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Abstract

We review a class of non-topological defects in the standard electroweak model, and their implications.
Starting with the semilocal string, which provides a counterexample to many well-known properties of
topological vortices, we discuss electroweak strings and their stability with and without external in#uences
such as magnetic "elds. Other known properties of electroweak strings and monopoles are described in some
detail and their potential relevance to future particle accelerator experiments and to baryon number
violating processes is considered. We also review recent progress on the cosmology of electroweak defects
and the connection with super#uid helium, where some of the e!ects discussed here could possibly be
tested. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 11.10.!z; 11.27.#d
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1Or monopolia, after analogous con"gurations in super#uid helium [95].
2One example, outside the scope of the present review, are so-called vorticons, proposed by Huang and Tipton, which

are closed loops of string with one quantum of Z boson trapped inside.

1. Introduction

In a classic paper from 1977 [102], a decade after the S;(2)
L
];(1)

Y
model of electroweak

interactions had been proposed [52], Nambu made the observation that, while the
Glashow}Salam}Weinberg (GSW) model does not admit isolated, regular magnetic monopoles,
there could be monopole}antimonopole pairs joined by short segments of a vortex carrying
Z-magnetic "eld (a Z-string). The monopole and antimonopole would tend to annihilate but, he
argued, longitudinal collapse could be stopped by rotation. He dubbed these con"gurations
dumbells1 and estimated their mass at a few TeV. A number of papers advocating other, related,
soliton-type solutions2 in the same energy range followed [41], but the lack of topological stability
led to the idea "nally being abandoned during the 1980s.

Several years later, and completely independently, it was observed that the coexistence of global
and gauge symmetries can lead to stable non-topological strings called `semilocal stringsa [127] in
the sin2 h

8
"1 limit of the GSW model that Nambu had considered. Shortly afterwards it was

proved that Z-strings were stable near this limit [123], and the whole subject made a comeback.
This report is a review of the current status of research on electroweak strings.

Apart from the possibility that electroweak strings may be the "rst solitons to be observed in the
standard model, there are two interesting consequences of the study of electroweak and semilocal
strings. One is the unexpected connection with baryon number and sphalerons. The other is
a deeper understanding of the connection between the topology of the vacuum manifold (the set of
ground states of a classical "eld theory) and the existence of stable non-dissipative con"gurations,
in particular when global and local symmetries are involved simultaneously.

In these pages we assume a level of familiarity with the general theory and basic properties
of topological defects, in particular with the homotopy classi"cation. There are some excellent
reviews on this subject in the literature to which we refer the reader [53,32,116]. On the other hand,
electroweak and semilocal strings are non-topological defects, and this forces us to take a slightly
di!erent point of view from most of the existing literature. Emphasis on stability properties is
mandatory, since one cannot be sure from the start whether these defects will actually form. With
very few exceptions, this requires an analysis on a case by case basis.

Following the discussion in [33], one should begin with the de"nition of dissipative con"gura-
tions. Consider a classical "eld theory with energy density ¹

00
50 such that ¹

00
"0 everywhere

for the ground states (or `vacuaa) of the theory. A solution of a classical "eld theory is said to be
dissipative if

lim
t?=

max
x

¹
00

(x, t)"0 . (1)

We will consider theories with spontaneous symmetry breaking from a Lie group G (which we
assume to be "nite-dimensional and compact) to a subgroup H; the space V of ground states of the
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3The names cosmic string and vortex are also common. Usually, `vortexa refers to the con"guration in two spatial
dimensions, and `stringa to the corresponding con"guration in three spatial dimensions; the adjective `cosmica helps to
distinguish them from the so-called fundamental strings or superstrings.

theory is usually called the vacuum manifold and, in the absence of accidental degeneracy, is given
by V"G/H.

The classi"cation of topological defects is based on the homotopy properties of the vacuum
manifold. If the vacuum manifold contains non-contractible n-spheres then "eld con"gurations in
n#1 spatial dimensions whose asymptotic values as rPR `wrap arounda those spheres are
necessarily non-dissipative, since continuity of the scalar "eld guarantees that, at all times, at least
in one point in space the scalar potential (and thus the energy) will be non-zero. The region in space
where energy is localized is referred to as a topological defect. Field con"gurations whose asymp-
totic values are in the same homotopy class are said to be in the same topological sector or to have
the same winding number.

In three spatial dimensions, it is customary to use the names monopole, string3 and domain wall
to refer to defects that are point-like, one- or two-dimensional, respectively. Thus, one can have
topological domain walls only if n

0
(V)O1, topological strings only if n

1
(V)O1 and topological

monopoles only if n
2
(V)O1. Besides, defects in di!erent topological sectors cannot be deformed

into each other without introducing singularities or supplying an in"nite amount of energy. This
is the origin of the homotopy classi"cation of topological defects. We should point out that the
topological classi"cation of textures based on n

3
(V) has a very di!erent character, and will not

concern us here; in particular, con"gurations from di!erent topological sectors can be continuously
deformed into each other with a "nite cost in energy. In general, textures unwind until they reach
the vacuum sector and therefore they are dissipative.

It is well known, although not always su$ciently stressed, that the precise relationship between
the topology of the vacuum and the existence of stable defects is subtle. First of all, note that
a trivial topology of the vacuum manifold does not imply the non-existence of stable defects.

Secondly, we have said that a non-trivial homotopy of the vacuum manifold can result in
non-dissipative solutions but, in general, these solutions need not be time independent nor stable to
small perturbations. One exception is the "eld theory of a single scalar "eld in 1#1 dimensions,
where a disconnected vacuum manifold (i.e. one with n

0
(V)O1) is su$cient to prove the existence

of time independent, classically stable `kinka solutions [55,33]. But this is not the norm. The O(3)
model, for instance, has topological global monopoles [16] which are time independent, but they
are unstable to angular collapse even in the lowest non-trivial winding sector [54].

It turns out that the situation is particularly subtle in theories where there are global and gauge
symmetries involved simultaneously. The prototype example is the semilocal string, described in
Section 3. In the semilocal string model, the classical dynamics is governed by a single parameter
b"m2

4
/m2

7
that measures the square of the ratio of the scalar mass, m

4
, to the vector mass, m

7
(this is

the same parameter that distinguishes type I and type II superconductors). It turns out that:

f When b'1 the semilocal model provides a counterexample to the widespread belief that
quantization of magnetic #ux is tantamount to its localization, i.e., con"nement. The vector
boson is massive and we expect this to result in con"nement of magnetic #ux to regions of width
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4We want to stress that, contrary to what is often stated in the literature, the semilocal string with b(1 is absolutely
stable, and not just metastable.

given by the inverse vector mass. However, this is not the case! As pointed out by Hindmarsh
[59] and Preskill [109], this is a system where magnetic #ux is topologically conserved and
quantized, and there is a "nite energy gap between the non-zero #ux sectors and the vacuum, and
yet there are no stable vortices.

f When b(1 strings are stable4 even though the vacuum manifold is simply connected,
p
1
(V)"1. Semilocal vortices with b(1 are a remarkable example of a non-topological defect

which is stable both perturbatively and to semiclassical tunnelling into the vacuum [110].

As a result, when the global symmetries of a semilocal model are gauged, dynamically stable
non-topological solutions can still exist for certain ranges of parameters very close to stable
semilocal limits. In the case of the standard electroweak model, for instance, strings are (classically)
stable only when sin2 h

8
+1 and the mass of the Higgs is smaller than the mass of the Z boson.

We begin with a description of the Glashow}Salam}Weinberg model, in order to set our
notation and conventions, and a brief discussion of topological vortices (cosmic strings). It will be
su$cient for our purposes to review cosmic strings in the Abelian Higgs model, with a special
emphasis on those aspects that will be relevant to electroweak and semilocal strings. We should
point out that these vortices were "rst considered in condensed matter by Abrikosov [2] in the
non-relativistic case, in connection with type II superconductors. Nielsen and Olesen were the "rst
to consider them in the context of relativistic "eld theory, so we will follow a standard convention
in high energy physics and refer to them as Nielsen}Olesen strings [103].

Sections 3}5 are dedicated to semilocal and electroweak strings, and other embedded defects
in the standard GSW model. Electroweak strings in extensions of the GSW model are discussed
in Section 6.

In Section 7 the stability of straight, in"nitely long electroweak strings is analysed in detail (in the
absence of fermions). Sections 8 and 10 investigate fermionic superconductivity on the string,
the e!ect of fermions on the string stability, and the scattering of fermions o! electroweak strings.
The surprising connection between strings and baryon number, and their relation to sphalerons, is
described in Sections 9 and 10. Here we also discuss the possibility of string formation in particle
accelerators (in the form of dumbells, as was suggested by Nambu in the 1970s) and in the early
universe.

Finally, Section 11 describes a condensed matter analog of electroweak strings in super-
#uid helium which may be used to test our ideas on vortex formation, fermion scattering and
baryogenesis.

A few comments are in order:

f Unless otherwise stated we take space time to be #at, (3#1)-dimensional Minkowski space; the
gravitational properties of embedded strings are expected to be similar to those of
Nielsen}Olesen strings [51] and will not be considered here. A limited discussion of possible
cosmological implications can be found in Sections 3.5 and 9.4.

f We concentrate on regular defects in the standard model of electroweak interactions. Certain
extensions of the Glashow}Salam}Weinberg model are brie#y considered in Section 6 but
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otherwise they are outside the scope of this review; the same is true of singular solutions. In
particular, we do not discuss isolated monopoles in the GSW model [51,31], which are
necessarily singular.

f No family mixing e!ects are discussed in this review and we also ignore S;(3)
c

colour
interactions, even though their physical e!ects are expected to be very interesting, in particular in
connection with baryon production by strings (see Section 9).

f Our conventions are the following: space time has signature (#,!,!,!). Planck's constant
and the speed of light are set to one, +"c"1. The notation (x) is shorthand for all space-time
coordinates (x0,xi), i"1, 2, 3; whenever the x-coordinate is meant, it will be stated explicitly. We
also use the notation (t, x).

f Complex conjugation and hermitian conjugation are both indicated with the same symbol, (s),
but it should be clear from the context which one is meant. For fermions, tM "tsc0, as usual.
Transposition is indicated with the symbol ( T).

f One "nal word of caution: a gauge "eld is a Lie Algebra valued one-form A"Akdxk"
Aak¹adxk, but it is also customary to write it as a vector. In cylindrical coordinates (t,o,u, z),
A"A

t
dt#Aodo#Ardu#A

z
dz is often written A"A

t
tK#Aoo(#(Ar/o)u(#A

z
z( , In spheri-

cal coordinates, (t, r, h,u), A"A
t
dt#A

r
dr#Ahdh#Ardu is also written A"A

t
tK#A

r
r(#

(Ah/r)hK #(Ar/r sin h)u( . We use both notations throughout.

1.1. The Glashow}Salam}Weinberg model

In this section we set out our conventions, which mostly follow those of [30].
The standard (GSW) model of electroweak interactions is described by the Lagrangian

¸"¸
b
# +

&!.*-*%4

¸
f
#¸

fm
. (2)

The "rst term describes the bosonic sector, comprising a neutral scalar /0, a charged scalar /`,
a massless photon Ak , and three massive vector bosons, two of them charged (=Bk ) and the
neutral Zk .

The last two terms describe the dynamics of the fermionic sector, which consists of the three
families of quarks and leptons

A
l
e

e

u

d B A
lk
k

c

s B A
lq
q

t

b B . (3)

1.1.1. The bosonic sector
The bosonic sector describes an S;(2)

L
];(1)

Y
invariant theory with a scalar "eld U in the

fundamental representation of S;(2)
L
. It is described by the Lagrangian

¸
b
"¸

W
#¸

Y
#¸U!<(U) (4)
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with

¸
W
"!1

4
=akl=kla, a"1, 2, 3 ,

¸
Y
"!1

4
>kl>kl , (5)

where=akl"Rk=al!Rl=al#geabc=bk=cl and >kl"Rk>l!Rl>k are the "eld strengths for the
S;(2)

L
and ;(1)

Y
gauge "elds, respectively. Summation over repeated S;(2)

L
indices is under-

stood, and there is no need to distinguish between upper and lower ones: e123"1. Also,

¸U"DDjUD2,KARj!
ig
2

qa=aj!
ig@
2
>jBUK

2
, (6)

<(U)"j(UsU!g2/2)2 , (7)

where qa are the Pauli matrices,

q1"A
0 1

1 0B, q2"A
0 !i

i 0 B, q3"A
1 0

0 !1B , (8)

from which one constructs the weak isospin generators ¹a"1
2
qa satisfying [¹a,¹b]"ieabc¹c.

The classical "eld equations of motion for the bosonic sector of the standard model of the
electroweak interactions are (ignoring fermions)

DkDkU#2jAUsU!

g2

2 BU"0 , (9)

Dl=kla"jka
W
"

i
2
g[UsqaDkU!(DkU)sqaU] , (10)

Rl>kl"jk
Y
"

i
2
g@[UsDkU!(DkU)sU] , (11)

where Dl=kla"Rl=kla#geabc=bl=klc.
When the Higgs "eld U acquires a vacuum expectation value (VEV), the symmetry breaks from

S;(2)
L
];(1)

Y
to ;(1)

%.
. In particle physics it is standard practice to work in unitary gauge

and take the VEV of the Higgs to be SUTT"g(0, 1)/J2. In that case the unbroken;(1) subgroup,
which describes electromagnetism, is generated by the charge operator

Q,¹3#
>
2
"A

1 0

0 0B (12)

and the two components of the Higgs doublet are charge eigenstates

U"A
/`

/0 B . (13)

> is the hypercharge operator, which acts on the Higgs like the 2]2 identity matrix. Its eigenvalue
on the various matter "elds can be read-o! from the covariant derivatives Dk"Rk!ig=ak¹a!

ig@>k (>/2) which are listed explicitly in Eqs. (6) and (24)}(28).
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In unitary gauge, the Z and A "elds are de"ned as

Zk,cos h
8
=3k!sin h

8
>k , Ak,sin h

8
=3k#cos h

8
>k , (14)

and=Bk ,(=1kGi=2k)/J2 are the= bosons. The weak mixing angle h
8

is given by tan h
8
,g@/g;

electric charge is e"g
z
sin h

8
cos h

8
with g

z
,(g2#g@2)1@2.

However, unitary gauge is not the most convenient choice in the presence of topological defects,
where it is often singular. Here we shall need a more general de"nition in terms of an arbitrary
Higgs con"guration U(x):

Zk,cos h
8
na(x)=ak!sin h

8
>k , Ak,sin h

8
na(x)=ak#cos h

8
>k , (15)

where

na(x),!

Us(x)qaU(x)
Us(x)U(x)

(16)

is a unit vector by virtue of the Fierz identity +
a
(UsqaU)2"(UsU)2. In what follows, we omit

writing the x-dependence of na explicitly. Note that na is ill-de"ned when U"0, so in particular at
the defect cores.

The generators associated with the photon and the Z-boson are, respectively,

Q"na¹a#>/2, ¹
Z
"cos2 h

8
na¹a!sin2 h

8

>
2
"na¹a!sin2 h

8
Q , (17)

while the generators associated with the (charged)= bosons are determined, up to a phase, by the
conditions

[Q,¹B]"$¹B, [¹`,¹~]"na¹a"¹
Z
#sin2 h

8
Q, (¹`)s"¹~ . (18)

(note that if na"(0, 0, 1), as is the case in unitary gauge, one would take ¹B"(¹1$i¹2)/J2.)
There are several di!erent choices for de"ning the electromagnetic "eld strength but, following

Nambu, we choose

Akl"sin h
8

na=akl#cos h
8
>kl , (19)

where=akl and >kl are "eld strengths. The di!erent choices for the de"nition of the "eld strength
agree in the region where DkU"0 where Dk is the covariant derivative operator; in particular
this is di!erent from the well known 't Hooft de"nition which is standard for monopoles [65].
(For a recent discussion of the various choices see, e.g. [63,62,121].) And the combination of S;(2)
and ;(1) "eld strengths orthogonal to Akl is de"ned to be the Z "eld strength:

Zkl"cosh
8

na=akl!sin h
8
>kl . (20)

1.1.2. The fermionic sector
The fermionic Lagrangian is given by a sum over families plus family mixing terms (¸

&.
). Family

mixing e!ects are outside the scope of this review, and we will not consider them any further. Each
family includes lepton and quark sectors

¸
f
"¸

l
#¸

q
(21)
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which for, say, the "rst family are

¸
l
"!iWM ckDkW!ie6

R
ckDkeR#h(e6

R
UsW#WM Ue

R
) where W"A

l
e

e BL (22)

¸
q
"!i(u6 , dM )

L
ckDkA

u

dBL!iu6
R
ckDkuR!idM

R
ckDkdR

!G
dC(u6 , dM )LA

/`

/0 BdR#dM
R
(/~,/H)A

u

dBLD
!G

uC(u6 , dM )LA
!/H

/~ BuR#u6
R
(!/0, /`)A

u

dBLD (23)

where /H and /~ are the complex conjugates of /0 and /` respectively. h,G
d

and G
u

are Yukawa
couplings. The indices L and R refer to left- and right-handed components and, rather than list
their charges under the various transformations, we give here all covariant derivatives explicitly:

DkW"DkA
l

eBL"ARk!
ig
2

qa=ak#
ig@
2
>kBA

l

eBL , (24)

DkeR"(Rk#ig@>k)eR , (25)

DkA
u

dBL"ARk!
ig
2

qa=ak!
ig@
6
>kBA

u

dBL , (26)

DkuR"ARk!
i2g@
3
>kBuR , (27)

DkdR"ARk#
ig@
3
>kBdR . (28)

One xnal comment: Electroweak strings are non-topological and their stability turns out to
depend on the values of the parameters in the model. In this paper we will consider the electric
charge e, Yukawa couplings and the VEV of the Higgs, g/J2, to be given by their measured values,
but the results of the stability analysis will be given as a function of the parameters sin2 h

8
and

b"(m
H
/m

Z
)2 (the ratio of the Higgs mass to the Z mass squared); we remind the reader

that sin2h
8
+0.23, m

Z
,g

z
g/2"91.2GeV, m

W
,gg/2"80.41GeV and current bounds on the

Higgs mass m
H
,J2jg are m

H
'77.5GeV, and an unpublished bound m

H
'90GeV.

2. Review of Nielsen}Olesen topological strings

We begin by reviewing Nielsen}Olesen (NO) vortices in the Abelian Higgs model, with emphasis
on those aspects that are relevant to the study of electroweak strings. More detailed information
can be found in existing reviews [53].
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5b is also the parameter that distinguishes superconductors or type I (b(1) from type II (b'1).

2.1. The Abelian Higgs model

The theory contains a complex scalar "eld U and a ;(1) gauge "eld which becomes massive
through the Higgs mechanism. By analogy with the GSW model, we will call this "eld >k . The
action is

S"Pd4xCDDkUD2!jAUsU!

g2

2 B
2
!

1
4
>kl>klD , (29)

where Dk"Rk!iq>k is the ;(1)-covariant derivative, and >kl"Rk>l!Rl>k is the ;(1) "eld
strength. The theory is invariant under ;(1) gauge transformations:

U(x)Pe*qs(x)U(x)"UK (x), >k(x)P>k(x)#Rks(x)">K k(x) (30)

which give DkU(x)PDK kUK (x)"e*qs(x)DkU.
The equations of motion derived from this Lagrangian are

DkDkU#2jADUD2!
g2

2 BU"0 ,

Rk>kl"!iqUs aDlU .
(31)

Before we proceed any further, we should point out that, up to an overall scale, the classical
dynamics of the Abelian Higgs model is governed by a single parameter, b"2j/q2, the (square
of the) ratio of the scalar mass to the vector mass.5 The action (29) contains three parameters
(j, g, q), which combine into the scalar mass J2jg"m

4
,l~1

4
, the vector mass qg"m

7
,l~1

7
, and

an overall energy scale given by the vacuum expectation value of the Higgs, g/J2. The rescaling

U(x)"
g

J2
UK (x), x"

J2
qg

x( , >k"
g

J2
>K k (32)

changes the action to

S"
1
q2Pd4x [DDkUD2!1

2
b(UsU!1)2!1

4
>kl>kl] , (33)

where now Dk"Rk!i>k and we have omitted hats throughout for simplicity. In physical terms
this corresponds to taking l

7
as the unit of length (up to a factor of J2) and absorbing the ;(1)

charge q into the de"nition of the gauge "eld, thus

UPU/SDUDT, xPx/J2l
7
, e>kP>kJ2l

7
, EPE/SDUD2T . (34)
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The energy associated with (29) is

E"Pd3xCDD0
UD2#DD

i
UD2#jAUsU!

g2

2 B
2
#1

2
E2#1

2
B2D , (35)

where the electric and magnetic "elds are given by F
0i
"E

i
and F

ij
"e

ijk
Bk, respectively

(i, j, k"1, 2, 3). Modulo gauge transformations, the ground states are given by >k"0, U"ge*C/
J2, where C is constant. Thus, the vacuum manifold is the circle

V"MU3C DUsU!1
2
g2"0N+S1 . (36)

A necessary condition for a con"guration to have "nite energy is that the asymptotic scalar "eld
con"guration as rPR must lie entirely in the vacuum manifold. Also, DkU must tend to zero,
and this condition means that scalar "elds at neighbouring points must be related by an in"nite-
simal gauge transformation. Finally, the gauge "eld strengths must also vanish asymptotically.
Note that, in the Abelian Higgs model, the last condition follows from the second, since
0"[Dk , Dl]U"!iq>klU implies >kl"0. But this need not be the case when the Abelian Higgs
model is embedded in a larger model.

Vanishing of the covariant derivative term implies that, at large r, the asymptotic con"guration
U(x) must lie on a gauge orbit;

U(x)"g(x)U
0

where g(x)3G and U
0
3V . (37)

where U
0

is a reference point in V. Note that, since all symmetries are gauge symmetries, the set
of points that can be reached from U

0
through a gauge transformation (the gauge orbit of U

0
)

spans the entire vacuum manifold. Thus, V"G/H"G
-0#!-

/H
-0#!-

, where G
-0#!-

indicates the group
of gauge, i.e. local, symmetries. On the other hand, the spaces V and G

-0#!-
/H

-0#!-
need not coincide

in models with both local and global symmetries, and this fact will be particularly relevant in the
discussion of semilocal strings.

2.2. Nielsen}Olesen vortices

In what follows we use cylindrical coordinates (t,o,u, z). We are interested in a static, cylindric-
ally symmetric con"guration corresponding to an in"nite, straight string along the z-axis.

The ansatz of Nielsen and Olesen [103] for a string with winding number n is

U"(g/J2) f (o)e*nr, q>r"nv(o), >o">t">z"0 (38)

(that is, >"v(o) du or Y"u( v(o)/o), with boundary conditions

f (0)"v(0)"0, f (o)P1, v(o)P1 as oPR . (39)

Note that, since >
z
">

t
"0, and all other "elds are independent of t and z, the electric "eld is

zero, and the only surviving component of the magnetic "eld B is in the z direction.
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Fig. 1. The functions f
NO

, v
NO

for a string with winding number n"1 (top panel) and n"50 (bottom panel), for

b,2j/q2"0.5. The radial coordinate has been rescaled as in Eq. (32), o("qgo/J2.

Substituting this ansatz into the equations of motion we obtain the equations that the functions
f and v must satisfy

f A(o)#
f @(o)
o

!

n2f (o)
o2

[1!v(o)]2#jg2(1!f (o)2) f (o)"0 ,

vA(o)!
v@(o)
o

#q2g2f 2(o)[1!v(o)]"0 .
(40)

In what follows, we will denote the solutions to the system (40), (39) by f
NO

and v
NO

; they are not
known analytically, but have been determined numerically; for n"1, b"0.5, they have the pro"le
in Fig. 1.

At small o, the functions f and v behave as on and o2 respectively; as oPR, they approach their
asymptotic values exponentially with a width given by the inverse scalar mass, m

4
, and the inverse

vector mass, m
7
, respectively, if b(4. For b'4 the fall-o! of both the scalar and the vector is

controlled by the vector mass [105].
One case in which it is possible to "nd analytic expressions for the functions f

NO
and v

NO
is in the

limit nPR [6]. Inside the core of a large n vortex, the functions f and v are

f (o)"((q/4n)m
4
m

7
o2)n@2e~qm4m7o2@8, v(o)"(1/4n)m

4
m

7
o2 (41)

to leading order in 1/n, and the transition to their vacuum values is controlled by a "rst integral
W( f, f @, v, v@)"const. Large n vortices behave like a conglomerate of `solida n"1 vortices. The area
scales as n, so the radius goes like Jn¸

0
, where ¸

0
"2(Jm

4
m

7
)~1. The transition region between

the core and asymptotic values of the "elds is of the same width as for n"1 vortices Fig. 1 shows
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the functions f
NO

, v
NO

for n"50, b"0.5 (note that for b'1 these multiply winding solutions are
unstable to separation into n"1 vortices which repel one another [26,66]).

2.2.1. Energy considerations
The energy per unit length of such con"gurations (static and z-independent) is therefore

E"Pd2xCDDm
UD2#

1
2
B2#jAUsU!

g2

2 B
2

D , (42)

where m, n"1, 2 and B"R
m
>
n
!R

n
>
m

is the z-component of the magnetic "eld.
In order to have solutions with "nite energy per unit length we must demand that, as oPR,

DkU, DUD2!g2/2 and >
mn

all go to zero faster than 1/o.
The vacuum manifold (36) is a circle and strings form when the asymptotic "eld con"guration of

the scalar "eld winds around this circle. The important point here is that there is no way to extend
a winding con"guration inwards from o"R to the entire xy plane continuously while remaining
in the vacuum manifold. Continuity of the scalar "eld implies that it must have a zero somewhere
in the xy plane. This happens even if the xy plane is deformed, and at all times, and in three
dimensions one "nds a continuous line of zeroes which signal the position of the string (a sheet in
space time). Note that the string can have no ends; it is either in"nitely long or a closed loop.

The zeroes of the scalar "eld are forced by the non-zero topological degree of the map

S1PV ,

uPU(o"R, u) ,
(43)

usually called the winding number of the vortex; the resulting vortices are called topological because
they are labelled by non-trivial elements of the "rst homotopy group of the vacuum manifold
(where non-trivial means `other than the identity elementa). Thus, n

1
(V)"p

1
(S1)O1, is a neces-

sary condition for the existence of topological vortices. Vortices whose asymptotic scalar "eld
con"gurations are associated with the identity element of p

1
(V) are called non-topological. In

particular, if V is simply connected, i.e. p
1
(V)"1, one can only have non-topological vortices.

A few comments are needed at this point.

2.2.2. Quantization of magnetic yux
Recall that B is the z-component of the magnetic "eld. The magnetic #ux F

Y
through the

xy-plane is therefore

F
Y
,Pd2xB"Po/=

Y
=
) dl"P

2p

0

Rrsdu"

2pn
q

(44)

and is quantized in units of 2p/q. This is due to the fact that U(o"R,u)"ge*qs(r)/J2,
DrU"g/J2[iqRrs!iq>r]"0 and U must be single-valued, thus q[s(2p)!s(0)]"2pn. The
integer n is, again, the winding number of the vortex.

2.2.3. Magnetic pressure
In an Abelian theory, the condition $ )B"0 implies that parallel magnetic "eld lines repel.

A two-dimensional scale transformation xPj x where the magnetic "eld is reduced accordingly to
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keep the magnetic #ux constant, BK"K~2B(x/K), reduces the magnetic energy :d2xB2/2 by K2.
What this means is that a tube of magnetic lines of area S

0
can lower its energy by a factor of K2 by

spreading over an area K2S
0
.

Note that later we will consider non-Abelian gauge symmetries, for which $ )BO0 and the
energy can also be lowered in a di!erent way. In this case, one can think of the gauge "elds
as carrying a magnetic moment which couples to the `magnetica "eld and, in the presence of
a su$ciently intense magnetic "eld, the energy can be lowered by the spontaneous creation of
gauge bosons. In the context of the electroweak model, this process is known as=-condensation
[11] and its relevance for electroweak strings is explained in Section 7.

2.2.4. Meissner ewect and symmetry restoration
In the Abelian Higgs model, as in a superconductor, it is energetically costly for magnetic "elds

to coexist with scalar "elds in the broken symmetry phase. Superconductors exhibit the Meissner
e!ect (the expulsion of external magnetic "elds), but as the sample gets larger or the magnetic "eld
more intense, symmetry restoration becomes energetically favourable. An example is the genera-
tion of Abrikosov lattices of vortices in type II superconductors, when the external magnetic "eld
reaches a critical value.

The same phenomenon occurs in the Abelian Higgs model. In a region where there is a concen-
tration of magnetic #ux, the coupling term q2A2U2 in the energy will tend to force the value of the
scalar "eld towards zero (its value in the symmetric phase). This will be important to understand
the formation of semilocal (and possibly electroweak) strings, where there is no topological
protection for the vortices, during a phase transition (see Section 3.5). The back reaction of the
gauge "elds on the scalars depends on the strength of the coupling constant q. When q is large
(in a manner that will be made precise in Section 3.5) semilocal strings tend to form regardless of
the topology of the vacuum manifold.

2.3. Stability of Nielsen}Olesen vortices

Given a solution to the classical equations of motion, there are typically two approaches to the
question of stability. One is to consider the stability with respect to in"nitesimal perturbations of
the solution. If one can establish that no perturbation can lower the energy, then the solution is
called classically stable. Small perturbations that do not alter the energy are called zero modes, and
signal the existence of a family of con"gurations with the same energy as the solution whose
stability we are investigating (e.g. because of an underlying symmetry). If one can guess an
instability mode, this approach is very e$cient in showing that a solution is unstable (by "nding the
instability mode explicitly) but it is usually much more cumbersome to prove stability; mathemat-
ically the problem reduces to an eigenvalue problem and one often has to resort to numerical
methods. A stability analysis of this type for Nielsen}Olesen vortices has only been carried out
recently by Goodband and Hindmarsh [56]. An analysis of the stability of semilocal and
electroweak strings can be found in later sections.

A second approach, due to Bogomolnyi, consists in "nding a lower bound for the energy in each
topological sector and proving that the solution under consideration saturates this bound. This
immediately implies that the solution is stable, although it does not preclude the existence of zero
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6When b"1, the masses of the scalar and the vector are equal, and the Abelian Higgs model can be made
supersymmetric. In general, bounds of the form (energy)5(constant)](#ux) are called Bogomolnyi bounds, and their
origin can be traced back to supersymmetry.

modes or even of other con"gurations with the same energy to which the solution could
tunnel semiclassically. We will now turn to Bogomolnyi's method in the case of Nielsen}Olesen
vortices.

2.3.1. Bogomolnyi limit and bounds
Consider the scalar gradients

(D
1
U)sD

1
U#(D

2
U)sD

2
U"[(D

1
#iD

2
)U]s(D

1
#iD

2
)U!i[(D

1
U)sD

2
U!(D

2
U)sD

1
U]

"D(D
1
#iD

2
)UD2!i[R

1
(UsD

2
U)!R

2
(UsD

1
U)]#iUs[D

1
, D

2
]U . (45)

Note that the second term on the RHS of (45) is the curl of the current J
i
"!iUsD

i
U, and that

{ J ) dl tends to zero as oPR for con"gurations with "nite energy per unit length (because D
i
U

must vanish faster than 1/o). Now use the identity [D
1
, D

2
]U"!iqF

12
U"!iqBU to rewrite

the energy per unit length as follows:

E"Pd2xCD(D1
$iD

2
)UD2#1

2
B2$qBUsU#jAUsU!

g2

2 B
2

D
"Pd2xCD(D1

$iD
2
)UD2#

1
2GB$qAUsU!

g2

2 BH
2
#(j!1

2
q2)AUsU!

g2

2 B
2

D
$q

g2

2 PBd2x . (46)

The last integral is the total magnetic #ux, and we saw earlier that it has to be an integral multiple
of 2p/q, so we can write, introducing b"2j/q2,

E"2p($n)
g2

2
#PCD(D1

$iD
2
)UD2#

1
2CB$qAUsU!

g2

2 BD
2

#1
2
q2(b!1)AUsU!

g2

2 B
2

D , (47)

where the plus or minus signs are chosen so that the "rst term is positive, depending on the sign of
the magnetic #ux.

Note that, if b51 the energy is bounded below by

E5SUsUTqF
Y

, (48)

where F
Y

is the magnetic #ux.6
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If b"1, there are con"gurations that saturate this bound: those that satisfy the "rst-order
Bogomolnyi equations

(D
1
$iD

2
)U"0, B$q(UsU!1

2
g2)"0 (49)

or, in terms of f (o) and v(o),

f @(o)#($n)((v(o)!1)/o) f (o)"0, ($n)v@(o)#(q2g2/2)o( f 2(o)!1)"0 . (50)

However, when b'1 there does not exist a static solution with E"pDnDg2 since requiring, e.g.,
B#q(UsU!g2/2)"0 and (UsU!g2/2)"0 simultaneously would imply B"0, which is incon-
sistent with the condition on the total magnetic #ux, :Bd2x"2pn/q. This has an e!ect on the
stability of higher winding vortices when b'1: if n'1 the solution breaks into n vortices each
with a unit of magnetic #ux [26], which repel one another.

If n"1 there are stable static solutions, but with an energy higher than the Bogomolnyi bound.
This is because the topology of the vacuum manifold forces a zero of the Higgs "eld, and then
competition between magnetic and potential energy "xes the radius of the solution. The same
argument shows that n"1 strings are stable for every value of b. One still has to worry about
angular instabilities, but a careful analysis by [56] shows there are none.

The dynamics of multivortex solutions is governed by the fact that when b(1 vortices attract,
but with b'1 they repel [66]. This can be understood heuristically from the competition between
magnetic pressure and the desire to minimize potential energy by having symmetry restoration in
as small an area as possible. The width of the scalar vortex depends on the inverse mass of the
Higgs, l

4
, that of the magnetic #ux tube depends on the inverse vector boson mass, l

7
. If b(1, have

m
7
'm

4
so l

7
(l

4
(the radii of the scalar and vector tubes). The scalar tubes see each other "rst

} they attract. Whereas if b'1, the vector tubes see each other "rst } they repel. For b"1 there is
no net force between vortices, and there are static multivortex solutions for any n. In the Abelian
Higgs case they were explicitly constructed by Taubes [69] and their scattering at low kinetic
energies has been investigated using the geodesic approximation of Manton [96] by Ruback [114]
and, more recently, Samols [117]. For b(1, Goodband and Hindmarsh [56] have found bound
states of two n"1 vortices oscillating about their centre of mass.

3. Semilocal strings

The semilocal model is obtained when we replace the complex scalar "eld in the Abelian Higgs
model by an N-component multiplet, while keeping only the overall phase gauged. In this section
we will concentrate on N"2 because of its relationship to electroweak strings, but the generaliz-
ation to higher N is straightforward, and is discussed below.

3.1. The model

Consider a direct generalization of the Abelian Higgs model where the complex scalar "eld is
replaced by an S;(2) doublet UT"(/

1
, /

2
). The action is

S"Pd4xCD(Rk!iq>k)UD2!
1
4
>kl>kl!jAUsU!

g2

2 B
2

D , (51)
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where>k is the;(1) gauge potential and>kl"Rk>l!Rl>k its "eld strength. Note that this is just
the scalar sector of the GSW model for g"0, g@"g

z
"2q, i.e. for sin2 h

8
"1, and =ak"0.

Let us take a close look at the symmetries. The action is invariant under G"S;(2)
'-0"!-

]
;(1)

-0#!-
, with transformations

UPe*qc(x)U"A
e*qc(x) 0

0 e*qc(x)BA
/

1
/

2
B, >kP>k#Rkc(x) , (52)

under ;(1)
-0#!-

, and

UPe*aa qaU"A
cos(a

2
)#in

3
sin(a

2
) i(n

1
!in

2
)sin(a

2
)

i(n
1
#in

2
)sin(a

2
) cos(a

2
)!in

3
sin(a

2
)BA

/
1

/
2
B, >kP>k (53)

under S;(2)
'-0"!-

, where a"Ja2
1
#a2

2
#a2

3
3[0, 4p) is a positive constant and n

a
"a

a
/a is

a constant unit vector. Note that a shift of the function c(x) by 2p/q leaves the transformations
una!ected. The model actually has symmetry G"[S;(2)

'-0"!-
];(1)

-0#!-
]/Z

2
; the Z

2
identi"cation

comes because the transformation with (a, c) is identi"ed with that with (a#2p, c#p/q). Once
U acquires a vacuum expectation value, the symmetry breaks down to H";(1) exactly as in
the GSW model, except for the fact that the unbroken ;(1) subgroup is now global (for instance,
if the VEV of the Higgs is SUTT"g(0, 1)/J2, the unbroken global ;(1) is the subgroup
with n

1
"n

2
"0, n

3
"1, qc"a/2). Thus, the symmetry breaking is [S;(2)

'-0"!-
];(1)

-0#!-
]/

Z
2
P;(1)

'-0"!-
.

Note also that, for any xxed U
0

a global phase change can be achieved with either a global
;(1)

-0#!-
transformation or a S;(2)

'-0"!-
transformation. The signi"cance of this fact will become

apparent in a moment.
Like in the GSW model, the vacuum manifold is the three sphere

V"MU3C2 D UsU"1
2
g2N+S3 , (54)

which is simply connected, so there are no topological string solutions. On the other hand, if we
only look at the gauged part of the symmetry, the breaking looks like;(1)P1, identical to that of
the Abelian Higgs model, and this suggests that we should have local strings.

After symmetry breaking, the particle content is two Goldstone bosons, one scalar of mass
m

4
"J2jg and a massive vector boson of mass m

7
"qg. In this section it will be convenient to use

rescaled units throughout; after the rescaling (32), and dropping hats, we "nd

q2S"Pd4xCD(Rk!i>k )UD2!
1
4
>kl>kl!

b
2
(UsU!1)2D , (55)

and, as in the Abelian Higgs case, b"m2
4
/m2

7
"2j/q2 is the only free parameter in the model. The

equations of motion

DkDkU#b(DUD2!1)U"0, Rk>kl"!iUs aDlU . (56)

are exactly the same as in the Abelian Higgs model but replacing the scalar "eld by the S;(2)
doublet, and complex conjugation by Hermitian conjugation of U. Therefore, any solution
UK (x), >K k (x) of (31) (in rescaled units) extends trivially to a solution U

4-
(x), (>k)4- (x) of the semilocal
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model if we take

U
4-
(x)"UK (x)U

0
, (>k)4-(x)">K k(x) (57)

with U
0

a constant S;(2) doublet of unit norm, Us
0
U

0
"1. In particular, the Nielsen}Olesen string

can be embedded in the semilocal model in this way. The con"guration

U"f
NO

(o)e*nrU
0
, >"nv

NO
(o) du (58)

remains a solution of the semilocal model with winding number n provided f
NO

and v
NO

are
the solutions to the Nielsen}Olesen equations (40). In this context, the constant doublet U

0
is

sometimes called the &colour' of the string (do not confuse with S;(3) colour!). One important
di!erence with the Abelian Higgs model is that a scalar perturbation can remove the zero of U at
the centre of the string, thereby reducing the potential energy stored in the core.

Consider the energy per unit length, in these units, of a static, cylindrically symmetric con"gura-
tion along the z-axis:

E
(g2/2)

"Pd2xC
1
4
(R

m
>
n
!R

n
>
m
)2#D(R

m
!i>

m
)UD2#

b
2
(UsU!1)2D . (59)

Note, "rst of all, that any "nite energy con"guration must satisfy

(R
m
!i>

m
)/

1
P0, (R

m
!i>

m
)/

2
P0, /M

1
/
1
#/M

2
/

2
P1 as oPR .

(As before, m, n"1, 2 and (o, u) are polar coordinates on the plane orthogonal to the string.) This
leaves the phases of /

1
and /

2
undetermined at in"nity and there can be solutions where both

phases change by integer multiples of 2p as we go around the string; however, there is only one;(1)
gauge "eld available to compensate the gradients of /

1
and /

2
, and this introduces a correlation

between the winding in both components: the condition of "nite energy requires that the phases of
/
1

and /
2

di!er by, at most, a constant, as oPR. Therefore, a "nite energy string must tend
asymptotically to a maximal circle on S3:

UPe*nrA
ae*C

J1!a2B,e*nrU
0

>Pn duAor YP

n
o
u( B , (60)

where 04a41 and C are real constants, and determine the &colour' of the string. A few comments
are needed at this point.

f Note that the choice of U
0

is arbitrary for an isolated string (any value of U
0

can be rotated into
any other without any cost in energy) but the relative &colour' between two or more strings is
"xed. That is, the relative value of U

0
is signi"cant whereas the absolute value is not.

f The number n is the winding number of the string and, although it is not a topological invariant
in the usual sense (the vacuum manifold, S3, is simply connected), it is topologically conserved.
The reason is that, even though any maximal circle can be continuously contracted to a point on
S3, all the intermediate con"gurations have in"nite energy. The space that labels "nite energy
con"gurations is not the vacuum manifold but, rather, the gauge orbit from any reference point
U

0
3V, and this space (G

-0#!-
/H

-0#!-
) is not simply connected: p

1
(G

-0#!-
/H

-0#!-
)"p

1
(;(1)/1)"Z.
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7The fact that the gauge orbits sit inside V"G/H without giving rise to non-contractible loops can be traced back to
the previous remark that every point in the gauge orbit of U

0
can also be reached from U

0
with a global transformation.

Thus, con"gurations with di!erent winding numbers are separated by in"nite energy barriers,
but this information is not contained in p

1
(V).7

f On the other hand, because p
1
(V)"1, the existence of a topologically conserved winding

number does not guarantee that winding con"gurations are non-dissipative either. In contrast
with the Abelian Higgs model, a "eld con"guration with non-trivial winding number at o"R

can be extended inwards for all o without ever leaving the vacuum manifold. Thus, the fact that
p
1
(G

-0#!-
/H

-0#!-
)O1 only means that "nite energy "eld con"gurations fall into inequivalent

sectors, but it says nothing about the existence of stable solutions within these sectors.
f Thus, we have a situation where

p
1
(V)"p

1
(G/H)"p

1
(S3)"1 but p

1
(G

-0#!-
/H

-0#!-
)"p

1
(S1)"Z , (61)

and the e!ect of the global symmetry is to eliminate the topological reason for the existence of
the strings. Notice that this subtlety does not usually arise because these two spaces are the same
in theories where all symmetries are gauged (like GSW, Abelian Higgs, etc.). We will now show
that, in the semilocal model, the stability of the string depends on the dynamics and is controlled
by the value of the parameter b"2j/q2. Heuristically we expect large b to mimic the situation
with only global symmetries (where the strings would be unstable), whereas small b resembles the
situation with only gauge symmetries (where we expect stable strings).

3.2. Stability

Let us "rst prove that there are classically stable strings in this model. We can show this
analytically for b"1 [127]. Recall the expression of the energy per unit length (59). The analysis in
the previous section goes through when the complex "eld is replaced by the S;(2) doublet, and we
can rewrite

E
(g2/2)

"2pDnD#Pd2x[DD
1
U$iD

2
UD2#1

2
(B$(UsU!1))2#1

2
(b!1)(UsU!1)2] , (62)

choosing the upper or lower signs depending on the sign of n. Since n is "xed for "nite energy
con"gurations this shows that, at least for b"1, a con"guration satisfying the Bogomolnyi
equations

(D
1
$iD

2
)U"O, B$(UsU!1)"0 , (63)

is a local minimum of the energy and, therefore, automatically stable to in"nitesimal perturbations.
But these are the same equations as in the Abelian Higgs model, therefore the semilocal string (58)
automatically saturates the Bogomolnyi bound (for any &colour'U

0
). Thus, it is classically stable for

b"1.
This argument does not preclude zero modes or other con"gurations degenerate in energy.

Hindmarsh [59] showed that, for b"1 there are indeed such zero modes, described below in
Section 3.2.3.
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8 In the Nielsen}Olesen case a con"guration with a non-trivial winding number must go through zero somewhere for

the "eld to be continuous. But here, a con"guration like UT(o"R)"g(0, e*r)/J2 can gradually change to

UT(o"0)"g(1, 0)J2 as we move towards the centre of the `stringa without ever leaving the vacuum manifold. This is
usually called &unwinding' or &escaping in the third dimension' by analogy with condensed matter systems like nematic
liquid crystals.

We have just proved that, for b"1, semilocal strings are stable. This is surprising because the
vacuum manifold is simply connected and a "eld con"guration that winds at in"nity may unwind
without any cost in potential energy.8 The catch is that, because p

1
(G

-0#!-
/H

-0#!-
)"p

1
(;(1))"Z is

non-trivial, leaving the ;(1) gauge orbit is still expensive in terms of gradient energy.
As we come in from in"nity, the "eld has to choose between unwinding or forming a semilocal

string, that is, between acquiring mostly gradient or mostly potential energy. The choice depends
on the relative strength of these terms in the action, which is governed by the value of b, and we
expect the "eld to unwind for large b, when the reduction in potential energy for going o! the
vacuum manifold is high compared to the cost in gradient energy for going o! the;(1) orbits, and
vice versa. Indeed, we will now show that, for b'1, the n"1 vortex is unstable to perturbations in
the direction orthogonal to U

0
[59] while, for b(1, it is stable. For b"1, some of the perturbed

con"gurations become degenerate in energy with the semilocal vortex and this gives a (complex)
one-parameter family of solutions with the same energy and varying core radius [59].

3.2.1. The stability of strings with b'1
Hindmarsh [59] has shown that for b'1 the semilocal string con"guration with unit winding is

unstable to perturbations orthogonal to U
0
, which make the magnetic #ux spread to in"nity. As

pointed out by Preskill [109], this is remarkable because the total amount of #ux measured at
in"nity remains quantized, but the #ux is not con"ned to a core of "nite size (which we would have
expected to be of the order of the inverse vector mass).

The semilocal string solution with n"1 is, in rescaled units,

U
4-
"f

NO
(o)e*rU

0
, >

4-
"v

NO
(o) du . (64)

However, as pointed out in [59], this is not the most general static one-vortex ansatz compatible
with cylindrical symmetry. Consider the ansatz

U"f (o)e*rU
0
#g(o)e*mrU

M
, >"v(o) du , (65)

with DU
0
D"DU

M
D"1 and UM

0
U

M
"0. The orthogonality of U

0
and U

M
ensures that the e!ect of

a rotation can be removed from U by a suitable S;(2)];(1) transformation, therefore the
con"guration is cylindrically symmetric. For the con"guration to have "nite energy we require the
boundary conditions f (0)"g@(0)"v(0)"0 and fP1, gP0, vP1 as oPR.

We know that if g"0 the energy is minimized by the semilocal string con"guration
f"f

NO
, v"v

NO
, because the problem is then identical to the Abelian Higgs case. The question is

whether a non-zero g can lower the energy even further, in which case the semilocal string would
be unstable. The standard way to "nd out is to consider a small perturbation of (64) of the
form g"/(o)e*ut and look for solutions of the equations of motion where g grows exponentially,
that is, where u2(0. The problem reduces to "nding the negative eigenvalue solutions to the
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9Preskill has emphasized that the `mixinga of global and local generators is a necessary condition for this behaviour,
that is, there must be a generator of H which is a non-trivial linear combination of generators of G

'-0"!-
and G

-0#!-
[109].

SchroK dinger}type equation

C!
1
o

d
doAo

d
doB#

(v(o)!m)2
o2

#b( f (o)2!1)Dt(o)"u2t(o) . (66)

First of all, it turns out that it is su$cient to examine the m"0 case only. Note that, since
04v(o)41, for m'1 the second term is everywhere larger than for m"1, so if one can show that
all eigenvalues are positive for m"1 then so are the eigenvalues for m'1. But for m"1 the
problem is identical to the analogous one for instabilities in f in the Abelian Higgs model, and we
know there are no instabilities in that case. Therefore it is su$cient to check the stability of
the solution to perturbations with m"0 (negative values of m also give higher eigenvalues than
m"0).

If m"0, the above ansatz yields

E
(g2/2)

"2pP
=

0

oC( f @)2#(g@)2#
1

2o2
(v@)2#

(1!v)2
o2

f 2#
v2
o2

g2#
1
2
b( f 2#g2!1)2D do (67)

for the (rescaled) energy functional (59). Notice that a non-zero g at o"0 (where fO1) reduces the
potential energy but increases the gradient energy for small values of o. If b is large, this can be
energetically favourable (conversely, for very small b, the cost in gradient energy due to a non-zero
g could outweigh any reduction in potential energy). Indeed, Hindmarsh showed that there are no
minimum-energy vortices of "nite core radius when b'1 by constructing a one-parameter family
of con"gurations whose energy tends to the Bogomolnyi bound as the parameter o

0
is increased:

f (o)"
o
o
0
C1#

o2

o2
0
D

~1@2
, g(o)"C1#

o2

o2
0
D

~1@2
, v(o)"

o2

o2
0
C1#

o2

o2
0
D

~1
. (68)

The energy per unit length of these con"gurations is E"pg2(1#1/3o2
0
) which, as o

0
PR, tends

to the Bogomolnyi bound. This shows that any stable solution must saturate the Bogomolnyi
bound, but this is impossible because, when b'1, saturation would require B"0 everywhere,
which is incompatible with the total magnetic #ux being 2p/q (see the comment after Eq. (50)).
While this does not preclude the possibility of a metastable solution, numerical studies have found
no evidence for it [59,7]. All indications are that, for b'1, the semilocal string is unstable towards
developing a condensate in its core which then spreads to in"nity.

Thus, the semilocal model with b'1 is a system (see Fig. 2) where magnetic #ux is quantized, the
vector boson is massive and yet there is no con"nement of magnetic #ux.9

3.2.2. The stability of strings with b(1
Semilocal strings with b(1 are stable to small perturbations (see Fig. 3). Numerical analysis of

the eigenvalue equations [59,60] shows no negative eigenvalues, and numerical simulations of the
solutions themselves indicate that they are stable to z-independent perturbations [7,4], including
those with angular dependence. Note that the stability to z-dependent perturbations is automatic,
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Fig. 2. A two-dimensional simulation of the evolution of a perturbed isolated semilocal string with b'1, from [7]. The
plot shows the (rescaled) energy density per unit length in the plane perpendicular to the string. b"1.1. The initial
conditions include a large destabilizing perturbation in the core, UT(t"0)"(1, f

NO
(o)e*r), which is seen to destroy the

string.

as they necessarily have higher energy. These results are con"rmed by studies of electroweak string
stability [57,6] taken in the limit h

8
Pp/2.

3.2.3. b"1 zero modes and skyrmions
Substituting the ansatz (65) into the (rescaled) Bogomolnyi equations for n"1 gives

f @(o)#
v(o)!1

o
f (o)"0 ,

g@(o)#
v(o)
o

g(o)"0 , (69)

v@(o)#o( f 2(o)#g2(o)!1)"0 .

When b"1 we showed earlier that the semilocal string f"f
NO

, g"0, v"v
NO

saturates the
Bogomolnyi bound, so it is necessarily stable (since it is a minimum of the energy). There may exist,
however, other solutions satisfying the same boundary conditions and with the same energy.
Hindmarsh showed that this is indeed the case by noticing that the eigenvalue equation has
a zero-eigenvalue solution [59]

t"t
0

expC!P
o

0

do(
v(o( )
o( D, t

0
"const , (70)

which signals a degeneracy in the solutions to the Bogomolnyi equations. (Note that the &colour' at
in"nity, U

0
, is "xed, so this is not a zero mode associated with the global S;(2) transformations; its

dynamics have been studied in [85].)
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Fig. 3. The evolution of a string with b(1. The initial con"guration is the same as in Fig. 2 but now, after a few
oscillations, the con"guration relaxes into a semilocal string, UT"(0, f

NO
(o)e*r):b"0.9.

It can be shown that the zero mode exists for any value of g, not just g"0; the Bogomolnyi
equations (69) are not independent since

g(o)"q
0

f (o)/o (71)

is a solution of the second equation for any (complex) constant q
0
. Solving the other two equations

leads to the most general solution with winding number one and centred at o"0. It is labelled by
the complex parameter q

0
, which "xes the size and orientation of the vortex:

A
/
1

/
2
B"

1

Jo2#Dq
0
D2A

q
0

oe*rBexpM1
2
u(o; Dq

0
D)N , (72)
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where u"ln DUD2 is the solution to

+2u#2(1!eu)"+2 ln(o2#Dq
0
D2), uP0 as oPR . (73)

If q
0
O0, the asymptotic behaviour of these solutions is very di!erent from that of the Nielsen}

Olesen vortex; the Higgs "eld is non-zero at o"0 and approaches its asymptotic values like
O(o~2). Moreover, the magnetic "eld tends to zero as B&2Dq

0
D2o~4, so the width of the #ux tube

is not as well-de"ned as in the q
0
"0 case when B falls o! exponentially. These q

0
O0 solutions

have been dubbed &skyrmions'. In the limit Dq
0
DP0, one recovers the semilocal string solution (64),

with u"ln( f 2
NO

), the Higgs vanishing at o"0 and approaching the vacuum exponentially fast.
On the other hand, when Dq

0
D<1, u+0 the scalar "eld is in vacuum everywhere and the

solution approximates a CP1 lump [59,86]. Thus, in some sense, the &skyrmions' interpolate
between vortices and CP1 lumps.

3.2.4. Skyrmion dynamics
We have just seen that, for b"1 the semilocal vortex con"guration is degenerate in energy with

a whole family of con"gurations where the magnetic #ux is spread over an arbitrarily large area. It
is interesting to consider the dynamics of these `skyrmionsa when bO1 [60,19]: large skyrmions
tend to contract if b(1 and to expand if b'1. The timescale for the collapse of a large skyrmion
increases quadratically with its size [60]. Thus large skyrmions collapse very slowly.

Benson and Bucher [19] derived the energy spectrum of delocalized &skyrmion' con"gurations
in 2#1 dimensions as a function of their size. More precisely, they de"ned an &antisize'
s"E

.!'/%5*#
/E

505!-
as the ratio of the magnetic energy :d2xB2/2 to the total energy (59). Note that

when the #ux lines are concentrated, magnetic energy is high compared to the other contributions,
and vice versa. Thus, sP0 corresponds to the limit in which the magnetic #ux lines are spread over
an in"nitely large area, which explains the name &antisize'.

For large skyrmions } those with s4b/(1#b) } they concluded that the minimum energy
con"guration among all delocalized con"gurations with antisize s satis"es

E(b, s)"2p
g2

2
b

b!s(b!1)
(74)

(if s'b/(1#b) the analysis does not apply). Therefore, energy decreases monotonically with
decreasing s for b'1 and increases monotonically for b(1, con"rming that delocalized con"g-
urations tend to grow in size if b'1 and shrink if b(1.

This behaviour is observed in numerical simulations [3]. Benson and Bucher [19] have pointed
out that in a cosmological setting the expansion of the Universe could drag the large skyrmions
along with it and stop their collapse. The simulations in #at space are at least consistent with this,
in that they show that delocalized con"gurations tend to live longer when arti"cial viscosity is
increased, but a full numerical simulation of the evolution of semilocal string networks has not yet
been performed and is possibly the only way to answer these questions reliably.

Finally, we stress that the magnetic #ux of a skyrmion does not change when it expands or
contracts (the winding number is conserved) but this does not say anything about how localized the
#ux is. In contrast with the Abelian Higgs case, the size of a skyrmion can be made arbitrarily large
with a "nite amount of energy.

A. Achu& carro, T. Vachaspati / Physics Reports 327 (2000) 347}426 371



3.3. Semilocal string interactions

3.3.1. Multivortex solutions, b"1, same colour
Multi-vortex solutions in 2#1 dimensions corresponding to parallel semilocal strings with the

same colour have been constructed by Gibbons et al. [51] for the critical case b"1. Their analysis
closely follows that of [69] in the case of the Abelian Higgs model, and starts by showing that, as in
that case, the full set of solutions to the (second-order) equations of motion can be obtained by
analysing the solutions to the ("rst-order) Bogomolnyi equations.

In the Abelian Higgs model, solutions with winding number n are labelled by n unordered points
on the plane (those where the scalar "eld vanishes) which, for large separations, are identi"ed with
the positions of the vortices. In the semilocal model, the solutions have other degrees of freedom,
besides position, describing their size and orientation.

Assuming without loss of generality that the winding number n is positive, and working in
temporal gauge >

0
"0, any solution with winding number n is speci"ed (up to symmetry

transformations) by two holomorphic polynomials

P
n
(z)"

n
<
r/1

(z!z
r
)

,zn#p
n~1

zn~1#2#p
1
z#p

0

and

Q
n
(z),q

n~1
zn~1#2#q

1
z#q

0
, (75)

where z"x#iy is a complex coordinate on the xy plane. The solution for the Higgs "elds is, up to
gauge transformations,

A
/
1

/
2
B"

e(1@2)u(z,z6 )

JDP
n
D2#DQ

n
D2A

Q
n

P
n
B , (76)

where the function u(z, z6 )"ln(D/
1
D2#D/

2
D2) must satisfy

+2u#2(1!eu)"+2 ln(DP
n
D2#DQ

n
D2) , (77)

and tend to 0 as DzDPR. Although its form is not known explicitly, Ref. [51] proved the existence
of a unique solution to this equation for every choice of P

n
and Q

n
(if P

n
and Q

n
have a common

root then exp[u/2] has a zero there, so the expression for the Higgs "eld is everywhere well-de"ned).
The gauge "eld can then be read o! from the Bogomolny equations (63). This generalizes (72) to
arbitrary n. The coe$cients of P

n
(z), Q

n
(z) parametrize the moduli space, C2n.

The Nielsen}Olesen vortex has Q
n
"0. If P

n
O0, then in regions where DQ

n
D;DP

n
D one "nds

D/
1
D&1!

1
2 K

Q
n

P
n
K
2
, D/

2
D&K

Q
n

P
n
K, v&1!K

Q
n

P
n
K
2

(78)

indicating that the scalar "elds fall o! as a power law, as opposed to the usual exponential fall o!
found in NO vortices. The same is true of the magnetic "eld.
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Fig. 4. A numerical simulation of the interaction between two parallel semilocal strings with di!erent &colour', from
Ref. [7]. The initial con"guration has one string with UT

1
"(0, f (o

1
)e*r1) and the other with UT

2
"(i f (o

2
)e*r2 , 0), where

(o
i
, u

i
) are polar coordinates centred at the cores of each string. The energy density of the string pair is plotted in the

plane perpendicular to the strings. The colour di!erence is radiated away in the form of Goldstone bosons, and the strings
cores remain at their initial positions: b"0.5.

The low-energy scattering of semilocal vortices and skyrmions with b"1 was studied in [86] in
the geodesic approximation of [96]. The behaviour of these solitons was found to be analogous to
that of CP1 lumps but without the singularities, which are smoothed out in the core.

3.3.2. Interaction of parallel strings, b(1, diwerent colours
Ref. [7] carried out a numerical study in two dimensions of the interaction between stable (b(1)

strings with di!erent `coloura with non-overlapping cores. It was found that the strings tend to
radiate away their colour di!erence in the form of Goldstone bosons, and there is little or no
interaction observed. The position of the strings remains the same during the whole evolution while
the "elds tend to minimize the initial relative S;(2) phase (see Fig. 4).
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Thus, we expect interactions between in"nitely long semilocal strings with di!erent colours to be
essentially the same as for Nielsen}Olesen strings. This expectation is con"rmed by numerical
simulations of two- and three-dimensional semilocal string networks [3,4], discussed in Section 3.5.

3.4. Dynamics of string ends

Note that, in contrast with Nielsen}Olesen strings, there is no topological reason that forces
a semilocal string to continue inde"nitely or form a closed loop. Semilocal strings can end in
a `clouda of energy, which behaves like a global monopole [59].

Indeed, consider the following asymptotic con"guration for the Higgs "eld:

U"

g

J2A
cos 1

2
h

sin 1
2
h e*rB , (79)

which is ill-de"ned at h"p and at r"0. We can make the con"guration regular by introducing
pro"le functions such that the Higgs "eld vanishes at those points:

U"

g

J2A
h
1
(r, h ) cos 1

2
h

h
2
(r, h ) sin 1

2
h e*rB , (80)

where h
1

and h
2

vanish at r"0 and h
2
(r, p)"0. This con"guration describes a string in the z(0

axis ending in a monopole at z"0.
At large distances, r<1, the Higgs "eld is everywhere in vacuum (except at h+p) and we "nd

UssU&x, just like for a Hedgehog in O(3) models. On the other hand, the con"guration for the
gauge "elds resembles that of a semi-in"nite solenoid; the string supplies ;(1) #ux which spreads
out from z"0.

This is the h
8
Pp/2 limit of a con"guration "rst discussed by Nambu [102] in the context of the

GSW model, see Section 5, but here the energy of the monopole is linearly divergent because there
are not enough gauge "elds to cancel the angular gradients of the scalar "eld.

Angular gradients provide an important clue to understand the dynamics of string ends. If b(1,
numerical simulations show that string segments grow to join nearby segments or to form loops
(see Figs. 5 and 6) [4]. This con"rms analytical estimates in Refs. [51,60]. In other cases the string
segment collapses under its own tension, with the monopole and antimonopole at the ends
annihilating each other.

3.5. Numerical simulations of semilocal string networks

As the early Universe expanded and cooled to become what we know today it is very likely that
it went through a number of phase transitions where topological (and possibly non-topological)
defects are expected to have formed according to the Kibble mechanism [76,140,53]. Although
the cosmological evidence for the existence of such defects remains unclear [9], there is plenty
of experimental evidence from condensed matter systems that networks of defects do form
in symmetry-breaking phase transitions [104], the most recent con"rmation coming from the
Lancaster}Grenoble}Helsinki experiments in vortex formation in super#uid helium [17]. An
important question is whether semilocal (and electroweak) strings are stable enough to form in
a phase transition.
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Fig. 5. Loop formation from semilocal string segments. The "gure shows two snapshots, at t"70 and 80, of a 643

numerical simulation of a network of semilocal strings with b"0.05 from Ref. [4], where the ends of an open segment of
string join up to form a closed loop (see Section 3.5 for a discussion of the simulations). Subsequently, the loops seem to
behave like those of topological cosmic string, contracting and disappearing.

Fig. 6. The growth of string segments to form longer strings. The "gure shows two snapshots, at time t"60 and 70 of
a large 2563 numerical simulation of a network of semilocal strings with b"0.05 from Ref. [4]. Note several joinings of
string segments, e.g. two separate joinings on the long central string, and the disappearance of some loops. The di!erent
apparent thickness of strings is entirely an e!ect of perspective. The simulation was performed on the Cray T3E at the
National Energy Research Scienti"c Computing Center (NERSC). See Section 3.5 for a discussion.
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We defer discussion of the electroweak case to Section 9.4. Here we want to review recent
numerical simulations of the formation and evolution of a network of b(1 semilocal strings [3}5]
which show that such strings should indeed form in appreciable numbers in a phase transition. The
results suggest that, even if no vortices are formed immediately after U has acquired a non-zero
vacuum expectation value, the interaction between the gauge "elds and the scalar "elds is such that
vortex formation does eventually occur simply because it is energetically favourable for the random
distribution of magnetic "elds present after the phase transition to become concentrated in regions
where the Higgs "eld has a value close to that of the symmetric phase.

Even though they do not account for the expansion of the Universe, these simulations represent
a "rst step towards understanding semilocal string formation in cosmological phase transitions
and they have already provided very interesting insights into the dynamical evolution of such
a network.

3.5.1. Description of the simulations
From a technical point of view, the numerical simulation of a network of semilocal strings

has additional complications over that of ;(1) topological strings. Because there are not enough
gauge degrees of freedom to cancel all of the scalar "eld gradients, the existence of string cores
depends crucially on the way the "elds (scalar and gauge) interact. Another problem, generic to all
non-topological strings, is that the winding number is not well de"ned for con"gurations where the
scalar is away from a maximal circle in the vacuum manifold, and this makes the identi"cation of
strings much more di$cult than in the case of topological strings.

The strategy proposed in [3] to circumvent these problems is to follow the evolution of the
gauge "eld strength in numerical simulations, since the "eld strength provides a gauge invariant
indicator for the presence of vortices. The initial conditions are obtained by an extension of the
Vachaspati}Vilenkin algorithm [130] appropriate to non-topological defects, plus a short period
of dynamical evolution including a dissipation term (numerical viscosity) to aid the relaxation of
con"gurations in the &basin of attraction' of the semilocal string.

As with any new algorithm, it is essential to check that it reproduces previously known results
accurately, and this has been done in [3]. Note that setting /

2
"0 in the semilocal model obtains

the Abelian Higgs model, thus comparison with topological strings is straightforward, and it is
used repeatedly as a test case, both to check the simulation techniques and to minimise systematic
errors when quoting formation rates. In particular, the proposed technique is tested in a two-
dimensional toy model (representing parallel strings) in three di!erent ways: (a) restriction to the
Abelian Higgs model gives good agreement with analytic and numerical estimates for cosmic
strings in [130]; (b) the results are robust under varying initial conditions and numerical viscosities
(see Fig. 8), and (c) they are in good agreement with previous analytic and numerical estimates for
semilocal string formation in [7,60].

The results are summarized in Fig. 9. We refer the reader to Refs. [3}5] for details; however, a few
comments are needed to understand those "gures.

f The study takes place in #at space time. Temporal gauge and rescaled units (32) are chosen.
Gauss' law, which here is a constraint derived from the gauge choice >

0
"0, is used to test the

stability of the code.
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10 In fact, it turns out that the energy-minimization condition is redundant, since the early stages of dynamical
evolution carry out this role anyway.

Fig. 7. The #ux tube structure in a two-dimensional semilocal string simulation with b"0.05, from Ref. [3]. The upper
panel (t"0) shows the initial condition after the process described in the text. The lower panel shows the con"guration
resolved into "ve #ux tubes by a short period of dynamical evolution (t"100). These #ux tubes are semilocal vortices.

f Space is discretized into a lattice with periodic boundary conditions. The equations of motion
(56) are solved numerically using a standard staggered leapfrog method; however, to reduce its
relaxation time an ad hoc dissipation term was added to each equation (gUQ and g>Q

i
, respect-

ively). A range of strengths of dissipation was tested, and it did not signi"cantly a!ect the number
densities obtained. The simulations displayed in this section all have g"0.5.

f The number density of defects is estimated by an extension of the Vachaspati}Vilenkin algo-
rithm [130] by "rst generating a random initial con"guration for the scalar "elds drawn from the
vacuum manifold, which is not discretized, and then "nding the gauge "eld con"guration that
minimizes the energy associated with (covariant) gradients.10 If space is a grid of dimension N3,
the correlation length is chosen to be some number p of grid points (p"16 in [3,4]; the size of
the lattice is either N"64 or N"256.) To obtain a reasonably smooth con"guration for the
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Fig. 8. A test of the sensitivity of the results to the choice of initial conditions in a two-dimensional simulation with the
algorithm proposed in Section 3.5. The plot shows the number of semilocal strings formed per initial two-dimensional
correlation volume. Each point is an average over 10 simulations. Squares indicate that the vacuum initial conditions
described in the text were used, while open circles indicate that non-vacuum (thermal) initial conditions were used. Both
sets of initial conditions are seen to give comparable results. Statistical results are derived from a large suite of
simulations (700 in all) carried out on a 643 grid (from Ref. [3]).

Fig. 9. The ratio of lengths of semilocal and cosmic strings as a function of the stability parametr b, from [4].

scalar "elds, one throws down random vacuum values on a (N/p)3 subgrid; the scalar "eld is then
interpolated onto the full grid by bisection. Strings are always identi"ed with the location of
magnetic #ux tubes.

For cosmic strings, the two-dimensional toy model accurately reproduces the formation rates of
[130]. For semilocal strings, on the other hand, the initial con"gurations generated in this way
have a complicated #ux structure with extrema of di!erent values (top panel of Fig. 7), and it is far
from clear which of these, if any, might evolve to form semilocal vortices; in order to resolve this
ambiguity, the initial con"gurations are evolved forward in time. As anticipated, in the unstable
regime b'1 the #ux quickly dissipates leaving no strings. By contrast, in the stable regime b(1
string-like features emerge when con"gurations in the `basin of attractiona of the semilocal string
relax unambiguously into vortices (bottom panel of Fig. 7).

Since the initial conditions are somewhat arti"cial, the results were checked against various
other choices of initial conditions, in particular di!erent initial conditions for the gauge "eld and
also `thermala initial conditions for the scalar "eld (see Fig. 8 and Ref. [3] for a precise description
of the initial conditions). All the initial conditions in [3,4] had zero initial velocities for the "elds.
Initial conditions with non-zero "eld momenta have not yet been investigated.

3.5.2. Results and discussion
These simulations give very important information on the dynamics and evolution of a network

of semilocal strings. In particular, they con"rm our discussion in the previous subsection of the
behaviour of the ends of string segments, and of strings with di!erent colours. String segments are
seen to grow in order to join nearby ones or form closed loops, and very short segments are also
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11However, one important point is that no intersection events were observed in the semilocal string simulations, so the
rate of reconnection has not been determined.

12By contrast, charged solutions with D
0
(U)O0 in the Abelian Higgs model have in"nite energy per unit length [72].

observed to collapse and disappear. The colour degrees of freedom do not seem to introduce any
new forces between strings. Because the strings tend to grow or form closed loops, time evolution
makes the network resemble more and more a network of topological strings (NO vortices) but
with lower number densities.11

Note that the correlation length in the simulations is constrained to be larger than the size of the
vortex cores, to avoid overlaps. This results in a minimal value of the parameter b of around 0.05
(if b is lowered further, the scalar string cores become too wide to "t into a correlation volume, in
contradiction with the vacuum values assumed in a Vachaspati}Vilenkin algorithm). Fig. 9 shows
the results for seven di!erent values of b by taking several initial con"gurations on a 643 grid
smoothed over every 16 grid-points. As expected, for b(1 the formation rate depends on b,
tending to zero as b tends to 1. The ratio of semilocal string density to cosmic string density in an
Abelian Higgs model for the same value of b is less than but of order one. For the lowest value of
b simulated (b"0.05), the semilocal string density is about one-third of that of cosmic strings.

One "nal word of caution about the possible cosmological implications of these simulations. We
mentioned above that numerical viscosity was introduced to aid the relaxation of con"gurations
close to the semilocal string. In an expanding Universe the expansion rate would provide some
viscosity, though g would typically not be constant. This may have an important e!ect on the
production of strings. Indeed, note the di!erent numbers of upward and downward pointing #ux
tubes in Fig. 7, despite the zero net #ux boundary condition. The missing #ux resides in the smaller
&nodules', made long-lived by the numerical viscosity; these are none other than the &skyrmions'
described in Section 3. As was explained there, the natural tendency of skyrmions when b(1 is to
collapse into strings, but the timescale for collapse increases quadratically with their size and
Benson and Bucher [19] have argued that the e!ect of the expansion could stop the collapse of
large skyrmions almost completely. On the other hand, one expects skyrmions to be formed with
all possible sizes, so the e!ect of the expansion on the number density of strings remains an open
question. Another important issue that has not yet been addressed is whether these semilocal
networks show scaling behaviour, and whether reconnections are as rare as the above simulations
suggest. Both would have important implications for cosmology. However, the answer to these and
other questions may have to wait until full numerical simulations are available.

3.6. Generalisations and xnal comments

(i) Charged semilocal vortices. The semilocal string solution described earlier in this section is
strongly static and z-independent, by which we mean that D

t
(U)"D

z
(U)"0. It is possible to relax

these conditions while still keeping the Lagrangian and the energy independent of z. The idea is
that, as we move along the z-direction, the "elds move along the orbit of the global symmetries; in
other words, Goldstone bosons are excited.

Abraham has shown that it is possible to construct semilocal vortices with "nite energy
per unit length carrying a global charge [1] in the Bogomolnyi limit b"1.12 They satisfy
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a Bogomolnyi-type bound and are therefore stable. Perivolaropoulos [106] has constructed
spinning vortices (however these have in"nite energy per unit length).

(ii) Semilocal models with S;(N)
'-0"!-

];(1)
-0#!-

symmetry. The generalization of semilocal strings
to so-called extended Abelian Higgs models with an N-component multiplet of scalars whose
overall phase is gauged is straightforward [127,59], and has been analysed in detail in [60,51]. The
strings are stable (unstable) for b(1 (b'1) and for b"1 they are degenerate in energy with
skyrmionic con"gurations labelled by an N!1 complex vector. For winding n, and widely
separated vortices, the Nn complex parameters that characterize the con"gurations can be thought
of as the n positions in R2&C and the (N!1)n &orientations'.

(iii) Semilocal monopoles and generalized semilocality. We have seen that semilocal
strings have very special properties arising from the fact that n

1
(G/H)"0 but n

1
(G

-0#!-
/H

-0#!-
)O0.

An immediate question is whether it is possible to construct other non-topological defects
such that

n
k
(G/H)"0 but n

k
(G

-0#!-
/H

-0#!-
)O0 . (81)

This possibility would be particularly interesting in the case of monopoles, k"2, since they might
retain some of the features of global monopoles, in particular a higher annihilation rate in the early
Universe. Surprisingly, the answer seems to be negative. Within a very natural set of assumptions, it
was shown in [127] that the condition (81) can only be satis"ed if the gauge group G

-0#!-
is Abelian,

and therefore one cannot have semilocal monopoles (nor any other defects satisfying conditions
(81) with k'1).

However, Preskill has remarked that it is possible to de"ne a wider concept of semilocality [109]
by considering the larger approximate symmetry G

!11309
which is obtained in the limit where

gauge couplings are set to zero. The symmetry G
!11309

is partially broken to the exact symmetry
G&G

-0#!-
]G

'-0"!-
(modulo discrete transformations) when the gauge couplings are turned on. It is

then possible to have generalized semilocal monopoles associated with non-contractible spheres in
G

-0#!-
/H

-0#!-
which are contractible in the approximate vacuum manifold G

!11309
/H

!11309
even

though they are still non-contractible in the exact vacuum manifold G/H.
Another obvious possibility is to have topological monopoles with `coloura, by which we mean

extra global degrees of freedom, if the symmetry G&G
'-0"!-

]G
-0#!-

is such that the gauge orbits are
non-contractible two spheres, n

2
(G

-0#!-
/H

-0#!-
)O1. Given that there are no semilocal monopoles

[127], these monopoles must have n
2
(G/H)O1, so they are topologically stable, and they have

additional global degrees of freedom.
(iv) Semilocal defects and Hopf xbrations. In the semilocal model, the action of the gauge group
"bres the vacuum manifold S3 as a non-trivial bundle over S2&CP1, the Hopf bundle. The fact
that this bundle is non-trivial is at the root of conditions (61), and is ultimately the reason why the
topological criterion for the existence of strings fails. In view of this, Hindmarsh [60] has proposed
an alternative de"nition of a semilocal defect: it is a defect in a theory whose vacuum manifold is
a non-trivial bundle with "bre G

-0#!-
/H

-0#!-
.

Extended Abelian Higgs models [60] are similarly related to the "brations of the odd-dimen-
sional spheres S2N~1 with "bre S1 and base space CPN~1. A natural question to ask is if the
remaining Hopf "brations of spheres can also be realized in a "eld theoretic model. This question
was answered a$rmatively in [61] for the S7 S

3
P S4 "bration in a quaternionic model. Other
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non-trivial bundles were also implemented in this paper, but to date the "eld theory realization of
the S15 S

7
P S8 Hopf bundle remains an open problem.

(v) Monopoles and textures in the semilocal model. Since the gauge "eld is Abelian, div B"0, and
isolated magnetic monopoles are necessarily singular in semilocal models. The only way to make
the singularity disappear is by embedding the theory in a larger non-Abelian theory which provides
a regular core, or by putting the singularity behind an event horizon [51]. One important question
that has not yet been addressed is if the scalar gradients in these spherical monopoles make them
unstable to angular collapse into a #ux tube. A related system where this happens is in O(3) global
monopoles where the spherically symmetric con"guration is unstable. In the semilocal case, it is
possible that the pressure from the magnetic "eld might prevent the instability towards angular
collapse.

Finally, note that, because n
3
(S3)"Z, there is also the possibility of textures in the semilocal

model (51). In contrast with purely scalar O(4) models, their collapse seems to be stopped by the
pressure from the magnetic "eld [60]. Of course, they can still unwind by tunnelling.

(vi) We should point out that systems related to the semilocal model have been studied in
condensed matter. In [28], the system was an unconventional superconductor where the role of
the global SU(2) group was played by the spin rotation group. In [135] the hypothetical case of
an `electrically chargeda A-phase of 3He, i.e. a superconductor with the properties of 3He-A, was
considered (see Section 11.1 for a brief discussion of the A and B phases of 3He). In this case the
global group was SO(3), the group of orbital rotations. Both papers discussed continuous vortices
in such superconductors, which correspond to the `skyrmionsa discussed here.

4. Electroweak strings

In this section we introduce electroweak strings. There are two kinds: one, more precisely known
as the Z-string, carries Z-magnetic #ux, and is the type that was discussed by Nambu and that
becomes stable as it approaches the semilocal limit. It is associated with the subgroup generated by

¹
Z
"na¹a!sin2 h

8
Q .

There are other strings in the GSW model that carry S;(2) magnetic #ux, called=-strings. There is
a one-parameter family of= strings which are all gauge equivalent to one another, and they are all
unstable. They are generated by a linear combination of the S;(2) generators ¹` and ¹~. These
will be discussed in more detail in the next section.

4.1. The Z string

Modulo gauge transformations, the con"guration describing a straight, in"nitely long Z-string
along the z-axis is [123]

U"

g

J2
f
NO

(o)e*rA
0

1B ,
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Z"!

2
g
z

v
NO

(o) du or, in vector notation, Z"!

2
g
z

v
NO

(o)
o

u( , (82)

Ak"=Bk "0 ,

where f and v are the Nielsen}Olesen pro"les that solve Eqs. (40). It is straightforward to show that
this is a solution of the bosonic equations of motion (alternatively, one can show that it is an
extremum of the energy [123]). Eqs. (82) describe a string with unit winding. The solutions with
higher winding number can be constructed in an analogous way. Note that the winding number is
not a topological invariant; the unstable string can decay by unwinding until it reaches the vacuum
sector.

The solution (82) reduces to the semilocal string in the limit sin2 h
8
"1, and therefore it is

classically stable for b(1 and unstable for b'1 (see Section 7), where b is now the ratio between
the Higgs mass, J2jg and the Z-boson mass g

z
g/2, thus

b"8j/g2
z

. (83)

The Z-string con"guration is axially symmetric, as it is invariant under the action of the generalised
angular momentum operator

M
z
"¸

z
#S

z
#I

z
, (84)

where ¸
z
, S

z
and I

z
are the orbital, spin and isospin parts, respectively, de"ned in Section 9.2.

The Z-string carries a Z-magnetic #ux

F
Z
"4p/g

z
(85)

thus particles whose Z charge is not an integer multiple of g
z
/2 will have Aharonov}Bohm

interactions with the string (see Section 8.3). The Z-string can terminate on magnetic mono-
poles (such con"gurations are discussed in Section 5). When a string terminates, the discrete
Aharonov}Bohm interaction can be smoothly deformed to the trivial interaction. The smoothness
is provided by the presence of the magnetic #ux of the monopole.

Note that, in the background given by (82), the covariant derivative becomes

dk,Dk DZv453*/'"Rk#i
g
z
2

[!2(¹3!Q sin2 h
8
)]Zk (86)

in particular, left and right fermion "elds couple to Zk with di!erent strengths, since the e!ective
Z-charge

q"!2(¹3!Q sin2 h
8
) (87)

has di!erent values, q
R
"q

L
$1. (Note that q is proportional to the string generator ¹

z
, de"ned in

Eq. (17); the proportionality factor has been introduced for later convenience.) This will be
important when discussing scattering. Note also that, for the Higgs "eld,

q"diag(!cos 2h
8
, 1) . (88)

Ambj+rn and Olesen [10] and, more recently, Bimonte and Lozano [22] have derived Bogomol-
nyi-type bounds for periodic con"gurations in the GSW model. They consider static con"gurations
such that physical observables are periodic in the xy-plane and cylindrically symmetric in each cell.
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If A is the area of the basic cell, they "nd that the energy (per unit length) satis"es

E5(1/2e2)m2
W

(2g@F
Y
!m2

W
A) if m

H
5m

Z
,

E5(1/2e2)(m
W

m
H
/m

Z
)2(2g@F

Y
!m2

W
A) if m

H
(m

Z
,

(89)

where F
Y

is the magnetic #ux of the hypercharge "eld through the cell. Note that the top line of (89)
reduces to the familiar E5SUsUTqF

Y
for the Abelian Higgs and semilocal case in the gP0 limit

(with q"g@/2). In the non-Abelian case the bound involves an area term and therefore does not
admit a topological interpretation.

In the Bogomolnyi limit, m
H
"m

Z
, the bound is saturated for con"gurations satisfying the "rst

order Bogomolnyi equations

D
1
#iD

2
U"0 ,

>
12

#

g@
2 AUsU!

g2

2 sin2 h
8
B"0 , (90)

Wa
12

#1
2
gUsqaU"0 .

A solution to these equations describing a lattice of Z-strings was constructed in [22]. Other
periodic con"gurations with symmetry restoration had been previously found in the presence of an
external magnetic "eld in [10].

5. The zoo of electroweak defects

The electroweak Z-string is one member in the zoo of electroweak defects. Other members
include the electroweak monopole, dyon and the=-string. The latter fall in the class of `embedded
defectsa and this viewpoint provides a simple way to characterize them. The electroweak sphaleron
is also related to the electroweak defects.

5.1. Electroweak monopoles

To understand the existence of magnetic monopoles in the GSW model, recall the following
sequence of facts:

f The Z-string does not have a topological origin and hence it is possible for it to terminate.
f As the hypercharge component of the Z-"eld in the string is divergenceless it cannot terminate.

Therefore it must continue from within the string to beyond the terminus.
f However, beyond the terminus, the Higgs is in its vacuum and the hypercharge magnetic "eld is

massive. Then, if the massive hypercharge #ux was to continue beyond the string, it would cost
an in"nite amount of energy and this is not possible.

f The only means by which the hypercharge "eld can continue beyond the terminus is in
combination with the S;(2) "elds such that it forms the massless electromagnetic magnetic "eld.
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Fig. 10. The outgoing hypercharge #ux of the monopole passing through the surface R!S should equal the incoming
hypercharge #ux through the Z-string.

So the terminus of the Z-string is the location of a source of electromagnetic magnetic "eld, that is,
a magnetic monopole [102]. We now make this argument more quantitative.

Assume that we have a semi-in"nite Z-string along the !z-axis with terminus at the origin
(see Fig. 10). Let us denote the A- and Z-magnetic #uxes through a spatial surface by F

A
and F

Z
.

These are given in terms of the=- and >-#uxes by taking surface integrals of the "eld strengths
(see Eqs. (19) and (20)). Therefore

F
Z
"cos h

8
F

n
!sin h

8
F
Y
, F

A
"sin h

8
F

n
#cos h

8
F
Y

, (91)

where we have denoted the S;(2) #ux (parallel to na in group space) by F
n

and the hypercharge
#ux by F

Y
.

Now consider a large sphere R centered on the string terminus. The "eld con"guration is such
that there is only A-#ux through R except near the South pole (S) of R, where there is only
a Z magnetic #ux. Hence,

F
Z
DR~S

"0, F
A
D
S
"0 . (92)

Together with (91) this gives,

F
n
DR~S

"tan h
8
F

Y
DR~S

, F
n
D
S
"!cot h

8
F

Y
D
S

. (93)

The hypercharge #ux must be conserved as it is divergenceless. So

F
Y
DR~S

"!F
Y
D
S
,F

Y
, (94)

and, inserting this and (93) in (91) yields

F
A
DR~S

"F
Y
/cos h

8
, F

Z
D
S
"F

Y
/sin h

8
. (95)
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Now the #ux in the Z-string along the !z-axis is quantized in units of 4p/g
z

(recall
g
z
"e/cos h

8
sin h

8
gives the coupling of the Z boson to the Higgs "eld). Therefore, for the unit

winding string,

F
Z
D
S
"4p/g

z
. (96)

Then (95) yields

F
Y
"(4p/g

z
)sin h

8
, F

A
DR~S

"(4p/g
z
)tan h

8
"(4p/e)sin2 h

8
. (97)

Hence the terminus of the string has net A-#ux emanating from it and hence it is a magnetic
monopole.

The electromagnetic #ux of the electroweak monopole appears to violate the Dirac quantization
condition. However, this is not true since one must also take the Z-string into account when
deriving the quantization condition relevant to the electroweak monopole. This becomes clearer
when we work out the magnetic #ux for the S;(2) "elds. Using (93) with (97), the net non-Abelian
#ux is

F
n
"F

n
D
S
#F

n
DR~S

"4p/g (98)

just as we would expect for a 't Hooft-Polyakov monopole [65]. That is, the Dirac quantization
condition works perfectly well for the S;(2) "eld and the monopole charge is quantized in units of
4p/g. Another way of looking at (98) is to say that the electroweak monopole is a genuine S;(2)
monopole in which there is a net emanating ;(1)

n
LS;(2) #ux. The structure of the theory,

however, only permits a linear combination of this #ux and hypercharge #ux to be long range and
so there is a string attached to the monopole. But this string is made of Z "eld which is orthogonal
to the electromagnetic "eld and so the string does not surreptitiously return the monopole
electromagnetic #ux. Also, the magnetic charge on the monopole is conserved and electroweak
monopoles can only disappear by annihilating with antimonopoles.

It is useful to have an explicit expression describing the asymptotic "eld of the electroweak
monopole and string. Nambu's monopole-string con"guration, denoted by (UM ,=M ak ,>M k ), is

UM "
g

J2A
cos(h/2)

sin(h/2)e*rB , (99)

where h and u are spherical coordinates centred on the monopole, and the gauge "eld con"gura-
tion is

g=M ak"!eabcnbRknc#i cos2 h
8
na(UM sRkUM !RkUM sUM ) , (100)

g@>M k"!i sin2 h
8
(UM sRkUM !RkUM sUM ) , (101)

where na is given in Eq. (16).
Note that there is no regular electroweak con"guration that represents a magnetic monopole

surrounded by vacuum in the GSW model.

5.2. Electroweak dyons

Given that the electroweak monopole exists, it is natural to ask if dyonic con"gurations exist as
well. We now write down dyonic con"gurations that solve the asymptotic "eld equations [126].
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The existence of such con"gurations is implicit in Nambu's original paper in the guise of what he
called `externala potentials [102]. Essentially, the dyon solution is an electroweak monopole
together with a particular external potential.

The ansatz that describes an electroweak dyon connected by a semi-in"nite Z string is

U"UM , (102)

=a"=M a!dt nafQ /cos h
8

, (103)

>">M !dt fQ /sin h
8

, (104)

where f"f(t, x), overdots denote partial time derivatives and barred "elds have been de"ned in the
previous subsection.

We now need to insert this ansatz into the "eld equations and to "nd the equation satis"ed by f.
Some algebra leads to

RiR
i
fQ"0, R

t
RifQ"0 , (105)

which can be solved by separating variables,

f"m(t) f (x) . (106)

This leads to

mK"0, +2f"0 . (107)

The particular solution that we will be interested in is the solution that gives a dyon. Hence, we take

m"m
0
t, f (r)"!

q sin h
8

cos h
8

4pm
0

1
r

, (108)

where m
0

and q are constants. Now, using (108), together with (103), (104) and (106), we get the dyon
electric "eld

E
A
"(q/4p)r/r3 . (109)

For a long segment of string, the monopole and the antimonopole at the ends are well separated
and we can repeat the above analysis for both of them independently. Therefore, the electric charge
on the antimonopole at one end of a Z-string segment is uncorrelated with the charge on the
monopole at the other end of the string. This means that we can have dyons of arbitrary electric
charge at either end of the string. The situation will change with the inclusion of fermions
since these can carry currents along the string and transport charge from monopole to anti-
monopole.

This completes our construction of the dyon-string system in the GSW model. As of now, the
charge q on the dyon is arbitrary. Quantum mechanics implies that the electric charge must be
quantized. If we include a h term in the electroweak action (but no fermions):

Sh"
g2h
32p2Pd4x=akl=I kl

a , (110)

where

=I kla"1
2
ekljp=akl , (111)

386 A. Achu& carro, T. Vachaspati / Physics Reports 327 (2000) 347}426



then the charge quantization condition becomes

q"(n#(h/2p))e . (112)

This agrees with the standard result for dyons [139].
In the GSW model with fermions, it is known that the h term can be eliminated by a rotation of

the fermionic "elds. This argument can be turned around to argue that the CP violation in the mass
matrix of the fermions will lead to an e!ective h term and so the electroweak monopoles will indeed
have a fractional charge with h being related to the CP violation in the mass matrix. The precise
value of the fractional electric charge on electroweak monopoles has not yet been calculated and
remains an open problem.

It should be mentioned that, even though the electric charge on an electroweak dyon can be
fractional as in (112), the total electric charge on the dyon-string system is always integral
because the CP violating fractional charge on the monopole is equal and opposite to that on the
antimonopole.

5.3. Embedded defects and =-strings

A very simple way of understanding the existence of electroweak string solutions is in terms of
embedded defects. While this method does not shed any light on the stability of the electroweak
string, it does provide a scheme for "nding other solutions.

The idea is that the electroweak symmetry group contains several ;(1) subgroups which break
completely when the electroweak symmetry breaks. Corresponding to each such breaking, one
might have a string solution. A more complete analysis tells us when such a solution can exist
[128,15,35,87].

Consider the general symmetry breaking

GPH . (113)

Suppose G
%."

is a subgroup of G which, in this process, breaks down to G
%."

WH. Then we ask the
question: when are topological defects in the symmetry breaking

G
%."

PG
%."

WH (114)

also solutions in the full theory? An answer to this question requires separating the gauge "elds into
those that transform within the G

%."
subgroup and those that do not. Similarly, the Higgs "eld

components are separated into those that lie in the embedded vector space of scalar "elds and those
that do not. Then, it is possible to write down general conditions under which solutions can be
embedded [15,35]. Here we shall not describe these conditions but remark that the Z-string is
due to the embedded symmetry breaking

;(1)
Z
P1 , (115)

where the ;(1)
Z

is generated by ¹
Z
, de"ned in Eq. (17). Now, there are other ;(1)'s that can be

embedded in the GSW model which lie entirely in the S;(2) factor. For example, we can choose
;(1)

1
which is generated by ¹1 (one of the o!-diagonal generators of S;(2)). Since we have

;(1)
1
P1 (116)
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13The gauge orbits are geodesics of a squashed metric on the vacuum manifold which is di!erent from the isotropic
metric relevant to the scalar sector [89].

when the electroweak symmetry breaks, there is the possibility of another string solution in the
GSW model. Indeed, it is easily checked that this string can be embedded in the GSW model
and the solution is called a =-string. By considering a one-parameter family of ;(1) subgroups
generated by

¹f" cos(f)¹1#sin(f)¹2 , (117)

we can generate a one-parameter family of =-strings

U"

g

J2
f
NO

(o)A
cosu

ie~*f sinuB , (118)

=1"!(2/g)cos f v
NO

(o) du, =2"!(2/g)sin f v
NO

(o) du , (119)

and all other "elds vanish. Although the string solutions are gauge equivalent for di!erent values of
f, the parameter does take on physical meaning when considering multi-string con"gurations in
which the value of f is di!erent for di!erent strings [15].

Note that the generator (117) can be obtained from ¹1 by the action of the unbroken
(electromagnetic) group,

¹f"e*fQ¹1e~*fQ . (120)

With this in mind, Lepora et al. [87,88] have classi"ed embedded vortices. The idea is that, for
a general symmetry breaking GPH, the Lie algebra of G, G, decomposes naturally into a direct
sum of the space H of generators of the unbroken subgroup H (the ones associated with massless
gauge bosons) and the space M of generators associated with massive gauge bosons: G"H#M.
The action of H on the subspace M further decomposes M into irreducible subspaces. The
classi"cation of embedded vortices is based on this decomposition, as we now explain.

Recall (Eq. (37)) that "nite energy vortices are associated with gauge orbits on the vacuum
manifold.13 Choosing a base point U

0
in the vacuum manifold, each embedded vortex can be

associated to a Lie algebra generator which is tangent to the gauge orbit describing the asymptotic
scalar "eld con"guration of the vortex. The unbroken subgroup H at U

0
`rotatesa the various

gauge orbits among themselves as in Eq. (120). Thus, the action of H splits the space of gauge orbits
into irreducible subspaces.

Except for critical values of the coupling constants (which could lead to so-called combination
vortices), it can be shown [15,87] that embedded vortices have to lie entirely in one of these
irreducible subspaces. If the subspaces have dimension greater than one, then there may be a family
of gauge-equivalent vortices.

In the GSW model, for instance, the Lie Algebra decomposes into H#M
1
#M

2
where H is

spanned by the charge Q, M
1

is a one-dimensional subspace spanned by ¹
Z

(corresponding to the
Z-string) and M

2
is a two-dimensional subspace comprising all =-string generators ¹f .
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Both the=- and the Z-string are embedded string solutions in the GSW model. What makes
the Z-string more interesting is its unexpected stability properties. It can be shown [87] that only
those vortices lying in one-dimensional subspaces can have a stable semilocal limit. Thus, embed-
ded vortices belonging to a family are always unstable.

Another important di!erence is that the Z-string is known to terminate on magnetic monopoles
but this is not true of the=-string. The=-string can terminate without any emanating electro-
magnetic "elds since it is entirely within the S;(2) sector of the GSW model.

It is straightforward to embed domain walls in the GSW model. There are no embedded
monopoles in the GSW model since there is no S;(2) subgroup that is broken to ;(1).

6. Electroweak strings in extensions of the GSW model

Electroweak strings have been discussed in various extensions of the GSW model. We describe
some of this work below. We do not, however, discuss extensions in which topological strings are
produced at the electroweak scale [38,23].

6.1. Two Higgs model

As discussed in Section 5.3, the Z-string is an embedded string in the GSW model. The general
conditions that enable the embedding are valid even with a more complicated Higgs structure.
Here we will consider the two Higgs doublet model which is inspired by supersymmetric extensions
of the GSW model.

In a two Higgs doublet model, the Higgs structure of the GSW model is doubled so that we have
scalars U

1
and U

2
and the scalar potential is [73]

<(U
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sin mD . (121)

Here l
1

and l
2

are the respective VEVs of the two doublets, j
i

are coupling constants and the
parameter m is a phase.

In polar coordinates, the solution for the two Higgs Z-string is

U
1
"l

1
f
1
(o)e*rA

0

1B , (122)

U
2
"l

2
f
2
(o)e*rA

0

1B , (123)

Z"!

2
g
z

v(o)
o

u( (124)
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with the pro"le functions satisfying di!erential equations similar to the Abelian}Higgs case. These
have been studied in Ref. [39] where the stability has also been analyzed (also see [120]). Other
cylindrically symmetric solutions have been considered in [13].

6.2. Adjoint Higgs model

The GSW model with an additional S;(2) "eld in the adjoint representation, v, is what we shall
refer to as the `adjoint Higgs modela. The impact of the adjoint "eld on electroweak defects was
considered in Ref. [75].

The bosonic sector of the adjoint Higgs model is

¸"¹
%8

#D(Rk#igea=ak)vD2!<(U, v)#¸
f

, (125)

where ¹
%8

is the gradient part of the bosonic sector of the electroweak Lagrangian, ¸
f

is the
fermionic part of the Lagrangian, ea

ij
"e

aij
(a, i, j"1, 2, 3) and

<(U, v)"!k2
2
UsU!k2

3
v2#j

2
(UsU)2#j

3
v4#av2UsU#bv )UssU . (126)

If we impose an additional Z
2

symmetry on the Lagrangian under UP#U, vP!v, the
symmetry is ([S;(2)

L
];(1)

Y
]/Z

2
)]Z

2
and we must set b"0. In what follows, we shall only

consider this case and henceforth ignore the last (cubic) term in the potential. In this case, an
additional simpli"cation is that the leptons and quarks do not couple to v and so ¸

f
is identical to

the fermionic Lagrangian of the GSW model. (If the Z
2

symmetry is absent, the cubic term in the
potential is allowed but is constrained to be small by experiment.)

In a cosmological context, as the universe cools down from high temperatures, if the parameters
lie in a certain range [75] there will "rst be a phase transition in which the adjoint "eld gets a VEV.
The VEV of the adjoint will break the S;(2) factor of the high-temperature symmetry group to
;(1). If the VEV of v is along the (0, 0, 1) direction, the generator of this;(1) will be ¹3 and we will
denote the unbroken subgroup as ;(1)

3
. So the symmetry-breaking pattern at this stage is

([S;(2)];(1)
Y
]/Z

2
)]Z

2
P([;(1)

3
];(1)

Y
]/Z

2
)]Z

2
(127)

and topological magnetic monopoles will be produced with pure ;(1)
3
#ux.

At a lower temperature, the doublet "eld will also get a VEV with the e!ect

([;(1)
3
];(1)

Y
]/Z

2
)]Z

2
P;(1)

%.
(128)

where, as usual, the electromagnetic charge operator is

Q"¹3#1
2
> . (129)

The electromagnetic component (A) from the monopoles is massless but the orthogonal part (Z) of
the #ux is massive and gets con"ned to a string. This is the Z-string. In addition, the breaking of the
Z

2
factor gives domain walls.

In the second stage of symmetry breaking, the Z-string is topological and hence is stable. The
presence of magnetic monopoles from the earlier symmetry breaking means that the Z-strings
can break by terminating on monopoles. But, as the monopoles form at a higher energy scale, their
mass is much larger than the energy scale at which strings form and which sets the scale for the
tension in the string. So the string can only break by instanton processes.
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At a yet lower temperature, the VEV of the adjoint turns o!. This makes no di!erence
to the symmetry structure of the model (apart from restoring the Z

2
symmetry and eliminating

the domain walls) and hence no signi"cant di!erence to the monopoles connected by
strings. However, it does a!ect the stability of the strings since the monopoles are no longer
topological.

7. Stability of electroweak strings

7.1. Heuristic stability analysis

As described in [123], the Z-string goes over into the semilocal string in the limit h
8
Pp/2 and

hence the stability of the Z-string should match on continuously to that of the semilocal string.
Therefore we expect that Z-strings should be stable if h

8
is close to p/2 and m

H
4m

Z
.

The stability analysis to certain subsets of perturbations can be carried out much more easily
than to the completely general perturbations. The subset includes perturbations in the Higgs "eld
and=-"elds separately. Such analyses may be found in [123,124,15] and [107].

(i) Higgs xeld perturbations: Perturbations in the Higgs "eld alone have maximum destabilizing
e!ect for h

8
"p/4 [15] and, in this case, it is easy to see that the Z-string is unstable. Consider the

one-parameter family of "eld con"gurations

U(x; m)" cos m U
0
(cos m x)#sin m U

M
, (130)

Z
j
(x; m)" cos m Z

(0)j
(cos m x) , (131)

where the string solution is denoted by the 0 subscript, m3[0,p/2] and

U
M
"

g

J2A
1

0B . (132)

For m"0 the "eld con"guration is the unperturbed Z-string while for m"p/2 it is the vacuum. The
energy per unit length of this "eld con"guration can be evaluated and is found to be

E(m)"cos2 m E(m"0) . (133)

Hence the energy per unit length of the string is a monotonically decreasing function of m and so the
string is unstable to decay into the vacuum.

(ii) Incontractible two spheres: James [70], and Klinkhamer and Olesen [81] have constructed the
Z- and=-string solutions by considering incontractible two spheres in the space of electroweak
"eld con"gurations in two spatial dimensions. The idea was introduced by Taubes [119] and was
used by Manton to construct the sphaleron [97,80]. The procedure (known as the `minimaxa
procedure) is to construct a set of "eld con"gurations that are labelled by some parameters k

i
. If

this set is incontractible in the space of "eld con"gurations, then there exist (subject to certain
assumptions [97]) values of the parameters for which the "eld con"guration extremizes the energy
functional. For example, Klinkhamer and Olesen [81] give the following construction for the
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Z-string in terms of a two-parameter (k, l) family of "eld con"gurations

p/24[kl]4p: ="0, >"0

U"(1!M1!h(o)Nsin[kl])
g

J2A
0

1B , (134)

04[kl]4p/2: ="!f (o)Ga¹a, >"f (o)sin2 h
8
F3,

U"h(o)
g

J2
X;A

0

1B , (135)

where= and > are Lie algebra-valued 1-forms (e.g.="=ak¹a dxk), [kl],max(DkD, DlD),

Fa¹a"2i;~1d; , (136)

Ga¹a"X;[F1¹1#F2¹2# cos2 h
8
F3¹3];~1X~1 , (137)

;(k, l, u)"!i sinkq
1
!i cosk sin lq

2
!i cosk cos l sinuq

3
# cosk cos l cosu1 , (138)

X";(k, l,u"0)~1 , (139)

and the functions f (o) and h(o) satisfy the boundary conditions

f (0)"0"h(0), f (R)"1"h(R) . (140)

This set of "eld con"gurations labelled by the parameters k, l3[!p,p] de"nes an incontractible
two sphere in the space of "eld con"gurations. This is seen by considering the "elds as if they were
de"ned on the three sphere on which the coordinates are u, k and l and then showing that the "eld
con"gurations de"ne a topologically non-trivial mapping from this S3 to the vacuum manifold
which is also an S3. Then the minimax procedure says that there is an extremum of the energy at
some value of the parameters. By inserting the "eld con"gurations into the energy functional, it can
be checked that the extremum occurs at k"0"l, when the con"guration coincides with that of
the Z-string. Furthermore, for h

8
4p/4, the extremum is a maximum and hence the Z-string is

unstable.
A very similar analysis has been done [70,81] for the=-string con"rming the result [15] that it

is always unstable.
(iii) W-condensation: There is also a well-known [11] instability to perturbations in the=-"elds

alone called `=-condensationa. Application of this instability to the Z-string may be found in
[107,124,125,6]. A heuristic argument goes as follows.

The energy of a mass m, charge e and spin s particle in a uniform magnetic "eld B along the z-axis
is given by

E2"p2
z
#m2#(2n#1)eB!2eB ) s , (141)

where n"0, 1, 2,2 labels the Landau levels and p
z

is the momentum along the z-axis. Now, if
s"1, the right-hand side can be negative for p

z
"0, n"0 provided

B'm2/e . (142)
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This signals an instability towards the spontaneous creation of spin one particles in su$ciently
strong magnetic "elds [11].

In our case, the magnetic "eld is a Z-magnetic "eld and this couples to the spin one=-particles.
If the string thickness is larger than the Compton wavelength of the=-particles, the Z-magnetic
"eld may be considered uniform. Also, the relevant charge in this case is the Z-charge of the
=-bosons and is g

Z
cos2h

8
. The constraint that the string be thick so that the Z-magnetic "eld

appears uniform and that the charge not be too small means that h
8

should be small. Hence the
instability towards =-condensation applies for small h

8
. This analysis can be performed more

quantitatively [107] with the result that there is a relatively hard bound sin2 h
8
'0.8 for the string

to be stable to =-condensation.

7.2. Detailed stability analysis

To analyse the stability of electroweak strings, we perturb the string solution, extract the
quadratic dependence of the energy on the perturbations and then determine if the energy can be
lowered by the perturbations by solving a SchroK dinger equation. The analysis is quite tedious
[71,6,57,93,94] and here we will only outline the main steps. We use the vector notation in this
section for simplicity.

The general perturbations of the Z-string are

(/
M
, /

,
, dZ, W a6 , A) , (143)

where a6 "1, 2,/
M

and /
,

are scalar "eld #uctuations de"ned by

U"A
/

M
/

NO
#/

,
B , (144)

dZ is de"ned by

Z"Z
NO

#dZ . (145)

(The subscript NO means that the "eld is the unperturbed Nielsen}Olesen solution for the string as
described in Section 2.) The "elds W a6 , A are perturbations since the unperturbed values of these
"elds vanish in the Z-string.

The perturbations can depend on the z-coordinate and the z-components of the vector "elds
can also be non-zero. However, since the vortex solution has translational invariance along the
z-direction, it is easy to see that it is su$cient to consider z independent perturbations and to ignore
the z-components of the gauge "elds. This follows from the expression for the energy resulting from
the Lagrangian in Eq. (4) where the relevant z-dependent terms in the integrand are

1
2
Ga

i3
Ga

i3
#1

4
F
Bi3

F
Bi3

#(D
3
U)s(D

3
U) (146)

and explicitly provide a positive contribution to the energy. Hence, we drop all reference to
the z-coordinate with the understanding that the energy is actually the energy per unit length of
the string.
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14For some potentials though, the wavefunction of the bound state may have singular (though integrable) behaviour
at the origin and such bound states would be inadmissible for us since we require that the perturbations be small. This
turns out not to be the case for the potential in Eq. (148).

Now we calculate the energy of the perturbed con"guration, discarding terms of cubic and
higher order in the in"nitesimal perturbations. We "nd

E"(E
NO

#dE
NO

)#E
M
#E

#
#E

W
, (147)

where E
NO

is the energy of the Nielsen}Olesen string and dE
NO

is the energy variation due to the
perturbations /

,
and dZ. The term E

M
is due to the perturbation /

M
in the upper component of the

Higgs "eld, E
#

is the cross-term between perturbations in the Higgs and gauge "elds, while E
W

is
the contribution from perturbing the gauge "elds alone:

E
M
"Pd2x[DdM

j
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with d
j

de"ned in (86),

E
W
"Pd2x[cW 1]W 2 )$]Z#1

2
D$]W 1#cW 2]ZD2

#1
2
D$]W 2#cZ]W 1D2#1
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where c,g cos h
8
,

dM
j
,R

j
!i(g

z
/2) cos(2h

8
)Z

j
(151)

and the f and Z "elds in the above equations are the unperturbed "elds of the string.
The two instabilities discussed in the previous subsection can also be seen in Eq. (147). First

consider perturbations in the Higgs "eld alone. Then only E
M

is relevant. For h
8
"p/4, dM

j
"R

j
,

and E
M

is the energy of a particle described by the wavefunction /
M

in a purely negative potential
in two dimensions since f 241 everywhere. It is known that a purely negative potential in two
dimensions always has a bound state.14 Hence, the energy can be lowered by at least one
perturbation mode and so the string is unstable when h

8
"p/4. The instability towards =-

condensation can be seen in E
W

. The term with c can be negative and its strength is largest for small
h
8
. Hence=-condensation is most relevant for small h

8
.

Returning to the full stability analysis, we "rst note that the perturbations of the "elds that make
up the string do not couple to the other available perturbations, i.e. the perturbations in the "elds
f and v only occur inside the variation dE

NO
. Now, since we know that the Nielsen}Olesen string

with unit winding number is stable to perturbations for any values of the parameters then
necessarily, dE

NO
50 and the perturbations /

,
and dZ cannot destabilize the vortex. Then, we are

justi"ed in ignoring these perturbations and setting dE
NO

"0. Also we note that the A boson only
appears in the last term of Eq. (150) and this is manifestly positive. So we can set A to zero.
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The remaining perturbations can be expanded in modes:

/
M
"s(o)e*mr (152)

for the mth mode where m is any integer. For the gauge "elds we have
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1
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2
(o) cos(nu)#h

2
(o) sin(nu)Ne( rD (154)

for the nth mode where n is a non-negative integer.
The most unstable mode is the one with m"0 and n"1. This is because these have the lowest

gradient energy and are the only perturbations that can be non-vanishing at o"0. Further
analysis shows that the string is most unstable to the h

1
#h

2
mode. Hence, we can ignore f

i
,

h
1
!h

2
and the barred variables. A considerable amount of algebra then yields

dE[s, m
`

]"2pPdo o(s, m
`

)OA
s

m
`
B (155)

where O is a 2]2 matrix di!erential operator and

m
`
"(h

1
#h

2
)/2 . (156)

Before proceeding further, note that a gauge transformation on the "elds does not change the
energy. However, we have not "xed the gauge in the preceding analysis and hence it is possible that
some of the remaining perturbations, (s, m

`
), might correspond to gauge degrees of freedom and

may not a!ect the energy. So we now identify the combination of perturbations s and m
`

that are
pure gauge transformations of the string con"guration.

The S;(2) gauge transformation, exp(igt), of an electroweak "eld con"guration leads to
"rst-order changes in the "elds of the form

dU"igtU
0
, d=

i
"!iD(0)

i
t , (157)

where =
i
"=a

i
¹a, t"ta¹a, and the 0 index denotes the unperturbed "eld and covariant

derivative. In our analysis above, we have "xed the form of the unperturbed string and so we
should restrict ourselves to only those gauge transformations that leave the Z-string con"guration
unchanged. (For example, dU should only contain an upper component and no lower component.)
This constrains t to take the form

t"s(o)A
0 ie~*r

!ie*r 0 B , (158)

where s(o) is any smooth function. This means that perturbations given by

A
s(o)

m
`

(o)B"s(o)A
!gg f (o)/J2

2(1!2 cos2 h
8
v(o))B (159)
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are pure gauge perturbations that do not a!ect the string con"guration. Therefore, such perturba-
tions cannot contribute to the energy variation and must be annihilated by O. Then, in the
two-dimensional space of (s, m

`
) perturbations, we can choose a basis in which one direction is

pure gauge and is given by (159) and the other orthogonal direction is the direction of physical
perturbations. The physical mode can now be written as

f(o)"(1!2 cos2 h
8
v(o))s(o)#(gg f (o)/2J2)m

`
(o) . (160)

So now the energy functional reduces to one depending only on f(o):

dE[f]"2pPdoo fOM f , (161)

where OM is the di!erential operator
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d
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where
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`
"(1!2 cos2 h

8
v)2#

g2g2o2f 2
4
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S
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g2g2f 2
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4 cos4 h
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`
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d
doC2 cos2 h
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v@
o

(1!2 cos2 h
8
v)

P
`

(o) D . (165)

The question of Z-string stability reduces to asking if there are negative eigenvalues u of the
SchroK dinger equation

OM f"uf . (166)

The eigenfunction f(o) must also satisfy the boundary conditions f(o"0)"1 and f@(0)"0 where
prime denotes di!erentiation with respect to o. In this way the stability analysis reduces to a single
SchroK dinger equation which can be solved numerically.

The results of the stability analysis are shown in Fig. 11 as a plot in parameter space
(m

H
/m

Z
, sin2 h

8
), demarcating regions where the Z-string is unstable (that is, where negative

u exist) and stable (negative u do not exist). It is evident that the experimentally constrained values:
sin2 h

8
"0.23 and m

H
/m

Z
'0.9 lie entirely inside the unstable sector. Hence the Z-string in the

GSW model is unstable.
The stability analysis of the Z-string described above leaves open the possibility that the string

might be stable in some special circumstances such as, the presence of extra scalar "elds, or
a magnetic "eld background, or fermions. We now describe some circumstances in which the
Z-string stability has been analysed.
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Fig. 11. The Z-string is stable in the triangular shaded region of parameter space. At sin2 h
8
"0.5, the string has

a scaling instability. The experimentally allowed parameters are also shown.

7.3. Z-string stability continued

The stability of Z-strings has been studied in various other circumstances:
(i) Thermal ewects: In [64] the authors examined thermal e!ects on Z-string stability using the

high-temperature e!ective potential and found slight modi"cations to the stability. The conclusion
is that Z-strings in the GSW model are unstable at high temperatures as well. In the same paper,
left}right symmetric models were studied and it was found that these could contain stable strings
that are similar to the Z-string.

(ii) Extra scalar xelds: It is natural to wonder if the presence of extra scalar "elds in the model can
help provide stability. In [39] the stability was examined in the physically motivated two Higgs
doublet model with little advantage. In [131] it was shown that an extra (globally) charged scalar
"eld could enhance stability. The extra complex scalar "eld, t, is coupled to the electroweak Higgs
by a term DtD2UsU and hence the charges have lower energy on the string where UsU&0 than
outside the string where U has a non-zero VEV. This is exactly as in the case of non-topological
solitons or Q-balls [113,46,33]. However, scalar global charges attract and this can cause an
instability of the charge distribution along the string [34,131]. For realistic parameters, stable
Z-strings do not seem likely even in the presence of extra scalar "elds.

(iii) Adjoint scalar xeld: A possible variant of the above scheme is that an S;(2) adjoint can be
included in the GSW model as described in Section 6.2. Now, since the Z-string is topological
within the second symmetry breaking stage in Eq. (128), it is stable. However, to be consistent with
current experimental data the VEV of the S;(2) adjoint must vanish at a lower energy scale. At this
stage the Z-string becomes unstable. Hence, in this scheme, there could be an epoch in the early
universe where Z-strings would be stable.

(iv) External magnetic xeld: An interesting possibility was studied by Garriga and Montes [49]
when they considered the stability of the Z-string placed in an external electromagnetic magnetic
"eld of "eld strength B parallel to the string. First, note that B should be less than B

#
"m2

W
/e,
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Fig. 12. The triangular regions depict the parameter range for which the electroweak vacuum and the Z-string are both
stable in the presence of a uniform external magnetic "eld whose strength is proportional to K. For a range of magnetic
"eld (K&0.85), stable strings are possible even with the experimentally constrained parameter values.

otherwise the vacuum outside the string is unstable to=-condensation [11]. Then they found that
the Z-string could be stable if B'JbB

#
, where b"m2

H
/m2

Z
should be less than 1 for stability of the

ambient vacuum. The region of stability for a few values of the magnetic "eld (given by
K"g

z
B/2m2

Z
) is sketched in Fig. 12. For a certain range of K&0.85, stable Z-strings in the GSW

model are still just possible.
A way to understand the enhanced stability of the Z-string in a magnetic "eld is to realize that

the =-condensation instability is due to the interaction of =3k"sin h
8
Ak#cos h

8
Zk and =Bk .

The Z-string itself has a Z magnetic #ux. Then the external electromagnetic #ux can serve to lower
the net=3 #ux. This reduces the e$ciency of=-condensation and makes the string more stable.
Another viewpoint can be arrived at if we picture the Z-string instability to be one in which the
string breaks due to the production of a monopole-antimonopole pair on the string. If the external
magnetic "eld is oriented in a direction that prevents the nucleated magnetic monopoles from
accelerating away from each other, it will suppress the monopole pair production process, leading
to a stabilization of the string for su$ciently strong magnetic "elds.

(v) Fermions: The e!ect of fermions on the stability of the Z-string has been considered in Refs.
[40,100,83,91]. Naculich [100] found that fermions actually make the Z-string unstable. In [91] it
was argued that this e!ect of fermions is quite general and also applies to situations where the
strings form at a low energy scale due to topological reasons but can terminate on very massive
monopoles formed at a very high energy scale. This most likely indicates that the Z-string solution
itself should be di!erent from the Nielsen}Olesen solution when fermions are included. We shall
describe these results in greater detail in Section 8 after discussing fermion zero modes on strings.

Z-strings have also been considered in the presence of a cold bath of fermions [24]. The e!ect of
the fermions is to induce an e!ective Chern}Simons term in the action which then leads to
a long-range magnetic "eld around the string.

398 A. Achu& carro, T. Vachaspati / Physics Reports 327 (2000) 347}426



7.4. Semiclassical stability

Preskill and Vilenkin [110] have calculated the decay rate of electroweak strings in the region of
parameter space where they are classically stable. The instability is due to quantum tunneling and
is calculated by "nding the semiclassical rate of nucleation of monopole-antimonopole pairs on
electroweak strings. The bounce action is found to be

S&(4p2/g2)a
=

/a
4

(167)

where the strings are classically stable if the ratio of parameters a
=

/a
4
is larger than 1. (a

=
/a

4
is the

ratio of energy in the magnetic #ux when it is spread over an in"nite area to that if it is con"ned
within the string.) The semiclassical decay probability of the string per unit length per unit time is
proportional to exp[!S].

The decay rate gets suppressed as we approach the semilocal string (gP0) thus the semilocal
string is also stable semiclassically.

8. Superconductivity of electroweak strings

8.1. Fermion zero modes on the Z-string

Here we shall consider the fermionic sector of the GSW model in the "xed background of the
unit winding Z-string for which the solution is given in Eq. (82). The Dirac equations for a single
family of leptons and quarks are obtained from the Lagrangian in Section 1.1.2. These have been
solved in the background of a straight Z string in [40,50,99]. The analysis is similar to that for;(1)
strings [133,68] since the Z-string is an embedded ;(1) string in the GSW model (see Section 5.3).
A discussion of the fermion zero modes in connection with index theorems can be found in [82,79].

In polar coordinates with the Z-string along the z-axis, a convenient representation for the
c matrices is

co"A
0 e~*r 0 0

!e*r 0 0 0

0 0 0 !e~*r
0 0 e*r 0 B, cr"A

0 !ie~*r 0 0

!ie*r 0 0 0

0 0 0 ie~*r
0 0 ie*r 0 B , (168)

ct"A
q3 0

0 !q3B, cz"A
0 1

!1 0B , c5"A
0 1

1 0B . (169)

(Note that the derivative ckRk is given by ctR
t
#coRo#c(R

(
/o#czR

z
.) Then the electron has

a zero-mode solution

e
L
"A

1

0

!1

0 Bt1
(o) , e

R
"A

0

1

0

1Bit4
(o) , (170)
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where

t@
1
#(qv/o)t

1
"!h(g/J2) ft

4
, (171)

t@
4
!

(q!1)v
o

t
4
"!h

g

J2
ft

1
. (172)

In these equations q is the eigenvalue of the operator q de"ned in Eq. (87) and denotes the Z-charge
of the various left-handed fermions. (For the electron, q"cos(2h

8
).) The boundary conditions are

that t
1

and t
4

should vanish asymptotically. This means that there is only one arbitrary constant
of integration in the solution to Eqs. (170)}(172). This may be taken to be a normalization of t

1
and t

4
.

For the d quark, the solution is the same as in Eqs. (170)}(172) except that q"1!(2/3) sin2 h
8
.

For the u quark the solution is

u
L
"A

0

1

0

!1 Bt
2
(o) , u

R
"A

1

0

1

0B it
3
(o) , (173)

where

t@
2
!(qv/o)t

2
"!G

u
(g/J2) f t

3
, (174)

t@
3
#

(q#1)v
o

t
3
"!G

u

g

J2
ft

2
, (175)

with q"!1#(4/3) sin2 h
8
. Note that (171), (172) are related to (174), (175) by qP!q.

The right-hand sides of the neutrino Dirac equations (corresponding to Eqs. (171) and (172))
vanish since the neutrino is massless. The solutions can be found explicitly in terms of the string
pro"le equations in the case when the Higgs boson mass (m

H
"J2jg) equals the Z boson mass

(m
Z
"g

z
g/2) [50]. Recall that the string equations in the m

H
"m

Z
case are [26]

f @"( f/o)(1!v) , (176)

v@"(m2
Z
/2)o(1!f 2) (177)

yielding the useful relation

Pdo
v
o
"lnA

m
Z
o

f B , (178)

where we have included a factor of m
Z

to make the argument of the logarithm dimensionless. Now
the zero-mode pro"le functions for the massless fermions are

t
1
"c

1
m3@2

Z A
m

Z
o

f B
~q

, t
4
"c

4
m3@2

Z A
m

Z
o

f B
q~1

, (179)
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Fig. 13. The direction of propagation of quark and lepton zero modes on the Z-string.

where c
1

and c
4

are independent constants that can be chosen to normalize the left- and
right-handed fermion states and the spinors are given in (170). The boundary condition that the
left-handed fermion wavefunction should vanish at in"nity is only satis"ed if q'0. Hence, (179)
can only give a valid solution for q'0 for the left-handed fermion. If we also require normalizabil-
ity, we need q'1. (Note that there is no singularity at o"0 because fJo when o&0.) If we have
a left-handed fermion with q4!1, the correct equations to use are the equations corresponding
to the up-quark equations given in (174) and (175) and these are solved by letting qP!q in (179).
In this case, the spinors are given in (173).

For the electroweak neutrino, the right-handed component is absent and q"!1. This means
that the neutrino has the same spinor structure as the left-handed up quark and the solution is that
in (179) with q replaced by #1. Therefore, the wavefunction falls o! as 1/o and the state is strictly
not normalizable } the normalization integral diverges logarithmically. However, depending on
the physical situation, one could be justi"ed in imposing a cut-o!. For example, when considering
closed loops of string, the cuto! is given by the radius of the loop.

Next we give the explicit solutions to the Dirac equations in (171) and (172) in the case when the
fermion mass (m

f
"hg/J2) is equal to the scalar mass which is also equal to the vector mass. This

so-called `super-Bogomolnyia limit is not realized in the GSW model but may be of interest in
other situations (for example, in supersymmetric models). Then, if the charge on the left-handed
fermion vanishes (q"0), the solution can be veri"ed to be

t
1
(o)"Nm3@2

Z
(1!f (o)2) , (180)

t
4
(o)"2Nm1@2

Z
( f (o)/o) (1!v(o)) , (181)

where N is a dimensionless normalization factor. For the same set of parameters, the solution for
the up-quark equations can be written by using the transformation qP!q in the above solutions.
Further, this solution can also be derived using supersymmetry arguments [132,37].

The left-handed fermion wavefunctions found above can be multiplied by a phase factor
exp[i(E

p
t!pz)] and the resulting wavefunction will still solve the Dirac equations provided

E
p
"e

i
p , (182)

where i labels the fermions, and

el"#1"e
u
, e

e
"!1"e

d
. (183)

In other words, l
L

and u travel parallel to the string #ux while e and d travel anti-parallel to the
string #ux.

We should mention that the picture of quarks travelling along the Z-string (see Fig. 13) may be
inaccurate since QCD e!ects have been totally ignored. At the present time it is not known if the
strong forces of QCD will con"ne the quarks on the string into mesons and baryons (for example,
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Fig. 14. The e!ect of perturbations of the Z-string on fermion zero modes.

pions and protons). Further, the electromagnetic interactions of the particles on the string might
lead to bound states of electrons and protons on the string. This would imply a picture where
hydrogen (and other) atoms are the fundamental entities that live on the string.

8.2. Stability of Z-string with fermion zero modes

In Fig. 14 we show the e!ect that perturbations of order e in the Z-string "elds have on
the fermion (u and d quarks) zero modes. The zero momentum modes acquire an O(e) mass
while the non-zero momentum modes get an O(e2) mass. For the perturbation analysis to make
sense, we require that the u and d quark zero momentum modes are either both "lled or both
empty. In that case, the O(e) terms in the variation in the energy will cancel and we will be left with
something that is O(e2). In fact,

*E"!

e2
2

Dm
1
D2¸

N
+
k/1

1
k

, (184)

where m
1

is a matrix element having to do with the interactions of the u and d quarks, ¸PR is the
length of the string on which periodic boundary conditions have been imposed, and NPR is
a cut-o! on the energy levels which are labeled by k. The crucial piece of this formula is the minus
sign which shows that the energy of the string is lowered due to perturbations [100].

In Ref. [91] it was argued that an identical calculation could be done for any classically stable
string that could terminate on (supermassive) magnetic monopoles. However, in the low-energy
theory, the strings are e!ectively topological and hence, it seems unlikely that fermions can lead to
an instability. This suggests that the bosonic string con"guration gets modi"ed by the fermions and
the stability analysis around the Nielsen}Olesen solution may be inappropriate.

So far, the stability analysis with fermions presented here only considered the zero modes and
ignored the in"nitely many massive fermion modes. Very recently, Groves and Perkins [58] have
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analysed the full spectrum of massless and massive fermionic modes in the background of the
electroweak string. They then calculate the e!ect of the Dirac sea on the stability of electroweak
strings by calculating the renormalised energy shift of the Dirac sea when a Z-string is perturbed by
introducing a non-zero upper component to the Higgs doublet. This energy shift is negative and so
destabilises the string, but it is small, leading them to conclude that if positive energy fermionic
states are populated, it is conceivable that the total fermionic contribution could be to stabilise the
string. This work is still in progress. In the meantime, the stability of Z-strings remains an open
question.

8.3. Scattering of fermions ow electroweak strings

The elastic scattering of fermions o! semilocal and electroweak strings has been considered in
[48,36,92]. As mentioned earlier, we expect Aharonov}Bohm scattering.

The main feature of the cross-section is that the scattering violates helicity [48]. It is straight-
forward to show that the helicity operator R )P, where Ri"eijkcicj is the spin operator and Pi are
the canonical momenta, does not commute with the hamiltonian. If UT"(/`,/0), the commutator
is proportional to (D/0) terms. Consider for a moment the usual representation of Dirac matrices,

c0"A
0 1

1 0B, ci"A
0 !qi

qi 0 B, c
5
"A

1 0

0 !1B . (185)

Then, for an incoming electron, one "nds

[H,R )P]"ihA
0 qj(Dj/0)s

qjDj/0 0 B , (186)

where h is the Yukawa coupling and (D
j
/0) is given in Eq. (86). Therefore helicity-violating

processes can take place in the core of the string.
A preliminary calculation by Ganoulis in Ref. [48] showed that, for an incoming plane wave,

the dominant mode of scattering gives identical cross sections for positive and negative helicity
scattered states. More precisely, for an incoming electron plane wave of momentum k, energy
u and positive helicity it was found that, to leading order,

dp
dk K

B

&

1
kA

u!k
2u B

2
sin2(pq

R
) , (187)

where u2"k2#m2
%
, q

R
is the Z-charge of the right fermion "eld, given in Eq. (87) (recall that right

and left fermion "elds have di!erent Z-charges, q
R
"q

L
$1).

A more detailed calculation was done by Davis et al. [36], and later extended by Lo [92], using
a &top hat' model for the string

f (r)"G
0, r(R ,

g/J2, r'R ,
v(r)"G

0, r(R ,

2/g
z
, r'R ,

(188)

which is expected to be a reasonable approximation since the scattering cross section in the case of
(topological) cosmic strings has been shown to be insensitive to the core model [108]. Note that
there is a discontinuous jump in the fermion mass and string #ux; however the wavefunctions are
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matched so that they are continuous at r"R. In this approximation, the left and right "elds
decouple in the core of the string, so helicity violating processes are concentrated at r"R.

The authors of [36,92] con"rmed that, in the massive case, there are helicity-conserving and
helicity-#ip scattering cross sections of equal magnitude. The latter goes to zero in the massless
limit (in that case, the left and right "elds decouple, and no helicity violation is possible), suggesting
that helicity violation may be stronger at low energies. For `fractional string #uxa (i.e. for fractional
q) the cross section is of a modi"ed Aharonov}Bohm form, and independent of string radius. For
integer q it is of Everett form [43] (the strong interaction cross section is suppressed by a logarith-
mic term).

Another interesting feature has to do with the ampli"cation of the fermionic wavefunction in the
core of the string. Lo [92] has remarked that there is a regime in which the scattering cross section
for electroweak strings is much less sensitive to the fermion charge (that is, to sin2 h

8
) than for

cosmic strings. In contrast with, e.g., baryon number violating processes, which show maximal
enhancement only for discrete values of the fractional #ux, the helicity violating cross section
for electroweak strings in the regime k&m, kR;1 shows a plateau for 0(sin2 h

8
(1/2 where

ampli"cation is maximal and the cross-section becomes of order m~1
f

. This can be traced back to
the asymmetry between left and right "elds; while the wavefunction ampli"cation is a universal
feature, di!erent components of the fermionic wavefunction acquire di!erent ampli"cation factors
in such a way that the total enhancement of the cross section is approximately independent of the
fermionic charge, q (or, equivalently, of sin2 h

8
).

Elastic scattering is independent of the string radius for both electroweak and semilocal strings
(for integral #ux there is only a mild dependence on the radius coming from the logarithmic
suppression factor in the Everett cross-section). Since the cross-section is like that of ;(1) strings,
we would expect electroweak and semilocal strings to interact with the surrounding plasma in
a way that is analogous to topological strings.

9. Electroweak strings and baryon number

As "rst shown by Adler [8], and Bell and Jackiw [18], currents that are conserved in a classical
"eld theory may not be conserved on quantization of the theory. In the GSW model, one such
current is the baryon number current and the anomalous current conservation equation is

Rk jk
B
"

N
F

32p2
[!g2=akl=I akl#g@2>kl>I kl] , (189)

where jk
B

is the expectation value of the baryon number current operator +
s
b
s
: tM ckt: where the

sum is over all the species of fermions labeled by s, t is the fermion spinor and b
s

is the baryon
number for species s and the operator product is normal ordered. Also, N

F
denotes the number of

families, and tilde the dual of the "eld strengths.
The anomaly equation can be integrated over all space leading to

*Q
B
"

N
F

32p2P dtd3x[!g2=akl=I akl#g@2>kl>I kl]"*Q
CS

(190)
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with,

Q
CS
"

N
F

32p2Pd3xe
ijkCg2A=aij=ak!

g
3
e
abc
=ai=bj=ckB!g@2>ij>kD . (191)

Here, *( ) ) denotes the di!erence of the quantities evaluated at two di!erent times, Q
B

is the
baryonic charge and the surface currents and integrals at in"nity are assumed to vanish. Q

CS
is

called the Chern}Simons, or topological, charge and can be evaluated if we know the gauge "elds.
The left-hand side of Eq. (190) evaluates the baryon number by counting the fermions directly. We
describe the evaluation of both the right- and left-hand side for fermions on certain con"gurations
of Z-strings in the following subsections. Finally, in Section 9.4 we brie#y comment on possible
applications to cosmology.

9.1. Chern}Simons or topological charge

We will be interested in the Chern}Simons charge contained in con"gurations of Z-strings.
Then, we set all the gauge "elds but for the Z-"eld to zero in the expression for the Chern-Simons
charge, yielding

Q
CS
"N

F

g2
z

32p2
cos(2h

8
)Pd3x Z )B

Z
, (192)

where B
Z

denotes the magnetic "eld in the Z gauge "eld: Bi
Z
"eijkR

j
Z

k
.

The terms on the right-hand side have a simple interpretation in terms of a concept called
`helicitya in #uid dynamics [20]. Essentially, if a #uid #ows with velocity * and vorticity x"$]*,
then the helicity is de"ned as

h"P d3x * )x . (193)

Since the helicity measures the velocity #ow along the direction of vorticity, it measures the
corkscrew motion (or twisting) of the #uid #ow. A direct analog is de"ned for magnetic "elds:

h
B
"Pd3x A )B (194)

which is of the same form as the terms appearing in (192). Hence, the Chern}Simons charge
measures the twisting of the magnetic lines of force. The helicity associated with the Z "eld alone is
given by

H
Z
"P d3x Z )B

Z
. (195)

If we think in terms of #ux tubes of Z magnetic "eld, H
Z

measures the sum of the link and twist
number of these tubes:

H
Z
"¸

Z
#¹

Z
. (196)
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Fig. 15. A pair of linked loops.

Fig. 16. A circular Z-string loop of radius a threaded by n Z-strings.

For a pair of unit winding Z #ux tubes that are linked once as shown in Fig. 15 the helicity is

H
Z
"2F2

Z
, (197)

where F
Z

is the magnetic #ux in each of the two tubes. Note that the helicity is positive for the
strings shown in Fig. 15. If we reversed the direction of the #ux in one of the loops, the magnitude of
H

Z
would be the same but the sign would change. For the Z-string, we also know that

F
Z
"4p/g

z
(198)

and so Eq. (192) yields [129]

Q
CS
"N

F
cos(2h

8
) . (199)

9.2. Baryonic charge in fermions

The baryon number associated with linked loops of Z-string has been evaluated in Ref. [50] by
studying the fermionic zero modes on such loops. This corresponds to evaluating the left-hand side
of Eq. (190) directly in terms of the fermions that carry baryon number. The calculation involves
adding the baryonic charges of the in"nite Dirac sea of fermions living on the string together with
zeta function regularization.

To understand why the linking of loops leads to non-trivial e!ects, note that the quarks and
leptons have a non-trivial Aharanov}Bohm interaction with the Z-string. So the Dirac sea of
fermions on a loop in Fig. 15 is a!ected by the Z-#ux in the second loop. This shifts the level of the
Dirac sea in the ground state leading to non-trivial baryonic and other charges.

Instead of considering the linked loops as shown in Fig. 15 it is simpler to consider a large
circular loop of radius aPR in the xy-plane threaded by n straight in"nite strings along the z-axis
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Table 1
Summary of Z-, electric and baryonic charges for the leptons and quarks. The charges q

Z
are for the left-handed fermions

and s2,sin2h
8

l
L

e d u

2q
Z
/g

z
!1 1!2s2 1!2s2/3 !1#4s2/3

q
A
/e 0 !1 !1/3 2/3

q
B

0 0 1/3 1/3

(Fig. 16). Then the fermionic wavefunctions take the form

t
L
"e~*(Ep t~pp)t(0)

L
(r), t

R
"e~*(Ep t~(p~n@a)p)t(0)

R
(r) , (200)

where the functions with superscript (0) are the zero-mode pro"le functions described in Section 8.1
and p is a coordinate along the length of the circular loop. From these wavefunctions, the
dispersion relation for a zero-mode fermion on the circular loop is

u
k
"e

i
(k!qZ) , (201)

where q is the Z-charge of the fermion, e
i
is de"ned in Eq. (183), u is related to the energy E by

u,aE, and k to the momentum p by k,ap3Z. Z is the component of the gauge "eld along the
circular loop multiplied by a and is given by

Z,2n/g
z

. (202)

The crucial property of the dispersion relation is that, if there is an Aharanov}Bohm interaction
between the Z-string and the fermion, u

k
cannot be zero for any value of k since k is an integer but

qZ is not.
The Z- , A- and baryon number (B) charges of the leptons and quarks are shown in Table 1. Note

that we use 2q
Z
/g

z
to denote the Z-charge and this is identical to the eigenvalue of the operator

q de"ned in Eq. (87) and also to q used in the previous section.
The energy of the fermions is found by summing over the negative frequencies } that is, the Dirac

sea } and so the energy E due to a single fermion species is

E"

1
a
+u

k
"e

i

1
a
~ei=
+

k/kF

(k!qZ) , (203)

where k
F

denotes the Fermi level } the value of k for the highest "lled state. Therefore we need to
sum a series of the type

S"
=
+

k/kF

(k!qZ)"
=
+
k/0

(k#k
F
!qZ) . (204)

The sum is found using zeta function regularization

S"f(!1, k
F
!qZ)"! 1

12
!1

2
(k

F
!qZ)(k

F
!qZ!1) . (205)
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With this result, the energy contribution from the ith species of fermions takes the form

E
i
"!

1
24a

#

1
2aCk(i)

F
!q

i
Z#

e
i
2 D

2
,!

1
24a

#

1
2a

K2
i

. (206)

Adding the contributions due to di!erent members of a single fermion family, we get

2aE"K2l#K2
e
#3K2

d
#3K2

u
. (207)

Next we can calculate the angular momentum of the fermions in the circular loop background.
The system has rotational symmetry about the z-axis and this enables us to de"ne the generalized
angular momentum operator as the operator that annihilates the background "eld con"guration
[71]:

M
z
"¸

z
#S

z
#nI

z
, (208)

where

¸
z
"!i1 R/Ru , (209)

S
z

is the spin operator, and, the isospin operator is given in terms of the ;(1) (hypercharge) and
S;(2) charges } q

1
and q

2
respectively } of the "eld in question:

I
z
"

1
2CA

2q
2

g B¹3!A
2q

1
g@ B1D . (210)

The isopin operator acts via a commutator bracket on the gauge "elds and by ordinary matrix
multiplication on the Higgs "eld and fermion doublets.

We are interested in the angular momentum of the chiral fermions on the circular loop which lies
entirely in the xy-plane. The fermions in the zero modes therefore have S

z
"0. (The spin of the

fermions is oriented along their momenta which lies in the xy-plane.) The action of ¸
z

is found by
acting on the fermion wavefunctions such as in Eq. (200) (remembering to let nP!n for the
neutrino and up quark). The action of I

z
is found by using the charges of the fermions given in the

GSW model de"ned in Section 1.1.2. We then "nd

M
zA

l
L

e
L
B"A

(k(l)#n)l
L

k(e)e
L

B, M
zA

u
L

d
L
B"A

(k(u)#n/3)u
L

(k(d)!2n/3)d
L
B , (211)

M
z
e
R
"k(e)e

R
, M

z
u
R
"(k(u)#n/3)u

R
, M

z
d
R
"(k(d)!2n/3)d

R
, (212)

where the k(i) are de"ned above in Eq. (201). Now summing over states, as in the case of the energy,
we "nd the total generalized angular momentum of the fermions on the circular loop:

M"

1
2Ck(l)

F
#n#

1
2D

2
!

1
2Ck(e)

F
!

1
2D

2
!

3
2Ck(d)

F
!

2n
3
!

1
2D

2
#

3
2Ck(u)

F
#

n
3
#

1
2D

2
. (213)

Note that though the gauge "elds do not enter explicitly in the generalized angular momentum,
they do play a role in determining the angular momentum of the ground state through the values of
the Fermi levels.

The calculation of the electromagnetic and baryonic charges and currents on the linked loops is
similar but has a subtlety. To "nd the total charge, a sum over the charges in all "lled states must be

408 A. Achu& carro, T. Vachaspati / Physics Reports 327 (2000) 347}426



Table 2
Expressions for the energy, generalized angular momentum, charges and currents in terms of x"2n sin2 h

8
/3. We have

omitted the multiplicative factor N
F

in all the expressions for convenience

x3(0, 1/3) (1/3, 1/2) (1/2, 2/3) (2/3, 1)

aE 12x2!6x#1 12x2!9x#2 12x2!15x#5 12x2!18x#7
M 0 n!1 2!n 0
Q

A
/e 0 !1 #1 0

B !3x#1 !3x#1 !3x#2 !3x#2
2paJ

A
/e !8x#2 !8x#3 !8x#5 !8x#6

2paJ
B

!x !x 1!x 1!x

done. This leads to a series of the kind

S
q
"

=
+

k/kF

1 . (214)

To regularize the divergence of the series, it is written as

S
q
"lim

j?0

=
+

k/kF

(k!qZ)j . (215)

The subtlety is that the gauge invariant combination k!qZ is used as a summand rather than k
or some other gauge non-invariant expression [98]. Once again zeta function regularization is used
to get

S
q
"

=
+
k/0

(k#k
F
!qZ)0"f(0, k

F
!qZ)"!CkF!qZ!

1
2D . (216)

With this result, the contribution to the charge due to fermion i is

Q
i
"e

i
q6
iCk(i)

F
!q

i
Z#

e
i
2D"e

i
q6
i
K

i
, (217)

where q6
i

is the charge carried by the ith fermion of the kind that we wish to calculate.
(Note that q6

i
can represent any charge } electric, baryonic etc. } and is, in general, di!erent from the

Z-charge q
i
.)

The currents along the string are given by tM czt where cz is given in Eq. (169). This gives

J
i
"e

i
Q

i
/2pa . (218)

By adding the contributions due to each variety of fermion, expressions for the energy, angular
momentum, charges and currents for one loop threaded by n have been found in [50]. These results
are reproduced in Table 2. It is reassuring to note that in the ground state, the baryon number of
the single loop is given by nN

F
cos 2h

8
in agreement with the calculation of the Chern}Simons

number.
The energy of the fermionic ground state shows a complicated dependence on x as is demon-

strated in Fig. 17. Note that E(x) does not have a monotonic dependence on x and the energy of
strings that are linked n times bears no simple relation to those linked m times. In particular, the
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Fig. 17. The energy of the ground state of linked loops versus x"2n sin2 h
8
/3.

energy does not continue to decrease as we consider strings that have higher linkage. The lowest
energy possible, however, is when x"1/4 and for n"1, this corresponds to sin2 h

8
"3/8, which is

also the value set by Grand Uni"ed models. It is not clear if this is simply a coincidence or if there is
some deeper underlying reason [74].

9.3. Dumbells

In his 1977 paper, Nambu discussed the possible occurrence of electroweak monopoles and
strings in particle accelerators. There are two issues in this discussion: the "rst is the production
cross-section of solitonic states in particle collisions, and the second is the signatures of such states
if they are indeed produced in an accelerator. The answer to the "rst question is not known though
it is widely believed that the process is suppressed not only by the large amount of energy required
but also due to the coherence of the solitonic state. The second question was addressed by Nambu
[102] and he estimated the energy and lifetime of electroweak strings that may be possible to detect
in accelerators.

To "nd the energy of a Z-string segment, Nambu treated the monopoles at the ends as hollow
spheres of radius R inside which all "elds vanish. A straightforward variational calculation in units
of g+246GeV then gives the monopole mass

M"

4p
3e

sin5@2 h
8S

m
H

m
W

(219)

and radius

R"S
sin h

8
m

H
m

W

.
(220)

The string segment is approximated by a cylindrical tube with uniform Z magnetic #ux with all
other "elds vanishing. This gives

o"
2

Jm
H
m

Z

, q"pA
m

H
m

Z
B (221)

for the core radius and string tension, respectively.
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Now, if the monopoles are a distance l apart, the total energy of the system is

E"2M!(Q2/4pl)#ql , (222)

which is clearly minimized by l"0, i.e. the string can minimize its energy by collapsing. The
tendency to collapse can be countered by a centrifugal barrier if the string segment (`dumbella) is
rotating fast enough about a perpendicular axis. The energy and angular momentum of a relativis-
tic dumbell has been estimated by Nambu to be

E&1
2
plq, ¸&1

8
pl2q , (223)

where

lq/2M"v2/(1!v2) (224)

with v&1 being the velocity of the poles. The expressions for E and ¸ imply the existence of
asymptotic Regge trajectories,

¸&a@
0
E2 (225)

with slope

a@
0
"1/2pq&(m

Z
/m

H
) TeV~2 . (226)

which, if found, would be a signature of dumbells.
The orbiting poles at the ends of the rotating dumbell will radiate electromagnetically and

this energy loss provides an upper bound to the lifetime of the con"guration. An estimate of
the radiated power from the analysis of synchrotron radiation in classical electrodynamics (see e.g.
[67]) gives

P&8
3
p]137(q/M)2 sin4 h

8
. (227)

Therefore the decay width C"P/E is given by

CKE/¸ (228)

and for large angular momentum, can lead to signi"cant lifetimes (compared to E~1).
To obtain numerical estimates, note that the above estimates are valid only if the dumbell length

is much greater than the width of the Z-string. This imposes a lower bound on the angular
momentum:

¸<p/2]137 sin2 h
8

cos2 h
8
&36 . (229)

Using the relation between the energy and the angular momentum, such an object has
E<6(m

H
/m

Z
)1@2 TeV.

The estimates above assume that the lifetime of the dumbell is dictated by the energy emission in
photons. In reality, there are other decay channels as well, though it is likely that these will be
comparatively suppressed since the photon is the only massless boson present in the system. The
dumbell can also decay by fragmenting due to "eld-theoretic instabilities of the kind discussed in
Section 7. These may be suppressed due to the "nite size of the dumbell, and as Nambu points out,
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15 In the stability analysis for a "nite piece of string of length ¸, the eigenvalues of the stability equation are shifted by
a contribution of order p2/¸2 with respect to the in"nitely long case, thus for su$ciently short segments the radial decay
mode could become stable. Longitudinal collapse might then be stabilized by rotation, as explained above.

due to the angular momentum of the dumbell.15 A careful analysis of these factors has not yet been
performed and is a vital open problem that may become experimentally relevant with the next
generation of accelerators.

9.4. Possible cosmological applications

The role of electroweak strings in cosmology depends on their abundance during and after the
electroweak phase transition. If this abundance is negligible, electroweak strings may at best only
be relevant in future accelerator experiments (see Section 9.3). If, however, there is a cosmological
epoch during which segments and loops of electroweak strings were present, they could impact on
two observational consequences: the "rst is the presence of a primordial magnetic "eld, and the
second is the generation of a cosmological baryon number. What is perhaps most remarkable is
that the two consequences might be related } the baryonic density of the universe would be related
to the helicity of the primordial magnetic "eld [125,112].

(i) Primordial magnetic xelds: A gas of electroweak string segments is necessarily accompanied
by a gas of electroweak monopoles. The eventual collapse and disappearance of electroweak strings
removes all the electroweak monopoles but the long-range magnetic "eld emanating from the
monopoles is expected to remain trapped in the cosmological plasma since that is a very good
electrical conductor. This will then lead to a residual primordial magnetic "eld in the present
universe.

A quantitative estimate of the resulting primordial magnetic "eld cannot be made with con"-
dence but a dimensional estimate is possible. An estimate for the average #ux through an area
¸2"N2/¹2, where N is a dimensionless number that relates the length scale of interest, ¸, to the
cosmological thermal correlation length ¹~1, was obtained in [122,125], and then translated into
the average magnetic "eld through that area. The result is

BD
!3%!

&¹2/N . (230)

(Magneto-hydrodynamical considerations provide a lower bound &1012 cm s on ¸ at the present
epoch.) It is important to remember that the above is an areal (i.e. #ux) average, de"ned by [42]

BD
!3%!

,TA
1
APdS )BB

2

U
1@2

, (231)

where the surface integral is over an area A and S ) T denotes ensemble averaging.
(ii) Baryon number: A gas of electroweak string segments and loops would, in general, contain

some helicity density of the Z-"eld. When the electroweak strings eventually annihilate, it is
possible that the helicity gets converted into baryon number [129,125]. However, in Refs. [44,45] it
is argued that fractional quantum numbers of a soliton are unrelated to the number of particles
produced when the soliton decays. Instead, only the change in the winding of the Higgs "eld in
a process that starts out in the vacuum and ends up in the vacuum can be related to the particle
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Fig. 18. The dispersion relations for the u and d quark zero modes are shown. The "lled states are denoted by solid circles
while dashes denote un"lled states. For convenience, periodic boundary conditions are assumed along the string and so
the momentum takes on discrete values.

number. This would imply that we would have to consider the formation of electroweak strings
together with their decay before we can "nd the resulting baryon number. Such a calculation has
not yet been attempted.

An interesting question is to consider what happens to the helicity in the Z-"eld after the strings
disappear. One possibility is that the helicity gets transferred to a frozen-in residual magnetic "eld
after the strings have decayed. To see this, consider a linked pair of loops as in Fig. 15. The strings
can break by nucleating monopole}antimonopole pairs, and then the string segments can shrink,
"nally leading to monopole annihilation. If this process happens in the early universe, the loops will
be surrounded by the ambient plasma which will freeze-in the magnetic "eld lines. Hence, after the
strings have disappeared, we will be left with a linked pair of magnetic "eld lines. In other words,
the original helicity in the Z-"eld has been transferred to helicity in the A-"eld. This argument relies
on the freezing-in of the magnetic "eld emanating from the monopoles and in the real setting the
physics can be much more complicated. However, a connection between the baryon abundance of
the universe and the properties of a primordial magnetic "eld seems tantalizing.

Stable strings at the electroweak scale: If in more exotic models, strings at the electroweak scale
were stable and had the superconducting properties discussed above, they could be responsible for
baryogenesis [14] and the presence of primary antiprotons in cosmic rays [118]. The production of
antiprotons follows on realizing that any strings tangled in the galactic plasma would be moving
across the galactic magnetic "eld. In the rest frame of the string, the changing magnetic "eld causes
an electric "eld along the string according to Faraday's law. The electric "eld along the string raises
the levels of the u- and d-quark Dirac seas (see Fig. 18), as well as the electron Dirac sea (not shown
in the "gure). This means that the electric "eld produces quarks and leptons on the string. The
electric charges of the particles are in the ratio e : u : d ::!1 :#2/3 :!1/3 and the rate of produc-
tion of these particles due to the applied electric "eld is proportional to the charges. Furthermore,
the quarks come in three colours and so for every electron that is produced, 3]2/3"2 u-quarks
and 3]1/3"1 d-quark are also produced. As a result, the net electric charge produced
is 1](!1)#2](2/3)#1](!1/3)"0. However, net baryon number 2](1/3)#1](1/3)"1
is produced because the quarks carry baryonic charge 1/3 while the baryonic charges of the leptons
vanish. Depending on the orientation of the string, either baryons or antibaryons will be produced.
Some of these would then be emitted from the string and would arrive on earth as cosmic rays.

Formation of strings in the electroweak phase transition: Early attempts to understand the
formation rates of electroweak strings were made in [125] based on the statistical mechanics

A. Achu& carro, T. Vachaspati / Physics Reports 327 (2000) 347}426 413



of strings. The estimates indicate that a density of strings will be formed immediately after the
phase transition. However, the application of string statistical mechanics to electroweak strings
may not be justi"ed and so other avenues of investigation are needed. An alternative approach
to study electroweak string formation was taken by Nagasawa and Yokoyama [101]. They
assumed a thermal distribution of scalar "eld values and gradients, and estimated the probability of
obtaining a string-like scalar "eld con"guration. The conclusion was that electroweak vortex
formation in a thermal system is totally negligible. One possible caveat is that the technique used in
[101] ignores the e!ect of gauge "elds, which we know are signi"cant in the formation of related
objects such as semilocal strings. In [115], Sa$n and Copeland have evolved the classical
equations of motion to study the formation of electroweak strings, and they found the presence of
the gauge "elds led to larger string densities than one would have inferred from the scalar "elds
alone, at least when sin2 h

8
"0. However, this study does not directly address the question of

string formation in a phase transition because no measure has been placed on the choice of initial
conditions and their choice may be too restrictive. Most recently, a promising development has
taken place [29] } calculations in lattice gauge theory have been done to study the electroweak
phase transition and there is evidence that electroweak strings will form. Further studies along
these lines will provide important and quantitative insight into the formation of electroweak
strings.

Using the results on the formation of semilocal strings, we can gain some intuition about the
formation of electroweak strings in the region of parameter space close to the semilocal limit
(the region of stability in Fig. 11). We have seen that semilocal strings with b(1 have a non-zero
formation rate, increasing as bP0. Initially, short segments of string are seen to grow and join
nearby ones because this reduces the gradient energy at the ends of the strings. The ends of
electroweak strings are proper magnetic monopoles, and therefore the scalar gradients are cancel-
led much more e$ciently by the gauge "elds, but as sin h

8
P0 the cores of the monopoles get larger

and larger, and they could begin to overlap with nearby monopoles, so it is possible that short
segments of electroweak string will also grow into longer ones.

10. Electroweak strings and the sphaleron

The sphaleron is a classical solution in the GSW model that carries baryon number N
F
/2, where

N
F

is the number of fermion families [97,80]. For h
8
"0, the asymptotic form of the sphaleron

Higgs "eld is

U
41)

"A
cos h

sin h e*rB , (232)

while the gauge "elds continue to be given by Eqs. (100) and (101) in which UM should be replaced by
U

41)
. (Note that the hypercharge gauge "eld vanishes for h

8
"0.) Inside the sphaleron, the Higgs

"eld vanishes at one point. The sphaleron also has a magnetic dipole moment that has been
evaluated for small values of h

8
. The reason that the sphaleron is important for particle physics is

that its energy de"nes the minimum energy required for the classical violation of baryon number in
the GSW model.
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As has already been described in Section 9, non-trivial baryon number can be associated with
linked and twisted segments of electroweak string. Further, for speci"c values of the link and twist,
the baryon number of a con"guration of Z-strings can also be N

F
/2. This raises the question: are

sphalerons related to Z-string segments?
An early paper to draw a connection between the various solutions in the GSW model is

Ref. [47]. In [129,63,125,62], however, a direct correspondence between the "eld con"guration of
the Z-string and the sphaleron was made.

10.1. Content of the sphaleron

In [63] Hindmarsh and James evaluated the magnetic charge density and current density within
the sphaleron. A subtlety in this calculation is that there is no unique de"nition of the electromag-
netic "eld when the Higgs "eld is not everywhere in the vacuum. The choice adopted in [63] (and
also the choice in this review) is

F%.
ij

"sin h
8
=a

ij
na#cos h

8
>

ij
. (233)

The evaluation of the magnetic charge density (which is proportional to the divergence of the
magnetic "eld strength) clearly shows that the sphaleron contains a region with positive magnetic
charge density and a region with negative magnetic charge density. Furthermore, the total charge
in, say, the positive charge region agrees with the magnetic charge of a monopole. In addition,
there is a #ux of Z magnetic "eld connecting the two hemispheres. This would seem to con"rm that
the sphaleron consists of a Z-string segment. However, this is not the full picture. In addition to the
string segment, Hindmarsh and James "nd that the electric current is non-zero in the equatorial
region and is in the azimuthal (e( r ) direction.

10.2. From Z-strings to the sphaleron

The scalar "eld con"guration for a "nite segment of Z-string was given in Section 9.3:

U
..6

"A
cos(H/2)

sin(H/2) e*rB , (234)

where

cosH,cos h
.
!cos h

.6
#1 (235)

and the angles h
.

and h
.6

are measured from the monopole and antimonopole, respectively, as
shown in Fig. 19.

It is straightforward to check that (234) yields the monopole "eld con"guration close to the
monopole (h

.6
P0) and the antimonopole con"guration close to the antimonopole (h

.
Pp). It also

yields a string singularity along the straight line joining the monopole and antimonopole
(h

.
"p, h

.6
"0). However, there are other Higgs "eld con"gurations that also describe monopoles

and antimonopoles:

U
.
"e*cA

cos(h
.
/2)

sin(h
.
/2)e*rB, U

.6
"e*cA

sin(h
.6
/2)

cos(h
.6
/2)e*rB . (236)
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Fig. 19. De"nition of the coordinate angles h
.

and h
.6
. The azimuthal angle, u, is not shown.

Next consider the Higgs "eld con"guration:

U
..6

(c)"A
sin(h

.
/2) sin(h

.6
/2)e*c#cos(h

.
/2) cos(h

.6
/2)

sin(h
.
/2) cos(h

.6
/2)e*r!cos(h

.
/2) sin(h

.6
/2)e*(r~c)B (237)

together with the gauge "elds given by Eqs. (100) and (101) with UM replaced by U
..6

(c). When we
take the limit h

.6
P0 we "nd the monopole con"guration (with c"0) and when we take h

.
Pp

the con"guration is that of an antimonopole (with arbitrary c) provided we perform the spatial
rotation uPu#c. Note that the asymptotic gauge "elds agree since these are determined by the
Higgs "eld. The monopole and antimonopole in (237) also have the usual string singularity joining
them. This means that the con"guration in Eq. (237) describes a monopole and antimonopole pair
that are joined by a Z-string segment that is twisted by an angle c. The Chern}Simons number of
one such segment can be calculated [129] and is

Q
CS
"N

F
cos 2h

8
c/2p . (238)

If c"p/cos(2h
8
) then the Chern}Simons number of the twisted segment of string is N

F
/2 and is

precisely that of the sphaleron.
Given that the segment with twist p/cos(2h

8
) has Chern}Simons number equal to that of the

sphaleron, it is natural to ask if some deformation of it will yield the sphaleron. This deformation
is not hard to guess for the h

8
"0 case. In this case, if we let the segment size shrink to zero, we
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Fig. 20. The thick solid line is the location of the Z-string for a dumbell con"guration and the dashed curves lie in the
equatorial plane and are drawn to guide the eye. The dotted lines depict lines of magnetic #ux. The arrows show the
orientation of the vector n(J!UssU.

Fig. 21. The "eld con"guration for a stretched sphaleron as in Fig. 20. Only one magnetic "eld line is shown.

have h
.
"h

.6
"h and the Higgs "eld con"guration of Eq. (237) gives

U
..6

(c"p)"A
cos h

sin h e*rB . (239)

This is exactly the scalar "eld con"guration of the sphaleron for h
8
"0 (Eq. (232)). Note that the

asymptotic gauge "elds continue to be given by Eqs. (100) and (101) and satisfy the requirement
that the covariant derivatives of the Higgs "eld vanish.

Encouraged by this successful connection in the h
8
"0 case, it was conjectured in [129,125] that

the sphaleron can also be obtained by collapsing a twisted segment of Z-string with Chern}Simons
number N

F
/2 for any h

8
. If true, this would mean that the asymptotic Higgs "eld con"guration, U

S
,

for the sphaleron for arbitrary h
8

is given by

U
S
"A

sin2(h/2)e*cS#cos2(h/2)

sin(h/2) cos(h/2)e*r(1!e~*cS )B (240)

where c
S
"p/cos(2h

8
).

The twisting of the magnetic "eld lines in the sphaleron con"guration has been further clari"ed
in [62]. The direction of magnetic "eld lines is shown for a dumbell in Fig. 20 and for a `stretcheda
sphaleron in Fig. 21. (The asymptotic "elds for the stretched sphaleron are identical to those for the
sphaleron and the twisted Z-string.) In the stretched sphaleron case, the magnetic "eld line twists
around the vertical string segment by an angle p (for h

8
P0) as one goes from monopole to

antimonopole. This twist provides non-trivial Chern}Simons number to the con"guration [129].
On physical grounds it seems reasonable that there should be a critical value of twist at which

one can get a static solution for a Z-string segment. This is because the segment likes to shrink
under its own tension but the twist prevents the shrinkage and is equivalent to a repulsive force
between the monopole and antimonopole. (This idea owes its origin to Taubes [119], who
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discovered a solution containing a monopole and an antimonopole in an O(3) model in which the
Coulomb attraction is balanced by the relative misorientation of the magnetic poles.) Then, if the
string is su$ciently twisted, the attractive force due to the tension and the repulsive force due to the
twist will balance and a static solution can exist. So far we have been assuming that the only
dynamics of the segment is towards collapsing or expanding of the string segment. However, since
we are dealing with twisted segments, we should also include the rotational dynamics associated
with twisting and untwisting. So, while any twist greater than a certain critical twist might
successfully prevent the segment from collapsing, only a special value of the twist can give a static
solution to the rotational dynamics. Furthermore, we expect that this solution will be unstable
towards rotations that twist and untwist the string segment. This would be the unstable mode of
the sphaleron.

Similar connections between the=-string and the sphaleron have also been constructed in [12].
A connection to multisphalerons [77] has not been established but seems plausible. The relation
between strings and other axially symmetric solutions [78,27], in particular bisphalerons [84], is an
interesting open problem.

11. The 3He analogy

The symmetry structure of 3He closely resembles the electroweak symmetry group and hence we
expect the analog of electroweak strings to exist in 3He [134,136,138]. Indeed, this analog is called
the n"2 vortex. We now explain this correspondence in greater detail.

11.1. Lightning review of 3He

3He nuclei have spin 1/2 and two such nuclei form a Cooper pair which is the order parameter
for the system. Unlike 4He, the pairing is a spin triplet (S"1) as well as an orbital angular
momentum triplet (¸"1). As a result there are 3]3 components of the wavefunction of the
Cooper pair } that is, the order parameter has 9 complex components. Hence, the order parameter
is written as a 3 by 3 complex-valued matrix: Aai with a (spin index) and i (spatial index) ranging
from 1 to 3.

At temperatures higher than a few milli-Kelvin the system is invariant under spatial rotations
(SO(3)

L
) as well as rotations of the spin degree of freedom of the Cooper pair (SO(3)

S
). Another

symmetry is under overall phase rotations of the wavefunction (;(1)
N
) and the corresponding

conserved charge is particle number (N). Hence the symmetry group is

G"SO(3)
L
]SO(3)

S
];(1)

N
. (241)

There are several possible phases of 3He corresponding to di!erent expectation values of the order
parameter. In the A-phase, the orbital angular momenta of the Cooper pairs are all aligned and so
are the spin directions. This corresponds to

Aai"D
0
dK ati

, (242)
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Fig. 22. Depiction of the A- and B-phases of 3He. In the A-phase, the spin orientations of all the Cooper pairs are parallel
and so are the orbital orientations. In the B-phase, the relative orientation of the spin and orbital orientations are "xed in
all the Cooper pairs but neither the spin nor the orbital orientations of the various Cooper pairs are aligned.

where D
0
&10~7 eV is the temperature-dependent gap amplitude, the real unit vector dK a is the spin

part of the order parameter, and

t
i
"(m(

i
#in(

i
)/J2 (243)

with m( and n( being orthogonal unit vectors, is the orbital part of the order parameter. This
expectation value of the order parameter leads to the symmetry breaking:

GP;(1)
S3

];(1)
L3~N@2

]Z
2

. (244)

The reason why a;(1) subgroup of SO(3)
L
];(1)

N
survives the symmetry breaking can be derived

from the expectation value in Eq. (242). A spatial rotation of the order parameter is equivalent to
a phase rotation of t

i
and this phase can be absorbed by a corresponding ;(1)

N
rotation of the

order parameter. Hence, just as in the electroweak case, a diagonal ;(1) subgroup remains
unbroken. The;(1)

S3
survives since rotations about the dK -axis leave the order parameter invariant.

The non-trivial element of the residual discrete Z
2

symmetry corresponds to a sign inversion of
both t

i
and dK . A depiction of the A- and B- phases is shown in Fig. 22 (after [90]).

In the B-phase, neither the orbital angular momenta nor the spin directions of the di!erent
Cooper pairs are aligned. But the angle between the direction of the angular momenta and the spin
direction is "xed throughout the sample. Hence in the B-phase, independent rotations of the orbital
angular momenta and of spin are no longer symmetries. However, a simultaneous rotation of both
orbital angular momenta and spin remains an unbroken symmetry. In other words, a diagonal
subgroup of SO(3)

S
]SO(3)

L
remains unbroken. Therefore, in the B-phase the order parameter is

written as

Aai"3~1@2e*(Rai (n( , h) , (245)
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where / is a phase and the 3]3 matrix Rai describes relative rotations of the spin and orbital
degrees of freedom about an axis n( and by angle h. The symmetry-breaking pattern is

GPSO(3)
L3`S3

. (246)

This symmetry breaking resembles the chiral symmetry breaking transition studied in QCD
(with two #avors of quarks) and may be useful for experimentally investigating phenomenon such
as the formation of `disoriented chiral condensatesa [25]. The B-phase does not resemble the
electroweak model and hence we will not discuss it any further. We shall also not discuss the
various other phases of 3He (for example, the A

1
phase) which are known to occur. (For a useful

chart of the phases, see Section 6.2 of Ref. [134].)
In addition to the continuous symmetries, there are a number of discrete symmetries that arise

in the phases of 3He. These are important for the classi"cation of topological defects in 3He.
A description may be found in [116].

11.2. Z-string analog in 3He

Clearly the A-phase closely resembles the electroweak symmetry breaking because of the mixing
of the generator of the non-Abelian group (SO(3)

L
) and the Abelian group (;(1)

N
). The orbital part

of the order parameter is responsible for this pattern of symmetry breaking and hence t
i
plays the

role of the electroweak Higgs "eld U. The connection, however, is indirect since t
i
is a complex

3 vector while U is a complex doublet. The idea is that the 3He-A real vector

lK
H%A

"i
w]ws

wsw
"m( ]n( (247)

is analogous to the electroweak real vector

lK
%8

"!UssU/UsU . (248)

The electroweak Z-string is a non-topological solution for which the Higgs "eld con"guration is

U"

g

J2
f (r)e*rA

0

1B . (249)

For this con"guration lK
%8

"z( .
The vacuum manifold M

A
of 3He-A has

p
1
(M

A
)"Z

4
(250)

and hence there are topological Z
4

vortices in 3He-A. The vortices occur in classes labeled by
n"$1/2, 1. The vortices with n equal to an even integer are topologically equivalent to the
vacuum. The non-trivial topological vortices (labeled by n"$1/2, 1) cannot be the equivalent of
the non-topological Z-string. However, the topologically trivial n"!2 vortex is also seen in
3He-A. The order parameter for this vortex is

Aaj(o, u)"D
0
z( a[e*nrf1(o)(x(

j
#iy(

j
)#e*(n`2)rf

2
(o)(x(

j
!iy(

j
)] , (251)
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where f
1
(o) and f

2
(o) are two pro"le functions with f

1
(R)"1, f

2
(R)"0, f

1
(0)"0

and f
2
(0) depending on n. In correspondence with the electroweak Z-string, the n"2 vortex

has lK
H%A

"z( . However, the order parameter need not vanish at the centre of the vortex
for certain members of the n"2 class of vortices. For example, with n"!2, we may have
f
2
(0)O0.
The n"2 vortex is not topological and can be continuously deformed into the vacuum

manifold. The con"guration at the terminus of the n"2 vortex is called the hedgehog or monopole
lK
H%A

"r( (the radial unit vector). This texture is the direct analog of the electroweak magnetic
monopole (lK

%8
"r( ) at the terminus of a Z-string.

The n"2 discontinuous vortex is unstable but even so has been observed in 3He. In the
laboratory, the rotation of the sample stabilizes the n"2 vortex. This seems to be closely
analogous to the result of Garriga and Montes [49] who "nd that electroweak strings can be
stabilized by external magnetic "elds (Section 7.3).

Before proceeding further, it is prudent to remind ourselves of some important di!erences
between the (bosonic sector of the) GSW model and 3He. The symmetries in 3He are all global
whereas the symmetries in the GSW model are all local. So the n"2 discontinuous vortex is like
a global analog of the Z-string. Another important di!erence is in the discrete symmetries in
the two systems. The symmetry structure of the GSW model is really [S;(2)];(1)]/Z

2
since

the Z
2

elements 1 and !1 which form the center of S;(2) also occur in;(1). On the contrary, the
symmetry group of 3He-A has a multiplicative Z

2
factor which gives rise to the non-trivial

topology of the vacuum manifold.
It is important to note that we cannot expect 3He to provide an exact replica of the GSW model.

However, the similar structures of the two systems means that certain issues can be experimentally
addressed in the 3He context while they are far beyond the reach of current particle physics
experiments. An issue of this kind is the baryon number anomaly in the GSW model and the
anomalous generation of momentum in 3He.

As described in Section 8, there are fermionic zero modes on the Z-string and an electric "eld
applied along the Z-string leads to the anomalous production of baryon number. What is the
corresponding analog in 3He? At "rst sight, 3He does not have the non-Abelian gauge "elds that
the electroweak string has and so it seems that the analogy is doomed. But this is not true. The
point is that the physics of fermionic zero modes has to do with the dynamics of fermions on the
xxed background of the Z-string. Likewise, in 3He we can be interested in the dynamics of
quasiparticles in the "xed background of the n"2 vortex. As far as the interaction of quasiparticles
with the order parameter background is concerned, one can think of the 3He-A vortex as being due
to a ("ctitious) gauge "eld Z@k. Then the interaction of quasiparticles with the order parameter is
of the form jkZ@k which is exactly analogous to the interaction of quarks and leptons with the
Z-boson. Just as in the electroweak case, the 3He quasiparticles have zero modes on the vortex. In
close analogy with the scenario where the motion of a superconducting string through an external
magnetic "eld leads to currents along the string (Section 9.4), the velocity of the 3He vortex through
the super#uid leads to an anomalous #ow of quasiparticles but this time in the direction
perpendicular to the vortex. This #ow causes an extra force on the vortex as it moves through the
super#uid that can be monitored experimentally. Such a force was measured in the Manchester
experiment [21,137] and is in excellent agreement with theoretical predictions. Hence the
Manchester experiment veri"es the anomalous production of quasiparticle momentum on moving
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vortices and the corresponding production of baryon number on electroweak strings moving
through a magnetic "eld.

12. Concluding remarks and open problems

Quantum "eld theory has been very successful in describing particle physics. Yet the successes
have mostly been relegated to perturbative phenomena. A more spectacular level of success will be
achieved when our "eld theoretic description of particle physics is con"rmed at the non-pertur-
bative level. The "rst non-perturbative objects that are likely to be encountered in this quest are
topological defects and their close cousins that we have described in this review.

The search for topological defects can be conducted in accelerator experiments or in the
cosmological realm via astronomical surveys. These searches are complementary } only supermas-
sive topological defects can be evident in astronomical surveys, while only the lightest defects can
potentially be produced in accelerators. Foreseeable accelerator experiments give us access only
to topological defects at the electroweak symmetry breaking scale. So it is very important to
understand the defects present in the standard electroweak model and all its viable extensions. One
may hope that the structure of defects will yield important clues about the underlying symmetry of
the standard model.

With this hope, we have described wide classes of defects present in "eld theories. These defects are
not all topological and this is relevant to the standard electroweak model which also lacks the
non-trivial topology needed to contain topological defects. The absence of topology in the model
means that the defect solutions cannot be enumerated in topological terms and neither can their
stability be guaranteed. We have described, however, how the existence of defect solutions may still
be derived by examining the topological defects occurring in subspaces of the model. The electroweak
defects can be thought of as being topological defects that are embedded in the electroweak model.

The issue of stability of the defect solution is yet more involved and has not yet been fully
resolved in the presence of fermions. That the electroweak Z-string is stable for large h

8
(within the

bosonic sector) was inspired by the discovery of semilocal strings and their stability properties. The
explicit stability analysis of the electroweak string marks out the region of parameter space in
which the Z-string is stable. Then it is clear that the Z-string is unstable for the parameters of the
standard model. In certain viable extensions of the standard model and under some external
conditions (such as an external magnetic "eld), the standard electroweak Z-string can still be stable.

Even if the Z-string is unstable, it is possible that the lifetime of segments of string is long enough
so that they can be observed in accelerators. This possibility was discussed in the "rst paper on the
subject by Nambu [102]. The discovery of Z-string segments would truly be historic since it would
con"rm the existence of magnetic monopoles in particle physics. However, the rate of formation of
Z-string segments and their lifetime has not yet been studied in detail. Some of the di$culties in this
problem lie quite deep since they involve the connection of perturbative particle physics to the
non-perturbative solitonic features. Additionally, the in#uence of fermions on electroweak strings
needs further investigation.

Electroweak strings may play a cosmological role in the genesis of matter over antimatter as is
evident since con"gurations of electroweak string have properties that are similar to the electro-
weak sphaleron. The challenge here is to determine the number density of electroweak strings
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formed during the electroweak phase transition and their decay rate. Note that the formation of
topological strings has been under constant examination over the last two decades and only now,
with some experimental input, are we beginning to understand their formation. The cosmological
formation of electroweak defects has not been addressed with as much vigour. Recently though,
there have been spurts of activity in this area, with lattice calculations beginning to shed interesting
insight [29]. It is very likely that further lattice results will be able to give quantitative information
about the formation of electroweak strings at the electroweak phase transition.

While particle physics experiments to detect electroweak strings are quite distant, experiments in
condensed matter systems to study topological defects are becoming more feasible and can be used
to test theoretical ideas that are relevant to both particle physics and condensed matter physics.
Already there are experiments that test theories of the formation of topological vortices. We can
also expect that condensed matter experiments might some day test the formation of defects that
are not topological. The experiments on He3 are most relevant in this regard since it contains close
analogs of electroweak strings. Furthermore, ideas relating to the behaviour of fermions in the
background of electroweak strings can also be tested in the realm of He3. This makes for exciting
physics in the years to come which will stimulate the growth of particle physics, cosmology and
both, theoretical and experimental, condensed matter physics.
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