds do not
have the standard harmonic form. It is given by [21]:

ds2 = '�1=2(dt2 � dx2(7�10) �H2dx
2
(5�6))

�H�1
2 '1=2

�
(dz +B5dx5)

2 + (H2
1H2 +A2

2)(dx
2
3 +H2dx

2
1)
�
; (5.42)

e2� = '�3=2 ;

Cz =
'A2

H1H2
; C5 =

'A2B5

H1H2
;

where
' = H1H2=(A

2
2 +H2

1H2) : (5.43)

The nonzero components of the R-R-vector �eld in D = 10 are denoted by C�. Note
that ' is indeed not harmonic in x1; x3. If H2 = 1 and B5 = 0, ' does become
harmonic, and we obtain a standard D6 solution, after the coordinate transformation

d(u+ iv) = (H + iA2) d(x1 + ix3): (5.44)

Conversely, for H1 = 1; A2 = 0 a standard Kaluza-Klein monopole is obtained in
D = 10.

5.2 Multiple Intersections of Extended Objects

In this section we will generalize the results we found in the previous sections to in-
tersections consisting of more then two extended objects. The conditions for pair in-
tersections will form the basis to construct the multiple intersections. We will follow
the same strategy as before, namely �rst we will construct the multiple D-brane and
multiple M -brane intersections, and then see where we can add other objects.

For simplicity we will limit ourselves from now on to intersections of the �rst type,
namely intersections that have n = 4 relative transverse dimensions and where the har-
monic functions depend on the overall transverse directions. For multiple intersections
of the other types we refer to [20, 69].

5.2.1 Multiple D-brane Intersections

The construction of multiple D-brane intersections is completely determined by the
harmonic function rule and the conditions for pair intersections of D-branes. Since our
Ansatz describes threshold BPS bound states, which do not exert forces on each other,
one can always remove all but two D-branes in the multiple intersection to in�nity,
without cost of energy. The remaining pair intersection should of course satisfy the
conditions found in the previous section.

One can therefore follow an iterative procedure by adding to a given con�guration an
extra brane, such that is has n = 4 relative transverse directions with all other branes.
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In the language of (5.6), this means that we add an extra row with �'s and �'s, such
that the new row has four di�erent entries of � and � with every other row.

To streamline the construction, it is useful to characterize an intersection by the contents
of the columns (components of the metric) corresponding to the relative transverse
coordinates. These columns will be the building blocks of the intersections. For an
N -brane intersection, a certain column will consist of k �'s and (N � k) �'s. Since
T -duality replaces in a column all �'s for �, it is not di�cult to construct a T -duality
invariant quantity: we de�ne nk as the number of columns with k �'s or k �, where
k � [N=2]. The square brackets indicate the integer part of N=2.

In an N -brane intersection (N � 2) there are 1
2N(N � 1) pairs of intersecting branes.

The total number of di�erences between� and� in theN -brane intersection is therefore
four times the number of pairs, or 2N(N � 1). On the other hand, a column with k �'s
contributes k(N � k) di�erences. Then we must have

[N=2]X
k=1

k(N � k)nk = 2N(N � 1) ; (5.45)

with
P

k nk < 9. Given N , this is an equation for the nk.

Let us give a few examples. For N = 2 there is only one type of building block, namely
k = 1. Equation (5.45) for this case reduces to the equation n1 = 4, which is the
condition for a stable threshold BPS bound state found in the previous section. For
N = 3 there is again only one type of building block (k = 1) and we �nd n1 = 6. For
N = 4, there are two types of building blocks, with k = 1 and with k = 2. Thus (5.45)
reduces to 3n1 + 4n2 = 24 which has 3 solutions namely (n1; n2) = (8; 0); (4; 3) and
(0; 6). For N = 5 there are again two types of building blocks with k = 1; 2 and we �nd
4n1 + 6n2 = 40 leading to 2 solutions given by (n1; n2) = (4; 4) and (1; 6).

Clearly, (5.45) is only a necessary condition for the existence of a solution. Given a set of
nk allowed by (5.45), it is not clear that one can actually realize such a solution in terms
of the available building blocks and consistent with condition for pair intersections. This
is because (5.45) is just an expression for the total number of di�erences in � and �,
but does not contain information about how the con�gurations should be realized in
terms of the no-force condition. Indeed it turns out that there exist solutions of (5.45)
that do not correspond to intersecting con�gurations. However, (5.45) remains useful
as a tool in the classi�cation of multiple D-brane intersections.

Note that the numbers (n1; n2; :::n[N=2]) form a good label for the classi�cation: by
construction the nk's are invariant under T -duality and the set (n1; n2; :::n[N=2]) labels
a uniqueD-brane con�guration,7 up to T -duality and interchanges of rows and columns.
The latter are in fact nothing else then a relabeling of the space-time coordinates and
the harmonic functions.

The construction of multiple intersections of D-branes is now straightforward: start
adding branes in all possible ways to a known intersection, such that the harmonic

7Although this has not been proved rigorously, the uniqueness can be seen in a case by case analysis.
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N=8 (0,4,0,4) 1/32 (1,0,7,0) 1/32 (0,0,0,7) 1/16

(1,3,4) 1/32 (0,0,7) 1/16

(2,4,2) 1/32 (0,3,4) 1/16

(4,4) 1/32 (1,6) 1/16

(0,6) 1/8(8,0) 1/16 (4,3) 1/16

(0) 1/2

N=2

N=3

N=4

N=5

N=7

N=6

N=1

(6)

(4) 1/4

1/8

Figure 5.1: D-brane intersections with n = 4 in 10 dimensions: the numbers (n1; n2; : : :)
label the number of times a building block with (1; 2; : : :) world volume directions is used.
The subscript in the Figure indicates the amount of supersymmetry preserved in each
solution. The number N indicates the number of independent harmonics. The lines
between solutions indicate how one con�guration follows from another by adding (or
truncating) a harmonic function. The con�guration (0,0,0,7) cannot be extended to 11
dimensions in terms of M2- and M5-branes only.

function rule and equation (5.45) are satis�ed. The label (n1; n2; :::n[N=2]) will tell to
which T -duality class the new intersection belongs.

We can repeat this analysis till N = 8, for which we �nd three di�erent (T -inequivalent)
con�gurations. At this point the procedure stops. Although (5.45) has solutions for
N = 9, it turns out to be impossible to add a ninth brane such that it has n = 4 relative
transverse directions with the eight other branes. An overview of the di�erent intersec-
tion classes and their relations is given in Figure 5.1, the three N = 8 con�gurations
are given by (all other con�gurations with N < 8 can be obtained via truncation of
harmonic function in the above con�gurations) [20]:
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(0; 4; 0; 4) :

8>>>>>>>>><
>>>>>>>>>:

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(5.46)

(1; 0; 7; 0) :

8>>>>>>>>><
>>>>>>>>>:

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(5.47)

(0; 0; 0; 7) :

8>>>>>>>>><
>>>>>>>>>:

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(5.48)

At this stage one should still check whether the above con�gurations satisfy the Einstein
equation and the dilaton equations of motion. This can be done for the three N = 8
con�gurations, using the computer. This implies that the intersections with N � 5 are
also solutions. For lower N the number of overall transverse coordinates increases, so
that the harmonic functions can depend on more coordinates. One can check that the
equations of motion indeed allow this.

Let us now consider the supersymmetry of the solutions. Just as for the pair intersec-
tions, the solution is supersymmetric if �� = � � = 0 (5.15). Each brane contributes a
projection operator (5.16) on �, and each time we add a new projection operator, half
of the remaining supersymmetry gets broken. However, sometimes it is possible to add
a D-brane in such a way that its projection operator is not independent, but given by a
product of previous operators [76, 106, 70]. In that case no additional supersymmetry
generator is broken. In Figure 5.1 we see this happen for example in the N = 4 inter-
section. For N = 3 we have one 0-brane and two 4-branes which preserve 1=8th of the
supersymmetry because of the three independent projection conditions

(1 + 0)� = 0 ;

(1 + 01234)� = 0 ; (5.49)

(1 + 01256)� = 0 :

From Figure 5.1 we see that there are three di�erent ways to add a fourth brane. Two
of them break an extra half of the remaining supersymmetry (con�gurations (8,0) and
(4,3)), since in these cases the new brane introduces an independent projection operator.
The third way (corresponding to con�guration (0,6)) is by adding a 4-brane oriented in
such a way that its projection operator

(1 + 03456)� = 0 (5.50)
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is exactly the product of the previous three operators (5.49). In this way no extra
conditions on the Killing spinor arise and no more supersymmetry gets broken.

The construction of projection operators for supersymmetry is another way of build-
ing up Figure 5.1. Apparently supersymmetry and the equations of motion go hand
in hand: supersymmetry protects the stability of a con�guration and vice versa, all
stable solutions are supersymmetric. For a more systematic approach on how super-
symmetry can be used to obtain intersections, we refer to [54]. The amount of unbroken
supersymmetry of each con�guration can be found in Figure 5.1.

By using T -duality one can express all intersections in terms of D2- and D4-branes,
except the N = 8 (0; 0; 0; 7) solution. Writing an intersection in terms of D2- and
D4-branes has the advantage that an uplifting to eleven dimensions is straightforward
in terms of M2- and M5-branes. As we will see in the next subsection, the uplifting
of the N = 8 (0; 0; 0; 7) solution is a little more involved, since it requires the presence
of a eleven-dimensional gravitational wave. This solution is indicated by a grey box in
Figure 5.1.

5.2.2 Multiple Intersections in Eleven Dimensions

Intersections consisting of D2- and D4-branes can be rewritten straightforwardly in
eleven dimensions in terms of M2- and M5-branes. However, as we have seen in the
previous subsection, not all intersection classes can be written in as a purely D2-D4
intersection. From the point of view of the relation between D = 11 supergravity and
Type IIA theory, we would like to have to have an eleven dimensional interpretation
for these solutions as well.

In general, if there is really a one to one map between eleven-dimensional supergravity
and Type IIA theory, then we expect all intersections that involveD0- and D6-branes to
be directly related to an eleven-dimensional solution, and not indirectly via a T -duality
transformation to a D2-D4 intersection.

In this subsection we will give a classi�cation of the eleven-dimensional intersections
that reduce to intersections of D-branes in ten dimensions with the harmonic functions
depending on the overall transverse directions.. We �rst give a classi�cation of M2-
M5 intersections and relate them to the D2-D4 intersection of the previous subsection.
Then we will see how we can add wave and monopole solutions, in order to give a
D = 11 interpretation for the other D-brane intersections.

The M -brane pair intersections that satisfy the eleven-dimensional equivalent of the
n = 4 condition, are the ones we found in (5.21-5.23): (0jM2;M2); (1jM2;M5) and
(3jM5;M5). Next, we add further M2-branes and/or M5-branes, always satisfying
this intersection condition for each pair. Like in D = 10, we �nd that this procedure
stops atN = 8. We will not present the details of our constructive procedure but instead
present the results below. In this way we recover the M2-M5 intersections which are
the direct uplifting of the D-brane intersections found in the previous subsection, but
also some extra one, which cannot be reduced to pure D-brane intersections in ten
dimensions. One can go from M -branes in D = 11 to D-branes in D = 10 only if there
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is one speci�c direction, such that all M2-branes are reduced to D2-branes, and all
M5-branes to D4-branes. This will not be true in general: some con�gurations (which
have N � 4) in D = 11 will only reduce to D = 10 intersections that involve NS-
NS branes. Although these intersections do not have direct relevance for our original
motivation (construct the eleven-dimensional version of the D-brane intersections), we
will list them here anyway for the sake of completeness. In this way we can give a
complete classi�cation of intersecting M -branes with overall transverse dependence of
the harmonic functions.

To characterize the con�gurations, we use again the contents of the columns in the
representation of the metric. For an N -intersection each column can have 1; : : : ; N
�'s, indicating world volume directions. The numbers of columns with k world volume
directions label the solutions, in the notation fn1; : : : ; nNg (using curly brackets). It
is convenient to classify, in a �rst stage, the eleven-dimensional intersections up to T -
duality. T -duality works as follows in D = 11 [26]: two D = 11 solutions are called
T -dual if, upon reduction to D = 10 dimensions they lead to T -dual D-brane con�gura-
tions. These T -dual D = 11 solutions can be represented by the labels (n1; : : : ; n[N=2])
(using round brackets) which were used in the previous section to label T -dual D-brane
con�gurations. Of course, this notation can only be used for D = 11 intersections that
can be reduced to D-branes only. For the other classes we will stick to the curly bracket
notation.

The results we �nd in D = 11 can be represented in three di�erent ways [20]. First of all,
in Figure 5.2 we present the solutions up to T -duality in D = 11. For those M -brane
intersections that reduce to one of the D-brane intersections given in Figure 5.1, we
use the same notation (n1; � � � ; n[N=2]) as in the previous Section. The gray rectangles
indicate the solutions which necessarily contain NS-NS-branes in D = 10, and for those
the D = 11 notation fn1; � � � ; nNg is used. Secondly, in Table 5.4 more details are given
about the contents of Figure 5.2 by showing all D = 11 solutions that correspond to the
same D = 10 D-brane intersection. Finally, we give the N = 8 intersections explicitly:

f0; 4; 0; 5; 0; 0; 0; 0g1=32 :

8>>>>>>>>><
>>>>>>>>>:

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

(5.51)

f1; 0; 6; 1; 1; 0; 0; 0g1=32 :

8>>>>>>>>><
>>>>>>>>>:

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

(5.52)
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N=8 (0,4,0,4) 1/32 (1,0,7,0) 1/32

(1,3,4) 1/32 (0,0,7) 1/16

(2,4,2) 1/32 (0,3,4) 1/16

(4,4) 1/32 (1,6) 1/16

(0,6) 1/8(8,0) 1/16 (4,3) 1/16

(0) 1/2

N=2

N=3

N=4

N=5

N=7

N=6

N=1

(6)

(4) 1/4

1/8

{1,0,0,7,0,0,1} 1/32

{1,0,4,3,0,0,1} 1/32

{1,2,4,1,0,1} 1/32

{2,3,3,0,1} 1/32

{1,6,0,1} 1/16

Figure 5.2: M-brane intersections with n = 4; 5 in 11 dimensions: the numbers
(n1; � � � ; n[N=2]) are the same labels used in D = 10, and indicate to which D-brane
intersection the D = 11 solution reduces. The con�gurations in gray rectangles only
reduce to D = 10 intersections involving NS-NS branes. For these con�gurations we
use the eleven-dimensional notation fn1; � � � ; nNg explained in the text. The subscripts
indicate the amount of residual supersymmetry.

f1; 0; 0; 7; 0; 0; 0; 1g1=32 :

8>>>>>>>>><
>>>>>>>>>:

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

(5.53)

Again the explicit form of all other intersections with N < 8 can be obtained via
truncation of these con�gurations. It can be checked that these intersections indeed
solve the equations of motion.

As in D = 10, the complete structure of the D = 11 intersections can be recovered
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N=8 (0,4,0,4) (1,0,7,0) f1,0,0,7,0,0,0,1g
[24,54]f0,4,0,5,0,0,0,0g [24,54]f1,0,6,1,1,0,0,0g [21,57]f1,0,0,7,0,0,0,1g

N=7 (1,3,4) (0,0,7) f1,0,4,3,0,0,1g
[57]f1,0,4,0,3,0,1g [57]f0,0,7,0,0,0,2g [21,56]f1,0,4,3,0,0,1g
[57] f0,3,0,4,0,1,1g [57]f0,0,0,7,0,0,1g
[23,54]f1,2,4,1,1,0,0g [23,54]f0,0,6,2,0,0,0g
[23,54]f1,3,1,4,0,0,0g
[24,53]f1,3,4,1,0,0,0g

N=6 (2,4,2) (0,3,4) f1,2,4,1,0,1g
[56]f1,2,2,2,1,1g [56]f0,0,4,3,0,1g [21,55]f1,2,4,1,0,1g
[22,54]f1,4,2,1,1,0g [56]f0,3,4,0,0,2g
[22,54]f2,2,2,3,0,0g [22,54]f0,2,4,2,0,0g
[23,53]f2,3,3,1,0,0g [23,53]f0,3,5,0,0,0g
[24,52]f2,5,2,0,0,0g

N=5 (4,4) (1,6) f2,3,3,0,1g
[55]f2,2,2,2,1g [55]f1,4,2,0,2g [21,54]f2,3,3,0,1g
[21,54]f3,1,3,2,0g [55]f0,2,4,1,1g
[22,53]f3,3,2,1,0g [21,54]f0,4,2,2,0g
[23,52]f4,3,2,0,0g [21,54]f1,6,0,1,1g
[24,51]f5,4,0,0,0g [22,53]f1,3,4,0,0g

[23,52]f1,6,1,0,0g
N=4 (8,0) (4,3) (0,6) f1,6,0,1g

[22,52]f6,1,2,0g [54]f3,3,1,2g [22,52]f0,7,0,0g [21,53]f1,6,0,1g
[24]f8,0,0,0g [54]f1,3,3,1g [54]f0,6,0,2g
[54]f4,0,4,1g [21,53]f4,3,1,1g

[21,53]f2,3,3,0g
[22,52]f3,4,1,0g
[23,51]f5,3,0,0g

N=3 (6)
[53]f6,0,3g [53]f3,3,2g [21,52]f2,5,0g
[53]f0,6,1g [21,52]f5,2,1g [22,51]f5,2,0g

[23]f6,0,0g
N=2 (4)

[52]f4,3g [21,51]f5,1g [22]f4,0g

Table 5.4: Table of M-brane intersections in D=11: the number N indicates the number
of independent harmonics. The boldface labels (n1; : : : ; n[N=2]) correspond to the D = 10
D-brane intersection to which the D = 11 solutions reduce (when applicable). The
numbers between square brackets indicate the number of M2-branes and M5-branes
involved in the intersection. The labels fn1; : : : ; nNg specify the structure of the D = 11
metric as explained in the text.
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by the requirement of partially unbroken supersymmetry [54]. Since the procedure is
identical to the one used in D = 10 we will not give the details. The amount of unbroken
supersymmetry for the di�erent solutions is indicated in Figure 5.2.

Having determined the \no-force" condition between the basic eleven-dimensional so-
lutions in Subsection 5.1.2, we next consider multiple intersections that also involve
gravitational waves and Kaluza-Klein monopoles. We will again restrict ourselves to the
con�gurations that can be reduced to intersections with onlyD-branes inD = 10. Look-
ing back at Table 5.2, we see that all pairs involving monopoles should then be of the
form (2jM2;KK), (3jM5;KK) or (4jKK;KK)a, and that with a wave only (1jM5;W)
may be used.

Our strategy will be to take Table 5.4 as our starting point and then to consider to which
M -brane intersections waves and/or monopoles can be added. The rule for adding a
wave is known [160, 134]: to each intersection involving at least a common string a
wave can be added in such a way that the z-isometry direction of the wave lies in the
space-like common string direction. Furthermore, at most one wave can be added to
any given intersection.

From the intersection (5.26) we see that the world volume of the M2-brane must lie in
the world volume directions of the monopole. Two intersectingM2-branes have distinct
(space-like) world volume directions and since the monopole has six (space-like) world
volume directions we conclude that monopoles may be added to con�gurations that
contain at most three M2-branes [43]:

8><
>:

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � z A8 A9 A10

(5.54)

We next consider the M5-branes. Using only the pair (3jM5;KK) we see that the z-
isometry direction of the monopole should lie in a common world volume direction of the
M5-branes. One �nds that to a single monopole one can add at most four M5-branes.
An example of such a con�guration is:

8>>><
>>>:

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � A7 A8 z A10

(5.55)

The harmonic functions depend only on the coordinate x10. However, one may add
more than one monopole to the four �ve-branes. From (5.55) it is clear that the
monopole could also have been placed with two components of the vector �eld in
the (x1; x2); (x3; x4) or (x5; x6) directions. In fact, in this way one can combine four
monopoles with the four M5-branes:

8>>>>>>>>><
>>>>>>>>>:

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � A7 A8 z A10

� � � � � B5 B6 � � z B10

� � � C3 C4 � � � � z C10

� D1 D2 � � � � � � z D10

(5.56)
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N=8 (0,4,0,4)SUSY=1=32 (1,0,7,0)SUSY=1=32 (0,0,0,7)SUSY=1=16
[24; 54]f0,4,0,5,0,0,0g [24; 54]f1,0,6,1,1,0,0,0g [23; 54]f0,0,6,2,0,0,0g+KK
[23; 54]f1,2,4,1,1,0,0g+KK [23; 54]f1,3,1,4,0,0,0g+ KK [21; 54]f1,6,0,1,1g+3KK
[22; 54]f2,2,2,3,0,0g+2KK [22; 54]f1,4,2,1,1,0,0g+2KK [57]f0,0,0,7,0,0,1g+W
[21; 54]f0,4,2,2,0g+3KK [22; 54]f0,2,4,2,0,0g+2KK
[54]f4,0,4,1g+4KK [21; 54]f3,1,3,2,0g+3KK
[57]f0,3,0,4,0,1,1g+ W [54]f0,6,0,2g+4KK

[57]f0,0,7,0,0,0,2g+ W
[57]f1,0,4,0,3,0,1g+ W

Table 5.5: N=8 intersections that reduce to pure D-brane intersections: The boldface
numbers indicate the ten dimensional T-duality class. The notation [2k; 5l] + nKK
indicates that the intersections contain k M2-branes, l M5-branes and n monopoles.
An additional wave is indicated by +W.

One may verify that this intersection is consistent with the M5�KK intersection rule
(5.29) and the KK �KK rule (5.31).

Having established the rule of how to add waves and monopoles to an intersection of
M2-branes and M5-branes or a mixture thereof, we are able to list all intersections
involving M2-branes, M5-branes, waves and monopoles. It is enough to give only the
intersection with the largest number of independent harmonics. All other intersections
can be obtained from these by setting one or more of the harmonic functions equal to
one.

The result is given in Table 5.5 [21]. The maximum number of intersecting objects
N equals eight if we restrict ourselves to con�gurations which can be reduced to pure
D-brane intersections in D = 10. This is not surprising, since the maximum number
of intersecting D-branes is also N = 8. To label the di�erent con�gurations we use
the M -brane notation for the intersecting brane part and indicate with +nKK and
+W the waves and monopoles added to the solution. Furthermore we have divided
the di�erent solutions in classes, corresponding to the T -duality classes of the D-branes
in six dimensions. In Table 5.5 we have also indicated the unbroken supersymmetry
which directly follows from the unbroken supersymmetry of the corresponding D-brane
intersection. Note the the solution [57]f0,0,7,0,0,0,2g+ W correspond to the uplifting
of the N = 8 D-brane intersection (5.48), the one that could not be described in eleven
dimensions by M2 and M5-branes only.

It is instructive to consider also the pair (1jM2;W). The reduction to D = 10 will
then necessarily include also NS-NS branes and will therefore go beyond our original
motivation to �nd the intersections that reduce to strictlyD-branes. However, this extra
pair will allow us the complete the classes that are indicated by the grey colour in table
5.2 in terms of waves and monopoles. It turns out that there are three such maximum
intersections. All other intersections follow by truncation of these ones. We �nd one
intersection with N = 8 and two intersections with N = 9 independent harmonics:

N = 8 : [21; 56]f1 ; 0 ; 4 ; 3 ; 0 ; 0 ; 1g +W ;

N = 9 : [21; 57]f1 ; 0 ; 0 ; 7 ; 0 ; 0 ; 0 ; 1g +W ; (5.57)

[21; 54]f1 ; 6 ; 0 ; 1 ; 1g + 3KK+W :
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All three solutions have 1/32 unbroken supersymmetry. Interestingly enough we �nd
intersections with nine independent harmonics. The two intersections with N = 9 are
extensions of N = 8 intersections with 1/16 supersymmetry in Table 5.5.

The remaining intersection of the class with 1/16 supersymmetry in Table 5.5, [23; 54]+
KK, can also be extended to N = 9, 1/32 supersymmetric solutions but this necessarily
requires the use of a pair from Table 5.3. For example, an additional �ve-brane can be
added, giving 1/32 supersymmetry.

5.3 Dimensional Reductions of Intersections

A natural application of our results is the reduction of the M -brane and D-brane in-
tersections we found in the previous two sections to p-branes in lower dimensions. This
will lead to dilatonic p-brane solutions which can be understood as D- and/orM -brane
bound states in D = 10; 11. The interpretation of lower-dimensional solutions in terms
of bound states of D- and/orM -branes in D = 10; 11 is a useful tool for understanding
the properties of these lower dimensional solutions, especially in the case of (extremal)
black holes where it has opened up the possibility for a microscopic explanation of the
Bekenstein-Hawking entropy in terms of p-branes and p-brane bound states [154].

The (Einstein frame) form of our reduced action (upon truncating the scalars coming
from the reduction and identifying many of the gauge �elds) for D > 2 will always be
in the class of Lagrangians of the form 8

LD =
p
jgEj

h
RE +

1
2 (@�)

2 +
(�)p+1
2(p+ 2)!

ea�F 2
(p+2)

i
: (5.58)

With the Ansatz

ds2
E;D = H�ds2p+1 �H�ds2d�p�1;

e2� = H ; (5.59)

F0::pi = � @iH
�1;

one �nds the general p-brane solution (D > 2) [112]:

� = �4(D � p� 3)

�(D � 2)
; � =

4(p+ 1)

�(D � 2)
; (5.60)

 =
4a

�
; �2 =

4

�
;

with

� = a2 + 2
(p+ 1)(D � p� 3)

D � 2
: (5.61)

8For D = 2 there does not exist a transformation to go from the string frame to the Einstein frame.
Therefore the calculations should be done in the string frame. For the details and the precise form of
the solutions, we refer to [20].
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The lower dimensional p-brane solutions which follow from the reducedD-brane andM -
brane intersections (now containing only one independent harmonic function) must fall
inside this class of solutions. A property of supersymmetric solutions is that [112, 111]:

� = 4=N ; (5.62)

where N is an integer labeling the number of participating �eld strengths, or equiva-
lently, the number of intersecting branes.

Any toroidal Kaluza-Klein reduction of the D = 10; 11 intersections will be a super-
symmetry preserving p-brane solution in a lower dimension. Because the number of
participating �eld strengths is equal to the number of intersecting branes we can im-
mediately read o� the dilatonic p-brane solution from (5.60) and (5.61).

For example, combining (5.62) and (5.61), we �nd that for the D = 4 black hole (p = 0)
the possible dilaton couplings are [124, 106]

a =
p
4=N � 1: (5.63)

We �nd four types of D = 4 (extremal) dilaton black holes preserving half of the
supersymmetry with di�erent values for a. These can therefore be interpreted as bound
states of D-branes (M -branes) compacti�ed on a six-torus (seven-torus) [124, 160, 106,
70, 9, 13]:

1. a =
p
3 : compacti�cation of a single D-brane

2. a = 1 : compacti�cation of two intersecting D-branes

3. a = 1=
p
3 : compacti�cation of three intersecting D-branes

4. a = 0 : compacti�cation of four intersecting D-branes

More precisely this corresponds to the compacti�cation of the N = 4 (0,6) class of
solutions (see Figure 5.1), upon identifying the di�erent harmonic functions, and its
truncations to intersections with lower N .

As another illustration, consider the N = 8 D-brane intersections (see Figure 5.1). We
see that one of them, labeled by (0,0,0,7), can be naturally reduced to 0-branes in D = 3
by reducing over all relative transverse directions. Every truncation of this solution can
of course also be reduced to 0-branes, giving rise to 8 di�erent supersymmetry preserving
solutions in D = 3. Doing the explicit Kaluza-Klein reduction we �nd that the di�erent
values of a representing the di�erent solutions (the explicit solution can be determined
using (5.60)) are given by

a =
p
4=N; (5.64)

which is just (5.61) with p = 0, D = 3 and N running from 1 to 8. So we �nd eight
supersymmetry preserving 0-branes in D = 3 (in contrast to the four 0-branes in D = 4)
with the dilaton coupling given by (5.64) [113].

To see how many a-values correspond to a particular p-brane solution in D dimensions,
one has to �nd the highest N intersection in the D- or M -brane intersections that
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p = 0 p = 1 p = 2 p = 3 p = 4

D = 6 2 2 2 2 2
D = 5 3 3 4 3 {
D = 4 4 7 7 { {
D = 3 8 8 { { {
D = 2 9 { { { {

Table 5.6: Bound state interpretation of dilatonic p-branes in D � 6 dimensions: the
numbers in the table give the number of dilatonic p-brane solutions in D dimensions
with di�erent values for the dilaton coupling, coming from di�erent intersections in
higher dimensions.

can be reduced to a single p-brane in a lower dimension. The p-brane solutions in the
lower dimension are given by (5.60) and (5.61) with � = 4=N . Note that N is the
only parameter, and that therefore di�erent con�gurations of intersecting D- or M -
branes with the same N , will all reduce to the same p-brane in lower dimensions upon
identi�cation of the harmonic functions (even if the D = 10; 11 intersecting solutions
preserve di�erent amounts of supersymmetry).

All p-brane solutions in lower dimensions preserve half of the maximal (lower-dimen-
sional) supersymmetry in contrast to the intersecting D- or M -intersections in D =
10; 11. This gain in supersymmetry is a result of the identi�cation of the di�erent
harmonics (equal charges). For an overview of the number of dilatonic p-brane solutions
in lower dimensions (D � 6) with an interpretation as bound states of Table 5.5 or their
truncations, we refer to Table 5.6. Many of the solutions that arise in the reduction
and are listed in Table 5.6 were given in [112, 111, 113, 124, 160, 106, 24, 108, 21].
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Chapter 6

World Volume Actions

In this chapter we will study the world volume theory, and more in particular the world
volume actions of the extended objects we encountered in the previous chapters. These
e�ective actions describe the dynamics of the objects and their energy-momentum tensor
occurs as a source term in the equations of motion of the solutions. Since there exist
all kinds of duality relations between the di�erent solutions, the same relations should
connect the various world volume actions to each other.
The aim of this chapter is to see how some of these dualities are realized. In Section
6.1, we derive via dimensional reduction the form of the world volume actions of the
fundamental string, the D2-brane, the solitonic �ve-brane and the D4-brane from the
world volume actions of the M2 and M5-brane. In Section 6.2 we investigate the T -
duality map between the world volume actions of the ten-dimensional gravitational wave
and the fundamental string and in Section 6.3 we use the T -duality between the solitonic
�ve-brane and the Kaluza-Klein monopole to construct the world volume action of the
monopole.

Part of the work presented here can also be found in [94].

6.1 Type IIA Branes from D = 11

In section 3.2 we have seen that there exists a direct relation between D = 11 supergrav-
ity (2.37) and Type IIA theory (2.33): the latter can be obtained from the former via
a dimensional reduction over a circle S1. The di�erent extended objects that appear as
solutions of the Type IIA theory can be interpreted as direct and double dimensionally
reduced objects from eleven-dimensional supergravity [156], as shown in Figure 3.1.

This implies of course also that the world volume actions of the Type IIA extended
objects, presented in Section 2.3, should be related to the world volume actions of the
D = 11 supergravity solutions. In this section, we will show that the world volume
actions for the fundamental string (2.46) and for the D2-brane (2.60) can be obtained
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from the M2-action and the S5 and D4-action from the action of the M5.

We will not discuss in this section the world volume actions of the gravitational wave
or the Kaluza-Klein monopole and the ten-dimensional objects they reduce to. The
ten-dimensional gravitational wave and monopole will be discussed in Section 6.2 and
Section 6.3 respectively, where they are constructed making use of the T -duality rela-
tions with the fundamental string and the solitonic �ve-brane.

6.1.1 The Membrane Action

Let us consider the bosonic part of the M2-brane action of eleven-dimensional super-
gravity, given by [30]:

SM2 = � 1
2

Z
d3�

q
j det(@{̂X̂ �̂@|̂X̂ �̂ ĝ�̂�̂)j

+ 1
6

Z
d3� "{̂|̂k̂@{̂X̂

�̂@|̂X̂
�̂@k̂X̂

�̂Ĉ�̂�̂�̂ : (6.1)

The X̂ �̂ (�̂ = 0; 1; :::; 10) are the target space embedding coordinates and the �{̂

(̂{ = 0; 1; 2) the world volume coordinates on the brane. The D = 11 supergravity
background �elds induce a metric and a three-form gauge �eld on the world volume:

ĝ{̂|̂ = @{̂X̂
�̂@|̂X̂

�̂ ĝ�̂�̂ ;

Ĉ{̂|̂k̂ = @{̂X̂
�̂@|̂X̂

�̂@k̂X̂
�̂Ĉ�̂�̂�̂ : (6.2)

The world sheet action for the fundamental string is obtained via dimensional reduction
of (6.1) over a world volume direction [59]. Therefore we identify one of the embedding
coordinates with a world volume direction

�{̂ = (�i; �); X̂ �̂ = (X�; �); (6.3)

where the world volume indices now run over i = 0; 1 and the target space indices
� = 0; :::9. Using the reduction rules (3.72) between ten and eleven dimensions, the
induced metric and gauge �eld can be expressed in terms of the ten-dimensional �elds
as:

ĝ�� = (�e4�=3) ;
ĝi� = @iX

�(�e4�=3A(1)
� ) ;

ĝij = @iX
�@jX

�(e�2�=3g�� � e4�=3A(1)
� A(1)

� ) ; (6.4)

"{̂|̂k̂ @{̂X̂
�̂@|̂X̂

�̂@k̂X̂
�̂ Ĉ�̂�̂�̂ = 3 "ij @iX

�@jX
� B�� :

Making use of the formula (3.24), it is easy to see that the square root of the determinant
in (6.1) reduces as q

j det ĝ{̂|̂j =
q
j det gij j; (6.5)
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so that the reduced action is the world sheet action for a fundamental string (2.27):

SF1 = � 1
2

Z
d2�

q
j det(@iX�@jX�g��)j+ 1

2

Z
d2� "ij@iX

�@jX
�B�� : (6.6)

The action for the D2-brane can be derived from the action (6.1) via direct reduction
over a direction transverse to the brane [137, 157]. To show this we start from the
Howe-Tucker formulation [55, 89] of the M2 action, which makes use of an auxiliary
world volume metric ̂{̂|̂ and is (classically) equivalent to (6.1) [137]:

SM2 = � 1
2

Z
d3�

p
ĵj
n
̂ {̂|̂@{̂X̂

�̂@|̂X̂
�̂ ĝ�̂�̂ � 1

o
+ 1

6

Z
d3� "{̂|̂k̂@{̂X̂

�̂@|̂X̂
�̂@k̂X̂

�̂Ĉ�̂�̂�̂ : (6.7)

Since we are reducing over a direction orthogonal to the brane, the world volume metric
on the brane does not change: ̂{̂|̂ = {̂|̂. Splitting the embedding coordinates X̂ �̂ in
the ten-dimensional embedding coordinates X� and a world volume scalar S, we �nd
for the reduced action:

S1 = � 1
2

Z
d3�

p
jj
n
e�

2
3� {̂|̂g{̂|̂ � e

4
3� {̂|̂F{̂F|̂ � 1

o
+ 1

6

Z
d3� "{̂|̂k̂

n
3
2C{̂|̂k̂ + 3B{̂|̂Fk̂ � 3B{̂|̂A

(1)

k̂

o
; (6.8)

where B{̂|̂ is the pull-back of B�� and F{̂ is the gauge invariant �eld strength of the
world volume scalar S:

F{̂ = @{̂S + @{̂X
�A(1)

� : (6.9)

In order to relate the action (6.8) to the action of the D2-brane, we have to replace F{̂
by its world volume Poincar�e dual, which is done by considering F{̂ as an independent
�eld and imposing its Bianchi identity via the Lagrange multiplier term

S2 =

Z
d3� "{̂|̂k̂ V{̂

n
@|̂Fk̂ � @|̂A

(1)

k̂

o
: (6.10)

The equation of motion for F{̂

F{̂ = 1p
jj e

�3
4�{̂|̂ "

|̂k̂l̂
�
@k̂Vl̂ � @l̂Vk̂ �Bk̂l̂

�
(6.11)

expresses F{̂ in terms of its Poincar�e dual F{̂|̂
F{̂|̂ = @{̂V|̂ � @|̂V{̂ �B{̂|̂: (6.12)

Substituting (6.9) and (6.11) in the action and rede�ning the world volume metric
{̂|̂ ! e�2�=3{̂|̂, we �nd for the dual action in terms of the world volume vector V{̂:

SD2 = � 1
2

Z
d3� e��

p
jj
n
 {̂|̂g{̂|̂ +

1
2F{̂|̂F {̂|̂ � 1

o
+ 1

4

Z
d3� "{̂|̂k̂

n
C{̂|̂k̂ + 2F{̂|̂Ak̂

o
; (6.13)
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which is the Howe-Tucker form of the world volume action for the D2-brane [157]. The
world volume vector V{̂ is of course the Born-Infeld vector and the factor e�� indicates
the property of D-branes that their mass is proportional to the inverse of the coupling
constant g = e<�>.

6.1.2 The Five-brane Action

The construction of the world volume actions for theM5 and the Type IIA S5 is a more
subtle problem, due to the non-linearity of the kinetic term and the presence of a self-
dual world volume two-form Ŵ+

{̂|̂ [72, 98]. The equations of motion and a fully covariant
action, involving an auxiliary scalar �eld can be found in [87, 126, 10, 1, 88, 11]. In this
section we will restrict ourselves to the non-self-dual action, up to quadratic order in
Ŵ+

{̂|̂ , presented in [23]:

SM5 =

Z
d6�

q
j det ĝ{̂|̂j

�
1 + 1

2Ĥ{̂|̂k̂Ĥ{̂|̂k̂
�

+

Z
d6� "{̂1:::{̂6

�
1
70 Ĉ{̂1:::{̂6 +

3
4@{̂1Ŵ

+
{̂2 {̂3

Ĉ{̂4 {̂5 {̂6

�
: (6.14)

The six-form gauge �eld Ĉ�̂1:::�̂6 is the Poincar�e dual of Ĉ�̂�̂�̂ in the dual D = 11

supergravity 1. The tensor Ĥ{̂|̂k̂ is the �eld strength of the self-dual �eld Ŵ{̂|̂:

Ĥ{̂|̂k̂ = @[̂{Ŵ|̂k̂] � 1
2 Ĉ{̂|̂k̂ : (6.15)

The self-duality condition Ĥ = �Ĥ does not follow from (6.14), but has to be put in by
hand as an extra equation of motion. Note that this procedure is analogous to the one
used to write down an action for the Type IIB supergravity theory in Section 2.2 [17].

Double dimensional reduction, using (3.72), gives for the induced metric the same re-
duction rules as (6.4), only now

p
ĝ{̂|̂ = e��pgij . The components of the gauge �elds

reduce as
Ŵij =Wij ; Ŵi� = Vi; Ĉ�1 :::�5� = 7

6 C�1:::�5 (6.16)

so that in ten dimensions the �eld strength tensors are of the form

Hijk = 3 (@[iWjk] � 1
2Cijk �A

(1)
[i Fjk]);

Fij = @iVj � @jVi �Bij : (6.17)

The action (6.14) reduces then to [23]

S =

Z
d5�

q
j det gij j

n
e�� + 1

2e
�HijkHijk � 3

2e
��FijF ij

o
1The construction of a dual formulation of D = 11 supergravity in terms of a six-form gauge �eld

is a notorious problem: since the action cannot be written in terms of the �eld strength tensors only,
but contains terms in which the gauge �eld Ĉ�̂�̂�̂ occurs explicitly, a dual formulations in terms of

the dual gauge �eld Ĉ�̂1:::�̂6 has not been found yet. One could avoid the problem by considering the

dual theory only on-shell, such that Ĉ�̂�̂�̂ can be eliminated via its equations of motion [2], or try to
formulate the dual theory making use of an auxiliary �eld [29]. For our purposes it is su�cient to know
that the dual �eld exists and a dual formulation can be written down.
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+

Z
d5� "i1:::i5

n
1
10Ci1:::i5 +

3
2 (@i1Wi2i3Bi4i5 � @i1Vi2Ci3i4i5)

o
: (6.18)

The self-duality condition has reduced to a duality relation H = e�� �F between the
world volume one- and two-form, which can be used to consistently eliminate Wij from
the equations of motion of (6.18). It can be shown [23] that the then obtained equations
follow from the action

S =

Z
d5� e��

q
j det gij j

n
1� 3 F2

o
+

Z
d5� "(5)

n
1
10C(5) � 3@V C(3) +

3
4BC(3) � 3

2A
(1)FF

o
; (6.19)

which is precisely the action of the D4-brane [77] up to quadratic order in the kinetic
term.

The action of the solitonic �ve-brane, obtained via direct reduction of the action of
the M5, has the same subtleties as the M5 action since after dimensional reduction
the world volume �eld W{̂|̂ still satis�es the self-duality condition H{̂|̂k̂ = �H{̂|̂k̂. The

reduction of (6.14) is straightforward: the induced metric and the world volume �eld
strength reduce as

ĝ{̂|̂ = e�
2
3�g{̂|̂ � e

4
3�F{̂F|̂ ;

Ĥ{̂|̂k̂ = 3 @[̂{W
+

|̂k̂]
+ 1

2C{̂|̂k̂ + 3 B[̂{|̂@k̂]S = H{̂|̂k̂ ; (6.20)

with F{̂ as in (6.9). The action of the solitonic �ve-brane, to quadratic order, is of the
form [29]:

SS5 =

Z
d6� e�2�

q
j det(g{̂|̂ � e2�F{̂F|̂)j

n
1 + e2� H2

o
+

Z
d6� "(6)

n
1
70C(6) +

1
10C(5)@S + 3

4@W (C(3) +B@S)
o
: (6.21)

Note that the dilaton factor in front of the kinetic term indicates that the mass of the
S5 is proportional to the inverse coupling constant squared, the typical behaviour of a
solitonic object.

6.2 Wave/String Duality

In Section 3.1 we showed that the gravitational wave (W) and the fundamental string
solution (F1) were related via a T -duality transformation in the propagation direction
of the wave or, the other way round, in the world volume direction of the string. To
derive this T -duality we had to use a di�erent procedure then in the original deriva-
tion [37], presented in Subsection 3.1.1, since the latter relates only fundamental string
backgrounds to other fundamental string backgrounds. In order to relate other than
fundamental string solutions to each other, we used the idea of T -duality via dimen-
sional reduction: the gravitational wave and the fundamental string are dual to each
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other in ten dimensions because they can be mapped onto the same nine-dimensional
solution, using two di�erent (T -dual) reduction schemes. The ten-dimensional T -duality
rules, obtained by relating the two reduction schemes, map one solution to the other.
The dualized coordinate corresponds to the direction over which we have reduced and
decompacti�ed. We used the same procedure in Chapter 4 to relate the Type IIA and
Type IIB and Heterotic actions in ten and six dimensions.

Concretely, the fundamental string solution (2.44) and the gravitational wave solu-
tion (2.64) can be reduced both onto the same nine-dimensional massive 0-brane solu-
tion (3.49)

m0 =

8>>>>><
>>>>>:

ds2 = H�1dt2 � (dx22 + :::+ dx29)

e�2� = H
1
2

k = H�1
2

B0 = �H�1

B�� = A� = 0 ;

(6.22)

if we take for the reduction rules for the F1

F1 :

8<
:

ĝ�� = g�� � k2A�A� ; B̂�� = B�� +A[�B�] ;

ĝx� = �k2A� ; B̂x� = B� ;

ĝxx = �k2 ; �̂ = �+ 1
2 log k;

(6.23)

while for the reduction scheme of the W we use the T -dual version

W :

8<
:

ĝ�� = g�� � k�2B�B� ; B̂�� = B�� +B[�A�] ;

ĝx� = �k�2B� ; B̂x� = A� ;

ĝxx = �k�2 ; �̂ = �� 1
2 log k:

(6.24)

In the case of the F1 the x-direction is the world volume direction of the string, while for
the W it corresponds to the propagation direction of the wave. It is easy to verify that
the combination of the two reduction schemes gives the well-known T -duality rules (3.4).

The T -duality between the wave/string solutions suggests that a same type of duality
exists between the world volume actions that describe the dynamics of these solutions.
We will use the procedure of T -duality via direct and double dimensional reduction to
construct the duality map between the actions.

We start from the Nambu-Goto form for the kinetic term for the fundamental string
action together with a Wess-Zumino term (6.6)

LF1 =

q
j det(@iX̂ �̂@jX̂ �̂ ĝ�̂�̂)j + 1

2 "
ij@iX̂

�̂@jX̂
�̂B̂�̂�̂ (6.25)

The indices i; j are the world volume indices �; �. If we assume that the direction in
which the string is oriented is compact and the string is wound m times around this
direction, we can make a split in the target space coordinates as follows:

X̂ �̂(�; �) =
�
X�(�); m�

�
: (6.26)

This means that we have identi�ed the world volume direction of the string with the
space-time direction in which the string is oriented. Using this split in the coordinates
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and the reduction rules given in (6.23), we can rewrite the action (6.25) after double
dimensional reduction as

LF1 =

���� @X�@X� (g�� � k2A�A�) m@X�(�k2A�)
m@X�(�k2A�) m2(�k2)

����
1
2

+ m "��@X�B�

= mk
q
j det(@X�@X�g��)j � m @X�B�; (6.27)

which is the action for a massive particle with mass m. With @X� we mean the partial
derivative of X� with respect to � .

The world volume action of a gravitational wave is given by

LW = 1
2

p
jj �1 @X̂ �̂ @X̂ �̂ ĝ�̂�̂ : (6.28)

Direct dimensional reduction via the reduction scheme (6.24) gives an action of the
form

L = 1
2

p
jj �1

h
@X�@X�g�� � k�2(@S +B�@X

�)2
i
; (6.29)

where S the world sheet scalar coming from the compact dimension: S = X̂x. It can
be eliminated via its equations of motion

@
hp
jj�1 k�2 (@S +B�@X

�)
i
= 0; (6.30)

or equivalently
@S =

p
jj � k2 �B�@X

�; (6.31)

where � is a constant that corresponds to the momentum in the compacti�ed direction.
Before we can substitute this expression directly in (6.28) we have to verify whether
this is consistent with the other equations of motion. It turns out that the substitution
can be done if we add to the Lagrangian (6.28) a total derivative term [8, 31], giving

L = 1
2

p
jj�1@X�@X�g�� + 1

2

p
jj �2k2 � � B�@X

�: (6.32)

Again we can go to the Nambu-Goto formulation eliminating the world line metric 
via its equation of motion

�1 =
�2k2

@X�@X�g��
: (6.33)

This yields the nine-dimensional action for a massive particle with mass �

L = � k
q
j det(@X�@X�g��)j � � @X�B�; (6.34)

which is exactly the same Lagrangian as was obtained via T -dual double dimensional
reduction from the fundamental string, provided that we identify the constants m and
�. Physically this means that the T -duality interchanges the winding number of the
string with the momentum of the wave in the dualized direction.
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Note that the world volume action (6.28) of the gravitational wave coincides with the
world volume action for a massless particle. As a matter of fact the massless particle is
the source of the gravitational wave solution: a massless particle, moving at the speed
of light, drags along a gravitational wave as it moves through space. This can be seen
best if we rewrite the gravitational wave solution (2.64) in light cone coordinates

u = 1p
2
(t+ z); v = 1p

2
(t� z): (6.35)

The solution (2.64) then takes the form

ds2 = 2dudv + 2(1�H)du2 � dx2m: (6.36)

Consider now the action of a massless particle coupled to gravity

S = � 1
�

Z
d10x

p
jgj R � T

2

Z
d�
p
jj�1@X�@X�g�� ; (6.37)

and the equation of motion of g��

R�� � 1
2g��R = � �T

2
p
jgj

Z
d�
p
jj�1@X�@X� �(X

� � x�): (6.38)

The gravitational wave solution (6.36) satis�es this equation of motion, if we choose the
following parametrisation for the embedding coordinates:

U = 0; V = � ; Xm = 0; (6.39)

which are the embedding coordinates of a massless particle moving at the speed of light.
The equation of motion then reduces to

@m@
mH = ��T

2 �(u) �(xm) (6.40)

which has as a solution

H(u; xm) = ��T
2

�(u)pjxmxmj6 : (6.41)

6.3 The Five-brane/Monopole Duality

Let us now make use of the known T -duality between the solitonic �ve-brane (S5) and
the Kaluza-Klein monopole (KK10) in ten dimensions in order to construct a world
volume action for the monopole. We will present the bosonic part of the world volume
action for the Heterotic (N = 1 supersymmetric) monopole. For the kinetic part of the
eleven-dimensional and ten-dimensional Type IIA monopole action we refer to [28].

Our strategy will be similar to the one in the previous chapter: because of the T -
duality we know that a correct action for the monopole is one that, upon a T -dual
compacti�cation, reduces to the nine-dimensional form of the S5. The reduction of the
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monopole must be performed over the isometry direction z, since the monopole solution
(2.65) transforms into the �ve-brane solution (2.54) after dualization in this direction.

The reduction of the N = 1 �ve-brane world volume action is straightforward. Starting
from the action (2.55)

S(S5) = �T
2

Z
d6� e�2�̂

q
j det(@iX̂ �̂@jX̂ �̂ ĝ�̂�̂)j

+ T
6!

Z
d6� "i1:::i6 @i1X̂

�̂1 ::: @i6X̂
�̂6 Ĉ�̂1:::�̂6 ; (6.42)

and using the reduction rules

X̂� = X� ; X̂x = S

ĝ�� = g�� � k2A�A� ; Ĉx�1:::�5 = D�1:::�5 ; ;

ĝx� = �k2A� ; Ĉ�1:::�6 = C�1:::�6 + 6A[�1D�2:::�6] ;

ĝxx = �k2 ; �̂ = �+ 1
2 log k;

(6.43)

we �nd for the reduced �ve-brane action

S = �T
2

Z
d6� e�2�k�1

q
j det(gij � k2FiFj)j

+ T
6!

Z
d6� "i1:::i6

h
Ci1 :::i6 � 6 Di1::i5Fi6

i
; (6.44)

where

gij = @iX
�@jX

�g�� ;

Fi = @iS +A�@iX
�: (6.45)

Our task is now to �nd an action for the monopole that, upon the reduction (6.43) gives
an action that is T -dual to (6.44), or equivalently, gives the same action upon T -dual
reduction.

However, due to the presence of the isometry direction z in the monopole solution, a
subtlety occurs in the counting of the degrees of freedom: it turns out that this z-
direction can not be interpreted as a world volume direction [91]. We are therefore
dealing with a �ve-brane, (i.e. with a six-dimensional world volume), that has an extra
isometry in its transverse space. Its degrees of freedom are then, just as in the case of
the solitonic �ve-brane, given by the scalar multiplet of an N = 1 supersymmetric �eld
theory in six dimensions, consisting of four scalars. Naively, one could think that these
four scalars again, as for the �ve-brane, correspond to the four transversal coordinates
(X̂ i; Z), the collective coordinates for the position of the monopole. However, since Z is
an isometry direction, it does not correspond to a degree of freedom (being an isometry,
the position of the monopole in the Z-direction is not determined) and therefore it
should not be taken in account the counting.

So on the one hand, we have to �nd a way to get rid of this extra degree of freedom Z
in a proper way (note that this cannot be done by a simple extra gauge �xing of a world
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volume di�eomorphisms, since this would turn the monopole into a six-brane), yet on
the other hand we have to introduce a new scalar in order to obtain the N = 1; D = 6
scalar multiplet. We will do this via a gauged sigma model, where we will gauge the
isometry direction, eliminating the Z degree of freedom and introducing a scalar S to
get the counting right [28].

Our proposal for the kinetic term of the monopole action is

SKK = T
2

Z
d6� k̂2 e�2�̂

r���det�@iX̂ �̂@jX̂ �̂ Ĝ�̂�̂ � k̂�2F̂iF̂j
����: (6.46)

The vector k̂�̂ is a Killing vector associated with the isometry direction z, and

k̂2 = �k̂�̂k̂�̂ ĝ�̂�̂ : (6.47)

In coordinates adapted to the isometry direction, k̂�̂ will be of the form k̂�̂ = ��̂z.
Furthermore we introduced a \metric" Ĝ�̂�̂ and a scalar Ŝ via

Ĝ�̂�̂ = ĝ�̂�̂ + k̂�2 k̂�̂ k̂� ;

F̂i = @iŜ + @iX̂
�̂ k̂�̂ B̂�̂�̂ : (6.48)

The action (6.46) is a gauged sigma model, because of the symmetries

�X̂ �̂ = � k̂�̂; �Ŝ = �k̂�̂��̂; �B̂�̂�̂ = @[�̂�̂�̂]; (6.49)

under which the two terms in (6.46) are separately invariant. This symmetry occurs

because of the presence of the Killing vector k̂�̂, which e�ectively projects the z-direction
and the corresponding �eld Z(�) out of the action. This can be seen in the contraction

of the k̂�̂ with the \metric" Ĝ�̂�̂ :

k̂�̂ Ĝ�̂�̂ = k̂�̂ĝ�̂�̂ + k̂�2k̂�̂k̂�̂k̂�̂

= k̂�̂ĝ�̂�̂ � k̂�2k̂2 k̂�̂ĝ�̂�̂ = 0: (6.50)

The \metric" Ĝ�̂�̂ is therefore e�ectively a nine-dimensional metric, written in a ten-
dimensional covariant form. Reducing the action (6.46) over the isometry direction,
using the reduction rules (6.23), we �nd for the reduced monopole action

S = �T
2

Z
d6� e�2�k

q��det�gij � k�2 ~Fi ~Fj
���; (6.51)

where
~Fi = @iS +B�@iX

�: (6.52)

This is indeed precisely the action (6.44) of the reduced �ve-brane up to a T -duality
transformation (3.31)

~A� = B�; ~B� = A�; ~k = k�1: (6.53)

In order to construct the Wess-Zumino term of the monopole action, we �rst have to
get a closer look at the Wess-Zumino term of the reduced �ve-brane action (6.44) and
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to see what is the origin of each �eld. As we know, the ten-dimensional six-form gauge
�eld Ĉ�̂1:::�̂6 is the Poincar�e dual of the axion B̂�̂�̂ and reduces in nine dimensions to
a six-form and a �ve-form �eld, which are the Poincar�e duals of the nine-dimensional
winding vector B� and axion B�� respectively. Since under T -duality the Kaluza-Klein
vector A� gets interchanged with the winding vector B�, we expect that under the same
transformations also the Poincar�e dual of the winding vector, the six-form C�1:::�6 , will
get interchanged with some six-form A�1:::�6 , being the Poincar�e dual of the Kaluza-
Klein vector. The axion does not transform under T -duality, so it is logical to suppose
that also its dual, the �ve-form D�1:::�5 will be invariant.

Taking this in account, we make the following Ansatz for the ten-dimensional Wess-
Zumino term:

S =
T

6!

Z
d6�"i1:::i6 k̂�̂1 @i1X̂

�̂2 :::@i6X̂
�̂7
h
Â�̂1:::�̂7 � 6D̂�̂1:::�̂6(@�̂7 Ŝ � k̂�̂B̂�̂7 �̂)

i
; (6.54)

where

@[�̂1Â�̂2:::�̂8] = 1

2!7!
p
jĝj k̂

2e�2�̂"�̂1:::�̂10 [k̂
2F̂ �̂9�̂10(Â) + 2k̂�̂B̂�̂�̂Ĥ

�̂�̂9�̂10 ];

@[�̂1D̂�̂2:::�̂7] = 1

8!
p
jĝje

�2�̂"�̂1:::�̂10Ĥ
�̂8�̂9�̂10 ; (6.55)

Â�̂ = k̂�2k̂�̂ ĝ�̂�̂ :

The vector Â�̂ is the uplifting of the Kaluza-Klein vector A�, which can be written

in a ten-dimensional form via the Killing vector k̂�̂. The seven-form Â�̂1:::�̂7 and the

six-form D̂�̂1:::�̂6 are the Poincar�e dual of Â�̂ and B̂�̂�̂ and the uplifting of A�1:::�6 and
D�1:::�5 respectively . It is not di�cult to show, using the de�nitions (6.55), that the

latter are the only non-zero components of Â�̂1:::�̂7 and D̂�̂1:::�̂6 .

The Wess-Zumino term (6.54) transforms as a total derivative under the gauge trans-
formations

�Â�̂1:::�̂7 = @[�̂1��̂2:::�̂7] + @[�̂1��̂2:::�̂6 k̂
�̂B̂j�̂j�̂7] ;

�D̂�̂1:::�̂6 = @[�̂1��̂2:::�̂6];

�Ŝ = �k̂�̂��̂; (6.56)

�B̂�̂�̂ = @[�̂��̂]:

Again the contractions with the Killing vector k̂�̂ take care of the fact that the z-
direction is projected out of the action (6.54). Reduction over the isometry direction z
gives

S = T
6!

Z
d6� "i1:::i6 @i1X

�1 :::@i6X
�6
h
A�1:::�6 � 6 D�1:::�5(@�6S +B�6)

i
; (6.57)

which can be mapped onto the Wess-Zumino term of the S5-brane, via the T -duality
transformation

~B� = A�; ~A�1:::�6 = C�1:::�6 : (6.58)
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Besides the fact that the world volume action (6.46)-(6.54) is T -dual to the S5 action,
we will give another evidence in favour of this action: the constructed action also serves
as a source term for the monopole solution (2.65)2. For simplicity we only look at the
purely gravitational part. This leads to the following action3

S = � 1
�

Z
d10x

p
jgj R� T

2

Z
d6�

p
jjij@iX�@jX

�k2G�� (6.59)

Varying this action with respect to g�� (and taking care of all the metric factors hidden
in G�� and k2), we �nd for the equation of motion:

R�� � 1
2g��R = �T

2
p
jgj

Z
d6�

p
jjij@iX�@jX

��(X� � x�)� (6.60)

�
h
�k�k�g�� � k2g��g�� + k�k�g�� + k�k�g��

i
(6.61)

For the monopole solution (2.65) and the parametrisation

X i = �i; Z = Xm = 0 (6.62)

the equation (6.61) reduces to

@2H =
�T

2
�(xm): (6.63)

The solution to this equation is given by

H(xm) =
�T

2

1pjxmxmj : (6.64)

We therefore can conclude that the (gravitational part) of the world volume action for
the monopole is indeed a source for the ten-dimensional monopole solution.

Gauged sigma models have been used lately [110, 122, 29] to give an eleven-dimensional
interpretation to the world volume actions of p-brane solutions in the background of
massive Type IIA supergravity [133]. The relation between massive Type IIA theory
and eleven-dimensional supergravity is a notorious problem, but it turns out that a
massive version of D = 11 supergravity can be formulated if one assumes an isometry
direction, characterized by a Killing vector k̂�̂. The world volume action of the p-brane
in massive Type IIA theory can be described in terms of the massive D = 11 supergrav-
ity background �elds, if one gauges the isometry direction, using gauge transformations
that involve a mass parameterm. Reduction over the direction associated to the isome-
try gives rise to the world volume actions for the p-branes in a massive ten-dimensional
background.

An interesting question now is what does the world volume action for a massive eleven-
dimensional Kaluza-Klein monopole look like, if the massless monopole is already de-
scribed by a gauged sigma model? It turns out that there are two possibilities [25]: one

2Strictly speaking source terms are only needed for singular objects. For non-singular objects,
such as the Kaluza-Klein monopole, a source term can be introduced if in a certain coordinate frame
(non-physical) coordinate singularities appear. This is the case considered here.

3At this point we omit the hatted notation for ten-dimensional �elds.
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can extend the gauging (6.49) of the action (6.46)-(6.54) to the massive gauge transfor-
mations of [29] and reduce over the isometry direction in order to obtain the massive
D6-brane action, or one can assume an extra isometry direction with a new Killing
vector ĥ�̂. The massive Type IIA monopole action is then obtained by a massive gaug-
ing of and reduction over the new isometry direction. The massless limit can be taken
consistently by setting the mass parameter m = 0.

Knowing the world volume action of the (massive) Type IIA monopole, it would be
interesting to perform a (massive) T -duality transformation and see if one can obtain
a world volume action for the Type IIB solitonic �ve-brane.
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Samenvatting

Elementaire deeltjesfysica, of hoge-energiefysica, is de tak van de natuurkunde die zich
bezighoudt met het bestuderen van de elementaire deeltjes en hun wisselwerkingen.
Aangezien de materie rondom ons is opgebouwd uit deze deeltjes, geeft de studie van
elementaire deeltjes ons een idee van hoe de natuur in elkaar zit. In die zin behoort hoge-
energiefysica tot het fundamenteel onderzoek: men zoekt niet direct naar bruikbare
toepassingen, maar wil inzicht krijgen in hoe de wereld om ons heen functioneert en
waarom hij zo functioneert.

In het algemeen is het zo: hoe kleiner de beschouwde structuren zijn waarnaar we kijken,
hoe hogere energie�en we nodig hebben om die structuren te zien. Dit komt doordat we,
om het gedrag en de samenstelling van elementaire deeltjes te zien, andere (test)deeltjes
erop moeten afschieten en kijken hoe die twee deeltjes onderling wisselwerken. Als we
de testdeeltjes met steeds hogere energie afschieten (dit wil ruwweg zeggen: met steeds
hogere snelheid), dringen ze steeds dieper door in het te bestuderen object en kunnen
eventuele substructuren zichtbaar worden gemaakt.

Zo weten we bijvoorbeeld, dat atomen (waarvan men vroeger dacht dat het de elemen-
taire bouwstenen van de materie waren) in feite bestaan uit een elektronenwolk die een
hele kleine kern omringt. Die kern blijkt dan weer te zijn opgebouwd uit twee soorten
deeltjes, die protonen en neutronen genoemd worden, en die op hun beurt weer opge-
bouwd zijn uit quarks. Voor zover we nu weten, hebben quarks en elektronen geen
verdere substructuur meer en kunnen ze daarom \elementair" genoemd worden. Maar
zoals inmiddels blijkt, is de term \elementair" een tijdsafhankelijk begrip en zal hij
misschien in de toekomst niet meer van toepassing zijn op datgene wat er tegenwoordig
mee wordt aangeduid.

Er zijn twee manieren om het gedrag van deze elementaire deeltjes te bestuderen: men
kan ofwel experimenten doen waarbij de deeltjes met hoge energie op elkaar worden
geschoten, vervolgens kijkt men dan hoe de deeltjes zich gedragen en probeert daaruit
een theorie op te stellen die dit gedrag verklaart. Of men kan uitgaan van een centraal
idee, hierrond een goede theorie bouwen en dan kijken of deze theorie experimentele
toetsen kan doorstaan. In dit proefschrift houden wij ons bezig met de laatste werkwijze:
de theoretische hoge-energiefysica.

Zo'n centraal idee kan bijvoorbeeld symmetrie zijn. Symmetrie is een eigenschap van
een theorie die zegt dat de vorm van de theorie niet verandert als we er een bepaalde
operatie, een symmetrietransformatie, op uitvoeren. Zo verandert een theorie die trans-
latiesymmetrie heeft, niet als we het co�ordinatenstelsel verschuiven van �e�en punt in de
ruimte naar een ander punt. Fysisch betekent dit dat de wetten van de natuurkunde in
de hele ruimte dezelfde zijn. Theorie�en met veel symmetrie zijn ook gemakkelijker om
mee te werken, omdat de symmetrie het probleem vereenvoudigt. In een theorie met
translatiesymmetrie bijvoorbeeld hoef je een resultaat maar voor �e�en punt te bereke-
nen, de resultaten in de rest van de ruimte zijn dezelfde. Ook mogen er geen expliciete
positie-afhankelijkheden in de formulering van de theorie voorkomen, omdat anders
de translatiesymmetrie gebroken wordt. De symmetrie beperkt dus ook de mogelijke
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formuleringen van de theorie.

De op dit moment algemeen aanvaarde theorie voor elementaire deeltjes is het zo-
genaamde Standaardmodel, dat zowel een classi�catie van de deeltjes geeft als een
beschrijving van hun wisselwerkingen onder drie fundamentele interacties: de sterke,
de zwakke en de elektromagnetische interactie. Het Standaardmodel gaat uit van het
centrale idee van ijkinvariantie. IJkinvariantie is een interne symmetrie die stelt dat
deeltjes in families (multipletten) verdeeld kunnen worden en dat de verschillende leden
van zo'n multiplet zich symmetrisch moeten gedragen. Verder worden de interacties
verklaard door de uitwisseling van zogenaamde ijkdeeltjes, die ook weer in multipletten
voorkomen. Dit alles beperkt de mogelijke interacties heel sterk. Experimenteel gezien
is het Standaardmodel een erg succesvolle theorie: de resultaten stemmen tot op heel
hoge precisie overeen met de experimenten en de theorie was in staat om voorspellingen
te doen die later experimenteel bevestigd werden.

Er is echter nog een vierde fundamentele interactie in de natuur waarmee het Standaard-
model helemaal geen rekening houdt, namelijk de zwaartekracht. De zwaartekracht
wordt verklaard in een andere theorie: de algemene relativiteitstheorie (ART). Deze
gaat uit van het principe dat de natuurwetten dezelfde moeten zijn voor alle waarne-
mers en beschrijft zwaartekracht als een vervorming van de ruimte door de aanwezige
materie. Ook de ART is vanuit experimenteel oogpunt een succesvolle theorie: zij kan
fenomenen beter verklaren dan de traditionele theorie van Newton en meerdere voor-
spellingen zijn experimenteel bevestigd.

Het feit dat deze twee theorie�en, elk op hun eigen gebied, het zo goed doen, komt omdat
de invloed van het ene verschijnsel op het andere erg klein is: in versnellerexperimenten
is de zwaartekracht tussen de elementaire deeltjes veel te zwak om er iets van te merken,
terwijl men de ART meestal gebruikt voor de bewegingen van hemellichamen, waarbij
krachten tussen elementaire deeltjes niet van belang zijn.

Toch blijft het vreemd dat we twee totaal onafhankelijke theorie�en hebben, die allebei
dezelfde natuur proberen te beschrijven. Als beide theorie�en uitgaan van zulke cen-
trale principes, zou het dan niet meer voor de hand liggen als deze principes in beide
theorie�en zouden voorkomen? Met andere woorden: zou het niet logischer zijn als we
een ge��ntegreerde theorie hadden, die zowel het gedrag van elementaire deeltjes als de
e�ecten van zwaartekracht beschrijft?

Zoals gezegd, op experimentele gronden is er niets aan de hand, omdat beide theorie�en
binnen hun eigen bereik erg succesvol zijn. Maar op theoretische gronden kan men zien
dat er vroeg of laat problemen ontstaan. Immers, als we in botsingsexperimenten de
energie maar blijven opdrijven, zou de zwaartekracht alsmaar sterker worden, aangezien
deze net zozeer aan massa als aan energie koppelt. Vanaf een bepaalde schaal (de
Planck-energie of de Planckmassa) zou de invloed van de zwaartekracht zelfs net zo
groot worden als die van andere krachten in het Standaardmodel, en zou geen van de
twee theorie�en meer een goede beschrijving kunnen geven van de experimenten. Deze
energieschalen liggen weliswaar ver buiten het bereik van de huidige deeltjesversnellers,
maar het (theoretische) probleem is gesteld.

Het vinden van een ge�uni�ceerde beschrijving van elementaire deeltjesfysica en zwaar-
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tekracht is �e�en van de grote uitdagingen van de moderne hoge-energiefysica. Dit is
zo moeilijk omdat men bij pogingen om de typische quantum-e�ecten van elementaire
deeltjesfysica te incorporeren in ART (die niet-quantummechanisch is), steeds tegen
grote wiskundige problemen oploopt.

E�en van de veelbelovende kandidaten voor een theorie van quantum-zwaartekracht is
de stringtheorie. Deze gaat uit van het idee dat de elementaire deeltjes niet puntvormig
zijn, zoals we ons die intu��tief voorstellen, maar �e�endimensionale objecten, snaartjes
(Engels: strings). Deze snaren kunnen, net als de snaren van een gitaar, trillen en de
verschillende trillingswijzen (die bij een gitaar overeenkomen met verschillende toon-
hoogtes) corresponderen hier met verschillende deeltjes, onder andere ook die van het
Standaardmodel. Het feit dat er nog niets gemerkt is van de snaarstructuur van deel-
tjes, komt volgens de theorie doordat de afmeting van de snaartjes zo klein is, dat ze
vanaf \grote" afstanden (afstanden te vergelijken met structuren zoals in het Standaard-
model) puntvormig lijken. Maar dit houdt tegelijkertijd in, dat om deze snaarstructuur
te detecteren zulke hoge energie�en nodig zijn, dat de eerstvolgende generaties versnellers
nog volkomen ontoereikend zullen zijn.

Ondanks het grote gebrek aan experimentele gegevens blijkt de stringtheorie toch erg
interessant te zijn. Immers, �e�en van de deeltjes die in de stringtheorie voorkomen, blijkt
het graviton te zijn, het ijkdeeltje van zwaartekracht. Dit betekent dat zwaartekracht
al automatisch in de stringtheorie ingebouwd zit en dat we ART als speciale limiet
kunnen terugvinden. Verder vinden we nog allerlei symmetriestructuren, die lijken
op de ijksymmetrie�en van het Standaardmodel, zodat dit inderdaad wijst in de goede
richting.

Toch is er nog veel werk aan de winkel: de stringtheorie is namelijk nog alles behalve
volledig. De tot voor kort gebruikte formulering is gebaseerd op storingstheorie, waarbij
wordt uitgegaan van de eenvoudige situatie dat de snaren onderling geen wisselwerking
hebben: de interacties worden dan gezien als een storing op deze ideale situatie. Zo'n
benadering is relatief goed zolang de storing (de koppeling tussen de snaren) klein blijft,
want zolang kunnen technieken (storingsrekening) gebruikt worden om resultaten te
berekenen. In principe kan men dan weer storingen op deze storingen gaan berekenen,
enz., maar in de praktijk houdt het snel op, omdat de berekeningen al snel te groot
worden. Bovendien is de benadering alleen maar houdbaar als de storingen klein blijven.
Bij sterke interacties tussen de snaren (meestal juist de interessantste situatie) is deze
methode echter niet meer te betrouwen: men heeft op deze manier namelijk geen idee
van wat er gebeurt in zogenaamde niet-storingse�ecten.

Ten tweede is het problematisch om het Standaardmodel terug te vinden als lage-
energie-benadering van de stringtheorie. Uit consistentie-eisen blijkt dat de snaren zich
in een tiendimensionale ruimte-tijd moeten voortbewegen, terwijl de ons bekende wereld
van ART en van het Standaardmodel vierdimensionaal is (de drie ruimte-dimensies en de
tijd). De verklaring daarvoor is dat zes van die tien dimensies zo klein zijn (van de orde
van de snaar zelf) dat ze bij lage energie�en niet te zien zijn en er bestaat een techniek
(dimensionele reductie) die resultaten van de tiendimensionale ruimte kan vertalen naar
een e�ectieve vierdimensionale ruimte. Afhankelijk van hoe de dimensionele reductie
gedaan wordt, kunnen allerlei symmetriegroepen verschijnen, waarvan sommige zelf erg
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veel op die van het Standaardmodel lijken. Maar er zijn nog vele andere mogelijkheden
en er is niets dat wijst op een goede reden waarom nu precies die ene reductie verkozen
moet worden boven alle andere.

Een derde probleem, misschien wel het meest vervelende, is dat er niet �e�en versie van
de stringtheorie bekend is, maar vijf verschillende, met elk hun eigen deeltjes en sto-
ringsbenadering. Dit is natuurlijk geen aantrekkelijk idee voor een uni�cerende theorie.
Tot voor kort meende men dan ook dat vroeg of laat sommige van die theorie�en incon-
sistent en/of equivalent zouden blijken te zijn en dat er (hopelijk) uiteindelijk �e�en zou
overblijven.

In de laatste paar jaren is er echter in korte tijd veel vooruitgang geboekt. Zoveel zelfs
dat er sprake is van een heuse stringrevolutie. Deze ontwikkelingen hebben het idee
van dualiteiten ge��ntroduceerd, een soort symmetrie die zegt dat verschillende formu-
leringen van een theorie aan elkaar gerelateerd kunnen worden (duaal zijn), hetgeen
hen in feite equivalent maakt. Resultaten van de ene formulering kunnen via de du-
aliteitstransformaties vertaald worden naar de andere formulering. Binnen de groep
van stringtheoretici wordt veel verwacht van deze dualiteiten; het zou zelfs �e�en van de
fundamentele principes kunnen zijn, nodig om de theorie te begrijpen.

Zo blijkt bijvoorbeeld dat een theorie gereduceerd op een groot volume duaal is aan
dezelfde theorie gereduceerd op een klein volume. De dualiteitstransformatie die daar
voor zorgt, heet T -dualiteit en relateert dus op een verrassende manier grote en kleine
lengteschalen. Maar het verschil tussen formuleringen op een groot en een klein volume
is precies het verschil tussen twee manieren om een theorie dimensioneel te reduceren
(van tien naar vier dimensies bijvoorbeeld). T -dualiteit stelt dus dat verschillende
reducties equivalent kunnen zijn en verdeelt de verschillende mogelijke compacti�caties
in equivalentieklassen. Hoewel we daarmee nog niet het probleem hebben opgelost welke
reductie verkozen moet worden boven andere, is het tenminste signi�cant gereduceerd.

S-dualiteit is een dualiteit die inzicht kan geven in het gebied dat verder ligt dan de
storingstheorie. Zoals gezegd is het erg moeilijk om betrouwbare resultaten te krijgen
als de koppeling (de interacties tussen de snaren) erg sterk wordt, omdat storingsreke-
ning dan niet meer toereikend is. S-dualiteit, ook wel sterke/zwakke-koppelingsdualiteit
genoemd, stelt dat als de koppeling erg groot wordt, er een duale formulering gevon-
den kan worden waarin de snaren weer zwak gekoppeld zijn. In deze duale formu-
lering kunnen we dan weer gewoon storingsrekening gebruiken. En omgekeerd: het
sterke-koppelingsgebied van de duale formulering komt weer overeen met het zwakke-
koppelingsgebied van de originele theorie. Op die manier zijn niet-storingsresultaten
toch vrij gemakkelijk te verkrijgen uit storingsrekening.

Niet alleen binnen eenzelfde theorie blijken verschillende formuleringen duaal te zijn,
maar ook hele theorie�en kunnen via dualiteiten aan elkaar gerelateerd worden. Zo kan
�e�en theorie op een klein volume precies dezelfde blijken te zijn als een andere theorie
op een groot volume, of kan het sterke-koppelingsgebied van de ene overeenkomen met
het zwakke-koppelingsgebied van de andere. T - en S-dualiteit spannen dus een heel net
op van dualiteitsrelaties tussen de vijf stringtheorie�en. Deze zijn dan misschien op het
eerste gezicht (in het storingsgebied) erg verschillend, maar, met niet-storingse�ecten
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in rekening gebracht, in feite equivalent.

Samen met de ontdekking van dit dualiteitennet is ook het idee ontstaan dat de vijf
stringtheorie�en misschien niet de �nale theorie�en zijn waarnaar we op zoek zijn, maar
eigenlijk verschillende benaderingen van een nog niet ontdekte, onderliggende theo-
rie. De dualiteitstransformaties relateren dan deze benaderingen met elkaar. Die on-
derliggende theorie, wordt meestal M -theorie genoemd, al weet niemand precies waar-
voor die \M" staat (Moeder, Membraan, Mysterie, ...). Ook is het nog helemaal niet
duidelijk hoeM -theorie eruit ziet en of snaren uiteindelijk nog wel de elementaire bouw-
stenen van de theorie zijn.

Immers, een andere bijdrage van de dualiteiten aan de stringtheorie is dat, naast snaren,
ook andere objecten voorkomen: puntdeeltjes, membranen, drie-, vier-, en nog hoger-
dimensionale objecten. Deze worden p-branen genoemd, (in analogie met membranen)
waar p het aantal dimensies is van het object. De dualiteitstransformaties spannen
een web tussen al deze objecten, net zoals ze dat doen tussen de theorie�en: sommige p-
branen kunnen via T -dualiteit gerelateerd worden aan (p+1)- of (p�1)-branen, dus aan
objecten die net �e�en dimensie groter of kleiner zijn. Sterke/zwakke-koppelingsdualiteit
zegt dan bijvoorbeeld weer dat een sterk gekoppelde snaar equivalent is aan een zwak
gekoppelde 5-braan. We hadden dus net zo goed van een \5-branentheorie" kunnen
uitgaan als van een stringtheorie. In feite is een string net zo veel of zo weinig funda-
menteel als elke andere p-braan. En dit maakt het er natuurlijk niet gemakkelijker op
om een goede formulering van M -theorie te vinden.

We zien dus dat dualiteiten en M -theorie een heel ander beeld geven van (wat vroeger
bekend stond als) de stringtheorie dan datgene wat we tot voor kort hadden. En ondanks
het feit dat het centrale deel van het nieuwe beeld nog erg vaag blijft, kunnen toch
al heel wat implicaties ervan getest worden. Immers, een essenti�ele veronderstelling
in het geheel is dat de dualiteiten tussen de vijf stringtheorie�en correct zijn. Door
deze te testen, toetsen we ook indirect het M -theorie-beeld. Bovendien leveren de
dualiteitstransformaties een beter begrip op van hoe de stringtheorie zelf in elkaar zit
(denk maar aan de niet-storingse�ecten en S-dualiteit).

Als twee theorie�en duaal aan elkaar zijn, moet die dualiteit natuurlijk in alle sectoren
terug te vinden zijn: zowel in de lage-energielimiet, in de oplossingen, als in de dynamica
van de theorie. Omgekeerd, gegeven een dualiteit tussen �e�en theorie en een andere,
kunnen we ons beeld van de ene theorie vervolledigen dankzij de kennis van de andere:
nieuwe oplossingen construeren uit oude bijvoorbeeld, of de dynamica aeiden uit die
van een duale theorie.

In dit proefschrift hebben we beide dingen gedaan: zowel het testen van de dualiteiten
op de verschillende niveaus van de theorie, als het gebruiken van de dualiteiten om
resultaten mee af te leiden. Na een drietal inleidende hoofdstukken, waarin we iets
dieper ingaan op de probleemstelling en een introductie geven in de basisbegrippen
van de stringtheorie en dualiteiten, onderzoeken we in hoofdstuk 4 uitvoerig de sym-
metrie�en van de lage-energielimieten van de verschillende theorie�en. We schrijven
de dualiteitsregels op die deze lage-energielimieten onderling relateren en vinden dat
deze overeenkomen met de dualiteitsrelaties tussen de stringtheorie�en waarvan de lage-
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energielimieten beschouwden.

In hoofdstuk 5 kijken we naar de p-braan-oplossingen van de stringtheorie, en meer in
het bijzonder naar de manieren waarop meerdere van zulke p-branen samen kunnen
voorkomen en elkaar kunnen snijden. Dergelijke intersecties zijn interessant omdat, ze
na dimensionele reductie oplossingen opleveren in lagere dimensies. Een classi�catie
van de mogelijke intersecties in de stringtheorie geeft een overzicht van de verschillende
oplossingen in bijvoorbeeld een vierdimensionale ruimte-tijd als de onze.

Hoofdstuk 6 gaat over de dynamica van de oplossingen. Die wordt gegeven door een
wiskundige uitdrukking, die men de e�ectieve actie van de oplossing noemt. Zoals
gezegd moeten de dualiteitsrelaties die tussen de oplossingen bestaan, ook tussen de
e�ectieve acties van deze oplossingen terug te vinden zijn. We geven een overzicht van
deze e�ectieve acties, tonen de dualiteiten aan en construeren aan de hand daarvan de
e�ectieve actie van een bepaalde oplossing (de Kaluza-Klein monopool).

De laatste jaren zijn in een snel tempo nieuwe vorderingen gemaakt in de stringtheorie,
en dat zal nog wel even blijven duren. In de tijd die er nodig was om dit proefschrift
te schrijven, zijn er weer ontwikkelingen geweest, die veelbelovend lijken. E�en ding is
duidelijk: of er nu al dan niet snel een goede formulering vanM -theorie gevonden wordt,
zelfs ofM -theorie nu wel of niet de uiteindelijke, langgezochte \theorie van alles" blijkt
te zijn, dualiteiten hebben zich een blijvende, belangrijke plaats weten te verwerven in
de stringtheorie en meer algemeen, in de hoge-energiefysica.
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