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Preface to the Second Edition

In preparing this revised edition of the Tour, I have corrected several errors and
misprints for which I would like to take this opportunity of apologizing to readers
of the first edition.

By now, supersymmetry and string theory have become so prominent in
the theoretical physics literature (despite the more or less total absence of any
experimental evidence of their relevance to the real world!) as to be obligatory in
a book with this title. Accordingly, I have added introductory accounts of these
topics in §12.7 and chapter 15. A comprehensive treatment of either topic (were
I competent to write it) would require a book in itself, but I hope that the short
accounts I have given will serve to make the extensive technical literature a little
more accessible. I confess that I am no expert on string theory; Chris Hull and
Jim Gates have given me advice which is perhaps enough to ensure that what I
say is not grossly misleading, and I thank them for it.

Other new material in this edition includes a section on the applications of
differential geometry to Newtonian mechanics and classical electromagnetism
(§3.7) and a chapter on magnetic monopoles and other topological defects
(chapter 13). I have also expanded my discussions of quantum fields in curved
spacetimes (§7.7), grand unified theories (§12.6) and inflationary cosmology
(§14.8) and attempted to improve and update my presentation of various other
matters in minor ways.

I would like to thank IoP Publishing for giving me the opportunity of revising
and extending the Tour. I am grateful to Jim Revill for his continual friendship and
encouragement, and to Simon Laurenson for his unfailing patience and courtesy
in dealing with the technicalities of bringing the final product into being.

Ian D Lawrie
October 2001
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Preface to the First Edition

A few years ago, I decided to undertake some research having to do with the early
history of the universe. It soon became apparent that I should have to improve
my understanding of several aspects of theoretical physics, and it was from the
ensuing process of self-education that the idea of writing this book emerged.
I was particularly struck by two things. The first was the existence of many
interrelationships, both physical and mathematical, between branches of physics
that are traditionally treated as autonomous. The second was the lack of any
textbook which had the scope to bring out these interrelationships adequately,
or which would teach me at least the rudiments of what I needed to know in a
relatively short time. It is that gap in the literature which I hope this book will go
some way towards filling.

In trying to cover a wide range of topics, I have naturally been unable to
give each the more extensive treatment it would receive in a more specialized
work. I have tried to bear in mind the needs of three main categories of reader
to whom I hope the book will be of use. As an undergraduate, I recall feeling
annoying periods of frustration on encountering references to esoteric matters
such as field theory and general relativity which were obviously important but
said to be ‘beyond the scope’ of the lectures or recommended textbooks. Things
have moved on a little since then, but it is still largely true that undergraduate
courses devoted, for example, to gravitation and cosmology or elementary particle
physics are required to give a broad view of the phenomenological aspects of their
subjects, which leaves little room for exploring deeper aspects of their theoretical
foundations. Final-year undergraduates who feel such a deprivation should find
some enlightenment in these pages. Courses on ‘theoretical physics’ are also
offered to undergraduates in physics and mathematics, perhaps as an optional
alternative to some stint of laboratory work. The purpose of such a course is to
illustrate the ways theoretical physicists have of thinking about the world, rather
than to explore any of the subfields of physics exhaustively. I hope that this book
will be found suitable as a basis for such courses, and have tried to arrange the
material so that lecturers may select topics from it according to their own tastes.

Postgraduate students will no doubt find, as I have done, the need to acquire
some familiarity with a wide range of material which is treated adequately only
in rather forbidding technical treatises. They, I hope, will find here a palatable

xiii



xiv Preface to the First Edition

introduction to much of what they need and, indeed, a sufficient coverage of those
topics which are peripheral to their chosen speciality.

Third, I have tried to provide for professional scientists and engineers who
are not theoretical physicists. They, I conceive, may find themselves unsatisfied
by semi-popular accounts of advances in the subject but without time for a
full-scale assault on the technical literature. For them, this book may perhaps
constitute a useful half-way house.

Responsibility for what appears herein is, of course, my own, but I should
like to acknowledge the assistance I have received along the way. Much of what
I understand of statistical mechanics was imparted some time ago by Michael
Fisher. Others who have benefitted from his wisdom may recognize his influence
in what I have to say, but he naturally bears no responsibility for anything I
failed to understand properly. During 1986–7, I spent a sabbatical year at the
University of British Columbia, where I had my first opportunity to teach a
substantial graduate course on quantum field theory. The discipline of preparing
the lectures and the perceptive response of the students who took the course did
much to sharpen the somewhat less advanced presentation offered here. Euan
Squires was instrumental in securing a contract for the book to be written. I have
greatly appreciated his enthusiastic support during the writing and his comments
on the first draft of the manuscript. I am also grateful to Gary Gibbons, who
read the chapters on relativity and gravitation and saved me from a number of
faux pas. Professor Jim Gates reviewed the entire manuscript, and I have greatly
appreciated his many detailed comments and suggestions. It is a pleasure to
thank Jim Revill, Neil Robertson and Jane Bartholomew at Adam Hilger for
their assistance and encouragement during the various stages of production. The
greatest thanks, perhaps, are due to my wife Ingrid who encouraged me through
the whole venture and patiently allowed herself to be supplanted by textbooks
and word processor through more evenings and weekends than either of us cares
to remember.

Ian D Lawrie
December 1989
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Chapter 1

Introduction: The Ways of Nature

In the eighteenth century, it became fashionable for wealthy young Englishmen
to undertake the Grand Tour, an excursion which may have lasted several years,
their principal destinations being Paris and the great cultural centres of Italy—
Rome, Venice, Florence and Naples. For many, no doubt, the joys of traveling
and occasional revelry were a sufficient inducement. For others, the opportunity
to observe at first hand the social, literary and artistic achievements of other
nations represented the completion of their liberal education. For a few, perhaps,
it was the starting point of an independent intellectual career. It is in somewhat
the same spirit that I wish to offer readers of this book a guided grand tour
of theoretical physics. The members of my party need be neither wealthy (my
publisher permitting), young, English nor male. I am, however, going to assume
that they have a sound knowledge of basic physics, such as a student in his or her
final year of undergraduate study ought to possess.

Our itinerary cannot, of course, include everything that is important in
theoretical physics. Our principal destinations are those central ideas which form
the foundations of our understanding of how the world works—our knowledge,
as it now stands, of the ways of nature. In outline, the topics I plan to explore
are: the theories of relativity, which concern themselves with the geometrical
structure of space and time and from which emerge an account of gravitational
phenomena; quantum mechanics and quantum field theory, which describe the
constitution of matter at the most microscopic level that is currently accessible to
experiments; and statistical mechanics, which, up to a point, allows us to deduce
from this microscopic constitution the properties of the macroscopic systems of
which the universe is principally composed. The universe itself, and especially its
early history, form the subject of the penultimate chapter, where many of the ideas
we shall have explored must be brought into play. In the final chapter, I give an
introduction to the more speculative theory of quantized relativistic strings (and,
as it turns out, of other objects too) which, in the eyes of its advocates at least,
promises to provide the most comprehensive account it has so far been possible
to devise of the ways of nature at the most fundamental level.
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2 Introduction: The Ways of Nature

For some readers, the desire to gain a little insight into our contemporary
understanding of the ways of nature will, I hope, be a sufficient inducement to
read this book. For others, such as those nearing the end of their undergraduate
studies, I hope to provide the opportunity of rounding off that stage of their
education by delving a little more deeply into the ways of nature than the core of
an undergraduate curriculum normally does. For a few, such as those embarking
upon postgraduate research in fundamental theoretical physics, I hope to provide
a readily digestible introduction to many of the ideas that they will need to master.

Before setting out, I should say a few words about the point of view from
which the book is written. By and large, I have written only about what I know
and what I believe I understand. This, and the limited number of pages at my
disposal, have led to the omission of many topics that other writers might consider
essential to a theoretical understanding of physics, but that cannot be helped. The
topics I have included are those that I believe to be fundamental, in the sense that
I have tried to convey by speaking of the ‘ways of nature’. The philosopher Karl
Popper would have us believe that scientific theories exist only to be refuted by
experimental evidence. If practising scientists really thought in that way, then I
doubt that they would consider their expenditure of intellectual effort worthwhile.
A good scientific theory is seldom refuted by new experimental evidence for
which it cannot account. Much more often, it comes to be extended, generalized
or reinterpreted as a constituent part of some more comprehensive theory. Every
time this happens, we improve our understanding of what the world is really like:
we gain a clearer picture of the ways of nature.

The way in which such transformations in our understanding come about
is not necessarily apparent at the point where a detailed theoretical prediction is
confronted with an experimental datum. Take, for example, the transformation
of classical Newtonian mechanics into quantum mechanics. We have discovered,
amongst other things, that electrons can be diffracted by crystals: a phenomenon
for which quantum mechanics can account but classical mechanics cannot.
Therefore, it is often said, classical mechanics must be wrong, or at least no
more than an approximation to quantum mechanics with a restricted range of
usefulness. It is indeed true that, under appropriate circumstances, the predictions
of classical mechanics can be regarded as a good approximation to those of
quantum mechanics, but that is the less interesting part of the truth. There is,
as we shall see, a level of description (which is not especially esoteric) at which
classical and quantum mechanics are virtually identical, apart from a change of
interpretation, and it is the reinterpretation that is vital and profound. It is, I
maintain, at such a level of description that an understanding of the ways of nature
is to be sought, and it is that level of description that is emphasized in this book.

It would, of course, be absurd to lay claim to any understanding of the
ways of nature if our theories could not be tested in detail against experimental
observations. Unfortunately, the task of deriving from our fundamental theories
precise predictions that can be subjected to stringent experimental tests is often a
long and highly technical one. This task, like the devising of the experiments
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themselves, is essential and intellectually challenging but, for want of the
necessary space, I shall not often describe in detail how it can be accomplished.
I do not think that this requires any apology. The basic conceptual understanding
I hope to provide can, on first acquaintance, be obscured by the technical details
of specific applications. Readers will nevertheless want to know by what right
the theories I present can claim to describe the ways of nature, and I shall indeed
outline, at certain key points, the evidence on which this claim is based. Readers
who wish to become professional physicists will, in the end, have to master at
least those details that are relevant to their chosen speciality and will find them
described in many excellent, specialized textbooks, some of which are mentioned
in my bibliography.

Most good scientific theories have been born of the need to understand
certain puzzling observations. If, in retrospect, our improved insight into the ways
of nature shows us that those observations are no longer puzzling but entirely to be
expected, then we feel satisfied that the desired understanding has been achieved.
We feel this satisfaction most deeply when the theory we have constructed has a
coherent, logical, aesthetically pleasing internal structure, and rests on a few basic
assumptions which, though they may not be quite self-evident, have a convincing
ring of truth. Almost, though never entirely, we come to feel that things could not
really have been any other way. It may be presumptuous to suppose that the ways
of nature must necessarily have such a psychological appeal for us. The fact is,
though, that the most successful fundamental theories of physics are of this kind,
and that, for me and many others, is what makes the enterprise worthwhile.

My desire to bring out this aspect of theoretical physics strongly influences
the way this book is written. When discussing, in particular, relativity and
quantum mechanics, the main part of my treatment begins by describing the
theoretical concepts and mathematical structures that lie at the heart of these
theories, and later develops some of their consequences in particular physical
situations. The more traditional method of introducing these subjects is to set out
at the beginning the experimental facts that stand in need of explanation and then
to ask what new theoretical concepts are needed to accommodate them. I realize
that, for many readers, the traditional approach is the more easily accessible one.
For that reason, I have given in §§2.0 and 5.0 short summaries of the more
traditional development of elementary aspects of the theory. To some extent,
these should serve as previews of the more detailed accounts that follow and
enable readers to preserve a sense of direction and purpose while the mathematical
formalism is developed. Ideally, readers should already be acquainted with special
relativity, the wave-mechanical version of quantum mechanics and their simpler
applications. Readers who are thus equipped may prefer to skip these introductory
sections or to regard them and the more elementary exercises as a short revision
course.

In the main, my treatment of mathematical formalism is intended to be
complete and explicit. Where I have omitted the algebraic details needed to derive
an equation, readers should be able to supply them, and should usually not be
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satisfied until they have done so. In some cases, the exercises offer guidance.
The exercises should, indeed, be regarded as an integral part of the tour; some
of them introduce important ideas that are not dealt with fully in the main text.
Occasionally, it is necessary for me merely to quote the result of a calculation that
is too lengthy or technical to be reproduced in detail, and I shall indicate when
this is so.

There is one other aspect of theoretical physics that I should like readers to
be aware of. It has become apparent that there are many similarities, some of
them physical and others mathematical, between areas of physics which, on the
face of it, appear to be quite separate. In the course of this book, I emphasize
two of these unifying themes particularly. One is that the geometrical ideas we
need to describe the structure of space and time also lie at the root of the gauge
theories of fundamental forces, described in chapters 8 and 12, of which the most
familiar is electromagnetism. Indeed, once we realize the importance of these
ideas, the existence of both gravitational and other forces is seen to be almost
inevitable, even if we had not already been aware of them. The other is a basic
mathematical similarity between quantum field theory and statistical mechanics
which, as I discuss in chapter 10, can appear in several different guises. This is not
altogether surprising, since both theories require us to average over uncertainties
of one kind or another. The extent of the similarity is, however, quite striking, and
becomes particularly apparent in the study of phase transitions, with which I deal
in chapter 11. One of my chief ambitions in writing this book is to offer a unified
account of theoretical physics in which these interconnections can properly be
brought out.

While the connections between different topics will be appreciated only by
those who read the book in its entirety, I have tried to arrange the material so
that not all of it need be mastered in one go. Readers who are mainly interested
in relativity and gravitation may read chapters 2, 3 and 4 and the first three
sections of chapter 14 without serious loss of continuity, though the remainder of
chapter 14 requires some knowledge of particle physics and statistical mechanics.
Similarly, those whose main interest is in particles and field theory may read
chapters 3, 5–9 and 12, together with the more speculative material of chapters 13
and 15, but should preferably look at §§2.0 and 11.4–11.7 for some background
information. They should then be able to follow most of chapter 14. Chapters 3,
5, 10 and 11 can be read as a short course on statistical physics and the theory of
phase transitions. Readers who follow one of these schemes may safely ignore
occasional references to unfamiliar material, or may like to dip into relevant
portions of the chapters they have omitted.

The purpose of this book is entirely pedagogical. I do not aim to describe the
history of theoretical physics, nor to give anything approaching a comprehensive
survey of the research literature. As far as possible, I have made at least passing
mention of important ideas which bear on the topics I discuss but cannot be
covered in detail, and the bibliography lists a number of good textbooks and
review articles to which interested readers may turn for further information and
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references to the original literature. I have given some references to the literature
where I think that readers will find an original paper particularly enlightening
or where it provides a useful historical perspective, but I have by no means listed
every paper in these categories. I have certainly not attempted to refer explicitly to
the work of every scientist who has made important contributions to the subjects
I discuss. To do so would require a book in itself.

It is time for our tour to begin.



Chapter 2

Geometry

Our tour of theoretical physics begins with geometry, and there are two reasons
for this. One is that the framework of space and time provides, as it were, the
stage upon which physical events are played out, and it will be helpful to gain a
clear idea of what this stage looks like before introducing the cast. As a matter of
fact, the geometry of space and time itself plays an active role in those physical
processes that involve gravitation (and perhaps, according to some speculative
theories, in other processes as well). Thus, our study of geometry will culminate,
in chapter 4, in the account of gravity offered by Einstein’s general theory of
relativity. The other reason for beginning with geometry is that the mathematical
notions we develop will reappear in later contexts.

To a large extent, the special and general theories of relativity are ‘negative’
theories. By this I mean that they consist more in relaxing incorrect, though
plausible, assumptions that we are inclined to make about the nature of space
and time than in introducing new ones. I propose to explain how this works in
the following way. We shall start by introducing a prototype version of space
and time, called a ‘differentiable manifold’, which possesses a bare minimum of
geometrical properties—for example, the notion of length is not yet meaningful.
(Actually, it may be necessary to abandon even these minimal properties if, for
example, we want a geometry that is fully compatible with quantum theory and
I shall touch briefly on this in chapter 15.) In order to arrive at a structure
that more closely resembles space and time as we know them, we then have to
endow the manifold with additional properties, known as an ‘affine connection’
and a ‘metric’. Two points then emerge: first, the common-sense notions of
Euclidean geometry correspond to very special choices for these affine and metric
properties; second, other possible choices lead to geometrical states of affairs that
have a natural interpretation in terms of gravitational effects. Stretching the point
slightly, it may be said that, merely by avoiding unnecessary assumptions, we
are able to see gravitation as something entirely to be expected, rather than as a
phenomenon in need of explanation.

To me, this insight into the ways of nature is immensely satisfying, and it

6



The Special and General Theories of Relativity 7

is in the hope of communicating this satisfaction to readers that I have chosen to
approach the subject in this way. Unfortunately, the assumptions we are to avoid
are, by and large, simplifying assumptions, so by avoiding them we let ourselves
in for some degree of complication in the mathematical formalism. Therefore, to
help readers preserve a sense of direction, I will, as promised in chapter 1, provide
an introductory section outlining a more traditional approach to relativity and
gravitation, in which we ask how our naı̈ve geometrical ideas must be modified
to embrace certain observed phenomena.

2.0 The Special and General Theories of Relativity

2.0.1 The special theory

The special theory of relativity is concerned in part with the relation between
observations of some set of physical events in two inertial frames of reference
that are in relative motion. By an inertial frame, we mean one in which Newton’s
first law of motion holds:

Every body continues in its state of rest, or of uniform motion in a right line,
unless it is compelled to change that state by forces impressed on it.
(Newton 1686)

It is worth noting that this definition by itself is in danger of being a mere
tautology, since a ‘force’ is in effect defined by Newton’s second law in terms
of the acceleration it produces:

The change of motion is proportional to the motive force impressed; and is
made in the direction of the right line in which that force is impressed.
(Newton 1686)

So, from these definitions alone, we have no way of deciding whether some
observed acceleration of a body relative to a given frame should be attributed, on
the one hand, to the action of a force or, on the other hand, to an acceleration of
the frame of reference. Eddington has made this point by a facetious re-rendering
of the first law:

Every body tends to move in the track in which it actually does move, except
insofar as it is compelled by material impacts to follow some other track than
that in which it would otherwise move.
(Eddington 1929)

The extra assumption we need, of course, is that forces can arise only from the
influence of one body on another. An inertial frame is one relative to which any
body sufficiently well isolated from all other matter for these influences to be
negligible does not accelerate. In practice, needless to say, this isolation cannot
be achieved. The successful application of Newtonian mechanics depends on our
being able systematically to identify, and take proper account of, all those forces
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Figure 2.1. Two systems of Cartesian coordinates in relative motion.

that cannot be eliminated. To proceed, we must take it as established that, in
principle, frames of reference can be constructed, relative to which any isolated
body will, as a matter of fact, always refuse to accelerate. These frames we call
inertial.

Obviously, any two inertial frames must either be relatively at rest or have a
uniform relative velocity. Consider, then, two inertial frames, S and S′ (standing
for Systems of coordinates) with Cartesian axes so arranged that the x and x ′ axes
lie in the same line, and suppose that S′ moves in the positive x direction with
speed v relative to S. Taking y ′ parallel to y and z′ parallel to z, we have the
arrangement shown in figure 2.1. We assume that the sets of apparatus used to
measure distances and times in the two systems are identical and, for simplicity,
that both clocks are adjusted to read zero at the moment the two origins coincide.

Suppose that an event at the coordinates (x, y, z, t) relative to S is observed
at (x ′, y ′, z′, t ′) relative to S′. According to the Galilean, or common-sense, view
of space and time, these two sets of coordinates must be related by

x ′ = x − vt y ′ = y z′ = z t ′ = t . (2.1)

Since the path of a moving particle is just a sequence of events, we easily find that
its velocity relative to S, in vector notation u = dx/dt , is related to its velocity
u′ = dx ′/dt ′ relative to S′ by u′ = u − v, with v = (v, 0, 0), and that its
acceleration is the same in both frames, a′ = a.

Despite its intuitive plausibility, the common-sense view turns out to be
mistaken in several respects. The special theory of relativity hinges on the fact
that the relation u′ = u − v is not true. That is to say, this relation disagrees with
experimental evidence, although discrepancies are detectable only when speeds
are involved whose magnitudes are an appreciable fraction of a fundamental
speed c, whose value is approximately 2.998 × 108 m s−1. So far as is known,
light travels through a vacuum at this speed, which is, of course, generally
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called the speed of light. Indeed, the speed of light is predicted by Maxwell’s
electromagnetic theory to be (ε0µ0)

−1/2 (in SI units, where ε0 and µ0 are called
the permittivity and permeability of free space, respectively) but the theory does
not single out any special frame relative to which this speed should be measured.
For quite some time after the appearance of Maxwell’s theory (published in its
final form in 1864; see also Maxwell (1873)), it was thought that electromagnetic
radiation consisted of vibrations of a medium, the ‘luminiferous ether’, and would
travel at the speed c relative to the rest frame of the ether. However, a number
of experiments cast doubt on this interpretation. The most celebrated, that of
Michelson and Morley (1887), showed that the speed of the Earth relative to the
ether must, at any time of year, be considerably smaller than that of its orbit
round the Sun. Had the ether theory been correct, of course, the speed of the
Earth relative to the ether should have changed by twice its orbital speed over a
period of six months. The experiment seemed to imply, then, that light always
travels at the same speed, c, relative to the apparatus used to observe it.

In his paper of 1905, Einstein makes the fundamental assumption (though
he expresses things a little differently) that light travels with exactly the same
speed, c, relative to any inertial frame. Since this is clearly incompatible with
the Galilean transformation law given in (2.1), he takes the remarkable step of
modifying this law to read

x ′ = x − vt

(1 − v2/c2)1/2
y ′ = y

z′ = z t ′ = t − vx/c2

(1 − v2/c2)1/2
.

(2.2)

These equations are known as the Lorentz transformation, because a set of
equations having essentially this form had been written down by H A Lorentz
(1904) in the course of his attempt to explain the results of Michelson and Morley.
However, Lorentz believed that his equations described a mechanical effect of the
ether upon bodies moving through it, which he attributed to a modification of
intermolecular forces. He does not appear to have interpreted them as Einstein
did, namely as a general law relating coordinate systems in relative motion. The
assumptions that lead to this transformation law are set out in exercise 2.1, where
readers are invited to complete its derivation. Here, let us note that (2.2) does
indeed embody the assumption that light travels with speed c relative to any
inertial frame. For example, if a pulse of light is emitted from the common origin
of S and S′ at t = t ′ = 0, then the equation of the resulting spherical wavefront
at time t relative to S is x2 + y2 + z2 = c2t2. Using the transformation (2.2), we
easily find that its equation at time t ′ relative to S′ is x ′2 + y ′2 + z′2 = c2t ′2.

Many of the elementary consequences of special relativity follow directly
from the Lorentz transformation, and we shall meet some of them in later
chapters. What particularly concerns us at present—and what makes Einstein’s
interpretation of the transformation equations so remarkable—is the change that
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these equations require us to make in our view of space and time. On the face of
it, equations (2.1) or (2.2) simply tell us how to relate observations made in two
different frames of reference. At a deeper level, however, they contain information
about the structure of space and time that is independent of any frame of reference.
Consider two events with spacetime coordinates (x1, t1) and (x2, t2) relative to
S. According to the Galilean transformation, the time interval t2 − t1 between
them relative to S is equal to the interval t ′2 − t ′1 relative to S′. In particular, it
may happen that these two events are simultaneous, so that t2 − t1 = 0, and
this statement would be equally valid from the point of view of either frame
of reference. For two simultaneous events, the spatial distances between them,
|x1 − x2| and |x ′

1 − x ′
2| are also equal. Thus, the time interval between two events

and the spatial distance between two simultaneous events have the same value in
every inertial frame, and hence have real physical meanings that are independent
of any system of coordinates. According to the Lorentz transformation (2.2),
however, both the time interval and the distance have different values relative to
different inertial frames. Since these frames are arbitrarily chosen by us, neither
the time interval nor the distance has any definite, independent meaning. The one
quantity that does have a definite, frame-independent meaning is the proper time
interval �τ , defined by

c2�τ 2 = c2�t2 − �x2 (2.3)

where �t = t2 − t1 and �x = |x2 − x1|. By using (2.2), it is easy to verify that
c2�t ′2 − �x ′2 is also equal to c2�τ 2.

We see, therefore, that the Galilean transformation can be correct only in
a Galilean spacetime; that is, a spacetime in which both time intervals and
spatial distances have well-defined meanings. For the Lorentz transformation to
be correct, the structure of space and time must be such that only proper-time
intervals are well defined. There are, as we shall see, many such structures. The
one in which the Lorentz transformation is valid is called Minkowski spacetime
after Hermann Minkowski who first clearly described its geometrical properties
(Minkowski, 1908). These properties are summarized by the definition (2.3) of
proper time intervals. In this definition, the constant c does not refer to the speed
of anything. Although it has the dimensions of velocity, its role is really no more
than that of a conversion factor between units of length and time. Thus, although
the special theory of relativity arose from attempts to understand the propagation
of light, it has nothing to do with electromagnetic radiation as such. Indeed, it
is not in essence about relativity either! Its essential feature is the structure of
space and time expressed by (2.3), and the law for transforming between frames
in relative motion serves only as a clue to what this structure is. With this in
mind, Minkowski (1908) says of the name ‘relativity’ that it ‘. . . seems to me very
feeble’.

The geometrical structure of space and time restricts the laws of motion that
may govern the dynamical behaviour of objects that live there. This is true, at
least, if one accepts the principle of relativity, expressed by Einstein as follows:
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The laws by which the states of physical systems undergo change are not
affected, whether these changes of state be referred to the one or the other of
two systems of coordinates in uniform translatory motion.
(Einstein 1905)

Any inertial frame, that is to say, should be as good as any other as far as the
laws of physics are concerned. Mathematically, this means that the equations
expressing these laws should be covariant—they should have the same form in
any inertial frame. Consider, for example, two objects, with masses m1 and m2,
situated at x1 and x2 on the x axis of S. According to Newtonian mechanics and
the Newtonian theory of gravity, the equation of motion for particle 1 is

m1
d2x1

dt2 = (Gm1m2)
x2 − x1

|x2 − x1|3 (2.4)

where G � 6.67 × 10−11N m2 kg−2 is Newton’s gravitational constant. If
spacetime is Galilean and the transformation law (2.1) is valid, then d2x ′/dt ′2 =
d2x/dt2 and (x ′

2 − x ′
1) = (x2 − x1), so in S′ the equation has exactly the same

form and Einstein’s principle is satisfied. In Minkowski spacetime, we must
use the Lorentz transformation. The acceleration relative to S is not equal to
the acceleration relative to S′ (see exercise 2.2), but worse is to come! On
the right-hand side, x1 and x2 refer to two events, namely the objects reaching
these two positions, which occur simultaneously as viewed from S. As viewed
from S′, however, these two events are separated by a time interval (t ′2 − t ′1) =
(x ′

1 − x ′
2)v/c2, as readers may easily verify from (2.2). In Minkowski spacetime,

therefore, (2.4) does not respect the principle of relativity. It is unsatisfactory as
a law of motion because it implies that there is a preferred inertial frame, namely
S, relative to which the force depends only on the instantaneous separation of the
two objects; relative to any other frame, it depends on the distance between their
positions at different times, and also on the velocity of the frame of reference
relative to the preferred one. Actually, we do not know a priori that there is no
such preferred frame. In the end, we trust the principle of relativity because the
theories that stem from it explain a number of observed phenomena for which
Newtonian mechanics cannot account.

We might imagine that electrical forces would present a similar problem,
since we obtain Coulomb’s law for particles with charges q1 and q2 merely
by replacing the constant in parentheses in (2.4) with −q1q2/4πε0. In fact,
Maxwell’s theory is not covariant under Galilean transformations, but can be
made covariant under Lorentz transformations with only minor modifications.
We shall deal with electromagnetism in some detail later on, and I do not want
to enter into the technicalities at this point. We may note, however, the features
that favour Lorentz covariance. In Maxwell’s theory, the forces between charged
particles are transmitted by electric and magnetic fields. We know that the fields
due to a charged particle do indeed appear different in different inertial frames:
in a frame in which the particle is at rest, we see only an electric field, while in
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a frame in which the particle is moving, we also see a magnetic field. Moreover,
disturbances in these fields are transmitted at the speed of light. The problem
of simultaneity is avoided because a second particle responds not directly to the
first one, but rather to the electromagnetic field at its own position. The expression
analogous to the right-hand side of (2.4) for the Coulomb force is valid only when
there is a frame of reference in which particle 2 can be considered fixed, and then
only as an approximation.

2.0.2 The general theory

The experimental fact that eventually led to the special theory was, as we have
seen, the constancy of the speed of light. The general theory, and the account that
it provides of gravitation, also spring from a crucial fact of observation, namely
the equality of inertial and gravitational masses. In (2.4), the mass m1 appears in
two different guises. On the left-hand side, m1 denotes the inertial mass, which
governs the response of the body to a given force. On the right-hand side, it
denotes the gravitational mass, which determines the strength of the gravitational
force. The gravitational mass is analogous to the electric charge in Coulomb’s
law and, since the electrical charge on a body is not necessarily proportional
to its mass, there is no obvious reason why the gravitational ‘charge’ should be
determined by the mass either. The equality of gravitational and inertial masses
is, of course, responsible for the fact that the acceleration of a body in the Earth’s
gravitational field is independent of its mass, and this has been familiar since the
time of Galileo and Newton. It was checked in 1889 to an accuracy of about one
part in 109 by Eötvös, whose method has been further refined more recently by R
H Dicke and his collaborators.

It seemed to Einstein that this precise equality demanded some explanation,
and he was struck by the fact that inertial forces such as centrifugal and Coriolis
forces are proportional to the inertial mass of the body on which they act. These
inertial forces are often regarded as ‘fictitious’, in the sense that they arise from
the use of accelerating (and therefore non-inertial) frames of reference. Consider,
for example, a spaceship far from any gravitating bodies such as stars or planets.
When its motors are turned off, a frame of reference S fixed in the ship is inertial
provided, as we assume, that it is not spinning relative to distant stars. Relative
to this frame, the equation of motion of an object on which no forces act is
md2x/dt2 = 0. Suppose the motors are started at time t = 0, giving the ship
a constant acceleration a in the x direction. S is now not an inertial frame. If S′ is
the inertial frame that coincided with S for t < 0, then the equation of the object
is still md2x ′/dt ′2=0, at least until the object collides with the cabin walls. Using
Galilean relativity for simplicity, we have x ′ = x + 1

2 at2 and t ′ = t , so relative to
S the equation of motion is

m
d2x

dt2
= −ma. (2.5)

The force on the right-hand side arises trivially from the coordinate transformation
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and is definitely proportional to the inertial mass.
Einstein’s idea is that gravitational forces are of essentially the same kind as

that appearing in (2.5), which means that the inertial and gravitational masses are
necessarily identical. Suppose that the object in question is in fact a physicist,
whose ship-board laboratory is completely soundproof and windowless. His
sensation of weight, as expressed by (2.5), is equally consistent with the ship’s
being accelerated by its motors or with its having landed on a planet at whose
surface the acceleration due to gravity is a. Conversely, when he was apparently
weightless, he would be unable to tell whether his ship was actually in deep space
or freely falling towards a nearby planet. This illustrates Einstein’s principle of
equivalence, according to which the effects of a gravitational field can locally be
eliminated by using a freely-falling frame of reference. This frame is inertial and,
relative to it, the laws of physics take the same form that they would have relative
to any inertial frame in a region far removed from any gravitating bodies.

The word ‘locally’ indicates that the freely-falling inertial frame can usually
extend only over a small region. Let us suppose that our spaceship is indeed
falling freely towards a nearby planet. (Readers may rest assured that the
pilot, unlike the physicist, is aware of this and will eventually act to avert the
impending disaster.) If he has sufficiently accurate apparatus, the physicist can
detect the presence of the planet in the following way. Knowing the standard
landing procedure, he allows two small objects to float freely on either side of his
laboratory, so that the line joining them is perpendicular to the direction in which
he knows that the planet, if any, will lie. Each of these objects falls towards the
centre of the planet, and therefore their paths slowly converge. As observed in
the freely-falling laboratory, they do not accelerate in the direction of the planet,
but they do accelerate towards each other, even though their mutual gravitational
attraction is negligible. (The tendency of the cabin walls to converge in the same
manner is, of course, counteracted by interatomic forces within them.) Strictly,
then, the effects of gravity are eliminated in the freely-falling laboratory only
to the extent that two straight lines passing through it, which meet at the centre
of the planet, can be considered parallel. If the laboratory is small compared
with its distance from the centre of the planet, then this will be true to a very
good approximation, but the equivalence principle applies exactly only to an
infinitesimal region.

The principle of equivalence as stated above is not as innocuous as it might
appear. We illustrated it by considering the behaviour of freely-falling objects,
and found that it followed in a more or less trivial manner from the equality
of gravitational and inertial masses. A version restricted to such situations
is sometimes called the weak principle of equivalence. The strong principle,
applying to all the laws of physics, has much more profound implications. It led
Einstein to the view that gravity is not a force of the usual kind. Rather, the effect
of a massive body is to modify the geometry of space and time. Particles that are
not acted on by any ordinary force do not accelerate; they merely appear to be
accelerated by gravity if we make the false assumption that the geometry is that
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of Galilean or Minkowski spacetime and interpret our observations accordingly.
Consider again the expression for proper time intervals given in (2.3). It

is valid when (x, y, z, t) refer to Cartesian coordinates in an inertial frame of
reference. In the neighbourhood of a gravitating body, a freely-falling inertial
frame can be defined only in a small region, so we write it as

c2(dτ )2 = c2(dt)2 − (dx)2 (2.6)

where dt and dx are infinitesimal coordinate differences. Now let us make a
transformation to an arbitrary system of coordinates (x0, x1, x2, x3), each new
coordinate being expressible as some function of x , y, z and t . Using the chain
rule, we find that (2.6) becomes

c2(dτ )2 =
3∑

µ,ν=0

gµν(x)dxµdxν (2.7)

where the functions gµν(x) are given in terms of the transformation functions.
They are components of what is called the metric tensor. In the usual version
of general relativity, it is the metric tensor that embodies all the geometrical
structure of space and time. Suppose we are given a set of functions gµν(x) which
describe this structure in terms of some system of coordinates {xµ}. According to
the principle of equivalence, it is possible at any point (say X , with coordinates
Xµ) to construct a freely falling inertial frame, valid in a small neighbourhood
surrounding X , relative to which there are no gravitational effects and all other
processes occur as in special relativity. This means that it is possible to find a set
of coordinates (ct, x, y, z) such that the proper time interval (2.7) reverts to the
form of (2.6). Using a matrix representation of the metric tensor, we can write

gµν(X) = ηµν ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.8)

where ηµν is the special metric tensor corresponding to (2.6).
If the geometry is that of Minkowski spacetime, then it will be possible to

choose (ct, x, y, z) in such a way that gµν = ηµν everywhere. Otherwise, the
best we can usually do is to make gµν = ηµν at a single point (though that point
can be anywhere) or at every point along a curve, such as the path followed by an
observer. Even when we do not have a Minkowski spacetime, it may be possible
to set up an approximately inertial and approximately Cartesian coordinate system
such that gµν differs only a little from ηµν throughout a large region. In such a
case, we can do much of our physics successfully by assuming that spacetime is
exactly Minkowskian. If we do so, then, according to general relativity, we shall
interpret the slight deviations from the true Minkowski metric as gravitational
forces.
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This concludes our introductory survey of the theories of relativity. We
have concentrated on the ways in which our common-sense ideas of spacetime
geometry must be modified in order to accommodate two key experimental
observations: the constancy of the speed of light and the equality of gravitational
and inertial masses. It is clear that the modified geometry leads to modifications in
the laws that govern the behaviour of physical systems, but we have not discussed
these laws in concrete terms. That we shall be better equipped to do after we have
developed some mathematical tools in the remainder of this chapter. At that stage,
we shall be able to see much more explicitly how gravity arises from geometry.

2.1 Spacetime as a Differentiable Manifold

Our aim is to construct a mathematical model of space and time that involves
as few assumptions as possible, and to be explicitly aware of the assumptions
we do make. In particular, we have seen that the theories of relativity call into
question the meanings we attach to distances and time intervals, and we need
to be clear about these. The mathematical structure that has proved to be a
suitable starting point, at least for a non-quantum-mechanical model of space
and time, is called a differentiable manifold. It is a collection of points, each
of which will eventually correspond to a unique position in space and time, and
the whole collection comprises the entire history of our model universe. It has
two key features that represent familiar facts about our experience of space and
time. The first is that any point can be uniquely specified by a set of four real
numbers, so spacetime is four-dimensional. For the moment, the exact number
of dimensions is not important. Later on, indeed, we shall encounter some recent
theories which suggest that there may be more than four, the extra ones being
invisible to us. Even in more conventional theories, we shall find that it is helpful
to consider other numbers of dimensions as a purely mathematical device. The
second feature is a kind of ‘smoothness’, meaning roughly that, given any two
distinct points, there are more points in between them. This feature allows us to
describe physical quantities such as particle trajectories or electromagnetic fields
in terms of differentiable functions and hence to do theoretical physics of the usual
kind. We do not know for certain that space and time are quite as smooth as this,
but at least there is no evidence for any granularity down to the shortest distances
we are able to probe experimentally.

Our first task is to express these properties in a more precise mathematical
form. It is of fundamental importance that this can be done without recourse to
any notion of length. The properties we require are topological ones, and we begin
by introducing some elementary ideas of topology. Roughly speaking, we want to
be able to say that some pairs of points are ‘closer together’ than others, without
having any quantitative measure of distance. As an illustration, consider a sheet
of rubber, marked off into different regions as in figure 2.2. For the purposes of
this illustration, we shall say that there is no definite distance between two points



16 Geometry

Figure 2.2. A deformable sheet of rubber, divided into several regions. Although there
is no definite distance between the points indicated by • , there are always other points
between them, because any curve joining them must pass through at least one of the regions
b, e and h.

on the sheet, because it can be deformed at will. No matter how it is deformed,
however, any given region is still surrounded by the same neighbouring regions.
Given a point in d and another in f, we can never draw a line between them that
does not pass through at least one of regions b, e and h. The same holds, moreover,
of more finely subdivided regions, as shown for subdivisions of a, each of which
could be further subdivided, and so on. In this sense, points on the sheet are
smoothly connected together. The smoothness would be lost if the rubber were
vaporized, the individual molecules being considered as the collection of points.
Mathematically, the kind of smoothness we want is a property of the real line
(that is, the set of all real numbers, denoted by R). So, as part of the definition
of the manifold, we demand that it should be possible to set up correspondences
(called ‘maps’) between points of the manifold and sets of real numbers. We shall
next look at the topological properties of real numbers, and then see how we can
ensure that the manifold shares them.

2.1.1 Topology of the real line R and of Rd

The topological properties we are interested in are expressed in terms of ‘open
sets’, which are defined in the following way. An open interval (a, b) is the set of
all points (real numbers) x such that a < x < b:

· · · · · ·( )|
a x b
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Figure 2.3. (a) An open set in R2. It is a union of open rectangles constructed from unions
of open intervals in the two copies of R which form the x1 and x2 axes. (b) Another open
set in R2, which can be constructed as a union of open rectangles.

The end points x = a and x = b are excluded. Consequently, any point x in
(a, b) can be surrounded by another open interval (x − ε, x + ε), all of whose
points are also in (a, b). For example, however close x is to a, it cannot be equal
to a. There are always points between a and x , and if x is closer to a than to b,
we can take ε = (x − a)/2. An open set of R is defined as any union of 1, 2, 3,
. . . open intervals:

( ) or ( ) ( ) or ( ) ( ) ( )

etc. (The union A ∪ B ∪C · · · of a number of sets is defined as the set of all points
that belong to at least one of A, B,C, . . . . The intersection A ∩ B ∩ C · · · is the
set of all points that belong to all the sets A, B,C, . . . .) In addition, the empty
set, which contains no points, is defined to be an open set.

The space R2 is the set of all pairs of real numbers (x1, x2), which can be
envisaged as an infinite plane. The definition of open sets is easily extended to R2 ,
as illustrated in figure 2.3. If x1 lies in a chosen open interval on the horizontal
axis, and x2 in a chosen open interval on the vertical axis, then (x1, x2) lies in an
open rectangle corresponding to these two intervals. Any union of open rectangles
is an open set. Since the rectangles can be arbitrarily small, we can say that any
region bounded by a closed curve, but excluding points actually on the curve, is
also an open set, and so is any union of such regions. Obviously, the same ideas
can be further extended to Rd , which is the set of all d-tuples of real numbers
(x1, x2, . . . , xd).

An important use of open sets is to define continuous functions. Consider,
for instance, a function f which takes real numbers x as arguments and has real-
number values y = f (x). An example is shown in figure 2.4. The inverse image
of a set of points on the y axis is the set of all those points on the x axis for
which f (x) belongs to the original set. Then we say that f is continuous if the
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Figure 2.4. The graph y = f (x) of a function which is discontinuous at x0. Any open
interval of y which includes f (x0) has an inverse image on the x axis which is not open.
The inverse image of an interval in y which contains no values of f (x) is the empty set.

inverse image of any open set on the y axis is an open set on the x axis. The
example shown fails to be continuous because the inverse image of any open
interval containing f (x0) contains an interval of the type (x1, x0], which includes
the end point x0 and is therefore not open. (Readers who are not at home with this
style of argument should spend a short while considering the implications of these
definitions: why, for example, is it necessary to include not only open intervals
but also their unions and the empty set as open sets?)

The open sets of Rd have two fairly obvious properties: (i) any union of
open sets is itself an open set; (ii) any intersection of a finite number of open
sets is itself an open set. Given any space (by which we mean a set of points),
suppose that a collection of subsets of its points is specified, such that any union
or finite intersection of them also belongs to the collection. We also specify that
the entire space (which counts as a subset of itself) and the empty set belong to
the collection. Then the subsets in this collection may, by analogy, be called open
sets. The collection of open sets is called a topology and the space, together with
its topology, is called a topological space. It is, of course, possible to endow a
given space with many different topologies. For example, the collection of all
subsets of the space clearly satisfies all the above conditions, and is called the
discrete topology. By endowing the real line with this topology, we would obtain
a new definition of continuity—it would not be a particularly useful definition,
however, as any function at all would turn out to be continuous. The particular
topology of Rd described above is called the natural topology and is the one we
shall always use.

It is important to realize that a topology is quite independent of any notion
of distance. For instance, a sheet of paper may be regarded as a part of R2 .
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The natural topology reflects the way in which its points fit together to form
a coherent structure. If it is used to draw figures in Euclidean geometry,
then the distance D between two points is defined by the Pythagoras rule as

D = [
(�x)2 + (�y)2

]1/2
. But it might equally well be used to plot the mean

atmospheric concentration of carbon monoxide in central London (represented
by y) as a function of time (represented by x), in which case D would have no
sensible meaning.

A topology imposes two kinds of structure on the space. The local
topology—the way in which open sets fit inside one another over small regions—
determines the way in which notions like continuity apply to the space. The global
topology—the way in which the open sets can be made to cover the whole space—
determines its overall structure. Thus, the plane, sphere and torus have the same
local structure but different global structures. Physically, we have no definite
information about the global topology of spacetime, but its local structure seems
to be very similar to that of R4 (though we shall encounter speculative theories
that call this apparently simple observation into question).

2.1.2 Differentiable spacetime manifold

In order that our model of space and time should be able to support continuous
and differentiable functions of the sort that we rely on to do physics, we want it
(for now) to have the same local topology as R4 . First of all, then, it must be
a topological space. That is, it must have a collection of open sets, in terms of
which continuous functions can be defined. Second, the structure of these open
sets must be similar, within small regions, to the natural topology of R4 . To this
end, we demand that every point of the space belong to at least one open set,
all of whose points can be put into a one-to one correspondence with the points
of some open set of R4 . More technically, the correspondence is a one-to-one
mapping of the open set of the space onto the open set of R4 , which is to say
that every point of the open set in the space has a unique image point in the open
set of R4 and vice versa. We further demand that this mapping be continuous,
according to our previous definition. When these conditions are met, the space is
called a manifold. The existence of continuous mappings between the manifold
and R4 implies that a function f defined on the manifold (that is, one that has a
value f (P) for each point P of the manifold) can be re-expressed as a function g
defined on R4 , so that f (P) = g(x0, . . . , x3), where (x0, . . . , x3) is the point of
R4 corresponding to P . In this way, continuous functions defined on the manifold
inherit the characteristics of those defined on R4 .

This definition amounts to saying that the manifold can be covered by
patches, in each of which a four-dimensional coordinate system can be set up,
as illustrated in figure 2.5 for the more easily drawn case of a two-dimensional
manifold. Normally, of course, many different coordinate systems can be set up
on any part of the manifold. The definition also ensures that, within the range
of coordinate values corresponding to a given patch, there exists a point of the
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Figure 2.5. A coordinate patch on a two-dimensional manifold. Each point in the patch is
mapped to a unique image point in a region of R2 and vice versa.

Figure 2.6. Two overlapping coordinate patches. A point in the overlap region can be
identified using either set of coordinates.

manifold for each set of coordinate values—so there are no points ‘missing’ from
the manifold, and also that there are no ‘extra’ points that cannot be assigned
coordinates. Within a coordinate patch, a quantity such as an electric potential,
which has a value at each point of the manifold, can be expressed as an ordinary
function of the coordinates of the point. Often, we shall expect such functions to
be differentiable (that is, to possess unique partial derivatives with respect to each
coordinate at each point of the patch).

Suppose we have two patches, each with its own coordinate system, that
partly or wholly overlap, as in figure 2.6. Each point in the overlap region has
two sets of coordinates, say (x0, . . . , x3) and (y0, . . . , y3), and the y coordinates
can be expressed as functions of the x coordinates: y0 = y0(x0, . . . , x3), etc.
Given ‘reasonable’ coordinate systems, we might suppose that a function which
is differentiable when expressed in terms of the xµ ought also to be differentiable
when expressed in terms of the yµ. This will indeed be true if the transformation
functions yµ(x) are differentiable. If the manifold can be completely covered by a
set of coordinate patches, in such a way that all of these transformation functions
are differentiable, then we have a differentiable manifold. In order for a function
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Figure 2.7. (a) A manifold M , part of the surface of this page, with a coordinate patch.
(b) Part of R2, showing the coordinate values used in (a).

to remain differentiable at least n times after a change of coordinates, at least the
first n derivatives of all the transformation functions must exist. If they do, then
we have what is called a Cn manifold. Intuitively, we might think it possible to
define functions of space and time that can be differentiated any number of times,
for which we would need n = ∞. We shall indeed take a C∞ manifold as the
basis for our model spacetime. Mathematically, though, this is a rather strong
assumption, and for many physical purposes it would be sufficient to take, say,
n = 4.

2.1.3 Summary and examples

Our starting point for a model of space and time is a C∞ manifold. The essence of
the technical definition described above is, first, that it is possible to set up a local
coordinate system covering any sufficiently ‘small’ region and, second, that it is
possible to define functions on the manifold that are continuous and differentiable
in the usual sense. It is, of course, perfectly possible to define functions that are
neither continuous nor differentiable. The point is that, if a function fails to be
continuous or differentiable, this will be the fault either of the function itself or
of our choice of coordinates, but not the fault of the manifold. The word ‘small’
appears in inverted commas because, as I have emphasized, there is as yet no
definite notion of length: it simply means that it may well not be possible to
cover the entire manifold with a single coordinate system. The coordinate systems
themselves are not part of the structure of the manifold. They serve merely as an
aid to thought, providing a practical means of specifying properties of sets of
points belonging to the manifold.
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Figure 2.8. Same as figure 2.7, but using different coordinates.

The following examples illustrate, in terms of two-dimensional manifolds,
some of the important ideas. Figure 2.7(a) shows a manifold, M , which is part
of the surface of the paper on which it is printed. For the sake of argument, I
am asking readers to suppose that this surface is perfectly smooth, rather than
being composed of tiny fibres. For the definitions to work, we must take the
manifold to be the interior of the rectangular region, excluding points on the
boundary. The interior of the roughly circular region is a coordinate patch. Inside
it are drawn some of the grid lines by means of which we assign coordinates x1

and x2 to each point. Figure 2.7(b) is a pictorial representation of part of the
space R2 of pairs of coordinates. The interior of the shaded region represents
the coordinates actually used. To every point of this region there corresponds a
point of the coordinate patch in M and vice versa. Figure 2.8 shows a similar
arrangement, using a different coordinate system. Here, again, the interior of the
shaded region of R2 represents the open set of points that correspond uniquely
to points of the coordinate patch. As before, the boundary of the coordinate
patch and the corresponding line x1 = 4 in R2 are excluded. Also excluded,
however, are the boundary lines x1 = 0, x2 = 0 and x2 = 2π in R2 , which
means that points on the line labelled by x2 = 0 in M do not, in fact, belong to
the coordinate patch. Since the coordinate system is obviously usable, even when
these points are included, their exclusion may seem like an annoying piece of
bureaucracy: however, it is essential to apply the rules correctly if the definitions
of continuity and differentiability are to work smoothly. For example, the function
g(x1, x2) = x2 is continuous throughout R2 , but the corresponding function on
M is discontinuous at x2 = 0.

It should be clear that, whereas a single coordinate patch like that in
figure 2.7 can be extended to cover the whole of M , at least two patches of
the kind shown in figure 2.8 would be needed. Readers should also be able to
convince themselves that, if M were the two-dimensional surface of a sphere,
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no single patch of any kind could cover all of it. These examples also illustrate
the fact that, although the coordinates which label the points of M have definite
numerical values, these values do not, in themselves, supply any notion of a
distance between two points. The distance along some curve in M may be defined
by some suitable rule, such as (i) ‘use a ruler’ or (ii) ‘measure the volume of
ink used by a standard pen to trace the curve’ or, given a particular coordinate
system, (iii) ‘use the mathematical expression D = (function of coordinates)’.
Any such rule imposes an additional structure—called a metric—which is not
inherent in the manifold. In particular, there is no naturally occurring function
for use in (iii). Any specific function, such as the Pythagoras expression, would
have quite different effects when applied to different coordinate systems, and the
definition of the manifold certainly does not single out a special coordinate system
to which that function would apply. We do have a more or less unambiguous
means of determining distances on a sheet of paper, and this is because the paper,
in addition to the topological properties it possesses as a manifold, has physical
properties that enable us to apply a definite measuring procedure. The same is
true of space and time and, although we have made some initial assumptions
about their topological structure, we have yet to find out what physical properties
determine their metrical structure.

2.2 Tensors

From our discussion so far, it is apparent that coordinate systems can be
dangerous, even though they are often indispensable for giving concrete
descriptions of a physical system. We have seen that the topology of a manifold
such as that of space and time may permit the use of a particular coordinate system
only within a small patch. Suppose, for the sake of argument, that the surface
of the Earth is a smooth sphere. We encounter no difficulty in drawing, say,
the street plan of a city on a flat sheet of paper using Cartesian coordinates, but
we should obviously be misled if we assumed that this map could be extended
straightforwardly to cover the whole globe. By assuming that two-dimensional
Euclidean geometry was valid on the surface of the Earth, we should be making a
mistake, owing to the curvature of the spherical surface, but the mistake would not
become apparent as long as we made measurements only within a region the size
of a city. Likewise, physicists before Einstein assumed that a frame of reference
fixed on the Earth would be inertial, except for effects of the known orbital motion
of the Earth around the Sun and its rotation about its own axis, which could be
corrected for if necessary. According to Einstein, however, this assumption is also
mistaken. It fails to take account of the true geometry of space and time in much
the same way that, by treating a city plan as a Euclidean plane, we fail to take
account of the true geometry of the Earth. The mistake only becomes apparent,
however, when we make precise observations of gravitational phenomena.

The difficulty here is that we often express the laws of physics in the form
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which, we believe, applies to inertial frames. If we do not know, a priori, what the
true geometry of space and time is, then we do not know whether any given frame
is truly inertial. Therefore, we need to express our laws in a way that does not rely
on our making any special assumption about the coordinate system. There are two
ways of achieving this. The method adopted by Einstein himself is to write our
equations in a form that applies to any coordinate system: the mathematical tech-
niques for doing this constitute what is called tensor analysis. The other, more
recent method is to write them in a manner that makes no reference to coordi-
nate systems at all: this requires the techniques of differential geometry. For our
purposes, these two approaches are entirely equivalent, but each has its own ad-
vantages and disadvantages in terms of conceptual and notational clarity. So far
as I can, I will follow a middle course, which seems to me to maximize the ad-
vantages. Both techniques deal with objects called tensors. Tensor analysis, like
elementary vector analysis, treats them as being defined by sets of components,
referred to particular coordinate systems. Differential geometry treats them as
entities in their own right, which may be described in terms of components, but
need not be. When components are used, the two techniques become identical, so
there is no difficulty in changing from one description to the other.

Many, though not all, of the physical objects that inhabit the spacetime
manifold will be described by tensors. A tensor at a point P of the manifold
refers only to that point. A tensor field assigns some property to every point
of the manifold, and most physical quantities will be described by tensor fields.
(For brevity, I shall often follow custom by referring to a tensor field simply as
a ‘tensor’, when the meaning is obvious from the context.) Tensors and tensor
fields are classified by their rank, a pair of numbers

(a
b

)
.

Rank
(0

0

)
tensors, also called scalars, are simply real numbers. A scalar

field is a real-valued function, say f (P), which assigns a real number to each
point of the manifold. If our manifold were just the three-dimensional space
encountered in Newtonian physics, then at a particular instant in time, an electric
potential V (P) or the density of a fluid ρ(P) would be examples of scalar fields.
In relativistic physics, these and all other simple examples I can think of are
not true scalars, because their definitions depend in one way or another on the
use of specific coordinate systems or on metrical properties of the space that our
manifold does not yet possess. For the time being, however, no great harm will
be done if readers bear these examples in mind. If we introduce coordinates xµ,
then we can express f (P) as an algebraic function f (xµ). (For convenience, I am
using the same symbol f to denote two different, though related functions: we
have f (xµ) = f (P) when xµ are the coordinates of the point P .) In a different
coordinate system, where P has the coordinates xµ′

, the same quantity will be
described by a new algebraic function f ′(xµ′

), related to the old one by

f ′(xµ′
) = f (xµ) = f (P). (2.9)

In tensor analysis, this transformation law is taken to define what is meant by
a scalar field.
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Rank
(1

0

)
tensors are called vectors in differential geometry. They correspond

to what are called contravariant vectors in tensor analysis. The prototypical
vector is the tangent vector to a curve. In ordinary Euclidean geometry, the
equation of a curve may be expressed parametrically by giving three functions
x(λ), y(λ) and z(λ), so that each point of the curve is labelled by a value of λ

and the functions give its coordinates. If λ is chosen to be the distance along
the curve from a given starting point, then the tangent vector to the curve at the
point labelled by λ has components (dx/dλ, dy/dλ, dz/dλ). In our manifold,
we have not yet given any meaning to ‘distance along the curve’, and we want
to avoid defining vectors in terms of their components relative to a specific
coordinate system. Differential geometry provides the following indirect method
of generalizing the notion of a vector to any manifold. Consider, in Euclidean
space, a differentiable function f (x, y, z). This function has, in particular, a value
f (λ) at each point of the curve, which we obtain by substituting for x , y and z the
appropriate functions of λ. The rate of change of f with respect to λ is

d f

dλ
= dx

dλ

∂ f

∂x
+ dy

dλ

∂ f

∂y
+ dz

dλ

∂ f

∂z
(2.10)

so, by choosing f = x , f = y or f = z, we can recover from this expression each
component of the tangent vector. All the information about the tangent vector
is contained in the differential operator d/dλ, and in differential geometry this
operator is defined to be the tangent vector.

A little care is required when applying this definition to our manifold.
We can certainly draw a continuous curve on the manifold and label its points
continuously by a parameter λ. What we cannot yet do is select a special
parameter that measures distance along it. Clearly, by choosing different
parametrizations of the curve, we shall arrive at different definitions of its tangent
vectors. It is convenient to refer to the one-dimensional set of points in the
manifold as a path. Then each path may be parametrized in many different ways,
and we regard each parametrization as a distinct curve. This has the advantage
that each curve, with its parameter λ, has a unique tangent vector d/dλ at every
point. Suppose we have two curves, corresponding to the same path, but with
parameters λ and µ that are related by µ = aλ + b, a and b being constants. The
difference is obviously a rather trivial one and the two parameters are said to be
affinely related.

If we now introduce a coordinate system, we can resolve a vector into
components, in much the same way as in Euclidean geometry. At this point,
it is useful to introduce two abbreviations into our notation. First, we use the
symbol ∂µ to denote the partial derivative ∂/∂xµ. Second, we shall use the
summation convention, according to which, if an index such as µ appears in
an expression twice, once in the upper position and once in the lower position,
then a sum over the values µ = 0 . . . 3 is implied. (More generally, in a d-
dimensional manifold, the sum is over the values 0 . . . (d − 1). In contexts other
than spacetime geometry, there may be no useful distinction between upper and
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lower indices, and repeated indices implying a sum may both appear in the same
position.) I shall use bold capital letters to denote vectors, such as V = d/dλ.
If, then, a curve is represented in a particular coordinate system by the functions
xµ(λ), we can write

V ≡ d

dλ
=

3∑
µ=0

dxµ

dλ

∂

∂xµ
≡ V µ∂µ ≡ V µXµ (2.11)

where the partial derivatives Xµ = ∂/∂xµ are identified as the basis vectors in this
system and V µ are the corresponding components of V . Note that components
of a vector are labelled by upper indices and basis vectors by lower ones. In a
new coordinate system, with coordinates xµ′

, and basis vectors Xµ′ = ∂/∂xµ′
,

the chain rule ∂µ = (∂xµ′
/∂xµ)∂µ′ shows that the same vector has components

V µ′ = ∂xµ′

∂xµ
V µ. (2.12)

In tensor analysis, a contravariant vector is defined by specifying its components
in some chosen coordinate system and requiring its components in any other
system to be those given by the transformation law (2.12). It will be convenient
to denote the transformation matrix by

�µ′
µ = ∂xµ′

∂xµ
. (2.13)

The convention of placing a prime on the index µ′ to indicate that xµ and xµ′

belong to different coordinate systems, rather than writing, say, x ′µ, is useful here
in indicating to which system each index on � refers. Using the chain rule again,
we find

�
µ

ν ′�ν ′
σ = ∂xµ

∂xν ′
∂xν ′

∂xσ
= ∂xµ

∂xσ
= δµσ (2.14)

so the matrix �
µ

ν ′ is the inverse of the matrix �ν ′
µ.

Rank
(0

1

)
tensors are called one-forms in differential geometry or covariant

vectors in tensor analysis. Consider the scalar product u · v of two Euclidean
vectors. Normally, we regard this product as a rule that combines two vectors
u and v to produce a real number. As we shall see, this scalar product involves
metrical properties of Euclidean space that our manifold does not yet possess.
There is, however, a different point of view that can be transferred to manifold.
For a given vector u, the symbol u· can be regarded as defining a function,
whose argument is a vector, say v, and whose value is the real number u · v.
The function u· is linear. That is to say, if we give it the argument av + bw,
where v and w are any two vectors, and a and b are any two real numbers, then
u · (av + bw) = au · v + bu ·w. This is, in fact, the definition of a one-form. In
our manifold, a one-form, say ω, is a real-valued, linear function whose argument



Tensors 27

is a vector: ω(V ) = (real number). Because the one-form is a linear function, its
value must be a linear combination of the components of the vector:

ω(V ) = ωµV µ. (2.15)

The coefficients ωµ are the components of the one-form, relative to the coordinate
system in which V has components V µ. A one-form field is defined in the same
way as a linear function of vector fields, whose value is a scalar field. In the
definition of linearity, a and b may be any two scalar fields.

The expression (2.15) is, of course, similar to the rule for calculating the
scalar product of two Euclidean vectors from their components. Nevertheless, it
is clear from their definitions that vectors and one-forms are quite different things,
and (2.15) does not allow us to form a scalar product of two vectors.

An example of a one-form field is the gradient of a scalar field f , whose
components are ∂µ f . Notice the consistency of the convention for placing
indices: the components of a one-form have indices that naturally appear in the
lower position. Call this gradient one-form ω f . If V = d/dλ is the tangent vector
to a curve xµ(λ), then the new scalar field ω f (V ) is the rate of change of f along
the curve:

ω f (V ) = ∂ f

∂xµ

dxµ

dλ
= d f

dλ
. (2.16)

Since vectors and one-forms exist independently of any coordinate system,
the function ω(V ) given in (2.15) must be a true scalar field—it must have
the same value in any coordinate system. This means that the matrix which
transforms the components of a one-form between two coordinate systems must
be the inverse of that which transforms the components of a vector:

ωµ′ = ωµ�
µ

µ′ = ωµ

∂xµ

∂xµ′ . (2.17)

Then, on transforming (2.15), we get

ω(V ) = ωµ′ V µ′ = ωµ�
µ

µ′�µ′
νV ν = ωµδ

µ
νV ν = ωµV µ. (2.18)

In tensor analysis, a covariant vector is defined by requiring that its components
obey the transformation law (2.17). Clearly, this is indeed the correct way of
transforming a gradient.

Rank
(a

b

)
tensors and tensor fields can be defined in a coordinate-independent

way, making use of the foregoing definitions of vectors and one-forms, and I
shall say more about this in §3.7. For our present purposes, however, it becomes
rather easier at this point to adopt the tensor analysis approach of defining higher-
rank tensors in terms of their components. A tensor of contravariant rank a and
covariant rank b has, in a d-dimensional manifold, da+b components, labelled by
a upper indices and b lower ones. The tensor may be specified by giving all of
its components relative to some chosen coordinate system. In any other system,
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the components are then given by a transformation law that generalizes those for
vectors and one-forms in an obvious way:

T α′β ′...
µ′ν ′... = �α′

α�
β ′
β · · ·�µ

µ′�ν
ν ′ · · · T αβ...

µν.... (2.19)

From this we can see how to construct laws of physics in a way that will make
them true in any coordinate system. Suppose that a fact about some physical
system is expressed in the form S = T , where S and T are tensors of the same
rank. On multiplying this equation on both sides by the appropriate product of �
matrices, we obtain the equation S′ = T ′, which expresses the same fact, in an
equation of the same form, but now applies to the new coordinate system. The
point that may require some effort is to make sure that S and T really are tensors
that transform in the appropriate way.

If ω is a one-form and V a vector, then the d2 quantities T ν
µ = ωµV ν are

the components of a rank
(1

1

)
tensor. As we saw in (2.15), by setting µ = ν and

carrying out the implied sum, we obtain a single number, which is a scalar (or a
rank

(0
0

)
tensor). This process is called contraction. Given any tensor of rank

(a
b

)
,

with a ≥ 1 and b ≥ 1, we may contract an upper index with a lower one to obtain
a new tensor of rank

(a−1
b−1

)
. Readers should find it an easy matter to check from

(2.19) that, for example, the object Sαγ ...
ν... = T αβγ ...

βν... does indeed transform
in the right way.

2.3 Extra Geometrical Structures

Two geometrical structures are needed to endow our manifold with the familiar
properties of space and time: (i) the notion of parallelism is represented
mathematically by an affine connection; (ii) the notions of length and angle are
represented by a metric. In principle, these two structures are quite independent.
In Euclidean geometry, of course, it is perfectly possible to define what we mean
by parallel lines in terms of distances and angles, and this is also true of the
structures that are most commonly used in general-relativistic geometry. Thus
there is, as we shall see, a special kind of affine connection that can be deduced
from a metric. It is called a metric connection (or sometimes, the Levi-Civita
connection). We shall eventually assume that the actual geometry of space and
time is indeed described by a metric connection. From a theoretical point of view,
however, it is instructive to understand the distinction between those geometrical
ideas that rely only on an affine connection and those that require a metric.
Moreover, there are manifolds other than spacetime that play important roles in
physics (in particular, those connected with the gauge theories of particle physics),
which possess connections, but do not necessarily possess metrics. To emphasize
this point, therefore, I shall deal first with the affine connection, then with the
metric, and finally with the metric connection.
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Figure 2.9. (a) A geodesic curve: successive tangent vectors are parallel to each other. (b)
A non-geodesic curve: successive tangent vectors are not parallel.

2.3.1 The affine connection

There are four important geometrical tools provided by an affine connection: the
notion of parallelism, the notion of curvature, the covariant derivative and the
geodesic. Let us first understand what it is good for.

a) Newton’s first law of motion claims that ‘a body moves at constant speed
in a straight line unless it is acted on by a force’. In general relativity, we shall
replace this with the assertion that ‘a test particle follows a geodesic curve unless
it is acted on by a non-gravitational force’. As we saw earlier, gravitational
forces are going to be interpreted in terms of spacetime geometry, which itself is
modified by the presence of gravitating bodies. By a ‘test particle’, we mean one
that responds to this geometry, but does not modify it significantly. A geodesic is
a generalization of the straight line of Euclidean geometry. It is defined, roughly,
as a curve whose tangent vectors at successive points are parallel, as illustrated in
figure 2.9. Given a definition of ‘parallel’, as provided by the connection, this is
perhaps intuitively recognizable as the natural state of motion for a particle that is
not disturbed by external influences.

b) The equations of physics, which we wish to express entirely in terms
of tensors, frequently involve the derivatives of vector or tensor fields. Now,
the derivatives of a scalar field ∂µ f are, as we have seen, the components of a
one-form field. However, the derivatives of the components of a vector field,
∂µV ν , are not the components of a tensor field, even though they are labelled by
a contravariant and a covariant index. On transforming these derivatives to a new
coordinate system, we find

∂µ′ V ν ′ = �
µ

µ′∂µ(�
ν ′
νV ν)

= �
µ

µ′�ν ′
ν∂µV ν + �

µ

µ′(∂µ�ν ′
ν)V

ν . (2.20)

Because of the last term, this does not agree with the transformation law for
a second-rank tensor. The affine connection will enable us to define what is
called a covariant derivative, ∇µ, whose action on a vector field is of the form
∇µV ν = ∂µV ν + (connection term). The transformation of the extra term
involving the affine connection will serve to cancel the unwanted part in (2.20),
so that ∇µV ν will be a tensor.

c) The fact that the functions ∂µV ν do not transform as the components of a
tensor indicates that they have no coordinate-independent meaning. To see what
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Figure 2.10. V (P) and V (Q) are the vectors at P and Q belonging to the vector field V .
V (P → Q) is the vector at Q which results from parallelly transporting V (P) along the
curve.

goes wrong, consider the derivative of a component of a vector field along a
curve, as illustrated in figure 2.10(a), where P and Q are points on the curve
with parameters λ and λ + δλ respectively. The derivative at P is

dV µ

dλ
= dxν

dλ

∂V µ

∂xν
= lim

δλ→0

V µ(Q) − V µ(P)

δλ
. (2.21)

For a scalar field, which has unique values at P and Q, such a derivative makes
good sense. However, the values at P and Q of the components of a vector
field depend on the coordinate system to which they are referred. It is easy to
make a change of coordinates such that, for example, V µ(Q) is changed while
V µ(P) is not, and so the difference of these two quantities has no coordinate-
independent meaning. If we try to find the derivative of the vector field itself,
we shall encounter the expression V (Q) − V (P). Now, V (P) is the tangent
vector to some curve passing through P (though not necessarily the one shown in
figure 2.10(a)) and V (Q) is the tangent vector to some curve passing through Q.
The difference of two vectors at P is another vector at P: each vector is tangent
to some curve passing through P . However, V (Q) − V (P) is not, in general, the
tangent vector to a curve at a specific point. It is not, therefore, a vector and has,
indeed, no obvious significance at all.

To define a meaningful derivative of a vector field, we need to compare
two vectors at the same point, say Q. Therefore, we construct a new vector
V (P → Q), which exists at Q but represents V (P). Then a new vector, DV/dλ,
which will be regarded as the derivative of V along the curve, may be defined as

DV
dλ

∣∣∣∣
P

= lim
δλ→0

V (Q) − V (P → Q)

δλ
. (2.22)

In the limit, of course, Q coincides with P and this is where the new vector
exists. There is no natural way in which a vector at Q corresponds to a vector at
P , so we must provide a rule to define V (P → Q) in terms of V (P). This
rule is the affine connection. In figure 2.10(b), V (P → Q) is shown as a
vector at Q that is parallel to V (P). The figure looks this way because of the
Euclidean properties of the paper on which it is printed. Mathematically, the affine
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Figure 2.11. Parallel transport of a vector from P to Q on a spherical surface by two
routes.

connection defines what it means for a vector at Q to be parallel to one at P: it is
said to define parallel transport of a vector along the curve. From a mathematical
point of view, we are free to specify the affine connection in any way we choose.
Physically, on the other hand, we shall need to find out what the affine connection
is, with which nature has actually provided us, and we shall address this problem
in due course. It might be thought that a vector which represents V (P) should
not only be parallel to it but also have the same length. In Euclidean geometry,
the magnitude of a vector is (v · v)1/2 and, as we have seen, the scalar product
needs a metric for its definition. The metric connection, mentioned above, does
indeed define parallel transport in a manner that preserves the magnitude of the
transported vector.

The concrete definition of parallel transport is most clearly written down by
choosing a coordinate system. If P and Q lie on a curve xµ(λ) and are separated
by an infinitesimal parameter distance δλ, then the components of V (P → Q)

are defined by

V µ(P → Q) = V µ(P) − δλ�µ
νσ (P)V ν(P)

dxσ

dλ
(2.23)

and the functions �
µ
νσ are called the affine connection coefficients. These

coefficients exist at each point of the manifold and are not associated with any
particular curve. However, the rule (2.23) for parallel transport involves, in
addition to the vector V itself, both the connection coefficients and the tangent
vector dxσ /dλ, so parallel transport is defined only along a curve. To transport
V along a curve by a finite parameter distance, we have to integrate (2.23). If
we wish to transport a vector from an initial point P to a final point Q, we must
choose a curve, passing through both P and Q, along which to transport it. There
will usually be many such curves and it is vital to realize that the vector which
finally arrives at Q depends on the route taken: the functions �

µ
νσ will generally

not take the same values along two different curves. This fact lies at the root of
the idea of the curvature of a manifold, as we shall see shortly.
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The idea of parallel transport is illustrated in figure 2.11, which shows the
surface of a Euclidean sphere. For the purposes of this example, we assume the
usual metrical properties of Euclidean space, so that distances and angles have
their usual meanings. The manifold we consider is the two-dimensional surface of
the sphere, so every vector is tangential to this surface. P and Q are points on the
equator, separated by a quarter of its circumference, and N is the north pole. The
equator and the curves P N and QN are parts of great circles on the sphere and
are ‘straight lines’ as far as geometry on the spherical surface is concerned: one
would follow such a path by walking straight ahead on the surface of a perfectly
smooth Earth. Consider a vector V (P) that points due north—it is a tangent
vector at P to the curve P N . We shall transport this vector to Q, first along the
equator and second via the north pole. The rule for parallel transport of a vector
along a straight line is particularly simple: the angle between the vector and the
line remains constant. For transport along the equator, the vector clearly points
north at each step and so V (P → Q) also points north along QN . Along P N ,
the vector also points north, so on arrival at the pole it is perpendicular to QN .
On its way south, it stays perpendicular to QN . Thus, the transported vector
V (P → Q) as defined by the polar route points along the equator.

At this point, readers should consider parallel transport along the sides
of a plane equilateral triangle P N Q. It is easy to see that V (P → Q) is
independent of the route taken. Clearly, the difference between the two cases
is that the spherical surface is curved while the plane surface is flat. The rule for
parallel transport, embodied mathematically in the affine connection coefficients,
evidently provides a measure of the curvature of a manifold, and we shall later
formulate this precisely. It should be emphasized that a manifold possesses a
curvature only when it has an affine connection. If it has no connection, then it
is neither curved nor flat: the question just does not arise. Finally, returning to
figure 2.11, suppose that we had chosen Q to lie close to P and considered only
paths contained in a small neighbourhood of the two points. The surface would
have been almost indistinguishable from a flat one and the transported vector
would have been almost independent of the path. This is consistent with the
mathematical expression (2.23). If P has coordinates xµ and Q is infinitesimally
close to P , with coordinates xµ+dxµ, then we may substitute dxµ for δλdxµ/dλ,
and all reference to the path between P and Q disappears. The affine connection
of two-dimensional Euclidean geometry is explored in exercise 2.10.

One of our motivations for introducing the affine connection was to be able
to define a meaningful derivative of a vector field. The covariant derivative
along a curve was to be defined, using the idea of parallel transport, by (2.22).
As we have just seen, it is not actually necessary to specify a curve when P
and Q are infinitesimally close. In terms of components, then, let us write
DV µ/dλ = (dxσ /dλ)∇σ V µ and calculate the covariant derivative ∇σ V µ using
(2.22) and (2.23). We find

∇σ V µ = ∂σ V µ + �µ
νσ V ν . (2.24)
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Notice that the three indices of the connection coefficient have different functions.
There are, indeed, important situations in which the connection is symmetric in
its two lower indices: �

µ
νσ = �

µ
σν . In general, however, it is the last index that

corresponds to that of ∇σ . Since DV µ/dλ and dxσ /dλ are both vectors, it follows
from their transformation laws that the functions ∇σ V µ are the components of a
rank

(1
1

)
tensor, with the transformation law

∇σ ′ V µ′ = �σ
σ ′�µ′

µ∇σ V µ. (2.25)

From this, we can deduce the transformation law for the connection coefficients
themselves, which can be written as

�
µ′
ν ′σ ′ =

(
�µ′

µ�
ν
ν ′�σ

σ ′
)
�µ

νσ + �µ′
ν

(
∂σ ′�ν

ν ′
)
. (2.26)

Readers are urged to verify this in detail, bearing in mind that ∂σ ′(�µ′
ν�

ν
ν ′) =

(∂σ ′�µ′
ν)�

ν
ν ′ + �

µ′
ν(∂σ ′�ν

ν ′) = ∂σ ′(δµ
′

ν ′ ) = 0.
Evidently, the affine connection is not itself a tensor. However, the covariant

derivative that contains it acts on any tensor to produce another tensor of one
higher covariant rank. So far, we have defined only the covariant derivative of a
vector field, which was given in (2.24). The covariant derivative of a scalar field
is just the partial derivative, ∇µ f = ∂µ f , since this is already a vector field. In
order for the covariant derivative of a one-form field to be a second-rank tensor
field, we must have

∇σωµ = ∂σωµ − �ν
µσων . (2.27)

Notice that the roles of the upper and first lower indices have been reversed,
compared with (2.24), and that the sign of the connection term has changed.
It is straightforward to check that these changes are vital if this derivative is to
transform as a rank

(0
2

)
tensor field. The covariant derivative of a tensor field of

arbitrary rank is

∇σ T αβ...
µν... = ∂σ T αβ...

µν... + (connection terms). (2.28)

There is one connection term for each index of the original tensor. For each upper
index, it is a term like that in (2.24) and for each lower index it is like that in (2.27).
Exercise 2.11 invites readers to consider in more detail how these definitions are
arrived at.

There is a convenient notation that represents partial derivatives of tensor
fields by a comma and covariant derivatives by a semicolon. That is:

∂σ T α
µν ≡ T α

µν,σ and ∇σ T α
µν ≡ T α

µν;σ . (2.29)

2.3.2 Geodesics

As mentioned earlier, a geodesic is, in a sense, a generalization of the straight
line of Euclidean geometry. Of course, we can reproduce only those properties
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of straight lines that make sense in our manifold with its affine connection. For
example, the idea that a straight line is the shortest distance between two points
will make sense only when we have a metric to measure distances. The idea of
a geodesic is that, if we are to walk along a straight line, each step we take must
be parallel to the last. Consider, then, the special case of the parallel transport
equation (2.23) in which the vector transported from P to Q is the curve’s own
tangent vector at P: V µ = dxµ/dλ. If the curve is a geodesic, the transported
vector V (P → Q) will be proportional to V (Q). Since the vectors have no
definite length, the constant of proportionality may well depend on λ, but if
P and Q are separated by an infinitesimal parameter distance, it will be only
infinitesimally different from 1. So we may write

dxµ

dλ

∣∣∣∣
P→Q

= [1 − f (λ)δλ] dxµ

dλ

∣∣∣∣
Q

(2.30)

where f (λ) is an unknown function. Using this in (2.23) and taking the limit
δλ → 0, we obtain the geodesic equation

d2xµ

dλ2 + �µ
νσ

dxν

dλ

dxσ

dλ
= f (λ)

dxµ

dλ
. (2.31)

A curve xµ(λ) is a geodesic if and only if it satisfies an equation of this form,
where f (λ) can be any function.

Remember now that a given path through the manifold can be parametrized
in many different ways, each one being regarded as a different curve. It is easy
to see that if the curve given by one parametrization is a geodesic, then so is the
curve that results from another parametrization of the same path. We need only
express the new parameter, say µ, as a function of λ and use the chain rule in
(2.31):

d2xµ

dµ2 + �µ
νσ

dxν

dµ

dxσ

dµ
=
(

dµ

dλ

)−2
[

f (λ)
dµ

dλ
− d2µ

dλ2

]
dxµ

dµ
. (2.32)

This has the same form as (2.31) but involves a different function of µ on the right-
hand side. In particular, it is always possible to find a parameter for which the
right-hand side of (2.32) vanishes. Such a parameter is called an affine parameter
for the path. It is left as a simple exercise for the reader to show that if λ is an
affine parameter, then any parameter that is affinely related to it (that is, it is a
linear function µ = aλ + b) is also an affine parameter.

2.3.3 The Riemann curvature tensor

We saw in connection with figure 2.11 that parallel transport of a vector between
two points along different curves can be used to detect curvature of the manifold.
This is because both parallel transport and curvature are properties of the affine
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Figure 2.12. Two paths, P RQ and P SQ, for parallelly transporting a vector from P to Q.

connection. The definition of curvature is made precise by the Riemann curvature
tensor. Consider two points P and Q with coordinates xµ and xµ + δxµ

respectively, such that δxµ = 0, except for µ = 1 or 2. A region of the (x1, x2)

surface near these points is shown in figure 2.12. By transporting a vector V (P)

to Q via R or S, we obtain at Q the two vectors V (P → R → Q) and
V (P → S → Q). To first order in δxµ these two vectors are the same, as
we have seen. If we expand them to second order, however, they are different,
and we obtain an expression of the form

V µ(P → S → Q) − V µ(P → R → Q) = Rµ

ν12V νδx1δx2 + . . . (2.33)

where the quantities Rµ
ν12 depend on the connection coefficients and their

derivatives. Readers are invited to verify that they are components of the Riemann
tensor we are about to define.

It should be clear that the process of transporting the vector from P to Q
along the two paths is related to that of taking two derivatives, with respect to x1

and x2, in either order. If we act on a vector field with the two covariant derivatives
∇σ and ∇τ in succession, the result depends on the order of the two operations;
they do not commute. To work out the commutator, we use the definition (2.28),
bearing in mind that ∇σ V µ is itself a rank

(1
1

)
tensor. The result is

[∇σ ,∇τ ] V µ ≡ ∇σ

(∇τ V µ
)− ∇τ

(∇σ V µ
) = Rµ

νστ V ν + (
�λ

στ − �λ
τσ

)∇λV µ

(2.34)
where

Rµ
νστ = �µ

ντ,σ − �µ
νσ,τ + �

µ
λσ�

λ
ντ − �

µ
λτ�

λ
νσ . (2.35)

This formidable expression defines the Riemann tensor. As a rank-4 tensor, it has
44 = 256 components! Actually, owing to various symmetry properties, of which
the most obvious is antisymmetry in the indices σ and τ , it can be shown that
only 80 of these are independent. When �

µ
νσ is a metric connection of the kind
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to be described in §2.3.5, there is a further symmetry that reduces the number
of independent components to 20. Even so, the Riemann tensor is clearly an
inconvenient object to deal with. Readers should not panic yet, though. Many
of the most important applications of general relativity (including all those to be
discussed in this book) do not require the complete Riemann tensor. In practice,
we shall need only a simpler tensor derived from it. This is the Ricci tensor,
defined by contracting two indices of the Riemann tensor:

Rµν ≡ Rλ
µλν = �λ

µν,λ − �λ
µλ,ν + �λ

σλ�
σ
µν − �λ

σν�
σ
µλ. (2.36)

Although the definition still looks complicated, the components of this tensor can
often be calculated with just a little patience, and it is relatively simple to use
thereafter.

The second term on the right-hand side of (2.34) involves the antisymmetric
part of the affine connection, �ν

στ − �ν
τσ , which is called the torsion tensor.

(Readers should find it instructive to verify, using (2.26) and (2.13) that this really
is a tensor, even though �ν

στ itself is not.) In most versions of general relativity, it
is assumed that spacetime has no torsion. We shall always assume this too, since
it makes things much simpler. I do not know, however, of any direct method of
testing this experimentally.

Some simple illustrations of the idea of curvature are given in the exercises.
These make more obvious sense when we have a metric at our disposal, and we
turn to that topic forthwith.

2.3.4 The metric

Yes, we are finally going to give our manifold a metrical structure that will make
the notion of length meaningful. To define the infinitesimal distance ds between
two points with coordinates xµ and xµ + dxµ, we use a generalization of the
Pythagoras rule:

ds2 = gµν(x)dxµdxν. (2.37)

Naturally, we want this distance to be a scalar quantity, independent of our choice
of coordinate system, and it is easy to see that the coefficients gµν(x) must
therefore be the components of a rank

(0
2

)
tensor field. It is called the metric

tensor field or, for brevity, the ‘metric tensor’, or simply the ‘metric’. Since an
antisymmetric part would obviously make no contribution to ds, it is taken to be
symmetric in its indices µ and ν. Any finite distance between two points can be
uniquely defined only as the length of a specified curve joining them. For the
distance between P and Q on a curve xµ(λ), we have the integral

sP Q =
∫ Q

P

ds

dλ
dλ =

∫ Q

P

[
gµν

(
x(λ)

) dxµ

dλ

dxν

dλ

]1/2

dλ. (2.38)

In the space of three-dimensional Euclidean geometry, the squared element of
distance expressed in Cartesian coordinates is ds2 = (dx1)2 + (dx2)2 + (dx3)2,
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so the components of the metric tensor in these coordinates are

gµν =
( 1 0 0

0 1 0
0 0 1

)
. (2.39)

The metric tensor has several other geometrical uses, arising from the fact
that it serves to define a scalar product of two vectors or vector fields:

U · V = Uµ(x)gµν(x)V
ν(x). (2.40)

Clearly, this reduces to the usual ‘dot product’ in Euclidean space. Taking the two
vectors to be the same, we get a definition of the magnitude or length of a vector,

|V (x)|2 = gµν(x)V
µ(x)V ν(x) (2.41)

and we can then define the angle between two vectors by writing

gµνUµV ν = |U||V | cos θ. (2.42)

A non-Euclidean metric does not necessarily give a positive value for the quantity
|V (x)|2, so the lengths and angles defined in this way might turn out to be
complex.

When introducing one-forms, I pointed out that the symbol u·, which
appears in the Euclidean dot product, can be regarded as a linear function that
takes a vector as its argument, and is, in fact, a one-form. From the scalar product
(2.40), we see that gµν plays the role of the dot, and that the functions

Uν = Uµgµν (2.43)

are the components of a unique one-form corresponding to the vector U . The
metric tensor is said to lower the index of the vector to produce a one-form. In
the same way, the metric associates a unique vector with each one-form ω: it is
the vector whose corresponding one-form is ω. Actually, this assumes that the
metric is non-singular. That is, it has an inverse matrix gµν , whose elements are
the components of a rank

(2
0

)
tensor field, such that

gµσ gσν = δνµ. (2.44)

The geometrical properties of the metric would be rather peculiar if this were not
so, and the existence of the inverse is sometimes included as part of the definition
of a metric. So long as the inverse metric does exist, we can say that it raises the
index of a one-form to produce a vector:

ωµ = gµνων . (2.45)

In fact, any index of any tensor can be raised or lowered in this way. Since gµν is
symmetric, it does not matter which of its indices is contracted.
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Now that we have a metric tensor at our disposal, it is clearly possible in
practice to regard vectors and one-forms as different versions of the same thing—
hence the terms contravariant and covariant vector. In Euclidean geometry, we
do not notice the difference, as long as we use Cartesian coordinates, because
the metric tensor is just the unit matrix. In non-Cartesian coordinates, the metric
tensor is not the unit matrix, and some consequences of this are explored in the
exercises. Does this mean that there is, after all, no real distinction between
vectors and one-forms, or between the contravariant and covariant versions of
other tensors? This depends on our attitude towards the metric. In the relativistic
theory of gravity, the metric embodies information about gravitational fields, and
different metrics may represent different, but equally possible, physical situations.
The relation between the contravariant and covariant versions of a given physical
quantity depends on the metric, and it is legitimate to ask which version is intrinsic
to the quantity itself and which is a compound of information about the quantity
itself and about the metric. To decide this, we must ask what kind of tensor would
be used to represent the quantity in question were a metric not available. For
example, the Riemann tensor that appears in (2.34) has an index µ, which is in
the upper position because it originates from parallel transport of a vector, and two
indices σ and τ that must be in the lower position because they label directions
along which the vector is being differentiated. Since metrical notions are taken
for granted in much of our physical thinking, though, the answer to this may not
always be obvious. If, as in Euclidean geometry, the metric is taken to be fixed
and unalterable, then such questions need not arise.

2.3.5 The metric connection

Now that the magnitude of a vector and the angle between two vectors have
acquired definite meanings, it is natural to demand that the rule for parallel
transport should be consistent with them. Thus, if two vectors are transported
along a curve, each one remaining parallel to itself, then the angle between them
should remain constant. This requirement leads to a relation between the metric
and the affine connection that we shall now derive. Consider a curve xµ(λ)

passing through the point P and two vectors V and W at P . We can define a
vector field V (x) such that its value at any point Q on the curve is equal to the
transported vector V (P → Q), and a similar vector field W(x). If U is the
tangent vector to the curve, then Uσ∇σ V µ is the covariant derivative of V µ along
the curve. It is given by the expression (2.22) and is clearly equal to zero, as is the
corresponding derivative of W . The consistency condition we want to impose is
that the scalar product gµνV µW ν has the same value everywhere along the curve.
Recalling that the covariant derivative of a scalar field is equal to the ordinary
derivative, we may express this condition as

Uσ∇σ (gµνV µW ν ) = 0. (2.46)
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Now, the covariant derivative of a product of tensors obeys the same Leibniz (or
product) rule as an ordinary derivative:

∇σ (gµνV µW ν ) = (∇σ gµν)V
µW ν + gµν(∇σ V µ)W ν + gµνV µ(∇σ W ν). (2.47)

Readers may verify this explicitly or turn to exercise 2.11 for some further
enlightenment. If we use this in (2.46), the last two terms vanish and our condition
becomes Uσ (∇σ gµν)V µW ν = 0. This must hold for any three vectors U , V and
W , and therefore the covariant derivative of gµν must be zero:

∇σ gµν = gµν,σ − �τ
µσ gτν − �τ

νσ gµτ = 0. (2.48)

This is sometimes expressed by saying that the metric is ‘covariantly constant’.
By combining this equation with two others obtained by renaming the indices, we
get

gσµ,ν +gσν,µ−gµν,σ = (�τ
σν −�τ

νσ )gτµ+(�τ
σµ−�τ

µσ )gτν +(�τ
µν +�τ

νµ)gτσ .

(2.49)
Assuming, as we discussed above, that the connection is symmetric in its lower
indices, the first two terms on the right-hand side vanish. Then, on multiplying
by gλσ , we find that this symmetric connection is completely determined by the
metric:

�λ
µν = 1

2 gλσ (gσµ,ν + gσν,µ − gµν,σ ). (2.50)

When �λ
µν is used to denote this expression, it is often called a Christoffel symbol.

This metric connection expresses the definition of parallelism that is implied by
the metric. In principle, there is no reason why a manifold should not possess one
or more affine connections that would be quite independent of the metric. Indeed,
it might also possess several different metrics. In such a case, there would exist
several different kinds of ‘distance’ and several different meanings of ‘parallel’.
It appears, however, that a single metric and its associated connection given by
(2.50) are sufficient to describe the properties of space and time as we know them.

Finally, we can now construct a scalar quantity that gives a measure of
curvature (though it obviously contains much less information than the full
Riemann tensor). The Ricci curvature scalar R is defined by

R = gµν Rµν (2.51)

and its interpretation in terms of a ‘radius of curvature’ is explored in
exercise 2.15.

2.4 What is the Structure of Our Spacetime?

We have now invested considerable effort in understanding the mathematical
nature of the affine and metrical structures that give precise meaning to our
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Figure 2.13. Fibre bundle structure of Galilean spacetime and the trajectory of a particle
moving through it. Each fibre is a copy of three-dimensional Euclidean space S, which
possesses a metric for measuring distances. The base manifold T has its own metric for
measuring time intervals. There is no unique way of measuring the ‘length’ of the particle’s
trajectory.

intuitive geometrical ideas. The question naturally arises, what are the particular
structures that occur in our real, physical space and time? Let us first consider
what kind of an answer is needed.

Before Einstein’s theories of relativity, it had seemed obvious that the
geometry of space was that described by Euclid. (The logical possibility of
non-Euclidean geometry had, however, been investigated rather earlier by Gauss,
Bolyai, Lobachevski, Riemann and others. The history of this subject is nicely
summarized by Weinberg (1972).) The Galilean spacetime that incorporates
Euclidean geometry does not have exactly the kind of metrical structure we have
been considering. It is a combination (in mathematical jargon, a direct product)
of two manifolds T (time) and S (space), each of which has its own metric.
This structure, illustrated in figure 2.13, is called a fibre bundle. It has a base
manifold, T , to each point of which is attached a fibre. Each fibre is a copy of
the three-dimensional Euclidean space S. A curve such as P Q R passing through
the spacetime has no well-defined length, although its projection onto one of the
fibres does have a definite length l and its projection onto T spans a definite time
interval t .

The big difference between Galilean spacetime and the spacetimes of
Einstein’s theories is that the latter are metric spaces (or, more accurately,
manifolds-with-metrics). That is, the spacetime is a manifold in which a single
metric tensor field defines, as we saw in our initial survey, the arc length of any
curve. This ‘length’ is a combination of temporal and spatial intervals, but there is



What is the Structure of Our Spacetime? 41

no unique way in which the two can be separated. There is, of course, a profound
difference between space and time as we experience them, and we shall discuss
in later chapters how this difference fits in with the mathematics.

An important similarity between Galilean spacetime and the Minkowski
spacetime of special relativity is that their metrical properties are assumed to
be known a priori, as specified either by (2.39) or by (2.8). Readers may be
puzzled to see that the spatial components in (2.8) have changed sign relative to
(2.39). This is purely a matter of convention: the squared proper time intervals
in (2.3) or (2.6) are taken to be positive if the separation of two events in time
is greater than 1/c times their spatial separation, and negative otherwise. (Since
proper time intervals are scalar quantities, having the same values in all frames of
reference, this distinction is also independent of the frame in which the time and
distance measurements are made.) If we chose to think in terms of proper distance
rather than proper time, the opposite convention would be more natural, and every
component in (2.8) would have the opposite sign. In fact, both conventions are
used in the literature, although the one we are using is somewhat more popular
amongst high-energy physicists than amongst relativity theorists.

The crux of the general-relativistic theory of gravity is that neither of these
simple assumptions about the metric tensor is in fact correct. Indeed, the most
important conceptual step we have taken in this chapter is to recognize that the
metric tensor is not an intrinsic part of the spacetime manifold, but rather an object
that lives in the manifold. It is the same sort of thing as an electric or magnetic
field. Electric and magnetic fields vary with position and time in accordance
with definite physical laws, which relate them to distributions of charged particles
and currents. In the same way, the metric tensor field can be expected to vary
in accordance with its own laws of motion and to depend on the distribution of
matter. So far, we have no idea what the laws of motion for the metric tensor
field are. Electromagnetic fields are easy to produce and control under laboratory
conditions, and the laws that govern them were, for the most part, inferred from
comprehensive experimental investigations. In contrast, the gravitational forces
that are the observable manifestations of the metric tensor field are extremely
weak, unless they are produced by bodies of planetary size, and there is little hope
of deducing the laws that govern them from a series of controlled experiments.
What Einstein did was to guess at what these laws might be, assuming that they
would be reasonably similar to other known laws of physics. After one or two
false guesses, he arrived at a set of equations, the field equations of general
relativity, which are consistent with the most precise astronomical observations
that it has so far been possible to make.

With the benefit of hindsight, it is possible to see that these equations and
all the other laws of classical (non-quantum-mechanical) physics can be deduced
in exactly the same way from a single basic principle, called an action principle.
This seems to me to be most satisfactory. I should be vastly more satisfied if I
could explain why an action principle rather than something else is what actually
works, but I cannot imagine how that would be done. (It is possible to derive the
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classical action principle from what amounts to a quantum-mechanical version
of the same thing, but that is only to rephrase the question!) At this point, then,
I propose to interrupt our study of geometry to examine how classical physics
works in Galilean and Minkowski spacetimes. This is an important topic in its
own right, because classical physics and the simple spacetimes often provide
excellent approximations to the real world. In the course of understanding them,
however, we shall also meet the action principle, whereupon we shall be equipped
to embark upon general relativity and the theory of gravity.

Exercises

2.1. Consider two coordinate systems S and S′ whose spatial Cartesian axes lie in
the same three directions. The origin of S′ moves with constant velocity v relative
to S, and the origins of S and S′ coincide at t = t ′ = 0. Assume that the relation
between the two sets of coordinates is linear and that space is isotropic. The most
general form of the transformation law can then be written as

x ′ = α
[
(1 − λv2)x + (λv · x − βt)v

]
t ′ = γ

[
t − (δ/c2)v · x

]
where α, β, γ , δ and λ are functions of v2. For the case that v is in the positive x
direction, write out the transformations for the four coordinates. Write down the
trajectory of the S′ origin as seen in S and that of the S origin as seen in S′ and
show that β = 1 and α = γ . Write down the trajectories seen in S and S′ of a light
ray emitted from the origin at t = t ′ = 0 that travels in the positive x direction,
assuming that it is observed to travel with speed c in each case. Show that δ = 1.
The transformation from S′ to S should be the same as the transformation from S
to S′, except for the replacement of v by −v. Use this to find γ . By considering
the equation of the spherical wavefront of a light wave emitted from the origin at
t = t ′ = 0, complete the derivation of the Lorentz transformation (2.2).

2.2. Two coordinate frames are related by the Lorentz transformation (2.2). A
particle moving in the x direction passes their common origin at t = t ′ = 0
with velocity u and acceleration a as measured in S. Show that its velocity and
acceleration as measured in S′ are

u′ = u − v

1 − uv/c2
a′ = (1 − v2/c2)3/2

(1 − uv/c2)3
a.

2.3. A rigid rod of length L is at rest in S′, with one end at x ′ = 0 and the other
at x ′ = L. Find the trajectories of the two ends of the rod as seen in S and show
that the length of the rod as measured in S is L/γ , where γ = (1 − v2/c2)−1/2.
This is the Fitzgerald contraction. If the rod lies along the y ′ axis of S′, what is
its apparent length in S? A clock is at rest at the origin of S′. It ticks at t ′ = 0
and again at t ′ = τ . Show that the interval between these ticks as measured in S
is γ τ . This is time dilation.
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2.4. As seen in S, a signal is emitted from the origin at t = 0, travels along the
x axis with speed u, and is received at time τ at x = uτ . Show that, if u > c2/v

then, as seen in S′, the signal is received before being sent. Show that if such
paradoxes are to be avoided, no signal can travel faster than light.

2.5. A wheel has a perfectly rigid circular rim connected by unbreakable joints to
perfectly rigid spokes. When measured at rest, its radius is r and its circumference
is 2πr . When the wheel is set spinning with angular speed ω, what, according to
exercise 2.3, is the apparent circumference of its rim and the apparent length of
its spokes? What is the speed of sound in a solid material of density ρ whose
Young’s modulus is Y ? Is the notion of a perfectly rigid material consistent with
the conclusion of exercise 2.4?

2.6. Consider the following three curves in the Euclidean plane with Cartesian
coordinates x and y: (i) x = 2 sinλ, y = 2 cosλ, 0 ≤ λ < 2π ; (ii)
x = 2 cos(s/2), y = 2 sin(s/2), 0 ≤ s < 4π ; (iii) x = 2 cos(eµ), y = 2 sin(eµ),
−∞ < µ ≤ ln(2π). Show that all three curves correspond to the same path,
namely a circle of radius 2. Show that λ and s are affinely related. What is the
special significance of s? Find the components of the tangent vectors to each
curve. Compare the magnitudes and directions of the three tangent vectors at
various points on the circle. What is special about the tangent vectors to curve
(ii)?

2.7. Consider a four-dimensional manifold and a specific system of coordinates
xµ. You are given four functions, a(xµ), b(xµ), c(xµ) and d(xµ). Can you tell
whether these are (i) four scalar fields, (ii) the components of a vector field, (iii)
the components of a one-form field or (iv) none of these? If not, what further
information would enable you to do so?

2.8. In the Euclidean plane, with Cartesian coordinates x and y, consider
the vector field V whose components are V x = 2x and V y = y, and the
one-form field ω f which is the gradient of the function f = x2 + y2/2.
Show that in any system of Cartesian coordinates x ′ = x cosα + y sinα,
y ′ = y cosα − x sin α, where α is a fixed angle, the components of ω f are
identical to those of V . In polar coordinates (r, θ), such that x = r cos θ and
y = r sin θ , show that V has components (r(1 + cos2 θ),− sin θ cos θ) while ω f

has components (r(1 + cos2 θ),−r2 sin θ cos θ). Note that the ‘gradient vector’
defined in elementary vector calculus to have the components (∂ f/∂r, r−1∂ f/∂θ)
does not correspond to either V or ω f .

2.9. Given a rank
(a

b

)
tensor, show that the result of contracting any upper index

with any lower index is a rank
(a−1

b−1

)
tensor.

2.10. In the Euclidean plane, parallel transport is defined in the obvious way. If, in
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Cartesian coordinates, the components of V (P) are (u, v), then the components of
V (P → Q) are also (u, v). Thus, the affine connection coefficients in Cartesian
coordinates are all zero. Work out the matrices �

µ′
µ for transforming between

Cartesian and polar coordinates related by x = r cos θ and y = r sin θ . Show that
in polar coordinates, the only non-zero connection coefficients are �r

θθ = −r
and �θ

rθ = �θ
θr = 1/r . Let P and Q be the points with Cartesian coordinates

(a, 0) and (a cosα, a sin α) respectively, and let V (P) have Cartesian components
(1, 0). Using polar coordinates and parallel transport around the circle of radius a
centred at the origin and parametrized by the polar angle θ , show that V (P → Q)

has polar components (cosα,−a−1 sin α). By transforming this result, verify that
V (P → Q) has Cartesian components (1, 0). [N.B. The notation here is intended
to be friendly: if, say, x1 = r and x2 = θ , then �r

θθ means �1
22 and so on.]

2.11. The covariant derivatives of tensors of arbitrary rank can be defined
recursively by the following rules: (i) for a scalar field f , we take ∇σ f = ∂σ f ;
(ii) the covariant derivative of a vector field is given by (2.24); (iii) the covariant
derivative of a rank

(a
b

)
tensor is a tensor of rank

( a
b+1

)
; (iv) for any two tensors A

and B , the Leibniz rule ∇σ (AB) = (∇σ A)B + A(∇σ B) holds. By considering
the fact that ω(V ) = ωµV µ is a scalar field, show that the covariant derivative
of a one-form is given by (2.27). Convince yourself that the recursive definition
leads to (2.28) for an arbitrary tensor field.

2.12. In the Euclidean plane, consider the straight line x = a. Using λ = y
as a parameter, show, in both Cartesian and polar coordinates, that the geodesic
equation (2.31) is satisfied and that λ is an affine parameter. Repeat the exercise
using both affine and non-affine parameters of your own invention.

2.13. Write down the components of the metric tensor field of the Euclidean
plane in the polar coordinates of exercise 2.8. Show, using both Cartesian and
polar coordinates, that the vector V is obtained by raising the indices of ω f and
vice versa. Show that |V |2 = ω f (V ). What is the magnitude of the ‘gradient
vector’? How does it involve the metric? Can a ‘gradient vector’ be defined in a
manifold with a non-Euclidean metric, or in a manifold that possesses no metric?

2.14. Show that the affine connection of exercise 2.10 is the metric connection.

2.15. In three-dimensional Euclidean space, define polar coordinates in the usual
way by x = r sin θ cosφ, y = r sin θ sin φ and z = r cos θ . The spherical surface
r = a is called a 2-sphere, and the angles θ and φ can be used as coordinates for
this two-dimensional curved surface. Show that the line element on the sphere
is ds2 = a2(dθ2 + sin2 θ dφ2). Show that the only non-zero coefficients of the
metric connection are �θ

φφ = − sin θ cos θ and �
φ
θφ = �

φ
φθ = cot θ . Show that

the Ricci tensor is diagonal, with elements Rθθ = 1 and Rφφ = sin2 θ , and that
the Ricci scalar is R = 2/a2.



Chapter 3

Classical Physics in Galilean and
Minkowski Spacetimes

This chapter is mostly about classical mechanics. By ‘classical’, I mean to
indicate that we are not yet going to take any account of quantum mechanics.
(In the literature, ‘classical’ is sometimes used to mean that no account is
taken of special relativity either, and sometimes also to describe any venerable
theory that has been superseded by a more ‘modern’ one.) I shall actually be
assuming that readers already have a fair understanding of the elementary aspects
of Newtonian mechanics: for example, we shall not spend time developing
techniques for calculating the trajectories of projectiles or planetary orbits,
important though these topics undoubtedly are. The aim of this chapter is to set
out the mathematics of classical mechanics in a way that makes clear the nature
of the basic physical laws embodied in it and which, to a large extent, will enable
us to see the principles of general relativity and of the quantum theory as natural
generalizations of these laws. In a later chapter, this mathematical description
will also help us towards setting up a statistical description of the macroscopic
behaviour of large assemblages of particles.

There is, of course, nothing final or unalterable about the ‘laws’ of physics
as they appear to physicists at any particular time. It is possible, however, to
identify two mathematical ideas which lie at the heart of all theories that have so
far had success in describing how the world is at a fundamental level. The first
is a function called the action which, as we shall soon see, summarizes all the
equations of motion for a given system. It is easy to invent equations of motion
that cannot be summarized in this way. For example, equations that involve
dissipative effects such as friction usually cannot be. These effects, however,
can be understood as arising only on a macroscopic scale, and the fundamental
equations that apply at the microscopic level do seem to be derivable from an
action. Why this should be so, I do not know.

The action is fundamental to both classical and quantum theories, although
in somewhat different guises. It is a function of all the dynamical variables (in the
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classical mechanics of particles, the positions and velocities of all the particles)
that are needed to specify the state of a system. Once we know what this function
is, we know what the laws of motion are, but the only way of finding this out is
by guesswork. It seems that the possibilities amongst which we have to choose
are quite considerably restricted by a variety of symmetries that are respected by
nature. This is the second of the ideas mentioned above, and the role of symmetry
in theoretical physics will be a recurring theme. Symmetry is, of course, an
aesthetically pleasing feature of any theory, and this has come to weigh heavily
with many physicists. At the same time, it is not really clear why nature should
share our aesthetic tastes, if indeed she really does. But symmetry is more than
a theoretician’s fancy. As we shall soon discover, every symmetry leads to a
conservation law, the best-known examples being, perhaps, the conservation of
energy, momentum and electric charge. These conservation laws are amenable
to quite rigorous experimental checks and, conversely, the empirical discovery of
conserved quantities may point to new symmetries that should be incorporated in
our mathematical models.

These, then, are the issues to which the present chapter is primarily
addressed.

3.1 The Action Principle in Galilean Spacetime

The basic problem we set ourselves in classical mechanics is, given the state of
a system at some initial time, to predict what its state will be at some later time.
If we can do this correctly or if, at least, we are satisfied that only computational
difficulties stand in the way of our doing it, then we feel that we understand how
the system works. We shall be concerned more or less exclusively with systems
consisting of particles that are small enough to be considered as points. Large
rigid bodies can be treated as being composed of such particles and introduce no
new questions of principle.

Let us consider first what information we need to specify uniquely the
instantaneous state of such a system. It is normally taken for granted that we have
to know the positions and velocities of all the particles—whether these are given
in Cartesian coordinates for each particle, in polar coordinates, in terms of relative
positions and velocities for some of the particles, etc. does not matter. But why
is this? A snapshot of the system can be completely described by giving just the
positions of the particles. Evidently, this is not enough, but if we go on to specify
the velocities, then why not the accelerations and higher-order time derivatives
as well? By saying that the state of the system is uniquely specified, we imply
that, given the equations of motion, any future state is uniquely determined. The
equations of motion come simply from Newton’s second law, which gives a set of
second-order differential equations for the positions of the particles as functions of
time. They have unique solutions if the initial positions and velocities are given.
I emphasize this point because I am going to illustrate the role of symmetries
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by using them to derive Newton’s second law, and I want to be clear about the
assumptions that are needed to do this. The first assumption is that the state of the
system is uniquely specified by giving the positions and velocities, and it is more
or less equivalent to assuming that the equations of motion will be of second order
in the time derivatives. I do not know of any justification for this beyond the fact
that it works.

At this point, we must introduce the action principle. As a simple example,
consider a single particle in a Galilean spacetime with one spatial dimension. If
its mass is m and it has potential energy V (x), then Newton’s law gives

mẍ = −dV/dx . (3.1)

This is equivalent to the statement that the quantity

S =
∫ t2

t1

[
1
2 mẋ2 − V (x)

]
dt (3.2)

called the action, is stationary with respect to variations in the path x(t). That is
to say, if x(t) is the actual path of the particle, and we imagine changing it by
a small but otherwise arbitrary amount, x(t) → x(t) + δx(t), then the resulting
first-order change in S is zero:

δS =
∫ t2

t1
[mẋδẋ − (dV/dx)δx] dt = 0. (3.3)

To be precise, we must choose δx(t) to vanish at t1 and t2. Then, taking into
account that δẋ = d(δx)/dt , we may integrate the first term by parts, giving∫ t2

t1
[mẍ + (dV/dx)] δx dt = 0. (3.4)

Since δx(t) is an arbitrary function, the expression in square brackets must be
zero, and in this way we recover the equation of motion (3.1). The integrand
in (3.2) is called the Lagrangian and in this case it can be identified as
(kinetic energy − potential energy).

In general, for a system of N particles in three-dimensional space, its
instantaneous state is specified by a set of 3N quantities {qi }, called generalized
coordinates, which may be distances, angles, or any other quantities that serve
to specify all the positions, together with the 3N generalized velocities {q̇i }.
Then the Lagrangian may be a function of all 6N of these quantities and of
time, L = L({qi }, {q̇i }, t). By repeating the above calculation, but allowing for
independent variations in all the coordinates, readers may easily verify that the
resulting equations of motion are the 3N equations

d

dt

(
∂L

∂ q̇i

)
= ∂L

∂qi
. (3.5)
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These are called the Euler–Lagrange equations. The quantity pi = ∂L/∂ q̇i is
called the generalized momentum conjugate to the coordinate qi , and ∂L/∂qi is
the generalized force. The rate of change of a generalized momentum is thus
a generalized force and, by choosing the Lagrangian function correctly, these
equations can be made to reproduce those given by Newton’s law.

Suppose, however, we do not assume Newton’s law to be valid. Can we
discover what the Lagrangian is on a priori grounds? In fact, quite a lot can be
discovered by considering spacetime symmetries, as we shall now see. Consider
first the case of a single, isolated particle. Since it is free from external influences,
its equation of motion can depend only on the structure of spacetime itself: any
symmetry of this structure must also be a symmetry of the equation of motion. In
Galilean spacetime, there are three quite obvious symmetries, which place definite
constraints on the Lagrangian.

(i) Invariance under time translations. In terms of the geometrical ideas
in the last chapter, Galilean time has its own metric, which gives a definite
quantitative meaning to time intervals. We assume that the time coordinate t ,
as well as labelling instants of time, is a linear measure of time. This means
that, given any other parameter t ′ that labels instants of time (say, the readings
of an imperfect clock), there is a temporal metric tensor with a single component
g(t ′) such that dt2 = g(t ′)dt ′2. In terms of t itself, g = 1, so there is nothing
to distinguish one moment from any other. Thus, the equation of motion of
an isolated particle must be the same at any instant, and therefore L cannot
depend explicitly on time. Another way of saying this is that L is invariant
under the coordinate transformation that shifts or ‘translates’ the origin of time
measurement by an amount t0: L(x, ẋ, t + t0) = L(x, ẋ, t) so L is independent
of t , which can be omitted.

(ii) Invariance under spatial translations. In Cartesian coordinates, the
Pythagoras rule for finding the length of a segment of a curve is unchanged by
a translation of the origin x → x + x0 or, in the terminology of the last chapter,
the spatial metric tensor (2.39) is unchanged. By the same reasoning as above, we
conclude that L(x + x0, ẋ) = L(x, ẋ) or that L must be a function of ẋ only.

(iii) Invariance under rotations. Similarly, the Pythagoras rule or the
metric tensor is unchanged by a rotation to a new Cartesian coordinate system.
Therefore, L must be invariant under rotations. This means that it cannot depend
on individual components of ẋ but only on the magnitude |ẋ| = (ẋ · ẋ)1/2 which
is unchanged by rotations.

In order to tie down the Lagrangian completely, we have to assume a further
symmetry:

(iv) Invariance under Galilean transformations. This is the assumption that
the equation of motion has the same form in two frames of reference that have
a constant relative velocity v. The interpretation of this symmetry in terms of
the geometry of Galilean spacetime is somewhat obscure, although it can be
understood as a limiting case of the invariance under Lorentz transformations
that applies in Minkowski spacetime. Clearly, it involves assuming the existence
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of a privileged class of unaccelerated or inertial frames of reference in which
the equation of motion has a special form. We found above that L can depend
only on |ẋ|, and it is now convenient to express L as a function of the variable
X = 1

2 |ẋ|2. If we choose the generalized coordinates in (3.5) to be Cartesian,
then the equation of motion can be written as

d

dt

(
ẋ

dL

dX

)
= ẍ

dL

dX
+ ẋ(ẍ · ẋ)

d2L

dX2
= 0. (3.6)

If we make a Galilean transformation, replacing x by x − vt , then ẋ and X
are changed, but ẍ is not. To ensure that the form of (3.6) remains unchanged,
we must take L to be such that dL/dX is simply a constant, which means that
d2L/dX2 = 0. The constant is, of course, what we usually call the mass of
the particle, and the Lagrangian has turned out to be just the kinetic energy,
L = 1

2 m ẋ2, as it ought to be.

The Lagrangian for a system of non-interacting particles will clearly be the
sum of the kinetic energies of all the particles. If the particles interact with each
other, it will contain further terms to account for the forces. To maintain the
invariance under space translations and Galilean transformations, we can include
in these additional terms only functions of the separations ri j = xi − x j and
relative velocities ṙi j = ẋi − ẋ j of pairs of particles, so the general form of the
Lagrangian is

L =
∑

i

1
2 mi ẋ2

i − V ({ri j }, {ṙkl}). (3.7)

To maintain rotational invariance, V can depend only on scalar quantities
constructed from these vectors, ri j · rkl , (ri j × rkl ) · ṙmn and so on, but no more
can be said a priori about the function V , unless we can identify other symmetries
that apply to specific systems.

Our original example (3.2) is not of this form and, unless V is a trivial
constant, V (x + x0) does not equal V (x). If our symmetry arguments are correct,
then a Lagrangian of this kind can arise only when the potential is produced by
some external system whose own behaviour is not taken properly into account.
This may well be an excellent approximation. For example, the motion of a
small object (mass m, position x) near the Earth (mass M , position X) would,
according to Newtonian gravity, be described by a Lagrangian of the form (3.7),
with V = −GmM/|x − X|. For many purposes, we can simply take the Earth
to be fixed, say at X = 0, so that V becomes a function of x only. For the small
object on its own, translational invariance does not hold because of the presence of
the Earth, but for the combined system of object + Earth, translational invariance
does hold, so long as we neglect any influence of the rest of the universe. Thus,
we expect the symmetries to be valid for any isolated system.
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3.2 Symmetries and Conservation Laws

We saw above that the symmetry of invariance under time translations implied
that the Lagrangian could not depend explicitly on time. Therefore, all the time
dependence of L is through the generalized coordinates and velocities, and we
may write

dL

dt
=
∑

i

(
dqi

dt

∂L

∂qi
+ dq̇i

dt

∂L

∂ q̇i

)
=
∑

i

(
q̇i

∂L

∂qi
+ q̈i

∂L

∂ q̇i

)
. (3.8)

When the functions qi (t) represent the actual trajectories of the particles, and
therefore obey the equations of motion (3.5), this becomes

dL

dt
= d

dt

(∑
i

q̇i
∂L

∂ q̇i

)
(3.9)

which shows that dE/dt = 0, where

E =
∑

i

q̇i
∂L

∂ q̇i
− L . (3.10)

This quantity, therefore, is conserved: it is a ‘constant of the motion’. When the
Lagrangian is that in (3.2), we see that E is the total energy. In general, since the
concept of energy is useful only because of the conservation law, we might as well
regard (3.10) as defining the energy of the system. (There are awkward cases in
which other definitions of energy give a different result from (3.10), but we shall
not be meeting them.) Thus, if the Lagrangian does not depend explicitly on time,
or is invariant under time translations, then energy is conserved. As discussed
above, we would expect this symmetry, and thus the conservation law, to hold for
any isolated system. This seems to me to be a remarkable and most satisfying
result. Far from depending on the details of forces that act within any particular
system, the law of conservation of energy is simply a consequence of the fact
that one instant of time is as good as any other, as far as the laws of physics are
concerned. This ‘fact’ might, indeed, have seemed to be more or less self evident,
had we not encountered in the last chapter the idea that spacetime geometry, as
embodied in the metric, might after all vary from one time and place to another. In
Galilean or Minkowski spacetime, this does not happen, but we might anticipate
that conservation of energy will not be so straightforward an idea in the context
of general relativity.

A variety of other conservation laws can be deduced from symmetry or
invariance properties of the Lagrangian. Mathematically, this works in the
following way. We replace the coordinates qi by qi + ε fi and the velocities by
q̇i + εd fi/dt , where each fi is a function of the coordinates, velocities and time,
and ε is a small, constant parameter. The Lagrangian can be expanded as a Taylor
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series in ε:

L

(
qi + ε fi , q̇i + ε

d fi

dt
, t

)
= L(qi , q̇i , t)+ ε

∑
j

(
∂L

∂q j
f j + ∂L

∂ q̇ j

d f j

dt

)
+ O(ε2)

(3.11)
and if the first-order term is zero, we say that L is invariant under the infinitesimal
transformation specified by the functions fi . I shall discuss the meaning of
this shortly, but let us first derive its consequences. Using the equations of
motion (3.5), and the fact that the coefficient of ε in (3.11) vanishes, we find
that dF/dt = 0, where

F =
∑

i

fi
∂L

∂ q̇i
=
∑

i

fi pi (3.12)

where pi are the generalized momenta defined earlier. The quantity F is therefore
conserved. For a classical system of point particles, this result constitutes what is
known as Noether’s theorem.

The simplest conservation law of this kind is the conservation of linear
momentum, which follows from invariance under spatial translations. If we use
Cartesian coordinates, a Lagrangian of the form (3.7) is unchanged when we
replace each xi by xi + εa, where a is any constant vector, but the same for
each particle. The velocities are unaffected because a is constant, and a cancels
out of all the differences of pairs of coordinates. Thus, not only the first-order
term but all the higher-order terms in (3.11) vanish. The conserved quantity F is
a · P , where P = ∑

i pi is the sum of the linear momenta of all the particles,
or the total momentum of the system. So if the Lagrangian is invariant under
spatial translations, then the total linear momentum is conserved. In the same
way, invariance under rotations leads to the conservation of angular momentum,
details of which are explored in exercise 3.1.

The symmetry transformations we have been using can be interpreted in two
ways. According to what is known as the active point of view, by making the
mathematical transformation x → x + a, we are comparing the behaviour of
the system when it occupies one or other of two regions of space, separated by
the vector a. Because the geometrical properties of our Galilean spacetime are
the same everywhere, we expect that the laws of physics will be too. So the
behaviour of the system, and therefore the form of the Lagrangian, should be
the same in each location, so long as the system is isolated from any external
influence. According to the passive point of view, we are comparing descriptions
of the system referred to two sets of coordinates, whose origins are separated
by the vector −a. Again, since geometry is the same everywhere, equations of
motion should have the same form, regardless of where we choose to place the
origin of coordinates. Similar remarks apply to time translations and rotations.

Of course, these considerations apply to displacements or rotations of any
size, not just infinitesimal ones. In fact, if the Lagrangian is unchanged at first
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order, it will also be unchanged by a large transformation which can be built from
a sequence of infinitesimal ones. In general, however, it is only the infinitesimal
ones which have the right form for the derivation to work. For example, the
rotation (x, y) → (x cos ε + y sin ε, y cos ε − x sin ε) can be written, when ε is
infinitesimal, as (x, y) → (x + εy, y − εx), and only the infinitesimal version
can be used in (3.11). However, a rotation through a finite angle can obviously
be built up from many infinitesimal ones. If the first-order change in L vanishes,
then x∂L/∂y = y∂L/∂x , from which it is easy to show that L must be a function
only of (x2 + y2). But in that case, L is invariant under rotations through any
angle.

3.3 The Hamiltonian

At the beginning of our discussion, we assumed that the state of a system would
be uniquely specified by the coordinates and velocities of all its particles. For
many theoretical purposes, however, the momenta play a more fundamental role
than the velocities, and it is convenient to reformulate the theory in terms of them.
To do this, we introduce a new function H ({qi}, {pi}) called the Hamiltonian. In
terms of this function, a new set of equations of motion can be derived which
are equivalent to the Euler–Lagrange equations, but which involve the momenta
instead of the velocities.

The mathematical process of exchanging one set of variables for another is
called a Legendre transformation and works as follows. We consider a set of small
changes dqi and dq̇i in the coordinates and velocities and write the corresponding
small change in the Lagrangian as

dL =
∑

i

(
∂L

∂qi
dqi + pidq̇i

)
(3.13)

where we have used the definition pi = ∂L/∂ q̇i . Next, we define the Hamiltonian
as

H ({qi}, {pi}) =
∑

i

pi q̇i − L (3.14)

which implies that, on the right-hand side, all the velocities have been expressed in
terms of the coordinates and momenta. Apart from this last step, the Hamiltonian
is, of course, just the same as the total energy defined by (3.10). We can now use
(3.13) to write down the small change in the Hamiltonian that results from a small
change in the state of the system:

dH =
∑

i

(pi dq̇i + q̇i d pi) − dL

=
∑

i

(
q̇id pi − ∂L

∂qi
dqi

)
. (3.15)
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According to the Euler–Lagrange equations (3.5), ∂L/∂qi is equal to d pi/dt . So,
by allowing independent variations in each of the coordinates and momenta in
turn, we may deduce from (3.15) the equations of motion

q̇i = ∂H

∂pi
ṗi = −∂H

∂qi
. (3.16)

These are Hamilton’s equations.

3.4 Poisson Brackets and Translation Operators

It may not be obvious that we have gained anything from these formal
manipulations. In fact, when it comes to solving equations of motion for specific
systems containing a few particles, it makes little practical difference whether we
use the original equations of Newton, the Euler–Lagrange equations or Hamilton’s
equations: they all amount to the same thing, and exercise 3.2 invites readers to
explore this equivalence in detail. However, the Lagrangian and Hamiltonian
formulations of classical mechanics do reveal some mathematical features that
are important for further developments. In modern theoretical physics, there
are two situations in which an understanding of the mathematical structure of
classical mechanics is especially useful. The first is that, when we deal with large
collections of particles, it rapidly becomes impractical to solve the equations of
motion directly. We must resort to a statistical description of such systems, and the
Hamiltonian formulation is, as we shall discover in chapter 10, an indispensable
tool for setting up this description.

An appreciation of the formal structure of classical mechanics is also useful
when making the transition to quantum mechanics, which appears to supersede
classical mechanics as a means of accounting for the behaviour of physical
systems on atomic or sub-atomic scales. It is very difficult to infer directly from
our experience what the rules of quantum mechanics should be. However, it turns
out that the formal mathematical structures of classical and quantum mechanics
have quite a lot in common. From a theoretical point of view, it seems to me
that the most satisfactory way of approaching quantum theory is by exploiting
the mathematical analogy with classical mechanics, which we shall explore in
chapter 5. In this section, we shall construct some of the mathematical tools that
make this analogy clear.

We saw in §3.2 that when the equations of motion are invariant under time
translations, the total energy of the system, which is obtained by substituting into
the Hamiltonian the actual coordinates and momenta of the particles, is conserved.
Now, Hamilton’s equations (3.16) offer us a deeper understanding of the role
played by this quantity in the evolution of the state of the system with time.
Suppose we wish to know how some quantity A changes with time, and that A
can be expressed in terms of the coordinates and momenta as A({qi}, {pi }). Using
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Hamilton’s equations, we can write

dA

dt
=
∑

i

(
∂ A

∂qi
q̇i + ∂ A

∂pi
ṗi

)
= {A, H }P (3.17)

where, for any two quantities A and B , the Poisson bracket {A, B}P is defined as

{A, B}P =
∑

i

(
∂ A

∂qi

∂B

∂pi
− ∂B

∂qi

∂ A

∂pi

)
. (3.18)

It is implied, of course, that we treat the qi and pi as independent variables to
evaluate the Poisson bracket and then substitute their actual values at time t to
find the rate of change of A at that time.

Alternatively, we can define the differential operatorH by

H = i{H, }P = i
∑

i

(
∂H

∂qi

∂

∂pi
− ∂H

∂pi

∂

∂qi

)
(3.19)

which means that HA = i{H, A}P = −i{A, H }P for any function A. The
factor of i has no significance in classical mechanics, and I have included it
just in order to bring out the quantum-mechanical analogy. Let us now make
explicit the procedure for evaluating (3.17). We denote by A(t) the value of
A at time t , obtained by substituting into A({qi}, {pi }) the functions qi (t) and
pi (t) that describe the actual state of the system (they are solutions of Hamilton’s
equations). This substitution can be represented by using the Dirac delta function,
which is described in appendix A for readers unfamiliar with its use. If we define

ρ({qi}, {pi}, t) =
∏

i

δ
(

qi − qi(t)
)
δ
(

pi − pi (t)
)

(3.20)

then A(t) can be written as

A(t) =
∫ ∏

i

dqi d pi ρ
(
{q}, {p}, t

)
A
(
{q}, {p}

)
. (3.21)

To find dA/dt from this expression, we can proceed in two ways. One is simply
to differentiate, which gives ∂ρ/∂ t inside the integral, since A

({q}, {p}) does not
depend on time. The other, according to (3.17), is to act on A

({q}, {p}) with iH.
On integrating by parts, we see that this is equivalent to acting on ρ with −iH.
The two results must be identical, so we find that ρ satisfies the equation

i
∂ρ

∂ t
= Hρ (3.22)

as readers may verify directly using (3.20), (3.19) and (3.17).
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Readers who are familiar with elementary quantum mechanics will
recognize (3.22) as having a similar form to Schrödinger’s equation, and this was
the main point of the exercise. Equation (3.17) can be written as idA/dt = −HA,
but it should be clear that this is not to be interpreted in quite the same way as
(3.22). In (3.17), we use H to differentiate with respect to the qi and pi , treating
them as independent variables, and then substitute the appropriate functions of
time. On the other hand, ρ is a function of the qi and pi that appear as dummy
integration variables in (3.21) and also of time, and (3.22) is to be taken at face
value as a partial differential equation in all of these variables. Bearing these
points in mind, we can express A(t) as a Taylor series

A(t) =
∞∑

n=0

1

n! tn A(n)(0)

=
∞∑

n=0

1

n! (itH)n A

= exp{itH}A. (3.23)

Here, the nth derivative of A(t) evaluated at t = 0 is denoted by A(n)(0), and
the derivative can be replaced by iH in the manner I have just described. The
exponential of the differential operator is a convenient shorthand for the power
series. Obviously, we evaluate the final expression by substituting the qi (0) and
pi (0) corresponding to the state at t = 0 after acting with H. The exponential
operator is responsible for transforming A(0) into A(t) and in this context H is
called the generator of time translations.

In Cartesian coordinates, we can transform any function f ({xi}) of the
coordinates into f ({xi +a}) by means of a similar Taylor series using the operator
exp{ia ·P}, where the generator of spatial translations is

P = −i
∑

i

∇i . (3.24)

The sum here is over the N particles in the system rather than the 3N coordinates.
It is easy to see that this generator may be written in a form similar to (3.19)
as P = i{P, }P, where P is the total linear momentum, and we recall
that P is the quantity whose conservation law follows from invariance under
spatial translations. Again, knowledgeable readers will recognize (3.24) as
being closely related to the momentum operator that acts on quantum-mechanical
wavefunctions.

Equation (3.22) also serves as the starting point of classical statistical
mechanics, if we regard ρ as expressing the probability that the coordinates
and momenta have, at time t , the values {qi } and {pi}. Then (3.21) is the
usual expression for the mean value of A. In the case we have considered,
the probability is zero unless the coordinates and momenta correspond to the
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evolution of the system from a definite initial state, but more general probability
distributions can be constructed, as we shall see in chapter 10. In this context,
(3.22) is called the Liouville equation and H the Liouville operator.

3.5 The Action Principle in Minkowski Spacetime

In earlier sections of this chapter, we have investigated the way in which the
geometrical structure of Galilean spacetime constrains the possible kinds of
behaviour of particles that live there. A source of difficulty was the fact that
the geometrical roles of space and time are quite different. This leads to a certain
amount of confusion about the exact significance of invariance under Galilean
transformations and the meaning of inertial frames of reference. In particular, it
does not seem to be possible to arrive at a purely geometrical definition of inertial
frames that is independent of considerations about the way in which physical
objects are actually observed to behave. In the Minkowski spacetime of special
relativity, and in the more general spacetimes envisaged in general relativity and
similar theories, space and time appear on much the same footing, and a more
clear-cut discussion is possible. Conversely, to my mind, the relativistic view
makes it rather more difficult to understand the obvious dissimilarity of space
and time as they enter our conscious experience. I do not propose to enter into
the philosophical perplexities of this question here, but interested readers may
like to consult, for example, the books by Block et al (1997), Landsberg (1982),
Lockwood (1989), Lucas (1973), Morris (1986), Ornstein (1969), Prigogine
(1980), Smart (1964) and Whitrow (1975).

We learned in chapter 2 that the relativistic spacetimes are manifolds whose
points can be labelled by a set of four coordinates xµ (µ = 0, 1, 2, 3). The
separation of two points cannot be uniquely decomposed into spatial and temporal
components. What we can do is to assign a proper time interval to a specific
curve that joins them. The proper time interval dτ for an infinitesimal segment
of the curve is given by (2.7). In that expression, the coefficients gµν are the
components of the metric tensor, which contains all our information about the
geometrical structure. In general, they vary from point to point and their values
depend on the coordinate system we are using. The value of dτ is the same in all
coordinate systems, however. If the metric tensor is that of Minkowski spacetime
then, by definition, it will be possible to find a Cartesian coordinate system (and,
in fact, infinitely many of them) such that its components are given by the matrix
(2.8). Relative to such a system, time is measured by x0/c, where c is the speed
of light, while the other three coordinates measure spatial distances.

We may now define an inertial system of Cartesian coordinates as one in
which the metric tensor has the special form (2.8). More generally, an inertial
system is one that can be obtained from an inertial Cartesian system by keeping
the time coordinate and redefining the spatial ones in a time-independent manner.
For example, if we simply exchange (x1, x2, x3) for polar coordinates (r, θ, φ)
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we still have an inertial system, but if we exchange them for a set of rotating axes,
we get a non-inertial system. In the rest of this chapter, I shall use only inertial
Cartesian coordinates.

As with Galilean spacetime, we want to see how geometrical symmetries
constrain the behaviour of physical systems. These symmetries consist of all the
coordinate transformations that leave the form of the metric tensor unchanged:
that is, they convert one inertial frame into another. They are called isometries,
meaning ‘same metric’. Space and time translations can now be considered
together. They are transformations of the type xµ′ = xµ + aµ, where aµ are
the components of a constant 4-vector. We see from (2.6) that this leaves gµν

unchanged, since dxµ′ = dxµ. The other isometries are Lorentz transformations.
These include both spatial rotations and ‘boosts’, such as (2.2), which relate two
systems with a constant relative velocity. They can be expressed in the form

xµ′ = �µ′
µxµ (3.25)

where, as in chapter 2, we are using a prime on the index µ to indicate the
new coordinates. For example, a rotation about the x1 axis through an angle θ

corresponds to the transformation matrix

�µ′
µ =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ

0 0 − sin θ cos θ

 (3.26)

while the boost written in (2.2) is represented by

�µ′
µ =


coshα − sinhα 0 0

− sinhα coshα 0 0
0 0 1 0
0 0 0 1

 (3.27)

with sinhα = (1 − v2/c2)−1/2v/c (and so coshα = (1 − v2/c2)−1/2).
The set of all rotations and boosts is called the proper Lorentz group. The
set of all rotations, boosts and translations is called the proper Poincaré
group. The full Poincaré group includes time reversal and space reflections,
(x0′

, x1′
, x2′

, x3′
) = (−x0, x1, x2, x2) or (x0,−x1, x2, x3), etc, and is the

isometry group of Minkowski spacetime.
Any Poincaré transformation—that is, the net effect of any sequence of

translations, rotations and boosts—can be expressed as xµ′ = �
µ′
µxµ + aµ′

.
Let f (x) be a scalar function of the coordinates (one that depends on the
spacetime point, but not on the choice of coordinate system). Under a Poincaré
transformation, both infinitesimal coordinate differences and derivatives of scalar
functions transform in a manner that depends only on �:

dxµ′ = �µ′
µdxµ (3.28)

∂µ′ f = �
µ

µ′∂µ f. (3.29)
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(Recall the following from chapter 2: repeated indices, occurring once in the
upper position and once in the lower position are summed over; ∂µ is an

abbreviation for ∂/∂xµ; the matrix �
µ

µ′ is the inverse of �
µ′
µ—see (2.14).) An

object with four components V µ that transform like dxµ is called a contravariant
4-vector; an object with components Vµ that transforms like ∂µ f is a covariant
4-vector. More complicated entities, with transformation laws similar to (2.19),
are 4-tensors: for example, the metric tensor, with two lower indices, is said to
have covariant rank 2. These 4-tensors are not necessarily true tensors as defined
in chapter 2, because we are considering only � matrices with constant elements.
For example, ∂µV ν is a 4-tensor, but not a true tensor. Readers may readily verify
that any expression such as ηµνUµU ν composed of tensors, in which all indices
appear in pairs and the implied summations have been carried out (the process
called contraction in chapter 2), is invariant under Lorentz transformations: it is
a Lorentz scalar.

The path of a particle through Minkowski spacetime may be described
parametrically by a set of four functions xµ(τ), each point on the path being
labelled by a value of the proper time τ . Since τ is a scalar, the set of functions
dxµ/dτ are the components of a 4-vector, the tangent vector to the path. As in
our discussion of Galilean spacetime, we expect the equations of motion for an
isolated system to have the same form in any two coordinate systems in which
the metric tensor is the same. Thus, the form of these equations should be
unchanged by any Poincaré transformation: we say that they should be covariant
under these transformations. To achieve this, we need an action which is Poincaré
invariant. That is, the action must be a Lorentz scalar and translationally invariant.
Following the arguments of §3.1, we see that for a single particle it must be of the
form

S =
∫

dτ L(ηµν ẋµ ẋν) (3.30)

where ẋµ denotes dxµ/dτ . Using the notation X = 1
2ηµν ẋµ ẋν , we find that the

Euler–Lagrange equations are

d2xµ

dτ 2

dL

dX
+ dxµ

dτ

dX

dτ

d2L

dX2
= 0. (3.31)

In Galilean spacetime, the function L(X) could be determined by requiring
invariance under Galilean transformations. Here, this symmetry is replaced by
Lorentz invariance, which we have already taken into account. In fact, the form
of L(X) is quite irrelevant! According to (2.6), when xµ(τ) is the actual path of
a particle through Minkowski spacetime, it must satisfy X = 1

2 c2 and therefore
dX/dτ = 0 as well as (3.31). Therefore, the only feature of L that has any real
meaning is the value of dL/dX at X = 1

2 c2. As long as this value is non-zero, the
equation of motion is simply d2xµ/dτ 2 = 0. We may as well make the simplest
choice

L = − 1
2 mηµν

dxµ

dτ

dxν

dτ
(3.32)
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where, as before, m will be identified with the mass of the particle. (Many authors
refer to m as the ‘rest mass’ to distinguish it from a velocity-dependent ‘mass’,
which is in fact the energy divided by c2. I do not recommend this practice and
will not follow it in this book.) In a frame of reference where the particle moves
very slowly compared to c, the proper time τ is approximately equal to t , and
x0 = ct . In this frame, therefore, we find L ≈ − 1

2 m(c2 − ẋ2), which differs
only by an unimportant constant − 1

2 mc2 from the Lagrangian for a Newtonian
particle.

The canonical momenta obtained from this Lagrangian, which are conserved
as a consequence of translational invariance, are the four components of the
energy–momentum 4-vector or 4-momentum

pµ = − ∂L

∂ ẋµ
= mηµν

dxν

dτ
(3.33)

or in the contravariant form pµ = ηµν pν = mdxµ/dτ . (The contravariant version
of the metric tensor ηµν used here to ‘raise’ the index is the inverse of the matrix
(2.8), which is numerically the same matrix, as long as we confine ourselves to
Cartesian coordinates.) This definition differs by a minus sign from the one that
we used in the Galilean theory. The sign results from my convention about the
sign of ηµν (see section 2.4) and is needed to make the contravariant momentum
pµ agree with what we normally call energy and momentum. (The mathematics
would work perfectly well with either sign, so long as we do things consistently.)
The velocity of the particle relative to the frame of reference with coordinates
(ct, x1, x2, x3) is u = dx/dt . We see from (2.3) that dτ/dt = (1 − u2/c2)1/2, so
using dxµ/dτ = (dτ/dt)−1dxµ/dt , we can write the 4-momentum as

(p0, p) =
(

mc

(1 − u2/c2)1/2
,

mu
(1 − u2/c2)1/2

)
. (3.34)

Since this is conserved, we may identify the zeroth, time-like component as 1/c
times the energy (to make its dimensions agree with the non-relativistic definition)
and the other three as the linear momentum. Using either (3.34) or (3.33) we find
that pµ pµ = m2ηµν(dxµ/dτ )(dxν/dτ ) = m2c2.

Because there is no unique time in Minkowski spacetime, the integration
variable τ in (3.30) is associated with the path of a specific particle. The action
for a collection of non-interacting particles, labelled by i , following paths xµ

i (τi )

is therefore

S = −
∑

i

∫
dτi

1
2 miηµν

dxµ
i

dτi

dxν
i

dτi
. (3.35)

It will soon be useful to us to have expressions for the number density n(x)
(number per unit volume) and current density j(x) (number crossing unit area
per unit time) of these particles. At the microscopic level, these are zero unless
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the point x lies exactly on the path of one of the particles. They may be written as

n(t, x) =
∑

i

δ3
(

x − xi(t)
)

(3.36)

j(t, x) =
∑

i

dxi(t)

dt
δ3
(

x − xi(t)
)
. (3.37)

So long as no particles are created or destroyed, they should satisfy the equation
of continuity ∂n/∂ t +∇· j = 0. Readers are invited to verify this and to consider
what happens if particles are created or destroyed. Using the fact that dx0/dt = c,
we can assemble the quantities (3.36) and (3.37) into a 4-vector

jµ(t, x) =
(

cn(t, x), j1(t, x), j2(t, x), j3(t, x)
)

=
∑

i

dxµ
i (t)

dt
δ3
(

x − xi(t)
)
.

(3.38)
Although dxµ is a 4-vector, neither dt nor the δ function is a scalar, so it is
not obvious that this really is a 4-vector, which would transform correctly under
Lorentz transformations. It is left as an exercise for readers to show that the
4-vector current density can be rewritten in the form

jµ(x) = c
∑

i

∫
dτi

dxµ(τi )

dτi
δ4
(

x − xi(τi )
)

(3.39)

which manifestly is a 4-vector. In terms of jµ, the equation of continuity reads

∂µ jµ = 0. (3.40)

A current that satisfies this equation is said to be a conserved current.
If A is some physical quantity carried by the particles, we can define a current

whose zeroth component is the density of A (the amount of A per unit volume)
and whose spatial components represent the rate at which A is transported by the
flow of particles (the amount of A carried across unit area per unit time). It is

jµA (x) = c
∑

i

∫
dτi Ai

dxµ(τi )

dτi
δ4
(

x − xi (τi )
)

(3.41)

where Ai is the amount of A carried by the i th particle. Two important examples
are the electromagnetic current, obtained by taking A to be electric charge, and
the stress–energy–momentum tensor, which I shall refer to as the stress tensor for
brevity. This tensor is formed from the four currents obtained by taking A to be
the components of the 4-momentum:

T µν(x) = c
∑

i

∫
dτi mi

dxµ(τi )

dτi

dxν(τi )

dτi
δ4
(

x − xi (τi )
)
. (3.42)
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The stress tensor plays a central role in the relativistic theory of gravity. It is
symmetric in the indices µ and ν and is conserved, since ∂νT µν = 0, as readers
are invited to prove. This simply reflects the fact that energy and momentum are
conserved quantities, so their densities and currents must obey the equation of
continuity. It should be borne in mind, however, that (3.42) is the stress tensor
for a collection of non-interacting particles. If, for example, the particles interact
via electromagnetic fields, then energy and momentum can be transferred to and
from these fields and the stress tensor will be conserved only when a suitable
electromagnetic contribution is included. The same goes for fields associated
with other forces, including gravitational fields, but the nature of conservation
laws in non-Minkowski spacetimes can be a little subtle.

A simple example of a stress tensor is afforded by what cosmologists call a
perfect fluid. This is a fluid that has a rest frame, in which its density is spatially
uniform and the average velocity of its particles is zero. For such a fluid, as
discussed in exercise 3.4, the stress tensor is

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (3.43)

where ρ is the energy density and p the pressure.

3.6 Classical Electrodynamics

The only fully-fledged classical theory of interacting particles in Minkowski
spacetime is electrodynamics, in which the forces are described by electric and
magnetic fields E(t, x) and B(t, x), which obey Maxwell’s equations. In a
suitable system of units, these equations are

∇ · E = ρe (3.44)

∇ · B = 0 (3.45)

∇ × E + 1

c

∂ B
∂ t

= 0 (3.46)

∇ × B − 1

c

∂ E
∂ t

= 1

c
je (3.47)

where ρe is the electric charge density and
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the fourth (3.47) is Ampère’s law which, conversely, describes the generation
of magnetic fields by both the flow of electric currents and changing electric
fields. Readers who are not familiar with the derivation of these equations from
simple physical observations will find this discussed in any standard textbook
on electromagnetic theory. This form of Maxwell’s equations is valid in the
Heaviside–Lorentz system of units and is the microscopic version. The fields
D and H that are often used to take approximate account of the properties of
dielectric and magnetic materials on a macroscopic scale are not used here.

As far as the classical theory is concerned, I know of no convincing way of
arriving at Maxwell’s equations other than by inferring them from experimental
observations. On the other hand, we shall see in chapter 8 that in quantum
mechanics they arise in a rather natural way from geometrical considerations. For
now, we shall take them as given and briefly derive some important and elegant
properties. Two of the equations, (3.45) and (3.46), are satisfied automatically if
we express the fields in terms of an electric scalar potential φ(t, x) and a magnetic
vector potential A(t, x) as

E = − ∇φ − 1

c

∂ A
∂ t

(3.48)

B = ∇ × A (3.49)

which follows from the identities ∇ × ∇φ ≡ 0 and ∇ · (∇ × A) ≡ 0. The
two remaining equations take on a much more compact appearance if we express
them in 4-vector notation. The potentials can be assembled into a contravariant
4-vector Aµ with components (φ, A) or its covariant version Aµ with components
(φ,−A). The electric and magnetic fields then form the components of an
antisymmetric field strength 4-tensor

Fµν = ∂µAν − ∂ν Aµ (3.50)

whose contravariant form may be written explicitly as

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (3.51)

In terms of this tensor, the remaining Maxwell equations (3.44) and (3.47) are
simply

∂µFµν = 1

c
jνe (3.52)

where jνe is the 4-vector current density with components (cρe, je).
These equations can be derived from an action principle in more or less the

same way as the equations of motion for particles. Because we are now dealing
with electromagnetic fields that exist at each point of spacetime rather than with
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the trajectories of particles, the action must be written as the integral over all space
and time of a Lagrangian density L:

S = 1

c

∫
d4xL(x) (3.53)

where

L(x) = −1

4
Fµν(x)Fµν(x) − 1

c
jµe (x)Aµ(x). (3.54)

The factor 1/c in (3.53) arises from the fact that x0 = ct . By varying Aµ, readers
may readily verify that the Euler–Lagrange equations are (3.52). To obtain a
complete theory of charged particles, we must add to (3.53) the action (3.35) for
the particles themselves.

Consider the case of a single particle with charge q . The current is given by
(3.41) with A = q and, on substituting this into (3.53), the spacetime integral in
the jµe Aµ term can be carried out. Thus, the total action is given by

S = −
∫

dτ
1

2
mηµν

dxµ

dτ

dxν

dτ
− q

c

∫
dτ

dxµ

dτ
Aµ

(
x(τ )

)
− 1

4c

∫
d4x Fµν Fµν. (3.55)

By varying the path of the particle, we find the equation of motion

m
d2xµ

dτ 2
= q

c
ηνσ

dxν

dτ
Fµσ . (3.56)

Its zeroth component can be written as

d

dt

(
mc2

(1 − u2/c2)1/2

)
= qu · E (3.57)

which asserts that the rate of change of the energy of the particle is the rate
at which work is done on it by the electric field, while the spatial components
reproduce the usual Lorentz force

d p
dt

= q

(
E + 1

c
u × B

)
. (3.58)

The momentum p here is that written in (3.34). However, the components of the
4-momentum shown there are now not equal to the canonical momenta conjugate
to the coordinates of the particle, which are

pµ
can = m

dxµ

dτ
+ q

c
Aµ
(
x(τ )

)
. (3.59)

The canonical structure of electrodynamics is explored further in the exercises.
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Electromagnetism possesses an important symmetry known as gauge
invariance. In the classical theory, this symmetry seems to appear more or less
by accident but, as we shall see in chapter 8, it has a deep-seated significance
in quantum mechanics and underlies most of our present understanding of the
fundamental forces of nature. Let θ(x) be any function of x and consider
redefining the 4-vector potential according to

A′
µ(x) = Aµ(x) − ∂µθ(x). (3.60)

The field strengths given by (3.50) are the same functions of A′
µ as they were of

Aµ, because the ∂µ∂νθ terms cancel. This clearly has to do with the antisymmetry
of Fµν . This antisymmetry also has the consequence that the electric current
must be conserved (it must obey (3.40)), as we see by differentiating (3.52).
Suppose we demand that the action (3.53) with Lagrangian density (3.54) should
be gauge invariant: that is, its form should be preserved after the change of
variable (3.60), which is called a gauge transformation. The change in the action
is −(1/c)

∫
d4x jµe ∂µθ so, after integrating by parts, we see that this vanishes

provided that the current is conserved. Therefore, the quantity whose conservation
is associated with the symmetry of gauge invariance is electric charge. If there
is no mechanism whereby charged particles can be created or destroyed, then
electric charge will naturally be conserved. If there is such a mechanism, then
charge may or may not be conserved and, if it is not, then the presence of
electromagnetic forces will not make it so. In the latter case, (3.52) could not
be true, and Maxwell’s theory would not be self-consistent. Readers will recall (I
hope!) that the so-called displacement current ∂ E/∂ t in (3.47) was introduced by
Maxwell precisely in order to make his equations consistent with the conservation
of electric charge. Experimentally, of course, even though individual charged
particles can be created and destroyed, these processes are always found to occur
in such a way that electric charge is conserved overall.

3.7 Geometry in Classical Physics

This section is something of a detour from our main line of enquiry. Its
purpose is to offer a glimpse of the geometrical view of classical physics
that is often encountered in the more advanced literature and of some of the
associated terminology. We shall see, in particular, how Maxwell’s equations
can be expressed in an extremely compact form, once we have the appropriate
geometrical tools to hand, and that the Poisson bracket (3.18), which we met in
connection with Hamilton’s equations, can be understood as part of a geometrical
structure that captures the essence of classical mechanics in a rather elegant
manner. The perspective we shall gain serves to illustrate the remarkable
unifying power of modern differential geometry as applied to theoretical physics
(which extends in important ways to the study of quantum as well as classical
phenomena). On the other hand, we shall learn no essentially new physics and
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the remainder of the Tour will not make extensive use of the new geometrical
tools, so this section might well be omitted at a first reading.

3.7.1 More on tensors

In §2.2, I showed how vectors and one-forms can be defined as geometrical
objects in their own right, but then took the easy option of defining higher-rank
tensors in terms of the transformation laws for their components, referred to
definite systems of coordinates. It will now be useful to see how these higher-rank
tensors can be defined without recourse to coordinates. Recall that a one-form is
a linear function whose argument is a vector and whose value is a scalar. A rank(0

n

)
tensor T can be defined similarly as a multilinear, scalar-valued function of n

arguments, each of which is a vector. If we do use components, then the value of
this function is

T(U, V , · · ·) = Tab...U
a V b · · · . (3.61)

Here, I use Latin indices a, b, . . . (each of which has values 1, 2, . . . , d) to
indicate coordinates in a general d-dimensional manifold, reserving µ, ν, . . .

(with values running from 0 to d − 1) to indicate that the manifold is a relativistic
spacetime. The term ‘multilinear’ means that T is a linear function of each of its
arguments:

T(U, αV + βW, · · ·) = αT (U, V , · · ·) + βT(U, W, · · ·) (3.62)

and similarly for all the other arguments. Unless the tensor has a special
symmetry, the order of the arguments is important. That is to say, T(U, V , · · ·)
does not necessarily mean the same as T(V , U, · · ·). Furthermore, a rank

(m
n

)
tensor is a multilinear, scalar-valued function of m + n arguments, of which n are
vectors and m are one-forms. In components, we have, for example

T(U, ω, V ) = T b
a cUaωbV c. (3.63)

Since a vector is a rank
(1

0

)
tensor, this definition tells us that it is a linear function,

whose value is a scalar and whose argument is a one-form. Originally, of course,
we defined a vector as a differential operator d/dλ representing a rate of change
along a curve parametrized by λ. Readers who have difficulty in reconciling these
two points of view, or who suspect an element of circularity in this entire sequence
of definitions, may find it helpful to reflect on the example of a one-form ω f ,
which represents the gradient of a scalar field f . To say that ω f is a function
of vectors means that we have a specific scalar field f whose gradient is ω f

and, given any curve with tangent vector V , we can find the rate of change of
f (namely ω f (V ) = d f/dλ) along this curve. To say that V is a function of
one-forms means that we have a specific curve whose tangent vector is V and,
given any scalar field f with gradient ω f , we can find its rate of change along our
curve (namely V (ω f ) = d f/dλ). In terms of components, the symmetry of the
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expressions ω(V ) = ωa V a = V (ω) makes the equivalence of these two points
of view rather obvious.

Given a system of coordinates xa , we saw in (2.11) that the partial derivatives
∂/∂xa serve as a set of basis vectors. Correspondingly, we can introduce a set of
basis one-forms, which are denoted by dxa and specified by giving their values
when presented with any basis vector as an argument:

dxa(∂/∂xb) = δa
b . (3.64)

To my physicist’s eye, this notation is a little disconcerting. In particular, we
must be careful not to confuse the one-form dxa with an infinitesimal coordinate
difference dxa, which looks exactly the same but is actually a component of a
vector! It is worth noting, though, that these two different objects transform in
the same way under a change of coordinates. In fact, a one-form ω = ωadxa is a
coordinate-independent object, so we must have dxa′ = �a′

adxa , in order that

ω = ωa′dxa′ = ωa�
a

a′�a′
bdxb = ωa δa

b dxb = ωadxa. (3.65)

Thus, basis one-forms transform in the same way as the components of a vector.
Evidently, the converse is also true: basis vectors ∂/∂xa transform in the same
way as the components of a one-form, such as ∂ f/∂xa .

Bases for tensors of higher rank can be constructed by means of the tensor
product, ⊗, which is defined as follows. Suppose that S is a rank

(m
n

)
tensor and

T is a rank
(m′

n′
)

tensor. Then S ⊗ T is the rank
(m+m′

n+n′
)

tensor such that

S ⊗ T(u1, . . . , um+n, v1, . . . , vm′+n′) = S(u1, . . . , um+n)T(v1, . . . , vm′+n′ )
(3.66)

where each of the arguments ui and vi is either a vector or a one-form, as required
by the character of S and T . The right-hand side is just the ordinary product of
two numbers (or, in the case of tensor fields, of two scalar fields) S(u1, . . . , um+n)

and T(v1, . . . , vm′+n′) and the components of S ⊗ T are the ordinary products

(S ⊗ T)
ab...e f ...
cd ...gh... = Sab...

cd ... T ef ...
gh... . (3.67)

In particular, the product dxa ⊗ dxb ⊗ dxc · · · is the covariant tensor which, when
presented with the vector arguments U , V , W , . . . in that order, produces the
value

dxa(U)dxb(V )dxc(W) · · · = UaV bW c · · · . (3.68)

It should now be readily understood that a wholly covariant tensor, say of rank(0
n

)
, can be expressed as a linear combination

T = Ta1a2...an dxa1 ⊗ dxa2 · · · ⊗ dxan (3.69)

and that other tensors can be expressed as linear combinations of appropriate
tensor products of basis one-forms and basis vectors.
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3.7.2 Differential forms, dual tensors and Maxwell’s equations

Astute readers will long ago have suspected that where there are one-forms, there
ought also to be 2-forms, 3-forms and so on. Indeed there are. A 2-form is
an antisymmetric rank

(0
2

)
tensor. In coordinate-free language, this means that

ω(U, V ) = −ω(V , U) for any two vectors U and V ; in terms of components
it means that ωab = −ωba . A p-form is a totally antisymmetric rank

(0
p

)
tensor.

That is, it changes sign when any two neighbouring arguments or indices are
interchanged: ω(U, . . . , V , W, . . .) = −ω(U, . . . , W, V , . . .) or ωa...bc... =
−ωa...cb.... As a matter of fact, the tensor also changes sign when two non-
neighbouring arguments or indices are interchanged, ωa...b...c... = −ωa...c...b...,
because moving b and c to their new positions one step at a time always requires
an odd number of steps in total. In component language, it should be clear that
ωab... = 0 if any two indices are equal. In a d-dimensional manifold, each index
can take only d different values, so if there are more than d indices, at least two of
them must be the same. Thus, p-forms with p > d do not exist (or, at least, they
are uninteresting, being identically zero). For p = d , the component ωa1a2...ad

vanishes unless its indices (a1, a2, . . . , ad) have values that are a permutation of
(1, 2, . . . , d), in which case it is equal to ±ω12...d . Every d-form is therefore
proportional to the Levi-Civita tensor density εa1a2...ad (discussed in appendix A
for the case d = 4) whose components are 1 for an even permutation, −1 for an
odd permutation and zero otherwise.

A basis for 2-forms is constructed by defining the wedge product

ω ∧ σ ≡ ω ⊗ σ − σ ⊗ ω (3.70)

for any two 1-forms ω and σ . The object ω ∧ σ is a 2-form, because its value
when presented with two vector arguments U and V in that order is

ω ∧ σ(U, V ) = ω(U)σ (V ) − ω(V )σ (U). (3.71)

Clearly, its components are (ω ∧ σ)ab = ωaσb − ωbσa = −(ω ∧ σ)ba and the
wedge product itself has the property ω ∧ σ = −σ ∧ ω. Any 2-form can now be
expressed as

ω = 1

2!ωabdxa ∧ dxb (3.72)

because then

ω(U, V ) = 1

2!ωab

(
UaV b − UbV a

)
= ωabUaV b. (3.73)

This idea can be extended to p-forms in a natural way. A 3-form will be expressed
in terms of a totally antisymmetric set of components ωabc as

ω = 1

3!ωabcdxa ∧ dxb ∧ dxc (3.74)



68 Classical Physics in Galilean and Minkowski Spacetimes

where the multiple wedge product is given by

dxa ∧ dxb ∧ dxc = dxa ⊗ dxb ⊗ dxc − dxb ⊗ dxa ⊗ dxc + · · · . (3.75)

The right-hand side is a sum of 3! = 6 terms, giving all the permutations of
(a, b, c), with a + sign for each even permutation and a − sign for each odd
permutation, and the extension to higher p should be obvious. By adopting the
rule that

(dxa1 ∧· · ·∧dxap)∧ (dxb1 ∧· · ·∧dxbq ) = dxa1 ∧· · · ∧dxap ∧dxb1 ∧· · ·∧dxbq

(3.76)
we arrive at a definition of the wedge product, or exterior product, of a p-form ω

and a q-form σ

ω ∧ σ = 1

p!q!ωa1...apσb1...bq dxa1 ∧ · · · ∧ dxap ∧ dxb1 ∧ · · · ∧ dxbq . (3.77)

The coordinate-free version of this definition is that, presented with the sequence
of vector arguments (V1, . . . , Vp+q), the (p + q)-form ω ∧ σ has the value

ω ∧ σ(V1, . . . , Vp+q )

= 1

p!q!
∑

P

S(P) ω
(
VP(1), . . . , VP(p)

)
σ
(
VP(p+1), . . . , VP(p+q)

)
.

(3.78)

The news that I do not plan to wield this expression in anger may be greeted
by some readers with relief, but it is not as bad as it looks. The labels
1, . . . , (p + q) label a sequence of vectors, not their components, and the set
{P(1), . . . ,P(p + q)} is a permutation of these labels. The sum is over all these
permutations P, and S(P) is equal to 1 if P is an even permutation and -1 if P is
an odd permutation. It should be quite straightforward to show that the exterior
product is associative, (ω ∧ σ) ∧ ξ = ω ∧ (σ ∧ ξ), and that, if ω is a p-form and
σ a q-form, then ω ∧ σ = (−1)pqσ ∧ ω.

A simple example of this machinery is afforded by the ‘cross product’
u × v of two vectors which, in elementary 3-dimensional vector algebra (using
Cartesian coordinates) is defined to have the components

u × v =
(
(u2v3 − u3v2), (u3v1 − u1v3), (u1v2 − u2v1)

)
. (3.79)

It is easily seen that the three independent 2-forms dx2 ∧ dx3, dx3 ∧ dx1and
dx1 ∧ dx2 with the arguments (u, v) produce exactly these components, but not
in the form of a vector. We can combine them into the components of a one-form,
by using the 3-dimensional Levi-Civita symbol

(u × v)a = 1
2εabcdxb ∧ dxc(u, v) (3.80)
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and then, if we wish, use the Euclidean metric to convert this into a vector:

(u × v)a = 1
2 gabεbcd dxc ∧ dxd(u, v). (3.81)

There may seem to be a puzzle here. According to our definition, a one-
form takes a vector argument to produce a scalar value, yet here the values
dxa(U) = Ua seem to be the components of a vector. Indeed, according to
the discussion following (3.64), these values must transform as the components
of a vector. How can this be? Consider an observer, Olivia, who measures the
component v1 of the velocity of a particle relative to her own frame of reference.
Her apparatus, which takes the velocity vector v and returns the number v1, is a
physical manifestation of the one-form dx1. But is this value a component of a
vector, or is it a scalar? Other observers (say, Oliver and Orson) have their own
frames of reference, with x1′

and x1′′
axes that point in different directions. Their

values, v1′
and v1′′

, are related to v1 by the familiar coordinate transformations,
and in this sense v1, v1′

and v1′′
are components of the same vector relative to

different coordinate systems. On the other hand, the quantity that we can call
‘Olivia’s result for v1’ is a single number, whose value can be agreed on by all.
In this sense it is a legitimate scalar. We see that, although the value of dx1 is a
scalar, the definition of dx1 is tied to a particular coordinate system. If we regard
dx1 as a fixed one-form then it has a fixed, scalar value when presented with a
given vector. However, if we compare the value produced by dx1 with those that
would be produced, given the same vector, by other one-forms, dx1′

, dx1′′
defined

in an analogous way, but with respect to other coordinate systems, then these
different scalar quantities will be related in the same way as the components of a
vector, referred to the various coordinate systems.

The example of the cross product has two features that are worth elaborating
on. In one sense, it is an object unique to 3-dimensional geometry, for the
following reason. The components of a p-form, ωa1...ap are totally antisymmetric.
How many independent components are there? Well, the p indices a1, . . . , ap

must all have different values, and in d dimensions there are d values to choose
from. The number of possible choices is the binomial coefficient

(d
p

) = d!/p!(d −
p)!, so this is the number of independent components, and also the number of
independent basis p-forms dxa1 ∧· · ·∧dxap . Obviously, we get the same number
of independent components for a (d − p)-form. Now, we obtained the cross
product by presenting the vectors u and v as arguments to the basis 2-forms
dxa ∧ dxb, of which there are

(3
2

) = 3. In d dimensions, the same procedure

would lead to a set of
(d

2

)
components, and these can be assembled into a vector or

a 1-form only if
(d

2

) = d , which is true only for d = 3. Thus, the notion of a cross
product of two vectors that is itself a vector applies only in three dimensions. If,
however, we do not insist that the resulting object be a vector, then an interesting
and useful generalization is possible.

This brings me to the second feature of the cross product, which is that it
illustrates the general notion of dual tensors. It would clearly be natural to regard
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the objects Ua V b − UbV a as the components not of a vector or a 1-form, but
rather of an antisymmetric rank

(2
0

)
tensor. By analogy with a p-form, a totally

antisymmetric rank
(p

0

)
tensor may be called a p-vector, but we must be careful

not to confuse this terminology with the quite different notion of a 4-vector in
special relativity. The number of independent components of a p-vector is the
same as for a p-form and, while these components might be constructed, as in
the cross product, from those of p vectors, they need not be. Given a p-vector,
V a1...ap , we can generalize the second stage of our construction of the cross
product by using the Levi-Civita symbol to create the (d − p)-form ∗V , which
has components

∗Va1...ad−p = ω̂

p!εa1...ad−pb1...bp V b1...bp . (3.82)

The extra factor that I have called ω̂ here is needed to make sure that ∗V is a
genuine tensor. As explained in appendix A, the Levi-Civita symbol transforms as
a tensor density of weight 1, with an extra factor of det |�|, and the transformation
of ω̂ must cancel this factor. In a manifold equipped with a metric, a natural
choice is ω̂ = √|g|, where g = det(gab), so if we restrict ourselves to Cartesian
coordinates in Euclidean space or Minkowski spacetime, then ω̂ = 1. If we
want to define dual tensors in a manifold without a metric, then we can do so
by choosing a d-form, with components ωa1...ad = ω1...dεa1...ad , and setting ω̂

equal to its one independent component ω1...d . The meaning of ‘duality’ will then
depend on which d-form we have chosen to play this special role. Note that, since
both the p-vector V and the (d − p)-form ∗V have

(d
p

)
independent components,

there is exactly enough information in V to construct ∗V and vice versa. That
being so, we might expect that the process can be reversed to convert a p-form ω

into a (d − p)-vector ∗ω. Indeed it can, and the components of ∗ω are

∗ωa1...ad−p = ω̂−1

p! εa1...ad−pb1...bpωb1...bp . (3.83)

Equally, we might guess that the tensor dual to ∗V is V . The correct relation
turns out to be ∗∗V = (−1)p(d−p)V , and similarly ∗∗ω = (−1)p(d−p)ω (see
exercise 3.7). The duality operation represented by ∗ is called the ‘Hodge star’
operation.

An important example of a 2-form in Minkowski spacetime is the
electromagnetic field strength tensor (3.50). I shall show shortly that Maxwell’s
equations can be expressed in a compact and elegant form by using this tensor and
its dual, but to do this, we need a further new idea. The exterior derivative d is
a differential operator, which is nicely illustrated by the way in which the 2-form
F , whose components are Fµν , is obtained from the 1-form vector potential A.
The operator d is defined so as to produce from a p-form ω a (p + 1)-form dω.
For this purpose, it is convenient to regard a scalar field f as a 0-form, in which



Geometry in Classical Physics 71

case d f is the gradient that we have already met:

d f = ∂ f

∂xa
dxa. (3.84)

The notation here is quite consistent. If we take a special scalar field which,
in a suitable coordinate system, can be expressed as f (x) = x1, say, then
d f = (∂x1/∂xa)dxa = δ1

adxa = dx1. The action of d on a 1-form ω = ωadxa is

dω = ∂ωa

∂xb
dxb ∧ dxa = −ωa,bdxa ∧ dxb (3.85)

where I have used the antisymmetry of the wedge product and the comma notation
from chapter 2 for partial derivatives. Now, a 2-form is supposed to have
antisymmetric components, (dω)ab = −(dω)ba . In general, ωa,b will not be equal
to −ωb,a , but because of the antisymmetry of dxa ∧ dxb, only the antisymmetric
combination ωb,a − ωa,b actually contributes to dω. Since a and b are dummy
summation variables in (3.85), we can rename them as b and a to get

dω = −ωb,adxb ∧ dxa = +ωb,adxa ∧ dxb (3.86)

and therefore
dω = 1

2 (ωb,a − ωa,b)dxa ∧ dxb. (3.87)

In view of the general expression (3.72) the components of dω are actually the
antisymmetric quantities (dω)ab = ωb,a − ωa,b. Evidently, the electromagnetic
field strength (3.50) can be written in coordinate-free language simply as F = dA.
(Readers should also have little difficulty in convincing themselves that in 3-
dimensional Euclidean geometry the curl of a vector field ∇×v can be constructed
using d in much the same way as the cross product of two vectors.)

In general, the action of d on a p-form ω is

dω = 1

p!
(
∂bωa1...ap

)
dxb ∧ dxa1 ∧ · · · ∧ dxap (3.88)

and this could be rewritten in a totally antisymmetric form analogous to (3.87).
Using the definition of the exterior product (3.77), it is not hard to show that d
obeys a modified version of the Leibniz rule: for a p-form ω and a q-form σ ,

d(ω ∧ σ) = dω ∧ σ + (−1)pω ∧ dσ. (3.89)

Consider, in particular, the case that ω is itself the exterior derivative of a (p −1)-
form, say ω = dσ . Each component of dω will be a sum of terms of the form
(∂a∂b − ∂b∂a)σc..., which are identically zero. Thus, for any p-form, we have
d2ω = 0. The mathematical jargon for this says that the operator d is nilpotent.
In 3-dimensional Euclidean geometry, the well-known identities ∇ × (∇φ) = 0
and ∇ · (∇ × v) = 0, valid for any scalar field φ and any vector field v can be
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understood in terms of the identity d2 = 0. As far as Maxwell’s equations are
concerned, the two equations (3.45) and (3.46) are equivalent to the statement

dF = 0. (3.90)

Usually, given that d2 = 0, we take this to imply that F can be expressed in terms
of a vector potential as F = dA, but there is a subtlety here. Suppose that a p-
form ω satisfies dω = 0. It is said to be closed. According to a theorem known
as the Poincaré lemma, we can always find a (p − 1)-form σ such that ω = dσ ,
provided that we restrict attention to a sufficiently simple region of the manifold
on which ω is defined; an open set that is topologically equivalent to the interior
of the unit sphere in Rd will do. If ω can be expressed as dσ , then it is said
to be exact, so the Poincaré lemma says that any closed form is ‘locally exact’.
However, a closed form may not be exact over the whole manifold. That is to say,
although we can express ω as dσ in any local region of the appropriate kind, there
may not be a single σ that works throughout the whole manifold. This depends
on the global topology of the manifold, and one way of characterizing this global
topology is in terms of those forms that are closed, but not exact. Roughly
speaking, this constitutes what is called the cohomology of the operator d. In
electromagnetism, the Maxwell equation (3.45) forbids the existence of magnetic
monopoles unless we allow for the possibility that a single 1-form potential A
may not be valid through the whole of spacetime, and I shall take up this question
again in chapter 13.

To express the remaining Maxwell equations (3.44) and (3.47) in our new
language, we start from the contravariant version of the field strength tensor (3.51)
which, according to our present terminology is a 2-vector F. Its dual is a 2-form
∗ F, whose components are

∗Fµν =


0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0

 . (3.91)

Notice that duality has the effect of interchanging electric and magnetic fields, and
that this would be a symmetry of Maxwell’s equations in the absence of charged
particles. The exterior derivative d∗ F is a 3-form, whose components are

(d∗ F)µνσ = ∂µ
∗Fνσ + ∂ν

∗Fσµ + ∂σ
∗Fµν. (3.92)

It is a simple matter to check that these are totally antisymmetric, owing to the
antisymmetry of ∗ F. The electromagnetic current is a vector j and its dual tensor
is a 3-form, with components ∗ jµνσ = εµνστ j τ . Each of these 3-forms has, as
we saw above, only

(4
3

) = 4 independent components; for example, ∗ j012 = j3.
Thus, the tensor equation

d∗ F = c−1∗ j (3.93)
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is a set of four equations, which are equivalent to the Maxwell equations (3.44)
and (3.47). For example,

(d∗ F)012 = ∂0
∗F12 + ∂1

∗F20 + ∂2
∗F01 =

(
∇ × B − 1

c

∂ E
∂ t

)3

= 1

c
j3. (3.94)

While Maxwell’s equations as expressed by (3.90) and (3.93) are somewhat more
compact than the original versions, readers may well feel that this is more than
offset by the amount of space needed to say what the notation means! However,
the compactness of the notation for dealing with antisymmetric tensors and the
fact that these equations are now in a completely coordinate-free form bring
significant advantages when one is dealing, for example, with the non-Abelian
generalizations of electromagnetism that I shall discuss in chapters 8 and 12 or
with manifolds that are more complicated than Minkowski spacetime.

3.7.3 Configuration space and its relatives

By now, it should come as no surprise that the antisymmetric structure of the
Poisson bracket (3.18) has a geometrical interpretation in terms of differential
forms. The version of this interpretation that I plan to explain applies to non-
relativistic physics, in which physical events are regarded as taking place in a 3-
dimensional space, rather than in a 4-dimensional spacetime. Relativistic versions
are possible, but they involve subtleties in which I do not want to get embroiled.
For present purposes, then, we regard time not as a coordinate but as a parameter
that labels points on the path of a particle through space. For a system of N
particles, it becomes a little awkward to deal with N paths, all labelled by the
same parameter. It is more convenient to deal instead with a 3N-dimensional
manifold, in which a single point represents the positions of all the particles. The
3N generalized coordinates {qi} introduced in §3.1 serve as coordinates on this
manifold, which is called configuration space, and which I will denote by Q. A
possible history of the entire system corresponds to a single path through this
manifold. However, a point in configuration space does not represent a unique
state of the system. To do that, we have to take account either of the velocities of
the particles or of their momenta as well as their positions.

From a geometrical point of view, the natural way of doing this is to construct
a suitable manifold, which is an example of a fibre bundle analogous, but by no
means identical, to the Galilean spacetime illustrated in figure 2.13. Consider
first how we might take account of velocities. Given a point P in configuration
space and a curve passing through it that represents a possible history of the
system, the 3N generalized velocities {q̇ i} that the particles have at the instant
when their positions correspond to P are the components of the tangent vector
d/dt to this curve at P . The set of all tangent vectors at P (or, equivalently, the
set of tangent vectors to all possible curves through P) forms a vector space,
called the tangent space to Q at the point P and denoted by TPQ. (The precise
mathematical definition of a vector space is given in appendix A, but for the
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Figure 3.1. A one-dimensional configuration space Q, with coordinate q, and its tangent
bundle T ∗Q, with coordinates q and v.

purposes of our present discussion, readers’ intuition gained from the elementary
study of Euclidean vectors should serve just as well.)

We now construct a new manifold, called the tangent bundle of Q and
denoted by TQ. Intuitively, we can think of doing this by ‘bundling up’ the
tangent spaces at all points of Q to form a single object. This is illustrated in
figure 3.1 for the only case that can easily be drawn, namely a single particle in
one dimension, for which Q is just the real line. To be mathematically precise, we
have do things the other way round, because we want TQ to be a differentiable
manifold in its own right. Thus we say that TQ is a 6N-dimensional manifold
(though in figure 3.1 it has only two dimensions), topologically equivalent to R6N

and equipped with a projection π . This projection is a map which, for each point
P of the configuration space Q picks out the 3N-dimensional slice (or fibre) of
TQ corresponding to TPQ and maps each point of this slice to the appropriate
point P of Q. Given the existence of this projection, there is a natural way of
setting up coordinates on the tangent bundle. That is, half the coordinates, {qi },
serve to identify a slice of the bundle, corresponding to a point P in Q whose
coordinates are {qi }, while the other half, say {vi } identify a point within this
slice corresponding to a possible set of velocities for the particles whose positions
correspond to P . I will use {vi } to denote these coordinates in the tangent bundle
and {q̇ i(t)} for the actual velocities corresponding to a specific state of the system
of particles. In figure 3.1, I found it impossible to draw a 1-dimensional curve
inside the 1-dimensional configuration space Q, but the arrows at P , Q and R
represent the tangent vectors to such a curve at these points. The vector field in
Q that comprises all these tangent vectors gives rise to a curve C in the tangent
bundle which, for reasons that should be apparent, is called a cross section of
the bundle. Each point on C now represents a unique state of the system, being



Geometry in Classical Physics 75

specified by both positions and velocities. (In higher dimensions, a vector field
on Q would correspond to a family of curves representing a family of possible
histories of the system, but I will not develop this point in detail.)

The Lagrangian L({qi }, {vi }) is a scalar field defined on the tangent bundle
TQ. It must be a genuine scalar, because it has a definite value for each state of
the system and, therefore, at each point of TQ, regardless of how we choose the
generalized coordinates and velocities. To avoid tiresome complications, I shall
deal with the most usual case in which L can be expressed as

L = 1
2 gi j (q)v

iv j − V (q). (3.95)

The objects gi j (q) are the components of a metric tensor field on the configuration
space Q. This metric is, of course, related to that of the ordinary 3-dimensional
space from which we started. For example, if we consider two particles in
Euclidean space, whose positions in Cartesian coordinates are x and y, and
whose masses are m1 and m2, then we can choose generalized coordinates
(q1, . . . , q6) = (x1, x2, x3, y1, y2, y3), in which case gi j is diagonal, with
elements (m1,m1,m1,m2,m2,m2), related in an obvious way to the Euclidean
metric δab (a, b = 1, . . . , 3). More generally, gi j may depend on the positions q ,
either because we want to think about a non-Euclidean space or because we are
not using Cartesian coordinates. The generalized momenta pi conjugate to qi are

pi = ∂L

∂vi
= gi j (q)v

j . (3.96)

We see that they are obtained by lowering the indices of the components v j of
a vector field on the configuration space Q, and are therefore themselves the
components of a 1-form field, or of a 1-form if we restrict our attention to a
particular point P . Now, the set of all 1-forms at P forms a vector space,
called the cotangent space T ∗

PQ, and we can bundle together all the cotangent
spaces at different points to form the cotangent bundle T ∗Q just as we previously
constructed the tangent bundle. On this manifold, a natural set of coordinates is
provided by the 6N quantities ({qi }, {pi}).

3.7.4 The symplectic geometry of phase space

The fibre bundle T ∗Q is known to physicists as phase space. Since it is
a differentiable manifold, we might well choose to place on it a system of
coordinates ξα , the index α running from 1 to 6N , with associated bases ∂/∂ξα

and dξα for vector and 1-form fields. For the most part, it will prove sensible
to retain the natural division of these coordinates into qi and pi , with i running
from 1 to 3N . The lower indices on the pi are inherited from the role of these
quantities as the components of a 1-form field on configuration space Q rather
than as coordinates on phase space. It is worth observing, though, that a change
of coordinates in Q with, say, �i ′

i = ∂qi ′/∂qi leads to a corresponding change of
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coordinates in phase space, in which the momenta still transform ‘covariantly’ as
pi ′ = �i

i ′ pi . This means that the large transformation matrix �α′
α = ∂ξα′

/∂ξα

is constructed from both of the matrices �i ′
i and �i

i ′ , and readers may enjoy
finding out for themselves exactly how this works.

Normally, a manifold has a useful application in physics only when we
endow it with some geometrical structure that is apposite for the phenomena we
want to describe, so the central question that now arises is, what is the natural
geometrical structure for phase space? In principle, we might try to endow phase
space with a metric, but this is unlikely to be of much use because an expression
such as (�q)2 + (�p)2 has, except by accident, no sensible meaning. The
structure that turns out to be meaningful in the context of Hamiltonian dynamics
is one that we have not yet met. It is called a symplectic structure. In the same way
that the metrical structure of a relativistic spacetime is implemented by a special
rank

(0
2

)
tensor g, the symplectic structure of phase space is implemented by a rank(0

2

)
tensor �. The difference is that while g is symmetric, � is antisymmetric: it

is called the symplectic 2-form. With our preferred system of coordinates, it is

� = dqi ∧ d pi , (3.97)

where a sum over i = 1, . . . , 3N is implied, as the notation suggests. The
meanings of the 1-forms dqi and d pi are the same as in (3.64), but we have now
split our coordinates into two sets. Thus, a vector field on phase space will have
‘q-type’ and ‘p-type’ components, say

V = V i ∂

∂qi
+ Ṽi

∂

∂pi
(3.98)

and the values of the basis 1-forms when presented with this vector field are

dqi(V ) = V i and d pi(V ) = Ṽi . (3.99)

The 2-form � is actually the exterior derivative of what is called the canonical
1-form θ = pidqi . In fact, the rule (3.85) tells us that � = −dθ . The significance
of this is the following. Given a curve with tangent vector d/dt that represents
a history of our system, the velocities are q̇ i (t) = dqi(d/dt). Thus, the scalar
quantity θ(d/dt) = pi q̇ i is what appears in the Legendre transformation (3.14)
that enables us to move from a Lagrangian to a Hamiltonian description of the
system. Its geometrical manifestation θ plays the analogous role when we move
from a description in terms of the tangent bundle to one in terms of the cotangent
bundle.

Like the metric tensor, the symplectic 2-form can be used to define a
correspondence between vectors and 1-forms on phase space. Given a vector
V , the object ωV = �(V , ) is a 1-form, because it can accept one more vector
argument to produce a scalar. In components, the 6N quantities (ωV )β = �αβV α

are the components of a unique 1-form associated with the vector V . Can we
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invert this to find a unique vector Vω associated with a given one-form ω? In
other words, do the equations ωβ = �αβ(Vω)

α have a unique solution for the
components of Vω? The answer is yes, provided that the matrix �αβ has an
inverse, which means that its determinant is nonzero. If this condition is met,
then � is said to be non-degenerate. Mathematically, this property is normally
insisted on as part of the definition of a symplectic structure. In the case we have
considered, the 2-form defined by (3.97) is indeed non-degenerate. If we arrange
our coordinates in the order (ξ1, . . . , ξ6N ) = (q1, . . . , q3N , p1, . . . , p3N ), then
the components of � are

�αβ =
(

0 I

−I 0

)
(3.100)

where I is the 3N × 3N unit matrix. Each row and each column of this matrix
has exactly one nonzero element and its determinant is either 1 or -1. There
are, however, important physical examples in which � is degenerate. This
typically indicates a mismatch between the numbers of coordinates and momenta
and comes about when there are ‘unphysical’ degrees of freedom, such as the
gauge degrees of freedom in electromagnetism. A Hamiltonian description of the
dynamics of such systems is often possible, but requires special techniques that
are beyond the scope of the present discussion. (A simple example is discussed
by Lawrie and Epp (1996).)

The application of the general idea of symplectic geometry to Hamiltonian
dynamics depends on our identifying a special class of vector fields on phase
space, namely those whose associated 1-forms �(V , ) are the gradients of
scalar quantities that represent physical properties of our system. That is to say,
given a quantity A({qi}, {pi }), we can associate with it a vector field VA such that

�(VA, ) = dA. (3.101)

A vector field for which this equation can be solved to find the corresponding
scalar A is called a Hamiltonian vector field, although A is not necessarily the
Hamiltonian. Let us find the components of VA. Using the definitions of the
wedge product and the exterior derivative, we can write (3.101) in components as

V i
Ad pi − Ṽ A

i dqi = ∂ A

∂qi
dqi + ∂ A

∂pi
d pi . (3.102)

We see that V i
A = ∂ A/∂pi and Ṽ A

i = −∂ A/∂qi , and so

VA = ∂ A

∂pi

∂

∂qi
− ∂ A

∂qi

∂

∂pi
. (3.103)

This is none other than the differential operator −{A, }P, of which we
encountered examples in §3.4. The Poisson bracket itself is

{A, B}P = −�(VA, VB) = ∂ A

∂qi

∂B

∂pi
− ∂B

∂qi

∂ A

∂pi
. (3.104)
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Figure 3.2. The curve P Q RS represents a possible trajectory of a system in phase space.
The curves P P ′, QQ′, R R′ and SS′ are integral curves of the Hamiltonian vector field
VA associated with a dynamical quantity A({qi }, {pi }). If A is the conserved quantity
corresponding to a symmetry of the system, then P ′Q′ R′S′ is also a possible trajectory.

Let us finally see how the time evolution and the symmetries of a
Hamiltonian system appear from a geometrical point of view. Given a vector
field V , each point of phase space lies on exactly one of a family of curves, to
which V gives the tangent vectors. They are called the integral curves of V . The
physical constitution of a system (the forces that act between its particles, and so
on) is specified by selecting a function H ({qi}, {pi}) as the Hamiltonian and by
identifying the parameter t that labels points on the integral curves of VH as time.
Thus we have

VH = d

dt
= ∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
(3.105)

which reproduces the equation of motion (3.17). We see that the integral curves
of VH are the possible trajectories through phase space of the point that represents
the state of the system as it evolves with time.

To appreciate the role of symmetries, we need to know the commutator
[VA, VB] of two vector fields, regarded simply as differential operators. A few
lines of algebra suffice to verify that

[VA, VB ] = −VC (3.106)

where C = {A, B}P. Thus, if {A, B}P = 0, then [VA, VB] = 0 and the two
vector fields commute. Now look at figure 3.2. The solid curve passing through
the points P , Q, R and S is an integral curve of VH —a possible trajectory of
the system through phase space. The dashed curves are the integral curves of
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the vector field VA = d/dλ, associated with some physical quantity A, that
pass through P, . . . , S. The points P ′, . . . , S′ are found by displacing P, . . . , S
by the same parameter distance �λ along the dashed curves. This corresponds
to a translation of the system of the kind that we studied in earlier sections.
For example, let n be a unit vector in ordinary 3-dimensional space and p the
momentum of a particle. Then n · p is the component of momentum in the
direction of n. In the 3N-dimensional configuration space for N particles, there
is a vector with 3N components ni , consisting of N copies of n and the quantity
A = ni pi = ∑N

j=1 n · p j , where j labels the N particles, is the component of the
total momentum in the direction of n. The corresponding Hamiltonian vector field
is VA = ni∂/∂qi and the displacement corresponds to a space translation of the
whole system by a distance �λ in the direction specified by n. If [VA, VH ] = 0,
then the curve passing through the displaced points P ′, . . . , S′ will be another
integral curve of VH —another possible trajectory of the system through phase
space. (I shall not prove this assertion. Enterprising readers may like to attempt
a proof, or to consult, for example, Schutz (1980) where the relevant concept of
a Lie derivative is explained in detail.) This is a special situation: while there
is certainly a trajectory passing through P ′, this trajectory need not, in general,
pass through Q′, . . . , S′. When it does, we can conclude that the system has a
symmetry: the Hamiltonian is unchanged by the displacement and the displaced
system evolves with time in the same way as the original one. The condition
[VA, VH ] = 0 that makes this true is equivalent to {A, H }P = 0 and this, as
we know, means that A is a conserved quantity. But we can now appreciate
this result in a slightly different light, because the conditions are the same if we
interchange A and H . In terms of figure 3.2, we can say that if H is unchanged by
a displacement along the integral curves of VA (so H has a symmetry) then, by the
same token, A is unchanged by a displacement along the integral curves of VH (so
A is constant in time). In fact, we can say more. Since dA/dλ = {A, A}P = 0, the
quantity A is constant along the integral curves of VA as well. Thus, the integral
curves of VA and VH mesh together to form surfaces in phase space, and both A
and H are constant over any one of these surfaces. This is an example of a more
general result known as Frobenius’ theorem, which is also discussed by Schutz
(1980).

Exercises

3.1. Express the Lagrangian L = 1
2 m ẋ2 − V (x) for a single particle in

cylindrical coordinates (r, θ, z) with x = r cos θ and y = r sin θ . Show that
the generalized momentum conjugate to θ is the angular momentum mr2θ̇ about
the z axis. If the potential V has cylindrical symmetry (that is, it is independent
of θ ), show, by considering the transformation θ → θ + ε, that the conserved
quantity F in (3.12) is the angular momentum. When ε is infinitesimal, find
the corresponding transformation of the Cartesian coordinates x and y. Working
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in Cartesian coordinates, show that if the Lagrangian is invariant under this
transformation, then the conserved quantity is the z component of the angular
momentum J = x × p. Show that if the potential is spherically symmetric (that
is, it is a function only of x2 + y2 + z2), then all three components of angular
momentum are conserved. In cylindrical coordinates, show that the generator
of rotations about the z axis is −i∂/∂θ . In Cartesian coordinates, show that the
rotation generators are J = i{J , }P = x ×P .

3.2. Consider the Lagrangian L = 1
2 m ẋ2 − V (x) and the Hamiltonian H =

(1/2m) p2 + V (x). Show that Hamilton’s equations are equivalent to the Euler–
Lagrange equations together with the definition of the canonical momentum. Now
consider the Lagrangian L = p · ẋ − (1/2m) p2 − V (x), where x, ẋ and p are
to be treated as independent variables. Show that the Euler–Lagrange equations
reproduce the previous equations of motion, together with the relation p = m ẋ.

3.3. For a single particle in Minkowski spacetime, show (taking careful account of
the minus sign in (3.33)) that the Hamiltonian H = −ηµν pµ ẋν − L expressed as
a function of the momenta leads to a set of Hamilton’s equations which reproduce
the correct equation of motion together with the definition (3.33) of the momenta,
provided that derivatives with respect to proper time are used. Show that this
Hamiltonian is a conserved quantity, but is not equal to the total energy of the
particle.

3.4. Using elementary kinetic theory for a non-relativistic ideal gas in its rest
frame, show that 〈pi (dx j/dt)〉 = (p/n)δi j , where pi and dxi/dt are the Cartesian
components of momentum and velocity, p and n are the pressure and number
density and the average 〈· · ·〉 is taken over all the particles. Assume that the same
is true for a relativistic gas if the spatial components of the momentum in (3.34)
are used. For the relativistic gas in its rest frame, imagine dividing the volume
it occupies into cells, each of which is small compared with the total volume but
still contains many particles. Define the average of the stress tensor (3.42) for
each cell as

〈T µν〉 =
∫

cell
d3x T µν(x)/Volume of cell.

Show that this average has the form shown in (3.43). More generally, consider a
fluid whose stress tensor field has this form at the point x when measured relative
to the rest frame of the fluid element at x . Show that its stress tensor field in any
frame of reference is

Tµν = c−2(ρ + p)uµuν − pgµν

where uµ(x) is the 4-velocity of the fluid element at x and ρ(x) and p(x) are the
energy density and pressure as measured in the rest frame of this element.
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3.5. Consider the Lagrangian density

L = 1
4 Fµν Fµν − 1

2 Fµν(∂µAν − ∂ν Aµ) − c−1 jµe Aµ.

Derive two Euler–Lagrange equations, treating Fµν and Aµ as independent
variables, and show that they reproduce (3.50) and (3.52).

3.6. In a particular frame of reference, define the Lagrangian for electromagnetic
fields as L = − 1

4

∫
d3x Fµν Fµν . Show that L = 1

2

∫
d3x(E2 − B2). Define

the generalized momentum conjugate to Aµ(x) as !µ(x) = δL/δ(∂0 Aµ), where
δ/δ(· · ·) is the functional derivative discussed in appendix A. Show that !i = Ei

for i = 1, 2, 3 and !0 = 0. Now define the Hamiltonian H = ∫
d3x !µ∂0 Aµ−L.

Using Gauss’ law ∇ · E = 0 (which is one of the Euler–Lagrange equations in
the absence of charged particles), show that H is the integral over all space of the
energy density 1

2 (E2 + B2).

3.7. For a p-vector V , the following is an outline proof that ∗∗V 12...p =
(−1)p(d−p)V 12...p . Convince yourself that each step is correct:

∗∗V 1...p = 1

p!(d − p)!ε
1...pb1...bd−pεb1...bd−pa1...ap V a1...ap

= 1

p!ε
1...dε(p+1)...da1...ap V a1...ap

= ε(p+1)...d1...pV 1...p

= (−1)p(d−p)V 1...p

Convince yourself that the same result holds for every component of V and for
every component of a p-form ω.

3.8. Two particles move in one dimension. Their positions are x1 and x2, their
momenta are p1 and p2 and the Hamiltonian is

H = 1

2m
(p2

1 + p2
2) + k

2

(
x1 − x2

)2
.

To avoid complications, assume that these particles can pass through each other,
so configurations with x1 < x2 and x1 > x2 are both allowed.
(a) Find the Hamiltonian vector fields VH and VP , where P = p1 + p2 is the
total momentum, in terms of the phase-space coordinates xi and pi . Verify that
{P, H }P = 0.
(b) Define a new set of phase-space coordinates (X, P, ρ, θ) by

x1 = X + 1
2ρ cos θ p1 = 1

2

(
P + √

2km ρ sin θ
)

x2 = X − 1
2ρ cos θ p2 = 1

2

(
P − √

2km ρ sin θ
)
.
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and show that the symplectic 2-form is

� = dxi ∧ d pi = dX ∧ dP +√
km/2ρdρ ∧ dθ.

(c) Express H in terms of these coordinates and show that

VP = ∂

∂X
VH = 1

2m
P

∂

∂X
−
√

2k

m

∂

∂θ
.

Consider the 2-dimensional surfaces in phase space defined by P = constant and
ρ = constant. Verify that H is constant on each of these surfaces. Regarding
any one of these surfaces as a manifold in its own right (a ‘submanifold’ of the
whole phase space), show that VH and VP define independent vector fields on
each surface. Convince yourself that any integral curve of VH or VP lies entirely
within one of these surfaces.



Chapter 4

General Relativity and Gravitation

We now have at our disposal all the mathematical tools that are needed to
understand the general theory of relativity and the account it offers of gravitational
phenomena. Chapter 2 ended with the question ‘what is the structure of our
spacetime?’ A priori, the possibilities are limitless: for a start, there are infinitely
many dimensionalities to choose from. However, because special relativity
accounts extremely well for a great many phenomena, it is clear that our spacetime
must be quite similar to Minkowski spacetime. Our first task in this chapter will
be to use this observation to restrict the range of possibilities that need to be
considered in practice, which is more or less equivalent to adopting the principle
of equivalence mentioned in chapter 2. The next step will be to find out how
a given geometrical structure affects the behaviour of material objects, and this
will show us how deviations of this structure from that of Minkowski spacetime
can be interpreted in terms of gravitational forces. Finally, we shall investigate
how the geometrical structure is determined—or at any rate influenced—by the
distribution of gravitating matter and take a look at some of the phenomena that
are predicted by our new theory.

4.1 The Principle of Equivalence

As we stated it in chapter 2, the principle of equivalence asserts that all
gravitational effects can be eliminated within a sufficiently small region of space
by adopting freely falling inertial frames of reference. Near the surface of the
Earth, for example, this frame of reference is obviously accelerating relative
to one fixed in the Earth and the ‘equivalence’ is between, on the one hand,
the acceleration of the inertial frame relative to an earthbound observer and, on
the other, the gravitational forces that appear to this observer to act on falling
bodies. Let us now see what this principle asserts in terms of spacetime geometry.
We shall assume that the metric tensor field gµν(x) with its associated metric
connection (2.50) is the only geometrical structure possessed by the spacetime
manifold. The square matrix formed by its components is symmetric and I shall
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call it g(x). On transforming to a new coordinate system, the new matrix is

g′ = �Tg� (4.1)

where � is the transformation matrix whose components were defined in (2.14)
as �

µ

µ′ = ∂xµ/∂xµ′
, and �T is its transpose. Any symmetric matrix can be

diagonalized by a transformation of this kind. Let us therefore consider a definite
point P and a coordinate system in which g is diagonal at P . Assuming that none
of the eigenvalues of g is zero (if one of them does vanish, then P is some sort
of singular point at which odd things may happen), it will clearly be possible to
adjust the scales of the coordinates so that each eigenvalue is either +1 or −1. If
the equivalence principle is to hold in the neighbourhood of P , then the resulting
g(P) must be a 4 × 4 matrix with one eigenvalue equal to +1 and the other three
equal to −1. Then, after renumbering the coordinates if necessary, it has the
desired Minkowski-spacetime form (2.8): gµν(P) = ηµν .

Although P can be any point, it will not in general be possible to find a
coordinate system in which gµν = ηµν at every point. If such a coordinate
system does exist then the spacetime is Minkowskian. However, it is always
possible to find a coordinate system in which both gµν(P) = ηµν and all the first
derivatives ∂σ gµν vanish at P (see exercise 4.1). (Readers may like to consider in
detail why there is enough freedom in coordinate transformations to achieve this,
but not to diagonalize the metric at every point simultaneously.) A coordinate
system of this kind may be called a locally inertial system at P . An observer at
P who is at rest in such a system will experience the coordinate direction with
the positive eigenvalue as time and the other three as spatial. According to the
principle of equivalence, if the laws of physics are expressed in terms of locally
inertial coordinates, they will reduce at P to the form they take in Minkowski
spacetime in terms of Cartesian coordinates, and they will contain no reference
to gravitational forces. This, as we are about to discover, is because gravitational
forces are given by the connection coefficients (2.50), which vanish at P when
expressed in locally inertial coordinates.

4.2 Gravitational Forces

Suppose for now that the metric tensor field is fixed and that it does not reduce
to that of Minkowski spacetime in any system of coordinates (except locally, as
discussed above). Normally, this means that spacetime is curved, and we wish to
know what effect the curvature has on the laws of motion of particles. From the
point of view of chapter 3, this involves finding an action appropriate to the curved
spacetime. The two guiding principles here are the principle of equivalence,
which we have just been discussing, and the principle of general covariance.
In Minkowski spacetime, we concluded that the equations of motion should be
covariant under Poincaré transformations because these left the metric unchanged.
In curved spacetime, there are in general no coordinate transformations that leave
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the metric unchanged. On the other hand, any coordinate system is merely a
theoretical device that enables us to label points of spacetime. The only reason
for preferring a particular coordinate system would be if it permitted a specific
metric tensor field to be described in an especially simple way, as is the case with
Cartesian coordinates in Minkowski spacetime. If we do not commit ourselves in
advance to a specific metric, then any coordinate system should be as good as any
other and, in particular, equations of motion should preserve their form under any
coordinate transformation. This is the meaning of general covariance.

Clearly, equations of motion will be generally covariant if they are derived
from an action that is invariant under all transformations, namely a scalar. Scalars
can be formed by contracting all the indices of any tensor with the same covariant
and contravariant rank. If we allow any number of derivatives of the metric
tensor field to appear in the Lagrangian, then a great many functions would be
possible—for example, any function of the Ricci scalar R. In order to satisfy the
principle of equivalence, however, we would like the Lagrangian to reduce to its
Minkowskian form in a locally inertial frame, and our previous discussion shows
that we must work only with gµν and its first derivatives. But to form tensors and
ultimately scalars, we must use covariant derivatives rather than partial ones, and
the first covariant derivative of the metric tensor field is, by definition, equal to
zero (equation (2.48)). Thus, for a single particle, the Lagrangian must be a scalar
formed from the vector ẋµ = dxµ/dτ and the metric tensor field itself. Because
of (2.44), contracting the indices of two gs gives a trivial result, and we see that
the Lagrangian can only be a function of the scalar quantity X = gµν ẋµ ẋν .
As in Minkowski spacetime, we find that the detailed form of this function is
immaterial, and we need only replace ηµν in (3.32) by gµν :

S = −1

2
m
∫

dτ gµν(x(τ ))
dxµ

dτ

dxν

dτ
. (4.2)

The equation of motion for a free particle moving in the curved spacetime
is the Euler–Lagrange equation obtained by varying (4.2) with respect to the path
xµ(τ), namely

d

dτ

(
gµν

dxν

dτ

)
− 1

2
gσν,µ

dxσ

dτ

dxν

dτ
= 0. (4.3)

As in chapter 2, the comma before the index µ is a shorthand for ∂/∂xµ. After
carrying out the differentiation and raising the non-contracted index, this may be
written as

d2xµ

dτ 2
+ �µ

νσ

dxν

dτ

dxσ

dτ
= 0 (4.4)

which is the equation of a geodesic curve, introduced in chapter 2 as the curved-
space analogue of a straight line. The affine connection coefficients are those
given by (2.50).

If our qualitative discussions of the relativistic theory of gravity are to stand
up, it must now be possible to find a set of circumstances under which (4.4) can be



86 General Relativity and Gravitation

reinterpreted as the equation of a particle moving through Minkowski or Galilean
spacetime under the influence of a gravitational field. I shall now show what
these circumstances are. An obvious requirement is that the metric should be
only slightly different from the ηµν of Minkowski spacetime, so let us write it as

gµν = ηµν + hµν (4.5)

where hµν is a small correction. If we keep only terms of first order in hµν , then
the connection coefficients are

�µ
νσ = 1

2η
µλ(hλν,σ + hλσ,ν − hνσ,λ) + O(h2). (4.6)

The second requirement is that the particle should be moving, relative to our
chosen coordinate system, very slowly compared with the speed of light. This is
normally true in those practical situations that appear to support the Newtonian
account of gravity; for example, the orbital speed of the Earth around the sun
is about 10−4c. The element of proper time along the particle’s path is given,
according to (4.5), by c2dτ 2 = (ηµν+hµν)dxµdxν and since, for a slowly moving
particle, dx/dτ is negligible compared with dt/dτ , we have approximately

dt

dτ
� (1 + h00)

−1/2 � 1 − 1
2 h00. (4.7)

By the same token, the spatial components of (4.4) can be written (using the
convention that Latin indices i, j, k, . . . denote spatial directions and recalling
that x0 = ct) as

d2xi

dτ 2
+ �i

00c2
(

dt

dτ

)2

� 0. (4.8)

The final requirement is that the variation with time of the metric tensor field
and hence, as we shall see immediately, of the gravitational field is negligible.
This has two consequences. First, dt/dτ in (4.7) is approximately a constant,
so in (4.8) we can set d2xi/dτ 2 � (dt/dτ )2d2xi/dt2 and (dt/dτ )2 cancels out.
Second, terms in the connection coefficients which involve time derivatives can
be neglected. In particular, the coefficient that appears in (4.8) is just

�i
00 � 1

2 h00,i . (4.9)

So, on multiplying (4.8) by the mass of the particle, we get

m
d2xi

dt2
� −m

∂

∂xi
V (4.10)

where V is the gravitational potential of the Newtonian theory, now to be
identified as

V = 1
2 c2h00. (4.11)
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At this point, then, our mathematical account of spacetime geometry begins
to make contact with actual observations. If the above requirements are met,
we say that the Newtonian limit applies. In this limit, we can pretend that
Minkowskian or Galilean geometry is correct. The small error that we incur by
doing this is detectable by virtue of the gravitational force on the right-hand side
of (4.10), which is related to the true metric through (4.11). Of course, we are not
really entitled yet to identify the V in these equations as a gravitational potential,
rather than a potential of some other kind. We have, certainly, obtained one of
the hallmarks of gravity, namely that the force in (4.10) is proportional to the
inertial mass of the test particle. The other half of the story is that V should be
of the correct form. For example, in the neighbourhood of the Earth, V should be
approximately equal to −GM/r , where G is Newton’s constant, M the mass of
the Earth and r the distance from its centre. In the next section, we shall see how
this comes about.

4.3 The Field Equations of General Relativity

We have come some way towards answering the question ‘what is the structure
of our spacetime?’. On empirical grounds, we have seen that it cannot be too
far removed from that of Minkowski spacetime. Moreover, we have seen how
small deviations from the Minkowski metric can be interpreted in terms of a force
field that we would like to identify with gravity. Our basic assumption will now
be that the metric tensor field is a physical object whose behaviour is governed,
like that of other physical objects, by an action principle. Although gravity is
properly viewed as an ‘apparent’ force, which disappears when we adopt a truly
inertial frame of reference, it is helpful to some extent to think of gravity by
analogy with electromagnetism. Thus, the action (4.2), with the metric tensor field
decomposed as in (4.5), may be thought of as analogous to the first two terms of
(3.55). These lead to the equation of motion (3.56) or (3.58) (analogous to (4.4)
or (4.10)) of a charged particle in the presence of given electric and magnetic
fields. To find out what electric and magnetic fields are actually present, we have
to solve Maxwell’s equations (3.52), which relate derivatives of the fields on the
left-hand side to the charge density and currents on the right-hand side. To derive
Maxwell’s equations, we require the final term in (3.55), which depends on the
electromagnetic fields alone.

To find out what the metric tensor field is, for a given region of space
containing a given distribution of matter, we must solve the gravitational
analogues of Maxwell’s equations. These are Einstein’s field equations. The
currents on the right-hand side will turn out to be the stress tensor given in (3.42).
The left-hand side, analogous to ∂µFµν in (3.52), is the Einstein curvature tensor,
which is constructed from the metric tensor field in a manner we have yet to
discover. To do this, we must evidently add to the action a term analogous to the
last term of (3.55). It must be a scalar quantity, containing just the metric tensor
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field and its derivatives.
There is one mathematical detail to be sorted out first. Namely, we need

to know how to integrate over spacetime in a covariant manner. Suppose, to
take the simplest case, that we have a coordinate system in which the metric
tensor field at the point x is diagonal with elements g00, g11, g22 and g33. An
infinitesimal time interval is dt = c−1(g00)

1/2dx0 and infinitesimal distances are
dx = (−g11)

1/2dx1, etc. Therefore, the infinitesimal spacetime volume element
is

d(spacetime volume) = c−1d4x (−g(x))1/2 (4.12)

where g(x) denotes the determinant of the metric tensor field. On transforming
to a new coordinate system, d4x is multiplied by a Jacobian factor, which is the
determinant of the transformation matrix (2.13). Readers should have no difficulty
in verifying that this is exactly cancelled by the determinant of the inverse matrix
that transforms g(x) according to (4.1). Thus, the volume element (4.12) is a
scalar, retaining the same form in all coordinate systems. Correspondingly, we
may define a scalar δ function

(−g(x))−1/2δ4(x − y) (4.13)

which has the desired properties when used in conjunction with the scalar volume
element (4.12).

Beyond the requirement that the geometrical contribution to the action
should be a scalar, there seems to be no a priori way of knowing what form
it should take. Arguably, the form that has been found to work is the simplest
possible one, but simplicity is a somewhat subjective and ill-defined criterion. It
also has the feature that the resulting equation of motion for gµν , like those for
other physical quantities, contains only first and second derivatives of gµν , but
it is not altogether clear that this need be insisted on. At any rate, the standard
version of general relativity is obtained by taking the total action to be

S =
∫

d4x
[
Lmatter(x) + Lgrav(x)

]
(4.14)

where the Lagrangian densities for matter and for gravitational fields are

Lmatter(x) = − 1
2

∑
n

mn

∫
dτnδ

4
(

x − xn(τn)
)

gµν(x)ẋ
µ
n (τn)ẋ

ν
n (τn)

(4.15)

Lgrav(x) = − 1

cκ
(−g(x))1/2

[
� + 1

2 R(x)
]
. (4.16)

By integrating Lmatter(x) over all spacetime, we get a term of the form (4.2) for
each particle of matter. Notice that the factors of (−g(x))1/2 have cancelled
between the spacetime volume element and the δ function. In Lgrav(x), R(x)
is the Ricci curvature scalar (2.51) and � is a constant, called the cosmological
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constant. The overall constant κ determines the strength of the coupling between
geometry and matter, and consequently the strength of gravitational forces. It
must obviously be related to Newton’s constant, and we shall shortly derive the
exact relationship.

By requiring the action (4.14) to be stationary against variations in each of
the particles trajectories, we obtain an equation of motion of the form (4.4) for
each particle. The field equations are obtained by requiring it to be stationary
against variations in gµν(x). In principle, this is no more difficult than obtaining
Maxwell’s equations from (3.54), but the algebra is considerably more involved.
Exercise 4.2 offers guidelines for carrying the calculation through, but here I shall
just quote the result: Einstein’s field equations are

Rµν −
(

1
2 R + �

)
gµν = κTµν. (4.17)

The two terms Gµν = Rµν − 1
2 Rgµν (in which Rµν is the Ricci tensor (2.36)

with its indices raised) constitute what is sometimes called the Einstein curvature
tensor. The cosmological constant � is, according to the best astronomical
evidence, very close to zero in our universe and may generally be omitted. At the
time of writing, there is no understanding of why � should be close or equal to
zero (though many people have attempted speculative explanations), and indeed
this question is widely regarded as one of the most important mysteries remaining
in modern cosmology. The stress tensor on the right-hand side is

Tµν(x) = c

(−g(x))1/2

∑
n

∫
dτn mn

dxµ

dτn

dxν

dτn
δ4(x − xn(τn)). (4.18)

It differs from the Minkowski-spacetime tensor (3.42) only insofar as the invariant
δ function (4.13) has been used.

If the relativistic theory of gravity is to work, it must now be possible to show
that the potential V (x) defined in (4.11) reduces to the Newtonian potential in the
appropriate limit. The Newtonian potential of a point mass M at a distance r from
it is V (r) = −GM/r . Equivalently (as is shown in any textbook on electricity for
the analogous Coulomb potential), for a static mass distribution of density ρ(x),
the potential satisfies Poisson’s equation

∇2V = 4πGρ. (4.19)

I shall show that this equation follows, in the Newtonian limit, from the (0, 0)
component of the field equations (4.17). To this end, it is convenient to rewrite
these equations in the following way. First, define the scalar quantity T by
T = gµνT µν . By contracting (4.17) with gµν , we find that R = −4� − κT
and on substituting this back into (4.17) we get the alternative version

Rµν = κ(Tµν − 1
2 T gµν) − �gµν. (4.20)
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Now assume that a coordinate system can be found in which the matter giving
rise to the gravitational potential is at rest and in which the metric tensor field is
close to that of Minkowski spacetime, as in (4.5). To the order of accuracy we
require, the right-hand side of (4.20) can be evaluated with hµν = 0. For particles
at rest, we have dxµ/dτ = (c, 0, 0, 0), and this can be used in (3.42) to find the
stress tensor. The density is expressed by the µ = 0 component of (3.41) when A
is taken to be the mass of a particle, and we find that all components of the stress
tensor are zero except for T 00 = ρc2, so that T = ρc2 also. (This also agrees with
(3.43), bearing in mind that the symbol ρ in that equation is the energy density,
whereas here I am using it to stand for the mass density.) In the Newtonian limit
discussed in the last section, the (0, 0) component of the Ricci tensor field is given
approximately by

R00 � 1
2

3∑
i=1

∂i∂i h00. (4.21)

With h00 identified as in (4.11), the (0, 0) component of (4.20) now reads

∇2V =
(

1
2κρc2 − �

)
c2. (4.22)

This is identical with Poisson’s equation (4.19) provided that the cosmological
constant is negligibly small and that we identify the constant κ as

κ = 8πG/c4. (4.23)

Equations (4.4) and (4.17) constitute the general-relativistic theory of
gravity. So long as we have values for the two constants κ and �, these equations
may in principle be applied to any specific physical situation, their solutions
yielding predictions that can be tested against actual observations. The value
of κ is determined experimentally by (4.23), but the cosmological constant is, as
mentioned above, rather more puzzling. In Einstein’s original formulation of the
theory, it was zero—which is to say that it did not appear at all. For most purposes,
it is assumed to be zero, and this leads to a number of well-verified predictions,
some of which are discussed in the following section and in chapter 14.

The extent of our knowledge of the actual value of � is that it cannot be
large enough to invalidate these predictions. (At the time of writing, there is
some evidence for an acceleration of the expansion of the universe that might be
explained by a small, nonzero value of �, but this cannot yet be taken as reliable.)
In (4.22) the quantity �/κc2 = �c2/8πG appears as a negative ‘mass density
of the vacuum’, to be considered along with the density of real matter. This is
a somewhat dangerous observation, because � appears in other places as well.
(For example, in (14.18) its net effect is equivalent to a positive mass density.)
Nevertheless, a rough and ready method of placing upper bounds on the value of
�/κc2 is to argue that it must be significantly smaller than the average density
of a system that is well described by the theory with � = 0. For example, the
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solar system is described by this theory to within the accuracy of observations
and of the approximations needed to obtain numerical theoretical predictions. A
suitable ‘density’ might be the mass of the Sun divided by the volume of a sphere
that just encloses the orbit of Pluto, which gives about 3 × 10−12g cm−3, and the
agreement of theory with experiment would be upset if the vacuum density were
comparable with this. Applying the same argument to much larger systems such
as clusters of galaxies (which are much less precisely understood than the solar
system), we obtain a limit of the kind

�c2/8πG . 10−29g cm−3. (4.24)

This is roughly the average density of observable matter in the universe and is, of
course, vastly smaller than the densities of familiar materials. Whether it is small
in an absolute sense depends on our finding some fundamental quantity with the
dimensions of a density with which to compare it. We shall see later that such
a comparison can be made, which suggests that the smallness of � is even more
striking than the number quoted in (4.24).

4.4 The Gravitational Field of a Spherical Body

To find out how the general-relativistic theory of gravity differs from the
Newtonian one, we must, of course, find exact solutions to (4.4) and (4.17), or at
least approximate solutions that go beyond the Newtonian approximation. I shall
illustrate the nature of general-relativistic effects by considering Schwarzschild’s
solution of the field equations for the metric tensor field associated with a massive
spherical body and some of its elementary consequences.

4.4.1 The Schwarzschild solution

The task of finding a general solution to the field equations is too difficult to
contemplate, and it is usually possible to find particular solutions only when
symmetry or other requirements can be used to reduce the 10 independent
components of the metric tensor field to a more manageable number. The solution
found by Schwarzschild (1916), although it is an exact solution, rests on several
simplifying assumptions. First, we ask for the gravitational field of a spherically
symmetric body and assume that the metric will also be spherically symmetric.
Second, since we anticipate that gravitational effects will be extremely weak at
large distances from the body, the metric should approach that of Minkowski
spacetime at large distances. We therefore use polar coordinates (t, r, θ, φ) and
expect that for large r the line element will be approximately

c2dτ 2 � c2dt2 − dr2 − r2
(

dθ2 + sin2 θ dφ2
)
. (4.25)

It must be borne in mind that these coordinates cannot necessarily be interpreted
as time, radial distance and angles in the elementary sense, although these
interpretations should become valid in the large r region where (4.25) is valid.
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The final assumption is that, in these coordinates, the components of the
metric tensor field are independent of the coordinate t . This implies, in particular,
that an observer in the large r region will see a static gravitational field. As a
matter of fact, the only assumption which is really needed is that of spherical
symmetry. There is a theorem due to G D Birkhoff (explained, for example, by
Weinberg (1972)), which shows that the only spherically-symmetric solution for
the metric of a spacetime that is empty apart from a central spherical body is the
time-independent Schwarzschild solution. Here, to make matters simpler, I shall
take it as an extra assumption that the metric is static. With these assumptions,
the line element can be written as

c2dτ 2 = A(r)c2dt2 − B(r)dr2 − r2
(

dθ2 + sin2 θ dφ2
)
. (4.26)

The two functions A(r) and B(r), which should approach the value 1 for large
r , remain to be determined. A third unknown function C(r) could have been
included in the coefficient of the angular term. However, we could then define a
new radial coordinate by r ′2 = C(r)r2, and so recover the form (4.26) with A and
B appropriately redefined.

We shall consider only the exterior solution, namely the metric as it exists
outside the central body. In this region, there is no matter, so, taking the
cosmological constant to be zero, we have to solve (4.17) in the special case that
� = Tµν = 0. This is actually a set of ten equations for the ten independent
components of the metric tensor field. Provided, as is in fact the case, that our
assumptions are consistent with the structure of the field equations, it will be
possible to find functions A(r) and B(r) such that all ten equations are satisfied.
The task of finding these functions and verifying that all the field equations are
satisfied is straightforward, but quite lengthy, although the result is a simple one.
I shall outline the steps and leave it to sufficiently energetic readers to fill in
the details. The components gµν can be read off from (4.26). We must use
them to calculate the connection coefficients (2.50) and thence the Ricci tensor
(2.36) and the scalar curvature (2.51). A useful short cut to finding the connection
coefficients is to write out the action (4.2) explicitly:

S = − 1
2 m

∫
dτ

[
c2 A(r)ṫ2 − B(r)ṙ2 − r2

(
θ̇2 + sin2 θ φ̇2

)]
. (4.27)

By varying each of the coordinates, it is easy to find the Euler–Lagrange
equations, from which the �

µ
νσ can be picked out by comparison with (4.4).

There is now nothing for it but to work out the components of Rµν and
equate them to zero. (By contracting Rµν − 1

2 Rgµν = 0 with gµν , we find
that both Rµν and R must vanish.) As it turns out, all the off-diagonal elements
vanish identically. The remaining four equations are differential equations for
A(r) and B(r), which have the solution A(r) = 1/B(r) = 1 + α/r , where α is a
constant of integration. To identify the constant, we note that h00 in (4.11) is just
α/r . For large r , this is indeed small and must equal 2/c2 times the Newtonian
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potential −GM/r , where M is the mass of the central body. The Schwarzschild
line element is therefore

c2dτ 2 =
(

1 − 2GM

c2r

)
c2dt2 −

(
1 − 2GM

c2r

)−1

dr2 − r2
(

dθ2 + sin2 θ dφ2
)
.

(4.28)
It has an obvious peculiarity at the Schwarzschild radius

rS = 2GM/c2 (4.29)

which has, for example, values of 0.886 cm for the Earth, 2.95 km for the Sun and
2.48 × 10−52 cm for a proton. As we shall see, this singularity is associated with
the possibility of ‘black holes’. Remember, however, that (4.28) is the exterior
solution for the metric, valid outside the massive body. It does not follow that
there is a black hole of radius 0.886 cm lurking at the centre of the Earth! Before
discussing this in more detail, we shall take a look at some more prosaic features
of the Schwarzschild solution.

4.4.2 Time near a massive body

A normal body, such as the Earth or the Sun, is larger than the Schwarzschild
radius calculated from its mass. Let us consider a stationary observer near such
a body to be one whose (r, θ, φ) coordinates are fixed. For such an observer, the
flow of proper time is measured by

dτ =
(

1 − rS

r

)1/2
dt (4.30)

as we discover by setting dr = dθ = dφ = 0 in (4.28). The time experienced
by a stationary observer is thus proportional to the coordinate t , but with a
factor that changes with r . Two events occurring at the same value of t will
appear simultaneous to any stationary observer, and therefore the spacetime can
be separated a meaningful way into three-dimensional spatial slices, each labelled
by its own value of t . All stationary observers agree on this splitting, but the time
that elapses between two given values of t is different for observers at different
radial positions.

The variation of time intervals with radial position can be investigated by the
shift it causes in atomic spectral lines. Consider a radiating atom located at rat
and an observer at robs. Suppose a pulse of light is emitted at coordinate time
te and received at tr, and a second pulse is emitted at te + �te, being received
at tr + �tr (see figure 4.1). Since the metric is independent of t , the paths of
the two pulses through spacetime are exactly similar, and therefore the coordinate
time interval tr − te between emission and reception of the first pulse is equal
to the corresponding interval (tr + �tr) − (te + �te) for the second. It follows
that the coordinate time interval �te between the moments when the two pulses
are emitted is equal to the interval �tr between the moments at which they are
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Figure 4.1. Passage of two pulses of light from a radiating atom to an observer in the
gravitational field of a spherical body.

received: �te = �tr. The corresponding proper time intervals are therefore
different, and the ratio of the observed frequency of the received wave to the
frequency of the wave as emitted by the atom follows trivially from (4.30):

observed frequency

frequency at emission
= (�τobs)

−1

(�τat)
−1

=
(

1 − rS/rat

1 − rS/robs

)1/2

. (4.31)

This ratio involves only the (0, 0) component of the metric tensor, which
we have identified in terms of the gravitational potential. In general, for a static
spacetime (that is, for one that can be divided into identical spatial slices), we
have

observed frequency

frequency at emission
=
(

1 + 2Vat/c2

1 + 2Vobs/c2

)1/2

. (4.32)

In a weak gravitational field, the frequency shift �ν = νobs − νat is given
approximately by

�ν

ν
= Vat − Vobs

c2
. (4.33)

Although this shift can have either sign, what can normally be observed in practice
is light from the atmospheres of stars. The radiating atom in this case is at a lower
gravitational potential than an earthbound telescope, so a gravitational redshift
is observed. Such observations confirm the prediction (4.32) to precisions of a
few percent. A method of measuring frequency shifts in the Earth’s gravitational
field was devised by Pound and Rebka (1960), who used the Mössbauer effect
to determine the change in frequency of γ rays from 57Fe nuclei on travelling a
vertical distance of some 22 m. In this case, the frequency shift can be deduced
from a simple application of the equivalence principle, without the full machinery
of general relativity (see exercise 4.3).
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4.4.3 Distances near a massive body

Within an equal-time slice of the Schwarzschild spacetime, distances are
measured by the spatial part of the line element

dl2 =
(

1 − rS

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (4.34)

This is a non-Euclidean space, and the departure from Euclidean geometry may
be illustrated by the fact that the circumference of a circle is not equal to 2π times
its radius. Consider a circle concentric with the central body in the equatorial
plane θ = π/2 at a fixed radial coordinate r . Its circumference is

circumference =
∫ 2π

0

dl

dφ
dφ = 2πr. (4.35)

Its radius cannot be determined exactly, because (4.34) is valid only outside the
central body. We can, however, compare two circles of coordinate radii r1 and r2.
In Euclidean geometry, the difference between their circumferences is 2π times
the difference between their radii. In the Schwarzschild space, the difference in
circumference is 2π(r2 − r1), but the radial distance between them is

radial distance =
∫ r2

r1

dl

dr
dr =

∫ r2

r1

dr

(1 − rS/r)1/2 = r2 f (r2) − r1 f (r1) (4.36)

where the function f (r) is

f (r) =
(

1 − rS

r

)1/2 +
(rS

r

)
ln

{(
r

rS

)1/2 [
1 +

(
1 − rS

r

)1/2
]}

. (4.37)

When r is much greater than rS, this may be approximated as

f (r) � 1 +
(rS

r

)
ln

[
2

(
r

rS

)1/2
]

(4.38)

and for two circles satisfying this condition, we find

difference in circumference

radial distance
� 2π

[
1 − 1

2

(
rS

r2 − r1

)
ln

(
r2

r1

)]
(4.39)

provided that r2 − r1 is also larger than rS. As an example, if rS is the
Schwarzschild radius of the Sun, r1 is the radius of the Sun (6.96 × 108 m) and r2
is the semi-latus rectum of the orbit of Mercury (5.5×1010 m), then the correction
term is about 10−7. For many purposes, therefore, the solar system can adequately
be described in terms of Euclidean geometry.
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4.4.4 Particle trajectories near a massive body

The analogy drawn above between the field equations and Maxwell’s equations
may be misleading in one important respect: the field strength tensor (3.51) is
linear in the electromagnetic fields, while the curvature tensors are nonlinear in
the metric tensor field. Suppose, for example, that we wish to calculate, according
to classical mechanics, the orbit of an electron near a positive nucleus, which we
take to remain stationary. The linearity of the field strength tensor allows us to
express the total electric field as the sum of fields due to the nucleus and the
electron. The field due to the electron exerts no force on the electron itself. It can
be subtracted from the total field, and we simply regard the electron as moving
in the field of the nucleus. In general, this cannot be done with gravity. Given,
say, a star and a single planet, the true metric cannot be expressed as the sum of
two Schwarzschild metrics. If we wish to find the metric and the relative motion
of the two bodies, it is necessary to solve the whole problem in one go: since we
do not know the metric, we cannot immediately find the orbits and, not knowing
these, we cannot write down any explicit form for the stress tensor that appears in
the field equations we must solve for the metric. In fact, the exact solution of this
two-body problem is not known.

What we can do without too much trouble is to work out the trajectories of
‘test particles’ in the Schwarzschild spacetime—or at least we can write down
their equations of motion and solve these by some approximate means. A test
particle is one whose effect on the metric is negligible, and its equations of motion
are the geodesic equations (4.4) with the connection coefficients calculated in this
case from the Schwarzschild metric. I shall write out explicitly only the form of
these equations that applies to motion in the equatorial plane: this can, of course,
be any plane passing through the centre of the massive body if we choose our
coordinates appropriately. With θ fixed at π/2, the equations are

d

dτ

[(
1 − rS

r

)
ṫ
]

= 0 (4.40)

d

dτ

(
r2φ̇

)
= 0 (4.41)

(
1 − rS

r

)−1
r̈ + 1

2
c2
( rS

r2

)
ṫ2 − 1

2

(
1 − rS

r

)−2 (rS

r2

)
ṙ2 − r φ̇2 = 0. (4.42)

As in previous equations, the overdot denotes d/dτ .
The derivation of the equations of motion (4.4) was valid for massive

particles. For photons, or other massless particles, the action (4.2) vanishes. To
deal with this case, we simply define a new parameter λ such that dτ = mdλ.
The mass then disappears from the action and can be set to zero. The equations
of motion (4.4) then follow as before, but with τ replaced by λ. The trajectories
for massless particles are still geodesics, but are not parametrized by proper time.
Clearly, indeed, they are null geodesics, along which dτ = 0.
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These equations lead to a number of interesting predictions when applied
to the solar system. Light passing close to the Sun is predicted to be deflected
by 1.75 seconds of arc, and the expeditions of Dyson, Eddington and Davidson
to observe this effect during a total eclipse in 1919 resulted in one of the earliest
confirmations of Einstein’s theory. (Their measurements were actually not precise
enough to justify the confirmation that was claimed at the time, but later, more
accurate observations do confirm the theoretical result.) When the planets are
treated as test particles, it is found that their orbits are not elliptical as in the
simple Newtonian theory, but can be described as ellipses whose perihelia (points
of closest approach to the Sun) precess slowly. The largest precession rate, that
for Mercury, is predicted to be some 43 seconds of arc per century. This is
also in agreement with observations, but only when the perturbing effect of other
planets is taken into account. Planetary orbits have, of course, been studied for
centuries and are known with great precision. Even within Newtonian theory,
the approximation of treating the planets as test particles is far too crude, and
their perturbing influence on each other must be taken into account. These
perturbations themselves cause precessions, to which the general-relativistic
effect is a small correction. In order to apply general relativity to the solar system
in a meaningful way, systematic methods of obtaining corrections to the detailed
Newtonian theory must be devised. These techniques, known as post-Newtonian
approximations are discussed in specialized textbooks, but are well beyond the
scope of this one. Finally, as first worked out by Shapiro (1964), radar signals
reflected from a neighbouring planet are slightly delayed by comparison with their
round-trip time according to the Newtonian theory. The simpler aspects of these
phenomena are explored in the exercises.

4.5 Black and White Holes

So far, we have considered the spacetime near a massive body whose radius is
larger than its Schwarzschild radius rS. In this section, we shall consider the case
of an object that is smaller than its Schwarzschild radius. First, let us see whether
it is possible to make sense of the metric (4.28) all the way down to r = 0.
This metric is valid only outside the central body, so physically we will want to
know what has happened to the said body. This question will be addressed in due
course: for now, let us take it to be an idealized point particle, which nevertheless
has a substantial mass M .

To simplify matters, I shall discuss only the paths of free particles moving
in the radial direction, which are described by the two functions r(τ ) and t (τ ).
Remember that while τ is by definition the time experienced by the particle, the
coordinates r and t have no unique interpretation as distances or times. In the
region where r is large, however, they are, to a good approximation, the radial
distance and time as experienced by a stationary observer. The paths of radially
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moving particles are most easily found by using the equation

ṙ2 =
(

1 − rS

r

)2
c2ṫ2 − c2

(
1 − rS

r

)
(4.43)

which follows from the line element (4.28) with dθ = dφ = 0. Eliminating
ṫ between this equation and (4.42) with φ̇ = 0, we find the radial equation of
motion

r̈ = −c2rS

2r2 . (4.44)

In view of the definition (4.29) of rS, this is precisely the equation satisfied by a
particle in the Newtonian potential V = −GM/r . Two particular solutions are
those in which the particle passes through the point r0 at time τ = 0 with the
corresponding escape velocity vesc = (2GM/r0)

1/2 = c(rS/r0)
1/2, in either the

outward or the inward direction. They are

r(τ ) =
(

r3/2
0 ± 3

2 cr1/2
S τ

)2/3
(4.45)

where the positive sign corresponds to an outgoing particle and the negative sign
to an ingoing one. In either case, the particle can apparently pass through the
point r = rS without encountering anything unusual.

Suppose that r0 is greater than rS. The solution for t (τ ) is most easily
obtained by (i) expressing t (τ ) as a function of r(τ ), so that ṫ = ṙdt/dr and
(ii) noting that, for the particular solution (4.45), we have ṙ2 = c2rS/r . Making
these substitutions in (4.43), we find

cr1/2
S

dt

dr
= ± r3/2

r − rS
(4.46)

which can be integrated to give

ct = ±r−1/2
S

{
2
3r3/2 + 2rSr1/2 + r3/2

S ln

[
(r/rS)

1/2 − 1

(r/rS)1/2 + 1

]}
. (4.47)

We could add a constant of integration to specify the time at which the particle
passes through r0, but this is of no great interest. We see that, as an ingoing
particle approaches rS, its coordinate t (τ ) approaches +∞, although the proper
time interval that it experiences while travelling from r0 to rS is finite, being
equal to 2(r3/2

0 − r3/2
S )/3cr1/2

S . This means that in the neighbourhood of rS, the
coordinate t is no longer useful as a measure of physical time. Correspondingly,
the metric given by (4.28) does not give a useful description of the geometry near
rS, because one of its components becomes infinite.

Although we have done the calculation only for one special kind of particle
trajectory, much the same thing happens for any trajectory passing through rS.
Mathematically, we have to say that the spacetime manifold on which the metric
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(4.28) is valid does not include the spherical surface r = rS. Strictly speaking,
this metric applies to two separate spacetimes, namely the two regions r > rS
and r < rS. In that case, what becomes of our particle when it reaches the edge
of the first region, in which it started? There are two possibilities. One is that
the singularity at r = rS is a genuine singularity of the geometrical structure. If
so, then the particle would have reached the end of the spacetime available to it.
We would have to investigate whether it could be reflected, remain trapped on the
‘edge of the universe’ or simply disappear from the universe altogether. In view
of the fact that its radial coordinate (4.45) passes perfectly smoothly through rS,
it seems unlikely that such measures should be necessary. The other possibility is
that the singularity is merely a ‘coordinate singularity’. That is to say, the particle
has not reached the end of spacetime, but merely the end of that part of spacetime
for which t serves as a useful coordinate. This second possibility is in fact the
correct one. Nevertheless, from a mathematical point of view, we have at hand
only the region r > rS. We must add on to it a second region, in which r < rS,
which is an extension of the same geometrical structure. This will be possible if
we can trade in t for a new coordinate which will describe a smooth join between
the two regions. This means that when we express the line element (4.28) in terms
of the new coordinate, all the components of the metric tensor field will be smooth
at rS.

Let us call the region r > rS region I. This region covers most of the universe,
although it is a universe populated only by ‘test particles’ and therefore cannot
describe the whole of our actual universe. Region I has in fact two ‘edges’ at
r = rS and t = +∞ or t = −∞. At these two edges, we can join on two new
regions. That which joins on at t = +∞, called region II, is the one into which
ingoing particles fall; that which joins on at t = −∞, called region II′ is one
from which outgoing particles can emerge. Each of these regions has the same
geometrical structure as the region r < rS of the original Schwarzschild solution;
the trick is to find a way of smoothly joining the various regions together. The join
between regions I and II can be described in terms of the Eddington–Finkelstein
coordinate v, defined by

v = ct + r + rS ln

(
r

rS
− 1

)
. (4.48)

If we substitute for t the expression (4.47) with the − sign to represent the path
of an ingoing particle, we see that v remains finite as the particle passes through
rS. Moreover, when written in terms of v, the line element becomes

c2dτ 2 =
(

1 − rS

r

)
dv2 − 2dvdr (4.49)

which is perfectly smooth at the boundary between regions I and II. To describe
the boundary with region II′, we can use instead the coordinate w, defined by

w = ct − r − rS ln

(
r

rS
− 1

)
(4.50)
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in terms of which the line element takes the form of (4.49) with dv replaced by
−dw.

The boundary between regions I and II can be crossed only by ingoing
particles and, in fact, only by ingoing light rays also. Nothing ever crosses
from region II into region I, for which reason region II is called a black hole.
Conversely, particles and light rays may cross from region II′ into region I, but
not in the opposite direction, so region II′ is sometimes called a white hole. It
turns out that regions II and II′ each have a second boundary, to which can be
joined a fourth region I′. This is an exact replica of region I. Particles can pass
out of region II′ into either of regions I and I′ or out of I or I′ into region II.
However, there is no route by which a particle can pass from region I to region
I′ or vice versa. Each of regions II and II′ has a real singularity at r = 0, which
cannot be removed by any coordinate transformation. The one in region II is
discussed below. The collection of four regions is called the maximal extension
of the Schwarzschild solution. A description of the whole of this spacetime can
be given by trading in both t and r for v and w, though there are other coordinate
systems that do a better job. For a more detailed discussion of the Schwarzschild
geometry, I must refer readers to more specialized books, such as Hawking and
Ellis (1973) or Wald (1984).

So far in this section, our discussion has been purely mathematical: we have
asked only about the geometrical structure implied by the Schwarzschild solution.
We must now consider whether the curious phenomena associated with black
and white holes can be brought about by known physical processes. Although
the geometry described above represents an entire universe, this universe has to
satisfy the assumptions that went into the Schwarzschild solution in the first place.
This is obviously not true of our universe which, for example, contains more than
one massive body. The most we can hope for in practice is that some fair-sized
region in the neighbourhood of, say, a star is very similar to a corresponding
region of the Schwarzschild spacetime.

The structure of a star is supported by its internal pressure and the outward
flow of energy from nuclear reactions at its core. When its nuclear fuel is
exhausted, the star collapses and, if it shrinks to a size equal to its own
Schwarzschild radius, the conditions exist for the formation of a black hole. It
appears, indeed, that once a mass is contained within its Schwarzschild radius,
the gravitational attraction between its constituent parts cannot be counteracted by
the outward pressure of any known force, and the mass is inevitably compressed
to a single point—a singularity at r = 0. What becomes of this matter is not clear
and readers should bear in mind that our whole discussion at this point ignores
any quantum-mechanical considerations, which might profoundly affect the fate
of the matter contained in a collapsing star.

From the point of view of the collapsing matter, the formation of the
singularity occurs within a finite time although, as we shall see, the collapse
appears to an external observer to take an infinite time. Theorems of Hawking
and Penrose (discussed, for example, by Hawking and Ellis (1973)) show that
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Figure 4.2. The light cone of a spacetime point P and a possible trajectory of a particle
through P.

this phenomenon is rather general; for example, it does not depend on the exact
spherical symmetry assumed by Schwarzschild. On the other hand, it seems likely
that the geometry of the black holes formed by stellar collapse will usually not be
of the Schwarzschild type, but rather will correspond to a Kerr solution, in which
axial symmetry but not full spherical symmetry is assumed. This allows for the
angular momentum possessed by a rotating star. Here, however, I shall consider
only black holes of the simpler Schwarzschild type, which illustrate many of the
same qualitative features. Notice that, prior to the stellar collapse, the exterior
Schwarzschild solution we have considered is valid only outside the star, and
therefore only for r > rS. There is therefore no boundary at r = rS and t = −∞
to which we might attach a region of type II′, and the question of forming a white
hole does not arise. In fact there is not, to my knowledge, any physical process
that is known to give rise to a white hole, and discussions of such objects are
largely confined to the more speculative popular literature.

In Minkowski spacetime, the line element (2.6) implies that |dt/dτ | >

|dx/dτ | along the path of any massive particle and that |dx/dt| = c for a light
ray. As illustrated in figure 4.2, this implies that all possible light rays passing
through a given point P lie on a cone, and that the path of a particle passing
through P must be contained within this cone. This is expressed by saying that
the path is timelike or, since the path is directed forwards in time, that it lies in
the forward light cone of P . This is true both for freely falling particles and for
those accelerated by some non-gravitational force. The familiar result of special
relativity that no body can be accelerated past the speed of light is of course
a direct consequence of this. Since any sufficiently small region of spacetime
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looks like Minkowski spacetime, the same is true of particle trajectories in every
spacetime of physical interest.

The qualitative effect of black hole geometry on the paths of particles can be
understood by plotting the paths of light rays and imagining particle trajectories
to thread through the cones they produce. Using r and v to describe radial motion,
we see from (4.49) that light rays, for which dτ = 0, satisfy

v = constant (4.51)

or
dr

dv
= 1

2

(
1 − rS

r

)
. (4.52)

Readers may verify without difficulty that these curves are indeed null geodesics.
In the case that v is constant, we find by differentiating (4.48) that dr/dt =
−c(1 − rS/r), so when r is large and t gives a measure of the time experienced
by a stationary observer, we get dr/dt ≈ −c. The set of curves corresponding
to (4.51) therefore represent ingoing light rays. In figure 4.3, these curves are
represented by diagonal lines from bottom right to top left.

Vertical lines are lines of constant r . The peculiarities of the geometry
arise from the other set of light rays (4.52). One of these is the line r = rS,
namely a ray that remains stationary at the Schwarzschild radius. Outside this
radius, rays governed by (4.52) are outgoing; in fact, for these we find dr/dt =
c(1 − rS/r). Inside rS, however, both sets of light rays fall inwards, terminating
at the singularity at r = 0. Inside the Schwarzschild radius, therefore, all light
rays and particles fall inwards. Events in region II are invisible to an outside
observer, and the spherical surface at r = rS (obtained by reinstating the angular
coordinates) is called the event horizon.

The broken line in figure 4.3 represents the path of a particle falling from
outside the event horizon. Suppose that it radiates light as it falls, so that a distant
observer can follow its progress. It is apparent from the paths of the outgoing
rays that this observer will have to wait an infinite time (measured for him by t)
before receiving the signal emitted by the particle as it crosses the horizon. If light
energy is radiated at a constant rate as measured by the proper time of the particle,
then the finite amount of energy emitted in a short period just before the particle
reaches the horizon is received by the observer over an infinite period of time.
To him, therefore, the signal becomes ever fainter, and disappears entirely as the
particle reaches the horizon. Also at this point, the interval between successive
crests of a light wave becomes, for the observer, infinitely long so the light is
infinitely redshifted.

Obviously, a black hole is, in itself, difficult to detect. On the other hand,
if large amounts of matter are drawn in by the strong gravitational field that
surrounds it, this matter may be expected to become very hot, giving rise to
intense X- and γ radiation. This may happen, for example, in a binary star
system, one of whose stars collapses to a black hole which can then accrete matter
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Figure 4.3. Trajectories of light rays (full lines) and an inward-falling particle (broken
line) moving radially near a black hole.

from its companion. At the time of writing, there are numerous observed objects
whose behaviour, in the view of many astronomers, provides strong circumstantial
evidence of their containing black holes, though I know of no instances in which
this identification is entirely unambiguous. Theory suggests that many stars which
are bigger than a few solar masses will eventually collapse. In addition, large
clusters of stars such as are found at the cores of galaxies appear to stand a good
chance of coalescing to form very large black holes. In this connection, it is
worthwhile to estimate the density of matter at the moment when an event horizon
is formed. Suppose (although this is not strictly accurate) that the volume of this
matter is just 4πr3

S/3, with rS given in terms of the mass M by (4.29). Then its
density can be estimated as

ρ ≈ 3c6

32πG3M2&

(
M&
M

)2

≈
(

1016 g cm−3
)

×
(

M&
M

)2

(4.53)

where M& = 1.99 × 1033 g is the mass of the Sun. If M is of the order of one
solar mass, then this is an enormous density, which can be reached only at the
core of a much larger object. On the other hand, if M is the combined mass of,
say, 108 solar-mass stars (about 0.1% of the 1011 stars in an average galaxy) then
this density is roughly that of water. All that is needed is that enough stars should
accumulate in a ‘small’ region of space. There is evidence to suggest that this has
in fact happened at the centre of our own galaxy.
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Exercises

4.1. In a system of coordinates xµ, let the coordinates of a point P be xµ
P . If the

connection coefficients are given by (2.50), show that, in a new coordinate system
given by

xµ′ = δµ
′

µ

(
xµ − xµ

P

)+ 1
2δ

µ′
µ �µ

νσ (x P)
(
xν − xν

P

) (
xσ − xσ

P

)
all first derivatives of the new components of the metric tensor field vanish at P .

4.2. The object of this exercise is to derive the field equations (4.17). Some of
the results given in appendix A will be needed. The overall strategy is to make a
small change in the metric, gµν → gµν + δgµν , and to require that the first-order
change in the action (4.14) should vanish. The change in the gravitational part is

δSgrav = − 1

2cκ

∫
d4x

[
(2� + R)δ

(
(−g)1/2

)
+ (−g)1/2 (Rµνδgµν + gµνδRµν

)]
.

(a) In the above expression, δgµν is the small change in the inverse metric gµν .
Let δḡµν = gµαgνβδgαβ be the quantity obtained by lowering its indices with the
original metric. To first order in these small changes, show that δḡµν = −δgµν.
(b) Show that δ

(
(−g)1/2

) = 1
2 (−g)1/2gµνδgµν.

(c) Show that the difference between two connections, such as �(g) and �(g+δg),
is a tensor field.
(d) Show that

gµνδRµν = gµν

[(
δ�λ

µν

)
;λ −

(
δ�λ

µλ

)
;ν

]
=
[
gµνδ�λ

µν − gµλδ�ν
µν

]
;λ .

Hence show that this term contributes to δS only a surface integral, which does
not affect the field equations.
(e) Find the change in Smatter and complete the derivation of the field equations.

4.3. A radioactive material that emits photons of frequency ν is fixed to the
roof of an elevator, which is initially at rest relative to a frame of reference SE
fixed in the Earth. At the instant that a photon is emitted vertically downwards,
the elevator is released and begins to fall freely with acceleration g. After a
short while, the photon hits a detector fixed to the floor of the elevator, having
fallen a total distance h relative to SE. Relative to SE, how long did this take?
According to the principle of equivalence, what frequency would the detector
measure? Now suppose instead that the elevator has no floor, and what the photon
actually hits is a detector fixed to the Earth’s surface. What is the elevator’s speed
relative to SE as the photon hits the detector? Since this is much smaller than
c, use the non-relativistic Doppler formula to find the frequency ν′ measured by
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this fixed detector. You should find that the fractional change in frequency is
(ν′ − ν)/ν = gh/c2, which comes to about 2.5 × 10−15 for a height of 22.6 m as
used by Pound and Rebka. Using the approximation that h is much smaller than
the radius of the Earth, verify that (4.33) gives the same result.

4.4. This exercise investigates the bending of light by the Sun, by considering the
path of a light ray in the equatorial plane of the Schwarzschild spacetime, with
coordinates (r, φ). First note that, in Euclidean space, the equation r sinφ = r0
describes a straight line whose distance of closest approach to the origin is r0.
Along this line, r → ∞ at φ = 0 (corresponding to an approaching light ray)
and at φ = π (corresponding to a departing light ray), while the point of closest
approach is at φ = π/2. This equation can be written as u = sin φ/r0, where
u = 1/r . In the Schwarzschild spacetime, let u = 1/r , where r is the coordinate
that appears in (4.28) and let r0 be the coordinate distance of closest approach.
(a) Recall that (4.40) and (4.41) are valid for a null geodesic, if d/dτ is replaced
by differentiation with respect to a suitable parameter λ. Use these and (4.28) to
derive the equation (

du

dφ

)2

+ u2(1 − rSu) = (r0 − rS)/r3
0 .

(b) Treating ε = rS/r0 as a small parameter, show that the solution to this equation
for which u = 0 when φ = 0 is approximately

r0u = sin φ + 1
2ε
[
(1 − cosφ)2 − sin φ

]
+ O

(
ε2).

(c) Define the deflection angle α such that u = 0 when φ = π + α. Show
that α = 2ε + O

(
ε2
)
. Taking r0 to be the solar radius 6.96 × 105 km (why is

this allowed?), show that a light ray which just grazes the surface of the Sun is
deflected by an angle of 1.75 seconds of arc.

4.5. Suppose that Mercury and the Earth could be frozen in their orbits at
coordinate distances rM and rE in a direct line from the centre of the Sun. The
distance between them can be found from (4.36) with rS the Schwarzschild radius
of the Sun. If the planets were separated by this distance in Euclidean space, what
would be the round-trip time τEuc for a radar signal reflected from the surface of
Mercury? In Schwarzschild spacetime, what is the coordinate time taken for the
radar signal to complete the round trip? What is the corresponding time interval
τSch perceived by an observer on Earth? Taking rM and rE to be much larger
than rS, show that the general-relativistic time delay �τ = τSch − τEuc is given
approximately by

�τ ≈ rS

c

[
ln

(
rE

rM

)
+
(

rM

rE

)
− 1

]
.

Estimate the magnitude of this effect by taking rM = 5.5 × 107 km and rE =
1.5 × 108 km.
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4.6. A planet orbits a star whose Schwarzschild radius is rS along a circular
path with radial coordinate r . Verify that this is a geodesic of the Schwarzschild
metric. Show that the coordinate time for one revolution is the same as the
period of an orbit of radius r in the Newtonian theory. Show that a proper time
interval experienced by the inhabitants of the planet is (1 − 3rS/2r)1/2 times the
corresponding coordinate time interval.

4.7. Suppose that a photon of frequency ν can be considered as having kinetic
energy hν and the same gravitational potential energy as a particle of mass hν/c2.
Deduce the expression (4.33) for the frequency shift in a weak gravitational field.
Do you think that such an interpretation could be rigorously justified? (Photons
are discussed in chapter 5 and subsequent chapters.)

4.8. Show that a light ray can describe a circular orbit of coordinate radius
r = 3rS/2 around a black hole. How is this related to the result of exercise 4.6?



Chapter 5

Quantum Theory

Much of the remainder of this book will concern itself with those aspects
of theoretical physics which seek to understand the nature of matter. Such
understanding as we have has mainly been achieved by probing the structure of
successively smaller constituents and, at least on the face of things, the regions
of space and time we need to consider are far too small for spacetime curvature
to be of any significance. Many of our considerations will therefore be restricted
to Minkowski or, as in the present chapter, Galilean spacetime. Paradoxically,
however, it seems that gravity and the structure of space and time may have a
vital role to play in our understanding of matter on the very smallest scales, and
we shall see something of the ways in which this comes about in later chapters.

In chapter 3, we studied some general theoretical aspects of classical or
Newtonian mechanics which at the time seemed to provide a firm basis for
understanding the properties and behaviour of material objects. As I hope
readers are aware, it became apparent towards the end of the nineteenth century
that a number of experimental observations could not be accommodated in this
framework. As it turned out, a radical revision of both the mathematical and the
conceptual foundations of mechanics is required to give an adequate account of
these and subsequent observations, which arise most importantly in connection
with atomic and subatomic phenomena. While the mathematical developments
that constitute quantum mechanics have been outstandingly successful in
describing all manner of observed properties of matter, it is fair to say that
the conceptual basis of the theory is still somewhat obscure. I myself do not
properly understand what it is that quantum theory tells us about the nature
of the physical world, and by saying this I mean to imply that I do not think
anybody else understands it either, though there are respectable scientists who
write with confidence on the subject. This need not worry us unduly. There does
exist a canon of generally accepted phrases which, if we do not examine them
too critically, provide a reliable means of extracting from the mathematics well
defined predictions for the outcome of any experiment we can perform (apart, that
is, from the difficulty of solving the mathematical equations, which can be very
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great). I shall generally use these without comment, and readers must choose for
themselves whether or not to accept them at face value.

This chapter deals with non-relativistic quantum mechanics, and I am going
to assume that readers are already familiar with the more elementary aspects of
the subject. The following section outlines the reasons why classical mechanics
has proved inadequate and reviews the elementary ideas of wave mechanics.
Although the chapter is essentially self-contained, readers who have not met this
material before are urged to consult a textbook on quantum mechanics for a fuller
account. The remaining sections develop the mathematical theory in somewhat
more general terms, and this provides a point of departure for the quantum field
theories to be studied in later chapters.

5.0 Wave Mechanics

The observations which led to the quantum theory are often summarized by the
notion of particle–wave duality. Phenomena that might normally be regarded
as wave motions turn out to have particle-like aspects, while particles behave in
some respects like waves.

The phenomena in question are basically of three kinds. First, there is
evidence that electromagnetic radiation, which for many purposes is described
in terms of waves, behaves for other purposes like a stream of particles, called
photons. (It is interesting to recall that Newton believed in a ‘corpuscular’ theory
of light, propounded in his Opticks, but for reasons that have turned out to be quite
erroneous.) In the photoelectric effect, for example, light incident on the surface
of a metal causes electrons to be ejected. Contrary to what might have been
expected, the energy of one of these electrons is found to be quite independent
of the intensity of the radiation, although the number ejected per unit time does
increase with the intensity. On the other hand, the energy of an electron increases
with the frequency of the radiation. As Einstein was the first to realize, this can
be understood if the radiation is considered to consist of photons, each carrying a
definite amount of energy

E = hν (5.1)

where ν is the frequency and h = 6.6256 × 10−34 J s is Planck’s constant. The
energy of a single photon is transferred to a single electron, and the observed
kinetic energy of the electron is this quantum of energy less a certain amount,
the work function, required to release the electron from the metallic surface.
Planck himself had been concerned with understanding the spectrum of black-
body radiation, namely the way in which the energy radiated by a black object
is distributed over frequencies. The analogous question of the distribution of
molecular speeds in a gas could be well understood from a statistical analysis
based on Newton’s laws of motion, but this method failed when applied to
electromagnetic waves. Planck discovered that, if the statistical analysis were
to be modified by assuming that the energy carried by a wave of frequency ν
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could only be some multiple of the quantum (5.1), then the correct spectrum could
be obtained. Finally, the picture of radiation as a stream of particles is directly
corroborated by the Compton effect, in which X rays scattered from electrons are
found to undergo an increase in wavelength. According to electromagnetic theory
which, as we have seen, is consistent with special relativity, a wave carrying
energy E also carries a momentum p = E/c. If Compton scattering is viewed
as a collision between a photon and an electron, then the change in wavelength
is correctly found simply by requiring conservation of energy and momentum in
each such collision. Since for electromagnetic radiation wavelength is related to
frequency by λ = c/ν, the momentum of a photon can be expressed as

p = h/λ (5.2)

though as far as photons are concerned, this amounts merely to rewriting (5.1).
The second kind of evidence is that which shows that objects normally

conceived of as particles have some wave-like properties. It was first suggested
by de Broglie that the motion of a particle of energy E and momentum p might
have associated with it a wave, whose frequency and wavelength would be given
by (5.1) and (5.2). These would now be two independent equations, since the
wave velocity would not, in general, be that of light. Celebrated experiments
by Thomson and by Davisson and Germer showed that indeed electrons could be
diffracted by a crystal lattice, just as light is by a diffraction grating, and confirmed
the relation (5.2) between momentum and wavelength.

Lastly, there is the fact that atoms have definite ionization energies and
radiate discrete rather than continuous spectra. This suggests that electrons in
atoms occupy certain preferred orbits with definite allowed energies. If the
electrons have waves associated with them, then the preferred states of motion
can be envisaged as standing wave patterns, from which discrete energy levels
arise in the same way as notes of a definite pitch from any musical instrument.

This talk of particle-wave duality may well strike readers as a leap in the
dark. Indeed, it is undoubtedly the case that the elementary constituents of
matter are neither particles nor waves, but rather entities of some other kind, for
which our everyday experience provides no reliable analogy. Nevertheless, the de
Broglie relations (5.1) and (5.2) point the way towards a quantitative theory that
has become extraordinarily successful. I shall develop the essential points of this
theory in more or less the traditional way, which should be made plausible, though
it certainly is not justified in detail, by the experimental facts we have discussed.

Consider first a free particle, with energy E and 3-vector momentum p.
Classically, it would move in a straight line with constant velocity. With this
motion, we must somehow associate a wavefunction �(x, t) and since, according
to (5.2) it must have a definite wavelength, the most reasonable guess for
the nature of this wave is that it should be a plane wave. It turns out that
wavefunctions must in general be complex, and a suitable guess is

�(x, t) = exp [i(k · x − ωt)] . (5.3)
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In terms of the angular frequency ω = 2πν and the wavevector k, with |k| =
2π/λ, we have E = ~ω and p = ~k, where ~ = h/2π . We see at once that, since
this wave exists everywhere in space, there is nothing to tell us where the particle
is. The accepted interpretation is that, in general, the quantity

P(x, t)d3x = |�(x, t)|2d3x (5.4)

is the probability of finding the particle, at time t , in an infinitesimal region
d3x surrounding the point x. Alternatively, we can refer to P(x, t) itself as the
probability density for finding the particle in the neighbourhood of x. This means
that the integral over all space of P should be 1. Therefore, (5.3) is not quite
satisfactory as it stands, since it gives the value 1 for P itself. One method of
modifying (5.3) is to suppose that the particle is confined to some large region of
space and to divide the right-hand side of (5.3) by the square root of this volume.

More generally, if we wish to predict the result of a measurement of some
quantity, say A, given that the state of motion of our system is described by a
known wavefunction � , it may well be that � does not yield any particular value
for A. In that case, we must be content with calculating probabilities for the
measurement to yield various possible values of A. How such probabilities are
obtained will be discussed in the next section. Clearly, however, we must have
some means of extracting from the wavefunction whatever information it contains
about the quantity A. To this end, we associate with every physical quantity a
differential operator, which can act on any wavefunction. For the cases of energy
and momentum, these are taken to be

energy operator: i~
∂

∂ t
(5.5)

momentum operator: − i~∇. (5.6)

Obviously, acting with these on the wavefunction (5.3) is equivalent to
multiplying the wavefunction by E or p respectively. Other wavefunctions,
corresponding to states in which the particle does not have a uniquely defined
energy or momentum, can be written as superpositions of waves of the form
(5.3) by Fourier transformation. If we act with the above operators on such a
wavefunction, we obtain a new wavefunction in which each component of the
superposition has been multiplied by its own energy or momentum. In a manner
that will become clear below, we can compare the new wavefunction with the
old one, or with plane waves, and by making these comparisons we obtain all
the information that quantum mechanics allows us to have about the energy or
momentum of the particle in the given state of motion.

To find out how the state of motion of a system evolves with time, we can, in
simple cases at least, make use of the fact that its energy can be expressed in terms
of other quantities. For example, if we have a single particle of mass m moving
in a potential V (x), then its energy is E = ( p2/2m) + V (x). By substituting the
operators (5.5) and (5.6) into this equation, and allowing each side to act on the
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wavefunction, we obtain Schrödinger’s equation

i~
∂

∂ t
�(x, t) =

(
− ~

2

2m
∇2 + V (x)

)
�(x, t). (5.7)

With these preliminary ideas in mind, we can proceed to develop the
mathematical theory in detail. One of our main concerns will be to show how
equations (5.5) and (5.6), which we obtained more or less by guesswork, can be
justified at a deeper level in terms of the symmetries that we studied in chapter 3.

5.1 The Hilbert Space of State Vectors

In order to develop the theory of classical mechanics, we had first to decide how a
unique state of a physical system could be specified, and this question must now
be reconsidered. We have already seen that, if a quantum-mechanical particle has
a definite momentum, then it cannot also have a definite position. More generally,
there will be maximal sets of observable quantities, say {A, B,C, . . .}, such that
every quantity in the set can, at the same time, have a definite value, while any
other quantity either is forbidden to have a definite value at the same time, or has
a value that is determined by the values of A, B,C, . . . . For a single free particle
whose only properties are position and momentum, {x} and { p} are examples of
such maximal sets. The energy E = p2/2m does not count, because it can be
expressed in terms of p. We shall say that a system is specified to be in a pure
quantum state when all the values {a, b, c, . . .} of quantities belonging to some
maximal set have been given. The criterion for deciding which sets of observables
actually are maximal sets will emerge later on.

The first crucial assumption we made in chapter 3 for classical mechanics
was that every instantaneous state could be specified in terms only of the positions
and velocities of all the particles of the system. We now need a corresponding
assumption for quantum mechanics, which again can ultimately be justified only
by the fact that it leads to successful predictions about experimental observations.
It consists in the following enigmatic statement:

all possible instantaneous states of the system can be represented by vectors in
a Hilbert space.

The mathematical definition of a Hilbert space is given in appendix A, and the
properties of these spaces are discussed in many mathematical textbooks (see,
for example, Simmons (1963)). For many purposes in physics, however, it is
enough to think of state vectors as a straightforward generalization of ordinary
Euclidean 3-vectors and I shall follow this line of thought, ignoring a number of
subtleties that must be taken into account in a fully rigorous treatment. The main
generalizations are:

(i) The Hilbert space can have any number of dimensions, and we usually
need an infinite number to accommodate all possible states.
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(ii) A 3-vector can be multiplied by any positive real number α, the effect
being to multiply its length by α, leaving its direction unchanged, or by a negative
number which reverses the direction. A state vector may be multiplied by any
complex number.

(iii) We denote a state vector by |�〉, the � being simply a label for
identification. The scalar product u · v of two 3-vectors generalizes to a complex
number 〈#|�〉, which has the property

〈�|#〉 = 〈#|�〉∗. (5.8)

In a sense, we might understand (ii) as saying that the length of a vector is allowed
to be complex. However, the length of a vector |�〉 as defined by mathematicians
is

√〈�|�〉, which is a real number.

Suppose for the moment that each observable quantity in the maximal set
{A, B,C, . . .} can assume only a discrete set of values. The state in which these
values are a, b, c, . . . will be represented by a vector |a, b, c, . . .〉 normalized so
that 〈a, b, c, . . . |a, b, c, . . .〉 = 1. Each of the vectors obtained by multiplying
this one by any non-zero complex number corresponds to the same physical
state, and the set of all such vectors is called a ray. Thus, each physical state
corresponds to a ray or, in other words, a direction in the Hilbert space. The
relationship between the quantum state of a system and physical measurements
performed on it is the subject of the following basic postulate of the theory.
Suppose the actual state is represented by a vector |�〉, normalized so that
〈�|�〉 = 1, and a measurement is made of all the quantities in some maximal
set. Then the probability of obtaining the set of results {a, b, c, . . .} is

P(a, b, c, . . . |�) = |〈a, b, c, . . . |�〉|2. (5.9)

Clearly, the goal of quantum-mechanical calculations will be to find these scalar
products, though we do not yet know how to set about this. Readers who have
studied chapter 2 will appreciate that the existence of scalar products implies
that the Hilbert space possesses a structure analogous to a metric, and that this
gives a unique correspondence between a vector |�〉 and a one-form 〈�| which
is the other half of the scalar product symbol, sometimes called a dual vector.
(Readers who have studied section 3.7 should note that this use of the term
‘dual’ is not quite the same as the one used there.) In less formal language, it is
generally convenient to think of two Hilbert spaces, which carry exactly the same
information, differently packaged. One is composed of vectors |�〉 and the other
of dual vectors 〈�|. Exercise 5.1 uses the algebra of complex matrices to show
how this works in concrete terms. A whimsical terminology due to P A M Dirac
calls | 〉 a ‘ket’ and 〈 | a ‘bra’, so that the scalar product becomes a bra(c)ket. I shall
express the one-to-one correspondence between bra and ket vectors by writing

〈�| = |�〉† and |�〉 = 〈�|† (5.10)
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although the † symbol is more properly reserved for use with operators as
described below. The property (5.8) of the scalar product implies that, if α is
a complex number, then

(α|�〉)† = α∗〈�| and (α〈�|)† = α∗|�〉. (5.11)

If |�〉 is the state |a′, b′, c′, . . .〉, where a and a′ are two possible values of A,
and so on, then the probability in (5.9) must be equal to 1 if the two sets of values
are the same and zero otherwise. This implies that two state vectors associated
with the same maximal set of observables are orthonormal, which means

〈a, b, c, . . . |a′, b′, c′, . . .〉 = δaa′δbb′δcc′ · · · . (5.12)

On the other hand, the total probability of getting some set of values from the
measurement is found by summing (5.9) over all possible values of a, b, c, . . .
and must be equal to 1. This will be true if every state vector can be expressed as
a sum of the form

|�〉 =
∑

a,b,c,...

ψabc...|a, b, c, . . .〉. (5.13)

If |�〉 is normalized, the complex coefficients in this expression satisfy

〈�|�〉 =
∑

a,b,c,...

|ψabc...|2 = 1 (5.14)

and readers may easily verify, using (5.12), that the sum of probabilities (5.9)
is indeed 1. If |�〉 is not normalized, then the right-hand side of (5.9) must be
divided by 〈�|�〉.

The fact that every state vector can be expressed in the form (5.13) means
that the set of vectors |a, b, c, . . .〉 associated with a maximal set of observables
forms an orthonormal basis for the Hilbert space. Choosing a new set of basis
vectors, corresponding to a different maximal set of observables, is like rotating
the coordinate axes in Euclidean geometry.

If one of the observables, say A, can assume a continuous range of values,
then δaa′ in (5.12) must be replaced by the Dirac function δ(a−a′) and the sums in
(5.13) and (5.14) by integrals. As far as A is concerned, the probability (5.9) then
becomes a probability density, in the sense discussed in the last section. Consider,
for example, a single particle, and choose the maximal set to be {x}. Although a
state vector is not the same thing as a wavefunction, a given state of motion can
be represented either by a state vector |�〉 or by a wavefunction ψ(x). In fact, if
|x〉 represents the state in which the particle has exactly the position x, then the
wavefunction is simply the coefficient of |x〉 in the expansion

|�〉 =
∫

d3x ψ(x)|x〉. (5.15)

Since the orthonormality condition is now 〈x|x ′〉 = δ3(x − x ′), we get

ψ(x) = 〈x|�〉 (5.16)
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and for the probability density we find

P(x|�) = |ψ(x)|2. (5.17)

Apart from the fact that we are not yet dealing with time evolution, this agrees
exactly with (5.4).

5.2 Operators and Observable Quantities

Suppose we have a rule that enables us to associate with any given vector |�〉
another vector |� ′〉. We say that an operator Ô acts on |�〉 to produce |� ′〉:

|� ′〉 = Ô|�〉. (5.18)

I shall usually use the circumflex to indicate operators. The rule that defines an
operator may be specified in various ways, and sometimes rather indirect means
are necessary since it is impractical to consider each vector of the Hilbert space
individually. The simplest operator of all is the identity operator Î , which leaves
every vector unchanged. Almost all the operators used in quantum theory are
linear. This means that, for any two vectors |#〉 and |�〉 and any two complex
numbers α and β, we have

Ô (α|#〉 + β|�〉) = αÔ|#〉 + β Ô|�〉. (5.19)

All operators in this book are linear unless otherwise stated.
Observable quantities can be represented by operators in the following way.

Let A belong to a maximal set {A, B,C, . . .}. If the state of the system is one of
the corresponding basis vectors |a, b, c, . . .〉 then A has the definite value a, and
we define the action of an operator Â on each basis vector to be that of multiplying
it by a:

Â|a, b, c, . . .〉 = a|a, b, c, . . .〉. (5.20)

An equation of this form, in which the action of an operator is just to multiply
the vector by a number, is called an eigenvalue equation We say that |a, b, c, . . .〉
is an eigenvector of Â with eigenvalue a. Since any vector can be expanded
as in (5.13), this tells us how Â acts on every vector. The probability P(a|�)

of getting the result a from a measurement of A, irrespective of the values of
any other quantities, is found by summing (5.9) over all the values of b, c, . . ..
Readers should be able to verify that the expectation value 〈A〉, which means the
average value of A obtained from many measurements, is

〈A〉 =
∑

a

a P(a|�) = 〈�| Â|�〉. (5.21)

The expression on the right-hand side means the scalar product of 〈�| with the
vector Â|�〉.
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In view of the symmetrical appearance of expressions like this, it is useful
to define the action of operators on bra vectors also. The new bra vector 〈#| Â is
defined by requiring that, for any 〈#| and any |�〉, the expression 〈#| Â|�〉 has
the same value, whether we regard it as the scalar product of 〈#| Â and |�〉 or of
〈#| and Â|�〉. For the reason discussed in exercise 5.1 (which readers may like
to study before proceeding), this quantity is called a matrix element of Â. There
is a second method by which an operator may be used to obtain a new bra vector.
If 〈�| is the bra whose corresponding ket is |�〉, we can first form the new ket
vector Â|�〉 and then find its corresponding bra. The new bras formed by these
two methods are not necessarily the same. We can describe the second method in

terms of the action of an operator Â
†
, which is called the adjoint or the Hermitian

conjugate of Â: (
Â|�〉

)† = 〈�| Â†
. (5.22)

Using (5.8), we find that for any two vectors

〈�| Â|#〉 = 〈#| Â†|�〉∗. (5.23)

An operator which equals its own adjoint

Â† = Â (5.24)

is called self-adjoint or Hermitian. Strictly speaking, these two terms have slightly
different meanings, but the distinction will not concern us.

In (5.23), let us take Â to be Hermitian, |#〉 to be an eigenvector of Â with
eigenvalue a1 and |�〉 an eigenvector with eigenvalue a2. We find(

a1 − a∗
2

) 〈�|#〉 = 0. (5.25)

In the case that |#〉 = |�〉, we have a2 = a1, so we see that the eigenvalues
of an Hermitian operator are real. On the other hand, if the two eigenvalues are
different, then the two eigenvectors must be orthogonal (which means 〈�|#〉 =
0). These two properties are just what we need if Â is to represent a measurable
quantity, since its eigenvalues are possible results of measurements and therefore
real numbers, and we want its eigenvectors to satisfy (5.12). We therefore assume
that all observable quantities are represented by Hermitian operators.

The sum of two operators is defined so as to be consistent with the addition
of two vectors. That is, to act with ( Â + B̂) on a vector |�〉, we first act with Â
and B̂ separately and then add the resulting vectors: ( Â+ B̂)|�〉 = Â|�〉+ B̂|�〉.

The product Â B̂ of two operators represents the combined effect of acting
on a ket vector with B̂ and then acting on the resulting vector with Â: Â B̂|�〉 =
Â(B̂|�〉). The product B̂ Â, in which Â acts before B̂ , does not necessarily have
the same effect. The difference between these two operators is another operator,
called the commutator of Â and B̂ and written as

[ Â, B̂] = Â B̂ − B̂ Â. (5.26)
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In practice, most of the information we have about operators derives from
commutation relations, which express commutators in terms of other operators.
This is largely because of the role played by commutators in the symmetry
operations discussed in the next section. We can use the definition of a
commutator to express the criterion for building the maximal sets of observables
from which our discussion started. If A and B belong to the same set, then acting
on one of the associated basis vectors |a, b, c, . . .〉 with Â and B̂ in either order
gives the same result, namely multiplying it by ab. Since this is true for every
basis vector, the result of acting with Â and B̂ in either order on any vector is the
same. Therefore, their commutator is zero and they are said to commute. (‘Zero’
here means the operator that acts on any vector to give the vector whose length
is zero.) Thus, a maximal set of observables is such that all the corresponding
operators commute with each other, and no other independent operator commutes
with all of them (except Î , which commutes with everything).

We shall often need to consider operators that are functions of other
operators. To illustrate what is involved, consider the expression Â = exp(α B̂).
Since we know how to multiply operators, we can make sense of this by using the
power series expansion

Â = Î + α B̂ + 1
2!α

2 B̂2 + · · · . (5.27)

For some purposes, we can treat this function as if B̂ were a number. For
example, the inverse operator Â−1 is defined by Â−1 Â = Â Â−1 = Î . It is
equal to exp(−α B̂), as may readily be verified by multiplying the two series
together. On the other hand, readers may verify in the same way that the product
exp(B̂) exp(Ĉ) is not equal to exp(B̂ + Ĉ) unless B̂ and Ĉ commute. Obviously,
functions of operators must be handled with care. A power series is often the best
way of resolving doubts as to whether a particular manipulation is permissible.
By using (5.23), we find that the adjoint of Â = exp(α B̂) is Â† = exp(α∗ B̂†). If
α = i and B̂ is Hermitian, this implies that

Â† = Â−1 (5.28)

in which case Â is said to be unitary.

5.3 Spacetime Translations and the Properties of Operators

In order to make use of the formalism we have developed so far, we obviously
need information about the specific properties of operators that represent
particular physical quantities. The only way to acquire this information is to
make informed guesses and see whether they lead to a successful theory. Our only
guide in this enterprise is classical mechanics, and I propose to make the required
guesses as plausible as possible by drawing analogies with the discussions of
chapter 3. We begin with time translations.
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There are several different ways of describing the evolution in time of the
state of a system. The most obvious, which we consider first, is called the
Schrödinger picture. Each vector in the Hilbert space is associated with a possible
instantaneous state of the system, so we denote by |�(t)〉 its state at time t . If we
suppose that the initial state |�(0)〉 at time t = 0 is known, then the relation
between these two states can be described by a time evolution operator Û(t):

|�(t)〉 = Û(t)|�(0)〉. (5.29)

In order to preserve the probabilistic interpretation of |�(t)〉 in a systematic way,
we require its normalization to remain constant:

〈�(t)|�(t)〉 = 〈�(0)|Û†(t)Û(t)|�(0)〉 = 〈�(0)|�(0)〉. (5.30)

Evidently, Û(t) must be a unitary operator with Û(0) = Î and, according to our
discussion at the end of the last section, it can be written as

Û(t) = exp(−iĤt) (5.31)

where Ĥ is an Hermitian operator. If we assume that Ĥ is independent of time,
insert (5.31) into (5.29) and differentiate, we get

i
d

dt
|�(t)〉 = Ĥ|�(t)〉 (5.32)

which has the same form as the Liouville equation (3.22) for the evolution of
the state in classical mechanics. Now H in (3.22) was a differential operator
constructed from the Hamiltonian function, which is usually the same as the total
energy. The quantum-mechanical operator Ĥ is Hermitian, and therefore suitable
for representing an observable quantity. A reasonable guess, therefore, is that Ĥ
is proportional to the quantum-mechanical Hamiltonian or total energy operator
Ĥ . Since the argument of the exponential in (5.31) must be dimensionless, our
guess is

Ĥ = ~−1 Ĥ (5.33)

where ~ is a fundamental constant with the dimensions of energy × time. The
value of this constant must eventually be determined experimentally, and it turns
out, of course, to be none other than Planck’s constant divided by 2π .

A different view of time evolution, called the Heisenberg picture, comes
about when we realize that |�(t)〉 is not itself an observable quantity. The
expectation value of an observable quantity at time t can be written without
reference to |�(t)〉 as

〈�(t)| Â|�(t)〉 = 〈�| Â(t)|�〉 (5.34)

where |�〉 means |�(0)〉 and

Â(t) = Û†(t) ÂÛ(t) = exp(iĤt) Â exp(−iĤt). (5.35)
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The two operators Â and Â(t) have their analogues in classical mechanics where,
as we have seen, a function A({q}, {p}) defines the meaning of a given dynamical
quantity in terms of coordinates and momenta, whereas A(t) = A({q(t)}, {p(t)})
gives the value of this quantity when we substitute for {q} and {p} the actual
solutions of the equations of motion. These solutions depend on the initial values
{q(0)} and {p(0)} and substituting definite numerical values for these yields a
definite function for A(t) corresponding to an entire history of the system as
it evolves from the chosen initial state. The quantum-mechanical analogue of
inserting these initial conditions is to form the expectation value 〈�| Â(t)|�〉. In
this sense, |�〉 represents an entire history of the quantum-mechanical system,
from which we extract time-dependent information using the Heisenberg-picture
operators Â(t). We can easily derive an equation of motion for Â(t), analogous
to (3.17), by differentiating (5.35). Since Ĥ obviously commutes with Û and
Û†, these can be differentiated as if Ĥ were a number. But, since Ĥ does not
necessarily commute with Â, we must be careful about the order of operators in
the result, which is

d

dt
Â(t) = −i[ Â(t), Ĥ] = − i

~
[ Â(t), Ĥ ]. (5.36)

An immediate consequence of this is that any quantity whose associated operator
commutes with Ĥ is conserved. In particular, Ĥ commutes with itself and is
conserved. The assumption that went into this result was that Ĥ, and therefore
the quantum-mechanical law of motion, did not depend explicitly on time. In
view of our discussion in §3.2, we would expect conservation of energy to be an
automatic consequence of this assumption, which reinforces our interpretation of
Ĥ as representing the total energy.

In chapter 3, we constructed from the total momentum an operator P
(equation(3.24)) which generates translations in space just as H does in time.
From considerations similar to those above, we can ascertain the properties of the
corresponding quantum-mechanical operator. Comparing (5.36) with (3.17), we
observe a correspondence of the form

[ Â, B̂] = i~{[A, B}P (5.37)

where the right-hand side means that we first evaluate the Poisson bracket in
terms of classical coordinates and momenta and then substitute the corresponding
quantum-mechanical operators. If this correspondence were generally true, the
definition (3.18) of the Poisson bracket would imply, in particular, the canonical
commutation relations

[x̂α, p̂β ] = i~δαβ (5.38)

[x̂α, x̂β ] = 0 (5.39)

[ p̂α, p̂β ] = 0 (5.40)

where α and β label the Cartesian components of particle positions and momenta.
On the right-hand sides of these equations, and in similar contexts, we understand
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a complex number to mean the operator that multiplies a vector by this number.
I shall shortly give arguments that make the commutation relations (5.38)-
(5.40) fairly plausible. These commutation relations comprise the whole of our
knowledge about momentum and position operators, and indeed the entire theory
of quantum mechanics rests on (5.36) and (5.38)-(5.40). It should be emphasized,
though, that the correspondence (5.37) does not necessarily hold in general. If we
know the commutator [x̂α, p̂β ], then we can work out the commutator of any two

operators Â and B̂ constructed from the coordinates and momenta. Quite often,
the result will be found to agree with (5.37), but this is not necessarily so.

To obtain the commutation relations (5.38)-(5.40), recall that in classical
mechanics the generator of space translations P = i{P, }P is related to the
total momentum P in the same way that the generator of time translations
H = i{H, }P is related to the Hamiltonian. Having guessed that the quantum-
mechanical generator of time translations is to be identified through (5.33), we
now make the consistent assumption that

P̂ = ~−1 P̂ = ~−1
∑

i

p̂i (5.41)

where p̂i is the linear momentum operator for the i th particle. From this
generator, we can construct a space translation operator exp(−ia · P̂), analogous
to the time evolution operator (5.31), which displaces the system through a vector
a. Again, the argument of this exponential must be dimensionless, so it is
important to note that the dimensions of ~ can be expressed as momentum ×
distance. To simplify matters, I shall deal just with a single particle, so that
P̂ = ~−1 p̂, but readers should not find it hard to convince themselves that the
argument extends to a system of many particles also.

For the moment, I propose to accept (5.39), which asserts that the
components of the particle’s position commute with each other, on the intuitive
grounds that all three of these components ought to be simultaneously measurable.
The assertion of (5.40), that the three momentum components also commute,
might seem justifiable on the same grounds but, for reasons that I shall discuss
later, we need to consider this more carefully. If the components of p̂ commute
with each other, then

exp(−ia · P̂) exp(−ib · P̂) = exp[−i(a + b) · P̂]. (5.42)

This means that a translation through a vector b followed by a translation through
a vector a is equivalent to a single translation through the vector a + b, as it
ought to be. The fundamental reason for requiring the momentum components to
commute with each other is to preserve this property of space translations.

Now consider an operator Â = A(x̂) which is a function just of the position
operator x̂. By analogy with (5.35), the effect of a space translation on this
operator is

A(x̂ + a) = exp(ia · P̂)A(x̂) exp(−ia · P̂). (5.43)
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For the particular case A(x̂) = x̂, this becomes

x̂ + a = exp(ia · P̂)x̂ exp(−ia · P̂) (5.44)

and if |x〉 and |x + a〉 are eigenvectors of x̂, with

x̂|x〉 = x|x〉 and x̂|x + a〉 = (x + a)|x + a〉
then we can deduce from (5.44) the action of the translation operator on |x〉,
namely

exp(−ia · P̂)|x〉 = |x + a〉. (5.45)

Let us expand (5.44) in powers of a and use our guess that P̂ = ~−1 p̂. The terms
linear in a on each side must be equal, so we find

aα = − i

~

∑
β

aβ [x̂α, p̂β] (5.46)

and this implies that the commutator is given by (5.38). Using this relation,
exercise 5.3 shows that (5.44) and (5.43) are true to all orders in a. Accepting
that the commutation relation (5.38) is correct, we see that [Ĥ, p̂] = 0 if and
only if Ĥ is independent of x̂; that is, if and only if the system is translationally
invariant. In that case, the equation of motion (5.36) with Â = p̂ shows that the
momentum is conserved.

By now, we can see a general pattern emerging. In classical mechanics, we
can identify quantities that are conserved for a system that is invariant under the
various spacetime symmetry transformations discussed in chapter 3. In quantum
mechanics, the operators that represent these quantities are to be identified (up
to a factor of ~) as the generators of the corresponding transformations, and this
determines their commutation properties. It is instructive to see how these ideas
apply to rotations, which we have not yet considered. According to exercise 3.1,
the conserved quantity associated with rotations is the angular momentum, whose
components (with the notation x = (x, y, z)) are

Ĵx = ŷ p̂z − ẑ p̂y Ĵy = ẑ p̂x − x̂ p̂z Ĵz = x̂ p̂y − ŷ p̂x . (5.47)

Quantum-mechanically, the rotation generators found in that exercise are indeed
given by Ĵ = x̂ × P̂ = ~−1 x̂ × p̂ = ~−1 Ĵ . Using the commutation relations we
have found for x̂ and p̂, it is straightforward to work out the commutators of the
angular momentum components

[ Ĵx , Ĵy] = i~ Ĵz [ Ĵy, Ĵz ] = i~ Ĵx [ Ĵz, Ĵx ] = i~ Ĵy . (5.48)

For the classical angular momentum, on the other hand, we can work out the
corresponding Poisson brackets and verify that (5.37) is true. Evidently, the three
components of angular momentum do not commute with each other. This reflects
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the fact that two consecutive rotations about different axes do not in general
produce the same result if their order is reversed. Had we been content, earlier
on, to accept (5.40) on the grounds that the three components of momentum
ought to be simultaneously measurable, then the same reasoning ought to have
applied to angular momentum, and this would have led to inconsistent results.
It would seem, then, that this argument also stands on dangerous ground when
applied to the position operators. Now that we have understood the whole scheme,
perhaps the best that can be said is that the correspondence (5.37) between Poisson
brackets and commutators, when applied to Cartesian coordinates and to the
generators of spacetime symmetry transformations, provides a mathematically
consistent, and reasonably plausible basis for further investigation.

5.4 Quantization of a Classical System

Until we have some experience of quantum-mechanical systems, the only sensible
way we have of specifying such a system is to model it upon a classical one. Given
the formal correspondences we have seen to exist between classical and quantum
mechanics, it is not difficult to give a prescription for ‘quantizing’ a classical
system. It is called the canonical quantization scheme. Usually, the classical
system can be specified by giving its Lagrangian as a function of generalized
coordinates {qi } and their velocities. The momentum pi = ∂L/∂ q̇i conjugate
to each coordinate can be found and the velocities eliminated in favour of the
momenta. The Hamiltonian can then be found as in §3.3. Finally, the quantum-
mechanical system can be defined by replacing the coordinates and momenta
with the corresponding operators and requiring these operators to satisfy the
commutation relations

[q̂i , p̂ j ] = i~δi j . (5.49)

These relations apply to Schrödinger-picture operators or to Heisenberg-picture
operators at the same time. The commutator [q̂i (t), p̂ j (t ′)] is equal to i~δi j if and
only if t = t ′, as readers are invited to prove. If t (= t ′, its value depends on how
the system has evolved between these two times and is different for systems with
different Hamiltonians. In most cases, no simple expression can be found for it.

When implementing this procedure, one may encounter ambiguities of
various kinds, and satisfactory methods of dealing with these must be sought.
It is possible, for example, that different choices of the generalized coordinates,
which would yield equivalent descriptions of a classical system, may produce
inequivalent results when the commutation relations (5.49) are imposed. For
systems of non-relativistic particles, at least, the safe course seems to be to
use Cartesian coordinates. When the classical Hamiltonian contains products
of variables whose corresponding operators do not commute, the quantum
Hamiltonian is not unambiguously prescribed. A possible course is to replace,
say, Â B̂ with the symmetrized product 1

2 ( Â B̂ + B̂ Â), but other solutions may be
appropriate in specific cases. A further difficulty arises if the time derivative of
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some coordinate does not appear in the Lagrangian. The momentum conjugate to
this coordinate is identically zero and (5.49) obviously cannot hold. Ordinarily,
this does not happen when the classical Lagrangian describes a system of
particles, because the kinetic energy term involves all the velocity components.
It does happen, however, when we try to extend the formalism to treat the
electromagnetic field as a quantum system, and for systems that are subject to
constraints of various sorts (see Lawrie and Epp (1996) for a simple example).

A point worth noting is that velocities do not, in general, have a well defined
meaning in quantum mechanics. We have seen that, if a particle has a definite
momentum, its position is completely undetermined. To assign it a velocity would
require two exact measurements of its position, separated by an infinitesimal
time interval, which does not make good quantum-mechanical sense, even as an
idealized limiting process. The momenta that appear in (5.49) are always the
canonically defined ones. In the presence of electromagnetic forces, for example,
they correspond to classical quantities of the kind shown in (3.59) (though we
have not yet given a proper account of the quantum mechanics of relativistic
particles) rather than to just m ẋ.

Although the formulation of quantum mechanics in terms of state vectors
and operators acting on them is more general than wave mechanics, the solution of
specific problems is often most conveniently achieved in terms of wavefunctions.
Let us therefore see how the algebra of operators acting on state vectors
can be reinterpreted in terms of differential operators on wavefunctions. The
wavefunction corresponding to a state vector |�〉 is given by (5.16). The
wavefunction corresponding to x̂|�〉 is

〈x|x̂|�〉 = x〈x|�〉 = xψ(x) (5.50)

and so the action of the Schrödinger-picture position operator corresponds to
multiplication of the wavefunction by the coordinate. Similarly, using (5.45),
with P̂ = p̂/~, we can write

exp(a · ∇)ψ(x) = ψ(x + a) = 〈x| exp(ia · p̂/~)|�〉. (5.51)

As in (3.23), the exponential of the gradient operator represents a Taylor series.
Clearly, the action of p̂ on |�〉 corresponds to that of −i~∇ on the wavefunction.
Readers should be able to satisfy themselves that, given any operator which
can be expressed as a function A(x̂, p̂), the wavefunction corresponding to the
vector A(x̂, p̂)|�〉 is A(x,−i~∇)ψ(x). In particular, if A is the Hamiltonian
for a particle moving in the potential V (x), we see from (5.32) that the time-
dependent wavefunction ψ(x, t) = 〈x|�(t)〉 obeys Schrödinger’s equation (5.7).
To complete the correspondence between state vectors and wavefunctions, we
note first that the operators x and −i~∇ satisfy the same commutation relations
(5.38) as x̂ and p̂ and second, as readers may show, that any matrix element may
be expressed as

〈#|A(x̂)|�〉 =
∫

d3x φ∗(x)A(x,−i~∇)ψ(x). (5.52)
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The extension of these considerations to systems containing more than one
particle, with wavefunctionsψ(x1, x2, . . .) = 〈x1, x2, . . . |�〉, should be obvious.

5.5 An Example: The One-Dimensional Harmonic Oscillator

The harmonic oscillator provides a standard illustration of the mathematical ideas
we have developed. It also serves to introduce the idea of raising and lowering
operators, which are of fundamental importance for second quantization and field
theory, which we study in the following chapter. The classical system from
which we start consists of a single particle of mass m, moving in one dimension
in the potential V (x) = 1

2 mω2x2, and the classical trajectories are sinusoidal
oscillations of angular frequency ω. The Lagrangian is

L = 1
2 mẋ2 − 1

2 mω2x2. (5.53)

The momentum conjugate to x is p = mẋ and the Hamiltonian is

H = 1

2m
p2 + 1

2
mω2x2. (5.54)

None of the above-mentioned difficulties occurs here, so we are free to impose
the commutation relation [x̂, p̂ ] = i~.

We developed the mathematics of state vectors and operators by assuming
that a Hilbert space describing all possible states of motion of our system was
given, and enquiring about the properties of operators that act on it. Now,
however, we see that the practical problem of theoretical physics is the reverse:
our physical principles supply us with operators having definite properties, and we
have to construct a Hilbert space by finding the states of motion that are permitted
by these properties. This problem will be solved if we can find a set of basis
vectors and if we know how any operator acts on each basis vector. A set of basis
vectors will be associated with some maximal set of observables, and the most
useful sets are {x}, {p} and {H }. The description in terms of a particular set of
basis vectors is called a representation, and the representations associated with
the above maximal sets are called, logically enough, the coordinate, momentum
and energy representations.

We shall first construct the basis vectors for the energy representation. These
are eigenvectors of the Hamiltonian, labelled by an integer n, with eigenvalues εn :

Ĥ |n〉 = εn |n〉. (5.55)

They are of particular interest because they are stationary states. Time-dependent
vectors of the form exp(−iεnt)|n〉 are solutions of (5.32), and the expectation
value in such a state of any operator that is defined in a time-independent manner
is constant. If, for example, the oscillator is regarded as a model for the vibrations
of a diatomic molecule, then the observed spectral lines arise from transitions
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between these states, caused by external forces that are not included in our
description. The fact that the allowed energy levels have discrete values rather
than a continuous range is at present a matter of assumption, but will be verified
in due course. It is advantageous to exchange the position and momentum for two
new operators â and â†, defined by

â =
(ωm

2~

)1/2
[

x̂ +
(

1

ωm

)
i p̂

]
(5.56)

â† =
(ωm

2~

)1/2
[

x̂ −
(

1

ωm

)
i p̂

]
(5.57)

in terms of which the Hamiltonian can be written as

Ĥ =
(

â†â + 1
2

)
~ω. (5.58)

Using the commutation relation for x̂ and p̂, we find that these operators satisfy

[â, â†] = 1 (5.59)

[â, Ĥ ] = ~ωâ (5.60)

[â†, Ĥ ] = − ~ωâ†. (5.61)

From (5.60), it is easy to show that if |n〉 is an energy eigenvector with energy εn ,
then â|n〉 is an eigenvector with energy (εn − ~ω). In fact, we can calculate

Ĥ (â|n〉) = Ĥ â|n〉 = (â Ĥ − ~ωâ)|n〉 = (εn − ~ω)(â|n〉). (5.62)

Similarly, (5.61) implies that â†|n〉 is an eigenvector with energy (εn + ~ω). For
this reason, â and â† are called energy lowering and raising operators.

Written in terms of x̂ and p̂, the Hamiltonian is a sum of squares of Hermitian
operators. Therefore, none of its eigenvalues can be negative, and there must be
a ground state of minimum energy, which we denote by |0〉. Since â|0〉 cannot
be a state with lower energy, the only way to satisfy (5.60) when it acts on |0〉
is to have â|0〉 = 0. Then, acting on |0〉 with the Hamiltonian (5.58) shows that
ε0 = 1

2~ω. By acting n times on |0〉 with â†, we generate an infinite series of
energy eigenvectors with energies

εn =
(

n + 1
2

)
~ω. (5.63)

Furthermore, there cannot be any states with energies between these values. If
there were, then by acting enough times with â, we could generate a state with
energy between 0 and ~ω, but not equal to 1

2~ω. Acting once more with â
would have to produce zero, by the same argument as before. But we already
know that a state with this property has an energy of exactly 1

2~ω, which is
a contradiction. Thus, the states |n〉, with energy eigenvalues given by (5.63),
constitute the complete set of basis vectors for the energy representation. We
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require these basis vectors to be normalized so that 〈n|n′〉 = δnn′ . I leave it as an
exercise for readers to establish (by induction) that they are given by

|n〉 = (n!)−1/2(â†)n|0〉 (5.64)

and that

â†|n〉 = (n + 1)1/2|n + 1〉 and â|n〉 = n1/2|n − 1〉. (5.65)

This is, essentially, the solution to our problem. Any observable property of the
oscillator can be expressed in terms of x̂ and p̂, and it is a trivial matter to express
these in terms of â and â† by solving (5.56) and (5.57). Any state vector can be
expressed as a linear combination of the basis vectors |n〉, and so (5.65) tells us
how any operator acts on any vector. A particularly useful operator is n̂ = â†â,
which has the property

n̂|n〉 = â†â|n〉 = n|n〉. (5.66)

It is called the number operator, because it counts the number of quanta ~ω of
energy in the state.

These results may be translated into the coordinate representation by finding
the wavefunctions ψn(x) of the energy eigenstates. The two sets of basis vectors
are related by

|n〉 =
∫ ∞

−∞
dx ψn(x)|x〉 and |x〉 =

∞∑
n=0

ψ∗
n (x)|n〉. (5.67)

To find the wavefunctions, we rewrite the raising and lowering operators in terms
of x and −i~∂/∂x . The ground-state wavefunction ψ0(x) is the solution of the
equation a(x,−i~∂/∂x)ψ0(x) = 0, and the others are found by applying the
raising operator to it. The result may be written as

ψn(x) = Nn exp

(
ωmx2

2~

)(
− d

dx

)n

exp

(
−ωmx2

~

)
(5.68)

where the normalizing factor

Nn =
[

n!
(

π~

ωm

)1/2 (2ωm

~

)n
]−1/2

ensures that ∫ ∞

−∞
|ψn(x)|2dx = 1. (5.69)

A further translation into the momentum representation is simply a matter of
Fourier transformation. It can easily be verified that the relations

|x〉 = (2π~)−1/2
∫

d p exp(−ipx/~)|p〉 (5.70)

|p〉 = (2π~)−1/2
∫

dx exp(ipx/~)|x〉 (5.71)
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are uniquely determined by (5.45) and the orthonormality requirements 〈x |x ′〉 =
δ(x − x ′) and 〈p|p′〉 = δ(p − p′). Consequently, the energy eigenvectors may be
expressed as

|n〉 =
∫

d p πn(p)|p〉 (5.72)

where the momentum-space wavefunction is

πn(p) = (2π~)−1/2
∫

dx exp(−ipx/~)ψn(x). (5.73)

Obviously, this method of solving the problem works only for the particular
case of the harmonic oscillator. For single particles in other potentials, the
most practical method of constructing the Hilbert space is to use the coordinate
representation. The eigenvalue equation (5.55) becomes the time-independent
Schrödinger equation[

− ~
2

2m
∇2 + V (x)

]
ψε(x) = εψε(x). (5.74)

In the case of the harmonic oscillator, the boundary conditions on the solutions of
this equation are that the wavefunction must vanish sufficiently fast as |x | → ∞
for the integral in (5.69) to converge to a finite value, which can be normalized to
1. This is possible only when ε has one of the values in (5.63), so it is these
boundary conditions that lead to the energy of the oscillator being quantized
in a set of discrete levels. In all these states, the probability density (5.17)
vanishes rapidly when |x | becomes sufficiently large. In this sense, the particle is
constrained by the parabolic potential to remain close to the origin, and the states
are known as bound states.

In almost every physical problem, the potential approaches a finite value,
which might as well be zero, at infinity. The Coulomb potential seen by the
electron in a hydrogen atom is an archetypical example. If the potential possesses
a well, then there may be bound states of negative energy, in which the particle is
most probably to be found in the well. The spectrum of bound-state energy levels
is always discrete. In positive-energy states, however, the particle can escape
to infinity, where the wave function becomes similar to (5.3). These are called
scattering states. The energies of scattering states form a continuous spectrum,
because different boundary conditions apply to them. The exact nature of these
boundary conditions is slightly complicated, because the wavefunctions cannot be
made to satisfy (5.69) or its three-dimensional equivalent. In fact, if the particle is
not bound by the potential, the usefulness of the energy eigenfunctions associated
with the potential is limited, and a different description is appropriate. I shall
return briefly to this question in chapter 9 and in appendix D.

The use of wave functions to solve both bound state and scattering problems
is of the utmost importance in many areas of physics. The practical techniques
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available are described in any respectable textbook on quantum mechanics, but
they are not part of the subject matter of this book, and I must ask readers to look
elsewhere for further details.

Exercises

5.1. The object of this exercise is to show that manipulation of state vectors and
operators is entirely analogous to the algebra of complex matrices and is in fact
identical in the case of a Hilbert space of finite dimension. Readers are invited
to satisfy themselves of this, and to gain some further insight, by considering
the various assertions made below. Little or no detailed working may be needed.
Let |ψ〉 stand for the column matrix (ψ1, . . . , ψN )T, where the ψi are complex
numbers and T denotes the transpose. An orthonormal basis is given by the vectors
|i〉, where |1〉 = (1, 0, 0, . . . , 0)T, |2〉 = (0, 1, 0, . . . , 0)T and so on.

(a) Any column matrix |ψ〉 can be expressed as a linear combination of the
basis vectors |i〉, with coefficients ψi .

(b) If α is any complex number, then α|ψ〉 = (αψ1, . . . , αψN )T.
(c) If 〈ψ| is the row matrix (ψ∗

1 , . . . , ψ
∗
N ), and 〈ψ|φ〉 is the usual matrix

product, then (5.8) and (5.11) are true.
(d) Multiplication by any N × N square matrix Â provides a rule for

converting any column matrix into another column matrix.
(e) Any square matrix can be multiplied on the left by a row matrix, and the

elements of Â are Âi j = 〈i | Â| j〉.
(f) If the elements of Â† are ( Â†)i j = Â∗

j i , then (5.22) and (5.23) are true.

(g) If Â|i〉 = ai |i〉 for each basis vector, then Â is a diagonal matrix with
diagonal elements ai .

(h) If Â is a diagonal matrix, B̂ is a square matrix such that [ Â, B̂] = 0, and
ai (= a j , then B̂i j = 0.

(i) If { Â, B̂, Ĉ, . . .} is a maximal set of operators (square matrices) in the
sense discussed following (5.26), and the basis vectors |i〉 are their simultaneous
eigenvectors, then Â, B̂ , Ĉ , . . . are all diagonal and, for any pair of indices i and
j , there is at least one member of the set whose i th and j th eigenvalues are not
equal.

(j) If Â is a diagonal matrix with diagonal elements ai , then f ( Â) is the
diagonal matrix whose elements are f (ai ).

5.2. For any set of operators Â, B̂ , Ĉ , . . . , show that ( Â B̂Ĉ · · ·)† = · · · Ĉ† B̂† Â†

and ( Â B̂Ĉ · · ·)−1 = · · · Ĉ−1 B̂−1 Â−1.

5.3. For a single coordinate and its conjugate momentum, use the canonical
commutator (5.38) to show by induction that x̂ p̂n = p̂n x̂ + ni~ p̂n−1 and
p̂x̂ n = x̂ n p̂ − ni~x̂ n−1. Hence show, for any function f that has a Taylor
expansion, that x̂ f ( p̂) = f ( p̂)x̂ + i~ f ′( p̂) and p̂ f (x̂) = f (x̂) p̂ − i~ f ′(x̂). Use
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these results to verify (5.44) and (5.43). For a system of several particles, whose
potential energy depends only on the relative coordinates of pairs of particles,
show that the total momentum is conserved.

5.4. The symbol |�〉〈�| represents a projection operator, which acts on any ket
vector |#〉 to produce the new ket vector (〈�|#〉)|�〉 and analogously on any bra
vector. Show that the probability (5.9) is the expectation value of a projection
operator. If |a, b, c, . . .〉 are a complete set of basis vectors, show that their
projection operators form a resolution of the identity, which means that∑

a,b,c,...

|a, b, c, . . .〉〈a, b, c, . . . | = Î.

Show that the operator Â, for which Â|a, b, c, . . .〉 = a|a, b, c, . . .〉, can be
expressed as

Â =
∑

a,b,c,...

|a, b, c, . . .〉a〈a, b, c, . . . |.

How can this be generalized to represent an operator that is not diagonal in this
representation?

5.5. If f ′(x) denotes the derivative d f (x)/dx when x is an ordinary number,
show that d f (α Â)/dα = Â f ′(α Â).

5.6. Let |i〉 and |α〉 be two sets of orthonormal basis vectors such that

|i〉 =
∑
α

uiα |α〉.

Show that the complex coefficients uiα are the components of a unitary matrix.

5.7. Let Â and B̂ be two operators such that the commutator Ĉ = [ Â, B̂]
commutes with both Â and B̂ , and let : · · · : denote an ordering of operators such
that Âs always stand to the left of B̂s. So, for example,

:( Â + B̂)n: =
n∑

m=0

(
n
m

)
Âm B̂n−m

where
(n

m

)
is the binomial coefficient.

(a) Show by induction that

( Â + B̂)n+1 = Â( Â + B̂)n + ( Â + B̂)n B̂ − nĈ( Â + B̂)n−1.

(b) Show that

( Â + B̂)n =
[n/2]∑
m=0

αnmĈm :( Â + B̂)n−2m :
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where [n/2] equals n/2 if n is even or (n − 1)/2 if n is odd, and the expansion
coefficients satisfy the recursion relation

αn+1,m+1 = αn,m+1 − nαn−1,m .

(c) Verify that this recursion relation is solved by

αnm =
(

−1

2

)m n!
(n − 2m)!m!

and hence derive the Baker-Campbell-Hausdorff formula

exp( Â + B̂) = exp( Â) exp(B̂) exp(−Ĉ/2).

(d) Show that exp( Â) exp(B̂) = exp(B̂) exp( Â) exp(Ĉ).



Chapter 6

Second Quantization and Quantum Field
Theory

Up to a point, the quantum theory developed in chapter 5 was quite general.
However, the systems we had in mind were non-relativistic ones consisting of
a fixed number of particles. In this chapter, we extend the theory to deal with
systems in which the number of particles can change. There are several reasons
for wanting to do this. The most obvious is that we need a method of describing
high-energy scattering and decay processes in which particles can be created and
destroyed. A second is that, when we try to make quantum theory consistent
with special relativity, we encounter difficulties (discussed in chapter 7) that can
be resolved only in this more general setting. The final reason is that, even for
systems of non-relativistic particles, the mathematics rapidly becomes intractable
as the number of particles increases. A useful device for dealing with large
systems is, roughly speaking, to imagine adding an extra particle, which serves
as a theoretical probe of the state of the system. To put the matter another way,
the method of second quantization developed in this chapter provides a means of
dealing with the entire system by considering only a few particles at a time.

The term ‘second quantization’ is an unfortunate one, insofar as it suggests
a theory which is ‘twice as quantum-mechanical’ as the one we started with.
This is emphatically not the case: all we are doing is developing a convenient
mathematical technique for dealing with the original theory. The origin of
the term will become clear, but briefly it is this. Addition or subtraction
of particles to or from the system is represented by creation and annihilation
operators, which are closely analogous to the raising and lowering operators of
the harmonic oscillator. From these we can construct field operators which,
in the absence of interactions, satisfy the same Schrödinger equation as single-
particle wavefunctions. By turning a wavefunction, which is acted on by operators
representing physical quantities, into an operator which itself acts on state vectors,
we might appear to be adding a further layer of quantumness, but readers who
follow the development carefully will realize that this is not a good description of
what is actually taking place.

130
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6.1 The Occupation-Number Representation

Consider a system containing a fixed number N of identical particles. For the
moment, we shall assume that they do not interact with each other. Some, though
not all, states of the system can be specified by giving the state of motion of
each particle. I shall label a complete set of single-particle states by the symbol
k. Quite often, it will be convenient to take these single-particle states to be
momentum eigenstates, in which case k will represent the value of the momentum.
Other sets of states, such as the Bloch states that describe the motion of electrons
in a crystal lattice, may be more useful in particular circumstances. Also, if the
particles have spin, then the spin state of the particle is included in k. (Readers
who are not familiar with spin will find a brief discussion in appendix B, and I
shall discuss its relativistic origin in chapter 7; those who are not familiar with
Bloch states may like to consult a book on solid state physics, but need not do
so for the purposes of this book.) Thus, if we choose to specify the momentum
(kx , ky, kz) and spin s of an electron, then k is a shorthand for this set of four
numbers.

Using these single-particle states, we can choose a set of basis vectors for
the whole system of the form |k1, k2, . . . , kN 〉, where the nth label in the list
refers to the nth particle. Because quantum-mechanical particles do not follow
definite trajectories, it is impossible in principle to distinguish two identical
particles. Therefore, the two vectors |k1, k2, . . .〉 and |k2, k1, . . .〉 must be taken
as referring to the same physical state and can differ only by a phase factor. That
is, |k2, k1, . . .〉 = α|k1, k2, . . .〉, where α is a complex number of unit magnitude.
On interchanging the particles a second time, we get back to the original vector,
so α2 = 1. The same is true, of course, for any pair of particles. The state is said
to be symmetric if α = 1 or antisymmetric if α = −1. It is found that particles
with integral spin can exist only in symmetric states. They are said to obey Bose–
Einstein statistics and are called bosons. Particles with half-odd-integer spin exist
only in antisymmetric states. They obey Fermi–Dirac statistics and are called
fermions. The only known explanation for this state of affairs (the spin-statistics
theorem) comes from relativistic field theories and will be touched on in chapter 7.

For the moment, we deal only with bosons. The order of k labels in a basis
vector is immaterial: the same set of labels in any order identifies the same vector.
It is a simple matter to allow for variable numbers of particles to be present.
We simply include in the Hilbert space state vectors with arbitrary numbers of
k labels. The orthonormality condition for these vectors is a bit cumbersome to
write down correctly. I shall exhibit an expression for it, and then explain its
meaning. The expression is

〈k1, k2, . . . , kN |k ′
1, k ′

2, . . . , k ′
N ′ 〉

= CδN N ′
∑

P

δ(k1 − k ′
P(1))δ(k2 − k ′

P(2)) · · · δ(kN − k ′
P(N)).

(6.1)
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We want this scalar product to be zero unless the two vectors represent the same
physical state. They must first of all have the same number of particles, which
accounts for δN N ′ . Then, we need delta function constraints to ensure that each
vector represents the same set of single-particle states. Each delta function in (6.1)
stands for a product of deltas, one for each variable represented by k: a Kronecker
symbol for a discrete variable and a Dirac function for a continuous one. If we
list the k labels of a given vector in a different order, we still have the same vector.
Therefore, we must arrange matters so that the constraints will be satisfied if any
permutation of the labels k ′

1, . . . , k ′
N matches the set k1, . . . , kN . In (6.1), the set

of numbers P(1), . . . , P(N) is a permutation of 1, . . . , N , and we achieve the
desired effect by summing over all permutations. If, say, n of the ki are equal,
then n! of the terms in this sum will simultaneously be satisfied and, to get the
correct normalization, we divide by n!. If there are several sets of equal ki , then
we divide by the n! for each set, and this normalization factor is denoted by C .

If at least one of the variables represented by k is continuous, it will be
extremely rare for two of the ki to have exactly the same value, and C is almost
always equal to 1. In mathematical terms, the Dirac delta function makes good
sense only when it appears inside an integral and, for readers who understand
such matters, ‘almost always’ means ‘except on a set of zero measure’. It often
happens that all the variables in k have only a discrete set of values. For example,
if the particles are confined to a cubical box of side L, then each momentum
component can have only the values 2π~n/L, where n is an integer. In that case,
it is possible to use a different notation in which k1, k2, . . . are the allowed values
of k, rather than the k associated with different particles. The basis vectors can
then be denoted by |n1, n2, . . .〉, where ni is the number of particles in the state ki .
This is called the occupation-number representation, the ni being the occupation
numbers of single-particle states. The orthonormality condition can be written
much more straightforwardly as

〈n1, n2, . . . |n′
1, n′

2, . . .〉 = δn1n′
1
δn2n′

2
· · · . (6.2)

At this point, it is interesting to note the greater generality of the formulation
of quantum theory in terms of state vectors as opposed to wavefunctions. In
the Schrödinger picture, the time-dependent state of the system is some linear
combination of basis vectors

|�(t)〉 =
∑

n1,n2,...

�n1n2...(t)|n1, n2, . . .〉. (6.3)

In a quite natural way, this represents in general a superposition of states in which
the system has different numbers of particles. If the system does contain a fixed
number N of particles, then only those coefficients for which the occupation
numbers add to N will be non-zero. If the Hamiltonian does not allow for
processes in which particles are created or destroyed, then this number will be
conserved. If such processes are possible, then even if we start with a definite
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number of particles, the number remaining after some period of time will be
uncertain, and the superposition will contain states with different numbers of
remaining particles. This situation cannot be represented by a wavefunction,
which necessarily has a definite number of arguments.

It is now possible to introduce creation and annihilation operators, which
convert a given basis vector into one with an extra particle or one with a particle
missing. In the occupation-number representation, the process is precisely
analogous to changing the number of quanta of energy in the state of an harmonic
oscillator. For each single-particle state k, we define operators â(k) and â†(k) by

â(ki )|n1, n2, . . . , ni , . . .〉 = n1/2
i |n1, n2, . . . , (ni − 1), . . .〉 (6.4)

â†(ki )|n1, n2, . . . , ni , . . .〉 = (ni + 1)1/2|n1, n2, . . . , (ni + 1), . . .〉. (6.5)

Since each operator affects only one of the occupation numbers, it is easy to show
that operators for different ki commute, while those for the same ki satisfy (5.59).
In summary, the commutation relations are

[â(ki ), â(k j )] = [â†(ki ), â†(k j )] = 0 (6.6)

[â(ki ), â†(k j )] = δi j . (6.7)

If some of the k variables are continuous, we must revert to the previous
representation. The commutation relation (6.7) becomes

[â(k), â†(k ′)] = δ(k − k ′). (6.8)

If we restrict attention to basis vectors whose k arguments are all different, then
the action of the creation and annihilation operators is

â†(k)|k1, k2, . . . , kN 〉 = |k1, k2, . . . , kN , k〉 (6.9)

â(k)|k1, k2, . . . , kN 〉 =
N∑

n=1

δ(k − kn)|k1, k2, . . . , (kn), . . . , kN 〉 (6.10)

where, in the second equation, (kn) denotes a label that is missing from the
original list. By acting with [â(k), â†(k ′)] on an arbitrary basis vector, it is easily
verified that (6.9) and (6.10) imply the relation (6.8). Readers will also find it
instructive to verify from the above equations that â†(k) is indeed the adjoint of
â(k).

The entire set of basis vectors can be constructed by the method we used in
the case of the harmonic oscillator. We start from the vacuum state |0〉, which
contains no particles, and use the creation operator to populate it:

|k1, k2, . . . , kN 〉 = â†(kN ) · · · â†(k2)â
†(k1)|0〉. (6.11)

The Hilbert space constructed in this way is called a Fock space. A subtle point is
worth noting. When particles interact with each other, it is still possible to form
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state vectors in terms of single-particle states, but these will not, in general, be
energy eigenstates. It is not necessarily true that every possible state of the system
can be represented as a superposition of the Fock basis vectors, so the Fock space
constructed according to (6.11) may be only a part of the whole Hilbert space.
For many purposes, though, it will not be necessary to worry about this.

6.2 Field Operators and Observables

From now on, we always take the single-particle states to be momentum
eigenstates. For the moment, we consider only spinless particles, so k stands
just for the three momentum components, or rather for the wavevector k = p/~.
The wavefunction for a single particle in the state |�(t)〉 can be written as

�(x, t) = 〈x|�(t)〉 = (2π)−3/2
∫

d3k eik·x〈k|�(t)〉

= (2π)−3/2
∫

d3k eik·x〈0|â(k)|�(t)〉. (6.12)

The annihilation operator â(k) creates the one-particle bra vector from the vacuum
because it is the adjoint of â†(k). In the non-relativistic theory, we define the
Schrödinger-picture field operators by

ψ̂(x) = (2π)−3/2
∫

d3k eik·xâ(k) (6.13)

ψ̂†(x) = (2π)−3/2
∫

d3k e−ik·x â†(k). (6.14)

Obviously, these create or annihilate a particle at a definite point x, rather than
in a state of definite momentum; for example, |x〉 = ψ̂†(x)|0〉. In relativistic
theories, we shall find that the situation is a little more complicated because of
the need to maintain Lorentz covariance. The commutation relations for the field
operators follow from those of â(k) and â†(k). They are

[ψ̂(x), ψ̂(x ′)] = [ψ̂†(x), ψ̂†(x ′)] = 0 (6.15)

[ψ̂(x), ψ̂†(x ′)] = δ(x − x ′). (6.16)

The operators that represent observable properties of many-particle systems
are constructed from the creation and annihilation operators or from the field
operators. The operator n̂(k) = â†(k)â(k) is a number operator, which counts
the number of particles in the state k, if k is discrete. If the momentum takes a
continuous range of values, then n̂(k)d3k counts the number of particles in the
momentum range d3k near k. The total number of particles is counted by the
operator

N̂ =
∫

d3k â†(k)â(k) =
∫

d3x ψ̂†(x)ψ̂(x) (6.17)
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and, by summing ~k times the number of particles having that momentum, we
find that the total momentum is represented by the operator

P̂ =
∫

d3k (~k)â†(k)â(k) =
∫

d3x ψ̂†(x)(−i~∇)ψ̂(x). (6.18)

The number and total momentum are one-body operators, in the sense that they
represent the total for the system of a property possessed by individual particles.
Kinetic energy, mass, electric charge and the potential energy due to an externally
applied field are examples of other properties of the same kind. There is clearly
a general rule for constructing one-body operators. If A(x,−i~∇) is the wave-
mechanical operator that represents some property of a single particle, then the
total property for the whole system is represented by

Â =
∫

d3x ψ̂†(x)A(x,−i~∇)ψ̂(x). (6.19)

We may also consider operators that depend for their definition on two or
more particles at a time. An example is the Coulomb potential, which acts
between two particles. In a state with particles at the points x1, . . . , xN , the total
potential energy is

V = 1
2

N∑
i, j=1

V (xi , x j )

= 1
2

∫
d3x d3x ′ V (x, x ′)

N∑
i, j=1

δ(x − xi)δ(x ′ − x j ) (6.20)

the terms with i = j being excluded from the sum. This will be correctly
represented if we can find an operator which, when acting on any state of the
form |x1, . . . , xN 〉, gives the same state multiplied by the sum of delta functions
in (6.20). The action of the field operators on this state is exactly analogous to
(6.9) and (6.10), and I leave it as an exercise for readers to verify that the total
potential energy is represented by the operator

V̂ = 1
2

∫
d3x d3x ′ ψ̂†(x)ψ̂†(x ′)V (x, x ′)ψ̂(x ′)ψ̂(x). (6.21)

6.3 Equation of Motion and Lagrangian Formalism for Field
Operators

We have dealt so far only with Schrödinger-picture field operators. In the
Heisenberg picture, time-dependent operators are defined by the usual method
through (5.35):

ψ̂(x, t) = eiĤ t/~ψ̂(x)e−iĤ t/~. (6.22)
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For a system of free particles, the Hamiltonian is just the kinetic energy operator.
Because the Hamiltonian commutes with itself, it can be expressed in terms of
either the Schrödinger-picture or the Heisenberg-picture fields:

Ĥ =
∫

d3x ψ̂†(x)

(
− ~

2

2m
∇2

)
ψ̂(x) =

∫
d3x ψ̂†(x, t)

(
− ~

2

2m
∇2

)
ψ̂(x, t).

(6.23)
Readers to whom this is not obvious should verify it by substituting (6.22) into
the second expression. The same is true if Ĥ contains a potential energy of the
form (6.21) or a one-body external potential. The Heisenberg-picture operators
satisfy the commutation relations (6.15) and (6.16), provided that all operators are
evaluated at the same time; these are called equal-time commutation relations. By
using them in (5.36), we can find the equation of motion for ψ̂(x, t). If we include
the potential (6.21) and an external potential U(x), the result is

i~
∂

∂ t
ψ̂(x, t) = − ~

2

2m
∇2ψ̂(x, t) + U(x)ψ̂(x, t)

+
∫

d3x ′ ψ̂†(x ′, t)V (x, x ′)ψ̂(x ′, t)ψ̂(x, t). (6.24)

When the two-body potential is absent, this is the same as the Schrödinger
equation satisfied by the wavefunction. This is just as well, since the single-
particle wavefunction (6.12) can be written in the Heisenberg picture as �(x, t) =
〈0|ψ̂(x, t)|�〉, and it must obey the Schrödinger equation.

I shall now show that the whole structure of second quantization can be
obtained from a Lagrangian formalism, by means of the canonical quantization
prescription described in chapter 5. For brevity, I shall give the derivation just for
the free-particle theory whose Hamiltonian is (6.23), but readers should be able to
extend it without difficulty to the case of particles interacting through a two-body
potential. Consider the action defined by

S =
∫

dt d3x ψ∗(x, t)

(
i~

∂

∂ t
+ ~2

2m
∇2

)
ψ(x, t) (6.25)

where ψ(x, t) is a complex function, not, for the moment, a field operator. In
chapter 3, we saw that Maxwell’s equations for the electromagnetic field could be
obtained by finding the Euler–Lagrange equations for an action somewhat akin
to this. In this case, the real and imaginary parts of ψ are independent functions,
but it is more convenient to treat ψ and ψ∗ as the independent variables. By
varying ψ∗(x, t) we obtain Schrödinger’s equation for ψ(x, t) and by varying
ψ(x, t) itself we get the complex conjugate of the same equation. The values of
ψ(x, t) at each point x form an infinite set of generalized coordinates, and there
is an infinite set of conjugate momenta, which form a function !(x, t). This
function is found by functional differentiation (which is explained in appendix A
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for readers who are not familiar with it):

!(x, t) = δS

δψ̇(x, t)
= i~ψ∗(x, t). (6.26)

In (6.25), the time derivative acts only on ψ or, if we integrate by parts, only on
ψ∗. Therefore, we cannot define conjugate momenta for ψ and ψ∗ at the same
time. This kind of difficulty was mentioned in chapter 5, and the solution that
works here is to ignore ψ∗ as an independent variable, except for the purpose of
deriving the equation of motion. Then the Hamiltonian is

H =
∫

d3x !ψ̇ − L =
∫

d3x ψ∗
(

− ~
2

2m
∇2

)
ψ. (6.27)

To get back to our quantum theory, we simply follow the canonical
quantization scheme, replacing ψ(x, t) with the field operator ψ̂(x, t) and its
complex conjugate with ψ̂†(x, t). The Hamiltonian (6.27) becomes identical to
(6.23). In the canonical commutator (5.49), the coordinate q̂i becomes ψ̂(x, t),
the momentum p̂ j is replaced with the momentum !̂(x ′, t) obtained from (6.26),
and the Kronecker symbol is replaced by δ(x − x ′). The result is none other than
the commutator (6.16) for the field operators. For the kind of theory we have
been considering, this new bit of formalism provides no new information, since
we have just returned to our starting point. Suppose, however, that we wish to
treat the electromagnetic field as a quantum system. The analysis we have just
been through shows us how to do this, although there is an added difficulty to be
overcome, as will be discussed in chapter 9. The vector potential Aµ becomes
a field operator, which obeys Maxwell’s equations rather than the Schrödinger
equation, and its commutation relations will again be given by the canonical
prescription. In the light of our experience in this chapter, we may anticipate
that this field operator can be interpreted in terms of creation and annihilation
operators for particles, namely photons, which are quanta of electromagnetic
energy. In fact, the Lagrangian formalism provides the most convenient basis
for most relativistic field theories.

6.4 Second Quantization for Fermions

Many of the important applications of non-relativistic field theory concern
electronic systems. Electrons have spin 1

2 and are therefore fermions. Although
the consequences of this are far reaching, the modifications needed in the basic
theory are quite simple. We must take the label k of single-particle states to
include the variable s, which measures the component of spin along a chosen
quantization axis and has the values ± 1

2 . Slightly more tricky is the antisymmetry
of multiparticle states. For simplicity, let us consider two-particle states, for which
|k, k ′〉 = −|k ′, k〉. I shall follow the common practice of using b̂(k) and b̂†(k) to
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denote fermionic annihilation and creation operators, to distinguish them from
bosonic ones. It is now important to keep track of the ordering of k labels in a
state vector. A sensible convention when using b̂†(k) to add a particle is to place
the label for the added particle at the end of the list. Thus,

b̂†(k ′)b̂†(k)|0〉 = |k, k ′〉 = −b̂†(k)b̂†(k ′)|0〉. (6.28)

Similarly, the annihilation operator can be regarded as removing the last particle
in the list. It can, of course, remove any particle in the state, so to write down the
result we first move the particle to the end, if necessary, incurring a minus sign
for each interchange of particle labels. For a two-particle state,

b̂(k)|k1, k2〉 = δ(k − k2)|k1〉 − δ(k − k1)|k2〉 = −b̂(k)|k2, k1〉. (6.29)

More generally, (6.10) is modified to read

b̂(k)|k1, k2, . . . , kN 〉 =
N∑

n=1

(−1)N−nδ(k −kn)|k1, k2, . . . , (kn), . . . , kN 〉. (6.30)

Evidently, b̂(k) and b̂†(k) cannot obey the commutation relations (6.6)-(6.8).
In fact, as it is not difficult to see, the relations consistent with the antisymmetry
of the state vectors are the anticommutation relations

{b̂(k), b̂(k ′)} = {b̂†(k), b̂†(k ′)} = 0 (6.31)

{b̂(k), b̂†(k ′)} = δ(k − k ′) (6.32)

where the anticommutator is defined by { Â, B̂} = Â B̂ + B̂ Â. In particular, this
means that b̂†(k)b̂†(k) = 0. Acting twice with the same creation operator gives
zero, instead of two particles in the same state. This, of course, is the second-
quantization version of the Pauli exclusion principle, which asserts that no two
identical fermions can occupy the same single-particle state.

Field operators for fermions can be constructed in the same way as for
bosons, except that we have to take account of spin polarization. Since k now
stands for (k, s), the definitions (6.13) and (6.14) become

ψ̂s(x) = (2π)−3/2
∫

d3k eik·xb̂(k, s) (6.33)

ψ̂†
s (x) = (2π)−3/2

∫
d3k e−ik·xb̂†(k, s). (6.34)

For example, ψ̂†
s (x) creates a particle at the point x with spin polarization s. The

anticommutation relations that replace (6.15) and (6.16) are

{ψ̂s(x), ψ̂s ′(x ′)} = {ψ̂†
s (x), ψ̂†

s ′(x ′)} = 0 (6.35)

{ψ̂s(x), ψ̂†
s ′(x ′)} = δss ′δ(x − x ′). (6.36)
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These are all the changes we need to make in order to accommodate fermions.
In equations (6.19), (6.21) and (6.24), it is necessary only to add spin labels to
the fields and include a sum over these labels with each space integration. I have
ordered the operators in these expressions so as to make them correct for both
fermions and bosons.

Exercises

6.1. Let A(x,−i~∇), B(x,−i~∇) and C(x,−i~∇), be wave-mechanical
operators with the commutation relation [A, B] = C . Show that the
corresponding second-quantized one-body operators Â, B̂ and Ĉ satisfy the same
commutation relation, if the field operators have either the commutation relations
(6.15) and (6.16) appropriate to bosons or the anticommutation relations (6.35)
and (6.36) appropriate to fermions.

6.2. Using time-independent field operators, show that the Hamiltonian (6.23)
can be expressed as

Ĥ =
∫

d3x ~ω(k)â†(k)â(k)

where ω(k) = ~k2/2m. Show that for any n, Ĥ nâ(k) = â(k)[Ĥ − ~ω(k)]n and
hence that the time-dependent field operator (6.22) is

ψ̂(x, t) = (2π)−3/2
∫

d3k exp[ik · x − iω(k)t]â(k).

Check that this works for both bosons and fermions. There is no such simple
expression for ψ̂(x, t) if the particles interact.



Chapter 7

Relativistic Wave Equations and Field
Theories

Up to this point, our study of quantum mechanics has concerned itself with the
behaviour of particles that inhabit a Galilean spacetime. For many purposes, in
atomic, molecular and condensed matter physics, this theory is quite adequate.
We saw in earlier chapters, however, that our actual spacetime has a structure
which is much closer to that of the Minkowski spacetime of special relativity and
that more general structures must be considered when gravitational phenomena
are significant. From a purely theoretical point of view, it is therefore important
to formulate quantum theory in a way which is consistent with these more general
spacetimes. The benefits of constructing a relativistic quantum theory actually go
far beyond the aesthetic satisfaction of making our geometrical and quantum-
mechanical reasoning compatible. For one thing, we shall discover that the
relativistic theory provides a deeper understanding of spin and the distinction
between fermions and bosons, which in the non-relativistic theory appear simply
as facts of life that we must strive to accommodate. Also, of course, there are
many situations in which relativistic effects become observable, for which non-
relativistic theory provides no explanation. The most obvious are high-energy
scattering experiments, in which particles acquire kinetic energies comparable
with or greater than their rest energies mc2, and the correct 4-momentum (3.34)
must be used. There are, however, more subtle effects, such as the spin-orbit
coupling that is essential for interpreting atomic spectra, which are also of
relativistic origin.

For the most part, I shall deal only with quantum theory in Minkowski
spacetime, which is well understood. At the end of the chapter, I shall deal
rather more briefly with the question of setting up quantum theories in curved
spacetimes, which involves some surprising difficulties and is not quite so well
understood. If our world is thoroughly quantum-mechanical (and the prevailing
view is that it must be), then we ought to treat the geometrical structures
themselves in quantum-mechanical terms, which means constructing a quantum
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theory of gravity. Attempts to deal with the metric tensor (or, perhaps, the affine
connection) by the methods to be dealt with in this chapter have generally not
been successful, though it is not entirely clear that no such theory is possible. The
majority view among physicists who study such matters is that string theory offers
the best hope of a theory of gravity that is consistent with quantum mechanics, and
I shall have something to say about this in chapter 15.

From now on, I shall write all equations having to do with relativistic theories
in terms of natural units, which are defined so that ~ = c = 1. This leaves us free
to define one fundamental unit, which is normally taken to be energy, measured,
say, in MeV. In these units, length and time have the same dimensions and are
measured in (MeV)−1. Mass, momentum and energy have the same dimensions,
being measured in MeV. Appendix C discusses these units in more detail and
gives some conversion factors between natural and laboratory units.

7.1 The Klein–Gordon Equation

If we wish to invent a Minkowski-spacetime version of wave mechanics, the
first problem to be overcome is that the Schrödinger equation (5.7) expresses the
non-relativistic relationship between energy and momentum. The relationship in
special relativity is that implied by (3.34), which may be written in various ways
as

E2 − p · p = (p0)2 − p · p = pµ pµ = m2. (7.1)

At least for free particles, it is a simple matter to convert this into a relativistic
wave equation, called the Klein–Gordon equation. We just substitute the
differential operators (5.5) and (5.6) and let the resulting operator act on a
wavefunction φ(x, t):[

∂2

∂ t2 − ∇2 + m2

]
φ(x, t) =

[
∂µ∂

µ + m2
]
φ(x) =

[
�+ m2

]
φ(x) = 0. (7.2)

The d’Alembertian operator � defined here is the Minkowskian version of the
Laplacian ∇2; it is sometimes written as �2. We should certainly expect the
Klein–Gordon equation to be valid for a free relativistic particle, but whether
it should be regarded as a generalization of the Schrödinger equation is a moot
point, since it is not related in a simple way to a time-evolution equation of the
form (5.32).

It is important to ask how the wavefunction is to be interpreted in a relativistic
context. If (7.2) is to have a Lorentz covariant meaning, then φ must be some kind
of 4-tensor, as discussed in §3.5. For now, we shall consider spinless particles
whose wavefunctions have only a single component, so φ must be a scalar. This
implies that the probability density is not correctly given by (5.4). Like the
number density in (3.36), it must be the time-like component of a conserved 4-
vector, whose other components are the probability current density. In a loose,
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intuitive manner, we can think of the probability density as a kind of number
density. In the non-relativistic theory, the current density is

j(x, t) = 1

m
Re[�∗(−i∇)�] = − i

2m
�∗ ↔∇� (7.3)

where the notation A
↔∇B means A∇B − (∇A)B . Intuitively, this expression is

rather like (velocity × density), as in (3.37). More precisely, the reason for (7.3)
is that it satisfies the equation of continuity ∂P/∂ t + ∇ · j = 0, as may easily
be verified by using the Schrödinger equation and its complex conjugate. In the
present case, it may be similarly verified using the Klein–Gordon equation that
the equation of continuity in the form ∂µ jµ = 0 is satisfied, provided that we
identify the 4-vector probability current density as

jµ(x) = i

2m
φ∗↔

∂µφ. (7.4)

This is fortunate insofar as (7.4) is manifestly a 4-vector, so that the equation of
continuity is Lorentz covariant. The unfortunate thing about (7.4) is that j0, which
we want to identify as the probability density, is, unlike |�|2, not necessarily
positive. This is one of two problems that afflict all relativistic wave equations.

The second problem emerges when we look at plane-wave solutions of the
Klein–Gordon equation. Evidently, the function

φk(x) = exp(−ik · x) (7.5)

where k · x = k0t − k · x, is a solution of (7.2) and also an energy–momentum
eigenfunction, provided that k0 = ±(k2 + m2)1/2. The negative-energy solutions
are a severe embarrassment, because they imply the existence of single-particle
states with energy less than that of the vacuum. Intuitively, this is nonsensical. In
fact, there is no lower limit to the energy spectrum. This means that the vacuum
is unstable, since an infinite amount of energy could be released from it by the
spontaneous creation of particles in negative-energy states. We can see that this
problem is related to the first one, because it is the negative-energy states that give
rise to a negative probability density.

Because of these problems, the Klein–Gordon equation does not lead to a
tenable wave-mechanical theory of relativistic particles. It is, indeed, impossible
to construct such a theory. We shall see shortly that it does lead to a perfectly
sensible quantum field theory. To develop this field theory, we follow the
canonical quantization procedure explained in §6.3, but the requirement of
Lorentz covariance leads to some minor changes. Like the Schrödinger equation,
the Klein–Gordon equation can be obtained as an Euler–Lagrange equation from
an action. Assuming that φ is a complex function, the action is

S =
∫

d4x L(φ) (7.6)
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where the Lagrangian density is given by

L(φ) = (∂µφ
∗)(∂µφ) − m2φ∗φ. (7.7)

This action is manifestly a scalar quantity, as we require for a Lorentz covariant
theory. In contrast to the non-relativistic theory, it contains the time derivatives of
both φ and φ∗, so two independent canonical momenta can be defined:

!(x) = ∂0φ∗(x) !∗(x) = ∂0φ(x). (7.8)

The general solution of the Klein–Gordon equation can be written in terms
of energy–momentum eigenfunctions. To ensure that it is a scalar, we first write
it in a form that does not distinguish between space and time components of the
energy–momentum 4-vector:

φ(x) =
∫

d4k

(2π)3 δ(k2 − m2)α(k)e−ik·x . (7.9)

The energy (k0) integral can be carried out using the delta function. We get
two terms, corresponding to the positive and negative energy solutions, with
k0 = ±ω(k), where ω(k) = (k2+m2)1/2. For reasons that will become apparent,
we write the coefficient α(k) as

α(k) =
{

a(k) for k0 = +ω(k)

c∗(−k) for k0 = −ω(k).
(7.10)

Then, after changing the sign of k in the negative-energy term, we get

φ(x) =
∫

d3k

(2π)32ω(k)

[
a(k)e−ik·x + c∗(k)eik·x] . (7.11)

In each term, k0 now stands for +ω(k). The 2ω(k) in the denominator appears
for the reason explained in appendix A. Because of this factor, the coefficients
a(k) and c(k) cannot be obtained by a simple Fourier transformation. Instead, we
have the expressions

a(k) = i
∫

d3x eik·x↔
∂0φ(x) =

∫
d3x eik·x [ω(k)φ(x) + i!∗(x)

]
(7.12)

c(k) = i
∫

d3x eik·x↔
∂0φ∗(x) =

∫
d3x eik·x [ω(k)φ∗(x) + i!(x)

]
(7.13)

which have a rather similar structure to the energy-lowering operator (5.56) for
the harmonic oscillator. With these expressions in hand, we are ready to develop
the second-quantized description.
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7.2 Scalar Field Theory for Free Particles

As in the non-relativistic case, we carry out second quantization by replacing
complex functions with field operators. Because a relativistic theory treats space
and time on much the same footing, these are initially given as time-dependent
Heisenberg-picture operators. Nevertheless, we are still free only to specify the
equal-time commutators. First of all, we have[

φ̂(x, t), !̂(x ′, t)
] = iδ(x − x ′) (7.14)[

φ̂(x, t), φ̂(x ′, t)
] = [

!̂(x, t), !̂(x ′, t)
] = 0. (7.15)

Taking the adjoints of these equations, we find that φ̂† and !̂† satisfy exactly the
same relations. The two sets of operators {φ̂, !̂} and {φ̂†, !̂†} are to be treated as
independent variables, so we also have[

φ̂(x, t), φ̂†(x ′, t)
]

=
[
!̂(x, t), !̂†(x ′, t)

]
=
[
φ̂(x, t), !̂†(x ′, t)

]
= 0. (7.16)

By using these commutators, we can work out the commutation relations for the
operator versions of a(k) and c(k) from (7.12) and (7.13). The result is that[

â(k), â†(k′)
]

=
[
ĉ(k), ĉ†(k′)

]
= (2π)32ω(k)δ(k − k′) (7.17)

while all other commutators between these operators are zero. Apart from the
normalization factor (2π)32ω(k), we recognize these as two independent sets of
creation and annihilation operators, similar to those in (6.8). The effect of the
normalization factor for single-particle states is that

〈k|k′〉 = (2π)32ω(k)δ(k − k′). (7.18)

This is a Lorentz-covariant normalization, as we can see by constructing the
corresponding wavefunction. To do this, we need the vector |x〉, which must
be given by an expression similar to (5.70). The exact expression is

|x〉 =
∫

d3k

(2π)3
√

2ω(k)
e−ik·x|k〉 (7.19)

in which the factor of
√

2ω(k) is required to get the correct orthonormality
relation 〈x|x ′〉 = δ(x − x ′). Then the wavefunction

ψk(x) = 〈x|k〉 = √
2ω(k) eik·x (7.20)

gives a probability density P(x) = |ψk(x)|2 = 2ω(k). Loosely, this corresponds
to 2ω(k) particles per unit volume. Under a Lorentz transformation, it transforms
as the time-like component of a 4-vector, as it ought to.

The fact that we have two sets of creation and annihilation operators leads
to the resolution of the problems of negative energies and probabilities. The field



Scalar Field Theory for Free Particles 145

theory we have constructed actually describes two species of particles; particles
of one species are called the antiparticles of the other. For the sake of argument, I
shall refer to the particles created by â† as ‘particles’ and to those created by ĉ† as
‘antiparticles’, though the theory itself does not care which is which. The solution
to the problem of negative energies is apparent from (7.11) when we reinterpret it
as a field operator. The coefficient of the positive-energy wavefunction e−ik·x is,
as in the non-relativistic theory, the annihilation operator for particles. However,
the coefficient of the negative-energy wavefunction eik·x is not an annihilation
operator for particles in negative-energy states, but rather a creation operator for
positive-energy antiparticles. We can construct the Hamiltonian operator by the
usual canonical method. It is

Ĥ =
∫

d3x

[
∂φ̂†

∂ t

∂φ̂

∂ t
+ (∇φ̂†) · (∇φ̂) + m2φ̂†φ̂

]

=
∫

d3k

(2π)32ω(k)
ω(k)

[
â†(k)â(k) + ĉ†(k)ĉ(k) + (2π)32ω(k)δ(0)

]
.

(7.21)

In the second expression, the last term comes from rewriting ĉ(k)ĉ†(k) by means
of the commutator. If we act on the vacuum state, which contains no particles or
antiparticles, the first two terms give zero. The last term is an infinite constant. It
may be dropped on the usual grounds that the total energy of a system is defined
only up to an arbitrary constant, and the most sensible choice for the energy of
the vacuum is zero. (If we allow the structure of spacetime to be determined
by Einstein’s equations (4.17), however, the energy of the vacuum contributes to
T µν and must be considered more carefully.) Another way of looking at this is
to remember that the ordering of operators is not unambiguously prescribed by
the quantization procedure. We can regard the vanishing of the vacuum energy
as a criterion for ordering operators such that annihilation operators appear to the
right of creation operators. This is called normal ordering. Bearing in mind the
normalization in (7.17), we recognize (7.21) as summing the quantity

(energy of state k) × (number of particles and antiparticles in state k)

over positive-energy states. Thus, the total energy is positive.
The solution of the problem of negative probabilities is quite similar.

We define a number operator N̂ by integrating over all space the operator
corresponding to the probability density in (7.4):

N̂ =
∫

d3x : ĵ0: = i
∫

d3x :φ̂†(x, t)
↔
∂0φ̂(x, t):

=
∫

d3k

(2π)32ω(k)

[
â†(k)â(k) − ĉ†(k)ĉ(k)

]
(7.22)

where the colons : · · · : denote normal ordering of the creation and annihilation
operators. Again, the factor 1/2ω(k) appears just because of the covariant
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normalization and in effect replaces the 1/2m in (7.4). We see that N̂ represents
the quantity

(number of particles) − (number of antiparticles).

A negative value for this quantity simply indicates a state with more antiparticles
than particles and presents no difficulty. Another way of expressing this is to
assign to each particle a particle number n = 1 and to each antiparticle a
particle number n = −1. Then N̂ may be said to represent the net particle
number, rather than the number of particles. In the field operator obtained from
(7.11), both terms act on a given state to reduce the particle number by one
unit, either by annihilating a particle or by creating an antiparticle. This rule
applies to any other properties that the particles may possess (except that the
masses of particles and antiparticles are identical). For example, if the particles
carry an electric charge, then their antiparticles carry exactly the opposite charge,
and the same is true of all the other quantum numbers (lepton number, baryon
number, isospin, strangeness, etc) which are required to classify the observed
particles. Historically, the existence of antiparticles was predicted by Dirac (1928,
1929) on the basis of his relativistic wave equation for electrons discussed in the
next section, and the antielectron, or positron, was discovered experimentally by
Anderson (1933) in cosmic ray showers. All observed particles are indeed found
to have antiparticles. However, particles and antiparticles may in some cases be
identical. Mathematically, this will be so if ĉ(k) = â(k), which means that the
wavefunction (7.11) is real and the corresponding field operator is Hermitian. In
that case, the number operator is identically zero, and the particle number must
be taken as n = 0. Clearly, only a restricted range of properties is available to
particles which are their own antiparticles; for example, they must be electrically
neutral. Examples are the photon and the neutral pion. In the case of the photon,
the space and time derivatives of its Hermitian field operators are observable
quantities, namely electric and magnetic fields.

7.3 The Dirac Equation and Spin-1
2 Particles

7.3.1 The Dirac equation

The problems of negative energies and probabilities encountered in connection
with the Klein–Gordon equation evidently have something to do with the fact
that this equation involves a second time derivative. Dirac attempted to solve
these problems by inventing a new wave equation containing only the first time
derivative, which is more closely analogous to the non-relativistic Schrödinger
equation. As we shall see, it is not in fact possible to solve the problems in this
way, and Dirac’s theory also makes sense only as a second-quantized field theory.
The Dirac equation is nevertheless of vital importance because it predicts the
existence of particles with intrinsic angular momentum or spin of magnitude ~/2.
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Such particles are indeed observed, electrons being perhaps the most familiar, and
the Dirac theory is the proper Lorentz-covariant means of describing them.

Since special relativity treats time and space on more or less the same
footing, an equation that contains only the first time derivative can also contain
only first spatial derivatives. The equation must therefore be of the form(

iγ µ∂µ − m
)
ψ(x) = 0 (7.23)

where the four coefficients γ µ are constants. We shall see immediately that these
coefficients cannot commute with each other. They must therefore be square
matrices rather than simple numbers, so the wavefunction ψ(x) must be a column
matrix. This wavefunction must also satisfy the Klein–Gordon equation, which
simply expresses the relationship between energy and momentum and, indeed,
this should be an automatic consequence of the Dirac equation (7.23). Obviously,
we get an equation bearing some resemblance to the Klein–Gordon equation if
we act twice with the operator

(
iγ µ∂µ − m

)
:(

iγ µ∂µ − m
)2

ψ(x) =
(
−γ µγ ν∂µ∂ν − 2imγ µ∂µ + m2

)
ψ(x) = 0. (7.24)

Using the original equation (7.23) and the fact that ∂µ∂ν = ∂ν∂µ, we can rewrite
this as (

1
2 {γ µ, γ ν}∂µ∂ν + m2

)
ψ(x) = 0. (7.25)

In order for this to be the same as the Klein–Gordon equation (7.2), the γ matrices
must satisfy the condition

{γ µ, γ ν} ≡ γ µγ ν + γ νγ µ = 2ηµν (7.26)

where ηµν is the (µ, ν) component of the Minkowski-spacetime metric tensor
(2.8) and is understood to be multiplied by the unit matrix. A set of matrices that
obey this condition is said to form a Clifford algebra.

The smallest matrices which can be made to obey the Clifford algebra
condition are 4 × 4 matrices, and we shall consider only these. Even so, there
are infinitely many representations of the algebra; that is, infinitely many sets
of four 4 × 4 matrices that satisfy the condition (7.26). Each representation
gives a different, but equivalent, mathematical representation of the same physical
situation. For this reason, it is possible to derive all the physical consequences of
the theory from the fact that the γ matrices satisfy (7.26). Nevertheless, it is often
helpful to have in mind at least one possible set of such matrices. A standard
representation is

γ 0 =
(

I 0
0 −I

)
γ i =

(
0 σ i

−σ i 0

)
(7.27)

where each entry is itself a 2 × 2 matrix, I being the unit matrix and σ i the Pauli
matrices, given by

σ 1 =
(

0 1
1 0

)
σ 2 =

(
0 −i
i 0

)
σ 3 =

(
1 0
0 −1

)
. (7.28)
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Readers who are familiar with the non-relativistic theory of spin- 1
2 particles,

or who have studied appendix B, will recognize these matrices as the wave-
mechanical operators that represent the three components of the particle’s intrinsic
angular momentum. We shall shortly see that this is no coincidence.

7.3.2 Lorentz covariance and spin

As we have discussed in some detail in previous chapters, the equations that
express laws of physics are expected to take the same form when referred to any
frame of reference. In Minkowski spacetime, it is usually convenient to consider
only inertial, Cartesian frames, in which the metric tensor has the simple form
(2.8). Because of this restriction, the metric tensor does not appear explicitly in
most of our equations, and we expect the form of these equations to remain the
same only when we make Lorentz transformations of the form (3.25) (or, more
generally, Poincaré transformations, which include spacetime translations). In
classical physics, this property of Lorentz covariance is guaranteed if all equations
can be expressed in terms of 4-tensors. A Lorentz transformation rearranges the
components of a tensor amongst themselves, in such a way that the form of the
tensor equations is preserved. In (7.2), we assumed that the wavefunction φ(x)
was the simplest kind of tensor, namely a scalar. The detailed meaning of this is as
follows. Suppose that the state of the particle is described by two observers, using
sets of coordinates x and x ′, related by (3.25). The same state will be described
by these observers in terms of two wavefunctions φ(x) and φ′(x ′). In general,
φ and φ′ are different functions, but if x and x ′ are the coordinates of the same
spacetime point, then φ(x) = φ′(x ′). Since ∂µ∂

µ = ∂µ′∂µ′
, each wavefunction

also satisfies the Klein–Gordon equation written in its own set of coordinates.
The Dirac wavefunction is a four-component column matrix, so we may

expect that, on transforming to a new frame of reference, not only will the
components be different functions of the new coordinates, but they will also be
rearranged amongst themselves. It turns out that this rearrangement is not the
same as those specified by any of the tensor transformation laws (2.19). Although
ψ has four components, these do not refer to spacetime directions as do the
components of a 4-vector. They actually refer, as we shall see, to different states
in which the particle can exist. I shall label these components as ψα , where α has
the values 1, . . . , 4. Thus, ψ is a geometrical object of a kind that we have not
previously met. It is called a spinor, and its transformation law can be written as

ψ ′
α(x

′) = Sαβ(�)ψβ(x). (7.29)

The two sets of coordinates are again related by (3.25). The new transformation
matrix S is usually represented as a function of the matrix � as I have done here,
but it is probably clearer to think of S and � as different matrices, which both
depend on the same parameters, namely rotation angles and boost velocities such
as those in (3.26) and (3.27).
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If the Dirac equation is to be covariant, then the transformed wavefunction
must satisfy the equation (

iγ µ′
∂µ′ − m

)
ψ ′(x ′) = 0. (7.30)

The transformed derivative is ∂µ′ = �
µ

µ′∂µ, and it might appear that the
γ matrices should transform as a contravariant 4-vector. This is not correct,
though. A constant 4-vector singles out a special direction in spacetime, and
the whole point of covariance is that no such special direction exists. The new
equation (7.30) is supposed to have the same form as the original equation (7.23),
and this means that both observers are entitled to use the same set of γ matrices.
Thus, if the old matrices have the numerical values in (7.27) and (7.28), then so
do the new ones. But the index µ′ indicates that they are associated with the
x ′ coordinate axes. From this requirement, we can work out what the spinor
transformation matrix must be. We substitute (7.29) into (7.30), rewrite ∂µ′ in
terms of ∂µ, and multiply by S−1 to get(

iS−1(�)γ µ′
S(�)�

µ

µ′∂µ − m
)
ψ(x) = 0. (7.31)

Remembering that �µ

µ′�
µ′
ν = δ

µ
ν , we see that this is the same as (7.23) provided

that
S−1(�)γ µ′

S(�) = �µ′
µγ

µ. (7.32)

Only if a matrix S with this property can be found will the Dirac equation be
Lorentz covariant.

It is sufficient to find S for the case of infinitesimal transformations. This
will give us the generators of Lorentz transformations, and the matrix for finite
transformations can be built up by exponentiation, in just the same way as for
spacetime translations. By expanding (3.26) and (3.27) in powers of the rotation
angle or boost velocity, we see that � can be written as

�µ′
µ = δµ

′
µ + ηµ′ν ′

ων ′µ + · · · (7.33)

where ων ′µ is antisymmetric in its two indices, each of its components being
proportional to a rotation angle or boost velocity. A general transformation,
which is some combination of rotations and boosts, can be written in the same
way. Usually, it is meaningless to write symbols like δ and ω with two indices
belonging to different coordinate systems. Here it does make sense, because the
two sets of coordinates differ only by an infinitesimal amount. The matrix S must
be a function of ωµν (where it is no longer necessary to distinguish between µ

and µ′), and we write its infinitesimal form as

S(�) = I − i

4
ωµνσ

µν + · · · . (7.34)



150 Relativistic Wave Equations and Field Theories

In this expression, I is the unit 4×4 matrix and σµν denotes a set of 4×4 matrices
to be constructed in terms of the γ µ. Since ωµν is antisymmetric, we can assume
that σµν is also antisymmetric in µ and ν, because a symmetric part would give
zero when the implied summations have been carried out. (This antisymmetry
means, for example, that σ 12 = −σ 21, but σ 12 is not necessarily an antisymmetric
matrix.) The inverse matrix is S−1 = I + 1

4 iωµνσ
µν + · · ·, and if we substitute

this together with (7.33) and (7.34) into the condition (7.32), it becomes[
γ λ, σµν

] = 2i
(
ηλµγ ν − ηλνγ µ

)
. (7.35)

Readers may verify using (7.26) that this is satisfied if we identify σµν as

σµν = i

2

[
γ µ, γ ν

]
. (7.36)

The physical significance of the matrix nature of the Dirac wavefunction can
be found by the same method that we used in §5.3 to identify the energy and
momentum operators. The momentum operator (5.6) is the generator of space
translations, in the sense that it generates a Taylor series like (5.51) when we
express a function of the new coordinates x ′ = x + a in terms of the old ones. We
can carry this idea over to Lorentz transformations, but a slight change of notation
will be necessary to distinguish the two sets of coordinates. Just for the purposes
of this discussion, I shall replace the notation xµ′

for the new coordinates with
x̄µ. Again, this makes sense only because the new coordinate directions differ
infinitesimally from the old ones. Consider first a scalar function. Using (7.33),
we can write

xµ = x̄µ − ηµνωνσ x̄σ + · · · (7.37)

and

φ′(x̄) = φ(x) =
(

1 − ηµνωνσ x̄σ ∂

∂ x̄µ
+ · · ·

)
φ(x̄). (7.38)

If we take into account the antisymmetry of ωµν , and use pµ to stand for the
wave-mechanical momentum operator iηµν∂ν , this can be rewritten as

φ′(x) =
(

1 − i

2
ωµν(x

µ pν − xν pµ) + · · ·
)
φ(x). (7.39)

This describes the relationship between the functional forms of the old and new
wavefunctions, and we can drop the bars over the coordinates, which are now just
dummy variables. For Dirac spinors, we must use the transformation law (7.29),
and we get an extra term from the matrix S. The result is

ψ ′(x) =
(

I − i

2
ωµν Mµν + · · ·

)
ψ(x) (7.40)

with the generators of Lorentz transformations given by

Mµν = 1
2σ

µν + (
xµ pν − xν pµ

)
. (7.41)
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Since these generators are antisymmetric in µ and ν, only six of them are
independent. It is useful to divide them into two groups of three, defined by

K i = M0i J i = 1
2ε

i j k M jk (7.42)

where εi j k is the three-dimensional Levi-Civita tensor, equal to 1 if (i, j, k) is
an even permutation of (1, 2, 3), −1 for an odd permutation and zero if any two
indices are equal. Thus J 1 = M23, J 2 = M31 and J 3 = M12. The quantity
K i is the generator of boosts along the i th spatial axis, and J i is the generator of
rotations about the i th axis. It is worth noting that a rotation ‘about the z axis’, say,
is more properly described as a rotation in the x-y plane. That is, it rearranges the
x and y coordinates, leaving z and t unchanged. The totally antisymmetric tensor
εi j k exists only in three spatial dimensions, so in other numbers of dimensions
(should we want to consider them) the J i could not be defined.

The J i can be written in three-dimensional notation as

J i = 1
2

(
σ i 0
0 σ i

)
+ (r × p)i I (7.43)

as long as the representation (7.27) is used for the γ matrices. The second term
is, of course, the wave-mechanical operator representing the ‘orbital’ angular
momentum associated with the motion of the particle, and we therefore interpret
the first term as representing an intrinsic angular momentum or spin, which is
independent of the orbital motion. Although the Dirac equation is a relativistic
one, the existence of particles with spin need not be thought of as a relativistic
effect. The generators (7.43) are concerned only with spatial rotations and can be
used perfectly well in a non-relativistic theory, as is reviewed in appendix B. In the
non-relativistic setting, the independent spin polarization states are specified by
the eigenvalue of one spin component, conventionally σ 3, which implies choosing
a particular direction in space as the ‘spin quantization axis’. In a relativistic
theory, this has no Lorentz-covariant meaning, because a Lorentz boost mixes
spatial and temporal directions.

A covariant description of spin polarization can be given in terms of the
Pauli–Lubanski 4-vector, defined by

Wµ = 1
2εµνλσ Mνλ pσ (7.44)

where εµνλσ is the four-dimensional Levi-Civita tensor (see appendix A). Since
ε is totally antisymmetric, we have εµνλσ pλ pσ = εµνλσ pν pσ = 0, so the
(xν pλ − xλ pν) part of Mνλ makes no contribution to Wµ. In terms of the 3-
vectors p, � and K , where � is the spin part of J , the components of Wµ are

W 0 = � · p (7.45)

W i = %i p0 + (K × p)i . (7.46)

The Lorentz-invariant quantity W 2 = WµWµ can be evaluated by choosing
any convenient frame of reference. If we imagine W 2 to act on a momentum
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eigenfunction, we can replace pµ with the corresponding eigenvalue kµ. By
choosing the rest frame of the particle, where kµ = (m, 0), we find

W 2 = −m2�2 (7.47)

and, according to the general theory of angular momentum in quantum mechanics,
this should equal −m2s(s+1) for a particle of spin s. Thus, a scalar wavefunction
with � = 0 represents a spin-0 particle. For a Dirac spinor, � is the matrix in
(7.43) and �2 is 3

4 times the unit matrix, so the spinor represents spin- 1
2 particles.

7.3.3 Some properties of the γ matrices

A number of useful properties of the γ matrices follow from the Dirac equation
and the Clifford algebra condition. I shall list several of them, leaving details of
their proofs to readers. First, it follows from (7.26) that

(γ 0)2 = I and (γ i )2 = −I (7.48)

for i = 1, 2 or 3. If we multiply the Dirac equation (7.23) by γ 0, we get a
relativistic Schrödinger equation

i
∂ψ

∂ t
= Hψ =

(
−iγ 0γ i∂i + mγ 0

)
ψ. (7.49)

The Hamiltonian H must be Hermitian, and from this it follows that γ 0 is
Hermitian and the γ i are anti-Hermitian:

γ 0† = γ 0 and γ i † = −γ i . (7.50)

According to (7.26), γ 0 anticommutes with each γ i , so for µ = 0, . . . , 3, we can
write

γ µ† = γ 0γ µγ 0. (7.51)

The matrix γ 5 is defined by

γ 5 = iγ 0γ 1γ 2γ 3 = i

4!εµνλσ γ
µγ νγ λγ σ . (7.52)

It has the properties

(γ 5)2 = I (7.53)

γ µγ 5 = − γ 5γ µ for any µ. (7.54)

Although the four matrices γ µ do not constitute a 4-vector in the ordinary
sense, it is often necessary to form contractions as if they did. A useful
abbreviation is the ‘slash’ notation

/a ≡ γ µaµ (7.55)
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where aµ is any 4-vector. In this notation, the Dirac equation (7.23) takes the
form

(i/∂ − m)ψ(x) = 0. (7.56)

The Pauli–Lubanski vector (7.44) can be written, for Dirac spinors, as

Wµ = − 1
4

[
γµ, /p

]
γ 5 (7.57)

as readers are invited to prove in exercise 7.6.

7.3.4 Conjugate wavefunction and the Dirac action

The adjoint of the Dirac equation (7.23) is

ψ†(x)
(

iγ µ†←−
∂µ + m

)
= 0 (7.58)

where
←−
∂µ indicates differentiation of the function on its left. This notation is

useful in conjunction with the multiplication of the row matrix ψ† by a γ matrix
on its right. If we multiply this equation from the right by γ 0 and use (7.51), we
get

ψ̄(x)
(

i
←−
/∂ + m

)
= 0 (7.59)

where the conjugate wavefunction is defined by

ψ̄(x) = ψ†(x)γ 0. (7.60)

It is simple to verify that the two equations (7.56) and (7.59) can be derived as
Euler–Lagrange equations from the action

S =
∫

d4x ψ̄
(
i/∂ − m

)
ψ (7.61)

by treating ψ and ψ̄ as independent variables.

7.3.5 Probability current and bilinear covariants

As in the case of scalar wavefunctions, we would like to identify a 4-vector
probability current density which is conserved; that is, it satisfies the equation
of continuity. The quantity

jµ(x) = ψ̄(x)γ µψ(x) (7.62)

is easily shown, using the Dirac equation and its adjoint, to be conserved. The
component j0 = ψ†ψ , which we would like to identify as the conserved
probability density, is positive definite. This would appear to be an advantage,
compared with the negative probabilities encountered for the scalar wavefunction,
but it will turn out that this is, in a sense, illusory. Since the γ µ are not themselves
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the components of a 4-vector, we must show that (7.62) is a 4-vector. To do this,
we need a property of the transformation matrix S(�) which, on exponentiating
(7.34), is seen to be of the form S(�) = exp(−iωµνσ

µν/4). Because of the
relation (7.51), we have

S†(�) = γ 0S−1(�)γ 0. (7.63)

Using this and the defining property (7.32), we can write the current density in a
new frame of reference as

jµ
′
(x ′) = ψ ′†(x ′)γ 0γ µ′

ψ ′(x ′)
= ψ†(x)S†(�)γ 0γ µ′

S(�)ψ(x)

= ψ̄(x)S−1(�)γ µ′
S(�)ψ(x)

= �µ′
µ jµ(x)

so jµ does indeed transform as a 4-vector. Note that the presence of ψ̄ rather than
ψ† is essential to this proof.

A number of other tensors can be constructed in the same way. To understand
how these are classified, it is necessary to consider a wider class of Lorentz
transformations than we have so far. The representative transformation matrices
(3.26) and (3.27) each have �0

0 ≥ 1 and det(�) = +1. Such transformations are
called proper Lorentz transformations. Examples of ‘improper’ transformations
are time reversal t ′ = −t and parity or spatial reflection x ′ = −x. Each of these
has det(�) = −1. Several important tensor-like quantities have transformation
laws similar to (2.19), except that the right-hand side is multiplied by det(�).
These are called pseudotensors. Three-dimensional examples are provided by the
cross products a × b of any two vectors, which are called axial vectors. Each
vector changes sign under parity, but the product does not change sign. (More
generally, a quantity whose transformation law contains a factor [det(�)]n is a
tensor density of weight n.)

The so-called bilinear covariants are products of the form ψ̄�ψ , where � is
a 4 × 4 matrix. Any 4 × 4 matrix can be written as a linear combination of 16
linearly independent ones. Such a set is provided by the matrices I , γ 5, γ µ, γ µγ 5

and σµν , which have the advantage of giving rise to tensors or pseudotensors. The
names given to these objects and their transformation properties are

scalar: S(x) = ψ̄(x)ψ(x) S′(x ′) = S(x)

pseudoscalar: P(x) = ψ̄(x)γ 5ψ(x) P ′(x ′) = det(�)P(x)

vector: V µ(x) = ψ̄(x)γ µψ(x) V µ′
(x ′) = �

µ′
µV µ(x)

axial vector: Aµ(x) = ψ̄(x)γ µγ 5ψ(x) Aµ′
(x ′) = det(�)�

µ′
µAµ(x)

tensor: Tµν(x) = ψ̄(x)σµνψ(x) T µ′ν ′
(x ′) = �

µ′
µ�

ν ′
νT µν(x).

The vector covariant is, of course, the same as (7.62), and the proofs of all the
transformation properties are similar to that given above.
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7.3.6 Plane-wave solutions

As in the non-relativistic theory, a complete set of plane-wave solutions to the
Dirac equation is labelled by the momentum k and a spin component s = ± 1

2
along a chosen quantization axis. A covariant description of the spin polarization
of a massive particle can be given as follows. In the rest frame, where kµ =
(m, 0), choose a unit 3-vector n as the quantization axis. In a frame in which the
momentum is (k0, k), the object

nµ =
(

k · n
m

, n + (k · n)
m(m + k0)

k
)

(7.64)

is a 4-vector, with nµnµ = −1 and kµnµ = 0. The quantity W · n = Wµnµ is
Lorentz invariant. Its value is most easily calculated in the rest frame and is

W · n = −m� · n (7.65)

which is the component of spin along n as measured in the rest frame. A complete
set of plane-wave solutions is now given by the simultaneous eigenfunctions of
W · n and the momentum operator i∂µ. There are both positive- and negative-

energy solutions. Let k0 = + (
k2 + m2

)1/2
. The positive-energy solutions have

the form
ψk,s (x) = e−ik·x u(k, s) (7.66)

where u(k, s) is a column matrix. To satisfy the Dirac equation (7.56), we must
have

(/k − m) u(k, s) = 0 (7.67)

and, according to the above definition of spin polarization, (W · n)u(k, s) =
−ms u(k, s). This means that s is the spin component in the direction n that
would be measured by an observer in the particle’s rest frame, even when u(k, s)
describes the state as observed in some other frame. If we do consider the rest
frame, and choose n = (0, 0, 1), then with the standard representation (7.27) for
the γ matrices we find

u(k, 1
2 ) =


1
0
0
0

 and u(k,− 1
2 ) =


0
1
0
0

 . (7.68)

Corresponding to each positive-energy solution there is a negative-energy
solution

ψc
k,s (x) = eik·xv(k, s) (7.69)

where the negative-energy spinor v(k, s) satisfies

(/k + m)v(k, s) = 0. (7.70)
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As in the scalar theory, it will be necessary to reinterpret these negative-energy
solutions in terms of antiparticles. In the scalar case, the negative-energy solution
is the complex conjugate of a positive-energy antiparticle wavefunction. Here,
(7.69) is the charge conjugate of a positive-energy antiparticle wavefunction.
The operation of charge conjugation, denoted by the superscript c in (7.69),
relates particle and antiparticle states. It involves both complex conjugation and
a rearrangement of spinor components. To find the positive-energy solution of
which (7.69) is the conjugate, we define

ψc
k,s (x) = Cψ∗

k,s(x) (7.71)

where C is a matrix to be found. The spinor v(k, s) = Cu∗(k, s) must satisfy
(7.70), given that u(k, s) satisfies (7.67). Taking the complex conjugate of (7.67)
and multiplying by C, we find that this will be so provided that

Cγ µ∗
C−1 = −γ µ. (7.72)

This is usually expressed differently, by observing that γ µ∗ is the transpose
(denoted by T) of γ µ†. Then by using (7.48) and (7.51), we can express C as
C = C γ 0T, where the charge conjugation matrix C has the property

C γ µTC−1 = −γ µ. (7.73)

This relation does not define C uniquely; the usual choice of a matrix that works,
within the standard representation of the γ matrices, is C = iγ 2γ 0. The charge
conjugate spinors corresponding to (7.68) are

v(k, 1
2 ) =


0
0
0
1

 and v(k,− 1
2 ) = −


0
0
1
0

 . (7.74)

Some further properties of charge conjugation are explored in the exercises, as is
the construction of plane-wave solution in frames other than the rest frame.

7.3.7 Massless spin- 1
2 particles

A spin- 1
2 particle whose mass is zero satisfies the Dirac equation i/∂ψ = 0.

Whether such particles exist in nature is uncertain. Neutrinos are spin- 1
2 particles

and their masses are too small to be measured directly, but there is (at the time
of writing) some indirect evidence to suggest that some at least of the known
neutrino species have non-zero masses. Be that as it may, solutions of the massless
Dirac equation play an important role in several theories that we shall examine
later on. A massless particle travels with the speed of light and therefore has no
rest frame, so the polarization vector (7.64) cannot be defined. Instead, spin states
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can be classified according to helicity, which is the component of spin parallel to
the 3-vector momentum k:

h = � · k/|k|. (7.75)

The Pauli–Lubanski vector can be expressed as Wµ = − 1
2γ

5
[
γ µ/k − kµ

]
so,

for a wavefunction satisfying the massless Dirac equation, we have Wµψ =
1
2γ

5kµψ . Thus, a plane-wave solution with a definite momentum kµ will also
be an eigenfunction of Wµ if it is an eigenfunction of γ 5. Any wavefunction can
be decomposed as ψ = ψR + ψL, where

ψR = 1
2 (1 + γ 5)ψ ψL = 1

2 (1 − γ 5)ψ. (7.76)

(Here and in other similar contexts, I follow the custom of using ‘1’ to denote
the unit matrix.) Since (γ 5)2 = 1, these two components are eigenfunctions
of γ 5, with eigenvalues +1 and −1 respectively. If ψ is a plane wave, with
momentum eigenvalue kµ, they are eigenfunctions of Wµ with eigenvalues
± 1

2 kµ. In particular, they are eigenfunctions of W 0 with eigenvalues ± 1
2 k0. Since

W 0 = � · k and k0 = |k| for a massless particle, we find that the component ψR
has helicity h = + 1

2 while ψL has helicity h = − 1
2 . If we picture a positive-

helicity particle as a small spinning sphere, whose angular momentum is parallel
to k, then the fingers of a right hand whose thumb is extended in the direction of
k would curl in the direction of the sphere’s rotation. In this sense, the component
ψR is said to be right-handed, while ψL is left-handed. For any spinor, these
components are called the chiral projections and in this context γ 5 is the chirality
or ‘handedness’ operator. However, it is only for massless particles that these
chiral projections have definite helicities.

7.4 Spinor Field Theory

Although the Dirac equation appears to lead to a positive definite probability
density, and thus to solve one of the problems that we encountered in interpreting
solutions of the Klein–Gordon equation, it nevertheless has negative-energy
solutions, as we have seen. In order to interpret these in terms of antiparticles, we
must again resort to second quantization. If we write out matrix multiplications
explicitly, the action (7.61) is

S =
∫

d4x ψ̄i

(
iγ µ

i j ∂µ − mδi j

)
ψ j . (7.77)

The momentum conjugate to ψi is

!i = δS

δ(∂0ψi )
= iψ̄ jγ

0
j i = iψ†

i (7.78)

which is the same as (6.26) for the non-relativistic Schrödinger theory. When ψ

satisfies the Dirac equation, the action is zero, and in that case the Hamiltonian is

H =
∫

d3x !i (x, t)ψ̇i (x, t) =
∫

d3x ψ̄(x, t)iγ 0∂0ψ(x, t). (7.79)
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In accordance with our earlier procedure, we replace the wavefunction with a field
operator. This may be expanded in terms of plane-wave solutions as

ψ̂(x) =
∫

d3k

(2π)32ω(k)

∑
s

[
b̂(k, s)e−ik·x u(k, s) + d̂

†
(k, s)eik·xv(k, s)

]
(7.80)

in which k0 = (k2 + m2)1/2. The operator b̂(k, s) is to be interpreted as the
annihilation operator for a particle of 3-momentum k and spin polarization s, and

d̂
†
(k, s) as the creation operator for an antiparticle. It is possible to normalize

u(k, s) and v(k, s) in such a way that

ū(k, s)γ µu(k, s′) = v̄(k, s)γ µv(k, s′) = 2kµδss ′ (7.81)

ū(k, s)γ 0v(k̄, s′) = v̄(k, s)γ 0u(k̄, s′) = 0 (7.82)

where k̄µ = (k0,−k) (see exercise 7.4), and this leads to the same covariant
normalization for the particle states as we had for spin-0 particles. In particular,
the creation and annihilation operators can be expressed in terms of ψ̂ through

b̂(k, s) =
∫

d3x eik·x ū(k, s)γ 0ψ̂(x) (7.83)

d̂
†
(k, s) =

∫
d3x e−ik·x v̄(k, s)γ 0ψ̂(x) (7.84)

which correspond to (7.12) and (7.13) in the scalar theory.
In terms of the creation and annihilation operators, the Hamiltonian reads

Ĥ =
∫

d3k

(2π)32ω(k)

∑
s

ω(k)
[
b̂†(k, s)b̂(k, s) − d̂(k, s)d̂

†
(k, s)

]
. (7.85)

If we were to assume commutation relations similar to (7.17), it may be seen
that the antiparticles would contribute negative energies. Other undesirable
consequences would also follow. For example, causality would be violated, in
the sense that operators representing observable quantities in regions of spacetime
at space-like separations would fail to commute. Thus, events in these regions,
which cannot communicate via signals travelling at speeds less than or equal
to that of light, would not be independent as they ought to be. It is these
inconsistencies that give rise to the spin-statistics theorem mentioned in §6.1.
They can be removed if we assume instead the anticommutation relations

{b̂(k, s), b̂†(k′, s′)} = {d̂(k, s), d̂
†
(k′, s′)} = (2π)32ω(k)δss ′δ(k − k′) (7.86)

with all other anticommutators equal to zero. The antiparticle term in (7.85)
then changes sign when we reverse the order of the operators, and we also get
an infinite constant, as in (7.21). Removing the constant is again equivalent to
normal ordering, provided that the definition of normal ordering is amended to



Weyl and Majorana Spinors 159

include a change of sign whenever two fermionic operators are interchanged.
The relations (7.86) imply equal-time anticommutation relations for the field
components, which are

{ψ̂i (x, t), !̂ j (x ′, t)} = iδi j δ(x − x ′) (7.87)

the anticommutator of two field components or two momentum components being
zero.

When anticommutation is taken into account, the number operator for spin- 1
2

fermions is found to be

N̂ =
∫

d3x : ˆ̄ψ(x, t)γ 0ψ̂(x, t):

=
∫

d3k

(2π)32ω(k)

∑
s

[
b̂†(k, s)b̂(k, s) − d̂

†
(k, s)d̂(k, s)

]
. (7.88)

This counts the (number of particles − number of antiparticles), which is the
desired result. It can, of course, take both positive and negative values, which
is ironic, since the positive definite probability density appeared at first to be
a success of the Dirac equation. We see, indeed, that at the level of first
quantization, the Dirac theory cannot be quite correct. To allow for the antiparticle
interpretation, it ought to be possible for j0(x) to have negative values. There
is, in fact, a modification that will do this. Let us consider the plane-wave
expansion (7.80) to apply to a wavefunction, the coefficients b(k, s) and d∗(k, s)
being numbers rather than operators. For consistency with the anticommutation
of the corresponding operators, these should be regarded as anticommuting
numbers. This means that b(k, s)b(k′, s′) = −b(k′, s′)b(k, s) and similarly for
any product of bs, ds and their complex conjugates. In particular, the product
of an anticommuting number with itself is zero. However, any anticommuting
number still commutes with an ordinary commuting (or c-) number. Such
anticommuting numbers are said to form a Grassmann algebra (see appendix A).
The Dirac wavefunction itself is therefore also an anticommuting Grassmann
number. For many purposes, we deal only with equations which, like the
Dirac equation itself, are linear in the wavefunction, so the anticommutation
has no effect. None of the results derived in previous sections are changed.
However, certain properties of the bilinear covariants do depend on whether the
wavefunction is taken to be commuting or anticommuting, and these will be
consistent with corresponding properties of the second-quantized operators only
if anticommuting wavefunctions are used. The Hamiltonian and current density
are cases in point.

7.5 Weyl and Majorana Spinors

We can now see in detail the physical meaning of the four components of a Dirac
spinor. The four degrees of freedom correspond to four single-particle states: a
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particle and an antiparticle state, each of which can have either of two independent
spin polarizations. A question that turns out to be worth asking is this: is it
necessarily true that a spin- 1

2 particle species has all four of these states available
to it? The considerations involved in addressing this question are especially
important in the case of massless particles, and most of our discussion will focus
on these. The algebra that is needed becomes particularly straightforward if we
choose a different representation of the γ matrices from the standard set (7.27)
that we have used up to now. The four matrices

γ 0 =
(

0 −I
−I 0

)
γ i =

(
0 σ i

−σ i 0

)
(7.89)

satisfy the Clifford algebra condition (7.26) and constitute the Weyl or chiral
representation. In this representation, the matrices γ 5, C and C that we defined
earlier are given by

γ 5 =
(

I 0
0 −I

)
C =

(−ε 0
0 ε

)
C =

(
0 ε

−ε 0

)
(7.90)

where ε is the 2 × 2 matrix

ε = iσ 2 =
(

0 1
−1 0

)
(7.91)

which has the properties εσ i ∗ε = σ i and ε2 = −I . The operators that appear in
the equations (7.67) and (7.70) for positive- and negative-energy spinors are

/k ∓ m = −
( ±m I (k0 I + σ · k)

(k0 I − σ · k) ±m I

)
. (7.92)

For massless particles, the positive- and negative-energy spinors u and v obey the
same equation /ku = /kv = 0. In fact, there is no need to distinguish between u
and v, so I shall write this single equation as /ku = 0. A massless particle has both
m = 0 and k0 = |k|. (Recall from our discussion in §7.3.6 that k0 is positive for
both positive- and negative-energy solutions, but these two types of solution are
distinguished by the sign of the exponential factor in (7.66) and (7.69)). Suppose,
for simplicity, that k = (0, 0, k). Then /k can be written explicitly as

/k =


0 0 −2k 0
0 0 0 0
0 0 0 0
0 −2k 0 0

 . (7.93)

The equation /ku = 0 has only two independent solutions, which are

uR =


1
0
0
0

 and uL =


0
0
0
1

 (7.94)
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with γ 5uR = +uR and γ 5uL = −uL. Clearly, when k is in some other direction,
there can also be only two independent solutions. They can be written as

uR(k) =
(
χ(k)

0

)
uL(k) =

(
0

−εχ∗(k)

)
(7.95)

where each entry is a 2-component column matrix and

χ(k) = |k|√|k| + k3

(
I + σ · k

|k|
)(

1
0

)
. (7.96)

With the normalization factor given here, the two solutions have the
orthonormality properties

ūR(k)γ
µuR(k) = ūL(k)γ

µuL(k) = 2kµ (7.97)

ūR(k)γ
µuL(k) = ūL(k)γ

µuR(k) = 0. (7.98)

They are also related by charge conjugation:

uc
R(k) = Cu∗

R(k) = uL(k) uc
L(k) = Cu∗

L(k) = uR(k). (7.99)

The general solution to the massless Dirac equation can now be written as
ψ̂(x) = ψ̂R(x) + ψ̂L(x), with

ψ̂R(x) =
∫

d3k

(2π)32|k|
[
b̂R(k)e−ik·x uR(k) + d̂

†
L(k)e

ik·x uR(k)
]

(7.100)

ψ̂L(x) =
∫

d3k

(2π)32|k|
[
b̂L(k)e−ik·x uL(k) + d̂

†
R(k)e

ik·x uL(k)
]
. (7.101)

Note carefully that, since the charge conjugate of a right-handed solution is a
left-handed solution, the coefficient of the negative-energy term in ψ̂R must be
interpreted as the creation operator for a left-handed particle, and conversely for
ψ̂L. It is not hard to verify that the Dirac equation can be written in terms of the
right- and left-handed components as

i/∂ψ̂R = mψ̂L i/∂ψ̂L = mψ̂R. (7.102)

In the case of massless particles, these are two independent equations.
Correspondingly, the result of exercise 7.9 shows that the action (7.61) can be
expressed as

S =
∫

d4x
[
iψ̄R /∂ψR + iψ̄L/∂ψL

]
. (7.103)

It is therefore possible to delete, say, ψR from our theory entirely or, equivalently,
to construct a theory that involves only the left-handed field ψL. The spinor in
this reduced theory is called a Weyl spinor. The theory contains two independent
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annihilation operators, b̂L(k) and d̂R(k) together with the creation operators

b̂†
L(k) and d̂

†
R(k). In this theory, the particles can exist only in the left-handed

state, while the antiparticles exist only in the right-handed state. In the alternative
theory, which contains only ψR, the converse would be true. However, these
two theories are physically equivalent, since we can rename the particles as
antiparticles and vice versa. They are also mathematically equivalent, because
we can rewrite the theory of ψR in terms of ψc

R, which is a left-handed field.
The theory containing a single massless Weyl spinor thus provides one

example of a particle that has available to it only two of the four states in the
full Dirac theory. A second example is provided by a spin- 1

2 particle which is
its own antiparticle. The field operator ψM(x) for such a particle must obey
ψc

M(x) = ψM(x) and is called a Majorana spinor. In the case of a massless
particle, the field can be written in terms of creation and annihilation operators
β̂R, β̂†

R, β̂L, β̂†
L for the right- and left-handed states available to it:

ψ̂M(x) =
∫

d3k

(2π)32|k|
[
e−ik·x (uR(k)β̂R(k) + uL(k)β̂L(k)

)
+ eik·x (uR(k)β̂

†
L(k) + uL(k)β̂

†
R(k)

)]
. (7.104)

The Dirac equation for a Majorana spinor can be obtained as the Euler–Lagrange
equation associated with the action

S =
∫

d4x 1
2 iψ̄M /∂ψM. (7.105)

The factor of 1
2 is necessary to maintain the anticommutation relations (7.87) for

the field and its conjugate momentum, given that we have a reduced number of
creation and annihilation operators with the anticommutators

{β̂A(k), β̂†
B(k

′)} = (2π)32|k|δABδ(k − k′) (7.106)

where the indices A and B have the values R or L.
For non-interacting, massless particles, the theories containing a single Weyl

spinor or a Majorana spinor are actually equivalent. Mathematically, we can use
the left-handed field (7.101), for example, to build a Majorana spinor

φ̂M(x) = ψL(x) + ψc
L(x)

=
∫

d3k

(2π)32|k|
[
e−ik·x (uR(k)d̂R(k) + uL(k)b̂L(k)

)
+ eik·x (uR(k)b̂

†
L(k) + uL(k)d̂

†
R(k)

)]
(7.107)

and it is possible to show that the action for this field is

S =
∫

d4x 1
2 iφ̄M /∂φM =

∫
d4x iψ̄L /∂ψL. (7.108)
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Moreover, the operators (b̂L, b̂†
L, d̂R, d̂

†
R) have exactly the same anticommutation

relations as (β̂L, β̂
†
L, β̂R, β̂

†
R), so the difference between these two theories is

purely a matter of notation. From a physical point of view, the available states
in each case are a left-handed particle and a right-handed antiparticle. According
to the Weyl description, the particle and antiparticle are distinct, while according
to the Majorana description they are the same particle. This might seem to be a
genuine physical difference. However, the difference is physically undetectable
so long as the particles do not interact. If the particles do interact, then the nature
of the interaction will tell us which description is appropriate. For example, it is
possible to construct an idealized theory of massless electrons, in which electrons
are always left-handed and positrons are always right-handed. If these electrons
interact via electromagnetic fields, then the extra term in the S needed to account
for this interaction (to be discussed in chapter 8) cannot be built from a Majorana
spinor. A Weyl spinor is needed to describe the electromagnetic interaction and,
of course, electrons and positrons will turn out to be different particles, since they
have opposite charges.

7.6 Particles of Spin 1 and 2

In later chapters, we shall encounter fundamental spin-1 particles (photons, which
are massless and the W± and Z0 particles, which are massive). In a quantum
theory of gravity, there ought also to be gravitons, which turn out to have
spin 2, although these particles have not (at the time of writing) been detected
experimentally. All the theories involving these particles give rise to special
technical questions, which I shall discuss in due course. In this section, we take a
preliminary look at the wave equations that describe such particles in the absence
of interactions, and investigate how they can be interpreted in terms of spin.

7.6.1 Photons and massive spin-1 particles

In the absence of charged particles, Maxwell’s equations (3.52) can be written in
terms of the 4-vector potential Aµ as

�Aµ − ∂µ(∂ν Aν) = 0. (7.109)

A modification of this equation, called the Proca equation

�Aµ + m2 Aµ − ∂µ(∂ν Aν) = 0 (7.110)

describes particles of mass m. In fact, if we act with ∂µ on (7.110), the first and
last terms cancel and the remaining equation tells us that

∂µAµ = 0. (7.111)

Using this result, (7.110) becomes just the Klein–Gordon equation (�+m2)Aµ =
0. In the Maxwell theory, we can use the property of gauge invariance to impose
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the condition (7.111) on the solutions of (7.109) also. Thus, if we make a gauge
transformation (3.60) and choose θ(x) to be a solution of �θ = ∂µ Aµ, the new
vector potential A′

µ(x) obeys (7.111), which in this context is called the Lorentz
gauge condition. To put this another way, any solution of the Maxwell wave
equation (7.109) can be written as Aµ(x) = A(L)

µ (x) + ∂µθ(x), where A(L)
µ (x)

obeys the Lorentz condition. The term ∂µθ(x) has no physical meaning, since it
makes no contribution to the electric and magnetic fields and therefore, according
to exercise 3.6, makes no contribution to the energy either, so it can be discarded.

The spin of particles described by a 4-vector wavefunction or field operator
can be determined by the same method that we used for Dirac spinors. Let us
assemble the four components of Aµ into a column matrix A. Under a Lorentz
transformation, we have A′(x ′) = �A(x), which is analogous to (7.29), the
matrix S(�) now being just � itself. In this matrix language, the generators
of Lorentz transformations which appear in the Pauli–Lubanski vector (7.45) and
(7.46) are given for 4-vector fields by

%1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 %2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 %3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


(7.112)

K 1 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 K 2 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 K 3 =


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 .

(7.113)
As before, we consider plane-wave solutions, which in this case have the form

Aµ
k (x) = εµe−ik·x (7.114)

and represent the components of the polarization vector εµ as a column matrix.
The condition (7.111) implies kµε

µ = 0. For massive particles, we can use the
rest frame, where kµ = (m, 0), and calculate the square of the Pauli–Lubanski
vector, with the result

W 2 ≡ WµWµ = −m2�2 = −2m2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (7.115)

The factor of s(s + 1) = 2 indicates that the particles have spin s = 1, but the
matrix here is not the unit matrix. Taking the spin quantization axis in the x3

direction as usual, we can find a set of four basis vectors ελ for the polarization (λ
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is a label for these vectors, not a spacetime index), which are eigenvectors of %3:

ε1 = 1√
2


0
1
i
0

 ε0 =


0
0
0
1

 ε−1 = 1√
2


0
1
−i
0

 ε′
0 =


1
0
0
0

 .

(7.116)
The first three of these, with eigenvalues 1, 0 and −1 respectively correspond
to the expected values of the µ = 3 component of spin. The last, ε′

0, also has
eigenvalue 0, but it does not obey the condition (7.111), which in the rest frame
becomes mε0 = 0, and so is not an allowed solution. Acting on a solution built
from the first three polarization vectors, the matrix in (7.115) is, in effect, just the
unit 3 × 3 matrix.

The spin polarization of a massless particle such as a photon must again be
described in terms of helicity, and again we consider a frame of reference in which
kµ = (k, 0, 0, k) with k > 0. In this frame, the helicity operator h = W 0/k0

is h = %3, and it has the same eigenvectors (7.116). However, the condition
∂µ Aµ = 0 now says that kµε

µ = k(ε0 − ε3) = 0, or ε0 = ε3. The two
‘transverse’ polarizations ε±1, for which the 3-vector ε is perpendicular to the
momentum k, obey this condition, but of the h = 0 states, only the longitudinal
combination

εL = ε0 + ε′
0 =


1
0
0
1

 (7.117)

does so. This longitudinal polarization vector is ε
µ
L = kµ/k and the

corresponding plane wave can be written as Aµ(x) = ∂µθ(x), where θ(x) =
(i/k)e−ik·x . It is thus a ‘pure gauge’, in the sense that it can be reduced to Aµ = 0
by a gauge transformation, and is not physically meaningful. We see, then, that
a photon exists only in the two polarization states with helicity h = ±1. In
terms of classical light waves, this corresponds to the familiar fact that plane-wave
solutions to Maxwell’s equations have electric and magnetic fields transverse to
the direction of propagation; the two helicity states correspond to states of right-
and left-circular polarization in the classical theory.

Quantum field operators for spin-1 particles can be constructed from creation
and annihilation operators for the allowed spin polarization states, but this is
not entirely straightforward, owing to the fact that Aµ has more components
than there are independent physical states. An immediate difficulty can be seen
from exercise 3.6, which shows that the momentum conjugate to A0 vanishes
identically, which is inconsistent with commutation relations such as (7.14).
Methods of circumventing this problem are described in many books on quantum
field theory, but I do not propose to enter into them here. Instead, I shall discuss in
chapter 9 an alternative approach to the quantization of gauge-invariant theories,
namely the path-integral formalism, which is more convenient for many practical
purposes.
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7.6.2 Gravitons

The general-relativistic theory of gravity asserts, as we saw in chapter 4, that
the metric tensor gµν(x) is not fixed, as in Minkowski spacetime, but is a
dynamical quantity analogous in some respects to electromagnetic fields. We
might therefore suspect the existence of gravitational radiation, which would be in
some respects analogous to electromagnetic radiation. This is indeed a prediction
of general relativity, and there exists a well-developed theory of the properties
of gravitational waves and how they might be generated and detected. Here, I
have the space only to deal with a few basic features, which bear directly on the
possibility of finding a comprehensive quantum-mechanical theory of the physical
world.

The equations which, in general relativity, serve a purpose analogous to
that of Maxwell’s equations in electromagnetism are the field equations (4.17),
and our first objective is to derive from these a wave equation of the same
kind as (7.109) or (7.110). To do this, we write the metric tensor as gµν(x) =
g(B)
µν (x) + hµν(x), where g(B)

µν (x) is a ‘background’ metric describing the overall
geometrical structure of whatever spacetime interests us, while hµν(x) is a
small correction that we hope to interpret as a gravitational wave propagating
through this background spacetime. By expanding the field equations to linear
order in hµν(x), we obtain an approximate wave equation that describes freely-
propagating waves. The essential features can be found most easily by taking
the background to be Minkowski spacetime, so we take g(B)

µν (x) = ηµν . Just
as we obtained (7.109) by ignoring charged particles, so here we will ignore the
presence of matter (which would, however, be necessary to generate the waves in
the first place), setting Tµν = 0. As we found when obtaining the Schwarzschild
solution, the field equations can then be written simply as Rµν = 0.

With gµν = ηµν + hµν , the affine connection coefficients �
µ
νσ can be

approximated as in (4.6) and they are linear in hµν . Therefore, our wave equation
is derived only from the terms in the Ricci tensor (2.36) that are linear in �. That
is

Rµν ≈ �λ
µν,λ − �λ

µλ,ν ≈ 0. (7.118)

Writing this out explicitly in terms of hµν , we get

�hµν + ∂µ∂νhλ
λ − ∂λ

(
∂µhνλ + ∂νhµλ

) = 0. (7.119)

Since hµν is symmetric in µ and ν, it has ten independent components. At first
sight, it might seem that a gravitational wave has ten possible polarizations, and
thus that a quantum of gravitational energy, or graviton, would be a particle
having ten independent spin polarizations, and obeying the rather complicated
wave equation (7.119). At this point, however, we must take into account that
the components of the Minkowski metric tensor have the special set of values
ηµν shown in (2.8) only when we use an inertial, Cartesian system of coordinates.
There will be some sets of functions hµν(x) for which the metric gµν = ηµν+hµν
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is exactly the metric of Minkowski spacetime, but expressed in a different
coordinate system. An hµν of this kind does not describe a genuine gravitational
wave. In this sense, general relativity has a gauge invariance symmetry quite
similar to that of electromagnetism.

Let us work out the implications of this gauge invariance. Because we
are considering only small changes hµν in the metric, we need consider only
small changes in the coordinates, which can be specified by four small functions
θµ(x). That is, we consider the effect of changing to a new set of coordinates
x̄µ = xµ + θµ(x). (Here I am using the same notation as in the derivation
of (7.40), which makes sense only for small transformations.) According to the
transformation laws that we obtained in §2.2, the components of the metric tensor
in the new coordinates are

ḡµν(x̄) = ∂xα

∂ x̄µ

∂xβ

∂ x̄ν
gαβ(x). (7.120)

By expanding this to linear order in both hµν and θµ, we find that the new metric
is ḡµν(x) = ηµν + h̄µν(x), where

h̄µν(x) = hµν(x) − ∂µθν(x) − ∂νθµ(x). (7.121)

Just as two vector potentials related by the gauge transformation (3.60) with an
arbitrary function θ(x) represent the same physical situation, because they give
the same electric and magnetic fields, so two small changes in the metric related
by the gauge transformation (7.121) describe the same physical situation, because
they give the same geometrical structure, albeit described in different coordinate
systems.

Consider, in particular, the quantity qµ = ∂λhµλ− 1
2∂µhλ

λ, whose derivatives
appear in the wave equation (7.119). By making a gauge transformation, we find

q̄µ(x) = qµ(x) −�θµ(x) (7.122)

so we can arrange for q̄µ(x) to vanish, by choosing θµ(x) to be solutions of the
equation �θµ = qµ. Putting this another way, we are free to impose on the
solutions of (7.119) the condition

∂λhµλ − 1
2∂µhλ

λ = 0 (7.123)

which is the gravitational equivalent of the Lorentz gauge condition (7.111). It
can be called the harmonic gauge condition, because it corresponds to choosing
coordinates such that gµν�λ

µν = 0, which are called harmonic coordinates. In
that case, the wave equation becomes simply �hµν = 0, which is the Klein–
Gordon equation for a massless particle.

We have now established that a graviton is a massless particle, which
therefore travels with the speed of light. What about its spin? A plane-wave
solution to (7.119) can be written as

hµν
k (x) = εµνe−ik·x (7.124)
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where kµkµ = 0 and εµν is a symmetric polarization tensor with ten independent
components. The gauge condition (7.123) implies that this tensor must obey the
four equations

kλε
µλ = 1

2 kµελλ (7.125)

for µ = 0, . . . , 3 and this reduces the number of independent components to six.
We can, however, make a further gauge transformation, using

θµ(x) = θµe−ik·x (7.126)

where θµ are four arbitrary constants. The new solution (which is physically
equivalent to the old one) is h̄µν(x) = ε̄µνe−ik·x , where

ε̄µν = εµν − kµθν − kνθµ. (7.127)

Using the fact that kµkµ = 0, it is easy to check that h̄µν(x) still obeys the
harmonic gauge condition. Because of the four arbitrary constants, the number of
physically meaningful independent components in ε̄µν is now 6−4 = 2. Because
the graviton is massless, these must correspond to two states of opposite helicity.
The values of this helicity can be determined by the same methods we have used
in previous cases. The algebra is a little more complicated, though, so I shall just
quote the result, which is that h = ±2. Thus, the graviton is a massless spin-2
particle. As for the photon, however, some of the helicity states that we might
have expected (namely h = 0,±1) correspond to gauge degrees of freedom and
not to genuine particle states.

While photons and massive spin-1 particles are routinely detected by
experimenters, no graviton has yet been observed. Quite possibly, this is because
no sufficiently sensitive detector has yet been constructed. There is, on the
other hand, some rather compelling, though indirect, evidence for the existence
of classical gravitational waves. This comes from observations of a single
astronomical object—a binary pulsar discovered by R. A. Hulse and J. H. Taylor
in the 1970s. The orbital frequency of this binary star system has been found
to be increasing, in a manner that can be attributed to energy loss through the
emission of gravitational radiation. Indeed, the frequency has been accurately
monitored over many years and is found to agree remarkably well with theoretical
predictions based on this interpretation.

7.7 Wave Equations in Curved Spacetime

It ought, of course, to be possible to study wave equations and field theories in
curved spacetimes. When this is done, it turns out that there are difficulties of
interpretation over and above those we have already encountered in Minkowski
spacetime, and these difficulties have not, to my mind, been completely resolved.
More detailed discussions than I can give here can be found, for example, in
Birrell and Davies (1982) and Wald (1984).
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The first requirement, obviously, is that wave equations should be
covariant, and therefore the action should be invariant, under general coordinate
transformations. Starting from the theories we have already considered, two steps
are necessary to construct suitable actions: we must use the covariant spacetime
volume element (4.12) and replace partial derivatives with covariant derivatives.
It is also possible to add further terms involving the Riemann curvature tensor,
which will vanish if the spacetime happens to be flat. In the case of a scalar field,
these steps can be carried out straightforwardly. The covariant derivative of a
scalar quantity is the same as the partial derivative, and we arrive at an action of
the form

S =
∫

d4x (−g(x))1/2
[
gµν(x)∂µφ

∗∂νφ − m2φ∗φ + ξ R(x)φ∗φ
]

(7.128)

where R(x) is the Ricci curvature scalar defined in (2.51) and ξ is a dimensionless
number. This additional term is the only possible one that does not involve
dimensionful coefficients. The corresponding Euler–Lagrange equation is

gµν∇µ∇νφ +
(

m2 − ξ R
)
φ = 0 (7.129)

where ∇µ is the covariant derivative. (Recall that, although ∇µφ = ∂µφ, this
quantity is a vector, which must be acted on with a covariant derivative.) To
derive (7.129), we use an integration by parts, and the covariant derivative enters
through the covariant version of Gauss’ theorem exhibited as equation (A.23) of
appendix A. The value of ξ is not determined by any known physical principle
and, since the effects of spacetime curvature are too small to measure in the
laboratory, it cannot be determined by experiment either. The case ξ = 0 is called
minimal coupling, for obvious reasons. An interesting case is ξ = 1

6 . If ξ = 1
6

and m = 0, the theory possesses a symmetry known as conformal invariance. A
conformal transformation means replacing the metric gµν(x) with �(x)2gµν(x),
where �(x) is an arbitrary function. If at the same time we replace φ(x) with
�−1(x)φ(x), then it can be shown that the wave equation (7.129) is unchanged.
Whether we should expect this symmetry to be respected by nature is not clear.
At any rate, the case ξ = 1

6 is known as conformal coupling.
To construct a generally covariant version of the Dirac equation requires

rather more thought. We have seen that spinor wavefunctions do not have the
same transformation properties as any of the tensors considered in chapter 2,
so we do not yet know how to form their covariant derivatives. In order to do
this, we first recall that it is always possible to set up a system of locally inertial
Cartesian coordinates, valid in a sufficiently small region of spacetime. Strictly
speaking, this must be an infinitesimal region surrounding, say, the point X with
coordinates xµ = Xµ. I shall denote these local coordinates by ya , using Latin
indices a, b, c, . . . to distinguish them from the large-scale coordinates xµ. In
terms of these coordinates, the metric tensor is given at X by the Minkowski form
ηab. I shall denote the transformation matrix � (equation(2.13)) which relates the
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two sets of coordinates by the special symbol e:

eµ
a(X) = ∂xµ

∂ya

∣∣∣∣
xµ=Xµ

and ea
µ(X) = ∂ya

∂xµ

∣∣∣∣
xµ=Xµ

. (7.130)

If we set up a locally inertial frame of reference at each point of spacetime,
in such a way that the directions of their axes vary smoothly from one point to
another, then we obtain a set of four vector fields eµ

0(x), . . . , eµ

3(x) which specify,
at each point, the directions of these axes. This set of vector fields is known
variously as a vierbein (a German expression meaning ‘four legs’), a tetrad, or
a frame field. In theories that envisage numbers of spacetime dimensions other
than four, it is called a vielbein (a German expression meaning ‘many legs’). At a
given point X , the vierbein constitutes a set for four 4-vectors ea

0(X), . . . , ea
3(X),

which specify the directions and scales of the large-scale coordinates relative to
the inertial coordinates at X . Considered as a whole, the 16 components of the
vierbein constitute a kind of rank-2 tensor field whose µ indices transform as a
vector under general coordinate transformations and can be raised and lowered
using g, while its a indices transform as a 4-vector under Lorentz transformations
in the local coordinates and can be raised and lowered using η. By construction,
the vierbein satisfies the relations

eµ
a(x)e

a
ν(x) = δµν ea

µ(x)e
µ
b(x) = δa

b (7.131)

and

eµ
a(x)e

ν
b(x)gµν(x) = ηab ea

µ(x)e
b
ν(x)ηab = gµν(x). (7.132)

Its 16 independent components evidently carry two kinds of information. First,
as we see from (7.132), they contain all the information needed to construct the
10 independent components of the metric tensor field. Second, each local inertial
frame can be redefined by Lorentz transformations, involving three independent
rotations and three boosts, and the remaining six degrees of freedom in the
vierbein specify the choices we have actually made.

It is now possible to describe any vector quantity either in terms of its
components V µ(x) relative to the large-scale coordinate directions, which I shall
refer to for brevity as a coordinate vector, or in terms of its components V a(x)
relative to the local coordinate directions at x , which I shall call a Lorentz vector.
The two sets of components are obviously related by

V µ(x) = eµ
a(x)V

a(x) and V a(x) = ea
µ(x)V

µ(x). (7.133)

In fact, any tensor field can be expressed in terms of components with any
combination of a-type and µ-type indices we happen to find convenient. The
advantage of this is clear: we know how to deal with spinors in the local inertial
coordinates, and the vierbein permits us to embed these in the curved spacetime.
In order to work out the covariant derivative of a spinor, we need a suitable
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rule for parallel transport. We shall first work out the rule for a Lorentz vector,
which will apply, for example, to the current ψ̄(x)γ aψ(x), and then deduce the
corresponding rule for the spinor itself.

To transport V a(x) to the point x + dx , we need only to translate (2.23) into
the language of locally inertial coordinates. The transported vector will be given
by

V a(x → x + dx) = V a(x) − ωa
bν(x)V

b(x)dxν (7.134)

where the coefficients ωa
bν(x) are the components of what is called the spin

connection. They involve both the affine connection, which defines parallel
transport of the vector itself, and the vierbein, which relates the locally inertial
coordinates at x to those at x + dx . We use the relations

V µ(x) = eµ
a(x)V

a(x) V µ(x → x + dx) = eµ
a(x + dx)V a(x → x + dx)

together with the expansion eµ
a(x +dx) � eµ

a(x)+eµ
a,ν(x)dxν to convert (7.134)

into a transport equation for V µ and compare the result with (2.23). We find that
the spin connection is given by

ωa
bν = ea

µeµ
b,ν + ea

µeσ
b�

µ
σν. (7.135)

With the spin connection in hand, we can generalize (2.28) to obtain the covariant
derivative of a tensor field with both a- and µ-type indices, including a � term for
each coordinate index and an ω term for each Lorentz index. The vierbein itself
is such a tensor, and by rearranging (7.135) we see that its covariant derivative
vanishes:

∇νeµ
a = eµ

a,ν + �µ
σνeσ

a − ωb
aνeµ

b = 0. (7.136)

This result should give alert readers pause for thought. We saw in §2.3.5 that,
in order to make the notion of parallel transport as defined by the affine connection
consistent with that defined by the metric, the covariant derivative of the metric
should vanish, and it does so only when the affine connection is the metric
connection (2.50). Although we shall usually want � to be this metric connection,
we have not actually assumed this in order to derive (7.136). To resolve this point
to their own satisfaction, readers may like to consider the conditions under which
any two of the notions of parallelism defined by the affine connection, the metric
and the vierbein become equivalent. In particular, consideration of the covariant
derivatives of gµν , of ηab and of equations (7.132) should prove illuminating. Let
us impose the consistency condition that the magnitude of a transported Lorentz
vector should be preserved, so that

ηabV a(x → x + dx)V b(x → x + dx) = ηabV a(x)V b(x).

It is easy to see that the spin connection must be antisymmetric, in the sense that

ωabν(x) ≡ ηacω
c
bν(x) = −ωbaν(x). (7.137)
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By using this condition, readers should be able to show that (2.48) is satisfied, so
� must be the metric connection.

We can now turn our attention to spinors, which should satisfy a rule for
parallel transport of the form

ψ(x → x + dx) = ψ(x) − �ν(x)ψ(x)dxν (7.138)

where �ν(x) is a suitable connection coefficient. This coefficient, like the
previous ones, has three indices; the first two are those it possesses by virtue
of being a 4 × 4 spin matrix. To discover what this coefficient is, we demand that,
in particular, the scalar quantity S(x) = ψ̄(x)ψ(x) should be invariant under
parallel transport, while the Lorentz vector V a(x) = ψ̄(x)γ aψ(x) should be
transported according to (7.134). From (7.138), we find

S(x → x + dx) = S(x) − ψ̄(x)
[
γ 0�†

ν(x)γ
0 + �ν(x)

]
ψ(x)dxν (7.139)

so our first condition gives

γ 0�†
ν(x)γ

0 = −�ν(x). (7.140)

Using this, we find similarly that V a(x) is correctly transported provided that

[γ a,�ν(x)] = ωa
bν(x)γ

b. (7.141)

Taking into account the antisymmetry property (7.137), we can use (7.35) and
(7.51) to identify the matrix satisfying these two conditions as

�ν(x) = − i
4ωabν(x)σ

ab = 1
8ωabν(x)[γ a, γ b]. (7.142)

Then the covariant derivative of the spinor is

∇νψ(x) = [∂ν + �ν(x)]ψ(x). (7.143)

It is now a straightforward matter to write down the covariant version of
the Dirac equation (7.23). The γ matrices are valid only within the local inertial
frame and must be contracted with the covariant derivative by using the vierbein:[

ieµ
a(x)γ

a∇µ − m
]
ψ(x) = 0. (7.144)

We can tidy this up by defining a set of covariant γ matrices

γ µ(x) = eµ
a(x)γ

a (7.145)

and it may easily be verified that these satisfy the generally covariant version of
the Clifford algebra condition (7.26):

{γ µ(x), γ ν(x)} = 2gµν(x). (7.146)
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The generally covariant action is clearly

S =
∫

d4x (−g(x))1/2ψ̄(x)
[
iγ µ(x)∇µ − m

]
ψ(x) (7.147)

and in this case no curvature term can be added with a dimensionless coefficient.
If we wish, we can express (−g)1/2 as det(ea

µ).
Clearly, wave equations such as (7.129) and (7.144) do not, in general,

have simple plane-wave solutions. Only in very special cases, indeed, can their
solutions be found in closed form. When we try to reinterpret these equations
in terms of quantum fields, we encounter a new difficulty of principle. As a
matter of fact, this difficulty really exists for quantum field theories in Minkowski
spacetime as well, though we do not need to worry about it for most practical
purposes. A simply-stated fact that illustrates the Minkowski version of the
problem is this: the vacuum state, which from the point of view of an inertial
observer contains no particles, will be perceived by an accelerating observer
as containing a thermal bath of particles at a temperature proportional to the
observer’s acceleration. Proving this remarkable fact is not quite so simple, but
I shall outline one of several standard calculations that illustrate its truth. We
consider the theory of massless spin-0 particles in a Minkowskian spacetime that
has only two dimensions. In an inertial frame of reference, we can use coordinates
x and t . Another set of coordinates, ξ and η, invented by W Rindler, is related to
these by

x = α−1eαξ cosh(αη) t = α−1eαξ sinh(αη) (7.148)

where α is a constant. We should note at once that, although both ξ and η are
allowed to vary between −∞ and +∞, these coordinate values cover only part
of the whole spacetime, namely the region x > |t|, which is called the Rindler
wedge. In this region, the line element is given by

dτ 2 = dt2 − dx2 = e2αξ
(

dη2 − dξ2
)
. (7.149)

To see the meaning of these coordinates, consider an observer whose ξ coordinate
is fixed. Relative to the inertial frame of reference, the equation of his path
through spacetime is x2 − t2 = a2

p, where ap = α exp(−αξ). A little algebra

suffices to show that his velocity u = dx/dt and his acceleration a = d2x/dt2

obey the relation

ap =
(

1 − u2
)−3/2

a. (7.150)

Compare this with the result of exercise 2.2, setting c = 1 and v = u. We see
that ap is the observer’s proper acceleration; that is, his acceleration relative to an
inertial frame of reference in which he is instantaneously at rest. For this observer,
proper time is given by (7.149) with dξ = 0 as dτ = exp(αξ)dη.

Suppose that φ̂(x, t) is an Hermitian scalar field, describing particles that are
their own antiparticles. According to (7.11), with only one space dimension and
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ω(q) = |q| for massless particles of momentum q , it can be expressed in terms
of creation and annihilation operators as

φ̂(x, t) =
∫

dq

(2π)2|q|
[
â(q)e−i|q|t+iqx + â†(q)ei|q|t−iqx

]
. (7.151)

Now, as long as we consider the field inside the Rindler wedge, the Klein–Gordon
equation is (

∂2

∂ t2 − ∂2

∂x2

)
φ = e−2αξ

(
∂2

∂η2 − ∂2

∂ξ2

)
φ = 0. (7.152)

In terms of ξ and η, this equation has plane wave solutions, though they are by no
means the same as the ones that appear in (7.151). For example

φk(ξ, η) = e−ik(η−ξ) = [α(x − t)]ik/α . (7.153)

Therefore, the field can also be expanded as

φ̂R(ξ, η) =
∫

dk

(2π)2|k|
[
b̂(k)e−i|k|η+ikξ + b̂†(k)ei|k|η−ikξ

]
(7.154)

where the subscript R reminds us that this is valid only inside the Rindler
wedge. The new creation and annihilation operators b̂†(k) and b̂(k) obey the same
commutation relation as â†(q) and â(q), but they are not the same operators. In
fact, we can use (7.12) to write

b̂(k) =
∫ ∞

−∞
dξ ei|k|η−ikξ (|k|φ + i∂φ/∂η) (7.155)

and use the expression (7.151) for φ to find b̂(k) in terms of â(q) and â†(q).
(However, because φ̂(x, t) exists throughout the Minkowski spacetime while
φ̂R(ξ, η) exists only in the Rindler wedge, it is not possible to express â(q) in
terms of b̂(k) and b̂†(k) alone.) Let us write the result as

b̂(k) =
∫

dq
[
αk(q)â(q) + βk(q)â

†(q)
]

(7.156)

where the functions αk(q) and βk(q) are defined by integrals that are somewhat
awkward to compute. A relation of this kind between the creation and annihilation
operators associated with different sets of solutions to a wave equation is called
a Bogoliubov transformation. It is interesting to calculate the expectation value
N(k, k ′) = 〈0|b̂†(k)b̂(k ′)|0〉, where |0〉 is the Minkowski-spacetime vacuum state,
for which

â(q)|0〉 = 0 and 〈0|â†(q) = 0. (7.157)

According to (7.22) the quantity

N(k, k)dk

(2π)2|k| (7.158)
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gives the number of particles with momentum between k and k + dk as seen by a
Rindler observer. However, if there is a finite number of particles per unit volume
in an infinite volume, then N(k, k) will be infinite. By first calculating N(k, k ′),
we will be able to extract a finite answer for the number of particles per unit
volume. It is given by

N(k, k ′) =
∫

dqdq ′ β∗
k (q)βk′(q ′)〈0|â(q)â†(q ′)|0〉

=
∫

dqdq ′ β∗
k (q)βk′(q ′)(2π)2|q|δ(q − q ′)

= 4π
∫

dq |q|β∗
k (q)βk′(q).

In the first line of this calculation, three of the terms that result from calculating
b̂†(k)b̂(k ′) have disappeared because of the conditions (7.157) that define the
vacuum state. In the second line, I have used the commutator (7.17)—adjusted to
one space dimension—and (7.157) again. The remaining integral can be evaluated
(though this is not entirely straightforward) with the result

N(k, k ′) = 〈0|b̂†(k)b̂(k ′)|0〉 = (2π)2|k|δ(k − k ′)
(

e2π |k|/α − 1
)−1

. (7.159)

On setting k ′ = k, the infinite factor δ(0) can be interpreted, as discussed in

appendix D, as representing the infinite volume. The factor
(
e2π |k|/α − 1

)−1

has the same form as the Bose–Einstein occupation number, to be discussed in
chapter 10 (see equation (10.64)), for a gas of bosonic particles. In particular, the
argument of the exponential, 2π |k|/α, corresponds in thermodynamic language
to ε(k)/kBT , where ε(k) is the energy of a particle of momentum k, T is the
temperature of the gas and kB is Boltzmann’s constant.

To interpret this result correctly, recall from our earlier discussion that for
an observer whose ξ coordinate is fixed, say at ξ = ξ0, proper time is measured
by τ = eαξ0η. In terms of this proper time, we can write a positive-energy plane
wave as

exp(−i|k|η + ikξ) = exp
(−i|k|e−αξ0τ + ikξ

)
(7.160)

which will be interpreted by this observer as corresponding to a particle of energy
ε(k) = e−αξ0|k|. From this observer’s point of view, then, we must identify
2π |k|/α = ε(k)/kBT , where kBT = ap/2π and ap = αe−αξ0 is the observer’s
proper acceleration. From the point of view of statistical mechanics, this is at
first sight a strange result. As we shall see in more detail in chapter 10, the
Bose–Einstein distribution normally arises as an ensemble average of the number
of particles occupying a given quantum state; that is, an average over all the
microscopic states that are compatible with given values of a small number of
macroscopic quantities such as temperature. In the process of taking this average,
a great deal of information about the detailed state is lost. By contrast, the
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expectation value in (7.159) is taken in a pure quantum state, which contains
all the information that quantum mechanics allows us to have. One way of
understanding this is to remember that the field φR, which contains all the
information available to an accelerated Rindler observer exists only in the Rindler
wedge. The lost information concerns the state of the field in the rest of the
spacetime, to which the observer has no access.

From the point of view of quantum field theory, the result is strange for a
different reason. It tells us that the number of particles present in a given quantum
state depends on the frame of reference from which the state is observed. Indeed,
the very concept of a ‘particle’ has turned out to have no frame-independent
meaning. Nor, therefore, does the notion of a ‘vacuum’ as the state in which no
particles are present. We could perfectly well define a new vacuum state, say |0̄〉,
in Minkowski spacetime by requiring that b̂(k)|0̄〉 = 0 instead of (7.157). From
the point of view of an inertial observer, this would be a state in which particles
were present. So long as we deal only with Minkowski spacetime, this ambiguity
can be ignored for most practical purposes. The number of particles present in
a given state is the same when the state is observed from any inertial frame
and we normally take inertial frames of reference to define a preferred concept
of ‘particle’ and a preferred vacuum state. To be sure, our practical frames of
reference, such as those fixed on the earth’s surface, are not exactly inertial. To
estimate the likely effect of this, let us calculate the temperature corresponding
to an acceleration g, that due to gravity at the earth’s surface. To get an answer
in laboratory units, we must use dimensional analysis to reinstate the appropriate
factors of ~ and c. The result is T = g~/2πkBc � 10−20 K, so the effect is
completely negligible.

When we deal with a curved spacetime, this option is no longer open to
us, because no one set of inertial coordinates can, in general, cover the whole
spacetime. In particular, there will in general exist no quantum state that will
appear to every inertial observer to be devoid of particles. In view of the
equivalence principle, indeed, we might expect to be able to recast the general
idea that an accelerating observer in a vacuum observes the presence of particles
as a statement to the effect that particles can be created by a gravitational field.
A celebrated result of Hawking (1974) confirms this in the case of a black hole.
According to Hawking’s analysis, an observer far from a black hole, whose spatial
coordinates (r, θ, φ) (in the notation of §4.4 and §4.5) are fixed, will observe
particles traveling outwards. This is true, at least, if we specify the quantum state
by assuming that there is no radiation coming in from infinity. For a black hole
of mass M , this Hawking radiation is the same as that emitted by a black body
whose temperature in natural units is T = gM/2πkB. The acceleration gM here
is

gM = 1

4GM
= GM

r2
S

(7.161)

where rS is the Schwarzschild radius. In Newtonian terms, this is the acceleration
due to gravity at the surface of a body of mass M and radius rS, so we might



Wave Equations in Curved Spacetime 177

loosely identify it as the acceleration due to gravity at the event horizon, although
the proper acceleration of an object fixed at r = rS is infinite. It is still true in
the quantum theory that particles cannot escape from inside the event horizon,
so the radiated particles must be thought of as being created by the gravitational
field outside the event horizon. Nevertheless, the energy to create them must be
provided by a reduction in the mass of the black hole. In fact, a detailed analysis
shows that the energy density near the event horizon is negative (a quantum effect
that has no classical counterpart) and that the hole’s mass decreases because of
an inward flow of negative energy. In this way, it seems that a black hole can
‘evaporate’ and perhaps might eventually disappear altogether. However, the
theories we have thought about in this section concern quantum field theory in a
spacetime with a predetermined geometry. To determine the fate of a black hole,
we need to know about the ‘backreaction’ of the quantum field on the black hole
geometry. To the best of my knowledge, no entirely reliable way of doing this has
yet been found. A reasonable hypothesis seems to be that the energy E = Mc2

should decrease roughly in accordance with Stefan’s law d(Mc2)/dt = −σ AT 4,
where A is the surface area of a black body and σ is the Stefan–Boltzmann
constant (see equation (10.90)), perhaps modified to take account of the radiation
of particles other than photons. Taking A to be the area of the event horizon, we
find that dM/dt = −constant × M−2. Thus, the rate of evaporation is very small
for a large black hole, but becomes explosive as a small black hole nears the end
of its life. It is not hard to work out that the life expectancy of, say, a black hole
of one solar mass is of the order of 1070 years—vastly longer than the present
age of the universe, which is around 1010 years. It has been speculated that small
black holes, created in the very early universe, might be exploding around now,
contributing to the observed flux of cosmic rays, but it is hard to test this idea in
any stringent way.

Exercises

7.1. In the Lagrangian density (7.7), let φ = 2−1/2(φ1 + iφ2), where φ1 and
φ2 are real, and show that L becomes the sum of independent terms for φ1 and
φ2. Identify the two conjugate momenta and carry out the canonical quantization
procedure. Show that φ1 and φ2 are the field operators for two particle species,
each of which is its own antiparticle. Verify that your commutation relations
agree with (7.14) and (7.15) when φ is expressed in terms of φ1 and φ2. How
are the type 1 and type 2 particle states related to the particle and antiparticle
states of §7.2? How does the factor of 2−1/2 affect the definition of the conjugate
momenta, the commutation relations, the definition of creation and annihilation
operators and the normalization of particle states?

7.2. Let γ µ be a set of matrices satisfying (7.26), (7.48) and (7.50) and let U
be any constant unitary matrix. Show that the four matrices Uγ µU−1 also have
these properties and can therefore be used in the Dirac equation.
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7.3. For any 4-vector aµ, show that /a/a = aµaµ.

7.4. The spinors (7.68) and (7.74) give plane-wave solutions of the Dirac equation
in the rest frame, when the γ matrices (7.27) are used. Denote them by u(m, s)
and v(m, s). Show that, in a frame where the momentum is kµ, the spinors
u(k, s) = (k0+m)−1/2(/k+m)u(m, s) and v(k, s) = (k0+m)−1/2(−/k+m)v(m, s)
give plane-wave solutions which satisfy the orthonormality conditions (7.81) and
(7.82).

Use the relations (7.83) and (7.84) to verify that the anticommutation
relations (7.86) for creation and annihilation operators follow from the
anticommutator (7.87) of the field and its conjugate momentum (7.78).

7.5. The idea of charge conjugation requires that (ψc)c = ηψ , where η is a
constant phase factor (|η| = 1). Why is this? Assuming that η = 1, show that
CC∗ = 1 and CC∗ = −1 where C and C are the charge conjugation matrices
defined in §7.3.6. Do not assume that the γ matrices are those given in (7.27).

7.6. Show that γµγ µ = 4. Show that [γµ, γτ ]γ 5 is proportional to [γν, γσ ], where
(µ, ν, σ, τ ) is some permutation of (0, 1, 2, 3).

Hence show that [γµ, γτ ]γ 5 = −iεµνστ γ
νγ σ and that the Pauli–Lubanski

vector (7.44) can be expressed in the form (7.57).

7.7. If S(�) is a Lorentz transformation matrix that satisfies (7.32), show that
S−1(�)γ 5S(�) = det(�)γ 5. (It may be helpful to read about the Levi-Civita
symbol in appendix A.)

7.8. If the chiral projection operators are defined as PR = 1
2 (1 + γ 5) and

PL = 1
2 (1 − γ 5), show that P2

R = PR, P2
L = PL and PR PL = PL PR = 0.

If ψL = PLψ , show that ψ̄L = ψ̄PR. Show that the charge conjugate of a left-
handed spinor is right handed and vice versa.

7.9. If ψ = ψL + ψR, show that ψ̄ψ = ψ̄LψR + ψ̄RψL and that ψ̄ /∂ψ =
ψ̄L /∂ψL + ψ̄R /∂ψR.

7.10. In the standard representation of the γ matrices (7.27) show that the
transpose of the charge conjugation matrix C is CT = −C . Now define the
charge conjugate of the vector current V µ = ψ̄γ µψ to be V cµ = ψ̄cγ µψc.
Show that V cµ = +V µ if the components of ψ are treated as ordinary numbers
and V cµ = −V µ if they are regarded as anticommuting Grassmann numbers.
Which treatment is more appropriate in view of the antiparticle interpretation?



Chapter 8

Forces, Connections and Gauge Fields

One of the central problems faced by theoretical physics is to explain the
nature and origin of the forces that act between fundamental particles. In
the case of gravity, this is elegantly achieved (at the non-quantum-mechanical
level) by general relativity. With hindsight, we may say that an explanation
of gravitational forces arises naturally—indeed, almost inevitably—from a
systematic and explicit account of the geometrical structure of spacetime. The
origin of gravitational forces, as described in chapter 4, may be summarized as
follows:

(i) To relate physical quantities (represented by tensors) at different points
of spacetime, we must introduce a specific geometrical structure, the affine
connection, which defines parallel transport.

(ii) The simplest situation is that the connection coefficients are zero
everywhere (or can be made so by a suitable choice of coordinates). Departures
from this situation are what we recognize as gravitational forces.

(iii) It appears that the particular kinds of departure countenanced by nature
can be embodied in a principle of least action.

In essence, gravitational forces arise from communication between different
points of spacetime. At least at the level of description that accounts for all current
experimental observations, it appears that all known forces can be considered
to arise in essentially this way. In what follows, I shall first describe how this
comes about in the case of electromagnetism, and then discuss how the idea can
be generalized to encompass forces of other kinds.

8.1 Electromagnetism

Consider a particle described by a complex wavefunction

φ(x) = φ1(x) + iφ2(x). (8.1)

179
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The absolute phase of φ is not an observable quantity. If, for example, each
wavefunction in (5.52) is multiplied by the same constant phase factor exp(iθ),
this factor cancels out in the final result. On the other hand, variations of the
phase through spacetime do have a physical significance, because a varying phase
angle θ(x) is differentiated by the momentum operator. This may be expressed
differently, if we think of the value of φ at the spacetime point x as a point in
an ‘internal space’, namely the (φ1, φ2) plane. The fact that the phase of φ is
unobservable implies that no particular direction in this plane has any special
physical significance. To represent the whole function φ(x), we must erect a
(φ1, φ2) plane at each point of spacetime. The geometrical structure which results
is a fibre bundle. It is analogous to the Galilean spacetime fibre bundle, in which
a three-dimensional Euclidean space is erected at each point in time, or to the
tangent and cotangent bundles that we discussed in §3.7.3. Since there is no
preferred direction in the (φ1, φ2) plane, variations in the phase of φ from one
spacetime point to another can be meaningful only if a rule exists for parallel
transport through the fibre bundle. In order to attach a meaning to the relative
directions of φ(x1) and φ(x2) in the internal spaces at x1 and x2, we need a rule
for constructing the wavefunction φ(x1 → x2) which exists at x2 and is to count
as ‘parallel’ to φ(x1). The physically meaningful change in φ between the points
x1 and x2 is then given by

δφ = φ(x2) − φ(x1 → x2). (8.2)

Evidently, this is quite similar to the way we defined changes in a vector field in
(2.22).

An obvious possibility for such a rule is that the phase angles tan−1(φ2/φ1)

should be equal for φ(x1 → x2) and φ(x1). It will become apparent that this is
the special case corresponding to the absence of electromagnetic fields. Indeed,
this rule is equivalent to saying that the φ1 axes at any two points are to count
as parallel, and likewise the φ2 axes. In spacetime geometry, the analogous rule,
that a single set of self-parallel Cartesian axes can be used to cover the whole
manifold, implies that the manifold is flat and that there are no gravitational fields.

A less restrictive rule for parallel transport may be expressed in terms of
connection coefficients �i jµ:

φi (x → x + �x) = φi (x) − �i jµ(x)φ j (x)�xµ. (8.3)

This rule has the same form as that for parallel transport of spacetime vectors
between infinitesimally separated points via the affine connection (2.23), except
that the indices i and j refer to directions in the internal space. Unlike the absolute
phase, the magnitude of the wavefunction |φ| = (φ∗φ)1/2 = (φ2

1 + φ2
2)

1/2 has
a definite physical meaning in terms of probability amplitudes. We therefore
include in the definition of parallel transport the requirement that this magnitude
remain unchanged. For this to be so, �i jµ must be antisymmetric in i and j
(see exercise 8.1) and therefore proportional to the two-dimensional Levi-Civita
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symbol εi j :
�i jµ(x) = −εi jλAµ(x). (8.4)

The vector field Aµ(x) will turn out to be essentially the electromagnetic 4-vector
potential. The constant λ is intended to allow for different species of particle with
different electric charges (proportional to λ). In our present geometrical language,
we may say that the wavefunctions representing different particle species exist in
independent internal spaces and there is no reason why parallel transport in all
these spaces should involve the same connection. If, as we know to be the case,
particles of different types respond to the same electromagnetic fields, then we
conclude that, as a matter of empirical fact, their connections are determined by
the same vector potential Aµ, though possibly with different coefficients λ.

Because we are concerned only with the phases and not the magnitudes of
wavefunctions, it is convenient to deal with a fibre bundle whose fibres consist
just of these phases. Each fibre can be envisaged as a copy of the unit circle
in the complex plane, whose points are labelled by the phase angle θ , with
values between 0 and 2π . The angle θ(x) can be thought of as specifying a
transformation. Thus, if we write φ(x) as exp(iθ(x))|φ(x)|, then the phase
factor transforms |φ(x)| into φ(x). More generally, a phase transformation
changes the phase of any complex wavefunction by an angle between 0 and
2π . If the same transformation is made at each spacetime point, then the wave
equation satisfied by φ is unchanged, and so are all the matrix elements. In this
sense, the transformation is a symmetry of the quantum theory. The set of all
these transformations constitutes a symmetry group. It is possible to consider
symmetry groups that are much more general than phase transformations, and the
transformations that constitute the group may be labelled by several parameters
analogous to θ . The set of all possible values of these parameters is called the
group manifold. At the most fundamental level, each fibre in a bundle of the
kind we are considering is to be thought of as a copy of the group manifold of a
symmetry group. In our present case, the symmetry group is called U(1), and its
manifold is the unit circle.

In spacetime geometry, we defined objects called tensors by their behaviour
under general coordinate transformations. In our fibre bundle, the analogue
of a general coordinate transformation is a phase transformation through an
angle θ(x), where θ(x) is a differentiable function of position. The tensors
associated with these transformations are products of φ and φ∗. For a product
#mn = φ∗mφn , the transformation law is

#′
mn(x) = exp[i(n − m)λθ(x)]#mn(x). (8.5)

The definition (8.3) of parallel transport leads to a covariant derivative Dµ

analogous to (2.24). In terms of the real and imaginary parts of the wavefunction,
it is defined by

φi (x + �x) − φi (x → x + �x) = Di jµφ j (x)�xµ + O(�x2) (8.6)
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which, on account of (8.3), gives

Di jµφ j (x) = ∂µφi (x) + �i jµ(x)φ j (x). (8.7)

In terms of the complex wavefunction, this may be rewritten as

Dµφ(x) = [∂µ + iλAµ(x)]φ(x). (8.8)

An essential property of a covariant derivative is that it acts on tensors to produce
new tensors. In the present context, this means that Dµφ must have the same phase
transformation property as φ itself. As for the affine connection in chapter 2, this
requirement leads to a transformation law for the connection Aµ which is different
from the law (8.5) for ‘tensors’. If φ′ = exp(iλθ)φ, then we must have

D′
µφ

′ = (∂µ + iλA′
µ)(e

iλθφ) = eiλθDµφ = eiλθ (∂µ + iλAµ)φ (8.9)

and so the transformation law for Aµ is

A′
µ(x) = Aµ(x) − ∂µθ(x). (8.10)

The action of the covariant derivative on a tensor that transforms according to
(8.5) must therefore be

Dµ#mn = [∂µ + iλ(n − m)Aµ]#mn . (8.11)

The set of transformation rules given by (8.5) and (8.10) is usually called a local
gauge transformation and the connection coefficient Aµ is called a gauge field.
The derivative Dµ may be called a gauge-covariant derivative to distinguish it
from the generally covariant derivative ∇µ.

The intrinsic geometrical structure of spacetime is determined, as we saw
in chapter 2, by the metric and by the affine connection. Once the presence
of this structure in the dynamical equations of physics has been made explicit
through their components gµν and �

µ
νσ , we expect that these equations should

be generally covariant: that is, their forms should be independent of our choice
of a coordinate system. If the dynamical equations are derived from a principle
of least action, general covariance is guaranteed by choosing the action to be a
scalar.

In the same way, the geometry of the U(1) fibre bundle of electromagnetism
(that is, the relationships between phases of wavefunctions at different points in
spacetime) is determined by the gauge field Aµ(x). Once the gauge field has been
incorporated into the equations of motion, we expect these equations to be gauge
covariant. That is, their forms should be preserved by gauge transformations.
This will automatically be so if they are derived from a gauge-invariant action.
Since we are working in Minkowski spacetime, we shall also require the action to
be a Lorentz scalar.

Let us first construct the wave equation for a spin- 1
2 particle in a prescribed

electromagnetic field. In the case of spacetime geometry, an action which is
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invariant under general coordinate transformations could be built from tensors
by contracting all their indices, so that the transformation matrices cancel.
Correspondingly, to make a gauge-invariant action, we can use products of gauge
tensors, with transformation laws of the form (8.5). Clearly, the product of one
such tensor with the complex conjugate of another tensor of the same type will be
invariant. Consider the Dirac action (7.61). It should be clear that this will become
gauge invariant if we replace the ordinary derivative ∂µ with the gauge-covariant
derivative Dµ:

SDirac =
∫

d4x ψ̄(x)
(
i/∂ − λ /A(x) − m

)
ψ(x). (8.12)

The equation that follows from varying ψ̄ is(
i/∂ − λ /A(x) − m

)
ψ(x) = 0. (8.13)

This is known as the minimal coupling prescription. It is the simplest modification
of the Dirac equation that makes it gauge covariant and reduces to the original
one when Aµ = 0. A variety of other equations could be invented by introducing
further gauge-covariant terms which vanish when Aµ = 0, but there appears to
be no good physical reason for doing so.

Some physical consequences of this modified Dirac equation will be
explored in the next chapter. A mathematical consequence is that the symmetry
of the theory under global phase transformations—those which change the phase
of the wavefunction by the same amount at each spacetime point—has been
promoted to a local symmetry, since the phase may be changed by a position-
dependent amount θ(x), provided that a compensating change (8.10) is made
in the gauge field. This is precisely analogous to relativistic geometry. In
special relativity, Lorentz transformations with a position-independent matrix �

are global symmetries, and the affine connection coefficients are zero in Cartesian
coordinate systems. When the affine connection is explicitly included, general
coordinate transformations with position-dependent � are symmetries, in the
sense of general covariance. In the absence of gravitational fields, coordinate
systems may be found in which the connection coefficients are everywhere zero.
We shall shortly see that, in the absence of electromagnetic fields, the gauge field
can be expressed as the gradient of a scalar function Aµ(x) = ∂µω(x). Therefore,
by choosing θ(x) = ω(x)+ constant in (8.10), Aµ can be set to zero everywhere.
This amounts to choosing a special set of coordinate systems in the fibre bundle,
which are analogous to the inertial frames of special relativity.

In addition to (8.13), which describes the response of a charged particle
to electromagnetic fields, we need an equation (the analogue of the Einstein
field equations) which determines how electromagnetic fields are generated by
a distribution of charged particles. The way to find this is again to add to the
action a part involving the connection. This must be gauge invariant, and therefore
constructed from quantities which are tensors under gauge transformations. The
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only such quantity that can be built from the gauge field alone is the curvature of
the bundle defined, like the Riemann tensor, as the commutator of two covariant
derivatives

Fµν = − i

λ
[Dµ,Dν] = ∂µ Aν − ∂ν Aµ. (8.14)

This is in fact gauge invariant, and the simplest Lorentz scalar that can be
constructed from it is Fµν Fµν . We see that Fµν is none other than the Maxwell
field strength tensor given in (3.50) and (3.51). It turns out, as with gravity, that
an extremely successful theory is obtained by including in the action only a term
proportional to this quantity. This is, essentially, the first term of (3.54). If we
identify jµe in (3.54) as proportional to the current density (7.62), then the second
term of (3.54) is reproduced by the /A term in (8.12). There is at present no
definitive understanding in either theory of why the simplest allowed form of the
action should be the one actually selected by nature, although some properties
of interacting quantum field theories that we touch on briefly in the next chapter
suggest a possible explanation.

To make the correspondence with Maxwell’s theory exact, we must examine
more closely the role of electric charge. So far, we have established only that the
simplest action contains a term proportional to Fµν Fµν . Allowing for n species
of spin- 1

2 particles, the total action may be written as

S =
∫

d4x

(
− 1

4e2
Fµν Fµν +

n∑
i=1

ψ̄i (x)(i/∂ − λi /A(x) − mi )ψi (x)

)
(8.15)

where e is a constant whose value is not known a priori. This constant, which
may be identified as a fundamental electric charge, is clearly somewhat analogous
to the constant G which appears in the theory of gravity. Note, however, that
the curvature term in the Einstein–Hilbert gravitational action (4.14) is linear
in the Riemann tensor Rµνστ , which can be contracted to give a non-trivial
scalar curvature R. In electromagnetism, the contraction gµν Fµν is identically
zero, because gµν is symmetric and Fµν is antisymmetric, and the simplest non-
trivial Lorentz scalar is quadratic in Fµν . This is symptomatic of some important
differences between the two theories. The standard form of electromagnetism is
obtained by rescaling the fields:

Aµ(x) → eAµ(x) Fµν(x) → eFµν(x) (8.16)

after which the action becomes

S =
∫

d4x

(
−1

4
Fµν Fµν +

n∑
i=1

ψ̄i (x)(i/∂ − λi e /A(x) − mi )ψi (x)

)
. (8.17)

The equations derived from this action describe the electromagnetic interactions
of n species of particle with masses mi and charges λi e. Evidently, the (n + 1)
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constants (λ1, . . . , λn, e) are not all independent. We can choose e to be the
magnitude of the electronic charge by setting λelectron = −1. Then the charges
of the remaining particles are multiples, λi e of this fundamental charge. There
is no reason, however, why the λi should be integers, or even rational numbers.
The fact that the electric charges of all observed particles are integral multiples of
a fundamental charge has no explanation within the theory of electromagnetism
alone. A possible explanation is offered by the grand unified theories of strong,
weak and electromagnetic interactions which will be outlined in chapter 12.
Notice also that had Fµν contained terms quadratic in Aµ which, as we shall
see shortly, is the case in non-Abelian gauge theories, the rescaling of the gauge
field in (8.16) would not have removed the charge e entirely from the curvature
term, and e would have been a genuine independent parameter.

8.2 Non-Abelian Gauge Theories

The internal spaces in which wavefunctions exist may be more complicated than
the complex plane. Consider, for example, the nucleons—the proton and neutron.
In processes involving the strong interaction (of which more in chapter 12), they
appear on an equal footing: the strong interaction is said to be charge independent.
This observation, together with the fact that their masses are very similar, leads
to the idea that the proton and neutron can be regarded as different states of the
same particle—the nucleon. The nucleon wavefunction is then a two-component
matrix

ψN(x) =
(
ψp(x)
ψn(x)

)
. (8.18)

Actually, since the nucleons are spin- 1
2 particles, each of the two components is

itself a four-component spinor, but this does not at present concern us. A state
with ψn = 0 is a pure proton state and vice versa, while a state in which both
components are non-zero is a superposition of the two. This is quite analogous to
the non-relativistic description of spin- 1

2 polarization states (see appendix B). In
particular, any unitary transformation (that is, a rearrangement of the components
that leaves the magnitude (ψ

†
NψN)1/2 unchanged) can be expressed as

ψ ′
N = exp[i(θ I + 1

2α · τ )]ψN ≡ U(θ,α)ψN (8.19)

where I is the unit 2 × 2 matrix, τ 1, τ 2, τ 3 are the Pauli matrices and θ , α1, α2,
α3 are real angles. Such transformations are involved, for example, in reactions
which change the state of a nucleon but not the total number of nucleons, such as
beta decay (n → p + e− + ν̄e) or pion-nucleon scattering (π− + p → n + π0).
The matrices τ i have the same numerical values as the spin matrices (7.28),
but the symbol τ emphasizes that they refer to a different internal property of
the particles. This property is called isotopic spin, or more commonly isospin,
denoted by T . The transformations parametrized by θ are phase transformations,



186 Forces, Connections and Gauge Fields

which will not concern us for the moment. The others, of the form

U(α) = exp( 1
2 iα · τ ) (8.20)

can be regarded as rotations in an internal three-dimensional isospin space. The
proton and neutron states correspond to ‘isospin up’ and ‘isospin down’ with
respect to a chosen quantization axis in this space.

There now arises a question similar to that which led to electromagnetism.
The two-component wavefunction at the spacetime point x is to be thought of as
existing in a copy of isospin space erected at x , and we would like to know how
the directions of the (T 1, T 2, T 3) axes at different points are related. In contrast to
the complex phase, these directions have definite physical meanings, because the
proton and neutron are physically identifiable states. Parallel transport of a wave
function may be defined by introducing a connection as in (8.3), except that i and
j now label the components in (8.18) rather than the real and imaginary parts. If �
is zero, then a parallelly transported wavefunction that represents, say, a neutron at
x also represents a neutron at x +�x . If � is not zero, then the wavefunction may,
after being transported to x +�x , represent a superposition of proton and neutron
states. Since the connection in (8.3) turned out to be related to the electromagnetic
field, we may anticipate that the isospin connection is similarly related to some
kind of force field. Evidently, one effect of this force is to turn neutrons into
protons, so it might provide a means of describing beta decay.

The right-hand side of (8.3) now corresponds to an infinitesimal rotation of
the kind (8.20), so the connection coefficient has the form

�i jµ(x) = − 1
2 iAa

µ(x) (τ
a)i j . (8.21)

There are three independent gauge fields Aa
µ (a = 1, 2, 3), corresponding

to the three independent isospin rotations. This connection acts in the fibre
bundle whose typical fibre is the set of all transformations of the form (8.20) or,
equivalently, the set of all values of the αa that lead to distinct transformations.
This can be taken as the set of all positive and negative values such that α · α ≤
4π2, with the proviso that all values for which the equality holds correspond to the
same transformation (see exercise 8.2). This set of transformations constitutes the
group SU(2). It is a non-Abelian group, which means that two rotation matrices
U(α) and U(β) do not commute unless α and β point in the same direction.
The group U(1) of electromagnetism is an Abelian group, because any two phase
transformations commute with each other. One consequence of the non-Abelian
nature of isospin rotations is that no arbitrary constant λ appears in the connection
(8.21) to distinguish different particle species. This is because, as we shall see in
more detail below, the gauge field Aa

µ has an intrinsic scale. For example, a

rotation through an angle of π about the T 1 or T 2 axis changes a proton state
with T 3 = 1

2 into a neutron state with T 3 = − 1
2 . The same rotation must produce

the same reversal of T 3 when acting on any set of particle wavefunctions that
form an isospin multiplet. Therefore, the size of the rotation angles in (8.20) has
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a definite meaning, common to all particle species, and we have no freedom to
introduce an arbitrary parameter as in the Abelian case (8.5). On the other hand,
different particle species may fall into isospin multiplets of different sizes. Just as
with angular momentum, an isospin-T multiplet has (2T + 1) members. For the
moment, the three pions (π+, π0, π−) may serve as an example of an isospin-1
triplet. At present, however, in order to describe the mathematics of non-Abelian
theories in its simplest terms, I am not taking proper account of the observed
properties of elementary particles. When we come to study the application of
these theories to real physical particles, it will be necessary to revise the way
in which the particles are assigned to isospin multiplets. The wavefunction for
an isospin-T multiplet undergoes parallel transport with a connection similar to
(8.21) except that the Pauli matrices are replaced with a suitable set of three
(2T + 1) × (2T + 1) matrices, called the isospin-T representation of the group
SU(2). The same gauge field appears in each case, however.

Given the gauge connection, we have a gauge-covariant derivative

Dµ = ∂µ + iAµ(x) (8.22)

where Aµ(x) is a matrix defined by

Aµ(x) = Aa
µ(x)T

a (8.23)

and T a are the isospin matrices appropriate to the particular multiplet of
wavefunctions on which the derivative acts. Under a gauge transformation, each
multiplet transforms as

ψ ′(x) = U(α)ψ(x) = exp[iα(x) · T ]ψ(x). (8.24)

To find the transformation law for the gauge fields, consider

D′
µψ

′ = (∂µ + iA′
µ)Uψ = (

U∂µ + ∂µU + iA′
µU

)
ψ. (8.25)

The requirement is that this should equal UDµψ , so Aµ must transform as

A′
µ = U AµU−1 + i(∂µU)U−1. (8.26)

If U were just the phase factor exp(iθ(x)), this would be the same as (8.10).
The non-Abelian analogue of the electromagnetic field strength tensor is,

naturally, the curvature tensor −i[Dµ,Dν]. This is more closely analogous to the
Riemann tensor, in the sense that it involves the non-commuting properties of
both the derivative ∂µ and the matrices T a . It is given by

Fµν = ∂µ Aν − ∂ν Aµ + i[Aµ, Aν]. (8.27)

Of course, the matrix form of this expression depends on the particular
representation of the gauge group (here SU(2)) to which the matrices belong.
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However, in every representation, these matrices satisfy the commutation
relations of the Lie algebra

[T a, T b] = iCabcT c (8.28)

where the set of structure constants Cabc is totally antisymmetric in a, b and
c. For SU(2), they are given by Cabc = εabc (see appendix B). The T a are the
generators of the symmetry transformations (in our case, isospin rotations) and in
group theory language are called the generators of the symmetry group. Using
the definition (8.23) of the matrices Aµ, we find that

Fµν = Fa
µνT a (8.29)

where the field strengths

Fa
µν = ∂µAa

ν − ∂ν Aa
µ − Cabc Ab

µAc
ν (8.30)

are the same for any representation.
Unlike the electromagnetic field strength tensor, (8.27) is not a gauge-

invariant object. In fact, its transformation law is

F ′
µν = U FµνU−1 (8.31)

as readers are invited to verify in exercise 8.3. From this it follows that the three
field strengths (8.30) (a = 1, 2, 3) belong to an isospin-1 multiplet. To understand
this, notice first that (8.31) implies the transformation

Fa
µν

′ = U
ab(α)Fb

µν (8.32)

where the coefficients Uab are defined by

U(α)T bU−1(α) = Uab(α)T a. (8.33)

It is a group-theoretical fact (which I shall not prove) that, if we regard these
coefficients as the elements of a 3 × 3 matrix, it can be written as

U(α) = exp(iα · T ) (8.34)

where the 3 × 3 matrices T a form a special representation of SU(2) called the
adjoint representation. Every Lie group possesses such a representation, in which
the number of members of the multiplet is equal to the number of independent
generators. The matrices of the adjoint representation can be expressed in terms
of the structure constants as

(T a)bc = −iCabc. (8.35)

The proof that these matrices satisfy the commutation relations (8.28) is the
subject of exercise 8.4.
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Once again, we need to construct a gauge-invariant action for the gauge
fields. The simplest possibility is

S = − 1

4g2

∫
d4x Fa

µν Faµν (8.36)

where g is a coupling constant analogous to the electric charge. As in (8.16), we
now rescale the gauge field by a factor of g and rename the quantity g−1 Fa

µν as
Fa
µν , to get

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − gCabc Ab

µAc
ν . (8.37)

and

S = −1

4

∫
d4x Fa

µν Faµν. (8.38)

In the quantum theory, the gauge field becomes a field operator for ‘intermediate
vector bosons’, which mediate the corresponding force. In the case of
electromagnetism, these are photons, which are neutral particles. The action
(8.38), expressed in terms of the rescaled field strength (8.37), contains products
of three As multiplied by g and products of four As multiplied by g2. It will
become clear in the next chapter that such terms represent interactions between
the vector bosons of the non-Abelian theory, whose strength is measured by g.
Indeed, it is already obvious that the actions for free particles considered in
chapters 6 and 7 are only quadratic in the field operators. Thus, these particles
carry the ‘charge’ g of the force which they themselves mediate (in contrast to
the photon, which is electrically neutral), and this fact has important physical
consequences. The situation is similar in the case of gravity. In order to obtain
the wave equation (7.119) for gravitons (which in our present language are
‘intermediate tensor bosons’ mediating the gravitational force), we had, in effect,
to expand the gravitational action in powers of the field hµν , keeping only the
quadratic terms. The gravitational analogue of charge is energy density which is,
of course, possessed by the gravitons themselves, and the full gravitational action
has non-quadratic terms that lead to interactions between gravitons. I should point
out, however, that the quantum theory of gravity based on this action appears to
be mathematically unsound, for reasons I shall touch on later.

A detail that will be important to us later on concerns the normalization of
the generator matrices T a . The transformation matrix U = exp[iα · T ] could
clearly be written in terms of a new set of matrices, say T ′a , which are linear
combinations of the T a , and a new set of parameters α′a , such that α′ ·T ′ = α ·T .
This would entail a corresponding redefinition of the structure constants Cabc and
of the gauge fields Aa

µ. Now, these field operators will have the commutation
relations that cause them to create and annihilate particle states with the correct
orthonormality properties, provided that their action is that shown in (8.38). We
should, however, make sure that this action really is gauge invariant. To this end,
consider the quantity Tr[Fµν Fµν]. Because of the identity Tr[AB] = Tr[B A],
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valid for any two matrices A and B , this quantity is easily seen to be invariant
under the gauge transformation (8.31). We have

Tr[Fµν Fµν] = Fa
µν Fbµν Tr[T aT b] (8.39)

and this will be proportional to our Lagrangian density − 1
4 Fa

µν Faµν provided that
the generator matrices satisfy the condition

Tr[T aT b] = λδab (8.40)

where λ is a constant. Given some set of generator matrices, it will always be
possible to find linear combinations of them which satisfy this condition, and
these will be the ones we use. For our SU(2) theory, the isospin- 1

2 matrices
T a = 1

2τ
a do satisfy (8.40) with λ = 1

2 .

If we include spin- 1
2 fermions upon which the gauge field acts, the total

action is

S =
∫

d4x

(
−1

4
Fa
µν Faµν +

n∑
i=1

ψ̄i (x)
(
i/∂ − g /A(x) − mi

)
ψi (x)

)
. (8.41)

This is now expressed in a rather compact notation. The sum is over multiplets of
wavefunctions ψi , each having (2T (i) + 1) members in the case of SU(2) isospin.
Each member is itself a Dirac spinor, so ψi may be represented schematically in
the form

ψi =


(....)(....)
...(....)

}

4}
4
...}
4

 2T (i) + 1.

The matrix /A is
/A = Aa

µγ
µT (i)a (8.42)

where T (i)a is the ath generator matrix in the isospin-T (i) representation. The
Dirac matrix γ µ acts on each four-component spinor independently, while T (i)a

treats each spinor as a single element.
From the action (8.41) we derive an Euler–Lagrange equation for the gauge

field, which is the non-Abelian analogue of Maxwell’s equations:

DµFµν = J ν or ∂µFaµν − gCabc Ab
µFcµν = J aν. (8.43)

The current is given by

J aν = g
∑

i

ψ̄iγ
νT (i)aψi . (8.44)
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For example, in the case of the nucleon doublet,

J 3ν = g(ψ̄p ψ̄n)γ
ν

( 1
2 0
0 − 1

2

)(
ψp
ψn

)
= g

[
1
2 ψ̄pγ

νψp − 1
2 ψ̄nγ

νψn

]
= g

∑
p,n

T 3 × (probability current density). (8.45)

There is, of course, a Dirac equation of the form (8.13) for each multiplet of
wavefunctions, λ being replaced by g and /A by (8.42).

We saw in chapter 3 that, as a consequence of gauge invariance, the
electromagnetic current jµe is conserved in the classical theory. As readers may
easily check using the Dirac equation (8.13), the quantum-mechanical current
jµe = λψ̄γ µψ (which becomes λeψ̄γ µψ after the rescaling (8.16)) is also
conserved. The conservation law ∂µ jµe = 0 is a gauge-covariant equation because
the current is a gauge scalar, with n = m = 1 in (8.5), and its gauge-covariant
derivative (8.11) is the same as the ordinary derivative. In the non-Abelian theory,
however, the current (8.44) is not a gauge scalar. It is a multiplet of currents,
whose members are labelled by a, which belongs to the adjoint representation of
the gauge group and satisfies the covariant equation

Dµ Jµ = 0 or ∂µ J aµ − gCabc Ab
µ J cµ = 0. (8.46)

The current is said to be covariantly conserved, but it clearly is not conserved in
the usual sense. This does not, however, imply a breakdown of the general rule
that a symmetry implies the existence of a conserved quantity. If we differentiate
the non-Abelian Maxwell equation (8.43) and take into account the antisymmetry
of Fµν , we find that the modified current

J̃ aν = J aν + gCabc Ab
µFcµν (8.47)

is conserved in the ordinary sense:

∂ν J̃ aν = ∂ν∂µFaµν = 0. (8.48)

In fact, J̃ aν is the ‘Noether current’ associated with the non-Abelian symmetry.
That is, it is the current which ought to be conserved according to Noether’s
theorem (see exercise 8.5). The two terms in (8.47) have a simple physical
significance. The current represents the flow of isospin, in the same way that
the electromagnetic current represents the flow of charge. The first contribution is
that of the fermions, and the second is that of the gauge fields or, in the quantized
theory, of the vector bosons which, as we have seen, themselves carry isospin.

The components of the field strength tensor (8.37) can be thought of as
‘electric’ and ‘magnetic’ fields Ea and Ba . As we saw in chapter 3, (3.45) implies
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that there are no magnetic monopoles, except at the expense of singularities in the
potential Aµ(x). In the non-Abelian theory, the corresponding equation is

∂i Bai = gCabc Ab
i Bci . (8.49)

Because the right-hand side is non-zero, the non-Abelian theory allows the
possibility of ‘magnetic monopoles’ without singularities in the gauge field. Of
course, the non-Abelian ‘magnetic field’ is not what we ordinarily recognize as
a magnetic field. In unified theories, which are more complicated than the ones
we have so far discussed, electromagnetism is combined with other forces in a
manner which permits the appearance of objects with the properties of genuine
magnetic monopoles, and I shall have more to say about this in chapter 13.

8.3 Non-Abelian Theories and Electromagnetism

It is now necessary to understand how the phase transformations of
electromagnetism fit in with the SU(2) isospin rotations we have been
considering. The general unitary transformation (8.19) includes a phase
transformation, which we have so far ignored. Since θ multiplies the unit
matrix, any phase transformation commutes with any isospin rotation, so the
set of transformations of the form (8.19) constitutes a product group, written
as SU(2)×U(1). This means that each transformation is the product of two
independent transformations, one from each group. In the transformations
considered in the last section, only the identity transformation of U(1) was
involved. Now, the U(1) component of this product group cannot correspond
directly to electromagnetism because it changes the phase of the electrically
charged proton and the neutral neutron by the same amount. To represent
electromagnetism in this context, we must look for transformations of the form
(8.19) in which the angles θ and α are related in such a way that the net
transformation changes the phase of ψp while leaving the phase of ψn unchanged.
The relation that achieves this is

θ = 1
2 Yω α1 = α2 = 0 α3 = ω (8.50)

where ω is an arbitrary angle and Y is a constant, which in this case is Y = 1.
With this relation, we have

θ I + 1
2α · τ = ω

(
1 0
0 0

)
(8.51)

and

U(θ,α) =
(

eiω 0
0 1

)
(8.52)

which is the desired transformation matrix. Since any two matrices of the form
(8.52) commute with each other, the set of all such transformations is a U(1)
subgroup of SU(2)×U(1), and quite suitable for representing electromagnetism.
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If this scheme is to work, it must be possible to assign to each isospin
multiplet a value of Y , called hypercharge, in such a way that the matrix
corresponding to (8.52) correctly reflects the charges of all the particles in the
multiplet. That is, if we use in (8.51) the isospin matrices appropriate for the
particular multiplet, the transformation matrix must turn out to have the form

U(θ,α) =
 eiQ1ω 0 · · ·

0 eiQ2ω

...
. . .

 (8.53)

where the Qi are the charges of the particles in the multiplet, measured as
multiples of a fundamental charge. This will be so if the charges are related to the
T 3 quantum numbers of the particles by

Q = T 3 + 1
2 Y. (8.54)

It so happens that relations of just this kind, the Gell-Mann–Nishijima relations,
are needed for the phenomenological classification of the observed particles.
For example, Y = 1 and T 3 = ± 1

2 for the nucleon doublet and Y = 0,
T 3 = (1, 0,−1) for the pions.

8.4 Relevance of Non-Abelian Theories to Physics

Had we not already known of the existence of electromagnetic forces, the
geometrical considerations of §8.1 might have led us to predict the occurrence
of such forces in nature. Can we, then, identify forces in nature that correspond to
the extension of these geometrical ideas to non-Abelian symmetry groups? The
answer to this is a qualified ‘yes’. The idea of non-Abelian gauge theories was
first suggested by C. N. Yang and R. L. Mills in 1954, and theories of this kind are
generally known as Yang–Mills theories. At that time, it appeared that observed
particles such as protons, neutrons and pions were truly fundamental, and the
theory of Yang and Mills was based on the approximate nuclear isospin symmetry
which relates these particle states in the way I have described. It is now believed
that the nucleons, pions and other strongly-interacting particles are themselves
composed of more fundamental particles, the quarks. The experimental evidence
for this, although compelling, is indirect. It appears that quarks are permanently
bound inside the observed particles, and no quark has ever been detected in
isolation. The nuclear isospin symmetry, part of what is now known as flavour
symmetry, appears to be more or less accidental and the proton and neutron,
for example, are not to be regarded as different states of the same particle in
the straightforward way suggested by (8.18). However, it is consistent with our
present knowledge to group the quarks, and also the leptons, which include the
electron, muon and tau particle, together with their associated neutrinos, into
multiplets of a different symmetry called weak isospin. This is also an SU(2)
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symmetry and can be combined, as above, with phase transformations to give
SU(2)×U(1).

The gauge theory associated with this symmetry can be identified as
describing the electromagnetic and weak interactions. As it happens, the proton
and neutron can loosely be considered as forming a weak isospin doublet, in
the sense that converting a proton into a neutron involves changing one of its
constituent quarks, called an ‘up’ (u) quark into a ‘down’ (d) quark, and these
two quarks form a weak isospin doublet. Therefore, the picture of beta decay as
parallel transport in the presence of a non-trivial gauge connection survives in this
version of the theory. Quantum-mechanically, what happens is that a d quark in a
neutron, say, turns into a u quark by emitting a gauge quantum, a particle called
W−, whose field operator is one of the gauge fields, which then decays into an
electron and an antineutrino.

To construct a theory of such processes, which I shall describe more
thoroughly in chapter 12, an important obstacle must be overcome. Unlike
electromagnetic forces, the weak interaction which is responsible for beta decay
has a very short range. As will become clear in the next chapter, this implies that
the gauge quanta must have rather large masses. In fact, the W− is observed to
be about 100 times as massive as the proton. Since its field is a 4-vector, it is a
spin-1 particle, whose wave equation is the Proca equation (7.110), and it is easy
to see that the mass term in this equation originates with a term 1

2 Aa
µAaµ in the

Lagrangian density. No such term appears in (8.41), for the very good reason
that it is not gauge invariant. In order to interpret the SU(2)×U(1) theory in
terms of electroweak interactions, therefore, we have to understand how massive
gauge quanta can emerge from a gauge-invariant theory. This requires the idea of
spontaneous symmetry breaking, which will be introduced in chapter 11.

8.5 The Theory of Kaluza and Klein

Now that we have seen how theories of electromagnetism and other forces arise
from much the same sort of geometrical considerations as the relativistic theory
of gravity, it is natural to wonder whether the analogy can be made any more
concrete. In other words, are the origins of gravity and other forces not merely
similar but identical? T Kaluza (1921) and O Klein (1926) put forward a theory
in which gravity and electromagnetism appear as two different aspects of exactly
the same phenomenon. According to this theory, the vector potential Aµ is part
of the metric tensor of a five-dimensional spacetime.

Setting aside, temporarily, the fact that we perceive only four dimensions, let
us call the five-dimensional metric tensor g̃AB . To emphasize the extra dimension,
I shall let the indices A and B take the values 0, 1, 2, 3, 5. We redefine the
components of g̃AB as follows:

g̃5µ = g̃µ5 = g̃55 Aµ g̃µν = gµν + g̃55 AµAν (8.55)
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Figure 8.1. Two-dimensional representation of the five-dimensional Kaluza–Klein
spacetime.

where the indices µ and ν run from 0 to 3 as usual. The action for five-dimensional
gravity is

S = − 1

16π G̃

∫
d5x g̃1/2 R̃ (8.56)

where the gravitational constant G̃, the metric determinant g̃ and the curvature
scalar R̃ are the five-dimensional ones. If we take the extra dimension to be
spacelike, then g̃55 is negative and g̃ is positive. We now make two assumptions:

(i) gµν and Aµ are independent of x5 and g55 is just a constant;
(ii) the five-dimensional spacetime manifold has the structure illustrated in

figure 8.1. In the fifth dimension it is of finite extent and closes to form a cylinder
of radius r5.
To account for the unobservability of the fifth dimension, we simply take r5 to be
much smaller than any length scale on which measurements can be made.

If, using these assumptions, (8.55) is substituted into (8.56), the result is

S = −
∫

d4x (−g)1/2
(

1

16πG
R + 1

4e2
Fµν Fµν

)
(8.57)

where g and R are the four-dimensional quantities, and Fµν is the Maxwell
field strength tensor. (In principle, partial derivatives ∂µAν are replaced with
covariant ones, ∇µ Aν , but in fact the affine connection terms cancel from
Fµν .) This is precisely the action we need to describe a spacetime in which
both gravitational and electromagnetic fields are present. The four-dimensional
gravitational constant G and the charge e are given in terms of the original
parameters by

G = G̃/2πr5 |̃g55|1/2 and e2 = 8G̃/r5 |̃g55|3/2. (8.58)

Readers may like to be warned that this simple and natural-looking result is quite
complicated to verify. Thus, we use (2.50) to work out the five-dimensional affine
connection coefficients, separating out those which have only µ indices from
those which have one or more indices equal to 5. We substitute the result into
(2.36) to get the five-dimensional Ricci tensor and contract this with the five-
dimensional metric tensor to get R̃. That the result of all this boils down to (8.57)
strikes me as a minor miracle!
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Appealing though this theory is, little attention was paid to it for a long
time. Partly, no doubt, this was because it leads to no new observable effects. An
unsatisfactory feature is that the two assumptions needed to obtain the final result
have no particular justification. The theory would be greatly improved if some
dynamical explanation could be found: that is, if it could be shown that a more
general five-dimensional metric would naturally evolve into one approximately
described by (8.57). Unfortunately, no such mechanism is known. It is worth
mentioning that assumption (i) can be relaxed by expanding gµν and Aµ as
Fourier series in x5. For the reasons indicated in exercise 8.6, the additional
terms correspond to wavefunctions or field operators for particles with very large
masses, which we would not expect to have observed. In this sense, assumption
(i) can be regarded as a natural consequence of assumption (ii).

More complicated non-Abelian gauge theories can be obtained in much the
same way, by starting with more dimensions and compactifying them in various
ways. In recent years, the Kaluza–Klein idea has been much studied because a
number of theories, the supergravity and superstring theories, either can be more
simply formulated in more than four dimensions or are mathematically consistent
only in some number of dimensions greater than four. The simpler aspects of
some of these theories will be explored in chapter 15.

Exercises

8.1. If the real and imaginary parts of φ are changed to φi + δφi , what is the
first-order change in the magnitude of φ? Show that parallel transport using the
connection coefficients (8.4) leaves the magnitude of φ unchanged.

8.2. In the transformation matrix (8.20), let α = αn, where n is a unit vector.
Show that (τ · n)2 = 1 and that

exp(iατ · n/2) = cos(α/2) + i sin(α/2)(τ · n).

Show that an angle α + 4π leads to the same transformation as α and that all
distinct transformations are included if α is restricted to the range −2π ≤ α ≤
2π . Hence show that the range of values of α which all correspond to distinct
transformations is α · α ≤ 4π2, except that all values of α for which the equality
holds correspond to U = −1.

8.3. A matrix U and its inverse U−1 are related by UU−1 = I . Show that, if U
depends on x , then ∂µU−1 = −U−1(∂µU)U−1. For the gauge-transformed field
(8.26), show that

∂µA′
ν = U

{
∂µAν + [U−1∂µU, Aν]
+iU−1(∂µ∂νU) − iU−1(∂νU)U−1(∂µU)

}
U−1.
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Hence verify (8.31)

8.4. For any three matrices T a , T b and T c, verify the Jacobi identity

[[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b] = 0.

Taking these matrices to obey the Lie algebra relations (8.28), show that the
structure constants Cabc satisfy

CabdCdce + Cbcd Cdae + CcadCdbe = 0.

Hence show that the matrices defined by (8.35) obey (8.28).

8.5. (a) Consider a field theory containing a collection of field components
{φi (x)}. The index i labels all the components of all the fields, which may include
both bosons and fermions. (In the case of a gauge field Aa

µ, for example, i includes
both a and µ.) The Lagrangian density can be expressed as a function of these
field components and their spacetime derivatives, L({φi }, {∂µφi }). Show that the
Euler–Lagrange equations are

∂µ

(
∂L

∂(∂µφi )

)
= ∂L

∂φi
.

(b) Suppose that L has a symmetry, such that it is unchanged to first order in a set
of small parameters εa when the fields undergo the infinitesimal changes

φi → φi + εa f a
i (φ) ∂µφi → ∂µφi + εa∂µ f a

i (φ).

Generalize the considerations of §3.2 to prove the field-theoretic version of
Noether’s theorem, which asserts that the current

j aµ(x) = ∂L

∂(∂µφi )
f a
i (φ)

is conserved (∂µ j aµ = 0). As usual, a sum over the repeated index i is implied.
(c) Consider the special case of the gauge transformations (8.24) and (8.26)
for which the angles αa are infinitesimal and independent of x . Show that the
infinitesimal transformations in the fields are

ψi → ψi + iαa T aψi Ab
ν → Ab

ν + αaCabc Ac
ν

and verify that the corresponding conserved current is proportional to that given
in (8.47).

8.6. Show that the five-dimensional Kaluza–Klein metric g̃AB can be written in
the form

g̃AB =
(

I (g̃55)
1/2 Aµ

0 (g̃55)
1/2

)(
gµν 0
0 1

)(
I 0

(g̃55)
1/2 Aν (g̃55)

1/2

)
.
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The elements of each matrix represent, in clockwise order from the top left, a
4 × 4 matrix, a four-component column, a single element, and a four-component
row. gµν is the four-dimensional metric and I the 4 × 4 unit matrix. Hence
show that the five-dimensional inverse matrix g̃ AB has elements g̃µν = gµν ,
g̃5µ = g̃µ5 = −Aµ and g̃55 = AµAµ + (g̃55)

−1, and that the five-dimensional
metric determinant is det(g̃AB) = g̃55 det(gµν).

Consider a scalar field with the five-dimensional action

S =
∫

d5x g̃1/2 g̃ AB∂Aφ̃
∗∂B φ̃.

Assume that φ̃(x, x5) = exp(iλx5)φ(x), where x denotes the four-dimension-
al coordinates. When the extra dimension is compactified, show that φ(x) can
be interpreted as the field for particles with charge λe and a mass given by
m2 = −λ2/g̃55. Given that φ̃ should be a single-valued function of x5, what
values of λ are permissible?



Chapter 9

Interacting Relativistic Field Theories

The relativistic wave equations and field theories encountered in chapter 7
described only the properties of free, non-interacting particles. The wave equation
for a free particle is always of the form (differential operator)φ = 0, and therefore
the corresponding Lagrangians are quadratic in the fields. We have already seen
that gauge theories give rise, in a natural way, to Lagrangians that contain terms
of higher than quadratic order in the fields, and these terms describe interactions.
In (8.41), for example, ψ̄ /Aψ describes an interaction between a fermion and a
gauge field, while the higher-order terms in Fa

µν Faµν describe interactions of
the gauge fields amongst themselves. It is, of course, only in the presence of
interactions that physically interesting events can occur. At the same time, the
physical interpretation of interacting quantum field theories is rather difficult.
The interpretation of free field theories is based on expansions such as (7.80)
in terms of solutions of the appropriate wave equation, the coefficients being
interpreted as creation and annihilation operators. When a fermion interacts with
a gauge field, the Dirac equation is modified as in (8.13). If the gauge field is
itself an operator, this equation cannot be solved for ψ alone, and the plane-wave
solutions of the free theory have no definite significance. It is, of course, possible
to write the field as a Fourier transform, but the momentum kµ no longer satisfies
the constraint kµkµ = m2. Although field operators still have the canonical
commutation relations, such as (7.87) for Dirac spinors, the coefficients in the
Fourier expansion no longer have the simple commutation relations required for
creation and annihilation operators.

To make sense of interacting theories, it is generally advantageous to have
in mind some particular kind of experiment whose outcome we want to predict.
More often than not, the experiments to which relativistic field theory is relevant
are high-energy scattering experiments. These are, indeed, the most fruitful
method of probing the fundamental structure of matter, and it is with a view to
interpreting such experiments that much of the mathematics of interacting field
theories has been developed. I shall begin, therefore, by discussing the field-
theoretic aspects of this interpretation.

199
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9.1 Asymptotic States and the Scattering Operator

The multi-particle states encountered in free field theories are eigenstates of
the Hamiltonian, so they can exist unchanged for as long as the system is left
undisturbed. In an interacting theory, the eigenstates of the Hamiltonian cannot, in
general, be characterized by a definite number of particles with definite energies
and momenta. Indeed, it is not often possible to discover exactly what these
eigenstates are. It is reasonable to suppose that the ground state is recognizable
as the vacuum. Another reasonable assumption is that a single, stable particle can
exist in isolation for an indefinite time, so that these single-particle states would
also be energy eigenstates. If the second assumption is valid, it might appear
that each stable particle would be represented in the theory by a field operator
which creates it from the vacuum and, conversely, that each field operator in the
theory could act on the vacuum to create a stable, single-particle state. This,
however, is not so. For example, the standard model of particle physics described
in chapter 12 contains, amongst others, field operators for quarks and muons.
While muons are indeed observed experimentally, they eventually decay (with a
lifetime of about 2 × 10−6 s) into electrons and neutrinos, so a single-muon state
cannot be a true energy eigenstate. Quarks, on the other hand, are never observed
in isolation, so a single-quark state is not even approximately an eigenstate of the
Hamiltonian. Within the standard model, the proton is a true eigenstate, but the
operator that creates it from the vacuum is a complicated combination of quark
and other field operators. (This statement is believed to be true, being consistent
with observations and approximate calculations, but it has not, as far as I know,
been rigorously proved.) According to grand unified theories, protons can also
decay into lighter particles, and so even the proton is not an eigenstate. At the
time of writing, however, proton decay has not been observed.

A second difficulty of interpretation is that, although single particles have,
within experimental resolution, well-defined energies and momenta, they also
follow quite well-defined paths (seen, for example, as narrow tracks in cloud
chamber photographs) and so cannot, strictly speaking, be described by plane
waves. This is not a difficulty of principle, because it is quite possible to represent
these particles by localized wave packets, whose spread in momentum is well
within the range allowed by experimental resolution. Such wave packets are,
however, inconvenient to deal with. The standard formalism of interacting field
theories is based on a compromise between the strict mathematics and the need
for a straightforward interpretation of actual observations. The arguments I am
about to present are not really adequate for problems such as the confinement of
quarks inside hadrons, but the necessary modifications can be introduced at a later
stage.

The processes in which particles scatter or decay are always observed to
occur within a very small spacetime region, called the interaction region. Outside
the interaction region, particles behave, to an extremely good approximation,
as if they were free. The initial and final multi-particle states can therefore be
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approximated as eigenstates of the Hamiltonian of a non-interacting theory. The
real reason for this is that particle wavefunctions outside the interaction region
are wave packets which do not overlap appreciably. It is convenient to imagine,
however, that the interactions are ‘switched off’ at times well before and after
the scattering or decay event takes place. This should be allowable, since the
interactions have no significant effect at these times. I shall denote all the field
operators collectively by φ (dropping the ˆ for simplicity of notation), and the
free-particle Hamiltonian by H0(φ). Then, taking the event to occur at around
t = 0, we replace the true Hamiltonian by

H (φ) = H0(φ) + e−ε|t |Hint(φ) (9.1)

where Hint is the part of the Hamiltonian that contains interactions and ε is a
small parameter, which will be set to zero at a suitable stage of the calculation.
The modified Hamiltonian reduces to H0 at t = ±∞, but if ε is small enough,
it is essentially the same as the true Hamiltonian within the interaction region.
This mathematical device is known as adiabatic switching. At very early or very
late times, referred to as the ‘in’ and ‘out’ region respectively, we no longer
need localized wave packets to prevent the particles from interacting, and the
wavefunctions of the incoming and outgoing particles can be taken as plane
waves.

The field operators φ(x, t) are, of course, Heisenberg-picture operators,
whose evolution with time depends on the Hamiltonian. In the ‘in’ and ‘out’
regions, they should behave approximately as free fields. We therefore assume
that

φ(x, t) ≈ Z1/2φin(x, t) for t → −∞
≈ Z1/2φout(x, t) for t → +∞ (9.2)

where φin and φout are free field operators and Z is a constant, called the
wavefunction renormalization constant, which allows the magnitude of the ‘in’
and ‘out’ fields to be adjusted in accordance with the correct normalization of
the states they create. (Close inspection reveals that some care is needed in
interpreting (9.2), but I must refer readers to the more specialized literature for a
discussion of this point.) Unlike the interacting fields, the ‘in’ and ‘out’ fields can
be expanded in terms of plane-wave solutions of the appropriate wave equations,
the coefficients being interpreted as particle creation and annihilation operators.
The initial state of particles about to undergo scattering will be of the form

|k1, . . . , kN ; in〉 = a†
in(kN ) · · · a†

in(k1)|0〉. (9.3)

In most cases, N will be 1 for a decaying particle or 2 for a pair of colliding
particles. The creation operators will be those appropriate for the particular
particle species involved. Possible final states, or ‘out’ states, may be constructed
in the same way using ‘out’ operators. The ‘in’ and ‘out’ states are known
collectively as asymptotic states.
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The ‘in’ states are eigenstates of the Hamiltonian H0(φin), but not of the true
Hamiltonian H (φ) which governs the actual time evolution. In the Heisenberg
picture, a state vector such as (9.3) stands for the whole history of the system, but
its meaning depends on the Hamiltonian. Thus, (9.3) stands for that state which,
in the remote past, consisted of N particles with momenta k1, . . . , kN , but this
does not mean that the state will continue to consist of these N particles. The
analogously defined ‘out’ state stands for that state which, in the remote future,
will consist of . . . . Thus, the probability amplitude to detect final state particles
with momenta k ′

1, . . . , k ′
N ′ given the initial state (9.3) is

〈k ′
1, . . . , k ′

N ′ ; out|k1, . . . , kN ; in〉 (9.4)

and one of the primary tasks of field theory is to calculate these amplitudes.
The important but mundane process of converting these amplitudes into directly
measurable quantities such as decay rates and scattering cross-sections is
discussed in appendix D. It is reasonable to assume that the same multi-particle
states can exist in the ‘out’ region as in the ‘in’ region, and so there should
be a one-to-one correspondence between ‘in’ states and ‘out’ states. This
correspondence is expressed in terms of the scattering operator S:

|k1, . . . , kN ; in〉 = S|k1, . . . , kN ; out〉. (9.5)

Thus, the amplitude (9.4) can be expressed as a matrix element of S between two
‘in’ states and is called an S-matrix element. To preserve the normalization of the
asymptotic states, thereby ensuring that the total probability of a given initial state
evolving into some final state is 1, the operator S must be unitary. It follows that
〈. . . ; out| = 〈. . . ; in|S.

9.2 Reduction Formulae

The S-matrix elements can be expressed in terms of the field operators of
the interacting theory by means of the LSZ reduction formula, named after its
inventors H Lehmann, K Symanzik and W Zimmerman. I shall derive an example
of such a formula for the case of a single scalar field. The creation and annihilation
operators for particles in the ‘in’ and ‘out’ regions can be expressed in terms of
the ‘in’ and ‘out’ fields through (7.12) and (7.13). We now apply the identity∫ ∞

−∞
dt

∂ f (t)

∂ t
= lim

t→∞ f (t) − lim
t→−∞ f (t) (9.6)

and the assumed limits (9.2) to write

ain(k) − aout(k) =
[

lim
t→−∞ − lim

t→∞

]
iZ−1/2

∫
d3x eik·x↔

∂0φ(x)

= − iZ−1/2
∫ ∞

−∞
dx0 ∂0

(∫
d3x eik·x↔

∂0φ(x)

)
. (9.7)
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If we use the fact that k2 = m2 and integrate by parts, ignoring any surface term,
we can rewrite this as

ain(k) − aout(k) = −iZ−1/2
∫

d4x eik·x (�+ m2)φ(x). (9.8)

Let us use this result to find an expression for the probability amplitude
〈k ′; out|k; in〉 for a particle of momentum k ′ to be found in the distant future,
given a single-particle state of momentum k in the distant past. The first step is
to write 〈k ′; out| as 〈0|aout(k ′) and re-express aout(k ′) using (9.8). The action of
ain(k ′) on |k; in〉 is given by (6.10), but with a relativistic normalization factor as
in (7.17) and (7.18), so we get

〈k ′; out|k; in〉 = (2π)32ω(k)δ(k − k′)

+ iZ−1/2
∫

d4x eik′·x(�+ m2)〈0|φ(x)|k; in〉. (9.9)

Now, we want to use the same method to create |k; in〉 from the vacuum.
Obviously, we have

〈0|φ(x)|k; in〉 = 〈0|φ(x)a†
in(k)|0〉 (9.10)

but by using (9.8) directly we would get an unwanted term 〈0|φa†
out|0〉. If, instead,

we could arrange to get 〈0|a†
outφ|0〉, then this term could be eliminated, because

〈0|a†
out = (aout|0〉)† = 0. To this end, remember that ain and aout arise from the

limits t → −∞ and t → ∞ respectively in the time integral in (9.8). Therefore,
we can arrange the desired ordering of operators by defining the time-ordered
product

T [φ(x)φ†(y)] = φ(x)φ†(y) if x0 > y0

= φ†(y)φ(x) if y0 > x0 (9.11)

in which the operator referring to the latest time stands on the left. Then, using
the adjoint of (9.8), we find

iZ−1/2
∫

d4y e−ik·y(�y + m2)〈0|T [φ(x)φ†(y)]|0〉
= 〈0|φ(x)a†

in(k)|0〉 − 〈0|a†
out(k)φ(x)|0〉 (9.12)

and the last term vanishes. Finally, we substitute this into (9.9) to obtain the
reduction formula

〈k ′; out|k; in〉 = (2π)32ω(k)δ(k − k′) + (iZ−1/2)2

×
∫

d4x d4y ei(k′·x−k·y)(�x + m2)(�y + m2)〈0|T [φ(x)φ†(y)]|0〉.
(9.13)
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The S-matrix element has now been expressed entirely in terms of the original
interacting field, so at this point we can take ε = 0 in (9.1) and forget about the
‘in’ and ‘out’ fields.

The quantity −i〈0|T [φ(x)φ†(y)]|0〉 is called the Feynman propagator for
the field φ. If translational invariance holds, in both space and time, then it
depends only on (x − y) and may be written as a Fourier transform

GF(x − y) = −i〈0|T [φ(x)φ†(y)]|0〉 =
∫

d4x

(2π)4
e−ik·(x−y)G̃F(k). (9.14)

If we use this Fourier transform in the reduction formula and integrate by parts to
let the derivatives act on the exponential, we get

〈k ′; out|k; in〉 = (2π)32ω(k)δ3(k − k′)
+ i(iZ−1/2)2(2π)4δ4(k − k ′)(k2 − m2)2G̃F(k). (9.15)

Since k and k ′ are the 4-momenta of free particles, they satisfy (k2 − m2) =
(k ′2 − m2) = 0. Therefore, the second term is zero unless G̃F(k) has a singularity
at k2 = m2. The form of the propagator depends on the nature of the interactions.
If they are such that the particles created by φ are stable, then G̃F(k) will turn out
to behave roughly as (k2 − m2)−1. The second term in (9.15) is then zero. In
that case, the single-particle ‘in’ and ‘out’ states satisfy the same orthogonality
relation (7.18) as in a free field theory. This means that |k; in〉 and |k; out〉 are
the same state, as we would expect for a single stable particle. If, on the other
hand, the φ particles can decay into lighter ones, it will turn out that G̃F(k) is
roughly of the form (k2 − m2)−2�(k), where �(k) is related to the probability
per unit time for the decay process to occur. In that case, (9.15) can roughly be
interpreted as the statement (probability of survival) = 1−(probability of decay).
The set of 4-momenta which satisfy k2 = m2 is called the mass shell. Quantities
like the propagator, known generically as Green functions, are well defined for
more general 4-momenta, but S-matrix elements such as (9.15) involve only the
residues of poles of these Green functions at k2 = m2: the on-shell residues.

It should be clear that the operations which led to the reduction formula
(9.13) can be repeated for initial and final states that contain more than
one particle. Thus, all S-matrix elements can be expressed in terms
of vacuum expectation values of time-ordered products of field operators,
〈0|T [φ(x1) · · ·φ†(xN )]|0〉, where N is the total number of incoming and outgoing
particles. The T product orders all the operators according to their time
arguments, with the latest on the left and the earliest on the right. When spin-
1
2 particles are involved, the exponentials in (9.13) are replaced by plane-wave
solutions of the Dirac equation and the Klein–Gordon operator (� + m2) by the
Dirac operator (i/∂ − m). Thus, for single particles, (9.13) becomes

〈k ′, s′; out|k, s; in〉 = (2π)32ω(k)δss ′δ(k − k′) − Z−1
∫

d4x d4y ei(k′·x−k·y)
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× ū(k ′, s′)(i/∂x − m)〈0|T [ψ(x)ψ̄(y)]|0〉(−i
←−
/∂ y − m)u(k, s).

(9.16)

Included in the definition of the T product is a change of sign for each interchange
of a pair of fermion fields needed to bring the initial product into the correct time
order.

By means of reduction formulae, all probability amplitudes for collision
and decay processes can be expressed in terms of vacuum expectation values
of time-ordered products of field operators. Except in very special cases, these
expectation values can be calculated only approximately. Suitable methods of
approximation can be developed by continuing to work with field operators, but
a much more convenient framework for calculation is available, namely the path
integral formalism, which I shall now develop.

9.3 Path Integrals

9.3.1 Path integrals in non-relativistic quantum mechanics

To reduce things to their simplest terms, consider first the non-relativistic theory
of a single particle, moving in one dimension in a potential V (x). To make the
analogy with field theory as close as possible, I will take the mass of the particle
to be m = 1. A quantity somewhat analogous to the Green functions of quantum
field theory is the matrix element

Gfi(t1, t2) = 〈xf, tf|T [x̂(t1)x̂(t2)]|xi, ti〉. (9.17)

The ket |xi, ti〉 is a Heisenberg-picture vector representing that history in which
the particle is at the point xi at the initial time ti (but may be found elsewhere at
other times), so it is an eigenvector of the Heisenberg-picture operator x̂(t) at the
instant t = ti only. The bra 〈xf, tf| is defined similarly, and t1 and t2 lie between
ti and tf. To be definite, let us take the Heisenberg and Schrödinger pictures to
coincide at t = ti, which means that

x̂(t) = exp[iĤ (t − ti)]x̂ exp[−iĤ (t − ti)]. (9.18)

A little thought will show that, since x̂(tf)|xf, tf〉 = xf|xf, tf〉, the dependence of
this eigenvector on tf is given by

|xf, tf〉 = exp[iĤ (tf − ti)]|xf〉 (9.19)

which is different from the time dependence of a Schrödinger-picture state vector
such as (5.29).

The idea of a path integral, due to P A M Dirac and R P Feynman, is that
the matrix element (9.17) can be expressed as an integral over all paths x(t) that
the particle might follow between xi at time ti and xf at time tf. An integral over
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Figure 9.1. Construction of a Feynman path integral over all trajectories leading from xi
at time ti to xf at time tf.

paths can be defined by splitting the time interval tf − ti into N segments, each of
length �t , doing an ordinary multiple integral over the N − 1 points x(ti + n�t)
and taking the limit N → ∞, as illustrated in figure 9.1.

Symbolically, this may be written as∫
Dx(t) (. . .) = lim

N→∞

∫ ∞

−∞

N−1∏
n=1

dxn (. . .). (9.20)

(A somewhat more rigorous treatment can be given in terms of probability
measures over suitable classes of functions.)

To see how (9.17) can be expressed in terms of such an integral, we first
translate it into the Schrödinger picture. For the case t2 > t1, we have

Gfi(t1, t2) = 〈xf| exp[−iĤ (tf − t2)]x̂ exp[−iĤ (t2 − t1)]x̂ exp[−iĤ (t1 − ti)]|xi〉.
(9.21)

Now, |x〉 is an eigenvector of the Schrödinger-picture operator x̂ , so we can use
the results of exercise 5.4 to write

Î =
∫ ∞

−∞
dx |x〉〈x | x̂ =

∫ ∞

−∞
dx |x〉x〈x | (9.22)

where Î is the identity operator. Making use of the second of these, (9.21)
becomes.∫ ∞

−∞
dx1dx2 〈xf| exp[−iĤ (tf − t2)]|x2〉x2

× 〈x2| exp[−iĤ (t2 − t1)]|x1〉x1〈x1| exp[−iĤ (t1 − ti)]|xi〉.
(9.23)
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In the same way, we can split up each of the remaining matrix elements into a
large number of short time intervals, this time using repeated insertions of Î :

〈xf|exp[−iĤ (tf − ti)]|xi〉

=
∫ ∞

−∞

N−1∏
n=1

dxn〈xf|e−iĤ�t |xN−1〉 · · · 〈x1|e−iĤ�t |xi〉.

(9.24)

We now need to evaluate each of the matrix elements on the right-hand side.
The following is a rough-and-ready method that gives the right answer, but more
sophisticated treatments are possible. If �t = (tf − ti)/N is small enough, the
exponential in each matrix element can be expanded as

〈x2|e−iĤ�t |x1〉 ≈ 〈x2|
[

Î − 1
2 i�t p̂2 − i�t V (x̂)

]
|x1〉. (9.25)

Taking each operator in turn, we can evaluate the matrix elements as

〈x2| Î |x1〉 = δ(x2 − x1) = (2π)−1
∫

dk exp[ik(x1 − x2)]

〈x2|V (x̂)|x1〉 = (2π)−1
∫

dk exp[ik(x1 − x2)]V (x2)

〈x2| p̂2|x1〉 = (2π)−1
∫

dk dk ′ exp[i(kx1 − k ′x2)]〈k ′| p̂2|k〉

= (2π)−1
∫

dk exp[ik(x1 − x2)]k2.

On re-exponentiating, we find

〈x2|e−iĤ�t |x1〉 = (2π)−1
∫

dk exp[ik(x1 − x2)− 1
2 i�t k2 − i�t V (x2)] (9.26)

up to terms of order (�t)2. We now shift the integration variable by k →
k + (x1 − x2)/�t , after which the k integral produces just a constant:

〈x2|e−iĤ�t |x1〉 ≈ constant × exp

{
i�t

[
1

2

(
x1 − x2

�t

)2

− V (x2)

]}
. (9.27)

In the limit �t → 0, this becomes exact, so for a longer time interval we can use
(9.24) to write

〈xf| exp[−iĤ (tf − ti)]|xi〉 = constant

× lim
N→∞

∫ ∞

−∞

N−1∏
n=1

dxn exp

{
i�t

N∑
n=1

[
1

2

(
xn − xn−1

�t

)2

− V (xn)

]}
(9.28)
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where x0 = xi and xN = xf. Let us now consider the points xn to belong to a path
x(t), with xn = x(ti + n�t). Then (xn − xn−1)/�t = ẋ(t), and we recognize the
expression in square brackets in (9.28) as the classical Lagrangian

L = 1
2 ẋ2 − V (x). (9.29)

When we apply this result to (9.23), x1 and x2 become x(t1) and x(t2)
respectively, and we get the result

〈xf|x̂(t2)x̂(t1)|xi〉 =
∫
Dx(t) x(t1)x(t2) exp

(
i
∫ tf

ti
L(ẋ, x)dt

)
(9.30)

where the path integral is over all paths for which x(ti) = xi and x(tf) = xf, and
all the constants from k integrations have been absorbed into the definition of the
symbol Dx(t). A close inspection of steps we have gone through should reveal
that (9.30) is valid only when t2 > t1. On the right-hand side, however, x(t1)
and x(t2) are ordinary commuting numbers, so the order in which they are written
down does not matter. Therefore, if t1 > t2, we would obtain exactly the same
result for the quantity 〈xf|x̂(t1)x̂(t2)|xi〉. In other words, the path-integral we have
derived actually represents the matrix element of the time-ordered product from
which we started. Readers should not find it hard to convince themselves that the
general result

〈xf|T [x̂(t1) · · · x̂(tn)]|xi〉
=
∫
Dx(t) x(t1) · · · x(tn) exp

(
i
∫ tf

ti
L(ẋ, x)dt

)
(9.31)

can be obtained in just the same way.

9.3.2 Functional integrals in quantum field theory

Despite some slight technical complications that I shall not go into, the vacuum
expectation values of time-ordered products of field operators which appear in the
reduction formulae for S-matrix elements can be represented by integrals similar
to (9.31). For a scalar field, we have

〈0|T [φ̂(x1) · · · φ̂†(xn)]|0〉 =
∫
Dφ(x) φ(x1) · · ·φ∗(xn)e

iS(φ) (9.32)

where S(φ) is the action. The integral is over complex functions φ(x) and is often
called a functional integral rather than a path integral. The adjoint field operator
φ̂†(x) is represented in the integral by the complex conjugate function φ∗(x), and
if the field is Hermitian the integral is only over real functions.

In the case of fermions, the fields in the functional integral must be taken
as Grassmann variables, to take account of the anticommuting properties of the
original field operators. I give a brief discussion of the properties of Grassmann
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integrals in appendix A and further details may be found in specialized field theory
textbooks, but few of these details will be needed for the purposes of this chapter.

It might seem that functional integrals would be extremely difficult to
evaluate and so, more often than not, they are. In practice, however, it is often
possible to extract the results we require by means of manipulations that avoid
our having to compute a functional integral directly. As a first example, let us
evaluate the Feynman propagator (9.14) for a free scalar field. It is convenient to
introduce a generating functional for the Green functions (9.32), defined by

Z0(J, J ∗) =
∫
Dφ exp

{
i
∫

d4x
[
L0 + J ∗(x)φ(x) + J (x)φ∗(x)

]}
(9.33)

where L0 is the free-field Lagrangian density (7.7) and the definition of the
measureDφ is adjusted by a constant factor so that Z0(0, 0) = 1. The propagator
is given by

GF(x − y) = i
δ

δ J ∗(x)
δ

δ J (y)
Z0(J, J ∗)

∣∣∣∣
J=J ∗=0

(9.34)

and other Green functions can obviously be generated by further differentiations.
The functional derivative δ/δ J (x) works in much the same way as a partial
derivative and is explained in detail in appendix A. The quantities J (x) and J ∗(x),
usually called sources, serve as a mathematical book-keeping device and have no
direct physical meaning.

In this and other calculations, it is necessary to re-express spacetime integrals
using integrations by parts. For simplicity, I shall usually assume that boundary
conditions can be applied which ensure that surface terms vanish. Readers
should be aware, however, that this cannot always be done. In particular, the
nonlinear field equations, which are the Euler–Lagrange equations of interacting
field theories, frequently have topologically non-trivial solutions, described in the
literature as solitons, monopoles, instantons, vortices and the like (see chapter 13).
When these are important, the boundary conditions must be considered more
carefully. With this proviso, the exponent in (9.33) can be written in the form

−i
∫

d4x #∗(x)(�x + m2)#(x) + i
∫

d4x d4 y J ∗(x)g(x − y)J (y) (9.35)

where

#(x) = φ(x) +
∫

d4y g(x − y)J (y) (9.36)

and g(x − y) is a Green function which satisfies the equation

(�+ m2)g(x − y) = −δ(x − y). (9.37)

Since the functional integral over φ is the limit of a product of ordinary integrals
with the range −∞ to ∞, we can shift the integration variable by an amount that
does not depend on φ (say, by − ∫

d4y g(x − y)J (y) ) without changing the value
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of the integral. In effect, it is equivalent to an integral over #, which contributes
to Z0 a factor independent of J and J ∗. Thus, we have found

Z0(J, J ∗) = Z0(0, 0) exp

[
−i
∫

d4x
∫

d4y J ∗(x)g(x − y)J (y)

]
. (9.38)

In view of the normalization Z(0, 0) = 1, we have succeeded in evaluating the
generating functional without actually carrying out a functional integral, as long
as we can find the function g(x − y). It is easy to verify that g(x − y) can be
expressed as a Fourier transform

g(x − y) =
∫

d4k

(2π)4

e−ik·(x−y)

k2 − m2
. (9.39)

This is not well defined as it stands, however, because the integrand has poles
at k0 = ±(k2 + m2)1/2. In fact, if the k0 integral is carried out as a contour
integral, then several different solutions to (9.37) can be found by routing the
contour round the poles in different ways. Equivalently, each pole can be shifted
into the complex plane by a small amount ±iε, which is taken to zero after the
integration, and different choices of the ± signs give different solutions of (9.37).
Now, according to (9.34), the Feynman propagator is equal to g(x − y), so we
must choose that solution which agrees with the original definition (9.14). In the
free field theory, this can be calculated directly using the properties of the field
operators, and the correct definition is found to be (see exercise 9.3)

GF(x − y) = lim
ε→0

∫
d4k

(2π)4

e−ik·(x−y)

k2 − m2 + iε
. (9.40)

Our final result for the generating functional is therefore

Z0(J, J ∗) = exp

[
−i
∫

d4x
∫

d4y J ∗(x)GF(x − y)J (y)

]
. (9.41)

The appearance of this prescription of replacing m2 by m2−iε may be understood
as follows. The functional integral (9.33) is not really well defined, because
the magnitude of the integrand is, for any value of φ, a complex number of
unit magnitude. In effect, the m2 − iε prescription adds to the exponent a term
−ε

∫
d4x |φ(x)|2. This provides a convergence factor, which makes the integrand

decay to zero at large values of |φ|.
For spin- 1

2 particles, the Feynman propagator is a 4 × 4 matrix defined by

SFi j (x − y) = −i〈0|T [ψi (x)ψ̄ j (y)]|0〉. (9.42)

It satisfies the spinor version of (9.37), namely

(i/∂ − m)SF(x − y) = δ(x − y) (9.43)
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and is given by

SF(x − y) = (i/∂ + m)GF(x − y)

= lim
ε→0

∫
d4x

(2π)4
e−ik·(x−y) (/k + m)

k2 − m2 + iε
. (9.44)

9.4 Perturbation Theory

The simplest example of an interacting field theory is a scalar field theory whose
Lagrangian density has the form L = L0 − V (φ, φ∗), where V is a polynomial
in the fields φ and φ∗. The generating functional for its Green functions can be
written as

Z(J, J ∗) =
∫
Dφ exp

[
i
∫

d4x(L+ J ∗φ + Jφ∗)
]

=
∫
Dφ exp

[
−i
∫

d4xV (φ, φ∗)
]

exp

[
i
∫

d4x(L0 + J ∗φ + Jφ∗)
]
.

(9.45)

In the second form, differentiation of exp[i ∫ d4x(L0 + J ∗φ + Jφ∗)] with respect
to J (x) or J ∗(x) multiplies it by iφ∗(x) or iφ(x), so we can also write this as

Z(J, J ∗) = N exp

[
−i
∫

d4x V

(
−i

δ

δ J ∗(x)
,−i

δ

δ J (x)

)]
Z0(J, J ∗) (9.46)

where N is a normalizing constant determined by the condition Z(0, 0) = 1. The
most useful theory of this kind is defined by

V (φ, φ∗) = 1
4λ(φ

∗φ)2 (9.47)

where λ is a coupling constant, which determines the strength of the force acting
on φ particles in much the same way that electric charge determines the strength
of electromagnetic forces. There is no known way of computing this generating
functional or any of the individual Green functions exactly. A commonly used
method of approximation is perturbation theory, which means an expansion
in powers of λ. To see how this expansion works, let us first calculate the
normalization factor N in (9.46). On expanding the exponential and setting
Z0(0, 0) = 1, we obtain

Z(0, 0)

= N

[
1 − i

4
λ

∫
d4x

(
δ

δ J (x)

)2 (
δ

δ J ∗(x)

)2

Z0(J, J ∗)
∣∣∣∣∣

J=J ∗=0

+ O(λ2)

]
.

(9.48)
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When the expression (9.41) for Z0 is expanded in powers of J and J ∗, we see
that after differentiating and setting J = J ∗ = 0, only the term containing
(
∫

J ∗GF J )2 survives. By carrying out the functional differentiation, we find that
the normalizing constant is

N = 1 − 1
2 iλ

∫
d4x [GF(0)]2 + O(λ2). (9.49)

Taking this result into account, we can find a similar approximation to the
propagator of the interacting theory, defined by

G(x − y) = −i〈0|T [φ(x)φ†(y)]|0〉 = i
δ

δ J ∗(x)
δ

δ J (y)
Z(J, J ∗)

∣∣∣∣
J=J ∗=0

(9.50)

which is

G(x − y) = GF(x − y)

+ λ

∫
d4z (−i)3GF(x − z)GF(z − z)GF(z − y) + O(λ2).

(9.51)

Its Fourier transform can be written, using (9.40), as

G̃(p) = 1

p2 − m2 + iε

+ iλ

(p2 − m2 + iε)2

∫
d4k

(2π)4

1

k2 − m2 + iε
+ O(λ2). (9.52)

This expression, and those arising in the perturbation series for all other Green
functions, are conveniently represented by Feynman diagrams. The diagrams
corresponding to (9.52) are shown in figure 9.2, and are constructed according
to the following rules:

(i) -p stands for
i

p2 − m2 + iε

(ii)
r�
�

@
@

@
@

�
�

�I

� I
p1

p3

p2

p4 stands for −iλ, together with the condition
p1 + p2 = p3 + p4 for momentum conservation

(iii) All internal momenta, such as k in figure 9.2, whose values are not fixed
by momentum conservation are integrated over.

(iv) Each diagram has a combinatorial factor arising from the expansions of
exponentials and the chain rule for differentiation. Many field theory textbooks
supply rules for calculating this factor, but in my experience it is best obtained
from first principles.
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Figure 9.2. Diagrammatic representation of equation (9.52).

Figure 9.3. Examples of Feynman diagrams which contribute to the elastic scattering
amplitude for two spin-0 particles.

At a given order in λ, there are fixed numbers of vertices and unperturbed
propagators available, and there is a contribution to the Green function from each
diagram that can be formed from these elements. For example, figure 9.3 shows
some of the diagrams which contribute to the S-matrix element for two-particle
elastic scattering. Each diagram has four external propagators, one for each of
the two incoming and two outgoing particles. The S-matrix element itself is
similar to (9.15), but with a factor (k2

i − m2) for each particle multiplying the
Green function. Evidently, these are just cancelled by the external propagators in
figure 9.3, leaving a non-zero result.

The Feynman rules for theories containing fermions differ in two respects
from those given above. One is that each propagator line represents the matrix
(9.44). Most often, only two fermion lines meet at any given vertex. For example,
a term eψ̄ /Aψ in the action (8.17) gives rise to a vertex of the form

where the wavy line denotes the photon propagator, to be discussed in the next
section. As far as the fermion is concerned, this vertex, together with the
propagators, corresponds to the matrix product

−ieSF(p)γ µSF(p − k) (9.53)

whose index µ will be contracted with a corresponding index belonging to the
photon propagator. Each internal fermion propagator will be multiplied by a
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matrix on either side. An external propagator will be multiplied by a matrix on one
side (where it meets a vertex) leaving one free Dirac index. This free index is the
one belonging to a field operator in the original matrix element, such as (9.42), and
will eventually be contracted with a Dirac operator and a wavefunction, as in the
reduction formula (9.16). The second difference is the appearance of some power
of −1 in the combinatorial factor. These signs arise from the anticommutation
properties of the Grassmann variables in the functional integral. Every closed
loop of fermion propagators gives a factor of −1 and extra minus signs come
from the ordering of field operators in a time-ordered product. Once again, I
must ask readers who wish to become proficient in these calculations to consult a
specialized text for details of the technicalities.

Feynman diagrams such as those in figures 9.2 and 9.3 are often thought of
as representing actual physical processes. For example, the first diagram of fig-
ure 9.3 might be thought of as an immediate transition from the initial two-particle
state to the final two-particle state, while the higher-order diagrams represent in-
direct transitions via the intermediate states in which particles corresponding to
the internal propagators are created and subsequently annihilated. The net effect
of each of these processes is the same, in the sense that they each involve the
same initial and final states. The overall probability amplitude is the sum of the
amplitudes for all possible ways in which this net transition can occur. A particle
whose transitory existence is represented by an internal propagator differs from
a real, observable particle, because its 4-momentum does not have to satisfy the
mass-shell constraint k2 = m2. For this reason, the intermediate particles are
called virtual particles. The idea of virtual particles provides a pictorial language
that is often useful for discussing the mathematics of perturbation theory. Clearly,
however, this language is closely tied to our use of an expansion in powers of λ or
some other coupling constant; the notion of virtual particles is meaningful, at best,
only when perturbation theory gives an accurate approximation to the observable
quantities we are attempting to calculate.

9.5 Quantization of Gauge Fields

We saw in §7.6 that gauge fields, such as the electromagnetic 4-vector potential
Aµ, can be treated as field operators whose associated particles are vector
bosons, such as the photon. However, there are problems in the quantum-
mechanical treatment that do not arise for scalar or spinor fields and which are
most conveniently overcome by the use of path integrals. Symptomatic of these
problems is the fact that, although Aµ has four components, photons exist, as we
have seen, in only two independent helicity states. Therefore, two of the four
field degrees of freedom are in some way redundant, being unobservable gauge
degrees of freedom.

Mathematically, this can be seen as follows. In the absence of charged
particles, the action of electromagnetism is the first term of (8.17). With Fµν



Quantization of Gauge Fields 215

given by the antisymmetric expression ∂µ Aν − ∂ν Aµ, this action is independent
of ∂0 A0 and therefore, as indicated in exercise 3.6, the canonical momentum !0

conjugate to A0 is identically zero. Thus, there are at most three independent
momenta

!i = δS

δ(∂0 Ai )
= Fi0 = Ei . (9.54)

Since there are at most three independent momenta, there can also be at most
three independent field variables. To reduce the matter to its simplest terms, let
us regard A0 as the redundant component. The four Euler–Lagrange equations
are Maxwell’s equations ∂µFµν = 0. The one obtained by varying A0 cannot
be regarded as an equation of motion on the same footing as the others, because
A0 is not a bona fide dynamical variable, but must rather be regarded as a further
constraint on the remaining field components. (Readers familiar with such matters
will realize that A0 is playing the role of a Lagrange multiplier.) The offending
Maxwell equation is Gauss’ law (3.44) which, given (9.54), may be written as

∇ · E = ∂i!
i = 0. (9.55)

Clearly, this equation has no time derivatives and is not a genuine equation of
motion. It is a relation between the three momenta, which implies that only two
of these momenta are really independent. We conclude that there are really only
two genuine field variables and two conjugate momenta, corresponding to the two
observed polarization states of the photon.

For scattering processes that involve photons in the initial or final state,
reduction formulae similar to (9.13) or (9.16) can be derived in which the
contribution from a photon is

iZ−1/2
∫

d4x e±ik·x〈0|T [· · · ε(k)· je(x) · · ·]|0〉. (9.56)

The current density jµe (x) is given in terms of field operators for whatever charged
particles are present (for example, jµe = qψ̄γ µψ for spin- 1

2 particles of charge
q) and εµ(k) is the polarization vector introduced in §7.6.1. This could have been
written in a form more similar to (9.13). Indeed, with charged particles present,
Maxwell’s equations are

�Aµ − ∂µ(∂ν Aν) = jµe (9.57)

and we can simply substitute the expression on the left-hand side for jµe . The
advantage of (9.56) is that it avoids certain ambiguities concerning the definition
of time-ordered products of gauge fields, as well as the question of whether the
constraint ∂ν Aν = 0 is to be imposed and, if so, how. In terms of Feynman
diagrams, jµe introduces into any diagram the vertex (9.53) without the external
photon propagator, so in effect we have simply cancelled out this propagator
before evaluating the Green function rather than afterwards.
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The reduction formula (9.56) serves to make contact with observable
physical processes in a way that temporarily avoids the difficulties associated
with quantizing the gauge field, but these difficulties can no longer be avoided
when we come to calculate the vacuum expectation value itself, because we expect
Feynman diagrams to contain internal photon or other gauge-field propagators as
well as external ones. In the case of a scalar field, whose quantum-mechanical
properties are straightforward, the path-integral representation (9.32) could be
deduced from the canonical formalism of field operators. With enough care, the
same thing can be done for a gauge field. However, it is possible to adopt an
alternative point of view, regarding a path integral such as (9.32) as defining a
quantum theory, given that we have an action S which specifies the corresponding
classical theory. This path integral quantization scheme is an alternative to the
canonical scheme of §5.4, upon which our theory up to this point has rested. If
we adopt this point of view then, at first sight, it appears that we simply have to
base our calculations on an appropriate generating functional

Z(sources) =
∫
D(fields)eiS+source terms. (9.58)

The functional integral is over all the fields in the theory, and the source terms are
similar to those in (9.33), namely

i
∫

d4x [J ∗φ + Jφ∗ + JµAµ + η̄ψ + ψ̄η + . . .] (9.59)

with one terms for each field. The sources J , Jµ, η, etc are the arguments of Z ,
and the action is an expression such as (8.17) or (8.41), perhaps with the addition
of scalar fields, depending on the particular theory considered.

We should, of course, be suspicious of this procedure if it enabled us to
ignore entirely the problems associated with redundant gauge degrees of freedom.
In fact, these problems reappear in the following way. Since the action S is gauge
invariant, the integrand in (9.58) is independent of the gauge degrees of freedom
when we set the sources to zero, and the functional integrals over these degrees of
freedom lead to a meaningless infinity. It is, in fact, impossible to do perturbation
theory with (9.58) as it stands, because we cannot find propagators for the gauge
fields. In the case of electromagnetism, if we follow the same steps as for the
scalar field, we find that the propagator, denoted by DFµν , should satisfy an
equation similar to (9.37), but with the Klein–Gordon operator replaced by the
Maxwell operator:

�DFµν(x − y) − ∂µ∂
λDFλν(x − y) = ηµνδ(x − y). (9.60)

This equation has no solution.
A way round this difficulty was found by L D Fadeev and V N Popov. Their

argument is slightly complicated, and here I shall just state the result, but a related
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calculation is described in detail in §15.3.2. It is possible to modify the action by
adding two terms to the Lagrangian density of the gauge fields:

LFP = − 1
4 Fa

µν Faµν − 1
2ξ

−1 f (A) + b̄�(A)c. (9.61)

The function f (A) is a function of the gauge fields, whose purpose is to remove
the gauge invariance of the original action, thereby allowing a propagator to be
constructed. We are allowed a considerable freedom in choosing this function,
although only a limited number of choices are convenient in practice. The new
fields b̄ and c, which are to be integrated over in the generating functional,
correspond to fictitious particles, usually called ghosts. Although these are spin-
0 particles, the mathematics requires their fields to be Grassmann variables, so
they are fermions, contradicting the spin-statistics theorem which applies to all
physical particles. The quantity �(A) is a differential operator, whose exact
form depends on our choice of f (A). In the case of electromagnetism (where,
of course, the index a does not appear), a convenient choice of f (A) is

f (A) = (∂µAµ)2. (9.62)

With this choice, � turns out to be independent of Aµ. In this case, the ghosts
do not interact with other particles and can be ignored. By modifying the action
in this way, we naturally modify the Green functions as well. In particular, they
now depend on the arbitrary parameter ξ . As a consequence of the original gauge
invariance, however, it can be shown that S-matrix elements and other physically
measurable gauge-invariant quantities are unaffected by the modification and are
independent of ξ . I shall give an example of this is due course. The f (A) term in
(9.61) is often referred to as a gauge-fixing term. This is somewhat misleading, as
it suggests that a constraint has been applied to eliminate the redundant gauge
degrees of freedom. What really happens is that these degrees of freedom,
together, in general, with the ghosts conspire to have no net effect on physical
quantities.

When (9.62) is used for f (A), readers may readily verify that the equation
for the propagator becomes

�DFµν(x − y) − (1 − ξ−1)∂µ∂
λDFλν(x − y) = ηµνδ(x − y) (9.63)

and that its solution is

DFµν(x − y) = −
∫

d4k

(2π)4

e−ik·(x−y)

k2 + iε

(
ηµν + (ξ − 1)

kµkν

k2

)
. (9.64)

If we include in the Lagrangian density a term 1
2 m2 AµAµ, we get a theory of

massive vector bosons, with the propagator

DFµν(x − y) = −
∫

d4k

(2π)4

e−ik·(x−y)

k2 − m2 + iε

(
ηµν + (ξ − 1)

kµkν

k2 − ξm2

)
. (9.65)



218 Interacting Relativistic Field Theories

As it stands, such a theory is not gauge invariant, so we are not really entitled
to use the extra Fadeev–Popov terms. Unlike (9.64), the propagator (9.65) has a
finite limit when we remove the gauge-fixing term by taking ξ to infinity:

DFµν(x − y) = −
∫

d4k

(2π)4

e−ik·(x−y)

k2 − m2 + iε

(
ηµν − kµkν

m2

)
. (9.66)

At the level of free particles, this non-gauge-invariant theory makes good sense.
As we saw in §3.7, the massive spin-1 particles have three spin polarization
states and the one redundant degree of freedom is removed automatically by the
constraint ∂µAµ = 0, which is implicit in the equation of motion. In interacting
theories, however, massive vector bosons are troublesome, as we shall shortly
discover.

9.6 Renormalization

Earlier on, we derived an expression (9.52) for the first-order correction to the
scalar propagator in the theory with interactions given by (9.47). This correction
and further corrections at higher orders of perturbation theory are properly
thought of as a self-energy, or as a correction to the mass of the particle brought
about by the interactions. Thus, the parameter m that appears in the Lagrangian
density is not the true mass of the particle. It is usually called the bare mass,
and I shall denote it henceforth by m0. The pole of the complete propagator must
appear at the true mass shell, p2 = m2, and the ‘in’ and ‘out’ states should be
defined in terms of the true mass m which therefore still appears in the reduction
formulae. As we shall see below, the integral in (9.52) is purely imaginary and I
shall denote it by −i%(m0). Then (9.52) can be written as

G̃(p) = 1

p2 − m2
0 + iε

(
1 − λ

%

p2 − m2
0 + iε

)−1

+ O(λ2)

= 1

p2 − m2
0 − λ% + iε

+ O(λ2). (9.67)

This is more than a merely ad hoc rearrangement. Amongst the whole set of
Feynman diagrams that contribute to the propagator, there is the infinite sum of
diagrams shown in figure 9.4, which is easily shown to be a geometric series.
Thus, the true mass is given by

m2 = m2
0 + λ%(m0) + O(λ2). (9.68)

This relation is said to represent mass renormalization.
There are two more ways in which the Lagrangian of an interacting field

theory reflects only indirectly the physical phenomena that the theory describes.
First of all, when we include only the lowest-order corrections to the propagator
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Figure 9.4. The Feynman diagrams whose sum forms the geometric series (9.67).

as in (9.67), its residue at p2 = m2 (that is, the quantity limp2→m2(p2−m2)G̃(p))
is still equal to 1. It turns out, though, that this residue is no longer equal
to 1 when higher-order corrections are also included. This means that, when
acting on the vacuum state, the field operators of the interacting theory create
single-particle states whose normalization is different from those of the non-
interacting theory. In order to have a clear physical interpretation of our calculated
scattering amplitudes, we demand that the ‘in’ and ‘out’ states should have the
standard normalization of the non-interacting theory. To this end, we define
the wavefunction renormalization constant Z , which appears in the reduction
formulae, by the requirement

lim
p2→m2

Z−1(p2 − m2)G̃(p) = 1. (9.69)

For reasons that will shortly become apparent, it is convenient to define a
renormalized field

φR(x) = Z−1/2φ(x) (9.70)

and renormalized Green functions

G(n)
R (x1, . . . , xn) = 〈0|T [φR(x1) · · ·φ†

R(xn)]|0〉c (9.71)

which take into account the adjusted normalization. (Note that the ‘2-point’
function G(2)

R also differs by a factor of −i from the Feynman propagator as
defined in (9.14).) The subscript c here denotes the connected Green functions,
which are obtained by ignoring all Feynman diagrams that consist of two or
more disconnected parts. For example, the complete 4-point Green function (the
vacuum expectation value involving four fields) contains, amongst many others,
the diagrams shown in figure 9.5, but only diagrams (a) and (c) are connected.
The disconnected diagrams are associated with particles that continue from the
initial state to the final state without colliding, while the connected diagrams
refer to particles that actually collide, and are therefore of greater interest. The
complete Green functions, should we ever want them, can be expressed in terms
of connected ones. In fact, it can be shown that the generating functional (9.45)
is given in terms of these connected Green functions by

ln Z(J, J ∗) =
∞∑

n=1

(iZ1/2)n

n!
∫

d4x1 · · · d4xn J ∗(x1) · · · J (xn)G
(n)
R (x1, . . . , xn)

(9.72)
while Z(J, J ∗) itself has a similar expansion involving the complete functions.
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Figure 9.5. Some Feynman diagrams which contribute to the four-point Green function.
Only (a) and (c) are connected diagrams.

Finally, we must recognize that the coupling constant appearing in the action,
which I shall now denote by λ0, is not a physically measurable quantity. If,
for example, we measure the scattering cross-section for 2 particle → 2 particle
scattering, then the measured quantity includes contributions from every Feynman
diagram in G(4)

R ; we cannot single out the contribution from diagram (a) of
figure 9.5, which is simply proportional to λ0. In order to compare the results of
our calculations with experimental data, we must exchange λ0 for a renormalized
coupling constant λ which is measurable. There is considerable latitude in how
we actually do this. A suitable definition might be

λ =
[

4∏
i=1

(p2
i − m2)

]
G(4)

R (p1, . . . , p4)

∣∣∣∣∣
pi =pi (µ)

(9.73)

where pi (µ) are a chosen set of momentum values. These values must be
specified by a parameter µ having the dimensions of momentum or equivalently,
in natural units, of mass. A measurement of the cross-section for particles which
have these particular momenta serves to establish the value of λ chosen by nature,
and the testable content of our theory then consists in the values it predicts for
the same cross-section at other momenta and for the cross-sections for other
scattering processes. If we are to continue using perturbation theory, the relation
between λ and λ0 must be of the form

λ = λ0 + O(λ2
0) (9.74)

so that a power series in λ0 can be re-expressed as a series in λ. The exact physical
meaning of λ depends, of course, on the method used to define it and, in particular,
on the chosen value of µ

The preceding remarks show, I hope, that renormalization is a natural and
essential part of the physical interpretation of a quantum field theory. There is,
however, a more sinister aspect to renormalization, which must now be revealed.
Let us evaluate the self energy

%(m0) = i
∫

d4k

(2π)4

1

k2 − m2
0 + iε

. (9.75)
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Figure 9.6. Wick rotation of the integration contour in the complex k0 plane. Crosses mark
the poles of the Feynman propagator, which do not impede the anticlockwise rotation of
the contour.

If the k0 integral is done as a contour integral, the poles in the propagator appear
as in figure 9.6. The contour of integration can be rotated, avoiding these poles,
to run along the imaginary axis, in effect replacing k0 by ik4. The result of this
process, known as a Wick rotation, is an integral in a four-dimensional Euclidean
space, with momentum components (k1, . . . , k4). In this integral, the integrand
depends only on the magnitude of the momentum, so in polar coordinates the
angular integrations give just a constant factor. We get

%(m0) =
∫

d4k

(2π)4

1

k2 + m2
0

= 1

8π2

∫ ∞

0

k3dk

k2 + m2
0

(9.76)

where now k2 = ∑4
i=1(k

i )2. When k is large, the integral behaves as k2, so
it diverges quadratically at its upper limit: it is infinite! In practice, this does
not matter. When we express the propagator (9.67) in terms of the true mass,
it is equal to (p2 − m2 + iε)−1 plus higher-order corrections, and % does not
appear in our final answer for any physical quantity. On the other hand, many
other infinite integrals can be expected to occur. While these are embarrassing,
we can still obtain sensible, finite results for measurable quantities provided that
all infinite integrals disappear after renormalization. In quantum electrodynamics,
our embarrassment is somewhat alleviated by the fact that the renormalized theory
yields predictions that agree with experiment to some 10 significant figures.
What we require is that the renormalized Green functions should have well-
defined, finite values when they are expressed in terms of true particle masses
and renormalized coupling constants. If this is true for a particular field theory,
the theory is said to be renormalizable. It would seem that only renormalizable
theories are suitable as models of physical reality, but whether this is really true
is not quite clear. We are, after all, only able to do approximate calculations,
and it could be that infinite answers obtained from a non-renormalizable theory
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are due to inadequate methods of approximation rather than to the theory itself.
It practice, ways can often be found of making approximate use of a non-
renormalizable theory, on the understanding that it represents only part of some
more comprehensive theory.

The task of finding out whether a given field theory is renormalizable or not
is a lengthy and highly technical one, and I shall do no more than state some of
the essential results.

(a) A simple, though not infallible, criterion for renormalizability is provided
by dimensional analysis. Since we are using natural units (~ = c = 1), there is
only one independent unit, which I shall take to be a mass. Thus, the dimension
of any quantity can be expressed as (mass)D . A momentum has D = 1. Since
the two terms in a differential operator such as (� + m2) must have the same
dimensions, ∂µ has D = 1 and, correspondingly, the spacetime volume element
has D = −4. The action S appears in a functional integral as the argument of
an exponential and must therefore be dimensionless (D = 0), which means that
D = 4 for a Lagrangian density. For a scalar field, whose Lagrangian density
includes (7.7), this implies that D = 1. Similar arguments show that a gauge field
also has D = 1, while a spinor field has D = 3

2 . Knowing this, it is a simple
matter to determine the dimension of any coupling constant that appears in the
action.

Now, the power of k with which the integral (9.76) diverges, namely 2, is
equal, for fairly obvious reasons, to the dimension of the integral. Suppose, more
generally, that a coupling constant λ has dimension Dλ and a Green function G
has dimension DG . We evaluate the Green function as a power series

G = G0 + λG1 + λ2G2 + . . . . (9.77)

Each coefficient Gn is a multiple momentum integral of dimension DG − nDλ,
which may be expected to diverge with this power. Assume that we have enough
freedom, using mass, coupling constant and wavefunction renormalization, to
eliminate all infinities at order n = 1. If Dλ is negative, the infinities become
more severe at higher orders, and we might expect to reach a point where we no
longer have enough freedom to eliminate them. On the other hand, if Dλ is zero
or positive, then things get no worse at higher orders. A more detailed argument
along these lines shows that, indeed, the theory is likely to be renormalizable if
Dλ ≥ 0. In fact, if Dλ is positive, then the infinities may cease altogether after
some order, and the theory is said to be super-renormalizable. Consideration
of (8.17), (8.41) and (9.47) reveals that the coupling constants e, g and λ in
the theories we have thought about up to now are all dimensionless and, other
things being equal, these theories should be renormalizable. One reason for
restricting the actions to contain only the terms we have considered is that
other possible terms would involve coupling constants of negative dimension and
destroy renormalizability.
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(b) When a theory possesses symmetries such as gauge invariance, these
restrict the terms which may appear in the action, and therefore also restrict the
number of independent parameters and the number of renormalizations that can
be used to eliminate divergences. However, the same symmetries also restrict the
ways in which infinite integrals can appear. Generally speaking, to construct a
renormalizable theory, it is necessary to include in the action all possible terms
that are allowed by symmetries and do not involve coupling constants of negative
dimension.

(c) The dimensional criterion works for scalar field theory because the
propagator (k2 − m2 + iε)−1 behaves for large k like k D , where D, equal to
−2, is the dimension of the propagator. The same is true of the momentum-
space propagators for spin- 1

2 fermions, (9.44), and photons, (9.64). For massive
spin-1 particles, however, the term kµkν/m2 in (9.66) leads to more severe
divergences than are allowed for by dimensional analysis. As a result, interacting
theories of massive spin-1 particles are found to be non-renormalizable, even
when the dimensional criterion is satisfied. The propagator (9.65) does not lead
to this problem, because of the extra power of k2 in the denominator of the
expression kµkν/(k2 − ξm2). However, the gauge-fixing term that allows us to
use a propagator of this kind can be introduced only in a gauge-invariant theory.
Therefore, a renormalizable theory of massive spin-1 particles must be gauge
invariant. As we saw in chapter 8, special measures are necessary to achieve this.

(d) In some gauge theories which have dimensionless couplings and might be
expected to be renormalizable, there occur certain ‘anomalous’ Feynman integrals
whose divergences cannot be renormalized away. How and why these anomalies
occur is the subject of a large and technical literature, the details of which I
cannot pursue here. The root cause is a subtle breakdown of gauge invariance
in functional integrals. Even when a fully gauge-invariant action is used, the
integration measure D(fields) in (9.58) may fail to be gauge invariant. For this
reason, a field theory that is gauge invariant at the classical level may cease
to be so upon quantization. Several different kinds of anomalies have been
identified. The chiral anomalies that afflict gauge theories arise in Feynman
diagrams from closed fermion loops and can be traced to gauge non-invariance
of the fermionic path integral. The only way to remove them is to arrange for
anomalies from several different fermion species to cancel amongst themselves.
Indeed, the standard theory of weak and electromagnetic interactions (to be
discussed in chapter 12) is potentially anomalous, and the sets of particle species,
called families or generations of quarks and leptons, which are required for the
cancellation of anomalies are exactly those whose existence is inferred from
experiment.
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9.7 Quantum Electrodynamics

Quantum electrodynamics, or QED for short, is the field theory that describes
the behaviour of charged particles with only electromagnetic interactions. It is, of
course, most useful when the effects of other interactions are negligible, and this is
most nearly true when we study the properties of the charged leptons—electrons
and muons. (There are also the tau particles, but these are short-lived particles
produced only in high-energy collisions and their properties cannot be determined
with the same accuracy.) The electrodynamics of electrons and muons is the most
accurate theory in existence, if accuracy is measured by the agreement between
theoretical calculations and experimental data. I shall illustrate the application of
interacting field theories by discussing some well-known consequences of QED,
namely the Coulomb potential, the Lamb shift of spectral lines in simple atoms,
and the magnetic dipole moments of charged particles. Although the formalism
has been developed with a view to interpreting scattering experiments, none of
the quantities of interest here is conveniently described in these terms. Moreover,
the detailed calculations involve much complicated algebra, though they are quite
straightforward in principle. I shall therefore use somewhat qualitative arguments
to identify the quantities that need to be calculated and omit detailed algebra when
it does not illuminate questions of principle.

9.7.1 The Coulomb potential

From the point of view of perturbation theory, the interactions between charged
particles come about through the exchange of virtual photons. A few of the
diagrams that contribute to the scattering of two particles are shown in figure 9.7.
To see how this description is related to the more elementary idea of a potential
energy, let us first go back to chapter 6, where we wrote down in equation (6.21)
the potential energy operator for particles interacting through a potential V (x, x ′).
I am going to show that all reference to photons can be eliminated from QED,
leaving a theory of charged particles alone. In this version of the theory, we
can, under suitable circumstances, obtain a potential energy operator of the form
(6.21), which involves the familiar Coulomb potential.

For a single species of charged particle, and with the gauge-fixing function
introduced in (9.62), the Lagrangian density for QED may be written as

LQED = 1
2 Aµ

[
ηµν�− (ξ−1 − 1)∂µ∂ν

]
Aν − jµe Aµ + ψ̄(i/∂ − m)ψ (9.78)

where, for particles of charge q , the electromagnetic current is

jµe = qψ̄γ µψ. (9.79)

The idea now is to carry out the functional integral over Aµ, leaving an effective
action for ψ alone:

exp[iSeff(ψ)] =
∫
DA exp[iS(ψ, A)]. (9.80)
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Figure 9.7. Some diagrams which contribute to the elastic scattering amplitude for two
electrons. Diagrams (a) and (e) are the first two of a geometric series analogous to
figure 9.4.

This is easy to do because, as far as the A integral is concerned, the current density
can be considered as a source, similar to that in (9.33) or (9.59). In the same way
that we derived (9.38), but using the photon propagator, we obtain

Seff =
∫

d4x ψ̄(x)(i/∂−m)ψ(x)+ 1
2

∫
d4xd4y jµe (x)DFµν(x − y) jνe (y). (9.81)

Obviously, we would like to identify the last term as

− 1
2

∫
dt
∫

d3xd3y ρ(x, t)V (x − y)ρ(y, t) (9.82)

where ρ = ψ†ψ is the particle density.
The idea of a potential energy V (x, y) between two particles located at

x and y is really a classical one. To extract a comparable notion from the
quantum-mechanical action (9.81), I shall imagine the current density (9.79)
to represent an actual distribution of real charged particles although, in reality,
it stands for a quantum-mechanical operator and appears only in intermediate
stages of a calculation of, say, a scattering cross-section. Readers may like to
consider for themselves how this step might be justified more rigorously. We can
verify immediately that the effective action (9.81) is independent of the arbitrary
gauge-fixing parameter ξ . This follows from the conservation of electric charge,
expressed by the equation of continuity ∂µ jµe = 0. Thus, if we insert the photon
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propagator (9.64) into (9.81), then (ξ − 1) is multiplied by two integrals of the
form∫

d4y eik·ykν jνe (y) =
∫

d4y (−i∂νeik·y) jνe (y) = i
∫

d4y eik·y∂ν jνe (y) = 0

(9.83)
and therefore has no effect. (The second step of this calculation requires an
integration by parts, with the usual assumption that jνe (y) → 0 for yµ → ±∞.)
We now obtain the standard Coulomb potential by considering a static distribution
of charged particles, for which jµe = q(ρ, 0) and the particle density ρ is
independent of time. For the second term of (9.81) we then get∫

d4xd4y jµe (x)DFµν(x − y) jνe (y) = q2
∫

d4xd4y ρ(x)DF00(x − y)ρ(y)

= −
∫

dt
∫

d3xd3y ρ(x)V (x − y)ρ(y)

where I have written t and t ′ for x0 and y0, and the potential is

V (x − y) = − q2 lim
ε→0

∫
dt ′
∫

d4k

(2π)4

e−ik0(t−t ′)eik·(x−y)

k2
0 − k2 + iε

= q2
∫

d3k

(2π)3

eik·(x−y)

k2

= q2

4π |x − y| (9.84)

which is the Coulomb potential. In this calculation, I have used the fact that∫
dt ′e−ik0(t−t ′) = 2πδ(k0), and I leave it as an exercise for readers to verify

the result of the final integral. If the charge distribution is not static, then
the interaction cannot be described just by an electric potential. There will,
for example, be corrections for the magnetic force between particles in relative
motion. In the case of a force mediated by exchange of massive particles, say of
mass M , we should expect the potential to be of the Yukawa form

V (r) = q2
∫

d3k

(2π)3

eik·r

k2 + M2
= q2e−M |r |

4π |r| . (9.85)

The range of such a force, as measured by the exponential decay, is a distance
equal to 1/M in natural units or to ~/Mc in laboratory units. For example, this
potential was suggested by Yukawa as a means of describing the strong force that
binds nucleons together to form a nucleus. Assuming that the exchanged particles
are pions, with masses given by Mc2 ≈ 135 MeV, we calculate a range of about
1.5 × 10−15 m, which is indeed typical of the separation of nucleons in a nucleus.
We shall see in chapter 12, however, that the modern view of strong forces is
rather more complicated than this.
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Figure 9.8. Some diagrams which contribute to the complete photon propagator.

9.7.2 Vacuum polarization

Evidently, the Coulomb potential is associated with the transfer of a single
virtual photon. The very simplest approximation to QED, which considers only
single-photon exchange between real particles is, roughly speaking, a classical
approximation. If, for example, we calculate the scattering cross-section for two
electrons using only the single-photon diagram of figure 9.7(a), the result obtained
in the non-relativistic limit | p| + m (and after a substantial amount of algebra) is

dσ

d�
= α2m2

16 p4

[
1

sin4(θ/2)
+ 1

cos4(θ/2)
− 1

sin2(θ/2) cos2(θ/2)

]
(9.86)

where α = e2/4π ≈ 1/137 is the fine structure constant (in SI units, α =
e2/4πε0~c) and, in the centre of mass frame, θ is the scattering angle and p
the magnitude of the 3-momentum of each particle. This is a modified version
of the classical Rutherford formula, corrections arising from the electrons’ being
identical spin- 1

2 particles. Quantum-mechanical corrections, which are all the
diagrams containing closed loops, are small in QED, because each photon added
to a diagram is attached to a pair of vertices, giving rise to a factor of α. Under
some circumstances, however, they can be measured by accurate experiments.

Some, though not all, of these corrections can be regarded as modifications
of the photon propagator. For example, figure 9.7(e) is obtained from 9.7(a) by
inserting a closed loop of virtual charged particles, and the same modification
can be made to any photon appearing in any diagram. The total effect of
such modifications can be represented by replacing each unperturbed photon
propagator with the complete propagator, whose first few terms are shown in
figure 9.8. After making this replacement, of course, individual diagrams like
figure 9.7(e) do not appear. By using the complete photon propagator in (9.84),
we should obtain a modified Coulomb potential, which describes some of the
quantum corrections to classical electrodynamics. This modified potential is said
to result from vacuum polarization. Picturesquely, the idea is that the electric field
of a charged particle polarizes the vacuum, in the sense that the original particle
becomes surrounded by a distribution of virtual charged particle-antiparticle pairs,
and the net potential is that due to this modified charge distribution.

In momentum space, the contribution to the complete propagator Dµν(p) of
the second diagram of figure 9.8 is

ie2 DFµσ (p)
∫

d4k

(2π)4

Tr
[
γ σ (/k + m)γ τ (/k + /p + m

]
(k2 − m2 + iε)[(k + p)2 − m2 + iε] DFτν(p) (9.87)
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and the set of all diagrams consisting of strings of these loops is, like (9.67) a
geometric series. Because the photon propagator always appears inside Feynman
diagrams multiplied by e2, it is useful to consider the quantity αDµν(p), which
must be the sum of a part proportional to ηµν and one proportional to pµ pν . The
contribution to the ηµν part from the above set of diagrams is

α0

[1 + α0 I (p2)]
ηµν

(p2 + iε)
(9.88)

where I (p2) is an infinite quantity, proportional to the integral in (9.87), and I
have added the subscript to α0 to indicate the need for renormalization.

Our hope is that (9.88) will turn into a finite expression when we rewrite it
in terms of the true fine structure constant α, but this raises the question of how
α is to be defined. We would expect (and this can be verified a posteriori) that
modifications of the usual Coulomb potential due to quantum effects should be
appreciable only for charged particles separated by a very short distance. The
true fine structure constant ought to involve the electronic charge e as measured
by macroscopic experimental apparatus, so it can be identified as the coefficient
of 1/|r| in the large-distance limit of the static potential. As in (9.84), the static
potential corresponds to p0 = 0 or p2 = − p2, and the large-distance limit
corresponds to a virtual photon of very large wavelength, which means p → 0.
Thus, in the approximation where we use only the diagrams that led to (9.88), we
have

α = α0

1 + α0 I (0)
(9.89)

and (9.88) becomes
α

1 + α[I (p2) − I (0)]
ηµν

p2 + iε
. (9.90)

The difference I (p2) − I (0) is finite and (again after some lengthy algebra) can
be expressed as

I (p2) − I (0)

= − 1

3π

∫ 1

0
dx
{[

1 − 2Q−1
]

ln [1 + x(1 − x)Q] + 2x(1 − x)
}

≈ − 1

15π

(
− p2

m2

)
for |p2| + m2

≈ − 1

3π
ln

(
− p2

m2

)
for |p2| , m2 (9.91)

where Q = −p2/m2. To calculate the static potential, and for some other
purposes too, we are interested in negative values of p2 = p2

0 − p2, for which Q
is positive. By substituting this result into (9.90), we obtain the Fourier transform
of the modified Coulomb potential. On carrying out the Fourier transform, we
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would obtain the modified V (r) itself. The detailed result is a little complicated
and not particularly enlightening as it differs significantly from e2/4πr only at
extremely short distances. Although we have considered only a single species of
charged particle, there will in reality be contributions of the same kind from every
species that exists in nature. Clearly, however, the major contribution will be that
of the lightest species, namely the electron. The next lightest particle, the muon,
is about 200 times heavier and its contribution to the large-distance or low-energy
vacuum polarization is much smaller.

9.7.3 The Lamb shift

The modified Coulomb potential which is the spatial Fourier transform of (9.90)
will not be exactly proportional to 1/r . This has a measurable effect upon
the atomic spectrum of hydrogen. Readers will recall that in the elementary
non-relativistic theory of the hydrogen atom the energy levels are independent
of angular momentum and that this fact depends crucially on the form of the
Coulomb potential. In a relativistic treatment based on the Dirac equation, the
degeneracy is partly lifted by spin-orbit coupling, which leads to the fine-structure
splitting, but, for example, the 2S1/2 and 2P1/2 levels are still degenerate. If the
Coulomb potential is not exactly proportional to 1/r , then this degeneracy too
is lifted. Actually, there are other effects of the loop diagrams of QED which
cause a more pronounced 2S-2P splitting than does the vacuum polarization. The
measurements of W E Lamb and R C Retherford in 1947 showed the 2P1/2 level
to lie below the 2S1/2 by an amount corresponding to a frequency �E/~ of some
1000 MHz, while a calculation of the vacuum polarization effect alone suggests a
shift of about 27 MHz in the opposite direction. However, detailed calculations,
including all QED effects and also some nuclear effects, agree with more recent
measurements, which give a shift of about 1057.9 MHz, within the experimental
accuracy of 0.02 MHz. Since this uncertainty is about a thousand times less
than the contribution of the vacuum polarization, the agreement can be taken as
confirming the modification of the Coulomb law.

9.7.4 The running coupling constant

The modified Coulomb potential can be interpreted as V (r) = α(r)/r , where
α(r) is an effective distance-dependent coupling constant. Pictorially, if vacuum
polarization is interpreted as a screening of the bare charge of a particle by a
cloud of virtual electron-positron pairs, then the apparent charge of the particle
depends upon how far into this cloud we have penetrated before measuring it. In
Fourier-transformed language, the apparent charge depends upon the wavelength,
and thus upon the energy and momentum, of a real or virtual photon that interacts
with the charged particle. Using (9.90), we define a running coupling constant
α(−p2) by

α(−p2) = α

1 + α[I (p2) − I (0)] . (9.92)
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There are several important theoretical issues associated with this running
coupling constant. In the first place, there is a close link with the process of
renormalization. Instead of using the true fine-structure constant, we could in
principle define a renormalized coupling constant in terms of the value of (9.88)
at p2 = −µ2, µ being an arbitrary parameter as in (9.73). Then, in (9.89) and
(9.90), I (0) would be replaced by I (−µ2). We easily find that

α(µ2) = α

1 + α[I (−µ2) − I (0)] (9.93)

which is the same equation as (9.92). This facet of renormalization can be
developed more thoroughly. The resulting machinery has come to be known as
the renormalization group, and I shall explore one of its uses in chapter 11.

The existence of the running coupling constant can be taken to mean that
the effective strength of electromagnetic interactions varies with energy. The
variation is appreciable only when (−p2) , m2, and in that limit we have

α(−p2) ≈ α

[
1 − α

3π
ln

(
− p2

m2

)]−1

. (9.94)

At the energies of a TeV or so (1 TeV = 1012 eV) that are accessible in modern
particle accelerators, α(−p2) has increased by only about 2% from its zero-
energy value α. On the other hand, we see that α(−p2) becomes infinite when
(−p2) = m2 exp(411π). This energy is so vast as to be irrelevant to any
conceivable experiment, but there is cause for concern on theoretical grounds.
The pole in (9.90) at p2 = 0 is, as we know, associated with the existence of
real photons of zero mass. An infinite value of the running coupling constant
would seem to imply the existence of a particle with imaginary mass M given by
M2 = −m2 exp(411π), sometimes referred to as the Landau ghost. This would
be a tachyonic, or faster-than-light particle, since v2/c2 = 1 − M2/E2 at energy
E . Such particles are generally believed to be impossible, so the Landau ghost
seems to indicate some fundamental flaw in QED. A related problem is that the
infinite constant I (0) in (9.89) is positive. This appears to mean that there is no
positive value of α0 (and therefore no real value of e0, even zero or infinity, for
which the renormalized α is non-zero. If every permissible value of α0 leads to
α being zero, then the theory is in fact non-interacting (we are not allowed to
set α = 1/137) and is said to be trivial. This question is somewhat confused,
because the arguments are based on approximations of one kind or another and
the bare coupling α0 has no direct physical meaning. There is no doubt that
perturbative QED is an excellent theory of electromagnetism at experimentally
accessible energies, but many believe that it would break down at sufficiently
high energies and, indeed, that it ultimately makes sense only when embedded in
a more complete theory.
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9.7.5 Anomalous magnetic moments

A charged, spinning particle might be expected to possess a magnetic dipole
moment, and so it does. An extremely accurate test of QED is provided by
measurements of the magnetic moments of the electron and muon. To see how
these are calculated, it is helpful first to study the non-relativistic limit of the Dirac
equation (8.13) which, for an electron of charge −e, reads

(i/∂ + e /A − m)ψ = 0. (9.95)

When the kinetic energy is much smaller than the rest energy m, we can,
approximately, derive a Schrödinger equation from this. We first multiply on
the left by γ 0 to give

i
∂ψ

∂ t
=
(
−iγ 0γ i∂i − eA0 − eγ 0γ i Ai + mγ 0

)
ψ (9.96)

and note that, in the standard representation of the γ matrices, we have

γ 0γ i =
(

0 σ i

σ i 0

)
and γ 0 =

(
I 0
0 −I

)
. (9.97)

When m is large compared with the kinetic energy, the most rapid time
dependence of ψ is in a factor exp(−imt). For a free, positive-energy particle in
its rest frame, the solution is exp(−imt) multiplied by one of the spinors (7.68).
For small kinetic and electromagnetic energies, therefore, we anticipate a solution
of the form

ψ = e−imt
(
χ

θ

)
(9.98)

where χ and θ are two-component spinors and θ is small. On substituting this
into (9.96), we obtain two coupled equations for χ and θ :

i
∂χ

∂ t
= − σ i (i∂i + eAi )θ − eA0χ (9.99)

i
∂θ

∂ t
= − σ i (i∂i + eAi )χ − eA0θ − 2mθ. (9.100)

When m is large and θ is small, the solution to (9.100) is approximately

θ ≈ − 1

2m
σ i (i∂i + eAi)χ (9.101)

and by substituting this into (9.99) we find

i
∂χ

∂ t
= − 1

2m
σ iσ j (∇ + ie A)i (∇ + ie A) jχ − e#χ (9.102)

where # = A0 is the electric potential.
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Figure 9.9. The effective electron–photon vertex which gives rise to an anomalous
magnetic moment.

Now, the Pauli matrices satisfy the identity

σ iσ j = δi j + iεi j kσ k (9.103)

which leads to the final result

i
∂χ

∂ t
=
[
− 1

2m
(∇ + ie A)2 − e# + e

m

1

2
σ · B

]
χ. (9.104)

The first two terms on the right-hand side give the usual Schrödinger equation for
a particle of charge −e in an electric potential # and magnetic vector potential A.
The last term represents the interaction of a magnetic moment µ = (−e/m)( 1

2σ )

with the magnetic field B = ∇ × A. Since the spin angular momentum operator
is s = 1

2σ , we have
µ = −gsµBs (9.105)

where µB = e/2m is the Bohr magneton and gs = 2. This is a somewhat
surprising prediction of the Dirac equation, because the corresponding g factor
for orbital angular momentum is 1.

Experimentally, this prediction is approximately verified for electrons and
muons, but there is a correction of about 1% arising from higher-order quantum
effects in QED. The way this comes about is quite similar to the modification
of the Coulomb potential by vacuum polarization. In (9.95), the middle term
is eγ µAµψ , and the γ µ is the same as the one that appears in the QED vertex
(9.53). Now consider again the 4-point Green function which is the sum of the
diagrams of figure 9.7, along with many others. The total effect of diagrams
(a), (b) and an infinite set of similar ones can be obtained by keeping just (a),
but replacing the γ µ in its upper vertex with an effective vertex �µ, which is
the sum of a series of diagrams whose first few terms are shown in figure 9.9.
In the same way, any Green function can be expressed as a sum of ‘skeleton’
diagrams, in which each vertex is �µ and diagrams such as figure 9.7(b) do not
appear. Thus, the vertex �µ represents the net effect of higher-order corrections
on the interaction between an electron and a photon, as suggested by figure 9.9.
Essentially, the anomalous magnetic moment is calculated by replacing γ µ with
�µ in the previous calculation, but the technical details are a little complicated.
The anomaly is defined by a = (gs − 2)/2 and its lowest-order contribution is
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α/2π . The best theoretical and experimental values for the electron anomaly are

ath = (1 159 652.2 ± 0.2) × 10−9

aexp = (1 159 652.188 ± 0.004) × 10−9.

As a matter of fact, theoretical calculations have been carried out which are rather
more accurate than the quoted uncertainty suggests. Most of this uncertainty is
the experimental uncertainty in the value of α which has to be substituted into
the calculated formula. For muons, there is similar agreement between theory
and experiment, although the accuracy of each is somewhat less. Moreover,
there are strong- and weak-interaction corrections to the magnetic moment as
calculated using QED alone. For the electron, these corrections are no bigger
than the uncertainty; for the muon they turn out to be more important, and must
be included to obtain agreement with the measured value.

For the proton and neutron, the g factors found from the Dirac equation are
2 and 0 respectively, but they are found experimentally to be approximately 5.58
and −3.82. The reason for these large discrepancies is that the Dirac equation
applies to point particles. The experimental values for the various magnetic
moments may be taken as evidence that, whereas the electron and muon are truly
fundamental particles, the proton and neutron have an internal structure, being
composed of more elementary constituents, the quarks. Although theoretical
models of the quark structure of nucleons are by no means as accurate as QED, the
observed magnetic moments can be reasonably well accounted for on this basis.

Exercises

9.1. In many contexts, Green functions of various kinds are encountered as a
means of solving differential equations. If φ0(x) is a solution of the Klein–Gordon
equation (�+ m2)φ0 = 0, show that a solution of the equation (�+ m2)φ(x) =
j (x) is given by

φ(x) = φ0(x) −
∫

d4y GF(x − y) j (y).

9.2. In equation (7.11), denote the positive-energy part of φ(x) by φa(x) and the
negative-energy part by φ∗

c (x). Show that∫
d3x GF(x ′ − x, t ′ − t)

↔
∂

∂ t
φ(x, t)

= −θ(t ′ − t)φa(x ′, t ′) + θ(t − t ′)φ∗
c (x ′, t ′)

where θ is the step function (see appendix A). Can you justify Feynman’s
description of an antiparticle as ‘a particle travelling backwards in time’?
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9.3. Write down an expression for the time-ordered product of two bosonic or
fermionic field operators, using the step functions θ(x0 − y0) and θ(y0 − x0) to
distinguish the two time orderings. Use Cauchy’s theorem to show that the step
function can be represented as

θ(t − t ′) = lim
ε→0

1

2π i

∫ ∞

−∞
dω

eiω(t−t ′)

ω − iε
.

By expressing the free field operators in terms of creation and annihilation
operators, verify the expressions (9.40) and (9.44) for the scalar and spinor
propagators.

9.4. The symbol �−1 means that if �A = B then A = �−1 B . For example,
�−1 exp(ik · x) = − exp(ik · x)/k2. The transverse and longitudinal projection
operators Tµν and Lµν are defined by Tµν = ηµν − ∂µ∂ν�

−1 and Lµν =
∂µ∂ν�

−1.
Show that (a) Lµν + Tµν = ηµν ; (b) Lµσ Lσ

ν = Lµν ; (c) Tµσ T σ
ν = Tµν ;

(d) Lµσ T σ
ν = Tµσ Lσ

ν = 0. Solve (9.63) by expressing the differential operator
in terms of these projection operators and by expressing DFµν(x − y) in terms of
projection operators acting on δ(x − y). (For this purpose, set ε = 0.)

9.5. A charged particle of mass m undergoes an electromagnetic scattering
process, emitting a virtual photon that subsequently interacts with another
particle. If pµ and p′µ are the initial and final 4-momenta of the particle
(p2 = p′2 = m2), then the 4-momentum of the virtual photon is qµ = pµ − p′µ.
Show that q2 ≤ 0. [Hint: consider the frame of reference in which p′ = − p.]

9.6. (a) In equation (9.95), take Aµ(x) to be a real function, representing an
externally applied electromagnetic field. By considering the charge conjugate of
this equation, show that particles and antiparticles have opposite electric charges.

(b) Now consider the proposition that charge conjugation is a symmetry of
nature, in the sense that a state in which all particles are replaced with their
antiparticles is indistinguishable from the original state. (This is true of a universe
with only electromagnetic forces, but not of a universe in which there are weak
interactions as well.) Consider Aµ(x) to be a field operator. Then the charge
conjugate of (9.95) should be equivalent to exactly the same equation, but with
both ψ and Aµ replaced by their charge conjugates. Show that Ac

µ = −Aµ.
(c) To get the correct answer for (a), you should not have replaced Aµ with

−Aµ. Convince yourself that (a) and (b) are consistent by considering how the
electromagnetic fields produced by a given distribution of charged particles are
affected by reversing the charges of these particles without changing their state of
motion, and whether, in (a), the charges of all relevant particles were reversed.



Chapter 10

Equilibrium Statistical Mechanics

When we deal with systems containing many particles, it soon becomes essential
to adopt statistical methods of analysis. To a large extent, statistical mechanics has
been developed with a view to studying condensed matter systems, such as solids
and fluids, upon which controlled laboratory experiments can be performed. In
some cases, the quantum-mechanical properties of the constituent particles are
crucial. This is true, for example, when we study the properties of electrons in
metals or semiconductors, or of superfluid helium. In other cases, it is sufficient
to treat the constituent particles according to classical mechanics, although it
may still be necessary to determine their properties, such as the forces which
act between them, from the underlying quantum theory. The properties of most
normal fluids and many magnetic properties of solid materials, for example, can
be adequately and conveniently treated by classical methods.

There are, moreover, important connections between statistical mechanics
and the relativistic field theories that have been our concern in previous chapters.
Indeed, the entire history of quantum mechanics and quantum field theory might
be said to have started with Planck’s attempts to understand black-body radiation
in terms of statistical mechanics. The most obvious connection is that it may
be necessary to consider the behaviour of large assemblages of high-energy
particles, whose proper description is in terms of quantum field theory. Black-
body radiation is a case in point, although it can be understood without the
full machinery of field theory. Other examples are the hot, dense gases found,
it is thought, in the cores of some stars or in the early universe and, perhaps,
small amounts of hot matter formed in high-energy collisions of heavy ions. At
the mathematical level, there are close formal similarities between the thermal
averages of statistical mechanics and the functional integral methods of quantum
field theory, which I shall discuss towards the end of this chapter. The recognition
of these similarities has proved enormously fruitful. For example, the methods
of quantum field theory have shed considerable light on certain problems in
condensed matter physics, especially those involving phase transitions, as we
shall see in the next chapter, while techniques developed originally for statistical
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mechanics provide alternative methods of approximation in relativistic field
theories, when perturbation theory is not applicable.

In this book, I shall consider, for the most part, only equilibrium statistical
mechanics. The assumption of thermal equilibrium, that is, of a state in which
all macroscopic properties of the system have settled down to constant values,
leads to great simplifications, provided we accept that the measured values of
these quantities are to be compared with suitably weighted averages over the
microscopic states of our theoretical model system. For we then have only to
establish what weight should be attached to a given state and are absolved from
considering how the system passes from one state to another. The mathematical
foundations of statistical mechanics have been developed rather more fully for
classical systems than for quantum-mechanical ones. I shall begin by considering
the kinds of justification that have been suggested for the use of particular
statistical weight functions for classical systems and then examine the relationship
between statistical mechanics and thermodynamics. Finally, I shall describe the
adaptation of these ideas to quantum mechanics and quantum field theory.

10.1 Ergodic Theory and the Microcanonical Ensemble

It will probably strike readers as intuitively obvious that macroscopic
measurements generally yield some kind of average value of the measured
quantity. This is because of the limited resolution of our measuring apparatus,
but there are at least two different aspects to this, both of which are called upon
to justify different theoretical steps. Consider, for example, a largeish amount
of a gas in a transparent container. Suppose, for the sake of argument, that we
know, with negligible error, the total mass of gas and the volume of the container.
Then the ratio of the two gives us a value for the overall density. By passing
a beam of light through the container, we can measure the refractive index, and
hence the density, of that region of the gas that the beam intersects. There are
two reasons for expecting the density measured in this way to coincide with the
overall density. One is that the measurement process takes much longer than the
timescales which characterize the microscopic motions (for example, the mean
time between two collisions of a single particle or the time taken for a particle
to cross the beam). Therefore, although the number of particles in the volume
defined by the light beam fluctuates with time, we would expect the measured
density to be a long time average of instantaneous densities and, further, that this
average should coincide with the overall density. The second reason is that, even
though the volume defined by the beam may be only a small part of the total
volume, it will normally contain a large number of particles. Averaged over all
possible configurations of the particles, the density should certainly be equal to
the overall density, and probability theory tells us to expect relative fluctuations
about this average that depend inversely on the square root of the mean number
of particles. Because our measurement is coarse grained, in the sense that it
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probes distances much greater than the average separation of two particles, we
would expect even an instantaneous measurement to give a value very close to the
average.

The statistical description of systems in thermal equilibrium is based on the
idea that the measured value of a quantity is a long-time average. We further
assume that, during the time taken to perform the measurement, the system passes
through a sequence of instantaneous states that is representative of the whole set
of states available to it. In classical mechanics, the instantaneous state of a system
can be represented as a point in phase space. For a system of N particles, phase
space � is the 6N-dimensional manifold (discussed from a geometrical point of
view in §3.7) whose points correspond to the values of the 3N coordinates and
3N momenta. For the moment, it will be convenient to lump the coordinates and
momenta together into a 6N-dimensional coordinate X . A weighted average of a
quantity f (X) is of the form

〈 f 〉t =
∫
�

d6N X ρ(X, t) f (X) (10.1)

where ρ(X, t) is a probability density for finding the system in a state close to X
at time t . The probability density can be visualized in terms of a Gibbs ensemble
of very many identical systems, ρ(X, t)d6N X being the fraction of these whose
state at time t is in the phase-space volume element d6N X containing X .

An equation governing the rate of change of the probability distribution with
time can be deduced from Hamilton’s equations (3.16). In fact, we have already
derived this equation, namely the Liouville equation (3.22), for the particular
distribution (3.20). To show that the same equation is valid for any other
distribution, we consider the points representing members of the ensemble as a
‘probability fluid’ in phase space. The current density of this fluid has components
ji = Ẋiρ(X, t) and, since we are not going to change the probability artificially
by adding or removing systems from the ensemble, the equation of continuity
must hold:

∂

∂ t
ρ(X, t) = −

6N∑
i=1

∂

∂Xi
[Ẋiρ(X, t)]. (10.2)

From Hamilton’s equations, we find

6N∑
i=1

∂ Ẋi

∂Xi
=

3N∑
i=1

(
∂ q̇i

∂qi
+ ∂ ṗi

∂pi

)
=

3N∑
i=1

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)
= 0 (10.3)

and therefore

∂

∂ t
ρ(X, t) = −

6N∑
i=1

Ẋi
∂

∂Xi
ρ(X, t) = −iHρ(X, t) (10.4)

whereH is the Liouville operator defined in (3.19). This is the Liouville equation.
It gives the rate of change of the probability density at a fixed point in phase space.
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We could also fix our attention on a particular member of the ensemble, whose
state is X (t), and ask how the probability density in its neighbourhood, ρ(X (t), t)
changes with time. The answer is

d

dt
ρ(X (t), t) = ∂

∂ t
ρ(X (t), t) +

6N∑
i=1

Ẋi
∂

∂Xi
ρ(X (t), t) = 0. (10.5)

This result, known as Liouville’s theorem, is usually described by saying that
the probability density behaves as an incompressible fluid. It does not, however,
imply that ρ has a uniform value over that part of phase space where it is non-zero,
as would be true for an ordinary incompressible fluid.

For a system in equilibrium, all averages of the form (10.1) should be
constant in time, which means that ∂ρ/∂ t = 0. According to (10.4), this will
be true if ρ depends on X only through quantities whose Poisson brackets with
the Hamiltonian H are zero, which are conserved quantities. For simplicity,
I shall assume that the only relevant conserved quantity is the energy. The
probability density that describes a system in equilibrium depends, as we shall
see, on how the system is allowed to interact with its environment. Once this
interaction is specified, it is quite straightforward to construct the appropriate
probability density. Ideally, however, we would like to have some reassurance
on several points. First, we would like to know whether the ensemble average
(10.1) is indeed equal to the long-time average which, by hypothesis, corresponds
to an experimental measurement. If so, we would like to be sure that the time-
independent probability density we have constructed is unique, for if more than
one could be found we would have no good reason for preferring any particular
one. Finally, we would like to understand theoretically why a system that
starts in a non-equilibrium state usually does settle down into a state of thermal
equilibrium. The theory that tries to answer these questions in a mathematically
rigorous manner is called ergodic theory. It is unfortunately true that, while many
elegant mathematical results have been obtained, the effort required to derive them
is out of all proportion to their practical utility in applications to actual physical
systems. I shall therefore not attempt to do more than convey the flavour of what
is involved.

We consider a system that is completely isolated from its environment. It is
therefore closed, which means that no particles enter or leave it, and isoenergetic,
which means that its energy is fixed at a definite value E . The probability density
must be zero except on the (6N − 1)-dimensional surface where H (X) = E . A
candidate for the equilibrium probability density, which depends on the phase-
space point X only through H (X), is

ρmicro(X, E) = δ[H (X) − E]
%(E)

(10.6)

where, to ensure the correct normalization,

%(E) =
∫

d6N X δ[H (X) − E]. (10.7)



Ergodic Theory and the Microcanonical Ensemble 239

The Gibbs ensemble corresponding to this probability density is called the
microcanonical ensemble. It is uniformly distributed over the constant energy
surface.

The microcanonical ensemble is likely to be relevant to experimental
observations if the averages we calculate with it are equal to the corresponding
long-time averages. A system is said to be ergodic if, for any smooth function
f (X), ∫

�

d6N X ρmicro(X) f (X) = lim
T →∞

1

T

∫ T

0
dt f (X (t)) (10.8)

and if this is true for almost all starting points X (t = 0) for the trajectory on the
right-hand side. The phrase ‘almost all’ has the mathematical sense of ‘except
on a set of zero measure’, which means that the set of exceptional starting points
makes no contribution to the ensemble average on the left. The way this might
come about is as follows. Imagine the constant-energy surface to be divided into
small cells. In the course of its motion over a very long time, the point X (t)
representing an ergodic system will pass through every cell, provided that we
wait long enough, and the fraction of time that it spends in each cell is equal to
the weight of that cell in the ensemble average. This is true for any cells of finite
size, however small, so the trajectory will eventually pass arbitrarily close to any
point of the energy surface. The stronger statement that it will eventually pass
through every point is actually not true. The application of the microcanonical
ensemble to averages in thermal equilibrium is justified by the ergodic theorem
due to G D Birkhoff and A I Khinchin, which states that, for an ergodic system, the
microcanonical ensemble is the only time-independent probability density on the
energy surface. The converse, that a system for which the only time-independent
distribution is the microcanonical one is ergodic, is also true. The drawback of this
approach lies in the extreme difficulty of proving that any system of real physical
interest actually is ergodic. One such proof, given by Y Sinai, applies to a gas
of hard spheres; that is, to a gas of spherical molecules which do not deform or
penetrate each other, but exert no other forces. Given that this admittedly idealized
model system is ergodic, we might expect that other, more realistic models would
also have this property.

Although ergodicity ensures that the microcanonical ensemble correctly
describes thermal equilibrium, it does not ensure that an isolated system will
eventually settle into equilibrium if it starts in some other state. In other words,
a Gibbs ensemble which initially does not have the uniform microcanonical
distribution over the energy surface will not necessarily approach such a
distribution with the passage of time. On the face of it, indeed, it seems
unlikely that this could ever happen. From (10.5), we know that the density in
the neighbourhood of any particular member of the ensemble is constant, and
therefore any initial inhomogeneities in ρ(X) cannot be smoothed out with time,
although they will move around the energy surface. The kind of thing that might
happen is illustrated schematically in figure 10.1, where ρ is zero, except in the
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Figure 10.1. Schematic illustration of the evolution in time of the phase-space probability
density of a mixing system. The probability density is non-zero only in the shaded region,
whose area is constant.

shaded region. The fraction of the energy surface where ρ is non-zero is constant
in time, but the shape of this region may evolve in a complicated way, developing
strands which spread out over the entire energy surface. If the surface is divided
into small cells, and we define a coarse-grained probability density by averaging
over each cell, then this coarse-grained probability density may well become
uniform. Since our experimental measurements are in any case coarse grained, the
actual probability density would, for practical purposes, become indistinguishable
from the microcanonical one, because we would only want to average functions
f (X) that vary very little within a coarse-graining cell.

This kind of behaviour is somewhat analogous to the mixing of two
immiscible liquids, such as oil and water, stirred together in a container to produce
a mixture that is homogeneous in the coarse-grained sense. Systems whose
trajectories in phase space lead to this kind of development of a probability density
are called mixing. There is, of course, a precise mathematical definition, but we
shall not be making any use of it. It can be shown that all mixing systems are also
ergodic, but the converse is not true. The hard-sphere gas was in fact shown by
Sinai to be mixing.

A simple example of the use of the microcanonical ensemble is provided by
an ideal gas with Hamiltonian

H =
N∑

i=1

1

2m
p2

i (10.9)
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confined to a volume V . The area of the energy surface %(E) can be expressed
as

%(E) =
∫

d3N p d3N x δ

(
E − 1

2m

3N∑
i=1

p2
i

)

= ∂

∂E

∫
d3N p d3N x θ

(
E − 1

2m

3N∑
i=1

p2
i

)
(10.10)

where θ(E − H ) is the step function. The integral over coordinates gives V N

and the momentum integral is the volume of a 3N-dimensional sphere of radius
(2m E)1/2, which can be evaluated as in appendix A. The final answer is

%(E) = V N (2πm)3N/2 E (3N/2)−1

( 3
2 N − 1)! (10.11)

and we shall see shortly that it is related to the entropy of the gas.

10.2 The Canonical Ensemble

If our system is allowed to exchange heat energy with its surroundings, we need
a somewhat different statistical description. So long as we restrict ourselves to
equilibrium conditions, we need not be very precise about the mechanism that
allows this exchange to take place. The simplest course is to suppose that the
surroundings constitute a heat bath. Ideally, the heat bath is an infinite system,
which can exchange finite amounts of energy with the system of interest without
any change in its own properties. Experimentally, this situation can be accurately
simulated by using thermostatic feedback techniques. Normally, we describe
these as techniques for maintaining a constant temperature, but we have yet to
establish a precise notion of temperature within statistical mechanics. We shall
still take the total number of particles in the system to be fixed, in which case
we are dealing with a closed isothermal system. The Gibbs ensemble for such
a system is called the canonical ensemble and our first objective is to find the
appropriate probability density ρcan(X). The question of what this probability
density should be has not been investigated with the same degree of mathematical
rigour as for the microcanonical ensemble, but the following simple argument
produces what is universally accepted as the correct answer.

Consider two systems, A and B, which are both in equilibrium with the same
heat bath but do not interact directly with each other. Individually, they have
probability densities ρcan(XA) and ρcan(XB), which depend on the coordinates
and momenta only through HA(XA) and HB(XB) respectively. Equally, we
can regard A and B as a single system AB, with Hamiltonian HAB(XAB) =
HA(XA)+ HB(XB), whose probability density ρcan(XAB) depends only on HAB.
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Since A and B do not interact, their probability densities should be independent,
and the joint probability density is

ρcan(HAB) = ρcan(HA + HB) = ρcan(HA)ρcan(HB). (10.12)

This relation determines the form of ρcan up to a single parameter. For a function
of a single variable, f (x), which has the property f (x + y) = f (x) f (y), we can
first deduce that f (0) = 1 by setting x = y = 0. Then, by choosing y to be a
small increment δx and defining β = − f ′(0), we obtain the differential equation
d f (x)/dx = −β f (x). Since f (0) = 1, the unique solution is f (x) = exp(−βx).
In (10.12), the analogue of x is the function H (X), and this allows some extra
freedom in the normalization. It is easy to see that the normalized probability
density that satisfies (10.12) is

ρcan(X, β) = e−βH(X)

[∫
d6N X e−βH(X)

]−1

. (10.13)

The undetermined constant β is the same for any system in contact with the same
heat bath, so it must be a property of the heat bath itself. Thermodynamically,
the only relevant property is its temperature. Thus, β must be a function of
temperature, and we can clearly relate it to the ideal gas scale of temperature
by taking the system to be an ideal gas.

For a gas or liquid consisting of N identical molecules, we define the
canonical partition function Zcan(β, V , N) in terms of the normalizing factor in
(10.13) by

Zcan(β, V , N) = 1

h3N N !
∫

d6N X e−βH(X). (10.14)

By including the 1/N !, we get a sum over all distinct states of the system,
counting any two states that differ only by the interchange of a pair of particles as
indistinguishable. The factor h−3N has no physical significance and is included as
a matter of theoretical convenience to make Zcan dimensionless. The constant h is
arbitrary, but must have the dimensions of an action. It is convenient to take it to
be Planck’s constant, because this allows a direct comparison to be made between
corresponding classical and quantum-mechanical systems. Many quantities of
thermodynamic interest can be expressed as derivatives of the partition function.
In particular, the average internal energy U is evidently given by

U(β, V , N) =
∫

d6N X H (X)e−βH(X)

[∫
d6N X e−βH(X)

]−1

= − ∂

∂β
ln Zcan(β, V , N). (10.15)

For an ideal monatomic gas, we easily obtain

Zcan(β, V , N) = V N

N !
(

2πm

βh2

)3N/2

(10.16)
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and the internal energy is found to be U = 3N/2β. For this gas, an elementary
kinetic argument (see exercise 10.2) shows that the pressure is related to the
internal energy by pV = 2

3U , so we have pV = N/β. The ideal-gas scale
of temperature is defined by the equation of state pV = NkBT , where, in SI
units, kB = 1.380 54×10−23 J K−1 is Boltzmann’s constant and T is the absolute
temperature, so we identify

β = 1/kBT . (10.17)

10.3 The Grand Canonical Ensemble

A system which can exchange both heat energy and particles with its surroundings
is called an open isothermal system. Exactly what this means depends to
some extent on the particular physical situation we want to investigate. Most
straightforwardly, we can think of a very large homogeneous system, within
which we draw an imaginary boundary enclosing a small part of the whole, which
still contains a very large number of particles. Our earlier example of a light beam
intersecting a large container of gas would be a case in point. The small subsystem
constitutes ‘the system’ while the remainder of the original large system acts as
an (ideally infinite) heat bath and particle reservoir. The Gibbs ensemble that
describes an open isothermal system is the grand canonical ensemble.

The grand canonical probability density allows for the possibility of the
system’s containing any number of particles. It must have the general form

ρ(X) = gN exp[−βHN(X)]
[ ∞∑

N=0

gN

∫
d6N X exp[−βHN (X)]

]−1

(10.18)

where HN is the Hamiltonian of the system when it contains exactly N particles
and gN is related to the probability that it does contain N particles. This
probability is obtained by integrating over the coordinates and momenta that the
N particles might have:

PN = gN

∫
d6N X exp[−βHN(X)]

[ ∞∑
N=0

gN

∫
d6N X exp[−βHN (X)]

]−1

.

(10.19)
If a particular particle can find itself, with equal probability, anywhere in the
system or reservoir, and the reservoir is very much larger than the system, then
the probabilities PN should form a Poisson distribution

PN = N̄ N e−N̄

N ! (10.20)

where N̄ is the average number of particles in the system.
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In the case of non-interacting particles, the N-particle Hamiltonian is just
the sum of single-particle Hamiltonians, and∫

d6N X exp[−βHN(X)] =
[∫

d3xd3 p exp[−βH1(x, p)]
]N

= (h3 Z1)
N

(10.21)
where Z1 is the canonical partition function for a single particle. The two
expressions (10.19) and (10.20) are then consistent if we set

gN = 1

N !
(

N̄

h3 Z1

)N

. (10.22)

In general, the grand canonical probability density is defined as

ρgr(N, X, β, µ)

= zN

h3N N ! exp[−βHN(X)]
[ ∞∑

N=0

zN

h3N N !
∫

d6N X exp[−βHN(X)]
]−1

(10.23)

where the fugacity z is
z = eβµ (10.24)

and µ is called the chemical potential. The chemical potential is taken to be a
property of the particle reservoir and so, while it controls the average number N̄
of particles in the system, it is independent of the number N that characterizes a
particular configuration of the system.

From the derivation of (10.22), it is clear that the general expression (10.23)
for the grand canonical probability density is strictly valid only when the integral
YN = ∫

d6N X exp[−βHN (X)] can be written as Y N , where Y is a quantity
independent of N . This is usually not true when particles interact, but it is an
excellent approximation when we consider a large system and interactions that
are appreciable only over a distance which is small compared with the dimensions
of the system. In that case, we can divide the volume of the system into a large
number of cells, each of a size greater than the range of interactions, and ignore
interactions between particles in different cells. The integral Y then factorizes
into a product of single-cell terms, and the number of these terms is proportional
to the number of particles in the system. Finally, since the relative fluctuations in
the number of particles in a large system are small, only those terms in (10.23)
for which N is large will be important.

The grand canonical partition function is defined as the normalizing
denominator in (10.23):

Zgr(β, V , µ) =
∞∑

N=0

exp(βµN)Zcan(β, V , N)
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=
∞∑

N=0

1

h3N N ! exp(βµN)

∫
d6N X exp[−βHN(X)]. (10.25)

For an ideal gas, we easily find

Zgr(β, V , µ) = exp

[
eβµV

(
2πm

βh2

)3/2
]
. (10.26)

The average internal energy and number of particles are

U = −
(
∂ ln Zgr

∂β

)
βµ

= 3

2
β−1eβµV

(
2πm

βh2

)3/2

(10.27)

N̄ =
(
∂ ln Zgr

∂(βµ)

)
β

= eβµV

(
2πm

βh2

)3/2

(10.28)

from which we recover the relation U = 3N̄/2β, now involving the average
particle number.

10.4 Relation Between Statistical Mechanics and
Thermodynamics

The highly successful science of thermodynamics deals with large systems in
terms of macroscopic observable quantities alone. Equilibrium thermodynamics
is derived, for the most part, from three basic principles, known as the
zeroth, first and second laws, which summarize the phenomenological results of
countless experiments. These principles are so well established by observation
as to stand in no real need of further justification. However, our theoretical
understanding would be seriously incomplete if we could not recover the results
of thermodynamics from the microscopic laws of motion for the particles that
constitute a macroscopic system. Moreover, once we can identify thermodynamic
functions in statistical mechanical terms, we can set about obtaining predictions
for their properties that cannot be obtained from thermodynamics alone. I am
going to assume that readers are familiar with the principles of thermodynamics,
but I shall first give a short summary of the points that particularly concern us.
For simplicity, I shall deal explicitly only with fluid systems, but other systems,
such as magnets and superconductors, which we shall need to consider later, can
be dealt with by using straightforward analogies.

If two systems which are internally in equilibrium, their macroscopic
properties having reached steady values, are brought into thermal contact,
allowing heat energy to pass between them, their individual equilibria may be
disturbed. If we wait long enough, however, the combined system will settle
into a new equilibrium state, and we say that the two systems are in equilibrium
with each other. The zeroth law of thermodynamics asserts that if two systems
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are simultaneously in equilibrium with a third, then they will be found to be in
equilibrium with each other also. This implies that the systems share a common
property, which has the same value for any two systems that are in equilibrium
with each other. The property in question is temperature, and our discussion of the
canonical ensemble indicates that β is a measure of thermodynamic temperature.
The zeroth law does not, however, provide a means of assigning numerical
values to temperature. Indeed, any property of a chosen standard system—a
thermometer—that varies with temperature could be used to define an ‘empirical
scale of temperature’. Two such scales defined by different thermometers do not
necessarily agree with each other.

The first law is essentially a statement of the conservation of energy, which
explicitly recognizes that a change in the internal energy of a system can result
equally from a flow of heat or from the performance of an equivalent amount of
work. In a rudimentary way, we can distinguish a higher temperature from a lower
one by agreeing, say, that the temperature of a system increases if heat flows into
it and no work is done in the process.

The second law has been formulated in many different ways. The simplest,
due in slightly different forms to Clausius and Kelvin, asserts that no process
is possible whose only effect is the transfer of heat from a colder body to a
hotter one. On the face of it, this is a purely qualitative statement, and it is
quite remarkable that two precise, quantitative results follow from it. These are
derived in every self-respecting textbook on thermodynamics. The first is that
we can define an absolute thermodynamic scale of temperature. This scale is
independent, in principle, of the properties of any specific system, but it coincides
with the ideal gas scale, which is defined by the equation of state pV = NkBT
of an ideal gas (which holds for real gases in the limit that they become infinitely
dilute). For an ideal gas, temperature is just a measure of the average kinetic
energy of its molecules, and the value of kB simply converts units of energy to
the conventional units of temperature. The second result is that every equilibrium
state of a system can be assigned an entropy S, in such a way that, if an amount
of heat �Q flows into the system at a fixed temperature T , the change in entropy
is �S = �Q/T . This actually defines the difference in entropy between any two
equilibrium states, but not its absolute value.

Combining the first and second laws, we obtain the fundamental equation of
the thermodynamics of fluids

dU = T dS − pdV (10.29)

which expresses any change in internal energy as the sum of heat flow into the
system and work done on it. In thermodynamic terms, this serves to define the
pressure p. Because of this equation, the internal energy is naturally expressed
as a function of the two quantities S and V , U = U(S, V ). This means
that the partial derivatives (∂U/∂S)V and (∂U/∂V )S have recognizable physical
interpretations as T and −p respectively. While it is perfectly possible to write
U as a function of, say, T and p, its partial derivatives with respect to these
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variables have no simple significance. If we wish to consider the possibility of
particles entering or leaving the system, we extend (10.29) to read

dU = T dS − pdV + µdN (10.30)

where µ is the increase in internal energy due to the addition of a particle when
no heat flow or performance of work accompanies the change. This provides the
thermodynamic definition of the chemical potential.

The last two equations exemplify a general feature of thermodynamics,
namely that a system can be characterized by a thermodynamic potential.
This is a function of several macroscopic variables, which together specify
the macroscopic state of the system, whose partial derivatives produce other
quantities of physical interest. Several different functions may be used as
potentials, and the criterion for a specific choice is that its natural independent
variables should be quantities over which we exert experimental control. In
statistical mechanics, we consider various idealized experimental situations in
which systems are constrained in different ways and, as we have seen, these lead
to different statistical ensembles. For a closed isoenergetic system, described
by the microcanonical ensemble, the energy E (which for the moment I shall
consider as identical to U ), volume V and particle number N are all fixed and
we need a potential for which these are the natural independent variables. By
rearranging (10.30), we find

dS = (1/T )dE + (p/T )dV − (µ/T )dN (10.31)

which shows that the entropy S(E, V , N) is a suitable choice.
For a closed, isothermal system, described by the canonical ensemble, the

variables are T , V and N . The appropriate potential is the Helmholtz free energy
F = U − T S. Using d(T S) = T dS + SdT , we get

dF = −SdT − pdV + µdN (10.32)

so indeed F is naturally expressed as F(T, V , N). It is important to notice that
we have done more than subtract T S from U . In (10.30), it is implied that both
U and its partial derivatives T , p and µ are regarded as functions of S, V and N .
In (10.32), it is similarly implied that F , S, p and µ are functions of T , V and N .
This demands that we re-express S as a function of these variables by solving the
equation

T =
(

∂

∂S
U(S, V , N)

)
V ,N

(10.33)

for S. The whole process is a Legendre transformation, quite analogous to the
passage from a Lagrangian to a Hamiltonian description of a classical dynamical
system that we discussed in §3.3.

For an open isothermal system, described by the grand canonical ensemble,
the independent variables are T , V and µ. By another Legendre transformation,
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we identify the appropriate potential as

�(T, V , µ) = F − µN = U − T S − µN (10.34)

which is called the grand potential. The following argument allows us to relate
the grand potential more directly to observable macroscopic quantities. We return
to the entropy S(E, V , N) and observe that all four of the variables S, E , V
and N are extensive. That is to say, they are all proportional to the total size of
the system. If we increase the total size by a factor λ, so that it contains λN
particles in a volume λV and these particles have a total energy λE , then we
see intuitively that any small part of the enlarged system should look exactly the
same as a similar small part of the original system. (This intuition might fail us
in some circumstances. If, for example, there are interparticle forces whose range
is comparable with the size of the whole system, then the state of some small part
might depend on the total size. Here, I am ignoring such possibilities.) An amount
of heat �Q flowing into the original system should have the same effect on any
small part as an amount λ�Q flowing into the enlarged system, so the enlarged
system has entropy λS. The entropy must therefore be a homogeneous function,
in the sense that

S(λE, λV , λN) = λS(E, V , N). (10.35)

Let us differentiate this equation with respect to λ and then set λ = 1. We find

E
∂S

∂E
+ V

∂S

∂V
+ N

∂S

∂N
= S. (10.36)

The various partial derivatives can be identified from (10.31) and we discover the
relation (still taking E to be equivalent to U )

T S = U + pV − µN (10.37)

which implies that �(T, V , µ) = −V p(T, V , µ). Readers should not find it hard
to see that p, T and µ are intensive variables, being independent of the total size
of the system, and that p therefore cannot depend on V independently of T and
µ. (For example, in the ideal-gas equation of state, p = (N/V )kBT , the values
of T and µ determine the number of particles per unit volume N/V , as can be
seen from (10.28).) We can thus write the grand potential as

�(T, V , µ) = −V p(T, µ). (10.38)

These three potentials can be identified in terms of the statistical partition
functions %(E, V , N), Zcan(β, V , N) and Zgr(β, V , µ). To do this safely,
however, it is necessary to consider the thermodynamic limit in which N and
V are taken to infinity, with the number of particles per unit volume N/V held
fixed. The reason for this is that, in thermodynamics, it is assumed that the
quantities U , T , µ and N all have definite values. In statistical mechanics this
is not true. In an isothermal system, for example, the temperature is fixed by
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an infinite heat bath, but the energy fluctuates and U can be identified only
as an average energy. In an isoenergetic system, by contrast, the energy E is
fixed. Because the interpretation of the variables varies from one ensemble to
another, the entropy, Helmholtz free energy and grand potential obtained from
the appropriate ensembles will not be related by the thermodynamic Legendre
transformations unless the effect of fluctuations is negligible. I said earlier that
relative fluctuations are expected to be proportional to N−1/2, and readers are
encouraged to investigate this in exercise 10.3. If so, then we can expect to obtain
a unique correspondence between statistical mechanics and thermodynamics in
the thermodynamic limit. Experimentally, we deal with systems of finite size, but
typical numbers of particles are of the order of Avogadro’s number 6.02 × 1023

which is, to a fair approximation, infinite!
Let us start with the grand canonical ensemble and define

�gr(T, V , µ) = −kBT ln Zgr(β, V , µ). (10.39)

We would like to identify this as the grand canonical version of the
thermodynamic potential �(T, V , µ). If we can identify its partial derivatives
with respect to T , V and µ as −S, −p and −βN respectively, then the two
functions can differ only by an additive constant, which can be determined by
direct calculation if necessary. It follows from (10.28) that the µ derivative is
−β N̄ , and in the thermodynamic limit we identify the mean number of particles
N̄ with the thermodynamic variable N . For the T derivative, we can use (10.17),
(10.27) and (10.28) to find

∂�gr

∂T
= − 1

kBT 2

∂�gr

∂β
= 1

T

[
�gr +

(
∂ ln Zgr

∂β

)
βµ

+ µ

(
∂ ln Zgr

∂(βµ)

)
β

]

= 1

T
(�gr − U + µN̄). (10.40)

We do not have a definition of entropy within the grand canonical ensemble,
but we can argue self-consistently that if, indeed, (10.39) is the correct grand-
canonical version of � then, according to (10.34), the appropriate definition
must be Sgr = −T −1(�gr − U + µN̄), in which case we have shown that
∂�gr/∂T = −Sgr, as required. Similarly, we have no grand-canonical definition
of the pressure, so we must resort to defining pgr = −∂�gr/∂V . We can check
that this is, at least, sensible in the case of an ideal gas, by using (10.26) and
(10.28) to recover the equation of state pgr = N̄kBT/V .

Readers may like to develop similar arguments to show that, for the canonical
ensemble,

Fcan(T, V , N) = −kBT ln Zcan(β, V , N) (10.41)

and for the microcanonical ensemble

Smico(E, V , N) = kB ln

(
%(E, V , N)

h3N N !
)
. (10.42)
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I shall follow the alternative course of showing that, in the thermodynamic
limit, these functions are obtained from (10.39) by the thermodynamic Legendre
transformations. Consider equation (10.25). In the thermodynamic limit, we
expect fluctuations in N to be small relative to N̄ , so only those terms in the
sum for which N ≈ N̄ should make significant contributions. We can therefore
make the estimate

Zgr(β, V , µ) = K eβµN̄ Zcan(β, V , N̄) (10.43)

where K represents the number of important terms. We now use (10.39) and
(10.41) to write

�gr

N̄
= Fcan

N̄
− µ − ln K

N̄
. (10.44)

In the thermodynamic limit, we expect the potentials to be extensive, in the sense
I explained earlier on. The quantity K is not precisely defined, but it should
depend only weakly on N . In the thermodynamic limit, therefore, the last term
in (10.44) vanishes and the remaining equation coincides with (10.34). Both
potentials can now be obtained from either ensemble with the same result, so we
have a unique correspondence with thermodynamics and the ensemble subscripts
can be dropped.

A relation between the canonical and microcanonical ensembles can be
derived in a similar manner. Using (10.7) and (10.14), we can write

Zcan(β, V , N) = 1

h3N N !
∫

dE
∫

d6N X e−βEδ[E − HN (X)]

= 1

h3N N !
∫

dE e−βE%(E, V , N). (10.45)

Then, treating fluctuations in energy in the same way as those in the number
of particles, and using the definitions (10.41) and (10.42) of the canonical and
microcanonical potentials, we recover the thermodynamic relation F = U − T S.
In this way, we see that all three statistical ensembles become equivalent in the
thermodynamic limit and their partition functions can be uniquely identified in
terms of thermodynamic potentials. Mathematically, it is interesting to note
that the Legendre transforms which relate these potentials correspond to Laplace
transforms which relate the partition functions. The arguments I used to derive
these relations are, of course, by no means rigorous. In principle, assumptions
such as the extensivity of the potentials should be checked for each system to
which the theory is applied. Indeed, it is possible to invent theoretical models for
which the arguments do not work. For example, as suggested by earlier remarks,
the thermodynamic limit may not exist when there are long-range forces. As far as
I know, the arguments are sound for all systems of physical interest. Readers may
like to check for themselves that everything goes through smoothly for the ideal
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gas. They should find that the entropy is given by the Sackur–Tetrode equation

S

N
= kB

{
5

2
+ ln

[
V

N

(
2πmkBT

h2

)3/2
]}

. (10.46)

Factors of N ! should be treated using Stirling’s approximation

ln(N !) = N ln(N) − N + 1
2 ln(2π N) + . . . (10.47)

valid for large N .

10.5 Quantum Statistical Mechanics

When dealing with a large quantum-mechanical system, we need to estimate the
expectation values of operators in states that we are unable to specify exactly
at a microscopic level. We therefore have to take two averages, one over the
uncertainties inherent in a definite quantum state and one to take account of
our ignorance of what the state actually is. For the time being, I shall work in
the Schrödinger picture. Suppose we have a complete orthonormal set of states
|ψn(t)〉 for which

〈ψm (t)|ψn(t)〉 = δmn and
∑

n

|ψn(t)〉〈ψn(t)| = Î. (10.48)

For simplicity, I am assuming that these states can be labelled by a discrete index
n; there will be no difficulty in converting the sums into integrals where necessary.
Suppose further that we can specify for each state the probability Pn of finding the
system in that state. As long as the system is left undisturbed, Pn does not change
with time. Using (10.48), we can write the expectation value of an observable A
at time t as

Ā(t) =
∑

n

〈ψn(t)| Â|ψn(t)〉Pn =
∑
m,n

〈ψm(t)| Â|ψn(t)〉Pn〈ψn(t)|ψm(t)〉.
(10.49)

The object
ρ̂(t) =

∑
n

|ψn(t)〉Pn〈ψn(t)| (10.50)

can be regarded as an operator, called the density operator, which acts on a bra or
ket vector to produce another:

〈�|ρ̂ =
∑

n

[〈�|ψn(t)〉Pn ] 〈ψn(t)| or ρ̂|�〉 =
∑

n

|ψn(t)〉 [Pn〈ψn(t)|�〉] .
(10.51)

The expectation value (10.49) is the sum of diagonal matrix elements of Â ρ̂,
which is the trace of Â ρ̂:

Ā(t) =
∑

m

〈ψm (t)| Â ρ̂|ψm(t)〉 = Tr[ Â ρ̂ ]. (10.52)
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It is readily verified that
Tr[ρ̂ Â] = Tr[ Â ρ̂ ] (10.53)

and, on account of the normalization of probabilities, that

Tr[ρ̂ ] =
∑

n

Pn = 1. (10.54)

The density operator behaves rather differently from the operators that
represent observable quantities. Because it is constructed from state vectors that
represent possible histories of the system, it is time-dependent in the Schrödinger
picture and time-independent in the Heisenberg picture. In the Schrödinger
picture, we can use the Schrödinger equation (5.32) with (5.33) to obtain the
equation of motion

d

dt
ρ̂(t) = i

~
[ρ̂(t), Ĥ ] (10.55)

which is the quantum-mechanical version of the Liouville equation (10.4). It
differs by a minus sign from the equation of motion (5.36) for time-dependent
operators that represent observables in the Heisenberg picture.

The arguments we used to derive the ensembles of classical statistical
mechanics can be taken over to the quantum theory. To describe thermal
equilibrium, we want the density operator to be time independent in the
Schrödinger picture. According to (10.55), it must therefore be constructed from
operators which commute with the Hamiltonian, including the Hamiltonian itself.
For a system of N particles confined to a volume V , we obtain the canonical
density operator as

ρ̂can = Z−1
can exp(−β ĤN ) (10.56)

where the partition function is given by

Zcan(β, V , N) = Tr
[
exp(−β ĤN )

]
. (10.57)

No factor of h−3N is required because this expression is already dimensionless,
and no factor of 1/N !, because the indistinguishability of identical particles is
taken into account in the definition of the quantum states. The grand partition
function may be defined by analogy with (10.25) as

Zgr(β, V , µ) =
∑

N

exp(βµN)Zcan(β, V , N). (10.58)

Alternatively, we can resort to second quantization and define the grand-canonical
density operator and partition function by

ρ̂gr = Z−1
gr exp[−β(Ĥ − µN̂)] (10.59)

Zgr(β, V , µ) = Tr
{

exp[−β(Ĥ − µN̂)]
}
. (10.60)
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Here, of course, the trace includes states with any number of particles. When
the number of particles is not conserved, it makes no sense to speak of a fixed
number. Moreover, the particle number operator N̂ does not commute with
the Hamiltonian (in fact, it may not even be well defined) and cannot appear
in the equilibrium density operator. In that case, we must use (10.59) and
(10.60) with µ = 0. It is a matter of taste whether this is regarded as a grand-
canonical description of a system of particles or, on the other hand, as a canonical
description of the underlying system of quantum fields.

Quantum-mechanical ideal gases are most conveniently treated in the grand
canonical ensemble. Since the particles do not interact, eigenstates of the operator
Ĥ −µN̂ can be built from single-particle energy eigenstates. If we consider a gas
confined to a cubical box of side L, the single-particle momentum eigenstates
have momenta

p = (h/L)i (10.61)

where i is a triplet of integers, each of which can have any positive or negative
value. If the particles have spin s, then for each momentum value, with single-
particle energy εi = p2

i /2m, there are (2s + 1) independent spin polarization
states. We now take the states |ψn〉 to be the basis states of the occupation number
representation, with n iσ particles in the state with momentum labelled by i and
spin polarization σ . The grand partition function is

Zgr =
∑
{n iσ }

exp

−β
∑
i,σ

(εi − µ)n iσ

 =
∏
i,σ

∑
{n iσ }

exp[−β(εi −µ)n iσ ]. (10.62)

For bosons, each n iσ ranges from 0 to ∞, while for fermions it takes only the
values 0 or 1. In either case, all the sums can be carried out (for bosons, the
infinite sum is a geometric series) giving

Zgr =
∏

i

{1 ± exp[−β(εi − µ)]}±(2s+1) (10.63)

where the upper signs refer to fermions and the lower ones to bosons. The average
occupation numbers of single-particle momentum states are easily found:

n̄ i =
∑
σ

n̄ iσ = −∂ ln Zgr

∂(βεi )
= (2s + 1) {exp[β(εi − µ)] ± 1}−1 . (10.64)

Under all circumstances of practical interest, sums over momentum states
can be replaced with integrals, and (10.61) leads to the replacement

∑
i →

(V/h3)
∫

d3 p, where V = L3 is the volume. The energy becomes ε = p2/2m
and, since this depends only on the magnitude of p, the angular integrals over the
direction of p can be carried out. After defining x = (β/2m)1/2| p|, we find for
the logarithm of the partition function

ln Zgr = ±4πV (2s + 1)

(
2m

βh2

)3/2 ∫ ∞

0
dx x2 ln(1 ± ze−x2

) (10.65)
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and for the average number of particles per unit volume

N̄

V
= 4π(2s + 1)

(
2m

βh2

)3/2

z
∫ ∞

0
dx x2e−x2

(1 ± ze−x2
)−1 (10.66)

where z is the fugacity (10.24). At low temperatures, quantum ideal gases behave
very differently from classical ones. I shall discuss some of the low-temperature
properties of bosons in the next chapter. The case of fermions, which I shall not
discuss, is particularly important when applied to the gas of electrons in a metal
and is dealt with extensively in most textbooks on solid state physics. At high
temperatures, on the other hand, quantum gases differ very little from classical
ones. From (10.66), we see that if β becomes very small with N̄/V fixed, then
the fugacity z must also become small. In that case, (10.65) can be approximated
as

ln Zgr ≈ 4πV (2s + 1)

(
2m

βh2

)3/2

z
∫ ∞

0
dx x2e−x2 = (2s + 1)zV

(
2πm

βh2

)3/2

.

(10.67)
This agrees exactly with (10.26), apart from the spin multiplicity factor (2s + 1).
For spin-0 particles, which can be compared most directly with their classical
counterparts, this factor is 1. For particles with higher spin, the familiar relations
U = 3NkBT/2 and pV = NkBT are unaffected.

10.6 Field Theories at Finite Temperature

Although we have found it possible to treat ideal gases without any detailed
use of second quantization, field-theoretic methods are more or less essential
for the systematic study of large systems of interacting particles. We have seen,
moreover, that relativistic particles can be correctly described only by a quantum
field theory. It is therefore necessary to find methods of evaluating quantities
such as (10.52) or (10.60) when Ĥ and N̂ are second-quantized operators. A
useful technique comes about from realizing that each of the matrix elements in
the trace in (10.60) is analogous to the one we evaluated in (9.28), if we replace
Ĥ with Ĥ −µN̂ and tf − ti with −iβ. This leads to the imaginary-time formalism,
in which the diagrammatic perturbation theory we discussed in chapter 9 can be
taken over more or less intact, simply by replacing real time t with an imaginary
time τ = it . This imaginary time takes values between 0 and β. Here, I shall
discuss only the case of a relativistic scalar field φ, but other relativistic and non-
relativistic field theories can be treated by similar methods.

Since we are considering a many-particle system in thermal equilibrium, its
rest frame is a preferred frame of reference. Therefore, even in a relativistic
theory, there is a preferred measure of time, namely that measured in the
rest frame, which provides a natural means of distinguishing Heisenberg and
Schrödinger pictures. For simplicity, I shall take the chemical potential to be zero.
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If φ̂(x) is the Schrödinger-picture field operator, then we define the imaginary-
time Heisenberg picture by

φ̂(x, τ ) = eĤτ φ̂(x)e−Ĥτ and φ̂†(x, τ ) = eĤτ φ̂†(x)e−Ĥτ . (10.68)

It should be noticed that φ̂†(x, τ ) is not the adjoint of φ̂(x, τ ) in the usual sense.
By analogy with (9.14), we define an imaginary-time propagator by

G(x − x ′, τ − τ ′) = Tr
[
ρ̂ Tτ [φ̂(x, τ )φ̂†(x ′, τ ′)]

]
(10.69)

where Tτ is the latest-on-the-left ordering operator for imaginary times. This
propagator will indeed depend only on x − x ′ if the equilibrium state is
homogeneous, as intuitively it must be. By using the identity Tr( Â B̂) = Tr(B̂ Â),
valid for any Â and B̂ , it is easy to show that it also depends only on τ − τ ′.

The same identity may be used to derive a vital property of the propagator,
namely that it is periodic in τ − τ ′, with period β. That is

G(x − x ′, τ − τ ′ + β) = G(x − x ′, τ − τ ′). (10.70)

Since τ and τ ′ both lie between 0 and β, their difference lies between −β and β,
so (10.70) is meaningful only when τ < τ ′. On the other hand, τ + β must be
greater than τ ′, so we have

G(x − x ′, τ − τ ′ + β)

= Z−1
gr Tr

[
e−β Ĥ e(τ+β)Ĥ φ̂(x)e−(τ+β)Ĥ eτ

′ Ĥ φ̂†(x ′)e−τ ′ Ĥ
]

= Z−1
gr Tr

[
eτ Ĥ φ̂(x)e−τ Ĥ e−β Ĥ eτ

′ Ĥ φ̂†(x ′)e−τ ′ Ĥ
]

= Z−1
gr Tr

[
e−β Ĥ eτ

′ Ĥ φ̂†(x ′)e−τ ′ Ĥ eτ Ĥ φ̂(x)e−τ Ĥ
]
. (10.71)

For τ < τ ′, this is indeed equal to G(x−x ′, τ−τ ′). For τ > τ ′, the corresponding
relation

G(x − x ′, τ − τ ′ − β) = G(x − x ′, τ − τ ′) (10.72)

can be established in the same way. In the case of fermions, the propagator is
antiperiodic, which means that

S(x − x ′, τ − τ ′ ± β) = −S(x − x ′, τ − τ ′). (10.73)

The expectation value of any operator constructed from the fields can, in
principle, be calculated from the propagator or from other imaginary-time Green
functions. For example, to obtain the expectation value of φ̂†(x)φ̂(x), we would
use

〈φ̂†(x)φ̂(x)〉 = Tr
[
ρ̂ φ̂†(x)φ̂(x)

]
= lim

ε→0
Tr
[
ρ̂ Tτ [φ̂(x, τ )φ̂†(x, τ + ε)]

]
= lim

ε→0
G(0,−ε). (10.74)
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The Green functions in turn can be represented by functional integrals similar to
(9.32), except that these must be converted to imaginary time. The result, derived
by a method similar to that of §9.3, is

Tr
[
ρ̂ Tτ [φ̂(x1) · · · φ̂†(xn)]

]
= Z−1

gr

∫
Dφ(x) φ(x1) · · ·φ∗(xn) exp[−Sβ(φ)]

(10.75)

where φ(x) means φ(x, τ ) and the symbol Dφ(x) includes a normalizing factor
to make (10.54) true. The finite-temperature action Sβ is found by replacing t
with −iτ . For the self-interacting scalar field we studied in chapter 9, it is given
by

Sβ(φ) =
∫ β

0
dτ
∫

d3x

[
∂φ∗

∂τ

∂φ

∂τ
+ ∇φ∗ · ∇φ + m2φ∗φ + λ

4
(φ∗φ)2

]
.

(10.76)
Proceeding as in chapter 9, we can find the equation analogous to (9.37) satisfied
by the unperturbed propagator G0(x − x ′, τ − τ ′), namely(

∂2

∂τ 2
+ ∇2 − m2

)
G0(x − x ′, τ − τ ′) = −δ(τ − τ ′)δ(x − x ′). (10.77)

Because of the periodicity in imaginary time, we express this propagator in terms
of a Fourier transform as

G0(x − x ′, τ − τ ′)

=
∫

d3k

(2π)3
exp[ik · (x − x ′)]β−1

∞∑
n=−∞

exp[iωn(τ − τ ′)]G̃0(k, n)

(10.78)

where ωn = 2πn/β. The frequencies ωn are known as Matsubara frequencies.
On substituting in (10.77), we find

G̃0(k, n) =
(

k2 + ω2
n + m2

)−1
. (10.79)

To see how the finite-temperature field theory fits in with our earlier
discussion of quantum gases, let us evaluate ln Zgr for the case of an ideal
relativistic gas, with λ = 0. The partition function provides the normalizing
factor in (10.75), and since Tr[ρ̂] = 1, it is clearly given by

Zgr =
∫
Dφ(x) exp[−Sβ(φ)]. (10.80)
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This, however, is slightly ambiguous because of an ill-defined constant that
appears in the definition of the functional integral (see (9.28), for example). To
avoid this difficulty, we can calculate the quantity −∂ ln Zgr/∂m2 which, as we
see from (10.76), is given by

−∂ ln Zgr

∂m2
=
∫ β

0
dτ
∫

d3x 〈φ∗(x, τ )φ(x, τ )〉 =
∫ β

0
dτ
∫

d3x G0(0, 0).

(10.81)
Since G0(0, 0) is independent of x and τ , the two integrals just give a factor of
βV . To evaluate G0(0, 0), we use the identity

∞∑
n=−∞

1

n2 + a2
= π

a

(
eπa + e−πa

eπa − e−πa

)
= π

a
coth(πa) (10.82)

which readers are invited to prove in exercise 10.7. We obtain

−∂ ln Zgr

∂m2 = V
∫

d3k

(2π)3

β

2ω(k)
coth( 1

2βω(k))

= ∂

∂m2

[
2V

∫
d3k

(2π)3
ln
(

eβω(k)/2 − e−βω(k)/2
)]

. (10.83)

Up to a possible constant of integration, this gives

− ln Zgr = 2V
1

2π2β3

∫ ∞

0
dx x2 ln

[
1 − exp[−(x2 + β2m2)1/2]

]
+ βV

∫
d3k

(2π)3
ω(k). (10.84)

Remembering that the internal energy is U = −∂ ln Zgr/∂β, we recognize the last
term as the infinite vacuum energy encountered in (7.21), as long as we identify
(2π)3δ(0) = ∫

d3x = V . The first term, in which x = β|k|, is obviously
similar to (10.65) with z = 1. The field theory describes particles of spin s = 0,
and the overall factor of 2 represents the two equal contributions from particles
and antiparticles. Other differences arise from the relativistic energy relation
ω(k) = (k2 + m2)1/2 and the use of natural units, in which h = 2π . The non-
relativistic limit of (10.84) is explored in exercise 10.8.

10.7 Black Body Radiation

Black-body radiation is most simply conceived of as an ideal gas of photons
in thermal equilibrium with the walls of a cavity that contains it. According
to quantum electrodynamics, photons can scatter from each other by way
of intermediate states containing virtual charged particles. Under almost all
circumstances, however, this interaction is entirely negligible. Because photons
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are massless, there is no lower limit to the energy change involved in the emission
or absorption of a photon by the cavity walls. There is therefore no constraint
on the total number of photons in the gas and its chemical potential is zero. It
is possible to derive the partition function from QED, but problems are again
encountered with redundant gauge degrees of freedom. In particular, the treatment
of the component A0 of the vector potential in the imaginary-time formalism
needs careful consideration. I shall not discuss these questions in detail. It should
come as no surprise, though, that we obtain the correct result simply by setting
m = 0 in (10.84). Since photons are their own antiparticles, the overall factor of
2 arises in this case from the two independent spin polarization states.

At very high temperatures, such as we shall later encounter in connection
with the early universe, a modified version of black-body radiation arises, in
which any particle species whose mass is much smaller than kBT can be
considered effectively massless and treated on the same footing as photons.
As long as an ideal-gas description remains appropriate, we simply add the
contributions to ln Zgr from each species. If we drop the unobservable vacuum
energy, then, for each bosonic species, the contribution is

− ln Zgr = gbV
1

2π2β3 Ib (10.85)

where gb is the number of independent spin polarization states of particles and
antiparticles and

Ib =
∫ ∞

0
dx x2 ln(1 − e−x) = −π4

45
. (10.86)

For fermions, this integral is modified in the same way as that in (10.65). It is
given by

If = −
∫ ∞

0
dx x2 ln(1 + e−x ) = 7

8 Ib. (10.87)

In view of this relation (which is readily verified by showing that Ib − If = Ib/8),
we can treat the gas as a whole by defining

g =
∑

boson species

gb + 7
8

∑
fermion species

gf. (10.88)

To return to laboratory units, we must divide ln Zgr by (~c)3 to make it
dimensionless. We then have

� = −kBT ln Zgr = −V
2gσ

3c
T 4 (10.89)

where

σ = π2kB
4

60~3c2
= 5.6698 × 10−8 W m−2K−4 (10.90)
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is the Stefan–Boltzmann constant. It is a simple matter to derive the following
expressions for the energy and entropy densities and the pressure:

U

V
= − 1

V

∂ ln Zgr

∂β
= 2gσ

c
T 4 (10.91)

S

V
= − 1

V

∂�

∂T
= 8gσ

3c
T 3 (10.92)

p = − ∂�

∂V
= 2gσ

3c
T 4 = 1

3

U

V
. (10.93)

10.8 The Classical Lattice Gas

Our explicit examples have so far been restricted to ideal gases, because the
approximation methods needed to treat non-ideal gases and liquids require quite
lengthy development, for which there is no space in this book. I shall, however,
describe a straightforward, if somewhat crude, approximation to a non-ideal
classical gas, which is of some importance in the theory of phase transitions.
This is the lattice gas. We consider a gas whose molecules interact through a pair
potential W (r), so the Hamiltonian for N molecules is

HN =
N∑

i=1

1

2m
p2

i + 1

2

N∑
i, j=1

W (|xi − x j |). (10.94)

Inserting this into (10.14), we find that the momentum integrals can be carried
out, so the canonical partition function is

Zcan(β, V , N) =
(

2πm

βh2

)3N/2 1

N !
∫

d3N x exp

− 1
2β

N∑
i, j=1

W (|xi − x j |)
 .

(10.95)
The remaining integral is a sum over all instantaneous configurations of the
positions of the molecules, and there is some advantage to re-expressing this sum
in the following approximate manner. Real molecules exhibit a strong repulsion
at short distances, so it makes sense to divide the total volume occupied by the gas
into a large number of cells, each having a volume v comparable with the volume
of a single molecule, and to suppose that there can be at most one molecule in
any one cell. The mid-points of the cells will usually be taken to form a regular
lattice in space. To the i th cell, we assign an occupation number ni , which is 1
for an occupied cell or 0 for an empty one; the sum of the ni for all the cells is
the total number of molecules N . We now take the potential energy of a pair of
molecules to depend only upon the cells occupied by the molecules, but not on
their precise location within the cells, which will be a reasonable approximation
for potentials that vary little over the size of a cell. For a given set of N occupied
cells, the integral in (10.95) now gives vN for each of the N ! distributions of N
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molecules in the N cells. By summing over all possible sets of N occupied cells,
we obtain

Zcan(β, V , N) =
(

2πm

βh2

)3N/2

vN
∑
{ni }

(N) exp

− 1
2β
∑
i, j

Wi j ni n j

 (10.96)

where i and j now label all the cells in the lattice and Wij is the potential between
particles in cells i and j when these cells are occupied. The configuration sum is
over all sets of values ni = 0, 1 consistent with their sum being equal to N .

For reasons I shall explain below, it is convenient to write ni = 1
2 (1 + si ),

where the new variables si take the values ±1. Also, if interactions are appreciable
only over distances much shorter than the size of the whole system, then we can
write ∑

j

Wi j =
∑

j

W j i = W0 (10.97)

where W0 is independent of the location of cell i . This will be true except for
cells close to the boundaries of the system. In the thermodynamic limit, these
boundary cells will be insignificant, because their number grows with the volume
only as V 2/3, while the number of interior cells is proportional to V . We now use
(10.25) to construct the grand canonical partition function. It is

Zgr(β, V , µ) = N
∑
{si }

exp

 1
2βµ̄

∑
i

si − 1
8β
∑
i, j

Wi j si s j

 (10.98)

where the modified chemical potential is given by

βµ̄ = βµ + ln

[(
2πm

βh2

)3/2

v

]
− 1

2βW0 (10.99)

and the factorN , which is independent of the si , is

N = exp

[
−
(
βV

2v

)
(µ̄ + 1

4 W0)

]
. (10.100)

The special value of this result is that, apart from the factor N , it has the
same form as the partition function of a well-known model for ferromagnetism,
the Ising model, which we shall encounter in the next chapter. In that model,
the variables si represent atomic spins (or magnetic dipole moments) situated at
the sites of a crystal lattice. That this analogy between a ferromagnet and an
imperfect gas can be made is, as we shall see, both theoretically important and
experimentally well verified.
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10.9 Analogies Between Field Theory and Statistical
Mechanics

Since both quantum mechanics and statistical mechanics require us to calculate
suitably weighted averages of physical quantities, it is not too surprising that
formal analogies can be made between them. Under appropriate circumstances,
however, these analogies can be closer than we might have expected, and it is
interesting to see how they work out. Consider first of all the imaginary-time
action (10.76) for a scalar field theory at finite temperature. In the integrand, the
imaginary time variable appears on an equal footing with the spatial coordinates
so, in effect, φ(x, τ ) lives in a (d + 1)-dimensional Euclidean space, d being the
original number of spatial dimensions, which has a finite extent β in the extra
dimension. The extra dimension is sometimes regarded as having a quantum-
mechanical origin, in the following sense. The Hamiltonian of the scalar field
theory may be written as

Ĥ =
∫

d3x
[
!̂†!̂ + ∇φ̂† · ∇φ̂ + m2φ̂†φ̂ + 1

4λ(φ̂
†φ̂)2

]
(10.101)

and may loosely be compared with (10.94) for a classical gas. In the classical
case, the momenta can be trivially integrated out leaving, as in (10.95), a
configurational integral involving the potential energy part of the Hamiltonian
with its original number of dimensions. By contrast, we could regard (10.76)
as being obtained from (10.101) by again dropping the momentum term, but
now adding an extra spatial dimension. If (10.101) were to be interpreted not
as the Hamiltonian of a quantum field theory, but as a classical Hamiltonian
(with φ being, say, the displacement of a continuous vibrating medium), then
the configurational integral would be weighted with the exponential of −β times
its potential energy part. It would, in other words, be similar to (10.80), but with
a factor β in the exponent instead of the integral over an extra dimension. While
we must obviously be cautious when arguing in this way, it is frequently true that
the properties of a quantum-mechanical system in d dimensions can be related to
those of a (d + 1)-dimensional classical system.

There is clearly also an analogy between the configurational integrals of
classical statistical mechanics and the functional integrals of chapter 9, which
represent purely quantum-mechanical expectation values. If, in a functional
integral such as (9.32), we make the replacement t = −ix4, the weight function
becomes exp(−SE), where the Euclidean action is

SE =
∫

d4x[∇φ∗ · ∇φ + m2φ∗φ + 1
4λ(φ

∗φ)2] (10.102)

the gradient operator ∇ now being the four-dimensional Euclidean one. The
introduction of an imaginary time here has nothing to do with temperature—the
fourth Euclidean dimension being of infinite extent—and is, in fact, equivalent
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to the Wick rotation we used to evaluate Feynman integrals such as (9.76). The
original Lorentz invariance of the action has been replaced by invariance under
rotations in four-dimensional Euclidean space. We see that there is a rough
correspondence between the Euclidean functional integral and the configurational
integrals or sums of classical statistical mechanics, if we make SE correspond to
βW , W being the potential energy.

For a sum like (10.98), this correspondence can be made more precise by a
change of variables known as the Hubbard–Stratonovich transformation. If we
denote by �i j the inverse of the matrix (− 1

4 Wij ), we can prove the identity

exp

 1
2β
∑
i, j

(− 1
4 Wij )si s j

]

= Q
∫ ∞

−∞

∏
i

d#i exp

− 1

2β

∑
i, j

�i j #i# j +
∑

i

#i si


(10.103)

by completing the square on the right-hand side; that is, by making the shift
#i → #i − 1

4β
∑

j Wi j s j . Obviously, Q is the appropriate normalizing factor.
Applying this identity to the partition function (10.98), it becomes easy to carry
out the sums over the si :∑

s=±1

exp
[
( 1

2βµ̄ + #)s
]

= 2 cosh( 1
2βµ̄ + #). (10.104)

Thus, the partition function of the lattice gas becomes

Zgr = Z̄
∫ ∞

−∞

∏
i

d#i exp

− 1

2β

∑
i, j

�i j #i# j +
∑

i

ln cosh( 1
2βµ̄ + #i )


(10.105)

where Z̄ denotes the collection of normalizing factors we have accumulated. This
partition function will be essentially identical to a functional integral if we take
the cells of the lattice, positioned, say, at the points xi , to be tiny compared
with the total size of the system. Let us, indeed, regard the variables #i as the
values of a continuous function #(x) at the points x = xi . Correspondingly,
we would like to convert the sums over lattice sites into integrals, using the
replacement

∑
i → v−1

∫
d3x , but we have the matrix �i j to contend with. This

matrix can be regarded as a function of the distance between two lattice sites, say
�i j = �(|xi − x j |), and under some circumstances it is permissible to expand its
Fourier transform as

�i j =
∫

d3k

(2π)3
eik·(xi−x j )

[
�0 + �1k2 + . . .

]
(10.106)
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keeping only the first two terms. On account of the Fourier representation of the
Dirac δ function, we can rewrite this as

�i j = [
�0 + �1∇i · ∇ j + . . .

]
δ(xi − x j ). (10.107)

In this way, we can approximate (10.105) by the functional integral

Zgr ≈
∫
D#(x) exp [−H(#)] (10.108)

where the effective ‘reduced Hamiltonian’ is

H(#) =
∫

d3x

[(
�1

2βv2

)
∇# · ∇# +

(
�0

2βv2

)
#2 − 1

v
ln cosh

(
1
2βµ̄ + #

)]
.

(10.109)
To derive this form, I have used integrations by parts to make the derivatives in
(10.107) act on # and used the δ function to do one of the space integrals. A final
change of the integration variable

#(x) = − 1
2βµ̄ + (βv2/�1)

1/2φ(x) (10.110)

together with the expansion ln cosh(y) = 1
2 y2 − 1

12 y4 + . . . enables us to write

H ≈
∫

d3x
[

1
2∇φ · ∇φ + 1

2 m2φ2 + 1
4λφ

4 − Jφ
]

(10.111)

where

m2 = (�0 − βv)/�1 λ = β3v3/3�2
1 J = (β�2

0/4�1v
2)1/2µ̄ (10.112)

which is equivalent to the Euclidean action for a relativistic scalar field. (The
factors of 1

2 in the first two terms give the right normalization for a real field,
as shown by exercise 7.1.) The equivalence we have derived is, of course, only
approximate. It will be valid, roughly speaking, when the functions φ(x) that
make the most important contributions to the functional integral are small (so
that higher-order terms in the expansion of ln cosh(y) can be neglected) and
vary slowly with spatial position (so that the higher-order terms in the gradient
expansion (10.107) can be neglected). As will transpire in the next chapter, these
approximations are well justified in the neighbourhood of a critical point, where
the analogy is most useful. It will be noticed that (10.102) and (10.111) involve
different numbers of spatial dimensions and we shall see that this has important
consequences.

Exercises

10.1. Consider a classical one-dimensional harmonic oscillator, with Hamiltonian
H = p2/2m + mω2x2/2. What are the curves of constant energy in its two-
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dimensional phase space? Show that %(E) = 2π/ω. Show that both the long-
time average and the microcanonical average of a function f (x, p) are given by

1

2π

∫ 2π

0
dθ f

(
(2E/mω2)1/2 sin θ, (2m E)1/2 cos θ

)
.

This system is therefore ergodic. By considering the flow of an ensemble of points
on the energy surface, show that it is not mixing.

10.2. Consider a single classical, non-relativistic particle of mass m in a cubical
box of side L, which rebounds elastically each time it collides with a wall.
Suppose that two opposite walls lie in the planes x = 0 and x = L. Show that,
averaged over a long period of time, the momentum per unit time that the particle
exchanges with each of these walls is mv2

x/L. Hence show that the pressure
exerted by a gas of N particles is p = Nm〈v2〉/3L3, where v is the magnitude of
the velocity of any one particle and the average is over all the particles, and verify
the relation p = 2U/3V . Note that this result does not assume any particular
distribution of velocities.

10.3. For an open system, define the fluctuation �N in the number of particles
by (�N)2 = 〈(N − N̄)2〉. Show that (�N)2 = ∂2 ln Zgr/∂(βµ)2. For a classical
ideal gas, show that �N/N̄ = N̄−1/2. In the same way, show that the relative
fluctuations in the internal energy U are proportional to N̄−1/2.

10.4. The partition function for the pressure ensemble (or isobaric ensemble) is

Zpr(β, p, N) =
∫ ∞

0
dV e−βpV Zcan(β, V , N).

Calculate this partition function for a classical ideal gas. Suggest an expression,
in terms of Zpr and its derivatives, for the mean volume of a system maintained
at constant pressure p, and check it by recovering the ideal gas equation of state
in the thermodynamic limit. Show that, in the thermodynamic limit, the quantity
G = −kBT ln Zpr is the Gibbs free energy G = F + pV . Show that the chemical
potential µ is the Gibbs free energy per particle.

10.5. Given any set of objects, mathematicians define an equivalence relation ∼
between any two of them as a relation that has the three properties:

(i) for each object a in the set, a ∼ a (reflexivity);
(ii) if a ∼ b then b ∼ a (symmetry);
(iii) if a ∼ b and b ∼ c, then a ∼ c (transitivity).

Show that these properties allow one to divide the set into equivalence classes
such that all members of any one class are ‘equivalent’ to each other and no two
objects belonging to different classes are ‘equivalent’ to each other.

Consider a set of macroscopic physical systems, and interpret a ∼ b to mean
‘a has the same temperature as b’. How is the zeroth law of thermodynamics
relevant to the possibility of assigning unique temperatures to these systems?
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10.6. Show that the density operator (10.50) is Hermitian and that the trace in
(10.52) does not depend on which complete orthonormal set of states is used to
compute it.

10.7. In the complex z plane, let C be the closed contour which runs from −∞
to +∞ just below the real axis and returns to −∞ just above the real axis. Show
that, for any sufficiently well-behaved function f (z),

lim
ε→0

∮
C

dz
eiεz f (z)

e2π iz − 1
=

∞∑
n=−∞

f (n).

Verify (10.82) by choosing f (z) = (z2 + a2)−1 and deforming the contour in an
appropriate manner.

10.8. Consider the field-theoretic partition function (10.84) in the limit that βm
is very large and ignoring the last (vacuum energy) term. By making the change
of variable x → (2βm)1/2x , show that (10.84) reduces to the non-relativistic
partition function (10.65) for spin-0 particles, with ~ = 1 and a chemical potential
µ = −m.

10.9. Consider a gas of N hydrogen atoms in a container of volume V , at a
temperature high enough for all H2 molecules to be dissociated and some atoms
to be ionized. Using classical, non-relativistic statistical mechanics, work out the
canonical partition function for N−ν indistinguishable atoms, ν indistinguishable
protons and ν indistinguishable electrons. For each ionized atom, include a
potential energy I , equal to the ionization potential. Assume that the masses
of a hydrogen atom and a proton are equal. By finding the most probable value of
ν, show that the fraction x = ν/N of ionized atoms is given by the Saha equation

x2

1 − x
= 1

n

(
2πm

βh2

)3/2

e−β I

where m is the electron mass and n = N/V . Note that this result depends on h,
which is an arbitrary parameter in the classical theory. Why is this? Why would
you expect to obtain the correct answer by taking h to be Planck’s constant?

10.10. From equations (10.88) and (10.91)–(10.93), it might appear that a fermion
simply counts as 7

8 of a boson as far as black-body radiation is concerned, but this
is not so. By direct calculation or informal arguments, convince yourself that the
number density of species i is given by

N

V
= gi

2π2β3

∫ ∞

0
dx x2(ex ± 1)−1.

Show that the fermionic integral is 3
4 of the bosonic one. The value of the bosonic

integral is 2ζ(3), where ζ is the Riemann zeta function.



Chapter 11

Phase Transitions

Among the many applications of statistical mechanics, some of the most
intriguing and challenging theoretical problems arise in connection with phase
transitions. These are abrupt changes of state such as occur, for example, when
a liquid is transformed into a vapour, a ferromagnet loses its magnetization upon
heating to its Curie temperature, or at the onset at sufficiently low temperatures of
superfluidity or superconductivity. It is within the theory of phase transitions, too,
that the mathematical relationships between statistical mechanics and relativistic
field theories are most powerful. Indeed, the idea of spontaneous symmetry
breaking, which lies at the heart of the theory of phase transitions, is the crucial
ingredient that turns the gauge theories of chapter 8 into a real working model of
the fundamental forces of nature, to be discussed in the next chapter.

It is not possible in the space of a single chapter to cover adequately the
wide and diverse range of phenomena that theoretical and experimental ingenuity
have uncovered. I shall therefore discuss only a few standard examples and the
key theoretical arguments that have been devised to deal with them. In almost
all cases, phase transitions can occur only by virtue of interactions between
particles. This, indeed, is what gives rise to the greatest theoretical challenges.
The one exception to this rule is the case of Bose–Einstein condensation in an
ideal Bose gas, which I shall discuss first. The greater part of the chapter will
deal with the gas–liquid and ferromagnetic transitions, which illustrate most of
the essential theory, and I shall end by describing the Ginzburg–Landau theory of
superconductivity, which provides the closest analogy with the gauge theories of
particle physics.

11.1 Bose–Einstein Condensation

Consider an ideal gas of spin-0 particles. According to (10.64), the average
number of particles in the i th momentum state, with momentum given by (10.61)
is

ni = z[exp(βεi ) − z]−1. (11.1)

266
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For a given number of particles per unit volume, the fugacity z is determined
implicitly in terms of N̄/V and temperature by an equation of the form (10.66).
By its definition (10.24), z is positive. On the other hand, since the occupation
numbers (11.1) cannot be negative, z cannot be greater than exp(βε0), where
ε0 is the smallest single-particle energy. For a large volume, we can take this
energy to be zero, so 0 < z < 1, which means that the chemical potential
µ must be negative. The interesting question is, what happens as z approaches
1? We see from (11.1) that the occupation number of the zero-energy state can
become indefinitely large. In fact, the growth of this number is limited by the
total number of particles available, but it can be a significant fraction of the total
number. This phenomenon, known as Bose–Einstein condensation, is the basic
cause of superfluidity and superconductivity.

When the zero-energy state is macroscopically occupied, we have to
reconsider equations such as (10.65) and (10.66), where we replaced a sum over
momentum states with an integral. This is normally valid because the momentum
eigenvalues are very closely spaced, but it assumes that the fraction of particles
with momentum in the infinitesimal range d3 p is infinitesimal. When there is
condensation, this will not be true for the element d3 p which includes the zero-
energy state. In fact, the integrals in (10.65) and (10.66) do assign only an
infinitesimal fraction of the particles to this element, so we can correct them
simply by adding on the contributions of the condensed particles. For the grand
potential and particle number per unit volume, we obtain

�

V
= 1

βV
ln(1 − z) + 4πβ−5/2

(
2m

h2

)3/2 ∫ ∞

0
dx x2 ln(1 − ze−x2

) (11.2)

N̄

V
= n̄0

V
+ 4π

(
2m

βh2

)3/2

z
∫ ∞

0
dx x2e−x2

(1 − ze−x2
)−1 (11.3)

where n̄0 is the average number of condensed particles. These equations are to
be understood as applying to the thermodynamic limit. When V → ∞, the
condensation terms go to zero, unless z is infinitesimally close to 1 and the number
of condensed particles per unit volume is finite.

The conditions under which the condensation occurs can be investigated as
follows. Suppose first that condensation does occur. Then z is infinitesimally
close to 1. The second term in (11.3) is proportional to the integral

4π−1/2
∫ ∞

0
dx x2(ex2 − 1)−1 = ζ( 3

2 ) = 2.612 . . . (11.4)

where ζ is the Riemann zeta function, and we have

N̄

V
= n̄0

V
+ 2.612

(
2πmkB

h2

)3/2

T 3/2. (11.5)

For a given number density, there is a critical temperature Tc at which the number
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of condensed particles just vanishes:

Tc = h2

2πmkB

(
N̄

2.612 V

)2/3

. (11.6)

At temperatures lower than this, n̄0 is a non-zero fraction of N̄ . At higher
temperatures, on the other hand, (11.5) cannot be true, because n̄0 cannot be
negative. For T > Tc, therefore, the assumption that n̄0 is macroscopically large
is not self-consistent; we must have n̄0/V → 0 in the thermodynamic limit and z
must be smaller than 1.

In the condensed phase (that is, the low-temperature state in which
condensation occurs), it is easy to see that the fraction of particles in the
condensate is

n̄0

N̄
= 1 −

(
T

Tc

)3/2

. (11.7)

Under the influence of an applied force, such as gravity or the attraction of
container walls, this condensate moves as a coherent whole and is responsible
for the frictionless flow characteristic of superfluid helium. (Helium is the only
substance known to exhibit superfluidity. It is not, however, an ideal gas and
intermolecular forces are essential for understanding its properties in detail.) The
condensate can be described by a macroscopic wavefunction φ, whose magnitude
is proportional to

√
n̄0. The temperature dependence of quantities like |φ| in the

immediate neighbourhood of a critical temperature will be a recurring theme. If
we expand (11.7) in powers of T − Tc, we find

|φ| ∼ (Tc − T )β (11.8)

where β, an example of what is called a critical exponent, has the value 1
2 . The

symbol ∼ indicates both that a constant of proportionality is missing and that this
is only the leading behaviour when Tc − T is small.

Another important feature, which is common to all phase transitions, is that
the transition is sharply defined only in the thermodynamic limit. When V → ∞
in (11.3), we can draw a sharp distinction between the condensed phase, in which
n̄0/V has a non-zero limit, and the normal phase in which it goes to zero. When
the volume is large but finite, there is a narrow range of temperature in which
n̄0/V decreases from being a significant fraction of N̄/V to being extremely
small, but no precise dividing line between the two phases. Although experiments
deal with finite systems, these systems occupy a volume that is extremely large
compared with average intermolecular distances. Under these circumstances, the
theoretical ambiguity as to the precise location of a critical temperature may well
be much smaller than the resolution in temperature that an experimenter can
achieve. Thus, to all intents and purposes, well defined phase transitions can
indeed be observed in practice.
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11.2 Critical Points in Fluids and Magnets

Much of the theoretical interest in phase transitions has to do with critical points.
The exact nature of a critical point will emerge as we study examples, but one
essential feature is already apparent from the case of Bose–Einstein condensation.
The condensed phase, which exists below Tc, is distinguished from the normal,
high-temperature phase by a non-zero value of n̄0/V . On approaching the critical
temperature, this quantity goes continuously to zero, and so, exactly at the critical
temperature, the condensed and normal phases are identical. This behaviour
is distinctive of critical points, which may also be described as continuous or
second-order phase transitions, the terminology depending somewhat upon its
context. Had n̄0/V dropped discontinuously to zero at Tc, it would have been
possible for distinct condensed and normal phases to coexist with each other at
Tc, which is characteristic of a first-order phase transition. A classification of
phase transitions due to P Ehrenfest defines a phase transition to be of nth order
if an nth derivative of the appropriate thermodynamic potential is discontinuous,
while all of its (n − 1)th derivatives are continuous. If we introduce a separate
chemical potential µ0 for particles in the zero-energy state, then n̄0 is the first
derivative of � with respect to µ0. It is continuous at Tc, but ∂n0/∂T is not, so
the condensation is indeed second-order according to this classification. However,
the singularities found at phase transitions are often more complicated than simple
discontinuities, so the general classification scheme has fallen out of common use.

Two standard, easily studied examples of critical points are those which
occur in simple fluids and in ferromagnets, and I shall deal first with
ferromagnetism. As readers are no doubt aware, a permanently magnetized
sample of, say, iron typically contains a number of domains, the directions of
magnetization being different in neighbouring domains. The physical factors that
control the size of a domain have no direct bearing on the phase transitions we are
discussing, so I shall simplify matters by assuming that the magnetization of the
sample is completely uniform. In practice, our considerations will apply to the
interior of a single domain. The magnetization MS that exists in the absence
of any applied magnetic field is called the spontaneous magnetization and its
magnitude depends on temperature in the manner sketched in figure 11.1. Upon
heating to the critical (or Curie) temperature Tc, the spontaneous magnetization
vanishes continuously. In the immediate neighbourhood of Tc, called the critical
region, we find

MS ∼ (Tc − T )β. (11.9)

The exponentβ varies rather little from one ferromagnetic material to another and
is typically about 1

3 .
The direction in which the magnetization points usually lies along one of

several easy axes, defined by the crystal structure of the material. For simplicity,
I shall consider only uniaxial materials in which there is only one easy axis. Then
the magnetization can point in one of two opposite directions along this axis.
Consider what happens when a magnetic field H is applied in a direction parallel
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Figure 11.1. The spontaneous magnetization of a ferromagnet as a function of temperature.

to the easy axis. To be specific, let us suppose that the magnet is heated to a
temperature above Tc, at which point a large magnetic field is applied. There
will be a magnetization parallel to H , which would decrease to zero if the field
were removed. If, in the presence of H , the magnet is cooled to below Tc, the
magnetization remains parallel to H , but reduces to MS when the field is removed.
If the process is repeated, but with the direction of H reversed, we end up with a
magnetization of magnitude MS pointing in the opposite direction.

Figure 11.2. Phase diagram of a ferromagnet in the temperature-magnetic field plane.
Below Tc, the magnetization is discontinuous at H = 0. However, by varying H and T
along the broken curve, we can pass from state A to state B without encountering a phase
transition.

Ideally, given a temperature T and magnetic field H , there is a magnetization
M(T, H ) which has a unique value, except when H = 0 for T < Tc, where
the limit as H → 0 of M(T, H ) is either MS(T ) if H is positive or −MS(T )

if H is negative. We may therefore draw an idealized phase diagram as in
figure 11.2. As far as the line H = 0 is concerned, we can identify three
different phases, namely two ferromagnetic phases, distinguished by oppositely
directed magnetizations, which exist below Tc, and the paramagnetic phase, with
M = 0, above Tc. At the critical point (T, H ) = (Tc, 0), the two ferromagnetic
phases become identical and also indistinguishable from the paramagnetic phase.
The line H = 0, T < Tc is a line of two-phase coexistence, where oppositely
magnetized domains can coexist in the same sample. Ideally, it is a line of first-
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Figure 11.3. Phase diagram of a simple fluid in the temperature–pressure plane.

order phase transitions, since the magnetization changes discontinuously from MS
to −MS as the magnetic field decreases through zero. We see, however, that any
two states, say A and B in figure 11.2, can be connected by a path along which no
phase transition occurs. The essential definition of a critical point is that it marks
the end of a line where two or more phases coexist, and that these phases become
identical in a continuous manner. In practice, the way in which the magnetization
of a sample varies with temperature and magnetic field is more complicated and
it is necessary to consider, for example, the motion of domain walls, which gives
rise to hysteresis. The actual magnetization of a sample is not given by a single-
valued function, but depends on its history. Nevertheless, the function M(T, H )

can be found by careful experimental procedures and it is this function that we
hope to be able to calculate, at least approximately, from equilibrium statistical
mechanics.

The magnetic susceptibility is defined by

χ = ∂M/∂H. (11.10)

The zero-field susceptibility, sometimes called the initial susceptibility, is found
to diverge at the critical point. That is, it becomes infinite, and it does so as a
power of |T − Tc|:

χ(T, 0) ≈ χ0|T − Tc|−γ . (11.11)

The critical exponent γ , which has similar values of about 1.3 for all
ferromagnets, is found to be the same, whether the critical temperature is
approached from above or below, but the amplitude χ0 may be different in the
two cases.

The behaviour of simple fluids is quite analogous to that of ferromagnets.
Figure 11.3 represents the vapour–pressure curve p = pv(T ), which ends at a
critical point (Tc, pc). By speaking of a ‘simple fluid’, I mean that additional
complications, such as the possibility of solidification, will be ignored. Although
most real substances have more complicated phase diagrams than the one shown
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Figure 11.4. Variation with temperature of the densities of liquid and vapour phases of a
simple fluid at the vapour pressure.

in figure 11.3, these complications do not affect the critical properties we are
discussing. Along the vapour–pressure curve, the liquid and vapour phases of the
same substance can coexist in the same container. By varying the pressure at a
fixed temperature below Tc, we can transform liquid into vapour or vice versa.
This is a first-order transition, because the density ρ changes discontinuously.
If we plot the densities of the liquid and vapour, both measured at the vapour
pressure, as functions of temperature, the result is that sketched in figure 11.4. It is
obviously analogous to the spontaneous magnetization curve of figure 11.1, if we
include the oppositely directed magnetization, except that it is not symmetrical.
Near the critical point, the difference in density between the liquid and vapour is
found to vary as

ρ( − ρv ∼ (Tc − T )β. (11.12)

Measured values of the exponent β are very similar for all fluids. Remarkably,
they are also very similar to the values obtained for ferromagnets, being in
the neighbourhood of 1

3 . Indeed, it is found that all critical phenomena (that
is, the properties of systems in the neighbourhoods of their critical points) are
substantially independent of the detailed microscopic constitution of the system
considered. This universality of critical phenomena is, of course, one of the
principal features that we should like to understand theoretically.

It is convenient to focus theoretical discussions on magnetic systems
because, as is evident from figures 11.2 and 11.3, they possess a greater degree
of symmetry. The magnetization of a macroscopic sample is a magnetic dipole
moment per unit volume, which may have contributions from the intrinsic dipole
moments of fixed atoms or ions and mobile electrons and also from the orbital
motion of electrons. When the major contribution is from mobile electrons, the
magnetism is said to be itinerant. When the major contribution is from atoms or
ions fixed at the sites of a crystal lattice or from electrons which, though mobile,
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tend to congregate near these lattice sites, the magnetization is said to be localized.
The exact degree of itineracy or localization is not easy to establish, but it appears
that the three common metallic ferromagnets, namely iron, cobalt and nickel,
are predominantly itinerant. Theoretically, it is somewhat easier to deal with
localized magnets and, because of universality, this does not, in the end, make
much difference as far as their critical properties are concerned. I shall therefore
regard ferromagnetism as arising from localized moments situated at the sites of a
lattice. Each of these magnetic moments is proportional to the intrinsic spin of an
atom or ion, and the basic constituents of the magnet are conventionally referred
to as spins.

To understand the origin of universality, it is necessary to consider
correlations between the directions of spins at different sites. Our sample will
exhibit a net magnetization if, on average, all the spins tend to point in the same
direction. In a large sample, the average of a spin variable si at the i th lattice site
will be independent of the particular site. The magnetization per spin is

M = m〈si 〉 (11.13)

where msi is the magnetic moment associated with the spin. The fluctuations
of a given spin away from its average value are measured by si − 〈si 〉. What
particularly concerns us is the correlation between such fluctuations at two
different sites. We define the correlation function G(ri − r j ) as

G(ri − r j ) = 〈(si − 〈si 〉) · (s j − 〈s j 〉)〉 = 〈si · s j 〉 − 〈si 〉 · 〈s j 〉 (11.14)

where ri is the position of the i th lattice site. Analogous correlation functions
can be defined in terms of magnetization density for itinerant magnets or density
fluctuations in a fluid. Assuming that only short-ranged forces act between spins,
we would expect this correlation function to decay to zero at large distances, and
so it does. Under most circumstances, we find

G(ri − r j ) ∼ exp(−|ri − r j |/ξ) (11.15)

where ξ is a characteristic distance called the correlation length. The correlation
length depends on temperature and on the applied magnetic field. In the absence
of an applied field, it diverges at the critical point, and this divergence is governed
by a new critical exponent ν:

ξ(T ) ≈ ξ0|T − Tc|−ν . (11.16)

As with the susceptibility, the same exponent governs the divergence as the critical
temperature is approached from above or from below, but the amplitudes ξ0 may
be different. Typically, we find ν ≈ 0.6–0.7.

This divergence of the correlation length is at the root of the universality
of critical phenomena. Because fluctuations are strongly correlated over large
distances, they, and the critical properties that depend on them, are insensitive
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to details of the forces that act over microscopic distances. Experimentally, the
correlation functions can be investigated by scattering. In the case of magnets, the
scattering of neutrons is affected by magnetic forces, while the scattering of light
by fluids depends on density correlations. When the correlation length is large, the
scattered waves from points widely separated in the sample are coherent, and so
strong scattering results. This is visible to the naked eye in a fluid near its critical
point. The strong scattering by a substance which is normally transparent gives it
a foggy or milky appearance known as critical opalescence. From a theoretical
point of view, we might expect that quantities such as critical exponents could be
calculated on the basis of quite highly idealized models, which take little account
of the detailed microscopic constitution of real materials, and this appears to be
borne out in practice. Later on, we shall see in rather more detail why this is so.

11.3 The Ising Model and its Approximation by a Field Theory

The forces that tend to align spins in a ferromagnet have electrostatic and
quantum-mechanical origins. For example, if the spins of two electrons (which
are fermions) in neighbouring atoms are in a triplet state, which roughly means
that they are parallel, then, to maintain the overall antisymmetry of the two-
electron state, their orbital motion must be described by an antisymmetric
combination of atomic orbitals. Conversely, if their spins are in a singlet,
antiparallel state, then their orbital state must be symmetric. The expectation
value of the electrons’ electrostatic energy is different in the symmetric and
antisymmetric orbital states, and therefore also in the singlet and triplet spin
states. This leads to an effective interaction between spins, called an exchange
interaction. To study magnetic effects, we would like to use an effective
Hamiltonian that depends only on spin degrees of freedom. It was shown by
Heisenberg that such a Hamiltonian must have the form

Ĥ = −
∑
i, j

Ji j Ŝi · Ŝ j (11.17)

where Ŝi is the spin operator for the i th lattice site and Ji j is a symmetric matrix
of constants representing the exchange energies. Usually, these energies will be
appreciable only when sites i and j are close together. The exchange energies can
have either sign. If the Ji j are predominantly positive, then parallel spins have the
lower energy and ferromagnetism will result; if they are negative, then we shall
have antiferromagnetism.

In a uniaxial ferromagnet, the spins point preferentially along one
crystallographic axis, say the z axis, so we can delete the x and y spin components
in (11.17). In that case, all the remaining operators commute with each other, and
we can choose a set of basis states in which they are all diagonal. If we take the
Ŝi to be spin- 1

2 operators, their eigenvalues are ± 1
2~. For theoretical purposes, it

is useful to imagine that an independent magnetic field Hi can be applied at each
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lattice site. It is also convenient to absorb factors of 1
2~ into the definitions of Ji j

and Hi , and the magnetic moment m in (11.13) into the definition of Hi . Then the
partition function may be written as

Z(β, {Hi}) = Tr e−β Ĥ =
∑

{si =±1}
e−βHI (11.18)

where
HI = −

∑
i, j

Ji j si s j −
∑

i

Hisi . (11.19)

This is the Ising model. As a model of a ferromagnet, it is clearly rather idealized,
taking into account only the configurational average of spin degrees of freedom.
Thus, the free energy F = −kBT ln Z obtained from (11.18) represents not the
whole free energy of a ferromagnetic material, but only that contribution to it
which is directly involved in the ferromagnetic transition.

The partition function (11.18) is obviously of the same form as the
configurational sum in (10.98) for the lattice gas, so long as we identify the
adjusted chemical potential (10.99) with a uniform magnetic field. We see from
(10.98) that the grand potential of the lattice gas receives a contribution from
the factorN multiplying the configuration sum, but this contribution is a smooth
function of temperature and chemical potential and cannot be directly involved in
the gas–liquid transition.

From (11.18), the correlation function (11.14) can be expressed as

G(ri − r j ) = β−2 ∂2 ln Z

∂Hi∂H j
= β−1 ∂

∂Hi
〈s j 〉. (11.20)

For a uniform magnetic field, the magnetic susceptibility can be written in terms
of the correlation function as

χ = ∂

∂H
〈si 〉 = β

∑
j

G(ri − r j ). (11.21)

We saw in the last chapter that, by means of the Hubbard–Stratonovich
transformation, the spin variables si can be replaced with a new set of variables φi ,
in terms of which the Ising model takes on an appearance similar to a relativistic
field theory. If we replace 1

2 µ̄ in the partition function (10.105) with the site-
dependent magnetic field Hi , we find that the averages of si and φi are related
by

〈si 〉 = ∂ ln Zgr

∂(βHi)
= 〈tanh(βHi + #i )〉 = 〈tanh(aφi )〉 (11.22)

where a is the factor (βv2/�1)
1/2 that appears in (10.110). Near the critical point,

the magnetization is small, so it becomes legitimate to use the approximation
tanh(aφ) ≈ aφ, and we can take 〈φ〉 to be proportional to the magnetization.
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Moreover, since critical phenomena are associated with strong correlations over
large distances, the gradient expansion in (10.111), should be a reasonable
approximation. To be explicit about this, the functions φ(x) that are most
important in the functional integral (10.108) ought, near the critical point, to
be those that vary significantly only over distances of the order of ξ or greater
(say, φ(x) ∼ sin(x/ξ), for example). Each extra ∇ in (10.107) gives rise to
an extra ∇ acting on φ(x) in the effective Hamiltonian (10.111) and hence, in
effect, to a factor of ξ−1, which is small. Also, near the critical point, it will be
adequate to ignore the temperature dependence of the factor a in (11.22) and the
parameters J and λ in (10.112), by setting β = 1/kBTc. On the other hand, the
parameter m2 vanishes when T = v/kB�0 ≡ T0, and we shall see that this is an
approximation to the critical temperature. Near the critical temperature, we can
take m2 ∝ (T − T0). These rough-and-ready arguments are made rather more
precise by the renormalization-group ideas to be discussed in §11.6. In this way,
we arrive at an approximate partition function for our ferromagnet, which I will
now rewrite, using a notation that is traditional in this subject, as

Z(T, H ) =
∫
Dφ exp[−Heff(φ)] (11.23)

where the effective Hamiltonian is

Heff =
∫

dd x
(

1
2∇φ · ∇φ + 1

2r0φ
2 + 1

4!u0φ
4 − hφ

)
. (11.24)

The parameter r0 is proportional to (T − T0), while h is proportional to the
magnetic field H and u0 is a constant. I have written this down as it would apply
to a system that has d spatial dimensions. In practice, we normally want d = 3
(or sometimes d = 1 or d = 2), but we shall see that there are advantages in
considering other values of d as well.

A large number of approximations stand between the field theory (11.23)
and any realistic model of a ferromagnet. Nevertheless, it is believed to embody
exact information about universal quantities such as the exponents β, γ and ν.
However, the information we would need to calculate non-universal quantities
such as the critical temperature itself or the amplitude χ0 in (11.11) has largely
been lost.

11.4 Order, Disorder and Spontaneous Symmetry Breaking

The phase transition that takes place at the Curie temperature in zero magnetic
field can be described as an order–disorder transition. The high-temperature
paramagnetic phase is one in which fluctuations in the orientation of each spin
variable are entirely random, so that the configurational average is zero: the state
is a disordered one. In the ferromagnetic phases, on the other hand, the spins point
preferentially in one particular direction and, in this sense, the state is ordered. On
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Figure 11.5. Variation of magnetization with magnetic field in a ferromagnet at a fixed
temperature below Tc: (a) finite system; (b) infinite system.

the face of it, it is hard to understand how such an ordered state can come about.
The Ising Hamiltonian (11.19) with Hi = 0 has a symmetry: if we reverse the sign
of every spin, it remains unchanged. Therefore, for each configuration in which a
given spin si has the value +1, there is another one, obtained by reversing all the
spins, in which it has the value −1, and these two configurations have the same
statistical weight. Thus, the magnetization per spin ought to be zero, and this
argument is apparently valid for any temperature. Indeed, for any finite system,
the conclusion is inescapable. Within the framework of the Ising model, the only
way to obtain a non-zero spontaneous magnetization is to consider an infinite
system; that is, to take the thermodynamic limit.

The way in which this comes about is illustrated in figure 11.5. If we apply
a uniform magnetic field, then the symmetry of the Hamiltonian is broken, and
there is a magnetization in the direction of the field. Figure 11.5(a) shows the
variation of M with H at a fixed low temperature, for a large but finite system.
It is indeed zero at H = 0, but increases rapidly when a small field is applied.
As the size of the system is taken to infinity, the slope at H = 0 increases, and
eventually becomes a discontinuity as shown in figure 11.5(b). In the limit, the
value of M at H = 0 is not well defined, but the limit of M as H → 0 from
above or below is ±MS(T ). I cannot reproduce here the detailed calculations that
support this picture. Interested readers may like to consult, for example, Reichl
(1998) or Goldenfeld (1992) for some further explanation and references to the
original literature. In fact, even an infinite Ising model does not always show a
spontaneous magnetization. Whether it does or not depends on the number of
spatial dimensions d . It is possible to obtain an exact solution only in one and
two dimensions. (By ‘solution’ is meant a method of calculating actual values
for thermodynamic quantities like the magnetization, susceptibility and specific
heat.) In one dimension, there is no ferromagnetic state. For two dimensions,
the solution was given for the case of zero magnetic field in a celebrated paper
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by L Onsager (1944) and for a non-zero field by C N Yang (1952) and there is a
spontaneous magnetization at low temperatures. For three dimensions, no exact
solution has been found, but all approximate calculations indicate that there is a
ferromagnetic phase. There is, in fact, very little doubt that the ferromagnetic
state exists for all d ≥ 2.

Real ferromagnets do, of course, exhibit a spontaneous magnetization and,
though they may be very large, they certainly are not infinite. To understand this,
we must think back to our discussion of ergodic theory. There we saw that the
ensemble averages of equilibrium statistical mechanics correspond to long-time
averages of the instantaneous states of an experimentally observed system. In the
case of a uniaxial ferromagnet, the low-energy states with positive magnetization
and those with negative magnetization constitute two separate regions of phase
space. Either there are very few trajectories which can connect these two regions
without passing through states of much higher energy or there are no such
trajectories at all. In a large system below its Curie temperature, fluctuations
in energy large enough to surmount the energy barrier between the two regions
will be sufficiently rare that only one region is explored during the finite time over
which the system is observed. (Just how long we would have to wait for a suitable
fluctuation to occur is hard to estimate in a definitive manner, but estimates greater
than the present age of the universe are sometimes quoted for systems of everyday
size!) Thus, the occurrence of a spontaneous magnetization indicates a partial
breakdown of ergodicity. In effect, what should be compared with observations
is not the complete equilibrium ensemble average, but rather an average over
half of the configurations, namely those that have a net magnetization in the
same direction. This is achieved by the thermodynamic limit in the following
way. When a magnetic field is applied, the statistical weight of the ‘wrong’
configurations is reduced relative to those of the ‘right’ ones. If we now take
the infinite volume limit, the ‘wrong’ configurations are suppressed entirely, so,
if we subsequently remove the field, a spontaneous magnetization remains.

Spontaneous symmetry breaking may be defined as a situation in which the
Hamiltonian of a system possesses a symmetry, but the equilibrium state does
not have the same symmetry. Ferromagnetism is obviously a case in point. The
effective Hamiltonian (11.24) in the field-theoretic approximation to the Ising
model inherits the same symmetry, φ ↔ −φ, when h is zero, and we shall
shortly see how this symmetry can be spontaneously broken. Evidently, the same
phenomenon must be possible in genuine relativistic field theories. For zero-
temperature field theories of the kind discussed in chapter 9, the analogue of two
(or more) possible states of magnetization is the existence of several possible
vacuum states, one of which has been spontaneously chosen by our universe. As
we shall see in chapter 12, this symmetry breaking may be invoked to explain the
different strengths of the fundamental interactions. Alternatively, it could be that
the universe, like a ferromagnet, possesses many domains in which the symmetry
is broken in different ways.
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11.5 The Ginzburg–Landau Theory

The field-theoretic approximation (11.23) and (11.24) to the Ising model is similar
to the self-interacting scalar field theory we studied in chapter 9. As we saw, it is
not possible to compute exactly the expectation value of any function of the field,
and some further approximations must be made. One useful approximation is
obtained when we evaluate the integral (11.23) by the method of steepest descent.
In its simplest form, this means finding the value of φ at which the integrand
exp[−Heff(φ)] has its maximum value and replacing the integral by a constant
times this maximum value of the integrand. The maximum value of the integrand
corresponds to a minimum value of Heff, so we have

Z(T, H ) ≈ constant × e−F(T ,H) (11.25)

where F(T, H ) is the minimum value of Heff. Apart from a constant and a
factor of 1/kBT which, since we are considering only the critical region, can be
replaced with 1/kBTc, F(T, H ) is our approximation to the free energy. The value
M(T, H ) of φ that minimizes Heff is our approximation to the magnetization.
This approximation constitutes the Ginzburg–Landau theory of phase transitions,
although Ginzburg and Landau did not arrive at it in quite this way.

In general, we can allow M to depend also on position x. To be a minimum
of Heff, it must satisfy what amounts to an Euler–Lagrange equation

−∇2 M(x) + r0 M(x) + 1
6 u0 M3(x) = h(x). (11.26)

When h is independent of position, it is not hard to see that the minimum of Heff
occurs at the position-independent value of M which minimizes the potential

V (φ) = 1
2r0φ

2 + 1
4!u0φ

4 − hφ. (11.27)

According to our earlier discussion, r0 is positive if T > T0 and negative if
T < T0, and V (φ) is sketched for these two cases in figure 11.6. In the high-
temperature case, there is a single minimum, which is at M = 0 when h = 0.
In the low-temperature case, there are two minima (if h is not too large). When
h = 0, these two minima are at the same depth; otherwise, one or other of them is
lower, according to the sign of h. This evidently corresponds, at least qualitatively,
to the behaviour of a ferromagnet, if we identify T0 as the critical temperature in
this approximation. It is a simple matter to find the value of the critical exponent
β in (11.9). When h = 0 and r0 is negative, the solution of (11.26) for the
spontaneous magnetization is

MS =
(

−6r0

u0

)1/2

∝ (T0 − T )1/2 (11.28)

so we have β = 1
2 .
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Figure 11.6. The Ginzburg–Landau potential (a) for r0 > 0 and (b) for r0 < 0. The
symmetrical curves (broken) are for h = 0 and the asymmetrical ones (full) for h > 0.

The correlation function may be defined by analogy with (11.20), using the
functional derivative discussed in appendix A, as

G(x − y) = δM(x)/δh(y). (11.29)

By differentiating (11.26), we find that it satisfies the equation(
−∇2 + r0 + 1

2 u0 M2
)

G(x − y) = δ(x − y) (11.30)

which is, not too surprisingly, the Euclidean version of (9.37) for the propagator
of a scalar field. When the magnetic field h and the magnetization M are
independent of position, the solution, analogous to (9.40), is

G(x − y) =
∫

ddk

(2π)d

exp[ik · (x − y)]
(k2 + m2)

(11.31)

where m2 = r0 + 1
2 u0 M2. When x and y are far apart, this gives

G(x − y) ∼ exp(−m|x − y|) (11.32)

so we identify the correlation length as

ξ = 1/m. (11.33)

When h = 0, we have m2 = r0 above the critical temperature or, using (11.28),
m2 = −2r0 below the critical temperature, and so the critical exponent for the
correlation length is ν = 1

2 . The susceptibility is given (up to a constant factor)
by

χ = ∂M/∂h =
∫

dd x G(x − y) = 1/m2 (11.34)

and so its critical exponent is γ = 2ν = 1.
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We see that the Ginzburg–Landau theory does indeed predict critical
exponents that are universal: they do not depend, for example, on u0 or on the
constant that relates r0 to T − T0, whose values vary from one magnetic system
to another. It might be thought that this is an artificial result, arising from the
quite drastic approximations we used to get from a real magnet or fluid to the
effective Hamiltonian (11.24). This is not so, however. We could systematically
improve upon these approximations by adding higher powers of φ and higher
derivatives, and by taking more accurate account of the temperature- and field-
dependence of coefficients such as r0 and u0. By expanding everything in powers
of T − T0, readers may easily convince themselves that, when M , T − T0 and h
are sufficiently small, all the additional terms become negligible compared with
those we have retained. The only proviso is that u0 should remain positive. If
u0 becomes zero or negative then, in order for the potential to have a minimum,
a higher power of φ with a positive coefficient must be added, and new types of
critical behaviour result (see, for example, Lawrie and Sarbach (1984)).

The critical exponents of the Ginzburg–Landau theory are the same as those
obtained from a variety of simple approximations known collectively as classical
or mean field theories. Other examples of such approximations are the van-
der-Waals theory of imperfect gases and the Weiss molecular field theory of
ferromagnetism. The reason for this is that, in all such approximations, the
appropriate free energy can be written in the Ginzburg–Landau form when we
are close enough to the critical point. Although the classical exponents are
universal, they are only in very rough agreement with the typical experimental
values I quoted earlier on. The fault lies not with the idealized model defined by
(11.23) and (11.24), but with the approximation we used to estimate the functional
integral. Numerous methods are available for improving on this approximation.
We can, for example, return to the original Ising model (11.18) and attempt to
evaluate its thermodynamic properties directly. One method of approximation is
the high-temperature series expansion in powers of β. Since this is most accurate
at very high temperatures, careful methods of extrapolation are needed to obtain
results valid at the critical temperature, but good agreement with experimental
values can be obtained. Another approach is the Monte Carlo method, which
carries out the configurational sums directly by generating a set of configurations
with the correct statistical weight, which should be representative of the whole
ensemble. In the next section, I shall discuss an alternative approach, called the
renormalization group, which yields rather more insight and further illustrates the
analogy with relativistic quantum field theory.

11.6 The Renormalization Group

We have seen that the distinctive behaviour of a system near a critical point derives
from the fact that the correlation length ξ becomes very large or, in the ideal case
of an infinite system whose temperature can be adjusted to be exactly Tc, infinite.
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A somewhat highbrow way of expressing this is to say that the system becomes
scale invariant at the critical point. To see what this means, consider first the case
of a finite correlation length and, to be specific, a magnet. If we examine a part
of the system whose diameter is much smaller than ξ , we find that fluctuations in
all the spins are strongly correlated. If, on the other hand, we examine a region
whose diameter is much larger than ξ , we find that there are strong correlations
only within what we now count as small subregions of diameter ξ , but not over the
whole region. Thus, the appearance of the system depends upon the length scale,
or characteristic size of the region we choose to examine. By contrast, when ξ is
infinite, the appearance of the system is much the same, at whatever length scale
we choose to examine it. It turns out that much valuable information about critical
phenomena, including improved approximations to the critical exponents, can be
obtained by investigating how the appearance of the system changes with the scale
of length on which we examine it. That this might be possible was first suggested
by L P Kadanoff, and detailed techniques for putting the idea into practice have
been developed by many others, notably by K G Wilson and M E Fisher.

These techniques, known collectively as renormalization-group techniques,
exist nowadays in many varied forms. Some of them are described, for example,
in the books by Amit (1984), Domb and Green (1976) and Goldenfeld (1992).
Here, I shall discuss one particular method, which is well suited to field-theoretic
models like (11.23). In chapter 9, we found that interacting relativistic field
theories require renormalization, because parameters such as masses and coupling
constants appearing in the action that defines the theory do not correspond directly
to measurable quantities. Here, the situation is quite similar. The parameters r0
and u0 in (11.24) are related to forces which act at a microscopic level, and are
not best suited for describing the large-scale phenomena associated with critical
points. In quantum electrodynamics, we saw that the net effect of an electric
charge on, for example, the collisions of charged particles varies with the energy
of the collision. This could be expressed in terms of a modified Coulomb potential
or, as in (9.92), of an energy-dependent charge. Since the energy of a virtual
photon exchanged in the collision can be expressed in terms of its wavelength,
we can regard the energy dependence of the electric charge as a dependence on
a characteristic length scale of the collision process. Furthermore, according to
(9.93), the energy dependence can be related to the dependence on an arbitrary
‘mass’ parameter µ which may be introduced in the renormalization process.
Indeed, the earliest version of the renormalization group was invented by M Gell-
Mann and F E Low in just this context.

The Ginzburg–Landau theory is more or less equivalent to the lowest order
of perturbation theory (for which, see chapter 9), which involves no closed-
loop diagrams with momentum integrals. To obtain improved approximations
for the critical exponents, it is necessary to consider higher-order contributions.
Readers will recall that the momentum integrals contained in these higher-order
contributions are frequently infinite, but that the infinities disappear (at least in
the case of a renormalizable theory) when the results are expressed in terms
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of renormalized measurable quantities. In chapter 9, it appeared that these
infinities were an embarrassment. Here, as we shall see, they actually work
to our advantage. I shall describe only one particular calculation, that of the
susceptibility exponent γ , but this will be sufficient to expose the principles that
are involved. As given in (11.34), the susceptibility is the integral over all space of
the correlation function, which is the Fourier transform of this function evaluated
at k = 0. It is actually convenient to deal with the inverse of the susceptibility,
which I shall denote by � = χ−1. At the first order of perturbation theory, it is
given by an obvious modification of equations (9.67) and (9.76), with p = 0:

� = r0 + 1
2 u0

∫
ddk

(2π)d

1

(k2 + r0)
. (11.35)

The dummy integration variable k is not, of course, the k that we just set to zero.
As it stands, the integral in (11.35) is infinite if d ≥ 2, and this infinity arises

from the upper limit |k| → ∞. However, if our model field theory is regarded
as an approximation to a condensed matter system such as a magnet or a fluid,
then infinite values of |k| are not really allowed. For a magnet or lattice gas, the
field φ existed originally only at the sites of a regular lattice, and k should take
values only within the first Brillouin zone of the lattice. More generally, it does
not make sense for a magnetization density or fluid density to vary with position
over distances shorter than an atomic size, say a, so its Fourier transform has no
components with |k| > a−1. For our purposes, it is adequate to assume that k
takes values within a sphere of radius �, with � ∼ a−1. The integrand in (11.35)
depends only on the magnitude of k, so angular integrations can be carried out as
in (9.76), leaving

� = r0 + 1
2 u0Sd

∫ �

0
dk

kd−1

(k2 + r0)
. (11.36)

The factor Sd is (2π)−d times the surface area of a unit sphere in d
dimensions, which is given in appendix A. At the critical temperature, the inverse
susceptibility should be zero, and we see that this now occurs when r0 takes a
value r0c which is of order u0. Up to corrections of order u2

0, we find that

r0c = − 1
2 u0Sd

∫ �

0
dk kd−3. (11.37)

If we define a new variable
t0 = r0 − r0c (11.38)

which is proportional to T − Tc, then (11.36) can be rewritten, again up to
corrections of order u2

0, as

� = t0

[
1 − 1

2 u0Sd

∫ �

0
dk

kd−1

k2(k2 + t0)

]
. (11.39)
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This certainly vanishes when t0 = 0, but we want to know how it behaves
when t0 is small. The answer depends crucially on the number of spatial
dimensions d . Mathematically, it is perfectly possible to take d > 4. In that
case, the integral in (11.39) approaches a constant value at t0 = 0. For small t0,
we then find that � is approximately a constant times t0. Since � is χ−1, this
means that γ = 1, which is the classical value given by the Ginzburg–Landau
theory. Indeed, further arguments along these lines show that in more than four
dimensions, all the critical exponents of the Ginzburg–Landau theory should be
exactly correct. For practical purposes, we are, of course, more interested in
dimensions smaller than four. Below four dimensions, the integral in (11.39) is
infinite when t0 = 0, but now the infinity comes from the limit k → 0. This is
called an infrared divergence and, unlike the ultraviolet divergences at infinite
values of k, it has a genuine physical significance, being associated with the
singular behaviour of thermodynamic quantities at the critical point. To deal with
the infrared divergence, we may rescale k by a factor of t1/2

0 , which gives

� = t0

[
1 − 1

2 u0t(d−4)/2
0 Sd

∫ �/t1/2
0

0
dk

kd−1

k2(k2 + 1)

]
. (11.40)

In the limit t0 → 0, the upper limit �t−1/2
0 becomes infinite, but the integral is

finite if d < 4. However, the factor u0t(d−4)/2
0 now becomes infinite. In terms of

the dimensional analysis introduced in §9.6, this quantity is dimensionless. Thus,
if the expansion in (11.40) were continued to higher orders in u0, successive terms

would be proportional to successively higher powers of u0t(d−4)/2
0 , each term

becoming infinite more rapidly than the previous one as t0 → 0.
From this it is clear that perturbation theory (the expansion in powers of u0)

does not give us a sensible answer for the dependence of the susceptibility on
temperature near the critical point. The role of the renormalization group will be
to reformulate perturbation theory in such a way that a sensible answer emerges.
This can be done in several ways. The principle of the method I am going to
explain was put forward by Wilson and Fisher (1972). The crucial observation is
that expressions like (11.40) can be evaluated, in principle, when d has any value,
not necessarily an integer. As a purely mathematical device, therefore, we can
consider d to be a continuous real variable. The value d = 4 clearly marks a
borderline between different kinds of critical behaviour, and it will be convenient
to define a variable ε by

ε = 4 − d. (11.41)

If we assume that the variation of the susceptibility with temperature can indeed
be described by an exponent γ , then this exponent is likely to depend on ε. Since
it is equal to 1 for any negative value of ε, we may anticipate that for positive
values of ε, it can be expressed as a power series

γ = 1 + γ1ε + γ2ε
2 + . . . . (11.42)
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If we can evaluate a few terms of this expansion then, by setting ε equal to 1, we
obtain an estimate for the value of γ in three dimensions. The reason why this

works is that, the smaller ε is, the less rapidly u0t−ε/2
0 diverges and the easier

it becomes to extract sensible answers from perturbation theory. Clearly, any
answer we obtain must be valid right up to d = 4 or ε = 0. In this limit, however,
the ultraviolet divergence of integrals like that in (11.40) reappears when t0 = 0.
The key to calculating γ is that these divergences can be removed, as we saw in
chapter 9, by the process of renormalization. It should not now be too surprising
that this process actually yields all the information we need to calculate γ .

As I described it in chapter 9, the object of renormalization was to express
quantities like scattering amplitudes in terms of physically measurable masses
and coupling constants. For our present purposes, the main object is to remove
the ultraviolet divergences, and there are many different ways in which this can
be achieved. Details may be found, for example, in the book by Amit (1984) and
I shall just quote the results of one method. Since we have to deal with the limit
�t−1/2

0 → ∞, we might as well take � to be infinite at the outset. The ultraviolet
divergences now appear as powers of ε−1. They can all be removed if we express
thermodynamic quantities in terms of renormalized variables u and t which, at
the first order of perturbation theory, are related to u0 and t0 by

u0 = µεu

(
1 + 3

2ε
S4u + . . .

)
(11.43)

t0 = t

(
1 + 1

2ε
S4u + . . .

)
. (11.44)

The factor µε in (11.43) makes the renormalized coupling constant u
dimensionless. As we discussed earlier, µ is an arbitrary parameter, and u and
t are variables appropriate for describing phenomena on a length scale µ−1. The
inverse susceptibility can now be written as

� = t
[
1 + 1

4 S4u ln(t/µ2) + . . .
]

(11.45)

where, to simplify matters, I have expanded in powers of ε as well as u and kept
only the leading term. At higher orders, a wavefunction renormalization as in
(9.70) also becomes necessary. Since critical phenomena are associated with very
large length scales, we shall want µ to have a very small value. The way in
which u and t vary with our choice of µ is expressed by differentiating (11.43)
and (11.44), keeping u0 and t0 fixed. This leads to two functions β(u) and τ (u),
defined by

β(u) = µ

(
∂u

∂µ

)
u0,t0

= −εu + 3
2 S4u2 + . . . (11.46)

τ (u) = µ

t

(
∂ t

∂µ

)
u0,t0

= 1
2 S4u + . . . . (11.47)
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Figure 11.7. The renormalization-group function β(u). Arrows indicate the evolution of
the running coupling constant as µ → 0.

The function β(u) is sketched in figure 11.7. It vanishes at two values of u, called
fixed points, namely u = 0 and u = u∗, where

S4u∗ = 2
3ε + O(ε2). (11.48)

Because β(u) is positive for u > u∗ and negative for u < u∗, a little thought
will show that u approaches the value u∗ as µ → 0. In the renormalization-group
approach, this is the explanation of universality. Whatever the value of u0, which
is determined in principle by the nature of microscopic forces, the renormalized
coupling constant appropriate to very-large-scale phenomena is u∗.

Since u∗ is of order ε, perturbation theory (which yields an expansion in
powers of u∗) can be used to calculate the coefficients in (11.42). Suppose,
indeed, that we choose µ2 = t , so that µ → 0 at the critical point. Then the
inverse susceptibility (11.45) becomes just � = t . This might seem to imply that
γ = 1, but in fact it does not, because t is not proportional to T − Tc. If we
choose a fixed value of µ, then the corresponding renormalized coupling constant
u defined by (11.43) is independent of temperature, and t , according to (11.44) is
proportional to t0 and hence to T − Tc. However, by choosing µ2 = t , we make
u a function of t and then t is not simply proportional to t0. To get round this, let
us choose a fixed value of µ, say µ = µ̂, which is sufficiently small that u can be
set equal to u∗ with negligible error, and let t̂ be the corresponding renormalized
temperature variable. Then t̂ is proportional to T − Tc. For a different choice
of µ, which is also small enough for u to be equal to u∗, we can relate t to t̂ by
solving the equation

µ
∂ t

∂µ
= τ ∗t (11.49)

where
τ ∗ = τ (u∗) = 1

3ε + O(ε2) (11.50)

with the boundary condition that t = t̂ when µ = µ̂. We get

t = t̂ (µ/µ̂)τ
∗
. (11.51)
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If we now set µ = t1/2 (which still implies � = t), we find

t ∝ t̂ 2/(2−τ∗) ∝ (T − Tc)
2/(2−τ∗). (11.52)

Finally, then, we can identify the susceptibility exponent γ as

γ = 2/(2 − τ ∗) = 1 + 1
6ε + O(ε2). (11.53)

When ε = 1, this approximation gives γ = 1.17, which is certainly an
improvement on the classical value of 1. The best available estimates from more
extended calculations give a value of about 1.24, in good agreement with other
theoretical methods and with observations. The calculation I have described is
slightly imprecise at the point where we set u = u∗ ‘with negligible error’, but it
gives the correct answer, because we can take µ̂ as small as we like. More general
and elegant (but also more long-winded) routes to the same answer can be found
in several of the books mentioned in the bibliography.

More important, perhaps, than the actual values of critical exponents is the
insight the renormalization group provides as to how these universal values come
about. We have seen that, although they do not depend on the detailed constitution
of the system, as reflected, for example, in the value of u0, they do depend on the
number of spatial dimensions d . As it turns out, they also depend on some other
general features. We might, for example, generalize our field-theoretic model
by taking φ to be an n-component vector. For n = 3, this would correspond
to an isotropic, rather than a uniaxial, ferromagnet. It is found that the critical
exponents then vary slightly with n. The susceptibility exponent, for example, is
γ = 1+ (n +2)ε/2(n +8)+O(ε2), which gives a value of 1.23 when n = d = 3.

11.7 The Ginzburg–Landau Theory of Superconductors

The phenomena of superconductivity are both theoretically interesting and of
great technological importance. For want of space, I cannot describe them in
anything like the detail they deserve, and I propose mainly to highlight some
theoretical considerations that turn out to have implications beyond the science of
superconductivity itself. From a microscopic point of view, superconductivity
is a kind of Bose–Einstein condensation. The electrons that conduct electric
currents in a metal are, of course, fermions, and a non-interacting gas of fermions
cannot undergo condensation. The essence of the microscopic theory is that
interactions between electrons and the positive ions which form a crystal lattice
can result in a net weak attraction between electrons. By analogy with quantum
electrodynamics, this force can be thought of as mediated by the exchange of
phonons, which are quantized vibrations of the lattice, much as photons are
quantized ‘vibrations’ of the electromagnetic field. Under the influence of this
attraction, some electrons may form loosely bound pairs, known as Cooper pairs,
whose net spin is zero and which behave as bosons. These boson pairs can then
undergo condensation, and the condensed electrons can flow without friction,
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which means that their electrical resistance is zero. A simple experimental
observation that supports this picture is that the metals which superconduct most
readily tend to be rather poor conductors in the normal, high-temperature state.
This is because the interactions with the lattice which favour the formation of
Cooper pairs cause relatively strong scattering in the normal state, which leads
to a relatively high resistance. One reason for treating this qualitative picture
with caution is that the mean separation of two electrons in a Cooper pair can
be estimated, and it turns out to be comparable with, or greater than, the mean
separation of the pairs themselves. Straightforward accounts of the microscopic
theory, due originally to J Bardeen, L N Cooper and J R Schrieffer, can be found
in Reichl (1998) and Tinkham (1996).

11.7.1 Spontaneous breaking of continuous symmetries

In the Ginzburg–Landau theory, the phase transition which marks the onset
of superconductivity can be investigated in terms of an effective Hamiltonian
similar to (11.24), in which φ is taken to be the macroscopic wavefunction of
the condensate. This is a complex quantity, which can be expressed as

φ(x) = 1√
2

[φ1(x) + iφ2(x)] or φ(x) = ψ(x)eiα(x). (11.54)

The effective Hamiltonian must be real, and therefore of the form

Heff(φ) =
∫

dd x
[
∇φ∗ · ∇φ + r0φ

∗φ + 1
4 u0(φ

∗φ)2
]
. (11.55)

I have not included a symmetry-breaking field h, because no such field exists
physically, and I have chosen the normalization of the coefficients to coincide
with those of the complex scalar field in chapter 9. Whereas (11.24) has a
discrete symmetry, φ ↔ −φ when h = 0, the effective Hamiltonian (11.55)
has a continuous symmetry, in the sense that it is unchanged if we change the
phase of φ by any constant angle θ . This is, in fact, a gauge symmetry of the kind
we studied in chapter 8. Below the critical temperature, therefore, there are not
just two possible minima but an entire circle of them, as sketched in figure 11.8.
Any function of the form

M = 〈φ〉 = veiα (11.56)

is a minimum if v = (−2r0/u0)
1/2 and α is any constant angle. Of course, M

is not to be interpreted physically as a magnetization, but it plays a similar role
in the theory. A quantity of this kind which, being non-zero in the ordered phase
and zero in the disordered phase, serves to distinguish the two phases is called an
order parameter.

It is interesting to examine fluctuations of φ about its mean value (11.56).
Taking α = 0 in (11.56), we write

φ(x) =
[
v + 1√

2
χ(x)

]
exp

(
iθ(x)√

2 v

)
(11.57)
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Figure 11.8. Potential for a complex scalar field with spontaneously broken symmetry. It
is the surface of revolution of the symmetrical curve in figure 11.6(b), and its minima lie
on the broken circle.

so that χ and θ measure fluctuations in the amplitude and phase, respectively,
away from their mean values. Upon substituting this into the effective
Hamiltonian (11.55), we obtain

Heff =
∫

dd x
[

1
2∇χ · ∇χ + 1

2 (−2r0)χ
2 + 1

2∇θ · ∇θ
]

+ Hint (11.58)

where Hint contains higher powers of χ and θ , and I have dropped a constant
term. If this were to be interpreted as a quantum field theory, it would represent
two species of particles, the χ particles with mass (−2r0)

1/2 and the θ particles,
with zero mass, interacting through the terms in Hint. In the same sense that
states containing such particles would be excitations of the vacuum state, we can
speak of statistical fluctuations about the mean value of φ as excitations. These
excitations are wave-like disturbances which, in a quantum-mechanical system,
will propagate in much the same way as particles. Phonons in a solid provide
an example of this. The fact that the θ excitations have zero ‘mass’ is easily
understood from figure 11.8. A non-zero value of θ just moves φ around the circle
of minima of the potential, which costs no potential energy. A χ fluctuation, on
the other hand, moves φ in the radial direction, which requires an increase in
potential energy. This is an example of Goldstone’s theorem, which asserts that
for any spontaneously broken continuous symmetry there is a massless particle
(or ‘massless’ excitation), called a Goldstone boson.

These excitations are perhaps most easily visualized if we regard (11.55)
as a model of a ferromagnet in which the spins can point with equal ease in
any direction in a plane, their components being φ1 and φ2. The spontaneous
magnetization points in one particular direction in this plane. The χ excitations
are then fluctuations in the magnitude of the magnetization, while θ excitations
are fluctuations in its direction. The latter are called spin waves, and the quantized
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spin waves are magnons. In a real ferromagnet, there are always preferred
directions of magnetization, defined by the crystal lattice, and fluctuations away
from these directions incur an increase in potential energy, so ‘massless’ magnons
are not observed in practice. In superfluid helium-4, two kinds of excitations,
called phonons and rotons, are found, but their detailed properties cannot be found
from the condensate wavefunction alone and they do not correspond exactly to the
χ and θ excitations. In superconductors, as we are about to see, the θ fluctuations
have a very special effect.

11.7.2 Magnetic effects in superconductors

An important property of superconductors is the fact that they expel magnetic
flux. That is, the magnetic induction B is always zero inside a superconductor.
This is called the Meissner effect. When magnetic fields are present, the effective
Hamiltonian must be modified to read

Heff =
∫

d3x
[

1
2 B2 + |(∇ − 2ie A)φ|2 + r0|φ|2 + 1

4 u0|φ|4 − B · H
]
.

(11.59)
The term 1

2 B2 represents, in a suitable system of units, the magnetic field energy.
In the next term, the gradient has been replaced by the spatial components of the
covariant derivative (8.8), with λ = −2 for a Cooper pair, and the vector potential
rescaled as in (8.16). In the last term, H is an externally applied magnetic field
strength. In the macroscopic theory of magnetic materials, H is related to B by
the equation B = H+M , where M is the magnetization. Inside a superconductor,
this implies that M = −H . It is found, though I shall not enter into the details
here, that the magnetic moment of a superconducting sample is generated by
a ‘supercurrent’ flowing on its surface. The superconductor is said to exhibit
perfect diamagnetism. The exact relationship between the H that exists inside
the superconductor and that which would be there if the sample were removed
depends on the shape of the sample. For our purposes, it is sufficient to take
H to be a uniform, constant field in the z direction. The magnetic induction
is given in terms of the vector potential A by B = ∇ × A, and will undergo
thermal fluctuations induced by fluctuating currents of charged particles. Thus,
the partition function analogous to (11.23) includes a functional integral over A
as well as φ; within the Ginzburg–Landau theory, Heff is to be minimized with
respect to both φ and A. The term −B · H represents the energy of interaction
of the magnetic moment of the superconductor with the externally applied field.
Accounting properly for magnetic energy in thermodynamics is a slightly subtle
matter, and is discussed (with varying degrees of clarity) in most textbooks on
thermodynamics. The simplest way to see that (11.59) is correct is to consider
the normal (non-superconducting) state in which φ = 0. Then, by minimizing
(11.59) with respect to B, we find the correct result B = H .

To understand the Meissner effect, we must first find a vector potential whose
curl gives a uniform magnetic induction of magnitude B in the z direction. It is
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easy to verify that a suitable potential is

A(x) = 1
2 B(−y, x, 0) (11.60)

but other potentials, related to this one by a gauge transformation, would be
equally good. Assuming that the mean value of φ is a constant, as in (11.56),
the effective Hamiltonian becomes

Heff =
∫

d3x
[

1
2 B2 + e2 B2(x2 + y2)|φ|2 + r0|φ|2 + 1

4 u0|φ|4 − B H
]
.

(11.61)
It is the second term that leads to the Meissner effect. The integral of (x2 + y2)

over the volume V of the sample is proportional to V 5/3, the exact value
depending on the shape of the sample. This gives a contribution to the free
energy per unit volume proportional to B2|φ|2V 2/3, which is infinite in the
thermodynamic limit, or at least very large for a macroscopic sample, if neither
B nor φ is zero. We therefore conclude that B cannot be non-zero in a region of
macroscopic size within a superconductor. There are thus two possible minima of
(11.61), namely a normal state with B = H and φ = 0, and a superconducting
state with B = 0 and |φ|2 = −2r0/u0. The free energies per unit volume of these
two states are

Fn/V = − 1
2 H 2 and Fs/V = −r2

0/u0. (11.62)

The stable equilibrium state is the one with the lower free energy. At a fixed
temperature below Tc, therefore, the superconducting state is stable, provided that
the applied field is smaller than a critical value given by

Hc = (2r2
0/u0)

1/2. (11.63)

When a field larger than this is applied, the superconductivity is destroyed. Near
Tc, the critical field varies as Hc ∝ (Tc − T ). At lower temperatures, however,
we need more detailed information about the dependence of r0 and u0 on T in
order to find the temperature dependence of the critical field. This can be done
empirically, or by deriving the effective Hamiltonian as an approximation to a
detailed microscopic theory.

If we allow for mean values of B and φ that vary with spatial position, then
other possibilities emerge, upon which I shall touch in chapter 13.

11.7.3 The Higgs mechanism

The nature of fluctuations in a superconductor is different from that envisaged
in §11.7.1 because the effective Hamiltonian (11.59) is invariant under local
gauge transformations (see chapter 8) whereas (11.55) has only a global gauge
symmetry. Indeed, the term 1

2 B2 = 1
2 (∇× A)2 in (11.59) is the three-dimensional

analogue of − 1
4 Fµν Fµν in, for example, (8.17). The magnetic induction is
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unchanged if we add to A the gradient of any scalar function. We can again
study fluctuations by substituting (11.57) into the effective Hamiltonian (11.59).
The only place where the phase fluctuation θ appears is in the covariant derivative
term, which becomes

1

2

∣∣∣∣∇χ + i(
√

2v + χ)

(
1√
2v

∇θ − 2e A
)∣∣∣∣2 . (11.64)

Therefore, if we add to A the quantity ∇(θ/2
√

2ev), then θ disappears entirely,
and the effective Hamiltonian can be written as

Heff = 1
2

∫
d3x

[
|∇ × A|2 + (2

√
2ev)2 A2 + |∇χ |2 + (−2r0)χ

2
]

+ Hint

(11.65)
where Hint contains higher-order terms describing self interactions of χ and
interactions between χ and A. We see that the excitations are χ fluctuations
of ‘mass’ (−2r0)

1/2 and ‘photons’ of mass 2
√

2ev. In a superconductor, the
‘mass’ of the χ excitations is to be interpreted in terms of the correlation length
ξ = (−2r0)

−1/2, which in this context is called the coherence length. By analogy
with (9.85), we can identify a second characteristic distance, λp = 1/2

√
2ev,

called the penetration depth, which governs the rate of decay of magnetic forces
inside a superconductor. Roughly speaking, when a magnetic field weaker than
Hc is applied to a superconducting specimen, the magnetic induction inside the
material falls off with distance x from the surface as B(x) ∼ B0 exp(−x/λp),
but the exact distribution of magnetic flux depends on the size and shape of the
specimen.

It is clear that exactly the same analysis will carry over to a genuine
relativistic gauge field theory. At the simplest level, we might consider the action

S =
∫

d4x
[
− 1

4 Fµν Fµν + (Dµφ)
∗Dµφ − m2

0φ
∗φ − 1

4λ0(φ
∗φ)2

]
(11.66)

where Dµ = ∂µ + ieAµ is the gauge-covariant derivative. When m2
0 is positive,

this describes scalar particles of charge e and their antiparticles of charge −e
interacting with massless photons. Bearing in mind that the photon has only two
independent spin-polarization states, this gives a total of four physical degrees of
freedom. When m2

0 is negative, the gauge symmetry is spontaneously broken. The
theory then describes a single scalar χ particle interacting with a massive spin-1
particle, which is no longer recognizable as a photon. The massive spin-1 particle
has three independent spin states, so there are again a total of four physical degrees
of freedom. We may say that one of the scalar degrees of freedom, namely the
phase angle that disappears, has combined with the redundant gauge degrees of
freedom to produce the third physical polarization state of the spin-1 particle. In
the context of particle physics, this is known as the Higgs mechanism (after P
Higgs, who first described it). The Higgs mechanism affords a solution to the
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problem we encountered in chapter 8 of constructing a gauge-invariant theory in
which the gauge quanta are massive and can be identified with observed particles
such as the W± and Z0. This was the last barrier in the way of constructing
a unified theory of strong, weak and electromagnetic interactions, and I shall
describe this construction in the next chapter. The price to be paid is that we have
to introduce scalar fields. Some of these fields, analogous to χ , should correspond
to observable spin-0 particles, called Higgs bosons. The masses of these particles
cannot be reliably predicted. At the time of writing, no such particles have been
unambiguously identified by experimenters, but candidates have very recently
been reported, with a mass of about 115 GeV/c2.

Exercises

11.1. For a ferromagnet at its critical temperature, the magnetization is found to
vary with magnetic field as M ∼ h1/δ, where δ is a critical exponent. Show that
the Ginzburg–Landau theory gives δ = 3. It can often be shown that the free
energy of a system near its critical point can be expressed in the scaling form

F(t, h) = |t|2−α f (h/|t|�)

where α and � are two further critical exponents. Thus, up to an overall factor, it
depends only on the single variable h/|t|� rather than on h and t independently.
Show that if the scaling form is correct, then the specific heat at h = 0 diverges as
C ∼ |t|−α . Show that the free energy of the Ginzburg–Landau theory does have
the scaling form, with α = 0. For any free energy that can be expressed in scaling
form, show that

(a) β = 2 − α − � and γ = � − β

(b) when y = h/|t|� → ∞, the function f (y) obeys d f (y)/dy ∼ y1/δ

(c) � = βδ

(d) γ = β(δ − 1)
and check these results for the Ginzburg–Landau theory. The scaling property
and the relations between critical exponents that follow from it are an automatic
consequence of the renormalization-group analysis (see, for example, Amit
(1984), Goldenfeld (1992)).

11.2. When a ferromagnet contains two or more domains, or a liquid coexists with
its vapour, there is a narrow region—a domain wall or interface—between the
two phases in which the magnetization or density varies quite rapidly. Consider
equation (11.26) with h = 0 and suppose that M depends only on one spatial
coordinate, say z. Show that this equation has a soliton solution of the form

M(z) = MS tanh(λz)

and identify the constant λ. Hence show that the thickness of the domain wall is
approximately equal to the correlation length. Note that this applies to an Ising
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ferromagnet, in which the magnetization can point only in one of two opposite
directions. In a Bloch wall, the magnetization rotates as we pass through the wall,
and the thickness depends on the anisotropy energy, which is the increase in a
spin’s potential energy as it rotates away from the easy axis. Can you develop a
variant of the Ginzburg–Landau theory to investigate this possibility? (See Lawrie
and Lowe (1981).)



Chapter 12

Unified Gauge Theories of the Fundamental
Interactions

We saw in chapter 8 that a special class of interacting field theories, the gauge
theories, arise almost inevitably when we investigate the relationship between
the ‘internal spaces’ in which fields or wavefunctions exist at different points of
spacetime. We found that the simplest of these theories can be interpreted in terms
of observed electromagnetic forces and, indeed, that quantum electrodynamics
agrees with experimental measurements with extremely high precision. In this
chapter, I shall describe how the weak and strong nuclear interactions can also
be interpreted in terms of gauge theories. It would be most satisfying if the three
interactions could be explained in terms not of three different gauge theories but
of a single unified theory. Such theories have, as we shall see, been proposed.
Just what is entailed in this unification will become clear as we proceed, but it is
not entirely clear at the time of writing whether a completely unified theory can
be achieved, or whether such a theory could be subjected to any very stringent
experimental test.

It will, of course, be necessary to have some idea of the observed phenomena
that need to be explained. High-energy particle physics is a large and rather
technical subject, and it will be possible for me to give only a cursory description
of the key facts that have emerged from many years of research. The weak
interaction, because of its weakness, is amenable to theoretical treatment on
the basis of perturbation theory and is now quite well understood. Strong-
interaction phenomena, on the other hand, can often not be adequately treated by
perturbation theory and, because of the difficulty of devising alternative methods
of approximation, are not really understood with the same degree of confidence.

It is worth considering briefly just what ‘understanding’ means in this
context. At the level of description that accounts for phenomena accessible
to laboratory experiments, it is generally agreed that fundamental processes
can be described by some kind of quantum field theory. A large part of the
problem, therefore, is to be able to write down the action (or Lagrangian density)

295
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from which observed phenomena can, in principle, be derived. At the present
time, it seems that an action incorporating the weak, strong and electromagnetic
interactions can be written down with some confidence (though there are signs
that total confidence might be misplaced). It is called the standard model. A
second part of the problem is to be able actually to derive all the observable
consequences of this model, and it is here that the strong interaction still presents
difficulties. A third aspect of understanding is to decide whether the model that
accounts for our current observations is truly fundamental. We have seen that
large-distance or low-energy phenomena can be well described on the basis of
effective Hamiltonians that bear rather little resemblance to the models we believe
to represent the microscopic physical constitution of the system we study. It
is entirely possible that the standard model of particle physics is itself only an
effective action, valid only for the range of energies that can be produced by
present-day accelerators. We shall see that there are some theoretical reasons for
believing that this is indeed the case. In fact, a significant number of physicists
believe that quantum field theory itself is inadequate for describing the world at
a truly fundamental level, and I shall discuss some of their alternative ideas in
chapter 15.

12.1 The Weak Interaction

The simplest reason for distinguishing weak, electromagnetic and strong
interactions is that a hierarchy is observed in the magnitudes of quantities such
as scattering cross-sections and decay rates which, on the basis of formulae such
as those given in appendix D, we are inclined to attribute to a corresponding
hierarchy of coupling constants. (We shall see, however, that the situation is more
subtle than this.) For example, the neutral pion π0 decays to two photons, with a
mean lifetime of about 10−16 s. A muon, on the other hand, lives for some 10−6 s
before decaying, through what we identify as a weak-interaction process, into an
electron, a neutrino and an antineutrino. The beta decay of a free neutron into
a proton, an electron and an antineutrino takes, on average, about 15 minutes,
but this is exceptional even for weak interactions and is explained by the very
small kinetic energies involved. The lifetimes of particles that decay by the strong
interactions are typically of the order of 10−23 s.

In the early days of particle physics, the particles themselves were
classified according to their masses into leptons (light particles), baryons (heavy
particles) and mesons (particles of intermediate mass). In the light of improved
understanding, a more detailed classification seems appropriate, which is the
following. Particles which undergo strong interactions are called hadrons, and
these can be subdivided into fermionic hadrons, the baryons, of which the
most familiar examples are protons and neutrons, and bosonic hadrons, such
as pions and kaons, which are mesons. Fermionic particles which have no
strong interaction are called leptons. They include the electron, the muon
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and the more recently discovered tau particle, which are all negatively charged
(their antiparticles being positive) and three species of neutrino, which appear
to be associated with the three charged lepton species. Almost all experimental
evidence is consistent with the neutrinos being exactly massless. At the time
of writing, there is some indirect evidence to suggest that some or all of the
neutrinos have very small, but non-zero masses. (This evidence is based on the
idea of neutrino oscillations; the basic principle is indicated in exercise 12.1.)
Whether this is really so, and, if it is, exactly how the standard model ought
to be adjusted to incorporate these masses, are questions on which there is no
consensus. Here, I shall describe only the simplest version of the standard model,
which assumes that neutrinos have no mass. While the observed hadrons have
a complicated internal structure, consistent with their being composed of more
fundamental particles, the quarks, there is no evidence that the leptons have any
internal structure. Within the standard model, the leptons are taken to be truly
fundamental particles. The photon and the more recently discovered W± and
Z0 particles occupy a distinguished position in this classification scheme, being
(in theory) quanta of the gauge fields that mediate the electromagnetic and weak
interactions. In the standard model, there are further gauge bosons, the gluons,
associated with the strong interaction, but these, like the quarks, have not been
detected in isolation.

In the early 1970s, all known weak interaction phenomena could be
reasonably well described by applying first-order perturbation theory to a field
theory in which interactions were represented by a term in the Lagrangian density
of the form

LI = − 1√
2

GFJ
†
ν (x)J ν(x). (12.1)

An interaction of this kind, known as the current–current interaction, was first
suggested by E Fermi. The current in question is given by

J ν(x) = ν̄e(x)γ
ν(1−γ 5)e(x)+ ν̄µ(x)γ

ν(1−γ 5)µ(x)+hadronic terms (12.2)

where e(x) and µ(x) stand, respectively, for the electron and muon field operators,
while νe(x) and νµ(x) (whose label should not be confused with a spacetime
index!) are the field operators for the electron- and muon-type neutrinos. The
coupling constant GF is called the Fermi constant, and its value is given by
GF/(~c)3 = 1.17 × 10−5 GeV−2. The interaction (12.1) contains several terms,
each giving rise to a different kind of process. For example, muon decay
(µ− → e− + ν̄e + νµ) is described by the vertex

r- -



�




J
JĴ
JJ

µ e
ν̄e

νµ

− i√
2

GF

[
ēγν(1 − γ 5)νe

] [
ν̄µγ

ν(1 − γ 5)µ
]

(12.3)
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where the field operator µ annihilates the decaying muon and the other three
operators create the outgoing particles. The nature of the hadronic terms in
(12.2) depends upon the kind of calculation we wish to undertake. For example,
neutrino–neutron scattering (νe + n → e− + p) could be described by a vertex of
the form

r�
�

@
@

@
@

�
�

�
R

�
Rn

νe

p

e − i√
2

GF

[
ēγν(1 − γ 5)νe

] [
p̄ �νn

]
. (12.4)

In this expression, n and p are to be treated as field operators for the neutron
and proton and �ν is a matrix, constructed from Dirac γ matrices, which
represents strong interaction effects involving the internal structure of the proton
and neutron. In a theory of weak interactions only, �ν is simply fitted to
experimental data. In a theory that also purports to describe the strong interaction,
we would instead construct contributions to the current (12.2) in terms of quark
operators, of the same kind as those for the leptons. However, when we then
calculate S-matrix elements as in (9.16), the ‘in’ and ‘out’ states still contain a
neutron or a proton rather than free quarks, and we should have to find a means of
calculating the effect of acting with quark operators on these states. This difficult
task is equivalent to calculating �ν from first principles.

The current (12.2) is called a charged current, because it has the net effect
of raising by one unit the charge of a state on which it acts. For example,
in the electronic term, e(x) either annihilates a negative electron or creates a
positive positron, while ν̄e(x) creates a neutrino or annihilates an antineutrino,
both of which are neutral. The form of this current and the interaction (12.1) are
conjectured partly as a matter of theoretical prejudice and partly on the basis of
experimental data. Since we believe the leptons to be truly fundamental particles,
we expect that their interactions should be described by a simple expression,
involving a minimal number of adjustable parameters. The idea of using currents
is motivated by quantum electrodynamics, where the interactions of charged
particles can indeed be expressed in terms of the electromagnetic current (9.79).
The weak interaction currents are necessarily different, because they have to
interconvert particles of different species. In principle, they might involve any or
all of the bilinear covariants S, P , V µ, Aµ and T µν discussed in chapter 7, with
the proviso that the two field operators do not necessarily refer to the same species.
The particular form that is chosen summarizes a large amount of experimental
data, of which I have space only to indicate a few important features.

The most significant feature is parity violation. Readers will recall from
chapter 7 that the parity transformation is a change of coordinates which reverses
the sign of all spatial axes. This is more or less equivalent to forming the mirror
image of a physical state. (Strictly speaking, account must also be taken of the
intrinsic parity of each particle species, as is explained in any particle physics
textbook, but I shall not need to make use of this.) For a long time, it was believed
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that parity should be a symmetry of the fundamental interactions, in the sense that
any state should evolve with time in the same way as its mirror image. This means
that the Lagrangian density should be unchanged by a parity transformation. It
was first suggested by T D Lee and C N Yang that this symmetry is in fact violated
by the weak interaction. This was confirmed experimentally by C S Wu, who
studied the beta decay of cobalt-60 and found an asymmetry in the numbers of
electrons emitted parallel and antiparallel to the nuclear spin. In the mirror image
system, this asymmetry would be reversed, and so parity is violated. Now, each of
the leptonic terms in (12.2) has the form V µ − Aµ, where V µ is a vector current
and Aµ is an axial vector. If we consider the more general form

J µ ∝ (1 − α2)1/2V µ + αAµ (12.5)

then for the interaction we have

J †
µJ

µ ∝
[
(1 − α2)V †

µV µ + α2 A†
µAµ

]
+ α(1 − α2)1/2

[
V †
µ Aµ + A†

µV µ
]
.

(12.6)
According to the transformations rules given in chapter 7, the first term is
unchanged by the parity transformation, while the second changes sign. Thus,
parity violation comes about through the interference between vector and axial
vector currents and is a maximum when α = ±1/

√
2. Thus, the V µ − Aµ form

of the currents corresponds to maximal parity violation.
The reason for choosing V µ − Aµ rather than V µ + Aµ comes from the

behaviour of neutrinos. We saw in chapter 7 that, for massless particles, the
chiral projections (7.76) correspond to helicity eigenstates. Experimentally,
neutrinos are always found to be emitted in the left-handed polarization state,
while antineutrinos are always right-handed. Readers should be able to convince
themselves that only these states can be created by the V µ − Aµ current
interaction.

It is, of course, possible to write down more general interactions involving
the S, P and Tµν covariants. When applied to muon decay, nuclear beta decay
and neutrino-nucleus scattering, the various terms lead to different dependences
on the angles between momenta and spins of the various particles involved. These
place quite stringent limits on any possible contributions from scalar or tensor
interactions. A sensitive test for the presence of pseudoscalar interactions is
provided by the decay of charged pions. These decays almost always produce a
muon and a neutrino, but a fraction of about 1.27 × 10−4 of pion decays produce
instead an electron and a neutrino. Calculations show that if the interaction were
entirely pseudoscalar, then the electronic decays would, on the contrary, be about
five times more frequent than the muonic ones. Calculations based on the V µ−Aµ

interaction, however, agree well with the observed ratio, so any pseudoscalar
interaction must be extremely small. This close agreement also provides good
evidence for electron-muon universality, which refers to the fact that the electron
and muon currents appear in (12.2) with the same weight and therefore have weak
interactions of the same strength. The value of GF can be found by comparing
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calculated lifetimes both of muons and of nuclei that undergo beta decay with
experimentally measured values, and consistent results are obtained by these two
methods.

Because of the difficulty of carrying out reliable strong interaction
calculations, there is less detailed information about the form of hadronic currents.
If, in the vertex (12.4), it is assumed that

�µ = γ µ(CV + CAγ
5) (12.7)

then it is found that CA/CV ≈ −1.26. This can be taken as evidence for an
underlying V µ − Aµ structure in the hadronic currents also.

Although the current–current interaction is able to account for quite a large
body of observed low-energy phenomena, it has some important shortcomings.
One is that there are some phenomena for which it cannot account, as we shall see.
Theoretically, it has two highly undesirable features. One is that it does not satisfy
the requirement of unitarity. Reduced to its simplest terms, this requirement
means that, given an initial state, the total probability of observing some final
state must be 1. More technically, it means that the scattering operator S, which
transforms ‘out’ states into ‘in’ states as in (9.5), must be unitary. From this
is can be shown to follow that the total cross-section for, say, electron–neutrino
scattering must decrease at high energies at least as fast as constant/q2, where
q is the total 4-momentum. When such cross-sections are calculated from the
Fermi theory, they are found to increase as G2

Fq2, as might be expected from
dimensional analysis, so unitarity is violated. A related problem is that the
theory is not renormalizable. Since the coupling constant GF has the dimensions
(energy)−2, the dimensional criterion for renormalizability discussed in chapter 9
is not satisfied. At all orders of perturbation theory beyond the first, there are
infinities that cannot be renormalized away and the theory does not make sense.

The accepted cure for these problems is to introduce an intermediate vector
boson. If the field operator for this spin-1 particle is Wµ, then the current–current
interaction is replaced by something like g(J †

µWµ + JµWµ†), since the action
must be Hermitian. This is obviously similar to the electromagnetic interaction
in (9.78) and, in particular, the new coupling constant g is dimensionless. The
effect of this replacement upon processes of the kind we have been considering is
to split a four-fermion vertex like those in (12.3) and (12.4) into a pair of vertices
of the kind that occur in QED, connected by a W propagator:
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Ignoring technical details for the moment, this implies a corresponding
replacement for the Fermi constant,

GF /⇒ −g2

k2 − M2
W

(12.8)
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where k is the 4-momentum transferred between the two halves of the vertex.
When the magnitude of this 4-momentum is much smaller than the mass MW of
the intermediate vector boson, this is just a constant, and we recover the Fermi
theory with GF = g2/M2

W. At high energies, however, the composite vertex
behaves as −g2/k2 and this, other things being equal, solves the problems of
unitarity and renormalizability.

Models of the weak interaction based on this idea of an intermediate vector
boson were suggested by S L Glashow (1961) and by A Salam and J C Ward
(1964), but they lacked the crucial property of gauge invariance which, as we
saw in chapter 9, is essential for a theory containing spin-1 particles to be
renormalizable. The missing ingredient was the Higgs mechanism, discussed
in the previous chapter, which allows masses for the spin-1 particles to by
generated within a gauge-invariant theory by spontaneous symmetry breaking.
A highly successful model that incorporates the Higgs mechanism was devised
by S Weinberg (1967) and by Salam (1968). At the time, it was not entirely clear
whether even this model would really be renormalizable, but its renormalizability
was finally proved by G ’t Hooft (1971).

12.2 The Glashow–Weinberg–Salam Model for Leptons

The Glashow–Weinberg–Salam model (which I shall abbreviate henceforth to
GWS) is a non-Abelian gauge theory. As I explained it in chapter 8, these theories
involve grouping observed particles into multiplets and regarding the members of
a multiplet as different states of the same basic particle. Our problem is, of course,
to decide which groups of particles nature actually does regard in this way. The
groupings that have been found to work involve a further subtlety, which may
appear strange at first sight. It will be convenient at the beginning to imagine that
both the electron and its neutrino are massless and to endow the electron with a
mass at a later stage. As we saw in §7.5, the left- and right-handed components
(7.76) of the field for a massless fermion can be treated quite independently. Since
right-handed neutrinos are not observed, we can assume that they do not exist.

Consider now the electronic part of the current (12.2). It will be convenient
to redefine it by inserting a factor of 1

2 . Because of the anticommutation relation
γ µγ 5 = −γ 5γ µ, we see that it involves only the left-handed components of both
the neutrino and the electron:

J ν
e = ν̄eγ

ν 1
2 (1 − γ 5)e = ν̄e

1
2 (1 + γ 5)γ ν 1

2 (1 − γ 5)e = ν̄eLγ
νeL. (12.9)

These two left-handed components are assigned to a doublet, analogous to the
nucleon doublet (8.18). We write

(e =
(
νeL
eL

)
(12.10)

the notation indicating a doublet of left-handed electron-type particles. This
commits us to an SU(2)×U(1) gauge theory like that discussed in §8.3, and the
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SU(2) property is called weak isospin to distinguish it from the nuclear isotopic
spin. The doublet has, of course, a weak isospin of t = 1

2 , with t3 = + 1
2 for

the neutrino and t3 = − 1
2 for the electron. To get the correct electric charges

from the Gell-Mann–Nishijima formula (8.54). we assign to the doublet a weak
hypercharge of y = −1. As in §8.2, we now use the Pauli matrices to represent
the current (12.9) as

J
µ

e = (̄eγ
µτ+(e (12.11)

where

τ+ = 1
2 (τ

1 + iτ 2) =
(

0 1
0 0

)
. (12.12)

The coupling of this current to a gauge field, say W , must contribute
to the Lagrangian density an Hermitian operator, consisting of the two terms
J

µ
e Wµ + J

µ†
e W †

µ. We can write this more explicitly, including a coupling
constant g, which measures the strength of the interaction, as

LI = − g√
2
(̄e(τ

+ /W + + τ− /W −
)(e = − g

2
(̄e(τ

1 /W 1 + τ 2 /W 2
)(e (12.13)

where τ− = 1
2 (τ

1 − iτ 2) and, in the second expression,

W 1
µ = 2−1/2(W+

µ + W−
µ ) and W 2

µ = 2−1/2i(W+
µ − W−

µ ).

The current J µ
e acting on any state increases the charge by one unit, either

annihilating an electron or creating a positron. To conserve electric charge, the
field W+

µ must annihilate a positive gauge boson W+ or create its negatively
charged antiparticle W−; the adjoint field operator W−

µ = W+†
µ has the converse

effect. This form of interaction will reproduce the Fermi theory of charged weak
currents (so far as the electron-type particles on their own are concerned) in the
manner I described qualitatively in the previous section. It will not yet, however,
lead to a gauge-invariant theory. By comparison with the SU(2) theory developed
in chapter 8, we see that a third gauge field, W 3

µ, coupled to a new current, is
required to make the interaction invariant under weak isospin rotations. Thus, we
must enlarge (12.13) to read

LI = − g

2
(̄e(τ

1 /W 1 + τ 2 /W 2 + τ 3 /W 3
)(e = −g(̄e t · /W(e (12.14)

where the three matrices t = 1
2τ are the generators of the isospin- 1

2
representation. The new current, given by

(̄eτ
3γ µ(e = ν̄eLγ

µνeL − ēLγ
µeL (12.15)

is a neutral current, which has no net effect on the charge of a state on which
it acts. The second term is clearly proportional to the electromagnetic current.
As we shall see, however, the gauge invariant theory also involves a weak
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neutral current and thus predicts new interaction effects, which have indeed been
observed.

In order to incorporate electromagnetism correctly, it is necessary to include
a fourth gauge field Bµ associated with phase transformations. As we saw in
chapter 8, the U(1) group of electromagnetism is not the same as the U(1) group
of phase transformations. In accordance with the Gell-Mann–Nishijima formula,
we shall find that the electromagnetic field Aµ is a linear combination of Bµ

and W 3
µ. It is, of course, most gratifying that this leads to a description of both

weak and electromagnetic forces within a single framework, and it should be
noted that we cannot treat the weak interaction in isolation by ignoring the phase
transformations. (Readers should be able to satisfy themselves that this would be
possible if and only if the electron and neutrino had the same charge.) At this
point, the total Lagrangian density reads

L = − 1
4 F (W )

µν F (W )µν − 1
4 F (B)

µν F (B)µν + (̄eγ
µ
(

i∂µ − g t · Wµ − g′ 1
2 y Bµ

)
(e

(12.16)
where the field strength tensor F (W )

µν is constructed from Wµ in the same way as

(8.37), with the SU(2) structure constants Cabc = εabc, and F (B)
µν from Bµ as

in (8.14). The two coupling constants g and g′ associated with the two groups
SU(2) and U(1) are independent. This Lagrangian density is invariant under the
SU(2)×U(1) gauge transformations

(e → exp
[
i 1

2 yθ(x) + iα(x) · t
]
(e ≡ exp

[
i 1

2 yθ(x)
]

U(α)(e

Wµ → U(α)WµU−1(α) + (i/g)[∂µU(α)]U−1(α) (12.17)

Bµ → Bµ − (1/g′)∂µθ.

As in chapter 8, the matrix Wµ is defined as t · Wµ.
So far, neither the gauge bosons nor the electron have masses. To put this

right, without losing the gauge invariance, we must introduce a Higgs scalar field,
as described in chapter 11. In the simplest version of the GWS theory, it is an
SU(2) doublet

φ =
(
φ+
φ0

)
. (12.18)

The component φ0 will be given a vacuum expectation value v

〈0|φ|0〉 =
(

0
v

)
(12.19)

so, since the vacuum contains no electric charge, the Higgs doublet must have
hypercharge y = 1, making the φ0 particles neutral. We add to the Lagrangian
density (12.16) the quantity

LHiggs = (Dµφ)
†(Dµφ) − 1

4λ
[
(φ†φ) − v2

]2
(12.20)
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where the covariant derivative is

Dµφ =
[
∂µ + ig t · Wµ + ig′ 1

2 Bµ

]
φ. (12.21)

Mathematically, of course, any constant value of φ such that φ†φ = v2 is
a minimum of the potential in (12.20). By making a gauge transformation,
it is always possible to bring this expectation value into the form (12.19).
This transformation will also rearrange the components of the electron–neutrino
doublet. Physically, the particles we recognize as electrons and neutrinos are
those created and annihilated by the field operators that appear in this doublet
after the transformation has been made.

To find the masses of the gauge bosons, we set

φ(x) = 〈0|φ|0〉 + φ̃(x) (12.22)

which gives

LHiggs = 1
2 (gv)

2W+
µ W−µ + 1

4v
2(gW 3

µ − g′Bµ)(gW 3µ − g′Bµ) + . . . (12.23)

where the terms represented by . . . are those that describe the particles created
and annihilated by φ̃ and their interactions with the gauge bosons. From the first
term, we identify the mass of the W+ particle and its antiparticle, the W−, as

M2
W = 1

2 (gv)
2. (12.24)

The second term contains a linear combination of W 3
µ and Bµ, which is to be

identified as the field operator for a third weak gauge boson, the Z0. To make sure
that this field operator creates and annihilates particle states with our standard
normalization (7.18), it must be of the form

Zµ = cos θWW 3
µ − sin θW Bµ. (12.25)

The angle θW is called the weak mixing angle or the Weinberg angle; it is
introduced simply to make sure that the squares of the two coefficients sum to
1. Its value is not known a priori, but it can be measured, by methods I shall
mention shortly, and is found to be given by

sin2 θW ≈ 0.22 or θW ≈ 28◦. (12.26)

If the field Zµ as defined by (12.25) is to be proportional to the combination
gW 3

µ − g′Bµ that appears in (12.23), then we must have

tan θW = g′/g. (12.27)

In that case, the second term of (12.23) is 1
2 M2

Z ZµZµ, with the mass of the Z0

given by

M2
Z = 1

2

(
gv

cos θW

)2

= M2
W

cos2 θW
. (12.28)
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The gauge field Aµ of electromagnetism is a second linear combination of
W 3

µ and Bµ. It should also create and annihilate particle states with the correct

normalization. Moreover, since the photon and the Z0 are distinct particles, the
creation and annihilation operators in Aµ must commute with those in Zµ. Both
of these criteria are met if we define

Aµ = cos θW Bµ + sin θWW 3
µ. (12.29)

We should check that the Aµ defined in this way really does correspond to the
electromagnetic field. To do this, we consider the special gauge transformation
specified by (8.50). The factor of 1

2 y is already included in the gauge
transformation (12.17), so we simply take α1 = α2 = 0 and α3 = θ . For the
fields defined by (12.25) and (12.29) and the fields W±

µ of the charged gauge
bosons, this gauge transformation gives

Zµ → Zµ

Aµ → Aµ −
(

cos θW

g′ + sin θW

g

)
∂µθ (12.30)

W±
µ → e±iθ W±

µ .

These are exactly what we expect for the electromagnetic gauge transformation,
provided that the change in Aµ can be identified as −(1/e)∂µθ . Together with
(12.27), this tells us that the fundamental electric charge is given in terms of the
SU(2) and U(1) coupling constants by

e = gg′/(g2 + g′2)1/2. (12.31)

Finally, we must arrange for the electron to have a mass. This requires a term
in the Lagrangian equal to −mēe = −m(ēLeR + ēReL). In the standard version of
the GWS model, the right-handed component eR is treated on a separate footing
from eL. Since eR does not appear in the weak currents, it is unaffected by the
SU(2) transformations and is therefore assigned a weak isospin t = 0 (it is a
weak-isospin singlet). To get its charge right, it must have a hypercharge y = −2.
For this reason, the mass term quoted above is not gauge invariant. The electron
mass can be generated in a gauge-invariant manner from spontaneous symmetry
breaking. We add to L the gauge-invariant expression

�Le = ēRiγ µ(∂µ − ig′Bµ)eR − fe((̄eφeR + ēRφ
†(e) (12.32)

where fe is a constant. The contribution to this from the vacuum expectation
value of φ gives the required mass term with

m = fev. (12.33)

The muon, the tau lepton and their associated neutrinos can now be incorporated
by adding to L further terms of exactly the same form as those involving the
electron and its neutrino.
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12.3 Physical Implications of the Model for Leptons

As far as the electroweak interactions of leptons are concerned, the model is now
complete. The easiest way to see its implications for physical phenomena at
low energies (that is, at energies much smaller than the masses of the W± and
Z0 bosons) is to derive an effective Lagrangian density with an interaction term
similar to that of the Fermi theory (12.1). The particles associated with the Higgs
field φ̃ have not been unambiguously identified amongst the products of scattering
events (although, as I mentioned in chapter 11, a few candidates for such particles
have, at the time of writing been tentatively identified) so they must have masses
at least as large as those of the gauge bosons. At low energies, therefore, their
propagators are small and make a negligible contribution to observed processes.
We can eliminate them by setting φ equal to its vacuum expectation value. For
processes involving energies much smaller than MW and MZ, the important terms
in L that involve the weak gauge bosons and their interactions with the leptons
can be written as

L̂ = M2
WW+

µ W−µ + 1
2 M2

Z ZµZµ − g√
2
(W+

µ J
µ + W−

µ J
†µ) − g

cos θW
ZµJ

µ

0 .

(12.34)
The first two terms come from the Higgs-field Lagrangian (12.20) and the others
from the leptonic part of (12.16) and the gauge-field term in (12.32), together with
similar terms for the other lepton species. The charged current J µ is (12.9) with
additional muon and tau terms. The neutral current that couples to Zµ is

J
µ

0 = 1
2 ν̄eLγ

µνeL + (sin2 θW − 1
2 )ēLγ

µeL + sin2 θWēRγ
µeR + . . . (12.35)

again with additional muon and tau terms.
As far as Wµ and Zµ are concerned, (12.34) is a quadratic form.

Remembering that the Lagrangian density we have constructed is to be used in
a functional integral, the integral over Wµ and Zµ can be carried out in much the
same way that we used, for example, to obtain the generating functional (9.41).
Defining the effective Fermi interaction by∫

DW DZ exp

(
i
∫

d4x L̂

)
= constant × exp

(
i
∫

d4x LI,eff

)
(12.36)

we find

LI,eff = − g2

2M2
W

(
J †

µJ
µ + J0µJ

µ

0

)
. (12.37)

The first, charged current, term has the same form as (12.1), except that the
currents in the GWS theory differ from those in the Fermi theory by a factor
of 1

2 . We can therefore identify the Fermi constant as

GF = g2/4
√

2M2
W. (12.38)
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From (12.27) and (12.31), we find that g = e/ sin θW, so this can be rearranged
to express the W mass as

M2
W = e2/4

√
2GF sin2 θW. (12.39)

The values of e and GF are well known from experiment, so we can now predict
the mass of the W± and, from (12.28), the mass of the Z0, provided that the
Weinberg angle can be ascertained. This angle appears in the neutral current
(12.35), which is an addition to the Fermi theory. The neutral current leads
to new processes such as the elastic scattering of neutrinos by electrons. The
neutrino beams needed to observe these processes first became available in the
early 1970s, when the predicted neutral current effects were indeed found, giving
the first experimental evidence in favour of the GWS theory. The value of sin2 θW
emerging from these experiments was 0.217 ± 0.014. From this value, we get the
following predictions for the W and Z masses:

MW = 80.2 ± 2.6 GeV MZ = 90.6 ± 2.1 GeV. (12.40)

When these particles were actually observed at CERN in 1982–3, their masses
were found to be MW = 80.8 ± 2.7 GeV/c2 and MZ = 92.9 ± 1.6 GeV/c2,
giving convincing evidence to support the GWS theory.

Since that time, the standard model has been subjected to precise tests,
through studies of scattering and decay processes that are far too extensive for
me to give any useful summary here. Interested readers may like to consult, for
example, Donoghue et al (1994), Barnett et al (1996) and Groom et al (2000).
A point worth emphasizing is that our discussion has taken no account of the
higher-order corrections in perturbation theory which, according to §9.6, lead to
renormalization of the parameters appearing in the Lagrangian density. Because
of the weakness of both the weak and the electromagnetic interactions, the effects
of higher-order corrections are small, but experimental precision is such that they
must be taken into account. The renormalized W and Z masses correspond to
quantities that can be unambiguously defined in experimental terms; the most
accurate values available as I write are

MW = 80.419 ± 0.056 GeV/c2 MZ = 91.1882 ± 0.0022 GeV/c2. (12.41)

The weak mixing angle θW, however, is not a directly measurable quantity and
it can be defined in several different ways, which are not entirely equivalent.
One way is to use (12.28) to define the renormalized θW as cos θW = MW/MZ.
According to this definition, it has approximately the value given in (12.26).
There are, though, several reasons why an alternative definition might be
preferable. One is that MW has been determined less accurately than MZ, and also
less accurately than other parameters, such as the Fermi constant GF. Another
is that θW plays a rather more fundamental role in the theory as representing
the ratio of the two coupling constants g and g′, as shown in (12.27). An



308 Unified Gauge Theories of the Fundamental Interactions

alternative definition of θW is arrived at by first defining renormalized versions
of these coupling constants. A method commonly used is the so-called MS
renormalization procedure, which is similar, though not quite identical, to the
one used in (11.43) (but taking the limit ε → 0 rather than ε = 1). These
are ‘running’ coupling constants, in the sense we discussed in §§9.7 and 11.6,
and are normally evaluated with µ = MZ. Taking tan θW as the ratio of these
renormalized coupling constants, one can obtain a theoretical expression for MZ
of the form

M2
Z = e2

4
√

2GFK sin2 θW cos2 θW
(12.42)

which follows from (12.28) and (12.39), except for the quantity K , which is close
to 1, but takes account of higher-order corrections. The weak mixing angle θ̂W
defined in this way can be determined from the measured values of MZ, GF and
other information needed to estimate K , with the result

sin2 θ̂W = 0.23117 ± 0.00016. (12.43)

With this definition of θ̂W, the relation (12.28) is an independent prediction of the
standard model, which can be subjected to further tests. For example, it is useful
to define a parameter

ρ = M2
W

K ′M2
Z cos2 θ̂W

(12.44)

where K ′ is again close to 1 but includes higher-order corrections. According to
the standard version of the theory, ρ should be exactly equal to 1, but modified
versions, such as the one explored in exercise 12.3 give different values. The
value of ρ consistent with a variety of experimental data is

ρ = 1.001 ± 0.003 (12.45)

in good agreement with the standard version of the theory.

12.4 Hadronic Particles in the Electroweak Theory

12.4.1 Quarks

The idea that the hadrons are composed of quarks was first put forward by M Gell-
Mann and G Zweig in the early 1960s. The species or flavours that are currently
thought to exist, together with their electric charges Q in units of e, are

up (u) charmed (c) top (t) Q = 2
3

down (d) strange (s) bottom (b) Q = − 1
3 .

None of these particles has ever been detected in isolation and, as we shall see
later, they are believed to be permanently confined inside the hadrons that are
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Figure 12.1. Schematic view of the deep inelastic scattering of an electron by a proton.
The net effect of the collision, shown in (a), is to produce, in addition to the scattered
electron, a collection of hadronic particles with total momentum P ′. If the virtual photon
has a short enough wavelength, it strikes a single charged constituent of the proton, as
indicated in the close-up view (b), and the disrupted proton subsequently ‘fragments’ to
form the debris indicated in (a).

observed. For this reason, their masses cannot be unambiguously determined.
Such estimates as can be obtained suggest masses ranging from around 5 MeV/c2

for the u and d quarks to some 174 GeV/c2 for the t quark. Particles containing
the t quark were first identified experimentally in 1995 at the Fermi National
Accelerator Laboratory. The mass of this quark can be determined with fair
confidence, being much larger than any other contributions to the total mass of
a particle that contains it.

There are several kinds of evidence for the existence of quarks. The masses
and magnetic moments of all the observed hadrons can be reasonably well
accounted for by modelling them as bound states of quarks, each baryon being
composed of three quarks and each meson of a quark and an antiquark. A few
examples are the proton (uud), neutron (udd), �− (sss), π+ (ud̄) and K0 (ds̄).
All the particles expected on this basis are observed and all observed particles fit
into the scheme. The transformations of observed particle species that occur in
scattering and decay events are all consistent with rearrangements of their quark
contents.

Moreover, the dependence of scattering cross-sections at high energies on
energy and scattering angles is characteristic of that expected for scattering of
point-like constituent particles, a fact somewhat analogous to the strong back-
scattering of α particles which led Rutherford to postulate the existence of atomic
nuclei. The nature of this crucial piece of evidence for the actual existence of
quarks is worth understanding in a little more detail. As an example, consider
the collision of a high-energy electron with a stationary proton depicted in
figure 12.1(a)—a process known as deep inelastic scattering. It is a reasonable
approximation to suppose that this process comes about through the mediation
of a single virtual photon, because corrections due to the exchange of more
photons are small, having additional factors of the fine structure constant α. At
high energies, the hadronic debris emerging from the collision (whose net 4-
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momentum is denoted by P ′ in figure 12.1(a)) may be a complicated collection
of particles. We can ask, however, about the probability that an incoming
electron of energy E emerges with energy E ′, having been scattered through
an angle θ , regardless of the state of these other particles. This probability is
expressed by the differential cross-section dσ/d�dE ′, where dE ′ represents a
small range for the electron’s final energy and d� represents a small element of
solid angle containing the direction of the outgoing electron (see appendix D). If
the electron’s kinetic energy is large enough, we can take its mass to be negligible,
so k2 = k ′2 = m2

e ≈ 0. The initial 4-momentum of the proton is Pµ = (M, 0),
where M is the proton mass. It is conventional to represent the energy lost by
the electron, E − E ′, and the scattering angle in terms of two Lorentz invariant
quantities

ν = M−1(k − k ′) · P = E − E ′ (12.46)

q2 = (k − k ′)2 = −2k · k ′ = −2E E ′ − 2|k||k′| cos θ = −4E E ′ sin2(θ/2).

(12.47)

In fact, q is the 4-momentum carried by the virtual photon. A third variable

x = −q2/2Mν (12.48)

will soon turn out to be useful. It has values in the range 0 < x < 1, as can be
shown by looking at the quantity

q2(1− x−1) = q2 +2Mν = q2 +2q · P = (q + P)2 − P2 = P ′2 − P2. (12.49)

In the last expression, P2 = PµPµ = M2 is the squared mass of the proton.
The quantity W = (P ′2)1/2 = (P ′

µP ′µ)1/2 is called the ‘invariant mass’ of the
hadronic debris: it is the energy of this matter as measured in a frame where its
net 3-momentum vanishes. It cannot be smaller than M , for if it were, the proton
could spontaneously decay into this collection of particles, which we know does
not happen. Since q2 is negative, this implies that x < 1.

By using Lorentz invariance and the fact that the electromagnetic currents
that interact with the photon are conserved, it is possible to show that the
differential cross-section has the form

dσ

d�dE ′ = α2

4E2 sin4(θ/2)

[
2W1(q

2, ν) sin2(θ/2) + W2(q
2, ν) cos2(θ/2)

]
.

(12.50)
The structure factors W1 and W2 depend on the internal structure of the proton
and in general cannot be calculated reliably. Suppose, however, that the virtual
photon interacts only with some point-like constituent inside the proton, as shown
in figure 12.1(b), and that as far as the photon is concerned, this point-like particle
can be considered in isolation from the rest of the proton as a free particle, say of
mass mp. This would have important implications, as we can see by considering
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energy–momentum conservation. Before colliding with the photon, the point
particle is at rest (or very nearly so if its orbital motion inside the stationary
proton is negligible), so its 4-momentum is pµ = (mp, 0). After the collision,
its 4-momentum p′ = p + q satisfies p′2 = m2

p, so we calculate

q2 = (p′ − p)2 = p2 + p′2 − 2 p · p′ = 2m2
p − 2mp p′0. (12.51)

Energy conservation also tells us that ν = E − E ′ = p′0 − mp, so we discover
that ν = −q2/2mp. The structure functions must therefore be proportional to a
δ function that enforces this constraint. In fact, if we assume that the point-like
constituent is a spin- 1

2 particle with charge Q (measured in units of e), then the
structure functions can be worked out explicitly to be

W point
1 (q2, ν) = Q2 −q2

4m2
p
δ

(
ν + q2

2mp

)
(12.52)

W point
2 (q2, ν) = Q2 δ

(
ν + q2

2mp

)
. (12.53)

The factors of Q2 take into account that in (12.50) there is one factor of α arising
from the electron–photon vertex and another from the photon-proton vertex,
which was assumed to refer to a particle of charge Q = 1.

If the virtual photon really did collide with a free, point-like particle inside
the proton, the differential cross-section (12.50) would have a sharp spike at the
particular value of the scattering angle θ consistent with the initial and final
electron energies E and E ′. This, however, is not what experiments find. The
actual experimental situation can be represented reasonably well in terms of
the parton model, which considers the point-like constituent (or parton) hit by
the photon to carry some fraction of the proton’s total 4-momentum, with a
probability f (ξ)dξ that this fraction is between ξ and ξ + dξ . In the case of
an initially stationary proton, this means that the mass of the parton is mp =
ξM . Supposing that there are several species of partons, with charges Qi and
probability functions fi (ξ), we can calculate the structure function W1 for the
proton as

W1(q
2, ν) =

∑
i

Q2
i

∫ 1

0
dξ fi (ξ) W point

1 (q2, ν)

∣∣∣
mp=ξ M

=
∑

i

Q2
i

∫ 1

0
dξ

−q2

4ξ2 M2 δ

(
ν + q2

2ξM

)
fi (ξ)

=
∑

i

Q2
i

∫ 1

0
dξ

−q2

4ξM2ν
δ

(
ξ + q2

2Mν

)
fi (ξ)

= (2M)−1
∑

i

Q2
i fi (x) (12.54)
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where, as defined above, x = −q2/2Mν. In the same way, we find

W2(q
2, ν) = ν−1

∑
i

Q2
i x fi (x). (12.55)

The key result here is that the functions W1 and νW2 depend only on the single
variable x rather than on q2 and ν separately. This feature is known as Bjorken
scaling, and it is brought about by the extra energy–momentum conservation
constraint that comes into play when the virtual photon scatters elastically from a
point-like constituent.

The parton model is not to be taken seriously as a theory of the internal
structure of the proton; in particular, assigning a variable mass ξM to a
fundamental particle makes little sense. Rather, it provides a rough-and-ready
way of taking into account the interaction of a quark with the rest of the proton.
(It can, however, be argued that the picture makes more sense when viewed from
a frame of reference in which the proton has a very large energy and momentum,
so that masses can be neglected and the parton simply carries a fraction ξ of the
proton’s energy.) With this reservation in mind, we might expect Bjorken scaling
to become apparent in experimental data when the wavelength of the virtual
photon is small enough for the internal structure of the proton to be resolved; that
is, when |q2| is sufficiently large. In practice, the structure functions determined
for fixed values of x are indeed found to be substantially independent of |q2| when
|q2| is greater than about 1 GeV2. Regardless of how literally we take the parton
picture, this scaling provides clear evidence of the existence of quarks inside the
nucleons. The scaling form of structure functions (12.54) and (12.55) together
with similar functions for other scattering processes provide a framework for
interpreting experimental data from which information about the quark content
of nucleons can be extracted.

12.4.2 Quarks in the electroweak theory

As is apparent from the table at the beginning of this section, the quarks appear
in pairs, (u, d), (c, s) and (t, b), whose charges differ by one unit. Like the
(neutrino, charged-lepton) pairs, these are taken to form weak-isospin doublets.
There is, however, a complication. The three gauge fields Wµ form a weak-isospin
triplet (see the discussion following (8.31)) but, as we have seen, W 3

µ cannot be
directly identified as the field operator for a particle because the term in (12.23)
that generates the gauge boson masses involves a linear combination of W 3

µ and
Bµ. Now, the quark masses will be generated by a term in the Lagrangian density
similar to (12.32), and the fields that appear in this term may, in general, be linear
combinations of those needed to form the weak-isospin doublets. What these
linear combinations are is a matter to be determined experimentally, and I shall
shortly give a brief discussion of what is involved. The fact that no difficulty
was encountered for leptons can be traced to the fact that all the neutrinos were
assumed to have the same mass, namely zero. As with the leptons, then, the
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left-handed components of the various quarks are assembled into weak-isospin
doublets, with t = 1

2 and y = 1
3 , to give the correct charges:(

u
d ′
)

L

(
c
s′
)

L

(
t
b′
)

L
(12.56)

where d ′, s′ and b′ are linear combinations of d , s and b. All the right-handed
components are SU(2) singlets, with hypercharge y = 4

3 for uR, cR and tR and

y = − 2
3 for dR, sR and bR. The unprimed fields are those containing the creation

and annihilation operators for particles of definite mass.
To see some of the implications of all this, let us construct the hadronic

contribution to the charged current. It is helpful to express d ′, s′ and b′ in terms
of d , s and b as ( d ′

s′
b′

)
= V

( d
s
b

)
(12.57)

where V is a unitary matrix called, after its inventors, the Cabibbo–Kobayashi–
Maskawa (or CKM) matrix. This matrix can be written in terms of four weak
mixing angles, analogous to the Weinberg angle. Following the pattern of (12.9),
the hadronic charged current is

J
µ
h = ūLγ

µd ′
L + c̄Lγ

µs′
L + t̄Lγ

µb′
L = (ūL, c̄L, t̄L)γ

µV

( dL
sL
bL

)
. (12.58)

The second form indicates that, had we also considered linear combinations of u,
c and t , this would simply have meant redefining the matrix V . (More detailed
arguments are necessary to show that V is unitary, however.)

The situation is simpler if we ignore altogether the existence of the b quark
(which was, indeed, unknown until about 1977) and the more recently discovered
t quark. In that case, V is a 2 × 2 matrix, which can be parameterized by a single
angle, the Cabibbo angle θC:

V =
(

cos θC sin θC
− sin θC cos θC

)
. (12.59)

The hadronic charged current becomes

J
µ

h = (ūLγ
µdL + c̄Lγ

µsL) cos θC + (ūLγ
µsL − c̄Lγ

µdL) sin θC. (12.60)

Consider, for example, the decay of a K− meson, whose quark content is (ūs), into
a negative muon and an antineutrino (K− → µ− + ν̄µ). What happens, according
to the GWS theory, is that the quark and antiquark annihilate to produce a virtual
W−, which subsequently decays to produce the leptons:
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ū

s
∧∨∧∨∧∨∧∨

W−
r�
�

@
@

�

I

µ−

ν̄µ

The field W+
µ , which creates the W−, couples to the hadronic current (12.60), in

which the operator ūLγ
µsL that annihilates the quarks has the coefficient sin θC.

Thus, the ūsW− vertex has a factor of sin θC and the decay rate a factor of sin2 θC.
If there were no mixing, or, in other words, if d ′ and s′ were identical with d and
s, the decay could not take place. In terms of the Fermi theory, the K− decay can
be thought of as involving an effective Fermi constant GF sin θC. Unfortunately,
the actual value of the decay rate depends on details of the strong interaction
mechanism that binds the ū and s quarks to form the K−, so we cannot use it
directly to determine θC. An estimate of θC can be made if we assume, for
example, that this mechanism gives the K− and π− the same structure, apart
from the fact that π− is made from ū and d. In that case, the matrix elements Tfi
(see appendix D) for the decays K− → µ− + ν̄µ and π− → µ− + ν̄µ should have
the ratio tan θC. Taking account also of the kinematical factors that influence the
decay rates, one finds that sin θC ≈ 0.22. In general, although the CKM matrix is
a property of the weak interactions, we see that its elements can be deduced from
experimental data only if information about strong-interaction matrix elements
is available. Mostly, this information can be obtained only by means of special
assumptions or simplified models.

Figure 12.2. Example of a diagram which causes anomalies. Diagrams which contain this
as a subdiagram cannot, in general, have their infinities removed by renormalization.

12.5 Colour and Quantum Chromodynamics

Although the GWS model as I have described it so far has a gauge-invariant
action, it is not renormalizable. This is because of the occurrence of anomalies,
which were mentioned in chapter 9. An example of part of a Feynman diagram
whose divergence cannot be renormalized away is shown in figure 12.2. The
theory will be renormalizable if the net contribution of all diagrams of this type is
zero. Now, one such diagram can be formed with each charged fermion species
circulating in the closed loop and, as it turns out, the condition for the divergences
to cancel is that the sum of the charges of all these species is zero. In the standard



Colour and Quantum Chromodynamics 315

model, this is true if two conditions are met. The first is that the fermion species
fall into a number of complete families or generations, each family comprising a
neutrino, a negatively-charged lepton and a pair of quarks with charges of 2

3 and
− 1

3 . Evidently, the known fermions do fall into just three such families, namely
(νe, e, u, d), (νµ, µ, c, s) and (ντ , τ , t, b). The second condition is that each
quark flavour should count as three species. In fact, it is believed that each flavour
does indeed correspond to three distinct species, all having the same mass and
electroweak properties, but distinguished by a property called colour. There is
no universal agreement on the three colours used to label these species, but the
primary colours red, green and blue are commonly used.

The earliest reason for this hypothesis was that some baryons appeared to
consist of three identical quarks in a symmetric state, which is at variance with
the fermionic nature of the quarks. This no longer presents a problem if the three
quarks, while having the same flavour, are of different colours. Direct evidence
for the existence of three colours comes from several sources. The neutral pion
π0 is an antisymmetric combination of uū and dd̄ bound states, which decays
to two photons via a Feynman diagram similar to figure 12.2. In this case, the
integral turns out to be finite, but it is proportional to the number of quark species
circulating in the loop, and gives the correct answer for the lifetime of the π0 only
when allowance is made for three colours. In high-energy collisions of electrons
and positrons, these two particles annihilate to form a virtual photon, which may
subsequently decay into particle-antiparticle pairs of any fermion species that can
be created with the energy available. One possibility is that these particles are
muons (e+e− → µ+µ−), which can be detected directly. Another possibility
is the formation of quark-antiquark (qq̄) pairs which, as with deep inelastic
scattering, are eventually manifested as a complicated collection of hadrons. The
total probability for the formation of qq̄ pairs is proportional to

∑
i Q2

i , where
the sum is over all quark species that can be produced at a given energy. If each
flavour of quark comes in Nc colours, all with the same electric charge, then
this becomes Nc

∑
f Q2

f , where the sum is over quark flavours. According to
the parton model, the ratio of the probabilities for forming hadrons or muons, as
measured by the corresponding cross-sections, is just

σ(e+e− → hadrons)

σ (e+e− → µ+µ−)
= Nc

∑
f

Q2
f (12.61)

the muons having Q = 1. Apart from details that are not accounted for by
the parton model, this agrees well with experimental data, provided that we take
Nc = 3.

The existence of three quark colours provides the basis of the current theory
of strong interactions, known as quantum chromodynamics or QCD. Here, I can
do no more than outline some of its essential features. The three colours of a
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given quark flavour are taken to form a basic triplet

u =
( ur

ug
ub

)
d =

( dr
dg
db

)
etc. (12.62)

The set of unitary transformations u → exp[ 1
2 iα(x) · λ]u, which rearrange the

three colours amongst themselves, constitutes the colour gauge group SU(3).
This group has eight generators. That is, there are eight linearly independent,
Hermitian λ matrices, analogous to the Pauli matrices of SU(2). Consequently,
when this group is used to construct a gauge theory, there are eight independent
gauge fields and eight associated gauge bosons. These are called gluons, being
held to form the ‘glue’ that binds quarks into hadrons. Like the quarks, gluons
are (it seems) permanently confined inside the hadrons. Direct evidence for their
existence can be gleaned from the structure functions of deep inelastic scattering.
The functions fi (x) in (12.54) and (12.55) represent the probabilities that the i th
constituent species carries a fraction x of the proton’s total momentum. The total
fraction carried by all the constituents must obviously be 1, which implies that∑

i

∫ 1
0 dx x fi (x) = 1. However, when the fi (x) deduced from measured structure

functions are inserted into this ‘sum rule’, a shortfall of about 50% is found. The
implication is that some 50% of the momentum is carried by electrically neutral
constituents, which do not interact with the virtual photon. If QCD is correct, then
these neutral constituents can be identified as gluons.

Unlike the electroweak theory, QCD contains no Higgs fields, so the
gluons are massless. It might therefore appear that the colour forces should,
like electromagnetic forces, have a long range and be easily detectable in the
laboratory. It is believed, however, that QCD possesses a property known as
confinement. The potential energy of two quarks increases linearly with the
distance between them. Thus, if we try to separate, say, the quark and antiquark
in a pion, the increase in potential energy eventually favours the formation of a
new quark-antiquark pair and we obtain not two widely separated quarks but two
widely separated mesons. Only bound states which have no net colour (colour
singlets) have a finite energy and this, in outline, explains why isolated quarks and
gluons are never observed. The very different properties of QCD and QED can be
traced to the non-Abelian nature of SU(3). As we saw in chapter 8, this implies
that the gluons themselves carry a colour ‘charge’ and thus interact directly with
each other, in contrast to photons, which are electrically neutral.

While few theorists doubt the validity of this picture, it has not, as far as I
know, been possible to give a definitive proof. The difficulty is that perturbation
theory cannot be used. Perturbation theory, after all, assumes that the field
operators in the theory can, to a first approximation, be interpreted as creation
and annihilation operators for observable, free particles, and in QCD this is not
true. It has proved fruitful to consider an approximate theory in which spacetime
is replaced by a discrete four-dimensional lattice of points, quite analogous to
the lattice models of statistical mechanics. For such lattice gauge theories, the
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confinement property can be proved, but the proof does not necessarily remain
valid when the lattice spacing is taken to zero. If spacetime is approximated not
only as a discrete set of points, but also as being of finite extent, then functional
integrals such as we encountered in earlier chapters reduce to ordinary multiple
integrals, whose values can be estimated numerically. This idea provides an
alternative means of approximation when perturbation theory is inapplicable; in
fact, it is the only known practical method of estimating quantities such as the
mass of a proton directly from QCD. This method of approximation has its own
difficulties. One is that, although the lattice has only a finite number of points, this
number must be very large if the lattice is to provide a reasonable approximation
to a spacetime continuum, and to represent a region of spacetime large enough
to contain several hadrons. The computing power needed to deal with lattices
of sufficient size is, even by present-day standards, enormous. Another is that
representing fermions correctly in the lattice approximation turns out to be quite
tricky. Nevertheless, at the time of writing, it has become possible to estimate
the masses of the lighter hadrons (specifically, those containing u, d and s
quarks in what amounts to their ‘ground state’) with an accuracy that reproduces
experimental data to within 10% or better. It is also possible to estimate from
first principles the strong-interaction matrix elements that are needed to extract
information on the CKM matrix from measured decay rates and scattering cross-
sections, although such calculations are less well advanced.

The confinement of quarks (or, more accurately, of colour) is a large-distance
or low-energy phenomenon. At high energies, QCD has the complementary
property of asymptotic freedom. This means that the running coupling constant
αs(−q2), the strong-interaction equivalent of the energy-dependent fine structure
constant (9.92), becomes very small at high energies. In fact, the result analogous
to (9.94) for its high-energy behaviour is

αs(−q2) = αs(µ
2)

[
1 + (11 − 2

3 nf)
αs(µ

2)

4π
ln

(
−q2

µ2

)]−1

(12.63)

where nf is the number of quark flavours. How this behaves for large values of
−q2 clearly depends on the sign of the quantity (11 − 2

3 nf). The contribution

− 2
3 nf arises from the effect of quark-antiquark pairs in screening the strong

‘charge’ of a particle, and is entirely analogous to the vacuum polarization in
QED that we discussed in §9.7.4. The positive term, 11, comes from the self-
interaction of gluons, which has no analogue in QED. It results from the non-
Abelian nature of the SU(3) colour gauge group, which, as in the SU(2) theory we
studied in chapter 8, leads to the presence of nonlinear terms in the field strength
(8.37). Provided that there are no more than 16 quark flavours (and only 6 are
known), this self-interaction of gluons is the more important effect, and we see
that it causes αs(−q2) to decrease with increasing values of −q2. Conversely,
αs(−q2) becomes very large at low energies—a fact which might seem intuitively
consistent with confinement, but is not in fact sufficient to show that confinement
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Figure 12.3. Schematic view of a 3-jet event produced in an electron-positron collision.
Roughly collimated jets of particles emerge in the directions of a quark, an antiquark and
a gluon formed in the initial decay of a virtual photon.

actually occurs. Amongst other things, this means that there is no QCD equivalent
of ‘the’ fine structure constant α, which measures the electronic charge apparent
at macroscopic distances and is the low-energy limit of α(−q2). Because of this,
it has become conventional to parameterize the strength of colour forces by an
energy scale �QCD. At the level of approximation I am using here, we can write

αs(µ
2) = 4π

[
(11 − 2

3 nf) ln(µ2/�2
QCD)

]−1
(12.64)

and the energy-dependent coupling constant becomes

αs(−q2) = 4π
[
(11 − 2

3 nf) ln(−q2/�2
QCD)

]−1
. (12.65)

All reference to the renormalized coupling αs(µ
2), defined at arbitrary, but fixed

energy scale µ has disappeared and the intrinsic strength of the interactions is
characterized instead by �QCD. The fact that a dimensionless coupling can be
replaced with a parameter having the dimensions of energy is sometimes referred
to as dimensional transmutation.

Because αs(−q2) is small at high energies, perturbation theory can be
applied to good effect in understanding processes such as deep inelastic scattering.
By comparing calculated structure functions with those measured experimentally,
it has been possible, for example, to confirm the energy dependence of αs and to
account for departures from Bjorken scaling that are observed at small values of
x .

A striking feature of high-energy data is the formation of jets of hadronic
particles. These are interpreted as signalling the ejection from a nucleon of
individual quarks or gluons, which subsequently acquire, through the creation
of particle-antiparticle pairs, the partners needed to form a shower of colourless
hadrons. The total momentum of particles in the jet is the momentum that
originally belonged to a single quark or gluon (see figure 12.3). By observing
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Figure 12.4. Contribution to the force between a proton and a neutron due to exchange of
a π0. Quarks are bound into hadrons by the exchange of gluons. At A, a gluon decays to
form a dd̄ pair and at B a dd̄ pair annihilates to form a gluon. The net effect is the exchange
of a π0. Backward-pointing arrows denote a forward-moving antiquark.

the production of jets in, for example, e+e− and proton-antiproton collisions, it
is possible, in effect to study the scattering of individual quarks and gluons and
perturbative QCD accounts for much of this data with impressive accuracy.

It should be emphasized that QCD describes the strong interactions that bind
quarks inside the observed hadrons. The forces that act between these hadrons, for
example, those which bind protons and neutrons to form atomic nuclei or account
for the low-energy scattering of protons and neutrons, should also have their
origins in QCD, but they cannot be attributed to exchange of gluons. Figure 12.4
illustrates, in terms of the flow of quarks, how the force between a proton and
neutron can be attributed to the exchange of, for example, a neutral pion. The
fundamental origin of the force is the QCD interaction, which binds quarks in all
three hadrons and causes the creation and annihilation of quark-antiquark pairs.
However, their net effect at low energies or large distances can be modelled
by treating the pion as a fundamental spin-0 particle. This leads to a one-
particle exchange potential, which has the Yukawa form (9.85). As I indicated
in chapter 9, the pion mass corresponds to a range for this effective force that is
characteristic of the separation of nucleons in a nucleus or, indeed, of the size
of a nucleon. This simple model has rather restricted applicability, though. To
improve on it, account must be taken of other mesons that might be exchanged
and of the internal structure of these particles.

12.6 Grand Unified Theories

The gauge theory whose construction I have outlined so far constitutes the
standard model of particle physics. Within the uncertainties involved in actually
calculating quantities that can be directly compared with experimental data, it
appears to be consistent with all known phenomena (except, perhaps, for the
possibility that neutrinos may, after all, have small masses). From a theoretical
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point of view, it is nevertheless held to be unsatisfactory, partly because it
contains a large number of parameters which simply have to be adjusted to values
determined by experiment, and partly because it does not represent a truly unified
description of the fundamental forces. I shall give just two examples of the
improvements that might be sought.

The first concerns the question of charge quantization. We saw in chapter 8
that the numbers λi (in (8.17), for example), which express the charges of different
particles as multiples of the fundamental charge e could have any values. There
is no explanation for the fact that they are observed to have integer or, in the
case of quarks, simple rational values. In the GWS electroweak theory, the
charges of particles belonging to an SU(2) doublet must differ by one unit, but
the hypercharge of each multiplet, which gives the actual charges through the
Gell-Mann–Nishijima formula, is assigned simply to fit the observed facts.

The second unsatisfactory feature is that the standard model involves three
independent gauge coupling constants, namely the g and g′ of the electroweak
theory and a third, gs, for QCD. This is because the gauge symmetry group is
SU(3)×SU(2)×U(1), which means that the SU(3) transformations that rearrange
colours, the SU(2) weak-isospin rotations and the U(1) phase transformations
all act independently of each other. It is, of course, satisfying that the strong,
weak and electromagnetic interactions, which at first sight have very different
physical effects, can all be described in essentially the same terms as gauge
theories. Moreover, the weak and electromagnetic interactions are intimately
related in the GWS theory. Indeed, the relative weakness of the weak interactions,
as measured by the Fermi constant GF, is seen from (12.38) to be due to the
relatively large masses of the gauge bosons rather than to the size of the coupling
constant g, which is actually greater than e. This and the different ranges of the
two interactions are seen to be consequences of spontaneous symmetry breaking.
That having been said, we still need three coupling constants to account for the
three forces. In the view of most theorists, it would be much more satisfactory
if we could account for all three forces using a single coupling constant, with all
the differences arising from spontaneous symmetry breaking. In particular, we
would like to be able to predict the value of the Weinberg angle which, according
to (12.27), just measures the ratio of g and g′.

Considerations such as these have led to the invention of grand unified
theories, whose principal feature is that the fundamental gauge group should
be simple. This means that it cannot be expressed as the product of several
independent groups, which immediately implies the existence of only a single
gauge coupling constant. The earliest and simplest of these theories was invented
by H Georgi and S Glashow (1974), who took the gauge group to be SU(5).
The 15 fermions of a single family (counting colours and left- and right-handed
components separately for this purpose) fit into two SU(5) multiplets, of which
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the simpler is 
νeL
eL
dc

rR

dc
gR

dc
bR

 . (12.66)

In this notation, dc
rR, for example, denotes the charge conjugate of the right-

handed component of the field operator for a red down quark. The charge
conjugate of a right-handed component is left handed (see exercise 7.8), so all
the field operators are in fact left handed. In terms of particles, the electron and
its neutrino are grouped with the anti-down quark, whose charge is + 1

3 .
The gauge transformations that act on this multiplet are of the form

exp[ 1
2 iα(x) · ξ ], where the matrices ξa are the SU(5) analogues of the Pauli

matrices. There are 24 of these matrices, which are Hermitian 5 × 5 matrices
whose trace is zero. The standard model is included in the SU(5) model, because
some of these transformations correspond to those of SU(3)×SU(2)×U(1). For
example, three of the ξa can be written as

τ a 0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

 (12.67)

where τ a are the Pauli matrices. These generate the weak-isospin transformations
of the electron–neutrino doublet, leaving the right-handed quarks unchanged. A
further eight are 

0 0
0 0

0 0 0
0 0 0

0 0
0 0
0 0

λa

 (12.68)

λa being the SU(3) matrices, which generate colour transformations of the quarks
without affecting the leptons. We must think a little more carefully about the
U(1) phase transformations, however. In any grand unified theory, all the particles
belonging to one standard-model family must fill up a complete multiplet of the
grand-unified gauge group (although this may be reducible into sub-multiplets, as
in SU(5)). Let us assemble all 15 fields into a column matrix ψ . In the language
of the standard model, its gauge-covariant derivative is a generalization of the one
that appears in (12.16), namely

Dµψ =
(
∂µ + igW 3

µT 3 + ig′Bµ
1
2 Y + . . .

)
ψ (12.69)

where T 3 is a diagonal 15 × 15 matrix whose elements are the t3 components of
weak isospin for the various particles, Y is another diagonal 15×15 matrix whose
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elements are the hypercharges, and . . . are the remaining generators of the grand-
unified gauge group together with their associated gauge fields. In grand-unified
language, it must be possible to write this as

Dµψ =
(
∂µ + ig2W 3

µT 3 + ig1 BµT 0 + . . .
)
ψ (12.70)

where both T 3 and T 0 are generators of the grand-unified gauge group. The
coupling constant g2 ≡ g belongs to the SU(2) sector of the standard model and
g1 belongs to the U(1) sector. Eventually, we shall have to set g1 = g2 = gG,
where gG is the single coupling constant of the grand-unified theory, but we shall
see that there are good reasons for keeping them separate at this stage. To make
these two expressions equivalent, let us say that g′ = c−1g1 and Y = 2cT 0,
where c is a constant. The value of this constant is determined by the fact that
the two generators T 3 and T 0 must satisfy the normalization condition (8.40). In
particular, we must have Tr(T 3)2 = Tr(T 0)2 = (1/4c2)Tr Y 2, or

∑
i

(t3
i )

2 = 1

4c2

∑
i

y2
i (12.71)

where t3
i and yi are the weak-isospin components and hypercharges of the

particles in the multiplet. We have to take account of: νeL and eL with t3 = ± 1
2

and y = −1; eR with t3 = 0 and y = −2; uL and dL with t3 = ± 1
2 and y = 1

3 ;

uR with t3 = 0 and y = 4
3 ; dR with t3 = 0 and y = − 2

3 . Each quark counts
as 3 species, on account of its colour. The fact that the right-handed particles
are represented by their left-handed antiparticles as in (12.66) doesn’t matter for
this purpose, because their quantum numbers are squared. Using these values in
(12.71), we find that c = (5/3)1/2.

We can now derive two simple consequences of grand unification. First, the
electromagnetic field Aµ must be a gauge field of the grand-unified theory. It
appears in a covariant derivative such as (12.69) or (12.70) in the combination
ieAµQ, where the diagonal matrix Q = T 3 + 1

2 Y = T 3 + cT 0 has elements
which are the charges of all the particles in whichever multiplet we choose to look
at, measured in units of e. In the SU(5) theory, all the generators are Hermitian
matrices whose trace is zero, so the charges of all the particles in any multiplet
must add to zero. Applying this principle to the multiplet (12.66), we see that the
charge of an anti-d quark must be exactly − 1

3 of the charge of the electron. In
the case of the second multiplet, which contains the u quark, a similar argument
shows that u has a charge which is exactly − 2

3 of the electronic charge. Thus, the
SU(5) theory provides an explanation of the fact that the charge of the proton is
exactly −1 times the charge of the electron; this charge quantization is a major
success of grand unification.

The second consequence comes about when we set g1 = g2 = gG or
g2 = gG and g′ = c−1gG. In view of (12.27), this gives us a prediction for
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the weak mixing angle

sin2 θW = g′2

g2 + g′2 = 1

1 + c2 = 3

8
= 0.375. (12.72)

Compared with the experimental value (12.43), this does not seem like an
unqualified success, but we have yet to take account of two important ingredients,
viz. spontaneous symmetry breaking and the running of coupling constants with
energy.

The SU(5) theory has 24 symmetry generators and therefore 24 gauge
bosons; other grand unified theories (or GUTs) may have more. Of these, 12
can be identified with the gauge bosons of the standard model, but the rest, which
I shall denote collectively by X, are unknown to experimenters. If a GUT has
indeed been used by nature, then these extra gauge bosons must be very heavy,
or else their existence would upset the success of the standard model. The GUT
symmetry must, it seems, be broken at two levels, by two sets of Higgs fields.
One stage of symmetry breaking gives a large mass, say MX, to the X bosons
while leaving the SU(3)×SU(2)×U(1) symmetry intact and the standard-model
gauge bosons massless. This symmetry can then be spontaneously broken in the
way we have already seen, leaving only the U(1) symmetry of electromagnetism.
What does this imply for the running coupling constants? At energies greater
than MX, the effects of spontaneous symmetry breaking will not matter greatly
and all the physics will be controlled by a single coupling constant gG(Q2).
(Here, I will use the conventional notation Q2 = −q2, because there will be no
danger of confusing this Q with an electric charge.) At energies well below MX,
propagators for the X bosons will be very small. It should be possible to ignore
these particles for most purposes, and physics should be essentially the same as
in the standard model, with its three coupling constants g1, g2 and g3, the last of
these being the QCD coupling. At energies close to MX, these two descriptions
must become equivalent. Thus, as illustrated in figure 12.5, we should have
g1(M2

X) = g2(M2
X) = g3(M2

X) = gG(M2
X), although the same equalities need

not hold at lower energies. The running of the three coupling constants at low
energies is, according to this argument, governed just by the standard model, and
is independent of any special assumptions about the nature of the hypothetical
GUT. We can therefore use standard-model data to test whether they actually do
become equal and, if so, at what energy.

Let us explore this question in a simple approximation. Defining αi =
g2

i /4π , the running coupling constants are found, at the first order of perturbation
theory, to be given by

α−1
i (Q2) = α−1

i (M2
Z) + βi

4π
ln

(
Q2

M2
Z

)
(12.73)

the reference scale µ2 = M2
Z being experimentally rather well defined. The



324 Unified Gauge Theories of the Fundamental Interactions

Figure 12.5. Energy dependence of the running coupling constants in a grand-unified
theory. The spontaneously broken symmetry which gives the U(1), SU(2) and SU(3)
couplings at low energies is restored at an energy approximately equal to the typical X
boson mass.

constants βi are

β1 = − 4
3 ng − 1

10 nh = − 41
10 (12.74)

β2 = 22
3 − 4

3 ng − 1
6 nh = 19

6 (12.75)

β3 = 11 − 4
3 ng = 7 (12.76)

where ng is the number of families (or generations) of quarks and leptons and
nh is the number of Higgs doublets. I have taken ng = 3 and nh = 1. The
standard-model data we have at our disposal are the QCD coupling strength α3,
the electromagnetic fine-structure constant α and the mixing angle θW, whose
values at Q2 = M2

Z I shall denote by a circumflex. These values are determined
experimentally as

α̂3 = 0.12 α̂−1 = 128.9 sin2 θ̂W = 0.232. (12.77)

We can make direct use of the fine-structure constant by using (12.31) to write it
as α−1 = c2α−1

1 + α−1
2 , which implies that its energy dependence is given by

α−1(Q2) = α̂−1 + β

4π
ln

(
Q2

M2
Z

)
(12.78)

with β = c2β1 + β2 = −11/3. One way of phrasing our question is now the
following. Using only the experimental values of α̂ and α̂3, we can estimate the
unification energy MX, at which we expect α1 = α2 = α3, by solving the equation
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α−1(M2
X) = (1 + c2)α−1

3 (M2
X). Then, taking the value (12.72) of sin2 θW to be

the one that applies at Q = MX, we can use the running coupling constants to
obtain a revised prediction for sin2 θ̂W. If this agrees with the measured value, it
would indicate that all three coupling constants are related in the way that grand
unification requires.

The first step of this calculation gives

ln

(
M2

X

M2
Z

)
=

4π
[
α̂−1 − (1 + c2)α̂−1

3

]
(1 + c2)β3 − β

(12.79)

or MX ≈ 1.1 × 1013MZ ≈ 1015GeV. To obtain our prediction for sin2 θ̂W, we
use (12.27) and (12.31) to write sin2 θW = e2/g2 and hence

sin2 θW(Q2) = α(Q2)

α2(Q2)
= sin2 θ̂W + (β2/4π)α̂ ln(Q2/M2

Z)

1 + (β/4π)α̂ ln(Q2/M2
Z)

. (12.80)

Setting sin2 θW(M2
X) = 3

8 , we can solve this to get the prediction sin2 θ̂W ≈ 2.07.
This is encouragingly close enough to the measured value (12.43), but certainly
not within the experimental uncertainty. Of course, the calculation was only
approximate; it could be improved by including contributions to the running
coupling constants from higher orders of perturbation theory. However, a different
route has been followed in practice, which is to calculate all three of the running
coupling constants αi (Q2) using the standard-model data as initial conditions at
Q = MZ. The most accurate calculations indicate that although any two of the
αi become equal at an energy close to 1015GeV, they do not all become equal at
exactly the same point. This may be an indication that, while the general idea of
grand unification is plausible, some significant ingredient is missing.

By comparison with the W and Z masses of about 102 GeV, or with energies
of the order of 103 GeV that can be produced by present-day accelerators, the
unification energy of 1015 GeV is enormous. We have no hope of observing the
X particles directly, and any indirect effects that their existence might bring about
will be very small. One such effect, which could in principle be observed, is
proton decay. In the standard model, the currents that couple to the weak gauge
fields contain only terms of the form q̄γ µq or (̄γ µ(, where q and ( generically
denote quarks and leptons. It follows that a quark can be transformed into a
quark of a different flavour by emitting a weak gauge boson, but not into a
lepton. Consequently, a baryon can decay only into a lighter baryon, together
with a virtual weak boson, which subsequently produces a lepton-antilepton pair,
as in the beta decay of a free neutron. The proton, being the lightest baryon,
cannot decay at all. The reason for this is that quarks and leptons are contained
in separate SU(2) multiplets. Each multiplet of a GUT, however, contains both
quarks and leptons. Therefore, the currents that couple to X gauge fields contain
terms of the form q̄γ µ( and (̄γ µq , which permit the transformation of a quark
into a lepton by the emission of an X boson. Moreover, the GUT multiplets may
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Figure 12.6. A contribution to the decay of a proton, producing a positron and a π0. The
X boson has a charge of −4e/3.

contain both left-handed components of quark fields and the charge conjugates
of their right-handed components, and this permits the transformation of a quark
into an antiquark. Because of this, proton decay becomes possible, and figure 12.6
shows one mechanism whereby it can decay into a π0 and a positron. A simple
estimate of the proton’s lifetime can be made from the formulae of appendix D,
together with dimensional analysis. The matrix element Tfi for the emission and
absorption of an X boson is proportional to αG M−2

X , as in our estimate (12.8) of
the Fermi constant. The decay rate � has the dimensions of energy in natural
units, and must be proportional to (αG M−2

X )2 M5
p , because the proton mass Mp is

the only relevant energy scale. Up to a numerical factor, we therefore estimate the
proton’s lifetime as

τp = ~�−1 ∼ ~α−2
G M4

X M−5
p ∼ 1038 s ∼ 1031 years (12.81)

where the factor of ~ converts units of energy−1 into seconds, and the grand-
unified coupling is taken as αG ≈ 0.1. A more detailed calculation based on the
SU(5) theory produces much the same result. Clearly, proton decays will be very
rare. To put this lifetime in context, the current age of the universe is only some
1010 years. On the other hand, since the proton’s mass is Mp ≈ 1.67 × 10−27 kg,
we might hope to detect one or two decays per year by keeping some 104 kg
of a suitable material under observation. Several experiments of this kind have
been undertaken, usually deep underground to avoid the intrusion of cosmic
radiation. No decays have been observed, and the experimental limit on the
proton’s lifetime is that τp is no smaller than about 1032 years. It is an odd
fact that this experimental limit is of the same order of magnitude as the actual
lifetime expected on the basis of grand unified theories. There is, of course, some
uncertainty in the predicted lifetime, but experts are more or less agreed that these
experiments rule out the SU(5) theory as a model of the real world. Many other
GUTs can be devised, though, and some of them predict longer-lived protons.

Clearly, the value of grand unified theories lies much more in their aesthetic
appeal in providing a completely unified description of the three interactions,
and suggesting an explanation for charge quantization, than in their utility for
interpreting hard experimental data. Even their aesthetic appeal has its limitations.
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In the SU(5) theory, for example, the observed fermions have to be fitted into
two multiplets, and it is hard to see any good physical reason for treating the
particles in (12.66) on a different footing from the others. Similarly, in order to
reproduce the successes of the standard model, we had to introduce two stages of
spontaneous symmetry breaking, using two sets of Higgs fields. This is simply
an ad hoc manoeuvre needed to accommodate the observed facts; there seems
to be no fundamental reason why symmetry breaking should occur in this way.
Although a GUT contains only one gauge coupling constant, there are many
other undetermined parameters, such as masses and coupling constants associated
with the Higgs fields. Thus, the price of obtaining a prediction for one more
measurable quantity, the Weinberg angle, is the introduction of further quantities
that cannot even be measured. It would apparently be necessary to conduct
experiments at inconceivably high energies to test any specific features of grand
unified theories other than proton decay. Finally, grand unification involves a
theoretical conundrum known as the gauge hierarchy problem. As we saw in
§9.6, renormalizability generally requires us to include in the Lagrangian all those
terms that are allowed by the symmetries, and do not involve coupling constants
of negative dimension. In a grand unified theory, this turns out, in particular,
to require interactions between the two sets of Higgs fields, whose vacuum
expectation values are v and V . Gauge-boson masses are given by expressions
similar to (12.24), and this requires that v/V ∼ MW/MX ∼ 10−13. When the
Higgs fields interact, the generic outcome of spontaneous symmetry breaking is
that v/V � 1; the tiny ratio that we need will come about only if the parameters
that determine the shape of the potential are very finely tuned so as to make this
happen, and this fine tuning seems to demand some explanation.

All in all, the fact that the running coupling constants of the standard model
nearly meet at around 1015 GeV (or, more or less equivalently, that we can
obtain a reasonable prediction for sin2 θW) points quite strongly to some kind
of underlying grand unification. On the other hand, simply building a bigger
and better gauge theory requires too many ad hoc assumptions for comfort. A
further cause for dissatisfaction with the standard model and its grand-unified
generalizations is that the most familiar force of all, namely gravity, is not
included. A simple prescription for including gravity would seem to follow
from the general considerations of chapter 8. Our fully unified theory should be
invariant not only under gauge transformations, but also under general coordinate
transformations, and this can be achieved quite straightforwardly by the methods
we explored in §7.7. To account for the dynamics of the gravitational fields
themselves, we would finally add to our Lagrangian the gravitational action
(4.16). As we saw in §7.6.2, small fluctuations in the metric tensor field can be
interpreted in terms of spin-2 particles—gravitons—which ought to be the gauge
bosons of gravity. Other things being equal, this should provide us with a fully
unified quantum theory of all the known forces. Unfortunately, other things are
not quite equal. The problem is that the coupling constant for gravity is Newton’s
constant G which, expressed in natural units, is G/~c5 = (1.22 × 1019 GeV)−2.
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Figure 12.7. Contributions to the self energy of a light scalar particle from (a) another
scalar and (b) a fermion.

According to our discussion in §9.6, the negative dimension of this coupling
constant makes the theory non-renormalizable. Remedies for this illness have,
naturally, been sought, but none has been found, at least within the context of
quantum field theories as we have studied them until now. These difficulties lead
many theorists to suspect the existence of some deeper principle.

12.7 Supersymmetry

Part of this deeper principle may be the idea of supersymmetry. In general terms,
the gauge hierarchy problem might be solved if parameters in the Lagrangian were
constrained by a new symmetry in such a way that potentially large contributions,
say of order MX, to the masses of the observed particles would cancel exactly.
To set out exactly how this would work needs a more detailed treatment of the
inner workings of GUTs than I can give here, but the basic idea is contained
in figure 12.7, which shows two contributions to the self-energy of a light
particle (the dotted propagators) from a scalar particle (the dashed propagator)
and a fermion (the solid propagators). As we know from §9.6, this self-energy
represents a correction to the mass of the particle. The key point is that the fermion
loop has, as we saw in §9.4, an extra factor of −1 compared with the scalar loop,
on account of the anticommutation of the spin- 1

2 fields. If we could arrange for
the magnitudes of these two contributions to be exactly equal, then they would
make no net contribution to the mass of the light particle. The symmetry that
makes this happen must be one that relates fermions and bosons.

Although the essential idea of supersymmetry is fairly straightforward, a full
account of the technology that has been developed to deal with supersymmetric
field theories in general might well occupy a book in itself. In this section, I
shall illustrate how the symmetry works by studying the simplest example, the
Wess–Zumino model, and describe in more qualitative terms how the basic idea
might be extended to construct more realistic theories. Much of the literature
on supersymmetry uses a special notation for spinors—the van-der-Waerden
notation—which I plan to avoid. A detailed introduction to supersymmetry which
explains this notation is given by Ryder (1996). A comprehensive account of
supersymmetric field theories will be found in Weinberg (2000). Some of the key
results require quite tedious algebra, which I shall not always set out in detail. For
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readers who wish to verify these results, I have collected in §12.7.6 some clues to
the manipulations they will find useful.

12.7.1 The Wess–Zumino model

The first obstacle to be overcome in finding a symmetry that relates bosons
and fermions is that the two particle species have different spins, and therefore
different numbers of spin polarization states available to them. If we want to
regard two particles, say A and B , as being (in what will now be a rather esoteric
sense) different states of the same basic species, then an A particle and a B particle
must have the same number of states available to them. To get this counting of
states right, it is helpful in the first instance to deal with massless particles. This
is because, as we saw in §7.5, the two helicity states of a massless spin- 1

2 particle
can be treated independently of each other. The supersymmetric model invented
by J Wess and B Zumino (1974) contains a single massless fermion. It can be
represented by a Majorana spinor ψ(x), for which ψc = Cψ̄T = ψ , so that
the particle is identical to its antiparticle and can exist in both right-handed and
left-handed helicity states. Equivalently, it can be represented by a left-handed
spinor ψL, in which case the particle can exist only in the left-handed state, while
its antiparticle can exist only in the right-handed state. The two descriptions are
related by

ψL(x) = PLψ(x) ψ(x) = ψL(x) + ψc
L(x) = ψL(x) + Cψ̄T

L (x) (12.82)

where PL = 1
2 (1 − γ 5) is the projection operator introduced in (7.76). To be

explicit about the notation here, ψ̄L means ψ
†
Lγ

0 = ψ̄PR; this is not the same
as ψ̄PL. With either description, the fermion has two independent states, which
must be matched by two independent bosonic states. These could be represented
either by two real scalar fields or by one complex scalar field. (Later, we shall
think about alternatives such as the two helicity states of a massless spin-1 or
spin-2 particle). I shall present the model in terms of a left-handed spinor ψL (x)
and a complex scalar field φ(x), in which case its Lagrangian density is given by

L = ∂µφ
∗∂µφ + iψ̄L/∂ψL + F∗F . (12.83)

In addition to φ and ψL, it contains a second complex scalar fieldF , in a form that
we have not met before. We can easily see that F has no real physical meaning,
because its Euler–Lagrange equation is F = 0; it is called an auxiliary field, and
is there to make the mathematics of supersymmetry work smoothly.

An infinitesimal supersymmetry transformation is the change of variables
φ → φ + δφ, ψL → ψL + δψL, F → F + δF , where

δφ(x) = √
2ε̄ψL(x) (12.84)

δψL(x) = − i
√

2PLγ
µε∂µφ(x) + √

2PLεF(x) (12.85)

δF(x) = − i
√

2ε̄ /∂ψL(x). (12.86)
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Clearly, the change in φ must be a commuting, scalar quantity, while the change
in ψL must be an anticommuting spinor quantity. Thus, the small parameter ε is a
constant spinor. That is, it consists of a set of four Grassmann numbers εα , which
transform as a spinor under Lorentz transformations, although they are not field
operators. In fact, we take ε to be a Majorana spinor, for which ε̄ = εTC . The
small changes in the conjugate fields are

δφ∗(x) = √
2ψ̄L(x)ε (12.87)

δψ̄L(x) = i
√

2∂µφ∗(x)ε̄γ µPR + √
2F∗(x)ε̄PR (12.88)

δF∗(x) = i
√

2ψ̄L(x)
←−
/∂ ε. (12.89)

With the supersymmetry transformation defined in this way, we can work out the
small change in the Lagrangian density, keeping only the terms of order ε. It is

δL = √
2∂µXµ(x) (12.90)

where

Xµ(x) = ψ̄L(x)ε∂
µφ(x) + 1

2 ε̄[γ µ, γ ν]ψL(x)∂νφ
∗(x) + iψ̄Lγ

µεF . (12.91)

Because δL is a total divergence, it does not affect the equations of motion. Its
contribution to the action, δS = √

2
∫

d4x ∂µXµ can usually be set to zero, given
suitable boundary conditions at |xµ| → ∞.

Evidently, we have found a symmetry of the Wess–Zumino theory, which
relates the bosons and the fermions. However, this is a rather uninteresting
theory of massless particles, with no interactions. Moreover, it contains only one
supersymmetry multiplet, consisting of a spin-0 and a spin- 1

2 particle, together
with their antiparticles. In the next two subsections, I shall outline how this theory
can be extended to incorporate masses and interactions for these particles, and
then discuss what other supersymmetry multiplets might exist.

12.7.2 Superfields

Given the somewhat complicated nature of the supersymmetry transformation
(12.84)–(12.89), it might seem rather difficult to guess at the terms that can
be added to the Lagrangian density without destroying the supersymmetry.
Fortunately, a method is available for constructing such terms, which makes use of
objects called superfields. It will be sufficient for the purposes of our discussion
here to regard a superfield simply as a collection of fields (including auxiliary
fields) that form a supersymmetry multiplet. For the example we have to hand, the
relevant superfield #(φ,ψL,F) is called a left-chiral superfield. Its component
fields φ, ψL and F are respectively a scalar, a left-handed spinor and another
scalar. Under a supersymmetry transformation, they transform according to our
previous rules but, as indicated by the boldface notation, they are not necessarily
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the same as the elementary fields φ, ψL and F that appear in L. In fact, they
generally consist of products of these elementary fields.

The usefulness of superfields lies in the fact that they can be added and
multiplied to form new ones. To add two superfields, we simply add their
components. Thus, if #1 has the components (φ1,ψ1L,F1) and #2 has the
components (φ2,ψ2L,F2), then #1 + #2 is the superfield whose components
are (φ1 + φ2,ψ1L + ψ2L,F1 + F2). It is easy to check that these new
components transform in the right way to be a supersymmetry multiplet. To
multiply superfields correctly needs a little more care. Let us denote the product
# of two superfields #1 and #2 by # = #1 ◦ #2. To make this meaningful, we
need a rule for constructing the components (φ,ψL,F) of # from those of #1
and #2. The rule is

φ = φ1 φ2 (12.92)

ψL = φ1 ψ2L + φ2 ψ1L (12.93)

F = φ1 F2 + φ2 F1 − ψT
1LCψ2L. (12.94)

If # is to be a valid superfield, then φ, ψL and F must have the correct
supersymmetry transformations, and it is not too hard to check that they do. It
is also not hard to check that #1 ◦ #2 = #2 ◦ #1, so the order of the superfields
does not matter. As I have presented it, this definition of the superfield product
is a guess that turns out to work. There is, though, a more general formalism,
within which it arises quite naturally. According to this formalism (which I shall
not develop in detail), the superfields inhabit an 8-dimensional ‘spacetime’, called
superspace. The extra four coordinates θα are Grassmann variables. They have
no physical meaning that I know of, but they constitute a useful bookkeeping
device.

We can use the superfield idea in the following way to add new
supersymmetric terms to the Lagrangian density (12.83). The criterion is that,
under an infinitesimal supersymmetry transformation, the new terms must change
only by a total divergence. Because the transformation (12.84)–(12.86) applies
to any superfield, we see that the F component of any superfield changes by a
total divergence, and will suit our purpose. From now on, # will stand for our
multiplet of elementary fields (φ(x), ψL(x),F(x)). From it, we construct a new
superfield, called the superpotential,

W (#) = 1
2 m# ◦ # + 1

6 g# ◦ # ◦ # (12.95)

where m and g are constants. So far as supersymmetry is concerned, we might
include higher powers of # as well, but these would lead to a non-renormalizable
theory. TheF component of the superpotential is

W (#)|F = 1
2 m(2φF − ψ̄RψL) + 1

2 g(φ2
F − φψ̄RψL) (12.96)

where I have used the fact that ψT
L CψL = ψ̄R ψL (see (12.142)). The

Lagrangian density must be real, so we add to (12.83) the combination W (#)|F+
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W (#)|F

]∗. Using the fact that (ψ̄RψL)
∗ = ψ̄LψR, we get

L = ∂µφ
∗∂µφ + iψ̄L /∂ψL + F∗F

+ m
[
φF + φ∗F∗ − 1

2 (ψ̄RψL + ψ̄LψR)
]

+ 1
2 g
[
φ2
F + φ∗2

F
∗ − (φψ̄RψL + φ∗ψ̄LψR)

]
(12.97)

and this can be rewritten as

L = ∂µφ
∗∂µφ − m2φ∗φ + iψ̄L /∂ψL − 1

2 m(ψ̄RψL + ψ̄LψR) + F̃
∗
F̃

− 1
2 mgφ∗φ(φ + φ∗) − 1

4 g2(φ∗φ)2 − 1
2 g(φψ̄RψL + φ∗ψ̄LψR)

(12.98)

where the new auxiliary field is F̃ = F + mφ∗ + 1
2 gφ∗2. Again, the Euler–

Lagrange equation F̃ = 0 means that we can ignore F̃ for practical purposes. In
terms of the Majorana field ψ = ψL + ψR, we can write

iψ̄L /∂ψL − 1
2 m(ψ̄RψL + ψ̄LψR) = 1

2 ψ̄(i/∂ − m)ψ (12.99)

up to a total divergence, which can also be ignored.
As we might have expected, this supersymmetric theory describes spin-0

and spin- 1
2 particles that have exactly the same mass, m. In fact it can be shown

(though I shall not prove it here) that there is no mass renormalization in this
theory. That is to say, the mass parameter m is actually the physical mass of the
particles; the corrections that are potentially present at any order of perturbation
theory are guaranteed to cancel. This happens because the various interaction
terms in (12.98) have coupling constants that are related in a special way, in order
to make the theory supersymmetric. This nonrenormalization property is just the
sort of feature that might alleviate the gauge hierarchy problem, if it could be
incorporated into a grand unified theory.

12.7.3 Spontaneous supersymmetry breaking

In nature, there are no known examples of bosons and fermions having identical
masses. For this reason alone (there is another that we shall meet a little later
on), supersymmetry cannot be a feature of the world as we know it. There
are two ways in which supersymmetry might nevertheless be relevant at a
fundamental level. One is that it might be spontaneously broken, just as the
gauge symmetry of the standard model or of a grand unified theory is. The other
is that supersymmetry might only be approximately true, even at a fundamental
level, in which case it is said to be ‘explicitly’ broken. The latter possibility
is not an attractive one, because it is likely to spoil the exact cancellations
which are the principal advantage of having a supersymmetric theory in the first
place. On the other hand, spontaneous breaking of supersymmetry does not
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occur as readily as the spontaneous breaking of other symmetries. In fact, it is
impossible in the Wess–Zumino model. To see why, it is helpful to rewrite the
Lagrangian density (12.98) in terms of the superpotential. Let us in fact consider
a more general model, which will be useful shortly, containing several left-chiral
supermultiplets. Its superpotential W (#1, . . . ,#n) is a cubic polynomial in the
various superfields, and the Lagrangian density can be expressed (leaving out the
auxiliary fields F̃i ) as

L = L0 − V (φ1, . . . , φn) − 1

2

n∑
i, j=1

[
∂2W

∂φi∂φ j
ψ̄iRψ jL +

(
∂2W

∂φi∂φ j

)∗
ψ̄iLψ jR

]
(12.100)

where L0 is a sum of terms of the form ∂µφ
∗
i ∂

µφi and iψ̄iL /∂ψiL. Here, the
superpotential W (φ1, . . . , φn) is now an ordinary function just of the scalar
components of the multiplets, and the potential is

V (φ1, . . . , φn) =
n∑

i=1

∣∣∣∣∂W

∂φi

∣∣∣∣2 . (12.101)

Readers should find this easy to verify for the case of a single multiplet,
and it follows more generally (though less obviously) from the procedure for
constructing W |F . For a single multiplet, suppose that φ acquires a vacuum
expectation value v. Writing φ(x) = v + φ̃(x), we can expand the potential as

V (φ) = V (v) + [W ′′(v)]2φ̃∗φ̃ + . . . (12.102)

which shows that both the scalar particle and the spin- 1
2 particle have the same

mass, m = W ′′(v), regardless of the value of v.
A simple criterion that shows what is needed for supersymmetry to be

spontaneously broken can be found from the transformation (12.84)–(12.86). This
transformation must produce some change in the vacuum state, analogous to
moving around the circle of minima in the potential of figure 11.8. Therefore,
the vacuum expectation value of at least one of the small changes must be
different from zero. Only a scalar field can have a non-zero expectation value
(otherwise, the vacuum would have a non-zero angular momentum) and we
assume that the vacuum is homogeneous, so that 〈0|∂µφ(x)|0〉 = 0. The only
possibility is that 〈0|F |0〉 (= 0. But in (12.98), the Euler–Lagrange equation
tells us that F̃ = F̃∗ = 0, and this implies that W ′(v) = −〈0|F |0〉 (= 0. In
this way, we discover that supersymmetry will be spontaneously broken only if
V (v) = ∣∣W ′(v)

∣∣2 > 0. The same criterion holds for the more general potential
(12.101). Now, V is a sum of positive quantities and cannot be negative. If there
is some set of values of the fields for which V = 0, then this will be a minimum
and supersymmetry will be unbroken. If supersymmetry is to be spontaneously
broken, then V must be a function that does not vanish for any values of the φi .

Possibly the simplest model that does exhibit spontaneous supersymmetry
breaking is one invented by L O’Raifeartaigh, which contains three left-chiral
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multiplets whose scalar components are, say, φ, χ1 and χ2. The superpotential
for this model is

W (φ, χ1, χ2) = mχ1φ + 1
2 gχ2(φ

2 − λ) (12.103)

where m, g and λ are constants; it has the crucial feature that two functions of
φ, namely φ and φ2 − λ, which cannot both vanish at the same time, appear
multiplied by the independent fields χ1 and χ2. From (12.101), we derive the
potential

V = |mχ1 + gχ2φ|2 + m2|φ|2 + 1
4 g2|φ2 − λ|2 (12.104)

whose first term can be minimized, without affecting the minimization of the
remaining terms, by taking χ1 = χ2 = 0. Clearly, the two other terms cannot
both vanish, so supersymmetry is spontaneously broken. To find the minimum,
we must solve the equation

∂V

∂φ
= m2φ∗ + 1

2 g2φ(φ∗2 − λ) = 0 (12.105)

and its complex conjugate. If m2 > 1
2 g2|λ| (as I shall assume to make things

simple), then the only solution is φ = 0. We find the masses of the scalar particles
by expanding V about the minimum φ = χ1 = χ2 = 0. The terms quadratic in
the fields are

m2χ∗
1 χ1 + 1

2 (m
2 − 1

2λg2)φ2
1 + 1

2 (m
2 + 1

2λg2)φ2
2 (12.106)

where I have written the complex field φ in terms of its real and imaginary parts
as φ = (φ1 + iφ2)/

√
2. The particles and antiparticles associated with the

complex field χ1 have a mass m, while those associated with χ2 are massless.
The two particles associated with the real fields φ1 and φ2 have masses equal to
(m2± 1

2λg2)1/2 and each one is its own antiparticle. (As in the electroweak theory,
the field operators that create and annihilate physical particles, with definite
masses, are those linear combinations of the original set of fields that diagonalize
the quadratic terms in L). What about the masses of the fermions? To find these,
we have to evaluate the matrix that multiplies the fermionic term in (12.100) at
the field values that minimize the potential. That is

∂2W

∂φi∂φ j

∣∣∣∣∣
φ=χ1 =χ2 =0

=
( 0 m 0

m 0 0
0 0 0

)
. (12.107)

Again, the field operators for physical particles are the linear combinations that
diagonalize this ‘mass matrix’ and the particle masses are the eigenvalues, namely
m, m and 0. Although there are both bosons and fermions of mass m, and
both bosons and fermions with vanishing mass, the masses of all the bosons do
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not match those of all the fermions, so supersymmetry is indeed broken. The
appearance of a massless spin- 1

2 fermion is a general feature of spontaneous
supersymmetry breaking, quite analogous to the Goldstone boson we encountered
in §11.7.1. This massless particle is called the Goldstone fermion, or more often
(I regret to say) the ‘Goldstino’.

12.7.4 The supersymmetry algebra

If we want to incorporate supersymmetry into our gauge theories of fundamental
interactions, we need to identify supersymmetry multiplets of particles that
contain spin-1 particles (and, indeed, spin-2 particles if we hope to include
gravity). It will be useful, then, to know just what supersymmetry multiplets
are possible. The tool we need to find this out is a structure analogous to the
commutation relations (8.28) satisfied by the generators of a symmetry group
such as SU(2). We shall find it helpful to cast this structure in terms of operators
that act in the Hilbert space of state vectors; in fact, we could well have dealt
with gauge symmetries in this way, but we should not have gained much by doing
so. Consider the definition (5.35) of a Heisenberg-picture operator, which we can
rewrite as

A(t) = eit H Ae−it H . (12.108)

The Hamiltonian H is, of course, the generator of time translations, and it should
be obvious that we can shift the time to which A(t) refers by an amount a0 (which
will shortly become one component of a 4-vector) by using the time evolution
operator

A(t + a0) = eia0 H A(t)e−ia0 H . (12.109)

In a relativistic theory, we can generate translations of a field operator A(x)
through a 4-vector aµ in the same way. That is, we can write

A(x + a) = eia·P A(x)e−ia·P. (12.110)

where P0 = H is the Hamiltonian, and the spatial components Pi are the
operators corresponding to the total linear momentum of our system, which are
the generators of space translations. In principle, we could construct expressions
for the Pi , and for other symmetry generators that we shall meet shortly, in terms
of field operators, as we did in (7.21) for the Hamiltonian, but it will not generally
be necessary to do this explicitly. For an infinitesimal translation, we can find the
small change in A(x) by expanding both sides of (12.110) in powers of aµ. We
get

A(x) + aµ∂µA(x) + . . . = A(x) + iaµPµ A(x) − A(x)iaµPµ + . . . (12.111)

so we can identify

δa A(x) = aµ∂µA(x) = i[aµPµ, A(x)]. (12.112)
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The first expression gives the change in A(x) explicitly, while the second one
indicates how this change is produced by the operators Pµ.

The Lorentz transformations and rotations that we studied in §7.3.2 can be
dealt with in the same way. For a Dirac spinor, we have

exp( 1
2 iωµν Mµν)ψ(x) exp( − 1

2 iωµν Mµν)

= exp(− 1
2 iωµνmµν)ψ(x)

= (I − 1
2 iωµνmµν + . . .)ψ(x). (12.113)

In this case, Mµν are the Hilbert-space operators corresponding to the generators
of Lorentz transformations, and mµν are the combined matrix and differential
operators that I previously denoted by Mµν in (7.41). The infinitesimal change in
a general field operator A(x) will be given by

δω A(x) = 1
2ωµν

(−i%µν + xµ∂ν − xν∂µ
)

A(x) = 1
2 i[ωµν Mµν, A(x)]

(12.114)

where %µν is the spin matrix appropriate for A(x); for example, %µν = 0 if A(x)
is a scalar field and %µν = 1

2σ
µν = 1

4 i[γ µ, γ ν] if A(x) is a spinor.
The supersymmetry transformations we have been discussing have four

generators, Qα , which are the four components of a Majorana spinor, in the same
way that the operators Pµ are the components of a 4-vector. A transformed field
is given by

A′(x) = eiε̄Q A(x)e−iε̄Q (12.115)

in which ε̄Q = εTC Q = Cαβεα Qβ is a Lorentz-invariant quantity. (According
to a commonly-used terminology, the generators of symmetry transformations
are called ‘charges’ and, in particular, the Qα are ‘supercharges’. There is
clearly an analogy with expressions such as (8.53), where Q is electric charge.
According to Noether’s theorem, these ‘charges’ are conserved quantities when
our theory is invariant under the corresponding symmetries.) For an infinitesimal
transformation, we have

δε A(x) = i[ε̄Q, A(x)] (12.116)

and, for the fields in our left-chiral supermultiplet, the explicit expressions for the
small changes δε A(x) are those given in (12.84)–(12.86).

The key information to be extracted from this operator formalism is the
commutation relations enjoyed by the generators Qα . They can be determined by
asking about the effect of two successive infinitesimal transformations. Suppose
that we have made one transformation using parameters ε1, leading to small
changes δε1 A(x). Now we ask about the change in δε1 A(x) upon making a second
transformation, with parameters ε2. It is given by

δε2(δε1 A(x)) = i[ε̄2 Q, δε1 A(x)]
= i[ε̄2 Q, i[ε̄1 Q, A(x)]]
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= − ε̄2 Qε̄1 Q A(x) − A(x)ε̄1 Qε̄2 Q

+ ε̄1 Q A(x)ε̄2 Q + ε̄2 Q A(x)ε̄1 Q. (12.117)

On comparing this with the result of making the two transformations in the
reversed order, we find

δε1(δε2 A(x)) − δε2(δε1 A(x)) = i[i[ε̄1 Q, ε̄2 Q], A(x)]. (12.118)

By calculating the left-hand side from our explicit expressions for the changes in
the fields, we can identify the operator that is equal to [ε̄1 Q, ε̄2 Q]. Let us do this,
taking A(x) to be the scalar field φ(x). The individual terms are

δε1(δε2φ(x)) = δε1(
√

2ε̄2ψL(x))

= 2[iε̄2 PLγ
µε1∂µφ(x) + ε̄2 PLε1F(x)]

= 2[−iε̄1 PRγ
µε2∂µφ(x) + ε̄1 PLε2F(x)] (12.119)

δε2(δε1φ(x)) = 2[iε̄1 PLγ
µε2∂µφ(x) + ε̄1 PLε2F(x)] (12.120)

and by subtracting these two results we deduce

δε1(δε2φ(x)) − δε2(δε1φ(x)) = − 2iε̄1γ
µε2∂µφ(x)

= 2iε̄α1 ε̄
β

2 (γ µC)αβ∂µφ(x)

= − 2ε̄α1 ε̄
β

2 (γ µC)αβ [Pµ, φ(x)]. (12.121)

Comparing our result with (12.118), we find

[ε̄1 Q, ε̄2 Q] = 2ε̄α1 ε̄
β

2 (γ µC)αβ Pµ. (12.122)

Strictly speaking, we have found out only how these operators act on φ(x). To
make sure that (12.122) is a valid relation between the operators Qα and Pµ, we
should check that the same result comes from acting on ψL(x) or on F(x), and
energetic readers may like to do this.

We have not quite reached our result, because (12.122) still contains the
parameters εα . Remembering that these anticommute with each other and with
fermionic operators such as Qα , we have

[ε̄1 Q, ε̄2 Q] = ε̄α1 Qαε̄
β

2 Qβ − ε̄
β

2 Qβ ε̄
α
1 Qα = −ε̄α1 ε̄

β

2 {Qα, Qβ } (12.123)

where, as with the creation and annihilation operators for spin- 1
2 particles,

{Qα, Qβ } is the anticommutator. Thus, we finally find

{Qα, Qβ } = −2(γ µC)αβ Pµ. (12.124)

This can also be written as

{Qα, Q̄β } = 2(γ µ)αβ Pµ (12.125)
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because Q̄β = (QTC)β and C2 = −1. Compare this result with (8.28). We see
first that the elements of the matrices γ µ or γ µC serve as the structure constants
Cabc for the supersymmetry algebra. It is also apparent that the supersymmetry
generators Qα alone do not form a structure analogous to the Lie algebra of one
of our earlier symmetry groups, because the momentum operator appears on the
right-hand side of (12.124) and must also be considered as a part of this structure.
For this reason, we should include the commutators [Pµ, Pν ] and [Qα, Pµ]. By
the method we have just used to find (12.124), it is easy to show that

[Pµ, Pν ] = [Qα, Pµ] = 0. (12.126)

Thus, the generators of supersymmetry and spacetime translations together form
a complete structure (or, in the usual terminology, a ‘closed’ structure). This
structure is not quite the same as a Lie algebra of the kind that we met in chapter 8,
because it involves both commutators and anticommutators. It is called a graded
Lie algebra. The graded Lie algebra that we have found is usually considered
as part of a larger one, which also includes the generators Mµν of Lorentz
transformations and rotations, and is called the super-Poincaré algebra. For our
present purposes, we need to know only the commutator

[Qα, Mµν ] = 1
2 (σ

µν)αβ Qβ (12.127)

which can be established by the same method as before. We have derived the set
of (anti)commutation relations (12.124)–(12.127) from the field transformations
that we already knew to constitute a symmetry of the Wess–Zumino model. To
progress, we must now suppose that the same graded Lie algebra will apply to
other theories that exhibit supersymmetry. As a matter of fact, more general
versions of the supersymmetry idea (called extended supersymmetries) can be
constructed, but I shall not deal with them here.

After this rather lengthy preamble, we are ready to address the question of
what species of particles can be grouped into supersymmetry multiplets. First,
consider the fact that the supercharges Qα form a Majorana spinor. This means
that Qc = C Q̄T is equal to Q, or (Cγ 0T)αβ Q†

β = Qα . Using the Weyl
representation of the γ matrices given in §7.5, readers should find it an easy matter
to work out the elements of the matrix Cγ 0T and hence to verify that

Q3 = −Q†
2 and Q4 = Q†

1. (12.128)

We shall concentrate on the supermultiplets that can be formed from massless
particles; masses can be introduced at a later stage as we saw in §12.7.2. In
particular, consider a single-particle state, in which the particle has 4-momentum
pµ = (p, 0, 0, p). Because of Lorentz covariance, our deductions about this
state will apply equally to states with other 4-momenta. Since Qα commutes with
Pµ, the result of acting with Qα on such a state will be another state with the
same 4-momentum, so we can consider just the subspace of the whole Hilbert
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space that consists of all these states. Within this subspace, the operator Pµ can
be replaced with the eigenvalues pµ. In particular, the anticommutation relation
(12.124) becomes

{Qα, Qβ } = −2 p(γ 0C − γ 3C)αβ = 4 p


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


αβ

. (12.129)

Taking this together with (12.128), the anticommutation relations for the Qα can
be summarized as

Q1 Q†
1 + Q†

1 Q1 = 4 p (12.130)

Q2 Q†
2 + Q†

2 Q2 = 0 (12.131)

Q1 Q1 = Q†
1 Q†

1 = Q2 Q2 = Q†
2 Q†

2 = 0. (12.132)

The second one, (12.131), allows us to dispense with Q2 altogether, as can be
seen in the following way. Let |�〉 be one of the states in our subspace, and
let |� ′〉 = Q2|�〉 and |� ′′〉 = Q†

2|�〉, which implies 〈� ′| = 〈�|Q†
2 and

〈� ′′| = 〈�|Q2. Then we find from (12.131) that

〈�|
(

Q2 Q†
2 + Q†

2 Q2

)
|�〉 = 〈� ′′|� ′′〉 + 〈� ′|� ′〉 = 0. (12.133)

But neither 〈� ′′|� ′′〉 nor 〈� ′|� ′〉 can be negative, so they must both vanish. This
means that Q2 and Q†

2 give zero when acting on any vector in the subspace and
can be ignored.

As we know from §§7.5 and 7.6, massless particles of spin s can exist only
in states of definite helicity, with spin components of ±s in the direction of their
3-momenta. Within our subspace, the relevant component of angular momentum
is J 3 = M12. The spin matrix on the right-hand side of the commutation relation
(12.127) is easily found to be

1
2σ

12 = 1
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (12.134)

so we finally discover the commutators that will yield our answers:

[Q1, J 3] = 1
2 Q1 and [Q†

1, J 3] = − 1
2 Q†

1. (12.135)

Comparing these with the commutators of the energy raising and lowering
operators (5.60) and (5.61) of the harmonic oscillator, we see that acting with
Q1 reduces the helicity J 3 of a state by 1

2 , while acting with Q†
1 increases the

helicity by 1
2 . In fact, we can repeat the argument that gave us the energy
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spectrum of the harmonic oscillator to find all the allowed helicity values in a
supermultiplet. Within the multiplet, let |hmin〉 be the state of lowest helicity, for
which Q1|hmin〉 = 0. Acting with Q†

1 on this state, we get a state of helicity
hmin + 1

2 ,

Q†
1|hmin〉 = |hmin + 1

2 〉. (12.136)

Acting with Q†
1 on |hmin + 1

2 〉 gives zero, on account of (12.132), while acting
with Q1 gives us back our original state:

Q1|hmin + 1
2 〉 = Q1 Q†

1|hmin〉 = (4 p − Q†
1 Q1)|hmin〉 = 4 p|hmin〉. (12.137)

We see, then, that each supersymmetry multiplet consists of just two states, say
with helicity h and h + 1

2 . As in the Wess–Zumino model (for which h = 0), a
supersymmetric theory containing this multiplet will also contain the multiplet
of antiparticles, with helicities −h and −(h + 1

2 ). In terms of particles, a
supermultiplet contains just two particles—one with spin s and one with spin
s + 1

2 .

12.7.5 Supersymmetric gauge theories and supergravity

The business of constructing supersymmetric gauge theories that might have
some relevance to the real world is rather too complicated for me to give any
detailed account here, but some general features can be appreciated without
too much trouble. It is easy to see, for example, that the standard model is
not supersymmetric. In a supersymmetric theory, each of the gauge bosons
would belong to a supermultiplet, with a partner whose spin is either s = 1

2
or s = 3

2 . No fundamental spin- 3
2 particles are known, so let us suppose that

the partners are spin- 1
2 particles. Then if weak isospin and supersymmetry are

both to be valid symmetries, each weak-isospin multiplet must itself be composed
of supermultiplets. Since the W± bosons have isospin t = 1, their spin- 1

2
partners should also have t = 1. They cannot, therefore, be identified with
the quarks or leptons, whose left-handed components have t = 1

2 and whose
right-handed components have t = 0. In fact, if the world is supersymmetric,
then all of the known particles must have distinct superpartners. According to
the traditional terminology for these ‘sparticles’, there would exist scalar partners
for the quarks and leptons (the ‘squarks’ and ‘sleptons’), spin- 1

2 partners for the
gauge bosons (the ‘wino’, ‘zino’, ‘photino’ and ‘gluinos’) and a spin- 1

2 partner
for Higgs particle (whose name I leave it as an exercise for readers to determine).
More accurately, it turns out that two multiplets of Higgs fields are needed to
generate all the fermion masses within a supersymmetric theory.

Here, then, is the second reason why supersymmetry must be broken. Not
only do we observe no pairs of bosons and fermions with the same masses, but no
particle observed to date can be identified as the supersymmetric partner of any
other known particle. If supersymmetry has anything to do with the real world,
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it must be spontaneously broken in such a way that all the partners of the known
particles have masses that are too large for these ‘sparticles’ to be produced at
currently accessible energies. Mechanisms that achieve this can be invented, but
there is no consensus on which of them, if any, might be correct. Indeed, the
whole idea might seem to be an unpromising, ad hoc contrivance, were it not for
one intriguing piece of evidence. A theoretical model has been constructed, which
is called the minimal supersymmetric standard model (or MSSM), although it is
not, strictly speaking, supersymmetric. Rather, it is to be thought of as what
remains of an underlying, genuinely supersymmetric (but largely unspecified)
theory, when the fields associated with particles that acquire very large masses
through spontaneous symmetry breaking are left out. The fields in the MSSM
are those for the known particles and their superpartners, but its Lagrangian
density contains terms that break supersymmetry explicitly. By adjusting its
parameters appropriately, this model can be made to agree with experimental data
as accurately as the ordinary standard model, but it achieves one more success.
This comes about because the existence of extra particles changes the numbers βi

in (12.74)–(12.76) that determine the variation of the running coupling constants
with energy. As I mentioned in §12.6, the coupling constants calculated from the
standard model become very similar at a unification energy of about 1015 GeV,
but they do not all become equal at exactly the same energy. When this calculation
is repeated, using the βi of the MSSM, it is found that they do all become equal
(within the accuracy of experimental data, which are now quite precise), at an
energy of about 2 × 1016 GeV. At the time of writing, this is the one indication
from actual observations that the mathematics of supersymmetry may be relevant
to particle physics. (It is worth mentioning, though, that some of the mathematics
of supersymmetry has found applications to certain problems in condensed-matter
physics, which mainly concern disordered systems. Interested readers may like to
consult the book by Efetov (1997).)

We saw in §12.7.3 that the spontaneous breaking of supersymmetry implies
the existence of a massless Goldstone fermion. Even if all the other ‘sparticles’
have masses that are too large for them to have been observed, this cannot
apply to the Goldstone fermion, and there is no known particle with which it
can be identified. However, the Goldstone bosons that might be expected from
the spontaneous breaking of the electroweak symmetry are also not observed.
The reason, as I explained in §11.7.3, is that when a local gauge symmetry is
spontaneously broken, the ‘would-be Goldstone boson’ appears not as a massless
spin-0 particle, but rather as the zero-helicity component of the massive gauge
boson. We might wonder, then, whether supersymmetry can be promoted to
some kind of local gauge symmetry, so that the theory would be invariant
under transformations similar to (12.84)–(12.86), but with a spacetime-dependent
parameter ε(x). This is indeed possible, though algebraically too complicated
for me to give more than some qualitative remarks. It is crucial to remember
that supersymmetry transformations on their own do not form a closed algebraic
structure. As we saw in (12.124), it is necessary also to include spacetime
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translations. Now, a local spacetime translation xµ → xµ + aµ(x), with
some arbitrary 4-vector aµ(x), amounts to a general coordinate transformation
of the kind that we dealt with in chapter 2. Therefore, a theory that is locally
supersymmetric must also be invariant under general coordinate transformations,
so it must include gravity. It is, in short, a supergravity theory. One of the
gauge fields associated with the combined local symmetry of general coordinate
transformations and supersymmetry must be the metric tensor gµν(x) (or, more
or less equivalently, the vierbein (7.130)) and we have seen in §7.6.2 that the
corresponding particles are gravitons, which have spin 2. The other is a ‘Rarita-
Schwinger’ field ψµ(x), which is 4-vector, each of whose components is a spinor.
A field of this kind describes a spin- 3

2 particle which, in accordance with our
discussion in §12.7.4, is the superpartner of the graviton—the ‘gravitino’. The
field ψµ(x) has 16 components but, as with the fields for spin-1 and spin-2
particles, not all of these components represent real, independent physical degrees
of freedom. In fact, a massive spin- 3

2 particle has just four helicity states,
h = ± 1

2 ,± 3
2 , while a massless one has only the states with h = ± 3

2 available
to it. In a supergravity theory with unbroken supersymmetry, the gravitino is
massless. When local supersymmetry is spontaneously broken, via a ‘super-
Higgs’ mechanism, the two degrees of freedom associated with the Goldstone
fermion appear as the extra h = ± 1

2 states of a massive gravitino, rather than as
an independent massless particle.

I pointed out earlier that although it is quite straightforward to write down
a generally-covariant Lagrangian density, which on the face of it describes a
quantum theory of gravitational forces, such a theory is not renormalizable. Since
then, we have learned that supersymmetry leads to cancellations of potentially
divergent terms in perturbation theory. We might wonder, then, whether
supergravity, although not renormalizable by the criteria of chapter 9, might
actually be finite, in the sense that all the potential divergences might cancel.
Superficially, we might speculate that the chances of this happening would be
improved if our theory had the greatest possible amount of symmetry. There
are, as I mentioned in §12.7.4, extended versions of supersymmetry in which N
independent supersymmetry transformations are permitted, and correspondingly
there are N sets of generators Qa

α , with a = 1, . . . , N . In such a theory, there
are N helicity-raising and helicity-lowering operators of the kind that appeared in
(12.135), which means that the helicities of states in an extended-supersymmetry
multiplet can vary from −hmax to +hmax in N steps of 1

2 . Simple arithmetic
shows, therefore, that hmax = N/4. If we allow no fundamental particles with
spins greater than the graviton’s spin of 2 (and there are theoretical reasons
for believing that no fundamental particles with higher spins are possible), then
the maximum number of supersymmetries is N = 8. In a theory having this
maximum degree of symmetry, only one supermultiplet is possible, and it turns
out that the Lagrangian of this theory is uniquely determined as well. In the
1980s, considerations of this kind encouraged the hope that N = 8 supergravity
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might be the ‘theory of everything’, determined uniquely by symmetry principles.
Painstaking investigations have shown this hope to be unfounded, however. It
turns out that, although many cancellations of infinities do occur, they are not
sufficient to make the theory finite. Moreover, it does not seem to be possible
to recover, by means of spontaneous symmetry breaking, a theory whose lighter
particles are the ones actually observed.

In summary, the situation we have arrived at is roughly this. On the
one hand, the standard model of strong, electromagnetic and weak interactions,
supplemented with the classical theory of gravity, is consistent with all
experimental data, with the possible exception of neutrino masses. On the other,
there seem to be compelling theoretical reasons for doubting that these edifices
can really describe the world at its most fundamental level, and the apparent
unification of coupling constants at 1015–1016 GeV looks like an experimental
pointer towards some deeper theory. Grand unified theories, whether or not they
incorporate supersymmetry, either fail to reproduce the world as we know it, or
do so only at the expense of ad hoc manoeuvres that leave the resulting theories
hardly more plausible than the standard model itself. For many theorists, hopes
of a satisfactorily unified theory of the physical world currently reside in string
theory, about which I shall have something to say in chapter 15. At the time of
writing, though, it is hard to know whether such hopes may eventually prove well
founded.

12.7.6 Some algebraic details

Throughout this section, the γ matrices are those of the Weyl representation given
in §7.5. In particular, the charge conjugation matrix C has the properties

C† = CT = C−1 = −C [C, γ 5] = [C, PL] = [C, PR] = 0. (12.138)

The chirality matrix γ 5 has the properties γ 5T = γ 5† = γ 5, and this implies that

PT
L = P†

L = PL PT
R = P†

R = PR . (12.139)

Because γ 5 anticommutes with all the γ µ, we have

PLγ
µ = γ µPR and PRγ

µ = γ µPL. (12.140)

A Majorana spinor is defined by the property ψc = Cψ̄T = ψ , so we can
deduce that for a Majorana spinor ψ̄ = ψTC . However, its right- and left-handed
components are not themselves Majorana spinors. Their Dirac conjugates are
given by

ψ̄L = (PLψ)†γ 0 = ψ† PLγ
0 = ψ̄PR (12.141)

because γ 5γ 0 = −γ 0γ 5, and similarly ψ̄R = ψ̄PL. A consequence of this is
that, for two Majorana spinors ψ1 and ψ2,

ψT
1LCψ2L = ψT

1 PL Cψ2L = ψT
1 C PL ψ2L = ψ̄1 PL ψ2L = ψ̄1Rψ2L. (12.142)
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If M is a 4 × 4 matrix, then ψT
1 Mψ2 is a matrix with a single element, which

would ordinarily be equal to its own transpose. However, because ψ1 and ψ2 are
anticommuting objects, we get

ψT
1 Mψ2 = −ψT

2 MTψ1 (12.143)

the − sign arising from reversing the order of ψ1 and ψ2. However, the complex
conjugate of this object must be defined in a way that is consistent with Hermitian
conjugation: (AB)† = B† A†, regardless of commutation properties. Thus, we
have

(ψ
†
1 Mψ2 )∗ = (ψ

†
1 Mψ2 )† = ψ

†
2 M†ψ1 . (12.144)

Readers who wish to verify the details of the results given in the preceding
subsections should find that a patient application of the algebraic miscellany set
out here will meet their purpose. Those who wish to verify the transformation
(12.90) of the Wess–Zumino Lagrangian will find it helpful to note that

(ηµν − γ νγ µ)∂µ∂νφ(x) = 1
2 [γ µ, γ ν]∂µ∂νφ(x) = 0. (12.145)

Exercises

12.1. Suppose that the state |νe〉 containing an electron-type neutrino and the state
|ντ 〉 containing a τ -type neutrino are given by

|νe〉 = cos θν |ν1〉 + sin θν |ν2〉 |ντ 〉 = − sin θν |ν1〉 + cos θν |ν2〉.
The particles ν1 and ν2 are ‘mass eigenstates’, which means that they can exist
as particles with definite masses, m1 and m2, and thus with definite energies

Ei =
√

p2 + m2
i . On the other hand, the neutrinos produced in association

with electrons or positrons in nuclear reactions are in the state |νe〉. The angle
θν is a mixing angle analogous to the Cabibbo angle θC in (12.59). Using the
Schrödinger picture of time evolution, show that the state |ν(t)〉, which is equal to
|νe〉 at the moment t = 0 when a neutrino is produced with a definite 3-momentum
of magnitude p, is given at a later time by

|ν(t)〉 =
(

cos2 θνe−iE1t + sin2 θνe−iE2t
)

|νe〉
+ cos θν sin θν

(
e−iE2t − e−iE1t

)
|ντ 〉.

Consider a neutrino produced in the sun, a distance L from the Earth, with a
momentum p that is much greater than m1 or m2. We can approximate the
energies by Ei ≈ p + m2

i /2 p and take the neutrinos to travel with essentially
the speed of light. A terrestrial detector is sensitive only to neutrinos of type νe.
Show that the ‘survival probability’ Pνe(L), of finding the neutrino in the state
|νe〉 on arrival at the Earth is given approximately by

Pνe(L) ≈ 1 − sin2(2θν) sin2(�m2L/4 p)
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where �m2 = |m2
1 − m2

2|. If the masses are small, then p is essentially the
energy of the detected neutrino. The rate at which solar neutrinos are detected
falls short of that expected on the basis of the standard theory of nuclear reactions
in the sun by some 50–75%. The actual shortfall varies with energy; the
various detectors used are sensitive to different energy ranges, corresponding
to neutrinos produced by different reactions. ‘Neutrino oscillations’ of the kind
studied here offer one solution to this solar neutrino problem, though other effects
must also be taken into account, and a more general mixing of three neutrino
species should probably be allowed for. This, together with similar phenomena
involving neutrinos produced in nuclear reactors or by cosmic ray interactions
in the upper atmosphere, suggests quite strongly that neutrinos have small, but
non-zero masses.

12.2. Let ψ = (ψ1, ψ0, ψ−1)
T be a triplet of scalar fields with weak isospin

t = 1. Show that the matrices that generate isospin rotations of this triplet are

t1 = 1√
2

( 0 1 0
1 0 1
0 1 0

)
t2 = −i√

2

( 0 1 0
−1 0 1
0 −1 0

)
t3 =

( 1 0 0
0 0 0
0 0 −1

)
.

Why do these matrices differ from those shown in equations (B.5) and (B.8) of
appendix B?

12.3. Consider an extended version of the GWS model where, in addition to
the Higgs field (12.18), there is a triplet Higgs field, such as the ψ of the
previous exercise, whose vacuum expectation value is (0, 0, w)T. What weak
hypercharge must be assigned to ψ? Show that the value of the parameter
ρ = M2

W/M2
Z cos2 θW, which is found experimentally to be very close to 1, is

given by

ρ = 1 + 2w2/v2

1 + 4w2/v2
.

Aside from the value of this parameter, why could an electroweak theory
involving massive fermions not be constructed using ψ as the only Higgs field?



Chapter 13

Solitons and So On

In both statistical mechanics and quantum field theory, the Euler–Lagrange
equations for interacting systems, such as (11.26) in the Ginzburg–Landau
treatment of a ferromagnet or (8.43) for a non-Abelian gauge theory, are nonlinear
equations governing the behaviour of fields such as the magnetization density
M(x) or the gauge field Aµ(x). Until now, we have dealt with the nonlinearities
perturbatively (apart from our qualitative discussion of QCD in §12.5, where
we saw that perturbation theory works only at high energies). That is to say,
we have identified constant values of the fields that represent the most stable
state of the system by minimizing an appropriate potential or free energy, and
treated fluctuations about these constant values as excitations that interact only
weakly. In quantum field theory (other than confining theories such as QCD), the
quantized ‘excitations’ of the vacuum state are, of course, the particles observed
by experimenters.

Quite often, nonlinear differential equations have solutions that are more
complicated than small oscillations about a constant value. They are generically
referred to as solitons (although some authors reserve this word for solutions
having special properties that will not greatly concern us) or, for reasons that
will emerge, as topological defects. In physical terms, we may interpret these
solutions as corresponding to spatially inhomogeneous states of our system, or
as representing some kind of particle or extended physical object. In condensed-
matter physics, phenomena of this kind are well known; quantum field theory
strongly suggests that they ought to occur at a more fundamental level also, but
there is no experimental evidence that they actually do. In this chapter, I shall
discuss a few examples of solitonic objects and of the theoretical ideas that prove
useful in understanding them. For more detailed treatments, readers may like
to consult, for example, Coleman (1985), Nakahara (1990), Rajaraman (1987),
Tinkham (1996), and Vilenkin and Shellard (2000).

346
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Figure 13.1. Sketch of the domain-wall function (13.3).

13.1 Domain Walls and Kinks

Perhaps the simplest example of a soliton (though it does not meet the more
technical definition that I mentioned above) is the domain wall studied in
exercise 11.2. In the notation that I shall use throughout this chapter, it is a
solution of the equation

∇2φ(x) = −µ2φ(x) + 1
6λφ

3(x) = V ′(φ(x)) (13.1)

where the potential
V (φ) = − 1

2µ
2φ2 + 1

4!λφ
4 (13.2)

corresponds to the broken curve in figure 11.6(b). If we allow φ to vary only in,
say, the x direction, then it is easy to verify that

φw(x) = v tanh((x − x0)/ξ) (13.3)

is a solution, where v = (6µ2/λ)1/2 is the positive minimum of the potential
and ξ = √

2/µ. The function φw(x) is sketched in figure 13.1. As the figure
indicates, ξ is a measure of the thickness of the domain wall, which is to say that
φ(x) is almost constant, except in a region whose length is of the order of ξ . This
thickness is actually twice the correlation length defined in (11.33).

Beyond the simple fact that it exists, there are several interesting things to be
said about this solution. First of all, let us calculate its energy. If we regard φ as
representing the magnetization of a ferromagnet or the density of a fluid in three
dimensions, then the energy density of the system is

E(φ) = 1
2∇φ · ∇φ − 1

2µ
2φ2 + 1

4!λφ
4 + 3

2λ
−1µ4 (13.4)

where I have added the constant 3µ4/2λ to give the ground states φ = ±v an
energy density E(±v) = 0. From a macroscopic point of view, the plane x = x0
contains a domain wall separating the two coexisting phases, and the sensible
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thing to calculate is the energy per unit area ε of this wall. It is given by

ε =
∫ ∞

−∞
dx E(φw(x)) = 3µ4

λ

∫ ∞

−∞
dx sech4((x − x0)/ξ) = 4

√
2µ3

λ
. (13.5)

We get a finite answer, because φw(x) differs appreciably from ±v, and thus
the energy density differs appreciably from zero, only in a region of width ξ .
Although this energy per unit area is finite, it is certainly not zero. In fact, the
total energy contained in the domain wall is infinite if our system is of infinite
size in the y and z directions.

The question arises, is this state of the system a stable one? Generally
speaking, we would expect an instantaneous state in which a substantial amount
of energy is contained in a restricted region of space to ‘dissipate’. With the
passage of time, that is to say, a localized ‘lump’ of energy would be expected to
decay, the energy being converted into vibrations of φ about the minimum-energy
value v. In terms of quantum field theory, a heavy particle generally decays
into lighter particles, unless there is some special circumstance that prevents
this from happening. It happens that the domain-wall state is stable, and it
will be instructive to look at this from two points of view: by investigating
the effect of small fluctuations about the domain-wall state and by considering
its topological properties. The Euler–Lagrange equation (13.1), of which the
domain-wall configurationφw(x) is a solution, is the condition for the total energy

Heff(φ) =
∫

d3x E(φ) =
∫

d3x
[

1
2∇φ · ∇φ + 1

4!λ(φ
2 − v2)2

]
(13.6)

to have an extremal value. If we think of the solution φw(x) as a point in the
infinite-dimensional space of all real functions φ(x), then this point is one at
which Heff has a maximum, a minimum or some kind of a saddle point. We see
from (13.6) that this energy is a sum of kinetic and potential energies, neither of
which can be negative. The absolute minima are the constant solutions φ = ±v

for which Heff = 0, but φw(x) might be a local minimum. If it is, then any small
change in φ(x) will cause the energy to increase. We can check whether this is
so by finding the energy of a configuration φ(x) = φw(x) + φ̃(x), assuming that
φ̃(x) is small. We get

Heff(φ) − Heff(φw) = 1
2

∫
d3x

[
∇φ̃ · ∇φ̃ − µ2φ̃2 + 1

2λφ
2
wφ̃2

]
+ O(φ̃3)

= 1
2

∫
d3x φ̃

[
−∇2 − µ2 + 1

2λφ
2
w

]
φ̃ + O(φ̃3) (13.7)

where the second version is obtained from an integration by parts. The term linear
in φ̃(x) vanishes because we are expanding about an extremum.

A standard method of making sense of this expression requires us to find the
eigenfunctions and eigenvalues of the differential operator

D = −∇2 − µ2 + 1
2λφ

2
w = −∇2 + 2µ2 − 3µ2sech2((x − x0)/ξ). (13.8)
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Since our main interest is clearly in how the state of system varies with position
in the x direction, I shall simplify matters from now on by considering the one-
dimensional system that we obtain by ignoring the coordinates y and z parallel
to the domain wall. With this simplification, we need the functions f (x) and the
eigenvalues ω that satisfy the equation[

−∂2
x + 2µ2 − 3µ2sech2(x̄/ξ)

]
f (x) = ω2 f (x) (13.9)

where ∂x means ∂/∂x and x̄ = x − x0. This equation has the same form
as the time-independent Schrödinger equation (5.74). It turns out that there
are two ‘bound states’ and a continuous spectrum of ‘scattering states’. The
eigenfunctions and eigenvalues are

f0(x) = √
3/4ξ sech2(x̄/ξ) ω2

0 = 0 (13.10)

f1(x) = √
3/2ξ sech(x̄/ξ) tanh(x̄/ξ) ω2

1 = 3
4 m2 (13.11)

fq (x) = Aqeiqx̄
[
3 tanh2(x̄/ξ) − 1 − q2ξ2 − 3iqξ tanh(x̄/ξ)

]
ω2

q = q2 + m2 (13.12)

where m2 = 2µ2 = 4/ξ2 and the amplitude Aq is

Aq = m2/4
√
(q2 + 1

4 m2)(q2 + m2). (13.13)

These eigenfunctions have the orthonormality properties∫ ∞

−∞
dx f 2

0 (x) =
∫ ∞

−∞
dx f 2

1 (x) = 1 (13.14)

∫ ∞

−∞
dx fq(x) fq ′(x) = 2πδ(q + q ′) (13.15)∫ ∞

−∞
dx f0(x) f1(x) =

∫ ∞

−∞
dx f0(x) fq(x) =

∫ ∞

−∞
dx f1(x) fq(x) = 0 (13.16)

and it is also true that f ∗
q (x) = f−q (x). We now express φ̃(x) as a linear

combination of these eigenfunctions

φ̃(x) = c0 f0(x) + c1 f1(x) +
∫

dq

2π
c(q) fq(x). (13.17)

Because φ̃(x) is real, c0 and c1 are real, and c∗(q) = c(−q). On substituting this
expansion into (13.7), we find

Heff(φ) − Heff(φw) = 1
2

∫
dx φ̃Dφ̃ = 1

2 |c1|2ω2
1 + 1

2

∫
dq

2π
|c(q)|2ω2

q . (13.18)
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The fact that all the eigenvalues ω2
1 and ω2

q are positive tells us that this energy
difference is positive. Any small change φ̃(x), specified by the coefficients c0,
c1 and c(q) leads to an increase in energy, so the domain-wall configuration is
indeed a local minimum of the energy.

The reason for the stability of this domain-wall configuration is, in a sense,
a topological one. If we insist that the energy (13.5) should be finite (and we
normally do insist on this, because a state with infinite energy has a weight of
zero in a partition sum such as (11.23)), then φ(x) can differ significantly from
±v only over a finite distance. In particular, we must have φ(x) → ±v for x →
±∞. The allowed configurations fall into four classes (generally called sectors)
distinguished by the four possible combinations of boundary conditions. We see
that φw(x) has the minimum energy possible in the sector with φ(−∞) = −v

and φ(+∞) = +v. Roughly speaking, it achieves this by changing from −v

to +v over an optimal distance of the order of ξ . The optimization consists in
balancing the cost in potential energy, which increases if the change takes place
over a larger distance, against the cost in gradient energy (∇φ)2, which increases
if φ(x) varies more rapidly. The only way to reduce the energy of φw is to change
it into a configuration belonging to one of the sectors with φ(+∞) = φ(−∞).
Clearly, this cannot be achieved by adding any small φ̃(x), which accounts for our
result that (13.18) is positive. In terms of thermal fluctuations in a system such
as a ferromagnet, we can see that a fluctuation which changes the state from one
sector to another would have to move an entire half of the system, between x0 and
∞ across the energy barrier at φ = 0. This requires an infinite energy (or at least
a very large energy in a finite but large system) and therefore has an infinitesimal
probability of occurring. In principle, the partition function (11.23) is a sum of
four parts, say

Z = Z++ + Z+− + Z−+ + Z−− (13.19)

where Zab is the integral over configurations for which φ(−∞) = av and
φ(+∞) = bv. When we study the statistical mechanics of a classical system,
the ensemble average is intended to represent an average over the fluctuations
that might occur during the time over which a system is observed, so the relevant
partition function is normally the one belonging to just one sector, say Z++ for
a homogeneous system, or Z−+ for a system that contains a domain wall of the
kind φw. For a quantum-mechanical system, things may be different, because
the state at any instant of time might be a superposition of states belonging to
different sectors. Depending on the particular situation we wish to study, the
functional integral that represents a probability amplitude might include integrals
over several sectors.

The existence of these different sectors of field configurations (or, in
quantum mechanics, of vectors in the underlying Hilbert space) is connected,
in a way that will become clearer when we look at further examples, with a
topological relationship between two spaces. One of these spaces consists of
all the points at the spatial boundaries of our system—in this case, the two points
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x = ±∞. The other is the set of values of φ at which the potential V (φ) has its
absolute minima. In quantum field theory, these minima correspond to different
possibilities for the vacuum state, and this space is called the vacuum manifold.
In this example, the vacuum manifold also consists of two points, and this fact
clearly has a bearing on the nature of the boundary conditions that distinguish the
various sectors. In fact, the possibility of having a localized domain wall arises
only because of the impossibility of changing the value of φ continuously from
one minimum to another without some large change in potential energy. Consider,
indeed, a theory of two fields, φ1 and φ2, with the potential shown in figure 11.8.
The field values at x = ±∞ both lie on the circle of minima, and we can represent
the value of φi at any spatial point x as a point on the potential energy surface.
Without calculating an exact solution to the Euler–Lagrange equations, we can see
that there is a low-energy configuration φi (x) that interpolates between φi (−∞)

and φi (+∞) by moving slowly along a path that remains close to the circle of
minima as x varies. Its potential energy is always small, and the gradient energy
is also small because φi (x) need vary only slowly with x . A domain wall would
correspond to a path passing over the central hill, and this is indeed a solution to
the Euler–Lagrange equations if the values φi (±∞) are at diametrically opposite
points. However, this configuration is now unstable, because the path can be
continuously deformed to a low-energy one. In general, a stable domain wall will
be possible only if the vacuum manifold has at least two disjoint parts.

It is often convenient to distinguish different sectors according to the value
of a topological charge. In the present example, it is defined by

Q = [φ(+∞) − φ(−∞)]/2v = (2v)−1
∫ ∞

−∞
dx ∂xφ(x). (13.20)

A topological charge is always the integral of a total derivative, and thus depends
only on the boundary conditions. Here, the topological charges of configurations
in the various sectors are Q++ = Q−− = 0, Q−+ = 1 and Q+− = −1.

The eigenfunction f0(x) given in (13.10) turns out to be especially
important. It is no accident that its eigenvalue is exactly zero. In fact, we see
that a state of our system containing a domain wall is one in which a continuous
symmetry, namely translation invariance, is spontaneously broken. By analogy
with the Goldstone bosons that we encountered in §11.7.1, we might expect this
state to have a zero-energy (or ‘massless’) excitation, and clearly it does. A simple
proof that this excitation must exist, regardless of the details of the potential
V (φ) that specifies a particular model system, goes like this. The Euler–Lagrange
equation (13.1) satisfied by φw(x) is

−∂2
xφw + V ′(φw) = 0. (13.21)

Translation invariance means that V (φw) depends on x only through φw(x), so by
differentiating this equation, we find[

−∂2
x + V ′′(φw)

]
∂xφw = 0. (13.22)



352 Solitons and So On

The differential operator −∂2
x + V ′′(φw) is precisely the operator D in (13.9),

so that equation necessarily has a solution f0(x) proportional to ∂xφw(x), with
eigenvalue equal to zero. Let us make explicit the fact that (13.3) is one of a
family of solutions, centred at the point x0 by writing it as φw(x − x0). If we
change x0 by a small amount, say δx0, then a Taylor expansion gives

φw(x − x0 − δx0) ≈ φw(x − x0) − δx0∂xφw(x − x0) (13.23)

so the contribution c0 f0(x) to φ̃(x) in (13.17) is a small change in the state of the
system that corresponds to moving the position of the domain wall. The function
f0(x) is called the translation mode.

Let us now change our point of view, and consider how the soliton might
be interpreted in a genuine quantum field theory. If the theory exists in a
four-dimensional spacetime, the interpretation is much the same as the one we
have already thought about. That is to say, when the symmetry φ → −φ

is spontaneously broken, there may be some regions of the universe in which
〈0|φ|0〉 = +v and others in which 〈0|φ|0〉 = −v, and these regions will be
separated by domain walls. Within the standard model of particle physics, this
interesting possibility does not apply, because the gauge symmetry is a continuous
one, with a potential for the Higgs field similar to figure 11.8, and any domain wall
would be unstable for the reasons we discussed earlier. Alternatively, we might
consider a toy field theory that exists in a spacetime with one spatial dimension.
The action for this theory is

S =
∫

dt dx
[

1
2 (∂tφ)

2 − 1
2 (∂xφ)

2 − V (φ)
]

(13.24)

and the Euler–Lagrange equation is

∂2
t φ − ∂2

x φ = −V ′(φ). (13.25)

The special feature of this one-dimensional theory is that the soliton now has
an energy density that is concentrated near a single point in space, so it might
be thought of as some kind of particle. In this context, the soliton solution to
the field equation of the λφ4 theory with potential (13.2) is generally called a
kink, so I will now denote it by φK(x). The function (13.3) is a solution of
the new equation (13.25), which reduces to (13.1) when φ is time-independent,
and represents a kink that is stationary relative to the (t, x) frame of reference.
However, our theory is now Lorentz-invariant, so we ought to be able to find a
moving-kink solution by making a Lorentz transformation. In fact, it is simple to
verify that

φK

(
x − x0 − ut√

1 − u2

)
(13.26)

is a solution for a kink moving with speed u. The thickness of this moving kink is√
1 − u2 ξ , so the lump of energy that it describes has undergone the Fitzgerald

contraction that we might have expected.
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Various strategies for treating this and similar models as fully quantum-
mechanical systems have been developed in considerable detail (see, for example,
Rajaraman (1987) and the original papers cited there). To get everything right is
quite a tricky matter, so I shall attempt only to convey some essential ideas. Given
a static kink, let us again write φ(x, t) = φK(x) + φ̃(x, t). Taking account of the
equation for φK, the Euler–Lagrange equation becomes[

∂2
t − ∂2

x + V ′′(φK)
]
φ̃ = − 1

2λφKφ̃2 − 1
6λφ̃

3. (13.27)

The terms on the right-hand side represent interactions between particles and
can be ignored to a first approximation if λ is small. The remaining equation
is essentially the Klein–Gordon equation (7.2) but with a position-dependent
‘mass’. It is easily solved by using an expansion of the form (13.17) with time-
dependent coefficients ci . The part involving the continuum of eigenvalues ωq

has a straightforward interpretation in terms of the spin-0 particles that would be
described by the theory without the kink. For the sake of argument, let us call
these particles ‘mesons’ and write

φmeson(x, t) =
∫

dq

2π
c(q, t) fq(x). (13.28)

Since the functions fq(x) are solutions of (13.9), the equation for c(q, t) is
∂2

t c(q, t) = −ω2
qc(q, t) and its solutions are proportional to e±iωq t . We saw

earlier that c∗(q) = c(−q), because φ(x, t) is real, so we can write

c(q, t) = (2ωq)
−1
[
a(q)e−iωqt + a∗(−q)eiωq t

]
(13.29)

and use the fact that f ∗
q (x) = f−q (x) to express the meson field as

φmeson(x, t) =
∫

dq

2π2ωq

[
a(q)e−iωqt fq (x) + a∗(q)eiωqt f ∗

q (x)
]
. (13.30)

This is clearly analogous to the plane-wave expansion (7.11) for a free scalar
field and the coefficients a(q) and a∗(q) can be promoted to annihilation and
creation operators for mesons in the quantum theory. The functions fq (x) are, of
course, different from the plane-waves eikx for particles of definite momentum
k. In fact, they are the wave functions for particles in the potential U(x) =
V ′′(φK(x)) provided by the kink. At large distances from the centre of the
kink, x → ±∞, they reduce to plane waves of the form eiqx∓iδ/2, where
δ = 2 tan−1(3qξ/(2 − q2ξ2)), so the mesons do have definite momenta in these
distant regions. The angle δ by which the phase of the wavefunction changes as
a particle moves through the potential is well known in the quantum theory of
scattering by potentials and is called, reasonably enough, the phase shift.

At this point, the two degrees of freedom represented by c0 and c1 in
(13.17) are unaccounted for. The coefficient c0 of the translation mode is, as
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it stands, awkward to deal with quantum-mechanically. The reason for this can
be appreciated, for example, by interpreting a functional integral such as (9.32) as
an integral over the coefficients ci . The Hamiltonian in (13.7) is independent of
c0, because ω0 vanishes, and so is the action. Consequently, the integral over c0
produces a meaningless infinite factor. A means of dealing with this arises from
the interpretation of f0(x) as the first term in the Taylor series (13.23) that shifts
the position of the kink. The strategy is to deal with a moving kink, expressing
the total field as

φ(x, t) = φK(x − X (t)) + φ̃(x, t) (13.31)

where φ̃(x, t) now contains no term proportional to f0(x). The new degree of
freedom X (t) that replaces c0(t) is called a collective coordinate. The action for
the kink alone is

SK =
∫

dt dx
[

1
2 (∂tφK)2 − 1

2 (∂xφK)2 − V (φK)
]

=
∫

dt dx
[

1
2 Ẋ2(t)(∂xφK)2 − 1

2 (∂xφK)2 − V (φK)
]
. (13.32)

Because φK is a function just of x − X (t), the change of integration variable
y = x − X (t) eliminates all reference to X (t) except for the factor Ẋ2(t) and we
find

SK =
∫

dt
[

1
2 MK Ẋ2(t) + constant

]
(13.33)

with the kink mass given by

MK = ξ−2v2
∫

dy sech4(y/ξ) = 4
√

2µ3/λ. (13.34)

Not surprisingly, perhaps, this is the same as the energy that we calculated in
(13.5). The action SK looks rather like the kinetic energy for a particle of
mass MK, and the quantum theory of this model can indeed be interpreted as
describing particles of this type, in addition to the mesons. Matters are not entirely
straightforward, however. For example, although the form of SK is suggestive, it
is actually the action for a non-relativistic particle, and this cannot be quite right
in a Lorentz-invariant theory. Indeed, the collective coordinate X (t) cannot be
interpreted exactly as the position of a moving kink, except perhaps in a non-
relativistic limit, because the function φK(x − X (t)) does not include the factor
(1 − u2)−1/2 that appears in the moving-kink solution (13.26). Moreover, X (t)
now appears in place of x0 in the meson wavefunctions as well as in φK itself,
so SK cannot really be considered in isolation. A detailed analysis shows that the
momentum conjugate to X (t) is in fact the total momentum for the system, rather
than that of the kink on its own, so X (t) itself represents the centre of mass of the
entire system, rather than of the kink.

The remaining degree of freedom represented by c1 can be interpreted in
terms of excited states of the kink. In fact, the function f1(x) in the expansion
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(13.17) is the wavefunction for a meson bound in the potential well created by
the kink. In contrast to an electron bound in, say, a hydrogen atom, a meson in
this theory does not carry any charge that would cancel out the attractive potential
of the kink, and since the mesons are bosons, any number of them can occupy
the bound state. Consequently, the excited states of the kink are what might be
thought of as ‘solitonic atoms’, consisting of the kink with any number of mesons
bound to it. If we write c1(t) (which must be real) as

c1(t) = 1√
2ω1

[
a1e−iω1t + a∗

1eiω1t
]

(13.35)

then in the quantum theory the operators a1 and a†
1 act precisely like the energy

lowering and raising operators of the harmonic oscillator; in this case a†
1 adds a

bound meson to the atom while a1 removes one (see exercise 13.2).

13.2 The Sine–Gordon Solitons

It might seem from our discussion in the last section that, even if solitons can
be thought of as particles, they must be particles of a quite different kind from
those we have dealt with previously. That is, a lump of energy represented by the
solution φK(x) seems to be a very different thing from the mesons that are created
and annihilated by a(q) and a†(q). This is not necessarily so, however. Much has
been learned from the study of another one-dimensional field theory, the so-called
sine–Gordon model, whose Lagrangian density is

L = 1
2 (∂tφ)

2 − 1
2 (∂xφ)

2 + (m2/β2) [cos(βφ) − 1] . (13.36)

Its Euler–Lagrange equation is

(∂2
t − ∂2

x )φ = −(m2/β) sin(βφ) or (∂µ∂
µ + m2)φ = 1

6 m2β2φ3 + . . .

(13.37)
so m is the mass of the mesons in this theory and β is a coupling constant.
The potential V (φ) = (m2/β2) [1 − cos(βφ)] has an infinity of minima—the
candidate vacuum states of the model—at φ = 2nπ/β, for n = 0,±1,±2, . . .
and there are static soliton solutions to the equation of motion (13.37) which
interpolate between any neighbouring pair of minima as x varies from −∞ to
+∞. Readers should be able to verify, for example, that the function

φ1s(x) = 4β−1 tan−1(ex/ξ ) (13.38)

is a solution with the boundary values φ(−∞) = 0 and φ(+∞) = 2π/β,
provided that we identify the width parameter as ξ = 1/m. As before, the

function φ1s

(
(x − x0 − ut)/

√
1 − u2

)
is also a solution, representing a moving

soliton whose position is x0 + ut and whose width is ξ̄ = √
1 − u2 ξ . The shape
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of this soliton is qualitatively similar to that of the kink in the λφ4 theory, though
these functions are clearly not exactly the same.

For the sine–Gordon theory, however, many other solitonic solutions can be
obtained. Consider, for example, the function

φ2s(x, t) = 4

β
tan−1

u
(

ex/ξ̄ − e−x/ξ̄
)

(
eut/ξ̄ + e−ut/ξ̄

)
 (13.39)

which has the boundary values φ2s(−∞, t) = −2π/β and φ2s(+∞, t) =
+2π/β. Some straightforward (though somewhat long-winded) algebra will
verify that this too is a solution. It describes two moving solitons: one of them
interpolates between the minima n = −1 and n = 0, the other between the
minima n = 0 and n = 1. We can see explicitly how this works by taking the
limit t → −∞, which gives

φ2s(x, t) ≈ 4β−1 tan−1 {exp
[
(x + x0 + ut)/ξ̄

]− exp
[−(x − x0 − ut)/ξ̄

]}
(13.40)

where x0 = ξ̄ ln u. In the region of space where x is large and negative, say near
x0 + ut , the first exponential is negligibly small, and we have a soliton moving
in the positive x direction. Conversely, in the region where x is near −(x0 + ut),
the second exponential is negligible and we see a soliton moving in the negative x
direction. At very early times, then, we have two widely separated solitons, both
moving toward the origin at x = 0. Similar reasoning shows that at late times,
t → +∞, these two solitons are found moving outwards, having rebounded from
each other at a time near t = 0.

There are, in fact, solutions representing combinations of solitons and
antisolitons that interpolate between any two minima of the potential at x = −∞
and x = +∞, so the possible states fall into an infinite number of topological
sectors. In this case, the topological charge can be defined as

Q = β

2π

∫ ∞

−∞
dx ∂xφ(x, t) (13.41)

and it can take any of the values 0,±1,±2, . . .. This charge is independent of t ,
because it involves only the boundary values φ(±∞, t) which do not change with
time.

Perhaps the most important feature of the sine–Gordon model is the fact, first
demonstrated by S Coleman (see Coleman (1985) for an extended discussion and
references to the original literature), that it is exactly equivalent, as a quantum
field theory, to an apparently quite different model, called the massive Thirring
model. This is a theory of spin- 1

2 particles in one space dimension, with the
Lagrangian density

LT = ψ̄(iγ µ∂µ − mT)ψ − 1
2 g(ψ̄γ µψ)(ψ̄γµψ) (13.42)
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and might be thought of as a toy version of the Fermi theory of §12.1. In a
theory with one time and one space dimension, the spinor ψ(x) has just two
components and there are two 2 × 2 γ matrices, which can be taken as γ 0 = σ 1

and γ 1 = −iσ 2, where σ i are the Pauli matrices (7.28). Coleman’s proof, which
is too lengthy for me to reproduce it here, consists in showing that the Green
functions of these two theories are identical, provided that the coupling constants
are related by

β2 = 4π

1 + g/π
(13.43)

while the masses and field operators are related in such a way that

mTψ̄ψ � −(m2/β2) cos(βφ) (13.44)

where � indicates a technicality that I intend to gloss over. The actual relationship
between the field operators was worked out by S Mandelstam (1975). It is

ψ1(x, t) � a exp[−i#1(x, t)] ψ2(x, t) � −ia exp[−i#2(x, t)] (13.45)

where a is a constant (which includes an infinite renormalization factor as in
(9.70)) and the functions #i (x, t) are

#1(x, t) = 2π

β

∫ x

−∞
!(y, t) dy + β

2
φ(x, t) (13.46)

#2(x, t) = 2π

β

∫ x

−∞
!(y, t) dy − β

2
φ(x, t). (13.47)

In these functions, !(x, t) = φ̇(x, t) is the canonical momentum, which obeys
the equal-time commutation relation (7.14). I must emphasize that (13.45) is a
quantum-mechanical relation between field operators which do not commute. We
cannot recover the Lagrangian density (13.36) of the sine–Gordon theory simply
by substituting the fields (13.45) into (13.42). What Mandelstam’s somewhat
technical analysis does is to show that if φ(x, t) obeys the equation of motion of
the sine–Gordon theory, then ψ(x, t) obeys the equation of motion obtained from
(13.42).

The central point of interest is that the ‘ordinary’ particles created and
annihilated by ψi (x, t) can be identified with the solitons of the sine–Gordon
theory. Remarkably, therefore, although these solitons appear in a bosonic field
theory, they are actually fermions. (The same can be shown to be true of the λφ4

kinks, and exercise 13.3 suggests a simple way of making this plausible, although
it does not constitute a proof.) Whether these solitons are spin- 1

2 particles is a
moot point, because angular momentum has no real meaning in a one-dimensional
space. I shall now give two straightforward calculations that should serve to
indicate how this correspondence works, but I must ask interested readers to
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consult the literature for more of the technical details. First, let us use the equal-
time commutators (7.14) and (7.15) to calculate

C(x, x ′) = [#1(x, t),#1(x
′, t)]

= − iπ
∫ x

−∞
δ(y − x ′) dy + iπ

∫ x ′

−∞
δ(y − x) dy

= − iπ
[
θ(x − x ′) − θ(x ′ − x)

]
(13.48)

where the step function θ(x − x ′) is equal to 0 if x < x ′ and 1 if x > x ′. We see
that C(x, x ′) is equal to −iπ if x > x ′ and +iπ if x < x ′. In either case, we have
exp[C(x, x ′)] = −1, and we can apply the result of exercise 5.7(d) to show that
ψ1(x, t)ψ1(x ′, t) = −ψ1(x ′, t)ψ1(x, t). In fact, similar calculations for the other
field components show that

{ψi (x, t), ψ j (x
′, t)} = {ψi (x, t), ψ†

j (x
′, t)} = 0 for x (= x ′ (13.49)

so it really is possible to construct anticommuting field operators from commuting
ones. Allowing for the possibility that x = x ′, it is possible to derive the
anticommutation relations (7.87), with ! j = iψ†

j , but this is rather more difficult
because considerable care is needed to deal correctly with products of field
operators at the same point. The aim of the second calculation is to find the
commutator [ψ1(x, t), Q], where Q is the topological charge defined in (13.41).
As in the derivation of (13.48), we have[

#1(x, t), φ(x ′, t)
] = −2π iβ−1θ(x − x ′) (13.50)

from which, by the method suggested in exercise 5.3, we can deduce that[
ψ1(x, t), φ(x ′, t)

] = −2πβ−1θ(x − x ′)ψ1(x, t). (13.51)

Since ∂x ′θ(x − x ′) = −δ(x − x ′), we find

[ψ1(x, t), Q] = β

2π

∫ ∞

−∞
dx ′

(
2π

β

)
δ(x − x ′)ψ1(x, t) = ψ1(x, t). (13.52)

This equation is by now very familiar. It has the same form as (5.60) and tells us
that ψ1(x, t) acts on a given state to reduce its topological charge by 1. It does so,
according to (13.51), by creating a ‘point soliton’ of charge -1 at x :

�φ(x ′) = 2π

β
θ(x − x ′) = lim

ξ→0

4

β
tan−1(e−(x ′−x)/ξ ) (13.53)

(see exercise 13.4). Of course, analogous results can be found using any of the
operators ψi and ψ

†
i .

The difference between this point soliton and the solitons of width ξ ,
which are solutions of the classical sine–Gordon equation, can be understood
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as resulting from a renormalization due to interactions in the quantum theory.
Our discussion of QED in §9.7 showed that by keeping only the lowest-order
terms in perturbation theory, we get results for quantities such as scattering
cross-sections and the Coulomb potential which are essentially the classical ones
(except possibly for the effects of the electron’s spin, which has no classical
analogue). Quantum-mechanical corrections to the classical theory are small if
the coupling is weak, as it is in QED, but they will be significant if the coupling
is strong. The same applies here. If the coupling constant β of the sine–Gordon
theory is small, then the quantum theory can be well described in terms of lumps
of energy that are essentially the same as the classical solitons. In this situation,
according to (13.43), the coupling constant g of the massive Thirring model is
very large. On the other hand, if β2 is close to 4π (which constitutes a strong
coupling in this theory), then the classical solitons cannot be expected to give an
accurate picture of the quantum-mechanical excitations. But then g is small, so
an alternative picture of almost-free point particles created by ψ becomes quite
accurate. The equivalence of these two theories is one of the earliest examples
of a phenomenon that has come to be known as duality. This term denotes in
general the possibility of two apparently different field theories (or, for that matter,
statistical-mechanical models) turning out to describe exactly the same physics.
Many examples are known, and we shall encounter some of them. The features
we have uncovered, that strong coupling in one of the dual theories corresponds to
weak coupling in the other, and that solitonic excitations in one theory correspond
to point particles of the dual theory seem to be quite characteristic.

13.3 Vortices and Strings

In a system with more spatial dimensions, different possibilities arise. Consider,
for example, the statistical-mechanical model whose Hamiltonian is (11.55) with
r0 < 0. For the moment, we shall take the number of dimensions to be d = 2, so
in this chapter’s notation it is

Heff(φ) =
∫

d2x
[
∇φ∗ · ∇φ + 1

4λ(φ
∗φ − v2)2

]
. (13.54)

If we write φ(x) = φ1(x) + iφ2(x), then this is equivalent to

Heff(φ) =
∫

d2x
[
|∇φ1|2 + |∇φ2|2 + 1

4λ(φ
2
1 + φ2

2 − v2)2
]

(13.55)

so φ can be regarded as equivalent to a vector φ = (φ1, φ2). This vector
might, perhaps, be interpreted as the magnetization density of a two-dimensional
magnetic system, in which case its direction is a direction in space. Alternatively,
the complex field φ(x) might be the condensate wavefunction of a superfluid or
superconductor, in which case φ1 and φ2 are the components of a vector in a
two-dimensional ‘internal’ space.
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Figure 13.2. Configurations of winding number 0, 1,−1 and 2 for a 2-component field in
two spatial dimensions. Depending on the physical interpretation of the field, the arrows
might represent the directions in real space of atomic spins or the directions in an internal
space which represent the phase angle α(x). There should be an arrow at each point in
space, but only those at selected points on the dashed circle are drawn.

The vacuum manifold of this model is the circle of minima in figure 11.8. As
we discussed earlier, a domain wall described by (13.3) would not be stable, but
for a two-dimensional system the boundary at infinity, which we can think of as
the limit of a large circle, has the same topology as the vacuum manifold. In any
state of finite energy, the magnitude |φ(x)| must, as before, approach the value
v as |x| approaches infinity in any direction. Let us again think of the value of
φ(x) at a point x on a large circle in space as being represented by a point on the
circle of minima. If we move the point x once around its circle in space, the point
representing φ(x) must return exactly to its starting point, because φ has a unique
value at each point. Although the motion of φ need not always be in the same
direction, overall it must complete a whole number n of circuits. This number is
clearly the analogue of the topological charge (13.20); it is often referred to as the
winding number. Using polar coordinates x = (r, θ) and a polar representation
of the field, φ(x) = ρ(x) exp[iα(x)], we can say that on the circle at infinity α is
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just a function of θ and

n = 1

2π

∫ 2π

0

dα(θ)

dθ
dθ. (13.56)

Alternatively, if we think of α(x) as representing the direction of an atomic spin
in a magnet, then the spins that live on a large circle can be pictured as the arrows
in figure 13.2, which illustrates states with winding numbers n = 0, ±1 and 2.
Imagine now what happens if we look at the field φ(x) on smaller and smaller
circles. It varies continuously with position, and if the winding number is non-
zero, then a little thought will show that there must be at least one point in space,
say x0, at which α has all its values at once or, in other words, is not well defined.
This is possible only if ρ(x0) = 0, which corresponds to the maximum of the
potential. Thus, there is a lump of energy centred at x0, which is called a vortex.
The simplest state, containing a single vortex at the origin (and, as we might guess,
the state of lowest energy for winding number n), has the radially symmetric form

φv(r, θ) = ρ(r)eniθ . (13.57)

Given a state of this kind, the Euler–Lagrange equation for ρ(r) is

d2ρ

dr2 + 1

r

dρ

dr
− n2

r2 ρ = −m2

2
ρ + λ

2
ρ3 (13.58)

where m = λ1/2v is the mass of the excitations we met in §11.7.1 that correspond
to fluctuations in the magnitude of φ. In contrast to the one-dimensional equations
of previous sections, no exact solution to this equation is known. However, a
solution with the right boundary conditions, ρ → v as r → ∞ and ρ → 0 as
r → 0 can be obtained numerically. The energy of this vortex,

Heff(φv) = 2π
∫ ∞

0
dr r

[
(∂rρ)

2 + n2r−2ρ2 + 1
4λ
(
ρ2 − v2

)2
]

(13.59)

is infinite. The first and third terms give finite integrals, because (see
exercise 13.5) the large-r behaviour of ρ is ρ(r) = v + O(r−2). In the second
term, suppose that ρ differs only negligibly from v if r > a. The exact value of
a for which we might be satisfied with this approximation does not really matter.
The contribution to the energy that we get by integrating this term from a to some
large distance R is

E(R) ≈ 2πn2v2
∫ R

a
dr r−1 ≈ 2πn2v2 ln(R/a) (13.60)

and we see that this becomes infinite when R → ∞.
A single vortex, therefore, is not an allowed solution to the Euler–Lagrange

equation which, let us remember, is the condition for the energy (13.54) to be
a minimum. Consider, however, a configuration of φ(x) that contains a vortex
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of charge n = 1, centred at x1, and another of charge n = −1 centred at x2.
We might call this a vortex-antivortex pair. In a little more detail, this means the
following. Let us define a winding number associated with a closed curve C by

nC = (2π)−1
∮

C
∇α(x) · d� (13.61)

where d� is an infinitesimal tangent vector to C . This measures the total change
in the phase angle α(x) when x is taken once around the curve, and it reduces
to (13.56) if C happens to be a circle centred on the origin. In the state we are
thinking of, nC will be equal to 1 if C encloses x1 but not x2, equal to −1 if
C encloses x2 but not x1, and equal to 0 if C encloses both or neither of x1
and x2. The winding number measured on the circle at infinity is zero, so the
total energy of this state is finite, provided that ρ(x) approaches v fast enough
as |x| → ∞. There will be many states in which the winding number has these
properties. In general, none of these states is a solution of (13.58), but we can we
can think of an idealized state containing a vortex, an antivortex and nothing else
as one that minimizes the energy (13.54) subject to the constraint that the winding
numbers are those we have specified, given two fixed points which are the centres
of the vortices. It is, at least, a state of finite energy, because the winding number
vanishes on the circle at infinity. Suppose, though, that the vortex and antivortex
are separated by a large distance. Near the vortex at x1, the function φ(x) will
be almost the same as if the antivortex did not exist. The energy contained in a
circle of radius R centred on x1 will increase roughly as ln(R/a) as R increases,
until R becomes comparable with the separation |x1 − x2|. These qualitative
considerations should make it plausible that the energy of the static vortex-
antivortex state increases roughly as ln |x1 − x2| as the separation is increased.
This can be confirmed by more detailed calculations. In fact, we might add more
vortex-antivortex pairs, and the vortices behave in much the same way as particles
with a potential energy V (r) ∝ ln(r/a) between particles separated by a distance
r . This is, in fact, equivalent to a Coulomb gas of electrically charged particles,
because in two dimensions the solution of Poisson’s equation ∇2V (x) = qδ(x)
for the potential due to a point charge at the origin is V (r) = (q/2π) ln(r/a) (see
exercise 13.6). Because of this potential energy, there is a force acting between
any pair of vortices, so we would not expect to find genuine static solutions to the
equations of motion.

It is worth mentioning that these vortices have played a pivotal role in
the understanding of a class of phase transitions in two-dimensional systems.
A celebrated theorem due to N D Mermin and H Wagner (1966) asserts that
continuous symmetries cannot be spontaneously broken in a two-dimensional
system (or, for that matter, in a one-dimensional system either). Roughly
speaking, the reason is that Goldstone-mode fluctuations in two dimensions (or
in one dimension) are sufficiently strong that all the minima of a potential such
as the one in figure 11.8 contribute equally to the statistical sum that must be
carried out to determine the expectation value 〈φ(x)〉, with the result that this
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expectation value vanishes. In higher dimensions, these fluctuations are also
present. They result in corrections to the value of 〈φ(x)〉 obtained by minimizing
Heff(φ), which can be estimated by the renormalization-group methods of §11.6,
but do not destroy the ordered state completely. The model (13.54) that we
are currently studying is a version of what is known in statistical mechanics as
the two-dimensional XY model. Because of its special topological properties,
it is found to have a phase transition, even though φ does not acquire a non-
zero expectation value. According to an analysis first given by J M Kosterlitz
and D J Thouless, the ‘ordered’ phase is one in which vortex-antivortex pairs
are tightly bound, while in the ‘disordered’ phase vortices and antivortices can
move at random through the system. It turns out that a surprisingly large class
of two-dimensional model systems are more or less equivalent, at least as far as
their phase transitions are concerned. Our discussion above indicates in outline
a correspondence between the XY model and a gas of charged particles. These
models are also related to the two-dimensional sine–Gordon theory which, as we
discovered earlier, is itself equivalent to a theory of fermions. (In this context,
we need the Euclidean version of the sine–Gordon theory, interpreting the time
coordinate of §13.2 as t = ix2, where x2 is a second spatial coordinate.) One
way of seeing this relationship is to consider (13.54) as a model for a magnetic
system. By taking λ to be very large, we make the minima in the potential very
deep, so that |φ| is essentially constrained to be equal to the constant v, which we
can take to be v = 1. In that case, we have ∇φ∗ ·∇φ ≈ |∇α|2. A small magnetic
field in the direction of φ1 gives rise to a potential energy h · φ = h cosα and
these two terms yield an effective Hamiltonian of the sine–Gordon form. On the
other hand, it can be shown directly that the sine–Gordon model is equivalent
to a grand-canonical description of a gas of charged particles, the coefficient of
cos(βφ) being equal to the fugacity (10.24). Readers who wish to pursue the
details of these matters will find a large and interesting literature waiting to be
explored. The paper by Samuel (1978) and the review article by Nienhuis (1987)
may provide a useful starting point.

The considerations of this section so far can be generalized in two important
ways. First, it is a simple matter in principle to add more dimensions. In a
three-dimensional space, say with coordinates (x, y, z), we can consider field
configurations for which φ is independent of z. A vortex centred at x = y = 0
is now a lump of energy that occupies the entire z axis; it is a vortex line or a
string. Its topology is characterized by the winding number (13.61), which has
the same value for any curve C that encircles the string exactly once. The vortex
energy (13.59) is now the energy per unit length of the string (or, in a relativistic
theory, the mass per unit length), which is often referred to as the string tension.
(The energy stored in an ordinary elastic string when it is stretched is E = ∫

T dx ,
where T is the tension. This tension generally increases as the string is stretched,
in an ideal case according to Hooke’s law, but the tension of the strings we are
thinking about is independent of their length.) Again, the energy per unit length of
a single straight string is infinite. One can, however, envisage a three-dimensional
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network of strings that has a finite total energy. The strings in such a network need
not be straight; they may indeed form closed loops. As with the two-dimensional
vortices, a network of strings does not constitute a static, energy-minimizing state.
If such a network is formed by some non-equilibrium process, it will evolve with
time in a manner that is not easy to determine in general.

To see how a network of strings might come into existence, consider the
fact that cooling a ferromagnetic material from a temperature above its critical
temperature Tc to one below Tc typically results in a state containing many
domains, in which the magnetization points in different directions. In outline,
the reason is that the instantaneous directions of atomic spins at the instant that
the temperature passes through Tc are well correlated only over distances smaller
than a correlation length ξne. This non-equilibrium correlation length is not very
precisely defined; it depends on factors such as the rate of cooling in ways that
are hard to discover with any degree of rigour. However, it is not the same as the
equilibrium correlation length (11.16), which becomes infinite at Tc, unless the
cooling process is extremely slow. Below the transition temperature, therefore,
the magnetization density will, at least initially, be uniform only over distances
of the order of ξne and we may expect to find domains of roughly this size,
separated by domain walls. A system whose vacuum manifold is the circle of
minima in figure 11.8 will not form domains, for the reasons we have discussed.
Consider, however, the instantaneous state of such a system as its temperature
passes through Tc and, in particular, an arbitrary closed curve C whose length
is considerably greater than ξne. There is a good probability (though again one
that is difficult to quantify precisely) that the winding number on this curve
will be non-zero, on account of the random variations in φ(x) over distances
greater than ξne. After further cooling, φ(x) is increasingly constrained to have
values near the vacuum manifold. Thermal fluctuations have too little energy for
φ(x) to surmount the energy barrier over large regions, so in the short term the
topology of the field configuration is ‘frozen in’ and a curve which has a non-zero
winding number must be found to encircle at least one string. In condensed matter
physics, this picture is borne out by experimental observations of temporary string
networks formed by rapid ‘quenching’ of liquid helium through its superfluid
phase transition. The possibility of a similar phenomenon in relativistic field
theories was emphasized in an influential paper of T W B Kibble (1976). In
this case, it seems likely that the requisite phase transitions may have occurred in
the very early universe, and I shall return briefly to this in the next chapter. In the
cosmological context, the formation and evolution of string networks have been
investigated quite extensively by approximate methods, as is discussed in detail
by Vilenkin and Shellard (2000).

The second generalization is to consider gauge-invariant theories, of which
an extremely important example is the Ginzburg–Landau superconductor. In our
present notation, the effective Hamiltonian (11.59) for the superconductor is

Heff =
∫

d3x
[

1
2 B2 + |(∇ − iq A)φ|2 + 1

4λ(φ
∗φ − v2)2 − B · H

]
(13.62)



Vortices and Strings 365

with q = 2e and B = ∇ × A, and we have a pair of Euler–Lagrange equations

(∇ − iq A)2φ = 1
2λ(φ

∗φ − v2)φ (13.63)

∇ × (∇ × A) = − iq
(
φ∗∇φ − φ∇φ∗ − 2iq Aφ∗φ

)
(13.64)

which in this context are called the Ginzburg–Landau equations. It was
discovered by A A Abrikosov as long ago as 1957 that these equations have
solutions corresponding to vortex lines, in whose cores there is a magnetic flux.
In the context of relativistic field theories, these vortices are commonly associated
with the names of H B Nielsen and P Olesen, who rediscovered them somewhat
later. Let us again look for a radially symmetric solution of the form (13.57), with
r = √

x2 + y2 and take the vector potential to have the form

A(x) = nr−2 f (r) (−y, x, 0) (13.65)

so that both φ and A are independent of z. The magnetic induction is in the z
direction and its strength is

B = (∇ × A)z = ∂ Ay

∂x
− ∂ Ax

∂y
= n

r

d f

dr
. (13.66)

With these assumptions, the Ginzburg–Landau equations are[
d2

dr2 + 1

r

d

dr
− n2

r2

(
1 − q f (r)

)2]
ρ(r) = λ

2

[
ρ2(r) − v2

]
ρ(r) (13.67)

d

dr

(
1

r

d f (r)

dr

)
= −2q

r

(
1 − q f (r)

)
ρ2(r). (13.68)

Again, no exact solution to these equations can be written down. For small
values of r , we can solve for ρ(r) and f (r) as power series in r , and it is not hard
to find the limiting behaviour

ρ(r) ≈ ρ0r |n| f (r) ≈ f0r2 B(r) ≈ 2n f0. (13.69)

For r → ∞, on the other hand, one finds

ρ(r) ≈ v − ρ∞e−mr f (r) ≈ q−1 − f∞r1/2e−µr B(r) ≈ nµ f∞r−1/2e−µr

(13.70)
with m = λ1/2v and µ = √

2qv. The constants of integration ρ0, f0, ρ∞ and
f∞ cannot be determined analytically, but numerical solutions with this limiting
behaviour can be obtained. In contrast to our previous vortex solution, we see that
ρ(r) and B(r) approach their large-distance values v and 0 exponentially fast.
The distances that characterize the exponential decay are the coherence length
ξ = 1/m and the penetration depth λp = 1/µ that we encountered in §11.7.3.
In a relativistic field theory, of course, m and µ are respectively the masses of a
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Higgs particle and a gauge boson. Because of this exponential decay, the energy
per unit length of a vortex line is now finite. It is given by

E = 2π
∫ ∞

0
dr r

[
1
2 B2 +

(
dρ

dr

)2

+ (1 − q f )2 n2ρ2

r2
+ 1

4λ
(
ρ2 − v2

)2
]

− H#

(13.71)
where # = ∫

d2r B(r) is the total magnetic flux passing through the vortex. This
magnetic flux can be found exactly, even though we have no exact expression for
B(r). To calculate it, we use Stokes’ theorem to write

# =
∫

S
B · dS =

∫
S
(∇ × A) · dS =

∫
C

A · d� (13.72)

where C is a very large circle in the x−y plane and S is the disc that it encloses.
On this circle, we have f (r) = q−1 and from (13.65) the vector potential is
A(x) = (n/qr2)(−y, x, 0). It is a simple exercise using polar coordinates to
calculate

# =
∫

C
A · d� = 2πn/q (13.73)

and we see that the flux is n times a universal flux quantum #0 = 2π/q ,
whose value is independent of the constants λ and v that characterize a particular
superconducting material. In SI units, the flux quantum is #0 = h/2e = 2.07 ×
10−15 Wb. In fact, this flux quantum appears under more general circumstances
than the vortex state we are thinking of here. Let C be any closed curve in
a region of a superconductor where φ∗φ = v2 and B = 0. We can write
φ(x) = v exp[iα(x)] and the second Ginzburg–Landau equation (13.64) becomes
A(x) = q−1∇α(x). Thus, the flux passing through C is just

# =
∫

C
A · d� = q−1

∫
C

∇α(x) · d� = 2πnC/q (13.74)

where nC is the winding number (13.61). If, for example, we have a sample of
superconducting material with a hole in it, then the total flux passing through the
hole is quantized in units of #0 and this flux quantization arises simply from the
fact that the condensate wavefunction φ(x) must be single-valued.

Under appropriate circumstances, vortex lines are indeed observed in real
superconductors. In an ideal case, what is actually seen is a flux lattice, as
originally predicted by Abrikosov, who found approximate solutions to the
Ginzburg–Landau equations in which vortices form square or triangular arrays.
To determine which of these arrays is the more stable requires careful numerical
calculations of their energies, and the triangular arrays that are actually observed
do turn out to be marginally the more stable (though Abrikosov himself originally
came to the opposite conclusion). A superconductor containing a stable flux
lattice is said to be in a mixed state, and the question arises whether this mixed
state is more stable than either of the homogeneous states we met in §11.7.
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Figure 13.3. Schematic phase diagram of a type-II superconductor.

There, we found that the normal state, with φ = 0 and B = H is the more
stable if the externally applied magnetic field H is greater than the critical value
Hc = (λv4/2)1/2 while the superconducting state with |φ| = v and B = 0 (which
I shall call the ‘Meissner state’) is the more stable if H < Hc. In a rough and
ready way, we can think of a vortex as having a core, in which the material is
in its normal state, separated from the surrounding superconducting region by a
cylindrical wall. Suppose that H < Hc. The presence of normal-state regions
in the cores of vortices tends to increase the energy (or, more accurately, the free
energy) but this might be offset if the free energy of the walls were negative. It
turns out (see Tinkham (1996) for details) that this is so if λp > ξ . In that case, the
mixed state is more stable than the Meissner state when Hc > H > Hc1, where
Hc1 is a lower critical field determined essentially by the fact that at least one flux
quantum #0 must be available to form each vortex. If H > Hc, then the mixed
state may be more stable than the normal state, because now the excess free energy
of the superconducting regions is offset by the negative energy of the vortex
walls. In fact, this happens for Hc < H < Hc2, where Hc2 is an upper critical
field, whose significance is roughly this. As H increases, so does the total flux
penetrating the superconductor, so the vortices become more densely packed. At
H = Hc2, they merge completely, and the mixed state becomes indistinguishable
from the normal state. It is conventional to classify superconducting materials
according to the Ginzburg–Landau parameter

κ = λp/ξ = m/µ = (λ/2q2)1/2. (13.75)

(In much of the literature on superconductivity, however, definitions of ξ and
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hence of κ are used which differ from mine by a factor of
√

2.) If κ < 1, then
the energy of the vortex walls is positive and the mixed state is never stable. A
material of this kind is called a type-I superconductor. A type-II superconductor
has κ > 1 and exhibits the mixed state when Hc1 < H < Hc2. When κ is large,
the upper and lower critical fields are found to be given roughly by

Hc1 ≈ κ−1 Hc Hc2 ≈ κHc. (13.76)

The value of Hc depends on temperature, because v does. The details of this
temperature dependence cannot, as we saw in §11.7, be determined from the
Ginzburg–Landau theory itself, but it must vary as Hc ∼ (Tc −T ) near the critical
temperature. From the considerations above, we see that the phase diagram of a
type-II superconductor is that shown schematically in figure 13.3.

We might expect that strings analogous to the vortices observed in
superconductors should exist in the non-Abelian gauge theories of particle
physics. Typically, the vacuum manifolds of these theories are more complicated
than the circle of minima in figure 11.8, so the topological criterion for the
existence of strings must be formulated in a more general way. Consider once
more a closed curve C in space which, we hope, encircles a string. As x moves
once around C , the point φ(x) traces out a closed curve on the vacuum manifold,
say Cvm. To determine whether C does encircle a topologically stable string, we
attempt to shrink C to a point, and this will entail shrinking Cvm to a point also.
As we do this, we allow the function φ to change continuously, so as to ensure
that φ(x) is indeed a point on the vacuum manifold whenever x is a point on
C . If we can do this successfully, starting with any closed curve C , it follows
that φ can be changed continuously until its value at every point in space is on
the vacuum manifold, so there is no stable string. The only circumstance that
might prevent us from shrinking C to a point is that Cvm cannot be continuously
shrunk to a point on the vacuum manifold. Thus, topologically stable strings are
possible if there is some closed curve on the vacuum manifold that cannot be
shrunk continuously to a point. The mathematical jargon for this circumstance is
that the first homotopy group of the vacuum manifold is non-trivial. If the vacuum
manifold is a circle, then no curve Cvm that travels at least once around it can be
shrunk to a point, so the strings we have considered do satisfy this criterion. In
the standard electroweak theory, the Higgs field (12.18) has four real components,
say φ1, . . . , φ4 and the vacuum manifold is the 3-dimensional surface defined by

φ†φ = φ2
1 + φ2

2 + φ2
3 + φ2

4 = v2. (13.77)

It is the 3-dimensional surface S3 of a sphere in four dimensions. Any closed
curve on this spherical surface can be shrunk continuously to a point, so strings
are not possible in this theory. They are possible in a variety of grand-unified
theories, however, and in this context are generally called cosmic strings, on the
grounds that they may have been produced in the early universe and that very
long strings might still exist in the present universe. The characteristic energy
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scale of symmetry breaking in grand unified theories is MX ∼ 1016 GeV and
the associated characteristic length scale in natural units is M−1

X , so dimensional
analysis suggests a mass per unit length for these strings of the order of ε ∼ M2

X
or in SI units ε ∼ M2

Xc/~ ∼ 1021kg m−1. Clearly, these objects are very heavy.
They might perhaps be detected through a ‘gravitational lensing’ effect analogous
to the bending of light by the sun (see exercise 4.4) but none have been seen up to
now.

13.4 Magnetic Monopoles

We saw in §3.7 that Maxwell’s equations can be expressed as dF = 0 and
d ∗ F = ∗ j , where ∗ F and ∗ j are the dual tensors to the field strength tensor
F and the electric current j . The term ‘dual’ here refers to the tensor operation
specified by (3.82) and (3.83), but we can see that a duality of the kind that we met
in connection with the sine–Gordon and massive Thirring models is also involved.
In what is perhaps less esoteric language, the components ∗Fµν given in (3.91) are
obtained from those of Fµν by making the replacements B → E and E → −B.
Let us, then, define

Ẽ = B B̃ = −E ρ̃m = −ρe j̃m = − je. (13.78)

With this notation (and with c = 1), Maxwell’s equations (3.44)–(3.47) become

∇ · Ẽ = 0 ∇ · B̃ = ρ̃m

∇ × Ẽ + ∂ B̃
∂ t

= − j̃m ∇ × B̃ − ∂ Ẽ
∂ t

= 0.
(13.79)

Evidently, our conventional theory of electromagnetism, in which there are
electrically charged particles but no magnetic monopoles is equivalent to a dual
theory in which there are magnetic monopoles, with magnetic charge density ρ̃m
and magnetic current density j̃m, but no charged particles. It is interesting to
speculate, therefore, on the possibility of a theory in which there are both charged
particles and magnetic monopoles. In that case, Maxwell’s equations would be

∇ · E = ρe ∇ · B = ρm

∇ × E + ∂ B
∂ t

= − jm ∇ × B − ∂ E
∂ t

= je.
(13.80)

For this extended theory, the duality transformation (13.78) supplemented by the
new change of variables

ρ̃e = ρm j̃e = jm (13.81)

leaves the form of the equations exactly the same: the theory is self-dual.
At the classical level, the extended Maxwell equations (13.80) are perfectly

consistent with each other and (as readers may easily check) with the equations
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of continuity that express the conservation of both electric and magnetic charge,
so there seems to be no fundamental reason why magnetic monopoles should
not exist. Whether these equations make sense as part of a quantum-mechanical
theory is quite another matter. In fact, we can see an immediate difficulty. Since
∇ · B is not equal to zero, we can no longer express the magnetic field as
B = ∇ × A. The whole construction of QED in chapters 8 and 9 was based
on the possibility of expressing electromagnetic fields in terms of the 4-vector
potential Aµ and would need serious rethinking if it were to accommodate the
extended Maxwell equations.

A limited step in this direction was taken by Dirac, who considered
the implications for an electrically-charged quantum-mechanical particle of the
existence of a classical magnetic field produced by a magnetic monopole. The
only equations we know of for the wavefunction or field operator for a charged
particle, such as (8.13) for a spin- 1

2 particle or the relativistic version of (13.63)
for a spin-0 particle, involve the vector potential A rather than B. Dirac’s theory
retains these equations, but allows for some modification in the relation between
B and A. For the moment, let us write B = ∇ × A + . . ., leaving open the
question of what has to be added. A monopole of magnetic charge g ought to
produce a magnetic field

B(x) = − g

4π
∇
(

1

r

)
= g

4πr3 (x, y, z) (13.82)

where r = (x2 + y2 + z2)1/2. To begin constructing this, consider the vector
potential

A(x) = − g

4πr(r − z)
(−y, x, 0). (13.83)

By differentiating this expression, we find that ∇ × A is equal to the function
(13.82), but there is a catch. The vector potential (13.83) is singular at r = z,
which means everywhere along the positive z axis x = y = 0, z > 0. Thus, there
may be an additional contribution to ∇ × A proportional to θ(z)δ(x)δ(y) ẑ, where
ẑ is a unit vector in the positive z direction.

We can investigate this possibility by applying Stokes’ theorem to the small
cap S, shown in figure 13.4, on a sphere of radius r . The line element on the curve
C is d� = r sin θ(− sinϕ, cosϕ, 0)dϕ so, converting (13.83) to polar coordinates,
we get∫

S
∇ × A · dS =

∮
C

A · d� = − g

4π

(
sin2 θ

1 − cos θ

)∫ 2π

0
dϕ = − g

2

(
sin2 θ

1 − cos θ

)
.

(13.84)
When we shrink the cap to a point by taking θ → 0, the integral is just equal to
−g. This non-zero value can come only from integrating the expression

∇ × A = g

4πr3
(x, y, z) − gθ(z)δ(x)δ(y) ẑ (13.85)
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Figure 13.4. Spherical surface surrounding a Dirac monopole at the origin. As calculated
from (13.84), the magnetic flux through the cap S remains non-zero when S is shrunk to
an infinitesimal disc around the z axis.

the integral of the first term over an infinitesimal surface being zero. One can
think of ∇ × A as representing the magnetic field produced by an infinitely thin
solenoid situated on the positive z axis between z = 0 and z = ∞; the first term
is the field emerging from its open end at the origin, while the second is the field
in its core. If, on the other hand, we take θ → π , so that S becomes the whole
spherical surface, then the integral (13.84) vanishes, so the flux in the core of
the ‘solenoid’ exactly cancels the flux passing through the rest of the spherical
surface. Clearly, the field we actually want is

B(x) = ∇ × A(x) + gθ(z)δ(x)δ(y) ẑ. (13.86)

The ‘solenoid’ is usually called the ‘Dirac string’. It has little to do with the
strings of the last section, and is in fact completely unobservable, as we can see
in the following way. The same magnetic field can be obtained from the vector
potential

A′(x) = g

4πr(r + z)
(−y, x, 0) (13.87)
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using

∇ × A′ = g

4πr3
(x, y, z) + gθ(−z)δ(x)δ(y) ẑ (13.88)

B(x) = ∇ × A′(x) − gθ(−z)δ(x)δ(y) ẑ (13.89)

the Dirac string now occupying the negative z axis. These two vector potentials
are related by a gauge transformation

A(x) = A′(x) − g

2π(x2 + y2)
(−y, x, 0) = A′(x) − ∇*(x)

*(x) = g

2π
tan−1(y/x) = g

2π
ϕ

(13.90)

so we can regard B as being gauge invariant, provided that we adopt the rule of
adjusting the Dirac string term in going from (13.86) to (13.89) as well as using
the new vector potential. In fact, by making a suitable gauge transformation of
this kind, we can make the string occupy any continuous curve (not necessarily
a straight line) from the origin to infinity, so the string is an unphysical gauge
degree of freedom.

Perhaps the most satisfactory way of dealing with these singular vector
potentials is that devised by T T Wu and C N Yang. We divide space into two
overlapping regions, say R and R′, such that R does not include the positive z
axis and R′ does not include the negative z axis. (Strictly speaking, this means
that neither R nor R′ can include the origin, so we have to regard the point where
the monopole is situated as being excluded from our space.) Then the quantum
state of, say, a spin- 1

2 particle in the presence of the monopole is described by a
pair of wavefunctions, ψ(x) which exists only in R and ψ ′(x) which exists only
in R′. If the particle has an electric charge e, then they obey the equations

[iγ µ∂µ − eγ µAµ(x) − m]ψ(x) = 0 valid in R (13.91)

[iγ µ∂µ − eγ µA′
µ(x) − m]ψ ′(x) = 0 valid in R′ (13.92)

where, to describe a static monopole, we can take A0(x) = 0. Thus, neither
wavefunction ever meets a string. At this point, we come to the central result of
Dirac’s theory. If ψ(x) and ψ ′(x) together are to describe a unique state, then
in the region R ∩ R′ where R and R′ overlap they must be related by the gauge
transformation (13.90), which is to say

ψ ′(x) = exp[ie*(x)]ψ(x). (13.93)

However we choose R and R′, it will always be possible to find a closed curve in
R ∩ R′ which encircles the z axis. If we take the point x once round such a curve,
then ϕ changes by ±2π and *(x) changes by ±g. Since both ψ(x) and ψ ′(x)
must be single-valued, this implies that

eg = 2π n (13.94)
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where n is a positive or negative integer. This result, the Dirac quantization
condition, is a rather startling one. The wavefunction for any particle exists,
in principle, throughout the universe, even though it may be exceedingly small
outside of some localized region. Therefore, if one monopole of strength g exists
anywhere in the universe, then the electric charge of every particle in the universe
must be some multiple of 2π/g.

These considerations do not constitute a comprehensive theory of magnetic
monopoles. In particular, we simply assumed the existence of the magnetic field
(13.82); we have no dynamical theory of any objects analogous to the charged
particles of standard QED that might produce this magnetic field. In some
non-Abelian gauge theories, the situation is quite different. Objects having the
properties of magnetic monopoles can arise as soliton solutions to the equations
of motion, without the need for ad hoc additions to the existing theory. The
topological requirement for the existence of monopoles should be fairly obvious
from our earlier discussions. If a Higgs field φ(x) is to have a finite energy,
then its value everywhere on the surface of a large sphere (topologically, a two-
sphere S2), say with |x| = R, must approach a point on the vacuum manifold
as R → ∞. The set of values that φ takes on over this spherical surface lie on
a two-sphere drawn in the vacuum manifold. A topologically stable soliton can
exist if it is possible to draw a two-sphere on the vacuum manifold which cannot
be shrunk to a point. This is just the three-dimensional version of the criterion
for the existence of vortices in two dimensions. Just as the simplest theory with
vortices is one whose vacuum manifold is itself a circle, so the simplest possibility
for a theory with monopoles is one whose vacuum manifold is itself a two-sphere.
In fact, the three-dimensional analogue of the model (13.55) is one in which φ is
a vector with three components, living in a three-dimensional internal space such
as the isospin space of an SU(2) gauge theory.

The simplest non-Abelian magnetic monopole, which has come to serve as a
standard pedagogical example, was discovered by G ’t Hooft and A M Polyakov.
It occurs in the SU(2) gauge theory whose Lagrangian density is

L = − 1
4 Ga

µνGaµν + 1
2 (Dµφ

a)(Dµφa) − 1
4λ(φ

aφa − v2)2 (13.95)

where
Ga

µν = ∂µW a
ν − ∂νW a

µ − eεabcW b
µW c

ν (13.96)

is the field strength tensor for an isospin triplet of gauge fields W a
µ (which I

denote by Ga
µν to distinguish it from the electromagnetic tensor Fµν) and e is

the coupling strength, which can be identified with a fundamental electric charge.
In contrast to the GWS model of §12.2, the Higgs field is an isospin triplet, whose
gauge-covariant derivative is

Dµφ
a = ∂µφ

a − eεabcW b
µφ

c. (13.97)

This field theory is sometimes called the Georgi–Glashow model, because it
was studied by H Georgi and S L Glashow as a possible (though ultimately
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unsatisfactory) model of electroweak interactions. If the Higgs field has a constant
expectation value 〈0|φa|0〉 = (0, 0, v), then the terms in (13.95) which give
masses to the gauge bosons are

1
2 e2v2εab3εac3W b

µW cµ = 1
2 e2v2

(
W 1

µW 1µ + W 2
µW 2µ

)
. (13.98)

The particles created by W 3
µ, the gauge field corresponding to the direction

of 〈0|φ|0〉 in isospin space, remain massless. Within this model, they can be
identified as photons, so the electromagnetic field is Aµ = W 3

µ.
The monopole is a configuration in which all the fields are static (that is, they

are independent of t). With a suitable choice of gauge, we can also take W a
0 = 0.

In that case the energy density is equal to −L and we find

E = 1
4 Ga

i j Gai j + 1
2 (Diφ

a)(Diφ
a) + 1

4λ(φ
aφa − v2)2. (13.99)

For a monopole centred at the origin, we take

φa(x) = v
xa

r
ρ(r) W a

i = −εai j x j f (r). (13.100)

The symmetry of this trial solution is such that the Euler–Lagrange equations
reduce to just two equations for the functions ρ(r) and f (r). As in the two-
dimensional models, appropriate solutions exist, but they cannot be found exactly.
The form in which the fields are expressed relies on the possibility of setting up a
correspondence between directions in isospin space and directions in real space.
As in figure 13.2, we can visualize the vector φ(x) in isospin space as equivalent
to a vector in real space attached to the point x. For the configuration (13.100),
the three quantities xa/r are the components of a unit vector pointing radially
outwards, so this is the three-dimensional analogue of the n = 1 configuration
in figure 13.2. Here, the winding number means the number of times that the
vacuum manifold is covered by the values of φ on the spherical surface at infinity.
It is given by an expression analogous to (13.20) or (13.61), namely

nS = (8π)−1
∫

V
d3x ∇ · u = (8π)−1

∫
S

u · dS (13.101)

where V is the volume enclosed by a closed surface S and u is the vector field
whose components are

ui = εi j kεabcφ̂a(∂ j φ̂
b)(∂k φ̂

c) (13.102)

φ̂(x) being a unit vector in the direction of φ(x). In our case, this unit vector is
φ̂a = xa/r . Readers should not find it hard to verify that ui = 2xi/r and hence
that nS = 1 when S is a sphere centred on the origin. (The expression for ui is
greatly simplified by the fact that εabcxaxb = εabcxaxc = 0, on account of the
antisymmetry of εabc.)
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The essential properties of the monopole can be deduced without knowing
the detailed form of the functions ρ(r) and f (r), from the requirement that its
energy be finite. First of all, we must have ρ(r) ≈ 1 when r is large, so that
the integral over all space of the potential energy term in (13.99) is finite. Taking
ρ(r) = 1, we find that when r is large, the covariant derivative (13.97) is

Diφ
a ≈ v

(
δia

r
− xi xa

r3
+ eεabcεbi j

x j xc

r
f (r)

)
≈ v

(
δia

r
− xi xa

r3

)[
1 − er2 f (r)

]
. (13.103)

(Readers who wish to verify this will find the result of exercise 13.7(a) helpful.)
The integral of 1

2 (Diφ
a)(Diφ

a) in (13.99) must also be finite, so when r is large,
we must have Diφ

a → 0 and therefore f (r) ≈ 1/er2. Thus, when r is large, the
gauge fields are given approximately by

W a
i = −εai j

x j

er2
. (13.104)

A tricky point is that we can no longer identify the electromagnetic field as
Aµ = W 3

µ, because 〈φa〉 points in different directions in different regions of
space. A general means of identifying the electromagnetic field strength tensor
Fµν has been discussed by ’t Hooft (1974), but for our purposes, the right answer
in the region where r is large is given by taking the component of Ga

µν in the
direction of φa . That is

Fij (x) ≈ φ̂a(x)Ga
i j (x) ≈ εai j xa

er3
. (13.105)

(Readers who wish to verify the final expression will find the result of
exercise 13.7(b) helpful.) On comparing this with (3.51), and noting that Fij =
Fij for the spatial components, we find that the magnetic field at large distances
from the monopole is

Bi ≈ −xi/er3 (13.106)

and this agrees with (13.82) provided that we identify the magnetic charge as

g = −4π/e. (13.107)

This result is reminiscent of the Dirac quantization condition (13.94) if we take
n = −2. It does not mean quite the same thing, though, because e and n in (13.94)
refer to the charge of a particle moving in the monopole field and to the phase of
its wavefunction—considerations which have played no role in our treatment of
the non-Abelian monopole. It is also worth noting that the gauge and Higgs fields
of the non-Abelian monopole are non-singular, and there is nothing analogous to
the Dirac string. This is possible because the magnetic field is a combined effect
of three gauge fields and three Higgs fields, rather than of a single vector potential.
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In our study of the sine–Gordon theory, we saw that (i) the solitons of
that theory could be reinterpreted as the particles of another theory, the massive
Thirring theory; (ii) these particles are fermions, despite the fact that the sine–
Gordon theory contains only a bosonic field; (iii) weak coupling in one theory
corresponds to strong coupling in the other. We might well wonder to what
extent these features also occur in more realistic theories, such as the Georgi–
Glashow model. The third feature is evidently analogous to the relation (13.107):
a small electric charge implies a large magnetic charge for the monopole and
vice versa. As for the spin of a monopole, the ’t Hooft–Polyakov monopole is
a spherically symmetric object and has no spin. However, monopoles of other
kinds are possible which do have spin, and it is again possible to make spin-
1
2 objects from purely bosonic fields. This is because of the correlation between
directions in space and directions in the internal isospin space that characterize the
monopole solutions. A rotation of the monopole in space must be accompanied
by a corresponding rotation in isospin space. If our model contains, say, a doublet
of scalar fields with isospin 1

2 , then the transformation of the monopole under this
combined rotation may correspond to that of a spin- 1

2 object (see, for example,
Jackiw (1977)). It seems that these monopoles will also behave as fermions
or bosons, according to the requirements of the spin-statistics theorem, but this
question cannot be settled in as definitive a manner as was possible for the sine–
Gordon theory.

Finally, there is the intriguing possibility that a gauge theory with monopoles
might be related by the idea of duality, with which this section began, to another
gauge theory in which the roles of electrically charged particles and magnetically
charged monopoles were reversed. This would be analogous to the duality
between the sine–Gordon and massive Thirring theories. A duality of this kind
would have far-reaching consequences, because a strong coupling in one theory,
which makes calculations very difficult, corresponds to a weak coupling in the
dual theory, where perturbation theory can be used to good effect. It does not
seem that the mere existence of monopoles is sufficient to make this idea work
and to the best of my knowledge it is not possible to prove that any two gauge
theories really are dual to each other in this sense. Nevertheless, there is strong
circumstantial evidence for duality in certain supersymmetric gauge theories,
which can be exploited to obtain exact, nonperturbative information about the
quantum-mechanical properties of these theories. This is a rather technical
subject. I know of no elementary account of the ideas that are involved, but
interested readers may like to consult Giveon and Kutasov (1999), Intriligator
and Seiberg (1996) and the references supplied by these authors.



Magnetic Monopoles 377

Exercises

13.1. Verify the orthonormality properties (13.14)–(13.16), using the standard
integrals ∫ ∞

−∞
dx sech2x = 2

∫ ∞

−∞
dx sech4x = 4

3∫ ∞

−∞
dx cos(qx)sech2x = πq

sinh( 1
2πq)∫ ∞

−∞
dx cos(qx)sech4x = 2πq(1 + 1

4 q2)

3 sinh( 1
2πq)

.

Other integrals you will need can be obtained from integrations by parts. In
the case of (13.15), you will also need the Fourier representation of the Dirac
δ function given in appendix A. You will find it advantageous to express tanh2 x
as 1 − sech2x wherever possible, and may like to be warned that the algebra is
quite lengthy!

13.2. For the two-dimensional field theory of §13.1, consider the restricted
theory in which there is a static kink and no free mesons, by writing φ(x, t) =
φK(x)+c1(t) f1(x). Show that the Hamiltonian for this simplified theory consists
of a constant (the energy of the kink) plus the Hamiltonian for an harmonic
oscillator of frequency ω1 = √

3m/2. From the Euler–Lagrange equation (or

Hamilton’s equations), verify that c1(t) has the form shown in (13.35) and that a1

and a†
1 have the commutation relations appropriate for operators that create and

annihilate bound mesons.

13.3. (a) Observe that in one dimension, equation (13.1) is equivalent to the
equation of motion for a Newtonian particle whose position is φ and whose
potential energy is −V (φ), if x is taken to represent time. Sketch this potential
energy, which should show two ‘hills’ at φ = ±v. Convince yourself that the
kink solution φ = φK and the ‘anti-kink’ solution φ = −φK correspond to
this particle’s being infinitesimally displaced from the top of one hill at ‘time’
x = −∞ and eventually coming to rest at the top of the other hill at ‘time’
x = +∞.
(b) Convince yourself that there are further solutions (which are hard to write
down in closed form), consisting of an alternating sequence of kinks and anti-
kinks, in which the analogue Newtonian particle spends most of its ‘time’
moving very slowly near the hilltops and brief intervals of ‘time’ traversing
the valley. (Strictly speaking, these kinks and anti-kinks must be infinitely far
apart: if the solutions are to have a finite energy, the analogue particle must come
infinitesimally close to the top of each hill, where its ‘speed’ is infinitesimal. In
effect, only single-kink and single-anti-kink solutions to the time-independent
equation (13.1) are allowed. However, the time-dependent equation (13.25)
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does have allowed solutions consisting of sequences of moving kinks and anti-
kinks, separated by finite distances. Kink–anti-kink pairs will eventually collide,
however, and may well disappear, their energy being converted into mesons. The
restricted definition of a soliton mentioned in the text requires that true solitons
should survive such collisions intact.)
(c) Sketch a function φ(x) corresponding to a kink and an anti-kink, and a
second function in which the positions of the kink and anti-kink are interchanged.
Convince yourself that kinks and anti-kinks are fermions.

13.4. For the purposes of this exercise, let us denote the operators of the
quantum sine-Gordon theory by φ̂1(x ′, t) and ψ̂1(x, t) to distinguish them from
ordinary functions. Suppose that |φ〉 is an eigenstate of φ̂(x ′, t) with eigenvalue
φ(x ′). Following the method of (5.62), use the commutator (13.51) to show that
ψ̂1(x, t)|φ〉 is an eigenstate of φ̂(x ′, t) with eigenvalue φ(x ′) + �φ(x ′), where
�φ(x ′) is given by (13.53).

13.5. Assume that when r is large the solution to (13.58) is given approximately
by ρ ≈ v + cnr−p . By substituting this trial solution, show that p = 2 and
cn = −n2v/m2.

13.6. In two spatial dimensions, let r = √
x2 + y2. Verify that ∇2 ln(r/a) = 0,

except at r = 0, where the answer is not well defined. In two dimensions, Gauss’
theorem is ∫

S
∇ · v d2x =

∮
C
v · d�

where S is the area bounded by a closed curve C . Taking v = ∇ ln(r/a) and C to
be any circle centred on the origin, show that

∫
S ∇2 ln(r/a) d2x = 2π , and hence

that ∇2 ln(r/a) = 2πδ(x). Note that a is an arbitrary length, needed to make the
argument of the logarithm dimensionless. Since ln(r/a′) = ln(r/a) + ln(a/a′), a
change in this arbitrary length is equivalent to adding a constant to the Coulomb
potential. As in three dimensions, this constant has no physical meaning.
However, the usual convention of taking the potential to vanish as r → ∞
obviously doesn’t work in two dimensions.

13.7. (a) The expression εabcεbi j x j xc defines a 3-dimensional tensor with two
indices, i and a, and is quadratic in the xk . It must be of the form Ar2δia + Bxi xa ,
where A and B are constants. By considering the case i = a = 1, show that
A = −1 and B = 1, and check that the result is also true for some other values of
i and a.
(b) The quantity εabcεbikεcj l xk xl is also quadratic in the xk , but it has three
indices a, i and j . Convince yourself that it is antisymmetric in the indices i and
j , and must be of the form A′r2εai j + B ′xaxkεki j where A′ and B ′ are constants.
By considering the case a = 1, i = 2, j = 3, show that A′ = 0 and B ′ = 1, and
check that the result is also true for some other values of a, i and j .



Chapter 14

The Early Universe

In this chapter, I shall discuss an area of investigation that illustrates many of
the theoretical ideas developed in the rest of the book, namely cosmology and
the early history of the universe. Only in the last 60 years or so has it been
possible to treat cosmology as a matter for serious scientific enquiry rather than
philosophical speculation. Since we cannot (presumably) create a new universe
in the laboratory, any theory concerning the history of our own universe must
remain to some extent speculative. If, however, it is accepted that our knowledge
of physics as established in the laboratory and by astronomical observations
continues to be valid in the distant past, then a remarkable amount can be said
with a fair degree of confidence. For example, the present age of the universe is
known, roughly to within a factor of 2: it cannot be much less than 10 billion
years (1 billion = 109) nor much greater than 20 billion years. Our established
knowledge of physics can, of course, be applied with confidence only when
conditions in the universe were such that a confident extrapolation can be made
from conditions which can be created in the laboratory. This has been true
ever since the universe was about one millisecond old. In the first millisecond,
however, events moved extremely rapidly.

As we shall see, the temperature of the matter in the universe increases,
without any known limit, as we progress backwards in time, and our reasoning
about what the sequence of events may have been becomes increasingly
speculative as we encounter energies at which our confidence in the standard
model of particle physics begins to falter. Conversely, it is potentially fruitful
to speculate about early events on the basis of theoretical models, such as grand
unified theories, which cannot be rigorously tested in the laboratory. The reason
is that the very early cosmological events implied by these models may have
consequences for the present constitution of the universe that can be checked by
astronomers. This opens the enticing possibility of using the early universe as
a high-energy physics laboratory in which energies are available that could not
conceivably be produced by man. Some fragments of information have already
been obtained in this way. Clearly, however, the reliability of such information is

379
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no greater than the reliability with which the detailed consequences of theoretical
models can be worked out. At present, there is, in my view at least, little cause
for complacency in this respect.

I shall begin by outlining the standard big bang model of the history of the
universe.

14.1 The Robertson–Walker Metric

Modern cosmology is based upon the description of spacetime geometry given by
general relativity. As I have mentioned from time to time, there is a widespread
belief that general relativity is inadequate as a fundamental theory of spacetime
geometry, to the extent that it is non-quantum-mechanical. If this is so, then
there is a limit to the validity of the standard cosmological model, which I shall
discuss in due course. For the moment, let us assume that general relativity
is good enough. We need to write down the metric tensor of the universe.
Obviously, it is impossible to do this in any detail, but by a happy circumstance,
astronomical evidence shows that the overall structure of that part of the universe
which can be observed is very simple. If the distribution of matter is averaged
over distances that are large enough to encompass many clusters of galaxies, it is
found to be isotropic, which means that it looks the same in all directions, and
homogeneous, which means that it would look the same from any vantage point.
The best evidence for isotropy actually comes from measurements of the cosmic
microwave radiation, which we shall have cause to discuss later on. Our first
basic assumption, then, is that the universe is isotropic and homogeneous. This
assumption is sometimes dignified as the cosmological principle. It can be seen
as embodying the philosophical prejudice that our own location in the universe
has nothing whatever to distinguish it from any other location. Its only scientific
value, however, is that it is in reasonable accord with observations and that it
makes further progress possible.

From the assumptions of homogeneity and isotropy, it can be shown to
follow that there is a coordinate system in which the line element (2.7) has the
form (with c = 1)

dτ 2 = dt2 − a2(t)

(
1

1 − kr2
dr2 + r2dθ2 + r2 sin2θ dφ2

)
. (14.1)

This is called the Robertson–Walker line element. The second term, in which
k is a constant, measures distances in a spatial section of the spacetime, which
exists at an instant t of cosmic time. The physical distance between two points
in this space separated by fixed coordinate intervals dr , dθ and dφ varies with
time in proportion to the function a(t), called the scale factor, which depends
only on time. As in the Schwarzschild line element (4.28), the coordinate r
does not necessarily provide a linear measure of distance. However, t does
measure a genuine time. The proper time τ measured by any observer whose
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Figure 14.1. The surface of a sphere of radius a represents two of the spatial dimensions
of a closed Robertson–Walker universe. The volumes inside and outside the surface are
not part of the space. Relative to the origin at O, the coordinates r and φ can be visualized
as shown. The physical distance from O to a point on the circle of radius ar in the figure is
ρ. In the full three-dimensional spatial section, ρ would be the physical radius of a sphere
centred at O.

spatial coordinates r , θ and φ are fixed is clearly the same as t . Moreover, such
an observer is moving through the spacetime along a geodesic and is therefore
in free fall, which would not be the case in the Schwarzschild spacetime. (It
would be a good exercise for readers to verify this point by deriving the geodesic
equations, using the method suggested by (4.27).) The sequence of spatial
sections corresponding to successive instants of cosmic time can be thought of as a
three-dimensional space that expands or contracts uniformly with time according
to the variation of a(t). The surfaces of constant r , θ or φ expand or contract in
the same way, like a grid of lines painted on the surface of an inflating balloon,
and these coordinates are said to be comoving.

The constant k in (14.1) may be positive, negative or zero. If it is non-zero,
then we can make the change of variables r → r/|k|1/2 and a(t) → a(t)|k|1/2,
so that the magnitude of k disappears. We can therefore always choose the
coordinates so that k has one of the three values 1, 0 or −1. If k = 0, then
the spatial part of (14.1) is just the line element of a three-dimensional Euclidean
space and the universe is flat. To understand the spatial geometry when k = 1,
consider the two-dimensional surface θ = π/2. The three-dimensional space can
be thought of as the volume of revolution of this surface. The surface is in fact
the surface of a Euclidean sphere of radius a(t), as sketched in figure 14.1. In
terms of the angles α and φ, the element of length ds on this surface is clearly
given by ds2 = a2(dα2 + sin2 α dφ2), and this reproduces the spatial part of the
Robertson–Walker line element when r is identified as sin α, as shown, for then
we have dα = d sin−1 r = dr/(1 − r2)1/2. It will be seen that a given value of r
actually corresponds to two values of α, namely α = sin−1 r and α = π − sin−1 r
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so the coordinate r provides an unambiguous label only for points on one half of
the sphere, say with α < π/2 or r < 1. The singularity in (14.1) at r = 1 is
only a coordinate singularity, which marks the edge of the region in which r is a
valid coordinate. The spherical surface obviously is isotropic and homogeneous,
and the origin r = 0 could be placed anywhere on it. At a given instant of time,
the volumes inside and outside the spherical surface in figure 14.1 have nothing
to do with the Robertson–Walker space, and serve only as an aid to visualizing
the surface. On the other hand, the sequence of spatial sections that are obtained
as a(t) varies with time can be envisaged as a set of concentric spherical surfaces
that fill all or part of this volume. Each spatial section can be described as having
a (spatially) constant positive radius of curvature a(t).

Consider now a sphere drawn in the Robertson–Walker space at fixed
coordinate radius r . Its physical radius is

ρ(r) = a
∫ r

0

dr

(1 − r2)1/2 = a sin−1(r) = aα. (14.2)

The circumference of a great circle drawn on this sphere, say the equator θ = π/2,
is

c(r) = a
∫ 2π

0
r dθ = 2πar = 2πa sin(ρ/a) (14.3)

which is always smaller than 2πρ, as is evident from figure 14.1. This
circumference has a maximum value of 2πa at ρ = πa/2 and decreases to zero
at ρ = πa. Thus, for k = 1, the spatial section of the Robertson–Walker universe
is a three-dimensional spherical surface and is said to be closed.

For k = −1, the spatial section has a constant negative radius of curvature
and is more difficult to imagine pictorially, though an analogy is often made with
the surface of a saddle. The radius and circumference of a sphere are

ρ(r) = a sinh−1(r) and c(r) = 2πa sinh(ρ/a). (14.4)

The circumference is always greater than 2πρ and both can be arbitrarily large.
This universe has an infinite spatial extent and is said to be open.

We shall need to know the Ricci tensor, which appears in the field equations
(4.17) of general relativity. The metric tensor, whose components appear in
(14.1), is diagonal, with g00 = 1 and spatial components given by

gi j = −a2

(
(1 − kr2)−1 0 0

0 r2 0
0 0 r2 sin2 θ

)
. (14.5)

We find that the Ricci tensor is also diagonal, given by

R00 = −3
ä

a
and Rij = −

(
ä

a
+ 2

ȧ2

a2 + 2
k

a2

)
gi j (14.6)
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where the overdots stand for ∂/∂ t . The Ricci scalar is

R = gµν Rµν = −6

(
ä

a
+ ȧ2

a2 + k

a2

)
(14.7)

and the Einstein curvature tensor Gµν = Rµν − 1
2 Rgµν is diagonal, with

components given by

G00 = 3

(
ȧ2

a2
+ k

a2

)
and Gij =

(
2

ä

a
+ ȧ2

a2
+ k

a2

)
gi j . (14.8)

If the metric of our universe is approximately of the Robertson–Walker
form, and if the scale factor does change with time, then a simple consequence
is Hubble’s law. Assume that our galaxy and those we observe are comoving,
so that their spatial coordinates are fixed. Then the physical distance between
two galaxies separated by a coordinate distance d0 is d = a(t)d0. Their relative
velocity is therefore

v = d

dt
d(t) = ȧ

a
d(t). (14.9)

This velocity is proportional to the distance between the galaxies, with the
proportionality factor

H (t) = ȧ(t)/a(t). (14.10)

It is, of course, unlikely that galaxies will be exactly comoving. Nevertheless, it
was discovered by E Hubble in 1929 that distant galaxies are, on average, receding
from us with velocities proportional to their distances from us, so the universe is
expanding. The velocity of recession can be measured as a redshift of spectral
lines, and the distance in terms of the apparent luminosity of an object whose
absolute luminosity is known. The redshift z is defined by z = (λo/λe)−1, where
λo is the observed wavelength and λe is the wavelength of light at the moment it
was emitted, as it would be determined in the rest frame of the radiating object.
When z is small, it can be interpreted as a non-relativistic Doppler shift. More
generally, however, careful account must be taken of the change in a(t) between
the moments of emission and reception. The relation between luminosity distance
dL and redshift can be written as a power series (see exercise 14.1)

dL = H −1
0

[
z + 1

2 (1 − q0)z
2 + . . .

]
(14.11)

where the Hubble constant H0 is the present value of H (t) and q0 is the present
value of the deceleration parameter

q = −aä/ȧ2. (14.12)

The values of H0 and q0 are not known with very high precision. Hubble’s
constant is usually expressed as

H0 = h × 100 km s−1 Mpc−1 = h(9.78 × 109 years)−1 (14.13)
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and the dimensionless number h deduced from observations is between 0.5 and
0.8. (Clearly, H has dimensions (time)−1, but the units in which it is traditionally
measured are recessional velocity (km s−1) per unit distance to a galaxy, measured
in megaparsecs, with 1 Mpc = 3.086 × 1022 m.) The value of q0 is rather
uncertain, because very distant galaxies must be observed to detect any curvature
in the plot of dL against z. It has generally been thought that the expansion rate of
the universe must be slowing down, and thus that q0 must be positive, but recent
evidence suggests that this may not be so after all. I shall say a little more about
this in the next section, where we shall be able to see more clearly what is at stake.

For many purposes, including the derivation of (14.11), it is necessary to
understand the behaviour of light waves in the Robertson–Walker universe. Of
course, the propagation of electromagnetic waves in general spacetimes can
be investigated systematically by the methods we touched on in §7.7, but the
essential fact pertaining to a Robertson–Walker universe can be discovered in
a more elementary, and perhaps more enlightening way as follows. It will be
sufficient to consider the case of a wave emitted by a comoving atom, say at
r = re and θ = φ = 0, and received by a comoving observer at r = 0.
The light ray moves along a null geodesic whose equation, according to (14.1)
is dt = −a(t)dr/(1 − kr2)1/2, the negative square root corresponding to a ray
moving towards the origin. If a wave crest is emitted at time te and received at
time to, then ∫ to

te

dt

a(t)
=
∫ re

0

dr

(1 − kr2)1/2 = d0 (14.14)

where the coordinate distance d0 travelled by the ray is independent of both te and
to. If the following crest is emitted at te + �te and received at time to +�to, then∫ to+�to

te+�te

dt

a(t)
= d0 + �to

a(to)
− �te

a(te)
= d0 (14.15)

and so �to/�te = a(to)/a(te). Thus, the observed frequency νo = 1/�to and
wavelength λo = 1/νo (in natural units, with c = 1) are related to those of the
emitted wave by

νo

νe
= a(te)

a(to)
or

λo

λe
= a(to)

a(te)
. (14.16)

As seen by a comoving observer, therefore, the physical wavelength of a photon
changes in proportion to the scale factor. In exercise 14.2, readers are invited to
investigate this effect in terms of a covariant wave equation.

As we shall discuss later on, the universe is known to be filled with black-
body radiation, the cosmic microwave background, whose current temperature is
approximately 2.7 K. The result we have just obtained shows that the energy of a
photon belonging to this background, and therefore the temperature of the photon
gas as a whole, is proportional to 1/a(t).
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14.2 The Friedmann–Lemaı̂tre Models

The Robertson–Walker metric on its own tells us nothing about the time
dependence of the scale factor. To investigate this, we have to study the field
equations (4.17), which involve the stress tensor for whatever matter is present.
From the form of the metric tensor and the Einstein curvature tensor (14.8), it is
clear that the stress tensor must be diagonal, with elements

T00 = ρ(t) and Ti j = −p(t)gi j (14.17)

where ρ(t) and p(t) are functions of time only. This is the only form of stress
tensor that is consistent with the assumptions of isotropy and homogeneity. In
a sufficiently small region, the metric must be approximately that of Minkowski
spacetime and we can choose new spatial coordinates in which gi j is diagonal,
with each component equal to −1. Then, by comparing (14.17) with (3.43), we
can identify ρ as the energy density and p as the pressure, provided that the matter
behaves as a fluid in thermal equilibrium. The field equations now provide two
independent equations relating a(t), ρ(t), p(t) and the cosmological constant �,
which are

3

(
ȧ2

a2
+ k

a2

)
= κρ + � (14.18)

2
ä

a
+ ȧ2

a2
+ k

a2
= − κp + �. (14.19)

By combining them, we find

ä

a
= −κ

6
(ρ + 3 p) + 1

3
�. (14.20)

We saw in (4.24) that the quantity �/κ , which appears in (14.18) as an
additional energy density and in (14.19) as an additional (negative) pressure,
cannot be much greater than the average density of matter in the universe,
which is extremely small compared with the densities of everyday materials. In
general relativity, � is a fundamental constant, independent of the properties or
distribution of any ordinary matter that the universe may happen to contain. To
decide how large or small � is in a meaningful way, we must compare it with
another fundamental quantity. The only constants at our disposal are G, ~ and
c, and from these we can construct a quantity with the dimensions of a mass
density for comparison with (4.24). It is c5/G2~ ≈ 5 × 1093 g cm−3. Thus,
a dimensionless measure of the size of � is a number of the order of 10−122.
The staggering smallness of this number has led many theorists to suppose that
the cosmological constant must be identically zero. Whether this number is
really significant is hard to say. Since its derivation involves ~, any detailed
understanding must require a reliable understanding of the relationship between
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spacetime geometry and quantum mechanics, which we do not have. A number
of speculative arguments have been put forward to the effect that � should be
zero, or at least very small, but none of them is conclusive. Suppose that � can be
neglected in (14.20). For an ordinary fluid in thermal equilibrium, the density and
pressure are both positive. Even if the matter is not in thermal equilibrium, the
quantity ρ + 3 p is positive for ordinary matter under all ordinary circumstances,
which is a special case of the strong energy condition discussed by Hawking
and Ellis (1973). This being so, we see from (14.20) that ä is negative, which
means that the rate of expansion of the universe should be decreasing, and so the
deceleration parameter q0 in (14.11) should be positive. As I mentioned in the
last section, there is some evidence that q0 is actually negative. It comes from
the observation of supernovae (Perlmutter et al, 1998), which are bright enough
(albeit short-lived) to permit estimates of the distances and redshifts of the very
distant galaxies in which they occur. If the interpretation of these observations
is correct, then the negative value of q0 would indicate the existence of a small,
positive cosmological constant. Although this possibility cannot be ignored in the
ongoing process of constructing a detailed model of the universe, the effect of
such a small cosmological constant on our overall cosmological picture would be
relatively minor. For the purposes of this chapter, I propose to simplify matters by
setting � = 0. The cosmological models based on the Robertson–Walker metric
and Einstein’s field equations with � = 0 are known as the Friedmann–Lemaı̂tre
models.

It is convenient to write (14.18) and (14.19) with � = 0 as

ȧ2 + k = 1
3κρa2 (14.21)

ä = − 1
6κ(ρ + 3 p)a. (14.22)

The first of these is sometimes referred to as the Friedmann equation. By
differentiating it, we may easily show that

d

dt
(ρa3) = −p

d

dt
(a3). (14.23)

This equation is equivalent to ∇νT µν = 0 and is usually said to express the
conservation of energy. The physical volume V occupied by a given amount of
matter is proportional to a3, so if the internal energy of this matter is U , then
(14.23) asserts that dU/dt = −pdV/dt . That is, the rate of change of U is equal
to the rate at which work is done on the region in question by its surroundings.

To draw detailed conclusions from (14.21) and (14.22), we need information
about ρ and p. Some general conclusions can be obtained without very detailed
information, however. First, suppose that k = 0, so that the universe is flat. Then
(14.21) gives a relation between the density and the Hubble parameter (14.10):

ρ(t) = ρc(t) ≡ 3

κ

ȧ2

a2
= 3

κ
H 2(t). (14.24)



The Friedmann–Lemaı̂tre Models 387

Figure 14.2. Scale factor of a Robertson–Walker universe in which the expansion rate
always decreases. The age t0 of the universe is less than H−1(t0).

The quantity ρc(t) is called the critical density. When k is not necessarily equal
to zero, it is convenient to measure the density as a fraction of the critical density,
defining

�(t) = ρ(t)/ρc(t). (14.25)

Then equation (14.21) becomes

ȧ2(� − 1) = k (14.26)

and we see that in a closed universe, with k = +1, the density always exceeds
the critical density (� > 1), while in an open universe it is always less than the
critical density (� < 1).

According to our earlier discussion, (14.22) shows that ä is always negative,
and therefore that ȧ always decreases with time. (Readers may like to note
the somewhat counter-intuitive result that a positive pressure acts to slow down,
rather than to accelerate the expansion.) Since the universe is now observed to
be expanding, the expansion rate increases as we look further back in time. It
follows (see figure 14.2) that at some time in the past the scale factor a was equal
to zero and that the time which has elapsed since then is less than 1/H0. When the
scale factor is zero, the universe is infinitely compressed (although, if it is open
or flat, its spatial extent is still infinite). This is a highly singular state, containing
matter at infinite density. From a mathematical point of view, the metric becomes
ill-defined, and the instant of time at which this occurs should be excluded from
our spacetime manifold. Physically, we have no way of knowing what might
happen in the extreme conditions prevailing near this singularity. From either
point of view, the singularity marks the earliest time at which our universe can
meaningfully be said to have existed. If we set t = 0 at the initial singularity, then
the estimates of H0 given above yield an upper bound to the present age of the
universe t0 of

t0 < 2 × 1010 years. (14.27)
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These conclusions are based on assumptions which could turn out to be
false. The first was that the universe is homogeneous and isotropic, which is
certainly not exactly true. We might wonder whether the occurrence of an initial
singularity is a consequence of the high degree of symmetry, which might be
avoided if allowance were made for anisotropies and inhomogeneities. It seems
(as discussed, for example by Hawking and Ellis (1973)) that this is not so and
that under quite general conditions an initial singularity must have occurred. On
the other hand, the behaviour of the metric in the neighbourhood of the singularity
may be much more complicated in an anisotropic and/or inhomogeneous universe
than in the Friedmann-Lemaı̂tre models (see, for example, Misner et al (1973)).
Another assumption was the strong energy condition (ρ + 3 p) > 0. If this is
not true, then there need not be an initial singularity because, going backwards in
time, ä might become positive, allowing a to pass through a minimum and then
increase. For ordinary matter, the strong energy condition holds. Later on, in
connection with the inflationary universe, we shall encounter a situation in which
the strong energy condition may cease to hold for a brief period of time, but
this does not in itself avoid the initial singularity. Finally, the entire argument
is based on a classical spacetime geometry. If, as is generally believed, this
geometry is ultimately subject to quantum-mechanical laws, then we may expect
these laws to become important when the universe is sufficiently small. Since we
have no reliable quantum theory of gravity, it is not possible to be certain about
when quantum effects will be important. A rough estimate can be obtained by
requiring that the energy density should not exceed the characteristic value of
c5/G2~. At high densities, as we shall see shortly, the curvature term k/a2 in
(14.18) is negligible, even though a may be very small. Using this equation (and
dimensional analysis to convert to laboratory units), we find that quantum gravity
effects are likely to be important when

H −1 .
(

G~c−5
)1/2 ≈ 5 × 10−44 s. (14.28)

Since H −1 is a rough measure of the age of the universe, this time, called the
Planck time, is the time at which we expect that quantum gravity effects ceased
to be important.

At the present time, it appears that the matter in the universe is fairly well
described as a uniform, comoving distribution that exerts no pressure, known to
cosmologists as dust. As a first approximation, it is instructive to suppose that this
always has been and always will be true. Then the solution to (14.23) is

ρ(t) = M/a3(t) (14.29)

where M is a constant equal to the mass contained in a comoving region of
physical volume a3(t). With p = 0, the deceleration parameter can be expressed
as

q(t) = κρ(t)

6H 2(t)
= 1

2�(t). (14.30)
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Figure 14.3. Variation of the scale factor with time in Friedmann–Robertson–Walker
models: A, open universe, k = −1; B, flat universe, k = 0; C, closed universe, k = 1.

The variation of the scale factor with time can now be found by solving (14.21).
For k = 0, the solution is

a(t) =
(

3
4κM

)1/3
t2/3. (14.31)

For k = ±1, it can be written in parametric form in terms of an angle θ :

a = 1
3κM sin2 θ t = 1

3κM
(
θ − 1

2 sin 2θ
)

for k = 1 (14.32)

a = 1
3κM sinh2 θ t = 1

3κM
(

1
2 sinh 2θ − θ

)
for k = −1. (14.33)

These solutions are sketched in figure 14.3, and we see that both the open and flat
universes continue to expand for ever, while the expansion of the closed universe
eventually comes to a halt and this universe recollapses to a final singularity.
The situation is quite analogous to that of a projectile launched from the Earth’s
surface, the flat universe corresponding to an initial velocity equal to the escape
velocity (see exercise 14.4).

From the above solutions, it is possible to derive a relation between the age
of the universe t , the Hubble parameter H and the density ratio � of the form

t = H −1 f (�). (14.34)

Since the open and closed universes correspond to � < 1 and � > 1 respectively,
the function f (�) has different forms in these two ranges:

f (�) =


1

1 − �
− �

2
(1 − �)−3/2 cosh−1

(
2

�
− 1

)
for � ≤ 1

�

2
(� − 1)−3/2 cos−1

(
2

�
− 1

)
− 1

� − 1
for � ≥ 1.

(14.35)
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Figure 14.4. The function f (�) given in (14.35).

At � = 1, both expressions reduce to f (1) = 2
3 , and f (�) is in fact a perfectly

smooth function, plotted in figure 14.4.

14.3 Matter, Radiation and the Age of the Universe

From (14.34) and (14.35), we can determine the present age of the universe,
provided that (i) we can assume that p = 0; (ii) we have an estimate of H0;
and (iii) we have an estimate of �0, the present density as a fraction of the present
critical density. The assumption that p = 0 is, for this purpose, perfectly safe. The
period during which this has been true is called the matter-dominated era and, as
we shall discover shortly, it began when the universe was about one millionth of
its present age. The value of H0 is, as we have seen, uncertain by something like a
factor of 2, so the error in assuming that p = 0 is negligible by comparison. The
value of �0 is also rather uncertain. Direct observations reveal, of course, only
luminous matter, namely that contained in stars whose radiation we can detect.
There are, however, a number of reasons for believing that there is a considerable
amount of additional matter, called dark matter or missing matter.

The masses of distant galaxies are estimated by means of the virial theorem,
which asserts, roughly, that the mass of a gravitationally bound system, such as
the solar system, a galaxy or a cluster of galaxies, is given by

M ≈ D〈v2〉/G (14.36)

where D is the characteristic size of the system and 〈v2〉 a mean square velocity
relative to the centre of mass. This is obviously true, for example, for a star of
mass M with a small planet in a circular orbit of radius D with orbital velocity v.
The masses of galaxies inferred in this way may be of the order of 10 times the
mass that can be accounted for by visible stars. The galactic halos that contain this
extra mass probably extend well beyond the visible part of the galaxy. For large
clusters of galaxies, the inferred total mass may be several hundred times the mass
of luminous matter. Since the critical density (14.24) is proportional to H 2, it
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might be thought that estimates of �0 should depend on the value assumed for H0.
Actually, this is not so. The reason is that large distances are measured in terms
of redshifts, by using the relation (14.11), and each distance measured in this way
is thus proportional to H −1

0 . The velocity dispersion 〈v2〉 in (14.36) is estimated
from distributions of redshifts around the mean for the object concerned and is
independent of distance, so the estimate of mass is proportional to a distance
estimate. Estimates of the density are therefore proportional to (distance)−2 or
to H 2

0 , and estimates of �0 are independent of the value assumed for H0. The
value of �0 which includes dark matter inferred from the virial theorem to exist
in galactic halos and in the intergalactic medium in clusters is roughly in the range
0.1 < �0 < 0.3.

If the cosmological constant is non-zero, then the deceleration parameter
deduced from (14.20) with p = 0 is

q0 = 1
2�0 − �� (14.37)

where �� = 1
3�H −2

0 . There is a theoretical prejudice, arising from the
inflationary scenario which I shall describe later, to the effect that the present
universe ought to be almost exactly flat. In that case, Friedmann’s equation with
the addition of a cosmological constant as in (14.18) asserts that

�0 + �� = 1. (14.38)

The observations of distant supernovae that I mentioned above seem to be
consistent with this picture, if �0 ≈ 0.3 and �� ≈ 0.7 and this of course implies
a negative value of q0, which would mean that the expansion of the universe is
currently accelerating. This would be a relatively recent phenomenon, however.
It is easy to check that (14.23) is still valid when we allow for a non-zero value of
�, and so is the conclusion that ρ(t) ∝ 1/a3(t). In the two independent equations
(14.18) and (14.20), therefore, � is insignificant compared with ρ at earlier times
when a(t) is much smaller than it is now. If � does turn out to be non-zero, then
this will have an important bearing on the detailed fitting of cosmological models
to observational data. However, the general picture will not be greatly affected,
and I shall continue to simplify matters by taking � = 0.

From (14.13) and (14.34), our estimate of the present age of the universe is

t0 = 9.78 × 109h−1 f (�0) years. (14.39)

If we take the limits on the observed parameters as 0.5 < h < 0.8 and
0.1 < � < 1 then, referring to figure 14.4, we find that the age of the universe is
within the limits

8 × 109 years < t0 < 1.8 × 1010 years. (14.40)

It is possible, of course, to place lower bounds on the age of the universe by
estimating the age of objects it contains. Radio dating of terrestrial, lunar and
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meteoric rocks puts the age of the oldest material at about 4.5 × 109 years. It
is believed, however, that this material is not primordial, but was formed in the
cores of ancient stars, so the universe should be rather older than this. Estimates
of the age of the oldest stars in our galaxy, those in globular clusters, suggest
ages of about 1010 years. It is noteworthy that these independent estimates are in
reasonable accord with those based on the cosmological parameters H0 and �0.

In addition to matter, the universe contains radiation. The most important
component from a cosmological point of view is the cosmic microwave
background which has, to a very good approximation, a black-body spectrum
corresponding to a temperature of 2.7 K. This radiation, first observed by
A A Penzias and R W Wilson (1965), is found to be isotropic to about one part
in 104, except for a dipolar anisotropy which can be attributed to the motion of
the Earth relative to comoving coordinates. This microwave background provides
a vital clue to the early history of the universe. Because of its high degree of
isotropy, it cannot have originated in observed galaxies, and is generally held
to be a relic of an early period in which the content of the universe was a hot,
dense plasma of particles and radiation. Because the universe must have been
expanding very rapidly during this early phase, the standard cosmological model
is often referred to as the hot big bang model. The importance of the microwave
background for our present discussion is twofold. First, its isotropy provides the
best evidence for the isotropy of the observable universe, on which the Robertson–
Walker metric depends. Second, black-body radiation exerts a pressure as well as
contributing to the energy density, so we can use it to estimate the duration of the
matter-dominated era, during which the approximation p = 0 holds good.

From (10.91) with g = 2 for photons, we find for the energy density ρrad or
the equivalent mass density ρrad/c2 of the microwave background

ρrad(t0) = 4.02 × 10−14J m−3 or ρrad/c2 = 4.47 × 10−34g cm−3. (14.41)

The overall density is given by (14.25) as

ρ(t0) = ρmatt(t0) + ρrad(t0) = h2�0 × 1.88 × 10−29g cm−3 (14.42)

which we can take as about 1 × 10−29g cm−3. At the present time, therefore,
the contribution of the radiation to the energy density is negligible and its
pressure, which is 1

3 of its energy density, is also negligible in (14.22). However,
we saw in (14.16) that the frequency or energy of a photon is proportional
to 1/a(t). Therefore, if we assume a constant number of photons in a given
comoving region, the energy density is proportional to 1/a4(t), whereas that of
non-relativistic matter is proportional to 1/a3(t) as in (14.29). Thus we have
ρrad(t)/ρmatt(t) ∝ 1/a(t) and the radiation becomes more important at earlier
times. To see how long the universe has been matter dominated, we can estimate
the time tm at which the densities of matter and radiation are approximately equal,
which is also the time at which the radiation pressure becomes significant in
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(14.22). The condition is

a(tm)

a(t0)
= ρrad(t0)

ρmatt(t0)

ρmatt(tm)

ρrad(tm)
= ρrad(t0)

ρmatt(t0)
· 1 ≈ 5 × 10−5. (14.43)

Since � is fairly close to 1, it is sufficient to use (14.31) to get

tm/t0 ≈ (5 × 10−5)3/2 ≈ 4 × 10−7. (14.44)

This result shows that the time which has elapsed since the universe became
matter dominated is about one million times that which had elapsed previously.
For various reasons, it is not a very accurate estimate. Quite apart from the
uncertainties in h and �0, the relation a(t) ∝ t2/3 is not valid before tm. A
better approximation is, as we shall see, a(t) ∝ t1/2. This does not, however,
invalidate the conclusion that tm is only a tiny fraction of t0 and, therefore, that
the zero-pressure model can be used to estimate t0 to the accuracy permitted by
other uncertainties.

The foregoing argument assumes that the kinetic energy and pressure of
matter, which is negligible now, was also negligible at tm, so it would be as well
to check that this is so. Since the energy density and pressure of the radiation
are proportional to 1/a4(t) and also, according to (10.93), to T 4, it follows that
the temperature T is proportional to 1/a(t), in agreement with the conclusion we
reached earlier by considering the energy of an individual photon. At t = tm,
then, the temperature of the radiation was about 5 × 104 K. At this temperature,
the matter consisted (as it turns out) mainly of ionized hydrogen and helium.
This ionized matter interacts strongly with radiation and would have been in
equilibrium with it at the same temperature. The equivalent energy kBT is about
4 eV, so the kinetic energy even of the electrons was much smaller than their rest
energy of 511 keV. Thus, the kinetic energy density and pressure of the matter
was negligible compared with the density of its rest energy.

14.4 The Fairly Early Universe

Processes occurring in the early universe at temperatures below about 1012 K
(at which kBT is approximately equal to the mass of a muon, 106 MeV) can
be investigated quite thoroughly on the basis of well established physics. This
temperature probably occurred when the universe was about 10−4 s old, and
I shall refer to the period between then and tm when the universe became
matter dominated as the ‘fairly early’ universe. The fairly early history of the
universe has been carefully documented by, for example, Peebles (1971, 1993)
and Weinberg (1972) and I shall largely follow Weinberg’s account.

A few gross features are easily deduced. First of all, the curvature of space
was unimportant. If space is curved, then |k| = 1 in (14.21). Let us define the
ratio of k to the right-hand side of this equation as

K (t) = 3k/κρ(t)a2(t). (14.45)
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From (14.24)–(14.26), we find that K = (� − 1)/�, and the limits on the
present value of � imply for the present value K0 of K (t) that |K0| < 10.
During the matter-dominated era, in which ρ(t) ≈ ρmatt(t) ∝ 1/a3(t), we
see that K (t) is proportional to a(t). Therefore, according to (14.43), we have
|K (tm)| < 5 × 10−4. At earlier times, K (t) was even smaller, so k has a
negligible effect in (14.21) and may be taken as zero. For much of the time,
the early universe was radiation dominated, in the sense that its contents behaved
like black-body radiation with p = 1

3ρ, which is true not only for photons, but for
any particles whose kinetic energy is much bigger than their rest energy. When
this is true, (14.21) and (14.22) can be combined (with k = 0) to give

d2

dt2

(
a2) = 2

(
aä + ȧ2) = 0 (14.46)

whose solution is of the form

a(t) = (At + B)1/2. (14.47)

(Note also that setting p = 1
3ρ in (14.23) yields the relation between ρ(t) and a(t)

analogous to (14.29) for a radiation dominated universe, namely ρ(t) = �/a4(t),
where � is a constant, which we found earlier by a different argument.)

The assumption is usually made that ρ can be evaluated as the sum of
densities of several species of particles, each behaving as an ideal gas in thermal
equilibrium, and p as the sum of their pressures. Some thermodynamic relations
that apply to these gases will be useful to us. Consider a comoving region, whose
volume V is equal to a3, and suppose that the particles it contains can be divided
into groups such that the particles in each group interact with each other, but not
with those in other groups. The idea is that, within each group, the interactions
are strong enough for the temperature and relative numbers of particles to be
determined by the condition of thermal equilibrium, but sufficiently weak that
the interaction energy does not contribute significantly to the energy density
and pressure. According to the fundamental relation (10.30) of equilibrium
thermodynamics, we have for the i th group of particles

dUi

dt
+ pi

dV

dt
= Ti

dSi

dt
+
∑

j

(i)
µ j

dN j

dt
(14.48)

where the sum is over particle species belonging to the i th group. If we sum this
over all groups of particles and use (14.23) with ρa3 = ∑

i Ui and p = ∑
i pi ,

we find ∑
i

Ti
dSi

dt
= −

∑
j

µ j
dN j

dt
(14.49)

where the sum on i is over all groups of mutually interacting particles and the sum
on j is over all particle species.
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It will sometimes be important to know the numbers of particles present as
well as their contributions to the energy density and pressure. Using the basic
distribution functions (10.64) and denoting by q the magnitude of a particle’s
3-momentum, we find that the number of particles of a given species per unit
physical volume with momentum in the range q to q + dq is

n(q)dq = g

2π2~3

{
exp [β(ε(q) − µ)] ± 1

}−1
q2dq (14.50)

where ε(q) = c(q2 + m2c2)1/2 and g = 2s + 1 is the spin multiplicity factor. If
µ = 0 and the particles are highly relativistic, so that their mass can be neglected,
then the total number per unit volume is

n = g

2π2

(
kBT

c~

)3 ∫ ∞

0
(ex ± 1)−1x2dx = ζ(3)

π2

(
3/4

1

)
g

(
kBT

c~

)3

(14.51)

where the upper values refer to fermions, the lower ones to bosons and ζ is
the Riemann zeta function, with ζ(3) = 1.202 . . .. At present, the microwave
background contains some 400 photons per cm3. If we take the present density
of matter as 10−29 g cm−3 and assume that it is primarily composed of nucleons,
each with a mass of about 1.7 × 10−24 g, then the ratio of the number of nucleons
to the number of photons, conventionally denoted by η is

η = nN/nγ ≈ 10−8. (14.52)

If, on the other hand, much of the dark matter is not composed of nucleons
(or, in the conventional terminology, is not ‘baryonic’), then η might be much
smaller than this. In fact, the theory of ‘nucleosynthesis’, about which I shall
have something to say in the next section, strongly indicates that η ∼ 5 × 10−10,
which means that most of the dark matter is non-baryonic. What this matter might
consist of is the subject of intense, and frequently exotic speculation, but no clear
answer is known. At any rate, η is small, and it has been constant for most of the
history of the universe; only at fairly early times were processes possible which
could cause significant changes in either the number of photons or the number of
nucleons in any comoving region.

We can now work out what conditions must have been like at temperatures
a little below 1012 K. The nucleons that still exist today were present but their
numbers, energy density and pressure were negligible compared with those of the
black-body photons. The typical energy of a photon (a little less than 100 MeV)
was such that electron-positron pairs could be copiously produced in collisions.
These pairs could also annihilate to produce photons. Under the assumption of
thermal equilibrium, the balance between these processes leads to a distribution
of energies for the electrons and positrons of the form (14.50), and I shall shortly
discuss the conditions under which this assumption is likely to be valid. Likewise,
the electron- and muon-type neutrinos and antineutrinos could be produced and
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annihilated by weak interaction processes and also had a thermal distribution.
The particles present in substantial numbers were therefore γ , e−, νe and νµ,
together with the antileptons, and there were also a few nucleons. All known
heavier particles, which will have been present at higher temperatures, undergo
rapid decays or particle-antiparticle annihilations, whose final products are the
ones I have listed, and there was insufficient energy available to replenish them.

Under conditions of thermal equilibrium, the abundant particles have energy
distributions of the form (14.50), so we need to know their chemical potentials.
As we saw in chapter 10, the equilibrium density operator (10.59) can contain
only operators associated with conserved quantities. For the particle species of
interest, there are four conserved quantities, namely electric charge Q (measured
in units of e), electron number E , muon number M and baryon number B . The
values of these numbers for the various particles are

e νe νµ p n
Q −1 0 0 1 0
E 1 1 0 0 0
M 0 0 1 0 0
B 0 0 0 1 1

(14.53)

with opposite values for their antiparticles. These conservation laws are embodied
in the standard GWS model. For example, any interaction vertex that creates an
electron also either creates a positron or an anti-electron neutrino or annihilates
an electron neutrino, so electron number is conserved. In grand unified theories,
which allow processes like proton decay, the lepton and baryon numbers are not
separately conserved. However, processes which violate these conservation laws
will occur at significant rates only when collision energies are greater than the X
boson masses of about 1015 GeV or at temperatures above 1027 K. In the density
operator (10.59), we can introduce an independent chemical potential for each
conserved quantity and then, using the values in (14.53), express Q, E , B and M
in terms of particle numbers:

µQ Q̂ + µE Ê + µM M̂ + µB B̂

= µQ

[
N̂e+ − N̂e− + N̂p

]
+ µE

[
N̂e− + N̂νe − N̂e+ − N̂ν̄e

]
+ µM

[
N̂νµ − N̂ν̄µ

]
+ µB

[
N̂p + N̂n

]
. (14.54)

From this, we can read off the chemical potentials for the particle species
themselves, For example,

µe+ = µQ − µE = −µe− . (14.55)

As in (10.66), we now adjust the chemical potentials to accommodate what we
know or can guess about the mean numbers of particles. Consider the total
electric charge. All the evidence is that this is now exactly zero so, since charge is
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conserved, it must have been zero in the early universe too. Adding up the charges
of all the particle species, we have

Q = Ne+ − Ne− + Np = N(µe+) − N(µe− ) + Np = 0 (14.56)

where N(µ) is the integral of (14.50) with the electron mass and the appropriate
chemical potential. Under the conditions we are considering, the numbers of
electrons and positrons are comparable with the number of photons and thus,
according to (14.52), very much greater than the number of protons. To a
good approximation, therefore, the numbers of electrons and positrons must be
equal. Thus, their chemical potentials must also be equal and, in view of (14.55),
must vanish. I shall follow the usual assumption that the chemical potentials
of the neutrinos also vanish, though there is no firm evidence for it. As in
(14.55), we find that the chemical potential of a neutrino and its antiparticle
are equal and opposite. Large neutrino chemical potentials lead to a condition
called degeneracy, similar to that which characterizes electrons in metals. The
consequences of neutrino degeneracy can be investigated, and the main effect
is to increase the contribution of neutrinos to the total energy density. This
in turn affects several predictions of the standard cosmological model, notably
those for nucleosynthesis, which I discuss below. These effects serve to place
constraints on the size of the chemical potentials, and interested readers will find
some discussion of them in Weinberg (1972).

To continue the story of the fairly early universe, it is necessary to understand
the conditions under which thermal equilibrium can be maintained. Readers
will recall from chapter 10 that the ensemble averages of statistical mechanics
correspond to long time averages for a single system. In order for the scattering
processes that maintain the balance of particle numbers to be effective, it must be
possible for a reasonable number of these events to occur before any great change
takes place in the environment. To obtain a criterion for this, consider the mean
free path λ of a particle between scattering events. Under laboratory conditions,
it is given by λ = 1/nσ , where n is the number of particles per unit volume and
σ is the scattering cross-section. In the expanding universe, consider a particle
with velocity v relative to comoving coordinates, attempting to collide with a
comoving target particle a distance λ away. The expansion is carrying the target
particle away with a speed given by Hubble’s law as Hλ. A rough criterion for
scattering to take place at a reasonable rate is that v should be considerably greater
than Hλ. Another way of putting this is that the mean time between collisions
under laboratory conditions, τ = λ/v should be much less than the characteristic
expansion time H −1:

τ H = H/nσv + 1. (14.57)

Let us apply this to the weak interactions which are supposed to maintain
the thermal distribution of neutrinos. The energies we are considering are
much smaller than the masses of the weak gauge bosons, so the Fermi theory
(with the addition of neutral currents) is adequate. Scattering cross-sections
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are proportional to G2
F where, as we saw in chapter 12, GF/(~c)3 = 1.17 ×

10−5 GeV−2. Since kBT is much greater than the electron rest energy, it is the
only relevant quantity with the dimensions of energy, and dimensional analysis
shows that the cross-sections must be given by

σ ≈ G2
F(kBT )2(~c)−4. (14.58)

If we take H = (κρ/3)1/2, ρ and n to be given by the thermal distributions for a
few species of particles and, for neutrinos and highly relativistic electrons, v = c,
we obtain the estimate

τ H ≈ (1010/T )3 (14.59)

when T is measured in degrees Kelvin. As our story starts, just below 1012 K,
this is small enough for thermal equilibrium to become established, if it had not
already been, and to be maintained. As the temperature fell to around 1010 K,
however, the rate of neutrino scattering became very small so that, in effect,
the neutrinos ceased to interact with the other particles or, as the jargon has it,
became decoupled. The thermal distributions of neutrinos did not disappear,
however. Their temperature simply continued to fall as 1/a(t) and they are,
presumably, here to this day, though it would be extremely difficult to detect
them. Their present temperature is, as we are about to see, rather less than
that of the microwave background and their contribution to the energy density
correspondingly smaller. The cross-section for electromagnetic scattering of
electrons, positrons and photons is greater than the weak cross-sections, and these
particles continued to interact.

The rest energy of an electron corresponds to a temperature of about
5.9×109 K. As the temperature dropped below this value, electron-positron pairs
could no longer be produced by collisions. The electrons and positrons which
had been present annihilated rapidly, producing extra photons which heated the
black-body radiation. Since the neutrinos had ceased to interact, their temperature
was unaffected, so the temperature of the photons was now greater than that
of the neutrinos and has remained so ever since. We can work out the ratio
of the photon and neutrino temperatures from (14.49). The right-hand side
of this equation is zero, as may be seen in the following way. The chemical
potentials of the electrons, positrons and photons are zero. The only other
particles present in significant numbers are the neutrinos and, since these have
ceased to interact, the number of them in a comoving volume is constant. So,
regardless of their chemical potentials, neutrinos do not contribute to the right-
hand side of (14.49). On integrating (14.50) for a neutrino species, with m = 0,
we find that the total number in a comoving volume proportional to a3 can be
expressed as (aT )3 f (µ/T ), where f is the function determined by the integral
and multiplying constants. Since this number is constant, and T is proportional to
1/a, the ratio µ/T is constant. The neutrino entropy in the comoving volume can,
as readers may easily check, be expressed in the same form, but with a different
function f , so it too is constant and makes no contribution to the left-hand side
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of (14.49). Thus, the left-hand side of (14.49) has significant contributions only
from electrons, positrons and photons which, since they still interact, have the
same temperature. What (14.49) tells us, therefore, is that the total entropy of
electrons, positrons and photons in a comoving volume is constant, regardless of
the neutrino chemical potentials.

While the electron-positron annihilation is taking place, the electron mass
is comparable with kBT , and the integral for the entropy cannot be computed
analytically. For our present purpose, however, this is not necessary. We consider
a time ‘before’ the annihilation when the electrons were relativistic, and a time
‘after’ the annihilation when they had vanished. In each case, we can use (10.92)
for the electron-positron-photon entropy. The multiplicity factor g is given by
(10.88) as

gbefore = 2 + 7
8 × 4 = 11

2 and gafter = 2 (14.60)

since the electron, positron and photon each have two polarizations. Conservation
of this entropy implies

gbefore(aT )3
before = gafter(aT )3

after (14.61)

where T is the photon temperature. For the neutrino temperature Tν , on the other
hand, we have

(aTν)after = (aTν)before = (aT )before (14.62)

and so, after the annihilation

Tν = (gafter/gbefore)
1/3T = (4/11)1/3T = 0.714 T . (14.63)

The present neutrino temperature is therefore about 1.9 K.
As far as the abundant species of particles are concerned, there were no

further significant events until the universe became matter dominated. The state
of the nucleons did indeed undergo important changes, which are discussed in the
next section, but these had no significant effect upon the energy density, pressure
or expansion rate. We can now estimate the periods of time that elapsed between
the various events I have described so far. Consider a period during which the
multiplicity factor g∗ for the total number of abundant species is constant. (Note
that g∗ is different from the g given in (14.60), which counts only those particles
interacting efficiently with photons.) Since we have set k = 0, we may use
equations (14.47), (14.10), (14.24) and (10.91) to express a time difference t2 − t1
in terms of the temperatures T2 and T1 prevailing at those times. The result is

t2 − t1 =
(

3c2

64πGσ

)1/2

g∗−1/2
(

T −2
2 − T −2

1

)
= 3.26 × 1020g∗−1/2

(
T −2

2 − T −2
1

)
(14.64)

where the times are in seconds and temperatures in degrees Kelvin.
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In order to make use of this result, we need to know the value of g∗, which
means that we need to know all the species of particles which were present.
We have seen that the electron- and muon-type neutrinos were decoupled at
temperatures below about 1010 K but still contributed to the energy density and
pressure. However, we also saw in chapter 12 that a further neutrino species, the
tau-type neutrino, is known to exist. These and perhaps other, as yet unknown,
species of neutrinos or other light particles will also have been present. Whatever
these species are, we know from laboratory experiments that they do not interact
strongly at the temperatures we have considered, so they do not affect our
calculations up to this point. They will, however, affect any calculations that
require us to know periods of time rather than merely temperatures, and this
is one point at which theoretical models of particle physics have cosmological
consequences which can be confronted with observations. Each additional species
has, presumably, a thermal energy distribution similar to that of the neutrinos.
As we have seen, however, the temperature of the electron and muon neutrinos
was changed relative to that of the photons by the electron-positron annihilation.
Depending on the temperature at which a given species decoupled, its temperature
may have been similarly affected by earlier annihilation processes, of which we
have no definite understanding.

These matters can be dealt with in detail only on the basis of some definite
model of particle physics and, in general, some additional assumptions about the
sequence of events in the very early universe, at temperatures above 1012 K. For
the sake of argument, I shall suppose that there are Nν species of neutrinos, all
at the same temperature. In that case, the value of g∗ prior to electron-positron
annihilation is

g∗ = 11
2 + 7

4 Nν for 1012 K > T > 6 × 109 K (14.65)

assuming that each neutrino and its antiparticle together contribute two
polarization states. After the annihilation, we can take account of the different
neutrino temperature by including an appropriate factor in g∗:

g∗ = 2 + 7
4

(
4

11

)4/3
Nν for T < 6 × 109 K. (14.66)

Let us calculate some representative time intervals, taking Nν = 3 to include just
the three known neutrinos. The time taken for the temperature to fall from 1012 K
to 1011 K was 9.8 × 10−3 s. The further time to reach 1010 K was, obviously, a
hundred times this, 0.98 s. Near their annihilation temperature, the electrons and
positrons are non-relativistic, so our equations based on black-body radiation are
not valid, and a numerical calculation using the correct distribution is needed.
It is a fair approximation, however, to imagine that the annihilation occurred
instantaneously, using (14.65) just above and (14.66) just below 6 × 109 K. With
this approximation, the time to get from 1010 K to 6 × 109 K was 1.77 s, and
the further time to reach 109 K was 4.9 hours. According to (14.43), the universe
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became matter dominated at a temperature of 2.7/5 × 10−5 = 5.4 × 104 K. If
we use (14.64) to estimate when this happened, the answer is about 2,000 years
after the events we have been considering. This calculation is not quite right,
though, because the basic equation (14.64) assumes that the density of matter is
negligible. Also, our estimate of the temperature at which the densities of matter
and radiation became equal depends on the values assumed for H0 and �0. The
actual time is therefore not very accurately known, but it is most often estimated
at about 10,000 years.

To estimate the time from the initial singularity to our starting point at
1012 K, we would need to know what happened during that time. If we
assume that (14.64) remains valid, then the value of g∗ obviously increases with
temperature. Thus it is reasonable to guess that this time is no greater that what
we obtain by using (14.65) and setting the initial temperature to infinity, namely
about 10−4 s. Clearly, using the figures given above, we might as well say that
the temperature was 1010 K at 0.98 s after the initial singularity, and so on.

14.5 Nucleosynthesis

Although protons and neutrons made a negligible contribution to the overall
composition of matter in the early universe, they were nevertheless able to take
part in interactions which had important consequences. There is a narrow range
of temperatures around 109 K at which nuclear reactions could take place which
fused protons and neutrons into larger nuclei. These reactions have been well
studied in the laboratory, and it is possible to work out quite accurately the
relative numbers in which various light nuclei would have been formed. The
process is called nucleosynthesis and it is important for at least two reasons. On
the one hand, the predicted abundances can be compared with matter actually
observed in the present universe, and after allowance has been made for later
reactions occurring in the cores of stars, the overall agreement is found to be
rather good. This provides an important test of the standard big bang model. On
the other hand, the predicted abundances of some nuclei depend on the values
of quantities such as Nν in (14.65) and the density of nucleons available to form
nuclei. The comparison with observations then serves to determine the values
of these quantities, or at least to put useful constraints on their possible values.
It turns out that hydrogen and helium-4 are by far the most abundant nuclear
species, and I shall give a simplified account of the calculation of their relative
abundances. Interested readers will find more details and further references in,
for example, Peebles (1971), Weinberg (1972), Barrow (1983) and Bernstein et al
(1989); a survey of recent developments is given by Schramm and Turner (1998).

The relative abundances of nuclei obviously depend on the relative numbers
of protons and neutrons and, to estimate their ratio, we must begin the story of
nucleosynthesis at a temperature of about 1011 K. Although the total number of
nucleons cannot change at this temperature (the typical energy kBT ∼ 9 MeV is
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much smaller than the nucleon rest energy of about 940 MeV), lepton-nucleon
scattering can easily interconvert protons and neutrons by weak-interaction
processes such as e− + p ↔ n + νe. The energy absorbed or released by these
conversions is the neutron-proton mass difference �m = mn − mp = 1.29 MeV.
As long as the weak interactions are effective in maintaining thermal equilibrium,
the ratio of the numbers of protons and neutrons can adequately be determined
from classical statistical mechanics and is given by

nn/np = exp (−�m/kBT ) . (14.67)

At about the time the neutrinos cease to interact with electrons, the
interconversions of protons and neutrons also cease, and the ratio becomes frozen.

For good accuracy, it is necessary to determine the ratio precisely, and
this requires a detailed analysis of the reaction rates, which I am not going to
reproduce here. It is easy to see, however, that the ratio depends on the value of
g∗ at the temperature Tf where the freeze occurs. Consider, for example, neutron-
neutrino scattering, for which the cross-section is roughly the same as (14.58). As
readers may convince themselves, the number of scattering events per unit time
per unit volume is σnνnnc, where nν and nn are the number densities of neutrinos
and neutrons respectively. The number of events per unit time per neutron is
therefore σnνc. The mean time between scattering events for a particular neutron
is 1/(σnνc) and, roughly speaking, the freeze occurs when this time equals the
expansion time H −1. To estimate Tf, we use (14.51) with g = 1 for nν , (14.24)
for H and estimate ρ using (10.91) with g equal to the g∗ given in (14.65) for all
the abundant species present at temperatures near 1010 K. The result is

Tf ≈ 2.6 × 1010g∗1/6 K. (14.68)

Inserting this value into (14.67) gives a good indication of how the neutron-proton
ratio depends on g∗ and hence on Nν , but the number 2.6×1010 is merely a guess.
The results of a more careful analysis, insofar as they can be approximated by an
equation of the form (14.67), indicate that this number should be replaced by
something like 6.4 × 109.

At the prevailing nucleon densities, the probability of more than two particles
colliding simultaneously is negligible, so nuclei can be built up only by two-
particle collisions. The first nucleus that can be formed is deuterium, consisting
of one proton and one neutron. Now, deuterium has a binding energy of only
about 2.2 MeV and, at temperatures near 1010 K, there are many photons capable
of dissociating it. Deuterium nuclei remain intact in sufficient numbers for further
reactions to proceed only when the temperature has fallen to a value which is
estimated at about 8×108 K. This value depends somewhat on the actual numbers
of nuclei present, which in turn are related to the present matter density. Studies
of the reactions which then ensue show that almost all of the available neutrons
are used to form helium-4, the excess protons remaining single. Only very small
quantities of heavier nuclei such as lithium-7 emerge, together with small amounts
of deuterium and tritium.
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The relative abundance of hydrogen (protons) and helium is thus essentially
determined by the neutron-proton ratio at 8 × 108 K, and I shall now estimate it,
taking Nν to be 3. At the temperature Tf, which is 9.5 × 109 K, the ratio nn/np
is given by (14.67) to be 0.206, and the fraction Xn = nn/(np + nn) is 0.171.
The time that elapses as the temperature falls from Tf to 8 × 108 K is found from
(14.64) to be 274 s. During this time, a few neutrons decay, each one to a proton
plus leptons, with a mean lifetime of 917 s, so when nucleosynthesis begins we
have

Xn = nn

np + nn
= 0.171 exp(−274/917) = 0.127. (14.69)

Since each 4He nucleus contains two neutrons and two protons and has almost
exactly four times the mass of a proton, the fraction by weight of helium,
MHe/(MHe + MH), is, as readers may check, just twice this number, or about
25.3%. I emphasize that, while this calculation illustrates the essential argument,
a much more thorough analysis is needed to obtain reliable results. A detailed
analysis does predict a 4He abundance of around 25% (the value favoured by
Schramm and Turner (1998) is 0.248 ± 0.002), but the values obtained for the
abundances of light nuclei depend both on Nν , which affects the expansion rate,
and on the density of nucleons (or baryons), ρB.

The abundance of 4He turns out to depend very little on ρB, but it does
depend significantly on Nν . In my schematic calculation, the dependence on Nν

is through g∗. Taking Nν = 2 would give a 4He abundance of 23.9%, while
Nν = 4 would give 26.7% and detailed calculations give variations of about the
same size. In the 1980s, comparison of these results with observational estimates
of the primordial abundance of 4He made it possible to place an upper limit of
4 on the number of species of neutrinos—a number which from direct particle-
physics considerations was known only to be smaller than 8. [According to the
standard model of particle physics, Nν is the same as the number of families of
fermions, and the number of quark flavours is 2Nν . As we saw in connection with
(12.63), asymptotic freedom, which seems to be a well-verified property of QCD,
is valid only if there are no more than 16 quark flavours, which implies Nν ≤ 8.]
In 1989, a direct determination of Nν became possible through measurement of
the lifetime (or, more accurately, the decay width) of the weak vector boson Z0,
which can decay into νν̄ pairs of any species (see Abe et al (1989), Abrams et
al (1989), Adeva et al (1989), Decamp et al (1989)). From measurements of this
kind, Nν is now known to be equal to 3 with negligible error.

By contrast, the abundance of deuterium, which is of the order of 3 × 10−5,
depends strongly on the baryon density ρB. Recent, accurate determinations of the
deuterium abundance (Burles and Tytler (1998)) indicate that, if nucleosynthesis
calculations are correct, then the contribution of ordinary nuclear matter to the
present total density is �Bh2 � 0.02. According to our discussion in §14.3,
direct estimates of the total matter density are generally consistent with a value of
�0 ∼ 0.3, so the existence of large quantities of some kind of non-baryonic dark
matter seems to be strongly indicated.
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14.6 Recombination and the Horizon Problem

By the time of nucleosynthesis, almost all the electrons and positrons that had
once been present had annihilated. Assuming, however, that the universe is
electrically neutral, there must have been a small residual number of electrons
to balance the charge of the protons. When the temperature fell to a small enough
value, Tr, these electrons will have combined with the positive nuclei to form
neutral atoms. To estimate Tr with reasonable accuracy, it is sufficient to consider
a universe filled entirely with hydrogen. Near Tr, the fraction x of ionized atoms
is determined by thermal equilibrium, maintained by atomic collisions, and this
is described by the Saha equation (exercise 10.9). This equation involves the
number density of protons, which can be expressed in terms of the density of
photons and the nucleon-photon ratio η. Taking the ionization energy as 13.6 eV,
we obtain

x2/(1 − x) = 1.19 × 1014η−1T −3/2 exp(−1.578 × 105/T ). (14.70)

A numerical solution of this equation is easy. If we take η ≈ 10−10, as is implied
by the prediction �Bh2 � 0.02 of nucleosynthesis, then we find that x falls
quite swiftly from a value close to 1 at T = 4, 000 K to a very small value at
T = 3, 000 K.

While electromagnetic radiation interacts strongly with charged particles, it
interacts hardly at all with a gas of neutral hydrogen and helium, which is almost
completely transparent. It follows that the microwave background we observe
today was last scattered at the time of recombination and has travelled freely
towards us ever since. This leads to a conundrum known as the horizon problem,
which I shall now explain. The path of a light ray is found by setting dτ = 0
in (14.1) where, for simplicity, I shall take k = 0. As measured by comoving
coordinates, the distance it travels between times t1 and t2 is

L =
∫ t2

t1

dt

a(t)
. (14.71)

Recombination occurred, as readers may work out, somewhat after the universe
became matter dominated. For simplicity again, however, I shall assume that a(t)
was proportional to t1/2 right up to recombination, since this will not greatly affect
our conclusion. The coordinate distance d which a non-interacting light ray could
have travelled between the initial singularity and the time tr of recombination is

d = 2tr/a(tr). (14.72)

Of course, light rays did interact strongly. The point is that no signal of any
kind could have travelled a distance greater than d , and so any causal influences
could have acted only within a ‘causally connected’ region whose diameter was
no greater than d , which is called the causal horizon.
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Since recombination, the universe has been matter dominated and, to a
reasonable approximation, we can use the scale factor (14.31) to write

a(t)

a(tr)
=
(

t

tr

)2/3

. (14.73)

Then the coordinate distance D which a photon we now detect has travelled
towards us since recombination is

D = 3tr
a(tr)

[(
t0
tr

)1/3

− 1

]
� 3tr

a(tr)

[
a(t0)

a(tr)

]1/2

. (14.74)

The angle subtended at the Earth by one causally connected region is the ratio

d

D
= 2

3

[
a(tr)

a(t0)

]1/2

= 2

3

(
T0

Tr

)1/2

≈ 0.02 rad ≈ 1◦. (14.75)

What is puzzling about this is that the observed radiation is completely isotropic.
Thus, at the time of recombination, very many regions which could never have
communicated with each other were, to at least one part in 104, at the same
temperature.

14.7 The Flatness Problem

Cosmologists speak of a second puzzle concerning the standard model, which is
called the flatness problem. During the whole history of the universe, the scale
factor a(t) has been roughly proportional to a power of t , say t x with x equal to
either 1

2 or 2
3 . To make matters simple, suppose that x was always 1

2 . Crudely, we
can then use (14.26) to compare the present density with that at earlier times:

�(t) − 1 ≈
(

ȧ(t0)

ȧ(t)

)2

(�0 − 1) ≈
(

t

t0

)
(�0 − 1). (14.76)

It will be recalled that the value � = 1 corresponds to a flat universe, and it seems
most unlikely that �0 could differ from this value by more than a factor of 100.
When the universe was, say, 1 second old, � must have been equal to 1 with an
accuracy of at least one part in 1015, and this seems to represent a degree of fine
tuning which would not be expected to occur without some good reason.

Whether this should be regarded as a genuine puzzle is to some extent a
matter of philosophical taste. Even though (14.76) is not exactly correct, it is
obvious that, whatever the value of �0, we shall find a value of �(t) that is
arbitrarily close to 1 if we choose a sufficiently early time. It is worth reflecting,
however, that all the events which determined the overall constitution of the
universe took place within the first few seconds, if we are content to regard
nucleosynthesis as a relatively minor rearrangement of the particles that already
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existed. Thus, all the relevant time scales that naturally arise from physics are of
the order of a second or less and, unless � is for some reason exactly equal to 1,
we might have expected some appreciable variation by that time. It is sometimes
said, indeed, that the only truly fundamental time scale is the Planck time (14.28),
at which |�−1| was less than 10−60 or so, and that we might have expected some
appreciable difference of � from 1 by then. At any rate, if � is exactly equal to 1,
then we would certainly like to know why. If it is not, then, since |� − 1| grows
with time at least as fast as t1/2, we may reasonably wonder why the difference is
still fairly small after some 10 billion years.

The horizon and flatness problems do not make the standard cosmological
model incompatible with observations, but they do seem to show that the model
requires very special initial conditions. Any explanation of these initial conditions
must be sought in the very early universe, at temperatures well above 1012 K.

14.8 The Very Early Universe

As we attempt to look back into the very early universe, by which I mean the first
10−4 s, we soon encounter energies of a few hundred GeV at which the standard
model of particle physics has been only incompletely tested in the laboratory.
(Readers may like to bear in mind that an energy of 1 GeV corresponds to
a temperature of 1.16 × 1013 K.) At still higher energies, the standard model
may well be quite inadequate. It is widely thought that the grand unified and/or
supersymmetric theories that we touched on in chapter 12 or the string theories to
be discussed in chapter 15 should come into play, but there is no firm experimental
foundation for any of these theories. Little of what is said about the very early
universe can therefore be taken as reliably established and much of it is purely
conjectural. As I said at the beginning of this chapter, however, it is possible in
principle to work out some of the consequences of these theoretical conjectures
and confront them with observations.

It seems that a prominent role must have been played by phase transitions
of various kinds. The first of these that we encounter, moving backwards in time,
is the quark-hadron or deconfinement transition. The idea is that, at sufficiently
high temperature and density, quarks and gluons cease to be bound in identifiable
hadronic particles, but exist instead in a relatively weakly interacting plasma
along with the photons and leptons. Approximate calculations based on the
lattice version of QCD suggest that this change takes place at a sharp phase
transition which, at the fairly low density of nucleons present in the early universe,
would have occurred at a temperature of around 1012–1013 K. Experimental
studies of heavy-ion collisions, which produce, for a short time, large densities
of nuclear matter at high energy, provide some evidence for this kind of effect.
Deconfinement is related to the property of asymptotic freedom which means,
as readers will recall from chapter 12, that the effective strength of the strong
interactions decreases at high energy. Were it not for asymptotic freedom, indeed,
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very little could be said at all about the first millisecond. Most of what we believe
about the fairly early universe is based on treating radiation and matter as nearly
ideal gases. If the ‘strong’ interactions continued to be strong at nucleon densities
approaching those in atomic nuclei, then the difficulty of applying statistical
mechanics to such a strongly interacting fluid would become prohibitive. If the
idea of asymptotic freedom is correct, then we do not encounter such densities
until the temperature is high enough, and the strong interaction weak enough, for
the ideal gas approximation to be adequate.

If the gauge theories of fundamental interactions are correct, then we
may expect phase transitions to occur at which their symmetries cease to
be spontaneously broken. The possibility of symmetry restoration at high
temperatures was first recognized by D A Kirzhnits and A D Linde (1972).
These phase transitions are quite analogous to the superconducting transition,
with critical temperatures given, very roughly, by the masses of the relevant gauge
bosons.

To indicate how this works, I shall consider a single scalar field φ, which
could be one of the Higgs fields in a gauge theory. For simplicity, I shall take it to
be real, with a finite-temperature action similar to (10.76) given by

Sβ(φ) =
∫ β

0
dτ
∫

d3x

[
1

2

(
∂φ

∂τ

)2

+ 1

2
∇φ · ∇φ + λ

4! (φ
2 − v2)2

]
. (14.77)

Up to loop corrections in perturbation theory, the vacuum expectation value of φ
is one of the two values ±v, which are the two minima of the potential term in
(14.77). A high-temperature state is, however, not a vacuum state, and we need
to estimate the expectation value of φ in this state. To that end, we introduce a
source J for the field and, as in (10.80), define a thermodynamic potential by

exp [−βV�(β, J )] = Zgr(β, V , J )

=
∫
Dφ exp

[
−Sβ + J

∫
dτd3x φ(x, τ )

]
. (14.78)

The expectation value of φ should be independent of x and τ and is given by

φ̄ ≡ 〈φ〉β = − ∂�

∂ J

∣∣∣∣
β

. (14.79)

Consequently, the thermodynamic relation analogous to (10.32) is

d� = −sdT − φ̄dJ (14.80)

where s is the entropy density. For the free energy F(β, φ̄) defined by the
Legendre transformation

F(β, φ̄) = � + J φ̄ (14.81)
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we have
dF = −sdT + φ̄dJ (14.82)

and consequently
∂F

∂φ̄

∣∣∣∣
β

= J. (14.83)

Thus, when J is zero, the expectation value we require is a minimum of F which,
as we shall see, is equal to the potential in (14.77) plus a temperature-dependent
correction.

A satisfactory calculation of F is slightly complicated, but I shall present
a simple calculation that captures the main result. The calculation is essentially
first-order perturbation theory. We write φ as φ̄ + ψ and expand Sβ to quadratic
order in ψ , leaving out the interaction terms:

Sβ(φ) = βV

[
λ

4!(φ̄
2 − v2)2 − J φ̄

]
+
∫ β

0
dτ
∫

d3x

[
1

2

(
∂ψ

∂τ

)2

+ 1

2
∇ψ · ∇ψ + 1

2
m2(φ̄)ψ2

]
(14.84)

where

m2(φ̄) = λ

6
(3φ̄2 − v2). (14.85)

To lowest order, the expectation value φ̄ is the value of φ that minimizes the
quantity Sβ − J

∫
dτd3x φ, so the term linear in ψ can be omitted. Next,

we estimate � by substituting this into (14.78) and carrying out the functional
integral, which is similar to the one which led to (10.84), except that we now have
only one particle species. The result for the free energy (14.81) is

F(β, φ̄) = λ

4!
(
φ̄2 − v2

)2

+ 1

2π2β4

∫ ∞

0
dx x2 ln

{
1 − exp

[
−
(

x2 + β2m2(φ̄)
)1/2

]}
.

(14.86)

(At higher orders, the term linear in ψ cannot be neglected. A more systematic
procedure is to determine J as a function of φ̄ from the requirement that 〈ψ〉β = 0
and use (14.83) to find F .)

The import of this result becomes clearer if we make a high-temperature
expansion, whose first few terms are

F(β, φ̄) =
[

λ

24
v4 − π2

90
(kBT )4

]
+ λ

12

[
1

4
(kBT )2 − v2

]
φ̄2 + λ

24
φ̄4 + . . . .

(14.87)
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This is similar to a Ginzburg–Landau expansion. The coefficient of φ̄2 can be
thought of as a temperature-dependent effective mass for the φ particles, which
characterizes the way in which they propagate through a plasma of other particles.
We see that the critical temperature at which symmetry is restored is given by
kBTc = 2v. When φ is a Higgs field, this critical temperature is related to
gauge-boson masses at zero temperature by equations similar to (12.24), so unless
the gauge coupling constant is very large or very small, these masses give a fair
indication of Tc. In this approximation, the expectation value of φ is clearly given

by φ̄ = ±v
[
1 − (T/Tc)

2
]1/2

.
If a phase transition of this kind leads to restoration of the SU(3) × SU(2) ×

U(1) symmetry of the standard model of particle physics, then this occurred at
a temperature around 1015 K, at a time of about 10−12 s. It does not appear
that this would have had any great effect on the expansion rate. In the case
of a grand unified theory, the transition would occur at a temperature of some
1027 K, about 10−35 s after the initial singularity. According to what is called
the inflationary scenario, the effect of this may have been spectacular. The idea
of inflation was proposed by A Guth (1981) as a possible solution to the horizon
and flatness problems, and also as a means of explaining the absence from the
known universe of magnetic monopoles which ought, so it would seem, to be
produced at a GUT phase transition through the Kibble mechanism that I touched
on in §13.3. According to Guth, the universe may, at a very early time, have
undergone a short period of very much more rapid expansion than is envisaged in
the standard cosmological model.

To see how this might come about, consider a period during which the
temperature is falling towards the critical temperature for a symmetry-breaking
phase transition, involving a scalar field with an action similar to (14.77). The
expectation value of φ is zero, which at this point is the state of minimum free
energy. Below Tc, the state of thermal equilibrium is one in which the expectation
value is non-zero, but the field will require some period of time to adjust to
this new state. During this time, equilibrium statistical mechanics is not valid.
What we should use in its place is a difficult question to which no satisfactory
answer has (in my view) been found, but an obvious starting point is to obtain
the stress tensor for the field φ, which should appear in the field equations in
place of the stress tensor of an ideal gas that we have used until now. A general
expression, implicit in the derivation of the field equations of general relativity
(see exercise 4.2) is

T µν = − 2√−g

δS

δgµν

. (14.88)

For a real scalar field, with potential V (φ), the action in a curved spacetime (see
§7.7) might be taken as

S =
∫

d4x (−g)1/2
[

1
2 gµν∂µφ∂νφ − V (φ)

]
(14.89)
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if we assume a minimal coupling to the spacetime curvature, and the stress tensor
is

Tµν = ∂µφ∂νφ − gµν

[
1
2∂σφ∂

σφ − V (φ)
]
. (14.90)

At this point, we meet a serious difficulty of principle, because the field
equations Gµν = κTµν equate the components of the tensor Gµν , which describe
the geometry of a classical spacetime manifold and have definite values at
each point of the manifold, to those of a quantum-mechanical operator Tµν ,
which act in the Hilbert space of the field theory and have no definite values
at all. In a consistently quantum-mechanical description of the world, we would
presumably have some analogous equation relating operators associated with both
the spacetime geometry and its matter content. Having no such theory in hand,
however, we must find some stop-gap means of making sense of the incomplete
theories that we do have. This difficulty has, of course, been lurking in the
background ever since we started to use the ideas of particle physics to work
out the behaviour of matter in the early universe. We have avoided it until now
because equilibrium statistical mechanics appears to give us an unambiguous
way of calculating the pressure and density of a fluid, whether we imagine the
particles in the fluid to be classical or quantum-mechanical ones. The crucial
step is contained in definitions such as (10.60), where the trace incorporates
averages over both statistical uncertainties and quantum indeterminacy. In effect,
the assumption underlying our cosmological considerations has been that the field
equations can be taken as

Gµν = κ〈Tµν〉 (14.91)

where the expectation value uses an equilibrium density operator of the kind
given in (10.59). The generalization of these equations to encompass expectation
values in a state that may not be one of thermal equilibrium may be called
the semi-classical Einstein equations. While they cannot be justified at a
fundamental level, the success of quantum statistical mechanics in dealing with
both equilibrium and non-equilibrium situations in condensed matter physics
offers encouragement that they may give us roughly the right answers in a
cosmological setting also.

In the case of an isotropic universe, described by the Robertson–Walker
metric, the quantum-mechanical state must respect the assumption of isotropy.
In particular, this implies that the spatial components of the stress tensor obey
〈Ti j 〉 = 1

3δi j
∑

k〈Tkk〉. This being so, the expectation value of the stress tensor
(14.90) is that of an isotropic fluid, with the pressure and density given by

ρ =
〈

1
2 φ̇

2 + 1
2 a−2∇φ · ∇φ + V (φ)

〉
(14.92)

p =
〈

1
2 φ̇

2 − 1
6 a−2∇φ · ∇φ − V (φ)

〉
. (14.93)

From these equations, we can see how a period of exponential expansion might
come about. If the potential V (φ) were zero, we would have a field theory
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of free massless particles, whose energy density and pressure are given by the
expectation values of the derivative terms in (14.92) and (14.93). In thermal
equilibrium, at least, these contributions are proportional to T 4, and they fall as
the universe expands. (It is often said that the kinetic energy of these particles
is ‘redshifted away’.) If we reach a state in which the energy density and
pressure are mainly determined by the potential energy V (φ), then we have
approximately ρ = −p = 〈V (φ)〉. The stress tensor has approximately the form
Tµν = 〈V (φ)〉gµν and we see from the field equations (4.17) or from (14.18)
and (14.19) that this ‘vacuum energy’ is in effect equivalent to a cosmological
constant �eff = κ〈V (φ)〉. The Friedmann equation becomes

ȧ2 + k = 1
3�effa

2. (14.94)

Suppose that this equation first becomes approximately true at a time ti when the
scale factor is ai and that for some period of time thereafter �eff is approximately
independent of time. For a flat universe, with k = 0, the solution is

a(t) = ai exp
[
( 1

3�eff)
1/2(t − ti)

]
. (14.95)

The cosmological model in which this is always true (that is, in which there is
a cosmological constant but no ordinary matter) is called the de Sitter model.
Because it has no matter, it is not a good model for our universe. The exponential
expansion is much faster than the t1/2 expansion envisaged in the radiation-
dominated phase of the standard model. If such a period of inflation lasts long
enough, then a(t) can increase by a very large factor.

If the potential is the one with which our discussion began, namely V (φ) =
(λ/4!)(φ2 − v2)2, and the state preceding inflation is the one we envisaged with
φ̄ = 0, then we might guess that the effective cosmological constant during
inflation is roughly �eff ≈ κV (0) = κλv4/4!. This low-temperature state, with
a small density of particles, in which φ̄ is far from the minima at φ = ±v, is
sometimes called a false vacuum state. Inflation persists while the energy density
is dominated by the vacuum energy which means, in the example at hand, while φ̄

is close to zero. This false vacuum state is, however, unstable. We would expect it
to evolve into a broken-symmetry state with, say, φ̄ = v. A feature of this process
that runs counter to normal intuition is that the effective cosmological constant
corresponds roughly to a constant energy density, so that the total energy of the
universe increases in proportion to a3. As the broken-symmetry state emerges,
this potential energy of the false vacuum must be converted into particles and
radiation at a temperature comparable with, but somewhat lower than the critical
temperature Tc—a process called reheating. From that point onwards, the history
of the universe would be that described by the standard model.

The behaviour of the scale factor in the inflationary and standard models
is sketched in figure 14.5, where I have simplified matters by supposing that
inflation occurred more or less instantaneously at a time tI, and that conditions
were exactly the same just before inflation as they were just after, except that
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Figure 14.5. Schematic comparison of scale factors in the standard model (broken
curve) and some versions of the inflationary model (solid curve). Neither the amount of
inflationary expansion nor the relative time intervals is drawn to scale.

the size of a given comoving region was smaller by a factor Z = a+(tI)/a−(tI).
This implies that both models extrapolate backwards to an initial singularity at the
same instant t = 0. It should be clear that inflation can solve the horizon problem
if Z is sufficiently large. During the period before inflation, two small regions
from which we now receive background radiation were much closer together than
is allowed for in the standard model and could, after all, have communicated with
each other. Let us see how large the factor Z has to be. The coordinate size of
a region that could have become causally connected by the time tI is given by an
obvious modification of (14.72), namely

d = 2tI/a−(tI) (14.96)

and the coordinate distance D that a photon has travelled towards us since
recombination is still given by (14.74). To solve the horizon problem, we need
d ≥ D, so that the entire observable universe lies within one causally connected
region. (The extra distance that a causal influence could have travelled between tI
and tr is essentially the same as the d that now subtends an angle of 1◦ and is too
small to matter.) We can estimate the ratio d/D as

d

D
= 2tI

a−(tI)

a(tr)

3tr

[
a(tr)

a(t0)

]1/2

= 2

3
Z

tI
tr

a(tr)

a+(tI)

[
a(tr)

a(t0)

]1/2

= 2

3
Z

(
Tr

TI

)(
T0

Tr

)1/2

(14.97)
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where I have assumed that the post-inflationary universe is radiation dominated,
so that T ∝ a−1 ∝ t−1/2 until t = tr. If we take TI ∼ 1015 GeV/kB ∼ 1028 K,
corresponding roughly to the energy scale of grand unification, then we find
Z & 1026 ∼ e60, which is usually expressed by saying that about 60 ‘e-folds’
of the scale factor are needed. Evidently, figure 14.5 is not quite drawn to scale!
A rough idea of how long it might take for the scale factor to increase by this
amount can be gained by taking v to be, in energy units, about 1015 GeV and λ to
be about 1. In laboratory units, the quantity 1

3�eff in (14.95) must be measured in
s−2 so, inserting the appropriate factors of c and ~, we find that the required time
interval is

�t ≈ 60
(

1
3�eff

)−1/2 ≈ 60

(
8πGv4

3~3c5

)−1/2

≈ 10−34 s. (14.98)

While these values of Z and �t are fairly representative of the sort of numbers
one encounters, the actual values depend somewhat on details of the theoretical
models that are used and the assumptions that are introduced to deal with them.

To see how inflation can solve the flatness problem, we must solve the
Friedmann equation (14.94) with k = ±1. The solution, with an initial scale
factor ai = a−(tI), is

a(t) = ai cosh
[
( 1

3�eff)
1/2(t − ti)

]
+
(

a2
i − 3k/�eff

)1/2
sinh

[
( 1

3�eff)
1/2(t − ti)

]
. (14.99)

For large values of their argument, both cosh θ and sinh θ are approximately
equal to 1

2 exp θ , so if (14.94) is valid for a period of time longer than about
( 1

3�eff)
−1/2 we again have exponential expansion. During this expansion, the

Hubble parameter H = ȧ/a is just a constant, equal to ( 1
3�eff)

1/2. If a itself
becomes very large, then k/a2 becomes negligible compared with H 2 and the
universe is very close to being flat. Intuitively, we may imagine, for example,
a balloon inflated to a very large size. The part of the universe we observe
corresponds to a tiny fraction of its surface, which will appear almost flat. At
the end of inflation, the potential energy density �eff/κ is converted into an
equivalent energy density in particles and radiation, which is automatically equal
to the critical density 3H 2/κ . If the part of the universe that we can observe
has once been made flat to a high degree of accuracy by this mechanism, then
it remains flat. That is to say, the term k/a2 in (14.18) and (14.19) remains
negligible, and the function a(t) that solves these equations automatically leads
to (14.38), regardless of how the effective density ratio � may be made up from
baryonic matter, radiation, non-baryonic matter and a cosmological constant.

The question naturally arises, whether the sequence of events that I have
outlined really does result from the solution of the field equations (14.91) when
the stress tensor is that of a quantum field theory that might reasonably be thought
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to describe the matter in our universe. The problem of calculating 〈Tµν〉 for even
a simple quantum field theory in a non-equilibrium state proves to be extremely
difficult (see, for example, Lawrie (1999)) and such calculations have been
attempted only for models that are too highly idealized for any firm conclusions
to be drawn. The strategy most often adopted by cosmologists is to assume that
the non-equilibrium state of the quantum field can adequately be characterized by
the value of a classical scalar field, which has a definite value at each point of
spacetime. In a homogeneous universe, this value can depend only on the cosmic
time t , so the energy density and pressure are just

ρ = 1
2 φ̇

2 + V (φ) p = 1
2 φ̇

2 − V (φ). (14.100)

If these expressions are substituted into (14.21) and (14.22), a short calculation
shows that the equation of motion for φ itself must be

φ̈ + 3H φ̇ = −V ′(φ) (14.101)

where V ′(φ) = dV (φ)/dφ and H = ȧ/a. In fact, the Euler–Lagrange equation
obtained from the action (14.89) is (exercise 14.3)

φ̈ + 3H φ̇ − 1

a2 ∇2φ + V ′(φ) = 0 (14.102)

and this, of course, reduces to (14.101) when φ depends only on t . This equation
has the same form as the equation for a Newtonian particle whose position in a
one-dimensional space is φ and whose potential energy is V (φ), if we imagine
this particle also to be subject to a frictional force −3H φ̇.

With the reasonable assumption that it is sufficient to deal with a region
of the universe that can be considered flat, the Friedmann equation (14.21) now
becomes

H 2 = 1
3κ
[

1
2 φ̇

2 + V (φ)
]
. (14.103)

Within this scheme, the equation of motion (14.101) for φ and the Friedmann
equation (14.103) form a closed set, which can be solved (numerically, if not
analytically) to find the evolution of the universe from a given initial state. The
question whether inflation can occur can be addressed in a preliminary way
without a detailed solution, however. A minimal requirement is that the expansion
should accelerate, which means that

ä/a = − 1
6κ(ρ + 3 p) = − 1

3κ[φ̇2 − V (φ)] > 0. (14.104)

Consider the slightly stronger requirement that

φ̇2 + V (φ) which implies H 2 ≈ 1
3κV (φ). (14.105)

Supposing that this condition is to hold over some significant period of time, then
it should also be true that dφ̇2/dt + dV (φ)/dt , or

φ̈ + V ′(φ). (14.106)
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If so, then the term φ̈ can be neglected in (14.101), with the result that

3H φ̇ ≈ −V ′(φ). (14.107)

The analogue Newtonian particle, that is to say, has reached a ‘terminal velocity’,
such that the frictional force balances the potential gradient. If the expansion is
to be approximately exponential, then H must be approximately constant, so we
can differentiate (14.107) to find

φ̈ ≈ −(3H )−1V ′′(φ)φ̇. (14.108)

With a little rearrangement, the two conditions (14.105) and (14.106) become∣∣∣∣V ′′(φ)
V (φ)

∣∣∣∣ + 3κ and

∣∣∣∣V ′(φ)
V (φ)

∣∣∣∣ + √
3κ. (14.109)

These are restrictions on the shape of the potential V (φ), which tell us that it
must, for some range of values of φ, be rather flat. They are sufficient (though
not strictly necessary) conditions for the occurrence of some period of inflation;
when they are met, the jargon has it that a ‘slow roll’ approximation applies.
Suppose that φ traverses a range of values from φ1 to φ2 where these conditions
are satisfied. The scale factor can be written as a = a0 exp

(∫
H (t)dt

)
, where

a0 is a constant, so we can use (14.105) and (14.107) to estimate the number of
e-folds as

ne =
∫ t2

t1
H (t)dt =

∫ φ2

φ1

H

φ̇
dφ = −κ

∫ φ2

φ1

V (φ)

V ′(φ)
dφ. (14.110)

Essentially this ‘slow roll’ idea, which differs in some important details from
Guth’s original proposal, was first deployed by Linde (1982) and by Albrecht
and Steinhardt (1982) in connection with the phase transition in a grand-unified
theory, from which our discussion started. The potential V (φ) they considered
was not the one that appears in the Lagrangian of the theory, but rather an effective
potential, calculated roughly in the same way as (14.86), but including additional
corrections that arise from the interaction of φ with the gauge bosons. If the
parameters in the theory are appropriately chosen, this potential has roughly
the form sketched in figure 14.6. There are regions in which it is very flat, as
required by (14.109), and it is found that an expansion factor Z much greater
than the required value of 1026 or so is possible. Nevertheless, cosmologists are
generally agreed that this mechanism does not work. The reason lies in what
has come to be the most prominent feature of inflationary cosmology, namely
a prediction of small perturbations, or inhomogeneities, in the energy density
ρ. The presence of inhomogeneities in the fairly early universe is necessary to
account for the presently observed clumping of matter into galaxies and clusters
of galaxies (the umbrella term for which is large-scale structure). Structure of the
general sort that we now see can be shown to come about through the gravitational
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Figure 14.6. Qualitative form of the effective potential assumed in some versions of the
inflationary model.

attraction of regions whose density may initially have been only slightly greater
than the average, and cosmologists have devised methods of studying this process
in great detail. Small inhomogeneities in the density of matter at the time of
recombination would be reflected in variations, on small angular scales, of the
temperature of the microwave background, and these have indeed been observed
at the level of about one part in 105.

The prevailing view among inflation theorists is that these inhomogeneities
have a quantum-mechanical origin. Any inhomogeneities that existed prior
to inflation would have been smoothed out by the inflationary expansion, so
those that are relevant to observations were created while inflation was taking
place. During this period, the energy density was entirely dominated by the
potential energy V (φ), so a mechanism that created small, inhomogeneous
fluctuations in φ(t), say ϕ(x, t), would lead to corresponding perturbations in
the density δρ(x, t) = V ′(φ)ϕ(x, t). This expression does not give us directly
the perturbations that would have been present at, say, the time of recombination,
because conditions in the universe would have evolved significantly between these
two times. It proves possible, however, to estimate the density perturbations in the
radiation-dominated ‘fairly early’ universe without the need to know exactly what
happened in the intervening period. The following argument (a simplified version
of one due to Guth and Pi (1982) and to Starobinski (1982)) indicates how this
can be done, but side-steps several questions which must be dealt with in a more
complete analysis.

We express the inhomogeneous scalar field as

φ(x, t) = φ0(t) + ϕ(x, t) (14.111)

where the average field φ0(t) obeys (14.101). The whole field φ(x, t) obeys
(14.102), but we linearize this equation, assuming that ϕ(x, t) is small. The result
is

ϕ̈ + 3H ϕ̇ − a−2∇2ϕ + V ′′(φ0)ϕ = 0 (14.112)

and it will be helpful to compare this with the equation satisfied by φ̇0(t), obtained
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by differentiating (14.101). With the assumption that H is approximately constant
during inflation, we find

∂2
t φ̇0 + 3H∂t φ̇0 + V ′′(φ0)φ̇0 = 0. (14.113)

Suppose that the term a−2∇2ϕ can be neglected. Then these two equations are
identical and the time dependence of ϕ(x, t) is the same as that of φ̇0(t). Later
on, we shall have to determine just when this is true, but for now I simply assume
that it is. Then we can write

ϕ(x, t) = −τ (x)φ̇0(t) (14.114)

where τ (x) is a small, time-independent function, and up to corrections of order
ϕ2 we have

φ(x, t) ≈ φ0(t) − τ (x)φ̇0(t) ≈ φ0

(
t − τ (x)

)
. (14.115)

Thus, the net effect of the perturbation is a position-dependent time delay (which
might be either positive or negative) in the ‘rolling’ of φ.

At this point, we must recognize that the splitting of spacetime into spatial
sections corresponding to definite values of t , which was natural in terms of the
exact Robertson–Walker metric, is now slightly ambiguous. Let us, indeed, define
a new time coordinate t̄ = t − τ (x). On the constant-t̄ sections of spacetime, the
field φ(t̄) and the density ρ(t̄) are constant, but the scale factor varies:

ā(x, t̄) = a
(

t̄ + τ (x)
)

≈ a(t̄ ) + τ (x)ȧ(t̄ ) ≈ [1 + HIτ (x)] a(t̄ ) (14.116)

where HI is the roughly constant value of the Hubble parameter during inflation.
When inflation comes to an end, the vacuum energy density is converted into
particles and radiation. Initially, this density is uniform over the spatial sections
of constant t̄ , but in the radiation-dominated era it varies as 1/a4. Assuming
that each small region evolves like a miniature Friedmann–Robertson–Walker
universe, with its own scale factor, the density at later times will be

ρ(x, t̄) = ρ(t̄)

[1 + HIτ (x)]4
� ρ(t̄)

[
1 + δρ(x)

]
(14.117)

where ρ(t̄) � constant/a4(t̄) and the fractional variation in density, or density
contrast, is given by

δρ(x) = δρ(x)
ρ

= −4HIτ (x). (14.118)

Wary readers will appreciate that this simple calculation has many pitfalls. Chief
among them is the fact that the variations in density over a ‘spatial’ section of
spacetime depend on how that spatial section is chosen; we could apparently
manufacture arbitrary density perturbations by choosing a new time coordinate
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t ′ = t̄ + δt (x) and redefining ‘space’ to be the three-dimensional surface of
constant t ′. The dependence of ρ(x, t) on our choice of a coordinate system
is usually referred to as a ‘gauge’ dependence, by analogy with the gauge
degrees of freedom in electromagnetism and other gauge theories, and only
gauge-independent quantities have a genuine physical meaning. By means of
a sufficiently careful analysis, it is possible to arrive at predictions for observed
variations in, for example, the microwave background radiation that are free of
gauge ambiguities, and the result is substantially equivalent to (14.118). This
gauge-invariant analysis can be developed in several different ways, all of which
are too lengthy for me to enter into them here. Readers who would like to know
more about them might start with the account given by Liddle and Lyth (2000).

It remains to estimate the size of τ (x) and to this end it is useful to take
Fourier transforms

ϕ(x, t) =
∫

d3k

(2π)3
eik·xϕk(t) (14.119)

and similarly for τ (x) and δρ(x). So long as we deal only with perturbations in
both the density and the metric that are linear in ϕ(x, t), each Fourier component
evolves independently of the others. From (14.112) we obtain

ϕ̈k + 3H ϕ̇k + (k/a)2ϕk + V ′′(φ0)ϕk = 0 (14.120)

where k = |k|. The calculation that led to (14.118) assumed that the third term,
which has become (k/a)2ϕk , was negligible, and it will now be important to find
out when this is true. Let us write ϕk(t) = exp [ fk(t)], so that the equation of
motion (14.120) becomes

f̈k + ḟ 2
k + 3H ḟk + (k/a)2 + V ′′(φ0) = 0. (14.121)

Consider the trial solution ḟk ≈ −3H . As before, we take H to be roughly
constant, which implies that f̈k ≈ 0. This solution will be approximately valid
if the last two terms in (14.121) are much smaller than ḟ 2

k and |3H ḟk|, both of
which are equal to 9H 2. The criteria for this are

(k/H a)2 + 9 (14.122)

|V ′′(φ0)/H 2| + 9. (14.123)

Now the ‘slow roll’ conditions (14.105) and (14.109) imply |V ′′/H 2| + 9, which
is precisely (14.123), so the substantive criterion is (14.122). In this inequality, the
wave vector k is (up to a factor of 2π) the inverse wavelength of the perturbation
as measured by the comoving coordinates x, so a/k is the physical wavelength,
often referred to as the length scale, or simply the ‘scale’ of the perturbation.
In this context, H −1 is a characteristic distance in the inflating (or de Sitter)
spacetime. It is often called the ‘horizon’ because, according to Hubble’s law
(14.9), it is the separation of two points that are being carried apart at the speed of
light, and is therefore the greatest distance over which any causal influence might
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act. The jargon has it that a scale for which a/k < H −1 is ‘inside the horizon’,
while one for which a/k > H is outside. Roughly speaking, then, for scales
which are outside the horizon, the equation of motion (14.120) can be replaced
by ϕ̈k + 3H ϕ̇k ≈ 0, whose solution is

ϕk(t) ≈ ϕk + bke−3Ht (14.124)

where ϕk and bk are constants. Since a/k increases exponentially with time, the
net result is that each Fourier component eventually ‘crosses the horizon’ and
settles to a constant value ϕk shortly thereafter, say at t � t∗(k). According to
(14.118) and (14.114), we therefore estimate

|δρ(k)| ≈ 4HI|τk| ≈ 4HI

∣∣∣∣ ϕk

φ̇0(t∗)

∣∣∣∣ . (14.125)

Finally, we need an estimate of ϕk. The conventional strategy is to reinstate
the quantum-mechanical nature of the field φ(x, t), taking ϕ(x, t) to be a free
quantum field with the equation of motion

ϕ̈ + 3H ϕ̇ − a−2∇2ϕ = 0. (14.126)

In (14.125), the quantity ϕk is to be identified as a root-mean-square average
over the quantum indeterminacy in ϕ(x, t). To be specific, we define the power
spectrum for density perturbations by

Pρ(k) = 4πk3〈δ2
ρ(k)〉 (14.127)

and identify

〈ϕ2
k〉 = (2π)−3

∫
d3x eik·x〈0|ϕ(x, t)ϕ(0, t)|0〉 (14.128)

where |0〉 is a vacuum state for ϕ. This expectation value can be calculated as
follows. The action for ϕ is (14.89) with V = 0. Writing the metric explicitly in
terms of the scale factor, we have

S =
∫

d4x a3
[

1
2 ϕ̇

2 − 1
2 a−2∇ϕ · ∇ϕ

]
(14.129)

which yields the momentum conjugate to ϕ as !(x, t) = a3(t)ϕ̇(x, t). The
general solution of (14.126) analogous to the solution (7.11) of the Klein–Gordon
equation in Minkowski spacetime can be written as

ϕ(x, t) =
∫

d3k

(2π)3

[
αkχk(t)e

ik·x + α
†
kχ

∗
k (t)e

−ik·x
]

(14.130)

where αk and α
†
k are creation and annihilation operators with the commutator[

αk, α
†
k′
]

= (2π)3δ(k − k′) (14.131)
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and χk(t) is a solution of (14.120) with V ′′ = 0. The important point is that
χk(t) should have the correct magnitude. This is determined by the commutation
relation[

ϕ(x, t), ϕ̇(x ′, t)
] = a−3(t)

[
ϕ(x, t),!(x ′, t)

] = ia−3(t)δ(x − x ′) (14.132)

which will be true if χ(x, t) satisfies the Wronskian condition

χ∗
k (t)χ̇k (t) − χ̇∗

k (t)χk (t) = −ia−3(t). (14.133)

A suitable function is

χk(t) = H(
2k3

)1/2

(
1 − ik

a H

)
exp

(
ik

a H

)
. (14.134)

The state |0〉 is defined by αk |0〉 = 〈0|α†
k = 0 and it is straightforward to calculate

the expectation value, which is

〈ϕ2
k〉 = H 2

2(2π)3k3

(
1 + k2

a2 H 2

)
� H 2

2(2π)3k3
(14.135)

In the second expression, I have taken k/a H + 1 for a perturbation outside the
horizon.

Altogether, the power spectrum turns out to be

Pρ(k) ∼
(

H 2
I

2πφ̇0(t∗)

)2

(14.136)

where ∼ indicates that there is a numerical factor of order 1, which depends
somewhat on the details of how the estimate is made. Again, HI is the
Hubble parameter of the inflationary universe although the density perturbations
described by this power spectrum are those in the radiation-dominated era. It
should be mentioned, though, that this power spectrum is not directly observed.
In the radiation-dominated era, the scale factor varies as a ∝ t1/2 and the Hubble
parameter as H ∝ t−1, so the ratio k/(a H ) increases as t1/2. Thus, length scales
which moved outside the horizon during inflation may re-enter the horizon during
the radiation-dominated era. When they do, causal processes may again affect
the evolution of perturbations on these length scales. A well-established theory
indicates that δρ(t) then oscillates with time. The temperature variations in the
microwave background, when determined with enough precision as a function of
length scale, should reveal what amounts to a snapshot of these oscillations at
the time of recombination (or on the ‘surface of last scattering’, as the matter
is usually put). Given the primordial power spectrum (14.136), the expected
temperature variations can be determined reliably, as long as the perturbations
are not so large as to invalidate the use of linearized equations of motion.
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A notable feature of the power spectrum is that it is substantially independent
of k, although φ̇0

(
t∗(k)

)
does depend weakly on k. It is said to be approximately

scale invariant. Long before the idea of inflation was conceived, it had been
argued by E R Harrison and Ya B Zeldovich that a scale-invariant spectrum of
density perturbations was needed to account for the subsequent development of
galactic clusters, and that the magnitude of δρ should be of the order of 10−5–
10−4, which is consistent with the temperature fluctuations in the microwave
background observed subsequently. This, of course, is a significant point in favour
of the inflationary account.

Unfortunately, the magnitude of δρ as calculated from the potential V (φ) of
a grand unified theory turns out to be too large by a factor of around 105. For
this reason, most cosmologists no longer regard as tenable the idea of inflation
arising from a phase transition associated with grand unification. More recent
developments have largely been based on the idea of chaotic inflation (Linde,
1983). When the universe was young enough for typical energies to have been of
the order of the Planck energy (about 1019 GeV—see appendix C) or above, the
poorly understood effects of quantum gravity are likely to have been important.
According to Linde, one might expect the universe to have emerged from the
quantum gravity era in a chaotic state. In particular, the value of the scalar field φ

would vary widely from one region of the universe to another and in some region,
destined to become the one that we now observe, would have had the value needed
for one’s favourite inflationary scenario to work.

The popular pastime of inflationary model-building has produced an
enormous variety of models, whose virtues and shortcomings I cannot usefully
survey here; interested readers may like to consult Liddle and Lyth (2000). Just
what can be learned from these models is, I confess, something that I find it
hard to assess. Typically, to reduce the magnitude of density perturbations to
an acceptable level, it is necessary for φ to be very weakly coupled to other
fields, so it cannot be identified as a Higgs field and is generally referred to
as the inflaton. Most often, indeed, the inflaton and its (arbitrarily adjustable)
potential are invoked solely for the purpose of producing inflation, and have
nothing to do with any established particle physics, although speculative theories
of supersymmetry, supergravity and superstrings provide motivations for some
of the variants that have been proposed. An optimistic point of view is that
sufficiently detailed agreement between predictions for the density perturbations
and (future) precise measurements might allow one to infer the existence of the
requisite inflaton and the form of its potential. However, in the absence of other
corroborating evidence, such as the identification of a particle species that might
plausibly be associated with the inflaton field, it would seem difficult to argue that
the observed density perturbations might not have some quite different origin.

It is also possible to wonder whether calculations of the kind that I have
sketched above really have a secure basis in quantum field theory. For example,
the classical field φ(x, t) is often represented as being the expectation value of
a quantum field, but this cannot be exactly right. According to the standard
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interpretation of quantum mechanics, the expectation value is the expected
average of repeated measurements made on many identically prepared systems,
but such repeated measurements are not easy to carry out on an ensemble of
identically prepared universes. In any case, the things that one might, in principle,
regard as measurable are quantities such as energy density and pressure, and a
definite result from such a measurement does not entail a definite value for an
underlying object such as φ. Moreover, the expectation value of the stress tensor,
〈Tµν(φ)〉 that appears in (14.91) is by no means the same thing as Tµν(〈φ〉) and
in general it cannot be expressed as a function of the single variable 〈φ〉 at all;
many more parameters are needed to characterize the state of a non-equilibrium
quantum system. I pointed out that the semiclassical field equations (14.91)
themselves cannot be correct at a fundamental level, so one might wonder whether
replacing all quantum fields by their expectation values might be an equally
plausible strategy. That it would not is clear from the fact that this would yield
ρ = p = 0 in the case of a radiation-dominated universe containing only photons.
In the same way, one may wonder about the legitimacy of treating the quantum
indeterminacy of a field such as φ as being equivalent to a real fluctuation in
a classical energy density. Questions such as these have been asked from time
to time (see, for example, Evans and McCarthy (1985), Guth and Pi (1985),
Mazenko et al (1985), Albrecht et al (1994), Boyanovsky et al (1998)). For
what it is worth, my own (possibly eccentric) view is that they have not been
convincingly answered, but readers who pursue for themselves the discussions to
be found in the literature may well arrive at a different conclusion.

Exercises

14.1. The absolute luminosity L of an astronomical object is the total power
it radiates. Its apparent luminosity ( is the power per unit area received by
an observer. In Euclidean space, the apparent luminosity for an observer at
a distance d is obviously ( = L/4πd2. In general, the luminosity distance
of a source of known luminosity is defined as dL = (L/4π()1/2. Consider a
comoving source and a comoving observer separated by a coordinate distance r
in a Robertson–Walker spacetime. Radiation emitted at time te is received at time
t0. By considering both the rate at which photons are received and the redshift of
each photon, show that

( = La2(te)

4πr2a4(t0)
.

The scale factor at time t can be expressed as a power series in (t − t0) as

a(t) = a(t0)
[
1 + H0(t − t0) − 1

2 q0 H 2
0 (t − t0)

2 + . . .
]
.

Use this expansion and (14.14) to express the redshift z and the coordinate
distance r as power series in (t0 − te) and hence express r as a power series
in z. Show that the luminosity distance is given by (14.11).
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14.2. The covariant action for a massless, conformally coupled scalar field can be
written as

S = 1
2

∫
d4x (−g)1/2[gµν∂µφ∂νφ + ξ Rφ2]

with ξ = 1
6 . Considering a spatially flat Robertson–Walker spacetime, for which

the Ricci scalar R is given by (14.7), and using Cartesian spatial coordinates,
derive the Euler–Lagrange equation. Show that it has plane-wave solutions of the
form

φ(x, t) = [2ω(t)a3(t)]−1/2 exp

(
−i
∫ t

t0
ω(t ′)dt ′ + ik · x

)
where the time dependent frequency satisfies the equation

ω2 + 1

2

ω̈

ω
− 3

4

ω̇2

ω2 = |k|2
a2 − 1

2

ä

a
− 1

4

ȧ2

a2 .

Verify that this equation is satisfied by ω(t) = |k|/a(t) and hence that the
frequency and wavelength of the particle are redshifted as in (14.16).

14.3. By adding to the action of the previous exercise a potential V (φ), and setting
ξ = 0, deduce the equation of motion (14.102).

14.4. Consider a projectile launched vertically from the surface of the Earth.
Write down an expression for its total energy E , with the usual convention that
the potential energy vanishes at r → ∞. The escape velocity corresponds to
E = 0. Verify that the Friedmann equation (14.21) with ρ = M/a3 has exactly
the same form, with k ∝ −E .

14.5. (a) For a radiation-dominated universe, show that the function f (�) in
(14.34) is given by f (�) = 1/(1 + �1/2).

(b) Consider a flat universe with a positive cosmological constant, containing
only pressureless, non-relativistic matter. By integrating the Friedmann
equation (14.18), show that

t = 2

(3�)1/2
ln

[
�1/2 + (κρ + �)1/2

(κρ)1/2

]
and hence that the function f (�) is

f (�) = 2

3(1 − �)1/2 ln

[
1 + (1 − �)1/2

�1/2

]
.

Verify that f (1) = 2
3 .

14.6. The discussion of §14.3 assumes a cosmological model in which ρ(t) =
ρmatter(t) + ρrad(t) = M/a3(t) + �/a4(t), where M and � are constants, and
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p(t) = prad(t) = �/3a4(t). Verify that such a model is consistent with both of
equations (14.21) and (14.22).

14.7. With a positive cosmological constant �, show that a static universe
(the Einstein universe) with a, ρ and p all constant is possible provided that
ρ ≤ 2�/κ , and that this universe is closed. In the Lemaı̂tre universe, p is taken
to be zero and the constant M = ρa3 is larger than the value required for a static
universe. Show that (i) this model has an initial singularity with a(t) initially
proportional to t2/3; (ii) the expansion slows down until ȧ reaches a minimum
when a3 = κM/2�; (iii) after a sufficiently long time, the expansion becomes
exponential as in the de Sitter universe (14.95).



Chapter 15

An Introduction to String Theory

At the end of chapter 12, we left the enterprise of constructing a unified theory
of fundamental particles and their interactions in a rather unsatisfactory state. As
judged by its ability to reproduce the observed phenomena of particle physics,
the standard model is outstandingly successful, but it leaves many questions
unanswered. There are twenty or so parameters (coupling constants and masses)
whose values cannot be deduced from any principles of the theory and must
simply be adjusted to fit the facts. Likewise, the gauge symmetry group
SU(3)×SU(2)×U(1) and the number of families of quarks and leptons must be
chosen, from the limitless possibilities that would seem to present themselves, just
so as to fit the facts. The apparent convergence of the running coupling constants
of the standard model to a single value at around 1015–1016 GeV seems to point
towards a more completely unified underlying theory. If this is taken to be a grand-
unified gauge theory, though, then disturbingly ad hoc measures (such as the fine
tuning of some of its parameters) are needed to fit the known facts, while other
features of the theory (such as its gauge group) cannot be determined because not
enough facts are known!

Moreover, none of these theories includes a description of gravitational
forces. General relativity, although it cannot be tested quite as stringently as the
standard model, is also a highly successful theory. As we discovered in chapter 8,
it is somewhat akin to the gauge theories of particle physics, but all attempts to
convert it into a quantum-mechanical theory have been unsuccessful. It is worth
emphasizing that we cannot be satisfied with a classical theory of gravity. Quite
apart from any aesthetic prejudice, the field equations (4.17) simply do not make
sense if the geometrical tensor on the left-hand side is a classical one while the
stress tensor on the right-hand side is a quantum-mechanical operator, as it must
be. The combination of a classical theory of spacetime with a quantum theory of
the matter that lives there does not lead to a self-consistent view of the world.

In the 1970s there emerged, more or less by accident, the beginnings of a
theory which seems to offer the hope of a truly unified and self-consistent view of
the world. Whether it is a correct view is quite another matter: there is currently

425
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no shred of experimental evidence that would serve either to confirm or to refute
the mathematical notions that have been advanced. Its point of departure is the
idea that the fundamental constituents of matter are not point particles but one-
dimensional objects called, quite reasonably, strings. As I write these lines, some
thirty years on, the theory has become so extensive that I cannot hope to do it
justice in a single chapter. The greater part of this chapter is intended to give
substance to three key ideas: (i) that the various particle species we observe
might be identifiable as different states of vibration of a single basic object—
the relativistic string; (ii) that one of these vibrational states can be identified as
the graviton, and consequently that the theory does indeed include a quantum-
mechanical description of spacetime geometry; (iii) that the quantum mechanics
of a relativistic string requires (at least in the most usual version of the theory) the
existence of more spacetime dimensions than the four that are familiar to us.

I shall develop in some detail the theory of a free bosonic string, whose
only physical attributes are its location in (and motion through) spacetime. We
begin in §15.1 by looking briefly at the quantum mechanics of a relativistic
point particle from a point of view which is different from the one we have
taken until now, but is more readily generalized to the case of a string. The
classical theory of a relativistic string occupies §15.2, where we shall see that
a tractable mathematical formalism involves physically redundant degrees of
freedom analogous to the gauge degrees of freedom of electromagnetism and its
non-Abelian generalizations. (In fact, they are very similar to the gauge degrees
of freedom which, as we saw in §7.6.2, result from the coordinate invariance
of general relativity.) The quantization of this classical theory is dealt with in
§15.3. Although the basic procedure is the one familiar from chapter 5, we
shall discover that very careful thought is needed to deal correctly with the
gauge degrees of freedom. In fact, the quantization can be carried through
consistently only on condition that the gauge symmetry of the classical theory
survives as a symmetry of the quantum theory and it is this condition which,
as we learn in §15.3.3, appears to demand the existence of extra spacetime
dimensions. The physical interpretation of this prototype string theory is the
subject of section §15.4, where we shall see how to construct the physical states
that can be identified as particles of definite mass and spin. In particular, we
find that one of these particles is a massless spin-2 particle, which we would
like to identify as a graviton, and §15.4.3 shows how the existence of this state
of the string is related to changes in spacetime geometry. Finally, I discuss
much more qualitatively in §15.5 some of the further advances that have been
made in the attempt to turn this prototype theory into a real working model of
the physical world. These include the mechanism whereby strings may interact
(§15.5.1); the supersymmetric strings (§15.5.2), whose additional degrees of
freedom are needed to account for the existence of fermionic particles and of
internal symmetries such the gauge symmetry of the standard model, as well as for
more technical reasons of mathematical consistency; and some of the implications
of the compactification of extra spacetime dimensions (§15.5.3). In the end, we
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shall see that the most recent developments point towards a still deeper theory, the
exact nature of which is still unclear.

Unavoidably, this chapter will be somewhat more technical than most of
its predecessors, and we shall have to work rather hard to obtain just a few key
results. Even so, we shall be able only to scratch the surface of what has become
a very large and mathematically sophisticated branch of theoretical physics.

15.1 The Relativistic Point Particle

We wrote down in (3.32) a Lagrangian for a free classical particle in Minkowski
spacetime. In a slightly different notation, the corresponding action is

S = −m

2

∫
dτp

dXµ

dτp

dXµ

dτp
. (15.1)

Here I denote a point on the particle’s trajectory, or worldline, by Xµ(τp) (and
Xµ = ηµν Xν ), to distinguish it from the coordinates xµ of a general spacetime
point, and the proper time measured along this worldline by τp. This action,
and its generalization to a curved spacetime, serve well enough to describe
the motion of a classical particle, but there is a catch. The proper time τp is
determined by the Minkowski line element dτ 2

p = ηµν dXµdXν , and this implies
that the components of the 4-velocity dXµ/dτp are not all independent, but are
constrained by the relation

dXµ

dτp

dXµ

dτp
= 1. (15.2)

So long as we deal with a classical particle, for which Xµ(τp) is a definite,
well-defined function, it is simple enough to add this equation to the Euler–
Lagrange equations obtained from the action, as we did in (4.43), for example.
For a quantum-mechanical particle, which does not have a well-defined worldline,
matters are less straightforward. In fact, a large part of the mathematical
complexity of string theory can be traced to the necessity of imposing a constraint
similar to (15.2). For the point particle, one way of proceeding is to label points
on the worldline by an arbitrary parameter τ . An element dτp of proper time must
then be related to a small change in τ by dτp = e(τ )dτ , where e(τ ) amounts to a
metric on the worldline (or it might be thought of as analogous to the vierbein that
we introduced in (7.130)). We then have dXµ/dτp = e−1dXµ/dτ , and a suitable
action is

S = − 1
2 m

∫
dτ
[
e−1 Ẋµ Ẋµ + e

]
(15.3)

where Ẋµ = dXµ/dτ . Classically, we could choose τ = τp by setting e = 1, in
which case this new action differs from (15.1) by an irrelevant constant. The point
of introducing e(τ ), though, is that we can treat it as a new dynamical variable, on
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the same footing as Xµ(τ). If we do this, then the two Euler–Lagrange equations
are

d

dτ

(
1

e

dXµ

dτ

)
= 0 or

d2 Xµ

dτ 2
p

= 0 (15.4)

−e−2 dXµ

dτ

dXµ

dτ
+ 1 = 0 or

dXµ

dτp

dXµ

dτp
= 1. (15.5)

Clearly, these two equations reproduce both the equation of motion for Xµ and
the constraint (15.2). Equally clearly, we still have a theory that describes a
single relativistic particle, so the function e(τ ) cannot correspond to a genuine
physical degree of freedom. In fact, it is a gauge degree of freedom, analogous
to the component A0 of the electromagnetic 4-vector potential which, as we saw
in chapter 9, acts as a Lagrange multiplier to enforce the Gauss’ law constraint
(9.55). In the case at hand, the gauge symmetry is the freedom we have introduced
to relabel points on the worldline. If we choose a new parameter τ ′ = τ ′(τ ), we
must have dτp = e(τ )dτ = e′(τ ′)dτ ′ and it is a simple matter to check that the
transformation

dτ = dτ

dτ ′ dτ ′ e = dτ ′

dτ
e′ dXµ

dτ
= dτ ′

dτ

dX ′µ

dτ ′ (15.6)

leaves the form of the action (15.3) unchanged. Clearly, this reparametrization
invariance is quite analogous to the general-coordinate invariance of general
relativity. Each spacetime coordinate Xµ counts as a scalar field for this purpose,
which means, as in (2.9), that X ′µ(τ ′) = Xµ(τ) when τ and τ ′ label the same
point of the worldline.

I shall illustrate the quantum-mechanical use of this description of a
relativistic particle by showing that the path integral

�(x, y) = N

∫ y

x
DX (τ )De(τ )eiS (15.7)

where N is a normalizing constant, is the Feynman propagator (9.40), provided
that we can find a suitable interpretation of the somewhat ill-defined integration
measure DX (τ )De(τ ). The limits on the integral indicate that it is a sum over
worldlines that start at the spacetime point x and end at y. To be specific, we
label points on the worldline by values of τ between 0 and 1, and impose the
condition

yµ − xµ = Xµ(1) − Xµ(0) =
∫ 1

0
Ẋµ(τ)dτ (15.8)

by inserting a δ function into the path integral. That is,

�(x, y) = N

∫
DX (τ )De(τ ) exp (iS) δ4

(∫ 1
0 Ẋdτ + x − y

)
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=
∫

d4k

(2π)4 e−ik·(x−y)
N

∫
DX (τ )De(τ ) exp

(
iS − i

∫ 1
0 dτ k · Ẋ

)
(15.9)

where the integration variables Xµ(τ) include the endpoints. In the second
expression I have used the representation of the δ function given in (A.11). The
argument of the exponential can be written as iSk , where

Sk = −m

2

∫ 1

0
dτ

[
e−1

(
Ẋµ + e

m
kµ

) (
Ẋµ + e

m
kµ
)

+ e

(
1 − 1

m2
kµkµ

)]
(15.10)

and after a change integration variable

Xµ(τ) → Xµ(τ) − m−1kµ

∫ τ

0
dτ ′e(τ ′)

this becomes

Sk = −1

2

∫ 1

0
dτ
[
me−1 Ẋµ Ẋµ − m−1e(k2 − m2)

]
. (15.11)

Now, one part of the information contained in e(τ ) is the total proper time along
the particle’s worldline,

τ̂p =
∫ τ̂p

0
dτp =

∫ 1

0
dτ e(τ ) (15.12)

so the path integral
∫
De(τ ) includes an integral over all values of τ̂p. If ẽ denotes

the remaining degrees of freedom, then we have

�(x, y) =
∫

d4k

(2π)4
e−ik·(x−y)

∫ ∞

0
dτ̂p ei(τ̂p/2m)(k2−m2)

×N

∫
DXDẽ exp

(
− 1

2 im
∫ 1

0
dτ e−1 Ẋµ Ẋµ

)
. (15.13)

The remaining path integral is independent of k. Provided that the integration
measure is appropriately defined, it is independent of τ̂p too, so it is just a constant.
If we choose N to be (2m)−1 times this constant, define λ = τ̂p/2m and, as
in §9.3.2, introduce a convergence factor into the integral by changing m2 into
m2 − iε, we get

�(x, y) =
∫

d4k

(2π)4 e−ik·(x−y)
∫ ∞

0
dλ eiλ(k2−m2+iε)

= i
∫

d4k

(2π)4

e−ik·(x−y)

k2 − m2 + iε
(15.14)
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and this is indeed just i times the Feynman propagator.
The object we have computed is rather analogous to the generating functional

(9.33) for a quantum field theory, but the field theory in question has fields Xµ(τ),
which are the particle’s space-time coordinates, and it lives on a one-dimensional
manifold, which is the particle’s world line. Suppose that we take the same field
theory and place it on a more complicated one-dimensional manifold, namely a
Feynman diagram. It should appear plausible—and it may even be obvious—
that a calculation analogous to the one we have just been through will yield the
contribution of this diagram to the relevant scattering amplitude, as determined
by rules (i)–(iii) in §9.4. The total scattering amplitude (as given, at least, by
perturbation theory) is got by summing over all the allowed topologies of this
one-dimensional manifold (a network of worldlines), and it is a generalization of
this idea that constitutes the perturbative approach to string theory. A complete
theory of point particles constructed in this way would be a rather ad hoc affair,
for several reasons. One is that we would have to decide what topologies for the
network of worldlines are allowed or, in other words, what vertices are allowed in
rule (ii). Another is that we would have to insert by hand the coupling constants
required by rule (ii) and the combinatorial factors required by rule (iv). A third is
that we should have to find some way of generalizing the action (15.3) to account
for the existence of particles of several different species, with different spins, and
of specifying which parts of the worldline network are inhabited by which particle
species. All of these matters are systematized in the second-quantized formalism
of quantum field theory, where the theory is completely specified by the action for
field operators living in spacetime. The lesson of chapter 12, though, is that we
have no a priori way of knowing exactly what this action should be.

In string theory, we shall see that things are otherwise. The network
of worldlines is replaced by a two-dimensional worldsheet. Although this
worldsheet may have different topologies, which must be summed over, it has no
well-defined vertices: there are no coupling constants or combinatorial factors to
be specified. Different particle species correspond, in a way that I shall make more
precise in the next section, to different modes of vibration of a single string-like
object, so they all exist on the whole worldsheet. In this sense, string theory comes
close to specifying a unique ‘theory of everything’. There are, however, choices
of a different kind to be made, about which we shall learn a little more later
on, and the current theory is, essentially, only a perturbative one. Whether some
overarching, nonperturbative definition of the theory, analogous to the definition
of a quantum field theory of point particles, is possible, and whether this definition
would be unique, is at present not clear.

It is worth observing that the role of spacetime is quite different in the
first- and second-quantized theories of point particles. Quantum field theory,
which we could notionally take to include a quantum theory of gravitons, is
formulated in terms of field operators, which exist at each point of a pre-existing
spacetime manifold. In the first-quantized theory, on the other hand, the field
operators Xµ and e exist at each point of a different manifold, the network of



The Free Classical String 431

Figure 15.1. The worldsheet traced out by (a) an open string and (b) a closed string
propagating through spacetime.

worldlines. Spacetime is just the set of values that the fields Xµ might take on: it
is something that emerges from a more fundamental level of description. Whether
these are simply two complementary points of view, one better adapted to each
mathematical formalism than the other, or whether one is really more fundamental
than the other is something I am not at all sure about.

15.2 The Free Classical String

Our study of string theory proper begins with the problem of finding a quantum-
mechanical description of a one-dimensional object—a string—that propagates
through Minkowski spacetime. In this section, I shall deal with the theory of a
classical relativistic string, which we can subsequently attempt to quantize. In
classical terms, then, this one-dimensional object traces out a two-dimensional
worldsheet, which we can specify by giving the spacetime coordinates Xµ(τ, σ )

as functions of two coordinates τ and σ which label points on the worldsheet.

15.2.1 The string action

There are two obvious possibilities for the topology of our string: it might have
two free ends, in which case it is said to be open and its worldsheet is a ribbon
like that shown in figure 15.1(a); or it might form a closed loop, in which case it
is said to be closed and its worldsheet is a cylindrical object such as that shown
in figure 15.1(b). The coordinates τ and σ on the worldsheet are to a large extent
arbitrary, but I shall always assume that a curve of constant σ , whose points are
labelled by τ , runs along the length of the worldsheet. Regarded as a curve in
spacetime, it has a timelike tangent vector. Conversely, a curve of constant τ ,
whose points are labelled by σ , has a spacelike tangent vector. On the ribbon-
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like worldsheet of an open string, it has one end-point on each of the two timelike
boundaries; on the cylindrical worldsheet of a closed string it forms a closed loop,
which runs once around the cylinder. While τ can take on values from −∞ to ∞,
the values of σ lie in a finite interval, which for the moment I shall take to be 0 to
(.

The action that has been found to work is

S = − 1

4πα′

∫ ∞

−∞
dτ
∫ (

0
dσ (−γ )1/2γ ab∂a Xµ∂b Xµ. (15.15)

The indices a and b take the values 0 and 1 to label the worldsheet coordinates,
with σ 0 = τ and σ 1 = σ . As for the point particle, we introduce a worldsheet
metric γab whose determinant is γ and whose inverse is γ ab; the determinant is
negative because the worldsheet has one timelike and one spacelike direction. (To
say that this action has been found to work means that it is the starting point for
what appears to be a mathematically consistent theory; whether this theory has
anything to do with the real world is entirely a matter for speculation.) It should
be clear from our earlier discussions of physics in curved spacetimes (see, in
particular §§4.2 and 4.3) that the volume element (−γ )1/2dτdσ and the quantity
γ ab∂a Xµ∂b Xµ both transform as scalars under worldsheet reparametrizations,
and so S is reparametrization invariant. In fact, it is the two-dimensional version
of the first term of the point-particle action (15.3). To see what has happened
to the second term, consider the change of variable τ = mτ ′ and take the limit
m → 0, as we did in §4.4.4 to find the path of a massless particle such as a
photon. The first term remains intact, but the second vanishes. There is no such
term in (15.15) because any one point of the string carries a mass of zero. By
comparing (15.15) with (15.3), we might guess that the string has a mass per unit
length (or tension—see §13.3) of 1/2πα′. That this is indeed so is illustrated
in exercise 15.2, which readers may like to attempt after reading a little further.
The constant that determines the string tension is conventionally denoted by α′
for historical reasons that I propose not to discuss. Considered as a whole, the
string carries a mass which is determined not only by its tension but also by the
internal energy of its vibrations; how we can find out the mass of a vibrating
quantum-mechanical string is a matter that will require careful attention.

Let us make some routine deductions from our action. The Euler–Lagrange
equation obtained by varying Xµ(τ, σ ) is

∂a

[
(−γ )1/2γ ab∂b Xµ

]
= 0 or γ ab∇a∇b Xµ = 0 (15.16)

where ∇a is the covariant derivative associated with the worldsheet metric γab.
The second version follows from the first because of the expression (A.22) for
the divergence of a vector field. This Euler–Lagrange equation can be recognized
as a two-dimensional version of the Klein–Gordon equation (7.129) in a curved
spacetime. It is derived by the standard procedure that we met first in §3.1, but
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because the range of σ is finite, we must be careful about the boundary conditions.
To be specific, the usual integration by parts gives us a boundary term

δSboundary = − 1

2πα′

∫
dτ (−γ )1/2γ 1a∂a XµδXµ

∣∣∣∣σ=(

σ=0
(15.17)

and we need this to vanish. For a closed string, σ = 0 and σ = ( refer to the
same point, so it does vanish identically. An open string has ends that are free to
move, so we cannot assume that δXµ = 0. Instead, we must impose the boundary
condition

γ 1a∂a Xµ(τ, σ ) ≡ ∂1 Xµ = 0 (15.18)

at σ = 0 and σ = (. This means that the derivative of Xµ is zero in the
direction normal to the worldsheet boundary, as we can verify in the following
way. Let ta = δa

0 be the components of the tangent vector t = ∂τ to the
worldsheet boundary, and na the components of a vector normal to the boundary.
The definition of ‘normal’ is provided by the metric γab, so naγabtb = naγa0 = 0.
Using this, we can calculate the derivative of Xµ in the normal direction to be

na∂a Xµ = naγab∂
b Xµ = naγa1∂

1 Xµ = 0. (15.19)

According to a conventional terminology in the theory of differential equations,
the open string is said to satisfy Neumann boundary conditions.

The constraint equation that we get by varying the metric is

T ab(τ, σ ) = 0 (15.20)

where

T ab = −4π(−γ )−1/2 δS

δγab
= − 1

α′

[
∂a Xµ∂

b Xµ − 1

2
γ ab∂c Xµ∂

c Xµ

]
(15.21)

is the energy–momentum tensor of the worldsheet field theory. [To be clear about
the notation here, ∂a is an abbreviation for γ ab∂b = γ ab∂/∂σ b. Below, I shall use
∂τ and ∂σ to mean the same thing as ∂0 and ∂1, respectively.] This is in fact the
two-dimensional version of Einstein’s field equations (4.17) with � = 0, because
the Einstein curvature tensor Rab − 1

2 Rγab vanishes identically in two dimensions
(see exercise 15.1). The energy–momentum tensor will play a central role in the
development of the theory, and we may note at this point that it obeys the equation

∇a T ab = 0 (15.22)

regardless of the constraint (15.20), which we also want to impose. This equation
is also true in general relativity, although I have not needed to emphasize it.
Here, it represents the conservation of energy and momentum flowing on the
worldsheet. It is a consequence of the reparametrization invariance of the action
(which is also commonly referred to as diffeomorphism invariance) and can be
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derived from a suitable version of Noether’s theorem. Readers should find it
a simple matter, though, to verify (15.22) directly from the equation of motion
(15.16), bearing in mind that ∂a Xµ = ∇a Xµ, because Xµ is a scalar field on the
worldsheet, and that ∇aγbc = 0 (see §2.3.5).

As always, we can find a momentum !µ(τ, σ ) conjugate to the field
Xµ(τ, σ ). Taking account of the sign in (3.33) arising from the Minkowski metric,
we find

!µ(τ, σ ) = − δS

δ Ẋµ(τ, σ )
= 1

2πα′ (−γ )1/2γ 0a∂a Xµ(τ, σ ) (15.23)

where Ẋµ = ∂τ Xµ. The action (15.15) is obviously invariant under spacetime
translations Xµ → Xµ + aµ, because it depends only on derivatives of Xµ. The
version of Noether’s theorem given in (3.12) applies here if we substitute

∫
dσ

for
∑

i , so we learn that the quantities

Pµ =
∫ (

0
dσ !µ(τ, σ ) = 1

2πα′

∫ (

0
dσ (−γ )1/2γ 0a∂a Xµ(τ, σ ) (15.24)

are conserved, in the sense that ∂τ Pµ = 0. This can also be verified by using
the equation of motion (15.16) and, in the case of an open string, the boundary
conditions (15.18). The fact that the Pµ are independent of τ means that they
are constant along the length of the worldsheet, so they can be identified as the
components of the conserved spacetime momentum carried by the string. In the
same way, the generators of Lorentz transformations in spacetime are

Mµν =
∫ (

0
dσ
[
Xµ(τ, σ )!ν(τ, σ ) − Xν(τ, σ )!µ(τ, σ )

]
(15.25)

and from these we can identify the angular momentum J i = 1
2ε

i j k M jk as in
(7.42).

15.2.2 Weyl invariance and gauge fixing

In addition to diffeomorphism invariance, the action (15.15) has a further
symmetry, which will prove important. Consider the effect of changing the
worldsheet metric by a position-dependent factor

γ ′
ab(τ, σ ) = exp[ω(τ, σ )]γab(τ, σ ) (15.26)

where ω(τ, σ ) is an arbitrary function (except that on a closed worldsheet it must
be periodic, so that ω(τ, σ + () = ω(τ, σ )); we use the exponential to ensure that
the sign of the metric does not change. This rescaling of the metric is called a
Weyl transformation. The determinant γ changes by a factor of exp(2ω) and the
inverse metric γ ab changes by a factor of exp(−ω), so the action is unchanged.
(This symmetry is equivalent to one that I mentioned in chapter 7 under the name
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of ‘conformal invariance’. In the context of string theory, the term ‘conformal
invariance’ is used in a different, though closely related sense, which we shall
meet before long.) An immediate consequence of this symmetry is that

δS

δω(τ, σ )
= ∂γab(τ, σ )

∂ω(τ, σ )

δS

δγab(τ, σ )
= 0 (15.27)

or, according to the definition (15.21) of the energy–momentum tensor,

γabT ab = T a
a = 0. (15.28)

It is easy to check that this is true of the explicit expression given in (15.21).
The combined symmetries of diffeomorphism invariance and Weyl

invariance constitute a gauge symmetry of the string action involving three
arbitrary functions, namely ω(τ, σ ) and the two functions τ ′(τ, σ ) and σ ′(τ, σ )

which define a change of coordinates. It is a special feature of two-dimensional
geometry that the metric has three independent components, viz. γ00, γ11 and
γ01 = γ10. By using coordinate and Weyl transformations, it is possible to bring
the worldsheet metric into the form γab = ηab, where ηab is the two-dimensional
version of the Minkowski metric (2.8), with diagonal components η00 = 1 and
η11 = −1. In fact, it is possible to show (although a detailed proof is not entirely
straightforward) that given any two-dimensional metric with one positive and one
negative eigenvalue, a coordinate system can always be found in which the metric
tensor has the form

γab(τ, σ ) = exp[�(τ, σ )]ηab. (15.29)

A Weyl transformation with ω = −� then reduces the metric to just ηab.
As far as classical mechanics is concerned, the physical content of the point-

particle theory is contained in the second versions of (15.4) and (15.5), which
can be solved to find the allowed worldlines, parametrized by the proper time
τp. The function e(τ ) has no physical meaning, and we are perfectly entitled to
‘fix the gauge’ by choosing any function we like, bearing in mind that our choice
also implies a choice of the coordinate τ , such that the proper time is given by
dτp = e(τ )dτ . Obviously, the most convenient choice is e = 1 and τ = τp.
For the classical string, we are equally entitled to fix the gauge by making use
of the diffeomorphism and Weyl symmetries to choose γab(τ, σ ) = ηab. This
does not uniquely specify a pair of worldsheet coordinates, though, because a 2-
dimensional Lorentz transformation of these coordinates leaves the metric ηab

unchanged. To see that the physical content of the theory is independent of
this gauge choice, suppose first that we have identified an allowed worldsheet
by solving (15.16) subject to the constraint (15.20). Then the proper time along
any curve drawn on this worldsheet is given by

dτp = ηµνdXµdXν = ∂Xµ

∂σ a

∂Xµ

∂σ b
dσ adσ b (15.30)

because the infinitesimal difference in the spacetime coordinates of two points
at σ a and σ a + dσ a on the worldsheet is given by dXµ = ∂a Xµdσ a . This
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proper time is clearly invariant under a change in the worldsheet coordinates σ a .
As for the equations (15.16) and (15.20) themselves, they are covariant under
transformations of the worldsheet coordinates. Under a Weyl transformation,
they become a different pair of equations, but because the action is invariant,
its extrema, which are the allowed worldsheets, can be found by solving either
pair of equations.

Let us, then, choose γab = ηab. With this choice, the content of the theory
as we have it so far is summarized by

the action:

S = − 1

4πα′

∫
dτdσ ∂a Xµ∂

a Xµ (15.31)

the canonical momentum:

!µ(τ, σ ) = 1

2πα′ ∂τ Xµ(τ, σ ) (15.32)

the spacetime momentum:

Pµ =
∫ (

0
dσ !µ(τ, σ ) = 1

2πα′

∫ (

0
dσ ∂τ Xµ(τ, σ ) (15.33)

the energy–momentum tensor:

T ab = − 1

α′

[
∂a Xµ∂

b Xµ − 1

2
ηab∂c Xµ∂

c Xµ

]
(15.34)

the equation of motion: [
∂2
τ − ∂2

σ

]
Xµ = 0 (15.35)

the constraint:
T ab = 0 (15.36)

energy–momentum conservation:

∂a T ab = 0. (15.37)

It is perhaps worth emphasizing that we now have two independent metrics on
the worldsheet, which is to say that there are two different definitions of the
‘length’ of a curve drawn on it. If such a curve is thought of as a curve in
spacetime, then its length depends on the values of the Xµ(τ, σ ), which determine
how the worldsheet is embedded in spacetime, and is given by the line element
(15.30). Classically, this length has an unambiguous physical meaning, but we
shall actually not be making much use of it. For the purpose of dealing with the
two-dimensional field theory of the Xµ, the manifold on which these fields live
has the gauge-fixed metric ηab, and the length of a curve is determined by the
line element dτ 2

ws = dτ 2 − dσ 2. The proper time interval dτp apparent to an
observer in spacetime is in general quite different from the proper time interval
dτws defined on the worldsheet.
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15.2.3 The Euclidean worldsheet and conformal invariance

A mathematical device that turns out to be useful is the Wick rotation, which
we discussed in connection with (10.102). Here, we replace the Minkowskian
metric on the worldsheet with a Euclidean one, by making the change of variable
τ = −iσ 2. This is particularly helpful in two dimensions, because we can make
use of complex variable theory by defining the single complex coordinate w and
its complex conjugate w̄ as

w = σ 1 + iσ 2 = σ − τ w̄ = σ 1 − iσ 2 = σ + τ. (15.38)

In terms of w and w̄, the coordinates τ and σ are

τ = − 1
2 (w − w̄) σ = 1

2 (w + w̄). (15.39)

It becomes a little inconvenient to label the components of tensors relative to
the (w, w̄) coordinates by numerical indices. For derivatives, the conventional
notation is

∂ ≡ ∂

∂w
= 1

2

(
∂

∂σ
− ∂

∂τ

)
∂̄ ≡ ∂

∂w̄
= 1

2

(
∂

∂σ
+ ∂

∂τ

)
. (15.40)

A vector with components V τ ≡ V 0 and V σ ≡ V 1 relative to the (τ, σ ) system
has components V w and V w̄ relative to the (w, w̄) system, which are given by(

V w

V w̄

)
= �

(
V τ

V σ

)
(15.41)

where the matrix � defined in (2.13) is

� =
(
∂w/∂τ ∂w/∂σ

∂w̄/∂τ ∂w̄/∂σ

)
=
(−1 1

1 1

)
(15.42)

and its inverse, which transforms covariant indices, is

�−1 =
(

∂τ/∂w ∂τ/∂w̄

∂σ/∂w ∂σ/∂w̄

)
= 1

2

(−1 1
1 1

)
. (15.43)

Thus, the gauge-fixed metric has components(
γww γww̄

γw̄w γw̄w̄

)
= (�−1)T

(
1 0
0 −1

)
�−1 = −1

2

(
0 1
1 0

)
(15.44)

which means that a proper distance on the worldsheet (as specified by the
worldsheet metric, not by the spacetime metric) is

ds2 = −dτ 2
ws = −dτ 2 + dσ 2 = (dσ 1)2 + (dσ 2)2 = dw dw̄. (15.45)
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In the same way, we find that the energy–momentum tensor is(
Tww Tww̄

Tw̄w Tw̄w̄

)
= (�−1)T

(
T00 T01
T10 T11

)
�−1 =

(
T 0
0 T̃

)
(15.46)

where the nonzero components are

T = − 1

α′ ∂Xµ∂Xµ T̃ = − 1

α′ ∂̄Xµ∂̄Xµ. (15.47)

As in (10.102), we define an action on the Euclidean worldsheet by iS =
−SE. To get the right answer for SE, starting from (15.31), we must be careful to
treat the volume element dτdσ correctly. First, we make an analytic continuation
from real to imaginary time, which means replacing dτdσ with −idσ 1dσ 2.
Thereafter, the change of variables from (σ 1, σ 2) to (w, w̄) yields a Jacobian,
which is |∂(σ 1, σ 2)/∂(w, w̄)| = 1

2 . The result is

SE = − 1

4πα′

∫
d2σ

[
∂1 Xµ∂1 Xµ + ∂2 Xµ∂2 Xµ

]
= − 1

2πα′

∫
dwdw̄ ∂Xµ∂̄Xµ. (15.48)

The field theory defined by this action has a crucial symmetry, known as
conformal invariance. It will perhaps be helpful to discuss this symmetry from
two complementary points of view. Consider first the idea of replacing the fields
Xµ(w, w̄) by a new set of fields

X ′µ(w, w̄) = Xµ( f (w), f̄ (w̄)) (15.49)

where f (w) is an arbitrary function of w, but is independent of w̄, and f̄ (w̄) is
the complex conjugate of f (w). We have

∂X ′
µ∂̄X ′µ = d f

dw

d f̄

dw̄

∂Xµ

∂ f

∂Xµ

∂ f̄
. (15.50)

To find the action of the new fields, we introduce new integration variables

w′ = f (w) w̄′ = f̄ (w̄) (15.51)

and calculate

S′ = − 1

2πα′

∫
dwdw̄

∂X ′
µ

∂w

∂X ′µ

∂w̄

= − 1

2πα′

∫
dw′dw̄′ dw

dw′
dw̄

dw̄′ .
dw′

dw

dw̄′

dw̄

∂Xµ

∂w′
∂Xµ

∂w̄′

= − 1

2πα′

∫
dw′dw̄′ ∂Xµ

∂w′
∂Xµ

∂w̄′ . (15.52)
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The last expression is equal to S, because w′ and w̄′ are dummy integration
variables, which we can replace with w and w̄. Thus, the action calculated with
the new fields X ′µ(w) is equal to that calculated with the old fields Xµ(w) and
the transformation (15.49) is a symmetry of the theory. From another point of
view, the change of variables (15.51), which is called a conformal transformation
in the theory of complex variables, looks suspiciously like a simple change of
coordinates on the worldsheet, so it is tempting to think that conformal invariance
is just our original diffeomorphism invariance under another name. This is not
quite true, because our gauge-fixed action is supposed to describe a field theory
on a Euclidean worldsheet whose metric is given by the line element (15.45). In
terms of the new coordinates (15.51), the line element is

ds2 = dwdw̄ = e�dw′dw̄′ � = − ln

∣∣∣∣d f

dw

∣∣∣∣2 . (15.53)

To make the theories described by S and S′ completely equivalent, we have to
remove the factor of e� by making a Weyl transformation. The second view
of conformal invariance, then, is that it constitutes a special combination of
diffeomorphism and Weyl transformations. It is a remnant of the original gauge
symmetry that is not removed by our choice of the metric.

As a prelude to examining the quantum-mechanical status of conformal
invariance, it will be useful to identify the generators of this symmetry, which turn
out to be the components T and T̃ of the energy–momentum tensor. Classically,
we need to discover how the field transformations (15.49) can be generated by
Poisson brackets, as we did in §3.4 for spacetime translations. Here, we have
an infinite number of generalized coordinates, namely the fields Xµ(τ, σ ) for
every value of σ , and a suitable definition of the equal-τ Poisson bracket of two
quantities A(τ ) and B(τ ) is

{A(τ ), B(τ )}P = −
∫ (

0
dσ

[
δA(τ )

δXµ(τ, σ )

δB(τ )

δ!µ(τ, σ )
− δB(τ )

δXµ(τ, σ )

δA(τ )

δ!µ(τ, σ )

]
.

(15.54)
By expressing T and T̃ in terms of ∂σ Xµ and !µ, readers should have little
trouble in verifying that

{Xµ(τ, σ ),!ν(τ, σ ′)}P = − ηµνδ(σ − σ ′) (15.55)

{Xµ(τ, σ ), T (τ, σ ′)}P = 1
2

[
∂τ Xµ(τ, σ ) − ∂σ Xµ(τ, σ )

]
2πδ(σ − σ ′)

= − 2πδ(σ − σ ′)∂Xµ(w, w̄) (15.56)

{Xµ(τ, σ ), T̃ (τ, σ ′)}P = 1
2

[
∂τ Xµ(τ, σ ) + ∂σ Xµ(τ, σ )

]
2πδ(σ − σ ′)

= 2πδ(σ − σ ′)∂̄Xµ(w, w̄). (15.57)

The overall sign in (15.54) is determined by the fact that the spatial coordinates
and momenta Xi and ! j have a Poisson bracket −ηi j δ(σ −σ ′) = +δi j δ(σ −σ ′)
with the same sign as their non-relativistic counterparts in chapter 3.
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Consider now an infinitesimal version of the conformal transformation
(15.49), in which we take f (w) = w + ε(w) and keep only first-order terms
in ε(w). The infinitesimal change δXµ = X ′µ − Xµ is

δXµ(w, w̄) = ε(w)∂Xµ(w, w̄) + ε̄(w̄)∂̄Xµ(w, w̄)

= {T(ε, ε̄), Xµ(w, w̄)}P (15.58)

where

T(ε, ε̄) =
∫ (

0

dσ ′

2π

[
ε(σ ′ − τ )T (τ, σ ′) − ε̄(σ ′ + τ )T̃ (τ, σ ′)

]
. (15.59)

We shall see later that this can be more neatly expressed as a contour integral
when Xµ is a solution of the equation of motion. Note that T is not itself the
generator of conformal transformations, because it contains the small parameters
ε and ε̄. There are in fact infinitely many small parameters, namely the infinitely
many functions ε(w). Correspondingly, there are infinitely many generators, all
of which are contained in the integral (15.59).

These infinitely many generators (which I shall shortly be discussing in
more detail) constitute the Lie algebra of the conformal group, and they confer
a rich structure on a two-dimensional field theory that is conformally invariant.
There is, in fact, a branch of theoretical physics, known as conformal field theory,
which studies the consequences of conformal invariance in a rather general way.
The mathematical techniques of conformal field theory are extremely valuable to
professional string theorists, but I do not have space to develop them here. In
statistical mechanics, the same techniques have had a remarkably unifying effect
on the study of phase transitions in a large class of theoretical models, at which I
hinted in §13.3. Readers who wish to pursue these ideas will find conformal field
theory developed in the context of string theory by Polchinski (1998) and in the
context of statistical mechanics by Cardy (1987).

15.2.4 Mode expansions

The gauge-fixed equation of motion (15.35) is known to every first-year
undergraduate as the one-dimensional wave equation. Its general solution is the
sum of an arbitrary function of σ − τ (a ‘right-moving’ wave) and an arbitrary
function of σ + τ (a ‘left-moving’ wave). For a string of finite length (, this
general solution can be expressed as a Fourier series or, as is often said, a mode
expansion. Let us recall that the value of ( is entirely arbitrary: it determines only
the range of the coordinate σ , and not the actual length of the string. In the case
of a closed string, it is now convenient to choose ( = 2π , so that Xµ is a periodic
function of σ , with Xµ(τ, σ +2π) = Xµ(τ, σ ). The solution for the closed string
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is then

Xµ(τ, σ ) = xµ + α′ pµτ + i

(
α′

2

)1/2 ∞∑
n=−∞

n (=0

1

n

[
αµ

n e−in(τ−σ) + α̃µ
n e−in(τ+σ)

]
(15.60)

where, to make Xµ real, the expansion coefficients for positive and negative
values of n must be related by

αµ∗
n = α

µ
−n α̃µ∗

n = α̃
µ
−n . (15.61)

(The ∗ here means the complex conjugate. At the classical level, it is really the
same as the ¯ that distinguishes the two complex coordinates w and w̄, but it is
useful to have a different notation for this geometrical meaning. In the quantum
theory, we shall want to replace α

µ∗
n with the Hermitian conjugate α

µ†
n , but this

would not make sense for the coordinates.) The first two terms in (15.60) are,
of course, the sum of a function of σ − τ and a function of σ + τ , namely
1
2 [xµ + α′ pµ(τ ± σ)]. By integrating Xµ(τ, σ ) over σ , we find

∫ 2π

0

dσ

2π
Xµ(τ, σ ) = xµ + α′ pµτ (15.62)

which might loosely be thought of as the locating the centre of mass of the string,
although the curve on the worldsheet that we are integrating over, corresponding
to a fixed value of τ , does not necessarily represent an instantaneous configuration
of the string as seen by some inertial observer in spacetime. We see from (15.33),
however, that pµ is equal to the spacetime momentum Pµ and it is a simple
exercise using the Poisson bracket (15.55) to verify that xµ and pµ are conjugate
variables, in the sense that

{xµ, pν}P = −ηµν. (15.63)

In a similar way, we can find expressions for the coefficients α
µ
n and α̃

µ
n

analogous to (7.12) and (7.13). The mode expansion of the canonical momentum,
found by differentiating (15.60), is

(2πα′)!µ(τ, σ ) = α′ pµ +
(
α′

2

)1/2 ∞∑
n=−∞

n (=0

[
αµ

n e−in(τ−σ) + α̃µ
n e−in(τ+σ)

]
(15.64)

and readers may easily verify, using the orthogonality relation∫ 2π

0

dσ

2π
e±inσ = δn,0 (15.65)
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that the expansion coefficients are given by

αµ
n =

(
1

2α′

)1/2 ∫ 2π

0

dσ

2π
ein(τ−σ)

[
(2πα′)!µ(τ, σ ) − inXµ(τ, σ )

]
(15.66)

α̃µ
n =

(
1

2α′

)1/2 ∫ 2π

0

dσ

2π
ein(τ+σ)

[
(2πα′)!µ(τ, σ ) − inXµ(τ, σ )

]
. (15.67)

Their Poisson bracket relations

{αµ
m, αν

n }P = {̃αµ
m , α̃ν

n }P = imηµνδm,−n {αµ
m, α̃ν

n }P = 0. (15.68)

follow straightforwardly from (15.55). We can also see from (15.64) that it
consistent to define

α
µ
0 = α̃

µ
0 =

(
1

2α′

)1/2 ∫ 2π

0

dσ

2π
(2πα′)!µ(τ, σ ) = (α′/2)1/2 pµ (15.69)

which is useful for dealing with the derivatives of Xµ, although it cannot be used
directly in (15.60) because of the factor of 1/n.

One part of the task that confronts us in quantizing the theory is familiar
from chapter 7, namely to promote the coefficients α

µ
n and α̃

µ
n to operators and

their Poisson brackets to commutators. We shall find that there is more to it than
that, however, and we need one more piece of classical theory to equip us, namely
the algebra of the conformal generators. To attack this, we first express the mode
expansion (15.60) in terms of the complex coordinates w and w̄ as

Xµ(w, w̄) = xµ + 1
2α

′ pµ(w̄ − w) + i

(
α′

2

)1/2 ∞∑
n=−∞

n (=0

1

n

[
αµ

n einw + α̃µ
n e−inw̄

]
.

(15.70)
It is evidently the sum of a function of w and a function of w̄ and we can conclude
that ∂Xµ is a function only of w while ∂̄Xµ is a function only of w̄. In the
language of complex-variable theory, we say that ∂Xµ is holomorphic and ∂̄Xµ

is antiholomorphic. When Xµ is a solution of the field equations, therefore,
equations (15.47) show us that T = T (w) is holomorphic and T̃ = T̃ (w̄) is
antiholomorphic. In fact, by using the definition (15.69), we can write

∂Xµ = −
(
α′

2

)1/2 ∞∑
n=−∞

αµ
n einw ∂̄Xµ =

(
α′

2

)1/2 ∞∑
n=−∞

α̃µ
n e−inw̄ (15.71)

where the sums now include the terms n = 0. A short calculation reveals that
T (w) and T̃ (w̄) can be expressed as

T (w) =
∞∑

n=−∞
Lneinw T̃ (w̄) =

∞∑
n=−∞

L̃ne−inw̄ (15.72)
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with the coefficients given by

Ln = − 1
2

∞∑
m=−∞

αm µα
µ
n−m L̃n = − 1

2

∞∑
m=−∞

α̃m µα̃
µ
n−m . (15.73)

These coefficients are the generators of conformal transformations, and we
need to know the Poisson-bracket relations between them. For two quantities A
and B that depend only on the α

µ
n (and not on xµ or α̃µ

n ), we can use the functional
derivatives of (15.66)

δα
µ
n

δXν(τ, σ )
= − in

2π

(
1

2α′

)1/2

δµν ein(τ−σ) (15.74)

δα
µ
n

δ!ν(τ, σ )
=
(
α′

2

)1/2

ηµνein(τ−σ) (15.75)

and the orthogonality relation (15.65) to express the Poisson bracket (15.54) as

{A, B}P = −
∫ 2π

0
dσ
∑
m,n

[
∂ A

∂αν
m

∂B

∂αλ
n

− ∂B

∂αν
m

∂ A

∂αλ
n

]
δαν

m

δXµ(τ, σ )

δαλ
n

δ!µ(τ, σ )

= i

2

∑
m

m

[
∂ A

∂αm ν

∂B

∂αν−m
− ∂B

∂αm ν

∂ A

∂αν−m

]
. (15.76)

Applying this to Lm and Ln , and using the same method for L̃m and L̃n , we obtain
(see exercise 15.3) the Poisson bracket relations

{Lm , Ln}P = −i(m − n)Lm+n {L̃m, L̃n}P = −i(m − n)L̃m+n . (15.77)

A calculation similar to (15.76) shows that {A, B}P = 0 if A depends only on the
α
µ
n while B depends only on the α̃

µ
n so we also have {Lm, L̃n}P = 0. The set of

generators obeying these relations is called (after its discoverer, M A Virasoro)
the Virasoro algebra.

A definite state of motion of our classical string would be specified by giving
the values of xµ and pµ which, roughly speaking, describe the motion of its
centre of mass, and the values of the α

µ
n and α̃

µ
n , which are the amplitudes of

its independent normal modes of vibration. However, the values we are allowed
to specify are restricted by the constraint (15.36), which now tells us that all of
the Virasoro generators must vanish: Ln = L̃n = 0 for every n. Of particular
importance are the constraints L0 = 0 and L̃0 = 0. These two generators are
given by

L0 = − 1
2

∞∑
n=−∞

α−n µα
µ
n L̃0 = − 1

2

∞∑
n=−∞

α̃−n µα̃
µ
n . (15.78)
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On separating out the n = 0 terms which, on account of (15.69) are related to the
spacetime momentum, we find

M2 ≡ pµ pµ = − 4

α′
∞∑

n=1

α−n µα
µ
n = − 4

α′
∞∑

n=1

α̃−n µα̃
µ
n . (15.79)

According to (7.1), this is the equation which gives us the mass M of the string
in terms of its vibrational energy. More accurately, we have a pair of equations
which, if rewritten as

M2 = − 2

α′
∞∑

n=1

(
α−n µα

µ
n + α̃−n µα̃

µ
n

)
(15.80)

∞∑
n=1

α−n µα
µ
n =

∞∑
n=1

α̃−n µα̃
µ
n (15.81)

tell us that the energies of ‘left-moving’ and ‘right-moving’ vibrations must
contribute equally to the overall mass.

Much of this analysis also applies to an open string, but there are some
significant differences. After gauge fixing, the boundary condition (15.18)
becomes ∂σ Xµ(τ, σ ) = 0 at σ = 0 and σ = (. To deal with this, it is convenient
to choose ( = π , so the range of σ is now 0 ≤ σ ≤ π . The general solution to
the wave equation that satisfies the boundary conditions is

Xµ(τ, σ ) = xµ + 2α′ pµτ + i

(
α′

2

)1/2 ∞∑
n=−∞

n (=0

1

n

[
αµ

n e−in(τ−σ) + αµ
n e−in(τ+σ)

]

= xµ + 2α′ pµτ + i(2α′)1/2
∞∑

n=−∞
n (=0

1

n
αµ

n e−inτ cos(nσ). (15.82)

Compared with (15.60), there is only one set of coefficients α
µ
n and the factor

multiplying pµ is doubled, so that pµ is still equal to the spacetime momentum

Pµ = 1

2πα′

∫ π

0
dσ ∂τ Xµ(τ, σ ) = pµ. (15.83)

The expansion (15.82) is a ‘half-range’ Fourier series, which means that
we cannot immediately apply the orthogonality relation (15.65) to extract the
coefficients α

µ
n . A standard method of dealing with this is to define functions

Xµ(τ, σ ), whose argument σ takes values between 0 and 2π , by

X
µ(τ, σ ) =

{
Xµ(τ, σ ) for 0 ≤ σ ≤ π

Xµ(τ, 2π − σ) for π ≤ σ ≤ 2π
(15.84)
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and their conjugate momenta +µ(τ, σ ) = (2πα′)−1∂τX
µ(τ, σ ). We get the right

answer for αµ
n by using Xµ and +µ in (15.66) and readers may like to check that

(15.67) gives the same result. It is easy to see that Xµ and +ν have the same
Poisson bracket as Xµ and !ν , so we find again that

{αµ
m, αν

n }P = imηµνδm,−n. (15.85)

Similarly, we can define extended versions of the components of the energy–
momentum tensor

T (w) = − 1

α′ ∂Xµ∂X
µ T̃ (w̄) = − 1

α′ ∂̄Xµ∂̄X
µ (15.86)

which are equal to T (w) and T̃ (w̄) when σ = Re w lies between 0 and π . We
find that

T (w) =
∞∑

n=−∞
Lneinw T̃ (w̄) =

∞∑
n=−∞

Lne−inw̄ (15.87)

with a single set of Virasoro generators given by

Ln = − 1
2

∞∑
m=−∞

αm µα
µ
n−m (15.88)

whose Poisson brackets are

{Lm, Ln}P = −i(m − n)Lm+n . (15.89)

Finally, because of the extra factor of 2 multiplying pµ in (15.82), we must
identify

α
µ
0 = (2α′)1/2 pµ (15.90)

and the constraint L0 = 0 now gives the mass of an open string as

M2 = − 1

α′
∞∑

n=1

α−n µα
µ
n (15.91)

in place of (15.79).

15.2.5 A useful transformation

For some purposes, it is helpful to rewrite our theory in terms of a complex
coordinate z, related to w by the conformal transformation

z = e−iw = eσ
2
e−iσ 1

. (15.92)

Since this is to be regarded as a conformal transformation, rather than a mere
change of coordinates, it involves a change in the worldsheet metric. Let us see
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Figure 15.2. The internal geometry of a closed-string worldsheet with two different
choices of the metric, related by a conformal transformation. In (a), the line element is
given by (15.93), while in (b) it is given by (15.94). The worldsheet is flat in both cases.
In (b), it occupies the whole of the complex z plane, except for an infinitesimal disc at the
origin, which corresponds to one end of the cylinder in (a).

what this means for a closed string. Using the coordinate w, an element of proper
distance on the worldsheet is

ds2 = dw dw̄ = (dσ 1)2 + (dσ 2)2. (15.93)

This is a flat, Euclidean metric, so the internal geometry of the worldsheet is
accurately represented by the long straight cylinder shown in figure 15.2(a).
(However, according to our discussion at the end of §15.2.2, this does not mean
that the worldsheet looks like a straight cylinder when embedded in spacetime.)
After the conformal transformation, the element of proper distance is

ds2 = dz dz̄ = (dz1)2 + (dz2)2 = dρ2 + ρ2dθ2 (15.94)

where z1 and z2 are the real and imaginary parts of z, while ρ = eσ
2

is its
magnitude and θ = −σ 1 is its phase. This is also a flat, Euclidean metric, but
now the Euclidean ‘time’ σ 2 runs in the radial direction, while σ 1 is minus the
polar angle. The circular end of the worldsheet at σ 2 → −∞ is an infinitesimal
circle at the origin z = 0 and the other end, at σ 2 → +∞ is the very large circle
at |z| → ∞ (figure 15.2(b)).

Written in terms of z, the mode expansion (15.70) is

Xµ(z, z̄) = xµ − 1
2 iα′ pµ(ln z + ln z̄) + i

(
α′

2

)1/2 ∞∑
n=−∞

n (=0

1

n

[
αµ

n z−n + α̃µ
n z̄−n] .

(15.95)
The derivative ∂z Xµ is a Laurent series of positive and negative powers of z and
∂z̄ Xµ is a Laurent series in z̄. The components of the energy–momentum tensor
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are also Laurent series, namely

Tzz =
(

dw

dz

)2

Tww = −
∞∑

n=−∞
Lnz−(n+2) (15.96)

Tz̄z̄ =
(

dw̄

dz̄

)2

Tw̄w̄ = −
∞∑

n=−∞
L̃n z̄−(n+2). (15.97)

As an application of this transformation, readers should be able to verify that the
quantity T(ε, ε̄) defined in (15.59), which generates an infinitesimal conformal
transformation is

T(η, η̄) = −
∮

dz

2π
η(z)Tzz(z) −

∮
dz̄

2π
η̄(z̄)Tz̄z̄(z̄) (15.98)

where the first integral is over a closed, anticlockwise contour encircling the origin
in the z plane and the second is over a closed, anticlockwise contour in the z̄
plane. The function η(z) = −izε(w) is the small change in z when w changes
by a small amount ε(w). On account of Cauchy’s theorem, the value of T(η, η̄)

is independent of the contour that we use to calculate it, so long as this contour
winds once round the origin, where Tzz and Tz̄z̄ have poles. In particular, the
value of the original expression (15.59) is independent of τ , which appears on
the right-hand side. Note though, that this is true only when Xµ is a solution of
the equation of motion (15.35), because this is what makes T holomorphic and T̃
antiholomorphic. Another, related application is suggested in exercise 15.4.

The same transformation can be used in the case of an open string, whose
worldsheet as viewed in the w frame of reference is the flat strip shown in
figure 15.3(a). The conformal transformation (15.92) maps it into the lower half
of the complex z plane, as shown in figure 15.3(b). The end at σ 2 → −∞ is
mapped into an infinitesimal semicircle at the origin, while its long edges become
the two halves of the real z axis. On the other hand, the extended versions Xµ

of the fields defined in (15.84) live on the whole complex z plane. Integrating a
function of Xµ over σ from 0 to π is equivalent to integrating the corresponding
function of Xµ around the whole closed contour shown in figure 15.3(b), so
Cauchy’s theorem can be applied here too.

15.3 Quantization of the Free Bosonic String

The first step in quantizing our classical string is simple enough: in accordance
with the principles established in chapters 5 and 7, we promote the coefficients
α
µ
n in the mode expansion (15.82) for the open string, or α

µ
n and α̃

µ
n in (15.60)

for the closed string, to operators and the Poisson bracket relations (15.68) to the
commutation relations

[αµ
m , αν

n ] = [̃αµ
m, α̃ν

n ] = −mηµνδm,−n [αµ
m, α̃ν

n ] = 0. (15.99)



448 An Introduction to String Theory

Figure 15.3. The internal geometry of an open-string worldsheet with the same two
choices of metric as those used for a closed string in figure 15.2. In (b), the worldsheet
occupies the lower half of the complex z plane, the short edge at σ 2 → −∞ being
an infinitesimal semicircle below the origin. The extended fields defined in (15.84)
inhabit the whole z plane, values of σ 1 between π and 2π lying in the upper half plane.
Cauchy’s theorem can be applied, for example, to the closed contour consisting of the solid
semicircle in the lower half plane and the dotted semicircle in the upper half plane.

Superficially, the implications are straightforward. These commutation relations
are quite analogous to those of the creation and annihilation operators we have
met before. We can expect to be able to interpret these operators as creating
and annihilating quanta of energy in the various modes of vibration of the string
and, by finding the eigenstates and eigenvalues of the mass2 operators (15.79)
and (15.91), to find out how these quanta of vibrational energy contribute to the
overall mass of the string. For a free string, this is all the meaningful information
we can ask for, unless we introduce some extra ‘internal’ degrees of freedom.

There are, however, two outstanding issues, which will require a fair amount
of effort to sort out. One is to find a suitable method of dealing with the
constraint (15.36), which we now express as Ln = L̃n = 0. The other is to
determine whether the gauge fixing of §15.2.2 (without which we would not have
progressed very far) can be implemented in the quantum theory. This gauge fixing
depends on the invariance of the theory under both diffeomorphisms and Weyl
transformations, so we must check whether these are still valid symmetries of
the quantum theory. What we shall actually do is to check on the validity of the
more restricted symmetry of conformal invariance on a flat worldsheet which,
as we saw in §15.2.3 is a special combination of a diffeomorphism and a Weyl
transformation. The quantum-mechanical properties of the Virasoro generators
Ln and L̃n are clearly central to both these issues, so it to these that we turn first.
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15.3.1 The quantum Virasoro algebra

Since all of the α
µ
n commute with all of the α̃

µ
n , we need consider only one of

these sets of operators. We need to decide which of the α
µ
n are to count as

creation operators and which as annihilation operators. To this end, let us find
the Hamiltonian H , which is the generator of τ translations on the worldsheet. In
the case of a closed string, it is given by

H = −
∫ 2π

0
dσ !µ(τ, σ )∂τ Xµ(τ, σ ) − L

= −
∫ 2π

0
dσ !µ(τ, σ )∂τ Xµ(τ, σ ) + 1

4πα′

∫ 2π

0
dσ ∂a Xµ∂

a Xµ

=
∫ 2π

0

dσ

2π

[
T (σ − τ ) + T̃ (σ + τ )

]
= L0 + L̃0. (15.100)

In the first line, the − sign in the first term again ensures that the spatial
components

∑
i !

i∂τ Xi appear with the same sign as in the non-relativistic
definition (3.14) and the Lagrangian L is the action (15.31) without the τ integral.
The commutation relations [

αµ
n , H

] = nαµ
n (15.101)

follow from expressing L0 and L̃0 in terms of the α
µ
n and the α̃

µ
n as in (15.78) and

from the commutators (15.99). By comparing the signs with the corresponding
commutators for the harmonic oscillator (5.60) and (5.61), we see that the α

µ
n are

annihilation operators for n > 0 and creation operators for n < 0, although they
are differently normalized from a and a†. (This is evidently consistent with our
earlier conclusion that αµ†

n = α
µ
−n so as to make Xµ real.)

The correspondence (5.37) suggests that the Virasoro generators, which
classically have the Poisson-bracket relations (15.77), might in the quantum
theory satisfy the commutation relations

[Lm , Ln] = (m − n)Lm+n . (15.102)

I emphasized in chapter 3, however, that although this correspondence is often
true, it may not always be. In the case at hand, the generators Ln can be expressed
in terms of the α

µ
n , whose commutation relations (15.99) are the basic postulate of

our quantization procedure. We can check, therefore, whether the commutation
relations (15.102) hold or not. This will prove to be no trivial undertaking, but
it is crucial. If these commutation relations turn out not to hold (as they will),
then the conformal invariance of our quantum theory is modified in a way which
invalidates the gauge fixing that we have taken over from the classical theory.
How this comes about, I shall explain in more detail when we have the necessary
results in hand.
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So much depends on our getting the right answer for [Lm, Ln] that I am
going to describe the process in some detail. Readers who are prepared to
take my word for the validity of the end result may, however, prefer to skip to
equation (15.116), where it is displayed. Consider first the expression for the Ln

given in (15.73). In the quantum theory it is ambiguous, because the α
µ
n do not

commute, so the meaning of Ln depends on the order of the two αs. As a matter
of fact, the basic commutator (15.99) tells us that [αµ

m , αν
n−m ] = 0, except when

m = m−n, or when n = 0, so the ambiguity affects only L0. Moreover, the effect
of changing the order of αm µ and α

µ
−m is just to add a constant to L0. Therefore,

we can express all the ambiguity by writing

L0 = −α′

4
pµ pµ −

∞∑
m=1

α−m µα
µ
m + a (15.103)

where a is an unknown constant. The first term here is − 1
2α0 µα

µ
0 , re-expressed

via (15.69). The second term is normal-ordered, in the sense we met in §7.2, by
making all the annihilation operators stand to the right of the creation operators.
It should be clear that the sum of terms in (15.73) with m ≤ −1 make exactly the
same contribution to this normal-ordered expression as the terms with m ≥ 1.

Next, we can use (15.99) to find, after a little algebra, the commutator[
Lm , αµ

n

] = −nαµ
m+n (15.104)

which is well defined. This in turn can be used to calculate the commutator
[Lm, Ln ]. The result is

[Lm , Ln] = − 1
2 (m − n)

∞∑
r=−∞

α
µ
m+n−rαr µ. (15.105)

Except when n = −m, this commutator is also well defined and equal to
(m − n)Lm+n , in agreement with (15.102). When n = −m, we have

[
Lm , L−m

] = −m
∞∑

r=−∞
α
µ
−rαr µ (15.106)

which is troublesome. To see why, let us express the right-hand side in normal-
ordered form, as we did with L0. We have

[
Lm , L−m

] = − mα
µ
0 α0 µ − m

∞∑
r=1

α
µ
−rαr µ − m

∞∑
r=1

αµ
r α−r µ

= − m
α′

2
pµ pµ − 2m

∞∑
r=1

α
µ
−rαr µ + md

∞∑
r=1

r

= 2m(L0 − a) + md
∞∑

r=1

r (15.107)



Quantization of the Free Bosonic String 451

where d = δ
µ
µ is the number of spacetime dimensions. In the second line, I have

used the commutator (15.99) to rewrite α
µ
r α−r µ as α

µ
−rαr µ − rδµµ . The result is

meaningless, because its last term is infinite.
We can obtain a more meaningful answer by taking careful account of the

Hilbert space in which the operators are to act. A suitable Hilbert space consists
of vectors of the form |O; k〉, where k is the spacetime momentum of the string
(and so pµ|O; k〉 = kµ|O; k〉), whileO represents the state of the infinite number
of oscillators which are its normal modes of vibration. The state |0; k〉, in which
all these oscillators are in their ground states, is annihilated by all the annihilation
operators: that is

αµ
n |0; k〉 = 0 for n ≥ 1. (15.108)

A complete basis for the Hilbert space consists of the vectors that we get by
acting on |0; k〉 with any combination of creation operators, which add quanta
of vibrational energy. Because our theory is Lorentz invariant, it will be enough
to consider the string in the rest frame of its centre of mass or, in other words,
to consider just states of the form |O; 0〉. Our problem is to find a meaningful
interpretation for the quantity

Lm = [
Lm , L−m

]− 2m(L0 − a). (15.109)

A few lines of algebra using (15.104) should enable readers to verify that Lm

commutes with all the α
µ
n . So the action of Lm on any of our basis vectors, say

α
µ1
n1 · · ·αµN

nN |0; 0〉, where the ni are all negative, is given by

Lmαµ1
n1

· · ·αµN
nN

|0; 0〉 = αµ1
n1

· · ·αµN
nN
Lm |0; 0〉 (15.110)

and we need only to find the value of Lm |0; 0〉. This we can do by first finding
the actions of the Lm , which are

L0|0; 0〉 = a|0; 0〉 (15.111)

L−1|0; 0〉 = 0 (15.112)

Lm |0; 0〉 = 0 for m ≥ 1 (15.113)

L−m |0; 0〉 = − 1
2

m−1∑
r=1

α
µ
r−mα−r µ|0; 0〉 for m ≥ 2. (15.114)

In the case of L0, I have used the normal-ordered expression (15.103); for all
the other Lm , we simply discard all the terms containing either pµ (or α

µ
0 ) or an

annihilation operator.
For m ≥ 1, the results (15.111) and (15.113) tell us that Lm |0; 0〉 =

Lm L−m |0; 0〉, so we can calculate

Lm |0; 0〉 = − 1
2 Lm

m−1∑
r=1

α
µ
r−mα−r µ|0; 0〉
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= − 1
2

m−1∑
r=1

[
α
µ
r−mα−r µLm + rαµ

r−mαm−r µ

+(m − r)αµ
r α−r µ

] |0; 0〉

= − 1
2

m−1∑
r=1

(m − r)αµ
r α−r µ|0; 0〉

= − 1
2

m−1∑
r=1

(m − r)
[
α−r µα

µ
r − rδµµ

] |0; 0〉

= 1
2 d

m−1∑
r=1

(m − r)r |0; 0〉

= d

12
m(m2 − 1)|0; 0〉. (15.115)

The first line of this calculation uses the result (15.114); the second uses
the commutator (15.104) twice; the third discards terms in which annihilation
operators act on |0; 0〉; the fourth uses the commutator (15.99) and the fifth
discards further terms in which annihilation operators act on |0; 0〉.

For m ≤ −1, a similar calculation gives the same result and we also get the
same result when m = 0, because [L0, L0] = 0. By virtue of (15.110), we see
that Lm |�〉 = (d/12)m(m2 − 1)|�〉 when |�〉 is any vector in the Hilbert space
we specified, so we can simply take Lm = (d/12)m(m2 − 1). This gives us the
value of

[
Lm , L−m

]
and we discovered earlier that [Lm , Ln] = (m − n)Lm+n

when n is not equal to −m. Thus, we can finally write the commutation relations
of the quantum Virasoro algebra as

[Lm, Ln ] =
[

m(m2 − 1)

12
c − 2ma

]
δm,−n + (m − n)Lm+n (15.116)

where the constant c is known, in a general conformal field theory, as the central
charge. For this particular theory, of course, we have found that c is equal to the
number of spacetime dimensions d .

Let us take stock of what we have learned. The commutation relations of
the quantum Virasoro algebra differ from the Poisson-bracket relations of the
classical theory by the first term in (15.116), which involves two constants c
and a. The constant a arises from the normal ordering of L0. We have met a
similar constant before, in (7.21), where it represented the energy of the vacuum
state. The value of this vacuum energy is essentially a matter of convention, so
we were entitled to set it to zero by discarding the constant. Here, the ‘vacuum
energy’ of the worldsheet field theory is the mass of the string in its vibrational
ground state, whose value is by no means a matter of convention. The classical
formula (15.79) for the mass of a closed string was obtained from the constraints
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L0 = L̃0 = 0 and its quantum-mechanical version contains two normal-ordering
constants a and ã, because exactly the same considerations apply to the L̃n as to
the Ln . If we want to find a reliable prediction for the mass of the string (as we
assuredly do!), then the correct values of a and ã must be found. For the moment,
I shall simplify matters by assuming that a = ã = 0. Later on, we shall determine
the correct quantum-mechanical mass formula from considerations having to do
with the internal consistency of our quantization procedure. With a = 0, the
commutation relations are

[Lm , Ln] = m(m2 − 1)

12
c δm,−n + (m − n)Lm+n (15.117)

and it is in this form that they are most often quoted.
The modified commutation relations imply a modification in the conformal

invariance of the quantum theory, which is most conveniently treated from the
point of view of the complex coordinate z introduced in §15.2.5. The conformal
transformation of a quantum-mechanical operator A is given by

A′ = exp [−iT(η, η̄)] A exp [iT(η, η̄)] (15.118)

where T(η, η̄) is the quantum version of (15.98), which is analogous, for example,
to the spacetime translation of (12.110). The infinitesimal version is

δA = −i [T(η, η̄), A] . (15.119)

To illustrate how this works, consider the operator ∂Xµ(z), where I now use ∂ to
mean ∂/∂z. Because ∂Xµ is independent of z̄, its transformation is generated by
T(η, 0). We use the Laurent expansions

∂Xµ(z) = −i

(
α′

2

)1/2 ∞∑
n=−∞

αµ
n z−(n+1) Tzz(z) = −

∞∑
m=−∞

Lm z−(m+2)

η(z) =
∞∑

(=−∞
η(z−(

and Cauchy’s theorem in the form
∮

dz z−n = 2π i δn,1 to calculate

δ
(
∂Xµ(z)

)
= − i

[
T(η, 0), ∂Xµ(z)

]
= −

(
α′

2

)1/2 ∑
(,m,n

∮
dz′

2π
z′−((+m+2)z−(n+1)η(

[
Lm , αµ

n

]
= i

(
α′

2

)1/2 ∑
(,m,n

η( α
µ
m+nn δ(+m+1,0z−(n+1)

= i

(
α′

2

)1/2∑
(,n

η( α
µ
n (( + n + 1)z−((+n+2)

= ∂
[
η(z)∂Xµ(z)

]
. (15.120)
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The result is what we might expect from our classical discussion of conformal
invariance in §15.2.3. That is to say

δ
(
∂Xµ(z)

)
= ∂Xµ

(
z + η(z)

)
− ∂Xµ(z) = ∂

[
Xµ

(
z + η(z)

)
− Xµ(z)

]
� ∂

[
η(z)∂Xµ(z)

]
. (15.121)

For the energy–momentum tensor Tzz(z) = −(1/α′)∂Xµ(z)∂Xµ(z), the classical
theory would lead us to expect

δTzz(z) = − 2

α′ ∂Xµ(z)δ
(
∂Xµ(z)

)
= 2

(
∂η(z)

)
Tzz(z) + η(z)∂Tzz(z).

(15.122)
However, a calculation similar to (15.120) gives the result

δTzz(z) = − c

12
∂3η(z) + 2

(
∂η(z)

)
Tzz(z) + η(z)∂Tzz(z) (15.123)

so Tzz(z) does not change as it would under a classical conformal transformation.
Whether we regard this as a breakdown of conformal invariance in the

quantum theory is a matter of taste. The transformations generated by the
quantum commutation relations (15.104) and (15.117) do constitute a symmetry
of the quantum theory, and there is a set of infinitely many conserved quantities
associated with this symmetry (see exercise 15.5). The usual practice is to call
this symmetry conformal invariance, but it is not quite the same as the classical
invariance. The extra terms in (15.117) and (15.123), proportional to the central
charge, are said to arise from an anomaly, of the kind that I mentioned briefly
in chapter 9. The one we have discovered here is the conformal or Virasoro
anomaly. In the next subsection, we shall see that it is sufficient to invalidate
gauge fixing in the quantum theory, except under special (and somewhat curious)
circumstances. Incidentally, the scale invariance that we studied in §11.6 in
connection with critical phenomena is a special case of conformal invariance,
corresponding to a rescaling of z by a constant factor, f (z) = (z. The fact that the
critical exponents of the ‘classical’ Ginzburg–Landau theory are modified when
statistical fluctuations are taken into account by what amounts to a quantum field
theory can be understood as a manifestation of this same conformal anomaly.

15.3.2 Quantum gauge fixing

At the beginning of this section, I pointed out that there are two issues we must
confront in developing a reliable quantization procedure. One is how to deal with
the constraint Tab = 0 which, in terms of the mode expansion becomes Ln = 0;
the other is to determine how, if at all, we can fix the gauge so as to be able to
work with a flat worldsheet. Several different approaches to string quantization
have been investigated, within which these issues can be addressed. The most
reliable, and the one I am going to describe, is known as BRST quantization, after



Quantization of the Free Bosonic String 455

C Becchi, A Rouet, R Stora and I V Tyutin who developed a similar strategy
for the quantization of non-Abelian gauge theories. It relies on the possibility of
expressing matrix elements in terms of path integrals, analogous to the particle
propagator (15.7). Consider, in particular the object

Z =
∫
DXDγ exp[iS(X, γ )] (15.124)

where S(X, γ ) is the original action (15.15). This does not correspond directly
to any observable quantity (we are not going to impose the constraint that the
worldsheet begin and end at some specified locations in spacetime), though is
somewhat analogous to a partition function in statistical mechanics. Its relevance
to our present purpose is that we can carry out various manipulations with this
path integral, which can subsequently be reinterpreted in terms of operators acting
in the Hilbert space of string states.

In the path-integral context, we can attempt to fix the gauge by means of the
Fadeev–Popov method to which I alluded in §9.5. There, the details were not
greatly relevant to our discussion (though they are important to anyone engaged
in ‘real life’ calculations). Here, they play a central role, so I will treat them
much more explicitly. The essential point is that the integral over γab includes
integrals over many gauge degrees of freedom (the diffeomorphisms and Weyl
transformations) which do not change the value of S. They ought, therefore, to
contribute only a constant factor to Z , say Vgauge, which represents the ‘volume’
of the space over which the gauge variables are integrated. In fact, the result we
shall obtain has the general form

Z = Vgauge

∫
DXDbDc exp

[
iS(X, η) + iSg(b, c)

]
(15.125)

where b and c are ‘ghost’ fields, whose presence I shall explain later on. Of
course, S(X, η) is the gauge-fixed action with the flat worldsheet metric ηab.
Before embarking on the derivation of this result, let us consider the status of
the constraint. From the previous subsection, it is clear that we cannot set Ln = 0
in the quantum theory. If we did, the commutation relation (15.104) would require
us also to set all the α

µ
n equal to zero, so vibrations of the string would be entirely

forbidden. Apart from L0 which, as we have seen, needs special treatment, each
term in the sums (15.73) is a product of two creation or annihilation operators
which affect the states of two different oscillators. It follows that for any vector
|�〉 in the Hilbert space, the vector Ln |�〉 either vanishes or represents a state
in which two of the oscillators have different energies from those that they have
in the state |�〉. Thus, Ln |�〉 is orthogonal to |�〉 and the expectation value
〈�|Ln |�〉 is zero. This is the way in which the constraint is realized in the theory
as we have studied it so far. From the point of view of the path integral (15.124),
the integral over γab provides, roughly speaking, a functional δ-function, which
enforces the constraint. In the gauge-fixed form (15.125), this δ-function has
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disappeared, but provided that the new integral really is equal to the old one, its
effect is taken care of in the new theory of the Xµ and the ghosts. The upshot
is that in this modified theory, we do not have to take explicit account of the
constraints. We shall find, however, that they reappear in the guise of what is
called the BRST cohomology.

Here is the derivation of (15.125). Our quantum theory is supposedly
invariant under a gauge transformation specified by three functions sa(τ, σ )

and ω(τ, σ ), corresponding to a coordinate transformation τ ′ = s0(τ, σ ),
σ ′ = s1(τ, σ ) and a Weyl transformation (15.26). I denote these three
functions collectively by g (for ‘gauge transformation’). The effect of a gauge
transformation on the fields X and γ is to change is to change them into a new set
of functions, which I denote by X g and γ g; for example,

(γ g)a′b′
(τ ′, σ ′) = e−ω ∂sa′

∂σ a

∂sb′

∂σ b
γ ab(τ, σ ). (15.126)

By making a suitable gauge transformation, any metric can be reduced to the flat
metric ηab. We can turn this round and say that the metric γ inside the original
path integral (15.124) is obtained from η by a gauge transformation g, so γ = ηg .
Similarly, the fields X are obtained from some other fields X ′ by means of the
same gauge transformation, so X = X ′g . The gauge volume Vgauge that we would
like to extract as an overall factor is Vgauge = ∫

Dg 1, and we might think of doing
this by exchanging the integral over γ for an integral over g. That is to say, the
integral can be written

Z =
∫
Dg

∫
DX ′g J exp

[
iS(X ′g , ηg)

]
(15.127)

where J = det(δγ /δg) is the Jacobian for this change of variables. If the theory
really is gauge invariant, then integral

∫
DX ′g J exp(iS) is independent of g, and

we have

Z = Vgauge

∫
DX J exp [iS(X, η)] (15.128)

after dropping the prime from the dummy integration variable X ′.
The difficulty here is that the Jacobian J is not easy to determine, so we

proceed indirectly, as follows. Define a function �(γ ) by

�(γ )−1 =
∫
Dg δ

(
γ − ηg) . (15.129)

This is an integral over all sets of gauge functions g, but the functional δ-function
vanishes except when ηg = γ . Clearly, the integral

Z =
∫
DXDγDg �(γ )δ

(
γ − ηg) exp [iS(X, γ )] (15.130)
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is equal to the original one, because the extra factor in the integrand is equal to 1.
We can use the δ-function to carry out the integral over γ and write

Z =
∫
DgDX �(ηg) exp

[
iS(X, ηg)

]
=
∫
Dg

{∫
DX ′g �(ηg) exp

[
iS(X ′g, ηg)

]}
= Vgauge

∫
DX �(η) exp [iS(X, η)] (15.131)

provided, again, that the integral in the curly brackets is genuinely independent of
g.

Evidently, the Jacobian we needed to find is J = �(η) and we ought to be
able to calculate it from the definition (15.129). We have

�(η)−1 =
∫
Dg δ(η − ηg) (15.132)

and, since the δ-function vanishes except when ηg = η, we need to know ηg only
when g is infinitesimal. More specifically, in the gauge transformation (15.126),
we take ω(τ, σ ) to be infinitesimal, and the coordinate transformation functions
to be sa(τ, σ ) = σ a + εa(τ, σ ), where the εa are also infinitesimal. With a little
rearrangement, we find that the infinitesimal change in γ ab is

δγ ab = − ωγ ab + γ ac∂cε
b + γ bc∂cε

a −
(
∂cγ

ab
)
εc

= − ωγ ab + ∇aεb + ∇bεa (15.133)

where ∇ is the covariant derivative associated with the metric γ . For our
immediate purpose, with γ ab = ηab, this implies that

ηab − (ηg)ab = ωηab − ∂aεb − ∂bεa (15.134)

but the more general version will shortly be useful also. The integral over g in
(15.132) is now written more explicitly as an integral over the three functions ω

and εa , and the δ-function can be dealt with by using a functional generalization
of the integral representation (A.11):

�(η)−1 =
∫
DωDε

∫
Dβ exp

[
i

4π

∫
d2σβab

(
∂aεb + ∂bεa − ωηab

)]
.

(15.135)
Because the metric is symmetric, there is really one δ-function for each of the
independent componentsη00, η11 and η10 = η01. Correspondingly, there are three
new integration variables, which are the independent components of a symmetric
tensor field βab; the factor 1/4π simply sets a convenient normalization for βab.
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The integral over ω is the integral representation of the δ-function δ
(
βabη

ab
)
, so

we can simplify our result to the form

�(η)−1 =
∫
Dε

∫
Dβ exp

[
i

2π

∫
d2σβab∂

aεb
]

(15.136)

on the understanding that the β integral is now over the two independent
components of a tensor field which is both symmetric and traceless, in the sense
that ηabβab = β00−β11 = 0. I have also used the fact that βab∂

aεb = βab∂
bεa on

account of the symmetry of βab. Finally, we obtain an expression for �(η) itself
by making use of the properties of Grassmann variables discussed in appendix A.
It is given by

�(η) =
∫
DbDc exp

[
i

2π

∫
d2σ bab∂

acb
]

(15.137)

where bab and ca are fields of Grassmann variables, each having two independent
components. They can be thought of as the fields associated with a fictitious
set of ‘particles’ living on the worldsheet, which are conventionally described
as Fadeev–Popov ghosts. The gauge-fixed partition function is therefore indeed
given by (15.125), with the ghost action

Sg(b, c) = 1

2π

∫
dτdσ bab∂

acb. (15.138)

The value of the analysis we have been through lies not so much in the
partition function itself, but rather in the discovery that we are allowed to fix
the gauge in the quantum theory, at the price of dealing with a gauge-fixed theory
which includes not only the original fields Xµ but also the ghost fields b and c.
This is true, at least, if we can resolve a question that hangs over our derivation.
Namely, we must assure ourselves that the quantity in curly brackets in (15.131)
is really independent of g, so that Vgauge can validly be extracted as an overall
factor. From time to time, I have given fairly strong hints that this is not in fact
so, and we are now in a position to learn the uncomfortable truth of the matter.

15.3.3 The critical spacetime dimension

Now that we know how to express the Jacobian �(ηg) in terms of a path integral
over ghost fields, the question that confronts us is whether the object

Z g =
∫
DX g

Dbg
Dcg exp

[
iS(X g , ηg) + iSg(b

g, cg, ηg)
]

(15.139)

is independent of g. (Note that Sg(bg, cg, ηg) is not given exactly by the
expression (15.138) because ηg is not equal to η; I shall return to this point
shortly.) If both coordinate transformations and Weyl transformations are valid
symmetries of the quantum theory, as they are of the classical theory, then the
gs can be removed from the right-hand side of (15.139) simply by making a
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gauge transformation. For the classical theory, we saw in (15.22) that ∇aTab = 0
as a consequence of diffeomorphism invariance and in (15.28) that T a

a = 0 as
a consequence of invariance under Weyl transformations. If both symmetries
remain valid in the quantum theory, then these two properties of the energy–
momentum tensor should also remain valid, and this is the crucial point that we
are going to check. The possibility that one or other of these properties might
fail arises from operator-ordering ambiguities such as we met in §15.3.1. Let us
assume (as is in fact the case) that the products of operators contained in Tab can
be ordered in such a way that ∇aTab = 0. We need to know whether T a

a will then
also vanish. On a flat worldsheet it does. In terms of the complex coordinates w

and w̄, the divergence ∂aTaw, for example, is given by

∂aTaw = ∂wTww + ∂w̄Tw̄w = −2 [∂w̄Tww + ∂wTw̄w] (15.140)

if we take account of the metric (15.44). The operator ordering that makes the
Virasoro generators Ln and hence the energy–momentum tensor well defined
does not affect the fact that ∂w̄Tww = ∂wTw̄w = 0. It also does not require
us to introduce a non-zero value for Tw̄w , which is proportional to T a

a , so both
properties ∂a Taw = 0 and Tw̄w = 0 can consistently be maintained on the flat
worldsheet. Thus, if T a

a is non-zero on a curved worldsheet, then it must be
proportional to some scalar quantity that vanishes in the limit of a flat worldsheet.
The only available scalar field with the right dimensions is the two-dimensional
Ricci scalar R, so we must have

T a
a = λR (15.141)

where λ is a constant. Our problem reduces, then, to determining the value of
λ. Only if λ = 0 are both diffeomorphism invariance and Weyl invariance valid
quantum symmetries.

To calculate λ, let us use coordinates z and z̄ such the metric has the form

γab = exp[�(z, z̄)]ηab η = −1

2

(
0 1
1 0

)
. (15.142)

On a flat, Euclidean worldsheet these become the complex coordinates introduced
in (15.92). Using this metric and the result of exercise 15.1, we find

T a
a = −4e−�Tz̄z R = 4e−�∂̄∂� (15.143)

and so (15.141) becomes
Tz̄z = −λ∂̄∂�. (15.144)

On the other hand, a few lines of algebra using the result of exercise 15.6 shows
that the equation ∇a Taz = 0 becomes

∂̄Tzz + ∂Tz̄z = (∂�)Tz̄z (15.145)
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or, on account of (15.144),

∂̄Tzz = λ
[
∂̄∂2� − (∂�)(∂̄∂�)

]
. (15.146)

This equation can be used to relate λ to the central charge of the theory on a
flat worldsheet if we consider the change that arises from an infinitesimal Weyl
transformation. According to (15.26), the change in � is just ω, so the change in
Tzz , which I denote by (δTzz)Weyl, satisfies

∂̄(δTzz)Weyl = λ
[
∂̄∂2ω − (∂ω)(∂̄∂�) − (∂�)(∂̄∂ω)

]
= λ∂̄

[
∂2ω − (∂ω)(∂�)

]
. (15.147)

In fact, since (δTzz)Weyl must vanish when ω = 0, we can write

(δTzz)Weyl = λ
[
∂2ω − (∂ω)(∂�)

]
= λ∂2ω (15.148)

where the last expression applies to a flat worldsheet with � = 0.
For the flat worldsheet, (δTzz)Weyl can be found from the conformal

transformation (15.123). Remember that a conformal transformation is a special
combination of coordinate and Weyl transformations. It changes the worldsheet
metric in such a way that the components of the new metric in the new coordinates
are the same as those of the old metric in the old coordinates. The effect of an
infinitesimal coordinate transformation z′ = z + η(z) and z̄′ = z̄ + η̄(z̄) together
with Weyl rescaling by a factor eω is to replace the line element ds2 = dzdz̄ with

ds′2 = eωdzdz̄ = eω
(

dz′

dz

dz̄′

dz̄

)−1

dz′dz̄′ � (1 + ω − ∂η − ∂̄ η̄)dz′dz̄′ (15.149)

which is equal to dz′dz̄′ if we take ω(z, z̄) = ∂η(z) + ∂̄ η̄(z̄). (Please do
not confuse η(z), which is an infinitesimal change of coordinates, with ηab

in (15.142), which is the Minkowskian metric.) Now, the classical conformal
transformation (15.122) for Tzz was obtained for the specific example of the Xµ

field theory, but it simply reflects the coordinate transformation of a rank
(0

2

)
tensor, and is also valid for the combined energy–momentum tensor of the Xµ

and the ghosts b and c, which concerns us here. The anomalous first term of the
quantum conformal transformation (15.123) can therefore be identified as arising
from a Weyl transformation. Thus we have

(δTzz)Weyl = − c

12
∂3η(z) = − c

12
∂2ω(z, z̄) = λ∂2ω(z, z̄). (15.150)

We have discovered that
λ = − c

12
(15.151)



Quantization of the Free Bosonic String 461

where c is the central charge of the combined theory of spacetime coordinates Xµ

and the Fadeev–Popov ghosts.
To determine the total central charge, we need to know the energy–

momentum tensor of the ghosts. This can be found from the definition (15.21)
if we use the covariant version of the ghost action (15.138), which contains the
non-Minkowskian metric γ = ηg . By retaining the general form of the metric
variation (15.133), we obtain an action that can be expressed in the form

Sg(b, c) = 1

4π

∫
dτdσ (−γ )1/2bab

[
∇acb + ∇bca − γ ab∇ccc

]
. (15.152)

The factor containing ca is written so as to be symmetric and traceless; it has just
two independent components, matching the two degrees of freedom in bab, which
is also symmetric and traceless. Because bab is traceless, the term −babγ

ab∇ccc

vanishes, but its variation −babδγ
ab∇ccc is non-zero. Relative to the (z, z̄)

coordinates on the flat worldsheet, each of the ghost fields has two independent
components, namely

b ≡ bzz b̃ ≡ bz̄z̄ c ≡ cz c̃ ≡ cz̄ . (15.153)

With a little patience, readers should find it possible to verify that the Euclidean
action for these ghosts is

S(g)
E = 1

2π

∫
dzdz̄

(
b∂̄c + b̃∂ c̃

)
(15.154)

and that their energy–momentum tensor has the two independent components

T (g)
zz (z) = 2b(z)∂c(z) + [∂b(z)]c(z) T (g)

z̄ z̄ (z̄) = 2b̃(z̄)∂̄ c̃(z̄) + [∂̄ b̃(z̄)]̃c(z̄)
(15.155)

after taking account of the equations of motion ∂̄b = ∂̄c = ∂ b̃ = ∂ c̃ = 0
implied by (15.154). The commutation relations of the Virasoro algebra of the
ghost theory can be found by the same method that we used to derive (15.116).
Rather than embark on another lengthy calculation, I shall simply quote the result
that c(g) = −26. For the combined theory, we have the Virasoro generators
Ln = L(X)

n + L(g)
n and, since L(X)

m commutes with L(g)
n the commutation relations

for the combined algebra are

[Lm, Ln ] =
[

m(m2 − 1)

12

(
c(X) + c(g)

)
− 2m

(
a(X) + a(g)

)]
δm,−n

+ (m − n)Lm+n . (15.156)

The anomalous term vanishes if a(X) + a(g) = 0 and c = c(X) + c(g) = 0. We
can arrange for the normal-ordering constants a(X) and a(g) to add to zero simply
by specifying their values as part of our quantization procedure. To be definite,
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I shall set a(X) = a(g) = 0, although the individual values do not really matter.
On the other hand, the net central charge c = d − 26 is fixed by the commutation
relations of creation and annihilation operators.

At this point, two strategies would seem to present themselves. If c does
not vanish, we can partially fix the gauge by using diffeomorphism invariance
to reduce the worldsheet metric to the ‘conformally flat’ form (15.142), but we
cannot remove the conformal factor e� because Weyl invariance is not valid in
the quantum theory. This means that the quantum theory contains an extra field
�(z, z̄), known as the dilaton on account of the alternative term ‘dilation’ for
a Weyl transformation. The resulting theory, known as the theory of non-critical
strings, has been investigated but, to the best of my knowledge, one cannot be sure
that it makes good mathematical sense. At any rate, I shall have no more to say
about it here. The second strategy, which is more prominent in the string-theory
literature, is to suppose that spacetime has as many dimensions as are needed to
make the central charge vanish. In the case of the bosonic string that we have
studied so far, this critical dimension is d = 26. One way of accounting for the
fact that we perceive only four of these dimensions is to invoke the Kaluza-Klein
idea (§8.5) that the extra ones are compactified with a very small size. Another
possibility makes use of the idea of ‘D-branes’, on which I shall touch later.

This value, d = 26, for the critical dimension of the bosonic string is our first
major result. Clearly, the conclusion that the theory makes sense only if spacetime
has 26 dimensions has far-reaching consequences. Readers may well gain the
impression that this conclusion rests on a rather inconsequential technicality—
the failure of Weyl invariance as a quantum symmetry—which we had to work
rather hard to uncover. A lot of difficulty might perhaps be avoided if we were
to turn a blind eye to this technical hitch and proceed to develop our theory in
4 spacetime dimensions, in the hope that nothing serious will go wrong in the
end. I should emphasize, therefore, that this has been tried and it does not work.
Several different approaches to quantizing the string have been developed over
many years and all of them produce inconsistencies of one kind or another unless
there are exactly 26 of the coordinate fields Xµ. In one way or another, proper
account must be taken of this fact if further progress is to be possible.

15.3.4 The ghost Hilbert space

We shall naturally need to know something about the quantum-mechanical
properties of the ghost fields, in particular the nature of the Hilbert space in which
they act. Here, I summarize the essential results for the right-moving fields b and
c of a closed string; the left-moving fields b̃ and c̃ form an identical structure and
the differences for an open string are exactly parallel to those we discussed in
the case of the Xµ field theory. I shall omit details of most of the derivations,
which readers who have progressed this far should find to be matters of (possibly
tiresome) routine.

The right-moving part of the action (15.154) is invariant under a conformal
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transformation analogous to (15.49), where the ghost fields transform as

b′(z) =
(

d f

dz

)hb

b
(

f (z)
)

c′(z) =
(

d f

dz

)hc

c
(

f (z)
)

(15.157)

provided that hb + hc = 1. In conformal field theory, these indices are called the
conformal weights of the fields. The values of these conformal weights can be
found from the requirement that the transformation be generated by the energy–
momentum tensor (15.155). One finds hb = 2 and hc = −1, which again reflect
the coordinate transformations of a rank

(0
2

)
and a rank

(1
0

)
tensor field. We adopt

the mode expansions

b(τ, σ ) = −
∞∑

n=−∞
bne−in(τ−σ) = −

∞∑
n=−∞

bneinw (15.158)

c(τ, σ ) = −
∞∑

n=−∞
cne−in(τ−σ) = −

∞∑
n=−∞

cneinw. (15.159)

Compared with the expansions (15.60) of the Xµ, the missing factor of 1/n arises
from the fact that the Lagrangian has only one derivative. Since the ghosts are
fermions, the expansion coefficients have anticommutation relations, which are

{bm, cn} = δm,−n {bm, bn} = {cm, cn} = 0. (15.160)

Taking into account the conformal transformations (15.157), the Laurent series
for b(z) and c(z) are

b(z) =
∞∑

n=−∞
bnz−(n+2) c(z) =

∞∑
n=−∞

cnz−(n−1). (15.161)

For the Virasoro generators we have

L(g)
n =

∞∑
m=−∞

(2n − m) : bmcn−m : −δn,0. (15.162)

The colons : . . . : again denote normal ordering which, for fermionic fields,
involves a change of sign when two operators are interchanged. For example,
: b1c−2 : = −c−2b1 because (see below) c−2 is a creation operator and b1 is an
annihilation operator. The normal-ordering constant −δn,0, which just adds −1

to L(g)
0 , is that needed to make a(g) = 0 in the commutator (15.156). These

generators have commutation relations with the expansion coefficients given by

[L(g)
m , bn] = (m − n)bm+n [L(g)

m , cn] = −(2m + n)cm+n . (15.163)

The worldsheet Hamiltonian is again H (g) = L(g)
0 + L̃(g)

0 so, setting m = 0 in
(15.163), we see that the bn and cn are annihilation operators for n > 0 and
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creation operators for n < 0. The two operators b0 and c0, which commute
with L(g)

0 , are neither creation nor annihilation operators. For the purposes of
the definition of normal ordering in (15.162), c0 is counted as a creation operator
while b0 is counted as an annihilation operator, but this is at present merely a
matter of convention.

In the past, we have constructed a Hilbert space by identifying a unique
ground state |0〉, which is annihilated by all the annihilation operators. In the
present instance, this means bn|0〉 = cn |0〉 = 0 for all n > 0. Here, these
conditions do not identify a unique ground state, because b0 and c0 are neither
creation nor annihilation operators. In fact, there are two ghost ground states, |0g〉
and |1g〉, which are distinguished by the actions of b0 and c0, namely

b0|0g〉 = 0 b0|1g〉 = |0g〉 c0|0g〉 = |1g〉 c0|1g〉 = 0 (15.164)

(see exercise 15.7). Thus, a basis for the ghost Hilbert space consists of two towers
of states built on |0g〉 and |1g〉 by acting with arbitrarily many creation operators.
Because the ghosts are fermions, however, we have b2

n = c2
n = 0 for all n, and

each creation operator can act only once. This aside, the situation is analogous to
the existence of an infinity of states |0; k〉 for the Xµ field theory, which are all
ground states for the vibration modes but distinguished by the eigenvalues kµ of
the spacetime momentum pµ = (2/α′)1/2α

µ
0 . We shall eventually choose |0g〉 as

the ‘true’ ground state, but at present this is merely a matter of notation.

15.3.5 The BRST cohomology

Let us again take stock of our position. We learned at the outset that the allowed
states of the string are restricted by the constraints Tab = 0. Therefore, not all
of the basis vectors α

µ1
n1 · · ·αµN

nN |0; k〉 can represent allowed, physically distinct
states. From this point of view, the gauge fixing that we have taken so much
trouble to set up might seem like a retrograde step, because the number of these
basis vectors has been augmented by the presence of ghosts! Let us denote by
H the Hilbert space that is spanned by all the basis vectors we have discovered.
This basis consists of the ground states |0; 0g; k〉 and |0; 1g; k〉, where the first 0
denotes the ground state of the α

µ
n and α̃

µ
n oscillators, together with all the states

that can be formed by acting with creation operators. (In the case of a closed
string, there are also two possible ground states |̃0g〉 and |̃1g〉 for the independent
left-moving ghosts.) Clearly, the Hilbert space that represents the physically
allowed states of the string, say Hphys, must be much smaller than H and our
task in this section is to construct it.

The key to this construction lies in a symmetry of the gauge-fixed action
which, in terms of the coordinates z and z̄ on the Euclidean worldsheet, is now

S = − 1

2πα′

∫
dzdz̄

[
∂Xµ∂̄Xµ − α′ (b ∂̄c + b̃ ∂ c̃

)]
. (15.165)
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The BRST transformation, which leaves this action invariant, consists in changing
the fields by

δXµ = iε
(

c ∂Xµ + c̃ ∂̄Xµ
)

(15.166)

δb = − iε
(

T (X) + T (g)
)

(15.167)

δb̃ = − iε
(

T̃ (X) + T̃ (g)
)

(15.168)

δc = iε c ∂c (15.169)

δc̃ = iε c̃ ∂̄ c̃ (15.170)

where T ≡ Tzz and T̃ ≡ Tz̄z̄ . The parameter ε is an anticommuting constant, so
terms of order ε2 vanish and this is an exact, rather than merely an infinitesimal
transformation. To be precise, the integrand in (15.165) changes by an amount

iε
[
∂
(
c ∂Xµ∂̄Xµ + α′b c ∂̄c

)+ ∂̄
(̃
c ∂Xµ∂̄Xµ + α′b̃ c̃ ∂ c̃

)]
(15.171)

which is a total divergence, so the action itself is invariant. This symmetry
is valid at the classical level, where we treat the Xµ as real functions and b
and c as anticommuting functions. It is a relic of the gauge invariance of the
original theory. In fact, the transformation (15.166) of Xµ is just a coordinate
transformation

Xµ(z, z̄) + δXµ(z, z̄) = Xµ(z + iεc, z̄ + iεc̃). (15.172)

A property that will prove crucial is that if we make a second BRST
transformation with a different parameter ε′, then δ′(δXµ) = 0 and similarly
for the ghost fields, provided that the equations of motion are satisfied. More
explicitly, this means

δ′(δXµ) = iεδ′ (c ∂Xµ + c̃ ∂̄Xµ
)

= iε
[
(δ′c)∂Xµ + c∂(δ′Xµ) + (δ ′̃c )∂̄Xµ + c̃ ∂̄(δ′Xµ)

]
= 0 (15.173)

provided that ∂̄c = ∂ c̃ = ∂∂̄Xµ = 0 and so on, as may easily be checked by
substituting the explicit forms of δ′ Xµ, . . . from (15.166)–(15.170).

Quantum-mechanically, we deal with this transformation in much the same
way that we dealt with the supersymmetry transformation in §12.7.4, introducing
a BRST charge Q, such that

[iεQ, Xµ] = δXµ

[iεQ, b] = δb [iεQ, b̃ ] = δb̃ [iεQ, c] = δc [iεQ, c̃ ] = δc̃.
(15.174)
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The property that δ′(δXµ) = . . . = 0 implies that this charge is nilpotent, which
means

Q2 = 0. (15.175)

On account of the anticommuting nature of ε, we can use the Laurent expansions
(15.95), (15.96) and (15.161) to find that the commutators (15.174) are equivalent
to

[Q, αµ
n ] = −n

∑
m

cmα
µ
n−m

{Q, bn} = L(X)
n + L(g)

n {Q, cn} = 1
2

∑
m

(2m − n)cmcn−m

(15.176)

with similar relations for α̃
µ
n , b̃n and c̃n in the case of a closed string. These

determine the charge Q uniquely, and it can be expressed as

Q =
∞∑

n=−∞

[
cn L(X)

−n + c̃n L̃(X)
−n + 1

2 :
(

cn L(g)
−n + c̃n L̃(g)

−n

)
:
]

− 1
2 (c0 + c̃0)

(15.177)
as some patient algebra should serve to verify.

The use of the BRST symmetry in constructing the physical Hilbert space
is roughly this. When we fixed the gauge, we made a more or less arbitrary
decision to do this in such a way that the worldsheet metric became ηab. This
is certainly a great convenience, but in principle we could have extracted the
gauge volume Vgauge by inserting some other fixed metric into the δ function in
(15.130). Physical quantities, such as the probability amplitudes that we calculate
from scalar products 〈ψ ′|ψ〉 of the vectors in Hphys ought not to depend on this
choice of metric. In particular, we may demand that an infinitesimal change in this
choice of metric should leave these scalar products unchanged. The condition for
this to be true is that eiεQ |ψ〉 = |ψ〉 for each vector in Hphys, or that

Q|ψ〉 = 0. (15.178)

This assertion should, I hope, appear plausible, in view of the fact that the BRST
symmetry is inherited from the original gauge invariance, but I propose to omit
the wearisome details needed to prove it. Interested readers will find discussions
in, for example, Green, Schwarz and Witten (1987) and Polchinski (1998).

It might seem that Hphys should consist of just those states in H for which
Q|ψ〉 = 0, but this is not quite good enough. In the language that we met briefly
in §3.7 in connection with the exterior derivative d (which is also a nilpotent
operator) a state that satisfies (15.178) can be called a closed state. (This has
nothing to do with a ‘closed’ string.) There are some closed states of a special
kind, namely those that can be expressed as |ψ〉 = Q|χ〉, where |χ〉 may be any
vector in H. They are closed for the special reason that Q|ψ〉 = Q2|χ〉 = 0 and
are called exact states. To make things work smoothly at this point, it is necessary
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that Q should be Hermitian, Q† = Q. This involves a technicality that I shall
mention below, but suppose it is true. Then the bra vector corresponding to a
closed ket vector |ψclosed〉 satisfies

〈ψclosed|Q = 0 (15.179)

and the bra vector corresponding to an exact ket vector |ψexact〉 = Q|χ〉 is

〈ψexact| = 〈χ |Q. (15.180)

Now let |ψ1〉 and |ψ2〉 be any two closed vectors, which we hope to associate
with physical states. From these, we can form two new vectors, by adding to
them some arbitrary exact vectors, say

|ψ ′
1〉 = |ψ1〉 + Q|χ1〉 |ψ ′

2〉 = |ψ1〉 + Q|χ2〉. (15.181)

It is trivial to see that |ψ ′
1〉 and |ψ ′

2〉 are also closed and, furthermore, that

〈ψ ′
2|ψ ′

1〉 = 〈ψ2|ψ1〉. (15.182)

This implies that |ψ ′
1〉 and |ψ1〉 (and similarly |ψ ′

2〉 and |ψ2〉) carry exactly the
same physical information. The difference between them is accounted for by
gauge degrees of freedom, which have no physical meaning. Thus, a physical
state is represented not by a single vector inH but by a whole collection of vectors
that differ from each other by the addition of arbitrary exact vectors.

We shall say that two vectors in H are equivalent if they differ only by an
exact vector. A few moments thought (aided, perhaps, by the considerations of
exercise 10.5) should enable readers to convince themselves that the set Hclosed
of all the closed vectors in H can be split into equivalence classes such that
all the vectors in one class are equivalent to each other, but no two vectors
belonging to different classes are equivalent. It is one of these equivalence classes
that represents a definite physical state. Now, these equivalence classes can
themselves be regarded as vectors, say |�〉〉, which form a Hilbert space. To make
them into a Hilbert space, we simply need rules for adding vectors and forming
scalar products, and these rules are ready to hand. Consider two equivalence
classes, |�1〉〉 and |�2〉〉, and pick any one vector from each of them, say |ψ1〉 and
|ψ2〉. The sum of these vectors, |ψ3〉 = |ψ1〉+ |ψ2〉, belongs to some equivalence
class |�3〉〉. Had we chosen any other pair of vectors, their sum would differ from
|ψ3〉 by some exact vector, and would also belong to |�3〉〉. We therefore have an
unambiguous rule for the sum of equivalence classes:

|�1〉〉 + |�2〉〉 = |�3〉〉. (15.183)

Similarly, we can define the scalar product

〈〈�2|�1〉〉 = 〈ψ2|ψ1〉 (15.184)



468 An Introduction to String Theory

which, on account of (15.182), does not depend on which representative vectors
|ψ1〉 and |ψ2〉 we choose. The new Hilbert space constructed in this way is the
BRST cohomology (or, more accurately, the cohomology of the BRST charge Q).
I shall denote it by HBRST. A rough and ready description is that we take the set
of closed states Hclosed and ‘divide out’ the set of exact states Hexact and this is
reflected in the mathematical symbolism

HBRST = Hclosed

Hexact
. (15.185)

Finally, it may or may not be possible to interpret an operator A that acts in H as
an operator that acts in HBRST. Suppose that A acts on any exact vector Q|χ〉 to
produce another exact vector

AQ|χ〉 = Q|χ ′〉. (15.186)

It follows that
Q AQ|χ〉 = 0 or Q AQ = 0 (15.187)

because |χ〉 can be any vector. Given an operator A with this property, suppose
that it acts on a vector |ψ1〉 belonging to the equivalence class |�1〉〉 to produce
the vector

|ψ2〉 = A|ψ1〉 (15.188)

and that |ψ2〉 belongs to the equivalence class |�2〉〉. We can then say that

A|�1〉〉 = |�2〉〉 (15.189)

because, on account of (15.186), the action of A on some other vector, say
|ψ1〉 + Q|χ〉, belonging to |�1〉〉 produces the vector

A
(
|ψ1〉 + Q|χ〉

)
= |ψ2〉 + Q|χ ′〉 (15.190)

which also belongs to |�2〉〉. We can call A a gauge invariant operator if it has
the property (15.187), because it has a physical meaning, expressed by (15.189),
independent of the gauge degrees of freedom contained in the exact vectors. Thus,
a gauge-invariant operator in H can be interpreted as an operator in HBRST. This
new Hilbert spaceHBRST is almost, but not quite, the physical Hilbert spaceHphys
that we hoped to construct.

We have yet to take account of the existence of the two ghost ground states
|0g〉 and |1g〉 in (15.164). It should be fairly plausible that the physically relevant
ground state is |0g〉, which obeys b0|0g〉 = 0, for the following reason. Taking
into account all the other degrees of freedom, physical states will be those which
obey the two conditions

Q|ψ〉 = 0 and b0|ψ〉 = 0. (15.191)
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For a closed string, there will be a third condition b̃0|ψ〉 = 0. The second of the
equations (15.176) which define the charge Q then tells us that[

L(X)
0 + L(g)

0

]
|ψ〉 = {Q, b0}|ψ〉 = 0. (15.192)

This is one of our original constraints Ln = L̃n = 0 except that, in its final
gauge-fixed form, it includes the contribution of the ghosts. Finally, then, the
physical Hilbert space Hphys is the one that we obtain from HBRST by imposing
the additional constraint b0|ψ〉 = 0.

In the interest of accuracy, I am now going to discuss a technicality that we
deferred earlier on, namely the fact that the BRST charge Q must be Hermitian.
The results of this discussion, though important, will not bear directly on what I
have to say later on, so less fastidious readers may wish to skip the remainder of
this section. The condition for Q to be Hermitian is straightforward, if tedious,
to find. It is that the expansion coefficients for both the Xµ and the ghost fields
must satisfy α

µ†
n = α

µ
−n and so on. In the case of the Xµ, we have already

seen that this is the condition for these coordinates to be real; it also has the
satisfactory consequence that α

µ
n and α

µ†
n are respectively the annihilation and

creation operators for quanta of energy in the nth mode of vibration. What is
disconcerting is that we also require b0 and c0 to be Hermitian: b†

0 = b0 and

c†
0 = c0. Now, the matrices that represent these operators in exercise 15.7 are

not, in the ordinary sense, Hermitian matrices. Whether they count as Hermitian
operators in the Hilbert space H depends on our definition of the scalar product,
though this is a matter that we have not previously needed to consider in detail.
The definition of the scalar product also affects what we mean by a dual vector,
just as a metric defines a correspondence between vectors and one-forms by
raising and lowering of indices. In the present instance, if b0 and c0 are to be
Hermitian, then the vectors |0g〉 = (1

0

)
and |1g〉 = (0

1

)
cannot be orthonormal,

which means that the ‘metric’, say g, in this 2-dimensional space is not diagonal
in this basis; in fact we must take

g =
(

0 1
1 0

)
. (15.193)

Using this matrix to ‘raise the indices’, we find that the basis bra vectors are

〈0g| = ( 1 0 ) g = ( 0 1 ) 〈1g| = ( 0 1 ) g = ( 1 0 ) . (15.194)

The matrices formed, as it were, by the matrix elements of b0 and c0 are( 〈0g|b0|0g〉 〈0g|b0|1g〉
〈1g|b0|0g〉 〈1g|b0|1g〉

)
=
(

0 0
0 1

)
(15.195)

( 〈0g|c0|0g〉 〈0g|c0|1g〉
〈1g|c0|0g〉 〈1g|c0|1g〉

)
=
(

1 0
0 0

)
(15.196)
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and these are Hermitian, which is what we need. Unfortunately, our ground-state
vector now has zero length: 〈0g|0g〉 = 0. The only non-zero matrix element we
can form using |0g〉 is 〈0g|c0|0g〉 = 1. Including all the other degrees of freedom
(represented, say, by φ), the non-zero matrix elements that we can construct after
imposing the constraint b0|ψ〉 = 0 are of the form

〈φ2; 0g|c0|0g;φ1〉 = 〈φ2|φ1〉 (15.197)

and it is this expression that must be used to construct the scalar product inHphys.
In the case of a closed string, of course, the left-moving ghost operators b̃0 and c̃0
must be treated in the same way.

15.4 Physics of the Free Bosonic String

We are finally in a position to extract from the formalism of the preceding sections
some concrete conclusions about the physical properties of the quantized string.
Of course, we are rather far from being able to identify this object with anything
that is actually observed in nature. As it stands, the theory applies to a string
that exists in a 26-dimensional spacetime and undergoes no interactions—and we
shall soon find that another misfortune awaits us! The key questions that I plan to
address in this section are, first, how we can interpret a string in a given state of
vibration as a particle of definite mass and spin in spacetime and, second, how it
is that string theory promises us a quantum theory of gravity.

15.4.1 The mass spectrum

I shall deal explicitly with the lowest-lying states of a closed string, and it will be
useful to start by assembling the essential information that we have to work with.
First of all, we have to study those states in the Hilbert spaceH which satisfy the
conditions Q|ψ〉 = 0 and b0|ψ〉 = b̃0|ψ〉 = 0. We learned in (15.192) that these
also imply L0|ψ〉 = 0 and, for the closed string, L̃0|ψ〉 = 0. Here, L0 and L̃0 are
the Virasoro generators for the combined field theory of the Xµ and the ghosts.
From the explicit expressions (15.103) with a = 0 and (15.162), we have

L0 = −α′

4
M2 +

∞∑
n=1

n
(

N (X)
n + N (b)

n + N (c)
n

)
− 1 (15.198)

where

N (X)
n = −n−1α−n µα

µ
n N (b)

n = b−ncn N (c)
n = c−nbn. (15.199)

These three operators count the numbers of quanta of energy in the nth vibrational
modes of the Xµ and ghost fields (see exercise 15.8); the quantum of energy in
the nth mode is proportional to n in each case. For the ghost modes, the quanta
counted by N (b)

n are created by b−n and annihilated by cn , while the converse
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is true for the quanta counted by N (c)
n . As in the classical formula (15.79),

M2 = pµ pµ represents the mass2 of the string, and for physical states, which
obey the constraint L0|ψ〉 = 0, we can identify the mass2 operator as

M2 = 4

α′

[ ∞∑
n=1

n
(

N (X)
n + N (b)

n + N (c)
n

)
− 1

]
. (15.200)

For the left-moving modes, we can write an exactly similar set of equations. In
particular, the constraint L̃0|ψ〉 = 0 tells us, as for the classical string, that the
mass2 is also given by

M2 = 4

α′

[ ∞∑
n=1

n
(

Ñ (X)
n + Ñ (b)

n + Ñ (c)
n

)
− 1

]
. (15.201)

As we might have expected, the vibrational states of the string correspond to a
sequence of ‘energy levels’, labelled by an integer

N =
∞∑

n=1

n
(

N (X)
n + N (b)

n + N (c)
n

)
=

∞∑
n=1

n
(

Ñ (X)
n + Ñ (b)

n + Ñ (c)
n

)
(15.202)

in terms of which we have M2 = (4/α′)(N − 1).
These levels are degenerate; that is, each level corresponds in general to more

than one state. To find out just how many physical states there are at each level,
we need to take account of the BRST condition Q|ψ〉 = 0 and of the equivalence
classes discussed in the last section. For this purpose, the expression (15.177) can
be rearranged to read

Q = − 1
2

∞∑
m=−∞

m (=0

∞∑
n=−∞

(
cmαn µα

µ
−m−n + c̃m α̃n µα̃

µ
−m−n

)

+ 1
2

∞∑
m=−∞

m (=0

∞∑
n=−∞

n (=0

(m − n)
(: cmcnb−m−n : + : c̃mc̃n b̃−m−n :)

+ c0 L0 + c̃0 L̃0 (15.203)

which is useful for two reasons. First, our physical states are supposed to obey
both b0|ψ〉 = 0 and Q|ψ〉 = 0. Now, it is easy to see from (15.164) that if |ψ〉
obeys b0|ψ〉 = 0 then the vector c0|ψ〉 does not obey this constraint. It would
be awkward, then, if Q were to contain the operator c0 (or, for the same reason,
c̃0). Fortunately, we see from (15.203) that the only terms in Q which do contain
c0 and c̃0 are also proportional to L0 or L̃0. We can begin our construction of
the physical Hilbert space Hphys by restricting our attention to the space H0 of
vectors for which

b0|ψ〉 = L0|ψ〉 = L̃0|ψ〉 = 0. (15.204)
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When Q acts on vectors in this space, the last two terms in (15.203) can be
ignored. In that case, the (anti)commutators (15.176) can be written as

[Q, αµ
n ] = − n

∞∑
m=−∞

m (=0

cmα
µ
n−m (15.205)

{Q, bn} = L(X)
n +

∞∑
m=−∞

m (=0

(m + n) : bn−mcm : (15.206)

{Q, cn} = 1
2

∞∑
m=−∞
m (=0,n

(2m − n)cmcn−m (15.207)

provided that all the operators are taken to act in the space H0. In particular,
(15.206) and (15.207) hold for n (= 0 and the operators b0 and c0 can be ignored
entirely. The same applies, of course, to the left-moving modes.

The second useful feature of (15.203) is this. We learned in the last section
that two states are physically equivalent if they differ by an exact vector, of the
form Q|χ〉. By looking at the combinations of creation and annihilation operators
that appear in (15.203), it is not hard to see that Q|χ〉 belongs to the same level as
|χ〉. We can therefore determine what the physically distinct states are by dealing
with one level at a time.

A sensible place to start, perhaps, is the lowest level, N = 0. For a given
spacetime momentum kµ, there is one state, namely the ground state of all the
oscillators. I denote this state by |0; k〉, where 0 means the oscillator ground
state and the 25-component vector k represents the spatial components (relative to
some chosen frame of reference) of kµ. The spacetime energy k0 = √|k|2 + M2

is determined, for every state, by the mass formulae (15.200) and (15.201), which
express the constraints L0|ψ〉 = L̃0|ψ〉 = 0. It is easy to see from (15.203)
that the BRST condition Q|0; k〉 is satisfied, because each term contains at least
one annihilation operator. Since there are no other states at this level, there are
no exact states and |0; k〉 is an equivalence class in itself. The mass is given by
M2 = −4/α′. This is a disaster! In classical terms, the relation M2 = E2(1−v2)

shows that a particle with M2 < 0 travels at a speed v greater than that of light. It
is a tachyon which, as we saw in exercise 2.4, is inconsistent with the requirement
of causality, that a cause should precede its effect.

Evidently, the bosonic string does not, in itself, provide a useful model
for real relativistic particles. Nevertheless, some further investigation will be
worthwhile, because it will reveal features that can be carried over to more
sophisticated versions of string theory. Let us examine the states that arise at the
level N = 1, for which M2 = (4/α′)(N − 1) = 0; these correspond to massless
particles. We can create a state with N = 1 by acting on |0; k〉 with any of the
creation operators α

µ

−1, b−1 and c−1. Because both (15.200) and (15.201) must
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hold simultaneously, we must act at the same time with one of the left-moving
creation operators α̃

µ

−1, b̃−1 and c̃−1. A general level-1 state can be expressed as

|O1; k〉 = A−1(ε, κ, κ̃, . . .)|0; k〉 (15.208)

the creation operator being given by

A−1(ε, κ, κ̃, . . .) = εµν α
µ
−1α̃

ν
−1 + κµ α

µ
−1b̃−1 + κ̃µ α̃

µ
−1b−1 + . . . (15.209)

where εµν, κµ, κ̃µ, . . . are constants and ‘. . .’ represents all the other possible
terms involving one right-moving and one left-moving operator. The algebra
needed to extract the equivalence class of physical states is straightforward, but
rather cumbersome. I shall indicate how it works, and leave sufficiently energetic
readers to fill in the details. (The corresponding algebra for an open string is much
easier, and readers are invited to tackle it in exercise 15.9.) First, let us act on the
general level-1 vector with Q. Using the (anti)commutators (15.205)–(15.207)
and taking into account that Q|0; k〉 = 0 and α

µ
0 |0; k〉 = (α′/2)1/2kµ|0; k〉, we

find

Q|O1; k〉 =
(
α′

2

)1/2

B−1(ε, . . . ; k)|0; k〉 (15.210)

B−1(ε, . . . ; k) = [
εµν

(
kµc−1α̃

ν
−1 + kνα

µ
−1c̃−1

)− (
κµkν + kµκ̃ν

)
α
µ
−1α̃

ν
−1

−kµ
(
κµc−1b̃−1 + κ̃µc̃−1b−1

)+ . . .
]
. (15.211)

From this we can deduce two things. By setting B(ε, . . . ; k) = 0, we get a set
of conditions on the coefficients εµν, . . . which, if they are satisfied, will make
|O1; k〉 a closed vector. On the other hand, (15.210) is itself the general form of
an exact vector at level 1, and any two closed vectors which differ by a vector of
this form are equivalent, in the sense we discussed in the previous section. The
upshot is that any closed state is equivalent to a state of the form

|Oclosed
1 ; k〉 = εµν(k)α

µ
−1α̃

ν
−1|0; k〉 (15.212)

where εµν obeys the ‘transversality’ condition

kµεµν(k) = kνεµν(k) = 0 (15.213)

and two states with polarization tensors εµν(k) and ε′
µν(k) are equivalent if

ε′
µν(k) = εµν(k) + κµkν + kµκ̃ν (15.214)

where κµ and κ̃ν are any spacetime vectors such that

kµκµ = kµκ̃µ = 0. (15.215)

Note that, as we might have hoped, the operators that create ghost excitations do
not figure in (15.212). Indeed, their net effect is to reduce the number of physical
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degrees of freedom through the gauge equivalence (15.214). The same is true at
all levels of excitation—a statement which goes under the name of the ‘no-ghost
theorem’.

To appreciate the implications of this result in a simple way, let us imagine
that the number of spacetime dimensions is d = 4; the true level-1 content of the
bosonic string theory is a generalization to 26 dimensions of what we shall find
out in this way. The polarization tensor εµν can be split up as

εµν = εµν
a + εµν

g + φηµν (15.216)

where the three constituent tensors are

εµν
a = 1

2

(
εµν − ενµ

)
(15.217)

εµν
g = 1

2

(
εµν + ενµ

)− 1
4ε

λ
λη

µν (15.218)

φ = 1
4ε

λ
λ. (15.219)

Of these, ε
µν
a is an antisymmetric rank-2 tensor; ε

µν
g is a symmetric rank-2

tensor which is traceless (εµg µ = 0) and φ is a scalar. The rationale for this
decomposition is that each of the three constituent tensors forms an ‘irreducible
representation’ of the Poincaré group, which is to say that each of them transforms
separately under Lorentz transformations and rotations, and that they cannot be
split further into tensors that have this property. We regard each of them as
corresponding to a particle of definite spin.

Consider first the antisymmetric tensor ε
µν
a . In four dimensions, a

general antisymmetric tensor has six independent components. However, the
transversality constraint (15.213) and the equivalence (15.214) actually imply
that εµν

a contains only one physical degree of freedom, corresponding to a spin-0
particle called an axion (see exercise 15.10).

The symmetric, traceless tensor ε
µν
g has a more fundamental significance.

According to (15.214), it is physically equivalent to another tensor

ε′µν
g − kµθν − kνθµ (15.220)

where θµ = − 1
2 (κµ + κ̃µ) is an arbitrary vector with the property kµθ

µ = 0.
This is just the same as the gauge ambiguity (7.127) that we met in connection
with the polarization tensor of a graviton (which is also a symmetric rank-2
tensor), apart from the following detail. The εµν appearing in (7.127) does not
satisfy the transversality condition kµε

µν = kνε
µν = 0 nor does its trace vanish.

This is offset, however, by the fact that θµ in (7.127) is not transverse either.
In fact, by choosing kµθ

µ = 1
2ε

µ
µ in (7.127), we can make ε̄µν traceless, and

(7.125) then shows that it will also be transverse. Once we have done this, the
remaining gauge freedom corresponds exactly to (15.220), with kµθ

µ = 0. This
shows us, at least, that the particle corresponding to ε

µν
g is (in four dimensions) a

spin-2 particle like the graviton. Whether it has the same interpretation in terms
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of spacetime geometry and gravitational forces is another matter, which we shall
investigate in the next two subsections.

The remaining massless degree of freedom, the scalar φ, must correspond to
another spin-0 particle. It is called the dilaton, for the following reason. Suppose
that in (7.124) we choose εµν = φηµν . Then the perturbed metric is

ηµν + hµν = ηµν [1 + φk(x)] ≈ exp [φk(x)] η
µν (15.221)

with φk(x) = φe−ik·x and this is a Weyl rescaling or dilation such as we have
had much cause to think about in this chapter. Note carefully, though, that it is
the spacetime metric rather than the worldsheet metric that presently concerns
us. This dilaton is therefore quite different from the one I mentioned briefly in
connection with non-critical strings (§15.3.3). The name is also something of a
misnomer. It should be clear from the discussion of the previous paragraph that
φ is in fact a gauge degree of freedom as far as general relativity is concerned. In
the string theory, we learn from (15.214) that

φ′ = ε′µ
µ = εµµ = φ (15.222)

on account of the transversality kµκ
µ = kµκ̃

µ = 0, so φ cannot be set to zero by
any choice of κ and κ̃ and is not a gauge degree of freedom. It cannot, therefore
be straightforwardly identified with a spacetime Weyl transformation.

15.4.2 Vertex operators

In (15.108), we defined a state |0; k〉, which is annihilated by all the α
µ
n for n ≥ 1

(and would also have been annihilated by the α̃
µ
n for n ≥ 1 had we been taking

account of them at that point). It is also an eigenstate of the spacetime momentum
operators pµ, with eigenvalues kµ. This state must be carefully distinguished
from the tachyon state |0; k〉, which has independent eigenvalues for the spatial
momenta, p|0; k〉 = k|0; k〉, but which yields a value for p0 determined by
the constraint L0|0; k〉 = 0. I will now denote by |�〉 the state that we get by
adding to |0; k〉 the ghost ground state and setting kµ = 0, for µ = 0, . . . , 25. In
particular, it is annihilated by the pµ:

|�〉 = |0; 0g; kµ = 0〉 pµ|�〉 = 0. (15.223)

This state is uniquely defined, because a Lorentz transformation of the 26-vector
kµ = 0 does not change it. In fact, |�〉 can usefully be regarded as the overall
ground state of the entire Hilbert spaceH; we can generate a complete set of basis
vectors from it by acting with the creation operators and with the centre of mass
coordinates xµ, which we have not used until now. However, |�〉 does not belong
to one of the equivalence classes from which we constructed the physical Hilbert
spaceHphys, because it does not satisfy the constraint L0|ψ〉 = 0. In fact, we see
from (15.198) that L0|�〉 = L̃0|�〉 = −|�〉, so |�〉 does not represent a physical
state of the string.
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It turns out to be extremely useful to find the operators which produce
physical states from |�〉 (or, at least, representative vectors in the equivalence
classes that we regard as the physical states). Let us say that

V(O; k)|�〉 = |O; k〉 (15.224)

where O again represents the state of the vibration modes. The operator V(O; k)
is called a vertex operator. As a matter of fact, if we can find the vertex operator
Vt(k) = V(0; k) for the tachyon state, then we can find all the states at higher
levels by acting with the creation operators α

µ
−n and α̃

µ
−n . Now, the tachyon state

|0; k〉 differs from |�〉 only by the eigenvalues of pµ, and a simple modification
of the results of exercise 5.3 tells us how to change these eigenvalues. In fact,
taking into account the commutation relation [pµ, xν] = iηµν , we find

pµe−ik·x = e−ik·x (pµ + kµ
)

and so pµe−ik·x |�〉 = kµe−ik·x |�〉
(15.225)

with k ·x = kµxµ. Up to a possible normalization constant, therefore, the tachyon
vertex operator is given by the simple expression

Vt(k) � e−ik·x (15.226)

on the understanding that k0 = (|k|2 + M2
t

)1/2
, where M2

t = −4/α′ is the mass2

of the (closed string) tachyon.
As occasionally happens in string theory, there is some virtue in making this

simple matter more complicated. To be more honest, the � indicates that this
is not really the definition of the vertex operator—it is a prototype of a more
complicated object that is central to a theory of interacting strings. To construct
the real vertex operator, I shall first split the mode expansion (15.95) for Xµ into
two parts, separating the creation and annihilation operators:

Xµ
an(z, z̄) = − 1

2 iα′ pµ ln(z̄z) + i

(
α′

2

)1/2 ∞∑
n=1

1

n

[
αµ

n z−n + α̃µ
n z̄−n] (15.227)

Xµ
cr(z, z̄) = xµ − i

(
α′

2

)1/2 ∞∑
n=1

1

n

[
α
µ
−nzn + α̃

µ
−n z̄n] . (15.228)

On account of (15.223), I have grouped the momenta pµ with the annihilation
operators and their conjugate operators xµ with the creation operators. With this
convention, we can define a normal-ordered operator

Vt(z, z̄; k) = : exp [−ik · X (z, z̄)] :
= exp [−ik · Xcr(z, z̄)] exp [−ik · Xan(z, z̄)] . (15.229)

Because pµ commutes with everything except xµ, it is still the case that

pµVt(z, z̄; k) = Vt(z, z̄; k)
(

pµ + kµ
)
. (15.230)
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Consider the effect of this operator on |�〉. Acting with the rightmost exponential
has no effect, because every operator in the exponent gives zero, so we have

Vt(z, z̄; k)|�〉 = exp [−ik · Xcr(z, z̄)] |�〉. (15.231)

In the remaining exponential, all the α
µ
−n and α̃

µ
−n are multiplied by positive

powers of z or z̄, so we find

Vt(0, 0; k)|�〉 = e−ik·x |�〉 = |0; k〉. (15.232)

Thus, although the vertex operator Vt(0, 0; k) is by no means the same as its
prototype (15.226), it has exactly the same effect on the ground state |�〉.

I shall be a little more explicit in the next section about the use of vertex
operators in a theory of interacting strings. Here, let us just observe that
Vt(0, 0; k) is a local operator on the world sheet: it acts at the point z = 0 which,
according to figure 15.2(b) is equivalent to the τ → −∞ end of the cylindrical
worldsheet of figure 15.2(a). It may seem plausible, then, that by acting on |�〉
with more vertex operators at other points, we could create a worldsheet with
more than two ends, and that this might represent processes such as the merging,
emission or absorption of several strings.

Of more immediate interest is the task of constructing the vertex operator for
a graviton, which I shall use in the next subsection to show that we really do have
the possibility of a quantum theory of gravity. Fairly obviously, the prototype
vertex operator corresponding to (15.226) for a level-1 state (15.212) is

Vg(k) � εµν(k)α
µ
−1α̃

ν
−1e−ik·x (15.233)

with, in this case, k0 = |k| and the state will be a graviton if the polarization
tensor εµν is chosen appropriately. How to construct the complete vertex operator
becomes clear from considering the derivatives of Xµ

cr which, from (15.228), are

∂Xµ
cr(z) = − i

(
α′

2

)1/2
[
α
µ
−1 +

∞∑
n=1

α
µ
−n−1zn

]
(15.234)

∂̄Xµ
cr(z̄) = − i

(
α′

2

)1/2
[
α̃
µ
−1 +

∞∑
n=1

α̃
µ
−n−1 z̄n

]
. (15.235)

When z = z̄ = 0, the only surviving terms are the creation operators that we need
in (15.233), and a little thought will show that the correct expression is

Vg(z, z̄; k) = − 2

α′ εµν : ∂Xµ(z)∂̄Xν(z̄) exp [−ik · X (z, z̄)] : . (15.236)

Acting with this operator on |�〉, we see that the normal ordering makes all
the annihilation operators act first, giving zero; the only surviving terms consist
purely of creation operators and after setting z = z̄ = 0 in these terms we get the
prototype vertex (15.233).
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15.4.3 Strings and quantum gravity

So far, we have thought about a quantum-mechanical string which propagates
through Minkowski spacetime. If the spacetime is curved, say with a metric
gµν(x), then by analogy with (4.2) the string action on the Euclidean worldsheet
must be

SE = − 1

2πα′

∫
dzdz̄ gµν(X)∂Xµ∂̄Xν . (15.237)

This defines a more complicated theory, because it is no longer quadratic
in the fields Xµ. Considered as a two-dimensional field theory, it now
contains interactions—the non-quadratic terms—although this says nothing about
spacetime interactions between two or more strings. It is rather easy to see that
the string states we have called gravitons really do have to do with small changes
in the spacetime metric. In fact, if we consider a small change hµν(X) which is a
plane wave of the form (7.124), then the change in SE is

δSE(k) = − 1

2πα′

∫
dzdz̄ εµν exp [−ik · X (z, z̄)] ∂Xµ(z)∂̄Xν(z̄)

= 1

4π

∫
dzdz̄ Vg(z, z̄; k). (15.238)

Apart from the normal ordering, it is given simply by the graviton vertex operator
(15.236). The normal ordering was important in making sure that the vertex
operator had the desired effect, so it might be as well to fix this up by considering
the action to be normal ordered. We have not previously had to consider the action
as a quantum operator, but we have dealt at length with the energy–momentum
tensor Tab which, according to (15.21), is a derivative of the action. We know
from the considerations of §15.3.1 that normal ordering is the right way to make
Tab into a well defined operator, so it is at least consistent to suppose that the
action should be normal ordered also. In outline, at least, we see that a quantum
string interacts with the spacetime metric by emitting and absorbing gravitons.
We shall be able to make the outline a little sharper in §15.5.1, which deals with
interacting strings.

According to general relativity, gµν is not an arbitrary metric, but should be
a solution of the field equations (4.17). Equations more or less equivalent to these
arise in string theory from the requirement of Weyl invariance. The criterion we
found in §15.3.3 for the validity of gauge fixing was that both coordinate and
Weyl transformations should be valid quantum symmetries. In particular, this
required that the energy–momentum tensor retains both of its classical properties
∇a Tab = 0 and T a

a = 0. When the worldsheet field theory is a non-interacting
one, with the spacetime metric gµν = ηµν , a sufficient condition for this is that
d = 26. When the worldsheet field theory is the interacting one specified by
(15.237), it turns out that further conditions are necessary. Here, I cannot enter
into the technicalities that are needed to investigate this question properly, but
some useful insight can be gained from the following considerations. Like the
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interacting field theories of chapter 9, the action (15.237) is too complicated to
allow exact calculations, and we must resort to perturbation theory. In this case,
the parameter α′ can be treated, at least in a formal way, as a small coupling
constant. To see how this works, consider the gauge-fixed action (15.31), written
in terms of the coordinates σ and τ , but modified to allow for a general spacetime
metric. For a closed string, with σ running from 0 to 2π , it is

S = − 1

4πα′

∫
dτ
∫ 2π

0
dσ gµν(X)∂a Xµ∂a Xν . (15.239)

Classically, we might consider shrinking the string to a point, so that its spacetime
position is the same for all values of σ and Xµ(τ, σ ) = xµ

cl(τ ). In that case, the
action is identical to (4.2) with m = 1/α′. (The difference between this classical
mass and the quantum-mechanical mass given by (15.200) is just one of the things
we would have to take account of in a more rigorous treatment.) The Euler–
Lagrange equation for xµ

cl(τ ) is just the geodesic equation (4.4) for the spacetime
trajectory of a classical particle.

Suppose, then, that the expectation value 〈Xµ(τ, σ )〉 is this classical path
xµ

cl(τ ), and write

Xµ(τ, σ ) = xµ
cl(τ ) + √

α′Yµ(τ, σ ). (15.240)

By substituting this into the action (15.239) and expanding in powers of α′, we
get

S(X) = S(xcl) − 1

4π

∫
dτ
∫ 2π

0
dσ gµν(xcl)∂aYµ∂aY ν + . . . . (15.241)

The first term, proportional to α′−1 is a constant, which is irrelevant to the
quantum theory of the fields Yµ; the term proportional to α′−1/2 is zero because
xcl(τ ) is an extremum of S; the next term, which is independent of α′, describes
a string moving in a spacetime with the classical metric gµν(xcl). The remaining
terms are proportional to positive powers of α′, and can be treated by the methods
of perturbation theory outlined in chapter 9. To cut a longish story short, the extra
condition needed for T a

a to vanish is of the form

Rµν = α′Tµν + O(α′2) (15.242)

where Rµν is the spacetime Ricci tensor. On the right-hand side, Tµν and
the higher-order contributions can be interpreted in terms of the spacetime
stress tensor in (4.20) for ‘stringy’ matter, together with further geometrical
contributions involving the spacetime Riemann tensor Rµνστ .
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Superficially, we can draw several important conclusions. First, comparing
(15.242) with (4.20), we see that the constant α′, which determines the string
tension, can loosely be identified with the constant κ = 8πG that we determined
in (4.23). In that case, the mass formula (15.79) tells us that the masses of particles
corresponding to vibrating states of the string are M = (2/

√
α′)(N − 1)1/2 ∼

(N − 1)1/2MPl, where MPl = (~c/G)1/2 = 2.176 × 10−8 kg is the Planck mass,
whose equivalent energy is EPl = MPlc2 = 1.2 × 1019 GeV. Particles with such
large masses could not be created in the laboratory. We would therefore hope to
be able to identify observed particles with the massless states of the string, their
relatively small masses being generated by symmetry-breaking or higher-order
quantum effects of some kind. Second, the expansion parameter has, in natural
units, the dimensions of (energy)−2 or (length)2. The overall magnitude of terms
involving higher powers of α′ will therefore be determined by a dimensionless
parameter such as α′ E2 or α′/L2, where E is the characteristic energy or L is
the characteristic length of a particular phenomenon that we want to investigate.
This dimensionless parameter will be small if E is smaller than the Planck energy,
or if L is larger than the Planck length LPl = (G~c−3)1/2 = 1.615 × 10−35 m.
Loosely, indeed, we can identify α′ as the characteristic ‘string scale’. Observed
phenomena, whose characteristic energies per particle are much smaller than EPl
and whose characteristic lengths are much greater than LPl should be describable
in terms of an effective low-energy theory or an effective large-distance theory,
which can be derived as an approximation to string theory by treating α′ as
very small. From the considerations outlined above, general relativity does
seem to emerge as the effective large-distance theory of gravity. The standard
model of particle physics certainly does not emerge from bosonic string theory
as an effective low-energy theory. Whether it can be derived from some more
sophisticated string theory is at present an open question.

Although these conclusions are substantially correct, the argument I used
to motivate them cannot be taken at face value, for at least two reasons. One is
that the metric gµν applies to a 26-dimensional spacetime. To obtain a theory
of gravity in four dimensions, we must appeal to something like the Kaluza-
Klein idea of compactification. The four-dimensional gravitational constant G
will be given in terms of the 26-dimensional one by a relation analogous to (8.58).
Another difficulty can be seen by examining the stress tensor (14.90) for a scalar
field. If the particles associated with this field are massless and do not interact,
then V (φ) is zero. If so, then the constant κ in the field equations Rµν = κTµν

could be removed entirely by redefining φ as κ−1/2φ. Therefore, we can deduce
the real value of κ only if we have some means of deciding on the ‘intrinsic
scale’ of the field φ. Consider, for example, the field strength tensor (8.37) of a
non-Abelian gauge field. If we change Aµ into κ−1/2 Aµ, then the ratio of the
linear and quadratic terms is measured by κ−1/2g rather than g. In practice, it is
quantities such as κ/g2 which can be related unambiguously to α′ and, of course,
a coupling constant such as g must be deduced from a theory of interacting strings.
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15.5 Further Developments

In the last three sections, I have tried to give substance to the idea that all
the fundamental particles we know of might be described as different states of
vibration of a single basic object—a relativistic string; to indicate how a quantum-
mechanical account of gravity is automatically included in this description; and
to expose the technical issues that arise in an initial attempt to make such a theory
work. Clearly, the free bosonic string is far from giving us a sensible account of
the world as we know it: it makes sense only in a 26-dimensional spacetime and
its ground state is a tachyon, which is inconsistent with the rather fundamental
notion of causality. These difficulties became apparent only after a fairly lengthy
investigation, but other shortcomings should have been apparent from the start.
The closed bosonic string has a state that we have interpreted as a graviton and
the open string has a massless state that we might try to interpret as a gauge
boson, but there are no fermionic degrees of freedom that might provide us with
quarks and leptons and no internal degrees of freedom that might correspond to
isospin and the like. Lastly, we have no idea of what might cause these particles
to interact.

In this final section, I can offer only a superficial glimpse of some of the
ideas that have been tried out in the attempt to construct a theory which might
qualify as the ultimate ‘theory of everything’.

15.5.1 String interactions

I know no simple way of deriving from first principles the formalism that is used
in string theory to account for the scattering of strings, so I shall simply set out
the essence of the procedure which has been found to work. As foreshadowed
by our discussion of vertex operators in §15.4.2, the basic assumption is that an
elementary scattering process corresponds to a single worldsheet with enough
‘ends’ to account for all the incoming and outgoing particles. For the elastic
scattering of two closed strings (that is, the process whereby two incoming
particles become two outgoing particles), the simplest worldsheet might look like
figure 15.4(a) as seen by a spacetime observer. We have seen, though, that the
worldsheet geometry, described by the metric γab, is a more or less arbitrary
matter, because different metrics are related to each other by a combination of
diffeomorphisms and Weyl transformations, both of which are gauge symmetries.
The cylindrical worldsheet of figure 15.2(a) could be made, by adjusting the
metric appropriately, to look like the disc of figure 15.2(b), where one end of the
cylinder is an infinitesimal circle at the origin, while the other is a very large circle
at infinity. Equally, it is possible to choose the metric so that both ends become
infinitesimal circles. In fact, if we identify each end as a single point, then the
worldsheet has the topology of a sphere. Similarly, the metric on the worldsheet
of figure 15.4(a) can be adjusted to look like figure 15.4(b), where all four ends
have become infinitesimal circles. This is especially convenient, because the
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Figure 15.4. A world sheet with four ‘ends’, which can be interpreted as the two
incoming and two outgoing particles in an elastic collision. As embedded in spacetime,
the worldsheet might appear as in (a), but with a suitable choice of the worldsheet metric,
the internal geometry is that depicted in (b), where the incoming and outgoing particles are
infinitesimal punctures in a spherical surface.

Figure 15.5. The first few worldsheets in an infinite series which gives the total elastic
scattering amplitude for two strings. Each one is a compact 2-dimensional surface with
four infinitesimal punctures.

vertex operators such as (15.229) and (15.236) which we have available to us
to represent the states of the incoming and outgoing particles refer to just one
point of the worldsheet, rather than to a circle of finite size.

Compared with the Feynman diagrams of figure 9.3, the worldsheet of
figure 15.4 is the analogue of just the first diagram. The sum of diagrams which
represents the complete scattering amplitude can be envisaged as in figure 15.5.
There is just one diagram for each possible topology of the worldsheet. Like the
Feynman diagrams, these pictures of worldsheets merely give a visual impression
of the formula that is used to calculate the scattering amplitude. The formula is
this:

Si1 ···in (ki , . . . , kn)

= N
∑

worldsheet
topologies

∫
DX Dγ exp [−SE(X, γ ) − λχ] Vi1(k1) · · · Vin (kn).

(15.243)

It is the string-theory analogue of the second expression on the right-hand side
of (9.13), generalized to include a total of n incoming and outgoing particles. In
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particular, the differential operators (� + m2) serve to cancel out the external
propagators in diagrams such as those of figure 9.3, and this corresponds loosely
to the fact that the cylindrical ‘legs’ of figure 15.4(a) can be contracted to the
points in figure 15.4(b). The vertex operators in (15.243) are integrated over all
positions on the worldsheet:

Vi (k) =
∫

d2z γ 1/2(z, z̄)Vi (z, z̄; k) (15.244)

where the factor γ 1/2 allows for the fact that we may not be able to choose a flat
worldsheet metric when fixing the gauge. Evidently, the factors e±ik·x in (9.13)
are reflected by the exponentials in the vertex operators. The values of k0 in the

vertex operators are given by k0 = ± (|k|2 + M2
i

)1/2
, where M2

i is the mass2

for species i , as obtained from the appropriate mass formula; the positive sign
corresponds to an incoming particle and the negative sign to an outgoing particle.

The quantity χ , which appears in (15.243) multiplied by a constant λ, is the
Euler characteristic of the worldsheet, given by

χ = 1

4π

∫
d2σ γ 1/2 R(σ ) (15.245)

where σ i are any convenient coordinates on the Euclidean worldsheet (on which γ

is positive) and R is the 2-dimensional Ricci scalar. As indicated in exercise 15.1,
this is the 2-dimensional equivalent of the Einstein–Hilbert action (4.16), but
γ 1/2 R is a total divergence and makes no contribution to the equations of motion.
On a compact surface such as a sphere or a torus, it is not possible to have a
metric that is flat everywhere, so in general χ does not vanish. On the other hand,
its value depends only on the topology of the worldsheet and is independent of
the metric. For a sphere, it is equal to 2 (see exercise 15.12) and for the tori
shown in figure 15.5, it is χ = 2 − 2G, where the genus G is the number of
holes. More generally, there are several other topologies to be accounted for and
a more general formula for χ , but χ is always an integer. We see that each hole
added to the worldsheet gives rise to a factor g2 = e2λ in the scattering amplitude
(15.243), so g is the analogue of a coupling constant associated with a vertex in
a field-theoretic Feynman diagram and the perturbation series represented by the
sum of string diagrams is, in a sense, an expansion in powers of g.

Consider now the effect on a scattering amplitude (15.243) of a small change
in the spacetime metric gµν , which corresponds to a small change δSE in the
action. The small change in the scattering amplitude is

δSi1 ···in (ki , . . . , kn)

= −N
∑

worldsheet
topologies

∫
DX Dγ exp [−SE(X, γ ) − λχ] δSEVi1(k1) · · · Vin (kn).

(15.246)
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In general, δSE might be a linear superposition of the Fourier modes δSE(k)
shown in (15.238), which is just a graviton vertex operator. This vertex operator
for a graviton appears in (15.246) in just the same way as the vertex operators
Vi1(k1) · · · Vin (kn) for the other particles, so we see a little more clearly that a
small change in gµν is equivalent to the emission or absorption of a graviton. A
large change in gµν can be built up from many small ones and is equivalent to a
coherent superposition of many gravitons. In this sense, we can say that to change
the metric in (15.237) is not to change the theory, but to study a different state of
the same theory—a state with a different number of gravitons.

The same argument must apply to the other massless particles. That is to say,
the emission and absorption of particles other than gravitons should be equivalent
to changing other ‘backgrounds’ in the action analogous to gµν(X). Consider, in
particular, adding to SE a term of the form

�SE =
∫

d2σ γ 1/2 R#(X). (15.247)

Using the Euclidean version of the result of exercise 15.1, namely γ 1/2 R =
∂a∂a� and an integration by parts, we can write

�SE =
∫

d2σ �∂a∂a#(X) (15.248)

and a small change in #(X) proportional to e−ik·X produces a small change in the
action of

δ�SE = −
∫

d2σ �kµkν∂
a Xµ∂a Xνe−ik·X (15.249)

which is a linear combination of vertex operators. Changing #(X) by a constant
is equivalent to changing the constant λ, or the coupling constant g = eλ.
Therefore, different values of g also correspond not to different theories, but
to different states of the same theory. The conclusion is that string theory has,
in fact, no adjustable constants (although it has many possible states, which in
practice might amount to much the same thing). Earlier on, I showed that the
constant α′ is related to the Planck mass, albeit indirectly when we take account
of some mechanism such as compactification to reduce the number of observable
dimensions to four. However, the actual value of α′ is not physically meaningful,
for the following reason. Suppose that string theory does indeed describe our
world, and that its physical implications could be worked out in detail. We ought
then to be able to calculate, say, the mass of the proton, whose equivalent energy
is about 1 GeV. Since α′ is the only dimensionful parameter, we would get an
answer of the form mp = Mpα

′, where Mp is a dimensionless number. To say
that α′ is of the order of the Planck mass MPl � 1019 GeV is to say that the
number Mp is of the order of 10−19. In fact, the value of any physical quantity
can be determined only as a multiple of some standard quantity such as mp, so
only dimensionless ratios such as Mp have physical meaning. If it is correct,
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then, string theory is a theory within which all measurable physical quantities can
in principle be calculated with no adjustable parameters. This is a large part of its
attraction as a candidate for the ‘theory of everything’.

15.5.2 Superstrings

One way of endowing the string with internal degrees of freedom is to enlarge
the two-dimensional field theory living on the worldsheet by adding more fields.
If the fields are fermionic, then we might hope to find amongst the states of the
string particles which behave as fermions in spacetime, although the connection
between these two ideas is not entirely straightforward. An idea which has
proved particularly fruitful is that the bosonic degrees of freedom, the spacetime
coordinates Xµ, and the fermionic ones should be related by a supersymmetry,
such as we discussed in §12.7. Indeed, it is in this string theory context that
supersymmetry was first discovered. On a curved worldsheet, the action which
generalizes (15.15) is

S = − 1

4π

∫ ∞

−∞
dτ
∫ (

0
dσ (−γ )1/2

[
1

α′ γ
ab∂a Xµ∂b Xµ − i�̄µρ

a∇a�
µ

]
(15.250)

the last term being a 2-dimensional version of the generally covariant action
(7.147) with m = 0. The new fermionic fields �µ(τ, σ ) are a set of d Majorana
spinors, and this action is rather like a set of d copies of the supersymmetric Wess–
Zumino model (12.83). The new theory defined in this way has a larger gauge
symmetry than the bosonic string, consisting of diffeomorphism invariance, Weyl
invariance and a local supersymmetry. (To be accurate, the local supersymmetry
holds if we extend the action by adding a 2-dimensional ‘gravitino’, which
disappears again upon fixing the gauge.) This enlarged gauge symmetry can be
fixed in much the same way that we studied for the bosonic string; its remnant
on the flat worldsheet is an enlarged version of conformal symmetry, called a
superconformal symmetry. The condition for the classical gauge symmetry to
remain valid as a quantum symmetry leads, as it turns out, to a critical spacetime
dimension d = 10.

On the flat worldsheet, the 2-dimensional Dirac matrices ρa , with the
anticommutation relations {ρa, ρb} = 2ηab and the charge conjugation matrix,
with the property CρaTC−1 = −ρa can be chosen as

ρ0 =
(

0 1
1 0

)
ρ1 =

(
0 1

−1 0

)
C =

(
0 1

−1 0

)
= ρ1. (15.251)

If we write the two components of �µ as ψ̃µ and iψµ, then the Majorana
condition �µc ≡ Cρ0�µ∗ = � (see §7.5) becomes

�µc =
(

1 0
0 −1

)(
ψ̃µ

iψµ

)∗
=
(

ψ̃µ∗
iψµ∗

)
= � =

(
ψ̃µ

iψµ

)
(15.252)
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so the components ψµ and ψ̃µ are real. The 2-dimensional Dirac equation
/∂� = 0 can easily be found to imply

∂̄ψµ ≡ 1
2 (∂σ + ∂τ )ψ

µ = 0 ∂ψ̃µ ≡ 1
2 (∂σ − ∂τ ) ψ̃

µ = 0 (15.253)

so ψµ, like ∂Xµ, is a real, right-moving field, while ψ̃µ, like ∂̄Xµ, is a real,
left-moving field. In this way, we see that the numbers of bosonic and fermionic
degrees of freedom match up in a way that makes a worldsheet supersymmetry
possible. This is, however, by no means enough to guarantee the existence of a
spacetime supersymmetry, which would mean that the physical states of the string
fall into supersymmetry multiplets analogous to those we discussed in §12.7.

On a flat, Minkowskian worldsheet, the action can now be written as

S = 1

2π

∫ ∞

−∞
dτ
∫ (

0
dσ

[
2

α′ ∂Xµ∂̄Xµ + iψµ∂̄ψ
µ − iψ̃µ∂ψ̃

µ

]
. (15.254)

Each bosonic field Xµ(τ, σ ) is to be identified as a spacetime coordinate of the
point (τ, σ ) of the worldsheet, and must therefore have a unique value at each
point. However, the internal degrees of freedom ψµ and ψ̃µ need not be single-
valued. All we require is that the Lagrangian density have a unique value. For a
closed string, this means that ψµ may be either periodic or antiperiodic:

ψµ(τ, σ + () = ±ψµ(τ, σ ) (15.255)

and similarly for ψ̃µ. For an open string, the boundary term analogous to (15.17)
involved in the derivation of the Dirac equation can be made to vanish by imposing
the conditions

ψµ(τ, 0) = ψ̃µ(τ, 0) ψµ(τ, () = ±ψ̃µ(τ, (). (15.256)

Fields which satisfy (15.255) or (15.256) with the + sign are said to have Ramond
(R) boundary conditions (after P Ramond); with the − sign, they are said to have
Neveu-Schwarz (NS) boundary conditions (after A Neveu and J H Schwarz).

Because of these different boundary conditions, the full Hilbert space H of
the superstring contains several topological sectors, akin to those we met in (13.1)
for soliton-bearing field theories. Each sector can be further subdivided according
to the value of what is known (for historical reasons that need not concern us)
as G-parity. This G-parity is even or odd, according to the number of fermionic
creation operators that are needed in an equation such as (15.212) to create a given
state. The question arises whether all of these sectors can be represented in the
physical Hilbert spaceHphys. When interactions are allowed, it turns out that they
cannot: there are consistency requirements which allow only certain combinations
of sectors to appear in Hphys. To say exactly what these requirements are needs
some technology that I do not have the space to develop in detail, but they amount
to demanding that an expression analogous to (15.243) should give unambiguous
and fully gauge-invariant results for superstring scattering amplitudes. The
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Figure 15.6. The open-string version of figure 15.4. As viewed in spacetime, the
elastic scattering of two strings might look as in (a), but with a suitable choice of the
worldsheet metric the internal geometry is that shown in (b), where the ‘ends’ of the string
corresponding to incoming and outgoing particles are infinitesimal semicircles set into the
boundary of a disc.

imposition of these requirements is called (after F Gliozzi, J Scherk and D Olive)
the GSO projection. In the case of a theory constructed only from closed strings,
the net result is that there are exactly two fully consistent theories, called the type
IIA and type IIB theories. Both theories have the feature that, although tachyonic
states appear in the full Hilbert space, they are excluded from the physical Hilbert
space. This is clearly a great advantage. It is also true of both theories that
the physical states form multiplets of a spacetime supersymmetry, and this too
is perceived by practitioners as an attractive feature. The two theories differ in
respect of the way in which sectors associated with the left-moving modes are
combined with those associated with the right-moving modes, and this in turn
affects the grouping of their particle states into supermultiplets. In particular,
the type IIA theory is non-chiral. Roughly, this means that there is a symmetry
between states of positive and negative helicity. The standard electroweak model
(§12.2), for example, does not have this ‘left-right’ symmetry because the weak
isospin doublets contain only left-handed particles, and is said to be a chiral
theory. The spectrum of massless particle states of the type IIB superstring is
chiral in a similar sense.

For an open string, it proves possible to introduce isospin-like degrees of
freedom by assigning integer labels, say i, j = 1 . . .n to the ends of the string.
They are called Chan–Paton degrees of freedom (after H M Chan and J E Paton).
This apparently trivial device has no effect on the worldsheet field theory for a
free string, but it does affect the number of distinct worldsheets that appear in the
formula (15.243) for scattering amplitudes in the interacting theory. Let us denote
a state of an open string with Chan–Paton indices i and j by |�; i, j〉, where �

represents all the other degrees of freedom we know about. We can restrict the



488 An Introduction to String Theory

Figure 15.7. A correction to the open-string scattering amplitude. The new worldsheet is
a disc with a handle attached, which can be interpreted as a virtual closed string.

allowed states to be linear superpositions of the form

|�; a〉 =
∑
i, j

|�; i, j〉T a
i j (15.257)

where the n × n matrices T a are the generators of a Lie group, such as we
met in §8.2. These otherwise indistinguishable particle states transform into one
another under the action of the Lie group, which thereby becomes an internal
symmetry of the string theory. The worldsheets of interacting open strings have
boundaries corresponding to the long edges of the single string of figure 15.1(a).
With a suitable choice of the worldsheet metric, the simplest ones look like discs,
with infinitesimal semicircles arranged round their edges, which are the ends of
the incoming and outgoing strings, as sketched in figure 15.6. As indicated in
figure 15.7, higher-order worldsheets include those with ‘handles’ attached to the
disc, and we see that one of these handles is a virtual closed string. The fact that
there are virtual processes involving closed strings suggests that a theory which
allows open strings as the real incoming and outgoing particles ought also to allow
for real closed-string particles. Indeed, it can be shown that closed strings must
also be included if the requirement of unitarity is to be satisfied (that is, if the total
probability of observing some final state is to be 1). A theory of this kind is a type
I superstring. It would be helpful if the calculated scattering amplitudes turned
out to be finite. For reasons related to the gauge anomalies that I mentioned in
chapter 9, this is found to be true only for one special choice of the Lie group
associated with the Chan-Paton degrees of freedom, namely SO(32), which is the
group of rotations in 32 dimensions.

At this point, we have three apparently different versions of the superstring,
which are thought to be mathematically sound. All of them are free of tachyons
and all of them exhibit spacetime supersymmetry. There are two further versions
known which share these properties, called heterotic strings. These are closed
strings, and on a flat worldsheet, they have an action of the form

S = 1

2π

∫ ∞

−∞
dτ
∫ (

0
dσ

[
2

α′ ∂Xµ∂̄Xµ + iψµ∂̄ψ
µ − i

n∑
i=1

λ̃i∂λ̃i

]
. (15.258)
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This action differs from (15.254) in that the left-moving fermions λ̃i do not form
a spacetime vector, but are simply a collection of n fields. As with the bosonic
string, the left- and right-moving modes are independent of each other. The
right-moving bosons and fermions of the heterotic string are still related by a
worldsheet supersymmetry, but the left-moving ones are not. Thus, the gauge
symmetry is smaller. Because the right-moving part of the theory is identical to
the previous superstrings, the condition for its superconformal central charge to
vanish is still d = 10. The number n of left moving fermions is determined by the
condition that the central charge for the left-moving modes should also vanish.
It might seem that n should be 10, but this is not so, because the smaller gauge
symmetry results in fewer ghosts when the gauge is fixed. The actual number
turns out to be n = 32. The heterotic string has an internal symmetry, consisting
of rearrangements of the 32 fermionic fields λi . In fact, if we regard these fields
as the components of a vector λ in a 32-dimensional Euclidean space, then the
dot product λ · ∂̃λ which appears in the action is invariant under rotations in this
space, so the internal symmetry group is again SO(32). This is true, at least, if
all the λi are completely equivalent. They will not be completely equivalent if
they have different boundary conditions, however. Two possibilities are found to
lead to mathematically consistent theories. One is that all the λi have the same
boundary conditions, in which case the symmetry group is indeed SO(32). The
other possibility is to assign boundary conditions independently to two groups of
16 fields each. The symmetry group of this type of heterotic string goes by the
name of E8 × E8.

All in all, there are five known superstring theories which seem to be
mathematically sound. It might seem that these would constitute five competing
candidates for the theory of everything, but recent investigations point to a more
intriguing possibility, as I shall shortly try to explain.

15.5.3 The ramifications of compactification

Superstrings are mathematically well defined in ten, rather than twenty-six
spacetime dimensions, but this is still too many—to the tune of six. Somehow,
we must explain why only four are apparent to us, and the Kaluza-Klein idea
that we touched on in §8.5 provides a starting point. In general terms, the 10-
dimensional spacetime manifold must be split into a product L4 × C6, which
means that each point of the 4-dimensional manifold L4, whose dimensions are
large, is really a 6-dimensional manifold C6 whose dimensions are compactified
to a small size. One question that arises immediately is, what sort of manifold
is C6? The possibilities are, as it were, manifold. In figure 8.1, where only one
dimension is compactified, C1 is a circle. If two dimensions are compactified,
the simplest possibility to deal with is that C2 is a torus: we simply have to say
that every function on the torus is periodic in both compact dimensions. This
idea is straightforward to generalize to a 6-dimensional torus C6, but this is by no
means the only possibility. Amongst other manifolds, those known as orbifolds,
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Figure 15.8. Schematic illustration of closed-string configurations in a spacetime with one
compacted dimension. The string may wind nw times around the compact dimension, and
possible configurations with nw = 0, 1 and −1 are shown.

Figure 15.9. A closed string with a winding number of 0 may intersect itself and
subsequently split to form two strings with opposite winding numbers.

orientifolds and Calabi-Yau manifolds seem to have advantageous properties, but
I cannot enter into them here. To illustrate the sorts of considerations that arise, I
shall look at what happens when just one of the dimensions of the 26-dimensional
spacetime of the bosonic string is compactified to a circle.

Say that the compactified dimension is X25 and that the circumference of
the circle is 2πr . A closed string might wind nw times around the ‘cylinder’,
where nw is any positive or negative integer or zero. Figure 15.8 shows closed
strings with winding numbers of 0, 1 and −1. Were we content to deal only with
noninteracting strings, then it might be possible to discard all the possibilities
except nw = 0. However, if we allow strings to interact by joining and splitting as
in figure 15.4(a), then all possibilities must be included. For example, figure 15.9
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shows that a string of winding number 0 might decay into two strings with
winding numbers 1 and −1. All of these possibilities must be allowed for in
the Hilbert space of a free string, and there are two ways in which our earlier
considerations are modified. First, the total change in the coordinate X25 as σ

varies from 0 to 2π is∫ 2π

0
dσ ∂σ X25(τ, σ ) = X25(τ, 2π) − X25(τ, 0) = 2πrnw. (15.259)

Second, the eigenvalues k25 of the spacetime momentum p25 have the discrete
values

k25 = nk/r (15.260)

just as the momentum of an ordinary non-relativistic particle confined to a finite-
sized box is quantized. We see this directly by observing that if the whole string
is moved a distance 2πr in the X25 direction without changing its shape, then its
state is left unchanged. Therefore, vertex operators such as (15.229) and (15.236)
must be left unchanged if we replace X25 by X25 + 2πr .

These two facts can be accommodated in our formalism by writing X25 as
the sum of a right-moving part XR and a left-moving part XL:

XR(σ − τ ) = xR + 1
2α

′ pR(τ − σ) + i

(
α′

2

)1/2 ∞∑
n=−∞

n (=0

1

n
α25

n e−in(τ−σ)

(15.261)

XL(σ + τ ) = xL + 1
2α

′ pL(τ + σ) + i

(
α′

2

)1/2 ∞∑
n=−∞

n (=0

1

n
α̃25

n e−in(τ+σ).

(15.262)

The centre-of-mass operator is x25 = xR + xL and the component of spacetime
momentum in the X25 direction is

p25 = 1
2 (pR + pL) . (15.263)

When this operator acts on a basis vector with k25 = nk/r , we can write

1
2 (pR + pL) = 1

r
nk . (15.264)

The two operators pR and pL are not independent, because (15.259) shows that

1
2 (pL − pR) = (r/α′)nw. (15.265)

Obviously, they are not equal unless nw = 0, and the expansion coefficients α25
0

and α̃25
0 must be identified as

α25
0 = (α′/2)1/2 pR α̃25

0 = (α′/2)1/2 pL (15.266)
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in place of (15.69). As a result, the expression (15.198) for the Virasoro generator
L0 and the analogous expression for L̃0 become

L0 = −α′

4

(
M2 − p2

R

)
+ N − 1 L̃0 = −α′

4

(
M2 − p2

L

)
+ Ñ − 1 (15.267)

where M2 = (p0)2 − ∑24
µ=1(pµ)2 is the mass2 of a particle in the 25 non-

compactified dimensions. The levels N and Ñ are still given by the two
expressions (15.202) but they are now not equal. In fact, for a state of definite
momentum pµ = kµ, the two constraints L0|ψ〉 = L̃0|ψ〉 = 0 now imply

M2 = 1

r2
n2

k + r2

α′2 n2
w + 2

α′
(
N + Ñ − 2

)
(15.268)

N − Ñ = nknw (15.269)

as some simple arithmetic using (15.264) and (15.265) will show.
As we discussed in §15.4.3, the most interesting particle states are those for

which M2 = 0. The expression (15.268) for M2 can vanish only if the first two
terms add to form an integer times (2/α′) and for general values of r the only
possibility is nk = nw = 0. In this case, the massless particle states are the same
as those we found for a non-compactified spacetime. However, a polarization
tensor such as (15.218) for the graviton has a different interpretation, because
the values µ, ν = 25 do not refer to observable spacetime directions. In the 25-
dimensional spacetime, the components ε

µν
g give the polarizations of a graviton,

while ε
µ 25
g (which is equal to ε

25 µ
g ) corresponds to a vector particle, or ‘photon’.

We see, from a slightly different point of view, the same phenomenon that we met
in (8.57). The 26-dimensional graviton becomes a 25-dimensional graviton plus
a 25-dimensional gauge field; the remaining component ε25 25 is the string-theory
analogue of the constant g55.

New phenomena, specific to strings, start to become apparent when we
observe that there is a special value of r , namely r = √

α′, for which the mass
formula can be written as

M2 = 1

α′
[
(nk − nw)2 + 4N − 4

]
. (15.270)

There are now several more values of nk and nw for which this vanishes.
The string spectrum contains more massless states which, in the dimensionally
reduced theory can be interpreted as the gauge bosons of a larger gauge
symmetry. More far-reaching is the observation that both (15.268) and (15.269)
are unchanged if we interchange the integers nk and nw and at the same
time replace r with α′/r . That is to say, the particle masses resulting from
a compactification radius r are exactly the same as those resulting from a
compactification radius r̂ = α′/r . It can be shown that the scattering amplitudes
are also exactly the same, so the physical content of the theories obtained using
the radii r and r̂ seems to be equivalent.
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Now, everything that we can actually calculate has to do with the two-
dimensional worldsheet field theory. We started from the idea that the fields Xµ

were the spacetime coordinates of a moving string, but it is legitimate, and is
now becoming desirable, to take a different point of view. That is to say, given
a working two-dimensional field theory, we can look for an interpretation of this
theory in terms of particles propagating through spacetime. The fact that we have
used the notation Xµ for some of the fields in our theory need not commit us to
interpreting precisely these fields as the spacetime coordinates. With this in mind,
consider the change of notation

p̂R = −pR x̂R = −xR α̂25
n = −α25

n n̂k = nw n̂w = nk .

(15.271)
All the equations of our two-dimensional quantum field theory are exactly the
same when written in terms of the new variables. For example, the commutation
relations for the α̂25

n are the same as (15.99) and the definition (15.73) of the
Virasoro generators gives L̂n = Ln , because two minus signs cancel in each case.
In the compactified theory, equations (15.264) and (15.265) are interchanged,
provided that we take r̂ = α′/r . At the level of the two-dimensional field theory,
then, the compactification radii r and r̂ are entirely equivalent. However, to get a
spacetime interpretation of the ‘hatted’ theory, we must take the new field

X̂25(τ, σ ) = X̂R(σ − τ ) + XL(σ + τ ) = −XR(σ − τ ) + XL(σ + τ ) (15.272)

to be the one that represents the 25th spacetime coordinate. The situation is
reminiscent of one we encountered in chapter 13, where the change of variables
(13.78) relates the usual theory of electromagnetism to a dual theory in which
the interpretations of electric and magnetic fields are interchanged. Here, the
transformation specified by (15.271) or (15.272) is called T-duality.

Applied to an open string, T-duality has startling consequences, arising from
the superficially innocuous boundary condition ∂σ Xµ(τ, σ ) = 0 at the end-points
σ = 0 and σ = π (which we chose as a convenient range for an open string). For
µ = 25, this says that at the end-points

∂σ XR(σ − τ ) + ∂σ XL(σ + τ ) = 0. (15.273)

In the dual description, we find

∂τ X̂25(τ, σ ) = − ∂τ XR(σ − τ ) + ∂τ XL(σ + τ )

= ∂σ XR(σ − τ ) + ∂σ XL(σ + τ )

= 0 (15.274)

at the end-points, which are still σ = 0 and σ = π . The Neumann boundary
conditions have been replaced by Dirichlet boundary conditions. They say that
the ends of the string have fixed values of X̂25: they cannot move in the X̂25

direction. Moreover, the total change in X̂25 as σ varies from 0 to π is a multiple
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of 2π r̂ , as we can see by relating it to the momentum p25 = nk/r in the ‘unhatted’
description:∫ π

0
dσ ∂σ X̂25(τ, σ ) =

∫ π

0
dσ ∂σ [−XR(σ − τ ) + XL(σ + τ )]

=
∫ π

0
dσ ∂τ [XR(σ − τ ) + XL(σ + τ )]

=
∫ π

0
dσ ∂τ X25(τ, σ )

= 2πα′ p25

= 2π r̂ nk . (15.275)

As far as spacetime geometry is concerned, two values of X̂25 which differ by a
multiple of 2π r̂ are exactly the same. This means that the two ends of the open
string must lie on the 25-dimensional hyperplane that corresponds to some fixed
value of X̂25.

The considerations that have led us to this point apply to the noninteracting
worldsheet field theory, for which (15.261) and (15.262) are exact solutions of
the equations of motion. More generally, if ‘backgrounds’ such as the spacetime
metric in (15.237) or #(X) in (15.247) are included, one finds that the 25-
dimensional hypersurface on which the ends of the open string lie is not flat, but
has a shape which depends on the backgrounds. We saw in §15.5.1 that changing
these backgrounds is equivalent to the emission and absorption of particles, so
this hypersurface is a physical object, which can interact with the strings. It can
be interpreted as the ‘worldvolume’ traced out by the motion of a 24-dimensional
membrane. Many such objects, of various dimensions, have been identified by
string theorists in recent years—a circumstance offering unrivalled scope to high-
energy physicists’ propensity for punning terminology (‘p-brane’, ‘brane scan’,
‘. . . on the brane’, . . .). The one we have identified here is called a D24-brane, the
‘D’ indicating its relationship to open strings with Dirichlet boundary conditions,
but not all of them arise in the same way. The situation is again analogous to one
that we met in chapter 13, where we saw that field theories of point particles may
also contain soliton-like objects which, from the point of view of perturbation
theory, seem very different from the particles. Indeed, the analogy seems to be a
strong one. From string theory, one can derive low-energy effective field theories
which describe the massless states of strings as point particles; the Einstein field
equations (15.242) provide one example. In some cases, soliton solutions to these
field theories can be identified with the string-theory branes. We saw, moreover,
that apparently different field theories may be related to each other by duality
transformations, and that it may be possible to identify the point particles of one
theory with the solitons of a dual theory. The same seems to be true of superstring
theories. In fact, the current view is that all five of the superstring theories
that I mentioned in §15.5.2 are related by various dualities, of which T-duality
is one. Further, a small coupling constant, which makes perturbation theory
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feasible in one field theory, may correspond to a large coupling constant in a dual
theory. In string theory, the indications are that the five superstring theories which
are known perturbatively constitute different weak-coupling approximations to a
single overarching theory, which has been christened M-theory. Exactly what the
fundamental principles are that would serve to define M-theory in a precise way,
independent of perturbative approximations, is not clear, but it does seem that
this theory would naturally exist in eleven dimensions, a compactification of the
eleventh dimension being one ingredient of the various weak-coupling limits.

Finally, there exists the intriguing possibility that not all of the extra six
(or seven) dimensions need be small. It could be that we do not perceive these
dimensions because the particles of which the matter familiar to us is made
are constrained to live on a three-dimensional ‘brane-world’. If so, it has been
speculated that particles able to propagate off the brane-world might be created
with energies accessible in the laboratory, and that the extra dimensions might be
detected in this way. Gravitons able to propagate off the brane-world might cause
a detectable correction to the 1/r2 law of gravitational attraction at distances
perhaps not much smaller than 1mm.

15.6 The Last Word?

Long as this chapter has been, it affords only an elementary glimpse of the
theoretical edifice which, in the eyes of its devotees, offers our best current hope
of a truly unified theory of the world at its most fundamental level. At the time
of writing, this theory is entering the fourth decade of its evolution, but the true
nature of the mathematical structure that might eventually emerge can at best be
dimly perceived, even by the experts (of whom I am by no means one). The point
of view underlying this chapter has been that the truly fundamental objects in
nature are one-dimensional strings, but the picture that seems to be emerging calls
this view into question. It is quite likely that branes of many different dimensions
appear on much the same footing, and that none of these objects can be regarded
as truly fundamental. From the point of view of the 11-dimensional M-theory, for
example, the type-IIA string is to be interpreted as a 2-dimensional membrane,
one of whose dimensions winds around a small, compact spacetime dimension,
but this membrane itself is probably not a truly fundamental object either. Strings
and point particles are distinguished by the fact that a quantum theory which
does regard them as fundamental objects can be consistently constructed along
the lines that we have examined. No such theory of higher-dimensional objects
appears to be possible; to investigate their properties, one must resort to less direct
(and partly conjectural) methods, based on ideas such as the dualities that I have
alluded to earlier.

At the beginning of this Tour, I undertook to discuss those central ideas
which constitute our current understanding of the ways of nature. One may
wonder, perhaps, whether the ideas of this chapter really do tell us anything about
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the ways of nature, or whether they are merely part of an elaborate mathematical
game. To me, at least, the answer is far from obvious. As I emphasized at
the beginning of the chapter, a view of the world that combines a quantum-
mechanical theory of matter with classical general relativity as a theory of gravity
provides an adequate means of accounting for all currently observed phenomena,
but it is not a self-consistent view and is ultimately untenable. One great virtue
of string theory and its generalizations is that it offers, in prospect at least, a
fully self-consistent view of the world. It is the only known theory to do so—
but this does not by any means show that it is the correct theory. A significant
drawback (to my mind) is that this self-consistency is achieved at the expense of
postulating an extravagant array of concepts and phenomena which not only have
no basis in current observations, but may well be inaccessible to any conceivable
experiments—but this does not by any means show that the theory is wrong.

It is not yet possible to say whether string (or M) theory is consistent with
our present knowledge of particle physics. We have seen that string theory has,
at the fundamental level, no adjustable parameters and that the allowed internal
symmetries are tightly constrained by requirements of mathematical consistency.
The same may well be true of M-theory. The absence of arbitrary choices to be
made at this fundamental level is a second great virtue of the theory. However,
there are many possible ways in which the extra dimensions may be compactified,
and many different possibilities for the expectation values of moduli fields such
as the dilaton # that appears in (15.247). Thus, the theory has many possible
‘vacua’, which is to say that there are many possibilities for the effective four-
dimensional, low-energy theory which, we might hope, would reproduce the
standard model. It is known that some of these vacua have some of the right
features, such as the gauge group SU(3)×SU(2)×U(1), but the mechanism by
which one particular vacuum might emerge as the one relevant to our universe
(which must, in particular, involve the spontaneous breaking of supersymmetry)
is not understood. A derivation from the first principles of string/M theory of some
version of the standard model would, of course, provide a convincing vindication
of the somewhat arcane ideas that we have touched on, but this is probably
quite far off. On the other hand, if the brane-world picture is right, then some
experimental indication of this might appear quite soon. Whether these ideas will
prove to be the last word in the story of unified theories of the world, I do not
know, but these remarks must be the last words of our Tour.

Exercises

15.1. Using a coordinate system in which the worldsheet metric has the form
(15.29), show that the connection coefficients (2.50) are

�a
bc = 1

2

[
δa

b�,c + δa
c �,b − ηbc�

,a]
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where indices are raised and lowered using ηab and ηab, and that the Ricci tensor
is

Rab = − 1
2ηab�

,c
,c.

Verify that Rab = 1
2 Rγab and note that since this is a tensor equation it is

valid in any coordinate system. Show that (−γ )1/2 R, which appears in the
two-dimensional version of the Einstein–Hilbert Lagrangian (4.16) is a total
divergence, equal to −�

,a
,a , which would not affect the equations of motion had

we included it in the string action.

15.2. (a) Consider the configuration of an open string specified, relative to a
particular frame of reference in spacetime, by X1(τ, σ ) = cσ , where c is a
constant, ∂σ X0(τ, σ ) = 0 and Xµ(σ, τ ) = 0 for µ ≥ 2. Take the range of σ

to be 0 ≤ σ ≤ (. As viewed from this frame of reference, what is the length
of the string, and what is its state of motion? Use the constraint (15.36) to find
the value of ∂τ X0 (assuming that this quantity is positive) and verify that all the
components of T ab vanish. Hence find the spacetime momentum (15.33) and
verify that the mass per unit length is 1/2πα′. (Note that this configuration does
not satisfy the boundary condition ∂σ Xµ = 0 at σ = 0 and σ = (. We must
imagine its ends to be held in place by some external agency.)

(b) For an open string whose ends are not artificially held in place, use the
boundary condition and the constraint to show that

∂τ Xµ(τ, 0)∂τ Xµ(τ, 0) = ∂τ Xµ(τ, ()∂τ Xµ(τ, () = 0

and deduce that the ends move with the speed of light.

15.3. Show that ∂Ln/∂α
µ

m′ = −α(n−m′) µ, where Ln is the Virasoro generator
defined in (15.73). Now use the expression (15.76) for the Poisson bracket to
show that

{Lm, Ln}P = i

2

∞∑
m′=−∞

m′ [α(m−m′) µα
µ

n+m′ − α(n−m′) µα
µ

m+m′
]
.

By making the change of summation variable m′ = m − m′′ in the first term and
m′ = n − m′′ in the second, verify the result (15.77).

15.4. As given in (15.33), the spacetime momentum Pµ is an integral over
a specific curve on the worldsheet, namely τ = constant in some particular
coordinate system. We might wonder whether the value of Pµ depends on our
choice of this curve. Show from the considerations of §15.2.5 that it does not.

15.5. At the end of §15.3.1, I asserted that there are infinitely many conserved
quantities associated with the symmetry of conformal invariance. To understand
what this means, consider the definition of a conserved current jµ as one that
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satisfies the equation of continuity (3.40). Using complex coordinates in two
dimensions, show that the equation of continuity takes the form

∂̄ jz(z, z̄) + ∂ jz̄(z, z̄) = 0.

Now define the particular current

j (v)a (z, z̄) = vb(z, z̄)Tab(z, z̄)

where va(z, z̄) is a vector field and Tab(z, z̄) is the energy–momentum tensor.
Show that j (v)a is conserved if vz(z) is any holomorphic function and vz̄(z̄) is
any antiholomorphic function. In terms of the coordinates σ and τ , there is a
conserved ‘charge’ q corresponding to the conserved current j (v)a :

q(v) =
∫ 2π

0
dσ j (v)τ ∂τq(v) =

∫ 2π

0
dσ ∂τ j (v)τ =

∫ 2π

0
dσ ∂τ

(
vbTτb

)
= 0.

By translating the first of these statements into the coordinates z = ei(τ−σ) and
z̄ = ei(τ+σ), show that when vz = zn+1 and vz̄ = 0, the charge q(v) is proportional
to the Virasoro generator Ln . You might think, therefore, that Ln should obey the
equation of motion ∂τ Ln = −i[Ln, H ] = 0, with the Hamiltonian H = L0 + L̃0,
but this is not consistent with the commutation relations (15.116) of the Virasoro
algebra. The reason is that neither q(v) nor Ln is a bona fide Heisenberg-picture
operator. The energy–momentum tensor Tab is a Heisenberg-picture operator,
whose time dependence is given by the equation of motion, but the components
of the vector field va are just functions, which must be differentiated explicitly.
Using the above expression for ∂τq(v), verify that the commutation relations
(15.116) do imply ∂τq(v) = 0 when used correctly. [This exercise may be quite
tricky. You will need to carry out the coordinate transformations carefully, express
the σ integral as a contour integral in the z plane and use Cauchy’s theorem to
extract answers in terms of the Ln .]

15.6. Use the connection coefficients of exercise 15.1 to show that the covariant
divergence of a symmetric rank

(0
2

)
tensor such as the energy–momentum tensor

is
∇a Tab = ∂aTab − 1

2�,bT a
a

where indices are raised and lowered with the full metric.

15.7. The algebra of the ghost operators b0 and c0 can be represented by 2 × 2
matrices. Verify that the matrices

b0 =
(

0 1
0 0

)
and c0 =

(
0 0
1 0

)
have the anticommutation relations {b0, c0} = 1 and b2

0 = c2
0 = 0 and that the

basis vectors |0g〉 = (1
0

)
and |1g〉 = (0

1

)
have the properties exhibited in (15.164).
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15.8. Use the (anti)commutation relations (15.99) and (15.160) to verify that the
number operators defined in (15.199) obey the commutation relations

[αν−n, N (X)
m ] = −αν−n δm,n

[b−n, N (b)
m ] = −b−nδm,n [c−n, N (c)

m ] = −c−nδm,n

when m and n are both positive. Hence show that N (X)
n counts the number of

quanta created by the αν−n and so on.

15.9. For an open string, the creation and annihilation operators of left- and right-
moving modes are identical, so a general state at level 1 is A−1|0; k〉, where the
creation operator is

A−1 = εµα
µ

−1 + κb−1 + λc−1.

Use the (anti)commutation relations (15.205)–(15.207) to show that

Qα
µ
−1 = α

µ
0 c−1 + . . . Qb−1 = −α

µ
0 α−1 µ + . . . Qc−1 = . . .

where ‘. . .’ means a collection of operators that produce zero when acting on
|0; k〉. Hence show that

(a) A−1|0; k〉 is a closed state if kµεµ = 0 and κ = 0;

(b) the general form of an exact state at level 1 is[−κ ′kµα
µ
−1 + ε′

µkµc−1

] |0; k〉
where κ ′ and ε′

µ are constants, which in general will be different from those used
to construct a closed state.

Using these results, show that every closed state at level 1 is equivalent to a
state of the form

εµα
µ
−1|0; k〉

where the polarization vector satisfies kµεµ = 0, and that the two polarization
vectors εµ and εµ − κkµ are equivalent for any constant κ .

15.10. In four spacetime dimensions, consider the frame of reference in which
the momentum of a massless particle is kµ = (k, 0, 0, k). According to (15.214),
the polarization tensor εµν

a is physically equivalent to a new polarization tensor

ε′µν
a = εµν

a + kµξν − kνξµ

where ξµ = 1
2 (̃κµ − κµ). Find the independent components of ξµ that are

allowed by the constraint kµξ
µ = 0 and show that they can be chosen so that

ε
′µν
a has just one independent, non-zero component ε′12

a = −ε′21
a .
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Dropping the ′ from this new tensor, show that its spatial components can be
written as

ε
i j
a = aε̂0i j(k(

where a is a constant and ε̂µνστ is the Levi-Civita symbol. Investigate the
transformation of ε

i j
a under spatial rotations and spatial reflections (x ′ = −x,

which also implies k′ = −k). Verify that a transforms as a scalar under rotations,
but changes sign under reflections. According to the classification of §7.3.5, a is a
pseudoscalar. By analogy with an axial vector, which is a pseudovector, a particle
whose polarization has this property is called an ‘axion’.

15.11. In d spacetime dimensions, consider the frame of reference in which
the momentum of a massless particle is kµ = (k, 0, . . . , 0, k). Show that the
polarization vector of exercise 15.9 can be chosen so that it has d − 2 non-zero
components in the spatial directions perpendicular to k. In four dimensions, these
are the two polarization states of a massless spin-1 vector boson.

15.12. On a Euclidean sphere of radius a, the line element can be written in terms
of the usual polar angles as ds2 = a2

(
dθ2 + sin2 θdφ2

)
. By exchanging θ for

a coordinate ψ such that dψ = dθ/ sin θ , show that the metric on the sphere
can be written as (exp�) δab with � = 2 ln (a sin θ). By adapting the results of
exercise 15.1 to this Euclidean metric, show that the Euler characteristic of the
sphere is χ = 2. Note that this is independent of the radius a.



Some Snapshots of the Tour

Our tour having come to an end, readers may like to review some of its highlights
with the aid of a few snapshots, which are provided on the following pages.
The snapshots are intended to give an overall view of the logical structure of
the principal theories we have visited and to summarize some of the important
results.

Thank you for travelling with Unified Grand Tours; I hope that your journey
has been a pleasant one and that these pages will continue to serve you well.

501
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Snapshot of Geometry and Gravitation

Geometry

The basic spacetime structure is a differentiable manifold on which smooth
curves can be drawn and which can support differentiable functions. But
parallelism, angle and length are not defined.

Tensors may be defined either as intrinsic geometrical objects or as sets of
components with definite transformation laws:

T µ′...
α′... =

[
∂xµ′

∂xµ

∂xα

∂xα′ · · ·
]

T µ...
α...

Typical (contravariant) vector is the tangent vector V µ = (d/dλ)xµ(λ) to a
curve xµ(λ).
Typical one-form (covariant vector) is the gradient ωµ = ∂ f/∂xµ of a scalar
function f (x).

The affine connection � defines parallel transport, yielding the covariant
derivative

∇µT α...
β... = ∂µT α...

β... + �α
λµT λ...

β... − �λ
βµT α...

λ... + . . .

Curvature of a manifold is defined (for a symmetric connection) by

[∇µ,∇ν]V α = Rα
βµνV β

with the Riemann tensor given by

Rα
βµν = �α

βν,µ − �α
βµ,ν + �α

σµ�
σ
βν − �α

σν�
σ
βµ

Roughly, it measures the extent to which the result of parallelly transporting
a vector between two points depends on the route taken:
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The Ricci tensor is Rµν = Rα
µαν

A geodesic is a self-parallel curve (generalization of straight line):

d2xµ

dλ2 + �µ
νσ

dxν

dλ

dxσ

dλ
= 0

for an affinely parametrized curve.

The metric tensor gµν(x) defines

(a) distance along a curve ds2 = gµν(x)dxµdxν

(b) scalar product of two vectors gµνV µV ν

(c) one-to-one correspondence between vectors and one-forms

Vµ = gµνV ν V µ = gµνVν gµσ gσν = δ
µ
ν

The metric connection preserves lengths and angles under parallel transport.
The requirement

∇µgαβ = 0

determines the metric connection coefficients (Christoffel symbols) as

�µ
νσ = 1

2 gµλ
(
gνλ,σ + gσλ,ν − gνσ,λ

)

The Ricci curvature scalar is R = gµν Rµν

A vierbein embeds local inertial coordinates ya into a large-scale coordinate
system xµ:

ea
µ = ∂ya

∂xµ
ea

µeµ
b = δa

b ea
µeb

νηab = gµν

eµ
a = ∂xµ

∂ya
eµ

aea
ν = δµν eµ

aeν
bgµν = ηab
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Gravitation and cosmology

Equivalence principle: at any point P , we can find a coordinate system such
that

gµν(P) = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(the Minkowski metric of special relativity) and gµν,σ (P) = 0, but in general
gµν,στ (= 0.

The presence of a gravitational field is indicated if it is impossible to find
coordinates can such that gµν = ηµν everywhere.

Response of test particles to a gravitational field: In the absence of non-
gravitational forces, a particle follows a geodesic path. Connection terms
in the geodesic equation are interpreted as gravitational forces. In the
Newtonian limit of weak, static fields and slowly moving particles (gµν =
ηµν + hµν)

d2xi

dt2 ≈ − ∂V

∂xi
V = 1

2 c2h00

This implies the equality of inertial and gravitational masses.

Response of geometry to distribution of matter: Einstein’s field equations,
which follow from a principle of least action, are

Rµν − ( 1
2 R + �)gµν = κTµν κ = 8πG/c4

In the Newtonian limit (with � = 0) we can deduce Poisson’s equation

∇2V ≈ 4πGρ/c2

where ρ is the energy density of matter and ρ/c2 is the equivalent mass
density.

For a perfect fluid, the stress–energy–momentum tensor is

Tµν = c−2(ρ + p)uµuν − pgµν

where uµ is the 4-velocity of a fluid element while ρ and p are the energy
density and pressure measured in its rest frame.
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Quite generally, the stress tensor is ‘covariantly conserved’:

∇νT µν = 0

Schwarzschild’s solution, valid in the vacuum outside a spherically
symmetric body of mass M , is

c2dτ 2 = (1 − rS/r)c2dt2 − (1 − rS/r)−1dr2 − r2(dθ2 + sin2 θ dφ2)

where the Schwarzschild radius is rS = 2GM/c2.

The Robertson–Walker metric for a homogeneous, isotropic universe is

dτ 2 = dt2 − a2(t)
[
(1 − kr2)−1dr2 + r2(dθ2 + sin2 θ dφ2)

]
with c = 1. Cosmic time t is proper time for comoving observers. Spatial
sections may be closed (k = 1), flat (k = 0) or open (k = −1). The stress
tensor must have the perfect-fluid form.

The field equations in Friedmann–Robertson–Walker models are

3

(
ȧ2

a2 + k

a2

)
= κρ + � 2

ä

a
+ ȧ2

a2 + k

a2 = −κp + �

These imply energy conservation in the form

d

dt
(ρa3) = −p

d

dt
(a3)

Hubble’s law is

recessional velocity = H (t) × distance H (t) = ȧ(t)/a(t)

The critical density and density ratio are given by

ρc(t) = 3H 2(t)/κ �(t) = ρ(t)/ρc(t)

If � = 0, � > 1 ⇒ k = 1; � = 1 ⇒ k = 0; � < 1 ⇒ k = −1

In a flat, matter-dominated universe (p = 0): a(t) ∼ t2/3

In a flat, radiation-dominated universe ( p = 1
3ρ): a(t) ∼ t1/2
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Snapshot of Field Theory

Free fields

Klein–Gordon equation: with the substitutions E → i∂t and p → −i∇,

E2 = p2 + m2 leads to (�+ m2)φ(x) = 0

The Dirac equation for spin- 1
2 particles is (iγ µ∂µ − m)ψ(x) = 0

To reproduce the Klein–Gordon equation, the matrices γ µ satisfy

{γ µ, γ ν} = 2ηµν

To accommodate negative energies, write general solutions as

φ(x) =
∫

d3k

(2π)32ω(k)

[
a(k)e−ik·x + c†(k)eik·x]

ψ(x) =
∫

d3k

(2π)32ω(k)

∑
s

[
b(k, s)u(k, s)e−ik·x + d†(k, s)v(k, s)eik·x ]

where a(k) and b(k, s) annihilate particles, while c†(k, s) and d†(k, s)
create antiparticles.

For bosons, this follows from the canonical quantization procedure, using
the commutator

[φ(x, t),!(x ′, t)] = iδ(x − x ′) !(x, t) = δS/δφ̇(x, t) = φ̇†(x, t)

from which we obtain

[a(k), a†(k′)] = (2π)32ω(k)δ(k − k′) ⇒ Bose–Einstein statistics

For fermions, we must impose anticommutation relations

{b(k, s), b†(k′, s′)} = (2π)32ω(k)δ(k − k′)δss ′ ⇒ Fermi–Dirac statistics
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Interacting fields

Asymptotic states: Initial and final states of scattering/decay processes are
created by free fields, φin(x) and φout(x). With adiabatic switching,

φ(x) → √
Zφin(x) t → −∞

→ √
Zφout(x) t → +∞.

Amplitudes 〈k ′
1, . . . ; out|k1, . . . ; in〉 are related to vacuum expectation

values of interacting fields by reduction formulae

〈. . . ; out| . . . ; in〉 =
∫

dx1 · · · 〈0|T [φ · · ·φ†]|0〉 · · ·

Time ordered products:

T [φ(x1) · · ·φ(xN )] denotes latest-on-left ordering of fields.

When a product of fields is brought into time-ordered form, there is a factor
(−1) for each interchange of two fermionic fields.

Vacuum expectation values of time-ordered products have a path-integral
representation

〈0|T [φ(x1) · · ·φ†(xN )]|0〉 =
∫
Dφ φ(x1) · · ·φ∗(xN ) eiS(φ)

Perturbation theory. Expansion in powers of coupling constants can be
represented by Feynman diagrams, e.g. for λφ4 theory:

− i〈0|T [φ(x)φ(y)]|0〉 =

Lines are unperturbed propagators; after Fourier transformation

scalar:
i

p2 − m2 + iε
spin- 1

2 :
i(/p + m)

p2 − m2 + iε

4-momentum is conserved at each vertex and momentum flowing round
internal loops is integrated.
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Renormalization: Re-expresses calculated results in terms of physically
measurable masses, etc, which are modified by interactions. In
renormalizable theories, infinities in Feynman integrals are removed by
renormalization.

Running coupling constants: Net effect of interactions involves
combinations of coupling constants and energy–momentum-dependent
Feynman integrals. Effective expansion parameter depends on energy.
Also related to renormalization and characteristic length scales of physical
processes.

Gauge fields

Fundamental forces arise from communication between different points of
spacetime.

A wavefunction or field exists in an internal space; the collection of internal
spaces at all spacetime points is a fibre bundle.

Comparison of fields at different points requires a gauge connection to define
parallel transport through the fibre bundle.

The gauge-covariant derivative is

Dµψ = (∂µ + ig Aµ)ψ

The field strength tensor is the gauge-field analogue of the Riemann
curvature tensor:

Fµν = −(i/g)[Dµ, Dν]
= ∂µAν − ∂ν Aµ (Abelian)

= ∂µAν − ∂ν Aµ + ig[Aµ, Aν] (non-Abelian).

In the Abelian case, Aµ is the electromagnetic 4-vector potential and Fµν is
the Maxwell field-strength tensor, whose elements are the components of E
and B. In the non-Abelian case, Aµ = Aa

µT a , where T a are the generator
matrices of some representation of the gauge group.



Some Snapshots of the Tour 509

Gauge theories are invariant under gauge transformations (c.f. general
coordinate transformations)

ψ → Uψ

Aµ → U AµU−1 + (i/g)(∂µU)U−1

In the Abelian case, U = eiθ(x) is a phase transformation; in the non-Abelian
case, ψ is a multiplet of fields, and U is a matrix which rearranges its
components.

The gauge-covariant derivative Dµψ transforms in the same way as ψ ,
namely Dµψ → U Dµψ .

The gauge-invariant action for a theory of gauge fields and fermions has the
form

S =
∫

d4x
[
− 1

4 Tr(Fµν Fµν) + ψ̄(iγ µDµ − m)ψ
]

Gauge-boson masses: The quantity M2 AµAµ is not gauge invariant. Masses
can be introduced in a gauge-invariant manner through a Higgs scalar field,
with the action

SHiggs =
∫

d4x
[
(Dµφ)

†(Dµφ) − V (φ†φ)
]

which acquires a non-zero vacuum expectation value.

When the left- and right-handed chiral components of ψ have different gauge
transformation laws, the quantity mψ̄ψ = m(ψ̄LψR + ψ̄RψL) is not gauge
invariant either. In the standard electroweak theory, fermion masses can be
generated in a gauge-invariant manner through Yukawa couplings to Higgs
fields. For electrons, for example:

�L = − f ((̄eφeR + ēRφ
†(e)



510 Some Snapshots of the Tour

Snapshot of Statistical Mechanics

Classical ergodic theory: Ensemble average of a dynamical quantity is

Ā(t) =
∫

d6N X ρ(X, t)A(X)

where X is a point in phase space, and ρ(X) is the probability density.

The Liouville equation for the probability density is

∂ρ

∂ t
= {H, ρ}P

To describe thermal equilibrium, we need ∂ρ/∂ t = 0, so ρ depends on X
only through conserved quantities.

Closed, isoenergetic system: An isolated system, with fixed energy E ,
particle number N and volume V is described by the microcanonical
ensemble

ρmicro(X, E) = δ[HN (X) − E]/%(E, N, V )

%(E, N, V ) =
∫

d6N X δ[HN (X) − E]

Ergodic system ↔ microcanonical average = long-time average

↔ ρmicro is the unique time-independent distribution.

Relation to thermodynamics:

Entropy S(E, N, V ) = kB ln
[
%(E, N, V )/h3N N !

]

Closed isothermal system: A system with fixed N and V in equilibrium
with a heat bath at temperature T is described by the canonical ensemble.
Statistical independence of non-interacting systems implies the probability
density

ρcan(X, β) = e−βHN (X)

[∫
d6N X e−βHN (X)

]−1

β = 1/kBT
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The canonical partition function is

Zcan(β, N, V ) = (h3N N !)−1
∫

d6N X e−βHN (X)

Relation to thermodynamics:

Helmholtz free energy F(β, N, V ) = −kBT ln Zcan(β, N, V )

The canonical and microcanonical ensembles are related by a Laplace
transform

Zcan(β, N, V ) = (h3N N !)−1
∫

dE e−βE%(E, N, V )

and in the thermodynamic limit (regarding internal energy U as equivalent
to E), the thermodynamic potentials are related by a Legendre transform

F = U − T S

Open isothermal system: A system of fixed volume in equilibrium with a
heat bath and particle reservoir at temperature T and chemical potential µ is
described by the grand canonical ensemble. Poisson distribution of particle
numbers implies

ρgr(X, N) = eβµN e−βHN (X)
[
h3N N !Zgr

]−1

Zgr(β, µ, V ) =
∑

N

eβµN Zcan(β, N, V )

The relation between canonical and grand canonical partition functions is a
Laplace transform. Relation to thermodynamics:

Grand potential �(β,µ, V ) = −kBT ln Zgr(β,µ, V )

In the thermodynamic limit, canonical and grand canonical potentials are

related by a Legendre transform � = F − µN

Extensivity of the entropy implies

T S = U + pV − µN � = −pV
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Quantum statistical mechanics

Expectation value of a dynamical quantity is

Ā(t) = Tr[ ρ̂(t) Â ]

Given a basis of Schrödinger-picture states |ψn(t)〉, the density operator is

ρ̂(t) =
∑

n

|ψn(t)〉Pn〈ψn(t)|

where Pn is the probability of finding the system in the nth quantum state.
The expectation value is an average over both the quantum indeterminacy
and our ignorance of the actual quantum state.

Time evolution of the density operator is governed by the quantum Liouville
equation

d

dt
ρ̂(t) = i

~

[
ρ̂(t), Ĥ

]
and a system in thermal equilibrium is again described by a stationary density
operator.

Canonical ensemble:

ρ̂can = e−β ĤN Z−1
can Zcan(β, N, V ) = Tr e−β ĤN

Grand canonical ensemble

Zgr(β, µ, V ) =
∑

N

eβµN Zcan(β, N, V )

or, using second quantization

ρ̂gr = eβµN̂−β Ĥ Zgr(β,µ, V ) = Tr ρ̂gr

The grand canonical ensemble for a system of particles is equivalent to the
canonical ensemble for an underlying system of quantum fields.
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Field theories at finite temperature

Field operators depending on an imaginary time τ (0 ≤ τ ≤ β) are defined
by

φ̂(x, τ ) = eτ Ĥ φ̂(x)e−τ Ĥ φ̂†(x, τ ) = eτ Ĥ φ̂†(x)e−τ Ĥ

Expectation values have the path-integral representation

Tr
{
ρ̂ Tτ

[
φ̂(x1) · · · φ̂†(xN )

]}
= Z−1

gr

∫
Dφ φ(x1) · · ·φ∗(xN )e−Sβ(φ)

and, for example, in λφ4 theory

Sβ(φ) =
∫ β

0
dτ
∫

dd x

[
∂φ∗

∂τ

∂φ

∂τ
+ ∇φ∗ · ∇φ + m2φ∗φ + λ

4
(φ∗φ)2

]
equivalent to a classical theory in (d + 1) Euclidean dimensions, of finite
extent β in the extra dimension and with periodic boundary conditions
(antiperiodic for fermions).

For bosons, the imaginary-time propagator is

G(x − x ′, τ − τ ′) = Tr
[
ρ̂ Tτ [φ̂(x, τ )φ̂†(x ′, τ ′)]

]
It is periodic in imaginary time:

G(x − x ′, τ − τ ′ ± β) = G(x − x ′, τ − τ ′)

For a non-interacting theory, or at the lowest order of perturbation theory, its
Fourier transform is

G0(x − x ′, τ − τ ′) = β−1
∫

ddk

(2π)d
eik·(x−x ′)∑

n

eiωn(τ−τ ′)G̃0(k, n)

G̃0(k, n) = [k2 + ω2
n + m2]−1 ωn = 2πn/β

The ωn are called the Matsubara frequencies.

For fermions, the propagator is antiperiodic, and the Matsubara frequencies
are ωn = 2π(n + 1

2 )/β.
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Snapshot of Bosonic String Theory

The classical string

A string moving through Minkowski spacetime traces out a worldsheet,
whose points we label with coordinates (τ, σ ). Its action is

S = − 1

4πα′

∫ ∞

−∞
dτ
∫ (

0
dσ (−γ )1/2γ ab∂a Xµ∂b Xµ

where Xµ(τ, σ ) are the spacetime coordinates of the point (τ, σ ). The
worldsheet metric γab(τ, σ ) is independent of the spacetime metric.

The Euler–Lagrange equation obtained by varying Xµ is

γ ab∇a∇b Xµ = 0 the equation of motion for the string

By varying γab we get the constraint equation T ab(τ, σ ) = 0 with

T ab = − 1

α′
[
∂a Xµ∂

b Xµ − 1
2γ

ab∂c Xµ∂
c Xµ

] energy–momentum
tensor of the world-
sheet field theory

The action has a gauge symmetry, consisting of

τ → τ ′(τ, σ )

σ → σ ′(τ, σ )
reparametrization (or diffeomorphism) invariance

γab(τ, σ ) → exp[ω(τ, σ )]γab(τ, σ ) Weyl invariance

Using a combination of these transformations, we can ‘fix the gauge’,
bringing the worldsheet metric to the form ηab. After gauge fixing, the
equation of motion and the energy–momentum tensor are

[
∂2
τ − ∂2

σ

]
Xµ = 0 T ab = − 1

α′
[
∂a Xµ∂

b Xµ − 1
2η

ab∂c Xµ∂
c Xµ

]

Useful coordinates on the worldsheet are defined by

w = σ − τ w̄ = σ + τ and z = e−iw z̄ = eiw̄

On a Euclidean worldsheet, where τ is imaginary, the gauge-fixed line
element is ds2 = dwdw̄ and w̄ and z̄ are the complex conjugates of w and z.
With ∂ = ∂/∂w and ∂̄ = ∂/∂w̄, the Euclidean action is
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SE = − 1

2πα′

∫
dwdw̄ ∂Xµ∂̄Xµ

It is invariant under conformal transformations, which are special
combinations of a diffeomorphism and a Weyl transformation

w′ = f (w) w̄′ = f̄ (w̄) ds′2 =
∣∣∣∣d f

dw

∣∣∣∣2 ds2

The transformation z = f (w) = e−iw is a particular case.

The general solution to the equation of motion for a closed string is

Xµ(τ, σ ) = xµ + α′ pµτ + i

(
α′

2

)1/2 ∞∑
n=−∞

n (=0

1

n

[
αµ

n einw + α̃µ
n e−inw̄

]

where xµ are the coordinates of the centre of mass and pµ the spacetime
momentum. The energy–momentum tensor has components

T ≡ Tww =
∞∑

n=−∞
Lneiw T̃ ≡ Tw̄w̄ =

∞∑
n=−∞

L̃ne−iw̄

The coefficients Ln and L̃n , which are the generators of conformal
transformations, constitute the Virasoro algebra. They are given by

Ln = − 1
2

∞∑
m=−∞

αm µα
µ
n−m L̃n = − 1

2

∞∑
m=−∞

α̃m µα̃
µ
n−m

with α
µ
0 = α̃

µ
0 = (α′/2)1/2 pµ. The expansion coefficients α

µ
n and Ln for

right-moving modes have the Poisson-bracket relations

{αµ
m, αν

n }P = imηµνδm,−n {Lm , Ln}P = −i(m − n)Lm+n

and for left-moving modes the α̃
µ
n and L̃n obey the same relations. The

constraint Tab = 0 implies in particular that L0 = L̃0 = 0 and this gives the
mass of the string as

M2 ≡ pµ pµ = − 4

α′
∞∑

n=1

α−n µα
µ
n = − 4

α′
∞∑

n=1

α̃−n µα̃
µ
n
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The quantum string

To quantize the classical string, we promote Poisson brackets to
commutators:

[αµ
m, αν

n ] = [̃αµ
m , α̃ν

n ] = −mηµνδm,−n [xµ, pν] = −iηµν

The modes of vibration of the string constitute an infinite set of harmonic
oscillators. For the nth oscillator, quanta of energy are created by α

µ
−n (with

n > 0) and annihilated by α
µ
n . From these commutation relations, we deduce

those of the quantum Virasoro algebra

[Lm, Ln ] = m(m2 − 1)

12
c δm,−n + (m − n)Lm+n

For a general conformal field theory, c is the central charge; for the Xµ field
theory, c is equal to the number of spacetime dimensions d . Compared with
the classical Poisson-bracket algebra, the extra term containing c arises from
a conformal anomaly.

Gauge fixing in the quantum theory requires the introduction of Fadeev–
Popov ghosts b and c, resulting in an effective action

SE = − 1

2πα′

∫
dzdz̄

[
∂Xµ∂̄Xµ − α′ (b ∂̄c + b̃ ∂ c̃

)]
but this is valid only when the central charge c = d − 26 of the combined
theory vanishes, leading to a critical spacetime dimension d = 26 for the
bosonic string.

The gauge-fixed theory has a residual BRST symmetry, generated by the
BRST charge Q, which is nilpotent: Q2 = 0. The full Hilbert space for the
Xµ + ghost theory can be constructed by acting with arbitrary combinations
of creation operators αµ

−n , b−n and c−n on the ground state |�〉, but the states
thus formed contain many unphysical gauge degrees of freedom. Physical
states are those obeying the conditions

Q|ψ〉 = b0|ψ〉 = b̃0|ψ〉 = 0 conditions for physical states

with the proviso that any two such states which differ by an exact vector, of
the form Q|χ〉, are physically equivalent. These conditions also imply that
L0|ψ〉 = L̃0|ψ〉 = 0, which determines the mass of each physically allowed

state as M2 = 4

α′ (N − 1) where the level N is
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N =
∞∑

n=1

n
(

N (X)
n + N (b)

n + N (c)
n

)
=

∞∑
n=1

n
(

Ñ (X)
n + Ñ (b)

n + Ñ (c)
n

)

Here N (X)
n (Ñ (X)

n ) is the number of quanta in the nth right-moving (left-
moving) mode of vibration and similarly for the ghost oscillators. The
contributions of left- and right-moving modes are constrained to be equal.

The lightest state of a closed string, with N = 0 is a tachyon, with
M2 = −4/α′. Each massless state, with N = 1, is gauge-equivalent to a
state of the form

εµν(k)α
µ
−1α̃

ν
−1|0; k〉 general massless state

The states for which εµν is symmetric and traceless (εµµ = 0) can be
identified as graviton states.

A worldsheet with an ‘end’ corresponding to an incoming or outgoing
particle with momentum k at the point with coordinates (z, z̄) can be created
by acting on |�〉 with a vertex operator V(z, z̄; k). In particular, the vertex
operator for a graviton is

Vg(z, z̄; k) = − 2

α′ εµν : ∂Xµ(z)∂̄Xν(z̄) exp [−ik · X (z, z̄)] :

The Euclidean worldsheet action for a string moving through a curved
spacetime is

SE = − 1

2πα′

∫
dzdz̄ gµν(X)∂Xµ∂̄Xν

where gµν(X) is the spacetime metric. A small change in the spacetime
metric, say hµν(X) = εµν(k)e−ik·X , leads to a change in the action

δSE(k) = 1

4π

∫
dzdz̄ Vg(z, z̄; k)

This indicates that changes in spacetime geometry are equivalent to the
emission and absorption of gravitons.



Appendix A

Some Mathematical Notes

This appendix contains a miscellaneous assortment of mathematical ideas and
results. Some of them will be needed by readers who wish to verify the details of
calculations presented in the main text; others are intended to indicate briefly how
concepts that I have used in an informal way can be formulated more precisely.
The topics are arranged more or less in the order in which they arise in the main
text.

A.1 Delta Functions and Functional Differentiation

The Kronecker delta symbol, written as δi j , δi j or δi
j according to context, is

defined to equal 1 if i = j and 0 otherwise. It is mainly useful when we are
dealing with summations, say of a set of quantities { fi }, and it obviously has the
property ∑

i

δi j fi = f j . (A.1)

The Dirac delta function is a generalization of the Kronecker δ which allows us to
deal with integrals in the same way. The function (known in rigorous mathematics
as a distribution) δ(x − x0) is equal to zero unless x = x0, when it is infinite.
The infinite value becomes meaningful when the delta function appears inside an
integral, and the defining property of δ(x − x0) is that, for any sufficiently smooth
function f (x),∫ b

a
δ(x − x0) f (x) dx =

{
f (x0) if a < x0 < b

0 otherwise.
(A.2)

This can be understood in terms of the Riemann definition of the integral,
according to which we divide the interval [a, b] into N segments of length
�x = (b − a)/N and take the limit N → ∞. If x0 lies in the j th segment,

518
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then the integral (A.2) can be represented as

lim
N→∞

∑
i

�x
δi j

�x
f (xi ) = f (x0) (A.3)

and so δ(x − x0) is the limit as �x → 0 of δi j /�x .
Consider a function F({ fi }) which depends on all the fi . If we make a small

change � fi in each of these variables, then the first-order change in F is given by

�F =
∑

i

� fi
∂F

∂ fi
. (A.4)

A functional F[ f ], whose argument is a continuous function f , is a quantity
whose value depends on infinitely many variables f (x); there is one of these
variables for each value of x . The electromagnetic action (3.53), for example, is
a functional S[A] whose arguments are the functions Aµ(x). We may ask how F
changes when we make a small change � f (x) in the function f (x). An equation
analogous to (A.4), namely

�F =
∫

dx � f (x)
δF

δ f (x)
(A.5)

defines the functional derivative δF/δ f (x), which is a generalization of the partial
derivative ∂F/∂ fi . The derivation of the Euler–Lagrange equations, which we
first met in §3.1, is an example of functional differentiation, and Newton’s law
(3.1) might be written as δS/δx(t) = 0. Quite often, F will be defined (like the
action) as an integral whose integrand contains f (x). In that case, F is not itself
a function of x , but the functional derivative δF/δ f (x) is a function of x . On the
other hand, we might take, for example, F = f (y), which means that F really
depends only on the single variable f (y), which is the value of f at the particular
point y. The functional derivative with respect to the variable f (x) will be zero
unless x = y. In fact, the definition (A.5) shows that δ f (y)/δ f (x) = δ(x − y),
because

�F =
∫

dx � f (x) δ(x − y) = � f (y). (A.6)

The delta function in (A.2) can be thought of as imposing the constraint that
x = x0. Sometimes, we may wish instead to impose the constraint g(x) = g0,
where g is some function. In (7.9), for example, we use g(k0) = (k0)2 and
g0 = ω2(k). This can be done by changing the integral over x to an integral over
g:∫

δ
(

g(x) − g0

)
f (x)dx =

∫
dg

(
dg

dx

)−1

δ(g − g0) f
(

x(g)
)

= f (x0)

g′(x0)
(A.7)
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where x0 is the point at which g(x0) = g0. If there are several such points, then
the integral is the sum of values of f/g′ at these points. We can therefore write

δ
(

g(x) − g0

)
=
∑

i

(
dg

dx

)−1

δ(x − xi ) (A.8)

where xi are the points at which g(xi) = g0.
In this book, I use δ(x − x ′) to stand for the product of delta functions

δ(x − x ′)δ(y − y ′)δ(z − z′).
A useful representation of the Dirac delta function is provided by the theory

of Fourier transforms. If f (x) is sufficiently well behaved, it can be expressed as

f (x) =
∫ ∞

−∞
dk f̃ (k) eikx (A.9)

where

f̃ (k) = 1

2π

∫ ∞

−∞
dx f (x) e−ikx . (A.10)

By substituting (A.10) into (A.9)—or the other way round—and comparing the
result with (A.2), we see that the delta function can be represented by

δ(x − x ′) = 1

2π

∫ ∞

−∞
dk e±ik(x−x ′). (A.11)

Under suitable conditions, other orthogonal functions may be used in place of the
exponential.

The Heaviside step function θ(x − x0) is defined to equal 0 for x < x0 and
1 for x > x0. It is usually not necessary to specify its value at x = x0. A little
thought will show that dθ(x − x0)/dx = δ(x − x0).

A.2 The Levi-Civita Tensor Density

The symbol εµνστ , in which each index can take the values 0, 1, 2 or 3, is
defined to be +1 when (µ, ν, σ, τ ) = (0, 1, 2, 3) and to be antisymmetric
under the interchange of any pair of indices: εµνστ = −ενµστ = ενσµτ , etc.
It follows from this definition that εµνστ is +1 when (µ, ν, σ, τ ) is an even
permutation of (0, 1, 2, 3), −1 for an odd permutation and zero otherwise. Any
totally antisymmetric tensor has only one independent component and is therefore
proportional to ε. An ε symbol can be defined in any number of dimensions, d ,
by giving it d indices. The ε symbol can be made into a tensor-like quantity,
called the Levi-Civita tensor density, by specifying its transformation properties.
Suppose that its components have the values specified above in a particular
coordinate system. In a new system, let

ε̂µ
′ν ′σ ′τ ′ = �µ′

µ�
ν ′
ν�

σ ′
σ�

τ ′
τ ε

µνστ . (A.12)
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Clearly, ε̂µ
′ν ′σ ′τ ′

is also totally antisymmetric and therefore proportional to
εµ

′ν ′σ ′τ ′
. Furthermore, we have

ε̂0123 = �0
µ�

1
ν�

2
σ�

3
τ ε

µνστ = det(�µ′
µ) (A.13)

since the sum of products with alternating signs is just the rule for forming the
determinant. Thus, the ε symbol itself, which has exactly the same set of values
in every coordinate system, obeys the transformation law

εµ
′ν ′σ ′τ ′ = [det(�µ′

µ)]−1�µ′
µ�

ν ′
ν�

σ ′
σ�

τ ′
τ ε

µνστ . (A.14)

An object which transforms like a tensor, but with an extra factor of [det(�)]n is
called a tensor density of weight n, so ε is a tensor density of weight −1.

The metric determinant g can be written as

g = det(gµν) = 1

4!ε
µνστ εαβγ δgµαgνβgσγ gτδ. (A.15)

This expression is 1/4! times a sum of 4! terms, each of them equal to
εαβγ δg0αg1βg2γ g3δ, which is equal to det(gµν). Since each of the ε symbols in
(A.15) transforms with a factor of [det(�)]−1, this determinant is a scalar density
of weight −2.

It is convenient to define the covariant Levi-Civita symbol εµνστ to have
exactly the same values as εµνστ . In a manifold with a metric, this is not
necessarily the quantity that we obtain by lowering the indices of εµνστ . In fact
the same argument that gave us the transformation law (A.14) shows that

gµαgνβgσγ gτδε
αβγ δ = gεµνστ . (A.16)

The left-hand side of this equation is a tensor density of weight −1, so εµνστ must
be a tensor density of weight +1. We can also see this by considering that εµνστ

must obey the covariant version of the transformation law (A.14)

εµ′ν ′σ ′τ ′ = [det(�µ

µ′)]−1�
µ

µ′�ν
ν ′�σ

σ ′�τ
τ ′εµνστ . (A.17)

The matrix �
µ

µ′ is the inverse of �
µ′
µ, so [det(�µ

µ′)]−1 = [det(�µ′
µ)]+1. Given

these weights, we see that the tensors |g|−1/2εµνστ and |g|1/2εµνστ , which might
be used to define dual tensors as in (3.82) and (3.83), transform without any
factors of det(�).

A.3 Vector Spaces and Hilbert Spaces

Defined in an abstract way, a linear vector space is a collection of objects called
vectors, for which I shall use the Dirac notation | 〉, together with rules which
allow two operations to be performed on them. The first operation is called
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addition: any two vectors |a〉 and |b〉 can be added to form a third vector,
|c〉 = |a〉 + |b〉, which also belongs to the space. Just what this operation of
addition means may depend on what the objects are that we want to identify
as vectors. In the abstract, we require this operation to have the following four
properties:

(i) addition is commutative, which means that |a〉 + |b〉 = |b〉 + |a〉.
(ii) addition is associative, which means (|a〉 + |b〉) + |c〉 = |a〉 + (|b〉 + |c〉).
(iii) the space contains a zero vector. I denote this by 0, without the | 〉 symbol,

because |0〉 is used in quantum theory for the quite different notion of a
ground state or vacuum state. In the present context, nevertheless, 0 is a
vector in the space. It has the property that |a〉 + 0 = |a〉 for any vector |a〉.

(iv) given any vector |a〉 in the space, there also exists a unique vector |−a〉 such
that |a〉 + | − a〉 = 0.

The second operation is multiplication by scalars. The scalars may be real
numbers, in which case we have a real vector space, or complex numbers, in
which case we have a complex vector space. Again, the exact effect of this
multiplication may depend on what the vectors are, but in the abstract this
operation is also required to have four properties:

(i) multiplication is distributive with respect to vectors, which means that
α(|a〉 + |b〉) = α|a〉 + α|b〉 for any two vectors |a〉 and |b〉 and any scalar α.

(ii) multiplication is also distributive with respect to scalars, which means that
(α + β)|a〉 = α|a〉 + β|a〉 for any vector |a〉 and any two scalars α and β.

(iii) multiplication is associative, so that α(β|a〉) = (αβ)|a〉.
(iv) multiplication by 1 leaves a vector unchanged, so 1|a〉 = |a〉.
Three-dimensional Euclidean space (or, for that matter, a d-dimensional
Euclidean space) can be regarded as a real vector space if we choose one of
its points as a preferred origin. Using Cartesian coordinates, the point with
coordinates (x, y, z) corresponds to a vector x, which can be conceived of as an
arrow stretching from the origin to the point in question. It is easy to verify that
the familiar parallelogram rule for adding vectors (by adding their components)
and the rule for multiplying by a real number (which multiplies the length of
the vector by that number, leaving its direction unchanged) satisfy the conditions
listed above.

A vector space may, in addition, be equipped with a scalar product such as
we introduced in §5.1. In the mathematical literature, it is more often called an
inner product and the vector space is then an inner product space. As well as
having the property (5.8), the inner product is required to be linear, in the sense
that (α〈a| + β〈b|)|c〉 = α〈a|c〉 + β〈b|c〉. In Euclidean space, the usual ‘dot
product’ of vectors, x · x ′ = xx ′ + yy ′ + zz′ is a suitable inner product. An
inner product can be thought of as conferring a metric on the space, which gives
a notion of distance between two points,

d(a, b) = √〈a − b|a − b〉 (A.18)
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where |a − b〉 means the vector |a〉 + | − b〉. In the Euclidean vector space, for
example, the quantity

d(x, x ′) = √
(x − x ′) · (x − x ′) =

√
(x − x ′)2 + (y − y ′)2 + (z − z′)2

(A.19)
is recognizable as the distance between the points x and x ′. Note, however, that
this notion of distance is not quite the same as that defined by a metric tensor field
in a manifold, which serves to define the length of a curve.

A Hilbert space can be defined as a complex vector space which possesses
an inner product, but it is also required to be complete. Roughly speaking,
completeness means that there are no vectors ‘missing’ from the space. More
precisely, it is defined like this. We consider an infinite sequence of vectors |an〉
with the following property: given any real number ε, no matter how small, the
distance d(am, an) is less than ε, whenever m and n are greater than some value
n0, which may depend on ε. It is called a Cauchy sequence. A few moments
thought should suggest the possibility that this sequence converges to a limiting
vector |a∞〉, which would mean that d(an, a∞) < ε, when n > n0. The point
is that this vector, towards which the sequence is ‘trying’ to converge might not
exist, and this is what I mean by a ‘missing’ vector. Completeness means, then,
that any Cauchy sequence of vectors actually does converge to a vector belonging
to the Hilbert space.

A.4 Gauss’ Theorem

The partial derivative of the metric determinant (A.15) is given by

∂λg = 1

3!ε
µνστ εαβγ δgµαgνβgσγ (∂λgτδ) = ggµν(∂λgµν). (A.20)

To see why the last expression is valid, consider that the quantity

eτδ = 1

3!ε
µνστ εαβγ δgµαgνβgσγ

is a symmetric rank
(2

0

)
tensor constructed from the metric, and must be

proportional to gτδ. But eτδgτδ is equal to 4g and gτδgτδ is equal to 4, so the
coefficient of proportionality is just g. Using the metric connection (2.50), we
can calculate

∂λ(−g)1/2 = 1
2 (−g)1/2gµν(∂λgµν) = (−g)1/2�

µ
µλ (A.21)

and armed with this result we can express the covariant divergence of a vector
field as

∇µV µ ≡ V µ

;µ = 1

(−g)1/2
∂µ[(−g)1/2V µ]. (A.22)
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The integral of the divergence of a vector field over a region D is a scalar
quantity, provided that we use the covariant volume element (4.12). By using the
version of Gauss’ theorem which applies in Euclidean space, we can write it as a
surface integral∫

D
d4x (−g)1/2V µ

;µ =
∫

D
d4x ∂µ

(
(−g)1/2V µ

)
=
∫

S
(−g)1/2V µdSµ (A.23)

where S is the surface which bounds the region D.

A.5 Surface Area and Volume of a d-Dimensional Sphere

Let �d be the surface area of a sphere of unit radius in d Euclidean dimensions.
The surface area of a sphere of radius r is �drd−1 and we find by integrating this
that its volume is �drd/d . To evaluate �d , let r2 = x2

1 + . . . + x2
d and consider

the integral ∫ ∞

−∞
dd x e−r2 =

[∫ ∞

−∞
dx e−x2

]d

= πd/2. (A.24)

The solid angle subtended by the surface of the sphere at its centre is �d , so if we
change to polar coordinates and integrate over the d − 1 angular variables which
do not appear in the integrand, this integral is

πd/2 = �d

∫ ∞

0
dr rd−1e−r2 = 1

2�d

∫ ∞

0
dt td/2−1e−t = 1

2�d�(d/2) (A.25)

where �(p) = (p − 1)! is Euler’s gamma function. Thus, we have

�d = 2πd/2

�(d/2)
. (A.26)

Since �( 1
2 ) = π1/2 and �(p + 1) = p�(p), we find, for example, that �2 = 2π ,

which is the circumference of a unit circle, and �3 = 4π , which is the surface
area of a unit sphere in three dimensions. When carrying out spacetime integrals,
we need to know that �4 = 2π2.

A.6 Gaussian Integrals

Both in statistical mechanics and in quantum field theory, it is sometimes
necessary to evaluate Gaussian integrals, the simplest example of which is∫ ∞

−∞
dx e−x2 = π1/2. (A.27)

A useful generalization is the integral

G(A) =
∫ n∏

i=1

dφ∗
i φi exp

−
n∑

i, j=1

φ∗
i Ai jφ j

 (A.28)
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where the φi are n complex variables and A is an Hermitian n × n matrix. To
give this a precise meaning, let us say that φi = (φ1i + iφ2i )/

√
2, where φ1i

and φ2i are real variables, each to be integrated from −∞ to ∞, and that the
integration measure is dφ∗

i dφi = 1
2 dφ1idφ2i . Other conventions may lead to

integrals which differ from this one by a numerical factor; usually, this is not
important because we are interested only in ratios of two such integrals or in
derivatives of the logarithm of the integral as in (10.15).

To evaluate this integral, let us write the integrand as exp(−φ† Aφ), where φ
is the column matrix whose elements are the φi . The matrix A can be diagonalized
by the change of variable φ = Uψ , where U is a unitary matrix. Thus we have
φ† Aφ = ψ† ADψ , where AD is a diagonal matrix, say with eigenvalues ai . The
Jacobian of this transformation is det(U†U) = det(U−1U) = 1 and the integral
becomes

G(A) = ( 1
2 )

n
∫ ∞

−∞

∏
i

dψ1i dψ2i exp

[
− 1

2

n∑
i=1

ai

(
ψ2

1i + ψ2
2i

)]
. (A.29)

The further change of variables ψi1 → (2/ai )
1/2ψi1 and ψi2 → (2/ai )

1/2ψi2
converts this expression to a product of 2n integrals of the form (A.27):

G(A) =
n∏

i=1

[
a−1/2

i

∫
dψ1i e−ψ2

1i

] [
a−1/2

i

∫
dψ2i e−ψ2

2i

]
= πn

det(A)
(A.30)

because det(A) = ∏
i ai . With care, a functional integral such as (10.80), where

A is a differential operator rather than a matrix, can be evaluated in a similar way,
although we have seen in chapters 9 and 10 that the explicit evaluation of these
integrals can often be avoided.

A.7 Grassmann Variables

A set of variables θi which anticommute with each other, so that θiθ j = −θ jθi

is said to generate a Grassmann algebra. This algebra is a special kind of linear
vector space (see appendix A.3) so it is implied that Grassmann numbers can be
added and multiplied by scalars, which might be either real or complex numbers.
In the applications that concern us, there are, say, 2n of these variables, which
might be regarded as two sets of real variables, bi and ci , with i = 1, . . . , n or as
n complex variables θi and their complex conjugates θ̄i . To be definite, I take the
latter view.

As with matrices and operators, functions of Grassmann variables are
defined by means of Taylor series. The square of any Grassmann variable must
be zero, because θiθi = −θiθi , so if n is finite, any Taylor series has only a
finite number of terms—those in which each variable appears at most once. For
example, any function of a single Grassmann variable and its complex conjugate
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can be written as
f (θ, θ̄ ) = f0 + f1θ + f2θ̄ + f3θ̄ θ (A.31)

where f0, . . . , f3 are complex numbers. Consider, in particular, the function

exp

 n∑
i, j=1

θ̄i Ai j θ j

 = 1 + . . . +A(θ̄1θ1) · · · (θ̄nθn) (A.32)

where A is an n × n matrix. For n = 2, it is simple to calculate the coefficient A
of the last term. We have

A(θ̄1θ1)(θ̄2θ2) = 1
2

[
A11(θ̄1θ1) + A12(θ̄1θ2) + A21(θ̄2θ1) + A22(θ̄2θ2)

]2
= [

A11 A22(θ̄1θ1)(θ̄2θ2) + A12 A21(θ̄1θ2)(θ̄2θ1)
]

= [A11 A22 − A12 A21] (θ̄1θ1)(θ̄2θ2) (A.33)

and so A = det(A). Readers should not find it hard to convince themselves that
this result is valid for any n.

Differentiation with respect to a Grassmann variable can be defined in the
following way. Any function depending on all the θi can be decomposed as
f ({θi}) = f0({θi (= j }) + θ j f1({θi (= j }), where f0 and f1 are independent of the
particular variable θ j with respect to which we want to differentiate. Then we
will say that

∂

∂θ j
f ({θi }) = f1({θi (= j }). (A.34)

Note carefully that θ j stands to the left of all the other Grassmann variables
contained in f1. Given an expression for f in which this is not true, we must
move θ j to the leftmost position, taking account of all the − signs that arise from
anticommutations. Using this rule, it is a simple exercise to show that partial
derivatives anticommute:

∂

∂θi

∂

∂θ j
= − ∂

∂θ j

∂

∂θi
. (A.35)

The definition of integration with respect to a Grassmann variable is easily
stated: the symbol

∫
dθi means exactly the same as ∂/∂θi . The temptation to

wonder whether this is a ‘correct’ generalization of the usual notion of integration
with respect to an ordinary variable is one that should be resisted. The plain fact
is that, by adopting this definition, we arrive at a path integral of the form∫

DψDψ̄ ψ(x1) · · · ψ̄(xm) exp[iS(ψ, ψ̄)] (A.36)

which correctly represents fermionic matrix elements of the form
〈0|ψ(x1) · · · ψ̄(xm)|0〉, and it is for this reason that the definition is a useful one.
(A convincing proof of this plain fact is quite involved, and I shall not attempt
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one here. A transparent discussion is not easy to find in the literature, but inter-
ested readers may like to consult Itzykson and Zuber (1980).) To the extent that
a Grassmann integral can be thought of by analogy with an ordinary integral, it is
the counterpart of a definite integral

∫∞
−∞ dx ; the notion of an indefinite integral,

which is the inverse operation to differentiation has no useful generalization to
Grassmann variables.

Most often, as in (A.36), we want to integrate over all of the variables in the
Grassmann algebra. When there are finitely many of these, the answer is just the
last term in the Taylor series for the function we want to integrate. Specifically,
we have ∫

(dθndθ̄n) · · · (dθ1dθ̄1) (θ̄1θ1) · · · (θ̄nθn) = 1 (A.37)

and the integrals of terms from which one or more of the θi or θ̄i are missing give
zero. In fact, the only integral for which we ordinarily need an explicit result is
the integral of a Gaussian function such as (A.32), for which the answer is det(A).
Up to a factor of πn , which can generally be absorbed into a normalizing constant,
this is the inverse of the corresponding ‘bosonic’ integral (A.28). Integrals such
as (15.136) and (15.137) are related in the same way, once we give them a definite
meaning through a Wick rotation to Euclidean space (see §15.2.3).



Appendix B

Some Elements of Group Theory

The mathematical framework which allows a systematic study of the
consequences of symmetry in physics is group theory. In the main text, I have
drawn on various group-theoretical ideas in an ad hoc way, as the occasion
demanded. In this appendix, I attempt to draw together some of the essential
features of group theory in a more coherent way, relying largely on the example
of rotations in three dimensions. I do not, however, have the space to develop
in detail the extensive body of techniques and results to which these ideas give
rise. Readers who would like to know more will find group theory discussed at
varied levels of sophistication both in specialized books devoted to that topic and
in more summary form in books on particle physics and quantum field theory.
A small selection of useful sources is: Cheng and Li (1984), Coleman (1985),
Cornwell (1984), de Azcárraga and Izquierdo (1995), Halzen and Martin (1984),
Jones (1998), Nakahara (1990), Tung (1985), Ticciati (1999).

Abstractly defined, a group G is a collection of elements g with the following
properties:

(i) there is a rule for multiplying any two elements and their product g1g2 is
also an element of G. This rule for multiplication is associative, so for any
three elements (g1g2)g3 = g1(g2g3).

(ii) there is an identity element of G, say e, such that eg = ge = g for any
element g.

(iii) for every element g, there is a unique inverse element g−1 such that gg−1 =
g−1g = e.

The rule for multiplication is not necessarily commutative. That is, g1g2 is not
necessarily the same as g2g1. If g1g2 = g2g1 for every pair of elements, then the
group is said to be Abelian; otherwise it is non-Abelian.

In most applications to physics, the elements of a group are transformations
of some kind. Very often, a group of transformations has infinitely many
elements, labelled by one or more parameters which can assume a continuous
range of values, such as the three components of a vector a that specify a spatial

528
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translation x → x + a or the angles that specify a rotation. A group of this kind
is called a Lie group. The multiplication of elements corresponds to successive
applications of two transformations. For example, if we write the operation of
spatial translation of a position vector as g(a)x = x + a, then a sequence of two
translations gives g(b)g(a)x = g(b)(x + a) = x + a + b. The net effect is a
translation through the vector a + b, so property (i) is satisfied. In fact, we have
g(b)g(a) = g(a + b) = g(a)g(b), so the group of space translations is Abelian.
Properties (ii) and (iii) are also satisfied: the identity element e = g(0), namely
a translation through a vector of zero length, leaves any vector x unchanged, and
we can obviously identify the inverse elements as g−1(a) = g(−a).

Let us now focus on the less trivial example of rotations. We shall regard
Euclidean space as a vector space, as in appendix A.3, with a fixed origin for
Cartesian coordinates, which I will call x1, x2 and x3. Let r be a position vector,
with components (x1, x2, x3). A rotation about the x3 axis through an angle α

leads to a new set of components

x1′ = x1 cosα + x2 sin α x2′ = −x1 sin α + x2 cosα x3′ = x3. (B.1)

If we represent r as a column matrix, this can be written as

r ′ = R3(α)r (B.2)

with

r =
( x1

x2

x3

)
r ′ =

( x1′

x2′

x3′

)
R3(α) =

( cosα sin α 0
− sinα cosα 0

0 0 1

)
. (B.3)

The new column matrix r ′ can be regarded either as giving the components of
a new vector, obtained by rotating r through an angle −α (the active point of
view) or as giving the components of the same vector relative to a new set of axes,
obtained by rotating the old axes through an angle +α (the passive point of view).

It is often helpful to consider a rotation through a finite angle to be made up
of a sequence of infinitesimal rotations. If the angle α is infinitesimal, then we
can write

R3(α) = I + iαJ3 + O(α2) (B.4)

where the matrix

J 3 =
( 0 −i 0

i 0 0
0 0 0

)
(B.5)

is called the generator of rotations about the x3 axis and I is the unit 3×3 matrix.
To build up a rotation through a finite angle α, we can rotate N times through the
angle α/N , which is very small when N is very large. The identity

lim
N→∞

(
I + i

α

N
J 3
)N = exp(iαJ 3) (B.6)
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shows that R3(α) ought to be equal to exp(iαJ 3). Readers should find it
instructive to verify this explicitly by working out the matrix (J 3)2 and verifying
that the Taylor series

I +
∞∑

n=1

1

n! (iα)
n(J 3)n = I + (cosα − 1)(J 3)2 + i sin αJ 3 (B.7)

does indeed reproduce the matrix R3(α).
For rotations about the x1 and x2 axes, the analogous generator matrices are

J 1 =
( 0 0 0

0 0 −i
0 i 0

)
J 2 =

( 0 0 i
0 0 0
−i 0 0

)
. (B.8)

More generally, we can consider a rotation through an angle α about an axis in
the direction of a unit vector n. The rotation matrix that does this can be written
down by defining a vector of three angles α = (α1, α2, α3), such that α = αn and
the vector of generator matrices J = (J 1,J 2,J 3). Then the desired matrix is

R(α) = exp(iα ·J ). (B.9)

Intuitively, it is fairly obvious that the net effect of two successive rotations,
possibly through different angles and about different axes, is a rotation through
some angle about some axis. It is necessary that this should be so if the collection
of all rotations is to form a group (in particular, if property (i) is to be satisfied).
Thus, given two vector angles α and β, there must exist a third one, γ , such that

exp(iα ·J ) exp(iβ ·J ) = exp(iγ ·J ). (B.10)

If this is to be true, then the matrices J i must have a certain property, which can
be found as follows. Treating the angles αi and β i as small, the left-hand side of
(B.10) can be expanded as a Taylor series, whose first few terms are

I +i(α·J +β ·J )− 1
2

[
(α ·J )2 + 2(α ·J )(β ·J ) + (β ·J )2

]
+. . . . (B.11)

The logarithm of this quantity can be found using the expansion ln(I + X) =
X − 1

2 X2 + . . . and is given by

i(α ·J +β ·J )− 1
2 [α ·J ,β ·J ]+ . . . = i(αi +β i )J i − 1

2α
iβ j [J i ,J j ]+ . . . .

(B.12)
If this is to be expressible as iγ ·J , which is a linear combination of the J i , then
the commutator [J i ,J j ] must be a linear combination of the J i , say

[J i ,J j ] = iCijkJ k . (B.13)

If this is true, then it turns out that all the remaining terms can also be written
as a linear combination of the J i . This argument does not depend on the J i
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being the generators of rotations, so the generators of any Lie group must have
commutation relations of this kind. The coefficients Cijk are called the structure
constants and their numerical values largely determine the properties of the Lie
group in question. Because the left-hand side of (B.13) is a commutator, it is
clear that Cijk = −C jik , and it can be shown that (with a suitable choice of
the generators) Cijk is in fact totally antisymmetric. In the case of rotations, the
commutators are easily worked out from (B.5) and (B.8). We find

[J 1,J 2] = iJ 3 [J 2,J 3] = iJ 1 [J 3,J 1] = iJ 2 (B.14)

which shows that the structure constants of the rotation group are Cijk = εi j k .
For any Lie group, say with generators T a , the collection of all possible linear
combinations of generators αaT a constitutes what is called the Lie algebra. (An
algebra is a vector space, in the general sense discussed in appendix A.3, which
possesses an additional structure, here represented by the fact that the vectors are
matrices with the commutation relations (B.13).)

Objects other than vectors will transform in other ways under rotations.
Consider, for example, a rank-2 tensor T i j . Adapting the general transformation
law (2.19) to our present notation, we see that

T i ′ j ′ = Ri ′ i (α)R j ′ j (α)T i j . (B.15)

If we regard the components T i j as the elements of a 3 × 3 matrix T , then this
can be written as

T ′ = R(α)T RT(α) = R(α)T R−1(α). (B.16)

I have used the fact that R is an orthogonal matrix so that RT = R−1; this is easily
verified for the particular matrix given in (B.3) and I shall discuss the general case
a little further below. On the other hand, we might assemble the nine components
T i j into a column matrix, say T . The new column matrix T ′ resulting from a
rotation must be expressible as

T ′ = R(9)(α)T R(9)(α) = exp
(

iα ·J (9)
)

(B.17)

where R(9) is a 9 ×9 matrix, andJ (9) denotes a set of three 9 ×9 matrices which
obey the same commutation relations (B.14) as the original J .

In general, any set of matrices having the commutation relations (B.13)
appropriate to a particular Lie group is said to constitute a representation of
the Lie algebra and these matrices generate the transformations of some kind of
tensor. In much of the physics literature, the tensor which transforms using a
particular representation of the generators is also referred to as the representation.
In many instances, two representations differ from each other in so trivial a way
that they may be regarded as equivalent. Consider, for example the column matrix

r̄ = Sr =
 (x1 − ix2)/

√
2

x3

−(x1 + ix2)/
√

2

 S =
 1/

√
2 −i/

√
2 0

0 0 1

−1/
√

2 −i/
√

2 0

 . (B.18)
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My reason for choosing this particular matrix S will become apparent later, but it
is clear that r and r̄ contain exactly the same information: they differ only in the
way this information is distributed between the elements of the matrix. Under a
rotation, we have

r̄ ′ = Sr ′ = S R(α)r = S R(α)S−1 r̄ = R̄(α)r̄ (B.19)

where R̄(α) = S R(α)S−1. In this case, the inverse matrix is

S−1 =
 1/

√
2 0 −1/

√
2

i/
√

2 0 i/
√

2

0 1 0

 . (B.20)

A little thought will show that the new rotation matrix can be written as R̄(α) =
exp(iα · J̄ ) with generator matrices

J̄ i = SJ i S−1. (B.21)

The two sets of generators are said to be related by a similarity transformation
and two representations which are related by a similarity transformation (where S
may be any matrix whose inverse is well defined) are said to be equivalent. It is
not hard to see that if J i are any matrices with the commutation relations (B.13),
then the matrices SJ i S−1 have the same commutation relations.

Rotations also affect functions of the coordinates, such as the wavefunctions
for quantum-mechanical particles. From the passive point of view, a scalar
function ψ(r) will be expressed in a rotated coordinate system by a new function
ψ ′(r ′), such that ψ ′(r ′) = ψ(r) when r and r ′ are the old and new coordinates of
the same point. If we rewrite this as ψ ′(r ′) = ψ(R−1 r ′), then r ′ is just a dummy
variable, and we can drop the prime. If α is infinitesimal in (B.1), then we can use
a Taylor series to express the transformation as

ψ ′(x1, x2, x3) = ψ(x1 − αx2, x2 + αx1, x3)

= [1 + iαJ 3]ψ(x1, x2, x3) (B.22)

where the generator is now the differential operator

J 3 = −i

(
x1 ∂

∂x2
− x2 ∂

∂x1

)
. (B.23)

This, together with the analogous generators of rotations about the x2 and x3

axes can be summarized as J i = −iεi j k x j∂/∂xk . We should not be surprised
to find that they satisfy the commutation relations (B.14) and thus furnish a
representation of the Lie algebra.

Some degree of order can be imposed upon the vast collection of possible
representations of a given group by the idea of an irreducible representation.
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Consider, for example, a rank-2 tensor whose transformation law is (B.16) or
(B.17). Its components can be split into three sets by defining

T0 = T ii T i j
S = 1

2

(
T i j + T j i

)
− 1

3 T kkδi j T i j
A = 1

2

(
T i j − T j i

)
.

(B.24)
Of these three tensors, T0, the trace of the matrix T , is a scalar, TS is a symmetric,
traceless tensor, with five independent components and TA is an antisymmetric
tensor with three independent components. Together, they account for the nine
degrees of freedom in T i j , but under a rotation they transform independently. That
is to say, the antisymmetric part of T ′ is a rearrangement of the antisymmetric part
of T and so on. In forming the nine-component column matrix T , we can choose
to list first T0, then the components of TA and finally those of TS. Then one of the
generators J (9) will have the block-diagonal form

J (9) =
(
J (1) 0 0

0 J (3) 0
0 0 J (5)

)
. (B.25)

Since T0 is a scalar, unchanged by the rotation, the three 1 × 1 matrices J (1)

are equal to 0. They satisfy the commutation relations, but in a trivial way, and
constitute what is called an ‘unfaithful’ representation. Neither the 3 ×3 matrices
J

(3) nor the 5 × 5 matrices J (5) can be further decomposed in the same way.
They are said to constitute irreducible representations of the rotation group, while
theJ (9) constitute a reducible representation. In particular, the tensor T might be
the ‘direct product’ of two vectors, say u and v, which means that its components
are T i j = uiv j . The fact that it can be decomposed into irreducible tensors as in
(B.24) might then be expressed as

3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 (B.26)

though many variants of this kind of symbolism are to be found in the literature.
Systematic methods for obtaining such decompositions are described in the books
mentioned above.

In the case of rotations, it is fairly clear that the three generators can be
assembled into a vector of matrices, for which I have used the suggestive bold-
face notation J , which ought to transform in the same way as the position
vector r under rotations. To make this explicit, consider a passive rotation of
the coordinate axes through an angle β, so that a position vector has components
r relative to the old axes and r̃ relative to the new ones, with r̃ = R(β)r . Let
us rotate this vector through an angle, and about an axis, specified by a vector
which has components α relative to the old axes, and therefore has components
α̃ = R(β)α relative to the new ones. The rotated vector has components R(α)r
relative to the old axes and R(̃α)̃r relative to the new ones, so we have

R(̃α)̃r = R(β)R(α)r = R(β)R(α)R−1(β )̃r. (B.27)
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This must be true for any vector r̃ so, taking α to be infinitesimal, we find

α̃ ·J = R(β)α ·J R−1(β). (B.28)

The components of α̃ are α̃ j = R ji (β)αi , so we get

R(β)J i R−1(β) = R ji (β)J j = Rij (−β)J j . (B.29)

The expression on the right-hand side rearranges the generators J i in the same
way that a rotation rearranges the components of a vector. By taking β to be
infinitesimal, we obtain the commutation relation

[J i ,J j ] =
(
J j
)ik
J k (B.30)

where
(
J j
)ik

means the ikth element of the matrix J j . To agree with (B.14), we

must have
(
J j
)ik = iεi j k and this does indeed reproduce the matrices (B.5) and

(B.8). We see that there is a special representation, which transforms both vectors
and the generators themselves, in which the generator matrices can be constructed
from the structure constants. The same is true for any Lie group and the special
representation is called the adjoint representation. It is discussed from a slightly
different point of view in chapter 8 (see the discussion of (8.31) and exercise 8.4).

In quantum mechanics, the operators which represent the Cartesian
components of angular momentum are defined in terms of the rotation generators
as Ĵ i = ~Ĵ i . This means that the Ĵ i are operators in the Hilbert space of state
vectors which satisfy the commutation relations

[ Ĵ i , Ĵ j ] = i~εi j k Ĵ k . (B.31)

The transformations of operators associated with other physical quantities are
given by expressions similar to (B.29). For example, the state vectors representing
states of a single particle with momenta p and R(α) p are related by

exp

(
i

~
α · Ĵ

)
| p〉 = |R(α) p〉. (B.32)

Acting on each side with the momentum operator p̂, we find

p̂i exp

(
i

~
α · Ĵ

)
| p〉 = R(α)i j p j |R(α) p〉

= R(α)i j exp

(
i

~
α · Ĵ

)
p j | p〉

= R(α)i j exp

(
i

~
α · Ĵ

)
p̂ j | p〉 (B.33)

and thus

exp

(
− i

~
α · Ĵ

)
p̂i exp

(
i

~
α · Ĵ

)
= Rij (α) p̂ j . (B.34)
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By taking α to be infinitesimal, we find the commutation relation

[ p̂i , Ĵ j ] = i~εi j k p̂k . (B.35)

If the particle’s angular momentum arises purely from its orbital motion, we
should have

Ĵ = x̂ × p̂ or Ĵ i = εi j k x̂ j p̂k (B.36)

and readers may easily check that the commutators (B.31) and (B.35) are
consistent with the basic canonical commutator (5.38). In the remainder of this
appendix, I deal only with quantum operators, and will once more omit the
circumflex.

Quite often, we need to know the eigenvalues and eigenstates of the angular
momentum operators. These fall into multiplets corresponding to the irreducible
representations of the rotation group. Similarly, the multiplets of particles
encountered in theories with non-Abelian gauge symmetries correspond to the
irreducible representations of the appropriate symmetry group. As we learned in
chapter 5, only operators which commute with each other can have simultaneous
eigenstates. According to (B.31), no two of the rotation generators commute with
each other, so we look for eigenstates of just one of them. Conventionally, we
use J 3, and the x3 axis singled out in this way is sometimes referred to as the
spin quantization axis. This axis is singled out only by the way in which we
choose to describe a system, and has no physical meaning. On the other hand,
if a special direction in space is singled out by physical circumstances, such as
an external magnetic or electric field applied to the system of interest, then it is
usually convenient to choose this direction as the quantization axis. Although
no two of the J i commute with each other, there is another operator, namely
J2 = (J 1)2 + (J 2)2 + (J 3)2, which commutes with all of them. In general,
an operator which commutes with all the generators is called a Casimir operator
(after H Casimir). The rotation group has only one Casimir operator, but other
groups may have several. Each irreducible representation corresponds to a definite
value of every Casimir operator.

The eigenvalues and eigenvectors of J2 and J 3 can be found by the same
method that we used in chapter 5 to find the energy levels of the harmonic
oscillator. The two operators

J± = J 1 ± iJ 2 (B.37)

have the commutation relations

[J+, J−] = 2~J 3 (B.38)

[ J±, J 3 ] = ∓ ~J±. (B.39)

Comparing (B.39) with (5.60) and (5.61) we see that J+ acts as a raising operator
for the eigenvalue of J 3, while J− acts as a lowering operator. The operator
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J2, representing the square of the total angular momentum, can be expressed by
means of (B.38) as

J2 = J+ J− + J 3(J 3 − ~) = J− J+ + J 3(J 3 + ~) (B.40)

and for a given value of J2, there must be a maximum value of J 3, say j~. We
look, then, for states | j,m〉, such that J 3| j,m〉 = m~| j,m〉. The state | j, j〉,
in which m has its maximum value of j , has the property J+| j, j〉 = 0 and
the second expression in (B.40) shows that the eigenvalue of J2 is j ( j + 1)~2.
Similarly, m has a minimum value, say mmin, for which J−| j,mmin〉 = 0, and we
deduce from the first equality in (B.40) that mmin = − j . We thus find multiplets,
each corresponding to a definite value of j , within which m takes values ranging
from − j to j in integer steps. Each multiplet contains (2 j + 1) states, so j must
be either an integer or a half-odd-integer.

In the case of orbital angular momentum, the operators (B.36) can be realized
as differential operators that act on wavefunctions. The operators J i are

J i = −i~εi j k x j∂/∂xk (B.41)

(see (B.23) and the following discussion). By solving the equations

J 3ψ jm(x) = m~ψ jm(x) and J2ψ jm(x) = j ( j + 1)~2ψ jm(x) (B.42)

one finds that only integer values of j and m are allowed. In the case j = 1, the
eigenfunctions are given by

ψ11(x) ∝ (x1 + ix2) ψ10(x) ∝ x3 ψ1 −1(x) ∝ (x1 − ix2). (B.43)

These are more usually expressed in polar coordinates in terms of the spherical
harmonics Y jm(θ, φ), but it is interesting to observe that these eigenfunctions are
just the coordinates introduced in (B.18). Correspondingly, the generator matrices
defined in (B.21) are given by

J̄ + = −√
2

( 0 1 0
0 0 1
0 0 0

)
J̄ − = −√

2

( 0 0 0
1 0 0
0 1 0

)

J̄ 3 =
( 1 0 0

0 0 0
0 0 −1

)
. (B.44)

Evidently, using this complex coordinate basis, the generator J̄ 3 is diagonal; its
diagonal elements are the eigenvalues m = 1, 0,−1 and its eigenvectors | j,m〉
are

|1, 1〉 =
( 1

0
0

)
|1, 0〉 =

( 0
1
0

)
|1,−1〉 =

( 0
0
1

)
. (B.45)
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The action of J̄ ± on these eigenvectors is easily checked. It is apparent that
both the position vector r and the set of eigenfunctions (B.43) are manifestations
of the j = 1 representation of the rotation group, and I leave it as an exercise
for interested readers to explore exactly how this equivalence works. The five
eigenfunctions ψ2 m(x) for m = −2, . . . , 2 correspond in a similar way to the five
independent components of the traceless, symmetric part of the tensor T i j = xi x j

(see equation (B.24)).
In non-relativistic quantum mechanics, we do not know a priori whether

the half-odd-integer values of j have any relevance to physics. At any rate, they
cannot describe orbital angular momentum. As it turns out, they are relevant for
describing the intrinsic angular momentum or spin of certain particles, the most
familiar of which are electrons, protons and neutrons, for which (using s for spin
in place of j ) s = 1

2 . It is customary to describe spin in the non-relativistic theory
by using a two-component wavefunction

ψ(x) =
(
ψ+(x)
ψ−(x)

)
(B.46)

so that |ψ+(x)|2 is the probability density for finding the particle near x with a
spin component of + 1

2~ along the quantization axis, and similarly for ψ−(x). The
operator s3 must be a diagonal 2×2 matrix with eigenvalues ± 1

2~, and in fact the
operators for the three spin components are si = 1

2~σ
i , where σ i are the Pauli

matrices shown in (7.28). Readers may readily verify that these matrices obey the
commutation relations (B.31). The somewhat deeper understanding of spin that
arises from the relativistic theory is discussed in chapter 7.

The existence of spin- 1
2 particles requires us to enlarge our view of the

rotation group. According to the general rule (B.9), the matrix U(α) which
rearranges the components of a spin- 1

2 wavefunction under a rotation is

U(α) = exp(iα · s/~) = exp( 1
2 iα · σ ). (B.47)

Now, the square of each σ i is the unit 2 × 2 matrix and it is straightforward to
show from a Taylor series similar to (B.7) that

U(α) = cos( 1
2α) + i sin( 1

2α)n · σ . (B.48)

Evidently, for a rotation through an angle of 2π , we get U = −1, whereas the
rotation of a vector through this angle using R(α) obviously leaves the vector
unchanged. For spin- 1

2 wavefunctions, any rotation angle between 0 and 4π leads
to a distinct transformation. A rotation through an angle of α+2π leaves the spin
pointing in the same direction as a rotation through the angle α, but changes the
sign of the wavefunction. Before discussing this further, it will be useful to know
a little about the classification of Lie groups and their Lie algebras.

Mathematicians have achieved a complete classification of all the Lie
groups. This is too complicated an enterprise for me to enter fully into it
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here, but one important ingredient is the question of what is left unchanged by
the transformations that constitute the group. In the case of rotations of a 3-
dimensional position vector, the length of a vector, |r|2 = rTr is unchanged.
This means that

r ′Tr ′ = rT RT(α)R(α)r = rTr (B.49)

for which we require R(α) to be an orthogonal matrix, RT(α) = R−1(α). The
group consisting of all real 3 × 3 orthogonal matrices is the orthogonal group
O(3), though we have seen that it can be represented by matrices of other sizes
as well. However, not all orthogonal matrices can be interpreted as rotations. For
example, the matrix ( 1 0 0

0 −1 0
0 0 1

)
(B.50)

is an orthogonal matrix which reverses one component of a vector—an effect that
cannot be achieved by a rotation. The rotations actually constitute the special
orthogonal group SO(3) of 3 × 3 orthogonal matrices whose determinants are
equal to 1. More generally, by considering real N × N orthogonal matrices, we
arrive at the groups O(N) and SO(N).

Lorentz transformations of a 4-vector uµ in Minkowski spacetime, uµ′ =
�

µ′
µuµ, leave the scalar product uµuµ unchanged. In the notation we are using

here, we can write this scalar product as uTηu, where η is the matrix (2.8), and
we see that the matrix � must satisfy the condition

�Tη� = η. (B.51)

These matrices constitute the group O(3,1), or SO(3,1) if we restrict ourselves to
matrices of unit determinant. More generally, we could substitute for η a diagonal
(p + q) × (p + q) matrix with p of its diagonal elements equal to +1 and the
remaining q elements equal to -1. To be definite, we take p ≥ q; however the
condition (B.51) is clearly the same if we replace η with −η, so we could also
take p negative elements and q positive ones. Then the matrices � constitute the
group O(p, q) or SO(p, q).

In quantum mechanics, a change of basis in the Hilbert space of state
vectors is a unitary transformation (see exercise 5.6). To be definite, consider
a wavefunction ψ such as (B.46) which is a complex column matrix with N
components. In order to preserve the probabilistic interpretation, a transformed
wavefunction ψ ′ = Uψ must satisfy

ψ ′†ψ ′ = ψ†U†Uψ = ψ†ψ (B.52)

and U must be a unitary matrix, U† = U−1. The set of unitary N × N matrices
constitutes the group U(N), or SU(N) if we restrict them to have determinant
equal to 1.
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There are several other variations on the same theme. For example, if we
replace η in (B.51) with the matrix (3.100) we arrive at the symplectic groups
Sp(N).

It might seem that only the unitary groups U(N) and SU(N) are relevant to
quantum-mechanical systems, but this is not so. What is necessary for a quantum-
mechanical symmetry group is that at least some of its representations should be
unitary, which means that the transformation matrices of these representations are
unitary in addition to having the properties that specify the group. In the case of
O(N), all the representations are unitary, because a real orthogonal matrix is a
unitary matrix. However, the matrices (B.48), while they are unitary, are not real.
In fact, the half-odd-integer representations of the rotation group do not belong
to the group SO(3)—they belong to SU(2). It happens that the commutation
relations of the generators of SO(3) and SU(2) are identical. The largest group
with these commutations, called the covering group, is SU(2), which must be
regarded as the full rotation group if we wish to include the half-odd-integer
representations, as we must in any situation involving spin- 1

2 particles.



Appendix C

Natural Units

When we deal with everyday physical situations, it is convenient to use the SI
system of units, based upon the metre as a unit of length, the second as a unit
of time and the kilogram as a unit of mass. For doing fundamental physics, it is
usually much more convenient to use a system of units, known as natural units, in
which the constants ~ and c are both equal to 1. Since three basic units need to be
defined, this leaves us with one unit still to be chosen. In experiments which study
the properties of fundamental particles, the quantity that is most easily controlled
is the energy of a particle which has been accelerated by means of electromagnetic
fields and whose charge is some multiple of the fundamental charge e, so a
convenient choice for the remaining unit is some multiple of the electron-volt.
To be definite, let us choose the MeV (106eV), which is approximately twice
the rest energy of an electron. The conversion factors which allow us to change
between SI and natural units are:

1 MeV = 1.602 176 462 × 10−13 J

~ = 1.054 571 596 × 10−34 J s = 6.582 118 89 × 10−22 MeV s

c = 2.997 924 58 × 108 m s−1

~c = 1.973 269 602 × 10−13 MeV m.

Thus, for example, if t (s) is a time interval measured in seconds, then
t (MeV−1) = t (s)/~ is the equivalent interval in natural units, where the unit
of time is MeV−1. Some useful conversions are:

time: t(s) = 6.582 118 89 × 10−22 t (MeV−1)

distance: l(m) = 1.973 269 6 × 10−13 l(MeV−1)

mass: m(kg) = 1.782 661 73 × 10−30 m(MeV).

From a theoretical point of view, the use of natural units is more than a matter
of convenience: it embodies much of our understanding of the way the world is.
If, for example, we measure the speed of sound in a particular material, it makes

540
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sense to ask why this speed has the particular value we measure. We can set
about calculating it in terms of the density and elastic modulus of the material
and these in turn depend on the masses of its constituent atoms and the forces that
act on them. However, it makes no sense to ask the same question of the speed of
light. According to the theories of relativity, the metrical structure of space and
time implies that time intervals and distances are really things of the same kind,
and there is no fundamental reason for measuring them in different units. The
reason for the appearance of a fundamental ‘velocity’ c is just that we traditionally
measure these two quantities relative to two different standards. The value c = 1
is, in every sense of the word, the natural value. The number 2.99 . . . × 108

does not represent the value of any genuine physical quantity. It is properly
thought of as being merely a conversion factor that relates our procedures for
calibrating rulers and clocks. (Whether electromagnetic radiation always travels
through empty space with precisely this speed may be another matter, but all the
indications are that it does.) There is, of course, a good reason for our using
different standards for measurements of time and distance intervals. It is that
our conscious experiences of these quantities are of quite different kinds. In the
equations of theoretical physics, this obvious difference is represented by nothing
more than the minus signs in (2.8). This leaves, in my view, deep unresolved
questions about the relationship between the universe as described by physics and
the actual perceptions of sentient beings such as physicists.

In a somewhat similar way, quantum theory tells us that the notions of
energy and momentum are essentially equivalent to those of frequency and
inverse wavelength. At an elementary level, this equivalence is manifest in
the de Broglie relations (5.1) and (5.2). More fundamentally, it arises from
the canonical commutation relations and the role of the energy and momentum
operators as the generators of spacetime translations. The real significance of
Planck’s constant is not that, for example, the magnitude of the right-hand side
of (5.38) is 1.054 . . . × 10−34 J s, but simply that it is not zero. The fact that this
commutator is non-zero means that there is a fundamental relationship between
momenta and intervals of distance, and there is therefore no fundamental reason
for measuring them in independent units. Thus, the natural way of measuring
momentum is as an inverse length, and the constant ~ is a conversion factor
which translates an inverse length into our traditional units of mass × velocity.
Even though momentum is not something we perceive directly, it is fair to say
that the notion of momentum as an inverse distance does not correspond in an
obvious way to our ordinary experience of the behaviour of physical objects.
As with time and distance, therefore, there is a good reason for our traditional
momentum units. The fact that momentum does not ordinarily appear to us as an
inverse wavelength is, in my view, one of the deep unresolved mysteries of the
interpretation of quantum theory. Whether this mystery is also bound up with the
place of sentient beings in the physical world, I am not sure.

From a theoretical point of view, the SI system of units treats electromagnetic
quantities in a curious way. In my opinion, this creates deep mysteries where
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none actually exist! In a vacuum, the electrostatic potential energy of, say, two
electrons treated as classical particles a distance r apart is

V (r) = e2/4πε0r

where the quantity ε0 = 8.854 187 . . .× 10−12 F m−1 is called the permittivity of
free space. The physical content of this is that the potential energy is proportional
to 1/r , with a constant of proportionality equal to e2/4πε0. This quantity,
which measures the strength of electrical forces clearly has the dimensions of
(energy × distance) and, in natural units, is equal to the fine structure constant

α = e2/4πε0~c = 7.297 352 533 × 10−3 ≈ 1/137

which is dimensionless. The factor of 4π in the denominator has a geometrical
significance (see equation (9.84)), being the surface area of a unit sphere, but
the constant ε0 is merely a conversion factor which relates the SI unit of charge,
the Coulomb, to the units of energy and distance. It cannot be emphasized too
strongly that ε0 does not refer to any physical property of the vacuum. Similarly,
magnetic forces involve a quantity µ0, called the permeability of free space,
whose value is defined to be 4π × 10−7 H m−1. Since its value is defined, µ0
also cannot refer to any physical property of the vacuum and it too is no more
than a conversion factor. The product ε0µ0 is equal to 1/c2 which, as we have
seen, is also a conversion factor in the relativistic view of the world. If, when
dealing with electromagnetism in SI units, we were to measure all charges in
units of e/

√
ε0, then only the constant c would ever appear. The reason why c

appears is that the magnetic field generated by a moving charge is obtained by a
Lorentz transformation of the electric field in its rest frame and, if the velocity of
the charge is v, depends on v/c.

There is, therefore, no real need for an independent unit of electric charge.
Classically, the strength of electromagnetic forces involving an SI charge q is
measured in purely mechanical units by q2/ε0. Quantum-mechanically, the
strength of electromagnetic forces between fundamental particles is measured by
the dimensionless number α, although a proper characterization of this strength
requires the running coupling constant discussed in chapter 9.

It might be wondered whether some third fundamental constant, in addition
to ~ and c, should be used to define a system of natural units in which no arbitrary
choice of a third unit would be called for. One possibility would be to take the
mass of some fundamental particle as a basic unit. The trouble here is that there
are many particles to choose from. At present, we do not properly understand
the origin of particle masses and there is no good reason for regarding, say,
the electron or muon as especially fundamental. It is quite possible to imagine
a universe in which, although ~ and c had the same significance as in ours,
there were no electrons or muons. The only serious candidate for a third truly
fundamental constant is Newton’s gravitational constant G. By using ~, c and G,
we can construct three fundamental units of mass, length and time, which are the
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Planck units

Planck time: (G~c−5)1/2 = 5.389 × 10−44 s

Planck length: (G~c−3)1/2 = 1.615 × 10−35 m

Planck mass: (~c/G)1/2 = 2.176 × 10−8 kg.

It is often also useful to define the Planck energy (~c5/G)1/2 = 1.22×1019 GeV.
Unfortunately, it is not quite clear whether G has the same fundamental status
as ~ and c. It appears, indeed, to be more like e, in that it measures the
strength of gravitational forces. Whereas ~ and c are merely conversion factors, it
seems possible to imagine that electromagnetism and gravity could have been
either weaker or stronger than they actually are, and that in that sense e and
G measure genuine physical properties of our particular world. In any system
of units with ~ = c = 1, e is properly measured by the dimensionless fine-
structure constant (the strengths of the weak and strong interactions are measured
by similar dimensionless constants) and cannot provide a third basic unit. G, on
the other hand, cannot be combined with ~ and c to form a dimensionless measure
of the strength of gravity. This fact, as discussed in chapter 12, is symptomatic
of the difficulties we experience in trying to reconcile gravity with quantum
mechanics, and might be an indication that G is not as fundamental as it appears.
According to string theory (see chapter 15), the gravitational constant apparent to
us is determined by a fundamental string tension α′, through relations which also
involve gauge couplings and parameters which characterize the compactification
of a 10- or 11-dimensional spacetime.



Appendix D

Scattering Cross-Sections and Particle
Decay Rates

When analyzing the results of a high-energy scattering experiment, we typically
consider an initial state containing two particles, with 4-momenta k1 and k2, and
wish to know the probability of obtaining a given final state containing, say, N
particles with momenta k ′

1, . . . , k ′
N . Actually, the probability of a final state with

exactly these momenta is generally zero, and we ask instead for the probability
that the first final-state particle has its 3-momentum in the range d3k ′

1 near k′
1 and

so on. These probabilities are conventionally expressed in terms of cross-sections,
which can be understood picturesquely in the following way. We consider an
incident particle, number 1, heading in the general direction of a stationary target
particle, number 2. In the plane containing the target particle and perpendicular to
the momentum of the incident particle, we draw an annulus surrounding the target
particle of area dσ , and imagine that any incident particle that passes through this
annulus will give rise to the specified final state. The greater the probability of this
event, the larger is the cross-section dσ . This is not what actually happens—the
picture simply gives a way of quantifying the probability in the following way.
Suppose we have a beam of incident particles with a flux j equal to the number of
particles crossing a unit cross-sectional area per unit time and a target containing
n particles per unit volume. The number of scattering events per unit time per unit
volume of the target is given by

number of events/unit time/unit volume = jn dσ. (D.1)

Regardless of our simple picture, this defines the differential cross-section dσ .
The quantities we can attempt to calculate theoretically are S-matrix

elements of the form 〈k ′
1, . . . , k ′

N ; out|k1, k2; in〉. Since energy and momentum
are conserved, this matrix element is proportional to δ(Pf − Pi), where Pi and Pf
are the total 4-momenta of the initial and final states. To be specific, we write it
as

〈k ′
1, . . . , k ′

N ; out|k1, k2; in〉 = (2π)4δ(Pf − Pi)Tfi. (D.2)
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According to (5.9), the probability we want is proportional to the square
magnitude of this quantity, which involves the square of the δ function. In one
of these two δ functions, we are entitled to set the argument to zero. This gives
an infinite value, which can be interpreted in the following way. Using the
representation (A.11), but remembering that the argument of our function is a
4-momentum, we have

(2π)4δ(0) =
∫

d3x dt . (D.3)

If we imagine observing a large target volume V for a long time T , we can
interpret this spacetime integral as the product V T .

We must now adjust the basic probability formula (5.9) to take into account
that our final-particle states are normalized according to (7.18) rather than (5.12).
Consider, therefore, a single-particle state |�〉 such that 〈�|�〉 = 1. For a particle
in this state, the probability of finding it to have a 3-momentum in the range d3k
near k must be of the form

P(k|�)d3k = |〈k|�〉|2g(k)d3k = 〈�|k〉〈k|�〉g(k)d3k (D.4)

where the function g(k) is chosen to ensure that
∫

P(k|�)d3k = 1. This implies
that ∫

d3k g(k)|k〉〈k| = Î (D.5)

where Î is the identity operator (see exercise 5.4). By acting with this operator
on the vector |k ′〉 and using (7.18), it is straightforward to see that g(k) =
[(2π)32ω(k)]−1.

To calculate the average number of scattering events per unit time per unit
volume which give rise to final states in the range that we specified at the outset,
we thus take the squared magnitude of the matrix element (D.2), divide by V T
(which equals (2π)4δ(0)) and multiply by the factor

dρf = Cf

N∏
i=1

d3k ′
i

(2π)32ω(k′
i )
. (D.6)

This ‘phase space’ factor includes a factor of g(k)d3k for each final-state particle.
The number Cf is included to account for any sets of identical particles in the final
state: for any set of n identical particles, Cf includes a factor of 1/n!, because
rearrangements of these particles do not count as distinct states. The quantity we
arrive at in this way is the scattering rate per unit volume defined in (D.1)

jn dσ = (2π)4δ(Pf − Pi)|Tfi|2dρf (D.7)

provided that j and n are identified in accordance with the normalization of the
initial particle states. As we saw in §7.2, this normalization implies that there are
2ω(k) particles per unit volume. The target particles with mass m2 are at rest, so
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n = 2m2, and if the incident particles are travelling with a speed v, then their flux
is j = 2ω(k1)v. Thus, our result for the cross-section is

dσ = 1

4Q
(2π)4δ(Pf − Pi)|Tfi|2dρf (D.8)

where Q = ω(k1)m2v. This expression for Q is valid in the rest frame of
the target particles, where the initial 4-momenta are k1 = (ω(k1), k1) and
k2 = (m2, 0). It is easily shown that v = |k1|/ω(k1) and that

Q =
[
(k1 · k2)

2 − m2
1m2

2

]1/2
. (D.9)

This is a Lorentz scalar, expressed in terms of the 4-vector momenta, and is
therefore valid in any frame.

Although the quantities Tfi, dρf and Q all depend on the normalization
of particle states, the differential cross-section dσ does not depend on this
normalization, and can be compared directly with a cross-section derived from
an experimental situation in which the density of target particles and the flux of
incident particles may be quite different. In practice, it may be neither practical
nor desirable to determine the energy, momentum and direction of every particle
emerging from a high-energy collision. In the study of deep inelastic scattering
(see §12.4), for example, one may ask for the probability that the energy of the
emerging electron is between E ′ and E ′ + dE ′ and that its direction lies in an
element of solid angle d� = sin θ dθ dφ containing the direction specified by the
polar angles θ and φ. In this case, we can write the phase-space factor in the
form dρf = ρ̃f(E ′, θ, φ, {Ki })dE ′ d�

∏
i dKi , where the variables Ki account

for all the unspecified momentum components of other final-state particles. The
probability of finding the electron with its momentum in the specified range,
regardless of the states of the other particles, is then measured by the differential
cross-section

dσ

d� dE ′ =
∫

1

4Q
(2π)4δ(Pf − Pi)|Tfi|2ρ̃f

∏
i

dKi . (D.10)

If some of the particles have spin, then the matrix element Tfi may depend
on their spin polarization state. Depending on whether the initial particles are
prepared with a definite polarization, and whether the polarizations of the final-
state particles are determined by a given set of detectors, we may want to sum over
the polarizations of final-state particles (so as to account for all the possibilities)
and/or to average over those of the initial particles (so as to account for our
ignorance of these details of the initial state).

In the same way, we can consider an initial state containing a single unstable
particle, say of mass m, and work out the probability per unit time d� for it to
decay into a final state specified as above. The result, valid in the rest frame of
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the decaying particle, is

d� = 1

2m
(2π)4δ(Pf − Pi)|Tfi|2dρf. (D.11)

By summing over all the decay modes (that is, over all the possible combinations
of particles that might be produced) and integrating over the momenta of the
emerging particles, we get the total decay probability per unit time �, and the
lifetime of the particle is 1/�.
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Rindler wedge, 173–6
Robertson–Walker metric, 380–2
running coupling constant, 229–30,

285–6, 317, 341
in grand unified theories, 323–5

Rutherford scattering, 227

S-matrix, 202

unitarity of, 202, 300
Saha equation, 265, 404
scalar, 24
scale factor (of Robertson–Walker

metric), 380
scale invariance, 282, 454
scaling

at critical points, 293
Bjorken, 312

scattering operator, 202
scattering states, 126
Schrödinger equation, 111

time-independent, 126
Schrödinger picture, 117
Schwarzschild metric, 93
Schwarzschild radius, 93, 102
second quantization, 130–9,
self-adjoint operator, 115
self-energy, 218
sine–Gordon model, 355–9, 363
slow roll approximation, 415
solar neutrino problem, 345
soliton, 293, 346
spacetime symmetries, 48–52
spin, 146, 151, 537
spin connection, 171
spin polarization, covariant

description of, 155
spin quantization axis, 151, 535
spinor, 148
spin-statistics theorem, 131, 158
spontaneous magnetization, 269
spontaneous symmetry breaking,

194, 278, 288–90
standard model of particle physics,

296–319
minimal supersymmetric, 341

standard model of cosmology,
380–406

stationary state, 123
statistics, Fermi–Dirac and

Bose–Einstein, 131
stress–energy–momentum tensor

(stress tensor), 60, 89
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of bosonic string, 433
strings

cosmic, 364, 368
in quantum field theory, 363–4
open and closed, 431
supersymmetric, 485–9

string tension, 363, 432, 480
strong energy condition, 386
structure constants, 188, 531
summation convention, 25
superconductors

coherence length and penetration
depth, 292, 365

Ginzburg–Landau theory, 287–91
type-I and type-II, 368
vortices in, 364–8

superfields, 330
superfluidity, 267–8, 290
supergravity, 196, 342
super-Poincaré algebra, 338
superpotential, 331
superspace, 331
superstring, 485–9
supersymmetry, 328–43
symmetry

and conservation laws, 45–52
restoration at high temperature,

407
spacetime, 48–52
spontaneously broken, 194, 278,

288–90
symplectic 2-form, 76

tachyon, 472
tangent bundle, 74
tangent space, 73
T-duality, 493
temperature, 241–3, 246
tensor, 23–8, 65–6

density, 154, 521
dual, 69
field, 24
metric, 14, 36
product, 66

tetrad, 170
thermodynamic limit, 248, 267–8,

277
thermodynamics, laws of, 245–6
thermodynamic potential, 247
Thirring model, 356
time evolution operator, 117
time-ordered product, 203, 205
time reversal, 154
topological charge, 351
topological defects, 346
topological space, 18
topology, 18
torsion, 36
translation mode, 352
triviality, 230
two-dimensional XY model, 363

unitarity, 202, 300
unitary operator, 116
universality of critical phenomena,

272, 286
universe, age of, 391–2

vacuum manifold, 351
first homotopy group, 368

vacuum polarization, 226–9
vector, 25

axial, 154, 500
contravariant, 25
covariant, 26

vector space, 521–2
vertex operator, 475–7
vierbein and vielbein, 170
Virasoro algebra, 443

quantum, 449–54
virial theorem, 390
virtual particles, 214
vortices, 361–3

W and Z particles, 302–4
masses of, 307

wave mechanics, 108–11
wavefunction, 109, 113
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wavefunction renormalization, 219
weak currents

charged, 298, 301, 306
neutral, 302, 306

weak interactions, 296–301
weak isospin, 193, 302
weak mixing angle, 304, 307–8

for quarks, 313
predicted by grand unified

theories, 323
wedge product, 67
Weinberg angle, see weak mixing

angle

Wess–Zumino model, 329–30
Weyl representation, 160
Weyl spinor, 161
Weyl transformation, 434
white hole, 100–1
Wick rotation, 221, 262, 437
winding number, 360–2
worldsheet, 430–1

Euclidean, 437

Yang–Mills theories, 193
Yukawa potential, 226
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