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Abstract

We review the holographic correspondence between "eld theories and string/M theory, focusing on the
relation between compacti"cations of string/M theory on Anti-de Sitter spaces and conformal "eld theories.
We review the background for this correspondence and discuss its motivations and the evidence for its
correctness. We describe the main results that have been derived from the correspondence in the regime that
the "eld theory is approximated by classical or semiclassical gravity. We focus on the case of the N"4
supersymmetric gauge theory in four dimensions, but we discuss also "eld theories in other dimensions,
conformal and non-conformal, with or without supersymmetry, and in particular the relation to QCD. We
also discuss some implications for black hole physics. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 04.65.#e; 11.15.!q; 11.25.!w; 11.30.Pb; 12.38.!t
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1One could consider a string with no fermionic excitations, the so called `bosonica string. It lives in 26 dimensions and
contains tachyons, signaling an instability of the theory.

1. Introduction

1.1. General introduction and overview

The microscopic description of nature as presently understood and veri"ed by experiment
involves quantum "eld theories. All particles are excitations of some "eld. These particles are point
like and they interact locally with other particles. Even though quantum "eld theories describe
nature at the distance scales we observe, there are strong indications that new elements will be
involved at very short distances (or very high energies), distances of the order of the Planck scale.
The reason is that at those distances (or energies) quantum gravity e!ects become important. It has
not been possible to quantize gravity following the usual perturbative methods. Nevertheless, one
can incorporate quantum gravity in a consistent quantum theory by giving up the notion that
particles are point like and assuming that the fundamental objects in the theory are strings, namely
one-dimensional extended objects [1,2]. These strings can oscillate, and there is a spectrum of
energies, or masses, for these oscillating strings. The oscillating strings look like localized, particle-
like excitations to a low-energy observer. So, a single oscillating string can e!ectively give rise to
many types of particles, depending on its state of oscillation. All string theories include a particle
with zero mass and spin two. Strings can interact by splitting and joining interactions. The only
consistent interaction for massless spin two particles is that of gravity. Therefore, any string theory
will contain gravity. The structure of string theory is highly constrained. String theories do not
make sense in an arbitrary number of dimensions or on any arbitrary geometry. Flat space string
theory exists (at least in perturbation theory) only in ten dimensions. Actually, 10-dimensional
string theory is described by a string which also has fermionic excitations and gives rise to
a supersymmetric theory.1 String theory is then a candidate for a quantum theory of gravity. One
can get down to four dimensions by considering string theory on R4]M

6
where M

6
is some

six-dimensional compact manifold. Then, low-energy interactions are determined by the geometry
of M

6
.

Even though this is the motivation usually given for string theory nowadays, it is not how string
theory was originally discovered. String theory was discovered in an attempt to describe the large
number of mesons and hadrons that were experimentally discovered in the 1960s. The idea was to
view all these particles as di!erent oscillation modes of a string. The string idea described well some
features of the hadron spectrum. For example, the mass of the lightest hadron with a given spin
obeys a relation like m2&¹J2#const. This is explained simply by assuming that the mass and
angular momentum come from a rotating, relativistic string of tension ¹. It was later discovered
that hadrons and mesons are actually made of quarks and that they are described by QCD.

QCD is a gauge theory based on the group S;(3). This is sometimes stated by saying that quarks
have three colors. QCD is asymptotically free, meaning that the e!ective coupling constant
decreases as the energy increases. At low energies QCD becomes strongly coupled and it is not easy
to perform calculations. One possible approach is to use numerical simulations on the lattice. This
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is at present the best available tool to do calculations in QCD at low energies. It was suggested by 't
Hooft that the theory might simplify when the number of colors N is large [3]. The hope was that
one could solve exactly the theory with N"R, and then one could do an expansion in 1/N"1/3.
Furthermore, as explained in the next section, the diagrammatic expansion of the "eld theory
suggests that the large N theory is a free string theory and that the string coupling constant is 1/N.
If the case with N"3 is similar to the case with N"R then this explains why the string model
gave the correct relation between the mass and the angular momentum. In this way the large
N limit connects gauge theories with string theories. The 't Hooft argument, reviewed below, is very
general, so it suggests that di!erent kinds of gauge theories will correspond to di!erent string
theories. In this review we will study this correspondence between string theories and the large
N limit of "eld theories. We will see that the strings arising in the large N limit of "eld theories are
the same as the strings describing quantum gravity. Namely, string theory in some backgrounds,
including quantum gravity, is equivalent (dual) to a "eld theory.

We said above that strings are not consistent in four #at dimensions. Indeed, if one wants to
quantize a four-dimensional string theory an anomaly appears that forces the introduction of an
extra "eld, sometimes called the `Liouvillea "eld [4]. This "eld on the string worldsheet may be
interpreted as an extra dimension, so that the strings e!ectively move in "ve dimensions. One might
qualitatively think of this new "eld as the `thicknessa of the string. If this is the case, why do we say
that the string moves in "ve dimensions? The reason is that like any string theory, this theory will
contain gravity, and the gravitational theory will live in as many dimensions as the number of "elds
we have on the string. It is crucial then that the "ve-dimensional geometry is curved, so that it can
correspond to a four-dimensional "eld theory, as described in detail below.

The argument that gauge theories are related to string theories in the large N limit is very general
and is valid for basically any gauge theory. In particular we could consider a gauge theory where
the coupling does not run (as a function of the energy scale). Then, the theory is conformally
invariant. It is quite hard to "nd quantum "eld theories that are conformally invariant. In
supersymmetric theories it is sometimes possible to prove exact conformal invariance. A simple
example, which will be the main example in this review, is the supersymmetric S;(N) (or ;(N))
gauge theory in four dimensions with four spinor supercharges (N"4). Four is the maximal
possible number of supercharges for a "eld theory in four dimensions. Besides the gauge "elds
(gluons) this theory contains also four fermions and six scalar "elds in the adjoint representation of
the gauge group. The Lagrangian of such theories is completely determined by supersymmetry.
There is a global S;(4) R-symmetry that rotates the six scalar "elds and the four fermions. The
conformal group in four dimensions is SO(4, 2), including the usual PoincareH transformations as
well as scale transformations and special conformal transformations (which include the inversion
symmetry xkPxk/x2). These symmetries of the "eld theory should be re#ected in the dual string
theory. The simplest way for this to happen is if the "ve-dimensional geometry has these
symmetries. Locally there is only one space with SO(4, 2) isometries: "ve-dimensional anti-de-Sitter
space, or AdS

5
. Anti-de Sitter space is the maximally symmetric solution of Einstein's equations

with a negative cosmological constant. In this supersymmetric case we expect the strings to also be
supersymmetric. We said that superstrings move in ten dimensions. Now that we have added one
more dimension it is not surprising any more to add "ve more to get to a ten dimensional space.
Since the gauge theory has an S;(4)KSO(6) global symmetry it is rather natural that the extra
"ve-dimensional space should be a "ve sphere, S5. So, we conclude that N"4 ;(N) Yang}Mills
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theory could be the same as ten-dimensional superstring theory on AdS
5
]S5 [5]. Here we have

presented a very heuristic argument for this equivalence; later we will be more precise and give
more evidence for this correspondence.

The relationship we described between gauge theories and string theory on Anti-de-Sitter spaces
was motivated by studies of D-branes and black holes in strings theory. D-branes are solitons in
string theory [6]. They come in various dimensionalities. If they have zero spatial dimensions they
are like ordinary localized, particle-type soliton solutions, analogous to the 't Hooft}Polyakov
[7,8] monopole in gauge theories. These are called D-zero-branes. If they have one extended
dimension they are called D-one-branes or D-strings. They are much heavier than ordinary
fundamental strings when the string coupling is small. In fact, the tension of all D-branes is
proportional to 1/g

4
, where g

4
is the string coupling constant. D-branes are de"ned in string

perturbation theory in a very simple way: they are surfaces where open strings can end. These open
strings have some massless modes, which describe the oscillations of the branes, a gauge "eld living
on the brane, and their fermionic partners. If we have N coincident branes the open strings can start
and end on di!erent branes, so they carry two indices that run from one to N. This in turn implies
that the low-energy dynamics is described by a ;(N) gauge theory. D-p-branes are charged under
(p#1)-form gauge potentials, in the same way that a 0-brane (particle) can be charged under
a one-form gauge potential (as in electromagnetism). These (p#1)-form gauge potentials have
(p#2)-form "eld strengths, and they are part of the massless closed string modes, which belong to
the supergravity (SUGRA) multiplet containing the massless "elds in #at space string theory
(before we put in any D-branes). If we now add D-branes they generate a #ux of the corresponding
"eld strength, and this #ux in turn contributes to the stress energy tensor so the geometry becomes
curved. Indeed it is possible to "nd solutions of the supergravity equations carrying these #uxes.
Supergravity is the low-energy limit of string theory, and it is believed that these solutions may be
extended to solutions of the full string theory. These solutions are very similar to extremal charged
black hole solutions in general relativity, except that in this case they are black branes with
p extended spatial dimensions. Like black holes they contain event horizons.

If we consider a set of N coincident D-3-branes the near horizon geometry turns out to be
AdS

5
]S5. On the other hand, the low-energy dynamics on their worldvolume is governed by

a ;(N) gauge theory with N"4 supersymmetry [9]. These two pictures of D-branes are
perturbatively valid for di!erent regimes in the space of possible coupling constants. Perturbative
"eld theory is valid when g

4
N is small, while the low-energy gravitational description is pertur-

batively valid when the radius of curvature is much larger than the string scale, which turns out to
imply that g

4
N should be very large. As an object is brought closer and closer to the black brane

horizon its energy measured by an outside observer is redshifted, due to the large gravitational
potential, and the energy seems to be very small. On the other hand low-energy excitations on the
branes are governed by the Yang}Mills theory. So, it becomes natural to conjecture that
Yang}Mills theory at strong coupling is describing the near horizon region of the black brane,
whose geometry is AdS

5
]S5. The "rst indications that this is the case came from calculations of

low-energy graviton absorption cross sections [10}12]. It was noticed there that the calculation
done using gravity and the calculation done using super Yang}Mills theory agreed. These
calculations, in turn, were inspired by similar calculations for coincident D1}D5 branes. In this
case the near horizon geometry involves AdS

3
]S3 and the low-energy "eld theory living on the

D-branes is a (1#1)-dimensional conformal "eld theory. In this D1}D5 case there were numerous
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calculations that agreed between the "eld theory and gravity. First black hole entropy for extremal
black holes was calculated in terms of the "eld theory in [13], and then agreement was shown for
near extremal black holes [14,15] and for absorption cross sections [16}18]. More generally, we
will see that correlation functions in the gauge theory can be calculated using the string theory
(or gravity for large g

4
N) description, by considering the propagation of particles between di!erent

points in the boundary of AdS, the points where operators are inserted [19,20].
Supergravities on AdS spaces were studied very extensively; see [21,22] for reviews.
One of the main points of this review will be that the strings coming from gauge theories are very

much like the ordinary superstrings that have been studied during the last 20 years. The only
particular feature is that they are moving on a curved geometry (anti-de Sitter space) which has
a boundary at spatial in"nity. The boundary is at an in"nite spatial distance, but a light ray can go
to the boundary and come back in "nite time. Massive particles can never get to the boundary. The
radius of curvature of anti-de Sitter space depends on N so that large N corresponds to a large
radius of curvature. Thus, by taking N to be large we can make the curvature as small as we want.
The theory in AdS includes gravity, since any string theory includes gravity. So in the end we claim
that there is an equivalence between a gravitational theory and a "eld theory. However, the
mapping between the gravitational and "eld theory degrees of freedom is quite non-trivial since the
"eld theory lives in a lower dimension. In some sense the "eld theory (or at least the set of local
observables in the "eld theory) lives on the boundary of spacetime. One could argue that in general
any quantum gravity theory in AdS de"nes a conformal "eld theory (CFT) `on the boundarya.
In some sense the situation is similar to the correspondence between three dimensional
Chern}Simons theory and a WZW model on the boundary [23]. This is a topological theory in
three dimensions that induces a normal (non-topological) "eld theory on the boundary. A theory
which includes gravity is in some sense topological since one is integrating over all metrics and
therefore the theory does not depend on the metric. Similarly, in a quantum gravity theory we do
not have any local observables. Notice that when we say that the theory includes `gravity on AdSa
we are considering any "nite energy excitation, even black holes in AdS. So this is really a sum over
all spacetimes that are asymptotic to AdS at the boundary. This is analogous to the usual #at space
discussion of quantum gravity, where asymptotic #atness is required, but the spacetime could
have any topology as long as it is asymptotically #at. The asymptotically AdS case as well as the
asymptotically #at cases are special in the sense that one can choose a natural time and an
associated Hamiltonian to de"ne the quantum theory. Since black holes might be present this time
coordinate is not necessarily globally well-de"ned, but it is certainly well-de"ned at in"nity. If we
assume that the conjecture we made above is valid, then the ;(N) Yang}Mills theory gives
a non-perturbative de"nition of string theory on AdS. And, by taking the limit NPR, we can
extract the (ten-dimensional string theory) #at space physics, a procedure which is in principle (but
not in detail) similar to the one used in matrix theory [24].

The fact that the "eld theory lives in a lower-dimensional space blends in perfectly with some
previous speculations about quantum gravity. It was suggested [25,26] that quantum gravity
theories should be holographic, in the sense that physics in some region can be described by
a theory at the boundary with no more than one degree of freedom per Planck area. This
`holographica principle comes from thinking about the Bekenstein bound which states that the
maximum amount of entropy in some region is given by the area of the region in Planck units [27].
The reason for this bound is that otherwise black hole formation could violate the second law of
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thermodynamics. We will see that the correspondence between "eld theories and string theory on
AdS space (including gravity) is a concrete realization of this holographic principle.

The review is organized as follows.
In the rest of the introductory chapter, we present background material. In Section 1.2, we

present the 't Hooft large N limit and its indication that gauge theories may be dual to string
theories. In Section 1.3, we review the p-brane supergravity solutions. We discuss D-branes, their
worldvolume theory and their relation to the p-branes. We discuss greybody factors and their
calculation for black holes built out of D-branes.

In Section 2, we review conformal "eld theories and AdS spaces. In Section 2.1, we give a brief
description of conformal "eld theories. In Section 2.2, we summarize the geometry of AdS spaces
and gauged supergravities.

In Section 3, we `derivea the correspondence between supersymmetric Yang}Mills theory and
string theory on AdS

5
]S5 from the physics of D3-branes in string theory. We de"ne, in Section 3.1,

the correspondence between "elds in the string theory and operators of the conformal "eld theory
and the prescription for the computation of correlation functions. We also point out that the
correspondence gives an explicit holographic description of gravity. In Section 3.2, we review the
direct tests of the duality, including matching the spectrum of chiral primary operators and some
correlation functions and anomalies. Computation of correlation functions is reviewed in Section
3.3. The isomorphism of the Hilbert spaces of string theory on AdS spaces and of CFTs is described
in Section 3.4. We describe how to introduce Wilson loop operators in Section 3.5. In Section 3.6,
we analyze "nite temperature theories and the thermal phase transition.

In Section 4, we review other topics involving AdS
5
. In Section 4.1, we consider some other gauge

theories that arise from D-branes at orbifolds, orientifolds, or conifold points. In Section 4.2, we
review how baryons and instantons arise in the string theory description. In Section 4.3, we study
some deformations of the CFT and how they arise in the string theory description.

In Section 5, we describe a similar correspondence involving (1#1)-dimensional CFTs and
AdS

3
spaces. We also describe the relation of these results to black holes in "ve dimensions.

In Section 6, we consider other examples of the AdS/CFT correspondence as well as non
conformal and non supersymmetric cases. In Section 6.1, we analyze the M2 and M5 branes
theories, and go on to describe situations that are not conformal, realized on the worldvolume of
various Dp-branes, and the `little string theoriesa on the worldvolume of NS 5-branes. In Section
6.2, we describe an approach to studying theories that are con"ning and have a behavior similar to
QCD in three and four dimensions. We discuss con"nement, h-vacua, the mass spectrum and other
dynamical aspects of these theories.

Finally, the last section is devoted to a summary and discussion.
Other reviews of this subject are [28}31].

1.2. Large N gauge theories as string theories

The relation between gauge theories and string theories has been an interesting topic of research
for over three decades. String theory was originally developed as a theory for the strong interac-
tions, due to various string-like aspects of the strong interactions, such as con"nement and Regge
behavior. It was later realized that there is another description of the strong interactions, in terms
of an S;(3) gauge theory (QCD), which is consistent with all experimental data to date. However,
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while the gauge theory description is very useful for studying the high-energy behavior of the strong
interactions, it is very di$cult to use it to study low-energy issues such as con"nement and chiral
symmetry breaking (the only current method for addressing these issues in the full non-Abelian
gauge theory is by numerical simulations). In the last few years many examples of the phenomenon
generally known as `dualitya have been discovered, in which a single theory has (at least) two
di!erent descriptions, such that when one description is weakly coupled the other is strongly
coupled and vice versa (examples of this phenomenon in two-dimensional "eld theories have been
known for many years). One could hope that a similar phenomenon would apply in the theory of the
strong interactions, and that a `duala description of QCD exists which would be more appropriate
for studying the low-energy regime where the gauge theory description is strongly coupled.

There are several indications that this `duala description could be a string theory. QCD has in it
string-like objects which are the #ux tubes or Wilson lines. If we try to separate a quark from an
anti-quark, a #ux tube forms between them (if t is a quark "eld, the operator tM (0)t(x) is not
gauge-invariant but the operator tM (0)P exp(i:x

0
Ak dxk)t(x) is gauge-invariant). In many ways these

#ux tubes behave like strings, and there have been many attempts to write down a string theory
describing the strong interactions in which the #ux tubes are the basic objects. It is clear that such
a stringy description would have many desirable phenomenological attributes since, after all, this is
how string theory was originally discovered. The most direct indication from the gauge theory that
it could be described in terms of a string theory comes from the 't Hooft large N limit [3], which we
will now describe in detail.

Yang}Mills (YM) theories in four dimensions have no dimensionless parameters, since the gauge
coupling is dimensionally transmuted into the QCD scale K

QCD
(which is the only mass scale in

these theories). Thus, there is no obvious perturbation expansion that can be performed to learn
about the physics near the scale K

QCD
. However, an additional parameter of S;(N) gauge theories

is the integer number N, and one may hope that the gauge theories may simplify at large N (despite
the larger number of degrees of freedom), and have a perturbation expansion in terms of the
parameter 1/N. This turns out to be true, as shown by 't Hooft based on the following analysis
(reviews of large N QCD may be found in [32,33]).

First, we need to understand how to scale the coupling g
YM

as we take NPR. In an
asymptotically free theory, like pure YM theory, it is natural to scale g

YM
so that K

QCD
remains

constant in the large N limit. The beta function equation for pure S;(N) YM theory is

k
dg

YM
dk

"!

11
3

N
g3
YM

16p2
#O(g5

YM
) , (1.1)

so the leading terms are of the same order for large N if we take NPR while keeping j,g2
YM

N
"xed (one can show that the higher order terms are also of the same order in this limit). This is
known as the 't Hooft limit. The same behavior is valid if we include also matter "elds (fermions or
scalars) in the adjoint representation, as long as the theory is still asymptotically free. If the theory
is conformal, such as theN"4 SYM theory which we will discuss in detail below, it is not obvious
that the limit of constant j is the only one that makes sense, and indeed we will see that other limits,
in which jPR, are also possible. However, the limit of constant j is still a particularly interesting
limit and we will focus on it in the remainder of this section.

Instead of focusing just on the YM theory, let us describe a general theory which has some
"elds Ua

i
, where a is an index in the adjoint representation of S;(N), and i is some label of the "eld
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(a spin index, a #avor index, etc.). Some of these "elds can be ghost "elds (as will be the case in
gauge theory). We will assume that as in the YM theory (and in the N"4 SYM theory), the
3-point vertices of all these "elds are proportional to g

YM
, and the 4-point functions to g2

YM
, so the

Lagrangian is of the schematic form

L&Tr(dU
i
dU

i
)#g

YM
cijkTr(U

i
U

j
U

k
)#g2

YM
dijklTr(U

i
U

j
U

k
U

l
) , (1.2)

for some constants cijk and dijkl (where we have assumed that the interactions are S;(N)-invariant;
mass terms can also be added and do not change the analysis). Rescaling the "elds by UI

i
,g

YM
U

i
,

the Lagrangian becomes

L&

1
g2
YM

[Tr(dUI
i
dUI

i
)#cijkTr(UI

i
UI

j
UI

k
)#dijklTr(UI

i
UI

j
UI

k
UI

l
)] , (1.3)

with a coe$cient of 1/g2
YM

"N/j in front of the whole Lagrangian.
Now, we can ask what happens to correlation functions in the limit of large N with constant j.

Naively, this is a classical limit since the coe$cient in front of the Lagrangian diverges, but in fact
this is not true since the number of components in the "elds also goes to in"nity in this limit. We
can write the Feynman diagrams of the theory (1.3) in a double-line notation, in which an adjoint
"eld Ua is represented as a direct product of a fundamental and an anti-fundamental "eld, Ui

j
, as in

Fig. (1.1). The interaction vertices we wrote are all consistent with this sort of notation. The
propagators are also consistent with it in a;(N) theory; in an S;(N) theory there is a small mixing
term

SUi
j
Uk

l
TJAdi

l
dj
k
!

1
N

di
j
dk
lB , (1.4)

which makes the expansion slightly more complicated, but this involves only subleading terms in
the large N limit so we will neglect this di!erence here. Ignoring the second term the propagator for
the adjoint "eld is (in terms of the index structure) like that of a fundamental}anti-fundamental
pair. Thus, any Feynman diagram of adjoint "elds may be viewed as a network of double lines. Let
us begin by analyzing vacuum diagrams (the generalization to adding external "elds is simple and
will be discussed below). In such a diagram we can view these double lines as forming the edges in
a simplicial decomposition (for example, it could be a triangulation) of a surface, if we view each
single-line loop as the perimeter of a face of the simplicial decomposition. The resulting surface will
be oriented since the lines have an orientation (in one direction for a fundamental index and in the
opposite direction for an anti-fundamental index). When we compactify space by adding a point at
in"nity, each diagram thus corresponds to a compact, closed, oriented surface.

What is the power of N and j associated with such a diagram? From the form of (1.3) it is clear
that each vertex carries a coe$cient proportional to N/j, while propagators are proportional to
j/N. Additional powers of N come from the sum over the indices in the loops, which gives a factor
of N for each loop in the diagram (since each index has N possible values). Thus, we "nd that
a diagram with < vertices, E propagators ("edges in the simplicial decomposition) and F loops
("faces in the simplicial decomposition) comes with a coe$cient proportional to

NV~E`FjE~V"NsjE~V , (1.5)
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Fig. 1.1. Some diagrams in a "eld theory with adjoint "elds in the standard representation (on the left) and in the double
line representation (on the right). The dashed lines are propagators for the adjoint "elds, the small circles represent
interaction vertices, and solid lines carry indices in the fundamental representation.

2We are discussing here only connected diagrams, for disconnected diagrams we have similar contributions from each
connected component.

3 In the conformal case, where j is a free parameter, there is actually a freedom of choosing the string coupling constant
to be 1/N times any function of j without changing the form of the expansion, and this will be used below.

where s,<!E#F is the Euler character of the surface corresponding to the diagram. For
closed oriented surfaces, s"2!2g where g is the genus (the number of handles) of the surface.2
Thus, the perturbative expansion of any diagram in the "eld theory may be written as a double
expansion of the form

=
+
g/0

N2~2g
=
+
i/0

c
g,i

ji"
=
+
g/0

N2~2gf
g
(j), (1.6)

where f
g
is some polynomial in j (in an asymptotically free theory the j-dependence will turn into

some K
QCD

-dependence but the general form is similar; infrared divergences could also lead to the
appearance of terms which are not integer powers of j). In the large N limit we see that any
computation will be dominated by the surfaces of maximal s or minimal genus, which are surfaces
with the topology of a sphere (or equivalently a plane). All these planar diagrams will give
a contribution of order N2, while all other diagrams will be suppressed by powers of 1/N2. For
example, the "rst diagram in Fig. 1.1 is planar and proportional to N2~3`3"N2, while the second
one is not and is proportional to N4~6`2"N0. We presented our analysis for a general theory, but
in particular it is true for any gauge theory coupled to adjoint matter "elds, like the N"4 SYM
theory. The rest of our discussion will be limited mostly to gauge theories, where only gauge-
invariant (S;(N)-invariant) objects are usually of interest.

The form of the expansion (1.6) is the same as one "nds in a perturbative theory with closed
oriented strings, if we identify 1/N as the string coupling constant.3 Of course, we do not really see
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any strings in the expansion, but just diagrams with holes in them; however, one can hope that in
a full non-perturbative description of the "eld theory the holes will `closea and the surfaces of the
Feynman diagrams will become actual closed surfaces. The analogy of (1.6) with perturbative string
theory is one of the strongest motivations for believing that "eld theories and string theories are
related, and it suggests that this relation would be more visible in the large N limit where the dual
string theory may be weakly coupled. However, since the analysis was based on perturbation
theory which generally does not converge, it is far from a rigorous derivation of such a relation, but
rather an indication that it might apply, at least for some "eld theories (there are certainly also
e!ects like instantons which are non-perturbative in the 1/N expansion, and an exact matching
with string theory would require a matching of such e!ects with non-perturbative e!ects in string
theory).

The fact that 1/N behaves as a coupling constant in the large N limit can also be seen directly in
the "eld theory analysis of the 't Hooft limit. While we have derived the behavior (1.6) only for
vacuum diagrams, it actually holds for any correlation function of a product of gauge-invariant
"elds S<n

j/1
G

j
T such that each G

j
cannot be written as a product of two gauge-invariant "elds (for

instance, G
j
can be of the form (1/N)Tr(<

i
U

i
)). We can study such a correlation function by adding

to the action SPS#N+g
j
G

j
, and then, if = is the sum of connected vacuum diagrams we

discussed above (but now computed with the new action),

T
n
<
j/1

G
jU"(iN)~n[Rn=/<n

j/1
Rg

j
]
gj/0

. (1.7)

Our analysis of the vacuum diagrams above holds also for these diagrams, since we put in
additional vertices with a factor of N, and, in the double-line representation, each of the operators
we inserted becomes a vertex of the simplicial decomposition of the surface (this would not be true
for operators which are themselves products, and which would correspond to more than one
vertex). Thus, the leading contribution to S<n

j/1
G

j
T will come from planar diagrams with

n additional operator insertions, leading to

T
n
<
j/1

G
jUJN2~n (1.8)

in the 't Hooft limit. We see that (in terms of powers of N) the 2-point functions of the G
j
's come out

to be canonically normalized, while 3-point functions are proportional to 1/N, so indeed 1/N is the
coupling constant in this limit (higher genus diagrams do not a!ect this conclusion since they just
add higher-order terms in 1/N). In the string theory analogy, the operators G

j
would become vertex

operators inserted on the string world-sheet. For asymptotically free con"ning theories (like QCD)
one can show that in the large N limit they have an in"nite spectrum of stable particles with rising
masses (as expected in a free string theory). Many additional properties of the large N limit are
discussed in [34,32] and other references.

The analysis we did of the 't Hooft limit for S;(N) theories with adjoint "elds can easily be
generalized to other cases. Matter in the fundamental representation appears as single-line
propagators in the diagrams, which correspond to boundaries of the corresponding surfaces. Thus,
if we have such matter we need to sum also over surfaces with boundaries, as in open string
theories. For SO(N) or ;Sp(N) gauge theories we can represent the adjoint representation as
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a product of two fundamental representations (instead of a fundamental and an anti-fundamental
representation), and the fundamental representation is real, so no arrows appear on the propaga-
tors in the diagram, and the resulting surfaces may be non-orientable. Thus, these theories seem to
be related to non-orientable string theories [35]. We will not discuss these cases in detail here, some
of the relevant aspects will be discussed in Section 4.1.2 below.

Our analysis thus far indicates that gauge theories may be dual to string theories with
a coupling proportional to 1/N in the 't Hooft limit, but it gives no indication as to precisely
which string theory is dual to a particular gauge theory. For two-dimensional gauge theories
much progress has been made in formulating the appropriate string theories [36}43], but for
four dimensional gauge theories there was no concrete construction of a corresponding string
theory before the results reported below, since the planar diagram expansion (which corresponds to
the free string theory) is very complicated. Various direct approaches towards constructing the
relevant string theory were attempted, many of which were based on the loop equations [44] for
the Wilson loop observables in the "eld theory, which are directly connected to a string-type
description.

Attempts to directly construct a string theory equivalent to a four dimensional gauge theory
are plagued with the well-known problems of string theory in four dimensions (or generally below
the critical dimension). In particular, additional "elds must be added on the worldsheet beyond the
four embedding coordinates of the string to ensure consistency of the theory. In the standard
quantization of four-dimensional string theory an additional "eld called the Liouville "eld arises
[4], which may be interpreted as a "fth space}time dimension. Polyakov has suggested [45,46] that
such a "ve dimensional string theory could be related to four-dimensional gauge theories if the
couplings of the Liouville "eld to the other "elds take some speci"c forms. As we will see, the
AdS/CFT correspondence realizes this idea, but with "ve additional dimensions (in addition to the
radial coordinate on AdS which can be thought of as a generalization of the Liouville "eld), leading
to a standard (critical) ten-dimensional string theory.

1.3. Black p-branes

The recent insight into the connection between large N "eld theories and string theory has
emerged from the study of p-branes in string theory. The p-branes were originally found as classical
solutions to supergravity, which is the low-energy limit of string theory. Later it was pointed out by
Polchinski that D-branes give their full string theoretical description. Various comparisons of the
two descriptions led to the discovery of the AdS/CFT correspondence.

1.3.1. Classical solutions
String theory has a variety of classical solutions corresponding to extended black holes [47}57].

Complete descriptions of all possible black hole solutions would be beyond the scope of this review,
and we will discuss here only illustrative examples corresponding to parallel Dp branes. For a more
extensive review of extended objects in string theory, see [58,59].

Let us consider type II string theory in ten dimensions, and look for a black hole solution
carrying electric charge with respect to the Ramond}Ramond (R}R) (p#1)-form A

p`1
[48,53,56].

In type IIA (IIB) theory, p is even (odd). The theory contains also magnetically charged (6!p)-
branes, which are electrically charged under the dual dA

7~p
"*dA

p`1
potential. Therefore, R}R
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charges have to be quantized according to the Dirac quantization condition. To "nd the solution,
we start with the low-energy e!ective action in the string frame,

S"
1

(2p)7l8
4
Pd10xJ!gAe~2((R#4(+/)2)!

2
(8!p)!

F2
p`2B , (1.9)

where l
4
is the string length, related to the string tension (2pa@)~1 as a@"l2

4
, and F

p`2
is the "eld

strength of the (p#1)-form potential, F
p`2

"dA
p`1

. In the self-dual case of p"3, we work
directly with the equations of motion. We then look for a solution corresponding to a p-
dimensional electric source of charge N for A

p`1
, by requiring the Euclidean symmetry ISO(p) in

p-dimensions:

ds2"ds2
10~p

#ea
p
+
i/1

dxidxi . (1.10)

Here ds2
10~p

is a Lorentzian-signature metric in (10!p)-dimensions. We also assume that the
metric is spherically symmetric in (10!p) dimensions with the R}R source at the origin,

P
S
8~p

HF
p`2

"N , (1.11)

where S8~p is the (8!p)-sphere surrounding the source. By using the Euclidean symmetry ISO(p),
we can reduce the problem to the one of "nding a spherically symmetric charged black hole
solution in (10!p) dimensions [48,53,56]. The resulting metric, in the string frame, is given by

ds2"!

f
`

(o)

Jf
~

(o)
dt2#Jf

~
(o)

p
+
i/1

dxidxi#
f
~
(o)~1@2~(5~p)@(7~p)

f
`
(o)

do2

#r2f
~
(o)

1
2~(5~p)@(7~p)d)2

8~p
, (1.12)

with the dilaton "eld,

e~2("g~2
4

f
~

(o)~(p~3)@2 , (1.13)

where

f
B

(o)"1!A
r
B
o B

7~p
, (1.14)

and g
4
is the asymptotic string coupling constant. The parameters r

`
and r

~
are related to the mass

M (per unit volume) and the RR charge N of the solution by

M"

1
(7!p)(2p)7d

p
l8
P

((8!p)r7~p
`

!r7~p
~

), N"

1
d
p
g
4
l7~p
4

(r
`

r
~

)(7~p)@2 , (1.15)

where l
P
"g1@4

4
l
4
is the 10-dimensional Planck length and d

p
is a numerical factor,

d
p
"25~pp(5~p)@2CA

7!p
2 B . (1.16)
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4This is the case for p(6. For p"6, the singularity is time like as one can see from the fact that it can be lifted to the
Kaluza}Klein monopole in 11 dimensions.

The metric in the Einstein frame, (gE)kl, is de"ned by multiplying the string frame metric gkl by
Jg

4
e~( in (1.9), so that the action takes the standard Einstein}Hilbert form,

S"
1

(2p)7l8
P
Pd10xJ!gE(RE!1

2
(+/)2#2) . (1.17)

The Einstein frame metric has a horizon at o"r
`

. For p46, there is also a curvature singularity
at o"r

~
. When r

`
'r

~
, the singularity is covered by the horizon and the solution can be

regarded as a black hole. When r
`
(r

~
, there is a time like naked singularity and the Cauchy

problem is not well-posed.
The situation is subtle in the critical case r

`
"r

~
. If pO3, the horizon and the singularity

coincide and there is a `nulla singularity.4 Moreover, the dilaton either diverges or vanishes at
o"r

`
. This singularity, however, is milder than in the case of r

`
(r

~
, and the supergravity

description is still valid up to a certain distance from the singularity. The situation is much better
for p"3. In this case, the dilaton is constant. Moreover, the o"r

`
surface is regular even when

r
`
"r

~
, allowing a smooth analytic extension beyond o"r

`
[60].

According to (1.15), for a "xed value of N, the mass M is an increasing function of r
`

. The
condition r

`
5r

~
for the absence of the time like naked singularity therefore translates into an

inequality between the mass M and the R}R charge N, of the form

M5

N
(2p)pg

4
lp`1
4

. (1.18)

The solution whose mass M is at the lower bound of this inequality is called an extremal p-brane.
On the other hand, when M is strictly greater than that, we have a non-extremal black p-brane. It is
called black since there is an event horizon for r

`
'r

~
. The area of the black hole horizon goes to

zero in the extremal limit r
`
"r

~
. Since the extremal solution with pO3 has a singularity, the

supergravity description breaks down near o"r
`

and we need to use the full string theory. The
D-brane construction discussed below will give exactly such a description. The inequality (1.18) is
also the BPS bound with respect to the 10-dimensional supersymmetry, and the extremal solution
r
`
"r

~
preserves one half of the supersymmetry in the regime where we can trust the supergravity

description. This suggests that the extremal p-brane is a ground state of the black p-brane for
a given charge N.

The extremal limit r
`
"r

~
of the solution (1.12) is given by

ds2"Jf
`
(o)A!dt2#

p
+
i/1

dxidxiB#f
`

(o)~3@2~(5~p)@(7~p)do2

#o2f
`

(o)12~(5~p)@(7~p)d)2
8~p

. (1.19)

In this limit, the symmetry of the metric is enhanced from the Euclidean group ISO(p) to
the PoincareH group ISO(p, 1). This "ts well with the interpretation that the extremal solution
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corresponds to the ground state of the black p-brane. To describe the geometry of the extremal
solution outside of the horizon, it is often useful to de"ne a new coordinate r by

r7~p,o7~p!r7~p
`

, (1.20)

and introduce the isotropic coordinates, ra"rha (a"1,2, 9!p; +
a
(ha)2"1). The metric and the

dilaton for the extremal p-brane are then written as

ds2"
1

JH(r)A!dt2#
p
+
i/1

dxidxiB#JH(r)
9~p
+
a/1

dradra , (1.21)

e("g
4
H(r)(3~p)@4 , (1.22)

where

H(r)"
1

f
`
(o)

"1#
r7~p
`

r7~p
, r7~p

`
"d

p
g
4
Nl7~p

4
. (1.23)

The horizon is now located at r"0.
In general, (1.21) and (1.22) give a solution to the supergravity equations of motion for any

function H(r) which is a harmonic function in the (9!p) dimensions which are transverse to the
p-brane. For example, we may consider a more general solution, of the form

H(r)"1#
k
+
i/1

r7~p
(i)`

Dr!r
i
D7~p

, r7~p
(i)`

"d
p
g
4
N

i
l7~p
4

. (1.24)

This is called a multi-centered solution and represents parallel extremal p-branes located at
k di!erent locations, r"r

i
(i"1,2, k), each of which carries N

i
units of the R}R charge.

So far we have discussed the black p-brane using the classical supergravity. This description is
appropriate when the curvature of the p-brane geometry is small compared to the string scale, so
that stringy corrections are negligible. Since the strength of the curvature is characterized by r

`
,

this requires r
`
<l

4
. To suppress string loop corrections, the e!ective string coupling e( also needs

to be kept small. When p"3, the dilaton is constant and we can make it small everywhere in the
3-brane geometry by setting g

4
(1, namely l

P
(l

4
. If g

4
'1 we might need to do an S-duality,

g
4
P1/g

4
, "rst. Moreover, in this case it is known that the metric (1.21) can be analytically extended

beyond the horizon r"0, and that the maximally extended metric is geodesically complete and
without a singularity [60]. The strength of the curvature is then uniformly bounded by r~2

`
. To

summarize, for p"3, the supergravity approximation is valid when

l
P
(l

4
;r

`
. (1.25)

Since r
`

is related to the R}R charge N as

r7~p
`

"d
1
g
4
Nl7~p

4
, (1.26)

this can also be expressed as

1;g
4
N(N . (1.27)

For pO3, the metric is singular at r"0, and the supergravity description is valid only in a limited
region of the space time.
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Fig. 1.2. (a) The D-brane is where open strings can end. (b) The D-brane is a source of closed strings.

5There is a potential +
I,J

Tr[UI,UJ]2 for the scalar "elds, so expectation values of the matrices UI (I"1,2, 9!p)
minimizing the potential are simultaneously diagonalizable.

1.3.2. D-branes
Alternatively, the extremal p-brane can be described as a D-brane. For a review of D-branes, see

[61]. The Dp-brane is a (p#1)-dimensional hyperplane in space time where an open string can
end. By the worldsheet duality, this means that the D-brane is also a source of closed strings
(see Fig. 1.2). In particular, it can carry the R}R charges. It was shown in [6] that, if we put
N Dp-branes on top of each other, the resulting (p#1)-dimensional hyperplane carries exactly
N units of the (p#1)-form charge. On the worldsheet of a type II string, the left-moving degrees of
freedom and the right-moving degrees of freedom carry separate space time supercharges. Since the
open string boundary condition identi"es the left and right movers, the D-brane breaks at least
one-half of the space time supercharges. In type IIA (IIB) string theory, precisely one-half of the
supersymmetry is preserved if p is even (odd). This is consistent with the types of R}R charges that
appear in the theory. Thus, the Dp-brane is a BPS object in string theory which carries exactly the
same charge as the black p-brane solution in supergravity.

It is believed that the extremal p-brane in supergravity and the Dp-brane are two di!erent
descriptions of the same object. The D-brane uses the string worldsheet and, therefore, is a good
description in string perturbation theory. When there are N D-branes on top of each other, the
e!ective loop expansion parameter for the open strings is g

4
N rather than g

4
, since each open string

boundary loop ending on the D-branes comes with the Chan}Paton factor N as well as the string
coupling g

4
. Thus, the D-brane description is good when g

4
N;1. This is complementary to the

regime (1.27) where the supergravity description is appropriate.
The low-energy e!ective theory of open strings on the Dp-brane is the ;(N) gauge theory in

(p#1) dimensions with 16 supercharges [9]. The theory has (9!p) scalar "elds U in the adjoint
representation of ;(N). If the vacuum expectation value SUT has k distinct eigenvalues,5 with
N

1
identical eigenvalues /

1
, N

2
identical eigenvalues /

2
and so on, the gauge group ;(N) is

broken to ;(N
1
)]2];(N

k
). This corresponds to the situation when N

1
D-branes are at

r
1
"/

1
l2
4
, N

2
Dp-branes are at r

2
"/

2
l2
4
, and so on. In this case, there are massive=-bosons for

the broken gauge groups. The =-boson in the bi-fundamental representation of ;(N
i
)];(N

j
)

O. Aharony et al. / Physics Reports 323 (2000) 183}386 199



comes from the open string stretching between the D-branes at r
i
and r

j
, and the mass of the

W-boson is proportional to the Euclidean distance Dr
i
!r

j
D between the D-branes. It is important to

note that the same result is obtained if we use the supergravity solution for the multi-centered
p-brane (1.24) and compute the mass of the string going from r

i
to r

j
, since the factor H(r)1@4 from

the metric in the r-space (1.21) is cancelled by the redshift factor H(r)~1@4 when converting the string
tension into energy. Both the D-brane description and the supergravity solution give the same
value of the W-boson mass, since it is determined by the BPS condition.

1.3.3. Greybody factors and black holes
An important precursor to the AdS/CFT correspondence was the calculation of greybody

factors for black holes built out of D-branes. It was noted in [14] that Hawking radiation could be
mimicked by processes where two open strings collide on a D-brane and form a closed string which
propagates into the bulk. The classic computation of Hawking (see, for example, [62] for details)
shows in a semi-classical approximation that the di!erential rate of spontaneous emission of
particles of energy u from a black hole is

dC
%.*5

"

vp
!"403"

eu@TH$1
dnk
(2p)n

, (1.28)

where v is the velocity of the emitted particle in the transverse directions, and the sign in the
denominator is minus for bosons and plus for fermions. We use n to denote the number of spatial
dimensions around the black hole (or if we are dealing with a black brane, it is the number of spatial
dimensions perpendicular to the world-volume of the brane). ¹

H
is the Hawking temperature, and

p
!"403"

is the cross-section for a particle coming in from in"nity to be absorbed by the black hole. In
the di!erential emission rate, the emitted particle is required to have a momentum in a small region
dnk, and u is a function of k. To obtain a total emission rate we would integrate (1.28) over all k.

If p
!"403"

were a constant, then (1.28) tells us that the emission spectrum is the same as that of
a blackbody. Typically, p

!"403"
is not constant, but varies appreciably over the range of "nite u/¹

H
.

The consequent deviations from the pure blackbody spectrum have earned p
!"403"

the name
`greybody factora. A successful microscopic account of black hole thermodynamics should be able
to predict these greybody factors. In [16] and its many successors, it was shown that the D-branes
provided an account of black hole microstates which was successful in this respect.

Our "rst goal will be to see how greybody factors are computed in the context of quantum "elds
in curved space-time. The literature on this subject is immense. We refer the reader to [63] for an
overview of the General Relativity literature, and to [18,11,59] and references therein for a "rst
look at the string theory additions.

In studying scattering of particles o! of a black hole (or any "xed target), it is convenient to make
a partial wave expansion. For simplicity, let us restrict the discussion to scalar "elds. Assuming that
the black hole is spherically symmetric, one can write the asymptotic behavior at in"nity of the
time-independent scattering solution as

/(r)&e*kx#f (h)
e*kr
rn@2

&

=
+
l/0

1
2
PI l(cos h)

Sle*kr#(!1)line~*kr

(ikr)n@2
, (1.29)
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where x"rcos h. The term e*kx represents the incident wave, and the second term in the "rst line
represents the scattered wave. The PI l(cos h) are generalizations of Legendre polynomials. The
absorption probability for a given partial wave is given by Pl"1!DSlD2. An application of the
Optical Theorem leads to the absorption cross section [64]

pl

!"4
"

2n~1p(n~1)@2

kn
CA

n!1
2 BAl#

n!1
2 BA

l#n!2

l BPl . (1.30)

Sometimes the absorption probability Pl is called the greybody factor.
The strategy of absorption calculations in supergravity is to solve a linearized wave equation,

most often the Klein}Gordon equation h/"0, using separation of variables,
/"e~*utPl(cos h)R(r). Typically, the radial function cannot be expressed in terms of known
functions, so some approximation scheme is used, as we will explain in more detail below.
Boundary conditions are imposed at the black hole horizon corresponding to infalling matter.
Once the solution is obtained, one can either use the asymptotics (1.29) to obtain Sl and from it
Pl and pl

!"4
, or compute the particle #ux at in"nity and at the horizon and note that particle number

conservation implies that Pl is their ratio.
One of the few known universal results is that for u/¹

H
;1, p

!"4
for an s-wave massless scalar

approaches the horizon area of the black hole [65]. This result holds for any spherically symmetric
black hole in any dimension. For u much larger than any characteristic curvature scale of the
geometry, one can use the geometric optics approximation to "nd p

!"4
.

We will be interested in the particular black hole geometries for which string theory provides
a candidate description of the microstates. Let us start with N coincident D3-branes, where the
low-energy world-volume theory is d"4 N"4 ;(N) gauge theory. The equation of motion for
the dilaton is h/"0 where h is the Laplacian for the metric

ds2"A1#
R4

r4B
~1@2

(!dt2#dx2
1
#dx2

2
#dx2

3
)#A1#

R4

r4B
1@2

(dr2#r2dX2
5
) . (1.31)

It is convenient to change radial variables: r"Re~z, /"e2zt. The radial equation for the lth
partial wave is

[R2
z
#2u2R2 cosh 2z!(l#2)2]tl(z)"0 , (1.32)

which is precisely Schrodinger's equation with a potential <(z)"!2u2R2 cosh 2z. The absorp-
tion probability is precisely the tunneling probability for the barrier <(z): the transmitted wave at
large positive z represents particles falling into the D3-branes. At leading order in small uR, the
absorption probability for the lth partial wave is

Pl"
4p2

(l#1)!4(l#2)2A
uR
2 B

8`4l
. (1.33)

This result, together with a recursive algorithm for computing all corrections as a series in uR, was
obtained in [66] from properties of associated Mathieu functions, which are the solutions of (1.32).
An exact solution of a radial equation in terms of known special functions is rare. We will therefore
present a standard approximation technique (developed in [67] and applied to the problem at
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hand in [10]) which is su$cient to obtain the leading term of (1.33). Besides, for comparison with
string theory predictions we are generally interested only in this leading term.

The idea is to "nd limiting forms of the radial equation which can be solved exactly, and then to
match the limiting solutions together to approximate the full solution. Usually, a uniformly good
approximation can be found in the limit of small energy. The reason, intuitively speaking, is that on
a compact range of radii excluding asymptotic in"nity and the horizon, the zero energy solution is
nearly equal to solutions with very small energy; and outside this region the wave equation usually
has a simple limiting form. So one solves the equation in various regions and then matches together
a global solution.

It is elementary to show that this can be done for (1.32) using two regions:

far region: z<loguR [R2
z
#u2R2e2z!(l#2)2]t"0 t(z)"H(1)l`2

(uRez)

near region: z;!loguR [R2
z
#u2R2e~2z!(l#2)2]t"0 t(z)"aJl`2

(uRe~z)

(1.34)

It is amusing to note the Z
2

symmetry, zP!z, which exchanges the far region, where the "rst
equation in (1.34) is just free particle propagation in #at space, and the near region, where the
second equation in (1.34) describes a free particle in AdS

5
. This peculiar symmetry was "rst pointed

out in [10]. It follows from the fact that the full D3-brane metric comes back to itself, up to
a conformal rescaling, if one sends rPR2/r. A similar duality exists between six-dimensional #at
space and AdS

3
]S3 in the (D1}D5)-brane solution, where the Laplace equation again can be

solved in terms of Mathieu functions [68,69]. To our knowledge there is no deep understanding of
this `inversion dualitya.

For low energies uR;1, the near and far regions overlap in a large domain,
loguR;z;!loguR, and by comparing the solutions in this overlap region one can "x a and
reproduce the leading term in (1.33). It is possible but tedious to obtain the leading correction by
treating the small terms which were dropped from the potential to obtain the limiting forms in
(1.34) as perturbations. This strategy was pursued in [70,71] before the exact solution was known,
and in cases where there is no exact solution. The validity of the matching technique is discussed in
[63], but we know of no rigorous proof that it holds in all the circumstances in which it has been
applied.

The successful comparison of the s-wave dilaton cross-section in [10] with a perturbative
calculation on the D3-brane world-volume was the "rst hint that Green's functions of N"4
super-Yang}Mills theory could be computed from supergravity. In summarizing the calculation,
we will follow more closely the conventions in [11], and give an indication of the "rst application of
non-renormalization arguments [12] to understand why the agreement between supergravity
and perturbative gauge theory existed despite their applicability in opposite limits of the 't Hooft
coupling.

Setting normalization conventions so that the pole in the propagator of the gauge bosons has
residue one at tree level, we have the following action for the dilaton plus the "elds on the brane:

S"
1

2i2Pd10xJg [R!1
2
(R/)2#2]#Pd4x [!1

4
e~(TrF2kl#2] , (1.35)
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6There is one restriction on the "nal states: for a process to be regarded as an lth partial wave absorption
cross-section, l units of angular momentum must be picked up by the brane. Thus Oi12il must transform in the
irreducible representation which is the lth traceless symmetric power of the 6 of SO(6).

where we have omitted other supergravity "elds, their interactions with one another, and also terms
with te lower spin "elds in the gauge theory action. A plane wave of dilatons with energy u and
momentum perpendicular to the brane is kinematically equivalent on the world-volume to a massive
particle which can decay into two gauge bosons through the coupling 1

4
/TrF2kl. In fact, the

absorption cross-section is given precisely by the usual expression for the decay rate into k particles:

p
!"4

"

1
S
&

1
2uP

d3p
1

(2p)32u
1

2

d3p
k

(2p)32u
k

(2p)4d4(P
&
!P

*
)DMD2 . (1.36)

In the Feynman rules for M, a factor of J2i2 attaches to an external dilaton line on account of the
non-standard normalization of its kinetic term in (1.35). This factor gives p

!"4
the correct dimen-

sions: it is a length to the "fth power, as appropriate for six transverse spatial dimensions. In (1.36),
DMD2 indicates summation over distinguishable processes: in the case of the s-wave dilaton there are
N2 such processes because of the number of gauge bosons. One easily veri"es that DMD2"N2i2u4.
S
&
is a symmetry factor for identical particles in the "nal state: in the case of the s-wave dilaton,

S
&
"2 because the outgoing gauge bosons are identical.
Carrying out the l"0 calculation explicitly, one "nds

p
!"4

"N2i2u3/32p , (1.37)

which, using (1.30) and the relation between R and N, can be shown to be in precise agreement with
the leading term of P

0
in (1.33). This is now understood to be due to a non-renormalization

theorem for the two-point function of the operator O
4
"1

4
Tr F2.

To understand the connection with two-point functions, note that an absorption calculation
is insensitive to the "nal state on the D-brane world-volume. The absorption cross-section is
therefore related to the discontinuity in the cut of the two-point function of the operator to which
the external "eld couples. To state a result of some generality, let us suppose that a scalar "eld / in
ten dimensions couples to a gauge theory operator through the action

S
*/5
"Pd4x R

yi1
2R

yil
/(x, y

i
)K
yi/0

Oi12il(x) , (1.38)

where we use x to denote the four coordinates parallel to the world-volume and y
i
to denote the

other six. An example where this would be the right sort of coupling is the lth partial wave of the
dilaton [11]. The lth partial wave absorption cross-section for a particle with initial momentum
p"u(tK#y(

1
) is obtained by summing over all "nal states that could be created by the operator

O121:6

p
!"4

"

1
2u

+
n

n
<
i/1

1
S
&

d3p
i

(2p)32u
i

(2p)4d4(P
f
!P

*
)DMD2

"

2i2ul

2iu
DiscPd4x e*p >xSO121(x)O121(0)TK

p/(u,0,0,0)

. (1.39)
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Fig. 1.3. An application of the optical theorem.

In the second equality we have applied the Optical Theorem (see Fig. 1.3). The factor of 2i2 is the
square of the external leg factor for the incoming closed string state, which was included in
the invariant amplitudeM. The factor of ul arises from acting with the l derivatives in (1.38) on the
incoming plane wave state. The symbol Disc indicates that one is looking at the unitarity cut in the
two-point function in the s plane, where s"p2. The two-point function can be reconstructed
uniquely from this cut, together with some weak conditions on regularity for large momenta.
Results analogous to (1.39) can be stated for incoming particles with spin, only it becomes more
complicated because a polarization must be speci"ed, and the two-point function in momentum
space includes a polynomial in p which depends on the polarization.

Expressing absorption cross-sections in terms of two-point functions helps illustrate why there is
ever agreement between the tree-level calculation indicated in (1.36) and the supergravity result,
which one would a priori expect to pick up all sorts of radiative corrections. Indeed, it was observed
in [12] that the s-wave graviton cross-section agreed between supergravity and tree-level gauge
theory because the correlator S¹ab¹cdT enjoys a non-renormalization theorem. One way to see
that there must be such a non-renormalization theorem is to note that conformal Ward identities
relate this two-point function to S¹kk¹ab¹cdT (see for example [72] for the details), and supersym-
metry in turn relates this anomalous three-point function to the anomalous VEV's of the diver-
gence of R-currents in the presence of external sources for them. The Adler-Bardeen theorem [73]
protects these anomalies, hence the conclusion.

Another case which has been studied extensively is a system consisting of several D1 and D5
branes. The D1-branes are delocalized on the four extra dimensions of the D5-brane, which are
taken to be small, so that the total system is e!ectively (1#1)-dimensional. We will discuss the
physics of this system more extensively in chapter 5, and the reader can also "nd background
material in [59]. For now our purpose is to show how supergravity absorption calculations relate
to "nite-temperature Green's functions in the (1#1)-dimensional theory.

Introducing momentum along the spatial world-volume (carried by open strings attached to the
branes), one obtains the following ten-dimensional metric and dilaton:

ds2
10,453

"H~1@2
1

H~1@2
5 C!dt2#dx2

5
#

r2
0

r2
(coshpdt#sinhpdx

5
)2D

#H1@2
1

H~1@2
5

4
+
i/1

dy2
i
#H1@2

1
H1@2

5 CA1!
r2
0

r2B
~1

dr2#r2dX2
3D (1.40)

e(~(="H1@2
1

H~1@2
5

,

H
1
"1#

r2
1

r2
, H

5
"1#

r2
5

r2
.
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The quantities r2
1
, r2

5
, and r2

K
"r2

0
sinh2p are related to the number of D1-branes, the number of

D5-branes, and the net number of units of momentum in the x
5
direction, respectively. The horizon

radius, r
0
, is related to the non-extremality. For details, see for example [18]. If r

0
"0 then there

are only left-moving open strings on the world-volume; if r
0
O0 then there are both left-movers

and right-movers. The Hawking temperature can be expressed as 2/¹
H
"1/¹

L
#1/¹

R
, where

¹
L
"

1
p

r
0
ep

2r
1
r
5

, ¹
R
"

1
p

r
0
e~p

2r
1
r
5

. (1.41)

¹
L

and ¹
R

have the interpretation of temperatures of the left-moving and right-moving sectors of
the (1#1)-dimensional world-volume theory. There is a detailed and remarkably successful account
of the Bekenstein}Hawking entropy using statistical mechanics in the world-volume theory. It was
initiated in [13], developed in a number of subsequent papers, and has been reviewed in [59].

The region of parameter space which we will be interested in is

r
0
, r

K
;r

1
, r

5
(1.42)

This is known as the dilute gas regime. The total energy of the open strings on the branes is much
less than the constituent mass of either the D1-branes or the D5-branes. We are also interested in
low energies ur

1
,ur

5
;1, but u/¹

L,R
can be arbitrary owing to (1.42) and (1.41). The (D1}D5)-

brane system is not stable because left-moving open strings can run into right-moving open string
and form a closed string: indeed, this is exactly the process we aim to quantify. Since we have
collisions of left and right moving excitations we expect that the answer will contain the left and
right moving occupation factors, so that the emission rate is

dC"g2
%&&

1
(eu@2TL!1)

1
(eu@2TR!1)

d4k
(2p)4

, (1.43)

where g
%&&

is independent of the temperature and measures the coupling of the open strings to the
closed strings. The functional form of (1.43) seems, at "rst sight, to be di!erent from (1.28). But in
order to compare them we should calculate the absorption cross section appearing in (1.28).

O!-diagonal gravitons h
y1y2

(with y
1,2

in the compact directions) reduce to scalars in six
dimensions which obey the massless Klein}Gordon equation. These so-called minimal scalars have
been the subject of the most detailed study. We will consider only the s-wave and we take the
momentum along the string to be zero. Separation of variables leads to the radial equation

C
h
r3
R
r
hr2R

r
#u2fDR"0 ,

h"1!r2
0
/r2, f"(1#r2

1
/r2)(1#r2

5
/r2)(1#r2

0
sinh2p/r2) .

(1.44)

Close to the horizon, a convenient radial variable is z"h"1!r2
0
/r2. The matching procedure

can be summarized as follows:

far region:
C

1
r3
R
r
r3R

r
#u2DR"0 ,

R"A
J
1
(ur)

r3@2
,
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Fig. 1.4. Low-energy dynamics of extremal or near-extremal black branes. r
5

denotes the typical gravitational size of the
system, namely the position where the metric signi"cantly deviates from Minkowski space. The Compton wavelength of
the particles we scatter is much larger than the gravitational size, j<r

5
. In this situation we replace the whole black hole

geometry (a) by a point-like system in the transverse coordinates with localized excitations (b). These excitations are the
ones described by the "eld theory living on the brane.

near region:
Cz(1!z)R2

z
#A1!i

u
2p¹

H
B(1!z)R

z
#

u2

16p2¹
L
¹

R
Dz*u@4pTHR"0

R"z~*u@4pTHFA!i
u

4p¹
L

,!i
u

4p¹
R

; 1!i
u

2p¹
H

; zB .

(1.45)

After matching the near and far regions together and comparing the infalling #ux at in"nity and at
the horizon, one arrives at

p
!"4

"p3r2
1
r2
5
u

eu@TH!1
(eu@2TL!1)(eu@2TR!1)

. (1.46)

This has precisely the right form to ensure the matching of (1.43) with (1.28) (note that for a massless
particle with no momentum along the black string v"1 in (1.28)). It is possible to be more precise
and calculate the coe$cient in (1.43) and actually check that the matching is precise [16]. We leave
this to Section 5.

Both in the D3-brane analysis and in the (D1}D5)-brane analysis, one can see that all the
interesting physics is resulting from the near-horizon region: the far region wave-function describes
free particle propagation. For quanta whose Compton wavelength is much larger than the size of
the black hole, the e!ect of the far region is merely to set the boundary conditions in the near
region. See Fig. 1.4. This provides a motivation for the prescription for computing Green's
functions, to be described in Section 3.3: as the calculations of this section demonstrate, cutting out
the near-horizon region of the supergravity geometry and replacing it with the D-branes leads to an
identical response to low-energy external probes.
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7More precisely, some of these transformations can take "nite points in Minkowski space to in"nity, so they should be
de"ned on a compacti"cation of Minkowski space which includes points at in"nity.

2. Conformal 5eld theories and AdS spaces

2.1. Conformal xeld theories

Symmetry principles, and in particular Lorentz and PoincareH invariance, play a major role in our
understanding of quantum "eld theory. It is natural to look for possible generalizations of PoincareH
invariance in the hope that they may play some role in physics; in [74] it was argued that for
theories with a non-trivial S-matrix there are no such bosonic generalizations. An interesting
generalization of PoincareH invariance is the addition of a scale invariance symmetry linking physics
at di!erent scales (this is inconsistent with the existence of an S-matrix since it does not allow the
standard de"nition of asymptotic states). Many interesting "eld theories, like Yang}Mills theory in
four dimensions, are scale-invariant; generally this scale invariance does not extend to the quantum
theory (whose de"nition requires a cuto! which explicitly breaks scale invariance) but in some
special cases (such as the d"4,N"4 supersymmetric Yang}Mills theory) it does, and even when
it does not (like in QCD) it can still be a useful tool, leading to relations like the Callan}Symanzik
equation. It was realized in the past 30 years that "eld theories generally exhibit a renormalization
group #ow from some scale-invariant (often free) UV "xed point to some scale-invariant (some-
times trivial) IR "xed point, and statistical mechanics systems also often have non-trivial IR
scale-invariant "xed points. Thus, studying scale-invariant theories is interesting for various
physical applications.

It is widely believed that unitary interacting scale-invariant theories are always invariant under
the full conformal group, which is a simple group including scale invariance and PoincareH
invariance. This has only been proven in complete generality for two dimensional "eld theories
[75,76], but there are no known counterexamples. In this section we will review the conformal
group and its implications for "eld theories, focusing on implications which will be useful in the
context of the AdS/CFT correspondence. General reviews on conformal "eld theories may be
found in [77}79] and references therein.

2.1.1. The conformal group and algebra
The conformal group is the group of transformations which preserve the form of the metric up to

an arbitrary scale factor, gkl(x)PX2(x)gkl(x) (in this section greek letters will correspond to the
space-time coordinates, k, l"0,2, d!1). It is the minimal group that includes the PoincareH
group as well as the inversion symmetry xkPxk/x2.

The conformal group of Minkowski space7 is generated by the PoincareH transformations, the
scale transformation

xkPjxk , (2.1)

and the special conformal transformations

xkP(xk#akx2)/(1#2xlal#a2x2) . (2.2)
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8Strictly speaking, SO(d#1, 1) is the connected component of the conformal group which includes the identity, and it
does not include xkPxk/x2. We will hereafter ignore such subtleties.

We will denote the generators of these transformations by Mkl for the Lorentz transformations,
Pk for translations, D for the scaling transformation (2.1) and Kk for the special conformal
transformations (2.2). The vacuum of a conformal theory is annihilated by all of these generators.
They obey the conformal algebra

[Mkl, Po]"!i(gkoPl!gloPk); [Mkl, Ko]"!i(gkoKl!gloKk) ;

[Mkl, Mop]"!igkoMlp$permutations; [Mkl,D]"0; [D,Kk]"iKk ; (2.3)

[D,Pk]"!iPk; [Pk, Kl]"2iMkl!2igklD ,

with all other commutators vanishing. This algebra is isomorphic to the algebra of SO(d, 2), and can
be put in the standard form of the SO(d, 2) algebra (with signature !,#,#,2,#,!) with
generators J

ab
(a,b"0,2, d#1) by de"ning

Jkl"Mkl; Jkd"1
2
(Kk!Pk); Jk(d`1)

"1
2
(Kk#Pk); J

(d`1)d
"D . (2.4)

For some applications it is useful to study the conformal theory in Euclidean space; in this case the
conformal group is SO(d#1, 1),8 and since Rd is conformally equivalent to Sd the "eld theory on Rd

(with appropriate boundary conditions at in"nity) is isomorphic to the theory on Sd. Much of what
we say below will apply also to the Euclidean theory.

In the special case of d"2 the conformal group is larger, and in fact it is in"nite dimensional.
The special aspects of this case will be discussed in Section 5 where they will be needed.

2.1.2. Primary xelds, correlation functions, and operator product expansions
The interesting representations (for physical applications) of the conformal group involve

operators (or "elds) which are eigenfunctions of the scaling operator D with eigenvalue !iD (D is
called the scaling dimension of the "eld). This means that under the scaling transformation (2.1) they
transform as /(x)P/@(x)"jD/(jx). The commutation relations (2.3) imply that the operator
Pk raises the dimension of the "eld, while the operator Kk lowers it. In unitary "eld theories there is
a lower bound on the dimension of "elds (for scalar "elds it is D5(d!2)/2 which is the dimension
of a free scalar "eld), and, therefore, each representation of the conformal group which appears
must have some operator of lowest dimension, which must then be annihilated by Kk (at x"0).
Such operators are called primary operators. The action of the conformal group on such operators
is given by [80]

[Pk,U(x)]"iRkU(x) ,

[Mkl,U(x)]"[i(xkRl!xlRk)#Rkl]U(x) ,

[D,U(x)]"i(!D#xkRk)U(x) ,

[Kk,U(x)]"[i(x2Rk!2xkxlRl#2xkD)!2xlRkl]U(x) ,

(2.5)

where Rkl are the matrices of a "nite-dimensional representation of the Lorentz group, acting on
the indices of the U "eld. The representations of the conformal group corresponding to primary
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operators are classi"ed by the Lorentz representation and the scaling dimension D (these determine
the Casimirs of the conformal group). These representations include the primary "eld and all the
"elds which are obtained by acting on it with the generators of the conformal group (speci"cally
with Pk). Since the operators in these representations are eigenfunctions of D, they cannot in
general be eigenfunctions of the Hamiltonian P

0
or of the mass operator M2"!PkPk (which is

a Casimir operator of the PoincareH group but not of the conformal group); in fact, they have
a continuous spectrum of M2 ranging from 0 to R (there are also representations corresponding
to free massless "elds which have M2"0).

Another possible classi"cation of the representations of the conformal group is in terms of its
maximal compact subgroup, which is SO(d)]SO(2). The generator of SO(2) is J

0(d`1)
"

1
2
(K

0
#P

0
), and the representations of the conformal group described above may be decomposed

into representations of this subgroup. This is useful in particular for the oscillator constructions of
the representations of superconformal algebras [81}87], which we will not describe in detail here
(see [88] for a recent review). This subgroup is also useful in the radial quantization of the
conformal "eld theory on Sd~1]R, which will be related to AdS space in global coordinates.

Since the conformal group is much larger than the PoincareH group, it severely restricts the
correlation functions of primary "elds, which must be invariant under conformal transformations.
It has been shown by Luscher and Mack [89] that the Euclidean Green's functions of a CFT may
be analytically continued to Minkowski space, and that the resulting Hilbert space carries a unitary
representation of the Lorentzian conformal group. The formulas we will write here for correlation
functions apply both in Minkowski and in Euclidean space. It is easy to show using the conformal
algebra that the 2-point functions of "elds of di!erent dimension vanish, while for a single scalar
"eld of scaling dimension D we have

S/(0)/(x)TJ1/DxD2D
,1/(x2)D . (2.6)

3-point functions are also determined (up to a constant) by the conformal group to be of the form

S/
i
(x

1
)/

j
(x

2
)/

k
(x

3
)T"

c
ijk

Dx
1
!x

2
DD1`D

2~D
3Dx

1
!x

3
DD1`D

3~D
2Dx

2
!x

3
DD2`D

3~D
1
. (2.7)

Similar expressions (possibly depending on additional constants) arise for non-scalar "elds. With
four independent x

i
one can construct two combinations of the x

i
(known as harmonic ratios)

which are conformally invariant, so the correlation function can be any function of these combina-
tions; for higher n-point functions there are more and more independent functions which can
appear in the correlation functions. Many other properties of conformal "eld theories are also
easily determined using the conformal invariance; for instance, their equation of state is necessarily
of the form S"c<(E/<)(d~1)@d for some constant c.

The "eld algebra of any conformal "eld theory includes the energy-momentum tensor ¹kl which
is an operator of dimension D"d; the Ward identities of the conformal algebra relate correlation
functions with ¹ to correlation functions without ¹. Similarly, whenever there are global symmet-
ries, their (conserved) currents Jk are necessarily operators of dimension D"d!1. The scaling
dimensions of other operators are not determined by the conformal group, and generally they
receive quantum corrections. For any type of "eld there is, however, a lower bound on its
dimension which follows from unitarity; as mentioned above, for scalar "elds the bound is
D5(d!2)/2, where equality can occur only for free scalar "elds.
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A general property of local "eld theories is the existence of an operator product expansion (OPE).
As we bring two operators O

1
(x) and O

2
(y) to the same point, their product creates a general local

disturbance at that point, which may be expressed as a sum of local operators acting at that point;
in general all operators with the same global quantum numbers as O

1
O

2
may appear. The general

expression for the OPE is O
1
(x)O

2
(y)P+

n
Cn

12
(x!y)O

n
(y), where this expression should be under-

stood as appearing inside correlation functions, and the coe$cient functions Cn
12

do not depend on
the other operators in the correlation function (the expression is useful when the distance to all
other operators is much larger than Dx!yD). In a conformal theory, the functional form of the OPE
coe$cients is determined by conformal invariance to be Cn

12
(x!y)"cn

12
/Dx!yDD1`D

2~D
n, where

the constants cn
12

are related to the 3-point functions described above. The leading terms in the
OPE of the energy-momentum tensor with primary "elds are determined by the conformal algebra.
For instance, for a scalar primary "eld / of dimension D in four dimensions,

¹kl(x)/(0)JD/(0)RkRl(1/x2)#2 . (2.8)

One of the basic properties of conformal "eld theories is the one-to-one correspondence between
local operators O and states DOT in the radial quantization of the theory. In radial quantization
the time coordinate is chosen to be the radial direction in Rd, with the origin corresponding to
past in"nity, so that the "eld theory lives on R]Sd~1. The Hamiltonian in this quantization
is the operator J

0(d`1)
mentioned above. An operator O can then be mapped to the state

DOT"lim
x?0

O(x)D0T. Equivalently, the state may be viewed as a functional of "eld values on some
ball around the origin, and then the state corresponding to O is de"ned by a functional integral on
a ball around the origin with the insertion of the operator O at the origin. The inverse mapping of
states to operators proceeds by taking a state which is a functional of "eld values on some ball
around the origin and using conformal invariance to shrink the ball to zero size, in which case the
insertion of the state is necessarily equivalent to the insertion of some local operator.

2.1.3. Superconformal algebras and xeld theories
Another interesting generalization of the PoincareH algebra is the supersymmetry algebra, which

includes additional fermionic operators Q which anti-commute to the translation operators Pk. It is
interesting to ask whether supersymmetry and the conformal group can be joined together to form
the largest possible simple algebra including the PoincareH group; it turns out that in some
dimensions and for some numbers of supersymmetry charges this is indeed possible. The full
classi"cation of superconformal algebras was given by Nahm [90]; it turns out that superconfor-
mal algebras exist only for d46. In addition to the generators of the conformal group and the
supersymmetry, superconformal algebras include two other types of generators. There are fer-
mionic generators S (one for each supersymmetry generator) which arise in the commutator of
Kk with Q, and there are (sometimes) R-symmetry generators forming some Lie algebra, which
appear in the anti-commutator of Q and S (the generators Q and S are in the fundamental
representation of this Lie algebra). Schematically (suppressing all indices), the commutation
relations of the superconformal algebra include, in addition to (2.3), the relations

[D,Q]"!

i
2
Q; [D, S]"

i
2
S; [K,Q]KS; [P,S]KQ ;

MQ,QNKP; MS,SNKK; MQ,SNKM#D#R . (2.9)
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9Note that this is di!erent from the other N-extended superconformal algebras in four dimensions which have
a ;(N) R-symmetry.

The exact form of the commutation relations is di!erent for di!erent dimensions (since the
spinorial representations of the conformal group behave di!erently) and for di!erent R-symmetry
groups, and we will not write them explicitly here.

For free "eld theories without gravity, which do not include "elds whose spin is bigger than one,
the maximal possible number of supercharges is 16 (a review of "eld theories with this number of
supercharges appears in [91]); it is believed that this is the maximal possible number of super-
charges also in interacting "eld theories. Therefore, the maximal possible number of fermionic
generators in a "eld theory superconformal algebra is 32. Superconformal "eld theories with
this number of supercharges exist only for d"3, 4, 6 (d"1 may also be possible but there
are no known examples). For d"3 the R-symmetry group is Spin(8) and the fermionic gener-
ators are in the (4, 8) of SO(3, 2)]Spin(8); for d"4 the R-symmetry group is S;(4) and9 the
fermionic generators are in the (4, 4)#(41 , 41 ) of SO(4, 2)]S;(4); and for d"6 the R-symmetry
group is Sp(2)KSO(5) and the fermionic generators are in the (8, 4) representation of
SO(6, 2)]Sp(2).

Since the conformal algebra is a subalgebra of the superconformal algebra, representations of the
superconformal algebra split into several representations of the conformal algebra. Generally,
a primary "eld of the superconformal algebra, which is (by de"nition) annihilated (at x"0) by the
generators Kk and S, will include several primaries of the conformal algebra, which arise by acting
with the supercharges Q on the superconformal primary "eld. The superconformal algebras have
special representations corresponding to chiral primary operators, which are primary operators
which are annihilated by some combination of the supercharges. These representations are smaller
than the generic representations, containing less conformal-primary "elds. A special property of
chiral primary operators is that their dimension is uniquely determined by their R-symmetry
representations and cannot receive any quantum corrections. This follows by using the fact that all
the S generators and some of the Q generators annihilate the "eld, and using the MQ,SN commuta-
tion relation to compute the eigenvalue of D in terms of the Lorentz and R-symmetry representa-
tions [92}95,91]. The dimensions of non-chiral primary "elds of the same representation are
always strictly larger than those of the chiral primary "elds. A simple example is the d"4,N"1
superconformal algebra (which has a ;(1) R-symmetry group); in this case a chiral multiplet
(annihilated by QM ) which is a primary is also a chiral primary, and the algebra can be used to prove
that the dimension of the scalar component of such multiplets is D"3

2
R where R is the ;(1)

R-charge. A detailed description of the structure of chiral primaries in the d"4,N"4 algebra
will appear in Section 3.2.

When the R-symmetry group is Abelian, we "nd a bound of the form D5aDRD for some constant
a, ensuring that there is no singularity in the OPE of two chiral (D"aR) or anti-chiral
(D"aDRD"!aR) operators. On the other hand, when the R-symmetry group is non-Abelian,
singularities can occur in the OPEs of chiral operators, and are avoided only when the product lies
in particular representations.
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2.2. Anti-de Sitter space

2.2.1. Geometry of anti-de Sitter space
In this section, we will review some geometric facts about anti-de Sitter space. One of the

important facts is the relation between the conformal compacti"cations of AdS and of #at space. In
the case of the Euclidean signature metric, it is well-known that the #at space Rn can be
compacti"ed to the n-sphere Sn by adding a point at inxnity, and a conformal "eld theory is naturally
de"ned on Sn. On the other hand, the (n#1)-dimensional hyperbolic space, which is the Euclidean
version of AdS space, can be conformally mapped into the (n#1)-dimensional disk D

n`1
.

Therefore the boundary of the compacti"ed hyperbolic space is the compacti"ed Euclid space.
A similar correspondence holds in the case with the Lorentzian signature metric, as we will see
below.

2.2.1.1. Conformal structure of yat space. One of the basic features of the AdS/CFT correspond-
ence is the identi"cation of the isometry group of AdS

p`2
with the conformal symmetry of #at

Minkowski space R1,p. Therefore, it would be appropriate to start our discussion by reviewing the
conformal structure of #at space.
L R1,1

We begin with two-dimensional Minkowski space R1,1:

ds2"!dt2#dx2 (!R(t,x(#R) . (2.10)

This metric can be rewritten by the following coordinate transformations:

ds2"!du
`

du
~

(u
B
"t$x)

"

1
4 cos2u8

`
cos2u8

~

(!dq2#dh2) (u
B
"tan u8

B
; u8

B
"(q$h)/2) . (2.11)

In this way, the Minkowski space is conformally mapped into the interior of the compact region,
Du8

B
D(p/2, as shown in Fig. 2.1. Since light ray trajectories are invariant under a conformal

rescaling of the metric, this provides a convenient way to express the causal structure of R1,1. The
new coordinates (q, h) are well de"ned at the asymptotical regions of the #at space. Therefore, the
conformal compacti"cation is used to give a rigorous de"nition of asymptotic yatness of space time
} a space time is called asymptotically #at if it has the same boundary structure as that of the #at
space after conformal compacti"cation.

The two corners of the rectangle at (q, h)"(0,$p) correspond to the spatial in"nities x"$R

in the original coordinates. By identifying these two points, we can embed the rectangular image of
R1,1 in a cylinder R]S1 as shown in Fig. 2.2. It was proven by LuK scher and Mack [89] that
correlation functions of a conformal "eld theory (CFT) on R1,1 can be analytically continued to the
entire cylinder.

As we have seen in Section 2.1, the global conformal symmetry of R1,1 is SO(2, 2), which is
generated by the six conformal Killing vectors R

B
, u

B
R
B

, u2
B
R
B

. The translations along the cylinder
R]S1 are expressed as their linear combinations

R
Rq$

R
Rh"

R
Ru8

B

"(1#u2
B

)
R
Ru

B

. (2.12)
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Fig. 2.1. Two-dimensional Minkowski space is conformally mapped into the interior of the rectangle.

Fig. 2.2. The rectangular region can be embedded in a cylinder, with h"p and h"!p being identi"ed.

In the standard form of SO(2, 2) generators, J
ab

, given in Section 2.1, they correspond to J
03

and
J
12

, and generate the maximally compact subgroup SO(2)]SO(2) of SO(2, 2).
R1,p with p52: It is straightforward to extend the above analysis to higher-dimensional

Minkowski space:

ds2"!dt2#dr2#r2dX2
p~1

, (2.13)

where dX
p~1

is the line element on the unit sphere Sp~1. A series of coordinate changes transforms
this as

ds2"!du
`

du
~
#1

4
(u

`
!u

~
)2dX2

p~1
(u

B
"t$r)

"

1
cos2u8

`
cos2u8

~

(!du8
`
du8

~
#1

4
sin2 (u8

`
!u8

~
)dX2

p~1
) (u

B
"tan u8

B
)

"

1
4 cos2u8

`
cos2u8

~

(!dq2#dh2#sin2 h dX2
p~1

) (u8
B
"(q$h)/2) . (2.14)

As shown in Fig. 2.3, the (t, r) half-plane (for a "xed point on Sp~1) is mapped into a triangular
region in the (q, h) plane. The conformally scaled metric

ds@2"!dq2#dh2#sin2 hdX2
p~1

(2.15)

can be analytically continued outside of the triangle, and the maximally extended space with

04h4p, !R(q(#R , (2.16)

has the geometry of R]Sp (Einstein static universe), where h"0 and p corresponds to the north
and south poles of Sp. This is a natural generalization of the conformal embedding of R1,1 into
R]S1 that we saw in the p"1 case.
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Fig. 2.3. The conformal transformation maps the (t, r) half-plane into a triangular region in the (q, h) plane.

Fig. 2.4. AdS
p`2

is realized as a hyperboloid in R2,p`1. The hyperboloid has closed time-like curves along the q direction.
To obtain a causal space, we need to unwrap the circle to obtain a simply connected space.

Since

R
Rq"

1
2

(1#u2
`

)
R
Ru

`

#

1
2
(1#u2

~
)
R
Ru

~

, (2.17)

the generator H of the global time translation on R]Sp is identi"ed with the linear combination

H"1
2
(P

0
#K

0
)"J

0,p`2
, (2.18)

where P
0

and K
0

are translation and special conformal generators,

P
0
:
1
2A
R
Ru

`

#

R
Ru

~
B, K

0
:
1
2Au2

`

R
Ru

`

#u2
~

R
Ru

~
B (2.19)

on R1,p de"ned in Section 2.1. The generator H"J
0,p`2

corresponds to the SO(2) part of the
maximally compact subgroup SO(2)]SO(p#1) of SO(2, p#1). Thus the subgroup
SO(2)]SO(p#1) (or to be precise its universal cover) of the conformal group SO(2,p#1) can be
identi"ed with the isometry of the Einstein static universe R]Sp. The existence of the generator
H also guarantees that a correlation function of a CFT on R1,p can be analytically extended to the
entire Einstein static universe R]Sp.

2.2.1.2. Anti-de Sitter space. The (p#2)-dimensional anti-de Sitter space (AdS
p`2

) can be repre-
sented as the hyperboloid (see Fig. 2.4)

X2
0
#X2

p`2
!

p`1
+
i/1

X2
i
"R2 , (2.20)

in the #at (p#3)-dimensional space with metric

ds2"!dX2
0
!dX2

p`2
#

p`1
+
i/1

dX2
i

. (2.21)
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By construction, the space has the isometry SO(2, p#1), and it is homogeneous and isotropic.
Eq. (2.20) can be solved by setting

X
0
"R cosho cos q, X

p`2
"R cosho sin q ,

X
i
"R sinho X

i
(i"1,2, p#1;+

i
X2

i
"1) . (2.22)

Substituting this into (2.21), we obtain the metric on AdS
p`2

as

ds2"R2(!cosh2odq2#do2#sinh2odX2) . (2.23)

By taking 04o and 04q(2p the solution (2.22) covers the entire hyperboloid once. Therefore,
(q,o,X

i
) are called the global coordinates of AdS. Since the metric behaves near o"0 as

ds2KR2(!dq2#do2#o2 dX2), the hyperboloid has the topology of S1]Rp`1, with S1 repres-
enting closed timelike curves in the q direction. To obtain a causal space time, we can simply
unwrap the circle S1 (i.e. take !R(q(R with no identi"cations) and obtain the universal
covering of the hyperboloid without closed time-like curves. In this paper, when we refer to
AdS

p`2
, we only consider this universal covering space.

The isometry group SO(2, p#1) of AdS
p`2

has the maximal compact subgroup SO(2)]
SO(p#1). From the above construction, it is clear that the SO(2) part represents the constant
translation in the q direction, and the SO(p#1) gives rotations of Sp.

To study the causal structure of AdS
p`2

, it is convenient to introduce a coordinate h related to
o by tan h"sinho (04h(p/2). The metric (2.23) then takes the form

ds2"
R2

cos2 h
(!dq2#dh2#sin2h dX2) . (2.24)

The causal structure of the space-time does not change by a conformal rescaling on the metric.
Multiplying the metric by R~2cos2h, it becomes

ds@2"!dq2#dh2#sin2 hdX2 . (2.25)

This is the metric of the Einstein static universe, which also appeared, with the dimension lower
by one, in the conformal compacti"cation of R1,p (2.15). This time, however, the coordinate h
takes values in 04h(p/2, rather than 04h(p in (2.15). Namely, AdS

p`2
can be conformally

mapped into one-half of the Einstein static universe; the spacelike hypersurface of constant q
is a (p#1)-dimensional hemisphere. The equator at h"p/2 is a boundary of the space with the
topology of Sp, as shown in Fig. 2.5 in the case of p"1. (In the case of AdS

2
, the coordinate

h ranges !p/24h4p/2 since S0 consists of two points.) As in the case of the #at space dis-
cussed earlier, the conformal compacti"cation is a convenient way to describe the asymptotic
regions of AdS. In general, if a space-time can be conformally compacti"ed into a region
which has the same boundary structure as one-half of the Einstein static universe, the space-time is
called asymptotically AdS.

Since the boundary extends in the time-like direction labeled by q, we need to specify a boundary
condition on the R]Sp at h"p/2 in order to make the Cauchy problem well-posed on AdS[96].
It turns out that the boundary of AdS

p`2
, or to be precise the boundary of the conformally

compacti"ed AdS
p`2

, is identical to the conformal compacti"cation of the (p#1)-dimensional
Minkowski space. This fact plays an essential role in the AdS

p`2
/CFT

p`1
correspondence.
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Fig. 2.5. AdS
3

can be conformally mapped into one-half of the Einstein static universe R]S2.

In addition to the global parametrization (2.22) of AdS, there is another set of coordinates (u,t,x)
(0(u, x3Rp) which will be useful later. It is de"ned by

X
0
"(1/2u)(1#u2(R2#x2!t2)), X

p`2
"Rut ,

Xi"Ruxi (i"1,2, p) ,

Xp`1"(1/2u)(1!u2(R2!x2#t2)) . (2.26)

These coordinates cover one-half of the hyperboloid (2.20), as shown in Fig. 2.6 in the case of p"0.
Substituting this into (2.21), we obtain another form of the AdS

p`2
metric

ds2"R2A
du2

u2
#u2(!dt2#dx2)B . (2.27)

The coordinates (u, t, x) are called the PoincareH coordinates. In this form of the metric, the
subgroups ISO(1,p) and SO(1, 1) of the SO(2, p#1) isometry are manifest, where ISO(1, p) is the
PoincareH transformation on (t, x) and SO(1, 1) is

(t, x, u)P(ct, cx, c~1u) , c'0. (2.28)

In the AdS/CFT correspondence, this is identi"ed with the dilatation D in the conformal symmetry
group of R1,p.

It is useful to compare the two expressions, (2.23) and (2.27), for the metric of AdS
p`2

. In (2.23),
the norm of the time-like Killing vector Rq is everywhere non-zero. In particular, it has a constant
norm in the conformally rescaled metric (2.24). For this reason, q is called the global time
coordinate of AdS. On the other hand, the time-like Killing vector R

t
in (2.27) becomes null at u"0

(Killing horizon), as depicted in Fig. 2.7 in the AdS
2

case.

2.2.1.3. Euclidean rotation. Since AdS
p`2

has the global time coordinate q and the metric (2.23) is
static with respect to q, quantum "eld theory on AdS

p`2
(with an appropriate boundary condition
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Fig. 2.6. AdS
2

can be conformally mapped into R][!p/2,p/2]. The (u, t) coordinates cover the triangular region.

Fig. 2.7. The time-like Killing vector R
t
is depicted in the AdS

2
case. The vector R

t
becomes a null vector at u"0.

at spatial in"nity) allows the Wick rotation in q, e*qHPe~qEH. From (2.22), one "nds that the Wick
rotation qPq

E
"!iq is expressed in the original coordinates (X

0
, X, X

p`2
) on the hyperboloid as

X
p`2

PX
E
"!iX

p`2
, and the space becomes

X2
0
!X2

E
!X2"R2 ,

ds2
E
"!dX2

0
#dX2

E
#dX2 .

(2.29)

We should point out that the same space is obtained by rotating the time coordinate t of the
PoincareH coordinates (2.26) as tPt

E
"!it, even though the PoincareH coordinates cover only

a part of the entire AdS (half of the hyperboloid). This is analogous to the well-known fact in #at
Minkowski space that the Euclidean rotation of the time coordinate t in the Rindler space
ds2"!r2dt2#dr2 gives the #at Euclidean plane R2, even though the Rindler coordinates (t, r)
cover only a 1/4 of the entire Minkowski space R1,1.

In the coordinates (o, q
E
, X

p
) and (u, t

E
, x), the Euclidean metric is expressed as

ds2
E
"R2(cosh2o dq2

E
#do2#sinh2odX2

p
)

"R2A
du2

u2
#u2(dt2

E
#dx2)B . (2.30)

In the following, we also use another, trivially equivalent, form of the metric, obtained from the
above by setting u"1/y in (2.30), giving

ds2"R2A
dy2#dx2

1
#2#dx2

p`1
y2 B . (2.31)
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Fig. 2.8. The Euclidean AdS
2

is the upper-half plane with the PoincareH metric. It can be mapped into a disk, where the
in"nity of the upper-half plane is mapped to a point on the boundary of the disk.

The Euclidean AdS
p`2

is useful for various practical computations in "eld theory. For theories
on #at space, it is well-known that correlation functions S/

1
2/

n
T of "elds on the Euclidean space

are related, by the Wick rotation, to the ¹-ordered correlation functions S0 D¹(/
1
2/

n
) D 0T in the

Minkowski space. The same is true in the anti-de Sitter space if the theory has a positive-de"nite
Hamiltonian with respect to the global time coordinate q. Green functions of free "elds on AdS

p`2
have been computed in [97,98] using this method.

The Euclidean AdS
p`2

can be mapped into a (p#2)-dimensional disk. In the coordinates
(u, t

E
, x), u"R is the sphere Sp`1 at the boundary with one point removed. The full boundary

sphere is recovered by adding a point corresponding to u"0 (or equivalently x"R). This is
shown in Fig. 2.8 in the case of AdS

2
, for which z"t

E
#i/u gives a complex coordinate on the

upper-half plane. By adding a point at in"nity, the upper-half plane is compacti"ed into a disk. In
the Lorentzian case, u"0 represented the Killing horizon giving the boundary of the (u, t, x)
coordinates. Since the u"0 plane is null in the Lorentzian case, it shrinks to a point in the
Euclidean case.

2.2.2. Particles and xelds in anti-de Sitter space
Massive particles, moving along geodesics, can never get to the boundary of AdS. On the other

hand, since the Penrose diagram of AdS is a cylinder, light rays can go to the boundary and back in
"nite time, as observed by an observer moving along a geodesic in AdS. More precisely, the light
ray will re#ect if suitable boundary conditions are set for the "elds propagating in AdS.

Let us "rst consider the case of a scalar "eld propagating in AdS
p`2

. The "eld equation

(D!m2)/"0 (2.32)

has stationary wave solutions

/"e*uqG(h)>
l
(X

p
) , (2.33)

where >
l
(X

p
) is a spherical harmonic, which is an eigenstate of the Laplacian on Sp with an

eigenvalue l(l#p!1), and G(h) is given by the hypergeometric function

G(h)"(sin h)l(cosh)jB
2
F

1
(a, b, c; sin h) , (2.34)

218 O. Aharony et al. / Physics Reports 323 (2000) 183}386



with

a"1
2
(l#j

B
!uR) ,

b"1
2
(l#j

B
#uR) ,

c"l#1
2
(p#1) ,

(2.35)

and

j
B
"1

2
(p#1)$1

2
J(p#1)2#4(mR)2 . (2.36)

The energy-momentum tensor

¹kl"2Rk/Rl/!gkl((R/)2#m2/2)#b(gklD!DkDl#Rkl)/2 (2.37)

is conserved for any constant value of b. The value of b is determined by the coupling of the scalar
curvature to /2, which on AdS has the same e!ect as the mass term in the wave equation (2.32). The
choice of b for each scalar "eld depends on the theory we are considering. The total energy E of the
scalar "eld #uctuation,

E"Pdp`1xJ!g¹0
0

, (2.38)

is conserved only if the energy-momentum #ux through the boundary at h"p/2 vanishes,

P
S
p

dX
p
Jgn

i
¹i

0@h/p@2
"0 . (2.39)

This requirement reduces to the boundary condition

(tan h)p[(1!2b)Rh#2b tan h]/2P0 (hPp/2) . (2.40)

Going back to the stationary wave solution (2.34), this is satis"ed if and only if either a or b in (2.34)
is an integer. If we require the energy u to be real, we "nd

DuDR"j
B
#l#2n (n"0, 1, 2,2) . (2.41)

This is possible only when j de"ned by (2.36) is real. Consequently, the mass is bounded from
below as

!1
4
(p#1)24m2R2 . (2.42)

This is known as the Breitenlohner}Freedman bound [99,100]. Note that a negative (mass)2 is
allowed to a certain extent. The Compton wavelength for these possible tachyons is comparable to
the curvature radius of AdS. If m2'!(p!1)(p#3)/4R2, we should choose j

`
in (2.41) since this

solution is normalizable while the solution with j
~

is not. If m24!(p!1)(p#3)/4R2, both
solutions are normalizable and there are two di!erent quantizations of the scalar "eld on AdS
space. Which quantization to choose is often determined by requiring symmetry. See [100}102] for
discussions of boundary conditions in supersymmetric theories. In general, all solutions to the
wave equation form a single SO(2, p#1) highest weight representation. The highest weight state is
the lowest energy solution [103]. Since SO(2, p#1) acts on AdS as isometries, the action of its
generators on the solutions is given by "rst-order di!erential operators.
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2.2.3. Supersymmetry in anti-de Sitter space
The SO(2, p#1) isometry group of AdS

p`2
has a supersymmetric generalization called an AdS

supergroup. To understand the supersymmetry on AdS, it would be useful to start with the simple
supergravity with a cosmological constant K. In four dimensions, for example, the action of the
N"1 theory is [104]

S"Pd4x(!Jg(R!2K)#1
2
ekloptM kc5clDI otp) , (2.43)

where

DI k"Dk#
i
2S

K
3
ck (2.44)

and Dk is the standard covariant derivative. The local supersymmetry transformation rules for the
vierbein <

ak and the gravitino tk are

d<
ak"!ie6 (x)c

a
tk ,

dtk"DI ke(x) .
(2.45)

A global supersymmetry of a given supergravity background is determined by requiring that the
gravitino variation is annihilated, dtk"0. The resulting condition on e(x),

DI ke"ADk#
i
2S

K
3
ckBe"0 , (2.46)

is known as the Killing spinor equation. The integrability of this equation requires

[DI k, DI l]e"1
2
(Rkloppop!2

3
Kpkl)e"0 , (2.47)

where

pkl"1
2
c
*k,cl+ . (2.48)

Since AdS is maximally symmetric, the curvature obeys

Rklop"(1/R2)(gkoglp!gkpglo) , (2.49)

where R is the size of the hyperboloid de"ned by (2.20). Thus, if we choose the curvature of AdS to
be K"3/R2 (this is necessary for AdS to be a classical solution of (2.43)), the integrability condition
(2.47) is obeyed for any spinor e. Since the Killing spinor equation (2.46) is a "rst-order equation,
this means that there are as many solutions to the equation as the number of independent
components of the spinor. Namely, AdS preserves as many supersymmetries as #at space.

The existence of supersymmetry implies that, with an appropriate set of boundary conditions,
the supergravity theory on AdS is stable with its energy bounded from below. The supergravity
theories on AdS typically contains scalar "elds with negative (mass)2. However they all satisfy the
bound (2.42) [102,105]. The issue of the boundary condition and supersymmetry in AdS was further
studied in [101]. A non-perturbative proof of the stability of AdS is given in [106], based on
a generalization of Witten's proof [107] of the positive energy theorem in #at space [108].
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2.2.4. Gauged supergravities and Kaluza}Klein compactixcations
Extended supersymmetries in AdS

p`2
with p"2, 3, 4, 5 are classi"ed by Nahm [90] (see also

[109]) as

AdS
4
: OSp(ND4), N"1, 2,2,

AdS
5
: S;(2, 2DN/2), N"2, 4, 6, 8,

AdS
6
: F(4) ,

AdS
7
: OSp(6, 2DN), N"2, 4 .

(2.50)

For AdS
p`2

with p'5, there is no simple AdS supergroup. These extended supersymmetries are
realized as global symmetries of gauged supergravity on AdS

p`2
. The AdS/CFT correspondence

identi"es them with the superconformal algebras discussed in Section 2.1.3. Gauged supergravities
are supergravity theories with non-abelian gauge "elds in the supermultiplet of the graviton.
Typically, the cosmological constant is negative and AdS

p`2
is a natural background geometry.

Many of them are related to Kaluza}Klein compacti"cation of the supergravities in 10 and 11
dimensions. A complete catalogue of gauged supergravities in dimensions 411 is found in [21].
Here we list some of them.

AdS
7
: The gauged supergravity in seven dimensions has global supersymmetry OSp(6, 2 DN).

The maximally supersymmetric case of N"4 constructed in [110] contains a Yang-Mills "eld
with a gauge group Sp(2)KSO(5). The "eld content of this theory can be derived from a truncation
of the spectrum of the Kaluza}Klein compacti"cation of the 11-dimensional supergravity to seven
dimensions,

R11PAdS
7
]S4 . (2.51)

The 11-dimensional supergravity has the Lagrangian

L"Jg(1
4
R! 1

48
FklopFklop)# 1

72
A'F'F#fermions , (2.52)

where A is a 3-form gauge "eld and F"dA. It was pointed out by Freund and Rubin [111] that
there is a natural way to `compactifya the theory to four or seven dimensions. We have put the
word `compactifya in quotes since we will see that typically the size of the compact dimensions is
comparable to the radius of curvature of the non-compact dimensions. To compactify the theory
to seven dimensions, the ansatz of Freund and Rubin sets the 4-form "eld strength F to be
proportional to the volume element on a 4-dimensional subspace M

4
. The Einstein equation,

which includes the contribution of F to the energy-momentum tensor, implies a positive curvature
on M

4
and a constant negative curvature on the non-compact dimensions, i.e. they are AdS

7
.

The maximally symmetric case is obtained by considering M
4
"S4. Since there is no cosmologi-

cal constant in 11 dimensions, the radius R of S4 is proportional to the curvature radius of AdS
7
. By

the Kaluza}Klein mechanism, the SO(5) isometry of S4 becomes the gauge symmetry in seven
dimensions. The spherical harmonics on S4 give an in"nite tower of Kaluza}Klein particles on
AdS

7
. A truncation of this spectrum to include only the graviton supermultiplet gives the spectrum

of the N"4 SO(5) gauged supergravity on AdS
7
. It has been believed that this is a consistent

truncation of the full theory, and very recently it was shown in [112] that this is indeed the case. In
general, there are subtleties in the consistent truncation procedure, which will be discussed in more
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detail in the next subsection. There are also other N"4 theories with non-compact gauge groups
SO(p,q) with p#q"5 [113].

The seven-dimensional N"2 gauged supergravity with gauge group Sp(1)KS;(2) was con-
structed in [114]. In this case, one can have also a matter theory with possibly another gauge group
G. It is not known whether a matter theory of arbitrary G with arbitrary coupling constant can be
coupled to gauged supergravity. The Kaluza}Klein compacti"cation of 10-dimensional N"1
supergravity, coupled to N"1 super Yang}Mills, on S3 gives a particular example. In this case,
ten dimensional anomaly cancellation requires particular choices of G.

AdS
6
: The six-dimensional anti-de Sitter supergroup F(4) is realized by the N"4 gauged

supergravity with gauge group S;(2). It was predicted to exist in [115] and constructed in [116]. It
was conjectured in [117] to be related to a compacti"cation of the ten dimensional massive type
IIA supergravity theory. The relevant compacti"cation of the massive type IIA supergravity is
constructed as a "bration of AdS

6
over S4 [118]. The form of the ten-dimensional space is called

a warped product [119] and it is the most general one that has the AdS isometry group [120]. The
S;(2) gauge group of the six-dimensional N"4 gauged supergravity is associated with an S;(2)
subgroup of the SO(4) isometry group of the compact part of the ten-dimensional space.

AdS
5
: In "ve dimensions, there are N"2, 4, 6 and eight gauged supergravities with supersym-

metry S;(2, 2 DN/2). The gauged N"8 supergravity was constructed in [121,122]. It has the
gauge group S;(4)KSO(6) and the global symmetry E

6
. This theory can be derived by a trunc-

ation of the compacti"cation of 10-dimensional type IIB supergravity on S5 using the
Freund}Rubin ansatz, i.e. setting the self-dual 5-form "eld strength F(5) to be proportional to the
volume form of S5 [123,83,124]. By the Einstein equation, the strength of F(5) determines the radius
of S5 and the cosmological constant R~2 of AdS

5
.

This case is of particular interest; as we will see below, the AdS/CFT correspondence claims that
it is dual to the large N (and large g2

YM
N) limit of N"4 supersymmetric S;(N) gauge theory in

four dimensions. The complete Kaluza}Klein mass spectrum of the IIB supergravity theory on
AdS

5
]S5 was obtained in [83,124]. One of the interesting features of the Kaluza}Klein spectrum

(in this case as well as in the other cases discussed in this section) is that the frequency u of
stationary wave solutions is quantized. For example, the masses of the scalar "elds in the
Kaluza}Klein tower are all of the form (mR)2"lI (lI#4), where lI is an integer bounded from below.
Substituting this into (2.36) with p"3, we obtain

j
B
"2$DlI#2D . (2.53)

Therefore, the frequency u given by (2.41) takes values in integer multiples of 1/R:

DuDR"2$DlI#2D#l#2n (n"0, 1, 2,2) . (2.54)

This means that all the scalar "elds in the supergravity multiplet are periodic in q with the period
2p, i.e. the scalar "elds are single-valued on the original hyperboloid (2.20) before taking the
universal covering. This applies to all other "elds in the supermultiplet as well, with the fermions
obeying the Ramond boundary condition around the time-like circle.

The fact that the frequency u is quantized has its origin in supersymmetry. The supergravity
particles in 10 dimensions are BPS objects and preserve one-half of the supersymmetry. This
property is preserved under the Kaluza}Klein compacti"cation on S5. The notion of the BPS
particles in the case of AdS supergravity is clari"ed in [125] and it is shown, in the context of
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theories in four dimensions, that it leads to the quantization of u. In the AdS/CFT correspondence,
this is dual to the fact that chiral primary operators do not have anomalous dimensions.

On the other hand, energy levels of other states, such as stringy states or black holes, are not
expected to be quantized as the supergravity modes are. Thus, the full string theory does not make
sense on the hyperboloid but only on its universal cover without the closed time-like curve.

The N"4 gauged supergravity with gauge group S;(2)];(1) was constructed in [126].
Various N"2 theories were constructed in [127}130].

AdS
4
: In four dimensions, some of the possible AdS supergroups are OSp(ND4) with N"1, 2, 4

and 8. N"8 is the maximal supergroup that corresponds to a supergravity theory. The N"8
gauged supergravity with SO(8) gauge group was constructed in [131,132]. This theory (like the
other theories discussed in this section) has a highly non-trivial potential for scalar "elds, whose
extrema were analyzed in [133,134]. It was shown in [135] that the extremum with N"8
supersymmetry corresponds to a truncation of the compacti"cation of 11-dimensional supergrav-
ity on AdS

4
]S7. Some of the other extrema can also be identi"ed with truncations of compacti"ca-

tions of the 11-dimensional theory. For a review of the four-dimensional compacti"cations of
11-dimensional supergravity, see [22].

AdS
3
: Nahm's classi"cation does not include this case since the isometry group SO(2, 2) of AdS

3
is not a simple group but rather the direct product of two S¸(2,R) factors. The supergravity
theories associated with the AdS

3
supergroups OSp(pD2)]OSp(qD2) were constructed in [136] and

studied more recently in [137]. They can be regarded as the Chern}Simons gauge theories of gauge
group OSp(pD2)]OSp(qD2). Therefore, they are topological "eld theories without local degrees of
freedom. The case of p"q"3 is obtained, for example, by a truncation of the Kaluza}Klein
compacti"cation of the six-dimensional N"(2, 0) supergravity on S3. In addition to OSp(pD2),
several other supersymmetric extensions of S¸(2,R) are known, such as:

S;(ND1, 1), G(3), F(4), D(2, 1, a) . (2.55)

Their representations are studied extensively in the context of two-dimensional superconformal
"eld theories.

2.2.5. Consistent truncation of Kaluza}Klein compactixcations
Despite the fact that the equations of motion for type IIB supergravity in ten dimensions are

known, it turns out to be di$cult to extract any simple form for the equations of motion of
#uctuations around its "ve-dimensional Kaluza}Klein compacti"cation on S5. The spectrum of
this compacti"cation is known from the work of [124,83]. It is a general feature of compacti"ca-
tions involving anti-de Sitter space that the positively curved compact part has a radius of
curvature on the same order as the negatively curved anti-de Sitter part. As a result, the positive
(mass)2 of Kaluza}Klein modes is of the same order as the negative (mass)2 of tachyonic modes.
Thus there is no low-energy limit in which one can argue that all but "nitely many Kaluza}Klein
harmonics decouple. This was a traditional worry for all compacti"cations of 11-dimensional
supergravity on squashed seven spheres.

However, fairly compelling evidence exists ([138] and references therein) that the reduction of
11-dimensional supergravity on S7 can be consistently truncated to four-dimensionalN"8 gauged
supergravity. This is an exact statement about the equations of motion, and does not rely in any
way on taking a low-energy limit. Put simply, it means that any solution of the truncated theory
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Fig. 2.9. The low-lying scalar "elds in the Kaluza}Klein reduction of type IIB supergravity on S5. The "lled dots indicate
"elds which are kept in the truncation to gauged supergravity. We also indicate schematically the ten-dimensional origin
of the scalars.

can be lifted to a solution of the untruncated theory. Charged black hole metrics in anti-de Sitter
space provide a non-trivial example of solutions that can be lifted to the higher-dimensional theory
[139}141]. There is a belief but no proof that a similar truncation may be made from ten-
dimensional type IIB supergravity on S5 to "ve-dimensional N"8 supergravity. To illustrate
how radical a truncation this is, we indicate in Fig. 2.9 the "ve-dimensional scalars that are kept
(this is a part of one of the "gures in [124]). Note that not all of them are SO(6) singlets. Indeed, the
"elds which are kept are precisely the superpartners of the massless graviton under the supergroup
S;(2, 2D4), which includes SO(6) as its R-symmetry group.

The historical route to gauged supergravities was as an elaboration of the ungauged theories,
and only after the fact were they argued to be related to the Kaluza}Klein reduction of higher-
dimensional theories on positively curved manifolds. In ungauged d"5 N"8 supergravity, the
scalars parametrize the coset E

6(6)
/;Sp(8) (following [142] we use here ;Sp(8) to denote the

unitary version of the symplectic group with a four-dimensional Cartan subalgebra). The spectrum
of gauged supergravity is almost the same: the only di!erence is that twelve of the vector "elds are
dualized into anti-symmetric two forms. Schematically, we write this as

1 8 27 48 42

gkl tak Aabk sabc /abcd

R
AkIJ BIakl
15 12

(2.56)

Lower-case Roman indices are the eight-valued indices of the fundamental of ;Sp(8). Multiple
;Sp(8) indices in (2.56) are antisymmetrized and the symplectic trace parts removed. The upper-
case Roman indices I, J are the six-valued indices of the vector representation of SO(6), while the
index a indicates a doublet of the S¸(2,R) which descends directly from the S¸(2,R) global
symmetry of type IIB supergravity. These groups are embedded into E

6(6)
via the chain

E
6(6)

MS¸(6,R)]S¸(2,R)MSO(6)]S¸(2,R) . (2.57)
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The key step in formulating gauged supergravities is to introduce minimal gauge couplings into
the Lagrangian for all "elds which are charged under the subgroup of the global symmetry group
that is to be gauged. For instance, if X

I
is a scalar "eld in the vector representation of SO(6), one

makes the replacement

RkXI
PDkXI

"RkXI
!gAk IJ

XJ (2.58)

everywhere in the ungauged action. The gauge coupling g has dimensions of energy in "ve
dimensions, and one can eventually show that g"2/R where R is the radius of the S5 in the
AdS

5
]S5 geometry. The replacement (2.58) spoils supersymmetry, but it was shown in [122,121]

that a supersymmetric Lagrangian can be recovered by adding terms at O(g) and O(g2). The full
Lagrangian and the supersymmetry transformations can be found in these references. It is a highly
non-trivial claim that this action, with its beautiful non-polynomial structure in the scalar "elds,
represents a consistent truncation of the reduction of type IIB supergravity on S5. This is not
entirely implausible, in view of the fact that the SO(6) isometry of the S5 becomes the local gauge
symmetry of the truncated theory. Trivial examples of consistent truncation include situations
where one restricts to "elds which are invariant under some subgroup of the gauge group. For
instance, the part of N"8 "ve-dimensional supergravity invariant under a particular
S;(2)LSO(6) is N"4 gauged supergravity coupled to two tensor multiplets [143]. A similar
trunction to N"6 supergravity was considered in [144].

The O(g2) term in the Lagrangian is particularly interesting: it is a potential< for the scalars.< is
an SO(6)]S¸(2,R) invariant function on the coset manifold E

6(6)
/;Sp(8). It involves all the 42

scalars except the dilaton and the axion. Roughly speaking, one can think of the 40 remaining
scalars as parametrizing a restricted class of deformations of the metric and 3-form "elds on the S5,
and of < as measuring the response of type IIB supergravity to these deformations. If the scalars
are frozen to an extremum of <, then the value of the potential sets the cosmological constant in
"ve dimensions. The associated conformal "eld theories were discussed in [145}147]. The known
extrema can be classi"ed by the subset of the SO(6) global R-symmetry group that is preserved.

3. AdS/CFT correspondence

3.1. The correspondence

In this section we will present an argument connecting type IIB string theory compacti"ed on
AdS

5
]S5 to N"4 super-Yang}Mills theory [5]. Let us start with type IIB string theory in #at,

ten dimensional Minkowski space. Consider N parallel D3 branes that are sitting together or very
close to each other (the precise meaning of `very closea will be de"ned below). The D3 branes are
extended along a (3#1) dimensional plane in (9#1)-dimensional space time. String theory on this
background contains two kinds of perturbative excitations, closed strings and open strings. The
closed strings are the excitations of empty space and the open strings end on the D-branes and
describe excitations of the D-branes. If we consider the system at low energies, energies lower than
the string scale 1/l

4
, then only the massless string states can be excited, and we can write an e!ective

Lagrangian describing their interactions. The closed string massless states give a gravity supermul-
tiplet in ten dimensions, and their low-energy e!ective Lagrangian is that of type IIB supergravity.
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The open string massless states give an N"4 vector supermultiplet in (3#1) dimensions, and
their low-energy e!ective Lagrangian is that of N"4 ;(N) super-Yang}Mills theory [9,2].

The complete e!ective action of the massless modes will have the form

S"S
"6-,

#S
"3!/%

#S
*/5

. (3.1)

S
"6-,

is the action of ten-dimensional supergravity, plus some higher derivative corrections. Note
that the Lagrangian (3.1) involves only the massless "elds but it takes into account the e!ects of
integrating out the massive "elds. It is not renormalizable (even for the "elds on the brane), and it
should only be understood as an e!ective description in the Wilsonian sense, i.e. we integrate out all
massive degrees of freedom but we do not integrate out the massless ones. The brane action S

"3!/%
is

de"ned on the (3#1)-dimensional brane world-volume, and it contains the N"4 super-
Yang}Mills Lagrangian plus some higher derivative corrections, for example terms of the form
a@ 2Tr(F4). Finally, S

*/5
describes the interactions between the brane modes and the bulk modes. The

leading terms in this interaction Lagrangian can be obtained by covariantizing the brane action,
introducing the background metric for the brane [148].

We can expand the bulk action as a free quadratic part describing the propagation of free
massless modes (including the graviton), plus some interactions which are proportional to positive
powers of the square root of the Newton constant. Schematically we have

S
"6-,

&(1/2i2)PJgR&P(Rh)2#i(Rh)2h#2 , (3.2)

where we have written the metric as g"g#ih. We indicate explicitly the dependence on the
graviton, but the other terms in the Lagrangian, involving other "elds, can be expanded in a similar
way. Similarly, the interaction Lagrangian S

*/5
is proportional to positive powers of i. If we take

the low energy limit, all interaction terms proportional to i drop out. This is the well known fact
that gravity becomes free at long distances (low energies).

In order to see more clearly what happens in this low energy limit it is convenient to keep the
energy "xed and send l

4
P0 (a@P0) keeping all the dimensionless parameters "xed, including the

string coupling constant and N. In this limit the coupling i&g
4
a@ 2P0, so that the interaction

Lagrangian relating the bulk and the brane vanishes. In addition all the higher derivative terms in
the brane action vanish, leaving just the pureN"4;(N) gauge theory in 3#1 dimensions, which
is known to be a conformal "eld theory. And, the supergravity theory in the bulk becomes free. So,
in this low energy limit we have two decoupled systems. On the one hand, we have free gravity in
the bulk and on the other hand we have the four-dimensional gauge theory.

Next, we consider the same system from a di!erent point of view. D-branes are massive charged
objects which act as a source for the various supergravity "elds. As shown in Section 1.3 we can "nd
a D3 brane solution [56] of supergravity, of the form

ds2"f~1@2(!dt2#dx2
1
#dx2

2
#dx2

3
)#f 1@2(dr2#r2dX2

5
) ,

F
5
"(1#*)dtdx

1
dx

2
dx

3
df~1 ,

f"1#(R4/r4), R4,4pg
4
a@ 2N .

(3.3)

Note that since g
tt

is non-constant, the energy E
p

of an object as measured by an observer at
a constant position r and the energy E measured by an observer at in"nity are related by the
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redshift factor

E"f~1@4E
p

. (3.4)

This means that the same object brought closer and closer to r"0 would appear to have lower and
lower energy for the observer at in"nity. Now we take the low-energy limit in the background
described by Eq. (3.3). There are two kinds of low-energy excitations (from the point of view of an
observer at in"nity). We can have massless particles propagating in the bulk region with
wavelengths that becomes very large, or we can have any kind of excitation that we bring closer
and closer to r"0. In the low-energy limit these two types of excitations decouple from each other.
The bulk massless particles decouple from the near horizon region (around r"0) because the
low-energy absorption cross-section goes like p&u3R8 [10,11], where u is the energy. This can be
understood from the fact that in this limit the wavelength of the particle becomes much bigger than
the typical gravitational size of the brane (which is of order R). Similarly, the excitations that live
very close to r"0 "nd it harder and harder to climb the gravitational potential and escape to the
asymptotic region. In conclusion, the low-energy theory consists of two decoupled pieces, one is
free bulk supergravity and the second is the near horizon region of the geometry. In the near
horizon region, r;R, we can approximate f&R4/r4, and the geometry becomes

ds2"(r2/R2)(!dt2#dx2
1
#dx2

2
#dx2

3
)#R2dr2/r2#R2dX2

5
, (3.5)

which is the geometry of AdS
5
]S5.

We see that both from the point of view of a "eld theory of open strings living on the brane,
and from the point of view of the supergravity description, we have two decoupled theories in the
low-energy limit. In both cases one of the decoupled systems is supergravity in #at space. So, it is
natural to identify the second system which appears in both descriptions. Thus, we are led to the
conjecture that N"4 ;(N) super-Yang}Mills theory in 3#1 dimensions is the same as (or dual to)
type IIB superstring theory on AdS

5
]S5 [5].

We could be a bit more precise about the near horizon limit and how it is being taken. Suppose
that we take a@P0, as we did when we discussed the "eld theory living on the brane. We want to
keep "xed the energies of the objects in the throat (the near-horizon region) in string units, so that
we can consider arbitrary excited string states there. This implies that Ja@E

p
&"xed. For small a@,

(3.4) reduces to E&E
p
r/Ja@. Since we want to keep "xed the energy measured from in"nity, which

is the way energies are measured in the "eld theory, we need to take rP0 keeping r/a@ "xed. It is
then convenient to de"ne a new variable ;,r/a@, so that the metric becomes

ds2"a@C
;2

J4pg
4
N

(!dt2#dx2
1
#dx2

2
#dx2

3
)#J4pg

4
N

d;2

;2
#J4pg

4
NdX2

5D . (3.6)

This can also be seen by considering a D3 brane sitting at r. As discussed in Section 1.3 this
corresponds to giving a vacuum expectation value to one of the scalars in the Yang}Mills theory.
When we take the a@P0 limit we want to keep the mass of the `=-bosona "xed. This mass,
which is the mass of the string stretching between the branes sitting at r"0 and the one at r, is
proportional to ;"r/a@, so this quantity should remain "xed in the decoupling limit.

A ;(N) gauge theory is essentially equivalent to a free ;(1) vector multiplet times an S;(N)
gauge theory, up to some Z

N
identi"cations (which a!ect only global issues). In the dual string
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theory all modes interact with gravity, so there are no decoupled modes. Therefore, the bulk AdS
theory is describing the S;(N) part of the gauge theory. In fact we were not precise when we
said that there were two sets of excitations at low energies, the excitations in the asymptotic #at
space and the excitations in the near horizon region. There are also some zero modes which live in
the region connecting the `throata (the near horizon region) with the bulk, which correspond to the
;(1) degrees of freedom mentioned above. The ;(1) vector supermultiplet includes six scalars
which are related to the center of mass motion of all the branes [149]. From the AdS point of view
these zero modes live at the boundary, and it looks like we might or might not decide to include
them in the AdS theory. Depending on this choice we could have a correspondence to an S;(N) or
a ;(N) theory. The ;(1) center of mass degree of freedom is related to the topological theory of
B-"elds on AdS [150]; if one imposes local boundary conditions for these B-"elds at the boundary
of AdS one "nds a ;(1) gauge "eld living at the boundary [151], as is familiar in Chern}Simons
theories [23,152]. These modes living at the boundary are sometimes called singletons (or
doubletons) [85,86,125,153}158].

As we have seen in Section 2.2, Anti-de-Sitter space has a large group of isometries, which is
SO(4, 2) for the case at hand. This is the same group as the conformal group in 3#1 dimensions.
Thus, the fact that the low-energy "eld theory on the brane is conformal is re#ected in the
fact that the near horizon geometry is anti-de-Sitter space. We also have some supersymmet-
ries. The number of supersymmetries is twice that of the full solution (3.3) containing the
asymptotic region [149]. This doubling of supersymmetries is viewed in the "eld theory
as a consequence of superconformal invariance (Section 2.2.3), since the superconformal algebra
has twice as many fermionic generators as the corresponding Poincare superalgebra. We also
have an SO(6) symmetry which rotates the S5. This can be identi"ed with the S;(4)

R
R-symmetry

group of the "eld theory. In fact, the whole supergroup is the same for the N"4 "eld theory
and the AdS

5
]S5 geometry, so both sides of the conjecture have the same spacetime symmetries.

We will discuss in more detail the matching between the two sides of the correspondence in
Section 3.2.

In the above derivation the "eld theory is naturally de"ned on R3,1, but we have seen in Section
2.2.1 that we could also think of the conformal "eld theory as de"ned on S3]R by rede"ning the
Hamiltonian. Since the isometries of AdS are in one to one correspondence with the generators of
the conformal group of the "eld theory, we can conclude that this new Hamiltonian 1

2
(P

0
#K

0
)

can be associated on AdS to the generator of translations in global time. This formulation
of the conjecture is more useful since in the global coordinates there is no horizon. When we
put the "eld theory on S3 the Coulomb branch is lifted and there is a unique ground state. This is
due to the fact that the scalars /I in the "eld theory are conformally coupled, so there is a term of
the form :d4x¹r(/2)R in the Lagrangian, where R is the curvature of the four-dimensional space
on which the theory is de"ned. Due to the positive curvature of S3 this leads to a mass term for the
scalars [20], lifting the moduli space.

The parameter N appears on the string theory side as the #ux of the "ve-form Ramond}Ramond
"eld strength on the S5,

P
S
5

F
5
"N . (3.7)
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From the physics of D-branes we know that the Yang}Mills coupling is related to the string
coupling through [6,159]

q,
4pi
g2
YM

#

h
2p

"

i
g
4

#

s
2p

, (3.8)

where we have also included the relationship of the h angle to the expectation value of the RR
scalar s. We have written the couplings in this fashion because both the gauge theory and the string
theory have an S¸(2,Z) self-duality symmetry under which qP(aq#b)/(cq#d) (where a, b, c, d are
integers with ad!bc"1). In fact, S¸(2,Z) is a conjectured strong-weak coupling duality sym-
metry of type IIB string theory in #at space [160], and it should also be a symmetry in the present
context since all the "elds that are being turned on in the AdS

5
]S5 background (the metric and the

"ve form "eld strength) are invariant under this symmetry. The connection between the S¸(2,Z)
duality symmetries of type IIB string theory and N"4 SYM was noted in [161}163]. The string
theory seems to have a parameter that does not appear in the gauge theory, namely a@, which sets
the string tension and all other scales in the string theory. However, this is not really a parameter in
the theory if we do not compare it to other scales in the theory, since only relative scales are
meaningful. In fact, only the ratio of the radius of curvature to a@ is a parameter, but not a@ and the
radius of curvature independently. Thus, a@ will disappear from any "nal physical quantity we
compute in this theory. It is sometimes convenient, especially when one is doing gravity calcu-
lations, to set the radius of curvature to one. This can be achieved by writing the metric as
ds2"R2ds8 2, and rewriting everything in terms of g8 . With these conventions G

N
&1/N2

and a@&1/Jg
4
N. This implies that any quantity calculated purely in terms of the gravity

solution, without including stringy e!ects, will be independent of g
4
N and will depend only on N.

a@ corrections to the gravity results give corrections which are proportional to powers of
1/Jg

4
N.

Now, let us address the question of the validity of various approximations. The analysis of loop
diagrams in the "eld theory shows that we can trust the perturbative analysis in the Yang}Mills
theory when

g2
YM

N&g
4
N&R4/l4

4
;1 . (3.9)

Note that we need g2
YM

N to be small and not just g2
YM

. On the other hand, the classical gravity
description becomes reliable when the radius of curvature R of AdS and of S5 becomes large
compared to the string length,

R4/l4
4
&g

4
N&g2

YM
N<1 . (3.10)

We see that the gravity regime (3.10) and the perturbative "eld theory regime (3.9) are perfectly
incompatible. In this fashion we avoid any obvious contradiction due to the fact that the two
theories look very di!erent. This is the reason that this correspondence is called a `dualitya. The
two theories are conjectured to be exactly the same, but when one side is weakly coupled the other
is strongly coupled and vice versa. This makes the correspondence both hard to prove and useful,
as we can solve a strongly coupled gauge theory via classical supergravity. Notice that in (3.9) and
(3.10) we implicitly assumed that g

4
(1. If g

4
'1 we can perform an S¸(2,Z) duality transforma-

tion and get conditions similar to (3.9) and (3.10) but with g
4
P1/g

4
. So, we cannot get into the
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gravity regime (3.10) by taking N small (N"1, 2,2) and g
4

very large, since in that case the
D-string becomes light and renders the gravity approximation invalid. Another way to see this is to
note that the radius of curvature in Planck units is R4/l4

P
&N. So, it is always necessary, but not

su$cient, to have large N in order to have a weakly coupled supergravity description.
One might wonder why the above argument was not a proof rather than a conjecture. It is

not a proof because we did not treat the string theory non-perturbatively (not even non-
perturbatively in a@). We could also consider di!erent forms of the conjecture. In its weakest
form the gravity description would be valid for large g

4
N, but the full string theory on AdS

might not agree with the "eld theory. A not so weak form would say that the conjecture is valid
even for "nite g

4
N, but only in the NPR limit (so that the a@ corrections would agree with the

"eld theory, but the g
4
corrections may not). The strong form of the conjecture, which is the most

interesting one and which we will assume here, is that the two theories are exactly the same for all
values of g

4
and N. In this conjecture, the space time is only required to be asymptotic to AdS

5
]S5

as we approach the boundary. In the interior we can have all kinds of processes; gravitons, highly
excited fundamental string states, D-branes, black holes, etc. Even the topology of space time can
change in the interior. The Yang}Mills theory is supposed to e!ectively sum over all spacetimes
which are asymptotic to AdS

5
]S5. This is completely analogous to the usual conditions of

asymptotic #atness. We can have black holes and all kinds of topology changing processes, as long
as space time is asymptotically #at. In this case asymptotic #atness is replaced by the asymptotic
AdS behavior.

3.1.1. Brane probes and multicenter solutions
The moduli space of vacua of the N"4 ;(N) gauge theory is (R6)N/S

N
, parametrizing the

positions of the N branes in the six-dimensional transverse space. In the supergravity solution one
can replace

fJ
N
r4
P

N
+
i/1

1
Dr!r

i
D4

, (3.11)

and still have a solution to the supergravity equations. We see that if DrD<Dr
i
D then the two solutions

are basically the same, while when we go to r&r
i
the solution starts looking like the solution of

a single brane. Of course, we cannot trust the supergravity solution for a single brane (since the
curvature in Planck units is proportional to a negative power of N). What we can do is separate the
N branes into groups of N

i
branes with g

4
N

i
<1 for all i. Then we can trust the gravity solution

everywhere.
Another possibility is to separate just one brane (or a small number of branes) from a group of

N branes. Then we can view this brane as a D3-brane in the AdS
5

background which is generated
by the other branes (as described above). A string stretching between the brane probe and the
N branes appears in the gravity description as a string stretching between the D3-brane and the
horizon of AdS. This seems a bit surprising at "rst since the proper distance to the horizon is
in"nite. However, we get a "nite result for the energy of this state once we remember to include the
redshift factor. The D3-branes in AdS (like any D3-branes in string theory) are described at low
energies by the Born}Infeld action, which is the Yang}Mills action plus some higher derivative
corrections. This seems to contradict, at "rst sight, the fact that the dual "eld theory (coming from
the original branes) is just the pure Yang}Mills theory. In order to understand this point more
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precisely let us write explicitly the bosonic part of the Born-Infeld action for a D-3 brane in AdS
[148],

S"!

1
(2p)3g

4
a@2Pd4x f~1 [J!det(gab#f RarRbr#r2fg

ij
RahiRbhj#2pa@Jf Fab)!1] ,

f"4pg
4
a@2N/r4 , (3.12)

where hi are angular coordinates on the 5-sphere. We can easily check that if we de"ne a new
coordinate ;"r/a@, then all the a@ dependence drops out of this action. Since ; (which has
dimensions of energy) corresponds to the mass of the W bosons in this con"guration, it is the
natural way to express the Higgs expectation value that breaks ;(N#1) to ;(N)];(1). In fact,
the action (3.12) is precisely the low-energy e!ective action in the "eld theory for the massless ;(1)
degrees of freedom, that we obtain after integrating out the massive degrees of freedom (W bosons).
We can expand (3.12) in powers of R; and we see that the quadratic term does not have any
correction, which is consistent with the non-renormalization theorem for N"4 super-Yang}Mills
[164]. The (R;)4 term has only a one-loop correction, and this is also consistent with another
non-renormalization theorem [165]. This one-loop correction can be evaluated explicitly in the
gauge theory and the result agrees with the supergravity result [166]. It is possible to argue, using
broken conformal invariance, that all terms in (3.12) are determined by the (R;)4 term [5]. Since
the massive degrees of freedom that we are integrating out have a mass proportional to ;, the
action (3.12) makes sense as long as the energies involved are much smaller than ;. In particular,
we need R;/;;;. Since (3.12) has the form L(g

4
N(R;)2/;4), the higher order terms in (3.12)

could become important in the supergravity regime, when g
4
N<1. The Born Infeld action (3.12),

as always, makes sense only when the curvature of the brane is small, but the deviations from
a straight #at brane could be large. In this regime we can keep the non-linear terms in (3.12) while
we still neglect the massive string modes and similar e!ects. Further gauge theory calculations for
e!ective actions of D-brane probes include [167}169].

3.1.2. The xeld % operator correspondence
A conformal "eld theory does not have asymptotic states or an S-matrix, so the natural objects

to consider are operators. For example, in N"4 super-Yang}Mills we have a deformation by
a marginal operator which changes the value of the coupling constant. Changing the coupling
constant in the "eld theory is related by (3.8) to changing the coupling constant in the string theory,
which is then related to the expectation value of the dilaton. The expectation value of the dilaton is
set by the boundary condition for the dilaton at in"nity. So, changing the gauge theory coupling
constant corresponds to changing the boundary value of the dilaton. More precisely, let us denote
by O the corresponding operator. We can consider adding the term :d4x/

0
(x)O(x) to the Lagran-

gian (for simplicity we assume that such a term was not present in the original Lagrangian,
otherwise we consider /

0
(x) to be the total coe$cient of O(x) in the Lagrangian). According to the

discussion above, it is natural to assume that this will change the boundary condition of the dilaton
at the boundary of AdS to (in the coordinate system (2.31)) /(x, z)D

z/0
"/

0
(x). More precisely, as

argued in [19,20], it is natural to propose that

Se : $
4
x (0(x)O(x)T

CFT
"Z

453*/'
[/(x, z)D

z/0
"/

0
(x)] , (3.13)
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Fig. 3.1. Correlation functions can be calculated (in the large g
4
N limit) in terms of supergravity Feynman diagrams.

Here we see the leading contribution coming from a disconnected diagram plus connected pieces involving interactions of
the supergravity "elds in the bulk of AdS. At tree level, these diagrams and those related to them by crossing are the only
ones that contribute to the four-point function.

where the left-hand side is the generating function of correlation functions in the "eld theory, i.e.
/
0

is an arbitrary function and we can calculate correlation functions of O by taking functional
derivatives with respect to /

0
and then setting /

0
"0. The right-hand side is the full partition

function of string theory with the boundary condition that the "eld / has the value /
0

on the
boundary of AdS. Notice that /

0
is a function of the four variables parametrizing the boundary

of AdS
5
.

A formula like (3.13) is valid in general, for any "eld /. Therefore, each "eld propagating on AdS
space is in a one-to-one correspondence with an operator in the "eld theory. There is a relation
between the mass of the "eld / and the scaling dimension of the operator in the conformal "eld
theory. Let us describe this more generally in AdS

d`1
. The wave equation in Euclidean space for

a "eld of mass m has two independent solutions, which behave like zd~D and zD for small z (close to
the boundary of AdS), where

D"

d
2
#S

d2

4
#R2m2 . (3.14)

Therefore, in order to get consistent behavior for a massive "eld, the boundary condition on the
"eld on the right-hand side of (3.13) should in general be changed to

/(x, e)"ed~D/
0
(x) , (3.15)

and eventually we would take the limit where eP0. Since / is dimensionless, we see that /
0

has
dimensions of [length]D~d which implies, through the left-hand side of (3.13), that the associated
operator O has dimension D (3.14). A more detailed derivation of this relation will be given in
Section 3.3, where we will verify that the two-point correlation function of the operator O behaves
as that of an operator of dimension D [19,20]. A similar relation between "elds on AdS and
operators in the "eld theory exists also for non-scalar "elds, including fermions and tensors on
AdS space.

Correlation functions in the gauge theory can be computed from (3.13) by di!erentiating with
respect to /

0
. Each di!erentiation brings down an insertion O, which sends a / particle (a closed

string state) into the bulk. Feynman diagrams can be used to compute the interactions of particles
in the bulk. In the limit where classical supergravity is applicable, the only diagrams that contribute
are the tree-level diagrams of the gravity theory (see for instance Fig. 3.1).

This method of de"ning the correlation functions of a "eld theory which is dual to a gravity
theory in the bulk of AdS space is quite general, and it applies in principle to any theory of gravity
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[20]. Any local "eld theory contains the stress tensor as an operator. Since the correspondence
described above matches the stress-energy tensor with the graviton, this implies that the AdS
theory includes gravity. It should be a well-de"ned quantum theory of gravity since we should be
able to compute loop diagrams. String theory provides such a theory. But if a new way of de"ning
quantum gravity theories comes along we could consider those gravity theories in AdS, and they
should correspond to some conformal "eld theory `on the boundarya. In particular, we could
consider backgrounds of string theory of the form AdS

5
]M5 where M5 is any Einstein manifold

[170}172]. Depending on the choice of M5 we get di!erent dual conformal "eld theories, as
discussed in Section 4.1. Similarly, this discussion can be extended to any AdS

d`1
space, corre-

sponding to a conformal "eld theory in d space-time dimensions (for d'1). We will discuss
examples of this in Section 6.1.

3.1.3. Holography
In this section we will describe how the AdS/CFT correspondence gives a holographic descrip-

tion of physics in AdS spaces.
Let us start by explaining the Bekenstein bound, which states that the maximum entropy in

a region of space is S
.!9

"Area/4G
N

[27], where the area is that of the boundary of the region.
Suppose that we had a state with more entropy than S

.!9
, then we show that we could violate the

second law of thermodynamics. We can throw in some extra matter so that we form a black hole.
The entropy should not decrease. But if a black hole forms inside the region its entropy is just the
area of its horizon, which is smaller than the area of the boundary of the region (which by our
assumption is smaller than the initial entropy). So, the second law has been violated.

Note that this bound implies that the number of degrees of freedom inside some region grows as
the area of the boundary of a region and not like the volume of the region. In standard quantum
"eld theories this is certainly not possible. Attempting to understand this behavior leads to the
`holographic principlea, which states that in a quantum gravity theory all physics within some
volume can be described in terms of some theory on the boundary which has less than one degree of
freedom per Planck area [25,26] (so that its entropy satis"es the Bekenstein bound).

In the AdS/CFT correspondence we are describing physics in the bulk of AdS space by a "eld
theory of one less dimension (which can be thought of as living on the boundary), so it looks like
holography. However, it is hard to check what the number of degrees of freedom per Planck area is,
since the theory, being conformal, has an in"nite number of degrees of freedom, and the area of
the boundary of AdS space is also in"nite. Thus, in order to compare things properly, we should
introduce a cuto! on the number of degrees of freedom in the "eld theory and see what it
corresponds to in the gravity theory. For this purpose let us write the metric of AdS as

ds2"R2C!A
1#r2
1!r2B

2
dt2#

4
(1!r2)2

(dr2#r2dX2)D . (3.16)

In these coordinates the boundary of AdS is at r"1. We saw above that when we calculate
correlation functions we have to specify boundary conditions at r"1!d and then take the limit
of dP0. It is clear by studying the action of the conformal group on PoincareH coordinates that the
radial position plays the role of some energy scale, since we approach the boundary when we do
a conformal transformation that localizes objects in the CFT. So, the limit dP0 corresponds to
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10Except possibly for a small number of singleton "elds.

going to the UV of the "eld theory. When we are close to the boundary we could also use the
PoincareH coordinates

ds2"R2(!dt2#dx2#dz2)/z2 , (3.17)

in which the boundary is at z"0. If we consider a particle or wave propagating in (3.17) or (3.16)
we see that its motion is independent of R in the supergravity approximation. Furthermore, if we
are in Euclidean space and we have a wave that has some spatial extent j in the x directions, it will
also have an extent j in the z direction. This can be seen from (3.17) by eliminating j through the
change of variables xPjx, zPjz. This implies that a cuto! at

z&d (3.18)

corresponds to a UV cuto! in the "eld theory at distances d, with no factors of R (d here is
dimensionless, in the "eld theory it is measured in terms of the radius of the S4 or S3 that the theory
lives on). Eq. (3.18) is called the UV-IR relation [173].

Consider the case ofN"4 SYM on a three sphere of radius one. We can estimate the number of
degrees of freedom in the "eld theory with a UV cuto! d. We get

S&N2d~3 , (3.19)

since the number of cells into which we divide the three sphere is of order 1/d3. In the gravity
solution (3.16) the area in Planck units of the surface at r"1!d, for d;1, is

Area/4G
N
"<

S
5R3d~3/4G

N
&N2d~3 . (3.20)

Thus, we see that the AdS/CFT correspondence saturates the holographic bound [173].
One could be a little suspicious of the statement that gravity in AdS is holographic, since it does

not seem to be saying much because in AdS space the volume and the boundary area of a given
region scale in the same fashion as we increase the size of the region. In fact, any "eld theory in AdS
would be holographic in the sense that the number of degrees of freedom within some (large
enough) volume is proportional to the area (and also to the volume). What makes this case di!erent is
that we have the additional parameter R, and then we can take AdS spaces of di!erent radii
(corresponding to di!erent values of N in the SYM theory), and then we can ask whether the number
of degrees of freedom goes like the volume or the area, since these have a di!erent dependence on R.

One might get confused by the fact that the surface r"1!d is really nine-dimensional as
opposed to four-dimensional. From the form of the full metric on AdS

5
]S5 we see that as we take

dP0 the physical size of four of the dimensions of this nine-dimensional space grow, while the other
"ve, the S5, remain constant. So, we see that the theory on this nine-dimensional surface becomes
e!ectively four-dimensional, since we need to multiply the metric by a factor that goes to zero as we
approach the boundary in order to de"ne a "nite metric for the four-dimensional gauge theory.

Note that even though it is often said that the "eld theory is de"ned on the boundary of AdS, it
actually describes all the physics that is going on inside AdS. When we are thinking in the AdS
picture it is incorrect to consider at the same time an additional "eld theory living at the
boundary.10 Di!erent regions of AdS space, which are at di!erent radial positions, correspond to
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Fig. 3.2. Derivation of the IR/UV relation by considering a spatial geodesic ending at two points on the boundary.

physics at di!erent energy scales in the "eld theory. It is interesting that depending on what
boundary we take, R3`1 (in the PoincareH coordinates) or S3]R (in the global coordinates), we can
either have a horizon or not have one. The presence of a horizon in the R3`1 case is related to the
fact that the theory has no mass gap and we can have excitations at arbitrarily low energies. This
will always happen when we have a horizon, since by bringing a particle close to a horizon its
energy becomes arbitrarily small. We are talking about the energy measured with respect to the
time associated to the Killing vector that vanishes at the horizon. In the S3 case there is no horizon,
and correspondingly the theory has a gap. In this case the "eld theory has a discrete spectrum since
it is in "nite volume.

Now let us consider the UV/IR correspondence in spaces that are not AdS, like the ones which
correspond to the "eld theories living on D-p-branes with pO3 (see Section 6.1.3). A simple
derivation involves considering a classical spatial geodesic that ends on the boundary at two points
separated by a distance ¸ in "eld theory units (see Fig. 3.2). This geodesic goes into the bulk, and it
has a point at which the distance to the boundary is maximal. Let us call this point r

.!9
(¸). Then,

one formulation of the UV/IR relation is

r"r
.!9

(¸)%¸ . (3.21)

A similar criterion arises if we consider the wave equation instead of classical geodesics [174]; of
course both are the same since a classical geodesic arises as a limit of the wave equation for very
massive particles.

Since the radial direction arises holographically, it is not obvious at "rst sight that the theory will
be causal in the bulk. Issues of causality in the holographic description of the spacetime physics
were discussed in [175}178].

This holographic description has implications for the physics of black holes. This description
should therefore explain how the singularity inside black holes should be treated (see [179]).
Holography also implies that black hole evolution is unitary since the boundary theory is unitary.
It is not totally clear, from the gravity point of view, how the information comes back out or where
it is stored (see [180] for a discussion). Some speculations about holography and a new uncertainty
principle were discussed in [181].
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11Unlike most of the other tests described here, this test actually tests the "nite N duality and not just the large N limit.

3.2. Tests of the AdS/CFT correspondence

In this section we review the direct tests of the AdS/CFT correspondence. In Section 3.1 we saw
how string theory on AdS de"nes a partition function which can be used to de"ne a "eld theory.
Here we will review the evidence showing that this "eld theory is indeed the same as the
conjectured dual "eld theory. We will focus here only on tests of the correspondence between the
N"4 S;(N) SYM theory and the type IIB string theory compacti"ed on AdS

5
]S5; most of the

tests described here can be generalized also to cases in other dimensions and/or with less
supersymmetry, which will be described below.

As described in Section 3.1, the AdS/CFT correspondence is a strong/weak coupling duality. In
the 't Hooft large N limit, it relates the region of weak "eld theory coupling j"g2

YM
N in the SYM

theory to the region of high curvature (in string units) in the string theory, and vice versa. Thus,
a direct comparison of correlation functions is generally not possible, since (with our current
knowledge) we can only compute most of them perturbatively in j on the "eld theory side and
perturbatively in 1/Jj on the string theory side. For example, as described below, we can compute
the equation of state of the SYM theory and also the quark}anti-quark potential both for small
j and for large j, and we obtain di!erent answers, which we do not know how to compare since we
can only compute them perturbatively on both sides. A similar situation arises also in many "eld
theory dualities that were analyzed in the last few years (such as the electric/magnetic S¸(2,Z)
duality of the N"4 SYM theory itself), and it was realized that there are several properties of
these theories which do not depend on the coupling, so they can be compared to test the duality.
These are:

f The global symmetries of the theory, which cannot change as we change the coupling (except for
extreme values of the coupling). As discussed in Section 3.1, in the case of the AdS/CFT
correspondence we have the same supergroup S;(2, 2D4) (whose bosonic subgroup is
SO(4, 2)]S;(4)) as the global symmetry of both theories. Also, both theories are believed to have
a non-perturbative S¸(2,Z) duality symmetry acting on their coupling constant q. These are the
only symmetries of the theory on R4. Additional Z

N
symmetries arise when the theories are

compacti"ed on non-simply connected manifolds, and these were also successfully matched in
[182,150].11

f Some correlation functions, which are usually related to anomalies, are protected from any
quantum corrections and do not depend on j. The matching of these correlation functions will
be described in Section 3.2.2 below.

f The spectrum of chiral operators does not change as the coupling varies, and it will be compared
in Section 3.2.1 below.

f The moduli space of the theory also does not depend on the coupling. In the S;(N) "eld theory
the moduli space is R6(N~1)/S

N
, parametrized by the eigenvalues of six commuting traceless

N]N matrices. On the AdS side it is not clear exactly how to de"ne the moduli space. As
described in Section 3.1.1, there is a background of string theory corresponding to any point in
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the "eld theory moduli space, but it is not clear how to see that this is the exact moduli space on the
string theory side (especially since high curvatures arise for generic points in the moduli space).

f The qualitative behavior of the theory upon deformations by relevant or marginal operators also
does not depend on the coupling (at least for chiral operators whose dimension does not depend
on the coupling, and in the absence of phase transitions). This will be discussed in Section 4.3.

There are many more qualitative tests of the correspondence, such as the existence of
con"nement for the "nite temperature theory [183], which we will not discuss in this section. We
will also not discuss here tests involving the behavior of the theory on its moduli space
[167,184,168].

3.2.1. The spectrum of chiral primary operators

3.2.1.1. The xeld theory spectrum. The N"4 supersymmetry algebra in d"4 has four generators
QAa (and their complex conjugates QM a5 A), where a is a Weyl-spinor index (in the 2 of the SO(3, 1)
Lorentz group) and A is an index in the 4 of the S;(4)

R
R-symmetry group (lower indices A will be

taken to transform in the 41 representation). They obey the algebra

MQAa , QM a5 BN"2(pk)aa5 PkdA
B

,

MQAa , QBbN"MQM a5 A, QM bQ BN"0 ,
(3.22)

where pi (i"1, 2, 3) are the Pauli matrices and (p0)aa5 "!daa5 (we use the conventions of Wess and
Bagger [185]).
N"4 supersymmetry in four dimensions has a unique multiplet which does not include spins

greater than one, which is the vector multiplet. It includes a vector "eld Ak (k is a vector index of the
SO(3, 1) Lorentz group), four complex Weyl fermions jaA (in the 41 of S;(4)

R
), and six real scalars

/I (where I is an index in the 6 of S;(4)
R
). The classical action of the supersymmetry generators on

these "elds is schematically given (for on-shell "elds) by

[QAa , /I]&jaB ,

MQAa , jbBN&(pkl)abFkl#eab[/I,/J] ,

MQAa , jM BbQ N&(pk)abQDk/I ,

[QAa , Ak]&(pk)aa5 jM AbQ ea
5 bQ ,

(3.23)

with similar expressions for the action of the QM 's, where pkl are the generators of the Lorentz group
in the spinor representation, Dk is the covariant derivative, the "eld strength Fkl,[Dk,Dl], and
we have suppressed the S;(4) Clebsch}Gordan coe$cients corresponding to the products
4]6P41 , 4]41 P1#15 and 4]4P6 in the "rst three lines of (3.23).

An N"4 supersymmetric "eld theory is uniquely determined by specifying the gauge group,
and its "eld content is a vector multiplet in the adjoint of the gauge group. Such a "eld theory is
equivalent to an N"2 theory with one hypermultiplet in the adjoint representation, or to an
N"1 theory with three chiral multiplets Ui in the adjoint representation (in the 3

2@3
of the

S;(3)];(1)
R
LS;(4)

R
which is left unbroken by the choice of a single N"1 SUSY generator)

and a superpotential of the form=Je
ijk

Tr(UiUjUk). The interactions of the theory include a scalar
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potential proportional to +
I,J

Tr([/I,/J]2), such that the moduli space of the theory is the space of
commuting matrices /I (I"1,2, 6).

The spectrum of operators in this theory includes all the gauge invariant quantities that can be
formed from the "elds described above. In this section we will focus on local operators which
involve "elds taken at the same point in space-time. For the S;(N) theory described above,
properties of the adjoint representation of S;(N) determine that such operators necessarily involve
a product of traces of products of "elds (or the sum of such products). It is natural to divide the
operators into single-trace operators and multiple-trace operators. In the 't Hooft large N limit
correlation functions involving multiple-trace operators are suppressed by powers of N compared
to those of single-trace operators involving the same "elds. We will discuss here in detail only the
single-trace operators; the multiple-trace operators appear in operator product expansions of
products of single-trace operators.

As discussed in Section 2.1, it is natural to classify the operators in a conformal theory into
primary operators and their descendants. In a superconformal theory it is also natural to
distinguish between chiral primary operators, which are in short representations of the supercon-
formal algebra and are annihilated by some of the supercharges, and non-chiral primary operators.
Representations of the superconformal algebra are formed by starting with some state of lowest
dimension, which is annihilated by the operators S and Kk, and acting on it with the operators
Q and Pk. The N"4 supersymmetry algebra involves 16 real supercharges. A generic primary
representation of the superconformal algebra will thus include 216 primaries of the conformal
algebra, generated by acting on the lowest state with products of di!erent supercharges; acting with
additional supercharges always leads to descendants of the conformal algebra (i.e. derivatives).
Since the supercharges have helicities $1/2, the primary "elds in such representations will have
a range of helicities between j!4 (if the lowest dimension operator t has helicity j) and j#4
(acting with more than 8 supercharges of the same helicity either annihilates the state or leads to
a conformal descendant). In non-generic representations of the superconformal algebra a product
of less than 16 di!erent Q's annihilates the lowest dimension operator, and the range of helicities
appearing is smaller. In particular, in the small representations of the N"4 superconformal
algebra only up to 4 Q's of the same helicity acting on the lowest dimension operator give
a non-zero result, and the range of helicities is between j!2 and j#2. For the N"4
supersymmetry algebra (not including the conformal algebra) it is known that medium representa-
tions, whose range of helicities is 6, can also exist (they arise, for instance, on the moduli space of
the S;(N) N"4 SYM theory [186}193]); it is not clear if such medium representations of the
superconformal algebra [194] can appear in physical theories or not (there are no known
examples). More details on the structure of representations of the N"4 superconformal algebra
may be found in [83,194}199] and references therein.

In the ;(1) N"4 SYM theory (which is a free theory), the only gauge-invariant `single tracea
operators are the "elds of the vector multiplet itself (which are /I, j

A
, jM A and Fkl"R*kAl+). These

operators form an ultra-short representation of the N"4 algebra whose range of helicities is from
(!1) to 1 (acting with more than two supercharges of the same helicity on any of these states gives
either zero or derivatives, which are descendants of the conformal algebra). All other local gauge
invariant operators in the theory involve derivatives or products of these operators. This repres-
entation is usually called the doubleton representation, and it does not appear in the S;(N) SYM
theory (though the representations which do appear can all be formed by tensor products of the
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doubleton representation). In the context of AdS space, one can think of this multiplet as living
purely on the boundary of the space, [200}208,85,84], as expected for the ;(1) part of the original
;(N) gauge group of the D3-branes (see the discussion in Section 3.1).

There is no known simple systematic way to compute the full spectrum of chiral primary
operators of the N"4 S;(N) SYM theory, so we will settle for presenting the known chiral
primary operators. The lowest component of a superconformal-primary multiplet is characterized
by the fact that it cannot be written as a supercharge Q acting on any other operator. Looking at
the action of the supersymmetry charges (3.23) suggests that generally operators built from the
fermions and the gauge "elds will be descendants (given by Q acting on some other "elds), so one
would expect the lowest components of the chiral primary representations to be built only from the
scalar "elds, and this turns out to be correct.

Let us analyze the behavior of operators of the form OI1I2
2In,Tr(/I1/I22/In). First we can ask

if this operator can be written as MQ,tN for any "eld t. In the SUSY algebra (3.23) only
commutators of /I's appear on the right-hand side, so we see that if some of the indices are
antisymmetric the "eld will be a descendant. Thus, only symmetric combinations of the indices will
be lowest components of primary multiplets. Next, we should ask if the multiplet built on such an
operator is a (short) chiral primary multiplet or not. There are several di!erent ways to answer this
question. One possibility is to use the relation between the dimension of chiral primary operators
and their R-symmetry representation [91}95], and to check if this relation is obeyed in the free "eld
theory, where [OI1I2

2In]"n. In this way we "nd that the representation is chiral primary if and
only if the indices form a symmetric traceless product of n 6's (traceless representations are de"ned
as those who give zero when any two indices are contracted). This is a representation of weight
(0, n, 0) of S;(4)

R
; in this section we will refer to S;(4)

R
representations either by their dimensions in

boldface or by their weights.
Another way to check this is to see if by acting with Q's on these operators we get the most

general possible states or not, namely if the representation contains `null vectorsa or not (it turns
out that in all the relevant cases `null vectorsa appear already at the "rst level by acting with
a single Q, though in principle there could be representations where `null vectorsa appear only
at higher levels). Using the SUSY algebra (3.23) it is easy to see that for symmetric traceless
representations we get `null vectorsa while for other representations we do not. For instance,
let us analyze in detail the case n"2. The symmetric product of two 6's is given by 6]6P1#20@.
The "eld in the 1 representation is Tr(/I/I), for which [QAa , Tr(/I/I)]&CAJBTr(jaB/J) where
CAIB is a Clebsch}Gordan coe$cient for 41 ]6P4. The right-hand side is in the 4 representation,
which is the most general representation that can appear in the product 4]1, so we "nd no
null vectors at this level. On the other hand, if we look at the symmetric traceless
product Tr(/MI/JN),Tr(/I/J)!1

6
dIJTr(/K/K) in the 20@ representation, we "nd that

MQAa , Tr(/MI/JN)N&Tr(jaB/K) with the right-hand side being in the 20 representation (appearing in
41 ]6P4#20), while the left-hand side could in principle be in the 4]20@P20#60. Since the 60
does not appear on the right-hand side (it is a `null vectora) we identify that the representation built
on the 20@ is a short representation of the SUSY algebra. By similar manipulations (see
[20,209,195,198] for more details) one can verify that chiral primary representations correspond
exactly to symmetric traceless products of 6's.

It is possible to analyze the chiral primary spectrum also by using N"1 subalgebras of the
N"4 algebra. If we use an N"1 subalgebra of the N"4 algebra, as described above, the
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12We can limit the discussion to commuting matrices since, as discussed above, commutators always lead to
descendants, and we can write any product of matrices as a product of commuting matrices plus terms with
commutators.

operators O
n
include the chiral operators of the form Tr(Ui1Ui22Uin) (in a representation of S;(3)

which is a symmetric product of 3's), but for a particular choice of the N"1 subalgebra not all the
operators O

n
appear to be chiral (a short multiplet of the N"4 algebra includes both short and

long multiplets of the N"1 subalgebra).
The last issue we should discuss is what is the range of values of n. The product of more than

N commuting12 N]N matrices can always be written as a sum of products of traces of less than
N of the matrices, so it does not form an independent operator. This means that for n'N we can
express the operator OI1I2

2In in terms of other operators, up to operators including commutators
which (as explained above) are descendants of the SUSY algebra. Thus, we "nd that the short chiral
primary representations are built on the operatorsO

n
"OMI1I2

2InN with n"2, 3,2, N, for which the
indices are in the symmetric traceless product of n 6's (in a ;(N) theory we would "nd the same
spectrum with the additional representation corresponding to n"1). The superconformal algebra
determines the dimension of these "elds to be [O

n
]"n, which is the same as their value in the free

"eld theory. We argued above that these are the only short chiral primary representations in the
S;(N) gauge theory, but we will not attempt to rigorously prove this here.

The full chiral primary representations are obtained by acting on the "elds O
n
by the generators

Q and P of the supersymmetry algebra. The representation built on O
n

contains a total of
256] 1

12
n2(n2!1) primary states, of which half are bosonic and half are fermionic. Since these

multiplets are built on a "eld of helicity zero, they will contain primary "elds of helicities between
(!2) and 2. The highest dimension primary "eld in the multiplet is (generically) of the form
Q4QM 4O

n
, and its dimension is n#4. There is an elegant way to write these multiplets as traces of

products of `twisted chiral N"4 super"eldsa [209,195]; see also [210] which checks some
components of these super"elds against the couplings to supergravity modes predicted on the basis
of the DBI action for D3-branes in anti-de Sitter space [211].

It is easy to "nd the form of all the "elds in such a multiplet by using the algebra (3.23). For
example, let us analyze here in detail the bosonic primary "elds of dimension n#1 in the multiplet.
To get a "eld of dimension n#1 we need to act on O

n
with two supercharges (recall that [Q]"1

2
).

If we act with two supercharges QAa of the same chirality, their Lorentz indices can be either
antisymmetrized or symmetrized. In the "rst case we get a Lorentz scalar "eld in the (2, n!2, 0)
representation of S;(4)

R
, which is of the schematic form

eabMQa, [Qb,On
]N&eabTr(jaAjbB/J12/Jn~2)#Tr([/K1, /K2]/L12/Ln~1) . (3.24)

Using an N"1 subalgebra some of these operators may be written as the lowest components of
the chiral super"elds Tr(=2aUj12Ujn~2). In the second case we get an anti-symmetric 2-form of the
Lorentz group, in the (0, n!1, 0) representation of S;(4)

R
, of the form

MQMa, [QbN,On
]N&Tr((pkl)abFkl/J12/Jn~1)#Tr(jaAjbB/K12/Kn~2) . (3.25)
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Both of these "elds are complex, with the complex conjugate "elds given by the action of two QM 's.
Acting with one Q and one QM on the state O

n
gives a (real) Lorentz-vector "eld in the (1,n!2, 1)

representation of S;(4)
R
, of the form

MQa, [QM a5 ,On
]N&Tr(jaAjM Ba5 /J12/Jn~2)#(pk)aa5 Tr((Dk/J)/K12/Kn~1) . (3.26)

At dimension n#2 (acting with four supercharges) we "nd:

f A complex scalar "eld in the (0, n!2, 0) representation, given by Q4O
n
, of the form

Tr(F2kl/I12/In~2)#2.
f A real scalar "eld in the (2, n!4, 2) representation, given by Q2QM 2O

n
, of the form

eabea5 bQ Tr(jaA1
jbA2

jM B1a5 jM B2bQ /I12/In~4)#2.
f A complex vector "eld in the (1, n!4, 1) representation, given by Q3QM O

n
, of the form

Tr(FklDl/J/I12/In~2)#2.
f A complex anti-symmetric 2-form "eld in the (2, n!3, 0) representation, given by Q2QM 2O

n
, of the

form Tr(Fkl[/J1, /J2]/I12/In~2)#2.
f A symmetric tensor "eld in the (0, n!2, 0) representation, given by Q2QM 2O

n
, of the form

Tr(DMk/JDlN/K/I12/In~2)#2.

The spectrum of primary "elds at dimension n#3 is similar to that of dimension n#1 (the same
"elds appear but in smaller S;(4)

R
representations), and at dimension n#4 there is a single

primary "eld, which is a real scalar in the (0, n!4, 0) representation, given by Q4QM 4O
n
, of the form

Tr(F4kl/I12/In~4)#2. Note that "elds with more than four Fkl's or more than eight j's are
always descendants or non-chiral primaries.

For n"2, 3 the short multiplets are even shorter since some of the representations appearing
above vanish. In particular, for n"2 the highest-dimension primaries in the chiral primary
multiplet have dimension n#2"4. The n"2 representation includes the currents of the super-
conformal algebra. It includes a vector of dimension 3 in the 15 representation which is the S;(4)

R
R-symmetry current, and a symmetric tensor "eld of dimension 4 which is the energy-momentum
tensor (the other currents of the superconformal algebra are descendants of these). The n"2
multiplet also includes a complex scalar "eld which is an S;(4)

R
-singlet, whose real part is the

Lagrangian density coupling to 1/4g2
YM

(of the form Tr(F2kl)#2) and whose imaginary part is the
Lagrangian density coupling to h (of the form Tr(F'F)). For later use we note that the chiral
primary multiplets which contain scalars of dimension D44 are the n"2 multiplet (which has
a scalar in the 20@ of dimension 2, a complex scalar in the 10 of dimension 3, and a complex scalar in
the 1 of dimension 4), the n"3 multiplet (which contains a scalar in the 50 of dimension 3 and
a complex scalar in the 45 of dimension 4), and the n"4 multiplet which contains a scalar in the
105 of dimension 4.

3.2.1.2. The string theory spectrum and the matching. As discussed in Section 3.1.2, "elds on AdS
5

are in a one-to-one correspondence with operators in the dual conformal "eld theory. Thus, the
spectrum of operators described in Section 3.2.1 should agree with the spectrum of "elds of type IIB
string theory on AdS

5
]S5. Fields on AdS naturally lie in the same multiplets of the conformal

group as primary operators; the second Casimir of these representations is C
2
"D(D!4) for

a primary scalar "eld of dimension D in the "eld theory, and C
2
"m2R2 for a "eld of mass m on an
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13The "elds arising from di!erent spherical harmonics are related by a `spectrum generating algebraa, see [212].

AdS
5
space with a radius of curvature R. Single-trace operators in the "eld theory may be identi"ed

with single-particle states in AdS
5
, while multiple-trace operators correspond to multi-particle

states.
Unfortunately, it is not known how to compute the full spectrum of type IIB string theory on

AdS
5
]S5. In fact, the only known states are the states which arise from the dimensional reduction

of the ten-dimensional type IIB supergravity multiplet. These "elds all have helicities between
(!2) and 2, so it is clear that they all lie in small multiplets of the superconformal algebra, and
we will describe below how they match with the small multiplets of the "eld theory described
above. String theory on AdS

5
]S5 is expected to have many additional states, with masses of the

order of the string scale 1/l
4

or of the Planck scale 1/l
1
. Such states would correspond (using

the mass/dimension relation described above) to operators in the "eld theory with dimensions of
order D&(g

4
N)1@4 or D&N1@4 for large N, g

4
N. Presumably, none of these states are in small

multiplets of the superconformal algebra (at least, this would be the prediction of the AdS/CFT
correspondence).

The spectrum of type IIB supergravity compacti"ed on AdS
5
]S5 was computed in [124]. The

computation involves expanding the ten dimensional "elds in appropriate spherical harmonics
on S5, plugging them into the supergravity equations of motion, linearized around the AdS

5
]S5

background, and diagonalizing the equations to give equations of motion for free (massless or
massive) "elds.13 For example, the ten-dimensional dilaton "eld q may be expanded as
q(x,y)"+=

k/0
qk(x)>k(y) where x is a coordinate on AdS

5
, y is a coordinate on S5, and the>k are the

scalar spherical harmonics on S5. These spherical harmonics are in representations corresponding
to symmetric traceless products of 6's of S;(4)

R
; they may be written as >k(y)&yI1yI22yIk where

the yI, for I"1, 2,2, 6 and with +6
I/1

(yI)2"1, are coordinates on S5. Thus, we "nd a "eld qk(x)
on AdS

5
in each such (0, k, 0) representation of S;(4)

R
, and the equations of motion determine

the mass of this "eld to be m2
k
"k(k#4)/R2. A similar expansion may be performed for all other

"elds.
If we organize the results in [124] into representations of the superconformal algebra [83], we
"nd representations of the form described in the previous section, which are built on a lowest
dimension "eld which is a scalar in the (0, n, 0) representation of S;(4)

R
for n"2, 3,2,R. The

lowest dimension scalar "eld in each representation turns out to arise from a linear combination of
spherical harmonic modes of the S5 components of the graviton ha

a
(expanded around the AdS

5
]S5

vacuum) and the 4-form "eld D
abcd

, where a, b, c, d are indices on S5. The scalar "elds of dimension
n#1 correspond to 2-form "elds B

ab
with indices in the S5. The symmetric tensor "elds arise from

the expansion of the AdS
5
-components of the graviton. The dilaton "elds described above are the

complex scalar "elds arising with dimension n#2 in the multiplet (as described in the previous
subsection).

In particular, the n"2 representation is called the supergraviton representation, and it includes
the "eld content of d"5, N"8 gauged supergravity. The "eld/operator correspondence matches
this representation to the representation including the superconformal currents in the "eld theory.
It includes a massless graviton "eld, which (as expected) corresponds to the energy-momentum
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tensor in the "eld theory, and massless S;(4)
R

gauge "elds which correspond to (or couple to) the
global S;(4)

R
currents in the "eld theory.

In the naive dimensional reduction of the type IIB supergravity "elds, the n"1 doubleton
representation, corresponding to a free ;(1) vector multiplet in the dual theory, also appears.
However, the modes of this multiplet are all pure gauge modes in the bulk of AdS

5
, and they may be

set to zero there. This is one of the reasons why it seems more natural to view the corresponding
gauge theory as an S;(N) gauge theory and not a ;(N) theory. It may be possible (and perhaps
even natural) to add the doubleton representation to the theory (even though it does not include
modes which propagate in the bulk of AdS

5
, but instead it is equivalent to a topological theory in

the bulk) to obtain a theory which is dual to the;(N) gauge theory, but this will not a!ect most of
our discussion in this review so we will ignore this possibility here.

Comparing the results described above with the results of Section 3.2.1, we see that we "nd the
same spectrum of chiral primary operators for n"2, 3,2,N. The supergravity results cannot
be trusted for masses above the order of the string scale (which corresponds to n&(g

4
N)1@4) or the

Planck scale (which corresponds to n&N1@4), so the results agree within their range of validity. The
"eld theory results suggest that the exact spectrum of chiral representations in type IIB string
theory on AdS

5
]S5 actually matches the naive supergravity spectrum up to a mass scale

m2&N2/R2&N3@2M2
P

which is much higher than the string scale and the Planck scale, and that
there are no chiral "elds above this scale. It is not known how to check this prediction; tree-level
string theory is certainly not enough for this since when g

4
"0 we must take N"R to obtain

a "nite value of g
4
N. Thus, with our current knowledge the matching of chiral primaries of the

N"4 SYM theory with those of string theory on AdS
5
]S5 tests the duality only in the large

N limit. In some generalizations of the AdS/CFT correspondence the string coupling goes to zero
at the boundary even for "nite N, and then classical string theory should lead to exactly the same
spectrum of chiral operators as the "eld theory. This happens in particular for the near-horizon
limit of NS5-branes, in which case the exact spectrum was successfully compared in [213]. In other
instances of the AdS/CFT correspondence (such as the ones discussed in [214}216]) there exist also
additional chiral primary multiplets with n of order N, and these have been successfully matched
with wrapped branes on the string theory side.

The fact that there seem to be no non-chiral "elds on AdS
5

with a mass below the string scale
suggests that for large N and large g

4
N, the dimension of all non-chiral operators in the "eld theory,

such as Tr(/I/I), grows at least as (g
4
N)1@4&(g2

YM
N)1@4. The reason for this behavior on the "eld

theory side is not clear; it is a prediction of the AdS/CFT correspondence.

3.2.2. Matching of correlation functions and anomalies
The classical N"4 theory has a scale invariance symmetry and an S;(4)

R
R-symmetry, and

(unlike many other theories) these symmetries are exact also in the full quantum theory. However,
when the theory is coupled to external gravitational or S;(4)

R
gauge "elds, these symmetries are

broken by quantum e!ects. In "eld theory this breaking comes from one-loop diagrams and does
not receive any further corrections; thus it can be computed also in the strong coupling regime and
compared with the results from string theory on AdS space.

We will begin by discussing the anomaly associated with the S;(4)
R

global currents. These
currents are chiral since the fermions jaA are in the 41 representation while the fermions of the
opposite chirality jM Aa5 are in the 4 representation. Thus, if we gauge the S;(4)

R
global symmetry,
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we will "nd an Adler}Bell}Jackiw anomaly from the triangle diagram of three S;(4)
R

currents,
which is proportional to the number of charged fermions. In the S;(N) gauge theory this number is
N2!1. The anomaly can be expressed either in terms of the 3-point function of the S;(4)

R
global

currents,

SJak(x)Jbl(y)Jco(z)T~
"!

N2!1
32p6

idabc
Tr[c

5
ck(x. !y. )cl(y. !z. )co(z.!x. )]

(x!y)4(y!z)4(z!x)4
, (3.27)

where dabc"2Tr(¹aM¹b,¹cN) and we take only the negative parity component of the correlator, or
in terms of the non-conservation of the S;(4)

R
current when the theory is coupled to external

S;(4)
R

gauge "elds Fakl,

(DkJk)a"
N2!1
384p2

idabceklopFbklFcop . (3.28)

How can we see this e!ect in string theory on AdS
5
]S5? One way to see it is, of course, to use the

general prescription of Section 3.3 to compute the 3-point function (3.27), and indeed one "nds
[217,218] the correct answer to leading order in the large N limit (namely, one recovers the term
proportional to N2). It is more illuminating, however, to consider directly the meaning of the
anomaly (3.28) from the point of view of the AdS theory [20]. In the AdS theory we have gauge
"elds Aak which couple, as explained above, to the S;(4)

R
global currents Jak of the gauge theory, but

the anomaly means that when we turn on non-zero "eld strengths for these "elds the theory should
no longer be gauge invariant. This e!ect is precisely reproduced by a Chern}Simons term which
exists in the low-energy supergravity theory arising from the compacti"cation of type IIB super-
gravity on AdS

5
]S5, which is of the form

iN2

96p2P
AdS5

d5x(dabcekljopAakRlAbjRoAcp#2) . (3.29)

This term is gauge invariant up to total derivatives, which means that if we take a gauge
transformation AakPAak#(DkK)a for which K does not vanish on the boundary of AdS

5
, the action

will change by a boundary term of the form

!

iN2

384p2P
.AdS5

d4x eklopdabcKaFbklFcop . (3.30)

From this we can read o! the anomaly in (DkJk) since, when we have a coupling of the form
:d4xAk

a
Jak, the change in the action under a gauge transformation is given by :d4x(DkK)

a
Jak"

!:d4xK
a
(DkJak), and we "nd exact agreement with (3.28) for large N.

The other anomaly in the N"4 SYM theory is the conformal (or Weyl) anomaly (see [219,220]
and references therein), indicating the breakdown of conformal invariance when the theory is
coupled to a curved external metric (there is a similar breakdown of conformal invariance when the
theory is coupled to external S;(4)

R
gauge "elds, which we will not discuss here). The conformal

anomaly is related to the 2-point and 3-point functions of the energy-momentum tensor
[221}223,72]. In four dimensions, the general form of the conformal anomaly is

Sgkl¹klT"!aE
4
!cI

4
, (3.31)
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14Computing such corrections tests the conjecture that the correspondence holds order by order in 1/N; however, this
is weaker than the statement that the correspondence holds for "nite N, since the 1/N expansion is not expected to
converge.

15A proof of this, using the analytic harmonic superspace formalism which is conjectured to be valid in the N"4
theory, was recently given in [238].

where

E
4
"

1
16p2

(R2klop!4R2kl#R2) ,

I
4
"!

1
16p2

(R2klop!2R2kl#1
3
R2) , (3.32)

where Rklop is the curvature tensor, Rkl,Rokol is the Riemann tensor, and R,Rkk is the scalar
curvature. A free-"eld computation in the S;(N) N"4 SYM theory leads to a"c"(N2!1)/4.
In supersymmetric theories the supersymmetry algebra relates gkl¹kl to derivatives of the R-
symmetry current, so it is protected from any quantum corrections. Thus, the same result should be
obtained in type IIB string theory on AdS

5
]S5, and to leading order in the large N limit it should

be obtained from type IIB supergravity on AdS
5
]S5. This was indeed found to be true in

[224}227] (a generalization with more varying "elds may be found in [228]) where the conformal
anomaly was shown to arise from subtleties in the regularization of the (divergent) supergravity
action on AdS space. The result of [224}227] implies that a computation using gravity on AdS

5
always gives rise to theories with a"c, so generalizations of the AdS/CFT correspondence which
have (for large N) a supergravity approximation are limited to conformal theories which have a"c
in the large N limit. Of course, if we do not require the string theory to have a supergravity
approximation then there is no such restriction.

For both of the anomalies we described the "eld theory and string theory computations agree for
the leading terms, which are of order N2. Thus, they are successful tests of the duality in the large
N limit. For other instances of the AdS/CFT correspondence there are corrections to anomalies at
order 1/N&g

4
(a@/R2)2; such corrections were discussed in [229] and successfully compared in

[230}232].14 It would be interesting to compare other corrections to the large N result.
Computations of other correlation functions [233}235], such as 3-point functions of chiral

primary operators and correlation functions which have only instanton contributions (we will
discuss these in Section 4.2), have suggested that they are also the same at small j and at large j,
even though they are not related to anomalies in any known way. Perhaps there is some
non-renormalization theorem also for these correlation functions, in which case their agreement
would also be a test of the AdS/CFT correspondence. As discussed in [236,237] (see also [144]) the
non-renormalization theorem for 3-point functions of chiral primary operators would follow from
a conjectured ;(1)

Y
symmetry of the 3-point functions of N"4 SCFTs involving at least two

operators which are descendants of chiral primaries.15 This symmetry is a property of type IIB
supergravity on AdS

5
]S5 but not of the full type IIB string theory.
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3.3. Correlation functions

A useful statement of the AdS/CFT correspondence is that the partition function of string theory
on AdS

5
]S5 should coincide with the partition function of N"4 super-Yang}Mills theory

`on the boundarya of AdS
5

[19,20]. The basic idea was explained in Section 3.1.2, but before
summarizing the actual calculations of Green's functions, it seems worthwhile to motivate the
methodology from a somewhat di!erent perspective.

Throughout this section, we approximate the string theory partition function by e~ISUGRA, where
I
SUGRA

is the supergravity action evaluated on AdS
5
]S5 (or on small deformations of this space).

This approximation amounts to ignoring all the stringy a@ corrections that cure the divergences of
supergravity, and also all the loop corrections, which are controlled essentially by the gravitational
coupling i&g

45
a@2. On the gauge theory side, as explained in Section 3.1.2, this approximation

amounts to taking both N and g2
YM

N large, and the basic relation becomes

e~ISUGRAKZ
453*/'

"Z
'!6'%

"e~W , (3.33)

where="bF is the free energy of the gauge theory divided by the temperature. When we apply
this relation to a Schwarzschild black hole in AdS

5
, which is thought to be re#ected in the gauge

theory by a thermal state at the Hawking temperature of the black hole, we arrive at the relation
I
SUGRA

KbF. Calculating the free energy of a black hole from the Euclidean supergravity action has
a long tradition in the supergravity literature [239], so the main claim that is being made here is
that the dual gauge theory provides a description of the state of the black hole which is physically
equivalent to the one in string theory. We will discuss the "nite temperature case further in Section
3.6, and devote the rest of this section to the partition function of the "eld theory on R4.

The main technical idea behind the bulk-boundary correspondence is that the boundary values
of string theory "elds (in particular, supergravity "elds) act as sources for gauge-invariant oper-
ators in the "eld theory. From a D-brane perspective, we think of closed string states in the bulk as
sourcing gauge singlet operators on the brane which originate as composite operators built from
open strings. We will write the bulk "elds generically as /(x, z) (in the coordinate system (3.17)),
with value /

0
(x) for z"e. The true boundary of anti-de Sitter space is z"0, and eO0 serves as

a cuto!which will eventually be removed. In the supergravity approximation, we think of choosing
the values /

0
arbitrarily and then extremizing the action I

SUGRA
[/] in the region z'e subject to

these boundary conditions. In short, we solve the equations of motion in the bulk subject to
Dirichlet boundary conditions on the boundary, and evaluate the action on the solution. If there is
more than one solution, then we have more than one saddle point contributing to the string theory
partition function, and we must determine which is most important. In this section, multiple saddle
points will not be a problem. So, we can write

=
'!6'%

[/
0
]"!logSe :$

4
x (0(x)O(x)T

CFT
Kextremum

(@z/e/(0

I
SUGRA

[/] . (3.34)

That is, the generator of connected Green's functions in the gauge theory, in the large N, g2
YM

N
limit, is the on-shell supergravity action.

Note that in (3.34) we have not attempted to be prescient about inserting factors of e. Instead our
strategy will be to use (3.34) without modi"cation to compute two-point functions of O, and then
perform a wave-function renormalization on eitherO or / so that the "nal answer is independent of
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16The results may be analytically continued to give the correlation functions of the "eld theory on Minkowskian R4,
which corresponds to the PoincareH coordinates of AdS space.

the cuto!. This approach should be workable even in a space (with boundary) which is not
asymptotically anti-de Sitter, corresponding to a "eld theory which does not have a conformal
"xed point in the ultraviolet.

A remark is in order regarding the relation of (3.34) to the old approach of extracting Green's
functions from an absorption cross-section [12]. In absorption calculations one is keeping the
whole D3-brane geometry, not just the near-horizon AdS

5
]S5 throat. The usual treatment is to

split the space into a near region (the throat) and a far region. The incoming wave from
asymptotically #at in"nity can be regarded as "xing the value of a supergravity "eld at the outer
boundary of the near region. As usual, the supergravity description is valid at large N and large 't
Hooft coupling. At small 't Hooft coupling, there is a di!erent description of the process: a cluster of
D3-branes sits at some location in #at ten-dimensional space, and the incoming wave impinges
upon it. In the low-energy limit, the value of the supergravity "eld which the D3-branes feel
is the same as the value in the curved space description at the boundary of the near horizon
region. Equation (3.34) is just a mathematical expression of the fact that the throat geometry
should respond identically to the perturbed supergravity "elds as the low-energy theory on the
D3-branes.

Following [19,20], a number of papers } notably [240}252,217,218,233,234] } have undertaken
the program of extracting explicit n-point correlation functions of gauge singlet operators by
developing both sides of (3.34) in a power series in /

0
. Because the right-hand side is the

extremization of a classical action, the power series has a graphical representation in terms of
tree-level Feynman graphs for "elds in the supergravity. There is one di!erence: in ordinary
Feynman graphs one assigns the wavefunctions of asymptotic states to the external legs of the
graph, but in the present case the external leg factors re#ect the boundary values /

0
. They are

special limits of the usual gravity propagators in the bulk, and are called bulk-to-boundary
propagators. We will encounter their explicit form in the next two sections.

3.3.1. Two-point functions
For two-point functions, only the part of the action which is quadratic in the relevant "eld

perturbation is needed. For massive scalar "elds in AdS
5
, this has the generic form

S"gPd5xJg[1
2
(R/)2#1

2
m2/2] , (3.35)

where g is some normalization which in principle follows from the ten-dimensional origin of the
action. The bulk-to-boundary propagator is a particular solution of the equation of motion,
(h!m2)/"0, which has special asymptotic properties. We will start by considering the mo-
mentum space propagator, which is useful for computing the two-point function and also in
situations where the bulk geometry loses conformal invariance; then, we will discuss the position
space propagator, which has proven more convenient for the study of higher point correlators in
the conformal case. We will always work in Euclidean space.16 A coordinate system in the bulk of

O. Aharony et al. / Physics Reports 323 (2000) 183}386 247



17Note that this solution, when continued to Lorentzian AdS space, generally involves the non-normalizable mode of
the "eld, with j

~
in (2.34).

AdS
5

such that

ds2"
R2

z2
(dx2#dz2) (3.36)

provides manifest Euclidean symmetry on the directions parametrized by x. To avoid divergences
associated with the small z region of integration in (3.35), we will employ an explicit cuto!, z5e.

A complete set of solutions for the linearized equation of motion, (h!m2)/"0, is given by
/"e*p >xZ(pz), where the function Z(u) satis"es the radial equation

Cu5R
u

1
u3
R
u
!u2!m2R2DZ(u)"0 . (3.37)

There are two independent solutions to (3.37), namely Z(u)"u2ID~2
(u) and Z(u)"u2KD~2

(u),
where Il and Kl are Bessel functions and

D"2#J4#m2R2 . (3.38)

The second solution is selected by the requirement of regularity in the interior: ID~2
(u) increases

exponentially as uPR and does not lead to a "nite action con"guration.17 Imposing the
boundary condition /(x, z)"/

0
(x)"e*p >x at z"e, we "nd the bulk-to-boundary propagator

/(x, z)"Kp(x, z)"
(pz)2KD~2

(pz)
(pe)2KD~2

(pe)
e*p >x . (3.39)

To compute a two-point function of the operator O for which /
0

is a source, we write

SO(p)O(q)T"
R2=[/

0
"j

1
e*p >x#j

2
e*q >x]

Rj
1
Rj

2
Kj1/j2/0

"(leading analytic terms in (ep)2)

!ge2D~8(2D!4)
C(3!D)
C(D!1)

d4(p#q)A
p
2B

2D~4

#(higher-order terms in (ep)2), (3.40)

SO(x)O(y)T"ge2D~8
2D!4

D
C(D#1)

p2C(D!2)
1

Dx!yD2D .

Several explanatory remarks are in order:

f To establish the second line in (3.40) we have used (3.39), substituted in (3.35), performed the
integral and expanded in e. The leading analytic terms give rise to contact terms in position
space, and the higher order terms are unimportant in the limit where we remove the cuto!. Only
the leading nonanalytic term is essential. We have given the expression for generic real values of
D. Expanding around integer D52 one obtains "nite expressions involving log ep.
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f The Fourier transforms used to obtain the last line are singular, but they can be de"ned for
generic complex D by analytic continuation and for positive integer D by expanding around
a pole and dropping divergent terms, in the spirit of di!erential regularization [253]. The result
is a pure power law dependence on the separation Dx!yD, as required by conformal invariance.

f We have assumed a coupling :d4x/(x, z"e)O(x) to compute the Green's functions. The explicit
powers of the cuto! in the "nal position space answer can be eliminated by absorbing a factor of
eD~4 into the de"nition of O. From here on we will take that convention, which amounts to
inserting a factor of e4~D on the right-hand side of (3.39). In fact, precise matchings between the
normalizations in "eld theory and in string theory for all the chiral primary operators have not
been worked out. In part this is due to the di$culty of determining the coupling of bulk "elds to
"eld theory operators (or in stringy terms, the coupling of closed string states to composite open
string operators on the brane). See [11] for an early approach to this problem. For the dilaton,
the graviton, and their superpartners (including gauge "elds in AdS

5
), the couplings can be

worked out explicitly. In some of these cases all normalizations have been worked out unam-
biguously and checked against "eld theory predictions (see for example [19,217,234]).

f The mass-dimension relation (3.38) holds even for string states that are not included in the
Kaluza}Klein supergravity reduction: the mass and the dimension are just di!erent expressions
of the second Casimir of SO(4, 2). For instance, excited string states, with m&1/Ja@, are
expected to correspond to operators with dimension D&(g2

YM
N)1@4. The remarkable fact is that

all the string theory modes with m&1/R (which is to say, all closed string states which arise from
massless ten-dimensional "elds) fall in short multiplets of the supergroup S;(2, 2D4). All other
states have a much larger mass. The operators in short multiplets have algebraically protected
dimensions. The obvious conclusion is that all operators whose dimensions are not algebraically
protected have large dimension in the strong 't Hooft coupling, large N limit to which
supergravity applies. This is no longer true for theories of reduced supersymmetry: the super-
group gets smaller, but the Kaluza}Klein states are roughly as numerous as before, and some of
them escape the short multiplets and live in long multiplets of the smaller supergroups. They still
have a mass on the order of 1/R, and typically correspond to dimensions which are "nite (in the
large g2

YM
N limit) but irrational.

Correlation functions of non-scalar operators have been widely studied following [20]; the
literature includes [254}264]. For N"4 super-Yang}Mills theory, all correlation functions of
"elds in chiral multiplets should follow by application of supersymmetries once those of the chiral
primary "elds are known, so in this case it should be enough to study the scalars. It is worthwhile to
note however that the mass-dimension formula changes for particles with spin. In fact the
de"nition of mass has some convention-dependence. Conventions seem fairly uniform in the
literature, and a table of mass-dimension relations in AdS

d`1
with unit radius was made in [143]

from the various sources cited above (see also [209]):

f scalars: D
B
"1

2
(d$Jd2#4m2),

f spinors: D"1
2
(d#2DmD),

f vectors: D
B
"1

2
(d$J(d!2)2#4m2),

f p-forms: D"1
2
(d$J(d!2p)2#4m2),
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f "rst-order (d/2)-forms (d even): D"1
2
(d#2DmD),

f spin-3/2: D"1
2
(d#2DmD),

f massless spin-2: D"d.

In the case of "elds with second-order Lagrangians, we have not attempted to pick which of
D
B

is the physical dimension. Usually, the choice D"D
`

is clear from the unitarity bound, but in
some cases (notably m2"15/4 in AdS

5
) there is a genuine ambiguity. In practice this ambiguity is

usually resolved by appealing to some special algebraic property of the relevant "elds, such as
transformation under supersymmetry or a global bosonic symmetry. See Section 2.2.2 for further
discussion. The scalar case above is precisely Eq. (2.36) in that section.

For brevity, we will omit a further discussion of higher spins, and instead refer the reader to the
(extensive) literature.

3.3.2. Three-point functions
Working with bulk-to-boundary propagators in the momentum representation is convenient

for two-point functions, but for higher point functions position space is preferred because the full
conformal invariance is more obvious. (However, for non-conformal examples of the bulk-
boundary correspondence, the momentum representation seems uniformly more convenient.) The
boundary behavior of position space bulk-to-boundary propagators is speci"ed in a slightly more
subtle way: following [217] we require

KD(x, z; y)Pz4~Dd4(x!y) as zP0 . (3.41)

Here y is the point on the boundary where we insert the operator, and (x, z) is a point in the bulk.
The unique regular KD solving the equation of motion and satisfying (3.41) is

KD(x, z; y)"
C(D)

p2C(D!2) A
z

z2#(x!y)2B
D

. (3.42)

At a "xed cuto!, z"e, the bulk-to-boundary propagator KD(x, e; y) is a continuous function which
approximates e4~Dd4(x!y) better and better as eP0. Thus at any "nite e, the Fourier transform of
(3.42) only approximately coincides with (3.39) (modi"ed by the factor of e4~D as explained after
(3.40)). This apparently innocuous subtlety turned out to be important for two-point functions, as
discovered in [217]. A correct prescription is to specify boundary conditions at "nite z"e, cut o!
all bulk integrals at that boundary, and only afterwards take eP0. That is what we have done in
(3.40). Calculating two-point functions directly using the position-space propagators (3.41), but
cutting the bulk integrals o! again at e, and "nally taking the same eP0 answer, one arrives at
a di!erent answer. This is not surprising since the z"e boundary conditions were not used
consistently. The authors of [217] checked that using the cuto! consistently (i.e. with the mo-
mentum space propagators) gave two-point functions SO(x

1
)O(x

2
)T a normalization such that

Ward identities involving the three-point function SO(x
1
)O(x

2
)Jk(x3

)T, where Jk is a conserved
current, were obeyed. Two-point functions are uniquely di$cult because of the poor convergence
properties of the integrals over z. The integrals involved in three-point functions are su$ciently
benign that one can ignore the issue of how to impose the cuto!.
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Fig. 3.3. The Feynman graph for the three-point function as computed in supergravity. The legs correspond to factors of
KD

i
, and the cubic vertex to a factor of j. The position of the vertex is integrated over AdS

5
.

If one has a Euclidean bulk action for three scalar "elds /
1
, /

2
, and /

3
, of the form

S"Pd5xJgC+
i

1
2
(R/

i
)2#1

2
m2

i
/2

i
#j/

1
/

2
/

3D , (3.43)

and if the /
i

couple to operators in the "eld theory by interaction terms :d4x/
i
O
i
, then

the calculation of SO
1
O

2
O

3
T reduces, via (3.34), to the evaluation of the graph shown in Fig. 3.3.

That is,

SO
1
(x

1
)O

2
(x

2
)O

3
(x

3
)T"!jPd5xJgKD

1
(x; x

1
)KD

2
(x; x

2
)KD

3
(x; x

3
)

"

ja
1

Dx
1
!x

2
DD1`D

2~D
3Dx

1
!x

3
DD1`D

3~D
2Dx

2
!x

3
DD2`D

3~D
1
, (3.44)

for some constant a
1
. The dependence on the x

i
is dictated by the conformal invariance, but the

only way to compute a
1

is by performing the integral over x. The result [217] is

a
1
"!

C[1
2
(D

1
#D

2
!D

3
)]C[1

2
(D

1
#D

3
!D

2
)]C[1

2
(D

2
#D

3
!D

1
)]

2p4C(D
1
!2)C(D

2
!2)C(D

3
!2)

C[1
2
(D

1
#D

2
#D

3
)!2] .

(3.45)

In principle, one could also have couplings of the form /
1
R/

2
R/

3
. This leads only to a modi"cation

of the constant a
1
.

The main technical di$culty with three-point functions is that one must "gure out the cubic
couplings of supergravity "elds. Because of the di$culties in writing down a covariant action for
type IIB supergravity in ten dimensions (see however [265}267]), it is most straightforward to read
o! these `cubic couplingsa from quadratic terms in the equations of motion. In #at ten-dimensional
space these terms can be read o! directly from the original type IIB supergravity papers [123,268].
For AdS

5
]S5, one must instead expand in #uctuations around the background metric and

"ve-form "eld strength. The old literature [124] only dealt with the linearized equations of motion;
for 3-point functions it is necessary to go to one higher order of perturbation theory. This was done
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for a restricted set of "elds in [233]. The "elds considered were those dual to operators of the form
Tr/(J1/J2

2/Jl) in "eld theory, where the parentheses indicate a symmetrized traceless product.
These operators are the chiral primaries of the gauge theory: all other single trace operators of
protected dimension descend from these by commuting with supersymmetry generators. Only the
metric and the "ve-form are involved in the dual supergravity "elds, and we are interested only
in modes which are scalars in AdS

5
. The result of [233] is that the equations of motion for the

scalar modes s8
I

dual to

OI"CI
J12Jl

Tr/(J1
2/Jl) (3.46)

follow from an action of the form

S"
4N2

(2p)5Pd5xJgG+
I

A
I
(wI)2
2

[!(+s8
I
)2!l(l!4)s8 2

I
]# +

I1,I2,I3

G
I1I2I3

wI1wI2wI3

3
s8
I1
s8
I2
s8
I3H .

(3.47)

Derivative couplings of the form s8 Rs8 Rs8 are expected a priori to enter into (3.47), but an appropriate
"eld rede"nition eliminates them. The notation in (3.46) and (3.47) requires some explanation. I is
an index which runs over the weight vectors of all possible representations constructed as
symmetric traceless products of the 6 of S;(4)

R
. These are the representations whose Young

diagrams are

CI
J12Jl

is a basis transformation matrix, chosen so that CI
J12Jl

CJ
J12Jl

"dIJ. As commented in the
previous section, there is generally a normalization ambiguity on how supergravity "elds couple to
operators in the gauge theory. We have taken the coupling to be :d4x s8

I
OI, and the normalization

ambiguity is represented by the `leg factorsa wI. It is the combination sI"wIs8 I rather than s8 I itself
which has a de"nite relation to supergravity "elds. We refer the reader to [233] for explicit
expressions for A

I
and the symmetric tensor G

I1I2I3
. To get rid of factors of wI, we introduce

operators OI"w8 IOI. One can choose w8 I so that a two-point function computation along the lines
of Section 3.3.1 leads to

SOI1(x)OI2(0)T"dI1I2/x2D
1 . (3.48)

With this choice, the three-point function, as calculated using (3.44), is

SOI1(x1)OI2(x2)OI3(x3)T"
1
N

JD
1
D
2
D

3
SCI1CI2CI3T

Dx
1
!x

2
DD1`D

2~D
3Dx

1
!x

3
DD1`D

3~D
2Dx

2
!x

3
DD2`D

3~D
1
, (3.49)

where we have de"ned

SCI1CI2CI3T"CI1
J1

2JiK1
2Kj

CI2
J1

2JiL1
2Lk

CI3
K1

2KjL1
2Lk

. (3.50)

Remarkably, (3.49) is the same result one obtains from free "eld theory by Wick contracting all the
/J "elds in the three operators. This suggests that there is a non-renormalization theorem for this
correlation function, but such a theorem has not yet been proven (see however the comments
at the end of Section 3.2.2). It is worth emphasizing that the normalization ambiguity in the
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bulk-boundary coupling is circumvented essentially by considering invariant ratios of three- and
two-point functions, into which the `leg factorsa wI do not enter. This is the same strategy as was
pursued in comparing matrix models of quantum gravity to Liouville theory.

3.3.3. Four-point functions
The calculation of four-point functions is di$cult because there are several graphs which

contribute, and some of them inevitably involve bulk-to-bulk propagators of "elds with spin. The
computation of four-point functions of the operators O

(
and O

C
dual to the dilaton and the axion

was completed in [269]. See also [241,245}248,270}273,250] for earlier contributions. One of the
main technical results, further developed in [274], is that diagrams involving an internal propaga-
tor can be reduced by integration over one of the bulk vertices to a sum of quartic graphs
expressible in terms of the functions

DD
1
D

2
D
3
D
4
(x

1
, x

2
, x

3
, x

4
)"Pd5xJg

4
<
i/1

KI D
i
(x, z; x

i
) ,

KI D(x, z; y)"A
z

z2#(x!y)2B
D

. (3.51)

The integration is over the bulk point (x, z). There are two independent conformally invariant
combinations of the x

i
:

s"
1
2

x2
13

x2
24

x2
12

x2
34
#x2

14
x2
23

, t"
x2
12

x2
34
!x2

14
x2
23

x2
12

x2
34
#x2

14
x2
23

. (3.52)

One can write the connected four-point function as

SO
(
(x

1
)O

C
(x

2
)O
(
(x

3
)O

C
(x

4
)T"A

6
p2B

4

C16x2
24A

1
2s

!1BD4455
#

64
9

x2
24

x2
13

1
s
D

3355

#

16
3

x2
24

x2
13

1
s
D

2255
!14D

4444
!

46
9x2

13

D
3344

!

40
9x2

13

D
2244

!

8
3x6

13

D
1144

#64x2
24

D
4455D .

(3.53)

An interesting limit of (3.53) is to take two pairs of points close together. Following [269], let us
take the pairs (x

1
, x

3
) and (x

2
, x

4
) close together while holding x

1
and x

2
a "xed distance apart. Then

the existence of an OPE expansion implies that

SOD
1
(x

1
)OD

2
(x

2
)OD

3
(x

3
)OD

4
(x

4
)T"+

n,m

a
n
SO

n
(x

1
)O

m
(x

2
)Tb

m
x D

1`D
3~D

m
13

x D
2`D

4~D
n

24

, (3.54)

at least as an asymptotic series, and hopefully even with a "nite radius of convergence for x
13

and
x
24

. The operators O
n
are the ones that appear in the OPE of O

1
with O

3
, and the operators O

m
are

the ones that appear in the OPE of O
2

with O
4
. O

(
and O

C
are descendants of chiral primaries, and

so have protected dimensions. The product of descendants of chiral "elds is not itself necessarily the
descendent of a chiral "eld: an appropriately normal ordered product :O

(
O
(
: is expected to have an

unprotected dimension of the form 8#O(1/N2). This is the natural result from the "eld theory
point of view because there are O(N2) degrees of freedom contributing to each factor, and the
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Fig. 3.4. A nearly degenerate quartic graph contributing to the four-point function in the limit D x
13

D, D x
24

D;D x
12

D.

commutation relations between them are non-trivial only a fraction 1/N2 of the time. From the
supergravity point of view, a composite operator like :O

(
O
(
: corresponds to a two-particle bulk

state, and the O(1/N2)"O(i2/R8) correction to the mass is interpreted as the correction to the
mass of the two-particle state from gravitational binding energy. Roughly one is thinking of
graviton exchange between the legs of Fig. 3.4 that are nearly coincident.

If (3.54) is expanded in inverse powers of N, then the O(1/N2) correction to D
n
and D

m
shows up

to leading order as a term proportional to a logarithm of some combination of the separations x
ij
.

Logarithms also appear in the expansion of (3.53) in the Dx
13

D, Dx
24

D;Dx
12

D limit in which (3.54)
applies: the leading log in this limit is (1/(x

12
)16) log (x

13
x
24

/x2
12

). This is the correct form to be
interpreted in terms of the propagation of a two-particle state dual to an operator whose dimension
is slightly di!erent from 8.

3.4. Isomorphism of Hilbert spaces

The AdS/CFT correspondence is a statement about the equivalence of two quantum theories:
string theory (or M theory) on AdS

p`2
] (compact space) and CFT

p`1
. The two quantum theories

are equivalent if there is an isomorphism between their Hilbert spaces, and moreover if the
operator algebras on the Hilbert spaces are equivalent. In this section, we discuss the isomorphism
of the Hilbert spaces, following [183,276,277]. Related issues have been discussed in [278}286].

States in the Hilbert space of CFT
p`1

fall into representations of the global conformal group
SO(2,p#1) on Rp,1. At the same time, the isometry group of AdS is also SO(2, p#1), and we can
use it to classify states in the string theory. Thus, it is useful to compare states in the two theories by
organizing them into representations of SO(2,p#1). The conformal group SO(2,p#1) has
1
2
(p#2)(p#3) generators, J

ab
"!J

ba
(a, b"0, 1,2, p#2), obeying the commutation relation

[J
ab
, J

cd
]"!i(g

ac
J
bd
$permutations) (3.55)

with the metric g
ab
"diag(!1,#1,#1,2,#1,!1). In CFT

p`1
, they are identi"ed with the

PoincareH generators Pk and Mkl, the dilatation D and the special conformal generators
Kk (k, l"0,2, p), by the formulas

J
p`2,p`1

"D, Jk,p`2
"1

2
(Kk#Pk), Jk,p`1

"1
2
(Kk!Pk), Jkl"Mkl . (3.56)
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18The factor 1/2R in the relation between H and (P
0
#K

0
) is "xed by the commutation relations (3.55).

Since the "eld theory on Rp,1 has no scale, the spectrum of the Hamiltonian P
0
is continuous and

there is no normalizable ground state with respect to P
0
. This is also the case for the string theory

on AdS
p`2

. The Killing vector R
t
corresponding to P

0
has the norm

DDR
t
DD"Ru , (3.57)

and it vanishes as uP0. Consequently, a stationary wave solution of the linearized supergravity on
AdS has a continuous frequency spectrum with respect to the time-like coordinate t. It is not easy to
compare the spectrum of P

0
of the two theories.

It is more useful to compare the two Hilbert spaces using the maximum compact subgroup
SO(2)]SO(p#1) of the conformal group [275]. The Minkowski space Rp,1 is conformally
embedded in the Einstein Universe R]Sp, and SO(2)]SO( p#1) is its isometry group. In
particular, the generator J

0,p`2
"1

2
(P

0
#K

0
) of SO(2) is the Hamiltonian for the CFT on R]Sp.

Now we have a scale in the problem, which is the radius of Sp, and the Hamiltonian 1
2
(P

0
#K

0
) has

a mass gap. In string theory on AdS
p`2

, the generator 1
2
(P

0
#K

0
) corresponds to the global time

translation along the coordinate q. This is a globally well-de"ned coordinate on AdS and the
Killing vector Rq is everywhere non-vanishing:

DDRqDD"R/cos h . (3.58)

Therefore, a stationary wave solution with respect to q is normalizable and has a discrete frequency
spectrum. In fact, as we have seen in Section 2.2.4, the frequency is quantized in such a way that
bosonic "elds in the supergravity multiplet are periodic and their superpartners are anti-periodic
(i.e. obeying the supersymmetry preserving Ramond boundary condition) in the q-direction with
the period 2pR.

3.4.1. Hilbert space of string theory
With the techniques that are currently available, we can make reliable statements about the

Hilbert space structure of string theory on AdS only when the curvature radius R of AdS is much
larger than the string length l

s
. In this section we will study some of the properties of the Hilbert

space that we can see in the AdS description. We will concentrate on the AdS
5
]S5 case, but it is

easy to generalize this to other cases.
We "rst consider the case that corresponds to the 't Hooft limit g

4
P0, g

4
N "xed and large, so

that we can trust the gravity approximation.
(1) E;m

s
; gas of free gravitons. The Hilbert space for low energies is well approximated by the

Fock space of gravitons and their superpartners on AdS
5
]S5. Since q is a globally de"ned timelike

coordinate on AdS, we can consider stationary wave solutions in the linearized supergravity, which
are the normalizable states discussed in Section 2.2.2. The frequency u of a stationary mode is
quantized in the unit set by the curvature radius R (2.41), so one may e!ectively view the
supergravity particles in AdS as con"ned in a box of size R.

The operator H"(1/2R)(P
0
#K

0
) corresponds18 to the Killing vector Rq on AdS. Thus, a single

particle state of frequency u gives an eigenstate of H. Since the supergraviton is a BPS particle, its
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energy eigenvalue u is exact, free from corrections either by "rst quantized string e!ects (&l
4
/R) or

by quantum gravity e!ects (&l
P
/R). The energy of multiparticle states may receive corrections, but

they become important only when the energy E becomes comparable to the gravitational potential
E2/(m8

P
R7), i.e. E&m8

P
R7. For the energies we are considering this e!ect is negligible.

Therefore, the Hilbert space for E;m
4
is identi"ed with the Fock space of free supergravity

particles. For E<R~1, the entropy S(E) ("logN(E) where N(E) is the density of states) behaves
as

S(E)&(ER)9@10 , (3.59)

since we e!ectively have a gas in ten dimensions (we will ignore multiplicative numerical factors in
the entropy in this section).

(2) m
4
(E;m

4
/g2

4
; gas of free strings. When the energy E becomes comparable to the string scale

m
4
, we have to take into account excitations on the string worldsheet. Although we do not know the

exact "rst quantized spectrum of string theory on AdS, we can estimate the e!ects of the worldsheet
excitations when l

4
;R. The mass m of a "rst quantized string state is a function of l

4
and R. When

l
4
;R, the worldsheet dynamics is perturbative and we can expand m in powers of l

4
/R, with the

leading term given by the string spectrum on #at space (R"R). Therefore, for a string state
corresponding to the nth excited level of the string on #at space, the (mass)2 is given by

m2"l~2
4

(n#O(l2
4
/R2)) . (3.60)

Unlike the single-particle supergravity states discussed in the previous paragraph, string excita-
tions need not carry integral eigenvalues of H (in units of R~1). As they are not BPS particles, they
are generically unstable in string perturbation theory.

The free string spectrum in 10 dimensions gives the Hagedorn density of states

S(E)KEl
4
. (3.61)

Thus, the entropy of supergravity particles (3.59) becomes comparable to that of excited strings
(3.61) when

(ER)9@10&El
4
, (3.62)

namely

E&m10
4

R9 . (3.63)

For m10
4

R9(E, excited strings dominate the Hilbert space. The free string formula (3.61) is
reliable until the energy hits another transition point E&m

4
/g2

4
. We are assuming that R9(l9

4
/g2

4
,

which is true in the 't Hooft region.
(3) m

4
/g2

4
;E;m8

P
R7; small black hole. As we increase the energy, the gas of free strings starts

collapsing to make a black hole. The black hole can be described by the classical supergravity when
the horizon radius r

`
becomes larger than the string length l

4
. Furthermore, if the horizon size r

`
is

smaller than R, the geometry near the black hole can be approximated by the 10-dimensional
Schwarzschild solution. The energy E and the entropy S of such a black hole is given by

E&m8
P
r7
`

, S&(m
P
r
`

)8 . (3.64)
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Therefore, the entropy is estimated to be

S(E)&(El
P
)8@7 . (3.65)

We can trust this estimate when l
4
;r

`
;R, namely m8

P
l7
4
;E;m8

P
R7. Comparing this with the

Hagedorn density of states in the regime (2) given by (3.61), we "nd that the transition to (3.65)
takes place at

E&m
4
/g2

4
. (3.66)

For E<m8
P
l7
4
, the entropy formula (3.65) is reliable and the black hole entropy exceeds that of the

gas of free strings. Therefore, in this regime, the Hilbert space is dominated by black hole states.
(4) m8

P
R7(E; large black hole. The above analysis assumes that the size of the black hole,

characterized by the horizon radius r
`

, is small compared to the radii R of AdS
5

and S5. As we
increase the energy, the radius r

`
grows and eventually becomes comparable to R. Beyond this

point, we can no longer use the ten-dimensional Schwarzschild solution to estimate the number of
states. According to (3.64), the horizon size becomes comparable to R when the energy of the black
hole reaches the scale E&m8

P
R7. Beyond this energy scale, we have to use a solution which is

asymptotically AdS
5

[287],

ds2"!f (r)dq2#
1

f (r)
dr2#r2dX2

3
, (3.67)

where

f (r)"1#
r2
R2

!

r2
`
r2A1#

r2
`

R2B , (3.68)

and r"r
`

is the location of the out-most horizon. By studying the asymptotic behavior of the
metric, one "nds that the black hole carries the energy

E&

r2
`
l3
P
A1#

r2
`

R2B . (3.69)

Here l
P
is the "ve-dimensional Planck length, related to the 10-dimensional Planck scale l

P
and the

compacti"cation scale R as

l3
P
"l8

P
R~5. (3.70)

The entropy of the AdS Schwarzschild solution is given by

S&A
r
`
l
P
B

3
. (3.71)

For r
`
<R, (3.69) becomes E&r4

`
l~3
P

R~2, and the entropy as a function of energy is

S&A
ER2

l
P
B

3@4
"A

R
l
P
B

2
(ER)3@4 . (3.72)

As the energy increases, the horizon size expands as R;r
`
PR, and the supergravity approxima-

tion continues to be reliable. For EPR, the only stringy and quantum gravity corrections are due
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Fig. 3.5. The behavior of the entropy S as a function of the energy E in AdS
5
.

to the "nite size R of the AdS radius of curvature and of the compact space, and such corrections are
suppressed by factors of l

4
/R and l

P
/R. The leading l

4
/R corrections to (3.72) were studied in [288],

and found to be of the order of (l
4
/R)3.

Summary: The above analysis gives the following picture about the structure of the Hilbert space
of string theory on AdS when l

4
;R and g

4
;1.

(1) For energies E;m
4
, the Hilbert space is the Fock space of supergravity particles and the

spectrum is quantized in the unit of R~1. For E;m10
4

R9, the entropy is given by that of the gas of
free supergravity particles in ten dimensions:

S&(ER)9@10 . (3.73)

(2) For m10
4

R9(E;m8
P
l7
4
, stringy excitations become important, and the entropy grows linearly

in energy:

S&El
4
. (3.74)

(3) For m8
P
l7
4
;E;m8

P
R7, the black hole starts to show up in the Hilbert space. For E;m8

P
R7,

the size of the black hole horizon is smaller than R, and the entropy is given by that of the
ten-dimensional Schwarzschild solution:

S&(El
P
)8@7 . (3.75)

(4) For m8
P
R7(E, the size of the black hole horizon becomes larger than R. We then have to use

the AdS
p`2

Schwarzschild solution, and the entropy is given by

S&(R/l
P
)2(ER)3@4 . (3.76)

The behavior of the entropy is depicted in Fig. 3.5.
In the small black hole regime (3), the system has a negative speci"c heat. This corresponds to the

well-known instability of the #at space at "nite temperature [289]. On the other hand, the AdS
Schwarzschild solution has a positive speci"c heat and it is thermodynamically stable. This means
that, if we consider a canonical ensemble, the free string regime (2) and the small black hole regime
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(3) will be missed. When set in contact with a heat bath of temperature ¹&m
4
, the system will

continue to absorb heat until its energy reaches E&m8
P
R7, the threshold of the large black hole

regime (4). In fact, the jump from (1)}(4) takes place at much lower temperature since the
temperature equivalent of E&m8

P
R7 derived from (3.76) in the regime (4) is ¹&R~1. Therefore,

once the temperature is raised to ¹&R~1 a black hole forms. The behavior of the canonical
ensemble will be discussed in more detail in Section 3.6.

Finally, let us notice that in the case that g
4
&1 we do not have the Hagedorn phase, and we go

directly from the gas of gravitons to the small black hole phase.

3.4.2. Hilbert space of conformal xeld theory
Next, let us turn to a discussion of the Hilbert space of the CFT

p`1
. The generator

J
0,p`2

"1
2
(P

0
#K

0
) is the Hamiltonian of the CFT on Sp with the unit radius. In the Euclidean

CFT, the conformal group SO(2,p#1) turns into SO(1, p#2) by the Wick rotation, and the
Hamiltonian 1

2
(P

0
#K

0
) and the dilatation operator D can be rotated into each other by an

internal isomorphism of the group. Therefore, if there is a conformal "eld /
h
(x) of dimension h with

respect to the dilatation D, then there is a corresponding eigenstate DhT of 1
2
(P

0
#K

0
) on Sp with the

same eigenvalue h. In two-dimensional conformal "eld theory, this phenomenon is well-known as
the state-operator correspondence, but in fact it holds for any CFT

p`1
:

/
h
(x)PDhT"/

h
(x"0)D0T . (3.77)

As discussed in Section 3.2.1, in maximally supersymmetric cases there is a one-to-one corre-
spondence between chiral primary operators of CFT

p`1
and the supergravity particles on the dual

AdS
p`2

](compact space). This makes it possible to identify a state in the Fock space of the
supergravity particles on AdS with a state in the CFT Hibert space generated by the chiral primary
"elds.

To be speci"c, let us consider theN"4 S;(N) super Yang}Mills theory in four dimensions and
its dual, type IIB string theory on AdS

5
]S5. The string scale m

4
and the ten-dimensional Planck

scale m
P

are related to the gauge theory parameters, g
YM

and N, by

m
4
K(g2

YM
N)1@4R~1, m

P
KN1@4R~1 . (3.78)

The four energy regimes of string theory on AdS
5
]S5 are translated into the gauge theory energy

scales (measured in the units of the inverse S3 radius) in the 't Hooft limit as follows:
(1) E;(g2

YM
N)1@4: The Hilbert space consists of the chiral primary states, their superconformal

descendants and their products. Because of the large-N factorization, a product of gauge invariant
operators receives corrections only at subleading orders in the 1/N expansion. This "ts well with
the supergravity description of multi-graviton states, where we estimated that their energy E be-
comes comparable to the gravitational potential when E&m8

P
R7, which in the gauge theory scale

corresponds to E&N2. The entropy for 1;E;(g2
YM

N)1@4 is then given by

S&E9@10 . (3.79)

(2) (g2
YM

N)1@4(E;(g2
YM

N)~7@2N2: Each single string state is identi"ed with a single trace
operator in the gauge theory. Supergravity particles correspond to chiral primary states and
stringy excitations to non-chiral primaries. Since stringy excitations have an energy &m

4
, the

AdS/CFT correspondence requires that non-chiral conformal "elds have to have large anomalous
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dimensions D&m
4
R"(g2

YM
N)1@4. In the 't Hooft limit (N<(g2

YM
N)c for any c), we can consider the

regime (g2
YM

N)5@2(E;(g2
YM

N)~7@2N2 where the entropy shows the Hagedorn behavior

S&(g2
YM

N)~1@4E . (3.80)

Apparently, the entropy in this regime is dominated by the non-chiral "elds.
(3) (g2

YM
N)~7@2N2(E(N2: The string theory Hilbert space consists of states in the small

black hole. It would be interesting to "nd a gauge theory interpretation of the ten-dimensional
Schwarzschild black hole. The entropy in this regime behaves as

S&N~2@7E8@7 . (3.81)

(4) N2(E: The string theory Hilbert space consists of states in the large black hole. The entropy
is given by

S&N1@2E3@4 . (3.82)

The E3@4 scaling of the entropy is what one expects for a conformal "eld theory in (3#1)
dimensions at high energies (compared to the radius of the sphere). It is interesting to note that the
N dependence of S is the same as that of N2 free particles in (3#1) dimensions, although the
precise numerical coe$cient in S di!ers from the one that is obtained from the number of particles
in the N"4 Yang}Mills multiplet by a numerical factor [290].

3.5. Wilson loops

In this section we consider Wilson loop operators in the gauge theory. The Wilson loop operator

=(C)"TrCP expAiQCABD (3.83)

depends on a loopC embedded in four-dimensional space, and it involves the path-ordered integral
of the gauge connection along the contour. The trace is taken over some representation of the
gauge group; we will discuss here only the case of the fundamental representation (see [291] for
a discussion of other representations). From the expectation value of the Wilson loop operator
S=(C)T, we can calculate the quark}antiquark potential. For this purpose we consider a rectangu-
lar loop with sides of length ¹ and ¸ in Euclidean space. Then, viewing ¹ as the time direction, it is
clear that for large ¹ the expectation value will behave as e~TE where E is the lowest possible
energy of the quark}anti-quark con"guration. Thus, we have

S=T&e~TV(L) , (3.84)

where <(¸) is the quark}anti-quark potential. For large N and large g2
YM

N, the AdS/CFT
correspondence maps the computation of S=T in the CFT into a problem of "nding a minimum
surface in AdS [292,293].

3.5.1. Wilson loops and minimum surfaces
In QCD, we expect the Wilson loop to be related to the string running from the quark to the

antiquark. We expect this string to be analogous to the string in our con"guration, which is
a superstring which lives in ten dimensions, and which can stretch between two points on the
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19The di!erence in the factor of i between the Euclidean and the Minkowski cases can be traced to the analytic

continuation of Jx5 2. A detailed derivation of (3.85) can be found in [294].

boundary of AdS. In order to motivate this prescription let us consider the following situation. We
start with the gauge group;(N#1), and we break it to;(N)];(1) by giving an expectation value
to one of the scalars. This corresponds, as discussed in Section 3.1, to having a D3 brane sitting at
some radial position ; in AdS, and at a point on S5. The o!-diagonal states, transforming in the
N of ;(N), get a mass proportional to ;, m";/2p. So, from the point of view of the ;(N) gauge
theory, we can view these states as massive quarks, which act as a source for the various;(N) "elds.
Since they are charged they will act as a source for the vector "elds. In order to get a non-dynamical
source (an `external quarka with no #uctuations of its own, which will correspond precisely to the
Wilson loop operator) we need to take mPR, which means; should also go to in"nity. Thus, the
string should end on the boundary of AdS space.

These stretched strings will also act as a source for the scalar "elds. The coupling to the scalar
"elds can be seen qualitatively by viewing the quarks as strings stretching between the N branes
and the single separated brane. These strings will pull the N branes and will cause a deformation of
the branes, which is described by the scalar "elds. A more formal argument for this coupling is that
these states are BPS, and the coupling to the scalar (Higgs) "elds is determined by supersymmetry.
Finally, one can see this coupling explicitly by writing the full;(N#1) Lagrangian, putting in the
Higgs expectation value and calculating the equation of motion for the massive "elds [292]. The
precise de"nition of the Wilson loop operator corresponding to the superstring will actually
include also the "eld theory fermions, which will imply some particular boundary conditions for
the worldsheet fermions at the boundary of AdS. However, this will not a!ect the leading order
computations we describe here.

So, the "nal conclusion is that the stretched strings couple to the operator

=(C)"Tr[P exp(Q (iAkx5 k#hI/IJx5 2) dq)] , (3.85)

where xk(q) is any parametrization of the loop and hI (I"1,2, 6) is a unit vector in R6 (the point
on S5 where the string is sitting). This is the expression when the signature of R4 is Euclidean. In the
Minkowski signature case, the phase factor associated to the trajectory of the quark has an extra
factor `ia in front of hI.19

Generalizing the prescription of Section 3.3 for computing correlation functions, the discussion
above implies that in order to compute the expectation value of the operator (3.85) in N"4 SYM
we should consider the string theory partition function on AdS

5
]S5, with the condition that we

have a string worldsheet ending on the loop C, as in Fig. 3.6 [293,292]. In the supergravity regime,
when g

4
N is large, the leading contribution to this partition function will come from the area of the

string worldsheet. This area is measured with the AdS metric, and it is generally not the same as the
area enclosed by the loop C in four dimensions.

The area as de"ned above is divergent. The divergence arises from the fact that the string
worldsheet is going all the way to the boundary of AdS. If we evaluate the area up to some radial
distance ;"r, we see that for large r it diverges as rDCD, where DCD is the length of the loop in the
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Fig. 3.6. The Wilson loop operator creates a string worldsheet ending on the corresponding loop on the boundary
of AdS.

"eld theory [292,293]. On the other hand, the perturbative computation in the "eld theory shows
that S=T, for = given by (3.85), is "nite, as it should be since a divergence in the Wilson loop
would have implied a mass renormalization of the BPS particle. The apparent discrepancy between
the divergence of the area of the minimum surface in AdS and the "niteness of the "eld theory
computation can be reconciled by noting that the appropriate action for the string worldsheet is
not the area itself but its Legendre transform with respect to the string coordinates corresponding
to hI and the radial coordinate u [294]. This is because these string coordinates obey the Neumann
boundary conditions rather than the Dirichlet conditions. When the loop is smooth, the Legendre
transformation simply subtracts the divergent term rDCD, leaving the resulting action "nite.

As an example, let us consider a circular Wilson loop. Take C to be a circle of radius a on the
boundary, and let us work in the PoincareH coordinates (de"ned in Section 2.2). We could "nd the
surface that minimizes the area by solving the Euler}Lagrange equations. However, in this case it is
easier to use conformal invariance. Note that there is a conformal transformation in the "eld theory
that maps a line to a circle. In the case of the line, the minimum area surface is clearly a plane that
intersects the boundary and goes all the way to the horizon (which is just a point on the boundary
in the Euclidean case). Using the conformal transformation to map the line to a circle we obtain the
minimal surface we want. It is, using the coordinates (3.17) for AdS

5
,

x"Ja2!z2(e
1
cosh#e

2
sin h) , (3.86)

where e
1
, e

2
are two orthonormal vectors in four dimensions (which de"ne the orientation of the

circle) and 04z4a. We can calculate the area of this surface in AdS, and we get a contribution to
the action

S&
1

2pa@
A"

R2

2pa@PdhP
a

e

dza
z2

"

R2

a@ A
a
e
!1B , (3.87)

where we have regularized the area by putting an IR cuto! at z"e in AdS, which is equivalent to
a UV cuto! in the "eld theory [173]. Subtracting the divergent term we get

S=T&e~S&eR2@a{"eJ4pg4N . (3.88)

This is independent of a as required by conformal invariance.
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20All integrals in this section can be calculated in terms of elliptic or Beta functions.

We could similarly consider a `magneticaWilson loop, which is also called a 't Hooft loop [295].
This case is related by electric-magnetic duality to the previous case. Since we identify the
electric-magnetic duality with the S¸(2,Z) duality of type IIB string theory, we should consider in
this case a D-string worldsheet instead of a fundamental string worldsheet. We get the same result
as in (3.88) but with g

4
P1/g

4
.

Using (3.84) it is possible to compute the quark}antiquark potential in the supergravity
approximation [293,292]. In this case we consider a con"guration which is invariant under
(Euclidean) time translations. We take both particles to have the same scalar charge, which means
that the two ends of the string are at the same point in S5 (one could consider also the more general
case with a string ending at di!erent points on S5 [292]). We put the quark at x"!¸/2 and the
anti-quark at x"¸/2. Here `quarka means an in"nitely massive W-boson connecting the
N branes with one brane which is (in"nitely) far away. The classical action for a string worldsheet is

S"
1

2pa@Pdq dpJdet(G
MN
RaXMRbXN) , (3.89)

where G
MN

is the Euclidean AdS
5
]S5 metric. Note that the factors of a@ cancel out in (3.89), as they

should. Since we are interested in a static con"guration we take q"t, p"x, and then the action
becomes

S"
¹R2

2p P
L@2

~L@2

dx
J(R

x
z)2#1
z2

. (3.90)

We need to solve the Euler}Lagrange equations for this action. Since the action does not depend
on x explicitly the solution satis"es

1

z2J(R
x
z)2#1

"constant . (3.91)

De"ning z
0

to be the maximum value of z(x), which by symmetry occurs at x"0, we "nd that the
solution is20

x"z
0P

1

z@z0

dy y2

J1!y4
, (3.92)

where z
0

is determined by the condition

¸

2
"z

0P
1

0

dyy2

J1!y4
"z

0

J2p3@2

C(1/4)2
. (3.93)

The qualitative form of the solution is shown in Fig. 3.7(b). Notice that the string quickly
approaches x"¸/2 for small z (close to the boundary),

¸/2!x&z3, zP0 . (3.94)
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Fig. 3.7. (a) Initial con"guration corresponding to two massive quarks before we turn on their coupling to the ;(N)
gauge theory. (b) Con"guration after we consider the coupling to the ;(N) gauge theory. This con"guration minimizes
the action. The quark-antiquark energy is given by the di!erence of the total length of the strings in (a) and (b).

Now we compute the total energy of the con"guration. We just plug in the solution (3.92) in (3.90),
subtract the in"nity as explained above (which can be interpreted as the energy of two separated
massive quarks, as in Fig. 3.7(a)), and we "nd

E"<(¸)"!

4p2(2g2
YM

N)1@2
C(1

4
)4¸

. (3.95)

We see that the energy goes as 1/¸, a fact which is determined by conformal invariance. Note that
the energy is proportional to (g2

YM
N)1@2, as opposed to g2

YM
N which is the perturbative result. This

indicates some screening of the charges at strong coupling. The above calculation makes sense for
all distances ¸ when g

4
N is large, independently of the value of g

4
. Some subleading corrections

coming from quantum #uctuations of the worldsheet were calculated in [296}298].
In a similar fashion we could compute the potential between two magnetic monopoles in terms

of a D-string worldsheet, and the result will be the same as (3.95) but with g
YM

P4p/g
YM

. One can
also calculate the interaction between a magnetic monopole and a quark. In this case the
fundamental string (ending on the quark) will attach to the D-string (ending on the monopole), and
they will connect to form a (1,1) string which will go into the horizon. The resulting potential is
a complicated function of g

YM
[299], but in the limit that g

YM
is small (but still with g2

YM
N large) we

get that the monopole-quark potential is just 1/4 of the quark-quark potential. This can be
understood from the fact that when g is small the D-string is very rigid and the fundamental string
will end almost perpendicularly on the D-string. Therefore, the solution for the fundamental string
will be half of the solution we had above, leading to a factor of 1/4 in the potential. Calculations
of Wilson loops in the Higgs phase were done in [300].
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Another interesting case one can study analytically is a surface near a cusp on R4. In this case, the
perturbative computation in the gauge theory shows a logarithmic divergence with a coe$cient
depending on the angle at the cusp. The area of the minimum surface also contains a logarithmic
divergence depending on the angle [294]. Other aspects of the gravity calculation of Wilson loops
were discussed in [301}305].

3.5.2. Other branes ending on the boundary
We could also consider other branes that are ending at the boundary [306]. The simplest

example would be a zero-brane (i.e. a particle) of mass m. In Euclidean space a zero-brane describes
a one-dimensional trajectory in anti-de-Sitter space which ends at two points on the boundary.
Therefore, it is associated with the insertion of two local operators at the two points where
the trajectory ends. In the supergravity approximation the zero-brane follows a geodesic.
Geodesics in the hyperbolic plane (Euclidean AdS) are semicircles. If we compute the action
we get

S"mPds"!2mRP
a

e

adz

zJa2!z2
, (3.96)

where we took the distance between the two points at the boundary to be ¸"2a and regu-
lated the result. We "nd a logarithmic divergence when eP0, proportional to log(e/a).
If we subtract the logarithmic divergence we get a residual dependence on a. Naively we migh
t have thought that (as in the previous subsection) the answer had to be independent of a due to
conformal invariance. In fact, the dependence on a is very important, since it leads to a result
of the form

e~S&e~2mR -0' a&1/a2mR , (3.97)

which is precisely the result we expect for the two-point function of an operator of dimension
D"mR. This is precisely the large mR limit of the formula (3.14), so we reproduce in the
supergravity limit the 2-point function described in Section 3.3. In general, this sort of logarithmic
divergence arises when the brane worldvolume is odd dimensional [306], and it implies that the
expectation value of the corresponding operator depends on the overall scale. In particular one
could consider the `Wilson surfacesa that arise in the six-dimensional N"(2, 0) theory which will
be discussed in Section 6.1.1. In that case one has to consider a two-brane, with a three-dimensional
worldvolume, ending on a two-dimensional surface on the boundary of AdS

7
. Again, one gets

a logarithmic term, which is proportional to the rigid string action of the two-dimensional surface
living on the string in the N"(2, 0) "eld theory [307,306].

One can also compute correlation functions involving more than one Wilson loop. To leading
order in N this will be just the product of the expectation values of each Wilson loop. On general
grounds one expects that the subleading corrections are given by surfaces that end on more than
one loop. One limiting case is when the surfaces look similar to the zeroth order surfaces but with
additional thin tubes connecting them. These thin tubes are nothing else than massless particles
being exchanged between the two string worldsheets [291,307]. We will discuss this further in
Section 6.2.
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3.6. Theories at xnite temperature

As discussed in Section 3.2, the quantities that can be most successfully compared between gauge
theory and string theory are those with some protection from supersymmetry and/or conformal
invariance } for instance, dimensions of chiral primary operators. Finite temperature breaks both
supersymmetry and conformal invariance, and the insights we gain from examining the ¹'0
physics will be of a more qualitative nature. They are no less interesting for that: we shall see in
Section 3.6.1 how the entropy of near-extremal D3-branes comes out identical to the free "eld
theory prediction up to a factor of a power of 4/3; then in Section 3.6.2 we explain how a phase
transition studied by Hawking and Page in the context of quantum gravity is mapped into
a con"nement}decon"nement transition in the gauge theory, driven by "nite-size e!ects; and in
Section 6.2 we will summarize the attempts to use holographic duals of "nite-temperature "eld
theories to learn about pure gauge theory at zero temperature but in one lower dimension.

3.6.1. Construction
The gravity solution describing the gauge theory at "nite temperature can be obtained by

starting from the general black three-brane solution (1.12) and taking the decoupling limit of
Section 3.1 keeping the energy density above extremality "nite. The resulting metric can be written
as

ds2"R2Cu2(!hdt2#dx2
1
#dx2

2
#dx2

3
)#

du2

hu2
#dX2

5D ,

h"1!u4
0
/u4, u

0
"p¹ . (3.98)

It will often be useful to Wick rotate by setting t
E
"it, and use the relation between the "nite

temperature theory and the Euclidean theory with a compact time direction.
The "rst computation which indicated that "nite-temperature;(N) Yang}Mills theory might be

a good description of the microstates of N coincident D3-branes was the calculation of the entropy
[290,308]. On the supergravity side, the entropy of near-extremal D3-branes is just the usual
Bekenstein}Hawking result, S"A/4G

N
, and it is expected to be a reliable guide to the entropy of

the gauge theory at large N and large g2
YM

N. There is no problem on the gauge theory side in
working at large N, but large g2

YM
N at "nite temperature is di$cult indeed. The analysis of [290]

was limited to a free "eld computation in the "eld theory, but nevertheless the two results for the
entropy agreed up to a factor of a power of 4/3. In the canonical ensemble, where temperature and
volume are the independent variables, one identi"es the "eld theory volume with the world-volume
of the D3-branes, and one sets the "eld theory temperature equal to the Hawking temperature in
supergravity. The result is

F
SUGRA

"!1
8
p2N2<¹4, F

SYM
"4

3
F

SUGRA
. (3.99)

The supergravity result is at leading order in l
4
/R, and it would acquire corrections suppressed by

powers of ¹R if we had considered the full D3-brane metric rather than the near-horizon
limit, (3.98). These corrections do not have an interpretation in the context of CFT because
they involve R as an intrinsic scale. Two equivalent methods to evaluate F

SUGRA
are (a) to

use F"E!¹S together with standard expressions for the Bekenstein}Hawking entropy,
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21The result of [290], S
SYM

"(4/3)1@4S
SUGRA

, di!ers super"cially from (3.99), but it is only because the authors worked
in the microcanonical ensemble: rather than identifying the Hawking temperature with the "eld theory temperature, the
ADM mass above extremality was identi"ed with the "eld theory energy.

the Hawking temperature, and the ADM mass; and (b) to consider the gravitational action of the
Euclidean solution, with a periodicity in the Euclidean time direction (related to the temperature)
which eliminates a conical de"cit angle at the horizon.21

The 4/3 factor is a long-standing puzzle into which we still have only qualitative insight. The
gauge theory computation was performed at zero 't Hooft coupling, whereas the supergravity is
supposed to be valid at strong 't Hooft coupling, and unlike in the (1#1)-dimensional case where
the entropy is essentially "xed by the central charge, there is no non-renormalization theorem for
the coe$cient of ¹4 in the free energy. Indeed, it was suggested in [288] that the leading term in the
1/N expansion of F has the form

F"!f (g2
YM

N)1
6
p2N2<¹4 , (3.100)

where f (g2
YM

N) is a function which smoothly interpolates between a weak coupling limit of 1 and
a strong coupling limit of 3/4. It was pointed out early [309] that the quartic potential
g2
YM

Tr[/I,/J]2 in the N"4 Yang}Mills action might be expected to freeze out more and more
degrees of freedom as the coupling was increased, which would suggest that f (g2

YM
N) is monotone

decreasing. An argument has been given [310], based on the non-renormalization of the two-point
function of the stress tensor, that f (g2

YM
N) should remain "nite at strong coupling.

The leading corrections to the limiting value of f (g2
YM

N) at strong and weak coupling were
computed in [288] and [311], respectively. The results are

f (g2
YM

N)"1!(3/2p2)g2
YM

N#2 for small g2
YM

N ,

f (g2
YM

N)"3
4
#45

32

f(3)
(g2

YM
N)3@2

#2 for large g2
YM

N . (3.101)

The weak coupling result is a straightforward although somewhat tedious application of the
diagrammatic methods of perturbative "nite-temperature "eld theory. The constant term is from
one loop, and the leading correction is from two loops. The strong coupling result follows from
considering the leading a@ corrections to the supergravity action. The relevant one involves
a particular contraction of four powers of the Weyl tensor. It is important now to work with the
Euclidean solution, and one restricts attention further to the near-horizon limit. The Weyl
curvature comes from the non-compact part of the metric, which is no longer AdS

5
but rather the

AdS-Schwarzschild solution which we will discuss in more detail in Section 3.6.2. The action
including the a@ corrections no longer has the Einstein}Hilbert form, and correspondingly the
Bekenstein}Hawking prescription no longer agrees with the free energy computed as bI where I is
the Euclidean action. In keeping with the basic prescription for computing Green's functions,
where a free energy in "eld theory is equated (in the appropriate limit) with a supergravity action,
the relation I"bF is regarded as the correct one (see [312]). It has been conjectured that the
interpolating function f (g2

YM
N) is not smooth, but exhibits some phase transition at a "nite value of

the 't Hooft coupling. We regard this as an unsettled question. The arguments in [313,314] seem as

O. Aharony et al. / Physics Reports 323 (2000) 183}386 267



yet incomplete. In particular, they rely on analyticity properties of the perturbation expansion
which do not seem to be proven for "nite temperature "eld theories.

3.6.2. Thermal phase transition
The holographic prescription of [19,20], applied at large N and g2

YM
N where loop and stringy

corrections are negligible, involves extremizing the supergravity action subject to particular
asymptotic boundary conditions. We can think of this as the saddle point approximation to the
path integral over supergravity "elds. That path integral is ill-de"ned because of the non-
renormalizable nature of supergravity. String amplitudes (when we can calculate them) render
on-shell quantities well-de"ned. Despite the conceptual di$culties we can use some simple
intuition about path integrals to illustrate an important point about the AdS/CFT correspondence:
namely, there can be more than one saddle point in the range of integration, and when there is we
should sum e~ISUGRA over the classical con"gurations to obtain the saddle-point approximation to
the gauge theory partition function. Multiple classical con"gurations are possible because of the
general feature of boundary value problems in di!erential equations: there can be multiple
solutions to the classical equations satisfying the same asymptotic boundary conditions. The
solution which globally minimizes I

SUGRA
is the one that dominates the path integral.

When there are two or more solutions competing to minimize I
SUGRA

, there can be a phase
transition between them. An example of this was studied in [287] long before the AdS/CFT
correspondence, and subsequently resurrected, generalized, and reinterpreted in [20,183] as a con-
"nement}decon"nement transition in the gauge theory. Since the qualitative features are indepen-
dent of the dimension, we will restrict our attention to AdS

5
. It is worth noting however that if the

AdS
5

geometry is part of a string compacti"cation, it does not matter what the internal manifold is
except insofar as it "xes the cosmological constant, or equivalently the radius R of anti-de Sitter
space.

There is an embedding of the Schwarzschild black hole solution into anti-de Sitter space which
extremizes the action

I"!

1
16pG

5
Pd5xJgAR#

12
R2B . (3.102)

Explicitly, the metric is

ds2"fdt2#(1/f )dr2#r2dX2
3

,

f"1#(r2/R2)!k/r2 . (3.103)

The radial variable r is restricted to r5r
`

, where r
`

is the largest root of f"0. The Euclidean time
is periodically identi"ed, t&t#b, in order to eliminate the conical singularity at r"r

`
. This

requires

b"2pR2r
`
/(2r2

`
#R2) . (3.104)

Topologically, this space is S3]B2, and the boundary is S3]S1 (which is the relevant space for the
"eld theory on S3 with "nite temperature). We will call this space X

2
. Another space with the same

boundary which is also a local extremum of (3.102) is given by the metric in (3.103) with k"0 and
again with periodic time. This space, which we will call X

1
, is not only metrically distinct from the
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"rst (being locally conformally #at), but also topologically B4]S1 rather than S3]B2. Because the
S1 factor is not simply connected, there are two possible spin structures on X

1
, corresponding to

thermal (anti-periodic) or supersymmetric (periodic) boundary conditions on fermions. In contrast,
X

2
is simply connected and hence admits a unique spin structure, corresponding to thermal

boundary conditions. For the purpose of computing the twisted partition function, Tr(!1)Fe~bH,
in a saddle-point approximation, only X

1
contributes. But, X

1
and X

2
make separate saddle-point

contributions to the usual thermal partition function, Tr e~bH, and the more important one is the
one with the smaller Euclidean action.

Actually, both I(X
1
) and I(X

2
) are in"nite, so to compute I(X

2
)!I(X

1
) a regulation scheme

must be adopted. The one used in [183,288] is to cut o! both X
1

and X
2

at a de"nite coordinate
radius r"R

0
. For X

2
, the elimination of the conical de"cit angle at the horizon "xes the period of

Euclidean time; but for X
1
, the period is arbitrary. In order to make the comparison of I(X

1
) and

I(X
2
) meaningful, we "x the period of Euclidean time on X

1
so that the proper circumference of the

S
1

at r"R
0

is the same as the proper length on X
2

of an orbit of the Killing vector R/Rt, also at
r"R

0
. In the limit R

0
PR, one "nds

I(X
2
)!I(X

1
)"p2r3

`
(R2!r2

`
)/4G

5
(2r2

`
#R2) , (3.105)

where again r
`

is the largest root of f"0. The fact that (3.105) (or more precisely its AdS
4

analog)
can change its sign was interpreted in [287] as indicating a phase transition between a black hole in
AdS and a thermal gas of particles in AdS (which is the natural interpretation of the space X

1
). The

black hole is the thermodynamically favored state when the horizon radius r
`

exceeds the radius of
curvature R of AdS. In the gauge theory, we interpret this transition as a con"nement}decon"ne-
ment transition. Since the theory is conformally invariant, the transition temperature must be
proportional to the inverse radius of the space S3 which the "eld theory lives on. Similar
transitions, and also local thermodynamic instability due to negative speci"c heats, have been
studied in the context of spinning branes and charged black holes in [315}319,140,139]. Most of
these works are best understood on the CFT side as explorations of exotic thermal phenomena in
"nite-temperature gauge theories. Connections with Higgsed states in gauge theory are clearer in
[320,321]. The relevance to con"nement is explored in [318]. See also [322}324,283] for other
interesting contributions to the "nite temperature literature.

Decon"nement at high temperature can be characterized by a spontaneous breaking of the
center of the gauge group. In our case the gauge group is S;(N) and its center is Z

N
. The order

parameter for the breaking of the center is the expectation value of the Polyakov (temporal) loop
S=(C)T. The boundary of the spaces X

1
, X

2
is S3]S1, and the path C wraps around the circle. An

element of the center g3Z
N

acts on the Polyakov loop by S=(C)TPgS=(C)T. The expectation
value of the Polyakov loop measures the change of the free energy of the system F

q
(¹) induced by

the presence of the external charge q, S=(C)T&exp(!F
q
(¹)/¹). In a con"ning phase F

q
(¹) is

in"nite and therefore S=(C)T"0. In the decon"ned phase F
q
(¹) is "nite and therefore

S=(C)TO0.
As discussed in Section 3.5, in order to compute S=(C)T we have to evaluate the partition

function of strings with a worldsheet D that is bounded by the loop C. Consider "rst the
low-temperature phase. The relevant space is X

1
which, as discussed above, has the topology

B4]S1. The contour C wraps the circle and is not homotopic to zero in X
1
. Therefore C is not
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22 If we have a topological "eld theory on the boundary the bulk theory does not have to be gravitational, as in [327].

a boundary of any D, which immediately implies that S=(C)T"0. This is the expected behavior at
low temperatures (compared to the inverse radius of the S3), where the center of the gauge group is
not broken.

For the high-temperature phase the relevant space is X
2
, which has the topology S3]B2. The

contour C is now a boundary of a string worldsheet D"B2 (times a point in S3). This seems to
be in agreement with the fact that in the high-temperature phase S=(C)TO0 and the center of the
gauge group is broken. It was pointed out in [183] that there is a subtlety with this argument, since
the center should not be broken in "nite volume (S3), but only in the in"nite volume limit (R3).
Indeed, the solution X

2
is not unique and we can add to it an expectation value for the integral of

the NS-NS 2-form "eld B on B2, with vanishing "eld strength. This is an angular parameter t with
period 2p, which contributes it to the string worldsheet action. The string theory partition function
includes now an integral over all values of t, making S=(C)T"0 on S3. In contrast, on R3 one
integrates over the local #uctuations of t but not over its vacuum expectation value. Now
S=(C)TO0 and depends on the value of t3;(1), which may be understood as the dependence on
the center Z

N
in the large N limit. Explicit computations of Polyakov loops at "nite temperature

were done in [325,326].
In [183] the Euclidean black hole solution (3.103) was suggested to be holographically dual to

a theory related to pure QCD in three dimensions. In the large volume limit the solution
corresponds to the N"4 gauge theory on R3]S1 with thermal boundary conditions, and when
the S1 is made small (corresponding to high temperature ¹) the theory at distances larger than 1/¹
e!ectively reduces to pure Yang}Mills on R3. Some of the non-trivial successes of this approach to
QCD will be discussed in Section 6.2.

4. More on the correspondence

4.1. Other AdS
5

backgrounds

Up to now we have limited our discussion to the AdS
5
]S5 background of type IIB string theory;

in Section 4.3 we will describe backgrounds which are related to it by deformations. However, it is
clear from the description of the correspondence in Sections 3.1 and 3.3 that a similar correspond-
ence may be de"ned for any theory of quantum gravity whose metric includes an AdS

5
factor; the

generalization of equation (3.13) relates such a theory to a four dimensional conformal "eld theory.
The background does not necessarily have to be of the form AdS

5
]X; it is enough that it has an

SO(4, 2) isometry symmetry, and more general possibilities in which the curvature of AdS
5

depends
on the position in X are also possible [119]. It is necessary, however, for the AdS theory to be
a theory of quantum gravity, since any conformal theory has an energy-momentum tensor
operator that is mapped by the correspondence to the graviton on AdS

5
.22 Thus, we would like to

discuss compacti"cations of string theory or M theory, which are believed to be consistent theories
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of quantum gravity, on backgrounds involving AdS
5
. For simplicity we will only discuss here

backgrounds which are direct products of the form AdS
5
]X.

Given such a background of string/M theory, it is not apriori clear what is the conformal "eld
theory to which it corresponds. A special class of backgrounds are those which arise as near-
horizon limits of branes, like the AdS

5
]S5 background. In this case one can sometimes analyze the

low-energy "eld theory on the branes by standard methods before taking the near-horizon limit,
and after the limit this becomes the dual conformal "eld theory. The most well-studied case is
the case of D3-branes in type IIB string theory. When the D3-branes are at a generic point in
space-time the near-horizon limit gives the AdS

5
]S5 background discussed extensively above.

However, if the transverse space to the D3-branes is singular, the near-horizon limit and the
corresponding "eld theory can be di!erent. The simplest case is the case of a D3-brane on an
orbifold [328] or orientifold [214] singularity, which can be analyzed by perturbative string theory
methods. These cases will be discussed in Sections 4.1.1 and 4.1.2. Another interesting case is the
conifold singularity [215] and its generalizations, which will be discussed in Section 4.1.3. In this
case a direct analysis of the "eld theory is not possible, but various indirect arguments can be used
to determine what it is in many cases.

Not much is known about more general cases of near-horizon limits of D3-branes, which on the
string theory side were analyzed in [329}333], and even less is known about backgrounds which
are not describable as near-horizon limits of branes (several AdS

5
backgrounds were discussed in

[334]). An example of the latter is the AdS
5
]CP3 background of M theory [335], which involves

a 4-form #ux on the 4-cycle in CP3. Using the methods described in the previous sections we can
compute various properties of such compacti"cations in the large N limit, such as the mass
spectrum and the central charge of the corresponding "eld theories (for the AdS

5
]CP3 compacti"-

cation one "nds a central charge proportional to N3, where N is the 4-form #ux). However, it is not
known how to construct an alternative description of the conformal "eld theory in most of these
cases, except for the cases which are related by deformations to the better-understood orbifold and
conifold compacti"cations.

Some of the AdS
5
]X backgrounds of string/M theory preserve some number of supersymmet-

ries, but most of them (such as the AdS
5
]CP3 background) do not. In supersymmetric cases,

supersymmetry guarantees the stability of the corresponding solutions. In the non-supersymmetric
cases various instabilities may arise for "nite N (see, for instance, [336,337]) which may destroy the
conformal (SO(4, 2)) invariance, but the correspondence is still conjectured to be valid when all
quantum corrections are taken into account (or in the in"nite N limit for which the supergravity
approximation is valid). One type of instability occurs when the spectrum includes a tachyonic "eld
whose mass is below the Breitenlohner}Freedman stability bound. Such a "eld is expected to
condense just like a tachyon in #at space, and generally it is not known what this condensation
leads to. If the classical supergravity spectrum includes a "eld which saturates the stability bound,
an analysis of the quantum corrections is necessary to determine whether they raise the mass
squared of the "eld (leading to a stable solution) or lower it (leading to an unstable solution).
A priori one would not expect to have a "eld which exactly saturates the bound (corresponding to
an operator in the "eld theory whose dimension is exactly D"2) in a non-supersymmetric theory,
but this often happens in orbifold theories for reasons that will be discussed below. Another
possible instability arises when there is a massless "eld in the background, corresponding to
a marginal operator in the "eld theory. Such a "eld (the dilaton) exists in all classical type IIB
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23 In general one can choose to have the orbifold group act on the Chan-Paton indices in various ways. We will discuss
here only the case where the group acts as N copies of the regular representation of the orbifold group C, which is the only
case which leads to conformal theories. Other representations involve also 5-branes wrapped around 2-cycles, so they do
not arise in the naive near-horizon limit of D3-branes. The AdS

5
description of this was given in [216].

24We will not discuss here orbifolds that act non-trivially on the AdS space, as in [344].

compacti"cations, and naively corresponds to an exactly marginal deformation of the theory even
in the non-supersymmetric cases. However, for "nite N, one would expect quantum corrections to
generate a potential for such a "eld (if it is neutral under the gauge symmetries), which could drive
its expectation value away from the range of values where the supergravity approximation is valid.
Again, an analysis of the quantum corrections is necessary in such a case to determine if the theory
has a stable vacuum (which may or may not be describable in supergravity), corresponding to
a "xed point of the corresponding "eld theory, or if the potential leads to a runaway behavior with
no stable vacuum. Another possible source of instabilities is related to the possibility of forming
brane}anti-brane pairs in the vacuum (or, equivalently, the emission of branes which destabilize the
vacuum) [338}341]; one would expect such an instability to arise, for example, in cases where we
look at the near-horizon limit of N 3-branes which have a repulsive force between them. For all
these reasons, the study of non-supersymmetric backgrounds usually requires an understanding of
the quantum corrections, which are not yet well-understood neither in M theory nor in type IIB
compacti"cations with RR backgrounds. Thus, we will focus here on supersymmetric back-
grounds, for which the supergravity approximation is generally valid. In the non-supersymmetric
cases the correspondence is still expected to be valid, and in the extreme large N limit it can also be
studied using supergravity, but getting "nite N information usually requires going beyond the
SUGRA approximation. It would be very interesting to understand better the quantum corrections
in order to study non-supersymmetric theories at "nite N using the AdS/CFT correspondence.

4.1.1. Orbifolds of AdS
5
]S5

The low-energy "eld theory corresponding to D3-branes at orbifold singularities may be derived
by string theory methods [342,343]. Generally, the gauge group is of the form <

i
;(a

i
N), and there

are various bifundamental (and sometimes also adjoint) matter "elds.23 We are interested in the
near-horizon limit of D3-branes sitting at the origin of R4]R6/C for some "nite group C which is
a discrete subgroup of the SO(6)KS;(4)

R
rotation symmetry [328]. If CLS;(3)LS;(4)

R
the

theory on the D3-branes has N"1 supersymmetry, and if CLS;(2)LS;(4)
R

it has N"2
supersymmetry. The near-horizon limit of such a con"guration is of the form AdS

5
]S5/C (since

the orbifold commutes with taking the near-horizon limit), and corresponds (at least for large N) to
a conformal theory with the appropriate amount of supersymmetry. Note that on neither side of
the correspondence is the orbifolding just a projection on the C-invariant states of the original
theory } on the string theory side we need to add also twisted sectors, while on the "eld theory
side the gauge group is generally much larger (though the "eld theory can be viewed as a projection
of the gauge theory corresponding to dim(C) )N D-branes).

We will start with a general analysis of the orbifold, and then discuss speci"c examples with
di!erent amounts of supersymmetry.24 The action of C on the S5 is the same as its action on the
angular coordinates of R6. If the original action of C had only the origin as its "xed point, the space
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25Note that this happens even when in the original description there were massless twisted sector states localized at the
origin.

26There is no similar relation for the twisted sector operators.
27At least, it prevents a potential for the dilaton, so there is still some "xed line in the "eld theory, though it can be

shifted from the N"4 "xed line when 1/N corrections are taken into account.

S5/C is smooth. On the other hand, if the original action had a space of "xed points, some "xed
points remain, and the space S5/C includes orbifold singularities. In this case the space is not
geometrically smooth, and the supergravity approximation is not valid (though of course in string
theory it is a standard orbifold compacti"cation which is generically not singular). The spectrum of
string theory on AdS

5
]S5/C includes states from untwisted and twisted sectors of the orbifold. The

untwisted states are just the C-projection of the original states of AdS
5
]S5, and they include in

particular the C-invariant supergravity states. These states have (in the classical supergravity limit)
the same masses as in the original AdS

5
]S5 background [345], corresponding to integer dimen-

sions in the "eld theory, which is why we often "nd in orbifolds operators of dimension 2 or 4 which
can destabilize non-supersymmetric backgrounds. If the orbifold group has "xed points on the S5,
there are also light twisted sector states that are localized near these "xed points, which need to be
added to the supergravity "elds for a proper description of the low-energy dynamics. On the other
hand, if the orbifold has no "xed points, all twisted sector states are heavy25, since they involve
strings stretching between identi"ed points on the S5. In this case the twisted sector states decouple
from the low-energy theory in space-time (for large g

4
N). There is a global C symmetry in the

corresponding "eld theory, under which the untwisted sector states are neutral while the twisted
sector states are charged.

In the 't Hooft limit of NPR with g
4
N "nite, all the solutions of the form AdS

5
]S5/C have

a "xed line corresponding to the dilaton, indicating that the beta function of the corresponding
"eld theories vanishes in this limit [328]. In fact, one can prove [346}348] (see also [349,350]) that
in this limit, which corresponds to keeping only the planar diagrams in the "eld theory, all the
correlation functions of the untwisted sector operators in the orbifold theories are the same (up
to multiplication by some power of dim(C)) as in the N"4 SYM theory corresponding to
AdS

5
]S5.26 This is the analog of the usual string theory statement that at tree-level the interac-

tions of untwisted sector states are exactly inherited from those of the original theory before the
orbifolding. For example, the central charge of the "eld theory (appearing in the 2-point function of
the energy-momentum tensor) is (in this limit) just dim(C) times the central charge of the
corresponding N"4 theory. This may easily be seen also on the string theory side, where the
central charge may be shown [171] to be inversely proportional to the volume of the compact
space (and Vol(S5/C)"Vol(S5)/dim(C)).

The vanishing of the beta function in the 't Hooft limit follows from this general result
(as predicted by the AdS/CFT correspondence). This applies both to orbifolds which preserve
supersymmetry and to those which do not, and leads to many examples of supersymmetric and
non-supersymmetric theories which have "xed lines in the large N limit. At subleading orders in
1/N, the correlation functions di!er between the orbifold theory and the N"4 theory, and in
principle a non-zero beta function may arise. In supersymmetric orbifolds supersymmetry prevents
this,27 but in non-supersymmetric theories generically there will no longer be a "xed line for "nite N.
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28This does not contradict our previous statements about the beta functions since the ;(1) factors are subleading in
the 1/N expansion, and the operators corresponding to the o!-diagonal ;(1)'s come from twisted sectors.

The dilaton potential is then related to the appearance of a non-zero beta function in the "eld
theory, and the minima of this potential are related to the zeros of the "eld theory beta function for
"nite N.

As a "rst example we can analyze the case [328] of D3-branes on an R4/Z
k
orbifold singularity,

which preserves N"2 supersymmetry. Before taking the near-horizon limit, the low-energy "eld
theory (at the free orbifold point in the string theory moduli space) is a ;(N)k gauge theory with
bifundamental hypermultiplets in the (N,NM , 1,2, 1)#(1,N, NM , 1,2, 1)#2#(1,2, 1,N,NM )
#(NM , 1,2, 1,N) representation. The bare gauge couplings q

i
of all the ;(N) theories are equal to

the string coupling q
IIB

at this point in the moduli space. In the near-horizon (low-energy) limit this
"eld theory becomes the S;(N)k "eld theory with the same matter content, since the o!-diagonal
;(1) factors are IR-free28 (and the diagonal;(1) factor is decoupled here and in all other examples
in this section so we will ignore it). This theory is dual to type IIB string theory on AdS

5
]S5/Z

k
,

where the Z
k

action leaves "xed an S1 inside the S5.
This "eld theory is known (see, for instance, [351]) to be a "nite "eld theory for any value of the

k gauge couplings q
i
, corresponding to a k-complex-dimensional surface of conformal "eld theories.

Thus, we should see k complex parameters in the string theory background which we can change
without destroying the AdS

5
component of this background. One such parameter is obviously the

dilaton, and the other (k!1) may be identi"ed [328] with the values of the NS-NS and R-R 2-form
B-"elds on the (k!1) 2-cycles which vanish at the Z

k
orbifold singularity (these are part of the

blow-up modes for the singularities; the other blow-up modes turn on "elds which change the AdS
5

background, and correspond to non-marginal deformations of the "eld theory).
The low-energy spectrum has contributions both from the untwisted and from the twisted

sectors. The untwisted sector states are just the Z
k
projection of the original AdS

5
]S5 states. The

twisted sector states are the same (for large N and at low energies) as those which appear in #at
space at an R4/Z

k
singularity, except that here they live on the "xed locus of the Z

k
action which is

of the form AdS
5
]S1. At the orbifold point the massless twisted sector states are (k!1) tensor

multiplets (these tensor multiplets include scalars corresponding to the 2-form B-"elds described
above). Upon dimensional reduction on the S1 these give rise to (k!1) ;(1) gauge "elds on AdS

5
,

which correspond to the ;(1) global symmetries of the "eld theory (which were the o!-diagonal
gauge ;(1)'s before taking the near-horizon limit, and become global symmetries after this limit);
see, e.g. [352]. The orbifold point corresponds to having all the B-"elds maximally turned on [353].
The spectrum of "elds on AdS

5
in this background was successfully compared [354] to the

spectrum of chiral operators in the "eld theory. If we move in the string theory moduli space to
a point where the B-"elds on some 2-cycles are turned o!, the D3-branes wrapped around these
2-cycles become tensionless, and the low-energy theory becomes a non-trivial N"(2, 0) six
dimensional SCFT (see [91] and references therein). The low-energy spectrum on AdS

5
then

includes the dimensional reduction of this conformal theory on a circle. In particular, when all the
B-"elds are turned o!, we get the A

k~1
(2, 0) theory, which gives rise to S;(k) gauge "elds at

low-energies upon compacti"cation on a circle. Thus, the AdS/CFT correspondence predicts an
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29Note that this means that unlike the AdS
5
]S5 case, in cases with less SUSY there are always non-chiral operators

which have a "nite dimension in the large N, g2
YM

N limit.

enhanced global S;(k) symmetry at a particular point in the parameter space of the corresponding
"eld theory. Presumably, this point is in a very strongly coupled regime (the string coupling
q
IIB

J+
i
q
i
may be chosen to be weak, but individual q

i
's can still be strongly coupled) which cannot

be accessed directly in the "eld theory. The "eld theory in this case has a large group of duality
symmetries [351], which includes (but is not limited to) the S¸(2,Z) subgroup which acts on
the couplings as qP(aq#b)/(cq#d) at the point where they are all equal. In the type IIB
background the S¸(2,Z) subgroup of this duality group is manifest, but it is not clear how to see the
rest of this group.

Our second example corresponds to D3-branes at an R6/Z
3

orbifold point, where, if we write
R6 as C3 with complex coordinates z

j
( j"1, 2, 3), the Z

3
acts as z

j
Pe2pi@3z

j
. In this case the only

"xed point of the Z
3

action is the origin, so in the near-horizon limit we get [328] AdS
5
]S5/Z

3
where the compact space is smooth. Thus, the low-energy spectrum in this case (for large g

4
N)

includes only the Z
3

projection of the original supergravity spectrum, and all twisted sector states
are heavy in this limit.

The corresponding "eld theory may be derived by the methods of [342,343]. It is an S;(N)3
gauge theory, with chiral multiplets ;

j
( j"1, 2, 3) in the (N,NM , 1) representation, <

j
( j"1, 2, 3) in

the (1,N, NM ) representation, and =
j

( j"1, 2, 3) in the (NM , 1,N) representation, and a classical
superpotential of the form="geijk;

i
<

j
=

k
. In the classical theory all three gauge couplings and

the superpotential coupling g are equal (and equal to the string coupling). In the quantum theory
one can prove that in the space of these four parameters there is a one dimensional line of
superconformal "xed points. The parameter which parameterizes this "xed line (which passes
through weak coupling in the gauge theory) may be identi"ed with the dilaton in the AdS

5
]S5/Z

3
background. Unlike the previous case, here there are no indications of additional marginal
deformations, and no massless twisted sector states on AdS

5
which they could correspond to.

As in the previous case, one can try to compare the spectrum of "elds on AdS
5
with the spectrum

of chiral operators in the "eld theory. In this case, as in all cases with less than N"4 supersym-
metry, not all the supergravity "elds on AdS

5
are in chiral multiplets, since the N"4 chiral

multiplets split into chiral, anti-chiral and non-chiral multiplets when decomposed into N"2 (or
N"1) representations29 (in general there can also be various sizes of chiral multiplets). However,
one can still compare those of the "elds which are in chiral multiplets (and have the appropriate
relations between their AdS mass/"eld theory dimension and their R-charges). The untwisted states
may easily be matched since they are a projection of the original states both in space-time and in
the "eld theory (if we think of the "eld theory as a projection of the N"4 S;(3N) gauge theory).
Looking at the twisted sectors we seem to encounter a paradox [331]. On the string theory side all
the twisted sector states are heavy (they correspond to strings stretched across the S5, so they would
correspond to operators with DKmRKR2/l2

4
K(g

4
N)1@2). On the "eld theory side we can identify

the twisted sector "elds with operators which are charged under the global Z
3

symmetry which
rotates the three gauge groups, and naively there exist chiral operators which are charged under
this symmetry and remain of "nite dimension in the large N, g2

YM
N limit. However, a careful
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analysis shows that all of these operators are in fact descendants, so their dimensions are not
protected. For example, the operator +3

j/1
e2pij@3Tr((=(j)a )2), where =(j)a is the "eld strength mul-

tiplet of the jth S;(N) group, seems to be a chiral super"eld charged under the Z
3

symmetry.
However, using linear combinations of the Konishi anomaly equations [355,356] for the three
gauge groups, one can show that this operator (and all other `twisted sectora operators) is in fact
a descendant, so there is no paradox. The AdS/CFT correspondence predicts that in the large
N, g2

YM
N limit the dimension of all these Z

3
-charged operators scales as (g2

YM
N)1@2, which is larger

than the scaling D&(g2
YM

N)1@4 for the non-chiral operators in the N"4 SYM theory in the same
limit. It would be interesting to verify this behavior in the "eld theory. Baryon-like operators also
exist in these theories [357], which are similar to those which will be discussed in Section 4.1.3.

There are various other supersymmetric orbifold backgrounds which behave similarly to the
examples we have described in detail here. There are also many non-supersymmetric examples
[358,359] but, as described above, their fate for "nite N is not clear, and we will not discuss them in
detail here.

4.1.2. Orientifolds of AdS
5
]S5

The discussion of the near-horizon limits of D3-branes on orientifolds is mostly similar to the
discussion of orbifolds, except for the absence of twisted sector states (which do not exist for
orientifolds). We will focus here on two examples which illustrate some of the general properties of
these backgrounds. Additional examples were discussed in [360}367].

Our "rst example is the near-horizon limit of D3-branes on an orientifold 3-plane. The
orientifold breaks the same supersymmetries as the 3-branes do, so in the near horizon limit
we have the full 32 supercharges corresponding to a d"4, N"4 SCFT. In #at space there are (see
[368] and references therein) two types of orientifold planes which lead to di!erent projections on
D-brane states. One type of orientifold plane leads to a low-energy SO(2N) N"4 gauge theory for
N D-branes on the orientifold, while the other leads to a;Sp(2N) N"4 gauge theory. In the "rst
case we can also have an additional `half D3-branea stuck on the orientifold, leading to an
SO(2N#1) N"4 gauge theory. In the near-horizon limits of branes on the orientifold we should
be able to "nd string theory backgrounds which are dual to all of these gauge theories.

The near-horizon limit of these brane con"gurations is type IIB string theory on
AdS

5
]S5/Z

2
,AdS

5
]RP5, where the Z

2
acts by identifying opposite points on the S5, so there

are no "xed points and the space RP5 is smooth. The manifestation of the orientifolding in the
near-horizon limit is that when a string goes around a non-contractible cycle in RP5 (connecting
opposite points of the S5) its orientation is reversed. In all the cases discussed above the string
theory perturbation expansion had only closed orientable surfaces, so it was a power series in g2

s
(or in 1/N2 in the 't Hooft limit); but in this background we can also have non-orientable closed
surfaces which include crosscaps, and the perturbation expansion includes also odd powers of g

s
(or

of 1/N in the 't Hooft limit). In fact, it has long been known [35] that in the 't Hooft limit the SO(N)
and ;Sp(N) gauge theories give rise to Feynman diagrams that involve also non-orientable
surfaces (as opposed to the S;(N) case which gives only orientable surfaces), so it is not surprising
that such diagrams arise in the string theory which is dual to these theories. While in the cases
described above the leading correction in string perturbation theory was of order g2

4
(or 1/N2 in the

't Hooft limit), in the AdS
5
]RP5 background (and in general in orientifold backgrounds) the

leading correction comes from RP2 worldsheets and is of order g
4
(or 1/N in the 't Hooft limit).
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Such a correction appears, for instance, in the computation of the central charge (the 2-point
function of the energy-momentum tensor) of these theories, which is proportional to the dimension
of the corresponding gauge group.

Our discussion so far has not distinguished between the di!erent con"gurations corresponding
to SO(2N), SO(2N#1) and ;Sp(2N) groups (the only obvious parameter in the orientifold
background is the 5-form #ux N). In the Feynman diagram expansion it is well-known [369,370]
that the SO(2N) and ;Sp(2N) theories are related by a transformation taking N to (!N), which
inverts the sign of all diagrams with an odd number of crosscaps in the 't Hooft limit. Thus, we
should look for a similar e!ect in string theory on AdS

5
]RP5. It turns out [214] that this is

implemented by a `discrete torsiona on RP5, corresponding to turning on a B
NS~NS

2-form in the
non-trivial cohomology class of H3(RP5,ZI )"Z

2
. The e!ect of turning on this `discrete torsiona is

exactly to invert the sign of all string diagrams with an odd number of crosscaps. It is also possible
to turn on a similar `discrete torsiona for the RR 2-form B-"eld, so there is a total of four di!erent
possible string theories on AdS

5
]RP5. It turns out that the theory with no B-"elds is equivalent to

the SO(2N) N"4 gauge theory, which is self-dual under the S-duality group S¸(2,Z). The theory
with only a non-zero B

RR
"eld is equivalent to the SO(2N#1) gauge theory, while the theories with

non-zero B
NS~NS

"elds are equivalent to the ;Sp(2N) gauge theory [214], and this is consistent
with the action of S-duality on these groups and on the 2-form B-"elds (which are a doublet of
S¸(2,Z)).

An interesting test of this correspondence is the matching of chiral primary "elds. In the
supergravity limit the "elds on AdS

5
]RP5 are just the Z

2
projection of the "elds on AdS

5
]S5,

including the multiplets with n"2, 4, 6,2 (in the notation of Section 3.2). This matches with
almost all the chiral super"elds in the corresponding gauge theories, which are described as traces
of products of the fundamental "elds as in Section 3.2, but with the trace of a product of an odd
number of "elds vanishing in these theories from symmetry arguments. However, in the SO(2N)
gauge theories (and not in any of the others) there is an additional gauge invariant chiral super"eld,
called the Pfa$an, whose lowest component is of the form ea1a22a2N/I1

a1a2
/I2

a3a4
2/IN

a2N~1a2N
, where a

i
are

SO(2N) indices and the I
j
are (symmetric traceless) indices in the 6 of S;(4)

R
. The supersymmetry

algebra guarantees that the dimension of this operator is D"N, and it is independent of the other
gauge-invariant chiral super"elds. This operator may be identi"ed with the "eld on AdS

5
corre-

sponding to a D3-brane wrapped around a 3-cycle in RP5, corresponding to the homology class
H

3
(RP5,Z)"Z

2
. This wrapping is only possible when no B-"elds are turned on [214], consistent

with such an operator existing for SO(2N) but not for SO(2N#1) or ;Sp(2N). While it is not
known how to compute the mass of this state directly, the superconformal algebra guarantees that
it has the right mass to correspond to an operator with D"N; the naive approximation to the
mass, since the volume of the 3-cycle in RP5 is p2R3, is mRKR ) p2R3/(2p)3g

4
l4
4
"R4/8pl4

P
KN

(since in the orientifold case R4K4p(2N)l4
P

instead of Eq. (3.3)), which leads to the correct
dimension for large N. The existence of this operator (which decouples in the large N limit) is an
important test of the "nite N correspondence. Anomaly matching in this background was discussed
in [231].

Another interesting background is the near-horizon limit of D3-branes on an orientifold 7-plane,
with 4 D7-branes coincident on the orientifold plane to ensure [371,372] that the dilaton is
constant and the low-energy theory is conformal (this is the same as D3-branes in F-theory [373] at
a D

4
-type singularity). The "eld theory we get in the near-horizon limit in this case is [374,375] an
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30Similar backgrounds were discussed in [170].

N"2 SQCD theory with ;Sp(2N) gauge group, a hypermultiplet in the anti-symmetric repres-
entation and four hypermultiplets in the fundamental representation. In this case the orientifold
action has "xed points on the S5, so the near-horizon limit is [376,377] type IIB string theory on
AdS

5
]S5/Z

2
where the Z

2
action has "xed points on an S3 inside the S5. Thus, this background

includes an orientifold plane with the topology of S3]AdS
5
, and the D7-branes stretched along the

orientifold plane also remain as part of the background, so that the low-energy theory includes
both the supergravity modes in the bulk and the SO(8) gauge theory on the D7-branes (which
corresponds to an SO(8) global symmetry in the corresponding "eld theories).30 The string
perturbation expansion in this case has two sources of corrections of order g

4
, the crosscap diagram

and the open string disc diagram with strings ending on the D7-brane, leading to two types of
corrections of order 1/N in the 't Hooft limit. Again, the spectrum of operators in the "eld theory
may be matched [377] with the spectrum of "elds coming from the dimensional reduction of the
supergravity theory in the bulk and of the 7-brane theory wrapped on the S3. The anomalies may
also be matched to the "eld theory, including 1/N corrections to the leading large N result [230]
which arise from disc and crosscap diagrams.

By studying other backgrounds of D3-branes with 7-branes (with or without orientifolds) one
can obtain non-conformal theories which exhibit a logarithmic running of the coupling constant
[377,378]. For instance, by separating the D7-branes away from the orientifold plane, correspond-
ing to giving a mass to the hypermultiplets in the fundamental representation, one "nds string
theory solutions in which the dilaton varies in a similar way to the variation of the coupling
constant in the "eld theory, and this behavior persists also in the near-horizon limit (which is quite
complicated in this case, and becomes singular close to the branes, corresponding to the low-energy
limit of the "eld theories which is in this case a free Abelian Coulomb phase). This agreement with
the perturbative expectation, even though we are (necessarily) in a regime of large j"g2

YM
N, is due

to special properties of N"2 gauge theories, which prevent many quantities from being renor-
malized beyond one-loop.

4.1.3. Conifold theories
In the correspondence between string theory on AdS

5
]S5 and d"4 N"4 SYM theories,

some of the most direct checks, such as protected operator dimensions and the functional form of
two- and three-point functions, are determined by properties of the supergroup S;(2, 2D4). Many of
the normalizations of two- and three-point functions which have been computed explicitly are
protected by non-renormalization theorems. And yet, we are inclined to believe that the corre-
spondence is a fundamental dynamical principle, valid independent of group theory and the special
non-renormalization properties of N"4 supersymmetry.

To test this belief we want to consider theories with reduced supersymmetry. Orbifold theories
[328] provide interesting examples; however, as discussed in the previous sections, it has been
shown [347,348] that at large N these theories are a projection of N"4 super-Yang}Mills theory;
in particular many of their Green's functions are dictated by the Green's functions of the N"4
theory. The projection involved is onto states invariant under the group action that de"nes the
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31Additional aspects and examples of conifold theories were discussed in [379}384].

orbifold. Intuitively, this similarity with the N"4 theory arises because the compact part of the
geometry is still (almost everywhere) locally S5, just with some global identi"cations. Therefore, to
make a more non-trivial test of models with reduced supersymmetry, we are more interested in
geometries of the form AdS

5
]M

5
where the compact manifold M

5
is not even locally S5.

In fact, such compacti"cations have a long history in the supergravity literature: the direct
product geometry AdS

5
]M

5
is known as the Freund}Rubin ansatz [111]. The curvature of the

anti-de Sitter part of the geometry is supported by the "ve-form of type IIB supergravity. Because
this "ve-form is self-dual, M

5
must also be an Einstein manifold, but with positive cosmological

constant: rescaling M
5

if necessary, we can write Rab"4gab. For simplicity, we are assuming that
only the "ve-form and the metric are involved in the solution.

A trivial but useful observation is that "ve-dimensional Einstein manifolds with Rab"4gab are
in one-to-one correspondence with Ricci-#at manifolds C

6
whose metric has the conical form

ds2
C6
"dr2#r2ds2

M5
. (4.1)

It can be shown that, given any metric of the form (4.1), the ten-dimensional metric

ds2
10
"(1#R4/r4)~1@2(!dt2#dx2

1
#dx2

2
#dx2

3
)#(1#R4/r4)1@2ds2

C6
(4.2)

is a solution of the type IIB supergravity equations, provided one puts N units of "ve-form #ux
through the manifold M

5
, where

R4"(Jp/2)iN/VolM
5

. (4.3)

Furthermore, it was shown in [170] that the number of supersymmetries preserved by the
geometry (4.2) is half the number that are preserved by its Ricci-#at RP0 limit. Preservation of
supersymmetry therefore amounts to the existence of a Killing spinor on ds2

C6
, which would imply

that it is a Calabi}Yau metric. Finally, the r;R limit of (4.2) is precisely AdS
5
]M

5
, and in that

limit the number of preserved supersymmetries doubles.
These facts suggest a useful means of searching for non-trivial Freund}Rubin geometries:

starting with a string vacuum of the form R3,1]C
6
, where C

6
is Ricci-#at, we locate a singularity of

C
6

where the metric locally has the form (4.1), and place a large number of D3-branes at that point.
The resulting near-horizon Freund}Rubin geometry has the same number of supersymmetries as
the original braneless string geometry. The program of searching for and classifying such singular-
ities on manifolds preserving some supersymmetry was enunciated most completely in [331].

We will focus our attention on the simplest non-trivial example, which was worked out in
[215].31 C

6
is taken to be the standard conifold, which as a complex 3-fold is determined by the

equation

z2
1
#z2

2
#z2

3
#z2

4
"0 . (4.4)

The Calabi}Yau metric on this manifold has S;(3) holonomy, so one quarter of supersymmetry is
preserved. We will always count our supersymmetries in four-dimensional superconformal "eld
theory terms, so one quarter of maximal supersymmetry (that is, eight real supercharges) is in our
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terminology N"1 supersymmetry (superconformal symmetry). The supergravity literature often
refers to this amount of supersymmetry in "ve dimensions as N"2, because in a #at space
supergravity theory with this much supersymmetry, reduction on S1 without breaking any
supersymmetry leads to a supergravity theory in four dimensions with N"2 supersymmetry.

The Calabi}Yau metric on the manifold (4.4) may be derived from the KaK hler potential
K"(+4

i/1
Dz
i
D2)2@3, and can be explicitly written as

ds2
C6
"dr2#r2ds2

T
11 , (4.5)

where ds2
T

11 is the Einstein metric on the coset space

¹11"(S;(2)]S;(2))/;(1) . (4.6)

In the quotient (4.6), the ;(1) generator is chosen to be the sum 1
2
p
3
#1

2
q
3

of generators of the two
S;(2)'s. The manifolds ¹pq, where the ;(1) generator is chosen to be 1

2
pp

3
#1

2
qq

3
, with p and

q relatively prime, were studied in [172]. The topology of each of these manifolds is S2]S3. They
all admit unique Einstein metrics. Only ¹11 leads to a six-manifold C

6
which admits Killing

spinors. In fact, besides S5"SO(6)/SO(5), ¹11 is the unique "ve-dimensional coset space which
preserves supersymmetry. The Einstein metrics can be obtained via a rescaling of the Killing metric
on S;(2)]S;(2) by a process explained in [172]. The metric on ¹11 satisfying Rab"4gab can be
written as

ds2
T

11"
1
6

2
+
i/1

(dh2
i
#sin2h

i
d/2

i
)#

1
9

(dt#cos h
1
d/

1
#cos h

2
d/

2
)2 . (4.7)

The volume of this metric is 16p3/27, whereas the volume of the unit "ve-sphere, which also has
Rab"4gab, is p3.

Perhaps the most intuitive way to motivate the conjectured dual gauge theory [215] is to "rst
consider the S5/Z

2
orbifold gauge theory, where the Z

2
is chosen to #ip the signs of four of the six

real coordinates in R6, and thus has a "xed S1 on the unit S5 in this #at space. This Z
2
breaks SO(6)

down to SO(4)]SO(2), which is the same isometry group as for ¹11. In fact, it can also be shown
that an appropriate blowup of the singularities along the "xed S1 leads to a manifold of topology
S2]S3. Since ¹11 is a smooth deformation of the blown-up orbifold, one might suspect that its
dual "eld theory is some deformation of the orbifold's dual "eld theory. The latter "eld theory is
well known [328], as described in Section 4.1.1. It has N"2 supersymmetry. The "eld content in
N"1 language is

gauge group S;(N) S;(N)

chirals A
1
, A

2
h h

chirals B
1
, B

2
h h

chiral U adj 1

chiral UI 1 adj .

(4.8)

The adjoint chiral "elds U and UI , together with the N"1 gauge multiplets, "ll out N"2 gauge
multiplets. The chiral multiplets A

1
, B

1
combine to form an N"2 hypermultiplet, and
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so do A
2
, B

2
. The superpotential is dictated by N"2 supersymmetry:

="gTr U(A
1
B

1
#A

2
B
2
)#gTrUI (B

1
A

1
#B

2
A

2
) , (4.9)

where g is the gauge coupling of both S;(N) gauge groups. A relevant deformation which preserves
the global S;(2)]S;(2)];(1) symmetry, and also N"1 supersymmetry, is

=P=#1
2
m(TrU2!TrUI 2) . (4.10)

There is a non-trivial renormalization group #ow induced by these mass terms. The existence of
a non-trivial infrared "xed point can be demonstrated using the methods of [385]: having
integrated out the heavy "elds U and UI , the superpotential is quartic in the remaining "elds, which
should, therefore, all have dimension 3/4 at the infrared "xed point (assuming that we do not break
the symmetry between the two gauge groups). The anomalous dimension c"!1/2 for the
quadratic operators TrAB is precisely what is needed to make the exact beta functions vanish.

The IR "xed point of the renormalization group described in the previous paragraph is the
candidate for the "eld theory dual to type IIB string theory on AdS

5
]¹11, or in weak coupling

terms the low-energy "eld theory of coincident D3-branes on a conifold singularity. There are
several non-trivial checks that this is the right theory. The simplest is to note that the moduli
space of the N"1 version of the theory is simply the conifold. For N"1 the scalar "elds a

i
and b

j
(in the chiral multiplets A

i
and B

j
) are just complex-valued. The moduli space can be parametrized

by the combinations a
i
b
j
, and if we write

A
z
1
#iz

4
iz

2
#z

3
iz

2
!z

3
z
1
!iz

4
B"A

a
1
b
1

a
1
b
2

a
2
b
1

a
2
b
2
B , (4.11)

then we recover the conifold equation (4.4) by taking the determinant of both sides. In the N'1
theories, a slight generalization of this line of argument leads to the conclusion that the fully
Higgsed phase of the theory, where all the D3-branes are separated from one another, has for its
moduli space the Nth symmetric power of the conifold.

The most notable prediction of the renormalization group analysis of the gauge theory is that
the operators TrA

i
B

j
should have dimension 3/2. This is something we should be able to see

from the dual description. As a warmup, consider "rst the N"4 example. There, as described in
Section 3.2, the lowest dimension operators have the form Tr/(I/J), and their dimension is two.
Their description in supergravity is a Weyl deformation of the S5 part of the geometry with
ha
a
J>2(y), where ha

a
is the trace of the metric on S5 and>2(y) is a d-wave spherical harmonic on S5.

The four-form potential D
abcd

is also involved in the deformation, and there are two mass
eigenstates in AdS

5
which are combinations of these two "elds. A simple way to compute >2 is to

start with the function x
i
x
j
on R6 and restrict it to the unit S5. This suggests quite a general way to

"nd eigenfunctions of the Laplacian on an Einstein manifold M
5
: we start by looking for harmonic

functions on the associated conical geometry (4.1). The Laplacian is

h
C6
"(1/r5)R

r
r5R

r
#(1/r2)h

M5
. (4.12)

The operator r2h
C6

commutes with rR
r
, so we can restrict our search to functions f on C

6
with

h
C6

f"0 and rR
r
f"Df for some constant D. Such harmonic functions restricted to r"1 have

h
M5

f D
r/1

"!D(D#4) f D
r/1

. Following through the analysis of [124] one learns that the mass of
the lighter of the two scalars in AdS

5
corresponding to ha

a
Jf D

r/1
is m2R2"D(D!4). So, the
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dimension of the corresponding operator is D. In view of (4.11), all we need to do to verify in the
supergravity approximation the renormalization group prediction D"3/2 for TrA

i
B

j
is to show

that rR
r
z
i
"3

2
z
i
. This follows from scaling considerations as follows. The dilation symmetry on the

cone is rPjr. Under this dilation, ds2
C6
Pj2ds2

C6
. The KaK hler form should have this same scaling,

and that will follow if also the KaK hler potential KPj2K. As mentioned above, the Calabi}Yau
metric follows from K"(+4

i/1
Dz
i
D2)2@3, which has the desired scaling if z

i
Pj3@2z

i
. Thus, indeed

rR
r
z
i
"3

2
z
i
.

It is straightforward to generalize the above line of argument to operators of the form
TrA

(i1
B(j12A

il)
Bjl). Various aspects of the matching of operators in the conformal "eld theory to

Kaluza}Klein modes in supergravity have been studied in [215,171,386]. But there is another
interesting type of color singlet operators, which are called dibaryons because the color indices of
each gauge group are combined using an antisymmetric tensor. The dibaryon operator is

ea12aNeb12bNAa1b1
2AaNbN

, (4.13)

where we have suppressed S;(2) indices. Let us use the notation S;(2)
A

for the global symmetry
group under which A

i
form a doublet, and S;(2)

B
for the group under which B

j
form a doublet.

Clearly, (4.13) is a singlet under S;(2)
B
. This provides the clue to its string theory dual, which must

also be S;(2)
B
-symmetric: it is a D3-brane wrapped on ¹11 along an orbit of S;(2)

B
[216]. Using

the explicit metric (4.7), it is straightforward to verify that mR"3
4
N in the test brane approxima-

tion. Up to corrections of order 1/N, the mass-dimension relation is D"mR, so we see that again
the "eld theory prediction for the anomalous dimension of A is born out. The 3-cycle which the
D3-brane is wrapped on may be shown to be the unique homologically non-trivial 3-cycle of ¹11.
There is also an anti-dibaryon, schematically BN, which is a D3-brane wrapped on an orbit of
S;(2)

A
. The two wrappings are opposite in homology, so the dibaryon and anti-dibaryon can

annihilate to produce mesons. This interesting process has never been studied in any detail, no
doubt because the dynamics is complicated and non-supersymmetric. It is possible to construct
dibaryon operators also in a variety of orbifold theories [216,357].

The gauge theory dual to ¹11 descends via renormalization group #ow from the gauge theory
dual to S5/Z

2
, as described after (4.10). The conformal anomaly has been studied extensively for

such #ows (see for example [223]), and the coe$cient a in (3.31) is smaller in the IR than in the UV
for every known #ow that connects UV and IR "xed points. To describe the attempts to prove
a c-theorem, stating that this must always be the case in four dimensions, would take us too far
a"eld, so instead we refer the reader to [387] and references therein.

In the presence of N"1 superconformal invariance, one can compute the anomaly coe$cients
a and c in (3.31) if one knows SRkRkT

gkl,Bj
, where Rk is the R-current which participates in the

superconformal algebra, and the expectation value is taken in the presence of an arbitrary metric
gkl and an external gauge "eld source Bk for the R-current. The reason a and c can be extracted
from this anomalous one-point function is that RkRk and ¹kk are superpartners in the N"1
multiplet of anomalies. It was shown in [223] via a supergroup argument that

S(RkRk)¹ab¹cdT"(a!c)[ ]abcd, S(RkRk)RaRbT"(5a!3c)[ ]ab , (4.14)

where now the correlators are computed in #at space. The omitted expressions between the square
brackets are tensors depending on the positions or momenta of the operators in the correlator.
Their form is not of interest to us here because it is the same for any theory: we are interested
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Fig. 4.1. Triangle diagrams for computing the anomalous contribution to RkRk. The sum is over the chiral fermions
t which run around the loop, and r(t) is the R-charge of each such fermion.

32We will ignore here the distinction between ;(N) and S;(N) groups which is subleading in the 1/N expansion.

instead in the coe$cients. These can be computed perturbatively via the triangle diagrams in
Fig. 4.1. The Adler}Bardeen theorem guarantees that the one loop result is exact, provided RkRk is
non-anomalous in the absence of external sources (that is, it su!ers from no internal anomalies).
The constants of proportionality in the relations shown in Fig. 4.1 can be tracked down by
comparing the complete Feynman diagram amplitude with the explicit tensor forms which we have
omitted from (4.14). We are mainly interested in ratios of central charges between IR and UV "xed
points, so we do not need to go through this exercise.

The "eld theory dual to S5/Z
2
, expressed in N"1 language, has the "eld content described in

(4.8). The R-current of the chosenN"1 superconformal algebra descends from a;(1) in the SO(6)
R-symmetry group of the N"4 algebra, and it assigns a ;(1)

R
charge r(j)"1 to the 2N2

gauginos (fermionic components of the vector super"eld) and r(s)"!1/3 to the 6N2 `quarksa
(fermionic components of the chiral super"elds).32 We have +tr(t)"0, which means that the
R-current has no gravitational anomalies [388].

For the "eld theory dual to ¹11, the R-current described in the previous paragraph is no longer
non-anomalous because we have added a mass to the adjoint chiral super"elds. There is, however,
a non-anomalous combination Sk of this current, Rk, with the Konishi currents, Kik, which by
de"nition assign charge 1 to the fermionic "elds in the ith chiral multiplet and charge 0 to the
fermionic "elds in the vector multiplets:

Sk"Rk#
2
3

+
i

(ci
IR
!ci)Kik . (4.15)

Here ci is the anomalous dimension of the ith chiral super"eld. At the strongly interacting N"1
infrared "xed point, Sk is the current which participates in the superconformal algebra. However, to
compute correlators S(RkSk)2T it is more convenient to go to the ultraviolet, where ci"0 and the
perturbative analysis in terms of fermions running around a loop can be applied straightforwardly.
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Using the fact that cA
IR
"cB

IR
"!1/4 and cU

IR
"cUI

IR
"1/2, we "nd that s

UV
(j)"1 for the gauginos,

s
UV

(s)"!1/2 for the quarks which stay light (i.e., the bifundamental quarks), and s
UV

(g)"0 for
the quarks which are made heavy (that is, the adjoint quarks). Note that it is immaterial whether we
include these heavy quarks in the triangle diagram, which is as it should be since we can integrate
them out explicitly. As before, +tsUV

(t)"0, so there are no gravitational anomalies and a
IR
"c

IR
.

Combining the information in the past two paragraphs, we have a "eld theory prediction for the
#ow from the S5/Z

2
theory to the ¹11 theory:

a
IR

a
UV

"

c
IR

c
UV

"

5a
IR
!3c

IR
5a

UV
!3c

UV

"

2N2#4N2(!1
2
)3

2N2#6N2(!1
2
)3
"

27
32

. (4.16)

This analysis was carried out in [171], where it was also noted that these numbers can be
computed in the supergravity approximation. To proceed, let us write the ten-dimensional Einstein
metric as

ds2
10
"R2dsY 2

5
#R2ds2

M5
, (4.17)

where R is given by (4.3) and dsY 2
5

is the metric of AdS
5

scaled so that RK kl"!4g( kl. We will refer to
dsY 2

5
as the dimensionless AdS

5
metric. Reducing the action from ten dimensions to "ve results in

S"
p3R8

2i2 Pd5xJg( (RK #12#2)"
p2N2

8VolM
5
Pd5xJg( (RK #12#2) , (4.18)

where Jg( and RK under the integral sign refer to the dimensionless AdS
5

metric, and in the second
equality we have used (4.3). In (4.18), i is the ten-dimensional gravitational coupling. In computing
Green's functions using the prescription of [19,20], the prefactor p2N2/8VolM

5
multiplies every

Green's function. In particular, it becomes the normalization factor for the one-point function
S¹kkT as calculated in [224]. Also, as pointed out in Section 3.2, the supergravity calculation in
[224] always leads to a"c. Without further thought we can write a"cJ(VolM

5
)~1, and

a
IR

a
UV

"

c
IR

c
UV

"A
Vol¹11

VolS5/Z
2
B

~1
"

27
32

, (4.19)

in agreement with (4.16). It is essential that the volumes in (4.19) be computed for manifolds with
the same cosmological constant. Our convention has been to have Rab"4gab.

It is possible to do better and pin down the exact normalization of the central charges. In fact,
literally the "rst normalization check performed in the AdS/CFT correspondence was the veri"ca-
tion [19] that in the compacti"cation dual to N"4 S;(N) Yang}Mills theory, the coe$cient
c had the value N2/4 (to leading order in large N). Thus, in general

a"c"p3N2/4VolM
5

(4.20)

(again to leading order in large N) for the CFT dual to a Freund}Rubin geometry AdS
5
]M

5
supported by N units of "ve-form #ux through the M

5
. This is in a normalization convention where

the CFT comprised of a single free real scalar "eld has c"1/120. See, for example, [171] for a table
of standard anomaly coe$cients per degree of freedom. Even more generally, we can consider any
compacti"cation of string theory or M-theory (or any other, as-yet-unknown theory of quantum
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gravity) whose non-compact portion is AdS
5
. This would include in particular type IIB supergrav-

ity geometries which involve the BNS,RRkl "elds, or the complex coupling q. Say the AdS
5

geometry
has Rkl"!Kgkl. If we rescale the metric by a factor of 4/K, we obtain the dimensionless AdS

5
metric dsY 2

5
with RK kl"!4g( kl. In de"ning a conformal "eld theory through its duality to the AdS

5
compacti"cation under consideration, the part of the action relevant to the computation of central
charges is still the Einstein}Hilbert term plus the cosmological term:

S"
1

2i2
5
Pd5xJg(R#3K#2)"

4
i2
5
K3@2Pd5xJg( (RK #12#2) , (4.21)

where i2
5
"8pG

5
is the "ve-dimensional gravitational coupling. Comparing straightforwardly

with the special case analyzed in (4.20), we "nd that the conformal anomaly coe$cients, as always
to leading order in 1/N, must be given by

a"c"1/G
5
K3@2 . (4.22)

4.2. D-branes in AdS, baryons and instantons

A conservative form of the AdS/CFT correspondence would be to say that classical super-
gravity captures the large N asymptotics of some quantities in "eld theory which are algebraically
protected against dependence on the 't Hooft coupling. The stronger form which is usually
advocated, and which we believe is true, is that the "eld theory is literally equivalent to the string
theory, and the only issue is understanding the mapping from one to the other. To put this belief to
the test, it is natural to ask what in "eld theory corresponds to non-perturbative objects, such
as D-branes, in string theory. The answer was found in [214] for several types of wrapped
branes (see also [291] for an independent analysis of some cases), and subsequent papers
[389}396,182,331,357] have extended and elaborated on the story. See also [397,398] for actions
for D-branes in anti-de Sitter space, and [399,400] for other related topics. The connection between
D-instantons and gauge theory instantons has also been extensively studied, and we summarize the
results at the end of this section.

Let us start with wrapped branes which have no spatial extent in AdS
5
: they are particles

propagating in this space. The "eld theory interpretation must be in terms of some vertex or
operator, as for any other particle in AdS (as described above in the case of supergravity particles).
If the compact manifold is S5, then the only topologically stable possibility is a wrapped 5-brane.
The key observation here is that charge conservation requires that N strings must run into or out of
the 5-brane. In the case of a D5-brane, these N strings are fundamental strings (one could also
consider S¸(2,Z) images of this con"guration). The argument is a slight variant of the ones used in
the discussion of anomalous brane creation [401}403]. There are N units of "ve-form (F

5
) #ux on

the S5, and the coupling (1/2p)a'F
5
in the D5-brane world-volume translates this #ux into N units

of charge under the;(1) gauge "eld a on the D5-brane. Since the D5-brane spatial world-volume is
closed, the total charge must be zero. A string running out of the D5-brane counts as (!1) unit of
;(1) charge, hence the conclusion. Reversing the orientation of the D5-brane changes the sign
of the charge induced by F

5
, and correspondingly the N strings should run into the brane rather

than out.

O. Aharony et al. / Physics Reports 323 (2000) 183}386 285



In the absence of other D-branes, the strings cannot end anywhere in AdS
5
, so they must run out

to the boundary. A string ending on the boundary is interpreted (see Section 3.5) as an electric
charge in the fundamental representation of the S;(N) gauge group: an external (non-dynamical)
quark. This interpretation comes from viewing the strings as running from the D5-brane to
a D3-brane at in"nity. It was shown in [402] that such stretched strings have a unique ground state
which is fermionic, and the conclusion is that the D5-brane `baryona is precisely an antisymmetric
combination of N fermionic fundamental string `quarksa. The gauge theory interpretation is clear:
because the gauge group is S;(N) rather than ;(N), there is a gauge-invariant baryonic vertex for
N external fundamental quarks. We will return to a discussion of baryonic objects in Section 6.2.2.

To obtain other types of wrapped brane objects with no spatial extent in AdS
5
, we must turn to

compact manifolds with more non-trivial homology cycles. Apart from the intrinsic interest of
studying such objects and the gauge theories in which they occur, the idea is to verify the claim that
every object we can exhibit in gauge theory has a stringy counterpart, and vice versa.

Following [214] and the discussion in Section 4.1.2, we now examine wrapped branes in the
AdS

5
]RP5 geometry, which is the near-horizon geometry of D3-branes placed on top of

a Z
2

orientifold three-plane (the Z
2

acts as x
i
P!x

i
for the six coordinates perpendicular to

the D3-branes). H
3
(RP5,Z)"Z

2
, and the generator of the homology group is a projective space

RP3LRP5. This seems to o!er the possibility of wrapping a D3-brane on a 3-cycle to get a particle
in AdS

5
. However, there is a caveat: as argued in [214] the wrapping is permitted only if there is no

discrete torsion for the NS and RR B-"elds. In gauge theory terms, that amounts to saying that the
corresponding operator is permitted if and only if the gauge group is SO(N) with N even. Direct
calculation leads to a mass mKN/R for the wrapped brane, so the corresponding gauge theory
operator has dimension N (at least to leading order in large N). A beautiful fact is that a candidate
gauge theory operator exists precisely when the gauge group is SO(N) with N even: it is the
`Pfa$ana operator,

(1/(N/2)!)ea1a22aN/
a1a22

/
aN~1aN

. (4.23)

Here the "elds /
ab

are the adjoint scalar bosons which are the N"4 superpartners of the gauge
bosons. We have suppressed their global #avor index. A similar wrapped 3-brane was discussed in
Section 4.1.3, where the 3-brane was wrapped around the 3-cycle of ¹11 (which is topologically
S2]S3).

It is also interesting to consider branes with spatial extent in AdS
5
. Strings in AdS

5
were

discussed in Section 3.5. A three-brane in AdS
5

(by which we mean any wrapped brane with three
dimensions of spatial extent in AdS

5
) aligned with one direction perpendicular to the boundary

must correspond to some sort of domain wall in the "eld theory. Some examples are obvious: in
AdS

5
]S5, if the three-brane is a D3-brane, then crossing the domain wall shifts the 5-form #ux and

changes the gauge group from S;(N) to S;(N#1) or S;(N!1). A less obvious example was
considered in [214]: crossing a D5-brane or NS5-brane wrapped on some RP2LRP5 changes the
discrete torsion of the RR or NS B-"eld, and so one can switch between SO(N) and Sp(N/2) gauge
groups. D5-branes on homology 2-cycles of the base of conifolds and orbifolds, have also been
studied [216,381,357,404] and the conclusion is that they correspond to domain walls across which
the rank of some factor in the product gauge group is incremented.

Another brane wrapping possibility is branes with two dimensions of spatial extent in AdS
5
.

These become strings in the gauge theory when they are oriented with one dimension along the
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radial direction. In a particular model (an S;(N)3 gauge theory whose string theory image is
AdS

5
]S5/Z

3
) the authors of [357] elucidated their meaning: they are strings which give rise to

a monodromy for the wave-functions of particles transported around them. The monodromy
belongs to a discrete symmetry group of the gauge theory. The familiar example of such a phenom-
enon is the Aharonov}Bohm e!ect, where the electron's wave-function picks up a;(1) phase when
it is transported around a tube of magnetic #ux. The analysis of [357] extends beyond their speci"c
model, and applies in particular to strings in SO(N) gauge theories, with N even, obtained from
wrapping a D3-brane on a generator of H

1
(RP5,Z), where the RP5 has no discrete torsion.

Finally, we turn to one of the most familiar examples of a non-perturbative object in gauge
theory: the instanton. The obvious candidate in string theory to describe an instanton is the
D-instanton, also known as the D(-1)-brane. The correspondence in this case has been treated
extensively in the literature [405}412]. The presentation in [412] is particularly comprehensive,
and the reader who is interested in a more thorough review of the subject can "nd it there. Note
that the analysis of instantons in large N gauge theories is problematic since their contribution is
(at least naively) highly suppressed; the k instanton contribution comes with a factor of
e~8p

2
k@g2YM"e~8p

2
kN@j which goes like e~N in the 't Hooft limit. Therefore, we can only discuss

instanton contributions to quantities that get no other contributions to any order in the 1/N
expansion. Luckily, such quantities exist in the N"4 SYM theory, like the one discussed below.

The Einstein metric on AdS
5
]S5 is una!ected by the presence of a D-instanton. The massless

"elds in "ve dimensions which acquire VEV's in the presence of a D-instanton are the axion and the
dilaton: in a coordinate system for the PoincareH patch of AdS

5
where

ds2"(R2/z2)(dx2k#dz2) , (4.24)

we have [406}408,410]

e("g
4
#

24p
N2

z4z8 4
[z8 2#(xk!x8 k)2]4

,

s"s
=
$(e~(!1/g

4
) , (4.25)

for a D-instanton whose location in anti-de Sitter space is (x8 k, z8 ). It can be shown using the general pre-
scription for computing correlation functions that this corresponds in the gauge theory to a VEV

STrF2(x)T"192 z8 4/[z8 2#(xk!x8 k)2]4 , (4.26)

which is exactly right for the self-dual background which describes the instanton in gauge theory.
The action of a D-instanton, 2p/g

4
, also matches the action of the instanton, 8p2/g2

YM
, because of

the relation g2
YM

"4pg
4
. The result (4.26) is insensitive to whether the D-instanton is localized on

the S5, since the "eld under consideration is an SO(6) singlet. It is a satisfying veri"cation of the
interpretation of the variable z as inverse energy scale that the position z8 of the D-instanton
translates into the size of the gauge theory instanton. In other words, we understand the AdS

5
factor (which appears in the moduli space of an S;(2) instanton) as merely specifying the position
of the D-instanton in the "ve-dimensional bulk theory.

In fact, at large N, a Yang}Mills instanton is parametrized not only by a point in AdS
5
, but also

by a point in S5. The S5 emerges from keeping track of the fermionic instanton zero modes properly
[412]. The approach is to form a bilinear KAB in the zero modes. KAB is antisymmetric in the
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four-valued S;(4) indices A and B, and satis"es a hermiticity condition that makes it transform in
the real 6 of SO(6). Dual variables s

AB
can be introduced into the path integral which have the same

antisymmetry and hermiticity properties: the possible values of s
AB

correspond to points in R6.
When the fermions are integrated out, the resulting determinant acts as a potential for the
s
AB
"elds, with a minimum corresponding to an S5 whose radius goes into the determination of the

overall normalization of correlation functions.
Building on the work of [405] on a@ corrections to the four-point function of stress-tensors, the

authors of [408] have computed contributions to correlators coming from instanton sectors of the
gauge theory and successfully matched them with D-instanton calculations in string theory. It is
not entirely clear why the agreement is so good, since the gauge theory computations rely on small
't Hooft coupling (while the string theory computations are for "xed g2

YM
in the large N limit) and

non-renormalization theorems are not known for the relevant correlators. The simplest example
turns out to be the 16-point function of superconformal currents KK Aa"Tr(pklabF~kljAb ), where F~kl is
the self-dual part of the "eld-strength, A is an index in the fundamental of S;(4), a and b are
Lorentz spinor indices, and k and l are the usual Lorentz vector indices. One needs 16 insertions of
KK to obtain a non-zero result from the 16 Grassmannian integrations over the fermionic zero
modes of an instanton. The gauge theory result for gauge group S;(2) turns out to be

T
16
<
p/1

g2
YM

KK Apap
(x

p
)U

"

211316

p10
g8
YM

e~(8p
2@g2YM)`*hYM
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d4x8 dz8

z8 5 Pd8g d8mM
16
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C
z8 4

[z8 2#(x
p
!x8 )2]4

1

Jz8
(z8 gApap #(x

p
!x8 )kpkapa5 pmM a

5
pAp)D . (4.27)

The superconformal currents KK Aa are dual to spin 1/2 particles in the bulk: dilatinos in ten
dimensions which we denote K. One of the superpartners of the well-known R4 term in the
superstring action (see for example [413]) is the 16-fermion vertex [414]: in string frame,

L"

e~2(

a@4
R#2#A

e~(@2
a@

f
16

(q, q6 )K16#c.cB#2 , (4.28)

where f
16

(q, q6 ) is a modular form with weight (12,!12), and q is the complex coupling of type IIB
theory:

q"s#ie~("
h
YM
2p

#

4pi
g2
YM

. (4.29)

There is a well-de"ned expansion of this modular form in powers of e2p*q, e~2p*q6 , and g2
YM

. Picking
out the one-instanton contribution and applying the prescription for calculating Green's functions
laid out in Section 3.3, one recovers the form (4.27) up to an overall factor. The overall factor can
only be tracked down by redoing the gauge theory calculation with gauge group S;(N), with
proper attention paid to the saddle point integration over fermionic zero modes, as alluded to in
the previous paragraph.

The computation of Green's functions such as (4.27) has been extended in [412] to the case of
multiple instantons. Here one starts with a puzzle. The D-instantons e!ectively form a bound state
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33 If the operator does not have a "xed scaling dimension we can write it as a sum of operators which are
eigenfunctions of the scaling operator, and treat the deformation as a sum of the appropriate deformations.

because integrations over their relative positions converge. Thus the string theory result has
the same form as (4.27), with only a single integration over a point (x8 , z8 ) in AdS

5
. In view of the

emergence of an S5 from the fermionic zero modes at large N, the expectation on the gauge theory
side is that the moduli space for k instantons should be k copies of AdS

5
]S5. But through an

analysis of small #uctuations around saddle points of the path integral it was shown that most of
the moduli are lifted quantum mechanically, and what is left is indeed a single copy of AdS

5
]S5 as

the moduli space, with a prefactor on the saddle point integration corresponding to the partition
function of the zero-dimensional S;(k) gauge theory which lives on k coincident D-instantons. It is
assumed that k;N. Although the k instantons `clumpa in moduli space, their "eld con"gurations
involve k commuting S;(2) subgroups of the S;(N) gauge group. The correlation functions
computed in gauge theory have essentially the same form as (4.27). In comparing with the string
theory analysis, one picks out the k-instanton contribution in the Taylor expansion of the modular
form in (4.28). There is perfect agreement at large N for every "nite k, which presumably means that
there is some unknown non-renormalization theorem protecting these terms.

4.3. Deformations of the conformal xeld theory

In this section we discuss deformations of the conformal "eld theory, and what they correspond
to in its dual description involving string theory on AdS space. We will focus on the case of the
N"4 "eld theory, though the general ideas hold also for all other examples of the AdS/CFT
correspondence. We start in Section 4.3.1 with a general discussion of deformations in "eld theory
and in the dual description. Then in Section 4.3.2 we use the AdS/CFT correspondence to prove
a restricted c-theorem. In Section 4.3.3 we discuss the interesting relevant and marginal deforma-
tions of the N"4 SYM "eld theory; and in Section 4.3.4 we review what is known about these
deformations from the point of view of type IIB string theory on AdS

5
]S5. The results we present

will be based on [415,145}147,416,143].

4.3.1. Deformations in the AdS/CFT correspondence
Conformal "eld theories have many applications in their own right, but since our main interest

(at least in the context of four dimensional "eld theories) is in studying non-conformal "eld theories
like QCD, it is interesting to ask how we can learn about non-conformal "eld theories from
conformal "eld theories. One way to break conformal invariance, described in Section 3.6, is to
examine the theory at "nite temperature. However, it is also possible to break conformal invariance
while preserving Lorentz invariance, by deforming the action by local operators,

SPS#hPd4xO(x) , (4.30)

for some Lorentz scalar operator O and some coe$cient h.
The analysis of such a deformation depends on the scaling dimension D of the operator O.33 If

D(4, the e!ect of the deformation is strong in the IR and weak in the UV, and the deformation is
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34Some of the solutions considered in [420] may correspond to actual deformations of the "eld theory.

called relevant. If D'4, the deformation is called irrelevant, and its e!ect becomes stronger
as the energy increases. Since we generally describe "eld theories by starting with some UV "xed
point and #owing to the IR, it does not really make sense to start with a CFT and perform an
irrelevant deformation, since this would really require a new UV description of the theory. Thus,
we will not discuss irrelevant deformations here. The last case is D"4, which is called a marginal
deformation, and which does not break conformal invariance to leading order in the
deformation. Generally, even if the dimension of an operator equals 4 in some CFT, this will no
longer be true after deforming by the operator, and conformal invariance will be broken. Such
deformations can be either marginally relevant or marginally irrelevant, depending on the dimension
of the operator O for "nite small values of h. In special cases the dimension of the operator will
remain D"4 for any value of h, and conformal invariance will be present for any value of h.
In such a case the deformation is called exactly marginal, and the conformal "eld theories for all
values of h are called a xxed line (generalizing the concept of a conformal "eld theory as a "xed
point of the renormalization group #ow). When a deformation is relevant conformal invariance
will be broken, and there are various possibilities for the IR behavior of the "eld theory. It
can either #ow to some new conformal "eld theory, which can be free or interacting, or it can
#ow to a trivial "eld theory (this happens when the theory con"nes and there are no degrees of
freedom below some energy scale K). We will encounter examples of all of these possibilities in
Section 4.3.3.

The analysis of deformations in the dual string theory on AdS space follows from our description
of the matching of the partition functions in Sections 3.1 and 3.3. The "eld theory with the
deformation (4.30) is described by examining string theory backgrounds in which the "eld
/ on AdS space, which corresponds to the operator O, behaves near the boundary of AdS

space like /(x,;)U?=
P h;D~4, where [O]"D and we use the coordinate system (2.27) (with

; instead of u). In principle, we should sum over all backgrounds with this boundary condition.
Note that, as mentioned in Section 3.3, in Minkowski space this involves turning on the
non-normalizable solution to the "eld equations for /(x,;); turning on the normalizable mode
(as done for instance in [417}423]) cannot be understood as a deformation of the "eld theory,
but instead corresponds to a di!erent state in the same "eld theory [424].34 As in the "eld
theory, we see a big di!erence between the cases of D'4 and D(4. When D'4, the deformation
grows as we approach the boundary, so the solution near the boundary will no longer look
like AdS space; this is analogous to the fact that we need a new UV description of the "eld theory
in this case. On the other hand, when D(4, the solution goes to zero at the boundary,
so asymptotically the solution just goes over to the AdS solution, and the only changes will be
in the interior. For D"4 the solution naively goes to a constant at the boundary, but one
needs to analyze the behavior of the string theory solutions beyond the leading order in the
deformation to see if the exact solution actually grows as we approach the boundary (a marginally
irrelevant deformation), decreases there (a marginally relevant deformation) or goes to a constant
(an exactly marginal deformation).
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35The full space does not necessarily have to be a direct product AdS
5
]X, but could also be a "bration of AdS

5
over

X, which also has the SO(4, 2) isometry group.
36Four dimensional "eld theories are believed [425] to have a c-theorem analogous to the two-dimensional c-theorem

[75] which states that the central charge of the IR "xed point will be smaller than that of the UV "xed point. We will
discuss some evidence for this in the AdS context, based on the analysis of the low-energy gravity theory, in the next
subsection.

37See [426}430] for general discussions of the renormalization group #ow in the context of the AdS/CFT correspond-
ence.

An exactly marginal deformation will correspond to a space of solutions of string theory, whose
metric will always include an AdS

5
factor,35 but the other "elds can vary as a function of the

deformation parameters. A relevant (or marginally relevant) deformation will change the behavior
in the interior, and the metric will no longer be that of AdS space. If we start in the regime of large
g
4
N where there is a supergravity approximation to the space, the deformation may be describable

in supergravity terms, or it may lead to large "elds and curvatures in the interior which will cause
the supergravity approximation to break down. The IR behavior of the corresponding "eld theory
will be re#ected in the behavior of the string theory solution for small values of ; (away from the
boundary). If the solution asymptotes to an AdS solution also at small;, the "eld theory will #ow
in the IR to a non-trivial "xed point.36 Note that the variables describing this AdS space may be
di!erent from the variables describing the original (UV) AdS space, for instance the form of the
SO(4, 2) isometries may be di!erent [145]. If the solution is described in terms of a space which has
a non-zero minimal value of; (similar to the space which appears in the AdS-Schwarzschild black
hole solution described in Section 3.6, but in this case with the full ISO(3, 1) isometry group
unbroken) the "eld theory will con"ne and be trivial in the IR. In other cases the geometrical
description of the space could break down for small values of ;; presumably this is what happens
when the "eld theory #ows to a free theory in the IR.

4.3.2. A c-theorem
Without a detailed analysis of matter "elds involved in non-anti-de Sitter geometries, there are

few generalities one can make about the description of renormalization group #ows in the
AdS/CFT correspondence.37 However, there is one general result in gravity [143] (see also [146])
which translates into a c-theorem via the correspondence. Let us consider D-dimensional metrics of
the form

ds2"e2A(r)(!dt2#dx2)#dr2 . (4.31)

Any metric with PoincareH invariance in the t, x directions can be brought into this form by an
appropriate choice of the radial variable r. Straightforward calculations yield

!(D!2)AA"Rt
t
!Rr

r
"Gt

t
!Gr

r
"i2

D
(¹t

t
!¹r

r
)50 . (4.32)

In the second to last step we have used Einstein's equation, and in the last step we have assumed
that the weak energy condition holds in the form

¹klfkfl50 (4.33)
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for any null vector fk. This form of the weak energy condition is also known as the null energy
condition, and it is obeyed by all "elds which arise in Kaluza}Klein compacti"cations of super-
gravity theories to D dimensions. Thus, we can take it as a fairly general fact that AA40 for D'2.
Furthermore, the inequality is saturated precisely for anti-de Sitter space, where the only contribu-
tion to ¹kl is from the cosmological constant. Thus in particular, any deformation of AdS

D
arising

from turning on scalar "elds will cause A to be concave as a function of r. If we are interested in
relevant deformations of the conformal "eld theory, then we should recover linear behavior in
A near the boundary, which corresponds to the (conformal) ultraviolet limit in the "eld theory.
Without loss of generality, then, we assume A(r)&r/l as rPR.

The inequality AA40 implies that the function

C(r),1/A@D~2 (4.34)

decreases monotonically as r decreases. Now, suppose there is a region where A is nearly linear
over a range of r corresponding to many orders of magnitude of eA(r). This is the bulk analog of
a scaling region in the boundary "eld theory. The asymptotically linear behavior of A(r) as rPR

indicates an ultraviolet scaling region which extends arbitrarily high in energy. If A(r) recovers
linear behavior as rP!R, there is an infrared scaling region; and there could also be large
though "nite scaling regions in between. Assuming odd bulk dimension D, the perfect AdS

D
spacetime which any such scaling region approximates leads to an anomalous VEV

S¹kkT"universal/A@D~2 , (4.35)

where the numerator is a combination of curvature invariants which can be read o! from the
analysis of [224] (see Section 3.2.2). The point is that in limits where conformal invariance is
recovered, the expression (4.34) coincides with the anomaly coe$cients of the boundary "eld
theory, up to factors of order unity which are universal for all CFTs in a given dimension. Thus,
C(r) is a c-function, and the innocuous inequality AA40 amounts to a c-theorem provided that
Einstein gravity is a reliable approximation to the bulk physics.

In geometries such as the interpolating kinks of [146,145,143] (discussed in more detail in
Section 4.3.4), the outer anti-de Sitter region is distinguishable from the inner one in that it has
a boundary. There can only be one boundary (in Einstein frame) because A gets large and positive
only once. In fact, the inner anti-de Sitter region has "nite proper volume if the coordinates t and
x in (4.31) are made periodic. Supergravity is capable of describing irreversible renormalization
group #ows despite the reversibility of the equations, simply because the basic prescription for
associating the partition functions of string theory and "eld theory makes use of the unique
boundary.

4.3.3. Deformations of the N"4 S;(N) SYM theory
The most natural deformations to examine from the "eld theory point of view are mass

deformations, that would give a mass to the scalar and/or fermion "elds in the N"4 vector
multiplet. One is tempted to give a mass to all the scalars and fermions in the theory, in order to get
a theory that will #ow to the pure Yang}Mills (YM) theory in the IR. Such a deformation would
involve operators of the form Tr(/I/I) for the scalar masses, and [eabTr(jaAjbB)#c.c.] for the
fermion masses. In the weak coupling regime of small j"g2

YM
N, such deformations indeed make

sense and would lead to a pure Yang}Mills theory in the IR. However, the analysis of this region
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requires an understanding of the string theory in the high-curvature region which corresponds to
small j, which is not yet available. With our present knowledge of string theory we are limited to
analyzing the strong coupling regime of large j, where supergravity is a good approximation to the
full string theory. In this regime there are two problems with the mass deformation described
above:

f The operator Tr(/I/I) is a non-chiral operator, so the analysis of Section 3.2.1 suggests that for
large j it acquires a dimension which is at least as large as j1@4, and in particular for large enough
values of j it is an irrelevant operator. Thus, we cannot deform the theory by this operator for
large j. In any case this operator is not dual to a supergravity "eld, so analyzing the correspond-
ing deformation requires going beyond the supergravity approximation.

f The pure YM theory is a con"ning theory which dynamically generates a mass scale K
YM

, which
is the characteristic mass scale for the particles (glueballs) of the theory. When we deform the
N"4 theory by a mass deformation with a mass scale m, a one-loop analysis suggests that the
mass scale K

YM
will be given by K

YM
&me~c@g2YM(m)N, where c is a constant which does not depend

on N (arising from the one-loop analysis) and g2
YM

(m) is the coupling constant at the scale m.
Thus, we "nd that while for small j we have K

YM
;m and there is a separation of scales between

the dynamics of the massive modes and the dynamics of the YM theory we want to study, for
large j we have K

YM
&m and there is no such separation of scales (for non-supersymmetric mass

deformations the one-loop analysis we made is not exact, but an exact analysis is not expected to
change the qualitative behavior we describe). Thus, we cannot really study the pure YM theory,
or any other con"ning theory (which does not involve all the "elds of the original N"4 theory)
as long as we are in the strong coupling regime where supergravity is a good approximation.

We will see below that, while we can "nd ways to get around the "rst problem and give masses to
the scalar "elds, there are no known ways to solve the second problem and study interesting
con"ning "eld theories using the supergravity approximation. Of course, in the full string theory
there is no such problem, and the mass deformation described above, for small j, gives an implicit
string theory construction of the non-supersymmetric pure YM theory.

In the rest of this section we will focus on the deformations that can arise in the strong coupling
regime, and which may be analyzed in the supergravity approximation. As described in Section
3.2.1, the only operators whose dimension remains small for large N and large j are the chiral
primary operators, so we are limited to deformations by these operators. Let us start by analyzing
the symmetries that are preserved by such deformations. Most of the chiral operators are in
non-trivial S;(4)

R
representations, so they break the S;(4)

R
group to some subgroup which

depends on the representation of the operator we are deforming by. Generic deformations will also
completely break the supersymmetry. One analyzes how much supersymmetry a particular
deformation breaks by checking how many supercharges annihilate it. For example, deformations
which preserve N"1 supersymmetry are annihilated by the supercharges Qa and QM a5 of some
N"1 subalgebra of the N"4 algebra. Given the structure of the chiral representations
described in Section 3.2.1 it is easy to see if a deformation by such an operator preserves any
supersymmetry or not. Examples of deformations which preserve some supersymmetry are super-
potentials of the form="h Tr(Ui1Ui22Uin), which to leading order in h add to the Lagrangian
a term of the form [heabTr(jaA1

jbA2
/I12/In~2)#c.c.]. These operators are part of the scalar

operators described in Section 3.2.1 arising at dimension n#1 in the chiral multiplet. In order to
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38 In a ;(N) theory there is an additional scalar operator which is the lowest component of the n"1 multiplet.

preserve supersymmetry one must also add to the Lagrangian various terms of order h2, so we see
that the question of whether a deformation breaks supersymmetry or not depends not only on the
leading-order operator we deform by but also on additional operators which we may or may not
add at higher orders in the deformation parameter (note that the form of the chiral operators also
changes when we deform, so an exact analysis of the deformations beyond the leading order in the
deformation is highly non-trivial). Another example of a supersymmetry-preserving deformation is
a superpotential of the form ="h Tr(=2aUi12Uin~2), which deforms the theory by some of the
scalar operators arising at dimension n#2 in the chiral multiplet (e.g. the dilaton deformation for
n"2, which actually preserves the full N"4 supersymmetry).

The list of chiral operators which correspond to marginal or relevant deformations was given in
Section 3.2.1. There is a total of six such operators, three of which are the lowest components of the
chiral multiplets with n"2, 3, 4.38 These operators are traceless symmetric products of scalars
O
n
"Tr(/MI1/I22/InN), which viewed as deformations of the theory correspond to non-positive-

de"nite potentials for the scalar "elds. Thus, at least if we are thinking of the theory on R4 where
the scalars have #at directions before adding the potential, these deformations do not make sense
since they would cause the theory to run away along the #at directions. In particular, the
deformation in the 20@ which naively gives a mass to the scalars really creates a negative mass
squared for at least some of the scalars, so it cannot be treated as a small deformation of the UV
conformal theory at the origin of moduli space. We will focus here only on deformations by the
other three operators, which all seem to make sense in the "eld theory.

One marginal operator of dimension 4 is the operator which couples to the dilaton, which is
a 1 of S;(4)

R
, of the form [Tr(F2kl)#iTr(F'F)#2]. Deforming by this operator corresponds to

changing the coupling constant q
YM

of the "eld theory, and is known to be an exactly marginal
deformation which does not break any of the symmetries of the theory.

The other two relevant or marginal deformations are the scalars of dimension n#1 in the n"2
and 3 multiplets. Let us start by describing the relevant deformation, which is a dimension
3 operator in the 10 of S;(4)

R
, of the form

[eabTr(jaAjbB)#Tr([/I,/J]/K)] , (4.36)

where the indices are contracted to be in the 10 of S;(4)
R

(which is in the symmetric product of two
41 's and in the self-dual antisymmetric product of three 6's). This operator is complex; obviously
when we add it to the Lagrangian we need to add it together with its complex conjugate. The
coe$cient parametrizing the deformation is a complex number ma in the 10 of S;(4)

R
. Deforming

by this operator obviously gives a mass to some or all of the fermion "elds j, depending on the
exact values of ma. For generic values of ma, all the fermions will acquire a mass and supersymmetry
will be completely broken. The scalars will then obtain a mass from loop diagrams in the "eld
theory, so that the low-energy theory below a scale of order ma will be the pure non-supersymmet-
ric Yang}Mills theory. Unfortunately, as described above, for large j"g2

YM
N this is not really

a good description since this theory will con"ne at a scale K
YM

of order m. However, for small j this
deformation does enable us to obtain the pure YM theory as a deformation of the N"4 theory.

294 O. Aharony et al. / Physics Reports 323 (2000) 183}386



39Similar mixings were recently discussed in [237].

It is interesting to ask what happens if we give a mass only to some of the fermions. In this case
we may or may not preserve some amount of supersymmetry (obviously, preserving N"1
supersymmetry requires leaving at least one adjoint fermion massless). The deformations which
preserve at least N"1 supersymmetry correspond to superpotentials of the form
="m

ij
Tr(UiUj). Choosing an N"1 subgroup breaks S;(4)

R
to S;(3)];(1)

R
, and (if we choose

the;(1) normalization so that the supercharges decompose as 4"3
1
#1

~3
) the 10 decomposes as

10"6
2
#3

~2
#1

~6
. The SUSY-preserving deformation m

ij
is then in the 6

2
representation, and

it further breaks both the S;(3) and the;(1). In a supersymmetric deformation we obviously need
to also add masses of order m2 to some of the scalars; naively this leads to a contradiction because,
as described above, there are no reasonable scalar masses to add which are in chiral operators.
However, at order m2 we have to take into account also the mixings between operators which occur
at order m in the deformation;39 the form of the chiral operators changes after we deform, and they
mix with other operators (in particular, the form of the operator which is an eigenvalue of the
scaling operator changes when we turn on m). In the case of the supersymmetric mass deformation,
at order m the chiral operator (4.36) described above mixes with the non-chiral Tr(/I/I) operator
giving the scalars a mass, so there is no contradiction. The simplest way to see this operator mixing
in the SUSY-preserving case is to note that the N"1 SUSY transformations in the presence of
a general superpotential include terms of the form MQa, jbiN&eabd=M /dUM i, which lead to corrections
of order m to [Q2,O

2
] which is the operator that we are deforming by.

There are two interesting ways to give a mass to only one of the fermions. One of them is
a particular case of the SUSY-preserving deformation described above, of the form
="mTr(U1U1), which is an element of the 6

2
of S;(3)];(1), and breaks S;(4)

R
PS;(2)];(1)

while preserving N"1 SUSY (but breaking the conformal invariance). The other possibility is to
use the deformation in the 1

~6
, which breaks SUSY completely but preserves an S;(3) subgroup of

S;(4)
R
. To leading order in the deformation both possibilities give a mass to one fermion, but at

order m2 they di!er in a way which causes one of them to break SUSY while the other further
breaks S;(3)PS;(2)];(1). At weak coupling we can analyze the order m2 terms in detail. In
the SUSY-preserving deformation at order m2 we turn on a scalar mass term of the form
DmD2Tr[(/1)2#(/2)2], which may be written in the form

(DmD2/3)Tr[2(/1)2#2(/2)2!(/3)2!(/4)2!(/5)2!(/6)2]#(DmD2/3)Tr[/I/I] , (4.37)

where the "rst term is one of the D"2 chiral operators in the 20@, and the second term is
a non-chiral operator which arises from the operator mixing as described above (the appearance of
the second term allows us to add the chiral operator in the "rst term without destroying the
positivity of the scalar potential). In the non-SUSY deformation the chiral term is not turned on
at any order in the deformation (the 20@ representation contains no singlets of S;(3)), and all the
scalars get equal masses from the non-chiral term.

Which theory do we #ow to in the IR after turning on such a single-fermion mass term? In the
SUSY-preserving case one can show that we actually #ow to an N"1 SCFT (and, in fact, to
a "xed line of N"1 SCFTs). Naively, one chiral multiplet gets a mass, and we remain with the
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N"1 S;(N) SQCD theory with two adjoint chiral multiplets, which is expected (based on
the amount of matter in the theory) to #ow to an interacting IR "xed point. In fact, one can prove
[416] that there is an exactly marginal operator at that "xed point, which (generally) has
a non-zero value in the IR theory we get after the #ow described above. The full superpotential with
the deformation is of the form ="hTr(U1[U2,U3])#mTr(U1U1) (where h is proportional to
g
YM

), and to describe the low-energy theory we can integrate out the massive "eld U1 to remain
with a superpotential="!(h2/4m)Tr([U2,U3]2) for the remaining massless "elds. Naively this
superpotential is irrelevant (its dimension at the UV "xed point at weak coupling is 5), but in fact
one can show (for instance, using the methods of [385]) that it is exactly marginal in the IR theory,
so there is a "xed line of SCFTs parametrized by the coe$cient hI of the superpotential
="hI Tr([U2,U3]2). Upon starting from a particular value of g

YM
in the UV and performing the

supersymmetric mass deformation, we will land in the IR at some particular point on the IR "xed
line (i.e. some value of hI ). The unbroken global ;(1) symmetry of the theory becomes the ;(1)

R
in

the N"1 superconformal algebra in the IR.
It is more di$cult to analyze the mass deformation which does not preserve SUSY (but preserves

S;(3)), since we cannot use the powerful constraints of supersymmetry. Naively one would expect
this deformation to lead to masses (from loop diagrams) for all of the scalars, but not for the
fermions, since the S;(3) symmetry prevents them from acquiring a mass. Then, the IR theory
seems to be S;(N) Yang}Mills coupled to three adjoint fermions, which presumably #ows to an IR
"xed point (this is what happens for supersymmetric theories with one-loop beta functions of the
same order, but it is conceivable also that the theory may con"ne and generate a mass scale). There
is no reason for such a "xed point to have any exactly marginal deformations (in fact, there are no
known examples in four dimensions of non-supersymmetric theories with exactly marginal defor-
mations), so presumably the #ow starting from any value of g

YM
always ends up at the same IR

"xed point.
If we give a mass to two of the fermions, it is possible to do this with a superpotential of the form
="mTr(U1U2) which in fact preserves N"2 supersymmetry (it gives the N"2 SQCD theory
with one massive adjoint hypermultiplet, which was discussed in [431]). This theory is known to
dynamically generate a mass scale, at which the S;(N) symmetry is broken (at a generic point in
the moduli space) to ;(1)N~1, and the low-energy theory is the theory of (N!1) free ;(1) vector
multiplets. The behavior of this theory for large N was discussed in [432]. At special points in the
moduli space there are massless charged particles, and at even more special points in the moduli
space [433}435] there are massless electrically and magnetically charged particles and the theory is
a non-trivial N"2 SCFT. It is not completely clear which point in the moduli space one would
#ow to upon adding the mass deformation to the N"4 theory. Presumably, without any
additional "ne-tuning one would end up at a generic point in the moduli space which corresponds
to a free IR theory.

If we give a mass to two fermions while breaking supersymmetry (as above, this depends on the
order m2 terms that we add), we presumably end up in the IR with Yang}Mills theory coupled to
two massless adjoint fermions. This theory is expected to con"ne at some scale K

YM
(which for large

g2
YM

N would be of the order of the scale m), and lead to a trivial theory in the IR. A similar con"ning
behavior presumably occurs if we give a mass to three or four of the fermions (for three fermions we
can give a mass while preserving SUSY, and we presumably #ow in the IR to the con"ning N"1
pure SYM theory).
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The only remaining deformation is the deformation by the D"4 operator in the 45 representa-
tion, which is in the n"3 multiplet. A general analysis of this deformation is rather di$cult, so we
will focus here on the SUSY preserving case where the deformation is a superpotential of the form
="h

ijk
Tr(UiUjUk), with the coe$cients h

ijk
in the 10

0
representation in the decomposition

45"15
4
#10

0
#8

0
#6

~4
#31

~4
#3

~8
. It turns out that one can prove (see [385] and references

therein) that two of these ten deformations correspond to exactly marginal operators, that preserve
N"1 superconformal invariance. This can be done by looking at a general N"1 theory with
three adjoint chiral multiplets, a gauge coupling g, and a superpotential of the form

="h
1
Tr(U1U2U3#U1U3U2)#h

2
Tr((U1)3#(U2)3#(U3)3)#h

3
e
ijk

Tr(UiUjUk) . (4.38)

This particular superpotential is chosen to preserve a Z
3
]Z

3
global symmetry, where one of the

Z
3

factors acts by U1PU2,U2PU3,U3PU1 and the other acts by U1PU1,U2PuU2,
U3Pu2U3 where u is a third root of unity. The second Z

3
symmetry prevents any mixing between

the chiral operators Ui, and the "rst Z
3

can then be used to show that they all have the same
anomalous dimension c(g, h

1
, h

2
, h

3
). The beta function may be shown (using supersymmetry) to be

exactly proportional to this gamma function (with a coe$cient which is a function of g), so that the
requirement of conformal invariance degenerates into one equation (c"0) in the four variables
g, h

1
, h

2
and h

3
, which generically has a three-dimensional space of solutions. This space of

solutions corresponds to a three-dimensional space of N"1 SCFTs. The general arguments we
used so far do not tell us the form of the three-dimensional space, but we can now use our analysis
of the N"4 theory to learn more about it. First, we know that the N"4 line
g"h

3
, h

1
"h

2
"0 is a subspace of this three-dimensional space. We also know that at leading

order in the deformation away from this subspace, (h
3
#g), h

1
and h

2
correspond to marginal

operators (as described above they couple to chiral operators of dimension 4), while (h
3
!g)

couples to a non-chiral operator (in the 15 of S;(4)
R
) whose dimension is corrected away from

g"0 (and seems to be large for large g2
YM

N). Thus, we see that to leading order in the deformation
around the N"4 "xed line, the exactly marginal deformations are given by h

1
and h

2
(which are

two particular elements of the 10
0

representation). It is not known if the other deformations in the
45 are marginally relevant, marginally irrelevant or exactly marginal.

4.3.4. Deformations of string theory on AdS
5
]S5

As described in Section 4.3.1, to analyze the deformations of Section 4.3.3 in the AdS context
requires "nding solutions of string theory with appropriate boundary conditions. For the exactly
marginal deformation in the 1, which corresponds to the dilaton, we already know the solutions,
which are just the AdS

5
]S5 solution with any value of the string coupling q

IIB
. The other operators

discussed above are identi"ed in string theory with particular modes of the 2-form "eld B
ab

with
indices in the S5 directions (we view B as a complex 2-form "eld which contains both the NS}NS
and R-R 2-form "elds). Thus, the dimension 3 mass deformation would be related to string theory

backgrounds in which B
ab

(x,;, y)U?=
P m>(1)

ab
(y)/; for some spherical harmonics >(1)

ab
(y) on S5, and

the dimension 4 deformations would be related to backgrounds with B
ab

(x,;, y)U?=
P h>(2)

ab
(y). It is

clear from the identi"cation of the superconformal algebra in the "eld theory and in the string
theory that these deformations break the same supersymmetries in both cases; this can also be
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checked explicitly (say, to leading order in the deformation [415,416]) by analyzing the SUSY
variations of the type IIB supergravity "elds. The existence of an exactly marginal deformation
breaking the N"4 superconformal symmetry to N"1 superconformal symmetry suggests that
the theorem of [436], that forbids #at space compacti"cations with di!erent amounts of supersym-
metry from being at a "nite distance from each other in the string theory moduli space, is not valid
in AdS compacti"cations [415,416].

Since we know little about string theory in backgrounds with RR "elds, our analysis of such
solutions is e!ectively limited to the supergravity approximation. This already limits our discussion
to large j"g

4
N, and it limits it further to cases where the solution does not develop large

curvatures in the interior. In the supergravity limit one would want to "nd solutions of type IIB
supergravity with the boundary conditions described above (with the rest of the "elds having the
same boundary conditions as in the AdS

5
]S5 case). Unfortunately, no such solutions are known,

and they seem to be rather di$cult to construct. There are three possible approaches to circum-
venting this problem of "nding exact solutions to type IIB supergravity:

f One can try to construct solutions perturbatively in the deformation parameter, which should be
easier than constructing the full exact solution. Unfortunately, this approach does not make
sense for the relevant deformations, since already at leading order in the deformation (corre-
sponding to the linearized equations of motion around the AdS

5
]S5 solution) we "nd that the

solution (B
ab
&1/;) grows to be very large in the interior, so the perturbative expansion does

not make sense. At best one may hope to have a perturbative expansion in a parameter like m/;
(if m is the coe$cient of a relevant operator of dimension D"3), but this only makes sense near
the boundary. On the other hand, for marginal deformations, and especially for deformations
that are supposed to be exactly marginal, this approach makes sense. Exactly marginal deforma-
tions correspond to solutions which do not depend on the AdS coordinates at all, so a perturba-
tion expansion in the parameters of the deformation seems to be well-de"ned. In practice, such
a perturbation expansion is quite complicated, and can only be done in the "rst few orders in the
deformation. In the case of the deformation by h

1
, h

2
which was described in "eld theory above,

one can verify that it is an exactly marginal deformation to second order in the deformation,
even though additional SUGRA "elds need to be turned on at this order (including components
of the metric with S5 indices). This is in fact true for any deformation in the 45. At third order one
probably gets non-trivial constraints on which elements of the 45 one can be turned on in an
exactly marginal deformation, but the equations of motion of type IIB SUGRA have not yet
been expanded to this order. Verifying that the deformations that are exactly marginal in the
"eld theory correspond to exactly marginal deformations also in string theory on AdS

5
]S5

would be a non-trivial test of the AdS/CFT correspondence.
f There are no known non-trivial solutions of type IIB supergravity which are asymptotically of

the form described above for the relevant or marginal deformations. However, there are several
known solutions [172,119] of type IIB supergravity (in addition to the AdS

5
]S5 solution) which

involve AdS
5

spaces and have SO(4, 2) isometries (these solutions need not necessarily be direct
products AdS

5
]X), and one can try to guess that they would be the end-points of #ows arising

from relevant deformations. As long as we are in the supergravity approximation, only solutions
which are topologically equivalent to AdS

5
]S5 can be related by #ows to the AdS

5
]S5

solution, so we will not discuss here other types of AdS
5

solutions.

298 O. Aharony et al. / Physics Reports 323 (2000) 183}386



40Partial evidence was given in [141]. See Section 2.2.5 for further discussion.

One such solution was found in [172], which is of the form AdS
5
]X, where X is an S1 "ber

over CP2 (a `stretched "ve-spherea), and there is also a 3-form "eld turned on in the compact
directions (this is called a Pope-Warner type solution [437]). This solution has an S;(3)
isometry symmetry (corresponding to an S;(3) global symmetry in the corresponding "eld
theory), and it breaks all the supersymmetries. Thus, it is natural to try to identify it with the
deformation by the non-supersymmetric single-fermion mass operator described in Section 4.3.3,
which has the same symmetries. Additional evidence for this identi"cation will be presented
below. This classical supergravity solution, like all type IIB supergravity solutions, has the
dilaton as an arbitrary parameter, corresponding to a "xed line in the corresponding "eld theory.
However, for "nite N one would expect quantum corrections in this non-supersymmetric
background to generate a potential for the dilaton (as well as for any other massless scalar "elds
if they exist in this compacti"cation), which should have a unique vacuum to correspond with
the "eld theory expectations described above. For in"nite N this correspondence would predict
a "xed line in the corresponding "eld theory, but it is not clear how to analyze this directly in the
"eld theory (perturbation theory is not valid since the "eld theory, which is the IR limit of QCD
with three adjoint fermions, is always strongly coupled, so if there is a "xed line it does not pass
through weak coupling). We will discuss this solution further below.

An additional solution, found in [119], exhibits an SO(5) global symmetry. However, as
discussed below, this solution appears to be unstable.

f The most successful way (to date) of analyzing the appropriate solutions of type IIB supergravity
has been to restrict attention to the "ve-dimensional N"8 supergravity [122] sector of the
theory, which includes only the n"2 `supergravitonamultiplet from the spectrum described in
Section 3.2.1. Unlike the situation in #at-space compacti"cations, the "ve-dimensional super-
gravity cannot be viewed as a low-energy limit of the ten-dimensional supergravity compacti"ca-
tion in any sense. For instance, the supergraviton multiplet contains "elds of m2"!4/R2,
while other multiplets (in the n"3, 4 multiplets) which are not included in the truncation to the
"ve-dimensional supergravity theory involve massless "elds on AdS

5
. However, it is conjectured

that there does exist a consistent truncation of the type IIB supergravity theory on AdS
5
]S5 to

the "ve-dimensional N"8 supergravity, in the sense that every solution of the latter can be
mapped into a solution of the full-type IIB theory (with the other "elds in type IIB supergravity
being some functions of the "ve-dimensional SUGRA "elds). A similar truncation is believed to
exist ([138,112] and references therein) for the relation between 11-dimensional supergravity
compacti"ed on AdS

4
]S7 and the four-dimensional N"8 gauged supergravity, and for the

relation between 11-dimensional supergravity compacti"ed on AdS
7
]S4 and the seven-dimen-

sional gauged supergravity, and the similarities between the two cases suggest that it may exist
also in the AdS

5
]S5 case (though this has not yet been proven40). In the rest of this section we

will assume that such a truncation exists and see what we can learn from it. Obviously, we can
only learn from such a truncation about deformations of the theory by "elds in the n"2
multiplet, so we cannot analyze the marginal deformations in the 45 in this way.

The "rst thing one can try to do with the "ve-dimensional N"8 supergravity is to "nd
solutions to the equations of motion with an SO(4, 2) isometry. These correspond to critical
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points of the scalar potential of d"5,N"8 supergravity, which is a complicated function of
the 42 ("20@#10

c
#1

c
) scalar "elds in the n"2 multiplet. A full analysis of the critical points

of this potential has not yet been performed, but there are four known vacua in addition to the
vacuum corresponding to AdS

5
]S5:

(i) There is a non-supersymmetric vacuum with an unbroken S;(3) gauge group. This vacuum
is conjectured to correspond to the S;(3)-invariant vacuum of the full type IIB supergravity
theory described above, which, as mentioned above, could correspond to a mass deformation of
the N"4 "eld theory. Additional evidence for this correspondence was presented in [146,145],
which constructed a solution of the "ve-dimensional N"8 supergravity which interpolates
between the AdS

5
]S5 solution and the S;(3)-invariant solution, with the leading deformation

from the AdS
5
]S5 solution corresponding exactly to the mass operator in the 1

~6
in the

decomposition 10"6
2
#3

~2
#1

~6
, which breaks S;(4)

R
PS;(3). If indeed there is a consis-

tent truncation of the type IIB supergravity to 5d N"8 SUGRA then this is convincing
evidence that the S;(3) invariant solution indeed corresponds (in the large N limit) to the "xed
point arising from the single-fermion-mass deformation of the N"4 "eld theory. Since this
solution is non-supersymmetric, one must verify that the classical solution is stable, namely that
it does not contain tachyons whose mass is below the Breitenlohner}Freedman stability bound
(in supersymmetric vacua this is guaranteed; using Eq. (3.14), such tachyons would correspond
to operators of complex dimension in the "eld theory which would contradict its unitarity). In
[145] it was veri"ed that this is true for the "elds of the "ve-dimensional supergravity multiplet;
it would be interesting to verify this for the full spectrum of the type IIB supergravity theory,
to con"rm that the solution indeed describes a consistent supergravity compacti"cation. The
central charge of the corresponding "eld theory was computed in [147] and found to be smaller
than that of the UV N"4 "xed point, consistent with the conjectured c-theorem. As discussed
above, the supergravity solution contains a massless scalar (the dilaton) which is expected to
obtain a non-trivial potential when the quantum corrections are included. It is not clear how to
analyze these corrections and to check whether after their inclusion there is still a consistent
vacuum of string theory on the corresponding manifold or not. Presumably, if such a consistent
vacuum exists, it would not be a weakly coupled string theory (since it is unlikely that the dilaton
can be stabilized at weak coupling). However, it could still have small curvatures (in the large
N limit), so that a supergravity analysis of this theory may be useful. If the dilaton does not
stabilize in the small curvature region one would need to go beyond the supergravity approxima-
tion to learn anything about the theory, and in particular to learn whether there is any stable
AdS-type background (corresponding to an IR "xed point in the "eld theory) or not (corre-
sponding to con"nement in the "eld theory).

(ii) There is a non-supersymmetric vacuum with unbroken SO(5) gauge symmetry, which is
conjectured to be related to the SO(5)-invariant compacti"cation of type IIB supergravity which
we mentioned above. The mass spectrum in this vacuum was computed in [145], where it was
found that it has a tachyonic particle whose mass is below the stability bound. Thus, even
classically this is not really a vacuum of the supergravity theory (presumably the tachyon would
condense and the theory would #ow to some di!erent vacuum). It was found in [146,145] that
this `vacuuma is related to the AdS

5
]S5 vacuum by a deformation involving turning on one of

the operators in the 20@ representation; presumably the instability of the supergravity solution is
related to the instability of the "eld theory after performing this deformation.
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(iii) There is [147,416,143] a vacuum with S;(2)];(1) unbroken symmetry and eight
unbroken supercharges, corresponding to an N"1 SCFT in the "eld theory. There is no
known corresponding solution of the full type IIB theory, but assuming that 5d SUGRA is
a consistent truncation, such a solution must exist (though it is not guaranteed that all its
curvature invariants will be small, as required for the consistency of the supergravity approxima-
tion). It is natural to identify this vacuum with the IR "xed point arising from the supersymmet-
ric single-chiral-super"eld mass deformation described in Section 4.3.3. This is consistent with
the form of the 5d SUGRA "elds that are turned on in this solution, with the global symmetries
of the solution, and with the fact that on both sides of the correspondence we have a "xed line of
N"1 SCFTs (the parameter hI of the "xed line corresponds to the dilaton on the string theory
side; supersymmetry prohibits the generation of a potential for this "eld). Recently, this
identi"cation was supported by the construction of the full solution interpolating between the
N"4 "xed point and the N"1 "xed point in the 5d SUGRA theory [143]. Since we have
some supersymmetry left in this case, one can also quantitatively test this correspondence by
matching the global anomalies of the "eld theory described in Section 4.3.3 (the S;(N) N"1
SQCD theory with two adjoint chiral multiplets and a superpotential=JTr([U2,U3]2) with
those of the corresponding SUGRA background, as described in Section 3.2.2. The conformal
anomalies were successfully compared in [416,143] in the large N limit, giving some evidence for
this correspondence (in particular, the conformal anomalies of this theory satisfy a"c, as
required for a consistent supergravity approximation). The fact that the central charge corre-
sponding to this solution is smaller than that of the AdS

5
]S5 solution with the same RR 5-form

#ux (note that the RR #ux is quantized and does not change when we deform) means that this
interpretation is consistent with the conjectured four-dimensional c-theorem.

(iv) There is an additional background found in [147] with S;(2)];(1)];(1) unbroken
gauge symmetry and no supersymmetry. The mass spectrum of this background has not yet been
computed, so it is not clear if it is stable or not. The SUGRA solution involves giving VEVs to
"elds both in the 20@ and in the 10, but it is not clear exactly what deformation of the original
AdS

5
]S5 theory (if any) this background corresponds to.

In principle, one could also use the truncated "ve-dimensional theory to analyze other
relevant deformations in the 10, which are not expected to give rise to conformal "eld theories in
the IR. Presumably, most of them would lead to high curvatures in the interior, but perhaps
some of them do not and can then be analyzed purely in supergravity.

To summarize, the analysis of deformations in string theory on AdS
5
]S5 is rather di$cult, but

the results that are known so far seem to be consistent with the AdS/CFT correspondence. The
only known results correspond to deformations which lead to conformal theories in the IR; as
discussed in Section 4.3.3, these are also the only deformations which we would expect to be able to
usefully study in general in the supergravity approximation. The most concretely analyzed
deformation is the single-chiral-fermion mass deformation, which seems to lead to another
AdS-type background of type IIB supergravity (though only the truncation of this background to
the "ve-dimensional supergravity is known so far). In non-supersymmetric cases the analysis of
deformations is complicated (see, for instance, [336]) by the fact that quantum corrections are
presumably important in lifting #at directions, so a classical supergravity analysis is not really
enough and the full string theory seems to be needed.
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5. AdS
3

In this section we will study the relation between gravity theories (string theories) on AdS
3

and
two-dimensional conformal "eld theories. First we are going to describe some generalities which
are valid for any AdS

3
quantum gravity theory, and then we will discuss in more detail IIB string

theory compacti"ed on AdS
3
]S3]M4 with M4"K3 or ¹4.

AdS
3

quantum gravity is conjectured to be dual to a two dimensional conformal "eld theory which
can be thought of as living on the boundary of AdS

3
. The boundary of AdS

3
(in global coordinates) is

a cylinder, so the conformal "eld theory is de"ned on this cylinder. We choose the cylinder to have
radius one, which is the usual convention for conformal "eld theories. Of course, all circles are
equivalent since this is a conformal "eld theory, but we have to rescale energies accordingly. If the
space-time theory or the conformal "eld theory contain fermions then they have anti-periodic
boundary conditions on the circle. The reason is that the circle is contractible in AdS

3
, and close to

the `centera of AdS
3

a translation by 2p on the circle looks like a rotation by 2p, and fermions get
a minus sign. So, the dual conformal "eld theory is in the NS-NS sector. Note that we will not sum over
sectors as we do in string theory, since in this case the conformal "eld theory describes string theory on
the given spacetime and all its "nite energy excitations, and we do not have to second-quantize it.

5.1. The Virasoro algebra

The isometry group of AdS
3

is S¸(2,R)]S¸(2,R), or SO(2, 2). The conformal group in two
dimensions is in"nite. This seems to be, at "rst sight, a contradiction, since in our previous
discussion we identi"ed the conformal group with the isometry group of AdS. However, out of the
in"nite set of generators only an S¸(2,R)]S¸(2,R) subgroup leaves the vacuum invariant. The
vacuum corresponds to empty AdS

3
, and this subgroup corresponds to the group of isometries of

AdS
3
. The other generators map the vacuum into some excited states. So, we expect to "nd that the

other generators of the conformal group map empty AdS
3

into AdS
3

with (for instance) a graviton
inside. These other generators are associated to reparametrizations that leave the asymptotic form
of AdS

3
invariant at in"nity. This problem was analyzed in detail in [438] and we will just sketch

the argument here. The metric on AdS
3

can be written as

ds2"R2(!cosh2odq2#sinh2od/2#do2) . (5.1)

When o is large (close to the boundary) this is approximately

ds2&R2[!e2odq`dq~#do2] , (5.2)

where qB,q$/. An in"nitesimal reparametrization generated by a general vector "eld ma(q,/,o)
changes the metric by gabPgab#+amb#+bma. If we want to preserve the asymptotic form of the
metric (5.2), we require that [438]

m`"f (q`)#
e~2o

2
gA(q~)#O(e~4o) ,

m~"g(q~)#
e~2o

2
f A(q`)#O(e~4o) , (5.3)

mo"!

f @(q`)
2

!

g@(q~)
2

#O(e~2o) ,
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where f (q`) and g(q~) are arbitrary functions. Expanding the functions f"+¸
n
enq`, g"+ M̧

n
enq~, we

recognize the Virasoro generators ¸
n
, M̧

n
. For the cases n"0,$1 one can "nd some isometries that

reduce to (5.3) at in"nity, are globally de"ned, and leave the metric invariant. These are the SO(2, 2)
isometries discussed above. For the other generators it is possible to "nd a globally de"ned vector
"eld m, but it does not leave the metric invariant.

It is possible to calculate the classical Poisson brackets among these generators, and one "nds
that this classical algebra has a central charge which is equal to [438]

c"3R/2G(3)
N

, (5.4)

where G(3)
N

is the three-dimensional Newton constant. So, this should also be the central charge of
the dual conformal "eld theory, since (5.3) implies that these Virasoro generators are acting on the
boundary as the Virasoro generators of a (1#1)-dimensional conformal "eld theory.

A simple calculation of the central charge term (5.4) was given in [226]. Under a di!eomorphism
of the form (5.3), the metric near the boundary changes to

ds2PR2[!e2odq`dq~#do2#1
2
(R3

`
f )(dq`)2#1

2
(R3

~
g)(dq~)2] . (5.5)

The metric retains its asymptotic form, but we have kept track of the subleading correction. This
subleading correction changes the expectation value of the stress tensor. If we start with a zero
stress tensor, we get

S¹
``

TP(R/16pG(3)
N

)R3
`

f (5.6)

after the transformation. Under a general conformal transformation, q`Pq`#f (q`), the stress
tensor changes as

¹
``

P¹
``

#2R
`
f¹

``
#f R

`
¹

``
#(c/24p)R3

`
f . (5.7)

So, comparing (5.7) with (5.6) we can calculate the central charge (5.4).
It is also possible to show that if we have boundary conditions on the metric at in"nity that in the

dual conformal "eld theory correspond to considering the theory on a curved geometry, then we
get the right conformal anomaly [224] (generalizing the discussion in Section 3.3.2).

5.2. The BTZ black hole

Three-dimensional gravity has no propagating degrees of freedom. But, if we have a negative
cosmological constant, we can have black hole solutions. They are given by [439,440]

ds2"!

(r2!r2
`

)(r2!r2
~

)
r2

dt2#
R2r2

(r2!r2
`
)(r2!r2

~
)
dr2#r2Ad/#

r
`

r
~

r2
dtB

2
, (5.8)

with /,/#2p. We can combine the temperature ¹ and the angular momentum potential X into

1/¹
B
,(1/¹)$X/¹ , (5.9)

and their relation to the parameters in (5.8) is r
B
"pR(¹

`
$¹

~
). The mass and angular

momentum are

8G(3)
N

M"R#(r2
`
#r2

~
)/R, J"r

~
r
`

/4G(3)
N

R , (5.10)
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where we are measuring the mass relative to the AdS
3

space, which we de"ne to have M"0 (the
scale of the mass is set by the radius of the circle in the dual CFT). This is not the usual convention,
but it is much more natural in this context since we are measuring energies with respect to the
NS}NS vacuum. Note that the mass of a black hole is always at least

M
.*/

"R/8G(3)
N

"c/12 . (5.11)

The black hole with this minimum mass (sometimes called the zero mass black hole) has
a singularity at r"r

`
"r

~
"0. All these black holes are locally the same as AdS

3
but they di!er

by some global identi"cations [439,440], i.e. they are quotients of AdS
3
. In theories that have

supersymmetry it can be checked that the zero mass black hole preserves some supersymmetries
provided that we make the fermions periodic as we go around the circle [441], which is something
we have the freedom to do once the circle is not contractible in the gravity geometry. These
supersymmetries commute with the Hamiltonian conjugate to t. Furthermore, we will see below
that if we consider the near horizon geometry of branes wrapped on a circle with periodic boundary
conditions for the spinors, we naturally obtain the BTZ black hole with mass M

.*/
. This leads us to

identify the M"M
.*/

BTZ black hole with the RR vacuum of the conformal "eld theory [441].
The energy M

.*/
(5.11) is precisely the energy di!erence between the NS}NS vacuum and the RR

vacuum. Of course, we could still have the M"M
.*/

BTZ black hole with anti-periodic boundary
conditions as an excited state in the NS}NS sector.

Next, let us calculate the black hole entropy. The Bekenstein}Hawking entropy formula gives

S"Area/4G(3)
N
"2pr

`
/4G(3)

N
"p2c/3(¹

`
#¹

~
) , (5.12)

where we used (5.4). We can also calculate this in the conformal "eld theory. All we need is the
central charge of the conformal "eld theory, which we argued had to be (5.4). Then, we can use the
general formula [442] for the growth of states in a unitary conformal "eld theory [443,276], which
gives

S&1
3
p2c(¹

`
#¹

~
) . (5.13)

Thus, we see that the two results agree. This result if valid for a general conformal "eld theory as
long as we are in the asymptotic high energy regime (where energies are measured in units of the
radius of the circle), so in particular we need that ¹<1. When is the result (5.12) valid? In principle,
we would say that it is valid as long as the area of the horizon is much bigger than the Planck
length, r

`
<G(3)

N
. This gives ¹<1/c, which is a much weaker bound on the temperature for large c.

So, we see that the corresponding conformal "eld theory has to be quite special, since the number of
states should grow as determined by the asymptotics (5.13) for energies that are much smaller than
one would expect for a generic conformal "eld theory.

A related manifestation of this curious feature of the `boundarya conformal "eld theory is the
following. We could consider the canonical ensemble by going to Euclidean space and making the
Euclidean time coordinate periodic, q"q#b. We consider the case X"0, the general case is
considered in [276]. The conformal "eld theory is then de"ned on a rectangular two torus, and the
free energy will be the partition function of the theory on this two torus. Due to the thermal
boundary condition in the NS sector, the two torus ends up having NS}NS boundary conditions
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Fig. 5.1. Calculation of the partition function at "nite temperature through the Euclidean conformal "eld theory. Since
the two directions are equivalent we can choose the `timea direction as we wish. The partition function is dual under
bP4p2/b. (a) At low temperatures b is large and only the vacuum propagates in the b direction. (b) At high temperatures,
small b, only the crossed channel vacuum propagates in the / direction. (c) When b"2p we have a sharp transition
according to supergravity.

on both circles. In order to calculate the partition function in the dual gravitational theory we
should "nd a three-manifold that has the two torus as its boundary (the correspondence tells us to
sum over all such manifolds). One possibility is to have the original AdS

3
space but with time

identi"ed, q"q#b. The value of the free energy is then given, to leading order, by the ground state
energy of AdS

3
. This is the expected result for large b, where the torus is very elongated and only

the vacuum propagates in the q channel, see Fig. 5.1(a). For high temperatures, only the vacuum
propagates in the crossed channel (Fig. 5.1(b)), and this corresponds to the BTZ black hole in AdS

3
.

Note that the Euclidean BTZ geometry is the same as AdS
3

but `on its sidea, with q%/, so now
the q circle is contractible. The transition between the two regimes occurs at b"2p, which
corresponds to a square torus (Fig. 5.1(c)). This is a sharp transition when the gravity approxima-
tion is correct, i.e. when R/G(3)

N
&c<1. This sharp transition will not be present in the partition

function of a generic conformal "eld theory, for example it is not present if we consider c free
bosons. When we discuss in more detail the conformal "eld theories that correspond to string
theory on AdS

3
, we will see that they have a feature that makes it possible to explain this transition.

This sharp transition is the two dimensional version of the large N phase transition discussed in
Section 3.6.2 [183] (in this case c plays the role of N).

5.3. Type IIB string theory on AdS
3
]S3]M4

In this section we study IIB string theory on AdS
3
]S3]M4 [276,444]. Throughout this section

M4"K3 or ¹4. In this case we can get some insight on the dual conformal "eld theory by deriving
this duality from D-branes, as we did for the AdS

5
]S5 case. We start with type IIB string theory on

M4. We consider a set of Q
1
D1 branes along a non-compact direction, and Q

5
D5 branes wrapping

M4 and sharing the non-compact direction with the D1 branes. All the branes are coincident in the
transverse non-compact directions. The unbroken Lorentz symmetry of this con"guration is
SO(1, 1)]SO(4). SO(1, 1) corresponds to boosts along the string, and SO(4) is the group of rotations
in the four non-compact directions transverse to both branes. This con"guration also preserves
eight supersymmetries, actually N"(4, 4) supersymmetry once we decompose them into left- and
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41 If M4"K3 we need that the sign of the D1 brane charge and the sign of the D5 brane charge are the same, otherwise
we break supersymmetry (except for the single con"guration with charges (Q

5
, Q

1
)"($1,G1)).

right-moving spinors of SO(1, 1).41 It is possible to "nd the supergravity solution for this con"gura-
tion (see [445] for a review) and then take the near horizon limit as we did in Section 3.1 [5], and we
get the metric (in string frame)

ds2/a@"(;2/g
6
JQ

1
Q

5
)(!dt2#dx2

1
)#g

6
JQ

1
Q

5
(d;2/;2)#g

6
JQ

1
Q

5
dX2

3
. (5.14)

This is AdS
3
]S3 with radius R2"R2

AdS
"R2

S
3"g

6
JQ

1
Q

5
l2
4
, where g

6
is the six-dimensional

string coupling. The full ten-dimensional geometry also includes an M4 factor. In this case the
volume of the M4 factor in the near-horizon geometry is proportional to Q

1
/Q

5
, and it is

independent of the volume of the original M4 over which we wrapped the branes. In the full D1}D5
geometry, which includes the asymptotically #at region, the volume of M4 varies, and it is equal to
the above "xed value in the near horizon region [446}449].

5.3.1. The conformal xeld theory
The dual conformal "eld theory is the low-energy "eld theory living on the D1}D5 system [450].

One of the properties of this conformal "eld theory that we will need is its central charge, so that we
will be able to compare it with supergravity. We can calculate this central charge in a way that is
not too dependent on the precise structure of the conformal "eld theory. The conformal "eld theory
that we are interested in is the IR "xed point of the "eld theory living on D1}D5 branes. The "eld
theory living on D1}D5 branes, before we go to the IR "xed point, is some (1#1)-dimensional "eld
theory with N"(4, 4) supersymmetry. This amount of supersymmetry is equivalent to N"2 in
four dimensions, so we can classify the multiplets in a similar fashion. There is a vector multiplet
and a hypermultiplet. In two dimensions both multiplets have the same propagating degrees
of freedom, four scalars and four fermions, but they have di!erent properties under the
S;(2)

L
]S;(2)

R
global R-symmetry. Under this group the scalars in the hypermultiplets are in

the trivial representation, while the scalars in the vector multiplet are in the (2, 2). On the fermions
these global symmetries act chirally. The left-moving vector multiplet fermions are in the (1, 2),
and the left moving hypermultiplet fermions are in the (2, 1). The right-moving fermions have
similar properties with S;(2)

L
%S;(2)

R
. The theory can have a Coulomb branch where the scalars

in the vector multiplets have expectation values, and a Higgs branch where the scalars in the
hypermultiplets have expectation values.

From the space-time origin of the supercharges it is clear that the S;(2)
L
]S;(2)

R
global

R-symmetry is the same as the SO(4) symmetry of spatial rotations in the 4-plane orthogonal to the
D1}D5 system [451}453]. The vector multiplets describe motion of the branes in the transverse
directions, this is consistent with their SO(4) transformation properties. The vector multiplet
`expectation valuesa should be zero if we want the branes to be on top of each other. We have put
quotation marks since expectation values do not exist in a (1#1)-dimensional "eld theory. It is
possible to show that if Q

1
and Q

5
are coprime then, by turning on some of the M4 moduli (more

precisely some NS B-"elds), one can remove the Coulomb branch altogether, forcing the branes to
be at the same point in the transverse directions [454,341].
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Since the fermions transform chirally under S;(2)
L
, this theory has a chiral anomaly. The chiral

anomaly for S;(2)
L

is proportional to the number of left-moving fermions minus the number of
right-moving fermions that transform under this symmetry. The 't Hooft anomaly matching
conditions imply that this anomaly should be the same at high and low energies [455]. At high
energies (high compared to the IR "xed point) the anomaly is k

!
"N

H
!N

V
, the di!erence

between the number of vector multiplets and hypermultiplets. Let us now calculate this, starting
with the ¹4 case. On a D1}D5 brane world-volume there are massless excitations coming from (1,1)
strings, (5,5) strings and (1,5) (and (5,1)) strings. The (1,1) or (5,5) strings come from a vector
multiplet of anN"(8,8) theory, which gives rise to both a vector multiplet and a hypermultiplet of
N"(4,4) supersymmetry, so they do not contribute to the anomaly. The massless modes of the
(1,5) strings come only in hypermultiplets, and they contribute to the anomaly with k

!
"Q

1
Q

5
. For

the K3 case the analysis is similar. The D5 branes are now wrapped on K3, so the (5,5) strings give
rise only to a vector multiplet. The di!erence from the ¹4 case comes from the fact that in the
¹4 case the (5,5) hypermultiplet came from Wilson lines on the torus, and on K3 we do not have
one-cycles so we do not have Wilson lines. On the "ve-brane world-volume there is (when it is
wrapped on K3) an induced one-brane charge equal to Q*/$

1
"!Q

5
. The total D1 brane charge is

equal to the sum of the charges carried by explicit D1 branes and this negative induced charge,
Q

1
"Q*/$

1
#QD1

1
[456]. Therefore, the number of D1 branes is really QD1

1
"Q

1
#Q

5
, and the

number of (1,5) strings is QD1
1

Q
5
. So, we conclude that the anomaly is k

!
"QD1

1
Q

5
!Q2

5
"Q

1
Q

5
,

which in the end is the same result as in the ¹4 case. Note that in order to calculate this anomaly we
only need to know the massless "elds, since all massive "elds live in larger representations which
are roughly like a vector multiplet plus a hypermultiplet, and therefore they do not contribute to
the anomaly.

When we are on the Higgs branch all the vectors become massive except for the center of mass
multiplet, which contains "elds describing the overall motion of all the branes in the four transverse
directions. This is just a free multiplet, containing four scalar "elds. On the Higgs branch, at the IR
"xed point, the S;(2)

L
symmetry becomes a current algebra with an anomaly k

#&5
. The total

anomaly should be the same, so that k
!
"k

#&5
!1. The last term comes from the center of mass;(1)

vector multiplet (which is not included in k
#&5

). So, we conclude that k
#&5
"Q

1
Q

5
#1. Since the;(1)

vector multiplet is decoupled, we drop it in the rest of the discussion and we talk only about the
conformal "eld theory of the hypermultiplets. The N"(4, 4) superconformal symmetry relates
the anomaly in the S;(2) current algebra to the central charge, c"6k

#&5
"6(Q

1
Q

5
#1). Using the

value for the AdS
3

radius R"(g2
6
Q

1
Q

5
)1@4l

4
and the three dimensional Newton constant

G(3)
N
"g2

6
l4
4
/4R3, we can now check that (5.4) is satis"ed to leading order for large k. This also

ensures, as we saw above, that the black hole entropy comes out right.
Now we will try to describe this conformal "eld theory a bit more explicitly. We start with Q

5
D5

branes, and we view the D1 branes as instantons of the low-energy SYM theory on the "ve branes
[159]. These instantons live on M4 and are translationally invariant (actually also SO(1, 1)
invariant) along time and the x

5
direction, where x

5
is the non compact direction along the D5

branes. See Fig. 5.2(a). This instanton con"guration, with instanton number Q
1
, has moduli, which

are the parameters that parameterize a continuous family of solutions (classical instanton con"g-
urations). All of these solutions have the same energy. Small #uctuations of this con"guration
(at low energies) are described by #uctuations of the instanton moduli. These moduli can #uctuate
in time as well as in the x

5
direction. See Fig. 5.2(b). So, the low-energy dynamics is given by
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Fig. 5.2. (a) The D1 branes become instantons on the D5 brane gauge theory. (b) The instanton moduli can oscillate in
time and along x

5
.

a (1#1)-dimensional sigma model whose target space is the instanton moduli space. Let us be
slightly more explicit, and choose four coordinates x6,2,x9 parameterizing M4. The instantons
are described in the UV SYM theory as S;(Q

5
) gauge "elds A

6,7,8,9
(ma;x6,2, x9) with "eld

strengths which satisfy F"*4
F, where *4

is the epsilon symbol in M4 and ma are the moduli
parameterizing the family of instantons. The dimension of the instanton moduli space for
Q

1
instantons in S;(Q

5
) is 4k, where

k,Q
1
Q

5
for ¹4, k,Q

1
Q

5
#1 for K3 . (5.15)

The leading behavior for large Q is the same. In the ¹4 case we have four additional moduli coming
from the Wilson lines of the ;(1) factor of ;(Q

5
) [457]. It has been argued in [453,458] that

the instanton moduli space is a deformation of the symmetric product of k copies of M4,
Sym(M4)k,(M4)k/S

k
. The deformation involves blowing up the "xed points of the orbifold, as well

as modifying the B-"elds that live at the orbifold point. We will discuss this in more detail later. The
parameter that blows up the singularity can be identi"ed with one of the supergravity moduli of
this solution. For some particular value of these moduli (which are not to be confused with the
moduli of the instanton con"guration) the CFT will be precisely the symmetric product, but at that
point the gravity approximation will not be valid, since we will see that the supergravity description
predicts fewer states at low conformal weights than the symmetric product CFT. When we deform
the symmetric product, some of the states can get large corrections and have high energies (i.e. they
correspond to operators having high conformal weight). Other studies of this D1}D5 system
include [459}461].

5.3.2. Black holes revisited
We remarked above that the BTZ black hole entropy can be calculated just from the value of the

central charge, and therefore the gravity result agrees with the conformal "eld theory result. Note
that the calculation of the central charge that we did above in the CFT is valid for any value of
the coupling (i.e. the moduli), so the "eld theory calculation of the central charge and the entropy is
valid also in the black hole regime (where the gravity approximation is valid). This should be
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Fig. 5.3. Some con"gurations with winding number four. (a) Two singly wound strings and one doubly wound string.
(b) A maximally multiply wound con"guration.

contrasted to the AdS
5
]S5 case, where the "eld theory calculation of the entropy was only done at

weak coupling (in two dimensions the entropy is determined by the central charge and cannot change
as we vary moduli). In [462] corrections to the central charge in the gravity picture were analyzed.

We noticed above that the gravity description predicted a sharp phase transition when the
temperature was ¹"1/(2p), and we remarked that the "eld theory had to have some special
properties to make this happen. We will now explain qualitatively this phase transition. Our
discussion will be qualitative because we will work at the orbifold point, and this is not correct if we
are in the supergravity regime. We will see that the symmetric product has a feature that makes this
sharp phase transition possible.

The orbifold theory can be interpreted in terms of a gas of strings [463,464]. These are strings
that wind along x

5
and move on M4. The total winding number is k. The strings can be singly

wound or multiply Wound (see Fig. 5.3). In the R-R sector it does not cost any energy to multiply
wind the strings. If we have NS}NS boundary conditions, which are the appropriate ones to
describe AdS

3
, it will cost some energy to multiply wind the strings. The energy cost in the orbifold

CFT is the same as twice the conformal weight of the corresponding twist operator, which is
h"hM "w/4#O(1/w) for a con"guration with winding number w. If the strings are singly wound
and we have a temperature of order one (or 1/2p), we will not have many oscillation modes excited
on these strings, and the entropy will be small. Note that the fact that we have many singly wound
strings does not help, since we are supposed to symmetrize over all strings, so most of the strings
will be in similar states and they will not contribute much to the entropy. So, the free energy of such
a state is basically F&0. On the other hand, if we multiply wind all the strings, we raise the energy
of the system but we also increase the entropy [465], since now the energy gap of the system will be
much lower (the multiply wound strings behave e!ectively like a "eld theory on a circle with
a radius which is w times bigger). If we multiply wind w strings, with w<1, we get an energy
E&w/2#2p2w¹2, where the last term comes from thermal excitations along the string. The
entropy is also larger, S"4p2w¹. So, the free energy is F"E!¹S"w/2!2p2w¹2. Comparing
this to the free energy of the state with all strings singly wound, we see that the latter wins when
¹(1/(2p), and the multiply wound state wins when ¹'1/(2p). This explains the presence of the
sharp phase transition at ¹"1/(2p) when we are at the orbifold point.
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42An easy way to calculate this number of BPS states is to consider this con"guration as a system of D1}D5 branes on
S1]M4 and then do a U-duality transformation, transforming this into a system of fundamental string momentum and
winding.

Note that the mass of the black hole at the transition point is M"M
.*/

#k/2, which is (for large
k) much bigger than the minimum mass for a BTZ black hole, like the situation in other AdS

d;3
.

We could have black holes which are smaller than this, but they cannot be in thermal equilibrium
with an external bath. Of course, they could be in equilibrium inside AdS

3
if we do not couple AdS

3
to an external bath to keep the temperature "nite. In this case we are considering the microcanoni-
cal ensemble, and there are more black hole solutions that we could be considering [277,282,285].

If we were considering the conformal "eld theory on a circle with RR boundary conditions, the
corresponding supergravity background would be the M"M

.*/
BTZ black hole. This follows

from the fact that we should have preserved supersymmetries that commute with the Hamiltonian
(in AdS

3
the preserved supersymmetries do not commute with the Hamiltonian generating

evolution in global time). In order to have these supersymmetries we need to have RR boundary
conditions on the circle. Notice that the RR vacuum is not an excited state on the NS}NS vacuum,
it is just in a di!erent sector of the conformal "eld theory, even though the M"M

.*/
BTZ black

hole appears in both sectors.
In the case with RR boundary conditions a black hole forms as soon as we raise the temperature

(beyond ¹&1/k). This seems at "rst sight paradoxical, since the temperature could be much
smaller than one, which would be the natural energy gap for a generic conformal "eld theory on
a circle. The reason that the energy gap is very small for this conformal "eld theory is due to the
presence of `longa, multiply wound strings. In the RR sector all multiply wound strings have the
same energy. But, as we saw before, multiply wound strings lead to higher entropy states so they
are preferred. In fact, one can estimate the energy gap of the system by saying that it will be of the
order of the minimum energy excitation that can exist on a string multiply wound k-times, which is
of the order of 1/k. This estimate of the energy gap agrees with a semiclassical estimate as follows.
We can trust the thermodynamic approximation for black holes as long as the speci"c heat is large
enough [466]. For any system we need a large speci"c heat, C

e
,RE/R¹, in order to trust the

thermodynamic approximation. In this case E&k¹2, so the condition C
e
<1 boils down to

E<1/k . So, this estimate of the energy gap agrees with the conformal "eld theory estimate. Note
that in the RR supergravity vacuum (the M"M

.*/
black hole) we could seemingly have arbitrarily

low energy excitations as waves propagating on this space. The boundary condition on these waves
at the singularity should be such that one gets the above gap, but in the gravity approximation
k"R and this gap is not seen. Note also that the M"M

.*/
black hole does not correspond to

a single state (as opposed to the AdS
3

vacuum), but to a large number of states, of the order of
e2p

J2k for ¹4 case and e2p
J4k for K3.42

There are other black holes that preserve some supersymmetries, which are extremal BTZ black
holes with M!M

.*/
"J [441]. J is the angular momentum in AdS

3
, identi"ed with the mo-

mentum along the S1 in the CFT. Of course, these black holes will preserve supersymmetry only if
the boundary conditions on S1 are periodic, i.e. only if we are considering the RR sector of the
theory. In the RR sector it becomes more natural to measure energies so that the RR vacuum has
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43Other black holes were studied in [471].
44Our normalization for J3

0
follows the standard S;(2) practice and di!ers by a factor of two from the U(1) current in

[472,276,444,473].

zero energy. The extremal black holes correspond to states in the CFT in the RR sector with no left
moving energy, M̧

0
"0, and some right moving energy, ¸

0
"J'0. The entropy of these states is

S"2pJkJ . (5.16)

This is the entropy as long as k¸
0

is large, even for ¸
0
"1. The reason for this is again the presence

of multiply wound strings, that ensure that the asymptotic formula for the number of states in
a conformal "eld theory is reached at very low values of ¸

0
. In this argument it is important that we

are in the RR sector, and since we are counting BPS states we can deform the theory until we are at
the symmetric product point, and then the argument we gave in terms of multiply wound strings is
rigorous [13,457].

It is possible to consider also black holes which carry angular momentum on S3. They are
characterized by the eigenvalues J

L
, J

R
, of J3

L
and J3

R
of S;(2)

L
]S;(2)

R
. These rotating black holes

can be found by taking the near horizon limit of rotating black strings in six dimensions [467,468].
Their metric is locally AdS

3
]S3 but with some discrete identi"cations [469]. Cosmic censorship

implies that their mass has a lower bound

E,M!M
.*/

5J2
L
/k#J2

R
/k . (5.17)

We can also calculate the entropy for a general con"guration carrying angular momenta J
L,R

on
S3, linear momentum J on S1, and energy E"M!M

.*/
:

S"2pJk(E#J)/2!J2
L
#2pJk(E!J)/2!J2

R
. (5.18)

We can understand this formula in the following way [470,451]. If we bosonize the ;(1) currents,
J
L
&(k/2)R/, and similarly for J

R
, we can construct the operator e*JL( with conformal weight J2

L
/k.

This explains why the minimum mass is (5.17). This also explains (5.18), since only a portion of the
energy equal to ¸

0
!J2

L
/k"(E#J)/2!J2

L
/k can be distributed freely among the oscillators.43

5.3.3. Matching of chiral}chiral primaries
The CFT we are discussing here, and also its string theory dual, have moduli (parameters of the
"eld theory). At some point in the moduli space the symmetric product description is valid, and at
that point the gravity description is strongly coupled and cannot be trusted. As we move away from
that point we can get to regions in moduli space where we can trust the gravity description. The
energies of most states will change when we change the moduli. There are, however, states that are
protected, whose energies are not changed. These are chiral primary states [472]. The superconfor-
mal algebra contains terms of the form44

MQ``
r

, Q}
s
N"2¸

r`s
#2(r!s)J3

r`s
#1

3
cd

r`s
(r2!1

4
) ,

MQ`~
r

, Q~`
s

N"2¸
r`s

#2(r!s)J3
r`s

#1
3
cd

r`s
(r2!1

4
) ,

(5.19)
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Fig. 5.4. Structure of S;(1, 1D2) multiplets. We show the spectrum of possible j's and conformal weights. We show only
the S¸(2,R) primaries that appear in each multiplet and their degeneracies. The minus sign denotes opposite statistics.
The full square is a long multiplet. The encircled states form a short multiplet. Four short multiplets can combine into
a long multiplet.

where QBB
r

"(QYY
~r

)s, and r, s3Z#1
2
. The generators that belong to the global supergroup (which

leaves the vacuum and AdS
3

invariant) have r, s"$1/2. The "rst superscript indicates the
eigenvalues under the global J3

0
generator of S;(2), and the second superscript corresponds to

a global S;(2) exterior automorphism of the algebra which is not associated to a symmetry in the
theory. If we take a state D hT which has ¸

0
"J3

0
, then we see from (5.19) that Q`B

~1@2
D hT has zero

norm, so in a unitary "eld theory it should be zero. Thus, these states are annihilated by Q`B
~1@2

.
Moreover, if a state is annihilated by Q`B

~1@2
then ¸

0
"J3

0
. These states are called right chiral

primaries, and if M̧
0
"JM 3

0
it is a left chiral primary. The possible values of J3

0
for chiral primaries are

bounded by J3
0
4c/6"k. This can be seen by computing the norm of Q`B

~3@2
D hT. Note that k is the

level of the S;(2) current algebra. The values of J3
0

for generic states are not bounded. The spins of
S;(2) current algebra primary "elds are bounded by J3

0
4k/2, which is not the same as the bound

on chiral primaries.
Let us now discuss the structure of the supermultiplets under the S;(1, 1D2) subgroup of the

N"4 algebra [474]. This is the subgroup generated by the supercharges with r, s"$1/2 in
(5.19), plus the global S;(2) generators Ja

0
and the S¸(2,R) subgroup of the Virasoro algebra. The

structure of these multiplets is the following. By acting with QBB
1@2

on a state we lower its energy,
which is the ¸

0
eigenvalue. Energies are all positive in a unitary conformal "eld theory, since

¸
0

eigenvalues are related to scaling dimensions of "elds which should be positive. So, we conclude
that at some point QBB

1@2
will annihilate the state. Such a state is also annihilated by ¸

1
(5.19). We

call such a state a primary, or highest weight, state. Then, we can generate all other states by acting
with QBB

~1@2
. See Fig. 5.4. This will give in general a set of 1#4#6#4#1 states, where we

organized the states according to their level. On each of these states we can then act with arbitrary
powers of ¸

~1
. However, we could also have a short representation where some of the

Q
~1@2

operators annihilate the state. This will happen when ¸
0
"$J3

0
, i.e. only when we have
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a chiral primary (or an antichiral primary). Since by S;(2) symmetry each chiral primary comes
with an antichiral primary, we concentrate on chiral primaries. These short multiplets are of the
form

states J3
0

¸
0

D0T j j

Q~B
~1@2

D 0T j!1/2 j#1/2

Q~`
~1@2

Q~~
~1@2

D 0T j!1 j#1 .

(5.20)

The multiplet includes four states (which are S¸(2,R) primaries), except in the case that j"1/2
when the last state is missing. We get a similar structure if we consider the right-moving part of the
supergroup.

We will "rst consider states that are left and right moving chiral primaries, with ¸
0
"J3

0
and

M̧
0
"JM 3

0
. From now on we drop the indices on J3

0
, JM 3

0
, and denote the chiral primaries by ( j, jM ). By

acting with Q~B
~1@2

and QM ~B
~1@2

we generate the whole supermultiplet. We will calculate the spectrum
of chiral}chiral primaries both in string theory (in the gravity approximation) and in the conformal
"eld theory at the orbifold point. Since these states lie in short representations we might expect that
they remain in short representations also after we deform the theory away from the orbifold point.
Actually this argument is not enough, since in principle short multiplets could combine and
become long multiplets. In the K3 case we can give a better argument. We will see that all chiral
primaries that appear are bosonic in nature, while we see from Fig. 5.4 that we need some bosonic
and some fermionic chiral primaries to make a long multiplet. Therefore, all chiral primaries must
remain for any value of the moduli.

Let us start with the conformal "eld theory. Since these states are protected by supersymmetry
we can go to the orbifold point Sym(M4)k. The chiral primaries in this case can be understood as
follows. In a theory with N"(4, 4) supersymmetry we can do calculations in the RR sector and
then translate them into results about the NS}NS sector. This process is called `spectral #owa, and
it amounts to an automorphism of the N"4 algebra. Under spectral #ow, the chiral primaries of
the NS}NS sector (that we are interested in) are in one-to-one correspondence with the ground
states of the RR sector. It is easier to compute the properties of the RR ground states of the theory.
Orbifold conformal "eld theories, like Sym(M4)k, can be thought of as describing a gas of strings
winding on a circle, the circle where the CFT is de"ned, with total winding number k and moving
on M4. The ground-state energies of a singly wound string and a multiply wound string are the
same if we are in the RR sector. Then, we can calculate a partition function over the RR ground
states. It is more convenient to relax the constraint on the total winding number by introducing
a chemical potential for the winding number, and then we can recover the result with "xed winding
number by extracting the appropriate term in the partition function as in [463]. Since our
conformal "eld theory has "xed k we will be implicitly assuming that we are extracting the
appropriate term from the partition function. The RR ground states for the strings moving on
M4 are the same as the ground states of a quantum mechanical supersymmetric sigma model on
M4. It was shown by Witten [475] that these are in one-to-one correspondence with the harmonic
forms on M4. Let us denote by h

rs
the number of harmonic forms of holomorphic degree r

and antiholomorphic degree s. States with degree r#s odd are fermionic, and states with r#s
even are bosonic. In the case of K3 h

00
"h

22
"h

20
"h

02
"1 and h

11
"20. In the case of
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¹4h
00

"h
22
"h

20
"h

02
"1, h

01
"h

10
"h

12
"h

21
"2, and h

11
"4. A form with degrees (r, s)

gives rise to a state with angular momenta ( j, jI )"((r!1)/2, (s!1)/2). The partition function in the
RR sector becomes [463]

+
kz0

pk¹r
Sym(M4)k

[(!1)2J`2JM yJy6 JM ]"
1

<
nz1

<
r,s

(1!pny(r~1)@2y6 (s~1)@2)(~1)r`s
hrs

, (5.21)

where the trace is over the ground states of the RR sector. Spectral #ow boils down to the
replacement pPpy1@2y6 1@2. Thus, we get the NS}NS partition function, giving a prediction for the
chiral primaries,

+
k

pk¹r
Sym(M4)k

[(!1)2J`2JM yJy6 JM ]"
1

<
nz0

<
r,s

(1!pn`1y(n`r)@2y6 (n`s)@2)(~1)r`s
hrs

, (5.22)

where here the trace is over the chiral}chiral primaries in the NS}NS sector.
Now, we should compare this with supergravity. In supergravity we start by calculating the

spectrum of single-particle chiral}chiral primaries. We then calculate the full spectrum by consider-
ing multiparticle states. Each single-particle state contributes with a factor (1!yjy6 jM )~d(j,jM ) to the
partition function, were d( j, jM ) is the total number of single particle states with these spins. The
supergravity spectrum was calculated in [276,476,477,444]. The number of single-particle states is
given by

+
j,jM

d( j, jM )yjy6 jM" +
n,r,sz0

h
rs
y(n`r)@2y6 (n`s)@2!1 . (5.23)

We have excluded the identity, which is not represented by any state in supergravity. So, the gravity
partition function is given by

¹r
S6'3!

[(!1)2J`2JM yJy6 JM ]
#~# 13*.!3*%4

"

1
<

nz0
<@

r,s
(1!y(n`r)@2y6 (n`s)@2)(~1)r`s

hrs
, (5.24)

where <@ means that we are not including the term with n"r"s"0.
Let us discuss some of the particles appearing in (5.23) and(5.24) more explicitly. Some of them

are special because they carry only left-moving quantum numbers or only right-moving quantum
numbers. For example, we have the (0,1) and (1,0) states that are related to the S;(2)

L
and S;(2)

R
gauge "elds on AdS

3
. These S;(2) symmetries come from the SO(4) isometries of the 3-sphere.

These gauge "elds have a Chern-Simons action [478,136] and they give rise to S;(2) current
algebras on the boundary [23,152]. The chiral primary in the current algebra is the operator J`

~1
,

which has the quantum numbers mentioned above. When we apply Q~~
~1@2

Q~`
~1@2

to this state we get
the left-moving stress tensor. Again, this should correspond to part of the physical modes of gravity
on AdS

3
. Pure gravity in three dimensions is a theory with no local degrees of freedom. In fact, it is

equivalent to an S¸(2,R)]S¸(2,R) Chern}Simons theory [478}481]. This gives rise to some
physical degrees of freedom living at the boundary. It was argued that we get a Liouville theory at
the boundary [482}486], which includes a stress tensor operator. In the ¹4 case we also have some
other special particles which correspond to fermion zero modes (1/2, 0) and (0, 1/2). These fermion
zero modes are the supersymmetric partners of the ;(1) currents associated to isometries of ¹4.
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The six-dimensional theory corresponding to type IIB string theory on ¹4 has 16 vector "elds
transforming in the spinor of SO(5, 5). From the symmetric product we get only eight currents
(4

L
#4

R
). The other eight are presumably related to an extra copy of ¹4 appearing in the CFT due

to the Wilson lines of the ;(1) in ;(Q
5
) [457,487].

Besides these purely left-moving or purely right-moving modes, which are not so easy to see in
supergravity, all other states arise as local bulk excitations of supergravity "elds on AdS

3
and are

clearly present. Higher values of j typically correspond to higher Kaluza}Klein modes of lower
j "elds. More precisely, we have n (1/2, 1/2) states where n"h

11
#1 [276,476,444]. By applying

Q's, each of these states gives rise to four S;(2)-neutral scalar "elds, which have conformal weights
h"hM "1. Therefore, they correspond to massless "elds in space time by (3.14). These are the 4n
moduli of the supergravity compacti"cation, which are identi"ed with the moduli of the conformal
"eld theory. In the conformal "eld theory 4h

11
of them correspond to deformations of each copy of

M4 in the symmetric product, while the extra four are associated to a blowup mode, the blowup
mode of the Z

2
singularity that arises when we exchange two copies of M4. Next, we have n#1

"elds with quantum numbers (1, 1), n of these are higher-order Kaluza}Klein modes of the n "elds
we had before, and the new one corresponds to deformations of the S3. Each of these states gives
rise to S;(2)-neutral "elds with positive mass, since we have to apply Q's twice and we get
h"hM "2. These are the n "xed scalars of the supergravity background plus one more "eld related
to changing the size of the S3. The "elds with j, jM 's above these values are just higher Kaluza}Klein
modes of the "elds we have already mentioned explicitly. See [276,476,444] for a more systematic
treatment and derivation of these results.

Now, we want to compare the supergravity result with the gauge theory results. In (5.22) there is
an `exclusion principlea since the total power of p has to be pk, thus limiting the total number of
particles. In supergravity (5.24) we do not have any indication of this exclusion principle. Even if we
did not know about the conformal "eld theory, from the fact that there is an N"4 superconfor-
mal space-time symmetry we get a bound on the angular momentum of the chiral primaries j4k.
However, this bound is less restrictive than that implied by (5.22). There are multi-particle states
with j(k that are excluded from (5.22). The bounds from (5.22) appear for very large angular
momenta and, therefore, very large energies, where we would not necessarily trust the gravity
approximation. In fact, the gravity result and the conformal "eld theory result match precisely, as
long as the conformal weight or spin of the chiral primaries is j, jM4k/2. One can show that the
gravity description exactly matches the kPR limit of (5.22) [444]. This limit is extracted from
(5.22) by noticing that there is a factor of (1!p) in the denominator, which is related to the identity
operator. So, we can extract the kPR limit by multiplying (5.22) by (1!p) and setting pP1. In
principle, we could get precise agreement between the conformal "eld theory calculation and the
supergravity calculation if we incorporate the exclusion principle by assigning a `degreea to each
supergravity "eld, as explained in [473], and then considering only multiparticle states with degree
smaller than k. One can further wonder whether there is something special that happens at j"k/2,
when the exclusion principle starts making a di!erence. Since we are considering states with high
conformal weight and angular momentum it is natural to wonder whether there are any black hole
states that could appear. There are black holes which carry angular momentum on S3. These black
holes are characterized by the two angular momenta J

L
, J

R
, of S;(2)

L
]S;(2)

R
. The minimum

black hole mass for given angular momenta was given in (5.17), M
.*/

(J
L
, J

R
)"k/2#J2

L
/k#J2

R
/k,

where we used c"6k and (5.4). We see that these masses are always bigger than the mass of the

O. Aharony et al. / Physics Reports 323 (2000) 183}386 315



chiral primary states with angular momenta (J
L
, J

R
), except when J

L
"J

R
"k/2. So we see that

something special is happening at j"k/2, since at this point a black hole appears as a chiral
primary state. Connections between this exclusion principle and quantum groups and non-
commutative geometry were studied in [488,489].

5.3.4. Calculation of the elliptic genus in supergravity
We could now consider states which are left-moving chiral primaries and anything on the

right-moving side. These states are also in small representations, and one might be tempted to
compute the spectrum of chiral primaries at the orbifold point and then try to match it to
supergravity. However, this is not the correct thing to do, and in fact the spectrum does not match
[490]. It is not correct because some chiral primary states could pair up and become very massive
non-chiral primaries. In the case of chiral-anything states, a useful tool to count the number of
states, which gives a result that is independent of the deformations of the theory, is the `elliptic
genusa, which is the partition function

Z
k
"¹r

RR
[(!1)2j`2jMqL0q6 LM 0yj] . (5.25)

This receives contributions only from the left-moving ground states, M̧
0
"0. These states map into

(chiral, anything) under spectral #ow, i.e. states that are chiral primaries on the left-moving side but
are unrestricted on the right-moving side.

The number of states contributing to the elliptic genus goes like e2p
Jnk for large powers qn. This

raised some doubts that (5.25) would agree with supergravity. The elliptic genus diverges when we
take the limit kPR. The origin of this divergence is the contribution of the (2, 0) form, which is
a chiral primary on the left but it carries zero conformal weight on the right. So, we get
a contribution of order k from the fact that this state could be occupied k times without changing
the powers of q or y. The function that has a smooth limit in the kPR limit is then ZNS

k
/k. In the

K3 case this function is

lim
k?=

ZNS
k
k

"

<
mz1

(1!qm@2y1@2)2(1!qm@2y~1@2)2(1!qm@2)20
<

mz1
(1!qm@2ym@2)24(1!qm@2y~m@2)24

. (5.26)

We can now compare this expression to the supergravity result. In the supergravity result, we
explicitly exclude the contribution of the (2, 0) form, since it is directly related to the factor of k
that we extracted, but we keep the contribution of the (0, 2) form and the rest of the "elds. The
supergravity result then agrees precisely with (5.26) [473]. Both in the supergravity calculation and
in the conformal "eld theory calculation at the orbifold point there are many "elds of the form
(chiral, anything), but most of them cancel out to give (5.26). For example, we can see that the only
supergravity single particle states that contribute for large powers of y;1@2 are the (chiral, chiral)
and (chiral, antichiral) states. One can further incorporate the exclusion principle in supergravity
by assigning degrees to the various "elds, and then one "nds that the elliptic genus agrees up to
powers of qh with h4(k#1)/4 [473]. Here again this is the point where a black hole starts
contributing to the elliptic genus. It is an extremal rotating black hole with angular momentum
J
L
"k/2 and J

R
"0, which has ¸

0
"k/4 and M̧

0
"k/2.
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45Con"gurations with NS #uxes that lead to AdS
2d`1

spaces were studied in [514]. It has also been suggested [515]
that (2,1) strings can describe AdS

3
spaces.

5.4. Other AdS
3

compactixcations

We start by discussing the compacti"cations discussed in the last section more broadly, and then
we will discuss other AdS

3
compacti"cations. In the previous section we started out with type IIB

string theory compacti"ed on M4 to six dimensions. The theory has many charges carried by
string-like objects, which come from branes wrapping on various cycles of M4. These charges
transform as vectors under the duality group of the theory SO(5, n), where n"21, 5 for the K3 and
¹4 cases respectively. These 5#n strings correspond to the fundamental and D strings, the NS and
D "ve-branes wrapped on M4, and to D3 branes wrapped on the n#1 two-cycles of M4. A general
charge con"guration is given by a vector qI transforming under SO(5, n). The radius of curvature of
the gravity solution is proportional to q2, R4&q2, where we use the SO(5, n) metric. In the K3 case
q2'0 for supersymmetric con"gurations. The six dimensional space-time theory has 5n massless
scalar "elds, which parameterize the coset manifold SO(5,n)/SO(5)]SO(n) [491]. When we choose
a particular charge vector, with q2'0, we break the duality group to SO(4, n), and out of the
original 5n massless scalars n becomes massive and have values determined by the charges (and the
other scalars) [492]. The remaining 4n scalars are massless and represent moduli of the supergrav-
ity compacti"cation and, therefore, moduli of the dual conformal "eld theory. Note that the
conformal "eld theory involves the instanton moduli space, but here the word `modulia refers to
the parameters of the CFT, such as the shape of ¹4, etc.

If we start moving in this moduli space we sometimes "nd that the gravity solution is best
described by doing duality transformations [454,341]. One interesting region in moduli space is
when the system is best described in terms of a system of NS "vebranes and fundamental strings.
This is the S-dual version of the D1}D5 system that we were considering above. In this NS
background the radius of the S3 and of AdS

3
is R2"Q

5
a@, and it is independent of Q

1
. Actually,

Q
1

only enters through the six dimensional string coupling, which in this case is a "xed scalar
g2
6
"Q

5
/Q

1
. The volume of M4 is a free scalar in this case. The advantage of this background is that

one can solve string theory on it to all orders in a@, since it is a WZW model, actually an
S¸(2,R)]S;(2) WZW model. String propagation in S¸(2,R) WZW models were studied in
[493}513]. Thus, in this case we can also consider states corresponding to massive string modes,
etc. We can also de"ne the space-time Virasoro generators in the full string theory, and check that
they act on string states as they should [506}508].45 In the string theory description the Virasoro
symmetry appears directly in the formalism as a space-time symmetry. One can also study
D-branes in these AdS

3
backgrounds [516]. Conditions for space-time supersymmetry for string

theory on S¸(2,R) WZW backgrounds were studied in [517,518]. In the D1-D5 con"guration it is
much harder to solve string theory, since RR backgrounds are involved. Classical actions for
strings on these backgrounds were written in [519}521]. However, a formulation of string theory
on these backgrounds was proposed in [522] (see also [523,528,524]). For some values of the
moduli the CFT is singular. What this means is that we will have a continuum of states in the
cylinder picture. In the picture with NS charges this happens, for example, when all RR B-"elds on
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46 In the case of ¹4 one can show that the;(1)4 symmetries of the torus can be viewed as the k@PR limit of the large
N"4 algebra [537].

M4 are zero. This continuum of states comes from fundamental strings stretching close to the
boundary of AdS

3
. These states have "nite energy, even though they are long, due to the interaction

with the constant three-form "eld strength, H"dB
NS

, on AdS
3

[340,341].
A simple variation of the previous theme is to quotient (orbifold) the three-sphere by

a Z
N
LS;(2)

L
. This preserves N"(4, 0) supersymmetry. This quotient changes the central charge

of the theory by a factor of N through (5.4) (since the volume of the S3 is smaller by a factor of N).
It is also possible to obtain this geometry by considering the near-horizon behavior of
a D1}D5#KK monopole system, or equivalently a D1}D5 system near an A

N
singularity. It is

possible to analyze the "eld theory by using the methods in [342], and using the above anomaly
argument one can calculate the right-moving central charge. The left-moving central charge should
be calculated by a more detailed argument. When we have NS 5 branes and fundamental strings on
an A

N
singularity, the worldsheet theory is solvable, and one can calculate the spectrum of massive

string states, etc. [525]. One can also consider also both RR and NS #uxes simultaneously [526].
Other papers analyzing aspects of these quotients or orbifolds are [527}530].

A related con"guration arises if we consider M-theory on M6, where M6"¹6, ¹2]K3 or C>
3
,

and we wrap M5 branes on a four-cycle in M6 with non-vanishing triple self-intersection number.
Then, we get a string in "ve dimensions, and the near-horizon geometry of the supergravity
solution is AdS

3
]S2]M6

f
, where the subscript on M6

f
indicates that the vector moduli of M6 are

"xed scalars. In this case we get again an N"(0, 4) theory, and the S;(2)
R

symmetry is associated
to rotations of the sphere. It is possible to calculate the central charge by counting the number of
moduli of the brane con"guration. Some of the moduli correspond to geometric deformations and
some of them correspond to B-"elds on the "ve-brane world-volume [531,532]. A supergravity
analysis of this compacti"cation was done in [444,533].

Another interesting case is string theory compacti"ed on AdS
3
]S3]S3]S1, which has a large

N"4 symmetry [534}536]. This algebra is sometimes called Ac. It includes an S;(2)
k
]

S;(2)
k{
];(1) current algebra. The relative sizes of the levels of the two S;(2) factors are related to

the relative sizes of the radii of the spheres. This case seems to be conceptually simpler than the case
with an M4, since all the space-time dimensions are associated to a symmetry of the system46. In
[534] a geometry like this was obtained from branes, except that the S1 was replaced by R, and it is
not clear which brane con"guration gives the geometry with the S1. This makes it more di$cult to
guess the dual conformal "eld theory. In [535] a CFT dual was proposed for this system in the case
that k"k@. One starts with a theory with a free boson and four free fermions, which has large
N"4 symmetry. Let us call this theory CF¹

3
. Then, we can consider the theory based on the

symmetric product Sym(CF¹
3
)k. The space-time theory has two moduli, which are the radius of the

circle and the value of the RR scalar. These translate into the radius of the compact;(1)-boson in
CF¹

3
and a blow up mode of the orbifold. In [536] a dual CFT was proposed for the general case

(kOk@).
Another interesting example is the D1}D5 brane system in Type I string theory [538}540]. The

N"(0, 4) theory on the D1 brane worldvolume theory encodes in the Yukawa couplings the
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ADHM data for the construction of the moduli space of instantons [541,542]. What distinguishes
the Type I system from the Type IIB case is the SO(32) gauge group in the open string sector.
When the D5 branes wrap a compact space M4 with M4"¹4,K3, the near horizon geometry of
the Type I supergravity solution is AdS

3
]S3]M4 [540]. As in the previous examples, one is lead

to conjecture a duality between Type I string theory on AdS
3
]S3]M4 and the two-dimensional

(0, 4) SCFT in the IR limit of the D1 brane worldvolume theory. The supergroup of the
Type I compacti"cation is S;(1, 1D2)]S¸(2,R)]S;(2), and the Kaluza}Klein spectrum in the
supergravity can be analyzed as in [444]. The correspondence to the two-dimensional SCFT has
not been much explored yet.

The relation between AdS
3

compacti"cations and matrix theory [24] was addressed in [543].

5.5. Pure gravity

One might suspect that the simplest theory we could have on AdS
3

is pure Einstein gravity. In
higher dimensions this is not possible since pure gravity is not renormalizable, so the only known
sensible quantum gravity theory is string theory, but in three dimensions gravity can be rewritten
as a Chern}Simons theory [480,481], and this theory is renormalizable. Gravity in three dimen-
sions has no dynamical degrees of freedom. We have seen, nevertheless, that it has black hole
solutions when we consider gravity with a negative cosmological constant [439] (5.8). So, it should
at least describe the dynamics of these black holes, black hole collisions, etc. It has been argued that
this Chern}Simons theory reduces to a Liouville theory at the boundary [482,484,485,544], with
the right central charge (5.4). Naively, using the Cardy formula, this Liouville theory does not seem
to give the same entropy as the black holes, but the Cardy formula does not hold in this case
(Liouville theory does not satisfy the assumptions that go into the Cardy formula). Hopefully,
these problems will be solved once it is understood how to properly quantize Liouville theory.
Since we have the right central charge it seems that we should be able to calculate the BTZ black
hole entropy [443], but Liouville theory is very peculiar and the entropy seems smaller [545].
Other papers studying AdS pure gravity or BTZ black holes in pure gravity include [546}565,284].

The Chern}Simons approach to gravity has also led to a proposal for a black hole entropy
counting in this pure gravity theory. In that approach the black hole entropy is supposed to come
from degrees of freedom in the Chern}Simons theory that become dynamical when a horizon is
present [566].

One interesting question in three-dimensional gravity is whether we should consider the
Chern}Simons theory on a "xed topology or whether we should sum over topologies. Naively it is
the second possibility, however it could be that the sum over topologies is already included in the
Chern}Simons path integral over a "xed topology.

In any case, three-dimensional pure gravity is part of the full string theory compacti"cations, and
it would be interesting to understand it better.

The situation is similar if one studies pure AdS
3

supergravities [136,483,567].

5.6. Greybody factors

In this section we consider an extremal or near extremal black string in six dimensions. We take
the direction along the string to be compact, with radius R

5
<l

4
. We need to take it to be compact
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47A general supergravity analysis of the various regimes in the D1}D5 system was given in [286].
48Throughout this section we use the six-dimensional Einstein metric, related to the six-dimensional string metric by

g
E
"e~(6g

453
, where /

6
is the six-dimensional dilaton.

since classically an in"nite black string is unstable [568,569]. Here we assume that the temperature
is small enough so that the con"guration is classically stable.47 We take a con"guration with D1
brane charge Q

1
and D5 brane charge Q

5
. The general solution with these charges, and arbitrary

energy and momentum along the string, has the following six dimensional Einstein metric48
[468,570]:

ds2
E
"A1#

r2
0
sinh2a
r2 B

~1@2

A1#
r2
0
sinh2c
r2 B

~1@2

C!dt2#dx2
5
#

r2
0

r2
(coshp dt#sinhpdx

5
)2#A1#

r2
0
sinh2a
r2 Bds2

M
4D

#A1#
r2
0
sinh2a
r2 B

1@2

A1#
r2
0
sinh2c
r2 B

1@2

CA1!
r2
0

r2B
~1

dr2#r2dX2
3D . (5.27)

We consider the case that the internal space M4"¹4. In general, we will also have some scalars
that are non-constant. These become "xed scalars in the near-horizon AdS

3
limit. In this case there

are "ve "xed scalars, which are three self-dual NS B-"elds, a combination of the RR scalar and the
four-form on ¹4, and "nally the volume of ¹4. If we take the "rst four to zero at in"nity they stay
zero throughout the solution. Then, the physical volume of ¹4 is

l(r),Volume/(2p)4a@2"v(1#r2
0
sinh2c/r2)~1(1#r2

0
sinh2a/r2) , (5.28)

where v"l(R) is the value of the dimensionless volume at in"nity. The solution (5.27) is
parameterized by the four independent quantities a, c, p, r

0
. There are two extra parameters which

enter through the charge quantization conditions, which are the radius of the x
5

dimension R
5

and
the volume v of ¹4. The three charges are

Q
1
"

1

4p2a@JvPl*H@"
Jvr2

0
2a@

sinh 2a ,

Q
5
"

1

4p2Jva@PH@"
r2
0

2Jva@
sinh 2c , (5.29)

N"

R2r2
0

2a@2
sinh 2p ,

where * is the Hodge dual in the six dimensions x0,2,x5 and H@ is the RR 3-form "eld. The last
charge N is related to the momentum around the S1 by P

5
"N/R

5
. All three charges are

normalized to be integers.
The ADM energy of this solution is

M"(R
5
r2
0
/2a@2)(cosh2a#cosh 2c#cosh 2p) . (5.30)
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The Bekenstein}Hawking entropy is

S"A
10

/4G(10)
N

"A
6
/4G(6)

N
"(2pR

5
r3
0
/a@2) cosh a cosh c coshp , (5.31)

where A is the area of the horizon and we have used the fact that in the six-dimensional Einstein
metric G(6),E

N
"a@2p2/2. The Hawking temperature is

¹"(1/2pr
0
) cosh a cosh c coshp . (5.32)

The near extremal black string corresponds to the case that R
5

is large and the total mass is just
above the rest energy of the branes. By `rest energya of the branes we mean the mass given by the
BPS bound,

E"M!Q
5
R

5
Jv!(Q

1
R

5
/Jv) . (5.33)

Note that this includes the mass due to the excitations carrying momentum along the circle. In the
limit that a@P0 with E, R

5
and N "xed we automatically go into the regime described by the

conformal "eld theory living on the D1}D5 system which is decoupled. Instead, we are going to
take here a@ small but non-zero, so that we keep some coupling of the CFT to the rest of the degrees
of freedom. The geometry is AdS

3
(locally) close to the horizon, but far away it is just the #at six

dimensional space R1,4]S1. In this limit we can approximate the six-dimensional geometry by

ds2
E
"f~1@2[!dt2#dx2

5
#(r2

0
/r2)(coshpdt#sinhp dx

5
)2]#f 1@2(dr2#r2dX2

3
) , (5.34)

where

f"(1#r2
1
/r2)(1#r2

5
/r2), r2

5
"a@Q

5
Jv, r2

1
"a@Q

1
/Jv . (5.35)

Let us consider a minimally coupled scalar "eld, /, i.e. a scalar "eld that is not a "xed scalar. Let
us send a quantum of that "eld to the black string, and calculate the absorption cross-section for
low energies. The low-energy condition is

u;1/r
5
, 1/r

1
. (5.36)

We will consider here just an s-wave con"guration. We also set the momentum in the direction of
the string of the incoming particle to zero, the general case can be found in [18,571]. Separation of
variables, /"e~*uts(r), leads to the radial equation

[(h/r3)R
r
hr3R

r
#u2f ]s"0, h"1!r2

0
/r2 . (5.37)

Close to the horizon, a convenient radial variable is z"h"1!r2
0
/r2. The matching procedure

can be summarized as follows:
far region:

[(1/r3)R
r
r3R

r
#u2]s"0, s"AJ

1
(ur)/r3@2 ,

near region:

Cz(1!z)R2
z
#A1!i

u
2p¹

H
B(1!z)R

z
#

u2

16p2¹
L
¹

R
Dz*u@4pTHs"0 ,

s"z~*u@4pTHFA!i
u

4p¹
L

,!i
u

4p¹
R

; 1!i
u

2p¹
H

; zB , (5.38)
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where ¹
L
,¹

R
are de"ned in terms of the Hawking temperature ¹

H
and the chemical potential, k,

which is conjugate to momentum on S1:

1/¹
L,R

,(1$k)/¹
H
, ¹

L,R
"r

0
eBp/2pr

1
r
5

. (5.39)

After matching the near and far regions together and comparing the infalling #ux at in"nity and at
the horizon, one arrives at

p
!"4

"p3r2
1
r2
5
u(eu@TH!1)/(eu@2TL!1)(eu@2TR!1) . (5.40)

Notice that this has the right form to be interpreted as the creation of a pair of particles along the
string.

According to the AdS
3
/CF¹

2
correspondence, we can replace the near horizon region by the

conformal "eld theory. The "eld / couples to some operator O in the conformal "eld theory [572]:

S
*/5
"Pdt dx

5
O(t, x

5
)/(t,x

5
, 0) . (5.41)

Then, the absorption cross-section can be calculated by

p&
1
N

i

+
i

+
f
KTf DPdt dx

5
O(t, x

5
)e*k0t`*k5x5DiUK

2

&

1
N

i

+
i
Pe*k0t`*k5x5SiDO(t,x

5
)Os(0, 0)DiT&Pe*k0t`*k5x5SO(t,x

5
)Os(0, 0)Tb , (5.42)

where we have summed over "nal states in the CFT and averaged over initial states. We will
calculate the numerical coe$cients later. The average over initial states is essentially an average
over a thermal ensemble, since the number of states is very large so the microcanonical ensemble is
the same as a thermal ensemble. So, the "nal result is that we have to compute the two-point
function of the corresponding operator over a thermal ensemble. This essentially translates into
computing the correlation function on the Euclidean cylinder, and the result is proportional to
(5.40) [16,573,572]. This argument reproduces the functional dependence on u of (5.40). For other
"elds (non-minimally coupled) the functional dependence on u is determined just in terms of the
conformal weight of the associated operator.

Let us emphasize that the matching procedure (5.38) is valid only in the low-energy regime (5.36).
In this regime the typical gravitational size of the con"guration, which is of order r

5
, is much

smaller than the Compton wavelength of the particle. See Fig. 1.4. In fact, note that in the
connecting region r&r

5
the function / does not vary very much. Let us see this more explicitly. We

see from (5.37) that we can approximate the equation by something like u2r2
5
/#/A"0. From

(5.36) we see that the variation of / is very small over this connecting region. Furthermore, since
absorption will turn out to be small, we can approximate the value of / at the origin by the value it
has in #at space. So, we can directly match the values of / at the origin for a wave propagating in
#at space with the value of / near the boundary of AdS

3
.

In order to match the numerical coe$cient we need to determine the numerical coe$cient in
the two-point function of the operator O. This can be done for minimally coupled scalars using
a non-renormalization theorem, as it was done for the case of absorption of gravitons on a D3
brane. The argument is the following. We "rst notice that the moduli space of minimally coupled
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scalars in supergravity is SO(4, 5)/SO(4)]SO(5). This is a homogeneous space with some metric, so
the gravity Lagrangian in spacetime will include

S"
1

2i2
6
Pd6xg

ab
(/)R/aR/b . (5.43)

The "elds /a couple to operators O
a
, and we are interested in computing

SO
a
(x)O

b
(0)T"G

ab
/x4 . (5.44)

The operators O
a
are a basis of marginal deformations of the CFT, and G

ab
is the metric on the

moduli space of the CFT. Since the conformal "eld theory has N"(4, 4) supersymmetry, this
metric is highly constrained. In fact, it was shown in [574] that it is the homogeneous metric on
SO(4, 5)/SO(4)]SO(5) (up to global identi"cations). Since the CFT moduli space is the same as the
supergravity moduli space, the two metrics could di!er only by an overall numerical factor
G

ab
"Dg

ab
, where D is a number. In order to compute this number we can go to a point in moduli

space where the CFT is just the orbifold Sym(¹4)k. This point corresponds to having a single D5
brane and k"Q

5
Q

1
D1 branes. We can also choose the string coupling to be arbitrarily small. For

example, we can choose the scalar / to be an o!-diagonal component of the metric on ¹4. The
absorption cross-section calculation then reduces to the one done in [16], which we now review.
We take the metric on the four-torus to be g

ij
"d

ij
#h

ij
, where h is a small perturbation, and

choose /"h
12

. The bulk action for / then reduces to

1
2i2

6
Pd6x 1

2
(R/)2 . (5.45)

The coupling of h to the "elds on the D1 branes can be derived by expanding the Born-Infeld
action. The leading term is

S"
1

2pg
4
a@Pdt dx

5
[1
2
(RXi)2#h

12
(q,p, x"0)RX1RX2#fermions] . (5.46)

To extract the cross-section we take R
5
"R, but the volume of the transverse space < "nite, and

we use the usual 2d S-matrix formulas:

1

J2i
6

/(t, x)"+
k P

dk
5

(2p)
1

J<2k0
(a12

k
e*k >x#h.c.) ,

1

J2pg
4
a@

Xi(t,x5)"P
dk

5
2p

1

J2k0
(ai

k
e*k >x#h.c.) ,

DiIT"(a12
k

)sD0T, D fI T"(a1
p
)s(a2

q
)sD0T , (5.47)
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1
Q

5
2k02p02q0P
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dq5
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p
!"4

"<C(u)"p3a@2Q
1
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5
u .
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Since we have put the four transverse dimensions into a box of volume <, the #ux of the
h
ij

gravitons on the brane is F"1/<. To "nd the cross-section we divide the net decay rate by the
#ux. The unusual factors of J2i

6
and 1/J2pg

4
a@ come from the coe$cients of the kinetic terms for

h
12

and Xi (5.45), (5.46). The leading factor of 2 in the equation for C(k0) in (5.47) is there because
there are two distinguishable "nal states that can come out of a given h

12
initial state: an X1 boson

moving left and an X2 boson moving right, or X1 moving right and X2 moving left. The factor of
Q

1
Q

5
comes from the fact that we have Q

1
Q

5
D1 branes. Note that the delta function constraints

plus the on shell conditions imply that p0"q0"p5"!q5"u/2 and p ) q"u2/2.
The "nal answer in (5.47) agrees with the zero temperature limit of (5.40). As we remarked before,

the thermal-looking factors in (5.40) can be derived just by doing a calculation of the two point
function on the cylinder [572]. Finally, we should remark that this calculation implies that the
metric on the moduli space of the CFT has an overall factor of k"Q

1
Q

5
as compared with

the metric that appears in the six dimensional gravity action (5.43). This blends in perfectly with
the expectations from AdS

3
/CFT

2
, since in the AdS

3
region, by the time we go down to three

dimensions, we get factors of the volume of the S3 and the radius of AdS
3
which produce the correct

factor of k in the gravity answer for the metric on the moduli space.
Of course, this absorption cross-section calculation is also related to the time reversed process of

Hawking emission. Indeed, the Hawking radiation rates calculated in gravity and in the conformal
"eld theory coincide.

Many other greybody factors were calculated and compared with the "eld theory predictions
[17,571,572,575}589,71,64]. In some of these references the `e!ective stringa model is mentioned.
This e!ective string model is essentially the conformal "eld theory at the orbifold point Sym(¹4)k.
Some of the gravity calculations did not agree with the e!ective string calculation. Typically that
was because either the energies considered were not low enough, or because one needed to take into
account the e!ect of the deformation in the CFT away from the symmetric product point in the
moduli space.

5.7. Black holes in xve dimensions

If we Kaluza}Klein reduce, using [590,591], the metric (5.27) on the circle along the string, we get
a "ve-dimensional charged black hole solution:

ds2
5
"!j~2@3(1!r2

0
/r2)dt2#j1@3[(1!r2

0
/r2)~1dr2#r2dX2

3
] , (5.48)

where

j"(1#r2
0
sinh2a/r2)(1#r2

0
sinh2c/r2)(1#r2

0
sinh2p/r2) . (5.49)

This is just the "ve-dimensional Schwarzschild metric, with the time and space components
rescaled by di!erent powers of j. The solution is manifestly invariant under permutations of the
three boost parameters, as required by U-duality. The event horizon is clearly at r"r

0
. The

coordinates we have used present the solution in a simple and symmetric form, but they do not
always cover the entire spacetime. When all three charges are nonzero, the surface r"0 is a smooth
inner horizon. This is analogous to the situation in four dimensions with four charges [592,593].

The mass, entropy and temperature of this solution are the same as those calculated above for
the black string (5.30)}(5.32). It is interesting to take the extremal limit r

0
P0 with r

0
ec, r

0
ea, r

0
ep
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"nite and nonzero. This is an extremal black hole solution in "ve dimensions with a non-singular
horizon which has non-zero horizon area. The entropy becomes

S"2pJQ
1
Q

5
N , (5.50)

which is independent of all the continuous parameters in the theory, and depends only on the
charges (5.29). We can calculate this entropy as follows [13]. These black hole states saturate the
BPS bound, so they are BPS states. Thus, we should "nd an `indexa, which is a quantity that is
invariant under deformations and counts the number of BPS states. Such an index was computed
in [13] for the case where the internal space was M4"K3 and in [457] for M4"¹4. These indices
are also called helicity supertrace formulas [594]. Once we know that they do not receive
contributions from non-BPS quantities, we can change the parameters of the theory and go to
a point where we can do the calculation, for example, we can take R

5
to be large and then go to the

point where we have the Sym(M4)k description.
It is interesting that we can also consider near-extremal black holes, in the approximation that

the contribution to the mass of two of the charges is much bigger than the third and much bigger
than the mass above extremality. This region in parameter space is sometimes called the `dilute
gasa regime. In the "ve dimensional context it is natural to take R

5
&l

4
, and at "rst sight we would

not expect the CFT description to be valid. Nevertheless, it is `experimentallya observed that the
absorption cross section is still (5.40), since the calculation is exactly the same as the one we did
above. This suggests that the CFT description is also valid in this case. A qualitative explanation of
this fact was given in [465], where it was observed that the the strings could be multiply wound
leading to a very low energy gap, much lower than 1/R

5
, and of the right order of magnitude as

expected for a 5d black hole.
Almost all that we said in this subsection can be extended to four-dimensional black holes.

6. Other AdS spaces and non-conformal theories

6.1. Other branes

6.1.1. M5 branes
There exist six-dimensional N"(2, 0) SCFTs, which have 16 supercharges, and are expected to

be non-trivial isolated "xed points of the renormalization group in six dimensions (see [91] and
references therein). As a consequence, they have neither dimensionful nor dimensionless para-
meters. These theories have an Sp(2)KSO(5) R-symmetry group.

The A
N~1

(2, 0) theory is realized as the low-energy theory on the world-volume of N coincident
M5 branes ("ve branes of M theory). The N"(2, 0) supersymmetry algebra includes four real
spinors of the same chirality, in the 4 of SO(5). Its only irreducible massless matter representation
consists of a 2-form Bkl with a self-dual "eld strength, "ve real scalars and fermions. It is called
a tensor multiplet. For a single 5-brane the "ve real scalars in the tensor multiplet de"ne
the embedding of the M5 brane in 11 dimensions. The R-symmetry group is the rotation group
in the "ve dimensions transverse to the M5 world-volume, and it rotates the "ve scalars. The
low-energy theory on the moduli space of #at directions includes r tensor multiplets (where for the
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49Our conventions are such that the tension of the M2 brane is ¹
2
"1/(2p)2l3

P
.

A
N~1

theories r"N!1). The moduli space is parametrized by the scalars in the tensor multiplets.
It has orbifold singularities (for the A

N~1
theory it is R5(N~1)/S

N
) and the theory at the singularities

is superconformal. The self-dual 2-form Bkl couples to self-dual strings. At generic points on the
moduli space these strings are BPS saturated, and at the superconformal point their tension goes
to zero.

The A
N~1

(2, 0) superconformal theory has a matrix-like DLCQ description as quantum
mechanics on the moduli space of A

N~1
instantons [595]. In this description the chiral primary

operators are identi"ed with the cohomology with compact support of the resolved moduli space of
instantons, which is localized at the origin [596]. Their lowest components are scalars in the
symmetric traceless representations of the SO(5) R-symmetry group.

The 11-dimensional supergravity metric describing N M5 branes is given by49

ds2"f~1@3A!dt2#
5
+
i/1

dx2
i B#f 2@3(dr2#r2 dX2

4
) ,

f"1#pNl3
P
/r3 , (6.1)

and there is a 4-form #ux of N units on the S4.
The near horizon geometry of (6.1) is of the form AdS

7
]S4 with the radii of curvature

R
AdS

"2R
S
4"2l

P
(pN)1@3. Note that since R

AdS
OR

S
4 this background is not conformally #at,

unlike the AdS
5
]S5 background discussed above. Following similar arguments to those of

Section 3.1 leads to the conjecture that the A
N~1

(2, 0) SCFT is dual to M theory on AdS
7
]S4 with

N units of 4-form #ux on S4 [5].
The 11-dimensional supergravity description is applicable for large N, since then the curvature is

small in Planck units. Corrections to supergravity will go like positive powers of l
P
/R

AdS
&N~1@3;

the supergravity action itself is of order M9
P
&N3 (instead of N2 in the AdS

5
]S5 case). The known

corrections in M theory are all positive powers of l3
P
&1/N, suggesting that the (2, 0) theories have

a 1/N expansion at large N. The bosonic symmetry of the supergravity compacti"cation is
SO(6, 2)]SO(5). The SO(6, 2) part is the conformal group of the SCFT, and the SO(5) part is its
R-symmetry.

The Kaluza}Klein excitations of supergravity contain particles with spin less than two, so they
fall into small representations of supersymmetry. Therefore, their masses are protected from
quantum (M theory) corrections. As in the other examples of the duality, these excitations
correspond to chiral primary operators of the A

N~1
(2, 0) SCFT, whose scaling dimensions are

protected from quantum corrections. The spectrum of Kaluza}Klein harmonics of supergravity on
AdS

7
]S4 was computed in [597]. The lowest components of the SUSY multiplets are scalar "elds

with

m2R2
AdS

"4k(k!3), k"2, 3,2 . (6.2)

They fall into the kth-order symmetric traceless representation of SO(5) with unit multiplicity.
The k"1 excitation is the singleton that can be gauged away except on the boundary of AdS. It
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50The DLCQ description corresponded to the theory including the free tensor multiplet, so it included also the k"1
operator.

decouples from the other operators and can be identi"ed with the free `center of massa tensor
multiplet on the "eld theory side.

Using the relation between the dimensions of the operators D and the masses m of the
Kaluza}Klein excitations m2R2

AdS
"D(D!6), the dimensions of the corresponding operators in

the SCFT are D"2k, k"2, 3,2 [598}601]. These are the dimensions of the chiral primary
operators of the A

N~1
(2, 0) theory as found from the DLCQ description.50 The expectation values

of these operators parametrize the space of #at directions of the theory, (R5)N~1/S
N
. The dimen-

sions of these operators are the same as the naive dimension of the product of k free tensor
multiplets, though there is no good reason for this to be true (unlike the d"4 N"4 theory, where
the dimension had to be similar to the free "eld dimension for small j, and then for the chiral
operators it could not change as we vary j). For large N, the k"2 scalar "eld with D"4 is the only
relevant deformation of the SCFT and it breaks the supersymmetry. All the non-chiral "elds
appear to have large masses in the large N limit, implying that the corresponding operators have
large dimensions in the "eld theory.

The spectrum includes also a family of spin one Kaluza}Klein excitations that couple to 1-form
operators of the SCFT. The massless vectors in this family couple to the dimension "ve R-
symmetry currents of the SCFT. The massless graviton couples to the stress-energy tensor of the
SCFT. As in the d"4 N"4 case, the chiral "elds corresponding to the di!erent towers of
Kaluza}Klein harmonics are related to the scalar operators associated with the Kaluza}Klein
tower (6.2) by the supersymmetry algebra. For each value of (large enough) k, the SUSY multiplets
include one "eld in each tower of Kaluza}Klein states. Its SO(5) representation is determined by
the representation of the scalar "eld. For instance, the R-symmetry currents and the energy-
momentum tensor are in the same supersymmetry multiplet as the scalar "eld corresponding to
k"2 in Eq. (6.2).

As we did for the D3 branes in Section 4.1, we can place the M5 branes at singularities and obtain
other dual models. If we place the M5 branes at the origin of R6]R5/C where C is a discrete
subgroup of the SO(5) R-symmetry group, we get AdS

7
]S4/C as the near-horizon geometry. With

CLS;(2)LSO(5) which is an ADE group we obtain theories with (1, 0) supersymmetry. The
analysis of these models parallels that of Section 4.1.1. In particular, the matching of the C-
invariant supergravity Kaluza}Klein modes and the "eld theory operators has been discussed
in [602].

Another example is the D
N

(2, 0) SCFT. It is realized as the low-energy theory on the world-
volume of N M5 branes at an R5/Z

2
orientifold singularity. The Z

2
re#ects the "ve coordinates

transverse to the M5 branes and changes the sign of the 3-form "eld C of 11-dimensional
supergravity. The near-horizon geometry is the smooth space AdS

7
]RP4 [598]. In the supergrav-

ity solution we identify the "elds at points on the sphere with the "elds at antipodal points, with
a change of the sign of the C "eld. This identi"cation projects out half of the Kaluza}Klein
spectrum and only the even k harmonics remain. An additional chiral "eld arises from a M2 brane
wrapped on the 2-cycle in RP4, which is non-trivial due to the orientifolding; this is analogous to

O. Aharony et al. / Physics Reports 323 (2000) 183}386 327



the Pfa$an of the SO(2N) d"4 N"4 SYM theories which is identi"ed with a wrapped 3-brane
[214] (as discussed in Section 4.1.2). The dimension of this operator is D"2N. To leading order in
1/N the correlation functions of the other chiral operators are similar to those of the A

N~1
SCFT.

The D
N

theories also have a DLCQ Matrix description as quantum mechanics on the moduli space
of D

N
instantons [595]. This moduli space is singular. One would expect to associate the spectrum

of chiral primary operators with the cohomology with compact support of some resolution of this
space, but such a resolution has not been constructed yet.

A di!erent example is the (1, 0) six-dimensional SCFT with E
8
global symmetry, which is realized

on the worldvolume of M5 branes placed on top of the nine brane in the Hor\ ava-Witten [603]
compacti"cation of M theory on R10]S1/Z

2
. The conjectured dual description is in terms of

M theory on AdS
7
]S4/Z

2
[604]. The Z

2
action has a "xed locus AdS

7
]S3 on which a ten-

dimensionalN"1 E
8
vector multiplet propagates. The chiral operators fall into short representa-

tions of the supergroup OSp(6, 2D2). In [605] E
8

neutral and charged operators of the (1, 0) theory
were matched with Kaluza}Klein modes of bulk "elds and "elds living on the singular locus,
respectively.

Correlation functions of chiral primary operators of the large N (2, 0) theory can be computed by
solving classical di!erential equations for the supergravity "elds that correspond to the "eld theory
operators. Two- and three-point functions of the chiral primary operators have been computed in
[606].

The (2, 0) SCFT has Wilson surface observables [607], which are generalizations of the operator
given by =(R)"exp(i:RBkl dpkl) in the theory of a free tensor multiplet, where R is a two-
dimensional surface. A prescription for computing the Wilson surface in the dual M theory picture
has been given in [292]. It amounts, in the supergravity approximation, to the computation of the
minimal volume of a membrane bounded at the boundary of AdS

7
by R. The reasoning is

analogous to that discussed in Section 3.5, but here instead of the strings stretched between
D-branes, M2 branes are stretched between M5 branes. Such an M2 brane behaves as a string on
the M5 branes world-volume, with a tension proportional to the distance between the M5 branes.
By separating one M5 brane from N M5 branes this string can be used as a probe of the SCFT on
the world-volume of the N M5 branes, analogous to the external quarks discussed in Section 3.5. If
we consider two such parallel strings with length l and distance ¸ and of opposite orientation, the
resulting potential per unit length is [292]

</l"!c N/¸2 , (6.3)

where c is a positive numerical constant. The dependence on ¸ is as expected from conformal
invariance. The procedure for Wilson surface computations has been applied also to the com-
putation of the operator product expansion of Wilson surfaces, and the extraction of the OPE
coe$cients of the chiral primary operators [606].

The six dimensional A
N~1

theory can be wrapped on various two dimensional manifolds. At
energies lower than the inverse size of the manifolds, the low-energy e!ective description is in terms
of four-dimensional S;(N) gauge theories. The two-dimensional manifold and its embedding in
11-dimensions determine the amount of supersymmetry of the gauge theory. The simplest case is
a wrapping on ¹2 which preserves all the supersymmetry. This results in the N"4 S;(N) SCFT,
with the complex gauge coupling being the complex structure q of the torus. In general, when the
two dimensional manifold is a holomorphic curve (Riemann surface), called a supersymmetric
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cycle, the four dimensional theory is supersymmetric. For N"2 supersymmetric gauge theories
the Riemann surface is the Seiberg}Witten curve and its period matrix gives the low energy
holomorphic gauge couplings q

ij
(i, j"1,2, N!1) [608}610,351]. For N"1 supersymmetric

gauge theories the Riemann surface has genus zero and it encodes holomorphic properties of the
supersymmetric gauge theory, namely the structure of its moduli space of vacua [611]. For
a generic real two-dimensional manifold the four-dimensional theory is not supersymmetric. Some
qualitative properties of the QCD string [612] and the h vacua follow from the wrapping
procedure. Of course, in the non-supersymmetric cases the subtle issue of stability has to be
addressed as discussed in Section 4.1. In general it is not known how to compute the near-horizon
limit of 5-branes wrapped on a general manifold. At any rate, it seems that the theory on M5 branes
is very relevant to the study of four-dimensional gauge theories. The M5 branes theory will be one
starting point for an approach to studying pure QCD in Section 6.2.

Other works on M5 branes in the context of the AdS/CFT correspondence are [613}624].

6.1.2. M2 branes
N"8 supersymmetric gauge theories in three dimensions can be obtained by a dimensional

reduction of the four dimensional N"4 gauge theory. The automorphism group of the N"8
supersymmetry algebra is SO(8). The fermionic generators of the N"8 supersymmetry algebra
transform in the real two-dimensional representation of the SO(2, 1) Lorentz group, and in the
8s representation of the SO(8) automorphism algebra. The massless matter representation of the
algebra consists of eight bosons in the 8v and eight fermions in the 8c of SO(8). Viewed as
a dimensional reduction of the vector multiplet of the four dimensionalN"4 theory which has six
real scalars, one extra scalar is the component of the gauge "eld in the reduced dimension and the
second extra scalar is the dual to the vector in three dimensions.

An N"8 supersymmetric Yang}Mills Lagrangian does not possess the full SO(8) symmetry. It
is only invariant under an SO(7) subgroup. At long distances it is expected to #ow to a superconfor-
mal theory that exhibits the SO(8) R-symmetry (see [91] and references therein). The #ow will be
discussed in the next section. This IR conformal theory is realized as the low-energy theory on the
worldvolume of N overlapping M2 branes. For a single M2 brane, the eight real scalars de"ne its
embedding in eleven dimensions. The R-symmetry group is the rotation group in the eight
transverse dimensions to the M2 world-volume, which rotates the eight scalars.

The 11-dimensional supergravity metric describing N M2 branes is given by

ds2"f~2@3(!dt2#dx2
1
#dx2

2
)#f 1@3(dr2#r2dX2

7
) ,

f"1#32p2Nl6
P
/r6 ,

(6.4)

and there are N units of #ux of the dual to the 4-form "eld on S7.
The near horizon geometry of (6.4) is of the form AdS

4
]S7 with the radii of curvature

2R
AdS

"R
S
4"l

P
(32p2N)1@6. One conjectures that the three-dimensional N"8 SCFT on the

world-volume of N M2 branes is dual to M theory on AdS
4
]S7 with N units of #ux of the dual to

the 4-form "eld on S7 [5].
The supergravity description is applicable for large N. Corrections to supergravity will be

proportional to positive powers of l
P
/R

AdS
&N~1@6; the known corrections are all proportional to

powers of l3
P
&N~1@2. The supergravity action itself is in this case proportional to M9

P
&N3@2, so
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this will be the leading behavior of all correlation functions in the large N limit. The bosonic
symmetry of the supergravity compacti"cation is SO(3, 2)]SO(8). As is standard by now, the
SO(3, 2) part is identi"ed with the conformal group of the three dimensional SCFT, and the SO(8)
part is its R-symmetry. The fermionic symmetries may also be identi"ed. We can relate the chiral
"elds of the SCFT with the Kaluza}Klein excitations of supergravity whose spectrum was analyzed
in [625,626].

The lowest component of the supersymmetry multiplets is a family of scalar excitations with

m2R2
AdS

"1
4
k(k!6), k"2, 3,2 . (6.5)

They fall into the kth-order symmetric traceless representation of SO(8) with unit multiplicity. The
dimensions of the corresponding operators in the N"8 SCFT are D"k/2, k"2, 3,2
[598,599,601]. Their expectation values parametrize the space of #at directions of the theory,
(R8)N~1/S

N
. When viewed as the IR limit of the three-dimensionalN"8 Yang}Mills theory, some

of these operators can be identi"ed as Tr(/I12/Ik) where /I are the seven scalars of the vector
multiplet. As noted above, the eighth scalar arises upon dualizing the vector "eld, which we can
perform explicitly only in the abelian case. The other chiral "elds are all obtained by the action of
the supersymmetry generators on the "elds of (6.5).

Unlike the (2, 0) SCFTs, the d"3, N"8 theories do not have a simple DLCQ description
(see [627]), and the spectrum of their chiral operators is not known. The above spectrum is the
prediction of the conjectured duality, for large N.

We can place the M2 branes at singularities and obtain other dual models, as in Section 4.1. If we
place the M2 branes at the origin of R3]R8/C with C a discrete subgroup of the SO(8) R-symmetry
group, we get AdS

4
]S7/C as the near horizon geometry. One class of models is when

CLS;(2)]S;(2) is a cyclic group. It is generated by multiplying the complex coordinates
z
1,2,3,4

of C4KR8 by diag(e2p*@k, e~2p*@k, e2p*a@k, e~2p*a@k) for relatively prime integers a, k. When
a"1, k"2 the near horizon geometry is AdS

4
]RP7 with a dual N"8 theory, which is the IR

limit of the SO(2N) gauge theory [598]. As in Section 4.1.2, one can add a discrete theta angle to get
additional theories [628,629]. When a"$1, k'2, one gets N"6 supersymmetry, while for
aO$1 the supersymmetry is reduced to N"4. Other models are obtained by non cyclic C. As
for the D3 branes [345] and the M5 branes [602], the C-invariant supergravity Kaluza}Klein
modes and the "eld theory operators of some of these models have been analyzed in [630].

Another class of models is obtained by putting the M2 branes at hypersurface singularities
de"ned by the complex equation

x2#y2#z2#v3#w6k~1"0 , (6.6)

where k is an integer. The near-horizon geometry is of the form AdS
4
]H, where H is topologically

equivalent to S7 but in general not di!eomorphic to it. Some of these examples, k"1,2, 28,
correspond to the known exotic seven spheres. The expected supersymmetry is at least N"2 and
may be N"3, depending on whether the R-symmetry group corresponding to the isometry group
of the metric on the exotic seven spheres is SO(2) or SO(3). An example with N"1 supersymmetry
is when H is the squashed seven sphere which is the homogeneous space (Sp(2)]Sp(1))/
(Sp(1)]Sp(1)). In this case the R-symmetry group is trivial (SO(1)).

A general classi"cation of possible near-horizon geometries of the form AdS
4
]H and related

SCFTs in three dimensions is given in [331,330]. Most of these SCFTs have not been explored yet.
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Other works on M2 branes in the context of the AdS/CFT correspondence are
[631}640,398,337].

6.1.3. Dp branes
Next, we discuss the near-horizon limits of other Dp branes. They give spaces which are di!erent

from AdS, corresponding to the fact that the low-energy "eld theories on the Dp branes are not
conformal.

The Dp branes of the type II string are charged under the Ramond}Ramond (p#1)-form
potential. Their tension is given by ¹

p
K1/g

4
lp`1
4

and is equal to their Ramond}Ramond charge.
They are BPS saturated objects preserving half of the 32 supercharges of Type II string theories.
The low-energy world-volume theory of N #at coinciding Dp branes is thus invariant under 16
supercharges. It is the maximally supersymmetric (p#1)-dimensional Yang}Mills theory with
;(N) gauge group. Its symmetry group is ISO(1, p)]SO(9!p), where the "rst factor is the
(p#1)-dimensional PoincareH group and the second factor is the R-symmetry group. The theory
can be obtained as a dimensional reduction of N"1 SYM in ten dimensions to (p#1)
dimensions. Its bosonic "elds are the gauge "elds and 9!p scalars in the adjoint representation of
the gauge group. The scalars parametrize the embedding of the Dp branes in the 9!p transverse
dimensions. The SO(9!p) R-symmetry group is the rotation group in these dimensions, and the
scalars transform in its vector representation. In the following, we will discuss the decoupling limit
of the brane world-volume theory from the bulk and the regions of validity of di!erent descriptions.

The Yang}Mills gauge coupling in the Dp-brane theory is given by

g2
YM

"2(2p)p~2g
4
lp~3
4

. (6.7)

The decoupling from the bulk ("eld theory) limit is the limit l
4
P0 where we keep the Yang}Mills

coupling constant and the energies "xed. For p43 this implies that the theory decouples from the
bulk and that the higher g

4
and a@ corrections to the Dp brane action are suppressed. For p'3, as

seen from (6.7), the string coupling goes to in"nity and we need to use a dual description to analyze
this issue.

Let u,r/a@ be a "xed expectation value of a scalar. At an energy scale u, the dimensionless
e!ective coupling constant of the Yang}Mills theory is

g2
%&&
&g2

YM
Nup~3 . (6.8)

The perturbative Yang}Mills description is applicable when g2
%&&
;1.

The ten-dimensional supergravity background describing N Dp branes is given by the string
frame metric

ds2"f~1@2A!dt2#
p
+
i/1

dx2
i B#f 1@2

9
+

i/p`1

dx2
i

,

f"1#c
p
g2
YM

N/l4
4
u7~p , (6.9)

with a constant c
p
"26~2pp(9~3p)@2C((7!p)/2). The background has a Ramond}Ramond (p#1)-

form potential A
02p

"(1!f ~1)/2, and a dilaton

e~2((~(=)"f (p~3)@2 . (6.10)
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After a variable rede"nition

z"
2Jc

p
g2
YM

N
(5!p)u(5~p)@2

, (6.11)

the "eld theory limit of the metric (6.9) for p(5 takes the form [641,642]

ds2"a@A
2

5!pB
(7~p)@(5~p)

(c
p
g2
YM

N)1@(5~p)z(3~p)@(5~p)

]G
!dt2#dx2#dz2

z2
#

(5!p)2
4

dX2
8~pH, (6.12)

with the dilaton

e(&g(7~p)@2
%&&

/N . (6.13)

The curvature associated with the metric (6.12) is

R&1/l2
4
g
%&&

. (6.14)

In the form of the metric (6.12) it is easy to see that the UV/IR correspondence, as described in
Section 3.1.3, leads to the relationship j&z between wavelengths in the dual-"eld theories and
distances in the gravity solution. Through (6.11) we can then relate energies in the "eld theory to
distances in the u variable.

In the limit of in"nite u the e!ective string coupling (6.13) vanishes for p(3. This corresponds to
the UV freedom of the Yang}Mills theory. For p'3 the coupling increases and we have to use
a dual description. This corresponds to the fact that the Yang}Mills theory is non renormalizable
and new degrees of freedom are required at short distances to de"ne the theory. The isometry
group of the metric (6.12) is ISO(1, p)]SO(9!p). The "rst factor corresponds to the PoincareH
symmetry group of the Yang}Mills theory and the second factor corresponds to its R-symmetry
group.

For each Dp brane we can plot a phase diagram as a function of the two dimensionless
parameters g

%&&
and N [641]. Di!erent regions in the phase diagram have a good description in

terms of di!erent variables. As an example, consider the D2 branes in Type IIA string theory. The
dimensionless e!ective gauge coupling (6.8) is now g2

%&&
&g2

YM
N/u. The perturbative Yang}Mills

description is valid for g
%&&
;1. When g

%&&
&1 we have a transition from the perturbative

Yang}Mills description to the Type IIA supergravity description. The Type IIA supergravity
description is valid when both the curvature is string units (6.14) and the e!ective string coupling
(6.13) are small. This implies that N must be large.

When g
%&&
'N2@5 the e!ective string coupling becomes large. In this region we grow the 11th

dimension x
11

and the good description is in terms of an 11-dimensional theory. We can uplift
the D2 brane solution (6.12) and (6.13) to an eleven-dimensional background that reduces to the
ten-dimensional background upon Kaluza}Klein reduction on x

11
. This can be done using the

relation between the ten-dimensional Type IIA string metric ds2
10

and the 11-dimensional metric
ds2

11
,

ds2
11
"e4(@3(dx2

11
#Ak dxk)2#e~2(@3ds2

10
. (6.15)
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Fig. 6.1. The di!erent descriptions of the D2 brane theory as a function of the energy scale u. We see the #ow from the
high-energy N"8 super-Yang}Mills theory to the low-energy N"8 SCFT.

/ and Ak are the Type IIA dilaton and RR gauge "eld. The 4-form "eld strength is independent
of x

11
.

The curvature of the 11-dimensional metric in 11-dimensional Planck units l
P

is given by

R&e2(@3/l2
P
g
%&&
&g2@3

%&&
/l2
P
N2@3 . (6.16)

When the curvature (6.16) is small we can use the 11-dimensional supergravity description.
The metric (6.15) corresponds to the M2 branes solution smeared over the transverse direction

x
11

. The near-horizon limit of the supergravity solution describing M2 branes localized in the
compact dimension x

11
has the form (6.4), but with a harmonic function f of the form

f"
=
+

n/~=

32p2l6
P
N

(r2#(x
11
!x0

11
#2pnR

11
)2)3

, (6.17)

where r is the radial distance in the seven non-compact transverse directions and x
11

&

x
11
#2pR

11
. x0

11
corresponds to the expectation value of the scalar dual to the vector in the

three-dimensional gauge theory. The expression for the harmonic function (6.17) can be Poisson
resummed at distances much larger than R

11
"g2

YM
l2
S
, leading to

f"
6p2Ng2

YM
l4
S
u5

#O(e~u@g2YM) . (6.18)

The di!erence between the localized M2 branes solution and the smeared one is the exponential
corrections in (6.18). They can be neglected at distances u<g2

YM
, or in terms of the dimensionless

parameters when g
%&&

;N1@2. According to (6.11) this corresponds to distance scales in the "eld
theory of order JN/g2

YM
. In this region we can still use the up lifted D2 brane solution since it is the

same as the one coming from (6.17) up to exponentially small corrections. When g
%&&
<N1@2, which

corresponds to very low energies u;g2
YM

, the sum in (6.17) is dominated by the n"0 contribution.
This background is of the form (6.4) (with f"32p2Nl6

P
/r6), namely the near-horizon limit of M2

branes in 11 non-compact dimensions. This is the superconformal theory which we discussed in the
previous section. In Fig. 6.1 we plot the transition between the di!erent descriptions as a function of
the energy scale u. We see the #ow from the high-energy N"8 super-Yang}Mills theory realized
on the world-volume of D2 branes to the low-energy N"8 SCFT realized on the world-volume
on M2 branes.

A similar analysis can be done for the other Dp branes of the Type II string theories. In the D0
branes case one starts at high energies with a perturbative super quantum mechanics description.
At intermediate energies the good description is in terms of the Type IIA D0 brane solution. At low
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energies the theory is expected to describe matrix black holes [643]. In the D1 branes case one
starts in the UV with a perturbative super Yang}Mills theory in two dimensions. In the intermedi-
ate region the good description is in terms of the Type IIB D1 brane solution. The IR limit is
described by the SymN(R8) orbifold SCFT. The D3 branes correspond to the N"4 SCFT
discussed extensively above.

In the D4 branes case, the UV de"nition of the theory is obtained by starting with the
six-dimensional (2, 0) SCFT discussed in Section 6.1.1, and compactifying it on a circle. At high
energies, higher than the inverse size of the circle, we have a good description in terms of the (2, 0)
SCFT (or the AdS

7
]S4 background of M theory). The intermediate description is via the

background of the Type IIA D4 brane. Finally, at low energies we have a description in terms of
perturbative super Yang}Mills theory in "ve dimensions. In the D5 branes case we have a good
description in the IR region in terms of super-Yang}Mills theory. At intermediate energies the
system is described by the near-horizon background of the Type IIB D5 brane, and in the UV in
terms of the solution of the Type IIB NS5 branes. We will discuss the NS5 brane theories in the
next section.

Consider now the system of N D6 branes of Type IIA string theory. As before, we can attempt at
a decoupling of the seven-dimensional theory on the D6 branes world-volume from the bulk by
taking the string scale to zero and keeping the energies and the seven-dimensional Yang}Mills
coupling "xed. The e!ective Yang}Mills coupling (6.8) is small at low energies u;(g2

YM
N)~1@3 and

super-Yang}Mills is a good description in this regime. The curvature in string units (6.14) is small
when u<(g2

YM
N)~1@3 while the e!ective string coupling (6.13) is small when u;N/g2@3

YM
. In between

these limits we can use the Type IIA supergravity solution.
When u&N/g2@3

YM
the e!ective string coupling is large and we should use the description of D6

branes in terms of 11-dimensional supergravity compacti"ed on a circle with N Kaluza}Klein
monopoles. Equivalently, the description is in terms of 11-dimensional supergravity on an ALE
space with an A

N~1
singularity. When u<N/g2@3

YM
the curvature of the 11-dimensional space

vanishes and, unlike the lower-dimensional branes, there does not not exist a seven-dimensional
"eld theory that describes the UV. In fact, the D6 brane world-volume theory does not decouple
from the bulk.

A simple way to see that the D6 brane world-volume theory does not decouple from the bulk is
to note that now in the decoupling limit we keep g2

YM
&g

4
l3
4
"xed. When we lift the D6 branes

solution to M theory, this means that the 11-dimensional Planck length l3
P
"g

4
l3
4
remains "xed, and

therefore gravity does not decouple. Another way to see that gravity does not decouple is to
consider the system of D6 branes at "nite temperature in the decoupling limit. For large energy
densities above extremality, E/<<N/l7

P
, we need the 11-dimensional description. This is given by

an uncharged Schwarzschild black hole at the ALE singularity. The associated Hawking temper-
ature is ¹

H
&1/JNl9

P
E/< and there is Hawking radiation to the asymptotic region of the bulk

11-dimensional supergravity. Generally, the world-volume theories of Dp branes with p'5 do not
decouple from the bulk.

The supergravity computation of the Wilson loop, discussed in Section 3.5, can be carried out for
the Dp brane theories. For instance for the N D2 branes theory one gets for the quark}antiquark
potential, using the type IIA SUGRA D2 brane solution [292],

<"!c(g2
YM

N)1@3/¸2@3 , (6.19)
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51Type IIB NS5-branes at orbifold singularities are discussed in [655].

where c is a positive numerical constant. In view of the discussion above, this result should be
trusted only for loops with sizes 1/g2

YM
N;¸;JN/g2

YM
. For smaller loops the computation fails

because we go into the perturbative regime, where the potential becomes logarithmic. For larger
loops we get into the AdS

4
]S7 region.

Other works on Dp-branes in the context of the AdS/CFT correspondence are [644}651,642].

6.1.4. NS5 branes
The NS5 branes of Type II string theories couple magnetically to the NS}NS Bkl "eld, and they

are magnetically dual to the fundamental string. Their tension is given by ¹
NS
K1/g2

4
l6
4
. Like the

Dp branes, they are BPS objects that preserve half of the supersymmetry of Type II theories.
A fundamental string propagating in the background of N parallel NS5 branes is described far
from the branes by a conformal "eld theory with non trivial metric, B "eld and dilaton, constructed
in [652]. The string coupling grows as the string approaches the NS5-branes. At low energies the
six-dimensional theory on the world-volume of N Type IIB NS5 branes is a;(N)N"(1, 1) super-
Yang}Mills theory, which is free in the IR. However, it is an interacting theory at intermediate
energies. At low energies the theory on the world-volume of N Type IIA NS5 branes is the
A

N~1
(2, 0) SCFT discussed above.

The six-dimensional theories on the world-volume of NS5 branes of Type II string theories were
argued [653] to decouple from the bulk in the limit

g
4
P0, l

4
""xed . (6.20)

This is because the e!ective coupling on the NS5 branes (e.g. the low-energy Yang}Mills coupling in the
type IIB case) is 1/l

4
, while the coupling to the bulk modes goes like g

4
. However, the computation of

[654] showed that in this limit there is still Hawking radiation to the tube region of the NS5 brane
solution, suggesting a non decoupling of the world-volume theory from the bulk. In the spirit of the
other correspondences discussed previously, one can reconcile the two by conjecturing [213] that string
or M theory in the NS5 brane background in the limit (6.20), which includes the tube region, is dual to
the decoupled NS5 brane world-volume theory (`little string theorya). In particular, the "elds in the
tube which are excited in the Hawking radiation correspond to objects in the decoupled NS5 brane
theory. In the following we will mainly discuss the Type IIA NS5 brane theory.51

The Type IIA NS5 brane may be considered as the M5 brane localized on the 11-dimensional
circle. Therefore, its metric is that of an M5 brane at a point on a transverse circle. In such
a con"guration, the near-horizon metric of N NS5 branes can be written as [641,213]

ds2"l2
PAf ~1@3A!dt2#

5
+
i/1

dx2
i B#f 2@3(dx2

11
#du2#u2d)2

3
)B ,

f"
=
+

n/~=

pN
(u2#(x

11
!2pn/l

4
)2)3@2

. (6.21)

The x
11

coordinate is periodic and has been rescaled by l3
P

(x
11
,x

11
#2p/l2

4
). The background

also has a 4-form #ux of N units on S1]S3.

O. Aharony et al. / Physics Reports 323 (2000) 183}386 335



At distances larger than l
4
JN the NS5 brane theory is described by the A

N~1
(2, 0) SCFT. Indeed,

in the extreme low-energy limit l
4
P0 the sum in (6.21) is dominated by the n"0 term and the

background is of the form AdS
7
]S4. This reduces to the conjectured duality between M theory on

AdS
7
]S4 and the (2, 0) SCFT, discussed previously. However, the NS5 brane theory is not a local

quantum "eld theory at all energy scales since at short distances it is not described by a UV "xed
point. To see this one can take l

4
to in"nity (or u to in"nity) in (6.21) and get a Type IIA background

with a linear dilaton. It has the topology of R1,5]R]S3 with g2
4
(/)"e~2(@l4JN, where / is the

R coordinate. This is in accord with the fact that the NS5 brane theory exhibits a T-duality
property upon compacti"cation on tori (note that in this background a "nite radius in "eld theory
units corresponds to a "nite radius in string theory units on the string theory side of the
correspondence, unlike the previous cases we discussed).

The NS5 brane theories have an A}D}E classi"cation. This can be seen by viewing them as Type
II string theory on K3 with A}D}E singularities in the decoupling limit (6.20). The NS5 brane
theories have an SO(4) R-symmetry which we identify with the SO(4) isometry of S3. The IIA NS5
brane theories have a moduli space of vacua of the form (R4]S1)r/W where r is the rank of the
A}D}E gauge group and W is the corresponding Weyl group. It is parametrized by the W-
invariant products of the 5r scalars in the r tensor multiplets. They fall into short representations of
the supersymmetry algebra. We can match these chiral operators with the string excitations in the
linear dilaton geometry describing the large u region of (6.21). The string excitations, in short
representations of the supersymmetry algebra, in the linear dilaton geometry were analyzed in
[213]. Indeed, they match the spectrum of the chiral operators in short representations of the NS5
brane theories. Actually, due to the fact that the string coupling goes to zero at the boundary of the
linear dilaton solution, one can compute here the precise spectrum of chiral "elds in the string
theory, and "nd an agreement with the "eld theory even for "nite N (stronger than the large
N agreement that we described in Section 3.2).

As in the dualities with local quantum "eld theories, also here one can compute correlation
functions by solving di!erential equations on the NS5 branes background (6.21). Since in this case
the boundary is in"nitely far away, it is more natural to compute correlation functions in
momentum space, which correspond to the S-matrix in the background (6.21). The computation of
two point functions of a scalar "eld was sketched in [213] and described more rigorously in [656].
The NS5 brane theories are non-local, and this causes some di!erences in the matching between
M theory and the non-gravitational NS5 brane theory in this case. One di!erence from the
previous cases we discussed is that in the linear dilaton backgrounds if we put a cuto! at some
value of the radial coordinate (generalizing the discussion of [173] which we reviewed in Section
3.1.3), the volume enclosed by the cuto! is not proportional to the area of the boundary (which it is
in AdS space). Thus, if holography is valid in these backgrounds (in the sense of having a number of
degrees of freedom proportional to the boundary area) it is more remarkable than holography in
AdS space.

6.2. QCD

The proposed extension of the duality conjecture between "eld theories and superstring theories
to "eld theories at "nite temperature, as described in Section 3.6, opens up the exciting possibility of
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studying the physically relevant non supersymmetric gauge theories. Of particular interest are non-
supersymmetric gauge theories that exhibit asymptotic freedom and con"nement. In this section,
we will discuss an approach to studying pure (without matter "elds) QCD

p
in p dimensions using

a dual superstring description. We will be discussing mainly the cases p"3, 4.
The approach proposed by Witten [183] was to start with a maximally supersymmetric gauge

theory on the (p#1)-dimensional world-volume of N Dp branes. One then compacti"es the
supersymmetric theory on a circle of radius R

0
and imposes anti-periodic boundary conditions for

the fermions around the circle. Since the fermions do not have zero frequency modes around the
circle they acquire a mass m

f
&1/R

0
. The scalars then acquire a mass from loop diagrams, and at

energies much below 1/R
0

they decouple from the system. The expected e!ective theory at large
distances compared to the radius of the circle is pure QCD in p dimensions. Note that a similar
approach was discussed in the treatment of gauge theories at "nite temperature ¹ in Section 3.6,
where the radius of the circle is proportional to 1/¹. The high-temperature limit of the supersym-
metric gauge theory in p#1 dimensions is thus described by a non-supersymmetric gauge theory
in p dimensions.

The main obstacle to the analysis is clear from the discussions of the duality between string
theory and quantum "eld theories in the previous sections. The string approach to weakly coupled
gauge theories is not yet developed. Most of the available tools are applicable in the supergravity
limit that describes the gauge theory with a large number of colors and large 't Hooft parameter. In
this regime we cannot really learn directly about QCD, since the typical scale of candidate QCD
states (glueballs) is of the same order of magnitude (for QCD

4
, or a larger scale for QCD

3
) as the

scale 1/R
0

of the mass of the `extraa scalars and fermions. A related issue is that at short distances
asymptotically free gauge theories are weakly coupled and the dual supergravity description is not
valid. Therefore, we will be limited to a discussion in the strong coupling region of the gauge
theories and in particular we will not be able to exhibit asymptotic freedom.

One may hope that a full solution of the classical (g
4
"0) string theory will provide a description

of large N gauge theories for all couplings (in the 't Hooft limit). To study the gauge theories with
a "nite number of colors requires the quantum string theory. However, there is also a possibility
that the gauge description is valid for weak coupling and the string theory description is valid for
strong coupling with no smooth crossover between the two descriptions. In such a scenario there is
a phase transition at j"j

#
[313,314]. This will prevent us from using the string description to

study QCD, and will prevent classical string theory from being the master "eld for large N QCD.
In the last part of this section we will brie#y discuss another approach, based on a suggestion by

Polyakov [46], to study non-supersymmetric gauge theories via a non-supersymmetric string
description. In this approach, one can exhibit asymptotic freedom qualitatively already in the
gravity description. In the IR there are gravity solutions that exhibit con"nement at large distances
as well as strongly coupled "xed points.

6.2.1. QCD
3

The starting point for studying QCD
3

is the N"4 superconformal S;(N) gauge theory in four
dimensions which is realized as the low-energy e!ective theory of N coinciding parallel D3 branes.
As outlined above, the three-dimensional non-supersymmetric theory is constructed by compac-
tifying this theory on R3]S1 with anti-periodic boundary conditions for the fermions around the
circle. The boundary conditions break supersymmetry explicitly and as the radius R

0
of the circle
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52The stability issue of this background is discussed in [657].

becomes small, the fermions decouple from the system since there are no zero-frequency modes.
The scalar "elds in the four-dimensional theory will acquire masses at one-loop, since supersym-
metry is broken, and these masses become in"nite as R

0
P0. Therefore, in the infrared we are left

with only the gauge "eld degrees of freedom and the theory should be e!ectively the same as pure
QCD

3
.

We will now carry out the same procedure in the dual superstring (supergravity) picture. As has
been extensively discussed in the previous sections, the N"4 theory on R4 is conjectured to be
dual to type IIB superstring theory on AdS

5
]S5 with the metric (3.5) or (3.6).

Recall that the dimensionless gauge coupling constant g
4

of the N"4 theory is related to the
string coupling constant g

4
as g2

4
Kg

4
. In the 't Hooft limit, NPR with g2

4
NKg

4
N "xed, the

string coupling constant vanishes, g
4
P0. Therefore, we could study the N"4 theory using

the tree-level string theory in the AdS space (3.6). If also g
4
N<1, the curvature of the AdS space is

small and the string theory is approximated by classical supergravity.
Upon compacti"cation on S1 with supersymmetry breaking boundary conditions, (3.6) is

replaced by the Euclidean black hole geometry [179,183]52

ds2"a@J4pg
4
NAu2Ah(u) dq2#

3
+
i/1

dx2
i B#h(u)~1

du2

u2
#d)2

5B , (6.22)

where q parametrizes the compactifying circle (with radius R
0

in the "eld theory) and

h(u)"1!u4
0
/u4 . (6.23)

The x
1,2,3

directions correspond to the R3 coordinates of QCD
3
. The horizon of this geometry is

located at u"u
0

with

u
0
"1/2R

0
. (6.24)

The supergravity approximation is applicable for NPR and g
4
N<1, so that all the curvature

invariants are small. The metric (6.22) describes the Euclidean theory, the Lorentzian theory is
obtained by changing +3

i/1
dx2

i
P!dt2#dx2

1
#dx2

2
. Notice that this is not the same as the Wick

rotation that leads to the near extremal black hole solution (3.98).
From the point of view of QCD

3
, the radius R

0
of the compactifying circle provides the

ultraviolet cuto! scale. To obtain large N QCD
3

itself (with in"nite cuto! ), one has to take
g2
4
NP0 as R

0
P0 so that the three-dimensional e!ective coupling g2

3
N"g2

4
N/(2pR

0
) remains at

the intrinsic energy scale of QCD
3
. g2

3
is the classical dimensionful coupling of QCD

3
. The e!ective

dimensionless gauge coupling of QCD
3

at the distance scale R
0

is therefore g
4
N.

The proposal is that Type IIB string theory on the AdS black hole background (6.22) provides
a dual description to QCD

3
(with the UV cuto! described above). The limit in which the classical

supergravity description is valid, g
4
N<1, is the limit where the typical mass scale of QCD

3
, g2

3
N, is

much larger than the cuto! scale 1/R
0
. It is the opposite of the limit that is required in order to see

the ultraviolet freedom of the theory. Therefore, with the currently available techniques, we can
only study large N QCD

3
with a "xed ultraviolet cuto! R~1

0
in the strong coupling regime. It
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should be emphasized that by strong coupling we mean here that the coupling is large compared to
the cuto! scale, so we really have many more degrees of freedom than just those of QCD

3
. QCD

3
is the theory which we would get in the limit of vanishing bare coupling, which is the opposite limit
to the one we are taking.

This is analogous to, but not the same as, the lattice strong coupling expansion with a "xed cuto!
given by the lattice spacing a (which is analogous to R

0
here). There, QCD

3
is obtained in the limit

g2
3
aP0 while strong coupling lattice QCD

3
is the theory at large g2

3
a. An important di!erence in

the approach that we take, compared to the lattice description, is that we have full Lorentz
invariance in the three gauge theory coordinates. The regularization of the gauge theory in the dual
string theory description is provided by a one higher-dimensional theory, the theory on D3 branes.

In the limit R
0
P0 the geometry (6.22) is singular. As discussed above, in this limit the

supergravity description is not valid and we have to use the string theory description.

6.2.1.1. Conxnement. As we noted before, the gauge coupling of QCD
3

g2
3

has dimensions of mass,
and it provides a scale already for the classical theory. The e!ective dimensionless expansion
parameter at a length scale l, g2

3
(l),lg2

3
, goes to zero as lP0. Therefore, like QCD

4
, the theory is

free at short distances. Similarly, at a large length scale l the e!ective coupling becomes strong.
Therefore, the interesting IR physics is non-perturbative.

In three dimensions the Coulomb potential is already con"ning. This is a logarithmic con"ne-
ment <(r)&ln(r). Lattice simulations provide evidence that in QCD

3
at large distances there is

con"nement with a linear potential <(r)&pr.
To see con"nement in the dual description we will consider the spatial Wilson loop. In

a con"ning theory the vacuum expectation value of the Wilson loop operator exhibits an area law
behavior [658]

S=(C)TK exp(!pA(C)) , (6.25)

where A(C) is the area enclosed by the loop C. The constant p is called the string tension. The area
law (6.25) is equivalent to the quark-antiquark con"ning linear potential <(¸)&p¸. This can be
simply seen by considering a rectangular loop C with sides of length ¹ and ¸ in Euclidean space as
in Fig. 6.2. For large ¹ we have, when <(¸)&p¸ and interpreting ¹ as the time direction,

S=(C)T& exp(!¹<(¸))& exp(!pA(C)) . (6.26)

The prescription to evaluate the vacuum expectation value of the Wilson loop operator in the
dual string description has been introduced in Section 3.5. It amounts to computing

S=(C)T"P exp(!k(D)) , (6.27)

where k(D) is the regularized area of the world-sheet of a string D bounded at in"nity by C.
We will work in the supergravity approximation in which (6.27) is approximated by

S=(C)T" exp(!k(D)) , (6.28)

where k(D) is the minimal area of a string world-sheet D bounded at in"nity by C.
This prescription has been applied in Section 3.5 to the calculation of the Wilson loop in the

N"4 theory which is not a con"ning theory. Indeed, it has been found there that it exhibits
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Fig. 6.2. A con"ning quark}antiquark linear potential<(¸)&p¸ can be extracted from the Wilson loop obeying an area
law S=(C)T&exp(!p¹¸).

Fig. 6.3. The world-sheet of the string D is bounded at in"nite u by the loop C. The string tends to minimize its length by
going to the region with smallest metric component g

ii
, which in this case is near the horizon u"u

0
. The energy between

the quark and the antiquark is proportional to the distance ¸ between them and to the string tension which is
p"(1/2p)g

ii
(u

0
).

a Coulomb-like behavior. The basic reason was that when we scaled up the loop C by xiPaxi with
a positive number a, we could use conformal invariance to scale up D without changing its
(regularized) area. Therefore D was not proportional to A(C). When scaling up the loop the surface
D bends in the interior of the AdS space. In the case when such a bending is limited by the range of
the radial coordinate one gets an area law. This is the case in the models at hand, in which the
coordinate u in (6.22) is bounded from below by u

0
as in Fig. 6.3.

The evaluation of the classical action of the string world-sheet bounded by the loop C at in"nite
u is straightforward, as done in Section 3.5 [325,659]. The string minimizes its length by going to
the region with the smallest possible metric component g

ii
(where i labels the R3 directions), from

which it gets the contribution to the string tension. The smallest value of g
ii

in the metric (6.22) is at
the horizon. Thus, we "nd that the Wilson loop exhibits an area law (6.25), where the string tension
is given by the g

ii
component of the metric (6.22) evaluated at the horizon u"u

0
times a numerical

factor 1/2p:

p"(1/2p)J4pg
4
Nu2

0
"(g

4
N)1@2/4JpR2

0
. (6.29)

The way supergravity exhibits con"nement has an analog in the lattice strong coupling expan-
sion, as "rst demonstrated by Wilson [658]. The leading contribution in the lattice strong coupling
expansion to the string tension is the minimal tiling by plaquettes of the Wilson loop C as we show
in Fig. 6.4. This is analogous to the minimal area of the string world-sheet D ending on the loop
C in Fig. 6.3. One important di!erence is that in the supergravity description the space is curved. Of
course, a computation analogous to the Wilson loop computations we described in Section 3.5
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Fig. 6.4. The leading contribution in the lattice strong coupling expansion to the string tension is the minimal tiling by
plaquettes of the Wilson loop C.

Fig. 6.5. Subleading contribution in the lattice strong coupling expansion to the string tension, which is a non minimal
tiling of the Wilson loop. This is the lattice analog of the #uctuations of the string world-sheet.

which would be done in #at space would also exhibit con"nement, since the minimal area of the
string world-sheet D ending on the loop C is simply the area enclosed by the loop itself.

The quark}antiquark linear potential<"p¸ can have corrections arising from the #uctuations
of the thin tube (string) connecting the quark and antiquark. LuK scher studied a leading correction
to the quark}antiquark potential at large separation ¸. Within a class of bosonic e!ective theories
in #at space that describe the vibrations of the thin #ux tubes he found a universal term, !c/¸,
called a LuK scher term [660]:

<"p¸!c/¸ . (6.30)

For a #ux tube in d space-time dimensions c"(d!2)/24p. Lattice QCD calculations of the heavy
quark potential have not provided yet a de"nite con"rmation of this subleading term. This term
can also not been seen order by order in the lattice strong coupling expansion. Subleading terms is
this expansion are of the non minimal tiling type, as in Fig. 6.5, and correct only the string tension
but not the linear behavior of the potential.

The computation of the vacuum expectation value of the Wilson loop (6.28) based on
the minimal area of the string world-sheet D does not exhibit the LuK scher term [661]. This is
not surprising. Even if the the LuK scher term exists in QCD

3
, it should originate from the

#uctuations of the string world-sheet (6.27) that have not been taken into account in (6.28). Some
analysis of these #uctuations has been done in [298], but the full computation has not been carried
out yet.

Other works on con"nement as seen by a dual supergravity description are [662}664,297].

6.2.1.2. Mass spectrum. If the dual supergravity description is in the same universality class as
QCD

3
it should exhibit a mass gap. In the following we will demonstrate this property. We will also

compute the spectrum of lowest glueball masses in the dual supergravity description. They will
resemble qualitatively the strong coupling lattice picture. We will also discuss a possible compari-
son to lattice results in the continuum limit.

The mass spectrum in pure QCD can be obtained by computing the correlation functions of
gauge-invariant local operators (glueball operators) or Wilson loops, and looking for the particle
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poles. As we discussed extensively before, correlation functions of local operators are related (in
some limit) to tree-level amplitudes in the dual supergravity description. We will consider the
two-point functions of glueball operators O (for instance, we could take O"Tr(F2)). For large
Dx!yD it has an expansion of the form

SO(x)O(y)TK+c
i
exp(!M

i
Dx!yD ) , (6.31)

where M
i
are called the glueball masses.

We will classify the spectrum of glueballs by JPC where J is the glueball spin, P its parity and C its
charge conjugation eigenvalue. The action of C on the gluon "elds is [665]

C :Aak¹a
ij
P!Aak¹a

ij
, (6.32)

where the ¹a's are the Hermitian generators of the gauge group. In string theory, charge
conjugation corresponds to the world-sheet parity transformation changing the orientation of the
open strings attached to the D-branes.

Consider "rst the lowest mass glueball state. It carries 0`` quantum numbers. One has to
identify a corresponding glueball operator, namely a local gauge invariant operator with these
quantum numbers. The lowest dimension operator with these properties is Tr(F2), and we have to
compute its two-point function. To do that we need to identify "rst the corresponding supergravity
"eld that couples to it as a source at in"nite u. This is the Type IIB dilaton "eld U.

The correspondence between the gauge theory and the dual-string theory picture asserts that in
the SUGRA limit the computation of the correlation function amounts to solving the "eld
equation for U in the AdS black hole background (6.22),

Rk(JggklRlU)"0 . (6.33)

In order to "nd the lowest mass modes we consider solutions of U which are independent of the
angular coordinate q and take the form U"f (u)e*kx. Plugging this into (6.33) we obtain the
di!erential equation

R
u
[u(u4!u4

0
)R

u
f (u)]#M2uf (u)"0, M2"!k2 . (6.34)

The eigenvalues M2 of this equation are the glueball masses squared.
At large u, Eq. (6.34) has two independent solutions, whose asymptotic behavior is f&constant

and f&1/u4. We consider normalizable solutions and choose the second one. Regularity requires
the vanishing of the derivative of f (u) at the horizon. The eigenvalues M2 can be determined
numerically [666}668], or approximately via WKB techniques [666,669].

One "nds that:

(i) There are no solutions with eigenvalues M240.
(ii) There is a discrete set of eigenvalues M2'0.

This exhibits the mass gap property of the supergravity picture. In fact, even without an explicit
solution of the eigenvalues M2 of Eq. (6.34), the properties (i) and (ii) can be deduced from the
structure of the equation and the requirement for normalizable and regular solutions [183].
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The 0`` mass spectrum in the WKB approximation closely agrees with the more accurate
numerical solution. It takes the form

M2
0``+

1.44n(n#1)
R2

0

, n"1, 2, 3,2 . (6.35)

The mass spectrum (6.35), that corresponds to a massless mode of the string in ten dimensions, is
proportional to the cuto! 1/R

0
and not to p1@2, which is bigger by a power of g

4
N (6.29). This is

qualitatively similar to what happens in strong coupling lattice QCD with lattice spacing a. As we
will discuss in the next section, in the strong coupling lattice QCD description the lowest masses of
glueballs are proportional to 1/a. Note that in a stringy description of QCD we would expect the
glueballs to correspond to string excitations, which are expected to have masses of order p1@2.
Therefore in the supergravity limit, g

4
N<1, the glueballs that correspond to the string excitations

are much heavier than the `supergravity glueballsa which we analyzed.
The natural scale for the glueball masses of continuum QCD

3
is g2

3
N. Therefore to get to the

continuum QCD
3

region we have to require g2
3
N;1/R

0
which implies g

4
N;1. As discussed

above, our computation is performed in the opposite limit g
4
N<1. In particular, we do not have

control over possible mixing between glueball states and the other scalars and fermionic degrees of
freedom which are at the same mass scale 1/R

0
in the "eld theory.

We can attempt a numerical comparison of the supergravity computations with the continuum
limit of lattice QCD, obtained by taking the bare coupling to zero. Since these are computations at
two di!erent limits of the coupling value (of the original N"4 theory) there is a priori no reason
for any agreement. Curiously, it turns out that ratios of the glueball excited state masses with n'1
in (6.35) and the lowest mass n"1 state are in reasonably good agreement with the lattice
computations (within the systematic and statistical error bars) [666,670].

As a second example consider the spectrum of 0~~ glueball masses. It can be computed via the
"eld equations of the NS-NS 2-form "eld. The details of the computation can be found in [666]
and, as in the 0`` case, the ratios of the glueball masses are found to be in good agreement with the
lattice computations.

In closing the numerical comparison we note another curious agreement between the supergrav-
ity computation and the weak coupling lattice computations. This is for the ratio of the lowest mass
0`` and 0~~ glueball states,

(M
0~~/M0``)

461%3'3!7*5:
"1.50, (M

0~ ~/M0``)
-!55*#%

"1.45$0.08 . (6.36)

As stressed above, the regime where we would have liked to compute the mass spectrum is in the
limit of small g

4
N (or large ultraviolet cuto! 1/R

0
). In this limit the background is singular and we

have to use the string theory description, which we lack. We can compute the subleading correction
in the strong coupling expansion to the masses. This requires the inclusion of the a@3 corrections to
the supergravity action. The typical form of the masses is

M2"(c
0
#c

1
a@3/R6)/R2

0
, (6.37)

with c
0

as in (6.35). The background metric is modi"ed by the inclusion of the a@3R4 string
correction to the supergravity action. The modi"ed metric has been derived in [288,671]. Based on
this metric the corrections to the masses c

1
have been computed in [666]. While these corrections
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signi"cantly change the glueball masses, the corrections to the mass ratios turn out to be relatively
small.

Lattice computations may exhibit lattice artifacts due to the "nite lattice spacing. Removing
them amounts to taking a su$ciently small lattice spacing such that e!ectively the right physics of
the continuum is captured. Getting close to the continuum means, in particular, that deviations
from Lorentz invariance are minimized.

Analogous `artifactsa are seen in the dual supergravity description. They correspond to
Kaluza}Klein modes that are of the same mass scale as the glueball mass scale. There are
Kaluza}Klein modes from the circle coordinate q in (6.22) that provides the cuto! to the three-
dimensional theory. They have a typical mass scale of order 1/R

0
. There are also SO(6) non-singlet

Kaluza}Klein modes from the "ve sphere in (6.22). In the "eld theory they correspond to operators
involving the SO(6) non-singlet scalar and fermion "elds of the high-energy theory. They have
a mass scale of order 1/R

0
too.

The inclusion of the subleading a@3 correction does not make the Kaluza}Klein modes
su$ciently heavy to decouple from the spectrum [672,666]. This means that the dual super-
gravity description is also capturing physics of the higher dimensions, or of the massive scalar and
fermion "elds from the point of view of QCD

3
. One hopes that upon inclusion of all the a@

corrections, and taking the appropriate limit of small g
4
N (or large cuto! 1/R

0
), these Kaluza}Klein

modes will decouple from the system and leave only the gauge theory degrees of freedom.
Currently, we do not have control over the a@ corrections, which requires an understanding of
a two-dimensional sigma model with an RR background. In Section 6.2.3 we will use an analogy
with lattice "eld theory to improve on our supergravity description and remove some of the
Kaluza}Klein modes.

6.2.2. QCD
4

One starting point for obtaining QCD
4

is the (2, 0) superconformal theory in six dimensions
realized on N parallel coinciding M5-branes, which was discussed in Section 6.1. The compacti"ca-
tion of this theory on a circle of radius R

1
gives a "ve-dimensional theory whose low-energy

e!ective theory is the maximally supersymmetric S;(N) gauge theory, with a gauge coupling
constant g2

5
"2pR

1
. To obtain QCD

4
, one compacti"es this theory further on another S1 of radius

R
0
. The dimensionless gauge coupling constant g

4
in four dimensions is given by

g2
4
"g2

5
/(2pR

0
)"R

1
/R

0
. As in the previous case, to break supersymmetry one imposes the anti-

periodic boundary condition on the fermions around the second S1. And, as in the previous case, to
really get QCD

4
we need to require that the typical mass scale of QCD states, K

QCD
, will be much

smaller than the other mass scales in our construction (1/R
1

and 1/R
0
), and this will require going

beyond the supergravity approximation. However, one can hope that the theory obtained from the
supergravity limit will be in the same universality class as QCD

4
, and we will give some evidence

for this.
As discussed in Section 6.1, the large N limit of the six-dimensional theory is M theory on

AdS
7
]S4. Upon compacti"cation on the two circles and imposing anti-periodic boundary condi-

tions for the fermions on the second S1, we get M theory on a black hole background [183]. Taking
the large N limit while keeping the 't Hooft parameter 2pj"g2

4
N "nite requires R

1
;R

0
. We can

now use the duality between M theory on a circle and Type IIA string theory, and the M5 brane
wrapping on the S1 of radius R

1
becomes a D4 brane. The large N limit of QCD

4
then becomes
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Type IIA string theory on the black hole geometry given by the metric

ds2"
2pj
3u

0

uA4u2
4
+
i/1

dx2
i
#

4
9u2

0

u2A1!
u6
0

u6Bdq2#4
du2

u2(1!u6
0
/u6)

#dX2
4B , (6.38)

with a non-constant dilaton background

e2("8pj3u3/27u3
0
N2 . (6.39)

The coordinates x
i
, i"1,2, 4, parametrize the R4 gauge theory space-time, the coordinate

u
0
4u4R, and q is an angular coordinate with period 2p. The location of the horizon is at u"u

0
,

which is related to the radius R
0

of the compactifying circle as

u
0
"1/3R

0
. (6.40)

Equivalently, we could have started with the "ve-dimensional theory on the world-volume of
N D4 branes and heated it up to a "nite temperature ¹"1/2pR

0
. Indeed, the geometry (6.38) with

the dilaton background (6.39) is the near-horizon geometry of the non-extremal D4 brane
background. But again, when we Wick rotate (6.38) back to Lorentzian signature we take one of
the coordinates x

i
as time. Notice that the string coupling (6.39) goes as 1/N.

6.2.2.1. Conxnement. QCD
4

at large distances is expected to con"ne with a linear potential
<(r)&pr between non-singlet states. Therefore, the vacuum expectation value of the Wilson loop
operator is expected to exhibit an area law behavior. In order to see this in the dual description we
follow the same procedure as in QCD

3
.

The string tension p is given by the coe$cient of the term +4
i/1

dx2
i

in the metric (6.38), evaluated
at the horizon u"u

0
, times a 1/2p numerical factor:

p"4
3
ju2

0
"4j/27R2

0
. (6.41)

In QCD
4

it is believed that con"nement is a consequence of the condensation of magnetic
monopoles via a dual Meissner e!ect. Such a mechanism has been shown to occur in supersymmet-
ric gauge theories in four dimensions [673]. This has also been demonstrated to some extent on the
lattice via the implementation of the 't Hooft Abelian Projection [674]. We will now see that this
appears to be the mechanism also in the dual-string theory description [291].

Consider the "ve-dimensional theory on the world-volume of the D4 branes. A magnetic
monopole is realized as a D2 brane ending on the D4 brane [163]. It is a string in "ve dimensions.
Upon compacti"cation on a circle, the four-dimensional monopole is obtained by wrapping the
string on the circle. We can now compute the potential between a monopole and anti-monopole.
This amounts to computing the action of a D2-brane interpolating between the monopole and
the anti-monopole, which mediates the force between them as in Fig. 6.6(a). This is the electric-
magnetic dual of the computation of the quark}anti-quark potential described above.

If the pair is separated by a distance ¸ in the x
1

direction, and stretches along the x
2

direction
(which we can interpret as the Euclidean time), the D2 brane coordinates are q,x

1
, x

2
. The action

per unit length in the x
2

direction is given by

<"
1

(2p)2a@3@2P
L

0

dq dx
1
e~(JdetG , (6.42)
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Fig. 6.6. The magnetic monopole is a string in "ve dimensions and the four-dimensional monopole is obtained by
wrapping the string on the circle. The potential between a monopole (wrapped on c

1
) and an anti-monopole (wrapped in

the opposite orientation on c
2
), separated by a distance ¸ in the x

1
direction, amounts to computing the action of

a D2-brane which mediates the force between them as in (a). For ¸'¸
#

there is no minimal volume D2 brane
con"guration that connects the monopole and the anti-monopole and the energetically favorable con"guration is as in
(b), and then the magnetic charge is screened.

where G is the induced metric on the D2 brane world-volume. We have to "nd a con"guration of
the D2-brane that minimizes (6.42). For ¸'¸

#
where (up to a numerical constant) ¸

#
&R

0
, there

is no minimal volume D2 brane con"guration that connects the monopole and the anti-monopole
and the energetically favorable con"guration is as in Fig. 6.6(b). Therefore, there is no force between
the monopole and the anti-monopole, which means that the magnetic charge is screened. At length
scales ¸<R

0
we expect pure QCD

4
as the e!ective description. We see that in this region

con"nement is accompanied by monopole condensation, as we expect.

6.2.2.2. h vacua. In addition to the gauge coupling, four-dimensional gauge theories have an
additional parameter h which is the coe$cient of the Tr(F'F) term in the Lagrangian. The h angle
dependence of asymptotically free gauge theories captures non-trivial dynamical information
about the theory. Unlike in spontaneously broken gauge theories, it cannot be analyzed by an
instanton expansion. What is required is an appropriate e!ective description of the theories at long
wavelengths. Such an e!ective description is provided by the lattice. However, since the Lorentz
invariance is lost by the discretization of space time, it is very di$cult to study questions such as
the behavior of the system under hPh#2p. Also, the construction of instantons which are the
relevant objects in the analysis of the h dependence is a rather non-trivial task and involves delicate
cooling techniques.

Another e!ective description may be provided by the description of the four-dimensional gauge
theories by the M5 brane wrapping a non-supersymmetric cycle. Indeed, in this formalism, one
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Fig. 6.7. The energy of the vacuum is expected to be a multibranched function.

sees that the vacuum energy exhibits the correct h angle behavior in softly broken supersymmetric
gauge theories [675].

In this subsection we use the dual-string theory description to analyze the h angle dependence in
large N S;(N) gauge theory [676]. Since the amplitude for an instanton is weighted by a factor
exp(!8p2N/j) where j is the 't Hooft parameter (which we keep "xed), it naively seems that the
instanton e!ects vanish as NPR. However, unlike the N"4 gauge theory for instance, here one
expects this not to be the case due to IR divergences in the theory.

Let us "rst review what we expect the behavior of the h dependence to be from the "eld theory
viewpoint. The Yang}Mills action is

I
YM

"Pd4xTrA
N
4j

F2#
h

16p2
FFI B . (6.43)

At large N we expect the energy of the vacuum to behave like E(h)"N2C(h/N). The N2 factor is
due to the fact that this is the order of the number of degrees of freedom (this also follows from the
standard scaling of the leading diagrams in the 't Hooft limit). The dependence on h/N follows from
(6.43) as is implied by the large N limit. h is chosen to be periodic with period 2p. Since the physics
should not change under hPh#2p we require that E(h#2p)"E(h).

These conditions cannot be satis"ed by a smooth function of h/N. They can be satis"ed by
a multibranched function with the interpretation that there are N inequivalent vacua, and all of
them are stable in the large N limit. The vacuum energy is then given by a minimization of the
energy of the kth vacuum E

k
with respect to k,

E(h)"min
k

E
k
(h)"N2min

k

C((h#2pk)/N) , (6.44)

for some function C(h) which is quadratic in h for small values of h (Fig. 6.7).
The function E(h) is periodic in h and jumps at some values of h between di!erent branches. The

CP transformation acts by hP!h and is a symmetry only for h"0,p. Therefore, C(h)"C(!h).
One expects an absolute minimum at h"0 and a non-vanishing of the second derivative of E(h)
with respect to h, which corresponds to the topological susceptibility s

t
of the system as we

will discuss later. Taking all these facts into account one conjectures in the leading order in 1/N
that [677]

E(h)"s
t
min
k

(h#2pk)2#O(1/N) , (6.45)
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where s
t
is positive and independent of N. At h"p the function exhibits the jump between the

vacua at k"0 and !1 and the spontaneous breaking of CP invariance.
In order to analyze the h dependence in the dual-string theory description with the background

(6.38) we have to identify the h parameter. This is done by recalling that the e!ective Lagrangian of
N D4 branes in Type IIA string theory has the coupling

1
16p2Pd5x eoabcdAoTr(FabFcd) , (6.46)

where A is the Type IIA RR 1-form and F is the;(N) gauge "eld strength on the "ve-dimensional
brane world-volume. Upon compacti"cation of the D4 brane theory on a circle we see that the
four-dimensional h parameter is related to the integral of the RR 1-form on the circle. Since it is
a ten-dimensional "eld it is a parameter from the world-volume point of view.

In the dual description we de"ne the parameters at in"nite u. The h parameter is de"ned as the
integral of the RR 1-form component on the circle at in"nite u

h"PdqAq"2pA=q , (6.47)

which is de"ned modulo 2pk, k3Z.
The action for the RR 1-form takes the form

I"
1

2i2
10
Pd10xJg 1

4
gaa{gbb{(RaAb!RbAa)(Ra{Ab{!Rb{Aa{) , (6.48)

and the equation of motion for A is

Ra[Jggbcgad(RcAd!RdAc)]"0 . (6.49)

The required solution Aq(u) to (6.49), regular at u"u
0

and with vanishing "eld strength at
in"nite u (in order to have "nite energy), takes the form

Aq(u)"A=q (1!u6
0
/u6) . (6.50)

Evaluating the Type IIA action for the RR 1-form (6.48) with the solution (6.50) and recalling the
2pZ ambiguity we get the vacuum energy (6.45) where s

t
is independent of N [676].

In order to check that the vacua labeled by k are all stable in the limit NPR we need a way to
estimate their lifetime. The domain wall separating two adjacent vacua is constructed by wrapping
a D6 brane of Type IIA string theory on the S4 part of the metric [676]. Since the energy density of
the brane at weak coupling is of order 1/g

4
where g

4
is the Type IIA string coupling, as NPR

(with "xed g
4
N) it is of order N. If we assume a mechanism for the decay of a kth vacuum via a D6

brane bubble, its decay rate is of the order of e~N. Thus, there is an in"nite number of stable vacua
in the in"nite N limit.

One can repeat the discussion of con"nement in the previous subsection for hO0. When
h"2pp/q with co-prime integers p, q the con"nement is associated with a condensation of (!p, q)
dyons and realizes the mechanism of oblique con"nement.
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Fig. 6.8. The leading contribution in strong coupling lattice QCD to the correlator of two Wilson loops, separated by
distance ¸, is from a tube with the size of one plaquette that connects the loops. This leads to the lowest mass glueballs
having a mass of the order of 1/a, where a is the lattice spacing.

6.2.2.3. Mass spectrum. The analysis of the mass spectrum of QCD
4
as seen by the dual description

in the supergravity limit is similar to the one we carried out for QCD
3
. It is illuminating to consider

an analogous picture of strong coupling lattice QCD [291].
In strong coupling lattice QCD the masses of the lightest glueballs are of order 1/a where a is the

lattice spacing. The reasoning is that in strong coupling lattice QCD the leading contribution to the
correlator of two Wilson loops separated by distance ¸ is from a tube with the size of one plaquette,
as in Fig. 6.8, that connects the loops. With the Wilson lattice action the 0`` glueball mass is given
by [678]

M
0``"!4 log(g2

4
N)a~1 . (6.51)

To make the connection with continuum QCD
4
we would like to sum the lattice strong coupling

expansion M
0``"F(g2

4
N)a~1, and take the limit aP0 and g

4
P0 with

g2
4
NK

1
b log(1/aK

QCD
)

as aP0 , (6.52)

where g
4

is the four-dimensional coupling and b is the "rst coe$cient of the b-function. We hope
that in the limit (6.52) we will get a "nite glueball mass measured in K

QCD
units.

In the dual-string theory description the analog of a is R
0
. The strong coupling expansion is

analogous to the a@ expansion of string theory. Supergravity is the leading contribution in this
expansion. The lowest glueball masses M

'
correspond to the zero modes of the string, and their mass

is proportional to 1/R
0
. Another way to see that this limit resembles the strong coupling lattice QCD

picture is to consider the Wilson loop correlation function S=(C
1
)=(C

2
)T as in Fig. 6.9(a).

For ¸'¸
#
, where ¸ is the distance between the loops and ¸

#
is determined by the size of the

loops, there is no stable string world-sheet con"guration connecting the two loops, as in Fig. 6.9(b).
The string world-sheet that connects the loops as in Fig. 6.10(a) collapses and the two disks are now
connected by a tube of string scale size as in Fig. 6.10(b), resembling the strong coupling lattice
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Fig. 6.9. The Wilson loop correlation function in (a) is computed by minimization of the string world-sheet that
interpolates between them. When the distance between the loops ¸ is larger than ¸

#
there is no stable string world-sheet

con"guration connecting the two loops as in (b).

Fig. 6.10. The string world-sheet that connects the loops in (a) collapses and the two disks are now connected by a tube of
a string scale as in (b). The correlation function is mediated by a supergraviton exchange between the disks and the
supergravitons are identi"ed with the glueball states.

QCD picture. The correlation function is then mediated by a supergraviton exchange between the
disks. Thus, the supergravitons are identi"ed with the glueball states and the lowest glueball masses
turn out to be proportional to 1/R

0
[291].

As in strong coupling lattice QCD, to make the connection with the actual QCD
4

theory we need
to sum the strong coupling expansion M

g
"F(g2

4
N)/R

0
and take the limit of R

0
P0 and g

4
P0 with

g2
4
NP

1
b log(1/R

0
K

QCD
)

as R
0
P0 . (6.53)
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Again, we hope that in the limit (6.53) we will get a "nite glueball mass proportional to K
QCD

.
In the limit (6.53) the background (6.38) is singular. Thus, to work at large N in this limit we need

the full tree-level string theory description and not just the SUGRA limit. The supergravity
description will provide us with information analogous to that of strong coupling lattice QCD
with a "nite cuto!. However, since as discussed before the regularization here is done via a
higher-dimensional theory, we will have the advantage of a full Lorentz-invariant description
in four dimensions. What we should be worried about is whether we capture the physics of
the higher dimensions as well (which from the point of view of QCD

4
correspond to additional

charged "elds).
In order to compute the mass gap we consider the scalar glueball 0``. The 0`` glueball mass

spectrum is obtained by solving the supergravity equation for any mode f that couples to
0`` glueball operators; we expect (and this is veri"ed by the calculation) that the lightest glueball
will come from a mode that couples to the operator Tr(F2). There are several steps to be taken in
order to identify this mode and its supergravity equation. First, we consider small #uctuations of
the supergravity "elds on the background (6.38), (6.39). The subtlety that arises is the need to
disentangle the mixing between the dilaton "eld and the volume factor which has been done in
[679]. One then plugs the appropriate `diagonala combinations of these "elds into the supergrav-
ity equations of motion. The "eld/operator identi"cation can then be done by considering the
Born}Infeld action of the D4 brane in the gravitational background.

To compute the lowest mass modes we consider solutions of the form f"f (u)e*kx which satisfy
the equation

(1/u3)R
u
[u(u6!u6

0
)R

u
f (u)]#M2f (u)"0 . (6.54)

The eigenvalues M2 are the glueball masses. The required solutions are normalizable and regular at
the horizon. The eigenvalues M2 can be determined numerically [679] or approximately via WKB
techniques [669].

As in QCD
3

one "nds that:

(i) There are no solutions with eigenvalues M240.
(ii) There is a discrete set of eigenvalues M2'0.

This exhibits the mass gap property of the supergravity picture.
The 0`` mass spectrum in the WKB approximation closely agrees with the more accurate

numerical solution. It takes the form

M2+
0.74n(n#2)

R2
0

, n"1, 2, 3,2 . (6.55)

As in QCD
3
, the ratios of the glueball excited state masses with n'1 in (6.55) and the lowest

mass n"1 state are in good agreement with the available lattice computations [679,666].
As another example consider the 0~` glueballs. The lowest dimension operator with these

quantum numbers is Tr(FFI ). As we discussed previously, on the D4 brane worldvolume it couples
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53There are other singular solutions [614], but the general philosophy is that we do not allow singular solutions unless
we can give a physical interpretation for the singularity.

to the RR 1-form Aq (6.46). Its equation of motion is given by (6.49). We look for solutions of the
form Aq"fq(u)e*kx. Plugging this into (6.49) we get

(1/u5)(u6!u6
0
)R

u
[u7R

u
fq(u)]#u4M2fq(u)"0 . (6.56)

As for the 0`` glueball states, the ratios of the 0~` glueball masses are found to be in good
agreement with the lattice computations [679].

Finally, we note that the ratio of the lowest masses 0`` and 0~` glueball states [679]

(M
0~`/M0``)

461%3'3!7*5:
"1.20, (M

0~`/M0``)
-!55*#%

"1.36$0.32 , (6.57)

agrees with the lattice results too. Similar types of agreements in mass spectrum computations were
claimed in strong coupling lattice QCD [680]. However, note that (as discussed above for QCD

3
)

other ratios, such as the ratio of the glueball masses to the square root of the string tension, are very
di!erent in the SUGRA limit from the results in QCD.

The computation of the mass gap in the dual supergravity picture is in the opposite limit to
QCD. As in the supergravity description of QCD

3
, also here the Kaluza}Klein modes do not

decouple. In this approach, in order to perform the computation in the QCD regime we need to use
string theory. The surprising agreement of certain mass ratios with the lattice results may be
a coincidence. Optimistically, it may have an underlying dynamical reason.

6.2.2.4. Conxnement}deconxnement transition. We will now put the above four-dimensional
QCD-like theory at a "nite temperature ¹ (which should not be confused with 1/2pR

0
). We will see

that there is a decon"nement transition. In order to consider the theory at "nite temperature we go
to Euclidean space and we compactify the time direction t

E
on a circle of radius b with antiperiodic

fermion boundary conditions. Since we already had one circle (labeled by q in (6.38)), we now have
two circles with antiperiodic boundary conditions. So, we can have several possible gravity
solutions. One is the original extremal D4 brane, another is the solution (6.38) and a third one
is the same solution (6.38) but with q and t

E
interchanged. These last two solutions are possible

only when the fermions have antiperiodic boundary conditions on the corresponding circles.
One of the last two solutions always has lower free energy than the "rst, so we concentrate on these
last two.

It turns out that the initial solution (6.38) has the lowest free energy for low temperatures, when
b"1/¹'2pR

0
, while the one with q% t

E
has the lowest free energy for b"1/¹(2pR

0
(high

temperatures). The entropy of these two solutions is very di!erent, and therefore there is a "rst-
order phase transition, in complete analogy with the discussion in Section 3.6. We do not know of
a proof that there are no other solutions, but these two solutions have di!erent topological
properties, so there cannot be a smoothly interpolating solution. In any case, for very low and very
high temperatures they are expected to be the dominant con"gurations (see [657]).53 The entropy
of the high-temperature phase is of order N2, while the entropy of the low temperature phase is
essentially zero since the number of states in the gravity picture is independent of the Newton
constant.
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Fig. 6.11. The baryon is an S;(N) singlet bound state of N quarks. It is constructed as N open strings that join together
at a point in the bulk AdS black hole geometry.

Fig. 6.12. A baryon state in strong coupling lattice QCD. The quarks located at lattice sites are connected by #ux links to
a vertex. A similar picture is obtained by projecting the baryon vertex in Fig. 6.11 on x space.

If we compute the potential between a quark and an antiquark then in the low temperature
phase it grows linearly, so that we have con"nement, while in the high-temperature phase the
strings coming from the external quarks can end on the horizon, so that the potential vanishes
beyond a certain separation. Thus, this is a con"nement}decon"nement transition. It might seem
a bit surprising at "rst sight that essentially the same solution can be interpreted as a con"ned and
a decon"ned phase at the same time. The point is that quark world-lines are time-like, therefore
they select one of the two circles, and the physical properties depend crucially on whether this circle
is contractible or not in the full ten-dimensional geometry.

6.2.2.5. Other dynamical aspects. In this subsection we comment on various aspects of QCD
4

as
seen by the string description. We "rst show how the baryons appear in the dual string theory
(M theory) picture. We will then compute other properties of the QCD vacuum, the topological
susceptibility and the gluon condensate, as seen in the dual description.

Baryons: The baryon is an S;(N) singlet bound state of N quarks. Since we do not have quarks
in our theory, we need to put in external quarks as described in Section 3.5, and then there is
a baryon operator coupling N external quarks. As in the conformal case, also here it can be
constructed as N open strings that end on a D4 brane that is wrapped on S4 [291,214], as in
Fig. 6.11. If we view this geometry as arising from M-theory, then the strings are M2 branes
wrapping the circle with periodic fermion boundary conditions and the D4 brane is an M5
"vebrane also wrapping this circle. Then, N M2 branes can end on this M5 brane as in [214]. There
is a very similar picture of a baryon in strong coupling lattice QCD as is depicted in Fig. 6.12, where
quarks are connected by #ux links to a vertex.

Several aspects of baryon physics can be seen from the string picture of Fig. 6.11 [214,291]. The
baryon energy is proportional to the string tension (6.41) and (in the limit of large distances
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between the quarks) to the sum of the distances between the N quark locations and the location of
the baryon vertex in the four-dimensional x-space [291,389,390]. (There is some subtlety in
evaluating the baryon energy, and it was clari"ed in [391] in the case of N"4 gauge theory. See
also [392,396].) We may consider the baryon vertex as a "xed (non-dynamical) point in the Born
Oppenheimer approximation. In such an approximation, the N quarks move independently in the
potential due to the string stretched between them and the vertex. The baryon mass spectrum can
be computed by solving the one body problem of the quark in this potential. Corrections to this
spectrum can be computed by taking into account the potential between the quarks and the
dynamics of the vertex. A similar analysis has been carried out in the #ux tube model [681] based
on the Hamiltonian strong coupling lattice formulation [682].

In a con"ning theory we do not expect to see a baryonic con"guration made from k(N quarks.
This follows for the above description. If we want to separate a quark we will be left with a string
running to in"nity, which has in"nite energy.

6.2.2.6. Topological susceptibility. The topological susceptibility s
t
measures the #uctuations of the

topological charge of the QCD vacuum. It is de"ned by

s
t
"

1
(16p2)2Pd4xSTr(FFI (x))Tr(FFI (0))T . (6.58)

At large N the Witten}Veneziano formula [683,684] relates the mass mg{ in S;(N) Yang}Mills
gauge theory with N

f
quarks to the topological susceptibility of S;(N) Yang}Mills theory without

quarks:

m2g{"(4N
f
/f 2n )s

t
. (6.59)

Eq. (6.59) is applicable at large N where f 2n &N. In this limit mg{ goes to zero and we have the g@!n
degeneracy.

Nevertheless, plugging the phenomenological values N
f
"3, N"3, mg{&1 GeV, fn&0.1GeV

in (6.59) leads to a prediction s
t
&(180MeV)4, which is in surprising agreement with the lattice

simulation for a "nite number of colors [685].
Evaluating the 2-point function from the type IIA SUGRA action for the RR 1-form (6.48) with

the solution (6.50), we get the topological susceptibility

s
t
"2j3/729p3R4

0
. (6.60)

The supergravity result (6.60) depends on two parameters, j and R
0
. This is the leading

asymptotic behavior in 1/j of the full string theory expression s
t
&(F(j)/R

0
)4. We would have liked

to compute F(j), take the limit (6.53) and compare to the lattice QCD result. However, this goes
beyond the currently available calculational tools.

It may be instructive, though, to consider the following comparison. Let us assume that there is
a cross-over between the supergravity description and the continuum QCD description. We can
estimate the cross-over point. In perturbative QCD we "nd F(j)&e~12p@11j, therefore the cross-
over point (to the F&j3@4 behavior of (6.60)) can be estimated to be at j&12p/11. Also, since the
mass scale in the QCD regime is K

QCD
, at the cross-over point ¹"1/2pR

0
&K

QCD
&200MeV. Of

course, we should bear in mind that at the cross-over point both the supergravity and perturbative
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QCD are not applicable descriptions. If we compare the topological susceptibility (6.60) at the
correspondence point with the lattice result we get

(sSUGRA
t

/sL!55*#%
t

)1@4"1.7 . (6.61)

It may be an encouraging sign that the number we get is of order one, though its level of agreement
is not as good as the mass ratios of the glueball spectrum.

6.2.2.7. Gluon condensation. The gluon condensate S(1/4g2
4
)Tr(F2(0))T is related by the trace

anomaly to the energy density ¹kk of the QCD vacuum. In the supergravity picture the one-point
function of an operator corresponds to the "rst variation of the supergravity action. This quantity
is expected to vanish by the equations of motion. However, the "rst variation is only required to
vanish up to a total derivative term. Since asymptotically anti-de Sitter space has a time-like
boundary at in"nity, there is a possible boundary contribution. Indeed, unlike the N"4 case, the
one point function of the Tr(F2) operator in the dual string theory description of QCD does not
vanish.

It can be computed either directly or by using the relation between the thermal partition function
and the free energy Z(¹)"exp(!F/¹). This relates the free energy associated with the string
theory (supergravity) background to the expectation value of the operator Tr(F2). One gets [679]

T
1

4g2
4

Tr(F2kl(0))U"
1
8p

N2

j
p2 . (6.62)

The relation (6.62) between the gluon condensate and the string tension is rather general and
applies for other regular backgrounds that are possible candidates for a dual description [686].

If we attempt again a numerical comparison with the lattice computation [687,688] we "nd at
the cross-over point

((Gluon condensate)SUGRA/(Gluon condensate)L!55*#%)1@4"0.9 . (6.63)

We should note that in "eld theory the gluon condensate is divergent, and there are subtleties
(which are not completely settled) as to the relation between the lattice regularized result and the
actual property of the QCD vacuum.

Finally, for completeness of the numerical status, we note that if we compare the string tension
(6.41) at the cross-over point and the lattice result we get

((QCD string tension)SUGRA/(QCD string tension)L!55*#%)1@2"2 . (6.64)

6.2.3. Other directions
In this subsection we brie#y review other possible ways of describing non-supersymmetric

asymptotically free gauge theories via a dual string description. Additional possibilities are
described in Section 4.3.

6.2.3.1. Diwerent background metrics. The string models dual to QCD
p
that we studied exhibit the

required qualitative properties, such as con"nement, a mass gap and the h dependence of the
vacuum energy, already in the supergravity approximation. We noted that besides the glueball
mass spectrum there exists a spectrum of Kaluza}Klein modes at the same mass scale. This
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54From the "eld theory point of view it indicates that S;(4)-charged "elds and KK modes of "ve-dimensional "elds
contribute in addition to the four-dimensional gluons.

indicates that the physics of the higher dimensions is not decoupling from the four-dimensional
physics.54 The Kaluza}Klein states did not decouple upon the inclusion of the a@3 correction, but
one hopes that they do decouple in the full string theory framework. In the following we discuss an
approach to removing some of them already at the supergravity level. It should be stressed,
however, that this does not solve the issue of a possible mixing between the glueball states and
states that correspond to the scalar and fermion "elds, which for large j are at the same mass scale
in the "eld theory.

Again, the analogy with lattice gauge theory is useful. It is well known in the lattice framework
that the action one starts with has a signi"cant e!ect on the speed at which one gets to the
continuum limit. One can add to the lattice action deformations which are irrelevant in the
continuum limit and arrive at an appropriate e!ective description of the continuum theory
while having a larger lattice spacing. Such actions are called improved actions.

A similar strategy in the dual supergravity description amounts to a modi"cation of the
background metric. The requirement is that the modi"cation will better capture the e!ective
description of the gauge theory while still having a "nite cuto! (corresponding to "nite j in our
case). On the lattice a criterion for improvement is Lorentz invariance. Here, since the cuto! is
provided by a higher-dimensional theory we have the full Lorentz invariance in any case. The
improvement will be measured by the removal of the Kaluza}Klein modes. Note that we are
attempting at an improvement in the strong coupling regime. Such ideas have only now begun to
be explored on the lattice [689]. Till now, the e!ort of lattice computations was directed at the
computation of the strong coupling expansion series.

Models that generalize the above background by the realization of the gauge theories on
non-extremal rotating branes have been studied in [690,686,318]. The deformation of the back-
ground is parametrized by the angular momentum parameter. Kaluza}Klein modes associated with
the circle have the form U"f (u)e*kxe*nq, n'0. It has been shown that as one varies the angular
momentum one decouples these Kaluza}Klein modes, while maintaining the stability of the glueball
mass spectrum. This deformation is not su$cient to decouple also the Kaluza}Klein modes
associated with the sphere part of the metrics (6.22) and (6.38), so we are still quite far from QCD.

The number of non-singular backgrounds is limited by the no hair theorem. One may consider
more angular momenta, for instance. However, this does not seem to be su$cient to decouple all
the Kaluza}Klein states [691,692]. It is possible that we will need to appeal to non regular
backgrounds in order to fully decouple the higher-dimensional physics. Some non supersymmetric
singular backgrounds of Type II supergravity that exhibit con"nement were constructed and
discussed in [418}420,423].

6.2.3.2. Type 0 string theory. The Type 0 string theories have world-sheet supersymmetry but no
space-time supersymmetry as a consequence of a non-chiral GSO projection [693,694]. Consider
two types of such string theories, Types 0A and 0B. They do not have space-time fermions in their
spectra. Nevertheless, they have a modular-invariant partition function. The bosonic "elds of these
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theories are like those of the supersymmetric Type IIA and Type IIB string theories, with a doubled
set of Ramond}Ramond "elds. Type 0 string theories can be formally viewed as the high-
temperature limit of the Type II string theories. They contain a tachyon "eld T.

Type 0 theories have D-branes. As in the Type II case, we can consider the gauge theories on the
worldvolume of N such branes. These theories do not contain an open-string tachyon. Moreover,
the usual condensation of the tachyon could be avoided in the near horizon region as we explain
below.

One particular example studied in [695] is the theory on N #at D3 branes in Type 0B theory.
Since there is a doubled set of RR 4-form "elds in Type 0B string theory, the D3 branes can carry
two charges, electric and magnetic. The world-volume theory of N #at electric D3 branes is a;(N)
gauge theory with six scalars in the adjoint representation of the gauge group. There are no
fermionic "elds. The classical action is derived by a dimensional reduction of the pure S;(N) gauge
theory action in ten dimensions. The six scalars are the components of the gauge "elds in the
reduced dimensions. The classical theory has an SO(6) global symmetry that rotates the six scalars.
This allows several possible parameters (from the point of view of renormalizable "eld theory):
a gauge coupling g

YM
, a mass parameter for the scalars m and various scalar quartic potential

couplings g
i
, one of which appears in the classical Lagrangian. In the classical world-volume action,

the mass parameter is zero and the g
i
are "xed in terms of g

YM
, it is just the dimensional reduction of

the ten-dimensional bosonic Yang}Mills theory. Quantum mechanically, the parameters are
corrected di!erently and can take independent values. The theory has a phase diagram depending
on these parameters. Generically we expect to see in the diagram Coulomb-like (Higgs) phases,
con"nement phases and maybe non-trivial RG "xed points arising from particular tunings of the
parameters.

As in the case of D branes in Type II theories, one can conjecture here that the low-energy theory
on the electric D3 branes has a dual non-supersymmetric string description. At "rst sight this
should involve a solution of AdS

5
]S5 type. The closed string tachyon might be allowed in AdS if

the curvature is of the order of the string scale, since in that case the tachyon would obey the
Breitenlohner}Freedman bound (2.42). The fact that the curvatures are of the order of the string
scale renders the gravity analysis invalid. In principle, we should solve the world-sheet string
theory. Since we do not know how to do that at present we can just do a gravity analysis and hope
that the full string theory analysis will give similar results. It was observed in [695] that the tachyon
potential includes the terms

1
2
m2e~2UT2#DFD2(1#T#T2/2) , (6.65)

where F is the electric RR "ve-form "eld strength (the magnetic one couples in a similar way but
with TP!T). The fact that the RR "elds contribute positively to the mass allows curvatures
which, numerically, are a bit less than the string scale. Furthermore, it has been noticed in [696]
that the "rst string correction to this background seems to vanish. These conditions on the
curvature translate into the condition g

4
N(O(1) which is precisely what we expect to get in QCD.

An interesting feature is that, due to the potential (6.65) the tachyon would have a nonzero
expectation value and that induces a variation of the dilaton "eld U in the radial coordinate via the
equation [669,696]

+2U"1
8
m2eU@2T2, m2"!2/a@ . (6.66)
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Since the radial coordinate is associated with the energy scale of the gauge theory, this variation
may be interpreted as the #ow of the coupling. In the UV (large radial coordinate) the tachyon is
constant and one "nds a metric of the form AdS

5
]S5. This indicates a UV "xed point.

The coupling vanishes at the UV "xed point, and this makes the curvature of the gravity solution
in"nite in the UV, but that is precisely what is expected since the "eld theory is UV free.
The running of the coupling is logarithmic, though it goes like 1/(logE)2. However, the
quark}antiquark potential goes as 1/logE due to the square root in (3.95).

In the IR (small radial coordinate) the tachyon vanishes and one "nds again a solution of
the form AdS

5
]S5. In the IR the coupling is in"nite. Therefore this solution seems to exhibit

a strong coupling IR "xed point. However, since the dilaton is large, classical string theory is not
su$cient to study the "xed point theory. The gravity solution at all energy scales u has not been
constructed yet.

Generically, one expects the gauge theory to have di!erent phases parametrized by the
possible couplings. The IR "xed point should occur as a particular tuning of the couplings.
Indeed, other solutions at small radial coordinate were constructed in [697] that exhibit con"ne-
ment and a mass gap. Moreover they were argued to be more generic than the IR "xed point
solution.

It was pointed out in [698] that the theories on the D3 branes of Type 0B string theory are
particular examples of the orbifold models of N"4 theory that we studied in Section 4.1.1. The
R-symmetry of N"4 theory is S;(4), the spin cover of SO(6). It has a center Z

4
and one can

orbifold with respect to it or its subgroups C. The theory on N #at electric D3 branes arises when
the action of C on the Chan-Paton (color) indices is in a trivial representation. This orbifold is not
in the class of `regular representationsa which we discussed in Section 4.1.1; in particular, in this
case the beta function does not vanish in the planar diagram limit. If we study instead the theory
arising on N self-dual D3-branes of type 0 (which may be viewed as bound states of electric and
magnetic D3-branes) we "nd a theory which is in the class of `regular representation orbifoldsa
[699], and behaves similarly to type II D3-branes in the large N limit. We will not discuss this
theory here.

As with the D branes in Type II string theory, we can construct a large number of non
supersymmetric models in Type 0 theories by placing the D branes at singularities. One example is
the theory of D3 branes of Type 0B string theory at a conifold singularity. As discussed in Section
4.1.3, when placing N D3 branes of Type IIB string theory at a conifold the resulting low-energy
world-volume theory is N"1 supersymmetric S;(N)]S;(N) gauge theory with chiral super-
"elds A

k
, k"1, 2 transforming in the (N,NM ) representation and B

l
, l"1, 2 transforming in the

(NM , N) representation, and with some superpotential.
On the world-volume of N electric D3 branes of Type 0B string theory at a conifold there is

a truncation of the fermions and one gets an S;(N)]S;(N) gauge theory with complex scalar
"elds A

k
, k"1, 2 transforming in the (N,NM ) representation and B

l
, l"1, 2 transforming in the

(NM , N) representation. This theory (at least if we set to zero the coe$cient of the scalar potential
which existed in the supersymmetric case) is asymptotically free. The gravity description of this
model has been analyzed in [700]. In the UV one "nds a solution of the form AdS

5
]¹1,1 which

indicates a UV "xed point. The e!ective string coupling vanishes in accord with the UV freedom of
the gauge theory. In the IR one "nds again a solution of the form AdS

5
]¹1,1 with in"nite coupling

that points to a strong coupling IR "xed point. Of course, one expects the gauge theory to have
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di!erent phases parametrized by the possible couplings. Indeed, there are other more generic
solutions that exhibit con"nement and a mass gap [700].

Other works on dual descriptions of gauge theories via the Type 0 D branes are [701}707].

7. Summary and discussion

We conclude by summarizing some of the successes and remaining open problems of the
AdS/CFT correspondence.

From the "eld theory point of view we have learned and understood better many properties of
the large N limit. Since 't Hooft's work [3] we knew that the large N limit of gauge theories should
be described by strings, if the parameter g2

YM
N is kept "xed. Through the correspondence we have

learned that not only does this picture really work (beyond perturbation theory where it was "rst
derived), but that the Yang}Mills strings (made from gluons) are the same as the fundamental
strings. Moreover, these strings move in higher dimensions, as was argued in [45]. These extra
dimensions arise dynamically in the gauge theory. For some "eld theories the curvatures in the
higher-dimensional space could be small. The prototypical example is N"4 super-Yang}Mills
with large N, g2

YM
N. From this example we can obtain others by taking quotients, placing branes at

various singularities, etc. (Section 4.1). In all cases for which we can "nd a low-curvature gravity
description we can do numerous calculations in the large N limit. We can calculate the spectrum of
operators and states (Sections 3.2 and 3.4). We can calculate correlation functions of operators and
of Wilson loops (Sections 3.3 and 3.5). We can calculate thermal properties, like the equation of
state (Section 3.6), and so on.

If the "eld theory is conformal the gravity solution will include an AdS factor. It is possible, in
principle, to deform the theory by any relevant operators. In some cases fairly explicit solutions
have been found for #ows between di!erent conformal "eld theories (Section 4.3). A `c-theorema
for "eld theories in more than two dimensions was proven within the gravity approximation. It
would be very interesting to generalize this beyond this approximation. It would also be interesting
to understand better exactly what it is the class of "eld theories which have a gravity approxima-
tion. One constraint on such four-dimensional conformal "eld theories, described in Section 3.2.2,
is that they must have a"c.

It is possible to give a "eld theory interpretation to various branes that one can have in the AdS
description (Section 4.2). Some correspond to baryons in the "eld theory, others to various defects
like domain walls, etc. In the AdS

5
case D-instantons in the string theory correspond to gauge

theory instantons in the "eld theory.
In general, the large N limit of a gauge theory should have a string theory description. Whether it

also has a gravity description depends on how large the curvatures in this string theory are. If the
curvatures are small, we can have an approximate classical gravity description. Otherwise, we
should consider all string modes on the same footing. This involves solving the worldsheet theories
for strings in Ramond-Ramond backgrounds. This is a problem that only now is beginning to be
elucidated [522,708}715]. For non-supersymmetric QCD, or other theories which are weakly
coupled (as QCD is at high energies), we expect to have curvatures at least of the order of the string
scale, so that a proper understanding of strings on highly curved spaces seems crucial.

It is also possible to deform the N"4 "eld theory, breaking supersymmetry and conformal
invariance, by giving a mass to the fermions or by compactifying the theory on a circle with
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supersymmetry breaking boundary conditions. Then, we have a theory that should describe pure
Yang}Mills theory at low energies (Sections 4.3, 3.6 and 6.2). In the case of "eld theories
compacti"ed on a circle with supersymmetry breaking boundary conditions and large g2

YM
N at the

compacti"cation scale, one can show that the theory is con"ning, has a mass gap, has h-vacua
with the right qualitative properties and has a con"nement}decon"nement transition at
"nite temperature. However, in the regime where the analysis can be done (small curvature) this
theory includes many additional degrees of freedom beyond those in the standard bosonic
Yang}Mills theory. In order to do quantitative calculations in bosonic Yang}Mills one would
have to do calculations when the curvatures are large, which goes beyond the gravity approxima-
tion and requires understanding the propagation of strings in Ramond-Ramond backgrounds.
Unfortunately, this is proving to be very di$cult, and so far we have not obtained new results
in QCD from the correspondence. As discussed in Section 6.2, the gravity approximation
resembles the strong coupling lattice QCD description [658], where the a@ expansion of
string theory corresponds to the strong coupling expansion. The gravity description has an
advantage over the strong coupling lattice QCD description by being fully Lorentz invariant. This
allows, for instance, the analysis of topological properties of the vacuum which is a di$cult task in
the lattice description. The AdS/CFT correspondence does provide direct evidence that QCD is
describable as some sort of string theory (to the extent that we can use the name string theory for
strings propagating on spaces whose radius of curvature is of the order of the string scale or
smaller).

One of the surprising things we learned about "eld theory is that there are various new large
N limits which had not been considered before. For instance, we can take NPRkeeping g

YM
"xed,

and the AdS/CFT correspondence implies that many properties of the "eld theory (like correlation
functions of chiral primary operators) have a reasonable limiting behavior in this limit, though
there is no good "eld theory argument for this. Similarly, we "nd that there exist large N limits for
theories which are not gauge theories, like the d"3, N"8 and d"6, N"(2, 0) superconformal
"eld theories, and for various theories with less supersymmetry. The existence of these limits cannot
be derived directly in "eld theory.

The correspondence has also been used to learn about the properties of "eld theories which were
previously only poorly understood. For instance, it has been used [341] to understand properties
of two-dimensional "eld theories with singular target spaces, and to learn properties of `little string
theoriesa, like the fact that they have a Hagedorn behavior at high energies. The correspondence
has also been used to construct many new conformal "eld theories, both in the large N limit and at
"nite N.

Another interesting case is topological Chern}Simons theory in three dimensions, which is
related to a topological string theory in six dimensions [327]. In this case one can solve exactly
both sides of the correspondence and see explicitly that it works.

The correspondence is also useful for studying non-conformal gauge theories, as we discussed in
Section 6.1.3. A particularly interesting case is the maximally supersymmetric quantum mechanical
S;(N) gauge theory, which is related to Matrix theory [24,716}724,641].

From the quantum gravity point of view we have now an explicit holographic description for
gravity in many backgrounds involving an asymptotically AdS space. The "eld theory e!ectively
sums over all geometries which are asymptotic to AdS. This de"nes the theory non-perturbatively.
This also implies that gravity in these spaces is unitary, giving the "rst explicit non-perturbative
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55 In the context of Matrix theory [24] we need to take a large N limit which is not well understood in order to describe
a theory of gravity in a space with no closed light-like curves.

construction of a unitary theory of quantum gravity,55 albeit in a curved space background. Black
holes are some mixed states in the "eld theory Hilbert space. Explicit microscopic calculations of
black hole entropy and greybody factors can be done in the AdS

3
case (Section 5).

Basic properties of quantum gravity, such as approximate causality and locality at low energies,
are far from clear in this description [179,277,169,177,175,725,180], and it would be interesting to
understand them better. We are also still far from having a precise mapping between general
con"gurations in the gravitational theory and in the "eld theory (see [726,176] for some attempts
to go in this direction).

In principle, one can extract the physics of quantum gravity in #at space by taking the large
radius limit of physics in AdS space. Since we have not discussed this yet in the review, let us expand
on this here, following [727}729,178] (see also [176,730}732]). We would like to be able to describe
processes in #at space which occur, for instance, at some "xed string coupling, with the energies and
the size of the interaction region kept "xed in string (or Planck) units. Computations on AdS space
are necessarily done with some "nite radius of curvature; however, we can view this radius of
curvature as a regulator, and take it to in"nity at the end of any calculation, in such a way that the
local physics remains the same. Let us discuss what this means for the AdS

5
]S5 case (the

discussion is similar for other cases). We need to keep the string coupling "xed, and take NPR

since the radius of curvature in Planck units is proportional to N1@4. Note that this is di!erent from
the 't Hooft limit, and involves taking jPR. In order to describe a scattering process in
space-time which has "nite energies in this limit, it turns out that the energies in the "eld theory
must scale as N1@4 (measured in units of the scale of the S3 which the "eld theory is compacti"ed on;
we need to work in global AdS coordinates to describe #at-space scattering). In this limit the "eld
theory is very strongly coupled and the energies are also very high, and there are no known ways to
do any computations on the "eld theory side. It would be interesting to compute anything
explicitly in this limit. For example, it would be interesting to compute the entropy of a small
Schwarzschild black hole, much smaller than the radius of AdS, to see #at-space Hawking
radiation, and so on. If we start with AdS

5
]S5 this limit gives us the physics in #at ten-dimensional

space, and similarly starting with AdS
4
]S7 or AdS

7
]S4 we can get the physics in #at 11-

dimensional space. It would be interesting to understand how the correspondence can be used to
learn about theories with lower dimension, where some of the dimensions are compacti"ed. A limit
of string theory on AdS

3
]S3]M4 may be used to give string theory on R5,1]M4, but it is not

clear how to get four-dimensional physics out of the correspondence.
One could, in principle, get four-dimensional #at space by starting from AdS

2
]S2 compacti"ca-

tions. However, the correspondence in the case of AdS
2

spaces is not well understood. AdS
2

spaces
arise as the near horizon geometry of extremal charged Reissner}Nordstrom black holes. Even
though "elds propagating in AdS

2
behave similarly to the higher-dimensional cases [733], the

problem is that any "nite energy excitation seems to destroy the AdS
2

boundary conditions [340].
This is related to the fact that black holes (as opposed to black p-branes, p'0) have an energy gap
(see Section 5.7), so that in the extreme low-energy limit we seem to have no excitations. One
possibility is that the correspondence works only for the ground states. Even then, there are
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56This is not precisely true in the linear dilaton backgrounds described in Section 6.1.4 [213].

instantons that can lead to a fragmentation of the space time into several pieces [734]. Some
conformal quantum mechanics systems that are, or could be, related to AdS

2
were studied in

[735}737,723]. Aspects of Hawking radiation in AdS
2

were studied in [738].
In all the known cases of the correspondence the gravity solution has a time-like boundary.56 It

would be interesting to understand how the correspondence works when the boundary is light-like,
as in Minkowski space. It seems that holography must work quite di!erently in these cases (see
[739,740] for discussions of some of the issues involved). In the cases we understand, the asymptotic
space close to the boundary has a well de"ned notion of time, which is the one that is associated to
the gauge theory. It would be interesting to understand how holography works in other spacetimes,
where we do not have this notion of time. Interesting examples are spatially closed universes,
expanding universes, de-Sitter space times, etc. See [741}744] for some attempts in this direction. The
precise meaning of holography in the cosmological context is still not clear [745}751].

To summarize, the past 18 months have seen much progress in our understanding of string/M
theory compacti"cations on AdS and related spaces, and in our understanding of large N "eld
theories. However, the correspondence is still far from realizing the hopes that it initially raised, and
much work still remains to be done. The correspondence gives us implicit ways to describe QCD and
related interesting "eld theories in a dual `stringya description, but so far we are unable to do any
explicit computations in the "eld theories that we are really interested in. The main hope for progress
in this direction lies in a better understanding of string theory in RR backgrounds. The correspond-
ence also gives us an explicit example of a unitary and holographic theory of quantum gravity. We
hope this example can be used to better understand quantum gravity in #at space, where the issues of
unitarity (the `information problema) and holography are still quite obscure. Even better, one could
hope that the correspondence would hint at a way to formulate string/M theory independently of the
background. These questions will apparently have to wait until the next millennium.

Note added in proof

It has recently come to light [752] that, in the example of an S;(3)-invariant non-supersymmet-
ric vacuum studied in [145] and reviewed in Section 4.3 of this article, there are scalars in the
gauged supergravity multiplet which violate the Breitenlohner}Freedman stability bound. Thus,
this solution is not a stable non-supersymmetric "xed point. Presumably, this means that in
the "eld theory the deformation which appears to lead to this critical point (as discussed in
Section 4.3.4) actually generates negative masses squared for the scalars in the "eld theory, leading
to an instability (at least at strong coupling where supergravity is valid). Excluding orbifold
constructions, there is no example at the time of writing of a non-supersymmetric AdS

5
vacuum of

supergravity which is de"nitely known to satisfy the stability bound.
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