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Abstract

The compacti"cation of the heterotic string theory on a six-dimensional orbifold is attractive theoretically,
since it permits the full determination of the emergent four-dimensional e!ective supergravity theory,
including the gauge group and matter content, the superpotential and KaK hler potential, as well as the gauge
kinetic function. This review attempts to survey all of these calculations, covering the construction of
orbifolds which yield (four-dimensional space}time) supersymmetry; orbifold model building, including
Wilson lines, and the modular symmetries associated with orbifold compacti"cations; the calculation of the
Yukawa couplings, and their connection with quark and lepton masses and mixing; the calculation of the
KaK hler potential and its string loop threshold corrections; and the determination of the non-perturbative
e!ective potential for the moduli arising from hidden sector gaugino condensation, and its connection with
supersymmetry breaking. We conclude with a brief discussion of the relevance of weakly coupled string
theory in the light of recent developments on the strongly coupled theory. ( 1999 Elsevier Science B.V. All
rights reserved.

PACS: 11.25.-w; 12.10.-g; 12.60.Jv
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1. Orbifold constructions

1.1. Introduction

It is well known that the construction of a consistent quantum string theory is possible only for
speci"c dimensionalities of the (target) space}time. For the bosonic string the required dimension is
D"26, while for the superstring dimension D"10 is required. Thus from the outset we are forced to
consider the `compacti"cationa of the (spatial) dimensions which are surplus to the d"4 dimensions
of the world that we inhabit, if we are to have any chance of connecting the string theory with
experimental (particle) physics. The string theory which is best placed to generate such a connection is
the heterotic string [117], a theory of closed strings, in which the right-moving degrees of freedom of
the superstring are adjoined to the twenty-six left-moving degrees of freedom of the bosonic string. To
endow such a construction with a geometrical interpretation sixteen of the left-movers are compacti-
"ed by associating them with a 16-dimensional torus, with radii of order the Planck length
(l

P
&10~35m). Just as the compacti"cation of one dimension onto a circle in the (original)

"ve-dimensional Kaluza}Klein theory [135,141] generates a gauge boson, so here the compacti"ca-
tion generates gauge "elds, including some of a stringy origin which derive from the possibility of the
string winding around the torus. In this way, the 16 left-movers generate an `internala gauge
symmetry with the (rank 16) gauge group E

8
]E

8
being consistent with the cancellation of gauge and

gravitational anomalies which is essential for a satisfactory quantum theory [113].
Although this scenario explains in a satisfying way how a gauge symmetry can emerge from

string theory, there are serious problems which remain. Firstly, there is the fact that the symmetry
group E

8
]E

8
is far larger than the (rank 4) SU(3)]SU(2)];(1) gauge symmetry which we

observe. Secondly, there remains a ten-dimensional space}time, six of whose dimensions must be
compacti"ed before we even contemplate questions like gauge symmetries and matter generations.
The orbifolds [79,80], which are the subject of this review are one method of compactifying the
unobserved six dimensions. An orbifold is obtained when a six-dimensional torus (¹6) is quo-
tiented by a discrete (`pointa) group (P), as we shall see shortly. The identi"cation of points on
¹6 under the action of the point group generates a "nite number of "xed points where the orbifold
is singular. At all other points the orbifold is (Riemann) #at. It is for this reason that we are able to
calculate rather easily all of the parameters and functions of the emergent supergravity theory: the
gauge group and matter content; the Yukawa couplings and KaK hler potential, which determine the
quark and lepton masses and mixing angles; the gauge kinetic function, including string loop
threshold corrections, which in turn determine the uni"cation scale of the gauge coupling con-
stants. We shall see also how modular invariance constrains the e!ective potential, and hence
determines the actual value of the coupling constants at uni"cation, as well as the nature of the
supersymmetry breaking mechanism.

There are, of course, other methods of string compacti"cation including Calabi}Yau manifolds
[43,115,116], free fermion models [139,3], and N"2 superconformal "eld theories [107,108,140],
and (some) orbifold models are connected to some of these models [138,98,13,14,24]. However,
none of the alternatives has so far been as fully worked out as the orbifold theories, and it is for this
reason that we have focused upon them. If for no other reason, they illustrate the sort of predictive
power which we should eventually like string theory to have (even if it should transpire that nature
does not in fact utilize orbifolds!)
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1.2. Toroidal compactixcations

The construction of the ten-dimensional heterotic string has been fully described elsewhere (see,
for example, [114,132,35]) and we need not review it here. As already noted, to have any chance of
a realistic theory it is obviously essential that six of the (nine) spatial dimensions have to be
compacti"ed to a su$ciently small scale as to be unobservable at current accelerators. The simplest
way to do this is to compactify on a torus. This ensures that the simple linear string (wave)
equations of motion are una!ected, since the torus is #at. We work in the light-cone gauge. Then
there are eight transverse bosonic degrees of freedom denoted by Xi(q,p) where i"1,2 labels the
two transverse four-dimensional space}time coordinates, and Xk(q,p) where k"3,2,8 labels the
remaining six spatial degrees of freedom. (q, p with 0)p)p are the world sheet parameters.)
Xi and Xk are split into left and right moving components in the standard manner

Xi(k)(q,p)"Xi(k)
R

(q!p)#Xi(k)
L

(q#p) . (1.1)

In addition there are eight right-moving transverse fermionic degrees of freedom Wi
R
(q!p),

Wk
R
(q!p), and the 16 (internal) left-moving bosonic degrees of freedom XI

L
(q#p) (I"1,2,16)

which generate the E
8
]E

8
gauge group of the ten-dimensional heterotic string. The (toroidal)

compacti"cation of the six spatial coordinates Xk(q,p) (k"3,2,8) does not a!ect the mode
expansions of Xi(q,p),Wi

R
(q!p), Wk

R
(q!p) or XI

L
(q#p), so

Xi(q,p)"xi#piq#
i
2

+
nE0
C
1
n
ai
n
e~2*n(q~p)#

1
n

a8 i
n
e~2n(q`p)D , (1.2)

Wi(k)
R

(q!p)"+
r

di(k)
n

e~2*n(q~p) (R) (1.3)

or

" +
r|Z`1@2

bi(k)
r

e~2*r(q~p) (NS) (1.4)

depending on whether the world-sheet fermion "eld obeys periodic (Ramond, R) or anti-periodic
(Neveu}Schwarz, NS) boundary conditions

t
R
(q!p!p)"#t

R
(q!p) (R) ,

t
R
(q!p!p)"!t

R
(q!p) (NS) .

(1.5)

The mode expansion of the gauge degrees of freedom is

XI
L
(q#p)"xI

L
#pI

L
(q#p)#

i
2

+
nE0

a8 I
n

n
e~2*n(q`p) (1.6)

with the momenta pI
L

lying on the E
8
]E

8
root lattice.

In an orthonormal basis, vectors on the E
8

root lattice the form

(n
1
,n

2
,2,n

8
) or (n

1
#1

2
,n

2
#1

2
,2,n

8
#1

2
) (1.7)
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with n
i
integers and

8
+
i/1

n
i
"0mod2 . (1.8)

There is an alternative formulation of these internal degrees of freedom which replaces the 16
bosonic left movers (XI) compacti"ed on the E

8
]E

8
lattice by 32 real fermionic left-movers

(jA,jM A(A"1,2,16)) where jA,jM A may separately have either periodic (R) or antiperiodic (NS)
boundary conditions. Then

jA"+
n

jA
n
e~2*n(q`p) (R)

" +
r|Z`1@2

jA
r
e~2*r(q`p) (NS) , (1.9)

and similarly for the second set jM A. (jA,jM A) transform as the (16,1)#(1,16) representation of the
maximal subgroup O(16)]0(16)LE

8
]E

8
. The compacti"cation of Xk entails the identi"cation of

the corresponding centre-of-mass coordinates xk with points which are separated by a lattice vector
of the torus. Thus

xk,xk#2p¸k , (1.10)

where the factor 2p is for convenience and the vector L with coordinates ¸k belongs to a six-
dimensional lattice K

K,G
8
+
t/3

r
t
e
t
D r

t
3ZH , (1.11)

where e
t
(t"3,2,8) are the basis vectors of the lattice. Then the closed string boundary conditions

for the coordinates Xk may also be satis"ed when

Xk(q,p)"Xk(q,0)#2p¸k (1.12)

corresponding to the string winding around the torus. The compacti"cation also requires the
quantization of the eigenvalues of the corresponding momentum operators pk. The eigenfunctions
exp(i+

k
pkxk) are single-valued only if

8
+
k/3

pk¸k3Z . (1.13)

Thus, the momenta are quantized on the lattice KH which is dual to K

KH"G
8
+
t/3

m
t
eH
t

D m
t
3ZH , (1.14)

where the basis vectors eH
t

of KH satisfy +8
k/3

eHk
t

ek
u
,eH

t
) e

u
"d

tu
.
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Then the generalized mode expansions are

Xk
R
(q!p)"xk

R
#pK

R
(q!p)#

i
2

+
nE0

1
n

ak
n
e~2*n(q~p) , (1.15)

Xk
L
(q#p)"xk

L
#pk

L
(q#p)#

i
2

+
nE0

1
n
a8 k
n
e~2*n(q`p) (1.16)

with

pk
R
,1

2
(pk!2¸k) , (1.17)

pk
L
,1

2
(pk#2¸k) , (1.18)

xk"xk
R
#xk

L
,

where p3KH and L3K.
The mass formula for the right movers in ten-dimensional heterotic string theory, which derives

from the constraint equations, yields the four-dimensional mass formula

1
4
m2

R
"N(b)#1

2
pk
R
pk
R
!a(b) , (1.19)

where b"R, NS labels the boundary conditions of the fermionic right-movers, and the number
operators N(b) is given by

N(b)"N
B
#N

f
(b) , (1.20)

with

N
B
"

=
+
n/1

(ai
~n

ai
n
#ak

~n
ak
n
) , (1.21)

N
F
(R)"

=
+
n/1

(ndi
~n

di
n
#ndk

~n
dk
n
) , (1.22)

N
F
(NS)"

=
+

r/1@2

(rbi
~r

bi
r
#rbk

~r
bk
r
) . (1.23)

a(b) arises from the normal ordering of the operator ¸
0

in the Virasoro algebra and has the values

a(R)"0 , (1.24)

a(NS)"1
2

. (1.25)

(Sums over i"1,2 and k"3,2,8 are implied by the repeated su$xes.) Similarly, the four-
dimensional mass formula for the left movers is

1
4
m2

L
"NI #1

2
pk
L
pk
L
#1

2
pI
L
pI
L
!1 , (1.26)

where a sum over I"1,2,16 is also implied and

NI "
=
+
n/1

(a8 i
~n

a8 i
n
#a8 k

~n
a8 k
n
#a8 I

~n
a8 I
n
) . (1.27)
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If the fermionic formulation of the (left-moving) internal degrees of freedom is used the mass
formula becomes

1
4
m2

L
(b,c)"NI (b,c)#1

2
pk
L
pk
L
!a8 (b,c) (1.28)

when b,c"R,NS labels the (independent) boundary conditions for the two sets of real fermions
jA,jM A, and

NI (b,c)"NI
B
#NI

F
(b)#NI

F
(c) , (1.29)

where

NI
B
"

=
+
n/1

(a8 i
~n

a8 i
n
#a8 k

~n
a8 k
n
) , (1.30)

NI
F
(R)"

=
+
n/1

n(jA
~n

jA
n
#jM A

~n
jM A
n
) , (1.31)

NI
F
(NS)"

=
+

r/1@2

r(jA
~r

jA
r
#jM A

~r
jM A
r
) . (1.32)

Similarly the normal ordering constant

a8 (b,c)"a8
B
#a8

F
(b)#a8

F
(c) , (1.33)

where

a8
B
"1

3
, a8

F
(R)"!2

3
, a8

F
(NS)"1

3
. (1.34)

The mass formulae (1.19), (1.26) and (1.28) all include contributions from momenta pk
R
,pk

L
in the

compacti"ed manifold, which, as we have shown in Eqs. (1.17) and (1.18), are quantized. As we shall
see, the lattice K and hence its dual KH generically have some arbitrary scale factors R

t
, the lengths

of the basis vectors e
t
, and angles between basis vectors. So, except for certain isolated values of

these parameters, massless states, in particular, only arise when momenta and winding numbers on
the compact manifold are zero

pk
R
"0"pk

L
. (1.35)

In fact, the particles we observe in nature must all derive from massless string states, since otherwise
their masses would be of the order of the string scale (1017GeV).

We may now see why the simple toroidal compacti"cation under consideration is unacceptable
for phenomenological reasons. Let us consider a massless state, so

m2
L
"0"m2

R
. (1.36)

Suppose we "x the (massless) left-mover state; for example, we may use one of the a8
~1

operators on
the left-movers' ground state D0T

L
, or use momentum pI

L
on the E

8
]E@

8
lattice with pI

L
pI
L
"2. To

each such left-moving state we may attach a massless right-moving state bi
~1@2

D0T
R
(i"1,2) utilizing

the NS fermionic oscillators. Since i"1, 2 corresponds to the two transverse space}time dimen-
sions, the overall string state transforms as a space}time vector or a space}time tensor, the latter
case arising only if the left-moving state is a8 j

~1
D0T

L
( j"1,2). Alternatively, we may attach the
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(massless) Ramond groundstate D0T
R

to the "xed left-moving state. This transforms as an eight-
component SO(8) chiral spinor, the opposite chirality spinor having been deleted by the GSO
projection used in the superstring construction. This eight-component SO(8) chiral spinor may be
decomposed into representations of SO(2)]SO(6)LSO(8), the SO(2) corresponding to the two
transverse space}time coordinates, and the SO(6) to the six compacti"ed coordinates. Then

8
L
"(#1

2)]4#(!1
2)41 (1.37)

and it is clear that there are four space}time spinor particles of each chirality. Thus, if the (bosonic)
string state constructed "rst was a vector particle, the fermionic state we have just constructed is
four gauginos whereas if the bosonic state "rst constructed was a space}time tensor, the graviton,
the fermionic state is four gravitinos. Evidently the toroidal compacti"cation under consideration
leads inevitably to N"4 space}time supersymmetry, and hence to a non-chiral gauge symmetry.
The observed cancellation of the gauge chiral anomaly within each generation of fermions strongly
suggests (but does not conclusively prove) that the gauge symmetry is chiral, and hence that there
can be at most N"1 space}time supersymmetry; N*2 supersymmetries automatically cancel
chiral anomalies within each supermultiplet.

1.3. Point groups and space groups

In the previous section we considered the compacti"cation of the ten-dimensional heterotic
string in which the six left-movers and six right-movers Xk

R
,Xk

L
(k"3,2,8) are compacti"ed onto

the (same) torus ¹6 generated by the lattice K, with the 16 left-movers XI
L

compacti"ed on the
(self-dual) E

8
]E

8
torus ¹E8CE8. This latter torus is generated by the root lattice of the group

E
8
]E

8
. A torus is de"ned by identifying points of the underlying space which di!er by a lattice

vector l3C"2pK

x,x#l . (1.38)

This identi"cation is called `moddinga and in the six-dimensional toroidal case we write

¹6"R6/C . (1.39)

We may generalize this process by identifying points on the torus which are related by the action of
an isometry h. To be well-de"ned on the torus h must be an automorphism of the lattice, i.e.
hl32pK if l32pK and preserve the scalar products

he
t
) he

u
"e

t
) e

u
. (1.40)

The isometry group is called the point group (P) and an orbifold X is de"ned as

X"¹6/P]¹E8CE8/G , (1.41)

where G is the embedding of P in the gauge group E
8
]E

8
. P and therefore G are discrete groups.

Evidently the six-dimensional orbifold ¹6/P may be obtained by identifying points of the underly-
ing space (R6) which are related by the action of the point group, up to a lattice vector l

x,hx#l . (1.42)
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We may regard the right-hand side as the action of the pair (h,l) upon the point x, and the set of all
such pairs

S,M(h,l) D h3P,l32pKN , (1.43)

de"nes a group S, the space group, with the product de"ned in the obvious way by

[(h
1
,l
1
)(h

2
,l
2
)]x,(h

1
,l
1
)[(h

2
,l
2
)x] . (1.44)

Thus we may also write

¹6/P"R6/S . (1.45)

The solution of the string equations propagating on an orbifold are almost as straight forward as
for a toroidal compacti"cation, since the orbifold is #at almost everywhere. The exceptions are the
points of the torus which are left "xed by the point group. Modding out the point group identi"es
di!erent lines on the torus passing through the "xed points, so that a conical singularity occurs and
the orbifold is not locally isomorphic to R6 at such points. It follows from Eq. (1.42) that the "xed
points satisfy

x
f
"hx

f
#l (1.46)

so if 1!h is singular there are "xed lines or tori, rather than isolated "xed points.
The full de"nition of an orbifold compacti"cation requires the speci"cation of ¹6 or equivalently

the lattice C, the discrete point group P, and its embedding G in the gauge degrees of freedom. The
elements h3P act upon the bonsonic coordinates Xk(q,p) (k"3,2,8) of the string as SO(6)
rotations. Possible choices of P are further restricted by the phenomenological requirement to
obtain an N"1 space}time supersymmetric spectrum; no supersymmetry (N"0) might also be
acceptable, but the conventional wisdom is that N"1 supersymmetry is preferred because of the
solution to the technical hierarchy problem which it a!ords. To get N"1 supersymmetry the
point group P must be a subgroup of SU(3) [43]

PLSU(3) . (1.47)

This may be seen by recalling that SO(6) is isomorphic to SU(4), so if P satis"es Eq. (1.47) there is
a covariantly constant spinor on the six-dimensional orbifold, and it is this extra symmetry which
generates the required supersymmetry.

For the present we restrict our attention to the cases when the point group P is abelian. Then it
must belong to the Cartan subalgebra of SO(6) associated with Xk (k"3,2,8). We denote the
generators of this subalgebra by M

34
,M

56
,M

78
. Then in the complex basis de"ned by

Z1,(1/J2)(X3#iX4) , (1.48)

Z2,(1/J2)(X5#iX6) , (1.49)

Z3,(1/J2)(X7#iX8) (1.50)

the point group element h acts diagonally and may be written

h"exp[2pi(v
1
M34#v

2
M56#v

3
M78)] (1.51)
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Table 2
Point group generators for Z

M
]Z

N
LSU(3) orbifolds h"exp 2pi(v

1
M34#v

2
M56#v

3
M78); u"exp 2pi(w

1
M34#

w
2
M56#w

3
M78)

Point group (v
1
,v
2
,v
3
) (w

1
,w

2
,w

3
)

Z
2
]Z

2
1
2
(1,0,!1) 1

2
(0,1,!1)

Z
3
]Z

3
1
3
(1,0,!1) 1

3
(0,1,!1)

Z
2
]Z

4
1
2
(1,0,!1) 1

4
(0,1,!1)

Z
4
]Z

4
1
4
(1,0,!1) 1

4
(0,1,!1)

Z
2
]Z

6
!I 1

2
(1,0,!1) 1

6
(0,1,!1)

Z
2
]Z

6
!II 1

2
(1,0,!1) 1

6
(1,1,!2)

Z
3
]Z

6
1
3
(1,0,!1) 1

6
(0,1,!1)

Z
6
]Z

6
1
6
(1,0,!1) 1

6
(0,1,!1)

Table 1
Point group generators for Z

N
LSU(3) orbifolds h"exp 2pi(v

1
M34#v

2
M56#v

3
M78)

Point group (v
1
, v

2
, v

3
)

Z
3

1
3
(1,1,!2)

Z
4

1
4
(1,1,!2)

Z
6
!I 1

6
(1,1,!2)

Z
6
!II 1

6
(1,2,!3)

Z
7

1
7
(1,2,!3)

Z
8
!I 1

8
(1,2,!3)

Z
8
!II 1

8
(1,3,!4)

Z
12
!I 1

12
(1,4,!5)

Z
12
!II 1

12
(1,5,!6)

with 0)Dv
i
D(1 (i"1,2,3). The condition that Eq. (1.47) is satis"ed then gives

$v
1
$v

2
$v

3
"0 (1.52)

for some choice of signs; this may be seen by noting that the eigenvalues of h acting on a spinor are
e*p(Bv1Bv2Bv3).

The requirement that h acts crystallographically on the lattice C plus the condition (1.52) then
leads to the conclusion [79,80] that P must either be Z

N
with N"3,4,6,7,8,12 or Z

M
]Z

N
with

N a multiple of M and N"2,3,4,6. Some of the point groups have two (inequivalent) embeddings
in SO(6), i.e. they are realized by the inequivalent sets of v

1
,v
2
,v
3
. The complete list is given in Tables

1 and 2. These results are the six-dimensional analogue of the famous result that crystals in three
dimensions have only N"2,3,4,6-fold rotational symmetries, (augmented by the N"1 space}time
supersymmetry requirement (1.52)). In all cases it is possible to "nd a lattice upon which P acts
crystallographically, and in many cases there are several lattices for a given P. Often the massless
spectrum and gauge group of the orbifold are independent of the choice of lattice, and are
determined solely by P. However, we shall see in Section 2 that when the full space group, not just
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the point group, is embedded in the E
8
]E

8
group then the orbifold properties, not surprisingly, do

depend upon the lattice K.

1.4. Orbifold compactixcations

The existence of the point group P means that there are additional ways, over and above the
toroidal conditions (1.12), in which the closed string boundary conditions may be satis"ed. Let the
Z

N
point group be generated by an element h, so that the general element is hn (0)n)N!1).

(The generalization to Z
M

]Z
N

generated by h,u is trivial.) Then the identi"cation (1.42) means that
the closed string boundary conditions for the coordinates Xk (k"3,2,8) may also be satis"ed
when

X(q,p)"(hn,l)X(q,0)"hnX(q,0)#l . (1.53)

Evidently the `untwisteda sector (n"0) corresponds to the toroidal compacti"cation discussed in
the previous section. However, there are additional `twisteda sectors, satisfying Eq. (1.53), with
nO0 , and these generate new string states which were not present in the toroidal compacti"cation.
Before considering these new states, however, an immediate question arises: what feature of the
orbifold removes the unwanted gaugino and gravitino states which we showed are a generic feature
of toroidal compacti"cations, and which are present in the untwisted sector of the orbifold
compacti"cation? We have explained that the de"nition of an orbifold requires the speci"cation of
a discrete group G comprising the space group S and its embedding in the gauge degrees of
freedom. Thus to each element of g3G there corresponds an operator g6 which implements the
action of g on the Hilbert space. Because the orbifold is de"ned by modding out the action of G, it
follows that physical states must be invariant under G. That is to say, they are eigenvectors of
g6 with eigenvalue unity. Now consider the four gravitino states in the untwisted sector

D0T
R
a8 j
~1

D0T
L

( j"1,2) . (1.54)

Since j"1, 2 corresponds to the transverse space}time coordinates which are una!ected by the
point group transformations, it is clear that g acts trivially on the left-moving piece of the state. The
right moving piece is the Ramond sector ground state, which is an SO(8) chiral spinor. The
decomposition (1.37) is given explicitly by

8
R
"(1

2
,1
2
,1
2
,1
2
),(1

2
,1
2
,!1

2
,!1

2
)#(!1

2
,!1

2
,!1

2
,!1

2
),(!1

2
,!1

2
,1
2
,1
2
) , (1.55)

where the underlining indicates that all (three) permutations are included, and the individual
entries are the eigenvalues of M12,M34,M56,M78 respectively. The point group generator h is
given by Eq. (1.51), and we see that acting on the "rst four states its eigenvalues are

hM "exp[ip(v
1
#v

2
#v

3
)],exp ip(v

1
!v

2
!v

3
),exp[ip(v

2
!v

3
!v

1
)],exp [ip(v

3
!v

1
!v

2
)]

(1.56)

with the second four states having complex conjugate eigenvalues. Condition (1.52) ensures that at
least one of these states have hM "1. Suppose, for example, that

v
1
#v

2
#v

3
"0 . (1.57)
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(Similar arguments are easily constructed for the other possibilities.) Then the eigenvalues of the
above four states are

hM "1,exp(2piv
1
),exp(2piv

2
),exp(2piv

3
) . (1.58)

So provided that v
1
, v

2
and v

3
are all non-zero, the last three states all have hM O1. It follows that they

are not invariant under the action of the point group, and are therefore not space-group invariant
either. Thus three of the four gravitinos are deleted, as required if we are to obtain an N"1
space}time supersymmetric theory. On the other hand, if one of v

1,2,3
is zero only two of the four

gravitinos are deleted and we have at least N"2 supersymmetries surviving. It is for, this reason that
Table 1 lists only point the nine group elements with v

1,2,3
all non-zero. Similarly in Table 2 we list

point group elements of the Z
M
]Z

N
orbifolds which for a"1,2,3 have va and wa not both zero.

The twisted sectors of the orbifold string theory are de"ned by Eq. (1.53) with nO0. Let us
consider the case of a Z

N
orbifold and the n"1 twisted sector. The extension to n'1 and Z

N
]Z

M
is easily done. The "rst thing to note is that the modi"ed boundary conditions lead to a di!erent
form of the various mode expansions. In this complex basis de"ned in (1.48)}(1.50), the mode
expansion of the string world sheet is

Za"za
f
#

i
2

+
nE0
C

1
n#va

ba
n`va

e~2*(n`va)(q~p)#
1

n!va
bI a
n~va

e~2*(n~va)(q`p)D (1.59)

where a"1,2,3 labels the three complex planes. The fractional modings are needed to supply the
phase factors exp(2piva) acquired by Za under the action of the point group. za

f
is a complex "xed

point, constructed from the real "xed points (1.46) analogously to (1.48)}(1.50). Evidently the full
speci"cation of a twisted sector requires not only the point group element (h in this case) but also
the particular "xed point (or torus) which appears in the zero mode part of the world sheet. Note
too that the boundary conditions require that the momentum is zero, since h acts non-trivially in
all planes; this is not necessarily the case in all twisted sectors of non-prime orbifolds. For example
it is clear from Table 1 that in the h2-sectors of the Z

4
-orbifold the mode expansion of Z3 will have

non-zero, but quantized, momentum.
The complex conjugate mode expansion is

ZM a"z6 a
f
#

i
2

+
nE0
C

1
n!va

bM a
n~va

e~2*(n~va)(q~p)#
1

n#va
bIM a
n`va

e~2*(n`va)(q`p)D (1.60)

and operators ba
n`va

, bI a
n~va

, bM a
n~va

, bIM
n`va

which appear in Za and ZM a obey the commutation relations

[ba
n`va

,bM c
m~vc

]"dac(n#va)dm`n,0
,

[bI a
n~va

,bIM c
m`vc

]"dac(n!va)dm`n,0
.

Thus the b
n`v

with n#v'0 are (proportional to) annihilation operators and the bM
~n~v

the
associated creation operators. Likewise the b

n`v
with n#v(0 are creation operators and the

bM
~n~v

the associated annihilation operators. Similarly for bI
n~v

and bIM
n`v

.
The point group also acts upon the right-mover fermionic degrees of freedom, so that in the

h-twisted sector the boundary conditions are modi"ed:

ta
R
(q!p!p)"e2p*vata

R
(q!p) (R) ,

ta
R
(q!p!p)"!e2p*vata

R
(q!p) (NS) , (1.61)
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where the complex ta
R

(a"1,2,3) are constructed from the tk
R

just as the Za are de"ned in terms of
the Xk (k"3,4,2,8) in (1.48)}(1.50). Thus the modi"ed mode expansions are

ta
R
(q!p)"+

n

ea
n`va

e~2*(n`va)(q~p) (R)

"+
r

ca
r`va

e~2*(r`va)(q~p) (NS) (1.62)

and

tM a
R
(q!p)"+

r

e6 a
n~va

e~2*(n~va)(q~p) (R)

"+
r

c6 a
r~va

e~2*(r~va)(q~p) (NS) , (1.63)

where

Mea
n`va

,e6 b
m~vb

N"dabd
m`n,0

,

Mca
r`va

,c6 b
s~vbN"dabd

r`s,0
. (1.64)

The space group may also be embedded in the gauge degrees of freedom, and in general, it must
be, as we shall see. The element (h,l) of the space group is generally mapped on to (H,V) where H is
an automorphism of the E

8
]E

8
lattice and V is a shift on the lattice. In this section we only address

the (compulsory) embedding of the point group elements (h,0) in the gauge group. The (optional)
embedding of the lattice elements (1,l), Wilson lines, is discussed in Section 2.2.

It is easiest to consider "rst the embedding using the fermionic formulation of the gauge degrees
of freedom. The 16 real fermions jA transform as the vector representation of O(16)LE

8
. The

simplest non-trivial embedding is achieved by picking an O(6) subgroup of O(16), in which the
vector representation decomposes into a (six-dimensional) vector representation of SO(6) plus (ten)
SO(6) singlets. We next form 3 complex fermions from the 6 real fermions, precisely as we did for
the right-moving fermions tk

R
(k"3,2,8), and then take the action of the point group on these

3 complex fermions to be precisely what it is on the three complex right-moving fermions ta
R
; the

other ten-fermions are untransformed. This is called the standard embedding [80]. Evidently the mode
expansions of these three complex gauge fermions will be modi"ed precisely as are those of the
complex fermionic right-movers. The second set of fermions (jM A) are left completely untransformed.

This embedding amounts to a shift on the E
8
]E

8
lattice when we use the bosonic formulation.

To see why we need the relationship

tI(q#p)": exp(2iXI
L
): (1.65)

between the bosonic toroidal coordinates XI
R

and the complex fermions. Then multiplying t by
a phase factor exp(2pi<) amounts to adding p<I to the bosonic coordinates XI

L
. Thus the

embedding of (h,0) on the E
8
]E

8
lattice is realized as (1,p<I), and the h-twisted sector boundary

conditions for the XI
L

become

XI
L
(q#p#p)"XI

L
(q#p)#p<I (1.66)
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up to (p times an E
8
]E

8
root lattice vector, and the mode expansion satisfying this is

XI
L
"xI

L
#(pI

L
#<I)(q#p)#

i
2
+

1
n

a8 I
n
e~2*n(q`p) . (1.67)

Evidently the net e!ect of the twist h is to shift the momentum pI
L
by<I. In the standard embedding,

which we have so far discussed,

<I"(v
1,
v
2
,v
3
,05)(08) , (1.68)

where va (a"1,2,3) are the twists of the 3 complex compacti"ed coordinates.
However, we may also entertain the possibility of more general (non-standard) embeddings.

Then (so far) the only constraint on the shift <I is that for a Z
N

orbifold NVI is on the E
8
]E

8
root

lattice (so that in the hN"1 sector the momenta pI
L
#NVI are on the same lattice as the pI

L
are):

NVI3K
E8CE8

. (1.69)

The requirement (1.52) on the v
a

(a"1,2,3) ensures that the above constraint is always satis"ed
by the standard embedding.

In the absence of Wilson lines, the embedding of (h,0) can always be realized as a shift (1,p<I) on
the E

8
]E

8
lattice, and sometimes this shift is also realizable on an automorphism H of the lattice.

The changes in the mode expansions which we have described feed through into the calculations
of the generators ¸

m
, I̧

n
of the Virasoro algebra, and in particular to changes in the expressions for

¸
0
, I̧

0
which lead to the mass formulae.. These now involve fractional number operators associated

with the fractional-modings. The fractional modings also a!ect the calculations of the normal
ordering constants. The general results are that a complex bosonic coordinate with moding shifted
by v (DvD(1) contributes

a
B
(v)" 1

12
!1

2
DvD(1!DvD) (1.70)

to the subtraction constant, while a complex Ramond fermion with moding shifted by v contributes

a
F
(v)"! 1

12
#1

2
DvD(1!DvD) . (1.71)

The standard Neveu}Schwarz fermion may for these purposes be regarded as a Ramond fermion
with shift v"1

2
. Then a complex Neveu}Schwarz fermion with moding shifted by v contributes

a
NS

(v)"a
F
(Dv#1

2
D), !1(v(1

2
(1.72)

for
"a

F
(Dv!1

2
D), 1

2
(v(1 (1.73)

The upshot of these changes is that the mass formula for the right movers in the h-twisted sector has
the general structure

1
4
M2

R
"N

B
#N

F
(b)!a

B
!a

F
(b) , (1.74)

where, as in Eq. (1.20), b"R, NS labels the (shifted) boundary conditions satis"ed by the fermionic
right movers,

N
B
"

=
+
n/1

ai
~n

ai
n
# +

a,nn`va;0

bM a
~n~va

ba
n`va

# +
a,nn~va;0

ba
~n`va

bM a
n~va

, (1.75)
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N
F
(R)"

=
+
n/1

ndi
~n

di
n
# +

n,an`va;0

(n#va)e6 a~n~va
ea
n`va

# +
a,nn~va;0

(n!va)ea~n`va
e6 a
n~va

, (1.76)

N
F
(NS)" +

r|Z`1@2r;0

rbi
~r

bi
r
# +

r,ar6 va;0

(r#va)c6 a~r~va
ca
r`va

# +
r,ar~va;0

(r!va)ca~r`va
c6 a
r~va

(1.77)

and

a
B
"

1
3
!

1
2

3
+
a/1

DvaD(1!DvaD) , (1.78)

a
F
(R)"!

1
3
#

1
2

3
+
a/1

DvaD(1!DvaD) ,

a
F
(NS)"

!5
24

#

1
2

3
+
a/1
Kva#

1
2KA1!Kva#

1
2KB. (1.79)

(The form of a
F
(NS) assumes that !1(va(1

2
for all a, with the obvious change (1.73) to be made

for any v
a

satisfying 1
2
(va(1.) Note that there is no momentum contribution to m2

R
, since, as

already observed, p
R

is zero in a twisted sector (when all v
a
O0).

The mass formula for the left movers in the h-twisted sector is

1
4
m2

L
"NI #1

2
(pI

L
#<I)2!a8 ,

where NI has the same form as N
B

in Eq. (1.75) but with all operators replaced by their left-moving
analogues. The subtraction constant a8

a8 "1!
1
2

+
a

DvaD(1!DvaD) . (1.80)

(The extra 2
3

compared with a
B

derives from the 16 internal bosonic left-movers.) There is
a corresponding formula for m2

L
when the fermionic formulation of the gauge degrees of freedom is

used. However we shall not quote it.
We may now see why the embedding of the point group in the gauge group is compulsory. First

note that the mass formula (1.74) shows that the Ramond sector ground state D0T
R

is a (twisted
sector) massless right-moving state, since

a
B
#a

F
(R)"0 (1.81)

and, by de"nition, no oscillators are utilized. Level matching then requires that there is a massless
left-moving state. Now, since NI involves fractionally moded operators, it is easy to see that its
eigenvalues are also fractional. For a Z

N
orbifold

NNI 3Z (1.82)

so to obtain a massless left moving state, it follows from the mass formula (1.4) that

N(<2!v2)32Z (1.83)
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using Eq. (1.52) and the fact that pI
L

and N<I are on the E
8
]E

8
root lattice. This constraint is

trivially satis"ed by the standard embedding (1.68), but is not in general satis"ed by the trivial
embedding (<"0). In fact, it follows from Tables 1 and 2 that of the Z

N
orbifolds only the Z

3
and

Z
7

orbifolds allow the trivial embedding; none of the Z
M
]Z

N
orbifolds do. It is in this sense that

we say that the embedding of the twist in the gauge degrees of freedom is generally compulsory.
Condition (1.83) is su$cient to ensure level matching in the Neveu}Schwarz sector, and at

general higher levels [183,105]. In fact, it is necessary and su$cient to ensure the modular
invariance of the theory, as we shall see in Section 2.3.4; modular invariance means that the
one-loop toroidal amplitude does not depend on the choice of the (two) basis vectors which
generate the lattice de"ning the torus.

We have mentioned already that the (essential) primary virtue of orbifold models over toroidal
compacti"cations is that the unwanted gravitinos (in the untwisted sector) are removed by the
requirement of point group invariance. This point group invariance also reduces the gauge
symmetry when the point group is embedded in the gauge degrees of freedom, as it has to be, in
general. Precisely what gauge symmetry survives depends upon the details of the particular
orbifold. However, we can make a general statement when the standard embedding is adopted.
Then the constraint (1.47) ensures that the point group is embedded is an SU(3) subgroup of one of
the E

8
groups. Since

E
8
ME

6
]SU(3) (1.84)

it is clear that the surviving gauge symmetry will always include E
6
]E

8
. Further, the rank of the

gauge group is una!ected by the embedding since the gauge bosons associated with the Cartan
sub-algebra are all invariant under the action of the point group: They are given by

bi
~1@2

D0T
R
a8 I
~1

D0T
L

. (1.85)

We have already observed that the right-moving state is invariant under the action of P, and its
embedding as a shift < on the E8]E8 lattice means that the oscillators a8 I

n
are also untransformed.

Thus the standard embedding gives a gauge group of at least E
6
];(1)2]E

8
. The `chargeda gauge

bosons of E
8
]E

8
are given by

bi
~1@2

D0T
R
DpI

L
T (1.86)

with (pI
L
)2"2, and we shall show in Section 2.7 that, when the point group is embedded as a shift

<I on the lattice, the surviving gauge bosons satisfy

pI
L
<I"0mod1 . (1.87)

Then, with the standard embedding, only the Z
3

and Z
4

orbifolds have more gauge symmetry.
Z

3
has E

6
]SU(3)]E

8
and Z

4
has E

6
]SU(2)];(1)]E

8
.

Non-standard embeddings, which embed non-trivially in both E
8

factors, may also be con-
sidered. They are constrained by Eqs. (1.69) and (1.83). Then, besides the trivial embeddings (<"0)
for the Z

3
and Z

7
orbifolds, the number of independent new embeddings ranges from three, for the

Z
3
-orbifolds, to 602 for the Z

12
-II orbifold. Full details may be found in [124,125,102,104,

106,49,50,137]. As we have seen, the standard embedding breaks one of the E
8

symmetries to
a smaller group with the same rank, while leaving the other E

8
unbroken. This a!ords the prospect

of achieving further symmetry breaking, by Wilson lines, for example, leaving a realistic gauge
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symmetry. For this reason the broken E
8

is called the `observablea gauge group, and the unbroken
E
8

the `hiddena gauge group.

1.5. Matter content of orbifold models

We have seen that the gauge symmetry in orbifold models is determined entirely by the point
group P and its embedding in the gauge degrees of freedom. In particular the six-dimensional
lattice ¹6 on which the orbifold is compacti"ed does not a!ect these results, so long as we do not
embed the ¹6 lattice vectors in the E

8
]E

8
lattice. The same is true of the matter content of orbifold

models: one just constructs massless, space group invariant, N"1 chiral supermultiplets in all
sectors using the fractionally moded creation operators and shifted momenta appropriate to the
point-group twist. It might be thought that the lattice enters via the "xed points, which we have
emphasized label the di!erent twisted sectors. However, the number of "xed points (n

&1
) under an

SO(6) automorphism (h) depends only upon the automorphism, and not in the speci"c lattice. In
fact, n

&1
may be calculated using the Lefschetz "xed point theorem which gives

n
&1
"s(h)"det(1!h) , (1.88)

where s(h) is the Euler character and h is given in the vector representation of SO(6). The matter
with which we shall be primarily concerned consists of chiral supermultiplets transforming
non-trivially with respect to the observable gauge group. We have seen that the standard
embedding breaks the E

8
symmetry to at least E

6
, so the matter transforms as some representations

of this group. It is easy to see the only representations which occur are the 27 and 27. First note that
we can construct (scalar) E

8
matter analogously to the gauge bosons:

bk
~1@2

D0T
R
DpI

L
T (k"3,2,8) (1.89)

using the compacti"ed untwisted oscillators bk
~1@2

, rather than the transverse space}time oscil-
lators bi

~1@2
. However, since the right movers transform non-trivially under the action of the point

group, the left-movers must too. Under the decomposition

E
8
ME

6
]SU(3) (1.90)

the adjoint 248-dimensional representation of E
8

decomposes as

248"(78,1)#(1,8)#(27,3)#(27,3) . (1.91)

Thus the only matter which transforms non-trivially with respect to E
6

and with respect to
PLSU(3) is the (27,3) and (27,3). Each 27 can accommodate one generation of fermions, together
with some extra matter. This can be seen using the decomposition

E
6
MSO(10) (1.92)

in which

27"16#10#1 . (1.93)

Then the 16 accommodates the observed 15 chiral states together with an SU(3)]SU(2)]U(1)
singlet, presumably the right-chiral neutrino state.
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For the standard embedding the net number of chiral generations is given by the formula
[43,79,187]

n
G
,n(27)!n(27)"1

2
s

"

1
2DPD

+
*h,g+/0

s(h,g) , (1.94)

where DPD is the order of the point group P, and s(h,g) is the number of "xed points common to the
elements g,h3P. As we have seen, this last quantity does not depend on the lattice, and may easily
be calculated using Eq. (1.88). This calculation is especially easy for the prime order orbifolds
Z

3
, Z

7
, since the "xed points of the generator h are "xed points of all hn (1)n)N!1), and then

s"(1/N)(N2!1) det(1!h) . (1.95)

Remarkably in all abelian orbifolds n
G

is a multiple of 12.
The orbifolds of even order all have "xed tori in some sectors. For example the Z

4
orbifold of

Table 1 has a "xed torus (the third complex plane) in the h2 sector. In such sectors we e!ectively
have N"2 supersymmetries and there are two invariant space-time spinors with opposite helicity.
Equivalently such sectors contribute 27#27 pairs to the matter content. The full determination of
the matter content of Z

N
orbifolds may be found in [137] for Z

N
orbifolds and in [98,143] for

Z
M
]Z

N
orbifolds. It is clear that as they stand none of them has a realistic gauge group and/or

matter content, and it is for this reason that in Section 2 we are led to study the embedding of the
full space group S, not just P, in the gauge degrees of freedom.

1.6. Lattices

The complete speci"cation of an orbifold requires the choice of a lattice ¹6 upon which the point
group P acts as an automorphism. In general there are several lattices for any given point group,
but, as we saw in Section 1.4, many properties of the orbifold-compacti"ed string theory do not
depend on the choice of the lattice. However, when we embed the lattice in the gauge degrees of
freedom non-trivially, as we do in Section 2, then the resulting theory manifestly depends upon ¹6.

We consider the lattices of semi-simple Lie groups of rank 6. Inner automorphisms of such
lattices are provided by the Weyl group of the algebra. It is generated by elements s

a
whose action

upon a vector x is to re#ect it in the simple root e
a
:

s
a
(x)"x!2(x ) e

a
)e

a
/(e

a
) e

a
) . (1.96)

Such re#ections are not SU(3) transformations, so the Weyl group is not contained in SU(3) and
therefore cannot be the point group of any of our orbifolds. However it has some subgroups which
are contained in SU(3). In particular, there is the cyclic subgroup generated by the Coxeter element
[161,137,143]

C,s
1
s
2
s
3
s
4
s
5
s
6

(1.97)

which satis"es

CN"1 , (1.98)
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where the order N of the cyclic group is the Coxeter number. For a simple Lie algebra the Coxeter
number is given by

N"

number of non-zero roots
rank of Lie algebra

. (1.99)

It is these `Coxetera orbifolds which we shall describe. We include in this class also the cyclic
subgroups of SU(3) generated by the generalized Coxeter element(s), in which one (or more) of the
Weyl re#ections is replaced by an outer automorphism of the Dynkin diagram. Let us consider the
rank 4 Lie algebra SO(8). The Coxeter element is

C
SO(8)

"s
1
s
2
s
3
s
4

with N"6 . (1.100)

The Dynkin diagram has two automorphisms: (i) s
34

, in which two of the (outer) roots, say e
3
%e

4
are interchanged, and (ii) s

134
, in which the outer roots are cyclically permuted e

1
Pe

3
Pe

4
Pe

1
.

(e
2

is the central root.) Then

s
34

(x)"x![x ) (e
3
!e

4
)](e

3
!e

4
)/(e

3
) e

3
) ,

s
134

(x)"x![(x ) e
1
)(e

1
!e

3
)#(x ) e

3
)(e

3
!e

4
)#(x ) e

4
)(e

4
!e

1
)]/(e

3
) e

3
) (1.101)

s
34

is of order 2, and s
134

of order 3. Thus there are two generalized Coxeter elements associated
with the SO(8) algebra:

C
SO(8)*2+

"s
1
s
2
s
3
s
34

with N"8 ,

C
SO(8)*3+

"s
1
s
2
s
134

with N"12 ,
(1.102)

where the numbers in square brackets give the order of the outer automorphism used in the
generalized Coxeter element. By considering products of such lattices, with Lie algebra having rank
less than or equal to six we can "nd all Coxeter orbifolds. The results for the Z

N
orbifolds are given

in Table 3.
Even though we have speci"ed the lattices upon which the various point groups act, it is

important to recognize that there remain a number of `deformation parametersa which are not
"xed. Generically there remain some undetermined scale factors, characterizing the size of the
orbifold, as well as some undetermined angles between basis vectors, the complex structure of the
lattice. Under the action of the point group h a lattice vector e is transformed as

e
t
Pe@

t
"h

ut
e
u
, h

ut
3Z . (1.103)

Since h is an isometry we require

(he
t
) he

u
)"(e

t
) e

u
) (1.104)

so that

G"hTGh (1.105)

where

G
tu
,e

t
) e

u
(1.106)

is the metric on the lattice.
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Table 3
Z

N
Coxeter orbifolds

Point group Lattice

Z
3

(SU(3))3
Z

4
(SU(4))2

Z
4

SO(5)]SU(4)]SU(2)
Z

4
(SO(5))2](SU(2))2

Z
6
!I (G

2
)2]SU(3)

Z
6
!I (SU(3)*2+)2]SU(3)

Z
6
!II SU(6)]SU(2)

Z
6
!II SO(8)]SU(3)

Z
6
!II SO(7)]SU(3)]SU(2)

Z
6
!II G

2
]SU(3)](SU(2))2

Z
6
!II SU(3)*2+]SU(3)](SU(2))2

Z
6
!II SU(4)*2+]SU(3)]SU(2)

Z
7

SU(7)
Z

8
!I SO(9)]SO(5)

Z
8
!I SO(8)*2+]SO(5)

Z
8
!II SO(8)*2+](SU(2))2

Z
8
!II SO(10)]SU(2)

Z
8
!II SO(9)](SU(2))2

Z
12
!I E

6
Z

12
!I F

4
]SU(3)

Z
12
!I SO(8)*3+]SU(3)

Z
12
!II SO(4)]F

4
Z

12
!II SO(8)*3+](SU(2))2

We have seen that the speci"cation of an orbifold includes the identi"cation of the (six-
dimensional) metric of the compacti"ed space. We have also seen that besides the (symmetric)
graviton and dilaton states the 10-dimensional spectrum also includes anti-symmetric tensor
particles. Thus we may consider a more general situation than that which we have considered
hitherto, in which there is an antisymmetric background "eld (B) besides the symmetric back-
ground metric "elds (G). The possibility of doing this may also be seen by considering a generaliz-
ation of the original Polyakov action

S
1
"!

¹

2Pd2p(!h)1@2[habGklRaXkRbXl#eabBklRaXkRbXl#2] , (1.107)

where pa (a"1,2) are the world sheet coordinates q and p, hab is the world sheet metric, eab the
anti-symmetric two-dimensional, tensor, and Gkl, Bkl are the (constant) target space metric and
antisymmetric tensor "eld. The unexhibited terms include Wilson line contributions (AIk) linking
the (ten-dimensional) string world sheet to the (16-dimensional) left-moving gauge degrees of
freedom. These will be discussed in Section 2. The background "eld Bkl is taken to be non-zero only
in compacti"ed dimensions. Then the new term is easily seen to be a total divergence, so the "eld
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equations and mode expansions are unaltered. Nevertheless, its presence a!ects the compacti"ca-
tion because the "eld conjugate to Xk becomes

Pk"!¹(GklXQ l#BklX@l) , (1.108)

where

XQ l,R
0
Xl, X@l,R

1
Xl . (1.109)

Using the standard mode expansion for Xl yields the momentum operator conjugate to xk as

p8
k
"p

k
#2B

kl
¸

l

and it is p8 , rather than p, which has eigenvalues on the lattice KH dual to K. The upshot is that the
left and right mover mode expansions still have the form (1.15), (1.16), but now p

R
,p

L
are given by

pk
R
"1

2
p8 k!¸k!Bkl¸l , (1.110)

pk
L
"1

2
p8 k#¸k!Bkl¸l . (1.111)

with p8 3KH and L3K.
The full six-dimensional compacti"ed space is evidently associated with 36 quantities, 21

associated with the (symmetric) metric parameters and 15 with the antisymmetric background "eld.
In most applications far fewer parameters are non-zero, since the lattice is de"ned in terms of lower
dimensional constructions. Many of these use two-dimensional lattices, which are speci"ed by just
four quantities G

11
,G

12
,G

22
,B

12
. It is customary to combine these into two complex quantities ¹,

; de"ned as follows. The metric quantities G
ij
, are de"ned by two basis vectors whose relative size

and orientation may be characterized by the complex number ; which speci"es the end point of
the vector e

2
, in the complex plane when e

1
is normalized to the unit vectors lying along the real

axis of the Argand diagram.
Then ; is given by

i;"(1/G
11

)(G
12

#iJdetG) (1.112)

and is called the `complex structurea. As it involves only ratios of terms in the metric it carries no
information about the overall size of the (two-dimensional) torus. This information is supplied by
the complex numbers

i¹,2(B
12
#iJdetG) (1.113)

so that

det(G$B)"D¹D2/4

and the (square of the) imaginary part of ¹ gives the area of the fundamental torus.

1.6.1. Example: Z
3

orbifold with standard embedding [79,80]
We illustrate the foregoing generalities by applying them to the Z

3
-orbifold, the simplest of the

(symmetric) abelian orbifolds. The point group generator h satis"es

h3"1 (1.114)
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and its action on the compacti"ed dimensions is given by Eq. (1.51) with

(v
1
,v
2
,v
3
)"1

3
(1,1,!2) . (1.115)

We have already noted that the gauge bosons arise in the untwisted sector, and are given by the
states

bi
~1@2

D0T
R
a8 I
~1

D0T
L

(1.116)

corresponding to the Cartan sub-algebra, and the states

bi
~1@2

D0T
R
DpI

L
T

with (pI
L
)2"2 and pI

L
<I3Z corresponding to the charged state of SU(3)]E

6
]E

8
. <I is the

standard embedding of the point group in the gauge group and is given by Eq. (1.68).
Similarly the chiral gauge non-singlet matter is given by the states

c6 a
~1@2

D0T
R
DpI

L
T , (1.117)

where the c6 a
~1@2

(a"1,2,3) are the untwisted fermionic oscillators in the complex basis (1.48)}(1.50).
The right-movers are eigenstates of the operator hM , which implements the action of h on the Hilbert
space, with eigenvalue

hM "e~2p*@3 . (1.118)

Then the corresponding left-mover momentum states DpI
L
T are those with

(pI
L
)2"2, pI

L
<I"1

3
mod 1 (1.119)

and it is easy to see that such states transform as the (27,3) representation of E
6
]SU(3). (The

anti-particles have pI
L
<I"2

3
mod1.) Thus the untwisted sector generates a total of nine chiral

matter generations.
The Z

3
point group is realized on the lattice K which comprises three copies of the root SU(3)

lattice. The SU(3) lattice has two basis vectors e
1
,e

2
satis"es

e
1
) e

1
"e

2
) e

2
"!2e

1
) e

2
(1.120)

Its Coxeter element is

C"s
1
s
2

(1.121)

where s
1
,s
2

are de"ned in Eq. (1.96). Then

Ce
1
"e

2
,

Ce
2
"!e

1
!e

2

(1.122)

and

C3"1 (1.123)

as required. In this basis the matrix representing C is

C"A
0 !1

1 !1B (1.124)
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so from Eq. (1.88) the number of "xed points in each plane is

det(1!C)"3 . (1.125)

It is easy to see that, up to a lattice vector, these "xed points of C are given by

x
f
"1

3
n
1
(e

1
#2e

2
) (n

1
"0,1,2) . (1.126)

The (six-dimensional) point group generator h is de"ned as the product of the Coxeter elements
associated with each of the (three) SU(3) lattices, so h has a total of 27 "xed points

x
f
"1

3
n
1
(e

1
#2e

2
)#1

3
n
2
(e

3
#2e

4
)#1

3
n
3
(e

5
#2e

6
) (1.127)

with n
i
"0,1,2 for each i"1,2,3.

For the twists (1.115) a
B

and a
F

(NS), given in Eqs. (1.78) and (1.79), both vanish

a
B
"0"a

F
(NS) (1.128)

so the right movers' twisted ground state D0T
R

has

m2
R
"0 . (1.129)

Similarly, from Eq. (1.80), we "nd

a8 "2
3

(1.130)

so far a massless left-moving twisted state we require

1
4
M2

L
"NI #1

2
(pI

L
#<I)2!2

3
"0 . (1.131)

The only solutions with NI "0 have

pI
L
#<I"AA

1
3B

3
$104B (1.132)

"AA!
1
6B

3
($

1
2
)5B (1.133)

AA!
2
3B

3
05B , (1.134)

where the underlining signi"es that all ("ve) permutations are to be taken, and in Eq. (1.133) an odd
number of #1

2
entries is required. Evidently, the above solutions constitute 10, 16 and 1 repres-

entations of SO(10), and are all singlet representations of SU(3). Thus the twisted matter states

D0T
R
DpI

L
#<IT (1.135)

with
(pI

L
#<I)2"4

3
(1.136)

transform as the (27, 1) representation of the E
6
]SU(3) gauge group, and in fact there is one such

representation associated with each of the 27 "xed points. (The antiparticles, which transform as
(271 ,1) representations, occur in the h2-twisted sector associated with the same "xed point. In this
respect the Z

3
orbifold is atypical, since in general chiral matter in 27 representations may arise in

any sector.)
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Including the 9 chiral generations from the untwisted sector, we get a total matter content of 36
generations in the Z

3
orbifold. (This of course agrees with the general formula (1.95).)

It is clear from the de"nition (1.120) that the SU(3) lattice has a "xed ; modulus

i;"!1
2
#iJ3/2"e2p*@3 (1.137)

while the ¹ modulus specifying the overall size of the orbifold is arbitrary. Thus in the Z
3

orbifold
all three ; moduli have the common "xed value given above, and all three ¹ moduli are
unconstrained. As we have already said, these moduli are derived from the background "eld values
associated with the (10-dimensional) graviton, dilaton and antisymmetric "eld. In the untwisted
sector these (gauge singlet) particles are given by

c6 a
~1@2

D0T
R
bI c
~1

D0T
L

(a,c"1,2,3) , (1.138)

where bI c (c"1,2,3) are the untwisted left-moving oscillators in the complex basis (1.48)}(1.50).
Evidently the ¹a,;a (a"1,2,3) moduli "elds are associated with the diagonal (a"c) gauge singlet
particles.

There are also (massless) gauge singlet states in the twisted sector. They are

D0T
R
bI c
~2@3

D0T
L

,

D0T
R
bIM c
~1@3

bIM d
~1@3

D0T
L

(c,d"1,2,3) ,

and are associated with the so called `blowing up modesa (BUMs). When the background "elds
associated with the BUMs are taken to in"nity, the conical orbifold singularities are `blown upa,
repaired, and we are left with a Calabi}Yau manifold [80].

1.7. Asymmetric orbifolds [162,163]

The treatment of orbifolds which we have presented so far rests on the geometrical notion of
compactifying six spatial coordinates on a torus and then modding out an automorphism of the
associated lattice. The mode expansions for the compacti"ed left and right movers then follow from
this geometrical construction. The action of the point group on the (left-moving) gauge degrees of
freedom is then speci"ed, consistent with modular invariance.

This symmetric treatment of the six compacti"ed spatial coordinates contrasts with the asym-
metric construction of the original heterotic string. In this we "rst consider the torus 1

2
(C8#C8),

one C8 for each E
8
group, turn on an appropriate anti-symmetric B-"eld, and then the left and right

momenta are given by (P
L
,P

R
), where P

L
and P

R
each belong to the E

8
]E

8
root lattice. The

standard heterotic string is then obtained by restricting to momenta of the form (P
L
,0) and using

only left-moving oscillators to construct the states of the Hilbert space. It is natural to wonder
whether this asymmetry has to be restricted to the gauge degrees of freedom or whether it can be
continued further into the ten-dimensional space-time coordinates.

The work of Narain [164] and collaborators [165] has shown that the combined left-right
momentum gives rise to an even self-dual lattice with a Lorentzian metric. For a six-dimensional
toroidal compacti"cation the signature is

[(#1)16`6,(!1)6] . (1.139)
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The combined momenta have the form

P"(P
L
,P

R
) , (1.140)

where P
L

is a 22-dimensional vector, P
R

is six-dimensional, and P belongs to a lattice C22,6. We
construct an orbifold by considering automorphisms of this lattice which do not necessarily treat
the left- and right-moving components symmetrically. In doing this it is essential that the right and
left-moving Hilbert spaces are not mixed. Then a general element g of the space group may be
de"ned to act on the momentum degrees of freedom as follows:

gDP
L
;P

R
T"exp[2pi(P

L
) a

L
!P

R
) a

R
)]Dh

L
P

L
;h

R
P

R
T , (1.141)

where h
L

and h
R

are 22-dimensional and six-dimensional rotations, and a
L

and a
R

are 22-
dimensional and six-dimensional shifts. The action of g on the bosonic oscillators is then simply
their rotation by the matrices h

L
or h

R
. Similarly this action on the (right-moving) NSR world sheet

fermions is also given by the h
R

rotation. Note that the action on the gauge degrees of freedom is
already speci"ed, as these are a part of the C22,6 lattice.

The principal di$culty in constructing asymmetric orbifolds arises from the twisted sectors, i.e.
string states which close only up to the action of the space group. Since the action of g is de"ned on
momentum states, it does not give a sensible action on the con"guration space (x) coordinates. In
particular, the "xed points of the symmetric orbifold, de"ned in Eq. (1.46), have no immediate
generalization to the asymmetric case because the action of the space-group may have a di!erent
number of "xed points for left- and right-moving degrees of freedom.

However, we may use the requirement of modular invariance (see Section 2) to obtain informa-
tion about the twisted sector before constructing it. Then it can be shown that the generalization of
the Lefschetz "xed point result (1.88) is

n!4:..
&1

"S
det(1!h

L
)det(1!h

R
)

DIH/ID
"S

det(1!h)
DIH/ID

, (1.142)

where the determinant is over eigenvalues of h"(h
L
,h

R
) which are not equal to unity; I is the

subspace of lattice vectors in C22,6 which are invariant under the action of h, and IH is its dual. DIH/ID
denotes the index of I in IH. It is far from obvious, but nevertheless true, that the formula (1.142)
ensures that n

&1
is an integer. The number of "xed points is of course the degeneracy of the twisted

sector ground state, and the formula suggests that we should "rst consider a symmetric orbifold,
and somehow take the square root of the number of "xed points. To do this we "rst consider the
lattice C22,6 but with a euclidean signature [(#1)22,(#1)6], and denote it by CI 22,6 to avoid
confusion. Now we consider a symmetric orbifold withwindings allowed on 1

2
CI 22,6 and momenta on

its dual. Although C22,6 is self-dual with the Lorentzian signature, CI 22,6 is not self-dual because of
its Euclidean signature. However, it is easy to see that if

(p
1
,p

2
)3CI 22,6 , (1.143)

then

(p
1
,!p

2
)3CI 22,6H . (1.144)
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Thus we consider a lattice C28_28 with momenta (P
L
;P

R
) having the general form (1.110),(1.111):

P
R
"1

2
PI !¸!B¸ , (1.145)

P
L
"1

2
PI #¸!B¸ , (1.146)

where the windings ¸ are on 1
2
CI 22,6

¸"1
2
(p

1
,p

2
) (1.147)

and the momenta PI are on its dual

PI "2(p
3
!p

4
) . (1.148)

The antisymmetric "eld Bkl maybe chosen so that if the vectors e
i
generate the lattice CI 22,6

e
i
)Be

j
"e

i
.Ge

j
mod2 , (1.149)

where G has the Lorentzian signature. Then the momentum vectors (P
L
;P

R
) on the C28,28 lattice

have the form

(p
3
,p

2
!p

4
;p

3
!p

1
,!p

4
) (1.150)

which is generated by vectors of the form

(k
1,
0;0,!k

2
),(0,!k

2
;k

1
,0) (1.151)

with

(k
1
,k

2
)3CI 22,6 . (1.152)

Then, analogous to the E
8
]E

8
compacti"cation, we obtain the untwisted sector of the asymmetric

orbifold by restricting to momenta of the form

(k
1
0;0,!k

2
) (1.153)

and using only the "rst 22 left-moving oscillators and the last 6 right-moving oscillators.
Now consider the twisted sector of the symmetric orbifold. As in Eq. (1.46), the "xed points

x
f

satisfy

(1!h)x
f
"l (1.154)

so each "xed point is associated with a lattice vector l3CI 22,6. Of course, since we identify points
which di!er by a lattice vector

x
f
,x

f
#l

1
if l

1
3CI 22,6 (1.155)

x
f

is also associated with l#(1!h)l
1
.

Let us denote by I the subspace of CI 22,6 which is left invariance by h

I"Mw3CI 22,6 D (1!h)w"0N (1.156)

Evidently the lattice vector l associated with x
f

is orthogonal to every vector in I. Thus l is in the
subspace N of CI 22,6 which is orthogonal to I. Clearly, (1!h)CI 22,6 is a subspace of N, and the
number of inequivalent "xed points is given by the index of (1!h)CI 22,6 in N

n4:..
&1

"DN/(1!h)CI 22,6D (1.157)
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and it can be shown [162] that this is precisely the square of n!4:..
&1

given in Eq. (1.142):

n4:..
&1

"(n!4:..
&1

)2 . (1.158)

We can associate with each lattice vector l"(l
1
,l

2
)3N an untwisted state of the asymmetric

orbifold having momentum

P"(l
1
,0;0,!l

2
) (1.159)

as in Eq. (1.153). Then the vertex operators for the emission of such states include matrices
¹P which act upon the ground states of the twisted sector. The number of inequivalent l3CI 22,6 is
given by Eq. (1.157), and the matrices ¹P constitute a representation of a group G with dimension

n4:..
&1

"(n!4:..
&1

)2 . (1.160)

We could, of course, equally well have associated l3N with the untwisted state of a (dual)
asymmetric orbifold having momentum

PI "(0,!l
2
;l

1
,0) . (1.161)

Then the matrices ¹PI generate a group GI isomorphic to G. In fact the "xed point set constitutes an
(n!4:..

&1
,n6 !4:..

&1
) representation of G]GI , and for the symmetric orbifold (where we keep both P, PI )

we have a single irreducible representation. For the asymmetric orbifold generated by P we
evidently have n!4:..

&1
copies of the n!4:..

&1
-dimensional representation of G. Each of these copies

gives rise to identical physics, and we retain only the n!4:..
&1

states in any single representation. This
is what is meant by taking the `square root of the "xed point seta.

We illustrate the foregoing ideas by constructing an asymmetric Z
3
-orbifold which for the

left-movers looks like a toroidal compacti"cation and for the right-movers looks like a Z
3
-orbifold.

We take the even self-dual lattice C22,6 to comprise

C22,6"C8#C8#3C2,2 , (1.162)

where C8 is the root lattice of E
8
, and C2,2 is de"ned by

C(2,2)"M(p
L
,p

R
) D p

L
,p

R
3=, p

L
!p

R
3RN (1.163)

where R is the (two-dimensional) root lattice of SU(3) and= is its (dual) weight-lattice. Then the
22-dimensional left momentum has the form

P
L
"(pI

L
,p@

L
I,p

L1
,p

L2,
p
L3

) (1.164)

with pI,p@I (I"1,2,8) the E
8
,E@

8
momenta and p

La (a"1,2,3) the left momenta on the C2,2 latti-
ces. Similarly the six-dimensional right moving momentum is

P
R
"(p

R1
,p

R2
,p

R3
) (1.165)

Under the asymmetric Z
3
-action the state DP

L
,P

R
T transforms as

DP
L
,P

R
TPe2p*a.VDP

L
,hP

R
T , (1.166)

where, as in the symmetric Z
3
-orbifold, h denotes a simultaneous rotation by 2p/3 in all three tori,

and< is the standard embedding (1.68) (with va given in Eq. (1.115)) of the twist in the gauge degrees
of freedom by means of a shift.
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The physical states in the untwisted sector are simply those in the toroidal compacti"cation
which are invariant under the action of the (asymmetric) Z

3
point group. As before, the graviton,

antisymmetric tensor, and dilaton states and their N"1 space}time supersymmetric partners, are
easily seen to survive, and again, as in Section 1.7, the gauge boson states

bi
~1@2

D0T
R
a8 I
~1

D0T
L

, (1.167)

bi
~1@2

D0T
R
DpI

L
T
L

(1.168)

with (pI
L
)2"2 and pI

L
<I3Z corresponding to the gauge group SU(3)]E

6
]E

8
also survive.

However, because the action of the point group on the left-movers is now toroidal, additional
vectors states survive

bi
~1@2

D0T
R
a8 a
~1

D0T
L

, (1.169)

bi
~1@2

D0T
R
Dp

L1
,p

L2
,p

L3
T , (1.170)

with

p2
L1
#p2

L2
#p2

L3
"2 (1.171)

and these generate a further SU(3)3 gauge symmetry. The untwisted states (5.96) also survive and
are of course singlets with respect to the (new) SU(3)3 gauge symmetry.

More interesting things happen in the twisted sector. First we construct the Euclidean lattice

CI 22,6"C
8
#C

8
#3CI 2,2 . (1.172)

There the invariant lattice I is given by

I"C
8
#C

8
#3(R,0) , (1.173)

where as before R is the root lattice of SU(3), and in the same notation the normal lattice is

N"3(0,R) . (1.174)

Since the action of the point group on the left-movers is toroidal

(1!h)CI 22,6"N (1.175)

it follows from Eqs. (1.157) and (1.158) that

n!4:..
&1

"1 . (1.176)

(For the symmetric Z
3

orbifold it will be recalled that there are 27 "xed points.) In fact [162], there
is a single matter "eld in the E

6
]SU(3)4 representation

(27,3,1,1,1)#(27,1,3,1,1)#(27,1,3,1,1)#[(1,3,3,3,1)#(1,3,3,3,1)

# (1,3,3,3,1)#(1,3,3,3,1)#perms] , (1.177)

where `permsa indicates the representations needed to make the last bracket symmetric with
respect to the last three SU(3)s. As for the symmetric Z

3
orbifold, the h2 twisted sector gives the

antiparticles of the h twisted sector. Other examples of asymmetric orbifold compacti"cation may
be found in Refs. [110,180,85,146,147].
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2. Orbifold model building

2.1. Introduction

As we have seen in Section 1, the observable gauge group of an orbifold compacti"ed string
theory is quite large e.g. E

6
]SU(3) for the Z

3
orbifold with the standard embedding of the point

group. It is therefore necessary to "nd mechanisms to break the gauge group to that of the standard
model. The usual mechanism in an SU(5),SO(10) or E

6
grand uni"ed theory is to employ Higgs

bosons to spontaneously break the grand uni"ed group. However, this requires the presence in the
theory of massless scalar states in the adjoint representation or some larger representation of the
gauge group. In a supersymmetric grand uni"ed theory not derived from string theory, we can
introduce any representations of the gauge group we require at will. On the other hand, in a grand
uni"ed theory derived from string theory, the spectrum of massless states is prescribed by the string
theory for any speci"c compacti"cation. Although by sifting through consistent orbifold compac-
ti"cations we can "nd a range of possibilities for the massless spectrum, this range is not in general
wide enough to permit the presence of adjoint or larger representations, as we now discuss.

The largest representations of the gauge group that can occur in a string theory are controlled by
the level of the Kac}Moody algebra [111] (or current algebra) for the left movers, which is de"ned
as follows. The vertex operator <k

a
for a gauge boson is of the form

<k
a
"tk(z6 )e*pXJ

a
(z) , (2.1)

where p is the momentum, tk is an NSR fermion right mover of conformal dimension 1
2
, and J

a
(z) is

a left mover factor of conformal dimension 1, where

z"e~2(q`*p), z6 "e~2(q~*p) (2.2)

with q and p the Wick rotated world sheet variables. In general, J
a
satis"es the operator product

expansion

J
a
(z)J

b
(w)&kM d

ab
(z!w)~2#if

abc
J
c
(z!w)~1#2 (2.3)

with f
abc

the structure constants of the gauge group. The level k of the Kac}Moody algebra (or
current algebra of the currents J

a
) is a non-negative integer de"ned by

k"2kM /t2 , (2.4)

where t is the highest root of the Lie algebra. In particular, for simply laced groups with
normalisation t2"1,

kM "1
2
k . (2.5)

The states of the string theory not only fall into representations of the Lie algebra of the gauge
group but also into representations of the Kac}Moody algebra [111]. In practice, we are interested
in unitary representations of the Lie algebra with a mass spectrum that is bounded below. For these
representations, there is a bound on the highest weights of the representations of the Lie algebra
that can occur, namely,

3!/, G
+
i/1

n
i
m

i
)k , (2.6)
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where n
i
are the Dynkin labels of the highest weight of the representation, and m

i
are positive

integers that are "xed for a given Lie algebra G, and can be found tabulated in various places.
For level 1 (k"1) the representations of the Lie algebra that can occur in string theory are very

limited. In particular, for SO(10) or SU(5), the adjoint or larger representations do not occur [84].
This means that the usual spontaneous symmetry breaking mechanisms for breaking the symmet-
ries in SO(10) or SU(5) grand uni"ed theory can not be used in string theory with level 1
Kac}Moody algebras. It is possible [152] to use theories with Kac}Moody algebras with level
greater than 1, but then a plethora of large exotic representations of the grand uni"ed group occurs
[99] for which it is di$cult to generate large masses to remove them from a low energy theory. It is
therefore attractive to stick with level 1 Kac}Moody algebras and to look instead for another
mechanism to achieve some preliminary breaking of the gauge group, before spontaneous sym-
metry breaking, using the available smaller representations of the gauge group is applied. Such
a mechanism exists in the form of Wilson lines, which we shall discuss in the next section.

2.2. Wilson lines

In Section 1, the point group was embedded in the gauge group in order to achieve some
breaking of the gauge group [79], and, in the case of Z

N
orbifolds other than Z

3
and Z

7
to ensure

a modular invariant theory. Further breaking of the gauge group can be achieved (in a modular
invariant way) by embedding the complete space group in the gauge group [80,123,15]. This means
that not only should the point group element be embedded as a shift on the E

8
]E@

8
bosonic

degrees of freedom, but also the various basis vectors of the torus lattice underlying the orbifold
should be embedded as such shifts. As we shall see, not only does this produce gauge symmetry
breaking but it also modi"es the matter "eld content, so that 3 generation models can be obtained
[123,16,17].

Consider a twisted sector with boundary conditions twisted by the space group element (h,l),
where h is a point group element with l as a lattice vector,

l"+roeo , (2.7)

where ro are some integral coe$cients and eo are basis vectors of the 6 torus. To embed the space
group in the gauge group, the point group element h will be embedded as the shift p<I, as before,
and the lattice basis vector eo as the shift paIo. To ensure that we have an embedding we must check
that we obtain a homomorphism. Thus, we must correctly image the product of two space group
elements (h

1
,l

1
) and (h

2
,l

2
),

(h
1
,l

1
)(h

2
,l

2
)"(h

1
h
2
,l

1
#h

1
l
2
) . (2.8)

For a Z
N

point group generated by h,

(h,l)N"(I,o) . (2.9)

Consequently, we must require that

N(<I#roaIo)3K
E8CE

@
8

(2.10)

which implies that

N<I3K
E8CE

@
8

(2.11)

D. Bailin, A. Love / Physics Reports 315 (1999) 285}408 315



Fig. 1. The one-loop string amplitude.

Fig. 2. The vacuum-to-vacuum string amplitude.

and

N aIo3K
E8CE

@
8
, (2.12)

so that

N +
I|E8

<I"0 mod2, N +
I|E@

8

<I"0mod 2 (2.13)

and

N +
I|E8

aIo"0 mod2, N +
I|E@

8

aIo"0 mod2 . (2.14)

In addition, the embedding of the space group must be chosen in such a way that the fundamental
modular invariance property of the theory is preserved. The way to ensure a modular invariant
theory is the subject of the next two sections.

2.3. Modular invariance for toroidal compactixcation

In the "rst instance, the evaluation of a string loop amplitude, such as Fig. 1, involves a path
integral over world sheet metrics as well as over the bosonic and fermionic string degrees of
freedom. The essential subtlety of the one loop string amplitudes for present purposes is contained
in the toroidal world sheet of the vacuum to vacuum amplitude of Fig. 2. In"nities may arise in
evaluating this amplitude (and other 1 loop amplitudes) unless we are careful to avoid including the
contribution of equivalent world sheet tori in"nitely many times. Tori may be characterised by the
modular parameter q8 , which is de"ned as follows. First construct the complex variable

z"p#iq (2.15)

from the world sheet coordinates p and q. Then a world sheet torus may be de"ned by making the
identi"cations

z,z#p(n
1
j
1
#n

2
j
2
) , (2.16)
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where j
1

and j
2
are two "xed complex numbers, and n

1
and n

2
are arbitrary integers. Points on the

torus may be written as

z"p
1
j
1
#p

2j2
, 0)p

1
, p

2
(p . (2.17)

Because conformal invariance may be applied to rescale j
1

to 1 if we wish, it is only the ratio

q8 "j
2
/j

1
(2.18)

that is relevant for characterising tori.
Not all values of q8 specify inequivalent tori. If we consider the modular transformations

A
j@
2

j@
1
B"A

a b

c dBA
j
2

j
1
B , (2.19)

where a,b,c and d are integers satisfying

ad!bc"1 , (2.20)

then

n
1
j
1
#n

2
j
2
"n@

1
j@
1
#n@

2
j@
2

, (2.21)

where n@
1
and n@

2
are also arbitrary integers. Thus, j@

1
and j@

2
de"ne the same torus as j

1
and j

2
when

the identi"cation (2.16) is made. The corresponding transformations on q8

q8 @"(aq8 #b)/(cq8 #d) (2.22)

constitute the (world sheet) modular group SL(2,Z), and tori whose modular parameters are related
by Eq. (2.22) are equivalent.

In"nities in the vacuum-to-vacuum amplitude (and other one-loop string amplitudes) may now
be avoided by restricting the path integral over world sheet metrics to the range

!1
2
)Re q8 (1

2
, Im q8 *0, Dq8 D*1 (2.23)

which ensures that inequivalent tori are counted only once. For this to work, it is necessary that the
q8 dependent path integral over the bosonic and fermionic string degrees of freedom for the
vacuum-to-vacuum amplitude should be invariant under the modular transformations (2.22). This
path integral is referred to as the partition function Z and after converting the Euclidean path
integral to a determinant it is given by

Z"Tr(qHLq6 HR) (2.24)

where the Hamiltonian has been written in terms of left and right mover contributions H
L

and
H

R
as

H"H
L
#H

R
(2.25)

and

q"e*pq8 , q6 "e~*pq86 . (2.26)
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2.4. Orbifold modular invariance

It will be convenient for the moment to use the fermionic formulation of the heterotic string to
study the modular invariance of the orbifold partition function [80,183]. For the space group
element (h,l), let the twists on the boundary conditions of the 3 complex right moving fermionic
degrees of freedom associated with the compact manifold be e2p*v

i, i"1,2,3, and let the twists on
the boundary conditions of the 16 complex left moving fermionic degrees of freedom associated
with the E

8
]E@

8
gauge group be e2p*v8

I, I"1,2,16. These latter twists include the e!ect of
embedding the lattice vectors eo as well as the point group element h, i.e. they include the Wilson
lines. From Section 2.2, after switching from the bosonic to the fermionic formulation of the
heterotic string we must have

v8 I"<I#roaIo (2.27)

for a Z
N

orbifold.
The orbifold partition function will be a sum over terms corresponding to the various choices of

twisted boundary conditions in the p
1

and p
2

directions on the torus. For example, for a left-
moving complex fermionic degree of freedom with boundary conditions twisted by h"e2p*w and
g"e2p*u in the p

2
and p

1
directions, respectively, the generalisation of Eq. (2.24) to an orbifold is

Zw
u
"Tr(qHL(w)e2p*(u~1@2)NF(w)) , (2.28)

where H
L
(w) is the left-mover Hamiltonian for boundary conditions twisted by e2p*w and N

F
(w) is

the fermion number (see, for example, Ref. [35, Section 11.2]). Evaluation of the trace gives

Zw
u
"e~p*u(1~w)hAA

u

wB,q8 B , (2.29)

where

hAA
u

wB,q8 B"q~w(1~w)`1@6ep*u(1~w)
=
<
n/1

(1!q2(n~w)e2p*u)(1!q2(n`w~1)e~2p*u) . (2.30)

For the purpose of studying the way in which partition function terms transform under modular
transformations it is useful to note that the Jacobi h function of Eq. (2.29) has the modular property

hAaA
u

wB,q8 B"eahAA
u

wB,a~1q8 B , (2.31)

where

a:q8 P(aq8 #b)/(cq8 #d) , (2.32)

aA
u

wB"A
a b

c dBA
u

wB , (2.33)

and ea is a 12th root of unity independent of u and w. Also useful are the shift properties

h((u`1
w

),q8 )"!e~p*whAA
u

wB,q8 B (2.34)
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and

h((u
w`1

),q8 )"!ep*uhAA
u

wB,q8 B . (2.35)

A partition function term is a product of fermionic and bosonic factors for both right and left
movers, but the phases arising from the modular transformation of the boundary conditions of the
bosonic factors cancel between right and left movers. Consequently, only the fermionic factors need
be considered for present purposes. A modular transformations (2.31) has the e!ect on the
boundary conditions, (h,g)P(h@,g@) where

(h@,g@)"(hdgc,hbga) . (2.36)

If we consider a modular transformation that leaves the boundary conditions unaltered then, in
order that the partition function can be uniquely de"ned, we must require that partition function
terms, for given boundary conditions, transform into themselves without any modi"cation, where-
as, potentially, a phase factor could arise. In particular, if we consider the boundary conditions

(h,g)"(h,I) (2.37)

and the modular transformation

q8 Pq8 #N , (2.38)

where h is of order N, then (h@,g@) is the same as (h,g). The corresponding partition function factor for
a left moving complex fermionic degree of freedom with boundary conditions twisted by h"e2p*w

in the p
2

direction undergoes the modular transformation

Zw
0
Pep*Nw(1~w)Zw

0
. (2.39)

Similarly, for a right mover partition function factor ZM w
0

the corresponding transformation under
the same modular transformation is

ZM w(
0
Pe~p*Nw( (1~w( )ZM w

0
. (2.40)

For a partition function term

Z"

3
<
i~1

ZM vi
0

16
<
I/1

Zv6
I

0
, (2.41)

where vi are the twists on the right moving complex fermionic degrees of freedom, and v8 I are the
twists on the left-moving E

8
]E@

8
complex fermionic degrees of freedom, the transformation

induced by the modular transformation (2.38) is

ZPexpC!piNA
3
+
i/1

vi(1!vi)!
16
+
I/1

(1!v8 I)BDZ . (2.42)

Thus, to ensure that this partition function term transforms identically to itself, without any phase
factor, we must require that

NA
3
+
i/1

vi(1!vi)!
16
+
I/1

v8 I(1!v8 I)B"0 mod2 . (2.43)
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The homomorphism condition (2.10), together with the requirement

N
3
+
i/1

vi"0 mod2

for the action of the point group to be of order N acting on the spinor representation of SO(8),
allow Eq. (2.43) to be simpli"ed to

NA
3
+
i/1

(vi)2!
16
+
I/1

(v8 I)2B"0mod 2 , (2.44)

with v8 I given by Eq. (2.27) for the h twisted sector of the orbifold with Wilson lines. For the
hn twisted sector,

NAn2
3
+
i/1

(vi)2!
16
+
I/1

(n<I#roaIo)2B"0mod 2 (2.45)

with n"0,2,N!1 and ro"0,2,N!1. In particular, embeddings of the point group in the
gauge group consistent with modular invariance are required to satisfy

NA
16
+
I/1

(<I)2!
3
+
i/1

(vi)2B,N(<2!v2)"0 mod2 , (2.46)

and Wilson lines consistent with modular invariance are required to satisfy

N
16
+
I/1

(aIo)2,Na2o"0mod2 , (2.47)

N
16
+
I/1

aIoaIp,Nao ) ap"0 mod1, oOp (2.48)

and

N
16
+
I~1

<IaIo,N< ) ao"0 mod1 . (2.49)

These results may be extended to Z
M

]Z
N

orbifolds.

2.5. GSO projections

As well as modular invariance imposing restrictions on the choice of point group embeddings
and Wilson lines, it also imposes (generalised) GSO projections on the states [18,124,171]. For
a Z

N
orbifold with point group generated by h, the complete partition function has the form

Z"

1
N

+
m,n

g(m,n)Z
(hm,hn) , (2.50)

where Z
(hm,hn) is the partition function for twists hm and hn in the p

1
and p

2
directions, respectively,

and g(m,n) are phase factors "xed by modular invariance of the complete partition function Z, and
determined by considering modular transformations that map one term in the sum (2.50) into
another.
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In the absence of Wilson lines, the contribution to (2.50) for boundary conditions twisted by hm in
the p

1
direction is

Z"

1
N

N~1
+
n/1

s8 (hm,hn)Tr(DnqHL(hm)q6 HR(hm))#2 , (2.51)

where

D"e2p*d (2.52)

with

d"(h#mv( ) ) v(!(P#m<) )<#(m/2)(<2!v( 2)#e . (2.53)

In Eq. (2.53), h is the so called H momentum for the bosonised right moving NSR fermionic degrees
of freedom, P is the momentum on the E

8
]E@

8
lattice,

v(,(0,v1,v2,v3) (2.54)

describes the action of the point group on the compact manifold, and e2p*e is the action of h on the
left mover oscillators involved in the construction of the state. (We shall only be interested in
massless states, in which case these are no right mover oscillators.) The factor s8 (hm,hn) as de"ned to
be 1 for the untwisted sector hm"I and, otherwise, it is the number of simultaneous "xed points of
hm and hn on the subspace rotated by hm. (This last remark is necessary to take account of the
possibility of hm possessing "xed tori.)

The GSO projection deriving from Eq. (2.51) is particularly simple in the case of the h twisted
sector (m"1) and in the absence of "xed tori in the h twisted sector. Then,

s8 (h,hn)"s(h) for all n , (2.55)

where s(h) is the number of "xed points of h, all of which must be "xed by hn. Thus, Eq. (2.49)
simpli"es to

Z"

1
N

s(h)TrA
N~1
+
n/0

DnqHL(h)q6 HR(h)B (2.56)

and states with D"1 survive the GSO projection. It turns out that all massless states in the
h sector have D"1, so that all massless states in this sector survive.

More generally, [124,142,100] the "xed points of hm and hn di!er, and s8 (hm,hn) does not have the
same value for all n. This prevents us pulling out the s8 (hm,hn) factor from the summation to leave
a simple GSO projection. Instead, it is necessary to evaluate the degeneracy factor in the partition
function.

D(hm)"
1
N

N~1
+
n/0

s8 (hm,hn)Dn (2.57)

and states for which D(hm) is zero are projected out.
In the presence of Wilson lines, Eq. (2.51) still applies if Dn is replaced by DI (n,m) where

DI (n,m)"e2p*dI (n,m) (2.58)
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with

dI (n,m)"(h#mv( ) ) nv(!(P#m<#ro,mao) ) (n<#ro,nao)#1
2
(m<#ro,mao) ) (n<#ro,nao)

"(mn/2)v( 2#ne . (2.59)

In Eq. (2.59), the space group elements associated with "xed points in the hm and hn twisted sectors
have been written as (hm,ro,meo#(1!hm)K) and (hn,ro,neo#(1!hn)K). The degeneracy factor is
then

D(hm)"
1
N

N~1
+
n/0

+
ro,n

s8 (hm,hn,ro,n)DI (n,m) . (2.60)

For a given "xed point in the hm twisted sector (a choice of ro,m) the degeneracy factor now has
separate terms for each "xed point in the hn twisted sector (each choice of ro,n). The factor
s8 (hm,hn,ro,n) now counts the number of simultaneous "xed points of hm and hn associated with
a particular choice of ro,n. For example, for the h twisted sector of the Z

3
orbifold, with one Wilson

line a
1
, the 27 "xed points split into 3 sets of 9 associated with<#r

1
a
1
,r
1
"0, $1. With 2 Wilson

lines a
1

and a
3
, the 27 "xed points split into 9 sets of 3 associated with <#r

1
a
1
#r

3
a
3
,

r
1
,r
3
"0,$1.

2.6. Modular invariant Z
3

orbifold compactixcations

The simplest case [80,123] in which to illustrate the way in which modular invariance restricts
the consistent choices of point group embeddings and Wilson lines is the Z

3
orbifold. In that case,

the inequivalent choices of the point group embedding <I may be determined as follows. First
write,

<"(<
1
,<

2
) , (2.61)

where <
1

and <
2

are the components of < shifting the E
8

and E@
8

lattices, respectively. Two shifts
<

1
and <@

1
that di!er by an E

8
lattice vector are equivalent, as are two shifts that di!er by a Weyl

re#ection of the E
8

lattice, and similarly for <
2
. The homomorphism conditions are

3+
J

<J
1
"0mod 2 (2.62)

and

3+
K

<K
2
"0 mod2 . (2.63)

For the Z
3

orbifold,

v"(1
3
,1
3
,2
3
) (2.64)

so that the modular invariance condition (2.46) is

3(<2
1
#<2

2
)"0mod 2 . (2.65)
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Combining Eqs. (2.62)}(2.64), requires

<2
1
"2

9
q
1
, <2

2
"2

9
q
2

, (2.66)

where q
1

and q
2

are integers.
Any shift <

i
, i"1,2, is within a distance 1 from some lattice point on an E

8
lattice. Thus, by

subtracting o! an appropriate lattice vector we can always arrange that

<2
1
)1, <2

2
)1 . (2.67)

Then, up to interchanging <
1

and <
2

the only inequivalent possibilities are

<2
1
"<2

2
"0 , (2.68)

<2
1
"2

3
, <2

2
"0 , (2.69)

<2
1
"2

9
, <2

2
"4

9
, (2.70)

<2
1
"<2

2
"2

3
(2.71)

and

<2
1
"8

9
, <2

2
"4

9
. (2.72)

There is a large range of choices for the Wilson lines ao. As for < we have the homomorphism
conditions

3 +
J|E8

aJo"0 mod2 (2.73)

and

3 +
K|E@

8

aKo"0 mod2 . (2.74)

Also, by subtracting o! appropriate lattice vectors we can arrange that

+
J|E8

(aJo)2)1, +
K|E@

8

(aKo )2)1 . (2.75)

On the other hand, we can no longer use Weyl re#ections to reduce the possibilities further because
equivalent theories are connected by Weyl re#ections on < and ao simultaneously. However, not all
Wilson lines satisfying (2.73)}(2.75) and the modular invariance conditions

3a2o"0 mod2 , (2.76)

and

3< ) ao"0 mod2 (2.77)

are independent. If the action of the point group element h on the basis vectors for the compact
manifold lattice is

heo"Mopep , (2.78)
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then

ao"Mopap#K , (2.79)

where K is an E
8
]E@

8
lattice vector, re#ecting the fact that these are inequivalent paths on the torus

that are equivalent on the orbifold.
One approach [48] to writing down all possible models is to list all possible choices of aJo,J3E

8
,

and then to use the modular invariance conditions on ao to limit the possible choices of aKo , K3E@
8
,

consistent with the choice of aJo. There are various other transformations on the Wilson lines, and
the <I and Wilson lines together, that give equivalent models. Phenomenologically promising
models can then be selected by imposing requirements such as standard model gauge group,
3 generations and absence of extra colour triplets which may mediate rapid proton decay
[125,49,50,102,103,100].

2.7. Untwisted sector massless states

Only initially massless states rather than states with masses on the string scale are directly
relevant to the low energy world. It will be convenient to bosonise the NSR right mover fermionic
degrees of freedom. Then, the 8 real fermions or 4 complex fermions become 4 real bosons with
momentum on an SO(8) lattice. Denote the momentum components on the SO(8) lattice (the
so-called H momentum) by hi, i"0,1,2,3. Then, the formulae for massless states of Section 1
become

M2
R
"M2

L
"0 , (2.80)

where

1
4
M2

R
"N#

1
2

3
+
i/0

(hi)!
1
2

(2.81)

and

1
4
M2

L
"NI !1#

1
2

16
+
I/1

(PI)2 , (2.82)

where PI is the E
8
]E@

8
lattice momentum. Now N contains only the contribution of transverse

bosonic oscillators, and

3
+
i/0

hi"1mod2 (2.83)

because of the GSO projection.
As discussed in Section 1, the untwisted sector massless states include the gauge "elds with NS

sector right movers bi
~1@2

D0T
R
, i"1,2, created from the vacuum by space}time fermionic oscil-

lators. In the case of the untwisted sector, the generalised GSO projections are equivalent to
straightforward space group invariance without any phase factors. In the bosonic formulation, the
space group element (h,l) with l the linear combination of lattice basis vectors eo

l"roeo (2.84)
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induces the translation on the E
8
]E@

8
lattice p(<I#roaIo), so that the action on a state with

momentum PI is exp(2ip(<#roao) )P). Since bi
~1@2

does not transform under the space group,
space-group invariance requires

P )<"0 mod1 (2.85)

and

P ) ao"0 mod1 for all o (2.86)

for the gauge "elds. These conditions result in breaking of the original E
8
]E@

8
gauge group. For

the Z
3

orbifold, a complete classi"cation has been given with 1, 2 or 3 Wilson lines (the maximum
independent number.) When 3 Wilson lines are deployed, examples of models with SU(3)]SU(2)]
;(1)p gauge group can be obtained. (The breaking of the extra ;(1) factors not required by the
standard model will be discussed later.)

Left chiral right movers for matter "elds transform as 31 of SU(3) contained in 41 "31 #1 when the
SO(8) spinor Ramond sector ground state is decomposed as 4#41 of the compact manifold SO(6).
Thus, the left chiral right movers transform with a phase factor e~2p*@3 under h. Consequently, the
condition (2.85) for space group invariance is modi"ed for

P )<"1
3
mod1 , (2.87)

for left chiral matter "elds, and the condition (2.86) is unaltered. The surviving matter "eld content
can be adjusted by adjusting the choice of Wilson lines.

2.8. Twisted sector massless states

In general, additional massless matter occurs in the twisted sectors of the orbifold. For the
h twisted sector of a Z

N
orbifold, let the twists on the boundary conditions of the NSR fermions

associated with the compact manifold be e2p*v
i, i"1,2,3. Then, in the hn twisted sector, the shift on

the boundary conditions of the bosonised NSR fermions is nv( , with v( as in Eq. (2.54), so that the
H momentum is replaced by h#nv( . Also, the shift on the E

8
]E@

8
degrees of freedom, including

possible Wilson lines, is p(n<I#roaIo) so that the E
8
]E@

8
lattice momentum PI is replaced by

PI#n<I#roaIo.
With the bosonic formulation of the heterotic string and the bosonised version of the NSR

fermions, the only twisted boundary conditions are for the right and left-moving compact manifold
bosonic degrees of freedom. Thus, the modi"cation to the normal ordering constant is
1
2
+3

i/1
vi(1!vi), for both right and left movers. Then, the formulae for massless states become

M2
R
"M2

L
"0 , (2.88)

where

1
4
M2

R
"N#

1
2

3
+
i/0

(hi#nv8 i)2!a (2.89)

and

1
4
M2

L
"NI #

1
2

16
+
I/1

(PI#n<I#roaIo)2!a8 (2.90)
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with

a"
1
2
!

1
2

3
+
i/1

vi(1!vi) (2.91)

and

a8 "1!
1
2
+
i

vi(1!vi) . (2.92)

The oscillator terms N and NI now contain contributions from fractionally moded bosonic
oscillators associated with the compact manifold.

For a Z
M
]Z

N
orbifold, generated by point group elements h and u, for the hkul twisted sector,

nv8 i must be replaced by kv8 i#lu8 i where v8 i and u8 i are the twists for h and u, respectively. Also
n<I#roaIo must be replaced by k<I#l=I#roaIo, where <I and=I are the embeddings in the
gauge group of h and u.

Naive space group invariance can not be applied in the twisted sectors, and the surviving states
are those allowed by the generalised GSO projections [18,124,171]. In the case of the prime order
orbifolds (Z

3
and Z

7
) all twisted sector massless states survive these GSO projections, for arbitrary

embeddings of the point group and arbitrary Wilson lines [18,124]. By a careful choice of Wilson
lines, Z

3
orbifold models with 3 generations of quarks and leptons and SU(3)]SU(2)];p(1)

observable gauge group can be obtained [125,49,50,102,103,100]. This outcome depends crucially
on the fact that Wilson lines di!erentiate the various "xed points [123,16,17], so that some "xed
points have associated quark and lepton generations and others do not. Generically, additional
massless matter with exotic gauge quantum numbers occurs [11]. This unwelcome matter will have
to be removed from the observable low energy world, possibly by con"nement due to non-trivial
quantum numbers under a large non-abelian factor in the hidden sector gauge group [86]. Large
non-abelian factors in the hidden sector gauge group have the additional virtue of providing the
gaugino condensates necessary for non-perturbative supergravity, as will be discussed in Section 5.

A simple Z
3

orbifold example with a single Wilson line may be obtained by taking

<I"A
1
3
1
3
2
3
05B(08)@ (2.93)

and

aI
1
"aI

2
"aI

3
"A05

1
3
1
3
2
3B(08)@ . (2.94)

In this case, the observable sector gauge group is [SU(3)]4 where the "rst three SU(3) factors may
be interpreted as SU

C
(3)]SU

L
(3)]SU

R
(3). The untwisted sector massless matter "elds are 9 copies

of (1,3,31 ,1) of [SU(3)]4. The Wilson line di!erentiates the twisted sector "xed points so that the
representations of [SU(3)]4 arising are 9 copies of (1,31 ,3,1)#(3,3,1,1)#(31 ,1,31 ,1) from the twisted
sectors with +oro"0 mod3, 9 copies of (3,31 ,1,1)#(1,3,1,31 )#(31 ,1,1,3)#3(1,1,3,1) from the twisted
sectors with +oro"1 mod3, and 9 copies of (31 ,1,3,1)#(1,1,31 ,31 )#(3,1,1,3)#3(1,31 ,1,1) from the
twisted sectors with +oro"2mod3.

With the de"nition of the electric charge

Q
%.

"¹L
3
#¹R

3
#1

2
>

L
#1

2
>

R
(2.95)
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the twisted sectors with +oro"0 mod3 contain 9 generations of quarks and leptons, together with
associated states to make up 9 copies of the 27 of E

6
. However, the other twisted sectors contain

only exotic massless matter which can form fractionally charged colour singlet states. In this
example, not all exotic matter can be con"ned by the extra SU(3) factor in the gauge group.

A complete classi"cation of models in the absence of Wilson lines, their gauge groups and
massless matter content, has been carried out for all Z

N
orbifolds [137]. Potentially realistic models

with Wilson lines producing standard model gauge group and 3 generations of quarks and leptons
have been obtained in the cases of Z

3
as just discussed and Z

7
orbifolds [51] though a complete

classi"cation has not been carried out.
It is worth noting that there is never any need to adjust the theory to be free of gauge (and

gravitational) anomalies due to chiral fermions. Freedom from such anomalies comes as an
automatic consequence of the modular invariance of the string theory [172].

2.9. Anomalous ;(1) factors

In the "rst instance, model building leads to theories with SU(3)]SU(2)];p(1) gauge group
with p'1. To reach the standard model, it is necessary for all but one of the ;(1) factors in the
(observable) gauge group to be broken at a large scale. Frequently, one of the ;(1) factors is
anomalous [76,12,75] with an anomaly arising from diagrams with 3 non-abelian gauge bosons, or
one ;(1) gauge boson and two gravitons, as external legs. Then, at string one loop order
a Fayet-Iliopoulos D-term is generated for this ;(1) factor, ;

A
(1), and the corresponding D-term,

D
A
, in the Lagrangian takes the form

D
A
"

g
192p2

+
i

qi
A
#+

i

qi
A
D/

i
D2 , (2.96)

whereas, for a non-anomalous ;(1), say ;
B
(1),

D
B
"+

i

qi
B
D/

i
D2 , (2.97)

where qi
A

and qi
B

are the corresponding ;(1) charges of the scalar "elds /
i
. Since, in general, these

/
i
carry not only the anomalous;(1) charge but also other;(1) charges, many;(1) factors may be

broken in this way [52,104].
As a consequence of selection rules on the Yukawa couplings and non-renormalizable couplings

in an orbifold theory (which we shall discuss later) the e!ective potential often possesses F #at
directions. Then, spontaneous symmetry breaking may occur along such a direction, with ;(1)
factors in the gauge group being broken at a very large scale.

2.10. Continuous Wilson lines

The discussion of Wilson lines so far has assumed that the point group is embedded in the gauge
group as a shift<I on the bosonic E

8
]E@

8
degrees of freedom. An alternative is to embed the point

group in the gauge group as a discrete rotation [126,124] of the E
8
]E@

8
lattice, still in the bosonic

formulation of the heterotic string. Then, the space group element (h,l), with l a lattice vector as in
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Eq. (2.7), is embedded as (h@,a) where h@ is a rotation and

aI"p+
o

roaIo (2.98)

is a shift, on the E
8
]E@

8
degrees of freedom. For those components of aIo that are rotated by h@, no

restriction is imposed on them by the homomorphism condition because, for these components

(h@,aIo)N"(I,0) , (2.99)

when h is of order N. The components of aIo that are not rotated by h@ are restricted by Eq. (2.14), as
usual. A priori, modular invariance might put conditions on the rotated components of aIo. However,
this does not happen, and would not be expected to happen, because these components of the Wilson
lines do not a!ect the mass operator for the twisted sector, and so do not a!ect level matching
between left and right movers. Thus, the components of aIo that are rotated by h@ are continuously
variable parameters (additional moduli) which are referred to as continuous Wilson lines.

Unlike the usual discrete Wilson lines, continuous Wilson lines are able to reduce the rank of the
gauge group. The gauge "elds associated with the Cartan subalgebra are of the form
bi
~1@2

D0T
R
a8 I
~1

D0T
L
, I"1,2,16, where i is a four dimensional space-time index. While h acts trivally

on bi
~1@2

,h@ has a non-trivial action on some of the left-mover bosonic oscillators a8 I
~1

. As
a consequence of point group invariance, some of the gauge "elds of the Cartan subalgebra are
projected out of the theory, leaving only that part of the Cartan subalgebra for while a8 I

~1
is

unrotated by h@. This is not the whole story because it is possible for there to be h@ invariant
combinations of E

8
]E@

8
momentum states DPIT, of the form DPIT#Dh@PIT#2D(h@)N~1PIT, in the

Z
N

case, which play the part of Cartan subalgebra states. However, the GSO projections due to
Wilson lines generically project out some of the states, so that the rank of the gauge group is indeed
reduced.

When the point group embedding in E
8
]E@

8
is a rotation h@ rather than a shift, twisted sector

states consistent with the boundary conditions will have to have centre-of-mass coordinates at
a "xed point (or torus) of h@, as well as at a "xed point (or torus) of h. If EI

A
are basis vectors for the

E
8
]E@

8
lattice, then the "xed points XI

f
will be of the form

XI
f
"[(I!h@)~1(a#t

A
E

A
)]I , (2.100)

where t
A

are integers, and the form of a depends on the "xed point on the compact manifold
according to Eqs. (2.98) and (2.7). Because XI has only left-moving components, we are dealing here
with an asymmetric orbifold. Consequently, the vacuum degeneracy for the twisted sector due to
the E

8
]E@

8
degrees of freedom is the square root of the number of "xed points determined in this

way.

3. Yukawa couplings

3.1. Introduction

In this section, we shall discuss superpotential terms, focussing on the trilinear terms that give
rise to Yukawa couplings. Before a Yukawa coupling is fully determined it is necessary to normalise
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correctly the "elds involved. This requires a knowledge of the KaK hler potential which will be
deferred to Section 4.

Quite a lot can be learned about the Yukawa couplings in an orbifold compacti"ed theory using
the various selection rules which will be presented in the next few sections. In later sections, the
detailed construction of Yukawa couplings will be discussed. The most important aspect of this is
the leading exponential dependence of couplings amongst twisted sector states on the deformation
parameters or moduli of the orbifold. This gives a possible starting point for understanding the
hierarchy of quark and lepton masses, and the chapter closes with a discussion of progress to date
in "tting the quark and lepton masses using orbifold compacti"cations.

3.2. Vertex operators for orbifold compactixcations

The vertex operators for untwisted sector states will be described "rst before the modi"cations
necessary for twisted sector vertex operators are given. So far as the right movers are concerned, the
vertex operator<R

~1
in the !1 picture for emission of a scalar boson with four-dimensional space

time momentum p is of the form

<R
~1

"e~(e*p >XRti
R

. (3.1)

This vertex operator is for a boson with right mover bi
~1@2

D0T
R

where i"1,2,3 are complex basis
indices for the three complex planes of the compact manifold, and / is the phase of the bosonised
superconformal ghost "eld. The corresponding 0 picture vertex operator <R

0
, which is required for

superpotential terms with more than three chiral "elds, is of the form

<R
0
"e*p >XRA2iz

RXi
R
Rz #

p
2
t

R
ti

RB (3.2)

with z as in Eq. (2.2). The vertex operator<R
~1@2

in the !1/2 picture for the emission of a fermionic
state is given by

<R
~1@2

"e~(@2e*p>XRS , (3.3)

where S is the spin "eld. It will often be convenient in what follows to bosonise the complex NSR
world sheet fermionic degrees of freedom in the form e*Hm, m"1,2,5. In terms of the world sheet
bosonic degrees of freedom H

m
the vertex operator (3.3) takes the form

<R
~1@2

"e~(@2e*p>XRe*h >H , (3.4)

where

h"a
4
"($1

2
,2,$1

2
) (3.5)

with an even number of plus signs to satisfy the constraint on the ten-dimensional chirality of the
state due to the GSO projection. The vertex operators for boson emission can also be recast in
terms of H-momentum h by bosonising the NSR fermions so that

<R
~1

"e~(e*p >XRe*h >H , (3.6)

where, in this case, for a scalar boson

h"a
v
"(0,0$1,0,0) , (3.7)
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where underlining denotes permutations, and

<R
0
"e*p >XRA2iz

RXi
R
Rz #

p
2
t

R
e*av >HB . (3.8)

So far as the left movers are concerned, states with left movers of the type a8 j
~1

D0T
L
, where j is

a compact manifold index in the complex basis, have vertex operators

<
L
"2iz6

R
Rz6 Xj

L
e*p >XL (3.9)

with z6 as in Eq. (2.2). This includes the moduli discussed in Section 1.6 Gauge "elds in the Cartan
subalgebra have left mover vertex operators of the same type, but with compact manifold index
j replaced by an E

8
]E@

8
index I. Gauge "elds not in the Cartan subalgebra, and also massless

matter "elds with non-trivial E
8
]E@

8
quantum numbers, have vertex operators associated with

momentum PI on the E
8
]E@

8
lattice (satisfying +

I
(PI)2"2 for the untwisted sector)

<
L
"e*p >XLe*PI

X
I
L . (3.10)

For twisted sector vertex operators some modi"cations are required. The vertex operator

<"<
R
<

L
(3.11)

must now contain a product of twist "elds that construct the twisted sector vacuum from the
untwisted vacuum. The product of twist "elds for the right moving NSR fermions is analogous to
the spin "eld and is given by e*nl( >H for the hn twisted sector, where v( describes the action of the point
group on the compact manifold, as in (2.54). Then the h momentum in Eqs. (3.4) and (3.6) is
replaced by

h"a
s
#nv( (3.12)

or

h"al#nv( (3.13)

respectively. The bosonic E
8
]E@

8
degrees of freedom are untwisted (except in models with

continuous Wilson lines) but the momentum PI is shifted by the embedding of the point group and
the Wilson lines so that PI is replaced in Eq. (3.10) by PI#n<I#roaIo as in Section 2.8.

It is di$cult to give useful explicit expressions for the twist "elds pi for the bosonic degrees of
freedom, to be discussed later, but in practice what is usually su$cient is a knowledge of the
operator product expansions involving these twist "elds which will be given in Section 3.6. The
!1

2
and !1 picture vertex operators then contain a factor p1p2p3 for the twist "elds associated

with the three complex planes of the compact manifold. The 0 picture vertex operator is more
complicated and contains excited twist "elds.

Tree level correlation functions (involving untwisted or twisted sector states) have to be
constructed to cancel the ghost charge 2 of the vacuum (where eq( has ghost charge q.) A U3 term in
the superpotential may be extracted from a Yukawa coupling of the form tt/, for which we need
a 3-point function of the type S<

~1@2
(z

1
,z6
1
)<

~1@2
(z

2
,z6
2
)<

~1
(z

3
,z6
3
)T, and a Un`3 superpotential
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term may be extracted from a non-renormalisable coupling of the form tt /n`1 for which we need
an n#3 point function of the type

S<
~1@2

(z
1
,z6
1
)<

~1@2
(z

2
,z6
2
)<

~1
(z

3
,z6
3
)<

0
(z

4,
z6
4
)2<

0
(z

n`3
,z6
n`3

)T .

3.3. Space group selection rules

For a non-zero correlation function, the product of space group elements associated with the
twisted sector states involved should contain the identity element of the space group [78,120]. In
particular, consider a 3-point function with the three states associated with the space group
elements (a,l

1
),(b,l

2
) and (c,l

3
) where a,b and c are point group elements and

l
1
"(I!a) fa#(I!a)Ka ,

l
2
"(I!b) fb#(I!b)Kb ,

l
3
"(I!c) fc#(I!c)Kc ,

(3.14)

where fa, fb and fc are "xed points in the a, b, and c twisted sectors, respectively, and Ka, Kb and
Kc are arbitrary lattice vectors. Then,

(a,l
1
)(b,l

2
)(c,l

3
)"(abc, l

1
#al

2
#abl

3
) . (3.15)

For the identity element of the space group to be included, there is the requirement that

abc"I (3.16)

which is the point group selection rule, and the additional requirement (which we shall sometimes
refer to as the space group selection rule) that

l
1
#al

2
#abl

3
"0 (3.17)

for some choice of Ka, Kb and Kc. This can be simpli"ed with the aid of the point group selection
rule to

l
1
#l

2
#l

3
"0 (3.18)

for some choice of Ka,Kb and Kc. In other words,

(I!a) fa#(I!b) fb#(I!c) fc"0 (3.19)

up to the addition of (I!a)Ka, (I!b)Kb or (I!c)Kc. This restricts the "xed points which can
couple.

A simple example is provided by the Z
3

orbifold. As we saw earlier, the "xed points f for the
h twisted sector are given by

f"
1
3

3
+
j/1

p
2j~1

(2e
2j~1

#e
2j

) (3.20)

for integers p
1
,p

3
and p

5
, with associated space group elements (h,l) where

l"(I!h) f#(I!h)K"p
1
e
1
#p

3
e
3
#p

5
e
5
#(I!h)K . (3.21)
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If we consider a coupling of three states, each in the h twisted sector, associated with "xed points f
1
,

f
2

and f
3

characterised by integers p1o, p2o and p3o, o"1,3,5, respectively, then the point group
selection rule is trivially satis"ed and the space group selection rule gives

3
+

J/1

pJo"0 mod3, o"1,3,5 . (3.22)

For non-prime order orbifolds [124,142,100,53], the discussion is a little more complicated. In
this case, as we saw earlier, the "xed points of hm are not necessarily the same as those of hn, for
mOn, and when constructing physical states we have to take linear combinations of "xed points to
get an eigenstate of h. If f

k
is a "xed point of hk and n is the smallest integer such that hmf

k
&f

k
(up to

a lattice vector) then we have to make the linear combinations

DpT"
m~1
+
r/0

e~*cr Dhrf
k
T , (3.23)

with

c"
2pp
m

, p"0,1,2,m!1 , (3.24)

which have eigenvalues e*c of h. A subset of these survive the GSO projection. Then, a 3-point
function will couple three states of the form (3.23). It can then be seen that, if the space group
selection rule is satis"ed by the states D f

1
T, D f

2
T and D f

3
T, it is satis"ed by these linear combinations.

3.4. H-momentum conservation

When the NSR right-moving fermionic degrees of freedom are bosonised, as discussed in Section
3.2, there is a conserved H-momentum associated with these bosonic degrees of freedom
[78,120,65,104,142]. In the untwisted sector, spin 0 bosonic states in the NS sector have H-
momentum h

v
given by Eq. (3.7), and for super"eld of a particular chirality we may "x attention on

h
v
"(0 0 100) . (3.25)

The 10-dimensional space}time N"1 supercharge carries H-momentum

hB
Q
"($1,G1,1,1,1)/2 , (3.26)

so that the superpartners of these bosonic states have H-momentum

hB
s
"h

v
!hB

Q
"(G1

2
,$1

2
, 1
2
,!1

2
,!1

2
) , (3.27)

where again the underlining denotes permutations. For a 3-point coupling of two fermions and one
boson, conservation of H-momentum means that

h1
v
#hB(2)

s
#hY(3)

s
"0 (3.28)

or
3
+

J/1

hJ
v
"(1,1,1) , (3.29)

where we are now displaying only the (non-zero) compact manifold components.
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Table 4
H-momenta for massless spin 0 bosons for the twisted sectors of the Z

3
]Z

3
orbifold

Twisted sector Notation h
v
for massless states

h A 1
3
(1,0,2)

u B 1
3
(0,1,2)

hu D 1
3
(1,1,1)

h2 AM 1
3
(2,0,1)

u2 BM 1
3
(0,2,1)

hu2 C 1
3
(1,2,0)

h2u CM 1
3
(2,1,0)

Untwisted ;
1

(1,0,0)
Untwisted ;

2
(0,1,0)

Untwisted ;
3

(0,0,1)

Untwisted sector bosons in chiral supermultiplets have right movers bi
~1@2

D0T
R

where i refers to
the complex basis and corresponding H-momenta (100), (010) and (001) as in (3.25). If we denote the
bosons with i associated with the three complex planes by ;

1
, ;

2
and ;

3
, then the only coupling

allowed by H-momentum conservation is ;
1
;

2
;

3
.

For a Z
N

orbifold, spin 0 bosons in the hn twisted sector have H-momentum of the form

h
v
"(0,0 1,0,0)#nv( (3.30)

for super"elds of a particular chirality, with v( as in Eq. (2.54). (For the hk ul twisted sector of
a Z

M
]Z

N
oribifold this becomes kl(#lu( .) The fermionic superpartners have H-momentum

hB
s
"h

v
!hB

Q
(3.31)

and the H-momentum conservation law for 3-point couplings remains (3.29) but with the modi"ed
form of hJ

v
.

For n#3 point couplings all but three of the vertex operators are in the zero picture. The picture
changing operation is implemented by the superconformal current for the compact manifold
degrees of freedom

¹
F
"2iz(R

z
Xi

R
tM i

R
#R

z
tM i
R
ti
R
) (3.32)

which adds H-momentum (!100) when picture changing <R
~1

with compact manifold index
i"1,2 or 3 in the complex basis. If we write

a
1
"(1,0,0), a

2
"(0,1,0), a

3
"(001) , (3.33)

then the H-momentum conservation law for a vertex with two fermions and n#1 bosons as in
Section 3.2 is

n`3
+

J/1

hJ
v
!

n`3
+

J/4

aJ
i
"(1,1,1) . (3.34)
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A simple illustration of the application of H momentum conservation to couplings involving
twisted sector states is provided by the Z

3
]Z

3
orbifold. In this case, the point group elements

h and u are represented by

v("1
3
(1,0,!1) (3.35)

and

u("1
3
(0,1,!1) , (3.36)

respectively, and the H-momentum for spin 0 bosons in the hkul twisted sector as

h
v
"(100)#kv(#lu( . (3.37)

The H-momenta for the massless states in the various twisted sectors are given in Table 4, where we
continue to suppress the zero entries of the H-momentum. The Yukawa couplings consistent with
the point group selection rule that are also allowed by H-momentum conservation are

;
1
;

2
;

3
,AAM ;

2
,BBM ;

1
,CCM ;

3,
DDD,AM BC,ABM CM ,ACD,BCM D,AM BM D . (3.38)

3.5. Other selection rules

For a Z
N

orbifold, the element h generating the point group can be written in the complex space
basis (corresponding to (1/J2) (X1#iX2), etc.) as (e2p*v1,e2p*v2,e2p*v3). These three-phase rotations of
the complex coordinates for the compact manifold are automorphisms of the lattice and are thus
symmetries of the 6-torus that are left unbroken by the construction of the orbifold [78,120,65,104].
We shall refer to this symmetry as point group invariance to distinguish it from the topological
point group selection rule discussed in Section 3.3. If the action of the phase rotation on the ith
complex plane is of order M the correlation functions involving

(R
z
XM i)m(R

w6
XM i)n(R

u
Xi)p(R

v
XM i)q

are allowed by point group invariance only if

m#p!n!q"0 modM . (3.39)

For a 3-point function, where the bosonic vertex operators are all in the !1 picture, the fact that
there are no bosonic oscillators involved in the construction of massless right movers means that
Eq. (3.39) simpli"es to

m!n"0mod M . (3.40)

This then restricts the allowed Yukawa couplings of massless twisted sector states for which
bosonic oscillators act on the left mover ground state (excited twisted sector states.) For a 4 or more
point function, even with no bosonic oscillators involved in the construction of the right mover
state, derivatives of bosonic degrees of freedom can arise from the construction of zero picture
vertex operators and the full expression (3.39) is required.

We shall discuss in Section 3 one further selection rule where derivatives of bosonic degrees of
freedom at the same "xed point are involved.
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3.6. 3-point functions from conformal xeld theory

The dependence of superpotential terms for Yukawa couplings upon the moduli or deformation
parameters can be calculated by studying a 3-point function for vertex operators using conformal
"eld theory methods [78,120]. However, the determination of the overall normalisation of the
superpotential term requires the factorisation of a 4-point function into 3-point functions and this
will be discussed in later sections. Of course, there is also the question of the correct normalisation
of the "elds involved using their kinetic terms. This requires a knowledge of the KaK hler potential
and discussion of this will be delayed to Section 4.

Schematically, we are interested in S<B<F<FT where <B denotes a bosonic vertex operator and
<F denotes a fermionic vertex operator. The factors involving e*p >XR, e*p >XL, e*P >XL and e*h >H can be
evaluated straightforwardly. The di$cult part is the expectation value of the product of twist "elds
which, for twisted sector ground states, is a product of factors of the type

Zi,Spi
ki@N,fa

(z
1
,z6
1
)pil

i@N,fb
(z

2
,z6
2
)pi

~(ki`l
i)@N,fc

(z
3,
z6
3
)T , (3.41)

where i"1,2,3 labels the three complex planes of the 6 torus for the compact manifold and pi is
a twist "eld referring to that complex plane. (The case of twisted sector excited states will be
discussed in Section 3.12.) The twists k

i
/N, l

i
/N and !(k

i
#l

i
)/N are for that complex plane and

f
a
, f

b
and f

c
are the "xed points involved. The twist "elds are de"ned to construct the twisted sector

ground state, denoted by Dp
k@N

T from the untwisted ground state D0T, so that

Dp
k@N

T"p
k@N

(0,0)D0T . (3.42)

The twisted sector boundary conditions for the ith complex plane are of the form

Xi(q,p#p)"e~2p*ki@NXi(q,p) (3.43)

and similarly for the other twists, or equivalently, after continuation to Euclidean space,

Xi(e2p*z,e6 2p*z6 )"e2p*ki@NXi(z,z6 ) . (3.44)

We shall mostly suppress display of the "xed points in what follows and shall often suppress the
index i labelling the "xed plane.

The expectation value Zi factors enter a quantum piece Zi
26

and a classical piece Zi
#-
, so that

Zi"Zi
26

Zi
#-

, (3.45)

where

Zi
#-
"+

X
i
#-

exp(!Si
#-
) , (3.46)

where Xi
#-

are the solutions for the classical "eld and the action Si continued for Euclidean space is

Si"
1
pPd2zA

RXi

Rz
RXM i
Rz6 #

RXi

Rz6
RXM i
Rz B (3.47)

with z and z6 as in Eq. (2.2). The string equations of motion

R2Xi/RzRz6 "0 (3.48)
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require that RXi/Rz and RXi/Rz6 are functions of z and z6 alone, respectively, which must be chosen to
respect the boundary conditions implicit in the operator product expansions (OPEs) with the twist
"elds. These OPEs may be deduced from the mode expansions of the string degrees of freedom. If
we write

X
R
"x

R
#

i
2

=
+
n/1

b
n~k@N

(n!k/N)
z~(n~k@N)!

i
2

=
+
n/0

cs
n`k@N

(n#k/N)
zn`k@n , (3.49)

where b and c are oscillator modes, then for zP0,

RX
Rz "

RX
R
Rz +!

i
2
cs
k@N

zk@N~1 (3.50)

dropping the annihilation operator term, and so

RX
Rz Dp

k@N
T"
RX
Rz p

k@N
(0,0)D0T&!

i
2
zk@N~1cs

k@N
Dp

k@N
T . (3.51)

Thus,

R
z
Xp

k@N
(0,0)&z~(1~k@N)q

k@N
(0,0) , (3.52)

where q
k@N

(0,0) acting on the untwisted ground state creates an excited state of the twisted sector.
Restoring the z and z6 dependence of the conformal "elds, we conclude that the relevant OPEs are

RX
Rz p

k@N
(w,w6 )&(z!w)~(1~k@N)q

k@N
(w,w6 ) ,

RXM
Rz p

k@N
(w,w6 )&(z!w)~k@Nq@

k@N
(w,w6 ) ,

RX
Rz6 pk@N

(w,w6 )&(z6 !w6 )~k@Nq8
k@N

(w,w6 ) ,

RXM
Rz6 pk@N

(w,w6 )&(z6 !w6 )~(1~k@N)q8 @
k@N

(w,w6 ) , (3.53)

where q,q@,q8 and q8 @ are four varieties of excited twist "elds. For p
~k@N

, k/N is replaced by 1!k/N in
these expressions.

The classical solutions of the string equations of motion (3.48) with the correct boundary
conditions in the presence of the twist "elds as zPz

1
, z

2
and z

3
are of the form

RX
#-
/Rz"a(z!z

1
)~(1~k@N)(z!z

2
)~(1~l@N)(z!z

3
)~(k@N`(l@N)) ,

RXM
#-
/Rz6 "a6 (z6 !z6

1
)~(1~k@N)(z6 !z6

2
)~(1~l@N)(z6 !z6

3
)~(k@N`(l@N)) ,

RX
#-
/Rz6 "b(z6 !z6

1
)~k@N(z6 !z6

2
)~l@N(z6 !z6

3
)~(1~k@N~(l@N)) ,

RXM
#-
/Rz"bM (z!z

1
)~k@N(z!z

2
)~l@N(z!z

3
)~(1~k@N~(l@N)) , (3.54)
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where a and b are constants to be determined, and we are continuing to suppress the index
i labelling the complex plane. The constants a and b in Eq. (3.54) are determined by certain
integrations round closed contours referred to as global monodromy conditions. In practice, only
one of RX

#-
/Rz and RX

#-
/Rz6 , say RX

#-
/Rz, is an acceptable classical solution, because the other gives

a divergent classical action. Then, we may set b to zero. Integrating round a closed contour C such
that X is shifted by an amount v but not rotated we have

P
C

dz(RX
#-
/Rz)"v . (3.55)

For example, if we choose C to go l times round z
1

counterclockwise and k times round
z
2

clockwise, then X is unrotated. To "nd the shift v we have to multiply together the (powers of )
space group elements associated with the "xed points. If we write a for the point group element
with action e~2p*k@N in this complex plane and b for the point group element with action e~2p*l@N,
then what we need is

(a,(I!a) fa#(I!a)K)l(b~1,(I!b~1) fb#(I!b~1)K)k

" (I,(I!al)( fa!fb#K))

" (I,v) , (3.56)

where, in each case, K is an arbitrary lattice vector. Strictly, if the complex plane in question is, for
example, the 1#i2 plane, then we need the component of (1!al)( fa!fb#K), on the 1#i2
direction to give v for X1`*2.

The integral (3.55) now determines the constant a as follows. For convenience, take

z
1
"0, z

2
"1, z

3
"z

=
"R , (3.57)

using SL(2,C) symmetry. Then, using the integral

P
C

dz z~(1~(k@N)y)(z!1)~(1~(l@N)y)"!2i sin(klpy)
C(ky)C(ly)
C((k#l)y)

(3.58)

leads to

a"
i(!z

=
)(k`l)@N

2
C((k#l)/N)v

sin(klp/N)C(k/N)C(l/N)
. (3.59)

Consequently, after performing the : d2z, using Appendix A of [118], Z
#-

(with the index i sup-
pressed) is given by Eq. (3.46) with

S
#-
"

DvD2
4p sin2(klp/N)

Dsin(kp/N)DDsin(lp/N)D
Dsin((k#l)p/N)D

(3.60)

with v as in Eq. (3.56) and the sum over X
#-

reducing to a sum over the choices of v parameterised by
the arbitrary lattice vector K.

When there are two independent twists k and l involved [42] there are two distinct global
monodromy conditions [177,88] which can be obtained by encircling the pairs of points z

1
and

z
2

and z
1

and z
3

in turn. This leads to two di!erent expressions for S
#-
. Consistency between these
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two expansions has to be achieved by restricting the sum over the initially arbitrary lattice vectors
K occurring in the expression for v. When the two twists k and l are identical, there is only a single
independent global monodromy condition and this subtlety does not arise.

Another subtlety is that if one of the twisted sectors involved has a "xed plane then the factor
Zi in the 3-point function corresponding to this complex plane reduces to a two twist "eld
correction function and can be normalised to 1.

3.7. 3-point function for Z
3

orbifold

The ideas of the previous section can be illustrated and the result made explicit so far as the
moduli and "xed point dependence is concerned by considering the coupling of three states each in
the h twisted sector of the Z

3
orbifold. This coupling is allowed by the point group selection rule

and also by H-momentum conservation because it is analogous to the DDD coupling for the
Z

3
]Z

3
orbifold discussed earlier. The space group selection rule (3.22) speci"es the "xed point

with which the third h twisted sector state must be associated given the "xed points for the "rst
2 states.

The twists for the three complex planes are

k
i

3
"

l
i

3
"

2
3
, i"1,2,3 . (3.61)

It then follows from Eq. (3.60) that

Si
#-
"

Dv
i
D2

2pJ3
, i"1,2,3 (3.62)

and thus

Z
#-
&+

v

expA
!1

2pJ3
+
i

Dv
i
D2B , (3.63)

where v
i
is the component of v in the ith complex plane (e.g. v

1
is the component of v in the 1#i2

direction.) Also, from Eq. (3.56)

v"(I!h2)( f
1
!f

2
#K) . (3.64)

For the Z
3

orbifold, with f of the form given in Eq. (3.20), v takes the form

v"
3
+
j/1

d
2j~1

(e
2j~1

#e
2j

)#(I!h2)K , (3.65)

where

d
2j~1

"p1
2j~1

!p2
2j~1

(3.66)

and the integers pJ
2j~1

, J"1,2, take the values

pJ
2j~1

"0,$1 . (3.67)
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In addition, K is an arbitrary linear combination with integral coe$cients of the basis vectors
eo,o"1,2,6, and using the action of the point group on the basic vectors we can write

v"
3
+
j/1

[(d
2j~1

#2k
2j~1

!k
2j

)e
2j~1

#(d
2j~1

#k
2j~1

#k
2j

)e
2j

] (3.68)

with k
2j~1

and k
2j

arbitrary integers.
The orbifold possesses deformation parameters or moduli which are continuously variable

quantities corresponding to radii and angles de"ning the underlying torus. These parameters can
be absorbed into the de"nition of the basis vectors eo. The most general lattice basis compatible
with the point group is obtained by requiring that all scalar products eo ) ep are preserved by the
point group action. Here, we restrict attention to the moduli

R2
2j~1

"De
2j~1

D2"De
2j

D2 . (3.69)

The angles h
2j~1,2j

de"ned in terms of the scalar products e
2j~1

) e
2j

are "xed at 2p/3 for
compatibility with the point group. The other six angles are also moduli and the dependence of the
Yukawa couplings on these can be found elsewhere [53,144].

The orthonormal space basis g
r
, r"1,2,6, in which the point group element h has the action

h(g
2j~1

#ig
2j

)"e2p*@3(g
2j~1

#ig
2j

) (3.70)

for j"1,2,3, is related to the lattice basis eo, o"1,2,6 by

e
2j~1

"R
2j~1

g
2j~1

, e
2j
"R

2j~1
(cos 2

3
pg

2j~1
#i sin 2

3
pg

2j
) . (3.71)

Consequently, the component of v in the direction g
2j~1

#ig
2j

corresponding to the jth complex
plane is

v
j
"(d

2j~1
#2k

2j~1
!k

2j
)R

2j~1
#(d

2j~1
#k

2j~1
#k

2j
)R

2j~1
cos 2

3
p

# i(d
2j~1

#k
2j~1

#k
2j

)R
2j~1

sin 2
3
p . (3.72)

Thus, in Eq. (3.63)

Dv
i
D2"[(d

2i~1
#2k

2i~1
!k

2i
)2#(d

2i~1
#k

2i~1
#k

2i
)(2k

2i
!k

2i~1
)]R2

2i~1
. (3.73)

To "nd the leading term in the Yukawa for large values of R
2i~1

we need to minimise the
coe$cient of R2

2i~1
in Eq. (3.73) with k

2i
and k

2i~1
arbitrary integers, and, as a consequence of Eq.

(3.67)

d
2i~1

"0,$1,$2 . (3.74)

The result is

Dv
i
D2
MIN

"0 for d
2i~1

"0

"R2
2i~1

for d
2i~1

"$1,$2 .
(3.75)

In this approximation, the Yukawa coupling between three h twisted sectors takes the form

Z
#-
&expA!

1

2pJ3
+
i

Dv
i
D2
MINB (3.76)
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with the moduli and "xed-point-independent constant of proportionality to be "xed by Z
26

. It will
be noticed that the size of the Yukawa coupling is controlled by the `distancesa d

2i~1
between the

"xed points on the 3 complex planes. Such calculations have been carried out for all Z
N

and
Z

M
]Z

N
orbifolds [78,120,42,53,177,88,144,22,19,178,20,21].

3.8. B xeld backgrounds

If the components on the compact manifold of the anti-symmetric tensor "eld always present in
heterotic string theory develop vacuum expectation values then this B "eld background a!ects the
Yukawa couplings [89]. The B "eld background is included through the term in the action

S
B
"!

1
2pP

p

0

dpP dq eabB
rS
RaXrRbXs , (3.77)

where the indices r and s refer to the real space basis. In the complex basis and after Wick rotation,

S"
1
pPd2zA

RXi

Rz
RXM i
Rz6 #

RXi

Rz6
RXM i
Rz B!

iB
2i~1,2i
p Pd2zA

RXi

Rz
RXM i
Rz6 !

RXi

Rz6
RXM i
Rz B , (3.78)

where we have retained only the background B "elds with both indices in a single complex plane.
Assuming, as before, that RXi

#-
/Rz6 gives a divergent classical action and should be dropped, we

obtain

Z
#-
"+

X
i
#-

exp(!S
#-
)"+

vi

expA
!(1!iB

2i~1,2i
)Dv

i
D2

4p2sin2((k
i
l
i
p/N))

Dsin(k
i
p/N)DDsin(l

i
p/N)D

Dsin((k
i`
l
i
)p/N)D B (3.79)

as the generalisation of Eq. (3.60).
In the case of the Z

3
orbifold, R2

2i~1
is replaced in Eq. (3.73) by (1!iB

2i~1,2i
) R2

2i~1
. This can be

written in terms of the moduli ¹
i
as follows. In general, for the ith complex plane,

i¹
i
"2(b

2i~1,2i
#iJ(det g)

i
)(2p)~2 , (3.80)

where, in terms of the basis vectors e
a
for the lattice of the 6 torus,

g
ab
"e

a
) e

b
, (3.81)

b
ab
"er

a
B

rs
es
b

(3.82)

and the determinant refers to the 2]2 matrix for the ith complex plane. For the Z
3

orbifold, the
(deformed) lattice basis vectors are

e
1
"(1,0)R

1
, e

2
"(cos 2

3
p,sin 2

3
p)R

1
(3.83)

and similarly for the other complex planes with R
2

and R
3

replacing R
1
. Thus,

J(detg)
i
"(J3/2)R2

2i~1
, (3.84)

b
2i~1,2i

"(J3/2)R2
2i~1

B
2i~1,2i

, (3.85)

(1!iB
2i~1,2i

)R2
2i~1

"(¹
i
/J3)(2p)2 . (3.86)
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The e!ect of the B "eld background on Z
#-
, and so on the Yukawa coupling, is therefore to replace

R2
2i~1

by ¹
i
(2p)2/J3 so that the Yukawa couplings are functions of the ¹ moduli.

3.9. Classical part of 4-point function from conformal xeld theory

The determination of the moduli independent normalisation of a Yukawa coupling requires the
factorisation of a 4-point function into 3-point functions. The di$cult part is the expectation value
of a product of 4 twist "elds and (for twisted sector ground states) we are interested in factors Zi

4
for

the ith complex plane of the form

Zi
4
"Spi

~ki@N,f1
(z

i,
z6
1
)pi

ki@N,f2
(z

2
,z6
2
)pi

~l
i@N,f3

(z
3
,z6
3
)]pil

i@N,f4
(z

4
,z6
4
)T . (3.87)

This can be written as a product of a classical and a quantum part as

Zi
4
"(Zi

4
)
26

(Zi
4
)
#-

, (3.88)

(Zi
4
)
#-
"+

X
i
#-

exp(!Si
#-
) , (3.89)

with

Si
#-
"

1
pPd2zA

RXi
#-
Rz
RXM i

#-
Rz6 #

RXi
#-
Rz6
RXM i

#-
Rz B (3.90)

and the classical solutions now in the presence of four twist "elds. The solutions of the string
equations of motion with correct boundary conditions as zPz

1
, z

2
, z

3
and z

4
in the presence of the

twist "elds are of the form

RX/Rz"au
k@N,l@N

(z) ,

RXM /Rz6 "a6 u6
k@N,l@N

(z6 ) ,

RX/Rz6 "bu6
1~k@N,1~l@N

(z6 ) ,

RXM /Rz"bM u
1~k@N,1~l@N

(z) ,

(3.91)

where

u
k@N,l@N

(z)"(z!z
1
)~k@N(z!z

2
)k@N~1(z!z

3
)~l@N(z!z

4
)l@N~1 , (3.92)

where we have suppressed the index i.
For the case k"l there are two independent contours for global monodromy conditions

[177,88] to "x a and b which can be taken to be C
1

and C
2

of Fig. 3. For kOl, there are three
independent contours and, much as for the 3-point function, this results in a restriction on the sum
over initially arbitrary lattice vectors in the "nal expressions. We shall focus on k"l. If v

j
is the

shift in X
#-

in going round the contour C
j
then

v
j
"Q

Cj

RX
#-
Rz dz#Q

Cj

RX
#-
Rz6 dz6 , (3.93)

where

v
1
"(I!hk)( f

2
!f

1
#K) (3.94)
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Fig. 3. Independent contours for global monodromy conditions for the 4-point function. In general, the points z
1
, z

2
and

z
3

may be encircled more than once.

and

v
2
"(I!hk)( f

2
!f

3
#K) (3.95)

with projection of the shifts onto the appropriate complex planes. Carrying out the contour
integrals and solving for a and b leads to

pS
#-
"

1
4q

2
sin(kp/N)

MDv
2
D2#DqD2Dv

1
D2#iq

1
(ep*k@Nv

1
v6
2
!e~p*k@Nv

2
v6
1
)N , (3.96)

where SL(2,C) symmetry has been used to set

z
1
"0, z

2
"x, z

3
"1, z

4
"z

=
"R , (3.97)

the quantity q is de"ned by

q"q
1
#iq

2
"

iF(1!x)
F(x)

(3.98)

and F(x) is the hypergeometric function

F(x),FA
k
N

;1!
k
N

;1;xB . (3.99)

The real and imaginary parts of q are thus given by

q
1
"

i
2
(FM (x6 )F(1!x)!F(x)FM (1!x6 ))

DFD2
(3.100)
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and

q
2
"I(x,x6 )/2DF(x)D2 (3.101)

where

I(x,x6 ),F(x)FM (1!x6 )#F(x)F(1!x) . (3.102)

3.10. Quantum part of the 4-point function

The quantum part of Z
4

is determined with the aid of a di!erential equation for its dependence
on the variable z

2
derived using the stress tensor method [78]. (The variables z

1
, z

3
and z

4
can be

"xed to constant values using SL(2,C) symmetry as in (3.97).) This method relies on the operator
product expansion (OPE) of the stress tensor ¹(z) with the twist "eld p

k@N
, namely,

¹(z)p
k@N

(w,w6 )&
h
k@N

p
k@N

(w,w6 )
(z!w)2

#

R
w
p
k@N

(w,w6 )
(z!w)

#2 , (3.103)

where

h
k@N

"

1
2
k
NA1!

k
NB (3.104)

is the conformal dimension of the twist "eld. The stress tensor is the normal ordered product

¹(z)"!1
2
:R

z
XR

z
XM : (3.105)

and h
k@N

can be identi"ed by considering the expectation value of ¹(z) between twisted sector
ground states Dp

k@N
T and Dp

~k@N
T. The method also relies on the OPE

!

1
2
R
z
X(z)R

w
XM (w)&¹(z)#

1
(z!w)2

#2 . (3.106)

As usual, the index i labelling the particular complex plane of the 6 torus is being omitted.
The OPE (3.103) implies that

R
z2
ln(Z

4
)
26
" lim

z?z2
A
(z!z

2
)

Z
4

S¹(z)p
~k@N

(z
1
)p

k@N
(z

2
)p

~l@N
(z

3
)pl@N

(z
4
)T!

h
k@N

(z!z
2
)B . (3.107)

Moreover, the OPE (3.106) implies that

S¹(z)p
~k@N

(z
1
)p

k@N
(z

2
)p

~l@N
(z

3
)pl@N

(z
4
)T/Z

4
"lim

z?w
Ag(z,w;z

j
)!

1
(z!w)2B , (3.108)

where

g(z,w;z
j
)"S!1

2
R
z
X(z)R

w
XM (w)p

~k@N
(z

1
)p

k@N
(z

2
)p

~l@N
(z

3
)pl@N

(z
4
)T/Z

4
. (3.109)
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Thus, R
z2
ln(Z

4
)
26

can be derived if we can calculate g(z,w;z
j
). Because of the OPEs of R

z
X and R

w
XM ,

with the twist "elds and the OPE of R
z
X with R

w
XM , g has the behaviour for z,wPz

1
,2,z

4
and

zPw,

g(z,w;z
i
)&(z!w)~2#finite, zPw

&(z!z
1
)~k@N, zPz

1
&(z!z

3
)~l@N, zPz

3
&(z!z

2
)~(1~k@N), zPz

2
&(z!z

4
)~(1~l@N), zPz

4
&(w!z

1
)~(1~k@N), wPz

1
&(w!z

3
)~(1~l@N), wPz

3
&(w!z

2
)~k@N, wPz

2
&(w!z

4
)~l@N, wPz

4
.

(3.110)

In terms of the holomorphic function de"ned in Eq. (3.92), g is "xed to be of the form

g(z,w;z
j
)"u

k@N,l@N
(z)u

1~k@N,1~l@N
(w)C

P(z,w)
(z!w)2

#A(z
j
,z6
j
)D , (3.111)

where P(z,w) is a polynomial quadratic in z and w separately,

P(z,w)"
2
+

i,j/0

a
ij
wizj . (3.112)

The coe$cients a
ij

are determined by requiring that there is no simple pole for zPw and that the
numerator of the double pole is 1. This "xes all coe$cients a

ij
except for a

20
, a

02
and a

11
, for which

there are only two equations. This freedom corresponds to the freedom to absorb the constant part
of P(z,w)/(z!w)2 into A. It is convenient to "x all coe$cients a

ij
before calculating A, without loss

of generality. Specialising to the case k"l, a convenient choice is

a
20
"

k
N

z
1
z
3
#A1!

k
NBz2z4 . (3.113)

Then,

P(z,w)"
k
N

(z!z
1
)(z!z

3
)(w!z

2
)(w!z

4
)

#A1!
k
NB(z!z

2
)(z!z

4
)(w!z

1
)(w!z

3
) . (3.114)

Using SL(2,C) symmetry to set

z
1
"0, z

2
"x, z

3
"1, z

4
"z

=
"R , (3.115)

344 D. Bailin, A. Love / Physics Reports 315 (1999) 285}408



the expression (3.107) for the derivative of ln(Z
4
)
26

now reduces to

R
x
ln(Z

4
)
26
"!

k
NA1!

k
NBA

1
x
!

1
(1!x)B!

AI (x,x6 )
x(1!x)

, (3.116)

where

AI (x,x6 )" lim
z4?=

(!z
4
)~1A(0,x,1,z

4
) . (3.117)

Before (Z
4
)
26

can be calculated it remains to determine A.
The global monodromy conditions for the quantum part of X using the same two contours C

i
(Fig. 3) as were used for the classical part of X give

D
Ci
X

26
"Q

Ci

RX
26
Rz dz#Q

Ci

RX
26
Rz6 dz6 "0 (3.118)

and consequently

Q
Ci

dz g(z,w)#Q
Ci

dz6 h(z6 ,w)"0 , (3.119)

where an auxiliary correlation function h(z6 ,w;z
i
) is de"ned by

h(z6 ,w;z
i
)"S!1

2
R
z6
X(z,z6 )R

w
XM (w,w6 )p

~k@N
(z

1
)p

k@N
(z

2
)p

~l@N
(z

3
)pl@N

(z
4
)T/Z

4
. (3.120)

The most general form of h consistent with the OPEs of R
z6
X and R

w
XM with the twist "elds and the

non-singular OPE of R
z6
X with R

w
XM is

h(z6 ,w;z
i
)"u6

N~k@N,N~l@N
(z6 )u

N~k@N,N~l@N
(w)B(z

i
,z6
i
) . (3.121)

Specialising to k"l, dividing through by u
N~k@N,N~k@N

(w), choosing z
1
,2,z

4
as in Eq. (3.115), and

taking the limit wPR, gives a pair of equations for A and B which can be solved to give

AI (x,x6 )"x(1!x)R
x
ln I(x,x6 ) , (3.122)

where I(x,x6 ) was de"ned in Eq. (3.102).
Now that AI (x,x6 ) is known, Eq. (3.116) can be integrated to give

(Z
4
)
26
"c8 Dx(1!x)D~2k@N(1~k@N)[I(x,x6 )]~1 , (3.123)

where c8 is a constant. Multiplying together Eqs. (3.89) and (3.123) to obtain Z
4

gives

Z
4
"

cDx(1!x)D~2k@N(1~k@N)

q
2
DF(x)D2

+
v1,v2

e~S#-(v1,v2) , (3.124)

where we have used Eq. (3.101), the constant c is c8 /2, and S
#-
(v

1
,v
2
) is given by Eq. (3.96).

3.11. Factorisation of the 4-point function to 3-point functions

To derive the Yukawa couplings in which we are interested we now have to factorise the 4-point
function by writing it as a sum of terms which are products of 3-point functions [78,177,88]. We
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Fig. 4. u channel factorisation of 4-point function.

Fig. 5. s channel factorisation of 4-point function.

"rst factorise in the u channel (Fig. 4) to derive the required Yukawa coupling up to a moduli and
"xed point independent normalisation factor and then factorise in the s channel (Fig. 5) to establish
the normalisation.

To study the u channel factorisation it is necessary to take the limit xPR. Using the
asymptotic form for F(x), we then obtain

S
#-
+

$1
4p sin(2kp/N)

(Dv8
1
D2#Dv8

2
D2) for xPR , (3.125)

where
v8
1
"v

1
!v

2
, v8

2
"e2p*k@Nv

1
#v

2
(3.126)

and the plus sign and minus sign correspond to k/N(1!k/N and k/N'1!k/N, respectively.
The factorisation of the 4-point function into a sum of terms that are products of 3 point functions
depends on the OPE of two twist "elds. In general, for conformal "elds A

i
and A

j
of conformal

weights h
i
,hM

i
and h

j
,hM

j
the OPE can be written in the form

A
i
(z,z6 )A

j
(w,w6 )&+

k

C
ijk

A
k
(w,w6 )

(z!w)hi`hj~hk(z6 !w6 )hM i`hM j~hM k
(3.127)

for zPw, where C
ijk

are some coe$cients. For twist "elds, we can write

p
k@N,f2

(x,x6 )p
k@N,f4
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=

,z6
=

)&+
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>k@n
f2f4f

p
2k@N,f

(z
=

z6
=

)Dx!z
=

D~2(2hk@N~h2k@N) (3.128)

for xPz
=

, where the sum is over "xed points, the coe$cients > can be interpreted as Yukawa
couplings, as will be seen shortly, and the conformal weights are given by

h
k@N

"hM
k@N

"

1
2
k
NA1!

k
NB (3.129)

as in Eq. (3.104). The 4-point function can then be written in the form valid for xPz
=

,

Z
4
"Sp

~k@N,f1
(0)p

k@N,f2
(x)p

~k@N,f3
(1)p

k@N,f4
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=
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f2f4f

Sp
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=
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Moreover, for conformal "elds A
i
,A

j
and A

k
,

SA
i
(z

1
,z6
1
)A

j
(z

2
,z6
2
)A

k
(z

3
,z6
3
)T"C

ijk
<
i:j

(z
i
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j
)~hij(z6

i
!z6

j
)~hM ij (3.131)

with

h
ij
"h

i
#h

j
!h

k
(3.132)

and similarly for hM
ij
. In the case of twist "elds,

Sp
~k@N,f1

(0)p
~k@N,f3

(1)p
2k@N,f

(z
=
)T">Hk@N

f1f3f
Dz
=

D~4h2k@N (3.133)

Consequently, Z
4

takes the form for xPR,

Z
4
+DxD~2(2hk@N~h2k@N)Dz

=
D~4h2k@N +

f

>k@N
f2f4f
>Hk@N

f1f3f
. (3.134)

To complete the factorisation, we have to use the requirement that the u channel "xed points
f summed over must be consistent with the space group selection rule, which takes the form

(1!h2k)( f#K)"hk(1!hk)( f
3
#K)#(1!hk)( f

1
#K) , (3.135)

where the action of the point group element in this complex plane is

h"e2p*@N . (3.136)

The relation (3.135) is also correct if we interchange f
1

and f
3
, and there are similar relations with

f
2

and f
4

replacing f
1

and f
3
. Aided by the space group selection rule we can show that

v8
1
"h~k(1!h2k)( f!f

1
#K) (3.137)

and

v8
2
"!(1!h2k)( f!f

2
#K) . (3.138)

This allows Z
4

to be written in the factorised form for xPR, and k/N(1!k/N,

Z
4
+c

DxD2k@N(2k@N~1)(C(1!k/N))4
cos(kp/N)(C(1!2k/N))2

+
f
A+

v8 1

e~S
I (v8 1)BA+

v8 2

e~S
I (v8 2)B (3.139)

with

SI (v8 )"
Dv8 D2

4p sin(2kp/N)
. (3.140)

It remains to "x the normalisation constant in Eq. (3.139). This can be done by considering the
s channel factorisation (Fig. 5) which gives the coupling for the annihilation of two twisted states
into an untwisted state. To study these s channel couplings we need to Poisson resum +

v1,v2
e~S#- so

as to write Z
4
in terms of momenta on the dual KH of the lattice K corresponding to the momenta of

untwisted S channel states. Because the sum over v
2

is over the coset (1!hk)( f
2
!f

3
#K) rather

than K, it is necessary "rst to arrange for a sum over K by writing

v
2
"!2ie*pk@NsinA

pk
NB( f2!f

3
#q) (3.141)
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where q3K. Writing S
#-

in terms of q and using the Poisson resummation identity

1

<KJdetA
+
q|K

exp(!p)(q#/)TA~1(q#/)!2pidT(q#/)

" +
p|KH

exp(!p(p#d)TA(p#d)#2pipT/) (3.142)

with <K the volume of the unit cell of the lattice, leads to

Z
4
"2c

Dx(1!x)D~2k@N(1~k@N)

<Ksin(kp/N)DF(x)D2
+

p|KH,v|KC

exp(2pip ) ( f
2
!f

3
))=(p`v@2)2@2=M (p~v@2)2@2 , (3.143)

where F(x) is as in Eq. (3.99), K
C

is the set (1!hk)( f
2
!f

1
#K) corresponding to the v

1
summation,

="e*pq@4*/(kp@N) (3.144)

with q as in Eq. (3.98), and we have used

JdetA"

2q
2

sin(kp/N)
. (3.145)

To carry out the s channel factorisation it is now necessary to consider the limit xP0. The
relevant OPE of twist "elds is

p
~k@N,f1

(0,0)p
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(x,x6 )&+
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(x,x6 ) , (3.146)

where <
p,w

is the twist invariant vertex operator for the emission of an untwisted sector state with
p3KH and winding number w3(1!h)( f

2
!f

1
#K), and h and hM are the conformal dimensions of

the corresponding untwisted state. Then, for xP0,
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(z
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)T . (3.147)

Moreover, using Eq. (3.131), for xP0,

S<
p,w

(x)p
~k@N,f3

(1)p
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Dz
=
D~4hk@N(!1)h`hM (3.148)

which results in

Z
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f1,f2,p,w
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p,w,f3,f4

xh~2hk@N x6 hM~2hk@NDz
=

D~4hk@N . (3.149)

The 4-point function can now be normalised by considering the contribution to the sum over
untwisted states from I, which is the untwisted state with p"w"0 and h"hM "0. Taking f

1
"f

2
and f

3
"f

4
, in Eq. (3.148),

C
0,0,f3,f3

"Dz
=

D4hk@NSIp
~k@N,f3

(1)p
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(z
=

)T"1 , (3.150)

where the 2-point function for two twist "elds is normalised (consistently with Eq. (3.127)) by

Sp
~k@N,f3

(1)p
k@N,f3

(z
3
)T"Dz

=
D~4hk@N . (3.151)
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Thus, the contribution from I on Eq. (3.149) can be written as

Z
4
+DxD~4hk@NDz

=
D~4hk@N . (3.152)

Comparing with the term with p"v"0 in Eq. (3.143) the corresponding contribution is

Z
4
+cDxD~4hk@N/<K sin(kp/N) (3.153)

so that

c"<K sin
kp
N

Dz
=

D~4hk@N . (3.154)

Returning to Eq. (3.139) with constant of proportionality now "xed, and comparing with Eq.
(3.134), gives the result for the 3-point function
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f2f4f

"S<Ktan
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+
v8 2

e~S
I (v8 2) , (3.155)

where

SI (v8
2
)"

1
4p sin 2kp/N

Dv8
2
D2 (3.156)

and v8
2
is given by Eq. (3.138). If there are any complex planes that are unrotated by one of the three

twists involved, the normalisation factor should be restricted to the rotated complex planes,
because, for the unrotated plane, the 3-point function reduces to a 2-point function that can be
normalised to 1.

3.12. Yukawa couplings involving excited twisted sector states

The vertex operators for excited states, i.e. states with oscillators acting on the ground state,
involve derivatives of string degrees of freedom as well as twist "elds. For correlation functions
involving excited states there is then the selection rule [78,120,65,102}104] that a correlation
function for which the product of vertex operators contains the factor (R

z6
Xi)p(R

z6
XM i)q must have

p!q"0 modN (3.157)

if the action of a point group element in the ith complex plane is of order N.
To calculate the moduli dependence [78,21,22] consider for simplicity the situation where there

are two excited twisted sector states involved each of which is created from the vacuum by a single
bosonic left mover oscillator. The description of excited twisted sector states requires the excited
twisted "elds q8

k@N
and q8 @

k@N
that occur in the OPEs (3.53). Thus, the non-trivial part of the 3-point

function we wish to consider if of the form

(Z
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)
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"Sq8 @
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(z
1
,z6
1
)q8 l@N(z2,z6 2)p~(k`l)@N

(z
3
,z6
3
)T , (3.158)

where the index i referring to the complex plane and the "xed point dependence have been
suppressed. Consideration of the 2-point function Sq8 @

k@N
(z

1
,z6
1
)q8

~k@N
(z

2
,z6
2
)T and the twisted sector

mode expansions shows that the excited twist "elds that create normalised states are (2k/N)~1@2q8 @
k@N
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and (2(1!k/N))~1@2q8
~k@N

. For an acceptable solution with convergent classical action, (Z
3
)
%9#*5%$

is
found to have the same moduli dependence as the 3-point function with unexcited twist "elds.
However, the overall normalisation of the 3-point function changes. This normalisation, which
depends on the twisted sectors involved, can be "xed by considering the 4-point function
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With the aid of the OPEs (3.53) this can be written as
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In Eq. (3.160), X has been separated into a classical and a quantum part, SR
z6
X

26
R
w6
X

26
T
4 58*454

is the
expectation value in the presence of the four twist "elds, and (Z
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)
26

is given by
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Using operator product expansion methods, setting

z
1
"0, z

2
"x, z

3
"1 and z

4
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=
(3.162)

using SL(2,C) invariance, and taking the limit xPz
=

to achieve u channel factorisation, leads to
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. (3.163)

Taking account of the normalisation of the excited twist "elds discussed above and powers of !1
from the conformal "eld theory of the 3-point function, the Yukawa coupling >E involving excited
states should be de"ned by
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~k@N
(0)q8

~l@N
(1)p

(k`l)@N
(z

=
)T (3.164)

and consequently

>E
~k@N,~l@N,(k`l)@N

Sp
~k@N

(0)p
~l@N

(1)p
(k`l)@N

(z
=

)T
"J l@N

1~k@N
for k

N
(1!l

N
,

>E
~k@N,~l@N,(k`l)@N

Sp
~k@N

(0)p
~l@N

(1)p
(k`l)@N

(z
=

)T
"J1~k@N

l@N
for k

N
'1!l

N
. (3.165)

There are thus twist-dependent suppression factors arising in the excited twisted sector Yukawa
couplings relative to the Yukawa couplings amongst twisted sector ground states [21,22].
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3.13. Quark and lepton masses and mixing angles

The exponential suppressions [78,120,112] due to the moduli dependence of twisted sector
Yukawa couplings can lead to a hierarchial quark and lepton mass matrix [127,54,55]. By utilising
all the possible embeddings of the point group and all possible choices of Wilson lines a huge
number of models can be obtained for each Z

N
or Z

M
]Z

N
orbifold. The strategy that has been

adopted [55] in exploring the possibilities for the quark and lepton masses (and weak mixing
angles) has been to allow the quarks and leptons and Higgses to be assigned to arbitrary twisted
sectors and arbitrary "xed points.

In general, the Lagrangian terms ¸
q

for the quark masses take the form

¸
q
"(dM

0
,s6
0
,bM

0
)
L
M

dA
d
0

s
0

b
0
B
R

#(u6
0
,c6
0
,tM
0
)
L
M

uA
u
0

c
0

t
0
B
R

#h.c. , (3.166)

where M
d

and M
u

are matrices deriving from couplings to Higgses H
1

and H
2
. In Eq. (3.166),

(u
0
)
L
,(d

0
)
L
,(c

0
)
L
,(s

0
)
L
,(t

0
)
L
and (b

0
)
L
are the [SU(2)]

L
doublet quark "elds, in terms of which the weak

current Jk̀ coupled to the= boson takes the form

Jk̀ "(u6
0
,c6
0
,tM
0
)
L
ckIA

d
0

s
0

b
0
B
L

. (3.167)

On the other hand, in terms of the states u,d,c,s,t and b that diagonalise the quark mass matrix the
weak current Jk̀ takes the form

Jk̀ "(u6 ,c6 ,tM )
L
ck<A

d

s

bB
L

, (3.168)

where the matrix < is the usual Kobayashi}Maskawa matrix

<"A
C

1
C

3
S
1

S
1
S
3

!C
2
S
1

C
1
C

2
C

3
!S

2
S
3
e*d C

1
C

2
S
3
#C

3
S
2
e*d

S
1
S
2

!C
1
C

3
S
2
!C

2
S
3
e*d !C

1
S
2
S
3
#C

2
C

3
e*dB , (3.169)

where

C
i
"cos h

i
, S

i
"sin h

i
. (3.170)

For massless neutrinos, the Lagragian terms ¸l for the lepton mass take the form

¸l"(e6 ,k6 ,q6 )
L
M

eA
e

k

qB
R

(3.171)

and diagonalisation of the lepton mass matrix should not be required.
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To reproduce the Kobayashi}Maskawa matrix it is necessary for the quark mass matrices
M

d
and M

u
to have o!-diagonal entries. Whether this is possible depends on the space group

selection rules. For the prime order orbifolds Z
3

and Z
7
, all the Yukawa couplings are diagonal in

the sense that any 2 quark or lepton or Higgs states can only couple to a unique third state. This
derives from 2 twisted sectors coupling to a unique third twisted sector because of the point group
selection rule, from two "xed points coupling to a unique third "xed point because of the space
group selection rule, and from there being only one state of given gauge quantum numbers
associated with a particular "xed point. Then the (renormalisable) Yukawa couplings can not
reproduce the Kobayashi}Maskawa matrix. Moreover the (diagonal) elements of the mass matrix
do not have any observable phases because they can be observed into a rede"nition of the right
handed quark states.

However, non-renormalisable superpotential terms occur in general and can give rise to e!ective
Yukawa couplings amongst quarks, leptons and Higgses when some gauge singlet scalars in the
non-renormalisable coupling acquire expectation values. This gives the scope to obtain o!-
diagonal entries and phase factors in the quark mass matrices. In general, we can obtain quark and
lepton mass matrices M

d
, M

u
and M

e
of the form

M"A
e a b

a8 A c

bI c8 BB , (3.172)

where a,b,c,a8 ,bI ;e,A,B because they are induced by non-renormalisable terms in the superpoten-
tial. It is also natural to assume that e;A,B because of the smallness of the "rst generation quark
and lepton masses, and so to assume that e also derives from a non-renormalisable term.

Things are more complicated for non-prime-order orbifolds. However, it is still unlikely that
a suitable Kobayashi}Maskawa matrix can arise from non-renormalisable terms, and it therefore
still appropriate to look for matrices M of the same form.

The strategy that has been adopted [55] has been to try to "t the second and third generation
quarks and lepton masses with A and B in M given in terms of all the moduli (deformation
parameters) of the orbifold, under the assumption that the smaller "rst generation masses are
induced by non-renormalisable terms. Then the relevant Yukawa couplings ¸

Y
are

¸
Y
"h

c
Q

c
ccH

2
#h

S
Q

c
ScH

1
#h

t
Q

t
tcH

2
#h

b
Q

t
bcH

1
#hk¸kkcH

1
#hq¸qqcH1

, (3.173)

where Q and ¸ denote quark and lepton doublets. At this time, the expectation values of H
1

and
H

2
are additional parameters constrained by

SH
1
e2#SH

2
e2"2A

m
W

g
2
B

2
. (3.174)

The masses obtained at the string scale have to be run to 1GeV using renormalisation group
equations to make contact with the point at which quark and lepton masses are usually given.
A subtlety is that the Yukawa couplings have to be run from the string scale of about
0.5]1018GeV whereas, because we know that gauge coupling constants unify at about 1016GeV
(perhaps because of string loop threshold corrections), the gauge coupling constants should only be
run from about 2]1016GeV.
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Of the Z
n
orbifolds, only Z

3
, Z

4
, Z

6
!I and Z

7
are able [55] to "t the quark and lepton masses.

However, a number of possible e!ects have been neglected in these calculations. The e!ect of the
tree level moduli dependent Kahler potential in normalising the matter states has not been
included, nor have the twist dependent suppression factors if the Yukawa couplings are between
excited twisted sector states, nor have the string loop threshold corrections to the Yukawa
couplings from the one-loop Kahler potential.

In the absence of a de"nite model for the entries of the mass matrix deriving from the
non-renormalisable superpotential terms, the Kobayashi}Maskawa mixing angles and phases
cannot be determined. However, a simple model for M

d
and M

u
with vanishing (11), (13) and (31)

entries and opposite phases for the Eqs. (23) and (32) entries can give mixing angles consistent with
experiment together with an approximately maximal weak CP violating angle d+953.

4. KaK hler potentials and string loop threshold corrections to gauge coupling constants

4.1. Introduction

A supergravity theory is speci"ed by the superpotential, the KaK hler potential and the gauge
kinetic function. The light shed by orbifold compacti"cations of superstring theory on the form of
the superpotential (especially the renormalisable terms) was the subject of the previous section. The
KaK hler potential and the gauge kinetic function, which yields the gauge coupling constants of the
theory, will be studied in this section. A knowledge of the KaK hler potential allows the normalisation
of the states of the theory to be carried out and is also necessary for the construction of the e!ective
potential. On the other hand, a knowledge of the gauge kinetic function is necessary to determine
the values of the string loop corrected gauge coupling constants at the string scale, which, with the
aid of the renormalisation group equations, can be compared with the measured low energy values.
Like the Yukawa coupling, the KaK hler potential and the gauge kinetic function both depend on the
moduli of the orbifold discussed in Sections 3.7 and 3.8 and the values of the moduli are required
before conclusions can be drawn. The determination of the moduli from the e!ective potential will
be one of the topics discussed in the next section.

4.1.1. Modular properties of the KaK hler potential
Associated with the ith complex plane of the underlying 6-torus of the orbifold, all abelian

orbifolds have a modulus ¹
i
de"ned in Eq. (3.80) by

i¹
i
"2(b

2i~1,2i
#iJM(det g)

i
N), i"1,2,3 , (4.1)

where the matrices g and b are the metric and anit-symmetric tensor in the lattice basis, as in
(3.81)}(3.82), and the determinant refers to the 2]2 matrix for the ith complex plane. When the
point group acts as Z

2
in the ith complex plane there is also a ; modulus, ;

i
, de"ned by

i;
i
"

1
g
2i~1,2i~1

(g
2i,2i

#iJ(det g)
i
) . (4.2)
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On the other hand, when the point group acts as Z
N

with NO2 in the ith complex plane the
modulus ;

i
is forced to take a "xed value and only ¹

i
survives as a continuous modulus. Speci"c

orbifolds possess additional ¹ moduli but in what follows we shall focus on the moduli de"ned
above. The ¹ moduli may be thought of as continuously variable quantities corresponding to
deformations of the underlying torus. Moduli may also be thought of as expectation values of
scalar "elds in the corresponding supergravity theory for which the e!ective potential is #at to all
orders. Looked at this way, the existence of ¹ and ; moduli is equivalent to the existence of
untwisted sector states of the string theory of the type bi

~1@2
D0T

R
a8 jM
~1

D0T
L

or bi
~1@2

D0T
R
a8 j
~1

D0T
L
. In

general, depending on the point group, the "rst type of state can exist for i"j and for some choices
of iOj. The second type of state is only permitted by point group invariance for i"j and then only
if the ith complex plane is a Z

2
plane (a plane in which the point group acts as Z

2
). The states in

Eqs. (4.1) and (4.2) are the states with i"j.
Orbifold compactifactions of string theory are known to possess certain modular symmetries to

all orders in string perturbation theory. Generically, these symmetries are transformations of the
form

¹
i
P(a

i
¹

i
!ib

i
)/(ic

i
¹

i
#d

i
) (4.3)

and

;
i
P(a@

i
;

i
!ib@

i
)/(ic@

i
;

i
#d@

i
) (4.4)

where a
i
, b

i
, c

i
, d

i
, a@

i
, b@

i
, c@

i
and d@

i
are integers,

a
i
d
i
!b

i
c
i
"1 (4.5)

and

a@
i
d@
i
!b@

i
c@
i
"1 . (4.6)

These symmetries are thus PSL(2,Z) modular groups, referred to as target space modular symmet-
ries if these is a need to distinguish them for the world sheet modular symmetries discussed in
Section 2. In some cases, string loop corrections can restrict the symmetries to subgroups of
PSL(2,Z), or, equivalently can restrict the allowed range of values of these integers, as we shall see
later. Further subtleties are that beyond string tree level the dilaton "eld S can participate in the
modular transformations, and that, if Wilson line moduli are present, these may also enter the
modular symmetries.

We shall see in subsequent sections that at string tree level the KaK hler potential takes the form

K"KK #+
a

D/
a
D2

3
<
i/1

(¹
i
#¹M

i
)nia#2 , (4.7)

where

KK "!ln(S#SM )!
3
+
i/1

ln(¹
i
#¹M

i
) . (4.8)

Here, only the diagonal ¹ moduli, ¹
i
, i"1,2,3, have been retained, the ; moduli have not been

displayed, and K has been taken to quadratic order in the matter "elds /a. The powers nia are
referred to as the modular weights of the matter "elds.
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In the absence of matter "elds, the transformation of the KaK hler potential under a modular
transformation on ¹

i
is

KPK#lnDic
i
¹

i
#d

i
D2 , (4.9)

which is a speci"c KaK hler transformation. For

G"K#lnD=D2 , (4.10)

where= is the superpotential, to be invariant under modular transformations,=must transform
with modular weight !1, by which is meant

=P=(ic
i
¹

i
#d

i
)~1 . (4.11)

Because of non-renormalisation theorems this must be true to arbitrary orders in perturbation
theory. If the matter "elds are now introduced, then, to retain the modular invariance of G, the
matter "elds must transform with modular weights nia, by which is meant

/aP/a(ici¹i
#d

i
)nia . (4.12)

The modular properties of a Yukawa coupling

="habc(¹i
)/a/b/c (4.13)

in the superpotential may then be deduced. For = to have modular weight !1 we must have

habc(¹i
)Phabc(¹i

)(ic
i
¹

i
#d

i
)~(1`n

ia`n
ib`n

ic) . (4.14)

4.2. KaK hler potentials for moduli

There are several di!erent approaches to deriving KaK hler potentials from orbifold compacti"ca-
tions of string theory, including truncation of the corresponding 10-dimensional supergravity
theory to four dimensions [188,92,23,93,94] identi"cation of accidental symmetries of the string
action which can then be applied to the supergravity action [66,67,58,59,69], and comparison of
amplitudes calculated in the string theory and in the supergravity theory with the aid of the N"2
superconformal algebra [81,25,26]. In this section, we shall present the second of these methods,
and, very brie#y, in a discussion of the dilaton KaK hler potential, the "rst of these methods. In the
next section, the last of these three methods will be used in a discussion of the matter "eld
contribution to the KaK hler potential. Any of these methods may be used to discuss the moduli and
matter "eld KaK hler potentials but it is useful here to present a di!erent method in each section to
illuminate di!erent aspects of the origin of the form of KaK hler potentials.

Employing the accidental symmetry approach [66,67], let consider "rst a complex plane of the
underlying 6-torus for which the action of the point group is Z

N
with NO2. Then, there is

associated with this complex plane only a ¹ modulus ((1,1) modulus) and no ; modulus ((1,2)
modulus.) The background "eld term in the string action for this ¹ modulus may be written as

S"
1
pPd2z(¹R

z
XR

z6
XM #h.c.) , (4.15)
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where the index i referring to the complex plane has been suppressed. This action possesses the
`accidentala symmetries

XPKX#C , (4.16)

¹P¹K~1KM ~1 , (4.17)

where K and C are arbitrary complex numbers, and

¹P¹#iD , (4.18)

where D is an arbitrary real number. These symmetries of the world sheet action must appear as
symmetries of the low-energy e!ective action for the moduli. The most general Lagrangian
compatible with these symmetries is

L"k(¹#¹M )~2Rk¹Rk¹M , (4.19)

where k is a constant. The constant may be "xed by comparing the four moduli amplitude
calculated at tree level in the supergravity theory and the string theory with the result that

L"(¹#¹M )~2Rk¹Rk¹M (4.20)

which derives from the KaK hler potential

K"!ln(¹#¹M ) . (4.21)

If instead we consider a complex plane for which the action of the point group is Z
2
, then there is

both an associated ¹ modulus and an associated;modulus. It is then convenient to introduce the
metric gop and anti-symmetric tensor bop background "elds on the (real) lattice basis. The
corresponding background "eld term in the string action is

S"
1
pPd2zFopRzXK oRz6 XK p , (4.22)

where o,p"1,2, XK o and the string degrees of freedom in the lattice basis, de"ned by

XK o"eo
r
Xr , (4.23)

where r refers to the real space basis,

eo
r
,eHro (4.24)

are basis vectors of the dual lattice, and

Fop"gop#bop . (4.25)

The ¹ and ; moduli for this complex plane are then de"ned by

¹"¹
1
#i¹

2
"2(Jdet g!ib

12
) (4.26)

and

;";
1
#i;

2
"

1
g
11

(Jdet g!ig
12

) , (4.27)
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or, consequently, the matrices g and b are given by

g"
1
2

Re¹
Re;A

1 !Im;

!Im; D;D2 B (4.28)

and

b"
1
2 A

0 !Im¹

Im¹ 0 B . (4.29)

The string (world sheet) action has the `accidentala symmetries

XK oPMopXK p#Co , (4.30)

FopPFjq(M~1)jo(M~1)qp , (4.31)

and

FopPFop#Dop , (4.32)

where M is a real non-singular matrix, Co are real constants and D is a real anti-symmetric matrix.
Applying these symmetries to the low energy supergravity e!ective action for the moduli, the most
general consistent form of Lagrangian is

L"!1
2
Tr((F#FT)~1RkFT(F#FT)~1RkF)

"!1
8
Tr(g~1Rkgg~1Rkg!g~1Rkbg~1Rkb) , (4.33)

where the overall multiplication constant has been "xed by comparing the ggbb amplitude in the
low-energy supergravity theory and the string theory using the vertex operators coupled to the
background "elds g and b. Substituting for g and b in terms of the ¹ and ; moduli gives

L"(¹#¹M )~2Rk¹Rk¹M #(;#;M )~2Rk;Rk;M (4.34)

which derives from the KaK hler potential

K"!ln(¹#¹M )!ln(;#;M ) . (4.35)

Another modulus, in the sense of a "eld with #at e!ective potential to all orders in the
corresponding supergravity theory, is the dilation S. A simple way of deriving the KaK hler potential
for the dilaton "eld is by truncation to 4 dimensions of the 10-dimensional supergravity that is the
e!ective "eld theory below the string scale. The supergravity multiplet of supergravity in 10-
dimensions contains bosonic states which are the symmetric metric tensor g

AB
, the antisymmetric

tensor b
AB

and the 10-dimensional dilaton scalar /, where A and B range over the 10-dimensional
space. The dilaton S for the 4-dimensional reduction of the 10-dimensional supergravity is
constructed from the degrees of freedom of the 10-dimensional theory as

S"JDe(#3J2iD (4.36)

where

D"det g
ij

(4.37)
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with i and j referring to the compact six-dimensional manifold and D being the dual of the bkl "eld,
where k and l refer to four-dimensional space}time. The "eld D is given in terms of the "eld
strength hklo for bkl as

e2(Dhklo"eklopRpD . (4.38)

The kinetic term for S in the dimensionally reduced Lagrangian derives from the KaK hler potential
term

K"!ln(S#SM ) . (4.39)

This is present not just in toroidal compacti"cations but also in the untwisted sector of any orbifold
compacti"cation, constructed in this approach by truncating the dimensionally reduced theory.
This is done by retaining only singlets under the action of some "nite subgroup of the rotation
group SO(6) on the compact manifold designed to leave only an N"1 supergravity in four
dimensions [188,23,92}94].

4.3. KaK hler potentials for untwisted matter xelds

The method described in this section, which can be found in greater detail in the original
literature, [81] relies on the fact that the N"2 super Virasoro algebra for the left movers for
a string theory with N"1 space}time supersymmetry, relates the left mover vertex operators
WB for 27 and 27 matter "elds in the 10 of the SO(10) subgroup of E

6
(apart from E

8
]E@

8
factors in

the vertex operator) to other left mover vertex operators UB in the same N"2 chiral multiplets of
this algebra. In general, the left mover vertex operators for moduli "elds M associated with matter
"elds / can be written as linear combinations of the vertex operators UB. Thus, the vertex
operators for the (1,1) moduli denoted by Ma with associated 27's denoted by /a can be identi"ed
by

Ma%;a
a
U`a (4.40)

for some coe$cients ;a
a
, and the vertex operators for the (1,2) moduli denoted by Mm with

associated 27's denoted by /k can be identi"ed by

Mm%;k
m
U~k (4.41)

for some coe$cients;k
m
. Let us de"ne the KaK hler metrics g

abM
and GabM for (1,1) moduli and 27 matter

"elds by

g
abM
,R2G/RMaRMM b"R2K/RMaRMM b (4.42)

and

GabM,R2G/R/aR/M b"R2K/R/aR/M b (4.43)

and similarly for the (1,2) moduli and 27 matter "elds. The two point functions for vertex operators
WB can be related to 2-point functions for vertex operators UB with the result that the KaK hler
metrics are related by

g
abM
";a

a
GabM;M bb (4.44)
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and similarly for (1,2) moduli. Thus, if the matrices ;a
a

can be calculated relations can be found
between moduli and matter "eld KaK hler metrics.

A rather messy, but easily solved, di!erential equation involving the moduli metric matrix g and
the matrix of coe$cients; can be derived by "rst using the N"2 super-Virasoro algebra to relate
pure moduli amplitudes of the type MMPMM MM to pure matter "eld amplitudes of the type
//P/M /M and also to relate amplitudes of the type M/PMM /M to amplitudes of the type //P/M /M .
In each case, because it is the vertex operators UB and WB that belong to N"2 supermultiplets,
the matrices ; occur. In the second stage of the derivation, the various amplitudes are calculated
from the corresponding supergravity theory as follows [81]. In the case of MMPMM MM and
M/PMM /M amplitudes, there are contributions from sigma model interactions due to the non-
minimal KaK hler potential and from graviton exchange. In the case of //P/M /M amplitudes, at
leading order in the momenta, there are contributions from 4 scalar F terms, from gauge boson
exchange and from corresponding D terms. The reason that the calculation will be able to
determine the matrix ; and so to determine the combinations of gauge singlet scalars that are
moduli "elds, is that the (de"ning) #atness of the e!ective potential with respect to moduli to all
orders has been used to drop all moduli}moduli interactions other than sigma model interactions.
The details of the calculation depend on the gauge group assumed. We shall assume for the
moment that the gauge group is simply E

6
]E@

8
. When the gauge group is instead E

6
]E@

8
];p(1)

or E
6
]E@

8
]SU(3)];p(1), there are extra gauge boson exchanges and corresponding D term

contributions as well as F terms modi"ed by modi"ed Yukawa couplings that a!ect the //P/M /M
amplitudes.

Finally, the expressions at leading order in the momenta for the amplitudes derived from the
supergravity theory are inserted in the string relations between amplitudes. In this way, after
elimination of the terms containing the matter "eld Yukawa coupling coe$cients between equa-
tions, a matrix equation involving the matrices g and ; is arrived at, namely,

R
a
(;sg~1;R

dM
(;~1g(;s)~1))ac"(;sR

a
(g~1R

dM
g)(;s)~1)

ac#
i2

3
R
a
R
dM
(K

2
!K

1
)dac (4.45)

and a similar equation with a,d replaced by m,n, where R
a
and R

a6
denote R/RMa and R/RMM a, and the

pure moduli term KK in the KaK hler potential has been decomposed in the form (proved possible in
Ref. [81])

KK "K
1
#K

2
(4.46)

with K
1

depending only on Ma and MM a and K
2

depending only on Mm and MM m. Eq. (4.45) has the
solution

;a
a
"<a

a
(M)exp 1

6
i2(K

1
!K

2
) (4.47)

and

;k
m
"<k

m
(M)exp 1

6
i2(K

2
!K

1
) , (4.48)

where <a
a
(M) and <k

m
(M) are arbitrary holomorphic functions of the moduli. The occurrence of

these arbitrary functions corresponds to the freedom to rede"ne the matter "elds by taking linear
combinations of the various 27's and linear combinations of the various 27 's with coe$cients that
are functions only of the moduli but not their conjugates, in order to preserve the KaK hler geometry.
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The matter "elds may be chosen in such a way as to replace the < matrices by identity matrices so
that

;a
a
"da

a
exp 1

6
i2(K

1
!K

2
) (4.49)

and

;k
m
"dk

m
exp 1

6
i2(K

2
!K

1
) . (4.50)

Knowing ;, the connection between matter "eld and moduli KaK hler metrics following from Eq.
(4.44) is

G
abM
"g

abM
exp 1

3
i2(K

2
!K

1
) (4.51)

and

G
mn6
"g

mn6
exp 1

3
i2(K

1
!K

2
) . (4.52)

Returning to the equations derived from the string relations between amplitudes before elimina-
tion of the matter "eld Yukawa coupling coe$cients between equations and utilising Eqs.
(4.49)}(4.52) yields equations that relate the KaK hler metric for the moduli to the matter "eld
Yukawa couplings. Once these Yukawa couplings have been speci"ed, the KaK hler metric can be
solved for in speci"c cases [81].

A more realistic case is obtained [81,25] if the gauge group is E
6
];p(1)]E@

8
or

E
6
]SU(3)];p(1)]E@

8
. If, for example, [25] we take the gauge group to be E

6
]SU(3)]E@

8
then

this corresponds to the Z
3

orbifold with standard embedding of the point group in the gauge
degrees of freedom. In that case, the matter "elds are in (27,3) of E

6
]SU(3) and singlet under

E@
8

and we denote the vertex operators for matter "elds /ai in the 10 of the SO(10) subgroup of
E
6

by Wai, where a is a global index labelling the various copies of (27,3) and i"1,2,3 is an SU(3)
index labelling the basis states of 3 of SU(3). (The free fermion factor in the vertex operator carrying
the SO(10) quantum numbers is not displayed.) Associated with these matter "elds are the
E
6
]SU(3) singlet scalars which are members of the same N"2 chiral multiplets and whose vertex

operators we denote by Uai. In this case, there are only (1,1) moduli "elds, denoted by M
AI

, where
A and I are both global indices. It is convenient to decompose the global index on the modulus "eld
in this way to mirror the decomposition of the index ai on the corresponding matter "eld into
a global index a and an SU(3) index i. The vertex operators for the (1,1) moduli are in general linear
combinations which can be identi"ed by

M
AI

%;ai
AI

cUai , (4.53)

where the ;ai
AI

are functions of the moduli and their conjugates. There is some arbitrariness in the
de"nition of ; because we can make a rede"nition of the matter "elds by taking a linear
combination of the various (27,3)'s or by making a change of basis in the SU(3) space. Thus, new
matter "eld vertex operators W@a{i{ may be de"ned by

Wai"Ra{a (M)Si{
i
(M)W@a{i{ (4.54)

where R and S are functions of the moduli but not their conjugates, in order to preserve the KaK hler
geometry, and S is unitary. Consequently, there is the freedom to replace ;ai

AI
by ;I a{i{

AI
where

;I a{i{
AI

";ai
AI

Ra{a (M)Si{
i
(M) . (4.55)
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The N"2 superconformal algebra now relates the moduli metric g
AI,BM JM

to the matter "eld metric
Gai,bM jM through

g
AI,BM JM

";ai
AI

Gab;M b
M iM
BM JM

, (4.56)

where the unbroken SU(3) gauge symmetry has been used to block diagonalise G in the form

Gai,bM jM"GabM dijM . (4.57)

Equations involving g,G,; and the Yukawa coupling coe$cients for matter "elds may again be
derived [25] by studying amplitudes for moduli and matter "eld with the following slight
di!erences. Yukawa couplings have to be modi"ed to take account of the SU(3) indices so that the
corresponding superpotential terms are

="1
3
=abc(M)e

ijk
/ai/bj/ck#2 . (4.58)

The four scalar vertex contribution to the //P/M /M amplitude is then modi"ed by the modi"cation
of the F terms in the e!ective potential. In addition, the //P/M /M amplitude is a!ected by SU(3)
gauge boson exchanges and corresponding D terms. After elimination of the matter "eld Yukawa
coupling coe$cients between equations a matrix equation involving g and ; is arrived at, which
now takes the form

R
AI

[;sg~1;R
DM LM

(;~1g(;s)~1)]ai,ck"[;sR
AI

(g~1R
DM LM

g)(;s)~1]ai,ck!
i2

3
g
AI,DM LM

dacdik

!

i2

6
(;M jo;)dM e

DM LM ,AI
(;~1)EMel g

EM,FM NM
(;M ~1)FM NMdM l dac(jo)ki ,

(4.59)

where the jo are the Gell}Mann matrices for SU(3),

(;M jo;)dM e
DM LM ,AI

,;M dM lM
DM LM

(jo)lM iM;ei
AI

, (4.60)

and R
AI

and R
AM IM

denote R/RM
AI

and R/RMM
AI

. To obtain the solution, we also require one of the
2 original equations derived from the matter "eld and moduli amplitudes using the N"2
superconformal algebra for left movers, which may be taken to be

i~2R
AI,CM KM ,BJ,DM LM

"g
AI,DM LM

g
BJ,CM KM

#g
AI,CM KM

g
BJ,DM LM

!1
3
exp(i2KK )gFM NM ,EM(=;;;)ijg

AI,BJ,EM

](=M ;M ;M ;M )
CM KM ,DM LM ,FM NM

e
ijh

e
klh

, (4.61)

where

(=;;;)ijg
AI,BJ,EM

,=abe;ai
AI
;bj

BJ
;eg

EM
(4.62)

and the Riemann tensor of the KaK hler geometry is given by

R
AI,CM KM ,BJ,DM LM

"R
AI
R
DM LM

g
BJ,CM KM

!R
AI

g
BJ,EM MM

gEM MM ,FNR
DM LM

g
FN,CM KM

. (4.63)

Eqs. (4.59) and (4.63) have the solution

KK "!i~2 ln detB , (4.64)
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where KK is the pure moduli term in the KaK hler potential,

B
AI
"M

AI
#MM

IA
(4.65)

or, as a matrix,

B"M#Ms (4.66)

and

;ai
AI
"X

Aa>Ii
(4.67)

with

>"B~1@2< , (4.68)

where < is an arbitrary matrix,

=abc"weabc (4.69)

and

det (XXs)"
1

2DwD2
(4.70)

with X a function of M but not of MM . The degree of arbitrariness occuring in the solution is
consistent with Eq. (4.54). If we make the choice

J2X"<"I , (4.71)

then the solution for ; simpli"es to

;ai
AI
"(1/J2)d

Aa(B~1@2)
Ii

. (4.72)

It follows that the moduli and matter "eld metrics are

g
AI,BM JM

"i2B~1
IJM

B~1
BM A

(4.73)

and

G
AI,BM JM

"2i2B~1
BM A

d
IJM

. (4.74)

If we retain only the diagonal moduli of Section 4.3, `switch o!a the other moduli and write

¹
i
,M

ii
, i"1,2,3 , (4.75)

then the moduli and corresponding matter "eld metrics simplify to

g
iiM
"2i2(¹

i
#¹M

i
)~2 (4.76)

and

G
iiM
"2i2(¹

i
#¹M

i
)~1 . (4.77)

In terms of rede"ned matter "elds

/K
i
,J2/

ii
(4.78)
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the KaK hler potential K to quadratic order in the matter "elds is

K"!i2+
i

ln(¹
i
#¹M

i
)#i2+

i

(¹
i
#¹M

i
)~1D/K

i
D2#2 . (4.79)

For an orbifold possessing a complex plane where the point group acts as Z
2
, so that there is

both a ¹ modulus and a ; modulus associated with this complex plane, the situation is slightly
more complicated. If the Z

2
complex plane is the jth complex plane then the corresponding

contribution to the KaK hler potential takes the form

K"!ln[(¹
j
#¹M

j
)(;

j
#;M

j
)!(B

j
#CM

j
)(BM

j
#C

j
)] , (4.80)

where B
j
and C

j
are two complex matter "elds.

All of the above discussion assumes that there are no Wilson lines breaking the gauge symmetry
whereas in practice this will be necessary if the gauge group is to be reduced to a subgroup of
E
6
]SU(3) as a suitable starting point for spontaneous symmetry breaking to the standard model.

However, the KaK hler potential of the moduli and certain of the matter "elds in the theory with
Wilson lines can be calculated from the corresponding terms in the KaK hler potential in the
underlying theory without Wilson lines as a consequence of two observations [81]. First, the
amplitudes are the same for the states which survive the GSO projections as in the original theory,
and, second, the relationships amongst vertices that follow from the N"2 superconformal algebra
are also unmodi"ed. This means that the KaK hler potential in the theory with Wilson lines may be
derived by calculating in the theory without Wilson lines the KaK hler potential of the moduli and
matter "elds associated with moduli that survive the GSO projections due to the Wilson lines.

4.4. KaK hler potentials for twisted sector matter xelds

In the previous section, the KaK hler potential was derived for the moduli and the untwisted sector
matter "elds related to the moduli by the superconformal algebra. However, such methods can not
be employed when, as occurs for matter "elds in twisted sectors with Wilson lines, the matter "elds
are not related to moduli. Other methods are then required [129,27,28]. One approach [27,28] is to
make a direct comparison of amplitudes in the string theory with amplitudes in the supergravity
theory without the bene"t of the superconformal algebra (in the spirit of the earliest papers
[119,150] on the derivation of low energy supergravity from string theory.)

First notice that holomorphic rede"nitions of the "elds allow the moduli and matter "eld KaK hler
potentials and metrics to be written in a variety of forms [81]. For example, the KaK hler potential

K"!ln(¹#¹M !D/D2) , (4.81)

where / is a matter "eld, may be written in the form

K"!ln(1!D¹I D2!D/I D2) (4.82)

by the rede"nition

¹"

1!¹I
1#¹I

, /"

J2/I
1#¹I

. (4.83)
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Fig. 6. Two moduli } two twisted matter "eld scattering amplitude.

These are equivalent KaK hler potentials because they di!er only by h#hM with

h"lnA
1#¹M
J2 B. (4.84)

In this new form, the KaK hler potential may be expanded in powers of the moduli as well as in
powers of the matter "eld. It is this form of KaK hler potential that arises naturally in calculations of
string amplitudes. In consequence, the KaK hler potential at quadratic order in the matter "elds (4.7)
and (4.8) arises in the form

K"!

3
+
i~l

ln(1!D¹I
i
D2)#+

a
D/I aD2<

i

(1!D¹I
i
D2)nia (4.85)

so that the matter "eld KaK hler metric is

GabM (¹I i,¹M
I
i
)"dabM <

i

(1!D¹I
i
D2)nia . (4.86)

Information about the matter "eld metric may be derived from the two moduli } two matter "eld
amplitude of Fig. 6. With zero moduli expectation values and to quadratic order in the momenta
the supergravity amplitude is given by

A(¹I
i
,/I a,/M

I
b,¹M
I
j
)" 1

32
(us
t
d
ijM
dabM #sGabM ,ijM (0,0)), (4.87)

where the indices i and jM on GabM ,ijM denote derivatives with respect to ¹I
i
and ¹MI

j
, and s, t and u are the

usual Mandelstam variables.

s"!(k
1
#k

2
)2, t"!(k

1
#k

4
)2, u"!(k

1
#k

3
)2 . (4.88)

A string theory calculation of this amplitude determines the matter "eld metric to quadratic order
in the moduli (expectation values).

GabM (¹I i,¹M
I
i
)"dabM #GabM ,ijM (0,0)¹I

i
¹MI j#2 . (4.89)

Once this is known to quadratic order the values of the modular weights nia are obtained by
comparison with Eq. (4.86). Explicit expressions for the modular weights in terms of the powers of
oscillators involved in the construction of the twisted sector matter states may be found in Refs.
[129,28].
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These expressions allow all possible values of matter "eld modular weights for a speci"c orbifold
(with arbitrary choices of point group embedding and Wilson lines) to be determined. In general,
for a massless left mover the oscillator number N

L
is given by

N
L
"a

L
!h

KM
, (4.90)

where a
L

is the normal ordering constant for the particular orbifold twisted sector and h
KM

is the
contribution to the conformal weight of the state from the E

8
]E@

8
algebra. For level 1 gauge group

factors it is given by

h
KM

"+
a

dimG
a

dimR
a

¹(R
a
)

(C(G
a
)#1)

, (4.91)

where C(G
a
) is the quadratic Casimir for the adjoint representation of G

a
and ¹(R

a
) is the quadratic

Casimir for the representation R
a

of G
a
to which the state belongs

¹(R
a
)"TrQ2

a
, (4.92)

where Q
a

is any generator of G
a

in the representation R
a
. For a speci"c gauge group e.g.

SU(3)]SU(2)];(1) of the standard model, #ipped SU(5)];(1), [SU(3)]3 or SO(6)]SO(4) and
chosen representations for the matter "elds, we should use Eq. (4.91) to set a lower bound on
h
KM

for each matter "eld to allow for the possibility of additional contributions to h
KM

from any
extra ;(1) factors in the gauge group which are spontaneously broken along #at directions at
a large energy scale, as frequently happens in orbifold theories. In this way, it is possible to derive
the allowed range of modular weights [129,28] for the various twisted sectors of the Z

N
and

Z
M
]Z

N
orbifolds for a speci"c gauge group and matter "eld representations. This knowledge is

useful in studying string loop threshold corrections to gauge coupling constants, as we see later.

4.5. String loop threshold corrections to gauge coupling constants

It is possible to derive e!ective low energy theories by integrating out the "elds with masses
above a chosen scale to leave a theory containing only "elds with masses below this scale which can
be employed in low energy calculations. [185]. So far as gauge coupling constants are concerned
this means that renormalisation group equations may be run from the chosen scale to any lower
energy with the coe$cients in the renormalisation group equations calculated using only the light
states provided a threshold correction is made to the gauge coupling constants at the chosen scale
which contains the contributions from the heavy states. In the case of heterotic string theory, the
gauge coupling constant g

a
(k) at energy scale k is related to the string scale coupling constant

g
STRING

by

16p2g~2
a

(k)"16p2k
a
g~2
STRING

#b
a
lnA

M2
STRING
k2 B#D

a
, (4.93)

where k
a
is the level of the gauge group factor G

a
,

M
STRING

+0.53g
STRING

]1018GeV (4.94)

and

g
STRING

+0.7 (4.95)
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is the common value of the gauge coupling constants [109,136] at the string tree level uni"cation
scale M

STRING
. We shall usually assume that all gauge group factors have level 1 (with the ;(1)

factors suitably normalised.) The threshold correction D
a
has been derived in terms of the complete

spectrum of states for any four-dimensional heterotic string theory that is tachyon free [136]. It is
given by

D
a
"PC

d2q
q
2

(B
a
(q,q6 )!b

a
) , (4.96)

where, for convenience, we are denoting the modular parameter q8 of Section 2 by q,

q"q
1
#iq

2
(4.97)

and C as the fundamental domain,

C:!1
2
4q

1
41

2
, q

2
50, DqD51. (4.98)

In Eq. (4.96),

B
a
(q,q6 )"Dg(!iq)D~4 +

(s1,s2)E(1,1)

(!1)s1`s2

2pi
dZt(s1s2,q6 )

dq6
Tr

s1
(Q2

a
(!1)s2NFqHLq6 HR) , (4.99)

where q and q6 are as in Eq. (2.26), g(q) is the Dedekind g function,

g(!iq)"q1@12
=
<
n/1

(1!q2n) (4.100)

and Zt is the light cone gauge partition function for a single complex free fermion with s
1

and
s
2

taking the values 0 and 1 for NS or R boundary conditions for the two directions on the world
sheet torus; the trace is over the internal degrees of freedom i.e. all degrees of freedom other than
those of four-dimensional space}time. The charge Q

a
is any generator of the factor G

a
of the gauge

group, and N
F

is the `fermion numbera. Explicitly,

Zt(s1,s2,q6 )"q6 ~1@12
=
<
n/1

(1#q6 2n~1)2, (s
1
,s
2
)"(0,0)

"q6 ~1@12
=
<
n/1

(1!q6 2n~1)2, (s
1
,s
2
)"(0,1)

"2q6 1@6
=
<
n/1

(1#q6 2n)2, (s
1
,s
2
)"(1,0)

"0, (s
1
s
2
)"(1,1). (4.101)

Specialising to the case of an abelian orbifold, with point group G [82], the trace can be written
as a sum over twisted sectors (h,g). Then, the trace factor in Eq. (4.99) is

Tr
S1
(Q2

a
(!1)s2NFqHLq6 HR)"

1
DGD

+
h,geG

Tr(
h,s1

)(Q2
a
g(!1)s2NF(h)qHL(h)q6 HR(h)) (4.102)

which is just the orbifold partition function with the insertion of Q2
a
.
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For an orbifold theory with N"1 space}time supersymmetry the point group must be a "nite
subgroup of the SU(3) group which is a subgroup of the SO(6) acting on the compact manifold
degrees of freedom [80]. Any element of such a group either rotates all but one of the three complex
planes for the compact manifold, rotates all 3 complex planes or rotates none of the complex
planes. The corresponding twisted sectors are then referred to as N"2, N"1 or N"4 sectors,
respectively.

For an N"1 sector the boundary conditions do not allow any momentum or winding number
associated with the compact manifold. As we shall see later, the moduli enter the Hamiltonian
through the left and right mover momenta (or, equivalently, through the momenta and winding
numbers) for the compact manifold, and so there can be no dependence of the threshold correction
on the moduli for an N"1 sector.

When there is at least one complex plane unrotated by h, in general there is a moduli dependent
threshold correction for the h twisted sected. We must then ask what is the e!ect of g on the pair of
boundary conditions (h,g) for the world sheet torus. The answer is that g must leave the same
complex plane unrotated as h does if there is to be moduli dependence because the trace projects
out states with non-trivial winding numbers or momenta if g rotates the complex plane. In the
special case when h is the identity (the N"4 sector), if g is also the identity then there is no
contribution to the threshold correction. This is because the (h"I, g"I) sector is a self-contained
N"4 supersymmetric theory and both the renormalisation group coe$cients and the 1 loop
threshold corrections vanish in such a theory.

Thus, the moduli dependent threshold corrections come from (h,g) twisted sectors where h
leaves a single complex plane unrotated (the N"2 sectors) and in addition g leaves the same
complex plane unrotated [82]. Moduli dependence in threshold corrections is important because,
as we shall see later, it provides a possible mechanism to move the uni"cation scale for gauge
coupling constants down from the tree level string scale to the lower scale `observeda empirically
[2,90].

4.6. Evaluation of string loop threshold corrections

The "rst step in evaluating the moduli dependent part of the threshold correction D
a

is the
observation that the contribution to the threshold correction from a twisted sector with a "xed
plane (an N"2 sector) can be factorised in the form [82]

B
a
(q,q6 )"Z

TORUS
(q,q6 )C

a
(q) , (4.103)

where Z
TORUS

is the zero-mode partition function for the 2-dimensional torroidal compacti"cation
corresponding to the "xed plane and the holomorphic function C

a
(q) is the contribution from all

other string degrees of freedom. Because q
2
Z

TORUS
is modular invariant and also q

2
((B

a
(q,q6 )/k

a
)

!B
b
(q,q6 )/k

b
) for two di!erent factors G

a
and G

b
of the gauge group is also known to be modular

invariant, it may be concluded that C
a
(q)/k

a
!(C

b
(q)/k

b
) is also modular invariant. The theory of

modular forms then requires this function to be a constant which must equal b
a
/k

a
!(b

b
/k

b
) by

taking the limit of Z
TORUS

and B
a
, B

b
for qPiR, and noting that

lim
q?i=

Z
TORUS

"1 (4.104)
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and, as shown in Ref. [51], that

lim
q?i=

B
a
(q,q6 )"b

a
. (4.105)

Thus, we are able to conclude that

B
a
(q,q6 )
k
a

!

B
b
(q,q6 )
k
b

"Z
TORUSA

b
a

k
a

!

b
b

k
b
B (4.106)

so that

D
a
"b

aPC

d2q
q
2

(Z
TORUS

(q,q6 )!1) (4.107)

with the understanding that the formula is only to be applied to the di!erence D
a
/k

a
!D

a
/k

b
.

The problem of evaluating the contribution to D
a

from a particular N"2 twisted sector thus
reduces to the evaluation of Z

TORUS
in the "xed plane for this sector [82]. To calculate this quantity

it is necessary to express the left and right mover Hamiltonians H
L
and H

R
in terms of windings and

momenta in this "xed plane, to which the two-dimensional toroidal compacti"cation corresponds.
The windings and momenta enter the right and left mover mode expansions through

Xr
R
(t!p)"xr

R
#pr

R
(t!p)#oscillator terms , (4.108)

and

Xr
L
(t#p)"xr

L
#pr

L
(t#p)#oscillator terms , (4.109)

where

pr
R
"1

2
(pr!2¸r), pr

L
"1

2
(pr#2¸r) (4.110)

with pr and ¸r the momenta and winding numbers, respectively, and r a real index for the space
basis. (The world sheet variables are being denoted by (t,p) rather than (q,p) to avoid confusion with
the modular parameter q.) In the conventions being used here

Xr"Xr
R
(t!p)#Xr

L
(t#p) . (4.111)

In terms of the basis vectors ero, o"1,2,6, of the lattice for the 6 torus and with the `radiia
absorbed into the de"nition of the basis vectors,

¸r"+
o

moero (4.112)

where mo are integers. For convenience, we are using basis vectors here that are smaller by than
those used in Section 3 by a factor of 2p.

Symmetric and anti-symmetric background "elds G
rs

and B
rs

are introduced in the world sheet
action S through the term

S"!

1
2pP

p

0

dpPdt[G
rs
RaXrRaXs#eabB

rs
RaXrRbXs] . (4.113)
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In the presence of the background "elds, the conjugate momentum which is quantized on the dual
lattice with basis vectors

eHro ,eo
r

(4.114)

is

p8
r
"G

rs
ps#2B

rs
¸s"+

o
noeor (4.115)

where no are integers. In terms of p8
r
and the windings ¸r, the momentum pr is given by

pr"Grsp8
s
!2GrsB

st
¸t , (4.116)

where Grs is the inverse of G
rs
.

It will be convenient to write all quantities in the lattice basis in which the string degrees of
freedom are

XK o,eo
r
Xr . (4.117)

Then, we de"ne

bop,eroBrs
esp , (4.118)

gop,eroGrs
esp , (4.119)

poR,goppp
R

(4.120)

and

poL,goppp
L

, (4.121)

where po
R

and po
L

are the coe$cient of t!p and t#p in XK o
R

and XK o
L
, respectively. In terms of the

background "elds

poR"1
2
no!gopmp!bopmp (4.122)

and

poL"1
2
no#gopmp!bopmp (4.123)

which may be written succinctly as

p
R
"1

2
n!(g#b)m (4.124)

and

p
L
"1

2
n"(g!b)m . (4.125)

The Hamiltonian is

H"H
R
#H

L
(4.126)

with

H
R
"1

2
poRgopppR,1

2
pT
R
g~1p

R
(4.127)
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and

H
L
"1

2
poLgopppL,1

2
pT
L
g~1p

L
(4.128)

and the world sheet momentum is

P"H
L
!H

R
. (4.129)

The zero-mode partition function Z for the 6 torus

Z" +
pR,pL

qHLq6 HR (4.130)

with

q"e*pq, q6 "e~*pq6 (4.131)

may now be written in the form

Z"+
n,m

e2p*qnTm]exp(!pq
2
[1
2
nTg~1n!2nTg~1bm#2mT(g!bg~1b)m!2nTm]) (4.132)

with

q"q
1
#iq

2
. (4.133)

What we require is the partition function Z
TORUS

for the 2-dimensional toroidol compacti"cation
corresponding to the "xed plane of an N"2 twisted sector. Choosing the labelling of the complex
planes such that it is the "rst complex plane that is the "xed plane, we should then take m and n of
the form

m"A
m1

m2

0

0

0

0
B, n"A

n
1

n
2

0

0

0

0
B. (4.134)

The zero-mode partition function Z
TORUS

may then be cast in terms of m1,m2,n
1
,n

2
,b

12
,g

11
,g

12
and

g
22

as

Z
TORUS

"+
n,m

e2p*q(m1
n1`m

2
n2)expA

!pq
2

¹
1
;

1

D!¹;m2#i¹m1!i;n
1
#n

2
D2B, (4.135)

where the moduli ¹ and ; associated with the N"2 complex plane are de"ned as in Eqs. (4.26)
and (4.27).

Returning to Eq. (4.107) and performing the q integration, as described in detail in Ref. [82],
gives the contribution to the threshold correction from this N"2 twisted sector

D
a
"!b

a
[ln((¹#¹M ) D g(¹)D4)#ln((;#;M ) D g(;)D4)]#(moduli independent constant) ,

(4.136)
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where the Dedekind eta function is

g(¹)"e~pT@12
=
<
n/1

(1!e~2pnT) . (4.137)

The string loop threshold correction (4.136) can be seen to be invariant under the (target space)
modular transformation

¹P(a¹!ib)/(ic¹#d) (4.138)

corresponding to Eq. (4.3) by observing that under this transformation

¹#¹M P(¹#¹M )/Dic¹#dD2 (4.139)

and

g(¹)P(ic¹#d)1@2g(¹) (4.140)

and similarly for the ; dependent term.
The complete threshold correction to the gauge coupling constant may be obtained as follows

[82]. If the ith complex plane is left unrotated by a subgroup G
i
of the point group G, then ¹6/G

i
is

an orbifold with N"2 space}time supersymmetry. The threshold correction D
a

for the original
orbifold ¹6/G may be written as

D
a
"!+

i

(bN/2
a

)iDG
i
D

DGD A
ln((¹

i
#¹M

i
)Dg(¹

i
)D4)

#ln((;
i
#;M

i
)Dg(;

i
)D4)B#(moduli independent terms) , (4.141)

where the sum over i is over the N"2 complex planes i.e. the complex planes left unrotated in at
least one twisted sector of the original orbifold and the moduli independent part of the threshold
corrections contains the contribution of the N"1 complex planes. Here, (bN/2

a
)i is the renor-

malisation group coe$cient for the N"2 orbifold ¹6/G
i
. If the ith complex plane is a Z

M
plane

with MO2 then ;
i
is not a (continuously variable) modulus but takes a "xed value, so that the

;
i
dependent term in Eq. (4.141) is just an additional constant term. To arrive at Eq. (4.141) it

should be noticed that the complete set of N"2 twisted sectors of the original orbifold ¹6/G for
which the ith complex plane is unrotated constitutes the twisted sectors of the N"2 orbifold ¹6/G

i
and that the N"4 untwisted sector does not contribute to the threshold correction nor to b

a
. Thus,

combining the contributions of all these N"2 sectors of the original orbifold yields a coe$cient
which is the renomalisation group coe$cient (bN/2

a
)i.

Although the derivation of the string loop threshold correction presented in this section is a one
string loop order calculation it has been shown in an alternative approach using integrability
conditions that there are no additional contributions from higher orders in string-perturbation
theory [4,5].

4.7. Modular anomaly cancellation and threshold corrections to gauge coupling constants

The form of the moduli-dependent threshold corrections to gauge coupling constants can be
partly understood in terms of cancellation of (target space) modular anomalies [71]. This approach
also gives an alternative form for the numerical coe$cient in the threshold correction which
involves the modular weights of the light states and is often more useful in practice.
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In the following discussion, we shall focus attention on the three moduli ¹
i

with modular
transformation as in Eq. (4.3). The transformation induced on the KaK hler potential is a particular
KaK hler transformation as in Eq. (4.9) which we may write as

KPK#h
i
(¹

i
)#hM

i
(¹M

i
) (4.142)

with

h
i
(¹

i
)"ln(ic

i
¹

i
#d

i
) (4.143)

and rewriting Eq. (4.12) the transformation on the scalar matter "elds is

/aP/aen
iahi , (4.144)

where ni
a

is the modular weight of /a, with a corresponding transformation on the fermionic
partners ta of the scalar matter "elds [44,71] and on the gauginos j

a
chosen to maintain modular

invariance of the supergravity Lagrangian at classical level. However, this classical symmetry
acting on chiral fermions is potentially broken at quantum level by anomalies due to triangle
diagrams [44,71] with two gauge bosons plus a number of moduli as external legs and massless
fermionic matter "elds and gauginos as internal lines. The one-loop anomaly for the gauge group
factor G

a
is a variation of the Lagrangian of the form

dL"1
8
(CM

a
)
i
(h

i
!hM

i
)FbklFI klb , (4.145)

where FI kl
b

is the dual "eld strength and the real constants (CI
a
)
i
will be given shortly. This derives

from the variation of a supersymmetric Lagrangian term of the form

dL
ANOMALOUS

"Pd2h((CI
a
)
i
h
i
=a

b
=

ba#h.c.) , (4.146)

where=a
b

is the "eld strength (spinor) super"eld.
The coe$cients (CI

a
)
a

are calculated from the interaction terms in the low energy supergravity
theory that contribute to the anomaly triangle diagrams and these interaction terms are controlled
by the KaK hler potential. For the gauge group factor G

a
, the resulting coe$cient is

(CI
a
)i"(b@

a
)i/8p2 (4.147)

with

(b@
a
)i"!C(G

a
)#+

a
¹(Ra

a
)(1#2nia) , (4.148)

where C(G
a
) is the quadratic Casimir for the adjoint representation of G

a
and

¹(Ra
a
)"TrQ2

a
, (4.149)

where Q
a

is any generator of G
a

in the representation Ra
a

to which the matter "eld /a belongs.
In general, there can be two di!erent contributions to the cancellation of the modular anomaly

to restore modular invariance at the quantum level. The "rst of these contributions is gener-
ated by a Green}Schwarz-type mechanism which involves allowing the dilaton "eld S, which
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does not transform under modular transformations at tree level, to undergo a transformation of
the form

SPS!+
i

di
GS

8p2
h
i

(4.150)

at one string loop level for some real coe$cients di
GS

. The tree-level gauge kinetic term

L
GK

"Pd2h( f
bc
=a

b
=

ca#h.c.) (4.151)

with

f
bc
"Sd

bc
(4.152)

then transforms into L
GK

#dL
GK

with

dL
GK

"!

di
GS

8p2Pd2h(h
i
=a

b
=

ba#h.c.) (4.153)

and this cancels a part of the anomaly that is the same for each factor of the gauge group. To
maintain modular invariance of the KaK hler potential, KK of Eq. (4.8) must be modi"ed at one string
loop level to

KK "!ln>!+
i

ln(¹
i
#¹M

i
) (4.154)

with

>"S#SM !+
i

di
GS

8p2
ln (¹

i
#¹M

i
) . (4.155)

The remainder of the anomaly, which is not universal for all factors of the gauge group, will have
to be cancelled by massive string mode contributions. Thus, the massive string mode contribution
will have to cancel the variation

dL
MASSLESS MODES

"

((b@
a
)i!di

GS
)

8p2 Pd2h(h
i
=a

b
=

ba#h.c.) . (4.156)

At this point, the knowledge gained in the previous section (in particular Eqs. (4.141) and (4.140))
suggests that the appropriate Lagrangian terms whose variation cancels the remainder of the
anomaly is

L
MASSIVE MODES

"!

((b@
a
)i!di

GS
)

8p2 Pd2h(ln(g(¹
i
))2=a

b
=

ba#h.c.) . (4.157)

This is a holomorphic term as would be expected for a term obtained from integrating out massive
modes.

In general, the (non-holomorphic) anomalous massless mode contribution dL
ANOMALOUS

is
generated by a non-local Lagrangian term. However, if we focus on the FbklFkl

b
term, with a view to

obtaining the string loop correction to the gauge coupling constant, then (for covariantly constant
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moduli) this part of ¸
ANOMALOUS

is the local Lagrangian term

L
ANOMALOUS

"

(b@
a
)i

64p2
ln(¹

i
#¹M

i
)FbklFkl

b
#2 . (4.158)

Noticing that, for any function /,

Pd2h(/=a
b
=

ba#h.c)"!

(/#/M )
8

FbklFkl
b
#

(/!/M )
8

Fbkl(FI klb )#2 . (4.159)

and combining the FbklFkl
b

terms from Eqs. (4.151),(4.157) and (4.158), yields the string loop
corrected gauge coupling constant g

a
given by [71]

g~2
a

"

>
2
!+

i

((b@
a
)i!di

GS
)

16p2
ln((¹

i
#¹M

i
)Dg(¹

i
)D4) , (4.160)

where the running of the gauge coupling constants has been ignored. Including the "eld theoretic
one loop running of the gauge coupling constants g

a
(k) at energy scale k,

16p2g~2
a

(k)"16p2g~2
STRING

#b
a
lnA

M2
STRING
k2 B#D

a
(4.161)

for level 1 gauge group factors, where

g~2
STRING

"1
2
> (4.162)

gives the (rede"ned) gauge coupling constant at the string scale excluding the threshold correction
D
a
, and

D
a
"!+

i

((b@
a
)i!di

GS
)ln((¹

i
#¹M

i
)Dg(¹

i
)D4) . (4.163)

The Green}Schwarz coe$cients di
GS

may be determined by comparing the threshold correction
(4.163) in the approach of this section with the threshold correction (4.141) in the approach of the
previous section. We then see that

di
GS
"(b@

a
)i!(bN/2

a
)iDG

i
D/DGD . (4.164)

In general, the N"2 renormalisation group coe$cient is given by

(bN/2
a

)i"!2C(G
a
)#2+

i

¹(Ri
a
) , (4.165)

where the sum over i is a sum over matter N"2 hypermultipletes in representations Ri
a

for the
N"2 orbifold ¹6/G

i
. A special case is when there is a pure gauge hidden sector. Then,

(b@
a
)i"!C(G

a
)"1

3
b
a

(4.166)

and

di
GS
"1

3
b
a
(1!2DG

i
D/DGD) . (4.167)
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Table 5
Non-¹2#¹4 Coexter Z

N
orbifolds. For the point group generator h we display (m

1
,m

2
,m

3
) such that the action of h in the

complex orthogonal space basis is (e2p*m1,e2p*m2,e2p*m3)

Orbifold Point group generator h Lattice

Z
4
!a (1,1,!2)/4 SU(4)]SU(4)

Z
4
!b (1,1,!2)/4 SU(4)]SO(5)]SU(2)

Z
6
!II!a (2,1,!3)/6 SU(6)]SU(2)

Z
6
!II!b (2,1,!3)/6 SU(3)]SO(8)

Z
6
!II!c (2,1,!3)/6 SU(3)]SO(7)]SU(2)

Z
8
!II!a (1,3,!4)/8 SU(2)]SO(10)

Z
12
!I!a (1,!5,4)/12 E

6

In particular, if the ith complex plane is a Z
2

plane, i.e. a plane where the point group acts as Z
2
,

then di
GS

is zero.

4.8. Threshold corrections with reduced modular symmetry

In Section 4.6, the assumption was made in the derivation of the threshold corrections to the
gauge coupling constants that, whenver a twisted sector has a "xed plane, a decomposition of the
6-torus ¹6"¹2#¹4 can be made with the "xed plane lying in ¹2. When this assumption is not
correct, which we shall refer to as the case of non ¹2#¹4 orbifolds, the discussion can be
generalised as follows [158,29,30]. We shall see that the resulting threshold corrections have
modular symmetries that are subgroups of PSL(2,Z). Non ¹2#¹4 Coxeter Z

N
orbifolds are

tabulated in Table 5.
Analogously to Eq. (4.107) we start from

D
a
" +

(h,g)

b(h,g)
a PC

d2q
q
2

ZTORUS
(h,g)

(q,q6 )!bN/2
a PC

d2q
q
2

, (4.168)

where only the twisted sectors (h,g) for which there is a complex plane of the 6 torus ¹6 "xed by
both h and g contribute i.e. sectors which are twisted sectors of an N"2 space}time supersymmet-
ric theory. In D

a
, ZTORUS

(h,g)
is the moduli-dependent part of the zero mode partition function for the

2 dimensional toroidal compacti"cation corresponding to the "xed plane of the (h,g) twisted sector,
b(h,g)
a

is the contribution of the massless states in the (h,g) sector to the one-loop renormalisation
group equation coe$cient and bN/2

a
is the contribution of all N"2 twisted sectors. Unlike the

¹2#¹4 case, bN/2
a

no longer factors out from the "rst term in Eq. (4.168) because ZTORUS
(h,g)

now
depends on the particular twisted sector. It is convenient to write D

a
in terms of a subset (h

0
,g

0
) of

N"2 twisted sectors (referred to as the fundamental elements) with the integration over an
enlarged region CI depending on (h

0
,g

0
). Then,

D
a
" +

(h0,g0)

b(h0,g0)
a PCI

d2q
q
2

ZTORUS
(h0,g0)

(q,q6 )!bN/2
a PCI

d2q
q2

. (4.169)
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Here, the single twisted sector (h
0
,g

0
) replaces a set of twisted sectors which can be obtained from it

by applying those PSL(2,Z) transformations that generate the fundamental regionI C of the world
sheet modular symmetry group of ZTORUS

(h0,g0)
from the fundamental region of PSL(2,Z). In general,

ZTORUS
(h0,g0)

is invariant under a congruence subgroup of PSL(2,Z) obtained by restricting the para-
meters a,b,c,d in the PS¸(2,Z) transformation

qP(aq#b)/(cq#d) . (4.170)

If we denote such groups by C
0
(n) de"ned by

c"0 (mod,n) (4.171)

and C0(n) de"ned by

b"0 (mod,n) (4.172)

then, for example, for C
0
(3),

CI "MI,S,S¹,S¹2NC , (4.173)

where S and ¹ are the PSL(2,Z) transformations

S:qP1/q (4.174)

and

¹:qPq#1 (4.175)

To calculate ZTORUS
(h0,g0)

, for an orbifold with point group generated by h we "rst write the action of
h on the basis vectors ero of the lattice of the 6-torus as

h:eroPerpQpo . (4.176)

Then the action of h on m and n of Eqs. (4.112) and (4.115) is

h:mPm@"Qm (4.177)

and

h:nPn@"(QT)~1n . (4.178)

For the hk twisted sector, the "xed plane assocated with g
0
"hk is determined by

Qkm"m, ((QT)~1)kn"n (4.179)

and m and n in the "xed plane are then parameterised by two integers. Using this form for m and
n in Eq. (4.132), and introducing a metric g

M
and an anti-symmetric tensor b

M
for the two-

dimensional sublattice of the "xed plane with the moduli ¹ and; de"ned in terms of g
M

and b
M
, the

q integrations may be performed to obtain an expression for Z
(I,g0)

. For all non-¹2#¹4 orbifolds,
it is found that all fundamental sectors can be generated from fundamental sectors of the form (I,g

0
)
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Table 6
Values of C

im
, l

im
, CI

im
and lI

im
for non-¹2#¹4 Coxeter Z

N
orbifolds

Orbifold C
im

,CI
im

l
im

, lI
im

Z
4
!a C

31
"2 l

31
"2

CI
31
"2 lI

31
"1

Z
4
!b C

31
"C

32
"1 l

31
"1, l

32
"2

CI
31
"CI

32
"1 lI

31
"1, lI

32
"1

2
Z

6
!IIa C

11
"2, C

31
"C

32
"1 l

11
"2, l

31
"1, l

32
"3

CI
31
"CI

32
"1 lI

31
"1, lI

32
"1

3
Z

6
!IIb C

11
"2, C

31
"C

32
"1 l

11
" l

31
"1, l

32
"3

CI
31
"CI

32
"1 lI

31
"3, lI

32
"1

Z
6
!IIc C

11
"2, C

31
"C

32
"1 l

11
" l

31
"1, l

32
"3

CI
31
"CI

32
"1 lI

31
"1, lI

32
"1

3
Z

8
!IIa C

31
"C

32
"1 l

31
"1, l

32
"2

CI
31
"CI

32
"1 lI

31
"1, lI

32
"1

2
Z

12
!Ia C

31
"2 l

31
"2

by applying world sheet modular transformations. The "nal result for the threshold correction is
always of the form [158,29,30]

D
a
"!+

i

((b@
a
)i!di

GS
)Aln(¹

i
#¹M

i
)#+

m

C
im
2

lnKgA
¹

i
l
im
BK

4

B
!+

i

((d@
a
)i!dI i

GS
)Aln(;

i
#;M

i
)#+

m

CI
im
2

lnKgA
;

i
lI
im
BK

4

B , (4.180)

where the sum over i is restricted to complex planes which are unrotated in at least one twisted
sector (N"2 complex planes), and for the ; moduli is further restricted to complex planes for
which the point group acts as Z

2
. The coe$cients (d@

a
)i are de"ned analogously to Eq. (4.148) with

the modular weights with respect to;moduli replacing modular weights with respect to ¹ moduli,
and the dI i

GS
are the Green Schwarz parameters for the ;

i
modular transformations. The values of

C
im

, l
im

, CI
im

and lI
im

are given in Table 6 for the various non-¹2#¹4 Coxeter Z
N

orbifolds. In the
case of Z

6
!II!b, the modulus ;

3
is understood to be replaced by ;

3
!2i. The range over

which m runs depends on the value of i but always

+
m

C
im
"+

m

CI
im
"2 . (4.181)

In Eq. (4.180), the coe$cients (bN/2
a

)i have been identi"ed using Eq. (4.164).
The threshold correction D

a
now has (target space) modular symmetries that are subgroups of

PSL(2,Z), e.g. for the Z
6
!II!a orbifold, the part of the threshold correction involving ¹

3
and

;
3

has the form

D
a
"!((b@

a
)3!d3

GS
)(ln(¹

3
#¹M

3
)Dg(¹

3
)D4(;

3
#;M

3
)Dg(;

3
)D4)

#lnA(¹3
#¹M

3
)KgA

¹
3

3 BK
4
(;

3
#;M

3
)Dg(3;

3
)D4B , (4.182)
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which for modular transformations on ¹
3

is invariant under C0(3) and for modular transforma-
tions on;

3
is invariant under C

0
(3) with C0(3) and C

0
(3)de"ned by imposing the conditions (4.171)

or (4.172) in Eq. (4.3) or (4.4).
The modular symmetries of the threshold corrections for the non-¹2#¹4 case may also be

determined without explicit calculation of the threshold corrections [31] by using a method
[151,174,175] which explores the modular group that leaves invariant the spectrum of the twisted
sectors. In the presence of discrete Wilson lines, knowledge of the explicit threshold corrections
[160] is limited to the case without moduli but the modular symmetries may be determined by
a generalisation of the above approach [87,174,31,153] both for the ¹2#¹4 case and for the
non-¹2#¹4 case. On the other hand, explicit calculations of the e!ect of Wilson line moduli on
the threshold corrections are available [6,45,159].

4.9. Unixcation of gauge coupling constants

From Eq. (4.161), the running of the gauge coupling constants (assume level 1 gauge group
factors) is given by

16p2g~2
a

(k)"16p2g~2
STRING

#b
a
lnA

M2
STRING
k2 B#D

a
(4.183)

with D
a

given by Eq. (4.163) for ¹2#¹4 orbifolds and by Eq. (4.180) to include non-¹2#¹4
orbifolds, and with

g
STRING

+0.7 (4.184)

and

M
STRING

+0.53 g
STRING

]1018GeV , (4.185)

where g
STRING

is the common value of the gauge coupling constants at the string tree level
uni"cation scale M

STRING
.

If there are no additional states, over and above the (minimal supersymmetric) standard model
states, with masses interemediate between the electroweak scale and the string scale, [7,32] then it
may be necessary to explain the di!erence between the `observeda uni"cation of gauge coupling
constants at

M
X
+2]1016GeV (4.186)

and tree-level un"ciation scale M
STRING

by the occurrence [130,129,33] of suitable moduli depen-
dent threshold corrections D

a
. (The moduli-independent part of the threshold correction is small

[136,8,133].) If g
a
and g

b
are gauge coupling constants for two factors of the SU(3)]SU(2)];(1)

standard model gauge group then

M2
STRING
M2

X

"<
i

a((b@a)i~(b@b)i)@ba~bb
i

<
j

a8 ((d@a)j~(d@b)j)@ba~bb
j

, (4.187)
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where the product over i is over N"2 complex planes and the product over j is over N"2
complex planes for which the point group acts as Z

2
,

a
i
"(¹

i
#¹M

i
)<

m
KgA

¹
i

l
im
BK

2Cim

(4.188)

and

a8
j
"(;

j
#;M

j
) <

m
KgA
;

j
lI jmBK

2CI jm
. (4.189)

The coe$cients (b@
a
)i and (d@

a
)j may be written in terms of the modular weights of 3 generations of

quarks and lepton and the electroweak Higgses h and hM in the supersymmetric standard model as

(b@
3
)i"3#

3
+
g/1

(2ni
Q(g)

#ni
u(g)

#ni
d(g)

) , (4.190)

(b@
2
)i"5#ni

h
#ni

hM
#

3
+
g/1

(3ni
Q(g)

#ni
L(g)

) (4.191)

and

(b@
1
)i"

33
5
#

3
5
(ni

h
#ni

hM
)#

1
5

3
+
g/1

(ni
Q(g)

#8ni
u(g)

#2ni
d(g)

#3ni
L(g)

#6ni
e(g)

) (4.192)

with similar expressions for (d@
a
)j with modular weights with respect to ;

j
replacing modular

weights with respect to ¹
i
, where g labels the generations and ¸(g) and Q(g) are lepton and quark

SU
L
(2) doublets.

It is possible to generate all possible modular weights of the massless matter with quark, lepton
and Higgs quantum numbers in the twisted sectors of an arbitrary Z

N
or Z

M
]Z

N
orbifold with

SU(3)]SU(2)];p(1) gauge group (allowing for extra ;(1) factors to be spontaneously broken
along #at directions at a high-energy scale), as discussed in Section 4.5. Then, under the simplifying
assumption that a single ¹ modulus is dominating the threshold corrections (either one of the ¹

i
or

¹"¹
1
"¹

2
"¹

3
) the Z

N
and Z

M
]Z

N
orbifolds that permit a uni"cation solution with

M
X
(M

STRING
can be identi"ed [129]. For any particular choice of modular weights that permits

such a solution the value of the dominant modulus to achieve uni"cations at 2]1016GeV can then
be calculated. In general, this results in values of the dominant modulus ¹

d
that are unnaturally

large in Planck scale units. (Re¹
d
&20 is typical). Smaller values can be obtained in a variety of

ways e.g. by including Wilson line moduli as well as ¹ and ; moduli in the threshold correction
[169] or by assuming that uni"cation at M

X
occurs to a gauge group larger than the standard

model [34,36] with the massless states of the supersummetric standard model below that scale. In
this latter case, the renormalisation group coe$cients b

a
are those of the supersymmetric standard

model but the threshold corrections, which are determined by the massless states at the string scale,
are modi"ed. For a review of other options see Dienes [72]. A more radical possibility is that the
di$culty lies not in the running of the gauge coupling constants but in the gravitational constant
which is modi"ed by the appearance of a "fth dimension above a certain energy in M-theory [190].
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5. The e4ective potential and supersymmetry breaking

5.1. Introduction

We have seen in earlier sections that the moduli dependence of the Yukawa couplings, the gauge
kinetic functions, and the KaK hler potential can, in principle, account for many otherwise puzzling
features of low-energy phenomenology, such as the hierarchy of fermion masses and the `preco-
ciousa uni"cation of the observed gauge couplings at an energy scale a factor of 20 or so below the
string scale. Our foregoing discussion, however, does not address the question of why and whether
the moduli have the particular values needed to solve these problems. Nor does it explain why the
N"1 space-time supersymmetry is broken at a hierarchically low energy scale compared with the
string scale; this is required phenomenologically, both in order to protect the TeV scale of
electroweak symmetry breaking from string scale corrections, and in order to achieve the `ob-
serveda uni"cation of the gauge coupling strengths.

We shall see in this section how these two shortcomings are related, and remedied. The obvious
approach to the "rst problem, the stabilisation of the moduli, is to calculate the e!ective potential
for the relevant "elds and determine which values of the moduli minimise it. However, the moduli
potential is #at to all orders in string perturbation theory, when space}time supersymmetry is
unbroken [74,189]. This follows from a non-renormalisation theorem in string theory directly
analogous to the familiar non-renormalisation theorems in supersymmetric "eld theories. The
point is that each (scalar) moduli "eld is a component of a chiral supermultiplet which necessarily
contains a pseudoscalar partner of the scalar mode. In the case of the T-modulus de"ned in
(Section 4.1), the real part, associated with the overall size of the torus, is (the expectation value of )
a scalar "eld while the imaginary part is (the expectation value of ) a pseudoscalar "eld. The vertex
operator for the pseudoscalar "eld is

<
B
JPd2z BR

z
X(R

z6
XM #1

2
k )W )WM )e~*k >X , (5.1)

where k is the four-momentum, and X is the complex world sheet made from the two compacti"ed
dimensions under consideration. At zero momentum only the "rst (bosonic) term survivies, and
this vanishes because it is a total derivative. Thus the zero momentum mode decouples, and the
theory is invariant under the Peccei-Quinn axionic symmetry (see Eq. (4.18)).

BPB#const , (5.2)

as noted in Eq. (4.18). As a result, the superpotential is independent of the pseudoscalar "eld B.
However, because of supersymmetry, B can only appear in the combination ¹ given in Eq. (4.1). So
the superpotential is independent of ¹ and the moduli e!ective potential is therefore #at to all
orders in string perburbation theory.

It follows that the moduli, and in particular the size of the compacti"ed dimensions, have their
values "xed by non-perturbative e!ects and/or supersymmetry breaking. A similar argument
applies to the dilaton moduli "eld S. The non-perturbative mechanism which has attracted most
attention, and upon which we shall concentrate in this section, is hidden sector gaugino condensa-
tion [91,70,73]. Because of asymptotic freedom gauge coupling strengths increase as the energy
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scale M is reduced from the string scale (m
453*/'

). The quantitative relationship is given by the
renormalisation group equation which to one loop order gives

Me8p
2@bg2(M)"m

453*/'
e8p

2@bg2(m453*/') ,

where

b"!3c(G)#+
a
¹(Ra) (5.3)

determines the leading term of the beta function

b(g)"
b

16p2
g3#

b
2

(16p2)2
g5#2 (5.4)

c(G) is the quadratic Casimir for the adjoint representation of the (simple) gauge group G and ¹(Ra)
the usual Casimir for chiral supermultiplets:

¹(Ra)"Tr(Qa2) (5.5)

where Qa is the matrix representing any generator of G in the representation Ra to which the chiral
matter belong. The gauge coupling becomes large at a scale K where exp(8p2/bg2(K)) is of order
unity, and is given by

KKm
453*/'

e8p
2@bg2(m453*/') (5.6)

which is exponentially suppressed relative to the string scale. When this occurs we entertain the
possibility of gaugino condensation in which the quantity j

a
j
b
, bilinear in the gaugino "elds,

acquires a non-zero vacuum expectation value (VEV) with

DSj
a
j
b
T
0
D&K3 . (5.7)

In this regime the use of a "eld theoretic description in terms of gauge and gaugino "elds alone is
inadequate.

In a globally supersymmetric theory the supersymmetry can only be broken by the F-term of
a chiral supermultiplet acquiring a non-zero VEV. The gaugino bilinear j

a
j
b
is (proportional to)

the lowest component of the (composite) chiral super"eld =a
a
=

ba, where =a
a

is the usual "eld
strength chiral super"eld, and is therefore not an F-term. Thus gaugino condensation does not
break global supersymmetry, and this is con"rmed by explicit claculations [184]; this also agrees
with conclusions following from Witten's index theorem [186,187].

However, in a locally supersymmetric theory, a supergravity theory, things are di!erent
[70,73,179]. Under a local supersymmetry transformation of the spinor component t of a chiral
supermultiplet, this gaugino bilinear j

a
j
b

does appear in dt. So S0DdtD0TO0 if a gaugino
condensate occurs, and supersymmetry is broken; for this to happen the gauge kinetic function
must be non-minimal. This breaking of local supersymmetry in the hidden sector provides a seed
for supersymmetry breaking in the observable sector, which is coupled to the hidden sector only by
gravitational interactions.
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5.2. Non-perturbative superpotential due to gaugino condensate(s)

In the strongly interacting regime we need more than just the usual gauge kinetic piece of
a globally supersymmetric Lagrangian:

L
GK

"Pd2hf
bc
(U)=a

b
=

ca#h.c. , (5.8)

where f
bc
(U) is the gauge kinetic function, dependent on the gauge singlet chiral super"elds U,

including the moduli super"elds; =
ca is the standard (spinor-valued, chiral) gauge "eld strength

super"eld whose lowest dimension component is the gaugino "eld 1
2
j
ca. In addition, we need an

e!ective Lagrangian to describe the interactions of the (bound states and) possible gaugino
condensate, which arise as consequences of the strong gauge interactions. We therefore construct
a composite supermultiplet ; to describe the lightest of the non-perturbative states. This is
assumed to be a gauge singlet chiral super"eld

;,4=a
b
=

ba (5.9)

which has the (singlet) gaugino, bilinear combination j
b
j
b
as its lowest dimension [M3] compon-

ent. Then; develops a vacuum expectation value if the gaugino condensate forms. To determine if
it does we need an e!ective Lagrangian for the composite "eld ;. Because of its non-canonical
dimensions the kinetic term for ; is [184]

L
K
"

9
cP d2hd2h (;;)1@3 , (5.10)

where c is a dimensionless constant. The inclusion of this term in the e!ective theory means that the
KaK hler potential K, discussed in the previous section is modi"ed by these non-perturbative e!ects.
If we now denote by KI the KaK hler potential in the absence of a condensate then the complete
KaK hler potential is given by

K"KI #K/1 , (5.11)

where

K/1"!3 lnC1#
9
c
eKI @3(;;M )1@3(S

0
SM
0
)~1D (5.12)

with S
0

a `chiral compensatora super"eld with scaling dimension unity [63,148]. The choice of
S
0

determines the normalization of the gravitational action

L
'3!7

J e~K@3S
0
SM
0
Dh/hM /0

R (5.13)

so

e~K@3S
0
SM
0
Dh/hM /0

"1/16pG
N
Jm2

1
(5.14)

and we see that the condensate contribution to the KaK hler potential is suppressed by the square of
the Planck mass m2

1
.
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The Lagrangian must also be augmented by a term which reproduces the anomalies of the
underlying theory [148,131]. The anomalies in question are the chiral anomaly, the scaling (energy-
momentum trace) anomaly, and the supersymmetry current c-trace anomaly, and all are propor-
tional to (di!erent) components of the composite super"eld;. The chiral anomaly, for example, is
given by

RkJ5k"!(b(g)/2g3)F
akvFI kla (5.15)

where b(g) is given in Eq. (5.4); F
akl is the usual non-Abelian "eld strength, and FI

akv is its dual. In
the same notation the anomaly of the energy-momentum tensor is

hkk"(b(g)/2g3)F
akvFkv

a
(5.16)

and the supercurrent trace anomaly is

ckSk"(b(g)/g3)F
akvpklj

a
. (5.17)

In order to ensure that the anomalous Ward identities are satis"ed to tree order we add a term
[182]

L
!/0.

"!

b(g)
6g3Pd2h; ln(c;/S3

0
)#h.c. (5.18)

to the Lagrangian (c is an unknown constant).L
!/0.

is chosen so that under chiral transformations

;(x,h,hM )P e3*a;(x,h e~3*a@2,hM e3*a@2) (5.19)

and under scale transformations

;(x,h,hM )Pe3c;(x ec,h ec@2,hM ec@2) (5.20)

the variation of the action :d4xL
!/0.

gives precisely the required chiral, scaling and superconfor-
mal anomalies.

It is easy to see how this works. The F term of ; ln; clearly includes, among others, the term
F
U

ln u, where u is the scalar component of; and F
U

is the F-part. Under the transformations (5.19)
and (5.20) above, F

U
transforms covariantly whereas

ln uPln u#3ia (5.21)

and

ln uPln u#3c , (5.22)

respectively. Then L
!/0.

generates the anomalous terms ia(b(g)/2g3)(F
U
!Fs

U
) and c(b(g)/2g3)]

(F
U
#Fs

U
) which are just the required anomalies.

Taking the (hidden sector) gauge kinetic function in Eq. (5.8) to be

f
bc
(U)"f

G
(U)d

bc
(5.23)

we see that we may combine L
GK

and L
!/0.

to yield the non-perturbative superpotential

=I /1"1
4
f
G
(U);!(b(g)/6g3); ln(c;/S3

0
) . (5.24)
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Although we have taken proper account of the scaling and chiral anomalies, we must also
ensure that the e!ective theory is invariant under the target space modular transformations
[95,101,41,166] de"ned in Eq. (4.3):

¹
i
P

a
i
¹

i
!ib

i
ic

i
¹

i
#d

i

(i"1,2,3) (5.25)

with a
i
,b

i
, c

i
, d

i
integers satisfying

a
i
d
i
!b

i
c
i
"1 . (5.26)

Since the KaK hler potential KI in the absence of the condensate(s) already satis"es Eq. (4.9)

KI PKI #lnDic
i
¹

i
#d

i
D2 , (5.27)

we require that the additional piece K/1 arising from the condensate is modular invariant. Then
from Eq. (5.12) we infer that ;/S3

0
has modular weight !1

(;/S3
0
)P(;/S3

0
)(ic

i
¹

i
#d

i
)~1 . (5.28)

The modular invariance of

G,K#ln D=/S3
0
D2 (5.29)

requires that =/S3
0

has modular weight !1, as noted in Eq. (4.11). In general, for this to be
satis"ed by the non-perturbative contribution =/1 given in Eq. (5.24), we have to include some
further ¹

i
-dependence in=/1. It follows from Eqs. (4.161), (4.162) and (4.163) that (the holomor-

phic part of ) the gauge kinetic function is

f
G
(U)"S!

1
8p2

+
i

(b@i
G
!di

GS
)ln g2(¹

i
) , (5.30)

where the second term derives from string loop threshold corrections to the (hidden sector) gauge
group coupling constant, and the di

GS
are to cancel anomalies under the target space duality

transformations. We may write

f
G
(U)"R!

1
8p2

+
i

bi@
G

ln g2(¹
i
) , (5.31)

where

R,S#
1

8p2
+
i

di
GS

ln g2(¹
i
) . (5.32)

Then under the duality transformations, it follows from Eqs. (4.150) and (4.140) that R is invariant
and

f
G
(U)Pf

G
(U)!

1
8p2

b@i
G

ln(ic
i
¹

i
#d

i
) . (5.33)
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To ensure that =/1 has the required modular weight we replace=I /1 in Eq. (5.24) by

=/1"1
4
f
G
(U);!

b(g)
6g3
; ln[;v(¹

i
)/S3

0
] ,

where v(¹
i
) has modular weight n

i
. Then=/1/S3

0
has weight !1 provided

n
i
"1!

3g3

16p2b(g)
bi{
G
"1!3bir

G
/b

G
(5.34)

keeping only the "rst term of b(g) given in Eq. (5.4). Now

v(¹
i
)J<

i

g(¹
i
)2ni (5.35)

has weight n
i
, and Ferrara et al. [95}97] have argued that this is the unique ¹

i
dependence which

does not lead to unphysical zeros or poles in the upper-half of the i¹
i
complex plane. Thus "nally

we obtain the superpotential

=/1"
1
4

f
G
(U);!

b(g)
6g3
; lnCc;<

i

g(¹
i
)2ni/S3

0D
"

1
4
;R!

b
G

96p2
; lnCc;<

i

g(¹
i
)2/S3

0D. (5.36)

The above treatment is easily generalised to the formation of several gaugino condensates,
associated with hidden sector (non-abelian simple) gauge groups G

n
(n"1,2,p). There are then

p composite chiral super"elds ;
n
, and the non perturbative superpotential is

=/1"
p
+
n/1
G
1
4
;

n
R!

b
n

96p2
lnCcn;n

<
i

g(¹
i
)2/S3

0DH (5.37)

with b
n

determining the leading term of the beta function b
n
(g

n
) of G

n
, and the c

n
unknown

constants.
To determine whether gaugino condensation, and hence supersymmetry breaking, actually

occurs we need to calculate the e!ective potential deriving from the supergravity theory we have
obtained, and to see whether the scalar component(s) u

n
of ;

n
have non-zero values at the

minimum. This is the calculation to which we now turn.

5.3. Ewective potential

The e!ective potential in any supergravity theory is given by

<
%&&
"eG[G

A
(G~1)A

B
GB!3] , (5.38)

where

G,K#ln D=D2 (5.39)
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with K the KaK hler potential and = the superpotential, and we are keeping only the scalar
components u

A
and uH

A
of the chiral super"elds U

A
and U?

A
in terms of which K,= and =M are

de"ned. The derivatives of G are written as

GA,RG/Ru
A
, G

A
,RG/RuH

A
(5.40)

and

GA
B
,R2G/Ru

A
RuH

B
. (5.41)

Then (G~1)A
B

is the inverse of the matrix GA
B
.

In the case under consideration the chiral super"elds involved are those whose scalar compo-
nents are the dilation "eld S, de"ned in Eq. (4.36); the orbifold moduli "elds ¹

i
,;

i
, de"ned in Eqs.

(4.1) and (4.2), some of which are "xed by the point group; the condensates u
n
; and other matter

"elds ua, including Higgs "elds H
1

and H
2
. Evidently the calculation and minimization of <

%&&
in

full generality is a formidable calculation when several moduli and gauge condensates are active.
The calculation of <

%&&
in the case of a single (overall) modulus ¹, and when the dilation "eld S is

modular invariant (di
GS

"0), but with several gaugino condensates, has been done by Taylor [181].
He notes the existence of a zero-energy local, but not global, minimum, which corresponds to the
weak coupling (i.e. ReSPR) limit. In this limit<

%&&
"="0, corresponding to a supersymmetric

vacuum. This supersymmetry is not surprising. The weak coupling limit corresponds to in"nite
Planck mass, since as we have seen in Section 4 the KaK hler potential has a leading term

K&!ln(ReS) as ReSPR (5.42)

and then from Eq (5.14) we see that

m
1
PR as ReSPR . (5.43)

In this limit only global supersymmetry survives, and we have already noted that a gaugino
condensate cannot break global supersymmetry.

In this weak coupling limit the potential is minimised when

R=/R;
n
"0 , (5.44)

i.e. the global F-terms vanish. Using Eq. (5.37) we "nd that the condensate is then given by

u
n
(S,¹

i
)"

k3

c
n
e
e24p

2R@bn<
i

g(¹
i
)~2 . (5.45)

Substituting Eq. (5.45) into=/1 eliminates the dependence upon the condensate and we obtain the
`truncateda superpotential

=/1
536/#

"+
n

b
n

96p2
u
n
(R,¹

i
) (5.46)

entirely in terms of the moduli "elds. As we have said, this is a good approximation provided that
Re S is stabilised at a `largea value at the minimum of the e!ective potential. Phenomenologically
we require

(4pRe S)~1"
g2(m

453*/'
)

4p
&

1
24

(5.47)
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for coupling constant uni"cation, so SReST&2 which is not particularly large. Further, we shall
see that for a single condensate at least, the e!ective potential does not have a local minimum at
a "nite value of S [73,101,95]. So we shall assume that some other mechanism is responsible for
stabilising the dilation <E<.

In view of the complexity of minimizing the full e!ective potential, it is desirable to "nd a more
economical procedure, and the one which has received considerable attention consists of using the
truncated superpotential (5.46), in which the condensates are assumed to have the form (5.45),
rather than the full non-perturbative superpotential (5.37). The justi"cation for doing this is "rst to
note that the form (5.46)

=/1
536/#

"X(R)N<
i

g2(¹
i
) , (5.48)

where

X(R)"+
n

d
n
e24p

2R@bn (5.49)

with

d
n
"b

n
k3/96p2c

n
e"constant , (5.50)

is essentially required by the fact that =/1 must have modular weight !1. It has further been
noted [46,156,56] in the case of a single overall ¹ modulus and di

GS
"0, that for small values of

+
n
Du

n
D2/DkD6, the form (5.45) for the condensate can be deduced from the extremum conditions on the

full e!ective potential with the assumption of modular covariance. Then for

ReS'!b
n
/24p2 , (5.51)

+
n
Du

n
D2;DkD6, and it follows that the full e!ective potential is well approximated by the truncated

e!ective potential obtained using=/1
536/#

and the original (condensate-independent) KaK hler poten-
tial KI . The above condition is satis"ed for a wide range of values of ReS including the realistic case
where ReS&2.

5.3.1. Pure gauge hidden sector
For the remainder of this section we shall therefore use the truncated superpotential (5.48) and

the e!ective potential which derives from it using the KaK hler potential K.
The simplest case is when the hidden sector is a pure gauge Yang}Mills theory, i.e. there is no

hidden sector matter. Then the KaK hler potential is given in (4.154)

KI "!ln>!+
i

ln(¹
i
#¹M

i
) (5.52)

and >, given in Eq. (4.155), can be written

>"R#R!

1
8p2

+
i

di
GS

ln(¹
i
#¹M

i
)Dg(¹

i
)D4 . (5.53)
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The e!ective potential is calculated using Eqs. (5.38) and (5.39):

<
%&&
">~1<

i

(¹
i
#¹M

i
)~1Dg(¹

i
)D~4GDX!>XRD2!3DXD2

#+
i

>
>!(1/8p2)di

GS
KX!

1
8p2

di
GS

XRK
2
(¹

i
#¹M

i
)2DGK iD2H , (5.54)

where

GK i,(¹
i
#¹M

i
)~1#2g(¹

i
)~1

dg
d¹

i

(5.55)

and

XR,dX/dR . (5.56)

The hope is that this potential has a minimum at "nite values for the moduli ¹
i
and R, and that

the consequent value of > corresponds to a realistic values 2g~2
453*/'

. Unfortunately, this does not
happen generically. For a reasonable value of R (and hence >) the potential does develop
a minimum at "nite values of ¹

i
. If R is "xed, then for reasonable values and the case of a single

overall modulus ¹,¹
1
"¹

2
"¹

3
, there is always a minimum [101,68] with ¹&1.23. However,

as mentioned previously, the potential does not obviously have a minimum at a "nite value of R: in
fact for a single condensate the only stationary point of <

%&&
at "nite R is a maximum [47]. The

condition for a stationary point is R gives

(X!>XR)C2XM !+
i

>2

(>!d
i
)2

(¹
i
#¹M

i
)2DGK iD2(XM !d

i
XM RM )D!>2XRR(XM !>XM RM )

">2XRR+
i

d
i

>!di
(¹

i
#¹M

i
)2DGK iD2(XM !d

i
XM RM ) , (5.57)

where

d
i
,di

GS
/8p2 , (5.58)

XR,RX/RR, etc . (5.59)

In the case that di
GS

"0, so >"2ReR"2ReS, the above condition reduces to

(2!GI )(X!>XR)XM ">2XRR(XM !>XM RM ) , (5.60)

where

GI ,+
i

(¹
i
#¹M

i
)2DGK iD2 ,

which may be satis"ed trivially, when

X!>XR"0 , (5.61)
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or non-trivially. De Carlos et al. [47] have shown that if the trivial solution gives a reasonable
value of >, then it will always correspond to a minimum of <

%&&
, whereas the non-trivial solution is

never a minimum. Further, in the trivial case, we see by inspection that the minimum of<
%&&

occurs
at any zero of the modi"ed Eisenstein function GK i, and in particular at the "xed points ¹"1 and
e*p@6 of the modular group.

These statements are easily veri"ed for the case of a single condensate

X(R)"de~aR (5.62)

with

a"!24p2/b'0 . (5.63)

Eq. (5.61) gives

>"!1/a(0 (5.64)

an unphysical value. The non-trivial solution with >'0 is

>"J2!GI /a (5.65)

which is clearly a maximum of

<
%&&
J

e~aY
>

[(1#a>)2!3#GI ] . (5.66)

The situation is not much better when we have two or more condensates. For realistic values of >

24p2 Re R/Db
n
D<1 (5.67)

as already noted. Then the trivial (minimum) condition (5.61) reduces to

XR"0 (5.68)

or

+
n

c~1
n

e24p
2R@bn"0 . (5.69)

So for two condensates we get

1
2
>"ReR"

1
24p2A

1
b
1

!

1
b
2
B

~1
lnK

c
1

c
2
K , (5.70)

and for the unknown constants c
n
of order unity this is typically small, and therefore unrealistic.

Similar conclusions are reached for three or more condensates.
The foregoing conclusion is largely una!ected by consideration of the more realistic case with

di
GS
O0, although the complexity of Eq. (5.57) necessitates a numerical treatment. In essence, the

parameter d
i
, in which the di

GS
appears in Eq. (5.57), is generically small, so the e!ects may be

calculated perturbatively in d
i
. In any case, it is important to note that di

GS
O0 severely constrains

the formation of multiple pure gauge condensates. The reason is that any complex plane i which is
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not an N"2 plane does not contribute to the threshold corrections to the gauge coupling
constants, and consequently not to the gauge kinetic function either. So for this particular plane

bi{
n
"di

GS
(5.71)

for each gauge group G
n
. However, for a pure gauge condensate we see from Eq. (4.166) that

bi{
n
"1

3
b
n

, (5.72)

so

b
n
"b

m
,b (5.73)

for any two of the hidden sector gauge group G
n
and G

m
, since the right-hand side of Eq. (5.71) is

independent of n. Thus each of the condensates has the same exponential exp(24pR/b) and the
system e!ectively has just one condensate. This eliminates all Z

N
orbifolds from consideration,

since each of them has at least one non N"2 complex plane, as is apparent from Table 1. The
Z

M
]Z

N
models are, however, una!ected.

5.3.2. Hidden sector with matter
In view of the di$culty in stabilizing the dilaton "eld> at an acceptable value with a pure gauge

hidden sector, the natural recourse is to study the e!ects of hidden matter [156,182,56,46,157,9,134]
Then, besides the "eld strength supermultiplets=aa, with a labelling the generators of the gauge
group G, we have chiral matter multiplets Qi

m
, with m"1,2,M labelling the multiplets, and

i labelling the components of the representation of G to which Q
m

belong. We assume that for each
multiplet Qi

m
there is a chiral supermultiplet QM

mi
belonging to the complex conjugate representation

of G to which Qi
m

belongs. Then, in the strong coupling regime discussed in Section 5.1, besides the
formation of a gaugino condensate, we entertain the possible formation of chiral matter conden-
sates +

i
Sq6

mi
qi
m
T
0
O0 and bound states, just as in QCD we get mesons from quark anti-quark

bound states; in a supersymmetric theory we have also the possibility of bound squark}antisquark
states. We assume too that the charged matter "elds Qi

m
and QM

mi
are coupled to gauge singlet

super"elds A
m

by trilinear terms in the perturbative superpotential

=1%35"+
m,i

h
m
(¹

i
)A

m
Qi

m
QM

mi
(5.74)

such that the `quarksa develop non-zero masses

m
m
"h

m
(¹

i
)SA

m
T
0

(5.75)

when the gauge singlet "elds develop non-zero VEVs. The trilinear terms give a contribution

L
53
"Pd2h+

m,i

h
m
(¹

i
)A

m
Qi

m
QM

mi

to the Lagrangian.
To describe the bound states we de"ne the M gauge singlet composite chiral super"elds

<
m
,+

i

Qi
m
QM

mi
(m"1,2,M) (5.76)

which contain the squark}antisquark bilinear +
i
q8
mi

q86 i
m

as the lowest dimension [M2] components.
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In the absence of the mass terms the global symmetry of the (supersymmetric hidden sector
gauge) theory is

SU(M)
L
]SU(M)

R
];(1)

V
];(1)

A
];(1)

R
(5.77)

if the M `quarka super"elds all belong to the same representation R of G. In any case there is an
extra ;(1) symmetry compared with the non-supersymmetric case which relates to the gaugino
"eld. The chiral ;(1)

A
acts on the gaugino composite super"eld as in Eq. (5.19) and on the matter

composite super"elds <
m

as

<
m
(x,h,h)Pe2*a<

m
(x,he~3*a@2,hM e3*a@2) , (5.78)

while the ;(1)
R

symmetry acts only on the matter super"elds so

;(x,h,hM )P;(x,h,hM ) , (5.79)

<
m
(x,h,hM )Pe2*b<

m
(x,h,hM ) .

Both of the above ;(1) symmetries are broken at the quantum level by the Adler}Bell}Jackiw
anomaly. Under the chiral ;(1)

A
we get

dL
A
"!a(b/32p2)FFI (5.80)

with b de"ned in Eq. (5.3), so

b"!3c(g)#2M¹(R) (5.81)

in the case that the M `quarka super"elds are all in the representation R of G. Under the ;(1)
R

transformation

dL
R
"b(2c/32p2)FFI (5.82)

where

c"2+
m

¹(R
m
)"2M¹(R) . (5.83)

As before, we need an e!ective Lagrangian expressed in terms of the composite super"elds, which
reproduces these anomalies, and which yields an e!ective non-perturbative superpotential with the
correct modular weight (!1); the modular weight of the gaugino composite "eld is !1, as before,
and it is easy to see that the matter composite "elds <

m
/S2

0
have modular weight !2/3. Then

proceeding as before we obtain the full non-perturbative superpotential to be

=/1"
1
4
;R!

b
96p2
; lnCc;1`2c@b<

m

<~6T(R)@b
m

<
i

g2(¹
i
)/S3

0D!+
m

h
m
(¹

i
)A

m
<
m

. (5.84)

Also as before, we shall instead use the `truncateda superpotential which is obtained by eliminating
the composit super"elds ;,<

m
using

R=/R;"0"R=/R<
m

. (5.85)
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(It is unclear whether this enjoys the same numerical justi"cation as in the pure gauge case.) This
gives

<
m
"

2¹(R)
32p2

;
h
m
(¹

i
)A

m

, (5.86)

2¹(R)
32p2

;"k3A
32p2e
2¹(R)B

(b`2c)@c~b
e24p

2R@(b~c)Gc<
i

g2(¹
i
)<
m

[h
m
(¹

i
)A

m
]6T(R)@bH

~b@(b~c)

and

=/1
536/#

"

b!c
96p2

; . (5.87)

The form of the trilinear coupling (5.74) may be generalised to the form

=1%35" +
m,n,a

hamn
(¹

i
)AaQi

m
QM

ni
, (5.88)

where there are arbitrary number of gauge singlet super"elds Aa with more general couplings. The
e!ect is the replacement in =/1

536/#

<
m

h
m
(¹

i
)u

m
PdetM , (5.89)

where

M
mn
,+

a
hamn

(¹
i
)Aa (5.90)

is the `quarka mass matrix. The dependence of the Yukawa couplings h
amn

on the moduli ¹
i
is

well-understood, as we saw in Section 3. Non-trivial dependence arises only when all three of the
coupled "elds are (point group) twisted sector states.

It is also easy enough to generalize to the case when the `quarka composite "elds <
m

belong to
di!erent representations R

m
of G. However, the multi-gaugino condensate is typically di$cult to

handle. The reason is that in general the quark "eld Q
m

belongs to non-trivial representations
R

mn
of several gauge groups G

n
, just as the quark "elds in the standard model belong to non-trvial

representations of SU(3) and SU(2). Thus the di!erent gaugino condensates are coupled to each
other unless, for each m, R

mn
is non-trivial for precisely one n. In that case the quark condensate is

proportional to a single gaugino condensate, just as in the single condensate case already discussed.
To procede further we need the KaK hler potential K

m
for the matter "elds Aa. At tree graph level

we have seen in Eq. (4.79) that for untwisted matter, and for orbifolds whose point group does not
act as Z

2
in any complex plane (so the ; moduli are "xed) the matter contribution to the KaK hler

potential is

K
m
"+

i

(¹
i
#¹M

i
)~1Du

i
D2 (5.91)
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so the "elds u
i
have modular weight !1. For Z

2
planes the situation is slightly more complicated,

and for twisted matter we have seen in Section 4.5 that

K
m
"+

a
<
i

(¹
i
#¹M

i
)naiDuaD2,+

a
K(a)

m
DuaD2 , (5.92)

where the modular weights nai are model-dependent and calculable.
The e!ect of the matter condensate has been studied [156] in the simpli"ed case that there is

a single overall ¹ modulus ¹
1
"¹

2
"¹

3
"¹ and a single untwisted gauge singlet "eld A having

modular weight !1, and di
GS

"0. Then

K"!ln(S#SM )!3ln(¹#¹M !DAD2) (5.93)

and the e!ective potential is given by

<
%&&
"(S#SM )~1(¹#¹M !DAD2)~3GD(S#SM )=

S
!=D2#

1
3

(¹#¹M !DAD2)D=
A
#AM =

T
D2

#

1
3

(¹#¹M !DAD2)2K=T
!3

=
¹#¹M !DAD2K

2
!3D=D2H , (5.94)

where

=
S
,R=/RS,etc. (5.95)

In this case the truncated superpotential reduces to

=/1
536/#

JC
e24p

2R

g(¹)6bA3cD
1@(b~c)

(5.96)

and then the e!ective potential is

<
%&&
"

1
3

D=D2(S#SM )~1(¹#¹M )~3(1!DAI D2)~2G3(1!DAI D2)~1D f
S
D2#A

3c
b!cB

2
DAI D~2

#A
3b

b!cB
2
[D(¹#¹M )GK D2!1]H , (5.97)

where

DAI D2,DAD2/(¹#¹M ) (5.98)

is duality unvariant,

f
S
,1!(S#SM )

=
S
=

(5.99)

and GK is de"ned in Eq. (5.55).
As before, for the single gaugino condensate under consideration<

%&&
has no stable minimum for

the dilaton at a "nite value, so LuK st and Taylor [156] take S and f
S
as free parameters whose value

is "xed by some other mechanism. The modular invariance of <
%&&

means that the self-dual points
¹"1 and ¹"e*p@6 are stationary points, but they may be maxima, minima or saddle points
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depending on the parameters b,c and f
S
. In the case b#2c(0, <

%&&
always has a non-trivial

minimum with AI O0, so non-vanishing `quarka masses are dynamically generated, and local
supersymmetry is spontaneously broken. Further, the parameter f

S
can be "ne-tuned so that <

%&&
is

zero at this minimum; in other words the cosmological constant vanishes. Simultaneously the
compacti"cation scale is determined to be of order the Planck mass. In the case b#2c'0,
however, there is always a zero energy minimum of <

%&&
at AI "0, the condensates are zero, and

supersymmetry is unbroken; so there is no dynamical mass generation and the compacti"cation
radius is undetermined.

The continuing di$culty of stablizing the dilaton has led de Carlos, Casas and Muno8 z [46] to
study multiple gaugino condensate, with the (tacit) assumption that the matter "elds transform
non-trivially with respect to only one of the gauge groups. Again they take a single overall modulus
¹, a single gauge singlet "eld A, and di

GS
"0. Their numerical analysis indicates that <

%&&
does not

have a true minima even for two condensates. This is understood by noting that the VEV of AI ,
de"ned in Eq. (5.98), is expected to be small, since it vanishes perturbatively. Then, since the
superpotential has a power dependence of AI , see Eq. (5.96), the dominant contribution to<

%&&
in Eq.

(5.94) comes from the term proportional to D=
A
D2, except for a small region where=

A
"0. Thus

<
%&&
&1

3
(S#SM )~1(¹#¹M )~2D=

A
D2 (5.100)

which has an absolute minimum at

=
A
"0 . (5.101)

However, it is clear that this cannot be satis"ed for a single condensate of the form (5.96). The
authors note that this de"ciency can be remedied if the superpotential is augmented by a pertur-
bative contribution

=1%35"A3 (5.102)

which models the generic cubic self-interaction of the gauge singlet "elds Aa:

=1%35" +
a,b,c

hK abc(¹i
)AaAbAc . (5.103)

Then Eq. (5.101) gives

A3"
c

b!c
=/1"

c
96p2
; . (5.104)

If we now substitute back into =/1 we get an e!ective superpotential as a function of S and
¹ alone. Not surprisingly it has the form (5.48) previously derived from the requirements of
modular invariance and the consideration of anomalies

=/1Je24p
2R@bg(¹)~6 (5.105)

although the value of b is now includes contributions from the matter as well as the pure gauge
contributions. Again, of course, the dilaton cannot be stablised with a single condensate gauge
group.
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However it is now rather easy to do so with two gauge groups [56,181,145] with the unknown
constants taking values of order unity. As before, the minimum occurs at a value ¹&1.23 in all
cases [101,47], but the value of > depends upon the exact gauge groups and the representations
occupied by the hidden matter. There is no di$culty in obtaining physically reasonable values
of > [47].

5.4. Supersymmetry breaking

Spontaneous breakdown of local supersymmetry occurs when the Goldstone fermion is `eatena
by the gravitino, thereby giving it the extra degrees of freedom needed for a massive spin 3/2
particle. The supergravity Lagrangian contains a four fermion term

L
4F
"1

2
fA
bc
t

AL
pklj

bL
t

vL
ckjcR

#h.c. , (5.106)

where j
b
are the gaugino "elds of the (hidden) gauge group G, tl is the gravitino "eld, t

A
are the

fermionic components of the chiral super"elds U
A
, f

ab
(U) is the (non-minimal) gauge kinetic

function and

fA
bc
,Rf

bc
/Ru

A
. (5.107)

Evidently, if there is a gaugino condensate, the above term mixes the Goldstone fermion "eld

g"fA
bc
Sj

bL
j
cR

Tt
A

(5.108)

with the gravitino "eld. Thus, provided that the gaugino condensate and fA
bc

are non-zero at the
minimum of the e!ective potential we have been examining, the local supersymmetry is broken,
and the gravitino acquires a non-zero mass

m
3@2

"eG0@2m
1

, (5.109)

where G
0

is the value of

G"K#ln D=D2 (5.110)

at the minimum.
This conclusion is in accord with the general result that for spontaneous supersymmetry

breaking to occur the variation of at least one of the "elds in the theory must have a non-zero VEV.
The variation dt

A
of t

A
under a local supersymmetry transformation contains the terms

dt
A
"!J2eG@2(G~1)B

A
G

B
m!1

8
f
bcB

(G~1)B
A
j
b
j
c
#2 , (5.111)

where

f
bcB

,Rf
bc
/RuBH (5.112)

so again a non-zero condensate and non-minimal gauge kinetic function with f
bcB

is non-zero,
indicate a breakdown of local superstring.

This breaking of supersymmetry by the hidden sector gaugino condensate leads to soft super-
symmetry breaking in the observable sector. In particular, it is easy to see that (all) gauginos
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acquire non-zero masses, while the corresponding gauge "elds remain massless. The mass terms
derive from the following two-fermion term in the supergravity Lagrangian

L
2F
"1

4
eG@2fK

bcA
(G~1)A

B
GBjK

b
jK
c
, (5.113)

where we fK
bc

is an observable sector gauge kinetic function and jK
b

are observable sector gaugino
"elds. Thus, with a diagonal gauge kinetic function, the mass of the canonically normalised gaugino
jK
1):4

"(Re fK )1@2jK is

M"1
2
m

3@2
(Re fK

0
)~1fK

0A
(G~1

0
)A
B
GB

0
, (5.114)

where the su$x &0' indicates that the quantity is evaluated at the minimum of the e!ective potential.
Formula (5.114) gives the gaugino mass at the string scale where

(Re fK )~1"g( 2(m
453*/'

)"4pa( (m
453*/'

) . (5.115)

We may use the renormalization group equation

M(k)/a(k)"M(m
453*/'

)/a(m
453*/'

) (5.116)

to determine the gaugino mass MK (k) at the scale k. If we also use the form

=/1"X(R)N<
i

g2(¹
i
) (5.117)

for the e!ective non-perturbative potential, as discussed in the previous sections, then

MK (k)"2pa( (k)m
3@2G!>f

S
!

1
8p2

+
i

(bK i@
G
!di

GS
)

1
>!d

i

[(1!f
S
)d

i
!>](¹

i
#¹M

i
)2DGK iD2H , (5.118)

where

f
S
,1!>XR/X ,

d
i
,di

GS
/8p2. (5.119)

GK i is the (modular covariant) Eisenstein function, de"ned in Eq. (5.55), and bi@
G

and de"ned in Eq.
(4.148). In deriving Eq. (5.118) it is necessary to augment the form (5.114) in order to obtain
a modular invariant expression for the gaugino mass; in particular the term 2b@i

G
g(¹

i
)~1dg/d¹

i
which arises from fK

0Ti
is replaced by 2b@i

G
GK i.

The supersymmetry breaking also generates non-zero masses for the matter scalar "elds ua. With
the form (5.92) for the KaK hler potential, valid for small values of ua, we may expand the e!ective
potential to quadratic order in ua and read o! the scalar masses. This gives

m2ra
"<

0
#m2

3@2C1#+
i

Dd
i
(1!f

S
)!>D2

(>!d
i
)2

(¹
i
#¹M

i
)2DGK iD2niaD , (5.120)

where <
0

is the ground state energy, the cosmological constant, given by

<
0
"m2

3@2CD fSD2!3#+
i

>~1(>!d
i
)~1Dd

i
(1!f

S
)!>D2(¹

i
#¹M

i
)2DGK iD2D . (5.121)
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We have already noted that<
%&&

is minimized with values of ¹ close to the self-dual points at which
GK i is zero, and because of this the last term of both <

0
and m2ra

is generally small. Further, f
S
is zero

at the minimum in the case that di
GS

is zero, and in general f
S

too is small. It follows that

<
0
&!3m2

3@2
(5.122)

and that the scalar masses squared are generally negative

m2ra
&!2m2

3@2
, (5.123)

completely unacceptable predictions, which cast doubt on either the validity or the relevance of the
whole gaugino condensate mechanism for supersymmetry breaking.

The scalar mass problem would be solved if the cosmological constant were small, and indeed
the observed #atness of the universe on large scales supports the view that <

0
is zero, or very small.

It is worth noting, however, that in principle the cosmological constant is not necessarily the same
as the particle physics vacuum energy. The observed #atness on large scales may be an average
value of highly curved values at very small scales [40]. Nevertheless, we shall take the economical
view that <

0
is zero, and that we must therefore seek mechanisms to achieve this. In particular we

regard the philosophy of setting <
0
"0 in contradiction to the prediction (5.122) as being

unacceptable.

5.5. Cosmological constant

The vanishing of the cosmological constant <
0

evidently requires the existence of additional
matter whose contribution cancels those discussed hitherto, although we shall not attempt to
explain why this should be so when supersymmetry is broken. We assume that this extra matter
arises only in an additional term K

1
of the KaK hler potential. Then the new KaK hler potential is

K/%8"KI #K
1
(X,XM ) (5.124)

with KI as in Eq. (4.154) and

G/%8"K/%8#ln D=D2 . (5.125)

The consequence is that the e!ective potential becomes

<
%&&
"eG/%8v , (5.126)

where

v"D fRD2!3#+
i

1
>(>!d

i
)
D>!d

i
(1!fR)D2(¹i

#¹M
i
)2DGK iD2#K~1X

1X
DK

1X
D2 (5.127)

and, as before

fR"1!>XR/X , (5.128)

K
1X

"RK
1
/RX etc . (5.129)
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Evidently, we can tune the X-dependent terms to ensure that the cosmological constant vanishes
by arranging that

v
0
"0 , (5.130)

where v
0

is the value of v at the minimum of <
%&&

. With this requirement the minimum of <
%&&

is
obtained by minimising v. So for the case d

i
"0 we "nd that the ¹

i
are near the "xed point value at

which GK i is zero and fR"0.
The additional contribution to G means that the gravitino mass is now given by

m
3@2

"eG/%8
0 @2m

1
, (5.131)

but otherwise has no e!ect on the formula (5.118) for the observable sector gaugino masses.
Similarly the scalar masses are still given by (5.120) but with the cosmological constant now tuned
to zero. So

m2ra
&m2

3@2
(5.132)

which is quite acceptable, in principle.

5.6. A-terms and B-terms

The generic cubic term (4.14) in the perturbative superpotential

=1
3
"habc(¹i

)UaUbUc , (5.133)

where Ua,b,c are chiral super"elds, generates Yukawa couplings and quartic scalar couplings in the
supersymmetric "eld theory. In the presence of supersymmetry breaking e!ects, such as we are
considering, it also generates (soft), trilinear couplings of the scalar "elds ua,b,c of the form

L
3
"AabchK abcuaubuc (5.134)

and it is straightforward to calculate these; including the contribution=1 to the superpotential we
merely expand <

%&&
to third order in the scalar "elds. Then

Aabcm~1
3@2

"!fM R#+
i

>!d
i
(1!fM R)

>!d
i

(¹
i
#¹M

i
)GMK i

]C!(1#nia#nib#nic)#(¹
i
#¹M

i
)
Rlnhabc
R¹

i
D , (5.135)

where

hK abc"eK@2 <
o/a,b,c

(K(o)
m

)~1@2habc (5.136)

with K(o)
m

the KaK hler potential for the matter "eld uo, and nio its modular weight, see Eq. (5.92). It is
well-known that to avoid axions, and to break the observable sector electroweak symmetry
successfully, it is necessary to include a `k-terma

=1
2
"k

W
H

1
H

2
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bilinear in the two Higgs "elds H
1,2

into the perturbative superpotential. Then, as for the trilinear
terms, there are corresponding soft terms, bilinear in the scalar "elds, induced by the supersym-
metry-breaking hidden sector

L
2
"!B

W
k( h

1
h
2

, (5.137)

where

B
#0/$

m~1
3@2

"1!fM R(1!>k
WR)

#+
i

>!d
i
(1!fM R)

>!d
i

(¹
i
#¹M

i
)GK iC(¹i

#¹M
i
)
R lnk

W
R¹

i

#d
i

R lnk
W

RR !(1#ni
1
#ni

2
)D

(5.138)
and

k("eK@2 <
o/1,2

(K(o)
m

)~1@2k
W

(5.139)

k
W

can be calculated [6], and for the Z
6
!IIb orbifold we have

k
W
J=/1

R ln g(¹
3
)g(¹

3
/3)

R¹
3

R ln g(;
3
)g(;

3
/3)

R;
3

(5.140)

and

n3
1
"n3

2
"!1, ni

1
"ni

2
"0, iO3 . (5.141)

There is also a term [6] in the KaK hler potential

K
Z
"ZH

1
H

2
#h.c. , (5.142)

where

Z"(¹
3
#¹M

3
)~1(;

3
#;M

3
)~1 (5.143)

which generates a soft scalar bilinear term

L@
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where
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is the coe$cient of the higgsino bilinear term in the Lagrangian and
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The calculations of de Carlos et al. [47] show that a gravitino mass m
3@2

in the range
102GeV(m

3@2
(104GeV is easily obtained in models with hidden sector matter. There is
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therefore every reason to suppose that the incorporation of these supersymmetry breaking terms
into the renormalization group equations will yield a sparticle spectrum on the same scale.

5.7. Further considerations

The stabilization of the dilaton was achieved by using two or more gaugino condensates with
suitably chosen hidden sector matter content [56,181,145]. An alternative, which requires only
a single condensate has recently been proposed [57,39,173]. This utilises the observation that there
are good reasons to believe that there are sizeable stringy non-perturbative corrections to the
KaK hler potential. The e!ect is to replace the ln> term in Eq. (4.154) by a so far unknown function
P(>). Then Casas [57] has shown in several examples how P(>) can be chosen so that the dilaton is
stabilized with just a single condensate. However, it has not so far been possible to do this while
simultaneously achieving a zero cosmological constant. It is straightforward to generalize the
foregoing calculations of the supersymmetry breaking to this case [37,38].

We saw in Section 5.2 how the requirement that the non-perturbative physics preserves the
modular invariance severely constrains the form of the non-perturbative superpotential. It was
observed [68] that superpotentials involving the modular invariant function j(¹) may in principle
arise in orbifold theories with gauge non-singlet states which become massless at special values of
the moduli, although examples are lacking. j(¹) must appear in a function

H(¹)"( j!1728)m@2jn@3P( j) (5.147)

multiplying=/1 (m,n are integers and P is a polynomial)

=/1P=/1H( j) (5.148)

in order to avoid singularities in the fundamental domain

F"M¹: D¹D51, 04Im¹41N . (5.149)

This observation has been given added force recently [83,64] by the discovery that F-theory
constructions of=/1 are indeed modular forms, in fact E

8
theta functions. Although the appear-

ance of H( j) does not a!ect the stabilization of the dilaton when there is a single condensate, it
clearly does a!ect the values of the ¹

i
moduli at the minimum of<

%&&
. One interesting feature is that

mimima arise in the interior of the fundamental domain [37,38] F, whereas previously they were
on the boundary [68].

It is natural to wonder whether the minimization of <
%&&

at complex values of the moduli might
induce CP-violation via the moduli dependence of the soft supersymmetry breaking terms
[128,40,1] calculated in the previous sections, although it has been argued [77,60] that there is no
explicit CP-violation in string theory, perturbative or non-perturbative. Indeed the CP-violating
phases of the soft supersymmetry breaking A and B terms are constrained to be less than O(10~3)
by the current limit on the electric dipole moment of the neutron [40]. Thus if CP-violation does
arise in this way the challenge to string theory is to explain why these phases are so small. It is
found [37,38] that the phases are either zero or well below the experimental bounds, unless both
a non-minimal KaK hler potential, as discussed above, and the modular invariant function j(¹) is
present via the appearance of H(j) multiplying=/1. In those circumstances CP-violation compara-
ble to the current upper bounds does occur.
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6. Conclusions and outlook

The `observeda uni"cation [2] of the SU(3)]SU(2)]U(1) gauge coupling strengths of the
minimal supersymmetric extension of the standard model (MSSM) is to date the best evidence that
the low energy world really is supersymmetric. Compacti"ed string theory naturally generates an
e!ective four-dimensional supergravity } Yang Mills theory and, as we have seen in Eq. (4.155), it
requires coupling constant uni"cation at a value

a
453*/'

,g2
453*/'

/4p"(4pRe S)~1 (6.1)

determined by the dilaton S, ignoring contributions D
a
from the string loop threshold corrections

and the Green}Schwarz anomaly cancelling coe$cients di
GS

for the present. If/when we understand
the non-perturbative physics which stabilizes the dilaton "eld at a value with

SReST&2 (6.2)

the observed uni"cation with a&1/25 would also be evidence for an underlying string theory.
However, to date we have no a priori convincing theory which leads to this result. In addition (and
unlike a grand uni"ed theory, which also requires uni"cation), string theory predicts the energy
scale at which uni"cation is achieved to be

m
453*/'

K4]1017GeV (6.3)

as follows from Eq. (4.185) using the `observeda value of g
453*/'

, which is a factor of 20 or so higher
than the `observeda uni"cation scale (4.186). In Section 4.9 we discussed the feasibility of bridging
this gap using calculations of the string loop threshold corrections D

a
calculated in various orbifold

compacti"cations. Our conclusion is that it is possible that these can remove the discrepancy, but
that large values of the ¹ modulus

SRe¹T&20 (6.4)

are required to do so. However, we saw in Section 5.3 that when the ¹ modulus is stabilized by
hidden sector gaugino condensation, its value is generically of order unity, so again we have no
a priori convincing theory as to how such a large value might arise. Of course, as we noted, the
assumption that the only the matter content is that of the MSSM might be wrong, but here too we
have no a priori convincing reason for including the extra matter needed to remove the discrep-
ancy. Thus, although not conclusive, at face value the `observeda uni"cation is also the best
evidence to date that (perturbative) string theory is wrong.

We can see this another way. With six dimensions compacti"ed on a space of volume <, the
10-dimensional e!ective supergravity theory arising from heterotic string theory relates the
four-dimensional gravitational coupling G

N
and the uni"ed gauge coupling strength a

453*/'
to the

string tension a@ and the dilaton "eld u as follows:

G
N
"(a@)4e2r/64p< , (6.5)

a
453*/'

"(a@)3e2r/16p< . (6.6)
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Since e2r and < enter in the same combination in both expressions we can eliminate both and
relate the string tension, and hence the string energy scale, to the coupling strength and the Planck
mass m

P
,G~1@2

N

m
453*/'

,(a@)~1@2"1
2
a1@2
453*/'

m
P

& 1
10

m
P

(6.7)

if we use the `observeda value of the uni"ed gauge coupling. De"ning m
GUT

"a<~1@6, with
14a42p expected, it follows that

G
N
m2

GUT
"A

m
GUT
m

P
B

2
"a2e~r@3A

p
4B

1@3
a4@3
453*/'

&

a2

79
(6.8)

if we require that e2r(1, so that a perturbative treatment is justi"ed. In contrast the `observeda
uni"cation scale is

m
GUT

K3]1016GeV (6.9)

and m
P
"1.22]1019GeV, so the observed ratio is far smaller than the perturbatively predicted

lower bound. In fact to get the observed value requires

e2r&1010 (6.10)

way beyond any perturbative validity.
One possibility, therefore, is that in the real world string theory is strongly coupled, and that the

perturbative treatment underlying this review is irrelevant to particle phenomenology. Develop-
ments in the past few years have shown that what were formerly regarded as di!erent string vacua
may all be related using a web of duality transformations. (Two theories A, compacti"ed on a space
X, and B, compacti"ed on>, are `duala to each other if the physics in the common uncompacti"ed
space M is identical [10].) In particular, it has been established that the (10-dimensional) strongly
coupled E

8
]E

8
heterotic string theory, compacti"ed on a Calabi Yao threefold X, is dual to a new

11-dimensional M-theory [190,121,122], compacti"ed on X]S1/Z
2
. In the "eld theory limit

M-theory reduces to an 11-dimensional supergravity theory with two E
8

super-Yang Mills
theories on each of the (two) 10-dimensional hyperplanes corresponding to the "xed points of the
S1/Z

2
orbifold. It is beyond the scope of this review to give much detail of this. Su$ce it to say that

in this case, when the theory is compacti"ed on a Calabi Yao space of volume<, the theory relates
the four-dimensional gravitational coupling G

N
and the uni"ed gauge coupling strength a

453*/'
to

the 11-dimensional gravitational coupling i and the length R
11

"po of the orbifold interval as
follows:

G
N
"i2/8pR

11
< , (6.11)

a
453*/'

"(4pi2)2@3/< . (6.12)
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Thus de"ning m
GUT

"a<~1@6, as before, with 14a42p expected

m
11

,i~2@9"(4pa~3@2
453*/'

)1@9m
GUT

/a (6.13)

K

2.266
a

m
GUT

(6.14)

using the observed value of a, and

R~1
11

"32p2a~3@2
453*/'A

m
GUT
m

P
B

2
a~3m

GUT
(6.15)

K

0.238
a3

m
GUT

(6.16)

if we use the observed uni"cation scale. So the length scale associated with the GUT is of the same
order as, or a bit larger than, the fundamental scale m~1

11
of the 11-dimensional theory at which

uni"cation of the GUT and gravitational forces presumably occurs, and the orbifold length scale
R

11
is

R
11

&9.5a2m~1
11

(6.17)

an order of magnitude larger than the fundamental scale. In this picture, at low energies the world
is four-dimensional with gauge couplings evolving logarithmically and power law evolution of the
gravitational coupling. Around R~1

11
a "fth dimension opens up, and the power law evolution of the

gravitational coupling changes; the logarithmic evolution of the gauge couplings is una!ected since
the gauge "elds are con"ned to the walls at the "xed points of the extra dimension. Finally, at
m

GUT
the gauge couplings unify and six further dimensions open up; the theory is now 11-

dimensional and has (sixth) power evolution of the couplings. Although weakly coupled at this
scale, the gauge and gravitational couplings unify at m

11
with a value a&1. Thus, unlike the

weakly coupled heterotic string theory, analysed above, M-theory allows a consistent incorpora-
tion of the parameters associated with `observeda uni"cation.

However, there are several points which should be borne in mind. One is that M-theory does not
explain the parameters, any more than perturbative string theory did. As in the weakly coupled
heterotic string, the e!ective supergravity theory emerging from the compaci"ed M-theory has two
model independent moduli with

SReST,(1/4p)(4pi2)~2@3< , (6.18)

SRe¹T,61@3(4pi2)~1@3R
11
<1@3 . (6.19)

Using the previous formulae (6.13) and (6.15), we "nd [62]

SReST"1/g2
453*/'

&2 (6.20)

and

SRe¹T"
61@3a

453*/'
32p2 A

am
P

m
GUT
B

2
&39a2 (6.21)
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and, as before, we have no a priori convincing theory of why the moduli should have these values.
Further, it is amusing to observe that the large value required for SRe¹T would su$ce to bridge
the previously noted uni"cation gap of the weakly coupled theory, thereby dispensing with the
need for a strongly coupled theory!

Physically, the most important feature distinguishing between M-theory and the weakly coupled
string theory is that the gravitational "elds propagate in the bulk (compacti"ed) 11-dimensional
world, while the gauge and matter "elds are con"ned to the (compacti"ed) 10-dimensional
hyperplanes. One e!ect of this is that because of the variation with the extra coordinate, the
e!ective (four-dimensional) supergravities di!er at the two ends. In particular, the gauge kinetic
function of the (observable sector) E

6
gauge "elds is

f
6
"S#a¹ (6.22)

with a an integer determined by the Hodge numbers of the Calabi}Yao threefold X upon which the
theory is compacti"ed. (In the `standarda embedding the gauge connection of one of the
E
8

theories is set equal to the spin connection of X, and this breaks the gauge symmetry (in the
observable sector) to E

6
.) The (hidden sector) E

8
has gauge kinetic function

f
8
"S!a¹ . (6.23)

These expressions have a striking similarity to those

f
6,8

"S$e¹ (6.24)

which occur when the weakly coupled heterotic string is compacti"ed, with the e¹ terms arising
from the string loop threshold corrections (in the large ¹ limit) and e determined by the anomaly.
The other quantities needed to specify the e!ective supergravity theory have also been calculated
[61,167,168,154], and these may be applied straightforwardly to determine the soft supersymmetry
breaking terms. So the second point to note is that since, as we have previously observed, it is not
yet unambiguously determined that we are in the strongly coupled regime, it is important to have
calculations for both the weakly coupled case and the strongly coupled case in order to decide the
matter phenomenologically. In any case, it is already known that some features of the weakly
coupled regime (e.g. the KaK hler potential) carry across to the strongly coupled case with little or no
modi"cation, so some results from the former have a wider validity than their parentage might
indicate.

At the time of writing, the form of M-theory compacti"ed on a Calabi Yao threefold with
standard [121,122,190], and non-standard [149,155] embeddings, is known, and there are some
results for orbifold compacti"cations [170,176], with the concomitant modular symmetry groups.
For this, and all of the previously given reasons, we hope that this review of weakly coupled
orbifold compacti"cations of heterotic string theory will also be of relevance to the exciting new
developments that are now occurring.
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