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Abstract
The goal of this review is to present an introduction to loop quantum
gravity—a background-independent, non-perturbative approach to the problem
of unification of general relativity and quantum physics, based on a quantum
theory of geometry. Our presentation is pedagogical. Thus, in addition to
providing a bird’s eye view of the present status of the subject, the review
should also serve as a vehicle to enter the field and explore it in detail. To
aid non-experts, very little is assumed beyond elements of general relativity,
gauge theories and quantum field theory. While the review is essentially self-
contained, the emphasis is on communicating the underlying ideas and the
significance of results rather than on presenting systematic derivations and
detailed proofs. (These can be found in the listed references.) The subject can
be approached in different ways. We have chosen one which is deeply rooted
in well-established physics and also has sufficient mathematical precision to
ensure that there are no hidden infinities. In order to keep the review to a
reasonable size, and to avoid overwhelming non-experts, we have had to leave
out several interesting topics, results and viewpoints; this is meant to be an
introduction to the subject rather than an exhaustive review of it.
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1. Introduction

This section is divided into three parts. In the first, we outline the general, conceptual
viewpoint that underlies loop quantum gravity; in the second, we recall some of the central
physical problems of quantum gravity; and in the third, we summarize the progress that has
been made in addressing these issues and sketch the organization of the paper.
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1.1. The viewpoint

In this approach, one takes the central lesson of general relativity seriously: gravity is geometry
whence, in a fundamental theory, there should be no background metric. In quantum gravity,
geometry and matter should both be ‘born quantum mechanically’. Thus, in contrast to
approaches developed by particle physicists, one does not begin with quantum matter on a
background geometry and use perturbation theory to incorporate quantum effects of gravity.
There is a manifold but no metric, or indeed any other fields, in the background5.

At the classical level, Riemannian geometry provides the appropriate mathematical
language to formulate the physical, kinematical notions as well as the final dynamical equations
of modern gravitational theories. This role is now taken by quantum Riemannian geometry,
discussed in sections 4 and 5. In the classical domain, general relativity stands out as the
best available theory of gravity, some of whose predictions have been tested to an amazing
accuracy, surpassing even the legendary tests of quantum electrodynamics. Therefore, it is
natural to ask: Does quantum general relativity, coupled to suitable matter (or supergravity,
its supersymmetric generalization) exist as a consistent theory non-perturbatively?

In the particle physics circles, the answer is often assumed to be in the negative, not
because there is concrete evidence against non-perturbative quantum gravity, but because of
an analogy to the theory of weak interactions. There, one first had a 4-point interaction
model due to Fermi which works quite well at low energies but fails to be renormalizable.
Progress occurred not by looking for non-perturbative formulations of the Fermi model but
by replacing the model with the Glashow–Salam–Weinberg renormalizable theory of electro-
weak interactions, in which the 4-point interaction is replaced by W± and Z propagators. It
is often assumed that perturbative non-renormalizability of quantum general relativity points
in a similar direction. However, this argument overlooks the crucial fact that, in the case of
general relativity, there is a qualitatively new element. Perturbative treatments pre-suppose
that spacetime can be assumed to be a continuum at all scales of interest to physics under
consideration. This appears to be a safe assumption in theories of electro-weak and strong
interactions. In the gravitational case, on the other hand, the scale of interest is given by the
Planck length �Pl and there is no physical basis to pre-suppose that the continuum picture
should be valid down to that scale. The failure of the standard perturbative treatments may
be largely due to this grossly incorrect assumption and a non-perturbative treatment which
correctly incorporates the physical micro-structure of geometry may well be free of these
inconsistencies.

Note that, even if quantum general relativity did exist as a mathematically consistent
theory, there is no a priori reason to assume that it would be the ‘final’ theory of all known
physics. In particular, as is the case with classical general relativity, while requirements of
background independence and general covariance do restrict the form of interactions between
gravity and matter fields and among matter fields themselves, the theory would not have a
built-in principle which determines these interactions. Put differently, such a theory would
not be a satisfactory candidate for unification of all known forces. However, just as general
relativity has had powerful implications in spite of this limitation in the classical domain,
quantum general relativity should have qualitatively new predictions, pushing further the
existing frontiers of physics. Indeed, unification does not appear to be an essential criterion
for usefulness of a theory even in other interactions. QCD, for example, is a powerful theory

5 In 2 + 1 dimensions, although one begins in a completely analogous fashion, in the final picture one can get rid
of the background manifold as well. Thus, the fundamental theory can be formulated combinatorially [2, 35]. To
achieve this goal in 3 + 1 dimensions, one needs a much better understanding of the theory of (intersecting) knots in
three dimensions.
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even though it does not unify strong interactions with electro-weak ones. Furthermore, the
fact that we do not yet have a viable candidate for the grand unified theory does not make
QCD any less useful.

Finally, the quantum theory of geometry provides powerful tools to do quantum physics
in the absence of a background spacetime. Being kinematical, it is not rigidly tied to general
relativity (or supergravity) and may well be useful also in other approaches to quantum gravity.

1.2. Physical questions of quantum gravity

Approaches to quantum gravity face two types of issues: problems that are ‘internal’ to
individual approaches and problems that any approach must face. Examples of the former
are: incorporation of physical—rather than half-flat—gravitational fields in twistor theory;
mechanisms for breaking of supersymmetry and dimensional reduction in string theory; and
issues of spacetime covariance in the canonical approach. In this subsection, we will focus
on the second type of issue by recalling some of the long standing issues that any satisfactory
quantum theory of gravity should address.

Big-bang and other singularities. It is widely believed that the prediction of a singularity, such
as the big-bang of classical general relativity, is primarily a signal that the physical theory has
been pushed beyond the domain of its validity. A key question to any quantum gravity theory,
then is: what replaces the big-bang? Are the classical geometry and the continuum picture only
approximations, analogous to the ‘mean (magnetization) field’ of ferro-magnets? If so, what
are the microscopic constituents? What is the spacetime analogue of a Heisenberg quantum
model of a ferro-magnet? When formulated in terms of these fundamental constituents, is
the evolution of the quantum state of the universe free of singularities? General relativity
predicts that the spacetime curvature must grow unboundedly as we approach the big-bang or
the big-crunch but we expect the quantum effects, ignored by general relativity, to intervene,
making quantum gravity indispensable before infinite curvatures are reached. If so, what is
the upper bound on curvature? How close to the singularity can we ‘trust’ classical general
relativity? What can we say about the ‘initial conditions’, i.e., the quantum state of geometry
and matter that correctly describes the big-bang? If they have to be imposed externally, is
there a physical guiding principle?

Black holes. In the early 1970s, using imaginative thought experiments, Bekenstein [118]
argued that black holes must carry an entropy proportional to their area. About the same
time, Bardeen, Carter and Hawking (BCH) showed that black holes in equilibrium obey two
basic laws, which have the same form as the zeroth and the first laws of thermodynamics,
provided one equates the black-hole surface gravity κ to some multiple of the temperature
T in thermodynamics and the horizon area ahor to a corresponding multiple of the entropy S
[119]. However, at first this similarity was thought to be only a formal analogy because the
BCH analysis was based on classical general relativity and simple dimensional considerations
show that the proportionality factors must involve Planck’s constant h̄. Two years later, using
quantum field theory on a black-hole background spacetime, Hawking [120] showed that black
holes in fact radiate quantum mechanically as though they are black bodies at temperature
T = h̄κ/2π . Using the analogy with the first law, one can then conclude that the black-hole
entropy should be given by SBH = ahor/4Gh̄. This conclusion is striking and deep because it
brings together the three pillars of fundamental physics—general relativity, quantum theory
and statistical mechanics. However, the argument itself is rather a hotchpotch of classical and
semi-classical ideas, reminiscent of the Bohr theory of the atom. A natural question then is
as follows: what is the analogue of the more fundamental, Pauli–Schrödinger theory of the
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hydrogen atom? More precisely, what is the statistical mechanical origin of the black-hole
entropy? What is the nature of a quantum black hole and what is the interplay between the
quantum degrees of freedom responsible for entropy and the exterior curved geometry? Can
one derive the Hawking effect from first principles of quantum gravity? Is there an imprint of
the classical singularity on the final quantum description, e.g., through ‘information loss’?

Planck scale physics and the low energy world. In general relativity, there is no background
metric, no inert stage on which dynamics unfolds. Geometry itself is dynamical. Therefore,
as indicated above, one expects that a fully satisfactory quantum gravity theory would also be
free of a background spacetime geometry. However, of necessity, a background-independent
description must use physical concepts and mathematical tools that are quite different from
those of the familiar, low energy physics. A major challenge then is to show that this low energy
description does arise from the pristine, Planckian world in an appropriate sense, bridging the
vast gap of some 16 orders of magnitude in the energy scale. In this ‘top-down’ approach, does
the fundamental theory admit a ‘sufficient number’ of semi-classical states? Do these semi-
classical sectors provide enough of a background geometry to anchor low energy physics?
Can one recover the familiar description? Furthermore, can one pinpoint why the standard
‘bottom-up’ perturbative approach fails; that is, what is the essential feature which makes the
fundamental description mathematically coherent but is absent in the standard perturbative
quantum gravity?

There are of course many more challenges: the issue of time, of measurement theory
and the associated questions of interpretation of the quantum framework, the issue of
diffeomorphism invariant observables and practical methods of computing their properties,
practical methods of computing time evolution and S-matrices, exploration of the role of
topology and topology change, etc. However, it is our view that the three issues discussed in
detail are more basic from a physical viewpoint because they are rooted in general conceptual
questions that are largely independent of the specific approach being pursued; indeed they
have been with us longer than any of the current leading approaches.

1.3. Organization

In recent years, a number of these fundamental physical issues were addressed in loop quantum
gravity. These include the following: (i) a natural resolution of the big-bang singularity in
homogeneous, isotropic quantum cosmology [103–117]; (ii) a statistical mechanical derivation
of the horizon entropy, encompassing astrophysically interesting black holes as well as
cosmological horizons [122–141]; and (iii) the introduction of semi-classical techniques
to make contact between the background-independent, non-perturbative theory and the
perturbative, low energy physics in Minkowski space [142–160]. In addition, advances have
been made on the mathematical physics front. In particular, these include the following:
(iv) a demonstration that all Riemannian geometric operators have discrete eigenvalues,
implying that the spacetime continuum is only an approximation [65–80]; (v) a systematic
formulation of quantum Einstein equations in the canonical approach [85–102]; and (vi) the
development of spin foam models which provide background-independent path integral
formulations of quantum gravity [161–173]. These developments are also significant. For
example, in contrast to (v), quantum Einstein’s equations are yet to be given a precise
mathematical meaning in quantum geometrodynamics—a canonical approach that predates
loop quantum gravity by two decades or so—because the products of operators involved are
divergent.

All these advances spring from a detailed quantum theory of geometry that was
systematically developed in the mid-1990s. This theory is, in turn, an outgrowth of two
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developments: (a) formulation of general relativity (and supergravity) as a dynamical theory
of connections, with the same phase space as in Yang–Mills theories [12–16]; and, (b) heuristic
but highly influential treatments of quantum theories of connections in terms of loops [33–38]6.
In this review, we will first provide a brief but self-contained and pedagogical introduction to
quantum geometry and then discuss its applications to problems mentioned above.

The review is organized as follows. In section 2 we recall connection formulations of
general relativity. (Readers who are primarily interested in quantum geometry rather than
dynamical issues of general relativity may skip this section in the first reading.) The next
four sections present the basics of quantum theory. In section 3 we summarize the overall
strategy used in the construction of quantum kinematics; in section 4, we discuss background-
independent formulations of general quantum theories of connections; in section 5, the basics
of quantum Riemannian geometry and in section 6 the basics of quantum dynamics. These
sections are self-contained and the reader is referred to the original papers only for certain
proofs, technical subtleties and details that are interesting in their own right but not essential
to follow the general approach. Sections 7–9 are devoted to applications of quantum geometry
and a summary of current directions, where the treatment is less pedagogical: while the main
ideas are spelled out, the reader will have to go through at least some of the original papers to
get a thorough working knowledge. Section 10 contains a summary and the outlook.

For simplicity, most of the discussion in the main body of the review is focused on the
gravitational field. There is a large body of work on coupling of gauge, fermionic and scalar
fields to gravity where the quantum nature of underlying geometry modifies the physics of
matter fields in important ways. Appendix A illustrates these issues using the Einstein–
Maxwell theory as an example. Appendix B contains a list of symbols which are frequently
used in the review.

For a much more detailed review, at the level of a monograph, see [9]. Less pedagogical
overviews, at the level of plenary lectures in conferences, can be found in [6, 8].

2. Connection theories of gravity

General relativity is usually presented as a theory of metrics. However, it can also be recast as
a dynamical theory of connections7. Such a reformulation brings general relativity closer to
gauge theories which describe the other three fundamental forces of Nature in the sense that,
in the Hamiltonian framework, all theories now share the same kinematics. The difference, of
course, lies in dynamics. In particular, while dynamics of gauge theories of other interactions
requires a background geometry, that of general relativity does not. Nonetheless, by a suitable
modification, one can adapt quantization techniques used in gauge theories to general relativity.
We will see in sections 4–6 that this strategy enables one to resolve the functional analytic
difficulties which have prevented ‘geometrodynamical’ approaches to quantum gravity, based
on metrics, to progress beyond a formal level.

In this section, we will present a self-contained introduction to connection formulations
of general relativity. However, we will not follow a chronological approach but focus instead
only on those aspects which are needed in subsequent sections. For a discussion of other
issues, see [2, 12–23].

6 This is the origin of the name ‘loop quantum gravity’. Even though loops play no essential role in the theory now,
for historical reasons, this name is widely used. The current framework is based on graphs introduced in [40–42].
7 Indeed, in the late 1940s both Einstein and Schrödinger had recast general relativity as a theory of connections.
However, the resulting theory was rather complicated because they used the Levi-Civita connection. Theory simplifies
if one uses spin connections instead.
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Our conventions are as follows. M will denote the four-dimensional spacetime manifold
which we will assume to be topologically M × R, equipped with a fixed orientation. For
simplicity, in this section we will assume thatM is an oriented, compact 3-manifold without
boundary. (Modifications required to incorporate asymptotic flatness can be found in [2] and
those needed to allow an isolated horizon as an inner boundary can be found in [133, 134].) For
tensor fields (possibly with internal indices), we will use Penrose’s abstract index notation. The
spacetime metric will be denoted by gµν and will have signature −,+,+,+ (or, occasionally,
+,+,+,+). In the Lorentzian case, spacetime will be assumed to be time-orientable. The
torsion-free derivative operator compatible with gµν will be denoted by ∇ and its curvature
tensors will be defined via Rαβγ δKδ = 2∇[α∇β]Kγ ; Rαβ = Rαβγ β ; and R = gαβRαβ . For the
tetrad formalism, we fix a four-dimensional vector space V equipped with a fixed metric η̄IJ
of signature −,+,+,+ (or +,+,+,+), which will serve as the ‘internal space’. Orthonormal
co-tetrads will be denoted by eIα; thus gαβ = η̄IJ e

I
αe
J
β . In the passage to the Hamiltonian

theory, the metric on a spacelike Cauchy surface M will be denoted by qab and the spatial
co-triads will be denoted by eia . Finally, we will often set k = 8πG where G is Newton’s
constant. Due to space limitation, we will focus just on the gravitational part of the action and
phase space. For inclusion of matter, see, e.g., [16, 133]; for extension to supergravity, see,
e.g., [17]; and for ideas on extension to higher dimensions, see [25].

2.1. Holst’s modification of the Palatini action

In the Palatini framework, the basic gravitational variables constitute a pair
(
eµ
I , ωµ

I
J

)
of

1-form fields on M taking values, respectively, in V and in the Lie algebra so(η̄) of the
group SO(η̄) of the linear transformations of V preserving η̄IJ . Because of our topological
assumptions, the co-frame fields eµI are defined globally; they provide an isomorphism
between TxM and V at each x ∈ M. The action is given by

S(P )(e, ω) = 1

4k

∫
M
εIJKLe

I ∧ eJ ∧�KL (2.1)

where εIJKL is an alternating tensor on V compatible with η̄IJ such that the orientation of
εαβγ δ = εIJKLeIαeJβ eKγ eLδ agrees with that fixed onM and

� := dω + ω ∧ ω, (2.2)

is the curvature of the connection 1-form ωµ
I
J . The co-frame eIµ determines a spacetime

metric gµν = ηIJ e
I
µe
J
ν . Thus, in contrast to the more familiar Einstein–Hilbert action, S(P )

depends on an additional variable, the connection ωIJµ . However, the equation of motion
obtained by varying the action with respect to the connection implies that ωIJµ is in fact
completely determined by the co-frame:

de + ω ∧ e = 0. (2.3)

If we now restrict ourselves to histories on which the connection is so determined, S(P ) reduces
to the familiar Einstein–Hilbert action,

S(P )(e, ω(e)) = 1

2k

∫
M

d4x
√

|det g|R. (2.4)

where R is the scalar curvature of gµν . Therefore, the equation of motion for the metric is the
same as that of the Einstein–Hilbert action.

The action S(P ) is invariant under diffeomorphisms of M as well as local SO(η̄)
transformations

(e, ω) �→ (e′, ω′) = (b−1e, b−1ωb + b−1 db). (2.5)
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It is straightforward but rather tedious to perform a Legendre transform of this action and pass
to a Hamiltonian theory [18]. It turns out that the theory has certain second class constraints
and, when they are solved, one is led to a triad version of the standard Hamiltonian theory of
geometrodynamics; all reference to connection-dynamics is lost. This can be remedied using
the following observation: there exists another invariant, constructed from the pair (e, ω), with
the remarkable property that its addition to the action does not change equations of motion.
The modified action, discussed by Holst [21], is given by8

S(H)(e, ω) = S(P )(e, ω)− 1

2kγ

∫
M
eI ∧ eJ ∧�IJ (2.6)

where γ is an arbitrary but fixed number, called the Barbero–Immirzi parameter. For
applications to quantum theory, it is important to note that γ cannot be zero. The purpose
of this section is to analyse this action and the Hamiltonian theory emerging from it. In
sections 2.2 and 2.3 we will show that the Hamiltonian theory can be naturally interpreted as
a background-independent, dynamical theory of connections.

Recall that, in Yang–Mills theories, one can also add a ‘topological term’ to the action
which does not change the classical equations of motion because its integrand can be re-
expressed as an exterior derivative of a 3-form. In the present case, while the extra term
is not of topological origin, because of the first Bianchi identity it vanishes identically on
histories on which (2.3) holds. Therefore the situation is similar in the two theories in some
respects: in both cases, the addition of the term does not change the classical equations of
motion and it induces a canonical transformation on the classical phase space which fails to
be unitarily implementable in the quantum theory. Consequently, the parameter γ is in many
ways analogous to the well-known θ parameter in the Yang–Mills theory [83, 84]. Just as
the quantum theory has inequivalent θ -sectors in the Yang–Mills case, it has inequivalent
γ -sectors in the gravitational case.

We will conclude this preliminary discussion by exhibiting the symplectic structure in
the covariant phase space formulation. Here the phase space Γcov is taken to be the space of
(suitably regular) solutions to the field equations on M. To define the symplectic structure,
one follows the following general procedure. Denote by δ̄ ≡ (δ̄e, δ̄ω) tangent vectors in the
space of histories. Since field equations are satisfied on Γcov, the change in the Lagrangian
4-form L4 under a variation along δ̄ is for the form

(δ̄L4)|Γcov = dL3(δ̄)

for some 3-formL3 on M which depends linearly on δ̄. One can now define a 1-form Θ on the
space of histories via Θ(δ̄) := ∫

M
L3(δ̄). The symplectic structure Ω is simply the pullback

to Γcov of the curl of Θ on the space of histories. In our case, δ̄L(H) is given by

δ̄L(H) = − 1

2γ k
d
[
eI ∧ eJ ∧ δ̄

(
ωIJ − γ

2
εIJKLω

KL
)]
,

whence the symplectic structure is given by

Ω(δ1, δ2) = − 1

kγ

∫
M

[δ[1(e
I ∧ eJ )] ∧

[
δ2]

(
ωIJ − γ

2
εIJKLω

KL
)]

(2.7)

for all tangent vectors δ1 and δ2 to Γcov. From general considerations, it follows that the
value of the integral is independent of the specific choice of a Cauchy surface M made in its
evaluation.
8 This modification was strongly motivated by the very considerable work on the framework based on (anti-)self-dual
connections in the preceding decade (see, e.g., [2]), particularly by the discovery of an action for general relativity
using these variables [14]. Also, our presentation contains several new elements which, to our knowledge, have not
appeared in the literature before.
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Using the fact that the tangent vectors to Γcov must, in particular, satisfy the linearized
version of (2.3) it is easy to verify that the γ -dependent term in (2.7) vanishes identically:
not only is Γcov independent of the value9 of γ but so is the symplectic structure Ω on it. As
is clear from (2.7), the momentum conjugate to eI ∧ eJ , on the other hand, does depend on
the choice of γ . Thus, as noted above, like the θ term in the Yang–Mills theory, the γ term
in (2.6) only induces a canonical transformation on the phase space.

In effect the canonical transformation is induced by the map

XIJ �→ 1

2

(
XIJ − γ

2
εIJKLX

KL
)

on so(η̄). It is easy to verify that this map is a vector space isomorphism on so(η̄) except
when

γ 2 = σ := sgn(det η̄),

the sign of the determinant of the metric tensor η̄IJ (see footnote 9). At these exceptional
values of γ , the map is a projection onto the subspace of so(η) corresponding to the eigenvalue
−γ σ of the Hodge-dual operator � : XIJ �→ 1

2εIJ
KLXKL. Furthermore, in this case the map

is a Lie algebra homomorphism. In the Riemannian case (when η̄ has signature +,+,+,+) this
occurs for γ = ±1 while in the Lorentzian case (when η̄ has signature −,+,+,+) it occurs
for γ = ±i. In all these exceptional cases the theory has a richer geometrical structure. In
particular, the combination 1

2 (ωIJ − γ �ωIJ ) that occurs in the symplectic structure is again a
(half-flat) connection.

Chronologically, the background-independent approach to quantum gravity summarized
in this review originated from a reformulation of general relativity in terms of these half-flat
connections [12, 13]. It turns out that all equations in the classical theory simplify considerably
and underlying structures become more transparent in these variables. They are also closely
related to Penrose’s nonlinear gravitons [31] and Newman’s H-space constructions [32]. In
the Riemannian signature, one can continue to use these variables also in the quantum theory.
In the Lorentzian case, on the other hand, the half-flat connections take values in the Lie
algebra of non-compact groups and functional analysis on spaces of such connections is still
not sufficiently well developed to carry out constructions required in the quantum theory.
Therefore, in the Lorentzian case, most progress has occurred by working in sectors with real
values of γ where, as we will see, one can work connections with compact structure groups.

In section 2.2 we will summarize the situation with half-flat connections in the Riemannian
case and in section 2.3 we will discuss the Lorentzian theory using real-valued γ sectors.

2.2. Riemannian signature and half-flat connections

2.2.1. Preliminaries. Let us then assume that η̄IJ is positive definite. Since σ = 1, the
half-flat case corresponds to setting γ = ±1. Let us set

ω(+)IJ = 1

2

(
ωIJ − γ

2
εIJ

KLωKL

)
(2.8)

so that ω(+) is the anti-self-dual part of ω if γ = 1 and self dual, if γ = −1. In these cases,
the Holst action simplifies to

S(H)(e, ω(+)) = − 1

kγ

∫
M
�IJ(+) ∧�(+)IJ (2.9)

9 As a result, for generic values of γ , the equation of motion for the connection resulting from variation of S(H) with
respect to ωIJµ is again (2.3). Hence the space of solutions obtained by varying S(H) is the same as that obtained

by varying S(P ). For the exceptional values, this equation states that the (anti-)self-dual part of ωIJµ equals the

(anti-)self-dual part of the connection compatible with the co-frame eIµ. However, it is again true that the spaces of
solutions obtained by extremizing S(H) and S(P ) are the same [2].
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where �IJ(+) is the (anti-)self-dual part of eI ∧ eJ ,

�IJ(+) = 1

2

(
eI ∧ eJ − γ

2
εIJ KLe

K ∧ eL
)
,

and �(+)IJ is both the (anti-)self-dual part of �IJ and the curvature of ω(+)IJ :

�(+) = dω(+) + ω(+) ∧ ω(+).
Note that the theory under consideration is full (Riemannian) general relativity; we are just
describing it in terms of the fields

(
eI , ω

(+)
IJ

)
where ω(+)IJ is a half-flat (i.e., self-dual or anti-

self-dual) connection.
The symplectic form (2.7) now simplifies to

Ω(δ1, δ2) = − 2

kγ

∫
M

[
δ[1�

IJ
(+)

] ∧ [δ2]ω
(+)
IJ

]
=
∫
M

d3x
[
δ1P

a
IJ δ2A

IJ
a − δ2P

a
IJ δ1A

IJ
a

]
, (2.10)

where AIJ , the pullback toM of ω(+)IJ , represents the configuration variable and

P aIJ := − 1

2kγ
ηabc�

(+)
bcIJ ,

its canonically conjugate momentum. Here and in what follows ηabc will denote the metric-
independent Levi-Civita density on M whose orientation is the same as that of the fixed
orientation onM . Hence P aIJ is a pseudo-vector density of the weight 1 onM .10

2.2.2. The Legendre transform. Let us introduce on M a smooth (‘time’) function t such
that dt is everywhere non-zero and each t = const slice is diffeomorphic with M . Introduce
a vector field tα such that tα∇at = 1. Thus, tα is to be thought of as the ‘time-evolution
vector field’. Denote by nα the unit normal to the t = const slices M and decompose tα as
tα = Nnα +Nα withNαnα = 0. The function N is called the lapse and the vector fieldNα the
shift. We will denote by qaα and qαa the projection operator on to vector and co-vector fields
onM . Finally, a tensor field T α...βγ ...δ which is orthogonal in each of its indices to nµ will be
identified with its projection T a...bc...d := qaα . . . qbβqγc . . . qδdT α...βγ ...δ .

With these preliminaries out of the way, it is now straightforward to perform the Legendre
transform. The calculation is remarkably short (especially when compared to the Legendre
transform in the metric variables; see, e.g., page 47 of [2]). In terms of fields AIJa and P aIJ
introduced above, one obtains11,

S(H) =
∫

dt
∫
M

d3x
(
P aIJLtAIJa − h(+)(A, P,N,Na, ω(+) · t)

)
(2.11)

where the Hamiltonian density h(+) is given by

h(+) = −(ω(+)IJ · t)GIJ +NaC(+)a +NC(+), (2.12)

with
GIJ := D(+)a P aIJ := ∂aP aIJ + AaI

KP aKJ + AaJ
KP aIK

C(+)a := P bIJF IJab
C(+) := − k√|det q|P

a
I
JP bJ

KFabK
I .

(2.13)

10 In terms of coordinates, for any smooth field V IJ and 1-form fa onM , the 3-form V IJ faP aIJ dx1 ∧ dx2 ∧ dx3 is
a volume element onM which is independent of the choice of coordinates (x1, x2, x3).
11 Here, and in the remainder of this paper, in the Lie derivative of a field with internal indices will be treated simply
as scalars (i.e., ignored). Thus, LtAIJa = tb∂bAIJa + AIJb ∂at

b .
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Here F IJab is the curvature of AIJa , F = dA + A ∧ A and q is the determinant of the 3-metric

qab := qαa qβb gαβ
onM . The form of (2.12) confirms that, as suggested by (2.10), we should regard AIJa as the
configuration variable and P aIJ as its momentum. The momentum is related in a simple way
to the 3-metric:

−TrP aP b = P aIJP bIJ = 1

k2
(det q)qab.

Note that ω · t, N and Na are Lagrange multipliers; there are no equations governing
them. The basic dynamical variables are only AIJa and P aIJ ; all other dynamical fields are
determined by them. Variation of S(H) with respect to these multipliers yields constraints

GIJ = 0 C(+)a = 0 and C(+) = 0. (2.14)

As is always the case (in the spatially compact context) for theories without background fields
the Hamiltonian is a sum of constraints. Variations of the action with respect to AIJa and P aIJ
yield the equations of motion for these basic dynamical fields. The three constraints (2.13)
and these two evolution equations are equivalent to the full set of Einstein’s equations.

2.2.3. The Hamiltonian framework. It follows from the Legendre transform (2.11) that the
canonical phase space Γcan consists of canonically conjugate pairs of fields

(
AIJa , P

a
IJ

)
ofM .

The only non-trivial Poisson bracket is{
AIJa (x), P

b
KL(y)

}
:= 1

2

(
δI[Kδ

J
L] − γ

2
δI[Mδ

J
N]ε

MN
KL

)
δbaδ(x, y). (2.15)

A key point is that the configuration variable AIJa is again a connection on the 3-manifoldM
but the structure group is now the spin group SO(+)(η̄) (which, in the Riemannian case now
under consideration, is isomorphic to SU(2))12. Thus, in the Hamiltonian framework, general
relativity has been cast as a dynamical theory of a spin connection.

The basic canonically conjugate variables are subject to three sets of constraints, spelled
out in (2.13). It is easy to verify that the Poisson bracket between any two constraints vanishes
on the constraint surface; in Dirac’s terminology, they are of first class. The first constraint,
G
(+)
IJ , generates internal gauge transformations in SO(+)(η̄). Modulo these gauge rotations,

the second, C(+)a , generates diffeomorphisms onM , and the third, C(+), generates ‘evolutions’
along Nnα . Using the relation between P aIJ and the 3-metrics qab on M , one can show that
these equations are equivalent to the full set of Einstein’s equations. However, one can work
just with the connections AIJa and their conjugate momenta, without any direct reference to
metrics, even when gravity is coupled to matter [16]. In this sense, gravity can be regarded
as a ‘gauge theory’ which has the same phase space Γcan as that of an SO(+)(η̄) Yang–Mills
theory but is a fully constrained dynamics which does not refer to a background spacetime
metric.

2.3. Generic real value of γ

The formulation of general relativity as a dynamical theory of half-flat connections, presented
in section 2.2, has been studied in detail also for Lorentzian signature [2, 12–23]. However, in
that case, certain subtleties arise because the connection is complex valued and the structure

12 The full group SO(η̄) does admit an action on the phase space, given by (P,A) �→ (b−1Pb, b−1Ab + (b−1 db)(+)),
where (+) stands for the projection onto so(+)(η̄) in so(η̄). However, because of the projection, A does not transform
as an SO(η̄) connection.



R64 Topical Review

group is non-compact. We have chosen to bypass these issues because, as explained in
section 2.1, for passage to quantum theory we have in any case to use compact structure
groups, i.e., real values of γ . Therefore, in this subsection we will let γ take any non-zero
real value. Although we are now primarily interested in the −,+,+,+ signature, our analysis
will apply also to the +,+,+,+ case.

2.3.1. Preliminaries. It is convenient to first carry out a partial gauge fixing. Let us fix an
internal vector field nI with nInI = σ (the signature of η̄IJ ). We will require it to be constant
(in the sense that from now on, we will restrict ourselves to flat derivative operators ∂ which
annihilate nI , in addition to η̄IJ ). Let V⊥ be the three-dimensional subspace of V orthogonal to
nI . Elements of V⊥ will carry lower case superscripts, i, j, . . . , k and the projection operator
on to V⊥ will be denoted by qiI . In particular, then,

ηij = qIi qJj η̄IJ
is the induced metric on V⊥. Because we have fixed nI , the group SO(η̄) is now reduced
to its subgroup SO(η) which leaves nI invariant. Finally, the alternating tensor εIJKL on V
naturally induces an alternating tensor εijk on V⊥ via

εijk = qIi qJj qKk nLεLIJK.
Next, let us introduce a ‘time function’ t and the associated structure as in the beginning

of section 2.2.2, with the following additional provisos if the signature is Lorentzian: the
vector field tα is future directed and nα is the future-directed unit timelike normal to M . We
will now allow only those co-frame fields eIα which are ‘compatible’ with the fixed nI in the
sense that nα := nI eαI is the unit normal to the given foliation. (Note that every co-frame is
gauge related to that satisfying this condition; see (2.5).) Each of these co-frames eIα naturally
defines an orthonormal co-triad eia := eIαq

i
I q
α
a : on each leaf M of the foliation, the induced

metric qab is given by qab = eiaejbηij . Similarly, the connection 1-form ωIJα naturally defines
two so(3)-valued 1-forms onM:

�ia := 1
2q
α
a q
i
I ε
IJ
KLnJω

KL
α and Kia := qiI qαa ωIJα nJ . (2.16)

These 1-forms have natural geometric interpretations. �ia is an so(η) connection onM and it
is compatible with eia if ωIJα is compatible with eIα . Thus, if (2.3) holds, we have

dei + εijk�
j ∧ ek = 0. (2.17)

Kia is the extrinsic curvature ofM if (2.3) holds:

Kia = (
qαa q

b
β∇αnβ

)
eib. (2.18)

In terms of these fields, the symplectic structure (2.7) can be re-expressed as

Ω(δ1, δ2) =
∫
M

d3x
(
δ1P

a
i δ2A

i
a − δ2P

a
i δ1A

i
a

)
(2.19)

where

P ai := 1

2kγ
e
j

be
k
cη
abcεijk and Aia := �ia − σγKia. (2.20)

Note that Aia is a connection 1-form on M which takes values in so(η). P ai is again a vector
density of weight 1 on M which now takes values in (the dual of) so(η). Geometrically, it
represents an orthonormal triad Ẽa of density weight 1 onM ,

kγP ai =
√

|det q|eai ≡ Ẽai whence |det q|qab = k2γ 2P ai P
b
j η
ij (2.21)

where det q is the determinant of the 3-metric qab onM .
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Let us summarize. Through gauge fixing, we first reduced the internal gauge group from
SO(η̄) to SO(η). The new configuration variable Aia is an so(η)-valued connection on M,
constructed from the spin connection �ia compatible with the co-triad eia and the extrinsic
curvature Kia . Apart from a multiplicative factor γ , the conjugate momentum P ai has the
interpretation of a triad with density weight 1. Note that relation (2.20) between the canonical
variables Aia, P

a
i and the geometrical variables eia and Kia holds also in the half-flat case; it is

just that there is also an additional restriction, σ 2γ 2 = ±1.

2.3.2. The Legendre transform. Let us return to the Holst action (2.6) and perform the
Legendre transform as in section 2.2.2. Again, the calculations are simple but the full
expression of the resulting Hamiltonian density h is now more complicated. As before
one obtains

S(H) =
∫

dt
∫
M

d3x
(
P ai LtAia − h(Aia, P ai , N,Na, �·t

))
(2.22)

with h given by

h = (ωi · t)Gi +NaCa +NC. (2.23)

Again ωi · t := − 1
2ε
ijkωjk · t, Na and N are Lagrange multipliers. However, now the

accompanying constraints acquire additional terms:

Gi = DaP ai := ∂aP ai + εij
kAjaP

a
k Ca = P bi F iab − σ − γ 2

σγ
KiaGi

C = kγ 2

2
√|det q|P

a
i P

b
j

[
εij kF

k
ab + (σ − γ 2)2Ki[aK

j

b]

]
+ (γ 2 − σ)k∂a

(
P ai√|det q|

)
Gi.

(2.24)

Here, Fkab is the curvature of the connection Aia and |det q| can be expressed directly in terms
of P ai :

|det q| = (kγ )3√|det η| detP. (2.25)

Thus, the overall structure of the constraints is very similar to that in the half-flat case.
However, there is a major new complication in the detailed expressions of constraints: now
they involve alsoKia = (1/σγ )(�ia−Aia) and�ia is a non-polynomial function ofP ai .13 (Since
these terms are multiplied by (σ − γ 2), they disappear in the half-flat case.)

2.3.3. Hamiltonian theory. Now the canonical phase space Γcan consists of pairs
(
Aia, P

a
i

)
of fields on the 3-manifold M, where Aia is a connection 1-form which takes values in so(η)
and P ai is a vector density of weight 1 which takes values in the dual of so(η). The only
non-vanishing Poisson bracket is{

Aia(x), P
b
j (y)

}
:= δij δbaδ(x, y). (2.26)

Thus, the phase space is the same as that of a Yang–Mills theory with SO(η) as the structure
group. There is again a set of three constraints (2.24) which are again of first class in Dirac’s
terminology. The basic canonical pair evolves via Hamilton’s equations,

Ȧia = {
Aia,H

}
, Ṗ ai = {

P ai ,H
}

13 Although the possibility of using real γ was noted already in the mid-1980s, this choice was ignored in the
Lorentzian case because the term Kia seemed unmanageable in quantum theory. The viewpoint changed with
Thiemann’s discovery that this difficulty can be overcome; see section 6.
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where the Hamiltonian is simply H = ∫
M

d3x h. The set of three constraints and these two
evolution equations are completely equivalent to Einstein’s equations. Thus, general relativity
is again recast as a dynamical theory of connections.

Before analysing the phase space structure in greater detail, we wish to emphasize two
important points. First, note that in the Hamiltonian theory we simply begin with the fields(
Aia, P

a
i

)
; neither they nor their Poisson brackets depend on the Barbero–Immirzi parameter

γ . Thus, the canonical phase space is manifestly γ independent. γ appears only when we
express geometrical fields—the spatial triad eai and the extrinsic curvature Kia—in terms of
the basic canonical variables (see (2.21) and (2.18)). The second point concerns a conceptual
difference between the use of half-flat and general connections. The configuration variables
in both cases are connections on M. Furthermore, as noted in section 2.3.1, relation (2.20)
between these connections and the fields eia,K

i
a is identical in form. However, while the

variable AIJa of section 2.2 is the pullback to M of a spacetime connection AIJα , the variable
Aia now under consideration is not so obtained [22]. From the spacetime geometry perspective,
therefore, Aia is less natural. While this is a definite drawback from the perspective of the
classical theory, it is not a handicap for canonical quantization. Indeed a spacetime geometry
is analogous to a trajectory in particle mechanics and particle trajectories play no essential
role in quantum mechanics.

Finally, let us analyse the structure of constraints. As one would expect, the first constraint,
Gi = 0, is simply the ‘Gauss law’ which ensures invariance under internal SO(η) rotations.
Indeed, for any smooth field �i onM which takes values in so(η), the function

CG(�) :=
∫
M

d3x �iGi (2.27)

on the phase space generates precisely the internal rotations along �i :{
Aia, CG(�)

} = −Da�i and
{
P ai , CG(�)

} = εij k�jP ak . (2.28)

To display the meaning of the second constraint Ca of (2.24), it is convenient to remove from
it the part which generates internal rotations which we have already analysed. Therefore, for
each smooth vector field 
N onM let us define

CDiff( 
N) :=
∫
M

d3x
(
NaP bi F

i
ab − (

NaAia
)
Gi
)
. (2.29)

This constraint function generates diffeomorphisms along 
N :{
Aia, CDiff( 
N)} = L 
NA

i
a and

{
P ai , CDiff( 
N)} = L 
NP

a
i . (2.30)

Finally, let us consider the third constraint in (2.24). For quantization purposes, it is again
convenient to remove a suitable multiple of the Gauss constraint from it. Following Barbero
and Thiemann, we will set

C(N) = kγ 2

2

∫
M

d3x N
P ai P

b
j√|det q|
[
εij kF

k
ab + 2(σ − γ 2)Ki[aK

j

b]

]
. (2.31)

As one might expect, this constraint generates time evolution, ‘off’M . The Poisson brackets
between these specific constraints are

{CG(�), CG(�
′)} = {CG([�,�

′])} {CG(�), CDiff( 
N)} = −CG(LN�) (2.32)

{CDiff( 
N), CDiff( 
N ′)} = CDiff([ 
N, 
N ′]) (2.33)

{CG(�), C(N)} = 0 {CDiff( 
N), C(M)} = −C(LNM) (2.34)
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and

{C(N), C(M)} = k2γ 2σ(CDiff( 
S) + CG(S
aAa)) + (σ − γ 2)CG

(
[P a∂aN, P b∂bM]

|det q|
)
. (2.35)

In the last equation, the vector field Sa is given by

Sa = (N∂bM −M∂bN)P
b
i P

ai

|det q| . (2.36)

As in geometrodynamics, the smearing fields in the last Poisson bracket depend on dynamical
fields themselves. Therefore, the constraint algebra is open in the BRST sense; we have
structure functions rather than structure constants. We will return to this point in section 6.

To summarize, both the Euclidean and Lorentzian general relativity can be cast as a
dynamical theory of (real-valued) connections with compact structure groups. The price in the
Lorentzian sector is that we have to work with a real value of the Barbero–Immirzi parameter,
for which the expressions of constraints and their Poisson algebra are more complicated.

Remarks

(1) For simplicity, in this section we focused just on the gravitational field. Matter couplings
have been discussed in detail in the literature using half-flat gravitational connections in
the framework of general relativity as well as supergravity (see, e.g., [16, 17]). In the
matter sector, modifications required to deal with generic γ values of the Barbero–Immirzi
parameter are minimal.

(2) In the purely gravitational sector considered here, the internal group for general real values
of γ is SO(η). For cases we focused on, ηij is positive definite whence SO(η) = SO(3).
However, since we also wish to incorporate spinors, in the remainder of the paper we will
take the internal group to be SU(2). This will also make the structure group the same in
the generic and half-flat cases.

(3) Throughout this section we have assumed that the frames, co-frames and metrics under
consideration are non-degenerate. However, the final Hamiltonian framework can be
naturally extended to allow degenerate situations. Specifically, by replacing the scalar
lapse function N with one of density weight −1, one can allow for the possibility that
the fields P ai become degenerate, i.e., have detP = 0. Somewhat surprisingly, the
dynamics continues to be well defined and one obtains an extension of general relativity
with degenerate metrics. For details, see, e.g., [26–30].

3. Quantization strategy

In sections 4 and 5 we will provide a systematic, step-by-step construction of background-
independent quantum theories of connections (including general relativity) and a quantum
theory of geometry. Since that treatment is mathematically self-contained, the procedure
involved is rather long. Although individual steps in the construction are straightforward, the
motivation, the goals, and the relation to procedures used in standard quantum field theories
may not always be transparent to an uninitiated reader. Therefore, in this section, we will
provide the motivation behind our constructions, a summary of the underlying ideas and a
global picture that will aid the reader to see where one is headed.

3.1. Scalar field theories

To anchor the discussion in well-established physics, we will begin by briefly recalling the
construction of the Hilbert space of states and basic operators for a free massive scalar field in
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Minkowski spacetime, within the canonical approach. (For further details, see, e.g., [43].) The
classical configuration space C is generally taken to be the space of smooth functions φ which
decay rapidly at infinity on a t = const slice, M. From one’s experience in non-relativistic
quantum mechanics, one would expect quantum states to be ‘square integrable functions’� on
C. However, since the system now has an infinite number of degrees of freedom, the integration
theory is now more involved and the intuitive expectation has to be suitably modified.

The key idea, which goes back to Kolmogorov, is to build the infinite-dimensional
integration theory from the finite-dimensional one. One begins by introducing a space S
of ‘probes’, typically taken to be real test functions e on the spatial slice M. Elements of S
probe the structure of the scalar field φ ∈ C through linear functions he on C,

he(φ) =
∫
M

d3x e(x)φ(x) (3.1)

which capture a small part of the information in the field φ, namely ‘its component along e’.
Given a set α of probes, he1 , . . . , hen and a (suitably regular) complex-valued function ψ of n
real variables, we can now define a more general function � on C,

�(φ) := ψ(he1(φ), . . . , hen(φ)
)
, (3.2)

which depends only on the n ‘components’ of φ singled out by the chosen probes. (Strictly,�
should be written as �α but we will omit the suffix for notational simplicity.) Such functions
are said to be cylindrical. We will denote by Cylα the linear space they span. Given a measure
µ(n) on Rn, we define an Hermitian inner product on Cylα in an obvious fashion:

〈�1, �2〉 :=
∫

Rn
dµ(n)(ψ̄1ψ2)

(
he1(φ), . . . , hen

)
. (3.3)

The idea is to extend this inner product to the space Cyl of all cylindrical functions, i.e., the
space of all functions on C which are cylindrical with respect to some set of probes. However,
there is an important caveat which arises because a given function � on C may be cylindrical
with respect to two different sets of probes. (For example, every � ∈ Cylα is also in Cylβ
where β is obtained simply by enlarging α by adding new probes.) The inner product will be
well defined only if the value of the integral does not depend on the specific set α of probes we
use to represent the function. This requirement imposes consistency conditions on the family
of measuresµ(n). These conditions are non-trivial. But they can be met. The simplest example
is provided by setting µ(n) to be normalized Gaussian measures on Rn. Every family {µ(n)}
of measures satisfying these consistency conditions enables us to integrate general cylindrical
functions and is therefore said to define a cylindrical measureµ on C. The Cauchy completion
H of (Cyl, 〈 , 〉) is then taken to be the space of quantum states.

If this construction were restricted to any one set α of probes, the resulting Hilbert space
would be (infinite dimensional but) rather small because it would correspond to the space
of quantum states of a system with only a finite number of degrees of freedom. The huge
enlargement, accommodating the infinite number of degrees of freedom, comes about because
we allow arbitrary sets α of probes which provide a ‘chart’ on all of C, enabling us to
incorporate the infinite number of degrees of freedom in the field φ.

Let us examine this issue further. Any one cylindrical function is a ‘fake’ infinite-
dimensional function in the sense that its ‘true’ dependence is only on a finite number of
variables. However, in the Cauchy completion, we obtain states which ‘genuinely’ depend on
an infinite number of degrees of freedom. However, in general, these states cannot be realized
as functions on C. In the case of free fields, the appropriate measures are Gaussians (with zero
mean and variance determined by the operator�−µ2) and all quantum states can be realized
as functions on the space S ′ of tempered distributions, the topological dual of the space S of
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probes. In fact, the cylindrical measure can be extended to a regular Borel measureµ on S ′ and
the Hilbert space is given by H = L2(S ′, dµ). S ′ is referred to as the quantum configuration
space. Finally, as in Schrödinger quantum mechanics, the configuration operators φ̂(f ) are
represented by multiplication and momentum operators π̂(f ) by derivation (plus a multiple
of the ‘divergence of the vector field

∫
d3x δ/δφ(x) with respect to the Gaussian measure’

[160])14. This ‘Schrödinger representation’ of the free field is entirely equivalent to the more
familiar Fock representation.

Thus, the overall situation is rather similar to that in quantum mechanics. The presence
of an infinite number of degrees of freedom causes only one major modification: the classical
configuration space C of smooth fields is enlarged to the quantum configuration space S ′

of distributions. Quantum field theoretic difficulties associated with defining products of
operators can be directly traced back to this enlargement.

3.2. Theories of connections

We saw in section 2 that general relativity can be recast in such a way that the configuration
variables are SU(2) connections on a ‘spatial’ manifold M . In this section, we will indicate
how the quantization strategy of section 3.1 can be modified to incorporate such background-
independent theories of connections. We will let the structure group be an arbitrary compact
group G and denote by A the space of all suitably regular connections on M. A is the classical
configuration space of the theory15.

The idea again is to decompose the problem into a set of finite-dimensional ones. Hence,
our first task is to introduce a set of probes to extract a finite number of degrees of freedom
from the connection field. The new element is gauge invariance: now the probes have to be
well adapted to extract gauge invariant information from connections. Therefore, it is natural
to define cylindrical functions through holonomies he along edges e in M. This suggests that
we use edges as our probes. Unlike in the case of a scalar field, holonomies are not linear
functions of the classical fieldA; in gauge theories, the duality between the probes and classical
fields becomes nonlinear.

Denote by α graphs on M with a finite number of edges e. Then, given a connection A
on M, holonomies he(A) along the edges e of α contain gauge invariant information in the
restriction to the graph α of the connection A. While these capture only a finite number of
degrees of freedom, the full gauge invariant information in A can be captured by considering
all possible graphs α.

The strategy, as in section 3.1, is to first develop the integration theory using single graphs
α. If the graph α has n edges, the holonomies he1 , . . . , hen associate with every connection A
an n-tuple (g1, . . . , gn) of elements of G. Therefore, given a (suitably regular) function ψ on
Gn, we can define a function � on the classical configuration space A as follows:

�(A) := ψ(he1(A), . . . , hen(A)
)
. (3.4)

These functions are said to be cylindrical with respect to the graph α and their space will be
denoted by Cylα . To define a scalar product on Cylα , it is natural to choose a measure µ(n) on
Gn and set

〈�1, �2〉 :=
∫
Gn

dµ(n)ψ̄1ψ2. (3.5)

14 For interacting field theories rigorous constructions are available only in low spacetime dimensions. The λφ4

theory, for example, is known to exist in two spacetime dimensions but now the construction involves non-Gaussian
measures. For a brief summary, see [43].
15 Since the goal of this section is only to sketch the general strategy, for simplicity we will assume that the bundle is
trivial and regard connections as globally defined 1-forms which take values in the Lie algebra of G.
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This endows Cylα with a Hermitian inner product. This analysis is completely analogous to
that used in lattice gauge theories, the role of the lattice being played by the graph α.

However, as in section 3.1, elements of Cylα are ‘fake’ infinite-dimensional functions
because they depend only on a finite number of ‘coordinates’, he1 , . . . , hen , on the infinite-
dimensional space A. To capture the full information contained in A, we have to allow all
possible graphs in M.16 Denote by Cyl functions on A which are cylindrical with respect to
some graph α. The main challenge lies in extending the integration theory from Cylα to Cyl.
Again the key subtlety arises because�1 and�2 in Cyl may be cylindrical with respect to many
graphs and there is no a priori guarantee that the value of the inner product is independent of
which of these graphs are used to perform the integral on the right-hand side of (3.5). The
requirement that the inner product be well defined imposes severe restrictions on the choice of
measures µ(n) onGn. However, as discussed in section 5, there is a natural choice compatible
with the requirement that the theory be diffeomorphism covariant, imposed by our goal of
constructing a background-independent quantum theory [40, 41, 43–45, 56–58].

As in section 3.1, a consistent set of measures µ(n) on Gn provides a cylindrical measure
on A and a general result ensures that such a measure can be naturally extended to a regular
Borel measure on an extension Ā of A [43]. The space Ā is called the quantum configuration
space. It contains ‘generalized connections’ which cannot be expressed as continuous fields
on M but nonetheless assign well-defined holonomies to edges in M. These are referred to as
quantum connections. Conceptually, the enlargement from A to Ā which occurs in the passage
to quantum theory is very similar to the enlargement from C to S ′ in the case of scalar fields.
This enlargement plays a key role in quantum theory (especially in the discussion of surface
states of a quantum horizon discussed in section 8). It is an imprint of the fact that, unlike
in lattice theories, here we are dealing with a genuine field theory with an infinite number of
degrees of freedom.

By now, the structure of the quantum configuration space Ā is well understood [39, 40,
52, 53, 66]. In particular, using an algebraic approach (which has been used so successfully in
non-commutative geometry), differential geometry has been developed on Ā [66]. It enables
the introduction of physically interesting operators discussed in sections 4.3, 5 and 6.

Ideas sketched in this section are developed systematically in the next two sections. We
begin in section 4.1 by discussing quantum mechanics on a compact Lie group G and use it to
introduce the quantum theory of connections on a graph in section 4.2. The quantum theory
of connections in the continuum is discussed in section 4.3. This structure is then used in
section 5 to introduce quantum geometry.

4. Quantum theories of connections: background-independent kinematics

In this section, we will construct a kinematical framework for background-independent,
quantum theories of connections in the abstract, without direct reference to section 2. To
bring out the generality of these constructions, we will work with gauge fields for which
the structure group is any compact Lie group G. This discussion of theories of connections
is divided into three parts. In the first, we provide a gentle introduction to the subject via
quantum mechanics of a ‘particle’ on the group manifold of a compact Lie group G; in the
second, we consider the quantum kinematics of a (background-independent) lattice gauge
theory with structure group G on an arbitrary graph; and, in the third, we consider connections
in the continuum with structure group G.

16 Note that this strategy is quite different from the standard continuum limit used in lattice approaches to Minkowskian
field theories. Our strategy is well suited to background-independent theories where there is no kinematic metric to
provide scales. Technically, it involves a ‘projective limit’ [44, 66].
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Constructions based on a general compact Lie group are important, e.g., in the discussion
of the Einstein–Yang–Mills theory. However, for quantum geometry and for the formulation
of quantum Einstein’s equations, as we saw in section 2, the relevant group is G = SU(2).
Therefore, we will often spell out the situation for this case in greater detail. We will use the
following conventions. The dimension of the G will be d and its Lie algebra will be denoted
by g. Occasionally, we will use a basis τ i in g. In the case G = SU(2), the Lie algebra
g = su(2) will be identified with the Lie algebra of all the complex, traceless, anti-self-adjoint
2 by 2 matrices. Then the Cartan–Killing metric ηij is given by

η(ξ, ζ ) = −2 Tr(ξζ ), (4.1)

for all ξ, ζ ∈ su(2). In this case our τi will constitute an orthonormal basis satisfying

[τi, τj ] = εkij τk. (4.2)

4.1. Quantum mechanics on a compact Lie group G

Let us consider a ‘free’ particle on the group manifold of a compact Lie group G. In this
subsection, we will discuss (classical and) quantum mechanics of this particle. The quantum
Hilbert space and operators will be directly useful to quantum kinematics of theories of
connections discussed in the next two subsections. The theory described in this section also
has some direct physical applications. For example, in the case G = SO(3), it describes ‘a
free spherical top’ while ifG = SU(2), it plays an important role in the description of hadrons
in the Skyrme model.

4.1.1. Phase space. The configuration space of the particle is the group manifold of G and
the phase space is its cotangent bundle T �(G). The natural Poisson bracket between functions
on T �(G) is given by

{f1, f2} = ∂f1

∂qi

∂f2

∂pi
− ∂f2

∂qi

∂f1

∂pi
(4.3)

where qi are coordinates on G and (qi, pi) are the corresponding coordinates on T �(G).
Every smooth function f on G defines a configuration variable and every smooth vector

field Xi , a momentum variable PX := Xipi on T �(G). As on any cotangent bundle, (non-
trivial) Poisson brackets between them mirror the action of vector fields on functions and the
Lie bracket between vector fields:

{Px, f } = −LXf and {PX, PY } = −P[X,Y ]. (4.4)

These configuration and momentum observables are said to be elementary in the sense that
they admit unambiguous quantum analogues.

Being a Lie group, G admits two natural Lie algebras of vector fields, each of which is
isomorphic with the Lie algebra g of G. Given any ξ ∈ g, we can define a left (respectively,
right) invariant vector field L(ξ) (respectively, R(ξ)) on G such that

L(ξ)f (g) = d

dt
f (g etξ ) and R(ξ)f (g) = d

dt
f (e−tξ g). (4.5)

(The sign convention is such that L(ξ) �→ R(ξ) under g �→ g−1.)
The corresponding momentum functions on T �(G) will be denoted by J (L,ξ), J (R,ξ).

These are generalizations of the familiar ‘angular momentum functions’ on T �SO(3). Each
set forms a d-dimensional vector space which is closed under the Poisson bracket. Since any
vector field X on G can be expressed as a (functional) linear combination of L(ξ) (R(ξ)), it
suffices to restrict oneself only to this 2d-dimensional space of momentum observables.
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Since the particle is ‘free’, the Hamiltonian is given just by the kinetic term,

H(p, q) = ηijpipj , (4.6)

where ηij is a metric tensor defined on G and invariant with respect to the left and right action
of G on itself. Given an orthonormal basis τi, i = 1, . . . , d, in g, and we denote J (L,τi ) by
J
(L)
i and J (R,τi ) by J (R)i , then the Hamiltonian can be rewritten as

H(p, q) = J (L)i J
(L)
j ηij = J (R)i J

(R)
j ηij . (4.7)

We will see that all these basic observables naturally define operators in the quantum theory.

4.1.2. Quantization. Since G is equipped with the normalized Haar measure µH , the Hilbert
space of quantum states can be taken to be the spaceL2(G, dµH) of square integrable functions
on G with respect to the Haar measure. (For a detailed discussion, see [1, 3].) The configuration
and momentum operators can be introduced as follows. With every smooth function f on G,
we can associate a configuration operator f̂ in the obvious fashion

(f̂ ψ)(g) = f (g)ψ(g), (4.8)

and with every momentum function Xipi , a momentum operator Ĵ (X) via

(Ĵ (X)ψ)(g) = i
[
LXψ + 1

2 (divX)ψ
]
(g), (4.9)

where divX is the divergence of the vector field X with respect to the invariant volume form
on G (and, for later convenience, we have left out the factor of h̄.) It is straightforward
to check that the commutators of these configuration and momentum operators mirror the
Poisson brackets between their classical counterparts. Of particular interest are the operators
associated with the left (and right) invariant vector fields associated with an orthonormal basis
τi of g. We will set

L̂i = Ĵ (L)i and R̂i = Ĵ (R)i . (4.10)

Since the divergence of right and left invariant vector fields vanishes, the action of operators
is given just by the Lie-derivative term, i.e., formally, by the Poisson bracket between the
momentum functions and ψ . In terms of these operators, the quantum Hamiltonian is given
by

Ĥ = L̂iL̂j ηij = R̂iR̂j ηij = −�, (4.11)

where � is the Laplace operator on G.

4.1.3. Spin states. In theories of connections developed in the next two subsections, a
‘generalized spin network decomposition’ of the Hilbert space of states will play an important
role. As a prelude to that construction, we will now introduce an orthogonal decomposition
of the Hilbert space L2(G, dµH) into finite-dimensional subspaces. Let j label inequivalent
irreducible representations of G, let Vj denote the carrier space of the j -representation and let
V �j be its dual. Then, the Weyl theorem provides the decomposition we are seeking:

L2(G, dµH) = ⊕jSj with Sj = Vj ⊗ V �j . (4.12)

In the caseG = SU(2) we can make this decomposition more explicit. As is well known
from quantum mechanics of angular momentum, in this case the eigenvalues of the operator
Ĵ 2 = −� are given by j (j + 1), where j runs through all the non-negative half-integers and
labels the irreducible representations. Each carrier space Vj is now 2j + 1 dimensional. We
can further decompose each Sj = Vj ⊗ V �j into orthogonal one-dimensional subspaces. Fix

an element ξ ∈ su(2) and consider the pair of commuting operators, L̂(ξ) and R̂(ξ). Given j ,
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every pair of eigenvalues, j(L,ξ), j(R,ξ), of these operators, each in −j,−j + 1, . . . , j , defines
a one-dimensional eigensubspace Sj,j(L,ξ),j(R,ξ) . Thus, we have

L2(SU(2), dµH) = ⊕jSj = ⊕j,j(L,ξ),j(R,ξ)Sj,j(L,ξ),j(R,ξ) . (4.13)

This fact will lead us to spin network decomposition in the next two subsections.

4.2. Connections on a graph

Before considering (field) theories of connections, let us consider an intermediate quantum
mechanical system, that of connections on a fixed graph α with a finite number of edges.
This system is equivalent to lattice gauge theory on α [1]. In the next subsection, we will see
that field theories of connections in the continuum can be obtained by appropriately ‘gluing’
theories associated with all possible graphs on the given manifold, in the manner sketched in
section 3.2.

A graph may be thought of as a collection of edges and vertices and will serve as a
‘floating’ lattice17. (‘Floating’, because the edges need not be rectangular. Indeed since we do
not have a background metric, terms like ‘rectangular’ have no invariant meaning.) A graph
α′ is said to be larger than another graph α (or contain α), α � α′, if every edge e of α can be
written as e = e′1 ◦ · · · ◦ e′k for some edges e′1, . . . , e

′
k of α′.

4.2.1. Spaces of connections on a graph. A G connection Aα on a graph α is the set of
g-valued 1-forms Ae defined on each edge e of α. For concreteness, we will suppose that each
Aα is given by the pullback to α of a smooth g-valued 1-form onM .18 Thus, one can think of
a connection on α simply as an equivalence class of smooth connections onM where two are
equivalent if their restrictions to each edge of α agree. (This concrete representation of Aα
will make the passage to section 4.2 more transparent but is not essential in this section.)

Denote the space of G connections on α by Aα . This space is infinite dimensional
because of the trivial redundancy of performing local gauge transformations along the edges
of α. As in lattice gauge theories it is convenient to remove this redundancy to arrive at a
finite-dimensional space Āα , which can be taken to be the relevant configuration space for any
(background-independent) theory of connections associated with the graph α.

A gauge transformation gα in Gα is a map gα : xα → G from all points xα on α. Thus,
gα can be thought of as the restriction to α of a G-valued function defined on M . Under gα ,
connections Aα transform as

Aα �→ g−1
α Aαgα + g−1

α dαgα, (4.14)

where dα is the exterior derivative along the edges of α. Let us now consider the quotient
spaces

Āα := Aα
/
G0
α and Ḡα := Gα

/
G0
α, (4.15)

where G0
α is the subgroup given by all local gauge transformations gα which are identity on

the vertices of α. Let us choose an arbitrary but fixed orientation of each edge of α. Then,

17 More precisely, a graph α is a finite set of compact one-dimensional sub-manifolds of M called edges of α, such
that (i) every edge is either an embedded interval with boundary (an open edge with end-points); or, an embedded
circle with a marked point (a closed edge with an ‘end-point’); or an embedded circle (a loop); and, (ii) if an edge
intersects any other edge of α it does so only at one or two of its end-points. The end-points of an edge are called
vertices. This precise definition is needed to ensure that our Hilbert space H of section 4.3 is sufficiently large and
admits a generalized ‘spin network decomposition.
18 Throughout this paper, we will work with a fixed trivialization. In this section, lower case Greek letters always
refer to graphs and not to indices on spacetime fields; indeed, we do not use spacetime fields in most of the remainder
of this review.
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every element Āα ∈ Āα can be identified with the G values Āα(e) of the parallel transport
(i.e., holonomy) defined by any connection Aα in the equivalence class Āα .19 Thus, we have
natural 1–1 maps between Āα and Gn and between Ḡα and Gm

IE : Āα −→ Gn IE(Āα) = (Āα(e1), . . . , Āα(e1)), (4.16)

IV : Ḡα −→ Gm IV (ḡα) = (ḡ(v1), . . . , ḡ(vm)) (4.17)

where e1, . . . , en are the edges of α and v1, . . . , vm the vertices. Note that IE depends on the
orientation of edges. In the next section, this map will play a key role and we will ensure that
our final results are insensitive to the choice of the orientation.

Following lattice gauge theory, we will refer to Āα as a configuration variable of theories
of connections on α and ḡα as a (residual) gauge transformation on the configuration variables.
Since Ḡα , the group of the (residual) gauge transformations, has a non-trivial action on Āα ,
physical configuration space is given by the quotient Āα/Ḡα .

Remark. The quotient Āα/Ḡα can be characterized in the following way [40]. Fix a vertex
v0 in α. Let α1, . . . , αh be free generators of the first homotopy group of α, based at v0 (that
is every loop in α beginning in v0 is a product of the generators and their inverses, and this
decomposition is unique). The map

Ā �→ (Ā(α1), . . . , Ā(αh)) (4.18)

from Ā toGh defines a 1–1 correspondence between Āα/Ḡα andGm/G where the quotient is
with respect to the residual gauge action (U1, . . . , Uh)g := (g−1U1g, . . . , g

−1Uhg).

4.2.2. Quantum theory. Since Āα is the configuration space, it is natural to represent quantum
states as square integrable functions on Āα . This requires that we define a measure on Aα .
An obvious strategy is to use the map IE of (4.16) to represent Āα by Gn and use the Haar
measure on G. This endows Āα with a natural measure which we denote by µ0

α . Thus, the
space of quantum states can be taken to be the Hilbert space Hα = L2

(
Āα, dµ0

α

)
. Let us

denote the pullbacks of functions ψ on Gn to functions on Āα by �:

� = I �Eψ. (4.19)

Since IE is a bijection, every function � on Āα can be so represented, enabling us to think of
quantum states � in Hα as functions ψ on Gn. Then, the inner product can be written as

〈�1, �2〉 =
∫
Gn

dµ0
H ψ̄1ψ2, (4.20)

where µ0
H is the Haar measure on Gn. Since the Haar measure is invariant under g �→ g−1,

the inner product does not depend on the choice of the orientation of edges of α, made in the
definition of IE . It is easy to verify that the inner product is also invariant under the induced
action on Hα of the residual group Ḡα of the gauge transformations.

We will now introduce a number of interesting operators on Hα , which will turn out to
be useful throughout this paper. Clearly, Hα is the tensor product of the spaces L2(G, dµH),
each associated with an edge of α. Using the operators L̂i and R̂i on L2(G, dµH) and the fact

19 For simplicity, in the main body of the paper we will discuss the case where every edge of α has two vertices. If a
graph α admits a closed edge e′ without vertices, then G0

α contains all gauge transformations at points of e′ (since e′
has no vertex). Hence, Āα(e′) ∈ G/Ad, where the quotient is by the adjoint action on G. Thus, for a general graph, if
n0 denotes the number of closed edges without vertices and n1 the remaining edges (so that n = n0 + n1), the image
of the map IE defined below is [G/Ad]n0 ×Gn1 . All our constructions and results can be extended to general graphs
in a straightforward manner.
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that the correspondence (4.16) associates a copy of G with each edge in α, we define certain
operators Ĵ (v,e)i on Hα . Given a vertex v of α, an edge e with v as an end-point, and a basis τi
in g, we set

Ĵ
(v,e)
i � = I �E[(1 ⊗ · · · ⊗ 1 ⊗ Ĵ i ⊗ 1 ⊗ · · · ⊗ 1)ψ] (4.21)

where the non-trivial action is only on the copy of G associated with the edge e, and where
Ĵ i = L̂i if the vertex v is the origin of the edge e and Ĵ i = R̂i if v is the target of e. Thus,
the edge e dictates the copy of G on which Ĵ (v,e)i has non-trivial action while the vertex v
determines if the action is through the left or right invariant vector field.

4.2.3. Generalized spin network decomposition. The product structure Hα ∼
[L2(G, dµH)]⊗n enables us to import results of the last subsection on quantum mechanics
on G. In particular, using (4.12), Hα can be decomposed into finite-dimensional subspaces
Hα,j where j = {j1, . . . jn} assigns to each edge of α an irreducible representation of G. The
individual subspaces Hα,j can be further decomposed into irreducible representations of the
action of the group of residual gauge transformations. Let l = {l1, . . . , lv} assign to each
vertex of α an irreducible representation of G. Then, each Hα,j can be further decomposed
into subspaces Hα,j,l consisting of all vectors which belong to the irreducible representation l
of the group of residual gauge transformations at every vertex v. Then, we have

Hα = ⊕jHα,j = ⊕j,lHα,j,l. (4.22)

The gauge invariant subspace of Hα corresponds to the labelling of vertices

l = 
0 i.e. �v = the trivial representation for all v in α. (4.23)

For applications to quantum geometry, let us make this decomposition more explicit in
the case when G = SU(2). This discussion will also serve to make the somewhat abstract
construction given above by providing a more detailed description of the labels j, l.

Example. With each edge e of α, we associate an operator Ĵ 2
e :

(Ĵ e)
2 := ηij Ĵ (v,e)i Ĵ

(v,e)
j (4.24)

where ηij is again the Cartan–Killing metric (4.1) on su(2), and v is the source or target of e.
Since they act on different copies of SU(2), all these operators commute with each other. Since
each of these operators has eigenvalues je(je + 1) where je is a non-negative half-integer, each
simultaneous eigenspace Hj of this set of operators is labelled by j = (

je1 , . . . , jen
)
. Thus, we

have a decomposition of the total Hilbert space:

Hα = ⊕jHα,j. (4.25)

The individual subspaces Hα,j are the natural extensions of spaces Sj introduced in
section 4.1.3 in the case of a single copy of SU(2). They have several interesting properties:
(i) each Hj is a finite-dimensional subspace of Hα; (ii) it is preserved by the action of every
Ĵ
(v,e)
i ; and (iii) it is preserved by the (induced) action of gauge transformations in Ḡα (which

act non-trivially at vertices of α).

Finally, we can carry out a further decomposition by introducing additional commuting
operators. Of particular importance are vertex operators [Ĵ v]2, associated with each vertex v
of α. These are defined by

[Ĵ v]2 := ηij Ĵ vi Ĵ vj where Ĵ vi :=
∑
e′ at v

Ĵ
(v,e′)
i , (4.26)
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where the sum extends over all edges e′ intersecting at v. Heuristically, Ĵ ei can be regarded as
angular momentum operators ‘living on the edge e’ and Ĵ vi , as the total angular momentum
operators ‘arriving’ at the vertex v. It is easy to check that the operators [Ĵ v]2 commute with
the operators [Ĵ e]2. Hence, if we denote eigenvalues of [Ĵ v]2 by lv(lv + 1) the subspaces Hj

can be further decomposed and we arrive at a finer decomposition of the total Hilbert space,

Hα = ⊕jHα,j = ⊕j,lHα,j,l, (4.27)

where Hj,l is a simultaneous eigenspace of operators [Ĵ e]2 and [Ĵ v]2.

Remark. One can enlarge the set of commuting operators and further refine the decomposition
of Hα . We illustrate the procedure for G = SU(2). At each vertex v, let us first order
the intersecting edges, (e′1, . . . , e

′
k) say. Then, introduce the following (rather large) set of

operators, (
Ĵ
(v,e′1)
i + Ĵ

(v,e′2)
i

)
ηij
(
Ĵ
(v,e′1)
j + Ĵ

(v,e′2)
j

)
, . . . ,(

Ĵ
(v,e′1)
i + Ĵ

(v,e′2)
i + Ĵ

(v,e′3)
i

)
ηij
(
Ĵ
(v,e′1)
j + Ĵ

(v,e′2)
j + Ĵ

(v,e′3)
j

)
, . . . ,

. . . . . .(
Ĵ
(v,e′1)
i + · · · + Ĵ

(v,e′k−1)

i

)
ηij
(
Ĵ
(v,e′1)
j + · · · + Ĵ

(v,e′k−1i)

j

)
,

(4.28)

where each bracket contains a sum only over operators defined at a given vertex v. These
operators commute with each other and with our earlier operators [Ĵ e]2 and [Ĵ v]2. If we label
the eigenvalues of these operators by s, each simultaneous eigenspace H(j,l,s) can be labelled
by the triplet (j, s, l). Each H(j,l,s) is the irreducible representation of the group of the gauge
transformations Ḡα corresponding to the half-integer values lv .

Note that, given arbitrary labelling j of the edges of α, the remaining two labellings l, s
are restricted by some inequalities: at each vertex v, we must have

s1,2 ∈ {∣∣je′1 − je′2
∣∣, ∣∣je′1 − je′2

∣∣ + 1, . . . , je′1 + je′2
}
, (4.29)

s1,2,3 ∈ {∣∣s1,2 − je′3
∣∣, . . . , s1,2 + je′3

}
(4.30)

. . . (4.30)

lv ∈ {∣∣s1,2,...,k−1 − je′k
∣∣, . . . , ∣∣s1,2,...,k−1 + je′k

∣∣}. (4.31)

When these conditions are met, we obtain the following orthogonal decomposition of Hj,

Hα = ⊕jHj, Hj = ⊕lH(j,l) and H(j,l) ⊕s Hj,l,s (4.32)

where the labellings j, l and s take positive, half-integer values, subject to the inequalities
(4.29)–(4.31). Gauge invariant states subspaces are labelled by trivial l.

4.3. Connections on M

Let us now turn to field theories of G connections, such as general relativity, discussed in
section 2. Given any graph α on M , each connection A on M defines, just by restriction,
a connection A |α on α. Furthermore, A is completely determined by the collection {A|α}
defined by considering all possible graphs α on M . Therefore, we will be able to construct
a background-independent quantum kinematics for theories of connections onM by weaving
together quantum theories of connections on graphs (constructed in section 4.2).
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4.3.1. The classical phase space. For simplicity, we will consider G connections on a
trivial bundle over M. This restriction is motivated by the fact that the main application of
this framework will be to quantum geometry where G = SU(2) and all SU(2) bundles over a
3-manifold are trivial. Since all the structures we introduce are gauge covariant, it is convenient
to fix a global trivialization once and for all and regard smooth g-valued 1-forms A on M as
connections20. The space of all such 1-forms will be the classical configuration space and
denoted by A. The phase space will consist of pairs

(
Aia, P

a
i

)
, where A ∈ A and P is a

g-valued vector density defined onM . Following the standard terminology from Yang–Mills
theory, we will refer to Aia as connections and P ia as the analogues of Yang–Mills electric
fields. As we saw in section 2, in the gravitational case, kP ai = (8πGγ )P ai also has the
interpretation of an orthonormal triad (of density weight 1), where γ is the Barbero–Immirzi
parameter. While this fact plays no role in this section, it will be used crucially in section 5 to
introduce quantum Riemannian geometry.

The Poisson bracket between any two smooth functions on the phase space is given by

{f1(A, P ), f2(A, P )} =
∫
M

d3x

(
δf1

δAia

δf2

δP ai
− δf2

δAia

δf1

δP ai

)
. (4.33)

The gauge group G is the group of G-valued functions g onM . This group has a natural action
on the phase space, given by

(A · g, P · g) = (g−1Ag + g−1 dg, g−1Pg). (4.34)

The elementary classical observables that will have direct quantum analogues are (complex-
valued functions of) holonomies A(e) along paths e inM and fluxes P(S, f ) of electric fields
(smeared by g-valued functions f ) across 2-surfaces S in M . In this subsection, we will fix
our convention, introduce precise definitions of these phase space functions and explore some
of their properties.

In the main body of this paper, for technical simplicity we will restrict ourselves to
oriented, analytic 3-manifoldsM and use only closed-piecewise analytic edges e and closed-
piecewise analytic sub-manifolds S in M .21 Given an edge e : [t2, t1] → M on M and a
connection A, the parallel transport from e(t1) to e(t) along e is defined by the following
differential equation and initial condition:

d

dt
Ue(t, t1;A) = −Aa(e(t))ėa(t)U(t, t1;A) and U(t1, t1;A) = I. (4.35)

Given A ∈ A, the parallel transport along the entire e will be denoted by A(e):

A(e) := Up(t2, t1;A). (4.36)

Thus, A(e) ∈ G, it is unchanged under orientation-preserving re-parametrizations of e, and
has two key properties which will play an important role in the next subsection,

A(e2 ◦ e1) = A(e2)A(e1), A(e−1) = A(e)−1, (4.37)

where e−1 is obtained from e by simply reversing the orientation.

20 For background material see, e.g., [3]. It is quite straightforward to generalize the framework introduced in this
subsection to non-trivial bundles on n-dimensional manifold M [41, 58].
21 More precisely, we assume that for each edge e : [tn, t1] �→ M , the interval [tn, t1] admits a covering by closed
intervals [tn, tn−1], . . . , [t2, t1] such that the image of each of these closed intervals in M is analytic. Each surface
S is an topological sub-manifold of M such that its closure S̄ is of the form S̄ = ∪I S̄I where each S̄I is a compact,
analytic sub-manifold ofM (possibly) with boundary. (These assumptions can be relaxed and one can work with just
smooth structures; see [47, 63, 64, 92].)
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The ‘electric flux’ is defined using our surfaces S. Fix on S a smooth function f with
values in the dual g� of the Lie algebra g and define the (smeared) flux of P through S as

P(S, f ) :=
∫
S

fi�
i, (4.38)

where �iab = ηabcP ci is the 2-form dual of the electric field.
As a prelude to quantization, let us calculate Poisson brackets between these observables.

Since the phase space is a cotangent bundle, the configuration observables have vanishing
Poisson brackets among themselves. (As in sections 4.1.2 and 4.2.2, this will make it
possible to introduce a configuration representation in which quantum states are functions of
connections.) The Poisson bracket between configuration observables A(e) and momentum
observables P(S, f ) can be easily calculated and has a simple, geometrical structure. Any
edge e with e ∩ S �= ∅ can be trivially written as the union of ‘elementary’ edges which either
lie in S, or intersect S in exactly one of their end-points. (This can be achieved simply by
introducing suitable new vertices on e.) Then for each of these ‘elementary’ edges e which
intersect S at a point p, we have

{A(e), P (S, f )} = −
[
κ(S, e)

2

]
×
{
A(e)τ ifi(p) if p is thesource of e
−fi(p)τ iA(e) if p is the target of e

(4.39)

where τ i is any orthonormal basis in g and κ(S, e) is 0 or ±1:

κ(S, e) =


0, if e ∩ S = ∅, or e ∩ S = e modulo the end-points

+1, if e lies above S

−1, if e lies below S.

(4.40)

Thus, the bracket vanishes if e and S do not intersect or e lies within (the closure of) S and,
if they have a ‘simple’ intersection, is given by a linear combination of the configuration
observables A(e), where the coefficients are determined by the value of the smearing field f
at the intersection point.

The bracket between the momentum observables, by contrast, is not as straightforward
because of the following technical complication [48]. The configuration (holonomy)
observables A(e) are obtained by smearing A along one-dimensional curves e while the
momentum (electric flux) observables are obtained by smearing the electric field 2-forms
e on two-dimensional surfaces. Since connections A are 1-forms and dual-electric fields �
2-forms, this smearing is geometrically most natural, particularly when there is no background
metric. However, in contrast to the standard practice in field theories where smearing is
done in three dimensions, our smearing fields are themselves ‘distributional’ from the full
three-dimensional perspective. Therefore one has to exercise due care in evaluating Poisson
brackets. The one- and two-dimensional smearings in the definitions of Ae and P(S, f )
are ‘just right’ for the calculation of the Poisson bracket (4.39) to go through. However,
technical subtleties arise in the evaluation of the Poisson brackets between smeared electric
fields. If one naively uses Poisson brackets (4.33) to conclude that the Lie bracket between
the momentum operators P(S, f ) must vanish, then (4.39) implies that the Jacobi identity
between A(e), P (S, f ), P (S̃, f̃ ) fails to be satisfied. The correct procedure is to use the fact
that the momentum variablesP(S, f ) are of the formX(S,f ) ·P for some vector fieldsX(S,f ) on
the configuration space A,22 whence the (non-trivial) Lie bracket between P(S̃, f̃ ) is dictated

22 More precisely,X(S,f ) are derivations on the ring of functions of holonomies (i.e., on the space Cyl defined below).
From the perspective of textbook treatments of field theories, these functions are ‘singular’, being supported on
one-dimensional edges rather than three-dimensional open sets ofM . This is the origin of the counter-intuitive result
on Jacobi identity.
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by the action of the vector fieldsXS,f on the ring of functions of holonomies. Now, in general,
these vector fields fail to commute. Hence (as on a general cotangent bundle, see (4.4)) the
Poisson bracket between momentum variables fails to vanish in general. As in section 4.1.1,
the correct Lie algebra between our elementary configuration and momentum observables
is given by the geometric Lie algebra of functions and vector fields on the configuration
space A. This Lie algebra naturally incorporates (4.39) and provides non-trivial Poisson
brackets between the momentum observables. It will be mirrored in the commutators of the
corresponding elementary quantum operators.

4.3.2. Quantum configuration space Ā and Hilbert space H. In quantum mechanics of
systems with a finite number of degrees of freedom, states are represented by functions on the
classical configuration space. By contrast, as explained in section 3, in field theories quantum
states are functions on a larger space—the quantum configuration space. Only certain ‘nice’
functions on the classical configuration space admit an extension to the larger space. In our
case, these are the so-called cylindrical functions on A. Fix a graph α with n edges. Then,
given a C∞ complex-valued function φ on Gn, we can define a function �α on A via

�α(A) = φ(A(e1), . . . , A(en)). (4.41)

(Strictly, � should carry a subscript (α, φ). However, for notational simplicity, we will drop
φ.) The space of such functions will be denoted by Cylα .23 A function � on A is said to be
cylindrical if it arises from this construction for some graph α. Note that (i) there is a natural
isomorphism between Cylα and the space of functions on Āα (see equation (4.16)); and (ii)
every function which is cylindrical with respect to a given graph α is automatically cylindrical
with respect to a larger graph α′; Cylα ⊆ Cylα′ . These facts are used repeatedly in this section.
We will denote the space of all cylindrical functions by Cyl; thus

Cyl = ∪αCylα.

Given any one graph α, using (4.20), we can introduce a natural inner product on Cylα

〈�α,�α〉 =
∫
Gn

dµ0
H φ̄ψ. (4.42)

The Cauchy completion of this space provides a Hilbert space which is naturally isomorphic
with Hα = L2

(
Āα, dµ0

α

)
of section 4.2.2 and for notational simplicity, we will denote it also

by Hα .
The idea is to introduce an inner product on the space of all cylindrical functions via

(4.42). Suppose we are given two cylindrical functions �α1 and �α2 based on two distinct
graphs α1 and α2. Then, we can introduce a third graph α3 which contains all the edges
and vertices of α1 and α2, regard the two functions as cylindrical with respect to α3, and
attempt to define the inner product between �α1 and �α2 using (4.42) with α = α3. The key
question now is whether the resulting number is independent of the specific α3 used in this
construction. Fortunately, the right and left invariance properties of the Haar measure and the
fact that we have chosen it to be normalized (so that

∫
G

dµH = 1) imply that the answer is in
the affirmative [40, 41]. Thus, thanks to the Haar measure on G,Cyl has a natural Hermitian
inner product. Denote its Cauchy completion by H. This is our Hilbert space for quantum
kinematics of background-independent theories of connections.

Since the Cauchy completion Hα of Cylα is simply L2
(
Āα, dµ0

α

)
, every element of Hα

can be represented as a function on Āα (more precisely, an equivalence class of functions on

23 Occasionally, we will need to let φ be only Cn. The space of resulting cylindrical functions � will be denoted by
Cyl(n)α .
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Āa , where two are equivalent if they differ on a set of measure zero). Unfortunately, this is
not true of H: while every element of Cyl is a function (indeed a very simple one!) on A, in
the Cauchy completion, one picks up limit points which cannot be represented as functions
on A. As noted in section 3, this is a standard occurrence in systems with an infinite number
of degrees of freedom (in particular, field theories). It is then natural to ask: is there an
enlargement Ā of A such that H is isomorphic with the space of all square integrable functions
on Ā (with respect to some regular Borel measure)? The answer is in the affirmative [39–41].
This Ā is called the quantum configuration space.

Surprisingly, one can give a rather simple characterization of Ā, which will turn out to
be extremely useful [44, 66]. Let us denote an element of Ā by Ā and call it a quantum
connection. Ā assigns to each edge e inM an element Ā(e) of G such that

Ā(e2 ◦ e1) = Ā(e2)Ā(e1) and Ā(e−1) = (Ā(e))−1. (4.43)

Thus, every smooth connectionA automatically defines a generalized connection (see (4.37));
in this case Ā(e) is just the standard holonomy. However, a general Ā can be arbitrarily
discontinuous; there are no requirements on it other than (4.43). This is why Ā is much larger
than A. Nonetheless, in a natural topology (due to Gel’fand), A is densely embedded in Ā and
Ā is compact [40]. Thus, the quantum configuration space Ā can be naturally thought of as a
completion of the classical configuration space A. Finally, we note an important fact that will
be used often in regularization procedures in quantum theory: given any quantum connection
Ā and any graph α, there exists a smooth connection A such that Ā(e) = A(e) for all edges e
of the graph.

Let us now consider quantum states. Now, one can show that the family of induced Haar
measures µ0

α on Āα defines a regular, Borel measure on Ā [40, 41, 44, 45, 66]. We will denote
it by µ0. As discussed in section 4.3.5, diffeomorphisms onM have a natural induced action
on Ā. The measure µ0 is invariant under this action24. This is why H ≡ L2(Ā, dµ0) is an
appropriate Hilbert space of states for background-independent theories of connections.

Finally, let us highlight the essential steps that lead to µ0 as this series of steps will be
used repeatedly to introduce other structures, such as operators, on H. We begin with spaces
Āα . Each Āα admits a measure µ0

α . This family of measures is consistent in the sense that,
given a function f on Ā which is cylindrical with respect to graphs α and α′,∫

Āα
dµ0

αfα =
∫
Āα′

dµ0
α′fα′ . (4.44)

It is this consistency that ensures the existence of µ0 on Ā. More generally, regular Borel
measures (as well as geometrical structures) on Ā are defined by ‘gluing together’ consistent
structures on finite spaces Āa (via the so-called projective techniques [44, 45, 66]). Several
families of such measures have been constructed, µ0 being the simplest and, because of certain
uniqueness results [55–58] (discussed at the end of section 4.3.4), the most useful of them.

As emphasized in section 3, the passage from A to Ā is highly non-trivial and comes about
because we are going beyond lattice gauge theories and incorporating the infinite number of
degrees of freedom in the connection A. As in Minkowskian field theories, while the classical
configuration space A is densely embedded in the quantum configuration space Ā (in the
natural Gel’fand topology on Ā), measure theoretically, A is sparse: A is contained in a set of

24 Initially, this came as a surprise because, in the mathematical community, there was a widespread expectation that
non-trivial diffeomorphism invariant measures do not exist. Note, however, that our µ0 is defined on Ā rather than
A, the space used in those heuristic arguments. We have included this brief discussion of measure theory to highlight
the fact that our constructions are on a sound mathematical footing; in contrast to the habitual situation in the physics
literature, our functional integrals are not formal but well defined and finite. The measure dµ0 was introduced in
[40, 41] and discussed from different perspectives in [45, 44, 66].
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zero µ0 measure [44]. The fact that general quantum states have support on ‘non-classical’
connection is not a ‘mere mathematical technicality’: in the Hilbert space language, this is
the origin of field theoretic infinities, e.g., the reason why we cannot naively multiply field
operators. Hence, to ensure that there are no hidden infinities, it is necessary to pay due
attention to the quantum configuration space Ā.

4.3.3. Generalized spin networks. It seems natural to attempt to decompose H as a
direct sum of the Hilbert spaces Hα associated with various graphs and then use the
constructions introduced in section 4.2.2 to carry out further orthogonal decompositions into
finite-dimensional Hilbert spaces. However, this idea encounters an elementary obstruction.
Recall that each function on Ā which is cylindrical with respect to a graph α is also cylindrical
with respect to every larger graph. Thus, regarded as subspaces of H, the Hilbert spaces
Hα cannot be mutually orthogonal. To get around this obstacle, let us introduce new Hilbert
spaces: given a graph α, let H′

α be the subspace of Hα which is orthogonal to the subspace
Hα̃ associated with every graph α̃ which is strictly contained in α. Through the introduction
of these H′

α , we remove the undesired redundancy; if f ∈ H′
α , it cannot belong to H′

β for any
graph β distinct from α. While the definition of H′

α may seem unwieldy at first, using (4.22)
it is easy to provide an explicit description of H′

α which we now describe.
Consider assignments j′ = {j ′

1, . . . , j
′
n} of irreducible representations of G to edges of e

such that each representation is non-trivial. Next, let l′ = {
l′1, . . . , l

′
nv

}
denote assignments of

irreducible representations to vertices of α which are non-trivial at each spurious vertex of α,
where a vertex v is spurious if it is bivalent, and if the edges ei and ei+1 which meet at v are
such that ei ◦ ei+1 is itself an analytic edge (so that v ‘just serves to split an edge’). Then, H′

α

is given by

H′
α = ⊕j′,l′H′

α,j′,l′ . (4.45)

The condition on j′ in the definition of H′
α,j′ is necessary because functions in Cyl which

result from allowing any of the (j1, . . . , jn) to vanish belong to H′
α̃ where α̃ is a smaller graph

obtained by ‘removing those edges for which ji vanished’. The condition on l′ removes the
redundancy that would otherwise arise because a function in Hα1,j′ also defines a function in
Hα2,j′ where α2 is obtained merely by splitting one or more edges of α1 just by insertion of
new vertices. We can now write the desired decomposition of H:

H = ⊕αH′
α = ⊕α,j′H′

α,j′ . (4.46)

Example. Again, for G = SU(2), we can make this procedure more concrete. Given a graph
α, the space H′

α is the subspace of the space Hα spanned by all the simultaneous eigenvectors
of the operators [Ĵ v]2 and [Ĵ e]2 such that (i) the eigenvalue j ′

e(j
′
e + 1) of [J e]2 is non-zero for

each edge e in α; and (ii) the eigenvalue �′v of [Ĵ v]2 is non-zero at each spurious vertex v.
WhenG = SU(2), the j and the l are sets of half-integers, or spins, and the decomposition

(4.46) is referred to as the spin network decomposition of H. For a general gauge group, it
is called the generalized spin network decomposition of H. The subspaces Hα,j′ are finite
dimensional and their elements are referred to as generalized spin network states of quantum
theories of connection25 onM . As we will see, spin network subspaces Hα,j′ are left invariant
by interesting geometric operators. In this sense, the decomposition (4.46) has a direct physical
significance. Because of the sum over all graphs in (4.46), the Hilbert space H is very large.

25 Sometimes, the term is used to refer to an orthonormal basis of states in Hα,j′ , chosen in a specific calculation.
However, the introduction of such a basis requires additional structure. What is naturally available on H is only the
decomposition (4.46) rather than a generalized spin network basis.
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Indeed, when it was first constructed, it seemed to be ‘too large to be controllable’. However,
the later introduction of projective techniques [44, 45, 66], spin networks [60, 61] and the
orthogonal decomposition [89] of the Hilbert space showed that quantum theory can, in fact, be
developed relatively easily by importing techniques from lattice gauge theories and quantum
mechanics of spin systems.

Remark. Trivalent spin networks were already introduced by Penrose in 1971 in a completely
different approach to quantum gravity [59]. He expressed his general view of that construction
as follows: “I certainly do not want to suggest that the universe ‘is’ this picture . . . But it
is not unlikely that essential features of the model I am describing could still have relevance
in a more complete theory applicable to more realistic situations”. We will see in section 4,
trivalent graphs are indeed ‘too simple’ for semi-classical considerations but Penrose’s overall
vision is realized in a specific and precise way in quantum geometry.

4.3.4. Elementary quantum operators. Recall that in non-relativistic quantum mechanics,
typically, one first defines operators on the space S of smooth functions with rapid decay at
infinity and then extends them to self-adjoint operators on the full Hilbert space, L2(R3). We
will follow a similar strategy; now the role of S will be played by Cyl.

Let us begin with the configuration operators. Classical configuration variables are
represented by complex-valued, cylindrical function f on Ā. We define corresponding
quantum operators f̂ which also act by multiplication:

(f̂ �)(Ā) = f (Ā)�(Ā). (4.47)

Next, let us define momentum operators P̂ (S,f ), labelled by a 2-surface S and g-valued
smearing fields f i on S. As with operators L̂i and R̂i in section 4.1.2, this action is given just
by the Poisson brackets between the classical momentum and configuration observables. For
all � ∈ Cyl, we have

(P̂ (S,f )�)(Ā) = ih̄{P(S, f ),�}(Ā). (4.48)

For later use, let us make the action of the momentum operators explicit. If � ∈ Cylα ,
we have

P̂ (S,f )� = h̄

2

∑
v

f i(v)

[∑
e at v

κ(S, e)Ĵ
(v,e)
i �

]
(4.49)

in terms of κ(S, e) of (4.40). With domain Cyl(2), consisting of twice differentiable
cylindrical functions, these operators are essentially self-adjoint (i.e., admit a unique self-
adjoint extension) on H. An alternate expression, which brings out the interpretation of P̂ (S,f )
as the ‘flux of the electric field through S’, can be given in terms of operators Ĵ S,vi(u) and Ĵ S,vi(d)
on Cylα , associated with a 2-surface S and vertices v of α at which α intersects S (where u
stands for ‘up’ and d for ‘down’). If the edges e1, . . . , eu of α lie ‘above’ S and eu+1, . . . , eu+d

lie ‘below’ S, then we set

Ĵ
S,v
i(u) = Ĵ (v,e1)

i + · · · + Ĵ (v,eu)i ,

Ĵ
S,v
i(d) = Ĵ (v,eu+1)

i + · · · + Ĵ (v,eu+d )
i .

(4.50)

In terms of these operators, we have

P̂ (S,f ) = h̄

2

∑
v∈S
f i(v)

(
Ĵ
S,v
i(u) − Ĵ S,vi(d)

)
, (4.51)

where the sum is over all points in S. (The operator is well defined on Cyl because, when acting
on a cylindrical function, only a finite number of terms in the uncountable sum are non-zero.)
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4.3.5. Gauge and diffeomorphism symmetries. In the classical domain, automorphisms of
the bundle on which connections are defined are symmetries of the theory. The group of these
symmetries is the semi-direct product of the group of smooth local gauge transformations
with the group of smooth diffeomorphisms on M . In this subsection we will examine these
symmetries from the quantum perspectives. Modifications arise because on the one hand
quantum connections can be arbitrarily discontinuous and on the other hand they are associated
only with closed-piecewise analytic edges (see section 4.3.1).

Let us begin with gauge transformations. Given a local G rotation ḡ : M → G there is
an active mapping on Ā defined by

ḡ · Ā(e) = g(v+)Ā(e)(g(v−))−1, (4.52)

for all edges e inM with source v− and target v+. Note that ḡ can be an arbitrarily discontinuous
G-valued function onM . We will denote the group of these gauge transformations by Ḡ. The
natural measure µ0 on Ā is invariant under Ḡ, whence the corresponding action of Ḡ on H is
unitary:

(Uḡ�α)(Ā) = �(ḡ · Ā). (4.53)

Each of the subspaces H′
α,H′

α,j′ and H′
α,j′,l′ is left invariant by this action. Furthermore, each

quantum state in H′
α,j′,l′=
0 is gauge invariant, i.e., mapped to itself by all Uḡ . This observation

will be useful in section 6.1 to obtain a characterization of the Hilbert space of solutions to the
quantum Gauss constraint.

Let us now turn to diffeomorphisms onM . Since we have restricted ourselves to closed-
piecewise analytic edges, analytic diffeomorphisms onM have a natural action on Ā. However
there is a larger group of maps ϕ : M → M which has a natural action on Cyl [58]. Let ϕ be a
Cn diffeomorphism ofM such that every permissible graph onM is mapped to a permissible
graph26. Then we can define the action of ϕ in the space Ā of the quantum connections,
namely

ϕ · Ā(e) := Ā(ϕ(e)) (4.54)

for all paths e in M . Denote the group of such diffeomorphisms by Diff. Each element ϕ
of this group naturally defines an isomorphism in Cyl. Moreover, the measure µ0 is Diff
invariant, therefore an operator Uϕ̄ defined in H by each ϕ̄, namely

Uϕ̄�(Ā) := �(ϕ̄ · (Ā)) (4.55)

is unitary. However, under that induced action of Diff, none of the subspaces H′
α,H′

α,j′ and
H′
α,j′,l′ is left invariant; they transform covariantly.

The group Diff is a subgroup of all Cn diffeomorphisms but it is considerably larger than
the group of the entire analytic diffeomorphisms. The crucial difference is the local character
of Diff: for every point x ∈ M and every open neighbourhood Ux containing x, there is a
ϕ ∈ Diff which moves x non-trivially within Ux but is trivial outside Ux [58]. A generic
element of Diff fails to be analytic. Roughly, Diff can be thought of as the group of piecewise
analytic, Cn diffeomorphisms. This group will play an important role in the imposition of the
diffeomorphism constraint in section 6.2.

Remark. In the kinematic description constructed so far, �(Ā) = 1 is the only gauge and
diffeomorphism invariant state in H.27 From this symmetry considerations, one can regard it
26 Recall that each edge e of a permissible graph is closed-piecewise analytic. Therefore, the requirement is that for
every analytic embedding e : [0, 1] → M of the interval, the image ϕ(e([0, 1])) is a finite sum ∪I eI ([0, 1]), where
each eI : [0, 1] → M is again an analytic embedding.
27 Since diffeomorphisms on M are generated by a first class constraint, one would expect that all physical states
should be diffeomorphism invariant. We will see in section 6 that this expectation is indeed borne out but the physical
states belong to Cyl� which is considerably larger than the kinematical Hilbert space H.
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as the ‘ground state’. It is annihilated by all the momentum (or triad) operators. Elements
of Cylα represent ‘excited states’, where the geometry is excited only along the edges of α;
the smeared triad ÊS,f has a non-trivial action on these states only if S intersects at least one
edge of α. Since these basic excitations are one dimensional, the quantum geometry is said
to be polymer-like. If the graph has just a few edges, we have a highly quantum mechanical
state—the analogue of a state of the quantum Maxwell field with just a few photons. To
approximate a classical geometry, one needs a highly excited state, with a huge number of
edges, criss-crossingM ‘very densely’.

Let us summarize our discussion of quantum kinematics for background-independent
theories of connections. In section 4.3.1, we introduced a Lie algebra of holonomy and flux
functions on the classical phase space [48]. In the subsequent subsections, we constructed a
natural, diffeomorphism covariant representation of the quantum analogue of this holonomy–
flux algebra. For pedagogical reasons, we chose a constructive approach and developed the
theory step by step starting from quantum mechanics on a compact Lie algebra G and passing
through the quantum theory of connections on graphs. The actual development of the subject,
on the other hand, began with a broader perspective and first principles [39–41]). The main
problem is that of finding the physically appropriate representation of the holonomy–flux
algebra. The starting point was the observation [39] that Cyl, which serves as the algebra of
configuration variables, has the structure of an Abelian �-algebra. By completing it in the
sup-norm one obtains the C�-algebra Cyl of quantum configuration operators. The strategy
was to first seek its representations and then represent the momentum operators on the resulting
Hilbert spaces. A general theorem due to Gel’fand ensures that every representation of Cyl is
of the following type: the Hilbert space is the space of square integrable functions on a compact
Hausdorff space—called the Gel’fand spectrum of the C�-algebra—with respect to a regular
Borel measure, and the configuration operators act on it by multiplication. The non-trivial
fact is that the structure of Cyl is such that the spectrum is easy to exhibit: it is precisely our
space Ā [40]. Thus, the representation of the algebra of elementary variables we constructed
step by step is in fact rooted in the general Gel’fand representation theory.

Even though this procedure is quite general and well motivated, one can nonetheless ask
why we did not adopt the more general algebraic approach but focused instead on a specific
representation. Interestingly, several partial uniqueness theorems have been established
indicating that the requirement of general covariance suffices to select a unique cyclic
representation of the kinematical quantum algebra [55–58]! This is the quantum geometry
analogue of the seminal results by Segal and others that characterized the Fock vacuum in
Minkowskian field theories. However, while that result assumed not only Poincaré invariance
but also specific (namely free) dynamics, it is striking that the present uniqueness theorems
make no such restriction on dynamics. Thus, the quantum geometry framework is surprisingly
tight. These results seem to suggest that, for background-independent theories, the full
generality of the algebraic approach may be unnecessary: if there is a unique diffeomorphism
invariant representation, one might as well restrict oneself to it. For non-trivially constrained
systems such as general relativity, this is fortunate because a satisfactory and manageable
algebraic treatment of theories with such constraints is yet to become available.

5. Quantum Riemannian geometry

In this section, we will introduce simple geometric operators on H. Recall from section 2
that the internal group for the phase space of general relativity is SU(2) and the Riemannian
geometry is coded in the triad field Ẽai = kγP ai ≡ 8πGγP ai (of density weight 1), where
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γ > 0 is the Barbero–Immirzi parameter (see (2.21)). Therefore, in the quantum theory we set
G = SU(2) and our geometric operators are built from the (smeared) triad operators P̂ (S,f ).
Because of space limitation, we will only discuss the area and the volume operators [65–78]
which have had direct applications, e.g., in the entropy calculations and quantum dynamics.
For the length operator, see [79].

5.1. Area operators

Let S be either a closed two-dimensional sub-manifold of M or an open two-dimensional
sub-manifold without boundary. In the classical theory, its area is a function on the phase
space given by A(S) = ∫

S
d2x

√
h, where h is the determinant of the intrinsic 2-metric hab on

S. Our task is to construct the quantum operator corresponding to this phase space function
and analyse its properties. (For further details, see [72]).

5.1.1. Regularization. A natural strategy is to first re-expressAS in terms of the ‘elementary’
observables P(S, f ), and then replace each P(S, f ) by its unambiguous quantum analogue.
This strategy naturally leads to a regularization procedure which we now summarize.

Let us divide S into a large number of elementary cells, SI , with I = 1, 2, . . . , N .
On each cell, introduce an internal triad τ i and, using its elements as test fields f i , set
P(SI , τ

i) = P i(SI ). Next, recall from (2.21) that the orthonormal triad Ẽai of density weight
1 is related to the momentum field P ai via Ẽai = 8πGγP ai . Set

[AS]N = 8πGγ
N∑
I=1

√
P i(SI )P j (SI )ηij (5.1)

where ηij is again the Cartan–Killing metric on su(2). Then, [AS]N is an approximate
expression of the area A(S) in the following sense: as the number of cells goes to infinity such
that the coordinate size of the cells SI goes to zero uniformly in I, we have

lim
N→∞

[AS]N = AS. (5.2)

Since each P i(SI ) gives rise to an unambiguously defined quantum operator, [AS]N represents
a suitable ‘regularized area function’ and the limit N → ∞ corresponds to the operation of
removing the regulator. In the quantum theory, then, we first define an approximate area
operator by first noting that, for each I, P̂ i(SI )P̂ j (SI )ηij is a positive definite self-adjoint
operator on H with a well-defined (positive) square-root, and setting

[ÂS]N := 8πGγ
N∑
I=1

√
P̂ i(SI )P̂ j (SI )ηij . (5.3)

To obtain an explicit expression of this operator, let us restrict its action to Hilbert space Hα
associated with any one graph α. Let us first refine the partition sufficiently so that every
elementary cell SI intersects α transversely at most at one point (or contains a segment of
α). Then, using expression (4.49) of the smeared triad operators, we conclude that a non-zero
contribution to the sum in (5.3) comes only from those SI which intersect α and, furthermore,
a subsequent refinement of the partition does not change the result. Thus, for any given α, the
limit N → ∞ is reached already at a finite step; somewhat surprisingly, the removal of the
regulator can be achieved rather easily in the quantum theory. It is straightforward to verify
that the resulting operator ÂS,α is given by

ÂS,α = 4πγ �2
Pl

∑
v

√−�S,v,α (5.4)
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where v ranges through all the vertices of α which lie on S and the ‘vertex Laplace operator’
�S,v,α is defined on Cylα as

�S,v,α = −(Ĵ S,vi(u) − Ĵ S,vi(d))(Ĵ S,vj (u) − Ĵ S,vj (d))ηij . (5.5)

(The ‘up’ and ‘down’ operators Ĵ S,vi(u) and Ĵ S,vi(d) are defined in (4.50).) Thus, on each Hα we

have obtained a non-negative, self-adjoint area operator ÂS,α .
The question is if these operators can be glued together to obtain a well-defined area

operator on the full Hilbert space H. As in the definition of measures on Ā, this is a question
about consistency of the family. More precisely, suppose an element� of Cyl belongs to both
Cylα1

and Cylα2
, for two different graphs α1 and α2. The question is whether ÂS,α1� equals

ÂS,α2� as an element of Cyl. The answer is in the affirmative. Thus, there is a non-negative,
self-adjoint operator ÂS on H whose restriction to Cylα is given by (5.4) for any graph α.

In fact, we can also define an area element operator corresponding to
√
h(x) whose

integral over S gives the total area operator ÂS . Fix a point x ∈ S, and consider a refinement
such that x is contained in the interior of a cell SI . Introduce an approximate area element
[
√
h(x)]N via √

[h(x)]N = 8πGγ

ε2

√
P i(SI )P j (SI )ηij (5.6)

where ε2 is the coordinate area of the cell SI . As we let N tend to infinity, shrinking the
coordinate size of the cells uniformly,

√
h(x)N tends to

√
h(x). As before, we can pass to a

regularized quantum operator

̂[
√
h(x)]N = 8πGγ

ε2

√
P̂ i(SI )P̂ j (SI )ηij (5.7)

simply by replacing the smeared P with corresponding operators. Finally, we remove the
regulator. The result is a well-defined operator-valued distribution on H, whose action on
Cylα is given by√̂

hS(x) = 4πγ �2
Pl

∑
v

δ2
(S)(x, v)

√−�S,v,α (5.8)

where δ2
(S)(x, v) is the two-dimensional Dirac distribution on S and the sum is over intersections

v of α and S. Again, this family of operators is consistent and therefore defines an operator√̂
hS(x) on H.

Remark. In the definition of the momentum operators P̂ (S, f ) and area operators ÂS , we
only considered 2-manifold S without boundary. Now, if we subdivide S as S = S ′ ∪ I ∪ S ′′,
where S ′ and S ′′ are two two-dimensional sub-manifolds without the boundaries and I is a
one-dimensional sub-manifold without boundary, then while classicallyAS−(AS ′ +AS ′′) = 0,
because of the distributional nature of quantum geometry, ÂS − (ÂS ′ + ÂS ′′) is non-zero since
its action on graphs with edges passing through I is non-trivial. To obtain additivity of areas,
it is then natural to regard this operator as defining the quantum area ÂS,I of I, although I is a
1-manifold. Proceeding in this manner, one is led to assign a quantum area operator ÂV,S also
to a point v of S. Detailed examination shows that this operator is just 4πγ �2

Pl

√−�S,v . From
this perspective, then, ÂS = ∑

v ÂS,v; the quantum area of a surface is obtained by summing
up the ‘areas associated with all points’ in it!
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5.1.2. Properties of area operators. In each Cylα , the area operator is defined by

ÂS,α =
∫
S

d2x
̂√
hS,α(x) = 4πγ �2

Pl

∑
v

√−�S,v,α. (5.9)

With domain Cyl(2)α , consisting of twice differentiable functions on Āα , this operator is
essentially self-adjoint on Hα . Since this family of operators is consistent, the resulting
area operator, with domain Cyl(2), is also essentially self-adjoint on H. By inspection, the
operator is gauge invariant (i.e. commutes with the vertex operators Ĵ vi generating SU(2)
gauge rotations at vertices v). Since its definition does not require a background structure, it
is diffeomorphism covariant.

The eigenvalues of the operator are given by finite sums

aS = 4πγ �2
Pl

∑
I

√
−λI , (5.10)

where λI are arbitrary eigenvalues of the operators �S,vI . Now, this operator can be cast in a
convenient form as a sum of three commuting operators,

−�S,v = 2
(
Ĵ
(d)
S,v

)2
+ 2
(
Ĵ
(u)
S,v

)2 − (
Ĵ
(u)
S,v + Ĵ (d)S,v

)2
, (5.11)

which makes its eigenvalues transparent. These are given by

−λ = 2j (u)(j (u) + 1) + 2j (d)(j (d) + 1)− j (u+d)(j (u+d) + 1), (5.12)

where j (u), j (d) and j (u+d) are arbitrary half-integers subject to the standard condition

j (u+d) ∈ {|j (u) − j (d)|, |j (u) − j (d)| + 1, . . . , j (u) + j (d)}. (5.13)

Thus, the general eigenvalues of the area operator are given finite sums,

aS = 4πγ �2
Pl

∑
I

√
2j (u)(j (u) + 1) + 2j (d)(j (d) + 1)− j (u+d)(j (u+d) + 1) (5.14)

where the j are subject to the constraint (5.13). Thus, all eigenvalues are discrete and the area
gap—the smallest non-zero eigenvalue aS—is given by

�aS = 4πγ �2
Pl

√
3

2
. (5.15)

The level spacing between consecutive eigenvalues is not uniform but decreases exponentially
for large eigenvalues. This implies that, although the eigenvalues are fundamentally discrete,
the continuum approximation becomes excellent very rapidly. On the full kinematic Hilbert
space H—as opposed to the gauge invariant subspace considered below—all these properties
are insensitive to the topology of S.

5.1.3. The gauge invariant subspace. Let us now restrict ourselves to gauge invariant
subspace Hinv of H. This is spanned by elements of Cyl which have zero eigenvalue for every
vertex operator Ĵ vi (i.e., in the terminology of section 4.2, states in the subspaces lv = 0 for all
vertices v). Now, the spectrum of the area operator ÂS depends on some global properties of
S. If the closure of S is a manifold with a non-trivial boundary, then the spectrum is the same
as in (5.14). However, if ∂S = ∅, then gauge invariance imposes certain additional conditions
on the total spin ‘coming in’ S.

Let us focus on this case. Suppose first, that S divides M into two disjoint open sets (as
would happen ifM were R3 and S a 2-sphere in it). Then the spins j (u)I , j

(d)
I in (5.12) have to

satisfy the following condition,∑
I

j
(u)
I ∈ N,

∑
I

j
(d)
I ∈ N, (5.16)
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where N is the set of natural numbers. In the case when S has no boundary but M\S is
connected (as can happen if M is a 3-torus and S a 2-torus in it) the condition is milder,∑

I

j
(u)
I +

∑
I

j
(d)
I ∈ N. (5.17)

In particular, in these cases, the area gap increases. In the first case, it is given by 4πγ �2
Pl (

√
2)

while in the second case, by 4πγ �2
Pl. Thus, there is an interesting interplay between topology

of (M, S) and the area gap.
If there are no fermionic fields, then all physically relevant states lie in the gauge invariant

subspace Hinv of H now under consideration. However, in the presence of fermions, the
gravitational part of the state by itself will not be gauge invariant at vertices where fermions
are located. In particular, then, if there are fermions in the interior of S (say when S is a
2-sphere) the area eigenvalues of S are less restricted and we can ‘detect’ the presence of these
fermions from these eigenvalues!

Remarks

(i) Fix a surface S and consider only those states in Cyl for which the graph has no edge
which lies within S and which are gauge invariant at each vertex where S intersects the
graph. (This is, in particular, the case if all intersections of S with the graph are at
simple bivalent vertices.) In this case, j (u+d)

I = 0 and j (u)I = j (d)I , and the area spectrum
simplifies considerably to

aS = 8πγ �2
Pl

∑
I

√
jI (jI + 1). (5.18)

It was first believed, incorrectly, that these are all the area eigenvalues. However, in the
case of an isolated horizon, only these eigenvalues are relevant and hence, even now, one
often sees only this expression in the literature in place of the complete spectrum (5.14).

(ii) It follows from the definition (5.4) of area operators that ÂS and ÂS ′ fail to commute
if the surfaces S and S ′ intersect. This is a striking property because it implies that the
Riemannian geometry operators cannot all be diagonalized simultaneously28. At one
level this is not surprising because, even in quantum mechanics, if the configuration
space is a non-trivial manifold, in general the momentum representation does not exist.
However, this result brings out a fundamental tension between connection-dynamics and
geometrodynamics. As we saw, quantum connection-dynamics is very ‘tight’; once we
choose the holonomies A(e) and the ‘electric fluxes’ P(S, f ) as basic variables, there is
essentially no freedom in the background-independent quantization. Thus, under these
seemingly mild assumptions, one is led to conclude that the metric representation does not
exist (at least in the obvious sense). Although this non-commutativity is of considerable
conceptual interest, in semi-classical states the expectation value of the commutator would
be extremely small; the non-commutativity appears to have no observable effects except
at the Planck scale [48].

5.2. Volume operators

Let R be an open subset of M . In the classical theory, its volume is a function on the phase
space given by VR = (

√
8πGγ )3

∫
R

d3x
√|detP | (see (2.25)). Our task is to construct the

28 Thus, the assertion that ‘the spin network basis diagonalizes all geometrical operators’ that one sometimes finds in
the literature is incorrect. As we saw in section 4.3.3, while there is a natural spin network decomposition (4.46) of
H, there is no natural spin network basis. Given a surface S, we can find a spin network basis which diagonalizes ÂS
but there is no basis which diagonalizes area operators associated with all surfaces.



Topical Review R89

1

2
S

vS

"

γ

C

C
C

S

S

1

1

2

2S

S

’

’

’

"

"

Figure 1. The figure illustrates a partition Pε with cellsC,C′, C′′ (the dashed lines) and 2-surfaces
Sa, S

′
a, S

′′
a (the thick lines). v is a vertex of a graph γ . For simplicity, one dimension has been

dropped.

quantum operator corresponding to this phase space function and analyse its properties. (For
further details, see [70, 71, 73, 78]).

5.2.1. Regularization. As in the case of the area operator, we will first recast the classical
expression of VR in terms of the ‘elementary’ observables P(S, f ), and then replace each
P(S, f ) by its unambiguous quantum analogue. This will provide the regularized volume
operator. However the final step, in which the regulator is removed, turns out to be technically
more subtle than that in section 5.1.1 and will require an additional construction.

Let us fix a coordinate system (xa) in R and a positive number ε. We then define a
partition Pε of R as follows. Divide R into a family C of cells C such that each C is a cube with
volume less than ε in the given coordinate system and two different cells share only points on
their boundaries. In each cell C, introduce three 2-surfaces s = (S1, S2, S3), such that each of
the surfaces splits C into two disjoint parts, and xa|Sa = const for a = 1, 2, 3. The family of
pairs (C, s) defines Pε (see figure 1). Given a partition Pε , we can introduce an approximate
expression of the volume VR:

V
Pε
R =

∑
C⊂R

√
|qs | where qC,s = (8πGγ )3

3!
εijkηabcP

i(Sa)P j (Sb)P k(Sc). (5.19)

It is easy to verify that

lim
ε→0
V

Pε
R = VR,

the dependence on the coordinate system and the partition disappears in the limit.
To pass to the quantum theory, we need to define a consistent family of volume operators

V̂R,α , one for each graph α. Let us then fix a graph α and consider a partition Pε such that
each vertex v of α is the intersection point of the triplet of 2-surfaces S1, S2, S2 in some cell
CV . Then, we can easily promote the approximate volume function V Pε

R to a quantum operator
V̂

Pε
R,α:

V̂
Pε
R,α =

∑
C⊂R

√|q̂s,C |, where q̂s = (8πGγ )3

3!
εijkηabcP̂

i(Sa)P̂ j (Sb)P̂ k(Sc). (5.20)
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This operator is well defined on Cyl(3)α , the space of thrice differentiable functions on Āα .
Furthermore, the limit ε → 0 of the operator exists. However, unlike in the classical theory,
it carries a memory of the partition Pε used in the regularization process. This is a new
complication which did not occur in the case of the simpler area operators. But one can
handle it simply by averaging with respect to the essential background structures, used in the
construction of the partition Pε , prior to the removal of the regulator. This extra step can be
carried out in detail [73]. The resulting operator is given by

V̂R,α = κ0

∑
v

√|q̂v,α|,

where

q̂v,α = (
8πγ �2

Pl

)3 1

48

∑
e,e′,e′′

εijkε(e, e
′, e′′)Ĵ (v,e)i Ĵ

(v,e′)
j Ĵ

(v,e′′)
k . (5.21)

Here κ0 is an undetermined overall constant resulting from the averaging (usually set equal to
1); v runs over the set of vertices of α; each of e, e′ and e′′, over the set of edges of α meeting
at v; and ε(e, e′, e′′) is the orientation factor. (Thus, ε(e, e′, e′′) = 0 if the tangent vectors to
the three edges are planar, i.e., lie in a 2-plane, at v, and ±1 if the orientation they define is
the same as or opposite to the fiducial orientation of M .) It is straightforward to verify that
this family of operators is consistent and hence defines a single densely defined operator V̂R
on H with domain Cyl(3).

Again, it is also meaningful to introduce in each Cyl(3)α a volume element operator√̂
q(x)α = κ0

∑
v

δ(3)(x, v)
√

|q̂v, α|. (5.22)

The family of these operators is consistent and we thus have a densely defined operator
√̂
q(x)

on H satisfying V̂R = ∫
R

d3x
√̂
q(x).

Finally, in the classical theory the Poisson bracket
{
Aia(x), VR

}
between the connection

at a point x and the volume of a region containing that point is proportional to the co-triad
eia(x). This fact has been exploited to introduce co-triad operators which, in turn, have led to
a definition of the length operator [79] and features prominently in the discussion of quantum
dynamics of section 6.3 [95–98].

5.2.2. Properties of volume operators. By inspection, V̂R is gauge invariant and covariant
with respect to diffeomorphisms of M: under ϕ : M → M , we have V̂R → V̂ϕ·R . The
total volume operator V̂M is diffeomorphism invariant. Hence, its action is well defined on
the diffeomorphism invariant subspace of Cyl�. This property plays an important role in the
analysis of the Hamiltonian constraint.

Because of the presence of ε(e, e′, e′′) in (5.21), it is clear that q̂v,α = 0 if all edges
meeting at v are planar. In particular, then, q̂v,α = 0 if v is a bivalent vertex. More
surprisingly, q̂v,α� = 0 also for every trivalent vertex v provided the state� is invariant with
respect to the gauge transformations at v [67]. Indeed, let e, e′, e′′ be the edges of α which
meet at v, and, for definiteness, suppose that ε(e, e′, e′′) = 1. Then, using gauge invariance at
v, i.e., Ĵ (v,e)i + Ĵ (v,e

′)
i + Ĵ (v,e

′′)
i = 0, we obtain

48(
8πγ �2

Pl

)3 q̂v,α� = εijkĴ (v,e)i Ĵ
(v,e′)
j Ĵ

(v,e′′)
k �

= −εijkĴ (v,e)i

(
Ĵ
(v,e)
j + Ĵ (v,e

′′)
j

)
Ĵ
(v,e′′)
k �

= −2i
(
Ĵ
(v,e)
j Ĵ

(v,e′′)
k ηjk − Ĵ (v,e)i Ĵ

(v,e′′)
j ηij

)
�

= 0. (5.23)
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As with the area operator, it is easy to show that all eigenvalues of q̂v,α, V̂R,α and V̂R are
real and discrete. The spectrum (i.e., the set of all eigenvalues) of V̂R is the same irrespective
of the specific open region R. Given a point x ∈ M , the spectrum (i.e., the complete set of

eigenvalues) of
√̂
q(x) is simply given by the union of the spectra of the restrictions of q̂x to

each of the (finite-dimensional) spin network spaces Sα,j,l in the orthogonal decomposition of
H. Because of this property, many eigenvalues and eigenvectors of the volume operators V̂R
have been calculated in a number of special cases [70, 74, 76, 77]. However the complete
spectrum, or even an estimate of how the number of eigenvalues grows for large volumes, is
not yet known.

On the space of gauge invariant states, the simplest eigenvectors arise from 4-valent
vertices. Even in this case, the full set of eigenvalues is not known. However, a technical
simplification enables one to calculate the matrix element of the volume operator, which have
been useful in the analysis of the quantum Hamiltonian constraint. Let v be a 4-valent vertex
of α at which edges e, e′, e′′, e′′′ meet and consider the action of q̂v,α on the subspace Sα,j,l
with lv = 0. Then,

q̂v,α = (
8πγ �2

Pl

)3 1
8κ(e, e

′, e′′, e′′′)εijkĴ (v,e)i Ĵ
(v,e′)
j Ĵ

(v,e′′)
k (5.24)

where κ(e, e′, e′′, e′′′) ∈ {−2,−1, 0, 2, 3, 4} depending on the diffeomorphism class of the
four tangent vectors at v. Using gauge invariance at v, the expression can be cast in the form

q̂v,α = (
8πγ �2

Pl

)3 1

32i
κ(e, e′, e′′, e′′′)[(Ĵ (v,e

′) + Ĵ (v,e
′′))2, (Ĵ (v,e) + Ĵ (v,e

′′))2], (5.25)

which simplifies the task of calculating its matrix elements in the subspace Hα,j,l [78].
Finally, we note a property of the volume operator which plays an important role in

quantum dynamics. LetR(x, ε) be a family of neighbourhoods of a point x ∈ M . Then, given
any element � of Cyl(3)α ,

lim
ε→0
V̂R(x,ε)�

exists but is not necessarily zero. This is a reflection of the ‘distributional’ nature of quantum
geometry.

5.2.3. ‘External’ regularization. Since the basic momentum variables are smeared on
2-surfaces, in the regularization procedure for defining geometric operators one invariably
begins by re-expressing the geometric functions on the classical phase space in terms of
P(S, f ). However, there is considerable freedom in achieving this and, while different
expressions may yield the same function on the classical phase space when the regulator
is removed, their quantum analogues need not share this property. This is the standard
‘factor ordering problem’ of quantum theory. In particular, in the procedure summarized in
section 5.2.1, we expressed the volume of each elementary cell C in terms of three 2-surfaces
Sa (a = 1, 2, 3) which lie inside that cell. This strategy goes under the name ‘internal
regularization’. A natural alternative is to use the six 2-surfaces S̃α, α = 1, . . . , 6 which
bound the cell. This ‘external regularization’ strategy was first introduced by Rovelli and
Smolin [65] for gauge invariant states on trivalent graphs. Although it was later realized that
this volume operator is identically zero on these states [68], Rovelli and de Pietri [70] showed
that the method extends also to non-trivial situations.

A detailed analysis [73] shows that this strategy is equally viable, once due attention
is paid to the convergence issues (that arise while removing the regulator) by carefully
constructing the partition of R. Then, the final volume operator is again of the form (5.21) but
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given by

V̂ Ext
R,α = κ0

∑
v

√∣∣q̂Ext
v,α

∣∣, where q̂Ext
v,α = (

8πγ �2
Pl

)3 1

48

∑
e �=e′ �=e′′ �=e

εijkĴ
(v,e)
i Ĵ

(v,e′)
j Ĵ

(v,e′′)
k .

(5.26)

A state�which is cylindrical with respect to a graph α and gauge invariant at a trivalent vertex
v is again annihilated by the new q̂Ext

v,α . Furthermore, at gauge invariant 4-valent vertices, q̂Ext
v,α

agrees with q̂v,α , modulo a multiplicative factor which depends on the diffeomorphism class
of the tangent vectors at v. In spite of this close relation on simple states, the two operators are
fundamentally different because of the absence of the orientation factor ε(e, e′, e′′) in (5.26).
In particular, because of this factor, the operators constructed in section 5.2.1 know about the
differential structure at vertices of graphs. By contrast, the action of (5.26) is ‘topological’.

In the literature, internally regulated operators of section 5.2.1 are used more often. For
example, Thiemann’s analysis of properties volume operators in the continuum [78] and Loll’s
analysis on lattices [74, 75] refer to (5.21). The same is true of the volume operators used by
Thiemann and others in the discussion of the Hamiltonian constraint.

6. Quantum dynamics

The quantum geometry framework provides the appropriate arena for a precise formulation
of quantum Einstein equations. As indicated in section 2, because of the difficult problems of
background-independent regularization of products of operator-valued distributions, quantum
Einstein equations still remain formal in geometrodynamics. In connection-dynamics, by
contrast, we have a well-defined Hilbert space H of kinematical states and it is natural to
attempt to represent left-hand sides of quantum Einstein equations by well-defined operators
on H. Now, in interacting (low-dimensional) quantum field theories, there is a delicate relation
between quantum kinematics and dynamics: unless the representation of the basic operator
algebra is chosen appropriately, typically, the Hamiltonian fails to be well defined on the Hilbert
space. For a complicated system such as general relativity, then, one would imagine that the
problem of choosing the ‘correct’ kinematic representation would be extremely difficult (see,
e.g., [85]). However, a major simplification arises from the striking uniqueness result discussed
at the end of section 4: the requirement of general covariance picks out a unique representation
of the algebra generated by holonomies and electric fluxes [55–58]. Therefore we have a
single arena for background-independent theories of connections and a natural strategy for
implementing dynamics provided, of course, this mathematically natural, kinematical algebra
is also ‘physically correct’. (This proviso exists also for the quantum field theories referred to
above.) As we will summarize in this section, this strategy has led to well-defined candidates
for quantum Einstein equations.

Recall from section 2 that because general relativity has no background fields, the theory
is fully constrained in its phase space formulation. To pass to the quantum theory, one
can use one of the two standard approaches: (i) find the reduced phase space of the theory
representing ‘true degrees of freedom’ thereby eliminating the constraints classically and
then construct a quantum version of the resulting unconstrained theory; or (ii) first construct
quantum kinematics for the full phase space ignoring the constraints, then find quantum
operators corresponding to constraints and finally solve quantum constraints to obtain the
physical states. Loop quantum gravity follows the second avenue, which was initiated
by Dirac29. This program has been carried out to completion in many simpler systems,
29 Thus, in the canonical approach, the entire quantum dynamics is fully incorporated by solving quantum constraints.
This may seem surprising because in the classical theory we have both the constraint and the evolution equations.
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such as (2 + 1)-dimensional gravity [2, 5, 35] and a number of mini-superspaces in 3 + 1
dimensions [86], where one can explicitly see that the procedure incorporates all of quantum
Einstein’s equations. Readers who are not familiar with quantization of constrained systems
should first familiarize themselves with the subject through simple examples (see, e.g., [87]).
To adequately handle conceptual and technical intricacies encountered in general relativity,
Dirac’s original program has to be modified and extended suitably. We will use the resulting
framework, called refined algebraic quantization. For further details, see, e.g., [88, 89, 141].

6.1. The Gauss constraint

Recall from section 2 that the Gauss constraint, Gi ≡ DaP ai = 0, generates internal SU(2)
rotations on the phase space of general relativity. More precisely, given an su(2)-valued
function ξ onM , we can use it as a smearing field to obtain a phase space function

CG(ξ) = −
∫
M

d3xP ai (x)Daξ i(x), (6.1)

which generates infinitesimal canonical transformations (A, P ) → (A − Dξ, P + [ξ, P ]).
Using the heuristic ansatz P → −ih̄δ/δA, it is straightforward to promote CG(ξ) to a well-
defined operator on H [89]. For any �α ∈ Cyl(1)α we have

ĈG(ξ)�α = h̄
∑
v

∑
e

(
ξ i(v)J

(v,e)
i

)
�α (6.2)

where the first sum extends over all vertices v of α and the second over all edges e meeting
at v. Apart from the factor of h̄, this action coincides with that of the generator of gauge
transformations on Hα discussed in section 4.2.2. This family of operators on Hα is
consistent and defines a self-adjoint operator on H which we will also denote by ĈG(ξ).
Finite gauge transformations are generated by the one-parameter unitary groups generated by
these operators.

Physical states belong to the kernel HG
inv of ĈG(ξ) for all ξ ∈ su(2). Because the action of

ĈG is familiar, the kernel is easy to find: in terms of the Hilbert space decompositions discussed
in section 4.3.3,

HG
inv =

⊕
α,j

H′
α,j,l=0.

Note that these states are automatically invariant under generalized gauge transformations in
Ḡ and can be regarded as functions on the reduced quantum configuration space Ā/Ḡ. HG

inv is
a subspace of H because zero is in the discrete part of the spectrum of the constraint operator
ĈG(ξ). In particular, HG

inv inherits a Hilbert space structure from H and HG
inv = L2

(
Ā/Ḡ, dµG

0

)
,

where dµG
0 is the natural measure on Ā/Ḡ, the push-forward of dµ0 under the natural projection

map from Ā to Ā/Ḡ. Every gauge invariant operator (such as areas ÂS and volumes V̂R in
section 5) has a well-defined action on HG

inv.
The fact that the Gauss constraint could be imposed so easily and that the structure of

HG
inv is so simple hides the non-triviality of the procedure. For example if, in place of Ā,

one uses one of the standard distribution spaces as the quantum configuration space, the
imposition of the Gauss constraint and construction of the Hilbert space of physical states
become complicated and it is not obvious that these difficulties can be surmounted.

However, because the evolution is generated by constraints in the Hamiltonian framework, in the quantum theory
dynamics is encoded in the operator constraints. A simple example is provided by a free particle in Minkowski space,
where the constraint gabpapb +m2 = 0 on the classical phase space becomes �φ −m2φ = 0, governing dynamics
in the quantum theory.
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6.2. The diffeomorphism constraint

Let us now consider the diffeomorphism constraint. We will find that the imposition of
this constraint is more complicated because of a key difference: while there is an infinite-
dimensional subspace HG

inv of H that is invariant under the SU(2) gauge rotations, since
diffeomorphisms move graphs, the only element of H left invariant by the action of all
diffeomorphisms is the constant function on Ā! As a result, solutions to the quantum
constraints lie not in the kinematical Hilbert space H but in a larger space, the dual Cyl�

of Cyl. This is not unusual. Even in simple quantum mechanical systems, such as a particle in
R3 with a constraint px = 0, solutions to the constraint fail to have finite norm in the kinematic
Hilbert space L2(R3) and belong to a larger space, e.g., the space of distributions in R3. In
a similar fashion, we will be able to construct a systematic framework and obtain the general
solutions to the diffeomorphism constraint.

6.2.1. Strategy. Recall from section 2.3.3 that each vector fieldNa onM defines a constraint
function CDiff( 
N) on the gravitational phase space:

CDiff( 
N) =
∫
M

d3x
(
NaF iabP

b
i − P aDa

(
NbAib

))
. (6.3)

Under infinitesimal canonical transformations generated by CDiff( 
N), we have (A, P ) �→
(A + L 
NA,P + L 
NP ). In the mathematically precise literature on constrained systems, it
is the finite gauge transformations generated by constraints that are of primary interest in
the quantum theory. Therefore, in our case, it is appropriate to impose the diffeomorphism
constraint by demanding that the physical states be left invariant under finite diffeomorphisms
ϕ generated by 
N . Since the measure dµ0 on Ā is diffeomorphism invariant, the induced
action of ϕ on H is unitary. Thus, given the vector fieldNa , we obtain a one-parameter family
ϕ(λ) of diffeomorphisms on M and a corresponding family ϕ̂(λ) of unitary operators on H.
But this family fails to be weakly continuous in λ because Cylα is orthogonal to Cylϕ·α if ϕ
moves α. Hence, the infinitesimal generator of ϕ̂(λ) fails to exist. (For details, see appendix
C in [89].) However, this creates no obstacle because, for the quantum implementation of
the constraint, we can work directly with finite diffeomorphisms: physical states are to be
invariant under the induced action ϕ̂ of appropriate diffeomorphisms ϕ onM .

To solve the constraint, we will use the ‘group averaging procedure’, generally available
for such constraints30 (see, e.g., [88, 89]): physical states will be obtained by averaging
elements of Cyl with respect to the induced action of the diffeomorphism group. It is intuitively
obvious that the result of group averaging will be diffeomorphism invariant. However, although
one begins with states in Cyl, the result naturally belongs to Cyl�, the algebraic dual of Cyl.31 In
finite-dimensional constrained systems, one generally uses a triplet,S ⊂ L2(Rn) = Hkin ⊂ S�,
where S is typically the space of smooth functions with rapid decay at infinity, and S�, the
space of distributions. The solutions to constraints are obtained by averaging elements of S
with respect to the group generated by constraints and they typically belong to S� rather than
to the kinematical Hilbert space Hkin [88, 141]. In the present case, we have a completely
analogous situation and now the triplet is Cyl ⊂ H ⊂ Cyl�.

30 The quantum Gauss constraint can be rigorously implemented also through group averaging over Ḡ. The final
result is the same as that obtained in section 6.1. For pedagogical purposes, in section 6.1 we adopted a procedure
which is closer to that followed for the scalar constraint in section 6.3.
31 In the end, one would have to introduce a suitable topology on Cyl which is finer than the Hilbert space topology
and let Cyl� be the topological dual of Cyl. The program is yet to reach this degree of sophistication and, for the
moment, the much bigger algebraic dual is used.
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Finally, there is an important technical subtlety coming from the fact that graphs α are
required to have closed-piecewise analytic edges. The classical phase space, on the other
hand, consists of smooth (i.e., Cn) fields (A, P ). Smooth diffeomorphisms ϕ correspond
to finite canonical transformations generated by the constraint (6.3) and have a well-defined
action on the phase space. It is just that the action does not extend to our full algebra of
‘elementary variables’ since their definition involves closed-piecewise analytic edges and
surfaces. A natural strategy to impose the diffeomorphism constraint, therefore, is to enlarge
the framework and allow smooth edges and surfaces. This is possible [47, 63, 64, 92] but
then the technical discussion becomes much more complicated because, e.g., two smooth
curves can intersect one another at an infinite number of points. Here we will adopt an ‘in-
between’ approach and use the subgroup Diff of all Cn diffeomorphisms ofM , introduced in
section 4.3.5, which has a well-defined action on our elementary variables and the Hilbert
space H. From a physical perspective, this is more appropriate than averaging with respect
to just the analytical diffeomorphisms and from a mathematical perspective it enables us to
bypass the complications associated with non-analytical edges and surfaces.

6.2.2. Physical states. Our task now is to construct the general solution to the diffeomorphism
constraint. For this, we will use the spin network decomposition (4.46): H = ⊕αH′

α . Let us
begin by introducing some notation. Given a graph α, denote by Diffα the subgroup of Diff
which maps α to itself and by TDiffα its subgroup which has trivial action on α, i.e., which
preserves every edge of α and its orientation. The induced action, T̂Diffα , is trivial on Cylα .
Next, let Diffα be the group of all the diffeomorphisms that preserve α. Then, the quotient

GSα = Diffα/TDiffα, (6.4)

is the group of graph symmetries of α. It is a finite group and it has a non-trivial induced
action ĜSα on Cylα . In the group averaging procedure, consistency requires that one must
divide by the ‘volume’ of the orbits of these groups [89].

To construct the general solution to the diffeomorphism constraint, we proceed in two
steps. First, given any �α ∈ H′

α , we average it using only the group of graph symmetries and
obtain a projection map P̂ diff,α from H′

α to its subspace which is invariant under ĜSα ,

P̂ diff,α�α := 1

Nα

∑
ϕ∈GSα

ϕ � �α, (6.5)

where Nα is the number of the elements of GSα (the volume of the orbit of GS) and ϕ � �a
denotes the pullback of �α under ϕ. The map extends naturally to a projection P̂ diff from
H = L2(Ā, dµ0) to its subspace which is invariant under ĜSα for all α.

In the second step, we wish to average with respect to the remaining diffeomorphisms
which move the graph α. This is a very large group and the result of averaging now belongs to
Cyl� rather than H. Thus, with each �α ∈ H′

α , we now associate an element (η(�α)| ∈ Cyl�,
defined by its (linear) action on arbitrary cylindrical functions |�β〉 ∈ Cyl,

(η(�α)|�β〉 =
∑

ϕ∈Diff/Diffα

〈ϕ � P̂ diff,α�α,�β〉, (6.6)

where the bracket on the right-hand side denotes the inner product between elements of H.
Although ϕ ∈ Diff/Diffα contains an infinite number of elements ϕ, for any given β only
a finite number of terms are non-zero, whence η(�α) is well defined. However, there is no
vector η in H such that 〈η,�β〉 equals the right-hand side of (6.6) for all �β ∈ Cyl. Thus,
(η(�α)| is a ‘genuine distribution’ on Ā rather than a function. Because of the diffeomorphism
invariance of the scalar product on H, η(�α) is invariant under the action of Diff(M),

(η(�α)|ϕ � �β〉 = (η(�α)|�β〉 (6.7)
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for all ϕ ∈ Diff(M). We will denote the space of these solutions to the diffeomorphism
constraint by Cyl�diff . Finally, since �α was an arbitrary element of Cyl, we have constructed
a map:

η : Cyl → Cyl�diff . (6.8)

Thus, every element of Cyl gives rise, upon group averaging, to a solution to the
diffeomorphism constraint. In this sense, we have obtained the general solution to the
diffeomorphism constraint. The map η is the analogue of the projection from H to its
gauge invariant subspace HG

inv in the case of the Gauss constraint. However, because of the
differences between the two constraints discussed above, η is not a projection since it maps Cyl
on to a different space Cyl�diff . Nonetheless, the group averaging procedure naturally endows
the solution space with a Hermitian inner product,

(η(�)|η(�)) := (η(�)|�〉, (6.9)

since one can show that the right-hand side is independent of the specific choice of � and �
made in the averaging [88, 141]; for subtleties, see [89, 141]. We will denote by Hdiff the
Cauchy completion of Cyl�diff . Finally, we can obtain the general solution to both the Gauss
and the diffeomorphism constraints by simply restricting the initial � ∈ Cyl to be gauge
invariant, i.e., to belong to Cyl ∩ HG

inv. We will denote this space of solutions by Cyl�inv:

Cyl�inv = η(Cyl ∩ HG
inv

)
. (6.10)

What is the situation with respect to operators? Note first that there do exist non-trivial
(gauge and) diffeomorphism invariant operators on Cyl; an example is the total volume operator
V̂M . Let O be such an operator. Its dual, O�, is well defined in Cyl�inv:

(O�η(�)|�〉 := (η(�)|O�〉. (6.11)

(Furthermore, one can show that O� preserves the image of H′
α for every α.) The operator

O� is self-adjoint with respect to the natural scalar product (6.9) on Hdiff if and only if O is
self-adjoint in H. This property shows that the scalar product on H is not only mathematically
natural but also ‘physically correct’.

Let us summarize. The basic idea of the procedure used to solve the diffeomorphism
constraint is rather simple: one averages the kinematical states with the action of the
diffeomorphism group to obtain physical states. But the fact that this procedure can
be implemented in detail is quite non-trivial. For example, a mathematically precise
implementation still eludes the geometrodynamics program. Furthermore, even the final
answer contains certain subtleties. We will conclude by pointing them out.

Remarks

(i) Note that while (η(�)| is a solution to the diffeomorphism constraint for any � ∈
Cyl, it is not true that there is a 1–1 correspondence between elements of Cyl and
solutions to the diffeomorphism constraint. This is because the map η has a non-
trivial kernel. In particular, the projection map P̂ diff itself has a non-trivial kernel
which, by (6.6) is also in the kernel of η. (In addition, elements of Cyl of the form
a0�α + a1ϕ1 � �α + · · · + anϕn � �α,with a0 + · · · + an = 0 are also in the kernel
of η.) Therefore statements such as—‘solutions to the diffeomorphism constraint are
diffeomorphism classes of spin network states’—that one often finds in the literature are
only heuristic.

(ii) One also finds claims to the effect that the diffeomorphism constraint can be imposed
simply by replacing spin networks embedded in a manifold M by abstract, non-embedded
spin networks. Within the systematic approach summarized in this section, these claims
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are simply incorrect (for a detailed discussion in the context of 2 + 1 gravity on a lattice,
see, e.g., [93]). In particular a graph, one of whose edges is knotted, cannot be mapped
by a diffeomorphism to that in which all edges are unknotted, whence the mapping η
sends spin network states associated with the two graphs to distinct solutions to the
diffeomorphism constraint. As abstract, non-embedded graphs, on the other hand, they
can be equivalent and define the same spin network functions. One can imagine a
new approach in which one simply declares that the diffeomorphism constraint is to
be incorporated by replacing embedded spin networks by abstract ones. But since the
original diffeomorphism constraint acts on the basic canonical variables (A,E) onM and
the action can be transferred to graphs only if they are embedded, it would be difficult to
justify such an approach from first principles.

(iii) Note that there are continuous families of 4-valent or higher valent graphs which cannot
be mapped to one another by Cn diffeomorphisms with n > 0. Consequently, states
in Hdiff based on two of these graphs are mutually orthogonal. Thus, even though
we have ‘factored out’ by a very large group Diff, the Hilbert space Hdiff is still non-
separable. However, if we were to let n = 0, i.e., consider homeomorphisms ofM which
preserve the family of graphs under consideration, then these ‘problematic’ continuous
families of graphs would all be identified in the group averaging procedure and the Hilbert
space of solutions to the diffeomorphism constraint would be separable. However,
since the classical constraints do not generate homeomorphisms, and furthermore
homeomorphisms do not even have a well-defined action on the phase space, it is difficult
to ‘justify’ this enlargement of Diff from direct physical considerations.

(iv) Note that Cyl�diff is a proper subset of the space Cyl�Diff of all elements of Cyl� invariant
under Diff. However, every (�| ∈ Cyl�Diff can be uniquely decomposed as

(�| =
∑
[α]

(�[α]|, with (�[α]| ∈ η(Cylα), (6.12)

where [α] runs through the diffeomorphism classes of graphs. The sum on the right-hand
side is uncountable but the result is a well-defined element of Cyl� because, in its action
on any cylindrical function, only a finite number of the terms fails to vanish.

6.3. The scalar constraint

The canonical transformations generated by the Gauss and the diffeomorphism constraints
are kinematical gauge symmetries of the classical theory in the sense that, in the spacetime
picture, they operate at a ‘fixed time’. The crux of quantum dynamics lies in the scalar
constraint. One can imagine implementing it in the quantum theory also by a group
averaging procedure. However, this strategy is difficult to adopt because the finite canonical
transformations generated by this constraint are not well understood even at the classical level.
Therefore, one follows the procedure used for the Gauss constraint: construct a quantum
operator corresponding to the classical, smeared constraint function and then seek its kernel.
Because the form of this constraint is so intricate, its implementation is still rather far from
being as clean and complete as that of the other two constraints. In particular, genuine
ambiguities exist in the regularization procedure and distinct avenues have been pursued [95–
102]. What is non-trivial at this stage is the existence of well-defined strategies. Whether any
of them is fully viable from a physical perspective is still an open issue. In this summary,
we will essentially follow the most developed of these approaches, introduced by Thiemann
[95–97]. However, to bring out quantization ambiguities we have generalized the method,
emphasizing points at which there is freedom to modify the original procedure and still arrive
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Figure 2. An elementary cell � in a cubic partition. s1, s2, s3 are the edges of the cell and
β1, β2, β3 the three oriented loops which are boundaries of faces orthogonal to these edges.

at a well-defined constraint operator. Our emphasis is more on clarifying the underlying
conceptual structure than on providing efficient calculational tools.

6.3.1. Regulated classical expression. As with area and volume operators, our first task is to
re-express the classical expression of the scalar constraint as a Riemann sum involving only
those phase space functions which have direct quantum analogues. Recall from section 2 that
in terms of real connection variables, the scalar constraint (2.31) smeared with a lapse N can
be written as a sum of two terms,

C(N) =
( γ

4k

) 1
2

∫
M

d3xN
P ai P

b
j√

detP

[
εij kF

k
ab + 2(σ − γ 2)Ki[aK

j

b]

]
(6.13)

where, as before, k = 8πG and we have used the relation det q = (κγ )3 detP . Had we
worked in the +,+,+,+ signature and in the half-flat sector γ 2 = σ , the second term would
have been zero. Thus, the first term has the interpretation of the scalar constraint of Euclidean
general relativity. Therefore, the full Lorentzian constraint can be written as

C(N) = √
γ CEucl(N)− 2(1 + γ 2)T (N) (6.14)

where we have used σ = −1 corresponding to the Lorentzian signature.
Let us begin by exploring the first term. In comparison with geometric operators discussed

in section 5, we now have three sets of complications. First, the expression of CEucl(N)

involves not only triads P ai but also curvature F iab of the connection Aia . However, following
the standard procedure in gauge theories, it is straightforward to express curvature in terms
of holonomies which can be directly promoted to operators. The second complication arises
from the fact that the expression of T (N) involves extrinsic curvature terms. Fortunately,
we will see that these can be expressed using the Poisson bracket between CEucl and the total
volume, both of which have well-defined operator analogues. The final complication is the
presence of the volume element

√
detP in the denominator. At first, this seems to be a fatal

drawback. A key insight of Thiemann [95, 96] was that this is not the case (see also [100] for
a further discussion). For, the combination

eia :=
√
kγ

2
ηabcε

ijk
P bj P

c
k√

detP
, (6.15)
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representing the co-triad eia can be expressed as a manageable Poisson bracket:

eia(x) = 2

kγ

{
Aia(x), V

}
. (6.16)

Using this fact, the Euclidean scalar constraint part CEucl(N) is written as

CEucl(N) = − 2

k2γ
3
2

∫
M

d3x N(x)ηabc Tr(Fab(x){Ac(x), V }). (6.17)

We will see that this expression is well suited for quantization.
The second term T (N) in expression (6.14) of the constraint is given by

T (N) =
√
γ

2
√
k

∫
M

d3x N

(
Ki[aK

j

b]

P ai P
b
j√

detP

)
. (6.18)

To cast this term in the desired form, we first note that Kia can be expressed as a Poisson
bracket,

Kia = 1

kγ

{
Aia, K̄

}
(6.19)

where K̄ is the integral of the trace of the extrinsic curvature,

K̄ = kγ
∫
M

d3xKiaP
a
i . (6.20)

Now K̄ itself can be expressed as a Poisson bracket,

K̄ = γ− 3
2 {CEucl(1), V }. (6.21)

Hence T (N) can be expressed as

T (N) = − 2

k4γ 3

∫
M

d3xN(x)ηabc Tr({Aa(x), K̄}{Ab(x), K̄}{Ac(x), V }). (6.22)

Thus, to express the constraint in terms of variables adapted to quantum theory, it only
remains to re-express the curvature and connection terms appropriately. Now, if s is a line
segment of coordinate length ε and if a loop β is the boundary of a coordinate plane P of area
ε2, we have {∫

s

A, V

}
= −[Ā(s)]−1{Ā(s), V } + o(ε){∫

s

A, K̄

}
= −[Ā(s)]−1{Ā(s), K̄} + o(ε)

(6.23)

and ∫
P

F = 1

2
(Ā(β−1)− Ā(β)) + o(ε2). (6.24)

These formulae provide a concrete strategy to replace the connection and curvature terms in
terms of holonomies. For example, if M is topologically R3, it is simplest to introduce a cubic
partition where the coordinate length of edges of elementary cells is ε. Denote by s1, s2, s3,
the edges of an elementary cell � based at a vertex v� and by β1, β2 and β3 the three oriented
loops based at v� which are boundaries of faces orthogonal to these edges (see figure 2). Then,
the

∑
� CEucl

� (N), where

CEucl
� (N) = −2N(v�)

k2γ
3
2

∑
I

Tr
((
Ā(βI )− Ā

(
β−1
I

))
Ā(sI )

−1{Ā(sI ), V }), (6.25)
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Figure 3. An elementary cell � in a general partition. Segments si now lie along the edges of the
given graph which has a vertex v� in the interior of �. Each of the loops βi originates and ends
at v� and lies in a coordinate plane spanned by two edges.

is a Riemann sum which converges to CEucl(N) as the cell size tends to zero (and the number
of cells tends to infinity). Similarly, the sum

∑
� T�(N)

T�(N) = 2N(v�)

k4γ 3
εIJL Tr

(
Ā
(
s−1
I

){Ā(sI ), K̄}Ā(sJ−1
){Ā(sJ ), K̄}Ā(sL−1

){Ā(sL), V })
(6.26)

is a Riemann sum which converges to T (N) as the cell size tends to zero. These Riemann
sums can therefore be regarded as providing a ‘regularization’ of the classical constraint. As
in the discussion of the geometric operators of section 5, the idea is to first replace classical
quantities in the ‘regularized expression’ by their quantum counterparts and then remove the
regulator. A remarkable feature of this regularization, first pointed out by Rovelli and Smolin
[94], is that the regulating parameter ε has disappeared from the expression. Hence it is not
necessary to multiply the constraint by a suitable power of ε before removing the regulator;
no renormalization is involved.

The cubic partition is the simplest example of a more general classical regularization.
The available freedom can be summarized as follows. To every value ε ∈ [0, ε0], assign a
partition of � into cells � of possibly arbitrary shape (see figure 3). In every cell � of the
partition we define edges sJ , J = 1, . . . , ns and loops βi, i = 1, . . . , nβ , where ns, nβ may
be different for different cells. Finally, fix an arbitrarily chosen representation ρ of SU(2).
This entire structure will be denoted by Rε and called a permissible classical regulator if the
following property holds,

lim
ε→0

CEucl
Rε
(A,E) = CEucl(A,E) and lim

ε→0
TRε (A,E) = T (A,E), (6.27)

where

CEucl
Rε

=
∑

�

CEucl
Rε�, (6.28)

CEucl
Rε

= N(v�)

k2γ
3
2

∑
iJ

CiJTr
((
ρ[Ā(βi)] − ρ[Ā(β−1

i

)])
ρ
[
Ā
(
sJ

−1
)]{ρ[Ā(sJ )], V }), (6.29)
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TRε =
∑

�

TRε� (6.30)

TRε� = N(v�)

k4γ 3

∑
I,J,K

T IJKTr(ρ[Ā(s−1
I )]{ρ[Ā(sI )], K̄}ρ[Ā(sJ

−1)]{ρ[Ā(sJ )], K̄}

× ρ[Ā(sK
−1)]{ρ[Ā(sK)], V }), (6.31)

and CiJ , T IJK are fixed constants, independent of the scale parameter ε. A large family of
the classical regulators can be constructed by modifications of the cubic example, changing
the shape of the cells, loops and edges, and their relative positions suitably.

6.3.2. The quantum scalar constraint. Our task is to first promote the regulated classical
constraint to a quantum operator and then remove the regulator. In the detailed implementation
of this procedure, one encounters three non-trivial issues.

As in the case of geometric operators, the first step is rather straightforward because
the regulated expressions involve only those phase functions which have direct quantum
analogues. However, while the ‘obvious’ quantum operator would be well defined on states
which are cylindrical with respect to any one graph, in the end we have to ensure that the
resulting family of operators is consistent. This is the first non-trivial issue. The simplest
way to address it is to use the decomposition H = ⊕αH′

α of the Hilbert space, introduced in
section 4.3.3, and define the quantum constraint on each H′

α separately. Because of the
orthogonality of any two H′

α , the resulting family of operators would then be automatically
consistent.

Let us begin with CEucl
Rε

. Fix a subspace H′
α of H. The quantum operator can be obtained

simply by promoting the holonomies and volume functions to operators and replacing the
Poisson brackets by 1/ih̄-times commutators. Thus, for any given graph α and ε > 0,

ĈEucl
Rε,α
(N) :=

∑
�

ĈE�(N) (6.32)

with

ĈEucl
� (N) := − iN(v�)

k2γ
3
2 h̄

∑
iJ

CiJ Tr
((
ρ[Ā(βi)] − ρ[Ā(β−1

i

)])
ρ
[
Ā
(
sJ

−1
)]

[ρ[Ā(sJ )], V̂ ]
)
,

(6.33)

is a densely defined operator on H′
α with domain Dα = H′

α ∩ Cylα for any classical regulator
Rε. We now encounter the second non-trivial issue: we have to ensure that the final operator
is diffeomorphism covariant. To address it, we need to use regulators which are not fixed but
transform covariantly as we move from a graph α to any of its images under diffeomorphisms.
Therefore, we will restrict our regulators appropriately.

A diffeomorphism covariant quantum regulator Rε,α is a family of permissible classical
regulators, one for each choice of the graph α, satisfying the following properties:

(a) the partition is sufficiently refined in the sense that every vertex v of α is contained in
exactly one cell of Rε,α; and

(b) if (α, v) is diffeomorphic to (α′, v′) then, for every ε and ε′, the quintuple
(α, v,�, (sI ), (βJ )) is diffeomorphic to the quintuple (α′, v′,�′, (s ′I ), (β

′
J )) where �

and �′ are the cells of Rε and R′
ε respectively, containing v and v′ respectively32.

32 We need the restriction only on cells which contain vertices because the properties of the volume operator imply
that the action of ĈEucl

� is non-trivial only if one of the segments sI of the regulator intersects a vertex of α.
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Such diffeomorphism compatible quantum regulators exist; an explicit example is given in
[96]. Given such an Rε,α , for every value of ε, the operators ĈEucl

Rε,α
(N) are densely defined

on H′
α with a common domain Dα . This family of operators determines a densely defined

operator ĈEucl
Rε

on the full Hilbert space H with domain Cyl, independent of the value of ε.
Furthermore, for any value of ε, this domain is mapped to itself by the operator ĈEucl

Rε
.

Thus, it only remains to remove the regulator. Here we encounter the third non-trivial
issue. Typically ĈEucl

Rε,α
|�α〉 is orthogonal to ĈEucl

Rε′,α
|�α〉 if ε �= ε′, whence the operator does

not converge (even in the weak topology) on H. This is a rather general problem associated
with the topology of H; we also encountered it while defining the operator analogue of the
diffeomorphism constraint CDiff( 
N). Recall, however, that solutions to the diffeomorphism
constraint also fail to lie in the kinematical Hilbert space H; they belong to Cyl�, the algebraic
dual of Cyl. Therefore, for the consistency of the whole picture, what we need is the action
of the scalar constraint only on a sufficiently large subspace of Cyl� and not on H. And this
action is well defined and non-trivial. More precisely, for each (�| ∈ Cyl�, the action of the
regulated constraint operator is naturally given by[

(�|ĈEucl
Rε

]|�〉 := (�|[ĈEucl
Rε

|�〉] (6.34)

for all |�〉 ∈ Cyl�. We can now remove the regulator in the obvious fashion. Define

ĈEucl(N) = lim
ε→0

ĈEucl
Rε
(N) (6.35)

via

[(�|ĈEucl(N)]|�〉 = lim
ε→0
(�|[ĈEucl

Rε
(N)|�〉]. (6.36)

Note that the limit has to exist only pointwise, i.e., for each |�〉 ∈ Cyl separately. As a
consequence the domain of the operator, the set of (�| in Cyl� for which the limit exists,
is quite large. In particular, as discussed below, it includes a large class of solutions to the
diffeomorphism constraints. The term T (N) in the scalar constraint can be handled in a
completely parallel fashion. Specifically, we can first define the operator ˆ̄K through

ˆ̄K := i

h̄γ
3
2

[V̂ , ĈE(1)] (6.37)

and use ˆ̄K and the quantum regulator Rε,α to define the regulated operator T̂�(N),

(�|T̂�(N) = iN(v�)

k4γ 3h̄3 T
IJK(�| Tr

(
Ā
(
s−1
I

)
[ĀsI ,

ˆ̄K]Ā
(
sJ

−1
)
[Ā(sJ ), ˆ̄K]Ā

(
sK

−1
)
[Ā(sK), V̂ ]

)
,

(6.38)

on the domain Cyl�. Collecting these definitions, we now have a regulated scalar constraint
operator,

(�|ĈRε (N) := (�|
(

√
γ ĈEucl

Rε
(N)− 2(1 + γ 2)

∑
�

T̂�(N)

)
(6.39)

for all (�| ∈ Cyl�. Again, we can remove the regulator by taking the limit as ε → 0 as
in (6.36). By construction, the action of this operator is diffeomorphism covariant. Thus,
each diffeomorphism covariant quantum regulator defines a scalar constraint operator. Since
there is a great deal of freedom in choosing these regulators, there is considerable quantization
ambiguity. Nonetheless, all these constructions exhibit some very non-trivial properties. We
will conclude this section by providing two illustrations.

First, as mentioned in the beginning of this section, it is significant that well-defined
prescriptions exist to give precise meaning to quantum Einstein equations in a background-
independent setting. In geometrodynamics, for example, the Wheeler–DeWitt equation still
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remains only formal. Secondly, these constructions match surprisingly well with the solutions
of the diffeomorphism constraint. To see this note first that, irrespective of the choice of the
diffeomorphism covariant quantum regulator, up to diffeomorphisms, the operator ĈRε (N) is
independent of ε: for every ε, ε′ and |�〉 ∈ Cyl, there is a diffeomorphism ϕ such that

ĈRε′ (N)|�〉 = Uϕ ĈRε′ (N)|�〉, (6.40)

for every N. Next, suppose that (�| ∈ Cyl� is diffeomorphism invariant. Then, for every lapse
function N, the result (�|(ĈRε (N)) is in fact independent of ε, and so is the expression under
the limit on the right-hand side of (6.39). Hence the regulator can be removed trivially [94].
Thus because of the form of the regulated operators, diffeomorphism invariant states in Cyl�

(constructed by group averaging elements of H′
α∩Cylα) are automatically in the domain of the

scalar constraint operator. This tight matching between the way in which the two constraints
are handled is quite non-trivial.

Remark. In the original construction by Thiemann [96], the Hamiltonian constraint operator
was defined on Cyl�diff . Now, as we saw in section 2, the Poisson bracket of any two scalar
constraints is given by a diffeomorphism constraint in the classical theory. Therefore, on
diffeomorphism invariant states, one would expect the quantum scalar constraint operators
to commute. Irrespective of the choice of the regulator Rε, they do. To obtain a more
stringent test, the domain of the Thiemann operator was extended slightly in [100, 101]. The
extended domain, called the ‘habitat’ [101], also includes certain elements of Cyl� which are
not diffeomorphism invariant. Nonetheless, it turned out that the commutator between scalar
constraints continues to vanish on the habitat. This may seem alarming at first. However,
it turns out that the quantum operator corresponding to the classical Poisson bracket also
annihilates every state in the habitat [100]. Thus, there is no inconsistency; the habitat just
turned out to be too small to provide a non-trivial viability criterion of this quantization
procedure. The domain of the operator introduced in this section includes the habitat and the
same result continues to hold. More importantly, it is likely that this domain is significantly
larger and may contain semi-classical states. If this turns out to be the case, stronger viability
criteria to test this quantization procedure will become available. In particular, in addition
to the relation to the classical Poisson algebra of constraints, one may be able to analyse
the relation between the classical evolution and the action of the constraint on semi-classical
states.

6.3.3. Solutions to the scalar constraint. In this section, we will illustrate how the difficult
problem of finding solutions to the quantum constraints can be systematically reduced to a
series of simpler problems. For this, we will need to make the quantum regulator Rε,α more
specific.

The most convenient class of regulators requires some modifications in the original
construction due to Thiemann. Restrictions defining this class can be summarized as follows.
Fix a graph α and consider a cell � containing a vertex v in the partition of M defined by the
regulator. The first restriction is that every edge sk assigned to � must be a proper segment
of an edge incident at v, oriented to be outgoing at v. The next restriction is on the closed
loops β. To every pair of edges eI , eJ assign a triangular closed loop βIJ such that (i) the loop
contains v but no other point in the graph α; (ii) it lies ‘between’ the 2-edges, in a 2-plane
containing the edges, where the plane is defined up to diffeomorphisms preserving α; and
(iii) it is oriented clockwise with respect to the orientation defined in the plane by the ordered
pair of segments sI , sJ . (The double index IJ labelling the loop corresponds to the single
index i before, e.g., in (6.29).) Finally, the constants CIJK and T IJK of the regulator are,
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respectively, ±κ1, 0 and ±κ2, 0 depending on the orientation of a triad of vectors tangent to
the segments sI , sJ , sK at v relative to the background orientation on M, where κ1 and κ2 are
fixed constants.

Given such a regulator, the action of the resulting operators ĈEucl(N) and Ĉ(N) on
diffeomorphism invariant elements of Cyl� has a rather simple geometric structure which can
be roughly summarized as follows. Suppose (�α| ∈ Cyl� is obtained by group averaging
a state in H′

α . Then, if α contains no closed loops of the type introduced by the regulator
at any of its vertices, it is annihilated by both the operators. If α does contain such closed
loops, ĈEucl(N) removes one loop, Ĉ(N) removes two loops, and in each case there is also
a possible change in the intertwiners at the vertex. Following a terminology introduced by
Thiemann in his regularization, closed loops of the type introduced by the regulator will be
called extraordinary.

More precisely, constraint operators act as follows. Consider a labelled graph (α0, j0) such
that no labelled graph belonging to the same diffeomorphism class contains an extraordinary
loop labelled by j (ρ) where ρ is the representation used in the regularization. Call a labelled
graph with this property simple. Given a simple graph α, all states (�α| in Cyl�diff obtained by
group averaging elements of H′

a are in the kernel of Ĉ(N). This is a large class of solutions.
However, these states are annihilated by each of the two terms, ĈEucl(N) and ĥT (N), of Ĉ(N)
separately whence they solve both the Euclidean and the Lorentzian scalar constraint. In
this sense, they are the analogues of time-symmetric solutions to the classical Hamiltonian
constraint and will at best capture very special physical situations.

More interesting solutions can be obtained starting from graphs which do admit
extraordinary edges. We begin by introducing some notation. Consider the set of all the
labelled graphs (α′, j ′) that can be obtained from a given (α0, j0) by creation of n extraordinary
loops labelled by j (ρ), and by the diffeomorphisms. Denote this set by�(n)[(α0,j0])] and denote by

D(n)[(α0,j0)]
the linear span of the corresponding diffeomorphism averaged spin-network states.

The resulting spaces are finite dimensional and have trivial intersection with one another:

([(α0, j0)], n) �= ([(α′
0, j

′
0)], n

′)⇒ D(n)[(α0,j0)]
∩ D(m)[(α′

0,j
′
0)]

= {0}. (6.41)

As a consequence, one can show that they have the following very useful property: every
(�| ∈ Cyl�diff can be uniquely decomposed as

(�| =
∑
α,j,n

(�|(n)[(α,j)], where (�|(n)[(α,j)] ∈ D(n)[(α,j)]. (6.42)

The availability of this decomposition systematizes the task of finding solutions to the scalar
constraint.

Let us begin with ĈEucl(N). For the Euclidean theory, one can obtain the following
surprising result:

(�|ĈEucl(N) = 0 ⇔ (�|(n)[(α,j)]ĈEucl = 0, for every [(α, j)], n. (6.43)

Thus, (�| is a solution of the Euclidean part of the constraint if and only if each of its
components with respect to the decomposition (6.42) is also a solution. This is a very useful
property because the problem of finding a general diffeomorphism invariant solution to the
Euclidean constraint is reduced to that of finding solutions in finite-dimensional subspaces.
On each of these subspaces, one just has to find the kernel of certain matrices, a problem that
can be readily put on a computer. Reciprocally, given any diffeomorphism invariant solution
to the constraint (e.g., the state supported just on flat connections) the decomposition provides
a family of new solutions. In 2 + 1 dimensions this property implies that any semi-classical
state can be obtained by a superposition of these ‘elementary’ solutions.
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Finally, let us turn to the full (Lorentzian) scalar constraint operator, Ĉ(N). In the present
scheme, the problem of obtaining diffeomorphism invariant solutions is reduced to a hierarchy
of steps. More precisely, the equation

(�|Ĉ(N) = 0, (6.44)

is equivalent to the following hierarchy of equations

(�(1)[α,j ]|T̂ (N) = 0,

(�(2)[α,j ]|T̂ (N) = (�(1)[α,j ]|ĈEucl(N),

· · ·
(6.45)

(�(n+1)[α,j ]|T̂ (N) =
∑
n

(�(n)[α,j ]|ĈEucl(N),

· · ·
(6.46)

In general, the procedure involves infinitely many steps. However, it gives a partial control on
the solutions and suggests new ansatze, e.g., requiring that the series terminate after a finite
number of steps.

Remark. Since the procedure outlined above is a variation on Thiemann’s original strategy,
it is worth comparing the relative merits. Thiemann’s procedure is simpler in that two of the
three edges of triangles βi (holonomy around which captures the curvature term in CEucl(N))
are along edges of the graph under consideration. However, now the analogues of our spaces
D(n)(α,j) overlap, making the procedure for solving the constraint more complicated.

To summarize, in this section we have presented a general framework for defining the
Hamiltonian constraint and for finding its solutions. This procedure provides a good handle
on the problem and also brings out the ambiguities involved. Specifically, each choice of a
diffeomorphism covariant quantum regulator Rε,α gives rise to a quantum constraint operator
Ĉ on D. For each choice of the regulator, there is also a certain factor ordering freedom which
was ignored for brevity. In general these operators will differ from each other, defining distinct
quantum dynamics and one has to invoke physical criteria to test their viability. Quantum
cosmology results discussed in section 7 favour the factor ordering used here. There have also
been attempts at restricting the freedom in the choice of the quantum regulator by imposing
heuristically motivated conditions. However, a canonical choice has not emerged. Thus, there
is still a great deal of ambiguity and it is not clear if any of the candidates are fully viable.
A key criterion is that the solution set to the constraints should be rich enough to admit a
large number of semi-classical states. This issue will not be systematically resolved until one
has a greater control on the semi-classical sector of the theory. As discussed above there is
now a general strategy to find solutions, whence one can hope to address this issue. Partial
support for this strategy comes from (2 + 1)-dimensional Euclidean general relativity. As
mentioned above, in this theory, all semi-classical states can be recovered by superposing the
‘elementary solutions’ onto quantum constraints, obtained via our systematic procedure. This
result is encouraging because the 2 + 1 theory has all the conceptual problems associated with
the absence of a background geometry. However, it cannot be taken as a strong indication
because the (2 + 1)-dimensional theory has only a finite number of degrees of freedom.

This concludes the general framework for quantum kinematics and dynamics. In the next
three sections we will discuss various applications.
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7. Applications of quantum geometry: quantum cosmology

In cosmology, one generally freezes all but a finite number of degrees of freedom by imposing
spatial homogeneity (and sometimes also isotropy). Because of the resulting mathematical
simplifications, the framework provides a simple arena to test ideas and constructions
introduced in the full theory both at the classical and quantum levels. Moreover, in the
classical regime, the symmetry reduction captures the large scale dynamics of the universe as
a whole quite well. Therefore, in the quantum theory, it provides a fertile test bed for analysing
the important issues related to the fate of the initial singularity (highlighted in section 1). Over
the last three years, Bojowald and his collaborators have made striking advances in this area
by exploiting the quantum nature of geometry [104–117]. In this section, we will provide
a self-contained summary of the core developments using constructions which mimic those
introduced in sections 4–6. (For subtleties and details, see especially [115].)

Loop quantum cosmology also provides a number of lessons for the full theory. However,
to fully understand their implications, it is important to keep track of the differences between
the symmetry reduced and the full theories. The most obvious difference is the tremendous
simplification resulting from the reduction of a field theory to a mechanical system. However,
there are also two other differences which make it conceptually and technically more
complicated, at least when one tries to directly apply the methods developed for the full
theory in section 6. First, the reduced theory is usually treated by gauge fixing and therefore
fails to be diffeomorphism invariant. As a result, key simplifications that occur in the treatment
of full quantum dynamics do not carry over and, in a certain sense, dynamics now acquires
new ambiguities in the reduced theory! The second complication arises from the fact that
spatial homogeneity introduces distant correlations. Consequently, in contrast to section 4,
quantum states associated with distinct edges and electric flux operators associated with distinct
2-surfaces are no longer independent. Both these features give rise to certain complications
which are not shared by the full theory. Once these differences are taken into account, loop
quantum cosmology can be used to gain valuable insights about certain qualitative features of
the methods introduced in section 6.3 to formulate and solve the Hamiltonian constraint in the
full theory.

7.1. Phase space

For simplicity, we will restrict ourselves to spatially homogeneous, isotropic cosmologies.
(For non-isotropic models, see [113, 116].) Specifically, we will focus only on the case
where the isometry group S is the Euclidean group. Then the three-dimensional group T
of translations (ensuring homogeneity) acts simply and transitively on the 3-manifold M .
Therefore, M is topologically R3. It is convenient to fix on M a fiducial flat metric 0qab, an
associated constant orthonormal triad 0eai and the dual co-triad 0ωia .

Let us now turn to the gravitational phase space in the connection variables. As we
saw in section 2, in the full theory, the phase space consists of pairs

(
Aia, P

a
i

)
of fields on a

3-manifoldM , where Aia is an SU(2) connection and P ai a triplet of vector fields with density
weight 1. A pair

(
A′
a
i , P ′a

i

)
on M is said to be spatially homogeneous and isotropic or, for

brevity, symmetric if for every s ∈ S there exists a local gauge transformation g : M → SU(2),
such that

(s�A′, s�P ′) = (g−1A′g + g−1 dg, g−1P ′g). (7.1)

As is usual in cosmology, we will fix the local diffeomorphism and gauge freedom. To do
so, note first that for every symmetric (A′, P ′) (satisfying the Gauss and diffeomorphism
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constraints) there exists an equivalent pair (A, P ) (under (7.1)) such that

A = c0ωiτi, P = p
√

0q0eiτ
i (7.2)

where c and p are constants, carrying the only non-trivial information contained in the pair
(A′, E′), and the density weight of P has been absorbed in the determinant of the fiducial
metric. Denote by AS and ΓSgrav the subspace of the gravitational configuration space A and
of the gravitational phase space Γ defined by (7.2). Tangent vectors δ to ΓSgrav are of the form

δ = (δA, δP ), with δA ≡ (δc)0ωia, δP ≡ (δp)0eai . (7.3)

Thus, AS is one dimensional and ΓSgrav is two dimensional: we made a restriction to symmetric
fields and solved and gauge-fixed the gauge and the diffeomorphism constraints, thereby
reducing the infinite, local, gravitational degrees of freedom to just 1.

Because M is non-compact and fields are spatially homogeneous, various integrals
featuring in the Hamiltonian framework of section 2 diverge. This is, in particular, the
case for the symplectic structure of the full theory. However, one can bypass this problem in
a natural fashion: fix a ‘cell’ V adapted to the fiducial triad and restrict all integrations to this
cell. The volume V0 of this cell (with respect to the fiducial metric 0qab) can also be used to
absorb the dependence of the basic variables c, p on the fiducial 0qab. Let us rescale the basic
variables to remove this dependence,

c := V
1
3

0 c and p := 8πGγV
2
3

0 p, (7.4)

and express the gravitational symplectic structure Ω on Γ in terms of them:

Ω(δ1, δ2) =
∫
V

d3x
(
δ1A

i
a(x)δ2P

a
i (x)− δ2A

i
a(x)δ1P

a
i (x)

)
= 3 dc ∧ dp. (7.5)

This expression also makes no reference to the fiducial metric (or the volume V0 of the cell V).
We will work with this phase space description. Note that now the configuration variable c is
dimensionless while the momentum variable p has dimensions (length)2. (While comparing
results in the full theory, it is important to bear in mind that these dimensions are different
from those of the gravitational connection and the triad there.) In terms of p, the physical triad
and co-triad are given by

eai = (sgnp)|p|− 1
2
(
V

1
3

0
0eai
)

and eia = (sgnp)|p| 1
2
(
V

− 1
3

0
0ω0
a

)
. (7.6)

We have specified the gravitational part of the reduced phase space. We do not
need to specify matter fields explicitly but only note that, upon similar restriction to
symmetric fields and fixing of gauge and diffeomorphism freedom, one is led to a finite-
dimensional phase space also for matter fields. Finally, let us turn to constraints. Since the
Gauss and the diffeomorphism constraints are already satisfied, there is a single non-trivial
scalar/Hamiltonian constraint (corresponding to a constant lapse):

− 6

γ 2
c2 sgnp

√
|p| + Cmatter = 0. (7.7)

7.2. Quantization: kinematics

We will now adapt the general procedure of sections 4 and 5 to the symmetry reduced phase
space and emphasize how it leads to interesting departures from the ‘standard’ quantum
cosmology in geometrodynamic variables.
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7.2.1. Elementary variables. Let us begin by singling out ‘elementary functions’ on the
classical phase space which are to have unambiguous quantum analogues. In the full theory,
the configuration variables were constructed from holonomies A(e) associated with edges e
and momentum variables, from E(S, f ), triads E smeared with test fields f on 2-surfaces.
But now, because of homogeneity and isotropy, we do not need all edges e and surfaces S.
Symmetric connections A in AS can be recovered knowing holonomies h(e) along straight
lines in M . Similarly, it is now appropriate to smear triads only by constant fields, fi = τi ,
and across squares to which the fiducial triads 0eai are tangent33.

The SU(2) holonomy along an edge e is given by

A(e) = cos
�c

2
+ 2

[
sin
�c

2

] (
ėa0ωia

)
τ i (7.8)

where �V 1/3
0 is the oriented length of the edge. Therefore, a typical element of the algebra

generated by sums of products of matrix elements of these holonomies can be written as

F(A) =
∑
j

ξj ei�j c (7.9)

where j runs over a finite number of integers (labelling edges), �j ∈ R and ξ ∈ C. These are
precisely the almost periodic functions which have been studied in the mathematical literature
in detail. One can regard a finite number of edges as providing us with a graph (since, because
of homogeneity, the edges need not actually meet in vertices now) and the function F(A) as
a cylindrical function with respect to that graph. The vector space of these almost periodic
functions is the space of cylindrical functions of symmetric connections and will be denoted
by CylS.

To define the momentum functions, we are now led to smear the triads with constant test
functions and integrate them on a square (with respect to the fiducial metric). The resulting
phase space function is then just p multiplied by a kinematic factor. We will therefore regard
p itself as the momentum function. In terms of classical geometry, p is related to the physical
volume of the elementary cell V via V = V0|p|3/2. Finally, the only non-vanishing Poisson
bracket between elementary functions is

{F(A), p} = 8πγG

6

∑
j

(i�j ξj ) ei�j c. (7.10)

Since the right-hand side is again in CylS, the space of elementary variables is closed under the
Poisson bracket. Note that, in contrast with the full theory, now there is only one momentum
variable whence non-commutativity of triads is no longer an issue. Therefore, the triad
representation also exists in quantum theory. In fact, it turns out to be convenient in making
the quantum dynamics explicit.

7.2.2. Representation of the algebra of elementary variables. To construct quantum
kinematics, let us seek a representation of this algebra of elementary variables. We will find
that the quantum theory is quite different from the ‘standard’ geometrodynamical quantum
cosmology. This difference arises from the fact that the configuration variables are not smooth
functions of compact support on As , but rather, almost periodic functions. As we saw in
section 7.2.1, this choice can be directly traced back to the full theory where holonomies play
a primary role. Because we are repeating the procedure used in the full theory as closely
as possible, the fundamental discreteness underlying polymer geometry will trickle down to

33 Indeed, we could just consider edges lying in a single straight line and a single rectangle bounded by 0eai . We chose
not to break the symmetry artificially and consider instead all lines and all rectangles.
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quantum cosmology and lead to results which are qualitatively different from those in standard
quantum cosmology.

Recall from section 4.3.4 that one can construct the representation of the algebra of
elementary variables using Gel’fand theory. In the reduced model under consideration, the
theory implies that the Hilbert space must be the space of square integrable functions on a
suitable completion ĀS of the classical configuration space AS . Now, AS = R and ĀS is the
Gel’fand spectrum of the C�-algebra of almost periodic functions (see (7.9)) on AS . This is
a well-understood space, called the Bohr compactification of the real line (discovered by the
mathematician Harold Bohr, Neils’ brother). This is now the quantum configuration space.
It is an Abelian group and carries a canonical, normalized Haar measure µS0 . Following the
procedure used in the full theory, it is natural to set HSgrav = L2

(
ĀS, dµS0

)
and use it as the

kinematical Hilbert space for the gravitational sector of the theory. The general theory can
also be used to represent the algebra of elementary variables by operators on HSgrav.

As in section 4, one can make this representation concrete. Set

N�(Ā) = ei�c (7.11)

and introduce on Cyl the following Hermitian inner product,〈
N�1

∣∣N�2

〉 = δ�1,�2 (7.12)

where the right-hand side is the Kronecker delta, rather than Dirac. Then HSgrav is the Cauchy
completion of this space. Thus the almost periodic functions N� constitute an orthonormal
basis in HSgrav; they play the role of spin networks in the reduced theory. CylS is dense in
HSgrav, and serves as a common domain for all elementary operators. The configuration and
momentum operators have expected actions:

(F̂N�)(Ā) = F(Ā)N�(Ā), (p̂N�)(Ā) = 8π�γ �2
Pl

6
N�(A). (7.13)

As in the full theory, the configuration operators are bounded, whence their action can be
extended to the full Hilbert space HSgrav, while the momentum operators are unbounded but
essentially self-adjoint. The basis vectors N� are normalized eigenstates of p̂. As in quantum
mechanics, let us use the bra–ket notation and write N�(c) = 〈c|�〉. Then,

p̂|�〉 = 8π�γ �2
Pl

6
|�〉 ≡ p�|�〉. (7.14)

Using the relation V = |p|3/2 between p and the physical volume of the cell V we have

V̂ |�〉 =
(

8πγ |�|
6

) 3
2

�3
Pl|�〉 ≡ V�|�〉. (7.15)

This provides us with a physical meaning of �: when the universe is in the quantum state |�〉,
(modulo a fixed constant) |�|3/2 is the physical volume of the cell V in Planck units. Thus, in
particular, while the volume V0 of the cell V with respect to the fiducial metric 0qab may be
‘large’, its physical volume in the quantum state |� = 1〉 is just (γ /6)3/2�3

Pl.
As our notation makes clear, the construction of the Hilbert space and the representation of

the algebra are entirely parallel to that in the full theory. In the full theory, holonomy operators
are well defined but there is no operator representing the connection itself. Similarly, N̂� are
well-defined unitary operators on HSgrav but they fail to be continuous with respect to �, whence
there is no operator corresponding to c on HSgrav. Thus, as in section 4.3, to obtain physically
interesting operators, one has to first express them in terms of the elementary variables N� and
p and then promote those expressions to the quantum theory.
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There is, however, one important difference between the full and the reduced theories:
while eigenvalues of the momentum (and other geometric) operators in the full theory span
only a discrete subset of the real line, now every real number is a permissible eigenvalue
of p̂. This difference can be directly attributed to the high degree of symmetry. In the full
theory, eigenvectors are labelled by a pair (e, j) consisting of continuous label e (denoting an
edge) and a discrete label j (denoting the ‘spin’ on that edge), and the eigenvalue is dictated
by j . Because of homogeneity and isotropy, the pair (e, j) has now collapsed to a single
continuous label �. Note, however, that there is a weaker sense in which the spectrum is
discrete: all eigenvectors are normalizable. Hence the Hilbert space can be expanded out as a
direct sum—rather than a direct integral—of the one-dimensional eigenspaces of p̂; i.e., the
decomposition of identity on HS is given by a (continuous) sum

I =
∑
�

|�〉〈�| (7.16)

rather than an integral. Consequently, the natural topology on the spectrum of p̂ is discrete.
Although weaker, this discreteness plays a critical role both technically and conceptually.

7.3. Triad operator

In the reduced classical theory, curvature is simply a multiple of the inverse of the square
of the scale factor a = √|p|. Similarly, the matter Hamiltonian invariably involves a
term corresponding to an inverse power of a. Therefore, one needs to obtain an operator
corresponding to the inverse scale factor, or the triad (with density weight zero) of (7.6). In
the classical theory, the triad coefficient diverges at the big-bang and a key question is whether
quantum effects ‘tame’ the big-bang sufficiently to make the triad operator (and hence the
curvature and the matter Hamiltonian) well behaved there.

Now, given a self-adjoint operator Â on a Hilbert space, the function f (Â) is well defined
if and only if f is a measurable function on the spectrum of A. Thus, for example, in non-
relativistic quantum mechanics, the spectrum of the operator r̂ is the positive half of the real
line, equipped with the standard Lesbegue measure, whence the operator 1/r̂ is a well-defined,
self-adjoint operator. By contrast, the spectrum of p̂ has discrete topology and [p̂]−1 is not a
measurable function of p̂. More explicitly, since p̂ admits a normalized eigenvector |� = 0〉
with zero eigenvalue, the naive expression of the triad operator fails to be densely defined
on HSgrav. One could circumvent this problem in the reduced model in an ad hoc manner
by just making up a definition for the action of the triad operator on |� = 0〉. But then the
result would have to be considered as an artefact of a procedure expressly invented for the
model and one would not have any confidence in its implications for the big-bang. However,
we saw in section 6.3 that a similar problem arises in the full theory and can be resolved
using a strategy due to Thiemann. It is natural to use the same procedure also in quantum
cosmology. As in the general theory, therefore, we will proceed in two steps. In the first, we
note that, on the reduced phase space ΓSgrav, the triad coefficient sgnp|p|− 1

2 can be expressed
as the Poisson bracket {c, V 1/3} which can be replaced by ih̄ times the commutator in quantum
theory. However, as in the full theory, a second step is necessary because there is no operator ĉ
on HSgrav corresponding to c: one has to re-express the Poisson bracket in terms of holonomies
which do have unambiguous quantum analogues. The resulting triad (coefficient) operator is
given by

̂[ sgn(p)√|p|
]

= − 12i

8πγ �2
Pl

(
sin
c

2
V̂

1
3 cos

c

2
− cos

c

2
V̂

1
3 sin

c

2

)
(7.17)
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where V� is the eigenvalue of the volume operator given in (7.15). Although the triad involves
both configuration and momentum operators, it commutes with p̂, whence its eigenvectors are
again |�〉. The eigenvalues are given by

̂[ sgn(p)√|p|
]
|�〉 = 6

8πγ �2
Pl

(
V

1/3
�+1 − V 1/3

�−1

)|�〉. (7.18)

where V� is the eigenvalue of the volume operator (see (7.15)).
A key property of the triad operator follows immediately: it is bounded above! The upper

bound is obtained at the value � = 1:

|p|−
1
2

max =
√

12

8πγ
�−1

Pl . (7.19)

Since in the classical theory the curvature is proportional to p−1, in quantum theory, it is
bounded above by (12/γ )�−2

Pl . Note that h̄ is essential for the existence of this upper bound; as
h̄ tends to zero, the bound goes to infinity just as one would expect from classical considerations.
This is rather reminiscent of the situation with the ground state energy of the hydrogen atom
in non-relativistic quantum mechanics, E0 = −(mee

4/2)(1/h̄), which is bounded from below
because h̄ is non-zero.

While this boundedness is physically appealing, at first it also seems puzzling because
the triad coefficient and the momentum are algebraically related in the classical theory via
p · (sgnp/|p|1/2)2 = 1 and p̂ admits a normalized eigenvector with zero eigenvalue. A key
criterion of viability of the triad operator is that the classical relation should be respected in an
appropriate sense. More precisely, one can tolerate violations of this condition on states only
in the Planck regime; the equality must be satisfied to an excellent approximation on states
with large � (i.e., with large volume). Is this the case? We have

6

γ �2
Pl

(
V

1/3
�+1 − V 1/3

�−1

) =
√

6|�|
8πγ �2

Pl

(
√

1 + 1/|�| −
√

1 − 1/|�|)

=
√

6

8πγ |�|�2
Pl

(1 +O(�−2)). (7.20)

Thus, up to order O(�−2), the eigenvalue of the triad operator is precisely 1/
√|p�|, where

p� is the eigenvalue of p̂ (see (7.15)). On states representing a large universe (� � 1),
the classical algebraic relation between the triad coefficient and p is indeed preserved to an
excellent approximation. Violations are significant only on the eigen-subspace of the volume
operator with eigenvalues of the order of �3

Pl or less, i.e., in the fully quantum regime.
Since the classical triad diverges at the big-bang, it is perhaps not surprising that quantum

effects usher in the Planck scale. However, the mechanism by which this came about is
new and conceptually important. For, the procedure did not call for a cut-off or a regulator.
The classical expression of the triad coefficient we began with is exact whence the issue of
removing the regulator does not arise. It is true that the quantization procedure is somewhat
‘indirect’. However, this was necessary because the spectrum of the momentum operator p̂ (or
of the ‘scale factor operator’ corresponding to a) is discrete in the sense detailed in section 7.2.
Had the Hilbert space HSgrav been a direct integral of the eigenspaces of p̂ (rather than a direct
sum) the triad operator could then have been defined directly using the spectral decomposition
of p̂ and would have been unbounded above. Indeed, this is precisely what happens in
geometrodynamics. Thus, the key differences between the mathematical structures of the
present quantum theory and quantum geometrodynamics are responsible for the boundedness
of the triad coefficient on the entire Hilbert space [115].
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A natural question then is as follows: how can there be such inequivalent quantizations?
After all, here we are dealing with a system with a finite number of degrees of freedom. Does
the von Neumann uniqueness theorem not ensure that there is a unique representation of the
exponentiated Heisenberg relations? The answer is no: the von Neumann theorem requires
that the unitary operators U(�), V (λ) corresponding respectively to the classical functions
exp(i�c) and exp(iλp) be weakly continuous in the parameters � and λ. As we noted in
section 7.2.2, this assumption is violated by U(�) in our representation—this in fact is the
reason why there is no operator corresponding to c and only the holonomies are well defined.
A priori it may seem that by dropping the continuity requirement, one opens up a Pandora’s
box. Which of the possible representations is one to use? The most important aspect of this
construction is that it came directly from the full theory where, as discussed at the end of
section 4.3.4, diffeomorphism invariance severely constrains the choice representation.

7.4. Quantum dynamics: the Hamiltonian constraint

Since the curvature is bounded above on the entire kinematical Hilbert space HSgrav, one might
expect that the classical singularity at the big-bang would be naturally resolved in the quantum
theory. This turns out to be the case.

7.4.1. The constraint operator. Rather than starting from the reduced Hamiltonian constraint
(7.7), to bring out the relation to the full theory, we will return to the full constraint and use
the procedure spelled out in section 6.3. Because of spatial homogeneity and flatness, two
simplifications arise: (i) the two terms in expression (6.14) of the full Hamiltonian constraint
are now proportional; and (ii) without loss of generality we can restrict ourselves to a constant
lapse function N, and we will just set it to 1. Then, the gravitational part of the constraint can
be written as

Cgrav = − V0√
8πGγ 2

εijkF
i
ab

P ajP bk√
detP

. (7.21)

As in section 6.3, we have to ‘regulate’ this classical expression by writing it in terms of phase
space functions which can be directly promoted to quantum operators. As in the full theory,
we can express the curvature components F iab in terms of holonomies. Consider a square αij
in the i–j plane spanned by two of the triad vectors 0eai , each of whose sides has length �0V

1/3
0

with respect to the fiducial metric 0qab. Then, ‘the ab component’ of the curvature is given by

F iabτi = 0ωia
0ω
j

b

(
A(αij )− 1

�2
0V

2/3
0

+O(c3�0)

)
. (7.22)

The holonomy A(αij ) around the square αij can be expressed as a product

A(αij ) = A(ei)A(ej )A
(
e−1
i

)
A
(
e−1
j

)
(7.23)

where holonomies along individual edges are given by

A(ei) := cos
�0c

2
+ 2 sin

�0c

2
τi . (7.24)

Next, let us consider the triad term εijkEajEbk/
√

detE. As in the full theory, this can
be handled through the Thiemann regularization. Thus, let us begin with the identity on the
symmetry reduced phase space ΓSgrav,

εijkτ
i P

ajP bk√
detP

= −2
(
γ �0(8πG)

1/2V
1/3

0

)−1
εabc0ωkcA(ek)

{
A
(
e−1
k

)
, V
}

(7.25)
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whereA(ek) is the holonomy along the edge ek parallel to the kth basis vector of length �0V
1/3

0
with respect to 0qab. Note that, unlike expression (7.22) for F iab, (7.25) is exact, i.e., does not
depend on the choice of �0.

Collecting terms, we can now express the gravitational part of the ‘regulated’ constraint as

C�0
grav = −4

(
8πGγ 3�3

0

)−1 ∑
ijk

εijk Tr
(
A(ei)A(ej )A

(
e−1
i

)
A
(
e−1
j

)
A(ek)

{
A
(
e−1
k

)
, V
})

(7.26)

where the term proportional to identity in the leading contribution to F iab in (7.22) drops out
because of the trace operation and where we used εabc0ωia

0ω
j

b
0ωkc =

√
0qεijk . In the limit

�0 → 0, the right-hand side of C�0
grav reproduces the classical expression (7.7) of the constraint.

Thus, �0 (or the length of the edge used while expressing Fab in terms of the holonomy around
the square αij ) plays the role of a regulator in (7.26). Because of the presence of the curvature
term, there is no natural way to express the constraint exactly in terms of our elementary
variables; a limiting procedure is essential. This faithfully mirrors the situation in the full
theory: there, again, the curvature term is recovered by introducing small loops at vertices of
graphs and the classical expression of the constraint is recovered only in the limit in which the
loop shrinks to zero.

It is now straightforward to pass to quantum theory. The regulated quantum constraint is

Ĉ(�0)
grav = 4i

(
8πγ 3�3

0�
2
Pl

)−1∑
ijk

εijk Tr
(
Ā(ei)Ā(ej )Ā

(
e−1
i

)
Ā
(
e−1
j

)
Ā(ek)

[
Ā
(
e−1
k

)
, V̂
])

= 96i
(
8πγ 3�3

0�
2
Pl

)−1
sin2 �0c

2
cos2 �0c

2

(
sin
�0c

2
V̂ cos

�0c

2
− cos

�0c

2
V̂ sin

�0c

2

)
.

(7.27)

Its action on the eigenstates of p̂ is

Ĉ(�0)
grav|�〉 = 3

(
8πγ 3�3

0�
2
Pl

)−1(
V�+�0 − V�−�0

)
(|� + 4�0〉 − 2|�〉 + |�− 4�0〉). (7.28)

On physical states, this action must equal that of the matter Hamiltonian −8πGĈmatter.
In the full theory, one could remove the regulator to obtain a well-defined operator on

(suitable) diffeomorphism invariant states in Cyl�. The reduced model, on the other hand, does
not have diffeomorphism invariance. Therefore, one would expect that the obvious �0 → 0
limit would run into problems. This is indeed what happens. In this limit, the classical
regulated expression (7.26) equals the Hamiltonian constraint (7.7) which, however, contains
c2. Consequently, the naive limit of the operator Ĉ(�0)

grav also contains ĉ2. However, since ĉ2 is
not well defined on HSgrav, now the limit as �0 → 0 fails to exist. Thus, one cannot remove
the regulator in the quantum theory of the reduced model. This feature can be traced back
directly to the symmetry reduction [115].

A detailed analysis shows that the presence of �0 in the quantum Hamiltonian constraint
should be regarded as a quantization ambiguity. Indeed, as we discussed in section 6.3, even
in the full theory, there is a similar ambiguity associated with the choice of the j label used on
the new edges introduced to define the operator corresponding to Fab [102]. More precisely,
in the full theory, the quantization procedure involves the introduction of a pair of labels (e, j)
where e is a continuous label denoting the new edge and j is a discrete label denoting the spin
on that edge. Diffeomorphism invariance ensures that the quantum constraint is insensitive to
the choice of e but the dependence on j remains as a quantization ambiguity. In the reduced
model, diffeomorphism invariance is lost and the pair (e, j) of the full theory collapses into
a single continuous label �0 denoting the length of the edge introduced to define Fab. The
dependence on �0 persists—there is again a quantization ambiguity but it is now labelled by a
continuous label �0.
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If one works in the strict confines of the reduced model, there does not appear to exist a
natural way to remove this ambiguity. In the full theory, on the other hand, one can fix the
ambiguity by assigning the lowest non-trivial j value, j = 1/2, to each extra loop introduced
to determine the operator analogue of Fab. This procedure can be motivated by the following
heuristics. In the classical theory, one can use a loop enclosing an arbitrarily small area in the
a–b plane to determine Fab locally. In quantum geometry, on the other hand, the area operator
(of an open surface) has a lowest eigenvalue a0 = (√3πγ )�2

Pl, suggesting that it is physically
inappropriate to try to localize Fab on arbitrarily small surfaces. The best one could do is
to consider a loop spanning an area a0, consider the holonomy around the loop to determine
the integral of Fab on a surface of area a0, and then extract an effective, local Fab by setting
the integral equal to a0Fab. It appears natural to use the same physical considerations to
remove the quantization ambiguity also in the reduced model. Then, we are led to set the
area of the smallest square spanned by αij to a0, i.e., to set (γ �0)�

2
Pl = a0 or �0 = √

3π .
Thus, while in the reduced model itself, area eigenvalues can assume arbitrarily small values,
if one ‘imports’ from the full theory the value of the smallest non-zero area eigenvalue, one is
naturally led to set �0 = √

3π .
To summarize, in loop quantum cosmology, one adopts the viewpoint that (7.27),

with �0 = √
3π , is the ‘fundamental’ Hamiltonian constraint operator which ‘correctly’

incorporates the underlying discreteness of quantum geometry and the classical
expression (7.7) is an approximation which is valid only in regimes where this discreteness
can be ignored and the continuum picture is valid. This viewpoint is borne out by detailed
calculations [115]: the expectation values of Ĉ�0

grav in semi-classical states reproduce the
classical constraint. Furthermore, one can calculate corrections to the classical expression
arising from the fundamental discreteness and quantum fluctuations inherent in the semi-
classical quantum states [117].

7.4.2. Physical states. Let us now solve the quantum constraint and obtain physical states.
For simplicity, we assume that the matter is only minimally coupled to gravity (i.e., there are
no curvature couplings). As in non-trivially constrained systems, one expects that the physical
states would fail to be normalizable in the kinematical Hilbert space HS = HSgrav ⊗ HSmatter
(see, e.g., [88, 89]). However, as in the full theory, they do have a natural ‘home’. We again
have a triplet

CylS ⊂ HS ⊂ Cyl�S
of spaces and physical states will belong to Cyl�S, the algebraic dual of CylS. Since elements
of Cyl�S need not be normalizable, as in section 6.3, we will denote them by (�|. (The usual,
normalizable bras will be denoted by 〈�|.)

It is convenient to exploit the existence of a triad representation. Then, every element (�|
of Cyl�S can be expanded as

(�| =
∑
�

ψ(φ, �)〈�| (7.29)

where φ denotes the matter field and 〈�| are the (normalized) eigenbras of p̂. Note that the
sum is over a continuous variable �whence (�| need not be normalizable. Now, the constraint
equation

(�|(Ĉ(�0)
grav + 8πGĈ(�0)

matter

)† = 0 (7.30)

turns into the equation(
V�+5�0 − V�+3�0

)
ψ(φ, � + 4�0)− 2

(
V�+�0 − V�−�0

)
ψ(φ, �) +

(
V�−3�0 − V�−5�0

)
ψ(φ, �− 4�0)

= − 1
3 8πGγ 3�3

0�
2
PlĈ

(�0)
matter(�)ψ(φ, �) (7.31)
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for the coefficients ψ(φ, �), where Ĉ(�0)
matter(�) only acts on the matter fields (and depends on �

via metric components in the matter Hamiltonian). Note that, even though � is a continuous
variable, the quantum constraint is a difference equation rather than a differential equation.
Strictly, (7.31) just constrains the coefficientsψ(φ, �) to ensure that (�| is a physical state. As
in the full quantum theory, we do not have a background spacetime, hence no natural notion
of ‘time’ or ‘evolution’. However, since each 〈�| is an eigenbra of the volume operator, it
tells us how the matter wavefunction is correlated with volume, i.e., geometry. Now, if one
wishes, one can regard p as providing a heuristic ‘notion of time’, and then think of (7.31) as
an evolution equation for the quantum state of matter with respect to this time. (Note that p
goes from −∞ to ∞, negative values corresponding to triads which are oppositely oriented to
the fiducial one. The classical big-bang corresponds to p = 0.) This heuristic interpretation
often provides physical intuition for (7.31); one can regard it as a discrete ‘evolution’ equation.
However, it is not essential for what follows; one can forego this interpretation entirely and
regard (7.31) only as a constraint equation.

What is the fate of the classical singularity? At the big-bang, the scale factor goes to
zero. Hence it corresponds to the state |� = 0〉 in HSgrav. So, the key question is whether the
quantum ‘evolution’ breaks down at � = 0. Let us examine this issue. Starting at � = −4N�0

for some large positive N, and fixing values of ψ(φ,−4N�0) and ψ(φ, (−4N + 4)�0), one can
use the equation to determine the coefficients ψ(φ, (−4N + 4n)�0) for all n > 1, provided the
coefficient of the highest order term in (7.31) continues to remain non-zero. Now, it is easy
to verify that the coefficient vanishes if and only if n = N . Thus, the coefficient ψ(φ, �=0)
remains undetermined. In its place, one just obtains a consistency condition constraining the
coefficients ψ(φ, �=−4) and ψ(φ, �=−8). Now, since ψ(φ, �=0) remains undetermined,
at first sight, it may appear that one cannot ‘evolve’ past the singularity, i.e., the quantum
evolution also breaks down at the big-bang. However, the main point is that this is not the
case. For the structure of the quantum scalar constraint is such that the coefficient ψ(φ, �=0)
just decouples from the rest. This comes about because of two facts: (i) the minimally coupled
matter Hamiltonians annihilate ψ(φ, �=0) = 0 [104, 110]; and (ii) V�0 = V−�0 . Thus, unlike
in the classical theory, evolution does not stop at the singularity; the difference equation (7.31)
lets us ‘evolve’ right through it. In this analysis, we started at � = −4N�0 because we wanted
to test what happens if one encounters the singularity ‘head on’. If one begins at a generic �,
the ‘discrete evolution’ determined by (7.31) just ‘jumps’ over the classical singularity without
encountering any subtleties.

Next, let us consider the space of solutions. An examination of the classical degrees
of freedom suggests that the freedom in physical quantum states should correspond to two
functions just of matter fields φ. The space of solutions to the Hamiltonian constraint, on the
other hand, is much larger: there are as many solutions as there are functions ψ(φ, �) on an
interval [�′ − 4�0, �

′ + 4�0), where �′ is any fixed number. This suggests that a large number
of these solutions may be redundant. Indeed, to complete the quantization procedure, one
needs to introduce an appropriate inner product on the space of solutions to the Hamiltonian
constraint. The physical Hilbert space is then spanned by just those solutions to the quantum
constraint which have finite norm. In simple examples one generally finds that, while the
space of solutions to all constraints can be very large, the requirement of finiteness of norm
suffices to produce a Hilbert space of the physically expected size.

For the reduced system considered here, one has a quantum mechanical system and with a
single constraint in quantum cosmology. Hence it should be possible to extract physical states
using the group averaging technique of the ‘refined algebraic framework’ [88, 89]. However,
this analysis is yet to be carried out explicitly and therefore one does not yet have a good
control on how large the physical Hilbert space really is. This issue is being investigated.
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To summarize, two factors were key to the resolution of the big-bang singularity: (i) as
a direct consequence of quantum geometry, the Hamiltonian constraint is now a difference
equation rather than a differential equation as in geometrodynamics; and (ii) the coefficients in
the difference equation are such that one can evolve unambiguously ‘through’ the singularity
even though the coefficient ψ(φ, � = 0) is undetermined. Both these features are robust:
they are largely insensitive to factor ordering ambiguities and persist in more complicated
cosmological models [111, 113, 116]. The qualitative changes introduced by quantum
geometry in kinematics and dynamics are significant only in the Planck regime. A careful
analysis shows that the discrete evolution is extremely well approximated by the Wheeler–
DeWitt differential equation at scales larger than �0 in a precise sense [115]. Thus the
fundamental discreteness, characteristic of loop quantum gravity, intervenes in a subtle way
precisely in the Planck regime where geometrodynamics fails to resolve singularities. Since
loop quantum cosmology mimics the full theory as closely as possible, within the limitations
discussed at the very beginning of section 7, these results provide support for the approach to
quantum dynamics in the full theory.

8. Applications: quantum geometry of isolated horizons and black-hole entropy

Loop quantum cosmology illuminates dynamical ramifications of quantum geometry but
within the limited context of mini-superspaces where all but a finite number of degrees of
freedom are frozen. In this section, we will discuss a complementary application where one
considers the full theory but probes consequences of quantum geometry which are not sensitive
to the details of how the Hamiltonian constraint is imposed. (For further details, see [127–129,
133–137, 139]. For early work, see [122–124].)

As was explained in section 1, since mid-1970s, a key question in the subject has been as
follows: what is the statistical mechanical origin of the black-hole entropy SBH = (

ahor
/

4�2
Pl

)
?

What are the microscopic degrees of freedom that account for this entropy? This relation
implies that a solar mass black hole must have (exp 1077) quantum states, a number that is
huge even by the standards of statistical mechanics. Where do all these states reside? To
answer these questions, in the early 1990s Wheeler [140] suggested the following heuristic
picture, which he christened ‘It from Bit’. Divide the black-hole horizon into elementary
cells, each with one Planck unit of area �2

Pl, and assign to each cell two micro-states. Then
the total number of states N is given by N = 2n where n = (

ahor
/
�2

Pl

)
is the number of

elementary cells, whence entropy is given by S = lnN ∼ ahor. Thus, apart from a numerical
coefficient, the entropy (It) is accounted for by assigning two states (Bit) to each elementary
cell. This qualitative picture is simple and attractive. Thus, one is led to ask the following: can
these heuristic ideas be supported by a systematic analysis from first principles? What is the
origin of the ‘elementary cells’? Why is each cell endowed with precisely two states? And
most importantly: what has all this to do with a black hole? The ‘It from Bit’ considerations
seem to apply to any 2-surface! Quantum geometry enables one to address all these issues in
detail.

The precise picture is much more involved: because the area spectrum is quite complicated
in quantum geometry, ‘elementary cells’ need not all carry the same area and the number of
‘internal states’ of each cell is also not restricted to 2. Nonetheless, it does turn out that the
dominant contribution in the entropy calculation comes from states envisaged by Wheeler.
The purpose of this section is to summarize the overall situation. Our discussion is divided
into three parts. In the first, we recall the ‘isolated horizon framework’ in classical general
relativity which serves as a point of departure for quantum theory. In the second we discuss
the quantum geometry of the simplest (undistorted and non-rotating) horizons and present the
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entropy calculation allowing for the presence of minimally coupled matter. In the third, we
discuss extensions that include non-minimal couplings, distortions and rotation.

8.1. Isolated horizons

A systematic approach to the problem of entropy requires that we first specify the class
of horizons of interest. Since the entropy formula is expected to hold unambiguously for
black holes in equilibrium, most analyses were confined to stationary, eternal black holes
(i.e., to the Kerr–Newman family in four-dimensional general relativity). From a physical
viewpoint however, this assumption seems overly restrictive. After all, in statistical mechanical
calculations of entropy of ordinary systems, one only has to assume that the given system is
in equilibrium, not the whole world. Therefore, it should suffice for us to assume that the
black hole itself is in equilibrium; the exterior geometry should not be forced to be time
independent. Furthermore, the analysis should also account for entropy of black holes which
may be distorted or carry (Yang–Mills and other) hair. Finally, it has been known since the
mid-1970s that the thermodynamical considerations apply not only to black holes but also to
cosmological horizons [121]. A natural question arises: can these diverse situations be treated
in a single stroke? In classical general relativity, the isolated horizon framework provides a
natural avenue by encompassing all these situations. It also provides a Hamiltonian framework
which serves as a natural point of departure for quantization [128, 133, 134]

Let us begin with the basic definitions [133]. In this discussion, we need to begin with a
four-dimensional spacetime manifold M although we will return to 3-manifolds M once we
have a Hamiltonian framework.

A non-expanding horizon � is a null, three-dimensional sub-manifold of the four-
dimensional spacetime (M, gαβ), with topology S2 × R, such that

(i) the expansion θ� of its null normal � vanishes; and
(ii) field equations hold on � with stress energy, Tαβ , satisfying the very weak requirement

that −T αβ�β is a future-directed, causal vector. (Throughout, �α will be assumed to be
future pointing.)

Note that (i) if the expansion vanishes for one null normal, it vanishes for all; and (ii) the
condition on stress energy is satisfied by all the standard matter fields provided they are
minimally coupled to gravity.

The definition ensures that the area of any 2-sphere cross-section of the horizon is constant
and matter flux across � vanishes. It also implies that the spacetime derivative operator ∇
naturally induces a unique derivative operator D on �. Since � is a null 3-surface, it has a
degenerate intrinsic ‘metric’ qab of signature 0, +, +. The pair (qab,D) is referred to as the
geometry of �. The notion that the black hole itself is in equilibrium is captured by requiring
that this geometry is time independent:

An isolated horizon (�, �) is a non-expanding horizon � equipped with a null normal �
such that � is a symmetry of the geometry, i.e., L�qab = 0 and [L�,D] = 0 on �.

One can show that, generically, the null normal � satisfying these conditions is unique up
to a constant rescaling. For simplicity, we will assume that we are in the generic case although
the main results go through in all cases.

The isolated horizon definition extracts from the notion of the Killing horizon just that
‘tiny’ part which turns out to be essential for black-hole mechanics and, more generally, to
capture the notion that the horizon is in equilibrium, allowing for dynamical processes and
radiation in the exterior region. Indeed, Einstein’s equations admit solutions with isolated
horizons in which there is radiation arbitrarily close to the horizons [131, 132]. Note that the
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definition uses conditions which are local to �. Thus, unlike event horizons, this notion is
local, not ‘teleological’. For our purposes, the two important considerations are as follows:

(i) The definition is satisfied not only by event horizons of stationary black holes but also
by the standard cosmological horizons. Thus, all situations in which thermodynamical
considerations apply are treated in one stroke.

(ii) If one restricts oneself to spacetimes which admit an internal boundary which is an isolated
horizon, the action principle and the Hamiltonian description are well defined and the
resulting phase space has an infinite number of degrees of freedom. This would not be
the case if one used general event horizons or Killing horizons instead.

Next, let us examine symmetry groups of isolated horizons. A symmetry of (�, �, q,D)
is a spacetime diffeomorphism which maps � to itself; at most rescales � by a constant, and
preserves q and D. It is clear the diffeomorphisms generated by any smooth extension of �α

are symmetries. So, the symmetry group G� is at least one dimensional. The question is: are
there any other symmetries? At infinity, we generally have a universal symmetry group (such
as the Poincaré or the anti-de Sitter) because all metrics under consideration approach a fixed
metric (Minkowskian or anti-de Sitter) there. In the case of the isolated horizons, generically
we are in the strong field regime and spacetime metrics do not approach a universal metric.
Therefore, the symmetry group is not universal. However, there are only three universality
classes:

(i) Type I: the isolated horizon geometry is spherical; in this case, G� is four dimensional.
(ii) Type II: the isolated horizon geometry is axi-symmetric; in this case, G� is two

dimensional.
(iii) Type III: the diffeomorphisms generated by �α are the only symmetries; G� is one

dimensional.

Note that these symmetries refer only to the horizon geometry. The full spacetime metric
need not admit any isometries even in a neighbourhood of the horizon. Physically, type II
horizons are the most interesting ones. They include the Kerr–Newman horizons as well as
their generalizations incorporating distortions (due to exterior matter of other black holes)
and hair. The zeroth and the first laws of black-hole mechanics can be naturally extended to
type II isolated horizons [133, 134]. In particular, for the Einstein–Maxwell theory, one
can define the mass M� and angular momentum J� of the horizon using only the intrinsic
geometry of the isolated horizon and show that the first law holds:

dM� = κ

8πG
da� +�dJ� +�dQ� (8.1)

where κ,�,� are, respectively, the surface gravity, angular velocity and the electric potential
at the horizon and d denotes the exterior derivative on the (infinite-dimensional) phase space.
This law of isolated horizon mechanics encompasses all black holes and cosmological horizons
in equilibrium, including those with arbitrary distortion and rotation.

8.2. Type I isolated horizons: quantum theory

Let us first discuss type I isolated horizons in detail and then generalize the results to include
non-minimally coupled matter and type II horizons. We will divide the type I discussion into
three parts. In the first, we introduce the Hamiltonian formulation; in the second, we describe
the quantum horizon geometry; and in the third, we summarize the entropy calculation.
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8.2.1. Hamiltonian framework. Consider the sector of general relativity consisting of
gravitational and matter fields for which the underlying spacetime admits an internal boundary
which is a type I isolated horizon�with a fixed area a0. We will focus on geometrical structures
near � and on the modifications of the Hamiltonian framework of section 2 caused by the
presence of an internal boundary.

Denote by S the 2-sphere intersection of the (partial) Cauchy surfaceM with the isolated
horizon �. Introduce on � an internal vector field ri , i.e., any isomorphism from the unit
2-sphere in the Lie algebra of SU(2) to S, and partially gauge fix the internal SU(2) freedom
to U(1) by requiring that riP ai = √|det q|ra , where ra is the unit normal to S. Then it turns
out that the intrinsic geometry of� is completely determined by the pullback Ai ri =: 2W to S
of the connection Ai on M [135]. Furthermore, W is in fact a spin connection intrinsic to the
2-sphere S: W = 1

2 Ai ri = 1
2�
iri on S (see (2.20)). Thus, if we consider orthonormal dyads

(m, m̄) on S with internal rotation freedom in SO(2),W is a connection on the corresponding
U(1) bundle. Now, this U(1) bundle on S is non-trivial and

∮
S

dW equals −2π , rather than
zero. (But since the Chern class of any spin connection is the same,

∮
S
δW = 0; tangent

vectors δW to the phase space are genuine 1-forms, globally defined on S. This fact will be
useful in the discussion of the symplectic structure.) Finally, the fact that S is (the intersection
of M with) a type I isolated horizon is captured in a relation between the two canonically
conjugate fields,

F := dW = −2π

a0
8πGγ�iri, (8.2)

where �i is the pullback to S of the 2-forms �iab = ηabcP aj ηij on M , dual to the momentum
P ai . Thus, because of the isolated horizon boundary conditions, fields which would otherwise
be independent are now related. As one would expect, the boundary conditions reduce the
number of independent fields; in particular, the pullbacks to S of the canonically conjugate
fields Aia,�

i
ab are completely determined by the U(1) connectionW .

The main modification in the Hamiltonian framework of section 2 is that the gravitational
symplectic structure now acquires a surface term,

Ω(δ1, δ2) = −
∫
M

Tr(δ1A ∧ δ2� − δ2A ∧ δ1�) +
1

2π

a0

4πGγ

∮
S

δ1W ∧ δ2W, (8.3)

where, as in section 2, δ ≡ (δA, δ�) denote tangent vectors to the phase space Γ. Since
W is essentially the only ‘free data’ on the horizon, it is not surprising that the surface term
of the symplectic structure is expressible entirely in terms of W . However, it is interesting
and somewhat surprising that the new surface term is precisely the symplectic structure of the
U(1)-Chern–Simons theory. The symplectic structures of the Maxwell, Yang–Mills, scalar
and dilatonic fields do not acquire surface terms. Conceptually, this is an important point: this,
in essence, is the reason why (for minimally coupled matter) the black-hole entropy depends
just on the area and not, in addition, on the matter charges.

8.2.2. Quantum horizon geometry. In the classical theory, the bulk fields determine the
surface fields just by continuity; there are no independent degrees of freedom on the surface in
the classical phase space. In the quantum theory, on the other hand, the fields are distributional
and arbitrarily discontinuous whence the surface and the bulk fields effectively decouple. It is
this phenomenon that is responsible for creating ‘independent surface states’ in the quantum
theory.

The main task is to extend the ‘bulk’ quantum geometry of sections 4 and 5 to allow for the
presence of an internal boundary S. Now, the space of generalized connections Ā is a product
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Ā = ĀV × ĀS , where a volume generalized connection ĀV assigns an SU(2) element to any
(closed-piecewise analytic) edge lying in the bulk while ĀS assigns a U(1) element to each
(closed-piecewise analytic) edge lying in the surface S. Therefore, it is natural to begin with a
total Hilbert space H = HV ⊗ HS where HV is built from suitable functions of generalized
connections in the bulk and HS from suitable functions of generalized surface connections.
The volume Hilbert space HV is that which comes from bulk quantum geometry of section 4:
HV = L2(Ā, µ0). The question is: what would be the surface Hilbert space? The answer
is suggested by the structure of the surface term in the symplectic structure: it should be the
Hilbert space of Chern–Simons theory on the horizon. Furthermore, the coefficient in front of
this surface term tells us that the quantum Chern–Simons theory must have a (dimensionless)
coupling constant/level k given by

k = a0

4πγ �2
Pl

. (8.4)

But we also have to incorporate the boundary condition (8.2) which ensures that S is not any
old 2-surface but an isolated horizon. The key idea is to impose it quantum mechanically, as
an operator equation on H, i.e., via

(1 ⊗ F̂ )� = −2π

a0
8πGγ (�̂ · r)⊗ 1)�, (8.5)

where the notation emphasizes that F̂ is a surface operator while �̂ is an operator on the
volume Hilbert space. It is easy to show that a basis of solutions is given by states of the
type � = �V ⊗ �S where �V is an eigenstate of the volume operator, �S an eigenstate of
the surface operator with the same eigenvalues. Now, all the eigenvalues of the bulk operator
on the right-hand side of (8.5) are known from bulk quantum geometry of section 4.3.4
(see (4.49)). They are given by

−
(

2π

a0

)(
8π�2

Pl

∑
I

mI δ
3(x, pI )ηab

)
, (8.6)

where mI are half-integers, the sum ranges over a finite set of points—called punctures—on
S and where ηab is the metric-independent Levi-Civita density on S. Therefore, the quantum
boundary condition (8.5) tells us that HS should be the Hilbert space of U(1)-Chern–Simons
theory on a punctured 2-sphere S where the curvature F has the form of a δ-distribution
concentrated at a finite number of punctures.

Let us then begin by fixing a set P of punctures on S and consider U(1)-Chern–Simons
theory on this punctured sphere. The phase space of this theory is ΓP

S = (
Ā0
S

)/
(ḠP � DP)

where Ā0
S is the space of connections which is flat everywhere except at the punctures; ḠP

is the space of local U(1) gauge transformations which are identity except at the punctures;
DP is the space of diffeomorphisms of S which fix the punctures and certain structure at
the punctures; and � stands for semi-direct product34. This phase space is isomorphic with
the torus T2(n−1) if there are n punctures in the set P , equipped with the natural symplectic
structure on T2(n−1). A convenient set of canonically conjugate coordinates can be introduced
as follows. Let us fix the nth puncture as the ‘origin’ and, as in figure 4, denote by γI , a
family of curves joining the Ith puncture to the nth (with I = 1, 2, . . . , n − 1) and by ηI ,

34 The extra structure one needs to fix at the punctures is listed at the end of section 4.3.1 of [129]. From the physics
perspective, this is the most delicate of the technical subtleties in the subject, although this procedure is ‘standard
practice’ in the mathematics literature. It plays an important role in the imposition of the diffeomorphism constraint
and state counting.
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Figure 4. Coordinatization of the surface phase space

‘small’ closed loops surrounding each of the first n − 1 punctures. Then, for each I, two
holonomies around γI and ηI are canonically conjugate. This phase space is often referred to
as the non-commutative torus.

The Hilbert space HP
S of surface states results from geometric quantization of this torus

[129]. This is the space of quantum states of the U(1)-Chern–Simons theory on (S,P). The
total surface Hilbert spaceHS is the inductive limit of these Hilbert spaces as the setP becomes
larger and larger. As discussed in section 4, the volume Hilbert space HV = L2(Āv, dµ0) can
also be obtained as the inductive limit of the Hilbert spaces (HV )α associated with graphs α
[44, 45, 66].

Next one has to impose the quantum boundary condition (8.5). This introduces a highly
non-trivial test of the whole framework. Construction of the surface Hilbert space was strongly
motivated by (8.5). However, now that it is complete, there is no more freedom. In the Chern–
Simons Hilbert space, one can compute the eigenvalues of the surface operator F̂ . This
calculation is completely independent of the volume Hilbert space; it has never heard of the
quantum geometry in the bulk. The key question on which everything hinges is: are the
eigenvalues of F̂ the same as the eigenvalues (8.6) of the bulk operator in (8.5)? If not,
there will be no solutions to the quantum boundary conditions! The remarkable fact is that
the infinite set of eigenvalues of the two operators match, even though the two calculations
are completely distinct. This comes about because the level of the Chern–Simons theory is
related to the Barbero–Immirzi parameter γ and the area a0 in a very specific way, which in
turn is a consequence of the isolated horizon boundary conditions. Thus there is a seamless
matching between three completely independent theories: the isolated horizon framework in
classical general relativity; the bulk quantum geometry; and the Chern–Simons theory on the
punctured horizon. And this matching provides a coherent mathematical description of the
quantum geometry of the horizon.

Finally, one has to impose quantum Einstein’s equations. The Gauss constraint asks
that the total state �V ⊗ �S should be gauge invariant. The diffeomorphism constraint
asks that diffeomorphisms on S should be regarded as gauge. Again there are important
mathematical subtleties. But the final picture is simple. While each of the bulk and
the surface states transforms non-trivially under the remaining gauge freedom (Ḡ/ḠP), the
total state is gauge invariant as needed. Implementation of the remaining diffeomorphism
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Figure 5. Quantum horizon. Polymer excitations in the bulk puncture the horizon, endowing
it with quantized area. Intrinsically, the horizon is flat except at punctures where it acquires a
quantized deficit angle. These angles add up to endow the horizon with a 2-sphere topology.

constraint (corresponding to D/DP ) requires only the number of punctures; their location is
irrelevant35.

The Hamiltonian constraint, by contrast, does not restrict the surface states, i.e., the
quantum geometry of the horizon. This is because in the classical theory, the constraint is
functionally differentiable (i.e., generates gauge) only when the smearing function (the lapse)
goes to zero on the isolated horizon boundary (and, as usual, at infinity). The time evolution
along the isolated horizon is generated by a true Hamiltonian, not just the constraint.

Let us summarize. The physical surface Hilbert space HPhys
S is given by HPhys

S = ⊕nHns ,
with HnS , the Hilbert space of theU(1) Chern–Simons theory on the sphere S with n punctures,
where the polymer excitations of the bulk geometry intersect S (see figure 5). Let us focus
on HnS . Since W is the intrinsic spin connection on S and since F vanishes except at the
punctures, the intrinsic geometry of the quantum horizon is flat except at the n punctures.
The ηi-holonomies around these punctures are non-trivial, whence the punctures carry deficit
angles which, furthermore, are quantized. They add up to 4π , providing a quantum analogue
of the Gauss–Bonnet theorem.

Remark. (i) Note that the above analysis makes a crucial use of the horizon boundary
condition; it is not applicable to a general 2-surface. Thus the most important limitation
of Wheeler’s ‘It from Bit’ considerations is overcome. The strategy of incorporating the
boundary condition through an operator equation (8.5) allows both the connectionW and the
triad �iri to fluctuate and requires only that they do so in tandem. This equation provides
the first step in the answer to the question: what is a quantum black hole?

35 The subtleties are as follows: (i) in the Chern–Simons theory, only the exponentiated operator exp(iF̂ ) is well
defined; F̂ itself is not. Therefore, the mathematically meaningful quantum boundary condition is the exponentiated
version of (8.5). (ii) TheU(1) gauge group at the punctures is replaced by the quantumU(1) group. The deformation
parameter is supplied by the level k of the Chern–Simons theory which is required to be an integer because of the
pre-quantization requirements. This also implies that the deficit angles at each puncture are quantized. (iii) Recall
that one has to fix certain structure at the punctures in the construction of the surface Hilbert space. Under D/DP ,
this structure changes. Therefore, strictly, to begin with one has infinitely many copies of the surface Hilbert spaces,
one for each choice of the extra structure, and the fact that D/DP is gauge implies that only one of these copies is
physically relevant. That is, the fact that diffeomorphisms in D/DP are gauge is incorporated by ‘gauge fixing’.
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(ii) For extensions of this framework to include non-minimally coupled fields and type II
horizons (discussed in section 8.3), let us note that there are just three essential mathematical
ingredients which serve as the input for this construction of the surface Hilbert space: (a) the
form of the surface term in (8.3) which shows that the surface symplectic structure is that of
theU(1)-Chern–Simons theory with level k of (8.4); (b) the horizon boundary condition (8.2);
and (c) the spectrum (8.6) of the triad operator �iri .

8.2.3. Entropy: counting surface states. In the classical theory, a0 in the expression of the
surface term of the symplectic structure (8.3) and in the boundary condition (8.2) is the horizon
area. However in the quantum theory, a0 has simply been a parameter so far; we have not
tied it to the physical area of the horizon. To calculate entropy, one has to construct a suitable
‘micro-canonical’ ensemble by relating a0 to the physical area.

It follows from the definition of volume connections that, as depicted in figure 5, the
polymer excitations of the bulk geometry puncture the horizon transversely from the ‘exterior’.
Hence, the relevant area eigenvalues are those given in (5.18):

8πγ �2
Pl

∑
I

√
jI (jI + 1).

Therefore, one is led to construct the micro-canonical ensemble by considering only that
subspace of the bulk theory which, at the horizon, satisfies

a0 − ε � 8πγ �2
Pl

∑
I

√
jI (jI + 1) � a0 + ε (8.7)

where I ranges over the number of punctures, jI is the spin label (the eigenvalue of the vertex
operator ĴpI associated with the puncture pI ) and �2

Pl < ε � a0. In the presence of matter
fields carrying charges, one fixes values of horizon charges Q(α)0 (labelled by α) and restrict
the matter configurations so that

Q
(α)
0 − ε(α) � Q(α)0 � Q(α)0 + ε(α) (8.8)

for suitably chosen ε(α). (As is usual in statistical mechanics, the leading contribution to the
entropy is independent of the precise choice of these small intervals.) Now, the physical states
belonging to this ensemble contain information also about gravitational and electromagnetic
radiation far away from the horizon which is obviously irrelevant to the calculation of black-
hole entropy. What is relevant are the states directly associated with the horizon of a given
area a0, and charges Q(α)0 . One is therefore led to trace over the volume degrees of freedom
and construct a density matrix ρ� describing a maximum entropy mixture of surface satisfying
(8.7) and (8.8). The statistical mechanical entropy is then given by S� = −Tr(ρ� ln ρ�). As
usual, this number can be calculated simply by counting states,

S� = lnN� (8.9)

where N� is the number of Chern–Simons surface states consistent with the area and charge
constraints. A detailed analysis [129] estimates this number and leads to the expression of
entropy of large black holes:

S� := lnN� = γ0

γ

a0

4�2
Pl

+ o

(
�2

Pl

a0

)
, where γ0 = ln 2√

3π
. (8.10)

Thus, ignoring terms o
( �2

Pl
a0

)
, entropy is indeed proportional to the horizon area. However, even

for large black holes, one obtains agreement with the Hawking–Bekenstein formula only in
the sector of quantum geometry in which the Barbero–Immirzi parameter γ takes the value
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γ = γ0. Thus, while all γ sectors are equivalent classically, the standard quantum field theory
in curved spacetimes is recovered in the semi-classical theory only in the γ0 sector of quantum
geometry. It is quite remarkable that thermodynamical considerations involving large black
holes can be used to fix the quantization ambiguity which dictates such Planck scale properties
as eigenvalues of geometric operators.

Now, the value of γ can be fixed by demanding agreement with the semi-classical result
just in one case; e.g., a spherical horizon with zero charge or a cosmological horizon in the
de Sitter spacetime, etc. Once the value of γ is fixed, the theory is completely fixed and
one can ask: does this theory yield the Hawking–Bekenstein value of entropy of all isolated
horizons, irrespective of the values of charges, angular momentum and cosmological constant,
the amount of distortion or hair. The non-trivial fact is that the answer is in the affirmative.
Thus, the agreement with quantum field theory in curved spacetimes holds in all these diverse
cases. The physical interpretation of S� is that it represents the entropy that observers in the
‘external region’ (used in the construction of the phase space) associate with the horizon.

Why does γ0 not depend on other quantities such as charges? As noted in section 8.2.2,
only the gravitational part of the symplectic structure develops a surface term at the horizon;
the matter symplectic structures have only volume terms. (Furthermore, the gravitational
surface term is insensitive to the value of the cosmological constant.) Consequently, there
are no independent surface quantum states associated with matter. This provides a natural
‘explanation’ of the fact that the Hawking–Bekenstein entropy depends only on the horizon
geometry and is independent of electromagnetic (or other) charges (of minimally coupled
matter fields).

Finally, let us return to Wheeler’s ‘It from Bit’. One can ask: what are the states that
dominate the counting? Perhaps not surprisingly, they turn out to be those which assign to
each puncture the smallest quantum of area (i.e., spin value j = 1

2 ), thereby maximizing the
number of punctures. In these states, each puncture defines Wheeler’s ‘elementary cell’ and
his two states correspond to whether the deficit angle is positive or negative.

To summarize, quantum geometry naturally provides the micro-states responsible for the
huge entropy associated with horizons. In this analysis, all black holes and cosmological
horizons are treated in an unified fashion; there is no restriction, e.g., to near-extremal black
holes. The sub-leading term has also been calculated and shown to be proportional to ln ahor

[130, 141]. Finally, in this analysis quantum Einstein equations are used. In particular, had
the quantum Gauss and co-vector/diffeomorphism constraints not been imposed on surface
states, the spurious gauge degrees of freedom would have given an infinite entropy. However,
because of the isolated horizon boundary conditions, the scalar/Hamiltonian constraint has to
be imposed just in the bulk. Since in the entropy calculation one traces over bulk states, the
final result is insensitive to the details of how this (or any other bulk) equation is imposed.
Thus, as in other approaches to black-hole entropy, the calculation does not require complete
knowledge of quantum dynamics.

8.3. Non-minimal couplings and type II horizons

We will now show that, while the introduction of non-minimal couplings [136, 137] and
distortion and rotation [138, 139] does introduce interesting modifications, the qualitative
picture of section 8.2 remains unaltered.

8.3.1. Non-minimal couplings. Consider a scalar field φ non-minimally coupled to gravity
through the action

S[gab, φ] =
∫

d4x
√−g

[
1

16πG
f (φ)R − 1

2
gab∇aφ∇bφ − V (φ)

]
(8.11)
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where f is a nowhere vanishing function (minimal coupling results if f (φ) = 1) and V (φ) is
the potential. Now the stress–energy tensor does not satisfy even the weak energy requirement
(ii) in the definition of a non-expanding horizon. However, one can replace it by:

(ii)′ field equations hold on � and the scalar field φ satisfies L�φ = 0 on �

to incorporate the idea that the scalar field is time independent on �, reflecting the fact that
the horizon is in equilibrium. (For minimal couplings, time independence of matter fields on
� is ensured by (ii).) The isolated horizon framework then leads to the zeroth and first laws
[136]. However, now the form of the first law is modified,

dM = κ

8πG
d
[∮
S

f (φ) d2VS

]
+�dJ� (8.12)

suggesting that the entropy should be given by

S� = 1

4�2
Pl

∮
S

f (φ) d2V. (8.13)

(The same conclusion is reached using the general framework of [125, 126] which deals with
a broad class of theories but which requires a globally defined Killing field with a bifurcate
Killing horizon.) The question now is: can the statistical mechanical derivation of entropy of
section 8.2, based on quantum geometry, go through also in this case? This is a non-trivial
check on the robustness of that framework, first because the seamless matching between
Chern–Simons theory and bulk geometry required for a coherent description of the quantum
horizon geometry is very delicate, and second, because the entropy now depends not only on
geometry but also on the scalar field. In spite of these non-trivialities, the framework does
turn out to be robust.

For type I horizons, as one would expect, φ is constant on S. Let us consider the sector
of the phase space consisting of fields for which � is a type I horizon with fixed area a0 and
scalar field φ0. Then, the main modifications of the discussion of section 8.2, caused by the
non-minimal coupling, are the following:

(i) Denote by  ai the momentum conjugate to the gravitational connection Aia . If we only
have minimally coupled matter,  ai = P ai and the geometrical triad Ẽai is given by
Ẽai = 8πGγP ai (see (2.21)). With non-minimal coupling, the geometrical triad involves
both  ai and the scalar field: Ẽai = (8πGγ/f (φ)) ai . Conceptually, this is an important
change because quantum geometry is now dictated not just by the gravitational variables(
Aia, 

a
i

)
but it also involves the matter variable φ.

(ii) The geometrical relation between the pulled back triad and the gravitational connection
on the horizon remains unaltered. Therefore, in terms of the phase space variables, the
boundary condition (8.2) is now replaced by

F := dW = − 2π

f (φ0)a0
8πGγ�iri (8.14)

where�iab is now the pullback to S of the dual ηabc cjη
ij of the gravitational momentum.

(iii) The surface term in the symplectic structure is again given by that of the U(1) Chern–
Simons theory but the level is modified:

k = f (φ0)a0

4πγ �2
Pl

. (8.15)



R126 Topical Review

(iv) Since the description of the bulk Hilbert space in terms of the gravitational momentum
variables remains unaltered, the eigenvalues of the gravitational momentum operator
�iabri continue to be given by (8.6):

−
(

2π

a0

)(
8π�2

Pl

∑
I

mI δ
3(x, pI )ηab

)
. (8.16)

(v) Finally, for the 2-surface S, the area eigenvalues are now given by

8πγ �2
Pl

f (φ0)

∑
I

√
jI (jI + 1). (8.17)

in place of (5.18).

Thus, in the key equations, a0 is just replaced by f (φ0)a0 everywhere. One can now
repeat the analysis of section 8.2 (using the ‘polymer representation’ also of the scalar field
[136].) Equations (8.14), (8.15) and (8.17) now imply that the quantum boundary condition
does have ‘enough’ solutions: although the level of the Chern–Simons theory and the boundary
condition are both modified, the delicate interplay between the surface and the volume sectors
required for a coherent theory of the geometry of quantum horizons survives intact. The state
counting procedure can be repeated and (8.17) now implies that the entropy is given by

S� := lnN = γ0

γ

f (φ0)a0

4�2
Pl

+ o

(
�2

Pl

a0

)
, where γ0 = ln 2√

3π
. (8.18)

Thus, if γ = γ0, one obtains the answer suggested by the classical analysis. Note that the
value γ0 of the Barbero–Immirzi parameter is the same as it was for minimally coupled matter
fields.

8.3.2. Inclusion of distortion and rotation. Let us now extend the framework of section 8.1
to type II horizons [138, 139]. It turns out that the type II problem can be mapped on to
the type I problem already at the classical level. Thus, in the quantum theory, the underlying
mathematics will be the same as in the type I case. However, the physical meaning of the
Chern–Simons connection on the boundary will be different. As is usual when one maps a
given, complicated problem to a mathematically simpler one, the physical non-trivialities are
contained in the map. In the present case it is the map that carries all the information about
distortion and angular momentum.

For brevity, let us focus just on the gravitational sector and ignore other fields on �. The
‘free data’ on type II isolated horizon are again determined by a U(1) connection V := 1

2 Ai ri
on S. However, now the connection also has the information about distortion and angular
momentum : Ai ri = �iri + γKi ri , where �i is a real U(1) connection on the spin-bundle
over S which now carries information about distortion and Ki ri is a globally defined, real-
valued 1-form on S which carries information about angular momentum (see (2.20)). The
gauge and diffeomorphism invariant characterization of the free data V can be coded in a pair,
Mn, Jn, n = 0, 1, 2, . . . ,∞ of mass and angular momentum multipoles [138]. In the type I
case,M0 is the mass and all other horizon multipoles vanish. In the type II case,M0 is again
the mass, J0 continues to vanish, J1 is the angular momentum and higher multipoles represent
departures from sphericity. The Mn and Jn have the interpretation of ‘source multipoles’ of
the black hole.

Recall from section 8.1 that two ingredients from the classical theory play the key role
in quantization: the isolated horizon boundary condition (8.2) and the surface term in the
symplectic structure (8.3). Now, (8.2) is replaced by

F := dV = f 8πGγ�iri . (8.19)
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The major difference from the type I case is that f is not a constant but a genuine function on S
(determined by the Newman–Penrose component �2 of) the Weyl curvature. Similarly, while
the symplectic structure does have a surface term which is fully determined by the surface
connection V , it is not the Chern–Simons symplectic structure for V . So, at first, the situation
appears to be quite different from that in the type I case.

However, one can in fact map the present problem to the type I problem which was already
solved. To see this, note first that if one is interested in any one macroscopic black hole, one has
to fix its macroscopic parameters. In the globally vacuum context of classical general relativity,
for example, one would fix the mass (or the horizon area) and the angular momentum. In the
present, very general discussion of isolated horizons, we have allowed arbitrary distortions.
Therefore, to fix the macroscopic black hole, one has to fix all multipole moments Mn, Jn.
Type I phase space can also be constructed by fixing all multipoles (nowM0 �= 0 and all other
multipoles zero). Hence, one would intuitively expect that this sector is ‘of the same size’ as
the type I sector. However, is this really the case? More importantly, do the arguments that
one should be considering a Chern–Simons theory on a punctured 2-sphere go through?

The answer to both questions turns out to be in the affirmative: one can explicitly
coordinatize the type II surface phase space ΓS with a new U(1) connection W on the
spin-bundle over S such that the surface symplectic structure ΩS is given by

ΩS(δ1, δ2) = 1

8πG

a0

γπ

∮
S

δ1W ∧ δ2W (8.20)

and the curvature ofW is given by

dW = −2πγ

a0
8πGγ�iri . (8.21)

Thus, the sector of the surface phase space corresponding to any fixed set of multipoles on a
type II horizon is isomorphic with the phase space of a type I horizon. Moreover, the horizon
boundary condition in the type II case (when expressed in terms of W ) is identical to those
in the type I case. Therefore in terms of the surface connection W , one can proceed with
quantization as we did before in the type I case. All the mathematics underlying the quantum
horizon geometry and the state counting is the same! However, the physical meaning of
symbols and constructions is different. In particular, in the type I case, W was the natural
spin connection which directly described the horizon geometry and therefore the punctures
where its curvature is concentrated could be directly associated with deficit angles. In the
present case, it is the connection V that determines the physical horizon geometry and not
W and the relation between the two involves distortion and rotation. Classically, this non-
trivial information is coded in multipole moments of V . On the quantum Hilbert space, one
can introduce the multipole moment operators and their eigenvalues distinguish the physical
situation of interest, coded in V , from the physics of the fiducial connection W . Thus, there
are non-trivial differences on issues related to interpretation. However, the counting argument
of section 8.3 is unaffected by these.

To summarize, one can treat generic type II isolated horizons via the following steps:
(i) construct parameters (the multipoles) which characterize these horizons in an invariant
fashion macroscopically (i.e., in the classical theory); and (ii) introduce an isomorphism from
the phase space of horizons of interest to that of type I horizons, which maps the physical
isolated horizon condition to the horizon condition in the type I case. Together, these properties
enable us to construct the quantum theory of horizon geometry and count the horizon states.
The procedure guarantees that the value of the Barbero–Immirzi parameter that reproduces
the Hawking–Bekenstein formula for large black holes is the same as that used in the type I
case, independent of the values of the mass and angular momentum multipoles. The value
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is thus robust. Finally, note that because this analysis incorporates arbitrary distortions, we
are going well beyond the Kerr–Newman family. The method encompasses a vast class of
astrophysically realistic black holes.

9. Current directions

In the last six sections, we presented a self-contained summary of the quantum geometry
framework and its physical applications which have been worked out in detail. In this section,
we turn to current research. There are two major thrusts: (i) recovery of low energy physics
through semi-classical quantum geometries; and (ii) spin foam models, which provide a ‘sum
over histories’ approach based on quantum geometry. Since these are frontier areas, a finished
physical picture is yet to emerge. Therefore, our discussion will be briefer.

9.1. Low energy physics

A basic premise of loop quantum gravity is that there should be no background fields;
everything, including spacetime geometry is dynamical and treated quantum mechanically
from the start. However, of necessity, a background-independent description must use physical
concepts and mathematical tools that are quite different from those normally used in low energy
quantum physics which is rooted in classical, Minkowskian geometry. A major challenge,
then, is to show that this low energy description does arise from the pristine, Planckian world
in an appropriate sense. This challenge is now being met step by step, although one is still far
from reaching the final goal.

Let us begin by listing some of the main issues and questions. Loop quantum gravity is
based on quantum geometry, the essential discreteness of which permeates all constructions
and results. The fundamental excitations are one dimensional and polymer-like. A convenient
basis of states is provided by spin networks. Low energy physics, on the other hand, is
based on quantum field theories which are rooted in a flat space continuum. The fundamental
excitations of these fields are three dimensional, typically representing wavy undulations on
the background Minkowskian geometry. The convenient Fock basis is given by specifying the
occupation number in one particle states labelled by momenta and helicities. At first sight, the
two frameworks seem disparate. What then is the precise sense in which the Fock states are
to arise in the low energy limit of the full theory?

From a mathematical physics perspective, the basic variables of quantum geometry are
holonomies (or Wilson loops) of the gravitational connectionA along one-dimensional curves
and fluxes of the conjugate momenta (the triads) E across 2-surfaces. In the final quantum
theory, the connection A fails to be a well defined operator(-valued distribution); only the
holonomies are well defined. In perturbative quantum field theories, by contrast, the vector
potential operators are distributions, whence, a priori, their holonomies fail to be well-defined
operators. Similarly, fluxes of electric field operators across 2-surfaces fail to be well defined
on the Fock space of photons. Heuristically, then, it would appear that, even at a kinematic
level, loop quantum gravity describes a ‘phase’ of gauge theories which is distinct from that
used in electrodynamics. Since it is generally believed that distinct phases carry distinct
physics, it is natural to ask: Is the well-tested, macroscopic ‘Coulomb phase’ of low energy
gravity compatible at all with the Planck scale discreteness of quantum geometry? If so, in
what sense? How does it emerge from loop quantum gravity?

So far these issues have been analysed through simple examples, where the focus is
on constructing mathematical and conceptual tools that will be ultimately necessary for the
systematic analysis of quantum fields on semi-classical states of quantum geometry [148] .
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9.1.1. Quantum mechanics of particles. In non-relativistic quantum mechanics, one
generally begins with the Weyl algebra generated by operators U(λ) = exp(iλX) and
V (µ) = exp(i(µ/h̄)P ) and seeks representations in which U(λ) and V (µ) are represented by
a one-parameter family of unitary operators which are weakly continuous in λ and µ. The von
Neumann uniqueness theorem tells us that every irreducible representation of this algebra is
isomorphic with the Schrödinger representation. Therefore, one typically develops the theory
using just this representation. However, if one drops the requirement of weak continuity, say
in µ, new representations become available.

Specifically, there is one in which states�(k) are almost periodic functions of k = p/h̄. In
this representation, operators U(λ), V (µ) are unitary as desired but the self-adjoint generator
of V (µ), which provides the momentum operator in the Schrödinger representation, fails to
exist. The position operator X, on the other hand, does exist and is self-adjoint. Furthermore, its
spectrum is discrete in the sense that all its eigenvectors are normalizable. This representation
is referred to as ‘polymer particle’ because of its close mathematical similarities with the
‘polymer’ representation of the algebra generated by holonomies and electric fluxes introduced
in section 4. (Indeed, the underlying mathematical framework is the same as that used in
quantum cosmology in section 7, but the physical interpretations are very different.) X is
analogous to the electric flux operators and its eigenstates provide us with analogues of spin
network states. V (µ) is analogous to the holonomies. Just as the connection operator does
not exist in quantum geometry, the generator of space translations—-the momentum operator
of the Schrödinger theory—does not exist on the Hilbert space Hpoly of the polymer particle
representation. While the absence of the standard momentum operator is alarming from the
perspective of non-relativistic quantum mechanics, heuristically it can be thought of as arising
from a fundamental discreteness of spatial geometry. However, this motivation cannot be
taken too literally: non-relativistic quantum mechanics has limitations which become manifest
much before quantum gravity discreteness can become significant.

Rather, the primary motivation in this study is mathematical: we have a simple toy model
to probe the questions raised in the beginning of this section. In this analogy, Schrödinger
quantum mechanics plays the role of quantum theories used in low energy physics and the main
question is: Can the polymer particle framework reproduce the results of Schrödinger quantum
mechanics, in spite of the fact that the two descriptions are fundamentally so different? The
answer is in the affirmative and the analysis has provided some conceptual and technical
insight to recover low energy physics from the Planck scale framework based on polymer
geometry.

The main results [155] can be summarized as follows:

• Although the standard creation and annihilation operators fail to be well defined in Hpoly,
their exponentials are well defined and can be used to construct coherent states purely
in the polymer framework. As one might expect of semi-classical states, they belong to
Cyl�poly, the analogue of Cyl� of quantum geometry. A key question is whether they can be
regarded as semi-classical states. At first this appears to be difficult because Cyl�poly does
not carry a Hermitian inner product. However, one can provide a meaningful criterion
of semi-classicality through the notion of shadow states (explained in section 9.1.2) and
verify that these coherent states satisfy the criterion.

• As in quantum cosmology, by introducing a length scale µ0 which is thought of as arising
from the fundamental discreteness of spatial geometry, one can define a momentum
operator and the kinetic energy term in the Hamiltonian using V (µ),

P 2

2m
= h̄2

2m

1

µ2
0

[2 − V (µ0)− V (−µ0)]
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with µ0 � d, where d is the smallest length scale in the problem36. The Schrödinger
equation then reduces to a difference equation. For the case of the harmonic oscillator,
one can transform it to the well-known Mathieu equation and, using the rather large
body of results on this equation, show that all energy eigenstates are non-degenerate and
eigenvalues discrete, given by

En ∼ (2n + 1)
h̄ω

2
− 2n2 + 2 + 1

16

(µ0

d

)2 h̄ω

2
+O

(µ0

d

)4
.

Thus the ‘polymer corrections’ to the Schrödinger eigenvalues become significant only when
n ∼ 107! Using the notion of shadow states, one can also show that there is a precise sense in
which the eigenvectors are ‘close’ to the Schrödinger eigenvectors. Since in the final picture
one is in effect using a discrete approximation to the Schrödinger equation, it may seem
‘obvious’ that a close agreement with Schrödinger quantum mechanics must occur. However,
the detailed analysis contains a number of subtleties and the agreement emerges only when
these subtleties are handled appropriately [155]. More importantly, one does not simply begin
with the Schrödinger equation and discretize it ‘by hand’. Rather, one follows procedures
that are natural from the ‘polymer’ perspective and arrive at the discrete substitute of the
Schrödinger equation.

Thus, the polymer particle has turned out to be a simple toy model to illustrate how the
gap between inequivalent mathematical frameworks can be bridged and how they can lead to
physically equivalent results in the ‘low energy regime’ in spite of the deep conceptual and
structural differences at a fundamental level.

9.1.2. The Maxwell field and linearized gravity. The next two models that have been studied
in detail are the Maxwell field and linearized gravity in Minkowski spacetime [152–154,
156–158]. Since our goal is only to provide a bird’s eye view, we will focus the main
discussion on the Maxwell case and return to linearized gravity at the end.

Following the general procedures outlined in section 4 to the case when the gauge
group G is U(1), one can construct a ‘polymer representation’ of the Maxwell field (see
appendix A). Polymer representations were first introduced by Buchholz and Fredenhagen in
a different context. The goal is to understand its relation to the standard Fock representation
of photons. Again, the viewpoint is not that the polymer representation provides a better
physical description of photons in Minkowski space. Rather, the primary goal is to develop
mathematical and conceptual tools to compare the disparate descriptions, tools which will be
finally useful in understanding the relation between quantum field theories on semi-classical
quantum geometries representing classical spacetimes and continuum quantum field theories
in these spacetimes.

The first major difference between the polymer and the Fock representations lies in
their algebras of elementary observables. In the polymer representation, these are given by
holonomies A(e) of the Maxwell connection A along edges e in M = R3, and electric fields
P(g) smeared by smooth 1-forms g of compact support in M. In the Fock representation, by
contrast, the configuration variables A(f ) are vector potentials smeared with smooth vector
densities f of compact support; A(e) fail to be well defined [151]. To resolve this tension,
one can proceed as follows [152, 153]. Introduce a test bi-tensor field ra

′
a (x, x

′) which is a
1-form in its x dependence and a vector density in its x ′ dependence:

A(r)a (x) :=
∫
M

d3x ′ ra
′
a (x, x

′)Aa′(x ′) and Pa
′
(r)(x

′) :=
∫
M

d3x ra
′
a (x, x

′)Pa(x). (9.1)

36 For a harmonic oscillator, d = √
h̄/mω, which , for the vibrational modes of a CO molecule is 10−10 cm. Since

laboratory experiments show no signature of discreteness at the 10−17 cm scale, it is safe to take µ0 � 10−19 cm.
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Then, the map

IFock
poly (r) : (A(e),P(r)(g)) �→ (A(r)(e),P(g)) (9.2)

is an isomorphism from the Poisson–Lie algebra of the elementary observables used in the
polymer representation to that used in the Fock representation. A prototype example of
ra

′
a (x, x

′) is given in Cartesian coordinates by

ra
′
a (x, x

′) = 1

r3
exp

|x − x ′|2
2r2

δa
′
a ≡ fr(x, x ′)δa

′
a (9.3)

with r > 0, for which A(r)(e) is simply the holonomy around a ‘thickening’ of the edge e. For
simplicity, we will restrict ourselves to this specific choice in what follows.

Using isomorphisms IFock
poly , one can pass back and forth between the polymer and the Fock

descriptions. Specifically, the image of the Fock vacuum can be shown to be the following
element of Cyl�Max [152, 153],

(V | =
∑
α,
n

exp

[
−h̄

2

∑
IJ

GIJ nInJ

]
(Fα,
n | . (9.4)

where (Fα,
n|, called flux network states, constitute a basis in Cyl�Max and are analogous to
the spin network states in Cyl� (see appendix A). These states do not have any knowledge of
the underlying Minkowskian geometry. This information is neatly coded in the matrix GIJ
associated with the edges of the graph α, given by

GIJ =
∫
eI

dt ėaJ (t)
∫
eJ

dt ′ėI b(t ′)
∫

d3x qab(x)[fr(x, eI (t))|�|− 1
2 f (x, eJ (t

′))] (9.5)

where qab is the flat Euclidean metric and� its Laplacian. A key insight of Varadarajan [152]
was to note that, as in the case of the polymer particle, one can single out this state directly
in the polymer representation by invoking Poincaré invariance, without any reference to the
Fock space.

Similarly, one can directly locate in Cyl�Max all coherent states, i.e., all eigenstates of the
(exponentiated) annihilation operators. Let us denote by

(
C(A0,P0)

∣∣ the state peaked at classical
fields (A0,P0). Given a graph α, one can show that the restriction of the action of

(
C(A0,P0)

∣∣ to

cylindrical functions associated with α is fully encoded in a state C(A
0,P0)

α in the Hilbert space
(HMax)α ,

(C(A0,P0)
|�α〉 =

∫
ĀMax

dµ0
[
C(A

0,P0)
α (Ā)

]�
�α(Ā) (9.6)

for all cylindrical functions�α associated with the graph α . The statesC(A
0,P0)

α (Ā) in (HMax)α
are referred to as shadows of the element

(
C(A0,P0)

∣∣ ∈ Cyl� on graphs α. Note that the set of
all shadows captures the full information in

(
C(A0,P0)

∣∣. By analysing shadows on sufficiently
refined graphs, one can introduce criteria to test if a given element of Cyl�Max represents a
semi-classical state [155, 156]. The states

(
C(A0,P0)

∣∣ do satisfy this criterion and can therefore
be regarded as semi-classical in the polymer framework. Finally, using the isomorphism IFock

poly
one can check that these states are the images of the Fock coherent states. To summarize,
although the polymer representation is inequivalent to the Fock, it is possible to single out
and analyse the ‘correct’ semi-classical states of the quantum Maxwell field directly in the
polymer framework [156].

For Maxwell fields, the Fock representation is compatible with only the Coulomb phase:
the vacuum expectation value of (regularized) Wilson loops goes as the exponential of the
perimeter and one can read off the Coulomb potential from the sub-leading term in the
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exponent. It turns out that one can translate Wilson’s criterion as a condition on the overlap
of certain coherent states defined by the type of loops used in the original criterion. All these
considerations go through also for the linearized gravitational field in Minkowski spacetime
[157, 158]. Moreover, the reformulation of the Wilson criterion provides a means of testing
whether candidate semi-classical states of the full theory, approximating Minkowski spacetime
and fluctuations thereon, are compatible with the Coulomb phase; i.e., if, in a suitable limit, the
gravitational force between two particles will be given by the Coulomb law [158]. Physically,
this is a key constraint on the viability of proposed semi-classical states.

9.1.3. Quantum geometry. The experience gained from simpler models is currently
being used to construct semi-classical states of quantum geometry peaked at initial data
corresponding to physically interesting spacetimes. In particular, are there ‘preferred’ semi-
classical states peaked at such classical spacetimes, analogous to the coherent states of photons
and gravitons in Minkowski spacetime?

The early work [142, 143] focused on constructing states which are peaked at a given
spatial triad Eai . However, the mathematical precision was low and, moreover, the analysis
ignored connections altogether. The challenge of constructing states which are peaked at given
values of a set of observables constructed from both the triads and the connection was taken up
in [144, 146, 147]. In particular, a detailed mathematical framework developed in the series
of papers [146, 147] focused on observables associated with a given graph: holonomies of
edges of the graph and fluxes of triads across certain surfaces ‘dual’ to the edges. This work
led to states in Cyl which are sharply peaked at given values of these observables. However,
this set of observables is too small from physical considerations and these states do not have
the ‘non-local’ correlations which are the hallmark of semi-classical states in Minkowskian
physics. Nonetheless, this analysis introduced a number of mathematical techniques which
continue to be useful in the current investigations.

As a prelude to current research directions, let us begin by recasting the construction
of the familiar coherent states in a form that is suitable for generalization. For a harmonic
oscillator (or for free fields in Minkowski spacetimes) coherent states can be constructed using
heat kernel methods on the configuration space. In this procedure, one starts by selecting
a suitable, positive function F on the phase space which is quadratic in momenta. For the
harmonic oscillator, this can be taken to be simply the kinetic energy, F = 
P · 
P . By rescaling
the quantum analogue of this function with suitable constants, one obtains the (negative
definite) Laplacian�. The associated heat kernel provides a smoothing operator which maps
the generalized eigenstates of the configuration operator to coherent states. For the oscillator,
the coherent state C
x0,0, peaked at 
x = 
x0 and 
p = 0 is given by

C(
x0, 
p=0)(x) = [exp(t�)]δ(
x, 
x0) (9.7)

where t determines the width of the Gaussian. (t has physical dimensions (length)2. The value
t = h̄/mω yields the standard coherent states.) A general coherent state C
x0, 
p0 is obtained
simply by taking the analytical continuation of this state with respect to 
x0,

C
x0, 
p0(x) = ([exp(t�)]δ(
x, 
x0))
x0 �→
z0 (9.8)

where 
z0 = 
x0 + (i/h̄)p0. Hall [145] generalized this construction for the case when the
configuration space is a compact Lie group. Let us consider the example of a free particle
moving on the group manifold SU(2) (see section 4.1). We can again use for F the kinetic
energy term: F = ηijpipj where as before ηij is the Cartan–Killing metric on SU(2). One can
use the natural isomorphism between the complexification of and the cotangent bundle over
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SU(2) to label the points in the phase space by elements gC of CSU(2). Then, the coherent
states CgC

0
peaked at the point gC

0 of the phase space is given by

CgC
0
(g) = ([exp(t�)]δ(g, g0))g0 �→gC

0
. (9.9)

These states are sharply peaked at the phase space point gC
0 [146, 147]. The generalization of

Hall’s procedure to quantum theories of connection on a graph (discussed in section 4.2) is
straightforward since now the configuration space is isomorphic to [SU(2)]n, where n is the
number of edges of the graph.

For theories of connections in the continuum, one can again follow the same procedure.
For the Maxwell theory in Minkowski spacetime discussed in section 9.1.2, in the polymer
picture one can proceed as follows. First, given a graph α, one can set F = GIKpIpK
where pI denotes the momentum vector in the cotangent bundle over U(1) associated
with the Ith edge. Then, the Laplacian on the Hilbert space (HMax)α is given simply by
�Max
α = −(h̄/2)∑I,K [GIKJIJK ]. Interestingly, this family �Max

α of operators is consistent
and leads to a negative definite, self-adjoint operator �Max on the full Hilbert space HMax.
This Laplacian can now be used to define coherent states. The result is precisely the coherent
states in Cyl�Max discussed in section 9.1.2:

(CA0,P0
|�〉 =

∫
Ā

dµ0
(
e�

Max
δ(Ā,A0)|A0 �→A0

C

)�
�(Ā) (9.10)

for all cylindrical functions �, where A0
C = A0 − i|�|−1/2P0. In particular (V |, the image

of the Fock vacuum in Cyl�Max, is obtained by this procedure simply by setting A0 = P0 = 0.
These Laplacians and the corresponding coherent states belong to a general framework
discussed in [46].

This procedure can be naturally extended to quantum geometry to define a candidate
semi-classical state (M| corresponding to the Minkowski spacetime, i.e., to the point of the
phase space represented by (A = 0, E = E0) where E0 is a flat triad. Given any graph α, one
can define a Laplacian operator �α on the quantum geometry Hilbert space Hα:

�α = −h̄
8

∑
I,K

GIKη
ikJ Ii J

K
k . (9.11)

Again, this set of operators is consistent and thus defines a negative definite, self-adjoint
operator � on the full quantum geometry Hilbert space. The desired state (M| ∈ Cyl� can
now be defined using the heat kernel defined by this Laplacian,

(M|�〉 =
∫
Ā

dµ0
(
e�δ(Ā, A0)|A0 �→A0

C

)�
�(Ā) (9.12)

for all � ∈ Cyl, where AC
0 = −ibE0 and b is a constant with dimensions of inverse length

[153]. Note, however, that the state is defined simply by analogy with the simpler systems.
So far, its structure has not been analysed in any detail and there is no a priori guarantee
that this is indeed a semi-classical state, i.e., that its shadows on sufficiently refined graphs
are sharply peaked at the point (A = 0, E = E0) of the gravitational phase space. (Notions
from statistical geometry [150] are likely to play an important role in selecting the appropriate
family of graphs.) The ‘Coulomb phase criterion’ is also yet to be applied.

Thiemann has developed a systematic framework to extend this procedure to introduce
semi-classical states by considering more general functions F, leading to heat kernels based
on operators which are more general than Laplacians [149]. Thus, rather powerful tools are
now available to explore the semi-classical regime. However, compelling candidate states are
yet to emerge. Finally, the emphasis in this work is on constructing states which are peaked at
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points on the constraint surface of the classical phase space. These are kinematical states; as
simple examples show, these states will not solve quantum constraints. Indeed, semi-classical
solutions to the quantum constraints would be peaked at points of the reduced phase space,
i.e., roughly, on equivalence classes of 4-metrics where two are equivalent if they are related
by a diffeomorphism. To make contact with low energy physics, what we need are states
peaked at individual classical spacetimes, whence it is the kinematical semi-classical states
considered here which are more directly relevant. The relation between the two is being
explored systematically. The overall picture can be summarized as follows: (i) the kinematical
states can be regarded as ‘gauge fixed versions’ of the semi-classical solutions to constraints;
and (ii) the expectation values and fluctuations of Dirac observables agree in an appropriate
sense on the two sets.

9.2. Spin foams

Spin foams can be thought of as histories traced out by ‘time evolution’ of spin networks and
provide a path integral approach to quantum dynamics. Since an entire review article devoted
to spin foams has appeared recently [10], our discussion will be very brief.

In the gravitational context, the path integral can play two roles. First, as in standard
quantum field theories, it can be used to compute ‘transition amplitudes’. However outside, say,
perturbation theory about a background spacetime, there still remain unresolved conceptual
questions about the physical meaning of such amplitudes. The second role is ‘cleaner’: as
in the Euclidean approach of Hawking and others, it can be considered as a device to extract
physical states, i.e., solutions to all the quantum constraint equations. In this role as an
extractor, it can shed new light on the quantum Hamiltonian constraint and on the issue of
finding a physical inner product on the space of solutions to all constraints.

The well-defined quantum kinematics of sections 4 and 5 has motivated specific proposals
for the definition of path integrals, often called ‘state sum models’. Perhaps the most successful
of these is the Barrett–Crane model and its various modifications. At the classical level, one
regards general relativity as a topological field theory, called the BF theory, supplemented
with an algebraic constraint. The BF theory is itself a four-dimensional generalization of the
three-dimensional Chern–Simons theory mentioned in section 8.2 and has been investigated
in detail in the mathematical physics literature. However, the role of the additional constraint
is very important. Indeed, BF theory has no local degrees of freedom; it is the extra constraint
that reduces the huge gauge freedom, thereby recovering the local degrees of freedom of
general relativity. The crux of the problem in quantum gravity is the appropriate incorporation
of this constraint. At the classical level (modulo issues related to degenerate configurations)
the constrained BF theory is equivalent to general relativity. To obtain Euclidean general
relativity, one has to start with the BF theory associated with SO(4) while the Lorentzian
theory results if one uses SO(3, 1) instead. The Barrett–Crane model and its extensions are
specific proposals to define quantum geometry based path integrals for the constrained BF
theory in either case.

Fix a 4-manifold M bounded by two 3-manifolds M1 and M2. Spin network states on
the two boundaries can be regarded as ‘initial’ and ‘final’ quantum geometries. One can then
consider histories, i.e., quantum 4-geometries, joining them. Each history is a spin foam. Each
vertex of the initial spin network onM1 ‘evolves’ to give a one-dimensional edge in the spin
foam and each edge, to give a two-dimensional face. Consequently, each face carries a spin
label j . However, in the course of ‘evolution’ new vertices can appear, making the dynamics
non-trivial and yielding a non-trivial amplitude for an ‘initial’ spin network with n1 vertices to
evolve into a ‘final’ spin network with n2 vertices. For mathematical clarity as well as physical
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intuition, it is convenient to group spin foams associated with the same four-dimensional graph
but differing from one another in the labels, such as the spins j carried by faces. Each group
is said to provide a discretization of the 4-manifold M. Physically, a discretization has
essentially just the topological information. The geometrical information—such as the area
associated with each face—resides in the labels. This is an important difference from lattice
gauge theories with a background metric, where a discretization itself determines, e.g., the
edge lengths and hence how refined the lattice is.

A notable development is the discovery that the non-perturbative path integral, defined by
a certain modification of the Barrett–Crane model, is equivalent to a manageable group field
theory (GFT) in the sense specified below [166]. The GFT is a rather simple quantum field
theory, defined on four copies of the underlying group; SL(2, C) in the case of Lorentzian
gravity and Spin(4) in the case of Euclidean. (Note that these are just double covers of
the Lorentz group and the rotation group of Euclidean 4-space.) Thus GFTs live in high
dimensions. The action has a ‘free part’ and an interaction term with a coupling constant λ.
But the free part is non-standard and does not have the familiar kinetic term, whence the usual
non-renormalizability arguments for higher dimensional, interacting theories do not apply.
In fact, the first key recent result is that this GFT is finite order by order in the Feynman
perturbation expansion. The second key result is ABC(n) = AGFT(n), where ABC(n) is the
modified Barrett–Crane amplitude obtained by summing over all geometries (i.e., spin labels
j ) for a fixed discretization and AGFT(n) is the coefficient of λn in the Feynman expansion of
the GFT. Together, the two results imply that, in this approach to quantum gravity, sum over
geometries for a fixed discrete topology is finite. This is a highly non-trivial result because, on
each face, the sum over j ranges from zero to infinity; there is no cut-off37.

However, many open issues remain. First, in the specific proposal of Perez and others,
convergence is achieved at a price: the integral is dominated by ‘degenerate’ geometries
described by spin foams where all the spins labelling faces are zero except for ‘islands’ of
higher spin [167]. Second, in any of the finite models, it is not clear if there is a direct physical
interpretation, in gravitational terms, of the specific amplitudes (associated with 2-faces and
tetrahedra) that lead to a suppression of divergences. More importantly, while many of these
developments are very interesting from a mathematical physics perspective, their significance
to quantum gravity is less clear. Physical issues such as gauge fixing in the path integral
are not fully understood in 3 + 1 dimensions [171]. (However, recently there has been notable
progress in 2 + 1 dimensions [172, 173].) Finally, the discrete topology is fixed in most of this
work and the issue of summing over all topologies, or a substitute thereof, remains largely
unexplored. However, this is a very active area of research and the hope is that the current
investigations will soon yield a sufficient intuition and control on mathematical issues to enable
one to analyse in detail the deeper, physical problems. In particular, it is likely that a judicious
combination of methods from the canonical treatment of the Hamiltonian constraint and spin
foam models will lead to significant progress in both areas.

10. Outlook

Loop quantum gravity is a non-perturbative, background-independent approach to the problem
of unification of general relativity and quantum physics. In the last nine sections, we gave
a self-contained account of the core developments in this approach and then summarized the
most important physical applications of the framework. However, due to space limitation we

37 Perez’s Euclidean result has the same ‘flavour’ as the evidence found by Lauscher, Reuter, Percacci, Perini and
others [169, 170] for non-perturbative renormalizability of four-dimensional Euclidean quantum general relativity
(stemming from the existence of a non-trivial fixed point).
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had to leave out several interesting developments, particularly at the forefront of the field. In
this section, we will discuss some of them briefly and outline a few open issues.

Quantum geometry. As mentioned in section 1 the necessity of a quantum theory of geometry
was strongly motivated by the fact that, in general relativity, gravity is coded in spacetime
geometry. However, the quantum geometry framework itself is more general and could be
used for background-independent quantization of other theories as well. For example, in two
spacetime dimensions, Yang–Mills theory requires only a background volume element, not a
metric. Since the classical theory is invariant under all volume preserving diffeomorphisms,
it is natural to quantize it in a way that this symmetry is manifest at every step. Quantum
geometry techniques have been used to carry out this quantization and this construction has
certain advantages over others [174]. Similarly, in the standard treatments of bosonic string
theory, one fixes only a conformal metric on the world sheet. In two dimensions, the group
of conformal isometries is an infinite-dimensional subgroup of the diffeomorphism group and
one can again use the standard techniques developed in section 4 to carry out a quantization
in which this symmetry is manifest [175].

A recent mathematical development is the natural emergence of quantum groups from
quantum geometry considerations [176]. Suppose for a moment that quantum groups had
not yet been invented and one was trying to extend the construction of Cyl, introduced in
section 4, to the most general setting possible, e.g. to obtain mathematically viable
generalizations of quantum gauge theories. Then, one would have naturally discovered
that Cyl can be replaced by a non-commutative C�-algebra which has precisely the same
structure as a quantum group! This is a fascinating result which brings out the naturalness of
constructions underlying quantum geometry.

From conceptual considerations, an important issue is the physical significance of
discreteness of eigenvalues of geometric operators (see, e.g., [72]). Recall first that in
the classical theory differential geometry simply provides us with formulae to compute
areas of surfaces and volumes of regions in a Riemannian manifold. To turn these
quantities into physical observables of general relativity, one has to define the surfaces and
regions operationally, e.g. using matter fields. Once this is done, one can simply calculate
values of these observables using formulae supplied by differential geometry. The situation is
the same in quantum theory. For instance, the area of the isolated horizon is a Dirac observable
in the classical theory and the application of the quantum geometry area formula to this surface
leads to physical results. In 2 + 1 dimensions, point particles have recently been incorporated
and the physical distance between them is again a Dirac observable [173]. When used in
this context, the spectrum of the length operator has direct physical meaning. In all these
situations, the operators and their eigenvalues correspond to the ‘proper’ lengths, areas and
volumes of physical objects, measured in the rest frames. Finally, sometimes questions are
raised about compatibility between discreteness of these eigenvalues and Lorentz invariance.
There is no tension whatsoever [177]: it suffices to recall that discreteness of eigenvalues of the
angular momentum operator Ĵ z of non-relativistic quantum mechanics is perfectly compatible
with the rotational invariance of that theory.

Quantum Einstein’s equations. The challenge of quantum dynamics in the full theory is to
find solutions to the quantum constraint equations and endow these physical states with the
structure of an appropriate Hilbert space. The general consensus in the loop quantum gravity
community is that while the situation is well understood for Gauss and diffeomorphism
constraints, it is very far from being definitive for the scalar (i.e., the Hamiltonian) constraint.
It is non-trivial that well-defined candidate operators representing the scalar constraint exist
on the space Hdiff of solutions to the Gauss and diffeomorphism constraints. However, as
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section 6.3 shows there is a host of ambiguities and none of the candidate operators has been
shown to lead to a ‘sufficient number of’ semi-classical states in 3 + 1 dimensions. A second
important open issue is to find restrictions on matter fields and their couplings to gravity for
which this non-perturbative quantization can be carried out to a satisfactory conclusion. In the
renormalization group approach, for example, the situation is as follows. There is significant
evidence for a non-trivial fixed point for pure gravity in four dimensions [169] but when
matter sources are included it continues to exist only when the matter content and couplings
are suitably restricted. For scalar fields in particular, Percacci and Perini [170] have found that
polynomial couplings (beyond the quadratic term in the action) are ruled out, an intriguing
result that may ‘explain’ the triviality of such theories in Minkowski spacetimes. Are there
similar constraints coming from loop quantum gravity?

To address these core issues, at least four different approaches are being followed. The
first, and the closest to ideas discussed in section 6.3, is the ‘master constraint program’
recently introduced by Thiemann [178]. The idea here is to avoid using an infinite number of
constraints C(N), each smeared by a lapse function N. Instead, one squares the integrand C(x)
itself in an appropriate sense and then integrates it on the 3-manifold M. In simple examples, this
procedure leads to physically viable quantum theories [179]. In the gravitational case, however,
the procedure does not seem to remove any of the ambiguities. Rather, its principal strength
lies in its potential to resolve the difficult issue of finding the physically appropriate scalar
product on physical states. The general philosophy is similar to that advocated by Klauder
[180] over the years in his very interesting approach based on coherent states. However,
there are two key differences. First, Klauder seeks solutions to constraints in the original,
kinematical Hilbert space rather than in a larger space such as Cyl�. Consequently, when zero
is in the continuous part of the spectrum of constraint operators his physical states are only
approximately annihilated by the constraints. Second, in Klauder’s proposal all constraints
are to be imposed in this manner. In loop quantum gravity, this does not seem to be feasible for
several important technical reasons; one needs to first solve the Gauss and the diffeomorphism
constraint and work on the Hilbert space Hdiff . Indeed, to our knowledge, the proposal has
not been implemented in sufficient detail to know if the original strategy can be employed
to solve the diffeomorphism constraint rigorously, even by itself. But the program has a key
advantage that, since it is based on coherent states, the semi-classical sector can be readily
located. A cross-fertilization of this program and loop quantum gravity is likely to be fruitful
in the analysis of low energy physics.

A second approach to quantum scalar constraint is due to Gambini, Pullin and their
collaborators [181]. It builds on their earlier extensive work [4] on the interplay between
quantum gravity and knot theory. The more recent developments use the relatively new
invariants of intersecting knots discovered by Vassiliev. This is a novel approach which
furthermore has the potential of enhancing the relation between topological field theories
and quantum gravity. As our knowledge of invariants of intersecting knots deepens, this
approach is likely to provide increasingly significant insights. In particular, it has the
potential of leading to a formulation of quantum gravity which does not refer even to a
background manifold (see footnote 5). The third approach comes from spin foam models
[10] discussed briefly in section 9.2. Here, amplitudes used in the path integrals can be
used to restrict the choice of the scalar constraint operator in the canonical theory. This
is a promising direction and the detailed analysis of restrictions is already in progress in
2 + 1 dimensions [173]. In the fourth approach, also due to Gambini and Pullin, one first
constructs consistent discrete theories at the classical level and then quantizes them [182]. In
this program, there are no constraints; they are solved to find lapse and shift fields. It has
already been applied successfully to gauge theories and certain cosmological models. An
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added bonus here is that one can revive a certain proposal made by Page and Wootters to
address the difficult issues of interpretation of quantum mechanics which become especially
acute in quantum cosmology, and more generally in the absence of a background physical
geometry.

Applications. As we saw in sections 7 and 8, loop quantum gravity has resolved some of the
long-standing physical problems of quantum gravity. As in other approaches to black-hole
entropy [183–186], concrete progress could be made because the constructions do not require
detailed knowledge of how quantum dynamics is implemented in the full quantum theory.
Recently, the first law of black-hole mechanics has been extended to fully dynamical situations
[187]. Its form suggests that the entropy is given by the area of the dynamical horizon. Can
the quantum entropy calculation be extended to these non-equilibrium situations? This may
even provide an input to non-equilibrium statistical mechanics where the notion of entropy is
still rather poorly understood.

In quantum cosmology, there is ongoing work on obtaining ‘effective field equations’
which incorporate quantum corrections [117, 188, 189]. Quantum geometry effects
significantly modify the effective field equations which in turn lead to new physics in the
early universe. In particular, not only is the initial singularity resolved but the (Belinski–
Khalatnikov–Lifschitz-type) chaotic behaviour predicted by classical general relativity and
supergravity also disappears! As explained in [189], this is to be expected on rather general
grounds if the underlying geometry exhibits quantum discreteness because even in the classical
theory chaos disappears if the theory is truncated at any smallest, non-zero volume. There
are also less drastic but interesting modifications of the inflationary scenario with potentially
observable consequences [188, 190]. While the technical steps used in these analyses of
effective equations are not as clean as those of section 7, it is encouraging that loop quantum
cosmology is already yielding some phenomenological results.

As explained in section 9.1, a frontier area of research is contact with low energy
physics. Here, a number of fascinating challenges appear to be within reach. Fock states
have been isolated in the polymer framework [152, 153, 160] and elements of quantum
field theory on quantum geometry have been introduced [148]. These developments lead to
concrete questions. For example, in quantum field theory in flat spacetimes, the Hamiltonian
and other operators are regularized through normal ordering. For quantum field theory
on quantum geometry, on the other hand, the Hamiltonians are expected to be manifestly
finite (see, e.g., appendix A). Can one then show that, in a suitable approximation, normal
ordered operators in the Minkowski continuum arise naturally from these finite operators?
Can one ‘explain’ why Hadamard states of quantum field theory in curved spacetimes are
special? These issues also provide valuable hints for construction of viable semi-classical
states of quantum geometry. The final and much more difficult challenge is to ‘explain’
why perturbative quantum general relativity fails if the theory exists non-perturbatively.
As explained in section 1, heuristically the failure can be traced back to the insistence
that the continuum spacetime geometry is a good approximation even below the Planck
scale. But a more detailed answer is needed. Is it because, as recent developments in
Euclidean quantum gravity indicate [169, 170], the renormalization group is a non-trivial fixed
point?

Finally, there is the issue of unification. At a kinematical level, there is already a
unification because the quantum configuration space of general relativity is the same as in
gauge theories which govern the strong and electro-weak interactions. But the non-trivial
issue is that of dynamics. We will conclude with a speculation. One possibility is to use the
‘emergent phenomena’ scenario where new degrees of freedom or particles, which were not
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in the initial Lagrangian, emerge when one considers excitations of a non-trivial vacuum. For
example, one can begin with solids and arrive at phonons; start with superfluids and find rotons;
consider superconductors and discover Cooper pairs. In loop quantum gravity, the micro-state
representing Minkowski spacetime will have a highly non-trivial Planck scale structure. The
basic entities are one dimensional and polymer-like. Even in the absence of a detailed theory,
one can tell that the fluctuations of these one-dimensional entities will correspond not only to
gravitons but also to other particles, including a spin-1 particle, a scalar and an anti-symmetric
tensor. These ‘emergent states’ are likely to play an important role in Minkowskian physics
derived from loop quantum gravity. A detailed study of these excitations may well lead to
interesting dynamics that includes not only gravity but also a select family of non-gravitational
fields.
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Appendix A. Inclusion of matter fields: the Einstein–Maxwell theory

In section 5, to bring out the main ideas we simplified the discussion of dynamics by ignoring
matter fields. Inclusion of these fields does not require a major modification of the underlying
framework. In this appendix, we will illustrate the procedure using Einstein–Maxwell theory.

A.1. Classical framework

The point of departure for canonical quantization is again a Hamiltonian framework. One can
easily repeat the procedure used in section 2 by carrying out a 3 + 1 decomposition also of the
Maxwell action. The phase space now consists of two pairs of canonically conjugate fields
(A, P ) describing geometry and (A,P) describing the Maxwell field, where A is our Maxwell
vector potential and P, our Maxwell electric field. As usual the only non-vanishing Poisson
bracket in the Maxwell sector is

{Aa(x),Pb(y)} = δbaδ(x, y). (A1)

As in the geometrical sector, the basic configuration variables are taken to be holonomies
A(e) := exp(−i

∫
e
A). However, because the Maxwell gauge group U(1) is Abelian, it turns

out that the electric field Pa can be smeared either along 2-surfaces (as was done for the
gravitational P a in section 4.3.1), or directly in three dimensions. It is more convenient to use
three-dimensional smearing and set P(g) := ∫

M
d3x ga(x)P

a(x) for all test 1-forms ga on M.
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The Poisson bracket between these elementary variables is given by

{A(e),P(g)} = −i

(∫
e

g

)
A(e). (A2)

Thus the Poisson algebra of elementary variables is closed as needed38.
As in section 2, one can obtain the Hamiltonian through a Legendre transform. As

expected, the total Hamiltonian density hEM is a sum of constraints:

hEM = N(C + C) +Na(Ca + Ca) + ωitGi + AtG, (A3)

where the lapse N and shift Na are the same as in the gravitational sector (see (2.23)); At
is a freely specifiable function, the Lagrange multiplier for the Maxwell–Gauss constraint
G = DaP

a; and C and Ca are functionals of P,A,P, representing the Maxwell energy and
momentum density, respectively. Specifically, the electromagnetic contribution to the scalar
constraint is

CMax(N) = 1

8π

∫
d3xN(x)

qab(x)√
det q(x)

(Pa(x)Pb(x) + Ba(x)Bb(x)), (A4)

and

Ba = 1
2η
abc(∂aAb − ∂bAa) (A5)

is the magnetic vector density. In comparison with the Hamiltonian of the Maxwell field in
Minkowski spacetime, the presence of the inverse square root of q may seem surprising. Note,
however, that the electric and magnetic fields naturally carry density weight 1, whence this
factor is quite essential. In Minkowski space, the background metric is implicitly used to
remove the density weight.

A.2. Quantum kinematics

One can just use the procedure of section 4.3 to carry out quantization using G =
SU(2)×U(1), where SU(2) refers to geometry andU(1) to the Maxwell field. The kinematical
Hilbert space of the Einstein–Maxwell theory is given by

HEM = H ⊗ HMax (A6)

where H is the Hilbert space of states of the quantum geometry of section 4.3.2 and HMax is
the corresponding Hilbert space for the case G = U(1).

Since we discussed the structure of H and of the operators thereon in detail in sections 4.3
and 5, let us focus just on the Maxwell sector. Convenient orthonormal basis states Fα,
n, called
flux networks, in HMax can be constructed as follows. Given a graph α, assign an orientation
to the edges (e1, . . . , eN), label them by integers (n1, . . . , nN) and set

Fα,
n(A) = [A(e1)]
n1 . . . [A(en)]

nN . (A7)

Note that if the orientation of an edge eI is reversed, the state is unchanged if nI is replaced
by −nI .

The Poisson bracket relation (A2) leads to the definition of the smeared electric operator
P̂(g):

P̂(g)� = ih̄{P(g),�} (A8)

38 The physical dimensions of the Maxwell variables are the same as those of their gravitational analogues. Thus,
[A] = L−1 and [P] = ML−1. The magnetic potential Ã and electric field Ẽ of classical electrodynamics are given
by Ã = eA and Ẽ = (1/e)P. In quantum electrodynamics, the holonomy is generally written as exp(−i e/h̄)

∫
A′.

Therefore, the vector potential A′ used there is given by A′ = (h̄/e)A.
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capturing the expectation that P̂(x) should be represented by ih̄δ/δA(x). On the flux network
states, the action reduces to

P̂(g)Fγ,
n = −h̄
(∑

I

nI

∫
eI

g

)
Fγ,
n. (A9)

If the support of g has non-trivial intersection just with a single edge eI of α, then the
flux network Fα,
n is an eigenstate of P̂(g) and the eigenvalue just measures nI , the ‘electric
flux carried by the oriented edge eI ’. Thus the electric flux is quantized and each edge of
the flux network Fα,
n can be thought of as carrying an integral multiple of the fundamental
quantum.

A.3. The quantum constraints

As noted in appendix A.1, the Einstein–Maxwell theory again has a set of three first class
constraints. The action of the Gauss constraint for the group SU(2)× U(1) naturally factors
on HEM = H × HMax: ĈEM

G = ĈG ⊗ ĈMax
G , where ĈMax

G is the Gauss constraint operator on the
quantum geometry Hilbert space H and Ĝ that on the Maxwell–Hilbert space. Imposition of
this constraint selects the gauge invariant subspace of HEM. The gauge invariant subspace
of H was obtained in section 6.1. On the Maxwell Hilbert space HMax, the constraint simply
restricts the flux network states as follows: at each vertex the sum of the labels nI assigned to
the incoming edges is equal to the sum of the labels assigned to the outgoing edges. Note that
the solution space is a subspace on HEM.

The diffeomorphism constraint
∫

d3xNa(Ca + Ca) is also straightforward to impose
in the exponentiated version. The general procedure is the same as that of section 6.2. Again,
the solutions lie in the dual Cyl�EM of CylEM = [Cyl ⊗ CylMax] where CylMax is the space of
the cylindrical functions of U(1) connections.

Finally, we have to impose the scalar constraint. Regularization of the Einstein part Ĉ(N)
of the constraint was discussed in detail in section 6.3. Here we will focus just on the Maxwell
part ĈMax(N). We have organized the discussion so that it will serve a dual purpose. On the
one hand, it will provide us the Maxwell part of the total Hamiltonian constraint that must be
imposed to select the physical states of the Einstein–Maxwell theory. For this purpose, we
will construct an operator which is well defined on the (gauge and) diffeomorphism invariant
sector (Cyl�EM)diff of Cyl�EM. On the other hand, in the framework of field theory in a given
classical spacetime, CMax(N) can also be regarded as the physical Hamiltonian of the Maxwell
field. Therefore, it is natural to ask if one can construct from CMax(N) a well-defined operator
which will act on (�|geo ⊗ FMax, where (�|geo is a given semi-classical state of quantum
geometry and FMax the Fock-space of photons on this geometry. We will show that this is also
possible. The result will be a Hamiltonian governing the dynamics of a test quantum Maxwell
field on a fixed, semi-classical quantum geometry.

Regularization of the 3-geometry part in CMax(N). In contrast to the Maxwell parts CMax
G and

CDiff of the Gauss and the vector constraints, the Maxwell part CMax(N) of the scalar constraint
contains a coefficient qab/

√
q that explicitly depends on geometry. We will first ‘regularize’

this term, i.e., express it using variables which have direct operator analogues on the quantum
geometry Hilbert space. This discussion will bring out the role played by quantum geometry
in regulating the quantum matter Hamiltonians. For simplicity, we will work with just the
electric term; by inspection all equations of this subsection continue to hold if the electric
fields are replaced by magnetic.
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Consider then the term∫
M

d3xN(x)
qab(x)√
det q(x)

Pa(x)Pb(x). (A10)

We can express the metric qab using (a slight generalization of) expression (6.16) for the
orthonormal co-frame eia ,

eia(x) = 2

kγ

{
Aia(x), VR

}
(A11)

where R is an arbitrary open neighbourhood of x and VR is its volume with respect to qab.
The Poisson bracket is independent of R and for our regularization purposes, it is convenient
to choose it to be the ball Rε of coordinate volume ε3, centred at x. Denote the geometric
volume of this ball (with respect to qab) by V (x, ε). Approximating

√
det q by V (x, ε)/ε3 it

is easy to verify
qab(x)√
det q(x)

= 16

k2γ 2
lim
ε→0
ε3
{
Aia(x),

√
V (x, ε)

}{
Aib(x),

√
V (x, ε)

}
. (A12)

Now, in the quantum Maxwell theory in Minkowski spacetime, the electric field becomes
an operator-valued distribution whence the product of electric fields at the same point, such as
that in (A10), is ill-defined. Therefore, with an eye towards quantization, let us point-split the
product by introducing a 2-point smearing function χε(x, y):

χε(x, y) =
{

1, if y ∈ Rε
0, otherwise.

(A13)

Then, we obtain∫
d3xN(x)

qab√
det q

Pa(x)Pb(x) = 16

k2γ 2
lim
ε→0

∫
M

d3xN(x)

∫
M

d3y Pa(x)Pb(y)

×χε(x, y)
{
Aia(x),

√
V (x, ε)

}{
Aia(y),

√
V (y, ε)

}
. (A14)

Note that the point-splitting procedure requires us to set Pa(x) = (1/ε3)
∫
Rε d3yPa(y) but

the factor 1/ε3 in the denominator is cancelled by the factor ε3 in the geometric term (A12).
We will see that, thanks to point splitting, this regulated classical version has a well-defined
operator analogue in the quantum theory. Had we worked in Minkowski spacetime, the
geometric term qab/

√
q would simply be a smooth field on M. Then, the 1/ε3 factor required

in the point-splitting procedure would have remained and led to a divergence in the limit as
ε �→ 0, i.e., when the regulator is removed. This divergence is now avoided because the
quantum geometry operator corresponding to

{
Aia(x),

√
V (x, ε)

}
has a well-defined limit as

ε tends to infinity. In this precise sense, the quantum nature of geometry provides a natural
regulator for matter Hamiltonians [9].

Quantization of the electric part of CMax(N). We now wish to find the quantum analogue of
the expression on the right-hand side of (A14). Following a strategy introduced by Thiemann
[98], we will proceed in two steps. In the first, we replace the classical electric field by the
corresponding operators and in the second we do the same for geometric fields39.

Consider a flux network state Fγ,
n in the Maxwell–Hilbert space. Then, using the action
(A9) of smeared electric field operators, we immediately obtain the action of the regulated
operator Ĉεelec (see equation (A4)),

Ĉεelec(N)Fγ,
n = CεelecFγ,
n (A15)

39 It is also possible to quantize simultaneously the electric and geometric fields in the constraint. However, then
subtleties arise in the choice of the holonomies replacing the SU(2) connection A.
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where the eigenvalue Cεelec is given by

Cεelec(N) = 2h̄2

k2γ 2π

∫
eI

dt
∫
eJ

dt ′
∑
I,J

N(eI (t))χε(eI (t), eJ (t
′))nInJ

× {
Aia(eI (t))ė

a
I (t),

√
V (eI (t), ε)

}{
Aib(eJ (t

′))ėbJ (t
′),
√
V (eJ (t ′), ε)

}
. (A16)

The second step is now facilitated because the gravitational connectionA appears only through
its edges along the graph. By dividing the edges into segments of coordinate length ε′, replacing
the integrals by sums of holonomies and taking the limit ε′ �→ 0 first, followed by the limit
ε �→ 0, one obtains the action of the electric part of CMax(N) on a state �γ ⊗ Fγ,
n in the full
Hilbert space HEM,

Ĉelec(N)[�γ ⊗ Fγ,
n] = 4

k2γ 2π

∑
v

N(v)
∑
I,J

nInJ

× Tr
(
Â
(
e−1
I

)
[Â(eI ),

4
√
q̂v]Â

(
e−1
J

)
[Â(eJ ),

4
√
q̂v]
)
[�γ ⊗ Fγ,
n] (A17)

where v ranges over the vertices of the graph γ and, given v, I, J run over the labels of the
edges intersecting v. Note that this action preserves each subspace (HEM)γ of HEM; it does
not require us to extend the graph γ . Finally, it is straightforward to check that Ĉelec admits a
self-adjoint extension to HEM.

Quantization of the magnetic part. The starting point is again expression (A14), but with
Pa replacing Ba . We need to define operator analogues of the magnetic field. The strategy
is the same as that used in section 6.3 for curvature Fab of the SU(2) connection of quantum
geometry: approximate the dual Fab of the magnetic field Ba by holonomies around small
closed loops. For this purpose, as in section 6.3.1, we again cover M with cells � (possibly
with arbitrary shape) and, in every cell, introduce edges sI� and loops αIJ� . Let us label this
structure by T . The idea now is to replace the double integral on the left-hand side of (A14)
by a generalized Riemann sum in which the gravitational connections Aia are approximated
by holonomies along the edges sI� and the magnetic field is approximated by the holonomies
along αIJ� . We are then led to define the approximate expression of the magnetic part of
Cmax(N) as

C(ε,T )mag (N) := TIJI ′J ′
∑
�,�′

N(x�)χε(x�, x�′)Tr
(
A
(
αI�
)
A
((
sJ�
)−1){

A
(
sJ�
)
,
√
VR
}

× A
(
αI

′
�′
)
A
((
sJ

′
�′
)−1){

A
(
sJ

′
�′
)
,

√
V ′
R
})

(A18)

which converges to the magnetic part of CMax(N) as we shrink T and take ε to zero. (Here
T IJ I ′J ′

are constants determined by the geometry of T .) It is now straightforward to pass
to the regulated operator Ĉ(ε,T )mag (N). While this operator is well defined in CylEM, as in the
gravitational case, its limit as ε �→ 0 fails to be well defined on HEM. Therefore, to define
the constraint operator, as in section 6.3.2, we pass to (Cyl�EM)diff . Given (�| ∈ (Cyl�EM)diff ,
the procedure used in section 6.3.2 leads to the following well-defined action,

[(�|Ĉmag(N)]|�γFγ,
n〉 = −h̄−2T IJI
′J ′
(�|

∑
v

N(v)

× Tr
(
A
(
αIv
)
Â
((
sJv
)−1)[

Â
(
sJv
)
, 4
√
q̂v
]
A
(
αI

′
v

)
Â
((
sJ

′
v

)−1)[
Â
(
sJ

′
v

)
, 4
√
q̂v′
])|�γ 〉

(A19)

where for every vertex v of the graph γ, sIv and αIv are the edges and loops of T originating
at v. Recall from section 6.3 that the geometric structure of T is such that the edges sIv
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themselves do not appear in the final result; the graph changes only through the loops αIv .
But the geometric operators that appear on the right-hand side do not refer to the loops αIv .
Therefore, while the action of Ĉmag(N) does add new edges to the graph, the spin labels of
these edges vanish; only the Maxwell flux quantum numbers 
n are non-trivial on these edges.

Summary. Collecting the results of the last two sections, solutions to the quantum scalar
constraint are elements (�| of (Cyl�EM)diff satisfying

(�|[Ĉ(N) + Ĉelec(N) + Ĉmag(N)] = 0

where the action of the geometrical part Ĉ(N) is as in section 6.3 and the electric and magnetic
Maxwell operators are given by (A17) and (A19).

Finally, as mentioned in the beginning of appendix A.3, CMax(N) is also the Hamiltonian of
the Maxwell field propagating on a fixed, static background (where the 4-metric is determined
completely by the 3-metric qab and the lapse N). Can we use this operator to ‘derive’, in a
suitable approximation, the quantum theory of Maxwell fields on static spacetimes? Let us
use for (�| the tensor product (�|geo ⊗ (�|Max where (�|geo is a quantum geometry state
peaked at a static spacetime and (�|Max is (the image in Cyl�Max of) a Fock state of photons
associated with the static background. Note that these states are not diffeomorphism invariant.
However, we can exploit the availability of a background metric and use in place of Ĉmag(N)

the regulated operator Ĉ(ε,T )(N), where the area of the loops αI� is given by the minimum
non-zero eigenvalue of the area operator. The resulting Maxwell Hamiltonian C(N) has a
well-defined action on Cyl�EM . Therefore, we can analyse the evolution of the resulting state
and compare it with the standard evolution in the Fock space. An important viability criterion
for this strategy to work is that the geometry part of the state does not change appreciably under
the action of CMax(N). To analyse whether this condition is met, we can expand (�|geo in terms
of spin network states (sγ,
j,
I |. It is easy to check that the action of the geometric operators in

Ĉ(N) leaves γ and the spin labels 
j of each of these spin network components invariant; only
the intertwiners change. Therefore, it is plausible that (�|geo does not change appreciably.
However, so far it is not obvious that any of the candidate semi-classical states proposed to date
satisfy this condition; this issue is being investigated. Thus, considerations involving matter
fields provide detailed, quantitative criteria for viability of candidate semi-classical states of
quantum geometry.

Appendix B. List of symbols

a, b, . . . spatial indices for tensor fields on the 3-manifold M
α, β, . . . spacetime indices in sections 2 and 8.1
α, β, . . . labels for graphs on M in the rest of the sections
Aia a connection 1-form on M
A(e) holonomy along an edge e defined by a connection A
A space of smooth connections on M for a given gauge group G
Ā a generalized connection
Ā(e) holonomy along an edge e defined by a generalized connection Ā
Â(e) its corresponding quantum operator
Ā quantum configuration space (of generalized connections)
AS area of a 2-surface (without boundary) S
ÂS its corresponding quantum operator
Aa Maxwell vector potential
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A(e) its corresponding holonomy along an edge e
Ba Maxwell magnetic (vector density) field
C the set of complex numbers
CDiff( 
N) diffeomorphism constraint smeared with Na

ĈDiff( 
N) its corresponding quantum operator
C(N) scalar constraint smeared with N
Ĉ(N) its corresponding quantum operator
CG(�) Gauss constraint smeared with �i

ĈG(�) its corresponding quantum operator
C(n) a differentiability class
Cyl algebra of cylindrical functions on A
Cylα algebra of the cylindrical functions defined by a graph α
Cyl� space of linear functionals on Cyl
Cyl�diff the image of Cyl under the diffeomorphism averaging map
Diff group of certain diffeomorphisms of M (defined in section 4.3.5)
e a closed-piecewise analytic edge (defined in section 4.3.1)
Eai triads with density weight 1, defining the Riemannian geometry onM
εijk structure constants of su(2) (of a general g in section 4)
ηij the Killing form on su(2) (on a general Lie algebra g in section 4)
ηabc metric independent, totally skew pseudo-tensor density of weight 1 onM
ηabc metric independent, totally skew pseudo-tensor density of weight −1 onM
η diffeomorphism averaging map (defined in section 6.2)
F iab curvature of Aia
G a compact Lie group
g its Lie algebra
G Newton’s constant
γ Barbero–Immirzi parameter
H kinematical Hilbert space of quantum geometry
Hα subspace of H defined by cylindrical functions compatible with graph α
H′
α subspace of Hα used in the spin network decomposition of H
i, j, . . . internal indices for so(3) = su(2) (in section 4, for a general g)
I, J, . . . four-dimensional internal indices in section 2
I, J, . . . labels (e.g., for edges, punctures, etc) in sections 4–9
IE map from the space of connections on a graph with n edges into Gn

IV map from the space of gauge transformations on a graph with m vertices into Gm

Ĵ
(v,e)
i operator on Cylα associated with an edge e and a vertex v of α
k 8π times Newton’s constant
κ surface gravity of isolated horizons
κ(S, e) a constant (0,± − 1) assigned to a surface S and edge e intersecting it
�Pl Planck length
L2 space of square integrable functions
M three-dimensional (‘spatial’) manifold (generally assumed to be compact)
M four-dimensional spacetime manifold
N the set of natural numbers
P ia momentum canonically conjugate to Aia
P (S, f ) flux across a 2-surface S of P ai smeared with a test field f i

P̂ (S, f ) quantum operator corresponding to P(S, f )
Pa momentum conjugate to the Maxwell connection Aa
P(g) Maxwell momentum smeared against a test field ga
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P̂(g) its corresponding quantum operator
qab positive definite metric on M
q̂v,α the quantum operator representing the determinant of qab(v), restricted to Cylα
R the set of real numbers
S a closed-piecewise analytic sub-manifold of M (defined in section 4.3.1)
�iab Hodge-dual of the gravitational momentum P ai

(
�iab = ηabcηijEcj

)
Tr trace
VR the volume of a region R defined by qab
V̂R its corresponding quantum volume
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[85] Kuchař K 1993 Canonical quantum gravity General Relativity and Gravitation 1992 ed R J Gleiser,
C N Kozameh and O M Moreschi (Bristol: Institute of Physics Publishing) pp 119–50

[86] Ashtekar A, Tate R S and Uggla C 1993 Minisuperspaces: observables and quantization Int. J. Phys. D 2 15–50
Ashtekar A, Tate R S and Uggla C 1993 Minisuperspaces: symmetries and quantization Misner Festschrift

ed B L Hu et al (Cambridge: Cambridge University Press)
[87] Ashtekar A and Tate R S 1994 An algebraic extension of Dirac quantization: examples J. Math. Phys. 35

6434–70



Topical Review R149

[88] Marolf D 1995 Refined algebraic quantization: systems with a single constraint Preprint gr-qc/9508015
[89] Ashtekar A, Lewandowski J, Marolf D, Mourão J and Thiemann T 1995 Quantization of diffeomorphism

invariant theories of connections with local degrees of freedom J. Math. Phys. 36 6456–93
[90] Marolf D, Mourão J and Thiemann T 1997 The status of diffeomorphism super-selection in Euclidean 2 + 1

gravity J. Math. Phys. 38 4730–40
[91] Guilini N and Marolf D 1999 On the generality of refined algebraic quantization Class. Quantum Grav. 16

2479–88
Guilini N and Marolf D 1999 A uniqueness theorem for constraint quantization Class. Quantum Grav. 16

2489–505
[92] Lewandowski J and Thiemann T 1999 Diffeomorphism invariant quantum field theories of connections in

terms of webs Class. Quantum Grav. 16 2299–322
[93] Corichi A and Zapata J A 1997 On diffeomorphism invariance for lattice theories Nucl. Phys. B 493 475–90

Quantum Einstein’s equation II

[94] Rovelli C and Smolin L 1994 The physical Hamiltonian in nonperturbative quantum gravity Phys. Rev. Lett.
72 446–9

[95] Thiemann T 1996 Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum
gravity Phys. Lett. B 380 257–64

[96] Thiemann T 1998 Quantum spin dynamics (QSD) Class. Quantum Grav. 15 839–73
[97] Thiemann T 1998 QSD: III. Quantum constraint algebra and physical scalar product in quantum general

relativity Class. Quantum Grav. 15 1207–47
[98] Thiemann T 1998 QSD: V. Quantum gravity as the natural regulator of matter quantum field theories Class.

Quantum Grav. 15 1281–314
[99] Thiemann T 2001 Quantum spin dynamics (QSD): VII. Symplectic structures and continuum lattice

formulations of gauge field theories Class. Quantum Grav. 18 3293–338
[100] Gambini R, Lewandowski J, Marolf D and Pullin J 1998 On the consistency of the constraint algebra in spin

network quantum gravity Int. J. Mod. Phys. D 7 97–109
[101] Lewandowski J and Marolf D 1998 Loop constraints: a habitat and their algebra Int. J. Mod. Phys. D 7 299–330
[102] Gaul G and Rovelli C 2001 Generalized Hamiltonian constraint operator in loop quantum gravity and its

simplest Euclidean matrix elements Class. Quantum Grav. 18 1593–624

Big-bang

[103] Kodama H 1988 Specialization of Ashtekar’s formalism to Bianchi cosmology Prog. Theor. Phys. 80 1024–40
Kodama H 1990 Holomorphic wavefunction of the universe Phys. Rev. D 42 2548–65

[104] Bojowald M 2001 Absence of singularity in loop quantum cosmology Phys. Rev. Lett. 86 5227–30
[105] Bojowald M 2001 Inverse scale factor in isotropic quantum geometry Phys. Rev. D 64 084018
[106] Bojowald M 2001 Dynamical initial conditions in quantum cosmology Phys. Rev. Lett. 87 121301
[107] Bojowald M 2001 Loop quantum cosmology: IV. Discrete time evolution Class. Quantum Grav. 18 1071–88
[108] Bojowald M 2001 Loop quantum cosmology: III. Wheeler–DeWitt operators Class. Quantum Grav.

18 1055–70
Bojowald M 2002 The semiclassical limit of loop quantum cosmology Class. Quantum Grav. 18 L109–16

[109] Bojowald M 2001 The inverse scale factor in isotropic quantum geometry Phys. Rev. D 64 084018
[110] Bojowald M 2002 Isotropic loop quantum cosmology Class. Quantum Grav. 19 2717–42
[111] Bojowald M and Hinterleitner F 2002 Isotropic loop quantum cosmology with matter Phys. Rev. D 66 104003
[112] Bojowald M and Vandersloot K 2003 Loop quantum cosmology, boundary proposals, and inflation Phys. Rev.

D 67 124023
[113] Bojowald M 2003 Homogeneous loop quantum cosmology Class. Quantum Grav. 20 2595–615
[114] Bojowald M 2003 Gen. Rel. Grav. 35 1877–83 first prize in the Gravity Research Foundation Essay Contest

(Initial conditions for a universe Preprint gr-qc/0305069)
[115] Ashtekar A, Bojowald M and Lewandowski J 2003 Mathematical structure of loop quantum cosmology Adv.

Theor. Math. Phys. 7 233–68
[116] Bojowald M, Date G and Vandersloot K 2004 Homogeneous loop quantum cosmology: the role of the spin

connection Class. Quantum Grav. 21 1253–78
[117] Ashtekar A, Bojowald M and Willis J 2004 Quantum corrections to Friedmann equations in loop quantum

cosmology (in preparation)
Black holes

[118] Bekenstein J D 1973 Black holes and entropy Phys. Rev. D 7 2333–46
Bekenstein J D 1974 Generalized second law of thermodynamics in black hole physics Phys. Rev. D 9

3292–300



R150 Topical Review

Bekenstein J D and Meisels A 1977 Einstein A and B coefficients for a black hole Phys. Rev. D 15
2775–81

[119] Bardeen J W, Carter B and Hawking S W 1973 The four laws of black hole mechanics Commun. Math. Phys.
31 161–70

[120] Hawking S W 1975 Particle creation by black holes Commun. Math. Phys. 43 199–220
[121] Gibbons G and Hawking S W 1977 Cosmological event horizons, thermodynamics, and particle creation Phys.

Rev. D 15 2738–51
[122] Smolin L 1995 Linking topological quantum field theory and nonperturbative quantum gravity J. Math. Phys.

36 6417–55
[123] Barreira M, Carfora M and Rovelli C 1996 Physics with non-perturbative quantum gravity: radiation from a

quantum black hole Gen. Rel. Grav. 28 1293–9
Rovelli C 1996 Black hole entropy from loop quantum gravity Phys. Rev. Lett. 14 3288–91
Rovelli C 1996 Loop quantum gravity and black hole physics Helv. Phys. Acta. 69 582–611

[124] Krasnov K 1997 Geometrical entropy from loop quantum gravity Phys. Rev. D 55 3505–13
Krasnov K 1998 On statistical mechanics of Schwarzschild black holes Gen. Rel. Grav. 30 53–68

[125] Jacobson T, Kang G and Myers R C 1994 On black hole entropy Phys. Rev. D 49 6587–98
[126] Wald R 1993 Black hole entropy is Noether charge Phys. Rev. D 48 3427–31

Iyer V and Wald R 1994 Some properties of Noether charge and a proposal for dynamical black hole entropy
Phys. Rev. D 50 846–64

[127] Ashtekar A, Baez J C, Corichi A and Krasnov K 1998 Quantum geometry and black hole entropy Phys. Rev.
Lett. 80 904–7

[128] Ashtekar A, Corichi A and Krasnov K 1999 Isolated horizons: the classical phase space Adv. Theor. Math.
Phys. 3 418–71

[129] Ashtekar A, Baez J C and Krasnov K 2000 Quantum geometry of isolated horizons and black hole entropy
Adv. Theor. Math. Phys. 4 1–95

[130] Kaul R K and Majumdar P 2000 Logarithmic corrections to the Bekenstein–Hawking entropy Phys. Rev. Lett.
84 5255–7

[131] Ashtekar A, Beetle C and Fairhurst S 1999 Isolated horizons: a generalization of black hole mechanics Class.
Quantum Grav. 16 L1–7

Ashtekar A, Beetle C and Fairhurst S 2000 Mechanics of isolated horizons Class. Quantum Grav. 17 253–98
[132] Lewandowski J 2000 Spacetimes admitting isolated horizons Class. Quantum Grav. 17 L53–9
[133] Ashtekar A, Fairhurst S and Krishnan B 2000 Isolated horizons: Hamiltonian evolution and the first law Phys.

Rev. D 62 104025
[134] Ashtekar A, Beetle C and Lewandowski J 2001 Mechanics of rotating isolated horizons Phys. Rev. D 64 044016
[135] Ashtekar A, Beetle C and Lewandowski J 2002 Geometry of generic isolated horizons Class. Quantum Grav.

19 1195–225
[136] Ashtekar A, Corichi A and Sudarski D 2003 Non-minimally coupled scalar fields and isolated horizons Class.

Quantum Grav. 20 3413–25
[137] Ashtekar A and Corichi A 2003 Non-minimal couplings, quantum geometry and black hole entropy Class.

Quantum Grav. 20 4473–84
[138] Ashtekar A, Engle J, Pawlowski T and van der Broeck C 2004 Multipole moments of isolated horizons Class.

Quantum Grav. 21 2549–70
[139] Ashtekar A 2003 Black hole entropy: inclusion of distortion and angular momentum, online at

http://www.phys.psu.edu/events/index.html?event id=517&event type=17
Ashtekar A, Engle J and van der Broeck C 2004 in preparation

[140] Wheeler J A 1992 It from bit Sakharov Memorial Lectures on Physics vol 2, ed L Keldysh and V Feinberg
(Moscow: Nova Science)

[141] Ghosh A and Mitra P 2004 A bound on the log correction to the black hole area law Preprint gr-qc/0401070

Low energy physics:

[142] Ashtekar A, Rovelli C and Smolin L 1992 Weaving a classical geometry with quantum threads Phys. Rev. Lett.
69 237–40

[143] Arnsdorf M and Gupta S 2000 Loop quantum gravity on non-compact spaces Nucl. Phys. B 577 529–46
[144] Corichi A and Reyes J M 2001 A Gaussian weave for kinematical loop quantum gravity Int. J. Mod. Phys.

D 10 325–38
[145] Hall B C 1994 The Segal–Bergmann coherent state transform for compact Lie groups J. Funct. Anal. 122

103–51
[146] Sahlmann H, Thiemann T and Winkler O 2001 Coherent states for canonical quantum general relativity and

the infinite tensor product extension Nucl. Phys. B 606 401–40



Topical Review R151

[147] Thiemann T 2001 Gauge field theory coherent states (GCS): I. General properties Class. Quantum Grav. 18
2025–64

Thiemann T and Winkler O 2001 Gauge field theory coherent states (GCS): II. Peakedness properties Class.
Quantum Grav. 18 2561–636

Thiemann T and Winkler O 2001 Gauge field theory coherent states (GCS): III. Ehrenfest theorems Class.
Quantum Grav. 18 4629–82

Thiemann T and Winkler O 2001 Gauge field theory coherent states (GCS): IV. Infinite tensor product and
thermodynamical limit Class. Quantum Grav. 18 4997–5054

[148] Sahlmann H and Thiemann T 2002 Towards the QFT on curved spacetime limit of QGR: I. A general scheme
Preprint gr-qc/0207030

Sahlmann H and Thiemann T 2002 Towards the QFT on curved spacetime limit of QGR: II. A concrete
implementation Preprint gr-qc/0207031

[149] Thiemann T 2002 Complexifier coherent states for quantum general relativity Preprint gr-qc/0206037
[150] Bombelli L 2002 Statistical geometry of random weave states Proc. 9th Marcel Grossmann Meeting on

General Relativity ed V G Gurzadyan, R T Jantzen and R Ruffini (Singapore: World Scientific) (Preprint
gr-qc/0101080)

[151] Ashtekar A and Isham C J 1992 Phys. Lett. B 274 393–8
[152] Varadarajan M 2000 Fock representations from U(1) holonomy algebras Phys. Rev. D 61 104001

Varadarajan M 2001 Photons from quantized electric flux representations Phys. Rev. D 64 104003
[153] Ashtekar A and Lewandowski J 2001 Relation between polymer and Fock excitations Class. Quantum Grav.

18 L117–27
[154] Velhinho J M 2002 Invariance properties of induced Fock measures for U(1) holonomies Commun. Math.

Phys. 227 541–50
[155] Ashtekar A, Fairhurst S and Willis J 2003 Quantum gravity, shadow states, and quantum mechanics Class.

Quantum Grav. 20 1031–61
[156] Ashtekar A, Fairhurst S and Ghosh A 2004 (in preparation)
[157] Varadarajan M 2002 Gravitons from a loop representation of linearised gravity Phys. Rev. D 66 024017
[158] Ashtekar A, Ghosh A and Van Den Broeck C 2004 (in preparation)
[159] Bobienski M, Lewandowski J and Mroczek M 2002 A 2-surface quantization of the Lorentzian gravity Proc.

9th Marcel Grossmann Meeting on General Relativity ed V G Gurzadyan, R T Jantzen and R Ruffini
(Singapore: World Scientific) (Preprint gr-qc/0101069)

[160] Ashtekar A, Lewandowski J and Sahlmann H 2003 Polymer and Fock representations of a scalar field Class.
Quantum Grav. 20 L11–21

Spin foams and finiteness

[161] Baez J C 2000 An introduction to spin foam models of quantum gravity and BF theory Lect. Notes Phys. 543
25–94

[162] Baez J C 1998 Spin foam models Class. Quantum Grav. 15 1827–58
[163] Reisenberger M P 1997 A lattice worldsheet sum for 4-d Euclidean general relativity Preprint gr-qc/9711052

Reisenberger M P 1999 On relativistic spin network vertices J. Math. Phys. 40 2046–54
[164] Reisenberger M P and Rovelli C 2001 Spacetime as a Feynman diagram: the connection formulation Class.

Quantum Grav. 18 121–40
Reisenberger M P and Rovelli 2002 Spacetime states and covariant quantum theory Phys. Rev. D 65 125016

[165] Barrett J W and Crane L 1998 Relativistic spin networks and quantum gravity J. Math. Phys. 39 3296–302
Barrett J W and Crane L 2000 A Lorentzian signature model for quantum general relativity Class. Quantum

Grav. 17 3101–18
[166] Perez A 2001 Finiteness of a spinfoam model for Euclidean quantum general relativity Nucl. Phys. B 599

427–34
Perez A and Rovelli C 2001 Spin foam model for Lorentzian general relativity Phys. Rev. D 63 041501
Crane L, Perez A and Rovelli C 2001 Perturbative finiteness in spin-foam quantum gravity Phys. Rev. Lett. 87

181301
Crane L, Perez A and Rovelli C 2001 3 + 1 spinfoam model of quantum gravity with spacelike and timelike

components Phys. Rev. D 64 064002
[167] Baez J, Christensen D, Halford T R and Tsang D C 2002 Spin foam models of Riemannian quantum gravity

Class. Quantum Grav. 19 4627–48
[168] Gambini R and Pullin J 2002 A finite spin-foam-based theory of three and four dimensional quantum gravity

Phys. Rev. D 66 024020
[169] Lauscher O and Reuter M 2002 Is quantum Einstein gravity non-perturbatively renormalizable? Class.

Quantum Grav. 19 483–92



R152 Topical Review

[170] Percacci R and Perini D 2003 Asymptotic safety of gravity coupled to matter Phys. Rev. D 68 044018
Perini D 2003 Gravity and matter with asymptotic safety Preprint hep-th/0305053

[171] Bojowald M and Perez A 2003 Spin foam quantization and anomalies Preprint gr-qc/0303026
[172] Freidel L and Louapre D 2003 Diffeomorphisms and spin foam models Nucl. Phys. B 662 279–98

Freidel L and Louapre D 2003 Non-perturbative summation over 3D discrete topologies Phys. Rev. D 68
104004 (Preprint hep-th/0211026)

[173] Perez A and Noui K 2004 Three dimensional loop quantum gravity: coupling to point particles Preprint
gr-qc/0402111

Perez A and Noui K 2004 Three dimensional loop quantum gravity: physical scalar product and spin foam
models Preprint gr-qc/0402110

Outlook

[174] Ashtekar A, Lewandowski J, Marolf D, Mourão J and Thiemann T 1997 SU(N) quantum Yang–Mills theory
in two dimensions: a complete solution J. Math. Phys. 38 5453–82

[175] Ashtekar A and Sahlmann H 2004 (in preparation)
[176] Okolw A 2004 Representations of quantum geometry PhD Thesis University of Warsaw
[177] Rovelli C and Speziale S 2003 Reconcile Planck-scale discreteness and the Lorentz–Fitzgerald contraction

Phys. Rev. D 67 064019
[178] Thiemann T 2003 The Phoenix project: master constraint programme for loop quantum gravity Preprint

gr-qc/0305080
[179] Dittrich B 2004 Testing the master constraint programme for loop quantum gravity, online at

http://www.phys.psu.edu/events/index.html?event id=850&event type=17
[180] Klauder J 2003 Affine quantum gravity Int. J. Mod. Phys. D 12 1769–74

Klauder J 2004 The utility of coherent states and other mathematical methods in the foundations of affine
quantum gravity Preprint hep-th/0401214

[181] Di Bartolo C, Gambini R, Griego J and Pullin J 2000 Consistent canonical quantization of general relativity in
the space of Vassiliev knot invariants Phys. Rev. Lett. 84 2314–7

Di Bartolo C, Gambini R, Griego J and Pullin J 2000 Canonical quantum gravity in the Vassiliev invariants
arena: I. Kinematical structure Class. Quantum Grav. 17 3211–38

Di Bartolo C, Gambini R, Griego J and Pullin J 2000 Canonical quantum gravity in the Vassiliev invariants
arena: II. Constraints, habitats and consistency of the constraint algebra Class. Quantum Grav. 17 3239–64

[182] Gambini R and Pullin J 2003 Canonical quantization of general relativity in discrete spacetimes Phys. Rev.
Lett. 90 021301

Gambini R, Porto R and Pullin J 2004 Loss of coherence from discrete quantum gravity Class. Quantum Grav.
21 L51–7

Gambini R, Porto R and Pullin J 2004 A relational solution to the problem of time in quantum mechanics and
quantum gravity induces a fundamental mechanism for quantum decoherence Preprint gr-qc/0402118

[183] Horowitz G T 1998 Quantum states of black holes Black Holes and Relativistic Stars ed R M Wald (Chicago,
IL: University of Chicago Press)

[184] Carlip S 1999 Entropy from conformal field theory at Killing horizons Class. Quantum Grav. 16 3327–48
[185] Dreyer O, Ghosh A and Wisniewski J 2001 Black hole entropy calculations based on symmetries Class.

Quantum Grav. 18 1929–38
[186] Carlip S 2002 Near-horizon conformal symmetry and black hole entropy Phys. Rev. Lett. 88 241301
[187] Ashtekar A and Krishnan B 2002 Dynamical horizons: energy, angular momentum, fluxes and balance laws

Phys. Rev. Lett. 89 261101
Ashtekar A and Krishnan B 2003 Dynamical horizons and their properties Phys. Rev. D 68 104030

[188] Bojowald M 2002 Inflation from quantum geometry Phys. Rev. Lett. 89 261301
[189] Bojowald M and Date G 2004 Quantum suppression of the generic chaotic behavior close to cosmological

singularities Phys. Rev. Lett. 92 071302
[190] Tsujikawa S, Singh P and Maartens R 2003 Loop quantum gravity effects on inflation and the CMB Preprint

astro-ph/0311015


