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Preface

This book brings together the contents of the courses given at the doctoral
school on ‘Geometry and Physics of Branes’ which took place in the spring
of 2001 at the Centre for Scientific Culture ‘Alessandro Volta’ located in the
beautiful environment of Villa Olmo in Como, Italy. The school was the result
of a twinning between the Graduate School in Contemporary Relativity and
Gravitational Physics, which is organized yearly by SIGRAV-Societa’ Italiana di
Relativita’ e Gravitazione (Italian Society of Relativity and Gravitation), and the
School on Algebraic Geometry and Physics organized every year (in alternation
with a Workshop on the same subject) by the Mathematical Physics Group of the
International School for Advanced Studies (SISSA-ISAS) in Trieste.

The central topic of the school was the concept of the brane in string theory,
from both physical and mathematical viewpoints. Rather than attempting to
make a (forcefully superficial) general overview of the mathematics and physics
of branes, the philosophy underlying the choice of lectures was to provide an
introduction to some lines of research, related to the notion of branes in string
theory, which are presently the object of strong interest in the mathematical and
physical communities.

Qualitatively, a brane is a state of string theory which corresponds to an
extended solitonic configuration of the string theory. Sometimes these can be
related to classical solutions of the low-energy limit of the string theory (which is
a supergravity theory) which are charged with respect to some gauge potential.
However, in other situations (technically, when the branes have charges in
the Ramond–Ramond sector) these classical solutions describe membranes over
which the open strings terminate. These are the D-branes. The contribution by
A Lerda (An elementary introduction to branes in string theory) is a remarkably
lucid introduction to these notions.

The discovery of open unoriented string models in the late 1980s prompted
an interest in conformal field theory on open and unoriented surfaces. Another
source of interest in such theories comes from two-dimensional quantum field
theory in the presence of a boundary. The article by Y S Stanev (Two-dimensional
conformal field theory on open and unoriented surfaces) develops the basics of
this theory. The emphasis is on the construction of the correlation functions and
partition functions.

ix



x Preface

The contribution by C Gómez and P Resco (Topics in string tachyon
dynamics) concerns the role of tachyons in string theory, in particular the
emergence of the so-called tachyon condensation phenomenon in several
situations. Topics touched upon include tachyon condensation in open-string
theory, its contribution to the value of the cosmological constant in closed string
theory, its relevance to the study of the confinement problem for the gauge degrees
of freedom, its connection with the bound states of a brane–antibrane system and
a possible description in terms of K-theory.

Mirror symmetry has motivated the huge interest of mathematicians in string
theory. The solitonic states of type IIB string theory correspond to 3-branes which
can be described as special Lagrangian submanifolds of the compactification
(Calabi–Yau) manifold X carrying a U(1) bundle. With these geometric data,
by means of the Floer cohomology of X regarded as a symplectic manifold, one
constructs an A∞ category, the so-called Fukaya category of X . The dual type IIA
string theory admits brane configurations which are complex submanifolds of
the compatification space Y supporting stable bundles. In this case the category
naturally attached to these data is the category of coeherent sheaves on Y or,
rather, an A∞-deformation of it. Kontsevitch has conjectured that there is an
equivalence, in some proper sense, between the two categories. Fukaya’s paper
(Deformation theory, homological algebra, and mirror symmetry) fits within the
author’s ambitious programme to build a comprehensive mathematical setting to
study this conjecture and is about a homology theory naturally attached to the
deformations of vector bundles.

The contribution by A Grassi and M Rossi (Large N dualities and transitions
in geometry) is about the so-called Gopakumar–Vafa conjecture and a possible
strategy to prove it. After the ’t Hooft proposal, according to which for large
N there should be some duality between SU(N) gauge theory and closed-string
theory, Gopakumar and Vafa conjectured a duality between the SU(N) Chern–
Simons theory on S3 and a IIA string theory compactified on a Calabi–Yau three-
fold Y ; the geometric relation between the two theories is that Y may be subjected
to a procedure which makes it into T ∗S3. A possible way to prove this duality is
to consider M-theory compactified on a manifold with special (G2) holonomy

The School was made possible by funding from several sources, including
the International School for Advanced Studies in Trieste, the University of
Insubria (Como-Varese), the Department of Chemistry, Physics and Mathematics
of the same University and the Physics Departments of the Universities of Milan,
Pavia and Turin. We are grateful to the other members of the scientific organizing
committee Mauro Carfora, Pietro Fre’, Alberto Lerda and Augusto Sagnotti and
to the scientific coordinator of the Centro Volta, Giulio Casati, for their invaluable
help in the organization. We also acknowledge the essential support of the
secretarial conferece staff of the Centro Volta, in particular of Chiara Stefanetti.

Ugo Bruzzo, Vittorio Gorini and Ugo Moschella
15 May 2002
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Chapter 1

Introduction

Alberto Lerda
Dipartimento di Scienze e Tecnologie Avanzate
Università del Piemonte Orientale ‘A Avogadro’
I-15100 Alessandria (Italy)

In recent years there has been a remarkable improvement in our understanding
of string theory. One of the key ingredients of this progress has been the
concept of duality [1], originally formulated for the supersymmetric gauge field
theories and later extended to string theory [2]. Among other things, the idea
of duality has led to the conclusion that the five consistent and perturbatively
inequivalent superstring theories in ten dimensions are actually related to one
another by non-perturbative maps. As a consequence of these relations, the
five superstrings can be interpreted as five different perturbative expansions of
a single underlying theory, called M-theory [3]. This M-theory, whose intrinsic
fundamental formulation is not yet known, also admits another perturbative limit
where it becomes a unique supergravity model in 11 dimensions. In this way
a very tight and fruitful relationship between string theory and supergravity
has been established which has increasingly led to very interesting (and largely
unexpected) developments.

Under the action of the so-called string duality groups, a discrete version
of the continuous duality groups already known in supergravity, the usual
perturbative string states are mapped into solitonic configurations which represent
extended objects with p spatial dimensions. These can be particles (p = 0),
strings (p = 1), membranes (p = 2) or, in general, p-branes. Thus, we can
legitimately say that modern string theory is not only a theory of strings! In
fact, the existence of p-dimensional extended objects is required in order to
provide the degrees of freedom needed by the non-perturbative string dualities.
However, from a supergravity point of view, p-branes naturally appear as classical
solutions of the various low-energy string effective actions that carry a non-
vanishing charge with respect to some (p + 1)-form gauge potential. Thus, it is
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4 Introduction

tempting to identify these supergravity p-branes with the configurations required
by string dualities. For this reason in recent years much attention has been devoted
to the study of these supergravity branes and their properties. The simplest
of them are discussed in detail in [4] where one can also find the references
to the original papers. The classical solutions with a non-vanishing electric
or magnetic charge under the Neveu-Schwarz–Neveu-Schwarz (NS–NS) 2-form
correspond, respectively, to the fundamental string and the solitonic 5-brane or,
in the dual formulation, to the solitonic string and the fundamental 5-brane.
In contrast, classical solutions with a non-vanishing charge under the various
(p + 1)-forms of the Ramond–Ramond (R–R) sector have no relation with the
perturbative closed string or its solitons. In fact, as recognized by J Polchinski [5],
these solutions correspond to membranes on which open strings can end, with
Dirichlet boundary conditions in the transverse directions and the usual Neumann
boundary conditions in the longitudinal directions. For this reason they are called
Dirichlet branes or D-branes for short (extensive reviews on D-branes are listed
in [6]).

It turns out that the tension of these D-branes is proportional to the inverse
of the string coupling constant; thus they are non-perturbative configurations of
string theory which, however, can be studied in a very explicit way thanks to
their description in terms of open strings with Dirichlet boundary conditions.
For example, the interaction between two such D-branes can be computed by
evaluating a one-loop open-string annulus diagram. However, since the early
days of string theory it has been known that an annulus diagram of open strings
can be equivalently rewritten as a tree-level cylinder diagram in a closed string
theory where a closed string is generated from the vacuum, propagates and
then annihilates again in the vacuum. The state that describes the emission (or
absorption) of a closed string from the vacuum is called a boundary state; and
it was originally introduced in the early days of dual models [7] to factorize
the planar and non-planar open string diagrams at one loop in the closed string
channel. In the mid-1980s, when the BRST formulation of string theory was
developed, the boundary state was again considered in a series of papers by
Callan et al [8] where, among other things, the ghost contribution was added
and the generalization with an Abelian external gauge field was constructed.
The extension of the boundary state to the case of Dirichlet boundary conditions
was initiated in another series of papers by Green et al [9] in the early 1990s,
before it became clear that these Dirichlet configurations are associated with the
configurations required by the string dualities. More recently, the boundary state
has been extensively used to describe the properties and interactions of the D-
branes, both in flat and in curved backgrounds (see, for example, [10–12] or the
reviews in [13] and the references therein). In particular, in [10, 12] it has been
shown that the boundary state encodes all relevant properties of the classical D-
branes since it correctly reproduces the couplings of the Dirac–Born–Infeld action
as well as the large-distance behaviour of the classical Dp-brane supergravity
solutions.
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We would like to emphasize that the twofold interpretation of the D-branes,
as classical supergravity solutions and as spacetime defects where open strings
can terminate, is a direct consequence of a duality between open and closed
strings which allows a double interpretation of the annulus/cylinder diagram. This
twofold nature of the D-branes is their most important and intriguing feature;
indeed because of this they play a crucial role both from a gravitational point
of view (i.e. in a theory of closed strings) and from a gauge field theory point
of view (i.e. in a theory of open strings). This open/closed string duality is at
the heart of the gauge/gravity correspondence which has recently been uncovered
since Maldacena’s well-known conjecture [14–16] and which is perhaps one of
the most exciting developments of string theory.

In this contribution we are going to present an elementary introduction to the
branes of string theory and, in particular, to the boundary state description of the
D-branes. These lecture notes are not intended to be an exhaustive presentation
but rather their aim is merely to provide some very basic material that may serve
as a background for more advanced topics in brane theory (for more extended and
complete reviews see, for example, [4, 6, 13, 16, 17]). In particular, in chapter 2
we will review the supergravity effective actions of type II string theories, the
classical field equations that follow from these actions and the simplest brane
solutions. In chapter 3 we review the boundary state formalism to describe
Dirichlet branes and discuss the case in which an external field is present on their
world-volume. In chapter 4, using the boundary state we discuss the D-brane
effective action and finally, in chapter 5, we show how supergravity classical
D-brane solutions can be recovered from the boundary state.



Chapter 2

Branes in string theory

In this chapter we are going to present explicitly the simplest brane configurations
of string theory. In particular, we will discuss the fundamental string solution (or
F1), the solitonic Neveu-Schwarz 5-brane solution (or NS5) and the so-called Dp-
branes in a flat ten-dimensional spacetime. We will not discuss branes in curved
backgrounds and we will limit our considerations to the branes of type II string
theories. A more extensive and complete discussion can be found, for example,
in [4, 17, 18].

2.1 The superstring effective actions of type II

The various branes in which we are interested are classical solutions of the
field equations that arise from the low-energy string effective actions of type II.
Type I string theories can be divided into two: type IIA and type IIB. Both are
defined in ten dimensions and have 32 real supercharges corresponding to� = 2
supersymmetry in d = 10. In type IIA the two supersymmetries have opposite
chirality, while in type IIB they have the same chirality.

2.1.1 Type IIA

The massless bosonic content of the type IIA string theory consists of a graviton
Gµν ,1 an antisymmetric two-index tensor B(2)µν (also called the Kalb–Ramond
field) and a dilaton φ from the Neveu-Schwarz–Neveu-Schwarz sector (NS–NS),
a vector C(1)µ and an antisymmetric three-index tensor C(3)µνρ from the Ramond–
Ramond sector (R–R). These fields correspond to a total of 128 physical degrees
of freedom, of which 35 are associated with the graviton, 28 with the two-form

1 Our conventions for indices, forms and Hodge duals are the following: µ, ν, · · · = 0, . . . , 9,
signature (−,+9), ε0...9 = −ε0...9 = +1, ω(n) = 1

n!ωµ1...µn dxµ1 ∧ · · · ∧ dxµn , and ∗ω(n) =√− detG
n!(10−n)! εν1...ν10−nµ1...µnω

µ1...µn dxν1 ∧ · · · ∧ dxν10−n .

6



The superstring effective actions of type II 7

B(2), one with the dilaton, eight with the one-formC(1) and 56 with the three-form
C(3).

The dynamics of these fields is described by the following action (in the
string frame):

SIIA = 1

2κ2
10

{ ∫
d10x e−2φ

√− detGR(G)

+
∫
[e−2φ(4dφ ∧ ∗dφ − 1

2H
(3) ∧ ∗H (3))− 1

2 F
(2) ∧ ∗F (2)

− 1
2 F̃

(4) ∧ ∗ F̃ (4) − 1
2 B

(2) ∧ F (4) ∧ F (4)]
}
. (2.1)

In this expression κ10 is the gravitational coupling constant in ten dimensions
given by

κ10 = 8π7/2α′2gs (2.2)

where
√
α′ is the fundamental string length and gs is the string coupling constant

which is related to the vacuum expectation value of the dilaton according to
gs = 〈eφ〉.2 Furthermore,

H (3) = dB(2) F (2) = dC(1) F (4) = dC(3)

F̃ (4) = F (4) + C(1) ∧ H (3). (2.3)

The action in (2.1) is the truncation to the purely bosonic sector of the type IIA
supergravity action. It is interesting to observe that all the terms arising from the
NS–NS sector are multiplied by a factor of e−2φ , while the terms arising from
the R–R sector do not contain any coupling with the dilaton. This is a distinctive
feature of the so-called string frame, the one in which the action (2.1) is written.
In order to remove the dilaton factor from the curvature term and to avoid mixed
graviton–dilaton propagators, it is convenient to rewrite the action in the more
conventional Einstein frame. This is achieved simply by means of the following
redefinition of the metric tensor

Gµν(string frame) = eφ/2gµν(Einstein frame). (2.4)

Using this relation and after some straightforward algebra, one finds that the
effective action of the type IIA string in the Einstein frame is

SIIA = 1

2κ2
10

{ ∫
d10x

√− det gR(g)

− 1
2

∫
[dφ ∧ ∗dφ + e−φH (3) ∧ ∗H (3) + e+

3
2φF (2) ∧ ∗F (2)

+ e+
1
2φ F̃ (4) ∧ ∗ F̃ (4) + B(2) ∧ F (4) ∧ F (4)]

}
. (2.5)

2 By explicitly including the string coupling constant in the definition of κ10 we implicitly declare
that the field φ that appears in the action (2.1) represents only the fluctuation of the dilaton around its
vacuum expectation value.



8 Branes in string theory

In this frame the curvature term has the standard form of the Einstein–Hilbert
action and the dilaton field also has a canonical normalization factor of − 1

2 . The
price one has to pay for this is the appearance of non-vanishing couplings between
the various antisymmetric tensors and the dilaton. The difference between the
antisymmetric tensor of the NS–NS sector and those of the R–R sector is now in
the sign of the dilaton exponent, which is negative for the former and positive for
the latter.

2.1.2 Type IIB

The massless bosonic content of the chiral type IIB superstring consists of a
graviton Gµν , an antisymmetric two-index tensor B(2)µν , a dilaton φ from the NS–
NS sector (which is the same as in the type IIA case), a zero-form C(0), a 2-form
C(2) and a four-form C(4) with a self-dual field strength from the R–R sector.
These fields again correspond to a total of 128 physical degrees of freedom, of
which 35 are associated with the graviton, 28 with the 2-form B(2), one with the
dilaton, one with the zero-form C(0), 28 with the 2-form C(2) and 35 with the
four-form C(4).

In the string frame the effective action of the type IIB string can be written
as

SIIB = 1

2κ2
10

{ ∫
d10x e−2φ

√− detGR(G)

+
∫
[e−2φ(4dφ ∧ ∗dφ − 1

2H
(3) ∧ ∗H (3))− 1

2 F
(1) ∧ ∗F (1)

− 1
2 F̃

(3) ∧ ∗ F̃ (3) − 1
4 F̃

(5) ∧ ∗ F̃ (5) − 1
2C

(4) ∧ H (3) ∧ F (3)]
}

(2.6)

where

H(3) = dB(2) F(1) = dC(0) F(3) = dC(2) F(5) = dC(4) (2.7)

and
F̃(3) = F(3) + C(0) ∧ H(3) F̃(5) = F(5) + C(2) ∧ H(3). (2.8)

The gravitational coupling constant κ10 is defined in (2.2).
The structure of the type IIB action (2.6) is very similar to that in type IIA

theory (see equation (2.1)), the only difference being in the field content of the
R–R sector. We note that the self-duality constraint

∗ F̃ (5) = F̃ (5) (2.9)

has to be imposed only at the level of the field equations and not inside the action.
In other words, the field equations that follow from (2.6) are consistent with the
self-duality of F̃ (5) but they do not imply it. Therefore, this condition has to be
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imposed as an extra condition on the solutions of the field equations. Clearly this
procedure is satisfactory only at the classical level and a more careful treatment
is needed at the quantum level.

By rescaling the metric according to (2.4), we can rewrite the effective action
of the type IIB theory in the Einstein frame, where it becomes

SIIB = 1

2κ2
10

{∫
d10x

√− det gR(g)

− 1
2

∫
[dφ ∧ ∗dφ + e−φH (3) ∧ ∗H (3) + e+2φF (1) ∧ ∗F (1)

+ e+φ F̃ (3) ∧ ∗ F̃ (3) + 1
2 F̃

(5) ∧ ∗ F̃ (5) + C(4) ∧ H (3) ∧ F (3)]
}
. (2.10)

As in type IIA theory, the type IIB effective action in the Einstein frame also has
non-trivial exponential couplings between the dilaton and antisymmetric tensors;
as before the sign in the dilaton exponent is negative for the NS–NS 2-form and
positive for the forms of the R–R sector. Note, however, that there is no dilaton
coupling associated with the four-form of the R–R sector.

The action (2.10) possesses an amusing SL(2,R) symmetry, which is
manifested [19] if we introduce the complex scalar field

τ = C(0) + ie−φ (2.11)

a 2× 2 matrix

� = 1

Im τ

( |τ |2 −Re τ
−Re τ 1

)
= eφ

(|λ|2 χ

χ 1

)
(2.12)

and assemble the two three-forms H (3) and F (3) into a doublet as follows

�(3) =
(
H (3)

F (3)

)
. (2.13)

In fact, using these definitions, the action (2.10) can be rewritten in the following
way:

SIIB = 1

2κ2
10

{∫
d10x

√− det g

[
R(g)+ 1

4
Tr(∂µ�∂

µ
�

−1)

]
− 1

2

∫
[� (3)i �

i j ∧ ∗
�
(3)
j + 1

2 F̃
(5) ∧ ∗ F̃ (5)

+ 1
2ε

i j C(4) ∧ � (3)i ∧� (3)j ]
}

(2.14)

with i, j = 1, 2 and thus, it is not difficult to check that this expression is invariant
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under the following SL(2,R) transformations:

�→�
′ = ���t (2.15)

�
(3) → �

(3)′ = (�t)−1
�
(3) (2.16)

gµν → g′µν = gµν (2.17)

C(4) → C(4)
′ = C(4) (2.18)

where

� =
(
a b
c d

)
ad − bc = 1 (2.19)

is an SL(2,R) matrix. Note that transformation (2.15) can also be written in a
rational form as

τ → τ ′ = aτ + b

cτ + d
. (2.20)

Let us now consider the particular SL(2,R) matrix

�0 =
(

0 1
−1 0

)
(2.21)

and for simplicity, but without loss of generality, put C(0) = 0. Then, from (2.15)
(or equivalently from (2.20)) we can see that, under a �0 transformation,

�|C (0) =
(

e−φ 0
0 eφ

)
→�

′|C (0) =
(

eφ 0
0 e−φ

)
(2.22)

i.e.
φ→−φ (2.23)

furthermore from (2.16) we can see that(
H (3)

F (3)

)
→
(
F (3)

−H (3)
)
. (2.24)

This is a very interesting result: in fact, under a �0 transformation the two
type IIB two-forms exchange roles and the dilaton changes sign. Since, as we
mentioned earlier, the vacuum expectation value of the dilaton is related to the
string coupling constant, we can see that (2.23) implies

gs = 〈eφ〉 → 〈e−φ〉 = 1

gs
. (2.25)

This is a weak/strong coupling duality, called an S duality, which is a symmetry
of the effective action of the type IIB superstring. There is much of evidence that
this duality is, in fact, a true symmetry of the full type IIB superstring theory and
not just of its low-energy effective action (see, for example, [3]).
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2.2 General construction

Let us now consider a truncation of the (bosonic) supergravity action (2.5) or
(2.10) that contains only

• the metric gµν ,
• the dilaton φ and
• one of the antisymmetric tensors, say the (p + 1)-form potential.

It can be easily shown that this is a consistent truncation, in the sense that the
fields that are retained are not sources for the fields that are eliminated [4, 17]. In
view of this fact, therefore we can safely consider the following truncated action:

Sn = 1

2κ2
10

{∫
d10x

√− det gR(g)− 1

2

∫
[dφ ∧ ∗dφ + e−aφF (n) ∧ ∗F (n)]

}
(2.26)

where F (n) is the field strength of the antisymmetric potential we have chosen
(where, of course, n = p + 2) and a is a coefficient that we can read from action
(2.5) or (2.10). In particular, we see that

• if the chosen potential is the antisymmetric tensor of B(2) the NS–NS sector,
then p = 1, n = 3 and a = 1; and

• if the chosen potential is one of the antisymmetric tensors of the R–R sector
C(p+1), then n = p + 2 and a = (p − 3)/2, where p = 0, 2, . . . in type IIA
theory and p = −1, 1, 3, . . . in type IIB theory.

From action (2.26) we can easily obtain the classical field equations. For the
dilaton we have

1√− det g
∂µ

(√− det ggµν∂νφ
)
= − a

2n!e
−aφF2

(n) (2.27)

for the antisymmetric potential we have

∂ν

(√− det ge−aφF (n)νµ1...µn−1
)
= 0 (2.28)

and, finally, for the metric we have the Einstein equation

Rµν − 1
2gµνR = Tµν (2.29)

where the energy–momentum tensor Tµν is given by

Tµν = 1

2
∂µφ∂νφ + 1

2(n − 1)!e
−aφ

(
F (n)µ...F

(n)ν... − n − 1

8n
F(n)

2
)
. (2.30)

Our goal is to find solutions of these equations that represent (classical)
extended objects with p spatial dimensions. To simplify things we make the
following ansatz:
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• we require Poincaré invariance in the (p + 1) longitudinal directions; and
• we require rotational invariance in the remaining (9 − p) transverse

directions.

In other words we require the solution to possess the following symmetry:

ISO(1, p)⊗ SO(9− p) (2.31)

and accordingly, we split the spacetime coordinates {xµ} into the longitudinal
ones, denoted by {xa} with a = 0, 1, . . . , p and the transverse ones, denoted by
{yi } with i = p + 1, . . . , 9. A metric that is compatible with these requirements,
then has the following form:

ds2 = e2A(r) dxa dxb ηab + e2B(r) dyi dy j δi j (2.32)

where A and B are functions only of the radial coordinate r = √
yi yi in the

transverse space. For the dilaton we can simply take

φ = f (r) (2.33)

while for the antisymmetric tensor we posit

C(p+1)
01...p = eC(r) − 1. (2.34)

The so-far arbitrary functions A(r), B(r), C(r) and f (r) are then uniquely
determined by inserting the ansatz into (2.27)–(2.29) and solving the resulting
differential equations (see, for example, [4, 17, 18] for details). It is worth
mentioning that the ansatz (2.34) on the antisymmetric potential is of electric
type. In fact, the corresponding field strength is

F (n)i01...p ∼ ∂iC(r)eC(r)

which indeed describes an ‘electric’ configuration. However, one can also make
a magnetic ansatz on the antisymmetric potential, which actually amounts to
making an electric ansatz on the dual field strength. In other words, in the
magnetic case one requires the ten-dimensional Hodge dual of F (n), i.e. the
(10−n)-form ∗F (n), to be of electric type. Note that the potential associated with
an electric field strength ∗F (n) is a (7 − p)-form, which naturally couples with
an extended object with (6 − p) spatial dimensions. Therefore, we can conclude
that in the ten-dimensional spacetime where the superstring theory is defined, a
p-brane and a (6 − p)-brane are ‘electromagnetically’ dual to each other. This
is a straightforward generalization of the familiar four-dimensional case, where
instead the elementary electric charge and its dual magnetic monopole are both
point-like.



Explicit solutions 13

2.3 Explicit solutions

We are now going to present the explicit form of the solution to the supergravity
field equations in three specific cases: the fundamental string (F1), the solitonic
Neveu-Schwarz 5-brane (NS5) and the Dp-branes.

2.3.1 Fundamental string

The simplest brane configuration is the fundamental string, which is the classical
solution of the supergravity field equations (2.27)–(2.29) that is electrically
charged under the 2-form B(2) of the NS–NS sector. We therefore look for a one-
dimensional extended object, i.e. a string.3 Therefore, according to our previous
discussion, in this case we must set p = 1 and split the ten spacetime coordinates
as follows

x0, x1 longitudinal coordinates

y2, . . . , y9 transverse coordinates.

By explicitly solving the classical field equations in this case, one can obtain the
following results:

ds2 = H (r)−3/4(dxa dxb ηab)+ H (r)1/4(dyi dy j δi j ) (2.35)

eφ = H (r)−1/2 (2.36)

B(2) = (H (r)−1 − 1) dx0 ∧ dx1 (2.37)

where the warp factor is given by

H (r) = 1+ L6

r6
(2.38)

with r =
√
yi y jδi j being the radial coordinate in the transverse space and the

length L being defined by

L6 = κ2
10

6�7

1

πα′
. (2.39)

In this expression we have denoted by �n the area of the unit n-dimensional
sphere Sn , i.e.

�n = 2π(n+1)/2

�

(
n + 1

2

) . (2.40)

Using (2.2) and recalling that
√
α′ is the fundamental length of the string, it is easy

to check that indeed the quantity L defined in (2.39) has the correct dimension of
a length.
3 Since the 2-form B(2) is common to both type IIA and type IIB the string we seek exists in both
theories.
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We note that (2.35) is the metric in the Einstein frame of a string electrically
charged under the NS–NS 2-form B(2). In the string frame, however, the metric
of this string configuration becomes

ds2 = H (r)−1(dxa dxb ηab)+ (dyi dy j δi j ) (2.41)

while all other fields remain as before. From this result, it is possible to compute
the tension M1 of this string and its ‘electric’ charge Qel under B(2). The tension,
measured in string frame units, can be simply read from the warp factor H (r),
which essentially represents the gravitational potential produced by the string.
More precisely, M1 is the coefficient of the combination 2κ2

10/(6�7) that plays
the role of Newton’s constant in this case. Thus, from (2.38) and (2.39), we
obtain

M1 = 1

2πα′
(2.42)

which is also the tension of the elementary string that gives rise to the supergravity
effective theory. For this reason, the one-dimensional extended configuration
described earlier is called the fundamental string (or F1-brane). The ‘electric’
charge Qel of the fundamental string under B(2) can be simply obtained by
applying Gauss’s law, which in this case leads to

Qel = 1

2κ2
10

∫
S7

∗dB(2) = 1

2πα′
. (2.43)

It is important to observe that the tension and charge are related to one another
and, in fact, in our normalizations they are equal, namely

M1 = Qel. (2.44)

This relation is not a coincidence but is a consequence of the so-called BPS
property of the fundamental string, namely the fact that one-half of the 32
supersymmetries of the type II superstring are preserved by this solution. The
BPS relation (2.44) also implies that the attractive gravitational force between two
such fundamental strings is exactly balanced by the repulsive Coulomb force they
experience; this precise cancellation of forces implies that these extended objects
do not interact and can be safely piled on top of each other to form macroscopic
configurations with small curvatures.

2.3.2 NS 5-brane

The NS 5-brane is the magnetic dual of the fundamental string considered in
the previous section. Therefore it describes an extended object with five spatial
dimensions. According to our general discussion, we must split the ten spacetime
coordinates as follows:

x0, x1, . . . , x5 longitudinal coordinates

y6, . . . , y9 transverse coordinates
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Then, by explicitly solving the classical field equations in this case, one obtains
the following results:

ds2 = H (r)−1/4(dxa dxb ηab)+ H (r)3/4(dyi dy j δi j ) (2.45)

eφ = H (r)1/2 (2.46)

(dB(2))i j k = εi j k�∂�H (r) (2.47)

where the warp factor is given by

H (r) = 1+ L2

r2
(2.48)

with r =
√
yi y jδi j being, as usual, the radial coordinate in the transverse space

and the length L being defined by

L2 = 2π2α′

�3
. (2.49)

We note that (2.45) is the metric in the Einstein frame of a 5-brane magnetically
charged under the NS–NS 2-form B(2). In the string frame, the metric of this
configuration becomes

ds2 = (dxa dxb ηab)+ H (r)(dyi dy j δi j ) (2.50)

while all other fields remain as before. It is interesting to observe that in the
string frame the longitudinal world-volume of the NS 5-brane is flat and only the
transverse directions are warped. This is exactly the opposite of what happens in
the dual fundamental string solution (2.41), where the longitudinal spacetime is
warped and the transverse space is flat. Note also that the dilaton in the NS 5-brane
is opposite with respect to the dilaton of the F1 solution (compare equation (2.46)
with equation (2.36)).

From the explicit form (2.50) of the metric in the string frame, we can now
deduce the tension M5 of this 5-brane and its ‘magnetic’ charge Qmagn under
B(2). As before, the tension M5, measured in string frame units, can be simply
read from the warp factor H (r) given in (2.48); in particular, M5 is the coefficient
in L2 of the combination 2κ2

10/(2�3) that plays the role of Newton’s constant in
this case. Thus, from (2.48) and (2.49), we obtain

M5 = 2π2α′

κ2
10

∼ 1

g2
s
. (2.51)

Note that, contrary to what happened for the fundamental string, in this case
the tension clearly displays a non-perturbative behaviour, since it varies with the
inverse square of the coupling constant. This is the typical behaviour of a solitonic
configuration in field theory and, for this reason, the NS 5-brane solution is also
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known as the solitonic brane. The ‘magnetic’ charge Qmagn of the NS 5-brane
can be simply obtained by applying Gauss’s law (for the magnetic field) which,
in this case, leads to

Qmagn = 1

2κ2
10

∫
S3

dB(2) = 2π2α′

κ2
10

. (2.52)

As in the fundamental string, now we also find that the tension and the charge are
related to one another according to the BPS relation

M5 = Qmagn (2.53)

implying again that half of the 32 supersymmetries of the type II theory are
preserved by the solitonic 5-brane solution.

2.3.3 D p-branes

In some sense the so-called D-branes are the most interesting and intriguing
configurations of string theory. They are non-trivial solutions of the supergravity
field equations of type IIA or IIB that are charged under one of the antisymmetric
potentials of the R–R sector. It has been well known for a long time that
no perturbative configuration of string theory can carry charge under the R–R
potentials and thus the discovery of D-branes has represented a remarkable
breakthrough in our understanding of string theory and, in particular, of its non-
perturbative features. From the point of view of supergravity, the D-branes
are very similar to the other brane-solutions we discussed earlier, the relevant
differences being in the type of antisymmetric tensor that is switched on and in
their space dimensions. However, from a string-theory point of view they are
drastically different. Indeed, a Dp-brane is a (p + 1)-extended object in the ten-
dimensional spacetime defined by the distinctive property that open strings can
terminate on it [5, 6]. In other words, a Dp-brane is a hypersurface spanned
by open strings with Dirichlet boundary conditions in the (9 − p) transverse
directions. Since the role of Dirichlet boundary conditions is crucial in this case,
these branes have been called Dirichlet branes or simply D-branes.

Let us now present the explicit form of the Dp-brane solution with p even in
type IIA and odd in type IIB. According to our general discussion, to describe a
(p + 1)-dimensional extended object we first split the ten spacetime coordinates
as follows:

x0, x1, . . . , x p longitudinal coordinates

y p+1, . . . , y9 transverse coordinates

and then solve the supergravity field equations (2.27)–(2.29) using the ansatz
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(2.32)–(2.34). In this way one can obtain the following results:

ds2 = H (r)−(7−p)/8(dxa dxb ηab)+ H (r)(p+1)/8(dyi dy j δi j ) (2.54)

eφ = H (r)(3−p)/4 (2.55)

C(p+1) = (H (r)−1 − 1) dx0 ∧ . . . ∧ dx p (2.56)

where the warp factor is given by

H (r) = 1+ L7−p

r7−p (2.57)

with r =
√
yi y jδi j being the radial coordinate in the transverse space and the

length L being defined by

L7−p = 2κ10

(7− p)�8−p
(
√
π(2π

√
α′)3−p). (2.58)

We note that (2.54) is the metric in the Einstein frame of a p-brane that is
electrically charged under the (p + 1)-form potential of the R–R sector. In the
string frame, the metric of this configuration becomes

ds2 = H (r)−1/2(dxa dxb ηab)+ H (r)1/2(dyi dy j δi j ) (2.59)

while all other fields remain as before. From this form we can see that the D-
branes are somehow intermediate configurations between the fundamental string
and the solitonic 5-brane. In fact, in the metric (2.59) both the longitudinal and
transverse directions are warped (with inverse factors); this is to be contrasted
with the metric of the fundamental string (2.41) where only the longitudinal
directions are warped and with the one of the solitonic 5-brane (2.50) where only
the transverse directions are warped. Later on we will see that the D-branes are
intermediate configurations in another sense.

From the explicit solution (2.54)–(2.56), it is possible to compute the tension
Mp of the p-brane and its ‘electric’ charge Qp under C(p+1). As in the cases
examined in the previous sections, the tension Mp , measured in string frame
units, can be simply read from the warp factor H (r) (2.57), which essentially
represents the gravitational potential produced by brane. More precisely, Mp

is the coefficient of the combination 2κ2
10/((7 − p)�8−p) that plays the role of

Newton’s constant in this case. Thus, from (2.57) and (2.58), we obtain [5]

Mp =
√
π(2π

√
α′)3−p

κ10
∼ 1

gs
. (2.60)

This result clearly indicates that these Dp-branes are non-perturbative
configurations of string theory; however, they are of a non-standard type since
their tension scales with the inverse power of the coupling constant, while typical
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solitonic solutions are characterized instead by the inverse square of coupling
constant (see, for example, equation (2.51)). Thus, from this point of view
also we can say that the D-branes are somehow intermediate configurations
between the (perturbative) fundamental string and the solitonic 5-brane. It is
essentially for this reason that the D-branes can be studied in a very explicit way
by means of open strings (with Dirichlet boundary conditions); and in fact they
are extremely powerful tools that allow us to obtain precise information on some
non-perturbative features of string theory.

Finally, let us compute the ‘electric’ charge Qp of the Dp-brane under the
R–R potential C(p+1). This can be simply obtained by applying Gauss’s law
which, in this case, leads to

Qp = 1

2κ2
10

∫
S8−p

∗dC(p+1) =
√
π(2π

√
α′)3−p

κ10
. (2.61)

Comparing with (2.60), we can see that for the Dp-brane solution also we have
the BPS relation

Mp = Qp . (2.62)

This is a signal of the fact that one-half of the 32 supersymmetries of type II
theory are preserved by the Dp-brane, or, put differently, that there is an exact
cancellation between the attractive force of the NS–NS fields due to the tension
Mp , and the repulsive Coulomb-like force of the R–R potential due to the charge
Qp .

We conclude this section by observing that from the explicit expression
(2.61) we have

2κ2
10 Qp Q6−p = 2π. (2.63)

This is a generalization of Dirac’s quantization condition of the electric charge
(suitably written for the type II string effective actions with coupling constant
2κ2

10), from which we can deduce that a Dp-brane and a D(6 − p)-brane are
electromagnetically dual to each other.

2.3.4 The geometry of the D3-brane of type IIB

In this section we recall some peculiar features of the spacetime geometry
produced by the D3-branes of type IIB, which in the last few years have been
extensively used in the so-called AdS/CFT correspondence [14–16]. Specializing
the explicit solution (2.54)–(2.56) to the case p = 3, and considering a stack of
N coincident D3 branes, we have

ds2 = H (r)−1/2(dxa dxb ηab)+ H (r)1/2(dyi dy j δi j ) (2.64)

eφ = 1 (2.65)

C(4) = (H (r)−1 − 1) dx0 ∧ . . . ∧ dx3 (2.66)
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where the longitudinal coordinates are labelled by a, b = 0, . . . , 3, the transverse
coordinates by i, j = 4, . . . , 9, and the warp factor is given by

H (r) = 1+ L4

r4 (2.67)

with r =
√
yi y jδi j being the radial coordinate in the transverse space and the

length L being defined by

L4 = N
2κ10

√
π

4�5
= 4πNgsα′2. (2.68)

Note that since the dilaton is zero in the D3-brane solution, there is no difference
between the Einstein frame and the string frame. As we mentioned before, due to
the BPS no-force condition (2.62), the D3-branes can be piled up on top of each
other to form a ‘macroscopic’ configuration; therefore, the potential produced by
a stack of N coincident branes is simply N times the potential produced by a
single brane. This explains the factor of N in (2.68).

Let us now consider the detailed form of the metric (2.64) at distances
r � L, i.e. far away from the branes. In this region the harmonic function H (r)
in equation (2.67) can be approximated to one, so that the metric reduces to that
of the flat ten-dimensional Minkowski spacetime. This is not unexpected since
normally any field dies off at infinity, i.e. far away from its source. If we include
the first-order correction, the flat geometry is modified by small terms which can
be studied by standard perturbative methods, including string theory calculations
of graviton scattering amplitudes.

Near the branes, i.e. for r � L, we have a very different scenario. In
this region in fact, we can neglect the one in the harmonic function H (r) of
equation (2.67), so that the metric reduces to

ds2 

(
r2

L2

)
dxa dxb ηab +

(
L2

r2

)
dyi dy j δi j . (2.69)

If we introduce spherical coordinates in the transverse space and write

dyi dy j δi j = dr2 + r2 d�2
5 (2.70)

where d�2
5 is the metric of a unit 5-sphere S5, we can easily see that

equation (2.69) becomes

ds2 

[(

r2

L2

)
dxa dxb ηab +

(
L2

r2

)
dr2

]
+ L2 d�2

5. (2.71)

Moreover, if we define z = L2/r , the part of the previous metric in square
brackets can be rewritten as(

L2

z2

)
(dxa dxb ηab + dz2). (2.72)
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This is one of the standard forms in which the metric of a five-dimensional
anti-de Sitter spacetime of radius L is usually written. Therefore, at distances
r � L the geometry produced by N D3-branes appears as the product of a five-
dimensional anti-de Sitter spacetime AdS5 times a five-dimensional sphere S5,
both with radius L.

In view of this analysis, we can say that the D3-branes of type IIB string
theory are classical non-perturbative solutions that interpolate between

• the flat Minkowski spacetime in ten dimensions for r � L

and

• the AdS5 × S5 spacetime for r � L.

Note that in the asymptotic region r � L, the ten spacetime coordinates are
naturally split into 4 + 6, as it is appropriate for a D3-brane, while in the near
brane region they are split into 5+ 5, since the radial coordinate r (or the closely
related z coordinate) ‘transmigrates’ to join the longitudinal parameters.

The peculiar geometry of the AdS5 × S5 spacetime has been intensively
investigated in recent years in the light of Maldacena’s celebrated conjecture
[14, 15], which states that the type IIB string in an AdS5 × S5 background is

dual to the � = 4 superconformal Yang–Mills theory in a flat four-dimensional
Minkowski spacetime in the strong coupling limit. This remarkable duality, which
has been successfully tested in numerous examples, allows us to perform classical
(super)gravity calculations in an AdS5× S5 spacetime in order to obtain quantum
results for the dual four-dimensional Yang–Mills theory in the strong coupling
regime. Analysis of this gauge/gravity correspondence, of its applications and
extensions is well beyond the purpose of these lectures and thus we simply refer
to the existing reviews on this subject [16].



Chapter 3

The boundary state description of D-branes

As we mentioned in the introduction, the D-branes are characterized by the fact
that open strings can end on them. Thus, a Dp-brane is a (p + 1)-dimensional
hyperplane spanned by open strings which have the standard Neumann boundary
conditions in the (p+1) longitudinal directions and Dirichlet boundary conditions
in the remaining (9 − p) transverse directions. In this chapter we are going to
present an alternative (though completely equivalent) description based instead on
closed strings which are emitted (or absorbed) by world-sheets with boundaries
on which the string coordinates obey the appropriate boundary conditions. As
we shall see, this description based on the use of the so-called boundary state
turns out to be extremely useful for practical applications; moreover it allows us
to establish a very clear relation between the stringy description of D-branes to
the supergravity description presented in the previous chapter. A more extensive
review of this boundary state approach to the D-branes can be found, for example,
in [13], while the standard description based on the use of open strings with
Dirichlet boundary conditions can be found in the reviews in [6].

3.1 The boundary state with an external field

In the closed string operator formalism the supersymmetric Dp-branes of type II
theories are described by means of boundary states |B〉 [8, 9, 20]. These are
closed string states which insert a boundary on the world-sheet and enforce the
appropriate boundary conditions on it. Both in the NS–NS and R–R sectors, there
are two possible implementations for the boundary conditions of a Dp-brane
which correspond to two boundary states |B, η〉, with η = ±1. However, only
the combinations

|B〉NS = 1
2 [|B,+〉NS − |B,−〉NS] (3.1)

and

|B〉R = 1
2 [|B,+〉R + |B,−〉R] (3.2)

21
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are selected by the GSO projection in the NS–NS and R–R sectors respectively.
As discussed in [11], the boundary state |B, η〉 is the product of a matter part and
a ghost part:

|B, η〉 = 1
2Tp|Bmat, η〉|Bg, η〉 (3.3)

where
|Bmat, η〉 = |BX 〉|Bψ, η〉 |Bg, η〉 = |Bgh〉|Bsgh, η〉. (3.4)

The overall normalization Tp can be unambiguously fixed from the factorization
of amplitudes of closed strings emitted from a disc [10, 21] and is the brane
tension [6] in units of the ten-dimensional gravitational coupling constant (see
equation (2.60)), namely

Tp = √
π
(

2π
√
α′
)3−p

. (3.5)

The explicit expressions of the various components of |B〉 have been given in [11]
in the simplest case of a static D-brane. However, the operator structure of
the boundary state does not change even when more general configurations are
considered and is always of the form

|BX 〉 = exp

[
−

∞∑
n=1

1

n
α−n · S · α̃−n

]
|BX 〉(0) (3.6)

and

|Bψ, η〉NS = −i exp

[
iη

∞∑
m=1/2

ψ−m · S · ψ̃−m
]
|0〉 (3.7)

for the NS–NS sector, and

|Bψ, η〉R = − exp

[
iη

∞∑
m=1

ψ−m · S · ψ̃−m
]
|B, η〉(0)R (3.8)

for the R–R sector. The matrix S and the zero-mode contributions |BX 〉(0)
and |B, η〉(0)R encode all information about the overlap equations that the string
coordinates have to satisfy, which in turn depend on the boundary conditions of
the open strings ending on the Dp-brane. Since the ghost and superghost fields
are not affected by the type of boundary conditions that are imposed, the ghost
part of the boundary state is always the same. Its explicit expression can be found
in [11] but we do not write it again here since it will not play any significant role in
our present discussion. However, we would like to recall that the boundary state
must be written in the (−1,−1) superghost picture in the NS–NS sector and in the
asymmetric (−1/2,−3/2) picture in the R–R in order to saturate the superghost
number anomaly of the disc [11, 22].
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When a constant gauge field F is present on the D-brane world-volume, the
overlap conditions that the boundary state must satisfy are [8]

{(1l+ F̂)abα
b
n + (1l− F̂)abα̃

b−n}|BX 〉 = 0

{αin − α̃i−n}|BX 〉 = 0 (3.9)

for the bosonic part and

{(1l+ F̂)abψ
b
m − iη(1l− F̂)abψ̃

b−m}|Bψ, η〉 = 0

{ψ i
m + iηψ̃ i−m}|Bψ, η〉 = 0 (3.10)

for the fermionic part. In these equations, the indices a, b, . . . label the world-
volume directions 0, 1, . . . , p along which the Dp-brane extends, while the latin
indices i, j, . . . label the transverse directions p + 1, . . . , 9; moreover F̂ =
2πα′F . These equations are solved by the ‘coherent states’ (3.6)–(3.8) with a
matrix S given by

Sµν = ([(η − F̂)(η + F̂)−1]ab; −δi j ) (3.11)

and with the zero-mode parts given by

|BX 〉(0) =
√
− det(η + F̂) δ(9−p)(qi − yi)

9∏
µ=0

|kµ = 0〉 (3.12)

for the bosonic sector and by

|Bψ, η〉(0)R =
(
C�0�1 . . . � p

1+ iη�11

1+ iη
U

)
AB
|A〉|B̃〉 (3.13)

for the R sector. In writing these formulae we have denoted by yi the position of
the D-brane, by C the charge conjugation matrix and by U the following matrix

U = 1√
− det(η + F̂)

; exp

(
−1

2
F̂ab�

a�b
)
; (3.14)

where the symbol ; ; means that one has to expand the exponential and then
antisymmetrize the indices of the �-matrices. Finally, |A〉|B̃〉 stands for the spinor
vacuum of the R–R sector.1 We would like to remark that the overlap equations
(3.9) and (3.10) do not allow us to determine the overall normalization of the
boundary state, and not even to get the Born–Infeld prefactor of equation (3.12).
The latter can be introduced by hand as in [8] but can also be derived by boosting
the boundary state and then performing a T-duality as explicitly shown in [23].

1 For our conventions on �-matrices, spinors etc see, for example, [10, 11].
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We end this chapter with a few comments. If F is an external magnetic
field, the corresponding boundary state describes a stable BPS bound state formed
by a Dp-brane with other lower dimensional D-branes (like, for example, the
Dp-D(p − 2) bound state). This case was explicitly considered in [10] where
the long distance behaviour of the massless fields of these configurations was
determined using the boundary state approach. In contrast, if F is an external
electric field, then the boundary state describes a stable bound state between
a fundamental string and a Dp-brane that preserves one-half of the spacetime
supersymmetries. This kind of bound state denoted by (F,Dp) is a generalization
of the dyonic string configurations of Schwarz [19] which has been studied from
the supergravity point of view in [24] and from the operator formalism point of
view in [12].



Chapter 4

The effective action of D-branes

We now show how the low-energy effective action of a D-brane is related to
the boundary state we have just constructed. As we have mentioned before, the
boundary state is the exact conformal description of a D-brane and therefore it
contains the complete information about the interactions between a D-brane and
the closed strings that propagate in the bulk. In particular, it encodes the couplings
with the bulk massless fields which can be simply obtained by saturating the
boundary state |B〉with the massless states of the closed string spectrum. In order
to find a non-vanishing result, it is necessary to soak up the superghost number
anomaly of the disc and thus, as a consequence of the superghost charge of the
boundary state, we have to use closed string states in the (−1,−1) picture in the
NS–NS sector and states in the asymmetric (− 1

2 ,− 3
2 ) picture in the R–R sector.

In the NS–NS sector, the states that represent the graviton hµν , the dilaton φ
and the Kalb–Ramond antisymmetric tensor Aµν are of the form

εµνψ̃
µ

− 1
2
ψν− 1

2
|k/2〉−1|k̃/2〉−1 (4.1)

with
εµν = hµν hµν = hνµ kµhµν = ηµνhµν = 0 (4.2)

for the graviton,

εµν = φ

2
√

2
(ηµν − kµ�ν − kν�µ) �2 = 0 k · � = 1 (4.3)

for the dilaton and

εµν = 1√
2
Aµν Aµν = −Aνµ kµAµν = 0 (4.4)

for the Kalb–Ramond field. In order to obtain their couplings with the boundary
state it is useful first to compute the quantity

Jµν ≡ −1〈k̃/2| −1〈k/2|ψν1
2
ψ̃
µ
1
2
|B〉NS = −Tp

2
Vp+1

√
− det(η + F̂)Sνµ (4.5)

25
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where Vp+1 is the (infinite) world-volume of the brane; and then to project it onto
the various independent fields using their explicit polarizations. We thus obtain:
for the graviton

Jh ≡ Jµνhµν = −TpVp+1

√
− det(η + F̂)[(η + F̂)−1]abhba (4.6)

where we have used the tracelessness of hµν ; for the dilaton

Jφ ≡ 1

2
√

2
Jµν(ηµν − kµ�ν − kν�µ)φ

= Tp

2
√

2
Vp+1

√
− det(η + F̂)[3− p + Tr(F̂(η + F̂)−1)]φ (4.7)

and, finally, for the Kalb–Ramond field

JA ≡ 1√
2
Jµν Aµν

= − Tp

2
√

2
Vp+1

√
− det(η + F̂)[(η − F̂)(η + F̂)−1]ab Aba

= − Tp√
2
Vp+1

√
− det(η + F̂)[(η + F̂)−1]ab Aba (4.8)

where in the last line we have used the antisymmetry of Aµν .
We now show that the couplings Jh , Jφ and JA are precisely the ones that

are produced by the Dirac–Born–Infeld action which governs the low-energy
dynamics of the D-brane. In the string frame, this action reads as follows

SDBI = − Tp
κ10

∫
Vp+1

dp+1ξ e−φ
√
− det[G +�+ F̂] (4.9)

where κ10 is the gravitational coupling constant defined in equation (2.2), Tp is
the brane tension defined in equation (3.5), and Gab and�ab are, respectively, the
pullbacks of the spacetime metric and of the NS–NS antisymmetric tensor on the
D-brane world-volume.

In order to compare the couplings described by this action with the ones
obtained from the boundary state, it is first necessary to rewrite SDBI in the
Einstein frame. In fact, like any string amplitude computed with the operator
formalism, also the couplings Jh , Jφ and JA are written in the Einstein frame.
Furthermore, it is also convenient to introduce canonically normalized fields.
These two goals can be realized by means of the following field redefinitions

Gµν = eφ/2gµν φ = √
2κ10ϕ �µν =

√
2κ10eφ/2Aµν. (4.10)

Using the new fields in equation (4.9), we easily get

SDBI = − Tp
κ10

∫
Vp+1

dp+1ξ e
− κ10(3−p)

2
√

2
ϕ

√
− det[g +√2κ10A + F̂e

− κ10√
2
ϕ].
(4.11)
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By expanding the metric around the flat background

gµν = ηµν + 2κ10hµν (4.12)

and keeping only the terms which are linear in h, φ and A, the action (4.11)
reduces to the following expression

SDBI 
 − Tp

∫
Vp+1

dp+1ξ

√
− det[η + F̂]

×
{
[(η + F̂)−1]abhba − 1

2
√

2
[3− p + Tr(F̂(η + F̂)−1)]φ

+ 1√
2
[(η + F̂)−1]ab Aba

}
. (4.13)

It is now easy to see that the couplings with the graviton, the dilaton and the
Kalb–Ramond field that can be obtained from this action are exactly the same as
those obtained from the boundary state and given in equations (4.6), (4.7) and
(4.8) respectively.

Let us now turn to the R–R sector. As we mentioned earlier, in this sector
we have to use states in the asymmetric (− 1

2 ,− 3
2 ) picture in order to soak up

the superghost number anomaly of the disc. In the more familiar symmetric
(− 1

2 ,− 1
2 ) picture the massless states are associated to the field strengths of the

R–R potentials. In contrast, in the (− 1
2 ,− 3

2 ) picture the massless states are
associated directly to the R–R potentials which, in form notation, we denote by

C(n) = 1

n!Cµ1...µn dxµ1 ∧ . . . ∧ dxµn (4.14)

with n = 1, 3, 5, 7, 9 in type IIA theory and n = 0, 2, 4, 6, 8, 10 in type IIB
theory. The string states |C(n)〉 representing these potentials have a rather non-
trivial structure. In fact, as shown in [11], the natural expression

|C(n)〉 
 1

n!Cµ1...µn

(
C�µ1...µn

1+ �11

2

)
AB
|A; k/2〉−1/2|B̃; k̃/2〉−3/2 (4.15)

is BRST invariant only if the potential is pure gauge. To avoid this restriction, in
general it is necessary to add to equation (4.15) a whole series of terms with the
same structure but with different contents of superghost zero-modes. However,
in the present situation there exists a short-cut that considerably simplifies the
analysis. In fact, one can use the incomplete states (4.15) and ignore the
superghosts, whose contribution can then be recovered simply by changing at
the end the overall normalizations of the amplitudes.1 Keeping this in mind,
the couplings between the R–R potentials (4.14) and the Dp-brane can therefore

1 Note that this procedure is not allowed when the odd-spin structure contributes, see [11].
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be obtained by computing the overlap between the states (4.15) and the R–R
component of the boundary state, namely

JC (n) ≡ 〈C(n)|B〉R. (4.16)

The evaluation of JC (n) is straightforward, even if a bit lengthy (for details see
[12]); and the final result is

JC(n) = − Tp

16
√

2n!Vp+1Cµ1...µn Tr(�µn ...µ1�0 . . . � p; e−
1
2 F̂ab�

a�b; ). (4.17)

It is easy to realize that the trace in this equation is non-vanishing only if
n = p+1−2�, where � denotes the power of F̂ which is produced by expanding
the exponential term. Due to the antisymmetrization ; ; prescription, the integer
� takes only a finite number of values up to a maximum �max which is p/2 for
the type IIA string and (p + 1)/2 for the type IIB string. The simplest term to
compute, corresponding to � = 0, describes the coupling of the boundary state
with a (p + 1)-form potential of the R–R sector and is given by

JC (p+1) =
√

2Tp
(p + 1)!Vp+1Ca0...apε

a0...ap (4.18)

where εa0...ap is the completely antisymmetric tensor on the D-brane world-
volume. From equation (4.18) we can immediately deduce that the charge µp
of a Dp-brane with respect to the R–R potential C(p+1) is

µp =
√

2Tp (4.19)

in agreement with Polchinski’s original calculation [5].
The next term in the expansion of the exponential of equation (4.17)

corresponds to � = 1 and yields the coupling of the Dp-brane with a (p−1)-form
potential which is given by

JC (p−1) = µp

2(p − 1)!Vp+1Ca0...ap−2 F̂ap−1apε
a0...ap . (4.20)

By proceeding in the same way, one can also easily evaluate the higher-order
terms generated by the exponential which describe the interactions of the D-brane
with potential forms of lower degree. All these couplings can be encoded in the
following Wess–Zumino-like term

SWZ = µp
∫
Vp+1

[ �max∑
�=0

C(p+1−2�) ∧ eF̂
]
p+1

(4.21)

where F̂ = 1
2 F̂ab dξa∧dξb , andC(n) is the pullback of the n-form potential (4.14)

on the D-brane world-volume. The square bracket in equation (4.21) means that in
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expanding the exponential form one has to pick up only the terms of total degree
(p + 1), which are then integrated over the (p + 1)-dimensional world-volume.

In conclusion we have explicitly shown that by projecting the boundary state
|B〉 with an external field onto the massless states of the closed string spectrum,
one can reconstruct the linear part of the low-energy effective action of a Dp-
brane. This is the sum of the Dirac–Born–Infeld part (4.13) and the (anomalous)
Wess–Zumino term (4.21) which are produced, respectively, by the NS–NS and
R–R components of the boundary state.



Chapter 5

Classical D-branes from the boundary state

In this section we are going to show that the boundary state is also a very efficient
tool to obtain the classical solution corresponding to a Dp-brane at long distances.

For simplicity, from now on we will consider only the case of a pure Dp-
brane, with no external gauge field on its world-volume, which is described by a
boundary state like the one given in chapter 3 with F = 0 and a diagonal S matrix
given by

S = (ηab; −δi j ) (5.1)

the procedure can, however, be applied to more general cases, as shown in [12].
To obtain the long-distance behaviour of the fields emitted by a Dp-brane,

one simply adds a closed string propagator D to the boundary state B and then
projects the resulting expression onto the various massless states of the closed
string spectrum. According to this procedure, the long-distance fluctuation of a
field � is then given by

δ� ≡ 〈P(�)|D|B〉 (5.2)

where 〈P(�)| denotes the projector associated to � , i.e. the operator that, when
applied to an arbitrary massless state of the closed string, selects the� component
contained in that state.

Before giving the details of this calculation, we would like to observe that,
since we are not using explicitly the ghost and superghost degrees of freedom, we
must take into account their contribution by shifting appropriately the zero-point
energy and use for the closed string propagator the following expression

D = α′

4π

∫
|z|≤1

d2z

|z|2 z
L0−a z̄ L̃0−a (5.3)

where the operators L0 and L̃0 depend only on the orbital oscillators and the
intercept is a = 1

2 in the NS–NS sector and a = 0 in the R–R sector. Let us
now begin our analysis by studying the projection (5.2) in the NS–NS sector. The

30
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projector operators onto the states of the NS–NS sector can be easily obtained
from equations (4.1)–(4.4) and are

〈P(φ)| = −1�〈k/2| −1〈k/2|ψν1
2
ψ̃
µ
1
2

1√
8
(ηµν − kµ�ν − kν�µ) (5.4)

〈P(h)µν | = −1�〈k/2| −1〈k/2|1
2
(ψν1

2
ψ̃
µ
1
2
+ ψµ1

2
ψ̃ν1

2
)

− 〈P(φ)| 1√
8
(ηµν − kµ�ν − kν�µ) (5.5)

〈P(A)µν | = −1�〈k/2| −1〈k/2| 1√
2
(ψν1

2
ψ̃
µ
1
2
− ψµ1

2
ψ̃ν1

2
). (5.6)

Since they all contain the following structure

−1〈k̃/2| −1〈k/2|ψν1
2
ψ̃
µ
1
2

(5.7)

it is first convenient to compute the matrix element

Tµν ≡ −1〈k̃/2| −1〈k/2|ψν1
2
ψ̃
µ
1
2
|D|B〉NS = −Tp

2

Vp+1

k2⊥
Sνµ (5.8)

where k⊥ is the momentum in the transverse directions which is emitted by
the brane. Note that the matrix Tµν differs from the matrix Jµν defined in
equation (4.5) (computed for vanishing external field F) simply by the factor of
1/k2⊥ coming from the insertion of the propagator.

Using this result and the explicit form of the dilaton projector (5.4), after
some straighforward algebra, we find that the long-distance behaviour of the
dilaton emitted by the Dp-brane is given by

δφ ≡ 〈P(φ)|D|B〉NS = 1

2
√

2
(ηµν − kµ�ν − kν�µ)Tµν. (5.9)

Using the explicit expression for the matrix Tµν we get

δφ = µp Vp+1

k2⊥

3− p

4
(5.10)

where µp is the unit of R–R charge of a Dp-brane defined in equation (4.19).
Similarly, using the projector (5.6) for the antisymmetric Kalb–Ramond field, we
find

δAµν ≡ 〈P(A)µν |D|B〉NS = 1√
2
(Tµν − Tνµ). (5.11)

Since, in our case, the matrix Tµν is symmetric, we immediately conclude that
the Kalb–Ramond field emitted by the pure Dp-brane is identically vanishing.
Finally, using equation (5.5) we find that the components of the metric tensor are

δhµν ≡ 〈P(h)µν |D|B〉NS = 1

2
(Tµν + Tνµ)− δφ

2
√

2
ηµν (5.12)
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which explicitly read:

δh00 = − δh11 = · · · = −δh pp = µp Vp+1

k2⊥

7− p

8
√

2

δh p+1,p+1 = · · · = δh99 = µp Vp+1

k2⊥

p + 1

8
√

2
.

Let us now turn to the R–R sector. In this case, after the insertion of the
closed string propagator, we have to saturate the R–R boundary state (3.2) with
the projector 〈P(C)| on the R–R massless field. Using equation (4.15) one can
show that

〈P(C)µ1...µn
| = −1/2〈B̃, k̃/2| −3/2〈A, k/2|

(
C�µ1...µn

1− �11

2

)
AB

(−1)n

2
√

2
. (5.13)

This calculation is completely analogous to the one described in the previous
section to obtain the couplings of a Dp-brane with the R–R potentials, the only
new feature is the presence of the factor of 1/k2⊥ produced by the closed string
propagator. Due to the structure of the R–R component of the boundary state, it
is not difficult to realize that the only projector of the form (5.13) that can give a
non-vanishing result is the one corresponding to a (p + 1)-form with all indices
along the world-volume directions, and find that its long-distance behaviour is
given by

δC01...p ≡ 〈P(C)01...p|D|B〉R = −µp Vp+1

k2⊥
. (5.14)

We can now rewrite the long-distance behaviour of the massless fields
produced by the brane in a more suggestive way. First of all, we perform a
Fourier transformation to work in configuration space. This is readily computed
by observing that, for p < 7, one has∫

d(p+1)x d(9−p)y eik⊥·y

(7− p)r7−p�8−p
= Vp+1

k2⊥
(5.15)

where �n is the area of a unit n-dimensional sphere defined in equation (2.40)
and the radial coordinate r measures the distance from the branes. For later
convenience, let us introduce the length L defined in equation (2.58) which we
can also write as

L7−p = µp
√

2κ

(7− p)�8−p
. (5.16)

Then, using equation (5.10) and assuming that the dilaton has a vanishing vacuum
expectation value, after some elementary steps, we obtain that the long-distance
behaviour of the dilaton is

φ = √
2κ10ϕ 
 − p − 3

4

L7−p

r7−p . (5.17)
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Since we are going to compare our results with the standard supergravity
description of D-branes described in chapter 2, we have reintroduced the field
φ which differs from the canonically normalized dilaton ϕ by a factor of

√
2κ10

(see also equation (4.10)). Similarly, recalling that gµν = ηµν + 2κ10hµν , from
equation (5.13) we find

g00 = − g11 = · · · = −gpp =
 −1− (p − 7)

8

L7−p

r7−p (5.18)

gp+1,p+1 = · · · = g99 
 1+ p + 1

8

L7−p

r7−p .

Finally, rescaling the R–R potential by a factor of
√

2κ10 to obtain the standard
supergravity normalization we easily get

C(p+1) 
 − L7−p

r7−p dx0 ∧ . . .∧ dx p. (5.19)

Equations (5.17)–(5.19) represent the leading long-distance behaviour of the
massless fields emitted by the Dp-brane. It is reasonable to expect that by
inserting more boundaries on the closed string world-sheet, i.e. by introducing
more boundary states, one can perturbatively reconstruct the exact brane solution
of the supergravity field equations. Actually, this fact has been checked in [25],
even if with a different formalism, and in [26] in the context of the non-BPS
D-branes. We then assume that this is indeed what happens in general so that the
exact solution can be written in terms of powers of the harmonic function

H (r) = 1+ L7−p

r7−p . (5.20)

which exactly agrees with the one defined in equation (2.57). Under this
assumption, from equations (5.17)–(5.19) we can infer that, in the exact solution
corresponding to a Dp-brane, the dilaton is

eφ = H (3−p)/4 (5.21)

the metric is

ds2 = H (p−7)/8[−(dx0)2 + (dx1)2 + · · · + (dx p)2]
+ H (p+1)/8[(dx p+1)2 + · · · + (dx9)2] (5.22)

and finally the R–R potential is

C(p+1) = (H−1 − 1) dx0 ∧ . . . ∧ dx p. (5.23)

In writing this solution we have assumed that all fields except the metric have
vanishing asymptotic values. This explains why we have subtracted the one in
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the last three equations. The solution obtained from the boundary state exactly
agrees with the one derived in chapter 2 by solving the classical supergravity field
equations (see equations (2.54)–(2.56)).

We can, therefore, conclude that the boundary state provides the complete
conformal description of the D-branes of string theory; in fact it generates the
correct D-brane effective action and reduces to the classical D-brane solution
when it is projected onto the massless states of the closed string spectrum.
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6.1 Introduction

Two-dimensional conformal field theory (CFT) on open and unoriented surfaces
is not a recent discovery. Its systematic study began in two seemingly different
developments. On the one hand, the implications of the presence of a boundary
in two-dimensional systems and the corresponding boundary conditions and
boundary fields were first analysed by Cardy [1] and further in [2, 3]. On the
other hand, a general prescription for the systematic construction of open and
unoriented string models from a given closed oriented string model was proposed
by Sagnotti [4] and further elaborated in [5, 6]. However, it was only after the
discovery of D-branes [7] that the topic attracted so much attention and a huge
number of different models have been explicitly constructed (any list will be
incomplete). A parallel development was the study of the general consistency
conditions for the models and, in particular, of the compatibility conditions
between the Klein bottle projection and the annulus partition function embodied
by the Möbius strip projection. As often in two-dimensional conformal theories
a rational completely solved model like the SU(2) Wess–Zumino–Witten model
provided a good playground for such an analysis and exhibited three interesting
properties:

• for the diagonal models there is a standard solution which extends the Cardy
ansatz for the annulus to the unoriented case [8];

• there may be several different Klein bottle projections corresponding to
different spectra in the unoriented sector; and
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40 Two-dimensional CFT

• the annulus partition function satisfies a completeness condition (i.e. satisfies
the chiral fusion algebra) [9].

The last property also extends to all other explicitly solved examples but
a better understanding of the physical principle underlying the completeness
condition in the general case, in particular in the framework of string theory
where so far open and closed string completeness conditions appear rather
asymmetrically, is still absent. Another important open problem is whether
there will be new constraints on the unoriented sector coming from higher genus
surfaces.

Two-dimensional CFT on surfaces with boundaries and crosscaps is a large
and rapidly developing subject. The aim of these lectures is to give an introduction
to the topic, hence we have chosen to present a self-contained exposition based on
one relatively simple and completely solved example, namely the SU(2) Wess–
Zumino–Witten (WZW) model. Even so some aspects like the explicit realization
of the models in terms of D-branes and orientifolds [10] and their geometry are
not covered. Other important developments which have to be mentioned are the
relations of boundary conformal theory to graph theory (for a review see [11]) and
to topological field theory [12].

The material is organized as follows. In section 6.2 we review some general
properties of two-dimensional CFT. In section 6.3 we derive explicit expressions
for the 4-point functions in the SU(2)WZW model, the corresponding exchange
operators and fusion matrix. Section 6.4 is devoted to the derivation of the sewing
constraints for the correlation functions on open and unoriented surfaces. In
section 6.5 we analyse the partition functions and the consistency conditions they
satisfy.

6.2 General properties of two-dimensional CFT

6.2.1 The stress–energy tensor in two dimensions

Let us begin by recalling the particular properties of the stress–energy tensor in
two-dimensional CFT. It is useful to introduce together with the flat Minkowski
space light-cone coordinates x± = x0 ± x1 the coordinates on the cylindric space
�1× �1 (on which the conformal transformations are well defined globally [13])
t± = ξ0 ± ξ1. Here ξ0 is the non-compact time variable on the cylinder, while ξ1

is the compact space variable (ξ1 + 2π is identified with ξ1). We shall also use
the analytic picture on the compact space �1× �

1 with coordinates

z = eit− z̄ = eit+ (6.1)

where the complex variables z and z̄ are obtained from the Minkowski light-cone
coordinates by a Cayley transform

z = 1+ i
2 x−

1− i
2 x−

z̄ = 1+ i
2 x+

1− i
2 x+

. (6.2)
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Note that z and z̄ are complex conjugate only if one starts from the Euclidean
picture where ξ0 is purely imaginary, while ξ1 is real. Nonlinear transformations
of the coordinates, like (6.2), require non-trivial accompanying changes of the
field variables. To find the transformation law for the stress–energy tensor let us
first write its components in the light-cone basis x±

�µν dxµ dxν = �++ dx2+ +�+− dx+ dx−
+�−+ dx− dx+ +�−− dx2− (6.3)

where

�++ = 1
4 (�00 +�10 +�01 +�11)

�−− = 1
4 (�00 −�10 −�01 +�11)

�+− = �−+ = 1
4 (�00 −�11).

The energy density with our choice of metric

ηµν = diag(−,+) (6.4)

is given by �0
0 = −�00, so let us choose the three independent components of

�µν as

� = −�−− �̄ = −�++ �0 = −�+− = 1
4 Tr�. (6.5)

The conservation of the stress–energy tensor ∂µ�µν = 0 then implies

∂+� = −∂−�0 ∂−�̄ = −∂+�0 (6.6)

where ∂± = 1/2(∂0 ± ∂1). The corresponding fields in the analytic picture are

T (z, z̄) = 2π

(
i
∂x−
∂z

)2

�(x+(z̄), x−(z))

T̄ (z, z̄) = 2π

(
i
∂x+
∂ z̄

)2

�̄(x+(z̄), x−(z)) (6.7)

T0(z, z̄) = 2π

(
i
∂x−
∂z

)(
i
∂x+
∂ z̄

)
�0(x+(z̄), x−(z)).

The conservation of � leads to the equations

∂̄T = −∂T0 ∂ T̄ = −∂̄T0

(
∂ = ∂

∂z
, ∂̄ = ∂

∂ z̄

)
. (6.8)

Thus if the stress–energy tensor is traceless (T0 = 0), each of the two components
T and T̄ depends on a single variable T = T (z) and T̄ = T̄ (z̄).
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A similar separation in chiral and antichiral components is valid also for an
Abelian current jµ that is conserved together with its dual

∂µ j
µ = 0 = ∂µεµν jν. (6.9)

We shall call such fields which split into chiral and antichiral components
local observables. In other words, one can define the two-dimensional CFT as a
quantum field theory in which the observable algebra is a tensor product of two
algebras

�⊗ �̄. (6.10)

The chiral (or analytic) algebra � and the antichiral (or antianalytic) algebra �̄
are related by space reflection. For the rest of these lectures we shall assume that
� and �̄ are isomorphic. The algebra � is generated by a finite number of local
fields On(z). It should be stressed that this condition does not lead necessarily to
a finite number of fields in the theory. Locality implies that all On(z) mutually
commute for different arguments, more precisely for any given n and m there
exists an integer N0(n,m) such that for all N ≥ N0

(z1 − z2)
N [On(z1), Om(z2)] = 0. (6.11)

The general solution of this equation is given by a linear combination of the
δ-function and its derivatives

[On(z1), Om (z2)] =
N0−1∑
�=0

C�(z2)δ
(�)(z12) (6.12)

where δ on the unit circle can be defined as

δ(z12) = 1

z1

∑
n

(
z2

z1

)n
= 1

z1

∞∑
n=0

(
z2

z1

)n
+ 1

z2

∞∑
n=0

(
z1

z2

)n
(6.13)

and satisfies ∮
δ(z12) f (z2)

dz2

2π i
= f (z1). (6.14)

For the currents (of scale dimension 1) and for the stress–energy tensor (of
scale dimension 2) this leaves undetermined only one constant. In particular [14],

[T (z1), T (z2)] = − c

12
δ
′′′
(z12)− δ′(z12)(T (z1)+ T (z2)) (6.15)

where the constant c is called the central charge. The same relation also holds
for the antichiral component T̄ with central charge c̄ (= c due to the assumption
that � and �̄ are isomorphic). All fields from � commute with all fields from
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�̄, hence T (z) and T̄ (z̄) commute. Under a general analytic reparametrization
z → w(z) the stress–energy tensor transforms according to

T (z)→ T (w) =
(
∂z

∂w

)2

T (z(w))+ c

12
{w, z} (6.16)

where {w, z} is the Schwartz derivative

{w, z} = w
′′′

w′
− 3

2

(
w′′

w′

)2

. (6.17)

The central term in (6.15), (6.16) is related to the conformal anomaly. T (z) has a
Laurent expansion of the form

T (z) =
∑
n

Ln
zn+2

(6.18)

where the modes Ln are given by

Ln = 1

2π i

∮
S1

dz T (z)zn+1. (6.19)

The commutator (6.15) for the chiral components of the stress–energy tensor
implies for the modes Ln the commutation relations of the Virasoro algebra
V ir [15], that

[Ln, Lm ] = (n − m)Ln+m + c

12
n(n2 − 1)δn+m (6.20)

where δ� denotes the Kronecker symbol δ�,0. The central term in (6.20) vanishes
for n = 0,±1. The corresponding subalgebra generated by L−1, L0 and L1 is
SL(2,�). The unique vacuum vector |0〉 is annihilated by L−1, L0 and L1 (and
by their antichiral counterparts):

L0,±1|0〉 = 0 = L̄0,±1|0〉. (6.21)

The Hermiticity of the stress–energy tensor gives for the modes

L†
n = L−n . (6.22)

Not all the fields in the theory split into chiral and antichiral parts. In
particular, there exist ‘primary’ conformal fields [14, 16], of conformal weights
� and �̄ which, under reparametrizations z → w(z), z̄ → w̄(z̄), transform as

φ��̄(z, z̄)→ φ��̄(w, w̄) =
(
∂z

∂w

)� (
∂ z̄

∂w̄

)�̄
φ��̄(z(w), z̄(w̄)). (6.23)
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This transformation law implies the following commutation relations between the
primary fields and the generators of the Virasoro algebra Ln

[Ln, φ��̄(z, z̄)] = zn(z∂z + (n + 1)�)φ��̄(z, z̄) (6.24)

[L̄n, φ��̄(z, z̄)] = z̄n(z̄∂z̄ + (n + 1)�̄)φ��̄(z, z̄). (6.25)

The corresponding states obtained by acting with the primary fields on the vacuum
are also called primary:

|�, �̄〉 = φ��̄(0, 0)|0〉. (6.26)

They are annihilated by all the generators Ln with n > 0:

Ln |�, �̄〉 = L̄n |�, �̄〉 = 0 for n > 0. (6.27)

The conformal dimension of a primary field is equal to the sum of its two
conformal weights, while its spin (or helicity) is equal to their difference:

d = �+ �̄ s = �− �̄. (6.28)

There also exist fields that satisfy (6.24), (6.25) only for n = 0,±1. Such
fields are called quasiprimary (or conformal descendants). The corresponding
quasiprimary states are obtained from the primary states (6.26) by the action of
polynomials in Ln with negative n. All the properties of the quasiprimary fields
follow from those of the underlying primary one.

6.2.2 Rational conformal field theories

One important class of theories are the rational conformal field theories (RCFTs).
In an RCFT there are only a finite number of primary fields. For example, in
the unitary minimal models [14, 16] corresponding to the central charge of the
Virasoro algebra,

c = 1− 6

m(m + 1)
m ≥ 3 (6.29)

the primary fields have weights

�r,s = [r(m + 1)− sm]2 − 1

4m(m + 1)
1 ≤ r ≤ m − 1, 1 ≤ s ≤ m. (6.30)

Another important example are the superconformal models. The supersymmetry
generator G(z) has conformal weight 3

2 and hence a Laurent expansion

G(z) =
∑
r

Gr

zr+ 3
2

. (6.31)

Since G(z) has half-integer spin, it can be chosen to be either periodic (Ramond
sector) or antiperiodic (Neveu-Schwarz sector) [17]. In the Ramond sector the
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sum in (6.31) is over r integer, while in the Neveu-Schwarz sector it is over r
half-integer. The (anti)commutation relations between Ln and Gr are

[Ln,Gr ] =
(n

2
− r
)
Gn+r (6.32)

{Gr ,Gs} = 2Lr+s + c

3

(
r2 − 1

4

)
δr+s . (6.33)

The unitary N = 1 superconformal models have central charge

c = 3

2

[
1− 8

m(m + 2)

]
m ≥ 3 (6.34)

while the conformal weights of the primary fields are [18, 19]

�r,s = [r(m + 2)− sm]2 − 4

8m(m + 2)
+ 1

32
[1− (−1)r−s ] (6.35)

where 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ m. The Neveu-Schwarz sector contains the
fields with r − s even, while the Ramond sector contains the fields with r − s odd.

In order to describe the N = 2 superconformal models [20] it is convenient
to study first the simplest example of a conformal current algebra, namely the
Abelian U(1) case. The chiral part of the U(1) current satisfying (6.9) has the
following expansion in Laurent modes:

J (z) =
∑
n

Jn
zn+1 J †

n = J−n. (6.36)

Since the U(1) current is a primary field of the Virasoro algebra of weight one,
its commutation relations with the modes of the stress–energy tensor are

[Ln, Jm ] = −mJm+n. (6.37)

The locality condition (6.12) also completely determines the commutation
relations between two currents

[J (z1), J (z2)] = −δ′(z12) or [Jn, Jm ] = nδn+m (6.38)

where, for convenience, we have chosen to normalize the central term to one. The
same relations also hold for the antichiral components. The primary fields of the
U(1) conformal current algebra are characterized by their charges q and q̄ and
satisfy the following commutation relations with the current components:

[J (z1), φqq̄(z2, z̄2)] = − qφqq̄(z2, z̄2)δ(z12) (6.39)

[ J̄(z̄1), φqq̄(z2, z̄2)] = − q̄φqq̄(z2, z̄2)δ(z̄12). (6.40)
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The stress–energy tensor can be expressed in terms of the currents by the
Sugawara formula [21] and the central charge of the Virasoro algebra is equal
to one

T (z) = 1
2 : J 2(z) : ⇒ c(u(1)) = 1 (6.41)

which, for the Laurent modes, gives

Ln = 1

2

(∑
m≥1

+
∑
m≥−n

)
J−m Jm+n . (6.42)

The consistency of equations (6.39), (6.42) and (6.24) implies a relation between
the U(1) charges and the conformal weights:

� = 1
2q

2 �̄ = 1
2 q̄

2 (6.43)

as well as the following equations for the primary fields [22, 23]:

∂zφqq̄(z, z̄)+ q : J (z)φqq̄(z, z̄) := 0 (6.44)

∂z̄φqq̄(z, z̄)+ q̄ : J̄ (z̄)φqq̄(z, z̄) := 0. (6.45)

The N = 2 superconformal algebra contains two supersymmetry generators
Gα(z), α = 1, 2, with Laurent expansions (6.31) and a U(1) current J (z) with
expansion (6.36). The new (anti)commutation relations are

{Gαr ,Gβs } = 2δαβLr+s + i(r − s)εαβ Jr+s + c

3

(
r2 − 1

4

)
δαβδr+s (6.46)

[Jm,Gαr ] = iεαβGβr (6.47)

where εαβ is antisymmetric and ε12 = 1. There are three sectors: in the Neveu-
Schwarz and Ramond sectors the U(1) current has integer modes, while in the
twisted sector the U(1) current has half-integer modes [24]. The unitary minimal
N = 2 superconformal models correspond to central charges

c = 3

(
1− 2

m

)
m ≥ 3. (6.48)

6.2.3 Non-Abelian conformal current algebras

The non-Abelian generalization of the U(1) conformal current algebra (6.38)
known also as the Wess–Zumino–Witten (WZW) model is one of the few cases
of two-dimensional CFT for which one can also write an explicit action [25].
Alternatively, one can use the following definition. Let G be a compact semi-
simple Lie group and � be its Lie algebra of dimension dG . The chiral conformal
current algebra �(�) is the algebra generated by the dG chiral currents in the
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adjoint representation of �. The currents are primary fields of the Virasoro algebra
of conformal weight one and have the Laurent expansion

Ja(z) =
∑
n

J an
zn+1 Ja

∗
n = Ja−n . (6.49)

The commutation relations for their modes are

[Jan , Jbm ] = i
∑
c

fabc J
c
n+m +

k

2
nδabδn+m (6.50)

where fabc are the structure constants of � and the level k is a non-negative
integer. These relations define an affine Kac–Moody algebra [26].

The stress–energy tensor can be expressed in terms of the currents (6.49) by
the Sugawara formula

2h T (z) =
dG∑
a=1

: J 2
a (z) : (6.51)

where the height h is the sum of the level k and the dual Coxeter number of �,
h = k + ǧ (= k + N for SU(N)). In terms of the Laurent modes, (6.51) becomes

2hLn =
( ∞∑
�=1

+
∞∑
�=−n

) dG∑
a=1

Ja−� Jan+� (6.52)

while the central charge of the Virasoro algebra is

c = k

h
dG . (6.53)

The primary fields of �(�) are in one-to-one correspondence with the
irreducible representations of �, hence we can label them by highest weight
vectors � = (λ1, . . . , λr ) of �. We shall denote the primary fields by V�(z).
They satisfy the following commutation relations with the currents (for brevity
we omit the dependence on z̄ and write only the relations in the chiral sector):

[Ja(z1), V�(z2)] = δ(z12)V�(z2)t
a
� (6.54)

or, in terms of the modes (6.49),

[Jan , V�(z)] = znV�(z)t
a
� (6.55)

where ta� are the matrices of Ja0 in the representation �. The consistency of
equations (6.52) and (6.55) with (6.24) implies the relation

2h�� = C2(�) (6.56)
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between the conformal weight of the primary field and the eigenvalue of the
second-order Casimir operator in the representation �, as well as the operator
form of the Knizhnik–Zamolodchikov (KZ) equation [22, 23]

h
d

dz
V�(z) =

dG∑
a=1

: V�(z)ta� Ja(z) : . (6.57)

The primary fields in a two-dimensional conformal theory transforming as
in (6.23) in general do not split in a sum of chiral and antichiral components.
Rather they are given by a (finite in the case of a rational conformal theory) sum
of products of chiral and antichiral vertex operators [27, 28]. In order to define

a chiral vertex operator properly we have to specify a triple of weights
(
� f
� �i

)
where �i is the weight on which V� acts, while � f is the weight to which V�
maps. In other words, the chiral vertex operators can be represented as

V � f
� �i

(z) = �� f V�(z)��i (6.58)

where �� are orthogonal projectors and, in general, are multi-valued functions
of z:

V � f
� �i

(e2π iz) = e2π i(�� f −��−��i )V � f
� �i

(z). (6.59)

The correlation functions of the chiral vertex operators are called chiral conformal
blocks and, due to (6.59), are also multivalued functions of the coordinates. The
two-dimensional primary fields φ(z, z̄) can be written in terms of the chiral vertex
operators (6.58):

φ��̄(z, z̄) =
∑
�i �̄i
� f �̄ f

V � f
� �i

(z)V̄
�̄ f

�̄ �̄i
(z̄). (6.60)

Locality and (6.59) imply that the spin of all fields �� − ��̄ has to be integer.
Note that this selection rule must also be respected by the pairs of weights
(�i , �̄i ) and (� f , �̄ f ). One large class of theories which trivially satisfy this
requirement are the diagonal theories with � = �̄.

6.2.4 Partition function, modular invariance

Due to the factorization of the observable algebra (6.10) we can analyse
independently the chiral and antichiral sectors, but in order to reconstruct the
whole two-dimensional theory we also need the pairings between the fields from
the two sectors. They can be found by requiring the modular invariance of the
partition function on the torus. From the viewpoint of string theory the modular
invariance condition is very natural, since it ensures that one can define the theory
on surfaces of arbitrary genus [30,31]. In statistical mechanics models its physical
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meaning is more subtle, since the modular transformations relate the low- and the
high-temperature behaviour of the theory [32].

Let us briefly recall the construction of the partition function. To every
primary field ϕi of � corresponds a character of the Virasoro algebra [26]:

χi (τ ) = Tr�i e2π iτ (L0− c
24 ) (6.61)

where the trace is over the space of all quasiprimary descendants of ϕi . Note
that the energy operator L0 on the torus is modified according to (6.16). In this
notation the torus partition function

ZT = Tr(e2π iτ (L0− c
24 )e2π iτ̄ (L̄0− c̄

24 )) (6.62)

can be rewritten as (we recall that c̄ = c)

ZT =
∑
i, j

χi Xi j χ̄ j (6.63)

where Xij are non-negative integers which give the multiplicities of the two-
dimensional fields. For the rational theories the sum in (6.63) is over a finite
set of characters.

Not all values of τ in (6.62) correspond to inequivalent tori. In particular, the
transformations

S : τ −→ − 1

τ
(6.64)

T : τ −→ τ + 1 (6.65)

are just redefinitions of the fundamental cell of the torus. They generate the
modular group PSL(2,�) under which τ transforms as

τ −→ τ ′ = aτ + b

cτ + d
ad − bc = 1 (6.66)

with integer a, b, c and d . These transformations act linearly on the characters
(6.61)

χi

(
−1

τ

)
=
∑
j

Si jχ j (τ ) χi (τ + 1) =
∑
j

Ti jχ j (τ ) (6.67)

where T is a diagonal matrix, while S is a symmetric matrix. Both S and T are
unitary and satisfy S2 = (ST )3 = C , where the matrix C is called the charge
conjugation matrix and satisfies C2 = 1.

The modular invariance of the torus partition function implies

SXS† = X T XT † = X. (6.68)
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The solutions to these equations are of two distinct types [33]. The first ones are
called permutation (or automorphism) invariants, for which

Xij = δiσ( j ) (6.69)

where σ( j) is a permutation of the labels j . The second ones correspond to
extensions of the observable algebra and can always be rewritten as a permutation
invariant (6.69) in terms of the characters of the maximally extended observable
algebra (that are linear combinations of the characters of the unextended one).

Let us denote by [ϕi ] the conformal family of the primary field ϕi , i.e. the
collection of all the conformal descendants of ϕi . The product of two conformal
families is determined by the fusion algebra

[ϕi ] × [ϕ j ] =
∑
k

Ni j
k[ϕk]. (6.70)

The non-negative integers Nij k , called fusion rules, can be expressed in terms of
the modular matrix S by the Verlinde formula:

Nij
k =

∑
�

Si�Sj�S
†
k�

S1�
(6.71)

and, as matrices, (Ni ) j k satisfy the commutative and associative fusion algebra
[34]

(Ni )(Nj ) =
∑
k

Ni j
k(Nk ). (6.72)

There are several known classifications of modular-invariant partition
functions, e.g. [35–38], but the problem is still not solved in general. We shall
often refer to the A–D–E classification of Cappelli, Itzykson and Zuber [35]
of the modular invariants of the SU(2) conformal current algebra. In this
classification, the diagonal A and the Dodd series are permutation invariants, the
Deven series, E6 and E8 are diagonal invariants of an extended algebra, while E7
is a non-trivial permutation invariant of an extended algebra.

There is also an alternative method to compute the allowed pairings between
the fields of the two sectors that makes no use of higher-genus partition functions.
In two-dimensional CFT the product of two primary fields can be expressed as a
sum of primary fields and their conformal descendants using the Operator Product
Expansion (OPE):

φ�i ,�̄i
(z, z̄)φ� j ,�̄ j

(w, w̄)

=
∑
k,k̄

C(k,k̄)
(i,ī)( j, j̄)

(z −w)�i+� j−�k (z̄ − w̄)�̄i+�̄ j−�̄k
φ�k ,�̄k

(w, w̄)+ · · · (6.73)
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where the dots stand for the descendants. The two-dimensional structure
constants C(k,k̄)

(i,ī )( j, j̄)
vanish whenever the corresponding fusion rules Nij k or Nī j̄

k̄

are zero and completely define the theory. In particular, they determine also the
allowed pairings between the fields of the two sectors. Moreover they permit
to reconstruct all the Green functions of the two-dimensional fields. In RCFTs
the structure constants can, in principle, be computed imposing the locality (or
crossing symmetry) of the 4-point Green functions. Indeed for a generic 4-point
function

〈φ�1,�̄1
(z1, z̄1)φ�2,�̄2

(z2, z̄2)φ�3,�̄3
(z3, z̄3)φ�4,�̄4

(z4, z̄4)〉 (6.74)

we can apply the OPE (6.73) in three different ways which schematically can
be denoted as (12)(34), (13)(24) and (14)(23). This gives two duality relations
between the structure constants and determines them up to global rescalings of
the two-dimensional fields. In practice, this procedure is very complicated and the
closed expressions for the two-dimensional structure constants are known only in
a very limited number of cases (in particular for the SU(2) current algebra models
and for the unitary minimal models [39, 40]).

Let us stress that while the crossing symmetry relations are also satisfied for
any subset of primary fields closed under OPE, e.g. for the identity operator alone
to give a trivial example, the modular invariance condition is satisfied only by the
maximal (or complete) set of fields.

In fact, these two approaches are complementary, since, as demonstrated
in [28, 41], both the condition of crossing symmetry of the 4-point functions and
the modular invariance of the torus partition function are necessary and sufficient
for the consistency of the theory on a surface of arbitrary genus.

6.3 Correlation functions in current algebra models

In the conformal current algebra models the operator Knizhnik–Zamolodchikov
equation (6.57) implies a system of first-order partial differential equations for
the n-point chiral conformal blocks. This allows one to reformulate all the
properties of the primary conformal fields as conditions on their chiral correlators.
Moreover, for the SU(2) models that we shall review in some detail this also
allows us to obtain explicit expressions for the chiral conformal blocks and to
compute the structure constants that enter the two-dimensional operator product
expansion (6.73).

6.3.1 Properties of the chiral conformal blocks

Let G be a simply connected compact Lie group with Lie algebra � and let
Vi = V (�i ), i = 1, 2, . . . , n be chiral vertex operators of highest weight
�i such that the space �n = � (�1, . . . ,�n) of G invariant tensors is non-
trivial (d� = dim�n > 0). Consider the d� -dimensional vector space �n
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of holomorphic functions wn = w(z1,�1; . . . ; zn,�n) called chiral conformal
blocks [14] with values in �n .

Möbius invariance of the vacuum implies that the functionswn are covariant
under local Möbius transformations. In particular, they are translation invariant
(hence depend only on the differences zi j ), they transform covariantly under
uniform dilations zi → ρzi , ρ > 0

ρ�1+···+�nw(ρz1,�1; . . . ; ρzn,�n) = w(z1,�1; . . . ; zn,�n) (6.75)

where �i = �(�i ) are the conformal weights (6.56). Finally, wn are covariant
under infinitesimal special conformal transformations z → z/(1 + εz) with
ε→ 0, thus satisfy the differential equation

n∑
i=1

zi

(
zi
∂

∂zi
+ 2�i

)
wn = 0. (6.76)

The operator form of the Knizhnik–Zamolodchikov equation (6.57) implies
that all elements in �n satisfy the system of partial differential equations [22](

∂

∂zi
+ 1

h

n∑
j=1
j �=i

∑
a t

a
�i
ta� j

zi j

)
wn = 0 (6.77)

for i = 1, . . . , n, where h is the height defined after equation (6.51).
Every function wn of �n admits a path-dependent multivalued analytic

continuation in the product of complex planes minus the diagonal {zi ∈ � , zi �=
z j for i �= j}. Let us choose a basis {wνn , ν = 1, . . . , d� } in �n and consider
the analytic continuation of wνn along a pair of paths �±i that exchange two
neighbouring arguments zi , zi+1 in positive/negative directions:

�
±
i :
(
zi
zi+1

)
→ 1

2
(zi + zi+1)+ 1

2

(
zii+1

−zii+1

)
e±iπ t (6.78)

where 0 ≤ t ≤ 1. This operation followed by the permutation of the two
weights �i and �i+1 defines the action of two exchange operators Bi and
B̄i [27, 28, 42]. The exchange operator Bi transforms the basis {wνn} in
�(�1, . . . ,�i ,�i+1, . . . ,�n) in a basis {wµn } in �(�1, . . . ,�i+1,�i , . . . ,�n).

Bi = B�1...�n
i : �(�1, . . . ,�i , �i+1, . . . ,�n)

→ �(�1, . . . ,�i+1,�i , . . .�n). (6.79)

The exchange operator B̄i is the inverse to Bi . More precisely,

B̄
�1...�i+1�i ...�n
i B

�1...�i�i+1...�n
i = 1. (6.80)
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For real analytic wνn the matrix B̄i is complex conjugate to Bi . The operators
Bi , i = 1, . . . , n − 1 with various order of the weights (�1, . . . ,�n) generate a
representation of the exchange (called also braid [43]) algebra �n .

The two-dimensional n-point Green functions Gn can be written as a finite
sum of products of n-point chiral and antichiral blocks

Gn = 〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉
= w̄µn Q�1...�n

µν wνn . (6.81)

Local commutativity of the two-dimensional fields is equivalent to the invariance
of the Green functions Gn under the combined action of the two exchange
algebras which implies a braid invariance condition for the matrices Q�1...�n [42]:

(B�1...�i�i+1 ...�n
i )†Q�1...�i�i+1...�n B�1...�i+1�i ...�n

i = Q�1...�i+1�i ...�n .

(6.82)
The relative normalization of Gn for different n and different sets of weights
are constrained by the factorization properties implied by the two-dimensional
operator product expansion (6.73).

6.3.2 Regular basis of 4-point functions in the SU(2) model

We shall consider in some detail only the simplest non-trivial case of 4-point
functions for G = SU(2). Note that there is an infinite series of such models
corresponding to integer height h = k + 2 and Virasoro central charge c = 3k

k+2 .
The primary fields can be labelled by their isospin I which has to satisfy the
integrability condition I ≤ k/2 [44] and have conformal dimension �(I ) =
I (I+1)
(k+2) . The fusion rules can be computed from the Verlinde formula (6.71) and

in terms of the isospins of the fields are

[I1] × [I2] =
min(I1+I2,k−I1−I2)∑

I=|I1−I2|
[I ]. (6.83)

Exploiting Möbius invariance one can reduce the KZ equation (6.77) to
a system of ordinary differential equations. In order to write more compact
formulae we shall make use of the polynomial realization of the irreducible SU(2)
modules [45] and introduce an auxiliary variable ζ to keep track of the third
isospin projection m of the operators. In particular, we shall set

VI (z, ζ ) =
m=I∑
m=−I

ζ I+m

(I + m)!V
m
I (z). (6.84)

The SU(2) generators act on VI (z, ζ ) as first-order differential operators in ζ ,
while the correlation functions are polynomials in ζ . We shall also assume that
the isospins of the four fields satisfy the inequalities (Ii j = Ii − I j )

I (= min Ii ) = I4 |I12| ≤ I34 |I23| ≤ I14. (6.85)
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The other cases can be treated in exactly the same way.
Möbius and SU(2) invariance imply that the 4-point chiral conformal blocks

have the form

w(z1, ζ1, I1; . . . ; z4, ζ4, I4) = g(zi j ,�)p(ζi j , Ii j )F(η, ξ1, ξ2). (6.86)

Here g(zi j ,�) is a scale prefactor:

g(zi j ,�) = z�2+�4
13 z�1+�3

24 η�s (1− η)�u

z�1+�2
12 z�2+�3

23 z�2+�4
34 z�1+�4

14

(6.87)

η is the Möbius invariant cross ratio:

η = z12z34

z13z24

(
= 1− z14z23

z13z24

)
(6.88)

while �s and�u are the threshold dimensions in the s- (12)(34) and u- (23)(14)
channels. For isospins constrained by (6.85), they are given by

�s = �(I34) = 1

h
I34(I34 + 1) �u = �(I14) = 1

h
I14(I14 + 1). (6.89)

The polynomial
p(ζi j , Ii j ) = ζ I14+I23

12 ζ
I34−I12
23 ζ

I12+I34
13 . (6.90)

Finally, the Möbius invariant function F is a homogeneous polynomial:

F(η; ξ1, ξ2) =
2I∑
�=0

(ξ2η)
�[ξ1(1− η)]2I−� f�(η) (6.91)

in the combinations

ξ1 = ζ12ζ34 ξ2 = ζ14ζ23 (ξ1 + ξ2 = ζ13ζ24). (6.92)

Inserting these formulae into the KZ equation (6.77) for n = 4, after some
algebra we obtain a system of first-order ordinary differential equations for the
functions f�(η):

d f�
dη

=
{
�

η
[α + γ − 1+ (�− 1)δ] − 2I − �

1− η [β + γ − 1+ (2I − �− 1)δ]
}
f�

+ �+ 1

1− η (α + �δ) f�+1 − 2I − �+ 1

η
[β + (2I − �)δ] f�−1 (6.93)

where

hα = 1+ I34 − I12 hβ = 1+ I14 + I23 hγ = 1+ I34 + I12

hδ = 1 (h = k + 2). (6.94)
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The system (6.93) has 2I + 1 linearly independent solutions fλ�, λ =
0, 1, . . . , 2I which, for 0 < η < 1, are given by the integral representations
[46, 47]

fλ�(η) =
∫ η

0
dt1

∫ t1

0
dt2 . . .

∫ tλ−1

0
dtλ

∫ 1

η

dtλ+1

×
∫ 1

tλ+1

dtλ+2 . . .

∫ 1

t2I−1

dt2I Pλ�(ti ; η; α, β, γ, δ) (6.95)

where

Pλ� =
2I∏
i=1

tαi (1− ti )
β
λ∏
i=1

(η − ti )
γ−1

2I∏
j=λ+1

(t j − η)γ−1
∏
i< j

(ελ j ti j )
2δ

×
∑
σ

1

�!(2I − �)!
�∏

s=1

t−1
is

2I∏
r=�+1

(1− tir )
−1 (6.96)

ελ j =
{

1 for λ ≥ j

−1 for λ < j
ti j = ti − t j .

The sum in (6.96) extends over all (2I )! permutations σ : (1, . . . , 2I ) →
(i1, . . . , i2I ). Note that the integration contours in (6.95) never go to infinity.
This is an important difference with respect to the commonly used integral
representations [39, 40, 45] which correspond to tree expansions. Our choice has
the advantage that the solutions are linearly independent and non-singular (if all
four external isospins satisfy the integrability condition Ii ≤ k/2). In particular,
the exchange operators are also well defined.

6.3.3 Matrix representation of the exchange algebra

Each basis of solutions {wλ, λ = 0, . . . , 2I } of the (4-point) KZ equation gives
rise to a matrix representation of the algebra of exchange operators B1, B2 and
B3 [42,48]. We shall work out only the action of B1 and B2 on the 4-point blocks
(6.86) since B3 is proportional to B1 (see equation (6.109)). According to (6.78)
Bi act on the cross ratio η (6.88) as follows

B1 : η→ ηeiπ

1− η

(
= lim

t→1

ηeiπ t

1+ iηei π2 t sin π2 t

)
(6.97)

B2 : η→ 1

η

(
= lim

t→1

η cos π2 t − i sin π2 t

cos π2 t − iη sin π2 t

)
. (6.98)

The expressions within parentheses indicate the analytic continuation path in the
η-plane, hence B1 carries η around 0 from above, while B2 carries η around 1
from below. Note that in order to specify the domain and the target space of the
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exchange operators Bi , one actually has to indicate all four isospins. We shall use
the notation

BI1 I2 I3 I4
1 : �(I1 I2 I3 I4)→ �(I2 I1 I3 I4) (6.99)

BI1 I2 I3 I4
2 : �(I1 I2 I3 I4)→ �(I1 I3 I2 I4). (6.100)

The action of the exchange operators on the basis constructed in the previous
section, Bi : wλ → (Bi )λµw

µ, can be obtained by analytic continuation of the
integral representations (6.95). Note that Bi not only transforms the integrand
(6.96) but also reorders the integration contours in (6.95). The explicit expressions
can be written in a more compact form, if one introduces q-deformed numbers

[λ] = qλ − q−λ

q − q−1
(6.101)

where
q = eiπδ = ei πh (⇒ qh = −1) q̄ = q−1 (6.102)

and q-deformed binomial coefficients[
µ

λ

]
= [µ]!
[λ]![µ− λ]! [λ]! = [λ][λ− 1]! [0]! = 1. (6.103)

The exchange matrix B1 is upper triangular in our basis

(BI1 I2 I3 I4
1 )λ

µ
= (−1)I1+I2−I34−µ

× q(I34+µ)(I34+λ+1)+I12(µ−λ)−I1(I1+1)−I2(I2+1)
[
µ

λ

]
(6.104)

while the exchange matrix B2 is lower triangular and is related to B1 by a
similarity transformation:

BI1 I2 I3 I4
2 = F I2 I3 I1 I4BI3 I2 I1 I4

1 F I1 I2 I3 I4 . (6.105)

The matrix F I1 I2 I3 I4 : �(I1 I2 I3 I4)→ �(I3 I2 I1 I4), called a fusion matrix [28], is
involutive:

F I3 I2 I1 I4 F I1 I2 I3 I4 = 1 (6.106)

and in the basis (6.95) is represented by an antidiagonal matrix whose elements
are independent of the order of the isospins

(F I1...I4)λµ = δ2I−λ
µ . (6.107)

Using the expressions (6.104) and (6.105) one can verify that the exchange
operators Bi satisfy the parameter free Yang–Baxter equation [49]

BI2 I3 I1 I4
1 BI2 I1 I3 I4

2 BI1 I2 I3 I4
1 = BI3 I1 I2 I4

2 BI1 I3 I2 I4
1 BI1 I2 I3 I4

2

= (−1)I1+I2+I34q I4(I4+1)−I1(I1+1)−I2(I2+1)−I3(I3+1)F. (6.108)
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Let us note also that, for the 4-point functions, BI1 I2 I3 I4
3 and BI1 I2 I3 I4

1 are
proportional

BI1 I2 I3 I4
3 = (−1)I3+I4−I1−I2q{I1(I1+1)+I2(I2+1)−I3(I3+1)−I4(I4+1)}BI1 I2 I3 I4

1 .

(6.109)
The exchange operators for the 3-point functions are just phases, since the space
of SU(2) invariants is one-dimensional in this case. They can be obtained as a
special case (for I4 = 0) from the general expressions (6.104), (6.105):

BI1 I2 I3
1 = (−1)I1+I2−I3q I3(I3+1)−I1(I1+1)−I2(I2+1) (6.110)

BI1 I2 I3
2 = (−1)I2+I3−I1q I1(I1+1)−I2(I2+1)−I3(I3+1). (6.111)

The exchange operator for the 2-point function which exists only for I2 = I1 is
given by

BI1 I2 = (−1)2I1q−2I1(I1+1). (6.112)

6.3.4 Two-dimensional braid invariant Green functions

So far we have computed only the exchange operators in the chiral sector of
the theory. To compute the two-dimensional Green functions (6.81) we also
need the expressions for the antichiral sector. To derive them let us recall that
the corresponding current algebras are isomorphic, while the orientation of the
analytic continuation contours (6.78) are opposite in the two sectors. Thus
the exchange operators in the antichiral sector are complex conjugates of the
corresponding chiral ones and can be obtained from them by the substitution
q → q−1 (= q̄) (see equation (6.102)).

The locality condition for the two-dimensional Green functions (6.81)
implies the braid invariance constraints (6.82) for the matrices Q. For a generic
value of q on the unit circle (or, equivalently, for a generic value of the level k)
the solution of (6.82) is unique and corresponds to a diagonal pairing of the two
sectors (a diagonal modular invariant). For special values of the level k there also
exist other solutions which correspond to non-diagonal modular invariants. Let
us first consider the generic diagonal case. The solution of the braid invariance
condition (6.82) is [47]

Qµν(I1, I2, I3, I4) = (−1)µ+ν [µ]![ν]![µ− I12 + I34]![ν − I12 + I34]!
[2I1]![2I2]![2I3]![2I4]!

×
min(µ,ν,k(I ))∑

ρ=0

Tρ(µ, ν; Ii ) (6.113)

where µ, ν = 0, . . . , 2I4,

k(I ) = k − I1 − I2 − I3 + I4
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and

Tρ(µ, ν; Ii ) = [2I34 + 2ρ + 1]
× [I1 + I2 + I34 + ρ + 1]![I1 + I2 − I34 − ρ]![2I4 − ρ]!

[2I34 + µ+ ρ + 1]![2I34 + ν + ρ + 1]!
× [2I34 + ρ]![I12 + I34 + ρ]![2I3 + ρ + 1]!

[µ− ρ]![ν − ρ]![ρ]![I34 − I12 + ρ]! .

It is straightforward but rather lengthy to check that (6.113) satisfies (6.82).
In order to study the factorization properties of the two-dimensional Green

functions let us rewrite the 4-point chiral conformal blocks in the tree bases. In
the s-channel, which exhibits the singularities of the solutions for small z12 (hence
small η), we find

S(I1,I2,I3,I4)I34+λ (z, ζ ) =
2I4∑
ν=0

w(I1,I2,I3,I4)ν (z, ζ )σ−1
νλ (I1, I2, I3, I4)

=
2I4∑
ν=λ

(−1)ν−λ[ν]![ν − I12 + I34]![2I34 + 2λ+ 1]!
[ν − λ]![λ]![λ− I12 + I34]![2I34 + ν + λ+ 1]!

×w(I1,I2,I3,I4)ν (z, ζ ). (6.114)

Let us stress that for q a root of unity (note that qk+2 = −1) the matrix elements
of the matrix σ−1 are well defined only if

I1 + I2 + I34 + λ ≤ k. (6.115)

In other words, the s-channel conformal blocks (6.114) are well defined only for
intermediate fields that respect the fusion rules (6.83). In the rest of the chapter,
we shall use (6.114) and all other tree bases formulae only for such intermediate
fields. Having this in mind, we can also introduce the matrix formally inverse to
σ−1:

σλµ(I1, I2, I3, I4) = [2I34 + λ+ µ]![I34 − I12 + λ]!
[2I34 + 2λ]![I34 − I12 + µ]!

[
λ

µ

]
. (6.116)

In the s-channel basis (6.114), the exchange operator B1 has a simple diagonal
form:

((Bs1)
I1 I2 I3 I4 )

λ

µ = δλµ(−1)I1+I2−I34−µq(I34+µ)(I34+µ+1)−I1(I1+1)−I2(I2+1)

(6.117)
while the exchange operator B2 and the fusion matrix F are given by complicated
expressions. In particular, for F one finds

((Fs)I1 I2 I3 I4)µν =
2I∑
λ=0

σνλ(I1, I2, I3, I4)σ
−1
2I−λ,µ(I3, I2, I1, I4) (6.118)
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where I = I4 (see equation (6.85)). Inserting the expressions for σ and σ−1 we
obtain

((Fs)I1 I2 I3 I4)µν

=
min(ν,2I−µ)∑

λ=0

(−1)2I−λ−µ [2I34 + ν + λ]![I34 − I12 + ν]![ν]!
[2I34 + 2ν]![I34 − I12 + λ]![ν − λ]![λ]!

× [2I − λ]![2I − λ− I32 + I14]![2I14 + 2µ+ 1]!
[2I − λ− µ]![µ]![µ− I32 + I14]![2I14 + 2I − λ+ µ+ 1]! .

(6.119)

The other tree basis, the u-channel, exhibits the singularities of the solutions
for small z23 (hence small 1 − η). To construct it let us note that the KZ
equation as a differential equation in 1− η for the conformal blocks with isospin
order I3 I2 I1 I4 coincides with the KZ equation in η for the conformal blocks
with isospin order I1 I2 I3 I4. Thus we can define the u-channel blocks which
diagonalize the exchange operator B2 as

U (I1,I2,I3,I4)I14+λ (η) = S(I2,I3,I4,I1)I14+λ (1− η) = (−1)I2+I3−I1−I4

× q I1(I1+1)+I4(I4+1)−I2(I2+1)−I3(I3+1)S(I3,I2,I1,I4)I14+λ (1− η)
(6.120)

where the second equation follows from the diagonal form of the exchange
operator B1 (6.117) (and hence also of B3 and B1B

−1
3 ) in the s-channel basis.

The u-channel blocks (6.120) are related to the s-channel blocks (6.114) by the
fusion matrix Fs (6.119):

U (I1,I2,I3,I4)I14+µ (η) =
∑
ν

((Fs)I1 I2 I3 I4)µνS
(I1,I2,I3,I4)
I34+ν (η). (6.121)

The two-dimensional Green functions can be expressed in terms of the tree
conformal blocks as

G(Ii )4 (z, z; ζ, ζ ) =
min(2I,k(I ))∑

ν=0

[gs](Ii )ν SI34+ν(z, ζ )SI34+ν(z, ζ )

=
min(2I,k(I ))∑

µ=0

[gu](Ii )µ U I14+µ(z, ζ )UI14+µ(z, ζ ). (6.122)

The normalization constants [gs] and [gu] can be written as

[gs](I1 I2 I3 I4)ν = CI1 I2 I34+νCI3 I4 I34+ν
NI34+ν

(6.123)

[gu](I1 I2 I3 I4)µ = CI2 I3 I14+µCI1 I4 I14+µ
NI14+µ

(6.124)
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where CI1 I2 I3 are:

CI1 I2 I3 = [I1 + I2 + I3 + 1]!
× [I1 + I2 − I3]![I2 + I3 − I1]![I1 + I3 − I2]!

[2I1]![2I2]![2I3]! (6.125)

while
NI = CI I0 = [2I + 1]. (6.126)

Now we can impose the factorization property in both the s- and u-channels.
Comparison of (6.123) and (6.124) with the two-dimensional OPE (6.73) shows
that the two-dimensional structure constants in the diagonal model (in which the
two-dimensional fields have equal chiral and antichiral labels) are given by

C(K K )
(I I )(J J ) =

CI J K

NK
. (6.127)

Moreover, if we choose the normalizations of the 2-point functions to be equal
to NI (6.126), the normalizations of the 3-point functions are equal to CI1 I2 I3
(6.125).

This construction can also be extended to the non-diagonal SU(2) current
algebra models. For the Dodd series of models, which exist for values of the level
k = 4p − 2, the structure constants are

C(K K̄ )
(I Ī )(J J̄)

= ε(I Ī )(J J̄)(K K̄)
√
CI J KCĪ J̄ K̄

NK NK̄
(6.128)

where the signs ε are symmetric in all three pairs of indices and differ from +1
only if two pairs of the isospins, say I, Ī , J, J̄ , are half-integers, in which case
they are equal to (−1)K (= (−1)K̄ ).

For the other SU(2) current algebra models denoted by Deven and E6, E7, E8
one can also compute the structure constants [50]. The resulting expressions are
not as simply related to the diagonal ones. This can be explained by the fact
that these models correspond to extensions of the observable algebra, so their
structure is determined by this extension, rather than by the underlying SU(2)
current algebra.

6.4 CFT on surfaces with holes and crosscaps

Conformal field theories in presence of boundaries have been introduced by
Cardy to describe critical phenomena in statistical mechanics and solid state
physics [1,2,29]. An alternative approach, called open and unoriented descendant
construction, was proposed by Sagnotti in the framework of string theory to unify
open strings with closed oriented and unoriented strings in a consistent way [4].
In this section we shall review some general properties of boundary CFT. The
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SU(2) conformal current algebra models will again be used as an example. On
one hand, they are relatively simple and all the necessary data (chiral conformal
blocks, structure constants, exchange operators) are explicitly known. On the
other hand, the SU(2) models exhibit many features of the general case (like
infinite series of non-diagonal models and non-Abelian fusion rules).

6.4.1 Open sector, sewing constraints

The presence of a boundary breaks the two-dimensional conformal symmetry,
since the boundary cannot be invariant under all the transformations of V ir⊗V ir .
If the central charges of the two chiral algebras are equal (c̄ = c), it is possible
to introduce boundaries which are preserved at most by the diagonal subalgebra
V irdiag. We shall call such boundaries conformal boundaries. In the rest we shall
assume that all boundaries are conformal. The introduction of non-conformal
boundaries is also possible, but one can no longer use the tools of conformal field
theory for their study.

Assume that the conformal boundary coincides with the line x1 = 0. The
conformal invariance condition means that there is no energy transfer across the
boundary, hence the stress–energy tensor satisfies [1]

�(x−) = �̄(x+) for x− = x+ ⇔ x1 = 0 (6.129)

since x± = x0± x1. So one can define the stress–energy tensor in the theory with
conformal boundaries as

�d(x) =
{
�(x−) for x1 ≥ 0

�̄(x+) for x1 < 0.
(6.130)

In a similar way, if the two-dimensional theory is invariant under the product
of two isomorphic conformal current algebras � ⊗ �̄ with equal levels k̄ = k,
the boundary can be preserved at most by the diagonal subalgebra �diag. Such
boundaries are called symmetry-preserving, the currents in this case being defined
as

j ad (x) =
{
j a(x−) for x1 ≥ 0

j̄ a(x+) for x1 < 0.
(6.131)

One can also introduce conformal boundaries that are preserved only by a proper
subalgebra �′ ⊂ �diag (such that the boundary is still invariant under V irdiag).
Such boundaries are called symmetry-breaking (or symmetry non-preserving)
boundaries and have also been studied [51]. In these lectures we shall restrict
our attention only to the simpler case of symmetry-preserving boundaries.

We can pass to the analytic picture by mapping the boundary onto the unit
circle by a Cayley transform (6.2). The stress–energy tensor becomes

Td (z) =
T (z) for |z| ≤ 1

1

z4
T̄

(
1

z

)
for |z| > 1

(6.132)
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(where we used z̄ ↔ 1/z in this picture), while the currents are

Jad (z) =
J

a(z) for |z| ≤ 1

− 1

z2 J̄
a
(

1

z

)
for |z| > 1.

(6.133)

The sign change with respect to (6.132) comes from the prefactor in the Cayley
transform.

Let us also introduce the following combinations of the Laurent modes of
the stress–energy tensor T and the currents Ja

�n = Ln − L̄−n (6.134)

and
� a

n = Jan + J̄ a−n . (6.135)

Since the left and right central charges and levels are equal (c̄ = c, k̄ = k) the
modes (6.134) satisfy the commutation relations of the Virasoro algebra with the
central charge being equal to zero:

[�n,�m ] = (n − m)�n+m (6.136)

while the modes (6.135) satisfy the commutation relations of the current algebra
with a level equal to zero:

[� a
n,�

b
m] = i f abc� c

n+m . (6.137)

These two algebras have no non-trivial representations, hence the modes (6.134),
(6.135) annihilate all the boundary states |B〉 in the theory

�n |B〉 = (Ln − L̄−n)|B〉 = 0 (6.138)

and
� a

n|B〉 = (Jan + J̄ a−n)|B〉 = 0. (6.139)

For rational models a basis of states that satisfy (6.138) (called the Ishibashi
states) has been constructed in [52] as infinite sums of products of left and right
states:

|��〉 =
∑
m

|�,m〉 ⊗ |�,m〉 (6.140)

where the sum extends over all the quasiprimary descendants of the primary state
|�〉. Note that the Ishibashi states are not eigenvalues of the energy L0 + L̄0 and
are not normalizable in the usual sense.

One important consequence of equations (6.132), (6.133) is that in the
presence of boundaries the n-point functions of two-dimensional primary fields
φ��̄(z, z̄) and the chiral conformal blocks of 2n-chiral vertex operators with
the same weights satisfy the same equations as functions of the 2n variables
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(z1, z̄1, . . . , zn, z̄n) [1]. Indeed, since the chiral and antichiral parts of the stress–
energy tensor and of the currents act independently on the chiral and antichiral
vertex operators in the decomposition of the two-dimensional primary fields (see
also equation (6.60)),

φ��̄(z, z̄) =
∑
�i �̄i
� f �̄ f

V � f
� �i

(z) V̄
�̄ f

�̄ �̄i
(z̄)n f f̄

i ī
(6.141)

the n-point functions of the two-dimensional fields in the theory with boundaries
are linear combinations of 2n-point chiral conformal blocks. Note the difference
with respect to the case without boundaries reviewed in the previous section,
where the two-dimensional functions are sesquilinear combinations of n-point
conformal blocks.

Another important property of the boundary is the existence of one-
dimensional fields ψ called boundary fields [1]. They are defined only on the
boundary (on the unit circle in the analytic picture). Equations (6.132), (6.133)
imply that the Virasoro algebra and the conformal current algebra which act
on the boundary have the same central charge and the same level as the chiral
ones. Hence, the primary boundary fields can be labelled by the same set of
weights �. There can be different boundary conditions on different portions of
the boundary, which we denote by labels a, b, c. The boundary fields carry two
boundary condition labels ψab

� (x) and change the boundary condition from b to
a. In general, a degeneracy label accounting for the multiplicity of the boundary
fields may also be necessary. For simplicity we shall omit the degeneracy labels.
For a more accurate analysis of this point see, e.g., [53]. We shall denote the
argument of the boundary fields by x which takes values only on the unit circle,
to distinguish it from z (z̄) which take values inside (outside) the unit circle.

In general, the boundary fields do not locally commute, rather they behave
much like the chiral vertex operators under the exchange algebra. In other words,
in correlation functions the ordering of their arguments on the circle cannot
be changed arbitrarily. In particular, this implies that the 4-point functions of
boundary fields satisfy only one crossing symmetry relation, called planar duality,
in contrast with the two-dimensional case where the crossing symmetry of the 4-
point functions implies two duality relations.

To simplify the notation in this section we shall consider only the SU(2)
current algebra models and label the fields by i = 2Ii + 1 and ī = 2 Īi + 1 rather
than by their weights �i and �̄i . Hence, the identity operators carry the label
1. When this is not ambiguous, we shall also omit the spacetime (z and x) and
SU(2) (ζ ) variables.

The operator product expansion for the boundary fields schematically has
the form (note the continuity of the boundary indices)

ψi
abψ j

bc ∼
∑
l

Cabc
i j l ψ

ac
l (6.142)
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where the sum is over all the values allowed by the fusion rules (6.83). The
boundary structure constantsCabc

i j l are, in general, not symmetric. Other important
data are the normalizations of the 2-point functions of the boundary fields, since
they cannot be chosen arbitrarily [2]. To define them one also has to specify the
order of the arguments, since the boundary fields do not commute. Both variables
are on the unit circle so we can order them by their phase

〈ψi ab(x1; ζ1)ψi ba(x2; ζ2)〉 = αi
ab(ζ12)

2Ii

(x12)2�i
for Arg(x2) < Arg(x1) (6.143)

where Ii is the isospin of ψi . The normalizations of the fields with exchanged
boundary labels are related. For example, for the SU(2) current algebra models
one finds

αi
ab = αi ba(−1)2Ii . (6.144)

Let us stress that even if we consider in detail only the SU(2) conformal
current algebra case, most of the formulae are also valid in more general cases
(with minor modifications in the numerical factors). For instance, in the unitary
minimal models case one just has to omit all the isospin dependence.

Using the boundary OPE (6.142) we can compute the three-point functions
of the boundary fields 〈ψi abψ j

bcψl
ca〉 and 〈ψ j

bcψl
caψi

ab〉 in two different ways.
This gives the following consistency conditions:

Cabc
i j l αl

ac = Cbca
jli αi

ab and Cbca
jli αi

ba = Ccab
li j α j

bc (6.145)

that together with (6.144) imply also

Cabc
i j l αl

ac = (−1)2Ii Ccab
li j α j

bc. (6.146)

The natural normalization of the boundary identity operator is

Cabb
i1i = 1 〈1aa〉 = αaa1 (6.147)

while all other 1-point functions of the boundary fields vanish.
The planar duality constraint for the 4-point functions 〈ψab

i ψ
bc
j ψ

cd
k ψ

da
l 〉

reads:∑
p

Cabc
i j p C

cda
klp α

ac
p Sp(i, j, k, l) =

∑
q

Cbcd
jkqC

dab
liq α

bd
q Uq(i, j, k, l) (6.148)

and after expressing the u-channel blocks (6.120) in terms of the s-channel blocks
(6.114) by the fusion matrix Fs (6.119) as (see also (6.121)):

Uq(i, j, k, l) =
∑
p

Fqp(i, j, k, l)Sp(i, j, k, l) (6.149)
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we obtain a quadratic relation for the boundary structure constants Cabc
i j k and the

2-point normalizations αabi :

Cabc
i j p C

cda
klp α

ac
p =

∑
q

Cbcd
jkqC

dab
liq α

bd
q Fqp(i, j, k, l). (6.150)

These relations do not determine the boundary structure constants completely. In
other words, the boundary theory cannot be considered independently but only as
a part of the two-dimensional conformal theory.

The relation between the bulk and boundary fields is encoded into the bulk-
to-boundary expansion

φi,ī |a ∼
∑
j

Ca
(i,ī ) j

ψ j
aa (6.151)

that expresses the two-dimensional fields in front of a portion of boundary
with given boundary condition a in terms of the corresponding boundary fields.
The sum is again over all the values allowed by the fusion rules. The proper
normalization of the identity operator gives

Ca
(1,1)1 = 1 (6.152)

for all boundary conditions a.
The consistency of the operator product expansions (6.73), (6.142) and

(6.151) have been studied by Lewellen [3], who has shown that the complete set
of relations (also called sewing constraints) which guarantee the consistency of
the theory includes two more equations, the first one involving 4-point functions
and the second one involving 5-point functions. The first relation arises from the
correlation functions of one two-dimensional bulk field and two boundary fields.
As already stressed, the boundary fields have a fixed order of the arguments but
the two-dimensional fields also have to be local in the presence of boundary fields,
which implies

〈φ(i,ī)ψba
j ψ

ab
k 〉 = 〈ψba

j φ(i,ī)ψ
ab
k 〉. (6.153)

Note that the bulk field is expanded in front of portions of the boundary with
different boundary conditions in the left- and in the right-hand sides of this
equation. Using also (6.142), (6.151) one obtains∑

l

Cb
(i,ī )l

Cbba
l j k α

ba
k Sl(i, ī , j, k) =

∑
n

Ca
(i,ī)n

Cbaa
jnkα

ba
k Un( j, i, ī, k). (6.154)

To derive the constraint on the structure constants we have to relate theU - and the
S-blocks. A convenient way to do this is to use repeatedly the fusion matrix (and
its inverse) in such a way that the exchange operators always act diagonally (see
(6.117)). In other words before applying B1 or B3 we change to the s-channel
basis, while before applying B2 we change to the u-channel basis. The resulting
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composite exchange operator is

Un( j, i, ī, k) =
∑

m,r,s,p,l

Fnm ( j, i, ī, k)(B1)mr (i, j, ī, k)F
−1
rs (i, j, ī, k)

× (B2)
−1
sp (i, ī, j, k)Fpl(i, ī , j, k)Sl(i, ī , j, k). (6.155)

Inserting this in (6.154) and using the explicit expressions for the exchange
operators B1 and B2 in the SU(2) model, we obtain the constraint

Cb
(i,ī)l

Cbab
jkl αl

bb =
∑
m,n,p

(−1)(Ii−Iī+2I j+Ip−Im )e−iπ(�i−�ī−�m+�p)

× Ca
(i,ī )n

Caba
kjn αn

aa Fnm( j, i, ī, k)

× F−1
mp(i, j, ī, k)Fpl(i, ī , j, k). (6.156)

The other independent relation can be derived from the 5-point functions of two
bulk fields and one boundary field of the form

〈φ(i,ī)φ( j, j̄)ψkaa〉. (6.157)

This function can again be computed in two different ways. We can first use
the two-dimensional OPE (6.73) followed by a bulk-to-boundary OPE (6.151),
alternatively we can use the bulk-to-boundary OPE (6.151) twice followed by a
boundary OPE (6.142). Before proceeding we have to define a basis in the space
of 5-point functions. We shall use a tree representation which decomposes the 5-
point functions into products of a 4-point function and a 3-point function (denoted
by g(1, 2, 3)) with one common external leg:

X pq(1, 2, 3, 4, 5) = Sp(1, 2, q, 5)g(q, 3, 4)

= g(1, 2, p)Uq(p, 3, 4, 5). (6.158)

In this notation the equivalence of the two ways of computing the function (6.157)
implies ∑

p,q

C(p,q̄)
(i,ī )( j, j̄)

Ca
(p,q̄)kα

aa
k X pq̄( j, i, ī, j̄, k)

=
∑
p,q

Ca
(i,ī )p

Ca
( j, j̄)q

Caaa
pqkα

aa
k X pq(i, ī , j, j̄, k). (6.159)

The two expressions can again be related by the exchange operators, for example
by F[2]B−1

1 B2B1B2F
−1
[2] , where the label in brackets indicates on which 4-point

subtree acts the fusion matrix F . We can use the Yang–Baxter equations (6.108)
to express B2B1B2 in terms of F[1] obtaining (if αaak �= 0)

C(p,q̄)
(i,ī )( j, j̄)

Ca
(p,q̄)k =

∑
r,s,t

(−1)(I j−It+Ir )e−iπ(� j−�t+�r )Caaa
rsk

× Ca
(i,ī)r

Ca
( j, j̄)s

Fst (r, j, j̄, k)Frp( j, i, ī, t)F
−1
t q̄ (p, ī , j̄, k).

(6.160)
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Both equations (6.156) and (6.160) can be written in several different
equivalent forms, since the exchange operators satisfy duality relations (like the
Yang–Baxter equation (6.108)) [28]. Our derivation follows [9]. For alternative
ones see also [3, 53, 54]. In particular, [54] contains the general solution of the
sewing constraints for the unitary minimal models with a detailed analysis of the
residual normalization freedom. Here we shall address only a simpler problem,
namely we shall try to count the allowed boundary conditions. Note that in all
the sewing constraints the boundary fields enter as external insertions, so one can
always start with only one type of boundary labels, say a, and solve only the
corresponding subsystem. There is, however, a systematic way to determine the
whole set of allowed boundary conditions. In other words, by only analysing the
sewing constraints one can find all boundary states |a〉. To illustrate this point, let
us consider one particular case of the function (6.157), namely 〈φ(i,ī )φ( j, j̄)1aa〉.
Then the condition (6.160) becomes

C(q,q̄)
(i,ī)( j, j̄)

Ca
(q,q̄)1α

aa
1 =

∑
p

(−1)(I j−I j̄+Ip)e−iπ(� j−� j̄+�p)

× αaap Ca
(i,ī)p

Ca
( j, j̄)p

Fpq( j, i, ī, j̄). (6.161)

Multiplying by F−1
qr ( j, i, ī, j̄), summing on q and keeping only the equation

corresponding to r = 1 we find a system of equations for the bulk-to-boundary
coefficients in front of the boundary identity operators

Bai = Ca
(i,ī )1

(6.162)

where to simplify notation we have used the fact that for a permutation modular
invariant the antichiral label of a field ī is determined by its chiral label i . The
resulting relation has the form

Bai B
a
j =

∑
l

Xi j
l Bal (6.163)

for all a with a-independent structure constants Xij l that vanish if the fusion
rules Nij l are zero. The number of different solutions of these equations also
determines the number of allowed boundary conditions. In order to compute the
values of the structure constants Xij l , one needs to know the two-dimensional
structure constants and the expressions for the fusion matrix in the model. As
already stressed, these data are known only in a very restricted number of cases.
In order to bypass this difficulty, in [55] an alternative approach was proposed.
One can postulate that (6.163) holds and that the structure constants Xij l form
a commutative and associative algebra, called a classifying algebra. Then the
reflection coefficients Bai are given by the representations of this algebra which,
in some cases, can be explicitly found.

For the SU(2) case from the explicit expressions of the fusion matrix (6.119)
and the two-dimensional structure constants (6.128), we can compute the values
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Table 6.1. Reflection coefficients for the diagonal SU(2) level k = 6 model.

a B1 B3 B5 B7 B2 B4 B6

1 1 1+√
2 1+√

2 1
√

2+√2
√

2(2+√
2)

√
2+√

2

2 1 1 −1 −1
√

2 0 −√2

3 1 1−√
2 1−√

2 1
√

2−√2 −
√

2(2−√
2)

√
2−√

2
4 1 −1 1 −1 0 0 0

5 1 1−√
2 1−√

2 1 −
√

2−√
2

√
2(2−√

2) −
√

2−√
2

6 1 1 −1 −1 −√2 0
√

2

7 1 1+√
2 1+√

2 1 −
√

2+√
2 −

√
2(2+√

2) −
√

2+√
2

of Xij l both in the diagonal A models and in the non-diagonal Dodd models,
obtaining

Bai B
a
j =

∑
l

εi j l Ni j
l Bal (6.164)

where the signs εi j l , present only for the Dodd models, are defined after
equation (6.128) (they are symmetric in all three indices and are equal to (−1)
only if two of the isospins are half-integer, while the third isospin is an odd
integer).

As an illustration we shall write down the solutions of the system (6.164)
in the two SU(2) models of level k = 6. In the diagonal A model there are
seven different solutions for the reflection coefficients Bi , which are reported in
table 6.1. Note that in the diagonal models the number of boundary conditions is
always equal to the number of two-dimensional fields.

In the non-diagonal D5 model, with torus partition function

Z D5
T = |χ1|2 + |χ3|2 + |χ5|2 + |χ7|2 + |χ4|2 + χ2χ̄6 + χ6χ̄2 (6.165)

two of the coefficients (B2 and B6) vanish, since the corresponding two-
dimensional fields are non-diagonal, while the presence of the signs εi j l modifies
the equations for B4 as follows:

B4B2I+1 = (−1)I B4

B4B4 = B1 − B3 + B5 − B7. (6.166)

Hence there are only five different solutions for the reflection coefficients Bi ,
which are reported in table 6.2. Note that the number of different boundary
conditions is again equal to the number of two-dimensional fields with charge
conjugate chiral and antichiral labels (or, equivalently, to the number of different
Ishibashi states (6.140)). This, in fact, is a general property of two-dimensional
conformal theories with boundaries [55, 56].
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Table 6.2. Reflection coefficients for the non-diagonal SU(2) level k = 6 model.

a B1 B3 B5 B7 B4

1 1 1 −1 −1 0
2 1 1+√

2 1+√
2 1 0

3 1 −1 1 −1 2
4 1 −1 1 −1 −2
5 1 1−√

2 1−√
2 1 0

6.4.2 Closed unoriented sector, crosscap constraint

To study the behaviour of the two-dimensional fields on non-oriented surfaces
let us first introduce the crosscap. The crosscap is the projective plane and can
be represented as a unit disc with diametrically opposite points identified. Two-
dimensional surfaces with crosscaps cannot be oriented. For example the Klein
bottle is topologically equivalent to a cylinder terminating at two crosscaps.

Our analysis will follow closely the one in the boundary case. Like the
boundaries, the crosscap breaks the two-dimensional conformal symmetry since
it is not invariant under all transformations of V ir ⊗ V ir . If the central charges
of the two algebras are equal (c̄ = c) there exist crosscaps that are preserved at
most by the diagonal subalgebra V irdiag. Let us again pass to the analytic picture
mapping the boundary of the crosscap onto the unit circle. Then the crosscap
implies the identification z̄ ↔ −1/z. Similarly to the case of a boundary, the
absence of energy flux through the crosscap allows us to define the stress–energy
tensor as

Td(z) =
T (z) for |z| ≤ 1

1

z4 T̄

(
−1

z

)
for |z| > 1

(6.167)

while the currents are

Jad (z) =
J

a(z) for |z| ≤ 1

− 1

z2
J̄ a
(
−1

z

)
for |z| > 1

(6.168)

The combinations of the Laurent modes of the stress–energy tensor and of the
currents that satisfy the Virasoro algebra with vanishing central charge (6.136)
and the current algebra of zero level (6.137) are, in this case,

�n = Ln − (−1)n L̄−n (6.169)

and
� a

n = Jan + (−1)n J̄ a−n . (6.170)
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The crosscap states |C〉 [57] in the theory are annihilated by the modes
(6.169) and (6.170):

�n |C〉 = (Ln − (−1)n L̄−n)|C〉 = 0 (6.171)

and
� a

n |C〉 = (Jan + (−1)n J̄ a−n)|C〉 = 0. (6.172)

These equation have the same number of solutions as the corresponding equations
(6.138) and (6.139) for the boundary states and one can explicitly construct the
Ishibashi-type crosscap states as in (6.140). There is, however, an important
difference with the boundary case, since the consistency conditions imply
the crosscap constraint [58, 59], which singles out one crosscap state |C〉.
Let us stress that, in general, there may be several different crosscap states
corresponding to different actions of the involution � : z ↔ −1/z on the fields.
The crosscap constraint tells us only that two different crosscap states cannot exist
simultaneously in the same theory.

Just as in the boundary case, the presence of a crosscap implies that the
n-point functions of the two-dimensional primary fields are linear combinations
of the 2n-point chiral conformal blocks. However, in contrast with the boundary
case one cannot introduce non-trivial crosscap operators, since the involution
� : z ↔ −1/z has no fixed points. In particular, only the identity operator (which
has no z dependence and hence is the only invariant under � one) can contribute
to the expansion of a two-dimensional primary field in front of a crosscap:

φ��̄(z, z̄)|crosscap ∼ ���̄δ��̄C1. (6.173)

Here ���̄ is a normalization constant and �̄C is the charge conjugate of �̄. Let
us stress that the expansion (6.173) can be used only for the computation of the 1-
point functions of the fields in front of a crosscap. The reason is that the operator
product expansions are valid only if the arguments can be connected without
encountering other singularities; but in all n ≥ 2 point functions in front of a
crosscap z and z̄ = −1/z are always separated by the arguments of the other
fields.

The involution � acts on the two-dimensional primary fields (6.141)
transforming the chiral vertex operators into antichiral ones and vice versa; and
thus relating the two-dimensional field (6.141) to the field with weights and
arguments exchanged:

φ�̄�(z̄, z) =
∑
�i �̄i
� f �̄ f

V
�̄ f

�̄ �̄i
(z̄)V̄ � f

� �i
(z)n f f̄

i ī
. (6.174)

To simplify the notation, let us denote the two weights of the field by a single label
(this is unambiguous for a permutation modular invariant) setting φi = φ�i �̄i and
φī = φ�̄i�i . The action of � is [8]

�φi (z, z̄) = εiφī (z̄, z). (6.175)
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Since � is an involution, the εi are just signs

εi = εī = ±1 (6.176)

which have to respect the fusion rules (6.71), hence

εiε j εk = 1 if Nijk �= 0. (6.177)

As an example let us again take the SU(2) current algebra. In this case
the equations (6.177) have only two different solutions: εi = +1 for all integer
isospin fields and εi = ε = ±1 for all half-integer isospin fields

One convenient way to compute the n-point functions of the two-
dimensional fields in the front of a crosscap is to introduce the crosscap operator
[59]

Ĉ =
∑
l

�l
|�l〉〈�̄l |√

Nl
(6.178)

where Nl is the normalization constant of the two-dimensional 2-point function
(6.126). the operator Ĉ allows us to explicitly correlate the n-point functions
of the two-dimensional fields in presence of a crosscap with the 2n-point chiral
conformal blocks:

〈φ1,1̄ . . . φn,n̄〉C = 〈0|Ĉφ1,1̄ . . . φn,n̄ |0〉
=
∑
l

�l√
Nl
〈0|V�1(z1) . . .V�n (zn)|�l〉〈�̄l |V̄�̄1

(z̄1) . . . V̄�̄n
(z̄n)|0〉.

(6.179)

The relation (6.175) for the two-dimensional fields implies for their functions in
the presence of a crosscap:

〈φi,ī (zi , z̄i )X〉C = ε(i,ī )〈φī ,i (z̄i , zi )X〉C (6.180)

where X is an arbitrary polynomial in the fields. These equations determine the
coefficients �n . In particular, for the 1-point functions which satisfy

〈φi,ī (z, z̄)〉C =
∑
l

�l√
Nl
〈0|Vi (z)|�l〉〈�̄l |V̄ī(z̄)|0〉

= �i√
Ni
δi ī 〈0|Vi (z)Vī(z̄)|0〉 = 〈φī,i (z̄, z)〉C (6.181)

equation (6.180) implies the vanishing of �� for all fields on which � acts non-
trivially (ε� = −1). Note that the factor

√
Ni in (6.181) is compensated by the

normalization of the chiral function 〈0|Vi Vī |0〉 in accord with (6.173).
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To derive the crosscap constraint, let us apply (6.180) for the 2-point
functions in the presence of a crosscap. The left-hand side is

〈φi,ī (z1, z̄1)φ j, j̄ (z2, z̄2)〉C
=
∑
l

�l√
Nl
〈0|Vi (z1) Vj (z2)|�l〉〈�̄l |V̄ī (z̄1) V̄ j̄ (z̄2)|0〉

=
∑
l

�l C̃
(l,l)
(i,ī)( j, j̄)

Sl(z1, z2, z̄1, z̄2) (6.182)

where Sl are the normalized s-channel chiral conformal blocks (6.114) (note
the order of the arguments zi ). The constants C̃ are proportional to the two-
dimensional structure constants (6.128):

C̃(l,l)
(i,ī )( j, j̄)

= √NlC(l,l)(i,ī )( j, j̄)
. (6.183)

In the same way for the right-hand side we obtain

〈φī ,i (z̄1, z1)φ j, j̄ (z2, z̄2)〉C
=
∑
l

�l√
Nl
〈0|Vī (z̄1)Vj (z2)|�l〉〈�̄l |V̄i (z1)V̄ j̄ (z̄2)|0〉

=
∑
l

�l C̃
(l,l)
(ī,i)( j, j̄)

Sl(z̄1, z2, z1, z̄2). (6.184)

The s-channel blocks Sl(z̄1, z2, z1, z̄2) are proportional to the u-channel blocks
Ul(z1, z2, z̄1, z̄2) (see equation (6.120)) and can be related to the conformal blocks
in (6.182) by the exchange operator B1(B3)

−1F . Using also the explicit form of
B1 and B3 (6.117), we find

Sl (ī, j, i, j̄) = (−1)�i−�̄i+� j−�̄ j
∑
n

Fln(i, j, ī, j̄)Sn(i, j, ī, j̄). (6.185)

Inserting (6.182), (6.184), (6.185) into equation (6.180) we obtain the final form
of the crosscap constraint [59]:

ε(i,ī )(−1)�i−�̄i+� j−�̄ j�nC̃
(n,n)
(i,ī )( j, j̄)

=
∑
l

�l C̃
(l,l)
(ī,i)( j, j̄)

Fln(i, j, ī, j̄) (6.186)

for all n. Applying� to the second field in the 2-point function leads to the same
equation. Note that the crosscap constraint is linear in �, hence it only determines
the ratios �l/�1. The remaining freedom is only in the normalization of the
two-dimensional identity operator in front of the crosscap �1. The simplest way
to determine �1 is to impose the integrality condition on the partition functions
which we shall describe in the next section. An alternative approach would be to
use the topological equivalence of three crosscaps to a handle and one crosscap
that is expected to give a nonlinear relation for �l . The explicit form of this
relation is, however, still not known.
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6.5 Partition functions

The two-dimensional structure constants are explicitly known only in a very
limited number of cases. This does not allow us, in general, to compute the
n-point functions in the presence of boundaries or crosscaps and to solve the
sewing constraints. Here we shall describe an alternative approach, proposed
in [4] in the framework of string theory. It gives less detailed information about
the theory but is applicable in all cases when the modular matrices S and T (6.67)
are known. Just as modular-invariant torus partition functions are classified in
many cases when the structure constants are not known, the partition function on
the annulus and the Klein bottle and Möbius strip projections can be explicitly
computed in many cases when we cannot obtain detailed information about the
corresponding n-point functions in the presence of boundaries or crosscaps. The
method is particularly powerful if the completeness of the boundary conditions [9]
is used. Note that modular invariance of the torus partition function also plays the
role of completeness condition for the two-dimensional fields.

One starts with a general (not necessary rational) two-dimensional theory
with isomorphic chiral and antichiral observable algebras� and �̄, corresponding
to a symmetric Xij = X ji torus modular invariant (6.63).

To simplify the formulae we shall assume that the theory is rational and
that the modular invariant is of the permutation type (6.69). This has the
advantage that one can write all expressions using only chiral labels, while in
the general case additional degeneracy labels may be needed to distinguish fields
with multiplicities larger than one.

6.5.1 Klein bottle projection

Let us first construct the non-oriented sector. The simplest non-orientable surface,
the Klein bottle, can be represented as a cylinder terminating at two crosscaps.
The Klein bottle contribution to the partition function is a linear combination of
the Virasoro characters [4–6], hence, in general, it is not a modular invariant. In
fact, there are two distinct expressions for the Klein bottle contribution, called the
direct and transverse channels which are related by the modular S transformation
(6.64). In string theory language they correspond to inequivalent choices of
time on the world-sheet. In the direct channel the Klein bottle contribution
is a projection of the torus partition function that describes the (anti)symmetry
properties of the two-dimensional fields under the involution� (6.175):

K =
∑
i

χi K
i (6.187)

where the integers K i satisfy

|K i | ≤ Xii K i = Xii (mod 2). (6.188)
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Hence for permutation invariants, K i can take only the values 0 or ±1. The Ki
are related (but not necessary equal) to the signs εi in (6.175).

The modular S transformation turns (6.187) into the transverse channel,
which describes the reflection of the two-dimensional fields from the two
crosscaps at the ends of the cylinder. It has the form

K̃ =
∑
i

χi�i
2 (6.189)

where the reflection coefficients�i are the normalizations of the 1-point functions
of the two-dimensional fields in front of the crosscap (see equation (6.173)), so
they vanish if XiiC = 0.

The complete partition function in the unoriented case is given by the half
sum of the torus and direct channel Klein bottle contributions

Zunoriented = 1
2 (ZT + K ). (6.190)

The multiplicity of a field φi j (= φ j i) can be read from the partition function
(6.190) as follows (for a permutation invariant, if there are multiplicities the
argument applies for each copy of the fields).

• If i �= j it is equal to 1/2(Xij + X ji) and is non-negative integer due to the
assumption that the torus invariant is symmetric. Only one combination of
the two fields φi j and φ j i remains in the spectrum, the other is projected out.

• If i = j it is equal to 1/2(Xii + Ki ) and is a non-negative integer since Ki
satisfy (6.188). In particular, if Xii = 1 the fields with Ki = 1 remain in the
spectrum, while the ones with Ki = −1 are projected out.

If the ground state is degenerate, the Klein bottle projects out the part
antisymmetric under the left-right exchange rather that the whole field.

We shall illustrate the construction on the example of the non-diagonal D5
model of the SU(2) current algebra with level k = 6 with torus partition function
(6.165). There are two different Klein bottle projections, corresponding to the
two choices for the signs εi in (6.175) [59]. For reasons that will become clear in
the next section, we shall distinguish them by the subscripts ‘r’ and ‘c’ (for ‘real’
and ‘complex’)

K D5
r = χ1 + χ3 + χ5 + χ7 − χ4 (6.191)

K D5
c = χ1 + χ3 + χ5 + χ7 + χ4. (6.192)

Comparison with the values of εi given by

• εi = 1 for all i in the real case
• εi = (−1)i−1 in the complex case

shows that there is a relative factor (−1)2I between Ki and the signs εi which
comes from the SU(2) structure of the fields. Indeed the singlet is in the
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symmetric (antisymmetric) part of the tensor product of integer (half-integer)
isospins. So the real Klein bottle projection corresponds to keeping all singlets,
while the complex one projects out the singlet corresponding to χ4.

As an application of these ideas to string theory, let us mention that in [60]
the first tachyon free non-supersymmetric string model has been constructed by a
non-standard Klein bottle projection.

6.5.2 Annulus partition function

The spectrum of the boundary fields is described by the annulus (or cylinder)
partition function with all possible boundary conditions at the two ends. Again
the partition function is linear in the characters, hence not a modular invariant, so
there are two distinct expressions for the annulus contribution [1]. They are called
the direct and transverse channels and are related by the modular S transformation
(6.64).

In the direct channel the annulus partition function counts the number of
operators that intertwine the boundary conditions at the two ends and can be
represented as

A =
∑
i,a,b

χ i Aabi nanb (6.193)

where the non-negative integers Aabi give the multiplicities of the boundary fields
ψab
i . The auxiliary multiplicities na associated with the boundaries in open string

models correspond to the introduction of Chan–Paton gauge groups [61], which
can be U(n), O(n) or USp(2n) [62]. In the case of U(n) groups, the boundaries
can be oriented, since there are two inequivalent choices of the fundamental
representation, hence the Chan–Paton charges come in numerically equal pairs
n̄ = n. We shall call such charges complex. The other two cases, USp(2n) and
O(2n), do not lead to similar identifications and we shall call the corresponding
charges real. The labels ‘r’ and ‘c’ on the partition functions originate from this
interpretation. In applications to Statistical Mechanics one may regard (6.193) as
a generating function for the multiplicities of the allowed boundary fields.

The transverse channel, related to (6.193) by a modular S transformation,
has a very different interpretation. It describes the reflection of a two-dimensional
field from the two boundaries and can be represented as

Ã =
∑
i

χ i
[∑

a

�ia n
a
]2

. (6.194)

Since only fields with charge conjugate chiral and antichiral labels can couple
to the boundaries, it is again sufficient to specify only the chiral label. The
reflection coefficient �ia for the field i (ī ) from a boundary a is proportional
to the coefficient of the identity operator in the bulk-to-boundary expansion of the
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two-dimensional field in front of the boundary (6.151):

�ia =
Ca
(i,ī )1

αaa1√
Niī

. (6.195)

One can define charge conjugation on the boundary labels. It is non-trivial
only if the boundaries are oriented (that corresponds to complex charges) and is
given by the involutive matrix (A1)ab = (A1)

ab, such that

Aia
b =

∑
c

A1acAi
cb (6.196)

hence (A1)
b
a = δba . Let us also assume that the boundaries are a complete set.

To justify this assumption let us recall that the modular invariance condition of
the torus partition function also plays the role of completeness condition for the
two-dimensional fields. The completeness condition for the boundaries has two
equivalent formulations. The first one [9] is to require that the coefficients Aiab

satisfy the fusion algebra∑
b

Aia
b A jb

c =
∑
k

Nk
i j Aka

c. (6.197)

Intuitively this relation corresponds to two different ways of counting the
boundary fields. The second one [56] is to require that the boundary states
are related to the Ishibashi states (6.140) by a unitary transformation which, in
particular, implies that they are the same number.

Equation (6.197) contains only chiral information, so it cannot determine
completely the multiplicities Aabi . The two-dimensional input is provided by the
torus modular invariant (6.62). In particular, if for some j the torus coefficient
X j jC = 0 (where jC is the charge conjugate of j ) then there is no two-
dimensional field with these labels, so the coefficients Ca

( j jC)1
are zero for all

a. Hence, due to (6.195) all the � j a’s also vanish and χ j will not contribute to
(6.194). After a modular transformation this implies∑

i

Aabi Sij = 0 (6.198)

for all a and b and this particular j .
Hence we can reformulate the problem of finding the annulus partition

function in the following way: solve over the non-negative integers the two
equations (6.197) and (6.198). In general, this system may have several solutions
but in all known cases fixing the boundary charge conjugation matrix (A1)ab
also completely determines all Aabi , and thus the only freedom is in choosing
the orientation on pairs of boundaries. The proof of this fact in the general case
is, however, still a challenging open problem.
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As an illustration let us again consider the D5 model with torus partition
function (6.165). In the real charge case (A1)ab = δab and the solution is (the
labels of the charges correspond to the first column in table 6.2)

AD5
r = χ1(n

2
1 + n2

2 + n2
3 + n2

4 + n2
5)

+ (χ2 + χ6)(2n1n2 + 2n1n5 + 2n3n5 + 2n4n5)

+ χ3(n
2
1 + 2n1n3 + 2n1n4 + 2n3n4 + 2n2n5 + 2n2

5)

+ χ4(4n1n5 + 2n2n3 + 2n3n5 + 2n2n4 + 2n4n5)

+ χ5(n
2
1 + n2

3 + n2
4 + 2n2

5 + 2n1n3 + 2n1n4 + 2n2n5)

+ χ7(n
2
1 + n2

2 + n2
5 + 2n3n4). (6.199)

In the complex case the two charges n3 and n4 become a complex pair n̄ = n and
the solution is

AD5
c = χ1(n

2
1 + n2

2 + 2nn̄ + n2
5)

+ (χ2 + χ6)(2n1n2 + 2n1n5 + 2nn5 + 2n̄n5)

+ χ3(n
2
1 + n2 + n̄2 + 2n1n + 2n1n̄ + 2n2n5 + 2n2

5)

+ χ4(4n1n5 + 2n2n + 2n2n̄ + 2nn5 + 2n̄n5)

+ χ5(n
2
1 + 2n2

5 + 2n1n + 2n1n̄ + 2n2n5 + 2nn̄)

+ χ7(n
2
1 + n2

2 + n2
5 + n2 + n̄2). (6.200)

Note that in both cases some boundary fields (corresponding to the n5 charge)
have multiplicities equal to two.

6.5.3 Möbius strip projection

The consistency of the theory in presence of both boundaries and crosscaps is
determined by the Möbius strip contribution [4–6]. The Möbius strip can be
represented as a cylinder terminating at one boundary and at one crosscap. Hence,
in the transverse channel the two-dimensional field reflects from the boundary
and the crosscap with the same reflection coefficients �ia and �i which enter
equations (6.189), (6.194)

M̃ =
∑
i

χ̂ i�i

[∑
a

�ian
a
]
. (6.201)

As we have seen there are, in general, more than one solution for both �ia

and �i , so we also have to specify which of these solutions we shall use in
equation (6.201). To determine this we can pass to the direct channel (by a P
transformation, see equation (6.205))

M =
∑
i

χ̂ i Ma
i na (6.202)
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and compare this expression with the annulus partition function (6.193). The
integer coefficients Ma

i can be interpreted as twists (or projections) of the open
spectrum and thus have to satisfy

Ma
i = Aaai (mod 2) |Ma

i | ≤ Aaai . (6.203)

These equations choose consistent pairs of annulus and Klein bottle partition
functions.

The natural modular parameter in the direct channel for the Möbius strip is
(iτ + 1)/2, while in the transverse channel it is (i + τ )/2τ . The non-vanishing
real part of the direct channel modular parameter implies that the natural basis of
characters for the Möbius strip is

χ̂ j = e−iπ(� j−c/24)χ j

(
iτ + 1

2

)
(6.204)

hence the transformation which relates the direct and transverse channels is given
by [5]

P = T 1/2ST 2ST 1/2 (6.205)

and satisfies P2 = C . The square root of T in (6.205) denotes the diagonal matrix
whose eigenvalues are square roots of the eigenvalues of T .

By a formula similar to the Verlinde formula (6.71) one can define the
coefficients Yi j k [8]:

Yi j
k =

∑
�

Si�Pj�P
†
k�

S1�
(6.206)

which are integers [63, 64] and satisfy the fusion algebra∑
l

Yim
lY jl

n =
∑
�

Nij
�Y�m

n (6.207)∑
i

Yi j kY
i
lm =

∑
i

Yi jmY
i
lk . (6.208)

The complete partition function in the unoriented open sector is

Zopen = 1
2 (A ± M). (6.209)

Its integrality is guaranteed by the conditions (6.203). Note that the overall sign
of the Möbius strip projection is not determined by conformal theory. In open
string models this sign is fixed by the tadpole cancellation conditions [65] and
determines the gauge group.

The completeness condition (6.197) implies two relations between the
integer coefficients in the direct channel partition functions A, M and K and the
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Y tensor (6.206): ∑
b

Ai
abMjb =

∑
l

Yi j
l Ml

a (6.210)∑
b

Mi
bMjb =

∑
l

Y l i j Kl (6.211)

that put very strong constraints on Ki and Mi
a for given Aiab (in all known cases

they completely determine them).
Coming back to our example, in the non-diagonal D5 model there are two

consistent choices for the annulus and Klein bottle partition functions, namely
the pairs with the same subscript (r or c). The two Möbius strip projections are
correspondingly

MD5
r = χ̂1(n1 − n2 + n3 + n4 − n5)

+ χ̂3(−n1 + 2n5)

+ χ̂5(n1 + n3 + n4)

+ χ̂7(n1 + n2 + n5) (6.212)

and

MD5
c = χ̂1(−n1 + n2 + n5)

+ χ̂3(n1 + n + n̄)

+ χ̂5(n1 + 2n5)

+ χ̂7(n1 + n2 + n + n̄ + n5). (6.213)

It is instructive to verify that these indeed satisfy the polynomial equations and
to determine the open spectrum of the models. Note that when the annulus
coefficient is equal to 2n2

5, there are two possibilities for the Möbius strip
coefficient. It can be either 2n5 = n5 + n5 or 0 = n5 − n5. This corresponds to
two operators with equal or opposite symmetrization properties.

6.5.4 Solutions for the partition functions

If the torus modular invariant is given by the charge conjugation matrix X = C
then the number of boundary conditions coincides with the number of chiral
representations, so we can label both by the same label. In this case the standard
solution for the annulus was found in [1], while the expressions for the Klein
bottle and Möbius strip were found in [8]:

Aijk = Nijk (6.214)

Mij = Y j i1 (6.215)

Ki = Yi11. (6.216)
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Using the properties of Nijk and Yi jk it is straightforward to verify that these
solutions satisfy all the consistency requirements. Moreover, the standard Klein
bottle projection (6.216) is equal to the Frobenius–Schur indicator [64] and
corresponds to keeping all the singlets in the spectrum. A modular transformation
to the transverse channel gives

Ã =
∑
i

(∑
j

Si j n j√
S1i

)2

χi (6.217)

M̃ =
∑
i

(∑
j

P1i Si j n j

S1i

)
χ̂i (6.218)

K̃ =
∑
i

(
P1i√
S1i

)2

χi . (6.219)

Before these general formulae were known, in [66] the standard Klein bottle and
Möbius partition functions for the diagonal case of the unitary minimal models
had been explicitly constructed.

As a simple example of a non-standard solution we shall also list the
expressions for the second possible solution in the diagonal SU(2) current algebra
models of level k denoted by Ak+1. The modular matrices S and T (we label the
fields by j = 2I + 1) are

Sjl =
√

2

k + 2
sin

(
π jl

k + 2

)
(6.220)

Tjl = δ j leiπ( j2

2(k+2)− 1
4 ). (6.221)

The charge conjugation matrix is the identity C = S2 = (ST )3 = 1. The modular
matrix P = T 1/2ST 2ST 1/2 which satisfies P2 = C = 1 is

Pjl = 2√
k + 2

sin

(
π jl

2(k + 2)

)
(EkE j+l + OkOj+l) (6.222)

where En and On are projectors on n even and odd correspondingly.
The standard solution in the diagonal model has k + 1 real charges and is

given by (6.214), (6.219). The explicit expression for the direct-channel Klein
bottle projection is

K {Ak+1}
r =

k+1∑
j=1

Y j
11χ j =

k+1∑
j=1

(−1) j−1χ j (6.223)

hence indeed all singlets are kept in the unoriented spectrum.



Partition functions 81

The second solution has also k + 1 charges (most are in complex pairs) and
in the direct channel is given by [8]

K
{Ak+1}
c =

k+1∑
j=1

Y j
k+1,k+1χ j =

k+1∑
j=1

χ j (6.224)

A{Ak+1}
c =

k+1∑
j,l,m=1

Nlm
jχk+2− j n

lnm (6.225)

M
{Ak+1 }
c =

k+1∑
j,l=1

Yl,k+1
j χ̂ j n

l . (6.226)

Note that the Klein bottle projects out the singlets for all the half-integer isospin
fields, so they cannot couple to the identity on the boundaries or the crosscap,
hence the corresponding reflection coefficient should vanish. After a modular
transformation we find in the transverse channel

K̃
{Ak+1}
c =

∑
i

(
Pk+1,i√
S1i

)2

χi (6.227)

Ã
{Ak+1}
c =

∑
i

(−1)i−1
(∑

j

Si j n j√
S1i

)2

χi (6.228)

M̃{Ak+1 }
c =

∑
i

(∑
j

Pk+1,i Si j n j

S1i

)
χ̂i . (6.229)

The vanishing of the reflection coefficients of the fields with half-integer isospin
in (6.228) implies the complex charge identifications nk+2−i = n̄i = ni for all i .

In the Dodd models there are again two different choices for the Klein
bottle projection (which generalize equations (6.191), (6.192) for D5). Both
lead to k/2 + 2 charges. The corresponding annulus and Möbius strip partition
functions are rather involved [9, 59]. The solutions for Deven, E6 and E8 (with
charge conjugation modular invariants if considered as models with extended
symmetry) are given by the general formulae (6.214), (6.219). The solution for
the exceptional case E7 is given in [59]. In the Deven and E models one can
study also boundary conditions that do not respect the extended symmetry of the
bulk model, but only the SU(2) symmetry. The corresponding solutions are given
in [53].

Many other solutions have been found. Let us note only the general formulae
in [67] where the partition functions for all simple currents modular invariants are
given.
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Chapter 7

Topics in string tachyon dynamics

César Gómez and Pedro Resco
Instituto de Fı́sica Teórica, C-XVI, Universidad Autónoma de
Madrid
E-28049-Madrid, Spain1

7.1 Introduction

In recent years a new understanding of the dynamic role of tachyons in string
theory has started to emerge ( [1–17], see [18] for early work on tachyon
condensation). For the simplest open bosonic string much evidence on tachyon
condensation already exists [1, 6–8, 11, 12]. The tachyon vacuum expectation
value characterizing this condensate exactly cancels out the open-string one-
loop contribution to the cosmological constant, what we now understand as the
D25 filling brane tension. The vacuum defined by this condensate is naturally
identified with the closed-string vacua. Precise computations of the tachyon
potential supporting this picture has been carried out both in open-string field
theory [7–10, 12–15] and in background independent open-string field theory
[19–24]. At this level of understanding two main problems remain open. First
of all, we have the problem of the closed tachyon that survives as an instability of
the closed-string vacua defined by the open-string tachyon condensate. Second,
we lack a precise understanding of the dynamical mechanism by which the U(1)
gauge open degrees of freedom are decoupled from the closed-string spectrum.

Concerning the problem of the closed-string tachyon, the σ -model beta-
functions [25,26] indicate that closed tachyon condensation creates a contribution
to the cosmological constant of the same type generated by working with non-
critical dimensions. The well-known result on the c = 1 barrier in the context of
linear dilaton backgrounds [27] could indicate a sort of instability that drastically
reduces the spacetime dimensions until the safe D = 2 is reached.

1 Unidad de Investigación Asociada al Centro de Fı́sica Miguel Catalán (CSIC).
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With respect to the problem of the fate of U(1) gauge degrees of freedom
after open tachyon condensation—a sort of confinement of open degrees of
freedom into a closed spectrum—there are two formal hints. One is the suggestion
of a trivial nilpotent BRST charge of type ac0, for c the ghost field, around the
background defined by the tachyon condensate [28]. The other hint comes from
observing that the open-string effective Born–Infeld Lagrangian is multiplied by
a factor e−T with T = ∞ defining the open tachyon condensate [24, 29–31].

In the context of more healthy superstrings without tachyons, the
phenomenon of tachyon condensation sheds some new light on the solitonic
interpretation of the D-branes. We have two main examples corresponding to
pairs Dp–D p̄-brane–antibrane which will support an open tachyon on the world-
volume spectrum and the case of configurations of unstable non-BPS D-branes.
In both cases tachyon condensation will allow us to interpret stable BPS D-branes
as topologically stable extended objects, or solitons, of the auxiliary gauge theory
defined on the world-volume of the original configuration of unstable D-branes.

The mechanism for decay into closed-string vacua by tachyon condensation
can be used to define a new algebraic structure to characterize D-brane stability
and D-brane charges, namely K-theory [32–36]. The main ingredient in order to
go to K-theory is the use of the stability equivalence with respect to the creation–
annihilation of branes. In type IIB Dp-branes of space codimension 2k are related
to K (B2k, S2k−1) and for type IIA Dp-branes of space codimension 2k + 1
are related to K−1(B2k+1, S2k). The characterization of K (X,Y ) in terms of
triplets [37] (E, F, α) with E, F vector bundles on X and α an isomorphism
α : E |Y → F |Y makes the mathematical meaning of the open tachyon field as
defining the isomorphism α particularly clear. A similar construction in terms of
pairs (E, α) with α an automorphism of E can be carried out for the definition of
the higher K−1-group [33].

Finally we would like to point out some striking similarities between the
topological characterization of stable Dp-branes in type IIA string and gauge-
fixing singularities for unitary gauges [38] of the type of ’t Hooft’s Abelian
projection [41]. Can we learn something of dynamical relevance from this
analogy? After the discovery of asymptotic freedom, the Holy Grail of high-
energy physics is the solution of the confinement problem. The Abelian projection
gauge was originally suggested in [41] as a first step towards a quantitative
approach to confinement, i.e. to the computation of the magnetic monopole
condensate. The analogy between stable Dp-branes (p ≤ 6) in type IIA and the
magnetic monopoles associated with the Abelian projection gauge singularities
seems to indicate, as the stringy analogue of confinement, the decay of the gauge
vacua associated with a configuration of unstable D9-filling branes into a closed-
string vacua populated of stable Dp-branes. Another interesting lesson we learn
from the analogy is that as for magnetic monopoles in the Abelian projection,
which should be considered as physical degrees of freedom independently of
whatever the phase, confinement, Higgs or Coulomb of the underlying gauge
theory is, the same should be true concerning type IIA Dp-branes, independently
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of the concrete form of the open tachyon potential. What is relevant to
characterize the ‘confinement’ closed-string phase is the ‘dualization’ of the
original open gauge string degrees of freedom into R–R closed-string fields whose
sources are stable Dp-branes. Finally and from a different point of view, another
hint suggested by this analogy is the potential relevance of the higher K-group
K−1 to describe gauge-fixing singularities in ordinary gauge theories. Maybe the
answer to the natural question of why the higher K-group K−1 is pointing out to
some hidden ‘M-theoretical’ meaning of the gauge θ -parameter.

The present review is not intended to be complete in any sense. It simply
covers the material presented by one of us (CG) during the Fourth SIGRAV
School on Contemporary Relativity and Gravitational Physics and 2001 School
on Algebraic Geometry and Physics2.

7.2 Why tachyons?

In quantizing string theory in flat Minkowski spacetime there are two constants
that should be fixed by consistency, namely the normal ordering constant
appearing in the mass formula:

M2 = 4

α′
(N − a) (7.1)

and the dimension D of the spacetime. These two constants determines the
Virasoro anomaly

[Lm , Ln] = (m − n)Lm+n + A(D, a,m)δm+n (7.2)

with

A(D, a,m) = D

12
(m3 − m)+ 1

6
(m − 13m3)+ 2am (7.3)

and
Lm = L(matter)

m + L(ghosts)
m − aδm. (7.4)

Imposing A(D, a,m) = 0 implies the standard constraints on the bosonic string,
namely D = 26 and a = 1.

The first consequence of the non-vanishing normal ordering constant a is that
the (mass)2 of the ground state (N = 0) is negative, i.e. it is a tachyon. In spite of
this there is an advantage in this normal ordering value, namely the existence, at
the first level, of a massless vector boson in the open case and a massless graviton
in the closed case.

A priori, the only consistency requirement we should impose is the absence
of negative norm ghost states in the physical Hilbert space. This will allow us to
relax the condition on D and a to D ≤ 26 and a ≤ 1.
2 Parts of these lectures were also presented at the Second Workshop on Non-commutative Geometry,
String Theory, and Particle Physics, Rabat, May 2001 and in the Workshop on New Interfaces between
Geometry and Physics, Miraflores, June 2001.
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Although in these conditions the open-string theory is perfectly healthy at
tree level, we will find unitarity problems for higher-order corrections, more
precisely singularity cuts for one-loop non-planar diagrams. In the closed-string
case the problems at one loop will show up as a lack of modular invariance. Thus
we will limit ourselves to critical dimension D = 26 and a = 1.

One important place where the normal ordering constant appears in string
theory is in the definition of the BRST operator:

Q =
∑
m

(
Lmc−m − 1

2

∑
n

(m − n)c−mc−nbm+n
)

(7.5)

with b, c the usual ghost system for the bosonic string. The charge Q can be
written in a more compact way as

Q =
∑
m

(L(matter)
m + 1

2 L
(ghosts)
m − aδm)c−m . (7.6)

Note that the contribution of the normal ordering constant to Q is simply ac0. This
quantity by itself defines a BRST charge—since it is trivially nilpotent c2

0 = 0—
with a trivial cohomology.3

In standard quantum field theory, a tachyon is not such an unfamiliar object.
A good example is, for instance, the Higgs field if we perturb around the wrong
vacua 〈φ〉 = 0. In this sense the presence of a tachyon usually means that we are
perturbing around an unstable vacua. In a physically sensible situation we expect
the system to roll down to some stable vacua where the tachyon will disappear
automatically. In the bosonic string it is not at all clear whether this is the case
since we still lack a powerful tool with which to study string theory off-shell. The
only real procedure to address this issue is, of course, string field theory.

In superstring theories with spacetime supersymmetry, i.e. type I, type II or
heterotic, the tachyons are projected out by imposing GSO. However, even in
these cases open-string tachyons can appear if we consider non-BPS D-branes. In
these cases the open tachyon is associated with the instabilities of these non-BPS
D-branes.

7.3 Tachyons in AdS: The c = 1 barrier

A simple way to see the instabilities induced by tachyonic fields with negative
(mass)2 is to compute their contribution to the energy in flat Minkowski
spacetime. Generically the energy is defined by

E =
∫

dn−1x dr
√
g[gµν∂µφ∗∂νφ + m2φ∗φ] (7.7)

3 This is the BRST operator recently suggested in [28] to describe the cohomology around the open
tachyon condensate.
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where n is the spacetime dimension. The condition of finite energy requires
an exponential falloff φ ∼ e−λr at infinity with λ > 0. The energy of a field
fluctuation with this falloff at infinity follows E ∼ (λ2 + m2). Thus if m2 < 0,
this energy can become negative for small enough λ, which means instability.
This is not necessarily the case if we consider curved spacetime.

For AdSn the metric can be written as

ds2 = e2ky dx2
n−1 + dy2 (7.8)

with the curvature radius being

R = 1

k
. (7.9)

For simplicity let us consider fluctuations of the field depending only on the y
coordinate. The condition of finite energy now requires an exponential falloff
φ ∼ e−λy for y →∞ with

λ >
k(n − 1)

2
. (7.10)

As before the contribution to the energy will follow E ∼ (λ2 +m2) and therefore
we have positive energy for tachyon fields with m2 = −a if

a ≤ (n − 1)2

4R2
. (7.11)

This bound on the tachyon mass in AdSn is known as the Breitenlohner–
Freedmann bound [42].

In the case of string theory the contribution to the energy of closed-string
tachyons is as follows:

E =
∫

dd−1x dr
√
ge−2 [gµν∂µT ∂νT + m2T 2] (7.12)

with m2 = − 4
α′ . The field  in (7.12) is the dilaton field. We will be interested

in working in flat Minkowski spacetime of dimension n. The dilaton σ -model
beta-function equation

n − 26

6α′
+ (∇ )2 − 1

2
(∇2 ) = 0 (7.13)

implies a linear dilaton behaviour:

 = y

√
n − 26

6α′
(7.14)

for some arbitrary coordinate y. Let us now consider tachyon fluctuations on this
background depending only on coordinate y. Using the same argument as that for
AdSn we get the bound on the tachyon mass m2 = −a:

a ≤ n − 26

6α′
. (7.15)
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Thus in order to saturate this bound for the closed-string tachyon a = 4
α′ we

need n = 2. This is the celebrated c = 1 barrier, namely only for a spacetime
dimension equal to two or smaller does the closed-string tachyon not induce any
instability.

Note that from the point of view of the tachyon mass bound, linear dilaton
for dimension n behaves as AdSn with its curvature radius given by4

R2 = 3(n − 1)2α′

2(n − 26)
. (7.16)

7.4 Tachyon σ -model beta-functions

The partition function for the bosonic string in a closed tachyon background is
given by

Z(T ) =
∫

Dx exp

( −1

2πα′

∫
d2σ

√
h(hαβ∂αx

µ∂β x
νηµν + T (x))

)
. (7.17)

The first thing we notice is that the tachyon term
∫ √

hT (x) is clearly non-
invariant with respect to Weyl rescalings of the world-sheet metric. The strategy
we will follow would be to fix hαβ = e2φηαβ in (7.17) and to impose invariance
with respect to changes in φ for the quantum corrected σ -model. We will use
a background field xµ0 with xµ = xµ0 + ξµ such that ∂µT (x0) = 0. In these
conditions we get at one loop in the σ -model:

1

2πα′

∫
d2σ e2φ

(
T (x0)+ α

′

2
∂µ∂νT (x0)〈ξµξν〉 + · · ·

)
(7.18)

= 1

2πα′

∫
d2σ e2φ

(
T (x0)+ α

′

2
∂µ∂νT (x0)η

µν log�+ · · ·
)

(7.19)

where by 〈ξµξν 〉 we indicate the one-loop quantum fluctuations (see figure 7.1)
and where� is the ultraviolet cutoff for the one-loop integration.

Next we need to relate the Weyl factor φ with the cutoff �. A dilatation of
the world-sheet metric induces a change � → λ� and eφ → λeφ , thus we can
identify eφ with �. Doing this we get from (7.18):

�2
[
T (x0)+ α

′

2
∂µ∂νT (x0)η

µν log�

]
. (7.20)

Expanding (7.20) in powers of log� we get, at first order in log�, that the
independence of the Weyl rescalings requires

βT ≡ 2T (x0)+ α
′

2
∂µ∂νT (x0)η

µν = 0 (7.21)

4 For solutions to the bosonic beta-function interpolating between AdS and linear dilaton see [39,40].
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Figure 7.1. One-loop contribution to the tachyon beta-function.

which is the definition of the closed-string tachyon beta-function.
Repeating exactly the same steps for the open-string tachyon instead of

(7.21) we get
βoT ≡ T (x0)+ α′∂µ∂νT (x0)η

µν = 0. (7.22)

If we interpret (7.21) and (7.22) as equations of motion they correspond to
tachyonic spacetime fields of (mass)2, respectively,− 4

α′ and − 1
α′ .

What we learn from this simple exercise is that the tachyonic nature of
background T introduced in (7.17) is tied to the simple fact that

∫
!

√
hT is not

Weyl invariant. Note that although the usual dilaton term
∫
!

√
h R(2) is not

Weyl invariant it depends on φ only through the (∂φ)2 terms.

7.5 Open strings and cosmological constant: the
Fischler–Susskind mechanism

7.5.1 Fischler–Susskind mechanism: closed-string case

Let us start by considering one-loop divergences in the critical D = 26 closed
bosonic string. For simplicity we will limit ourselves to amplitudes with M
external tachyons. Divergences for this amplitude will arise in the limit where
all the M external tachyon insertions coalesce (see figure 7.2).

The amplitude is given by

A(1, 2, . . . ,M) =
∫

d2τ

(Im τ )2
C(τ )F(τ ) (7.23)

where

C(τ ) =
(

Im τ

2

)−12

e4π Im τ | f (e2iπτ )|−48 (7.24)

and

F(τ ) = κM Im τ
∫ M−1∏

d2νr
∏
r<s

(χrs)
kr ks

2 (7.25)
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1

2

M

...

Figure 7.2. Relevant topology to describe the limit where the insertion points coalesce.

Expression (7.23) is invariant under SL(2, Z) modular transformations:

τ → aτ + b

cτ + d
ad − bc = 1. (7.26)

Integration in (7.23) is reduced to the fundamental domain F . Using the
conformal Killing vector on the torus we have fixed the position νM of one
external tachyon. It is convenient to define the new variables:

εηr ≡ νr − νM r = 1, . . . ,M − 2 (7.27)

ηM−1 ≡ νM−1 − νM = εeiφ (7.28)

with ε and φ real variables. The Jacobian of the transformation is:

M−1∏
d2νr = iε2M−3 dε dφ

M−2∏
d2ηr . (7.29)

In the limit where νrs = νr − νs ∼ 0 the Green function χrs in (7.25) behaves:

χrs ∼ 2π |νrs |. (7.30)

Expanding the integrand in (7.25) in this limit in powers of ε the leading
divergence is:

κM
∫ 1

0

dε

ε3
dφ

M−2∏
d2ηr

∏
1≤r≤s≤M−1

|ηr − ηs | kr ks2

∫
d2τ

(Im τ )
C(τ ) (7.31)
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k=0

Figure 7.3. Dilaton tadpole graph.

where we have used the on-shell condition for the closed tachyon:∑
1≤r≤s≤M−1

krks = −4M. (7.32)

The amplitude (7.31) corresponds to the propagation of a closed tachyon along the
neck. The next subleading term in the expansion goes like 1

ε
and corresponds to

propagation along the neck of a massless dilaton. Thus the divergent contribution
to the amplitude can be written:∫ 1

0

dε

ε
A0(k = 0, 1 . . . ,M)κ J (7.33)

where A0 is the genus-zero amplitude for M external tachyons and one dilaton at
zero momentum and where κ J is proportional to the genus-one dilaton tadpole
(see figure 7.3):

κ J = κ
∫
F

d2τ

(Im τ )2
C(τ ) (7.34)

The original idea of the Fischler–Susskind mechanism [43] consists in
absorbing the genus-one divergence (7.33) into a renormalization of the world-
sheet σ -model Lagrangian, namely

ηµν∂x
µ∂xν → ηµν

[
1+ κ2 J

∫ 1

0

dε

ε

]
∂xµ∂xν. (7.35)

The factor κ2 in (7.35) appears because we want to use this counterterm on
the sphere to cancel a genus-one divergence. Recall that the generic genus-one
amplitudes follow κM while genus-zero amplitudes follow κM−2.
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Obviously the renormalized Lagrangian defined in (7.35) explicitly breaks
the conformal invariance. Introducing a cutoff � in the ε-integration the
corresponding σ -model beta-function is:

β(1)µν = κ2 Jηµν ∼ δLR
δ log�

(7.36)

for LR the renormalized Lagrangian defined in (7.35). In principle, we can
generalize (7.36) to curved spacetime just replacing ηµν by Gµν . Once we do
that we can compensate the σ -model beta-function arising from σ -model one-
loop effects:

(log�)Rµν∂xµ∂xν (7.37)

with the genus-one contribution, by imposing

Rµν = κ2 JGµν. (7.38)

In summary the main message of the Fischler–Susskind mechanism is that σ -
model divergences can be compensated by string loop divergences. We have
shown that this is at least the case at genus one. Including the dilaton field and
using the well-known relation

κ = e (7.39)

we will get, instead of (7.38),

Rµν − 2∇µ∇ν = e2 JGµν. (7.40)

7.5.2 Open-string contribution to the cosmological constant: the filling
brane

This time we will consider the open-string one-loop amplitude for M external
on-shell open tachyons (see figure 7.4)

In the planar case this amplitude is given by

A(1, 2, . . . ,M) = gM
∫ 1

0

M−1∏
θ(νr+1 − νr ) dνr

×
∫ 1

0

dq

q
q−2[ f (q2)]−24

∏
r<s

[�rs ]kr ks . (7.41)

The divergences of this amplitude appear in the q → 0 limit corresponding to the
size of the hole of the annulus shrinking to zero. The structure of the divergences
can be read from the annulus vacuum-to-vacuum amplitude:

Z (1)0 =
∫ 1

0

dq

q
q−2[ f (q2)]−24 =

∫ 1

0

dq

q3
[1+ (26− 2)q2 + · · · ]. (7.42)
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1
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M

Figure 7.4. One-loop open-string amplitude.

Extending the Fischler–Susskind mechanism to (7.42) is equivalent to
reproducing the coefficient of the divergences in terms of the expectation values
of certain operators on the disc [44]. The divergence 26

∫ 1
0

dq
q is easily reproduced

by ∫ 1

0

dq

q

e 

α′
〈ηµν∂xµ∂xν〉disc (7.43)

where we have included the dilaton factor required for matching the one-loop and
disc amplitudes. The divergence

∫ 1
0

dq
q3 corresponds to

∫ 1

0

dq

q3 e 〈1d〉disc. (7.44)

The logaritmic divergence−2
∫ 1

0
dq
q comes from the contribution of ghosts to the

annulus partition function. The correct way to reproduce this divergence is in
terms of the ghost dilaton vertex operator D(ghost)(k = 0) as∫ 1

0

dq

q
e 〈D(ghost)(k = 0)〉disc. (7.45)

In fact, the representation (7.45) of the divergence −2
∫ 1

0
dq
q is a direct

consequence of the dilaton theorem [45]:〈 ∫
Dghost(z, z̄) (p1) . . . (pn)

〉
!

∼ 2g − 2+ n〈 (p1) . . . (pn)〉! (7.46)

with
Dghost(z, z̄) = 1

2 (c∂
2c − c̄∂̄2c̄). (7.47)
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Let us concentrate on (7.43). The Fischler–Susskind counterterm needed to
cancel this divergence induces a contribution to the βµν σ -model beta-function
proportional to

e 

α′
ηµν. (7.48)

In order to reproduce this term we need to add to the closed-string effective
Lagrangian the open-string cosmological constant term:

1

κ2

∫
d26x

e− 

α′
√
g. (7.49)

The reader can easily recognize in (7.49) the first term in the expansion of the
D − 25 filling brane Born–Infeld Lagrangian:

SBI = T25e− 
∫

d26x
√
g + b + F = T25e− 

∫
d26x

√
g + · · · (7.50)

with T25 the filling brane tension given by ∼ 1
α′κ2 .

Thus we learn that the D − 25 filling brane tension simply represents the
open-string contribution to the cosmological constant.

Before finishing this section let us just summarize in the following table the
different string contributions to the cosmological constant:

D �= DCr �Cr ∼ e−2 D−DCr
6α′

Closed-string divergences �c ∼ J
Open-string divergences �o ∼ e− 1

α′

The tachyon condensation is strongly connected with these string
contributions to the cosmological constant. Generically closed tachyon
condensation could change the value of �Cr and open tachyon condensation,
according to Sen’s conjecture, can cancel �o.

7.6 The effective action

7.6.1 A warming-up exercise

Let us start with the following open-string action

S(a) =
∫
!

d2σ
√
hhαβ∂αx

µ∂βx
νηµν +

∫
∂!

dθ a (7.51)

with a some constant and ! the disc.
We will fix a world-sheet metric hαβ = e2φηαβ , thus the open-string tachyon

term in (7.51) is
∫
∂! dθ aeφ .
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The partition function Z(a) is simply defined by

Z(a) =
∫

Dx e−S(a). (7.52)

If, as usual, we identify eφ as the ultraviolet cutoff we get the beta-function for a:

βa = −a. (7.53)

The effective action will be defined, in this trivial case, by

∂ I (a)

∂a
= GTT βa (7.54)

with βa given in (7.53) and GTT the Zamolodchikov metric5 defined by the
open-string amplitude on the disc of two open tachyon vertex operators at zero
momentum:

GTT (a) = 〈1d , 1d 〉disc(a) (7.61)

with the expectation value in (7.61) computed for the action (7.51). In our case
and assuming ghost decoupling it is obvious that GTT is equal to e−a Z(0). Thus
using (7.54) we get the following relation for the effective action I (a):

∂ I (a)

∂a
= GTT βa = −e−aaZ(0) (7.62)

5 For a formal derivation of (7.54) see [46]. Very briefly the proof is as follows. Let us define a family
of two-dimensional field theories

L = L0 + λi ui (ξ) (7.55)

parametrized by λi . The generating functional Z(λ1 . . . λn) can be expanded in powers of λ. At order
N we have

ZN =
∫

d2ξ1 . . . d
2ξN 〈un1 (ξ1) . . . unN (ξN )〉λ1 . . . λn . (7.56)

Using the OPE we get the logaritmic contribution

Zn =
∫

d2ξ1 . . . d
2ξN d2ξ fn1n2m

1

|ξ |2 λ1 . . . λn〈um (ξ)un3(ξ3) . . . unN (ξN )〉 (7.57)

from (7.57) we can find the beta-function βm :

βm = dλRm
d log�

= fmn1n2λn1λn2 (7.58)

for λRm = λBm + fmn1n2λn1λn2 log� with � the ultraviolet cutoff in the integration (7.57). Defining
now the effective action:

�(λ) =
∑
λi1 . . . λiN 〈ui1 . . . uiN 〉 (7.59)

we get
∂�(λ)

∂λm
=
∑
λi1 . . . λiN C

i1 ...iN
e 〈umue〉 =

∑
βeGme (7.60)

where we have used a generalized OPE and expression (7.58) for the beta-functions. In this section
we will use (7.60) to define the effective action.
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V(a)

a

Figure 7.5. Open-string tachyon potential.

which can be trivially integrated to

I (a) = (1+ a)Z(a) = (1+ a)e−a Z(0). (7.63)

This is an extremely interesting result since it defines a non-trivial potential for
the tachyon constant a (figure 7.5), namely

V (a) = (1+ a)e−a. (7.64)

This potential has two extremal points at a = ∞ and a = 0.
The interpretation of the two extremal points in V (a) is by no means obvious.

The extremal point a = 0 is the standard open-string vacua with a vanishing
expectation value for the open tachyon. It is a maximun reflecting the existence
of open tachyons in the string spectrum. The extremal point a = ∞ is a bit more
mysterious since apparently it describes a stable vacua (up to tunnelling processes
to a = −∞) of the open string in flat Minkowski spacetime and without open
tachyons. What is the physical meaning of this vacua?

7.6.2 The effective action

Next we will consider, following [19–24] , a slightly more complicated action:

S(a, ui ) = 1

2πα′

∫
!

d2σ
√
hhαβ∂αx

µ∂β x
νηµν +

∫
∂!

dθ
√
hT (x) (7.65)

with
T (x) = a +

∑
ui x

2
i . (7.66)

Identifying, as usual, the ultraviolet cutoff with the world-sheet Weyl factor we
get, at one loop in the σ -model,

�[a + uiα
′ log�] (7.67)
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from which we derive the beta-function βa:

βa = −a −
∑
i

α′ui . (7.68)

At this point we are interpreting xi in (7.66) as representing quantum fluctuations,

i.e. α′ui = ∂2T
∂x0∂x0

and T (x0) = a for some background x0. Thus we should
replace ui in (7.66) by uiα′.

In addition to βa , we have, at tree level,

�[α′ui x2
i ] (7.69)

which implies a beta-function

βui = −ui . (7.70)

Using these tools we can define the effective action by

dI = ∂ I

∂a
da + ∂ I

∂ui
dui (7.71)

with

∂ I

∂a
= Gaaβa + Gauiβui (7.72)

∂ I

∂ui
= Guiu jβu j + Guiaβa (7.73)

where the ‘metric’ factors are defined by

Gaa =
∫ 2π

0
dθ〈1d , 1d〉disc (7.74)

Gaui =
∫ 2π

0
dθ 〈1d , x2

i 〉disc (7.75)

Guiu j =
∫ 2π

0
dθ 〈x2

i , x
2
j 〉disc (7.76)

In terms of the partition function

Z(a, ui ) =
∫

Dx e−S(a,ui) (7.77)

we get, from (7.71), (7.72),

dI = d

(∑
α′ui Z −

∑
u j
∂Z

∂u j
+ (1+ a)Z

)
(7.78)
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where we have used

Gaui =
∂Z

∂ui
(7.79)

and

Guiu j =
∂2Z

∂ui∂u j
. (7.80)

Integrating (7.78) we obtain the definition of the effective action:

I =
(∑

α′ui −
∑

u j
∂

∂u j
+ (1+ a)

)
Z(a, ui ). (7.81)

In this formal derivation we have assumed the complete decoupling of ghosts.
Note that the contribution 1+ a +∑ α′ui comes directly from the beta-function
βa defined in (7.68) while the contribution

∑
u j

∂
∂u j

comes from the βui defined
in (7.70). We can rewrite (7.81) in a more compact way as

I =
(

1+ βa ∂
∂a

+
∑
βui

∂

∂ui

)
Z(a, ui ) (7.82)

where we have used Z(a, ui) = ea Z̃(ui ).
The next step is to compute Z(a, ui). In order to do this we need the Green

function on the disc satisfying the boundary conditions

nα∂
αxi + ui x

i = 0 (7.83)

on ∂! with nα a normal vector to the boundary. This Green function is given by

G(i)(z, w) = − log |z−w|2−log |1−zw̄|2+ 2

u
−2u

∑
k

1

k(k + u)
((zw̄)k+(z̄w)k).

(7.84)
Integrating

∂Z

∂ui
=
∫ 2π

0
dθ 〈x2

i 〉disc (7.85)

and using
〈x2
i 〉 = lim

ε→0
Gi

R(θ, θ + ε) (7.86)

for the renormalized Green function

Gi
R(θ, θ) =

2

u
− 4u

∑
k

1

k(k + u)
(7.87)

we get

Z(a, ui ) = e−a
∏
i

√
α′ui�(α′ui )eγ α

′ui (7.88)
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for γ the Euler constant. For small ui we can approximate (7.88) by

Z(a, ui ) ∼ e−a
∏
i

1√
α′ui

ui → 0. (7.89)

In this limit we get from (7.82):

I (a, ui ) ∼ (1+ a)e−a
∏
i

1√
α′ui

+ α′
(∑

ui

)
e−a

∏
i

1√
α′ui

+ · · · . (7.90)

We can now compare the first term with

T25

∫
d26x (1+ T )e−T (7.91)

for T = a+∑ ui x2
i , obtaining the well-known result for the filling brane tension:

T25 = 1

(2πα′)13
. (7.92)

Then the terms in (7.90) correspond to the kinetic term for the open tachyon:

T25

∫
d26x e−T ∂T ∂T . (7.93)

In order to define a potential we can change variables:

T →  = 2e−
T
2 (7.94)

In these new variables the tachyon Lagrangian becomes

S = T25

∫
d26x [α′∂ ∂ + V ( )] (7.95)

with (see figure 7.6)

V ( ) =  2

4

(
1− log

 2

4

)
. (7.96)

The extremal corresponding to T = ∞ is  = 0. The effective mass of the
tachyon around this extremal is

m2 = ∂2V ( )

∂ ∂ 

∣∣∣∣
 =0

= ∞. (7.97)

The extremal T = 0, i.e.  = 2, is a maximum reproducing the standard open
tachyon mass:

m2 = ∂2V ( )

∂ ∂ 

∣∣∣∣
 =2

= − 1

α′
. (7.98)
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V(   )Φ

Φ

Figure 7.6. Open-string tachyon potential V ( ).

As we can see for equation (7.97) open tachyon condensation at T = ∞
induces an infinite mass for the open tachyon. Using the string mass formula
(7.1) we can interpret this as an effective normal ordering constant a = −∞.
If we do this the dominant contribution to the BRST charge (7.5) is just the
cohomologically trivial BRST charge Q = c0.

This heuristic argument indicates, in agreement with Sen’s conjecture that no
open-string degrees of freedom survive once the tachyon condenses to T = ∞.
In summary we can interpret the vacuum defined by the T = ∞ condensate as
the closed-string vacua. The closed-string tachyon can be interpreted as being
associated with the quantum instability due to tunnelling processes from  = 0
to  = ∞.

7.6.3 Non-critical dimension and tachyon condensation

The spacetime Lagrangian for the open tachyon is given by

S = T25

∫
d26x e−T [α′∂T ∂T + (1+ T )]. (7.99)

The corresponding equation of motion is

2α′∂µ∂µT − α′∂µT ∂µT + T = 0. (7.100)

A soliton solution for equation (7.100) is given by:

T (x) = a +
∑

ui x
2
i (7.101)

with ui = 1
4α′ or ui = 0 and a = −n for n the number of non-vanishing ui ’s. In

terms of the field  defined in (7.94) the profile of the solution looks like the one
depicted in figure 7.7.

This can be interpreted in a first approximation as the D − (25− n) soliton
brane.
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Figure 7.7. Soliton shape.

In principle, we can try to play the same game but include the effect of a non-
trivial dilaton. The simplest example will be, of course, to work with non-critical
dimension n and a linear dilaton background

 = qy (7.102)

with q =
√

n−26
6α′ . Inspired by the Liouville picture of non-critical strings we take

the linear dilaton to depend only on one coordinate y. The Lagrangian including
the effect of the dilaton would, most probably, be:

S = T25

∫
d26x e− e−T [α′∂T ∂T + (1+ T )]. (7.103)

The equation of motion becomes

2α′∂µ∂µT − α′∂µT ∂µT − α′∂µ ∂µT + T = 0. (7.104)

As a solution we can try

T (x) = a +
∑

ui x
2
i a = −m ui = 1

4α′
i = 1, . . . ,m (7.105)

with uy = 0. This soliton defines a D− (n−m− 1)-brane that extends along the
‘Liouville’ direction. Note that we have no soliton solutions for uy �= 0 which
seems to imply that tachyon condensation does not take place in the Liouville
direction. This leads us to suggest the following conjecture: In non-critical open
strings, open tachyon condensation cannot take place in the Liouville direction.

A trivial corollary of the previous conjecture is that in a spacetime dimension
equal to two tachyon condensation does not take place, which is consistent with
the fact that tachyons in D = 2 with the linear dilaton turned on are not real
tachyons.
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7.7 D-branes, tachyon condensation and K-theory

7.7.1 Extended objects and topological stability

Let us start by considering a gauge theory with a Higgs field  :

L = L0(A
µ, )+ V ( ) (7.106)

for some Higgs potential V ( ). A necessary condition for the existence of
topologically stable extended objects of space codimension p is the non-triviality
of the homotopy group

�p−1(V ) (7.107)

for V the manifold of classical vacua of Lagrangian (7.106).
In fact, for an extended object of codimension p the condition of finite

density of energy implies that at the infinity region in the transversal directions—
whose topology is Sp−1—the field configuration must belong to the vacuum
manifold V . Hence we associate with each configuration of finite density of
energy a map

� : Sp−1 → V (7.108)

whose topological clasification is defined by the homotopy group (7.107).
The simplest example of a vacuum manifold corresponding to the

spontaneous breaking of symmetry G → H is the homogeneous space

V = G/H. (7.109)

So the ’t Hooft–Polyakov monopole, for instance, is defined for G = SU(2)
and H = U(1) by the topological condition�2(G/H ) = Z which coincides with
its magnetic charge.

7.7.2 A gauge theory analogue for D-branes in type II strings

We know that in type II strings we have extended objects which are R–R charged
and stable, namely the D-branes. For type IIA we have Dp-branes with p even
and for type IIB Dp-branes with p odd. Since we are working in critical ten-
dimensional spacetime the space codimension of those Dp-branes is odd 2k + 1
for type IIA and even 2k for type IIB.

We will now consider the following formal problem. Obtain two
gauge Higgs Lagrangians LIIA(IIB)(Aµ, ) such that a one-to-one map can be
established between type II D-branes and topological stable extended objects for
those Lagrangians in the sense defined in previous section. We will denote this
formal gauge theory the gauge theory analogue of type II strings.

Of course the hint for answering this question is Sen’s tachyon condensation
conjecture for type II strings. We will first present this construction in the case of
type IIB strings.
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7.7.2.1 Sen’s conjecture for type IIB strings

In type IIB strings we have well-defined D9 filling branes. Since they are charged
under the R–R sector we can define the corresponding D9̄-antibranes. As is well
known the low-energy physics on the world-volume of a set of N D9-branes is a
U(N) gauge theory without open tachyons. In fact the open tachyon is projected
out by the standard GSO projection

(−1)F = +1 (7.110)

with F the world-sheet fermion number operator. The situation changes when
we consider N D9-branes and N D9̄-antibranes. In this case the theory on the
world-volume is U(N) × U(N) and not U(2N) due to the fact that the GSO
projection on open-string states with end points at a D9-brane and a D9̄-antibrane
is the opposite, namely

(−1)F = −1 (7.111)

This projection eliminates the massless gauge vector bosons that will enhance
the U(N) × U(N) gauge symmetry to U(2N) from the spectrum. In addition,
projection (7.111) does not kill the tachyon in the (9, 9̄) and (9̄, 9) open-string
sectors. Thus, the gauge theory associated with the configuration of N D9-branes
and N D9̄-antibranes is aU(N)×U(N) gauge theory with a Higgs field, the open
tachyon, in the bifundamental (N, N̄ ) representation.

This gauge theory will be a natural starting point for defining the gauge
analogue model in the case of type IIB strings.

Of course in order to obtain a rigorous criterion for the topological stability
of extended objects in this gauge theory we need to know the potential for the
open tachyon. This potential is something that at this point we do not know
how to calculate it in a rigorous way. However, we can assume that a tachyon
condensation is generated with a vacuum expectation value

〈T 〉 = T0 (7.112)

with T0 diagonal and with equal eigenvalues. If this condensate takes place then
the vacuum manifold is simply

V = U(N) ×U(N)

UD(N)
∼ U(N). (7.113)

Thus the condition for topological stability for extended objects of space
codimension 2k will be

�2k−1(U(N)) �= 0 (7.114)

which, by the Bott periodicity theorem in which

� j (U(k)) =
{
Z j odd j < 2k

0 j even j < 2k
(7.115)
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Figure 7.8. Topology of the D7-brane.

we know is the case for big enough N .
The simplest example will be to take k = 1 corresponding to the extended

object of the type of a D7-brane. The condition of finite energy density defines
a map from S1 into U(N). For just one pair of the D9–D9̄ configuration we get
�1(U(1)) = Z , with this winding number representing the ‘magnetic charge’ of
the D7-brane that looks topologically like a vortex line (see figure 7.8).

If we go to the following brane, namely the D5-brane, we have k = 2 and we
need a non-vanishing homotopy group�3(U(N)). The minimun N for which this
is possible according to (7.115) is N = 2, i.e. two pairs of D9–D9̄-branes. We can
understand what is happening in two steps. First of all, we obtain a configuration
of two D7-branes and from this the D5-brane.

For k = 3 we need the non-vanishing homotopy group �5(U(N)). The
natural N we should choose is dictated by the step construction, namely N = 4.
In general, for codimension 2k we will consider a gauge group U(2k−1).

7.7.3 K-theory version of Sen’s conjecture

The configuration of Dq–Dq̄ branes naturally defines a couple of U(N) vector
bundles (E, F) on the spacetime. Sen’s main idea of tachyon condensation is
that a configuration characterized by a couple of vector bundles (E, E) with
a topologically trivial tachyon field configuration decays into the closed-string
vacua for type IIB string theory. This is exactly the same type of phenomena we
have discussed in section 7.1 for the bosonic string. This phenomenon naturally
leads us to consider, as far as we are concerned with D-brane charges, instead of
the couple of bundles (E, F), the equivalence class defined by [32]

(E, F) ∼ (E ⊕ G, F ⊕ G) (7.116)

for ⊕, the direct sum of bundles. This is precisely the definition of the K-group
of vector bundles on the spacetime X , K (X). Let us here recall that the space
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A = Vec(X) of vector bundles on X is a semigroup with respect to the operation
of direct sum. The way to associate with A a group K (A) is as the quotient space
in A × A defined by the equivalence relation

(m, n) ∼ (m′, n′) (7.117)

if ∃p such that m + n′ + p = n + m′ + p which is precisely what we are doing
in the definition (7.116).

A different but equivalent way to define K (A) for A = Vec(X) is as the set
of equivalence classes in Vec(X) defined by the equivalence relation:

E ∼ F if ∃G : E ⊕ G = F ⊕ G (7.118)

where ‘=’ means isomorphism.
It is convenient for our purposes to work with the reduced K-group K̃ (X)

which is defined by
Ker[K (X)→ K (p)] (7.119)

for p a point in X . Note that K (p) is just the group of integer numbers Z . This
is the group naturally associated with the semigroup Vec(p) = N where N here
parametrizes the different dimensions of the vector bundles in Vec(p).

In order to characterize type IIB Dp-branes in terms of K-theory we will
need to consider the group K (X,Y ). We will consider X a compact space with Y
also compact and contained in X .

In order to define K (X,Y ) we will use triplets (E, F, α) where E and F are
vector bundles on X and where α is an isomorphism:

α : E |Y → F |Y (7.120)

of the vector bundles E and F reduced to the subspace Y [37].
The definition of K (X,Y ) requires us to define elementary triplets. An

elementary triplet is given by (E, F, α) with E = F and α homotopic to the
identity in the space of automorphisms of E |Y . Once we have defined the
elementary triplets, the equivalence relation defining K (X,Y ) is

σ = (E, F, α) σ ′ = (E ′, F ′, α′) (7.121)

σ ∼ σ ′ iff ∃ elementary triplets τ and τ ′ such that

σ + τ = σ ′ + τ ′ (7.122)

where
σ + τ = (E ⊕ G, F ⊕ G, α ⊕ 1d). (7.123)

Once we have defined K (X,Y ) we can try to put the topological
characterization of a Dp-brane of space codimension 2k in this language. Namely
we will take Y as the ‘boundary’ region in transversal directions, i.e. S2k−1.
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As space X we will take the ball B2k . The tachyon field transforming in the
bifundamental representation will define on S2k−1 an isomorphism between the
two vector bundles E, F defined by the starting configurations of D9–D9̄-branes.
Finally the homotopy class of this map will define the charge of the Dq -brane of
space codimension 2k. The K-group we define in this way is

K (B2k, S2k−1). (7.124)

Now we can use the well-known relation:

K (B2k, S2k−1) = K̃ (B2k/S2k−1) (7.125)

where X/Y is defined by contracting Y to a point.
It is easy to see that

B2k/S2k−1 ∼ S2k . (7.126)

Thus we can associate with type IIB Dp-branes of space codimension 2k
elements in K̃ (S2k).

In order to define the tachyon field in this case we will specify the
isomorphism α. For codimension 2k let us consider the 2k−1 × 2k−1 gamma
matrices �i (i = 1 . . . 2k). Let v be a vector in C2k . The isomorphism α is
defined by

α(x, v) = (x, xi�i (v)) (7.127)

for x ∈ S2k−1. The tachyon field is defined by

T (x)|x∈S2k−1 = xi�
i . (7.128)

7.7.4 Type IIA strings

Next we will define a gauge analogue for type IIA strings. The gauge-Higgs
Lagrangian will be defined in terms of a configuration of D9-branes for type IIA
D9-branes are not BPS and therefore they are unstable. The manifestation of this
instability is the existence of an open tachyon field T transforming in the adjoint
representation. The gauge group for a configuration of N D9-branes is U(N).
Note that in type IIA we cannot use D9̄-antibranes since type IIA D9-branes are
not R–R-charged.

We could now follow the same steps as for the type IIB case, namely look for
a tachyon potential and compute the even homotopy groups of the corresponding
vacuum manifold. Instead of doing this we will approach the problem from a
different point of view, interpreting the type IIA D-branes as topological defects
associated with the gauge-fixing topology. In order to describe this approach
we need first to review some known facts about gauge-fixing topology for non-
Abelian gauge theories.
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7.7.4.1 ’t Hooft’s Abelian projection

An important issue in the quantization of non-Abelian gauge theories is to fix the
gauge. By an unitary gauge we mean a procedure to parametrize the space of
gauge ‘orbits’, i.e. the space of physical configurations

R/G (7.129)

for R the total space of field configurations, in terms of physical degrees of
freedom whereby we mean those that contribute to the unitary S-matrix. This,
in particular, means a ghost-free gauge fixing.

In [41] ’t Hooft suggested a way to fix the non-Abelian gauge invariance in
a unitary way. This type of gauge fixing, known as ‘Abelian projection’, reduces
the physical degrees of freedom to a set of U(1) photons and electrically charged
vector bosons.

In addition to these particles there is an extra set of dynamical degrees of
freedom we need to include in order to have a complete description of the non-
Abelian gauge theory. These extra degrees of freedom are magnetic monopoles
that appear as a consequence of the topology of the gauge fixing.

More precisely, let X be a field transforming in the adjoint representation

X → gXg−1. (7.130)

The field X can be a functional X (A) of the gauge field A or some extra field in
the theory. The way to fix the gauge is to impose X to be diagonal:

X =
λ1

. . .

λN

 . (7.131)

The residual gauge invariance for a U(N) gauge theory is U(1)N , i.e. gauge
transformations of the type

g =
eiα1

. . .

eiαN

 . (7.132)

The degrees of freedom of this gauge are:

• N U(1) photons,
• 1

2N(N − 1) charged vector bosons and
• N scalars fields λi .

Gauge-fixing singularities will appear whenever two eigenvalues coincide:

λi = λi+1. (7.133)
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Note that we can fix the gauge imposing X to be diagonal and that λi > λi+1 >

λi+2 > · · · . What is the physical meaning of these gauge-fixing singularities?
First of all, it is easy to see that generically these gauge-fixing singularities

have codimension 3 in space. In particular, this means that if we are working in
four-dimensional spacetime they behave as pointlike particles.

Second, if we consider the field X in a close neighbourhood of the singular
point before gauge fixing:

X =


D1 0 0

0
λ+ ε3 ε1 − iε2
ε1 + iε2 λ− ε3 0

0 0 D2

 (7.134)

we can write the small two-by-two matrix in (7.134) as:

X = λ1d + εiσi (7.135)

for σi the Pauli matrices. The field ε(x) is equal to zero at the singular point and
in a close neighbourhood this can be written as

ε(x) =
3∑
i=1

xiσi . (7.136)

We can easily relate this field to a magnetic monopole. In fact let us consider
S2 in R3 and let us define the field on S2:

X (x)|x∈S2 =
3∑
i=1

xiσi . (7.137)

Clearly X2(x)|x∈S2 = 1d , thus we can define the projector:

�± = 1
2 (1± X (x)). (7.138)

The trivial bundle S2 × C2 decomposes into

S2 × C2 = E+ ⊕ E− (7.139)

where the line bundles E± are defined by the action of the projection�± on C2.
The principal bundle associated with E+, E− defines the magnetic monopoles.

In summary the gauge-fixing singularities of gauge (7.131) corresponding
to two equal eigenvalues should be interpreted as pointlike magnetically charged
particles. It is important to stress that the existence of these magnetic monopoles
is completly independent of being in a Higgs or confinement phase.
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7.7.4.2 The D6-brane

Here we will repeat the discussion from section 7.7.4.1 but for the U(N) gauge
theory defined by a configuration of D9 unstable filling branes. We will use the
open tachyon field transforming in the adjoint representation to fix the gauge.
By imposing T to be diagonal we reduce the theory to pure Abelian degrees of
freedom in addition to magnetically charged objects of space codimension 3 that
very likely can be identified with D6-branes.

Using expression (7.137) and replacing the X field by the open tachyon
we find that in the close neighbourhood of a codimension 3 singular region the
tachyon field is represented by

T (x)|x∈S2 =
3∑
i=1

xiσi (7.140)

which is precisely the representation of the tachyon field around a D6-brane
suggested in [33].

7.7.4.3 K-theory description

The data we can naturally associate with a configuration of type IIA D9-branes
is a couple (E, T ) with E a vector bundle and T the open tachyon field. We will
translate these data into more mathematical language using the higher K-group
K−1(X) [32, 33].

In order to define K−1(X) we will start with couple (E, α) with E a vector
bundle on X and α an automorphism of E . As we did in the definition of
K (X,Y ) we define elementary pairs (E, α) if α is homotopic to the identity
within automorphisms of E . Using elementary pairs (E, α) = τ we define the
equivalence relation

σ ∼ σ ′ (7.141)

iff ∃τ, τ ′ elementary such that

σ ⊕ τ = σ ′ ⊕ τ ′. (7.142)

We can now define K−1(X,Y ) as pairs (E, α) ∈ K−1(X) such that α|Y = 1d .
As before we will use the tachyon field T to define the automorphism α. In

codimension 3 in the previous section we obtained

T (x)|x∈S2 =
3∑
i=1

xiσi . (7.143)

Clearly T 2(x)|x∈S2 = 1d and, therefore, if we define

α = eiT (7.144)
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and we identify Y = S2 we get the condition

α|Y = 1d (7.145)

used in the definition of K−1(X,Y ). Thus we associate the Dp-branes of
codimension 2k + 1 with elements in

K−1(B2k+1, S2k) (7.146)

Using again the relation

K−1(B2k+1, S2k) = K̃−1(B2k+1/S2k). (7.147)

and
K̃−1(X) = K̃ (SX) (7.148)

for SX the reduced suspension of X (in particular SSn = Sn+1) we conclude that
type IIA Dp-branes are associated with

K̃−1(S2k+1) = K̃ (S2k+2). (7.149)

The reader can wonder at this point in what sense working with K-theory
is relevant for this analysis. The simplest answer comes from remembering the
group structure of K−1(X).

The group structure of in K−1(X) is associated with the definition of the
inverse. Namely the inverse of (E, α) is (E, α−1). The reason is that

(E, α)⊕ (E, α−1) = (E ⊕ E, α ⊕ α−1) (7.150)

where

α ⊕ α−1 =
(
α 0
0 α−1

)
. (7.151)

Now there is a homotopy transforming matrix (7.151) into the identity(
α 0
0 α−1

)
(t) =

(
α 0
0 1

)(
cos t sin t
− sin t cos t

)(
1 0
0 α−1

)(
cos t sin t
sin t cos t

)
(7.152)

such that (
α 0
0 α−1

)
(t = 1) =

(
αα−1 0

0 1

)
= 1d . (7.153)

What this homotopy means is again Sen’s tachyon condensation conjecture.
In fact if we associate a D6–D6̄ brane configuration with a matrix T with two
pairs of eigenvalues (λi = λi+1) and (λ j = λ j+1) equal. This configuration is—
because of homotopy (7.152)—topologically equivalent to the vacuum. We see
once more how Sen’s condensation is at the core of the K-theory promotion of
Vec(X) from a semigroup into a group.
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7.8 Some final comments on gauge theories

The data associated with a gauge theory and a unitary gauge fixing of the type
used in the Abelian projection can be summarized in the same type of couples
used to define the higher K-group K−1(X), namely a U(N) vector bundle E
and an automorphism α. In this sense, the gauge-fixing topology is translated
into the homotopy class of α within the automorphisms of E . In standard
four-dimensional gauge theories the gauge-fixing topology is described in terms
of magnetic monopoles and antimonopoles. In principle, we have different
types of magnetic monopoles charged with respect to the different U(1)’s in the
Cartan subalgebra. The group theory meaning of K−1(X) is reproduced, at the
gauge theory level, by the homotopy (7.152) that is telling us that monopole–
antimonopole pairs, although charged with respect to different U(1)’s in the
Cartan subalgebra, annihilate into the vacuum, very much in the same way as,
by Sen’s tachyon condensation, a brane–antibrane pair decay into the vacuum.

In what we have denoted the gauge theory analogue of type II strings, namely
a gauge-Higgs Lagrangian with topologically stable extended objects in one-
to-one correspondence with type II stable Dp-branes, apparently one important
dynamical aspect of D-filling brane configurations is absent. In fact, in the case
of unstable filling branes, the decay into the vacuum comes together with the
process of cancellation of the filling brane tension and thus with the ‘confinement’
of ‘electric’ open-string degrees of freedom. The resulting state is a closed-
string vacua with stable Dp-branes that are sources of R–R fields which are
part of the closed-string spectrum. The dynamics we lack in the gauge theory
analogue is, on the one hand, the equivalent of the confinement of open-string
degrees of freedom6 and, on the other, the R–R closed string interpretation of
the dual field created by the Dp-brane topological defects. Very likely the gauge
theory interpretation of these two phenomena can shed some light on the quark
confinement problem.
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Kitashirakawa, Sakyo-ku, Kyoto, Japan

8.1 Introduction

In this article I wish to explain one of the relations between deformation theory
and mirror symmetry. Deformation theory or theory of moduli is related to mirror
symmetry in many ways. We discuss only one part of it here. The part we
want to explain is related to a rather abstract and formal point of the theory of
moduli, which was much studied in the 1950s and 1960s. Moduli are related to
the definitions of schemes, stacks and their complex analytic analogues, and also
to various parts of homological and homotopical algebra. Recently these topics
have again caught the attention of several people working in areas closely related
to mirror symmetry.

I first met moduli when was working [34] with K Ono on the construction
of the Gromov–Witten invariant of general symplectic manifolds and studying
the periodic orbit of periodic Hamiltonian systems. There we found that a
C∞ analogue of the notion of scheme and stack is appropriate to attack the
transversality problem. The transversality problem we met was on the moduli
space of holomorphic maps from the Riemann surface. Later I learned that in
algebraic geometry, the same problem is studied by using stacks [8, 72]. This
point, however, is not our main concern in this article. Our main focus is the next
point.

I came across the relation of homological algebra to the theory of moduli
while we (myself together with Y G Oh, H Ohta and K Ono [33]) were
trying to find a good formulation for the Floer homology of the Lagrangian
submanifold. There we first met the problem that the Floer homology of a
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Lagrangian submanifold is not defined in general, so studying the condition when
it is defined becomes an interesting problem. For this purpose, we developed
an obstruction theory to enable the Floer homology to be defined. We next found
that the Floer homology, even when it is defined, is not independent of the various
choices involved.1

An example of this phenomenon is as follows. Let us consider a Lagrangian
submanifold L in a symplectic manifold M . A problem, which is related to the
definition of a Floer homology, is to count the number of holomorphic maps
ϕ : D2 → M such that ϕ(∂D2) ⊂ L.2 Then the problem is that the number
thus defined depends on the various choices involved. For example, it is not
independent of the deformation of the (almost) complex structure of M . So unless
we clarify the sense in which the number of holomorphic discs is independent of
the various choices, it does not make mathematical sense to count it. It is at
this essential point that we need deformation theory and homological algebra, i.e.
we construct an algebraic structure using the number of discs, and the homotopy
types of this algebraic structure are independent of the perturbation.

We thus developed a moduli theory for the deformations of Floer homology;
i.e. we defined a moduli space�(L) for each Lagrangian submanifold L and the
Floer homology is defined as a family of graded vector spaces parametrized by
�(L1) ×�(L2). The moduli space�(L) is related to the actual deformation
of Lagrangian submanifolds but the relation is rather delicate. The algebraic
machinery for constructing such a moduli space is one of A∞ algebra and the
Maurer–Cartan equation.

The A∞ algebra we used there is a version of one I found in [23].3 Using
this A∞ structure, Kontsevich [64,68] discovered a very interesting version of the
mirror symmetry conjecture which he called the homological mirror symmetry
conjecture. There it is conjectured that the Lagrangian submanifold corresponds
to a coherent sheaf on the mirror bundle.

After developing a theory for the deformation of and obstruction to the Floer
homology of the Lagrangian submanifold, we could make the homological mirror
symmetry conjecture more precise. For example, we now conjecture that the mod-
uli space�(L) will become a moduli space of the holomorphic vector bundles
on the mirror. It is the purpose of this article to explain the formulation of homo-
logical mirror symmetry based on homological algebra and deformation theory.

1 This problem is quite similar to Donaldson’s gauge theory invariant of four manifolds with b+2 = 1

[17]. (Here b+2 = 1 is the number of positive eigenvalues of the intersection matrix on the second
homology.)
2 Definitions of several notions we need in symplectic geometry will be given at the beginning of
section 8.3.2.
3 My original motivation for introducing the A∞ structure on the Floer homology was to use it to
study the gauge theory Floer homology of 3-manifolds with a boundary. (The author was inspired
by Segal and Donaldson to use category theory for this purpose.) The research toward this original
direction is still in progress [25, 26] and the author believes that the relation of the A∞ structure of
Floer homology of Lagrangian submanifolds to gauge theory of 3-manifolds with a boundary will be
related to some kind of duality in the future.
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During the recent school on the ‘Geometry and Physics of Branes’, the
author learned that there are several recent works by physicists which seem to
be closely related to the theory we have developed. For example, the obstruction
phenomenon seems to have been rediscovered. The fact that our Maurer–Cartan
equation which controls the deformation of the Floer homology (see section 8.3.4)
is inhomogeneous and zero is not its solution seems to be related to what is called
‘tachyon condensation’.4 I will not quote references to the papers by physicists on
these points, since I expect these will be included in other parts of this book and
I also find it hard to make the appropriate choice of papers to be quoted. It would
be interesting to find a good dictionary between the physics and mathematics of
the works. I hope that this book will be helpful for this purpose.

As we have already mentioned, the main purpose of this article is to describe
a version of homological mirror symmetry precisely. For example, we want
to state precisely the conjectured coincidence of the moduli spaces mentioned
earlier. For this purpose, we need to review various basic aspects of moduli theory
(especially its local version—deformation theory). Hence classical deformation
theory of the holomorphic structures of vector bundles on complex manifolds
(together with proofs of various parts of it) is included in this article.

Section 8.2 of this article is thus devoted to the theory of deformations.
Deformation theory or the local theory of moduli is a classical topic initiated
by Riemann for the moduli space of complex structures of Riemann surfaces.
Kodaira and Spencer [61, 63], generalized it to higher dimensions and studied
the deformation theory of complex structures of complex manifolds of higher
dimension. This has been further amplified by many people, see, for example, [19,
71, 84, 104]. There are many versions of deformation theory, that is deformation
theory of holomorphic vector bundles, complex submanifolds, holomorphic maps
etc. But, as far as the points covered in section 8.2 are concerned, the differences
among them are rather minor; so we mostly restrict ourselves to the case of
vector bundles. In this article, we are taking the analytic point of view and use
(nonlinear) partial differential equations, i.e. the algebraic theory of deformations
(and of moduli). Some basic references are [4,20,45,78,92]. I have tried to make
section 8.2 self-contained. In particular, I have tried to explain several abstract
notions which are popular among algebraic geometers but not very popular among
researchers in other fields. For example, we explain the notion of an analytic space
(the complex analytic analogue of a scheme), the relation of category theory to
the problem of moduli, especially the notion of a ‘functor from an Artin ring’,
which is basic to a study of formal moduli. (Here ‘formal moduli’ means that
we consider formal power series solutions of the defining equation of the moduli
space.) Proofs of several of the main results of the local theory of moduli (the
existence of the Kuranishi family, its completeness, versality, etc) are postponed
to section 8.3, where we give a proof of them based on the homotopy theory of
A∞ algebras developed there. The content of section 8.1 is classical and no new

4 I do not yet understand the precise relation of our theory to the one developed by physicists.
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points of view are introduced. We include them here since most of the references
I found require much background on algebraic geometry etc.

In section 8.3 we systematically explain how the homological algebra of A∞
or L∞ algebras can be applied to the problem of moduli. (A∞ and L∞ algebras
are generalizations of differential graded algebras and of differential graded Lie
algebras, respectively.) In section 8.2.1, we give a definition of them and define
A∞ and L∞ homomorphisms. We also develop a homotopy theory of them,
i.e. we define a homotopy between two A∞ or L∞ homomorphisms and the
homotopy equivalence between two A∞ or L∞ algebras.

We next study the Maurer–Cartan equation from the point of view of a
‘functor from an Artin ring’ [92] which we explain in section 8.2.7.

We then sketch an important theorem which states that the gauge equivalence
class of solutions of the Maurer–Cartan equation is invariant with respect to the
homotopy types of A∞ or L∞ algebras. In differential graded algebras and
differential graded Lie algebras, this result is due to [37, 38].

We then construct a Kuranishi family of the solutions of the Maurer–Cartan
equation, as a quotient ring of an appropriate formal power series ring. We use a
technique to sum over trees (calculation of the tree amplitude using the Feynman
diagram) for this purpose. Several basic results postponed from section 8.2
(together with its generalization to A∞ or L∞ algebras) follows. In section 8.2.4,
we briefly explain a translation of the theory in section 8.3 into the language of
formal super geometry.

The theory developed in section 8.3 seems to have been studied by various
people [7, 14, 46, 49, 50, 54, 56, 69, 77, 91, 96, 98] (I apologise to the authors of
other papers on the subject which are not quoted here. I do not have enough
knowledge to quote all important papers.) (Y Soibelman informed me that he and
M Kontsevitch are preparing a book which overlaps this article.)

In section 8.4, we apply the discussion in sections 8.2 and 8.3 to homological
mirror symmetry. We need to introduce a type of formal power series ring which
we call the universal Novikov ring to study the instanton (or quantum) effect (in
the symplectic geometry side of the theory). Our A∞ algebra is a module over
the universal Novikov ring and we need a slight modification of the definition of
an A∞ algebra which is explained in section 8.4.1.

In sections 8.4.2 and 8.4.3, Floer homology is explained. In section 8.4 we
do not assume the reader to be familiar with global symplectic geometry. So we
include section 8.4.2, which is an introduction to the part of global symplectic
geometry related to section 8.4.3. In particular, we explain Floer’s original
construction [22]. In section 8.4.4, we explain the main construction of [33]
which associates an A∞ algebra with Lagrangian submanifolds. Our discussion
in sections 8.4.2 and 8.4.3 is rather brief especially in the geometric and analytic
points we need for the construction, since the main purpose of this article is to
explain algebraic formalism rather than the basic geometric-analytic construction
which is essential to give examples of the algebraic formalism. Details of the
construction can be found in [33]; [28, 30, 83] are other surveys.
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Section 8.4.5 is devoted to the definition of the moduli space �(L). To
define it, we explain the modifications of the argument of section 8.2 which are
necessary to apply it to the case when the coefficient ring is not � but a universal
Novikov ring. Section 8.4.6 is devoted to explaining the complex geometry side
of the story. An important point to be explained is what the Novikov ring in
the complex geometry side corresponds to. Roughly speaking, the Novikov ring
will become the ring of functions on the disc which parametrize the maximal
degenerate family of mirror manifolds. We then discuss the fact that the mirror
of a Lagrangian submanifold is a family of vector bundles (or more generally of
objects of the derived category of coherent sheaves) over a maximally degenerate
family of Calabi–Yau manifolds. A version of the homological mirror symmetry
conjecture is then stated in which two A∞ algebras over Novikov rings, one for
Floer homology and the other for sheaf cohomology, coincide up to homotopy
equivalence. There are some points which are not yet clear to me which are
related to various deep problems in algebraic geometry. We conclude section 8.4
by giving an example.

My original plan was to include several other deformation theories related
to mirror symmetry; for example, the extended deformation of the Calabi–Yau
manifold due to [7], deformation quantization due to [69] and contact homology
announced in [21].5 They all can be treated by using the formalism in section 8.2.
However, this article has already become too large and I will postpone this to
another occasion.6

Parts of this article were announced in my joint paper [33] with Oh, Ohta
and Ono. (A preliminary version of [33] was completed in December 2000 and
is available from my home page at the time of writing this article. We are adding
some new material to it, some of which is included in this article. The final version
of [33] is now being completed.)

I would like to thank the organizers of the school ‘Geometry and Physics of
Branes’ that gave me an opportunity to communicate with various researchers in
a comfortable atmosphere and to write this article.

8.2 Classical deformation theory

8.2.1 Holomorphic structure on vector bundles

We start by describing deformation theory (that is a local theory of moduli) of
holomorphic structures of complex vector bundles on complex manifolds. It is a
classical theory and is a direct analogue of Kodaira and Spencer’s study [61, 63]
of the deformation of the complex structures of the complex manifold itself. We

5 Probably there is another example related to the period of the primitive form due to Saito [90]. I
am unable to explain it at the time of writing this article. Some explanation from the point of view of
mirror symmetry is found in [74].
6 The reader who speaks Japanese can find them in [29].
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present it here since it is a prototype of the discussion which will appear later in
less classical situations.

Let M be a complex manifold and �k
�
M = ⊕p+q=k�p,qM be the

decomposition of the set of the complex valued k forms according to their types.
We denote by �p,q(M) the set of all smooth sections of �p,qM . The complex
structure of M is characterized by the Dolbault differential ∂ : �p,q(M) →
�p,q+1(M). (See [40] for a standard textbook on complex manifold written from
the transcendental point of view.) We remark that (�(M),∧, ∂) is a differential
graded algebra, which we now define. Hereafter we denote by R a commutative
ring with unit.

Definition 8.2.1. A differential graded algebra or DGA over R is a triple
(A∗, ·, d) with the following properties.

(1) For each k ∈ �≥0, Ak is an R module. We write dega = k if a ∈ Ak .
(2) · : Ak⊗A� → Ak+� is an R module homomorphism, which is associative.
Namely (a · b) · c = a · (b · c).

(3) d : Ak → Ak+1 is an R module homomorphism such that d ◦ d = 0.
(4) d(a · b) = d(a) · b + (−1)degaa · d(b).

We may take either (⊕�0,k(M),∧, ∂) where k is the degree or
(
∑

p,q �
p,q(M),∧, ∂) where the degree is the (total) degree of differential form.

Let πE : E → M be a complex vector bundle (see [58] for a standard textbook
of differential geometry of holomorphic vector bundles.) We put �p,q(M; E) =
�(M,�p,q (M;�p,qM ⊗ E)). (We omit M to prevent confusion.) We define
a wedge product: ∧ : �p,q(M) ⊗ �p′,q ′(M; E) → �p+p′,q+q ′(M; E) in an
obvious way. We define a holomorphic structure on our complex vector bundle as
follows.

Definition 8.2.2. A holomorphic structure on E is a sequence of operators ∂� :
�0,q(M; E) → �p,q+1(M; E) (p, q ∈ {1, . . . , n}), such that (1) ∂� ◦ ∂� = 0;
and (2) ∂� (u ∧ α) = ∂(u) ∧ α + (−1)p+qu ∧ ∂� (α), for u ∈ �p,q(M),
α ∈ �∗(M; E).

In other words, the holomorphic structure on E is a structure on �∗(M; E)
of a left graded differential graded module over (�(M),∧, ∂), which we now
define.

Definition 8.2.3. A differential graded module on a differential graded algebra
(A∗, ·, d) is, by definition, a triple (C∗, ·, d) such that

(1) for each k ∈ �, Mk is an R module (we write dega = k if a ∈ Mk );
(2) · : Ak ⊗ M� → Mk+� is an R module homomorphism, which is
associative (i.e. (a · b) · x = a · (b · x), for a, b ∈ A, x ∈ M);

(3) d : Mk → Mk+1 is an R module homomorphism such that d ◦ d = 0;
(4) d(a · x) = d(a) · x + (−1)degaa · d(x), for a ∈ A, x ∈ M .
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We note that definition 8.2.2 coincides with another definition of a
holomorphic vector bundle, the one which uses the local chart (see [58]).

From now on we choose one holomorphic structure ∂� on E and write
� = (E, ∂� ). Once we have fixed ∂� , other holomorphic structures can be
identified with elements of an affine space satisfying a differential equation, as
we describe here. We consider the vector bundle End(E) whose fibre at p is
Hom(Ep, Ep). (We omit M to prevent confusion.) Let �p,q(M;End(E)) be the
set of all smooth sections of �p,q ⊗ End(E). We define operators

◦ : �p,q(M;End(E))⊗�p′,q ′(M; E)→ �p+p′,q+q ′(M; E)
◦ : �p,q(M;End(E))⊗�p′,q ′(M;End(E))→ �p+p′,q+q ′(M;End(E))

by using End(E)⊗E → E , End(E)⊗End(E)→ End(E) and the wedge product
in an obvious way. A holomorphic structure ∂� on E induces a holomorphic
structure (still denoted by ∂� ) on End(E) by

∂� (B) = ∂� ◦ B − (−1)deg B B ◦ ∂� . (8.1)

Theorem 8.2.1. Let ∂� ′ be another holomorphic structure on πE : E → M.
Then, there exists a section B ∈ �0,1(M;End(E)), such that

∂� ′(α) = ∂� (α)+ B ◦ α (8.2)

B satisfies the differential equation

∂� B + B ◦ B = 0. (8.3)

However, let B ∈ �0,1(M;End(E)) be a section satisfying (8.3). We define
∂� ′ by (8.2). Then ∂� ′ defines a holomorphic structure on πE : E → M.

Proof. By definition, we find (∂� ′ − ∂� )(u ∧ α) = (−1)deguu ∧ (∂� ′ − ∂� )(α).
This implies that ∂� ′ −∂� is induced by a section of�0,1(M;End(E)), which we
denote by B . To show (8.3) we calculate

∂� ′(∂� ′(α)) = ∂� ′(∂� (α) + B ◦ α)
= ∂� (∂� (α)+ B ◦ α)+ B ◦ (∂� (α)+ B ◦ α)
= ∂� B ◦ α − B ◦ ∂� (α)+ B ◦ ∂� (α) + B ◦ B ◦ α
= (∂� B + B ◦ B) ◦ α.

(8.4)

Since (8.4) holds for any α, we have (8.3). The converse can be proved in the
same way. �

Equation (8.3) is an example of the Maurer–Cartan equation, whose study
is one of the main themes of this article.
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8.2.2 Families of holomorphic structures on vector bundles

We study holomorphic vector bundles which are sufficiently close to � . In other
words, we are going to discuss a local moduli theory.

We first define a family of complex structures. Let � ⊂ � n be an open set.
Let πM̂ : M̂ → � be a fibre bundle whose fibres are diffeomorphic to M .

Definition 8.2.4. A smooth (complex analytic) family of complex structures on
M parametrized by � is a complex structure JM̂ on M̂ such that πM̂ : (M̂, JM̂ )→
� is holomorphic.

We next define a family of holomorphic vector bundles. Let Ê → M̂ be a
complex vector bundle. We assume that the restriction of Ê to π−1

M̂
(x) ∼= M is

isomorphic to E (as complex vector bundles).

Definition 8.2.5. A smooth (complex analytic) family of the holomorphic
structures on E over (M̂, JM̂ ) is a holomorphic structure ∂

�̂
of the bundle Ê .

One important case occurs when (M̂, JM̂ ) is trivial, that is the case when

(M̂, JM̂ ) is isomorphic to the direct product (M, JM ) × � . (However, the case

when the family (M̂, JM̂ ) is non-trivial also appears later in our account in
section 8.3.5.) In this case, we can use theorem 8.2.1 to identify a family of
holomorphic structures on E to a map � → �0,1(M;End(E)) as follows. Let ∂

�̂

be a family of holomorphic structures on Ê = E × � → M̂ = M × � . Each
x ∈ � determines a holomorphic structure ∂�x on E , i.e. ∂�x is the restriction of
∂
�̂

to M × {x}. We put Bx = ∂�x − ∂� . Theorem 8.2.1 implies

∂� Bx + Bx ◦ Bx = 0. (8.5)

Using the fact that ∂
�̂

is a holomorphic structure on Ê we can prove that the map

B : � → �0,1(M;End(E)) x �→ Bx (8.6)

is holomorphic. (�0,1(M;End(E)) is a complex vector space (of infinite
dimension). Hence, it makes sense to say that the map B is holomorphic. In
contrast, given a holomorphic map (8.6) satisfying (8.5), we can define ∂

�̂
by

∂
�̂
= ∂�×� + B . Here ∂�×� is a holomorphic structure on E × � (the direct

product) and B is regarded as a smooth section of �0,1(M̂;End(Ê)).
Our next purpose is to define and study notions of the completeness, versality

and universality of families. We define them only in the case when the complex
structure on M is fixed. The case of a family of complex structures on a manifold
M and the case of holomorphic structures of vector bundles over M̂ (with moving
complex structures) are similar and are omitted.

We first need to define the morphism of two families, for this purpose. We
first define the equivalence of holomorphic vector bundles. Let πE1 : E1 → M1
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and πE2 : E2 → M2 be complex vector bundles. We consider a bundle
homomorphism ϕ : E1 → E2 over a holomorphic map ϕ : M1 → M2; i.e.
πE2 ◦ϕ = ϕ◦πE1 and ϕ is complex linear on each fibre. A bundle homomorphism
ϕ induces ϕ∗ : �p,q(M; E1)→ �p,q(M; E2).

Definition 8.2.6. We say ϕ : (E1, ∂�1)→ (E2, ∂�2) is holomorphic if ∂�2 ◦ϕ∗ =
ϕ∗ ◦ ∂�1 . We say that ϕ : (E1, ∂�1) → (E2, ∂�2) is an isomorphism if it is
holomorphic and is a bundle isomorphism.

Let Êi = E×�i and ∂�i be a holomorphic structure on it, i.e. a deformation
of holomorphic structures on Ei . We put M̂i = M × �i .

Definition 8.2.7. A morphism from (M̂1, ∂ �̂1
) to (M̂2, ∂ �̂2

) is a pair ( , φ),
where φ : �1 → �2 is a holomorphic map and  is a holomorphic bundle map
 : (Ê1, ∂ �̂1

)→ (Ê2, ∂ �̂2
) over id×φ : M × �1 → M × �2.

Let us define the notion of deformations of complex structure and of
holomorphic vector bundle. It is the germ of a family and is defined as follows.

Definition 8.2.8. A deformation of a complex manifold (M, J ) is a ∼
isomorphism class of a pair (((M̂, J ),�), i) where (M̂, J ) = M × � → � is
a family of complex structures and i is a (biholomorphic) isomorphism π−1(0) ∼=
(M, J ).

We say ((M × �, J ), i) ∼ ((M × � ′, J ′), i ′), if there exists an open
neighbourhood � of 0 such that � ⊂ � ∩ � ′ and if there exists a biholomorphic
map ϕ : (M × �, J ) → (M × �, J ′) which commutes with the projection:
M × � → � and which satisfies i ◦ ϕ = i .

Let � be a holomorphic vector bundle on a complex manifold M . A
deformation of � is an equivalence class of maps B : � → �0,1(M,End(E))
such that B(0) = 0 and ∂� B(x) + B(x) ◦ B(x) = 0. We say that B : � →
�0,1(M,End(E)) is equivalent to B ′ : � ′ → �0,1(M,End(E)) if there exists an
open neighbourhood � of 0 with � ⊂ � ∩ � ′ and a holomorphic map  : � →
�(M,End(E)) such that (0) = id and (x)◦(∂�+B(x)) = (∂�+B ′(x))◦ (x).

We can define the deformation of a pair of complex structures and the vector
bundle on it in a similar way. Hereafter we sometimes say B is a deformation of
� or (B,�) is a deformation of � by abuse of notation.

Now we define the completeness of a deformation. Roughly speaking, this
means that all nearby holomorphic structures are contained in the family.

Definition 8.2.9. A deformation (B,�) of � is said to be complete if the
following condition holds.

Let (B ′,� ′) be another deformation of � and  0 : E → E is an
automorphism of � . Then, there exists a neighbourhood � of 0 in � ′ and a
morphism

( , φ) : (E × �, ∂�+B ′)→ (E × �, ∂�+B) (8.7)
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of families in the sense of definition 8.2.7 such that

 |M×{0} =  0. (8.8)

The other important notion is the universality and versality of a deformation,
which we now define. Let (B,�) of � be a complete deformation.

Definition 8.2.10. We say that (B,�) is universal if for each (B ′,� ′) as in
definition 8.2.9 the morphism ( , φ) as in (8.7) satisfying (8.8) is unique.

We say that (B,�) is versal if the differential of φ at 0 is unique; i.e. if
( ′, φ′) as in (8.7) is another morphism satisfying (8.8) then d0φ

′ = d0φ. (Note
they are both linear maps: T0� → T0� .)

The difference between versality and universality is related to the stability
of bundles.7 We give an example of a versal family which is not universal in
section 8.1.3.

8.2.3 Cohomology and deformations

The Maurer–Cartan equation (8.3) is a nonlinear partial differential equation. In
this section, we study its linearization. The solution of a linearized equation is
related to the cohomology group. Let �i = (Ei , ∂�i ) be holomorphic vector
bundles on M . We consider�0,q(Hom(E1, E2)) = �(M;�0,q⊗Hom(E1, E2)),

where Hom(E1, E2) is a bundle whose fibre at p is Hom((E1)p, (E2)p)

Operations ∂�1 , ∂�2 define an operation ∂�1,�2 : �0,q(Hom(E1, E2)) →
�0,q+1(Hom(E1, E2)) in the same way as (8.1). It is easy to see ∂�1,�2 ◦∂�1,�2 =
0; i.e. (Hom(E1, E2), ∂�1,�2) is a holomorphic vector bundle.

Definition 8.2.11. The extension Extq(�, � ′) is the qth cohomology of the chain
complex (�0,∗(Hom(E1, E2)), ∂�1,�2).

Let (B,�) be a deformation of � . We are going to define a Kodaira–Spencer (KS)
map T0� → Ext1(�, �). By definition 8.2.8, we have

∂� B(x)+ B(x) ◦ B(x) = 0. (8.9)

We differentiate (8.9) at 0. Then, in view of B(0) = 0, we have

∂�

(
∂B

∂xi
(0)

)
= 0.

Here x = (x1, . . . , xn) is a complex coordinate of � ⊆ � n .

7 See [78] for a definition of stability.
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Definition 8.2.12. We put

KS

(
∂

∂xi

)
=
[
∂B

∂xi
(0)

]
∈ Ext1(�, �).

KS is a linear map: T0� → Ext1(�, �), which we call the Kodaira–Spencer map
of our deformation.

A KS map is gauge equivariant; i.e. it is independent of the choice of the
representative (B,�) of the deformation. In other words, we have the following
lemma. Let (B ′,� ′) be another representative of the deformation.

Lemma 8.2.1. If (B,�) is equivalent to (B ′,� ′) in the sense of definition 8.2.8
then [

∂B

∂xi
(0)

]
=
[
∂B ′

∂xi
(0)

]
∈ Ext1(�, �).

Proof. � ⊂ � ∩ � ′,  : � → �(M;End(E)) in definition 8.2.8 satisfies

 (x) ◦ (∂� + B(x)) = (∂� + B ′(x)) ◦ (x). (8.10)

We differentiate (8.10) at 0 and obtain

∂ 

∂x
(0) ◦ ∂� + ∂B

′

∂xi
(0) = ∂B

∂xi
(0)+ ∂� ◦ ∂ 

∂xi
(0).

That is
∂B

∂xi
(0)− ∂B

′

∂xi
(0) = ∂�

(
∂ 

∂xi
(0)

)
.

�

In a similar way, we can prove the following lemma.

Lemma 8.2.2. Let (B1,�1), (B2,�2) be deformations of �1, �2 and  : (E1 ×
�1, ∂�1+B1) → (E2 × �2, ∂�2+B2), φ : �1 → �2 be a morphism of a family
of holomorphic structures in the sense of definition 8.2.7. We assume φ(0) = 0.
Then the following diagram commutes.

T0�1
KS−−−−→ Ext1(�, �)

d0φ

' ∥∥∥
T0�2

KS−−−−→ Ext1(�, �)

Diagram 1
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The following result was proved in [62] in the case of deformation theory of
complex structure.

Theorem 8.2.2. If the KS map is surjective then the deformation is complete.

We will prove this in section 8.2.3. Another main result of deformation
theory is the following theorem which is due to Kodaira et al [60] in the case
of the deformation theory of complex structures.

Theorem 8.2.3. If Ext2(�, �) = 0 then there exists a deformation of � such that
the KS map is an isomorphism.

We will prove this in section 8.1.5. We also prove that the family obtained
in theorem 8.2.3 is unique up to an isomorphism in section 8.2.3.

Remark 8.2.1. The smooth family where the KS map is surjective does not exist,
in general, in the case when Ext2(�, �) �= 0. (However there are cases where such
families exist in the case Ext2(�, �) �= 0. See example 8.2.1.) Kuranishi [71]
studied the case Ext2(�, �) �= 0. This leads us to the notion of a Kuranishi map:
Ext1(�, �)→ Ext2(�, �). We will discuss this in section 8.1.6.

We note the following proposition.

Proposition 8.2.1. The deformation obtained in theorem 8.2.3 is versal.

Proof. Completeness follows from theorem 8.2.2. Let ( , φ) ( ′, φ′) be
morphisms as in (8.7) satisfying (8.8). By lemma 8.2.2 we have the following
commutative diagram.

T0�
KS−−−−→ Ext1(�, �)

KS←−−−− T0�

d0φ

' ∥∥∥ 'd0φ
′

T0�
KS−−−−→ Ext1(�, �)

KS←−−−− T0�

Diagram 2

d0ψ
′ = d0ψ follows immediately. �

We now give a few examples of deformations of holomorphic vector bundles.

Example 8.2.1. Let M be a complex manifold and let L → M be a complex
line bundle. L has a holomorphic structure if its first Chern class is represented
by a 1–1 form (see [40, 58]). We fix a holomorphic structure of L and denote
it by ∂�. The other holomorphic structure is equal to ∂ B = ∂� + B where
B ∈ �0,1(M;End(�)). Let us study equation (8.3) in this case.

Using the fact that L is a line bundle, it is easy to see that End(�) is
isomorphic to the trivial line bundle (as a holomorphic line bundle); i.e. B ∈
�0,1(M). Since B is a 1-form we have B ◦ B = 0. Hence (8.3) reduces to a linear
equation:

∂B� = 0.
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We can find a vector subspace

� ⊂ Ker(∂ : �0,1(M;End(�))→ �0,2(M;End(�)))

such that the restriction � → Ext1(�,�) of the natural projection is an
isomorphism. Hence, in the case of a line bundle, we always have a family whose
KS map is an isomorphism. Note that if dim M ≥ 2, the condition Ext2(�,�) ∼= 0
of theorem 1.3.2 may not be satisfied.

It is easy to see that our deformation is universal.

Example 8.2.2. Let �1, �2 be line bundles on M such that

Ext1(�2,�1) �= 0.

Ext0(�2,�1) ∼= Ext1(�1,�1) ∼= Ext1(�2,�2) ∼= Ext1(�1,�2) ∼= 0.
(8.11)

(Let M = � P1 and c1(L1) = k2[� P1 ], c1(L1) = k2[� P1 ], with k1 > k2. It is
easy to check (8.11) in this case.) Let B(x) ∈ �0,1(M;Hom(L2, L1)) be a form
representing non-zero cohomology class x in Ext1(�2,�1). We consider

�(x) =
(

0 B(x)
0 0

)
∈ �0,1(M;End(L1 ⊕ L2)).

Then

∂�(x) = ∂�1⊕�2 +�(x) =
(
∂�1 B(x)

0 ∂�2

)
satisfies ∂�(x) ◦ ∂�(x) = 0 and hence we have a deformation of �1 ⊕ �2. By
(8.11) we can easily find Ext1(�1 ⊕ �2,�1 ⊕ �2) ∼= Ext1(�2,�1). The KS map
of our deformation is the identity: Ext1(�2,�1) → Ext1(�1 ⊕ �2,�1 ⊕ �2) ∼=
Ext1(�2,�1). We thus have a versal deformation.

However this deformation is not universal.
In fact, let r : Ext1(�2,�1) → � \{0} be a holomorphic function with

r(0) = 1. We define φ : Ext1(�2,�1) → Ext1(�2,�1) by φ(x) = r(x)x .
We also define� : Ext1(�2,�1)→ End(L1⊕ L2) by�(x)(v,w) = (r(x)v,w).
� defines a bundle homomorphism over φ. By definition it is easy to see that
�(x) : ((L1 ⊕ L2), ∂�+�(x))→ ((L1 ⊕ L2), ∂�+�(x)) is holomorphic. We thus
find a morphism of a family of holomorphic structures, which is the identity on
the fibre of 0 but not at the fibre of other points. Hence our deformation is not
universal.

We can explain this phenomenon as follows. We consider the group of
(holomorphic) automorphisms of the bundles (L1 ⊕ L2; ∂�(x)). In case x = 0
this bundle is a direct product. Hence we have Aut(L1⊕ L2; ∂�(0)) ∼= Aut(�1)×
Aut(�2) × Ext0(�1,�2) ∼= � 2∗ × Ext0(�1,�2). However, for x �= 0 we have
Aut(L1 ⊕ L2; ∂�(x)) ∼= � ∗ × Ext0(�1,�2) where c ∈ � ∗ acts on L1 ⊕ L2 by
(v,w) �→ (cv, cw). The difference Aut(L1⊕L2; ∂�(0))/Aut(L1⊕L2; ∂�(x)) ∼=
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� ∗ acts on Ext1(�2,�1) as a scalar multiplication. We can easily check that
(L1 ⊕ L2; ∂�(x)) is isomorphic to (L1 ⊕ L2; ∂�(x ′)) if and only if x ′ = cx ,
i.e. in the case when x and x ′ lie in the same orbit of � ∗ -action. Hence the
part of the automorphism of (L1 ⊕ L2, ∂ B(x)) : x = 0 which will be ‘lost’
for x �= 0 will act on � = Ext1(�2,�1). The set of isomorphism classes of
nearby holomorphic structures will be the orbit space of this � ∗ -action. The
quotient space of this action in our case is a union of � PN and one point where
N + 1 = rank Ext1(�2,�1). If we use the quotient topology then the quotient
space is not Hausdorff at the orbit of origin. This is because � ∗ is non-compact.

The phenomenon explained here, i.e. that the jump of the dimension of
the automorphism group is related to a versal but not universal family, is rather
general. In fact, we can prove the following result. We recall that the Lie algebra
of Aut(�) is identified with Ext0(�, �).

Theorem 8.2.4. If the deformation (B,�) is versal and if the rank of
Ext0((E, ∂�+B(x)), (E, ∂�+B(x))) is independent of x in a neighbourhood of 0,
then (B,�) is universal.

We will prove this in section 2.3.

8.2.4 Bundle valued harmonic forms

We prove theorem 8.2.3 in the next section. To prove theorem 8.2.3, we use the
harmonic theory of vector bundle valued forms, which we review in this section
(see [58] for details). Let κ : �p,q(M) → �q,p(M) be the complex antilinear
homomorphism defined by

κ(ui1,...,i p; j1,..., jq dzi1 ∧ . . . dzip ∧ dz j1 ∧ . . . dz jq )
= ui1,...,i p ;J1,..., jq dzi1 ∧ . . . dzip ∧ dz j1 ∧ . . . dz jq .

We next fix a Hermitian metric g on M . Then g induces the Hodge ∗ operator
∗ : �k(M) → �n−kM by u ∧ κ(∗v) = g(u, v)Volg where Volg ∈ �2n(M) is
the volume element and g(u, v) is the inner product on�∗(M) induced by g. We
note that ∗ is complex linear, κ ◦ ∗ = ∗ ◦ κ and ∗ : �p,q(M)→ �n−q,n−p(M).
We can also check that

∗∗ = (−1)p+q id on �p,q(M). (8.12)

Definition 8.2.13. We define the operator ∂
∗

by −κ ◦ ∗ ◦ ∂ ◦ κ ◦ ∗ : �p,q(M)→
�p,q−1(M).

∂
∗

is complex linear. Let us now include the holomorphic vector bundle. Let
� = (E, ∂� ) be a holomorphic vector bundle over M . We take and fix a Hermitian
inner product h on E . h induce an anticomplex linear homomorphism Ih : E →
E∗. Ih and κ induce an anticomplex linear homomorphism κh : �p,q(M; E)→
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�q,p(M; E∗). We define ∧ : �p,q(M; E) ⊗ �p′,q ′(M; E∗) → �p+p′,q+q ′(M)
by (u ⊗ a) ∧ (v ⊗ α) = α(a)u ∧ v. Then we define ∗ : �p,q(M; E) →
�n−q,n−p(M; E∗) by a ∧ κh(∗ B) = gh(A, B)�g , A, B ∈ �p,q(M; E), where
gh is an inner product on�p,q(M; E) induced by g and h. Formula (8.12) holds.
We define

∂
∗
� = −κ ◦ ∗ ◦ ∂� ◦ κ ◦ ∗ : �p,q(M; E)→ �p,q−1(M; E).

We define the Hermitian inner product 〈·, ·〉 on �p,q(M) and �p,q(E) by

〈u, v〉 =
∫
M
g(u, v)Volg 〈A, B〉 =

∫
M
gh(A, B)Volg .

Let L2(M;�p,q(M)), L2(M;�p,q(M; E)) be the completion. They are Hilbert
spaces. We can prove 〈∂u, v〉 = 〈u, ∂∗v〉, 〈∂� A, B〉 = 〈A, ∂∗� B〉 by using
Stokes theorem and (8.12). We now define the Laplace–Beltrami operator by
�∂ = ∂∂∗ + ∂∗∂, �∂� = ∂�∂

∗
� + ∂∗�∂� , and the space of harmonic forms and

sections by

�
p,q(M) = Ker(�∂ : �p,q(M)→ �p,q(M))

�
p,q(M; �) = Ker(�∂� : �p,q(M; E)→ �p,q(M; E)).

We can show that �∂ , �∂� are elliptic and hence �p,q(M) and �p,q(M; �) are
finite dimensional if M is compact without boundary.

Let �� : L2(M;�p,q(M))→ �p,q(M), ��,� : L2(M;�p,q(M; E))→
�p,q(M; �) be orthonormal projections.

Now the basic result due to Hodge–Kodaira is:

Theorem 8.2.5. There exists an orthonormal decomposition :

L2(M;�p,q(M)) ∼= Im ∂ ⊕ Im ∂
∗ ⊕�p,q(M)

L2(M;�p,q(M; E)) ∼= Im ∂� ⊕ Im ∂
∗
� ⊕�p,q(M; �).

There exist operators Q : L2(M;�p,q(M)) → L2(M;�p,q(M)), Q� :
L2(M;�p,q(M); �) → L2(M;�p,q(M); �) such that �∂ ◦ Q = id−��,
�∂� ◦ Q� = id−��,� .

(For the proof see, for example, [105].) We note that Q commutes with ∂, ∂
∗
,

�∗. We put G = ∂
∗ ◦ Q, G� = ∂

∗
� ◦ Q� and call them the propagators. G,

G� are the chain homotopy between the identity and the orthonormal projections
��, ��,� , i.e. we can easily prove that:

id−�� = G ◦ ∂ + ∂ ◦ G id−���
= G� ◦ ∂� + ∂� ◦ G� . (8.13)
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8.2.5 Construction of a versal family and Feynman diagrams

In this section we prove theorem 8.2.3. We are going to find a neighbourhood
� with its origin in �p,q(M; (End(E), ∂� )) and construct a holomorphic map
B : � → �0,1(M;End(E)) such that

∂� B(b)+ B(b) ◦ B(b) = 0 (8.14)

and that d0B : T0� = �0,1(M; (End(E), ∂� )) → �0,1(M;End(E)) is the
identity. As we have already discussed, this is enough to show theorem 8.2.3.
We take a formal parameter T and put

B(b) = Tb +
∞∑
k=2

T kBk(b). (8.15)

We solve equation (8.14) inductively on k, i.e. we solve

∂� Bk(b) = −
∑
�+m=k

B�(b) ◦ Bm(b) (8.16)

inductively on k. The solution of (8.16) is given by using the operator G� , the
propagator, introduced in the last section. (Here we write G� in place of GEnd(�)
for simplicity.)

Lemma 8.2.3. We define B1(b) = b and

Bk(b) =
∑
�+m=k

G� (B�(b) ◦ Bm(b)) (8.17)

inductively on k. Then it satisfies (8.16).

Proof. We remark that the harmonic projection

��,End(�) : L2(M;�0,2(M;End(E)))→ �
0,2(M;End(E))

is zero because Ext2(�, �) = 0 by assumption. Hence, by (8.2.5), we have

∂� Bk(b) =
∑
�+m=k

∂�G� (B�(b) ◦ Bm(b))

= −
∑
�+m=k

B�(b) ◦ Bm(b)−
∑
�+m=k

G�∂� (B�(b) ◦ Bm(b)).
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By using the induction hypothesis, we have∑
�+m=k

∂� (B�(b) ◦ Bm(b))

=
∑
�+m=k

∂� B�(b) ◦ Bm(b)−
∑
�+m=k

B�(b) ◦ ∂� Bm(b)

= −
∑
�+m=k

∑
�1+�2=�

(B�1(b) ◦ B�2(b)) ◦ Bm(b)

+
∑
�+m=k

∑
m1+m2=m

B�(b) ◦ (Bm1(b) ◦ Bm2(b)) = 0.

(We note that the associativity of ◦ plays an important role here.) �

To complete the proof of theorem 8.2.3, it suffices to show the following
lemma.

Lemma 8.2.4. There exists ε > 0 such that if |T |‖b‖ < ε then (8.15) converges.

(Here ‖b‖ is the Sobolev L2
k norm of b with sufficiently large k, which will

be introduced later.) The proof of lemma 8.2.4 is based on a standard result, in
geometric analysis, which we briefly recall here. First for A ∈ �p,q(End(E)) we
define its Sobolev norm ‖A‖L2

d
by

‖A‖2
L2
d
=

k∑
i=0

〈∇ i A,∇ i A〉.

Here ∇ i A is the i th covariant derivative of A and 〈∇ i A,∇ i A〉 is its appropriate
L2 inner product defined similarly to that in the last section. Let L2

d (M;End(E))
be the completion of �p,q(End(E)) with respect to ‖A‖L2

d
. Then

(A) Q� defines a bounded operator

L2
d(M;�p,q(M;End(E)))→ L2

d+2(M;�p,q((M;End(E))).

(B) ◦ : �p,q((M;End(E))⊗�p′,q ′((M;End(E))→ �p+p′,q+q ′((M;End(E))
can be extended to a continuous operator

L2
d+1(M;�p,q(M;End(E)))⊗ L2

d+1(M;�p′,q ′(M;End(E)))

→ L2
d (M;�p+p′,q+q ′(M;End(E))).

if k is sufficiently large compared to 2n = dim� M .

The proof of (A) is given in many of the standard textbooks on harmonic theory,
for example [105]. The proof of (B) is given in many of the standard textbooks
on Sobolev spaces, see, for example, [36]. Now (A),(B) implies

‖G� (B�(b) ◦ Bm(b))‖L2
k
< C‖B�(b)‖L2

k
‖Bm(b)‖L2

k
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Figure 8.1.

if k is large. Here C is independent of k. Therefore, we can show

‖Bk(b)‖L2
d
< (C ′‖b‖L2

d
)k

inductively on k. Lemma 8.2.4 follows immediately. �

We defined Bk(b) inductively on k. We can rewrite it and define Bk(b) as a
sum over Feynman diagrams. In order to show the relation of theorem 8.2.3 to
quantum field theory, let us do it here.

Definition 8.2.14. A finite oriented graph � consists of the following data:

(1) a finite set Vertex(�), the set of vertices;
(2) a finite set Edge(�), the set of edges; and
(3) maps ∂source : Edge(�)→ Vertex(�), ∂target : Edge(�)→ Vertex(�).

A ribbon structure of an oriented graph � is the cyclic ordering of the set
∂−1

source(v) ∪ ∂−1
target(v) for each v ∈ Vertex(�). A graph with a ribbon structure is

called a ribbon graph.

We take copies of intervals [0, 1]e corresponding to each element of e ∈
Edge(�) and copies of points v corresponding to each element v ∈ Vertex(�).
We identify {0} ∈ [0, 1]e with ∂source(e) and {1} ∈ [0, 1]e with ∂target(e). We thus
obtain a one-dimensional complex, which we write as |�|.

An embedding of |�| into an oriented surface (a real two-dimensional
manifold)! induces a ribbon structure on � as in figure 8.1.

In this article we only consider finite oriented graphs which we call graphs.
Now we consider ribbon graphs � satisfying the following conditions.

Condition 8.2.1.

(1) Vertex(�) is decomposed into a disjoint union of Vertexint(�) and
Vertexext(�).

(2) If v ∈ Vertexint(�) then "∂−1
target(v) = 2, "∂−1

source(v) = 1.

(3) There exists vlast ∈ Vertexext(�), the last vertex, such that "∂−1
target(v) = 1,

"∂−1
source(v) = 0.

(4) If v ∈ Vertexext(�)\{vlast} then "∂−1
target(v) = 0, "∂−1

source(v) = 1.
(5) |�| is connected and simply connected.
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Figure 8.2.

We say an element of Vertexint(�) is an interior vertex and an element
of Vertexext(�) an exterior vertex. An edge e is called an exterior edge if
{∂target(e), ∂source(e)} ∩ Vertexext(�) �= ∅. Otherwise it is called an interior edge.

Let � be a ribbon graph such that |�| is simply connected. It is then easy
to see that there exists an embedding |�| → �

2 such that the ribbon structure is
compatible with the orientation of �2 .

We denote by RGk,2 the set of all ribbon graphs � which satisfies
condition 8.2.1 and has exactly k + 1 exterior vertices.

Let � ∈ RGk,2. Then, using the embedding |�| → �
2 compatible with

the ribbon structure, we obtain a cyclic order on Vertexext(�). By regarding
the last vertex as the zeroth one, the cyclic order determines the order on
Vertexext(�)\{vlast}. So we put Vertexext(�)\{vlast} = {v1, . . . , vk}. We are now
going to define B� : �0,1(M; (End(E), ∂� ))k⊗ → �0,1(M;End(E)) for each
� ∈ Grk,2 such that

Bk(b) =
∑

�∈Grk,2
B�(b, . . . , b). (8.18)

We define B� by induction on k. Let � ∈ RGk,2 and vlast be its last vertex.
Let elast be the unique edge such that ∂target(elast) = vlast. We remove [0, 1]elast

together with its two vertices from |�|. Then |�|\[0, 1]elast is a union of two
components which can be regarded as |�1| and |�2|, where �1 ∈ RG2,�,
�2 ∈ RG2,m with �+ m = k. We may number �1, �2 so that v1, . . . , v� ∈ �1.

Now we put

B�(b1, . . . , bk) = G� (B�1(b1, . . . , b�) ◦ B�2(b�+1, . . . , bk)). (8.19)

(8.18) is quite obvious by definition.
The way we rewrite the induction process into a sum over trees is a

straightforward matter. However, rewriting the definition of Bk as in (8.18) leads
us naturally to the following questions.
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Question 8.2.1. (1) Can we generalize to the case when the interior vertex has
more than two edges?
(2) When we consider a tree instead of a ribbon tree, is there any corresponding
theory?
(3) What happens when we include the graph which is not simply connected?

Remarkably they all have good answers.

Answer 8.2.1. (1) We then study the deformation of A∞ algebras in place of
differential graded algebras.
(2) We then study the deformation of differential graded Lie algebras or, more
generally, L∞ algebras.
(3) This corresponds to Reidemeister or analytic torsion [87] (in the case
H1(|�|) = �), Chern–Simons perturbation theory [5, 6, 24, 66], quantum KS
theory [10] or a pseudoholomorphic map from a higher-genus Riemann surface
(with or without boundary).

We will explain the first two answers in later sections. The detailed study
of the third one is left to the future, since mathematical theory, in the case
H1(|�|) �= �, is not sufficiently well developed.

8.2.6 The Kuranishi family

In this section, we remove the assumption Ext2(�, �) = 0 from theorem 8.2.2.
We need to study deformations parametrized by a singular variety for this purpose.
Let us start by briefly reviewing the notion of analytic variety. Since we only
discuss here the local moduli theory it is enough to consider the case of an analytic
subspace of � N . (See [20] for more details on analytic variety.)

Definition 8.2.15. Let X ⊂ � N be a locally closed subset. We say that X is a
(complex) analytic subset if the following holds.

For each p ∈ X there exists a neighbourhoodU of p in � N and holomorphic
functions f1, . . . , fm such that X ∩U = {z| f1(z) = · · · = fm(z) = 0}.
Definition 8.2.16. For p ∈ X , we put

�X,p = { f ∈ �p| f ≡ 0 on X}. (8.20)

Here �p is the germ of holomorphic functions at p, i.e. the set of convergent
power series in a neighbourhood of p.

The germ of holomorphic functions �X,p of X at p is defined by �X,p =
�X,p/�X,p. �X,p is a local ring and its maximal ideal is �X,p,+ = {[ f ] ∈
�X,p| f (p) = 0}. (Here and hereafter, we denote by �+ its maximal ideal of a
local ring�.)

Let X ⊂ � N , X ′ ⊂ � N ′ be analytic sets. A map F : X → X ′ is said to be a
holomorphic map if for each p ∈ X there exists a neighbourhoodU of p in � N
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such that the restriction of F to U ∩ X is extended to a holomorphic map from U
to � N ′ .

A germ of analytic subset at 0 ∈ �
N is an equivalence class of

analytic subsets X containing 0, where X is equivalent to X ′ if there exists a
neighbourhood � of 0 such that � ∩ X = � ∩ X ′.

To study the problem of moduli, we need to consider the case when �X,p

does not satisfy (8.20), i.e. a complex analytic analogue of a scheme. The simplest
example is X = {0} ⊂ � and �X,p = (x2), that is the set of holomorphic
functions f (x) such that f (0) = f ′(0) = 0. Let us define such objects. We
need only its germ at 0 so we restrict ourselves to such a case.

Definition 8.2.17. A germ at 0 of analytic subspace � of � N is a germ of the
analytic subset X together with ideals ��,0 ⊂ �X,0 such that the following holds.
Let f1, . . . , fm be a generator of ��,0. (Since�0 is Noetherian it follows that we
can choose such a generator.) Let fi be defined on � . Then

� ∩ X = {x | fi(x) = 0, i = 1, 2, . . . ,m}. (8.21)

Remark 8.2.2. By Hilbert’s nullstellensatz, (8.21) is equivalent to �X,0 =
{ f | f n ∈ ��,0 for some n.}

One can define an analytic variety as a ringed space8 which is locally
isomorphic to (�,��,0), in other words as a space obtained by gluing the germs
of the analytic subspaces in � N defined in definition 8.2.17. We do not try to do
so since we do not use it (see [20]).

Example 8.2.3. Let F = ( f 1, . . . , f k) : � → � k be a holomorphic map,
where � is an open neighbourhood of 0 in � N . We assume f i (0) = 0. We put
X = F−1(0). We let ��,0 be the ideal generated by f 1, . . . , f k . We then obtain
a germ of the analytic subspace. We denote it by F−1(0) by abuse of notation.

We put ��,0 = �0/��,0. ��,0,+ = {[ f ] ∈ ��,0| f (0) = 0}.
Definition 8.2.18. Let� = (X,��,0), (�′,�′0(�′)) be germs of analytic varieties.
A morphism � from � to �′ is a ring homomorphism F∗ : ��′,0 → ��,0.

(Here and hereafter all ring homomorphisms between commutative rings are
assumed to preserve the unit.) We note that the morphism of a germ of analytic
subspaces induces a map between analytic sets as follows.

Lemma 8.2.5. Let � : � → �′ be a morphism as in definition 8.2.18. Here
� = (X,��,0), X ⊂ � N , �′ = (X ′,�′

�′,0), X
′ ⊂ � N ′ . Then there exists

a neighbourhood � of 0 in � N and a holomorphic map F̃ : � → � N ′ with
F̃(0) = 0, such that:
8 We do not define this notion here since we do not use it. See [48].
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(1) F̃(X ∩ �) ⊂ X ′;
(2) if f ∈ �

′
�
′
�′,0 then f ◦ F ∈ ��,0; and

(3) by (2) we have a ring homomorphism ��′,0 → ��,0 induced by f �→
f ◦ F̃ . This homomorphism coincides with F∗.

Proof. Let xi , i = 1, . . . , N ′ be the coordinate function on � N ′ . We have
F∗xi ∈ ��,0. Let f̃ i ∈ �0 be any elements which represent F∗xi . It is easy
to see that F̃ = ( f̃ 1, . . . , f̃ N

′
) has the required properties. �

To define a deformation of complex structures parametrized by a germ of an
analytic subspace of � N , we need to define a fibre bundle over a complex analytic
variety etc. It is a straightforward analogue of the case for a complex manifold
but since our main purpose is to study vector bundles, we restrict ourselves to the
deformation of holomorphic structures of a complex vector bundle on a complex
manifold M with a fixed complex structure.

Let � be a holomorphic vector bundle on M . Let � ⊂ � N be an open
neighbourhood of the origin and let X ⊂ � be a germ of a complex analytic
subset.

Definition 8.2.19. A deformation of � parametrized by X is a germ of a
holomorphic map B : � → �0,1(M;End(E)) such that B(0) = 0 and that

∂� B(x)+ B(x) ◦ B(x) = 0 (8.22)

holds for each x ∈ X .

Using (8.20), it is easy to see that (8.22) is equivalent to the following.
There exists an open covering ∪Ui = M , and an open neighbourhood � of

0, and there exists a smooth section ei (x, q) of �0,1(� ×Ui ,End(E)) such that

∂� B(x)+ B(x) ◦ B(x) =
∑

fi (x)ei (x, q). (8.23)

where fi ∈ �X,0. Hereafter we say that (8.23) holds locally and do not mention
Ui , � .

In view of (8.23), we can generalize definition 8.2.19 to the case of a germ
of an analytic subspace as follows.

Definition 8.2.20. Let � = (X,��,0) be a germ of an analytic subspace and
B : � → �0,1(M;End(E)) be a deformation of the holomorphic structures on E
parametrized by X . We say that B is a deformation of � parametrized by � if

∂� B(x)+ B(x) ◦ B(x) =
∑

fi (x)ei(q, x) (8.24)

holds locally with fi ∈ ��,0.
We say that B is the same deformation as B ′ if

B(x)− B ′(x) =
∑

fi (x)ei (q, x)
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holds locally with fi ∈ ��,0.

Example 8.2.4. Let X = {0} ⊂ � and ��,0 = (x2). Let us write B(x) = x B1 +
x2B2 + · · · . Then (8.24) implies ∂� B1 = 0. Note any choice of B2, . . . defines
the same family by definition. Hence the set of deformations parametrized by
({0}, (x2)) is identified with the kernel of ∂� : �0,1(End(E))→ �0,2(End(E)).

To define completeness and the universality of a deformation parametrized
by a germ of an analytic subspace, we define a morphism between deformations.
Let � = (X,��,0), �′ = (X ′,��′,0) be germs of analytic subspaces and
B : � → �0,1(M;End(E)), B ′ : � ′ → �0,1(M;End(E)) be deformations
of � parametrized by �, �′ respectively.

Definition 8.2.21. A morphism from (�, B) to (�′, B ′) is a pair (�,�), where
� : �→ �′ is a morphism of an analytic subspace and � : � → �(M;End(E))
is a holomorphic map such that

∂� (�(x))+ B ′(F̃(x)) ◦�(x)−�(x) ◦ B(x) =
∑

fi (x)ei (q, x) (8.25)

holds locally with fi ∈ ��,0. Here F̃ is as in lemma 8.2.5.
We regard (�,�) as the same morphism as (�′,� ′) if � = �′ in the sense of

definition 8.2.18 and if

�(x)−� ′(x) =
∑

fi (x)ei(q, x)

locally with fi ∈ ��,0. Here ei (q, x) is a local section of �0,1 ⊗ End(E).

Example 8.2.5. Let us consider a family on � = ({0}, (x2)) as in example 8.2.4.
Let B = x B1 and B ′ = x B ′1 be two such families. Let (�,�) be a morphism
from (�, B) to (�, B ′). We may choose F̃ in lemma 8.2.5 so that F̃(x) = x F1,
when F1 ∈ � . We may also write� = �0+ x�1. Equation (8.25) can be written
as ∂��0 = 0, F1∂��1+B ′1◦�0−�0◦B1 = 0.Hence B ′1−B1 = F1∂��1. Thus
the set of the deformations of � parametrized by� = ({0}, (x2)) is identified with
Ext1(�, �).

Now that the morphism of a deformation has been defined, we can define
completeness and universality in exactly the same way as for deformations
parametrized by complex manifolds. We leave this to the reader.

To define versality and the KS map we need to define the Zariski tangent
space of a germ of an analytic subspace.

Definition 8.2.22. Let � ⊂ � N be a germ of an analytic subspace. The Zariski
tangent space T0� is defined by

T0� = {V ∈ Tp�
N |V ( f ) = 0 if f ∈ ��,0}.



144 Deformation theory, homological algebra and mirror symmetry

Let � : � → �′ be a morphism. Let F̃ : � → � N ′ be as in lemma 8.2.5.
Then it is easy to see that d0 F̃ : T0�

N → T0�
N ′ induces d0� : T0�→ T0�

′.
Now we can generalize the definition of versality in the same way as

in section 8.1.2 by using the Zariski tangent space in the same way as in
definition 8.2.10.

We next generalize the KS map. Let us consider the situation of
definition 8.2.19. Let fi , ei be as in (8.23). Let V = ∑

V i ∂
∂xi

∈ T0�. By
differentiating (8.23) we have

∂�V (B(x))+ V (B(x)) ◦ B(x)+ B(x) ◦ V (B(x))
=
∑

V ( fi )(0)ei (0)+ fi (0)V (ei )(0) = 0.

It follows that

V (B(x)) ∈ Ker(∂� : �0,1(M;End(�))→ �0,2(M;End(�))).

Definition 8.2.23. We put

KS(V ) = [V (B(x))] ∈ Ext1(�, �).

KS is a linear map: T0�→ Ext1(�, �), which we call the KS map of our family.

Lemmata 8.2.1 and 8.2.2 also hold in our case. However, theorem 8.2.2
does not hold. In fact, we have the following counter example. Let us consider a
universal family parametrized by an open neighbourhood of 0 in � 2 . We restrict it
to X = {(x, y)|xy = 0}. Since T0X = �

2 it follows that this family still satisfies
the assumption of theorem 8.2.2. It is not complete however.

Now we have the following generalization of theorem 8.2.3.

Theorem 8.2.6. Let � be a holomorphic vector bundle on M. There exists a
germ of complex analytic variety � and a deformation B of � parametrized by �
such that (1) B is complete; and (2) the KS map, KS : T0�→ Ext1(�, �) is an
isomorphism.

Moreover there exists an open neighbourhood � of the origin in Ext1(�, �)
and a holomorphic map Kura : � → Ext2(�, �) such that � = Kura−1(0). Here
the Kura−1(0) is as in example 8.2.3.

Definition 8.2.24. We call the map Kura the Kuranishi map.

We will give a proof of theorem 8.2.6 in section 8.2.3. Theorem 8.2.6 is
a vector bundle analogue of [71], the work in which has been generalized to
various other situations by many people (see, for example, [4, 45, 84, 92, 104]).
Theorem 8.2.6 also has an analogue in the case of the moduli space of the gauge
equivalence classes of Yang–Mills equations [16, 101].

Proposition 8.2.1 can be generalized directly to our situation by the same
proof, i.e. the deformation obtained in theorem 8.2.6 is versal. Theorem 8.2.2 still
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holds in the case of a deformation parametrized by a germ of an analytic subspace.
(We prove it in section 8.2.3.)

We close this section by giving an example where the Kuranishi map is non-
zero.

Example 8.2.6. Let � be an elliptic curve and � → � be a line bundle with
c1(�) ∩ [�] = −m < 0. We have

Extk(�; � ,�) ∼=
{
� m k = 1

0 k = 0.

Let �i : i = 1, . . . ,m be a generator of Ext1(�; � ,�) which we may regard as a
� valued (0, 1)-form.

By Serre duality, we have Ext0(�;�, � ) ∼= Ext1(�; � ,�)∗ . Let �i : i =
1, . . . ,m be the dual basis.

We consider M = � × � and let pri : i = 1, 2 be projections to first and
second factors. We put

� = pr∗1 �⊕ pr∗2 � = (�� 1)⊕ (1� �)

where � is the exterior product and 1 is the trivial line bundle. We consider

Ext1(M; �, �) ∼=Ext1(M;�� 1,�� 1)⊕ Ext1(M; 1� �, 1� �)

⊕ Ext1(M; 1� �,�� 1)⊕ Ext1(M;�� 1, 1� �).

The first two factors are isomorphic to H 0,1(M) ∼= � 2 . The third and fourth
factors are isomorphic to � m

2
and their generators are pr∗1 �i ∧ pr∗2 � j and

pr∗1 �i ∧ pr∗2 � j , respectively.
Using these bases we define coordinate ai , bi , xi j , yi j of Ext1(M; �, �) as

follows. Let B ∈ Ext1(M; �, �), then we put

∂�+B = ∂� +
( ∑

i ai dzi
∑

i, j xi j (pr∗1 �i ∧ pr∗2 � j )∑
i, j yi j (pr∗1 �i ∧ pr∗2 � j )

∑
bi dzi .

)
where z1, z2 are complex coordinates of the first and the second factor M = �×�.
We also have

Ext2(M; �, �) ∼= Ext2(M;�� 1,�� 1)⊕ Ext2(M; 1� �, 1� �) ∼= �
2 .

We find

(pr∗1 �i ∧ pr∗2 �
j ) ∧ (pr∗1 �

k ∧ pr∗2 ��) =
{
(1, 0) (i, j) = (k, �)
0 otherwise

(pr∗1 �i ∧ pr∗2 � j ) ∧ (pr∗1 �k ∧ pr∗2 ��) =
{
(−1, 0) (i, j) = (k, �)
0 otherwise.
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Other components of the products Ext1(M; �, �) × Ext1(M; �, �) →
Ext2(M; �, �) vanish. Therefore, the Kuranishi map is

(a1, a2; b1, b2; (xi, j ), (yi, j )) �→
(∑

i, j

xi, j yi, j ,−
∑
i, j

xi, j yi, j

)
.

Hence the origin is a singular point of Kura−1(0).

We note that the origin is not a stable bundle in the sense of [78]. We need
to consider the three-dimensional case to obtain a stable bundle whose Kuranishi
map is non-trivial. Thomas [102] found such an example for the Calabi–Yau
threefold. We will discuss a mirror of example 8.2.6 in section 8.3.6.

8.2.7 Formal deformations

In section 8.1.4, we proved the convergence of the series (8.15). In a less classical
situation, which we will study in later chapters, the convergence of a similar
series has not yet been proved. So until the convergence has been proved (in
the future hopefully) we need to regard a series like (8.18) as a formal power
series. This leads us to the formal deformation theory for this developed in
algebraic geometry; [4, 45, 92] seem to be standard references. We review formal
deformation in this section.

We need to translate the notion of the deformation of a family of structures
into more algebraic language. Let R be a commutative ring with unit. Here we
consider the case in which R is a field. We consider a local ring � such that
R ∼= �/�+. We assume that there exists an embedding R → � preserving unit.
Hence the composition R → �→ �/�+ ∼= R is the identity. Let (A, ·, d) be a
differential graded algebra defined over R. Hereafter we assume A is free as the
R module. We simply write A in place of (A, ·, d) sometimes for simplicity.

Definition 8.2.25. A deformation of A over � is a pair (A�, i) where A� is a
differential graded � algebra and i : A�/�+A� ∼= A, is an isomorphism of
differential graded R algebras.

In a similar way, we can define the deformation of a differential graded
module as follows. Let (C, ·, d) be a differential graded module over (A, ·, d).
We sometimes write C in place of (C, ·, d).
Definition 8.2.26. A deformation of C over A� is a pair of (C�, i) such that C�
is a differential graded A� module and i : C�/�+C� ∼= C is an isomorphism
of differential graded A modules.

When A� = A ⊗R �, (that is a trivial deformation of A), we say C� is a
deformation of C over�.

Let us explain the relation between definitions 8.2.25 and 8.2.26 and the
definitions in section 8.1.2. Let M̂ → � be a family of complex structures on
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M . We consider a vector bundle �p,q(M̂/�) whose fibre at x̂ ∈ M̂ is �p,q
x̂ (Mx )

where x = π(x̂) ∈ � .

Definition 8.2.27. A section ω of �p,q(M̂/�) is said to be holomorphic in the
� direction if the following holds. Let x̂ ∈ M̂ . We choose a complex coordinate
w1, . . . , wN of a neighbourhood of x = π(x̂) ∈ � . We choose z1, . . . , zn so that
z1, . . . , zn, w1, . . . , wN is a complex coordinate of a neighbourhood of x̂ . (Here
we identify wi with wi ◦ π .) Now we may write

ω =
∑
ωi1,...,i p , j1,..., jq (z, w) dzi1 ∧ · · · ∧ dzip ∧ dz j1 ∧ · · · ∧ dz jq . (8.26)

Now we say that ω is holomorphic in the base direction if ωi1,...,i p , j1,..., jq (z, w) is
holomorphic with respect to w. We assume ω to be smooth in both directions. We
denote by �p,q(M̂/�) the set of fiberwise (p, q) forms which are holomorphic
in the base direction.

We note that the holomorphicity in the base direction is independent of the
choice of coordinate z, w. It is also easy to see that�p,q(M̂/�) is a module over
�(�), the ring of holomorphic functions on � .

We define an operator ∂ : �p,q(M̂/�)→ �p,q+1(M̂/�) by

∂(ωi1,...,i p , j1,..., jq (z, w) dzi1 ∧ · · · ∧ dzip ∧ dz j1 ∧ · · · ∧ dz jq )

=
∑
�

(−1)p
∂ωi1,...,i p, j1,..., jq

∂z�
dzi1 ∧ · · · ∧ dzip ∧ dz� ∧ dz j1 ∧ · · · ∧ dz jq .

We can define a wedge product∧ between elements of�∗,∗(M̂/�) in an obvious
way. Thus (�0,∗(M̂/�), ∂,∧) is a differential graded algebra over �(�). We
consider its germ as follows. Let � ⊂ � be open neighbourhoods of 0. We put
M̂(�) = π−1(�). We consider pairs (ω,�) where ω ∈ �p,q(M̂(�)/�). We say
(ω,�) ∼ (ω′,� ′) if ω = ω′ on M̂(� ∩ � ′). The set of ∼ equivalence classes of
all such pairs is denoted by �p,q(M̂/�)0. It is obvious that �p,q(M̂/�)0 is an
�0 module. It is easy to see that

�p,q(M̂/�)0

�0,+�p,q(M̂/�)0
∼= �p,q(M).

We write the isomorphism by i . The following lemma is now obvious.

Lemma 8.2.6. ((�0,∗(M̂/�)0, ∂,∧), i) is a deformation of (�0,∗(M), ∂0,∧)
over �0.

Remark 8.2.3. In fact, to study the deformation of complex structures, we need
to study the deformation of the differential graded Lie algebra �(M;�0,∗ ⊗T M)
(defined in example 8.3.1), as discussed in [61,63,71], instead of the deformation
of differential graded Lie algebra�p,q(M).
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Let (B,�) be a deformation of a holomorphic vector bundle � on M̂ .
In a similar way, we can define �p,q(M̂/�; E) the set of all E valued
p, q forms which is holomorphic with respect to the base direction (M̂ =
M × �). We can also define its germ �p,q(M̂/�; E)0. We define ∂�+B :
�p,q(M̂/�; E)0 → �p,q+1(M̂/�; E)0 and module structure∧ : �p,q(M̂/�)0⊗
�p′,q ′(M̂/�; E)0 → �p+p′,q+q ′(M̂/�; E)0. Thus we have the following
lemma.

Lemma 8.2.7. ((�0,∗(M̂/�; E)0, ∂�+B,∧), i), defined earlier is a deformation
of (�0,∗(M; E), ∂� ,∧) over ((�0,∗(M̂/�)0, ∂,∧), i).

The generalization to the case of families parametrized by the germ of an
analytic subspace as in section 8.1.6 is straightforward. When we do not move
the complex structure of M , it is described as follows.

Let � = (X,��,0) be a germ of an analytic subspace (X ⊆ �). We put
M̂ = M × X . Let B : � → �0,1(M;End(E)) be as in definition 8.2.20. We
then have ∂�+B : �p,q(M̂/�; E)0 → �p,q+1(M̂/�; E)0. By definition 8.2.20
we have (∂�+B ◦ ∂�+B)(ω) =

∑
fi ei where fi ∈ ��,0. We now put

�p,q(M̂/�; E)0 = �p,q(M̂/�; E)0
��,0�

p,q(M̂/�; E)0
.

Then ∂�+B induces a homomorphism ∂�+B : �p,q(M̂/�; E)0 →
�p,q+1(M̂/�; E)0 such that ∂�+B ◦ ∂�+B = 0. We thus have the following
lemma.

Lemma 8.2.8. ((�0,∗(M̂/�; E)0, ∂�+B,∧), i), defined earlier, is a deformation
of (�0,∗(M; E), ∂� ,∧) over ((�0,∗(M)⊗��,0, ∂,∧), i).

Now we will study formal deformation. This means that we are going to
study a formal power series ring rather than a convergent power series ring. We
first briefly review the formal power series ring and projective limit. We consider
the convergent power series ring ��,0. It is a local ring and its maximal ideal is
��,0,+. We consider the quotient ring ��,0/�

m
�,0,+. It is finite dimensional as a

vector space over � . We put

�̂�,0 = lim←−��,0/�
m
�,0,+. (8.27)

Here the right-hand side is the projective limit. Let us recall its definition for
the convenience of the reader. Note that an obvious homomorphism πm,m′ :
��,0/�

m
�,0,+ → ��,0/�

m′
�,0,+ for m < m′ exists.

Definition 8.2.28. Let Sm be the set for each m ∈ �>0 and πm,m′ : Sm → Sm′
be the map for m < m′ such that πm′,m′′ ◦ πm,m′ = πm,m′′ . We consider the
direct product

∏
Sm . The projective limit lim←− Sm is a subset of

∏
Sm consisting

of (x1, x2, . . . ) such that πm,m′(xm) = xm′ .
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When the Sm are groups, rings, modules etc and πm,m′ are homomorphisms,
the projective limit lim←− Sm is also a group, ring, module etc.

Remark 8.2.4. We have defined the projective limit only for family Sm
parametrized by m ∈ �≥0. The projective limit can be defined for a more general
family.

Remark 8.2.5. We define d : lim←− Sm × lim←− Sm → �≥0 by

d((x1, x2, . . . ), (y1, y2, . . . )) = exp(− inf{m|xm �= ym}).
Then (lim←− Sm , d) is a complete metric space.

Example 8.2.7. Let us consider the case when � = � is an open neighbourhood
of 0 in �

N . In this case, �� ,0 is a convergent power series ring � {z1 , . . . , zN }
of N variables. Then �� ,0/�m

� ,0,+ = � [z1 , . . . , zN ]/(z1, . . . , zN )m is the set of
all polynomials modulo the terms of order > m. Now let (P1, . . . , Pm , . . . ) ∈∏
�� ,P0,0/�

m
� ,P0,0

be an element of the projective limit lim←−��,0/�
m
�,0,+. This

means that Pm coincides with Pm′ up to order m. Therefore, (P1, . . . , Pm , . . . )
determines a formal power series of zi ; i.e. we have �̂� ,x0,0

∼= � [[z1 , . . . , zN ]].
Here � [[z1 , . . . , zN ]] is a formal power series ring.

In general, if the ideal ��,0 is generated by f1, . . . , fm ∈ �0 then

�̂�,0
∼= � [[z1 , . . . , zN ]]

( f1, . . . , fm )
. (8.28)

Here we regard fi ∈ � [[z1 , . . . , zN ]] by taking its Taylor series at 0 and
( f1, . . . , fm) is an ideal generated by them.

We note that the ring ��,0/�
m
�,+ in (8.27) is of finite dimension over � (as

a vector space). (In the case of a general local ring� over R, the ring�/�m+ is an
Artin algebra over R.) In other words, a formal power series ring can be regarded
as a projective limit of finite dimensional � algebras (or of Artin R algebras).
This is a reason why the theory of formal deformation is based on ‘a functor from
an Artin ring’ [92], which we review here.

To make the exposition elementary, we only consider the case when R is
an algebraically closed field. (We usually take R = � .) In this case, we do not
need the notion of an Artin R algebra and consider only an R algebra of finite
dimension (as a vector space over R).

Definition 8.2.29. We define the category of finite dimensional local R algebra,
abbreviated by {f. d.Alg. /R}, as follows.

(1) Its object is a local R algebra � which is commutative with unit and is
finite dimensional over R as a vector space.

(2) The morphism�→ �′ is an R algebra homomorphism.
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Definition 8.2.30. A formal moduli functor is a covariant functor from
{f. d.Alg. /R} to {Sets}, the category of sets.

For the reader who is not familiar with category theory, let us review what
definitions 8.2.29, 8.2.30, mean. (See [20, Exposé 11] for more detail on the
relation of category theory to the theory of moduli.) Let � be a formal moduli
functor in the sense of definition 8.2.30. It consists of two kinds of data.

One is �0 which associates a set �0(�) with any local ring � which is
commutative with unit and is of finite dimension over R.

Let �, �′ be two such rings and let ϕ : � → �
′ be an R algebra

homomorphism. Then the second data �1 associates with ϕ a map �1(ϕ) :
�0(�)→ �0(�

′).
The condition for �0, �1 to define a covariant functor is �1(ϕ

′ ◦ ϕ) =
�1(ϕ

′) ◦ �1(ϕ), where ϕ′ : �′ → �
′′.

Our main example of a formal moduli functor is one such that �0(�) is
the set of isomorphism classes of the deformation of a given differential graded
module. To define it we first give the following definition.

Definition 8.2.31. Let (C�, i), (C ′�, i
′) be deformations of differential graded A

module C over �. We say that (C�, i) is isomorphic to (C ′
�
, i ′) if there exists

an isomorphism : C� → C ′
�

of differential graded A� modules such that the
induced isomorphism : C�/�+C� → C ′

�
/�+C ′� satisfies i ′ ◦ = i .

We now define a functor���C : {f. d.Alg. /R} → {Sets} for each differential
graded A module C , where A is a differential graded ring over R. Let � be an
object of {f. d.Alg. /R}.
Definition 8.2.32. ���C,0(�) is the set of all isomorphism classes of
deformations of C over �. Let ϕ : � → �

′ be a morphism of the category
{f. d.Alg. /R}. Let C� be a deformation of C over�. We put ���C,1(ϕ)(C�) =
C� ⊗� �′.

We note that if C� is isomorphic to C ′
�

in the sense of definition 8.2.31
then C� ⊗� �′ is isomorphic to C ′

�
⊗� �′. Hence ���C,1(ϕ) : ���C,0(�)→

���C,0(�
′) is well defined. It is easy to see that ���C is a covariant functor:

{f. d.Alg. /R} → {Sets}, i.e. we can check���C,1(ϕ
′)◦���C,1(ϕ) = ���C,1(ϕ

′ ◦
ϕ).

To show the relation of moduli functor to moduli space, we need to discuss
the representability of the functor. In our formal deformation theory, we need a
notion of pro-representability, which we define here.

Definition 8.2.33. Let � be a local R algebra (commutative with unit). We say
that � is a pro {f. d.Alg. /R} object if the following hold.

(1) Let us denote by �+ the maximal ideal of �. Then, for each m, the
quotient ring �/�m+ is an object of {f. d.Alg. /R}. (In other words, �/�m+
is of finite dimension over R.)
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(2) � ∼= lim←−�/�m+. In other words, � is complete with respect to the �+
adic metric (which was defined in remark 8.2.5).

Definition 8.2.34. Let � be a pro {f. d.Alg. /R} object. We define a covariant
functor �� : {f. d.Alg. /R} → {Sets} as follows.

(1) For an object � of {f. d.Alg. /R}, ��,0(�) is the set of all R algebra
homomorphisms: �→ �.

(2) Let ϕ : � → �
′ be a morphism in the category {f. d.Alg. /R}. Let

ψ ∈ ��,0(�). Then (��,1(ϕ))(ψ) = ϕ ◦ ψ .

If � itself is an object of {f. d.Alg. /R} (i.e. � is of finite dimension over
R), then the functor �� defined in definition 8.2.34 is the functor represented by
� in the usual sense of category theory.

Definition 8.2.35. A covariant functor {f. d.Alg. /R} → {Sets} is said to be pro-
representable if there exists a pro {f. d.Alg. /R} object� such that � is equivalent
to �� defined in definition 8.2.34.

We recall that two functors �,�′ : {f. d.Alg. /R} → {Sets} are said
to be equivalent to each other if the following holds: For each object � of
{f. d.Alg. /R} there exists a bijection �� : �0(�) → �′0(�) such that the
following diagram commutes for any morphism ϕ : �→ �′.

�0(�)
��−−−−→ �′0(�)

�1(ϕ)

' '�′1(ϕ)
�0(�

′)
�
�′−−−−→ �′0(�′)

Diagram 3

We now define the universal formal moduli space of the deformation of a
differential graded module. Let A be a differential graded algebra over R and
C be a differential graded A module.

Definition 8.2.36. A pro {f. d.Alg. /R} object � is said to be a universal formal
moduli space of the deformation of C if the functor ��,0(�) in definition 8.2.34
is equivalent to the functor ���C in definition 8.2.32.

Remark 8.2.6. It is more precise to say that Spec� is a universal formal moduli
space rather than to say � is a universal moduli space. Here Spec� is a formal
scheme (see [45]). Since we do not introduce the notion of a formal scheme, we
say � is a moduli space by abuse of language.

Exercise 8.2.1. Prove that the universal formal moduli space in the sense of
definition 8.2.36 is unique if it exists.
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Now we consider our geometric situation of the deformation of holomorphic
vector bundles. Let � = (X,��,0) be an analytic subspace and B : � →
�0,1(M;End(E)) be a deformation of � parametrized by � . We define �̂�,0
by (8.27). �̂�,0 is a pro {f. d.Alg. /� } object.

Proposition 8.2.2. If the deformation B of � is universal, then �̂�,0 is a universal
moduli space of the deformation of (�∗(M; �|M×{x0}), d,∧).

In contrast, if there exists a universal moduli space � of the deformation
of (�∗(M; �|M×{x0}), d,∧), then there exists a universal family of holomorphic
structures of� on � such that �̂�,0 is isomorphic to�.

Proof (sketch). First we assume that our family is universal. Let� be an object of
{f. d.Alg. /� }. We may write � = � [[z1 , . . . , zN ]]/( f1, . . . , fk). fi is, a priori,
a formal power series. However, using finite dimensionality of � we may take
polynomials for fi .

We consider a germ of analytic subspace � = ({0}, ( f1, . . . , fk)). It is
easy to see that a morphism � → � is in one-to-one correspondence with
the � algebra homomorphism �̂�,0 → �. It is an immediate consequence of
lemma 8.2.7 (which still holds in the case of a deformation parametrized by a
germ of an analytic subspace) that the deformation of � parametrized by � is
in one-to-one correspondence with the deformation of (�∗(M; �|M×{x0}), d,∧)
over �. We can then prove easily that �̂�,0 is a universal moduli space of the
deformation of (�∗(M; �|M×{x0}), d,∧).

The proof of the converse is more involved since we need to see the relation
between the deformation in the category of formal power series and of convergent
power series. We do not attempt it here. �

8.3 Homological algebra and deformation theory

8.3.1 Homotopy theory of A∞ and L∞ algebras

Now we are going to discuss the less classical part of the story. We have so far
studied the equation

∂B + B ◦ B = 0 (8.29)

in which the second term is second order. We mentioned in section 8.1.5 the
possibility of considering an equation with terms of third or higher order. To do
so while keeping the gauge invariance of the equation, we need to consider the
A∞ algebra, due to Stasheff [97], which we define in this section. As we consider
the deformation of complex manifolds rather than holomorphic vector bundles on
it, we need to consider the equation

∂B + 1
2 [B, B] = 0 (8.30)
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in place of (8.29). Here B ∈ �0,1(M; T M) and [B, B] is a combination of the
wedge product in the �0,1 factor and the bracket of the vector field in the TM
factor (see example 8.3.1). To generalize (8.30) so that it includes terms of third
or higher order we introduce the notion of L∞ algebras.9

To define A∞ and L∞ algebras we need to review coalgebras, coderivations
etc. Let C be a graded R module. (Here the grading starts from 0.) We define its
suspension C[1] by C[1]k = Ck+1. Hereafter we denote deg x as the degree of
elements of x ∈ C and deg′ x is the degree of the same element regarded as an
element of C[1]; i.e. deg′ x = deg x − 1. We define its Bar complex BC[1] by

BkC[1] = C[1]k⊗ BC[1] =
∞⊕
k=0

BkC[1].

We note that B0C[1] = R. We define the action of the group �k of all
permutations of k elements on BkC[1] by

σ(x1 ⊗ · · · ⊗ xk) = ±xσ(1) ⊗ · · · ⊗ xσ(k)

where
± = (−1)

∑
i, j with i < j , σ(i) > σ( j) deg′ xi deg′ x j . (8.31)

We define EkC[1] to be the submodule consisting of fixed points of the�k action
on BkC[1] and EC[1] = ⊕EkC[1].

We define � : BC[1] → BC[1] ⊗ BC[1] by

�(x1 ⊗ · · · ⊗ xk) =
k∑
i=0

(x1 ⊗ · · · ⊗ xi )⊗ (xi+1 ⊗ · · · ⊗ xk). (8.32)

Note the term of (8.32) when i = 0 becomes 1 ⊗ (x1 ⊗ · · · ⊗ xk) ∈ B0C[1] ⊗
BkC[1]. The restriction of � induces� : EC[1] → EC[1] ⊗ EC[1].
Definition 8.3.1. A graded coalgebra (D = ⊕Dk ,�, ε) is a graded R module
together with � : D → D ⊗ D, ε : D0 → R such that the following diagrams
commute.

D ⊗R D ⊗ D
�⊗1←−−−− D ⊗ D

1⊗�
+ �

+
D ⊗ D

�←−−−− D

D
ε⊗1←−−−− D ⊗ D

1⊗ε−−−−→ D∥∥∥ �

+ ∥∥∥
D D D

Diagram 4 Diagram 5

Coalgebra (D,�, ε) is said to be graded cocommutative if R ◦ � = � :
D → D ⊗ D, where R(x ⊗ y) = (−1)deg x deg y(y ⊗ x).

9 We note that the A in A∞ algebras stands for associative and the L in L∞ algebras for Lie.
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The following lemma is easy to check.

Lemma 8.3.1. (BC[1],�, ε) is a colagebra where ε is an obvious isomorphism
B0C[1] ∼= R. We define a degree of elements of BC[1] by deg′(x1 ⊗ · · · ⊗ xk) =∑

deg′ xi =∑ deg xi − k. (EC[1],�, ε) is a graded cocommutative coalgebra.
(We note that we need to take deg′ and not deg in the definition of R.)

Definition 8.3.2. A graded homomorphism δ : D → D of degree 1 from
a coalgebra D to itself is said to be a coderivation if the following diagram
commutes.

D ⊗ D
�←−−−− D

1⊗̂δ+δ⊗̂1

+ δ

+
D ⊗ D

�←−−−− D
Diagram 6.

Here we define the graded tensor product A⊗̂B between two graded
homomorphisms A,B by (A⊗̂B)(x ⊗ y) = (−1)deg B deg′ x (A(x))⊗ (B(y)).
Lemma 8.3.2. For any sequence of homomorphisms fk : BkC[1] → C[1]
of degree 1 for k = 1, 2, . . . , there exists a unique coderivation δ :
BC[1] → BC[1] whose Hom(BkC[1], B1C[1]) component is fk and whose
Hom(B0C[1], B1C[1]) component is zero. The same holds for EC[1] in place
of BC[1].
Proof. Put

f̂k(x1 ⊗ · · · ⊗ xn) =
n−k+1∑
i=1

(−1)deg fk(deg′ x1+···+deg′ xi−1)

× x1 ⊗ · · · ⊗ xi−1 ⊗ fk(xi ⊗ · · · ⊗ xi+k−1)

⊗ xi+k ⊗ · · · ⊗ xn (8.33)

and δ =∑ f̂k . �

To simplify formulae like (8.33) we introduce the following notation. Let D
be a coalgebra. We define�k : D→ Dk⊗ by

�k = · · · (�⊗ 1⊗ 1) ◦ (�⊗ 1) ◦�
k − 1 times

.

Then, for an element x of D, we put

�k(x) =
∑
a

x(k;1)a ⊗ · · · ⊗ x(k;k)a . (8.34)
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In general, we use bold face letters such as x for elements of the bar complex
BC[1] and roman letters such as xk for elements of C[1].

Now formula (8.33) can be written:

f̂k(x) =
∑
a

(−1)deg fk deg′ x(3;1)a x(3;1)a ⊗ fk(x(3;2)a )⊗ x(3;1)a .

Now we are ready to define A∞ and L∞ algebras.

Definition 8.3.3. The structure of an A∞ algebra on C[1] is a series of R module
homomorphisms�k : BkC[1] → C[1] (k = 1, 2, . . . ) of degree+1 such that the
coderivation δ obtained by lemma 8.3.2 satisfies δδ = 0. If we replace B by E ,
then it will be the definition of the structure of an L∞ algebra on C[1].

We can write the condition δδ = 0 more explicitly as follows.

n−k+1∑
i=1

(−1)deg′ x1+···+deg′ xi−1

×�n−k+1(x1 ⊗ · · · ⊗ xi−1 ⊗�k(xi ⊗ · · · ⊗ xi+k−1)

⊗ xi+k ⊗ · · · ⊗ xn) = 0. (8.35)

In particular, we have �1�1 = 0. Hence we can define the �1 cohomology
H (C,�1).

Let (C, d, ·) be a graded differential algebra. We put

�1(x) = (−1)deg x dx �2(x, y) = (−1)deg x(deg y+1)x · y
and �k = 0 for k ≥ 3.

Lemma 8.3.3. �k determines a structure of A∞ algebra on C.

Proof. It suffices to show that Hom(BkC[1],C[1]) component of δδ is zero for
k = 1, 2, 3. The case k = 1 is obvious. Let us check the case k = 3, and leave the
case k = 2 to the reader. Let π1 : BC[1] → B1C[1] = C[1] be the projection.
Then we have:

π1δδ(x ⊗ y ⊗ z) = (−1)deg′ x
�2(x,�2(y, z))+�2(�2(x, y), z)

= (−1)deg x+1+deg y(deg z+1)+deg x(deg y+deg z+1)x · (y · z)
+ (−1)deg x(deg y+1)+(deg x+deg y)(deg z+1)(x · y) · z = 0.

The last equality follows from the associativity of ·. (Change of degree and sign
is important so that the relation δδ = 0 becomes an associativity relation.) �

We next discuss the L∞ case.

Definition 8.3.4. A differential graded Lie algebra is a graded R module C
together with operations [ , ] : C ⊗ C → C of degree 0 and d : C → C of
degree 1 such that dd = 0 and
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(1) d[x, y] = [dx, y] + (−1)deg x [x, dy];
(2) [x, y] = (−1)deg x deg y+1[y, x]; and
(3) [[x, y], z] + (−1)(deg x+deg y) deg z[[z, x], y] + (−1)(deg y+deg z) deg x

[[y, z], x] = 0.

Example 8.3.1. Let M be a complex manifold and T� M be a complex tangent
bundle (i.e. the holomorphic vector bundle whose local frame is ∂

∂zi
where zi ,

i = 1, . . . , n is a local complex coordinate). Let Ck = �k(M; T� M ⊗�0,k). We
put d = ∂ and[

f
∂

∂zi
⊗ dzi1 ∧ · · · ∧ dzik , g

∂

∂z j
⊗ dz j1 ∧ · · · dz j�

]
=
(
f
∂g

∂zi
∂

∂z j
− g

∂ f

∂z j
∂

∂zi

)
⊗ dzi1 ∧ · · · dzik ⊗ dz j1 ∧ · · · dz j� .

We obtain a differential graded Lie algebra.

Let (C, [ , ], d) be a differential graded Lie algebra. We put

�1(x) = (−1)deg x dx �2(x, y) = (−1)deg x(deg y+1)[x, y]
and �k = 0 for k ≥ 3.

Lemma 8.3.4. �k determines the structure of an L∞ algebra on C.

Proof. Let us first note that �2 is a well-defined operator on E2C[1], i.e. we have

�2(x, y) = (−1)deg x(deg y+1)[x, y] = (−1)deg x(deg y+1)+deg x deg y+1[y, x]
= (−1)deg x(deg y+1)+deg x deg y+1+deg y(deg x+1)

�2(y, x)

= (−1)(deg x+1)(deg y+1)
�2(y, x).

It then suffices to show that the Hom(EkC[1],C[1]) component of δδ is zero for
k = 1, 2, 3. The case k = 1 is obvious. Let us check the case k = 3, and leave the
case k = 2 to the reader. Let π1 : EC[1] → E1C[1] = C[1] be the projection.

We put x1 × · · · × xk = ∑
σ∈�k

±xσ(1) ⊗ · · · ⊗ xσ(k), where ± is as in
formula (8.31). Then we have:

1
2π1δδ(x × y × z)

= �2(�2(x, y), z)+ (−1)deg′ z(deg′ x+deg′ y)
�2(�2(z, x), y)

+ (−1)deg′ x(deg′ y+deg′ z)
�2(�2(y, z), x)

= (−1)deg x(deg y+1)+(deg x+deg y)(deg z+1)[[x, y], z]
+ (−1)deg z(deg x+1)+(deg y+deg z)(deg x+1)+(deg z+1)(deg x+deg y)[[z, x], y]
+ (−1)deg y(deg z+1)+(deg y+deg z)(deg x+1)+(deg x+1)(deg y+deg z)[[y, z], x]

= 0.

(Note this calculation is a bit problematic in case 2 as it is not invertible. We do
not try to correct it since the case when R is a field of characteristic zero is our
main concern.) �
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Our next purpose is to define the homotopy equivalence of A∞ and L∞
algebras. For this purpose we first define A∞ and L∞ homomorphisms.

Definition 8.3.5. Let (D,�, ε), (D′,�′, ε′) be coalgebras. An R module
homomorphism ϕ : D → D′ of degree 0 is said to be a coalgebra homomorphism
if the following diagram commutes.

D′ ⊗ D′ �′←−−−− D′

ϕ⊗ϕ
+ ϕ

+
D ⊗ D

�←−−−− D

R
ε′←−−−− D′∥∥∥ ϕ

+
R

ε←−−−− D
Diagram 7 Diagram 8

Lemma 8.3.5. Let ϕk : BkC[1] → C ′[1], k = 1, 2, . . . be a sequence of degree-0
R module homomorphisms. Then there exists a unique colagebra homomorphism
ϕ̂ : BC[1] → BC ′[1] such that its Hom(BkC[1], B1C ′[1]) component is ϕk . The
same statement holds if we replace B by E.

Proof. Let ϕ : BC[1] → C ′[1] be a homomorphism whose Hom(BkC[1],
B1C ′[1]) component is ϕk . We then set (using notation (8.34))

ϕ̂(x) =
∑
k

∑
a

ϕ(xk;1a )⊗ · · · ⊗ ϕ(xk;ka ).

It is easy to check that this ϕ̂ has the required property. The L∞ case is similar.�

Definition 8.3.6. Let (C[1],�k), (C ′[1],�′k) be A∞ algebras. A sequence of
homomorphisms ϕk : BkC[1] → C ′[1] is said to be an A∞ homomorphism if
the coalgebra homomorphism ϕ̂ : BC[1] → BC ′[1] obtained by lemma 8.3.5
satisfies ϕ̂ ◦ δ = δ ◦ ϕ̂. The definition of the L∞ homomorphism is similar.

We can define a composition of A∞ and L∞ homomorphisms by�ϕ ◦ ψ =
ϕ̂ ◦ ψ̂ .

We next define a homotopy between A∞ and L∞ homomorphisms. The
definition we give here is an analogy of a similar definition in the case of the
differential graded algebra given in [41, chapter X]. There is another way to
define homotopy which is an analogy of one in [100] (which we do not discuss
any further here).

Let (C[1],�k) be an A∞ algebra. We define an A∞ algebra C[1] ⊗ R[t, dt]
as follows.

Definition 8.3.7. An element of C[1] ⊗ R[t, dt] is written as P(t) + Q(t) dt ,
where P, Q ∈ C[t] are polynomials with coefficients on C . We put deg dt = 1.
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The operator�k is defined as follows. Let xi = Pi (t)+ Qi (t) dt

�1(P(t) + Q(t) dt) = �1(P(t)) −�1(Q(t)) dt − dP

dt
dt (8.36)

�k(x1, . . . , xk) = �k(P1, . . . , Pk)+
k∑
i=1

(−1)deg′ P1+···deg′ Pi−1+1

×�k(P1, . . . , Qi , . . . , Pk) dt (8.37)

Here we extend �k to BkC[t] in an obvious way.
When (C[1],�k) is an L∞ algebra, we define C[1] ⊗ R[t, dt] in the same

way as an R module. The definition of operations �k is also the same by using
(8.36), (8.37).

We omit the proof of the A∞ and L∞ formulae (see the final version of [33]).
For t0 ∈ �, we define an A∞ homomorphism Evalt=t0 : C[1] ⊗ R[t, dt] → C[1]
by

Evalt=t0(P(t) + Q(t) dt) = P(t0). (8.38)

More precisely, we define the B1(C ⊗ R[t, dt])[1] → C[1] component by (8.38)
and set all the other components to 0.

Definition 8.3.8. Two A∞ homomorphisms ϕ, ϕ′ : C → C ′ are said to be
homotopic to each other, if there exists an A∞ homomorphism H : C →
C ′ ⊗ R[t, dt] such that Evalt=0 ◦H = ϕ, Evalt=1 ◦H = ϕ′. We define the
homotopy between L∞ homomorphisms in the same way.

In theorems 8.3.1 and 8.3.2, we assume R contains �.

Theorem 8.3.1. If ϕ is homotopic to ϕ′ and ϕ′ is homotopic to ϕ′′ then ϕ is
homotopic to ϕ′′.

When C,C ′ are differential graded algebras, theorem 8.3.1 is proved in [41].
The general A∞ algebra case is similar and is proved in detail in [33]. We omit
the proof in this article.

Definition 8.3.9. An A∞ homomorphism ϕ : C → C ′ is said to be a homotopy
equivalence if there exists an A∞ homomorphism ψ : C ′ → C such that the
compositions ψ ◦ ϕ, ϕ ◦ ψ are homotopic to the identity. Two A∞ algebras are
said to be homotopy equivalent if there exists a homotopy equivalence between
them. The homotopy equivalence of L∞ algebras is defined in the same way.

The following theorem is useful to show that an A∞ homomorphism is a
homotopy equivalence.

Theorem 8.3.2. If ϕ : C → C ′ is an A∞ homomorphism which induces an
isomorphism on an �1 cohomology, then ϕ is a homotopy equivalence. The same
holds for the L∞ case.
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Remark 8.3.1. Theorem 8.3.2 does not hold in the category of differential graded
algebras; i.e. if ϕ : C → C ′ is a differential graded algebra homomorphism
(of degree 0) which induces an isomorphism on cohomology. Then theorem 8.3.2
implies that we can find a homotopy inverse of it which is an A∞ homomorphism.
However, it is not, in general, possible to find a homotopy inverse which is a
differential graded algebra homomorphism.

Theorem 8.3.2 is proved in a somewhat weaker version in the 2000
December version of [33]. The proof of the general case will be included in
the final version of [33].

8.3.2 Maurer–Cartan equation and moduli functors

We now generalize the Maurer–Cartan equation (8.5) to the case of A∞ and L∞
algebras, i.e. we consider the equation∑

k

�k(b, . . . , b) = 0 A∞ case (8.39a)

∑
k

1

k!�k(b, . . . , b) = 0 L∞ case. (8.39b)

where b ∈ C[1]0 = C1. Note that (8.39a) coincides with (8.5) in a differential
graded algebra and (8.39b) coincides with (8.30) in a differential graded Lie
algebra.

There is, however, one problem in making sense of equations (8.39a),
(8.39b), i.e. the left-hand side is an infinite sum when infinitely many of �k are
non-zero. There are two ways to make sense of (8.39a), (8.39b). One is to define a
topology on C and consider the case when the left-hand side converges. (We may
either consider a non-Archimedean valuation on our coefficient ring (R = � [[T ]]
for example) or convergence in the classical sense (R = � or � ). Both play a
role in the story of mirror symmetry.) The other possibility is to consider b which
is nilpotent (i.e. the product of several of them vanishes). This second point is
related to the ‘functor from the Artin ring’ discussed in section 8.1.7. Let us take
this second point of view in this section. (The first point of view also appears
later.) Let us again consider the case when R is an algebraically closed field of
characteristic zero.

Let � be a finite dimensional local R algebra (commutative with unit). Let
�+ be the maximal ideal of �. There exists N such that �N+ = 0. Let C be an
A∞ algebra. C� = C ⊗R � has a structure of A∞ algebra. Let b ∈ C1 ⊗R �+.
Obviously �k(b, . . . , b) = 0 if k > N . Hence equation (8.39) makes sense.

Definition 8.3.10. b is said to be a Maurer–Cartan element of C� if it satisfies
equation (8.39).



160 Deformation theory, homological algebra and mirror symmetry

To simplify the notation we introduce the following notation.

eb =
∞∑
k=0

b ⊗ · · · ⊗ b
k times

A∞ case (8.40a)

eb =
∞∑
k=0

1

k!b ⊗ · · · ⊗ b
k times

L∞ case. (8.40b)

We note that � : BC[1] → C[1] is a homomorphism which is �k on BkC[1].
(� : EC[1] → C[1] is similar.)

Then equation (8.39) can be written as �(eb) = 0. Before going further let
us explain the meaning of equation (8.39). Let us define a deformed boundary
operator�b1 by

�
b
1(x) = �(eb, x, eb) A∞ case (8.41a)

�
b
1(x) = �(eb, x) L∞ case. (8.41b)

Lemma 8.3.6. �b1�
b
1 = 0 if and only if (8.39) is satisfied.

The proof is easy and is omitted. We can also deform�k by

�
b
k(x1, . . . , xk) = �(eb, x1, e

b, x1, . . . , xk−1, e
b, xk, e

b) A∞ case,

�
b
k(x1, . . . , xk) = �(eb, x1, . . . , xk) L∞ case.

Then we obtain either an A∞ or L∞ algebra (C,�b∗) (see [33]).
We now define a functor �̃�(C) : {f. d.Alg. /R} → {Sets} as follows.

�̃�(C)(�) is the set of all Maurer–Cartan elements of C�. If ψ : � → �′
is a morphism in {f. d.Alg. /R} and if b is a Maurer–Cartan element of C�,
then (1 ⊗ ψ)(b) ∈ C�′ is a Maurer–Cartan elements of C�′ . Thus we obtain
ψ∗ : �̃�(C)(�)→ �̃�(C)(�′). We thus obtain a covariant functor �̃�(C) :
{f. d.Alg. /R} → {Sets}.

However, the set �̃�(C)(�) is usually too big. So we divide it by an
appropriate gauge equivalence, which we now define.

Definition 8.3.11. Let b, b′ ∈ �̃�(C)(�). We say that b is gauge equivalent to
b′ if there exists an element b̃ ∈ �̃�(C ⊗ R[t, dt])(�) such that Evalt=0 b̃ = b,
Evalt=1 b̃ = b′. Here Evalt=t0 : C� ⊗ R[t, dt] → C� is an A∞ homomorphism
as in the last section.

In the following theorem, we assume R contains �.

Theorem 8.3.3. Let b, b′, b′′ ∈ �̃�(C)(�). If b is gauge equivalent to b′ and b′
is gauge equivalent to b′′, then b is gauge equivalent to b′′.

The proof is similar to that of theorem 8.3.1 and will be given in the final
version of [33].
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Let us rewrite the definition of gauge equivalence in a more concrete way.
Here we only discuss the A∞ case (the L∞ case is similar). Let b̃ be as in
definition 8.3.11. We put b̃ = b(t) + c(t) dt where b(t) ∈ C1 ⊗ �+[t],
c(t) ∈ C0 ⊗�+[t]. Equation (8.39a) for b̃ becomes

db(t)

dt
+

N∑
k=1

k∑
i=1

�k(b(t)
⊗i−1, c(t), b(t)⊗k−i ) = 0 (8.42)

N∑
k=1

�k(b(t)
⊗k) = 0. (8.43)

The condition Evalt=0 b̃ = b, Evalt=1 b̃ = b′ is a boundary condition b(0) =
b, b(1) = b′.We remark that (8.42) and equation (8.39a) for b imply (8.43). In
fact d

dt

∑N
k=1�k(b(t)

⊗k) is the left-hand side of (8.42).
We note that, using (8.41a), equation (8.42) can be written as

db(t)

dt
+�b(t)1 (c(t)) = 0. (8.44)

Let us consider the case when C is a differential graded algebra and R = �

or �. Then (8.44) is

db(t)

dt
+ d(c(t))− b(t) · c(t)+ c(t) · b(t) = 0. (8.45)

Let g(t) be the solution of the differential equation :

dg(t)

dt
= g(t) · c(t) g(0) = I (8.46)

We note that we use the fact that R is a ring with characteristic 0 to solve
equation (8.46); and g(t) − 1 ∈ �+ for each t hence g(t) is invertible in the
ring C0

�
.

Lemma 8.3.7. g(t)−1
�
b
1(g(t)) = b − b(t).

Proof. We may assume b = 0 by replacing �1 by �b1. The lemma is obvious for
t = 0. By (8.46), we have:

d

dt
�1(g(t)) = �1(g(t) · c(t)) = d(g(t) · c(t))

= �1(g(t)) · c(t)+ g(t) · d(c(t))

= −g(t) · b(t) · c(t)+ g(t) · d(c(t))

However, we have, by (8.46),

d

dt
(g(t) · b(t)) = d

dt
g(t) · b(t)+ g(t) · d

dt
b(t)

= g(t) · c(t) · b(t)− g(t) · d(c(t))

+ g(t) · b(t) · c(t)− g(t) · c(t) · b(t).
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The lemma follows. �

When C = (�0,∗(�), ∂� ,∧) which we studied in chapter 1, we have
g ∈ �(End(�)), �B

1 = ∂�−B . Lemma 8.3.7 then implies ∂�+B = g−1 ◦ ∂� ◦ g.
In other words g is an isomorphism from (E, ∂�+B) to ∂� . This justifies our
terminology—gauge equivalence.

Definition 8.3.12. ��(C)(�) is the set of all gauge equivalence classes of
elements of �̃�(C)(�).

If ψ : � → �′ is a morphism in {f. d.Alg. /R}, we can construct
ψ∗ : ��(C)(�) → ��(C)(�′) in an obvious way. Hence ��(C) defines
a functor: {f. d.Alg. /R} → {Sets}. We call it the Maurer–Cartan functor
associated with either an A∞ or L∞ algebra C .

Our next goal is to show that the Maurer–Cartan functor is homotopy
invariant. Let ϕk : BkC[1] → C ′[1] be an A∞ or L∞ homomorphism. It induces
ϕ̂ : BC[1] → BC ′[1], or EC[1] → EC ′[1].
Lemma 8.3.8. There exists ϕ∗ : C[1]0 → C ′[1]0 such that ϕ̂(eb) = eϕ∗(b).

Proof. Put
ϕ∗(b) = ϕ(eb) =

∑
k

ϕk(b, . . . , b).

Here ϕ : BC[1] → C ′[1] is a homomorphism which is ϕk on BkC[1]. The L∞
case is similar. �

Using the fact that ϕ̂ is a chain map we have the following lemma.

Lemma 8.3.9. If b ∈ �̃�(C)(�) then ϕ∗(b) ∈ �̃�(C ′)(�).
We also have the following one.

Lemma 8.3.10. If b ∼ b′ and if ϕk is homotopic to ϕ′k then ϕ∗(b) ∼ ϕ′∗(b′).
Proof. Let H : C → C ′ ⊗ R[t, dt] be as in definition 8.3.8. It induces
H̃ : C ⊗ R[t, dt] → C ′ ⊗ R[t, dt] as follows. We put Hk(v1, . . . , vk) =
H 1
k (v1, . . . , vk) + H 2

k (v1, . . . , vk) dt , where Hi
k : BkC[1] → C ′[1] ⊗ R[t]. We

extend Hi
k to Bk(C[1] ⊗ R[t]) → C ′[1] ⊗ R[t] in an obvious way and denote

it by the same symbol. Let xi = Pi (t) + Qi (t) dt . Then H̃k(x1, . . . , xk) =
P(t) + Q(t) dt where

P(t) = H 1
k (P1(t), . . . , Pk(t))

Q(t) = H 2
k (P1(t), . . . , Pk(t))

+
∑
i

(−1)deg′ P1+···deg′ Pi−1+1H 1
k (P1(t), . . . , Qi (t), . . . , Pk(t)).

It is easy to check that H̃ is an A∞ homomorphism. Let b̃ ∈ �̃�(C ⊗ R[t, dt])
such that Evalt=0 b̃ = b, Evalt=1 b̃ = b (definition 8.3.11). Now H̃∗(b̃) ∈
�̃�(C ′ ⊗ R[t, dt]) and Evalt=0 H̃∗(b̃) = ϕ∗(b), Evalt=1 H̃∗(b̃) = ϕ′∗(b). �
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By lemmata 8.3.9 and 8.3.10 we obtain a map ϕ∗(�) : ��(C)(�) →
��(C ′)(�). It is easy to see that the following diagram commutes for each
morphism ψ : �→ �′ in {f. d.Alg. /R}.

��(C)(�)
ψ∗−−−−→ ��(C)(�′)

ϕ∗
' 'ϕ∗

��(C ′)(�) ψ∗−−−−→ ��(C ′)(�′)
Diagram 9

The commutativity of diagram 9 implies that ϕ∗ is a natural transformation of
Maurer–Cartan functors: ��(C)→��(C ′). Moreover, lemma 8.3.10 implies
that ϕ∗ : ��(C) → ��(C ′) depends only on the homotopy class of ϕ. The
following theorem follows immediately.

Theorem 8.3.4. If C is homotopy equivalent to C ′ then the Maurer–Cartan
functor��(C) is equivalent to��(C ′).

Remark 8.3.2. Theorem 8.3.4 for differential graded algebras and differential
graded Lie algebras is due to Goldman and Milson [37, 38]. Its generalization
to A∞ or L∞ algebras seems to have been folklore and was quoted by several
authors without proof (for example by Kontsevitch [69]). We give its rigorous
proof here, assuming theorems 8.3.1, 8.3.2 and 8.3.3 which will be proved in the
final version of [33].

Remark 8.3.3. We can state theorem 8.3.4 in a more functorial way as follows.
Let {A∞ alg. /R}/ homotopy be the category whose object is the set of all
homotopy equivalence classes of A∞ algebras over R and whose morphisms are
homotopy classes of A∞ homomorphisms.10 Let ����({f. d.Alg. /R}, {Sets})
be the category whose objects are the sets of all equivalence classes of
covariant functors from {f. d.Alg. /R} to {Sets}. Then �� induces a functor:
{A∞ alg. /R}/ homotopy → ����({f. d.Alg. /R}, {Sets}).

8.3.3 Canonical model, Kuranishi map and moduli space

In this section, we apply theorem 8.3.4 to construct a versal formal moduli space
representing the Maurer–Cartan functor. Theorem 8.3.4 is useful for constructing
a moduli space because it enables us to replace a given A∞ algebra with another
one which is homotopy equivalent to the original one but is easier to handle. A
good representative of each homotopy class for our purpose is a canonical one,
which we now define.

Definition 8.3.13. An A∞ (or L∞) algebra (C,�∗) is said to be canonical if
�1 = 0.
10 It seems to be standard notation to say ‘set of all homotopy equivalence classes of A∞ algebras’.
We can go round it by introducing a universe in the same way as in [13].



164 Deformation theory, homological algebra and mirror symmetry

Remark 8.3.4. In [69] Kontsevich called the same notion a ‘minimal’ L∞ algebra.
Sullivan [100] used ‘minimal’ for a differential graded algebra for an important
notion which differs from definition 8.3.13. This is why we use canonical rather
than minimal. The name canonical may be justified by proposition 8.3.1.

We say an A∞ (or L∞) homomorphism ϕ : C → C ′ is an isomorphism
if there exists an A∞ (or L∞) homomorphism ϕ′ : C ′ → C such that the
compositions ϕ′ ◦ ϕ and ϕ ◦ ϕ′ are equal to the identity. Here the identity A∞
homomorphism id∗ is defined by id1 = id and idk = 0 for k ≥ 2.

Proposition 8.3.1. A homotopy equivalence between canonical A∞ (or L∞)
algebras is an isomorphism.

Proof. The condition�1 = 0 implies that the �1 cohomology of C is isomorphic
to C itself. Since homotopy equivalence ϕ∗ induces an isomorphism on an �1
cohomology it follows that ϕ1;C[1] → C[1] is an isomorphism. We can then
easily prove that ϕ̂ : BC[1] → BC[1] is an isomorphisms. The converse of
it is a cochain map which is a coalgebra map. Hence, there exists ψk such that
ψ̂ = ϕ̂−1. ψk is the inverse of ϕ, as required. �

Hereafter in this section we assume that R is a field of characteristic 0. We
also assume that H (C,�1) is finite dimensional.

Theorem 8.3.5. There exists a canonical A∞ algebra Ccan homotopy equivalent
to a given A∞ algebra C. The same holds for L∞ algebras.

Remark 8.3.5. Theorem 8.3.5 was first proved in [54], see also [46, 77]. There
might be some others who have found it independently (for example I heard
of a talk by A Polishchuk discussing the same theorem in 1998 January at the
Winter School held in Harvard University). The proof here is similar to one
by Kontsevich and Soibelman [70], and also to [33] (2000 December version)
section 8.A6.

Proof. The argument is similar to one explained in section 8.1.5. We prove the
L∞ algebra case to minimize the overlap with the argument in section 8.1.5. Let
C be an L∞ algebra. We put Ck

can = Hk(C,�1). We first need an analogue of
theorem 8.2.5. Here we need to use the fact that our coefficient ring is a field.

Lemma 8.3.11. There exists a linear subspaces Hk ⊆ Ck, projections �Hk :
Ck → Hk and R linear maps Gk : Ck → Ck−1 such that

Gk+1 ◦�1 +�1 ◦ Gk = 1−�Hk . (8.47)

Proof. We put Zk = Ker�1 : Ck → Ck+1. Let Hk ⊆ Zk be a linear subspace
such that the restriction of the projection: Zk → Ck

can = Hk(C,�1) to Hk is an
isomorphism. We put Bk = Im�1 : Ck−1 → Ck . Then Hk ⊕ Bk = Zk . We
also choose I k ⊆ Ck such that Zk ⊕ I k = Ck . It is easy to see that�1 induces an
isomorphism I k−1 → Bk . Let Gk : Bk → I k−1 be an inverse of it. We extend
Gk to Ck so that Gk = 0 on Hk and on I k . It is easy to check (8.47). �



Homological algebra and deformation theory 165

We call Gk a propagator. We remark that in section 8.1.4 we constructed a
similar operator (see (8.13)).

Now we consider the set of trees which satisfies a slightly milder condition
than condition 8.2.1, i.e. we consider the following condition.

Condition 8.3.1. � satisfies (1), (3), (4), (5) of condition 8.2.1 and

(2)′ If v ∈ Vertex∫ (�) then "∂−1
target(v) ≥ 2, "∂−1

source(v) = 1.

We denote by Grk the set of all oriented graphs � satisfying condition 8.3.1.
(We do not take a ribbon structure here, since we are studying an L∞ algebra and
not an A∞ algebra.) We use the notation from section 8.1.4.

Remark 8.3.6. The relation of trees to A∞ or L∞ algebras has been known to
algebraic topologists for a long time, see, for example, [11].

We first put ϕ1 = id and �1 = 0 and are going to define

�� : EkCcan[1] → Ccan[1] ϕ� : EkCcan[1] → C[1] (8.48)

for � ∈ Grk inductively on k. We will then put : �k = ∑
γ∈Grk �� ,

ϕk =∑γ∈Grk ϕ� .
Now let us assume that (8.48) is defined for � ∈ Gr�, � < k. Let � ∈ Grk .

Let vlast be its last vertex. Let elast be the unique edge such that ∂target(elast) = vlast.
We remove [0, 1]elast together with its two vertices from |�|. Then |�|\[0, 1]elast

is a union ∪|�i | of several elements �i ∈ Grki with
∑�

i=1 ki = k. We note that
since we are using a graph � which does not have a particular ribbon structure,
there is no canonical way to order �1, . . . , ��. So the construction here should be
independent of the order.

Let xi ∈ Ccan[1]. Let �k be the group of all permutation of k numbers
{1, . . . , k}. We put

y1,σ = ϕ�1
(xσ(1), . . . , xσ(k1)), . . . , y�,σ = ϕ��(xσ(k−k�+1), . . . , xσ(k))

and then

ϕ�(x1 ⊗ · · · ⊗ xk) = −
∑
σ∈�k

± 1

k1! . . . k�!G(��(y1,σ , y2,σ , . . . , y�,σ ))

��(x1 ⊗ · · · ⊗ xk) = −
∑
σ∈�k

± 1

k1! . . . k�!�H (��(y1,σ , y2,σ , . . . , y�,σ ))

where ± is as in (8.31) and G is the homomorphism in lemma 8.3.11.
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We now calculate∑
�∈Grk

�1(ϕ�(x1 ⊗ · · · ⊗ xk))

= −
∑
�∈Grk

∑
σ∈�k

±�1(G(��(y1,σ , y2,σ , . . . , y�,σ )))

=
∑
σ∈�k

±��(y1,σ , y2,σ , . . . , y�,σ )

−
∑
�∈Grk

∑
σ∈�k

±G(�1(��(y1,σ , y2,σ , . . . , y�,σ ))).

(8.49)

We are going to calculate the last line of (8.49) using the L∞ relation of �. We
have

−�1(��(y1,σ , y2,σ , . . . , y�,σ ))

=
∑
m>1

∑
n1+···+nm=�

∑
µ∈�m

±�m(�n1(yµ(1),σ , . . . ), . . . ,�nm (. . . , yµ(�),σ ))).

(8.50)

We let ϕ̂ : ECcan[1] → EC[1] be the coalgebra homomorphism induced by
ϕk and δ : ECcan[1] → ECcan[1] be the coderivation induced by �k . The
coderivation δ : EC[1] → EC[1] is induced by �∗. We now prove the following
lemma.

Lemma 8.3.12. We have δ ◦ ϕ̂ = ϕ̂ ◦ δ and δ ◦ δ = 0.

Proof. We prove the equalities on�k ECcan[1] = ⊕i≤k EiCcan[1] by induction on
k. The case k = 1 is obvious. Let x ∈ EkCcan[1]. By (8.49), (8.50) we have

�1(ϕk(x)) = −
∑
�>2

��(ϕ̂(x))+ (G ◦ (�− �1) ◦ δ ◦ ϕ̂)(x). (8.51)

Here � − �1 : EC[1] → C[1] is an operator which is zero on E1C[1] and is
�� on E�C[1], � > 2. We want to apply the induction hypothesis to calculate
(δ ◦ ϕ̂)(x). We provide the following lemma.

Sublemma 8.3.1. If lemma 8.3.12 holds on�k−1ECcan[1] then δ◦ϕ̂ = ϕ̂◦δ as an
equality of homomorphisms: �k ECcan[1]/�1ECcan[1] → �

k EC[1]/�1EC[1].
The proof of the sublemma is easy and is omitted.
Since � − �1 is zero on �1EC[1] it follows from the sublemma and the

induction hypothesis that

(G ◦ (�−�1) ◦ δ ◦ ϕ̂)(x) = (G ◦ (�− �1) ◦ ϕ̂ ◦ δ)(x).
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It follows from the definition thatG◦(�−�1)◦ϕ̂ = ϕ̂.We thus obtain δ◦ϕ̂ = ϕ̂◦δ
on �k ECcan[1]. Thus by induction δ ◦ ϕ̂ = ϕ̂ ◦ δ holds.

The second formula δ ◦ δ = 0 follows from the first one as follows. We have

ϕ̂ ◦ δ ◦ δ = δ ◦ δ ◦ ϕ̂ = 0. (8.52)

Since ϕ1 is an isomorphism and ϕ̂ preserves the filtration � it follows that ϕ̂ is
injective. Hence (8.52) implies δ ◦ δ = 0. �

We thus constructed�k : EkCcan[1] → Ccan[1], ϕk : EkCcan[1] → C[1]. It
is immediate from definition that ϕ1 induces an isomorphism on �1 cohomology.
Therefore, by theorem 8.3.2, ϕk is a homotopy equivalence of L∞ algebras. The
proof of theorem 8.3.5 is now complete. �

We next use theorem 8.3.5 (and theorem 8.3.4) to construct a versal family
of deformations. We assume that the cohomology group H ∗(C,�1) is finite
dimensional. (We recall that we assumed R to be a field of characteristic zero.)
We replace C by a canonical one Ccan using theorem 8.3.5. Since the �1
cohomology of Ccan is isomorphic to Ccan itself, it follows that Ck

can is finite
dimensional. Let ei , i = 1, . . . , b1 be a basis of C1

can[1] and fi , i = 1, . . . , b2 be
a basis of C2

can[1]. We define elements Pi ∈ R[[X1, . . . , Xb1]], i = 1, . . . , b2 by

b2∑
i=1

Pi (X1, . . . , Xk)fi = �(exp(X1e1 + · · · + Xb1eb1)). (8.53)

Here exp(X1e1 + · · · + Xb1eb1) is as in (8.41). It is easy to see that Pi is well
defined as a formal power series.

Definition 8.3.14. We define a pro {f. d.Alg. /R} object �Ccan by

�Ccan
∼= R[[X1, . . . , Xb1]]

(P1, . . . , Pb2)
.

We call P1, . . . , Pb2 the formal Kuranishi map.

Lemma 8.3.13. If two A∞ (or L∞) algebras Ccan and C ′can are homotopy
equivalent then �Ccan is isomorphic to �C ′can

as R algebras.

Proof. Let e′i and f′j be the basis of C ′0can[1], C ′1can[1] respectively. We define
Fj (X1, . . . , Xb1), j = 1, . . . , b1 by

F1(X1, . . . , Xb1)e
′
1 + · · · + Fb1(X1, . . . , Xb1)e

′
b1
= ϕ∗(X1e1 + · · · + Xb1eb1).

(8.54)
Here ϕ∗ is defined by eϕ∗x = ϕ̂(ex). Since ϕ1 : C1

can[1] → C ′1can[1] is a
linear isomorphism we may choose f′j so that f′j = ϕ1(f j ). It is easy to see
that F∗ induces an R algebra isomorphism: R[[X ′1, . . . , X ′b1

]]/(P ′1, . . . , P ′b2
)→

R[[X1, . . . , Xb1]]/(P1, . . . , Pb2). �
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Therefore, by theorem 8.3.5 we can define �C = �Ccan for any A∞ (or L∞)
algebra C with finite dimensional �1 cohomology.

We put (Ccan)�Ccan
= C0

can[1] ⊗R �Ccan and define � = ∑
Xiei ∈

(C0
can)�Ccan

. Then we have �(e�) = 0 ∈ (C1
can)�Ccan

. Here we remark that �(e�)
is an infinite sum

∑
k �k(�, . . . , �) (in the L∞ case we divide the terms by k!).

But it converges in (C0
can)�Ccan

with respect to the topology induced by the non-
Archimedean valuation on the formal power series ring. (This means nothing but
the infinite sum

∑
k �k(�, . . . , �) makes sense as a formal power series.)

Thus we obtain an A∞ (or L∞) algebra ((Ccan)�Ccan
,��).11 The next lemma

implies that this deformation is complete.

Lemma 8.3.14. Let � be a finite dimensional local R algebra and b ∈
�̃�(Ccan)(�). Then there exists an R algebra homomorphism ψ : �Ccan → �

such that ψ(�) = b.

Proof. We have polynomials R1(Y1, . . . ,Ym), . . . , RN (Y1, . . . ,Ym) of m
variables such that � ∼= R[Y1, . . . ,Ym ]/(R1, . . . , RN ) ∼= R[[Y1, . . . ,Ym ]]/
(R1, . . . , RN ). Let us denote by� the ideal generated by R1, . . . , RN . We write

b ≡ F1(Y1, . . . ,Ym)e1 + · · · + Fb1(Y1, . . . ,Ym)eb1 mod �.

Here the ei are the basis of C1
can. We define ψ̃ : R[[X1, . . . , Xb1]] →

R[[Y1, . . . ,Ym ]] by ψ̃(Xi ) = Fi (Y1, . . . ,Ym). Then ψ̃(X1e1+· · ·+ Xb1eb1) = b
mod �. Therefore

ψ̃(δ(exp(X1e1 + · · · + Xb1eb1))) = δ(eb) = 0.

Hence, by definition, ψ̃ induces a homomorphismψ : �Ccan → �. �

We note that the formal Kuranishi map Pi has no term of degree ≤ 1. It
follows that the Zariski tangent space T0 Spec�C can be identified with C1

can =
H 1(C;�1). The KS map is then an identity. This fact together with lemma 8.3.14
is a formal scheme analogue of theorem 8.2.6.

We now prove theorem 8.2.6. Let us take C∗ = �0,∗(M;End(E)) and
�k is induced by ∂� and ◦ by lemma 8.3.3. Then by theorem 8.3.5 we have
�k : BkCcan[1] → Ccan[1], ϕk : BkCcan[1] → C[1], where Ck

can = Extk(�, �).

Proposition 8.3.2.

‖�k(x1, . . . , xk)‖ ≤ Ck‖x1‖ . . . ‖xk‖ (8.55)

‖ϕk(x1, . . . , xk)‖ ≤ Ck‖x1‖ . . . ‖xk‖ (8.56)

where C is independent of k.

11 In other words we have a deformation of C parametrized by a formal scheme Spec�Ccan .
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Here the norm in the right-hand side of (8.56) is L2
� norm for any fixed �.

(The constant C in (8.56) may depend on �.) The norm on Ccan can be defined
uniquely up to equivalence since Ccan is finite dimensional.

We omit the proof of this proposition since it is straightforward to check
using properties (A), (B) stated during the proof of lemma 8.2.4 and the definition
of �k and ϕk given during the proof of theorem 8.3.5. (In other words the proof
is an analogue of the proof of lemma 8.2.4.)

Proposition 8.3.2 implies that the formal Kuranishi map P : Ext1(�, �) →
Ext2(�, �) actually converges in a neighbourhood of the origin. We put
�Kura = P−1(0) in the sense of example 8.2.3. Then b̃ determines deformations
parametrized by �Kura as follows. We define

BKura(X1, . . . , X�) = ϕ(exp(b̃))

=
∑
k

ϕk(X1e1 + · · · + Xb1eb1, . . . , X1e1 + · · · + Xb1eb1). (8.57)

It is a formal power series of Xi with values in �0,1(M,End(E)). By using
(8.56) we find that there exists an open neighbourhood �� of 0 in Ext1(�, �)
where (8.57) converges in L2

� sense for (X1, . . . , Xb1) ∈ � . It is easy to see
that BKura : � → �0,1(M;End(E)) defines a deformation of � .12 We have
already shown that the KS map is an isomorphism for this family. Let us prove
the completeness. The proof is similar to the proof of lemma 8.3.14, except that
we need to discuss convergence. Let ψk : Bk�0,∗(M,End(E))[1] → Ext∗(�, �)
be a homotopy inverse of ϕk : BkCcan[1] → C[1]. We recall that the existence of
ψk follows from theorem 8.3.2. We use (8.56), and check a proof of theorem 8.3.2
carefully and obtain an estimate

‖ψk(x1, . . . , xk)‖ ≤ Ck‖x1‖ . . . ‖xk‖. (8.58)

Now let B : � → �0,1(M;End(E)) be a holomorphic map which defines a
deformation of � parametrized by �. Here � is a germ of an analytic subspace.
We consider ψ∗ ◦ B : � → C1

can = Ext1(�, �). (Here ψ∗ is defined by
ψ̂(ex) = eψ∗(x).) The map ψ∗ ◦ B is defined first as a formal power series. We
then use (8.58) and the fact that B is a convergent power series to show thatψ∗◦B
converges in a small neighbourhood of the origin. By replacing � if necessary we
may assume that it converges on � .

Now, in the same way as in the proof of lemma 8.3.14, we find that
composition ofψ∗◦B and Kuranishi map P : Ext1(�, �)→ Ext2(�, �) vanishes.
Hence we obtain a ring homomorphism  : �0,+/(P1, . . . , Pb2) → ��,0 by
f �→ f ◦ψ∗ ◦ B . By definition (definition 8.2.18), is a morphism �→ �Kura.

To complete the proof of theorem 8.2.6, we need to show that the pullback
of the deformation BKura : � → �0,1(M;End(E)) by is isomorphic to B . The
pullback of BKura by  is φ∗ ◦ ψ∗ ◦ B : � → �0,1(M;End(E)).
12 We can modify the family so that B converges in C∞ topology, see [53].
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We use the fact that φ ◦ ψ is homotopic to identity to show that φ∗ ◦ ψ∗ ◦ B
is gauge equivalent to B as follows. By definition of homotopy (definition 8.3.8),
there exists H : �0,∗(M;End(E)) → �0,∗(M;End(E)) ⊗ � [t, dt] such that
Evalt=0 ◦H = id, Evalt=1 ◦H = φ ◦ψ . We can check the proof of theorem 8.3.2
carefully again to find that an estimate similar to (8.54) holds for H . Then we
have a map H∗ ◦ B : � → (�0,∗(M;End(E)) ⊗ � [t, dt])1 , after shrinking �
if necessary. We put H∗ ◦ B = b(t, x) + c(t, x) dt , where x ∈ � , b(t, x) ∈
�0,1(M;End(E)), c(t, x) ∈ �(M;End(E)). We use lemma 8.3.7 here, i.e. we
solve equation (8.46) to obtain g(t)(x) ∈ �(M; End(E)). We use the estimate of
H to show that g(t)(x) converges if x is in a neighbourhood of 0. Now g(1) gives
an isomorphism from the deformation B to φ∗◦ψ∗◦B . The proof of theorem 8.2.6
is now complete. �

We now turn to the proof of theorem 8.2.4 and its formal analogue. We note
that the ring homomorphism π : �C → R induces a homomorphism

π : H 0(C�C ,�
b̃
1)→ H 0(C,�1). (8.59)

Theorem 8.3.6. If (8.59) is surjective, then the functor ��C : {f. d.Alg. /R} →
{Sets} is equivalent to the Maurer–Cartan functor��(C) : {f. d.Alg. /R} →
{Sets}.

Before proving theorem 8.3.6, let us explain why it is a formal version of
theorem 8.2.4. We consider the case when our canonical A∞ (or L∞) algebra
satisfies (8.55). Then, as in the proof of theorem 8.2.6, we find a germ of
analytic subvarieties �Kura in � ⊆ � N defined by Kuranishi map Pi ∈ �0,+
and BKura = b̃ : � → (Ccan[1])0 defines a holomorphic family of the A∞ (or

L∞) algebras parametrized by �Kura. The operators �b̃
1 define a holomorphic

family of chain complexes

C0
can

�
b̃
1→ C1

can
�
b̃
1→ C2

can → · · · . (8.60)

We note that H 0(C�C ,�
b̃
1) is the set of the germs of holomorphic maps s :

� → C0
can such that �b̃

1(s) vanishes on �Kura. Hence the surjectivity of (8.59)
implies that we have a local frame s1, . . . , sb0 of the kernel of (8.60) on �Kura in
a neighbourhood of 0. We note that the pointwise zeroth cohomology of (8.60) is
semi-continuous. Hence the existence of the sections si implies that the pointwise
zeroth cohomology of (8.60) is of constant rank in a neighbourhood of 0 in�Kura.
This is the assumption of theorem 8.2.4. It is also easy to see that the assumption
of theorem 8.2.4 implies the surjectivity of (8.59).

Note that the discussion here shows that theorem 8.3.6 implies theorem 8.2.4
and its analogue stated in section 8.1.6.

Proof. We now prove theorem 8.3.6. We have already constructed a natural
transformation ��C →��(C). Lemma 8.3.14 implies that this transformation
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is surjective. So it suffices to show that it is injective. In other words, it suffices
to show the following lemma.

Lemma 8.3.15. We assume (8.59) is surjective. If ϕ, ϕ′ : �C → � are R algebra
homomorphism, and if ϕ(b̃) ∼ ϕ′(b̃) in �̃�(C)(�), then ϕ = ϕ′.
Proof. We may assume C is canonical. Then H 0(C,�1) = C0. Let l1, . . . , lb0 be
a generator of C0. By the surjectivity of (8.59) we have its lift l̃i to C0

�C
such that

�b̃
1(l̃i ) = 0 in C1

�C
. It is easy to see that the �b̃

1 generate C0
�C

as a �C module.

Hence �b̃
1 : C0

�C
→ C1

�C
is zero.

Let ei be a generator of C1 and � ⊆ R[[X1, . . . , Xb1 ]] be the ideal generated
by formal Kuranishi maps. We recall b̃ ≡∑ Xiei mod �.

By assumption, we have b̂ ∈ �̃�(C)(�⊗ R[t, dt]) such that Evalt=0(b̂) =
ϕ(b̃), Evalt=1(b̂) = ϕ′(b̃). We put b̂ = x(t) + y(t) dt . We remark that x(t) ∈
(C ⊗ �[t])1 and �(ex(t)) = 0. Let x(t) = ∑

Xi (t)ei . Then ϕ̃(Xi ) �→ Xi (t)
defines a ring homomorphism ϕ̃ : �C → �[t]. Its composition with obvious
homomorphism Evalt=0 : �[t] → � and with Evalt=1 : �[t] → � are equal to
ϕ and ϕ′, respectively.

The condition that b̂ is a Maurer–Cartan element implies

d

dt
x(t) = −�b(t)

1 (y(t)). (8.61)

Since b(t) = ϕ̃(b̃) and since �b̃
1 : C0

�C
→ C1

�C
is zero it follows that the right-

hand side of (8.61) is zero, i.e. x(0) = x(t).
We note that ϕ̃(

∑
Xiei ) = x(t) and Xi generates�C . Therefore d

dt ϕ̃(t) = 0.
Hence ϕ = ϕ′. The proofs of lemma 8.3.15 and theorem 8.3.6 are now
complete. �

Let us prove theorem 8.2.2 here. Let us take a versal family constructed in
the proof of theorem 8.2.6 and write it as (�C , BKura). We already know that it
is complete. Let (�, B) be another family such that the KS map is surjective.
We may take a submanifold � ⊂ � such that the restriction of KS map to
T0� is an isomorphism. Since (�C , BKura) is complete, we have a morphism
(�, ) : (�, B) → (�C , BKura). Using lemma 8.2.2 and the fact the KS maps
of both deformations are isomorphisms, we find that d0� : T0� → T0� is
an isomorphism. Then, using the fact that � is a manifold, we can apply the
implicit function theorem to prove that � is an isomorphism in a neighbourhood
of zero. (We remark that we do not need to assume that � is a manifold in
a neighbourhood of zero to apply the implicit function theorem here.) Hence
the (�, B) is isomorphic to (�C , BKura) and is complete. Therefore, (�, B) is
complete. �



172 Deformation theory, homological algebra and mirror symmetry

8.3.4 Superspace and odd vector fields—an alternative formulation of L∞
algebras

According to [2, 65], we can rewrite the contents of sections 8.2.2, 8.2.3 using
the terminology of formal geometry. In the case of L∞ algebra we need to use
a super formal manifold and in the case of the A∞ algebra we need a kind of
‘non-commutative geometry’; [21] uses the formalism of [2,65]. It is more useful
in the L∞ case than the A∞ case, since the super manifold is closer to normal
geometry than non-commutative geometry. So we only discuss the L∞ case here.
Our argument is very brief.

We start by explaining the formal super manifold (only) in the case with
which we are concerned. Let us consider V = ⊕V k , a graded vector space. Let
Vev, Vod be the sum of their even or odd degree parts, respectively. We regard
Vev as the ‘bosonic’ part and Vod as the ‘fermionic’ part. This means nothing
other than we regard the ring of functions on it as

∏
k,� SkV

∗
ev ⊗��V ∗od, where Sk

denotes the kth symmetric power. We remark that
∏

k,� SkV
∗
ev ⊗��V ∗od is a dual

to EV . (Note EV is a direct sum hence only a finite sum is allowed. Its dual is a
direct product.)

Definition 8.3.15. The ring of functions on the formal super manifold C[1] is the
dual vector space EC[1]∗ of EC[1].

Let ei be a basis of C[1]ev = Cod and fi be a basis of C[1]od = Cev. An
element of C is written as a finite sum:

∑
xiei +∑ y j f j . Then xi and y j are a

basis of the dual vector space C∗. Hence an element of EC[1]∗ can be written
uniquely as

h =
∑
k

∑
j1<···< jk

h j1,..., jk (x
1, x2, · · · )y j1 ∧ · · · ∧ y jk (8.62)

where h j1,..., jk ∈ R[[x1, x2, . . . ]]. The ring structure is determined by yi ∧ y j =
−y j ∧ yi and the ring structure on R[[x1, x2, . . . ]].
Definition 8.3.16. A formal vector field on the formal super manifold C[1] can
be expressed as

� =
∑

V x
i
∂

∂xi
+
∑

V y
i
∂

∂yi

where Vi ∈ EC[1]∗. For h as in (8.62) and� as before, we put

�(h) =
∑
k,�

∑
j1<···< jk

V x
�

∂h j1,..., jk
∂xi

y j1 ∧ · · · ∧ y jk

+
∑
k

∑
j1<···< jk

k∑
i=1

(−1)i−1V y
ji
h j1,..., jk y

j1 ∧ · · · ∧ ŷ ji ∧ · · · ∧ y jk .

(8.63)
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(8.63) is characterized by

∂

∂xi
x j = δi j

∂

∂yi
x j = 0

∂

∂yi
y j = δi j

∂

∂xi
y j = 0

and
�(hh′) = �(h)h′ + (−1)deg� deghh�(h′).

Here we define degree by deg ∂
∂xi

= deg xi = 0, − deg ∂
∂yi

= deg yi = 1.
It is easy to see the following lemma.

Lemma 8.3.16. If deg� and deg� are even then there exists a super vector field
[�,�] such that [�,�](h) = (��−��)(h). If deg� and deg# are odd then
there exists a super vector field {�,#} such that {�,#}(h) = (�#+ #�)(h).

It is obvious that [�,�] = 0 for super vector field � of even degree.
However, in general, {�,�} �= 0 for a super vector field � of odd degree. In
fact we have the following lemma.

Lemma 8.3.17. We assume two is invertible on R. Then, the super vector field�
of degree 1 satisfying {�,�} = 0 corresponds one to one to the L∞ structure on
C[1].
Proof. Let � define a derivation � : EC[1]∗ → EC[1]∗. Its dual defines a
coderivation δ : EC[1] → EC[1]. δδ = 0 is equivalent to {�,�} = 2�2 = 0.
The lemma follows. �

Let (C,�), (C ′,�′) be L∞ algebras and �, �′ be odd vector fields
corresponding to them by lemma 8.3.17. Let ϕk be an L∞ homomorphism. It
induces a coalgebra homomorphism ϕ̂ : EC[1] → EC ′[1]. Hence its dual is
an algebra homomorphism ϕ̂∗ : EC ′[1]∗ → EC[1]∗; that is a morphism of
formal super manifold C[1] → C ′[1]. Since ϕ̂ ◦ δ = δ ◦ ϕ̂ it follows that
ϕ̂∗ ◦ �′ = � ◦ ϕ̂∗. Thus, an L∞ homomorphism will become a morphism of
the formal super manifold preserving odd vector fields on it. One may continue
and translate various other operations of L∞ algebras to the language of super
manifolds. We do not attempt to do it here.

8.4 Application to mirror symmetry

8.4.1 Novikov rings and filtered A∞, L∞ algebras

In this chapter, we explain the relations between the discussion of deformation
theory in chapters 1 and 2 and mirror symmetry.
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We explain a construction in [33] which associates an ‘A∞ algebra’ with
a Lagrangian submanifold of a symplectic manifold (satisfying some conditions
we will explain later). (We reviewed the various notions of symplectic geometry
we need at the beginning of section 8.3.2.) In fact what we will associate with a
Lagrangian submanifold is a slight modification of the A∞ algebra, which we
call the filtered A∞ algebra. To define it we first need to define a universal
Novikov ring. We will discuss the universal Novikov ring more in section 8.3.5.
Novikov introduced a kind of formal power series ring in [80] to study the Morse
theory of a closed 1-form. It was applied in [51] and others to the infinite-
dimensional situation of Floer homology (which may be regarded as a Morse
theory of closed 1-form on loop space), i.e. the Floer homology, which we will
discuss in section 8.3.3, is defined as a module over a Novikov ring. In order to
use the same ring independently of the symplectic manifold (and of its Lagrangian
submanifold) we use a ring which we call the universal Novikov ring. We now
define it.

Let R be a commutative ring. We consider the formal sum x = ∑
i ai T

λi

satisfying the following conditions.

Condition 8.4.1. (1) ai ∈ R, (2) λi ∈ �, (3) λi < λi+1, (4) limi→∞ λi = ∞.

Definition 8.4.1. The set of all formal sums x = ∑
i ai T

λi satisfying
conditions 8.4.1 is called the universal Novikov ring and is written as�R,nov. This
becomes a ring (R algebra) by an obvious definition of sum and multiplication.
We replace condition 8.4.1(2) by λi ≥ 0. We then obtain a subring �R,nov,0. We
replace condition 8.4.1(2) by λi > 0. We then obtain an ideal�R,nov,+ of�R,nov.
(We omit R to avoid confusion.)

When R is a field, �R,nov,0 is a local ring with maximal ring�R,nov,+.
We define a filtration � on �nov by

�λ�nov = {x |x is as in (3.1) satisfying condition 8.4.1 and λi ≥ λ}.
�λ�nov is a filtration, i.e. �λ�nov is a sub-Abelian group (with respect to +) and
�λ�nov · �λ′�nov ⊆ �λ+λ′�nov. � induces a filtration on�nov,0 and�nov,+.

Remark 8.4.1. �nov,0 is not a Noether ring, since the ascending sequence of ideals
�1/ i�nov does not stop. This fact makes it harder to study an algebra or module
over it.

A filtered �nov,0 module is a �nov,0 module C together with filtration �λC
such that �λ�nov · �λ′C ⊆ �λ+λ′C . We say that a �nov module homomorphism
ϕ : C → C ′ is a filtered �nov,0 module homomorphism if ϕ(�λC) ⊂ �λC ′.

Filtration defines a metric on �nov and a module on it by d(x, y) =
exp(− inf{λ|x − y ∈ �λC}). �nov, �nov,0 and �nov,+ are complete with respect
to this metric. From now on we assume all filtered �nov,0 modules are complete.
We also assume that all filtered A∞ (or L∞) algebras are the completions of a
free �nov,0 module.
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If C,C ′ are filtered �nov,0 modules, we define a filtration on their tensor
product C ⊗�nov,0 C

′ by

�λ(C ⊗�nov,0 C
′) =

⋃
µ

�µC ⊗�nov,0 �
λ−µC ′.

The tensor productC⊗�nov,0 C
′ is not complete with respect to the metric induced

by this filtration. We denote the completion by C⊗̂�nov,0C
′.

A graded filtered �nov,0 module is defined in an obvious way. Let C be a
graded filtered �nov,0 module. We consider

BkC[1] = C[1]⊗̂�nov,0 · · · ⊗̂�nov,0C[1]
k times

Let B̂C[1] be the completion of the direct sum ⊕k BkC[1]. EkC[1] and ÊC[1]
are defined by taking its submodule which is invariant under the action of �k .

They are formal coalgebras. Here formal coalgebra is defined by replacing
⊗ with ⊗̂ in the definition of a coalgebra. We can define coderivation and
cohomomorphism for a formal coalgebra in the same way. (We assume them
to be filtered.) The following analogy of lemmata 8.3.2, 8.3.5 holds.

Lemma 8.4.1. Let fk : BkC[1] → C[1], k = 0, 1, . . . , be a sequence of
filtered homomorphisms of degree 1. Then there exists a unique coderivation
δ : B̂C[1] → B̂C[1] whose restriction to BkC[1] is fk .

Let ϕk : BkC[1] → C ′[1], k = 0, 1, . . . , be a sequence of filtered
homomorphisms of degree 0. We assume ϕ0(�nov,0) ⊆ �λ0B1C ′[1] for some
positive λ0. Then there exists a coalgebra homomorphism ϕ̂ : B̂C[1] → B̂C[1]
whose Hom(BCk[1], B1C ′[1]) component is ϕk.

The same statement holds when we replace B by E.

We note that we include f0 and ϕ0 here but not in lemmata 8.3.2 and 8.3.5.

Proof. We prove the A∞ case only. We put

f̂0(x1 ⊗ · · · ⊗ xk)

= ϕ0(1)⊗ x1 ⊗ · · · ⊗ xk + (−1)deg′ x1x1 ⊗ ϕ0(1)⊗ x2 ⊗ · · · ⊗ xk

+ · · · + (−1)deg′ x1+···+deg′ xk x1 ⊗ · · · ⊗ xk ⊗ ϕ0(1).

We define f̂k , k ≥ 1 in the same way as in the proof of lemma 8.3.2. Then we can
prove that δ = f̂0 + · · · + f̂k + · · · converges by using the fact that fi preserves
filtration.

We next define ϕ̂. We put

eϕ(1) =
∑
k

ϕ(1)⊗ · · · ⊗ ϕ(1)
k times

.
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By assumption it converges in B̂C ′[1]. Now we put

ϕ̂(x) =
∑
k

∑
a

eϕ(1) ⊗ ϕ(xk;1a )⊗ eϕ(1) ⊗ · · · ⊗ eϕ(1) ⊗ ϕ(xk;ka )⊗ eϕ(1).

Here ϕ is ϕk on BkC[1] k �= 0 and is zero on B0C[1]. It is easy to check that ϕ̂
converges and is a coalgebra homomorphism. �

Remark 8.4.2. B̂C[1] has another filtration different from �λ B̂C[1], i.e. we put
�k B̂C[1] = ⊕i≤k BiC[1]. We call the filtration � the energy filtration and � the
number filtration. If f0 �= 0 or ϕ0 �= 0, f̂ or ϕ̂ does not preserve the number
filtration. They preserve the energy filtration. We also note that B̂C[1] is not
complete with respect to the number filtration.

Definition 8.4.2. A structure of a filtered A∞ algebra on a filtered graded
�nov,0 module C is a series of filtered homomorphisms �k : BkC[1] → C[1],
k = 0, 1, . . . of degree 1 such that δδ = 0 where δ =∑ �̂k : B̂kC[1] → C[1] is
obtained by lemma 8.4.1. We also assume that �0(�nov,0) ⊆ �λ0B1C[1].

A sequence of homomorphisms ϕk : BkC[1] → C ′[1] is a filtered A∞
homomorphism between filtered A∞ algebras if ϕ0(�nov,0) ⊆ �λ0B1C ′[1] and
the homomorphism ϕ̂ obtained by lemma 8.4.1 satisfies δϕ̂ = ϕ̂δ.

L∞ can be defined in a similar way.

We will explain how to modify the argument in the previous section to our
filtered situation later after we have introduced our main example.

8.4.2 Review of a part of global symplectic geometry

In this section, we review several points on global symplectic geometry, especially
those related to pseudoholomorphic curves, which we need for our main
construction; [52, 75, 76] are standard references for them.

A symplectic manifold is a pair (M, ω) where ω is a closed 2-form on M
such that it is non-degenerate as an antisymmetric 2-form on TpM for each
p ∈ M . M is automatically even dimensional. Let 2n be its dimension. Then
ωn is a nowhere vanishing 2n form on M and hence determines an orientation.
A Lagrangian submanifold of a symplectic manifold (M, ω) is an n-dimensional
closed submanifold L such that ω|L = 0. If the dimension of a submanifold of M
is strictly larger than n then the restriction of ω to L cannot vanish.

A typical example of a symplectic manifold is a Kähler manifold. In
particular, if M is a projective variety that is a complex submanifold of � Pn

then it is a symplectic manifold, whose symplectic structure is obtained as a
pullback of the Fubini–Study form ω on � Pn which is defined by π∗ω =
−4
√−1∂∂ log(|z0|2 + · · · + |zn|2) where π : � n+1 → � Pn is the projection.

Another important example of a symplectic manifold is a cotangent bundle
T ∗N of any smooth manifold N . The symplectic form on T ∗N is given by dθ .
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Here θ is a 1-form on T ∗N such that θ(X) = u(π∗(X)) where X ∈ TuT ∗N
and π : T ∗N → N is the natural projection. If x1, . . . , xn is a coordinate of
N then elements of T ∗N are written as p1 dx1 + · · · + pn dxn . Hence pi , x j ,
i, j = 1, . . . , n is a coordinate of T ∗N . Using this coordinate our symplectic
form ω on T ∗N is ω = dp1 ∧ dx1 + · · · + dpn ∧ dxn .

An example of a Lagrangian submanifold of a projective variety is a
submanifold consisting of real valued points. Let M ⊆ � Pn be a complex
submanifold which is preserved by complex conjugation τ . We assume L =
{x ∈ M|τ (x) = x} is a submanifold of dimension n = dim M/2. Then we can
show L is a Lagrangian submanifold.

There are also various examples of Lagrangian submanifolds in T ∗N . One
is a conormal bundle T ∗K N of a submanifold K of N . Here

T ∗K N = {(x, u) ∈ T ∗M|x ∈ N, u|Tx N = 0}.

In fact, if K is defined by equations xk+1 = · · · = xn = 0 then T ∗K N is defined
by equations xk+1 = · · · = xn = 0, p1 = · · · = pk = 0. Hence ω is zero on
T ∗K N .

Another example is a graph of a closed 1-form u which is defined as follows.
For a 1-form u on N , we put Gu = {(x, u(x))|x ∈ N}. Let us define a
diffeomorphism i : N → Gu by i(x) = (x, u(x)). We can show that the pullback
of θ by i is u itself. It follows that i∗ω = du. Therefore Gu is a Lagrangian
submanifold if and only if u is closed.

Symplectic geometry has a long history. There are many interesting results
and applications. However, for a long time, it seems that there were only a
few results in symplectic geometry which were really global in nature. For
example, the following question was open for a long time. Does a pair of
symplectic manifolds (M, ω) and (M, ω′) on a same manifold M such that
[ω] = [ω′] ∈ H 2(M;�) but there is no diffeomorphism ϕ : M → M with
ϕ∗ω′ = ω exist. The reason why such results were not known seems to me that
there was basically no general technique which could be applied to study global
symplectic geometry. Arnold in the 1960s formulated a series of conjectures
which are related to the global problem of symplectic geometry (see, for example,
[3]). Roughly speaking, those questions ask whether a ‘symplectic topology’
exists. Around the beginning of the 1980s several works appeared which show
that such a ‘symplectic topology’ does exist and is extremely rich. Among these
results, Gromov’s in [42] is quite remarkable. In this, Gromov introduced a new
technique, the pseudoholomorphic curve, in order to study the global structure of
a symplectic manifold. Let us briefly review it here. Let (M, ω) be a symplectic
manifold. An almost complex structure J : TM → TM is a tensor such that
J J = −1.

Definition 8.4.3. J is said to be compatible with ω if (1) ω(J X, JY ) = ω(X,Y ),
(2) ω(X, J X) > 0 and (3) ω(X, J X) = 0 implies X = 0.
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It is proved in [42] (see [75, 76]) that a compatible almost complex
structure always exists and the set of compatible almost complex structures is
contractible.13

Gromov’s idea was to apply the techniques of complex geometry to an
almost complex manifold (M, J ) to get information on the symplectic manifold
(M, ω).

There are basically two methods in complex geometry: one uses
holomorphic functions or holomorphic maps defined on M and the other uses
holomorphic maps to M . When (M, J ) is almost complex (i.e. J is not
integrable), there are not so many holomorphic functions on M . Hence the first
method is hard to apply in our case of (M, J ).

Gromov’s important observation was that, even when (M, J ) is not
integrable, there are many holomorphic maps to (M, J ) from the Riemann surface
(a complex one-dimensional manifold). The basic reason for this is that any
almost complex structure on a real two-dimensional manifold is automatically
integrable.

The method then initiated by Gromov was to study the moduli space of
holomorphic maps from the Riemann surface to (M, J ) to get information about
(M, ω). Gromov called the holomorphic map from the Riemann surface to an
almost complex manifold, a pseudoholomorphic curve. The contractibility of the
set of almost complex structures guarantees that any invariant obtained by using
a compatible almost complex structure is an invariant of the symplectic manifold
if it is independent of any continuous change in the compatible almost complex
structures.

Using the existence of a symplectic structure compatible with J , Gromov
proved various compactness results for the moduli space of pseudoholomorphic
maps, hence its fundamental cycle, in principle, defines such an invariant. Ruan
[88] made this construction (which was somewhat implicit in [42]) more explicit.

This invariant, in turn, was found to be an invariant of the topological σ -
model with target space M , which Witten [106] introduced in an informal way.
The invariant obtained in this way is now called the Gromov–Witten invariant.
See [34, 76, 88, 89] for more about it.

Our main concern here is its relative version, i.e. we consider a Lagrangian
submanifold L of M and study a map ϕ : D2 → M such that the following
condition holds.

Condition 8.4.2. (1) ϕ is pseudoholomorphic. Namely J ◦ dϕ = dϕ ◦ jD2. Here
jD2 is the standard complex structure of D2. (2) ϕ(∂D2) ⊆ L.

Gromov [42] had already studied the moduli space of such ϕ to obtain
information about the Lagrangian submanifolds in � n (for example he proved
that a simply connected compact Lagrangian submanifold in � n does not exist).

13 It follows that the Chern classes of (the tangent bundle of) a symplectic manifold is well defined.
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Floer [22] used a similar idea to study problems of the intersection of Lagrangian
submanifolds and, in particular, the following problem due to Arnold [3].

Problem 8.4.1. Let L ⊂ M be a Lagrangian submanifold, and let ϕ : M → M
be a Hamiltonian diffeomorphism (which we will define later). We assume L is
transversal to ϕ(L). Then, under ‘some’ condition, we have an estimate

"L ∩ ϕ(L) ≥
∑

rank Hk(L;�2). (8.64)

Let us define a Hamiltonian diffeomorphism. Let (M, ω) be a symplectic
manifold and f be a function on it. There exists a vector field X f such that
ω(X f , V ) = d f (V ) holds for any vector V . X f is called the Hamiltonian vector
field. We now consider f : M × [0, 1] → �. Let ft (x) = f (x, t). It induces a
one-parameter family of vector fields X ft . We define a family of diffeomorphisms
ϕt : M → M by

d

dt
ϕt (x) = X ft (ϕt (x)) ϕ0(x) = x . (8.65)

Definition 8.4.4. ϕ : M → M is called a Hamiltonian diffeomorphism if there
exists ft (x) = f (x, t) such that ϕ1 = ϕ, and ϕt is defined by (8.65).

One can prove easily that a Hamiltonian diffeomorphism is a symplectic
diffeomorphism, i.e. ϕ∗ω = ω.

Floer [22] proved (8.64) for π2(M, L) = 0. He used a new homology theory
which is now called the Floer homology for this purpose. Let us briefly explain it
here. Let L1, L2 be two Lagrangian submanifolds such that π2(M, Li ) = 0. We
assume that L1 is transversal to L2. We consider the�2 vector space CF(L1, L2)

whose basis is identified with the intersection points p ∈ L1 ∩ L2, i.e. we put

CF(L1, L2) =
⊕

p∈L1∩L2

�2[p]. (8.66)

Floer defined the degree of each [p] and defined a boundary operator on it as
follows. Let p, q ∈ L1 ∩ L2. We consider maps ϕ : D2 → M satisfying
the following conditions. We put ∂D2+ = {z ∈ ∂D| Im z > 0}, ∂D2− = {z ∈
∂D| Im z < 0}.
Condition 8.4.3.

(1) ϕ is pseudoholomorphic, i.e. J ◦ dϕ = dϕ ◦ jD2. Here jD2 is the standard
complex structure of D2.

(2) ϕ(∂+D2) ⊂ L1, ϕ(∂−D2) ⊂ L2.
(3) ϕ(−1) = p, ϕ(1) = q .

Let �̃(p, q; L1, L2) be the moduli space of all such maps ϕ. The group
Aut(D2; {±1}) of biholomorphic maps D2 → D2 preserving ±1 acts on
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Figure 8.3.

�̃(p, q; L1, L2). This group is isomorphic to �. We denote the quotient space
by�(p, q; L1, L2). Floer proved the following theorem.

Theorem 8.4.1. Under the assumption π2(M, Li ) = 0, there exists µ : L1 ∩
L2 → � such that the following hold after taking a ‘generic perturbation’14 of
the pseudoholomorphic curve equation J ◦ dϕ = dϕ ◦ jD2.

(1)�(p, q; L1, L2) is a smooth manifold of dimension µ(q)− µ(p)− 1.
(2) If µ(q)− µ(p)− 1 = 0, then�(p, q; L1, L2) consists of finitely many
points.
(3) If µ(q) − µ(p) − 1 = 1, then�(p, q; L1, L2) can be compactified to
��(p, q; L1, L2) which is a one-dimensional manifold with boundary.
(4) In (3) the boundary of ��(p, q; L1, L2) is identified with⋃

r∈L1∩L2,µ(r)=µ(q)+1

�(p, r; L1, L2)×�(r, q; L1, L2). (8.67)

(Note that (8.67) is of finite order by (2).) We will not discuss the proof of
this theorem which is now a classic. µ is called the Maslov–Viterbo index.

(4) can be explained by figure 8.3.
Now the definition of a Floer homology is as follows. We put deg[p] = µ(p)

hence CF(L1, L2) is a graded �2 vector space. We next define

〈δ[p], [q]〉 ≡ "�(p, q; L1, L2) mod 2

for µ(q)− µ(p)− 1 = 0 and put

δ[p] =
∑

〈δ[p], [q]〉[q].

δ is an operator of degree 1. We show the following corollary.

Corollary 8.4.1. δ ◦ δ = 0.

14 We do not explain its precise meaning in this article.
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Proof. Let us calculate the coefficient of [q] in δδ([p]). We may write it as∑
r

〈δ[p], [r ]〉〈δ[r ], [q]〉.

It suffices to consider the case µ(q) − µ(p) − 1 = 1, i.e. we can apply (4) of
theorem 8.4.1. We then have∑

r

〈δ[p], [r ]〉〈δ[r ], [q]〉

=
⋃

r∈L1∩L2,µ(r)=µ(q)+1

"(�(p, r; L1, L2)×�(r, q; L1, L2))

= "∂�(p, q; L1, L2) ≡ 0 mod 2

since the order of the boundary of a one-dimensional compact manifold is even.�

We thus define a Floer cohomology by

H F(L1, L2) = H (CF(L1, L2), δ).

Floer proved the following two properties of it.

Theorem 8.4.2. We assume π2(M, Li ) = 0. If ϕi are Hamiltonian
diffeomorphisms then H F(L1, L2) ∼= H F(ϕ1L1, ϕ2L2).

Theorem 8.4.3. We assume π2(M, L) = 0. Then H F(L, L) ∼= H (L;�2).

It is easy, from definition, to see that

rank H F(L1, L2) ≥ "L1 ∩ L2. (8.68)

(8.64) follows from theorems 8.4.2, 8.4.3 and (8.68).
Our discussion so far has assumed π2(M, L) = 0. After Floer, Oh [81]

relaxed the condition π2(M, L) = 0. His assumption is that the Lagrangian
submanifold is monotonic and its minimal Maslov number is ≥ 3. We do not
explain this condition here.

However, there is an example where (8.64) does not hold in general.

Example 8.4.1. Let us consider S2. Any one-dimensional submanifold of it is
a Lagrangian submanifold. Let L be a circle which is in a small neighbourhood
of the north pole. We can easily find a Hamiltonian diffeomorphism ϕ such that
ϕ(L) ∩ L = ∅. However, H∗(L) = H∗(S1) �= 0.

Therefore, something should go wrong if we try to generalize Floer’s
theory to more general Lagrangian submanifolds. For example, in the case of
example 8.4.1 it turns out that the Floer homology is not defined for such a
Lagrangian submanifold.
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Thus finding a good condition for defining a Floer homology is important
for its application to global symplectic geometry. Later it was found that the same
problem is also closely related to mirror symmetry. This is the main point of our
article. So before stating the results (and conjectures) precisely, we first explain
the rough outline.

Oh, Ohta, Ono15 and myself have developed an obstruction theory for the
well-definedness of the Floer homology of a Lagrangian submanifold [33]. (Our
project started around 1997 just after the necessary analytic machinery had been
completed in [34].) We found that there is a series of obstructions which take
values in the cohomology of L such that if they all vanish then the Floer homology
is well defined.

However, a Floer homology thus defined actually depends on the various
choices involved; i.e. there exists a moduli space associated with a Lagrangian
submanifold and the Floer homology is well defined as a family parametrized by
this moduli space. The condition that the obstruction vanishes is equivalent to the
condition that this moduli space is non-empty. The algebraic machinery we need
to establish it is the one we developed in the previous section (its filtered version
precisely), i.e. the moduli space parametrizing the Floer homology is a moduli
space representing the appropriate Maurer–Cartan functor.

However, I proposed generalizing the Lagrangian intersection Floer
homology to the case in which there are three or more Lagrangian submanifolds.16

Then, in the early 1990s I found that an A∞ structure appears [23]. Then
Kontsevich conjectured that the A∞ structure on a Floer homology of Lagrangian
submanifold should be a ‘mirror’ of a similar A∞ structure on a sheaf
cohomology of a complex manifold (i.e. the A∞ algebra related to the complex
�0,∗(End(E)) introduced in section 8.1 and 8.2), i.e. Kontsevich proposed a
homological mirror symmetry conjecture in [66, 69]. It roughly states that there
are pairs of symplectic manifolds M and complex manifolds M∧ such that the
Lagrangian submanifolds of M correspond to coherent sheafs on M∧ and the
Floer homology of Lagrangian submanifolds in M corresponds to the sheaf
cohomology on M∧. Moreover, the A∞ structure on the Floer homology on M
corresponds to the Yoneda and Massey–Yoneda product on the sheaf cohomology
on M∧.

The homological mirror symmetry conjecture was developed before the
‘second string theory revolution’. Later, Brane theory became important. The
homological mirror symmetry conjecture can then be regarded naturally as
corresponding to branes and as part of various dualities. After that and after
Strominger et al’s important proposal [99] to construct a mirror manifold by using
a dual torus fibration, several people began to be interested in homological mirror
symmetry. Among them, Polishchuk and Zaslow [85] proved part of the theory
for an elliptic curve. (Kontsevich [66] had discussed the case of elliptic curve

15 Kontsevich gave us an important suggestion to start this research.
16 I was inspired by an idea from Donaldson and Segal when I started this project.
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earlier.) Just after that I generalized it partially to a complex torus of higher
dimension [27]. The main tool used in [27] is a result from [32] which calculates
the A∞ structure of a Floer homology for a cotangent bundle. Some more papers
on Abelian mirror symmetry appeared after that. There are other important works
by Seidel and his coauthors (such as those in [57, 93–95]) which are also related
to the homological mirror symmetry conjecture.

While studying complex tori, I found that various interesting and delicate
phenomena happen in the Floer homology of Lagrangian submanifolds, its
product (A∞) structure, and also its family version [31]. The study of Floer
homology is thus tied more with homological algebra and with deformation
theory, which we explained in sections 8.1 and 8.2. The homological mirror
symmetry conjecture has now become more precise since it has been involved
in homological algebra and deformation theory. For example, we conjecture the
coincidence of the two moduli spaces, one for deformation of the Floer homology
of Lagrangian submanifolds and the other for deformation of coherent sheaves or
vector bundles.

8.4.3 From Lagrangian submanifold to A∞ algebra

Now, after this brief explanation of its history, let us discuss the construction of
filtered A∞ algebras associated with Lagrangian submanifolds. Here we consider
the case in which we have only one Lagrangian submanifold L rather than a
pair of Lagrangian submanifolds as in Floer’s case. (Two or more Lagrangian
submanifolds are mentioned at the end of section 8.3.4 and discussed in detail
in [30, 33].)

The condition π2(M, L) = 0 which we assumed before implies that there
are no maps ϕ : (D2, ∂D2) → (M, L) satisfying condition 8.4.2. In fact,
since ϕ is zero homotopic it follows that

∫
D2 ϕ

∗ω = 0. We can easily show
that if ϕ is pseudoholomorphic and is non-constant then

∫
D2 ϕ

∗ω > 0. This
is the basic reason why theorem 8.4.2 holds. In other words, the presence of
pseudoholomorphic disc ϕ : (D2, ∂D2)→ (M, L) deforms the usual homology
group H (L) to the Floer homology group H F(L) (see section 8.3.4).

Let us discuss the moduli space of pseudoholomorphic discs satisfying
condition 8.4.2. Let β ∈ π2(M, L). We use the following moduli space.

Definition 8.4.5. The moduli space�k+1(L; β) is the set of all ∼ equivalence
classes of pairs (ϕ, 'z) where

(1) ϕ : (D2, ∂D2)→ (M, L) satisfies condition 8.4.2;
(2) he homotopy class of ϕ is β; and
(3) 'z = (z0, . . . , zk) where zi ∈ ∂D2.

We assume that z0, . . . , zk respects the cyclic order of ∂D2.
We say (ϕ, 'z) ∼ (ϕ′, 'z′) if there exists a biholomorphic automorphism

u : D2 → D2 such that ϕ′ = ϕ ◦ u, zi = u(z′i ).
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The basic task we need to carry out in order to apply the moduli space
�k+1(L; β) to various problems is:

(A) find an appropriate compactification ��k+1(L; β);
(B) find an appropriate perturbation of the pseudoholomorphic curve equation

J ◦ dϕ = dϕ ◦ jD2, so that the moduli space ��k+1(L; β) will become a
‘smooth manifold’ after perturbation (transversality);

(C) calculate the dimension of ��k+1(L; β) (index theory); and
(D) find a condition on M, L under which ��k+1(L; β) is oriented

(orientation).

These are the package of results one needs to establish topological field theory
by a nonlinear partial differential equation and the moduli space of its solutions.
(Donaldson [18] first used such a package to establish the invariants of 4-
manifolds (Donaldson invariants). Gromov applied Donaldson’s idea to the
moduli space of pseudoholomorphic curves (from a closed Riemann surface).)

For point (A), we can easily modify Kontsevich’s [67] notion of a stable
map so that it can be applied to the case of a Riemann surface with boundary
(disc), see [33]. For point (B), there is now a general theory (developed in [34])
which can be applied to various situations in a uniform way. Hence basically
there is nothing new to work out but we can just apply [34].17 The key notion we
use to carry out (B) is a space with a Kuranishi structure. We will explain this
informally later. In fact, it is a smooth analogue of the notion of complex analytic
space discussed in section 1.6.

Now the package (A), (B), (C), (D) in our situation can be stated as follows.

Theorem 8.4.4. [33] There exists µ : π2(M; L) → � (the Maslov index) with
the following properties.

(1) ��k+1(L; β) is a compact space with a Kuranishi structure (with
corners), of dimension µ(β)+ n + k − 1.
(2) ��k+1(L; β) is oriented if L is relatively spin, in the sense defined later.
The relative spin structure determines the orientation of ��k+1(L; β).
(3) The boundary of ��k+1(L; β) is described by fibre products of various
��k′+1(L; β ′) where k ′ ≤ k and ω ∩ β ′ ≤ ω ∩ β.

Explanation of the notion used in the statement of theorem 8.4.4 will follow
(after several remarks). Statement (3) is a bit vague since we do not mention
which fibre product appears. We do not explain this since the main focus of this
article is on algebraic formalism and we want to minimize the explanation of the
geometric analysis.

17 There is one point to clarify about the transversality of ��k+1(L;β) which is not included in the
general theory: that is the problem of transversality at diagonal ⊂ Lk+1. This is point (2) mentioned
in the discussion after theorem 8.4.5, and is handled in [33].
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Remark 8.4.3. We explain two more properties of the Maslov index µ given in
theorem 8.4.4. Let π2(M) → π2(M, L) → π1(L) be part of a homotopy exact

sequence of the pair M, L. Then the composition π2(M) → π2(M, L)
µ→ �

coincides with 2c1(M). Here c1(M) ∈ H 2(M;�) determines π2(M)→ �. Also

π2(M)→ π2(L)
w1→ �2 coincides with µ modulo 2. Here w1 : π1(L)→ {0, 1}

is the first Stiefel–Whitney class of L, i.e. w1(γ ) = 0 if the orientation of T L is
preserved along the loop γ . In particular, µ is even valued if L is oriented.

Let us now explain the notions used in theorem 8.4.4. We will explain two
notions: the relative spin structure and a space with Kuranishi structure with
corners. To define the relative spin structure, let us recall some well-known facts
about vector bundles on manifolds. First, for any vector bundle E , there exists
a characteristic class w2(E) ∈ H 2(L;�2), the Stiefel–Whitney class, such that
the structure group of E is reduced to a spinor group if and only if w2(L) = 0.
Second, a real vector bundle E on a 3-manifold is trivial if it is oriented and spin
(i.e. w1(E) = w2(E) = 0).

Definition 8.4.6. Let L be a submanifold of M . Then L is said to be relatively
spin if L is oriented and if there exists a cohomology class st ∈ H 2(M;�2) such
that w2(T L) = i∗st .

We take an oriented vector bundle E on M such that w2(E) = st . Then the
relative spin structure of L is a trivialization of T L⊕ E on the two skeleton of L.

In the case when L is spin, we may take st = 0. Hence the relative spin
structure is in one-to-one correspondence with the spin structure of L. We refer
the reader to [33] for more detail on the orientation of our moduli space.

We next briefly explain a Kuranishi structure with corners. We consider an
open neighbourhood� ⊂ �

n1 × �
n2≥0 of 0. Let F = ( f 1, . . . , f m) : � → �

m be

a smooth map. We consider the set F−1(0). As in an analytic subset and analytic
subspace (which we discussed in section 1.6), the subset F−1(0) of � does not
contain enough information if d f 1, . . . , d f m are not linearly independent. For
example, in the simplest situation, we need to count the order of such a space
(that is a moduli space of pseudoholomorphic curves). Let us suppose that
n1 = 1, n2 = 0, m = 1 and f (x) = x2. (Here x ∈ �.) Set theoretically, f −1(0)
consists of one point. But if we perturb the equation x2 = 0 slightly and consider
x2 = ε, then the number of solutions is zero (if we count them by sign). Hence we
need to ‘remember’ the additional information from the equation F(x) = 0 itself.
So we need something more than a subset of � . When F is a complex analytic
function, this is exactly the analytic space explained in section 8.1.6. When F
is a polynomial, this is the idea of a scheme. What we need here is its C∞
analogue. (Working in the C∞ category is inevitable in studying moduli space
of pseudoholomorphic curves, especially with a Lagrangian boundary condition,
since our problem is strictly a real one and it is impossible to assume the complex
analyticity of the equation.) Working in the C∞ category, considering the ring of
germs at 0 and dividing it by ideals generated by f i does not seem to work. This
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is because the ring of smooth functions does not have some nice properties which
are enjoyed by the ring of holomorphic functions. So instead of considering rings
(or ringed spaces), we regard the pair (�, F) itself as a chart of our ‘space’. We
then define the appropriate notion of coordinate change (or, equivalently, define
a way to glue charts). We thus obtain a space with an approximate Kuranishi
structure.

More precisely, we need to include one more feature; i.e. in general, our
moduli space is not given as F−1(0) but as F−1(0)/� locally. Let us explain
the notation. � is a finite group. We assume that there are linear actions of � on
�
n1 and on �m . We assume that this action preserves � . Moreover, we assume

that F is � equivariant. Hence the zero point set F−1(0) has a � action and
we may consider the quotient space F−1(0)/�. By the Kuranishi structure in
theorem 8.4.4, we mean an object gluing such triples (�, F, �) in an appropriate
sense. (Hence those objects are a smooth analogue of a Deligne and Mumford
stack,18 see [15].) We do not try to define what we mean by gluing (�, F, �)
(see [34]).

We said that our Kuranishi structure is one with corners, since � is an open
subset of�n1 ×�n2≥0 . We can define a boundary of a space with Kuranishi structure
with corners.

Once we have obtained an oriented Kuranishi structure with corners, we
can define its fundamental chain. It is a chain not a cycle, in general, since
we are studying an analogy of a manifold with boundary or corners. We note
that, already in theorem 8.4.1(3), the moduli space ��(p, q; L1, L2) was a one-
dimensional manifold with a boundary. Studying its boundary is the main part of
the proof of the basic equality δδ = 0. The same situation will occur in our more
general setting. This is the main difference between the pseudoholomorphic curve
from a closed Riemann surface (where everything can be discussed at the level of
homology) and our case of a pseudoholomorphic curve from a disc (where we
need to work in the chain level). This causes various technical problems which
are treated in [33].

Now that we have finished our brief explanation of the statement of
theorem 8.4.4 we apply it to construct an A∞ algebra.

Let L be a Lagrangian submanifold of M . We assume that L is relatively
spin and fix a relative spin structure. Then the orientation of the moduli
spaces ��k+1(L; β) is induced. We next assume that the Maslov index µ :
π2(M, L)→ � is zero. Then, the dimension of our moduli space ��k+1(L; β)
is n + k − 1 and is independent of β.

Remark 8.4.4. This, in particular, implies that c1(M) is zero on π2(M) by
remark 8.4.3. The Calabi–Yau manifold has this property. We also note that
if L is a special Lagrangian submanifold (see [99]) of the Calabi–Yau manifold
then the Maslov index µ : π2(M, L) → � is zero (see, for example, [33] for its

18 In some other situation like gauge theory, we need to consider the case when � is of positive
dimension. It will then be an analogy of an Artin stack.
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proof). The special Lagrangian submanifold in a Calabi–Yau manifold is believed
to be the most important case in mirror symmetry.

Definition 8.4.7. The evaluation map ev = (ev0, . . . , evk) : ��k+1(L; β) →
Lk+1 is defined by ev[ϕ, 'z] = (ϕ(z0), . . . , ϕ(zk)) where 'z = (z0, . . . , zk).

As we have already mentioned, theorem 3.3.1 and the general theory
of Kuranishi structure developed in [34] imply that a fundamental chain
[��k+1(L; β)] ∈ Sn+k−1(��k+1(L; β)) exists. Here we may regard it as a
singular chain. We use it to define an operator�k .

We first take a countably generated complex of singular chains of L over
�. (The choice of this subcomplex is based on a delicate technical argument
which we do not mention here.) We write it as S(L). We consider the tensor
product C∗(L) = Sn−∗(L)⊗̂���,nov,0. Here ⊗̂� is a completion with respect to
the metric induced by the filtration on��,nov,0. We are going to define a structure
of filtered A∞ algebra on it.

Now we define �k as follows. Let us take an element Pi of Cdi (L). It is a
chain of degree n − di . We now take the fibre product

��k+1(L; β)×(ev1,...,evk) (P1 × · · · × Pk).

It is a � chain of dimension n + k − 2−∑ di .We use the evaluation map ev0 to
regard it as a chain in L. We thus obtain

ev∗(��k+1(L; β)×(ev1,...,evk) (P1 × · · · × Pk)) ∈ Sn+k−2−∑ di (L). (8.69)

We regard (8.69) as an element ofC
∑
di+2−k(L) and write it as�k,β(P1, . . . , Pk).

When β = 0 we need to define�k,β in a slightly different way. Roughly speaking
we ‘put’

�1,0(P) = ∂P �2,0(P1, P2) = P1 ∩ P2. (8.70)

However, (8.70) itself is not correct as we will mention later.

Definition 8.4.8. We put

�k(P1, . . . , Pk) =
∑
β

T [ω]∩β�k,β (P1, . . . , Pk) (8.71)

and extends it to a ��,nov,0 module homomorphism.

Then the main theorem of [33] is as follows.

Theorem 8.4.5. �k defines a structure of filtered A∞ algebra on C∗(L).

Before mentioning various serious and delicate points in the rigorous
argument to justify definition 8.4.8 and proving theorem 8.4.5, let us explain parts
of the arguments which are easier to explain.
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Figure 8.4.

(A) We first need to show that (8.71) converges in C∗(L). This is non-trivial
since there are infinitely many terms involved. However, we can prove it by
using Gromov compactness; i.e. Gromov compactness implies that, for each
E , there is only a finitely many β such that

∫
β
ω < E and that ��k+1(L; β)

is non-empty. This means that modulo�E��k+1(L; β) there is only finitely
many terms in (8.71), where �E��k+1(L; β) is the energy filtration. This
implies the convergence of (8.71).

(B) We next check that the degree is correct. The degree of Pi is di−1 after it has
shifted. However, the degree of the right-hand side of (8.71) is

∑
di − k+ 1

after it has shifted. Hence the degree of �k (after shifting) is 1 as required.
(C) Next we check the condition that �0 ≡ 0 modulo ��,nov,0. This is

immediate from �0,β = 0 if β = 0.
(D) The proof of the fact that �k satisfies the A∞ relation is based on

theorem 8.4.4(3) and is roughly as follows. We study�1,0◦�k,β . Since�1,0
is the usual boundary operator by (8.70), it follows that this composition
is obtained by using the boundary of the moduli space ��k+1(L; β).
Theorem 8.4.4(3) asserts that the boundary of ��k+1(L; β) is described
as a fibre product of various similar moduli spaces. Taking the fibre product
of the moduli spaces corresponds to taking a composition of the operators
obtained by it. Hence by looking at which kinds of fibre product appear in
the compactification, we find the A∞ relation. Roughly the boundary of the
moduli space ��k+1(L; β) is described by figure 8.4.

Now we mention more delicate parts of the argument to justify
definition 8.4.8 and prove theorem 8.4.5. We discuss them only briefly since
these points are not our main concern in this article.19

(1) We need to specify the orientation to define the right-hand side of (8.69) as a
� chain. Basically the relative spin structure gives a way to define orientation
of ��k+1(L; β). Moreover, Pi (which is Poincaré dual to a cochain over �)
is co-oriented. So we obtain a co-orientation of the fibre product. However

19 However, I would emphasize that these ‘technical details’ (which took myself together with Oh,
Ohta, Ono almost 5 years to work out) are the main part of the theory and asserting results without
working this kind of detail out is extremely dangerous.
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it is rather a delicate problem to handle the orientation of the fibre product
and check that the A∞ formula is correct with sign. Actually we needed
more than 60 pages in [33] for this purpose. It is preferable to find a simpler
argument.

(2) Formula (8.70) itself cannot actually be justified. The reason is that P is not
transversal to P so we can not put�2,0(P, P) = P ∩ P . This is the problem
of transversality at the diagonal. The way to overcome this is as follows. We
perturb the diagonal and define operations �k,0 inductively on k so that we
can define it at the chain level on a countably generated subcompex S(L) of
singular chain complex and it is an A∞ algebra homotopy equivalent to the
De-Rham complex. In other words, we need to use an A∞ algebra for �k,0,
which corresponds to the rational homotopy theory.20

(3) We need to take a complex S(L) carefully so that it is countable (otherwise
we cannot use Baire’s category theorem to achieve transversality) and the
right-hand side of (8.69) is again contained in the same complex.

After this brief explanation of the proof of theorem 8.4.5, we continue our story.
Our next task is to state that the A∞ algebra in theorem 8.4.5 is independent of
the various choices involved. Precisely it is invariant up to homotopy equivalence.
Let us define the homotopy equivalence of filtered A∞ algebra. It is similar to the
usual A∞ algebra described in section 8.2. A few points need modification, which
we explain here.

Let C be a filtered A∞ algebra. We first define a filtered A∞ algebra
C[1]⊗̂�R,nov�R,nov[t, dt]. The definition is almost the same as definition 8.3.7.
One important difference is that we take completion of the tensor product here;
i.e. the element of C[1]⊗̂�R,nov�R,nov[t, dt] is written as P(t) + Q(t) dt where
P(t), Q(t) are the infinite sums P(t) =∑ t i Pi , Q(t) =∑ t i Qi where Pi , Qi ∈
�λi C with λi →∞. The operation �k on C[1]⊗̂�R,nov�R,nov[t, dt] is defined in
the same way as definition 8.3.7.

We use C[1][t, dt] in place of C[1]⊗̂�R,nov�R,nov[t, dt] hereafter.
We can define a filtered A∞ homomorphism Evalt+t0 : C[1][t, dt] → C[1].

In the same way as in (8.38); let P(t) + Q(t) dt ∈ �R,nov[t, dt]. We put

Evalt+t0(P(t) + Q(t) dt) =
∑

t i0Pi (8.72)

(8.72) is an infinite sum but it converges in C[1].
Now we can define a homotopy between filtered A∞ (or L∞) algebras in the

same way as in definition 8.3.8. Theorem 8.3.1 holds in the case of a filtered A∞
(or L∞) algebra. The definition of homotopy equivalence is also the same as in
definition 8.3.9.

Now we have the following theorem.

20 It has been realized by several specialists in surgery theory that transversality at the diagonal is one
of the most essential points in differential topology.
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Theorem 8.4.6. The A∞ algebra is independent of the various choices
involved (for example to compatible almost complex structures) up to homotopy
equivalence. If ϕ is a symplectic diffeomorphism then (C∗(L),�∗) is homotopy
equivalent to (C∗(ϕ(L)),�∗).

We omit the proof which is in [33].21

8.4.4 Maurer–Cartan equation for filtered A∞ algebras

In this section, we explain the way to modify the argument of section 8.2.3
for a filtered A∞ algebra, especially the filtered A∞ algebra (C∗(L),�∗) in
section 8.3.3. (We only discuss the case of filtered A∞ algebraC to save notation.
All the arguments are parallel for filtered L∞ algebras.) The Maurer–Cartan
equation is

δ(eb) = 0 where b ∈ ∪λ>0�
λC1. (8.73)

Since eb = ∑∞
k=0 b ⊗ · · · ⊗ b

k times
converges as an element of B̂C[1], the left-hand

side of (8.73) makes sense. This point is different from section 8.2.3.
In the same way as in section 8.2.3, the solution of (8.73) defines a filtered

A∞ algebra (C,�b) by

�b
k(x1, . . . , xk) = �(eb, x1, e

b, . . . , eb, xk, e
b).

(C,�b) is a filtered A∞ algebra if b ∈ ∪λ>0�
λC1, without assuming δ(eb) = 0.

The Maurer–Cartan equation δ(eb) = 0 is equivalent to �b
0 = 0, i.e. it is

equivalent to the condition that (C,�b) is an A∞ algebra.
Let us elaborate the assumption b ∈ ∪λ>0�

λC1. Let us reduce the coefficient
ring of our filtered A∞ algebra C to R = �nov,0/�nov,+ and obtain C =
C ⊗�nov,0 R. Then C together with induced operations�k is an A∞ algebra over
R. (Note �0 = 0 by our assumption that �0 ≡ 0 mod �nov,+.)

Hence (C,�) is a ‘deformation’ over �nov,0 in the sense similar to that in
definition 8.2.26. (However, since �0 �= 0 it is not strictly so.) The condition
b ∈ ∪λ>0�

λC1 implies (C,�b)⊗�nov,0 R ∼= (C,�), i.e. (C,�b) is a deformation
of (C,�). When b satisfies the Maurer–Cartan equation, �b

0 = 0, it is a
deformation of (C,�) in the sense of definition 8.2.26 strictly.

Thus when we study the set of solutions of (8.73), we are studying the moduli
space of deformations, i.e. deformations of deformations. We will explain, in the
next section, that studying these is natural in mirror symmetry.

We expand equation (3.10) and obtain

�0(1)+�1(b)+�2(b, b)+ · · · = 0. (8.74)

21 The definition of homotopy equivalence we gave in the December 2000 version of [33] looks
different from the one we gave here. We proved theorem 8.4.6 in [33] using the definition there.
We will rewrite the proof of it and prove the homotopy equivalence in the sense defined here in the
final version of [33]. The two definitions are actually equivalent to each other.
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Another important difference between (8.74) and (8.39) is that (8.74) is
inhomogeneous (i.e. there is a term �0(1)). As a consequence b = 0 is not a
solution of (8.74). Actually there are cases where (8.74) has no solutions.

Definition 8.4.9. We say that filtered A∞ algebra C is unobstructed if (8.74) has
a solution. We say that b is a bounding chain (or Maurer–Cartan element) of C if
(8.73) is satisfied.

We now define the gauge equivalence of solutions of (8.73) as follows.

Definition 8.4.10. Let b, b′ be bounding chains of C . Then b is said to be gauge
equivalent to b′ (and is written as b ∼ b′), if there exists b̃ a bounding chain of
C[t, dt] such that Evalt=0(b̃) = b, Evalt=1(b̃) = b′.

We can prove that b ∼ b′, b′ ∼ b′′ imply b ∼ b′′ in a similar way to the proof
of theorem 8.3.3 (see the final version of [33]). Lemma 8.3.10 can be generalized
to our situation in the same way.

Definition 8.4.11. We denote by �̃�(C) the sets of all bounding chains of
filtered A∞ algebra C . The set of the gauge equivalence class of bounding chains
is denoted by��(C).

Theorem 8.4.7 follows from what have we already explained. Let us
consider a category {filtered A∞ alg./R} whose object is a filtered A∞ algebra
over R and whose morphism is a filtered A∞ homomorphism. We consider its
quotient category22 {filtered A∞ alg./R}/homotopy whose object is a homotopy
equivalence class of filtered A∞ algebra over R and whose morphism is a
homotopy class of an A∞ homomorphism.

Theorem 8.4.7. C �→ ��(C) induces a functor: {filtered A∞
alg./R}/homotopy→ {Sets}.

Theorem 8.4.7 implies that the set ��(C) is a homotopy type invariant of
C . However, ‘invariant as sets’ does not mean very much. This is the reason we
state theorem 8.4.7 using the quotient category as before. A better way to state
the homotopy invariance of��(C) is given later in proposition 8.4.2.

To study��(C) we use the canonical model as in section 8.2.3.

Definition 8.4.12. A filtered A∞ algebra (C,�) is said to be canonical if�0 = 0
and �1 ≡ 0 mod �nov,+.

To generalize theorem 8.3.5 we assume a kind of finiteness condition for our
A∞ algebra C .

Definition 8.4.13. A filtered A∞ algebra C is said to be weakly finite if it is
homotopy equivalent to C ′ which is finitely generated as a �nov,0 module.

22 See, for example, [35, 47, 55] for its definition.
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We need one more assumption. We recall that we have assumed that C
is a completion of a free �nov,0 module (as a �nov,0 module). So, as the
�nov,0 module, we have C ∼= C ⊗ �nov,0. Hence, an R module homomorphism
f k : BkC[1] → C[1] induces a filtered �nov,0 module homomorphism fk :
BkC[1] → C[1].
Definition 8.4.14. A filtered A∞ algebra C is said to be strongly gapped if there
exists λi and �k,i : BkC[1] → C[1] such that

�k =
∑
i

T λi�k,i lim
i→∞ λi = ∞. (8.75)

Our main example (C(L),�k) is strongly gapped by definition. We proved
in [33, section 8.A4], that it is weakly finite.

Theorem 8.4.8. For any weakly finite, strongly gapped, and unobstructed filtered
A∞ algebra, there exists a canonical filtered A∞ algebra homotopy equivalent to
it.

We note that if we require�1 = 0 in the definition of a canonical filtered A∞
algebra, then we cannot prove theorem 8.4.8. This is because we need an analogue
of lemma 8.3.11, which does not hold over�nov,0 but only over a field.23

Proof (sketch). We consider �1,0 = �0 ⊗ 1 as in (8.75) (here we put λ0 = 0).
We note that �1,0 ◦ �1,0 = 0 follows from �0 ≡ 0 mod �nov,+. We use the
assumption that R is a field to obtain a decomposition Ker�1,0 = Im�1,0 ⊕
H (C;�1,0). We put C∗can = H ∗(C;�1,0). We then obtain a propagator Gk such
that Gk+1 ◦�1,0 +�1,0 ◦ Gk = 1−�Ck

can
.

The construction of the structure�can
k of filtered A∞ algebra on Ccan and of

filtered A∞ homomorphism ϕk : BkCcan → C then goes in a similar way to that
in the proof of theorem 8.3.5.

There are two differences, however: first, we use graphs such that the interior
vertex may have one or two edges (in condition 8.3.1, we have assumed the
interior vertices have at least three edges); and second, we assign λi to each vertex.

Each interior vertex of our graph then corresponds to a term �k,λi in (8.75)
with (k, λi ) �= (1, 0). The rest of the construction of �can

k , ϕk is similar to the
proof of theorem 8.3.5 and is omitted (see the final version of [33]).

To complete the proof, we need the following two results. Let ϕ : C → C ′
be a filtered A∞ homomorphism of a weakly finite strongly gapped A∞ algebra.
We assume C is unobstructed and let b ∈ C be a bounding chain.

Theorem 8.4.9. If ϕ1 : H (C,�b1)→ H (C ′,�ϕ∗b1 ) is an isomorphism, then ϕ is
a homotopy equivalence.

23 However, if we use the field �nov as a coefficient ring, we can prove a lemma similar to
lemma 8.3.11. However, the propagator G obtained over the�nov coefficient does not preserve energy
filtration. As a consequence, if we try to define operators �k using G , it does not converge.
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Proposition 8.4.1. If ϕ1 : H (C,�b1) → H (C
′
,�

ϕ∗b
1 ) is an isomorphism, then

ϕ1 : H (C,�b1)→ H (C ′,�ϕ∗b1 ) is an isomorphism.

Theorem 8.4.9 is an analogue of theorem 8.3.3 and can be proved in the same
way. Proposition 8.4.1 will follow from a spectral sequence which we explain
later (theorem 8.4.11). It is easy to see that ϕk : BkCcan → C satisfies the
assumption of proposition 8.4.1. Hence it is a homotopy equivalence. �

We can show that homotopy equivalences between canonical A∞ algebras
are isomorphisms in the same way as in proposition 8.3.1.

We now use theorem 8.4.8 to define a formal Kuranishi map as follows.
Let C be a canonical A∞ algebra. Let ei and fi be the bases of C1 and

C2, respectively. We put bi equal to rankR C
i
. We take formal parameters

X1, . . . , Xb1, X
ε
1, . . . , X

ε
b1

and put

�nov,0[[X1, . . . , Xb1]] = �nov,0⊗̂R R[[X1, . . . , Xb1]]
�nov,0〈X ε1, . . . , X εb1

〉 = �nov,0⊗̂R R[X ε1, . . . , X εb1
].

We note that �nov,0〈X ε1, · · · , X εb1
〉 consists of the elements∑
ai1,...,ib1

Xi11 . . . X
ib1
b1

such that ai1,...,ib1
∈ �λi1 ,...,ib1�nov,0 with

lim
min{i1,...,ib1 }→∞ λi1,...,ib1

= ∞.

�nov,0〈X ε1, . . . , X εb1
〉 is called a strictly convergent ring in rigid analytic geometry

(see [12]).
We define Pj ∈ �nov,0[[X1, . . . , Xb1]], Pεj ∈ �nov,0〈X ε1, . . . , X εb1

〉 by∑
Pj (X1, . . . , Xb1)f j = �(exp(X1e1 + · · · + Xb1eb1))∑
Pεj (X

ε
1, . . . , X

ε
b1
)f j , = �(exp(T εX ε1e1 + · · · + T εX εb1

eb1)).

Definition 8.4.15. We put �C = �nov,0[[X1, . . . , Xb1]]/(P1, . . . , Pb2). We also
put: �εC = �nov,0〈X ε1, . . . , Xεb1

〉/(Pε1 , . . . , Pεb2
).

For ε < δ we define a homomorphism πε,δ : �nov,0〈X ε1, . . . , Xεb1
〉 →

�nov,0〈X δ1, . . . , X δb1
〉 by πε,δ(Xεi ) = T δ−εX δi . It induces πε,δ : �εC → �δC . We

then define �+C = lim←−�
ε
C .

We can easily prove the following proposition.

Proposition 8.4.2. The isomorphism classes (as�nov,0 algebras) of �C , �εC , �
+
C

are independent of the homotopy equivalence of C.
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We define b̃ =∑ Xiei , b̃ε =∑ T εX εi ei . b̃
ε defines b̃+ ∈ �+C . They satisfy

Maurer–Cartan equation (8.73). Therefore (C�C ,�
b̃), (C�εC ,�

b̃ε ), (C
�
+
C
,�b̃+)

are A∞ algebras. (Here we put C�C = C⊗̂�nov,0�C etc.)

�C is a complete local ring whose maximal ideal is generated by T λ (for all
λ > 0) and Xi . Hence it parametrizes a deformation of C which is an A∞ algebra
over R.

However, �
ε
C is not a local ring, i.e. its spectrum has many

(closed) points. This is equivalent to the fact that we can define
fa1,...,ab1

: �nov,0〈X ε1, . . . , Xεb1
〉 → �nov,0 by fa1,...,ab1

(P(Xε1, . . . , X
ε
b1
)) =

P(a1, . . . , ab1). (In other words Spec(�εC ) is infinitesimally small in T direction
but is of positive size in the Xi direction.) Hence �+C is not a local ring either.

We consider the ideal �nov,+�+C of it and put �
+
C = �

+
C/(�nov,+�+C ). We then

consider a deformation C
�
+
C
= (C

�
+
C
,�b̃+) ⊗

�
+
C
�
+
C . C�+C

is a deformation of

C and is the restriction of the family (C
�
+
C
,�b̃+) to its ‘sub space’ defined by

T = 0. We can easily see that C
�
+
C

is a trivial deformation, i.e. it is isomorphic

(C,�) ⊗R �
+
C . Thus, (C

�
+
C
,�b̃+) is a deformation of C whose restriction to

T = 0 is trivial.
(C�C ,�

b̃), (C
�
+
C
,�b̃+) have the following completeness properties

(lemma 8.4.2) similar to those in lemma 8.3.14. To state the lemma, we need
some notation.

Let {filtered complete Artin local/�nov,0} be the category of filtered
complete Artin local �nov,0 algebras. {filtered complete/�nov,0} is the category
of filtered complete �nov,0 algebras. (They can be defined in the same way as in
definition 8.2.29.)

To each filtered A∞ algebra C (which may not be canonical), we define
functors��(C) : {filtered complete Artin local/�nov,0} → {Sets}, ��+(C) :
{filtered complete/�nov,0} → {Sets} as follows.

If � is a filtered complete Artin local �nov,0 algebra, then ��(C)(�) is
the set of all gauge equivalence classes of b+ ∈ C+

�
such that b ≡ 0 mod �+

and that b satisfies the Maurer–Cartan equation. (Here �+ is a maximal ideal of
�.) If � is a filtered complete �nov,0 algebra, then ��+(C)(�) is a set of all
gauge equivalence classes of b such that b ≡ 0 mod �nov,+� and b satisfies the
Maurer–Cartan equation.

Lemma 8.4.2. If b ∈ ��(C)(�), then there exists a �nov,0 algebra
homomorphism ϕ : �C → � such that ϕ(b̃) = b. If b ∈ ��+(C)(�), then
there exists a�nov,0 algebra homomorphism ψ : �+C → � such that ψ(b̃+) = b.

The proof of lemma 8.4.2 is similar to the proof of lemma 8.3.14. We next
discuss universality. We need a condition similar to the one in theorem 8.3.6. We



Application to mirror symmetry 195

consider the homomorphisms:

π : H 0(C�C ,�
b̃
1)→ H 0(C,�1) (8.76a)

π : H 0(C
�
+
C
,�b̃

+
1 )→ H 0(C,�1). (8.76b)

Lemma 8.4.3. If (8.76) is surjective then the homomorphisms ϕ and ψ in
lemma 8.4.2 are unique.

The proof is the same as the proof of theorem 8.3.6.
These two lemmata immediately imply the following theorem (8.4.10).

We need some more notation to state it. We define another functor ��C :
{filtered complete Artin local/�nov,0} → {Sets} so that ��C (�) is the set of
all �nov,0 algebra homomorphisms �C → �. We define �

�
+
C
: {filtered

complete/�nov,0} → {Sets} so that �
�
+
C
(�) is the set of all �nov,0 algebra

homomorphismsψ : �+C → �.

Theorem 8.4.10. If (8.76) is surjective then the functor��(C) is equivalent to
��C and��

+(C) is equivalent to �
�
+
C
.

Let us consider the filtered A∞ algebra C(L) of a Lagrangian submanifold
defined in the last section. We assume that L is connected and C(L) is
unobstructed. The A∞ algebra C(L) = C(L)/(�nov,+ · C(L)) is one by a
rational homotopy. In particular, H 0(C(L);�1) = R since L is connected. Its
generator is the fundamental cycle [L]. We proved in [33] that [L] gives a non-

zero element in H 0(C�C ,�
b̃
1), H

0(C
�
+
C
,�b̃

1),
24 Therefore (8.76) is surjective in

this case. Hence ��C , �
�
+
C

are universal moduli spaces of the appropriate Maurer–
Cartan functors. This fact may be related to the stability of the mirror object in
the complex side (compare [103]).

We recall that �+C represents the moduli functor of deformations of C such
that its restriction to T = 0 is trivial. This moduli functor is not an infinitesimal
one, since it is a functor from {filtered complete/�nov,0} whose object is not
necessarily Artin or local. So it makes sense to talk about its points. (However,
�C represents a moduli functor of infinitesimal deformation of C .)

Theorem 8.4.10 implies ��(C) = Hom�nov,0(�
+
C ,�nov,0) if (8.76)

is surjective. (Here the right-hand side is the set of all �nov,0 algebra
homomorphisms which is continuous with respect to the �nov,+ adic topology.)
In other words,��(C) is the set of R valued points25 of �+C .

We next explain a spectral sequence which describes the relation of (C,�b
1)

to (C,�1). In a filtered A∞ algebra C(L) of a Lagrangian submanifold, it
gives the relation between the cohomology of L and the Floer cohomology

24 We proved in [33] that it is a (homotopy) unit of our A∞ algebra C(L). In particular, it gives a
non-trivial element for the cohomology.
25 See, for example, [48] for its definition.
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H (C,�b1). When π2(M, L) = 0, theorem 8.4.3 asserts that the Floer cohomology
is isomorphic to the usual cohomology. The reason for this was that there is no
holomorphic disc when π2(M, L) = 0. If this assumption is not satisfied, then the
Floer cohomology may not be equal to the usual cohomology of the Lagrangian
submanifold. The spectral sequence we discuss here describes the procedure by
which they are deformed.

Remark 8.4.5. A translation of this phenomenon into the language of physics
might be: ‘the instanton effect changes the dimension of the moduli space of
the vacuum since it changes the mass of some particle from zero to a positive
number’.

Let b be a bounding chain of C . In general, if there exists a filtration on a
chain complex, we obtain a spectral sequence (see any textbook on homological
algebra). Filtered A∞ algebra C has a filtration (energy filtration) and hence
(C,�b1) is a filtered complex. However, the filtration is parametrized by a real
number and not by an integer. So we fix a sufficiently small λ0 > 0 and use the
filtration �kC = �kλ0C .

The other problem is that the ring �nov,0 is not noetherian. It causes serious
trouble when proving the convergence of the spectral sequence. This problem is
overcome in [33, section 8.A4]. We then obtain the following theorem.

Theorem 8.4.11. We assume that C is weakly finite and strongly gapped. Let b
be a bounding chain of it. Then, there exists a spectral sequence E p,q

r with the
following properties.

(1) E p,q
2

∼= H (C,�1)⊗R �
q�nov,0/�

q+1�nov,0.
(2) There exists a filtration FqH p(C,�b

1) on H
p(C,�b

1) and r0 such that
E p,q
r0

∼= E p,q
r0+1

∼= · · · ∼= E p,q∞ ∼= FqH p(C,�b
1)/F

q+1H p(C,�b
1).

Theorem 8.4.11 was proved by Oh [82] for monotonic Lagrangian
submanifolds with minimal Maslov number ≥ 3 (see [33, section 8.A4] for
the proof of theorem 8.4.11). We note that proposition 8.4.1 follows from
theorem 8.4.11.

Before going to the next section, we explain very briefly the case when
there are more than one Lagrangian submanifold. See [33] for the case when
there are two Lagrangian submanifolds and [30] for three or more Lagrangian
submanifolds.

Let L1, L2 be two Lagrangian submanifolds. We assume that their Maslov
indexes are zero. We also assume that they are relatively spin, i.e. we assume
that there exists st ∈ H 2(M;�2) which reduces to the second Stiefel–Whitney
class of Li . We assume that we can take the same st for both of the Lagrangian
submanifolds. We then obtain filtered A∞ algebras (C(Li ),�i ). The Lagrangian
intersection Floer homology is then a filtered A∞ bimodule CF(L1, L2), i.e. it is
a left (C(L1),�i ) and right (C(L2),�i )module. We do not define A∞ bimodule
here (see [33] for its definition).
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When there are three or more Lagrangian submanifolds Li , then we can
define a product operation.

We can use the ring �+C(Li ) defined in definition 8.4.15 to rewrite Lagrangian
intersection Floer cohomology and their product structures as follows.

Theorem 8.4.12. Let Li be a countable set of mutually transversal Lagrangian
submanifolds. We assume that their Maslov indexes are all zero. We also assume
that there exists st ∈ H 2(M;�2) which restricts to w2(Li ) for any i . We fix
relative spin structure for each Li .

Then for each i, j finitely generated, there exist �+C(Li ) �
+
C(L j )

differential
graded bimodule (�(Li , L j ),�1) and operations

�k : �(Li1 , Li2 )⊗̂�C (L2)�(Li2 , Li3 )⊗̂�+C(L3)
· · ·

· · ·⊗̂
�
+
C(Lk−1 )

�(Lik−1 , Lik )→ �(Li1 , Lik )

which satisfy A∞ formula.

See [31, 33]) for the proof of theorem 8.4.12. As �C (Li )⊗̂�nov,0�C (L j )

module, �(Li , L j ) is:

�(Li , L j ) ∼=
⊕

p∈L1∩L2

�C (Li )⊗̂�nov,0�nov,0[p]⊗̂�nov,0�C (L j ).

We note that Spec(�+C(Li )) is a moduli space parametrizing a deformation of A∞
algebra C(Li ). The bimodule over �+C(Li ), �

+
C(L j )

is regarded as a coherent sheaf

over the product Spec(�+C(Li )) ×Spec�nov,0 Spec(�+C(L j )
). Hence its cohomology

sheaf (which is an object of the derived category of coherent sheaves on
Spec(�+C(Li )) ×Spec�nov,0 Spec(�+C(L j )

)) is a family of Floer homologies. (This
is only a local family. To study global family we need more. See [31].) We will
discuss the mirror object of one constructed in theorem 8.4.11.

Remark 8.4.6. The bimodule �(Li , L j ) and operations in theorem 8.4.11 are
invariant with respect to various choices involved, for example the choice of
compatible almost complex structure J and of various perturbations. However,
it is not independent of Hamiltonian diffeomorphisms, i.e. �(L1, L2) �=
�(ϕ1(L1), ϕ2(L2)) in general. However, the Floer homology coincides with it
if we change the coefficient ring to �nov. See [33] for the proof.

Remark 8.4.7. We have assumed that the Maslov index π2(M, L)→ � vanishes
in this section. The reason we need it is that otherwise the operator �k does
not preserve degree, because the dimension of the moduli space �k+1(L; β)
depends on the cohomology class β. This assumption is not used anywhere else.
So by considering a �2 graded Floer homology we may remove this assumption
without difficulty. To apply this to symplectic geometry, it is necessary to study
the general case. However, homomorphism (8.76) may not then be surjective.
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Including the case when the Maslov index is non-zero leads us to the notion of
extended moduli space (see [86]). In complex geometry, we may consider the �2
graded chain complex of coherent sheaves. Including such objects also leads us
to extended moduli space.

Remark 8.4.8. Usually in mirror symmetry we include a flat U(1) bundle on L.
In fact such a parameter is already included in our story, i.e. our parameter T
may be regarded as a complex number. Its real part is related to H 1(L;�) by the
spectral sequence in theorem 8.4.11. H 1(L;�) parametrizes a deformation of our
Lagrangian submanifold L. Then the imaginary part H 1(L;√−1�) corresponds
to the deformation of the trivial bundle on L to a flat (non-trivial)U(1) bundle.

8.4.5 Homological mirror symmetry

We now return to the complex geometry side of the story and explain more what
is expected to be a mirror of the construction in sections 8.3.2, 8.3.3 and 8.3.4. I
am not an expert in the complex geometry part of this story. There is much deep
mathematics involved, some of which I do not know enough about. I am afraid
that there might be some error in this section; however, I dare to write this section
because it seems almost impossible to find anyone with sufficient knowledge of
all the many aspects of mirror symmetry. For example it is rare to find anyone
with enough background in both the symplectic and complex parts of the story.

I have been much influenced by Kontsevich and Soibelman [70] in writing
this section.

We first introduce some more Novikov rings. Let � be a sub semigroup
of � (i.e. � ⊆ � such that a, b ∈ � implies a + b ∈ �). We put ��R,nov =
{∑ ai T λi |λi ∈ �}. For example �

�≥0
R,nov = �R,nov,0, ��>0

R,nov = �R,nov,+.

However,�
�≥0
R,nov is the formal power series ring R[[T ]] and��R,nov is the Laurent

polynomial ring R[[T ]][T−1].
The example which appeared in the symplectic geometry of the Lagrangian

submanifold is the case when � is the semigroup generated by the symplectic
areas (i.e. the symplectic integration form) of pseudoholomorphic discs. In the
case studied by Novikov himself, i.e. Morse theory of the closed 1-form θ , the
semigroup � is the set of all θ ∩ � for � ∈ π1(M).

In mirror symmetry, we consider the case �
�≥0
R,nov, and its maximal ideal

�
�≥0
R,nov,+ = ��>0

R,nov and ��R,nov. One may also take

�
�,0
R,nov =

⋃
m

�
�[1/m]
R,nov �

�≥0 ,0
R,nov = ��,0R,nov ∩��≥0

R,nov

�
�≥0 ,0
R,nov,+ = ��,0R,nov ∩��>0

R,nov.

Exercise 8.4.1. Prove that��,0R,nov is the algebraic closure of R[[T ]][T−1] if R is
an algebraically closed field.
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Elements of �
�≥0 ,0
� ,nov is the ‘formal Puiseux series’

∑∞
k=0 akT

k/n . The ring

�
�
R,nov is a completion of ��,0R,nov.

The geometric meaning of these rings is as follows. The ring � [[T ]] is a
ring of functions of one variable. Since we are considering formal power series
we may say it is a ‘ring of holomorphic functions on D2(0), a disc of radius zero’.
The elements of � [[T ]][T−1] is a meromorphic function that is a function which
is defined outside the origin but only has a pole at 0. Hence � [[T ]][T−1] may be
regarded as a ‘ring of holomorphic functions on D2(0)\{0}’.

Considering��[1/n]R,nov corresponds to taking an n-fold Galois cover D2
n(0)→

D2(0), the elements of its sum �
�,0
R,nov may be regarded as an inductive limit

lim−→�(D2
n(0)\{0}). In algebraic geometry, it is impossible to consider a universal

cover in the usual sense, so one considers a system of finite covers and takes its
limit. In this sense ��,0R,nov is a ring of functions of the ‘algebraic universal cover’

of D2(0)\{0}.
The universal Novikov ring �nov,0 we used in sections 8.3.3, 8.3.4 is more

transcendental in nature and may be regarded as a ring of holomorphic functions
of the ‘usual universal cover’ of D2(0)\{0}.

Now let us explain how they appear in the complex geometry side of mirror
symmetry. Let us start with a symplectic manifold (M, ω). Mirror symmetry
predicts that there exists a complex manifold (M∨, J ) which is a mirror to (M, ω)
under some assumption. (It is not conjectured that any symplectic manifold has a
mirror, however.)

To be more precise, we have to modify it slightly. First in mirror symmetry,
one usually includes a closed 2-form B on M , which is called a B field. The
sum � = ω + √−1B is called a complexified symplectic structure and (M,�)
is expected to correspond to a complex manifold (M∨, J ) = (M,�)∨. We need
to include B since the moduli space of complex structure is a complex analytic
object so its mirror (a moduli space of a symplectic manifold) should be modified
so that it becomes a complex object.

Furthermore, when we have a symplectic manifold (M, ω) we actually have
a family of them, i.e. a family (M, zω) where z is a complex number such that
Re z > 0 (then (Re z)ω becomes the symplectic form and (Im z)ω becomes a B
field). Here I would like to state two points which seem to be widely accepted
among researchers in mirror symmetry.

($) The mirror (M, ω)∨ exists only if ω ∈ H 2(M;�), i.e. ω is a rational
homology class.

($$) If ω ∈ H 2(M;�) and k ∈ � then (M, zω)∨ = (M, (z + k
√−1)ω)∨.

I will not try to explain the reason why these are believed. Let us assume
them. We may then assume ω ∈ H 2(M;�) since we can replace ω by nω (n ∈ �)
if necessary. We put q = e−2πz .

Remark 8.4.9. In definition 8.4.8, T appeared as T ω∩β . Hence if we put T = e−1
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then T zω∩β will be qω∩β , the same form as in definition 8.4.8. Thus by redefining
T = q , the formal parameter T in sections 8.3.3 and 8.3.4 may be regarded as a
coordinate of the disc parametrizing the mirror family (see [31] for more details
about this point).

($$) implies that we have a family of complex manifolds (M∨, Jq ) =
(M, zω)∨ parametrized by q ∈ D2(1)\{0}. Another conjecture (see [44, 70])
predicts that such a family is a maximal degenerate family of Calabi–Yau
manifolds. Here we recall the definition of a maximal degenerate family briefly
(see [70, 73] for more detail).

Let π : M̂ → D2\{0} be a family of complex manifolds parametrized by a
unit disc D2 minus the origin. We are interested in the case when the fibres are

smooth. We assume that it extends to a flat family π+ : M̂ → D2 over D2 but
assume the fibre of the origin (π+)−1(0) is singular.

The theory here is related to the theory of variation in Hodge structures
(see [39]). We have a fibre bundle�k(M)→ D2\{0} whose fibre at q ∈ D2\{0}
is the cohomology group of (π+)−1(q) = (M, Jq ). The bundle �k(M) is a
flat bundle and the flat connection is the well-known Gauss–Manin connection.
Let us denote its monodromy on Hn(M) by ρ : Hn(M) → Hn(M). (Here
n = dim� M .) (Since π1(D2\{0}) = �we only need to consider the generator.)
It is known that the eigenvalues of ρ are all roots of unity, i.e. ρN − 1 is nilpotent
for some N . It is also known that (ρN − 1)n+1 = 0.

Definition 8.4.16. The family π : M̂ → D2\{0} is said to be a maximal
degenerate family if (ρN − 1)n �= 0, (ρN − 1)n+1 = 0

In [44, 70], an interesting conjecture was proposed about the behaviour of
the Calabi–Yau metric on (M, Jq ) when q → 0 for a maximal degenerate
family M̂ → D2\{0}, by using Gromov–Hausdorff convergence (see [43]) of
Riemannian manifolds.

We note that the maximal degenerate family is the extreme opposite to the
case when monodromy is given by a Dehn twist along symplectic sphere, which
is studied in detail in [57, 93–95].

Now let us return to our situation of π : M̂ → D2\{0}. We obtain a
differential graded algebra�0,∗(M̂/D2\{0}) over�(D2\{0}), in the same way as
explained at the beginning of section 8.1.7. The ring�(D2\{0}) is different from
the ring of meromorphic functions on D2, i.e. �(D2\{0}) contains a function
which has an essential singularity at 0. However, using an extension of our
family to 0, one can find a differential graded algebra Ĉ over �(D2) so that
Ĉ ⊗�(D2) �(D

2\{0}) is homotopy equivalent to �0,∗(M̂/D2\{0}). Moreover

Ĉ ⊗�(D2) � [[T ]][T−1] is independent of the extension but depends only on the
family over D2\{0}.

However, the differential graded algebra Ĉ over � [[T ]] depends on the
choice of the extension of our family at 0. The choice of such an extension is
sometimes called the choice of model. It seems that no canonical choice of such
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model is known in the general situation and this seems to be related to a deep
problem in algebraic geometry. A natural choice of a model is known in some
cases, for example in the case of elliptic curves [59, 79].

The discussion on the Novikov ring at the beginning of this section suggested
that it is important to consider the family parametrized not only by � [[T ]] but also

by�
�≥0 ,0
� ,nov or �

�≥0
� ,nov . To obtain such a family, we first take an n-fold cover of the

base D2\{0}, pullback the family and consider the ‘limit’ when n →∞. It seems
that what Kontsevich and Soibelman [70] suggested about the relation of mirror
symmetry and rigid analytic geometry is somehow related to this point. Let me
mention just one example to show this relation.

Example 8.4.2. Let us consider a (real) 2-torus T 2. Its symplectic form ω is
unique up to a constant. Its mirror (T 2, zω)∨ is � /(� ⊕ √−1z�). This gives
a standard family of elliptic curves parametrized by q = e−2πz ∈ D2\{0}. The
monodromy matrix is

(
1 1
0 1

)
. In this case there is a canonical choice of model,

i.e. we put a type I singular fibre (in the classification of Kodaira [59]) over the
origin. Now we replace q by q1/n. Then the monodromy matrix will become(

1 n
0 1

)
. Hence the the singular fibre will become type In .
Now, what happens when n → ∞ ? We will have a dense set of singular

points which consists of all rational points of S1 and its completion (that is
S1) may be regarded as a limit. This seems to be the picture of rigid analytic
geometry [9, 12].

This S1, in turn, will be the Gromov–Hausdorff limit of the Riemannian
manifold � /(�⊕√−1z�) equipped with a Calabi–Yau metric (which is nothing
other than the flat metric in this case) with its diameter normalized to 1.

This seems to be the simplest case of the picture proposed by Kontsevich and
Soibelman [70].

Now let us try to formulate the homological mirror symmetry conjecture.
Suppose we have a Lagrangian submanifold L of a Calabi–Yau manifold (M, ω)
which is relatively spin and Maslov index π2(M, L)→ � is zero.

Definition 8.4.17. L is said to be rational if
∫
D1 ϕ

∗ω ∈ � for any [ϕ] ∈
π2(M, L).

Remark 8.4.10. The definition of rationality here is a tentative one. For example
let us consider the case of symplectic 2-torus (T 2, ω) (2 is the real dimension).
In T 2 = �2/(�⊕ �), we consider Lagrangian submanifolds �/� × {a}, where
a ∈ �/�. I would rather like to call it rational only when a ∈ �/� but, in the
sense of definition 8.4.17, it is always rational. Such a problem might disappear
in the case when M is simply connected.

With a rational Lagrangian submanifold L, we can associate an A∞ algebra
(C(L),�) over ��,0nov,0. Actually, using the fact that π2(M, L) is finitely

generated, we can define it over��[1/m]nov,0 for some m ∈ �>0.
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We suppose that we have a mirror family (M, zω)∨ parametrized by q =
e−z .26 By Remark 8.4.9 we may identify q with T in sections 8.3.3 and 8.3.4. We
take an m-fold cover of our mirror family and get a family πm : M̂m → D2\{0}.
The mirror object is expected to be a family of holomorphic vector bundles over
this family. But we need a slightly more general object than a vector bundle, i.e.
an object of the derived category of coherent sheaves. In our situation, this may
be regarded as a complex

�̂1
δ1−→ �̂2

δ2−→ �̂3
δ3−→ · · · δN−1−→ �̂N (8.77)

here �̂i is a family of holomorphic vector bundles over πm : M̂m → D2\{0} and
δi a holomorphic section of Hom(�̂i , �̂i+1) over M̂m . We write such an object
as � .

One can define a differential graded algebra describing a deformation of this
object. For example we can proceed as follows.27 We put

�k(� , � ) =
⊕

i, j :i≤ j≤i+k
�0,k+i− j (M̂m/�(D

2\{0});Hom(�i , � j )). (8.78)

For ϕ ∈ �k(� , � ) we denote its �0,p−�(M̂m/�(D2\{0});Hom(�i , �i+�))
component by ϕi,�. We then put

(dϕ)i, j = ±∂� j ◦ ϕi, j ± ϕi, j ◦ ∂�i ± δ j ◦ ϕi, j−1 ± ϕi+1, j ◦ δi .
We also put

(ϕ ◦ φ)i, j =
∑
�

±ϕ�, j ◦ φi,�

(see [27, chapter 4] for sign). We can check (�∗(� , � ), d, ◦) is a differential
graded algebra and hence an A∞ algebra over �(D2\{0}) (where T 1/m is the
coordinate). If we can extend � to a family over D2 then we have a differential
graded algebra over �(D2). We formalize it as in section 8.1.7 and obtain a
differential graded algebra over ��[1/m]nov,0 or ��[1/m]nov . We note that a differential

graded algebra over��[1/m]nov,0 depends on the choice of the extension (model).
Now a part of homological mirror symmetry conjecture is stated as follows.

Conjecture 8.4.1. Let L be a rational Lagrangian submanifold which is relatively
spin and its Maslov index is zero. We assume that (C(L),�) is unobstructed.

Then there exists an object � as in (8.78) together with its extension to
0 ∈ D2

m, such that (C(L),�) is homotopy equivalent to (�
∗(� , � ), d, ◦) as an

A∞ algebra over��[1/m]nov,0 .
26 The construction of a mirror family has now been studied extensively by several people. In this
article I do not try to discuss it.
27 Compare [27, chapter 4]. There we developed a similar but more general construction in the case
of a twisted complex.
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We proceed to the case corresponding to theorem 8.4.11 as follows. Let
us consider the case when we have two objects � and � of a derived category
of coherent sheaves on M̂m → D2\{0}. Then we can define �∗(� , �) in a way
similar to that for (8.78). It is a differential graded bimodule over (�∗(�, � ), d, ◦)
and (�∗(�, �), d, ◦). It induces a ��∗(�,� ), , ��∗(�,�) differential graded
bimodule�∗(�, �).

Conjecture 8.4.2. If Lagrangian submanifold Li corresponds to � i by
conjecture 8.4.1 then the differential graded bimodule �∗(� i , � j ) is chain
homotopy equivalent to the differential graded bimodule�∗(Li , L j ).

Note conjecture 8.4.1 implies �C(Li ) ∼= ��(�i ,�i ) and hence �
∗(� i , � j ),

�∗(Li , L j ) are both �C(Li ) �C(L j ) differential graded bimodule.

We can continue and state the coincidence of the product structures. In
the complex side we have the Massey–Yoneda product induced by the obvious
composition operators ◦ : �k(�1 , �2 )⊗��[1/m]nov,0

��(�2 , �3 )→ �k+�(�1 , �3 ). The

most natural way to do this is to use the notion of filtered A∞ category defined
in [30]. We add two remarks.

Remark 8.4.11. In conjecture 8.4.1 we took��[1/m]nov,0 with large m as a coefficient
ring. However, the number m depends on � , so to have a better statement it

is natural to use ��,0nov,0 or ��,0nov in place of ��[1/m]nov,0 by taking the limit. To
go to the limit however, we have to clarify the following point. Let us denote
the mth branched cover of D2 by D2

m (D2
m is actually D2 but its coordinate is

T 1/m). Let M̂m → D2
m\{0}. Let M̂+

m → D2
m be a model of M̂m (that is an

extension of it to the origin). Let us consider M̂mm′ → D2
mm′ \{0}. We want to

find M̂+
mm′ → D2

mm′ together with M̂+
mm′ → M̂+

m . The naive choice, that is the

fibre product D2
mm′ ×D2

m
M̂+
m , does not seem to be a good choice. For example this

is not the correct choice for example 8.4.2. In the case of Abelian variety, [79]
seems to give an appropriate choice. I do not not know whether the choice of such
systems M̂+

m → D2
m together with maps M̂+

mm′ → M̂+
m are known in the general

case of, say, Calabi–Yau manifolds.
We suppose that such a choice is given. Then we may consider a derived

category of coherent sheaves over M̂ equipped with a kind of Etal topology.
Then, the A∞ category we obtain is defined over ��,0nov . The coherent sheaves
on Berkovich spectra [9] (as discussed in [70]) might be related to such objects. I
do not have enough knowledge to discuss them at the time of writing this article.

We finally explain a mirror to example 8.2.6. Let us first consider T 2 =
�

2/�2. Let x, y be coordinates of �2 . We take a Lagrangian submanifold Lk
of T 2 defined by y = −kx , where k ∈ �≥0. We use the mirror symmetry of
the elliptic curve from [85] then L0 will become the trivial bundle on mirror �
(elliptic curve) and Lk becomes a complex line bundle �.

Note in this case Floer’s condition π2(T 2, Lk) = 0 is satisfied. Hence, Floer
homology is defined as in section 8.3.3. We find that the intersections of L0 and
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Lk consists of k points. We can calculate its Maslov–Viterbo index and find that
it is 1. Hence H F0(L0, Lk) = 0, H F1(L0, Lk) = � k . We are thus in a situation
which mirrors example 8.2.6.

Now we take two Lagrangian submanifolds L(1) = Lk × L0 and L(2) =
L0× Lk on the direct product T 2× T 2. We take the symplectic form ω on it such
that (T 2×{0})∩ω = ({0}×ω)∩ω. Then the mirror family is a product�q×�q .
When q = e−z converges to 0 the two factors will degenerate as in example 8.4.2.
It is easy to see that this family is a maximally degenerate family.

Now it is easy to see that L(1), L(2) are mirrors of pr∗1 � and pr∗2 �,
respectively. The mirror of � = pr∗1 � ⊕ pr∗2 � should be the union L(1) ∪ L(2).
It is immersed, however, so the construction in sections 8.3.3 and 8.3.4 does not
apply directly. However, we can modify it as follows. Take C(L1) ⊕ C(L2) and
add two generators [p12], [p21] to each intersection point p ∈ L1 ∩ L2. There are
k2 intersection points p ∈ L1 ∩ L2 which we write as pi j i, j = 1, . . . , k. Now

C(L1)⊕ C(L2)⊕
⊕
i j

(�nov,0[p12
i j ] ⊕�nov,0[p21

i j ])

is our complex (see [1]). The boundary operator �1 is non-trivial on C(Li ) and
hence�1 cohomology is

H ∗(L1)⊕ H ∗(L2)⊕
⊕
i j

(�nov,0[p12
i j ] ⊕�nov,0[p21

i j ]). (8.79)

We can define a structure of A∞ algebra on it. To calculate the formal Kuranishi
map we need to calculate the product structure. Since there is no holomorphic
disc which bounds Li , it follows that the operator �2 is equal to the usual cup
product and�3 and higher are zero, on the first two components. There is also no
pseudoholomorphic disc bounding the union of the two Lagrangian submanifolds
L1, L2, other than the trivial one. The trivial disc contributes

�2(p
12
i j , p

21
i j ) = [pi j ;1] �2(p

21
i j , p

12
i j ) = −[pi j ;2] (8.80)

where pi j ;1 is a singular 0 chain pi j ∈ L(1) and pi j ;2 is a singular 0 chain
pi j ∈ L(2). All other products are zero. We note that H 2(Li ) = H0(Li ). Hence
the degree 2 part of (8.79) is � 2 and �2(p12

i j , p
21
i j ) �2(p21

i j , p
12
i j ) will be the first

and second factor of H 2(Li )⊕ H 2(L j ) = �
2 , respectively. We thus find that∑

i j

xi j [pi j ;1] + yi j [pi j ;2] �→
(∑

i j

xi j yi j ,−
∑
i j

xi j yi j

)
is the (non-zero part of) Kuranishi map. This map coincides with the one in
example 8.2.6.

In this example, the operator is independent of q = e−z . We can find an
example that the operator actually depends on q (and is a theta function of it)
in the case M∨ = �3 (see chapter 4 of [27] and chapter 7 of (2000 December
version of) [33]). More examples seem to be available in the Physics literature.
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of Mathematicians, Zürich vol I (Boston, MA: Birkhäuser) pp 120–39

[69] Kontsevich M 1997 Deformation quantization of poisson manifolds i Preprint
q-alg/9709040

[70] Kontsevich M and Soibelman Y 2001 Homological mirror symmetry and torus
fibrations Symplectic Geometry and Mirror Symmetry (Singapore: World
Scientific)

[71] Kuranishi M 1962 On the locally complete families of complex analytic structures
Ann. Math. 75 536–77

[72] Li J and Tian G 1998 Virtual moduli cycles and Gromov-Witten invariants of
algebraic varieties J. Am. Math. Soc. 11(1) 119–74

[73] Lian B, Todorov A and Yau S T 2000 Maximal unipotent monodromy for complete
intersection CY manifolds Preprint math.AG/0008061

[74] Manin Y 1999 Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces
(Providence, RI: American Mathematical Society)

[75] McDuff D and Salamon D 1994 J-Holomorphic Curves and Quantum Cohomology
(University Lecture Series 6) (Providence, RI: American Mathematical Society)

[76] McDuff D and Salamon D 1995 Introduction to Symplectic Topology (Oxford:
Oxford Science)

[77] Merkulov S A 1999 Strongly homotopy algebras of a Kähler manifold Int. Math.
Res. Notices 3 153–64

[78] Mumford D 1965 Geometric Invariant Theory (Berlin: Springer)
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Chapter 9

Large N dualities and transitions in
geometry

Antonella Grassi1 and Michele Rossi2
1 University of Pennsylvania Philadelphia, PA, USA and Institute
for Advanced Study, Princeton, NJ USA
2 Dipartimento di Matematica, Università di Torino, 10123 Torino

This chapter is based on lectures given by the first author in May 2001 in Como.
The second author attended the lectures and volunteered to help write the notes;
in the end MR completely wrote sections 9.2.2, 9.2.3 and the appendices, which
were only sketched in the lectures.

The lectures, hence this chapter, were prepared for an audience of beginning
graduate students, in mathematics and physics, whom we hoped to get interested
in this subject. Because most of the material presented here comes from the
physics literature, we aim to build a bridge for the mathematicians towards the
physics papers on the subject.

On one hand, we have tried to make this chapter self-contained and have
not assumed much knowledge beyond first/second year courses. On the other
hand, we thought it was important to outline links between this chapter and
other research topics in string theory and mathematics, even when these were
not essential to the main motif. In these cases, we have just given statements,
without necessarily defining all the terms involved.

In 1974 ’t Hooft conjectured that large N-gauge theories are dual to closed-
string theory. In 1998, Gopakumar and Vafa conjectured that SU(N) Chern–
Simons theory on S3 is dual to IIA string theory (with fluxes) compactified on a
certain local Calabi–Yau manifold Y , where the geometry of Y is the key to the
duality.

It is, in fact, possible to do topological surgery on Y (a birational contraction
followed by a complex deformation in algebraic geometry) to obtain another
Calabi–Yau manifold Ŷ ; it turns out that Ŷ ∼= T ∗S3. Y and Ŷ are said to be
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related by a ‘geometric conifold transition’. From previous work by Witten,
Chern–Simons theory on S3 is equivalent to IIA on Ŷ , with SU(N) D-branes
wrapped on S3.

Evidence for the conjecture comes by comparing the partition function for
the Chern–Simons theory on S3 and the partition function for IIA on Y . The
corresponding mathematical quantities are certain topological invariants of S3

and Gromow–Witten invariants on Y ; knot invariants on S3 and ‘open Gromow–
Witten invariants’ on Y . These invariants should ‘count’ maps of Riemann
surfaces with boundary to Y . We use quotation marks as the ‘open Gromow–
Witten invariants’ are not yet rigorously defined; yet, in this particular case it is
possible to make some working definitions. There is still an ambiguity but, as it
turns out, there is also an ambiguity on the Chern–Simons side (due to the choice
of the framing of the knot) and the ambiguity on both sides match.

The topic of the last lecture in Como was the strategy to prove the conjecture,
proposed by Atiyah, Maldacena and Vafa, by lifting the IIA theories to M-theory
compactified on seven-dimensional manifolds with G2 holonomy.

In the first section, after fixing some notation we describe in details the
geometry of the conifold transition, because the local geometry is the key to the
duality. We include two sections on transitions between Calabi–Yau threefolds
and their significance in algebraic geometry and the physics of string theory. The
manifolds are local Calabi–Yau, so we start with a definition of Calabi–Yau. In
the second section we present some background on Chern–Simons theory and,
in section 3, the evidence for the conjectures. In the last section we present the
strategy of Atiyah Maldacena and Vafa and include some basics on spaces with
G2 holonomy.

We gloss over the notion of D-branes wrapped on Lagrangian submanifolds,
as these were discussed in A Lerda’s lectures, as well as many aspects of
conformal field theory, the topic of Y Stanev’s lectures. There is no discussion
of IIA theory itself, partly because of time constraints, partly because IIA,
IIB theories and Gromow–Witten invariants have recently been in the spotlight,
thanks to the celebrated ‘mirror symmetry’.

Many of the results presented in these lectures appeared in preprint form,
or were announced, while the lectures were prepared and given. Other related
papers appeared afterwards; we do not discuss these papers, as this chapter closely
follows the lectures.

The first author would like to thank the organizers of the Conference, for the
opportunity to give these talks and S Katz, J Maldacena, and N Seiberg for kindly
explaining their work. Thanks are also due to R Donagi, D Harbater, P Horja,
K Karu, D Morrison, B Ovrut, I Zharkov and especially L Traynor, for many
useful conversations. AG is much indebted to D E Diaconescu, who patiently
answered all her questions on various topics concerning these lectures. MR would
like also to thank S Garbiero for useful conversations.

These lectures were prepared while the first author was a member at the
Institute for Advanced Study in Princeton, NJ. AG was supported in part by
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the National Science Foundation grants DMS-9706707, DMS-0074980, DMS-
9729992; MR by Italian MIUR’s grants.

9.1 Geometry and topology of transitions

In this section we describe in detail the geometry of the conifold transition
between two varieties Ŷ ⊃ S3 and Y . The local geometry is, in fact, the key
to the duality between SU(N) Chern–Simons on S3 and IIA on Y , for large N .
We also include two sections on the transitions between Calabi–Yau threefolds
and their significance in algebraic geometry and the physics of string theory.

Y and Ŷ are local Calabi–Yau, i.e. open neighbourhoods in Calabi–Yau
manifolds. The Calabi–Yau condition preserves the supersymmetry needed by
the IIA string theory:

Definition 9.1.1. A Calabi–Yau manifold is a smooth n-dimensional complex
algebraic manifold with a trivial canonical bundle, i.e. �n

Y
∼= �Y and such that

H j (�Y ) = 0 ∀ j 0 < j < n.

It can be verified that hypersurfaces of degree d in �d+1 are d − 1 Calabi–
Yau manifolds. Elliptic curves and K3 surfaces are the one- and two-dimensional
Calabi–Yau manifolds.

This definition of Calabi–Yau variety is the most common in the algebraic
geometry literature: it is the natural generalization of that of a K3 surface. It
is worthwhile keeping in mind that there are other, non-equivalent, definitions
of a Calabi–Yau threefold; we will discuss a definition, which is relevant in the
physics context and its equivalence to the following one in (9.4.3), section 9.4.
Note also that the current definition of K3 is different from the one originally
used by Weil (see, for example, Barth et al 1984). For a nice presentation of some
of the different definitions and implications among them, see Joyce (2000).

In the three-dimensional case it is first possible to have transitions between
topologically different Calabi–Yau manifolds:

Definition 9.1.2 (Cox and Katz 1999, Morrison 1999). Let Y be a Calabi–Yau
threefold and φ : Y −→ Y be a bimeromorphic contraction onto a normal variety.
If there exists a complex deformation (smoothing) of Y to a smooth Calabi–Yau
threefold Ŷ then the process from Y to Ŷ is called a transition.

This concept plays an important role both in algebraic geometry and in
superstring theory as we will see later. The following transition, the conifold
transition, is the focus of the work of Vafa and collaborators and of these lectures;
in definition 9.1.2 we briefly discuss other transitions of Calabi–Yau manifolds.
This example is based on a Clemens’ construction (Clemens 1983) and reported
in Greene et al (1995) (see also Cox and Katz 1999, example 6.2.4.1).
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Example 9.1.3 (Conifold transition). Let Y be the generic quintic threefold in
�

4(x0 : . . . : x4) containing the plane π defined by x3 = x4 = 0. It is the
hypersurface defined by the equation

x3g(x0, . . . , x4)+ x4h(x0, . . . , x4) = 0

where g, h are generic homogeneous polynomial of degree 4 (sections in
H 0(��4(4))). Y is singular precisely at the 16 points defined by the equations:

x3 = x4 = g = h = 0.

We will see in definition 9.1.1 that the topology of the variety around each singular
point is that of a real cone, hence the name, conifold. The local equation
defining each singularity is that of a node (see also appendix 9.5 in the proof
of theorem 9.1.5):

z1z3 + z2z4 = 0 ⊂ �
4 . (9.1)

Now consider the threefold Y ⊂ �4 × �1 defined by the equations:{
y0g(x0, . . . , x4)+ y1h(x0, . . . , x4) = 0

y0x4 − y1x3 = 0
(9.2)

with [y0, y1] ∈ �1. It can be directly verified that Y is smooth (or use Bertini’s
theorem); then φ : Y −→ Y is an isomorphism outside the 16 nodes of Y ,
and their inverse images in Y , which are 16 copies of �1s. Y is the birational
resolution of Y (see appendix 9.5); φ is also called a ‘small blow up’ of Y ,
because the inverse image of points are complex curves and not complex surfaces.
In particular KY ∼ φ∗(KY ) ∼ �Y , that is φ is a crepant resolution (see 9.5).
Moreover

h1,0(Y ) = h2,0(Y ) = h1,0(Y ) = h2,0(Y ) = 0

then Y is a Calabi–Yau threefold with

h1,1(Y ) = h1,1(Y )+ 1 = 2.

Note also that all the contracted �1’s are on the same extremal ray of the Mori
cone NE(Y ), (see 9.5.4), i.e. φ cannot be factored in other contractions. φ is
called a primitive contraction of type I (see 9.1.2). However, Y ⊂ �4 can be
deformed to the generic quintic threefold Ŷ ⊂ �4 which is again a Calabi–Yau.
The process going from Y to Ŷ is a (primitive) extremal transition of type I. We
will see in section 9.1.1 that the topology of these singularities is that of a node:
this transition is often called as the conifold transition.

By Clemens’ topological analysis one can see that Y and Ŷ do not have the
same topology. See section 9.1.1 and theorem 9.1.5 for more details.
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9.1.1 The local topology of a conifold transition

Here we analyse the local geometry and topology of a conifold transition Y to Ŷ
presented in example 9.1.3.

Definition 9.1.4. A threefold singularity defined by the equation

x2 + y2 + z2 + v2 = 0

is called a node (nodal singularity) (see appendix 9.5).

By a change of coordinates, the equation of the node can be re-written as

z1z3 + z2z4 = 0 (9.3)

via the affine transformation

x = z1 + iz3

y = z3 + iz1

z = z2 + iz4

v = z4 + iz2.

(9.4)

The singularities of example 9.1.3 are nodes:

The conifold, revisited

The original threefold Y ⊂ �
4 is given by the equation:

x3g(x0, . . . , x4)+ x4h(x0, . . . , x4) = 0.

By a linear projective transformation we may assume the point P = (1 : 0 :
. . . : 0) to be one of the 16 singular points of Y and localize our analysis in
a neighbourhood U of P . By intersecting Y with the affine open subset of �4

defined by x0 �= 0 we get the local equation of U ⊂ �
4 :

z3g̃(z1, . . . , z4)+ z4h̃(z1, . . . , z4) = 0

where zi := xi/x0 for i = 1, . . . , 4, g̃ := g/x4
0 and h̃ := h/x4

0 . Since g and h are
generic we may assume g̃ and h̃ to be smooth maps � 4 −→ � submersive at the
origin (i.e. at P ∈ U ) and by the inverse function theorem we have locally

g̃(z1, . . . , z4) = z1

h̃(z1, . . . , z4) = z2

up to a suitable analytic change of coordinates (it is the well-known local
submersion theorem).
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Figure 9.1. The topology of the conifold transition.

Theorem 9.1.5 (Clemens 1983, lemma 1.11).

(i) Let U be the neighbourhood of a threefold nodal singularity, then U is a
real cone over S2 × S3.
(ii) Let U be a neighbourhood of the strict transform of a node in Y , then:
U ∼= D4 × S2 ⊂ � 2 × S2. Furthermore�U |�1 ∼= ��1(−1)⊕��1(−1).
(iii) Let Û be the deformed neighbourhood of a node, then Û ∼= D3 × S3 ⊂
T ∗S3 ∼= �

3 × S3. In particular the non-strivial S3 is the vanishing cycle of
Û and it is locally embedded as a Lagrangian submanifold in T ∗S3.
(iv) The conifold transition is a local surgery which replaces a tubular
neighbourhood D4 × S2 of the exceptional fibre �1

�
∼= S2 in U by S3 × D3

to obtain a smoothing Û of U. This is the classical surgery between two
manifolds with the same boundary. In particular, U and Û are topologically
different.
(v) More generally, there are relations between the Betti numbers of the
Calabi–Yau manifolds Y and Ŷ as in example 9.1.3.

The invariants discussed in the rest of the article are determined by the local
geometry around the singular locus, so we identify (sometimes perhaps too freely)
the Calabi–Yau manifolds Ŷ and Y with the affine varieties �3 × S3 and �4 × S2

containing the local neighbourhoods Û and U .
The following proof of the theorem is a review of what’s explained in the

first section of Clemens (1983) and also Candelas and de la Ossa (1990).
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Proof

(i)

As we have seen in (9.3), the local equation of a threefold U with a nodal
singularity at the origin is:

z1z3 + z2z4 = 0. (9.5)

Consider now the affine transformation

w1 = (z1 + z3)/2

w2 = i(−z1 + z3)/2

w3 = (z2 + z4)/2

w4 = i(−z2 + z4)/2

(9.6)

and set w j = u j + iv j ; we can now identify U with the subset V ⊂ �
8 defined

by the equation:
4∑
j=1

u2
j −

4∑
j=1

v2
j = 0

4∑
j=1

u jv j = 0.

(9.7)

Note now that there is a diffeomorphism

V \ {(0, . . . , 0)} ∼= (�4 \ {(0, . . . , 0)})× S2

where S2 is the unitary sphere in �
3 . In fact, for every positive real number

ρ we can consider the radius ρ hypersphere S7
ρ ⊂ �

8 and the section Vρ :=
Sρ ∩ (V \ {(0, . . . , 0)}). Clearly we get

V \ {(0, . . . , 0)} =
∐
ρ∈�>0

Vρ.

However, Vρ has equations

4∑
j=1

u2
j =

4∑
j=1

v2
j = 1

2ρ
2

4∑
j=1

u jv j = 0.
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Hence Vρ ∼= S3 × S2 since the fibre over a fixed point (uo1, . . . , u
o
4) ∈ S3

ρ/
√

2
is

given by the subset of �4 (v1, . . . , v4) defined by

4∑
j=1

v2
j = 1

2ρ
2

4∑
j=1

uojv j = 0

which is clearly a S2. Therefore∐
ρ∈�>0

Vρ ∼= (�>0 × S3)× S2 ∼= (�4 \ {(0, . . . , 0)})× S2 (9.8)

and U ∼= V identifies with the real cone over S3 × S2.

(ii) The blown-up conifold, the small resolution of a nodal singularity

Motivated by formula (9.2), we consider the standard projection φ : � 4 × �1 →
�

4 and its restriction to open smooth threefold U ⊂ �
4 × �

1 defined by

y0z4 − y1z3 = 0

y0z1 + y1z2 = 0
(9.9)

with [y0, y1] ∈ �1. φ|U = ϕ : U −→ U . Recall that U is defined by the
equation z1z3 + z2z4 = 0 and has a nodal threefold singularity at the origin. ϕ
induces an isomorphism between the open sets U \φ−1(P) ∼= U \ {(0, . . . , 0)} ∼=
V \ {(0, . . . , 0)}. As in the previous, compact example, U → U is a birational
resolution of U (see appendix 9.5).

This ‘small resolution’ of U , was obtained by ‘blowing up’ the plane
z3 = z4 = 0; by blowing up the plane z3 = z2 = 0 we would have another
small resolution U+ isomorphic to U outside the locus of the exceptional curves.
U+ is called the flop of U and the birational transformation

U ← · · · → U+ (9.10)

the ‘flop’. By analogy the transformation in section 9.4 will also be called a flop.
In particular, we then have a diffeomorphism

U \ φ−1(P) ∼= (�4 \ {(0, . . . , 0)})× S2 (9.11)

and we want to extend it to the exceptional fibre φ−1(P) ∼= �1 ∼= S2 to give a
diffeomorphism

U ∼= �
4 × S2. (9.12)
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In order to construct it, observe that under the affine transformation (9.6) and
the previous identification � 4 (w1, . . . , w4) ∼= �8 (u1, . . . , u4, v1, . . . , v4) the
neighbourhood U is sent diffeomorphically onto the subset of �8 × �

1
�

defined
by

y0u3 + y0v4 − y1u1 − y1v2 + i(y0v3 − y0u4 − y1v1 + y1u2) = 0

y0u1 − y0v2 + y1u3 − y1v4 + i(y0v1 + y0u2 + y1v3 + y1u4) = 0.
(9.13)

Hence the fibre over a fixed point (y0 : y1)
o ∈ �

1
�

is a �4 ⊂ �8 ensuring the
existence of the diffeomorphism (9.12) up to eventually shrink U . Moreover, by
splitting y0 and y1 into real and imaginary parts, equations (9.13) reduce to the
following matricial form:

v = Au

where u and v are vectors whose entries are given by u j and v j , respectively, and
A is an antisymmetric matrix uniquely determined by the fixed projective point
(y0 : y1)

o. Since outside of the origin the coordinates u j and v j have to satisfy
the equations (9.7) this suffices to show that the restriction of the diffeomorphism
(9.12) to U \ φ−1(P) gives the diffeomorphism (9.11) precisely. Note that U
can be identified with the total space of the normal bundle �U |�1 which is a
holomorphic vector bundle of rank 2 over �1. By the Grothendieck theorem (see,
for instance, Okonek et al 1980) we have the splitting

�U |�1 ∼= ��1(d1)⊕��1(d2)

for some d1, d2 ∈ �. The local equations (9.9) allows us to determine these
integers. In fact, we can choose two local charts on S2 ∼= �1(y0 : y1) around the
north and south poles respectively. Say τ := y0/y1 and σ := y1/y0 the two local
coordinates on �

1. Lifting these charts to �U |�1 we can choose the two local
parameterizations

(τ, z1)⊕ (τ, z4) (σ,−z2)⊕ (σ, z3).

Look at the fibre over a fixed point (y0 : y1) = (τ : 1) = (1 : σ) in the gluing of
the charts. Since here σ = τ−1 by the local equations (9.12) we get

−z2 = σ−1z1 = τ z1

z3 = σ−1z4 = τ z4

which means that the transition functions τ−d1, τ−d2 ∈ � ∗ = GL(1, � ) are given
by τ , i.e. d1 = d2 = −1.
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(iii)

Consider the (real) one-parameter family of local smoothing Ût of U assigned by

4∑
j=1

u2
j −

4∑
j=1

v2
j = t

4∑
j=1

u jv j = 0

t ∈ �>0 . (9.14)

Note that the generic quintic hypersurface Ŷ ⊂ �
4 smoothing Y in example 9.1.3

can be chosen to admit local equations as in (9.14) for some real t0 > 0
since the real one-dimensional arc parametrized by t can be chosen transversely
with respect to the Zariski closed subset of singular quintic hypersurfaces and
connecting Y to Ŷ . Consider now the map

�
8 (u1, . . . , u4, v1, . . . , v4) −→ �

8 (q1, . . . , q4, p1, . . . , p4)

assigned by setting

q j = u j√
t +∑i v

2
i

p j = v j .
(9.15)

For every t > 0 it maps Ût diffeomorphically onto the cotangent bundle T ∗S3 ∼=
S3 × �

3 to the unitary sphere S3 ⊂ �
4 (q1, . . . , q4) embedded in �8 as follows.

4∑
j=1

q2
j = 1

4∑
j=1

q j p j = 0.

(9.16)

Note that the 3-cycle St ⊂ Ût described in �8 by

4∑
j=1

u2
j = t

v1 = · · · = v4 = 0

which vanishes when t = 0, is diffeomorphically sent onto the unitary sphere
S3 ⊂ T ∗S3.

The deformed conifold as a symplectic manifold

The canonical symplectic form given by

ω := dϑ
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where ϑ := ∑4
j=1 p j dq j is the Liouville form of �8 , induces a vanishing

symplectic form on S3 since this sphere is described in T ∗S3 by p1 = · · · =
p4 = 0 (locally only three of these equations are needed). This shows that S3 is a
Lagrangian subvariety of T ∗S3:

Definition 9.1.6. Y ⊂ X a subvariety is called Lagrangian if dimY =
1/2 dim(X) and the symplectic form ω of X annihilates on every tangent vector
to Y , i.e.

∀p ∈ Y, ∀u, v ∈ TpY ω(u, v) = 0.

The same is then true for the vanishing cycle St ⊂ Ût .

(iv) The local description of the conifold transition

Consider the diffeomorphism:

α : (�4 (u) \ 0)× �
4 (v) −→ (�4 (q) \ 0)× �

4 (p) (9.17)

given by

q j = u j√∑
i u

2
i

p j = v j
√∑

i

u2
i .

Note that, by (9.7) and (9.16), α restricts to a diffeomorphism

U \ φ−1(P) ∼= (�4 \ {0})× S2
α∼= S3 × (�3 \ {0}). (9.18)

In particular the fibre over a fixed point uo ∈ �4 \ {0} such that
∑

i (u
o
i )

2 = ρ2,

which is the 2-sphere S2
ρ ⊂ �

4 (v) given by
∑

j v
2
j − ρ2 = ∑4

j=1 u
o
jv j = 0, is

diffeomorphically sent onto the fibre over the fixed point qo = α(uo), which is
the 2-sphere S2

ρ2 ⊂ �
4 (p) given by

∑
j p

2
j − ρ4 =∑4

j=1 q
o
j p j = 0. Calling Dn

the closed unitary ball in �n , this means that α restricts to give a diffeomorphism

(D4 \ {0})× S2
α∼= S3 × (D3 \ {0}) (9.19)

which reduces to the identity on their boundaries S3 × S2. Hence recalling (9.12)
we can cut the interior of a D4 × S2 around the exceptional fibre φ−1(P) in U
and paste by α the interior of a S3 × D3 to get Ût for some t > 0.
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(v) The Betti numbers

If Y has N nodes (and no other singular points) and δ is the number of
linearly independent vanishing cycles in the smoothing Ŷ , we get the following
relationship between the Betti and the Euler numbers of Y and Ŷ :

b3(Y ) = b3(Ŷ )− 2δ
b2(Y )+ b4(Y ) = b2(Ŷ )+ b4(Ŷ )+ 2(N − δ)
χ(Y ) = χ(Ŷ )+ 2N

(9.20)

(see Clemens (1983) and Werner and van Geemen (1990) for detailed proofs).
Note that by the Calabi–Yau condition the first equation gives the following
relationship between the Hodge numbers of Y and Ŷ :

h2,1(Y ) = h1,2(Y ) = h2,1(Ŷ )− δ = h1,2(Ŷ )− δ. ♦
The invariants discussed in the rest of the article are determined by the local

geometry around the conifold locus, so we identify the local Calabi–Yau Y , Ŷ and
Y with the local neighbourhoodsU , Û and U .

9.1.2 Transitions of Calabi–Yau threefolds

Let Y and Y be projective Calabi–Yau manifolds and φ is a birational contraction.
See appendix 9.5 for definitions of the different types of singularities used in this
section.

Definition 9.1.7. φ : Y → Y is a primitive contraction if it cannot be further
factored into birational morphisms of normal varieties.

Non-primitive Calabi–Yau contraction may be factored into a composite of
primitive contractions (see Wilson 1989) so, without loss of generality we can
consider φ to be primitive. In this case the pullback φ∗H of an ample divisor H
on Y will cut the Mori cone (see section 9.5.4) NE(Y ) along an extremal face.
Such contractions are also called extremal and the associated transitions primitive
extremal transitions.

Definition 9.1.8 (Wilson 1992). A primitive contraction is:

• of type I if the exceptional locus E of the associated primitive contraction
φ is composed by finitely many curves,
• of type II if φ contracts a divisor down to a point and
• of type III if φ contracts a divisor down to a curve.
In the first case φ(E) is composed by a finite number of isolated singularities,

each with a small resolution. Since Y is smooth these singularities are necessarily
terminal of index 1 and therefore cDV points. In the second case, E must be
irreducible and, more precisely, it is a del Pezzo surface (see Reid 1980); φ(E) is
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a canonical singular point of index 1. In the third case E is again an irreducible
surface contracted down to a curve φ(E) of canonical singularities for Y . In
particular, if φ is crepant then E is a conic bundle over the curve φ(E) which is
a smooth curve of (generically cA1 or cA2) cDV points (see Reid 1980, Wilson
1992, theorem 2.2).

The simplest example of a non-trivial transition of type I is the conifold
transition of example 9.1.3, i.e. a transition allowing only isolated simple double
points (nodes) for Y . In fact these singularities can (at least locally) be smoothed.
The following results also hold:

Theorem 9.1.9 (Friedman 1986). If φ is of type I and the singularity is an
ordinary double point, then Y is smoothable unless φ is the contraction of a single
�

1 to an ordinary double point.

Theorem 9.1.10 (Altmann 1994, Gross 1997a, b, Schlessinger 1971).

• If φ is of type II and Y is �-factorial, then Y is smoothable unless E ∼= �2

or E ∼= �1 .
• If φ is of type III and Y is �-factorial, then Y is smoothable unless
φ(E) ∼= �1 and E ∼= E7, E8, the del Pezzo surfaces of degree 7 and 8
respectively. (Equivalently, E j is the surface obtained by blowing-up �2 at
j points in general position.)

After Clemens’ work (see definition 9.1.1), Reid (1987) suggested that the
birational classes of Calabi–Yau threefolds would fit together into one irreducible
family. In fact, he speculated that transitions may connect a general Calabi–Yau
threefold to a non-Kähler analytic threefold with trivial canonical class, Betti
number b2 = 0 and diffeomorphic to a connected sum of N copies of S3 × S3,
where N is arbitrarily large. This conjecture is usually known as Reid’s fantasy.
There exists various evidence for this conjecture (the Calabi–Yau web: see, e.g.,
Avram et al 1996, Chiang et al 1996).

9.1.3 Transitions and mirror symmetry

Assume that there exists a transition from Y1 to Ŷ1, factorizing through a birational
contraction φ : Y1 −→ Y 1; assume also that the mirror partners (see, for
example, Morrison 1999) Y2 of Y1 and Ŷ2 of Ŷ1 exist (see, for example, Morrison
1999). It is believed that the mirror partners Ŷ2 and Y2 are also connected by
a transition, which factorizes through a birational contraction φ◦ : Ŷ2 −→ Y 2;
the transition between Ŷ2 and Y2 is often called the ‘reverse transition’. It is not
known whether this conjecture holds; see, for example, Batyrev et al (1998), for
the case of the conifold transition.

The mirror symmetry exchanges the Hodge numbers h1,2 (representing the
dimension of the complex moduli space) with h1,1 (the Kähler moduli space) of
the Calabi–Yau mirror partners; this exchange is consistent with a partner mirror
transition as we will see in the section 9.1.1. Greene and Plesser (1990) outlined



Geometry and topology of transitions 223

YY

Y

Y Y

Y 1

11

2

22

Figure 9.2. The mirror transition.

an heuristic approach to ‘continuously’ extend mirror symmetry to all the Calabi–
Yau threefolds belonging to the same connected component of the web generated
by conifold transitions. Actually if transitions would connect each other to all
Calabi–Yau threefolds, which is a rough version of the Reid’s fantasy, then it
could give an approach to establishing mirror symmetry for all of them.

In the examples studied by Candelas et al (1994) and Morrison (1999)
Y1, Ŷ1 and their mirrors are related by a primitive contraction of type III (see
appendix 9.6).

9.1.4 Transitions, black holes etc

The transitions among Calabi–Yau manifolds are also crucial in the context of
string theory, as they connect two topologically distinct compactifications of a ten-
dimensional type II string theory (to four-dimensional string vacua). Since in spite
of the small number of consistent ten-dimensional string theories, their Calabi–
Yau compactifications give rise to a multitude of four-dimensional topologically
distinct string vacua, the transitions may prove to be the suitable mathematical
tool which is able to restore a concept of uniqueness in compactified string theory
when mirror symmetry and a version of Reid’s fantasy (the Calabi–Yau web) is
assumed. The physical interpretation would then be that two four-dimensional
topologically distinct string vacua may be connected to each other by means of a
black hole condensation. This is the work of Greene et al (1995) and Strominger
(1995).

Strominger gave a physical explanation of how to resolve the conifold
singularities of the moduli space of classical string vacua by means of massless
Ramond–Ramond (R–R) black holes (see appendix 9.7).

In Greene et al (1995) the transformation of a massive black hole into a
massless one at the conifold model is called condensation. Not only conifold
transitions have a physical counterpart. For example a similar interpretation
involves type II transitions in the context of the string–string duality (see Katz
et al 1996, Berglund et al 1995, 1997).

Transitions of Calabi–Yau manifolds also have a role in five-dimensional
supersymmetric theories (see, for example, Morrison and Seiberg (1997) and
Douglas et al (1997)).
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9.2 Chern–Simons theory

One side of the conjecture involves Chern–Simons theory on S3: this section is
an overview of this theory. We start with a quick review of the mathematical
background, principal bundles and connections: appendix 9.8 contains more
details. Next we discuss some basics of classical Chern–Simons theory (following
Freed 1995), and of its quantum version (following Witten 1989). The first
evidence for the conjecture comes from comparing an expansion of the Chern–
Simons partition function, so the last section is dedicated to the computational
aspects and link invariants.

Let π : P → M be a principal G-bundle with G acting on the right (see
definition 9.8.1). In particular, for any m ∈ M , π−1(m) ∼= G. The differential of
this map gives an isomorphism

dπ : Tpπ−1(m)
∼=−→ TidG ∼= �.

Definition 9.2.1. The vertical bundle on P is the vector sub-bundle �P of T P
given by ker(dπ) that is for every p ∈ P

�p P := ker[dpπ : Tp P −→ Tπ(p)M].
Then the vertical bundle �P associated with the principal G-bundle (P, π)

is a vector bundle whose standard fibre is the Lie algebra � associated with G (see
remark 9.8.4).

A connection is an infinitesimal version of a G-equivariant family of sections
of π : P → M .

Definition 9.2.2. A connection on a principal G-bundle (P, π) is a vector sub-
bundle�P of T P such that

T P = �P ⊕ �P (9.21)

and for every p ∈ P and σ ∈ G

dpR(σ )(�p P) = �pσ P (9.22)

where R is the right action of G on P (see definition 9.8.1).

Definition 9.2.3. (i) The connection form of a connection�P is the �-valued
1-form A ∈ �1(P, �) such that, for every p ∈ P and u ∈ Tp P,

Apu := (didλp)
−1(�pu) ∈ TidG ∼= � (9.23)

where λp : G
∼=−→ π−1(π(p)) ⊂ P is the diffeomorphism given by

λp(σ ) := pσ . It is a characteristic form of the connection �P since
�P = ker A (see proposition 9.8.6).
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(ii) The curvature form of a connection �P is the �-valued 2-form � ∈
�2(P, �) defined by

�p(u, v) := −Ap[U, V ]p ∀p ∈ P, u, v ∈ TpP (9.24)

where U, V are any horizontal vector fields on P extending the horizontal
parts�pu and�pv of u and v respectively, (recall the splitting (9.103)).

Definition 9.2.4. A gauge transformation of P is an automorphism ϕ of P which
induces the identity map on the base manifold M.

Gauge transformations on P form a group �P , and (9.114) defines an action
of �P on the affine space of connections�P (see proposition 9.8.6).

Definition 9.2.5. Let γ : I := [0, 1] −→ M be a loop with base point m ∈ M
and let γ̃p : I −→ P be the unique horizontal lift of γ with initial point p ∈ P,
i.e. such that

d γ̃p(T I ) ⊂ �P and γ̃p(0) = p.

Define a diffeomorphism of the fibre π−1(m) by

hγ : π−1(m) −→ π−1(m)
p �−→ γ̃p(1).

(9.25)

Then;
Hol�P (m) := {hγ : γ is a loop based at m} (9.26)

is a group (with the composition of morphisms), called the holonomy group of the
connection�P at m ∈ M.

If the base manifold M is connected all these groups are isomorphic by
(9.116). Then Hol�P is called the holonomy group of the connection�P.

Note that for every p ∈ P it is possible to identify Hol�P(π(p)) with the
subgroup of G

G�P (p) := {σγ (p) ∈ G : hγ (p) = pσγ (p) and hγ ∈ Hol�P (π(p))}. (9.27)

If p, q ∈ π−1(m) then G�P (p) and G�P(q) are conjugate subgroups and they
coincide if p and q can be joined by an horizontal curve in P .

Definition 9.2.6. The restricted holonomy group of the connection�P at m ∈ M

H (o)
�P(m) ⊂ Hol�P (m) (9.28)

is defined by considering homotopically trivial loops based at m.

As before, if M is connected we can define the restricted holonomy
group H (o)

�P ⊂ Hol�P . Moreover, for every p ∈ P we can identify the

restricted holonomy subgroup H (o)
�P(π(p)) with a suitable subgroup G(o)

�P(p) ⊂
G�P (p) ⊂ G.
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9.2.1 Chern–Simons’ form and action

In this section we follow the notation of Freed (1995), Witten (1989) and
Labastida (1999); the reader should consult these papers for more details. Let
us assume the base manifold M = π(P) to be a smooth and compact 3-manifold.
Let�P be the affine space of all the possible connection on P and choose A ∈ �P

with associated connection �P = ker A. If � ∈ �2(P, �) is the �-valued
curvature 2-form of the chosen connection then

� ∧� ∈ �4(P, �⊗ �).

Definition 9.2.7. The Chern–Weil 4-form associated with the Killing form 〈 , 〉
(see definition 9.8.7) is 〈� ∧�〉 ∈ �4(P).

Definition 9.2.8. A Chern–Simons form is an antiderivative α ∈ �3(P) of
〈� ∧�〉.
Proposition 9.2.9. Let α := 〈A ∧�〉 − 1

6 〈A ∧ [A, A]〉. Then,
(i) dα = 〈� ∧�〉,
(ii) if ϕ is a gauge transformation of P,

(δϕ)α = α − 1
6 〈φ ∧ [φ, φ]〉 + d〈(Ad

σ−1
ϕ
◦ A) ∧ φ〉 (9.29)

where δ is the codifferential, σϕ is associated with ϕ like in (9.113), φ :=
(δσϕ)(δλ)A and (δλ)A is the Maurer–Cartan form of the connection�P as
defined in (9.108).
(iii) If α′ is a Chern–Simons form, the 3-form (δϕ)α′ − α′ + 1

6 〈φ ∧ [φ, φ]〉 is
exact.

The proof follows directly by the definition 9.2.8 of α and by the gauge
action on connections (9.114). By (9.115) and the Ad-invariance (see (9.105)) of
the Killing form the Chern–Weil form 〈� ∧�〉is gauge invariant. Moreover:

Proposition 9.2.10. α′ − (δϕ)α′ defines a cohomology class
(δσϕ) A ∈ H 3(P,�)

which is independent by the chosen Chern–Simons form α′. We can also assume
that

ρ A ∈ H 3(G,�) (9.30)

for a suitable real number ρ.

In fact, the 3-form α′ − (δϕ)α′ is closed for every gauge transformation ϕ
and any Chern–Simons form α′. Also it is the image by the codifferential δσϕ of
the cohomology class  A ∈ H 3(G,�) associated with the closed 3-form

1
6 〈(δλ)A ∧ [(δλ)A, (δλ)A]〉 ∈ �3(G).
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Note that the choice of ρ ∈ � depends only on the connection�P .

Definition 9.2.11. If there exists a global section

s : M −→ P

the Chern–Simons Lagrangian on M is the 3-form

�(A, s) := ρ(δs)α ∈ �3(M) (9.31)

and the associated Chern–Simons action is obtained by integrating it over M

S(�) :=
∫
M
�(A, s). (9.32)

Remark 9.2.12.

(i) The existence of a section means that P is parallelizable which is the case
for example when G is simply connected (see Freed (1995), lemma 2.1, for
a proof of this fact.)
(ii) By Stokes’ theorem the Chern–Simons action S does not depend on the
choice of the Chern–Simons form α when M is assumed without boundary.
(iii) For any gauge transformation ϕ, the 3-form �(A, s) − (δϕ)�(A, s)
defines the integral cohomology class

ρδ(σϕ ◦ s) A ∈ H 3(M,�)

hence

S(�) − S((δϕ)�) = ρ
∫
M
δ(σϕ ◦ s) A ∈ �. (9.33)

(iv) For the particular case G = SU(2) the integral bilinear forms on
� = ��2 are parameterized by k ∈ � as follows

∀X,Y ∈ ��2 〈X,Y 〉k = k

8π2
Tr(XY ).

Then the real coefficient in (9.30) can be given by ρ := (8π2)−1 and the
Chern–Simons Lagrangian (9.31) becomes

�(A, s) = 1

8π2
Tr(A′ ∧ dA′ + 2

3 A
′ ∧ A′ ∧ A′)

where A′ := (δs)A (see section 6 in Freed, 1995). This is the typical shape of
a Chern–Simons Lagrangian usually adopted in physical literature although
the gauge group G is more general than SU(2).

Proposition 9.2.13. The Chern–Simons action

S[A] := exp(ik2πS(�)) (9.34)
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is well defined and gauge invariant, where k ∈ � is called the level of the theory.
Furthermore, S[A] depends only on the choice of the gauge equivalence class of
connections [A] ∈ �P/�P where �P acts on�P as in (9.114).

In fact any two sections of P are related by a gauge transformation and the
assumption (9.30) holds.

By the physical point of view, it is relevant to point out the quantization
law expressed by (9.33) and (9.34). The real factor ρ defined in (9.30) may be
considered to be a normalizing factor of the Killing form of �. Then we can write
(9.33) as

S(�) − S((δϕ)�) =
∫
M
δ(σϕ ◦ s) A ∈ �.

We can also relate any gauge transformation ϕ with a map M → G by taking
σϕ ◦ s. In this way we get an immersion of the gauge group �P into the group of
maps from M to G.

∫
M δ(σϕ ◦ s) A is called the winding number of the gauge

transformation ϕ. Since this number is homotopically invariant it is revealing
to count the homotopy classes of gauge transformations giving two relevant
consequences:

(i) the Chern–Simons action (9.32) is invariant under any gauge transformation
homotopically equivalent to the identity; and

(ii) as in the Dirac’s well-known work on magnetic monopole, the integer k
in (9.34) is found to be closely related to the central charge of the theory.
Moreover, in the quantum field theory defined by the following partition
function (9.35) k−1 is proportional, for large k, to the square λ of the
coupling constant of the theory (see (9.83)).

Definition 9.2.14. The Chern–Simons partition function is the Feynman integral
of the Chern–Simons action (9.34) taken over all the gauge equivalence classes
of connections:

Z(M) :=
∫
�P /�P

S[A]D[A]. (9.35)

This defines the Chern–Simons quantum field theory (see, for example,
Deligne et al 1999) whose fields are precisely the elements of �P/�P .

Definition 9.2.15. Let K be a knot in M, i.e. an embedding of the circle S1 and
R, a representation of G. The Wilson line WR

K is the functional

W R
K : �P/�P −→ � (9.36)

where W R
K [A] := TrR(hK ) and hk is the holonomy around K .

Note that the real number TrR(hK ) is well defined for any representation R
of G. K can be thought of as a closed loop in M; for every point m ∈ K we
obtain an element hK ∈ Hol�P (m) as in (9.25). If M is connected hK does not
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depend on the choice of m ∈ K since we can proceed as in (9.116) to obtain
hK ∈ Hol�P . By (9.27) hK defines a conjugacy class in G.

The Wilson line are metric independent (i.e. covariant) and gauge-invariant
functionals of the fields; they are then observables of the theory.

Since TrR(hK ) is gauge invariant, we define:

Definition 9.2.16. The unnormalized expectation value is then formally assigned
by the Feynman integral

Z(M; K , R) :=
∫
�P /�P

S[A]WR
K D[A] (9.37)

and its expectation value is given by

〈WR
K 〉 := Z(M; K , R)/Z(M). (9.38)

If we now consider a link L in M , i.e. the union of r ≥ 1 oriented and
non-intersecting knots {Ki }ri=1 in the oriented manifold M and a collection of
irreducible representations� := {Ri }ri=1 of G, one for each knot Ki , we have:

Definition 9.2.17. The correlation function of our quantum field theory

Z(M; L,�) :=
∫
�P/�P

S[A]
r∏
i=1

WRi
Ki
D[A]. (9.39)

9.2.2 The Hamiltonian formulation of the Chern–Simons QFT (following
Witten’s canonical quantization)

Although the mathematical definitions of path integrals in (9.35), (9.37) and
(9.39) are quite delicate, the explicit integrals are calculated in Witten (1989).
Witten first uses the stationary-phase approximation in the ‘classical limit’
k → ∞ and then canonical quantization. Here we present the basic ideas of
this second method set-up. A very useful and pleasant reference on the argument
is Atiyah (1990a), to which we refer the reader for a deeper understanding.
We will not discuss the stationary-phase approximation since it lies outside the
aim of the present work, although its relevance is fundamental in giving the
confirmation that the partition functions introduced by the Feynman approach in
the previous section are the same as the ones we will evaluate in the next section
by the Hamiltonian approach: see the first part of section 2 in Witten (1989) and
section 7.2 in Atiyah (1990a).

The main purpose in QFT of a Feynman path integral is to provide a
relativistically invariant approach since this is a fundamental property of the
Lagrangian density which, in our case, is expressed by the Chern–Simons action
(9.32) multiplied by 2πk. If we want to enucleate a time-evolution in the theory
we have to break the relativistic symmetry by constructing a time-evolution
operator exp(it H ) in a certain ‘Hilbert’ space � representing the space of
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physical states. The generator H is the Hamiltonian operator of the theory. In
general there are formal rules which allow us to produce the space � and the
Hamiltonian H of a QFT whose partition function is known.

In the case of Chern–Simons QFT the spacetime is represented by the 3-
manifold M . We can separate out space and time by ‘cutting’ M along a surface
!. Near the cut M looks like !×� giving us the desired separation of space and
time. Let us then limit ourselves to considering the particular case M = ! × �

which can be treated by means of canonical quantization to construct the physical
space � = �(!) of the Chern–Simons theory quantized on !. More precisely,
this means to ‘quantize’ the space of classical solutions which are the critical
fields of the Chern–Simons action (9.32).

Proposition 9.2.18. The space of classical solutions of Chern–Simons theory is
the subspace of gauge equivalence classes of flat connections in �P/�P which
can be naturally identified with the following

�M := hom(π1(M),G)/G

where G acts by conjugation (see Freed (1995, proposition 3.5) for more details).

The statement follows by (9.31) and the fact that α is, by definition, an
antiderivative of 〈� ∧�〉. In fact

dS(�(A, s)) = 0 ⇐⇒ � = 0 (9.40)

i.e. the latter is the Euler–Lagrange equation of the classical Chern–Simons
theory whose solutions are given by flat connections. See Freed (1995,
proposition 3.1) for details in differentiating. Note that by (9.104) this Euler–
Lagrange equation involves only first-order derivatives of the fields. This is a
peculiarity of Chern–Simons gauge theory together with the independence from
the choice of any metric. Since the restricted holonomy subgroups (9.28) of a flat
connections are always trivial it is possible to define a morphism

π1(M) −→ Hol�P

(see, e.g., Poor 1981, proposition 2.40). By recalling (9.27) we actually get a
morphism from π1(M) to G which is well defined up to conjugation. In contrast
a similar equivalence class of morphisms allows us to determine a flat connection
on P .

Since we are in the particular case M = ! × � our space of classical
solutions reduces to

�! := hom(π1(!),G)/G. (9.41)

This space is not dependent on the time variable described by � implying that we
do not actually have time-evolution in our theory, i.e. we have no dynamics and it
is all purely topological: hence the Hamiltonian H must be trivial.
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The following result allows to ‘quantize’�! .

Theorem 9.2.19 (Narasimhan and Seshadri 1965, Donaldson 1983). The
space of classical solutions�! is homeomorphic to the moduli space Mτ of
holomorphic G-bundles over the Riemann surface !τ obtained by the choice of
a complex structure τ on !. On Mτ we have a natural choice for a holomorphic
line bundle L. The finite dimensional complex vector space

�k
τ (!) := H 0(Mτ , L

⊗k) (9.42)

of global holomorphic sections of L⊗k gives the Hilbert space of the quantized
theory at level k .

When G = SU(N) the moduli space Mτ turns out to be a projective
algebraic variety. Hence we have the natural choice L := �Mτ (1), i.e. the
line-bundle associated with the hyperplane section. Otherwise when G is more
general, the choice of the complex structure τ on ! gives a natural complex
structure on the infinite dimensional affine space �P . The moduli space Mτ
can then be identified with the symplectic quotient �P//�P (see Atiyah (1990a,
chapter 4) for a definition) under the action (9.114) of the gauge group �P (see
Atiyah and Bott (1982) for the details). On �P the Quillen line-bundle � (see
Quillen 1986), whose curvature is −2π i times the Kähler form of �P , descends
to give a well-defined line-bundle L on Mτ .

The crucial point now is that apparently the vector space�k
τ (!) depends on

the choice of the complex structure τ on ! against the desired general covariance
of our theory. Actually �k

τ (!) varies holomorphically with τ giving rise to a
holomorphic vector bundle over the moduli space of compact Riemann surfaces
of fixed genus which turns out to admit a canonical projectively flat connection
which permits us to identify the fibres up to a scalar factor. This fact can be
proved in several ways as described in chapter 6 of Atiyah (1990a). See also
Hitchin (1990) and Axelrod et al (1991) for more details.

The choice (9.42) then give rise to a modular functor

! −→ �k(!) (9.43)

in the spirit of a rational conformal field theory as defined in Segal (1988):
such a functor is well defined up to a scalar factor. It is a particular case of a
topological quantum field theory (TQFT). Let us now briefly recall what it is

that is axiomatized in Atiyah (1989). The interested reader may also consider
chapter 2 in Atiyah (1990a) and appendix B.6 in Cox and Katz (1999) for some
short reviews on the subject and Quinn (1995) for a broader treatment.

Definition 9.2.20 (Axiomatic TQFT). A (d + 1)-dimensional topological
quantum field theory is a functor Z which associates

• with each compact oriented d-dimensional manifold! a finite-dimensional
complex vector space Z! ,



232 Large N dualities and transitions in geometry

• with each compact oriented (d + 1)-dimensional manifold M whose
boundary is ∂M = ! a vector Z(M) ∈ Z! ,

and which satisfies the following axioms:

(i) (involutory) if ! denotes ! with the opposite orientation and Z∗! denotes
the dual vector space of Z! then

Z! = Z∗!
(ii) (multiplicativity) if . denotes the disjoint union of d-manifolds then

Z!1.!2 = Z!1 ⊗ Z!2

(iii) (associativity) if ∂M1 = !1.!2, ∂M2 = !2.!3 and M = M1∪!2 M2
is the gluing of M1 and M2 along !2 then

Z(M) = Z(M2) ◦ Z(M1)

where, by the previous axioms,

Z(M1) ∈ Z∗!1
⊗ Z!2 = hom� (!1,!2)

Z(M2) ∈ Z∗!2
⊗ Z!3 = hom� (!2,!3)

Z(M) ∈ Z∗!1
⊗ Z!3 = hom� (!1,!3)

(iv) (unity) if the empty set is considered as a compact d-dimensional oriented
manifold then

Z∅ = �

(v) (identity) if I denotes the oriented interval [0, 1] let us consider the
product (d + 1)-manifold ! × I whose boundary is ∂(! × I ) = ! . !;
then

Z(! × I ) = �∈ hom� (!,!)

where � is the identity endomorphism of !.

Let us now come back to the Hamiltonian formulation of Chern–Simons
quantum field theory. In (9.43) we defined a correspondence

Z : ! �−→ Z! := �k(!)

between a compact surface ! ⊂ M and the finite dimensional complex
vector space of ‘physical states’ of the k-level theory quantized along ! by
‘canonical quantization’ . This turns out to give a TQFT giving the Hamiltonian
interpretation of the partition function unrigorously expressed by path integral in
(9.35). Precisely by writing

M = M1 ∪! M2 (9.44)

∂M1 = ∅.!
∂M2 = ! . ∅
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axioms 1, 2, 3 and 4 give

Z(M) = Z(M2) ◦ Z(M1) ∈ hom� (� , � ) = � . (9.45)

It is the mathematically well defined evaluation of the homonymous partition
function. It is completely topological and the scalar indetermination in defining
Z! does not even influence its value: actually Z(M) does not even depend on the
choice of ! since ∂M = ∅ and Z(M) ∈ Z∅.

In order to perform an analogous Hamiltonian interpretation of the
correlation function Z(M; L,�) ‘defined’ by the path integral in (9.39) we
have to relativize the definition of the TQFT Z to the tern (M, L,�) given
by a 3-manifold M and a link L ⊂ M marked by a collection of irreducible
representations � of G. Let us assume L to be transverse to ∂M = ! so that
it gives a collection ∂L of signed points in !. Moreover, we can mark ∂L by a
collection ∂� of irreducible representations of G induced by representations in
�. Let us write

∂(M, L,�) = (!, ∂L, ∂�) (9.46)

and then relativize Z by defining it as a functor which associates

• with each d-dimensional tern (!, ∂L, ∂�) a finite-dimensional complex
vector space Z(!,∂L ,∂�),

• with each (d + 1)-dimensional tern (M, L,�), whose boundary is as in
(9.46), a vector Z(M; L,�) ∈ Z(!,∂L ,∂�),

and which satisfies the axioms 1–5 of definition 9.2.20. The crucial point now is
to relativize (9.43) to give an analogous definition of Z(!,∂L ,∂�). Recall that by
(9.27) the choice of a point p ∈ ∂L ⊂ ! = ∂M determines a conjugacy class
in G. Since p is marked by an irreducible representation in ∂� the order of such
a conjugacy class turns out to be the level k. Hence the collection ∂L of marked
points in ! gives rise to a set C∂L := {Cp}p∈∂L of conjugacy class of order k in
G. Let us denote by

hom∂L(π1(! \ ∂L),G)
the set of morphisms π1(! \ ∂L) −→ G sending a homotopy class of loops
around p ∈ ∂L into the conjugacy class Cp . Factoring out by conjugacy leads to
the space

�(!,∂L ,∂�) := hom∂L(π1(! \ ∂L),G)/G (9.47)

which is the analogue of �! as defined in (9.41). The quantization of
�(!,∂L ,∂�) proceed now in the same way since the results of Narasimhan and
Seshadri (1965) and Donaldson (1983) can be applied in this case too.

Theorem 9.2.21. The space �(!,∂L ,∂�) is homeomorphic to a moduli space

M(k)
τ of holomorphic G-bundles over the Riemann surface !τ obtained by the

choice of a complex structure τ on !. On this space we have a natural choice for
a line-bundle Lk whose holomorphic sections give the quantization at level k, i.e.

�
k
τ (!, ∂L, ∂�) := H 0(M(k)

τ , Lk). (9.48)
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Note that the introduction of Wilson lines also makes the moduli spaces M(k)
τ

dependent on the level k. As before, the finite dimensional complex vector space
�k
τ (!, ∂L, ∂�) varies holomorphically with τ and give rise to a projectively flat

holomorphic vector bundle over the moduli space of compact Riemann surfaces
of fixed genus. Up to a scalar factor we have got the desired relativized modular
functor

Z : (!, ∂L, ∂�) �−→ Z(!,∂L ,∂�) := �k(!, ∂L, ∂�).

Note that an evaluation of the expectation value 〈W�L 〉 defined by applying (9.38)
and (9.39) needs to fix once for all the undefined scalar factor. It can be realized
by the choice of a framing (see definition 9.2.24) for every knot composing the
link L: here we shall not enter in details about by referring to Witten (1989) and
Atiyah (1990b) for more details. In the next section we will consider the problem
for the particular case in which L is the unknotted knot.

9.2.3 Computability and link invariants

Let us consider M to be as in (9.44). By (9.45) and axiom 1 in definition 9.2.20
we get

Z(M) = (χ1, χ2) (9.49)

where χ1, χ2 ∈ Z! . Similarly if we consider a Wilson observable W�L on M we
get

Z(M; L,�) = (ψ1, ψ2) (9.50)

where ψ1, ψ2 ∈ Z(!,∂L ,∂�).
These are the fundamental relations allowing the effective computation of

Z(M), Z(M; L,�) and 〈W�L 〉 essentially by connecting them with the link
invariants of L in M .

In the present section, following Witten (1989), we compute some of these
quantities when M = S3 and G = SU(N).

Proposition 9.2.22. Assume M = S3 and G = SU(N). Then the expectation
value 〈W�L 〉 of any Wilson observable can be inductively evaluated like a Jones
polynomial VL(q) in the variable

q := exp

(
2π i

N + k

)
(9.51)

by applying the skein relation (9.73) and the mirror property (9.72), when L is
considered in the standard framing and � is assigned by choosing the defining
N-dimensional representation R of SU(N) for every knot composing L. In
particular if L is the unknotted knot K :

〈WR
K 〉 =

q
N
2 − q− N

2

q
1
2 − q− 1

2

=
sin
(

Nπ
N+k

)
sin
(

π
N+k

) . (9.52)
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Moreover

Z(S3) = (k + N)−N/2
√
k + N

N

N∏
j=1

{
2 sin

(
jπ

k + N

)}N− j

(9.53)

and

Z(S3; K , R) = 2

(k + N)N/2

√
k + N

N
sinN−2

(
π

k + N

)
× sin

(
Nπ

k + N

) N−1∏
j=2

{
2 sin

(
jπ

k + N

)}N− j

. (9.54)

Jones polynomials were first defined in Jones (1985) and then generalized in
Jones (1987) as a particular case of a two-variable polynomial associated with a
link by means of the Ocneanu trace of a Hecke algebra representation of its braid
group. See also sections 1.3 and 1.4 in Atiyah (1990a) and section 2 in Labastida
(1999) for quick, but aimed at our purpose, surveys on the argument.

Definition 9.2.23. Denote by Ln a link whose planar projections admits n normal
crossings and by Ln+ and Ln− those links admitting n + 1 normal crossings
composed by the previous n and by a further crossing which is an over-crossing
or an under-crossing, respectively. Given a link L ⊂ S3 the Jones polynomial

VL(q) is a Laurent polynomial in the variable q
1
2 inductively defined by the skein

relation
(q

1
2 − q−

1
2 )VLn (q)− q

N
2 VLn+(q)+ q−

N
2 VLn−(q) = 0 (9.55)

and the mirror property
VL(q) = VL ′(q

−1) (9.56)

where L ′ is the mirror image of the link L.

To fix ideas start by considering the case in which L is given by two unlinked
and unknotted circles K1, K2 and ! is a 2-sphere S2 which separates the two
components of L without cutting any of them. Hence we get

Z(!,∂L ,∂�) = Z! = ZS2

ψ1 = Z(M1; K1, R1)

( , ψ2) = Z(M2; K2, R2).

Since dim� ZS2 = 1, all the vectors χ1, χ2, ψ1, ψ2 are multiples of the same
vector. By (9.49) and (9.50) this gives

Z(M; L,�) · Z(M) = (ψ1, ψ2)(χ1, χ2)

= (ψ1, χ2)(χ1, ψ2) = Z(M; K1, R1) · Z(M; K2, R2)
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whose quotient by Z(M)2 is

〈W�L 〉 = 〈WR1
K1
〉〈WR2

K2
〉. (9.57)

By iterating such a relation for an arbitrary collection of unlinked and unknotted
Wilson lines L = {Ki }ri=1 we obtain that

〈W�L 〉 =
r∏
i=1

〈WRi
Ki
〉. (9.58)

A first consequence of such a multiplicativity on expectation values of unlinked
and unknotted Wilson lines is that 〈WR

K 〉 �= 0 for an unknotted Wilson line,
otherwise we would have a Chern–Simons theory which does not distinguish a
knot from a link!

Let us now consider four marked points {p j }4j=1 on ! = S2. They may
be obtained either as the transversal section of the unlinked and unknotted link
L0 = {K1, K2} (two-point section for a circle) or as a section of the two links
L+, L− given by the two oriented knots whose planar normal crossings projection
gives a figure eight (again two-point section for a circle): L+ has an over-crossing
while L− an under-crossing. If we assume that the same representation R of G is
associated with every knot composing these links we may arrange the four points
to give

(!, ∂L0, ∂�0) = (!, ∂L+, ∂�+) = (!, ∂L−, ∂�−) (9.59)

= (S2, {p j }4j=1, {R, R, R, R}) =: �. (9.60)

If we have the decomposition

R ⊗ R =
s⊕

h=1

Eh

where Eh is an irreducible representation of G, it turns out that

d := dim� � ≤ s (9.61)

and we get d = s for large k (see Witten 1989, section 3). In particular if
G = SU(N) and R is the defining N-dimensional representation, then s = 2
and

d =
{

1 if k = 1

2 otherwise.
(9.62)

For i = 1, 2 let us call M0
i ,M

+
i ,M

−
i the two pieces cutted by S2 in the three

different cases. Note that the exterior pieces may be assumed:

M0
1 = M+

1 = M−
1 =: M1 (9.63)
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while the interior pieces M0
2 ,M

+
2 ,M

−
2 may be thought to be related by a

diffeomorphism on the boundary exchanging two of the four marked points. As
in (9.50) the four pieces M1,M0

2 ,M
+
2 ,M

−
2 determine four vectors:

ψ1, ψ
0
2 , ψ

+
2 , ψ

−
2 ∈ �

whose products evaluate the associated partition functions. In fact these vectors
are not known but the dimensional bound (9.61) may give rise to relations among
them and their products which are similar to the defining relations of some link
invariants. In particular when G = SU(N) and all the knots are associated with
the defining N-dimensional representation, the dimensional bound (9.62) allows
us to conclude that ψ0

2 , ψ
+
2 , ψ

−
2 are linearly dependent and so there must exist

α, β, γ ∈ � such that

α(ψ1, ψ
0
2 )+ β(ψ1, ψ

+
2 )+ γ (ψ1, ψ

−
2 ) = 0. (9.64)

Hence the same relation can be established on the associated correlation functions
as follows:

αZ(M; L0,�0)+ βZ(M; L+,�+)+ γ Z(M; L−,�−) = 0. (9.65)

It actually gives a recursive relation among links Ln, Ln+ and Ln−. In fact we
can always cut these links by an S2 leaving outside all the first n crossings: its
interior then gives M0

2 ,M
+
2 ,M

−
2 again, respectively. Since α, β, γ depend only

on the three vectors ψ0
2 , ψ

+
2 , ψ

−
2 , (9.64) does not depend on ψ1 and we again get

αZ(M; Ln,�n)+ βZ(M; Ln+,�n+)+ γ Z(M; Ln−,�n−) = 0. (9.66)

We can then assume α �= 0 otherwise (9.66) would imply that up to a scalar factor
we can exchange an over-crossing by an under-crossing i.e. every knot could be
untied and our Chern–Simons theory would not distinguish topologically non-
equivalent observables!

Since M = S3 it is possible to continuously deform L+ and L− to an
oriented circle K by applying a Reidemeister moving, i.e. a transformation
induced on the planar image with normal crossings of a knot in S3 by a
homeomorphism applied to the original spacial knot (see Reidemeister 1933).
By (9.65) we can then write

αZ(M; {K1, K2}, {R, R})+ (β + γ )Z(M; K , R) = 0.

Divide by Z(M) and recall (9.57) to get

α〈WR
K 〉〈WR

K 〉 + (β + γ )〈WR
K 〉 = 0.

Since 〈WR
K 〉 �= 0 we obtain

〈WR
K 〉 = −β + γ

α
. (9.67)
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Then by knowledge of α, β, γ (9.66) allows us to inductively determine 〈W�L 〉
for every L once we know a relation linking 〈W�L 〉 and 〈W�′

L ′ 〉.
To determine α, β, γ let us concentrate on the boundary diffeomorphisms

relating M0
2 ,M

+
2 ,M

−
2 . We can pass from L+ to L0 by exchanging two of the

four marked points on the boundary S2. Let us denote by

f : M+
2 −→ M0

2

this ‘half monodromy’ diffeomorphism. Note that

f ◦ f : M+
2 −→ M−

2

since exchanging the same two points again we pass from L0 to L−. By the
functoriality of TQFT we get an induced isomorphism Z( f ) ∈ Aut (�) such that

ψ−2 = Z( f )ψ0
2 = Z( f )2ψ+2 . (9.68)

Since Z( f ) must satisfy its characteristic equation we get the relation

ψ−2 − (tr Z( f ))ψ0
2 + (det Z( f ))ψ+2 = 0 (9.69)

which allows us to completely determine α, β, γ by the knowledge of the
eigenvalues of Z( f ). The latter are calculated when M = S3 in Moore and
Seiberg (1988). By comparing (9.64) and (9.69) and setting q as in (9.51)we can
rewrite (9.66) for M = S3 as follows

(q
1
2 − q−

1
2 )Z(M; Ln,�n)− q

1
2N Z(M; Ln+,�n+)

+ q−
1

2N Z(M; Ln−,�n−) = 0. (9.70)

Hence by (9.67) the expectation value for the unknotted Wilson line is given by

〈WR
K 〉 =

q
1

2N − q− 1
2N

q
1
2 − q− 1

2

. (9.71)

This value does not coincide with (9.52) since the relation (9.70) is similar but
not equal to the skein relation (9.55). The reason for such a discrepancy must be
recovered in the implicit framing choice we made to write (9.64) which is not the
same as the standard framing used in knot theory.

Definition 9.2.24. A framing of a knot K is a closed curve K f obtained as a
small deformation of K along a normal vector field direction. The pair (K , K f )

is called a framed knot.

At the end of the section 9.2.2 we noted that the evaluation of a Wilson
observable expectation value 〈W�L 〉 needs to fix once for all the undefined scalar
factors which occur in the projective definition of the Hamiltonian quantities via
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TQFT. Actually by making assumptions (9.60) and (9.63) we made a particular
choice for these scalar factors which do not coincide with the canonical choice
usually adopted for knots in S3 by requiring that the Gauss self-linking number
be trivial for every knot (see Witten (1989 section 2.1) for the definition; see
also Mariño and Vafa (2001 section 3) for a recent discussion of the problem in
connection with the concept of a framed knot): this is what is usually meant by
the standard framing of a knot.

Note that the coefficient associated with the unknotted unlinked L0 is
q1/2 − q−1/2 both in (9.70) and in (9.55). Since by (9.68) we pass from ψ0

2
to ψ−2 by applying Z( f ) while its inverse Z( f )−1 allows us to pass to ψ+2 we can
argue that

q−
N
2 q

1
2N = (q N

2 q−
1

2N )−1 = exp

(
π i
(1− N2)

N(N + k)

)
is the factor expressing the framing change through the half-monodromy f . It
follows that, by adopting the standard framing, the expectation value (9.71) of the
unknotted Wilson line must be rewritten as in (9.52). Although the skein relations
(9.70) and (9.55) are not the same, the ‘polynomials’ defined by the former also
satisfy the mirror property

〈W�L 〉(q) = 〈W�′
L ′ 〉(q−1). (9.72)

We can then conclude that the skein relation

(q
1
2 − q−

1
2 )〈W�n

Ln
〉 − q

N
2 〈W�n+

Ln+ 〉 + q−
N
2 〈W�n−

Ln− 〉 = 0 (9.73)

and the mirror property (9.72) allow us to inductively express in the standard
framing the expectation value 〈W�L 〉 of any Wilson observable in S3, when
G = SU(N) and all the representations associated with knots are the defining
N-dimensional ones.

Note that when we fix N = 2 the unique variable is the level k of the theory
while when N is general 〈W�L 〉 can be interpreted also as a HOMFLY polynomial
(see Freyed et al (1985) for the definition of this two-variable polynomial invariant
of links).

The skein relation (9.73) cannot evaluate the partition function Z(S3) and
consequently the correlation function of any Wilson observable. Their evaluation
follows by generalizing the previous procedure to every 3-manifold M .

Definition 9.2.25. Let K ⊂ S3 be an unknotted circle and T a tubular
neighbourhood of K , i.e. a solid torus centred in K . Then

S3 = (S3 \ T ) ∪! T

where ! := ∂T is a two-dimensional torus. If before the gluing we apply a
diffeomorphism on the boundary ∂T then the gluing will give us a new three-
manifold M which is said to be obtained by S3 after a surgery on the knot K .
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Proposition 9.2.26. Any 3-manifold M can be obtained by S3 up to a finite
number of surgeries on knots. Hence the partition functions and expectation
values on a general M can then be evaluated by those on S3 once it is known
how the repeated surgeries act on these quantities and on knots framing.

An important application of this proposition is given by the manifold

M := S2 × S1.

If we assume S3 to be the compactification by a point of �3 and K to be the
unit circle in the plain z = 0, consider the following surgery on K . Let ! be a
two-dimensional torus around K invariant under an inversion of �3 : the tubular
neighbourhood of K is the interior T1 of !. Note that the exterior T2 = S3 \ T1 is
a solid torus too and we get

S3 = T1 ∪! T2. (9.74)

However, if T1, T2 are considered as two solid tori which can be identified by a
translation of �3 we get

S2 × S1 = T1 ∪! T2 (9.75)

since Ti = Di × S1,! = S1 × S1 and S2 = D1 ∪S1 D2. (9.74) and (9.75) differ
simply by the diffeomorphism applied on the boundary ! to glue the solid tori
Ti : in the former it is given by an inversion while in the latter by a translation.

This example is important because Z(S2× S1; L,�) can be obtained by the
TQFT axioms easier than Z(S3; L,�). Then we get a method to evaluate our
partition functions on S3 which is the main ingredient of the Witten’s proof of a
conjecture by Verlinde (1988) already proved in Moore and Seiberg (1988). In
Verlinde (1988) it is shown how to get a basis {v0, . . . , vt−1} of Z! canonically
after the choice of an homology basis {γ1, γ2} for H1(!,�): T the interior of !
the first basis vector v0 is chosen to give Z(T ) ∈ Z! . The two solid tori T1, T2
giving S2 × S1 in (9.75) are two identical copies of T identified by a translation.
This gives

v0 = Z(T2) (v0, ) = Z(T1) (v0, v0) = Z(S2 × S1). (9.76)

However, if we consider! to be as in (9.74) the inversion of �3 acts on H1(!,�)

by sending

γ1 �−→ − γ1 (9.77)

γ2 �−→ γ2.

Let τ = a + ib be the complex number in the Siegel upper half-plane

� := {τ ∈ � : Im(τ ) > 0}
representing the isomorphism class of the complex torus !. The transformation
induced on � by the inversion acts as follows

τ = a + ib �−→ 1

|τ |2 (−a + ib) = −τ−1.
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This is the modular transformation represented by the element

S =
(

0 −1
1 0

)
in the modular group

� := SL(2,�)/{±I }
where I = ( 1 0

0 1

)
. � acts on � by setting(

a b
c d

)
τ = (aτ + b)(cτ + d)−1.

Since the isomorphism classes of complex tori are parametrized by the modular
curve � \ � it turns out that the inversion realizes a diffeomorphism of ! which
preserves the complex structure (see the first chapter in Silverman [1994] for
further details about and a careful construction of the quotient�\� ). It induces an
isomorphism on Z! which can be represented on the Verlinde basis by a complex
t × t matrix S ji such that

vi =
∑
j

S ji v j .

Therefore by (9.74) and (9.76) we get

Z(S3) =
(
v0,
∑
j

S j0 v j

)
=
∑
j

S j0 (v0, v j ).

This formula gives an effective evaluation of Z(S3) since the numbers gi j :=
(vi , v j ) and the matrix S ji are given by knowledge of the Verlinde basis of Z! .
Hence by setting Si, j :=∑k S

k
i g jk we get

Z(S3) = S0,0.

When G = SU(N) we obtain the following result:

S0,0 = (k + N)−N/2
√
k + N

N

N∏
j=1

{
2 sin

(
jπ

k + N

)}N− j

(9.78)

allowing to conclude (9.53). By recalling (9.52) we are able to write Z(S3; K , R)
as in (9.54) for the unknotted knot K in the defining N-dimensional representation
R of SU(N).
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9.3 The Gopakumar–Vafa conjecture

This section discusses the conjecture itself, its origin and its relation to geometric
transitions. We also presents supporting evidence, which leads to the uncharted
territory of ‘open Gromow–Witten invariants’.

We start with the original observation by Gopakumar and Vafa (by
comparing the partition functions) and show, in this first part, how Witten’s
interpretation of the Chern–Simons theory as an open-string theory Witten (1992)
provides the tools for the geometric interpretation of the duality.

Conjecture 9.3.1 (Gopakumar and Vafa 1998a, b). (notation as in 9.1.1) The
SU(N)–Chern–Simons theory on S3 ⊂ Ŷ := T ∗S3 of level k is equivalent, for
large, N to a type IIA closed-string theory (with fluxes) on the local Calabi–Yau
Y := ��1(−1)⊕��1(−1).

(The language used here reflects the reformulation of the conjecture given in
Ooguri and Vafa (2000) rather then the original one.)

Theorem 9.3.2 (Witten 1992). Let Ŷ = T ∗L be a local Calabi–Yau threefold.
Then there exist topological string theories with Ŷ as target space, such that their
open sectors are exactly equivalent to a QFT on L.

Conjecture 9.3.3 (Gopakumar and Vafa after Witten). A topological open-
string theory of type IIA on Ŷ := T ∗S3 with N D6-branes wrapped around the
base S3 is equivalent, for large N, to a type IIA closed-string theory on the local
Calabi–Yau Y := ��1(−1)⊕��1(−1) with N units of 2-form Ramond–Ramond
flux through the exceptional S2.

The transition from Y to Ŷ realizes the geometrical model of a physical
closed/open duality among string theories of type IIA. That is, the transition from
Y to Ŷ realizes the geometrical model of a physical duality relating a particular
type IIA closed string theory on Y and the SU(N)–Chern–Simons QFT on the
Lagrangian submanifold S3 of Ŷ for large N.

This formulation of conjecture 9.3.1 has already been given in Gopakumar
and Vafa (1999); see also Ooguri and Vafa (2000). See Vafa (2001), for the
correspondence among D6-branes and units of R–R flux.

Witten’s work is more general: he proposes a string theory interpretation of
the Chern–Simons U(N)-gauge theory on a real three-dimensional Lagrangian
submanifold L of a complex Calabi–Yau threefold Ŷ and also extends it beyond
the hypothesis

Ŷ = T ∗L . (9.79)

We refer to appendix 9.9 for more details.
Sketch of the proof: How theorem 9.3.2 implies 9.3.1↔ 9.3.3.
Witten constructs an ‘A-twisted sigma model’ on Ŷ . In particular he consider

maps φ from a Riemann surface! with boundary ∂!, to the target space Y (i.e. φ
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is a bosonic field of the open sector of this A-model) satisfying some conditions.
The most important assumption is that

φ(∂!) ⊂ L . (9.80)

There are also boundary conditions, involving derivatives of φ along the
components of ∂! and the fermionic fields. These conditions are needed to
preserve fermionic symmetry but they do not directly enter the geometric picture
(see section 3.1 in Witten [1992] for more details). If Y = T ∗L, the weak
coupling limit of the abstract string Lagrangian reduces exactly to the Lagrangian,
of a QFT on L ‘there are neither perturbative correction nor instanton, i.e.
corrections’ (see definition 9.3.8). In the A-twisted case such a limit turns out
to be exactly a Chern–Simons U(N)-gauge theory.

Gopakumar and Vafa observed these boundary conditions may be expressed
in terms of D-branes (see A Lerda’s article in the same volume) by saying that the
Witten’s open string theory is an A-model topological open string theory with N
topological D6-branes wrapped on L. ♦

9.3.1 Matching the free energies

In the next two subsections, we review the evidence for the conjectures 9.3.1
and 9.3.3. The first evidence is given by the matching of the ‘free energies’ (or
equivalently partition functions) for the theories involved by the conjecture. The
second one is given by comparisons of the expectation values of observables in
the two theories.

Theorem 9.3.4. The genus g contribution to the free energy (9.82) of the Chern–
Simons theory on S3 coincides with the genus g contribution to the free energy of
the closed string theory on��1(−1)⊕��1(−1).

The Chern–Simons side

Definition 9.3.5. Let Z(S3) be the partition function given by (9.53). Set

F(S3) = − log Z(S3). (9.81)

Proposition 9.3.6 (’t Hooft 1974, Periwal 1993). For large N, the free energy
(9.81) of a SU(N)-gauge Chern–Simons QFT on S3 can be expanded as follows,

F(S3) =
∑
g≥0

�g(τ )N
2g−2. (9.82)

Here

λ := 2π

k + N
(9.83)
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is the Chern–Simons coupling constant, τ := λN the ’t Hooft coupling constant.
The weak-coupling limit λ→ 0, N → +∞ leave constant the ’t Hooft coupling
constant.

Sketch of the proof. The statement follows by observing that, in the ‘double
line notation’, Feynman diagrams contributing to the free energy F may be
thought of as a sort of ‘triangulation’ of a compact, connected topological surface
given by an admissible subdivision of the topological surface in polygons and
discs. The latter occur as the internal planar regions of loops in Feynman
diagrams: they should be understood as polygons admitting two edges and two
vertices. ’t Hooft observed that the contribution due to a Feynman diagram is
proportional to λe−vNh−l where l is the number of diagram loops (quark loops
in ’t Hooft notation) and e, v, h are the number of edges, vertices and faces
respectively, in the induced ‘triangulation’. Since a diagram loop increases h
by 1 and e, v by 2, the contribution due to a Feynman diagram without loops
and admitting h′ = h − l faces is proportional to λe−vNh−l as well. The Euler
characteristic formula

2− 2g = h − e + v
allows us to conclude that the Feynman diagrams’ contributions to the free energy
F can be labelled by the genus g of the topological surface and the number
of faces h of the induced ‘triangulation’. The associated contribution is then
proportional to λ2g−2+hNh giving

F =
∑
g

(∑
h

Cg,hλ
2g−2+h Nh

)

where Cg,h are suitable coefficients computed by Periwal. If we now consider
the weak-coupling limit λ → 0, N → +∞ leaving τ = λN constant, then the
free-energy expansion can be reorganized as follows.

F =
∑
g

(∑
h

Cg,hτ
2g−2+h

)
N2−2g =

∑
g

�g(τ )N
χ(g). ♦

Lemma 9.3.7. Let

Z(S3) = (k + N)−N/2
√
k + N

N

N∏
j=1

{
2 sin

(
jπ

k + N

)}N− j

be the Chern–Simons partition function, as in (9.53).
Set F(S3) = − log Z(S3) and

t = 2π iN

k + N
λ = 2π

k + N
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as in (9.83). The ’t Hooft topological expansion for large N (9.82) becomes, for
small λ,

F(λ, t) =
+∞∑
g=0

Fg(t)λ
−χ(g) (9.84)

where Fg(t) = τχ(g)�g(τ ) = (−1)g+1tχ(g)�g(−i t). In particular,

F0(t) = iπ2

6
t − i

(
m + 1

4

)
π t2 + i

12
t3 −

+∞∑
d=1

d−3(1− e−dt )

F1(t) = 1
24 t + 1

12 log(1− e−t ) (9.85)

Fg(t) = (−1)g B2g

2g(2g − 2)!
(

B2g−2

(2g − 2)
+

+∞∑
d=1

d2g−3e−dt
)

∀g ≥ 2

where m is an arbitrary integer coming from the polydromic behaviour of the
complex logarithm and Bh is the hth Bernoulli number defined by

x

ex − 1
=

+∞∑
h=0

Bh
xh

h! .

In the physics literature the 2gth Bernoulli number is often denote by Bg
instead of B2g.

The explicit computation of the expansion coefficients can be performed
either starting from �g(τ ) as in Periwal (1993) (expansion for large N) or from
Fg(t) by following Gopakumar and Vafa (1999, 1998a) (expansion for small λ).
The key ingredient in expanding F(S3) is to employ the Mittag–Leffler expansion
for the logarithmic derivative of the complex function sin(z)/z. When z = jλ/2
we get the following relation:

sin

(
j

2
λ

)
= j

2
λ

+∞∏
d=1

(
1− j2λ2

4π2d2

)
which introduced in (9.78) gives (9.84). The interested reader should consult the
references cited earlier.

The IIA theory side

Definition 9.3.8. Given a topological string theory whose target space is a
complex manifold Y , a world-sheet instanton (or simply instanton) of genus g
is a holomorphic map

φ : ! −→ Y

from a Riemann surface of genus g. If the boundary ∂! is not empty φ is said to
be open, since a similar instanton is typical of an open string. In the A-twisted
context φ represent a bosonic elementary field.
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In our case the only non-trivial homology class in Y is the exceptional �1:
the ‘string amplitude’ ‘counts’ instantons with the exceptional �1 as image:

Lemma 9.3.9. Let

F (s)(λ, t) =
+∞∑
g=0

F (s)g (t)λ
−χ(g)

be the perturbative expansion of the free energy (or better: the ‘string amplitude’)
of the type IIA (closed) string theory (with string constant λ) on the local Calabi–
Yau Y = ��1(−1) ⊕ ��1(−1). The coefficients F (s)g (t) determine the ‘local’
Gromow–Witten invariants of Y , associated with maps of Riemann surfaces with
the homology class of the exceptional locus �1 ∼= S2 ⊂ Y as image. With the
identification of λ as in (9.83) and

t := 2π iN

k + N
(9.86)

we have
F (s)g (t) = Fg(t) ∀g.

(t is interpreted as the Kähler modulus of the exceptional locus S2 ∼= �
1 in Y .)

The contribution F (s)g (t) to the string amplitude F (s)(λ, t) given by all the
genus g instantons is called the genus g instanton correction.

Definition 9.3.10. Let (X, g) be a Kähler manifold; fix a closed 2-form B on X
and denote by J ∈ H 2(X,�) the Kähler class of the Hermitian metric g. The
cohomology class of the form ω = B+ iJ is called the complexified Kähler class
associated with g. The Kähler modulus of a given real 2-cycle Z ⊂ X is defined
by the period ∫

Z
ω ∈ �

of the complexified Kähler class on it. By Stoke’s theorem and Kähler condition
on J it is well defined for the entire homology class of Z.

Sketch of the proof of lemma 9.3.9: F (s)0 (t) is recovered in Candelas et al
(1991): with our parameters we get

F (s)0 (t) = iπ2

6
t − iaπ t2 + i

12
t3 −

+∞∑
d=1

d−3(1− e−dt ).

The coefficient a does not have a direct topological interpretation on Y . Hosono
et al (1995) argue that a = 1/4 giving the match with F0(t) when m = 0.

The computation of F (s)1 (t) and F (s)2 (t) can be found in Bershadsky et al
(1993) and (1994) respectively: in our situation they match F1(t) and F2(t)
exactly.
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Faber and Pandharipande (2000) compute F (s)g (t) for every genus g ≥ 2,
i.e. for all the values of g for which the compactified moduli space Mg , given
by projective, connected, nodal, Deligne–Mumford stable curves of arithmetic
genus g, is an irreducible variety of dimension 3g−3 with orbifold singularities if
regarded as an ordinary coarse moduli space (it is smooth if regarded as Deligne–
Mumford stacks: see Fulton and Pandharipande (1995) and chapter 7 in Cox and
Katz (1999) for a general reference). Faber and Pandharipande (2000) show that

The coefficients Fg(t) determine the ‘local’ Gromow–Witten invariants
of Y , associated with maps of Riemann surfaces with the homology
class of the exceptional locus �1 ∼= S2 ⊂ Y as image.

In particular for g ≥ 2 we can write

F (s)g (t) = −〈1〉Yg,0 −
+∞∑
d=1

C(g, d)e−dt (9.87)

where 〈1〉Yg,0 is the genus g, degree 0 Gromov–Witten invariant of our Calabi–
Yau Y giving the instanton correction due to constant maps. On the other hand
the series on the right gives, for every d , the instanton correction due to maps
realizing a d-covering with genus g of the exceptional �1. Theorem 3 in Faber
and Pandharipande (2000) gives

C(g, d) = |χ(Mg)| d2g−3

(2g − 3)!
where χ(Mg) is the orbifold Euler characteristic of the coarse moduli space Mg .
It can be expressed in terms of Bernoulli numbers by means of the following
Harer–Zagier formula

χ(Mg) = B2g

2g(2g − 2)
.

Therefore we get

C(g, d) = |B2g|d2g−3

2g(2g − 2)! . (9.88)

Note that when g = 0, 1 the instanton correction due to non-constant maps admits
a similar series presentation whose coefficients are known. In particular, the genus
0 case is settled by the Aspinwall–Morrison formula

C(0, d) = d−3

(see Aspinwall and Morrison (1993), Manin (1995), Voisin (1996)) and it is easy
to recover its contribution in the series comparing in F0(t). For the genus 1 case
see Graber and Pandharipande (1999): in our particular situation it turns out that
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the non-constant instanton correction is due only to 1-coverings and is given by
1/12 log(1− e−t ).

We still need to compute 〈1〉Yg,0 in (9.87). This is theorem 4 from Faber and

Pandharipande (2000). Consider the rank g vector bundle � → Mg whose fibre
over the Deligne–Mumford stable curve C is given by H 0(C, ωC ) (here ωC is the
dualizing sheaf of C , the Hodge bundle of Mg). If c j (�) is the j th Chern class of
� then

c3
g−1(�) := cg−1(�) ∧ cg−1(�) ∧ cg−1(�)

is a top form over Mg . A result in Getzler and Pandharipande (1998) applied to
our Calabi–Yau Y gives

〈1〉Yg,0 = (−1)g
∫
Mg

c3
g−1(�). (9.89)

Faber and Pandharipande then show that∫
Mg

c3
g−1(�) =

|B2g|
2g

|B2g−2|
2g − 2

1

(2g − 2)! .

Since |B2g| = (−1)g+1B2g, the relations (9.87), (9.88) and (9.89) imply

F (s)g (t) = (−1)g+1
∫
Mg

c3
g−1(�) −

+∞∑
d=1

|B2g|d2g−3

2g(2g − 2)!e
−dt

= B2g

2g(2g − 2)!
( |B2g−2|
(2g − 2)

+ (−1)g
+∞∑
d=1

d2g−3e−dt
)
= Fg(t). ♦

9.3.2 The matching of expectation values

Here we discuss the matching of the expectation values of observables in the two
theories of the conjecture 9.3.1. The conjecture would be proved if the expectation
values for any observable would coincide. Unfortunately it is not known how to
produce a similar ‘universal comparison theorem’ but a general set-up to compare
some kind of observable has been performed and the matching of expectation
values has been proved in some particular case. In this section we present this
strategy and its striking mathematical consequences.

The basic idea has already been suggested in Gopakumar and Vafa (1999)
and then developed in Ooguri and Vafa (2000), Labastida and Mariño (2001),
Katz and Liu (2001) and Li and Song (2001). In Chern–Simons theory
observables are assigned by Wilson lines or products of them whose correlation
functions are given by (9.37) and (9.39) respectively. It is not clear a priori what
these functions correspond to on the topological closed-string theory side but there
are some leads.
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First, Witten’s open-string interpretation of Chern–Simons theory also gives
a translation of the correlation functions of Wilson observables in terms of
instantons contributions:

Proposition 9.3.11. An observable in SU(N) Chern–Simons gauge theory
represented by a link � corresponds in the Witten open-string theory
interpretation to the Lagrangian submanifold �� given by the conormal bundle
in T ∗S3|�.

The non-constant instanton contributions of a type IIA open-string theory
with non-compact D-branes wrapped on �� give a string theory interpretation of
the correlation function of �.

Definition 9.3.12. Let � be a knot in S3, parametrized by q = q(s) for s ∈
[0, 2π). For any s consider the plane πs ⊂ �

4 (p) of equations

4∑
j=1

q j (s)p j = 0

4∑
j=1

q̇ j (s)p j = 0.

The three-dimensional submanifold �� := ∐s πs is called the conormal bundle
of �.

Lemma 9.3.13. �� is a Lagrangian submanifold with respect to the symplectic
structure induced on T ∗S3 by the differential of the Liouville form ϑ :=∑4

j=1 p j dq j of �8 .

Proof. Consider T ∗S3 as embedded in �8 = �
4 (q)×�4(p) by the equations

(9.16). For any s consider the plane πs ⊂ �
4 (p) of equations

4∑
j=1

q j (s)p j = 0

4∑
j=1

q̇ j (s)p j = 0.

Then

ϑ|�� =
4∑
j=1

q̇ j (s)p j ds = 0. (9.90)

�
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Then we can try to understand how the conifold transition acts on those
instantons:

Theorem 9.3.14. For a suitable link �, the correlation function of the related
observable in SU(N) Chern–Simons gauge theory corresponds, on the IIA string
theory on��1(−1)⊕��1(−1), to ‘open Gromov–Witten invariants’ of maps from
Riemann surfaces with boundary on �1 determined by �.

The class of ‘suitable’ links � in the statement includes torus knots.
Sketch of the proof of proposition 9.3.11 Witten (1992) shows that one can

reproduce the correlation function of a Chern–Simons observable by introducing
further D-branes wrapping around a suitable Lagrangian submanifold of Ŷ =
T ∗S3 which is not the base S3 and considering the partition function of the limit
QFT.

In Gopakumar and Vafa (1999) and Ooguri and Vafa (2000) Wilson line
observable represented by a knot� ⊂ S3 is associated with the ‘conormal bundle’
�� whose total space turns out be a Lagrangian submanifold. Precisely, let us
consider T ∗S3 as embedded in �8 = �

4 (q)×�4(p) by the equations (9.16) end
let� ⊂ S3 ⊂ �

4 (q) be assigned by the parametrization q = q(s) for s ∈ [0, 2π).
For any s consider the plane πs ⊂ �

4 (p) of equations

4∑
j=1

q j (s)p j = 0

4∑
j=1

q̇ j (s)p j = 0.

The three-dimensional submanifold �� := ∐
s πs (endowed with the induced

differential structure) is a Lagrangian submanifold with respect to the symplectic
structure induced on T ∗S3 by the differential of the Liouville form ϑ :=∑4

j=1 p j dq j of �8 since

ϑ|�� =
4∑
j=1

q̇ j (s)p j ds = 0. (9.91)

Then the open-string theory having T ∗S3 as target space and boundary conditions
represented by M topological D6-branes wrapped on �� is exactly equivalent to
a SU(M) Chern–Simons gauge theory, since the boundary condition ∂φ ⊂ ��,
which is the analogue of (9.80), is satisfied for ‘every bosonic field’ φ. But
globally we now have an ‘A-twisted σ -model’ whose open sector also contains
open strings having one end on S3 and the other on ��: the non-constant
instantons associated with their world-sheet give a non-trivial contribution to the
string amplitude. This means that the low-energy limit QFT is a SU(N)⊗SU(M)
gauge theory which is no more a Chern–Simons theory but a deformation of it.
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Because �� ∼= � × �
2 and S3 is simply connected, Witten’s argument shows

that this partition function is strictly related with the correlation function of the
original observable associated with� in the SU(N) Chern–Simons theory on S3.
Precisely, if S(���) is the Chern–Simons action of the SU(M) gauge theory on
�� defined as in (9.32) then the partition function of the limit QFT is defined by
a Feynman integration of the following Chern–Simons deformed action

S(���)−
i

2πk

∑
d

ηd log(TrR(hd�)) (9.92)

where h� is the holonomy operator on � with respect to a connection Ã of the
SU(M) principal bundle over �� and ηd = ±1 for any d (see corollary 9.9.2 in
appendix 9.9).

The statement of proposition 9.3.11 follows by repeating this construction
for every knot in �. ♦

Sketch of the proof of theorem 9.3.14 for � = �, the un-knot: We now
fix a knot �, consider the conormal Lagrangian submanifold �� and study its
image, through the conifold transition, on Y = ��1(−1) ⊕ ��1(−1). Such a
procedure can easily be realized when � is the unknotted knot. Consider, in fact,
the involution of � 4 (x, y, z, t) given by

(x, y, z, t) �−→ (x, y,−z,−t).
Recalling now the chain of transformations given by (9.4), (9.6) and (9.15) we see
that such an involution act on �8 (q,p) as follows.

(q1, q2, q3, q4, p1, p2, p3, p4) �−→ (q1,−q2,−q3, q4,−p1, p2, p3,−p4).

(9.93)
We then have the following three properties:

(i) T ∗S3 turns out to be fixed by the involution (9.93) as follows from its
embedding equations (9.16) in �8 ;

(ii) the symplectic form

ω = dϑ =
4∑
j=1

dp j ∧ dq j

changes its sign under (9.93); and
(iii) the set of fixed points of (9.93) is given by

� := {(q,p) : q2 = q3 = p1 = p4 = 0}.
These properties imply that � := � ∩ T ∗S3 is a Lagrangian submanifold with
respect to the symplectic structure induced by ω on T ∗S3 whose equation in
�8 (q,p) turns out to be

q2
1 + q2

2 − 1 = q2 = q3 = 0 (9.94)

p1 = p4 = 0
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Hence topologically � ∼= S1×�2 and� := �∩S3 is an equator of S3, i.e. it is the
unknotted knot on S3 and � = ��. Recall now that, by Clemens theorem 9.1.5,
the conifold transition can be locally realized like a surgery by means of the
diffeomorphism on boundaries α represented in (9.17) whose equations are

q j = u j√∑
i u

2
i

p j = v j
√∑

i

u2
i .

Hence the image of � in the blow-up

Y = ��1(−1)⊕��1(−1) −→ Y

is the strict transform �̃ of the subvariety described in Y by conditions (9.94).
Recall that Y has local equations (9.7) in �8 (u, v). Then �̃ is the strict transform
of the three-dimensional degenerate hyperquadric of rank 4:

u2
1 + u2

4 − v2
2 − v2

3 = u2 = u3 = v1 = v4 = 0.

Restrict the diffeomorphism (9.8) to this hyperquadric: outside of the exceptional
fibre it is then topologically equivalent to (�>0×S1)×S1. By extending (9.8) over
the exceptional locus as in (9.12) we get the following topological interpretation
of the strict transform

�̃ ∼= �
2 × S1

where the second factor S1 is an equator of the exceptional locus S2. Note that
�̃ ∩ S2 = S1, the equator in the exceptional locus S2.

By this general picture in Ooguri and Vafa (2000) it is argued that the Chern–
Simons deformation (9.92) due to the Wilson line associated with the unknot (or,
equivalently, due to non-constant instantons landing on � by proposition 9.3.11)
can be evaluated, in the topological type IIA string theory on Y , by holomorphic
non-constant instantons sending a Riemann surface with boundary onto either the
upper or lower hemisphere of the exceptional S2, with respect to the equator �̃∩S2

where the Riemann surface boundary is sent. In fact, starting from (9.52) Ooguri
and Vafa compute the deformation term in (9.92) and obtain that, for large N , it
is given by −i (λ, t,�) where

 (λ, t,�) =
∑
d

TrR(hd�)+ TrR(h
−d
�
)

2d sin(dλ/2)
e−dt/2.

The terms of the series on the right can be thought of as a sort of Gromov–Witten
invariants of maps from Riemann surfaces with boundary to the disc. Ooguri and
Vafa, using M-theory duality (see Gopakumar and Vafa 1998a, b), showed that
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the right-hand side of this equation can be thought as Gromov–Witten invariants
of maps from Riemann surfaces with boundary to the disc.

Katz and Liu (2001) and Li and Song (2001), with some assumptions,
verified that this is in fact the case with mathematical methods. In particular

 (λ, t, y) =
∑
d

yd

2d sin(dλ/2)
e−dt/2

is the multiple cover formula of the disc (here t/2 is the relative homology class
of the (upper) hemisphere with orientation represented by y).

On the Chern–Simons side, the computation requires the framing of the knot
to be fixed; on the IIA side, the mathematical computations also require the choice
of a torus action (on the boundary of the Riemann surface). It has been shown that
the ambiguities match. ♦

By a theoretical point of view the geometric set-up allowing us to understand
the conifold transition image of the Lagrangian submanifold ��, when � is the
unknot, can be generalized to every knot or link. In practice the associated Chern–
Simons deformation and the corresponding open instantons correction in closed-
string theory become very intricate and difficult to compute. In Labastida and
Mariño (2001) such a computation is carried out in the highly non-trivial case
of torus knots again showing the conjectured matching of quantities. The same
result is obtained for further knots and links in Ramadevi and Sarkar (2000) and
Labastida et al (2000).

9.4 Lifting to M-theory

In the previous section we saw that the conifold transition machinery is a nice
geometrical setting for the large N open/closed string duality conjectured in
physics. Here we describe a geometrical construction which gives striking
evidence for the Gopakumar–Vafa conjecture and reduce to the conifold geometry
to a ‘dimensional reduction’. The main references for this construction are Atiyah
et al (2001) and the more extensive Atiyah and Witten (2001).

The geometric construction is suggested by the physical ‘lift’ of IIA theories
with branes (resp. fluxes), to M-theory. In our situation, M-theory is then
compactified on seven-dimensional, singular, spaces M−r , Mr with special (G2)
holonomy:

M−r ��� � � � Mr

↓ ↓
�

4 × S2 < −conifold− > S3 × �
3 .

The vertical maps are essentially Hopf fibrations, the singularities on M−r and
M+r are related to the presence of branes (resp. fluxes) and the special holonomy
is needed to preserve the N = 1 supersymmetry condition. The conifold
transition is lifted to a map between seven-dimensional manifold (the ‘M-theory



254 Large N dualities and transitions in geometry

flop’) . The physics statement in Atiyah et al (2001) and Atiyah and Witten (2001)
is that the theory does not go through a singularity under the M-theory flop: this
implies the Gopakumar–Vafa conjecture for the conifold transition.

In the following section we discuss Riemannian holonomy groups; next we
introduce the geometrical construction of the lift for N = 1 branes. We will
check later its physical consistence with the M-theory lift of IIA with branes.
Some basics properties of such lifts are stated in section 9.4.3.

9.4.1 Riemannian Holonomy, G2 manifolds and Calabi–Yau, revisited

The purpose of this section is to fix some notation and basic properties; details
and proofs can be found, for example, in Joyce (2000).

Let ∇ be the Levi-Civita connection on the tangent bundle T M of a
Riemannian manifold (M, g) and let p ∈ M:

Definition 9.4.1. The group Holp(g)

Holp(g) := Hol∇(p) (9.95)

is the Riemannian holonomy group of g at p ∈ M; Hol∇(p)was defined in (9.26).

It can be seen that when M is connected the holonomy group Hol(g) is
a subgroup of O(dim M), fixed up to conjugation. If M is orientable then
Hol(g) ⊂ SO(dim M). If (M, g, J ) is a Kähler manifold of dimension 2m, then
Hol(g) ⊂ U(m).

Theorem 9.4.2. A compact Kähler manifold (M, g, J ) of complex dimension
m ≥ 3 is a Calabi–Yau variety if and only if Hol(g) = SU(m) (for a proof
see Joyce (2000)).

In particular such a (M, g, J ) is always projective algebraic. The following
definition, often used in the physics literature, is then equivalent for m ≥ 3 to the
one given in section 9.1.1:

Definition 9.4.3 (Calabi–Yau, revisited). A compact Calabi–Yau manifold is a
compact Kähler manifold of dimension 2m, m ≥ 2, and Hol(g) = SU(m).

From the point of view of physics it is the condition Hol(g) � SU(m) which
is relevant, as it preserves the required supersymmetry. On a seven-dimensional
manifold, the necessary condition becomes Hol(g) = G2,whereG2 is as follows.
below:

Definition 9.4.4. Let (x1, . . . , x7) be coordinates on �7 and set

dxi1...ir = dxi1 ∧ . . . ∧ dxir .

G2 is the Lie subgroup of GL(7,�) preserving the 3-form

ϕ0 := dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356.



Lifting to M-theory 255

Proposition 9.4.5. The following hold:

(i) G2 fixes the 4-form ∗ϕ0 (∗ is the Hodge star), the Euclidean metric
g0 :=∑7

i=1 dx2
i and the orientation on �

7 . In particular, G2 ⊂ SO(7).
(ii) G2 is compact, connected, simply connected, semisimple.
(iii) dimG2 = 14.

Definition 9.4.6. Let M be an oriented manifold with dim M = 7. A 3-form
ϕp ∈ �3T ∗p M is positive at p if there exists an oriented isomorphism T ∗p M ∼= �

7

identifying ϕp with ϕ0. Set

�3+T ∗p M := {ϕp ∈ �3T ∗p M, such that ϕp is positive }.
A 3-form ϕ on M is positive if ϕ|p is positive for every point p ∈ M; set

�3+(M) := {ϕ such that ϕp ∈ �3+T ∗p M, ∀p ∈ M}.
Note that, by definition �3+T ∗p M ∼= GL+(7,�)/G2 . A dimensional

computation implies immediately that it is a non-empty open subset of �3T ∗p M .

Then a positive 3-form on M is a global section of the open subbundle�3+M . Fix
a positive 3-form ϕ on a Riemannian 7-manifold (M, g). We will write

Hol(g) ⊆ϕ G2

when, for any p ∈ M , we get

 p ◦ (Holp(g)) ◦ −1
p ⊆ G2

where  p is an oriented isomorphism T ∗p M ∼= �
7 representative of the class in

GL+(7,�)/G2 associated with ϕ|p via the isomorphism (9.4.1). Since G2 is
invariant under conjugation, for any two positive form ϕ,ψ

Hol(g) ⊆ϕ G2 ⇐⇒ Hol(g) ⊆ψ G2.

Without loss of generality we then write Hol(g) ⊆ G2.

Definition 9.4.7. (M, g) has a G2 holonomy metric if Hol(g) = G2.

The following properties assure that supersymmetry is preserved:

Proposition 9.4.8. Let (M, g) be a Riemannian 7-manifold with G2 holonomy
metric. Then

(i) g is Ricci flat,
(ii) M is an orientable spin manifold and
(iii) (M, g) has a non-zero covariant spinor.

(See, for example, Joyce [2000] for a proof of these statements.)

The existence of manifolds with G2 holonomy metric was firstly studied in
Bryant (1987) and then solved in Bryant and Salamon (1989) and in Gibbons et al
(1990) for non-compact manifolds. Compact manifolds with G2 holonomy metric
were then constructed in Joyce (1996). See also chapter 11 in Joyce (2000).
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9.4.2 The geometry

Lemma 9.4.9. Fix r in �>0 , � 4 with coordinates (z1, z2, z3, z4) and set

Mr : = {z ∈ �
4 : |z1|2 + |z2|2 − |z3|2 − |z4|2 = r}

M−r : = {z ∈ �
4 : |z1|2 + |z2|2 − |z3|2 − |z4|2 = −r}.

Then, topologically,

Mr ∼= S3 × �
2
(z3 ,z4)

∼= S3 × �
4

M−r ∼= �
2
(z1 ,z2)

× S3 ∼= �
4 × S3.

The proof of this lemma is presented after the proof of the following
proposition.

Proposition 9.4.10. There exists the following geometric lift of the conifold
transition:

M−r ∼= �4 × S3 ← · · · → S3 × �4 ∼= Mr

h− ↓ ↓h+
�4 × S2 < −conifold− > S3 × �3

(9.96)

where

(i) h− is the identity on the first factor and the Hopf fibration on S3 and
(ii) h+ is the identity on the first factor and the non-differentiable extension
to �3 of the Hopf fibration on S3.

Furthermore �4 × S3 admits a G2 holonomy metric.

Proof of proposition 9.4.10 The key geometric observation of the following
argument is that M−r and Mr are resolutions of real cones over S3 × S3, while
�3 × S3 and S2 × �4 are resolutions of a real cone over S2 × S3. Furthermore
the Hopf fibration maps S3 → S2.

Clemens theorem (9.1.5) describes the conifold transition as a surgery
between topological spaces with the same boundary. This surgery is expressed
by the morphism α, which is the identity on S3 × S2 (see (9.17)):

α : (�4 \ {0})× S2∼=S3 × (�3 \ {0}).
Since,

(�4 \ {0})× S2 ∼= �>0 × S3 × S2

S3 × (�3 \ {0}) ∼= S3 × S2 × �>0

we can re-write α as

α : �>0 × S3 × S2 −→ S3 × S2 × �>0

(ρ,u, v) �−→ (u, v, ρ).
(9.97)
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As in the previous lemma, we embed S3 ⊂ � 2
(zi ,zi+1)

and consider the compatible
Hopf fibration:

h : S3 −→ �
1
�
∼= S2

(zi , zi+1) �−→ [zi , zi+1] = [λzi , λzi+1] λ ∈ �
∗ .

(9.98)

Then the following diagram:

�>0 × S3 × S3 α̃−→ S3 × S3 × �>0

h3 ↓ ↓h2

�>0 × S3 × S2 α−→ S3 × S2 × �>0

(9.99)

commutes, where

h3 := Id�>0 × IdS3 × h

h2 := IdS3 × h × Id�>0

α̃(ρ,u,u′) := (u,u′, ρ).
Note that, while h3 can be smoothly extended to a fibration,

h− := Id�4 × h : �4 × S3 −→ �
4 × S2

this is not true for h2. There is, however, a topological extension of h+ h2. The
extensions h− and h+ then give the diagram (9.96) in the statement.

Bryant and Salamon (1989) and Gibbons et al (1990) explicitly describe a
G2 holonomy metric on M := S3 × �4 .

The metric in Gibbons et al (1990) is a smooth extension of the metric on
the cone over S3 × S3. Bryant and Salamon (1989) consider SU(2) ∼= S3 and the
quaternions � ∼= �4 as a cone over SU(2). Then S3 × �4 ∼= (SU(2)× SU(2)×
� )/SU(2), with SU(2) acting on the right, is a rank-four vector bundle on SU(2).
With this latter representation is evident that there are two other resolutions of the
cone over S3 × S3:

(� × SU(2)× SU(2))/SU(2) ∼= �
4 × S3, (SU(2)× � × SU(2))/SU(2).

The third manifold fibres, via the Hopf fibration, to the ‘flopped’ local Calabi–
Yau Y+ of the resolved conifold Y (see (9.10)); we have then the third branch of
figure 9.3 (see also Manzoni 1842). ♦

Proof of lemma 9.4.9. Let (z1, z2, z3, z4) be coordinates in � 4 ; for every r ,
positive real number set

Mr := {z ∈ �
4 : |z1|2 + |z2|2 − |z3|2 − |z4|2 = r}.

Then,

φ+ : Mr −→ S3 × � 2

(z1, z2, z3, z4) �−→
(
z1

ρ+
,
z2

ρ+
, z3 · ρ+, z4 · ρ+

)
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Y +Y

Y

Figure 9.3. The three branches of the moduli. (‘I rami del lago di Como. . . ’.)

is a isomorphism, where ρ+ :=
√|z1|2 + |z2|2 =

√
r + |z3|2 + |z4|2.

Similarly for M−r . ♦

9.4.3 Branes and M-theory lifts

It remains to understand how this geometrical construction reflects a consistent
correspondence among physical theories. On the two sides of the conifold
transition we have the theories IIA with branes, and IIA with fluxes, compactified
on Ŷ and Y respectively. The equivalence of the theory is claimed by the
Gopakumar conjecture 9.3.1.

The crucial point is that IIA string theory may itself be regarded as a
dimensional reduction of a � = 1 supersymmetric Lorentz invariant theory in
11 dimensions: M-theory (see Sen [1997, section 7], for a quick review and
references cited there for details on the argument). M-theory was proposed
originally in Townsend (1995) and Witten (1995), who observed that the low-
energy limit of a type IIA string theory, i.e. a type IIA supergravity theory, can be
obtained by a ‘Kaluza–Klein’ dimensional reduction of a� = 1 supersymmetric
gravity theory in 11 dimensions. The reduction is along an S1, called the 11th
circle.

When M-theory and IIA are ‘compactified’ on manifolds M and Y
respectively, the ‘Kaluza–Klein’ dimensional reduction induces an S1 fibration
h : M → Y .

If N G-branes are ‘wrapped’ on a submanifold L ⊂ Y , M is singular along
h−1(L); the type of singularity is determined by G (see appendix 9.5) and h is
a singular Hopf fibration. For a survey on this topic see, for example, Johnson
(1998, 2000). In order to preserve the � = 1 supersymmetry of the theory, M
must be a manifold with G2 holonomy.
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9.4.4 M-theory lift and M-theory flop

Physics statement 9.4.11 (Acharya (1999), Atiyah et al (2001), Atiyah–Witten
(2001)). The following diagram is physically consistent with the M-theory lift of
N D-branes, (i.e. gauge group SU(N)):

M−r Mr

π− ↓ ↓π+
X− X+

h(N)−
↓ ↓

h(N)+
�

4 × S2 ← conifold → S3 × �
3 .

(9.100)

In particular,

(i) X− and X+ are G2 holonomy spaces.
(ii) The surjections h(N)− , h(N)+ give rise to N R–R fluxes and N D-branes,
respectively, for the type IIA string theories obtained by dimensional
reduction on the two sides of the conifold transition.
(iii) (S3, 0) ⊂ X+ is a locus of AN−1 singularities.

Finally, M-theory compactified on X− is equivalent to M-theory on X+. Note
that the physics description is valid only for large N.

At the time this lecture was given the work by Acharya (1999), and Atiyah
et al (2001) was in print, while the main results of Atiyah and Witten (2001) had
just been recently announced. Atiyah and Witten (2001) ‘argue that there is a
moduli space of theories of complex dimension one that interpolates smoothly,
without phase transition, between the three classical spacetimes’ obtained by
compactification on the three lifts described at the end of proof of 9.4.10 and
in figure 9.3.

Sketch of the proof: The geometric lift (9.96) gives an M-theory lift of IIA
string theories when N = 1. The singularity of the map h+ denotes the presence
of branes.

To get M-theory lift with N D-branes wrapped on S3 × {0} ⊂ S3 × �
3 we

need to introduce corresponding singularities on Mr (see section 9.4.3). We do so
by defining a suitable action of the group of N th roots of unity on � 4 : the induced
action on M−r will give N units of R–R fluxes on �4 × S2.

Let �N := �/N�act on � 4 as

� × �
4 −→ �

4

(n, z) �−→ (z1, z2, ξnz3, ξnz4) (9.101)

where ξn := exp(2π in/N). The complex plane F =: {z3 = z4 = 0} is the fixed
locus of �. Recall that M−r ∼= � 2

(z1,z2) × S3 and Mr ∼= S3 × � 2
(z3,z4). Then,

F ∩ M−r = ∅ F ∩ Mr = S3 × {0}.
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The quotient

M−r ∼= �
2
(z1,z2) × S3 −→ M−r/� ∼= �

4 × (S3/�) := X−

is smooth; (S3/�) is called a lens space and denoted by L(N). Furthermore,
since the �-action is restricted to the fibre of the Hopf fibration, the map h− in
(9.96) can be factorized through the canonical projection π− as follows

M−r
h−−→ �4 × S2

π− ↘ ↗
h(N)−

X−.

However, the quotient

Mr ∼= S3 × �
2
(z3,z4) −→ Mr/� ∼= S3 × (�4/�) := X+

contains a S3 of singular points. Furthermore, since the �-action is restricted
to the fibre of the Hopf fibration, the map h+ in (9.96) can topologically be
factorized through the canonical projection as follows

Mr
h+−→ S3 × �3

π+ ↘ ↗
h(N)+

X+.

�4/� is a AN−1 singularity, with gauge group SU(N) (see appendix 9.5). In fact
with the change of coordinates w3 = z3, w4 =

√−1 · z4, the action becomes
(w3, w4) → (ξw3, ξ

−1w4) as described in appendix 9.5. This is the geometric
incarnation of the M-theory lift with SU(N) branes wrapped on S3.

Furthermore the non-singular �N quotient (on the left of diagram (9.100))
gives rise to N units of R–R flux. In fact, if V (−r) is the volume of S3×{0}, then
vol(S2) = vol(S3/�) = V (−r)/N .

Recall that there exists a G2 holonomy metric (Bryant and Salamon (1989),
Gibbons et al (1990)) on M := S3 × �4 . There is a precise description of the
isometry group on M and the action of � is included in this subgroup. Hence the
quotients X− and X+ are also G2 holonomy spaces.

Atiyah and Witten (2001), following Atiyah et al (2001) show that the M-
theories compactified on X− and X+ are equivalent. Thus, there is no ‘phase’
transition, exactly as when IIA is compactified on Calabi–Yau varieties related by
a ‘flop’ (see Witten 1993). Hence the name of M-theory flop.

It is worth pointing out that the equivalence of the theory and the relations
between the physical parameters derived in Atiyah et al (2001) is only valid for
large N . The equivalence of the theories also implies the relations between the
Kähler modulus of Y and the parameters on the Chern–Simons theory conjectured
by Gopakumar and Vafa (Atiyah et al 2001).



Appendix: Some notation on singularities and their resolutions 261

However, the asympotics of the G2 metric is not what it would be expected
from the IIA situation; based on this observation Atiyah et al (2001) conjectured
the existence of a deformation of the G2 metric with such properties. This was
later shown in Brandhube et al 2001. ♦

9.5 Appendix: Some notation on singularities and their
resolutions

Here we adopt the same notation and terminology introduced in Reid (1980, 1983,
1987a).

Definition 9.5.1. A Weil divisor D on a a complex, normal and quasiprojective
variety is �-Cartier, if for some r ∈ �, r D is a Cartier divisor (i.e. D ∈
Pic(Y )⊗ �).

If Y is smooth then any Weil divisor is Cartier.

Definition 9.5.2. A Y be a complex, normal and quasiprojective variety is �-
factorial if any Weil divisor is �-Cartier.

Definition 9.5.3. Let Y be a complex, normal and quasiprojective variety and
KY be its canonical divisor which is, in general, a Weil divisor. Y has canonical
(terminal) singularities if

(i) KY is �-Cartier,
(ii) given a smooth resolution f : Y −→ Y then

r KY ≡ f ∗KY +
∑
i

ai Ei

where ≡ means ‘linearly equivalent’, Ei are all the exceptional divisors of
f and ai ≥ 0 (respectively ai > 0).

The smallest integer r for which such conditions hold is called the (global)
index of Y and the smallest r

′
for which r

′
KY is Cartier in a neighbourhood of

P ∈ Y is called the index of the singularity P .
The divisor � := ∑i ai Ei is called the discrepancy of the resolution f . If

� ≡ 0 then f is called a crepant resolution of Y .
We are interested in transitions of Calabi–Yau manifolds: in particular, if at

a point in the complex moduli Y is singular and KY ≡ 0, its birational resolution
should be crepant to preserve the Calabi–Yau condition on the canonical bundle.

Definition 9.5.4. (see, for example, Clemens et al 1988) By NE(Y ) ⊂ ��

we denote the cone generated (over �≥0 ) by the effective cycles of (complex)
dimension 1, mod. numerical equivalence. NE(Y ) is the closure of NE(Y ) ⊂ ��

in the finite dimensional real vector space�� of all cycles of complex dimension 1,
mod. numerical equivalence.
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Note that � = rk(Pic(Y )), and in the cases of Calabi–Yau manifolds,
� = b2(Y ), the second Betti number of Y .

Definition 9.5.5. A birational contraction f : Y → Y is called primitive extremal
if the numerical class of a fibre of f is on a ray of the Mori cone NE(Y ).

Examples

The surface case

Let X be a surface. It can be proved that a point P ∈ X is a terminal singularity
if and only if it is non-singular. Moreover, the canonical (non-terminal) singular
points are given by the Du Val singularities (DV points) which are classified as
follows in terms of their local equations.

An : x2 + y2 + zn+1 = 0 n ≥ 1

Dn : x2 + y2z + zn−1 = 0 n ≥ 4

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0.

In particular each of them admits a crepant resolution whose exceptional locus is
composed by a set of (−2) curves (i.e. rational curves admitting self-intersection
index −2) whose configuration are dually represented by the homonymous
Dynkin diagrams: these are particular examples of Hirzebruch–Jung strings (see
Peters et al 1984, chapters I and III).

Note that an ordinary double point is represented by A1 and admits a crepant
resolution whose exceptional locus is given by a unique (−2) curve. This equation
is generalized to the threefold case in equation (9.1.4).

Each of these singularities can be described as a quotient of � 2 by a discrete
subgroup � ⊂ SL(2). For An , � is the cyclic group of order n+ 1 generated by a
primitive nth root of unity ξ ; the action on �

2 sends (w1, w2) → (ξw1, ξ
−1w2)

(see Slodowy 1990).

The threefold case

Let X be a threefold and P ∈ X be a canonical singular point of index r . A
first important fact is that there exists a finite Galois covering Y −→ X with
group�/r which is étale in codimension 1 and such that Y is locally canonical of
index 1 (see Reid 1980, corollary 1.9).

Definition 9.5.6. P ∈ X is a compound Du Val singularity (cDV point) if the
restriction to a surface section is a Du-Val surface singularity.

The advantage of these kind of singularities is that they admit a simultaneous
small resolution, as studied by several authors (see, e.g., Reid (1983), Pinkham
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(1983), Morrison (1985), Friedman (1986)). The idea is that of thinking an
analytic neighbourhood of an isolated cDV point like the total space of a one-
parameter family of deformations of the section over which we get a DV point.
The total space of the induced one-parameter family of deformations of a given
resolution of such a DV point is then a small resolution of the starting cDV
point. One can now apply the theory of simultaneous resolutions of DV points
on surfaces (Brieskorn 1966, 1968, Tyurina 1970). The main theorem in Reid
(1983) states that

(i) P ∈ X is a terminal singularity of index r if and only if the local r -fold
cyclic covering Y −→ X has only isolated compound Du Val singularities;
and

(ii) if X admits at most canonical singularities then there exists a crepant partial
resolution S −→ X such that S admits at most isolated terminal singularities.

These results allows to reduce the problem of resolving canonical singularities to
that of resolving cDV points, up to partial resolutions and finite coverings.

9.6 Appendix: More on the Greene–Plesser construction

Here we will quickly sketch an example supporting the Greene–Plesser
construction explained in Candelas et al (1994) and in Morrison (1999).

Let Y 1 be the degree 8 weighted hypersurface of �(1, 1, 2, 2, 2) and Y1 be
the desingularization induced by blowing up the singular locus of �(1, 1, 2, 2, 2).
Here φ is a primitive contraction of type III and the transition can be completed by
considering the embedding of �(1, 1, 2, 2, 2) in �5 by means of the linear system
�(2). The image of �(1, 1, 2, 2, 2) is a rank 3 hyperquadric of �5. Hence the
image of Y 1 is the complete intersection of this hyperquadric with the generic
quartic hypersurface of �5. By smoothing the hyperquadric we get Ŷ1. Following
the idea of Greene–Plesser (1990) the mirror partners may be found by taking
the quotient with the subgroups of automorphisms preserving the holomorphic
3-form. Since the hypersurfaces cohomology can be completely described by
means of Poincaré residues (see Griffiths 1969) these subgroups are respectively
given by

G : = {(a0, . . . , a4) ∈ (�8)
2 × (�4)

3 :
∑

ai ≡ 0(8)}
H : = {(b0, . . . , b5) ∈ (�4)

2 × (�2)
4 : b0 + b1 ≡ b2 + · · · + b5 ≡ 0(4)}.

We denote by ai , b j the least non-negative integers representing the homonymous
class in �n. Hence the mirror partner Ŷ2 of Ŷ1 may be obtained by a H -invariant
complete intersection of bidegree (2, 4) in �5 via the desingularization of the
quotient �5/H where H acts on �5 as follows.

(H/�H)× �5 −→ �
5

(b, x) �−→ (β j x j )
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where

β :=
{

exp
(
b jπ i

4

)
for j = 0, 1

±1 otherwise

and �H is the subgroup of H giving a trivial action on �5, i.e.

�H := {(0, . . . , 0), (2, 2, 1, . . . , 1)}.
However, the mirror partner Y2 of Y1 may be obtained by a G-invariant
hypersurface of degree 8 in �(1, 1, 2, 2, 2) via the desingularization of the
quotient �(1, 1, 2, 2, 2)/G where G acts on �(1, 1, 2, 2, 2) as follows.

G/�G × �(1, 1, 2, 2, 2) −→ �(1, 1, 2, 2, 2)
(a, x) �−→ (α j x j )

where

α j :=
exp

(
a jπ i

8

)
for j = 0, 1

exp
(
a jπ i

4

)
otherwise

and �G is the diagonal subgroup of G which is

�G := {(a, . . . , a) : 0 ≤ a ≤ 3}.
It can be checked that there is a birational equivalence between Ŷ2 and Y2
representing a mirror partner of our transition .

9.7 Appendix: More on transitions in superstring theory

Strominger gave a physical explanation of how resolving the conifold singularities
of the moduli space of classical string vacua by means of massless Raymond–
Ramond (R–R) black holes . More precisely the possible compactifications of a
ten-dimensional IIB string theory to four dimensions on a Calabi–Yau manifold
Y may be parametrized by the choice of the complex structure characterizing Y .
Such a choice may be described by the periods of a holomorphic 3-form � over
a suitable symplectic basis of H3(Y,�) (see de Wit et al [1985] and Strominger
[1990] for detailed notation in a N = 2, four-dimensional supergravity theory
and in special geometry) which can be considered as projective coordinates of
the moduli space �(Y ) of complex structures. The complex codimension 1
locus defined in � by the vanishing of one of those periods is composed by
singular complex structures generically geometrically realized by a conifold. In
fact the generic singularity is given by an ordinary double point. Note that the
associated vanishing cycle is represented by the 3-cycle of the symplectic basis
corresponding to the vanishing period.

Such singularities induce a polydromic behaviour for the components of the
self-dual 5-form giving the classical field. Following an analogous construction
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given in Seiberg and Witten (1994) and applied in the completely different context
of N = 2 supersymmetric Yang–Mills theory, Strominger resolved this problem
by means of a low-energy effective Wilsonian field defined by including the
light fields associated with extremal black 3-branes which can wrap around the
vanishing 3-cycles and are always contained in a ten-dimensional compactified
type IIB theory (see Horowitz and Strominger 1991). These 3-branes represent
black holes whose mass is proportional to the volume of the vanishing cycles they
wrap around. Hence they are massless at the conifold and by integrating out the
smooth so defined Wilsonian field we get exactly the polydromic behaviour of the
classical field. This is enough to ensure that the theory may smoothly extend to
the conifold.

However, in the case of a ten-dimensional compactified type IIA theory
we get a similar picture by taking the periods of a complexified Kähler form
ω ∈ H 2(Y, � ) = H 1,1(Y ) over a suitable basis of H2(Y,�) as projective
coordinates of the moduli space �

′
(Y ) of all possible Kähler structure on Y

(which parametrizes all the possible compactifications of a ten-dimensional IIA
string theory to four dimensions on the Calabi–Yau manifold Y ). We get now
black 2-branes (see Horowitz and Strominger 1991) which can wrap around
vanishing 2-cycles and represent massless black holes at conifold. Since, in this
case, these massless states are a result of large instanton corrections the resolution
of singularities can be obtained by passing to the dual IIB compactification on a
mirror model Y ◦ of Y and by proceeding like before.

9.8 Appendix: Principal bundles, connections etc

Here we review some terminology, concepts and properties from differential
geometry: for more details, see, for example, Helgason (1978), Poor (1981) and
Warner (1983).

Definition 9.8.1. Let G be a Lie group. A left (right) action of G on a manifold
M is a homomorphism (anti-homomorphism) to the group of diffeomorphisms of
M:

L(resp. R) : G −→ Diff(M)

In particular for every σ, τ ∈ G we have L(σ ) ◦L(τ ) = L(στ) (resp. R(σ )
◦R(τ ) = R(τσ ) ).

Definition 9.8.2. An action is free if id is the unique element of G mapping to the
identity of Diff(M). Note that if the G-action is free then it is an injection of G
into Diff(M).

Definition 9.8.3. A principal G-bundle on a manifold M is a manifold P on which
G acts freely on the right together with a smooth, surjective map π : P → M
such that
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(i) for every point m ∈ M there is a local trivialization of P i.e. an open

neighbourhood {Ua} and a local diffeomorphism ϕUa : π−1(Ua)
∼=→ Ua×G

making the following diagram be commutative

π−1(U)
ϕU−→ U × G

π ↓
pr1↙

U

(9.102)

(ii) π is G-invariant i.e. for every p ∈ P and every σ ∈ G
π(pσ) = π(p)

where pσ := R(σ )p.

Remark 9.8.4. For a principal bundle (P, π) the map π is a submersion implying
that

�p P := ker(dpπ) = Tpπ
−1(π(p))

for every p ∈ π−1(π(p)). Set m := π(p) ∈ M and let (U, ϕU ) be a local
trivialization of P near m. The commutative diagram (9.102) allows us to define
a diffeomorphism σUm such that

(σUm )
−1 := (ϕ−1

U ) |{m}×G : G
∼=−→ π−1(m).

Its differential gives the isomorphism

dpσUm : Tpπ−1(m)
∼=−→ TσUm (p)G.

However, by differentiating the automorphism rσ of G, given by right
multiplication by σ ∈ G, we get the isomorphism

didrσ : � ∼= TidG
∼=−→ TσG

where � is the Lie algebra associated with G whose elements are all the left
invariant vector fields on G. Hence, for every p ∈ π−1(m), we get the
isomorphism

dp(r
−1
σUm (p)

◦ σUm ) : ker(dpπ)
∼=−→ �.

This suffices to conclude that the vertical bundle�P associated with the principal
G-bundle (P, π) is a vector bundle whose standard fibre is the Lie algebra
� associated with G. In particular near a point p ∈ P we have the local
trivialization (π−1(U), ϕπ−1(U )) where

ϕπ−1(U ) : �P |π−1(U )

∼=−→ π−1(U)× �
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is the diffeomorphism defined by setting

ϕπ−1(U )(u) := (q, dq(r−1
σU
π(q)(q)

◦ σUπ(q))(u))

for every q ∈ π−1(U) and u ∈ �q P.
Recall the definition 9.2.2 of a connection on a principal G-bundle (P, π).

It is not difficult to show that every principal bundle on a paracompact manifold
M admits a connection (see, e.g., Poor 1981, theorems 2.35 and 9.3). Given a
connection�P ⊂ T P we can uniquely split a vector field X : P −→ T P into a
horizontal part �X : P −→ �P and a vertical part �X : P −→ �P such that,
for every p ∈ P ,

X p = �p X + �p X. (9.103)

Recalling definition 9.2.3 let A ∈ �1(P, �) be the �-valued 1-form associated
with the connection �P and � ∈ �2(P, �) be its curvature �-valued 2-form.
These forms are each other related by the structure equation

�(X,Y ) = dA(X,Y )+ [AX, AY ]
for every vector fields X,Y on P . We can rewrite it in the following shorter shape

� = dA + 1
2 [A, A] (9.104)

by setting [A, A](X,Y ) := [AX, AY ] − [AY, AX].
Let lσ be the automorphism of G given by left multiplication by σ ∈ G.

The dual vector space �
∗ of the Lie algebra � can be canonically identified with

the vector space of all left invariant 1-forms on G since all such forms assume
constant values on left invariant vector fields. The composition

aσ := lσ ◦ rσ−1 : G −→ G

is an automorphism of G fixing id ∈ G. Therefore its differential

Adσ := didaσ (9.105)

may be thought like an automorphism of � ∼= TidG and its codifferential δidaσ
like an automorphism of �∗.

Proposition 9.8.5. Let us consider θ ∈ �
∗ and X,Y ∈ �. Then for every σ ∈ G

(δrσ )θX = (θ ◦ Adσ )X (9.106)

and they satisfy the Maurer–Cartan equation1

dθ(X,Y ) = −θ [X,Y ]. (9.107)

1 For this reason left invariant 1-forms are also called Maurer–Cartan forms.
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Proof. To prove (9.106) note that, for every τ ∈ G, left invariance of θ gives

θτσ = (δτσ lσ−1)θσ−1τσ

which implies

(δτrσ )θτσ = (δτrσ ◦ δτσ lσ−1)θσ−1τσ = (δτaσ−1)θσ−1τσ = θσ−1τσ ◦ dτaσ .

To restrict this relation to a left invariant vector field X ∈ � means to choose
τ = id and so to obtain just (9.106). For (9.107) let us observe that, almost by
definition,

dθ(X,Y ) = XθY − Y θX − θ [X,Y ].
Since X,Y ∈ � left invariance of θ implies that both θY and θX are constant
functions. This suffices to end up the proof. �

Given a point p ∈ P let us now consider the codifferential

δλp : T ∗P −→ T ∗G

and let A be the connection form of�P . We can then define the �-valued 1-form
(δλ)A ∈ �1(G, �) by setting

((δλ)A)σ := (δσλp)Apσ (9.108)

for every σ ∈ G. This definition is not dependent on the choice of p ∈ P since
by (9.23) we have for every v ∈ TσG

(δσ λp)Apσ (v) = Apσ ((dσλp)v) = (didλpσ )
−1(�pσ (dσ λp)v).

Since λp is a diffeomorphism of G onto the fibre π−1(π(p)) it follows that
(dσ λp)v ∈ �pσ P and

(δσλp)Apσ (v) = (didλpσ )
−1((dσ λp)v) = dσ (λ−1

pσ ◦λp)v = (didlσ )
−1v (9.109)

where the last equality follows by differentiating the commutative diagram

G
λp−→ P

l
σ−1 ↘ ↙

λ−1
pσ

G.

The �-valued 1-form (δλ)A is actually left invariant since

δσ lτ ((δλ)A)τσ = (δσ lτ ◦ δτσλp)Apτσ = Apτσ ◦ dσ (λp ◦ lτ )
and, given v ∈ TσG, we get

δσ lτ ((δλ)A)τσ v = (didλpτσ )
−1(�pτσdσ (λp ◦ lτ )v)

= dσ (λ−1
pτσ ◦ λp ◦ lτ )v = (didlσ )

−1v = ((δλ)A)σ v.



Appendix: Principal bundles, connections etc 269

Therefore (δλ)A ∈ �
∗ ⊗ � ∼= Hom(�, �): call it the Maurer–Cartan form

associated with the connection �P . By (9.109) it is the �-valued 1-form
which assigns to each tangent vector to G its left invariant extension: hence
its representative in Hom(�, �) is the identity id� and the Maurer–Cartan
equation (9.107) gives

d(δλ)A(X,Y ) = −(δλ)A[X,Y ] = −[X,Y ] = −[(δλ)AX, (δλ)AY ].
Then we get

d(δλ)A + 1
2 [(δλ)A, (δλ)A] = 0.

By defining (δλ)� just like we did for (δλ)A in (9.108) the structure
equation (9.104) and the last one allows us to conclude that

(δλ)� = 0. (9.110)

Since δidλp realizes the isomorphism �∗p P ∼= �
∗ this actually means that the

curvature 2-form � vanishes on the tangent space to the fibre of P. Hence the
structure equation (9.104) can be rewritten as follows

dA = �− 1
2 [A, A]

to give a decomposition of dA into horizontal and vertical parts.
Let us now come back to consider the connection form A of �P . It can be

defined as in (9.23) since the connection�P determines a splitting in the tangent
bundle T P . But the converse is also true and the connection�P may be obtained
by the �-valued 1-form A just like the vector sub-bundle ker A.

Proposition 9.8.6. If A is the connection form of a connection�P then

∀p ∈ P,∀u ∈ �p P (didλp)Apu = u (9.111)

∀σ ∈ G δR(σ )A = Adσ−1 ◦ A.
Conversely given a �-valued 1-form A on P satisfying these conditions the

vector sub-bundle ker A ⊂ T P gives a connection on P whose connection form
is A. Hence the set�P of all the connection on P can be identified with the affine
subspace of �1(P, �) defined by conditions (9.111). Furthermore the curvature
form � ∈ �2(P, �) of�P is a �-valued 2-form such that

∀p ∈ P,∀u, v ∈ �p P �p(u, v) = 0 (9.112)

∀σ ∈ G δR(σ )� = Adσ−1 ◦�.
Proof. The first equality in (9.111) follows immediately by the definition of the
connection form A. For the second one note that

δp R(σ )Apσ (u) = Apσ (dp R(σ )u) = (didλpσ )
−1
�pσ (dp R(σ )u).
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The condition (9.22) for the connection �P implies that �pσ (dp R(σ )u) =
dp R(σ )(�pu). However, �pu = didλp(Apu) and we can write

δp R(σ )Apσ (u) = (didλpσ )
−1 ◦ dp R(σ ) ◦ didλp(Apu) = Adσ−1 ◦ A(u)

where the last equality follows by the commutative diagram

π−1(π(p))
R(σ )−→ π−1(π(pσ))

λp ↑ ↓
λ−1
pσ

G
a
σ−1−→ G.

For the converse it suffices to observe that the first equality in (9.111) gives the
splitting condition (9.21) and the second one ensures the G-invariance (9.22) for
ker A. Hence it is a connection on P whose connection form is clearly A.

Finally the first equality in (9.112) follows by (9.110) and the second one by
applying the second equality in (9.111) to the definition (9.24) of �. �

Let us recall that a gauge transformation of P is an automorphism ϕ of P
which induces the identity map on the base manifold M . Then it leaves every
fibre fixed and it takes sense to define the associated map

σϕ : P −→ G (9.113)

such that ϕ(p) = pσϕ(p). By applying the Liebnitz rule to the connection form
A we get that

(δpϕ)Aϕ(p) = δp R(σϕ(p))Apσϕ(p) + (δpσϕ)(δλ)Aσϕ(p)
where (δλ)A is the Maurer–Cartan form of the given connection. The second
equation in (9.111) allows us to conclude that under a gauge transformation ϕ
the connection form A behaves as follows

(δϕ)A = Ad
σ−1
ϕ
◦ A + (δσϕ)(δλ)A. (9.114)

If � is the associated curvature then by (9.110) and (9.112) it transforms under
ϕ as follows

(δϕ)� = Ad
σ−1
ϕ
◦�. (9.115)

Since gauge transformations on P form a group �P with respect to the
composition, (9.114) defines an action of �P on the affine space of connections
�P .

Let us now consider the exponential map exp : � −→ G which assigns to
a left invariant vector field X ∈ � the point expX (1) ∈ G where expX (t) is the
unique one-parameter group whose tangent vector at 0 ∈ � is X id ∈ TidG. Since
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Adσ ∈ Aut(�), for every σ ∈ G, and the Lie algebra of Aut(�) is End(�) we get
the following commutative diagram

G
Ad−→ Aut(�)

exp ↑ ↑exp

�
ad−→ End(�)

where ad := d(Ad).

Definition 9.8.7. For every X,Y ∈ � the symmetric bilinear form

〈X,Y 〉 := tr(adX ◦ adY )
is called the Killing form of the lie algebra �.

Given a point m ∈ M recall the definition (9.26) of the holonomy group
Hol�P(m) of a connection� P at m ∈ M . If the base manifold M is connected
all these groups are isomorphic when m varies in M since we can send

hγ ∈ Hol�P (m1) �−→ hα∗γ ∗α ∈ Hol�P(m2) (9.116)

where α is a path from m1 to m2 and α its reversed path. Then it make sense to
define the holonomy group Hol�P of the connection�P .

9.9 Appendix: More on Witten’s open-string theory
interpretation of QFT

Sketch of proof of theorem 9.3.2: We have to show that under the assumptions
(9.79) and (9.80) the weak-coupling limit of the abstract string Lagrangian
reduces exactly to the Lagrangian of a QFT on L.

The low-energy (or weak-coupling) limit of a string theory is only
approximated by a QFT since the limit Lagrangian admits perturbative corrections
depending on the coupling constant and non-constant instanton corrections (see
definition 9.3.8). The string theory analysed in Witten (1992) is a topological
theory given by an A-twisted σ -model. At first Witten observes that this model
does not depend on the coupling constant of the theory implying that there cannot
be any perturbative correction in the limit Lagrangian.

It remains then to show that all the non-constant instanton contributions
vanish. Let σ be the canonical symplectic form on Ŷ = T ∗L. It is the differential
of the Liouville form, i.e. in local canonical coordinates σ = dϑ where ϑ :=∑3

j=1 p j dq j . The Liouville form vanishes on L given by p1 = p2 = p3 = 0.
Note that the bosonic sigma model action reduces for instantons to be

I =
∫
!

φ∗(σ ).
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Stokes’ theorem and condition (9.80) suffice to conclude that

I (φ) = 0 (9.117)

for all instantons φ. However, by its definition the bosonic σ -model action I
vanishes only for constant instantons. Hence we can admit only constant instanton
corrections and the abstract string Lagrangian reduces exactly to the Lagrangian
of the QFT on L realizing the low-energy limit. In the A-twisted case such a limit
turns out to be exactly a Chern–SimonsU(N) gauge theory.

Dropping assumption (9.79). The main result of Witten (1992) is more
general than theorem 9.3.2. In fact he analyses (section 4.4) the low-energy limit
of an A-twisted topological open-string theory whose target space is given by a
Calabi–Yau threefold Ŷ admitting L as a Lagrangian submanifold.

Theorem 9.9.1. Let Ŷ be a local Calabi–Yau threefold and L ⊂ Ŷ a Lagrangian
submanifold. Then there exist topological string theories with Ŷ as target space,
such that their open sectors are equivalent to a QFT on L up to the convergence
of non-constant instanton contributions. In the A-twisted case the Lagrangian
action of the limit QFT is (if convergent) a deformation of a Chern–Simons action.

This result follows by assuming the same boundary conditions as before.
But now (9.80) is no more sufficient to conclude the vanishing (9.117) for non-
constant instantons: given φ its instanton number is

q(φ) :=
∫
!

φ∗(ω)

where ω is the symplectic form of Ŷ . Instanton numbers turns out to be non-
negative. For any knot� ⊂ φ(∂!) ⊂ L consider the Wilson line WR

�
constructed

by holonomy on L. For a given connection A on a U(N) principal bundle Witten
shows that the instanton contribution of φ is given by

− iη(φ)e−θq(φ)

2πk

∑
�⊂φ(∂!)

log(trR(h�))

where θ is a positive real parameter, e−θq(φ) a suitable weighting factor and
η(φ) = ±1. If S(�(A)) is the Chern–Simons action on L the limit action turns
out to be

S′ = S(�(A))− i

2πk

∑
φ

[
η(φ)e−θq(φ)

∑
�⊂φ(∂!)

log(trR(h�))

]
. (9.118)

Under suitable assumptions on the ‘moduli space’ of instantons φ the sum can be
perturbatively evaluated for θ � 0.
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Corollary 9.9.2. Assume that Ŷ = T ∗S3 and L = � is the Lagrangian
submanifold given by the conormal bundle of the unknot knot in S3 as in
proposition 9.3.11. Then the low-energy limit QFT on � of the open sector
of a type IIA string theory with M D-branes wrapped around � is a SU(M)
Chern–Simons gauge theory on �. Moreover, the global open-string theory with
N D-branes wrapped around S3 and M D-branes wrapped around � admits a
low-energy limit QFT whose action is the following deformation of the SU(M)
Chern–Simons action on �;

S′ = S(�)− i

2πk

∑
d

ηd log(trR(h
d
�
)).

The first part of the statement can be proven as theorem 9.3.2 since the
Liouville form of �8 ⊃ T ∗S3 vanishes when restricted to �, as in (9.91). That is
enough to guarantee the vanishing (9.117).

To prove the second part, note that the only non-trivial non-constant
contributions comes from instantons φ such that φ(∂!) is a d-covering of the
unknot in S3. For these instantons q(φ) = 0 by Stokes’ theorem and the thesis
follows by (9.118).
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References 277

Manzoni A 1842 I Promessi Sposi The Betrothed
Mariño M and Vafa C 2001 Framed knots at large N Preprint hep-th/0108064
Moore G and Sieberg N 1988 Polynomial equations for rational conformal field theories

Phys. Lett. B 212 451–66
Morrison D R 1985 The birational geometry of surfaces with rational double points Math.

Ann. 271 415–38
——1999 Through the looking glass Mirror Symmetry vol III (Providence, RI: American

Mathematical Society and International Press) pp 263–77
Morrison D R and Seiberg N 1997 Extremal transitions and five-dimensional

supersymmetric field theories Nucl. Phys. B 483 229–47
Narasimhan M S and Seshadri C S 1965 Stable and unitary vector bundles on a compact

Riemann surface Ann. Math. 82 540–67
Okonek C, Schneider M and Spindler H 1980 Vector Bundles on Complex Projective

Spaces (Progr. Math. 3) (Boston, MA: Birkäuser)
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