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Preface

Under certain circumstances, many-body systems behave approximatly like a gas
of weakly interacting collective excitations. Once this happens it is desirable to
replace the original action involving the fundamental fields (electrons, nucleons,
3He, 4He atoms, quarks etc.) by another one in which all these excitations appear
as explicit independent quantum fields. It will turn out that such replacements
can be performed in many different ways without changing the physical content
of the theory. Sometimes, there esists a choice of fields associated with dominant

collective excitations displaying weak residual interactions which can be treated
perturbatively. Then the collective field language greatly simplifies the description
of the physical system.

It is the purpose of this book to discuss a simple technique via Feynman path
integral formulas in which the transformation to collective fields amounts to mere
changes of integration variables in functional integrals. After the transformation,
the path formulation will again be discarded. The resulting field theory is quantized
in the standard fashion and the fundamental quanta directly describe the collective
excitations.

For systems showing plasma type of excitations, a real field depending on one
space and time variable is most convenient to describe all physics. For the opposite
situation in which dominant bound states are formed, a complex field depending
on two space and one or two time coordinates will render th emore ecnonomic
description. Such fields will be called bilocal. If the potential becomes extremely
short range, the bilocal field degenerates into a local field. In the latter case a
classical approximation to the action of a superconducting electron system has been
known for some time: the Ginzburg-Landau equation. The complete bilocal theory
has been studied in elementary-particle physics where it plays a role in the transition
from inobservable quark to observable hadron fields.

The change of integration variables in path integrals will be shown to correspond
to an exact resummation of the perturbation series thereby accounting for phenom-
ena which cannot be described perturbatively. The path formulation has the great
advantage of translating all quantum effects among the fundamental particles com-
pletely into the field language of collective excitations. All radiative corrections may
be computed using only propagators and interaction vertices of the collective fields.
The method presented here is particularly powerful when a system is in a region
where several collective effects becomes simultaneously important. An example is
the electron gas at lower density where ladder graphs gain increasing importance
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with respect to ring graphs thus mixing plasma and pair effects. 3He pair effects are
dominant but plasma effects provide strong corrections.

In Part I of the book we shall illustrate the functional approach by discussing first
conventional systems such as electron gas and superconductors. Also, we investigate
a simple soluble model to understand precisely the mechanism of the functional field
transformations as well as the relation between the Hilbert spaces generated once
from fundamental and once from collective quantum fields.
In Part II we apply the same techniques to superfluid 3He.
In Part III, finally, we illustrate the working of the functional techniques by applying
it to some simple solvabel models.

Berlin, January 1990
H. Kleinert
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Part I

Functional Integral Techniques

1





Introduction

In this book we shall study certain classes of phenomena which occur in systems
of many fermions interacting with each other via two-body forces. These forces are
caused by exchange processes of some more fundamental particles such as photons
or phonons, but this will be of no concern here—the forces will be described by
potentials. Depending on these potentials, the fermion systems exhibit two types
of collective behavior: plasma oscillations and pair condensation. The first type is
found if exchanged fundamental particles generating the potential couple strongly
to virtual fermion-hole states. Examples are plasmons in a degenerate electron gas.
The second type of behavior is found if the forces favor the formation of bound states
between pairs of particles. This is possible only below a certain critical temperature
Tc. Examples are excitons in a semiconductor or Cooper pairs in a superconductor.
In the language of Feynman diagrams, the first type of behavior prevails if ring
diagrams yield dominant contributions. The second type of behavior is generated
by ladder diagrams.

For systems showing plasma type of excitations, real fields depending on space
and time are most convenient to describe the physical phenomena. In the case of
bound states, complex fields containing the two spatial arguments of the constituents
and their common time coordinate render the most ecnonomic description. Such
fields will be called bilocal . In relativistic systems, also the time coordinates may be
different. If the potential has a sufficienly short range, the bilocal field degenerates
into a local field. The most important example for a the latter case is the collective
pair-field theory of superconducting electrons called the Ginzburg-Landau theory.

A bilocal theory has been studied in elementary-particle physics where it plays a
role in the transition from inobservable quark to observable hadron fields. The new
basic field quanta of the converted theory are no longer the fundamental particles
but the set of all quark-antiquark meson bound states which are obtained by solving
a Bethe-Salpeter bound-state equation in the ladder approximation. They are called
bare mesons . The theory of mesons has its own Feynman graphs, in which every line
represents an entire ladder of fermion pairs. Such a formulation can also be given
to quantum electrodynamics of electrons and positrons, where the bare mesons are
positronium atoms [9].
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1
Nonrelativistic Fields

1.1 Free Fields

Consider free nonrelativistic particles, whose energy ε depends on the momentum
p in by some function ε(p). In free space, this has the form ε(p) = p2/2m. For
a particle moving in a periodic solid, the momentum dependence is usually more
complicated. For many purposes it can, however, be approximated by the same
quadratic behavior if the mass is exchanged by a mass parameter called the effective
mass . The action of a free nonrelativistic field describing an ensemble of these
particles reads

A0 =
∫

d3xdtψ∗(x, t) [i∂t − ε(−i∇)]ψ(x, t) (1.1)

By extremizing this, we find the equation of motion

δA0

δψ∗(x, t)
= [i∂t − ε(−i∇)]ψ(x, t) = 0, (1.2)

which coincides with the Schrödinger equation for a single free particle.
By changing the fields in this action into operators and postulating them to

satisfy the harmonic-oscillator commutation rules at each point and equal times

[ψ̂(x, t), ψ̂(x′)] = 0, (1.3)

[ψ̂†(x, t), ψ̂†(x′)] = 0, (1.4)

[ψ̂(x, t), ψ̂†(x′)] = δ(3)(x− x′), (1.5)

the single-particle theory changes into a theory of arbitrarily many identical parti-
cles. There exists a vacuum state |0〉, defined by the condition ψ̂(x, t = 0)|0〉 = 0.
Applying a field operator ψ̂†(x, t = 0) to the vacuum state creates the state of a
single-particle |x〉 ≡ ψ̂(x, t = 0)|0〉 = 0 localized at the point x. By applying any
number of such field operators, we can generate a state with any number of particles
at any place. This Hilbert space is called the Fock space, and the procedure of field
quantization is called second quantization. The usual quantization is ensured by the
correspondence rule p → −i∂ in the single-particle Schrödinder equation and the
action .

4
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Equivalent to the second quantization is another technique in which the thermo-
dynamic partition of the above system is expressed as a functional integral over all
possible fluctuating fields [1, 2]:

Z = N
∫

Dψ∗(x, t)Dψ(x, t) exp {iA[ψ∗, ψ]} , (1.6)

where N is some constant which plays no role in all subsequent discussions. The
functional formulation was found by Feynman by observating that the amplitudes
of diffraction phenomena of light are obtained by summing over the individual am-
plitudes for all paths the light could possible have taken, each of them being a pure
phase depending only on the action of the light particle along the path. In the
general field system (1.33), this principle leads to the alternative formula (1.6).

The functional integral may conveniently be defined the space-time into finer and
finer cubic lattices of size δ with corners at (x, y, z, t) = (i1, i2, i3, i4) δ, introducing
fields at each such points

ψi1i2i3i4 ≡ ψ (xi1 , yi2 , zi3 , ti4)
√
δ
4
, (1.7)

and performing the product of all the integrals at each lattice point, i.e.,

∫

Dψ∗(x, t)Dψ(x, t) ≡
∏

i1i2i3i4
i′
1
i′
2
i′
3
i′
4

∫ ∫ dψ†i1i2i3i4dψi′1i′2i′3i′4√
2πi
√
2πi

. (1.8)

The double integral over complex variables
∫ ∫

dψ∗dψ symbolizes the real integrals

∫ ∞

−∞

∫ ∞

−∞
d

(

ψ + ψ∗√
2

)

d

(

ψ − ψ∗√
2i

)

. (1.9)

This naive definition of path integration is straightforward for Bose fields. If we
want to use the functional technique to describe also the statistical properties of
fermions, some modifications are necessary. Then the fields must be taken to be
anticommuting c-numbers. In mathematics, such objects form a Grassmann algebra
G. If ξ, ξ′ are real elements of G, then

ξξ′ = −ξ′ξ. (1.10)

A trivial consequence of this condition is that the square of each Grassmann element
vanishes, i.e., ξ2 = 0. If ξ = ξ1 + iξ2 is a complex element of G, then ξ2 = −ξ∗ξ =
−2iξ1ξ2 is nonzero, but (ξ∗ξ)2 = (ξξ)2 = 0.

All results to be derived later will make use of only one simple class of integrals
which are a generalization of the elementary Gaussian (or Fresnel) formula for A > 0
[3]:

∫ ∞

−∞

dξ√
2πi

exp
(

i

2
ξAξ

)

= A−1/2. (1.11)
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First, one considers a multidimensional real space (ξ1, . . . , ξk . . .), in which clearly

∏

k

[

∫ ∞

−∞

dξk√
2πi

]

exp

(

i

2

∑

k

ξkAkξk

)

=

[

∏

k

Ak

]−1/2

. (1.12)

Now if Akt is an arbitrary symmetric positive matrix, and the exponent has the form
(i/2)

∑

k,l ξkAklξl, an orthogonal transformation can be used to bring Akl to diagonal
form without changing the measure of integration. Thus an equation like (1.12) is
still valid with the right-hand side denoting the product of eigenvalues of Akl. This
can also be written as

∏

m

[

∫ ∞

−∞

dξm√
2πi

]

exp





i

2

∑

k,l

ξkAklξl



 = [detA]−1/2 . (1.13)

If, more generally, ξ is complex and A hermitian and positive, the result (1.13)
follows separately for the real and for the imaginary part yielding

∏

m

[

∫ dξ∗mdξm√
2πi
√
2πi

]

exp



i
∑

k,l

ξ∗kAklξl



 = [detA]−1 . (1.14)

If the integrals are performed over anticommuting real or complex variables ξ or ξ∗ξ,
the right-hand sides of formulas (1.13) and (1.14(te-2.14)) appear in inverse, i.e., as

[detA]1/2, [detA]1 respectively. This is immediately seen in the complex case. After
bringing the matrix Akl to diagonal form via a unitary transformation, the integral
reads

∫

∏

m

[

dξ∗mdξm√
2πi
√
2πi

]

exp

(

i
∑

n

ξ∗nAnξn

)

=
∏

m

∫ dξ∗mdξm√
2πi
√
2πi

exp (iξm + Amξm) . (1.15)

Expanding the exponentials into a power series leaves only the first two terms since
(ξm + ξm)

2 = 0 thus the integral becomes

∏

m

∫ dξ∗mdξm√
2πi
√
2πi

(1 + iξm + Amξm). (1.16)

But each of these integrals can immediately be performed using the very simple
integration rules of Grassmann algebras

∫ dξ√
2πi

= 0,
∫ dξ√

2πi
ξ = 1,

∫ dξ√
2πi

ξn = 0, n > 1 (1.17)

for real ξ, from which we derive
∫ dξ√

2πi
= 0,

∫ dξ∗√
2πi

dξ√
2πi

iξ∗ξ = 1,

∫ dξ∗√
2πi

dξ√
2πi

(ξ∗ξ)n = 0, n > 1, (1.18)

H. Kleinert, COLLECTIVE QUNATUM FIELDS
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for complex ξ∗, ξ.
Note that these integration rules imply that under a linear change of a Grassmann

integration variable, the integral multiplies by the inverse of the usual Jacobian. If
ξ′ = aξ, then since ξ′ is another Grassmann variable, its integrals have the properties
(1.28):

∫ dξ′√
2πi

= 0,
∫ dξ′√

2πi
ξ′ = 1,

∫ dξ′√
2πi

ξ′n = 0, n > 1. (1.19)

Hence, the measure changes as follows:

∫ dξ′√
2πi

=
1

a

∫ dξ√
2πi

ξ′, (1.20)

in contrast to ordinary integrals where the factor on the right-hand side would be a.
Note that these rules make the linear operation of integration in (1.28) coincide

with the linear operation of differentiation. A function F (ξ) of a real Grassmann
variable ξ, is determined by only two parameters: the zeroth- and the first-order
Taylor coefficients. Indeed, due to the property ξ2 = 0, the Taylor series has only
two terms F (ξ) = F0 + F ′ξ, where F0 = F (0) and

F ′ ≡ dF (ξ)/dξ. (1.21)

But according to (1.28), also the integral yields F ′:

∫ dξ√
2πi

F (ξ) = F ′. (1.22)

As a consequence of the rules (1.28), the right-hand side of (1.16) becomes the
product of eigenvalues Am (apart from an irrelevant factor)

∏

m

Am = detA (1.23)

which is exactly the inverse of the boson result (1.14).
The case of real Fermi fields is slightly more involved since now the hermitian

matrix Akl can no longer be diagonalized by a unitary transformation [i.e., without
changing the measure of integration

∏

m(dξm/
√
2πi)]. However, the integral can be

done after observing that Akl may always be assumed to be antisymmetric. For if
there were any symmetric part, it would cancel in the quadratic form

∑

kl ξkAklξl
due to the anticommutativity of the Grassmann variables. Now, an antisymmetric
hermititan matrix can always be written as A = −iAR where AR is real antisym-
metric. Such a matrix is a standard metric in symplectic spaces and can be brought
to a canonical form C which is zero except for 2× 2 matrices

c = iσ2 =

(

0 1
−1 0

)

(1.24)
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along the diagonal. Here σ2 is the second Pauli matrix. Then A can be written as

A = −iT TCT (1.25)

where the hermitian matrix −iC contains only σ2-matrices along the diagonal. This
matrix Σ2 has a unit determinant so that detT = det1/2(A). Thus, under a linear
transformation of Grassman variables ξ ′k ≡ Tkξl, the measure of integration changes
according to

∏

k

dξk = (detT )
∏

k

dξ′k. (1.26)

This is a direct consequence of the rule (1.20). With the help of the integration rules
(1.28), the Grassmann version of the functional integral (1.13) can now be evaluated
as follows:

∏

m

[

∫ dξm√
2πi

]

exp



i
∑

k,l

ξkAklξl



 (1.27)

= (detT )
∏

m

[

∫ dξ′m√
2πi

]

exp

(

−
∑

kl

ξ′kCklξ
′
l

)

= (detA)1/2
∞
∏

n

[

∫ dξ′2n√
2πi

]

dξ′2n+1√
2πi

(

1 + ξ′2n+1ξ
′
2n

)

= (detA)1/2.

The right-hand side is the inverse of the boson result (1.13).
In order to apply these formulas to fields ψ(x, t) defined on a continuous space-

time, both formulas have to be written in such a way that the limit of infintiely
fine lattice grating δ → 0 can be performed with no problem. For this we recall the
useful matrix identity

[detA]∓1 = exp[i(±iTr logA)] (1.28)

where logA may be expanded in the standard fashion as

logA = log (1 + (A− 1)) = −
∞
∑

n=1

[−(A− 1)]n
1

n
. (1.29)

This formula reduces the calculation of the determinant to a series of matrix mul-
tiplications. But in each of these, the limit δ → 0 is straight-forward. One simply
replaces all sums over lattice indices by integrals over d3xdt, for instance

trA2 =
∑

kl

AklAlk −→ TrA2 =
∫

d3xdtd3x′dt′A(x, t;x′, t′)A(x′, t′,x, t). (1.30)

With this in mind, the field versions of (1.13) and (1.14(te-2.14)) amount to the fol-
lowing functional formulas:

∫

Dϕ(x, t) exp
[

i

2

∫

d3xdtd3x′dt′ϕ(x, t)A(x, t;x′, t′)ϕ(x′, t′)
]

H. Kleinert, COLLECTIVE QUNATUM FIELDS



1.2 Interactions 9

= exp

[

i

(

± i
2
Tr log

{

1
i

}

A

)]

(1.31)

∫

Dψ∗(x, t)Dψ(x, t) exp
[

i
∫

d3xdtd3x′dt′ψ∗(x, t)A(x, t;x′, t′)ψ(x′, t′)
]

= exp [i(±iTr logA)] . (1.32)

Here ϕ, ψ are arbitrary real and complex fields, with the upper sign holding for
bosons, the lower for fermions. The same result is of course true if ϕ and ψ have
several components (describing for example spin) and A is a matrix in the corre-
sponding space.

1.2 Interactions

Consider now a many-fermion system described by an action

A ≡ A0 +Aint =
∫

d3xdtψ∗(x, t) [i∂t − ε(−i∇)]ψ(x, t) (1.33)

−1

2

∫

d3xdtd3x′dt′ψ∗(x′, t′)ψ∗(x, t)V (x, t;x′t′)ψ(x, t)ψ(x′, t′)

with a translationally invariant two-body potential

V (x, t;x′, t′) = V (x− x′, t− t′). (1.34)

In the systems to be treated in this text we shall be concerned with the potential
is, in addition, instantaneous in time

V (x, t;x′, t′) = δ(t− t′)V (x− x′). (1.35)

This property will greatly simplify the discussion.
The fundamental field ψ(x) may describe bosons or fermions. The complete

information on the the physical properties of the system resides in the Green func-
tions. In the operator Heisenberg picture, these are given by the expectation values
of the time-ordered products of the field operators

G (x1, t1, . . . ,xn, tn;xn′ , tn′ , . . . ,x1′ , t1′) (1.36)

= 〈0|T̂
(

ψ̂H(x1, t1) · · · ψ̂H(xn, tn)ψ̂†H(xn′ , tn′) · · · ψ̂†H(x1′ , t1′)
)

|0〉

The time-ordering operator T̂ changes the position of the operators behind it in
such a way that earlier times stand to the right of later times. To achieve the final
ordering, a number of field transmutations are necessary. If F denotes the number
of transmutations of Fermi fields, the final product receibes a sign factor (−1)F .

It is convenient to view all Green functions (1.36) as derivatives of the generating
functional

Z[η∗, η] = 〈0|T̂ exp
{

i
∫

d3xdt
[

ψ̂†H(x, t)η(x, t) + η∗(x, t)ψ̂H(x, t)
]

}

|0〉 (1.37)
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namely

G (x1, t1, . . . ,xn, tn;xn′ , tn′ , . . . ,x1′ , t1′) (1.38)

= (−i)n+n′ δn+n
′
Z[η∗, η]

δη∗(x1, t1) · · · δη∗(xn, tn)δη(xn′ , tn′) · · · δη(x1′ , tn′)

∣

∣

∣

∣

∣

η=η∗≡0

.

Physically, the generating functional describes the amplitude that the vacuum re-
mains a vacuum in spite of the presence of external perturbations.

The calculation of these Green functional is usually performed in the interaction
picture which can be summarized by the operator expression for Z:

Z[η∗, η] = N〈0|T exp
{

iAint[ψ
†, ψ] + i

∫

d3xdt
[

ψ†(x, t)η(x, t) + h.c.
]

}

|0〉. (1.39)

In the interaction picture, the fields ψ(x, t) possess free-field propagators and the
normalization constant N is determined by the condition [which is trivially true for
(1.37)]:

Z[0, 0] = 1. (1.40)

The standard perturbation theory is obtained by expanding exp{iAint} in (1.39)
in a power series and bringing the resulting expression to normal order via Wick’s
expansion technique. The perturbation expansion of (1.39) often serves conveniently
to define an interacting theory. Every term can be pictured graphically and has a
physical interpretation as a virtual process.

Unfortunately, the perturbation series up to a certain order in the coupling con-
stant is unable to describe many important physical phenomena, for example bound
states in the vacuum and collective excitations in many-body systems. Those require
the summation of infinite subsets of diagrams to all orders. In many situations it
is well-known which subsets have to be taken in order to account approximately for
specific effects. What is not so clear is how such lowest approximations can be im-
proved in a systematic manner. The point is that as soon as a selective summation is
performed, the original coupling constant has lost its meaning as an organizer of the
expansion and there is need for a new systematics of diagrams. Such a systematics
will be presented in what follows.

As soon as bound states or collective excitations are formed, it is very suggestive
to use them as new quantum fields rather than the original fundamental particles
ψ. The goal would then to be rewrite the expression (1.39) for Z[η∗, η] in terms of
new fields whose unperturbed propagator has the free energy spectrum of the bound
states or collective excitations and whose Aint describes their mutual interactions.
In the operator form (1.39), however, such changes of fields are hard to conceive.

The ideal theoretical framework for describing a system in terms of the new quan-
tum fields Z[η∗, η] is offered by the above-intoduced functional integral techniques
[1, 2, 3]. In these, changes of fields amount to changes of integration variables, as
we shall see in the sequel.

H. Kleinert, COLLECTIVE QUNATUM FIELDS
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1.3 Functional Formulation

In the functional integral approach, the generating functional (1.37) is given by

Z[η∗, η] = N
∫

Dψ∗(x, t)Dψ(x, t)

× exp
{

iA[ψ∗, ψ] + i
∫

d3xdt [ψ∗(x, t)η(x, t) + c.c.]
}

. (1.41)

It is worth emphasizing that the field ψ(x, t) in the path integral formulation is a
complex number and not an operator. All quantum effects are accounted for by
fluctuations; the path integral includes not only the classical field configurations but
also all classically forbidden ones, i.e., all those which do not run through the valley
of extremal action in the exponent.

Finally, we may include an external source for the fields ϕ, ψ into the integral
and solve by quadratic completion. If this is done in the elementary expressions
(1.12) and (1.14(te-2.14)), we obtain for both bosons and fermions (dropping product
and summation symbols)

∫ ∞

−∞

dξ√
2πi

exp
(

1

2
ξAξ + ijξ

)

=
∫ ∞

−∞

dξ√
2πi

exp
[

i

2

(

ξ + jA−1
)

A
(

ξ + A−1j
)

− i

2
jA−1j

]

(1.42)

∫ dξ∗dξ√
2πi
√
2πi

exp(iξ∗Aξ + ij∗ξ + iξ∗j)

=
∫ dξ∗dξ√

2πi
√
2πi

exp
[

i
(

ξ∗ + j∗A−1
)

A
(

ξ + A−1j
)

− ij∗A−1j
]

. (1.43)

The shift in the integral ξ → ξ + A−1ξ gives no change due to the infinite range of
integration. Hence

∫ ∞

−∞

dξ√
2πi

exp
(

i

2
ξAξ + ijξ

)

=

{

1
i1/2

}

A∓1/2 exp
(

− i
2
jA−1j

)

∫ ∞

−∞

dξ∗dξ√
2πi
√
2πi

exp(iξ∗Aξ + ij∗ξ + iξ∗j) = A∓1 exp(−ij∗A−1j).

(1.44)

A corresponding operation on the functional formulas (1.31) and (1.32) leads to
∫

Dϕ(x, t)e i2
∫

d3xdtd3x′dt′[ϕ(x,t)A(x,t;x′,t′)ϕ(x′,t′)+2j(x,t)δ3(x−x′,t)δ(t−t′)]

= e
i(± i

2
Trlog

{

1
i

}

A)− i
2

∫

d3xdtd3x′dt′j(x,t)A−1(x,t;x′,t′)j(x′,t′)
(1.45)

∫

Dψ∗(x, t)Dψ(x, t)ei
∫

d3xdtd3x′dt′{ψ∗(x,t)A(x,t;x′,t′)ψ(x,t′)+[η∗(x,t)ψ(x)δ3(x−x′)δ(t−t′)+c.c.]}

= ei(±iTrlogA)−i
∫

d3xdtd3x′dtη∗(x,t)A−1(x,t;x′,t′)η(x′,t′). (1.46)

These integration formulas will be needed repeatedly in the remainder of this text.
They are the basis for the treatment of any interacting quatum field theory.
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1.4 Equivalence of Functional and Operator Methods

As an exercise we shall apply (1.45) and (1.46(te-2.24b)) to present a simple proof of
the equivalence of Feynman’s path integral formula (1.41) and the operator version
(1.39(te-2.6)). First we notice that the interaction can be taken outside the integral
or the vacuum expectation value in either formula as

Z[η∗, η] = exp

{

iAint

[

1

i

δ

δη
,
1

i

δ

δη∗

]}

Z0[η
∗, η], (1.47)

where Z0 is the generating functional for the free fields. Thus in Eq. (1.41) there is
only A0 of (1.33(te-2.1)) in the exponent. Since

A0[ψ
∗, ψ] =

∫

dxdtψ∗(x, t) [i∂t − ε(−i∇)]ψ(x, t) (1.48)

the functional integral is of the type (1.46) with a matrix

A(x, t;x′, t′) = [i∂t − ε(−i∇)] δ(3)(x− x′)δ(t− t′). (1.49)

This matrix is the inverse of the free propagator

A(x, t;x′, t′) = iG−10 (x, t;x′, t′) (1.50)

where

G0(x, t;x
′, t′) =

∫ dE

2π

∫ d3p

(2π)4
e−i[E(t−t

′)−p(x−x′)] i

E − ε(p) + iη
.

(1.51)

Inserting this into (1.46), we see that

Z0[η
∗, η] = N exp

[

i
(

±iTr log iG−10

)

−
∫

d3xdtd3x′dt′η∗(x, t)G0(x
′, t′)η(x′, t′)

]

.

We now fix N in accordance with the normalization (1.40) to

N = exp [i (±iTr log iG0)] (1.52)

and arrive at

Z0[η
∗, η] = exp

[

−
∫

d3xdtd3x′dt′η∗(x, t)G0(x, t;x
′, t′)η(x′, t′)

]

. (1.53)

This coincides exactly with what would have been obtained from the operator ex-
pression (1.39) for Z0[η

∗, η] (i.e., without Aint).
Indeed, according to Wick’s theorem [2, 3, 4], any time ordered product can

be expanded as a sum of normal products with all possible contractions taken via
Feynman propagators. The formula for an arbitrary functional of free fields ψ, ψ∗ is

TF [ψ∗, ψ] = e
∫

d3xdtd3x′dt′ δ
δψ(x,t)G0(x,t;x′,t′)

δ
δψ∗(x,t′) : F [ψ∗, ψ] : . (1.54)
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Applying this to

〈0|TF [ψ∗, ψ]|0〉 = 〈0|T exp
[

i
∫

dxdt(ψ∗η + η∗ψ)
]

|0〉 (1.55)

one finds:

Z0[η
∗, η] = exp

[

−
∫

dxdtdx′dt′η∗(x, t)G0(x, t;x
′, t′)η(x′, t′)

]

×〈0| : exp
[

i
∫

dxdt(ψ∗η + η∗ψ)
]

: |0〉. (1.56)

The second factor is equal to unity thus proving the equality of this Z0 with the
path integral result (1.53) {which holds for the full Z[η∗, η] because of (1.47)}.

1.5 Grand-Canonical Ensembles at Zero Temperature

All these results are easily generalized from vacuum expectation values to thermo-
dynamic averages at fixed temperatures T and chemical potential µ. The change at
T = 0 is trivial: The single particle energies in the action (1.33) have to be replaced
by

ξ(−i∇) = ε(−i∇)− µ (1.57)

and new boundary conditions have to be imposed upon all Green functions via an
appropriate iε prescription in G0(x, t;x

′, t′) of (1.51) [see [2, 5]]:

T=0G0(x, t;x
′, t′) =

∫ dEd3p

(2π)4
e−iE(t−t

′)+ip(x−x′) i

E − ξ(p) + iη sgn ξ(p)
(1.58)

Note that, as a consequence of the chemical potential, fermions with ξ < 0 inside
the Fermi sea propagate backwards in time. Bosons, on the other hand, have in
general ξ > 0 and, hence, always propagate forward in time.

In order to simplify the notation we shall often use four-vectors p = (p0,p) and
write the measure of integration in (1.58) as

∫ dEd3p

(2π)4
=
∫ d4p

(2π)4
. (1.59)

Note that in a solid, the momentum integration is really restricted to a Brioullin
zone. If the solid has a finite volume V , the integral over spacial momenta becomes
a sum over momentum vectors,

∫ d3p

(2π)3
=

1

V

∑

p

, (1.60)

and the Green function (1.58) reads

T=0G0(x, t;x
′, t′) ≡

∫ dE

2π

1

V

∑

p

e−ip(x−x
′) i

p0 − ξ(p) + iη sgn ξ(p)
. (1.61)
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The resulting formulas for T=0Z[η∗, η] can be brought to conventional form by per-
forming a Wick rotation in the complex energy plane in all energy integrals (1.58)
implied by formulas (1.56(te-2.32)) and (1.39(te-2.6)). For this, one sets E = p0 ≡ iω
and replaces

∫ ∞

−∞

dE

2π
→ i

∫ ∞

−∞

dω

2π
. (1.62)

Then the Green function (1.58) becomes

T=0G0(x, t;x
′, t′) = −

∫ dω

2π

d3p

(2π)3
eω(t−t

′)+ip(x−x′) 1

iω − ξ(p)
. (1.63)

Note that with formulas (1.53) and (1.47(te-2.25)), the generating functional
T=0Z[η∗, η] is the grand-canonical partition function in the presence of sources [5].

Finally, we have to introduce arbitrary temperatures T . According to the stan-
dard rules of quantum field theory (for an elementary introduction see Chapter 2 in
Ref. [2]), we must continue all times to imaginary values t = iτ , restrict the imag-
inary time interval to the inverse temperature1 β ≡ 1/T , and impose periodic or
antiperiodic boundary conditions upon the fields ψ(x,−iτ) of bosons and fermions,
respectively [2, 5]:

ψ(x,−iτ) = ±ψ(x,−i(τ + 1/T )). (1.64)

When there is no danger of confusion, we shall usually drop the factor −i in front
of the imaginary times in the field arguments, for brevity. The same thing will be
done in the Green functions.

By virtue of (1.47) and (1.53(te-2.30)), also the Green functions satisfy these bound-
ary conditions. With the above notation:

T
G0 (x, τ + 1/T ;x′, τ ′) ≡ ±T

G0(x,−iτ ;x′,−iτ ′). (1.65)

This property is enforced automatically by replacing the energy integrations
∫∞
−∞ dω/2π in (1.63) by a summation over the discrete Matsubara frequencies [in
analogy to the momentum sum (1.60), the temporal “volume” being β = 1/T ]

∫ ∞

−∞

dω

2π
→ T

∑

ωn

(1.66)

which are even or odd multiples of πT

ωn =

{

2n
2n+ 1

}

πT for

{

bosons
fermions

}

. (1.67)

The prefactor T of the sum over the discrete Matsubara frequencies accounts for the
density of these frequencies yielding the correct T → 0-limit.

1Throughout these lectures we shall use natural units so that kB = 1, h̄ = 1.
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Thus we obtain for the imaginary-time Green function of a free nonrelativistic
field at finite temperature (the so-called free thermal Green function) the following
expression:

T
G0(x, τ,x

′, τ ′) =− T
∑

ωn

∫ d3p

(2π)3
e−iωn(τ−τ

′)+ip(x−x′) 1

iωn − ξ(p)
. (1.68)

Incorporating the Wick rotation in the sum notation we may write

T
∑

p0

= −iT
∑

ωn

= −iT
∑

p4

. (1.69)

where p4 = −ip0 = ω. If both temperatures, and volume are finite, the Green
function will be written as

T
G0(x, τ,x

′, τ ′) =− T

V

∑

p0

∑

p

e−iωn(τ−τ
′)+ip(x−x′) 1

iωn − ξ(p)
. (1.70)

At equal space points and equal imaginary times, the sum can easily be evaluated.
One must, however, specify the order in which τ → τ ′. Let η denote an infinitesimal
positive number and consider the case τ ′ = τ + η, i.e., the Green function

T
G0(x, τ,x, τ + η) =− T

∑

ωn

∫ d3p

(2π)3
eiωnη

1

iωn − ξ(p)
.

The sum is now found by changing it into a contour integral

T
∑

ωn

eiωnη
1

iωn − ξ(p)
=

T

2πi

∫

C
dz

eηz

ez/T ∓ 1

1

z − ξ
. (1.71)

The upper sign holds for bosons, the lower for fermions. The contour of integration
C encircles the imaginary z axis in the positive sense, thereby enclosing all integer
or half-integer valued poles of the integrand at the Matsubara frequencies z = iωm
(see Fig. 1.1). The factor eηz ensures that the contour in the left half-plane does
not contribute.

By deforming the contour C into C ′ and contracting C ′ to zero we pick up the
pole at z = ξ and find

T
∑

ωn

eiωnη
1

iωn − ξ(p)
= ∓ 1

eξ(p)/T ∓ 1
= ∓ 1

eξ(p)/T ∓ 1
= ∓n(ξ(p)). (1.72)

The phase eηz ensures that the contour in the left half-plane does not contribute.
The function on the right is known as the Bose or Fermi distribution function.

By subtracting from (1.72) the sum with ξ replaced by −ξ, we obtain the im-
portant sum formula

T
∑

ωn

1

ω2
n + ξ2(p)

=
1

2ξ(p)
coth±1

ξ(p)

T
. (1.73)
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Figure 1.1 Contour C in the complex z-plane for evaluating the Matsubara sum (1.72)

In the opposite limit τ ′ = τ − η, the phase factor in the sum would be e−iωmη

and would be converted into a contour integral

−kBT
∑

ωm

eiωmη
1

iωm − ξ(p)
= ±kBT

2πi

∫

C
dz

e−ηz

e−z/kBT ∓ 1

1

z − ξ
, (1.74)

yielding 1± nξ(p).
In the operator language, these limits correspond to the expectation values

T
G (x, τ ;x, τ + η) = 〈0|T̂

(

ψ̂H(x, τ)ψ̂
†
H(x, τ + η)

)

|0〉 = ±〈0|ψ̂†H(x, τ)ψ̂H(x, τ)|0〉
T
G (x, τ ;x, τ − η) = 〈0|T̂

(

ψ̂H(x, τ)ψ̂
†
H(x, τ − η)

)

|0〉 = 〈0|ψ̂H(x, τ)ψ̂†H(x, τ)|0〉
= 1± 〈0|ψ̂†H(x, τ)ψ̂H(x, τ ∓ η)|0〉

The function n(ξ(p)) is the thermal expectation value of the number operator

N̂ = ψ̂†H(x, τ)ψ̂H(x, τ). (1.75)

Also in the case of T 6= 0 ensembles, it is useful to employ a four-vector notation.
The four-vector

pE ≡ (p4,p) = (ω,p) (1.76)

is called the euclidean four-momentum. Correspondingly, we define the euclidean

spacetime coordinate

xE ≡ (−τ,x). (1.77)

The the exponential in (1.68) can be written as

pExE = −ωτ + px. (1.78)
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Collecting integral and sum in a single four-summation symbol, we shall write (1.68)
as

T
G0(xE − x′) ≡ −T

V

∑

pE

exp [−ipE(xE − x′E)]
1

ip4 − ξ(p)
. (1.79)

It is quite straightforward to derive the general T 6= 0 Green function from a
path integral formulation analogous to (1.41). For this we consider classical fields
ψ(x, τ) with the periodicity or anti-periodicity

ψ(x, τ) = ±ψ (x, τ + 1/T ) . (1.80)

They can be Fourier-decomposed as

ψ(x, τ) =
T

V

∑

ωn

∑

p

e−iωnτ+ipxa(ωn,p) ≡
T

V

∑

pE

e−ipExEa(pE) (1.81)

with a sum over even or odd Matsubara frequencies ωn. If now a free action is
defined as

A0[ψ
∗, ψ] = −i

∫ 1/2T

−1/2T
dτ
∫

d3xψ∗(x, τ) [−∂τ − ξ (−i∇)]ψ(x, τ)

(1.82)

formula (1.46) renders [1, 6]

T
Z0[η

∗, η] = e
∓Tr logA+

∫ ∫ 1/2T

−1/2T
dτdτ ′

∫

d3xd3x′η∗(x,τ)A−1(x,τ,x′,τ ′)η(x′,τ ′)
(1.83)

with

A(x, τ ;x′, τ ′) = [∂τ + ξ (−i∇)] δ(3)(x− x′)δ(τ − τ ′), (1.84)

and henceforth A−1 equal to the propagator (1.68), the Matsubara frequencies aris-
ing due to the finite τ interval of Euclidean space together with the periodic bound-
ary condition (1.80).

Again, interactions are taken care of by multiplying TZ0[η
∗η] with the factor

(1.47). In terms of the fields ψ(x, τ), the exponent has the form:

Aint =
1

2

∫ ∫ 1/2T

−1/2T
dτdτ ′

×
∫

d3xd3x′ψ∗(x, τ)ψ∗(x′, τ ′)ψ(x′, τ ′)ψ(x, τ)V (x,−iτ ;x′,−iτ ′). (1.85)

In the case of an instantaneous potential (1.34), the potential becomes instantaneous
in τ :

V (x,−iτ ;x′,−iτ ′) = V (x− x′) iδ(τ − τ ′). (1.86)



18 1 Nonrelativistic Fields

In this case Aint can be written in terms of the interaction Hamiltonian as

Aint = i
∫ 1/2T

−1/2T
dτHint(τ). (1.87)

Thus the grand canoncial partition function in the presence of external sources may
be calculated from the path integral [6]:

T
Z[η∗, η] =

∫

Dψ∗(x, τ)Dψ(x, τ)ei
T
A+
∫ 1/2T

−1/2T
dτ
∫

d3x[ψ∗(x,τ)η(x,τ)+c.c.]
(1.88)

where the grand-canonical action is

i
TA[ψ∗, ψ] = −

∫ 1/2T

−1/2T
dτ
∫

d3xψ∗(x, τ) [∂τ + ξ(−i∇)]ψ(x, τ) (1.89)

+
i

2

∫ 1/2T

−1/2T
dτdτ ′

∫

d3xd3x′ψ∗(x, τ)ψ∗(x′, τ ′)ψ(x, τ ′)ψ(x, τ)V (x,−iτ ;x,−iτ ′).

G (x1, τ1, . . . ,xn, τn;xn′ , τn′ , . . . ,x1′ , τ1′) (1.90)

= (−i)n+n′ δn+n
′
Z[η∗, η]

δη∗(x1, τ1) · · · δη∗(xn, τn)δη(xn′ , τn′) · · · δη(x1′ , τn′)

∣

∣

∣

∣

∣

η=η∗≡0

.

The right-hand side consists of the functional integrals

N
∫

Dψ∗(x, t)Dψ(x, t) ψ̂(x1, τ1) · · · ψ̂(xn, τn)ψ̂∗(xn′ , τn′) · · · ψ̂∗(x1′ , τ1′)e
iA[ψ∗,ψ].(1.91)

In the sequel, we shall always assume the normalization factor to be chosen in such
a way that Z[0, 0] is normalized to unity. Then the functional integrals (1.91) are
obviously the correlation function of the the fields commonly written in the form

〈ψ̂(x1, τ1) · · · ψ̂(xn, τn)ψ̂∗(xn′ , τn′) · · · ψ̂∗(x1′ , τ1′)〉
In contrast to Section 1.2, the bra and ket symbols denote now a thermal average
of the classical fields.

The functional integral expression (1.88) for the generating functional offers the
advantageous flexibility with respect to changes in the field variables.

Summarizing we have seen that the functional (1.88) defines the most general
type of theory involving two-body forces. It contains all information on the physical
system in the vacuum as well as in thermodynamic ensembles. The vacuum theory
is obtained by setting T = 0, µ = 0, and continuing the result back from T to
physical times. Conversely, the functional (1.41) in the vacuum can be generalized to
ensembles in the straight-forward manner by first continuing the times t to imaginary
values −iτ via a Wick rotation in all energy integrals and then going to periodic
functions in τ .

There is a complete correspondence between the real-time generating functional
(1.41) and the thermodynamic imaginary-time expression (1.88(te-2.53)). For this
reason it will be sufficient to exhibit all techniques only in one version for which we
shall choose (1.41). Note, however, that due to the singular nature of the propagators
(1.51) in real energy-momentum, the thermodynamic formulation specifies the way
to specifies how to avoid singularities.
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2
Relativistic Fields

We shall also study collective pheomena in relativistic fermion systems. For this
we shall need fields describing relativistic particles of spin zero, 1/2, and 1. Their
properties will now be briefly reviewed.

2.1 Lorentz and Poincaré Invariance

For relativistic particles, the relation between the physical laws in two coordinate
frames which move with a constant velocity with resect to each other are different
from the nonrelativistic case. Suppose a frame moves with velocity v into the −z-
direction of another fixed frame. Then in the moving frame, the z momentum of the
particle will appear increased. The particle appears boosted in the z direction with
respect to the original observer. The momenta in x and y directions are unaffected.
Now, the total four momentum still satisfies the energy momentum relation

E(p) =
√

p2 +M2. (2.1)

Introducing the four-vector notation

pµ ≡ (p0, pi) with p0 ≡ (p)/c, (2.2)

we see that the four-vector satisfies the mass shell condition

p0
2 − p2 =M2. (2.3)

For the particle moving in z-direction, the combination p0
2− p32 remains invariant.

This implies that there must be a hyperbolic transformation mixing p0 and p3 which
may be parametrized by a hyperbolic angle ζ, called rapidity :

p′0 = cosh ζ p0 + sinh ζ p3,

p′3 = sinh ζ p0 + cosh ζ p3. (2.4)

This is called a pure Lorentz transformation. We may write this transformation in
a 4× 4 matrix form as

p′µ =











cosh ζ 0 0 sinh ζ
0 1 0 0
0 0 1 0

sinh ζ 0 0 cosh ζ











µ

ν

pν ≡ B3(ζ)
µ
νp
ν . (2.5)

19
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The subscript 3 of B3 indicates that the particle is boosted into the z-direction. A
similar matrix can be written down for x and y-directions. In an arbitrary direction
p̂, the the matrix elements are

Bp̂(ζ) =





cosh ζ p̂i sinh ζ

p̂i sinh ζ δij + p̂ip̂j(cosh ζ − 1)



 . (2.6)

By combining rotations and boosts one obtains a 6-parameter manifold of matrices

Λ = Bp̂(ζ)Rϕ̂(ϕ), (2.7)

called proper Lorentz transformations . For all these

p′0
2 − p′2 = p0

2 − p2 =M2c2 (2.8)

is an invariant. These matrices form a group, the proper Lorentz group. We can
easily see that the Lorentz group allows reaching every momentum pµ on the mass
shell by applying an appropriate group element to some fixed reference momentum
pµR. For example, if the particle has a mass M we may choose for pµR the so-called
rest momentum

pµR = (M, 0, 0, 0), (2.9)

and apply the boost in the p̂ direction

Λ = Bp̂(ζ), (2.10)

with the rapidity given by

cosh ζ =
p0

M
, sinh ζ =

|p|
M
. (2.11)

But we also may choose Λ(p) = Bp̂(ζ)Rϕ̂(ϕ) where R is an arbitrary rotation,
since these leave the rest momentum pµR invariant. In fact, the rotations form the
largest subgroup of the group of all proper Lorentz transformations which leaves the
rest momentum pµR invariant. It is referred to as the little group or Wigner group

of a massive particle. It has an important physical significance since it serves to
specify the intrinsic rotational degrees of freedom of the particle. If the particle
is at rest it carries no orbital angular momentum. If it happens that its quantum
mechanical state remains completely invariant under the little group R, the particle
must also have zero intrinsic angular momentum or zero spin. Besides this trivial
representation, the little group being a rotation group can have representations of
any angular momentum s = 1

2
, 1, 3

2
, . . . . In these cases, the state at rest has 2s+ 1

components which are mixed with each other upon rotations.
The situation is quite different in the case of massless particles. They move with

the speed of light and pµ cannot be brought by a Lorentz transformation from the
light cone to a rest frame. There is, however, another standard reference momentum
from which one can generate all other momenta on the light cone. It is given by is

pµR = (1, 0, 0, 1)p. (2.12)
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It remains invariant under a different little group, which is again a three-parameter
subgroup of the Lorentz group. This will be discussed later.

It is useful to write the invariant expression (2.8) as a square of a four vector pµ

formed with the metric

gµν =











1
−1

−1
−1











, (2.13)

namely
p2 = gµνp

µpν . (2.14)

In general, we define a scalar product between any two vectors as

pp′ ≡ gµνp
µp′ν = p0p′0 − pp′. (2.15)

A space with this scalar product is called Minkowski space. It is useful to introduce
the covariant components of any vector vµ as

vµ ≡ gµνv
ν . (2.16)

Then the scalar product can also be written as

pp′ = pµp
′µ. (2.17)

With this notation the mass shell condition for a particle before and after a Lorentz
transformation reads simply

p′
2
= p2 =M2c2. (2.18)

Note that, apart from the minus signs in the metric (2.13), the mass shell condition
p2 = p0

2− p12− p22− p32 =M2c2, left invariant by the Lorentz group, is completely
analogous to the spherical condition p4

2
+ p1

2
+ p2

2
+ p3

2
= M2c2 which is left

invariant by the rotation group in a four-dimensional euclidean space. Both groups
are parametrized by six parameters which are associated with linear transformations
in the six planes 12, 23, 31; 10, 20, 30 or 12, 23, 31; 14, 24, 34, respectively. In the case
of the four-dimensional euclidean space these are all rotations which form the group
of special orthogonal matrices called SO(4). The letter S indicates the property
special . A group is called special if all its transformation matrices have a unit
determinant. In the case of the proper Lorentz group one uses by analogy the
notation SO(1, 3). The numbers indicate the fact that in the metric (2.13), one
diagonal element is equal to +1 and three are equal to −1.

The fact that all group elements are “special” follows from a direct calculation
of the determinant of (2.6), (2.7(te-4.10)).

How do we have to describe the quantum mechanics of a free relativistic particle
in Minkowski space? The energy and momenta p0,p must be related to the time
and space derivatives of particle waves in the usual way

p0 =
ε

c
= ih̄

∂

∂ct
≡ ih̄

∂

∂x0
,

pi = −ih̄ ∂

∂xi
. (2.19)
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They satisfy the canonical commutation rules

[pµ, pν ] = 0,

[xµ, xν ] = 0,

[pµ, xν ] = −ih̄gµν . (2.20)

We expect that associated with the pure momentum state p there will be some wave
function

fp(x) = e−i(p
0x0−pixi)/h̄ ≡ e−ipx/h̄. (2.21)

At this point we do not yet know the proper scalar product necessary to extract
physical information from such wave functions.
We have stated previously that permissible energy momentum states of a free parti-
cle can be realized by considering one and the same particle in different coordinate
frames connected by the transformation Λ(p). Suppose that we change the coordi-
nates of the same space time point as follows:

x→ x′ = Λx. (2.22)

Under this transformation the scalar product of any two vectors remains invariant:

x′y′ = xy. (2.23)

This holds also for scalar products between momentum and coordinate vectors

p′x′ = px. (2.24)

For the transformation matrix Λ this implies that

(Λp)(Λx) = px. (2.25)

If the scalar products are written out explicitly in terms of the metric gµν this
amounts to

gµνΛ
µ
λp

λΛνκx
κ = gλκp

λxκ, (2.26)

for all p, x. The Lorentz matrices Λ satisfy therefore the identity

gµνΛ
µ
λΛ

ν
κ = gλκ, (2.27)

or, written without indices,
ΛTgΛ = g. (2.28)

If the metric were euclidean, this would be the definition of orthogonal matrices.
In fact, In the notation of scalar products in which the metric is suppressed as in
(2.29), there is no difference between the manipulation of orthogonal and Lorentz
matrices, since

(Λp)(Λx) = pΛ−1Λx = px. (2.29)
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When changing the coordinates, the same particle wave in space will behave like

fp(x) = e−ipΛ
−1x′/h̄

= e−i(Λp)x
′/h̄ = fΛp(x

′) = fp′(x
′). (2.30)

This shows that in the new coordinates the same particle appears with a different
momentum components

p′ = Λp. (2.31)

Consider a wave ψ(x) which is an arbitrary superposition of different momentum
states. After a coordinate transformation it will still have the same value at the
same space time point. Thus ψ′(x′), as seen in the new frame, must be equal to
ψ(x) in the old frame

ψ′(x′) = ψ(x). (2.32)

At this place one defines the substantial change under the Lorentz transformation
Λ as the change at the same values of the coordinates x (which corresponds to a
transformed point in space)

ψ(x)
Λ−→ ψ′Λ(x)=ψ(Λ−1x). (2.33)

We have marked the transformation under which ψ′(x) arises as a subscript. Clearly,
this transformation property is valid only if the particle does not possess any intrinsic
orientational degree of freedom, i.e., no spin. A field with this properties is called a
scalar field or, for historical reasons, a Klein-Gordon field .

If a particle has spin degrees of freedom the situation is quite different. Then
the wave function has several components to account for the spin orientations. The
transformation law must be such that the spin orientation in space remain the same
at the same space point. This implies that the field components which specify the
orientation with respect to the different coordinate axes will have to be transformed
by certain matrices. How this goes is well-known in the case of electromagnetic
and gravitational fields which have vector and tensor transformation properties. In
the next sections these will be recalled. Afterwards it will be easy to generalize
everything to the case of arbitrary spin.

Before coming to this, however, let us conclude this section by mentioning that
there are other space transformations which leave the scalar products pµx

µ invariant
but which are not contained in the group SO(1, 3): These are the space inversion,
also called mirror reflection or parity transformation

P =











1
−1

−1
−1











, (2.34)

which reverses the direction of the spatial vectors, x→ −x, and the time inversion

T =











−1
1

1
1











, (2.35)
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which changes the sign of x0. If P and T are incorporated into the special Lorentz
group SO(1, 3) one speaks of the full Lorentz group.

Note that the determinants of both (2.34) and (2.35(te-4.25)) is negative so that
the full Lorentz group no longer deserves the letter S in its name. It is called O(1, 3).

2.2 Relativistic Free Scalar Fields

It is then obvious how the non-relativistic free field action

A =
∫

dtdxψ∗(x, t)

[

ih̄∂t + h̄2
∂x

2

2M

]

ψ(x, t) (2.36)

must describe relativistic n-particle states. In order to accommodate the kinematic
features discussed in the last section we require the action to be invariant under
Lorentz transformations. Depending on the possible internal spin degrees of freedom
there are different ways of making the action relativistic. These will now be discussed
separately.

2.2.1 Scalar Fields

If the field ψ(x, t) carries no spin degree of freedom which varies under space ro-
tations, the spatial derivative ∂x always has to appear squared in the action to
guarantee rotational invariance. With the Lorentz symmetry between ∂0 and ∂x we
are led to a classical action

A =
∫

dx0L =
∫

dx0d3xψ∗(x, t) [c1∂
µ∂µ + c2]ψ(x, t), (2.37)

where c1, c2 are two arbitrary real constants. It is now easy to see that this action is
indeed Lorentz invariant: Under the transformation (2.22), the four-volume element
does not change

dx0d3x ≡ d4x→ d4x′ = d4x. (2.38)

If we therefore take the action in the new frame

A =
∫

d4x′ψ∗′(x′)
[

c1∂
′µ∂′µ + c2

]

ψ′(x′), (2.39)

we can use (2.37) and (2.32(te-4.24)) to rewrite

A =
∫

d4xψ∗(x)
[

c1∂
′µ∂′µ + c2

]

ψ(x). (2.40)

But since

∂′µ = Λµ
ν∂ν , ∂µ′ = Λµν∂

ν (2.41)

with Λµ
ν ≡ gµλg

νκΛλκ, we see that

∂′2 = ∂2, (2.42)
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and the transformed action becomes

A =
∫

dx0d3xψ∗(x, t) [c1∂
µ∂µ + c2]ψ(x, t), (2.43)

which is the same as (2.37).
It is useful to introduce the integrand of the action as the so called Lagrangian

density

L(x, t) = ψ∗(x, t)
[

c1(∂
02 − ∂x

2) + c2
]

ψ(x, t). (2.44)

Then the invariance of the action under Lorentz transformation is a direct conse-
quence of the Lagrangian density being a scalar field, satisfying the transformation
law (2.32),

L′(x′) = L(x), (2.45)

as implied by (2.39), (2.40(te-4.31)), and (2.46(te-4.33)).
The free-field equation of motion are derived from (2.37) as follows. We write

A =
∫

dx0L =
∫

dx0
∫

d3xψ∗(x, t)
[

c1(∂
02 − ∂x

2) + c2
]

ψ(x, t), (2.46)

and vary this with respect to the fields ψ(x), ψ∗(x) independently. The independence
of these variables is expressed by the functional differentiation rules

δψ(x)

δψ(x′)
= δ(4)(x− x′),

δψ∗(x)

δψ∗(x′)
= δ(4)(x− x′),

δψ(x)

δψ∗(x′)
= 0,

δψ∗(x)

δψ(x′)
= 0. (2.47)

Applying these rules to (2.46) we obtain directly

δA
δψ∗(x)

=
∫

d4x′δ(4)(x′ − x)(c1∂
2 + c2)ψ(x)

= (c1∂
2 + c2)ψ(x) = 0. (2.48)

Similarly

δA
δψ(x)

=
∫

d4x′ψ∗(x′)(c1∂
2 + c2)δ(x

′ − x)

= ψ∗(x)(c1
←

∂2 +c2), (2.49)

where the arrow on top of the last derivative indicates it acts on the field to the
left. The second equation is just the complex conjugate of the previous one. Then
the functional derivative with respect to ψ∗(x) is simply In terms of the Lagrangian
density, the extremality condition can be expanded in terms of partial derivatives
with respect to increasin partial derivatives of all fields in L,

δA
δψ(x)

=
∂L(x)
∂ψ(x)

− ∂µ
∂L(x)
∂∂µψ(x)

+ ∂µ∂ν
∂L(x)

∂∂µ∂νψ(x)
+ . . . , (2.50)
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with the same equation for ψ∗(x). This follows directly from the defining relations
(2.47). The field equation for ψ(x) is particularly simple:

δA
δψ∗(x)

=
∂L(x)
∂ψ∗(x)

. (2.51)

For ψ∗(x), on the other hand, all derivatives written out in (2.50) have to be evalu-
ated.

Both field equations (2.48) and (2.49(te-4.equm2)) are solved by the quantum me-
chanical plane wave (2.21)

fp(x) = e−ipx/h̄, (2.52)

if the momentum satisfies the condition

− c1p
µpµ + c2 = 0. (2.53)

This has precisely the form of the mass shell relation (2.18) if we choose

c2h̄
2/c1 =M2c2. (2.54)

It is customary to normalize c1 to

c1 = −h̄2. (2.55)

The sign is necessary to have stable field fluctuations. The size can always be
brought to this value by a multiplicative renormalizaton of the field. Then the mass
shell condition fixes the free field action to the standard form

A =
∫

dx0d3xψ∗(x, t)
[

−h̄2∂µ∂µ −M2c2
]

ψ(x, t), (2.56)

The appearance of the constants h̄ and c in all future formulas can be avoided
if we agree to work from now on with new fundamental units l0,m0, t0, E0 different
from the ordinary cgs units. They are chosen to give h̄ and c have the values 1.
Expressed in terms of the conventional length, time, mass, and energy, these new
natural units are given by

l0 =
h̄

Mc
=

h̄

E0

c, t0 =
h̄

Mc2
, (2.57)

m0 = M, E0 =Mc2. (2.58)

If, for example, the particle is a proton with mass mp, these units are

l0 = 2.103138× 10−11cm (2.59)
= Compton wavelength of proton,

t0 = l0/c = 7.0153141× 10−22sec (2.60)
= time it takes light to cross the Compton wavelength,

m0 = mp = 1.6726141× 10−24g, (2.61)

E0 = 938.2592MeV. (2.62)
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For any other mass, they can easily be rescaled.
With these natural units we can drop c and h̄ in all formulas and write the action

simply as

A =
∫

d4xL(x) =
∫

d4xψ∗(x)(−∂2 −M2)ψ(x). (2.63)

Actually, since we are dealing with relativistic particles there is no fundamental
reason to assume ψ(x) to be a complex field. In the non-relativistic theory this was
necessary in order to construct a term linear in the time derivative

∫

dtψ∗i∂tψ. (2.64)

For a real field ψ(x) this would have been a pure surface term and thus not influenced
the dynamics of the system. For second-order time derivatives as in (2.63) this is
no longer necessary.

Thus we shall also study the real scalar field with an action

A =
∫

d4xL(x) = 1

2

∫

d4xφ(x)(−∂2 −M2)φ(x). (2.65)

In this case, a prefactor 1
2
is the normalization convention for the field. Also, we

have used the letter φ(x) to denote the real field, as is commonly done.

2.3 Electromagnetic Field

Electromagnetic fields move with light velocity and have no mass term.1 The fields
have two polarization degrees of freedom (right and left polarized) and are described
by the usual electromagnetic action. Historically, this was the very first example of
a relativistic classical field theory. Thus it could also have served as a guideline for
the previous construction of the action of the scalar field φ(x).

The action may be given in terms of a real auxiliary four-vector potential Aµ(x)
from which the physical electric and magnetic fields can be derived as follows

Ei = −(∂0Ai − ∂iA0) = −∂tAi − ∂iA
0, (2.66)

H i = −1

2
εijk(∂

iAk − ∂kAi) =
1

2
εijk(∂jA

k − ∂kA
j). (2.67)

Here εijk is the completely antisymmetric Levy-Cività tensor with ε123 = 1. It is
useful to introduce the so-called four-curl of the vector potential

Fµν = ∂µAν − ∂νAµ. (2.68)

1The best upper limit for the mass of the electromagnetic field Mγ deduced under terrestial
conditions, from the shape of the earth’s magnetic field, is Mγ < 4 · 10−48g corresponding to a
Compton wavelength λγ = h̄/Mγc > 1010cm (= larger than the diameter of the sun). Astrophysical
considerations (“whisps” in the crab nebula) give λγ > 1016cm. If metagalactic magnetic fields
could be discovered, the Compton wavelength would be larger than 1024 − 1025cm, quite close to
the ultimate limit set by the horizon of the universe= c× age of the universe ∼ 1028cm. See G.V.
Chibisov, Sov. Phys. Usp. 19 , 624 (1976).
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Its six components are directly the field strengths

Ei = −F 0i = F0i, H i = −F jk = −Fjk; ijk = cyclic. (2.69)

For this reason Fµν is also called the field tensor The electromagnetic action reads

A =
∫

d4xL(x) =
∫

d4x
1

2
(H2 − E2) = −1

4

∫

d4xFµν
2. (2.70)

The four-curl Fµν satisfies the so-called Bianchi identity for any smooth Aµ [which
satisfies the Schwartz integrability condition (∂λ∂κ − ∂κ∂λ)Aµ = 0]

∂µF̃
µν = 0, (2.71)

where
F̃ µν = εµνλκFλκ (2.72)

is the so called dual field tensor , with εµνλκ being the four-dimensional Levy-Cività
tensor with ε0123 = 1.

The equations of motion which extremize the action are

δA
δAµ(x)

= −∂µ
∂L(x)
∂µAν(x)

= ∂µF
µν(x) = 0. (2.73)

Separating the equations (2.72) and (2.73(te-4.58)) into space and time components
they are seen to coincide with Maxwell’s equation in empty space

∂µF̃
µν = 0 : ∇ ·B = 0, ∇× E + ∂tB = 0,

∂µF
µν = 0 : ∇ · E = 0, ∇×B− ∂tE = 0. (2.74)

The field tensor is invariant under local gauge transformations

Aµ(x) −→ Aµ(x) + ∂µΛ(x), (2.75)

where Λ(x) is any smooth field which satisfies the integrability condition (∂µ∂ν −
∂ν∂µ)Λ = 0. In terms of the vector field Aµ, the action reads explicitly

A =
∫

d4xL(x) = −1

2

∫

d4x[∂µAν(x)∂µAν(x)− ∂νAν(x)∂
µAµ(x)]

=
1

2

∫

dxAµ(x)(g
µν∂2 − ∂µ∂ν)Aν(x). (2.76)

The latter form is very similar the scalar action (2.36). The first piece is the same
as (2.37) for each of the spatial components A1, A2, A3. The time component A0,
however, appears with an opposite sign. A field with this property is called a ghost

field . When trying to quantize such a field the associated particle states turn out to
have a negative norm. It order for the theory to be physically consistent it will be
necessary to make sure that such states can never appear in any scattering process.
The second piece in the action ∂νAν∂

µAµ is novel with respect to the scalar case. It
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exists here as an additional Lorentz invariant since Aµ is a vector field under Lorentz
transformation.

In order to see the Lorentz transformation properties, let us remember that in
electrodynamics the Lorentz forces on a moving particle carrying a charge and a
classical magnetic pole are obtained from the field transformation

E||
′ = E|| , E⊥

′ = γ(E⊥ + v ×B),

B||
′ = B|| , B⊥

′ = γ(B⊥ − v × E), (2.77)

with v being the velocity of the particle and γ ≡
√

1− v2/c2. Here E, B are the
fields in the laboratory and E′, B′ the fields in the frame of the moving particle.
They exert electric and magnetic forces eE′ + gB′. The subscripts || and ⊥ denote
the components parallel and orthogonal to v.

From this experimental fact we can derive the transformation law of the vector
field Aµ under Lorentz transformations. The frame in which the moving particle is
at rest is related to the laboratory frame by

x′ = Bv̂(ζ)x (2.78)

where Bv̂(ζ) is a boost in v direction with the rapidity

cosh ζ = γ, sinh ζ = γ
v

c
, tanh ζ =

v

c
. (2.79)

the transformation law (2.77) is equivalent to

A′µ(x′) = Bv̂(ζ)
µ
νA

ν(x). (2.80)

An analogous transformation law holds for rotations so that we can write, in general,

A′µ(x′) = ΛµνA
ν(x). (2.81)

This transformation law differs from that of a scalar field (2.32) in the way envisaged
above for particles with non-zero intrinsic angular momentum. The field has several
components. It points in the same spatial direction before and after the coordina-
tion change. This is ensured by its components changing in the same way as the
coordination of the point xµ. Notice that as a consequence, ∂µAµ(x) is a scalar field
in the sense defined in (2.32). Indeed

∂′µA′µ(x
′) = (Λµν∂

ν)Λµ
λAλ(x) = ∂νAν(x). (2.82)

For this reason the second term in the action (2.92) is Lorentz invariant, just as the
mass term in (2.65). The invariance of the first term is shown similarly

A′ν(x′)∂′2A′ν(x
′) = ΛνλA

ν(x)∂′2Λν
κAκ(x

′)

= Aν(x)∂′2Aν(x) = Aν(x)∂2Aν(x). (2.83)
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Hence the action (2.92) does not change under Lorentz transformations, as it should.

Just as the scalar action, also the electromagnetic action (2.70) is invariant under
the extensions of the Lorentz group by translations (the Poincaré group)

A′µ(x′) = Aµ(x) (2.84)

where

x′µ = Λµνx
ν + aµ. (2.85)

Similarly, under parity

Aµ
P−→ A′µP (x)= Ãµ(x̃), (2.86)

and under time reversal

A
T−→ A′µT (x)= Ãµ(xT ) (2.87)

where

Ãµ = (A0,−Ai). (2.88)

In principle, there would have been the possibility of a parity transformation

Aµ
P−→ AµP (x)= ηP Ã

µ(x̃), (2.89)

with ηP = ±1 and in the case ηP = −1 the field Aµ would have been called an axial

vector field . The electromagnetic gauge field Aµ, however, is definitely a vector field.
This follows from the vector nature of the electric and the axial vector nature of
the magnetic field which are observed in the laboratory. Similarly, the phase under
time reversal of Aµ, which in principle could have been

Aµ
T−→ A′µT (x)= ηT Ã

µ(xT ) (2.90)

with ηT = ±1, is given by (2.87). This is because under time reversal, all currents
change their direction. This reverses the direction of the B-field but has no influence
on the E-field.

It is also possible to perform the operation of charge conjugation by exchanging
the sign of all charges without changing their direction of flow. Then E and B

change directions. Hence

Aµ
C−→ A′µC(x)=−Aµ(x). (2.91)

In general, the vector field could have transformed as

Aµ
C−→ A′µC(x)= ηCA

µ(x) (2.92)

with ηC = ±1. The fact that ηC = −1 means that the electromagnetic field is odd
under charge conjugation.
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2.4 Relativistic Free Fermi Fields

For Fermi fields, the situation is technically more involved. Experimentally, fermions
always have an even number of spin degrees of freedom. In order to describe these we
give the field ψ a spin index α running through (2s+1) components. Under rotations,
these spin components are mixed with each other as observed experimentally in
the Stern-Gerlach experiment . Lorentz transformations lead to certain well defined
mixtures of different spin components.

The question arises whether we can construct a Lorentz invariant action involving
(2s+1) spinor field components. To see the basic construction principle we use the
known transformation law (2.81) for the 4-vector field Aµ as a guide. For an arbitrary
spinor field we postulate the transformation law

ψ(x)α
Λ−→ψ′α(x

′) = Dα
β(Λ)ψβ(x), (2.93)

with an appropriate (2s+1)× (2s+1) spinor transformation matrix Dα
β(Λ) which

we have to construct. This can be done by purely mathematical arguments. The
construction is the subject of the so-called group representation theory . First of all,
we perform two successive Lorentz transformations,

x′′ = Λx = Λ2x
′ = Λ2Λ1x. (2.94)

Since the Lorentz transformations Λ1,Λ2 are elements of a group, the product Λ ≡
Λ2Λ1 is again a Lorentz transformation. Under the individual factors Λ2 and Λ1,
the field transform as

Ψ(x)
Λ1−→ Ψ′(x′) = D(Λ1)Ψ(x),

Ψ′(x)
Λ2−→ Ψ′′(x′′) = D(Λ2)Ψ

′(x′), (2.95)

so that under Λ = Λ2Λ1,

Ψ(x)
Λ2Λ1−→ Ψ′′(x′′) = D(Λ2)D(Λ1)Ψ(x). (2.96)

But for Λ itself, the transformation matrix is D(Λ) and

Ψ′′(x′′) = D(Λ2Λ1)Ψ(x). (2.97)

Comparison of this with (2.96) shows that the matrices D(Λ) which mix the spinor
field components under the Lorentz group must follow a group multiplication law
which has to be conmpatible with that of the group itself. The mapping

Λ −→ D(Λ) (2.98)

is a homomorphism and the D(Λ)’s form a matrix representation of the group.
Notice that the transformation law (2.81) for Aµ follows the same rule with

D(Λ) ≡ Λ (2.99)
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being the defining 4× 4 representation of the Lorentz group.
The group laws for Λ and D(Λ) are sufficiently stringent to allow∗ only for a

countable set of fundamental2 finite dimensional transformation laws D(Λ). They
are characterized by two quantum numbers, s1 and s2, with either one taking the
possible half-integer or integer values 0, 1

2
, 1, 3

2
, . . . .

A representation D(s1,s2)(Λ) will turn out to harbor particles of spin |s1 − s2| to
s1 + s2. Hence, particles with a single fixed spin s can only follow the D(s,0)(Λ) or
D(0,s)(Λ) transformation laws.

For spin 1/2, the relativistic free-field which is invariant under parity has four
components and is called the Dirac field . It is described by the action

A =
∫

d4xL(x) =
∫

d4xψ̄(x) (iγµ∂µ −M)ψ(x), (2.100)

where M is the mass of the spin-1/2 -particles described by ψ(x). The quantities
γµ are the so-called Dirac matrices , defined by

γµ =

(

0 σµ

σ̃µ 0

)

, (2.101)

where σµ is a four vector formed from the the 2× 2 Pauli matrices as follows:

σµ ≡ (1, σi), (2.102)

and

σ̃µ ≡ (1,−σi). (2.103)

The symbol ψ̄(x) is short for
ψ̄ ≡ ψ†γ0. (2.104)

As a historical note we mention that Dirac found his by considering the naive
relativistic time independent Schrödinger equation of an electron

Ĥψ(x) =
√

p̂2 +M2ψ(x) = Eψ(x). (2.105)

He asked the question whether the square root could be found explicitly if the
equation were considered as a matrix equation acting on several components of
ψ(x, t) to represent the spin degrees of freedom of the electron. So he made the
ansatz

ĤDψ(x) = (−iαip̂i + βM)ψ(x) = Eψ(x), (2.106)

with αi, β being unknown matrices. Then he required that by applying ĤD twice
upon ψ(x) should give (p̂2 +M2)ψ(x) = E2ψ(x). This led him to the algebraic
relations

{αiαj} = δij,

{αi, β} = 0, (2.107)

β2 = 1.

2Mathematically, “fundamental” means that the representation is irreducible. Any arbitrary
representation is equivelent to a direct sum of irreducible ones.
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By multiplying equ. (2.108) with β and going over to a time dependent equation by
replacing E by i∂x0 , he obtained the Dirac equation

(iγµp̂µ −M)ψ(x) = 0. (2.108)

with the matrices
γ0 ≡ β, γi ≡ βαi. (2.109)

These satisfy the anticommutation rules

{γµ, γν} = 2gµν , (2.110)

which are indeed solved by the Dirac matrices (2.101).
It has become customary to abbreviate the contraction of γµ with any vector vµ

by
/v ≡ γµvµ, (2.111)

and write the Dirac equation as

(/p−M)ψ(x) = 0, (2.112)

or
(i/∂ −M)ψ(x) = 0. (2.113)

2.5 Perturbation Theory of Relativistic Fields

If interactions are present, the Lagrangian consists of a sum

L
(

ψ, ψ̄, ϕ
)

= L0 + Lint. (2.114)

As in the case of nonrelativistic felds, all time ordered Green’s functions can be
obtained from the derivatives with respect to the external sources of the generating
functional

Z [η, η̄, j] = const × 〈0|Tei
∫

dx(Lint+η̄ψ+ψ̄η+jϕ)|0〉. (2.115)

The fields in the exponent follow free equations of motion and |0〉 is the free-field
vacuum. The constant is conventionally chosen to make Z [0, 0, 0] = 1, i. e.

const =
[

〈0|Tei
∫

dxLint(ψ,ψ̄,ϕ)|0〉
]−1

. (2.116)

This normalization may always be enforced at the very end of any calculation such
that Z [η, η̄, j] is only interesting as far as its functional dependence is concerned,
modulo the irrelevant constant in front.

It is then straight-forward to show that Z [η, η̄, j] can alternatively be computed
via the Feynman path integral formula

Z [η, η̄, j] = const ×
∫

DψDψ̄Dϕei
∫

dx[L0(ψ,ψ̄,ϕ)+Lint+η̄ψ+ψ̄η+jϕ]. (2.117)
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Here the fields are no more operators but classical functions (with the mental reser-
vation that classical Fermi fields are anticommuting objects). Notice that contrary
to the operator formula (2.115) the full action appears in the exponent.

For simplicity, we demonstrate the equivalence only for one real scalar field ϕ(x).
The extension to other fields is immediate [7], [8]. First note that it is sufficient to
give the proof for the free field case, i. e.

Z0 [j] = 〈0|Tei
∫

dxj(x)ϕ(x)|0〉
= const ×

∫

Dϕei
∫

dx[ 12ϕ(x)(−2x−µ2)ϕ(x)+j(x)ϕ(x)]. (2.118)

For if it holds there, a simple multiplication on both sides of (2.118) by the differ-
ential operator

ei
∫

dxLint( 1i
δ

δj(x)) (2.119)

would extend it to the interacting functionals (2.115) or (2.117(2.12)). But (2.118(2.13))
follows directly from Wick’s theorem according to which any time ordered product
of a free field can be expanded into a sum of normal products with all possible time
ordered contractions. This statement can be summarized in operator form valid for
any functional F [ϕ] of a free field ϕ(x):

TF [ϕ] = e
1
2

∫

dxdy δ
δϕ(x)

D(x−y) δ
δϕ(y) : F [ϕ] : (2.120)

where D(x− y) is the free-field propagator

D(x− y) =
i

−2x − µ2 + iε
δ(x− y) =

∫ d4q

(2π)4
e−iq(x−y)

i

q2 − µ2 + iε
. (2.121)

Applying this to (2.120) gives

Z0 = e
1
2

∫

dxdy δ
δϕ̂(x)

D(x−y) δ
δϕ̂(y) 〈0| : ei

∫

dxj(x)ϕ̂(x) : |0〉
= e−

1
2

∫

dxdyj(x)D(x−y)j(y)〈0| : ei
∫

dxj(x)ϕ̂(x) : |0〉
= e−

1
2

∫

dxdyj(x)D(x−y)j(y) (2.122)

The last part of the equation follows from the vanishing of all normal products of
ϕ(x) between vacuum states.

Exactly the same result is obtained by performing the functional integral in
(2.118) and using the functional integral formula (1.45(te-2.24a)). The matrix A is
equal to A(x, y) = (−2x − µ2) δ(x− y), and its inverse yields the propagator D(x−
y):

A−1(x, y) =
1

−2x − µ2 + iε
δ(x− y) = −iD(x− y) (2.123)

yielding again (2.122).
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For the generating functional of a free Dirac field theory

Z0 [η, η̄] = 〈0|Tei
∫

(η̄ψ̂+ˆ̄ψη)dx|0〉
= const ×

∫

DψDψ̄ei
∫

dx[L0(ψ,ψ̄)+η̄ψ+ψ̄η]. (2.124)

with the free-field Lagrangian

L0(x) = ψ̄(x) (iγµ∂µ −M)ψ(x), (2.125)

we obtain, similarly,

Z0[η̄, η] = e
1
2

∫

dxdy δ
δψ(x)

G0(x−y)
δ

δψ̄(y) 〈0| : ei
∫

dx(η̄ψ̂+ˆ̄ψ)η : |0〉
= e−

1
2

∫

dxdyη̄(x)G0(x−y)η(y)〈0| : ei
∫

dx(η̄ψ̂+ˆ̄ψ)η : |0〉
= e−

1
2

∫

dxdyη̄(x)G0(x−y)η(y). (2.126)

Now,
A(x, y) = (iγµ∂µ −M) δ(x− y), (2.127)

and its inverse yields the fermion propagator G0(x− y):

A−1(x, y) =
1

iγµ∂µ −M + iε
δ(x− y) = −iG0(x− y). (2.128)

Note that it is Wick’s expansion which supplies the free part of the Lagrangian
when going from the operator form (2.120) to the functional version (2.117).
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1

Introduction

In this part we shall develop the theory of collective quantum fields by treating
the collective phenomena in in two important many-electron systems. In the first,
the electrons interact only via their long-range Coulomb forces, in the other they
have an attractive short-range interaction. How this can happen in a solid will be
discussed. The Coulomb forces give rise to collective modes called plasmons, the
attractive short range forces lead to the formation of bound pairs which follow Bose
statistics and are the physical origin for superconductivity.
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2

Plasmas

Let us give a first application of the functional method by transforming the grand
partition function (1.88) to plasmon coordinates.

For this, we make use of the Hubbard-Stratonovic transformation (1.45) and
observe that a two-body interaction (1.33) in the generating functional can always
be generated by an auxiliary field ϕ(x) as follows.

exp
[

− i
2

∫

dxdx′ψ∗(x)ψ∗(x′)ψ(x)V (x, x′)
]

(2.1)

= const×
∫

Dϕ
{

i

2

∫

dxdx′
[

ϕ(x)V −1(x, x′)ϕ(x′)−2ϕ(x)ψ∗(x)ψ(x)δ(x− x′)
]

}

To abbreviate the notation, we have used four-vector notation with

x ≡ (x, t), dx ≡ d3xdt, δ(x) ≡ δ3(x)δ(t).

The symbol V −1(x, x′) denotes the functional inverse of the matrix V (x, x′), i.e., the
solution of the equation

∫

dx′V −1(x, x′)V (x′, x′′) = δ(x− x′′). (2.2)

The constant prefactor in (2.1) is [detV ]−1/2. Absorbing this in the always omit-
ted normalization factor N of the functional integral, the grand-canonical partition
function Ω = Z becomes

Z[η∗, η] =
∫

Dψ∗DψDϕ exp
[

iA+ i
∫

dx (η∗(x)ψ(x) + ψ∗(x)η(x))
]

(2.3)

where the new action is

A[ψ∗, ψ, ϕ] =
∫

dxdx′
{

ψ∗(x) [i∂t − ξ(−i∇)− ϕ(x)] δ(x− x′)ψ(x′) (2.4)

+
1

2
ϕ(x)V −1(x, x′)ϕ(x′)

}

.

Note that the effect of using formula (1.45) in the generating functional amounts to
the addition of the complete square in ϕ in the exponent:

1

2

∫

dxdx′
[

ϕ(x)−
∫

dyV (x, y)ψ∗(y)ψ(y)
]

V −1(x, x′)

×
[

ϕ(x′)−
∫

dy′V (x′, y′)ψ∗(y′)ψ(y′)
]

(2.5)
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together with the additional integration over Dϕ. This procedure of going from
(1.33) to (2.4) is probably simpler mnemonically than formula (1.45). The fact that
the functional Z remains unchanged by this addition follows, as before, since the
integral Dϕ produces only the irrelevant constant [detV ]−1/2.

The physical significance of the new field ϕ(x) is easy to understand: ϕ(x) is
directly related to the particle density. At the classical level this is seen immediately
by extremizing the action (2.4) with respect to variations δϕ(x):

δA
∂ϕ(x)

= ϕ(x)−
∫

dyV (x, y)ψ∗(y)ψ(y) = 0. (2.6)

Quantum mechanically, there will be fluctuations around the field configuration ϕ(x)
determined by Eq. (2.6), making the Green functions of ϕ(x) and of the composite
operator

∫

dyV (x, y)ψ∗(y)ψ(y) different. But due to the Gaussian nature of the Dϕ
integration, the fluctuations are quite simple. One can easily show that, for example,
the propagators of either field differ only by the direct interaction, i.e.,

〈T (ϕ(x)ϕ(x′))〉 (2.7)

= V (x− x′) + 〈T
[∫

dyV (x, y)ψ(y)
] [∫

dy′V (x′, y′)ψ∗(y′)ψ(y′)
]

〉.

For the proof, the reader is referred to Appendix 3A. Note, that for a potential
V which is dominantly caused by a single fundamental-particle exchange, the field
ϕ(x) coincides with the field of this particle: If, for example, V (x, y) represents the
Coulomb interaction

V (x, x′) =
e2

|x− x′|δ(t− t
′) (2.8)

Eq. (2.6) amounts to

ϕ(x, t) = −4πe2

∇
2 ψ

∗(x, t)ψ(x, t) (2.9)

revealing the auxiliary field as the electric potential.
If the particles ψ(x) have spin indices, the potential will, in this example, be thought
of a spin conserving at every vertex and Eq. (2.6) must be read as spin contracted:
ϕ(x) ≡ ∫

d4yV (x, y)ψ∗α(y)ψα(y). This restricion is just for convenience and can
easily be lifted later. Nothing in our procedure depends on this particular property
of V and ϕ. In fact, V could arise from the exchange of many different fundamen-
tal particles and their multiparticle configurations (for example π, ππ, σ, ϕ, etc. in
nuclei) so that the spin dependence is the rule rather than the exception.

The important point is now that the auxiliary field ρ(x) can be made the only

field of the theory by integrating out ψ∗, ψ in Eq. (2.3), using formula (1.46). Thus
one obtains

Z[η∗, η] ≡ Ω[η∗, η] = NeiA (2.10)
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where the new action is

A[ϕ] = ±Tr log
(

iG−1
ϕ

)

+
1

2

∫

dxdx′η∗(x)Gϕ(x, x
′)η(x′) (2.11)

with Gϕ being the Green function of the fundamental particles in an external clas-
sical field ϕ(x):

[i∂t − χ(−i∇)− ϕ(x)]Gϕ(x, x
′) = iδ(x− x′). (2.12)

The field ϕ(x) is called a plasmon field. The new plasmon action can easily be
interpreted graphically. For this, one expands Gϕ in powers ϕ

Gϕ(x, x
′) = G0(x− x′)− i

∫

dx1G0(x− x1)ϕ(x1 − x′) + . . . (2.13)

Hence the couplings to the external currents η∗, η in (2.11) amount to radiating one,
two, etc. ϕ fields from every external line of fundamental particles (see Fig. 2.1).
An expansion of the Tr log expression in ϕ gives

i
E−ζ(p)

ϕ

Figure 2.1 This diagram displays the last, pure current, piece of the collective action

(2.11). The original fundamental particle (fat line) can enter and leave the diagrams only

via external currents, emitting an arbitrary number of plasmons (wiggly lines) on its way

±iTr log(iG−1
ϕ ) = ±iTr log(iG−1

0 )± iTr log(1 + iG0ϕ)

= ±iTr log(iG−1
0 )∓ iTr

∞
∑

n=1

(−iG0ϕ)n
1

n
. (2.14)

The first term leads to an irrelevant multiplicative factor in (2.10). The nth term
corresponds to a loop of the original fundamental particle emitting nϕ lines (see Fig.
2.2).

Figure 2.2 The non-polynomial self-interaction terms of the plasmons arising from the

Tr log in (2.11) are equal to the single loop diagrams emitting n plasmons
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Let us now use the action (2.11) to construct a quantum field theory of plasmons.
For this we may include the quadratic term

±iTr(G0ϕ)2 1

2
(2.15)

into the free part of ϕ in (2.11) and treat the remainder perturbatively. The free
propagator of the plasmon becomes

{0|Tϕ(x)ϕ(x′)|0} ≡ (2s+ 1)G0(x
′, x). (2.16)

This corresponds to an inclusion into the V propagator of all ring graphs (see Fig.
2.3). It is worth pointing out that the propagator in momentum space Gpl(k) con-

Figure 2.3 The free plasmon propagator containing an infinite sequence of single loop

coorections (“bubblewise summation”)

tains actually two important physical informations. From the derivation at fixed
temperature it appears in the transformed action (2.11) as a function of discrete
Euclidean frequencies νn = 2πnT only. In this way it serves for the time independet
fixed T description of the system. The calculation (2.16), however, renders it as a
function in the whole complex energy plane. It is this function which determines
the time dependent collective phenomena for real times1

With the propagator (2.16) and the interactions given by (2.14), the original the-
ory of fundamental fields ψ∗, ψ has been transformed into a theory of ϕ fields whose
bare propagator accounts for the original potential which has absorbed ringwise an
infinite sequence of fundamental loops.

This transformation is exact. Nothing in our procedure depends on the statistics
of the fundamental particles nor on the shape of the potential. Such properties
are important when it comes to solving the theory perturbatively. Only under
appropriate physical circumstances will the field ϕ represent important collective
excitations with weak residual interactions. Then the new formulation is of great
use in understanding the dynamcis of the system. As an illustration consider a dilute
fermion gas of very low temperature. Then the function ξ(−i∇) is ε(−i∇)−µ with
ε(−i∇) = −∇

2/2m.
Let the potential be translationally invariant and instantaneous

V (x, x′) = δ(t− t′)V (x− x′). (2.17)

1See the discussion in Ch. 9 of the last of [3] and G. Baym and N. D. Mermin, J. Math. Phys.
2, 232 (1961).
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Then plasmon propagator (2.16) reads in momentum space

Gpl(ν,k) = − 1

[V (k)]−1 − π(ν,k)
(2.18)

where the single electron loop is2

π(ν,k) = 2
T

V

∑

p

V
∑

p

1

iω − p2/2m+ µ

1

i(ω + ν)− (p + k)2/2m+ µ
. (2.19)

The frequencies ω and ν are odd and even multiples of πT . The sum is calculated
in the standard fashion by introducing a convergence factor eiωη , rewriting

π(ν,k) = 2
∫

d3p

(2π)3

1

ξ(p + k)− ξ(p)− iν (2.20)

×T
∑

ωn

eiωnη

[

1

i(ωn + ν)− ξ(p + k)
− 1

iωn − ξ(p)

]

,

and using the summation formula (1.72), this becomes

π(ν,k) = 2
∫

d3p

(2π)3

n(p + k)− n(p)

ε(p + k)− ε(p)− iν . (2.21)

If one performs a long wavelength, small-frequency expansion of the integrand, one
finds for T ≈ 0

π(ν,k) ≈ −mpF
π2

(1− ρ arctg ρ−1) (2.22)

where pF denotes the Fermi momentum and ρ the ratio3

ρ ≡ mν/pF |k| (2.23)

The analytic continuation to physical energies k0 = iν yields, with ρ̃ ≡
mk0/pF |k| = iρ:

π(k0,k) = −mpF
π2

[

1− ρ̃

2
log

∣

∣

∣

∣

∣

ρ̃ + 1

ρ̃− 1

∣

∣

∣

∣

∣

− iπ
2
|ρ̃|Θ(1− |ρ̃|)

]

. (2.24)

The real poles of Gpl(ν,k) determine the elementary excitations. Suppose [V (k)]−1

has a long-wavelength expansion

[V (k)]−1 = [V (0)]−1 + ak2 + . . . (2.25)

Then there are real poles at energies k0 for which

[V (0)]−1 + ak2 + . . . = −mpF
π2

(

1− ρ̃

2
log

∣

∣

∣

∣

∣

ρ̃+ 1

ρ̃− 1

∣

∣

∣

∣

∣

)

, (2.26)

2The factor 2 stems from the trace over the electron spin.
3For a discussion of this expression, see a standard textbook, for example Ref. [3].
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as long as [V (0)]−1 is finite and positive, i.e., for a well behaved overall repulsive
potential (V (0) =

∫

d3xV (x) > 0). The value ρ̃0 for which (2.1) is fulfilled at k = 0
determines the zero-sound velocity c0 according to

ρ̃0 =
m

pF

k0

|k| =
1

vF
c0. (2.27)

In the neighbourhood of the pole the propagator has the form

Gpl(k0, k) ≈ const× |k|
k0 − c0|k|

. (2.28)

The case of an electron gas has to be discussed separately since the potential is not
well behaved:

V (x, x′) = δ(t− t′) e2

|x− x′| (2.29)

so that

[V (k)]−1 =
k2

4πe2
. (2.30)

Hence, (2.1) has to be solved for [V (0)]−1 = 0 and a = 1/4πe2. Obviously, ρ̃ has to
go to infinity as k→ 0. In this limit

π(k0,k)→ mpF
π2

ρ̃−2

3
=

p3
F

3π2m

k2

k2
0

(2.31)

and there is a pole at energy4

k2
0 = 4πe2 p2

F

3π2m
= 4πe2 n

m
(2.32)

which is the well-known plasmon frequency. Thus the long-range part of the prop-
agator can be written as

Gpl(k0,k) ≈ 4πe2 k2
0

k2
0 − 4πe2n/m

i

k2
. (2.33)

Using the plasmon propagator (2.18) and the multi-plasmon interactions from (2.14)
one can develop a fully fledged quantum field theory of plasmons.

Great simplications arise if the system is investigated only with respect to its
long-range behaviour in space and time. Then expressions like (2.3) and (2.10)
become good approximations to the propagator. Moreover, the higher terms in
the expansion (2.14) become more and more irrelevant due to their increasing field
dimensionality. Such discussions are standard and will not be repeated here [7].

4n is the number density: n = 2
∫

d3pF /(2π)3 = p3

F /3π2.
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3

Superconductors

3.1 General Formulation

There is a collective field complementary to the plasmon field which describes dom-
inant collective excitations in many systems such as type II superconductors, 3He,
excitonic insulators, etc. A pair field ∆(xt;x′t′) with two space and two time in-
dices, called bilocal, is introduced into the generating functional by rewriting the
exponential of the interaction (1.41) different from (2.1) as1 [8]

exp
[

− i
2

∫

dxdx′ψ∗(x)ψ∗(x′)ψ(x′)ψ(x)V (x, x′)
]

= const×
∫

D∆(x, x′)D∆∗(x, x′)

×e
i
2

∫

dxdx′
{

|∆(x,x′)|2 1
V (x,x′)

−∆∗(x,x′)ψ(x)ψ(x′)−ψ∗(x)ψ∗(x′)∆(x,x′)

}

.

(3.1)

Hence the grand-canonical potential becomes

Z[η, η∗] =
∫

Dψ∗DψD∆∗D∆eiA[ψ∗,ψ,∆∗,∆]+i
∫

dx(ψ∗(x)η(x)+c.c.) (3.2)

with the action

A[ψ∗, ψ,∆∗,∆] =
∫

dxdx′ {ψ∗(x) [i∂t − ξ(−i∇)] δ(x− x′)ψ(x′)

−1

2
∆∗(x, x′)ψ(x)ψ(x′)− 1

2
ψ∗(x)ψ∗(x′)∆(x, x′) +

1

2
|∆(x, x′)|2 1

V (x, x′)

}

.(3.3)

Note that this new action arises from the original one in (1.41) by adding to it the
complete square

i

2

∫

dxdx′|∆(x, x)− V (x′, x)ψ(x′)ψ(x)|2 1

V (x, x′)

which upon functional integration over
∫ D∆∗D∆ gives an irrelevant constant fac-

tor to the generating functional but which has the virtue of removing the quartic
interaction term.

1In this expression, 1/V (x, x′) is understood as numeric division, no matrix inversion being
implied.
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At the classical level, the field ∆(x, x′) is nothing but a convenient abbreviation
for the composite field V (x, x′)ψ(x)ψ(x′). This follows from the equation of motion
obtained by extremizing the new action with respect to δ∆∗(x, x′) which gives

δA
δ∆∗(x, x′)

=
1

2V (x, x′)
[∆(x, x′)− V (x, x′)ψ(x)ψ(x′)] ≡ 0. (3.4)

Quantum mechanically, there are Gaussian fluctuations around this solution which
are discussed in detail in Appendix Appendix 3B. The expression (3.3) is quadratic
in the fundamental fields ψ and can be rewritten in matrix form as

1

2
f ∗(x)A(x, x′)f(x′)

=
1

2
f †(x)

(

[i∂t − ξ(−i∇)] δ(x− x′) −∆(x, x′)
−∆∗(x, x′) ∓ [i∂t + ξ(i∇)] δ(x− x′)

)

f(x′), (3.5)

where f(x) denotes the fundamental field doublet f(x) =

(

ψ(x)
ψ∗(x)

)

and f † ≡ f ∗T ,

as usual. Now, f ∗(x) is not independent of f(x). Indeed, f †Af can also be written
as

f †Af = fT
(

0 1
1 0

)

Af.

Therefore, the real-field formula (1.45) can be used to derive the functional integral
for the generating functional

Z[η∗, η] =
∫

D∆∗D∆eiA[∆∗,∆]− 1
2

∫

dx
∫

dx′j†(x)G∆(x,x′)j(x′) (3.6)

where j(x) collects the external source η(x) and its complex conjugate, j(x) ≡
(

η(x)
η∗(x)

)

, and the collective action reads

A[∆∗,∆] = ± i
2
Tr log

[

iG−1
∆ (x, x′)

]

+
1

2

∫

dxdx′|∆(x, x′)|2 1

V (x, x′)
. (3.7)

The 2 × 2 matrix G∆ denotes the propagator iA−1 which satisfies the functional
equation

∫

dx′′
(

[i∂t − ξ(−i∇)] δ(x− x′′) −∆(x, x′′)
−∆∗(x, x′′) ∓ [i∂t + ξ(i∇)] δ(x− x′′)

)

×G∆(x′′, x′) = iδ(x− x′). (3.8)

Writing G∆ as a matrix

(

G F

F † G̃

)

the mean-field equations associated with this

action are precisely the equations used by Gorkov to study the behaviour of type
II superconductors.2 With Z[η∗, η] being the full partition function of the system,

2See, for example, p. 444 of Ref. [3]
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the fluctuations of the collective field ∆(x, x′) can now be incorporated, at least in
principle, thereby yielding corrections to these equations.

Let us set the sources in the generating functional Z[η∗, η] equal to zero and
investigate the behaviour of the collective quantum field ∆. In particular, we want
to develop Feynman rules for a perturbative treatment of the fluctuations of ∆(x, x′).
As a first step we expand the Green function G∆ in powers of ∆ as

G∆ = G0 − iG0

(

0 ∆
∆∗ 0

)

G0 − . . . (3.9)

with

G0(x, x
′) =











i

i∂t − ξ(−i∇)
δ(x− x′) 0

0 ∓ i

i∂t + ξ(i∇)
δ(x− x′)











. (3.10)

We shall see later that this assumption is justified only in a very limited range
of thermodynamic parameters, namely close to the critical temperature Tc. With
such an expansion, the source term in (3.6) can be interpreted graphically by the
absorption and emission of lines ∆(k) and ∆∗(k), respectively, from virtual zig-zag
configurations of the underlying particles ψ, ψ∗ (see Fig. 3.1)

Figure 3.1 The fundamental particles (fat lines) entering any diagram only via the

external currents in the last term of (3.6), absorbing n pairs from the right (the past) and

emitting the same number of the left (the future).

The functional submatrices in G0 have the Fourier representation

G0(x, x
′) =

T

V

∑

p

i

p0 − ξ(p)
e−i(p

0t−px), (3.11)

G̃0(x, x
′) = ±T

V

∑

p

i

−p0 − ξ(−p)
e−i(p

0t−px). (3.12)

The first matrix coincides with the operator Green function

G0(x− x′) = 〈0|Tψ(x)ψ†(x′)|0〉. (3.13)

The second one corresponds to

G̃0(x− x′) = 〈0|Tψ†(x)ψ(x′)|0〉 = ±〈0|T
(

ψ(x′)ψ†(x)
)

|0〉
= ±G0(x

′ − x) ≡ ±[G0(x, x
′)]T (3.14)

H. Kleinert, COLLECTIVE QUNATUM FIELDS



3.1 General Formulation 51

where T denotes the transposition in the functional sense (i.e., x and x′ are in-
terchanged). After a Wick rotation of the energy integration contour, the Fourier
components of the Green functions at fixed energy read

G0(x− x′, ω) = −
∑

p

1

iω − ξ(p)
eip(x−x′) (3.15)

G̃0(x− x′, ω) = ∓
∑

p

1

−iω − ξ(−p)
eip(x−x′) = ∓G0(x

′ − x,−ω). (3.16)

The Tr log term in Eq. (3.7) can be interpreted graphically just as easily by expand-
ing according to (3.9):

± i
2
Tr log

(

iG−1
0

)

∓ i

2
Tr

[

−iG0

(

0 ∆
∆∗ 0

)

∆∗
]n

1

n
. (3.17)

The first term only changes the irrelevant normalization N of Z. To the remaining
sum only even powers can contribute so that we can rewrite

A[∆∗,∆] = ∓i
∞
∑

n=1

(−)n

2n
Tr

[(

i

i∂t − ξ(−i∇)
δ

)

∆

(

∓i
i∂t + ξ(i∇)

δ

)

∆∗
]n

+
1

2

∫

dxdx′|∆(x, x′)|2 1

V (x, x′)
(3.18)

=
∞
∑

n=1

An[∆∗,∆] +
1

2

∫

dxdx′|∆(x, x′)|2 1

V (x, x′)
. (3.19)

This form of the action allows for an immediate quantization of the collective field
∆. The graphical rules are slightly more involved technically than in the plasmon
case since the pair field is bilocal. Consider at first the free quanta which can be
obtained from the quadratic part of the action:

A2[∆
∗,∆] = − i

2
Tr

[(

i

i∂t − ξ(−i∇)
δ

)

∆

(

i

i∂t + ξ(i∇)
δ

)

∆∗
]

. (3.20)

Variation with respect to ∆ displays the equations of motion

∆(x, x′) = iV (x, x′)

[(

i

i∂t − ξ(−i∇)
δ

)

∆

(

i

i∂t + ξ(i∇)
δ

)]

. (3.21)

This equation coincides exactly with the Bethe-Salpeter equation [9], in ladder ap-
proximation, for two-body bound-state vertex functions usually denoted in momen-
tum space by

Γ(p, p′) =
∫

dxdx′ exp[i(px + p′x′)]∆(x, x′).

Thus the free quanta of the field ∆(x, x′) consist of bound pairs of the original
fundamental particles. The field ∆(x, x′) will consequently be called pair field. If
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we introduce total and relative momenta q and P = (p− p′)/2, then (3.21) can be
written as3

Γ(P |q) = −i
∫

d4P ′

(2π)4
V (P − P ′) i

q0/2 + P ′0 − ξ (q/2 + P′) + iη sgn ξ

×Γ(P ′|q) i

q0/2− P ′0 − ξ (q/2−P′) + iη sgn ξ
. (3.22)

Graphically this formula can be represented as follows: The Bethe-Salpeter wave

Figure 3.2 The free pair field following the Bethe-Salpeter equation as pictured in this

diagram

function is related to the vertex Γ(P |q) by

Φ(P |q) = N
i

q0/2 + P0 − ξ (q/2 + P) + iη sgn ξ

× i

q0/2 + P0 − ξ (q/2 + P) + iη sgn ξ
Γ(P |q). (3.23)

It satisfies

G0 (q/2 + P )G0 (q/2− P )Φ(P |q) = −i
∫

dP ′

(2π)4
V (P, P ′)Φ(P ′|q) (3.24)

thus coinciding, up to a normalization, with the Fourier transform of the two-body
state wave functions

ψ(x, t;x′, t′) = 〈0|T (ψ(x, t)ψ(x′, t′)) |B(q)〉. (3.25)

If the potential is instantaneous, then (3.21) shows ∆(x, x′) to be factorizable ac-
cording to

∆(x, x′) = δ(t− t′)∆(x,x′; t) (3.26)

so that Γ(P |q) becomes independent of P0.

3Here q stands short for q0 = E and q.

H. Kleinert, COLLECTIVE QUNATUM FIELDS



3.1 General Formulation 53

Consider now the system at T = 0 in the vacuum. Then µ = 0 and ξ(−i∇) =
ε(−i∇) > 0. One can perform the P0 integral in (3.22) with the result

Γ(P|q) =
∫

d3P ′

(2π)4
V (P−P′)

1

q0 − ε (q/2 + P′)− ε (q/2−P′) + iη
Γ(P′|q). (3.27)

Now the equal-time Bethe-Salpeter wave function

ψ(x,x′; t) ≡ N
∫

d3Pdq0d
3q

(2π)7
exp

[

−i
(

q0t− q · x + x′

2
−P · (x− x′)

)]

× 1

q0 − ε (q/2 + P)− ε (q/2−P) + iη
(3.28)

satisfies

[i∂t − ε(−i∇)− ε(−i∇′)]ψ(x,x′; t) = V (x− x)ψ(x,x′; t) (3.29)

which is simply the Schrödinger equation. Thus, in the instantaneous case, the
free collective excitations in ∆(x, x′) are the bound states as they follow from the
Schrödinger equation.

In a thermodynamic ensemble the energies in (3.22) have to be summed over
Matsubara frequencies only. First, we write the Schrödinger equation as

Γ(P|q) = −
∫

d3P′

(2π)3
V (P−P′)l(P′|q)Γ(P′|q) (3.30)

with

l(P|q) = −i
∑

P0

G0 (q/2 + P ) G̃0 (P − q/2) (3.31)

= −i
∑

P0

i

q0/2+P0−ξ (q/2+P)+iη sgn ξ

i

q0/2− P0−ξ (q/2−P)+iη sgn ξ
.

After a Wick rotation and setting q0 ≡ iν, the replacement of the energy integration
by a Matsubara sum leads to

l(P|q) = −T
∑

ωn

1

i (ωn + ν/2)− ξ (q/2 + P)

1

i (ωn − ν/2) + ξ (q/2−P)

= T
∑

ωn

1

iν − ξ (q/2 + P)− ξ (q/2−P)

×
[

1

i(ωn + ν/2)− ξ (q/2 + P)
− 1

i(ωn − ν/2) + ξ (q/2−P)

]

= − ± [n (q/2 + P) + n (q/2−P)]

iν − ξ (q/2 + P)− ξ (q/2−P)
. (3.32)

Here we have used the frequency sum [see (1.72)]

T
∑

ωn

1

iωn − ξ(p)
= ∓ 1

eξ(p)/T ∓ 1
≡ ∓n(p) (3.33)
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with n(p) being the acupation number of the state of energy ξ(p). The expression in
brackets is antisymmetric if both ξ → −ξ since under this substitution n→ ∓1−n.
In fact, one can write it in the form −N(P,q) with

N(P|q) ≡ 1± [n (q/2 + P) + n (q/2−P)]

=
1

2

[

tanh ∓1 ξ (q/2 + P)

2T
+ tanh ∓1 ξ (q/2−P)

2T

]

(3.34)

so that

l(P|q) = − N(P|q)

iν − ξ (q/2 + P)− ξ (q/2−P)
. (3.35)

Defining again a Schrödinger type wave function as in (3.28), the bound-state prob-
lem can be brought to the form (3.27) but with a momentum dependent potential
V (P − P′) × N(P′|q). We are now ready to construct the propagator of the pair
field ∆(x, x′) for T = 0. In many cases, this is most simply done by considering Eq.
(3.22) with a potential λV (P, P ′) rather than V and asking for all eigenvalues λn at
fixed q. Let Γn(P |q) be a complete set of vertex functions for this q. Then one can
write the propagator as

∆̇(P |q)∆̇∗(P ′|q′) = −i
∑ Γn(P |q)Γ∗n(P ′|q)

λ− λn(q)

∣

∣

∣

∣

∣

λ=1

(2π)4δ(4)(q − q′) (3.36)

where a common dot denotes, as usual, the Wick contraction of the fields. Obvi-
ously the vertex functions have to be normalized in a specific way, as discussed in
Appendix 3A.

Expansion in powers of [λ/λn(q)]
n displays the propagator of ∆ as a ladder sum

of exchanges (see Appendix 3A). In the instantaneous case either side is independent

Figure 3.3 The free pair propagator, amounting to a sum of all ladders of fundamental

potential exchanges. This is revealed explicitly by the expansion of (3.36) in powers

(λ/λn(q))

of P0, P
′
0. Then the propagator can be shown to coincide directly with the scattering

matrix T of the Schrödinger equation (3.29) and the associated integral equation in
momentum space (3.27) [see Eq. (3A.13)].

∆̇∆̇∗ = iT ≡ iV + iV
1

E −HV. (3.37)

Consider now the higher interactions An, n ≥ 3 of Eq. (3.19). They correspond to
zig-zag loops shown in Fig. 3.4. These have to be calculated with every possible
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Figure 3.4 The self-interaction terms of the non-polynomial pair Lagrangian amounting

to the calculation of al single zig-zag loop diagrams absorbing and emitting n pair fields

Γn(P |q),Γ∗m(P |q) entering or leaving, respectively.
Due to the P dependence at every vertex, the loop integrals become very in-

volved. A slight simplification arises for instantaneous potential in that at least
the frequency sums can be performed immediately. Only in the special case of a
completely local action the full P -dependence disappears and the integrals can be
calculated at least approximately. This will be done in the following section.

3.2 Local Interaction and Ginzburg-Landau Equations

Let us study the case of a completely local potential in detail. For the electrons in
a crystal, this is only an approximation which, however, happens to be quite good.
In a crystal, the interaction between the electrons is mediated by phonon exchange.
An electron moving through the lattice attracts the positive ions in its neighborhood
and thus creates a cloud of positive charge around its path. This cloud, in turn,
attracts other electrons and this is the the origin of pair formation. The size of the
cloud is of the order of the lattice spacing, i.e., a few Å. Although this can hardly be
called local, it is effectively so as far as the formation of bound states is concerned.
The reason is that the strength of the interaction is quite small. This leads to a
rather wide bound-state wave function – it radius will be seen to be of the order of
100 Å, i.e. many lattice spacings. Thus, as far as the bound-states are concerned,
the potential may just as well be considered as local. This is what justifies the
following considerations.

We therefore assume the fundamental interaction to be of the form

Aint =
g

2

∑

α,β

∫

d3xdtψ∗α(x, t)ψ
∗
β(x, t)ψβ(x, t)ψα(x, t). (3.38)

Following the general arguments leading to (3.1) we can rewrite the exponential of
this interaction as4

exp





i

2
g
∑

α,β

∫

d3x dt ψ∗α(x, t)ψ
∗
β(x, t)ψβ(x, t)ψα(x, t)



 = const×
∫

D∆(x, t)D∆∗(x, t)

4In analogy to [10], the hermitian adjoint ∆∗

αβ(x) comprises transposition in the spin indices,

i.e., ∆∗

αβ(x) = [∆βα(x)]
∗

.
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× exp



− i
2

∫

d3xdt
∑

αβ

(

|∆αβ|2
1

g
− ψβ∆∗βαψα − ψ∗α∆αβψ

∗
β

)



 (3.39)

where the new auxiliary field is a (2s + 1) × (2s + 1) non-hermitian matrix which
satisfies the equation of constraint:

∆αβ(x, t) = gψα(x, t)ψβ(x, t). (3.40)

Observe the hermiticity property

∆αβ(x, t)
∗ = ∆∗βα(x, t). (3.41)

Thus the matrix A in (3.5) reads

A(x, t;x′, t′) =

(

[i∂t − ξ(−i∇)] δ(x− x′)δαβ −∆αβ(x)δ(x− x′)
−∆∗αβ(x)δ(x− x′) ∓ [i∂t + ξ(i∇)] δ(x− x′)δαβ

)

(3.42)

and the action (3.19) becomes

A [∆∗,∆] = ∓i
∞
∑

n=1

(−)n

2n
Tr trspin

[(

i

i∂t − ξ(−i∇)
δ

)

(∆ δ)

(

∓i
i∂t + ξ(i∇)

δ

)

(∆∗ δ)

]n

,

(3.43)

where Tr acts on the functional matrix space while trspin is restricted to the spin
indices.

Consider now fermions of spin 1/2 close to a critical region, i.e., T ≈ Tc in
which long-range properties of the system dominate. As far as such questions are
concerned, the expansion

A[∆∗,∆] =
∞
∑

2

An[∆∗,∆] (3.44)

may be truncated after the fourth term without much loss of information (the dimen-
sions of the neglected terms are so high that they become invisible at long distances
[7]. The free part of the action A2[∆

∗,∆] is given by

A2[∆
∗,∆] = ±iTr trspin

[(

i

i∂t − ξ(−i∇)
δ

)

(∆δ)

(

∓i
i∂t + ξ(i∇)

δ

)

(∆∗δ)

]

−1

2
trspin

∫

dx∆∗(x)∆(x)
1

g
. (3.45)

The spin traces can be performed by noticing that due to Fermi statistics and
remembering the constraint Eq. (3.4), (3.40), there is really only one independent
pair field:

∆(x) ≡ ∆↓↑(x) = gψ↓(x)ψ↑(x) = −∆↑↓(x). (3.46)
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Thus A2 becomes:

A2[∆
∗∆] = −i

∫

dxdx′G0(x, x
′)G̃0(x

′, x)∆∗(x)∆(x′)− 1

g

∫

dx|∆(x)|2.

(3.47)

In momentum space, this can be rewritten as

A2[∆
∗,∆] =

T

V

∑

k

∆∗(k)L(k)∆(k) (3.48)

with

L(k) ≡ −i T
V

∑

p

i

p0 + k0 − ξ(p + k) + iη sgn ξ(p + k)

i

p0 + ξ(p)− iηsgn ξ(p)
− 1

g

=
T

V

∑

p

l(p|k)− 1

g
(3.49)

as pictured by the diagram Fig. 3.5. The expression l(p|k) was discussed before in

Figure 3.5 The free part of the pair field ∆ Lagrangian containing the direct term plus

the one loop diagram. As a consequence, the free ∆ propagator sums up an infinite

sequence of such loops

general and brought to the form (3.32). In the present case of Fermi statistics this
leads to

L(ν,k) =
1

2

1

V

∑

p

1

ξ(p + k) + ξ(p)−iν [tanh(ξ(p + k)/2T )+tanh (ξ(p)/2T )]− 1

g
.(3.50)

At k = 0 one has

L(0) =
1

2

1

V

∑

p

tanh ξ(p)/2T

ξ(p)
− 1

g

≈ N (0)
∫ ∞

0

dξ

ξ
tanh

ξ

2T
− 1

g
. (3.51)

In going from the first to the second line we have used the approximation

1

V

∑

p

≡
∫

d3p

(2π)3
=

1

(2π)3

∫

p2dp

dξ
dξ ≈ N (0)

∫

dξ (3.52)
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with

N (0) =
mpF
2π2

=
3n

4µ
. (3.53)

Note that the Fermi temperature TF = mp2
F/2mkB lies in most material around

10000 K. The ξ-integral is logarithmically divergent. This, however, is an unphysical
feature of the local approximation of the assumed interaction between the electrons.
As we argued above, the attraction between electrons is caused by phonon exchange.
Phonons, however, have frequencies which are at most of the order of the Debeye

frequency ωD which may be used as a cutoff in all energy integrals
∫

dξ, resticting
them to the interval ξ ∈ (0, ωD), caused by the lattice structure of the system. The
temperature TD = h̄ωD/kB is of the order of 1000 K and thus quite large compared
to the characteristic temperature where superconductivity sets in. But since it is
an order of magnitude smaller than TF , the attraction between electrons is active
only between states within a thin layer in the neighborhood of surface of the Fermi
sphere. With the cutoff at ωD, Eq. (3.51) yields

L(0) ≈ N (0)
∫ ωD

0

dξ

ξ
tanh

ξ

2T
− 1

g

= N (0) log
(

ωD
T

2eγ

π

)

− 1

g
, (3.54)

where γ is Euler’s constant

γ = −Γ′(1)/Γ(1) ≈ 0.577, (3.55)

so that eγ/π ≈ 1.13.
The integral in (3.54) is done as follows: It is integrated by part to

∫ ωD

0

dξ

ξ
tanh

ξ

2T
= log

ξ

T
tanh

ξ

2T

∣

∣

∣

∣

∣

ωD/T

0

− 1

2

∫ ∞

0
d
ξ

T
log

ξ

T

1

cosh2 ξ

2T

. (3.56)

Since ωD/πT >> 1, the first term is given by log(ωD/2T )) with exponentially small
corrections which can be ignored. In the second integral, we have taken the upper
limit of integration to infinity since it converges. We may use the integral formula5

∫ ∞

0
dx

xµ−1

cosh2(ax)
=

4

(2a)µ

(

1− 22−µ
)

Γ(µ)ζ(µ− 1), (3.57)

set µ = 1 + δ, expand the formula to order δ, and insert the special values

Γ′(1) = −γ, ζ ′(0) = −1

2
log(2π) log(4eγ/π) (3.58)

5See, for instance, I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products ,
Academic Press, New York, 1980, Formula 3.527.3.
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to find from the linear terms in δ:

∫ ∞

0
dx

log x

cosh2(x/2)
= −2 log(2eγ/π), (3.59)

so that we obtain

∫ ωD

0

dξ

ξ
tanh

ξ

2T
= log

(

ωD
T

2eγ

π

)

. (3.60)

Expression L(0) in (3.54) vanishes at a critical temperature determined by

Tc ≡
2eγ

π
ωDe

−1/N (0)g. (3.61)

In terms of Tc, Eq. (3.54) can be rewritten as

L(0) = N (0) log
Tc
T
≈ N (0)

(

1− T

Tc

)

. (3.62)

The constant L(0) obviously plays the role of the chemical potential of the pair
field. Its vanishing at T = Tc implies that at that temperature the field propagates
over long range (with a power law) in the system. Critical phenomena are observed
[7]. For T < Tc the chemical becomes positive indicating the appearance of a Bose
condenstate. If ν 6= 0 but k = 0 one can write (3.47) as in the subtracted form

L(ν, 0)− L(0, 0) =
T

V

∑

p

[

1

2ξ(p)− iν −
1

2ξ(p)

]

tanh
ξ(p)

2T
(3.63)

≈ iνN (0)
∫ ωD

−ωD

dξ

2ξ − iν
1

2ξ
tanh

ξ

2T
. (3.64)

Since the integral converges fast it can be performed over the whole ξ axis with the
small error T/ωD � 1. For ν < 0, the contour may be closed above picking up poles
exactly at the Matsubara frequencies ξ = i(2n+ 1)πT = iωn. Hence

L(ν, 0)− L(0, 0) ≈ νN (0)πT
∑

ωn>0

1

ωn − ν/2
1

ωn
. (3.65)

The sum can be expressed in terms of digamma functions: For |ν| � T one expands

∑

ωn>0

[

1

ω2
n

+
ν

2

1

ω3
n

+
ν2

4

1

ω4
n

+ . . .

]

(3.66)

and applies the formula

∑

ωn>0

1

ωkn
=

1

πkT k
[1− 2−k]ζ(k), (3.67)
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where

ζ(z) =
∞
∑

n=1

n−z (3.68)

is the Rieman zeta function. Some of its values are

ζ(2) =
π2

6
, ζ(3) = 1.202057,

ζ(4) =
π4

90
, ζ(5) = 1.036928, (3.69)

... .

Thus:

∑

ωn>0

1

ω2
n

=
1

π2T 2

3

4

π2

6
=

1

8T 2
, (3.70)

∑

ωn>0

1

ω3
n

=
1

π3T 3

7

8
ζ(3), (3.71)

∑

ωn>0

1

ω4
n

=
1

π4T 4

15

16

π4

90
=

1

96T 4
. (3.72)

... (3.73)

Using the power series for the digamma function

ψ(1− x) = −γ −
∞
∑

k=2

ζ(k)xk−1 (3.74)

the sum is

− 2

νπT

[

ψ
(

1− ν

2πT

)

− ψ
(

1− ν

4πT

)

/2 + γ/2
]

=
1

νπT

[

ψ
(

1

2

)

− ψ
(

1

2
− ν

4πT

)]

with the first term

1

8T 2
+ ν

1

2π3T 3

7

8
ζ(3) +

ν2

4 · 96T 4
+ . . . (3.75)

For ν > 0 the integration contour is closed below and the same result is obtained
with ν replaced by −ν. Thus one finds

L(ν, 0)− L(0, 0) = N (0)

[

ψ
(

1

2

)

− ψ
(

1

2
+
|ν|

4πT

)]

≈ −N (0)
[

π

8T
|ν| − ν2 1

2π2T 2

7

8
ζ(3) + . . .

]

. (3.76)

The k-dependence at ν = 0 is obtained by expanding directly

L(0,k) =
T

V

∑

ω,p

1

iω − ξ(p + k)

1

−iω − ξ(p)
− 1

g

= T
∞
∑

n=0

1

V

∑

ω,p

1

[iω − ξ(p)]n+1

(

pk

m
+

k2

2m

)n
1

−iω − ξ(p)
− 1

g
. (3.77)
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The sum over p may be split into radial and angular integrals as

1

V

∑

p

∫

d3p

(2π)3
≈ N (0)

∫

dξ
∫

dp̂

4π
, (3.78)

where
∫

dp̂

4π
=
∫ π

−π

dφ

2π

∫ 1

−1

d cos θ

2
(3.79)

is the integral over all directional angles of the momentum p. The denominators
are strongly peaked at ξ ≈ 0 so that only the narrow region |ξ| ≤ T contributes.
Hence, the momentum p may be replaced by the Fermi momentum pF with only a
small error O(T/µ) ≈ 10−3. Introducing now the Fermi velocity vF = pF/m, for
convenience, and performing the ξ-integrals

∫

dξ
1

(iω − ξ)n+1

1

−iω − ξ = (−i sgnω)n
π

2n|ω|n+1
, (3.80)

one finds

L(0,k) ≈ 2N (0)Re
∞
∑

n=0

(−i)n π

2n|ω|n+1

∫

dp̂

4π

(

vF p̂k +
k2

2m

)n

− 1

g
. (3.81)

For k = 0 we recover the logarithmically divergent sum

L(0, 0) = N (0)
∑

ω

π

|ω| −
1

g
. (3.82)

This is just another representation of the energy integral (3.54), and can therefore
be made finite by the same cutoff procedure.

The higher powers can be summed via formula (3.67) with the result

L(0,k)=L(0,k)+2N (0)Re
∞
∑

n=1

(−i)n
2nπnT n

(1−2−(n+1))ζ(n+ 1)
∫

dp̂

4π

(

vF p̂k +
k2

2m

)n

= L(0, 0) +N (0)Re
∫

dp̂

4π

[

ψ
(

1

2

)

− ψ
(

1

2
− i

(

vF p̂k +
k2

2m

)

1

4πT

)]

. (3.83)

Comparing this with Eq. (3.76) one sees that the full k- and ν-dependence is
obtained by adding |ν|/4πT to the arguments of the second digamma function.
This can also be checked by a direct calculation. In the long-wave length limit in
which kυF/T � 1 one has also

k2/2m

T
≈ k

pF

kvF
T
� kvF

T
,

and one may truncate the sum after the quadratic term as follows:

L(0,k) = L(0, 0) +
∑

Λkl(0)kkkl (3.84)
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where

Λkl(0) = −2N (0)
1

4π2T 2

7

8
ζ(3)v2

F

∫

dp̂

4π
p̂kp̂l. (3.85)

The angular integration yields

∫

dp̂

4π
p̂kp̂l =

1

3
δkl. (3.86)

Hence, the lowest terms in the expansion of L(ν,k) for kvF � T and ν � T are

L(ν,k) ≈ L(0, 0)−N (0)
[

π

8T
|ν|+ 1

6π2T 2

7

8
ζ(3)v2

Fk
2
]

. (3.87)

The term (3.85) may also conveniently be calculated in x space, since for large
x(� 1/pF ),

G0(x, ω) ≈ − m

2π|x| exp

[

ipF |x| sgnω − |ω|
vF
|x|
]

(3.88)

so that the second spatial derivative contributes to (3.43):

∫

dx

[

1

2

∫

d3x′T
∑

ωn

G0(x− x′, ωn)G0(x− x′,−ωn)(x− x′)i(x− x′)j
]

×∆∗(x)∇i∇j∆(x). (3.89)

The parenthesis becomes

1

2

∫

d3zT
∑

ωn

(

m

2π|z|

)2

exp

(

−2
|ωn|
vF
|z|
)

zizj

=
1

24
δijT

∫

d3z
1

sinh2π|z|T/vF
= δij

7ζ(3)

48
N (0)

v2
F

π2T 2
(3.90)

making (3.87) coincide with (3.84).
In many formulas to come it is useful to introduce the characteristic length parameter

ξ0 ≡
√

7ζ(3)

48

vF
πTc

. (3.91)

Inserting ζ(3) ≈ 1.202057 this becomes

ξ0 ≈ 0.4187× vF
πTc

. (3.92)

Using TF ≡ µ ≡ p2
F/2m, the right-hand side of (3.91) can also be written as

ξ0 =

√

7ζ(3)

48

2TFp
−1
F

πTc
≈ 0.25× TF

Tc
p−1
F . (3.93)
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Since in most superconductors, Tc is of the order of one degree Kelvin, about 1/1000
of the Fermi temperature TF , the length parameter ξ0 is of the order of 1000 Å. Then,
in the action (3.48), the low-frequency and long-wavelength result (3.87) corresponds
to 6

A2[∆
∗,∆] ≈ −iN (0)T

∑

ν�T,k

∆∗(ν,k)
{(

1− T

Tc

)

− ξ2
0k

2 − π

8T
|ν|
}

∆(ν,k). (3.94)

For T ≤ Tc, the field ∆ has therefore a propagator

∆̇∗(νn,k)∆̇(νm,k
′) = −(2π)3δ(3)(k− k′)

1

T
δnm

1

N (0)

×
[

− π

8T
|νn|+

(

1− T

Tc

)

− ξ2
0k

2
]−1

(3.95)

The spectrum of collective excitations can be read off from this expression by con-
tinuing the energy back to real values from the upper half of the complex plane:

k0 = −i 8
π

(T − Tc)− i
8T

π
ξ2
0k

2. (3.96)

These excitations are purely dissipative.
If the system is close enough to the critical temperature all interaction terms

except A4[∆
∗,∆] become irrelevant because of their high dimensions [7]. And in A4

only the momentum independent contribution is of interest, again because it has
the lowest dimension.

Its calculation is standard:

A4[∆
∗∆] =

i

4
Tr Trspin

[(

i

i∂t − ξ(−i∇)
∆δ

)(

i

i∂t + ξ(i∇)
δ

)

∆∗δ

]2

= − i
2

∫

dx1dx2dx3dx4G0(x1x2)G̃0(x2x3)G0(x3x4)G̃0(x4x1)∆
∗(x1)∆(x2)∆

∗(x3)∆(x4)

≈ −1

2

∫

dx|∆(x)|4
∫

d3x2d
3x3d

3x4

×T
∑

ωn

[G0(x− x2, ωn)G0(x3 − x2,−ωn)G0(x3 − x4, ωn)G0(x− x4,−ωn)]

≡ −β
2

∫

dx|∆(x)|4. (3.97)

The coefficient can be computed as usual

β = T
∑

ωnp

1

(ω2
n + ξ2(p))2

≈ N (0)T
∑

ωn

∫

dξ
1

(ω2
n + ξ2)2

= N (0)
π

2
T
∑

ωn

1

|ωn|3
= N (0)

7ζ(3)

8(πTc)2
= 6N (0)

ξ2
0

v2
F

≈ 10−3 p3
F

TFT 2
c

. (3.98)

6Note that only Matsubara frequency ν0 = 0 satisfies the condition ν � T . The neighbourhood
of ν0 = 0 with the linear behaviour |ν| becomes visible only after analytic continuation of (3.95)
to the retarded Green function which amounts to replacing |νn| → −ik0.
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The time independent part of this action at the classical level has been derived a
long time ago by Gorkov on the basis of Green function techniques [3, 11]. Certainly,
his technical manipulations are exactly the same as presented here. The difference
lies in the theoretical foundation [4, 5, 6, 7] and the ensuing prescriptions on how
to improve upon the approximations. Our action of (3.7) is the exact translation
of the fundamental theory into pair fields. These fields are made quantum fields in
the standard fashion by leaving the functional formalism and going to the operator
language. The result is a perturbation theory of ∆-quanta with (3.95) as a free
propagator and An, n > 2 treated as perturbations. The higher terms A6,A8, . . .
are very weak residual interactions as far as long distance questions are concerned.
In fact, for the calculation of the critical indices, A2 and A4 contain all information
about the system.

3.3 Inclusion of Electromagnetic Fields into the Pair Field
Theory

The original action A of (1.33) can be made invariant under general spacetime
dependent gauge transformations

ψ(x, T )→ exp[−iΛ(x, t)]ψ(x, t) (3.99)

if an electromagnetic potential

A = (ϕ,A) (3.100)

is present, capable of absorbing the generated derivative terms via

ϕ → ϕ− 1

e
∂tΛ

Ai → Ai +
c

e
∇iΛ. (3.101)

The complete action including electromagnetism in the Coulomb gauge, ∇A = 0,
becomes:

Acompl = A[ψ∗, ψ]
∣

∣

∣

i∂t→i∂t+
1
e
ϕ,−∇i→−i∇i+

c
e
Ai

+
1

8π

∫

dx
(

−ϕ∇
2ϕ+

1

c2
A2 + A∇

2A
)

(3.102)

where the arrows denote the gauge invariant substitutions in the action (1.33). Since
the final pair action (3.7) describes the same system as the initial action (1.33), it
certainly has to posses the same invariance after inclusion of electromagnetism. But
from the constraint equation (3.4) we see

∆(x, x′)→ exp {−i[Λ(x) + Λ(x′)]}∆(x, x′). (3.103)

For the local pair field appearing in (3.39) this gives

∆(x)→ exp [−2iΛ(x)] ∆(x). (3.104)
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Hence the final action (3.94) with A4 from (3.97) added is gauge invariant after
replacing

i∂t → i∂t + 2eϕ, −i∇i → −i∇i + 2
e

c
Ai,

k0 → k0 + 2eϕ, ki → ki + 2
e

c
Ai. (3.105)

This leads to the full time dependent Lagrangian close to the critical point

L =
N (0)π

8T
∆∗(x)(−∂t + 2ieϕ)∆(x) +N (0)

(

1 +
T

Tc

)

∆∗∆

−N (0)ξ2
0

(

∇i − 2i
e

c
Ai

)

∆∗(x)
(

∇i + 2i
e

c
Ai

)

∆(x)

−3N (0)
ξ2
0

v2
F

|∆(x)|4 +
1

8π

(

−ϕ∇
2ϕ+

1

c2
Ȧ2 + A∇

2A
)

. (3.106)

The discussion of this Lagrangian is standard. At the classical level there are, above
Tc, doubly charged pair states of chemical potential

µpair = L(0) = N (0)
(

1− T

Tc

)

< 0;T > Tc. (3.107)

Below Tc the chemical potential becomes positive causing an instability which settles,
due to the stabilizing quartic term, at a nonzero field value, the “gap”:

∆0(T ) =

√

µpair

β
=

√

8

7ζ(3)
πTc

(

1− T

Tc

)1/2

. (3.108)

Inserting ζ(3) ≈ 1.202057 this is approximately

∆0(T ) ≈ 3.063× Tc
(

1− T

Tc

)1/2

. (3.109)

The new vacuum obviously breaks gauge invariance spontaneously: the field ∆ will
now oscillate radially with a chemical potential

µpair = −2N (0)
(

1− T

Tc

)

< 0;T < Tc. (3.110)

Due to this, spatial changes of the field |∆| can take place over a length scale, defined
as coherence length [3, 11]

ξc(T ) ≡
√

√

√

√

coefficient of |∇∆|2
|µpair|

= ξ0

(

1− T

Tc

)−1/2

. (3.111)

The azimuthal oscillations experience a different fate in the absence of electromag-
netism; they have a vanishing chemical potential due to the invariance of L under
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phase rotations. As an electromagnetic field is turned on, the new center of oscilla-
tions (3.108) is seen in (3.106) to generate a mass term 1/8πµ2

AA
2 for the photon.

The vector potential aquires a mass

µ2
A = 8π coefficient of A2 in |∇∆|2−term = 8ω

4e2

c2
N (0)ξ2

0∆
2
0. (3.112)

This mass limits the penetration of magnetic field into a superconductor. The
penetration depth is defined as [3, 11]

λ(T ) ≡ µ−1
A =

√

3

πN (0)

c

4evF

(

1− T

Tc

)−1/2

=

√

3π

8

√

c

vFα
p−1
F

(

1− T

Tc

)−1/2

. (3.113)

Here we have introduced the feinstructure constant

α =
e2

h̄c
≈ 1

137
. (3.114)

The ratio

κ(T ) ≡ λ(T )

ξ(T )
=

√

√

√

√

9π3

14ζ(3)

√

c

vFα

Tc
TF
≈ 4.1×

√

c

vFα

Tc
TF

(3.115)

is the Ginzburg-Landau parameter deciding whether it is energetically preferable for
the superconductor to have flux lines invading it or not. For (κ > 1/

√
2 they do

invade and the superconductor is said to be of type II, for κ < 1/
√

2 they don’t and
the superconductor is of type I.

3.4 Far below the Critical Temperature

We have seen in the last section that for T smaller than Tc the chemical potential of
the pair field becomes positive, causing oscillations around a new minimum which is
the gap value ∆0 given by (3.108). That formula was based on the expansion (3.9)
of the pair action and can be valid only as long as ∆� Tc, i.e., T ≈ Tc. If T drops
far below Tc, one must account for ∆0 non-perturbatively by inserting it as an open
parameter into G∆ of (3.8). Everything has to be recalculated.

3.4.1 The Gap

In the general bilocal form collective action we separate

∆(x, x′) = ∆0(x− x′) + ∆′(x, x′) (3.116)

and expands G∆ inpowers of ∆′(x, x′) around

G∆0(x, x
′) = i

(

[i∂t − ξ(−i∇)]δ −∆0

−∆†0 ∓i[∂t − ξ(i∇)]δ

)−1

(x, x′) (3.117)
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instead of (3.10). This leads to the replacement G0 → G∆0 in every term of (3.17).
Observe that in the underlying theory of fields ψ∗, ψ the matrix G∆0 collects the
bare one-particle Green functions:

G∆0(x, x
′) =

(

ψ̇(x)ψ̇†(x′) ψ̇(x)ψ̇(x′)

ψ̇†(x)ψ̇†(x′) ψ̇†(x)ψ̇(x′)

)

(3.118)

Contrary to (3.9) and (3.13) the off-diagonal Green functions are nonvanishing, since
at T < Tc a condensate is present in the vacuum. The presence of ∆0 causes a linear
dependence of the action on ∆′(x, x′)

A1[∆
′∗,∆′] = ±Tr

[

G∆0

(

0 ∆′

∆′∗ 0

)]

+
1

2

∫

dxdx′
[

∆∗0(x− x′)∆′(x, x′)
1

V (x, x′)
+ c.c.

]

. (3.119)

The gap function may now be determined optimally by minimizing the action with
respect to δ∆′ at ∆′ = 0 which amounts to the elimination of A1[∆

′∗,∆′]. Taking
the functional derivative of (3.119) gives the gap equation

∆0(x− x′) = ±V (x− x′) tr2×2

[

G∆0(x, x
′)
τ−

2

]

(3.120)

where τ−/2 is the matrix

(

0 0
1 0

)

in the 2× 2 dimensional matrix space of (3.8).

If the potential is instantaneous, the gap has a factor δ(t− t′), i.e.,

∆0(x− x′) ≡ δ(t− t′)×∆0(x− x′)

and the Fourier transform of the spatial part satisfies

∆0(p) = ±T
V

∑

ω,p′

V (p− p′) tr2×2

[

G∆0(ω,p
′)
τ−

2

]

. (3.121)

Inverting (3.117) renders the propagator:

G∆0(τ, x) = (3.122)

∓T
V

∑

ω,p

exp [−i(ωτ − px)]
1

ω2 + ξ2(p)∓ |∆0(p)|2
(

∓ [iω + ξ(p)] ∆0(p)
∆∗0(p) [iω − ξ(p)]

)

,

so that the gap equation (3.121) takes the explicit form

∆0(p) = −T
V

∑

ω,p′

V (p− p′)
∆0(p

′)

ω2 + ξ2(p′)∓ |∆0(p′)|2
. (3.123)
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Performing the frequency sum yields

∆0(p) = −
∑

p′

V (p− p′)
∆0(p

′)

2E(p′)
tanh∓1E(p′)

2T
(3.124)

where

E(p) =
√

ξ2(p)∓ |∆0(p)|2. (3.125)

For the case of the superconductor with an attractive local potential

V (x− x′) = −gδ(3)(x− x′)δ(t− t′) (3.126)

this becomes

∆0 = g
T

V

∑

ω,p

∆0

ω2 + ξ2(p) + |∆0|2
=

[

g
1

V

∑

p

1

2E(p)
tanh

E(p)

2T

]

∆0. (3.127)

There is a nonzero gap if

g
1

V

∑

p

1

2E(p)
tanh

E(p)

2T
= 1. (3.128)

Let T = Tc denote the critical temperature at which the gap vanishes. There,
E(p) = ξ(p) so that Eq. (3.128) determines the same Tc as the previous Eqs. (3.54)
(3.61) which were derived for T ≈ Tc in a different fashion. The result (3.128) holds
for any temperature.

The full temperature dependence of the gap cannot be obtained in closed form
from (3.128). For T ≈ Tc one may expand directly (3.127) in powers of ∆0:

1 = g
T

V

∑

ω,p

{

1

ω2 + ξ2(p)
−∆2

0

1

[ω2 + ξ2(p)]2
+ . . .

}

(3.129)

The first sum on the right-hand side yields the same integral as in (3.54), and we
obtain

1 = gN (0)

[

log
ωD
T

2
eγ

π
−∆2

0

7ζ(3)

8π2T 2
+ . . .

]

= 1 +N (0)

[

(

1− T

Tc

)

−∆2
0

7ζ(3)

8π2T 2
+ . . .

]

. (3.130)

and finds

∆2
0(T ) ≈ 8

7ζ(3)
π2T 2

c

(

1− T

Tc

)

(3.131)
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in agreement with (3.108). For very small temperatures, on the other hand,
Eq. (3.127) can be written as

1 = gN (0)
∫ ωD

0

dξ
√

ξ2 + ∆2
0

[

1− 2 exp(−
√

ξ2 + ∆2
0/T )− . . .

]

= gN (0)
[

log
2ωD
∆0

− 2K0(∆0/T )
]

+ . . . (3.132)

For small T,K0 vanishes exponentially fast:

2K0

(

∆0

T

)

→ 1

∆0

√

2πT∆0e
−∆0/T . (3.133)

Hence one finds at T = 0 the gap

∆0(0) = 2ωDe
−1/gN (0) (3.134)

or, from (3.61),

∆0(0) = πe−γTc ≈ 1.76× Tc. (3.135)

This value is approached exponentially as T → 0 since from (3.132)

log
∆0(T )

∆0(0)
≈ ∆0(T )

∆0(0)
− 1 ≈ − 1

∆0(0)

√

2πT∆0(0)e−∆0(0)/T . (3.136)

For arbitrary T , the calculation of (3.128) is conveniently done by using the
expansion into Matsubara frequencies Eq. (ge)

1

2E
tanh

E

2T
=

1

2E
T
∑

ωn

(

1

iωn + E
− 1

iωn − E
)

= T
∑

ωn

1

ω2
n + ξ2 + ∆2

0

. (3.137)

This can be integrated over ξ and we find for the gap equation (3.128): Eq. (9.24)

log
T

Tc
= 2πT

∑

ωn>0





1
√

ω2
n + ∆2

0

− 1

ωn



 . (3.138)

It is now convenient to introduce the auxiliary dimensionless quantity Eq. (9.25)

δ =
∆0

πT
(3.139)

and a reduced version of the Matsubara frequencies: Eq. (9.26)

xn ≡ (2n+ 1)/δ. (3.140)

Then the gap equation (3.138) takes the form Eq. (9.27b)
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1

1

∆0/∆0(0)

T/Tc

Figure 3.6 Energy gap of superconductor as a function of temperature.

log
T

Tc
=

2

δ

∞
∑

n=0





1
√

x2
n + 1

− 1

xn



 . (3.141)

The temperature dependence of ∆0 is plotted in Fig. 3.6. The behavior in the vicity
of the critical temperature Tc can be extracted from Eq. (3.141) by expanding the
sum under the assumption of large xn. The leading term gives Eq. (9.29)

− log
T

Tc
≈ 2

δ

∞
∑

n=0

1

2x3
n

= δ2
∞
∑

n=0

1

(2n+ 1)2
= δ2 7

8
ζ(3) (3.142)

so that

δ2 ≈ 8

7ζ(3)

(

1− T

Tc

)

(3.143)

andEq. (9.30)

∆0/Tc = πδ = π

√

8

7ζ(3)

(

1− T

Tc

)1/2

≈ 3.063×
(

1− T

Tc

)1/2

, (3.144)

as before in (3.109).

3.4.2 The Free Pair field

The action quadratic in the pair fields ∆′ reads

A2[∆
′∗,∆′] = ± i

4
Tr

[

G∆0

(

0 ∆′

∆′∗ 0

)

G∆0

(

0 ∆′

∆′∗ 0

)]

+
1

2

∫

dxdx′|∆(x, x′)|2 1

V (x, x′)
(3.145)
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with an equation of motion

(

∆′(x, x′)
∆′∗(x, x′)

)

= ∓ i
2
V (x, x′)tr2×2

[

G∆0

(

0 ∆′

∆′∗ 0

)

G∆0

(

0 ∆′

∆′∗ 0

)

τ±

2

]

(x, x′)

(3.146)

rather than (3.21). Inserting the momentum space representation (3.122) of G∆0,
this renders the two equations

∆′(P |q) = −T
V

∑

p′
V (P − P ′) [l11(P

′|q)∆′(P ′|q) + l12(P
′|q)∆′∗(P ′|q)]

∆′∗(P |q) = −T
V

∑

p′
V (P − P ′) [l11(P

′|q)∆′∗(P ′|q) + l12(P
′|q)∆′(P ′|q)] , (3.147)

where (with P0 ≡ iω)

l11(P |q) =
ω2 − ν2/4 + ξ (q/2 + P) ξ (q/2−P)

[

(ω + ν/2)2 + E2 (q/2 + P)
] [

(ω − ν/2)2 + E2 (q/2−P)
]

l12(P |q) = ± ∆2
0 (q/2 + P)

[

(ω + ν/2)2 + E2 (q/2 + P)
] [

(ω − ν/2)2 + E2 (q/2−P)
] . (3.148)

Thus for T � Tc the simple bound-state problem (3.30) takes quite a different form
due to the presence of the off-diagonal terms in the propagator (3.122).

Note that the parenthesis on the right-hand side Eqs. (3.147) contain precisely
the Bethe-Salpeter wave function of the bound state (compare (3.23), (3.25) in the
gapless case)

ψ(P |q) ≡ ± i
2
tr2×2

[

G∆0

(

q

2
+ P

)

(

0 ∆′(P |q)
∆′∗(P |q) 0

)

G∆0

(

P − q

2

)

τ ∗

2

]

= l11(P |q)∆′(P |q)l12(P ′|q)∆′∗(P |q). (3.149)

Not much is known on the general properties of solutions of equations (3.147). Even
for the simple case of a δ(4)(x − x′) function potential, only the long wavelength
spectrum has been studied. There is, however, one important solution which always
occurs for T < Tc due to symmetry considerations: The original action (1.33) is
symmetric under phase transformations

ψ → e−iαψ (3.150)

guaranteeing the conservation of particle number. If the pair fields oscillate around a
nonzero value ∆0(x−x′), this symmetry is spontaneously broken (since the complex
c-number does not take part in such a phase transformation). As a consequence,
there must now be an excitation of the system related to the infinitesimal symmetry
transformation. This is known as Goldstone’s Theorem. If the whole system is
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transformed at once this corresponds to q = 0. The symmetry ensures that this
corresponds to energy q0 = 0. Indeed, suppose the gap equation did have a non-
trivial solution ∆0(P ) ≡ 0. Then we can easily see that

∆′(P |q = 0) ≡ i∆0(P ) (3.151)

is a solution of the bound-state equations (3.147) at q = 0. Take

l11(P |q = 0) =
ω2 + ξ2(P)

ω2 + E2(P)
(3.152)

and insert (3.151) into (3.147). This gives

∆0(P ) =
T

V

∑

P ′

V (P − P ′)
{

1

[ω′2 + E2(P′)]2

[

ω2 + ξ2(P′)∓ |∆0(P
′)|2
]

}

= −T
V

∑

P ′

V (P − P ′) 1

ω′2 + E2(P′)
∆0(P

′), (3.153)

i.e., the bound-state equation at q = 0 reduces to the gap equation. Moreover, due
to (3.149), the expression

ψ0(P |q = 0) ≡ 1

ω2 + E2(P)
∆0(P ) (3.154)

is the Bethe-Salpeter wave function of the q = 0 bound state. If the potential is
instantaneous, it is possible to calculate the equal-time amplitude ψ0(x − x′, τ) ≡
ψ(x, τ ;x′τ). Doing the sum over ω in (3.153) we find

ψ0(x− x′, τ) =
∫

d3P

(2π)3
eiP(x−x′)T

∑

ω

ψ0(P|q = 0)

=
∫

d3P

(2π)3
eiP(x−x′) tanh ∓1E(P)

2T

∆0(P)

2E(P)
. (3.155)

Note that the time dependence of this amplitude happens to be trivial since the
bound state has no energy. The q = 0 bound state described by ψ0(x− x′) is called
the Cooper pair .

In configuration space (3.153) amounts to a Schrödinger type of equation.

−2E(−i∇)ψ0(x) = V (x)ψ(x). (3.156)

This may be interpreted as the q = 0 bound state of two quasi-particles whose
energies are

E(P) =
√

ξ2(P)∓ |∆0(P)|2. (3.157)

The equation (3.156) is, however, non-linear since ∆0(P) in E(P) depends itself on
ψ0(x). In order to establish contact with the standard discussion of pairing effects
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via canonical transformations (see Rev. [3]) a few comments may be useful. Let
us restrict the discussion to instantaneous potentials. From equation (3.122) one
sees that the propagator G∆ can be diagonalized by means of an ω-independent
Bogoljubov transformation

B(p) =

(

u∗p ∓v∗p
− vp up

)

, (3.158)

where

|up|2 =
1

2

[

1 +
ξ(p)

E(p)

]

, |vp|2 = ∓1

2

[

1− ξ(p)

E(p)

]

, 2upv
∗
p =

∆0(p)

E(p)
. (3.159)

Since

|up|2 ∓ |vp|2 = 1. (3.160)

one finds

B−1(p) =

(

up ±v∗p
vp u∗p

)

=

{

σ3B
∗(p)σ3

B∗(p)

}

. (3.161)

Thus B(p) is a unitary spin rotation in the Fermi case whereas for bosons it is a
non-unitary element of the non-compact group SU(1, 1) [12].

Gd
∆0

(ω,p) = B(p)G∆0(ω,p)B(p)∗

= −
(

[iω − E(p)]−1

±[iω + E(p)]−1

)

(3.162)

may be interpreted as describing free quasi-particles of energy

E(p) =
√

ξ2(p)∓ |∆0(p)|2. (3.163)

In fact, if one would introduce new creation and annihilation operators
(

α(p, τ)
β∗(−p, τ)

)

= B(p)

(

a(p, τ)
a∗(−p, τ)

)

(3.164)

their propagators would be

Gd
∆0

(τ − τ ′,p) ≡
(

α̇(p, τ)α̇∗(pτ ′) α̇(p, τ)β̇(−p, τ ′)

β̇∗(−p, τ)α̇∗(p, τ ′) β̇∗(−p, τ)β̇(−p, τ ′)

)

= T
∑

ω

e−iω(τ−τ ′)Gd
∆0

(ω,p). (3.165)

At equal “times”, τ ′ = τ + ε, the frequency sums may be performed with the result

∑

ω

Gd
∆0

(ω,p) =

(

±nqu(p) 0
0 ±1 + nqu(p)

)

, (3.166)
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where nqu(p) are the usual Bose and Fermi occupation factors for the quasi-particle
energy (3.163):

nqu(p) =
1

eE(p)/T ∓ 1
. (3.167)

The corresponding frequency sum for the original propagator becomes

T
∑

ω

G∆0(ω,p) = T
∑

ω

B−1(p)Gd
∆0

(ω,p)B−1(p)∗ (3.168)

=





±|vp|2tanh∓1E(p)
2T
± n(p) upυ

∗
ptanh ∓1E(p)

2T

u∗pvptanh ±1E(p)
2T

±|up|2tanh ∓1E(p)
2T
− n(p)



 . (3.169)

The off-diagonal elements of G∆0 describe, according to Eq. (3.118), the vacuum
expectation values of 〈ψ(x)ψ(x′)〉,i.e.,

〈ψ(x, τ)ψ(x, τ)〉 =
∫ d3p

(2π)3
eipxupv

∗
ptanh∓1E(p)

2T

=
∫

d3p

(2π)3
eipxtanh ∓1E(p)

2T

∆0(p)

2E(p)
.

But from Eq. (3.155) this coincides with the Schrödinger type of wave function of
the bound state 〈ψ(x, τ)ψ(x, τ)|B(q) at q = 0. After this general discussion let
us now return to the superconductor. The action quadratic in the pair fields ∆′

[instead of (3.45)]

A2[∆
′∗,∆′] = − i

2
Tr

[

G∆0

(

0 ∆′

∆′∗ 0

)

G∆0

(

0 ∆′

∆′∗ 0

)]

− 1

g

∫

dx|∆′(x)|2,

(3.170)

where the spin traces have been taken. This action can be written in momentum
space as

A2[∆
′∗,∆′] =

1

2

T

V

∑

k

[∆′∗(k)L11(k)∆
′(k) + ∆′(−k)L22(k)∆

′(−k)

+∆′∗(k)L12(k)∆
′∗(−k) + ∆′(−k)L21(k)∆

′(k)] . (3.171)

The Lagrangian matrix elements Lij(k) are obtained by inserting the Fermi form of
the propagator (3.122) into (3.170) [compare (3.147), (3.148)]. Setting ν = ik0 one
has:

A2[∆
′∗,∆′] = −1

2

T

V

∑

ω,p

1
(

ω + ν
2

)2
+ E2

(

p + k
2

)

1
(

ω − ν
2

)2
+ E2

(

p− k
2

)

×Tr









i
(

ω + ν
2

)

+ ξ
(

p + k
2

)

∆0

∆∗0 i
(

ω + ν
2

)

− ξ
(

p + k
2

)





(

0 ∆′(k)
∆′∗(k) 0

)
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×




i
(

ω − ν
2

)

+ ξ
(

p− k
2

)

∆0

∆∗0 i
(

ω − ν
2

)

− ξ
(

p− k
2

)





(

0 ∆′(−k)
∆′∗(k) 0

)





−1

g

∑

k

∆′∗(k)∆′(k) (3.172)

which is equal to

A2[∆
′∗,∆′]=

1

2

T

V

∑

ω,p

{[

(

ω +
ν

2

)2

+ E2

(

p +
k

2

)] [

(

ω − ν

2

)2

+ E2

(

p− k

2

)]}−1

×
{[

ω2 − ν2

4
+ ξ

(

p +
k

2

)

ξ

(

p− k

2

)]

[∆′∗(k)∆′(k) + ∆′(−k)∆′∗(−k)]

− |∆0|2 [∆′∗(k)∆′∗(−k) + ∆′(k)∆′(−k)]
}

− 1

g

∑

k

∆′∗(k)∆′(k). (3.173)

From this we read off: Eq. (9.32)

L11(k) = L22(k) =
T

V

∑

ω,p

l11(p|k)

= −
∫

d3p

(2π)3
T
∑

ωn

ω2
n − ν2/4 + ξ+ξ−

[

(

ωn + ν
2

)2
+ E2

+

] [

(

ωn − ν
2

)2
+ E2

−

] − δij
g
.

(3.174)

and Eq. (9.33)

L12(k) = [L21(k)]
∗ =

T

V

∑

ω,p

l12(p|k)

=
∫

d3p

(2π)3
|∆0|2T

∑

ωn

1
[

(

ωn + ν
2

)2
+ E2

+

] [

(

ωn − ν
2

)2
+ E2

−

] ,

(3.175)

with the notation k0 = −iν and Eq. (9.34)

{

ξ+
ξ−

}

≡ (p± k/2)2

2m
=

p2

2m
± 1

2

p

m
k +

k2

8m
≈ ξ ± 1

2
vk + . . . ,

{

E+

E−

}

=

√

√

√

√

{

ξ2
+

ξ2
−

}

+ ∆2 ≈ E ± 1

2
(vk)

ξ

E
+

1

8
(vk)2 ∆2

E3
+ . . . , (3.176)

where ξ and E =
√
ξ2 + ∆2 are now the average values of ξ+, ξ− and E+, E−, respec-

tively. As usual, the integral over d3p can be split into size and directional integral
according to (3.78) and we can set v ≡ p/m ≈ vF p̂.
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We now rearrange the terms in the sum in such a way that we obtain combinations
of single sums of the type

T
∑

ωn

1

iωn − E+

(3.177)

which lead to the Fermi distribution function Eq. (9.dis)

T
∑

ωn

1

iωn − E
= n(E) ≡ 1

eE/T + 1
(3.178)

with the property

n(E) = 1− n(−E). (3.179)

If we drop the subscripts n and introduce the notation ω± ≡ ω± ν/2, the first term
in the sum (3.175) for L12(k) can be decomposed as follows:Eq. (9.dec)

1

[ω2
+ + E2

+] [ω2
− + E2

−]

=
1

4E+E−

(

1

iω+ + E+
− 1

iω+ − E+

)(

1

iω− + E−
− 1

iω− − E−

)

=
1

4E+E−

{

− 1

E+ + E− − iν

(

1

iω+ − E+
− 1

iω− − E−

)

+
1

E+ + E− + iν

(

1

iω+ + E+

− 1

iω− + E−

)

− 1

E+ − E− + iν

(

1

iω+ + E+

− 1

iω− + E−

)

+
1

E+ − E− − iν

(

1

iω+ − E+
− 1

iω− − E−

)}

(3.180)

We now use the summation formula (1.72) and the fact that the frequency shifts ν in
ω± do not appear in the final result since they amount to a mere discrete translation
in the infinite sum (3.178). Collecting the different terms we findEq. (9.33b)

L12(k) = [L21(k)]
∗ =−

∫

d3p

(2π)3
|∆0|2

1

2E−E+
(3.181)

×
{

E+ + E−
(E+ + E−)2 + ν2

[1− n(E+)− n(E−)] +
E+ − E−

(E+ − E−)2 + ν2
[n(E+)− n(E−)]

}

.

In the first expression we decomposeEq. ()

ω2
n − ν2/4 + ξ+ξ−

[ω2
+ + E2

+] [ω2
− + E2

−]
=

1

2

{

1

ω2
+ + E2

+

+
1

ω2
− + E2

−

−(E2
+ + E2

− + ν2 − 2ξ+ξ−)
1

(ω2
+ + E2

+) (ω2
− + E2

−)

}

. (3.182)
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When summing the first two terms we use the formula

T
∑

ω

1

ω2 + E2
=

1

2E
[n(−E)− n(E)] =

1

2E
tanh

E

2T
. (3.183)

In the last term, the right-hand factor was treated before. Replacing the factor
E2
−+E2

++ν2 once by (E−+E+)2+ν2−2E−E+ and once by (E−−E+)2+ν2+2E−E+

we obtain immediately Eq. (9.32b)

L11(k) = L22(k) =
∫

d3p

(2π)3
p̃ip̃j

{

E+E− + ξ+ξ−
2E+E−

E+ + E−
(E+ + E−)2 + ν2

[1− n(E+)− n(E−)]

−E+E− − ξ+ξ−
2E+E−

E+ − E−
(E+ − E−)2 + ν2

[n(E+)− n(E−)]

}

− δij
g

(3.184)

Let us study in more detail the static case and consider only the long-wavelength
limit of small k. Hence, we shall take k0 = 0 and study the lowest orders in k only.
At k = 0 we find from (3.184) and (3.181) Eq. (9.35)

L11(0) = N (0)
∫

dξ

{

E2 + ξ2

4E3

[

tanh
E

2T
+ 2f ′(E)

]

− 1

g

}

. (3.185)

and Eq. (9.36)

L12(0) = −1

2
N (0)φ(∆0) (3.186)

where we have introduced the so-called Yoshida function Eq. (9.37)

φ(∆0) ≡ ∆2
0

[∫ ∞

0
dξ

1

E3
tanh

E

2T
+ 2

∫ ∞

0
dξ

1

E2
f ′(E)

]

. (3.187)

We now observe that due to the gap equation (3.123), L11(k) can also be expressed
in terms this function as of Eq. (9.37a)

L11(0) = −1

2
N (0)φ(∆0). (3.188)

The first integral in Eq. (3.187) can be done in parts and brought to the more
convenient form Eq. (9.38)

φ(∆0) = 1− 1

2T

∫ ∞

0
dξ

1

cosh2(E/2T )
. (3.189)

For T ≈ 0, this function approaches zero exponentially. The full temperature be-
haviour is best calculated by using the Matsubara sum of (3.175) to write Eq. (9.38)

φ(∆0) = 2T
∑

ωn

∫

dξ
∆2

0

(ω2
n + E2)2

= −2∆2
0T
∑

ωn

∂

∂ω2
n

∫

dξ
1

ω2
n + ξ2 + ∆2

0

= −2∆2
0T
∑

ωn

∂

∂ω2
n

π
√

ω2
n + ∆2

0

= 2Tπ
∑

ωn>0

1
√

ω2
n + ∆2

0

3 . (3.190)
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Using again the variables δ and xn from (3.139) and (3.140), this becomes Eq. (9.39)

φ(∆0) =
2

δ

∞
∑

n=0

1
√

x2
n + 1

3 . (3.191)

For T ≈ Tc, δ → 0 andEq. ()

φ(∆0) ≈ 2δ2
∞
∑

n=0

1

(2n+ 1)3
= 2δ2 7ζ(3)

8
≈ 2

(

1− T

Tc

)

. (3.192)

In the limit T → 0, the sum turns into an integral. Using the formula

∫ ∞

0
dx

1

(x1 + 1)ν
=

1

2
B(µ/2, ν − µ/2) (3.193)

with B(x, y) = Γ(x)Γ(y)/Γ(x+ y) we see that

φ(∆0)|T=0 = 1. (3.194)

Note that we can write L11(0) also asEq. (9.42)

L11(0) = − 3

4m2v2
F

ρs (3.195)

withEq. (9.45s)

ρs ≡ ρφ(∆0) (3.196)

This function has an important physical meaning. Let us calculate the bending
energies of the collective field ∆(x). For this, we expand L11(k) and L12(k) at
ν = 0 into powers of the momentum k up to k2. Let us denote the zero-frequency
parts of L11(k) and L12(k) by L11(k) and L11(k), respectively, with the explicit form

Eq. (C1)

L11(k) =
T

V

∑

ωn,p

ω2 + ξ+ξ−
(ω2 + E2

+) (ω2 + E2
−)
− 1

g

L12(k) = −T
V

∑

ωn,p

∆2
0

(ω2 + E2
+) (ω2 + E2

−)
. (3.197)

Inserting the expansionsEq. (C2)

ξ+ξ− = ξ2 − 1

4
(vk)2 + . . .

{

E2
+

E2
−

}

= E2 ± ξvk +
1

2
(vk)2 + . . . (3.198)

we haveEq. (C3)
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L11(k)− L12(k) ≈
∫

d3p

(2π)3
T
∑

ω

ω2 + ∆2
0 + ξ2 − 1

4
(vk)2

(ω2 + E2)2
[

1 + 1
2
(vk)2 ω

2−ξ2+∆2
0

(ω2+E2)2

] − 1

g
+ . . .

=
∫

d3p

(2π)3

{(

T
∑

ω

1

ω2 + E2
− 1

g

)

+T
∑

ωn

[

1

4

1

(ω2 + E2)2
− ω2 + ∆2

0

(ω2 + E2)3

]

(vk)2

}

+ . . . . (3.199)

Due to the gap equation the first parenthesis vanishes so that we are left with Eq. (C4)

L11(k)− L12(k) ≈ N (0)(vk)2 (3.200)

×
∫ dp̂

4π

∫ ∞

−∞
dξ

[

1

4

1

(ω2 + ξ + ∆2
0)

2
− ω2 + ∆2

0

(ω2 + ξ2 + ∆2
0)

3

]

Similarly we obtain Eq. (C5)

L12(k) ≈ −N (0)
∫

dp̂

4π

∫ ∞

−∞
dξ

{

∆2
0

(ω2 + ξ2 + ∆2
0)

2

+(vk)2

[

1

2

1

(ω2 + ξ2 + ∆2
0)

3 −
ω2 + ∆2

0

(ω2 + ξ2 + ∆2
0)

4

]}

. (3.201)

Using the integrals Eq. (C6)

∫ ∞

−∞
dξ

1

(ω2 + ξ2 + ∆2
0)

2,3,4 =
(

1

2
,

3

8
,

5

16

)

π
√

ω2 + ∆2
0

3,5,7 (3.202)

we find Eq. (C7)

L11(k)− L12(k) ≈ −N (0)

4

(vk)2

∆2
0

∫

dp̂

4π
φ(∆0) (3.203)

L12(k) ≈ −N (0)

2
φ(∆0) +

N (0)

8
(vk)2

∫

dp̂

4π
φ̄(∆0) (3.204)

where φ(∆0) is the Yoshida function (3.191), while φ̄(∆0) is a further gap function:
Eq. (C9)

φ̄(∆0) = ∆4
0πT

∑

ωn>0

1
√

ω2
n + ∆2

0

5 ≡
1

δ

∞
∑

n=0

1
√

x2
n + 1

5 . (3.205)

For T ≈ Tc this behaves like

φ̄(∆0) ≈ δ4
∞
∑

n=0

1

(2n+ 1)5
= δ4 31ζ(5)

32
, (3.206)

and thus, by (3.143),

φ̄(∆0) ≈ δ4
∞
∑

n=0

1

(2n+ 1)5
= δ4 31ζ(5)

32
≈ 0.9072×

(

1− T

Tc

)2

(3.207)
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while for T → 0 the sum turns into an integral whose value is, by formula (3.193),

φ̄(∆2
0)∆

2
0 |T=0 =

1

3
. (3.208)

Thus we find for the energy density the gradient termsEq. (9.63)

e(x) =
1

4m2

[

ρ11
ij ∂i∆

∗(x)∂j∆(x)/∆2
0 + Re ρ12

ij ∂i∆
∗(x)∂j∆

∗(x)/∆2
0

]

. (3.209)

Here we have dropped in the primes on the fields since in the presence of the deriva-
tives the additional constant ∆0 does not matter. The first coefficient is given by

Eq. (9.64)

ρ11
ij =

3ρ

2

∫

dp̂

4π
p̂ip̂j

[

φ(∆0)−
1

2
φ̄(∆0)

]

(3.210)

while the second isEq. (9.64b)

ρ12
ij = −3ρ

2

∫

dp̂

4π
p̂ip̂j

1

2
φ̄(∆0) (3.211)

Performing the angular integral gives

ρ11
ij =

1

2
ρ
[

φ(∆2
0)−

1

2
φ̄(∆0)

]

δij (3.212)

ρ12
ij = −1

4
ρφ̄(∆0)δij. (3.213)

Decomposing the collective field ∆(x) into size |∆(x)| and and phase ϕ(x),

∆(x) = |∆(x)|eiϕ(x) (3.214)

the energy density readsEq. (9.63c)

e(x) =
1

4m2

{

(ρ11 − ρ12)(∂φ)2 + (ρ11 + ρ12)(∂|∆(x)|)2/∆2
0

}

. (3.215)

The first coefficient is seen to coincide with the function (3.196) encountered earlier.
Introducing, in addition, the notation

ρ̄s ≡ ρφ̄(∆) (3.216)

and adding to the energy density the earlier k = 0 result we find the total quadratic
fluctuation energy densityEq. (9.63d)

e(x) = ρs(∂ϕ)2 + (ρs − ρ̄s)(∂|∆(x)|)2/∆2
0 + 6ρs(δ|∆(x)|)2)/v2

F . (3.217)

The behaviour of ρs and ρ̄s for all T ≤ Tc is shown in Fig. (3.7).
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1

1

ρs/ρ

ρ̄s/ρ

T/Tc

Figure 3.7 Temperature behaviour of superfluid density ρs/ρ (Yoshida function) and the

gap function ρ̄s/ρ.

The phase fluctuations are of infinite range, the size fluctuations have a finite
range characterized by the temperature-dependent coherence length

ξ(T ) =

√

√

√

√

v2
F

6∆2

ρs − ρ̄s
ρs

. (3.218)

For T close to Tc, the second ratio tends towards one while ∆2 goes to zero according
to Eq. (3.108). Thus we recover the previous result (3.93) for the coherence length:

ξ(T ) ≈ ξ0

(

1− T

Tc

)

(3.219)

with

ξ0 =

√

7ζ(3)

48

vF
πTc
≈ 0.419× vF

πTc
. (3.220)

For T → 0, ξ(T ) tends exponentially fast against

ξ(0) =
eγ

3

vF
πT
≈ 0.591× vF

πT
≈ 1.4179× ξ0. (3.221)

The behaviour of ξ2
0/ξ

2(T ) is displayed in Fig. (3.8).
At low temperatures we can ignore the size fluctuations of the collective field

parameter ∆(x). This is called the hydrodynamic limit or London limit . Thus we
approximate

∆(x) ≈ ∆0e
iφ(x), (3.222)
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1

0.5

ξ2
0/ξ

2(T )

T/Tc

Figure 3.8 Temperature behaviour of the inverse square coherence length ξ−2(T ). The

dashed line shows the Ginzburg-Landau limit.

In this limit, the bending energy is simply Eq. (9.63d)

e(x) =
1

4m2
ρs[∂iφ(x)]2 (3.223)

By studying the behaviour of this expression under Galilei transformations we iden-
tify the superfluid velocity of the condenstate

vs =
1

2m
∇φ. (3.224)

In terms of this the energy density takes the form

e(x) =
1

2
ρsv

2
s (3.225)

This shows that ρs is the superfluid density of the condensate.
For temperatures close to zero, the sum over Matsubara frequencies T

∑

ω

may

also be performed as an integral
∫

dω/2π, and the result is [recall (3.197)]

L11(k) = L22(k) =
T

V

∑

ω,p

l11(p|k)−
1

g
=

1

V

∑

p

E+E− + ξ+ξ−
2E+E−

E+ + E−
(E+ + E−)2 + ν2

− 1

g
,

L12(k) = L21(k) =
T

V

∑

ω,p

l12(p|k) = −|∆0|2
1

V

∑

p

1

2E+E−

E+ + E−
(E+ + E−) + ν2

. (3.226)

Because of the gap equation (3.128) at T = 0, we insert

1

g
=
∑

p

1

2E(p)
, (3.227)
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so that the last term in L11(k) provides us with a subtraction of the sum. The ener-
gies of fundamental excitations are obtained by diagonalizing the action A2 [∆′∗,∆′]
and searching for zero eigenvalues of the matrix L(k) via

L11(k)L22(k)− L2
12(k) = 0. (3.228)

Since L11(k) = L22(k) this amounts to the two equations

L11(k) = ±L12(k). (3.229)

These equations can be solved for small k. Expanding to forth order in ν and k [13]
and using the gap equation (3.128) at T = 0

1

g
=
∑

p

1

2E(p)
(3.230)

one obtains

L11(k) = −m
2vF

4π2

(

1 +
ν2

3∆2
0

+
v2
Fk2

9∆2
0

− v2
Fν

2k2

30∆4
0

− ν4

20∆4
0

− v4
Fk4

100∆4
0

)

+ . . .

L12(k) = −m
2vF

4π2

(

1− ν2

6∆2
0

+
v2
Fk2

18∆2
0

− v2
Fν

2k2

45∆4
0

− ν4

30∆4
0

− v4
Fk4

150∆4
0

)

+ . . .(3.231)

so that the first of Eq. (3.229) has the small k0,k solution (k0 = −iν)

k0 = ±c|k|(1− γk2), c ≡ vF√
3
, γ =

v2
F

45∆2
0

. (3.232)

The other Eq. (3.229) can be solved for small k and iν directly. Using (3.226) and
(3.230) one can write −L11(k)− L12(k) = 0 as7

1

V

∑

p

[

1

2E
+

(∆2
0 − EE ′ − ξξ′)(E + E ′)

2EE ′ [(E + E ′)2 + ν2]

]

= 0. (3.233)

For small k this leads to the energies [13]

k
(n)
0 = 2∆0 + ∆0

(

vFk

2∆0

)2

zn (3.234)

with zn being the solutions of the integral equation

∫ 1

−1
dx
∫ ∞

−∞
dy

x2 − z
x2 + y2 − z = 0. (3.235)

7For T 6= 0 each result appears with a factor 1

2

(

tanh E
2T

+ tanh E′

2T

)

to which one has to add

once more the whole expression with E ′ replaced by −E′.
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Setting et =
(√

1− z + 1
)

/
(√

1− z − 1
)

this is equivalent to

sinh t+ t = 0 (3.236)

which has infinitely many solutions tn starting with

t1 = 2.251 + i4.212 (3.237)

and tending asymptotically to

tn ≈ log[π(4n− 1)] + i
(

2πn− π

2

)

. (3.238)

The excitation energies are

k
(n)
0 = 2∆0 −

v2
F

4∆0
k2 1

sinh2 tn/2
. (3.239)

Of these only the first one at k
(1)
0 ≈ 2∆0 + (.24− .30i)v2

F/4∆2
0k

2 lies on the second
sheet and may have observable consequences while the others are hiding under lower
and lower sheets of the two-particle branch cut from 2∆0 to∞ (which is logarithmic
due to the dimensionality of the surface of the Fermi sea at T = 0).

3.5 Ground State Properties

The superfluid densities do not only characterize the hydrodynamic bending ener-
gies. They also appear in the description of the thermodynamic quantities of the
ground state.

3.5.1 Free Energy

Since the ground state field ∆0 is constant in space and time the lowest-order terms
in Eq. (3.7) reduces to

A[∆∗0,∆] =
i

2
Tr log

[

iG−1
∆0

(x, x′)
]

− 1

g

∫

dx|∆0|2 (3.240)

and can be calculated explicitly. In energy momentum space the matrix inside the
trace log is diagonalEq. (9.85)

(

ε− ξ(p) ∆0

∆∗0 ε+ ξ(p)

)

(3.241)

in the functional indices ε,p. In the 4× 4 matrix space this can be diagonalized via
a Bogoljubov transformation with the resultEq. (9.86)





[ε− E(p)]
(

1 0
0 1

)

0

0 [ε+ E(p)]
(

1 0
0 1

)



 (3.242)
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where E(p) are the quasi-particle energies (3.163). Thus the first trace log term in
the expression (3.240) can be written asEq. (9.87)

− i(tb − ta)V
∫

dε

2π

d3p

(2π)3
log [ε− E(p)] [ε+ E(p)] . (3.243)

The second term contributes simply Eq. ()

− 1

g
∆2(tb − ta)V. (3.244)

After a Wick rotation, this action corresponds to the free energy density8 Eq. (9.98)

f = −
∑

ωn

∑

p

log{[iωn − E(p)][iωn + E(p)]}+
1

g
|∆0|2 + const . (3.245)

The constant accounts for the unspecified normalization of the functional integra-
tion. It is removed by substracting the free fermion system with ∆ = 0, g = 0 (note
that ∆2 ∼ e−1/gN (0) → 0 for g → 0). Since the energy of the free fermion system is
well-known Eq. (9.90)

f0 = −2T
∑

p

log
(

1− eξ(p)/T
)

(3.246)

it is sufficient to study only Eq. (9.91)

∆f = f − f0 =− T
∑

ωn,p

log
iωn − E(p)

iωn − ξ(p)
+ (E → −E, ξ → −ξ) +

1

g
|∆0|2. (3.247)

This energy difference is the condensation energy associated with the transition into
the superfluid phase.

The sum over Matsubara frequency can be performed as usual by using Cauchy’s
formula: Eq. (9.92)

T
∑

ωn

log
(

1− E

iωn

)

= − 1

2πi

∫

dz

ez/T + 1
log

(

1− E

z

)

(3.248)

where the contour C encircles all poles along the imaginary axis at z = iωn in the
positive sense but passes the logarithmic cut from z = 0. By deforming the contour
C into C ′ and by contracting C ′ to zero one picks up the pole at z = E and finds
(see Fig. 1.1). Eq. (9.93)

−
∫ E

0

dz

ez/T + 1
=
∫ E

0
dE n(E). (3.249)

Since Eq. (9.94)
∂n(E)

∂E
= −n(1− n)/T (3.250)

this can be calculated as Eq. (9.95)

−
∫ E

0
dEn(E) = T

∫ n

1/2
dn′

1

1− n′ = −T log 2(1− n(E)). (3.251)
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The expression (3.247) becomes therefore Eq. (9.96)

∆f = T
∑

p

[log(1− n)n− log(1− n0)n0] +
1

g
∆2 (3.252)

where n0 denotes the free-fermion distribution. Alternatively, one may writeEq. (9.97)

∆f = 2T
∑

p

{log(1− n)− (E − ξ)}+
1

g
|∆0|2 − 2T

∑

p

log(1− n0)

(3.253)

The last term is recognized as minus the energy of the free system so that the first
line gives the full energy of the superfluid ground state.

The explicit calculation can conveniently be done by studying ∆f of (3.253) at
fixed T as a function of g. At g = 0, ∆0 = 0 and ∆f = 0. As g is increased to its
physical value, the gap increases to ∆0. Now, since ∆f is extremal in changes of ∆
at fixed g and T , all g-dependence comes from the variation of the factor 1/g, i.e.,Eq. (9.98)

∂∆f

∂g

∣

∣

∣

∣

∣

T

= |∆0|2. (3.254)

We can therefore calculate ∆f by simply performing the integralEq. ()

∆f = −
∫ ∞

1/g
d (1/g′) |∆0|2 (1/g′) (3.255)

The 1/g-dependence of the gap is obtained directly from (3.132), (3.141) asEq. ()

1

gN (0)
− log

(

2
eγ

π

ωc
T

)

=
1

δ

∞
∑

n=0





1
√

x2
n + 1

− 1

xn



 .

From this we findEq. (9.101)

∂

∂δ2

(

1

gN (0)

)∣

∣

∣

∣

∣

T

= − 1

2δ2
φ(δ2) = − 1

2δ2

ρs
ρ
, (3.256)

where φ(δ2) is the Yoshida function φ(∆) in which we have here emphasized the
fact that it is a pure function of δ2, as we can see from (3.187). In the last line we
have expressed it in terms of the superfluid density ρs . Using this we can change
variables in the integration and writeEq. (9.102)

∆f = N (0)π2T 2 1

2

∫ δ2

0
dδ′

2
φ(δ′

2
). (3.257)

Inserting φ from the upper part of equation (3.191) we can perform the integral with
the result:Eq. (9.103)
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1

δ2

∫ δ2

0
dδ′

2
φ(δ′

2
) =

4

δ

∞
∑

n=0



− 1
√

x2
n + 1

+ 2
(

√

x2
n + 1− xn

)



 (3.258)

In analogy to φ = ρs/ρ we shall denote this new function as φ̃ ≡ ρ̃s/ρ, i.e.,Eq. ()

ρ̃s
ρ
≡ φ̃ =

4

δ

∞
∑

n=0

[

− 1

xn
+ 2

(

√

x2
n + 1− xn

)]

. (3.259)

When plotted against temperature, this starts out as (1− T/Tc) for T ∼ Tc and goes
to unity for T → 0. The approach to unity is found by means of the Euler-McLaurin
expansion applied to (3.259): Eq. (9.122)

∞
∑

n=0

f(xn) =
δ

2

∫

dxf(x)− 1

2! · 3δ2
[f ′(∞)− f ′(0)]

+

[

(

1

2! · 3
)2

− 1

4! · 5

]

1

δ4
[f ′′′(∞)− f ′′′(0)] + . . . . (3.260)

For ρ̃s this implies Eq. (9.123)

ρ̃s
ρ

∣

∣

∣

∣

∣

δ2→0

= 2
∫ ∞

0
dx

[

− 1√
x2 + 1

+ 2
(√

x2 + 1− x
)

]

− 2

3δ2
+ . . .

= 1− 2

3δ2
+ . . . . (3.261)

The full temperature behaviour is plotted in Fig. 3.9. The condensation energy can
therefore be written in the simple form Eq. (9.105)

∆f = −N (0)π2T 2 1

2

ρ̃s
ρ
δ2. (3.262)

For T → Tc, the function ρ̃s this goes to zero linearly, just like ρs, and we find Eq. (9.106)

∆f ≈ −Nπ2T 2 1

2

(

1− T

Tc

)2 8

7ζ(3)
. (3.263)

in agreement with our previous calculation (3.20) in the Ginzburg-Landau regime
for T ∼ Tc.

For T → 0, on the other hand, where δ2π2T 2 → 3.111 × T 2
c , the condensation

energy becomes Eq. ()

∆f |T=0 ≈ −0.236× cn(Tc), (3.264)

where we have normalized the right-hand part of the equation by the specific heat
of the liquid just above the critical temperature. Eq. (9.109)

cn(Tc) = −2

3
π2N (0)Tc (3.265)
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1

1

ρ̃/ρs

T/Tc

Figure 3.9 The gap function ρ̃s appearing in the condensation energy of a superconductor

as a function of temperature

1

-0.2

-0.1

T/Tc

∆f/cn(Tc)

Figure 3.10 Condensation energy of a superconductor as a function of temperature.

The full temperature dependence of ∆f can be seen in Fig 3.10.

A remark is in order concerning the application of the Euler-McLaurin expan-
sion (3.260). First, it cannot be used to find an exponential approach to the zero-

8The relation between the ground-state action and the free energy F is A = iF/T, tb − ta =
−i/T,

∫

∞

−∞
dε = iT

∑

ωn

H. Kleinert, COLLECTIVE QUNATUM FIELDS



3.5 Ground State Properties 89

temperature limit (of the type e−δ).
Second, it works only if the integral over the function f(x) has no singularity at
x = 0. Consider, for example, the T → 0 limit of (3.141). The sum on the right-
hand side requires the following more careful limiting procedure: Eq. (sc-9.127)

N
∑

n=0

1

xn
= δ

N
∑

n=1

1

2n + 1
= δ





2(N+1)
∑

n=1

1

n
− 1

2

N+1
∑

n=1

1

n





≈
N large

δ
{

log 2(N + 1 + γ − 1

2
[log(N + 1) + γ]

}

=
δ

2

{

∫ xN

1/δ

dx

x
+ log(2eγ)

}

. (3.266)

Thus one would obtain Eq. (9.127a)

log
T

Tc
−→
T→0

∫ ∞

0
dx

1√
x2 + 1

−
∫ ∞

1/δ

1

x

= − log (δeγ) . (3.267)

in agreement with (3.144). The following rule is useful: If
∑∞
n=0 1/xn appears in a

sum, it can be made finite by subtracting δ/2 times

2

δ

∞
∑

n=0

=
1

xn

∫ ωc

−ωc

dξ

2ξ
tan

ξ

2T
= log

(

2ωce
γ

Tπ

)

.

In a sloppy procedure, one may replace the left-hand side for T → 0 by the integral Eq. ()

δ

2

∫ x

0

dx′

x′
→ δ

2
(log x− log 0), (3.268)

if one substitutes, at the lower limit, Eq. (9.128)

log 0 → − log (2δeγ)− log
2∆0e

γ/π

T
= − log

2∆0

∆0(0)

Tc
T

(3.269)

with the zero-temperature gap Eq. (9.128a)

∆0(0) = πe−γTc ∼ 1.764× Tc . (3.270)

3.5.2 Entropy

Let us now calculate the entropy. For this it is useful to note that at fixed T and
1/g the energy is extremal with respect to small changes in ∆. It is this condition
which previously lead to the gap equation [see for instance Eq. (3.138)]. Thus when
forming Eq. (9.110)

s = − ∂f
∂T

(3.271)
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we do not have to take into account the fact that ∆2 varies with temperature.
Therefore we find Eq. (9.111)

∆s = −∂∆f
∂T

= −2
∑

p

[

log(1− n(p))− T

n(1− n)

∂n

∂T

]

. (3.272)

But the derivative is Eq. (9.112)
∂n

∂T
= n(1− n)

E

T 2
(3.273)

so that the entropy becomesEq. ()

∆s = −2
∑

p

[

log (1− n(p))− nE(p)

T

]

(3.274)

which can be rewritten in the more familiar formEq. (9.114)

∆s = −2
∑

p

[(1− n) log(1− n) + n logn] (3.275)

after having inserted the identityEq. (9.115)

E

T
= log

1− n
n

(3.276)

For the explicit calculation we differentiate (3.257) with respect to the temperature
and findEq. (9.116)

∆s = −∂∆f
∂T

= N (0)π2T
∫ δ2

0
dδ′

2
φ(δ′2) +N (0)π2T 2 1

2
φ
∂δ2

∂T
. (3.277)

From Eq. (3.141) we know log(T/Tc) as a function of δ2. Differentiation yieldsEq. (9.117)

1

T

dT

dδ2
= − 1

2δ2
φB,A (3.278)

so that the condensation entropy is simplyEq. (9.118)

∆s = −N (0)π2T
∫ δ2

0
dδ′2

[

1− φB,A(δ′2)
]

(3.279)

If we normalize this again with the help of cn(Tc) this can be written asEq. (9.120)

s

cn(Tc)
= −2

3
(1− ρ̃s/ρ) δ2. (3.280)

For T → Tc this behaves likeEq. (9.121)

s

cn(Tc)
≈

T≈Tc

−3

2

(

1− T

Tc

)

8

7ζ(3)
. (3.281)

The T → 0 limit of the condensation entropy density is thereforeEq. (9.125)

∆s|T=0 = −2

3
N (0)π2T, (3.282)

thereby cancelling exactly with the normal entropyEq. (9.126)

sn =
2

3
N (0)π2T (3.283)

so that the total entropy vanishes, as it should. The approach to zero is parabolic
due to (3.261). The full temperature behaviour is plotted in Fig. 3.11.Fig. XXXIV
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1

1

T/Tc

sn(T )/sn(Tc)

s(T )/sn(Tc)

Figure 3.11 The temperature behaviour of the condensation entropy of a superconductor.

3.5.3 Specific Heat

By a further differentiation with respect to the temperature we immediately obtain
the specific heat Eq. (9.129)

∆c = T
∂∆s

∂T
= N (0)T 2∆s−N (0)π2T

[

1− φ(δ2)
]

T
∂δ2

∂T

= −N (0)π2

[

∆s− 2T
1− φ(δ2)

φ(δ2)
δ2

]

. (3.284)

This can be rewritten in terms of the superfluid density as Eq. (9.130)

∆c

cn(Tc)
=

T

Tc

[

−3

2
(1− ρ̃s/ρ) + 3(ρ/ρs − 1)

]

δ2. (3.285)

At T = Tc there is a finite descontinuity Eq. (9.131)

∆c

cn(Tc)
=

3

2

8

7ζ(3)
= 1.4261, (3.286)

which could have been found from the Ginzburg-Landau treatment in Section 2.2.
For the full specific heat one has to add the normal contribution of the normal Fermi
liquid in (3.246), which is simply equal to T/Tc. The result is shown in Fig. 3.12.

For T → 0 we use the results (3.263), (3.281) to find Eq. ()

∆c

cn(Tc)
= −T/Tc. (3.287)



92 3 Superconductors

1

2

1

T/Tc

c(T )/cn(Tc)

Figure 3.12 Total specific heat (normal plus condensate part) of a superconductor as a

function of temperature.

This exactly the opposite of the specific heat of the normal liquid so that the curve
for the total c/cn(Tc) starts out exponentially flat at the origin (exponentially due
to the nonzero gap amounting to finite activation energy).

3.6 Plasmons versus Pairs

Very often the two-body potential V (x, x′) will consist of several pieces favouring
different collective excitations

V (x, x′) =
∑

i

Vi(x, x
′). (3.288)

Thus V may have a long-range part supporting plasma oscillations and, in addition,
a strong short-range contribuiton giving rise to tightly bound pairs. It is obvious
that in such situations it is convenient to eliminate each potential Vi separately by
the introduction of different collective fields. Only then has a perturbation expansion
a chance of showing fast convergence.

Also, for one fundamental potential there may be different domains in T, µ, V
with different collective phenomena being dominant. Thus a system of electrons will,
at lower density, not be governed by plasmons due to ring graphs but corrections of
the type
will become increasingly important. The path integral formalism has no formal
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problem in incorporating such effects. One simply performs, in the grand-canonical
action, an artificial splitting

V (x, x′) = V1(x, x
′) + V2(x, x

′) (3.289)

with an arbitrary V1(x, x
′) which may depend on µ, T, V and defines

V2(x, x
′) ≡ V (x, x′)− V1(x, x

′). (3.290)

Then V1 may be turned into plasmons, V2 into pairs. The full final answer should
not depend on the parameters characterizing the splitting (3.289). But at every
given order in the collective perturbation theory there will be an optimal set of
these parameters minimizing the free energy.

Certainly, physical intuition and experience has to guide the selection of V1, and
general rules have yet to be worked out.

Appendix 3A Propagator of the Bilocal Pair Field

Consider the Bethe-Salpeter equation (3.22) with a potential λV instead of V

Γ = −iλV G0G0Γ. (3A.1)

Take this as an eigenvalue problem in λ at fixed energy-momentum q = (q0,q)=
(E,q) of the bound states. Let Γn(P |q) be all solutions, with eigenvalues λn(q).
Then the convenient normalization of Γn is:

−i
∫

d4P

(2π)4
Γ†n (P |q)G0

(

q

2
+ P

)

G0

(

q

2
− P

)

Γn′(P |q) = δnn′ . (3A.2)

If all solutions are known, there is a corresponding completeness relation (the sum
may comprise an integral over a continuous part of the spectrum)

−i
∑

n

G0

(

q

2
+ P

)

G0

(

q

2
− P

)

Γn(P |q)Γ†n(P ′|q) = (2π)4δ(4)(P − P ′). (3A.3)

This completeness relation makes the object given in (3.36) the correct propagator
of ∆. In order to see this write the free ∆ action A2[∆

†∆] as

A2 =
1

2
∆†

(

1

λV
+ iG0 ×G0

)

∆ (3A.4)

where we have used λV instead of V . The propagator of ∆ would have to satisfy

(

1

λV
+ iG0 ×G0

)

∆̇∆̇† = i. (3A.5)
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Performing this calculation on (3.28) one has, indeed, by virtue of (3A.1) for Γn, λn:

(

1

λV
+ iG0 ×G0

)

×
{

−iλ
∑

n

ΓnΓ
†
n

λ− λn(q)

}

= −iλ
∑

n

1
λV

ΓnΓ
†
n + iG0 ×G0ΓnΓ

†
n

λ− λn(q)

= iλ
∑

n

−λn(q)
λ

+ 1

λ− λn(q)
(−iG0 ×G0ΓnΓ

†
n)

= i

(

−i
∑

i

G0 ×G0ΓnΓ
†
n

)

= i. (3A.6)

Note that the expansion of the propagator in powers of λ

∆̇∆̇† = i
∑

k





∑

n

(

λ

λn(q)

)k

ΓnΓ
†
n



 (3A.7)

corresponds to the graphical sum over one, two, three, etc. exchanges of the potential
λV . For n = 1 this is immediately obvious due to (3A.1):

i
∑

n

λ

λn(q)
ΓnΓ

†
n =

∑ λ

λn(q)
λn(q)V G0 ×G0ΓnΓ

†
n = iλV. (3A.8)

For n = 2 one can rewrite, using the orthogonality relation,

i
∑

n

(

λ

λn(q)

)2

ΓnΓ
†
n =

∑

nn′

λ

λn(q)
ΓnΓ

†
nG0 ×G0Γn′Γ†n′

λ

λn′(q)
= λV G0 ×G0λV(3A.9)

which displays the exchange of two λV terms with particles propagating in between.
The same procedure applies at any order in λ. Thus the propagator has the expan-
sion

∆̇∆̇† = iλV − iλV G0 ×G0iλV + . . . . (3A.10)

If the potential is instantaneous, the intermediate
∫

dP0/2π can be performed re-
placing

G0 ×G0 → i
1

E − E0(P|q)
(3A.11)

where

E0(P|q) = ξ
(

q

2
+ P

)

+ ξ
(

q

2
−P

)

is the free particle energy which may be considered as the eigenvalue of an operator
H0. In this case the expansion (3A.10) reads

∆̇∆̇† = i
(

λV + λV
1

E −H0

λV + . . .
)

= iλV
E −H0

E −H0 − λV
. (3A.12)
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We see it related to the resolvent of the complete Hamiltonian as

∆̇∆̇† = iλV (RλV + 1) (3A.13)

where

R ≡ 1

E −H0 − λV
=
∑

n

ψnψ
†
n

E − En
(3A.14)

with ψn being the Schrödinger amplitudes in standard normalization. We can now
easily determine the normalization factor N in the connection between Γn and the
Schrödinger amplitude ψn. Eq. (3A.2) gives in the instantaneous case

∫ d3P

(2π)3
Γ†n(P|q)

1

E −H0
Γn′(P|q) = δnn′ (3A.15)

Inserting ψ from (3.28) renders

1

N2

∫

d3P

(2π)
ψ†n(E −H0)ψn′(P|q) = δnn′. (3A.16)

But since

(E −H0)ψ = λV ψ (3A.17)

this is also

1

N2

∫

d3P

(2π)3
ψ†n (P|q)λV ψn′ (P|q) = δnn′. (3A.18)

For ψn wave functions in standard normalization the integral expresses the differen-
tial

λ
dE

dλ
.

For a typical calculation of a resolvent, the reader is referred to Schwinger’s treat-
ment [45] of the Coulomb problem. His result may directly be used for a propagator
of electron hole pairs bound to excitons.

Appendix 3B Fluctuations around the Composite Field

Here we show that the quantum mechanical fluctuations around the classical equa-
tions of motion (2.6)

ϕ(x) =
∫

dyV (x, y)ψ†(y)ψ(y), (3B.1)

or (3.4)

∆(x, y) = V (x− y)ψ(x)(y), (3B.2)
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are quite simple to calculate. For this let us compare the Green functions of ϕ(x) or
∆(x, y) with those of the composite operators on the right-hand side of Eqs. (3B.1)
or (3B.2). The Green functions or ϕ or ∆ are generated by adding external currents
∫

dxϕ(x)I(x) or 1/2
∫

dxdy(∆(y, x)I†(x, y)+h.c.) to the final actions (2.11) or (3.7),
respectively, and by forming functional derivatives δ/δI. The Green functions of the
composite operators, on the other hand, are obtained by adding

∫

dx
(∫

dyV (x, y)ψ†(y)ψ(y)
)

K(x)

1

2
dxdyV (x− y)ψ(x)ψ(y)K†(x, y) + h.c.

to the original actions (2.4) or (3.3), respectively, and by forming functional deriva-
tives δ/δK. It is obvious that the sources K can be included in the final actions
(2.11) and (3.7) by simply replacing

ϕ(x)→ ϕ′(x) = ϕ(x)−
∫

dx′K(x′)V (x′, x)

or

∆(x, y)→ ∆′(x, y) = ∆(x, y)−K(x, y).

If one now shifts the functional integrations to these new translated variables and
drops the irrelevant superscript “prime”, the actions can be rewritten as

A[ϕ] = ±iTr log(iG−1
ϕ ) +

1

2

∫

dxdx′ϕ(x)V −1(x, x′)ϕ(x′) + i
∫

dxdx′η†(x)Gϕ(x, x
′)η(x)

+
∫

dxϕ(x) [I(x) +K(x)] +
1

2

∫

dxdx′K(x)V (x, x′)K(x′) (3B.3)

or

A[∆] = ± i
2
Tr log

(

iG−1
∆

)

+
1

2

∫

dxdx′|∆(x, x′)|2 1

V (x, x′)

+
i

2

∫

dxdx′j†(x)G∆(x, x′)
1

V (x, x′)

+
1

2

∫

dxdx′
{

∆(y, x)
[

I†(x, y) +K†(x, y)
]

+ h.c.
}

+
1

2

∫

dxdx′|K(x, x′)|2V (x, x′). (3B.4)

In this form the actions display clearly the fact that derivatives with respect to
the sources K or I coincide exactly, except for all possible insertions of the direct
interaction V . For example, the propagators of the plasmon field ϕ(x) and of the
composite operator

∫

dyV (x, y)ψ†(y)ψ(y) are related by

ϕ̇(x)ϕ̇(x′) = − δ(2)Z

δI(x)δI(x′)
= V −1(x, x′)− δ(2)Z

δK(x)δK(x′)
(3B.5)

= V −1(x, x′) + 〈0|(
∫

dyV (x, y)ψ†(y)ψ(ϕ))(
∫

dy′V (x′y′)ψ†(y′)ψ†(y′)ψ(y′))|0〉
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in agreement with (2.7). Similarly, one finds for the pair fields:

∆̇(x, x′)∆̇(y, y′)† = δ(x− y)δ(x′ − y′)iV (x− x′)
+〈0|(V (x′, x)ψ(x′)ψ(x))(V (y′, y)ψ†(y)ψ†(y′))|0〉. (3B.6)

Note that the latter relation is manifestly displayed in the representation (3A.10) of
the propagator ∆. Since

∆̇∆̇† = iV G(4)V

one has from (3B.6)

〈0|V (ψψ)(ψ†ψ†V )|0〉 = V G(4)V (3B.7)

which is correct, remembering that G(4) is the full four-point Green function. In the
equal-time situation at instantaneous potential, G(4) is replaced by the resolvent R.
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1
Introduction

In 1958 the theory by Bardeen, Cooper, and Schrieffer succeeded in explaining
superconductivity via the formation and subsequent condensation of bosonic s-wave
Cooper pairs in a fermionic electron gas [1]. Immediately afterwards a search was
started for similar phenomena in other Fermi systems such as nuclei [2] and liquid
3He [3]. While nuclear forces did, in fact, allow for a direct application of the BCS
formalism [4], it was soon noticed [5] that in 3 He the strong repulsive core of the
interatomic potential would not permit exactly the same type of pair formation as
in superconductors. If we take a look at the shape of the potential shown in Fig.
1.1, we see that the hard core starts at a radius of about r ≈ 2.5 Å. At r ≈ 3 Å there
is a minimum of roughly −10 K. Beyond this, the potential approaches zero with
the van-der Waals behavior r−6. It is now obvious that there can be no formation
of s-wave bound states: In the Fermi liquid, only the atoms moving close to the
surface of the Fermi sphere are capable of substantial interactions. But they move
with a momentum p ≈ pF ≈ 8× 10−19 g cm/sec. Then for each angular momentum

Figure 1.1 Interatomic potential between 3He atoms as a function of the distance r.

There is a hard core at about 2.35 Å and a minimum at 3 Å at which the potential is

about −10 K. The mean distance between the atoms in the liquid lies at ≈ 3.5 Å, i.e.,

well within the range of attraction. Beyond this, the potential approaches zero with the

van-der Waals behavior r−6.
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Im Γ(q, ω)

ωPar(q)

ω

Im χ(q, ω)

Figure 1.2 Imaginary part of the susceptibility caused by repeated exchange of spin

fluctuations, as a function of energy ω. There is a pronounced peak whose sharpness

increases with decreasing q. Thus, for small q, there are long-lived excitations in the

system which are called paramagnons. The straight line shows the inginary part of the

susceptibility for for a free Fermi system.

l = 0, h̄, 2h̄, 3h̄ the impact parameter, i.e., the distance, art which the particles pass
one another is of the order of l/pF ≈ 0, 1.25Å, 2.5 Å, 3.75 Å, . . . . With the
repulsive core rising at r ≤ 2.5 Å it appears as if the first partial wave which has a
chance to bind is the d-wave. As a matter of fact, in the first quantitative analyses,
d-wave pairs were argued to make up the superfluid condensate and the first careful
extension of BCS formalism was done for this case [6].

The situation is not, however, that simple. There are strong many-body ef-
fects which have been neglected in such a simple-minded consideration. They lead
to a screening of the fundamental interatomic potential so that the partial wave
estimates have to be modified. Moreover, the hard core together with the Pauli
exclusion principle generate strong spin-spin correlations. As a consequence there is
a pronounced resonance in the dynamic susceptibility (see Fig. 1.2) which is usually
referred to as a paramagnon excitation. The exchange of these particle-like states
between two atoms gives rise to an additional attraction between parallel spins and
therefore enhances the bound states of odd annular momenta.

It would be desirable to calculate these effects quantitatively from first principles,
i.e., an n-body Hamiltonian of 3He atoms with the fundamental interaction V (r)
shown in Fig. 1.1. Unfortunately the strength of this interaction has made this an
impossible task until today. Therefore we have to take the evidence from experiment
that the Cooper pairs form at a lower angular home than expected, namely at
l = 1. Apparently, the screening effects do somewhat weaken the hard core and the
paramagnons provide sufficient additional attraction between parallel spins so that
binding can occur in this p-wave state of low impact parameter. By statistics this
state has to be symmetric in the spin wave functions, so that its total spin has to
be S = 1 (spin triplet).

With the difficulties of calculating which orbital wave would bind, also the esti-
mates for the transition temperature considerable variations. Early estimates were
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as high as 0.1 K. They has to be lowered successively when experiments had reached
such low temperatures without seeing the phase transition.

The transition was finally discovered experimentally by cooling liquid 3He down
along the melting curve at 2.7 mK, with another transition at 2.1 mK. The reason
why measurements were first performed along the melting curve lies in the simplicity
of the cooling techniques and temperature control via the so-called Pomeranchuk

effect . It is useful to keep in mind how temperatures in the milli-Kelvin range can
be reached and maintained: First, the system can easily be pre-cooled to roughly 77
K by working inside a Dewar container filled with liquid nitrogen. Embedded in this
is another container filled with liquid 4He which maintains, at atmospheric pressure,
a temperature of 4 K. Enclosed in this lies a dilution refrigerator. It is constructed
on the basis of the following physical principle: Liquid 3He, when brought into
contact with 4He, forms a well defined interface. Across it, diffusion takes place just
in the same way as in the evaporation process at a water surface. This lowers the
temperature. The process can be made cyclic just like in an ordinary evaporation
refrigerator. Nowadays, temperature of a few mK can be reached in this way. In the
beginning, the dilution cooling was used only down to roughly 100 mK. From there
on, the Pomeranchuk effect can be exploited. This is based on the observation that
according to the Clausius-Clapeyron equation, Eq. (he-1.3)

dP

dT
=
Sliquid − Ssolid

Vliquid − Vsolid
, (1.1)

the temperature goes down with increasing pressure since the entropy of the liquid
becomes smaller than that of the solid in spite of its larger volume. Thus, in order
to cool, all one has to do is to compress the system.

If one wants to measure the phase diagram away from the melting curve adiabatic
demagnetization may be used in addition to the Pomeranchuk effect. The best
magnetic materials for this purpose are either CMN (cereous magnesium nitrate)
or copper. In the first material it is the magnetic moments of the electrons, in the
second that of the nuclei which is demagnetized. With copper, temperatures of 35
mK have meanwhile be reached and maintained for hours (below 2mK for 3 days).

With such techniques the phase diagram has meanwhile been measured for very
low pressures (see Fig. 1.3). The two phases discovered originally along the melting
curve are now called A and B. For large magnetic fields, there is another phase,
called A1, which forms between A phase and normal liquid. In order to improve
visibility in the Figure we have exaggerated the corresponding temperature interval
by a factor.

Many properties of these three phases have meanwhile been investigated exper-
imentally and they all are in complete agreement with the theoretical description
via p-wave spin triplet Cooper pairs.

As hard as it was to give the correct prediction for the transition temperature,
the final observation of the critical temperature Tc = 2.7 mK is in perfect scale when
compared with normal superconductors (see Table 1.1 [10]. Tab. masses
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Figure 1.3 Phase diagram of 3He plotted against temperature, pressure, and magnetic

field. As H = 0 there are two phases, A and B. For strong magnetic fields, an additional

phase A1 develops.

TF mass Tc
Superconductor 1000 K 1 melectron 2.7 K
3He 1 K 1000 melectron 2.7 mK

Table 1.1 There is a factor of roughly 1000 between the characteristic quantities of

superconductors and 3He

.
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2
Preparation of Functional Integral

2.1 The Action of the System

It will turn out to be convenient to consider grand canonical enesembles in which
the particle number can fluctuate and only the average is fixed. Then, instead of the
Hamiltonian H, we shall work with H − µN where N counts the particle number

N =
∫
d3xψ∗(x, t)ψ(x, t) (2.1)

and µ is an appropriate Lagrangian multiplyer acting as a chemical potential. Then
the action can be written as 1 Eq. (he-3.2)

A =
∫
d4xψ∗(x)i∂tψ(x)−

∫
dt(H − µN) (2.2)

with Eq. (he-3.3)

H − µN =
∫
d3xψ†(x)

(
−h̄2∇2

2m
− µ

)
ψ(x)

+
1

2

∫
d3xd3x′ψ∗(x)ψ∗(x′)V (x′, x)ψ(x′)ψ(x) (2.3)

The potential V may be taken as instantaneous and time independent Eq. (he-3.4)

V (x′, x) = δ(t′ − t)V (x′,x) (2.4)

The dominant part of V (x′,x) consists in the van der Waals molecular potential
V (x′ − x) which was displayed in Fig. 1.1.

Since the 3He atoms are electrically neutral, there are no Coulomb forces at
atomic distances. There is, however, a weak nuclear magnetic moment γ ≈ 2.04×104

(gauss sec)−1 causing an additional small spin-spin dipole interaction Eq. (he-3.5)

Ad = −
∫
dtHd =

∫
dt
∫
d3x′d3x

[
δab − 3

(x′ − x)a(x− x)b
|x′ − x|2

]

×ψ∗(x′, t)σa
2
ψ(x′, t)ψ∗(x, t)

σb
2
ψ(x, t). (2.5)

1Here and later we shall use four-vector notation where the symbol x has time and space
components xµ ≡ (x0,x) = (t,x) with µ = 0, 1, 2, 3 and d4x ≡ dtd3x, for brevity.
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Due to its smallness, the interaction is negligible in the normal Fermiliquid. In the
sensitive superfluid phase, however, it will have interesting consequences causing a
variety of domain structures.

As shown in the last chapter, the thermodynamic action relevant at the statistical
level is obtained by analytic continuation to imaginary time τ :Eq. (he-3.6)

− iA → AT =
∫ 1/2T

−1/2T
dτd3xψ∗(x)∂τψ(x) +

∫ 1/2T

1/2T
dτ (H − µN +Hd) (2.6)

with ψ(x) in such euclidean expressions standing for ψ(x, τ). In the partition
function, the path integral extends over all fields ψ(x) = ψ(x, τ) antiperiodic for
τ → τ + 1/T :Eq. (he-3.7)

ψ(x, τ) = −ψ (x, τ + 1/T ) . (2.7)

Confronted with the action (3.6) it appears, at first sight, quite hopeless to attempt
any perturbative treatment. First of all, the potential V (r) has an essentially infinite
repulsive core. Moreover, from the experimental density we can estimate the average
distance between the atoms in the liquid to be about 3.5 Å where the potential is still
of considerable strength. The salvation from this difficulty is provided by Landau’s
observation that many features of this strongly interacting Fermi liquid till obey the
same laws observed in a free Fermi system:

(a) The specific heat behaves like CV ∼ T .

(b) The susceptibility behaves like χ ∼ const .

(c) The compressibility behaves like κ ∼ const for small T (but in the normal
liquid).

In fact, all free Fermi liquid laws for these quantities are valid provided one substi-
tutes an effective mass meff ≈ 3− 6m3He instead of the true mass m3He, depending
on whether one works close to zero or melting pressure (35 bar). In addition, there
is a simple multiplicative renormalization by a factor which can be attributed to
molecular field effects, similar as in Weiss’ theory of ferromagnetism. Landau’s in-
terpretation of this phenomenon is the following: By restricting one’s attention to
low-energy and momentum properties of a system the strong-interaction problems
simplify considerably. The rapid fluctuations cause an almost instantaneous read-
justment of the particle distribution. For this reason, if slow and long-wavelength
disturbances are applied to the system, several 3He atoms which are in their mutual
range of interaction will respond simultaneously as a cluster, called quasiparticle,
with an effective mass larger than the atomic mass. The residual interaction be-
tween these quasiparticles is very smooth and weak since any potential hole, which
could appear as a result of a small displacement in the liquid, is immediately filled
up and screened away by a rapid redistribution of the atoms. It is this screening
effect mentioned in the introduction which makes quantitative calculations at least
at the level of quasiparticles. Apparently the fast fluctuations generate a new effec-
tive action of approximately the same form as (3.2) except that ψ has to be read
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as quasiparticle field, m as effective mass, and V as the residual effective potential
between the quasiparticles. The energy range of integrations in the Fourier decom-
position of the fields is, however, limited to some cutoff frequency ωcutoff beyond
which the effective action becomes invalid.

Using the path integral formulation of the partition function it will be quite easy
to formulate this transition from the fundamental expression A to a quasiparticle
action at least in principle.

2.2 From Particles to Quasiparticles

It was argued that fluctuations cause a significant screening of the potential. The
screened lumps of particles move almost freely but with a larger effective mass. In
order to formulate this situation we need first a precise distinction between fast and
slow fluctuations. For this we expand the field in a Fourier series Eq. (he-)

ψ(x, t) =
1√

(tb − ta)V
∑

ωn,k

e−iωnt+ikx (2.8)

where V is the spatial volume of the system and ωn are the Matsubara frequencies Eq. (he-)

ωn ≡
2π (n+ 1/2)

(tb − ta)
(2.9)

which enforce the anti-periodic boundary condition (3.7). Apparently, there are
natural energy and momentum scales ω0 and k0 so that a separation of the field into
slow and long-wavelength and fast and short-wavelength, Eq. (he-3.9)

ψ(x, t) ≡ ψs(x, t) + ψh(x, t) (2.10)

=
1√

(tb − ta)V




∑

|ωn|<ω0
|k|<k0

e−iωnt+ikxψ(ωn,k) +
∑

|ωn|≥ω0
|k|>k0

e−iωnt+ikxψ(ωn,k)




can be used to simplify the path integral. The two pieces will be referred to as soft

and hard components of the field ψ. When written in energy momentum space, the
functional integral measure may be separated accordingly: Eq. (he-3.10)

∫
DψDψ∗ =

∫
DψsDψ∗s

∫
DψhDψ∗h ≡

∏

|ω|<ω0,|k<k0

dψ(ωn,k)dψ∗(ωnk)

2πi

∏

|ω|≥ω0,|k≥k0

dψ(ωn,k)dψ∗(ωnk)

2πi
. (2.11)

If we now perform the path integral over the hard components we remain with a
partition function Eq. (he-3.11)

Z =
∫
DψsDψ∗seiAs[ψ∗

s ,ψs] (2.12)
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where As[ψ∗s , ψs] is a functional of only the soft components. The point of Landau’s
argument is now that due to the high quality of the free Fermi gas laws there seems
to exist an optimal choice for ω0, K0 so that the action looks like the action of the
initial 3He particles except that the new fields ψs have a larger effective mass m∗

and that the interactions are much weaker than in the original fundamental form
(3.2).

Certainly, the execution of the path integral over the fast components is ex-
tremely difficult due to the strength of the interactions. We shall therefore accept
Landau’s argument purely on phenomenological grounds and see its justification in
the successful derivation of the physical properties of the liquid.

At first sight, the precise choice of ω0 and k0 seems to be a rather ad hoc matter
and one might fear that all results derived from the partition function (3.12) depend
strongly on which values are taken. It is gratifying to note, however, that this is
not really true. Only the predictions as to the size of the transition temperature Tc
varies strongly with ω0, k0. But in all final results ω0, k0 can be eliminated in favor
of the observable temperature Tc in this way the arbitrariness is removed. This is
completely analogous to the independence of all physical amplitudes on the cutoff
in renormalizable field theory.

For the phenomena of superfluidity, the optimal choice of ω0, k0 will be so that
ω0 is about 10 times larger than the transition temperature Tc while k0 comprises 10
approximately atomic distances (i.e., k0 ≈ 2π/10Å). In this way quasiparticle fields
are well enough localized in space and time to describe excitations with frequencies
in the range of Tc ∼MHZ and wavelength of about 100 Å.

2.3 The Approximate Quasiparticle Action

We are thus confronted with a simplified problem of calculating the partition func-
tion over soft field components ψs. For brevity, the subscript’s will be dropped. The
soft field quanta are precisely what Landau introduced as quasiparticles. Since we
are not able to calculate As explicitly, we have to deduce its structure from exper-
imental facts. As argued above,the action must account for the free particle like
behavior of specific heat, susceptibility transition temperature T except for simple
renormalization factors.

Let us briefly take a look at the experimental situation: For a free Fermi gas it
is easy to calculate the three quantities (the standard derivation is omitted here, in
order to proceed with the argument. The derivation will appear later. 2Eq. (he-3.13)

CV =
mpF

3h̄3 kB
2T (2.13)

χN =
γ2

4

mpF
π2

1

h̄
(2.14)

κT =
m

ρ2

pF

π2h̄3 (2.15)

2For explicitness, we keep h̄ and kB in these particular formulas.
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with Eq. (he-)
ρ

m
=
N

V
(2.16)

being the particle density whereas Eq. (he-3.16)

pF =
(
3π2

)1/3
(
N

V

)1/3

h̄ ≈ g × 10−20g cm/sec (2.17)

is the Fermi momentum which is only slightly pressure dependent. The associated
Fermi velocity vF ≡ pF/m varies from 5.5 · 103 cm/sec at zero pressure to about
3 · 103 cm/sec at melting pressure (see Table 2.1).

Experimentally one finds the linear behavior for CV below 20 mK for the absolute
size is enhanced by a factor 6 to 14 for pressures ranging from atmospheric to 35
bar (melting pressure). This enhancement may be attributed to a change in the
effective mass from m to m∗. It is customary to introduce the parameter F s

1 defined
by Eq. (he-3.17)

m∗

m
= 1 +

F s
1

3
. (2.18)

The precise values of F s
1 can be seen on Table 2.1.

The spin susceptibility is found to be independent of temperature below 40 mK.
If one, however, inserts the effective mass m∗ into formula (3.17) one finds a value

Table 2.1 Pressure dependence of Landau parameters F a
0 , F s

0 , and F s
1 in 3He together

with the molar volume and the effective mass ratio m∗/m. The values of V , m∗/m and

F s
1 are taken from Greywall (1986), whereas F a

0 , F s
0 are from Wheatley (1975) except for

corrections using more recent values of m∗/m. At P = 34.39 bar this was done on the

basis of Wheatley’s values at P = 34.36 bar.

P (bar) V(cm3) m∗/m F s
1 F s

0 F a
0

0 36.84 2.80 5.39 9.30 -0.695
3 33.95 3.16 6.49 15.99 -0.723
6 32.03 3.48 7.45 22.49 -0.733
9 30.71 3.77 8.32 29.00 -0.742
12 29.71 4.03 9.09 35.42 -0.747
15 28.89 4.28 9.85 41.73 -0.753
18 28.18 4.53 10.60 48.46 -0.757
21 27.55 4.78 11.34 55.20 -0.755
24 27.01 5.02 12.07 62.16 -0.756
27 26.56 5.26 12.79 69.43 -0.755
30 26.17 5.50 13.50 77.02 -0.754
33 25.75 5.74 14.21 84.79 -0.755

34.39 25.50 5.85 14.56 88.47 -0.753
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about four times too small. This is attributed to molecular field effects. if the atomic
magnetic moments are partially oriented, the magnetic field seen by an individual
atom consists of the external field plus that of the other moments in the liquid. The
enhancement factor is usually denoted asEq. (he-)

1

1 + F a
0

≡ 1

1 + Z0/4
(2.19)

with F a
0 ≡ Z0/4 being roughly −3 up to melting pressure 35 bar (see Table 2.1).

The compressibility, finally is measured via the velocity of soundEq. (he-3.19)

c =
1√
ρκT

=
vF√

3

(
1 +

F s
1

3

)1/2

. (2.20)

Here
vF =

pF
m∗

(2.21)

is the Fermi velocity for the effective mass m∗ which ranges from 5 to 3×103 cm/sec
(see Table 2.1).

Experimentally, formula (3.22) turns out to be wrong by a factor 3 to 10. This
is again attributed to molecular field effects for the density field and one multiplies
the compressibility with a correction factor F0

s ≡ 1/(1 + F s
0 ) so thatEq. (he-3.21)

c =
vF√

3

[(
1 +

F s
1

3

)
(1 + F s

0 )
]1/2

(2.22)

with F s
0 and ranging from 10 to 100 (see Table 2.1).

2.4 The Effective Interaction

Which action do we have to take in order to explain these simple features of liquid
3He in a wide range above the superfluid transition temperature? It appears simple
to include the effective mass. All we have to do is choose a free-particle Hamiltonian

Eq. (he-3.22)

H0 =
∫
d3xψ∗(x)

(
i∂t +

∇2

2m∗

)
ψ(x). (2.23)

This naive approximation would immediately lead to the specific heat (3.15) with
the mass m replaced by m∗, provided the number of quasiparticles is taken to be
equal to the true particle number (so that also the Fermi momentum pF which
depends only on the particle density N/V is the same).

If one would set the system into motion by displacing all particle velocitiesEq. (he-3.23)

v =
p

m∗
(2.24)

by a certain amount ∆v, the total momentum P of the system would change byEq. (he-3.24)
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∆P = ∆vNm∗ (2.25)

rather than what it must be physically:Eq. (he-3.25)

∆P = ∆vNm. (2.26)

This can only be corrected by introducing an additional interaction which, however,
must not modify the previous calculation of the specific heat. Such interactions are
well known in molecular field theories. We simply add to the free Hamiltonian a
current interaction Eq. (he-3.26)

Hcurr−curr =
1

2ρ∗
F s

1

3

∫
d3xψ∗(x)

i

2

↔
∇ψ(x)ψ∗(x)

i

2

↔
∇ψ(x) (2.27)

where
↔
∇ is the right-minus-left derivative

→
∇ −

←
∇, the constant F s

a denotes the
coupling strength, and

ρ∗ =
m∗N

Y

is the mass density of quasi-particles. Then the kinematic properties of single quasi-
particle states are automatically correct: For such a state we see the energy to be

Eq. (he-3.27)

E =
p2

2m∗
+
F1

s/3

2m∗
p2 =

p2

2m∗
(1 + F1

s/3) (2.28)

so that the velocity is Eq. (he-3.28)

v =
∂E

∂p
=

p

m∗
(1 + F1

s/3) (2.29)

and the momentum changes upon a shift in velocity by Eq. (he-3.29)

∆P =
∆vNm∗(
1 +

F s
1

3

) (2.30)

For an N -particle state, this leads to the correct result (2.26) if Eq. (he-)

m∗ = m
(
1 +

F s
1

3

)
(2.31)

which is just the relation introduced before in (3.21). That the interaction (2.27)
does leave the specific heat in the form (3.15) with only m replaced by m∗ is not so
easy to see and will be shown later.

The renormalization factors for susceptibility and compressibility have to be
inferred in a similar manner.

For this we realize that when going from one Galilean frame of reference to
another, which moves with velocity v, the energy changes by Eq. (he-3.31)

∆Hv = −
∫
d3xψ∗(x)

↔
∇
2
ψ(x) ∆v. (2.32)
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When turning on a magnetic field, the energy changes by Eq. (he-3.32)

∆HH =
∫
d3xψ∗(x)

σa

2
ψ(x) γHa (2.33)

due to the coupling to the spin magnetic moments.
Finally, if chemical potential is introduced by contact with a particle reservoir, the
energy has to be modified byEq. (he-3.33)

∆Hµ = −
∫
d3xψ∗(x)ψ(x) µ. (2.34)

Thus, current density

ji ≡
1

2
ψ∗
↔
∇iψ,

spin density

sa ≡ ψ∗
σa

2
ψ,

and particle density
n ≡ ψ∗ψ

appear on exactly the same footing.
We have seen that the quadratic current density coupling brings changes in the

kinetic energy to the correct formEq. (he-3.34)

1

m∗
pdp→ 1

m∗

(
1 +

F s
1

3

)
pdp = p

dp

m
. (2.35)

Thus we expect quadratic spin density and particle density couplingsEq. (he-3.35)

Hsd =
1

2

F0
s

ρ∗

∫
d3xψ∗(x)

σa

2
ψ(x)ψ∗(x)

σa

2
ψ(x)

Hd =
1

2

F0

ρ∗

∫
d3xψ∗(x)ψ(x)ψ∗(x)ψ(x) (2.36)

to produce the correction factors for changes in the magnetic and chemical energy
densityEq. (he-3.36)

χHdH → χ (1 + F a
0 )HdH (2.37)

κµdµ → κ (1 + F s
0 )µdµ (2.38)

which were needed to obtain agreement of these quantities with experiment. Cer-
tainly, the couplings introduced are just a specially important selection of a more
complete expansionEq. (he-3.38)

Hint =
1

2ρ∗

∞∑

l=0

∫
d3x

F s
l

2l + 1
ψ∗(x)∂lmψ(x)ψ∗(x)∂lmψ(x)

+
1

2ρ∗

∞∑

l=0

∫
d3x

F a
l

2l + 1
ψ∗(x)

σa

2
∂lmψ

∗(x)
σa√

2
∂lmψ(x) (2.39)
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in which each parameter F can depend also on the momentum transfer, i.e., the
momentum of ψ∗∂lmψ composite field. Such a dependence is referred to as a form
factor. The symbol ∂lm is a short notation for the product of l derivatives which are
chosen traceless in order to project out definite angular momenta, i.e., for instanceEq. (he-3.39)

∂2m ∝ ∂i∂j −
1

3
δij∂

2

∂3m ∝ ∂i∂j∂k −
1

5

(
δij∂

2∂k + 2 cyclic permutations
)
. (2.40)

The proportionality factor is chosen to comply with the following definition in terms
of spherical harmonics: Eq. (he-3.40)

∂lm =

√
4π

2l + 1
Ylm(∂̂)|∂l|. (2.41)

Here the components m refer to a spherical basis so that one must distinguish ∂lm
and ∂∗lm and contract them accordingly in (2.40).

It will turn out that many phenomena depend only on the values of Fl at zero
momentum transfer. Moreover, only the three parameters discussed explicitly before
are easily accessible to experimental measurement.

2.5 Pairing Interaction

With the couplings introduced until now the properties of the degenerate Fermi liq-
uid can be explained within very simple approximations as long as the temperature
is above the critical value Tc. As explained in the introduction the superfluid prop-
erties below Tc require the formation of p-wave spin triplet Cooper pairs. This can
only happen due to an additional attractive interaction which must consist of one
screened version of the original potential V . Its accurate shape is unknown. This,
however, turns out to be no handicap. The reason is the following: The attractive
force is extremely weak. Therefore the Cooper pairs are only barely bound (as man-
ifested by the critical temperature Tc being much smaller than the characteristic
temperature unit of the system which is TF = p2

F/2m ( = the Fermi energy of the
system ≈ 1 K). Therefore the radius of the bound-state wave functions is much
larger than 1/pF ≈ 1 Å. It will turn out to be a few hundred Å. Therefore, whatever
the detailed shape of V , since it can be nonzero only at distances of the order of a
few Å, it is seen by the bound state only as a completely local attractive interaction.
Since this must bind in p-wave spin triplet state, we may directly write Eq. (he-3.41)

Hpair = − 3g

4p2
F

∫
d3xψ∗(x)

σa

2
c†
↔
∇ ψ∗(x)ψ(x)c

σa

2

↔
∇ ψ(x). (2.42)

The matrix c is Eq. (he-3.42)

c = iσ2 =

(
0 1
− 1 0

)
(2.43)

and makes sure that ψcσaψ transforms in the same way as ψ∗σaψ, i.e., like a vector
(since the 2 × 2 rotation matrix U and its complex conjugate are equivalent by
cUc−1 = U∗.
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2.6 Dipole Interaction

The Hamiltonian (3.27) with interactions H2, Hsd, Hd, Hpair will be sufficient to ex-
plain quantitatively most of the properties of the normal and superfluid 3He. As
stated in the beginning of this chapter, the condensate of Cooper pairs is a very
sensitive system. We shall see that many of its interesting phenomena are a di-
rect manifestation of the very small dipole coupling (even though this is properly a
hyperfine interaction).
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3
Transformation from Fundamental to
Collective Fields

While fundamental fields provide the theortically most satisfactory way of defining

the action of a theory, they are quite ineconomic as far as the description of low-
energy and long-wavelength phenomena of systems like 3He and superconductors is
concerned. The reason is basically the following: Below the transition temperature
Tc to the superfluid phase the binding of the fundamental particles in Cooper pairs
results in an anergy gap ∆ of the single particle spectrum which becomes Eq. (he-3.1)

E(p) =
√
ξ2(p) + ∆2 (3.1)

For 3He the size of the gap is of the order of mK while for most superconductors ∆
lies in the K range. As a consequence, the propagator Eq. (he-3.2)

〈0|T (ψ(x)ψ∗(y)) |0〉 (3.2)

has no singularities in the energy plane below E = ∆. A description of the rich
set of physical phenomena with energies much smaller than ∆1 such as zero-sound
waves, spin waves etc. in terms of ψ is therefore quite complicated: An infinite set of
Feynman graphs is necessary even for a lowest order understanding of these phenom-
ena. On the other hand, there are Green functions which directly display excitations
of this type in the complex energy plane, for example those of the composite field
operators Eq. (he-3.3)

〈0|T (ψ∗(x)ψ(x)ψ∗(y)ψ(y)) |0〉 (3.3)

Eq. (he-3.4)

〈0|T
(
ψ∗(x)

σa
2
ψ(x)ψ∗(y)

σb
2
ψ(y)

)
|0〉. (3.4)

Singularities which appear in such composite Green functions but not in (3.2) are
called collective excitations. One may expect that the most economic description
of the associated physical phenomena can be obtained by transforming the full
theory first to the appropriate composite fields. Such transformations have, in fact,
been studies a long time ago in many-body theory at the quasiclassical level. For

1These will often be called ”infrared” phenomena, for brevity.
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superconductors [13] and 3He the result is the so-called Ginzburg-Landau equation
[14]. This equation has been extremely successful in explaining many low-energy
properties of the system. The approximate methods leading to this equation have
been describes in Part I and applied to plasmons and superconductors in Part II.
As before, we add to the action (3.27) (2.42(he-3.41)) a complete square involving an
auxiliary field AaiEq. (he-3.5)

∆A = − 1

3g2

∫
d3x|Aai −

3g

2pF
ψi
↔
∇ic

σa
2
ψ|2. (3.5)

This does not change the theory, for Aai is obviously a dependent field (no ∂tAai
appears) and can be eliminated by solving the “equations of motion” δA/δAai(x) = 0
which areEq. (he-3.6)

Aai(x) =
3g

2pF
ψ(x)i

↔
∇ic

σa
2
ψ(x). (3.6)

Hence, Aai coincides, at the classical level, with the composite field of a pair of
3He atoms in a p-wave spin triplet configuration. Since it will serve to describe
the collective phenomena it will, from now on, be called the collective pair field .
Reinserting (3.6) into (3.5(he-3.5)) gives ∆A = 0 so that, at the classical level, the
addition of δA really leaves the action unchanged. That this remains true at the full
quantum level can be seen by considering the generating functional of the theoryEq. (he-3.7)

Z =
∫
Dψ∗DψDA∗aDAaiei(A0+Aint+∆A) (3.7)

The integral over the auxiliary field DAai is of the gaussian type peaks for each

spacetime point x at 3g
2pF

ψ(x)i
↔
∇i

σa

2
ψ(x). Since the integral runs at each point from

−∞ to +∞, the finite shift is irrelevant and the integral renders the same irrelevant
constant for each x. The particular choice (3.5) of ∆A consists in its eliminating
the quartic term in the action in (3.7) so that the remainderEq. (he-3.8)

A =
∫
d4x {ψ∗(x) (i∂t − ξ(−i∇))ψ(x)

+
(
A∗ai(x)ψi∇̃c

σa
2
ψ + c.c.

)
− 1

3g
A∗aiAai

}
(3.8)

is quadratic in the fields ψ. For this reason, the integral over Dψ∗Dψ can be per-
formed in Z leaving a quantum field theory formulated only in terms of the pair
field Aai. In (3.8) we have gone over to a dimensionless right-minus-left derivative

∇̃ ≡ 1

2pF

↔
∇i, (3.9)

for convenience.
In order to bring the fermion integration to a standard form we introduce a four-
component field which assembles the ψ(x) and ψ∗(x) components into a single
“bispinor”Eq. (he-3.f)
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f =

(
ψ
cψ∗

)
. (3.10)

Then (3.8) can be rewritten as 2 Eq. (he-3.9)

A =
∫
d4x

[
1

2
f ∗(x)

(
i∂t − ξ(−i∇) i∇̃iσaAai
i∇̃iσaA

∗
ai i∂t + ξ(i∇)

)
f(x)− 1

3g
A∗aiAai

]
.

(3.11)

Performing now
∫ Df ∗Df results in 3 Eq. (he-3.10)

Z =
∫
DA∗aiDAaieiAcoll[A

∗, A] (3.12)

with the collective action Eq. (he-3.11)

Acoll [A
∗, A] = (3.13)

− i
2
Tr log

(
i∂t − ξ(−i∇) i∇̃iσaAai
i∇̃iσaA

∗
ai i∂t + ξ(i∇i)

)
− 1

3g

∫
d4xA∗ai(x)Aai(x)

The trace log part can also be written as Eq. (he-3.12)

− i
2
Tr log

(
i∂t − ξ(−i∇) 0

0 i∂t + ξ(i∇)

)
(3.14)

− i
2
Tr log

[
1− i

( i
i∂t−ξ(−i∇)

0 i
i∂t+ξ(i∇)

)(
0 i∇̃iσaAai

i∇̃iσaA
∗
ai 0

)]
.

The first term is an irrelevant constant.4 The second term can be expanded in
powers of Aai as follows: Eq. (he-3.13)

i
∞∑

n=1

(−i)2n

2n
Tr

(
i

i∂t − ξ(−i∇)
i
↔
∇iσaAai

i

i∂t + ξ(i∇)
i
↔
∇jσaA

∗
bj

)n
. (3.15)

The lowest terms of this expansion correspond to the loop diagrams shown in Fig.
3.4. The free part of the collective action is given by the n = 1 term of (3.15) and
the last term in (3.8). Performing the single-loop integral with fixed temperature
Green functions we find for the Fourier-transformed fields defined by

Aai(x) =
1√
V/T

∑

k

Aai(k)e
−ikx ≡ 1√

V/T

∑

ωn,k

Aai(ωn,k)e−i(ωnτ−kx) (3.16)

with no time dependence [i.e., only A(ω0,k) is nonzero] the action Eq. (he-3.14)

2The derivatives ∇̃i do not act on the collective field Aai but only on f∗, f .
3Here we have used

∫
Df∗Dfei 1

2 f∗Mf = (Det M)
1
2 = e

1
2 ßmboxTr log M .

4This can be integrated as Tr log ((i∂t − ξ)δαβ) = 2
∫

d3p
(2π)3 log

(
1 + e−ξ(p)/T

)
≡ −E0/T with

E0 = energy of a free-fermion system.
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A0[A
∗, A] (3.17)

≈ N (0)

3

∫
dt
∑

k

A∗ai(k)
[(

1− T

Tc

)
δij − 3

5
ξ2
0

(
k2δij + 2kiki

)]
Aaj(k)

where

ξ0 =

√
7ζ(3)

48π2

vF
Tc
≈ 120Å (3.18)

is the basic coherence length of the superfluid5 and Tc is the critical temperature
given by the solution of the gap equation

0 =
∫ d3p

(2π)3

tanh ξ(p)/2T

2ξ(p)
− 1

g

≈ N (0)
∫ ωcutoff

−ωcutoff

dξ

2ξ
tanh

ξ

2T
− 1

g

= N (0) log
(
2
2γ

π

ωcutoff

T

)
− 1

g
(3.19)

in which N (0) denotes the density of states at the surface of the Fermi sea:Eq. (he-3.16)

N (0) =
mpF
2π2

=
3

4

ρ

mTF
=

3

2

ρ

m2

1

v2
F

(3.20)

Thus, one hasEq. (he-3.17)

Tc ≡ ωcutoff 2
eγ

π
e−1/gN (0). (3.21)

Close to Tc, the right-hand side of Eq. (3.19) can be approximated as

N (0)
(
1− T

Tc

)

which is exactly the first term in (3.17). The lowest order collective interaction is
quartic in the A fields and becomes in the static case with the long-wavelength limit
takenEq. (he-3.18)

Aint[A
∗, A] = −

∫
d4x

[
β1A

∗
aiAbjA

∗
aiAbj + β2 (A∗aiAai)

2 (3.22)

+β3A
∗
aiAajA

∗
biAbj + β4A

∗
aiAbiA

∗
bjAaj + β5A

∗
aiAbiA

∗
ajAbj

]
.

The coefficients βi are found from the loop integral for n = 2 in the same way as in
the case of the superconductor:Eq. (he-)

− 2β1 = β2 = β3 = β4 = −β5 =
2

5
N (0)

ξ0
2

vF 2
(3.23)

The full interaction contains infinite powers in the collective field A. If one
restricts the consideration to temperatures close to the critical point (T ≈ Tc),

5The constant is ζ(3) ≡∑∞
n=1 1/n3 ≈ 1.202 .
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however, the fields A becomes massless and fluctuations take place over long range.
As far as long-wavelength properties are concerned, higher and higher powers in A
become more and more irrelevant (since the dimension of A goes as length 1). This
type of discussion is familiar from the renormalization group treatment of critical
phenomena [17].

In x-space, the free part of the action can be written as Eq. (he-3.20)

A0[A
∗, A] =

∫
d4x (µAA

∗
aiAai

−K1

2
∂iA

∗
aj∂iAaj −

K2

2
∂iA

∗
aj∂jAai −

K3

2
∂iA

∗
ai∂jAaj

)
, (3.24)

with the temperature dependence residing all in Eq. (he-3.21)

µA =
1

3
N (0)

(
1− T

Tc

)
(3.25)

and the stiffness constants Eq. (he-3.21)

K1 =
2

5
N (0)ξ0

2, K2 +K3 = 2K1. (3.26)

The static long wavelength action (3.22) and (3.24(he-3.20)) for T ≈ Tc when con-
sidered classically is usually referred to a s the ”weak-coupling” Ginzburg-Landau
action of 3He. Notice, however, that its validity is not confined to the classical regime
since the path integral renders the collective action as a fully fledged quantum field
theory.

There is not enough space and time here to discuss all the corrections which
become necessary when including the other parts of the interaction potential which
were omitted in this derivation of the collective action. [16] Let us just mention that
the general form (3.22) and (3.24) remains as it is sufficiently close to the critical
temperature if one stays in the long-wavelength limit. Only the numerical values
of the coefficients change and will, in general, no longer satisfy the many rotations
(2.20), (3.26(he-3.21)) which were obtained in the weak-coupling limit.

That this must be true can be seen on the grounds of the symmetry properties of
the action (3.2). It is obvious that the action is invariant under separate rotations
in spin and orbital space and under phase transformations ψ → eiαψ. The collective
action as a direct translation has to display the same invariance. In the static long-
wavelength limit with T ≈ Tc this leaves only the form (3.22) and (3.24(he-3.20)).
On the same symmetry grounds it is obvious that the dipole action (3.5) cannot

be included by a mere change of the coefficients: The action contracts spatial with
spin indices and is no longer invariant under separate spin and orbital rotations. It
can be shown [14, 16] that the collective form of the dipole action gives rise to an
additional mass term for the A field: Eq. (he-3.22)

Ad = gd

∫
d4x

(
A∗aaAbb + A∗abAba −

2

3
A∗abAab

)
. (3.27)
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The coupling of spatial and spin degrees will result in the most interesting observable
phenomena of the superfluid phase.

At the mean-field level, the integrand of the collective action yields the Ginzburg-
Landau free energy to be used in the sequel:

f = f0 + fint + fd

= µAA
∗
aiAai −

K1

2
∂iA

∗
aj∂iAaj −

K2

2
∂iA

∗
aj∂jAai −

K3

2
∂iA

∗
ai∂jAaj

−β1A
∗
aiAbjA

∗
aiAbj + β2 (A∗aiAai)

2

+β3A
∗
aiAajA

∗
biAbj + β4A

∗
aiAbiA

∗
bjAaj + β5A

∗
aiAbiA

∗
ajAbj.

+gd

(
A∗aaAbb + A∗abAba −

2

3
A∗abAab

)
. (3.28)
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4
General Properties of Collective Action

The static action (3.22) with (3.24) describes the 3He liquid in terms of a complex 3×
3 matrix, i.e., an 18-component field called the order field . If the dipole interaction is
left out, the action is invariant under global SU(2)×SU(2)×U(1) transformations:

Eq. (he-4.1)

Aai → Rab(
� s)Rij(

� o)e−2iϕ

=
(
e− � s � )

ab

(
e−2 � o � )

ij
e−2iϕAbj (4.1)

where (εa)bc ≡ εabc are the 3× 3 generators of the three-dimensional rotation group
and � s, � o denote the associated rotation parameters. Remembering the classical
equality Eq. (he-4.2)

Aai =
3g

2pF
ψ(x)i

↔
∇ic

σa
2
ψ(x) (4.2)

we see that the first transformation corresponds to pure spin, the second to pure
orbital rotations to the original field ψ. The last phase is associated with particle
number conservation and is doubled because of the two fields occurring in (4.2).

Accordingly, there are three conserved Noether currents which are obtained by
functional derivatives with respect to infinitesimal x-dependent symmetry transfor-
mations:
First there is the particle current: Eq. (he-4.3)

ji ≡
δA
δ∂iϕ

= i
{
K1A

∗
aj

↔
∇iAaj +K2

(
A∗aj

↔
∇jAai − A∗ai

↔
∇jAaj

)

+K3

(
A∗ai

↔
∇jAaj − A∗ai

↔
∇jAai

)}
.

This current ji coincides also with the (1/m)T 0i components of the energy momen-
tum tensor. Under an infinitesimal Galilei transformation Eq. (he-)

ψ → e−imv·xψ (4.3)

the collective field changes as follows:

Aai → e−2imv·xAai (4.4)
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so that the energy transforms as Eq. (he-4.4)

δE = m
∫
d3x j · vs. (4.5)

From infinitesimal spin rotations one derives the conserved spin current:Eq. (he-4.5)

jspinai ≡ δA
δ∂iϕsa

= εabc

[
K1

(
A∗bj

↔
∇iAcj + A∗cj

↔
∇iAbj

)

+K2

(
A∗bj

↔
∇jAcj + A∗cj

↔
∇jAbj

)
+K3

(
A∗bi
↔
∇jAcj + A∗cj

↔
∇jAbi

)]
. (4.6)

The orbital current can be written asEq. (he-)

mjorbi = εijk
(
xjT 0k − xkT 0i

)
(4.7)

i.e.,Eq. (he-4.6)

jorb ≡ x× j (4.8)

displaying the fact that the angular momentum density is the vector product of x

with the momentum density jm. The conservation lawsEq. (he-)

∇ · j = 0 (4.9)

of the first two currents follow from Noether’s relationEq. (he-4.6a)

∂i
∂L

∂∂i
� (x)

=
∂L

∂ � (x)
, (4.10)

Eq. (he-4.6b)

∂i
∂L

∂∂i
� (x)

=
∂L

∂ � (x)
, (4.11)

and the invariance under spatially independent symmetry transformations as ex-
pressed by the equation

∂L/∂ � = 0.

Similarly, one finds that the integral over (4.8), which is the total angular momentum
Eq. (he-)

L =
∫
d3x x× j, (4.12)

is a time-independent quantity. Since the invariance of the collective action under
(4.1) is a direct consequence of the original fundamental action being invariant under
separate phase, spin, and orbital rotations defined asEq. (he-4.7)

ψ → e−iϕψ

ψ → e−i � s �

ψ

ψ → e− � o �
jk(xi∂j−xj∂i)ψ (4.13)

the currents (4.2), (4.5(he-4.4)), and (4.6(he-4.5)) are simply the collective versions of
the fundamental Noether currents following from (4.13)Eq. (he-4.8)
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ji ≡
1

2mi
ψ∗
↔
∇iψ,

jai ≡
1

2mi
ψ∗σa

↔
∇iψ,

jorb ≡ x× j. (4.14)

Because of the invariance (4.1) and the quartic form of the collective action,
the theory at hand is what is called a 3 + 1 dimensional SU(2) × SU(2) × U(1)
-symmetric linear σ of model related to the Landau model of ferromagnetism (see
Appendix 8A for a comparison).

When confronted with such a model, the discussion usually starts with the ques-
tion for stable vacua. For this one examines small oscillations in the field A. Since,
in the static case, the action A can be expressed in terms of the energy as Eq. (he-4.8a)

A = −
∫
dtE = −

∫
dtd3xe (4.15)

small oscillations of Aai around zero will be stable as long as Eq. (he-)

µA =
N (0)

3

(
1− T

Tc

)
< 0, i.e., T > Tc. (4.16)

As the temperature drops below the critical value Tc, the quadratic potential be-
comes unstable and the quartic term is needed to control the fluctuations. The
field Aai will settle at some new minimum away from zero. Unfortunately, no full
mathematical analysis is available on the minima for all possible configurations of
the coefficients βi. Among the many minima discussed in the literature [24] (see
Appendix 4A), there are three which apparently have been found in the laboratory
associated with the phases which were shown in Fig. 1.3. Each of these is non-
unique due to a residual degeneracy and can be parametrized as follows:
A phase

Eq. (he-4.10)

A0
ai = ∆Ada

(
φ(1) + iφ(2)

)
i
. (4.17)

Here, d,
� 1,

�
i are arbitrary real unit vectors with

� (1)⊥ � (2).
B phase

Eq. (he-4.11)

A0
ai = ∆BRai(n̂, θ)e

iϕ. (4.18)

Here, Rai is an arbitrary rotation around an axis n̂ by an angle θ with ϕ being some
phase.
A1 phase

Eq. (he-4.12)

Aai = ∆Ai

(
d(1) + id(2)

)
a

(
φ(1) + iφ(2)

)
i

(4.19)

Here, d(1),d(2);
� (1),

� (2) are unit vectors with d(1)⊥d(2) and
� (1)⊥ � (2). The mag-

nitudes of ∆ are controlled by the free energy. This becomes in the three cases at
hand: Eq. (he-4.13)
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fA = −2µA∆2
A + (β2 + β4 + β5) 4∆4

A,

fB = −3µA∆2
B + (β1 + β2) g∆

4
B + (β3 + β4 + β5) 3∆4

B,

fA1 = −4µA∆2
A1

+ 16 (β2 + β4)∆4
A1
, (4.20)

and is minimized for µA < 0 at the nonzero valuesEq. (he-4.14)

∆A =

√
µA

4β245
= πc

√
10

7ζ(3)

√

1− T

Tc
,

∆B =

√
µA

6β12 + 2β345
= πTc

√
8

7ζ(3)

√

1− T

Tc
,

∆A1 =

√
µA
8β24

= πTc

√
10

7ζ(3)

√

1− T

Tc
, (4.21)

where βij, βijk, . . . are short for βi + βj, βi + βj + βk, . . . . The minimal values areEq. (he-4.15)

fmin
A = µA∆2

A = −ρ
(
1− T

Tc

)
1

2ξ2
0

· 5

24
,

fmin
B = −3

2
µA∆2

A = −ρ
(
1− T

Tc

)
1

2ξ2
0

· 1
4
,

fmin
A1

= −2µA∆2
A1

= −ρ
(
1− T

Tc

)
1

2ξ2
0

· 5

48
, (4.22)

respectively and the different combinations of β determine which minimum is the
most stable depending on pressure and temperature (see Fig. 1.3).

The fluctuations around the new minima can be separated according to massive
and massless ones. The massive oscillations all occur with a mass of the same order
of magnitude as is found for the oscillations of ∆ at the new minimum. This can be
calculated as follows: IntroducingEq. (he-4.16)

∆→ ∆ + ∆′ (4.23)

one finds for ∆′ oscillationsEq. (he-4.17)

f = fmin + δ2f (4.24)

with a mass term twice the opposite of that in (4.20):Eq. (he-4.18)

δ2f = 4µA∆′2 (4.25)

The massive oscillations in directions other than ∆ have the same type of mass
term except that it is accompanied by a numerical factor (Clebsch-Gordon type
of coefficient. The massless oscillations arise for small displacements of the direc-

tion vectors d and
�

and the phase ϕ characterizing the minima. They are called
Goldstone bosons.

Group-theoretically, the following considerations are useful. The action is in-
variant and SU(2)× SU(2)×U(1). The infinitesimal transformations of this group
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consist of those which change the directions of the minima and a subgroup leaving
them invariant. The first ones coincide with the long-wavelength limit of Gold-
stone bosons oscillating around the new minimum. The mass of these oscillations
is zero, since the action is invariant in the limit of infinite wavelength in which the
small displacements become uniform rotations of d,

�
, ϕ. The subgroup of sym-

metry transformations which leave the directions at the minima invariant, on the
other hand, will mix the Goldstone modes with each other. These transformations
describe the residual symmetry left for the physics of the Goldstone modes.

The collective field Aai has 18 parameters while Aai has only 6, 5, or 7 parameters
in A,B, and A1 phase, respectively. The parametrization of the vacuum, therefore,
does not allow to describe all massive oscillations (only those ∆ are included).

In field theoretic considerations a particular direction di0 is usually chosen as a
vacuum of the theory. The freedom of taking an arbitrary direction corresponds to
an infinite degeneracy of the possible vacua. In 3He physics such a uniform choice is
usually not possible since, as we shall see, boundary effects do not permit the ground
state to settle in a uniform direction of the A0

ai field. The ”vacua” will be nontrivial.
In addition to boundaries, also external fields1 currents2 and topology may serve to
stabilize different non-uniform field configurations. The latter fact establishes links
with present-day discussions of topologically interesting vacua in field theory.

As we have stressed repeatedly, we shall analyze the quantum liquid only with
respect to those phenomena which take place at energies much smaller than the gap
energy ∆. In this limit, all massive oscillations become unimportant (since their
energy lies in the ∆ regime). We can therefore assume ∆ to be pinned down tightly
at one of the degenerate extremal values (4A.1) and allow only for fluctuations of
the direction of A0

ai. This approximation, in which only the Goldstone modes are
studied, is called the hydrodynamic or London limit of the theory. In σ-models of
field theory, this corresponds to letting the mass of the σ-particle (the σ-oscillations)
go to infinity. This limit leaves only the pion as a dynamical field in what is called
a nonlinear σ-model. In the following, we shall restrict all our discussions to this
hydrodynamic limit.

Appendix 4A Comparison with O(3)-Symmetric
Linear σ-Model

For Comparison, we briefly describe the symmetry-breakdown in the simple O(3)-
symmetric σ-model, also known as the classical Heisenberg model of ferromagnetism.
There the free-energy density reads, for constant fields, Eq. (he-4.19)

f =
µ2

2

(
π2

1 + π2
2 + π2

3

)
+
λ

4

(
π2

1 + π2
2 + π2

3

)2
. (4A.1)

1For a general discussion and references see H. Kleinert, Fortschr. Phys. 26, Nr. 9/10, 1978.
2Non-trivial helix-like vacua in the presence of currents have been found in: H. Kleinert, Y.R.

Lin-Liu and K. Maki; Paper presented at the 1978 Grenoble Conference on Low Temperature
Physics, and USC Preprints, March 1978.
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For µ2 < 0, this has the following set of degenerate minima:Eq. (he-4.20)

π0
i ≡ ∆0d0

i with ∆0 =

√

−µ
2

λ
, (4A.2)

where d0
i is an arbitrary unit vector in three-space. The oscillations of πi ≡ ∆di

around π0
i consist of massive radial oscillations in ∆ controlled byEq. (he-4.21)

f = −µ
4

4λ
+ (−µ2)(∆−∆0)2 (4A.3)

and massless oscillations of di around the direction of d0
i . If d0

i points along the
3−axis, these oscillations can be parametrized asEq. (he-)

di =


π

′
i

∆
,

√

1−
� ′2

∆2


 . (4A.4)

The energy depends only on ∆. Rotations leaving d0
i invariant transform π′1, π

′
2

among each other and correspond to the residual O(2) symmetry after spontaneous
symmetry breakdown of the original O(3). The situation here is simpler than for
3He since the parametrization πi = ∆di of the ground state can be used to cover the
entire three-dimensional field space.

Appendix 4B Other Possible Phases

By factorizing the order parameter Aai into a size ∆ and a “direction” Âai,

Aai = ∆Âai, (4B.1)

with

tr
(
Â†Â

)
≡
∑

a,i

Â∗aiÂai = 1 (4B.2)

the free-energy density associated with the action (3.22) is

f = −µA∆2 + β0β∆4 (4B.3)

where

β0 ≡
3

5

ρ∗

m∗2
ξ2
0

υ∗F
4

β ≡
5∑

i=1

βiti (4B.4)
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with ti being the traces

t1 = |tr(ÂÂT )|2

t2 =
[
tr(ÂÂ†)

]2

t3 = tr
[
(Â†Â)(Â†Â)∗

]2
(4B.5)

t4 = tr(ÂÂ†)2

t5 = tr
[
(ÂÂ†)(ÂÂ†)∗

]
.

Minimizing e with respect to ∆ we find

∆2 =
µA

2β0β
(4B.6)

so that

fmin = − µ2
A

4β0β
. (4B.7)

We now search for extremal points common to all ti, i = 1, . . . , 5. Their direction
vectors Âai will be independent of the size of βi. The associated phases are called
inert .

1) In t1 we write

Âai = xai + iyai (4B.8)

so that it becomes

t1 = X2 + Y 2 (4B.9)

with

X =
∑

a,i

x2
ai − y2

ai

Y = 2
∑

a,i

xaiyai. (4B.10)

In terms of xai, yai, the constraint (4B.2) reads

∑

a,i

(
x2
ai + y2

ai

)
= 1 (4B.11)

Introducing a Lagrange multiplyer σ the extremality conditions read

(X + σ)xai + Y yai = 0 (4B.12)

Y xai + (−Xxσ)y′ai = 0 (4B.13)
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Since (4B.11) forces at least one xai, yai to be non-zero, the determinant must vanish:

σ2 = X2 + Y 2. (4B.14)

Multiplying (4B.12) with xai, (4B.13) with yai, and subtracting the two equations
from each other gives

(X + σ)x2
ai − (X + σ)y2

ai = 0. (4B.15)

Summing over ai leads to

X(1 + σ) = 0. (4B.16)

A similar operation in opposite order produces

Y (1 + σ) = 0 (4B.17)

Thus one has the alternative σ 6= −1 and X = Y = 0 implying t1 = 0, or σ = −1
and therefore, due to (4B.14), t1 = 1. In conclusion, t1 has two stationary points

t1|ext =

{
0
1

}
. (4B.18)

Notice that t1 = 1 is possible only if A is real up to an overall phase.

2) The second invariant t2 is always equal to 1 due to the normalization condition
(4B.11).

3) The invariant t4 can be extremized as follows: An unitary transformation brings
the hermitian matrix Â†Â to the diagonal form

Â†Â = Λ ≡



λ1

λ2

λ3


 (4B.19)

with non-negative eigenvalues

λi ≥ 0. (4B.20)

In terms of λi, the invariant t4 reads

t4 = λ2
1 + λ2

2 + λ2
3. (4B.21)

It has to be extremized with respect to the constraint (4B.2):

λ1 + λ2 + λ3 = 1 (4B.22)
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This is a diagonal plane in three dimensions. The quantity t4 is the square of the
radius for each of the points on this plane. Its minimum is clearly the symmetric
point where the smallest possible sphere touches the plane

λi =
1

3
, t4 =

1

3
(4B.23)

Its maximum is any of the end points (up to permutations)

λ1 = 1, λ2 = λ3 = 0, t4 = 1. (4B.24)

There is a saddle point when the sphere is tangent to the diagonal line in each of
the coordinate planes (up to permutations)

λ1 = λ2 =
1

2
, λ3 = 0, t4 =

1

2
(4B.25)

Thus t4 can have the extremal values

t4|ext =




1
3
1
2

1


 (4B.26)

4) The invariants t3 and t5 can be treated together since they differ only by ex-
changing Â†Â by ÂÂ† and none of the subsequent statements will depend on this.
Consider

t3 = tr
[
(Â†Â)(Â†Â)∗

]
. (4B.27)

By a unitary transformation this takes the form

t3 = tr
[
UÂ†ÂU †(U∗(Â†Â)∗UT )∗

]
. (4B.28)

Suppose U is chosen to reach the diagonal form

UÂ†ÂU † = Λ =



λ1

λ2

λ3


 . (4B.29)

Then

t3 = tr
(
ΛUUTΛ(UUT )∗

)
(4B.30)

Let us denote the matrix UUT by V , for brevity. Then

t3 =
∑

n,m

λnλm|Vnm|2 (4B.31)
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to be extremized with the constraint (4B.22) and

∑

n,m

σmn
(
VmpV

∗
mp − δnm

)
= 0 (4B.32)

which guarantees unitarity of V . Using σ and σnm as Lagrange multiplyers this
leads to the equations

∑

m

λm|Vnm|2 + σλn = 0, (4B.33)

λnλpVnp +
∑

m

σnmVmp = 0, (4B.34)

λnλpV
∗
np +

∑

m

σmnV
∗
mp = 0. (4B.35)

Comparing the last two equations we see that σmn must be a hermitian matrix,

σmn = σ∗nm. (4B.36)

We now take advantage of the unitarity of V by multiplying (4B.34) with V ∗kp and
summing over p, yielding

∑

p

λkλpVnpV
∗
kp + σ∗kn = 0. (4B.37)

Using (4B.30) we conclude

∑

p

(λn − λk)Vnpλp(V †)pk = 0 (4B.38)

If the matrix elements λi are all different this implies that also V ΛV † is diagonal.
If two or more of the λi’s are equal to each other we can choose a new basis on the
degenerate subspace so that V ΛV † is diagonal. Supposing that we have chosen such
a basis then

UÂ†ÂU † = Λ =



λ1

λ2

λ3


 (4B.39)

and

U(Â†Â)∗U † = Λ̂ =



λ̃1

λ̃2

λ̃3


 . (4B.40)

Since Â†Â is real, the eigenvalues λi , and λ̃i can only differ by permutations

λ̃i = λp(i). (4B.41)
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In principle, this leaves 6 choices but out of these two can be ruled out: If vi are the
complex eigenvectors of Â†Â, i.e.,

Â†Â vi = λi vi, (4B.42)

then vi are eigenvectors of (Â†Â)∗. Suppose now that (λ̃1, λ̃2, λ̃3) = (λ2, λ3, λ1) or
(λ3, λ1, λ2) with all λi’s being different from each other. In the first case

v∗1 = v2, v∗2 = v3, v∗3 = v1 (4B.43)

which leads to the contradiction

v1 = v3. (4B.44)

In the second case

v∗1 = v3, v∗2 = v1, v∗3 = v2 (4B.45)

and this is ruled out by

v1 = v2. (4B.46)

Thus only four possibilities remain:

(λ̃1, λ̃2, λ̃3) = (λ1, λ2, λ3) (4B.47)

or

(λ̃1, λ̃2, λ̃3) = (λ2, λ1, λ3) , (4B.48)

each with 2 possible cyclic permutations. The first case gives

t3 = λ2
1 + λ2

2 + λ2
3 (4B.49)

and thus leads to the same extrema as for t4:

t3 =
1

3
,
1

2
, 1. (4B.50)

In the second case one has to extremize

t3 = 2λ1λ2 + λ2
3 (4B.51)

on the diagonal plane (4B.22). Within this plane this gives

λi + σ = 0

and therefore

λi =
1

3
, t4 =

1

3
. (4B.52)
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This represents no new extremal value. On the diagonal boundary lines in the
coordinate planes, say λ1 (or λ2 = 0) one has

t3 = λ2
3, (4B.53)

whose smallest value is t3 = 0 while the largest value is 1, already obtained earlier.
On the boundary line λ3 = 0 one finds once more t3 = 0.

Thus, altogether t3 has four possible extrema

t3|ext =




0
1
3
1
2

1



. (4B.54)

The same result holds for t5:

t5|ext =




0
1
3
1
2

1



. (4B.55)

The question which of these extrema can be realized by a single matrix Âai can
be decided as follows. First of all it is certainly true that

t4 ≥ t5 (4B.56)

since in the above diagonalization

t4 =
∑

i

λ2
i

t5 =
∑

i

λiλp(i). (4B.57)

Second, by going through the same arguments as for t4 we can see that the traces

tX2 = tr(X2)

tY 2 = tr(Y 2) (4B.58)

of the two auxiliary matrices

X = [ÂÂ+ (ÂÂ)∗]/2

Y = [Â†Â+ (Â†Â)∗]/2 (4B.59)

have the same extremely values

tX2 |ext = tY 2 |ext =




1
3
1
2

1


 . (4B.60)
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But it is easy to check that

tX2 = (t4 + t5) /2,

tY 2 = (t4 + t3) /2. (4B.61)

Third, the stationary value t1 = 1 is reached only if all yai = 0, i.e., if Âai is real up
to a phase and therefore t3 = t4 = t5.

Thus, for t1 = 1 we remain with the following three possibilities for simultaneous
extrema of (t1, t2, t3, t4, t5):

1) B phase: (1, 1, 1
3 ,

1
3 ,

1
3)

2) Planar phase: (1, 1, 1
2 ,

1
2 ,

1
2)

3) Polar phase: (1, 1, 1, 1, 1)

For t1 = 0 there are five more possibilities:
4) α phase: (0, 1, 1

3 ,
1
3 ,

1
3)

5) Bipolar phase: (0, 1, 1
2 ,

1
2 ,

1
2)

6) A(xial) phase: (0, 1, 0, 1, )
7) β phase: (0, 1, 1, 1, 0)
8) γ phase: (0, 1, 0, 1, 0)

Actually there is one more combination

(0, 1, 1, 1, 1)

which is compatible with the above conditions but can be ruled out on the following
grounds: If t3 = t5 = 0 the matrix Â†Â can be chosen to have the form

(ÂÂ†) =
(
Â†Â

)
=




1
0

0


 . (4B.62)

The only matrix Â compatible with this is

Âai = eiφ




1
0

0




ai

(4B.63)

which has t1 = 1, t2 = 1 corresponding again to the polar phase. For the Ginzburg-
Landau values

−2β1 = β2 = β3 = β4 = −β5 = 1 (4B.64)

the extrema have the free energy

f = −fc
1

β
(4B.65)
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where

fc ≡ −
µ2
A

4β0
. (4B.66)

The factor 1/β becomes, in the different phases,

1) B: β−1
B =

(
β12 + 1

3
β345

)−1
= 6

5

2) P: β−1
P =

(
β12 + 1

2
β345

)−1
= 1

3) Pol: βPol = (β12 + β345)
−1 = 2

3

4) α : β−1
α =

(
β2 + 1

3
β345

)−1
= 3

4

5) Bip: β−1
Bip =

(
β2 + 1

2
β345

)−1
= 2

3

6) A: β−1
A = β−1

β = (β2 + β34)
−1 = 1

3

7) β : β−1
β = (β2 + β34)

−1 = 1
3

8) γ : β−1
γ = β−1

24 = 1
2

Obviously, only the B phase is absolutely stable. The phases A and P are the
next higher ones.

We are now going to find convenient parametrizations for the direction “vectors”
Âai:
1) In the B phase, ÂÂ† can be brought to the form

ÂÂ† =
1

3




1
1

1


 = Â†Â. (4B.67)

The most general matrix which allows for this is

Âai = eiφRai(n̂θ) (4B.68)

where R(n̂θ) is a rotation by an angle θ around the direction n̂ and eiφ is some
phase. A convenient special form is

Âai =
1

3




1
1

1


 (4B.69)

2) In the planar phase, t1 = 1 so that A=real (up to an overall phase). Since AA†

and A†A have both the eigenvalues 1
2
, 1

2
, 0, the most general representation of Âai is

Âai =
1√
2
eiφ(d(1)

a φ
(1)
i + d(2)

a φ
(2)
i ) (4B.70)

where d(1) · d(2) = 0,
� (1) · � (2) = 0 are real orthogonal unit vectors. For example

Âai =
1√
2




1 0 0
0 1 0
0 0 0


 (4B.71)
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3) In the polar phase A must be real up to a phase with Â†Â, ÂÂ† having the
eigenvalues (1, 0, 0). This leaves

Âai = eiφdaφi (4B.72)

with two unit vectors d and
�

. For example

Âai =




1 0 0
0 0 0
0 0 0


 . (4B.73)

4) In the α phase one can show that a typical direction is

Âai =
1√
3




1
eiπ/3

e−iπ/3


 (4B.74)

which can be transformed to other forms by phase eiφ and by two different spin and
orbital rotations of a and i, respectively.

5) In the bipolar phase one can show that Âai has the general form

Âai =
1√
2

(
d(1)
a

� (1)
i + d(2)

a

� (2)
i

)
(4B.75)

where d are real and
� (1)
i ,

� (2)
i are complex orthogonal unit vectors. For example

A =
1√
2




1 0 0
0 i 0
0 0 0


 . (4B.76)

6) In the A phase, the matrices Â†Â and ÂÂ† have eigenvalues (1, 0, 0). The most
general Âai with this property is

Âai = aabi (4B.77)

where a and b are two complex unit vectors. Then

(ÂÂ†)ab = aaa
∗
b(

A†A
)
ij

= b∗i bj (4B.78)

and we find

t3 = b∗i bjbjb
∗
i = |b2|2

t5 = aaa
∗
ba
∗
baa = |a2|2. (4B.79)
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This implies that3

t1 =

∣∣∣∣∣∣

∑

a,i

aabibiaa

∣∣∣∣∣∣

2

= |a2|2|b2|2 = t3t5. (4B.80)

Now we observe that since |a|2 and t5 = 1, a has to be a real unit vector for which
we use again the symbol d. Similarly, since t3 = 0, bi have to be complex with

b2 = 0.

Hence we may express b in terms of two real unit vectors

bi =
(
φ

(1)
i + iφ

(2)
i

)
/
√

2

which are orthogonal to each other,
� (1) · � (2) = 0. Thus

Âai =
1√
2
da
(
φ

(1)
i + iφ

(2)
i

)
. (4B.81)

A particular example is

Âai =
1√
2




1 0 i
0 0 0
0 0 0


 . (4B.82)

1) The β phase has t3 and t5 and thus the role of spin and orbital indices inter-
changed, i.e.,

Âai =
1√
2

(
d(1) + id(2)

)
a
φi (4B.83)

where d(1),d(2) are two orthogonal real unit vectors.
If the condition of simultaneous stationarity is relaxed the minimization problem

has not yet been solved. If one allows the matrix Aai to take restricted generic forms
with some elements identical to zero and requires that a small deviation of these
elements from zero does not cause linear changes in any of the invariants ti only two
forms remain as candidates

Âai =



a 0 d
0 b 0
0 c 0





or equivalently




0 a d
b 0 0
c 0 0





 (4B.84)

or

Âai =



a 0 d
0 b 0
e 0 c


 . (4B.85)

3Exactly for this reason the combination (0, 1, 1, 1, 1) is outruled.

H. Kleinert, COLLECTIVE QUNATUM FIELDS



Appendix 4B Other Possible Phases 139

By calculating fc we find in the first case the following set of new phases

9) Axi-planar phase

Â =




cos θ 0 −i sin θ cosφ
0 sin θ sin φ 0
0 0 0


 . (4B.86)

Its name is due to the fact that it interpolates between the axial phase at φ = 0, θ =
π/4 and the planar phase at φ = π/2, θ = π/4. The extremum lies at

tan2 φ = 2β13β45/β345 (2β1 + β3) , (4B.87)

cos2 θ =
1

2
β3 (2β1 + β345) / [β3(2β1 + β345) + β45/2β1 + β3)] . (4B.88)

The energy has a value fc of (4B.7) with

β−1
AP =

β34 + S

β2β34 + Sβ234

, S = β345 +
β1β3

β13

. (4B.89)

In the Ginzburg-Landau regime, S = 0 and

β−1
AP = 1 (4B.90)

implying that this phase is degenerate with axial and planar phases. This is, in
fact true for any choice of the angle φ, θ which manifest itself in both ratios (4B.88)
being undefined [equal to (0/0)].

The extremum is minimal with respect to variations in φ, θ if

β45 > 0, S > 0, β1β45 < β13S (4B.91)

10) β-Planar Phase
By interchanging the rows and columns (i.e., the spin and orbital indices), the matrix
(4B.81) interpolates between the planar and the β phase. The algebras the same
except for β3 and β5 interchanged. In the Ginzburg-Landau regime, the energy is
determined by

β−1
βP =

1

3
(4B.92)

and thus lies higher than A and B phase. The angles θ and θ are fixed to zero and
π/2.

11) ε-Phase
The matrix

Â =
1√
2




sin θ 0 i sin θ
0 cos θ 0
0 i cos θ 0


 (4B.93)
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is an extremum for

tan2 θ = β34/β45 (4B.94)

with

β−1
ε =

β34 + β45

β2 (β34 + β45) + β34β45
. (4B.95)

In the Ginzburg-Landau regime, θ = π/2 and this phase coincides with the A phase.
These are all solutions of the generic form a). A similarly complete list for the

form b) does not exist. One additional extremum is known, the

12) ζ-phase

Âai =
1√
2



− sin θ cos φ 0 −i sin θ sin φ

0
√

2 cosφ 0
− i sinφ sinφ 0 sin θ cosφ


 . (4B.96)

The angles have to be taken as

tan2 θ = (Tβ1 + β1345) /β4,

T ≡ 2β1 (β4 − β135 − β1) , (4B.97)

cos 2φ = T/ tan2 θ,

and the extremal energy is determined by

β−1
ζ =

Tβ1 + β1345 + β4

(Tβ1 + β1345) β4

+ β2. (4B.98)

The extremum is minimal if

β4 > 0, Tβ1 + β1345 > 0, |Tβ1β4| ≤ | (Tβ1 + β1345)β1|. (4B.99)
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5
Hydrodynamic Limit Close to Tc

In the hydrodynamic limit the only degrees of freedom of the liquid consist in ground
state configurations A0

ai with slow spatial variations of the directional vectors. In
the A-phase, in which Eq. (he-5.1)

A0
ai = ∆Adaφi

φi ≡ φ
(1)
i + iφ

(2)
i , (5.1)

where φ
(1)
i and φ

(2)
i are orthogonal unit vectors, the magnitude ∆A is pinned down

at the potential minimum (4.22) with a value (4.21(he-4.14)). The unit vectors da and

φ
(1)
i , φ

(2)
i vary in space. It is useful to visualize the physical meaning of these di-

rections. Remembering the relation (4.2) expressing the collective field Aai in terms
of the pair of fundamental fields, the vector da indicates the direction along which
the spin has the wave function 1√

2
(↑↓ + ↓↑), i.e., along which its third component

vanishes.1 The plane in which the Cooper pair moves is given by the plane spanned
by the unit vectors

� (1) and
� (2). It has become customary to introduce a vector Eq. (he-5.2)

l ≡ � (1) × � (2) (5.2)

which denotes the direction of the intrinsic orbital angular momentum of the Cooper
pairs in the condensate. For the completeness of the description one has to specify,
in addition, the azimuthal angle α of φ(1) in the plane orthogonal to 1. This specifi-
cation can be made unique, for example, by the following choice of parametrization:

Eq. (he-5.3)

� ≡ � (1) + i
� (2) (5.3)

= e−iα {(− sin γ, cos γ, 0) + i(− cos β cos γ, − cos β sin γ, sin β)} ,
l ≡ (sin β cos γ, sin β sin γ, cos β) . (5.4)

Consider now the energy density of (3.22) and (3.24) when expressed in terms of the
parametrization of the hydrodynamic limit, (5.1). The derivative terms in (3.24)
yield Eq. (he-5.5)

1To verify this, let da = (0, 0, 1)a then da(cσa)αβ = − (↑α↓β + ↓α↑β) where ↑α, ↓β are the spin
1
2 two-spinors with spin up and down, respectively.
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e =
1

2
∆2
A

{
K1|∇iφj|2 +K2∇i

[
φ†j∇jφi − φ†i∇jφj

]
+K23|∇iφi|2

+K23|
� ·∇da|2 + 2K1(∇ida)

2
}
, (5.5)

with the notation K12 ≡ K2 + K3. The last term is a pure divergence and can
be neglected in most discussions. Since the magnitude of all directional vectors is
unity, the mass term in (3.24) and the quartic term (3.22(he-3.18)) add up to the
minimal values given in (4.22). Since ∆ is tightly pinned down at that minimal
value, any deviation of the energy from this minimum is completely determined
by the derivative terms of (5.5). These vanish for uniform field configurations and
increase with increasing bending of the field lines. For this reason, the energy (5.5)
is often referred to as bending energy .
The factor 1

2
∆2
A in front can be brought to a physically more transparent form:

Using (2.20) and (4.21), we find in the weak-coupling limit:Eq. (he-5.6)

1

2
∆2
A =

1

2

µA
4β245

=
1

2

1

3
N (0)

1
8
5
N (0)ξ2

0/v
2
F

(
1− T

Tc

)
=

5

48

v2
F

ξ2
0

(
1− T

Tc

)

=
1

16m2
ρ
(
1− T

Tc

)
1

K1
(5.6)

where ρ is the mass density of 3He particles per unit volume. Now, if a collective
excitation of wave vector k runs through the liquid, its energy density per particle
is of the order (k2/2m) (1− T/Tc). It grows with decreasing temperature due to the
increasing condensation energy.

If one uses, instead of the complex vector
�

, the more physical vector l of (5.4),
one can express the energy density in a somewhat more intuitive fashion. For this
we define a gradient vector called the macroscopic superfluid velocity :

vsi =
1

2m

� (1)∇i

� (2) =
i

4m

� †∇i

�
(5.7)

Then e takes a form (see Appendix 5A)

f =
1

2
ρsv

2
s −

1

2
ρ0(l · vs)2 + cvs · (∇× l)− c0(l · vs) [l · (∇× l)]

+
1

2
Ks(∇ · l)2 +

1

2
Kt [l · (∇× l)]2 +

1

2
Kb [l× (∇× l)]2

+
1

2
Kd

1 (∇ida)
2 − 1

2
Kd

2 (l · ∇da)2 (5.8)

with coefficients

ρs = ∆2
A(K1 + 1

2K23) 4m2,

ρ0 = ∆2
AK23 4m2,

c = ∆2
AK32m,

c0 = ρ0/2m,
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Figure 5.1 Three fundamental planar textures: splay (a), bend (b), and twist (c). The
left-hand side of the figure shows field configurations with a singular plane where the fields
reverse direction. Since the superfluid would have to be normal in this plane, it prefers
the right-hand configuration in which the direction changes smoothly through a domain
wall of finite size. The thickness ξd is determined by the competition of the dipole and
bending energy.

Ks = Kt = ∆2
AK1,

Kb = ∆2
A(Ka +K23),

Kd
1 = ρs/4m

2,

Kd
2 = ρ0/4m

2. (5.9)

With the weak-coupling results (3.26), (4.21), these expressions simplify to Eq. (he-5.10)

ρs
2

= ρ0 = 2mc0 = 4mc (5.10)

= (2m)22Ks = (2m)22Kt = (2m)2 2

3
Kb = (2m)2 1

2
Kd

1 = (2m2)Kd
2

The indices on Ks, b, t stand for splay, bend and twist. This nomenclature is taken
from the theory of liquid crystals [25]. In that theory, a vector field which bends in
the way shown in Figs. 5.1a-c) is called a splay, bend, and twist texture, respectively. Fig. V

It is easily seen that in these cases the terms with Ks, Kb, and Kt give, indeed, the
dominant contributions. For, if the spatial changes of the 1 field take place only in
z directions one can write (with (5.8)) Eq. (he-5.11)

e ≈ 1

2
Ks (∇ · l)2 +

1

2
Kt [l · (∇× l)]2 +

1

2
Kb [l× (∇× l)]2 (5.11)

=
1

2
Ks sin2 β β2

z +
1

2
Kt sin

4 β γ2
z +

1

2
Kb

[
cos2 β (sin2 β γ2

z + β2
z )
]
.
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In the twist texture, 1 changes in the xy plane from x to −x direction. Hence,
β ≡ π/2 and only γz contributes Eq. (he-5.12)

f =
1

2
Kzγ

2
z . (5.12)

The other two textures are not that cleanly separated: In both γ = 0 so thatEq. (he-5.13)

f =
1

2
Ks sin2 β β2

z +
1

2
Kb cos2 β β2

z . (5.13)

In the splay case, l turns in the xz plane from z to −z direction. In the middle of
the texture, i.e., the place of largest βz, the angle β is π

2
and therefore the first term

dominates. In the bend case, l turns in the xz plane from x to −x direction. Thus,
for the largest βz, β ∼ π and the second term dominates.

The currents can now be calculated by inserting (5.1) into (4.2) and (4.3(he-4.3)).
For the mass current we findEq. (he-5.14)

ji = ρsijvsj + cij (∇× l)j (5.14)

with the matricesEq. (he-5.14a)

ρsij ≡ ρsδij − ρ0lilj

cij = cδij − c0lilj. (5.15)

Notice, that this result also follows directly from an infinitesimal Galilean transfor-
mation. If one multiplies A by e2imvx, this leaves l invariant while changing

vsi =
1

2mi

� †∇i

�

as followsEq. (he-5.15)

vs → vs + v (5.16)

showing that vs transforms like a velocity (thus justifying its name) Using this
transformation together with (4.5) on (5.8(he-5.8)) yields again the current (5.14).
This current describes the superflow of Cooper pairs in the rest frame of the normal
liquid. The superfluid density is a tensor with a component longitudinal to l, ρ‖

s =
ρs − ρ0, and a transverse one, ρs⊥ = ρs.

We now turn to the “orbital current”. It describes the collective motion of the
atoms within the Cooper pairs. It is similar to the current ∇×M which appears in
magnetostatics in the presence of magnetizable matter [26] in the Maxwell equation

Eq. (he-5.16)

∇×B = 4π (j + ∇×M) . (5.17)

The second current term is the electronic current flowing within the molecular orbits
of the matter. In complete analogy to this, there is a local matter current associated
with the rotation of 3He atoms inside the Cooper pairs. This current contributes to
the total superflow.
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The spin current can be derived similarly to the matter current via the appro-
priate symmetry transformation which brings A→ e−2 � s �

A and da → da + δda with
Eq. (he-5.16)

δdb = −2ϕsaεabcdc. (5.18)

Since the spin current is defined by jspin
ai ≡ −∂e/∂iϕsa we find from the hydrodynamic

energy directly Eq. (he-5.16a)

jai = 2
(
Kd

1 δij −Kd
2 lilj

)
εabcdb∇jdc. (5.19)

In order to keep as much analogy as possible with the superfluid velocity we may
define a superspin velocity Eq. (he-5.17)

vsai ≡
1

2m
εabcdb∇idc (5.20)

in terms of which the current becomes Eq. (he-5.18)

jai = 4m
(
Kd

1δij −Kd
2 lilj

)
vsaj (5.21)

where, again, there is a longitudinal piece proportional to Kd
1 −Kd

2 and a transverse
one with a factor Kd

1 .
Under a spin rotation (5.18), the velocity transforms according to Eq. (he-5.19)

vsai → −2ϕsaεabcvsci +∇iϕ
s/m. (5.22)

The orbital angular momentum current is obtained from (5.14) by forming the vector
product with x.

The action is still incomplete since, until now, we have left out the dipole force.
Inserting the parametrization (5.1) and (5.3(he-5.3)) into (3.27), we find Eq. (he-5.19a)

fd = −2gd∆
2
A

[
(d · l)2 − 1

3

]
. (5.23)

Thus, the dipole force tends to align d and l parallel or antiparallel. This can
physically be understood as follows: Let the atoms orbit around each other, say, in
the xy plane. If the spin points in z direction the two nuclear moments have equal
poles all the time adjacent to each other. In the Sz = 0 configuration they are, on
the other hand, aligned so that opposite poles face each other for half the orbit.
This is energetically favored. The latter case corresponds to d‖1.

A comparison of the strength of the dipole energy with the main piece (5.2) of
the bending energy is possible if we write Eq. (he-5.20)

fd = −∆A
2K23

1

ξ⊥2
a

(d · l)2 + const . (5.24)

Then, the dipole length Eq. (he-5.21)

ξ⊥d =
√
K23/2gd (5.25)

measures the length scale over which the direction of field lines has to vary appre-
ciably in e of (5.2) in order that the bending energy is of comparable size with the
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dipole energy. The microscopic calculation yields ξ⊥d ≈ 10−3 cm (1− T/Tc) which
is two orders of magnitude larger than the coherence length ≈ 1000Å (1− T/Tc).

The dipole energy (5.22) in the σ-model of 3He plays a very similar role as the
small PCAC violation present in σ-models of particle physics. Before fd is turned
on, all Goldstone modes are massless. With (5.22) the oscillations in which the
relative angle between d and l vibrates acquire a small mass. The experimental
resonance frequency is ΩA ≈ 50 kHz corresponding, energetically, to the temperature
TA ≈ 5× 10−7 K. It is, therefore, much smaller than the gap energy (≈ m ·K).

While l and vs-vectors have physically the most transparent meaning, they are
dynamically not independent (since vsi = 1

2m

� (1)∇i

� (2) is itself a derivative). In
fact, the curl of vs is related to the l field as followsEq. (he-5.22)

∇× vs =
1

4m
εijk l · (∇jl×∇kl) . (5.26)

For the proof, one forms the derivative of (5.7)Eq. (he-5.22a)

(∇× vs)i =
1

2m
εijk∇j

( � (1)∇k

� (2)
)

=
1

2m
εijk

(
∇j

� (1)∇k

� (2)
)
. (5.27)

Since
� (1)∇k

� (1) = 0 (due to
� (1)2 = 1), ∇k

� (1,2) has only a component along l and
� (2,1). ThusEq. (he-5.23)

∇j

� (1)∇k

� (2) =
(
l · ∇j

� (1)
) (

l · ∇k

� (2)
)
. (5.28)

But l · ∇j

� (1,2) = − � (1,2)∇jl (due to
� (2)l = 0) so that we can writeEq. (he-5.24)

(∇× vs)i =
1

4m
εijk

[( � (1)∇jl
) ( � (2) · ∇kl

)
−
( � (1)∇kl

) ( � (2)∇jl
)]
. (5.29)

From this, Eq. (5.25) follows directly since
� (1),

� (2), l are an orthonormal triplet.
The relation (5.25) will be powerful in relating the flow vortices to the geometric
properties of the container of the liquid. For, if one takes the scalar product of (5.25)
with l one finds [28]Eq. (he-5.25)

2ml · (∇× vs) =
1

2
εijkli [l · (∇jl×∇kl)] = K. (5.30)

The right-hand side is the gaussian curvature of the surface cutting normal to the
l field. If there is a closed normal surface anywhere inside the liquid, the integral
over k gives 2π times the Euler invariant characteristic E of a closed surface. This
characteristic isEq. (he-5.26)

E = 2(1−m) (5.31)

for a surface equivalent to a sphere with m handles (see (5.2). Performing the sameFig. VI

integral over the left-hand side renders 2π times the number of singular vortex lines
which have to enter the closed surface at some place. For, consider a closed contour
on top of the closed surface (see Fig. 5.3).
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+

Figure 5.2 Sphere with no, one, or two handles, and the respective Euler characteristics

E = 2, 0, or −2.

Figure 5.3 Local tangential coordinate system n, t, i for an arbitrary curve on the surface

of a sphere.

Let t be the tangent vector and n = l × t be the normal to the contour inside
the surface. Since

� (1),
� (2) lie in the tangent plane they can be spanned as follows:

Eq. (he-5.27)

� (1) = cos θ n + sin θ t
� (2) = − sin θ n + cos θ t. (5.32)

As one proceeds a little way along the surface the tangential component of vs is Eq. (he-5.28)

2mvs · t = ds
� (1) × d

ds

� (2)

= ds

[
dθ

ds
+ t ·

(
l× d

ds
t

)]
. (5.33)
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The second pieceEq. (he-)

γ = t ·
(
l× d

ds
t

)
(5.34)

is called the geodesic curvature since it describes the rate of change of t away from
the t direction (it is zero on the equator of a sphere). If we now convert the integral
over the left-hand side of (5.30) into a contour integral and increase the contour
throughout the surface leaving out all singular points, the result will beEq. (he-5.30)

∑

i

∮
ds

[
dθ

ds
+ γ

]
(5.35)

with the sum over all enclosed singularities. If the circles are infinitesimal, the
surface can be considered as a plane and the integral over the geodesic curvature
rendersEq. (he-5.31) ∮

ds γ = 2π. (5.36)

The integral over dθ/ds, on the other hand, depends on the vertex strength Ni at
the point i asEq. (he-5.32)

2π(Ni − 1). (5.37)

For, if there is no vortex, the vectors φ(1), φ(2) stay fixed in space along the contour.
Thus, the intrinsic coordinate θ of (5.32) changes by −2π. If, on the other hand,
there is vortex with φ(1), φ(2) rotating Ni times around l in the positive sense when
going around the contour, there will be an additional change of Ni · 2π. Thus
the Euler characteristic determines the number of vortex lines passing through any
closed surface normal to the l field inside the liquid. This theorem will be useful for
the discussion to follow.

In the B phase, in whichEq. (he-5.33)

A0
ai = ∆BRai (θ) e

iϕ (5.38)

the magnitude of ∆B is pinned down at the potential minimum (4.22) with a value
(4.21) and only θ and ϕ are allowed to vary. The gradient energy becomes due to
(3.24)Eq. (he-5.34)

f =
1

2
∆2
B

[
K1δijδkl +

1

2
K23 (δilδjk + δikδjl)

]

×∇k

(
Rai (θ)e−iϕ

)
∇l

(
Raj(θ)e

iϕ
)
. (5.39)

The derivative terms can be written asEq. (he-5.35)

∇kϕ∇lϕ+∇kRai∇lRaj + . . . (5.40)

with mixed terms ∇R∇ϕ vanishing in the contraction with the tensor (5.35) due to
symmetry. If we parametrize small oscillations in θ asEq. (he-5.36)

Rai(θ) = Raj(θ0)Rji(θ) (5.41)
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the energy becomesEq. (he-5.37)

f =
1

2
∆2
B

{
K1

[
3(∇ϕ)2 + 2(∇iθ̃j)

2
]

+K23

[
(∇ϕ)2 + (∇iθ̃j)

2 − 1

2
(∇θ̃)2 − 1

2
(∇iθ̃j∇j θ̃i)

]}
. (5.42)

Using the result of Eq. (4.21) together with (5.6), we have Eq. (he-5.38)

1

2
∆2
B =

8

10

1

2
∆2
A =

8

10

1

16m2
ρ
(
1− T

Tc

)
1

K1

(5.43)

which can be used to bring the energy to the form Eq. (he-5.39)

f =
1

4m2

1

2
ρBs

{
3

5
(∇ϕ)2 +

2

5
(∇iθ̃j)

2

+
K23

2K1

[
2

5
(∇ϕ)2 +

2

5
(∇iθ̃j)

2 − 1

5
(∇θ̃)2 − 1

5
∇iθ̃j∇j θ̂i

]}
. (5.44)

Here, we have introduced Eq. (he-5.40)

ρBs ≡ 2ρ
(
1− T

Tc

)
(5.45)

which is defined for T ≈ Tc and is called the superfluid density of the B phase. The
current density can be obtained either by inserting (5.41) into (4.3) or by performing
ϕ→ ϕ+ 2δϕ in (5.44) Eq. (he-5.41)

ji = ρBs
1

2m2

1

5
(3 +K23/K1)∇iϕ. (5.46)

The spin current may be obtained by inserting (5.41) into (4.6) from which we find Eq. (he-5.42)

jai = Raa′( � 0)j̃a′i

j̃ai = − 1

2m2
ρs

{
2

5

(
1 +

K23

2K1

)
∇iθ̂a −

1

5

K23

2K1
∇aθ̃i + δia∇ · �̃

}
(5.47)

Appendix 5A Hydrodynamic Coefficients for T ≈ Tc

Here we give a brief derivation of the hydrodynamic energy (5.8) as it follows from
the original form (5.5) which we rewrite as Eq. (he-A.1)

e =
1

2
∆2
A

{
K1|∂iφj|2 +K2

(
∂iφ
∗
j∂jφi

)
+K3| � � |2 +K23|

� � da|2 + 2K1 (∂ida)
2
}
.

(5A.1)

with the notation K12 ≡ K2 +K3. First we process the pure φ parts. The first term
is decomposed as follows: Eq. (he-A.2)
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|∂iφj|2 = (∂i
� (1))2 + (∂i

� (2))2. (5A.2)

Observing that the vector ∂i
� (1) has only an l and a

� (2) component, due to the
trivial orthogonality relation

� (1)∂i
� (1) = 0, we write Eq. (he-A.3)

∂i
� (1) =

(
l∂i

� (1)
)
l +

( � (2)∂i
� (1)

) � (2). (5A.3)

In terms of the superfluid velocityEq. (he-A.4)

vsi =
1

2m

� (1)∂i
� (2) (5A.4)

and using the further orthogonality relation l∂i
� (1,2) = − (∂il)

� (1,2) which follows
from the orthogonality between l and

� (1,2), we haveEq. (he-A.5)

∂i
� (1,2) = −(

� (1,2)∂il)l∓ 2mvsi
� (2,1). (5A.5)

Squaring this givesEq. (he-A.6)

(∂i
� (1))2 = (

� (1)∂il)
2 + 4m2v2

s . (5A.6)

Adding once more the same term with
� (1) and

� (2) interchanged we obtainEq. (he-A.7)

|∂i
� |2 = (

� (1)∂il)
2 + (

� (2)∂il)
2 + 8m2vs2

= (∂il)
2 + 8m2v2

s (5A.7)

having dropped a trivially vanishing term − (l∂il)
2. The first term can be decom-

posed into splay, twist, and bend terms asEq. (he-A.8)

(∂il)
2 = (∇ · l)2 + [l · (v × l)]2 + [l× (v × l)]2 (5A.8)

so that we find the final formEq. (he-A.9)

|∂i
� |2 = (∇ · l)2 + [l · (∇× l)]2 + [l× (∇× l)]2 + 8m2v2

s. (5A.9)

The third derivative term φ is treated as follows:Eq. (he-A.10)

| � � |2 = ( � � (1))2 + ( � � (2))2

=
[
(l∂i

� (1))li + (
� (2)∂i

� (1))φ
(2)
i

]2
+ (1↔ 2)

= [−(
� (1)∂il)li − 2mvsiφ

(2)
i ]2 + (1↔ 2, vs → −vs) (5A.10)

= (l � lj)2 + 4mvsk[φ
(2)
k φ

(1)
j − (1↔ 2)] (∂ilj) li + 4m2

[
v2
s − (l · vs]2

)
.

Here the first term is of the pure bend formEq. (he-A.11)

[l � lj]2 = [l× (∇× l)]2 . (5A.11)

The second term can be rewritten usingEq. (he-A.12)
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φ
(2)
k φ

(1)
j − φ(1)

k φ
(2)
j = −εkjmlm (5A.12)

asEq. (he-A.13)

−mvskεkjmlm(∂ilj)li. (5A.13)

With the formulaEq. (he-A.14)

liεkjm = lkεijm + ljεkim + lmεkji (5A.14)

it becomes
− 4m (vs · l) [l · (∇× l)] + 4mvs · (∇× l). (5A.15)

The second gradient term in (5A.1). finally becomes, by a similar treatment: Eq. (he-A.15)

∂iφ
∗
j∂jφi = [l× (∇× l)]2 + 4m2[v2

s − (vs · l)2]− 4m(vs · l)[l · (∇× l)].

(5A.16)

Hence, the pure φ part of the gradient energy is Eq. (he-A.16)

eφ =
1

2
∆2
A

{
4m2(2K1 +K23)v

2
s − 4m2K23 (l · vs)2

+4mK3vs · (∇× l)− 4mK23 (vs · l) [l · (∇× l)] (5A.17)

+K1 (∇ · l)2 +K2 [l · (∇× l)]2 + (K1 +K23) [l× (∇× l)]2
}
.

If the d bending energies are neglected, we find the hydrodynamic energy (5.8) with
the coefficients Eq. (he-A.17)

ρs = ∆A(2K1 +K23) 4m2, (5A.18)

ρ0 = 2mc0 = ∆2
AK23 4m2, (5A.19)

c = ∆2
AK3 2m, (5A.20)

c0 = ∆2
AK23 2m, (5A.21)

Ks = Kt = ∆2
AK1, (5A.22)

Kb = ∆2
A(K1 +K23). (5A.23)

Inserting the weak-coupling results (3.26) for K1, 2, 3 , one has Eq. (he-A.20)

ρs = 2ρ
(
1− T

Tc

)
(5A.24)

and the relations Eq. (he-A.21)

ρ0 =
1

2
ρs = c0 2m = 2c 2m, (5A.25)

Eq. (he-A.22)

Ks = Kt =
1

4m2

1

4
ρs; Kb =

1

4m2

3

4
ρs. (5A.26)
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The terms containing the d-vectors can processed similarly. With Eq. (he-A.23)

| � � da|2 = (
� (1) � da)2 + (

� (2) � da)2

= (∂ida)
2 − (l � da)2 (5A.27)

we obtain Eq. (he-A.24)

ed =
1

2
∆2
A

{
(2K1 +K23)(∂ida)

2 −K23(l � da)2
}

(5A.28)

amounting to the bending constants

Kd
1 = ∆2

A(2K1 +K23), Kd
2 = ∆2

AK23. (5A.29)

In the case that d and l are locked to each other by the dipole energy, the general
bending energy of the da fieldEq. (he-A.24a)

ed =
1

2

{
Kd

1 (∂ida)
2 −Kd

2 (l � da)2
}

(5A.30)

contributes to the l field an energyEq. (he-A.25)

f dlocked =
1

2
(Kd

1

{
(∇ · l)2 + [l · (∇× l)]2 + [l× (∇× l)]2

}

−Kd
2 [l× (∇× l)]2 ). (5A.31)

Adding this to (5.8) we obtain again the general form (5.8(he-5.8)), now with the
coefficients

K l
t = Kt +Kd

1 , K l
s = Ks +Kd

1 , Kb = Kb +Kd
1 −Kd

2 . (5A.32)

For the present case with the coefficients (5A.17) and (5A.28(he-A.24)) this givesEq. (he-A.2)

Ks = Kt = Kb = ∆2
A(3K1 +K23). (5A.33)

In the weak-coupling limit these are related to the superfluid density byEq. (he-A.27)

Ks,t,b =
1

4m2

5

4
ρs. (5A.34)
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6
Bending the Superfluid 3He-A

The experimental interest lies in the possibility of preparing many nontrivial field
configurations by gaining control over the directions of l- and d-vectors. Their
presence can be detected by magnetic and sonic resonances. The principal means
of enforcing certain field directions are the following:

1. External Magnetic Fields
These try to enforce d⊥H with a strength comparable to the dipole energy if
H ≈ 35 Oe. The energy is proportional to (d ·H)2. The microscopic reason
for this collective effect is clear. H becomes the quantization axis so that the
direction d which is defined by the magnetic quantum number in that direction
being zero, S3 = 0, is orthogonal to H.

2. Walls

Since l denotes the direction of the orbital angular momentum of the Cooper
pairs one expects l to stand orthogonal to the walls of the container since a
plane of orbital motion parallel to the walls should energetically be favored over
the orthogonal configuration. This expectation is borne out by calculations.

Apart from this, currents and probably also electric fields act as directional agents
upon l.

Let us now discuss what is called an open system. It is defined by a liquid in a
container which is large compared with the dipole length ξd (i.e., much bigger than
103 cm ) and with no magnetic field being present. In order to avoid the pile-up of
dipole energy, d and l-vectors will stay aligned over most of the volume. Only in the
neighborhood with a radius ξd around singularities where bending energies become
comparable with a dipole energy may alignment be destroyed. Such singularities will
be present in any sample prepared carelessly. Moreover, even with the most delicate
cooling into the superfluid phase, the geometry of most containers will enforce the
existence of some singularities:

6.1 Monopoles

If a sphere is cooled smoothly through the transition region, the l field lines will
be planted uniformly orthogonal to the walls and develop towards the inside like
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154 6 Bending the Superfluid 3He-A

Figure 6.1 The l ‖ d field lines in a spherical container. There are necessarily two

flux quanta associated with a singular point either in form of two vortex lines (a) or of

one with double circulation (b). Since vortex lines store condensation energy, they act

approximately like a rubber band and draw the point to the wall (c), thereby generating

a flower-like texture called boojum [27].

the spines of a hedgehog. At some place there has to be a point-like singularity.
Moreover, since the Euler characteristic of the sphere is E = 2, any closed surface
orthogonal to the l field inside the liquid has to be passed by two vortex quanta.
Possible field configurations are shown in Fig. 6.1. In the first case, two separate
vortex lines of strength one emerge from the singularity, one running to the north,
the other to the south pole. In the second case, there is, instead, one single line of
vortex strength two at the north pole. In the third case the singularity has settled
at the boundary forming a flower-like structure, a texture called boojum [28]. The
last case is apparently favored energetically since there is considerable condensation
energy stored in the vortex line inside of which the liquid is normal. The vortex
line acts like a rubber band (compare the next section on vortex lines) pulling the
singularity to the boundary. The first situation corresponds to the field lines of φ(1)

and φ(2) running along the lines of equal longitude or latitude like on a globe, the l-
vector pointing, of course, radially outward, north and south poles are singularities.
The two other situations correspond to a parametrization of the globe with only one
singularity at the north pole (see Fig. 6.2).Fig. IX

In order to estimate the energies let us parametrize the field lines as1
Eq. (he-6.1)

l = er,
�

= (eθ + ieϕ) e
iχ. (6.1)

Then the superfluid velocity is:Eq. (he-6.2)

vs =
1

2m

(
∇χ− cot θ

r
eϕ

)
(6.2)

with a vorticityEq. (he-6.3)

2m (∇× vs) =
1

r2
er. (6.3)

Integrating this over a spherical closed surface gives 4π = 2× 2π corresponding to
the passing of two vortex units. Choosing χ ≡ 0 we see vs to be singular at θ = 0

1We neglect, for simplicity, all energy terms involving the d-vector.
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Figure 6.2 Two possible parametrization of a sphere, either with two singularities, as

the standard geographic coordinate frame on the globe, or with one singularity, as shown

in the lower figure. The geographic parametrization corresponds to liquid 3He having two

singular vortex lines, one emerging at the north pole and one at the south pole. The

vectors
� (i) × � (2) are tangential to the coordinates. The vector l =

� (1) × � (2) points

radially outwards. The lower parametrization corresponds to one vortex line with double

circulation emerging at the north pole. The south pole is a regular point.

and π, so that two vortices of one quantum each run from the center upwards or
downwards [see Fig. 6.1a)], respectively. If χ is chosen to be χ = ϕ, the singularity
on the north (south) pole is cancelled with the other one being doubled [see Fig.
6.1(b)]. Inserting these configurations into the energy (5.9) with 2K,∼ K23 = 2K
one has [29] [ρs ≈ 2ρ (1− T/Tc)] Eq. (he-6.4)

E =
ρs
m2

π

4
R log

(
2R

ξ
− 5

2

)
(6.4)

in the first case. The energy of the second case is obtained by replacing
log (2p/ξ − 5/2) by the larger value 2 log (2R/ξ − 7/4). The volume integration has

to be cut off at the coherence distance ξ = ξ0/
√

1− T/Tc away from the singularity.
This is physically the correct procedure closer than ξ, the liquid cannot support the
large bending energies concentrated in the directional change of φ(1), φ(2) around
the vs vortex line and escapes by ∆ leaving the valley of minimal action and re-
turning to the normal liquid point ∆ = 0. At that point, d and

�
in (5.1) lose their

meaning and the singularity is avoided. Since the energy is proportional to ∆2 and
∆4, it vanishes in the normal region so that the integration can be cut off there.
(Remember, though, that the complete energy consists of the sum of the bending
energy e of (5.2) and the negative condensation energy fmin of (4.6)). When com-
paring this structure with monopole-like solutions in gauge theories coupled with
Higgs fields [30] there is an essential difference: The energy increases with the ra-
dius of the sphere. The energy of a monopole, on the other hand, is constant. The
reason for this is simple: In a σ-type of model, a field configuration which is radial
asymptotically has a bending energy Eq. (he-6.5)
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Figure 6.3 Spectra of Goldstone bosons versus gauge bosons. Goldstone bosons have

energies going to zero with increasing wavelength due to an underlying symmetry. Gauge

bosons have no energy for any vector case since their fields correspond to local symmetry

transformations under which a gauge theory is invariant.

(
∇i
xj
r

)2

=

(
δij − xixj/r2

r

)2

∼ 1

r2
. (6.5)

Hence, the integral diverges with R. In a gauge field theory, on the contrary, the
vector potential is oriented radially but the bending energy measures only the gauge
invariant derivative F 2

µν = (∇µAν −∇νAµ)
2. This vanishes asymptotically very fast

and all the energy is concentrated around the origin.
The situation can be described also in the particle language. In the σ-model,

the nontrivial vacuum consists of a coherent superposition of static off-shell Gold-
stone bosons with many k-vectors. Their energy increases with k2 and even in the
asymptotic region there is a considerable amount of energy. In the gauge theory,
the asymptotic region contains only longitudinal gauge particles which, by gauge
invariance, correspond to Goldstone bosons with energies which vanish identically
for all k-vectors (see Fig. 6.3).Fig. X

Therefore, the asymptotic region is free of energy. Since it is the curvature of
the container walls which enforces asymptotic bending energy (or the presence of
Goldstone bosons close to the walls) the growth of energy with the radius of a sphere
cannot be avoided, even if one patches together the field of a monopole with that
of another monopole and forms what may be called a monopolium [29]. In order to
study the situation, the point singularities sit at (0, 0, C) and (0, 0,−C). Then an
AnsatzEq. (he-6.6)

l =
r2 − C2

λ
cos θ er +

r2 + C2

λ
sin θ eθ (6.6)

withEq. (he-6.7)

λ ≡
[(
r2 − c2

)2
+ 4C2r2 sin2 θ

]
(6.7)

can be used to construct a vector field φ so that the superfluid velocity isEq. (he-6.8)

vs =
1

2M

{
∇χ− r2 cos2 θ − C2

λr sin θ
eθ

}
. (6.8)

The energy becomesEq. (he-6.9)
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Figure 6.4 Cylindrical container with the l ‖ d field lines spreading outwards when
moving upwards. The line singularity on the left stores condensation energy. The curved
configuration on the right contains bending energy. In a large container, this is preferable.
Small containers and magnetic fields give preference to the singular line.

E =
56

24
π
ρs
m2

R +
π

2

ρs
m2

C

[
ln

2c

ξ
−
(

9

4
+

3π2

32

)]
(6.9)

within a sphere of radius R. Thus, in addition to the energy proportional to R en-
forced by the spherical container, there is a linear binding energy with a logarithmic
correction which stems from the bending energy in the neighborhood of the vortex
line. The vortex line pulls the point singularities together according to an almost
constant force.

Notice, that apart from the first piece in the energy caused by geometry, there
is an essential difference of this σ-model result with what one expects for string like
solutions of pure gauge theories. There, color is supposed to be screened completely
in the vacuum so that the color field does not leave the vortex line. This is the
reason why the force is purely linear! The monopolium state can be stabilized by
placing ions of equal charge at both ends.

6.2 Line Singularities

If a cylindrical container is cooled, the l lines will develop radially inwards. One
therefore expects a singular line along the axis. At this line, the liquid would have
to be in its normal state since the l-vectors are undefined. This amounts to the
accumulation of a large condensation which is completely superfluid and contains
only bending energies. This can, indeed, be achieved by the l lines flaring upwards
like in a chimney [29] (see Fig. 6.4). Fig. XI

Quantitatively, the energy can be minimized by an l field Eq. (he-6.10)

l = ez cos β + eρ sin β (6.10)

with Eq. (he-6.11)

β(ρ = 0) = 0, β(ρ = R) =
π

2
. (6.11)

There are many complex vectors φ which can be constructed with this l, for example:
Eq. (he-6.12)
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φ = eimϕ [− sin β ez + cos β eρ + ieϕ] . (6.12)

They lead to a superfluid velocityEq. (he-6.13)

vs =
1

2Mρ
(m− cos β) eρ. (6.13)

At m = 1, there is no vortex line along the axis. This situation is favored energeti-
cally. Inserting vs and l into the energy (5.8) and extremizing with respect to δβ(ρ),
one finds the solution:Eq. (he-6.14)

ρ

R
= exp



∫ T/2

β(ρ)

{
Ks cos2 β +Kb sin

2 β

Ks sin2 β + ρs

4m2 (1− cos β)2

]1/2

dβ



 . (6.14)

The total energy of this configuration isEq. (he-6.15)

E ≈ 1.145π
ρs
m2

L (6.15)

where L is the length of the cylinder. Here, the weak coupling equalities (5.3) have
been used.

Notice that from (6.13) there is an azimuthal current flowing in this field con-
figuration which therefore may have a nonvanishing orbital angular momentum. In
order to calculate this, consider the second, convective part of the currentEq. (he-6.16)

∇× l = (l ·∇)βeϕ = −(cos β)′eϕ. (6.16)

This also circulates around the axis but with a different radial dependence. The
total angular momentum is then, due to (4.8),Eq. (he-6.17)

L =
∫
d3x (x× j) (6.17)

directed along the z-axis with a valueEq. (he-6.18)

Lz = 2π
∫
dzdρρ

[
ρs

2Mρ
(1− cos β)− c ∇∇ρ(cosβ)

]

= 2π
∫
dzdρ

[
ρs

2M
(1− cos β) + c cos β

]

≈ R2 ρs
2m

(
1− 1

π
+

2

π2

)
L. (6.18)

For the last equation, we have again inserted the weak- coupling result c = ρs/4.
During the phase transition, the angular momentum must manifest itself in a recoil
imparted to the container. It would be interesting to detect this effect experimen-
tally. 2

There is also a way to prepare the singular vortex line. For this, a magnetic field
has to be turned on along the z axis which drives the d-vectors into the xy-plane.
This enforces a singularity in the d field lines along the axis causing the liquid to
be normal there. Once the condensation energy is spent, the weak dipole force is
sufficient to pull also the l field into the radial direction. [31]

2Also, the boojum in a sphere has an angular momentum which would set the sphere into
rotation when cooling through the transition point.
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6.3 Solitons

Let us now turn to planar textures in an open geometry. [29]. A direction may be
defined by magnetic field pointing, say, along the z axis. Then, the d vectors will
be forced to lie in the xy plane: Eq. (he-)

d = sinψ + x̂ + cosψ + ŷ. (6.19)

The bending energy is minimized by a constant ψ in space. The dipole force pulls
the l vector in the same or in the opposite direction. Since this force is very weak,
there will be some regions where l is parallel and others where l is anti-parallel
to d. The wall separating the different domains is stabilized by the competition
between bending and dipole energy. If the thickness of the domain wall, a, shrinks,
the bending energy density grows as ρs

m2
1
a2

+ a while the corresponding dipole term
drops as ρs

m2
1
ξd2
×a. Conversely, a large domain accumulates an overwhelming dipole

energy. Equilibrium is reached at a ≈ ξd2. If one studies, for simplicity, only
configurations with a pure z-dependence and with l in the xy plane Eq. (he-6.20)

l = sinχx̂ + cosχŷ (6.20)

the most general φ-vector is Eq. (he-6.21)

φ = eiϕ (− cosχx̂+ sinχŷ + iz) (6.21)

and the bending energy becomes with the weak-coupling values of the parameters Eq. (he-6.22)

fbend =
ρ‖
s

8m2

{
2(∇ψ)2 + 2(∇ϕ)2 +

1

2
(∇χ)2

}
. (6.22)

The dipole energy contributes Eq. (he-6.23)

fdip =
ρ‖
s

8m2

2

ξ⊥2
d

sin2 (χ− ψ) . (6.23)

The phase ϕ occurs only in the bending energy and is uniform, ϕ = const . at
equilibrium. The remaining dependence on the fields χ, ψ can be diagonalized by
setting Eq. (he-6.24)

v ≡ χ− ψ
u ≡ χ+ 4ψ. (6.24)

Then, the energy takes the sine-Gordon form Eq. (he-6.25)

f = fbend + fdip =
ρ‖
s

4m2

(
1

20
u2
z +

1

5
v2
z +

1

ξ⊥2
d

sin2 v

)
. (6.25)

This is minimized by a constant u and a soliton in the variable v: Eq. (he-6.26)
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Figure 6.5 Field vectors in a composite soliton. At z = +∞ and l, d are parallel,

at z = −∞ they are antiparallel. Inside the domain wall of size ξd the vectors change

direction, l four times as much as d.

sin vsol = cosh1 (z/ξsol) , tan g
vsol

2
= e±z/ξsol (6.26)

where the width of the soliton is of the order of the dipole length Eq. (he-6.27)

ξsol ≡
1√
5
ξ⊥s , (6.27)

as expected. The energy per unit area of the domain wall is Eq. (he-6.28)

E

σ
=

ρ‖
s

4m2

2

ξ2
d

∫ ∞

−∞
dz cosh4

(
z

ξsol

)
=

ρ‖
s

m2

ξsol
ξ2
d

=
ρs
m2

1√
5

1

ξd
. (6.28)

The soliton corresponds to d- and l-vectors twisting in opposite direction inside the
domain wall with l moving four times as far as d (see Fig. 6.5).Fig. XII

The presence of such a domain wall can be detected in the laboratory via a
nuclear magnetic resonance experiment (NMR). Suppose a vibrating field is turned
on along the z-axis (in addition to the static orienting field H ext). This is called
a longitudinal resonance experiment. The vector l associated with the spin starts
oscillating around the z-axis (see Ref. 16), say asEq. (he-6.29)

ψ = ψsol + δ (6.29)

and consequentlyEq. (he-6.30)

u = usol + 4δ

v = vsol − δ. (6.30)
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This gives an additional vibrational energyEq. (he-6.31)

δ2f =
ρ‖
s

4m2
×
[
δ2
z +

1

ξ⊥2
d

(
1− 2

cosh2(z/ξsol)

)
δ2

]
. (6.31)

The extrema of this energy correspond to the bound states of the Schrödinger equa-
tion 3 Eq. (he-6.32)[

−∇2
z +

1

ξ⊥2
d

(
1− 2

cosh2(z/ξsol)

)]
δ(z) = λδ(z). (6.32)

This is a standard soluble problem (see the textbook on quantum mechanics by
Landau-Lifshitz, ch. 23). The ground state is Eq. (he-6.33)

δ(z) ∝ 1

cosh2(z/ξsol)
(6.33)

with Eq. (he-6.34)

s ≡ 1

2

[
−1 +

√
1 + 4

2

ξ⊥2d
ξ2
sol

]
=

1

2


−1 +

√

1 + 4
2

5


 ≈ .306. (6.34)

Since s ≤ 1 there is only one bound state (if s were ¿ 1,there would be more, for
n = 0, 1, 2, . . . , s). This bound state has an energy Eq. (he-6.35)

λ =
1

2

(√
65− 7

) 1

ξ⊥2
d

. (6.35)

The continuum has a spectrum Eq. (he-6.36)

λ = k2 +
1

ξ⊥2
d

. (6.36)

Experimentally, the vibrating field is homogeneous so that in the continuum only
the k = 0 value is excited. This leads to the main NMR resonance absorption line.
If now soliton was present this would be the only signal observed. The bound state
trapped by the soliton has the effect of causing at a frequency which lies by factor
1
2

(√
65− 7

)
≈ (.728)2 lower than the main line. Such a “satellite” frequency has

indeed been observed experimentally (see Fig. 6.6). Fig. XIII

Notice that the satellite line provides a good test for the weak-coupling values
of the coefficients K1,2,3 in the bending energies. If κ denotes the ratio Eq. (he-6.36a)

κ ≡ 2K1/(K2 +K3), (6.37)

the frequency should be found at Eq. (he-6.36b)

1

2κ

[√
(3κ+ 2)(κ+ 2)− (5κ+ 2)

]
(6.38)

instead of (.728)2. The experimental value (.74)2 limits κ close to 1 in agreement
with the weak coupling result.

3The time driving term can be shown to go as 1
2δ2 so that λ corresponds to a frequency square.
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Figure 6.6 Nuclear magnetic resonance frequencies in a superfluid 3He-A sample in an
external magnetic field. The large peak corresponds to the main absorption line, the small
peak to the right is a satellite frequency line attributed to the trapping of spin waves
in planar domain walls. The lower part of the figure shows the position of these lines
for different external frequencies of the longitudinal applied magnetic field. The ratio of
satellite frequency to main frequency agrees with the theoretical calculation.

6.4 Localized Lumps

We have argued before, that the energies of point and line singularities are necessarily
not localized. In a hedgehog like field structure, the σ-model bending energy goes
asymptotically as 1

R2 so that the spherical (or cylindrical) integral diverges linearly
(or logarithmically). The energy can be confined to a small region only for a field
configuration which is asymptotically flat but contains some knots, say, close to
the origin. Topologically, one has to find a nontrivial mapping of the whole three-
dimensional space into the parameter space of the liquid with everything, except
a small neighborhood of the origin, mapped into one point. In the A-phase of
3He there exists, in fact, such a mapping with l and d-vectors aligned [36] (see
Fig. 6.7). For, the covering space of the parameter space SO(3) is SU(2) which

Figure 6.7 Vectors of orbital and spin orientation in The A-phase of superfluid 3He

is equivalent to S3, the surface of a sphere in four dimensions. Since the ordinary
space corresponds to S3, which is the space S3 with the north pole removed, one has
a nontrivial mapping S3 → S ′3 with a large neighborhood of the north pole of S3

mapped into one point of S3, accounting for asymptotic uniformity. This corresponds
to a diffuse smoke ring type of configuration which moves through the liquid with
a velocity v = h̄/mR, a momentum P ≈ h̄ρsR

2/m and an energy E ≈ h̄2ρsR/m
2,

respectively. Notice that the velocity is inversely proportional to R and the energy
of the smoke-ring. Actually, the topological stability does not prevent this object
from having only a small lifetime. While it moves through the liquid, orbital friction
eats up the energy and decreases the size. Once the object has shrunk to the size of
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the order of the dipole length ξd, the locking and d and l-vectors will be overcome,
the parameter space increases to S̃2 × S̃O3(z2 and the topological stability is lost.
The knot unwinds and disappears.

6.5 Use of Topology in the A-Phase

As in gauge theories, topological considerations are helpful in classifying the differ-
ent stable field configurations. In the superfluid, topological stability means that
there is no continuous deformation to a lower energy state within the hydrodynamic
limit. since this limit is an approximation, the stability is not perfect. the size of
the order parameter ∆ which in the hydrodynamic limit, is assumed to be pinned
down at the value of minimal energy does, in fact, fluctuate and may arrive on rare
occasions at the point ∆ = 0 where the liquid becomes normal. This process is called
nucleation. For example, there is topological stability in a superconductor contained
in a torus with the phase of the order parameter changing by einϕ when going once
around the circle. There is no continuous way to relax the ensuing supercurrent in
the hydrodynamic limit. But the supercurrent does decay within years. The reason
is that at some place at the inner boundary the size of the order parameter may,
by fluctuations, climb up from the valley of lowest energy into the normal phase
with ∆ = 0. There the phase ϕ looses its meaning and can unwind by one unit
of 2π. This point may lie at the inside of the torus and can develop into a thin
flux tube. This tube can carry one unit of electric flux away from the supercurrent.
such a process is facilitated by putting together two superconductors in a Josephson
junction where the diffusion of such units can be observed in the clearest fashion.
Thus topological stability in the hydrodynamic regime really amounts to metasta-
bility with extremely long life times. For practically purposes such life times can
be assumed to be infinite and topological classification provides for good quantum
numbers of field configurations. is the connection between two field configurations
of the same topological class? they can be deformed into each other by continuous
changes only of the directions of the fields with the magnitude being fixed. If both,
initial and final state, are dynamically stable, there certainly is an energy barrier to
be crossed during such a deformation. Its energy density is only due to the bending
of the field lines and, therefore, extremely small as compared with the condensation
energy which enforces topological stability.

Consider now the topology in the parameter space of 3He [33].
In the A phase, the vacuum is determined by the product of the vectors da and φi.

The vector da covers the surface of the unit sphere in 3 dimensions, S2, the complex
vector

�
=

� (1) + i
� (2) is a three parameter space equivalent to the space SO(3),

i.e., a sphere of radius π with diametrally opposite points at the surface identified.
Every point is determined by the direction of the vector l =

� (1) × � (2) and the
length which characterizes the azimuthal angle of

� (1) in the plane orthogonal to l.
Due to the product daφi a sign change of da can be absorbed in φi so that the total
parameter space is Eq. (he-7.1)

R = S2 × SO(3)/Z2. (6.39)
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Stable singular points exist if the homotopy group π2(R) of mappings of the sphere
S2 in three dimensions into this parameter space is nontrivial. But it is well-known
[34] that for the above space π2(R) = Z, the group of integer numbers. Thus all
point singularities are characterized by an integer. There can be infinitely many dif-
ferent stable monopole type of classical field configurations. This purely topological
argument is based on the independence of the vectors d and l. We know, however,
that the dipole force tries to align the d and l-vectors. For this reason, as soon as
the size of the container exceeds the dipole length ξd ≈ 10−3 cm, d and l will stay
parallel asymptotically thereby reducing the parameter space toEq. (he-7.2)

R = SO(3) (d ‖ l). (6.40)

Then the homotopy group is π2(R) = 0 and there are no monopoles.
Thus monopoles could be created only in very small regions (r << 10−3 cm)

of the liquid. Their d and l field lines are non-aligned. As a consequence, their
neighborhood contains considerable dipole energy. If the volume of the neighbor-
hood becomes much larger than the dipole length, fluctuations in the liquid cause
nucleation to the normal phase with the monopole vanishing in favor of a d‖l align-
ment and no dipole energy. Quantitatively, it is the competition of the small dipole
energy density fd ∼ e

m2
1
ξd2

stored in a finite volume with the large condensation en-

ergy density fc ∼ ρ
m2

1
ξ2

stored in the immediate neighborhood ξ3 of the singularity

of size ξ(≈ 1000 Å) which determines the transition point to the d‖l configuration.
The relaxation occurs atEq. (he-7.3)

R3

ξd2
>
ξ3

ξ2
(6.41)

orEq. (he-7.4)

R > 3
√
ξξd2 ≈ 10−4cm. (6.42)

For line singularities we have to consider π, (R). For d and l independent this
homotopy group isEq. (he-7.5)

π1(R) = Z4. (6.43)

Hence there are four types of line singularities which can be labelled by their vortex
strengths δ = ± 1

2
,±1. Examples:Eq. (he-7.6)

±1
2

:
�

= e±iξ/2 (ex + iey) , da = ex cos γ
2
∓ ey sin γ

2

l = lz
±1 :

�
= (ez + ieϕ) , da = fρ

l = eρ.

(6.44)

As the volume increases, R >> ξd, the dipole force leads again to alignment of d

and l reducing the parameter space toEq. (he-7.7)

π1(R) = Z2 (l ‖ d). (6.45)

Thus only two types of singular lines survive and one sees from (6.44) that it is the
±1 vortex lines which survive.
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6.6 Topology in the B-Phase

The discussion of the hydrodynamic limit can be extended to the B-Phase. Consider
the parametrization (4.18) of the degenerate ground state Eq. (he-8.1)

Aai = ∆BR
ai (n, θ) eiϕ (6.46)

with ∆B pinned at the point (4.21) of minimal energy density (4.21). The matrix
R may be written explicitly as Eq. (he-8.2)

Rai (n, θ) = cos θδai + (1− cos θ)nani + sin θεaiknk. (6.47)

Inserting this into the collective action (3.22), (3.24(he-3.20)) the energy becomes the
sum of bending energies involving gradients of θ,n and ϕ.

The parameter space of (6.46) consists of the direct product of a phase (which is
isomorphic to the circle S1) and the group space SO(3). As the dipole force is turned
on, the angle θ is pined at the value θ ≈ 1040 and the space SO(3) is narrowed down
to the different directions of n only, covering the surface of a sphere S2. The point
and lien singularities are classified by considering the homotopy groups π2(R) and
π, (R) of the parameter spaces R = S2× SO(3) for small configurations, r << ξd,
and R = S2 × S2 for large ones.

In the first case one has Eq. (he-8.3)

π2(R) = 0; π1(R) = Z + Z2. (6.48)

Thus, there are no topologically stable point singularities while there are two types
of vortex lines: One set has its origin in the pure phase eiφ of the parametrization
and is characterized by an arbitrary integer N . These vortex lines are of exactly the
same type as those of superfluid 4He. In addition, there are singular lines in the
n, θ parameter space, two of which can annihilate each other (due to Z2). For large
samples, with θ = 1040 the homotopy groups are Eq. (he-8.4)

π2(R) = Z. π1(R) = Z. (6.49)

Thus, there are stable point like solutions of arbitrary integer charge, the simplest
being a hedgehog with the n-vector pointing radially. The line singularities are all
due to the phase eiϕ and therefore again of the same nature as in HeII.

There are interesting planar structures in the B-phase. In order to classify them
one has to map the line zε(−∞,∞) into the parameter space SO(3). In an open
geometry any such mapping can be deformed into the identity. Stable configurations
arise if a magnetic field is turned on along the z-direction which aligns the n vector
parallel or anti-parallel. Notice, however, that, contrary to the A-phase, the direc-
tional energy of the magnetic field is quite weak: Since the B-phase corresponds to
J = 0 Cooper pairs, it is only the small distortion of the wave function caused by
the dipole coupling which leads to a net magnetic energy of the order of Eq. (he-8.5)

fmg(H) ∼ gd

(
γ

∆

)2

(n ·H)2 (6.50)
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Figure 6.8 Parameter space of 3He-B containing that of the rotation group. Thus points

which lie diametrally opposite on the surface are identical. The dipole energy (hyperfine

coupling between the spins) favors a spherical shell within this sphere. It corresponds

to rotations around any axis by 1040. Planar textures (solitons) have to start and end

asymptotically on this shell. The figure shows the four topologically distinct classes of

paths starting and ending on this spherical shell.

Thus, the characteristic length over which bending and magnetic energies are com-
parable is much larger than ξd, namely Eq. (he-8.6)

ξmg(H) ∼ ∆

γH
ξd. (6.51)

With ∆ ∼ |mg and γH ∼ .156× 103 mg−λ
gauss

this is, at 100 gauss, of the order of one
mm. At large distances, however, this weak-coupling does result in the n-vector
lying parallel or anti-parallel to . By the same token, also the dipole force is active
and the angle θ settles at the value θ ≈ 1040.

We can visualize this asymptotic situation by drawing a sphere of radius π and
specifying, within this, the surface of fixed radius θ ≈ 1040. Then, any planar field
configuration corresponds to aline starting and ending at the north or south pole
of the θ ≈ 1040 surface. Thus, the asymptotic space is Z2. There are eight classes
of mappings, four of which are the mirror images of the others. They are shown in
Fig. 6.8.Fig. XIV

The first class (+ + 0) is trivial and can be deformed continuously into the
uniform field configuration. The second (+−0) can be described as a pure θ soliton
by settingEq. (he-8.7)

n = fz sgn(z), θ = 2arctan



√

5

3
tan
|z|
ξd


 . (6.52)
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Figure 6.9 Possible path followed by the order parameter in a planar texture (soliton)
when going from z = −∞ to z = +∞. The path tries to stay all the way on the spherical
shell preferred by the dipole energy.

The third soliton, [+−1), has the angle θ run from 1040 to π and come back from the
identical point at the south pole into 1040 with n pointing in the opposite direction.
An explicit parametrization is Eq. (he-)

n = lz sgn(z), θ = 2 arctan



√

5

3
tan
|z|
ξd


 . (6.53)

The last class, (+ + 1), is topologically equivalent to the sum of the two described
before and can, in fact decay into them.

In order to imagine the different energies of these field configurations remember
that the dipole force makes the radial shells have constant dipole energy with a
minimal valley at the shell θ ≈ 1040. The magnetic force, on the other hand, draws
n into z direction thus creating a potential valley running through the sphere from
north to south. Since the magnetic force is much weaker than the dipole force,
however, this valley is extremely flat. Let us now follow the movement of the field
configuration as z runs from +∞ to −∞. Clearly, the liquid likes to stay for the
largest possible portion of the z axis close to the north and south poles. The crossing
over to the other side will take place on a small piece only. The dipole energy is
the strongest effect at hand, the value of θ will stay fixed at 1040. Thus, the curve
representing the field moves as shown in Fig. 6.9. Fig. XV

While crossing to the other side it moves through the valley θ ≈ 1040 and has
to overcome only the magnetic energy. Correspondingly, the soliton (+− 0) has the
size determined by ξmg which is quite large.

The soliton (+ − 1), on the other hand, always has to cross the dipole barrier
and has therefore the much smaller size ξd.

Finally, the last configuration (++1) can lower its energy by deforming the line
as shown in Fig. 6.10. Fig. XVI

As is obvious by inspecting this figure, such a soliton can decay into the previous
two, one with dipole and one with the much lower magnetic energy.
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Figure 6.10 Another possible class of solitons has an order parameter which starts at

the north pole (say) of the spherical shell, goes to the surface of the sphere, re-emerges at

the diametrally opposite (identical) point and ends up at the same point it started out.

Along the way it tries to stay as much as possible on the spherical shell preferred by the

dipole energy.
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7
Hydrodynamic Limit at any Temperature T < Tc

Until now, the discussion has been limited to temperatures in the vicinities of Tc.
Only then can the expansion of the collective action (3.11) in Aai converge. For
T << Tc the field Aai can no longer be assumed to be small since it oscillates
around a nonzero average value A0

ai whose size increases as the temperature drops.
For T ≈ Tc, such a behavior is shown by formula (4.21). In order to obtain an
approximation to the collective action (3.11) valid for all temperatures we have to
expand in fluctuations around the finite average value A0

ai by setting Eq. (he-9.1)

Aai = A0
ai + A′ai. (7.1)

Then the collective action becomes a functional of A′ai only Eq. (he-9.2)

Acoll[A
′] = − i

2
Tr log

(
i∂t − ξ(−i∇) i∇̃iσa(A

0
ai + A′ai)

i∇̃iσa(A
0∗
ai + A′ai

∗) i∂t + ξ(i∇)

)

− 1

3g

∫
d4xA0∗

aiA
0
ai −

1

3g

∫
d4x

(
A0∗
aiA

′
ai + c.c.

)
− 1

3g

∫
d4xA′ai

∗A′ai. (7.2)

Here we have used the dimensionless derivative Eq. (he-)

∇̃i ≡
1

2pF

↔
∇i. (7.3)

The trace log part can be rewritten in analogy with (3.14) as Eq. (he-9.3)

Acoll[A
′] = − i

2
Tr log

(
i∂t − ξ(−i∇) i∇̃iσaA

0
ai

i∇̃iσaA
0∗
ai i∂t + ξ

)
− 1

3g

∫
d4xA0∗

aiA
0
ai

− i
2
Tr log

{
1− iGA0

(
0 i∇̃iσaA

′
ai

i∇̃iσaA
′
ai
∗ 0

)}

− 1

3g

∫
d4x (A ∗aiA

′
ai + c.c.)− 1

3g

∫
d4x|A′ai|2 (7.4)

where Eq. (he-9.4)

GA0 ≡ i

(
i∂t − ξ(−i∇) i∇̃iσaA

0
ai

i∇̃iσaA
0∗
ai i∂t + ξ(i∇)

)−1

(7.5)
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is the propagator in the presence of the constant A0 field.
The first two terms can be dropped since they are an irrelevant constant due to

their lack of depending on the fluctuating field A′. Expanding in powers of A′, we
haveEq. (he-9.5)

Acoll[A
′] =

∞∑

n=1

An[A′] (7.6)

with a linear termEq. (he-9.6)

A1[A
′] =

1

2
Tr

(
GA0i∇̃iσaA

′
ai

τ+

2

)
− 1

3g

∫
d4xA0∗

aiA
′
ai + c.c. (7.7)

where τ+/2 is the same 2×2-matrix as σ+/2 =

(
0 1
0 0

)
but acting on the two field

components of (3.10). The quadratic term isEq. (he-9.7)

A2[A
′] =

i

4
Tr

[
GA0

(
0 i∇̃iσaA

′
ai

i∇̃iσaA
′ ∗
ai 0

)]2

. (7.8)

The linear term is eliminated by the requirement that A be stationary under fluc-
tuations in A′ai. This condition yields the gap equation:Eq. (he-gap)

A0
ai =

3g

2
Tr

(
σai∇̃iGA0(x, y)

τ−

2

)∣∣∣∣∣
x=y−ε

. (7.9)

The propagator (7.5) can be calculated most easily for the case of a unitary
matrixEq. (he-9.10)

∆αβ(p̃) ≡ p̃i(σa)αβAai, (7.10)

where p̃ denotes the dimensionless vector p/pF . ThenEq. (he-)

∆αβ∆
†
βγ =

1

2
Tr(∆∆†)δαγ , (7.11)

The condition is satisfied if A0
ai has the form (4.17) of the A-phase or (4.18) of the

B-phase [not, however, for the A1 phase (4.19)]. In A- and B-phases the right hand
side becomesEq. (he-9.10a) {

∆2
A sin2 θ
∆2
B

}
p̃2 ≡ ∆2p̃2 (7.12)

where θ is the angle between l and the momentum vector p̃. In momentum space,
the propagator isEq. (he-9.11)

GA0(ω, p) =
1

ω2 + ξ2(p) + ∆2
A sin2 θ p̃2

(
(iω + ξ(p))δαβ −∆αβ(p̃)

−∆†αβ(p̃) (iω − ξ(p))δαβ

)
(7.13)

for the A-phase, with ∆2
A sin2 θ replaced by ∆2

B in the B-phase. This matrix can
be diagonalized via a so-called Bogoljubov transformation with the diagonal values
displaying pure propagators of energyEq. (he-9.12)
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E(p) = ±
√√√√ξ(p)2 +

{
∆2
A sin2 θ
∆2
B

}
. (7.14)

The energies show a gap ∆2
A sin2 θ or ∆2

B. In the B-phase, the gap is isotropic just
as in a superconductor. In the A-phase, on the other hand, there is an unisotropy
along the l axis with the gap vanishing for momenta along l.

The size of the gap is found by solving the gap equation (7.9). Inserting (7.13),
this takes the form Eq. (he-9.13a)

A0
ai = 3g

∑

j

T
∑

ωn,p

p̃ip̃j
1

ω2
n + E2(p)

A0
aj

= 3g
∑

j

∑

p

p̃ip̃j
1

2E(p)
tan

E(p)

2T
A0
aj. (7.15)

or Eq. (he-9.13)

1

g

1

3
δij = T

∑

ωn,p

p̃ip̃j
1

ω2
n + E2(p)

=
∑

p

p̃ip̃j
1

2E(p)
tan

E(p)

2T
. (7.16)

the momentum integration can be split into size and direction Eq. (he-9.14)

∫ d3p

(2π)3
≈ N (0)

∫ dp̂

4π

∫
dξ (7.17)

where N (0) is the density of states at the surface of the Fermi sea. Since the
integration over dξ is cut off at a value ωcutoff ≈ 1

10
TF , the momenta stay sufficiently

close to the Fermi sphere to make p̃ approximately to unit vectors: p̃ ≈ p̂ ≡ p/|p|.
Then (7.16) becomes Eq. (he-9.15)

1

g

∫
dp̂

4π
p̂ip̂j ≈ N (0)

∑

j

∫
dp̂

4π
p̂ip̂j

(∫ ωcutoff

−ωcutoff

dξ
1

2E
tan

E

2T

)
. (7.18)

We may eliminate the coupling constant g in favor of the critical temperature Tc by
using (3.20). This gives Eq. (he-9.16)

∫ ωcutoff

−ωcutoff

dξ
1

2ξ
tan

ξ

2Tc
=

3

4

∫ 1

−1
dz
(
1− z2

) ∫ ωcutoff

ωcutoff

dξ
1

2
√
ξ2 + ∆2

tan
(√

ξ2 + ∆2/2T
)

(7.19)

In order to extract the finite content, one may subtract

∫ ωcutoff

ωcutoff

dξ
1

2ξ
tan

ξ

2T
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on both sides. Then ξ-integral converges and we can remove the cutoff which leads
to Eq. (he-9.17)

log
T

Tc
=

3

4

∫ 1

−1
dz
(
1− z2

) ∫ ∞

−∞
dξ (7.20)

×
[

1

2
√
ξ2 + ∆2

tan
(√

ξ2 + ∆2/2T
)
− 1

2ξ
tan

ξ

2T

]
.

From this we may calculate T/Tc as a function of ∆AB/Tc as follows:
For small T , the integral increases as log T due to the small ξ behavior of the

second term. The finite piece is determined by setting tan
(√

ξ2 + ∆2/2T
)
≈ 1

(which is good to experimental accuracy e−∆/T except in the A phase for z ≈ ±1)
integrating the first and partially integrating the second term:Eq. (he-9.18)

log
T

Tc
≈ 3

4

∫ 1

−1
dz(1− z2)

{[
log

(√
ξ2 + ∆2 + ξ

)
/2T − log

ξ

2T
tan

ξ

2T

]

+
∫ ∞

0
dµ

logµ

cosh2 µ

}

=
3

4

∫ 1

−1
dz(1− z2)

{
log

4T

∆
− log

4eγ

π

}

= log
T

∆maxeγ/π
− 3

8

∫ 1

−1
dz(1− z2) log

∆2

∆2
max

(7.21)

In the B phase, ∆ ≡ ∆max = ∆B andEq. (he-9.20)

∆B/Tc = πe−γ ≈ 1.76; T ≈ 0. (7.22)

In the A phase, ∆ = ∆A sin Θ and the integral becomesEq. (he-9.21)

− 3

8

∫ 1

−1
dz(1− z2) log(1− z2) =

5

6
− log 2 ≈ log 1.15 (7.23)

so thatEq. (he-9.22)

∆A/Tc = πe−γ
e5/6

2
≈ 2.03 . (7.24)

For small T , this value is approached exponentially ∼ e∆B/T for the B-phase and
with a power law T 4 for the A-phase (due to the vanishing of ∆A sin gθ along the
unisotropy axis 1).

For arbitrary T , the calculation of (7.20) is done (as in the case of superconduc-
tivity in Part II) by using the expansion into Matsubara frequenciesEq. (he-ge)

1

2E
tan

E

2T
=

1

2E
T
∑

ωn

(
1

iωn + E
− 1

iωn − E
)

= T
∑

ωn

1

ω2 + ξ2 + ∆2
. (7.25)

This can be integrated over ξ and we find for the gap equation (7.20):Eq. (he-9.24)
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log
T

Tc
= 2π

3

4

∫ 1

−1
dz(1− z2) T

∑

ωn>0


 1√

ω2
n + ∆2

− 1

ωn


 . (7.26)

At this place one introduces the auxiliary dimensionless quantityEq. (he-9.25)

δ =
∆

πT
(7.27)

and a reduced version of the Matsubara frequencies: Eq. (he-9.26)

xn ≡ (2n+ 1)/δ. (7.28)

Then, the gap equation (7.20) takes the form Eq. (he-9.27)

log
T

Tc
=

2

δ

[
3

4

∫ 1

−1
dz(1− z2)

] ∞∑

n=0


1

/√√√√x2
n +

{
1
1− z2

}
− 1/xn


 (7.29)

in the B and the A phase, respectively. In the B phase, the angular integral in the
brackets gives a factor 1, so that Eq. (he-9.27b)

B : log
T

Tc
=

2

δ

∞∑

n=0


 1√

x2
n + 1

− 1

xn


 . (7.30)

In the second case, it leads to Eq. (he-9.28)

A : log
T

Tc
=

2

8

∞∑

n=0

{
3

4

[
(1− x2

n) arctan
1

xn
+ xn

]
− 1

xn

}
. (7.31)

The curves ∆A,B/Tc are plotted in Fig. 7.1. Fig. IXXX

The T ≈ Tc behavior can be extracted from (7.29) by expanding the sum for
large xn. The leading term is Eq. (he-9.29)

{
1

1− z2

} ∞∑

n=0

1

2x3
n

=

{
1

1− z2

}
δ3

2

∞∑

n=0

1

(2n+ 1)2
=

{
1

1− z2

}
δ3

2

7

8
ζ(3)

(7.32)

so that Eq. (he-9.30)

∆B/Tc = πδ = π

√
8

7ζ(3)

(
1− T

Tc

)1/2

≈ 3.063
(
1− T

Tc

)1/2

,

∆A/Tc = πδ = π

√
10

7ζ(3)

(
1− T

Tc

)1/2

(7.33)

in agreement with the determination (4.21).
Consider now the free-field part A2[A

′] of the collective action, Eq. (7.8). In
momentum space, it can be written in the form Eq. (he-9.31)
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1

2

1

T/Tc

∆B/Tc

∆A/Tc

Figure 7.1 The fundamental quantities of superfluid 3He-B and A are shown as a function

of temperature. The superscript FL denotes the Fermi liquid corrected values.

A2 =
1

2

∑

k

{
A′ai(k)

∗Lij11(k)A
′
aj(k) + A′ai(−k)Lij22(k)A′aj(−k)∗

+A′ai(k)
∗Lij12(k)A

′
aj(−k)∗ + A′ai(−k)Lij21(k)A′ai(k)

}
(7.34)

where, with the notation k0 = −iν, Eq. (he-9.32)

Lij11(k) = Lij22(k) =
∫ d3p

(2π)3
p̃ip̃jT

∑

ωn

ω2
n − ν2/4 + ξ+ξ−[(

ωn − ν
2

)2
+ E2

+

] [(
ωn + ν

2

)2
+ E2

−

] − δij
g
.

(7.35)

andEq. (he-9.33)

Lij,ab12 (k) =
[
Lij,ab21 (k)

]∗
= (7.36)

−
∫

d3p

(2π)3
p̃ip̃j p̃i′ p̃j′A

0
a′i′A

0∗
b′jta′b′,abT

∑

ωn

1[(
ωn − ν

2

)2
+ E2

+

] [(
ωn + ν

2

)2
+ E2

−

] .

withEq. (he-)

ta′b′ab ≡
1

2
tr(σa′σb′σaσb) = δa′aδb′b + δa′bδb′a − δa′b′δab (7.37)

andEq. (he-9.34)
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{
ξ+
ξ−

}
≡ (p± k/2)2

2m
+ . . . =

p2

2m
± 1

2m
p · k +

k2

8m
≈ ξ ± 1

2
v · k + . . . ,

{
E+

E−

}
=

√√√√
{
ξ2
+

ξ2
−

}
+ ∆2 ≈ E ± 1

2
v · k ξ

E
+

1

8
(v · k)2 ∆2

Ē3
+ . . . (7.38)

with ξ, E =
√
ξ2 + ∆2 being the average values of ξ+, ξ−; E+, E−. As usual, the

integral over d3p can be split into size and directional integral according to (7.5) and
we can set p̃ ≈ p̂ and v ≡ p/m ≈ vF p̂.
We now rearrange the terms in the sum in such a way that we obtain combinations
of single sums of the type

T
∑

ωn

1

iωn − E+

(7.39)

which lead to the Fermi distribution function Eq. (he-dis)

T
∑

ωn

1

iωn − E
= f(E) ≡ 1

eE/T + 1
(7.40)

with the property
f(E) = 1− f(−E). (7.41)

If we drop the subscripts n and introduce the notation ω± ≡ ω ± ν/2, the decom-
position of terms in the sum of Lijab12 (k) is Eq. (he-dec)

1

[ω2
+ + E2

+] [ω2
− + E2

−]

=
1

4E+E−

(
1

iω+ + E+
− 1

iω+ − E+

)(
1

iω− + E−
− 1

iω− − E−

)

=
1

4E+E−

{
− 1

E+ + E− + iν

(
1

iω− − E−
− 1

iω− − E−

)

+
1

E+ + E− + iν

(
1

iω+ + E+

− 1

iω− − E−

)

− 1

E+ − E− + iν

(
1

iω+ + E+
− 1

iω− + E−

)

+
1

E+ − E− − iν

(
1

iω+ − E+
− 1

iω− − E−

)}
(7.42)

We now use of (7.40) and the fact that the frequency shifts ν in ω± [see (11.16)] do
not appear in (12.5) since they amount to a mere translation in the infinite sum.
Collecting the different terms we find Eq. (he-9.33b)

Lij,ab12 (k) =
[
Lij,ab21 (k)

]∗
= (7.43)

−
∫

d3p

(2π)3
p̃ip̃j p̃i′ p̃j′A

0
a′i′A

0∗
b′j′

ta′b′,ab
2E−E+
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×
{

E+ + E−
(E+ + E−)2 + ν2

(1− f(E+)− f(E−))

+
E+ − E−

(E+ − E−)2 + ν2
(f(E+)− f(E−))

}
. (7.44)

In the first expression we decomposeEq. (he-)

ω2
n − ν2/4 + ξ+ξ−

[ω2
+ + E2

+] [ω2
− + E2

−]
=

1

2

{
1

ω2
+ + E2

+

+
1

ω2
− + E2

−

−(E2
+ + E2

− + ν2 − 2ξ+ξ−)
1

[ω2
+ + E2

+] [ω2
− + E2

−]

}
. (7.45)

When summing the first two terms we use the formula

T
∑

ω

1

ω2 + E2
=

1

2E
[f(−E)− f(E)] =

1

2E
tanh

E

2T
. (7.46)

In the last term, the right-hand factor was treated before. Replacing the factor
E2
−+E2

++ν2 once by (E−+E+)2+ν2−2E−E+ and once by (E−−E+)2+ν2+2E−E+

we obtain immediatelyEq. (he-9.32b)

Lij11(k) = Lij22(k) =
∫

d3p

(2π)3
p̃ip̃i

×
{
E+E− + ξ+ξ−

2E+E−

E+ + E−
(E+ + E−)2 + ν2

(1− f(E+)− f(E−))

−E+E− − ξ+ξ−
2E+E−

E+ − E−
(E+ − E−)2 + ν2

(f(E+)− f(E−))

}
− δij

g
. (7.47)

For the remainder of this chapter we shall specialize on the static case and consider
only the long-wavelength limit of small k. Hence, we shall take k0 = 0 and study
the lowest orders in k only. At k = 0 we find from (7.47) and (7.43(he-9.33b))Eq. (he-9.35)

Lij11(0) = N (0)
∫ dp̂

4π
p̂ip̂j

∫
dξ

{
E2 + ξ2

4E3

[
tan

E

2T
+ 2f ′(E)

]
− 1

g

}
. (7.48)

andEq. (he-9.36)

Lij,ab12 (0) = −1

2
N (0)

∫
dp̂

4π
p̂ip̂j p̂

′
ip̂
′
j

φ(∆)

∆2
A0
a′i′A

0∗
b′j′ta′b′ab (7.49)

where we have introduced the functionEq. (he-9.37)

φ(∆) = ∆2
[∫ ∞

0
dξ

1

E3
tan

E

2T
+ 2

∫ ∞

0
dξ

1

E2
f ′(E)

]
. (7.50)

We now observe that due to the gap equation (7.18) Lij11(k) can also be expressed
in terms this function as ofEq. (he-9.37a)

Lij11(0) = −1

2
N (0)

∫
dp̂

4π
p̂ip̂jφ(∆). (7.51)
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The first integral in Eq. (7.50) can be done in parts and brought to the more
convenient formEq. (he-9.38a)

φ(∆) = 1− 1

2T

∫ ∞

0
dξ

1

cosh2(E/2T )
. (7.52)

For T ≈ 0, this function approaches zero exponentially. The full temperature be-
havior is best calculated by using the Matsubara sum of (7.36) to write Eq. (he-9.38)

φ(∆) = 2T
∑

ωn

∫
dξ

∆2

(ω2
n + E2)2

= −2∆2T
∑

ωn

∂

∂ω2
n

∫
dξ

1

ω2
n + ξ2 + ∆2

= −2∆2T
∑

ωn

∂

∂ω2
n

π√
ω2
n + ∆2

= 2Tπ
∑

ωn>0

1
√
ω2
n + ∆2

3 . (7.53)

Using again the variables δ and xn from (7.27) and (7.28(he-9.26)), this becomes Eq. (he-9.39)

φ(∆) =
2

δ

{
1

1− z2

} ∞∑

n=0

1
√√√√x2

n +

{
1

1− z2

}3 (7.54)

for the B and the A phase, respectively. For T ≈ Tc, δ → 0 and Eq. (he-)

φ(∆) ≈ 2δ2

{
1

1− z2

}
7ζ(3)

8
. (7.55)

Consider the equations (7.48), (7.51(he-9.37a)) further. Let us write Lij11(0) as
follows Eq. (he-9.42)

Lij11(0) = − 1

4m2v2
F

ρij. (7.56)

where Eq. (he-9.45)

ρij ≡ 3ρ
∫ dp̂

4π
p̂ip̂jφ(∆) (7.57)

In the B phase, the angular integral in (7.51) can be done and we find Eq. (he-)

ρBij =
2

3
v2
Fm

2N (0)φ(∆)δij = ρφ(∆)δij ≡ ρBs δij (7.58)

where φB(∆) is the upper of the functions (7.54) (the isotropic one). The invariant
ρBs will be called the superfluid density of the B phase. For T ≈ Tc, (7.53) gives a
behavior as Eq. (he-9.44)

ρBs ≈ 2ρ
(
1− T

Tc

)
. (7.59)

For T = 0, we see from (7.50) that φ = 1 so that Eq. (he-)

ρBs = ρ, T = 0. (7.60)

In the A phase, the integral Eq. (he-9.45b)
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ρAij ≡ 3ρ
∫
dp̂

4π
p̂ip̂jφ(∆) (7.61)

can be expanded into covariants Eq. (he-9.46)

ρAij = ρs (δij − lilj) + ρ‖
slilj (7.62)

with the coefficients, the superfluid densities of the A phaseEq. (he-9.47)

ρs
3ρ
≡

∫ dp̂

4π
p2
xφ(∆) =

1

2

∫ 1

−1

dz

2
(1− z2)φ(∆) ≡ 1

2
φA(∆)

ρ‖
s

3ρ
≡

∫
dp̂

4π
p2
zφ(∆) =

1

2

∫ 1

−1

dz

2
(1− z2)φ(∆). (7.63)

The spatially averaged φ function in the first line will appear repeatedly in the
further description of the A phase and has therefore been given an extra name
φA(∆). Using the integralsEq. (he-9.48)

∫ 1

−1
dz

1
√
x2
n + 1− z2

3 =
2

xn(x2
n + 1)

=
2

x3
n

− 2

x5
n

+ . . .

∫ 1

−1
dz

z2

√
x2
n + 1− z2

3 = 2
(

1

xn
− arctan

1

xn

)
=

2

3

1

x3
n

− 2

5

1

x5
n

+ . . .

∫ 1

−1
dz

1
√
x2
n + 1− z2

3 = xn + 2
x2
n + 1

xn
− 3(1 + x2

n) arctan
1

xn
=

2

5

1

x3
n

− 6

35

1

x5
n

+ . . . . (7.64)

these densities are seen to have the expansionsEq. (he-9.50)

ρs
3ρ

=
1

2δ

∞∑

n=0

[
3xn −

2xn
x2
n + 1

+
(
1− 3x2

n

)
arctan

1

xn

]

=
8

15

1

δ

( ∞∑

n=0

1

x3
n

− 9

7

∞∑

n=0

1

x5
n

+ . . .

)
(7.65)

ρ‖
s

3ρ
=

1

δ

∞∑

n=0

[
−3xn − (3x2

n + 1) arctan
1

xn

]

=
4

15

1

δ

( ∞∑

n=0

1

x3
n

− 6

7

∞∑

n=0

1

x5
n

+ . . .

)
. (7.66)

For T ≈ Tc,Eq. (he-)

δ ≈ 10

7ζ(3)

(
1− T

Tc

)
→ 0, (7.67)

and the first two sums can be done with the result:Eq. (he-9.51)
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ρs ≈
8

5
c3δ

2
(
1− 9

7

c5
c3
δ2 + . . .

)
≈ 2

(
1− T

Tc

)
+ . . . (7.68)

ρs
‖ ≈ 4

5
c3δ

2
(
1− 6

7

c5
c3
δ2 + . . .

)
≈

(
1− T

Tc

)
+ . . . (7.69)

where

ck =
2k − 1

2k
ζ(k) (7.70)

are the results of the sums
∑∞
n=0(2n+ 1)−k (c3 ≈ 1.0518, c5 ≈ 1.0045). The higher

terms are omitted on the right-hand sides although they will be of use later).
For T = 0, we have again φ(∆) = 1 and see from (7.63) (7.64(he-9.48)) that

ρs = ρ‖
s = ρ, T = 0.

The full temperature behavior of the superfluid densities is shown in Figs. 7.2.

1

1

T/Tc

ρ
‖
s

ρs

ρB
s

Figure 7.2 Temperature behavior of the superfluid densities in the A- and B-phase of

superfluid 4He.

Consider now the function Lijab12 (0). Here it is useful to introduce a tensor Eq. (he-9.53)

ρijkl ≡
3

2
ρ
∫
dp̂

4π
p̂ip̂jp̂kp̂l φ(∆)/∆2 (7.71)

in terms of which Lijab12 (0) can be written as Eq. (he-9.54)

Lijab12 (0) = − 1

2mv2
F

ρijklA
0
a′kA

0∗
b′l ta′b′ab. (7.72)
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In the B phase where the gap is isotropic the angular integration is trivial and we
find from (7.71) Eq. (he-9.55)

ρijkl =
1

10
(δijδkl + δilδkj + δikδjl) ρ

B. (7.73)

In the A phase, this tensor can be expressed in terms of the three covariantsEq. (he-9.57)

Âijkl = (δijδkl + δilδkj + δikδjl)

B̂ijkl = δijlkll + δikljll + δilljlk + δjklill + δjllilk + δkllilj

Ĉijkl = liljlkll. (7.74)

as followsEq. (he-9.56)

ρijkl = AÂijkl +BB̂ijkl + CĈijkl. (7.75)

Contracting this with δijδkl and δijlkll we find that the coefficients A and B are
given by combinations of ρs and ρ‖

s:Eq. (he-9.58)

A =
1

8
ρs (7.76)

A +B =
1

4
ρ‖
s. (7.77)

The third coefficients contains another function γ(∆) of the gap parameter:Eq. (he-9.59)

3A+ 6B + C =
3

8
γ (7.78)

with γ being defined by the angular integralEq. (he-9.60)

γ ≡ 4ρ
∫
dp̂

4π
p̂4
zφ(∆)

∆2
A

∆2
. (7.79)

Inserting (7.54) and doing the angular integrals, we find the series representationEq. (he-9.61)

γ(∆)

ρ
=

4

δ

∞∑

n=0

[
3xn +

2

xn
− 3(x2

n + 1) arctan
1

xn

]
. (7.80)

By comparing this series with (7.31) and (7.65), we see that γ(∆) is not a new gap
function. In fact, by adding and subtracting the series for 4 log T

Tc
, we findEq. (he-9.62)

γ(∆)

ρ
≡ −4 log

T

Tc
− 2

ρ‖
s

ρ
. (7.81)

For T ≈ Tc, γ starts out likeEq. (he-)

γ(∆) ≈ 2
(
1− T

Tc

)
, (7.82)

just as ρs

ρ
. As T approaches zero, however, there is a logarithmic divergence which

is due to the zeros in the gap [see (7.79)] along the l direction.
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Let us now turn to the bending energies. For this, we expand L11(k) and L12(k)
to lowest order in the momentum k and findEq. (he-9.63)

f =
1

4m2

(
ρ11
ijkl∂kA

∗
ai∂lAaj/∆

2
AB + Re ρ12

ijklab∂kA
∗
ai∂lA

∗
bj

)
. (7.83)

Here we have dropped in the primes on the fields since with the derivatives present
the additional constant A0

ai does not matter. The tensor coefficient is found by going
once more through the same calculation as in Section II as Eq. (he-9.64)

ρ11
ijkl =

3ρ

2

∫
dp̂

4π
p̂ip̂j p̂kp̂l

[
φ(∆)− 1

2
φ̄(∆)

]
∆2
AB

∆2
(7.84)

ρ12
ijklab = −3ρ

2

∫
dp̂

4π
p̂ip̂jp̂kp̂lp̂mp̂n

1

2
φ̄(∆)

∆2
AB

∆4
A0
a′mA

0
b′nta′b′ab (7.85)

where φ is the same as in (7.53) while φ̄(∆) denotes another function of the gap: Eq. (he-9.66)

φ̄(∆) ≡ 2πT∆4
∑

ωn>0

1
√
ω2 + ∆2

5 =
2

δ
(1− z2)2

∞∑

n=0

1
√√√√x2

n +

{
1− z2

1

}5 . (7.86)

In the superconductor, this function does not appear in the hydrodynamic limit.
We therefore expect a cancellation also in the B phase where the gap is isotropic.
In fact, inserting Eq. (he-9.67)

Aai = ∆B eiϕRai(θ) (7.87)

we have Eq. (he-9.68)

Re ρ12
ijklab∂be

−iϕRai(θ)∂le
iϕRbj(ϕ)

= −3ρ

2

∫
dp̂

4π
p̂ip̂j p̂kp̂l

1

2
φ̄(∆)

∆2
B

∆2
p̂mp̂nRa′mRb′nta′b′ab

(−∂kϕ∂lϕRaiRbj + ∂kRai∂lRbj)

= −3ρ

2

∫
dp̂

4π
p̂kp̂l

1

2
φ̄(∆)

∆2
B

∆2
(−∂kϕ∂lϕ− p̂kp̂l∂kRai∂lRaj) . (7.88)

But this coincides exactly with the φ̄ content in ρ11
ijkl∂ke

−iϕRai∂le
iϕRaj.

Note that the two terms change sign for different reasons: ∂kϕlϕ because of the
equality of the phases eiϕ, and ∂kRai∂lRbj because of the tensor ta′b′ab. Thus, for the
B phase the result is simply Eq. (he-9.69)

f =
1

4m2
ρijkl∂kA

∗
ai∂lAaj/∆

2
B (7.89)

with ρijkl being the tensor discussed before in (7.71). This result is exactly the same
as for a superconductor except for two additional direction vectors p̂ip̂j inserted into
the spatial average which are contracted with the vector indices of the fields A∗aiAaj.
Inserting the decomposition (7.73) we find the energy (see Appendix 7A for details)

Eq. (he-9.70)
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f =
1

4m2

ρBs
2

[
( � ϕ)2 +

4

5
(∂iθ̃j)

2 − 1

5
( � θ̃)2 − 1

5
∂iθ̃j∂j θ̃i

]
. (7.90)

This coincides with the previous result (7.54) for T ≈ Tc, due to (7.59), with Eq. (he-)

K23 = 2K1. (7.91)

The superfluid density ρBs was shown before in Fig. 7.2.
In the A phase, matters are considerably more complicated. This is due to the

fact that the gap size varies which prevents the φ̄(∆) function to cancel. Consider
the field dependent parts of the ρ12 contribution:Eq. (he-)

ReAa′m
0Ab′n

0ta′b′ab∂kA
∗
ai∂lA

∗
bj/∆

2
A = (7.92)

∆A
2Re da′db′φmφnta′b′ab

(
∂kda∂ldbφ

†
iφ
†
j + dadb∂bφbφ

†
i∂lφ

†
j

)
(7.93)

where the mixed ∂d∂φ derivatives vanish due to d∂d = 0.
Contracting now the indices a′, b′, we see that the gradients of d appear with

the opposite sign in the formEq. (he-9.71)

− Re ∆A
2∂kda∂edbφmφnφ

†
iφ
†
j (7.94)

while the ∂φ derivatives keep their signEq. (he-9.72)

∆2
AReφm∂kφ

∗
i∂lφ

†
j. (7.95)

Using the formula (5A.5) of Appendix 5A, this expression can be cast in the formEq. (he-9.73)

∆2
A {(∂klm)li(∂lln)lj − [(εmprlr∂klpli − 2mvsk

(δmilmli)) (εnqsls∂qlqlj − 2mvsl (δnj − lnlj))]} . (7.96)

The calculation simplifies considerably by observing that an expressionEq. (he-9.74)

∆2
AReφ∗m∂kφiφn∂eφ

†
j (7.97)

instead of (7.95) would give exactly the same result as (7.96) except with a + sign
in front of the bracket. Thus (7.95) can be written asEq. (he-9.75)

2∆2
A (∂klm) li (∂eln) lj∆

2
AReφ∗m∂kφiφn∂eφ

†
j (7.98)

Now, the second piece together with (7.85) corresponds to a energyEq. (he-9.76)

− 1

4m2

3ρ

2

∫
dp̂

4π
p̂ip̂j p̂kp̂l

1

2
φ̄(∆)

∆2
A

∆2

(
∆2
A

∆2
p̂mA

∗
b p̂nAbn

)
∂kA

∗
ai∂lAaj/∆

2
A (7.99)

which again cancels the φ̄ part in the ρ11 piece. Hence, this part of the energy e has
again the form (7.89).
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Let us now study contribution of the first piece in (7.98) to the energy:Eq. (he-9.77)

∆f = − 1

4m2

3ρ

2

∫ dp̂

4π
p̂lp̂jp̂kp̂lp̂nφ̄(∆)

∆4
A

∆4
(∂klm) li (∂lln) lj (7.100)

Since p̂l = z, we can introduce the tensorEq. (he-9.78)

ρ̄ijkl =
3ρ

2

∫
dp̂

4π
p̂ip̂j p̂kp̂l

z2

1− z2
φ̄(∆)

∆2
A

∆2
(7.101)

so that the additional energy can be written as Eq. (he-9.79)

∆f = − 1

4m2
ρ̄ijkl∂kli∂llj. (7.102)

Decomposing ρ̄ijkl in the same way as ρijkl in (7.78), we find for the coefficients Eq. (he-9.80)

Ā =
1

8
ρ̄s,

Ā+ B̄ =
1

4
ρ̄‖
s, (7.103)

where ρ̄s, ρ̄
‖
s are auxiliary quantities defined as Eq. (he-9.81)

ρ̄s ≡
3

4
ρ
∫ 1

−1
dz(1− z2)φ̄(∆)

∆2
A

∆2

ρ̄‖
s ≡

3

2
ρ
∫ 1

−1
dzz4φ̄(∆)

∆2
A

∆2
. (7.104)

Note that a corresponding quantity γ̄ formed with φ̄(∆) in analogy with (7.79) need
not be calculated since the covariant Ĉijkl gives zero when the indices are contacted
in (7.102).

Inserting the explicit form (7.86) for φ̄(∆) we can partially integrate Eq. (7.104)
and find Eq. (he-9.82)

ρ̄s =
3

4
ρ
∫ 1

−1
dz(1− z2)2z2 2

δ

∞∑

n=0

1
√
x2
n + 1− z2

5

= −3

4
ρ
∫ 1

−1
dz
(

1

3
− 2z2 +

5

3
z4
)

φ(∆)

(1− z2)
(7.105)

ρ̄‖
s =

3

4
ρ
∫ 1

−1
dz(z4)2(1− z2)

2

δ

∞∑

n=0

1
√
x2
n + 1− z2

5

= −3

4
ρ
∫ 1

−1
dz
(
z2 +

5

3
z4
)

φ(∆)

(1− z2)
. (7.106)

The auxiliary quantities can therefore be expressed in terms of the superfluid den-
sities as follows: Eq. (he-9.83)
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1

2

1

T/Tc

Kt

Ks

Kflc
t

Kflc
s

Kb

Kflc
b

Figure 7.3 The superfluid stiffness functions Kt,Kb,Ks of the A-phase as a function

of temperature, once without and once with Fermi liquid corrections, indicated by the

superscript flc.

ρ̄s =
2

3
ρ‖
s −

1

3
ρs

ρ̄‖
s = −ρ‖

s +
1

2
γ. (7.107)

If we now perform the contractions of the covariants in (7.89) and (7.102(he-9.79)),
we find the energy (see Appendix 7A for details) in the form given in (5.8) but with
coefficients:Eq. (he-9.84)

2mc =
1

2
ρ‖
s, 2c0m = ρ‖

s,

4m2Kd
1 = ρs, 4m2Kd

2 = ρ0 = ρs − ρ‖
s, (7.108)

4m2Ks = ρs/4, 4m2Kt = (ρs + 4ρ‖
s)/12, 4m2Kb = (ρ‖

s + γ)/2

whose temperature dependence is known down to T = 0. The coefficients c, c0 need
no plotting since they are proportional to ρ‖

s. The twist, bend, and splay bending
constants are displayed in Fig. 7.3. There is no need to plot Kd

1 , K
d
2 since Kd

1 isFig. ktbs

equal to ρs/4m
2 which was plotted in Fig. (7.2). To see what Kd

2 looks like we
introduce, in analogy with ρ‖

s the longitudinal quantity

Kd
‖ ≡ K1 −K2 (7.109)

which is equal to ρ‖
s/4m

2.
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If d is locked to l, the bending constants Kd
1 , K

d
2 change Kt, Kb, Ks into

K l
s = Ks + ρs = 5ρs/4,

K l
t = Kt + ρs = (13ρs + 4ρ‖

s)/12,

Kb = Kb +Kd
‖ = (3ρ‖

s + γ)/2. (7.110)

7.1 Fermi Liquid Corrections

In order to compare the analysis with experiment at all temperatures below Tc, the
pair interaction (2.42) turns out not to be sufficient. The further T drops below
Tc, the more other interactions become important. Here we shall discuss the most
important of these which are due to a current-current coupling between both for the
particle and the spin currents.

In Landau’s theory of the normal Fermi liquid these interactions are introduced
with coupling constants F s

1 , F
a
1 as follows: Eq. (he-10.1)

Acurr−curr= −
1

2

∫
d4x

[
F s

1

2N (0)
ψ∗i∇̃ψψ∗∇̃ψ +

F a
1

2N (0)
ψ∗i∇̃σaψψ∗i∇̃σaψ

]
.

(7.111)

Using the particle and spin currents of Eq. (4.14) and the relation 2N (0)p2
F = 3ρ

this can be written compactly as Eq. (he-10.2)

Acurr−curr = −1

2

∫
d4x

m2

ρ

(
1

3
F s

1 j
2
i +

1

3
F a

1 j
2
ai

)
. (7.112)

As in the case of the pair interaction, these quartic expressions in the fundamental
fields ψ∗, ψ can be eliminated in favor of quadratic ones by introducing collective
fields ϕi, ϕai and adding to the action the complete squares Eq. (he-10.3)

1

2

∫
d4x

m2

ρ


1

3
F s

1

(
ji +

ρ

m2

1

F s
1

ϕi

)2

+
1

3
F a

1

(
jai +

ρ

m2

1

F a
1

ϕai

)2

 (7.113)

in analogy with (3.5). Then the current-current interaction becomes Eq. (he-10.4)

Acurr−curr =
∫
d4x

[
jiϕi + jaiϕai +

1

2

ρ

m2

(
1

1
3
F s

1

ϕ2
i +

1
1
3
F a

1

ϕ2
ai

)]
. (7.114)

After integrating out the Fermi fields, the trace log in (3.13) will be changed to −i/2
times the Trace log of the matrix Eq. (he-10.6)

(
i∂t − ξ(−i∇) + i

2m
∇̃iϕi +

i
2m
∇̃iσaϕai i∇̃iσaAai

i∇̃iσaA
∗
ai i∂t + ξ(−i∇) + i

2m
∇̃iϕi +

i
2m
∇̃iσaϕai

)

(7.115)

depending on ϕi, ϕai.
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In the hydrodynamic limit where only quadratic field dependencies are considered
there is a simple method to find this dependence without going again through the
loop calculations. For this we observe that a term in the action Eq. (he-10.6a)

∫
d4x (jiϕi + jaiϕai) (7.116)

is equivalent to adding velocity source terms to the energy density, thereby forming
quantity looking like an enthalpy density, except that the roles of pressure and
volume are played by momenta and velocities, i.e.,Eq. (he-)

f → fent = f − piVi − pai.Vai (7.117)

Here pi ≡ mji, pai ≡ mjai are the momentum densities of particle and spin flow.
We shall call e→ fent the flow enthalpy . The minimum of this quantity determines
the equilibrium properties of the system at externally enforced velocities Vi, Vai of
particles and spins:

Vi ≡ ϕi/m, Vai ≡ ϕai/m. (7.118)

Consider, now the energy (5.8) in a planar texture which has all l-vectors parallel.
If we want to account for the effect of the current-current interactions we must extend
this expression. Recall that the earlier calculations were all done in a frame in which
the normal part of the liquid was at rest. When considering nonzero velocities of
the system as we now do, we have to add to the energy density the kinetic terms of
the normal particle and spin flowsEq. (he-10.8)

ρn
2

(
v⊥

2

ni
+ v⊥

2

nai

)
+
ρ‖
n

2

(
v‖
ni

2 + v‖
nai

2
)

(7.119)

where v⊥ and v‖ are defined byEq. (he-10.9)

v⊥ = v − v‖

v‖ = l (l · v). (7.120)

with similar definitions for the spin velocities. The corresponding currents are

p = mj = ρsvs + ρnvn, (7.121)

pa = mja = ρsvsa + ρnvna. (7.122)

The additional terms (7.119) are necessary to guarantee the correct Galilei trans-
formation properties of the energy density e.

We now study the equilibrium properties of the liquid. First we minimize the flow
enthalpy (7.122). If topology does not enforce a nonzero superflow, both velocities
vn and vs will be equal to a single velocity v. Thus, in equilibrium, we may rewrite
the flow enthalpy density also asEq. (he-10.10)

fent =
ρ

2

(
v2
i + v2

ai

)
− piVi − paiVai. (7.123)
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This expression is minimal at

vi = Vi, vai = Vai, (7.124)

where it has the equilibriumEq. (he-10.11)

fent

∣∣∣
eq

= −ρ
2

(
V 2
i + V 2

ai

)
. (7.125)

Let us compare this with the calculation of the flow enthalpy from the trace log
term of the collective action. The enthalpy density is Eq. (he-10.12)

fent =− log

(
i∂t − ξ(p) + piVi + piσaVai p̃iσaA

′
ai

p̃iσaA
′
ai
∗ i∂t + ξ(p)− piVi − piσaVai

)
.

(7.126)

The quadratic term in the fluctuating field A′ai around the extremum has been
calculated before and has led to the hydrodynamic limiting result Eq. (he-10.13)

f =
ρs
2

(
vs
⊥2

i + vs
⊥2

ai

)
+
ρ‖
s

2

(
v‖
si

2 + v‖
sai

2
)
. (7.127)

In addition, there are now linear terms Eq. (he-10.14)

∆1f = −ρs
(
vsiVi + v⊥s aiVai

)
− ρ‖

s (v‖
siVi + v‖

saiVai) (7.128)

We would like to find quadratic terms in Vi, Vai. They certainly have the form Eq. (he-10.15)

∆2f = −a
2

(
V ⊥i

2 + V ⊥ai
2
)
− a‖

2

(
V ‖
i

2 + V ‖
ai

2
)
. (7.129)

In order to determine a and a‖, we simply minimize the enthalpy in v⊥,‖si and v⊥,‖sai ,
which become equal to V ⊥,‖i and V ⊥,‖ai , respectively. At these velocities, Eq. (he-)

fent

∣∣∣
eq

= −ρs + a

2

(
V ⊥i

2 + V ⊥ai
2
)
− ρ‖

s + a‖

2

(
V ‖
i

2 + V ‖
ai

2
)
. (7.130)

Comparing this with (7.123) we see that Eq. (he-10.17)

a = ρn = ρ− ρs,
a‖ = ρ‖

n = ρ− ρ‖
s, (7.131)

implying that the coefficients in (7.129) are simply the normal-liquid densities. Thus,
the hydrodynamic limit of the collective energy density is given by Eq. (he-10.18)

e =
ρs
2

(
v⊥s i

2 + v⊥s ai
2
)

+
ρ‖
s

2

(
v‖
si

2 + v‖
sai

2
)
− jiϕi − jaiϕai

−1

2

m2

ρ

[(
1

1
3
F s
i

+
ρn
ρ

)
ϕ⊥i

2 +

(
1

1
3
F s

1

+
ρ‖
n

ρ

)
ϕ‖
i
2

+

(
1

1
3
F a

1

+
ρn
ρ

)
ϕ⊥ai

2 +

(
1

1
3
F a

1

+
ρ‖
n

ρ

)
ϕ‖
ai

2

]
. (7.132)
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We now complete the squares in the fields ϕ⊥ai and ϕ‖
ai, and obtain Eq. (he-10.19)

f =
1

2
ρs
(
v⊥s i

2 + v⊥s ai
2
)

+
ρ‖
s

2

(
v‖
si

2 + v‖
sai

2
)

+
1

2

m2

s




1
3
F s
a

1 + 1
3
F s

1
ρn

ρ

j⊥i
2 +

1
3
F a
a

1 + 1
3
F a

1
ρn

ρ

j⊥ai
2 +

1
3
F s

1

1 + 1
3
F s
a
ρ
‖
n

ρ

j‖i
2 +

1
3
F a

1

1 + 1
3
F a

1
ρ
‖
n

ρ

j‖ai
2




−1

2

ρ

m2



(

1
1
3
F s

1

+
ρn
ρ

)
ϕ⊥i −

1
3
F s
a

1 + 1
3
F s

1
ρn

ρ

j⊥i




2

+

(
1

1
3
F a

1

+
ρn
ρ

)
ϕ⊥ai −

1
3
F a

1

1 + 1
3
F a

1
ρn

ρ

j⊥ai




2

+ (⊥ → ‖)


 . (7.133)

The path integrals over the fields ϕi, ϕai can now be performed which makes the
last terms in brackets disappear.

Finally, we allow l to vary in space. This will lead us to the Fermi liquid correc-
tions to the stiffness constants Ks,t,b [recall (5.8)]. In the presence of a nontrivial l

texture the currents acquire additional terms. The particle current ji becomesEq. (he-10.20)

mj⊥ = ρsvs + c (∇× l)⊥ , 2mc =
ρ‖
s

2
,

mjj‖ = ρ‖
sv

‖
s − c‖ (∇× l)‖ , 2mc‖ =

ρ‖
s

2
, (7.134)

where we have separated ∇× l into transverse and longitudinal parts:Eq. (he-10.21)

(∇× l)⊥ = (∇× l)− l [l · (∇× l)] ,

(∇× l)‖ = l [l · (∇× l)] , (7.135)

respectively. The squares of the currents areEq. (he-10.22)

m2j⊥i
2 = ρ2

sv
⊥2 +

1

4m2

ρ‖
s
2

4

[
(∇× l)2 − (l · (∇× l))2

]

+
1

2m

ρsρ
‖
s

2
v⊥(∇× l)⊥

= ρ2
s

[
v2 − (l · v)2

]
+

1

4m2

ρ2
s

4
[l× (∇× l)]2

+
1

2m

ρsρ
‖
s

2
[v · (∇× l)− (v · l)(∇× l)] , (7.136)

m2j‖i
2 = ρ‖

s
2(l · v)2 +

1

4m2

ρ‖
s
2

4
[l · (∇× l)]2 − 1

2m

ρ‖
s
2

2
(v · l)(∇× l),

m2j⊥ai
2 = ρ2

sv
⊥
ai

2 =
ρ2
s

4m2
{εabcdb [∇i − li(l ·∇)] dc}2

=
ρ2
s

4m2

[
(∇ida)

2 − (l ·∇da)
2
]
, (7.137)
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m2j‖ai
2 = ρ‖

s
2v‖
ai

2 =
ρ‖
s
2

4m2
[liεabcdb(l ·∇)dc]

2

=
ρ‖
s
2

4m2
(l ·∇da)

2 . (7.138)

Using these we find the energy density Eq. (he-10.23)

f =
1

2
ρs

1 + 1
3
F s

1

1 + 1
3
F s

1
ρn

ρ

[
v2
s − (l · vs)2

]
+

1

2
ρ‖
s

1 + 1
3
F s

1

1 + 1
3
F s

1
ρ
‖
n

ρ

(l · vs)2

+
1

2
ρs

1 + 1
3
F a

1

1 + 1
3
F a

1
ρn

ρ

1

4m2

[
(∇ida)

2 − (l ·∇da)
2)
]
+

1

2
ρ‖
s

1 + 1
3
F a

1

1 + 1
3
F a

1
ρ
‖
n

ρ

(l ·∇da)
2

+
ρ‖
s

2

1 + 1
3
F s
a

1 + 1
3
F s

1
ρn

ρ

1

2m
{vs · (∇× l)− (l · vs) [l · (∇× l)]}

−ρ
‖
s

2

1

2m

1 + 1
3
F s

1

1 + 1
3
F s

1
ρ
‖
n

ρ

(l · vs) [l · (∇× l)]

+
1

2
Ks(∇ · l)2 +

1

2


Kt +

1

4m2

ρ‖
s
2

4ρ2

1
3
F 3

1

1 + 1
3
F s

1
ρ
‖
n

ρ


 [l · (∇× l)]2

+
1

2


Kb +

1

4m2

ρ‖
s
2

4ρ2

1
3
F s

1

1 + 1
3
F s

1
ρn

ρ


 [l× (∇× l)]2 . (7.139)

As discussed in the beginning, the mass parameter m here is the effective mass of
the screened quasiparticles in the Fermi liquid. As a consequence, the velocity Eq. (he-10.24)

vs =
1

2m
φ∗i
↔
∇φi (7.140)

is not really the correct parameter of Galilean transformations. To be so, the phase
change in the original fundamental fields would have to be Eq. (he-10.25)

ψ → eim0v·xψ (7.141)

where m0 is the true physical mass of the 3He atoms. If we introduce the corre-
sponding true velocity Eq. (he-10.26)

v0s =
i

2m0
φ∗i
↔
∇φi (7.142)

with a similar expression for the spin velocity v0sai, the first term in (7.139) takes
the form Eq. (he-10.27)

1

2

(
ρs
m0

m

)
1

1 + 1
3
F s

1
ρn

ρ

m0

(
1 + 1

3
F s

1

)

m

[
v0s

2 − (l · vs)2
]

(7.143)

with the other terms changing accordingly.
We now add to the energy density the kinetic energy of the normal component Eq. (he-10.28)
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1

2
ρn
[
v0n

2 − (l · v0n)
2
]
+

1

2
ρn(l · v0n)

2. (7.144)

By Galilei invariance, the sum of the coefficients has to add up to the total density
ρ0 = nm0 where n is the number of particles (≡ number of quasiparticles) per unit
volume:Eq. (he-10.29)

(
ρs
m0

m

)
1

1 + 1
3
F s

1
ρn

ρ

m0

(
1 + 1

3
F s

1

)

m
+ ρn = ρ0 = nm0. (7.145)

At T = 0, the normal density vanishes, i.e., ρn = 0, and the last section givesEq. (he-10.30)

ρs|T=0 = ρ = ρ0
m

m0

. (7.146)

Thus, consistency requires the following relation between the effective mass m and
the atomic mass mc ≡ m3He:Eq. (he-10.31)

m =
(
1 +

1

3
F s

1

)
m0, (7.147)

This brings the term (7.145) to the formEq. (he-10.32)

1

2
ρ0
ρs
ρ

1

1 + 1
3
F s

1
ρn

ρ

[
v0s

2 − (l · v0s)
2
]
. (7.148)

The prefactor can be interpreted as the superfluid density with Fermi liquid correc-

tions, i.e.,Eq. (he-10.33)

ρFL
s ≡ ρ0

ρs
ρ

1

1 + 1
3
F s

1
ρn

ρ

. (7.149)

It will be convenient to introduce the dimensionless ratioEq. (he-10.34)

ρ̃FL
s ≡

ρFL
s

ρ0

. (7.150)

At T = 0, this ratio goes to unity just as in the uncorrected case. For T ≈ Tc,
however, it receives a strong reduction by a factor

1

1 + 1
3
F s

1

=
m0

m
,

i.e.,Eq. (he-10.34b)

ρ̃FL
s ≡

ρs
ρ

m0

m
. (7.151)

Hence near Tc the number of particles in the normal component give a true
particle density if it is multiplied by the quasiparticle mass m instead of the atomic
mass m0). Specific-heat experiments1 determine the effective mass ratios m/m0

mentioned in the beginning. They correspond toEq. (he-10.35)

1

3
F s

1 = (2.01, 3.09, 3.93, 4.63, 5.22) (7.152)
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at pressuresEq. (he-10.36)

p = (0, 9, 18, 27, 34.36) bar. (7.153)

Similarly, we may go through the Fermi liquid corrections of the spin currents which
lead to Eq. (he-10.37)

K̃FL
d ≡

KFL
d

ρ0
=
ρs
ρ

1 + 1
3
F a

1

1 + 1
3
F a

1
ρn

ρ

1

1 + 1
3
F s

1

, (7.154)

Eq. (he-10.38)

K̃‖
d
FL ≡ K‖

d
FL

ρ0

=
ρ‖
s

ρ

1 + 1
3
F a

1

1 + 1
3
F a

1
ρ
‖
n

ρ

1

1 + 1
3
F s

1

, (7.155)

while the coefficients c and c‖ become Eq. (he-10.39)

c̃FL ≡ 2m0c
FL

ρ0
=

2mc

ρ

1

1 + 1
3
F s

1
ρn

ρ

, (7.156)

Eq. (he-10.40)

c̃‖FL ≡ 2m0c
‖FL

ρ0
=

2mc‖

ρ

1

1 + 1
3
F s

1
ρ
‖
n

ρ

. (7.157)

The pure l parts of the bending energy lead to Eq. (he-10.41)

K̃FL
s ≡ 4m2

0Ks
FL

ρ0
=

4m2Ks

ρ

1

1 + 1
3
F s

1

, (7.158)

K̃FL
t ≡ 4m2

0

ρ0
KFL
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4m2Kt

ρ
+

1
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s
2

ρ2

1
3
F s

1
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3
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1
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‖
n

ρ
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1 + 1
3
F s

1

, (7.159)

K̃FL
b ≡ 4m2

0

ρ0
KFL
b =


4m2Kb

ρ
+

1

4

ρ‖
s
2

ρ2

1
3
F s

1

1 + 1
3
F s

1
ρn

ρ


 1

1 + 1
3
F s

1

. (7.160)

In the sequel, it will be convenient to define

ṽ ≡ 2m0v. (7.161)

Then the energy density can be written in the following final form Eq. (he-10.44)

4m2
0

ρ0
e ≡ 1

2
ρ̃FL
s

[
ṽ2
s − (l · ṽs)2

]
+

1

2

1̃

2
ρ̃‖
s
FL(l · ṽs)2

+
1

2
K̃FL

d

[
(∇ida)

2 − (l ·∇a)
2
]
+

1

2
K̃‖

d
FL (l ·∇da)

2

+c̃FL {ṽ · (∇× l)− (ṽs · l) [l · (∇× l)]}
−c̃‖FL (ṽs · l) [l · (∇× l)]

+
1

2
K̃FL
s (∇ · l)2 +

1

2
K̃FL
t [l · (∇× l)]2 +

1

2
K̃FL
b [l× (∇× l)]2 . (7.162)
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Figure 7.4 The remaining hydrodynamic parameters of superfluid 3He-A shown as a

function of temperature together with their Fermi liquid corrected values.

In large containers, where l and d are locked to each other, the K̃FL
d , K̃‖

d
FL terms

can be absorbed into K̃FL
s,t,b which then take the dipole-locked values Eq. (he-10.45)

K̃FL
s |lock = K̃FL

s + K̃FL
d , (7.163)

K̃FL
t |lock = K̃FL

t + K̃FL
d , (7.164)

K̃FL
b |lock = K̃FL

t + K̃FL
d . (7.165)

The temperature dependence of all these quantities is shown in Fig. 7.4 for theFig. XXXa

experimental Fermi liquid parameters 1
3
F s

1 = 5.22 and 1
3
F a

1 = −.22.
The Fermi liquid corrections in the B phase can be applied in completely anal-

ogous manner. There the energy becomesEq. (he-10.48)

4m2
0

ρ0

f =
1

2
ρ̃Bs

FL(∇ϕ)2 + λ(4 + δ)(∇iθj)
2 − (1 + δ)∇iθj∇jθi − (∇iθi)

2 (7.166)

with the dimensionless parametersEq. (he-10.49)

ρ̃Bs =
ρBs
ρ

1

1 + 1
3
F s

1
ρB

n

ρ

,

λ =
1 + 1

3
F a

1

1 + 1
3
F a

1
ρB

n

ρ
+ 1

3
F a

1
2
15
ρB

s

ρ

1

1 + 1
3
F s

1

,

δ =
1
3
F a

1
ρB

s

ρ

1 + 1
3
F a

1
ρB

n

ρ

. (7.167)

7.2 Ground State Properties

The superfluid densities do not only characterize the hydrodynamic bending ener-
gies. They also appear in the description of the thermodynamic quantities of the

1See: J.W. Wheatley, Ref. Mod. Phys. 47, 415 (1975).
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ground state. For T ≈ Tc these can be extracted directly from the free energies
(4.22). These may be used for checking the general-temperature properties to be
calculated now.

7.2.1 Free Energy

Since the ground state field A0
ai is constant in space and time the first two terms in

Eq. (7.4) can be calculated explicitly. In energy momentum space the matrix inside
the trace log is diagonal Eq. (he-9.85)

(
ε− ξ(p) p̃iσaA

0
ai

p̃iσaA
0∗
ai ε + ξ(p)

)
(7.168)

in the functional indices ε,p. In the 4× 4 matrix space this can be diagonalized via
a Bogoljubov transformation with the result Eq. (he-9.86)


 (ε− E(p))

(
1 0
0 1

)
0

0 (ε + E(p))
(

1 0
0 1

)

 (7.169)

where E(p) are the quasi-particle energies (7.14). Thus the first trace log term in
the expression (7.4) can be written as Eq. (he-9.87)

− i(tb − ta)V
∫
dε

2π

d3p

(2π)3
log (ε− E(p)) (ε+ E(p)) . (7.170)

The second term contributes simply Eq. (he-)

− 1

3g

{
3∆2

B

2∆2
A

}
(tb − ta)V. (7.171)

After a Wick rotation this corresponds to the energy density2 Eq. (he-9.98)

f = −
∑

ωn

∑

p

log[(iωn − E(p))(iωn + E(p))] +
1

g

{
∆2
B

2
3
∆2
A

}
+ const . (7.172)

The constant accounts for the unspecified normalization of the functional integra-
tion. It is removed by subtracting the free fermion system with ∆ = 0, g = 0 [notice
that ∆2 ∼ e−1/gN (0) → 0 for g → 0 due to (3.21), (7.22(he-9.20)), (7.24(he-9.22))]. Since
the energy of the free fermion system is well-known Eq. (he-9.90)

f0 = −2T
∑

p

log
(
1− eξ(p)/T

)
(7.173)

it is sufficient to study only Eq. (he-9.91)

2We use again the relation A = iE/T, tb − ta = −i/T,
∫∞

−∞
dε = iT

∑
ωn
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∆f = f − f0 =

−T
∑

ωn,p

log
iωn − E(p)

iωn − ξ(p)
+ (E → −E, ξ → −ξ) +

1

g

{
∆2
B

2
3
∆2
A

}
. (7.174)

This energy difference is the condensation energy associated with the transition into
the superfluid phase.

The sum over Matsubara frequency can be performed by using Cauchy’s formula:
Eq. (he-9.92)

T
∑

ωn

log
(
1− E

iωn

)
= − 1

2πi

∫
dz

ez/T + 1
log

(
1− E

z

)
(7.175)

where the contour C encircles all poles along the imaginary axis at z = iωn in the
positive sense but passes the logarithmic cut from z = 0 to E on the left if E > 0
(see Fig. 1.1 in Part I). By deforming the contour C into C ′ the integral becomesEq. (he-9.93)

−
∫ E

0

dz

ez/T + 1
=
∫ E

0
dE n(E). (7.176)

SinceEq. (he-9.94)
∂n(E)

∂E
= −n(1− n)/T (7.177)

this can be calculated asEq. (he-9.95)

−
∫ E

0
dEn(E) = T

∫ n

1/2
dn′

1

1− n′ = −T log 2(1− n(E)). (7.178)

The expression (7.174) becomes thereforeEq. (he-9.96)

∆f = T
∑

p

[log(1− n)n− log(1− n0)n0] +
1

g

{
∆2
B

2
3
∆2
A

}
(7.179)

where n0 denotes the free-fermion distribution. Alternatively, ony may writeEq. (he-9.97)

∆f = 2T
∑

p

{log(1− n)− (E − ξ)}+
1

g

{
∆2
B

2
3
∆2
A

}
− 2T

∑

p

log(1− n0)

(7.180)

The last term is recognized as minus the energy of the free system so that the first
line gives the full energy of the superfluid ground state.

The explicit calculation can conveniently be done by studying ∆f of (7.180) at
fixed T as a function of g. At g = 0, ∆AB = 0 and ∆f = 0. As g is increased to
its physical value, the gap increases to ∆AB . Now, since ∆f is extremal in changes
of ∆ at fixed g and T , all g-dependence comes from the variation of the factor 1/g,
i.e.,Eq. (he-9.98)

∂∆f

∂g

∣∣∣∣∣
T

=

{
∆2
B

2
3
∆2
A

}
. (7.181)

We can therefore calculate ∆f by simply performing the integralEq. (he-)
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∆f = −
∫ ∞

1/g
d (1/g′)

{
∆2
B (1/g′)

2
3
∆2
A (1/g′)

}
(7.182)

The 1/g-dependence of the gap is obtained directly from (7.10), (7.29(he-9.27)) asEq. (he-)

1

gN (0)
− log

(
2
eγ

π

ωc
T

)
= (7.183)

1

δ

3

4

∫ 1

−1
dz(1− z2)

∞∑

n=0


1
/√√√√x2

n +

{
1

1− z2

}
− 1/xn


 .

From this we find Eq. (he-9.101)

∂

∂δ2

(
1

gN (0)

)∣∣∣∣∣
T

= − 1

2δ2

3

4

∫ 1

−1
dz(1− z2)φ(δ2, z)

= − 1

2δ2
φB,A(δ2) = − 1

2δ2

{
ρBs /ρ
ρs/ρ

}
(7.184)

where ρBs and ρAS are the superfluid densities of B and A phases, respectively. Using
this we can change variables in the integration and write Eq. (he-9.102)

∆f = N (0)π2T 2 1

2

∫ δ2

0
dδ′

2

{
φB(δ′2)

2
3
φA(δ′2)

}
. (7.185)

Inserting φB from the upper part of equation (7.54) we can perform the integral
with the result: Eq. (he-9.103)

1

δ2

∫ δ2

0
dδ′2φB(δ′2) =

4

8

∞∑

n=0


− 1√

x2
n + 1

+ 2
(√

x2
n + 1− xn

)
 (7.186)

We shall denote this angular average by φ̃B. In analogy to the relation φBs = ρBs /ρ
[see (7.184)] we shall also write φ̃B ≡ ρ̃Bs /ρ, and state the result (7.186) as Eq. (he-)

ρ̃Bs
ρ
≡ 4

δ

∞∑

n=0


− 1√

x2
n + 1

+ 2
(√

x2
n + 1− xn

)
 . (7.187)

When plotted against temperature this function starts out as (1− T/Tc) for T ∼ Tc
and goes to unity for T → 0.

Similarly, we may integrate the second of Eqs. (7.185), for which we use the
expansion (7.65). Pleasantly, it turns out that the integral

1

δ2

∫ δ

0
dδ′

2
φA(δ′

2
)

is no new gap function but coincides with ρ‖
s/ρ of Eq. (7.66).

The condensation energy can therefore be written in the simple form Eq. (he-9.105)
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∆f = −N (0)π2T 2

{ 1
2
ρ̃Bs /ρ

1
3
ρ‖
s/ρ

}
δ2. (7.188)

For T → Tc, ρ̃
B
s and ρ‖

s behave both like 1− T
Tc

so that Eq. (he-9.106)

∆e ≈ −Nπ2T 2 1

2

(
1− T

Tc

)2 8

7ζ(3)

{
1
5
6

}
(7.189)

in agreement with our previous calculation (4.22) in the Ginzburg-Landau regime
for T ∼ Tc.

For T → 0, ρ̃B and ρ‖
s both tend to ρ andEq. (he-)

δ2π2T 2 →
{

3.111
4.118

}
T 2
c . (7.190)

Thus the condensation energies become at zero temperatureEq. (he-)

∆e|T=0 = −
{
.236
.209

}
cn(Tc). (7.191)

The right-hand part of the equation has been normalized with respect to the specific
heat of the liquid just above the critical temperature.Eq. (he-9.109)

cn(Tc) = −2

3
π2N (0)Tc (7.192)

The full temperature dependence of ∆e is shown in Fig 7.5.

7.2.2 Entropy

Let us now calculate the entropy. For this it is useful to note that at fixed T and
1/g the energy is extremal with respect to small changes in ∆. It is this condition
which previously lead to the gap equation (7.9). Thus when formingEq. (he-9.110)

s = − ∂f
∂T

(7.193)

we do not have to take into account the fact that ∆2 varies with temperature.
Therefore we findEq. (he-9.111)

∆s = −∂∆f
∂T

= −2
∑

p

[
log(1− n(p))− T

n(1− n)

∂n

∂T

]
. (7.194)

But the derivative isEq. (he-9.112)
∂n

∂T
= n(1− n)

E

T 2
(7.195)

so that the entropy becomesEq. (he-)
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1

-0.2

-0.1

∆fB/cn(Tc)

∆fA/cn(Tc)

Figure 7.5 Condensation energies of A- and B-phases as functions of temperature.

∆s = −2
∑

p

[
log (1− n(p))− nE(p)

T

]
(7.196)

which can be rewritten in the more familiar formEq. (he-9.114)

∆s = −2
∑

p

[(1− n) log(1− n) + n logn] (7.197)

after having inserted the identity Eq. (he-9.115)

E

T
= log

1− n
n

(7.198)

For the explicit calculation we differentiate (7.185) to with respect to the tempera-
ture and find Eq. (he-9.116)

∆s = −∂∆f
∂T

= N (0)π2T
∫ δ2

0
dδ′

2

{
φB

2
3
φA

}
+N (0)π2T 2 1

2

{
φB

2
3
φA

}
∂δ2

∂T
.

(7.199)

From Eq. (7.29) we know log(T/Tc) as a function of δ2. Differentiation yields Eq. (he-9.117)

1

T

dT

dδ2
= − 1

2δ2

3

4

∫ 1

−1
dz(1− z2)φ(δ, z) = − 1

2δ2
φB,A (7.200)

so that the condensation entropy density is simply Eq. (he-9.118)

∆sB,A = −N (0)π2T

{
1
2
3

} ∫ δ2

0
dδ′2

[
1− φB,A(δ′2)

]
(7.201)
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If we normalize this again with the help of cn(Tc) this can be written as Eq. (he-9.120)

∆sB,A/cn(Tc) = −
{

2
3
(1− ρ̃B/ρ)
(1− ρ‖

s/ρ)

}
δ2. (7.202)

For T → Tc this behaves likeEq. (he-9.121)

∆sA,B/cn(Tc) ≈
T≈Tc

−3

2

{
1
5
6

}(
1− T

Tc

)
8

7ζ(3)
. (7.203)

In order to calculate the T → 0 limit we consider the expansion (7.185). For T → 0,
δ → ∞ so that the spacings of xn = (2n+ 1)/δ become infinitely narrow and the
sum converges towards an integral according to the rule3Eq. (he-9.122)

∞∑

n=0

f(xn) =
δ

2

∫
dxf(x)− 1

2! · 3δ2
(f ′(∞)− f ′(0))

+

[(
1

2! · 3
)2

− 1

4! · 5

]
1

δ4
(f ′′′(∞)− f ′′′(0)) + . . . . (7.204)

For ρ̃B this impliesEq. (he-9.123)

ρ̃B
ρ

(δ2)

∣∣∣∣∣
δ2→0

= 2
∫ ∞

0
dx

[
− 1√

x2 + 1
+ 2

(√
x2 + 1− x

)]
− 2

3δ2
+ . . .

= 1− 2

3δ2
+ . . . (7.205)

Similarly, we can treat the series for ρ‖
s/ρ in (7.66):Eq. (he-9.124)

ρ‖
s

ρ
(δ2)

∣∣∣∣∣
δ2→0

=
3

2

∫ ∞

0
dx
[
−3x +

(
3x2 + 1) arctan

1

x

)]
− 1

δ2
+ . . .

= 1− 1

δ2
+O

(
1

δ4

)
. (7.206)

Note that for T → 0, the condensation entropy densities are in both phasesEq. (he-9.125)

∆sB,A = −2

3
N (0)π2T. (7.207)

This is cancelled exactly with the normal entropyEq. (he-9.126)

sn =
2

3
N (0)π2T. (7.208)

Hence the total entropy vanishes at T = 0, as it should. The full T behavior is
plotted in Fig. 7.6.Fig. sab

It is worth pointing out that the procedure of going from sums to integrals works
only if the integral over the function f(x) has no singularity at x = 0. In the T → 0
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1

1

sn(T )/sn(Tc)

sB(T )/sn(Tc)
sA(T )/sn(Tc)

T/Tc

Figure 7.6 The temperature behavior of the condensation entropies in B- and A-phases.

limit of (7.29), for example, the following more careful limiting procedure, would be
necessaryEq. (he-9.127)

N∑

n=0

1

xn
= δ

N∑

n=1

1

2n+ 1
= δ




2(N+1)∑

n=1

1

n
− 1

2

N+1∑

n=1

1

n




≈
N large

δ
{
log 2(N + 1 + γ − 1

2
[log(N + 1) + γ]

}

=
δ

2

{∫ xN

1/δ

dx

x
+ log(2eγ)

}
. (7.209)

Thus one would obtain Eq. (he-9.127a)

log
T

Tc
−→
T→0

3

4

∫ 1

−1
dz(1− z2)




∫ ∞

0
dx

1√√√√x2 +

{
1

1− z2

} −
∫ ∞

1/δ

1

x




=
3

4

∫ 1

−1
dz(1− z2)

[
−γ − log δ

{
1√

1− z2

}]

= − log (δeγ) +

{
0

log
(
e5/6/2

)
}

(7.210)

3Notice that this Euler-MacLaurin expansion misses exponential approaches e−δ
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in agreement with (7.22), (7.23(he-9.21)). Mnemonically, the following rule is useful:
If
∑∞
n=0

1
xn

appears in a sum which due to the presence of similarly divergent terms

is convergent.4 for n→∞, it can be replaced by the integralEq. (he-)

δ

2

∫ x

0

dx′

x′
→ δ

2
(log x− log 0). (7.211)

At the lower limit one has to substituteEq. (he-9.128)

log 0 → − log (2δeγ)

= − log
2∆eγ/π

T

= − log
2∆

∆BCS

Tc
T

(7.212)

where ∆BCS denotes the isotropic gap of the B phase at zero temperatureEq. (he-9.128a)

∆BCS = πe−γTc ∼ 1.764 Tc . (7.213)

7.2.3 Specific Heat

By a further differentiation with respect to the temperature we immediately obtain
the specific heatEq. (he-9.129)

∆cB,A = T
∂∆sB,A

∂T
= ∆sB,A −N (0)π2T

{
1
2
3

}(
1− φB,A(δ2)

)
T
∂δ2

∂T

= ∆sB,A + 2N (0)π2T
1− φB,A(δ2)

φB,A(δ2)

{
1
2
3

}
δ2. (7.214)

This can be rewritten in terms of the superfluid density function asEq. (he-9.130)

∆cB/cn(Tc) =
T

Tc

[
−3

2

(
1− ρ̃Bs /ρ

)
+ 3(ρ/ρBs − 1)

]
δ2, (7.215)

∆cA/cn(Tc) =
T

Tc
[− (1− ρ‖

s/ρ) + 2(ρ/ρs − 1)] δ2. (7.216)

At T = Tc there are finite discontinuitiesEq. (he-9.131)

∆cB/cn(Tc) =
3

2

8

7ζ(3)
= 1.43 , (7.217)

∆cA/cn(Tc) =
10

7ζ(3)
= 1.19 . (7.218)

which can also be derived directly from Ginzburg-Landau expressions in Eqs. (3.20).
For the full specific heat one has to add the normal contribution of the normal Fermi
liquid to both equations (7.212), which is simply equal to T/Tc.
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For T → 0 we use the results (7.205), (7.206(he-9.124)) to findEq. (he-)

∆cB,A/cn(Tc) = −T/Tc. (7.219)

This exactly the opposite of the specific heat of the normal liquid so that the curves
for the total cA,B/cn(Tc) start out very flat at the origin [exponentially flat for the
B phase due to the nonzero gap (i.e., a finite activation energy) and power-like for
the A phase since the gap vanishes along l]. The full temperature behavior of the
specific heat is shown in Fig. 7.7

1

2

1

T/Tc

cB(T )/cn(Tc)

cA(T )/cn(Tc)

Figure 7.7 Specific heat of A- and B-phases as a function of temperature. The dashed

line is the contribution of the normal Fermi liquid.

Certainly, all these results need strong-coupling corrections which are presently
only known in the Ginzburg-Landau regime T → Tc.

Appendix 7A Hydrodynamic Coefficients for T ≤ T c

For arbitrary temperatures T ≤ Tc, the hydrodynamic limit is Eq. (he-B.1)

f =
1

4m2
ρijkl∂kA

∗
ai∂lAaj

1

∆2
AB

−




1

4m2
ρ̄ijkl∂kli∂llj

0



 ,

{
A
B

}
phase

(7A.1)

4If the sum diverges logarithmically, it can be made finite by subtracting an appropriate multiple
of
∫ ωc

−ωc

dξ
2ξ tan ξ

2T = 2
δ

∑∞
n=0

1
xn

= log
(

2ωc

T
eγ

π

)
.
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with Aai having the forms (4.17), (4.18(he-4.11)) but being permitted to contain
smooth spatial variations of the direction vectors. We now evaluate this further
for the two phases:

A phase

Here, we have to contract the three covariants of (7.74),Eq. (he-B.2)

Âijkl ≡ δijδkl + δilδjk + δikδjl,

B̂ijkl ≡ δijlkll + δikljll + δilljlk + δkjlill + δljlilk + δkllilj,

Ĉijkl ≡ liljlkll (7A.2)

withEq. (he-B.3)

∂k (daφ
∗
i ) ∂l (daφj) = (∂kda∂lda)φ

∗
iφj + ∂kφ

∗
i ∂lφj. (7A.3)

From Â we findEq. (he-B.4)

Â : |∂iφj|2 + ∂jφi
∗∂iφj + | � � |2 + 2(∂′ida)

2 + 2| � � da|2. (7A.4)

These gradient terms have been expanded in Appendix 5A in terms of the generic
hydrodynamic gradient terms in the energy (5.8). If we use a short notation for the
various invariants in that energyEq. (he-B.6)

ρ̂ ≡ 4m2v2
s , ρ̂0 ≡ −4m2 (l · vs)2 ,

ĉ ≡ 2mvs · (∇× l) , ĉ0 ≡ −2m (l · vs) [l · (∇× l]) ,

ŝ ≡ (∇ · l)2 , t̂ ≡ [l · (∇× l)]2 , b̂ ≡ [l× (∇× l)]2 ,

k̂d1 ≡ (∂ida)
2 , k̂d2 ≡ − (l · � da)2 .

(7A.5)

it reads simply

f =
1

2

(
ρsρ̂/4m

2 + %0%̂0/4m
2 + cĉ/2m+ c0ĉ0/2m

+Ksŝ+Ktt̂+Kbb̂ +Kd
1 k̂

d
1 +Kd

2k
d
2

)
. (7A.6)

With these invariants we can write (7A.4) asEq. (he-B.5)

(
ŝ+ b̂+ t̂ + 2ρ̂

)
+
(
b̂ + ρ̂+ ρ̂0 + ĉ0

)
+
(
b̂ + ρ̂+ ρ̂0 + ĉ+ ĉ0

)
+ 4K̂d

1 + 2K̂d
2

(7A.7)

where parentheses indicate the different terms in (7A.4).
The covariant B̂ijkl has a very simple contribution to the d bending energyEq. (he-B.7)

B̂ : 2 (l · � da)2 = −2K̂d
2 , (7A.8)
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as follows immediately from
�
l = 0. As far as the gradient terms of the

�
field are

concerned we use (5A.5) to rewriteEq. (he-B.8)

∂kφ
∗
i∂lφi =

( � (1)∂kl
)
li
( � (1)∂ll

)
lj + (1↔ 2)− 4m2vskvsl

[
φ

(1)
i φ

(1)
j + (1↔ 2)

]

+
{[

2mvslφ
(2)
j (φ(1)∂kl)li + (k ↔ l, i↔ j)

]
− [1↔ 2]

}
(7A.9)

and employ (5A.12) to bring the terms in curly brackets to the form Eq. (he-B.9)

− 2mvslεjmnln∂klmli + (k ↔ l, i↔ j) . (7A.10)

Contracting the pure l terms of (7A.9) with B̂ijkl we find Eq. (he-B.10)

B̂ : 5[
� (1)(l � )l]2 + (

� (1)∂kl)
2 + (1↔ 2) = 5 (l � li)2 + (∂kli)

2

= 5b̂ + (ŝ+ t̂+ b̂). (7A.11)

The first v terms in (7A.9), on the other hand, contribute Eq. (he-B.11)

B̂ : 4m2 (lvs)
2 = −2ρ̂0 (7A.12)

while the others extracted in (7A.10) add to this Eq. (he-B.12)

B̂ : −2mviεimnln(l � )lm − 2m(lvs)εimnln∂ilm

−2m(lvs)εimnln∂ilm − 2mviεimnln(l � )lm

= −4m(l · vs)[l · (∇× l) + 4m[vs · (∇× l)]− 4m(l · vs)[l · (∇× l)]

= ĉ+ 2ĉ0. (7A.13)

The contributions of the third covariant Ĉijkl, finally, are obtained by contracting
four l-vectors with (7A.8) giving Eq. (he-B.13)

Ĉ : [
� ′(l � )l]

2
+ [1→ 2] = [(l � )l]2 = [l · (∇× l)]2 = b̂. (7A.14)

Collecting all terms we obtain Eq. (he-)

(AÂ+BB̂ + CĈ)ijkl∂k(daφ
∗
i )∂l(daφj) =

4Aρ̂+ 2(A− B)ρ̂0 + 4AK̂d
1 + 2(A−B)K̂d

2 (7A.15)

+(A+B)Ĉ + 2(A+B)Ĉ0 + (A+B)ŝ+ (A+B)t̂ + (3A+ 6B + C)b̂,

and the Inserting (7.76)-(7.78(he-9.59)) we obtain the energy (5.8) with the coefficients
Eq. (he-B.15)

2mC = 1
2
ρ‖
s, 2mc‖ = 2m(c0 − c) = 1

2
ρ‖
s,

4m2Kd
1 = ρs, 4m2Kd

2 = ρ0,
4m2Ks = 4m2Kt = 1

2
ρ‖
s, 4m2Kb = 3

4
γ.

We now turn to the ρ̄ijkl term in the gradient energy (7A.1). This tensor has
once more the same expansion into covariants

ĀÂijkl + B̄B̂ijkl + C̄Ĉijk (7A.16)
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with the coefficients Ā and B̄ given by (7.103) while C̄ijkl does not contribute when
contacting with ∂kli∂llj as required by (7.102). In fact, doing this contraction on
(7A.16) gives Eq. (he-B.16)

Ā(3ŝ+ t̂+ b̂) + B̄b̂, Ā = ρ̄s/8, Ā+ B̄ = ρ̄‖
s/4. (7A.17)

This adds −3Ā,−Ā,−(Ā + B̄) to the bending constants 1
2
4m2Ks,t,b, respectively,

which therefore becomeEq. (he-B.17)

4m2Ks = ρs/4, 4m2Kt = (ρs + 4ρ‖
s) /12, 4m2Kb = (ρ‖

s + γ)/2 (7A.18)

as stated in (7.108).

B phase

Let the vacuum be given byEq. (he-B.18)

A0
ai = ∆BRai(θ0)e

−iϕ0 . (7A.19)

We may parametrize the oscillators around this nonzero value by lettingEq. (he-B.19)

Rai(θ) = Raj(θ0)Rji(θ̃). (7A.20)

Since the indices a of A′ai are always contracted, we may also useEq. (he-B.20)

Ãai ≡ R−1(θ0)aa′Aa′i (7A.21)

as an order parameter without changing the energy. With this the derivative terms
of the field become simplyEq. (he-B.21)

∂kÃai = −iLcai∂kθ̃c = −εcai∂kθ̃c, (7A.22)

where Lcai are the 3× 3 generating matrices of the rotation group Lcai = −iεcai.
Consider now the expression (7A.1) with coefficient in the B phase being.Eq. (he-B.22)

ρijkl =
3

2
ρbs

1

∆2
B

1

15
(δijδkl + δil + δjk + δikδjl) . (7A.23)

The derivatives areEq. (he-B.23)

∂kA
∗
ai∂lAaj = ∂kÃ

∗
ai∂lÃaj

= ∆2
B

(
∂kϕ∂lϕδij + ∂kR̃ai∂lR̃aj

)
+ mixed terms (7A.24)

The mixed terms can be neglected sinceEq. (he-B.24)

∆2
Bi
(
∂kR̃aiR̃aj∂lϕ− R̃ai∂lR̃aj∂kϕ

)
(7A.25)

is antisymmetric under (↔ j, k ↔ l) while (7A.23) is symmetric. Contracting this
with the covariant in (7A.21) givesEq. (he-B.25)
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∆2
B

[
(3 + 1 + 1)(∂iϕ)2 + ∂kθ̃c∂lθ̃dεcai εcaj (δijδkl + δil + δikδjl)

]

= ∆2
B

{
5(∂iϕ)2 + 2(∂iθ̃j)

2 +
[
(∂iθ̃j)

2 − (∂iθ̃)
2
]
+
[
(∂iθ̃j)

2 − ∂iθ̃j∂j θ̃i
]}
,

(7A.26)

so thatEq. (he-B.27)

4m2f =
ρBs
2

[
(∇ϕ)2 +

4

5
(∂iθ̃j)

2 − 1

5
(∇θ̃)2 − 1

5
(∂iθ̃j∂j θ̃j)

]
(7A.27)

as given in (7.90).
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8
Large Currents and Magnetic Fields in the
Ginzburg-Landau Regime

The properties of super-flow are most easily calculated close to the critical temper-
ature. In this regime, thermodynamic fluctuations are governed by the Ginzburg-
Landau form of the energy and the depairing critical currents have been derived
quite some time ago. For the sake of a better understanding of our general results
to follow later we find it useful to review the well-known results.

Suppose a uniform current is set up in a container along the z direction. Since
the bending energies tend to straighten out textural field lines it may be expected
in equilibrium that with the current also the textures are uniform. It will be shown
later in a detailed study of local stability, that this assumption is indeed justified
in the B-phase. In the A-phase, on the other hand, we shall see that the textural
degrees of freedom play an essential role in the flow dynamics.

We shall at first neglect this complication and proceed with a discussion of flow
in uniform textures. Correspondingly the collective field will for now be assumed to
have the simple formEq. (he-15.1)

∆ai(z) = ∆0
aie

iϕ(z) (8.1)

where ∆0
ai is a constant matrix. The phase factor eiϕ(z) allows for a non-vanishing

matter current, which may be calculated from equation (4.3) asEq. (he-15.2)

J = i
{
K1|∆0

ak|2δij +K2

[
∆0∗
aj∆

0
ai − (i↔ j)

]
+K3

[
∆0∗
ai∆aj − (i↔ j)

]}
∂jϕ(z).

(8.2)

Because of the smallness of strong-coupling corrections on the coefficients Ki(≤ 3%)
we may assume for K the common value (3.26). The presence of a non-vanishing
gradient of ∂ϕ requires a new minimization of the energy. This will in general modify
the normal forms (4.23) - (4A.1(he-4.19)) of the gap parameters in equilibrium.

8.1 B-Phase

For a first crude estimate of the effect of a current we shall assume only the overall
size of the gap parameter (4.24) of the B phase to be changed by the current.
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8.1.1 Neglecting Gap Distortion

If the current runs in z direction we find from (4.17) Eq. (he-15.3)

f =
K

2
5
[
a2(∂zϕ)2 + (∂za)

2
]
∆w
B

2 − 3αµa2∆w
B

2 + 9βBβ0∆
w
B

4. (8.3)

For the discussions to follow it will be convenient to measure the energy densities in
terms of the condensation energy of the B-phase in the weak-coupling limit. In the
Ginzburg-Landau regime this is Eq. (he-15.4)

fc = fBc
w =

1

4m2ξ2
0

ρ
(
1− T

Tc

)2

. (8.4)

By using the definition (4.19) and the temperature-dependent coherence length

ξ(T ) =
ξ0√

1− T/Tc
, (8.5)

with ξ0 from (3.18), we find the simple form Eq. (he-15.5)

f

2fc
= a2ξ2

[
(∂zϕ)2 + (∂za)

2
]
− αa2 +

1

2

(
6

5
βB

)
a4. (8.6)

If we want to study the system in the presence of a non-vanishing current it is
convenient to eliminate the cyclic variable ϕ in favor of the “canonical momentum
variable” Eq. (he-15.6)

j ≡ 1

2ξ

∂

∂∂zϕ

f

2fc
= a2ξ∂zϕ. (8.7)

This has the virtue of being z-independent as follows from the equation of motion
for ϕ.

The associated Legendre transformed energy Eq. (he-15.7)

g =
f

2fc
− 2ξj∂zϕ (8.8)

can then be used to study the remaining problem in only one variable a(z) Eq. (he-15.8)

g = (∂za)
2 − αa2 +

1

2

(
6

5
βB

)
a4 − j2

a2
. (8.9)

By comparing (8.6) and (8.2(he-15.2)) we see that the physical current J is determined
in terms of the dimensionless quantity j up to a factor: Eq. (he-15.9)

J = 2
∂f

∂∂zϕ
= 10∆2

BK∂zϕ

= j
h̄

2mξ0
ρ 2

(
1− T

Tc

)3/2

≡ jJ0

(
1− T

Tc

)3/2

. (8.10)
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Thus the quantity j measures the current in units of Eq. (he-)

J0

(
1− T

Tc

)3/2

= v0

(
1− T

Tc

)1/2

2ρ
(
1− T

Tc

)
(8.11)

where v0 is the following reference velocity Eq. (he-15.10)

v0 ≡
1

2mξ0
(8.12)

at which the de Broglie wavelength of the quasiparticles equals the coherence length
ξ0. Consequently we shall refer to v0 as the coherence velocity and to J0 as coherence

current . In analogy with the definition of ξ0(T ) from ξ0 in (8.5), we shall also here
introduce temperature-dependent quantities which contain the Ginzburg-Landau
factor (1− T/Tc), the a temperature-dependent coherence velocity and current

v0(T ) ≡ v0

(
1− T

Tc

)1/2

, J0(T ) ≡ J0

(
1− T

Tc

)3/2

, (8.13)

respectively. With the superfluid velocityEq. (he-15.10a)

vs =
1

2m
∂zϕ (8.14)

we can identify the superfluid density ρs via the definitionEq. (he-15.11)

J ≡ ρsvs (8.15)

whereEq. (he-15.12)

ρs = a2 2ρ
(
1− T

Tc

)
. (8.16)

By writing (8.12) in the form

vs = v0(T )ξ∂zϕ (8.17)

we see that the quantityEq. (he-15.13)

κ ≡ ξ∂zϕ = j/a2 (8.18)

measures the superflow velocity in units of the temperature-dependent coherence
velocity v0(T ).Eq. (he-15.14)

κ ≡ vs
v0(T )

=
vs
v0

(
1− T

Tc

)− 1
2

. (8.19)

In order to be able to compare the forthcoming results with experiments we may
use the parameters of Wheatley, which are reproduced in Table 1, to calculateEq. (he-15.15)
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Figure 8.1 Shape of potential determining stability of superflow.

v0 =
1

2mξ0
=

√
48

7ζ(3)
π
kBTc
pF

= 7.504
kBTc
pF

≈
{

6.25 cm/sec
15 cm/sec

}
for

{
p = 0, Tc = 1 mK
p = 34.36 bar, Tc = 2.7 mK.

}
(8.20)

It is now quite simple to study the equilibrium gap configuration for a given
current j. According to (8.9) the energy looks like the Lagrangian of a mass point
at position a moving as a function of “time” z in a potential which is turned upside
down: Eq. (he-15.16)

− V (a) = −αa2 +
1

2

(
5

6
βB

)
a4 − j2

a2
. (8.21)

The shape of this potential is displayed in Fig. 8.1. For small enough current, Fig. f5.1

there is a constant solution Eq. (he-15.17)

a(z) ≡ a0 (8.22)

satisfying ∂V /∂a = 0. This amounts to a current Eq. (he-15.18)

j2 = a4
0

[
α−

(
6

5
βB

)
a2

0

]
. (8.23)

Obviously, this solution can exist only as long as j stays below the maximal value
allowed by (8.23). By differentiation we find Eq. (he-15.19)
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a2
c =

2

3

α
6
5
βB

(8.24)

with the maximal j equal toEq. (he-15.20)

jc =
2

3

1√
3

α3/2

6
5
βB
≡ a2

0κc. (8.25)

This value determines the depairing critical currentEq. (he-15.21)

Jc = J0(T )jc. (8.26)

At zero pressure this becomes numericallyEq. (he-15.22)

Jc = 12.5
cm

sec
ρ
(
1− T

Tc

)3/2 α3/2

6
5
βB

. (8.27)

With the values of α and βB listed previously we find that the strong-coupling
corrections provide for an increase of the critical current by a factor of about 30%.what

For completeness, let us insert (8.23) into (8.9(he-15.8)) and evaluate the total
energyEq. (he-15.23)

g = −αa2 +
5
6
βB
2
a4 − a2

(
α− βBa2

)

= −2αa2 +
3

2

(
6

5
βB

)
a4. (8.28)

It is cumbersome to express this analytically as a function of j since this would
involve solving the cubic equation (8.9). If we, however, do not try to express it in
terms of the current j but rather the parameter κ (which is the superfluid velocity
in natural units) we have [see (8.7), (8.8(he-15.7)), (8.9(he-15.8))]Eq. (he-15.24)

κ2 = α− βBa2 (8.29)

andEq. (he-15.25)

gB = − 1

2βB

(
α− κ2

) (
α + 3κ2

)
. (8.30)

Notice that the energy itself is simplyEq. (he-15.26)

fB

2fc
= − 1

2βB

(
α− κ2

)2
. (8.31)

8.1.2 Including a Magnetic Field

The critical currents in the B-phase depend sensitively on external magnetic fields.
In order to see this consider the additional field energyEq. (he-15.26)
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fmg = gz|Ha∆ai|2 (8.32)

where gz was calculated microscopically to beEq. (he-15.27)

gz =
3

2

ρ

p2
F

ξ2
0

v2
F

γ2
(
1 +

Z0

4

)−2

(8.33)

with γ being the magnetic dipole moment of the 3He atomsEq. (he-15.28)

γ ≈ 2.04× 104 1

gauss sec
(8.34)

and Z0 = F a
0 is the Fermi liquid parameter of the spin density coupling.

According to Table 2.1 its value is, at zero pressure, −Z0 = 2.69. It will be useful
to rewrite fmg in a dimensionless form as Eq. (he-15.29)

fmg

2fc
= h2|Ĥa∆ai/∆B|2 (8.35)

where Ĥ is the unit vector in the direction of the field and h ≡ H/H0(T ) measures
the magnetic field in terms of the following natural units Eq. (he-15.30)

H0(T ) ≡
√√√√

3
2
ρp2

F

gz

√

1− T

Tc
=
(
1 +

Z0

4

)
vF
ξ0γ

√

1− T

Tc

≡ H0

√

1− T

Tc
≈ 16.4K gauss

√

1− T

Tc
(8.36)

For the undistorted gap parameter (8.1), the additional magnetic energy is simply Eq. (he-15.31)

fmg

2fc
= h2a2. (8.37)

This enters into the expression for the equilibrium current (8.23) in the form Eq. (he-15.32)

j2 = a4
0

[
α−

(
6

5
βB

)
a2

0 − h2
]

(8.38)

so that the current is now maximal as Eq. (he-15.33)

a2
0 =

2

3

1
5
6
βB

(
α− h2

)
(8.39)

with values jc, κc: Eq. (he-15.34)

jc =
2

3

1√
3

1
5
6
βB

(
α− h2

)3/2
, κc =

1√
3

1
5
6
βB

√
α− h2. (8.40)

Thus, at higher magnetic field the liquid supports less superflow. For Eq. (he-15.35)
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hc
2 = α (8.41)

the liquid becomes normal. Notice that this result is independent of the direction
of H with respect to the texture of the B-phase.

Let us also calculate the changes in the total energies. With (8.7) (8.18(he-15.13))
we have now Eq. (he-15.36)

κ2 = α− 6

5
βBa0

2 − h2 (8.42)

andEq. (he-)

gB = − 1

2
(

6
5
βB
)
(
α− κ2 − h2

) (
α + 3κ2 + 3h2

)
(8.43)

orEq. (he-15.38)

fB

2fc
= − 1

2
(

6
5
βB
)
(
α− κ2 − h2

)
2 (8.44)

8.1.3 Allowing for a Gap Distortion

Certainly, the assumption of a purely multiplicative modification of the gap was an
over-simplification. For, if we look at the energy for a general gap parameterEq. (he-15.39)

∆0
ai = ∆w

Baaie
iϕ(z) = ∆w

B (8.45)

we findcomplete!

Eq. (he-15.40) f

2fc
=

1

5
(a∗aiaai + 2a∗azaaz) (∂zϕ)2

−α
3
a∗a+

1

15
{ β1a

∗. (8.46)

In the absence of field and current, the energy is invariant under the full group of
independent rotations on spin and orbital indices (apart from a phase invariance
aai → eiϕaai ).

As a field and a current are turned on, two specific directions in these spaces are
singled out. Due to the original invariance, however, the energy at the extremum
cannot depend on which directions are chosen. Therefore we may pick for both H

and J, the z-direction. Given the solution for the order parameter aai in this partic-
ular case, the general result may be obtained by simple performing an appropriate
SO(3)spin×SO(3)orbit rotation into the actual directions of H and J.

We shall now determine the functional direction in which the deformation of the
gap parameter has to take place. Consider at first a small current j. Then the gap
parameter can be assumed to be close to the equilibrium value in the B-phase:Eq. (he-15.41)

aai = a0δai + a′ai ≡ a0δai + rai + i iai (8.47)
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withEq. (he-15.42)

a0 =

√
α

6
5
βB

. (8.48)

Inserting this into (8.4) we can pick up all terms up to quadratic order and find:Eq. (he-15.43)

δ2f

2fc
=

1

5

{(
|a′ai|2 + 2|a′az|2

)
+ 2a0 (r11 + r22 + 3r33)

}
(∂3ϕ)2

+
1

15

α
6
5
βB

{
2 (2β124 + β35)R

1 + 4β12R
3 + 2β345R

5

−8β1I
′ + 8β1I

3 − 6β1I
5 − 2 (3β1 + β35 − β4) I

6
}
. (8.49)

Here R1,3,5,6 are the following quadratic forms Eq. (he-15.44)

R1 ≡ r2
11 + r2

22 + r2
33,

R3 ≡ 2 (r11r22 + r22r33 + r33r11) ,

R5,6 ≡ (r12 ± r21)2 + (r23 ± r32)2 + (r31 ± r13)2 , (8.50)

with I1,3,5,6 being the same expressions in terms of the imaginary parts iai.
Now, the linear piece involves only the real diagonal elements r11, r22 and r33.

Thus only these will develop new equilibrium values. Moreover, since r11 and r22
enter symmetrically, their new values will be equal. For small currents we are just
led to new gap parameter Eq. (he-15.45)

∆ai = ∆w
B



a

a
c


 eiϕ(z). (8.51)

We shall now assume that this form of the distortion is present also for stronger
currents up to its critical value Jc.

In order that this be really true we shall have to examine the stability of this
form under small oscillations for any current. This will be done in Section 16.5,
where local stability of the form (8.51) will indeed be found (up to Jc). As a side
result, the analyses will provide us with the energies of all collection excitations in
the presence of superflow.

In order to study the problem with distorted gap (8.51) let us, at first, neglect
the strong-coupling corrections. Then the energy (8.6) takes the simple form Eq. (he-15.46)

f

2fc
=

1

5
ξ2
[(

2a2 + 3c2
)

(∂zϕ) 2 + 2a2
z + 3c2z

]

−1

3

(
2a2 + c2

)
+

1

15

(
4a4 + 2a2c2 +

3

2
c4
)

+ h2c2 (8.52)

where we have included the magnetic field. The current is now Eq. (he-15.47)
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j =
1

5

(
2a2 + 3c2

)
ξ∂zϕ =

2a2 + 3c2

5
κ (8.53)

so that the superfluid density becomes Eq. (he-15.48)

ρ‖
s =

1

5

(
2a2 + 3c2

)
2ρ
(
1− T

Tc

)
. (8.54)

Notice that this is valid only parallel to the flow. This is why we have added a
superscript ‖ to ρs. Since a and c are different, an additional small gradient of ϕ
orthogonal to the flow would be associated with a different currentEq. (he-15.49)

j =
1

5

(
4a2 + c2

)
ξ∂zϕ (8.55)

i.e., the transverse superfluid density would rather beEq. (he-15.50)

ρ⊥s =
1

5

(
4a2 + c2

)
2ρ
(
1− T

Tc

)
. (8.56)

The Legendre transformed energy readsEq. (he-15.51)

g =
1

5
ξ2
(
2a2

z + 3c2z
)
− 1

3

(
2a2 + c2

)

+
1

15

(
4a4 + 2a2c2 +

3

2
c4
)
− 5j2

2a2 + 3c2
+ h2c2. (8.57)

Minimizing this with respect to a and c we find two equationsEq. (he-)

−2

3
+

1

15

[
2
(
2a2 + c2

)
+ 4a2

]
+

10j2

(2a2 + 3c2)2 = 0, (8.58)

−1

3
+

1

15

[(
2a2 + c2

)
+ 2c2

]
+ 15

j2

(2a2 + 3c2)2 + h2 = 0, (8.59)

which are solved byEq. (he-15.53)

a2
0 = 1 +

3

2
h2, (8.60)

j2 =
1

25

(
2 + 3c20 + 3h2

)2 1

3

(
1− c20 + 6j2

)
. (8.61)

Thus, in the absence of a magnetic field, the gap parameter orthogonal to the flow
is not distorted after all,Eq. (he-15.53)

∆⊥ ≡ ∆w
B a0 = ∆w

B, (8.62)

whereas the gap parallel to the flow is reduced toEq. (he-15.54)

∆‖ ≡ ∆w
B c0 (8.63)
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with c0 satisfying (8.62).
The current has a maximal size forEq. (he-15.55)

c2c =
4

9
− 1

13
h2 (8.64)

where jc, κc take the valuesEq. (he-15.56)

jc =
2

9

√
5

3

(
1− 3h2

)3/2
, κc =

1

3

√
5

3

(
1− 3h2

)1/2
. (8.65)

The critical current is smaller than the previously calculated value by a factor of
about 3/4.

The energy can be expressed most simply as a function of κ. From (8.53) and
(8.62(he-15.53)) we identify Eq. (he-15.56)

κ2 =
1

3

(
1− c2 − 6h2

)
. (8.66)

Inserting this into (8.52), which in terms of κ reads Eq. (he-15.57)

f

2fc
=

1

5

(
2a2 + 3c2

)
κ2

−1

3

(
2a2 + c2

)
+

1

15

(
4a4 + 2a2c2 +

3

2
c4
)

+ h2c2, (8.67)

we may evaluate only half of the quadratic terms according to the general rule
that in equilibrium the quartic part is half the opposite of the quadratic one, from
homogeneity. In this way we easily find Eq. (he-15.58)

f

2fc
= −1

2

(
1− κ2 − h2

)2 − 5

2

(
h2 +

2

5
κ2
)2

(8.68)

so that Eq. (he-15.59)

g =
f

2fc
− 2jκ (8.69)

= −1

2

(
1− κ2 − h2

)2 − 2κ2
(
1− 3h2 − 9

5
κ2
)
.

Let us now see how strong-coupling corrections modify this result. It is straight-
forward to calculate that then the free energy reads Eq. (he-15.60)

g =
1

5

(
2a2

z + 3c2z
)

−1

3

(
2a2 + c2

)
+

1

15

[
β12

(
2a2 + c2

)2
+ β345

(
2a4 + c4

)]

− 5j2

2a2 + 3c2
+ h2c2. (8.70)
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The local minimum is given Eq. (he-15.61)

−2

3
+

4

15

[
β12

(
2a2 + c2

)
+ β345a

2
]
− 10

j2

(2a2 + 3c2)2 = 0

−1

3
+

2

15

[
β12

(
2a2 + c2

)
+ β345c

2
]
− 15

j2

(2a2 + 3c2)2 + h2 = 0

so that c and a are now related byEq. (he-15.62)

(4β12 + 3β345) a
2 + (2β12 − β345) c

2 = 5
(
1 +

3

2
h2
)
. (8.71)

From this we findEq. (he-15.63)

κ2 =
25j2

(2a2 + 3c2)2 =
5β345

3 (β12 + 3β345)

(
α− 6

5
βBc

2 − 2β12 + β345

β345
3h2

)
(8.72)

so that the longitudinal gap parameter isEq. (he-15.64)

∆‖2

∆w
B

2
= c2 =

1
6
5
βB

[
α− 9

5

(
4β12

3β345

)
κ2 −

(
1 +

2β12

β345

)
3h2

]
(8.73)

similarly we find for the transversal directionEq. (he-15.65)

∆⊥2

∆w
B

2
= a2 =

1
6
5
βB

[
α +

3β12

β345
h2 −

(
1− 2β12

β345

)
3

5
κ2

]
. (8.74)

The current is now maximal at

κ2
c =

5

9

5β345

8β12 + 11β345

(
α− 4β12 + 3β345

5β345

3h2

)
(8.75)

where jc, κc becomeEq. (he-)

jc =
1

6
5
βB

2
√

5

9

√
5β345

8β12 + 11β345

(
α− 4β12 + 3β345

5β345
3h2

)3/2

κc =

√
5

9

√
5β345

8β12 + 11β345

(
α− 4β12 + 3β345

5β345

3h2

)1/2

. (8.76)

The energy is found by the same trick as beforeEq. (he-15.66)

f

2fc
= −1

2

{(
α− κ2 − h2

)2 1
6
5
βB

+
5

β345

(
h2 +

2

5
κ2
)2
}

(8.77)

This result is rather simple since some of the strong-coupling corrections cancel in
the first quadratic piece of (8.68)Eq. (he-15.67)

2a2 + c2 =
3

6
5
βB

(
α− κ2 − h2

)
. (8.78)
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The energy g, on the other hand, looks more complicated because of the awkward
form of the longitudinal superfluid densityEq. (he-15.68)

ρ‖
s

2ρ
(
1− T

Tc

) =
1

5

(
2a2 + 3c2

)
= (8.79)

1
6
5
βB

{
α− 4β12 + 3β345

5β345

3h2 − 8β12 + 11β345

5β345

3

5
κ2

}
(8.80)

entering in the additional piece Eq. (he-15.69)

− 2jκ = −2κ2 2a2 + 3c2

5
(8.81)

8.2 A-phase

Before discussing the result in the B-phase further it is useful to compare them with
the A-phase. Also here we shall at first assume a uniform texture Eq. (he-15.70)

∆ai = ∆ai
0eiϕ(z). (8.82)

Later we shall see, however, that this Ansatz is stable only for very small currents.
Still, it is instructive to go through the same calculation as in the B-phase.

The kinetic energy has the form Eq. (he-15.71)

f =
κ

2
ξ2
(
|∆ai

0|2 + 2|∆a3
0|2
)
κ2. (8.83)

If we suppose again that the gap parameter suffers only from a change of size we
may write Eq. (he-15.72)

∆ai
0 = ∆̂ai∆A = ∆̂ai∆

w
B∆w

Ba (8.84)

and assume for ∆̂ai the standard form up to spin and orbital rotation. From (8.83)
we see that the bending energy is minimal if ∆̂a3 is chosen to vanish, i.e., l points
in the direction of flow. The total energy has then the form Eq. (he-15.73)

f =
κ

2
∆w
B

22a2(∂ϕ)2 (8.85)

−3αµa2∆w2
B + 4β0βAa

4∆w4
B .

The current has now the form Eq. (he-15.74)

J = 4mκ∆w2
B a2ξ∂zϕ. (8.86)

For the sake of comparison with the previously derived results for the B-phase it is
useful to measure again allenergies in units of 2fc of the B-phase. Then we obtain1 Eq. (he-15.75)

f

2fc
=

2

5
a2 (∂zϕ)2 − 2

3
αa2 +

2

9

6

5
βAa

4 (8.87)
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for which the dimensionless current is now Eq. (he-15.76)

j =
2

5
a2ξ∂zϕ =

2

5
a2κ. (8.88)

Therefore the Legendre transformed energyEq. (he-15.77)

g =
f

2fc
− 2jκ = −5j2

2a2
− 2

3

(
αa2 − 2

5
βAa

4
)

(8.89)

is extremal atEq. (he-15.78)

j2 =
4

15
a4
(
α− a2 4

5
βA

)
. (8.90)

By comparison with (8.84) we find the gap parameter as a function of the velocity
κ asEq. (he-15.79)

a2 =
5

4βA

(
α− 3

5
κ2
)

(8.91)

from which we may calculateEq. (he-15.80)

∆A
2 = ∆w

B
2a2. (8.92)

The current has a maximum at a2 = 5
6
α
β

with the critical valuesEq. (he-15.81)

jc =

√
5

9

α3/2

βA

κc =

√
5

3
α1/2. (8.93)

In terms of κ the energies take the simple explicit forms:Eq. (he-15.82)

f

2fc
= − 1

6
5
βA

(
α− 3

5
κ2
)2

g =
f

2fc
− 1

βA

(
α− 3

5
κ2
)
κ. (8.94)

It is important to realize that all these results are true irrespective of the presence
of a magnetic field: The d texture can always lower its energy by orienting itself
orthogonal to H resulting in the absence of a magnetic energy.

8.3 Critical Current in Other Phases for T ∼ Tc

For completeness let us analyze the energies of the Ginzburg-Landau expansion in
the presence of superflow in all the above possible phases. It could happen that
the presence of superflow induces a transition into a phase which at zero current is
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unphysical because of its high energy. In order to eliminate this possibility we shall
carry out an analysis for all known phases listed in Appendix IIIB. For each of these
the order parameter may be written asEq. (he-15.94)

Aai = ∆∆̂ai (8.95)

where Âai is sometimes normalized to unity Eq. (he-15.95)

tr
(
ÂaiÂai

)
= 1. (8.96)

The energy is Eq. (he-15.96)

f = −µ∆2 + β0∆
4β (8.97)

where β is the combination of βi’s for the phase under consideration. This is minimal
at Eq. (he-209)

∆2
0 =

µ

2β0β
(8.98)

with f = −fc and Eq. (he-15.98)

fc = +
µ2

4β0

1

β
= −ρ

(
1− T

Tc

)2 1

2ξ2
0m

5

74

1

β
. (8.99)

Let there now be an equilibrium current flowing through a uniform texture. The
order parameter may be normalized as Eq. (he-15.99)

Aai = ∆Âaie
iϕ (8.100)

so that the bending energies are Eq. (he-15.100)

f =
K

2
∆2

[
(∂iϕ)2 + 2(∂xϕ)2 (Aax)

2 + 2(∂yϕ)2(Aay)
2 + 2(∂zϕ)2(Aaz)

2
]

(8.101)

In the presence of the velocity (∂iϕ)/2m the energy does not minimize any longer a
gap value (8.98), but at a new modified order Eq. (he-15.101)

∆ = ∆0a (8.102)

so that the energy can be written as Eq. (he-15.102)

f = −K
2

∆2
0a

2
[
(∂iϕ)2

+2(∂xϕ)2 + 2(∂xϕ)2(Aax)
2 + 2(∂yϕ)2(Aay)

2 + 2(∂zϕ)2(Aaz)
2
]

−µ∆a
2a2 + β0a

4∆0
4β. (8.103)

It is again convenient to divide out the condensation energy of the phase (12.35) in
the absence of a current by substituting using Eq. (he-15.103)
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µ∆0
2 = 2fc

ββ0∆0
4 = fc. (8.104)

In addition, we have from (3.26) Eq. (he-15.104)

K∆0
2

2
=

3

5
N (0)µ

1

2β0β
ξ0

2 =
6

5
fc. (8.105)

Therefore the energy has the generic reduced formEq. (he-15.105)

f

fc
=

6

5
a2ξ0

2(∂ϕ)2 − 2a2 + a4 (8.106)

withEq. (he-)

α = 1 + 2|Âaiĵ|2 (8.107)

and ĵ being the direction of the current. The physical current isEq. (he-15.106)

J = fc4m
6

5
a2ξ0

2(∂ϕ)α

= ρ
(
1− T

Tc

)7/2 1

ξ0m2

1

2β
a2ζ(∂ϕ)

= jJ0. (8.108)

Here J0 is the same quantity as introduced in (8.11) with a dimensionless reduced
currentEq. (he-15.107)

j =
1

2β
a2ζ(∂ϕ). (8.109)

At a fixed j we have to minimizeEq. (he-15.108)

g

fc
=

f − 24
5
j(∂ϕ)

fc

= −24

5

j2

a2

β2

α
− 2a2 + a4. (8.110)

The equilibrium value of a lies atEq. (he-15.109)

j2 = Ra4
(
1− a2

)
(8.111)

where R is the quantityEq. (he-15.110)

R =
5

R

α

β2
. (8.112)

If β, α are independent of a the current is maximal for a2 = 2
3

withEq. (he-15.111)

1This result agrees, of course, with energy (8.52) of the distorted B-phase if one inserts c = 0
and takes α = βA = 1, i.e., the weak-coupling limit since the planar and A-phase are energetically
the same.
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Table 8.1 Parameters of the critical currents in all theoretically known phases

+

Phases α direction of
current β βGL RGL

fc

fc
B

gc

fc
B

B 5
3

x, y, z β12 + 1
3
β345

5
6

1 1 4
3

planar 1 z β12 + 1
2
β345 1 5

9
5
6

polar 1 y, z β12 + β345
3
2

5
12

5
9

α 5
3

x, y, z β2 + 1
3
β345

4
3

5
27

5
18

bipolar 1 z β2 + 1
2
β345

3
2

(
5
8

)2
5
9

axial 1 z β245 1 5
12

5
6

β 1 y, z β234 3 5
108

6
15

γ 1 z β124 2 5
48

5
12

j2 =
1

3

4

9
R. (8.113)

Let us now calculate the parameters α, R for each of the inert phases. The results
are displayed in the Table 8.1. Since α depends on the direction of the current
with respect to the texture the energy has to be minimized for each of the standard
forms Aai of Appendix 5B. In the second column we have therefore marked the
possible directions of the equilibrium current. Clearly, in the presence of strong-
coupling corrections, R is modified by a factor β2/β2. The last column contains the
condensation energy as compared to that of the B-phase. At the critical current,
the energy −gc is lower than −fc by a factor 4

3
. Thus it might in principle happen

that by increasing the current, one of the higher lying phases drops underneath a
lower one. It can be checked, however, that such a crossover does not take place.
For this we compare g at the critical currents Eq. (he-15.112)

g = −4a2 + 3a4 = −4

3

(
fc
fBc

)
fBc . (8.114)

Starting out with the B-phase, the energy drops from −1 to − 4
3
. In the A-phase

it starts out at − 5
6

and drops to −20
18

. This value is underneath −1 so that there
is, in principle, the changes of a crossover but we can check that the energy of the
B-phase drops fast enough as to avoid a collision. Similar arguments can be applied
to any other pair of phases. In order to study this behavior in detail one has to plot
the energy g as a function of the current j. While g as a function of a is always on
R and thus on the phase under consideration by solving the cubic equation (12.46)
we find Eq. (he-15.113)

a2 =
1

3
+

1

3
cos

2

3
ϕ− 1√

3
sin

2

3
ϕ (8.115)

where Eq. (he-15.114)
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cosϕ =
3

2

√
3
j√
R
. (8.116)

As a check we note that forEq. (he-15.115)

j = 0, ϕ =
π

2
, a2 = 1

j = jc, ϕ = 0, a2 =
2

3
(8.117)

as it should.
Consider now the non-inert phases. Then the coefficients α and β contain one

more parameters, for instance an angle θ. In addition toEq. (he-15.116)

∂g

∂a
= 0 (8.118)

which leads as before toEq. (he-15.117)

j2

R
= a4

(
1− a2

)
, (8.119)

we now have to minimize g also with respect to θEq. (he-15.118)

∂g

∂θ
= 0. (8.120)

Therefore alsoEq. (he-15.119)

(
−2

j2/R

a2
− 2a2 + a4

)
f ′c +

R

R2

j2

a2
fc = 0 (8.121)

whereEq. (he-15.120)

R′

R
= −

(
2
β ′

β
− γ′

γ

)
. (8.122)

Now, fc depends on θ only via 1
β(θ)

. ThereforeEq. (he-15.121)

f ′c = −β
′

β
fc (8.123)

so that (8.121) becomesEq. (he-15.122)

j2

R
= a4

(
1− a2

2

)
1

1− τ (8.124)

where we have abbreviatedEq. (he-15.123)

τ ≡ βα′

β ′α
. (8.125)
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By equating (8.124) and (8.119) we findEq. (he-15.124)

a2 =
τ

τ − 1
2

(8.126)

and the relation between current and angle θ becomesEq. (he-15.125)

j2 =
1

2

τ 2(θ)

(τ(0)− 1/2)3R(θ). (8.127)

This current is maximal if θ solves the equation Eq. (he-15.126)

(
α′

α
+
β ′

β

)(
α′′

α′
− β ′′

β ′

)
=
α′

α

(
2
α′

α
− 5

2

β ′

β

)
. (8.128)

If α′′ = 0, which is often the case, this can also be written in the more convenient
form Eq. (he-15.127)

− 2β
(
α′2β ′ +

1

2
α′β ′′

)
= β ′α

(
β ′′α− 5

2
α′β ′

)
. (8.129)

As an example consider the ζ phase with Eq. (he-15.128)

Aai =
∆√
s




sin θ cos φ −i sin θ sin φ 0
i sin θ sinφ sin θ cos φ 0

0 0
√

2 cos θ


 . (8.130)

Actually, this parameterization interpolates between several phases: Eq. (he-15.129)

polar : all φ, θ = 0, Aai = ∆




0
0 √

2


 ,

planar : all φ, θ = π
2
, Aai = ∆




1
1

0


 ,

B : φ = 0, sin θ =
√

23, Aai =
∆√
3




1 0
1

0 1


 ,

(8.131)

and, certainly, the non-inert phase ζ itself. The potential energy is Eq. (he-15.130)

fp = −µ∆2 + ∆4β0βζ (8.132)

where Eq. (he-15.131)

βζ = β1 4
(
1− 2 sin2 φ sin2 θ

)2
+ β2 4

+β35

[
2 sin4 θ

(
1− sin2 2φ

)
+ ϕ cos4 θ

]
+ β4

[
2 sin4 θ

(
1 + sin2 2φ

)
+ ϕ cosϕθ

]

= (4β1 + 2β345) sin4 θ + (4β1 + 4β345) cos4 θ + 4β2

+ (β4 − β35 − 2β1) 2 sin4 θ sin2 2φ+ 8β1 sin2 θ cos2 θ cos2 φ. (8.133)



224 8 Large Currents and Magnetic Fields in the Ginzburg-Landau Regime

Minimizing this with respect to φ gives Eq. (he-15.133)

tan2 θ cos2 φ = T ≡ 2β1

β4 − β135 − β1
(8.134)

or Eq. (he-15.134)

φ = 0, π. (8.135)

In the latter case, Aai interpolates only between the three phases (8.131). In par-
ticular, the previously discussed distorted B-phase is contained in it.

In either case, the function β becomes:Eq. (he-15.135)

βζ = β4 sin4 θ + (β1345 + β1T ) cos4 θ + β2, (8.136)

Eq. (he-15.136)

βφ=0 = β12 +
1

2
β345

(
sin4 θ + 2 cos4 θ

)
. (8.137)

Consider now the bending energy. Inserting (8.131) into (3.24) givesEq. (he-15.137)

fbend =
K

2
∆2

[
(∂iϕ)2(1 + sin2 θ) + (∂zϕ)2(2− 3 sin2 θ)

]
. (8.138)

The orientation of the current with respect to the texture depends on the equilibrium
value of θ. IfEq. (he-15.138)

sin2 θ
< 2/3,
> 2/3,

(8.139)

the current points in x, y or in z-direction, respectively. In these two cases the
bending energies areEq. (he-15.139)

fbend =
K

2
∆2(∂iϕ)2

{
1 + sin2 θ

3− 2 sin2 θ

}
. (8.140)

Therefore we identifyEq. (he-15.140)

α =

(
1 + sin2 θ
3− 2 sin θ

)
, sin2 θ

< 2/3,
> 2/3.

(8.141)

In the absence of a current the extremal value for θ is given byEq. (he-15.141)

tan2 θ =
Tβ1 + β1345

β4
. (8.142)

In the Ginzburg-Landau domainEq. (he-)

T = −1

2
, tan2 θ =

3

4
, sin2 θ =

3

7
. (8.143)
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This value of θ lies below sin2 θ = 2/3 so that for small currents the upper of Eqs.
(8.141) has to be chosen. Setting sin2 θ = x we can now solve for the critical current.
For simplicity we use only the weak-coupling values of βi andEq. (he-15.142)

α = 1 + x, α′ = 1, α′′ = 0

β = x2 +
3

4
(1− x)2 + 1 =

7

4

(
x2 − 6

7
x + 1

)

β ′ =
7

4

(
2x− 6

7

)
, β ′′ =

7

4
· 2 (8.144)

with these values our equation (8.129) becomes linear: Eq. (he-2.143)

x =
1

4
. (8.145)

At that place τ = βα′/β ′α is Eq. (he-15.144)

τ =
19

10
(8.146)

so that the equilibrium value of a is given by Eq. (he-15.145)

a2 =
τ

τ − 1
2

=
19

24
. (8.147)

The corresponding critical current is Eq. (he-15.146)

jc =

√
5

6 · 27
. (8.148)

Notice that this current is smaller than that of the B phase by factor
√

5/24 ∼ 1/2.
For consistency, we convince ourselves that at critical current the value of x is

smaller than at j = 0 so that the direction of the current with respect to the texture
and therefore the choice of the bending energy with α = 1 + x remains valid for all
equilibrium currents.

As a cross check of this method let us confirm the critical current of the B-phase
with gap distortion by using the parametrization (8.137) in the weak-coupling limit.

Eq. (he-15.147)

βφ=0 =
1

2

[
1 + x2 + 2(1− x)2

]
=

3

2
x2 − 2x+

3

2
. (8.149)

Here we start out with the B-phase with Eq. (he-15.148)

x = sin2 θ =
2

3
. (8.150)

From our previous calculation we know that c ≤ a which says that in all currents
the value of θ stays above the value implied by (8.150). Then we have to use the
bending energy with Eq. (he-15.149)
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x = 3− 2x. (8.151)

Inserting β, γ, β ′, γ′, β ′′γ′′ into (8.129) we find the linear equation Eq. (he-15.150)

x = sin2 θ =
9

11
(8.152)

which is indeed larger than (8.150). The values of τ, a2, and R = 113

4·(21)2 found as

−42
15
, 28

33
, so that the critical current becomesEq. (he-15.151)

j2 = Ra4
(
1− a2

)
=

20

3

1

81
(8.153)

as obtained before.

H. Kleinert, COLLECTIVE QUNATUM FIELDS



H. Kleinert, COLLECTIVE QUNATUM FIELDS
/amd/apollo/0/home/ag-kleinert/kleinert/kleinert/books/cqf/hel.tex

April 27, 2001

9
Is 3He-A a Superfluid?

Equipped with the calculations of the last chapter and the topological arguments of
Chapter 6 we are now ready to address ourselves to an important question: Does
the superfluid 3He really deserve the prefix “super” in its name (apart from the
similarity in the formalism with that of the superconductor)? In order to answer
this question one usually performs the Gedankenexeriment of putting the liquid in
a long and wide torus, stirring it to uniform rotation along the axis, cooling it down
into the A- or B-Phase, and waiting whether the liquid will slow down after a finite
amount of time. How, superconductors and He-II will preserve the rotation for many
years. The reason is that the order parameter describing the condensate is ∆0e

iϕ

with ϕ varying from zero to 2πN (where N is a very large number) when going
around the torus. The liquid can slow down only by N decreasing unit by unit. But
in orde to do so the order parameter has to vanish in a finite volume, for example
by the formation of a narrow vortex ring at the axis which increases in radius until
it hits the surface where it annihilates (see Fig. 9.1). Fig. XVII

Since such a vortex ring contains a large amount of energy (the condensation
energy), the probability of this relaxation process is extremely small. Only at a very
narrow place (e.g. Josephson junction) can this process be accelerated so that the
relaxation takes place within minutes or seconds.

Figure 9.1 Superflow in a torus which can relax by vortex rings forming, increasing, and

meeting their death at the surface. In a superconductor or superfluid 4He, these rings have

to contain a core of normal liquid and are therefore very costly in energy. This assures an

extremely long lifetime of superflow. In 3He-A, on the other hand, there can be coreless

vortices which could accelerate the decay

227
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The maximal size of a current which can be stable against this type of decay is
reached when the kinetic energy of the superfluid reaches the order of magnitude of
the condensation energy. Then the liquid may easily use up, via fluctuations, the
kinetic energy to become normal so that the phase eiϕ can unwind.

Obviously, the existence of a macroscopic superflow hinges on the possibility of
having large flux numbers conserved topologically along the torus.

Now, in the B phase this is indeed the case. According to (6.48) and (6.49), the
homotopy group describing the mapping of the axis of a torus into the parameter
space of the B phase contains the group of integer numbers Z which can pile up a
macroscopic superflow. In the A phase, on the other hand, one has in a large torus
[see (6.45)] π1 = Z2. Hence, there is only one nontrivial mapping. The associated
flux is of unit strength and therefore necessarily microscopic. Thus it appears as if
the liquid 3He is really not “super” at all in comparison with superconductors and
superfluid He-II.

We shall now show that this is, fortunately, not true. There is a weaker sense,
i.e., with much smaller critical currents and shorter lifetimes of stability which still
can amount to hours and days, in which 3He-A does support a stable superflow.
Moreover, as the temperature drops underneath a certain value, say Tstab, there are
even two separate supercurrents, which both are topologically conserved [40]. Thus
in the weaker sense 3He-A really is a double superfluid. In order to understand
this one has to observe that in the bulk it is not really necessary to have the over-
whelming potential barrier of condensation energy in order to guarantee a stability
at a macroscopic time scale. A barrier with another energy density, say ρs/m

2ξ2
b ,

characterized by a length scale ξb much larger than the coherence length ξ0, can
easily prevent a metastable state from decaying if the volume is sufficiently large:
As we argued before, such a decay can only proceed via the nucleation of a vortex
tube of length L and diameter d with the energy (ρs/m

2ξ2
b ) · d2L (for a potential

barrier of the order of the dipole force ξd ∼ 1000ξ0 and this energy corresponds to
≈ 10−6 mK per Cooper pair). The diameter d will adapt itself to the characteristic
length scale of the potential barrier, i.e., d ≈ ξb. Thus the energy of the vortex tube
is (ρs/M2)L. It is this number which enters the exponent in the Boltzmann factor
dominating the decay rateEq. (he-11.1)

1

τ
∼ 1

τ0
exp{−(

ρs
m2

1

ξ2
b

− fcurr)ξ
2
bL/T} (9.1)

where e is the energy density of the current flow and τ0 is the characteristic time of
orbital motion. This parameter varies for the decay mechanism associated with dif-
ferent barriers, but not by many orders of magnitude. The main effect of the smaller
barrier energy lies in the significant reduction of the critical energy density which
can be accumulted in the current (notice that the barrier strength parameter ξb can-
cels in the first term of the exponential). As a consequence, if we are satisfied with
much smaller critical currents, potential be considered as unsurmountable. Then
topological arguments can again be employed to classify stable flow configurations.
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Now, the important property of 3He-A is that a current, once established, does
attract the l-vector into its direction via the second term in the energy (5.8) Eq. (he-11.2)

− ρ0 (l · vs)2 . (9.2)

It is this term which creates a potential barrier permitting a supercurrent to accu-
mulate.

In order to simplify the discussion we shall assume the torus to be sufficiently
long and wide to neglect curvature and boundaries. Thus, the fields in the energy
(5.8) can be assumed to depend only on the variable z (if we assume the z axis
to coincide with the axis of the torus). In order to avoid the use of constraints
for respecting the curl condition (5.30) it is convenient to work directly with the
parametrization of l and

�
in terms of Euler angles (5.3), (5.4(he-5.4)), so that vs

becomes, due to (5.7) Eq. (he-11.3)

vs = − 1

2m
(∇α + cos β∇γ) . (9.3)

We shall also express d in terms of directional angles as Eq. (he-11.4)

d = (sin θ cosϕ, sin θ sinϕ, cos θ) . (9.4)

Since for pure z variations Eq. (he-11.5)

∇ · l = − sin β βz; ∇× l = −γzl⊥ − cos β βz
ez × l

|ez × l| ,

l · (∇× l) = − sin2 β γz; [l× (∇× l)]2 = cos2 β
(
β2
z + sin2 β γ2

z

)
,

(∇ida)
2 = θ2

z + sin2 θφ2
z; (l ·∇da)

2 = cos2 β
(
θ2
z + sin2 θ φ2

z

)
, (9.5)

we find the energy density Eq. (he-11.6)

2f = A(s)α2
z +G(s)γ2

z + 2M(s)αzγz +B(s)β2
z

+T (s)
(
θ2
z + sφ2

z

)
+ 2

ρ‖
s

ξ⊥d
2

[
1− (l · d)2

]

where the coefficients are the following functions of s ≡ sin2 β: Eq. (he-11.7)

A(s) ≡ ρ‖
s + ρ0s; ρ‖

s ≡ ρs − ρ0,

B(s) ≡ Kb + (Ks −Kb)s,

G(s) ≡ ρ‖
s + (Kb − 2c0 + ρ0 − ρ‖

s) s+ (Kt −Kb + 2c0 − ρ0) s
2,

M(s) ≡ [ρ‖
s + (ρ0 − c0) s]

√
1− s,

T (s) ≡ Kd
1 −Kd

2 +KD
2 s. (9.6)

Here we have dropped many factors 2m by going to time units t0 in which 2m ≡ 1,
i.e.,

t0 =
vF
2pF

=
1

2m
.
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The energy possesses two mass currents Eq. (he-11.8)

J1 ≡ − 1

2m

∂f

∂αz
= − 1

2m
(A(s)αz +M(s)γz) (9.7)

J2 ≡ − 1

2m

∂f

∂[(α + γ)z/2]
= − 1

2m
(G(s)γz +M(s)αz + T (β)sφz) (9.8)

which are separately conserved:

∂zJ1 = ∂2J2 = 0.

Notice that such a conservation law is certainly not enough to stabilize a superflow
since small dissipative effects neglected in (9.6) will ruin the time independence and
swallow up momentum and energy. To make the following discussion as transparent
as possible, let us go to units which are most natural for the problem at hand: We
shall measure all lengths in units of ld ≡ ξ⊥d , the energy in units of fd ≡ ρ‖

s/(4m
2ξ⊥d

2)
and the current density as multipoles of Jd ≡ ρ‖

s/(2mξ
⊥
d ), respectively. Physically,

the fd expression is the energy density the system would have if all d and l-vectors
were orthogonal, contrary to the dipole alignment force, the second is the current
which flows if the Bose condensate moves with “dipole velocity” vd ≡ 1/2mξ⊥d
parallel to l. Now, the energy 2f has again the form (9.6) except that all coefficients
are divided by ρ‖

s and there is no ρ‖
s/ξ
⊥
d

2 in front of the dipole coupling. In the
Ginzburg-Landau regime, in which the parameters of the liquid satisfy the identities
(5.10), the coefficients simplify toEq. (he-11.10)

A(s) = 1 + s, B(s) =
1

2
(3− 2s), G(s) = 1− 1

2
s,

M(s) =
√

1− s, T (s) = 1 + s. (9.9)

Since we are interested in the system at a fixed current we study the energyEq. (he-11.11)

2g ≡ 2(f − jγz) (9.10)

= Agj
2 +Ggγ

2
z + 2Mgγzj +Bβ2

z + T
(
θ2
z + sφ2

z

)
+ 2 (1− [l · d)2]

whereEq. (he-11.12)

Ag ≡ −A−1, Mg = M/A

Gg ≡ G−M2/A ≡ ∆(s)/A (9.11)

withEq. (he-11.13)

∆(s) ≡ GA−M 2

=
s

ρ‖
s
2

{
ρ‖
sKb +

[
ρ‖
s(Kt −Kb) + (ρ0Kb − c20)

]
s+

[
ρ0(KtKb) + c20

]
s2
}

≡ s
(
∆0 + ∆1s+ ∆2s

2
)
. (9.12)

In the Ginzburg-Landau regime this becomes simplyEq. (he-11.14)
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∆(s)
s

2
(3− s). (9.13)

In order to gain as much experimental flexibility as possible let us also add a magnetic
fieldEq. (he-)

e→ e+ gz (d ·H)2 . (9.14)

It is convenient to bring this to a form in which it can be compared most easily with
the dipole energy. Let Hd be the magnetic field (Hd ≈ 300e) at which Eq. (he-11.16)

gzHd
2 = ρ‖

s/4m
2ξ2

d. (9.15)

If we measure H in terms of these units, say via Eq. (he-11.17)

h ≡ H/Hd (9.16)

we have Eq. (he-11.18)

f =
ρ‖
s

4m2ξ2
d

(d · h)2 (9.17)

which in the energy (9.10) amounts to simply adding Eq. (he-11.19)

2g → 2g − 2h2s. (9.18)

In order to obtain a first estimate of the stability properties let us assume j and h
to be much smaller than one (i.e., current and field energies are much smaller than
the characteristic dipole values). Then the d ‖ l alignment force causes a complete
locking of these two vectors and we may set τ ≡ β, φ ≡ γ. Now the energy 2g
reads Eq. (he-11.20)

2gl = Agj
2 +Gl

gγ
2
z + 2Mgγzj +Blβ2

z − 2h2s (9.19)

where Gl
g, B

l have the same form as those in (9.11) but with Ks, Kt, Kb replaced
by Eq. (he-11.21)

K l
s ≡ Ks +Kd

1 ,

K l
t ≡ Kt +Kd

1 ,

K l
b ≡ Kb +Kd

1 −Kd
2 (9.20)

as shown in Appendix 5A. In the Ginzburg-Landau regime with ρ‖
s divided out their

values are Eq. (he-11.22)

K l
s =

1

2
+ 2 =

5

2
,

K l
t =

1

2
+ 2 =

5

2

K l
b =

3

2
+ 2− 1 =

5

2
. (9.21)

Consider now the problem of stability of the d ‖ l ‖ j ‖ h configuration with
s = 0. Expanding the energy up to the first power in s gives1 Eq. (he-11.23)

1We omit the index l and understand all K ′s as locked values (9.20).
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2g = j2 + 2jγz +
Kb

g‖
s
β2
z +

(
ρ0

ρ‖
s
j2 − 2h2

)
s +

Kb

ρ‖
s
sγ2

z − 2
c0 + 1

2
ρ‖
s

ρ‖
s

sγzj

= j2 + 2jγz +
Kb

ρ‖
s
β2
z +



ρ0

ρ‖
s


1−

(
c0 + ρ

‖
s

2

)2

ρ0Kb


 j

2 − 2h2


 s

+
Kb

ρ‖
s
s


γz −

c0 + ρ
‖
s

2

Kb
j




2

. (9.22)

Note that the term linear in γz is a pure surface term and does not influence the
stability. Let us introduce the quantityEq. (he-11.24)

K ≡ ρ0Kb(
c0 + ρ

‖
s

2

)2 . (9.23)

Then the term proportional to β2 isEq. (he-11.25)

2

[
1

2

ρ0

ρ‖
s

(
1−K−1

)
− h2

j2

]
β2j2. (9.24)

Since the last terms in g are positive definite, the β = 0 position is stable if and
only ifEq. (he-11.26)

h2

j2
≤ h2

c

j2
≡ 1

2

ρ0

ρ‖
s
(1−K−1). (9.25)

In the absence of a magnetic field, stability implies [37]

K > 1.

Now, in the Ginzburg-Landau regime, this is barely satisfied:Eq. (he-11.27)

K =
GL

10

9
. (9.26)

But as the temperature decreases, ρ0 is known to vanish. Hence one expects K to
cross the line K = 1 eventually. If one uses the energy parameters (5.9), but with
Fermi liquid corrections [38], one can argue that this will happen well within the A
phase at a temperature [39]Eq. (he-11.28)

Tstab ≡ T (K = 1) ≈ .86Tc. (9.27)

Thus we can conclude: For T ∈ (Tstab, Tc), the presence of a superflow acts self-
stabilizing. It creates its own potential well which prevents the free motion of d ‖ l
away from the direction of the current. In the parameter space SO(3) of the d ‖ l
phase this corresponds to a potential mountain around the equatorial region (see
Fig. 9.2.Fig. XVIII
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Figure 9.2 In the presence of a superflow in 3He-A, the l-vector is attracted to the
direction of flow. In the parameter space of 3He-A this force corresponds to forbidding
the equator of the sphere thereby favoring a conical section. Since diametrally opposite
points are identical, the topology is infinitely connected. The figure shows an example for
a closed curve with two breaks.

This mountain is sufficient to prevent the deformation of contours to the two
basic ones (corresponding to integer and half-integer spin representation). For these
deformations, the passage of the equator would have to be free (see Fig. 9.3).Fig. IXX

It is easy to convince oneself that the S03 sphere with forbidden equatorial regions
allows for an infinity of inequivalent paths: The allowed type within the SO(3) sphere
has its upper face coinciding with the lower one (except for a reflection on the axis).
The parameter space becomes equivalent to a torus and π1 = Z. Therefore there

are again large quantum numbers which are conserved topologically in the weaker
sense discussed above. There exists superflow in 3He-A.

Notice that in the dipole locked regime with β0 = 0 both currents (9.8) and
(9.7(he-11.8)) coincide and are equal to Eq. (he-11.29)

j1 ≡ J1/Jd = j2 ≡ J2/Jd = − (αz + γz) (9.28)

Topological conservation in a torus implies that 〈αz + γz〉 is pinned down at 2π/L
times an integer number, say N , when going once around the axis. Hence both
currents are topologically stable at a value Eq. (he-11.30)

j1 = j2 = 2πN/L (9.29)

where L is the length of the torus.
What happens as the temperature drops below Tstab? Then the quadratic term

becomes negative and β starts moving away from the forward direction. We shall
show now that the higher orders in β stop this movement at a value β0 6= 0. In this
case the coefficient of the last term in (9.22) becomes finite so that γz will be driven
to an average value Eq. (he-11.31)

〈γz〉 ≈ γ0
z ≡

c0 + ρ
‖
s

2

Kb
j =

GL

3

5
j (9.30)

A texture with fixed angle of inclination β0 and γz = γ0
z looks like a helix with

constant pitch γ0
z (see Fig. 9.4) [41]. Fig. XX
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Figure 9.3 Doubly connected parameter space of the rotation group corresponding to

integer and half-integer spin representations. Note that the continuous deformation of

arbitrary contours to the two fundamental ones (either a point or a line running from a

point at the surface to the diametrally opposite point) always has to pass via the equator

of the sphere. An alignment force between l and the current which forbids the equator of

the sphere therefore changes drastically the topology to being infinitely connected.

It is in this helical texture that the currents (9.7) (9.7(he-11.8)) no longer coincide
and, moreover, become both conserved topologically. [40].

In order to prove the dynamic stability of the helix we first consider all stationary
solutions. Since 2g does not depend on γ, a solution at s ≡ s0 is stationary if and
only if 2Eq. (he-11.32)

2g′ = A′gj
2 + 2M ′gγzj +G′gγ

2
z − 2h2 = 0. (9.31)

This for every S0 there are two values of γz at which the point s0 is stationary:Eq. (he-11.33)

γ±z
j

= −M
′
g

G′g
±
√√√√
(
M ′g
G′g

)2

− A′g
G′g

+ 2
h2

j2

1

G′g
. (9.32)

Since M and G are simpler expressions than Mg and Gg, we useEq. (he-11.34)

2As we have seen in (9.22), a linear term in γz does not drive the system since it is a pure
surface term and becomes a constant upon integration over z.
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Figure 9.4 Helical texture in the presence of a supercurrent. The vectors show the
directions of l which rotate around the axis of superflow when preceeding along the z-axis.
The angle of inclination has a constant value β0. The pitch of the helix is constant with
a ratio γz/j ≈ (c0 + ρ‖

s) /Kb ≈ 3
5 .

M ′g =
M ′A− AM ′

A2
=
GL
− 1

2
√

1− s,

G′g = G′ − 2MM ′/A+M2A′/A2

=
GL

(
5 + 6s+ 9s2 + 4s3

)
/4(1 + s)2,

M ′g
2 −G′gA′g =

(
M ′2 −G′A′

)
/A2. (9.33)

to write Eq. (he-11.35)

γz
j

=
(
A2G′ − 2MM ′A+M2A′

)−1

[
−(M ′A−MA′)± A

√
M ′2 −G′A′ + A2G′g

2h2/j2
]

(9.34)

=
GL

[√
1− s

(
5 + 6s+ 9s2 + 4s3

)]−1

×
[
3− s±

√
(3− s)2 − 2(1− (1 + s)22h2(j2)(5 + 6s+ 9s2 + 4s3)(1− s)

]
.

(9.35)

This equation has two solutions if Eq. (he-11.36)

M ′2 −G′A′ − A2G′g2h
2/j2 ≥ 0. (9.36)

Consider at first the case h = 0. After a somewhat tedious calculation one finds Eq. (he-11.37)
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M ′2 −G′A′ = α(s− s+)(s− s−)/4(1− s) (9.37)

Eq. (he-11.38)

s± ≡ β

α

(
1±

√
1 + 4αKbρ0(1−K−1)/βρ‖

s
2

)
(9.38)

whereEq. (he-11.39)

α ≡
(
ρ2

02ρ0c0 + gc20 + 8(Kt −Kb)ρ0

)
/ρ‖

s
2 =
GL

8, (9.39)

Eq. (he-11.40)

β =
2ρ0

(c0 + 1
2
ρ‖
s)ρ

‖
s
2

[
3c0Kb(K

−1 − 1) + (c0 +
1

2
ρ‖
s)(2Kt −

1

2
ρ‖
s)−

3

2
ρ‖
sKb

]
.

(9.40)

In the absence of a magnetic field, s± give the boundaries of stationary solutions.
Confronted in an incomplete knowledge of the parameters of the liquid we shall
estimate the regions in the following fashion: Since the passage of K through unity
is eventually enforced by the vanishing of ρ0, we shall assume, for simplicity, that all
coefficients have their Ginzburg-Landau values (5.10) except for ρ0 which we assume
to vary asEq. (he-11.41)

ρ0 = ρ‖
s(1− ε) = ρ‖

s

9

10
K. (9.41)

ThenEq. (he-11.42)

K =
10

9
(1− ε), ε = 1− 9

10
K (9.42)

andEq. (he-11.43)

α = 8 + ε2, β = 3 + 6ε (9.43)

so thatEq. (he-11.44)

s± =
[
3 + 6ε± (1− ε)

√
17− 10ε

]
/(8 + ε2). (9.44)

The curves s±(ε) are shown in Fig. 9.5.Fig. XXIa

The regions above the upper and below the lower curve correspond to stationary
solutions. As the lower curve drops underneath the axis (ε < 1/10), the solution
becomes meaningless. But this is precisely the region discussed before in which the
β = 0 solution is stable.

In the following we shall try to keep the discussion as general as possible but
find it useful to indicate a size and temperature dependence of more complicated
expressions by exhibiting their generalized Ginzburg-Landau form in which only ρ0

deviates from the values (5.10) via (9.41(he-11.41)). This limit will be indicated by a
symbol =L and be referred to as L-limit. The Ginzburg-Landau case (5.10) will
be exhibited with an equality sign =GL , as before.
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Figure 9.5 Three different regions in which there are equilibrium configurations of the

texture at H = 0 (schematically).

Let us now include the magnetic field. Then the boundaries of stationary solu-
tions areEq. (he-11.45)

α(s− s†)(s− s−)

+
8h2

j2

[
∆0 + 2∆1s+

(
3∆2 +

ρ0

ρ‖
s
∆1

)
s2 + 2

ρ0

ρ‖
s
∆2s

3

]
(1− s)

=
GL

8s2 − 6s− 1 + 4
h2

j2

(
5 + 6s+ 9s2

)
(1− s) ≥ 0. (9.45)

This equation is no longer quadratic in s and its solution is complicated. It is
gratifying to note that the physically interesting regions can easily be studied with
a good approximation. First observe that at s ≥ 0 there are stationary solutions if
the magnetic field is larger than the value given by Eq. (he-11.46)

αs†s− + 8
h2
c

j2
∆0 = 0. (9.46)

This implies (see (7.16)): Eq. (he-11.46)

h2
c

j2
= −αs

†s−

8Kb

ρ‖
s. (9.47)

But from (9.38) one has Eq. (he-)

αs†s= − 4
Kbρ0

ρ‖
s
2

(
1−K−1

)
(9.48)

so that the value of hc from (9.47) coincides with the critical value determined
previously from the stability of the β = 0 texture (see (9.25)). Thus as h exceeds
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hc, the aligned solution destabilizes in favor of a new extremal solution with d‖l‖/j‖h.
The new equilibrium position can be calculated to lowest order in ∆h2 ≡ h2h2

c by
expanding formula (9.45): Eq. (he-)

[
8
h2
c

j2
(2∆1 −∆0)− (s† + s−)α

]
s+ 8

∆h2

j2
≥ 0 (9.49)

which amounts toEq. (he-11.47)

s ≤ s−h ≡
4

β − 4h
2
c

j2
(2∆1 −∆c)

∆j2

j2
. (9.50)

Using the limiting valueEq. (he-11.48)

h2
c

j2
=
L

(1− 10ε) /20 (9.51)

we can estimate the prefactor asEq. (he-11.49)

4

β − 4h
2
c

j2
(2∆1 −∆0)

=
L

10

3 + 6ε− (1− 10ε)2/10
(9.52)

=

{
100/29
100/36

for
ε = 0, T = Tc
ε = 1/10, T = Tstab

(9.53)

which is therefore ≈ 1/3 for all temperatures between Tc and Tstab.
Within this small s region we can now solve for γ±a from (9.32). Since γz goes

with the square root of s − s−h , sh it is sufficient to keep, for small ∆h2, only the
constants in the other terms and we findEq. (he-11.51)

γ±z
j
≈ c0 + 1

2
ρ‖
s

Kb

± ρ‖
s

2Kb

√
α(s− s−h )(s−h − s†h) (9.54)

=
c0 + 1

2
ρ‖
s

Kb

± ρ‖
s

Kb

√
β

2

[
1 +

α

β2

4Kbρ0

ρ‖
s
2

(
1−K−1

)]1/4√
s−h − s.

If we choose, in addition, also K ≈ 1, we haveEq. (he-)

γz
j
≈ γ0

z

j
+± ρ

‖
s

Kb

√
β

2

√
s−h − s (9.55)

which in the L-limit reads explicitlyEq. (he-11.53)

γz
j
≈
L

3

5


1±

√√√√5

4

[
20

9

h2

j2
− (K − 1)

]
− s


 . (9.56)

As the magnetic field increases one can solve for the external positions only nu-
merically. The results are shown in Figs. 9.11(a)–(c) for three different values of

H. Kleinert, COLLECTIVE QUNATUM FIELDS



239

ε : ε = 0, ε = .1, ε.2. Notice that the small s regions coincide if the magnetic field
lines are labelled by ∆h2/j2 rather than h2/j2. Let us now find out which of these
positions correspond to stable extrema. The energy density can be written in the
formEq. (he-11.54)

2g = B̄s2
z + V (s, γz). (9.57)

The stationary points were determined fromEq. (he-11.55)

∂V

∂s

(
s0, γ

±
z

)
= 0. (9.58)

If we now assume linear oscillations around this value we have Eq. (he-11.56)

2δ2g = B̄(δsz)
2 +

∂V

∂γz
(s0, γ

±
z )(δγz)

+
∂2V

∂s2
(s0, γ

±
z ) + 2

∂2V

∂s∂γz
(s0, γ

±
z ) +

∂2V

∂γz
(s0, γ

±
z ). (9.59)

The second piece is a pure surface term and can be ignored. The equations of
motion of (9.59) are linear. Therefore the superposition principle holds and we can
test stability separately by using plane waves of an arbitrary wave vector k. With
such an ansatz 2δ2g becomes Eq. (he-11.57)

2δ2g =
(
V ′′ + B̄k2

)
(δs)2 + 2V̇ ′k(δs)/(δγ) + V̈ k2(δγ)2. (9.60)

This is positive definite for all k if Eq. (he-11.58)

V̈ ≡ ∂2V

∂γ2
z

> 0 (9.61)

and Eq. (he-11.59)

V ′′V̈ − V̇ ′2 > 0. (9.62)

In terms of the functions (9.6), (9.10(he-11.11)) these conditions read Eq. (he-11.60)

Gg > 0 (9.63)

Eq. (he-11.61)

2
(
G′′gγ

±
z

2 + 2M ′′g jγ
±
z + A′′gj

2
)
Gg − 4

(
G′g +M ′gjγ

±
z

)2 ≥ 0. (9.64)

Using (9.32) the second condition takes the alternative form Eq. (he-11.62)

D± =
(
G′′gγ

±
z

2 + 2M ′′g jγ
±
z + A′′gj

2
) Gg

2G′g
2
− (γ+

z − γ−z )2

4j2
≥ 0. (9.65)

Now it is easy to see that Gg > 0 for all s. Thus only (9.65) remains to be tested.
Analytically, only the small s region is simple: Since Eq. (he-)
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Gg

2G′g
2
≈ ρ‖

s

2Kb
s (9.66)

we have to satisfy Eq. (he-11.63)

ρ‖
s

2Kb

{
−2

ρ2
0

ρ‖
s
2

+

(
c0 −

ρ‖
s

4
+ 2

ρ0c0
ρ‖
s

)
1

ρ‖
s

c0 + 1
2
ρ‖
s

Kb

+

[
2 (Kt −Kb) + 2c0 +

ρ‖
s

2
− 2

(c0 + 1
2
ρ‖
s)

2

ρ‖
s

](
c0 + 1

2
ρ‖
s

Kb

)2


 s

≥ ρ‖
s
2

K2
b

β

2

√
1 +

α

β2

4Kbρ0

ρ‖
s
2

(1−K−1)(s−h − s). (9.67)

If K ≈ 1, we can keep only terms linear in K − 1, s−h , s. Using the generalized
Ginzburg-Landau values for the parameters givesEq. (he-11.64)

1

5

[
1

2

36

25
+

1

4

(
9

10

)2

(K − 1)

]
s ≥ 36

125
(s−h − s). (9.68)

But on the left-hand side, K − 1 can be neglected since it contributes higher orders
in s. Thus we find that the extremal solutions, which exist forEq. (he-11.65)

s ≤ s−h , (9.69)

are stable ifEq. (he-11.66)

s >
2

3
s−h . (9.70)

Using (9.56), this result can also be phrased in the formEq. (he-11.67)

(
γz − γ0

z

γ0
z

)2

≤ 1

3
(1−K). (9.71)

In Fig. 9.6 this statement amounts to the upper third portion underneath the curveFig. XXIb

Fig. XXIc s−h to be stable at s ≈ 0. In general, the stability can be decided only numerically.
In Figs. 9.11(a)–(c) we have encircled the stable regions with a dashed line. Notice
that for fixed h2, the instability sets in as γ†z, γ−z become too widely separated.
Looking at the expression (9.65) the reason is clear: The second derivative V ′′ is
positive but not very large. If the branches separate too much, the positivity cannot
be maintained. We see that as h2 increases, the helix is stable only up to s ≈ .3−.45.
Beyond this it collapses. For completeness, we have also indicated the stable regions
on Fig. 9.7

Note that the existence of the dipole force is essential for stability. First of all,
the position s = 0 is never stable if the vectors d and l are not coupled at all. To
see this remember that the constant K of (9.23) would be, in the Ginzburg-Landau
region [compare (9.20)], considerably smaller than unity:Eq. (he-11.68)
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Figure 9.6 Regions of a stable helical texture, II- and II+. In the region of overlap there

are two possible pitch values γ+
z , γ−z for which a helix can be stable.

Figure 9.7 Regions of a stable helical texture (shaded areas). Contrary to Figs. 9.5

and 9.6, the full temperature dependence of the hydrodynamic coefficients is taken into

account, including Fermi liquid corrections. The regions of a stable helical texture, II- and

II+. In the region of overlap there are two possible pitch values γ+
z , γ−z for which a helix

can be stable.

K =
Kbρ0

(c0 + 1
2
ρ‖
s)2

=
2

3
< 1 (9.72)

and there is no hope that this situation reverses for smaller temperature (since
ρ0 → 0 for small T ). The magnetic field does not help since it couples only to d.
Also the hope that a position s 6= 0 may be stable is futile, even though there are
stationary solutions: If we calculate in the Ginzburg-Landau limit Eq. (he-11.69)
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M ′2 − A′G′ = 1

4(1− s) − (1)
(
−1

2

)
≥ 0 (9.73)

this is fulfilled for all physical values S ∈ (0, 1) withEq. (he-11.70)

γ±z
j

=
1√

1− s
1

3− 2s− s2

[
3− s± (1 + s)

√
3− s

]
. (9.74)

At s = 0, these values are 1.577, .4226. For s → 1, the upper branch tends
monotonously to infinity as (1 − s)

1
2 , the lower goes to zero as (1 − s)1/2. Thus(

γ†z − γ−z
)2
/j2 increases rapidly. It is exactly for this reason why there is no hope

of making D > 0 in (9.65). The second term is too large (remembering that the
shearing apart of γ†z and γ−z was also the origin of the instability for small s in the
dipole locked regime).

Recognizing this fact we are compelled to study the effect of the dipole force
with more sensitivity than implied by the assumption of dipole locking in the above
discussion. Certainly, the results gained there will be valid for h, j << 1 i.e., as
long as the dipole force is strong with respect to the other alignment forces. What
happens if h, j grow to comparable size? Consider again first the stability of the
forward position d‖l‖j‖h. For small, θ, β the quadratic piece in the energy can be
written asEq. (he-11.71)

2g = const +
1

ρ‖
s

[
ρ0j

2β2 +Kb

(
β2
z + β2χ2

z

)
− 2

(
c0 +

ρ‖
s

2

)
β2γzj

+
(
Kd

1 −Kd
2

) (
θ2
z + β2φ2

z

)
+ 2

(
θ2 + β2 − 2θβω(γ − φ)

)
− 2h2β2

]
.

(9.75)

Introducing coordinates which are regular at the originEq. (he-11.72)

tan γ =
u

v
, tanφ =

u′

v′
(9.76)

so thatEq. (he-)

γz = (uvz − vuz) /
√
u2 + v2; βz = (uvz + vuz) /

√
u2 + v2 (9.77)

with a similar expression for φ, the energy becomesEq. (he-11.73)

2g =
1

ρ‖
s

{
ρ0j

2
(
u2 + v2

)
+Kb

(
u2
z + v2

z

)
− 2

(
c0 +

ρ‖
s

2

)
(uvz − vuz) j

+
(
Kd

1 −Kd
2

) (
u′z

2 + v′z
2
)

+ 2
(
(u− u′)2

+ (v − v′)2
)
− 2h2

(
u′2 + v′2

)}
.

Since the corresponding equations of motion are linear, we can again test the stability
for all plane wavesEq. (he-)
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u, u′ ∼ sin kx; v, v′ ∼ cos kx (9.78)

each of which givesEq. (he-11.74)

2g =
1

ρ‖
s

(
ρ0j

2 +Kbk
2 − 2kj

(
c0 +

ρ‖
s

2

)
+ 2ρ‖

s

)(
u2 + v2

)

+
[(
Kd

1 −Kd
2

)
k2 − 2

(
h2 − 1

)
ρ‖
s

] (
u′2 + v′2

)





1

ρ‖
s


ρ0j

2 +Kbk
2 − 2kj

(
c0 +

ρ‖
s

2

)
− 4ρ‖

s
2

(
Kd

1 −Kd
2

)
k2 − 2(h2 − 1)ρ‖

s

+ 2ρ‖
s




×
(
u2 + v2

) [(
Kd

1 −Kd
2

)
k2 − 2(h2 − 1)ρ‖

s

]

×





u′ − 2ρ‖

s(
Kd

1 −Kd
2

)
k2 − 2(h2 − 1)ρ‖

s

u




2

+ (u→ v)







. (9.79)

Since Kd
1 −Kd

2 > 0 the second term is positive definite for all k is Eq. (he-11.75)

h2 < 1. (9.80)

Thus we remain with deciding the region in the h, p plane for which Eq. (he-11.76)

A(k) = ρ0j
2 +Kbk

2 + 2ρ‖ − 2kj

(
c0 +

ρ‖
s

2

)

− 4ρ‖
s
2

(
Kd

1 −Kd
2

)
k2 − 2(h2 − 1)ρ‖

s

= ρ0j
2 +Kb


k − c0 + ρ

‖
s

2

Kb
j




2

−Kb


c0 + ρ

‖
s

2

Kb




2

+
2ρ‖

s


1− 2ρ‖

s(
Kd

1 −Kd
2

)
k2 − 2 (h2 − 1) ρ‖

s


 ≥ 0. (9.81)

Notice that only the region k ≈ h2

Kd
1−Kd

2
and k ≈ c0+

ρ
‖
s
2

Kb
j are dangerous. If we assume

h, j << 1, also the dangerous value of k is << 1 and we can expand Eq. (he-11.78)

A(k) ≈ ρ0j
2 +Kb


k − c0 + ρ

‖
s

2

Kb
j




2

−Kb


c0 + ρ

‖
s

2

Kb




2

+2ρ‖
s

(
−h2 +

(
Kd

1 −Kd
2

)
k2/2ρ‖

s

)

= ρ0j
2 + Llb


k − c0 + ρ

‖
s

2

Kbl
j




2

− ρ0K
−1 − 2ρ‖

sh
2 ≥ 0. (9.82)

From this we find Eq. (he-11.79)
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Figure 9.8 If the assumption of dipole locking is relaxed, the regions of stability shrink

as shown in this figure. The whole region to the left of the line j/h =
√

20 is stable in the

dipole locked limit. The finite strength of dipole locking reduces this region to I or the

origin depending on whether the temperature is T = Tc or T = Tstab at which a stable helix

can begin forming. For completeness, we have given also the region II for a temperature

half-way between Tc and Tstab . Similarly, if dipole locking was perfect, the whole region

below j/h =
√

40
7 would be stable with d‖l pointing orthogonal to the magnetic field. The

finiteness of the dipole locking force reduces this region to the solid curve which becomes

horizontal for large h.

h2

j
≤ −1

2

ρ0

ρ‖
s

(
K−1 − 1

)
=
L

1

2

(
1

10
− ε

)
(9.83)

in agreement with the dipole locked result (9.25), as it should. Thus the straight line
(9.83) will now be tangential to the stability curve at the origin. For larger values
of h, that curve bends upwards and cuts the z axis at some finite value of j. In Fig.
9.8 we have plotted the new stability curves for the generalized Ginzburg-LandauFig. XXV

constants with ρ0 = ρ‖
s (1− ε) at ε = 0, ε = .05 and ε = .1. Even at h = 0, the

forward texture is stable only for j ≤ jmax1.17, −0.83, 0, respectively. The reason
for the onset of stability at h = 0 is easy to understand: The current tries to curl up
the texture in form of a helix (see the second term of (9.82)). The dipole force drags
d behind. But the bending energies of d favor a uniform d texture. Thus, if the
current is too strong, the d‖l alignment breaks. As soon as d and l are decoupled
the texture destabilizes as we have discussed before in general.

The full discussion of equilibrium positions in the unlocked case is tedious. How-
ever, as j, h are small enough, say j < 3

4
jmax, h < hc, the results of the dipole locked

situation are perfectly applicable.
Let us now turn to the discussion of the physical content of the helix which

was alluded to in the beginning of this chapter. As the helix forms at h > hc,
the β = 0 position turns into a potential mountain which forbids the alignment
of d‖l with j‖h. In the SO(3) parameter space of the dipole locked A phase, this

H. Kleinert, COLLECTIVE QUNATUM FIELDS



245

Figure 9.9 As a stable helix forms in the presence of a superflow in 3He-A, the parameter

space reduces even more. In addition to the equator being forbidden by the alignment

force, a narrow cylinder along the axis is outruled as well. The topology of the remainder is

doubly infinitely connected. Continuous paths can either break at the surface and continue

from the diametrally opposite point or they can wind an arbitrary number of times around

the central one.

amounts to removing a narrow cylindrical region running along the axis (see Fig.
9.9). Together with the potential mountain around the equator discussed before, Fig. XXVI

the parameter space becomes now doubly infinitely connected: Eq. (he-11.80)

π1 = Z + Z. (9.84)

In addition to paths running from south to north, continuing again at the diametrally
opposite point at the south, etc., also those which wind an arbitrary number of
times around the narrow cylinder become topologically inequivalent. Physically,
this corresponds to the fact that in a torus not only Eq. (he-11.81)

〈αz + γz〉 = 2πN/L (9.85)

but also the a average pitch of the helix Eq. (he-11.82)

〈γz〉 = 2πM/L (9.86)

is a topological invariant.
A consequence of this is that when increasing the magnetic field beyond hc, or

decreasing the temperature so that h2
c < 0, the value of 〈γz〉 ≈

(
c0 + 1

2
ρ‖
s

)
/Kbj = γ0

z

with which the helix begins forming (see the last term in (9.22) will be frozen.
Therefore the angle of inclination β0 will be pinned down topologically precisely
at the value s−h (see (9.54)). In Fig. 9.10(he-XXVII) we have displayed the curves of Fig. XXVII

constant γz/αz + γz = γ0
z/j for increasing h2/j2 at fixed values of ε until the point

of collapse. These curves can be deduced from plots like those in Figs. 9.11(a)–(c).
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Figure 9.10 Angle of inclination as a function of the magnetic field at different temper-

atures. The values K = 10
9 , 1, 8

9 correspond to T = Tc, T = Tstab , T < Tstab . As the

magnetic field is increased, the helix collapses. Then the magnetic field is so strong that

it tears apart the stabilizing dipole locking between 1 and d. The solid curves show the

behavior if only the temperature dependence of ρ0 is taken into account, in the dashed

curves follows from the full T -dependence.

by following almost a straight line to the right starting from γz/j = 3
5
. The line Fig. XXII

is not exactly straight since this would show γz/j = 3
5

rather than γz/αz + γ2. The
relation is, in the Ginzburg-Landau limit, Eq. (he-11.83)

γz
j

=
GL

γz/(αz + γz)

1 + s− (1 + s−
√

1− s)γz/(αz + γz)

H. Kleinert, COLLECTIVE QUNATUM FIELDS



247

Figure 9.11 Pitch values for stationary helical solutions as a function of the angle of

inclination β0. The curves are lines of constant ratio between magnetic field and current.

The shaded areas are regions of stability for the helical texture, the left one has l close

to the directon of flow, the right one has l transverse to the flow. a) The temperature

lies close to the transition point. b) at the lower temperature T = Tstab at which the

helix begins forming in a zero magnetic field. c) at a temperature below T = Tstab . The

temperature dependence of the hydrodynamic coefficients is simplified assuming that only

ρ0 differs from the Ginzburg-Landau values
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≈ 3

5

(
1− 1

10
sin2 β + . . .

)
(9.87)

so that there is very little deviation for small s.
The separate topological conservation of the two currents is intimately related

with the fact that 3He-A contains p-wave Cooper pairs. Remembering our discussion
of Eq. (5.14) there are two current terms of different physical origin. The helix
stabilizes both currents topologically and provides, in addition, the perfect tool for
measuring their ratio. The pair currentEq. (he-11.84)

Jpair = ρsvs − ρ0 l(l · vs) (9.88)

consists of two termsEq. (he-11.85)

Jpair=−
(
ρs − ρ0 cos2 β

) 1

2m
(αz + cos βγz) ez + ρ0l

⊥ cos β
1

2m
(αz + cos βγz)

= − 1

2m
A (αz + cos βγz) ez + ρ0l

⊥ cos β
1

2m
(αz + cos βγz) .

(9.89)

The first flows in the z direction, the second forms stratified layers of currents whose
direction changes with l⊥ when proceeding along the helix. Similarly, the orbital
currentEq. (he-11.86)

Jorb = c (∇× l)− c0l [l · (∇× l)] (9.90)

= c0 cos β sin2 βγzez −
(
c− c0 sin2

)
γzl
⊥ + c cosββzeϕ

has three terms, the last of which which points into the azimuthal direction

eϕ ≡ (ez × l) /|ez × l|

vanishes in equilibrium βz = 0. With β = β0 and αz, γz frozen topologically, both
currents are determined. In particular, the ratio of their z components isEq. (he-11.87)

Jorb
z

Jpair
z

= 2mc0 sin2 β0 cos β0
γz

(ρs − ρ0 cos2 β0) (dz + cos β0γz)
. (9.91)

There is a simple way to measure sin2 β0. As is well-known, sound attenuation is
sensitive to the angle between the l-vector and the direction of propagation of the
sound [42]. In fact, if δ denotes this angle, the attenuation constant is given byEq. (he-11.88)

α ≡ α⊥ cos4 δ + 2αc sin
2 5 cos2 δ + α⊥ sin4 δ,

= (α11 − 2αc + α⊥) cos4 δ + 2 (αcα⊥) cos2 δ + α⊥. (9.92)

If the helix is probed with a transverse signal, the angle δ becomesEq. (he-11.89)

cos δ = sin β cos γ. (9.93)
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Figure 9.12 The sound attenuation can be parametrized in terms of three constants

whose experimental measurements are shown here and compared with theoretical calcu-

lations of Ref. [42]. The most sensitive test for a helical texture can be performed in the

region of largest difference between α⊥ and α11.

Therefore one has the averagesEq. (he-11.90)

〈cos2 δ〉 = sin2 β0〈cos2 γ〉 =
1

2
sin2 β

〈cos4 δ〉 = sin4 β0〈cos4 γ〉 =
3

8
sin4 β (9.94)

so thatEq. (he-11.91)

α = α⊥ + (αc − α⊥) sin2 β0 +
3

8
sin4 β. (9.95)

The experimental values for the coefficients are displayed in Fig. 9.12 (taken from Fig. XXVIII

Ref. 42). Thus, if one goes into a region of large |αc−α⊥|, and turns on a magnetic
field, α will stay constant for h < hc (from (9.25) (9.51(he-11.48)). For h > hc it will
begin to drop linearly in ∆h2/j2 (if αcα⊥ < 0) with a slope ≈ (αc − α⊥) 3∆h2/j2.
It appears as if this effect has been at La Jolla. 3

Until now we have focussed our discussion on helical textures which may develop
from a previously aligned d‖l‖j‖h configuration. A look at Figs. 9.11(a)–(c) shows
that there is another domain of stability for s ≈ 1 (open helices), as h2

j2
exceeds some

3I thank Prof. K. Maki for a discussion of this point and of the experiment performed by R.
Kleinberg at La Jolla.
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critical value h2
c2
/j2. The reason for this is obvious: If h is large enough, a potential

valley is created for the d-vector at θ ≈ π
2
. Dipole locking stabilizes also l in this

position. In order to calculate the boundary in the dipole locked regime, consider
the energy for s ≈ 1:Eq. (he-11.92)

2g = const +2

(
h2

j2
− 1

2

ρ0ρ
‖
s

ρ2
s

)
(1− s)j2 + 2

√
1− sρs − c0

ρs
γzj

+
Kt

ρ‖
s
γ2
z

= const +2


h

2

j2
− ρ0ρ

‖
s

2ρ2
s

(
ρsc0
ρs

)2
ρ‖
s

2Kt


 j2

+
Kt

ρ‖
s

[
γz +

√
1s

(
ρs − c0
ρs

)
ρ‖
s

Kt

]2

. (9.96)

Thus the β ≈ π
2

position is stable as long asEq. (he-11.93)

h2

j2
≥ h2

c2

j2
=

ρ‖
s

2ρ2
s

[
ρ0 +

(ρs − c0)2

Kt

]

=L
7

40

(1− ε)
(
1− 2

7
ε
)

(1− ε/2)2 . (9.97)

This boundary is shown on Fig. 9.8
for T ≈ Tc (i.e., ε ≈ 0). It is important to realize, that for h > hc2 not only the

β = π
2

position but also a whole neighborhood of it is stable. This can easily be
shown: Since M ′g is diverging for s ≈ 1 as 1/

√
1− s, the solution of (9.34) become

simplyEq. (he-11.94)

γz
j
≈ 1

M ′g

(
h2

j2
− A′g

2

) ∣∣∣
s≈1

=
L
−2

2− ε
1− ε

√
1− s

(
h2

j2
− 1− ε

8(1− ε/2)2

)
,

γ†z
j
≈ −2

M ′g
G′g

∣∣∣
s≈1

=
L

1√
1− s

1− ε
6− 5

2
ε
, (9.98)

which can be compared with Fig. 9.11(a)–(c).
Now the first stability criterion (9.63) is fulfilled trivially:Eq. (he-11.95)

Gg|s=1 =
Kt

ρ‖
s
> 0. (9.99)

The second, determinantal, criterion (9.64) on the other hand, is dominated by the
singularity in M ′′g and by γ†z:Eq. (he-11.96)

2M ′′g γ
+̄
z

Gg

2G′g
2

=≈ g
+
z

2/4. (9.100)
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Inserting (9.101) we see that only the negative values of γz on the lower branch can
satisfy this under the condition:Eq. (he-11.97)

h2

j2
− A′g

2
≥ M ′g

2

M ′′g

1

Gg
. (9.101)

Inserting the parameters of the liquid this becomes exactly the same condition as
(9.97), but now it guarantees stability of all positions in the neighborhood of s ≈
1. Notice that, contrary to s = 0, where s = 0 and s 6= 0 correspond to two
different parameter manifolds, the point s = 1 is in no way special as compared to
its neighborhood.

If dipole locking is relaxed, the straight boundary (9.97) in the j, h plane will
curve for larger values of j (see Fig. 9.8), and approach an asymptotic line j = jmax.
In order to find jmax, consider the terms of the energy quadratic in β̃ ≡ β− π

2
, θ̃ ≡

θ − π
2
, γ, φ: Eq. (he-11.98)

2g = const + 2

(
h2

j2
θ̃ − ρ0ρ

‖
s

2ρ2
s

β̃2

)
j2 +Ksβ̃

2
z + 2β̃

ρsc0
ρs

γzj

+
Kt

ρ‖
s
γ2
z +

Kd
1

ρ‖
s

(
θ2
z + φ2

z

)
+ 2

(
θ̃ − β̃

)2
+ 2 (γ − φ)2 (9.102)

where now Ks, Kt are the unlocked values (Ks =GL Kt =GL = 1
2

also Kd
1 =GL 2).

For a plane wave ansatz this becomes Eq. (he-11.99)

2g = const +B̃β̃2 + T̃ θ̃2 − 4θ̃β̃ + G̃γ2 + 2Mjkβ̃γ + F̃ φ2 − 4γφ

(9.103)

with Eq. (he-11.100)

B̃ = Ksk
2 − ρ0ρ

‖
s

ρ2
s

j2 + 2,

G̃ =
Kt

ρ‖
s
k2 + 2, (9.104)

T̃ =
Kd

1

ρ‖
s
k2 + 2h2 + 2,

F̃ =
Kd

1

ρs
k2 + 2.

After a few quadratic completions one finds Eq. (he-11.101)

2g = const + B̄β̃2 + T̃ θ̄2 + Ḡγ̄2 + F̃ φ̄2 (9.105)

with Eq. (he-11.102)

Ḡ ≡ G̃− 4/F̃ =
K l
t

ρ‖
s
k2

(
1 +

KtK
d
1

2K l
tρ

‖
s
k2

)/(
1 +

1

2

Kd
1

ρ‖
s
k2

)

B̄ = B̃ − M̃2/Ḡj2 − 4/T̃ (9.106)

=
Ks

ρ‖
s
k2 − ρ0ρ

‖
s

ρ2
s

j2 + 2−
(
ρs − c0
ρs

)2
k2

G
j2 − 2

Kd
1

2ρ
‖
s

k2 + h2 + 1
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and new anglesEq. (he-11.104)

θ̄ = θ̃ − β̃/T̃
γ̄ = γ −

(
Mjk/Ḡ

)
β (9.107)

φ̄ = φ− γ/F̃ .

Now F̃ ≥ 0, T̃ ≥ 0, Ḡ ≥ 0. Hence 2g is positive definite for all k ifEq. (he-11.105)

B̄(k) > 0. (9.108)

For small h2, j2 we can expand in h2, j2 and k2 and recover the dipole locked result
(9.97). As h increases, the stability curve approaches the line j = jmax determined
by the h =∞ version of (9.108) which rendersEq. (he-11.106)

j2
max −

2ρ2
0/ρ

‖
s

ρ0 + (ρs−c0)2
Kl

t

=
GL

40

7
. (9.109)

In fact, if the coefficients are close enough to their Ginzburg-Landau values, the
value B̄(k = 0) is the most dangerous one yielding the boundary curve:Eq. (he-11.107)

j2 ≤ 2ρ2
s

ρ‖
s

1

ρ0 + (ρs−c0)2
Kl

t

h2

h2 + 1
(9.110)

which starts out as (9.97) and becomes horizontal for h� 1 (see Fig. 9.8)
A final remark concerns the possibility, that the stability discussion presented

here becomes invalid due to the neglect of transverse oscillations. Certainly, these
oscillations have to be included if the stability criteria developed above are to be
valid. If x and y-dependence are included, the discussion of the energy becomes ex-
tremely tedious. Until now, only oscillations with very small transverse momentum
have been tested. Fortunately, it turns out that at least for this limit the transverse
oscillations have higher energies than the longitudinal ones so that the instabilities
are always triggered along the z direction.

since the discussion of this point is very technical and does not lead to interesting
physical insights, the reader is referred to Ref. [41].

9.1 Magnetic Field and Transition

between A- and B-Phases

At zero flow we can observe the transition between A- and B-phase atEq. (he-15.83)

α
6
5
βB

(
α− h2

)2
+

5

β345
h4 =

α
6
5
βA
. (9.111)

This is solved byEq. (he-15.84)
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h2
AB =

α

3

β345

2β12 + β345
[1− f(β)] (9.112)

whereEq. (he-15.85)

e(β) ≡
√

3βB
βAβ345

√
2β13 − β345. (9.113)

In the weak-coupling limit this vanishes so that Eq. (he-15.86)

h2
AB =

1

6
. (9.114)

At fixed magnetic field H this corresponds to a temperature Eq. (he-15.87)

1− TAB
Tc

= 6
H2

H0
2

(9.115)

i.e., the transition temperature shifts quadratically with the magnetic field. At the
polycritical point Eq. (he-15.88)

βA = βB (9.116)

which amounts to Eq. (he-15.89)

3β13 = 2β345, f(β) = 1 (9.117)

the transition occurs at zero magnetic field as it should. If the polycritical pressure
ppc is kept fixed but the temperature is slightly varied one may expand Eq. (he-15.90)

1− f(β) ∼ 1− T

Tc
(9.118)

so that at ppc the temperature TAB of the transition varies linearly with HAB. This
is why the experimental curve of phase transition shows the most significant depen-
dence on H in the neighborhood of the polycritical point.

The discussion must be carried out separately above Tc. For these the transition
to the B phase in no magnetic field occurs not at Tc but at TAB

0 which is determined
by (9.115). Expanding around this temperature we find the value of (1− f(β)) at
T via Eq. (he-15.91)

1− f(β) = f ′|T 0
AB

(
1− T 0

AB

T

)
. (9.119)

The magnetic field shifts the transition from T 0
AB to T hAB . This is given by Eq. (he-15.92)

h2
AB =

α

3

β345

2β12 + β345
f ′|T 0

AB

(
T 0
AB − T hAB

)
(9.120)

or in terms of physical magnetic fields: Eq. (he-15.93)
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H2
AB

H2
0

=
α

3

β345

2β12 + β345
f ′|T 0

AB

(
T 0
AB − T hAB

)(
1− T 0

AB

Tc
+
T 0
AB − T hAB

Tc

)
. (9.121)

Thus we see again that way above the polycritical pressure ppc there is only a qua-
dratic response of T hAB to the magnetic field while close to ppc there is again the
linear dependence discussed before.

It should be noted that in the absence of strong-coupling corrections, the order
parameter of the B-phase is distorted continuously into that of the A-phase as H
reaches HAB. Since a2 = 1 + 3

2
h2, c2 = 1− 6h2 become directly a2 = 5

4
, c2 = 0.

Thus the transition is of second order. Since it is sometimes believed that strong-
coupling corrections become small for p→ 0 this amounts to a decreasing latent heat

Appendix 9A Generalized Ginzburg-Landau Energy

If one assumes all temperature dependence to come from ρ0 = ρ‖
s (1− ε) ≡ ρ‖

sα, the
coefficients of the energy are in the dipole locked regime:Eq. (he-D)

A = 1 + αs =
GL

1 + s (9A.1)

Ag = −A−1

Ag′ = αA−2 =
GL

1

(1 + s)2

Ag′′ = −2α2A−3 =
GL
−2

1

(1 + s)3

Mg =
(
1− sA−1

)√
1− s =

GL

√
1− s

1 + s

Mg′ = −
[
1 + (2− 3s)A−1 − 2(1− s)αsA−3

]
/2
√

1− s =
GL
− 1

2
√

1− s
3− s

(1 + s)2

Mg′′ = −
[
1− (4− 3s)A−1 − 4(3s2 − 5s+ 2)A−2 + 8(1− s)2sαA−3

]
/4(1− s)3/2

=
GL

1

4(1− s)3/2

1

(1 + s)4

(
11− 7s− 15s2 + 3s3

)

Gg =
s

2

(
5− 2s(1− s)A−1

)
=
GL

c

2

5 + 3s+ 2s2

1 + s

Gg′ =
5

2
− s

[
2− 3s− s(1− s)A−1

]
A−1 =

GL

1

2(1 + s)2
(5 + 6s9s2 + 4s3)

Gg′′ = 2(3s− 1)A−1 − 2(3s− 2)sαA−2 − 2s2(1− s)αA−3

=
GL

2

(1 + s)3
(s3 + 3s2 + 3s− 1)
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10
Large Currents at Any Temperature T≤ Tc

10.1 Energy at Nonzero Velocities

For general temperatures T ≤ Tc we shall confine our discussion to the weak-coupling
regime. Fermi liquid correction will be included at a later stage.

Adding the external source Eq. (he-11a.1)

vJ = vψ∗(x)
i

2

↔
∇ψ(x) (10.1)

to the action (3.18) gives rise, in the 2 × 2 matrix M of (3.24), to the additional
entries Eq. (he-)

(
vp 0
0 vp

)
. (10.2)

Therefore, the final collective action (3.27) becomes simply Eq. (he-11a.2)

Av = − i
2
Tr log

(
i∂t − ξ(p) + vp Aaiσa

↔
∇ i/2

Aai∗σa
↔
∇ i

/2 i∂t + ξ(p) + vp

)

− 1

3g

∫
d3x|Aai|2. (10.3)

For constant field configurations, Aai ≡ A0
ai, this results in the energy density Eq. (he-11a.3)

gv ≡ −T
V
Av (10.4)

= −T
∑

ωn,p

[log (iωn + vp− E(p)) + (E − E)] +
1

3g
|A0

ai|2 + const

with Eq. (he-11a.4)

E(p) =
√
ξ2(p) + ∆2

⊥ + (1− r2z2) (10.5)

As in Sec. 4, it is convenient to subtract from this the free energy of the free Fermi
liquid, now with the external source vp. Then Eq. (he-11a.5)

255
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gv0 = −T
∑

ωn,p

[log (iωn + vp− ξ(p)) + (ξ → −ξ)] + const . (10.6)

For v = 0 this quantity was calculated earlier [recall Eq. (7.181)]. For v 6= 0 we
observe that we may perform a quadratic completion Eq. (he-11a.6)

∓ vp− ξ(p) = −(p±mv)2

2m
+ µ+

m

2
v2. (10.7)

The first term gives the same g0 as the v = 0 formula since the integration over p is
merely shifted by mv. As far as the additional kinetic energy mv2/2 is concerned
we may assume it to be very much smaller than p2

F/2m so that we can expandEq. (he-11a.7)

gv0 = g0
0 + T

∑

ωn,p

(
eiωnµ

iωn − ξ(p)
− e−iωnµ

iωn + ξ(p)

)
m

2
v2

= g0
0 −

∑

p

n(ξ)
m

2
v2

= g0
0 − g

2
v2 (10.8)

thus arriving at the usual form of a Galilean transformed energy.

10.2 The Gap Equations

We shall now specialize to considering anisotropic gaps of the same form (4.18) as
discussed previously in the Ginzburg-Landau limit, i.e.,Eq. (he-11a.8)

A0
ai = ∆0



a

a
c


 =




∆⊥
∆⊥

∆‖


 (10.9)

so thatEq. (he-11a.9)

|A0
aip̂i|2 = ∆2(z) = ∆2

⊥
(
1− r2z2

)
= ∆2

⊥
(
1− z2

)
+ ∆2

‖z
2. (10.10)

Here z is the directional cosine of the quasi particle momentum with respect to the
preferred axis which lies parallel to the current, for symmetry reasons. This Ansatz
permits a simultaneous discussion of B,A, planar, and polar phases. ∆⊥, ∆‖ are
the gaps orthogonal and parallel to the flow. With the form (10.9) the last term in
the energy (10.4(he-11a.3)) becomesEq. (he-)

1

3g
|Aai|2 =

1

g
∆2
⊥

(
1− r2

3
>

)
=
(
2∆⊥

2 + ∆‖
2
)
/3g. (10.11)

Minimizing g with respect to ∆‖
2 and ∆⊥2 we find the two conditions:Eq. (he-11a.10)

[
1

g
− T

∑

ωn,p

3z2 1

(ωn − ipF z)2 + E2(p)

]
∆‖ = 0 (10.12)

[
1

g
− T

∑

ωn,p

3

2

(
1− z2

) 1

(ωn − ivpF z)2 + E2(p)

]
∆⊥ = 0. (10.13)
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10.2 The Gap Equations 257

If we assume both gaps ∆‖ and ∆⊥ to be nonzero, there are two nontrivial gap
equations which specify the equilibrium situation in the B-phase.

The other possibilities correspond to A- and planar phases (∆‖ = 0, ∆⊥ 6= 0)
or to the planar phase (∆‖ 6= 0, ∆⊥ = 0), each with only one nontrivial gap
equation remaining. Sometimes it will be useful to compare with the hypothetical
case that the gap is free of distortion, ∆‖ = ∆⊥ or r = 0. Then only the average
( 1

3
(longitudinal +2 transverse )) gap equation survives with no z weight factor in

the integration and r = 0 inserted. Moreover, since the polar phase is physically
rather uninteresting because of its weak condensation energy, we shall henceforth
work with this average gap equation together with the transverse one (10.13). From
the latter we shall often draw comparison with the A-phase by inserting r = 1. In
the gap equations, the sums over Matsubara frequencies may be performed in the
standard fashion Eq. (he-11a.12)

T
∑

ωn

1

2E

(
1

iωn + vpFz − E(p)
− 1

iωn + vpFz + E(p)

)

=
1

4E

[
tanh

E − vpFz
2T

+ (v → −v)
]
. (10.14)

Decomposing the integral over momenta according to direction and size Eq. (he-11a.13)

∫
d3p

(2π)3
≈ N (0)

∫ 1

−1

dz

2

∫ ∞

−∞
dξ (10.15)

the average and transverse gap equations, become Eq. (he-11a.14)

1

gN (0)
=

∫ 1

−1

dz

2
γ,

1

gN (0)
=

∫ 1

−1

dz

2

3

2

(
1− z2

)
γ, (10.16)

where γ denotes the function Eq. (he-11a.15)

γ ≡ T
∑

ωn

∫ ∞

−∞
dξ

1

(ωn − vpFz)2 + E2(p)

=
∫ ∞

−∞
dξ

1

4E

[
tanh

E − vpFz
2T

+ (v → −v)
]

(10.17)

which is logarithmically divergent. It may be renormalized via the critical temper-
ature which satisfies Eq. (he-11a.16)

1

gN (0)
=

∫ ∞

−∞
dξ

1

2ξ
tanh

ξ

2Tc
= log

(
ωc
Tc

2e−γ/π
)

= log
T

Tc
+
∫ ∞

−∞
dξ

1

2ξ
tanh

ξ

2T
. (10.18)

Subtracting this expression on both sides the gap equations take the form Eq. (he-11a.17)
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log
T

Tc
=

∫ 1

−1

dz

2
γ (10.19)

log
T

Tc
=

∫ 1

−1

dz

2

3

2
(1− z2)γ (10.20)

with the subtracted finite functionEq. (he-11a.19)

γ =
∫ ∞

−∞

[
1

4E

(
tanh

E − vpF z
2T

+ (v → −v)
)
− 1

2ξ
tanh

ξ

2T

]
(10.21)

For calculations it is more convenient to return to the Matsubara form (10.12),
(10.13(he-11a.11)). Then the integrals over d can be performed and with the above
renormalization procedure, we find the simple expressionEq. (he-11a.20)

γ = π
∑

ωn


 1√

(ωn − ivpFz)2 + ∆2
⊥(1− r2z2)

− 1

ωn




=
2

δ

∞∑

n=0


 1√

(xn − iνz)2 + ∆2
⊥(1− r2z2)

− 1

xn


 . (10.22)

Here the square root has to be taken with positive real part. In this and many for-
mulas to come we have found it convenient to introduce the following dimensionless
variablesEq. (he-11a.21)

δ =
∆⊥
πT

(10.23)

ν =
vpF
∆⊥

xn =
ωc
∆⊥

.

In order to check the gap equations we compare with the previously discussed
Ginzburg-Landau results we take the limit T → Tc. Then the variables xn become
very large and we may approximateEq. (he-11a.22)

− log
T

Tc
≈ 1− T

Tc

≈ 2

δ

∫ 1

−1

dz

2

{
1

3
2
(1− z2)

} ∞∑

n=0

(
1 +

(
2ν2 − r2

)
z2 − 2iνzxn

)
/2x3

n

= δ2

[
1 +

{
1
3
1
5

}(
2ν2 − r2

)] 7ζ(3)

8
. (10.24)

This is solved byEq. (he-11a.23)

r2 = 1− ∆2
‖

∆2
⊥

= 1− c2

a2
= 2ν2 (10.25)
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which shows how the gap deformation increases with the current. Inserting this
back into (10.24) the transverse gap behaves likeEq. (he-11a.24)

∆⊥
2 = π2T 2δ2 ≈ 8

7ζ(3)
π2T 2

c

(
1− T

Tc

)
= 3.0632

(
1− T

Tc

)
(10.26)

i.e., it is independent of the current. Using this, the gap distortion (10.25) may be
reexpressed in terms of κ ≡ lfracvv0 [see (8.19)], and we find: Eq. (he-11a.25)

ν2 =
v2p2

F

∆2
⊥

=
v2p2

F

8
7ζ(3)

π2Tc2
(
1− T

Tc

)

=
3

2

v2

(
1

2mξ0

)2

1

1− T
Tc

=
3

2

v2

v2
0(T )

=
3

2
κ2 (10.27)

which gives Eq. (he-11a.26)

∆‖
2

∆⊥2
=
c2

a2
= 1− 3κ2. (10.28)

Of course, these results agree with the Ginzburg-Landau formulas (8.73) and (8.74(he-

15.65)).
In the opposite limit of zero temperature the distance between neighboring values

xn toes to zero so that we may replace the sum over xn by an integral according to
the rule Eq. (he-11a.27)

∑

xn

∼ 2

δ

∫
dxn. (10.29)

As in (??) a little care is necessary with the last sum
∑
n 1/xn as in (3.261) since

each term diverges at T = 0. The careful replacement is Eq. (he-11a.28)

2

δ

∞∑

n=0

1

xn
→
∫ xN

1/δ

dx

x
+ log(2eγ). (10.30)

Therefore we obtain Eq. (he-11a.29)

log
T

Tc
−→
T→0

Re
∫ 1

−1

dz

2

{
1

3
2
(1− z2)

}

×


∫ ∞

0
dx

1√
(x− iνz)2 + 1r2z2

−
∫ ∞

1/δ

1

x
− log 2− γ


 (10.31)

= −Re
∫ 1

−1

dz

2

{
1

3
2
(1− z2)

}
log

(√
1− (ν2 + r2) z2 − iεz − iνz

)
− log δ − γ.

Taking γ and log δ to the other side, the log T divergence cancels and we find Eq. (he-11a.31)
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log
∆⊥(T = 0)

∆BCS
= −Re

∫ 1

−1

{
1

3
2
(1− z2)

}

× log
(√

1− (ν2 + r2) z2 − iεz − iνz
)

(10.32)

where we have introduced the T = 0 gap of BCS theory Eq. (he-11a.32)

∆BCS = πTce
−γ ∼ 1.7638Tc. (10.33)

When calculating the logarithm, we have to be careful about using the correct
square root. Taking the branch cut, as usually to the left this is specified by the iε
prescription.

As a cross check we see that for ν = 0, r = 0 (B phase) the orthogonal gap
becomes ∆⊥ = ∆BCS , while for r = 1 (A phase) the lower equation givesEq. (he-11a.33)

log
∆⊥

∆BCS
= −

∫ 1

−1

dz

2

3

2

(
1− z2

)
log
√

1− z2 =
5

6
− log 2 (10.34)

such thatEq. (he-11a.34)

∆⊥ = ∆BCS
e5/6

2
∼ 2.03Tc (10.35)

as it should.

While the full solution of the gap equation (10.32) at T = 0 is quite complicated,
we can see directly that for all ν = vpF

∆⊥
≤ 1, r = 0 and ∆⊥ = ∆BCS is a solution of

both equations: In fact, the real part of the logarithm vanishes identically for r = 0.

Since r = 0, this piece of the gap function agrees with that of the B-phase
neglecting distortion altogether. In the case of the full T behavior can be found
from the average between the two gap equations (10.19), (i.e., 1

3
(longitudinal +2

transverse )). Then there is no z weight and we haveEq. (he-11a.35)

log
∆⊥(T = 0)

∆BCS
= −Re

∫ 1

−1

dz

2
log

(√
1− ν2z2iεz − iνz

)
. (10.36)

There is a real part only for ν > 1:Eq. (he-11a.36)

= −
∫ 1

1/ν
dz log

(√
ν2z2 − 1 + νz

)
(10.37)

= −
∫ 1

1/ν
dz arcoshνz =

[
z acoshνz − 1/ν

√
ν2z2 − 1

]1
1/ν

(10.38)

so that the T = 0 gap without distortion (superscript u) would follow as1Eq. (he-11a.37)

log
∆B

u(T = 0)

∆BCS

= −θ(ν − 1)
(
acoshν − 1

ν

√
ν2 − 1

)
. (10.39)
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The gap remains equal to ∆BCS up to ν = 1. From there on it drops to zero
rapidly. The place where it vanishes may be evaluated from (10.39) by inserting
ν = v pF/∆B →∞ so that we find in the limitEq. (he-11a.38)

− log ∆BCS = − log 2vpF + 1 (10.40)

or Eq. (he-11a.39)

vpF
∆BCS

=
e

2
≈ 1.359 (10.41)

which in terms of natural units reads Eq. (he-11a.40)

v

v0
= v2mξ0 = v

2pF
πTc

√
7ζ(3)

48

=
vpF

πe−γTc
2e−γ

√
7ζ(3)

48
(10.42)

=
pFv

∆BCS

.47 ≈ .64. (10.43)

For comparison we see that in the A-phase Eq. (he-11a.41)

log
∆⊥(T = 0)

∆BCS
= −Re

∫ 1

−1

dz

2

3

2

(
1− z2

)
log

(√
1− z2 − ν2z2 − iεz − iνz

)

= −
∫ 1

−1

dz

2

3

2

(
1− z2

)
log
√

1− z2

−2
∫ 1

1√
1+ν2

dz

2

3

2

(
1− z2

)
log

√
(1 + ν2) z2 − 1 + νz√

1− z2

so that2 Eq. (he-11a.42)

log ∆⊥(T = 0)

∆BCSe5/6/2
= −

∫ 1

1/
√

1+ν2

3

2

(
1− z2

)
acosh

νz√
1− z2

=
1

2

ν2

1 + ν2
− 1

2
log

(
1 + ν2

)
. (10.44)

Here the gap decreases smoothly and hits zero at Eq. (he-11a.43)

vpF
∆BCS

=
e5/6

2

√
e ≈ 1.897 (10.45)

or Eq. (he-11a.44)

v

v0

≈ .892. (10.46)

The full solution of the gap equations are shown in Figs. 10.1 and ??(he-f11.2). For

1Carrying the Euler-Maclaurin expansion one step further, the right-hand side in (10.39)

would have an additional −1/6δ2ν
√

ν2 − 1 which in (10.41) gives a factor exp{− 1
6

π2T 2

(pF v)2 } ∼
1− 2

3e2(γ−1) (T/Tc)
2 ∼ 1− 0.29 (T/Tc)

2
.

2To next order in 1
δ , the Euler Maclaurin expansion gives − 1

2δ2
ν2

(1+ν2)2
which enters in (10.45)

as a factor e
−

1
2

π2T2

(pF ν)2 ≈ 1− 2e
8
3+2γ

(
T
Tc

)2

∼ 1− .44
(

T
Tc

)2
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Figure 10.1 Velocity dependence of gap in A- and the B-phases.

comparison we also have displayed the solutions in the B-phase and the A-phase
neglecting the gap distortion (i.e., using r ≡ 0 or ∆⊥ ≡ ∆‖ and either one of the
equations (10.12)).

All curves as functions of v are double valued. It will be seen later that this
behavior can artifact of the neglect of Fermi liquid corrections. Once included,
these will turn the lower branches anticlockwise into the region of higher velocities
while distorting the upper branches at lower velocities only slightly. In the way the
curves becomes single values.

For the numerical calculation we have taken formulas (10.19), (10.21) after having
performed the integrals over dz analytically: In the average gap equation we needEq. (he-11a.45)

Re
∫ 1

−1

1√
(x− ivz)2 + 1− r2z2

= Re
∫ 1

−1

dz

2

1√
1 + x2 − 2ivxz − (r2 + ν2) z2

(10.47)

The square root has to be taken with positive real part i.e., with the standard choice
of the branch cut left, from zero to i∞. The result isEq. (he-11a.46)
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αn√
ν2 + r2

≡ 1√
ν2 + r2

arcsin
ν2 + r2 + iνxn√
ν2 + r2 + r2 + x2

n

(10.48)

or Eq. (he-11a.47)

αn =
1

2
arccos

(
1

ν2 + r2 + r2x2
n

(10.49)

×
{(
ν2 + r2

)√
(1 + x2

n − ν2 − r2)2 + 4ν2x2
n −

(
ν2 + r2

)2 − ν2x2
n

})

which lies in the interval
(
0, π

2

)
so that the gap equation (10.31) becomes Eq. (he-11a.48)

log
T

Tc
=

2

8

∞∑

n=0

{
1√

ν2 + r2
αn −

1

xn

}
. (10.50)

For r = 0 we have Eq. (he-11a.49)

αn =
1

2
cos

(√
(1 + x2

n + ν2)2 − 4ν2 − ν2 − x2
)

(10.51)

and recover the result of the B-phase neglecting gap distortion. For the trans-
verse gap we have to perform the integral (10.47) with an additional weight factor
3
2
(1− z2) and find Eq. (he-11a.55)

log
T

Tc
=

3

2

2

δ

∞∑

n=0






1− 1

2 (ν2 + r2)
+

ν2 − r2

2

(ν2 + r2)2x
2
n


 αn√

ν2 + r2

+Re
ν2 + r2 − 3iνxn

2 (ν2 + r2)2

√
(xn − iν)2 + 1− r2 − 2

3

1

xn

}
. (10.52)

For r = 1 this is seen to reduce to the gap equation of the A-phase since Eq. (he-11a.56)

αa|r=1 = arctan

√
1 + ν2

xn
(10.53)

and Eq. (he-11a.57)

Re
ν1 + 1− 3iνxn

2 (ν2 + 1)2
(xn − iν) =

1− 2ν2

2 (ν2 + 1)
. (10.54)

The second term in the sum may be evaluated explicitly by defining Eq. (he-11a.58)

γ ≡ arctan
3νx

ν2 + r2
∈
(
0,
π

2

)

β ≡ arctan
2νx

1 + x2 − ν2 − r2
∈ (0, π) (10.55)

so that it becomes Eq. (he-11a.59)
√

(ν2 + r2)2 + 9ν2x2
n

2 (ν2 + r2)2

[(
ν2 + r2 − 1− x2

n

)2
+ 4ν2x2

n

] 1
4

cos

(
γ +

β

2

)

=

√
2νxn

2 (ν2 + r2)

1√
sin β

1

cos γ
cos

(
γ +

β

2

)
. (10.56)
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10.3 Superfluid Densities and Currents

By constructing, the current density in the presence of the external source (10.1) isEq. (he-11a.60)

− ∂gν

∂v
. (10.57)

It must, however, be noted that this is not the full current of the system. In
calculating gv we have assumed the field A0

ai to be a constant in space (and time).
In this way the Cooper pairs have been forced artificially to remain immobile. In full
thermal equilibrium also they would want to follow the drag of the external source
and in the ground state there would be a phase modulationEq. (he-11a.61)

e2imvxA0
ai (10.58)

rather than A0
ai. Intuitively speaking, the free energy gv allows for the movement of

only the quasiparticles which are not bound in Cooper pairs, i.e., the normal com-
ponent of the superfluid. The current associated with this flow is given a subscript
n:Eq. (he-11a.62)

Jn ≡ −
∂gv

∂ν

∣∣∣∣∣
A0

ai

= const . (10.59)

The corresponding density of the normal component is defined byEq. (he-11a.63)

Jn ≡ ρnv. (10.60)

Since the full current would beEq. (he-11a.64)

J = %v (10.61)

we may deduce that the differenceEq. (he-11a.65)

Js ≡ J − Jn = (ρ− ρn) v = ρsv (10.62)

may be attributed to the flow of Cooper pairs. The quantity Js is now the supercur-
rent with ρs being the superfluid density of the liquid. According to (10.8), ρv may
be obtained from −∂gv0/∂v such that Js is obtained directly from the derivative of
the condensation energyEq. (he-11a.66)

Js =
∂gvs
∂v

=
∂gv

∂v
− ∂gv0

∂v
=
∂gv

∂v
− (∆ =) . (10.63)

Using (10.6) we may perform the differentiation and findEq. (he-11a.67)

Js = −T
∑

ωn,p

pF z

(
1

iωn + vpF − E
+ (E → −E)

)
− (∆ = 0) (10.64)

=
3

2

∫ 1

−1

dz

2

∫ ∞

−∞
dξ
[(

tanh
E − vpF z

2T
− (v → −v)

)
− (∆ = 0)

]
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where we have inserted N (0) = 3
2
ρ/oF 2. For numerical evaluations it is more

convenient to keep the Matsubara sum (10.64) and perform only the momentum
integration. Then we findEq. (he-11a.69)

Js =
3ρ

pF

∫ 1

−1

dz

2

∫ ∞

−∞
dξT

∑

ωn

iωn + vpFz

(ωn − ivpFz)2 + ∆2
⊥ (1− r2z2) + ξ2

=
3ρ

pF
πT

∫ 1

−1

dz

2
zRe

∑

ωn

iωn + vpF z√
(ωn − vpFz)2 + ∆2

⊥ (1− r2z2)

=


 6

δν

∫ 1

−1

dz

2
zRe

∞∑

n=0

ixn + vz√
(xn − iνz)2 + 1− r2z2


 ρv

= ρsv (10.65)

Thus we can identify the superfluid density parallel to the flow as Eq. (he-11a.70)

ρ‖
s

ρ
=

3

2

1

pFv

∫ 1

−1

dz

2

∫ ∞

−∞
dξ
[(

tanh
E − vpFz

2T
− (v → −v)

)
− (∆ = 0)

]

=
6

δν

∫ 1

−1

dz

2
zRe

∞∑

n=0

ixn + νz√
(xn − iν)2 + 1− r2z2

. (10.66)

In the second expression, the integral over z yields Eq. (he-11a.71)

ρ‖
s

ρ
=

3ρ

δν

∞∑

n=0

{
ν

(ν2 + r2)2

(
ν2 + r2 + 3r2x2

n

) αn√
ν2 + r2

(10.67)

−Re
2

(ν2 + r2)

(
ixn +

1

2
ν
(
1− 3i

νxn
ν2 + r2

))√
(xn − iν)2 + 1− r2

}
.

If we neglect gap distortion, r = 1, we recover the result of previous calculations Eq. (he-)

ρs
ρ

r≡0
=

3

δν3

∞∑

n=0

{
αn −

1√
2

[(
v2 − 9x2

n

) (
1− ν2 + x2

n

)
− 12ν2x2

n

−
(
ν29x2

n

)√
(1 + ν2 + x2

n)
2 − 4ν2

]}
. (10.68)

For r = 1, the last term is simplified to Eq. (he-)

−3xν

(ν2 + 1)2
(10.69)

and ρ‖
s reduces to the expression for the A-phase: Eq. (he-11a.72)

ρ‖
s

ρ

A phase
= (10.70)

3

δ

1

(ν2 + 1)
Σ
2

∞∑

n=0

[(
ν2 + 1 + 3x2

n

)
arctan

√
ν2 + 1

xn
− 3
√
ν2 + 1xn

]
.
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In general, the real part has two terms. The second coincides with −2ν× the cor-
responding term in the transverse gap equation (10.67). The first may be rewritten
in terms of the angle β of (10.55) as Eq. (he-)

−Re
2ixn
ν2 + r2

√
(xn − iv)2 + 1− r2 (10.71)

= −Re
2ixn
ν2 + r2

[(
1 + x2

n − ν2 − r2
)2

+ 4ν2x2
n

] 1
4

e−iβ/2

= − 2xn
ν2 + r2

√
vxn tanβ/2. (10.72)

Let us compare the result with our Ginzburg-Landau calculation in Sec. 5.? For??
T ∼ Tc, we may take the limit xn →∞ and remain withEq.

(he-11a.72a)

ρ‖
s

ρ
≈ 6

δ

∫ 1

−1

dz

2
z2
(
1− r2z2

) ∞∑

n=0

1

x3
n

= 6δ2

(
1

3
− r2

5

)
7ζ(3)

8
. (10.73)

This coincides with our previous result if we insert (10.27)Eq. (he-11a.73)

ρ‖
s

ρ
=

3

ν

∫ 1

−1

dz

2

∫ ∞

0
dx

ix + νz√
(x− iνz)2 + 1− r2z2

=
3

ν

∫ 1

−1

dz

2
z
[
νz − Re i

√
1− (ν2 + r2) z2 − iενz

]
. (10.74)

The square root gives a contribution only for z2 > 1
ν2+r2

so that ρ‖
s remains equal to

ρ until ν2 = 1− r2.
Since the upper branch of the gap is isotropic up to ν = 1, there is also an upper

branch with ρ‖
s ≡ ρ up to ν = 1. On the lower branch one has ν2 > 1− r2 andEq. (he-11a.74)

ρ‖
s

ρ
=T=0 1− 3

ν
Re

∫ 1

1/(ν2+r2)
dzz

√
(ν2 + r2) z2 − 1

= 1− θ
(
ν2 + r2 − 1

) 1

ν2 (ν2 + r2)

√
ν2 + r2 − 1

3
. (10.75)

where θ(z) is the Heaviside function. This result agrees with those of B- and A-
phases for r = 0 and 1, respectively.

10.4 Critical Currents

In the Ginzburg-Landau regime, the critical currents are known from Ch. 5. These
results agree with the present calculation since ρ‖

s of (10.74) is the same as before.
In the opposite limit T → 0 an exact calculation is difficult but the current can

be fixed to a high accuracy by the following consideration:
Due to the distortion of the gap, the current Js as a function of v must be below

the current calculated by neglecting distortion. Now, up to ν = 1, both currents are
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identical since the gap distortion was derived to be zero for ν ≤ 1. Thus Js(v) is
known to reach the valueEq. (he-)

Js(v)|ν=1 = ρvν=1 = ρ
∆ν=1

pF
(10.76)

and, since also ∆ν=1 = ∆BCS at T = 0 (see the text after (10.35)), we have the
lower bound the critical current Eq. (he-11a.76)

Js(v) ≥ ρ
∆BCS

pF
≈ .47J0. (10.77)

As an upper bound we may use the maximum of JBus (v) which can easily be calcu-
lated exactly. We shall see in a moment that the critical velocity is determined by

Eq. (he-11a.77)

νc =
1√

1− (21/3 − 1)
2
≈ 1.036. (10.78)

Inserting this into the superfluid density (10.75) at r = 0 we find Eq. (he-11a.78)

ρBus
ρ

∣∣∣∣∣
νc

= 1−
(
21/3 − 1

)3 ≈ .982. (10.79)

Thus leads to a critical current Eq. (he-11a.79)

JBuc = ρ
(
1−

(
21/3 − 1

)3
)

1√
1− (21/3 − 1)

2

∆Bn |νc

pF
. (10.80)

But the gap at νc can be evaluated from (10.39) with the result Eq. (he-11a.80)

log
∆‖
B

∆BCS
|νc = − log

(
νc +

√
ν2
c − 1

)
+

√
1− 1

v2
c

= log νc + log
(
1−

(
21/3 − 1

))
+
(
21/3 − 1

)
(10.81)

so that Eq. (he-11a.81)

∆B|νc
=
T=0

∆BCSe
21/3−1

[
1−

(
21/3 − 1

)]
νc. (10.82)

Thus we find, altogether, a critical current Eq. (he-11a.82)

JBuc =
[
1−

(
21/3 − 1

)3
]
2−1/3e(21/3−1)∆BCS

pF
ρ

≈ 1.0112
∆BCS

pF
ρ ≈ .486J0. (10.83)

This lies only very slightly above the lower bound. Therefore the true critical current
including the effect of gap distortion is determined extremely well by Eq. (he-11a.83)
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.470J0 ≤ .486J0. (10.84)

Notice that the critical velocity in B ′′ is Eq. (he-11a.84)

vc = vc
∆

∆BCS

∆BCS

pF

= 21/3e(21/3−1)∆BCS

pF
(10.85)

≈ 1.029
∆BCS

pF
≈ .48v0

i.e., it is reached immediately above ν = 1 so that the true vc lies between .47v0 and
.48v0.

Let us now derive (10.78). Certainly, the maximum of the current has to lie atEq. (he-11a.85)

d

dv
Js =

d

dv
ρs(v) + ρs(v) = 0. (10.86)

In general, ρs is a function of ν, δ, T where ρ is itself a function of ν and T via gap
equation:Eq. (he-11a.86)

log
T

Tc
= γ(δ, ν). (10.87)

We can therefore express the derivative at fixed T asEq. (he-11a.85)

∂

∂v
=
∂ν

∂v

(
∂δ

∂ν

∂

∂δ
+

∂

∂ν

)
. (10.88)

But since ν = vpF

∆⊥
we have

∂ν

∂v
=
pF
πT

(
1

δ
− 1

δ2

∂ν

∂v

∂δ

∂ν

)
(10.89)

orEq. (he-11a.86)

∂ν

∂v
=
ν

v

1

1 + v
δ
∂δ
∂ν

. (10.90)

Such that the extremal condition (10.88) may be written in terms of the natural
variables asEq. (he-11a.87)

(
∂δ

∂ν

∂

∂δ
+

∂

∂ν

)
ρs +

(
1

δ

∂δ

∂ν
+

1

ν

)
ρs = 0. (10.91)

The derivative ∂δ
∂ν

may be taken from (10.90) as − (∂γ/∂ν) / (∂γ/∂δ),
We want to apply condition (10.91) to the case of zero temperature. then ρs

becomes independent of δ (which diverges to ∞) and the first term in (10.91) is
absent. The gap equation (10.90), on the other hand, has the formEq. (he-11a.88)
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log
∆

∆BCS
= γ0(ν) (10.92)

so thatEq. (he-11a.89)

1

δ

∂δ

∂ν
=
∂γ0

∂ν
. (10.93)

The critical velocity at T = 0 is therefore obtained from the simple relation Eq. (he-11a.90)

[
ν
∂ρs
∂ν

+

(
v
∂γv
∂ν

+ 1

)
ρ

]

νc

= 0. (10.94)

For the B-phase neglecting gap distortion we see from (10.75) Eq. (he-11a.91)

∂ρBus
∂ν

= −θ(ν − 1)
3

ν4

√
ν2 − 1. (10.95)

The gap function γ0 is taken from (10.39) so that Eq. (he-11a.92)

∂γ0

∂ν
= −
√
v2 − 1

ν2
θ(ν − 1). (10.96)

The condition (10.94) becomes Eq. (he-11a.93)

− 3ν

√
ν2 − 1

ν4
+

(
1−
√
ν2 − 1

ν

)
1−

√
ν2 − 1

3

ν3


 = 0. (10.97)

This awkward equation is solved by setting y ≡
√

1− 1
ν2 and rewriting Eq. (he-11a.94)

y3 + 3y2 + 3y − 1 = 0 (10.98)

which has as the only real solution Eq. (he-11a.95)

y = 21/3 − 1 (10.99)

verifying the critical current of the previous discussion (10.78)- (10.85(he-11a.84)).
For comparison we may use (10.94) to derive also the depairing critical current

for the A-phase. From (10.75) and (10.44(he-11a.42)) for r = 1 we see Eq. (he-11a.96)

ρ‖
s

ρ
=

1

1 + ν2
(10.100)

log
∆⊥

∆BCS
= γ0(v) = log

e5/6

2
− 1

2
log

(
1 + ν2

)
+

ν2

2 (1 + ν2)
(10.101)

which inserted into (10.94) gives Eq. (he-11a.97)

− 2ν2

(1 + ν2)2 +
1

(1 + ν2)

(
1− ν4

(1 + ν2)2

)
= 0. (10.102)
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This is solved by ν2
c = 1√

2
. Thus the critical current is Eq. (he-11a.98)

JAc =
ρ‖
s

ρ
νc

∆⊥
∆BCS

∆BCS

pF
ρ

=

( √
2√

2 + 1

)
1

21/4

(
e5/6

2

√(√
2− 1

)√
2e

√
2−1
2

)
∆BCS

pF
ρ

=
√

2
(√

2− 1
)3/2

e
√

2−1
2
e5/6

2

∆BCS

pF
ρ

≈ .534
∆BCS

pF
ρ ≈ .25J0 (10.103)

with a critical velocityEq. (he-11a.99)

vc =
Jc
ρ‖
s

=
√√

2− 1e
√−1

2
e5/6

2

∆BCS

pF

≈ .911
∆BCS

pF
≈ .428v0 (10.104)

10.5 Ground State Energy at Large Velocities

Let us now consider the superfluid in motion. As before, we imagine bringing the
liquid adiabatically from v = 0 to its actual velocity. This will result in an additional
energyEq. (he-10.100)

g(v)
c = gc|v=0 +

∫ v

0
dv′ρ‖

s(v
′)v′ (10.105)

where g|v=0 is the previously calculated condensation energy fc and r′′c is the su-
perfluid density parallel to the flow (??). Alternatively, we may write for the total
energy, including the moving free fermion part, g0 = f0 − ρ

2
v2,Eq.

(he-11a.101)

q = f0 + fc −
∫ v

0
dv′ρ‖

n(v
′)v′ (10.106)

whereEq.
(he-11a.102)

ρ‖
n = ρ− ρ‖

s (10.107)

is the density of the normal component of the liquid.

10.6 Fermi Liquid Corrections

With (??) the expression for the energy reaches a convenient form which permits
the inclusion of the quantitatively very important Fermi liquid corrections due to the
current-current coupling (11.11). By considering the form (10.91(he-11a.87)) in which
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the corresponding molecular fields ϕi enter into the collective action we realize that
they appear on the same footing as the velocity v of the liquid (see (10.3)).

In equilibrium we expect a constant nonzero mean molecular field. For symme-
try reasons, only the field parallel to the flow can contribute. Therefore we may
substitute simply v → v + ϕ in (10.12) and add, after this, the quadratic piece
of (??). Then the energy, corrected by the constant mean molecular field, may be
written as Eq.

(he-11a.103)
g∗ = min

ϕ
[
f0 + fc −

∫ v+ �
0 dv′ρ‖

n(v′)v′ − 1
2
ρ 1
F s

1 /3
ϕ2
]
.

(10.108)

Differentiating with respect to ϕ we see that the minimum lies at the mean field Eq.
(he-11a.104)

ϕ = −F
s
1

3

ρn(v + ϕ)

ρ
(v + ϕ) (10.109)

Inserting this back into (10.108) the energy becomes an explicit function of the
quantity Eq.

(he-11a.105)

v∗ ≡ v + ϕ (10.110)

which may be interpreted as the local fluid velocity felt by the quasi-particles in-
cluding the effects of the molecular field. In terms of v∗: Eq.

(he-11a.106)

g∗ = f0 + fc −
∫ v∗

0
dv′ρ‖

n(v
′)v′ − 1

2

F s
1 /3

ρ
ρ‖
n

2(v∗)v∗2

= f0 + fc −
∫ v

0
dv′Jn(v

′)− 1

2

F s
1 /3

ρ
J2
n(v
∗). (10.111)

Given an arbitrary physical velocity v, the quantity v∗ may be found from (10.109),
which can be rewritten in the form Eq.

(he-11a.107)(
1 +

F s
1

3

ρn (v∗)

ρ

)
v∗ = v. (10.112)

Expression (10.111) allows for a calculation of the corrected supercurrent and su-
perfluid density. By differentiation with respect to v we find Eq.

(he-11a.108)

J∗n(v) = −∂g
∗

∂v
= Jn(v

∗)
∂v∗

∂v
+
F s

1 /3

ρ
Jn(v

∗)
∂Jn(v

∗)

∂v

= Jn(v
∗)

{[
1 +

F s
1 /3

ρ

∂Jn
∂v∗

]
∂v∗

∂v

}
. (10.113)

By writing (10.112) in the form Eq.
(he-11a.109)

v∗ +
F s

1 /3

ρ
Jn(v

∗) = v (10.114)
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we see that the factor in curly brackets is unity. Hence the Fermi liquid corrected
current equals the uncorrected one except for its being evaluated at the local velocity
v∗ rather than the physical v: Eq.

(he-11a.110)
J∗n(v) ≡ ρ∗n(v)v = Jn(v

∗) = ρn(v
∗)v∗ (10.115)

As in Ch. 6 we have found it convenient to introduce ρ∗n as the corrected density of
the normal componentEq.

(he-11a.111)

ρ∗n(v) ≡ ρn(v
∗)
v∗

v
=

ρn(v
∗)

1 +
F s

1

3
ρn

ρ
(v∗)

(10.116)

which is reduced with respect to ρn by the ratio of v∗ and v. The same reduction
appears in the superfluid density. Here we have to subtract the normal current from
the total one, ρv. In order to do so we have to remember that ρ contains the true
mass of the 3He atoms m = m3He while all quantities derived from the original
action involve the effective mass m∗ =

(
1 +

F s
1

3

)
m.

Therefore the supercurrent is given byEq.
(he-11a.112)

J∗s (v) = ρv − J∗n(v)
= ρv − ρn (v∗) v∗

= ρv − ρm
∗

m

ρn(v
∗)

ρ

v

1 +
F s

1

3
ρn(v∗)
ρ

(10.117)

= ρv1−
(
1 +

F s
1

3

)
ρn(v

∗)

ρ

1

1 +
F s

1

3
ρn(v∗)
ρ

1

1 +
F s

1

3
ρn(v∗)
ρ

= ρv
ρs (v∗)

ρ

1

1 +
F s

1

3
ρn(v∗)
ρ

. (10.118)

Thus the effect of Fermi-liquid corrections is to reduce the superfluid fraction ρs/ρ

by a factor 1 +
F s

1

3
ρn(v∗)
ρ

and to change the velocity coordinate from v to v∗.Eq.
(he-11a.113)

ρFL
s (v)

ρ
=
ρs (v∗)

ρ

1

1 +
F s

1

3
ρn(v∗)
ρ

(10.119)

Notice that for small velocities the integral in (10.111) may be performed so that g∗

becomes simplyEq.
(he-11a.114)

g∗ = f0 + fc −
ρ

2
v2 +

1

2
ρ
ρs (v∗)

ρ

1

1 +
F s

1

3
ρn(v∗)
ρ

v2

= f0 + fc −
ρ∗n (v)

2
v2. (10.120)

As far as our Figures 1 - 5 are concerned we learn that in ∂, ∆‖, ∆⊥, the curves re-
main the same except that the v axis has to be read as v∗. The same statement holds
for ρ‖ and ρ⊥ which, in addition, are reduced by the factors 1

1+
Fs
1
3

ρn(v∗)
ρ

, respectively.
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Figure 10.2 Current as a function of the velocity.

If experimentally it is the velocity v which is given rather than the current, the
corresponding quantity v∗ can easily be extracted from the J, v∗ plot (see Fig. 10.2)
graphically: By rewriting Eq. (??) as Fig. f5

Eq.
(he-11a.115)Js (v∗)

ρ
=

1 +
F s

1

3
v∗

F s
1 /3

− v

F s
1 /3

(10.121)

we see that at any value of F s
1 /3 we may draw a straight line of slope

1+F s
1

3
/F s

1 /3 and
intercept −v/F s

1 /3. It intersects the ∂s

ρ
curves at v∗, Js (v∗). The same statement

holds for the reduced quantities J/∂s
(
1− T

Tc

)−3/2
, v

v0

(
1− T

Tc

)− 1
2 except that the

right-hand side carries a factor 1

2(1− T
Tc

)
.

The Fermi liquid corrections have the pleasant property of removing the double
valuedness of the variables when plotted as a function of v rather than v∗. The reason
is that the lower branch of ρ‖

s (v∗) corresponds, via (10.114), to a higher physical
velocity v at the same v∗. This has the effect of rotating all lower branches with
positive slope anticlockwise until their slopes are negative. In this all curves become
single valued even at zero pressure where F s

1 takes its smallest value
F s

1

3
≈ 2.
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11
Collective Modes in Presence of Current at all
Temperatures T< Tc

In Sec. 5.6 we have seen that in the neighborhood of the critical point the distorted
gap parametrization of the constant order parameter (9.7) is stable under small space
and time-independent fluctuations. Here we want to extend this consideration to
all temperatures below Tc. For simplicity we shall only consider the weak coupling
limit in which the currents were discussed in Sec. 5.6.

11.1 Quadratic Fluctuations

Let us parametrize the fluctuations around the extremal field configuration byEq. (he-12.1)

Aai = A0
ai + A′ai. (11.1)

Inserting this into the collective action (9.3) and expanding in powers of A′ up to
quadratic order we findEq. (he-12.2)

δ2A = − i
4
Tr

[
Gv

(
0 A′aiσai∇̃i

A′ ∗aiσai∇̃i 0

)
Gv

(
0 A′aiσai∇̃i

A′ ∗aiσai∇̃i 0

)]

−1

3

∫
d4x|A′ai|2. (11.2)

There are no linear terms in A′ due to the gap equations (9.9), (9.10(he-11.11)). We
have introduced a 4× 4 matrixEq. (he-12a.3)

Gv = i

(
i∂t + v∇− ξ A0

aiσa∇̃i

A0
ai
∗σa∇̃i i∂t + v ·∇ + ξ

)−1

(11.3)

which is the propagator of the pair of Fermi field (ψ, cψ∗) in the presence of the
constant pair field A0

ai. Its Fourier transform may be inverted explicitly asEq. (he-13.4)

Gv(ε, p) =
i

−(ε + pv)2 + E2

(
ε+ vp− ξ(p) −A0

aiσap̃i
− A0∗

aiσap̃i ε + vp + ξ(p)

)
. (11.4)

We now pass from quantum mechanics to quantum statistics at constant temper-
ature T by replacing the integral over energies

∫
dε/2π by sums over Matsubara

frequenciesEq. (he-13.5)

274
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∫ dε

2π
→ iT

∑

ωn

(11.5)

replacing everywhere ε by iωn = i(2n + 1)πT . Correspondingly, we decompose the
fluctuations of the pair field as usual, Eq. (he-13.6)

A′(x, τ) = T
∑

νn

∫
d3k

(2π)3
e−i(τνn−kx)A′(νn,k) (11.6)

with bosonic Matsubara frequencies Eq. (he-13.8)

νn = 2nπT. (11.7)

With the short notation

T
∑

νn

∫
d3k

(2π)3
f(νn,k) = T

∑

k

f(k)

the quadratic piece (??) may be written as Eq. (he-13.9)

iδ2A ≈ T
∑

k

{
T
∑

p

1

2

[
G

(
p− k

2

)(
0 A′(−k)σap̂i

A′ ∗(k)σap̂c 0

)
(11.8)

×G
(
p+

k

2

)(
0 A′(k)σap̂i

A′ ∗(−k)σap̂i 0

)]
− 1

3g
|A′ai(k)|2

}
.

Here we have collected again frequency νn and momentum k in a single four-vector
symbol k. Also, by restricting our consideration to long wavelengths with k � pF
only, we have set ˜(p± k) ≈ p̂i. After a little matrix algebra, the fluctuations can be
written as Eq. (he-13.10)

iδ2A ≡ −1

2
T
∑

k

(A′ ∗ai(k), A
′
ai(−k))F ij,abab (k)

(
A′(k)
A′ ∗(−k)

)

bj

(11.9)

with the matrix Eq. (he-)

F ij,ab(k) ≡
(
F ij

11(k)δ
ab F ij,ab

12 (k)

F ij,ab
21 (k) F ij

22(k)δ
ab

)
(11.10)

whose coefficients Fαβ(k) involve the four 2× 2 submatrices of Gv Eq. (he-)

Gv(k) =

(
Gv

11(k) Gv
12(k)

G21(k) Gv
22(k)

)
(11.11)

as follows: Eq. (he-13.12)
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F ij
11(k)δ

ab ≈ 1

2
tr

2×2
T
∑

p

Gv
22

(
p− k

2

)
σap̂iG

v
11

(
p+

k

2

)
σbp̂j,

F ij
22(k)δ

ab ≈ 1

2
tr

2×2
T
∑

p

Gv
11

(
p− k

2

)
σap̂iG

v
22

(
p+

k

2

)
σbp̂j, (11.12)

F ij
12(k)δ

ab ≈ 1

2
tr

2×2
T
∑

p

Gv
12

(
p− k

2

)
σap̂iG

v
12

(
p+

k

2

)
σbp̂j.

F ij
21(k)δ

ab ≈ 1

2
tr

2×2
T
∑

p

Gv
21

(
p− k

2

)
σap̂iG

v
21

(
p+

k

2

)
σbp̂j.

Using (11.4) we findEq. (he-13.13)

F ij
11(k) = T

∑

p

(iω̃+ − ξ+) (iω̃− + ξ−)

(ω̃2
+ + E2

+) (ω̃2
− + E2

−)
p̂ip̂j +

1

3g
δij

F ij
22(k) = F ij

11(−k) (11.13)

F ij,ab
12 (k) = T

∑

p

1

(ω̃2
+ + E2

+) (ω̃2
− + E2

−)
p̂ip̂jp̂kp̂ltaba′b′A

0
a′kA

0
b′l

F ij,ab
21 (k) = F ij,ak

12 (−k)∗ (11.14)

either the tensor taba′b′ being again the traceEq. (he-13.15)

taba′b′ ≡
1

2
tr
(
σa

′
σaσb

′
σb

′)
= δaa′δbb′ + δab′δba′ − δabδa′b′ (11.15)

and ξ±, π̃±,E± abbreviatingEq. (he-13.16)

ξ± = ξ ± vF p̂k,

ω̃± ≡ ωn ± ν/2− ivp̂pF , (11.16)

E± = E (p± k/2) ≡
√

(ξ ± vF p̂k)2 + |Aaip̂i|2.

If we split the energy-momentum summation into size and angular parts using the
density of states N (0) = 3

2
ρ/p2

F . Then F ij,ab
12 can be written as an angular averageEq. (he-13.17)

F ij,ab
12 (k) =

ρ

2p2
F

3
∫ 1

−1

dp̂

4π
F v(k)p̂ip̂j p̂kp̂ltaba′b′A

0
a′kA

0∗
b′l (11.17)

where F v(k) is the following functionEq. (he-13.18)

F v(k, p̂) = T
∑

ω

∫ ∞

−∞
dξ

1

(ω̃+
2 + E2

+) (ω̃−2 + E2
−)
. (11.18)

It is a generalization of Yosida’s function φ to space- and time-dependent situations.
For v = 0, k = 0:Eq. (he-13.19)

F v(k, p̂) =
v=0,k=0

Tσω

∫ ∞

−∞
dξ

1

(ω2 + E2)2 =
1

2∆2
φ(∆2). (11.19)
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11.2 Time-Dependent Fluctuations at Infinite Wavelength

Let us now specialize to fluctuations which depend only on time and not on space.
Then the only preferred spatial direction is the anisotropy axis l and we may de-
compose the tensor F ij

11 into components parallel and orthogonal to , i.e., Eq. (he-13.20)

F ij
11(ν) = (δij − lilj)F⊥11(ν)− liljF ‖(ν). (11.20)

Alternatively we shall decompose Eq. (he-13.21)

F ij
11(ν) = δijF

⊥
11(ν)− liljF o

11(ν) (11.21)

with the superscript o standing for orientational part. Using the general decompo-
sition formula for an integral of the type Eq. (he-13.22)

3
∫
dp̂

4π
f(pl)p̂ip̂j =
[∫ 1

−1

dz

2

3

2

(
1− z2

)
f(z)

]
(δij − lilj) +

[∫ 1

−1

dz

2
3z2f(z)

]
lilj

=

[∫ 1

−1

dz

2

3

2
(1− z2)f(z)

]
δij −

[∫ 1

1

dz

2

3

2

(
1− 3z2

)
f(z)

]
lilj (11.22)

(which may be verified immediately upon contraction with δij and lilj) we identify Eq. (he-13.23)

L⊥11(ν) =
ρ

2p2
F

∫ 1

−1

dz

2

3

2
(1− z2)

[
T
∑

ω

∫ ∞

−∞
d′ξ

(iω̃+ − ξ+)(iω̃− + ξ−)

(ω̃2
+ + E2

+)(ω̃2
− + E2

−)
+ γ

]

L0
11(ν) =

ρ

2p2
F

∫ 1

−1

dz

2

3

2
(1− 3z2)

[
T
∑

ω

∫ ∞

−∞
d′ξ

(iω̃+ − ξ+)(iω̃− + ξ−)

(ω̃2
+ + E2

+)(ω̃2
− + E2

−)
+ γ

]

− ρ

2p2
F

∫ 1

−1

dz

2

3

2
(1− 3z2)γ (11.23)

where γ is the gap function introduced earlier: Eq. (he-13.24)

γ = Tσω

∫ ∞

−∞
dξ

1

(ω̃2 + E2)
(11.24)

Note that in Lo11(ν), γ cancels. To keep the expressions for both coefficients as
similar as possible, however, we have added and subtracted γ. The advantage of
this is that the square bracket can be simplified since γ may also be summed in
terms of variables ω̃± and E± instead of ω̃, E. This replacement amounts to a mere
translation of the infinite sum. Taking the average of both forms we may write Eq. (he-13.25)

γ = T
∑

ω

∫ ∞

−∞
dξ

1

2

ω̃2
+ + ω̃2

− + E2
+ + E2

−
(ω̃2

+ + E2
+)(ω̃2

− + E2
−)
. (11.25)

Now the numerators in (11.23) can be combined to Eq. (he-13.26)
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F⊥11(ν) =
ρ

2p2
F

∫ 1

−1

dz

2

(
∆2 +

ν2

2

)
F ν(ν) ≡ ρ

4p2
F

ϕ⊥(ν) (11.26)

F o
11(ν) =

ρ

2p2
F

∫ 1

−1

dz

2

3

2
(1− 3z2)

[(
∆2 +

ν2

2

)
F ν(ν)− γ

]
≡ ρ

4p2
F

ϕo(ν)

with the same function F ν(ν) appearing as in F12 [see (??)]. On the right-hand side
of (11.26(he-13.26)) we have introduced convenient dimensionless quantities ϕ⊥, ϕo

associated with F⊥11, F o
11.

It is a pleasant feature of the B phase that the γ term in (11.26) does not
contribute due to the simultaneous validity of the longitudinal and the transversal
gap equation (9.9), (9.10(he-11.11)). Thus the B phase acts as if there were no gap
distortion at all. This is not so in the A-phase where only the transversal gap
equation is available and γ does contribute!

Let us now perform a tensorial decomposition of F12. Generalizing (11.22) we
may now decomposeEq. (he-13.27)

3
∫ dp̂

4π
F (pl) p̂ip̂j p̂kp̂l = A (δijδkl + δikδjl + δilδjk)

+B (δijlkll + δikljlj + δilljlk + δiklill + δjllilk + δkllilj) + Cliljlkll (11.27)

where A, B, C are the following angular projections of FEq. (he-13.28)

A =
3

8

∫ 1

−1

dz

2
(1− z2)2F (z),

B = −3

8

∫ 1

−1

dz

2
(1− z2)(1− 5z2)F (z),

C =
3

8

∫ 1

−1

dz

2
(3− 30z2 + 35z4)F (z),

= −7B − 3

8

∫ 1

−1

dz

2
(1− 3z2)F (z). (11.28)

For the purpose of obtaining the final results in the simplest possible form it is
convenient to use the alternative dimensionless projectionsEq. (he-13.29)

σ1(ν) ≡ 2(A+B)∆2
⊥ =

∫ 1

−1

dz

2
3z2(1− z2)F ν(ν)∆2

⊥

σ2(ν) ≡ 4A∆2
⊥ =

∫ 1

−1

dz

2

3

2
(1− z2)2F v(ν)∆2

⊥ (11.29)

σ3(ν) ≡ 2(3A+ 6B + C)∆2
⊥ = 6

∫ 1

−1

dz

2
z4F v(ν)∆2

⊥.

Notice that due to (7.21) the functions A and B at ν = 0 contain the information
on the orthogonal superfluid density, sinceexplain c?

Eq. (he-13.30)
ρ⊥s =

[
8A+ 2c2(A +B)

]
ν=0

∆2
⊥

= 2σ2(0) + c2σ1(0). (11.30)
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We now evaluate the full tensor F ijab
12 (ν) in terms of σ1,2,3. Contracting (11.27) with

A0
a′kA

0
b′ltaba′b′ and A0

ai from (9.7) we findEq. (he-13.31)

A {2 (δaiδbj + δajδbi − 3δabδij)

+(1− c) [2(2lalb − δab) + 2(δailblj + δbilalj + (i↔ j)− 4δablilj]

+(1− c)2 [−(δab − 2lalb)(δij + 2lilj)]
}

+B {[(2lalb − δab)δij + 2(δailblj + δbilalj + (i↔ j))− 5δablilj]

+(1− c) [2(2lalb − δab)(3lilj + δij) + 2(δailblj + δbilalj + (i↔ j))− 4δablilj]

+(1− c)2 [(2lalb − δab)δij + 5(2lalb − δab)lilj]
}

+C
{
c2(2lalb − δab)lilj

}
. (11.31)

Collecting terms of equal tensorial properties this becomes Eq. (he-13.32)

2A[δaiδbj + (i↔ j)]

+
[
−2A− c2(A+B)

]
δabδij +

[
−2A + 2c2(A+B)

]
lalbδij

+
[
2A+ c2(A+B)− c2(3A+ 6B + C)

]
δablilj

+ [−2A + 2(A+B)] [δailblj + δailalj + (i↔ j)]

+
[
4(1− c)2(A+B)− 6(1− c2)B + 2c2C

]
lalblilj. (11.32)

Contracting F11, F12 with the fluctuating fields A′ai = ∆⊥dai and noticing that the
contributions from F22, F21 are complex conjugate to each other gives Eq. (he-13.33)

iδ2A = −∆2
⊥

4p2
F

ρV T
∑

νn

{ϕ⊥(νn)|d(νn)|2 − ϕ0(νn)|dT l|2

+
σ2

2
(daadbb + daidia + c.c.)− 1

2
(c2σi + σ2)(daidai + c.c.)

+
1

2
(2c2σ1 − σ2)

[
(lTd)i(l

Td)i + c.c.
]
+

1

2
(σ1 + σ2 − c2σ3)

[
(lTd)al

Tdb + c.c.
]

+2(2σ1 − σ2)
[
(dT l)a(l

Td)a + c.c.
]

+
[
−(1 + 4c+ c2)σ1 +

3

2
σ2 + c2σ3

] [
(lTdl)(lTdl) + c.c.

]
}.

As a cross check of our calculation we may verify that this expansion reduces in the
static case νn = 0 and the Ginzburg-Landau limit T ∼ Tc to the previous expressions
(5.6) (5.7(he-5.7)): We equate d(0) = 1

T
d and iδ2A = −δ2fV/T and rewrite Eq. (he-13.34)

∆2
⊥ ρ

4p2
F

≈ 1

6

p2
F

m2ξ2

ρ

4p2
F

≈ 2fc
1

6

1

1− T
Tc

. (11.33)

Then we observe that for T ∼ Tc Eq. (he-13.35)

F (0)∆2
⊥ ≈

1

2
φ(∆2) ≈

(
1− T

Tc

)
(11.34)
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so that σ1,2,3 have the extremely simple Ginzburg-Landau limits Eq. (he-13.36)

σi ≈ i · 2
5

(
1− T

Tc

)
. (11.35)

Inserting this together with (11.33) into (11.33(he-13.33)) we indeed recover the qua-
dratic fluctuations of (6.44) and (6.44).

11.3 Normal Modes

It is pleasant to re alize that also the new formula (11.33), which is valid for all
T ≤ Tc and νn 6= 0 can be diagonalized on the same subspaces of real and imaginary
parts of dai(νn) ≡ rai(νn) + iiai(νn)Eq. (he-13.37)

r11, r22, r33; r12r21; r 1
2
3r3 1

2

i11, i22, i33; i12i21; i 1
2
3i3 1

2
(11.36)

on which the curly brackets in the sum (11.33) take the formEq. (he-13.38)

R =



λ⊥ + c2σ1 − σ2 −σ2 −2cσ1

− σ2 λ⊥ + c2σ1 − σ2 −2cσ1

− 2cσ1 −2cσ1 λ⊥ − λ0 + 2σ1 − c2σ2


 ,

R12 =

(
λ⊥ + c2σ1 − σ2 σ2

σ2 λ⊥ + c2σ1 − σ2

)
, (11.37)

R
13
23 =

(
λ⊥ − λ0 − c2σ3 2cσ1

2cσ1 λ⊥ + c2σ1 − 2σ2

)
,

with similar matrices for the imaginary parts, except that the σ- terms appear with
reversed sign. These matrices serve two purposes. On the one hand, we can now ver-
ify the stability under static fluctuations for all temperatures T 6= Tc by finding the
eigenvalues at νn = 0. On the other hand, the matrices contain informations on the
energy of collective excitations at infinite wavelengths: By continuing analytically
from the discrete values νn to physical frequencies

νn → −i(ω + iε) (11.38)

these energies are given by the frequency ω at which the matrices become singu-
lar. The corresponding eigenvectors are the normal modes of the order parameter
fluctuations dai(ω).

To embark in this calculation it is useful to express the functions ϕ⊥, ϕ0 of
(11.26) in terms of the functions σi as follows [see (11.26)]Eq. (he-13.39)

ϕ⊥(νn) =
∫ 1

−1

dz

2

3

2
(1− z2)(1− r2z2)2F∆2

⊥ +
ν2
n

2∆2
⊥

∫
dz

2

3

2

(
1− z2

)
2F∆2

⊥.

(11.39)
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Using (11.29) this becomesEq. (he-13.40)

ϕ⊥(νn) = c2σ1 + 2σ2 + 2
ν2
n

4∆2
⊥

(σ1 + 2σ2) . (11.40)

Similarly, we find Eq. (he-13.41)

ϕ′′(νn) = 2σ1 + σ3 + 2
ν2
n

4∆2
⊥

(2σ1 + σ3)

≡ ϕ(νn)
⊥ − ϕ0(νn) (11.41)

Inserting these relations into (11.37) we find Eq. (he-13.42)

R =




3σ2−2w2(σ1+2σ2) σ2 2cσ1

σ2 3σ2−2w2(σ1+2σ2) 2cσ1

2cσ1 2cσ1 2c2σ3−2w2(2σ1+σ3)


,

R12 =

(
σ2−2w2(σ1+2σ2) σ2

σ2 σ2−2w2(σ1+2σ2)

)
, (11.42)

R
13
23 =

(
2σ1−2w2(2σ1+σ3) 2cσ1

2cσ1 2c2σ1−2w2(σ1+2σ2)

)
.

For the imaginary parts of dai the fluctuation matrices are Eq. (he-13.43)

I =



σ2+2c2σ1−2w2(σ1+2σ2) −σ2 −2cσ1

−σ2 σ2+2c2σ1−2w2(σ1+2σ2) −2cσ1

−2cσ −2cσ1 4σ1−2w2(2σ1+σ3)




I12 =

(
3σ2+2c2σ1−2w2(σ1+2σ2) −σ2

−σ2 3σ2+2c2σ1−2w2(σ1+2σ2)

)
(11.43)

I
13
23 =

(
2(σ1+c

2σ3)−2w2(2σ1+σ3) −2cσ1

−2cσ1 4σ2−2w2(σ1+2σ3)

)
.

Here we have introduced the dimensionless frequency variable Eq. (he-13.44)

w2 ≡ − ν2
n

4∆2
⊥

=
(ω + iε)2

4∆2
⊥

, (11.44)

for brevity. It is now straightforward to determine the places of vanishing determi-
nants: For R12, I12 we immediately find Eq. (he-13.45)

w2
1
2

=

{
0
σ2

σ1+2σ2

}
(1,−1)
(1, 1)

w2
1
2

=





c2σ1+2σ2

σ1+2σ2
c2σ1+σ2

σ1+2σ2





(1,−1)
(1, 1)

(11.45)

respectively. Behind each eigenvalue we have written down the corresponding eigen-
vector. For R

13
23 , the formula is more complicated: Eq. (he-13.46)
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w2
1
2

=

{
0

σ1

(σ1+2σ2)(2σ1+σ3)
[(2c2 + 1)σ1 + 2σ2 + c2σ3]

} (1,−1/c)
(σ1 + 2σ2, c(2σ1 + σ3)).

For I
13
23 the roots can no longer be taken explicitly. Here we findEq. (he-13.47)

w2
1
2

=
σ2

σ1 + 2σ2
+

σ1 + c2σ3

2(2σ1 + σ3)
± 1

2(σ1 + 2σ2)(2σ1 + σ3)
(11.46)

×
√

[(2σ1 + σ3)2σ2 − (σ1 + c2σ3)(σ1 + 2σ2)] + 4c2σ2
1(2σ1 + σ3)(σ1 + 2σ2).

In the 3×3 subspaces the eigenvalues look simple only for the imaginary components
of dai. First we observe that (1, 1, c) is an eigenvector of I withEq. (he-13.48)

w2
1 = 0 (1, 1, c). (11.47)

For c = 1, this is the pure phase oscillation of zero sound. By adding the second
and the last column times c to the first, the determinant of I can be written asEq. (he-13.49)

|I| = −2w2(σ1 + 2σ2)

×

∣∣∣∣∣∣∣

1 0 −2cσ1

1 σ2 + 2c2σ1 − 2w2(σ1 + 2σ2) −2cσ1

c −2cσ1 4σ1 − 2w2(2σ1 + σ3)

∣∣∣∣∣∣∣
. (11.48)

The remaining determinant has the formEq. (he-13.49a)

4(σ1+2σ2)(2σ1+σ3)w
4−4w2

[
(c2σ1+σ2)(2σ1+σ3)+(2+c2)σ1(σ1+ 12σ2)

]

+4(c2σ1 + σ2)(2 + c2)σ1 = 0 (11.49)

so that the remaining two solutions areEq. (he-13.50)

w2
2 =

(2 + c2)σ1

2σ1 + σ3
,

w2
3 =

c2σ1 + σ2

σ1 + 2σ2
. (11.50)

For the real 3× 3 matrix R, finally, we can find a trivial eigenvector (1,−1, 0) with
eigenvalueEq. (he-13.51)

w2
1 =

σ2

σ1 + 2σ2

. (11.51)

It is degenerate with the second of the eigenvalues of R12.
By subtracting in the determinant of R the second from the first row we obtainEq. (he-13.52)

|R| =
[
2σ2 − 2W 2(σ1 + 2σ2)

]

×

∣∣∣∣∣∣∣

1 −1 0
σ2 2σ2 − 2w2(σ1 + 2σ2) 2cσ1

2cσ1 2cσ1 2c2σ3 − 2w2(σ1 + σ3)

∣∣∣∣∣∣∣
,
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so that the remaining two roots are found fromEq. (he-13.53)

w4(σ1 + 2σ2)(2σ1 + σ3)− w2
[
(σ1 + 2σ2)c

2σ3 + (2σ1 + σ3)2σ2

]

+2c2(σ2σ3 − σ2
1) = 0 (11.52)

which is solved by Eq. (he-13.54)

w2
2
3

=
1

2

c2σ3

2σ1 + σ3

+
σ2

σ1 + 2σ2

± 1

2(σ1 + 2σ2)(σ1 + σ3)
(11.53)

×
√

[(σ1 + 2σ2)c2σ3 − (2σ1 + σ3)2σ2]
2 + 8c2σ2

1(σ1 + 2σ2)(2σ1 + σ3).

All these equations are transcendental since the right-hand sides depend again on
w2. They can, however, be solved quite simply in an iterative fashion.

ω2

∆2
⊥

Figure 11.1 Collective frequencies of B-phase in the presence of superflow of velocity v

at zero and slightly below the critical temperaure Tc (Ginzburg-Landau regime). Near Tc,

there is a considerable splitting between the levels of different |J3|. The quantum numbers

of angular momentum are displayed at the right end of each curve. The gap distortion

r2 ≡ 1 − ∆2
‖/∆

2
⊥ is related to the superfluid velocity v by r2 = 3(v/v0)

2(1 − T/Tc)
−1

r2 = 3(v/v0)
2(1− T/Tc)

−1.

11.4 Simple Limiting Results at Zero Gap Deformation

Before attempting a numerical solution of these equations we may extract several
results right away: For small current the asymmetry parameter r vanishes at all
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temperatures. As a consequence, σ1,2,3 becomes independent of z and we find im-
mediately from integrating (11.29) that the functions σ1 : σ2 : σ3 have a fixed ration
1 : 2 : 3. As a result we find the well-known collective frequencies of the B phase,
at all temperatures:Eq. (he-13.55)

R12 :

{
0
2
5

}
, ω2 =

{
0

8
5
∆2
⊥

}
(1,−1)
(1, 1)

R
13
23 :

{
0
2
5

}
, ω2 =

{
0

8
5
∆2
⊥

}
(1,−1)
(1, 1)

R :





2
5

1
2
5




, ω2 =





8
5
∆2
⊥

4∆2
⊥

8
5
∆2
⊥





(1,−1, 0)
(1, 1, 1)
(1, 1,−2)

I12 :

{
1
3
5

}
, ω2 =

{
4∆2
⊥

12
5
∆2
⊥

}
(1,−1)
(1, 1)

I
13
23 :

{
1
3
5

}
, ω2 =

{
4∆2
⊥

12
5
∆2
⊥

}
(1,−1)
(1, 1)

I :





3
5
3
5

0




, ω2 =





12
5
∆2
⊥

12
5
∆2
⊥

0





(1,−1, 0)
(1, 1,−2)
(1, 1, 1)

where the eigenvectors have again been marked in each case. Moreover, since at
T = 0 there is no gap deformation for ν ≤ 1 these results remain true for all
velocities up to ≤ vn. It is useful to classify this symmetric situation in terms of
angular momentum. The real and imaginary 3×3 matrices contain a J = 0, J = 1,
and J = 2 tensor with the correspondenceEq. (he-13.57)

1√
3
(1, 1, 1) = |00〉

1√
2
(1,−1, 0) = 1√

2
(|2, 2〉+ |2,−2〉)) R, I

1√
6
(1, 1,−2) = |2, 0〉
1√
2
(1,−1) = |1, 0〉
1√
2
(1, 1) = 1√

2
(|2, 2〉 − |2,−2〉) R12, I12

1√
2
(1,−1) = 1√

2
(|1, 1〉+ |1,−1〉) R13, I13

1√
2
(1, 1) = 1√

2
(|2, 1〉+ |2,−1〉)

1√
2
(1,−1) = 1√

2
(|1, 1〉 − |1,−1〉) R23, I23

1√
2
(1, 1) = 1√

2
(|2, 1〉 − |2,−1〉)

explaining the degeneracies among the 5 real J = 2 modes the three real ω2 = 0
Goldstone modes of J = 1, the 5 imaginary J = 2 modes 12

5
∆2
⊥ and the 3 imaginary

J = 1 modes 4∆2
⊥.

Now, if a current is turned on the levels of different |J3| within each multiplets
split up. Using the explicit forms of analytically continued σi functions, to be
discussed in the next section, we find for T close to Tc the level structure displayed
on Fig. 11.1.
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11.5 Static Stability

In order to verify static stability we have to take the matrices R, I before analytic
continuation at zero Matsubara frequency νn = 0 and calculate their eigenvalues.
These are found as Eq. (he-13.58)

R : 2σ2, 2σ2 + c2σ3 ±
√

(2σ2 − c2r3)2 + 8c2σ2
1,

R12 :

{
0

2σ2

}
(1,−1)
(1, 1)

R
13
23 :

{
0

(1 + c2)σ1

}
(1,−1/c)
(1, c)

(11.54)

I : 2(c2σ1 + σ2), 2(c2 + 2)σ1, 0

I12 :

{
2c2σ1 + 4σ2

2c2σ1 + 2σ2

}
(1,−1)
(1, 1)

I
13
23 : σ1 + 2σ2 + c2σ3 ±

√
(σ1 − 2σ2 + c2)2 + 4c2σ2

1 . (11.55)

The eigenvectors are marked if they are simple. Using the result of Sec. ?? we
can verify that all nonzero values remain positive for all subcritical velocities thus
guaranteeing static stability.
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12
Fluctuation Coefficients

We have seen in the last section that all properties of quadratic fluctuations at finite
wavelengths are expressible in terms of the functions σ1,2,3(ω

2) which in turn are
angular projections of (see (11.13) (11.29(he-13.29))Eq. (he-14.1)

F v(νn,k) = T
∑

ω

∫ ∞

−∞
dξ

1

(ω̃2
+ + E2

+)(ω̃2
− + E2

−)
(12.1)

at k = 0. For the particular case of static fluctuations F ν(0, 0) reduces directly to
the standard Yosida functionEq. (he-14.2)

F v(0, 0) =
1

2∆2
⊥
φv(0, 0). (12.2)

It can then easily be checked that in this case the projection σi(0) are positive thus
guaranteeing the stability of static fluctuation frequencies (11.54): First close to Tc,
all nonzero eigenvalues are positive since σi have the simple form (11.35). Moreover,
as the temperature reaches zero, the gap becomes uniform andEq. (he-14.3)

F v∆2
⊥ →

1

2
(12.3)

for subcritical velocities so that σi(0) are positive members with the same rations
1 : 2 : 3. Inserting this together with c = 1 into (11.54) all eigenvalues become again

positive. By monotony of the gap distortion at fixed velocity v2

ν2
0

(
1− T

Tc

)−1
(see

Figs. ) as a function of temperature we conclude for stability for all temperatures
T ≤ Tc and all subcritical velocities.

For dynamic fluctuations, let us continue F v analytically in the frequency −νn.
For this we decompose

1

ω̃2
− + E2

−

1

ω̃2
+ + E2

+

(12.4)

as in (7.42) and use the summation formula (7.40(he-dis)) which now givesEq. (he-14.4)

1

2E
T
∑

ω

1

iω̃± ± E
=

1

2E

[
1± 1

2

(
tanh

E + vpF z

2T
+ tanh

E − vpFz
2T

)]
.

(12.5)
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Again we have made use of the fact that the frequency shift νn in ω± (see (11.16)
does not appear in (12.5) since it amounts to a mere translation in the infinite sum.
Collecting the different terms we find check

frac1/E

Eq. (he-14.5)
1

4E+E−

{
E++E−

(E++E−)2+ν2
n

[
1

2

(
tanh

E+ + vpFz

2T
+(v → −v)

)
+(E+ ↔ E−)

]

− E+−E−
(E+−E−)2+ν2

n

[
1

2

(
tanh

E+ + vpFz

2T
+(v → −v)

)
−(E+ ↔ E−)

]}

=

{
1

4E−

E2
− − E2

+ + ν2
n

(E2
+ + E2

− + ν2
n)

2 − 4E2
+E

2
+

[
tanh

E+ + vpF z

2T
+ (v → −v)

]}

+{E+ ↔ E−}. (12.6)

We now perform a shift in the integration variable so that Eq. (he-14.6)

E2
− = ξ2 + ∆2

E2
+ = (ξ + vF p̂k)2 + ∆2. (12.7)

Then F takes the form Eq. (he-14.7)

F v(νn,k, p̂) =
∫ ∞

−∞
dξ

ν2
n + (2ξ + vF p̂k) vF p̂k

(2ξ + vF p̂k)2(ν2
n + v2

F (p̂k)2) + ν2
n(ν

2
n + v2

F (p̂k)2 + 4∆2)

×1

2

(
tanh

E + vpFz

2T
+ (v → −v)

)
. (12.8)

As a cross check we verify that for νn = 0 this reduces to Eq. (he-14.8)

F v(νn = 0,k, p̂)=−
∫ ∞

−∞
dξ

1

4ξ2 − v2
F (p̂k)2

1

2

(
tanh

E + vpF z

2T
+(z→−z)

)
.

(12.9)

At k = 0 this can be partially integrated to Eq. (he-14.9)

F v (0, 0, p̂) = (12.10)

1

8

∫ ∞

−∞
dξ

1

E3

[(
tanh

E + vpF z

2T
− 1

2TE2
− 1

cosh2 E+vpF z
2T

)
+ (v → −v)

]
.

Upon using the expansion (12.5) and its derivative Eq. (he-14.10)

1

8T

[
1

cosh2 E+vpF z
2T

+ (v → −v)
]

=
d

dE
T
∑

ω

E

ω̃2 + E2
= T

∑

ω

[
1

ω̃2 + E2
− 2E2

(ω̃2 + E2)2

]
(12.11)

we recover the Yosida function in the presence of superflow (??) governing the
superfluid densities: Eq. (he-14.11)
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F v(0, 0, p̂) =
∫ ∞

−∞
dξ

1

E2
T
∑

ω

E2

(ω̃2 + E2)2

= φv(∆2)/2∆2
⊥. (12.12)

The expression (12.8) can readily be continued analytically to physical frequencies
ω by merely replacingEq. (he-14.12)

ν2
n → −(ω + iε)2. (12.13)

Let us now turn to the calculation of the functions. For this we consider the con-
tinued expression at infinite wavelengthEq. (he-14.13)

F v(ω, 0, p̂) =
∫ ∞

−∞

1

E(4E2 − ω2)

1

2

(
tanh

E + vpFz

2T
← (v → −v)

)
. (12.14)

The temperature region close to Tc is explored most easily by inserting the expansion
(12.5). Then the integral over ξ can be done and we findEq. (he-14.14)

F v(ω, 0, p̂) =
1

4

∫ ∞

−∞
dξT

∑

ω

1

(ωn − ivpF z)2 + ω2/4

×
(

1

ξ2 + ∆2 − ω2/4
− 1

(ωn − ivpFz)2 + ξ2 + ∆2

)

=
π

4

1√
∆2 − ω2/4

1

ω

(
tanh

ω/2 + v

2T
+ (v → −v)

)
(12.15)

−πT
4

∑

ωm

1

(ωm − ivpF z)2
+
ω2

4

1√
(ωn − ivpF z)2 + ∆2

.

Using the previously introduced dimensionless variables (11.44) this may be rewrit-
ten asEq. (he-14.15)

F v(ω, 0, p̂)∆2
⊥ =

π

8

1√
1− r2z2 − w2

{
tanh

[
π

2
(w − νz)δ

]
+ (ν → −ν)

}

− 1

2δ
Re

∞∑

n=0

1

(xn − iνz)2 + w2

1√
(xn − ivz)2 + 1− r2z2

(12.16)

where the square root has to be taken with positive real part.
In the limit T → Tc, δ → 0 and the sum is suppressed by one power of δ as

compared with the first term so that we may use the simple expressionEq. (he-14.16)

F v(ω, 0, p̂)∆2
⊥ =

T→Tc

π2δ

8

1√
1− r2z2 − w2

. (12.17)

For T → 0, the integral is found easily from (12.14) if the velocity v is by v <
∆BCS/pF ≈ vc. Then tanh E±pF z

2T
= 1 and we haveEq. (he-14.17)
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F v(ω, 0, p̂) =
1

4

∫ ∞

−∞
dξ

1√
ξ2 + ∆2

1

ξ2 + ∆2(1− w2)
. (12.18)

It is useful to remove the square root by an auxiliary integration, writingEq. (he-14.18)

F v(ω, 0, p̂) =
1

4π

∫ ∞

−∞
dξ
∫ ∞

−∞

1

ξ2 + µ2 + ∆2

1

ξ2 + ∆2(1− w2)
. (12.19)

Using Feynman’s formula Eq. (he-14.19)

1

AB
= 2

∫ 1

0
dss

1

[sA+ (1− s2)B]2
(12.20)

this becomes Eq. (he-14.20)

F v(ω, 0, p̂) =
1

π

∫ 1

0
ds
∫ ∞

−∞

∫ ∞

−∞
dξd(µs)

1

(ξ2 + s2µ2 + ∆2 − (1− s2)w2)2
.

(12.21)

Due to rotational invariance in the (ξ, sµ)-plane this can be evaluated in polar
coordinates to give Eq. (he-14.21)

2
∫ 1

0
ds
∫ ∞

0
dr

r

(r2 + ∆2 − (1− s2)w2)2
=
∫ ∞

0
ds

1

sA2 − (1− s2)w2
. (12.22)

Thus we arrive at the simple integral representation Eq. (he-14.22)

F v(ω, 0, p̂)∆2
⊥ =

1

2

∫ ∞

0
ds

1

s2w2 + 1− r2z2 − w2
(12.23)

which can be integrated to Eq. (he-14.23)

F v(ω1, 0, p̂)∆2
⊥ =

1

2

1√
1− r2z2 − w2

1

w
arcsin

ω√
1− r2z2

. (12.24)

We can now proceed to calculate the σ1,2,3 functions. Consider first the limit
T → Tc. Straight-forward integration yields, with the overall factor Eq. (he-14.24)

α ≡ π2δ/4 = π∆⊥/4T (12.25)

the expressions Eq. (he-14.25)

σ1(w
2) =

T→Tc

α
3

2

∫ 1

−1

dz

2
z2(1− z2)

1√
1− w2 − r2z2

(12.26)

=
3

4r5

{ [
−3

4
(1− w2)2 + r2(1− w2)

]
l

+

[
3

4
(1− w2)− r2

2

]
r
√

1− w2r2

}
,

σ2(w
2) =

T→Tc

α
3

4

∫ 1

−1

dz

2
(1− z2)2 1√

1− w2 − r2z2
(12.27)
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=
3

4r5

3

8

{ [
(1− w2)2 − 8

3
r2(1− w2 − r2)

]
l

+
[
−(1− w2) + 2r2

]
r
√

1− w2 − r2

}
,

σ3(w
2) =

T→Tc

3
∫ 1

−1

dz

2
z4 1√

1− w2 − r2z2
(12.28)

=
3

4r5

{ [
−3

4
(1− w2)2 + r2(1− w2)

]
l

+

[
3

4
(1− w2) +

r2

2
r2

]
r
√

1− w2 − r2

}
.

Here l is the fundamental integralEq. (he-14.26)

l(w2) ≡ r
∫ 1

−1

dz

2

1√
1− w2 − r2z2

= arcsin
r√

1− w2
. (12.29)

This formula may be used as long as w2 < 1− r2. For w2 between 1− r2 and l there
is an imaginary part whose sign is controlled by the iε prescription in ω:Eq. (he-14.27)

l(w2) =
π

2
+
i

r
log

r +
√
w2 − (1− r2)√
1− w2

. (12.30)

It may in principle give rise to a width of the collective excitation due to pair
breaking along directions where the gap is not maximal.

12.1 Stability of Super-Flow in the B-phase under Small
Fluctuations for T ∼ T c

Let us finally investigate the important question whether the Ansatz (10.47) for the
distorted order parameter is a local minimum of the free energy for all currents up
to Jc. Previously, we had shown this form to develop for infinitesimal currents. We
shall now study, for all currents up to the critical value Jc, the small fluctuations in
the 18 parameter field space Aai.

With the time driving term of the collective action being of the simple pure
damping form, it will be sufficient to consider only static fluctuations. While it is a
disadvantage of the Ginzburg-Landau regime that there are no properly oscillating
modes which could easily be detected experimentally. On the other hand, there is the
advantage of a simple parametrization of strong-coupling corrections. In the later
chapter 12 shall study the physically more yielding dynamic fluctuation problem for
all temperatures T < Tc. But then we shall be forced to neglect strong-coupling
effects.

Let us parametrize the static fluctuations in the formEq. (he-15.94)

Aai = ∆w.c.
B [a (δai + rlali) + dai] (12.31)

whereEq. (he-15.95)
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r ≡ c

a
− 1 (12.32)

and c and a are the equilibrium values (10.61), (10.62) of the gap parameters in the
presence of a current (we shall leave out the magnetic field, for simplicity). Inserting
(12.31) into the energy we obtain the potential terms for r = 0 Eq. (he-15.96)

δ2e/2fc|pot = −α
3
|dai|2 +

a2

15

[
(3β1 + β35)

(
d2
ai + d∗ai

2
)

+ (6βB − 6β1 + 2β4) |d|2 + (4β1 + 2β2) |t|2 + β2

(
t2 + t∗2

)

+2β35dijd
∗
ji + β4 (dijdji + h.c.)

]
. (12.33)

Here t denotes the trace of dai. The linear terms have been left out since they are
all of the form t + t∗ and cancel at the extremum. Moreover, with the equilibrium
value of a2 being α/

(
6
5
βB
)
, the first term simply cancels the 6βB term inside the

bracket.
Neglecting strong-coupling corrections, the expression simplifies to Eq. (he-15.97)

δ2f/2fc|pot = (12.34)

a2

15

{
5|d|2 + (dijdji + h.c.) +

(
t2 + t∗2

)
− 3

2

(
d2
ai + h.c.

)}
.

The piece containing the gap distortion gives an additional Eq. (he-15.98)

a2

15

{
β1

[
4r2|d33|2 + 4r (td∗33 + h.c.)

]

+β2

[
2r2|d33|2 + 2r (td∗33 + h.c.) + 2r (2 + r) |d|2

]

+β3

[
2r2|d33|2 + 2r (di3d

∗
3i + c.c.) + 2r(2 + r)|da3|2

]

β4

[
2r2|d3i|2 + 4r|d3i|2 + 2r(2 + r)|da3|2

]

β5

[
2r2|d33|2 + 2r (d3id

∗
i3 + c.c.) + 2r(2 + r)|d3i|2

]

β1r(2 + r)
(
d2 + h.c.

)

β2

[
r2
(
d2

33 + h.c.
)

+ 2r (ta33 + h.c.)
]

β3

[
r2
(
d2

3i + c.c.
)

+ 2r
(
d2

3i + h.c.
)]

β4

[
r2
(
d2

33 + h.c.
)

+ 2r (di3d3i + h.c.)
]

β5r(2 + r)
(
d2
a3 + c.c.

)}
(12.35)

Without strong-coupling effects this simplifies considerably leaving only Eq. (he-15.99)

1

15

{
2
(
c2 − 1

) (
|d|2 + 2|da3|2

)

−1

2

(
c2 − 1

) (
d2 + h.c.

)
+ 2 (c− 1)2

(
d2

33 + h.c.
)

+2 (c− 1) (td33 + h.c.) +
(
c2 − 1

) (
d2

3i + h.c.
)

−
(
c2 − 1

) (
d2
a3 + h.c.

)}
(12.36)
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where we have made use of a = 1 so thatEq. (he-15.100)

r = c− 1. (12.37)

The result can be written in matrix formEq. (he-15.101)

15
δ2f

2fc
= raiRai,a′i′rai + iaiIai,a′i′ia′i′ (12.38)

where we have separated d into real and imaginary partsEq. (he-15.102)

dai = rai + iiai (12.39)

The matrix R may be decomposed as R × R12 × R13 × R23 where R is a 3 × 3

submatrix acting only in the space



r11
r23
r33


 while R12, R13 , R23 are 2× 2 blocks in

the subspacesEq. (he-15.103)

(
r12
r21

)(
r13
r31

)(
r23
r32

)
. (12.40)

An analogous decomposition holds for I. Collecting the different contribution we
findEq. (he-15.104)

R =




5 + c2 2 2c
2 5 + c2 2c
2c 2c 9c2 − 3




R12 =

(
c2 + 1 2

2 c2 + 1

)

R
13
23 =

(
3c2 − 1 2c

2c 3c2 − 1

)

I =




1 + 3c2 −2 −2c
− 2 1 + 3c2 −2c
− 2c −2c 1 + 3c2




I12 =

(
3c2 + 5 −2
− 2 3c2 + 5

)

I
13
23 =

(
−1 + 9c2 −2c
−2c 7 + c2

)
(12.41)

In the absence of a current, we have c = 1 and can recover immediately the eigen-
values:Eq. (he-15.105)

R : (10, 4, 4)

R12,13,23 : (0, 4)

I : (0, 6, 6)

I12, 13, 23 : (6, 10) . (12.42)
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We observe the occurrence of 4 Nambu-Goldstone modes corresponding to overall
phase oscillations (sound) and three vibrations of the order parameter θ, one for the
length and two for the direction.

These correspond to the residual part of the original SO(3)spin× SO(3)orbit ×
U(1)phase symmetry left unbroken by the isotropic parameter A0

ai, of the B-phase.

The strong-coupling corrections change the eigenvalues only slightly. Since the
Nambu-Goldstone are a consequence of the symmetry of the action and A0

ai, their
eigenvalues remain exactly zero. Collecting the different terms in (12.35) we find
the corrected matrices Eq. (he-15.106)

R = 4



β12345 β12 β12

β12 β12345 β12

β12 β12 β12345




α
6
5
βB

R12,13,23 = 2β345

(
1 1
1 1

)
α

6
5
βB

I = −4β1




2 −1 −1
− 1 2 −1
− 1 −1 2




α
6
5
βB

(12.43)

I12,13,23 = 2

(
−6β1 − β35 + β4 β35 − β4

β35 − β4 −6β1 − β35 + β4

)
α

6
5
βB

with eigenvalues Eq. (he-15.107)

R : (12βB, 4β345, 4β345)
α

6
5
βB

R12,13,23 : β345(0, 4)
α

6
5
βB

(12.44)

I : −2β1(0, 6, 6)
α

6
5
βB

I12,13,23 : (−12β1, −12β1 + 4 (β4 − β35))
α

6
5
βB

.

Remember that α
6
5
βB

∆w
B represents the corrected gap value of the B-phase.

Notice that if β345 were zero there would be two more zero-frequency modes in
R. This fact is associated with the accidental degeneracy of polar and planar phase
at β345 = 0: the two modes correspond to linear interpolations between these two
phases.

Let us now turn on the current. Then we have to add the fluctuations from the
term Eq. (he-15.108)

− 5j2

|d|2 + |da3|2
(12.45)

which in equilibrium contribute inside the curly brackets of (12.35) Eq. (he-15.109)
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3κ2

2a2 + 3c2

[(
|da1|2 + |da2|2 + 3|da3|2

) (
2a2 + 3c2

)

−4a2
(
r2
11 + r2

22

)
− 36c2r33

2

−8r11r22a
2 − 24ac (r11 + r22) r33

]
. (12.46)

Without strong-coupling corrections a = 1 this adds directlyEq. (he-15.110)

(
1− c2

)




1

2 + 3c2




3c2 − 2 −4 −12c
− 4 3c2 − 2 −12c
− 12c −12c 6− 27c2


 ,




1
1

3




(
1

1

)
,

(
1

1

)
,

(
3 0
0 1

)
,

(
3 0
0 1

)}
(12.47)

into R, I, R12, I12, R
13
23 , I

13
23 so that we obtain the new matrices:Eq. (he-15.111)

R =




22c2 + 8 2 (c2 + 4) 2c (9c2 − 4)
2 (c2 + 4) 22c2 + 8 2c (9c2 −−4)

2c (9c2 − 4) 2c (9c2 − 4) 6c2 (9c2 − 4)




R12 =

(
2 2
2 2

)

R
12
23 =

(
2 2c
2c 2c2

)

I =




2 (1 + c2) −2 −2c
− 2 2 (1 + c2) −2c
− 2c −2c 4




I12 =

(
2c2 + 6 −2
− 2 2c2 + 6

)

I
13
2o3 =

(
6c2 + 2 −2c
− 2c 8

)
. (12.48)

The eigenvalues are nowEq. (he-15.112)

R :
(

1

5

[(
27c4 + 8

)
± 1

3

√
(9c2)4 − 8 (9c2)3 − 48 (9c2)2 + 512 (9c2) + 576

]
, 4c2

)

R12 : (0, 4)

R
13
23 :

(
0, 2

(
1 + c2

))

I :
(
0,

2

5

(
2 + c2

)
,
2

5

(
2 + c2

))

I :
(
2c2 + 4, 2c2 + 8

)

I
13
23 :


3c2 + 5±

√

c4 − 14

9
c2 + 1


 . (12.49)
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for increasing current, c2 = 1− 3κ2 decreases and with it also the eigenfrequencies.
At the critical current κ2

c = 5/27 the value of c2 drops to 4/9 and the eigenvalues
becomes Eq. (he-15.113)

R :
(
0,

16

3
,
16

9

)

R12 : (0, 4)

R
13
23 :

(
0,

26

9

)

I :
(
0,

44

45
,
44

45

)

I12 :
(

44

9
,
62

9

)

I
13
23 : (4.2, 7.04) . (12.50)

The zero eigenvalue in R signalizes the instability for decay into the planar (or A)
phase.



Conclusion

We have only presented an introduction into the wide field of 3He physics which
has been developed in recent years. The methods used in describing the physical
properties of the superfluid run hand in hand with those which are popular nowadays
in particle physics and field theory. For a particle physicist it can be rewarding to
study some of the phenomena and their explanations since it may provide him
with a more transparent understanding of σ-type of models. Also, the visualization
of functional field spaces in the laboratory may lend a more realistic appeal to
topological considerations which have becomes a current tool in the analysis of
solutions of gauge field equations.

Finally, there may even be direct applications of superfluid 3He in particle physics
[11]. Due to the fact that the condensate is characterized by two vectors L and S,
there is a vector L × S which T invariant but parity violating. How, if there are
neutral currents of this symmetry type in weak interactions they will, in general,
build up a small electric dipole moment in the Cooper pairs. This has to be aligned
necessarily with L × S. In the condensed phase of the superfluid, this very small
dipole moment can pile up coherently and might result in an observable microscopid
dipole moment. This could lead to a more sensitive test than those available right
now. Unfortunately, the uncertainty in the Cooper pair wave function is, at present,
an obstacle to a reliable estimate of the effect. Also, the detection of the resulting
macroscopic dipole moment may be hampered by competing orientational effects.
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Preface

Since its discovery in 1972 [1], the superfluid phases of 3He have attracted increas-
ing experimental and theoretical attention. On the one hand, there is the practical
challenge of achieving and maintaining ultra-low temperatures. The observed phe-
nomena show a macroscopic system in an anisotropic quantum state with rather
interesting collection excitations. Many surprising properties have been found and
probably wait for their discovery in the future. On the other hand, there is a beau-
tiful field of application for many theoretical methods developed in recent years in
different branches of physics. At the microscopic level there is the problem of pass-
ing from the fundamental action involving 3He atoms to an alternative, equivalent,
form in which the collective excitations can be studied most directly. A very con-
venient method is provided by Feynman’s [2] path integral description of quantum
phenomena. In this formulation no operators appear and the problem can be solved
exactly by mere changes of integration variables. The necessary technical framework
was invented a long time ago in field theory [3]. It was introduced into many-body
theory only a few years later [4] and has recently found new and interesting appli-
cations. The reasons for this revival are the following:
In high-energy physics the proliferation of particles which a decade ago were called
elementary has led to postulating a new set of more fundamental objects, called
quarks. Within an underlying quark world the strongly interacting particles, the
mesons and baryons, may be considered as collective excitations. Very similar col-
lective excitations are found in in various macroscopic quantum systems (for example
supercvonductors, superfluid 4He and 4He). The main difference with respect to the
quark system is that in these systems the collective excitation spectrum is much sim-
pler due to the rather short range of the fundamental interaction. In contrast to this
the physics of the quark system is governed by infinite range forces as manifested
by the phenomenon of quark confinement, and this gives rise to a very complex
spectrum of collective excitations. For the quark physicist, the obove many-body
systems are an important and elementary testing ground for some aspects of his
theoretical tools. The important common feature of the two so different domains
of physics is that the ground state of the systems is of lower symmetry than the
fundamental action defining the theory. Associated with it there are massless par-
ticles called Nambu-Goldstone bosons. In superfluid 4He they are known as zero
sound, in hadron physics they are the almost massless pions, the slight mass being
due to a small symmetry breaking term in the action) [5]. A first crude applica-
tion of the path integral methods to quark theories has rendered correctly many
interesting properties of low lying mesons [6]. In nuclear physics, the interplay be-
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tween fundamental constituents (the nucleons) and their collective excitations (pair
and multipole vibrations) has been the subject of many investigations [7]. Also,
there changes of field variables from fundamental to collective via path integrals
have solved a number of problems [8]. These methods could provide for the most
economic and theoretically satisfactory approach to fission problems [9]. Also in
abstract field theory the connection between different field formulations for one and
the same sytem has recently becomes an important object of study. Most results
have been found only in one space and one time dimensions. Some of them may
be relevant to the understanding of physical systems in higher dimensions but with
restricted geometries, for example layers of superfluid 4He or 3He. The first work
in this direction was the original exact solution of the Thirring model in which the
four-fermion theory 1 + 1 dimensions was reduced to a free massless boson theory.
Later, quantum electrodynamic in the same space was shown to be equivalent to a
free boson [11] with a mass. Finally, it was discovered [12] that introducing a fermion
mass into the Thirring model is exactly equivalent to adding a interaction term pro-
portional to the cosine of the field to the free bose theory (whose field equation leads
to the Sine-Gordon theory). This work stimulated a great number of investigations
whose most spectacular success was finally the discovery of the exact analytic S-
Matrix as well as the determination of all physical states in the Hilbert space for
many two-dimensional theories [13]. Also these transformations from Fermi to Bose
fields are examples for the transition from fundamental to collective field variables
any may be performed most simply via path integrals. Once for correct collective
field theory is obtained, there is the interesting problem of extracting information
from it, reexplaining known and predicting new experimental phenomena. In the
hydrodynamic limit of the theory, the superfluid behaves like a combination of a
perfect fluid and a liquid crystal. In the absence of flow, there are various kinds of
novel extended field configurations, (called textures, just as in liquid crystals [14],
which can be created in the laboratory and which show characteristic responses
to a variety of external signals [mainly nuclear magnetic resonance (NMR)]. The
investigation of such textures has many parallels with recent studies of extended
objects in nonlinear field theories, in particular the non-ablian gauge theories of the
Yang-Mills type [15] which are now believed to constitute the correct fundamental
theory of strong and weak interactions between quarks (and therefore hadrons). In
both fields, topological arguments are helpful in achieving some understanding of
the great variety of observable phenomena. Field configurations which classically
may be stable for topological reasons can decay via thermodynamic or quantum
mechanical fluctuations. Also here is a wide field of applications of path integral
methods (completely independent of the previously discussed change of integration
variables), whose development goes hand in hand with that in several other branches
of theoretical physics. The decay of superflow in superconductors [16], first-order
phase transitions like the boiling of a superheated liquid [17], decay of ”false vacua”
in field theory [18], and the communications of an infinity of equivalent vacua in
Yang-Mills theory [19] are prime examples. Superfluid 3He with its several differ-
ent phase transitions may offer the possibility of studying experimentally the duality
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Figure 12.1 The remaining hydrodynamic parameters of superfluid 3He-A are shown as

a function of temperature together with their Fermi liquid corrected values.

properties between ordered and a disordered phases which have recently come under
intensive study in theoretical models [20] as well as in gauge theories [21]. Here the
theoretical problem is to gain information on one side of the phase boundary (say
on the disordered phase) by studying the extended objects known in the other side
(say in the ordered phase). In gauge theory this is of prime importance: The theory
is valid only in the phase in which quarks are almost free but physics takes place in
the strong-coupling regime where quarks can never become free. It appears that the
knowledge of vortex-like solutions to the gauge field equations may help in deriving
some of the strong-interaction properties of hadrons [22]. The equivalent problem
in 3He would be to try and predict the properties of the B phase by knowing the
properties of the textures in the A phase. This is not an impossible task since there
are always vortex-like objects whose cores contain the phase in question. In fact, in
some systems like 4He the phase transition seems to be related to the accumulation
of such vortons, the other phase being reached when the ”cores” of the vortex lines
have spread over the whole liquid. Related to this is the solid-liquid phase transition
of melting. Here lines of crystal defects proliferate and liberate the atoms from their
crystal sites [23]. Certainly, we are as yet quite far from a complete understanding of
all these phenomena. A detailed study of the superfluid 3He, however, may generate
much insight in these phenomena which could be harder to obtain otherwise.Fig. XXX
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In this Part we shall study a simple model of quantum field theory which shows
how quark theories can be converted into bilocal field theories via functional tech-
niques. The new basic field quanta of the converted theory are approximate the
quark-antiquark meson bound states. They are obtained by solving the Bethe-
Salpeter bound-state equation in the ladder approximation. They will be called
bare mesons. Mesonic Feynman graphs are developed which strongly resemble dual
diagrams. In the limit of heay gluon masses, the bilocal fields become local and
describe π, ρ, A1, and σ-mesons in a chirally invariant Lagrange density, which has
been known for a long time from the so-called SU(3)-symmetric linear σ-model.

Many interesting relations are found between meson and quark properties such
as m2

ρ ≈ 6M2, where M is the non-strange quark mass after spontaneous breakdown
of chiral symmetry. There is a simple formula linking these quark masses with the
small bare masses appearing as parameters in the Lagrange density. The quark
masses also determine the vacuum expectations of scalar densities.
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1

Introduction

In attempting to understand the physics of strongly interacting particles, the
hadrons, two fundamentally different theoretical approaches have been developed.
One of them, the dual approach, is based on complete democracy among all strongly
interacting particles. Within this approach, an elaborate set of rules asures the con-
struction of certain lowest order vertex functions for any number of mesons [1]. The
other approach, assumes the existence of a local field equation involving fundamen-
tal quarks bound together by vector gluons [2]. Here strong interaction effects on
electromagnetic and weak currents of hadrons can be analyzed in a straight-forward
fashion without detailed dynamical computations [3]. Either approach has its weak-
ness where the other is powerful. Dual models have, until now, given no access
to currents while quark theories have left the problem of mesonic vertex function
intractable. Not even an approximate bound state ucalculation is available (except
in 1+1 dimensions [4] or by substituting the field couplings by simple ad-hoc forces
[5].

At present there is hope that the problems connected with quark models are of a
purely technical nature. A Lagrangian field theory of Yang-Mills type seems to have
a good chance of defining a true fundamental theory of elementary particles. Dual
models, on the other hand, seem to be of a more phenomenological character. Once
the fundamental vertices are determined, it is difficult to find next corrections and
to extend the prescriptions to what might be called a complete theory. If this could
be done it would certainly have to be phrased in terms of local infinite-component
or multi-local fields [6].

It would be very pleasing if both models were, in fact, essentially equivalent both
being different languages for one and the same underlying dynamics. In this case
one could use one or the other depending on whether one wants to answer short- or
long-distance questions concerning quarks.

In order to learn how a translation between the different languages might operate
we shall consider, in these lectures, the simplified field theory in which quarks are
colorless, have N flavours, and are held together by vector gluons of arbitrary mass µ.
This theory incorporates several realistic features of strong interactions, for example
current algebra and PCAC. Moreover, the case N = 1 and µ = 0 includes ordianry
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quantum electrodynamics (Q.E.D.). This will provide a good deal of intuition as
well as the possibility of a detailed test of our results.

We shall demonstrate how functional methods can be employed to transform the
local quark gluon theory into a new completely equivalent field theory involving only
bilocal fields. The new free field quanta coincide with quark-antiquark bound states
when calculated by ladder exchanges only. They may be considered as bare mesons.
Accordingly, the transition from the local quark- to the bilocal meson-theory will
be named mesonization. In the special case of QED, bare mesons are positronium
atoms in ladder approximation.

The functional technique will ensure that bare mesons have exactly the correct
interactions among each other in order that mesonization preserves the equivalence
to the original quark gluon theory. It is simple to establish the connection between
classes of Feynman graphs involving quarks and gluons with single graphs involving
mesons. The topology of meson graphs is the same as that of dual diagrams. It is
interesting to observe the appearence of a current-meson field identity for photons
just as employed in phenomenological discussions of vector meson dominance. More-
over, since the theory is bilocal, this identity can be extended to bilocal currents
which are measured in deeply inelastic electromagnetic and weak interactions.

The limit of a very heavy gluon mass can be mesonized most simply. Here
the bilocal fields become local and describe only a few mesons with the quantum
numbers of σ−, π−, ρ−, A1− mesons. The Lagrange density coincides with that
of the standard chirally invariant σ-model which is known to account quite well
for the low-energy aspects of meson physics. Here mesonization renders additional
connection between quark and meson properties. It also makes transparent the
connection between the very small bare quark masses (which describe the explicit
breakdown of chiral symmetry) and the mechanical quark masses (which include the
dynamic effects due to spontaneous symmetry violations).
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2
Abelian Quark Gluon Theory

Consider now a system of N quarks ψ(x) held together by one gluon field Gν(x) of
mass µ via a Lagrangian

L(x) = ψ̄(x) (i/∂ −M)ψ(x) + gψ̄(x)γνψ(x)Gν(x)

−1

4
F 2
µν(x) +

µ2

2
G2
ν. (2.1)

Here Fµν is the usual curl ∂µGν−∂νGµ. In the special case in which N = 1, µ = 0,
and g2 = 4πα, this Lagrangian describes quantum electrodynamics. In other cases it
may be considered as a model field theory which carries many interesting properties
of strong interactions, for example approximate SU(3) symmetry, chiral SU(3) ×
SU(3) current algebra, PCAC, and scaling up to small corrections. Certainly, this
model will never be able to confine quarks, give symmetric baryon wave functions,
and explain infinitely rising meson trajectories. For this it would have to contain
an additional, exactly conserved, color symmetry with Gν(x) being its non-abelian
gauge mesons. Before attempting to deal with this far more complicated situation
we shall develop [10] our tools for the less realistic but much simpler model (2.1)
without color.

The generating functional of all time ordered Green’s function is

Z [η, η̄, jν] = const ×
∫
DψDψ̄DGei

∫
dx(L+ψ̄η+η̄ψ+gjνGν) (2.2)

The exponent is quadratic in Gν(x), such that the functional integration over the
gluon field can be performed [7] [8] using formulas (1.31) and (1.32) whose relativistic
generalization was given in Section 2.5. The result is

Z [η, η̄, jν] = const ×
∫
DψDψ̄eiA[ψ,ψ,η,η,jν ] (2.3)

with an action

A
[
ψ, ψ̄, η, η̄jν

]
=

∫
dxdy

{(
L(x) + ψ̄(x)η(x) + η̄(x)ψ(x)

)
δ(x− y)

− i
2
g2D(x− y)

(
ψ̄(x)γνψ(x) + jν(x)

) (
ψ̄(y)γνψ(y) + jν(y)

)}
. (2.4)
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By employing the Fierz identity:

γναβ ⊗ γνγδ
= 1αδ ⊗ 1αβ + (iγ5)αδ ⊗ (iγ5)γβ

−1

2
γναβ ⊗ γνγβ

− 1

2
(γνγ5)αδ ⊗ (γνγ5)γβ (2.5)

the quartic quark interaction term can be written in a different fashion

i

2
g2D(x− y)

{
ψ̄(x)ψ(y)ψ̄(y)ψ(x) + ψ̄(x)iγ5ψ(y)ψ̄(y)iγ5ψ(x)

−1

2
ψ̄(x)γνψ(y)ψ̄(y)γνψ(x)− 1

2
ψ̄(x)γνγ5ψ(y)ψ̄(y)γνγ5ψ(x)

}
. (2.6)

This will be written short as

i

2
g2D(x− y)ψ̄α(x)ψδ(y)ξαδ,γβψ̄γ(y)ψβ(x), (2.7)

where the matrix ξαδ,γβ denotes the right-hand side of Eq. (2.5).

This is the point where our elimination of quark fields in favor of new bilocal
fields starts.

Let S(x, y), P (x, y), V ν(x, y), Aν(x, y) be a set of hermitian auxiliary fields,
i.e.

S(x, y) = S(y, x), P (x, y) = P ∗(y, x), etc. (2.8)

With these field, we can construct the following functional identities [9]

∫
DS(x, y)e−

i
2
|S(x,y)+ig2D(x−y)ψ̄(y)ψ(x)|2/ig2D(x−y) = const. ,

∫
DP (x, y)e−

i
2
|P (x,y)+ig2D(x−y)ψ̄(y)iγ5ψ(x)|2/ig2D(x−y) = const. ,

∫
DV (x, y)ei|V

ν(x,y)− i
2
g2D(x−y)ψ̄(y)gγψ(x)|2/ig2D(x−y) = const. ,

∫
DA(x, y)eiA

ν |S(x,y)+ i
2
g2D(x−y)ψ̄(y)γνγ5ψ(x)|2/ig2D(x−y) = const. , (2.9)

which are independent of the fields ψ(x). If we now multiply Z [η, η̄, jν] in (2.3) by
these constants, make use of (2.6), all quartic quark terms are seen to cancel. The
generating functional becomes

Z [η, η̄, jν] = const ×
∫
DψDψ̄DSDPDVDAeiÃ (2.10)

where the new action Ã is obtained as an integral

Ã
[
ψ, ψ̄, S, P, V, A, η, η̄, jν

]
=
∫
dxdyL(x, y) (2.11)
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over a bilocal Lagrange density:

L(x, y) ≡
{
ψ̄(x) (i∂/−M)ψ(x) + ψ̄(x)η(x) + η̄(x)ψ(x)

}
δ(4)(x− y)

−ψ̄(x)m(x, y)ψ(y)− i

2
g2D(x− y)jν(x)jν(y)

−
{

1

2
|S|2 +

1

2
|P |2 − |V |2 − |A|2

}
1

ig2D(x− y) . (2.12)

Here m(x, y) has been introduced as an abbreviation for the combined field

m(x, y) ≡ S(x, y) + P (x, y)iγ5 (2.13)

+
(
V ν(x, y) + δ(4)(x− y)

∫
dzig2D(x− z)jν(z)

)
γν + Aν(x, y)γνγ5.

Due to (2.8), the matrix m(x, y) is self-adjoint in the sense

(
m(x, y)

)
αβ
≡ γ0αα′

(
m∗(x, y)T

)
α′β′

γ0β′β
= mαβ(y, x). (2.14)

At this place it is worth remarking that the Lagrangian (2.12) shows its equivalence
to the previous form (2.4) also quite directly. Extremizing the action we obtain the
Euler-Lagrange equations for the fields S, P, V, A are seen to be dependent fields
coinciding with the corresponding bilocal quark expressions

S(x, y) = −ig2D(x− y)ψ̄(y)ψ(x)

P (x, y) = −ig2D(x− y)ψ̄(y)iγ5ψ(x) (2.15)

V ν(x, y) =
i

2
g2D(x− y)ψ̄(y)γνψ(x) (2.16)

Aν(x, y) =
i

2
g2D(x− y)ψ̄(y)γνγ5ψ(x), (2.17)

which show the relation with with the corresponding bilocal quark expressions if
fluctuationns are neglected.

Inserting these relations back into (2.12) reproduces (2.4). In the action (2.11),
quark fields enter only in quadratic form such that they can be integrated according
to formula (1.32). In the relativistic fermion version discussed in Section 2.5, the
matrix A is given by [compare (2.127)]

A(x, y) = (−∂/−M) δ(4)(x− y)−m(x, y). (2.18)

Hence A−1(x, y) ≡ −iG(x, y) is the Green function associated with the equation

∫
dy
[
(i/∂ −M) δ(4)(x− y)−m(x, y)

]
G(y, z) = iδ(4)(x− z). (2.19)

With this notation, the quark integration brings the functional (2.10) to the form

Z [η, η̄, jν] = const ×
∫
Dm(x, y)eiA[η,η̄,jν ] (2.20)
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with

A [m, η, η̄, jν] =
∫
dxdy

{
−iTr

(
ln iG−1

)
(x, y)δ(x− y) (2.21)

−1

2
Tr
(
m(x, y)ξ−1m(y, x)

) 1

ig2D(x− y) + iη̄(x)G(x, y)η(y)− ig2 [δ(4)(x− y)]2
D(0)

− 2

D(0)
V ν(x, x)D(x− y)jν(y) +

∫
dzdz′D(z − x)D(y − z′)jν(z)jν(z′)

}
.

Here we have introduced, for brevity, the notation

Dm(x, y) ≡ DSDPDVDV. (2.22)

Note that the effect of the matrix ξ−1 defined in Eq. (2.6) is simply to devide the
projections into S, P, V, A by 4,−4,−2, 2, respectively.1 The trace refers only to
Dirac indices. The new functional (2.20) is identical to the original one in Eq. (2.2).
As a consequence, a quantum theory based on the action (2.21) must be completely
equivalent to the original quantized quark gluon theory.

A word is in order concering the internal symmetry SU(N) among the N quarks
(i = 1, . . . N) under consideration. Since the gluon is an SU(N) singlet, the interac-
tion in Eq. (2.1) is g

∑N
i=1 ψ̄iγ

νψiGν(x). In the Fierz transformed version (2.6) the
indices i and j appear separated

i

2
g2D(x− y)ψ̄j(x)ψi(y)ξψ̄i(y)ψj(x).

Hence, in the presence of N quarks, the fields m(x, y) have to be thought of a
matrices in SU(N) space m(x, y)i

j. This carries over to the action with the traces
including Dirac as well as SU(N) indices.

Let us now develop a quantum theory for the new action. In general, the field
m(x, y) may oscillate around some constant non-zero vacuum expectation value
m0δ

(4)(x− y). It is convenient to subtract such a value from m(x, y) and introduce
the field

m′(x, y) ≡ m(x, y)−m0δ
(4)(x, y). (2.23)

With this and the definition

M ≡M+m0, (2.24)

Eq. (2.19) can be rewritten as

∫
dy
[
(i∂/−M) δ(4)(x− y)−m′(x, y)

]
G(y, z) = iδ(4)(x− z). (2.25)

1Since 1

4
1 ⊗ 1,− 1

4
(iγ5) ⊗ (iγ5) , 1

4
γν ⊗ γν ,− 1

4
γνγ5 ⊗ γνγ5 are the corresponding projection

operators.
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Now let us assume that the oscillations m′(x, y) are sufficiently small as to permit
a perturbation expansion for G(x, y):

G(x, y) =

GM(x, y)− i (GMm
′Gm) (x, y)− (GMm

′GMm
′GM) (x, y) + . . . (2.26)

where GM(x, y) are the usual propagators of a free fermion of mass M .

GM(x, y) ≡ GM(x− y) ≡
∫ d4p

(2π)4
e−ipx

i

p/−M .

Using this expansion, the action (2.21) takes the form2

A [m′, η, η̄, jν] = A1 [m′] +A2 [m′] +Aint [m′] +Aext [m′, η, η̄, jν] , (2.27)

A1 [m′] ≡
∫
dxdytr

[
GM(x− y)m′(x, y)− ξ−1ξ−1m′(x, y)m0δ(y, x)/ig

2D(x− y)
]
.(2.28)

and A2 being quadratic in m′

A2 [m′] ≡
∫
dxdytr

[
i

2
GMmGMm

′(x, y)− 1

2
ξ−1m′(x, y)m′(y, x)/ig2D(x, y)

]
.(2.29)

The term Aint [m
′] collects all remaining powers in m′

Aint [m
′] ≡

∫
dxTr

[
−
∞∑

n=3

(−i)n+1

n
(GMm

′)
n
(x, x)

]
. (2.30)

The last piece Aext , finally, contains all interactions with the external sources

Aext [m′, η, η, jν] =
∫
dxdy

{
iη̄(x)G(x, y)η(y)− i

2
g2D(x− y)jν(x)jν(y)−

2

D(0)
(2.31)

V ν(x, x)D(x− y)jν(y)− ig2 δ
(4)(0)δ(4)(x− y)

D(0)

∫
dzdz′D(z − x)D(y − z′)jν(z)jν(z′)

}
.

For the quantization we shall adopt an interaction picture. As usual, the quadratic
part of the action, A2[m

′], serves for the construction of free-particle Hilbert space.
According to the least action principle, the free equation of motion are obtained
from δA2[m

′]/δm′(x, y) = 0 rendering

m′(x, y) = g2ξD(x− y) (GMm
′GM) (x, y). (2.32)

Going to momentum space

m′(p2,1 ) ≡
∫
dx2dx1e

i(x2p2−x1p1)m′ (x2, x1)

2A trivial additive constant has been dropped.
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and introducing relative and total momenta

P ≡ (p2 + p1) /2, q ≡ (p2 − p1) /2

together with the notation

m′(P |q) ≡ m′(p2, p1)

the field equation becomes

m′(P |q) = ξg2
∫

d4P ′

(2π)4
D (P ′ − P )GM

(
P ′ +

q

2

)
m′ (P ′|q)GM

(
P ′ − q

2

)
. (2.33)

In this form we easily recognize the Bethe Salpeter equation [11] in ladder approxi-
mation for the vertex functions of quark-antiquark bound states

ΓH(P |q) ≡ NH

(
P +

q

2

) ∫
dzeiPz〈0|Tψ

(
z

2

)
ψ̄
(
−z

2

)
|0〉GM

(
P ′ − q

2

)
(2.34)

where NH is some normalization factor. As a consequence our free field m′(x, y)
can be expanded in a complete set of ladder bound state solutions. These are the
bare quanta spanning the Hilbert space of the interaction picture. Because of their
bound quark-antiquark nature, they are called bare mesons. In the special case of
QED, the “quarks” are electrons and the bare mesons are positronium atoms.

For mathematical reasons it is convenient to solve (2.33) for fixed q2 ∈ (0, 4M2)
and all possible coupling constants g2, to be called g2

H (q2), i. e.

ΓH (P |q) = ξg2
H

(
q2
) ∫ d4P ′

(2π)4
D (P − P ′)GM

(
P ′ +

q

2

)
ΓH

(
P ′ − q

2

)
. (2.35)

A useful normalization condition is

− i
∫

d4P

(2π)4
Tr
[
GM

(
P +

q

2

)
ΓH(P |q)Γ̄H′(P |q)

]
= εHδHH

′

. (2.36)

Here we have allowed for a sign factor εH(q) which cannot be absorbed in the nor-
malization NH of (2.34). It may take the values +1, −1 or zero. Then the expan-
sion of the free field m′(x, y) in terms of meson creation and annihilation operators
a+
H(q), aH(q) can be written as

m′αβ(x, y) =
∫

d44q

(2π)4

∑

H

δ(+)
(
g2
H

(
q2
)
− g2

) ∫ d4P

(2π)4

{
e−i(q(x+y)/2+P (x−y))ΓH(P |q)nHaH(q)

e−i(q(x+y)/2−P (x−y))Γ̄H(P | − q)n∗Ha+
H(q)

}
(2.37)

where nH are appropriate factors giving aH(q) the standard normalization
[
aH(q), a+

H′(q′)
]

= (2π)3δ(3) (q− q′) 2ωH(q)εH(q). (2.38)
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Now the sign factor εH(q) appears at the norm of the mesonic state a+
H |0〉 ≡ |H〉.

In general there will be many states with unphysical norms since the “bare mesons”
are produced by ladder diagrams only and may not be directly related to physical
particles. This situation presents no fundamental difficulty. There are many interac-
tions among bare mesons which are capable of excluding unphysical states from the
S-matrix. In fact, the equivalence of the mesonized theory to the healthy original
quark gluon version is a guarantee for physical results (on shell).

The propagator of the free field m′(x, y) can be found most directly by adding
an external disturbance to the free action

A2[m
′]→ A2[m

′]−
∫
dxdyTr [m′(x, y)J(y, x)] . (2.39)

This current enters the equation of motion as

m′(x, y) = ξg2D(x− y) (GMm
′GM) (x, y)

−ξig2D(x− y)J(x, y). (2.40)

The propagator Gαβ, α′β′ (xy, x′y′) ≡ ṁ′αβ(x, y)ṁ
′
αβ(x

′, y′) is then defined as the
solution of (2.40) for the δ-function disturbance

Jαβ(x, y) = iδ(x− x′)δ(y − y′)δαα′δββ′. (2.41)

It satisfies the inhomogeneous Bethe-Salpeter equation

Gα, β, α′β′ (x, y; x′y′) = (2.42)

ξαβ, α′β′D(x− y)
∫
dx̄dȳGM(x− x̄)αᾱ

Gᾱβ̄, α′β′ (x̄, ȳ; x′y′)GM (ȳ − y)β̄β + ξαβ, β′α′g2D(x− y)δ′(y − y′).

This is immediately recognized as the equation for the two-quark transition matrix
in ladder approximation (see Eq. (3A.22) in App. A.

An explicit representation of the Green’s function in terms of the solutions
ΓH(P |q) of the homogeneous equation (2.35) can now be given.

If Gαβ, α′β′ (P, P ′|q) denotes the Fourier transform

(2π)4δ(4) (q − q′)Gαβ,α′β′ (P, P ′|q) ≡ (2.43)∫
dxdydx′dy′ei[P (x−y)+q(x+y)/2−−P ′(x′−y′)−q′)x+y′)/2]Gαβ,α′β′ (x, y; x′y′)

it can be written as the sum over all meson solutions:

Gαβ,α′β′ (P, P ′|q) = −ig
∑

H

εH(q)
ΓHαβ(P |q)Γ̄Hβ′α′(P ′| − q)

g2
H (q2)− g2

(2.44)

where the sum comprises possible integrals over a continuous set of solutions. If
quarks and gluons were scalars, the sum would be discrete for q2 ∈ (0, 4M2) since
the kernel of the integral equation (2.35) would be of the Fredholm type. A more
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detailed discussion is given in Appendix A. Here we only note that a power series
expansion of the denominator

Gαβ,α′β′ (P, P ′|q) =

−i
∞∑

n=1

∑

H

(
g2

g2
H (q2)

)n
εH(q)ΓHαβ(P |q)Γ̄Hβ′α′ (P ′| − q) (2.45)

renders explicit the exchange of one, two, three, etc. gluons. Hence one additional
gluon can be inserted (or removed) by multiplying (or dividing) (2.44) by a factor
g2/g2

H(q2). This fact will be of use later on.
Seen microscopically in terms of quarks and gluons, the free meson propagator

(2.44) is given by the sum of ladders (see Fig. 2.1) Graphically, it will be represented

Figure 2.1

by a wide band. In the last term of Fig. 2.1 we have also given a visualisation of
the expansion (2.44). Here, the fat line denotes the propagator

∆H(q) = −iεH(q)
g2

g2
H(q2)− g2

(2.46)

while upper and lower bubbles stand for the Bethe Salpeter vertices ΓH(P |q) and
ΓH(P ′|−q), respectively. This picture suggests another way of representing the new
bilocal theory in terms of an infinite component meson field depending only on the
average position X = (x + y)/2. For this we simply expand the interacting field
m′(P |q) in terms of the complete set of free vertex function

m′(P |q) =
∑

H

ΓH(P |q)mH(q). (2.47)

Inserting this expansion into (2.27), the free action becomes directly

A2[m
′] =

1

2

∫
dXmH(X)

(
1− g2

H

(
q2
)
/g2

)
mH(X) (2.48)

implying the free propagator (2.46) for the field mH(X). With this understanding
of the free part of the action we are now prepared to interprete the remaining pieces.
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Figure 2.2

Consider first the linear part A1[m
′]. The first term in it can graphically be

presented as shown in Fig. 2.2. When attached to other mesons it produces a
tadpole correction. When interpreted within the underlying quark gluon picture,
such a correction sums up all rainbow contributions to the quark propagator (see
Fig. 2.3). Also the second term in A1[m

′] has a straight-forward interpretation. First

Figure 2.3

of all, the division by ξig2D(x − y) has the effect of removing one rung from the
ladder sum (such that the ladder starts with no rung, one rung, etc. ) and creating
two open quark legs. This can be seen directly from (2.35) and (2.44): Suppose a
meson line ends at the interaction − ∫ dxdyTr [m′(x, y)ξ−1m0] /ig

2D(x− y)δ(x− y).
then the factor [ξig2D(x− y)]−1

applied to G(P, P ′|q) gives (leaving out irrelevant
indices)

[
ξg2D

]−1
G = −ig2

∑

H

εH
[ξg2D]

−1
ΓHΓ̄H

g2
H(q2)− g2

. (2.49)

Using (2.35) this yields

= −ig2
∑

H

εH
g2
H (q2)

g2

(
GMΓHGM

)
Γ̄H

g2
H (q2)− g2

. (2.50)

As discussed before, the factor g2
H (q2) /g2 amounts to the removal of one rung.

Multiplication by −m0 and integration over
∫
dP |(2π)4 yields the total contribution

of this meson graph

im0

∑

H

g2
H (q2)

g2
H (q2)− g2

∫
d4P

(2π)4
Tr
[
GM

(
P +

q

2

)
ΓH(P |q)GM

(
P − q

2

)]
εH(q)Γ̄H(P ′| − q). (2.51)
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As far as quarks and gluons are concerned, this amounts to the insertion of a mass
term m0 on top of a ladder graph with one rung removed (this being indicated by
a slash in Fig. 2.4. The quark gluon picture leads us to expect that m0 must be a

Figure 2.4

cutoff dependent quantity cancelling the logarithmic divergence in every upper loop
of the ladder sum of Fig. 2.2. Numerically, m0 is most easily calculated by cancelling
the infinite contributed by A1[m

′] to the equation of motion (2.33). If we include
A1[m

′], this equation reads

m0(2π)4δ(4)(q) +m′(P |q) =[
ξig2

∫
d4P ′

(2π)4
D(P − P ′)G(P ′)

]
(2π)4δ(4)(q)

+ξg2
∫

d4P ′

(2π)4
D(P − P ′)GM

(
P ′ +

q

2

)
m′(P ′|q)GM

(
P ′ − q

2

)
. (2.52)

The first term on the right-hand side is exactly the usual self energy Σ(P )(2π)4δ(4)(q)
in second order

Σαβ(P ) ≡ −ξαβ,γδi
∫

d4P ′

(2π)4

1

(P − P ′)2 − µ2

1

/P −M . (2.53)

Normalizing Σ(P ) on mass shell one find the usual expression

Σ(P ) = Σ0 + Σ1 · (/P −M) + ΣR(P ) (2.54)

where ΣR is the regularized self-energy. The cutoff dependent term

Σ0 =
3

4π

g2

4π
M
(
log Λ2/M2 +

1

2

)
(2.55)

must be balanced by choosing m0 = −Σ0 on the left-hand side of (2.52). Also, the
second term Σ1 is cutoff dependent:

Σ1 =
1

4π

g2

4π

(
log Λ2/M2 +

9

2
+ 2 logµ2/M2

)
(2.56)
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and a renormalization is necessary to cancel this infinity. Most economic is the
introduction of an appropriate wave function counter term (Z2 − 1) ψ̄(i/∂ −M) in
the original Lagrangian (2.1). Such a term would enter Eq. (2.19) as

∫
dy {(i∂ −M) (2.57)

δ(4)(x− y) + (Z2 − 1) (i/∂ −M) δ(4)(x− y)−m(x, y)
}
G(y, x) = iδ(4)(x− y).

Instead of (2.23), m(x, y) should now be assumed to oscillate around[
m0 +

(
Z−1

2 − 1
)

(i/∂ −M)
]
δ(x− y). By defining a new m′(x, y) via

m′(x, y) ≡ m(x, y)−
[
m0 +

(
Z−1

2 − 1
)

(i/∂ −M)
]
δ(4)(x− y) (2.58)

the full action (2.27) is obtained exactly as before except for the linear part A in
which the new wave function renormalization term enters together with m0:

A1[m
′] =

∫
dxdytr {GM(x− y)m′(x, y)

−ξ−1m′(x, y)
[
m0 +

(
Z−1

2 − 1
)

(i/∂ −M)
]
δ(x− y)/ig2D(x− y)

}

By choosing

Z−1
2 − 1 = −Σ1 (2.59)

the cutoff dependent term Σ1 is exactly compensated in the equation of motion
(2.52). After this renormalization procedure, only the finite term ΣR(P ) is left. the
regularized action is

A1[m
′]R =

∫
dxdyΣR(x− y)m′(x, y)/ig2D(xy). (2.60)

Using the expansion (2.47), this can be rewritten as

A1[m
′]R = ΣHdXfH(−2)mH(X) (2.61)

with

fH
(
q2
)

= i
∫ d4P

(2π)4
Tr
[
σR(/P )GM

(
P +

q

2

)
ΓH(P |q)GM

(
P − q

2

)]
g2
H (q2)

g2
. (2.62)

By momentum conservation, the tadpole momentum always vanishes such that only
fH(0) is needed eventually.

Let us now proceed to the discussion of the interaction partAint [m
′] of Eq. (2.30).

Take as an example the term of the third order in m′. If a meson line ends at every
m′, it can be represented graphically as shown in Fig. 2.5. Employing the expansion
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Figure 2.5

(2.47), this interaction term can be rewritten as

A3hadr
int

[m′] = −1

3

∑

H1H2H3

∫
d4q3
(2π)4

d4q2
(2π)4

d4q1
(2π)4

(2π)4δ (q1 + q2 + q3)

×
∫

d4P

(2π)4
tr
[
ΓH

(
P − q3

2
|q3
)
GM (P + q1q2) ΓH2

(
P + q1 +

q − 2

2
|q2
)

GM (P + q1) ΓH1

(
P +

q1
2
|q1
)
GM(P )

]
mH3

(q3)mH2
(q2)mH1

(q1)

1

3

∑

H1H2H3

∫
dXυH3H2H1

(
i∂H3

X , i∂H2

X , i∂H1

X

)
mH3

(X)mH2
(X)mH1

(X) (2.63)

with a vertex function υH3H2H1

(
i∂H3

X , i∂H2

X , i∂H1

X

)
whose derivatives ∂Hi

X are to be

applied only to the argument of the corresponding field mHi
(X). A corresponding

formula holds for every power of m′.

Notice that the flow of the quark lines in every interaction is anticlockwise. When
drawing up mesonic Feynman graphs it may sometimes be more convenient to draw
a clockwise flow. A simple identity helps to write down directly the corresponding
Feynman rules. Consider a graph for a three meson interaction and cross the upper
band downwards Usee Fig. 2.6). The interaction appears now with the mesonic
bands in anticyclic order, and the fermion lines in the meson vertex flowing clockwise.
This is topologically compensated by twisting every band once. Mathematically, this
deformation displays the following identity of the vertex functions

υH3H2H1
(q3, q2, q1) = ηH3

ηH2
ηH1

υH1H2H3
(q1q2q3) (2.64)

where the phase ηH denotes the charge parity of the meson H. This phase may be
absorbed in the propagator characterizing the twisted band.
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Figure 2.6

The proof of this identity (2.64) is quite simple. Let C be the charge conjugation
matrix. Then the vertices satisfy:

CΓH (P |q)C−1 = ηHΓH (−P |q)T . (2.65)

Inserting now CC−1 between all factors in (2.63) and observing cγµc−1 = −γµT one
has

υH3H2H1
(q3, q2, q1) =

−ηH3
ηH2

ηH1

∫
dP

(2π)4
tr



ΓH3

(
−P +

q3
2
|q3
)T ( i

−/P − /q1//q2 −M

)T

ΓH2

(
−P − q1 −

q2
2
|q2
)T ( i

−/P − /q1 −M

)T
ΓH1

(
−P − q1

2
|q1
)(

i

−/P −M

)T
 .

Taking the transpose inside the trace and changing the dummy variable P to −P ,
the vertices appear in anticyclic order and the right-hand side coincides indeed with
ηH3

ηH2
ηH1

υH1H2H3
(q1, q2, q3). Twisted propagaotrs are physically very important.

They describe the strong rearrangement collisions of quarks and certain classes of
cross-over gluon lines. Fig. 2.7 shows some twisted graphs together with their quark
gluon contents. In meson scattering rearragement collisions (Fig. 2.7(a)) have rougly
the same coupling strength as direct (untwisted) exchanges. In QED, on the other
hand, they provide for the main molecular binding forces.

The exchange of two twisted meson lines (Fig. 2.7b) seems to be an important
part of diffraction scattering (Pomeron).

Two more examples are shown in Fig. 2.8. Notice that in the pseudoscalar
channel these graphs incorporate the effect of the Adler triangle anomaly.

In this connection it is worth pointing out that all fundamental meson vertices
are planar graphs as far as the quark lines are concerned. Non-planar graphs are
generated by building up loops involving twisted propagators. With propagator
bands, their twisted modifications and planar fundamental couplings meson graphs
are seen to possess exactly the same topology as the graphs used in dual models
[12] except for the stringent dynamcial property of duality itself: In the present
mesonized theory one still must sum s and t channel exchanges and they are by no
means the same. Only after introduction of color and the ensuing linearly rising mass
spectra one can hope to account also for this particular aspect of strong interactions.

H. Kleinert, COLLECTIVE QUNATUM FIELDS



321

Figure 2.7

Figure 2.8
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The similarity in topology should be exploited for a model study of an important
phenomenon of strong interactions. the Okubo, Zweig, and Iizuka rule. Obviously
all meson couplings derived by mesonization exactly respect this rule. All violations
have to come from graphs of the so called cylinder type [13] (for example Fig. 2.7b).
If it is true that the topological expansion [12] is the correct basis for explaining this
rule3, it may also provide the appropriate systematics for organizing the mesonized
perturbation expansion.

Let us finally discuss the external sources. From Aext in (2.41) we see that
external fermion lines are connected via the full propagator G which after expansion
in powers of m′ amounts to radiation of any number of mesons (see Fig. 2.9) These

Figure 2.9

mesons then interact among each other as quantum fields. Diagrammatically, every
bubble carries again a factor ΓH(P |q).

It has to be watched out that mesons are always emitted to the right of each line.
For example, the lowest order quark-quark scattering amplitude should initially be
drawn as shown in Fig. 2.10 in order to avoid phase errors due to twisted bands. Then

Figure 2.10

the graphical rules yield directly the expression (2.44) as they should. Afterwards,
arbitrary deformations can be performed if all twisted factors ηH are respected.

External gluons interact with mesons according to the third term in Eq. (2.31)

− 2

g2D(0)

∫
dxdyV ν(x, x)g2D(x− y)jν(y). (2.66)

Hence every external gluon enters the mesonic world only via an intermediate vector
particle and there is a current field identity as has been postulated in phenomeno-
logical treatments of vector mesons (VMD). Here one finds a non-trivial coupling

3See the forth of Ref. 14).
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between the gluon and the vector mesons: As discussed before, the division by g2D
amounts to a removal of one rung from the ladder of the incoming meson propagator
and takes care of the direct coupling of the gluon to the quarks without the ladder
corrections. This effect was shown to be accounted for a factor g2

H(q2)/g2 in the
propagator sum (2.44). Thus the direct coupling of the vector meson field mH(x)
to an external gluon field Gext

ν (x) can be written as:

g
∑

H

∫ d4q

(2π)4

∫
d4P

(2π)4
Tr
{
γνGM

(
P +

q

2

)
ΓH(P |q)GM

(
P − q

2

)}
g2
H(q2)

g2
mH(q)Gext

ν (−q).(2.67)

In a mesonic graph, the removal of one rung will be indicated by a slash. As an
example, the lowest order contribution to the quark gluon form factor is illustrated
in Fig. 2.11. The slash guarantees the presence of the direct coupling. The free

Figure 2.11

propagator of external gluon is given by the second term of Eq. (2.31). The lowest
radiative corrections consist in an intermediate slashed vector mesons (see Fig. 2.12).
Here the slash is important to ensure the presence of one single quark loop.

Figure 2.12

The divergent last term in the external action (2.31) has no physical significance
since it contributes only to the external gluon mass and can be cancelled by an
appropriate counter term.
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A final remark concerns the bilocal currents as measured in deep inelastic electron
and neutrino scattering. These are vector currents of the type

jν(x, y) ≡ ψ̄(x)γνψ(y). (2.68)

It is obvious, that also for bilocal currents there is a current-field identity with the
bilocal field V µ(x, y). In fact, if one would have added an external source term
Cν(x, y) in the quark action:

∆Aext ≡
∫
dxdyψ̄(x)γνψ(y)Cν(x, y) (2.69)

this would appear in the mesonized version in the form

∆Aext =
∫
dxdy

1

ig2D(x− y)V
ν(x, y)Cν(x, y) (2.70)

which proves our statement. Again, a rung has to be removed in order to allow for
the pure quark contribution (see Fig. 2.13)

Figure 2.13

Bilocal currents carry direct information on the properties of Regge trajectories
[15]. Therefore the present bilocal field theory seems to be the appropriate tool for
the construction of a complete field theory of Reggeons [16], which is again equiv-
alent to the original quark gluon theory. Technically, such a construction would
proceed via analytic continuation of the propagators (2.34) in the angular momen-
tum (and the principal quantum number) of the mesons H. The result would be
a “reggeonized” quark gluon theory. The corresponding Feynman graphs would
guarantee unitary in all channels. Present attempts at such a theory enforces at
channel unitarity only [17]. Also, they are asymptotically valid by consturction and
apparently have a chance of approximating nature only at energies unaccessible in
the near future 4

4See, for example, D. Amati and R. Jengo, Physics Letter B 54 81974).
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3
The Limit of Heavy Gluons

As an illustration of the mesonization procedure we now discuss in detail the limit of
very heavy gluons [18], [34]. Apart from its simplicity, this limit is quite attractive
on physical grounds since it may yield a reasonable approximation to low energy
meson interactions. This is suggested by the following arguments:

Suppose hadrodynamics follows a colored quark gluon theory. In this theory
the color degree of freedom is very important for generating a potential between
quarks rising at long distances which can explain the observed great number of high
mass resonances. However, as far as low-energy interactions among the lowest lying
mesons are concerned, color seems to be a rather superfluous luxury:

First, many fundamental aspects of strong interaction dynamics such as chi-
ral SU(3) × SU(3) current algebra PCAC (together with the low-energy theorems
derived from both) and the approximate light cone algebra are independent of color.

Second, there is no statistics argument concerning the symmetry of the meson
wave function as there is for baryons [19].

Third, high-lying resonances are known to contribute very little in most dis-
persion relations of low-energy amplitudes. For example, the low-energy value of
the isospin odd ππ scattering amplitude is given by a dispersion integral over the
mesons ρ and σ with ≈ 90% accuracy [20]. Similarly, πρ scattering is saturated
by the intermediate mesons π and A1. By looking at all scattering combinations
one can easily convince oneself that the resonances π, π, σ, A1 form an approx-
imately closed “subworld” of mesons as far as dispersion relations are concerned.
As a consequence, it would not at all be astonishing if the neglect of color in a
quark gluon theory would not change the dynamics when restricting the attention
to this mesonic “subworld” 1 The point is now that in the limit of a large gluon mass
µ → ∞, exactly this restricted set of mesons appears as particles in the mesonized
quark gluon theory (2.1) without color. Thus it might be considered as some ap-
proximation to the low-energy aspects of the colored version. Indeed, we shall see
that the mesonized theory coincides exactly with the well-known chirally invariant

1There is one estimate concerning the electromagnetic decay of π0. γγ which is based on
short distance arguments and therefore depends on color [21]. However, the same decay can be
estimated also via intermediate distance arguments, namely by using the coupling ρωπ and vector
meson dominance such that color does not come in.
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σ model. This model has proven in the past to be an appropriate tool for the rough
description of low-energy meson physics [23]. Our derivation of the σ model via
mesonization will render several new relations between meson and quark properties
[18]. We shall at first confine ourselves to SU(2) quarks only, such that symme-
try breaking may be neglected. The extension to broken SU(3) will pe performed
afterwards.

In order to start with the derivation observe that in the limit µ→∞, the gluon
propagator approaches a δ-function:

iD(x− y)→ 1

µ2
δ(x− y). (3.1)

The equation of motion (2.32) forces m′(x, y) to become a local field m′(x):

m′(x, y)→ m′(x)δ(x− y) (3.2)

which satisfies the free field equation

m′(x) = −i g
2

µ2
ξ
∫
dyGM(x− y)m′(y)GM(y − x). (3.3)

In the local limit, the action without external sources takes the form

A[m′] =
∫
dxtt

{
GM(x, x)m′(x)− 1

2
(GMm

′GMm
′) (x, x)

+
∑

n

(−i)n−1

n
(GMm

′)
n
(x, x)− µ2

g2

1

2ξ
m′(x)2 − 1

ξ
m′(x)m0

}
(3.4)

where (GMm
′GMm

′) (x, x) stands short for
∫
dyGM(x− y)m′(y)GM(x− y) etc. As

before in the general discussion, the constant m0 is determined by the vanishing of
the tadpole parts in (3.4) which amounts to balancing the constant contributions in
the wave equation. Due to the singularity of GM(x − y) for x → y this condition
has a meaning only if a cutoff is introduced such that GM(0) is finite:

[GM(0)]αβ =
∫

d4P

(2π)4

[
i

/P −M

]

αβ

= M
∫ Λ

0

d4PE
(2π)4

(
P 2
E +M2

)−1
δαβ

= M
π2

(2π)4

(
Λ2 −M2 log Λ2/M2

)
δαβ ≡ MQδαβ. (3.5)

Here the dP 0 integration has been Wick-rotated by 900 such that the momentum
P µ = (P 0,P) becomes (iP 4,P) with P 4 ∈ (− ∫ ,∞) along the integration path.
The new real momentum (P 4, P) has been denoted by P µ

E and its euclidean scalar
product by P µ

E = P 42 + P2 = −P 2. The tadpoles can now be cancelled by setting
m0 equal

m0 = 4
g2

µ2
QM. (3.6)
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Remembering the relation to the bare quark mass m0 = M −M, this determines
the connection between the “true” quark mass M and the bare mass M contained
in the Lagrangian:

M =M+ 4
g2

µ2
QM. (3.7)

Equation (3.8) is often called “gap equation” because of its analoguous appearance
in the theory of superconductivity [24].

Consider now the free part A2[m
′] of the action. Performing again a decomposi-

tion of type (2.13) but with the local field m′(x), it can be written in the form

A2[m
′] =

∫
dxtrSU(2)

{
1

2
m′i(x)Jij(i∂)mj(x)

µ2

2g2

(
S2

(x) + P 2
(x) − 2V 2(x)2A2(x)

)}
(3.8)

where m′i(x)(i = 1, 2, 3, 4) stands short for the fields 2 S(x), P (x), V (x), A(x) and
the trace runs only over internal SU(2) indices. The coefficients Jij(q) are given by
the integrals

Jij(q) ≡ −4
∫

d4Pe
(2π)4

1
(
P + q

2

)2

E
+M2

1
(
P − q

2

)2

E
+M2

tij(P |q) (3.9)

where tij(P |q) denotes the Dirac traces

tij(P |q) ≡
1

4
trDirac

{
Γi

(
/P +

/q

2
+M

)
Γj

(
/P − /q

2
+M

)}
(3.10)

with Γi (i = 1, 2, 3, 4) abbreviating the standard Dirac covariants 1, iγ5, γ
ν, γνγ5 The

traces are displayed in Appendix A Eq. (3A.39). Some of them grow quadratically in
P . The corresponding integrals Jij(q) are quadratically divergent for large cutoffs.
The others diverge lograthmically. If one introduces the basic integral

L ≡
∫
d4PE
(2π)4

1

(P 2
E +M2)

2 =
π2

(2π)4

(
log

Λ2

M2
− 1

)
(3.11)

the divergent parts of jij are (see App. A)

Jss(q) = Q+ L

(
q2

2
− 2M2

)

Jpp(q) = Q+ L
q2

2
; JPAν = −iLMqν

JV µV ν(q) = −1

3

(
q2gµν − qµqν

)
L (3.12)

JAµAν (q) = −1

3

[(
q2gµν − qµqν

)
− 6M2gµν

]
L; JAµP = iLMqµ

2The Lorentz indices of V ν and Aν fields are suppressed.
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with al other integrals vanishing.
If we neglect the finite contributions as compared with these divergent ones, the

action A2[m
′] is seen to correspond to the local Lagrangian3

L(x) = trSU(2)

{
1

2
S ′(x)

[
4Q− 2

(
2 + 4M2

)
L− µ2

g2

]
S ′(x)

+
1

2
P (x)

[
4Q− 22L− µ2

g2

]
P (x)

1

2
Vµ(x)

[
4

3
(2gµν − Jµ∂ν)L +

2µ2

g2

]
Vν(x)

+
1

2
Aµ(x)

[
4

3
(2gµν − ∂µ∂ν)L+ 8M2gµνL +

2µ2

g2

]
Aν(x)

+2ML (∂µP (x)Aµ(x) + Aµ(x)∂µP (x))} . (3.13)

If we respect the gap equation (3.7) in this Lagrangian, the quadratically divergent
terms Q can be eliminated. The mixed terms can be removed by introducing a new
field Ãµ(x) via

Aµ(x) = Ãµ(x) + λ∂µP (3.14)

and fixing λ as

λ = −3M/m2
A (3.15)

where m2
A stands short for

m2
A = m2

V + 6M2 (3.16)

with

m2
V = 3µ2/(2g2L). (3.17)

This substitution produces additional kinetic terms for the pseudoscalar fields which
now appears with a factor

−trSU(2) (P (x)2P (x))
(
1 +

2

3
m2
Aλ

2 + 4Mλ

)
L

= trSU(2) (∂µP (x)∂µP (x))Z−1
P L. (3.18)

Using (3.15), this renormalization factor becomes

Z−1
P = 1− 6M2/m2

A. (3.19)

3Since m(x) and m′(x) differ only by a Dirac scalar constant m01α,β there is no difference
between prmed and unprimed fields except for S ′(x) = S(x) − m0
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After this diagonalization, the Lagrangian reads

L(x) = trSU(2)

{
∂µS

′∂µS ′ −
(
4M2 +

1

3
m2
VM/M

)
S ′2

−∂µP∂µPZ−1
P −

1

3
m2
VM/MP 2

−1

3
F µν
V F V

µν +
2

3
m2
V V

2
µ

−1

3
F µν

Ã
F Ã
µν +

2

3
m2
AÃ

2
µ

}
× L (3.20)

where F µν
V,Ã are the usual field tensors of vector and axial vector fields. The particle

content of this free Lagrangian is now obvious. There are vector mesons of mass
m2
V , axial-vector mesons of mass m2

A and scalar and pseudoscalar mesons of mass

m2
S = 4M2 +

1

3
m2
VM/M (3.21)

m2
P =

1

3
m2
VM/MZP . (3.22)

With (3.17), the constant (3.19) can also be written as

Z−1
P = m2

V /m
2
A. (3.23)

As we have argued before, there is a good chance that the fields P, V, S, A describe
approximately the lowest lying mesons π, ρ , σ, A. Let us test this hypothesis as
far as the masses are concerned. Since experimentally m2

A1
≈ 2m2

ρ the factor Zπ
becomes ≈ 2. Furthermore, Eq. (3.16) determines the quark mass as:

6M2 = m2
A1
−m2

ρ; M ≈ 310MeV (3.24)

in good agreement with other estimates [25]. The small pion mass yields via (3.22)

M≈ 15MeV (3.25)

Thus the bare quark mass has to be extremely small. Also this result has been
obtained by many authors [26]. It is common to all models in which the smallness
of the pion mass is related to the approximate conservation of the axial current
(PCAC).

The scalar meson finally is pedicted from (3.21) to have a mass

mT ≈ 2M ∼ 620MeV. (3.26)

This agrees well with the oberved broad resonance in ππ scattering. [27] [20]
One disagreement with experiment appears in connection with the SU(2) singlet

pseudoscalar mass (the η meson). According to (3.22) it should be degenerate with
the pion. The resolution of this problem will bei discussed later when the theory
has been extended to SU(3).
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After these first encouraging results we shall rename the fields P . . . , V, S, A
by the corresponding particle symbols

√
LP ≡ π,−

√
LS ′ ≡ σ′,−

√
2

3
LV µ ≡ ρµ,−

√
2

3
LAµ ≡ Aµ1 (3.27)

where a normalization factor has been introduced in order to bring the kinetic terms
in the Lagrangian to a conventional form.

A comment is in order concerning the appearance of a quadratic divergence
in equations (3.7), (3.12). Such a strong divergence indicates, that the limiting
procedure µ → ∞ of Eq. (3.1) has been performed too carelessly. In fact, if one

inserts (3.1) into the action (2.4), the theory becomes of the
(
ψ̄ψ

)2
type and thus

non-renormalizable. In order to keep the renormalizability while dealing with a
large gluon mass µ2 � Λ2. Then the quadratic divergence becomes actually of the
logarithmic type (compare (2.53)):

Q =
∫
d4PE
(2π)4

1

P 2
E +M2

1

P 2
E + µ2

(3.28)

=
π2

µ2 −M2

[
µ2 log

(
Λ2

µ2
+ 1

)
−M2 log

(
Λ2

M2
+ 1

)]

(which in the careless limit µ2 →∞ reduces again to (3.5)). The logarithmic diver-
gence (3.11) on the other hand becomes in this more careful treatment independent
of the cutoff which is replaced by the large gluon mass

L =
∫ d4PE

(2π)4

1

(P 2
E +M2)

2

1

(P 2
E + µ2)

(3.29)

π2

(2π)4

µ2

(µ2 −M2)2

[
µ2 log

µ2

M
+M2 − µ2

]
≈ π2

(2π)4
log

µ2

M2
(3.30)

Hence all our results refer to a renormalizable theory if one reads both Q and L as
logarithmic expression once in the cutoff and once in the gluon mass, respectively.

Let us now proceed to study the interaction terms. The n’th order contribution
to the action is given by

An[m′] =
(−i)n−1

n

∫
dxTr (GMm

′)
n

(3.31)

In momentum space this can be written as the one loop integral

An[m′] = 4
(−1)n−1

n

∫
dqn

(2π)4
. . .

dq1
(2π)4

(2π)4δ (qn + . . .+ q1)

∫
d4PE
(2π)4

1

(P + qn + dots+ q1)
2
E +M2

. . .
1

(P + q1)
2
E +M2

tin...i1 (P |qn−1, . . . , q1)

trSU(2)

[
m′in(qn) · . . . ·m′i1(q1)

]
(3.32)
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where tin...i1 (P |qn−1, . . . , q1) is the generalization of the tensor (3.10)

tin...i1 (P |qn−1, . . . , q1) ≡ (3.33)
1

4
Tr
[
Γin

(
/P + /qn−1 + . . .+ /q1 +M

)
Γin−1

. . .Γi2 (/P + /q1 +M) Γi1(/P +M)
]

The result is hard to evaluate in general (except in a 1 + 1 dimensional space).
With the approximation of a large cutoff one may however, neglect again all con-
tributions which do not diverge. This considerable simplifies the results. Since
tin...i−1 (Π|qn−1, . . . , q1) are polynomials in P of order n, the integral is seen to con-
verge for n > 4. For n = 4 there is a logarithmic divergence with only the lead-
ing momentum behaviour of tin . . . i1 contributing. For n ≤ 3 also lower powers
in momentum P of tin . . . i1 (P |qn−1, . . . , q1) diverge logarithmically. A simple but
somewhat tedious calculation of all the integrals (see App. B) yields the remaining
terms in the Lagrangian. They can be written down in a most symmetric fashion by
employing the unshifted fields 4 S(x) ≡M ∗S ′(x) rather than S ′, or in renormalized
form

σ(x) = −
√
LM + σ′(x). (3.34)

Then the Lagrangian reads

L(x) = TrSU(2)

{[
(Dµ (Dµσ)2 + (Dµπ)2

]
+M2

0

(
σ2 + π2

)

−2

3
γ2
[
σ4 + π4 − 2σπσπ

]
− 1

2
F V 2

µν −
1

2
FA2

µν

+m2
V

(
V 2
µ + A2

µ

)
− 2

3
m2
V

√
LM

}
. (3.35)

Here Dµσ and Dµπ are the usual covariant derivatives:

Dµσ = ∂µσ − γ [Vµσ]− γ {Aµπ}
Dµπ = ∂µπ − iγ [Vµπ] + γ {Aµσ} (3.36)

and F V
µν, FA

µν are the covariant curls

F V
µν = ∂µVν − ∂νVµ − iγ [Vµ, Vν]− iγ [Aµ, Aν ]

FA
µν = ∂µAν − ∂νAµ − iγ [Vµ, Aν ]− iγ [Aµ, Vν ] .(3.37)

The constant γ denotes

γ =

√
3

2L
. (3.38)

4Notice that with this notation m(x) = m0 + m′(x) = (M −M) + m′(x) = −M + S + Piγ5 +
V µγµ + Aµγµγs
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It describes the direct coupling of the vector mesons to the currents, i. e. it coin-
cides with the coupling conventionally denoted by γρ. Here γ has its origin in the
renormalization of the fields. The mass term stands short for

2M2
0 ≡ 2M2 − 1

3
m2
VM/M. (3.39)

Actually, the so defined mass quantity has an intrinsic significance. This can be
seen by deriving the Lagrangian in a different fashion from the beginning. Consider
the tadpole terms of the action

A1 [m1] =
∫
dxtr

{
GM(x, x)m′(x)− 1

ξ
m′(x)m0

}
. (3.40)

In the former treatment we have eliminated m0 completely by giving the quarks a
mass M satsifying the gap equation

M −M ≡ m0 = 4
g2

µ2
QM. (3.41)

Instead, we could have introduced an auxiliary mass M0 satisfying the equation

M0 = 4
g2

µ2
Q0M0 (3.42)

where Q0 is the same function of M0 as Q is of M . The connection between this M0

and the other masses is obtained by inserting M = M0δM into Q:

Q = Q0 − 2M0δM (1 + δM/2M0)L (3.43)

which holds exactly in δM with only small corrections for large cutoffs (notice that
at this accuracy L0 = L). Inserting this into (3.41) we find

M = 4
g2

µ2
L2M0M (1 + δM/2M0) δM (3.44)

and using m2
V from

M =
12

m2
V

M0M (1 + δM/2M0) δM. (3.45)

If now m(x) is split in a different fashion

m(x) = m̃0 +m′′(x) (3.46)

with a new m̃0 = M0 −M then the propagator G(x, y) would have an expansion

G(x, y) = GM0
(x− y)− i (GM0

m′′GM0
) (x, y) + . (3.47)
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For this reason, the derivation of all Lagrangian terms yields exactly the same results
as before only with m′′,M0, L0, and Q0 occurring rather than m′, M, L and Q,
respectively. There are only two differences: First, due to the gap equation (3.42),
the scalar and pseudoscalar mass terms become 4M 2

0 and O rather than (3.21), (3.22)
second, the tadpole terms in this derivation do not cancel completely. Instead one
finds from (3.40)

A1 [m′] =
∫
dxtr

{(
4Q0M0 −

M0 −M
g2/µ2

)
m′′(x)

}

=
∫
dx
µ2

g2
tr {Mm′′(x)} =

2

3
m2
x

∫
dxtr {Mm′′(x)} . (3.48)

These tad pole terms provide exactly the necessary additional shifts in the fields
which are needed in order to bring the scalar and pseudoscalar masses from 4M 2

0 and
O to their correct values m2

σ and m2
π. The symmetric form (3.35) of the Lagrangian

is again reached by introducing the original unprimed fields

S(x) ≡M0 + S ′′(x), σ = −
√
LM0 + σ′′. (3.49)

Then the mass term appears as an SU(3)× SU(3) invariant

2M2
0

(
σ2 + π2

)
.

5 Notice now this coincides exactly with the former calculation which rendered (see
4.38)

(
2M2 − 1

3
m2
VM/M

) (
σ2 + π2

)
.

Inserting here M = M0 + δM and (3.45) gives

2M2 − 1

3
m2
VM/M = 2M2

0 + 4M0δM + 2(δM)2 − 4M0

(
1 +

δM

M0

)
δM

= 2M2
0 . (3.50)

Hence the SU(3) symmetric mass M0 defined by the gap equations (3.42) coincides
with the mass M0 introduced as an abbreviation to the mass combination (3.39).

5With this substitution, the unprimed field S really coincides with the formerly introduced field
S since now

m(x) = (M0 −M) + S′′(x) + P (x)iγ5 + . . .

= −M + S(x) + P (x)iγ5 + dots

while before

m(x) = (M −M) + S′(x) + P (x)iγ5 + . . .

= −M + S(x) + P (x)iγ5 + . . .
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The Lagrangian (3.35) is recognized as the standard chirally invariant σ model.
Its symmetry transformations are for isospin

δσ = i [α, σ] ; δπ = i [α, π]

δV µ = i [α, V µ] +
1

γ
∂µα ; δAµ = i [α,Aµ] . (3.51)

For axial transformations the fields change according to

δ̄σ = −{ᾱ, π} ; δ̄π = {ᾱ, σ}

δ̄V µ = i [ᾱ, Aµ] ; δ̄Aµ = i [ᾱ, V µ] +
1

γ
∂µᾱ. (3.52)

The only term in the Lagrangian which is not invariant is the last linear term. In
fact from

δ̄L = i
2

3
m2
VM
√
L {ᾱπ} ≡ i {ᾱ, ∂A} (3.53)

one finds

∂A(x) = fπm
2
πZ
−1/2
π π(x). (3.54)

Introducing the conventional pion decay constant via

∂A(x) ≡ fπm
2
πZ
−1/2
π π(x) (3.55)

one can read off

fπm2
π = Z1/2

π

2

3
m2
V

√
LM. (3.56)

Inserting m2
π from (3.22) this gives

fπ = Z−1/2
π 2M

√
L. (3.57)

By squaring this and using γ =
√

3
2L

, one obtains

fπ2 =
6M2

Zπ

1

γ2
=
mρ2

γ2

m2
A −mρ2

m2
A

(3.58)

which for m2
A ≈ 2m2

ρ renders the well known KSFR relation. The model has the
usual predictions

gρππ = γρ

(
1− m2

A −mρ2

2m2
A

)
≈ 3

4
γρ (3.59)
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and

gA,ρπ =
1

2mρ
γ2Zπfπ ≈

mρ

2fπ
≈ 4; hA,ρπ = 0

gA,σπ = γZ1/2
π ≈ mρ

fπ
≈ 8 (3.60)

gσππ =
2

mσ

1

3
γ2fπZ

3/2
π ≈ mσ

fπ

√
2 ≈ 9. (3.61)

When compared with experiment, the only real defect consists in the d-wave A, ρπ
coupling, hA, ρπ, being absent, additional chirally invariant terms are needed in the
Lagrangian, for example, the so-called δ-term:

δTr
[(
FA
µν + F V

µν

)
Dµ (σ + iπ)Dν (σ − iπ)− (V → −V, π → −π)

]
. (3.62)

Such terms appear in our derivation if the approximation of large µ2 is improved by
terms which do not grow logarithmically in µ.

Let us now determine the couplings of π, σ, ρ, A1, A1 to external quark fields.
The external propagation proceeds via

iη̄Gη = iη̄GM0
η + η̄GM0

m′′GM0
m′′GM0

µ− i . . . (3.63)

If one defines the couplings by

LαgπQQΨ̄iγ5τaΨπ
a + gσQQψ̄τaψσ

a

+gV QQΨ̄γµ
τa
2

ΨV a
µ + gAQQΨ̄γµγ5

τa
2
ψAaµ (3.64)

and can read off

gπQQ =
1

2
√
L
Z1/2
π =

M

fπ
; gσQQ =

1

2
√
L

=
M

fπZ
1/2
π

gρQQ = gA1QQ = γ. (3.65)

We see the vector coupling to quarks agree with vector-meson dominance. Due to
PCAC also the Goldberger Treiman relation is respected

gπQQ = gA
M

fπ
(3.66)

since the axial charge of the quark is gA = 1. Since the quark mass is M ∼ mN/3,
the pionic coupling to quarks is considerably smaller than to nucleons. Numerically

g2
πψψ

4π
≈ 1

17

g2
πNN

4π
≈ .86. (3.67)

The σ meson couples even weaker

g2
σQQ ≈ .43.
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Vector- and axial-vector mesons, on the other hand, couple as strongly as to nucleons
which is an expression of universality:

g2
ρQQ

4π
=
g2
AQQ

4π
=
γ2

4π
≈ 2.6

(
≈ g2

ρNN

4π

)
(3.68)

We are now ready to extend our consideration to SU(3) (and higher groups). In this
case the explicit symmetry breaking in the Lagrangian is too large to be neglected.
Thus the bare masses M of the quarks have to be consdiered as a matrix

M≈



Mn

Md

Ms


 (3.69)

The derivation of the Lagrangian presented above (via the gap equation (3.42) has
shown complete SU(3) symmetry of M 2

0 . Hence when extending from SU(2) to
SU(3), no change occurs except in the last symmetry breaking term of (3.35). As a
consequence, the mass expressions for m2

p and m2
s remain as they are only that the

renormalization constants Zp become more complicated SU(3) dependent quantities
due to the involved mixing of pseudoscalar and axialvector mesons. For a complete
discussion of this SU(3)× SU(3) invariant chiral Lagrangian the reader is referred
to the review articles [23]. Here we only give a few results:
A best fit to π K meson masses requries6

M≈




15
15

435


MeV. (3.70)

Thus the explicit symmetry breakdown of SU(3) caused by the bare masses is quite
large. The standard parameter [28] C characterizes this:

C ≡ M
8

M0
=

1√
3

(
Mn +Md − 2Ms

)

√
2
3
(Mn +Md +Ms)

≈ −1.28(≈ −
√

2). (3.71)

Inserting into (3.45) we find the shifts in the quark masses caused by dynamics

δM =




7
7

127


MeV (3.72)

and hence for the “physical” quark masses

M ≈




3/2
3/2

432


MeV. (3.73)

6For other determinations of see Ref. 26.
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Thus contrary to the large explicit SU(3) violation the bare massesM, the physical
quark masses M show only the moderate violation

C ′ ≡ M8

M0
=

1√
3

(
Mn +Md − 2M s

)

√
2
3
(Mn +Md +M s)

≈ −16 (3.74)

Since the quark masses M are produced almost completely by dynamical effects
we expect some symmetry breakdown to appear also in the vacuum. A measure of
this is provided by the expectation values of the scalar quark densities

〈0|Ũa|0〉 ≡ 〈0|ψ̄(x)
λa

2
ψ(x)|0〉. (3.75)

In the mesonized theory, the scalar densities are identical with the scalar fields, up
to a factor:

Sij(x) = − g
2

µ2
ψ̄i(x)ψj(x) (3.76)

as can be seen most easily by considering the equations of constraint (2.15) following
from the Lagrangian (2.12) in the large −µ limit. Hence

〈0|ũa|0〉 = −µ
2

g2

∑

i,j

λai
j〈0|Sij|0〉

= − µ2

2g2
tr(Mλa). (3.77)

Inserting (3.17) and (3.57) the factor becomes simply

1

2

µ2

g2
=

1

3

1
2
3
g2

µ2L
L =

1

3
m2
V Zπ

f 2
π

4M2
≈ f 2

π

such that

〈0|ũ0|0〉 ≈ f 2
πM

0 = −f 2
π

√
2

3

(
Mn +Md +M s

)
≈ −8× 10−3GeV3

〈0|ũ8|0〉 ≈ −f 2
πM

8 = c′〈0|ũ0|0〉. (3.78)

This shows that the SU(3) violation in the vacuum equals that in the quark masses
≈ −16%. 7 Notice that the three results (3.22), (3.45) and (3.76) are in complete
agreement with what one obtains by very general consideratons using only chiral
symmetry and PCAC (see App. C).

The extension of the Lagrangian to SU(3) produces additional defects which are
well known from general discussions of chiral SU(3) × SU(3) symmetry [23]. For

7In Ref. cite30, SU(3) breaking in the vacuum was neglected. For a more general discussion
and earlier references see Ref. [29].
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example the vector mesons ω1, ϕ are not mixed (almost) ideally as they should but
ϕ remains close to an SU(3) singlet. In general discussions, additional terms have
been added to chiral Lagrangian in order to account for this. There are the so called
“current mixing terms”:

Tr
{(
F V
µν + FA

µν

)2
(σ + iπ)(σ − oπ) + (A→ −A, π → −π)

}
(3.79)

as well as “mass mixing terms”

Tr
{
(V µ + Aµ)2 (σ + iπ) (σ − iπ) + (V µ − Aµ)2 (σ − iπ) (σ + iπ)

}
. (3.80)

In our derivation these arises as a next correction to the µ2 → ∞ limit. Another
problem is the degeneracy of the ideally mixed isosinglet pseudoscalar meson µ′ideal

with the pion. In order to account for the fact that the η ′ (Ξ0) meson is almost a
pure SU(3) singlet and much heavier than the other pseudoscalar mesons one needs
some chirally symmetric term

det (σ + iπ) + det (σ − iπ) . (3.81)

Such a term breaks PCAC for the ninth axial current. It is well known [30] that
the quark gluon triangle anomaly operates in the singlet channel and might be
capable of producing such a PCAC violation. In fact, if this was not true, quantum
electrodynamics would possess an exactly massless Goldstone boson [31] with η
quantum numbers. Also the term (3.81) will appear when µ is not any more very
large.

It is obvious that corrections to the µ2 → ∞ approximation will become even
more important if one tries to extend the consideration to SU(4) since then vector
and pseudoscalar masses are quite heavy. In addition, the narrow width of the
SU(4) vector meson ψ/J seems to indicate that short-distance parts of the gluon
propagator are being probed. Thus the colorless quark gluon theory itself cannot
be considered any more a realistic approximation to the colored theory.

At this place we should remark that present explanations of electromagnetic
mass differences require also an breakdown of SU(2) symmetry in M [32]. This is
conventionally parametrized by

d ≡ M
3

M0
=

Mn −Md

√
2
3
(Mn +Md +Ms)

. (3.82)

From meson masses (as well as from the electromagnetic η → 3π decay) one finds
[33]

d ≈ −3 (3.83)

This amounts to the bare quark masses

M≈




10
20

435


MeV (3.84)
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giving the “true” masses

M ≈




310
315

432


MeV. (3.85)

Thus the SU(2) breaking of the vacuum is very small

d′ ≡ 〈0|ũ
3|0〉

〈0|ũ0|0〉 =
M3

M0
≈ −.6 (3.86)

With all parameters fixed numerically we should finally check whether the ap-
proximation of a large gluon mass is self consistent. From (3.57) we have

L ≈ 1

2

fπ2

M2
≈ .046. (3.87)

Inserting this into (3.29) we calculate

log
µ2

M2
∼ (4π)2 × 0.046 ≈ 7.3 (3.88)

and hence

µ2 ≈ 1500M2 �M2 (3.89)

or

µ ≈ 12BeV. (3.90)

It is gratifying to note that this value is much larger than the mass of the vector
mesons. In this way it is assured that higher powers of q2/ (P 2

E +M2) which were
neglected in the derivation of the Lagrangian remain really small as compared to
unity for all mesons of the theory (see App. B).

We should point out that the quark gluon theory in the limit µ2 →∞ coincides
with the well-known Nambu-Jona Lasinio [24] model which has proven in the past
to be a convenient tool of studying the spontaneous breakdown of chiral symmetry
and the dynamical generation of PCAC. Those authors have demonstrated the close
analogy of the dynamic structure of this model with that of superconductivity. As
we have mentioned before the equation (3.41) removing the tadpoles in the action
is analogous to the gap eqution for superconductors.

A similar analogy to superconductors exists also for the hdronized theory. The
classical version of it corresponds exactly to the classical Ginzburg-Landau equation
for type II superconductors in which the gap is allowed to be space time dependent.
In fact, the classical mesonized theory can be derived alternatively by assuming
such a dependence in the gap equation [34], [18]. The advantage of our functional
derivation is that the mesonized theory is not merely some classical approximation
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but becomes upon quantization completely equivalent to the original quark gluon
theory.

A final comment concerns the Okubo-Zweig-Iizuka rule. As argued in the gen-
eral section, the meson Lagrangian exactly respects this rule. This can be checked
directly for all interaction terms in (3.35). Violations of this rule are all coming from
meson loops to straight-forward estimates for the size of such violations.
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Outlook

We have shown that in the abence of color, quark gluon theories can successfully
be mesonized. The resulting quantum field theory incorporates correctly amyn fea-
tures of strong interactions. Its basic fields are bilocal and the Feynman rules are
topologically similar to dual diagrams. Our considerations haven take place at a
rather formal level. Certainly, there are many problems which have been left open.
For example, there is need for an understanding of the non-trivial gauge properties
of the bilocal theory. Also, a consistent renormalization procedure will have to be
developed in future investigations.

The inclusion of color is the challenging problem left open by this investigation.
If color quark gluon theory is really equivalent to some kind of dual model the
corresponding mesonization program should not produce bilocal but multilocal fields
which are characterized by the position of a whole string rather that just its end
points. A field theory should be constructed for gauge invariant objects like

ψ̄(x) exp
(
ig
∫ y

x
Gν(z)dzν

)
ψ(y)

which depend on the whole path from x to y.
The difficulty in a direct generalization of the previous procedure is the self-

interactionj of the gluons. Only after the infrared behaviour of gluon propagators
will be known, bare mesons can be constructed inside the corresponding potential
well and the “mesonization” methods can serve for the determination of the complete
residual interactions.

It is hoped that mesonic Feynman rules in the presence of color will follow a
pattern similar to that found here for the non-abelian theory.

Let us finally mention that an interesting field of applications of our methods
lies in solid-state physics. Semi-conductors in which conduction and valence bean
dhave only small separations may show a phase transition to what is called excitonic
insulator. The critical phenomena taking place inside such an exciton system will
find their most appropriate description by studying the scaling properties of the
bilocal field theory.

Appendix 3A Remarks on the Bethe-Salpeter Equation

Consider the four Fermion Green’s funcion

G
(4)
αβ,α′β′ (x, y; x′y′) ≡ 〈0|T

(
ψα(x)ψ̄β(y)ψ̄α′(x′)ψβ′(y′)

)
|0〉 (3A.1)

341
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which becomes in the interaction picture

G
(4)
αβ,α′β′ (x, y; x′, y′) ≡

[
〈0|Teig

∫
d4zψ̄(z)γµψ(z)Gµ(z)|0〉

]−1

×〈0|T
(
eig
∫
d4zψ̄(z)γµAψ(z)Gµ(z)ψα(x)ψ̄β(y)ψα′(x′)ψβ′(y′)

)
|0〉 (3A.2)

Expanding the exponential and keeping only the ladder exchanges corresponding to
the Feynman graph in Fig. 3.1), we obtain

Figure 3.1

G
(4)
αβ,α′β′ (xy, x′y′) = Gαα′ (x− x′)Gβ′β (y′ − y) (3A.3)

+g2
∫
dx1dy1Gαα1

(x− x1) γ
µ
α1α′

1
Gα′

1α
′ (x1 − x′)Gβ′β′

1
(y′ − y1) γµβ′

1
β1
Gβ1β (y1 − y)D(x− y)

+g4
∫
dx1dy1dx2dy2Gαα1

(x− x1) γ
µ1

α1α′

1
Gα′

1
α2

(x1 − x2) γ
µ2

α2α′

2
Gα′

2
α2

(x2 − x′)
D (x1 − y1)D (x2 − y2)Gβ′β′

2
(y′ − y2) γµ2β′

2
β2
Gβ2β′

1
(y2 − y1) γµ1β′

1
β1
Gβ′β (y1 − y)

+ . . . (3A.4)

The series can be summed to the integral equation

G
(4)
αβ,α′β′ (xy, x′y′) = (3A.5)

Gαα′(x− x′)Gβ′β (y′ − y) + g2
∫
dx1dy1Gαα1

(x− x1) γ
µ
α1α′

1

G
(4)
α′

1
β′

1
,α′β′ (x, y1, x

′y′) γµβ′

1β1
Gβ1β (y1 − y)D (x1y1)

With the abbreviation

ξα1β1,β′

1α
′

1
= γµα1α′

1
γµβ′

1β1
= 1α1β1

1β′

1α
′

1
+ (iγ5)α1β1

(iγ5)β′

1α
′

1

−1

2
γµα1β1

γµβ′

1α
′

1
− 1

2
(γµγ5)α1β1

(γµγ5)β′

1
α′

1
. (3A.6)

This can be written as

G
(4)
αβ,α′β′ (xy1x

′y′) =

Gαα′ (x− x′)Gβ′β (y′ − y) + g2
∫
dx1dy1Gαα1

(x− x1)

ξα1β1,β′

1α1
D (x1 − y1)G

(4)
α′

1
β′

1
,α′β′Γβ1β (y1 − y) (3A.7)
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or, symbolically:

G(4) = GGT +GGT ξg2DG(4). (3A.8)

The transition matrix T is defined by removing the external particle poles in the
connected part of G(4)

G
(4)
αβ,α′β′ (xy, x′y′) ≡ (3A.9)

Gαα′ (x− x′)Gββ′ (y′ − y) +
∫
dx1dy1dx2dy2Gαα1

(x− x1)

Gβ′β2
(y′ − y2)Tα1β1,α2β2

(x1y1, x2y2)Gα1α (x2 − x′)Gβ1β (y1 − y) (3A.10)

which may be abbreviated by

G(4) = GGT +GGTTGGT . (3A.11)

From (3A.7) and (3A.9) the transition matrix satisfies the integral equation

Tα1β1,α2β2
(x1y1, x2y2) =

ξα1β1,β2α2
g2D (x1 − y1) δ (x1 − y1)∫

dx′1dy
′
1Gα1α′

1
(x1 − x′1)Tα′

1β1,α2β2
(x′1y

′
1x2y2)Gβ′β1

(y′1 − y2)

which is seen to coincide with the equation (2.42) for the propagator of the bilocal
field. In a short notation, this equation can be written as

T = ξg2D + ξg2DGGTT. (3A.12)

The perturbation expansion

T = ξg2D + ξg2DGGT ξg2D + . . . (3A.13)

reveals the one, two etc. photon exchanges of the ladder diagrams. In momentum
space the four particle Green’s function is defined by

(2π)4δ4 (q′ − q)G(4)
αβ,α′β′ (P, P ′|q) i

[(
P +

g

2

)
x +

(
P ′ − g

2

′)
y′

−
(
P − q

2

)
y −

(
P ′ +

q

2

′)
x
]
G

(4)
αβα′β′ (xy, x′y′) ≡

∫
dxdydx′dy′e (3A.14)

where the momenta are indicated in (3.2). The corresponding scattering ma-
trix T (P, P ′|q) satisfies the integral equation The corresponding scattering matrix
T (P1P

′|q) satisfies the integral equation

T (P, P ′|q) = (3A.15)

ξg2D(P − P ′) + ξg2
∫

dP ′′

(2π)4
D(P − P ′′)G

(
P ′′ +

g

2

)
T (P ′′, P ′|q)G

(
P ′′ − q

2

)
.
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Figure 3.2

The ladder exchange is in general expected to produce quark anti-quark bound
states. Suppose |H(q)〉 is one of them. Inserting it into (3A.1) as an intermediate
state gives for x0, y0 > x′0, y

′
0 a contribution

G
(4)
αβ,α′β′ (x, y; x′y′) = (3A.16)
∫

d3q

2Eq(2π)3
θ
(
R0 −R′0 −

1

2
(|z0|+ |z′d)

)

×〈0|T
(
ψα(x)ψ̄β(y)

)
|H(q)〉〈H(q)|T

(
ψ̄α′(x′)ψβ′(y′)

)
|0〉 (3A.17)

where R ≡ (+y)/2 and z = x− y. The θ function is non-zero if

min (x0, y0) > max (x′0y
′
0) .

Using the integral representation

θ (x0) =
i

2π

∫
dae−ax0

1

a+ iε

we have

θ
(
R0 − R′0 −

1

2
(|z0|+ |z′0|)

)
= (3A.18)

i

2π

∫
dq0e

−i(q0−Eq)(R0−R′

0)

ei(q0−Eq) 1
2(z0|+k

′

0|) 1

q0 − Eq + iε
.

Introducing Bethe-Salpeter wave functions

φαβ (x, y|q) ≡ 〈0|T
(
ψα(x)ψ̄β(y)

)
|H(q)〉

φ̄β′α′ (y′x′| − q) ≡ 〈H(q)|T
(
ψβ′(y′)ψ̄α′(x′)

)
|0〉 (3A.19)
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and their momentum space versions

ψαβ(x, y|q) = e−i(E1R0−qR)
∫

d4P

(2π)4
e−iP (x−y)φαβ(P )|q) (3A.20)

ψ̄α′β′(x′, y′| − q) = ei(E1R′

0−qR′)
∫

d4P

(2π)4
e−iP

′(x′−y′)φα′β′(P ′)| − q) (3A.21)

the four-particle Green’s function in momentum space is seen to exhibit a pole at
q0 ≈ Eq

G
(4)
αβα′β′ (P, P ′|q) ≈ −i

2Eq (q0 − Eq + iε)
ψαβ (P |q) φ̄β′α′ (P | − q) . (3A.22)

The opposite time ordering x0, y0 < x′0, y
′
0 contributes a pole at q0 = −Eq. Both

poles can be collected by writing in (3A.22) the factor

− i

q2 −M2
H + iε

.

This factorization is consistent with the integral equation only for a specific normal-
ization of the Bethe-Salpeter wave functions. In orde to see thsi write (3A.8) in the
form

G(4) = GGT +GGT ξg2DG(4)

=
(
1−GGT ξg2D

)−1
GGT

= GGT
(
1− ξg2DGGT

)−1
. (3A.23)

Suppose now that a solution is found for different values of the coupling constant
g2. Then the variation of G(4) for small changes of g2 is

∂G(4)

∂g2
=

(
1−GGT ξg2D

)−1
GGT ξD

×GGT
(
1− ξg2D

)−1

= G(4)ξDG(4) (3A.24)

If one goes in the vicinity of the pole q2 ≈M2
H (g2) this becomes

− ∂

∂g2

i

s−M2
H (g2)

φgH(P |q)φ̄gH (P | − q) = (3A.25)

i

S −M2
H (g2)

φqH(P |q)
∫
dP̄dP̄ ′

(2π)8
φ̄gH

(
P̄ /− q

)
ξD

(
P̄ − P̄ ′

)
φgH

(
P̄ ′|q

)

φ̄gH
(
P̄ ′| − q

) i

S −M2
H (g2)

. (3A.26)
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This can be true at the double pole t q2 = M2
H (g2) only if

∂M2
H (g2)

∂g2
= −i

∫
dPdP ′

(2π)4(2π)4
φH(P |q)ξD (P − P ′) φ̄H (P ′| − q) . (3A.27)

If we go over to the Bethe Salpeter vertex function (2.34)

ΓH(P |q) = NHG
−1
M

(
P +

q

2

)
φH(P |q)G−1

M

(
P − q

2

)

ΓH(P | − q) = N∗HG
−1
M

(
P − q

2

)
φ̄H(P | − q)G−1

M

(
P +

q

2

)
(3A.28)

this amounts to

g2
V

(
q2
) ∂M2

H (g2)

∂g2
= (3A.29)

i|NH |2
∫

dPdP ′

(2π)4(2π)4
Tr
{
GM

(
P +

q

2

)
ΓH(P |q)

GM

(
P − q

2

)
g2
H

(
q2
)
D(P − P ′)GM

(
P ′ − q

2

)
Γ̄H (P ′| − q)GM

(
P ′ +

q

2

)}
.(3A.30)

Using the integral equation (2.35) this reduces to the normalization

g2
H (q2)
∂g2

H
(q2)

∂q2

= −i|NH |2
∫

d4P

(2π)4
(3A.31)

×Tr
[
GM

(
P +

q

2

)
ΓH(P |q)GM

(
P − q

2

)
Γ̄H(P | − q)

]
. (3A.32)

This determines |NH |2 as

|NH |2 =
g2
H (q2)
∂g2

H
(q2)

∂q2

. (3A.33)

Notice that this normalization is defined for all q2 with some NH (q2). For real
Γ(P |q) one may choose NH (q2) real such that

Γ̄(P | − q) = Γ(P | − q)

(Both satisfy the same integral equation). The orthogonality of ΓH(P |q) and
Γ̄H

′

(P | − q) for different mesons is proved as usual by considering (2.35) once for
(ξg2D)

−1
ΓH and once for (ξg2D)

−1
Γ̄H

′

, multiplying the first by Γ̄H
′

and the second
by ΓH , taking the trace and subtracting the results from each other (assuming no de-
generacy of gH (q2) and gH′ (q2). The normalization (3A.33) is seen to be consistent
with the expansion of the T matrix given in (2.44)

Tαβ,α′β′ (P, P ′|q) = −ig2
∑

H

ΓHαβ(P |q)Γ̄Hβ′α′(P ′| − q)
g2
H (q2)− g2

. (3A.34)
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If q2 runs into a ple M2
H this expression is singular as

Tαβ,α′β′ (P, P ′|q) ≈ −ig2 1

(q2 −M2
H)

∂g2
H

(q2)

∂q2

ΓHαβ(P |q)Γ̄Hβ′α′ (P ′| − q) . (3A.35)

According to (3A.11) this produces a singularity in G(4) (in short notation)

G(4) ≈ −i g2

∂g2
H

(q2)

∂q2

1

q2 −M2
H

(
GΓHG

) (
GΓ̄HG

)

= −i g2

∂g2
H

(q2)

∂q2

1

q2 −M2
H

|NJ |2φH φ̄H (3A.36)

which coincides with (3A.22) by virtue of (3A.33).
For completeness we now give the Bethe-Salpeter equation (2.32) the form pro-

jected into the different covariants:

m′(P |q) = (3A.37)

S(P |q) + P (P |q)iγ5 + V µ(P |q)γµ + Aµ(P |q)γµγ5.

If mi(P |q)(i = 1, 2, 3, 4) abbreviates S, P, V, A, one has

mi(P |q) = −4ξig
2

4∑

j=1

d4P ′

(2π)4

1

(P − P ′)2
E + µ2

1
(
P ′ + q

2

)2

E
+M2

1
(
P ′ − q

2

)2

E
+M2

tij (P ′|q)mj (P ′|q) (3A.38)

with tij(P |q) being the traces defined in (3.10) and ξi = (4, +4, −2, −2). Explicitly,
one finds

tss(P |q) = P 2 − q2

4
+M4, tSV (P |q) = tV S = 2MP µ

tPP (P |q) = P 2 − q2

4
−M2, tPAµ(P |q) = −tAµP = iMqµ

tV µV ν (P |q) = −
(
P 2 − q2

4
−M2

)
gµν + 2P µP ν − 1

2
qµqν (3A.39)

tAµAν (P |q) = −
(
P 2 − q2

4
−M2

)
gµν + 2P µP ν − 1

2
qµqν − 2M2gµν(3A.40)

with all other traces vanishing. Notice that in the Bethe-Salpeter equation for
m′ there is no tensor contribution due to the absence of such a term in the Fierz
transform of γµ ⊗ γµ. The integrals in (3A.37) go directly over into (3.9) for large
gluon mass µ.
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Appendix 3B Vertices for Heavy Gluons

A2,A3,A4 for large µ. As discussed in the text, all higher vertices remain finite when
the cutoff and µ to to infinity in the order Λ2 � µ2 �M2 and will consequently be
neglected.

Consider first A2 as described in (3.10) and (3A.39). The intgrals Jij(q) are
evaluated by expanding

[(
P +

q

2

)2

E
+M2

]−1 [(
P − q

2

)2

E
+M2

]−1 [(
P − q

2

)2

E
+M2

]−1

= (3B.1)

[
P 2
E +M2

]−2
{

1 +
q2/2

P 2
E +M2

+
(Pq)

2

(P 2
E +M2)2

+O
(

M4

(P 2
E +M2)2

q4

(P 2
E +M2)2)

)}
.

Since tij(P |q) grow at most like P 2
E [see (3A.39)] the terms O(M 4/E4, q4/P 4

E) con-
tribute finite amounts upon integration and will be neglected. At this place we have
assumed q2 to remain of the same order of M 2. Actually, this is not true for vector-
and axialvector meson fields8 but since numerically m2

ρ, m2
A1
< 1

100
µ2, the neglected

terms are indeed very small.

The following integrals are needed in addition to (3.5) (3.11) (neglecting finite
amounts)

∫
d4PE
(2π)4

1

(P 2
E +M2)2

P 2 = −(Q−M2L)

∫ d4PE
(2π)4

1

(P 2
E +M2)2

PµPν = −(Q−M2L)
gµν
4

∫
d4PE
(2π)4

1

(P 2
E +M2)

PµPν = −Lgµν
4

(3B.2)

∫
d4PE
(2π)4

1

(P 2
E +M2)4

PµPνPλPκ =
L

24
(gµνgλκ + gµλgνκ + gµκgνλ) .

The results are displayed in Eq. (3.12).

There is one subtlety connected with gauge invariance when evaluating the in-
tegrals JW (q) and JAA(q). In fact, the first of these integrals coincides with the
standard photon solf-energy graph in quantum electro-dynamics. There the cutoff
procedure is known to produce a non-gauge invariant result. The cutoff calculation
yields:

JV µV ν(q) = −1

3

(
q2gµν − qµqν

)
L− 1

2
(Q+M2L)gµν

JAµAν = −1

3

((
q2 − 6M2

)
gµν − qµqν

)
L− 1

2
(Q+M2L)gµν . (3B.3)

8m2

ρ = 6M2; m2

A ≈ 12M2; µ2 ≈ 144GeV2
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There are many equivalent ways to enforce gauge invariance. The simplest one
proceeds via dimensional regularization. If one evaluates the integrals Q and L in
D = 4− ε dimensions with a small ε > 0, then

L =
∫ dDp

(2π)4

1

P 2
E +M2)2

=
πD/2

(2π)4

1

(M2)2−(D/2)

Γ
(
2− D

2

)

Γ(2)

=
π2

(2π)4

2

ε
+O(ε) (3B.4)

Q =
∫
dDPE
(2π)4

1

P 2
E +M2

=
πD/2

(2π)4

1

(M2)1−(D/2)

Γ
(
1− D

2

)

Γ(2)

=
π2

(2π)4
M2

(
−2

ε

)
+O(ε).

Hence at the pole ε = 0, Q and L become related such that Q+M 2L = 0, cancelling
the last terms in (3B.3). Notice that when dealing with the renormalizable theory
with large gluon mass µ2 � Λ2, this cancellation is still present while the other Q
integrals in Jij(q) become unrelated with the L integrals, the first being essentially
µ2 log Λ2/µ2, the other logµ2/M2.

Consider now the interacation terms A3. Here the traces grow at most as P 2
E.

Thus as far as the divergent contributions are concerned, the denominators in the
intetrals (3.27) can be approximated as

1

(P + q2 + q1)
2
E +M2

1

(P + q1)
2
E +M2

1

P 2
E +M2

= (3B.5)

1

(P 2
E +M2)

3

{
1 +

P (2q1 + q2)

P 2
E +M2

+O

(
M2

P 2
E +M2

,
q2
1

P 2
E +M2

)}
.

Since this expression decreases at least as 1/p6
E the traces have to be known only

with respect to their leading P 2
E and P 2

E behaviours. These are

tSSS (P |q2q1) ' 3P 2M, tSPP

tSPAµ (P |q2q1) ' iP 2P µ + 2iP µ [P (q1 + q2)]− iP 2qµ2
tSAµP (P |q2q1) ' −iP 2P µ − iP 2 (2q1 + q2)

µ (3B.6)

tSSV µ (P |q2q1) ' P 2P µ − P 2qµ2 + 2P µ [P (q1 + q2)] = tPPV µ (P |q2q1)
tSV µS (P |q2q1) ' P 2P µ + P 2 (2q1 + q2)

µ = tPV µP (P |q2q1)
tSV µV ν (P |q2q1) ' 4MP µP ν −MP 2gµν

tSAµAν (P |q2q1) ' 4MP µP ν − 3MP 2gµν

tV µV λV κ (P |q1q2) ' 4P µP λP κ − P 2
(
P µgλκ + P λgµκ + P κgµλ

)

+2P µP λqκ1 + 2P λP κ (q1 + q2)
µ + 2P µP κ (2q1 + q2)

λ

−2P κP (q1 + q2) g
µλ − 2P µPq1g

λκ − P 2
(
−gµλq2 + gλκq2 + gµκ (2q1 + q2)

)
.(3B.7)

Using (3B.2) one obtains exactly the third order terms in the Lagrangian Eq. (3.29)
(if this is written in the σ′-form).
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The fourth order couplings inA4 are the simplest to evaluate. Here only the lead-
ing P 4 behaviour of tij (P |q3q2q1) contributes proportional to L and the propagator

can directly be used in the form [P 2
E +M2]

−4
.

tSSSS (P |q3q2q1) ' tSSPP ' tPPPP ' P 4 (3B.8)

tSSV µV ν (P |q3q2q1) ' tPPV µV ν ' tSSAµAν

' tPPAµAν ' −itSPAµV ν ' −itPSAµV ν

' 2P 2P µP ν − P 4gµν.

Appendix 3C Some Algebra

Here we want to compare some of our results with traditional derivations [28], [29]
obtained by purely algebraic considerations together with PCAC.

The vector and axial-vector currents

V a
µ (x) = ψ̄(x)γaµ

λa

2
ψ(x); Aaµ(x) = ψ̄(x)γµγ5

λa

2
4(x) (3C.1)

generate chiral SU(3)×SU(3) under which the quark gluon Lagrangian transforms
as

L = Lchiralinvariant − u0 − cu8 − du3 (3C.2)

where

u0 + cu8 + du3 = ψ̄Mψ ≡
∑

a

Maψ̄
λa

2
ψ

=

√
2

2

(
Mu +Md +Ms

)
ψ̄
λ0

2
ψ

+
1√
3

(
Mu Md − 2Ms

)
ψ̄
λ8

2
ψ

+
(
Mu −Md

)
ψ̄
λ3

2
ψ.

Hence

ua ≡M0ψ̄
λa

2
ψ(=M0ũa

c ≡ M
8

M0
, d =

M3

M0
. (3C.3)

Defining also the pseudoscalar densities

υa ≡M0ψ̄iγ5
λa

2
ψ (3C.4)

then ua and υa form the (3̄3± (3̄3) representation of SU(3)× SU(3):

[Qa
5, u

a] = idabcυc,
[
Qa

5, υ
b
]

= −idabcuc. (3C.5)
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From the equation of motion one finds the conservation law 9

∂µV a
µ (x) = ∂µψ̄γµ

λa

2
ψ = ψ̄

[
λa

2
M
]
ψ

= if abcMbψ̄
λc

2
ψ a = 0, 1 . . . 8

∂µAaµ(x) = ∂µψ̄γµγ5
λa

2
ψ = −ψ̄

[
λa

2
M
]
γ5ψ

= idabcMbψ̄iγ5
λc

2
ψ a = 1 . . . 8 (3C.6)

Let us neglect SU(2) breaking inM. By taking (3C.6) between vacuum and pseu-
doscalar meson states one finds

fπm
2
π =

1√
3

(√
2M0 +M8

) m2
Y

3

√
LZ1/2

π

fKm
2
K =

1√
3

(√
2M0 +M8

) m2
Y

3

√
LZ

1/2
K (3C.7)

etc. for the other members of the multiplet, where one has used [see the pseudoscalar
version of (3.76)]:

〈0|∂µAaµ|π〉 ≡ fπm
2
π;

〈0|ψ̄iγ5
λπ

2
ψ|π〉 = (3C.8)

µ2

2g2

1

2g2

1√
L
〈0|π|π〉 = µ2

2g2

Z1/2
π√
L

=
m2
V

3

√
LZ1/2

π

etc. By writingM as

M =



Mu

Md

Ms


 =

1

2
√

3




√
2m?0 +M8

√
2M0 +M8

√
2M0 − 2M8


(3C.9)

Eq. (3C.7) takes the form

f 2
πm

2
π =

(
Mn +Md

)
/2Z1/2

π

2

3
m2
V

√
L

f 2
Km

2
K = (Mn +Ms) /2Z1/2

π

2

3
m2
V

√
L (3C.10)

which agrees with (3.56).
By evaluating (3C.5) between vacuum states and saturating the commutator with
pseudoscalar intermediate state one finds

fπM0
µ2

2g2

Z1/2
π√
L

=
1√
3

(√
2〈0|u0|0〉+ 〈0|u8|0〉

)

fKM0
µ2

2g2

Z
1/2
K√
L

=
1√
3

(√
2〈0|u0|0〉 − 1

2
〈0|u8|0〉

)
(3C.11)
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and similar for the other partners of the multiplet. Inserting the result of Eq. (3.76)

〈0|ua|0〉 =M0〈0|ũa|0〉 =
1

2

µ2

g2
M0Ma (3C.12)

and writing M in the same way asM in (3C.9) brings (3C.11) to the form

fπZ
1/2
π =

√
L
(
Mu +Md

)

fKZ
1/2
K =

√
L (Mu +M s) (3C.13)

which agrees exactly with (3.56) (written there in SU(3) matrix form). Considera-
tions of this type have led to the determination [28], [29], [33]

C ≈ −1.28

or (3C.14)(
Mu +Md

)
/2

Ms
≈ 1

29
.

Including also SU(2) violation in such a consideration gives [33]

d ≈ −.03

or (3C.15)

Mu −Md

Mu +Md
≈ −1

4
.

There are numerous extensions to SU(4) [35] but they have to be viewed with
great caution since it is hard to see how the large pseudoscalar and vector masses
occuring there can dominate the idvergence of the axial current and the vector
current, respectively.
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1
Low-Dimensional Models

1.1 The Pet Model in One Time Dimension

Consider the extremely simple case of a fundamental theory

H = (a†a)2/2 (1.1)

where a† denotes the creation operator of either a boson or a fermion. In the first
case the spectrum is

En =
n2

2
(1.2)

for the states

|n〉 =
1√
n!

(a†)n|0〉, n = 0, 1, 2, . . . , (1.3)

in the second

E0 = 0 for |0〉 (1.4)

E1 =
1

2
for |1〉 = a†|0〉. (1.5)

The Lagrangian corresponding to H is

L(t) = a†(t)i∂ta(t)−
[

a†(t)a(t)
]2
/2 (1.6)

and the generating functional of all Green functions becomes

Z[η†, η] = 〈0T exp
[

i
∫

dt(η†a+ a†η)
]

0〉

= N
∫

Da†Da exp
[

i
∫

dt
(

L+ η†a + a†η
)]

. (1.7)

A collective field may be introduced via the formula

exp
{

−i
∫

dt[a†a(t)]2/2
}

=
∫

Dρ(t) exp
{
i

2

∫

dt
[

ρ2(t)− 2ρ(t)a†a(t)
]}

(1.8)
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or by adding to (1.7) in the exponent

i/2
∫

dt
[

ρ(t)− a†(t)a(t)
]2

and integrating functionally over the ρ-field.
Thus the generating functional Z can be rewritten as

Z[η†, η = N
∫

Da†DaDρ

× exp

{

dt

[

a†(t)i∂ta(t)− ρ(t)a†(t)a(t) +
ρ2(t)

2
+ η†(t)a(t) + a†(t)η(t)

]}

.(1.9)

The collective field describes the particle density: Functional derivation of the action
in (1.9) displays the dependence

ρ(t) = a†(t)a(t). (1.10)

Integrating out the a†, a fields gives

Z[η†, η] = N
∫

Dρ exp
{

iA[ρ]−
∫

dtdt′η†(t)Gρ(t, t
′)η(t′)

}

(1.11)

with the collective filed action

A[ρ] = ±iTr log
(

iG−1
ρ

)

+
∫

dt
ρ2(t)

2
, (1.12)

where Gρ denotes the propagator of the fundamental particles in a classical ρ(t) field
satisfying

[i∂t − ρ(t)]Gρ(t, t
′) = iδ(t− t′). (1.13)

The Green function can be solved by introducing an auxiliary field

ϕ(t) =
∫ t

ρ(t′)dt′ (1.14)

in terms of which

Gρ(t, t
′) = e−iϕ(t)eiϕ(t′)G0(t− t′) (1.15)

with G0 being the free-field propagator of the fundamental particles. At this point
one has to specify the boundary condition on G0(t− t′). They have to be adapted
to the physical properties of the system. The generating functional is supposed to
describe the amplitude for vacuum to vacuum transitions in the presence of the
source fields η†, η. The propagation of the free particles must take place in the same
vacuum. If a†0, a0 describes a free particle, their time ordered product in the free
vacuum is

G0(t− t′) = 〈0|T
(

a0(t)a
†
0(t
′)
)

|0〉 = Θ(t− t′) (1.16)
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Using (1.15) we find

Gρ(t, t
′) = e−τϕ(t)eiϕ(t′)Θ(t− t′). (1.17)

Equipped with this knowledge we can readily calculate the Tr log term in (1.12).
The functional derivative is certainly

δ

δρ(t)

{

±iTr log(iG−1
ρ )

}

= ∓Gρ(t, t
′)|t′=t+ε = 0 (1.18)

where the t′ → t limit is specified in such a way that the field ρ(t) couples, in Eq.
(1.9), to

a†(t)a(t) = ±T
(

a(t)a†(t′)
)

|t′=t+ε=̂±Gρ(t, t′)|t′=t+ε. (1.19)

Hence, the Θ function in (1.17) makes the functional derivative vanish and the tr
log becomes an irrelevant constant. The generating functional is the simply

Z[η†, η] = N
∫

Dϕ(t) (1.20)

exp
{
i

2

∫

dtϕ̇(t)2 −
∫

dtdt′η†(t)η(t′)e−iϕ(t)e−iϕ(t′)Θ(t− t′)
}

where

Dρ = Dϕ det
(

δ̇(t− t′)
)

= const · Dϕ. (1.21)

has been used. Observe that it is ϕ(t) which becomes a convenient dynamical
plasmon variable, not ρ(t) itself.

The original theory has been transformed into a new one involving plasmons of
zero mass. At this point we take advantage of equivalence between functional and
quantized operator formulation by considering the plasmon action in the exponent
of (1.21) directly as a quantum field theory. The first term may be associated with
a Lagrangian

L0(t) =
1

2
ϕ̇(t)2 (1.22)

describing free plasmons.
The Hilbert space of the corresponding Hamiltonian H = p2/2 consists of plane

waves which are eigenstates of the functional momentum operator p = −i∂/∂ϕ:

{ϕ|p} =
1√
2π
eipϕ (1.23)

normalized according to

∫ ∞

−∞
dϕ {p|ϕ} {ϕ|p′} = δ(p− p′). (1.24)



362 1 Low-Dimensional Models

In the operator version (??) then, the generating functional reads

Z[η†, η] =
1

{0|0} (1.25)

{

0|T exp
[

−
∫

dtdt′η†(t)η(t′)e−iϕ(t)eiϕ(t′)Θ(t− t′)
]

|0
}

where ϕ(t) are free field operators. Notice that it is the zero-functional momen-
tum state between which Z is taken. Due to the norm (1.24) there is an infinite
normalization factor which has formally been taken out.

We can now trace the generation of all Green functions of fundamental particles
by forming functional derivatives with respect to η†, η. First

〈0|Ta(t)a†(t′)|0〉 = − δ(2)Z

δη†(t)δη(t′)
|η†,η=0

=
1

{0|0}
{

0|e−iϕ(t)eiϕ(t′)|0
}

Θ(t− t′). (1.26)

Inserting the time translation operator

eiHt = ei
p2

2
t (1.27)

the matrix element (1.26) becomes

1

{0|0}

{

0|e−ip22e−iϕ(0)e−i
p2

2
(t−t′)eiϕ(0)e−i

p2

2
t′
}

=
1

{0|0}

{

0|e−iϕ(0)e−i
p2

2
(t−t′)eiϕ(0)|0

}

. (1.28)

But the state eiϕ(0)|0 } is an eigenstate of p with momentum p = 1 such that (1.28)
equals

1

{0|0} {1|1} e
−i(t−t′)/2 = e−i(t−t

′)/2 (1.29)

and the Green function (1.26) becomes

〈0Ta(t)a†(t′)|0〉 = e−i(t−t
′)/2Θ(t− t′). (1.30)

This coincides exactly with the result of a calculation within the fundamental fields
a†(t), a(t):

〈0Ta(t)a†(t′)|0〉 = Θ(t− t′)〈0|ei(a†a)2t/2a(0)e−
i
2
(a†a)2(t−t′)a†(0)e−i(a

†a)2t′/2|0〉
= Θ(t− t′)e−i(t−t′)/2. (1.31)
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Observe that nowhere in the calculation has Fermi or Bose statistics been used.
This becomes relevant for higher Green functions. Expanding the exponent (1.26)
to n’th order gives

Z [n]
[

η†, η
]

=
1

{0|0}
(−)n

n!

∫

dt1dt
′
1 · · ·dtndt′nη†(t1)η(t′1) · · · η†(tn)η(t′n)

×
{

0|Te−iϕ(t1)eiϕ(t′1) · · · e−iϕ(tn)eiϕ(t′n)|0
}

Θ(t− 1− t′1) · · ·Θ(tn − t′n).(1.32)

The Green function

〈0Ta(t1) · a(tn)a†(t′n) · · ·a†(t′1)|0〉 (1.33)

is obtained by forming
the derivative (−i)2nδ(2n)Z[η†η]/δη†(t1) · · · δη†(tn)δη(t′n) · · · δη(t). There are (n!)2

contributions due to the product rule of differentiation, n! of them being identical
thereby canceling the factor 1/n! in (1.32). The other correspond, from the point of
view of combinatorics, to all wick contractions of (1.33), each contraction being asso-
ciated with a factor e−iϕ(t)eiϕ(t′). In addition, the Grassmann nature of source fields
η causes a minus sign to appear if the contractions deviating by an odd permutation
from the natural order 11′, 22′, 33′, . . . For example

〈0Ta(t1)a(t′2)a†(t′2)a†(t′1)|0〉
= 〈0T ȧ(t1) ¨a(t2)ä

†(t′2)ȧ
†(t′1)|0〉 ± 〈0|T ȧ(t1)ä(t2)ä†(t′2)ȧ†(t′1)|0〉

=
1

{0|0}
{

0|Te−iϕ(t1)e−iϕ(t2)eiϕ(t′2)eiϕ(t′1)|0
}

= [Θ(t1 − t′1)Θ(t2 − t′2)± Θ(t1 − t′2)Θ(t2 − t′1)] (1.34)

where the upper sign holds for bosons, the lower for fermions. The lower sign enforces
the Pauli exclusion principle: If t1 > t2 > t′2 > t′1 the two contributions cancel
reflecting the fact that no two fermions a†(t′2)a

†(t′1) can be created successively on
the particle vacuum. For bosons one may insert again the time translation oparator
(1.27) and complete sets of states

∫

dp|p } { p| = 1 with the result:

1

{0|0}
∫

dpdp′
{

0|e−iϕ(0)e−i
p2

2
(t1−t2)e−iϕ(0)e−i

p2

2
(t2−t′2)eiϕ(0)e−i

p2

2
(t′2−t′1)eiϕ(0)|0

}

= e−i(t1−t2)/2e−i2(t2−t
′
2)e−i(t

′
2−t′1)/2. (1.35)

where
{

0|e−iϕ(0)|p
}

= δ(1 − p),
{

p|e−iϕ(0)|p′
}

= δ(p + 1 − 1) has been used. This

again agrees with an operator calculation like (1.31).
We now understand how the collective quantum field theory works in this model.

Its Hilbert space is very large consisting of states of all functional momenta |p〉.
When it comes to calculating the Green functions of the fundamental fields, however,
only a small portion of this Hilbert space is used. A fermion can make plasmon
transitions back and forth between ground state |0 } and the momentum one state
|1 } only, due to the anticommutativity of the fermion source fields η†, η. Bosons,
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on the other hand, can connect all states of integer momentum |n }. No other states
are ever reached. The collective basis is overcomplete as far as the description of
the underlying system is concerned. Strong selection rules, p → p ± 1, together
with the source statistics make sure that only a small subspace becomes involved
in the dynamics of the fundamental system. That such a projection is compatible
with unitarity is ensured by the conservation law a†a = const. In higher dimensions,
there have to be infinitely many conservation laws (one for every space point).

Actually, in the boson case, the overcompleteness can be removed by defining
the collective Lagrangian in (1.21) on a cyclic variable, i.e., one takes (1.22) on
ϕ ∈ [0, 2π) and extends it periodically. The path integral (1.21) is the integrated
accordingly. In this case the Hilbert space would be grated containing only integer
momenta p = 0,±1,±2, . . . coinciding with the multi-boson states.

the following observations may be helpful in understanding the structure of the
collective theory: It may sometimes be convenient to build all Green functions not
on the vacuum state |0〉 but on some other reference state |R〉 for which we may
choose the excited state |n〉. In the operator language this amounts to a generating
functional

nZ[η†, η] = 〈n|T exp
{

i
∫

dt
[

η†(t)a(t) + a†(t)η(t)
]}

|n〉. (1.36)

This would reflect itself in the boundary condition of G0 for bosons

nG0(t− t′) = 〈n|T
(

a0(t)a
†
0(t
′)
)

|n〉
= (n+ 1)Θ(t− t′) + nΘ(t′ − t). (1.37)

For fermions, only n = 1 would be an alternative with

1G0(t− t′) = 〈1|T
(

a0(t)a
†
0(t
′)
)

|1〉 = −Θ(t′ − t). (1.38)

As a consequence of (1.37) or (1.38), formula (1.18) would become

δ

δρ(t)

{

±iTr log
(

iG−1
ρ

)}

= −
{

n
1

}

(1.39)

Integrating this functionally gives

±iTr log
(

iG−1
ρ

)

= −
{

n
1

}
∫ ∞

−∞
ρ(t)dt (1.40)

so that the functional form of (1.36) reads, according to (1.12):

{

n

1

}

Z[η†, η] =
∫

Dϕ exp

[

i
∫

dt

(

ϕ̇2

2
−
{

n
1

}

ϕ̇

)

dt

]

× exp

[

−
∫

dtdt′η†(t)η(t′)e−iϕ(t)eiϕ/t
′)

[{

n+ 1
0

}

Θ(t− t′) +

{

n
− 1

}

Θ(t′ − t)
]]

.(1.41)
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Now the collective Lagrangian is

L(t) =
·ϕ2

2
−
{

n
1

}

ϕ̇

=
1

2

(

ϕ̇−
{

n
1

})2

− 1

2

{

n2

1

}

(1.42)

with the functional canonical momentum

p = ϕ̇−
{

n
1

}

the Hamiltonian takes the form

H =

(

ϕ̇−
{

n
1

})

ϕ̇− L

=
ϕ̇2

2
=

(

p+

{

n
1

})2

2
. (1.43)

Thus the spectrum is the same as before but the momenta are shifted by n (or 1)
units accounting for the fundamental particles contained in the reference state |R〉
of (1.36). In the collective quantum field theory, this reference state corresponds
now to functional momentum zero:

{

n

1

}

Z[η†, η] =
1

{0|0}{0|T exp
[

−
∫

dtdt′η†(t)η(t′)e−iϕ(t)eiϕ(t′)

×
[{

n
− 1

}

Θ(t− t′) +

{

n
− 1

}

Θ(t′ − t)
]]

|0}. (1.44)

In fact, the one-particle Green function becomes
{

n

1

}

G(t, t′) = − δ(2)

δη†(t)δη(t′)

{

n
1

}

Z[η†, η]

=
1

{0|0}{0|Te
−iϕ(t)eiϕ(t′)|0}

×
[{

n+ 1
0

}

Θ(t− t′) +

{

n
− 1

}

Θ(t′ − t)
]

. (1.45)

Inserting the times translation operator corresponding to (1.43) this yields for t > t′

{

n

1

}

G(t, t′) = exp

[

−i
{

n + 1/2
3/2

}

(t− t′)
]{

n+ 1
0

}

=

{

(n+ 1) exp[−i(n + 1/2)(t− t′)
0

}

(1.46)
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and for t < t′

{

n

1

}

G(t, t′) = exp

[

−i
{

n− 1/2
1/2

}

(t− t′)
]{

n
− 1

}

=

{

n exp[−i(n − 1/2)(t− t′)
− e−i(t−t′)/2

}

(1.47)

In agreement with a direct operator calculation.
The appearance of the additional derivative term ϕ̇ in the Lagrangian (1.42) can

be understood in an alternative fashion. The reference state |n〉 of nZ in (1.36) can
be generated in the original generating functional by applying successively deriva-
tives −δ(2)/δη†(t)δη(t′), letting t′ → −∞, t → ∞ and absorbing an infinite phase
exp[−i∆E × (2∞)], into the normalization constant where ∆E is the energy differ-
ence between |n〉 and |0〉:

nZ[η†, η]|η†=η=0 ∝
δ(n)

(δη†(+∞))n
δ(n)

(δη(−∞))n
0Z[eta†, η]|η†=η=0. (1.48)

Each such pair of derivatives brings down a Green function

e−iϕ(t)eiϕ(t′)Θ(t− t′) = exp
[

−i
∫ t

t′
ϕ̇(tt′)

]

Θ(t− t′). (1.49)

As t′ → −∞, t→∞ this becomes for n factors

exp
[

−in
∫ ∞

−∞
·ϕ(t)dt

]

(1.50)

in agreement with the derivative term in (1.41).
While the functional Schrödinger picture is useful in understanding what happens

in the Hilbert space of the collective field theory, it is quite awkward to apply to
more than one dimension, in particular to the relativistic situation where the time
does not play a special role. A more direct and easily generalizable method for the
evaluation of fermion propagators in the collective theory consists in the following
procedure: One brings the products of exponentials in (1.32) to normal order by
using Wick’s, contraction formula in the functional form (??). Let the “charges” of
the incoming and outgoing fermions be qi = +1 and qi)− 1, respectively.

Then the matrix element to be calculated in (1.32) are

{0|T exp

[

i
∑

i

qiϕ(ti)

]

|0} = {0|T exp [dtϕ(t)∂iqi(t− ti)] |0} (1.51)

where we have numbered the times as t1, t2, t3, t4, . . . rather than t1, t
′
1, t2, t

′
2, . . . etc.

Now from (??) one has

{0|Tei
∑

qiϕ(ti)|0} = exp



−1

2

∫

dtdt′
∑

i

qiδ(t− ti)ϕ̇(t)ϕ̇(t′)(t′)
∑

j

qjδ(t− tj)
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×{0|T : exp

[

i
∫

dtϕ(t)
∑

i

qiδ(t
′ − ti)

]

: |0}

= exp



−1

2

∑

ij

qiqjϕ̇(ti)ϕ̇(tj)



 . (1.52)

where common dots denote again a propagator of a ϕ-field. It is well defined after
introducing a small regulator mass κ:

ϕ̇(t)ϕ̇(t′) =
∫ dE

2π

i

E2 − κ2 + iε
e−iE(t−t′)

=
1

2κ
e−κ|t−t

′| =
1

2κ
− i

2
|t− t′|+O(κ). (1.53)

As κ → 0 this expression vanishes unless the sum of all charges is zero:
∑

i qi = 0.
Thus one finds the general result for (1.32):

{0|T exp

[

i
∑

qi

ϕ(ti)

]

|0} = δΣqi
,0 exp




i

2

∑

i>j

qiqj|ti − tj|


 (1.54)

In particular, the two point function (1.26) agrees with the Schrödinger calculation
(1.30).

1.2 The Generalized BCS Model in a Degenerate Shell

A less trivial but completely transparent example is provided by the BCS degener-
atshelf model used in nuclear physics to describe the energy levels of some nuclei in
which pairing forces are dominant (for example Sn and Pb isotopes [31]). For the
understanding of the structure of collective theory it will be useful to consider at
first both bosons and fermions as well as a more general interaction and impose the
restriction to fermions and to the particular BCS pairing force at a later stage. This
more general Hamiltonian reads

H = H0 +Hint = εΣΩ
i=1(ai

+ai + bi
+bi)−

V

2
{Σi,jai

+bi
+bjaj}

±V
4
g
[

Σi(ai
+ai + bi

+bi)± Ω
]

(1.55)

where g = 0 reduces to the actual BCS model in the case of fermions. The model
can be completely solved by introducing quasi-spin operators

L+ = ΣΩ
i=1ai

+bi
+L− = ΣΩ

i=1biai = (L+)+ (1.56)

L3 =
1

2
{Σi(ai

+ai + bi
+bi)± Ω} =

1

2
Σiai

+ai ± bibi+ =
1

2
{N ± Ω}

where N counts the total number of particles. These operators generate the group
SU(1, 1) or SU(2) for bosons or fermions, respectively:

[L3, L
±] = ±L±

[L+, L−] = ∓2L3 (1.57)
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using
L+L− = L2 ∓ L3 ± L3

2 (1.58)

we can write

H = 2εL3 ∓ εΩ− V (L2 ± L3
2 ∓ gL3

2)

= 2εL3 − V (L2 ± (1− g)L3
2)∓ εΩ. (1.59)

Notice that the interaction term is SU(1, 1) or SU(2) symmetric for g = 1. The
irreducible representation of the algebra (1.57) consist of states

|n[Ω, ν]〉 = Nn(L
+)n|0[Ω, ν]〉 (1.60)

where the seniority label ν denotes the presence of ν unpaired particles ai
+ or bj

+, i.e.
those which are orthogonal to the configurations (L+)n|0〉. For ν = 0 the spectrum
of L3 in an irreducible representation is

± Ω

2
,±Ω

2
+ 1, ±Ω

2
,+2, . . . . (1.61)

This continues ad infinitum for bosons due to the non-compact topology of SU(1, 1)
while it terminates for fermions at Ω/2 corresponding to a finite spin Ω/2. The
invariant Casimir operator

L2 ≡ L1
2 + L2

2 ∓ L3
2 (1.62)

characterizing the representation has the eigenvalue Ω/2(1 ∓ Ω/2 showing in the
fermion case again the quasi-spin Ω/2. If ν unpaired particles are added to a vacuum,
the eigenvalues start at ±(Ω + ν)/2. Thus the quasi-spin is reduced to (Ω− ν/2. If
ν = Ω unpaired fermions are present, the state is quasi-spin symmetric, for example:

|0[,Ω,Ω]〉 = b1
+b2

+ · . . . · bΩ+|0〉. (1.63)

Due to the many choices of unpaired particles with the same total number the
levels show considerable degeneracies and one actually needs another label for their
distinction. This has been dropped for brevity.

On the states |n[Ων]〉 the energies are from (1.59) and using N = 2n + ν:

E = e(N ± Ω)− V
[

Ω± ν
2

(

1∓ Ω± ν
2

)

± (1− g)
4

(N ± Ω)2

]

∓ εΩ. (1.64)

A typical level scheme for fermions of Ω = 8 with ε = 0 is displayed on Fig. XVII.
If the single particle energy ε is non-vanishing, the scheme is distorted via a linear
dependence on L2 lifting the right- and depressing the left-hand side. For an attrac-
tive potential and given total particle number N , the state with ν = 0 is the ground
state with the higher seniorities having higher energies:

ENΩν − ENΩ0 = V
(

Ω∓ 1± ν

2

)

ν. (1.65)
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Figure 1.1 .

The figure shows the level scheme of the BCS model in a single degenerate shell of
multiplicity Ω = 8. The abscissa denotes the third component of quasi-spin. The
index ν at each level stands for the number of unpaired particles (“seniority”).

The Lagrangian of the model is from (1.55)

L(t) = Σi(ai
+(t)(i∂t − ε)ai(t) + bi

+(t)(i∂t − ε)bi(t))

+
V

2

{

Σi,jai
+bi

+bjai
}

∓ V

4
g
{

Σi(ai
+ai ± bibi+)

}3
(1.66)

and the generating functional:

Z[η+, η, λ] =
∫
∏

i

Dai
+DaiDbi

+Dbi

× exp
[

i
∫

dt
{

L+ Σiηi
+ai + ai

+ηi + λi
+bi + bi

+λi
}]

. (1.67)

The quartic terms in the exponential can be removed by introducing a complex field
S = S1 + iS2 and a real field S ′3, adding

− V
{
∣
∣
∣S(t)− Σiai

+ + bi
+
∣
∣
∣

2 ∓ g
[

S ′3(t)−
1

2
Σi(ai

+ai ± bibi+
]2
}

(1.68)

and integrating Z functionally over DS = DS1DS2DS3. The addition of (1.68)
changes L to:

L(t) = Σi{ai+(i∂t − ε∓ gV S3
′)ai ∓ bi(i∂t + ε± gV S3

′)bi
+}

+V S+Σiai
+bi

+ΣibiaiV S − V (|S|2 ∓ gS3
′2)± εΩ. (1.69)

By using the more convenient two-spinor notation for fundamental fields and sources

fi ≡
(

ai
bi+

)

; fi
+ ≡ (ai

+, bi)
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ji ≡
(

ni
λi+

)

; ji
+ ≡ (ηi

+, λi) (1.70)

the generating functional can be rewritten as

Z[j+j] =
∫
∏

i

Df+
i DS exp

[

i
∫

dt
{

L+ Σi(j
+
i fi + f+

i ji)
}]

(1.71)

with

L = ΣΩ
i=1fi

+(t)

(

i∂t − ε∓ gV S3
′ V S+

V S ∓(i∂t + ε± gV S3
′)

)

fi(t)

−V (|S|2 ∓ gS3
′2)± εΩ. (1.72)

Now the fundamental fields fi
+, fi can be integrated out yielding the collective action

[32]
A[S] = ±itr log(iGx

−1)− V (S1
2 + S2

2 ∓ g − S3
′2)± εΩ (1.73)

where Gs is the matrix collecting the Green’s functions of the particles in the external
field S

Gs(t, t
′)ij =






︷ ︸︸ ︷

ai(t)aj
+(ti

′)
︷ ︸︸ ︷

ai(t)bj
+(ti

′)
︷ ︸︸ ︷

bi
+(t)aj

+(t′)
︷ ︸︸ ︷

bi
+(t)bj

+(t′)




 . (1.74)

Its equation of motion, multiplied by
{
σ3

1

}

(

i∂t − ε∓ gV S3
′ V S+

∓V S i∂t + ε± gV S3
′

)

GS(t, t
′) = i

{

σ3

1

)

δ(t− t′) (1.75)

may be solved by an Ansatz

Gs(t, t
′) = U+(t)G0(t, t

′)U(t′) (1.76)

where G0 is a solution of (1.75) for S = 0, S3
′ = 0, ε = 0. Before we proceed it is

useful to absorb ε and g into S3
′ by defining the more symmetric variable

∓ S3 = ∓gS3
′ − ε

V
. (1.77)

Then equ. (1.75) reads

(

i∂t + V
{−iS2

S1

}

σ1 + V
{
iS1

−S2

}

σ2 ∓ V S3σ
3
)

U+(t)G0U(t′) = i

{

σ3

1

}

δ(t− t′).
(1.78)

It is solved if U satisfies U+
{
σ3

1

}

=
{
σ3

1

}

and the differential equation

iU+(t)U+(t)−1 = −V
({−iS2

S1

}

σ1 +
{
iS1

S2

}

σ2 ∓ V S3σ
3
)

. (1.79)
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The condition U+
{
σ3

1

}

U =
{
σ3

1

}

can be met by parametrizing U in terms of Euler
angles

U(t) = eiα
σ3
2 e

{
−β̃
iβ

}
σ2

2 eiγ
σ3
2 . (1.80)

As should be expected from the above discussion of the operators Li, the matrices
U form a subgroup of the Lorentz group SL(2, C). In the Bose case this subgroup is
SU(1, 1) in the Fermi case SU(2). The equ. (1.78) implies the differential equations
for the Euler angles

ω̃1 ≡ β̃ sin γ + α̇ sinh β̃ cos γ = 2V S1

ω̃2 ≡ β̃ cos γ − α̇ sinh β̃ sin γ = 2V S2 (1.81)

ω̃3 ≡ α̇ cosh β̃ + γ̇ = 2V S3

and

ω1 ≡ −β̇ sin γ + α̇ sin β cos γ = −2V S2

ω2 ≡ β̇ cos γ + α̇ sin β sin γ = −2V S2 (1.82)

ω3 ≡ α̇ cos β + γ̇ = −2V S3.

The left-hand sides of (1.83) are recognized as the standard Euler equations for the
angular velocities ωi in a body-fixed reference frame.

The upper equations follow from the lower by replacing β → − − iβ̃, S1 →
−iS2, S2 → iS1, S3 → −S3. Since this transition can be done at any later stage it is
convenient to avoid the clumsy distinction of different cases and focus attention to
the Fermi case only.

In the Fermi case, the matrix U(1) us unitary and coincides with the well-known

representation matrices D
1/2
m′m(αβγ) of the rotation group.1. They can be solved

formally as

U(t) = T exp
[

−i
∫ t

∞
2V Sσdt′

]

(1.83)

Given this U(t) we can now proceed to evaluate the tr log term in (1.73). By
differentiation with respect to S we find:

δ

δSk(t)
[−itr log(iG−1

s )] = V Σitr(σ
kGii

s (t, t
′)|t′=t+ε. (1.84)

The right-hand side can be calculated in terms of Euler angles by inserting (1.80). In
addition one has to choose the reference state for Z[η+, η] by specifying the boundary
condition on G0. Since G0 represents the same matrix of Green’s functions as (1.74),
except with free oscillators a+

0 , b0
+ of zero energy, this is easily done. Let us choose

1For the conventions see: A.R. Edmonds, Angular Momentum in Quantum Mechanics , Prince-
ton University Press
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as reference state |R〈 one of the quasi-spin symmetric states of seniority ν = Ω, say
(1.63). Then G0 has to have the form

G0
ij(t, t′) =

(

Θ(t− t′) 0
0 Θ(t− t′)

)δij

. (1.85)

As a consequence Gij
0 (t, t′)|t′=t+ε = 0 such that also (1.84) vanishes and

−itr log(iGs
−1 becomes an irrelevant constant.

Hence the generating functional in the quasi-spin symmetric reference state
(1.63) is

RZ[j+j] =
∫

DS exp
[∫

dtV S(t)2 −
∫

dtdt′Θ(t− t′)Σiji
+(t)U+(t)U(t′)ji(t

′)
]

.

(1.86)
As in the case of the trivial model it is now convenient to change variables and inte-
grate directly over the Euler angles αβγ rather than S1S2S3. Using the derivatives

− 1

2V

δSi(t)

δqj(t′)
≡ A(t)ijδ(t− t′) +B(t)ij δ̇(t− t′)

=






0 α̇ cos β cos γ −β̇ cos γ − α̇ sin β sin γ

0 α̇ cos β sin γ −β̇ sin γ + α̇ sin β cos γ
0 −α̇ sin β 0






ij

(1.87)

×δ(t− t′) +






sin β cos βγ − sin γ 0
sin β sin γ cos γ 0
cos β 0 1






ij

δ(t− t′) (1.88)

one calculates the functional determinant as the determinant of the second matrix
B. This can be seen most easily by multiplication with the constant (functional)
matrix

∫

dt′Θ(t′−t′′) which diagonalizes the δ̇(t−t′) and brings the δ term completely
to the right of the (functional diagonal: δΘ′ = Θ. The determinant of such a matrix
equals the determinant of the diagonal part only. Thus, up to an irrelevant factor,
one has

DS = constDαDβDγ sin β (1.89)

corresponding to the standard measure of the rotation group. Inserting now (1.83)
into (1.86) we find

Z[j+, j] =
∫

DαD cos βDγ exp

[

i
∫

dt

{

− 1

4V

(

ω1
2 + ω2

2 +
1

g
(ω3 − 2ε)2

)

− εΩ
]

× exp
[

o
∫

dtdt′Θ(t− t′)Σiji
+(t)U+(t)U(t′)ji(t

′)
]

. (1.90)

The collective Langrangian becomes:

L = − 1

4V

(

ω2
1 + ω2

2 +
1

g
(ω3 − 2ε)2

)

− εΩ (1.91)

= − 1

4V

{

(β̇2 + α̇2 sin2 β) +
1

g
(γ̇ + α̇ cos β)2

}

+
ε

V g
(γ̇ + α̇ cos β)− ε2

V g
− εΩ.
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This has the standard form

L =
1

2
q̇igij(q)q̇

j + ai(q)q̇
i − v(q) (1.92)

with the metric

gij(q) = − 1

2V






sin2 β + 1
g
cos2 β 0 1

g
cos β

0 1 0
1
g
cos β 0 1

g




 (1.93)

gij(q) ≡ (g−1(q))ij = −2V
g

sin2 β






1
g

0 −1
g
cos β

0 1 0
−1
g
cos β 0 sin2 β + 1

g
cos2 β




 (1.94)

of determinant

g ≡ det(gij) = − 1

8V 3

1

g
sin2 β

in the space labelled again by qi ≡ (α, β, γ).
The Hamiltonian in such a curved space is given by [33]

H = H1 +H2 +H3 + v(q) +
1

2
aiai(q) (1.95)

with

H1 = −1

2
g−1/2 ∂

∂qi

(

g1/2gij
∂

∂qj

)

H2 =
i

2
g−1/2

[

∂

∂qi
g1/2gijaj(q)

]

(1.96)

H3 = iai(q)g
ijgij

∂

∂qi
. (1.97)

Here we find H1 as the standard asymmetric-top Hamiltonian,

H1 = V

(

∂2

∂β2
+ cot β

∂

∂β
+ (g + cot β)

∂2

∂γ2
+

1

sin2 β

∂2

∂α2
− 2

cos β

sin2 β

∂2

∂α∂γ

)

. (1.98)

Since
ai =

ε

V g
(cos β, 0, 1) (1.99)

the second part, H2, vanishes and the third part becomes

H3 = −2εi∂γ . (1.100)

The resulting Hamiltonian is exactly the Schrödinger version of the quasi-spin form
(1.59) with

L± = e±iγ
[

±∂β + cot βi∂a − i i
sin β

∂γ
]

L3 = −i∂γ . (1.101)
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The eigenfunctions of H coincide with the rotation matrices

Dj
m′m(α, β, γ) = eiαm

′+γm)djm′m(β). (1.102)

The energy eigenvalues of H1 are well-known

E1
jm = −V [j(j + 1)−m2(1− g)] (1.103)

such that the full energies are

Ejm = 2εm− V [j(j + 1)− (1− g)m2] + εΩ. (1.104)

This coincides with the fermion part of the spectrum (1.64) if m, j are set equal to

m = (N − Ω)/2, j =
Ω− ν

2
(1.105)

as is necessary due to (1.57), (1.62).
For g = 1, ε = 0 the spectrum is degenerate as the Lagrangian (1.92) is rota-

tionally invariant. It may be worth mentioning that in this case the Lagrangian can
also be written as a standard σ-model in the time dimension. In order to see this
use iU̇+U = −iU+U̇ = ωiσi/2 to bring (1.83) to the form

L = − 1

4V
(ωi

2 + ω2
2 + ω3

2) = − 1

2V
tr(U̇+UU+U̇).

If one now defines σ and π fields as

U = σ + iπ · σ,

where σ2 +π2 = 1 due to unitary of U , the Lagrangian takes the familiar expression:

L = − 1

V
(σ̇2 + π2). (1.106)

It is instructive to exhibit the original quasi-spin operators and their algebra within
the collective Lagrangian. For this we add a coupling to external currents

∆H = −2V
∫

Li(t)li(t)dt. (1.107)

to the Hamiltonian (1.55) where Li are the operators (1.57). In the Lagrangian
(1.69) this amounts to

∆L(t) = 2V Li(t)li(t)dt, (1.108)

which modifies (1.72) by adding the matrix

V f+(t)

(

l3 l+

l l3

)

f(t). (1.109)

H. Kleinert, COLLECTIVE QUNATUM FIELDS



1.2 The Generalized BCS Model in a Degenerate Shell 375

This has the effect of replacing

Si → S̃i ≡ Si + li

in the tr log term of (1.73).
Performing a shift in the integration DS → D(S + l) we can also write

A[S, l] = +itrlog(iG−1
s )− V

(

(S1 − l1)2 + (S2 − l2)2 − 1

g

(

S3 +
ε

V
− l3

)2
)

.

(1.110)
The Green’s function involving angular momentum operators can now be generated
by differentiating

Z[0, 0, li] =
∫

DS exp{iA[S, l]}

with respect to δli:

Li=̂−
i

2V

δ

δli
. (1.111)

In the reference state |R〉 where the tr log term vanishes, −i/2V η/δl 1
2
,− i

2V
σ/σl3

generate from (1.108) the fields S 1

2
− l 1

2
, (S3 + ε/V − l3)/g in the functional integral.

In the fermion case, this implies for l = 0, using equs. (1.80)

L± = − 1

2V
(ω1 ± iω2) = − 1

2V
(±iβ̇ + α̇ sin β)e±iγ

L3 = − 1

2V g
(ω3 − 2ε) = − 1

2V g
(α̇ cos β + γ̇ − 2ε) (1.112)

which are exactly the angular momenta of the Lagrangian (1.92) with moments of
intertia

I1>2 = − 1

2V
, I3 = − 1

2V g
. (1.113)

Inserting the canonical momenta of (1.92)

Pα = − 1

2V

(

α̇ sin2 β +
1

g
(γ̇ + α̇ cos β − 2ε) cos β

)

= − 1

2V
α̇ sin2 β + cos βpγ = −i∂α (1.114)

Pβ = − 1

2V
β̇ = −i sin−1/2 β∂β sin1/2 β = −i∂β −

i

2
cot β

Pγ = − 1

2Vg
(γ̇ + α̇ cos β − 2ε) = −i∂γ

we recover the differential operators (1.101).
The quasi-spinalgebra can now be verified by applying the derivatives:

− 1

4V 2

(

δ

δlj(t + ε)

δ

δli(t)
− δ

δli(t)
− δ

δli(t + ε)

δ

δlj(t)

)

Z|t=0 =
1

2V
εijk

δ

δlk
Z|l=0.

(1.115)
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What would have happened in this model if we had not chosen the symmetric
reference state |R〈 to specify the boundary condition on G0? Consider for example
the vacuum state |0〈. Then the Green’s function becomes for S = 0:

Gij
0 (t, t′) =

(

Θ(t− t′) 0
0 −Θ(t′ − t) δ

ij

)

δij (1.116)

rather than (1.85). In this case there is a contribution of −itrlog(iGs
−1) since from

(1.84) and (1.76):

δ

δSi
[−itrlog(iGs

−1)] = −V Ωtr

(

σiU+(l)
−1 + σ3

2
U(t′)

)

|t′=t. (1.117)

Now (1.80) implies

U+(t)σ3U(t) = cos βσ3 + sin β(cos γσ1 + sin γσ2)

yielding for the right hand side of (1.117) the expression

− V Ω







n1

n2

n3







≡ −V Ω







sin β cos γ
sin β sin γ

cos β







. (1.118)

Observe that due to the differential equations (1.83) the unit vector ni can be found
to satisfy the equation of motion

ṅ = 2V n× S. (1.119)

We can now proceed and find −itrlogiGs
−1 by functionally integrating (1.117). We

shall do so in terms of the Euler variables αβγ. Using (1.117), (1.118), (1.88), and
the chain rule of differentiation

δ

δqj(t′)
[−itrlogGs

−1] =
∑

i

∫

dt
δSi(t)

δqj(t′)

δ

δSi(t)
[−itrlogiGs

−1]

= −V Ω
∑

i

∫

dtni(t)
δSi(t)

δqj(t′)
(1.120)

δ

δqi(t)
[−itrlogiGs

−1] =
Ω

2

∑

i

∫

dt (ni(t)Aij(t)δ(t− t′) + ni(t)Bij(t)δ(t− t′))

=
Ω

2
[(0, 0,−β̇ sin β(t′))j +

∫

dt(1, 0, cosβ(t))jδ(t− t′)].
(1.121)

Partial integration renders for the second part in brackets

(1, 0, cosβ(t))δ(t− t′)|t=∞t=−∞ + (0, 0, β̇ sin β(t′)). (1.122)
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With the boundary condition cos β(±∞) = 1 one has therefore

δ

δ(α, β, γ)(t)
[−itrlogiGs

−1] =
Ω

2
(1, 0, 1)[δ(∞− t)− δ(−∞− t)]. (1.123)

This pure boundary contribution can immediately be functionally integrated with
the result:

− itrlogiG−1
s =

Ω

2

∫ ∞

∞
(α̇(t) + γ̇(t)dt. (1.124)

Hence the exponent of the generating functional Z[j+j] on the reference state |0〉
becomes

i
∫

dt

{

− 1

4V

(

ω1
2 + ω2

2 +
1

g
(ω3 − 2ε)2

)

+
Ω

2
(α̇ + γ̇)− εΩ

}

−
∫

dtdt′
∑

i

ji
+(t)

{

U+(t)
1 + σ3

2
U(t′)Θ(t− t′)U+(t)

1− σ3

2
U(t′)Θ(t′ − t)

}

ji(t
′)

(1.125)

other than (1.90). As in the case of the Pet model in the last section, the Hamiltonian
s changed quite trivially. The canonical momenta Pα,Pγ become

Pα = − 1

2V

[

α̇ sin2 β +
cos β

g
(γ̇ + α̇ cos β − 2ε)

]

+
Ω

2

= − 1

2V
α̇ sin2 β + cos βpγ −

Ω

2
(cos β − 1) = −i∂α (1.126)

Pγ = − 1

2V g
(γ̇ + α̇ cos β − 2ε) +

Ω

2
= −i∂γ .

The additional term can be removed by multiplying all eigenfunctions belonging to
(1.127) by a phase exp[−iΩ/2(α + γ)] thereby reducing them to the previous case.
In the present context it is really superfluous to discuss such trivial surface terms.
We are doing this only because these terms do become important at that moment
at which the transition to the true BCS model is made by letting g → 0.

This will be discussed in the next section.

1.3 The Hilbert Space of Generalized BCS Model

Let us now study in which fashion the Hilbert of all rotational wave functions imbeds
the fermion theory. For this consider the generation of Green’s functios by functional
derivation of RZ[j+, j], with the reference state |R〉 being the quasi-spin symmetric
one (1.61), for simplicity.
The resulting one-particle Green’s function will have to coincide with

Gij
mm′(t, t′) = 〈0|bΩ · . . . · b1

(

Tai(t)a
+
j (t′) Tai(t)bj(t

′)
Tb+i (t)a+

j (t′) Tb+i (t)bj(t
′)

)

mm′

b1 + · . . . · bΩ+|0〉.

(1.127)
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If we differentiate (1.90) accordingly, we find

Gij
mm′(t, t′) =

∫

DαD cos βDγδij(U+(t)U(t′)mm′Θ(t− t′) exp[i
∫

dtL(t)]. (1.128)

This can be calculated most easily by going to the Schrödinger picture

Gij
mm′(t, t′) =

∑

k

{R|D1/2
km(αβγ(t))D

1/2
km′(αβγ(t′))|R}δijΘ(t− t′). (1.129)

Since the reference state is symmetric, it must be associated with the wave function
{αβγ(t)|R} = D0

00(αβγ(t)) ≡ 1/
√

8π2

ER ≡ E0;0 = εΩ. (1.130)

Inserting the time translation operator2

D(αβγ(t)) = eiHtD(αβγ(0))eiHt (1.131)

with H in the differential form (1.95) one finds a phase

ei∆E(t−t′), (1.132)

where ∆E is the energy difference between the state |jm〉 = |1/21/2〉 and the
reference state |R〉 = |0, 0〉

∆E = E1/21/2 − E0,0 = ε− V
(

1

2
+
g

4

)

(1.133)

and the integral

∑

k

∫

dαd cosβdγ{R|αβγ}D1/2∗

km (αβγ)D
1/2
km′(αβγ){αβγ|R} = δmm′ . (1.134)

This coincides exactly with the result one would obtain from (1.127) by using the
original operator (1.55) and observing the energy spectrum (1.64).
Notice that the orthogonality relation together with the Grassmann algebra ensure
the validity of the anticommutation rules among the operators. For higher Green’s
functions the functional derivatives amount again to the contractions as in (1.34),
except that now the contractions are associated with

1

fmi(t)
1

fm′ (t′) = D
1/2
mm′(U+(t)U(t′)Θ(t− t′)δij

=
∑

k

D
1/2∗

km (U+(t))D
1/2
km′(U(t))Θ(t− t′)δij (1.135)

where f1/2i, f−1/2i stands for (ai, bi
+).

We can now proceed and construct the full Hilbert space by piling up operators a+
i or

2The Schrödinger angles αβγ coincide with the time dependent angles α(t), β(t), γ(t) at t = 0.
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bj on the reference state |R〉 = b1
+ . . . bΩ

+|0〉. First we shall go to true vacuum state
of a+, b+ : |0〉, i.e. we shall calculate 0Z[j+, j] in this state. For this we obviously
have to bring down successively b1

+(∞)·. . .·bΩ(−∞)bΩ(−∞)·. . .·b1(−∞) by forming
the functional derivatives:

Z0[0, 0] ∝ δ2Ω

δj−1/2,1(∞) · . . . · δj+
−1/2,1(−∞)

RZ[j+, j]|j=0 (1.136)

in the functional (1.90). Of the resulting n! contractions, only one combination
survives, since all indices i, j are different and the Kronecker δij permits only one
set of contractions. The result is

0Z[0, 0] = N
∫

DαD cos βDγ exp[i
∫

dtL(t)][D
1/2
−1/2−1/2U

+(∞)U(−∞))]Ω. (1.137)

But from the coupling rules of angular momenta and the group property one has:

[D
1/2
−1/2−1/2(U

+(∞)U(−∞))]Ω = D
Ω/2
−Ω/2−Ω/2(U

+(∞)U(−∞))

=
∑

k

D
Ω/2∗

k−Ω/2((∞))Dk−Ω/2(U(−∞)). (1.138)

Going to the Schrödinger picture and inserting the time translation operator (1.131)
one finds an infinite phase exp[i(ER−E0)2∞] which can be absorbed in the normal-
ization factor N . Here E0 = EΩ/2,−Ω/2 is the energy of the ground state |0〉 which
has |jm〉 = |Ω/2 − Ω/2〉. The eigenfunction D(α, β, γ) now appear both at t = 0
and the functional (1.137) becomes in the Schrödinger picture

0Z[0, 0] =
Ω/2
∑

k=−Ω/2

∫

dαdβdγ sin γ{0k|αβγ}{αβγ|0k} (1.139)

with the vacuum wave functions

{αβγ|0, k} = D
Ω/2
k,−Ω/2(αβγ) = ei(kα−Ωγ/2)d

Ω/2
k,−Ω/2(β). (1.140)

It is easy to verify, how an additional unpaired particle a+, added to the vacuum,
decreases Ω/2 → (Ω− 1)/2 and raises the third component of quasi-spin by 1/2
unit. Differentiating (1.88) by −δ2/δj1/21(∞)δj+

1/21(−∞) in addition to (1.136) one
finds a different set of contractions. Picturing them within the original fermion
language, there are

〈R|T (b1
+(+∞) · . . . · bΩ+(+∞)a1(+∞)a1

+(−∞)bΩ(−∞) · . . . · b1(−∞))|R〉
= 〈R|T (

1

b1
+(∞) · . . . ·

2

bΩ
+(∞)

3
a1 (∞)

3
a1

+(−∞)
2

bΩ (−∞) · . . . ·
1

b1 (−∞))|R〉
+〈R|T (

1

b1
+(∞) · . . . ·

2

bΩ
+(∞)

3
a1 (∞)

1
a1

+(−∞)
2

bΩ (−∞) · . . . ·
3

b1 (−∞))|R〉.
(1.141)



380 1 Low-Dimensional Models

Employing the explicit formulas

D
Ω/2
−Ω/2−Ω/2(αβγ) = e−Ω(α+γ)/2

(

cos
β

2

)Ω

D
1/2
1/21/2(αβγ) = e(α+γ)/2 cos

β

2
(1.142)

D
1/2
−1/21/2(αβγ)D

1/2
1/2−1/2(αβγ) = − sin2 β

2

the r.h.s. of (??) becomes

= e−Ω(α+γ)/2

(

cos
β

2

)Ω

e(α+γ)/2 cos
β

2

+e−(Ω−1)(α+γ)/2

(

cos
β

2

)Ω−1

sin2 β

2

= e−(Ω−1)(α+γ)/2

(

cos
β

2

)Ω−1

= D
(Ω−1)/2
−(Ω−1)/2,−(Ω−1)/2(αβγ) (1.143)

and therefore, in analogy to (1.137), (1.139)

a
+|0〉
1 Z[j+, j]|j=0 = N

∫

DαD cos βDγD
(Ω−1)/2
−(Ω−1)/2,−(Ω−1)/2(αβγ) exp(i

∫

Ldt)

=
(Ω−1)/2
∑

k=−(Ω−1)/2

∫

dtαd cosβdγ{a1k|αβγ}{αβγ|a+
1 k} (1.144)

with the Schrödinger wave functions

{αβγ|a1
+k} ≡ D

(Ω−1)/2
k,−(Ω−1)/2(αβγ). (1.145)

In a similar fashion we may work our way through the whole Hilbert space!
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2
Massive Thirring Model in 1+1 Dimensions

et us also study an example of a quantum filed theory in two spacetime dimensions,
the massive Thirring model.

In 1 + 1 dimensional field theories, such as the Thirring model, the technique
presented here leads to an exact translation from the Fermi fields ψ to collective
Bose fields ϕ(x), λ(x). Here, one has to add the complete square Eq. (3.23)

∆A =
g

2

∫

d2x
{

ψ̄(x)γµψ(x)− Aµ
}2

(2.1)

which eliminates the − g
2

(

ψ̄γµψ
)2

interaction. Integrating out the fermions renders
the collective action Eq. (3.24)

Acoll[A] = −iTr log (i∂/− gA/) +
g

2

∫

d4xA2
µ(x). (2.2)

Now one can make use of the fact that in two dimensions Aµ has only two components
and can be written as Eq. (3.25)

Aµ(x) =
1√
g

(∂µϕ(x)− εµν∂νλ(x)) (2.3)

so that Eq. ()
g

2
A2
µ(x) =

1

2
(∂µϕ(x))2 − 1

2
(∂µλ(x))2 . (2.4)

The trace log term can be expanded with only one loop contributing giving Eq. ()

g2

2π

[(

gµν − ∂µ∂ν

∂2

)

Aν(x)

]2

. (2.5)

Hence the collective action is Eq. (3.26)

Acoll[ϕ, λ] =
∫

d4x
[
1

2
(∂ϕ(x))2 − 1

2

(

1 +
g

π

)

(∂λ)2
]

. (2.6)

Since this transformation from the ψ to the ϕ, λ-field description is exact, one can
calculate also the Green functions of the original fermion fields ψ. For this, an
external current interaction Eq. ()
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∫

d4x
(

ψ̄(x)η(x) + c.c.
)

(2.7)

has to be added in the exponent of the generating functional (2.10). Before inte-
grating out the fermions, a quadratic completion is necessary giving an additional
external current piece in (2.2):Eq. (3.27)

Aext curr = i
∫

d4xd4yη̄(x)

(

i

i∂/− gA/

)

(x, y)η(y). (2.8)

With the decomposition (2.3) the Green function can be solved byEq. (3.28)

i

i∂/− gA/(x, y) =
i

i∂/−√g∂/(ϕ+ γ5λ)
(x, y)

= e−i
√
gϕ(x)+γ5λ(x) i

i∂/
(x, y)ei

√
g(ϕ(y)+γ5λ(y)

= e−i
√
g(ϕ(x)+γ5λ(x)) 1

4πi

/x− /y
(x− y)2 + iε

εi
√
g(ϕ)+γ5λ(y)). (2.9)

Forming functional derivatives
δ

δη̄(x)

δ

δη(y)

one finds the Green function of the original fermions in the formEq. (3.29)

1

4πi

/x

x2 + iε
〈0| : e−i

√
g(ϕ(x)+γ5λ(x)) :: ei

√
g(ϕ(0)+γ5λ(0)) : |0〉. (2.10)

With the standard rule for calculating the exponential of free fieldsEq. (3.30)

1

4πi

/x

x2 + iε
〈0| : e−iαϕ(x) :: eiαϕ(y) : |0〉 = eα

2〈ϕ(x)ϕ(y)〉 (2.11)

(this follows from Wick’s theorem) and using the expectations 1Eq. (3.31a)

〈0|ϕ(x)ϕ(0)|0〉 = − 1

4π
log(µ2x2) (2.12)

〈0|λ(x)λ(0)|0〉 =
1

1 + g/π

1

4π
log(µ2x2) (2.13)

the vacuum expectation value in (2.10) becomesEq. (3.32)

(

x2

µ2

)(−g+ g
1+g/π ) 1

4π

=

(

x2

µ2

)− g2

1+g/π
1
4π

(2.14)

with the exponent displaying the dynamically generated anomalous dimension of
the field ψ, which vanishes in the free-fields case.
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Notice that a mass term in the original action mψ̄ψ would amount to

m
δ

δµ(x)

δ

δµ̄(x′)
|x=x′.

Due to the result (2.9) this is equivalent to settingEq. (3.33)

mψ̄ψ = m (ψ∗1ψ2 + ψ∗2ψ1)→ m
(

ei2
√
gλ(x)ψ∗01ψ02 + c.c.

)

(2.15)

where ψ0 are free fields.
It is a pleasant accident of the two-dimensional world that all matrix elements

of products of many ψ∗01ψ02, ψ
∗
02ψ01 can also be using exponentials of the Bose fields

ϕ [due to (2.11), compare with (2.9(3.28)) for g = 0], namely: Eq. (3.34)

ψ∗01ψ02 ' ei
√

4πϕ. (2.16)

Moreover, the matrix elements of Eq. (3.34a)

ei(2
√
gλ+
√

4πϕ) (2.17)

are, again due to (2.11), (2.12(3.31a)), (2.13(3.31b)) the same as those of Eq. ()

e
−i
√

4π
1+g/π

ϕ
. (2.18)

Because of this accidental situation the mass term can be ”fitted” by the operator Eq. (3.34b)

mψ̄ψ ' 2m cos

(√

4π

1 + (g/π)
ϕ

)

(2.19)

rendering the well-known sine-Gordon bosonic description of the massive Thirring
model.

Similarly, the Schwinger model can be converted into a single free ”plasmon”
Bose field of mass

mplasmon =
e2

π

by integrating out the Fermi fields in the generating functional [22].
Also in 1+0 dimensions the method has been applied to field theories of nuclear

excitations and to models [23].

1Here µ is an infrared renormalization mass. See J.A. Swieca, Fortschr. Phys. 25 , 303 (1977).
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3

O(N)-Symmetric Four-Fermi Interaction in 2 + ε
Dimensions

Another class of field theories which become soluble by introducing collective quan-
tum fields is obtained by introducing a large number N of identical fields, assuming
for them an O(N)-symmetric four-field, and taking the limit N → ∞. For Dirac
fermions, the model Lagrangian density reads at finite N :

L = ψ̄ (i/∂ −m0)ψa +
g0

2N

(

ψ̄aψa
)2

(3.1)

where the index a runs from 1 to N . This model is called the Gross-Neveu model

since these authors gave a first thorough study of it [?], although it had been dis-
cussed earlier by Vaks and Larkin and by Anselm [?]. For later studies see [?].

At the mean-field level, the effective action becomes

Γ
[

ψψ̄
]

)A
[

ψ, ψ̄
]

=
∫

dx
{

Ψ̄ (i/∂ −m0)Ψ +
g0

2N

(

Ψ̄aΨa

)2
}

(3.2)

and yields an equation of motion

(

i/∂ −m0 +
g0

N
Ψ̄aΨa

)

Ψ̄b(x) = 0. (3.3)

This equation can only have a trivial solution Ψa = 0 since a non-vanishing fermion
field expectation in the ground state

Ψ̄a = 〈0|ψa|0〉 (3.4)

would imply that the state |0〉 contains a coherent mixture of bosonic and fermionic
excitations. Such a state does not exist in nature, a fact which is considered to be
the consequence of a so-called a superselection rule. This is in contrast to a Bose
filed theory where Ψ̄a can be nonzero.

The following discussion will show that for large N , the model exhibits a spon-
taneous symmetry breakdown very similar to the BCS model. The symmetry to be
broken will not be the O(N)-symmetry of the interaction but a discrete one. For

384
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the sake of generality we shall carry on the discussion in any dimension D. The
generating functional is written in terms of fermionic anticommuting sources as

Z[η, η̄] = eiW [η1η̄] =
∫

DψDψ̄eiA[ψ,ψ̄]+i(ψ̄η+c.c.)

We now introduce a collective field σ ∼ gψ̄ψ and rewrite this as

Z[η, η̄] =
∫

DψDψ̄Dσei
∫
dDx{[ψ̄a(i/∂−m0−σ)ψa+η̄ψ+c.c.]−i N

2g0
σ2}
. (3.5)

Integrating out the fields ψ according to the rules in Part I we express the partition
function in terms of the collective density field σ,

Z[η, η̄] =
∫

DσeiAcoll[σ]−η̄Gση, (3.6)

with the collective action

Acoll[σ] = N

[

− N

2g0

σ2 − itr log (i/∂ −m0 − σ]

)

. (3.7)

In the limit N →∞, the fluctuations are squeezed into the extremum of the expo-
nent. This leads to the effective action

1

N
Γ
[

Σ, ψ, ψ̄
]

= − 1

2g0
Σ2 − iTr log (i/∂ −m0 − Σ) +

1

N
Ψa (i/∂ −m0 − Σ) Ψa (3.8)

Extremization of Γ yields the equations of motion:

(i/∂ −m0 − Σ) ,Ψa = 0 (3.9)

Σ(x) = g0Tr

(

i

i/∂ −m0 − Σ

)

(x, x)− g0

N
Ψ̄a(x)Ψa(x) (3.10)

where the trace runs over the Dirac indices. From what we said before, the field
expectation Ψ must vanish such that we remain only with a single equation called gap
equation because of its first analogous appearance in the theory of superconductivity:

Σ(x) = g0Tr

(

i

i/∂ −m0 − Σ

)

(x, x). (3.11)

Thus, as far as the extremum is concerned, we may study only the purely collective
part of the exact action

1

N
Γ[Σ] = − 1

2g0
Σ2 − iTr log (i− /∂ −m0 − Σ) . (3.12)
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Let us seek for an extremal constant solution Σ0 Then gap equation reduces to

Σ0 = ig0 tr
∫

dDp

(2π)D
/p+m0 + Σ0

p2 − (m0 + Σ0)
2

= tr(1) g0

∫
dDpE
(2π)D

1

p2
E + (m0 + Σ0)2

(

m0 + Σ0
)

, (3.13)

or

1 = tr(1) g0

∫
dDpE
(2π)D

1

p2
E + (m0 + Σ0)

2

(

m0

ΣD
0

+ 1

)

(3.14)

The Dirac matrices have dropped out except for the unit matrix such that we can
work in any desired number dimensions. We only need to know the dimension of
the Dirac matrices which is 2D/2 for even D. In this form we may continue Eq. (3.4)
to any non-integer value of D.

For a constant Σ, the effective action gives rise to an effective potential

1

N
v(Σ) = − 1

N
Γ[Σ] =

1

2g0

Σ2 − tr(1)
1

2

∫
dDpE
(2π)D

log
[

p2
E + (m0 + Σ)2

]

.

(3.15)

The last term is obtained from the Tr log in (3.8) by the following calculation

∫
dDp

(2π)D
log (/p−m0 − Σ) =

1

2

∫
dDp

(2π)D
[log (/p−m0 − Σ) + log (−/p−m0 − Σ)]

=
1

2

∫
dDp

(2π)D
log

[

−p2 + (m0 + Σ)2
]

=
i

2

∫
dDpE
(2π)D

log
[

p2
E + (m0 + Σ)2

]

.

The integral is performed with the help of formula (??) yielding

1

N
v(Σ) =

1

2g0
Σ2 − 2

D−2
2 µD−21

2
S̄DΓ(D/2)Γ(1−D/2)

2

D

(

m0 + Σ

µ

)D

µ2. (3.16)

The arbitrary mass scale µ will be important for a study of the theory in the limit
m0 = 0.

We now focus attention upon the dimensional neighbourhood ofD = 2 spacetime
dimensions, settind

D = 2 + ε, with ε > 0. (3.17)

Then

1

N
v(Σ) =

µε

Σ




Σ2

g0µε
− bε

(

m0 + Σ

µ

)2+ε

µ2



 , (3.18)
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where the constant bε stands for

bε =
2

D
2ε/2S̄DΓ(D/2)Γ(1−D/2) =

2

D

1

(2π)D/2
Γ(1−D/2). (3.19)

For small ε, bε behaves as [recall Eq. (??)]

bε ∼ −
1

πε

[

1− ε

2
log

(

2πe−γ
)]

+O(ε). (3.20)

Therefore, the bare parameters must somehow diverge in order to obtain a finite
theory in two dimensions.

For simplicity, let us focus attention to the massless case, m = 0. Then a
renormalized coupling constant can be defined via

1

g0µε
− bε =

1

g
. (3.21)

The limit ε → 0 can now be taken at a finite g and we obtain the renormalized
potential

1

N
v(Σ)→ 1

2

[

Σ2

g
+

Σ2

π
log (Σ/µ)

]

. (3.22)

For arbitrary 4 > ε > 0 we may write a renormalized v as

1

N
v(Σ) =

µε

2

{

Σ2

g
+ bεΣ

2

[

g −
(

Σ

µ

)ε]}

(3.23)

which reduces to (3.22) for ε→ 0.
Let us now study the possibility of a nontrivial solution Σ = Σ0 for the gap

equation. There is no need to perform the integral in (3.12), since the gap equations
determines the minimum of v(Σ). Thus we may simply differentiate (3.18) form = 0,
and obtain

1 = g0µ
εbε
D

2

(

Σ0

µ

)ε

. (3.24)

In the renormalized version (3.23) this reads

1 = gbε

[(

1 +
ε

2

)(

Σ0

µ

)ε

− 1

]

, (3.25)

and becomes in the limit ε→ 0:

1 = − 1

π
g

(

1

2
+ log

Σ0

µ

)

. (3.26)

The vacuum expectation of the collective field is therefore given by

Σ0 = µe−(
1
2
+π

g ). (3.27)
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The question arises whether this non-trivial solution corresponds to the true ground
state of the problem. For this, we differentiate v once more and find

1

N
v′′(Σ) =

1

g0

− bε
D

2
(D − 1)Σε. (3.28)

Inserting (3.27) this yields the condensation energy

1

N
v′′(Σ) = − 1

g0
(D − 2) = εbε

D

2
(D − 2)Σε

0, (3.29)

which is positive for D > 2 if

g0 < 0. (3.30)

What does this condition mean for the renormalized coupling g? Using (3.21) we
see that g0 < 0 and g0 > 0 amount to g > g∗ and g < g∗, respectively, with

g∗ ≡ ε. (3.31)

Thus there exists a critical value of the renormalized coupling g∗ = −b−1
ε , above

which the model has a phase with a non-vanishing field expectation Σ0 if g > g∗. If
the renormalized coupling lies below g∗, the bare coupling constant is positive and
only the trivial solution Σ0 = 0 has a positive v′′(Σ0) indication.

What are the physical properties of the two solutions? Looking back at the
effective action (3.8) we see that Σ0 increased the fermion mass term to

M = m0 + Σ0. (3.32)

The effect of Σ0 is most drastic, of the bare mass m0 = 0 vanishes. Then, for
g < g∗, the massless input fermions remain massless. For g > g∗, on the other hand,
the fermions aquire a mass M = Σ0 via fluctuations. One speaks of a spontaneous

generation of a fermion mass. The result may also be phrased differently: In the
g < g∗-phase, the fermions have long-range correlations, in the g > g-phase, the
spontaneously generated mass limits their correlations to a range 1/M .

The spontaneous mass generation is closely related to the fact that the model
displays, for zero initial mass, the phenomenon of spontaneous symmetry breakdown
(recall Chapters ??, ??). Indeed, for m0 = 0, the Lagrangian (3.1) possesses an
additional symmetry called γ5-invariance. In two dimensions we may choose the
following γ-matrices:

γ0 =

(

0 1
1 0

)

= σ1

γ1 =

(

0 −1
1 0

)

= −iσ2 (3.33)
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which satisfy

{γµ, γν} = 2gµν = 2

(

1 0
0 −1

)

(3.34)

The hermitian γ5-matrix is defined in analogy with the four dimensional case as

γ5 = γ0γ1 =

(

1 0
0 −1

)

. (3.35)

The γ5-transformation T may now be introduced as

ψ→
T
γ5ψ (3.36)

which obviously satisfies T 2 = 1. Under T :

ψ̄→
T
ψ†γ5γ0 → −ψ̄γ5. (3.37)

Hence:

ψ̄ψ → −ψ̄ψ
ψ̄γµψ → −ψ̄γµψ (3.38)

If the bare mass m0 in (3.1) is zero, the Lagrangian is invariant under T .
Also the action in the exponents of (3.5) and (3.6) are invariant, if we assign to

σ ∼ gψ̄ψ, in accordance with (3.35), (3.36) the transformation

σ→
T
−σ. (3.39)

Thus the m0 = 0 collective action (3.7) is symmetric in σ. It is precisely this γ5

symmetry which is broken by the non-vanishing expectation value 〈σ〉 = ε0. We may
compare this result with our Bose discussion in the last sections. There we found
that the continuous O(N) symmetry could not be broken in 2 (and 1) dimensions
due to the fluctuations. Here we see that contrary to this a descrete symmetry
can be broken in two dimensions. This is a general feature. The impossibilities of
the spontaneous breakdown of a continous symmetry is related to the fact that if
it were to take place there would have to be massless Nambu-Goldstone bosons in
two dimensions. But it can be shown that such excitations cannot exist in such a
reduced space-time. For a discrete symmetry there need not be any such bosons
and this is what makes the spontaneous breakdown possible.

Such a behavior is found for many quasi-two dimensional systems, even though
the physics in these systems is taking place at ε = 0, and the mechanism causing
the transition is quite different from the one described here. The prime example is
4He which can easily be prepared as a surface layer of a few atoms thickness. It
shows superflow properties below some temperature T ∗ and behaves normally for
T > T ∗. The transition is caused by a separation of bound pairs of vortices. The
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transition is very similar to the phase transition of a two-dimensional electron gas
seen as follows: By rescaling the field as

ψ → 1√
g
ψ (3.40)

we can bring the path integral to the normalized form (leaving out the sources)

Z[0] =
∫

DψDψ̄ei
1
g

∫
dDx

[

ψ̄(i/∂−m0)ψ+ 1
2N (ψ̄ψ)

2
]

.

The above calculation of this functional proceeded in a Wick-rotated form, such
that the result is equal to the euclidean path integral

Z[0] =
∫

DψDψ̄e
1
g

∫
dDxE

[

ψ̄(i/∂E+m0)ψ− 1
2N (ψ̄ψ)

2
]

, (3.41)

in which the time has been continued to imaginary values

t = −iτ, τ real. (3.42)

The continued variable τ may be considered as a second spatial coordinate. Thus
the exponent takes the typical form of a purely thermal fluctuation problem, which
is usually

Z[0] =
∫

DψDψ̄e− 1
T

∫
dDxH (3.43)

where T is the temperature and H is the Hamiltonian density. The analogy is now
obvious: The coupling constant g in (3.41) plays the same role as the temperature
in (3.43). The euclidean version of the field-theoretic Lagrange density in one space
and one time dimension becomes the Hamiltonian density in two space dimensions.

It is worth pointing out an important structural property of the final result: The
characteristic parameter of the two-dimensional system is the fermion mass which is
determined from the coupling strength and the arbitrary mass parameter via (3.27),
(??) as

M = µe−(
1
2
+π

g ). (3.44)

The original theory with m0 = 0 had only a single free parameter, namely the
coupling strength g0. For the purpose of renormalizing the massless theory we
introduced the auxiliary mass parameter µ. The renormalized coupling g depends
on the choice of µ, and (3.21) should more explicitly be written as

1

g0µε
− bε =

1

g(µ)
. (3.45)

In this way, a system with a single parameter g0 has been recharacterized by two
parameters µ and g(µ).
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This increase of parameters is certainly an artifact. There must be a relation
between µ and g(µ) such that different pairs (µ, q(µ)) correspond to the same set of
Green’s functions, i. e., to the same physical theory. Indeed, such a relation follows
from (3.21). At a fixed g0, we can plot curves in the (µ, g) plane which correspond
to one and the same theory. In the limit ε→ 0 this relation between µ and g has a
subtlety. It goes over into the mass relation (3.44).

The fermion mass is a physically observable finite quantity. There are infinitely
many pairs of parameter µ and coupling g(µ) which lead to the same fermion mass,
and this mass is the most economic single parameter by which all properties of the
theory can be expressed. Let us illustrate this by calculating two physical quantities:

1) We reexpress the potential (3.22) in terms of M . For this we write the renormal-
ized gap equation in the form (with E0 = M)

(

1

g
+

1

2π

)

+
1

π
log

M

µ
= 0. (3.46)

Multiplying by Σ2/2, and subtract the result from the potential (3.22), then we find

1

N
v(Σ) =

Σ2

2π

[

log
(

Σ

M

)

− 1

2

]

. (3.47)

This has indeed the desired property that neither µ nor g(µ) appear but only the
single parameter M . The same property can, of course, be verified for D > 2
dimensions. Here we may combine (3.25) with (3.23) and find

1

N
v(Σ) =

µε

2




Σ2

g0µε
− bε

(

Σ

µ

)2+ε

µ2





=
M ε

2
bεΣ

2

[

1 +
ε

2
−
(

Σ

M

)ε
]

. (3.48)

For ε→ 0, this reduces to (3.47)

2) We calculate the scattering amplitude for fermions. As we know from the dis-
cussion in the Bose case, this is given entirely by the exchange of Σ-propagators.
These can be extracted from the effective action (3.8) always at m0 = 0 by forming
the second functional derivative at Σ0 [compare the discussion leading to (??)]. The
quadratic piece in Σ′ ≡ Σ− Σ0 = Σ−M is

δ2Γ = −N
2

[

Σ′2

g0
+ i Tr

(

i

i/∂ −M Σ′
i

i/∂ −M Σ′
)]

. (3.49)

From this we extract the propagator

σ̇′σ̇′ = − 1

N

i
1
g0

+ Π(q)
, (3.50)
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where the self-energy of the σ′ field is

Π(q) = i tr
∫ dDk

(2π)D
i

/k −M + iη

i

(/k − q)−M + iη

= −i tr
∫

dDk

(2π)D
[(/k +M)(k − q +M)]

(k2 −M2) [(k − q)2 −M2]

= −2D/2
∫
dDkE
(2π)D

k(k − q)E −M2

(k2
E +M2) [(k − q)2

E +M2]
. (3.51)

In the last line we have gone to the euclidean form. The denominator can be treated
with the help of the Feynman formula (??), and we may write [compare (??)]

Π(q) = −2D/2
∫ dDkE

(2π)D

∫ 1

0
dx

k(k − q)E −M2

(k2
E − 2kEqEx + q2

Ex+M2)
2 . (3.52)

The integrand can be regrouped to

(k − qx)2
E + (k − qx)EqE(2x− 1)− q2

Ex(1− x)−M2

[(k − qx)2
E + q2

Ex(1− x) +M2]
2 . (3.53)

Upon integration, the second term in the numerator will vanish since it is odd in
the shifted variable k − qx. Therefore, we remain with the integral

Π(q) = −2D/2
∫ 1

0
dx
∫
dDkE
(2π)D

×
{

1

k2
E + q2

Ex(1− x) +M2
− 2

M2 + q2
Ex(1− x)

[k2
E + q2

Ex(1− x) +M2]
2

}

. (3.54)

This can be integrated with the rules (??), leading to

Π(q) = −2D/2S̄D

[

1

2

Γ(D/2)Γ(1−D/2)

Γ(1)
− 2

1

2

Γ(D/2)Γ(2−D/2)

Γ(2)

]

×
∫ 1

0
dx
[

q2
Ex(1− x) +M2

]D/2−1
(3.55)

= −2D/2−1S̄D(D − 1)Γ(D/2)Γ (1−D/2)M ε
∫ 1

0
dx

[

q2
E

M2
x(1− x) + 1

]D/2−1

= −D(D − 1)

2
bεM

ε
∫ 1

0
dx

[

q2
E

M2
x(1− x) + 1

]−ε/2
(3.56)

where we have introduced the parameter bε of (3.19). We may now calculate the
propagator in terms of the renormalized coupling g

σ̇′σ̇′ = − i

N
µ−ε

1

1
g0µε − D(D−1)

2
bε
(
M
µ

)ε ∫ 1
0 dx

[
g2ε
M2x(1− x) + 1

]ε/2

= − i

N
µ−ε

1

1
g

+ bε

{

1− D(D−1)
2

(
M
µ

)ε ∫ 1
0 dx

[
q2E
M2x(1− x) + 1

]ε/2
} . (3.57)
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The expression in brackets behaves for small ε as

1−
(

1 +
ε

2

)

(1 + ε)

{

1 +
ε

2

∫ 1

0
dx log

[

q2
E

M2
x(1− x) + 1

]

+ ε log
M

µ

}

= − ε
2

{[
∫ 1

0
dx log

(

q2
E

M2
x(1− x) + 1

)]

+ 3 + 2 log
M

µ

}

, (3.58)

so that the denominator of (3.50) becomes, in D = 2 dimensions,

1

g
+

1

µε
=

1

g
+

1

2π

{
∫ 1

0
dx log

[

q2
E

M2
x(1− x) + 1

]

+ 3 + 2 log
M

µ

}

. (3.59)

Let us now check that this result can be expressed completely in terms of M . For
this purpose we subtract again the gap equation (3.26) and find

1

2π

∫ 1

0
dx

{

log

[

q2
E

M2
x(1− x) + 1

]

+ 2

}

(3.60)

and the σ′ propagator becomes indeed:

σ̇′σ̇′ = Gσ′ = − i

N

1
1

g0
+ Π(q)

(3.61)

= − i

N

2π
∫ 1

0
dx log

[

q2
E

M2
x(1− x) + 1

]

+ 2

(3.62)

The integral in the denominator has been performed before [see (??)] with the result

J(z) =
∫ 1

0
dx log [zx(1− x) + 1] = −2 + 2Θ cothΘ (3.63)

where

Θ = atanh

√
√
√
√

q2
E

q2
E + 4M2

, sinh Θ =

√

q2
E

4M2
. (3.64)

The section J(z) is monotonously increasing in q2zE, with the minimum lying at
the origin. There

G′σ|q2E=0 = −i π
N
, (3.65)

and this decreases smoothly in size for growing euclidean momentum.
We may now ask whether there exists a scalar ground state in the fermion an-

tifermion scattering amplitude, which is usually called σ particle in the analogy
with a resonance of π†π− in the proton proton scattering amplitude which is seen at
roughly 700 MeV (and which is the origin of using the name σ for the collective field
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σ ∼ ψ̄ψ. This particle would have to manifest itself in a pole in the σ ′σ′ at timelike
q2 i. e. of some negative value of q2

E = −s = −M2
σ . Indeed, the denominator (3.63)

is seen to vanish for

δ = 4M2 (3.66)

as can be seen by continuing (3.140) to 0 < S < 4M 2 using

Θ cothΘ = Θ̄ coth Θ̄ (3.67)

In conclusion we have seen that the number of parameters characterizing the theory
has remained the same: The bare coupling g0 which becomes undefined for ε → 0
has turned into the finite fermion mass M which is independent on the particular
renormalization procedure. It should be noted that in this way a dimensionless
quantity g0 has been replaced by another quantity with the dimension of a mass.
This process is often referred to as dimensional transmutation. It was first observed
in the microscopic theory of superconductivity. There are many superconductors
with different coupling strenghts g and mass parameters µ (which are a characteristic
for the phonon spectrum; see Chapter ??, but there is only one quantity specific
for the superconductivity properties which is the critical temperature Tc. Theories
with the same Tc are identical superconductors independent on what g or µ they
were derived from. There is one important difference, however, between the different
cases: In the fundamental Lagrangian (3.1), µ and g(µ) were completely irrelevant
parameters which were not detectable separately by any physical experiment. Only
their combination M is in a superconductor, on the other hand, both quantities are
properties of the microscopic substructure and can both be measured. This points at
an important physical aspect of the renormalization procedure: Every theory which
need coupling constant renormalization has a redundancy in its parameterization
via mass parameter µ and renormalized coupling constant renormalization has a
redundancy in its parameterization via mass parameter µ and renormalized coupling
strength g. This redundancy cannot be resolved at the level of the theory itself. But
there may be a more microscopic theory in which both parameters µ and g(µ) aquire
separate physical significance. Until now, theoretical physics has gone precisely this
way. Every theory which was considered to be microscopic turned out later to be
a phenomenological description of even more microscopic substructures. We may
write

Θ = arctan

√

s

s− 4M2
, sin Θ =

√
s

4M2
. (3.68)

Close to 4M 2 the propagator behaves as

Gσ = −2i

N

√

s

s− 4M2
. (3.69)

Thus we see that there is no proper particle pole at s = 4M 2, but only a branch cut
which runs from s = 4M 2 to infinity which is present in every scattering amplitude
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and commonly referred to as the elastic cut. Only for finite N will there be a proper
bound-state pole before the cut starts.

Let us finally take a short look and see what physics is described for g < g∗ or
g0 > 0. Here the fermions remain massless and there are long-range correlations.
The potential may still be parametrized in the form (3.18), (3.23) with m0 = 0:

1

N
v(ε) =

µε

2




ε2

g0µε
− bε

(

σ

µ

)2+ε

µ2





=
µ2

2







ε2

g
− bε





(

ε

µ

)2+ε

µ2 − ε2









(3.70)

There remains the arbitrary mass parameter µ with the renormalized coupling g
depending on the choice of µ. There is now no fermion mass in terms of which the
result can be expressed in a renormalization independent fashion. Nevertheless, it
is still possible to substitute the pair of parameters µ, g(µ), by a single one whose
dimension is mass. For this we may simply turn the sign of Eq. (3.24) and define
M by

1 ≡ −g0µ
εbε
D

2

(

M

µ

)ε

(3.71)

Now v can be rewritten as

1

N
V = −M

2

ε

bεΣ
2
[
D

2
+
(
ε

M

)ε]

(3.72)

and M is a measure for the deviation of the potential from its quadratic shape. The
minimum lies at the origin corresponding to the massless fermions.

Notice that this potential exists only for ε truly larger than zero. For ε → 0 no
finite limit remains which is due to the fact that 1/g0µ

ε−ba can only be compensated
to become a finite quantity 1/g in the limit ε→ 0 if g0 is negative.

If we calculate (3.59) for vanishing fermion mass we obtain

σ̇′σ̇′ = − i

N
µ−ε







1

g0µε
− D(D − 1)

2
bε

(

q2
E

µ2

)ε/2 ∫ 1

0
dx [x(1− x)]ε/2







−1

= − i

N
µ−ε







1

g0µε
− D(D − 1)

2
bε

Γ(1 + ε/2)2

Γ(2 + ε)

(

g2
E

µ2

)ε/2






−1

(3.73)

This may be expressed in terms of the auxiliary mass parameter (3.71) as

σ̇′σ̇′ =
i

N

(
D

2
bεM

ε
)−1



1 +
Γ2 (1 + ε/2)

Γ(1 + ε)

(

q2
E

M2

)ε/2




−1

. (3.74)

It should be pointed out that if we had calculated the σ̇′σ̇′ propagator by expanding
around the wrong ground state solution, say Σ′′ = 0 for g0 < 0, g > g∗, the resulting
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propagator would show this mistake. We can see this directly from (3.73) which is
singular at euclidean momentum by having an unphysical tachyon

g2
E =

[

1

g0bε

Γ(2 + ε)

Γ2 (1 + ε/2)

2

D(D − 1)

]2/ε

. (3.75)

This may also be expressed in terms of renormalized quantities as

g2
E

µ2
=

[(

1 +
1

gbε

)

Γ(2 + ε)

Γ (1 + ε/2)

2

D(D − 1)

]2/ε

. (3.76)

When going to Minkowski space this amounts to a particle pole at

q2 = −q2
E.

This is similar to the situation in φ4 theory in four dimensions. Also there we found
such a particle with an imaginary mass which travels faster than the speed of light
and is therefore unphysical (tachyon). There it appeared for very large g2, here for
very small g2. Since a tachyon can have states with arbitrary negative energy, there
must be another ground state for the theory which lies lower than the φ0 = 0 field
configuration.

It can be argued that for finite N , positive couplings g0 correspond to another
interesting physical phase for which the collective field σ ∼ g0

N
ψ̄aψa is no longer ap-

propriate. Instead, a field of the type g0ψaψa does allow for an economic description
of this situation. This will becomes clearer after the next section.

There is one more observation we should make in the massive phase. We may
express the potential (3.23) also using g∗ and find the form

1

N
v(Σ) =

µε

2

1

g

[(

1− g

g∗

)

Σ2 +
g

g∗

(

Σ

µ

)ε]

ε2. (3.77)

This form exhibits very nicely the unstable origin for g > g∗ and the stabilization
due to the term Σ2+ε. The potential looks very similar to the previously discussed
φ4 theory. In fact, for ε→ 2 (D → 4) it takes exactly this form. The minimum lies
at Σ = Σ0 = M , where M is the fermion mass

M

µ
=

[

2

D

g∗

g

(

g

g∗
− 1

)]1/ε

(3.78)

in terms of which the potential may be written in a natural parametrization

1

N
v(Σ) =

µε

2
M2 1

g

(

g

g∗
− 1

)[

−
(

Σ

M

)2

+
2

D

(
Σ

M

)D
]

. (3.79)

We argued before that g, g∗ play the role of temperature T and critical temperature
Tc in surface layers. There the mass goes with

M

µ
∼
(
T

Tc
− 1

)1/ε

=̂
M

µ
∼
(

g

g∗
− 1

)1/ε

. (3.80)
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It vanishes at the critical point in which case v takes on a pure power behavior

1

N
v(Σ) ∼

Σ→0
µD

(

Σ

µ

)D

(3.81)

This power can also be seen at arbitrary T if Σ is increased to be much larger than
the mass scale M [ultraviolet (UV) limit of the theory].

Note that in the opposite limit small Σ [infrared (IR) limit], the power behavior
is

1

N
v(Σ) ∼

Σ→0
−Σ2 (3.82)

which corresponds to the g → 0 (free field) limit of the theory. One says, the theory
behaves IR free. Such UV and IR power behaviors are typical at a critical point.
They have been the subject of extended experimental and theoretical investigation
over the past decade. It will be worthwile to dedicate the next chapter to the
corresponding physical phenomena.

Before we come to that, let us shortly indicate what happens to this model if
there is a fermion mass from the beginning, a case which we discarded for the sake
of simplicity. We may assume m0 to be a positive, since otherwise its sign can be
changed by a simple γ5 transformation under which m0ψ̄ψ → −m0ψ̄ψ. Looking at
(3.18) we see that the gap equation becomes

Σ0

g0µε
=
D

2
bε

(

m0 + Σ0

µ

)1+ε

µ (3.83)

which has a solution Σ0 > 0 for g0 < 0 and −m0 < Σ0 < 0 for g0 > 0. In
other words, for repulsive interaction the mass becomes larger and for attractive
interaction smaller. The second derivative is at Σ0

1

N
v′′ = µε




1

g0µε
− bε

D

2
(D − 1)

(

m0 + Σ0

µ

)D−2




= µε
1

g0µε

[

1− (D − 1)
Σ0

m0 + Σ0

]

(3.84)

= − 1

g0

(D − 2)(Σ0 +m0)− (D − 1)m0

m0 + σ0

which shows the stability regions. The renormalization is affected by introducing
∆ ≡ m0 + Σ (whose equilibrium value ∆0 = m0 + Σ is the total fermion mass) such
that

1

N
v(ε) =

µε

2




∆2 − 2∆m0 +m2

0

g0µε
− bε

(

∆

µ

)2+ε

µ2



 . (3.85)
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We may renormalize the coupling again via (3.21). The term 2∆m0/g0µ
ε is made

finite by defining the renormalized mass as

m0

g0µε
=
m

g
, (3.86)

i.e.,

m0

m
=
g0µ

ε

g
= 1− g0µεbε = (1 + gbε)

−1 . (3.87)

The term m2
0/g0µ

ε is not finite for ε → 0 but this does not matter since it differs
from m2/g by a trivial additive constant in v(Σ). Thus we find the renormalized
potential

1

N
v(ε) =

µ2

2







(∆−m)2

g
− bε





(

∆

µ

)2+ε

µ2 −∆2










. (3.88)

The renormalized gap equation becomes

Λ = gbε

[

D

2

(

M

µ

)ε

− 1

]

M

M −m (3.89)

where we have set ∆0 equal to the final fermion mass M . Using this, the potential
becomes

1

N
v(Σ) =

µ2

2
bε






(∆−m)2

(

D

2

(

M

µ

)ε

− 1

)

M

M −m





(

∆

µ

)2+ε

µ2 −∆2











=
M εbε
ε

[

(∆−m)2
D

2

M

M −m −
(

∆

M

)2+ε

M2

]

−µ
εbε
2

[

(∆−m)2 M

M −m −∆2
]

(3.90)

It is now parametrized in terms of two finite mass parameters, initial and final
fermion mass m and M respectively.

The Pairing Model and Dynamically Generated Goldstone Bosons

The model discussed in the last section is somewhat uninteresting, since the sym-
metry which is broken is discrete. It is instructive to consider a slightly modified
situation in which there is a spontaneous breakdown of a continuous symmetry.
From the Nambu-Goldstone theorem we then expect the occurence of a massless
particle. Again we consider N fields ψa in D = 2 + ε dimensions, but now we
take the Lagrangian to be

L = ψ̄a (i/∂ −m0)ψa +
g0

2N

(

ψ̄aCψ̄
T
a

) (

ψTb Cψb
)

. (3.91)
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Here C is the 4× 4 matrix of charge conjugation which is defined by

CγµC−1 = −γµT . (3.92)

In two dimensions, where the γ-matrices have the explicit form (3.69), we may use
C = γ1:

C = γ1 = −iσ2. (3.93)

It is the same matrix which was introduced in the four-dimensional discussion in
Eq. (??) as the 2× 2-submatrix c of the 4× 4 charge conjugation matrix C.

Note that
(

ψ̄aCψ̄
T
a

)†
= ψTa Cψa (3.94)

such that g0 < 0 amounts to an attractive potential. Now we introduce a collective
field by adding to L the term

N

2g0

(

∆− g0

N
ψTb Cψb

)2

,

leading to the partition function

Z[η, η̄] =
∫

DψDψ̄D∆ (3.95)

× exp

{

i
∫

dDx

[

ψ̄a(i/∂ −m0)ψa +
1

2

(

∆†ψTa Cψ
†
a + c.c.

)

+ ψ̄η + η̄ψ − N

2g0
|∆|2

]}

.

In order to integrate out the Fermi fields we rewrite the free part of Lagrangian in
the matrix form

1

2

(

ψTC, ψ̄
)
(

0 i/∂ −m0

i/∂ −m0 0

)(

ψ
Cψ̄T

)

(3.96)

which is the same as ψ̄ (i/∂ −m0)ψ since

ψTCCψ̄T = −ψT ψ̄T = ψ̄ψ

ψTC
↔
/∂ Cψ̄T = +ψT

↔
/∂
T

ψ̄T ψ̄T = ψ̄/∂ψ (3.97)

But then the interaction with ∆ can be combined with (3.81) in the form

1

2
φTi G

−1
∆ φ (3.98)

where

φ =

(

ψ
Cψ̄T

)

, φT =
(

ψT , ψ̄C−1
)

(3.99)



400 3 O(N)-Symmetric Four-Fermi Interaction in 2 + ε Dimensions

denotes the doubled fermion field and

iG−1
∆ =

(

C 0
0 C

)(

∆ i/∂ −m0

i/∂ −m0 ∆†

)

= −
(

iG−1
∆

)T
(3.100)

is the inverse propagator in the presence of the external field ∆. Observe that φ is
a quasi-real field since φ∗ is similar to φ via

φ∗ =

(

ψ∗

Cψ̄T
∗

)

=

(

0 Cγ0

Cγ0 0

)(

ψ
Cψ̄T

)

=

(

0 Cγ0

Cγ0 0

)

φ (3.101)

For a quasi-real field, G−1
∆ must be an antisymmetric matrix in the combined spinor

plus functional space, which it is indeed:

(

C∆ C(/∂ −m0)
C(/∂ −m0) C∆†

)T

=

(

CT∆ (/∂T −m0)C
T

(/∂T −m0)C
T CT∆†

)

= −
(

C∆ C(/∂ −m0)
C(/∂ −m0) C∆†

)

(3.102)

since C/∂TC−1 = /∂. The additional negative sign with respect to Cγµ
T
C−1 = −γµ

in spinor space comes from the fact that by a partial integration the derivative ∂

is essentially an antisymmetric functional matrix 1
2

(→
∂ −

←
∂

)

. In momentum space,

iG−1(p′, p) = δ(2)(p′ + p)iG−1(p) is antidiagonal and an antisymmetric functional
matrix. This is necessary to have a nonzero kinetic part in the Lagrangian, which
reads in terms of the field φ(p):

∫

dDp′dDp φ(p′)iG−1(p′, p)φ(p) =
∫

dDp φ(−p)iG−1(p)φ(p), (3.103)

showing that the functional matrix between the fields must be antisymmetric:
GT (p, p′) = −G(p, p′) which it does.

We can now perform the functional integral over the fermion fields according to
the rule (??), leading to

Z[j] =
∫

D∆D∆†eNiA[∆]+ 1
2
jT
a G∆ja (3.104)

where A[∆] is the collective action

A[∆] = −1

2
|∆|2 − i

2
Tr log iG−1

∆ (3.105)

H. Kleinert, COLLECTIVE QUNATUM FIELDS



401

and ja is the doubled version of the external source in analogy to (3.85)

j =

(

η̄T

C−1η

)

(3.106)

This is chosen so that

ψ̄η + η̄ψ =
1

2

(

jTφ− φT j
)

(3.107)

and a quadratic completion can be performed according to

1

2
φT iG−1

∆ φ+
1

2
(jTφ− φT j) =

1

2
(φT + ijTGT

∆)iG−1
∆ (φ+ iG∆j)−

i

2
jTG∆j (3.108)

Note the sign change in front of 1
2
jTG∆j in Eq. (3.104) with respect to the Bose

case, in accordance with the negative relative sign of the source term 1
2
(jTφ− φT j).

In the limit N →∞ we obtain from (3.105) the effective action

1

N
Γ[∆,Ψ] =

1

2g0
|∆|2 − i

2
Tr log iG−1

∆ +
1

N
Ψ̄aiG

−1
∆ Ψa (3.109)

in the same way as in the last chapter for the simpler model with a real σ-field.
The ground state has Ψ = 0 such that ∆ satisfies the gap equation

1

g0
=

1

2
TrG∆0 (3.110)

where we may assume ∆0 to be real. For simplicity we shall from now on consider
only the case of zoo initial mass m0 = 0.

Then the Green’s function is inverted as follows

G∆0
(x, y) =

∫
dDp

(2π)D
e−ip(x−y)

i

p2 −∆0

(

∆0 /p
/p −∆0

)(

C−1 0
0 C−1

)

(3.111)

as we can verify by multiplying with (3.86). Thus the gap equation (3.110) is simply

1

g0

= 2D/2
∫

dDp

(2π)D
1

p2 +M2
(3.112)

where we have introduced the notation

M ≡ ∆0 (3.113)

to indicate the significance of ∆0 as a spontaneously generated fermion mass. Also,
we have taken the trace in Dirac space to be 2D/2 in D dimensions.

The integral can be performed just as before and we find

1

g0µε
= −bε

D

ε

(

M

µ

)ε

. (3.114)
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The effective potential is now for Ψ = 0

1

N
v(∆) =

1

2g0
|∆|2 +

i

2

∫ dDp

(2π)D
log

(

−∆† /p
/p −∆

)

. (3.115)

The eigenvalues of the matrix are easily seen to be ±
√

p2 − |∆|2, each of them
occurring twice, such that we obtain after a Wick rotation

1

N
v(∆) =

1

g0

|∆|2 − 1

2
2D/2

∫
dDp

(2π)p
log

(

p2 + |∆|2
)

Performing the integral gives

1

N
v(∆) =

1

2g0
|∆|2 − 2

D
2
−1S̄D

1

2
Γ(D/2)Γ

(

1− D

2

)
2

D
|∆|2

=
µε

2




|∆|2
g0µε

+ bε

(

|∆|
µ

)2+ε

µε





from which the gap equation (3.114) can again be recovered by differentiation. Sta-
bility is insured for g0 < 0, i.e., for attractive interactions. For ∆0 = 0, only the
trivial solution ∆0 = 0 is stable.

For ∆0 6= 0, we may use (3.114) and express the potential in terms of M rather
than the bare coupling constant g0:

1

N
v(∆) =

M ε

2
bε




D

2
|∆|2 −

(

|∆|
M

)D


 . (3.116)

As before, v(∆) can be rewritten in terms of the renormalized coupling

1

g0µε
=

1

g
− bε, (3.117)

in the alternative form

1

N
v(∆) =

µε

2







|∆|2
g
− bε



1−
(

|∆|
M

)D−2


 |∆|2





. (3.118)

From either expression, we may extract the following limit ε→ 0 as:

1

N
v(∆) =

1

2π

(

log
|∆|
M
− 3

2

)

|∆|2

=
1

2

[

|∆|2
g

+
1

π
|∆|2 log

|∆|
µ

]

(3.119)

in analogy to (3.22) and (3.47) .
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Let us now study the propagator of the complete ∆-field. For small deviations
∆′ ≡ ∆−∆0 away from the ground state value we find from (3.109) the quadratic
term

1

N
δ2Γ = −1

2

{

|∆|2
g0

+
i

2
Tr

[(

∆′†

∆′

)

GM

(

∆′†

∆′

)

GM

]}

. (3.120)

The trace term may be written more explicitly as

i

2

[

M2(∆′2 + ∆′∗2)2D/2
∫ dDk

(2π)D
i

k2 −M2

i

(k − q)2 −M2

+2|∆′|2
∫

dDk

(2π)D
i

k2 −M2

i

(k − q)2 −M2
tr[/k(/k − /q)]

]

. (3.121)

In a Wick-rotated form, this becomes

1

2

{

M2
(

∆′2 + ∆′†2
)

Π̃(q2
E/M

2) + 2|∆′|2
[

Π(q2
E/M

2)−M2Π̃(q2
E/M

2)
]}

, (3.122)

where Π(q2
E/M

2) is the previous self-energy (3.51). The slightly simpler quantity
Π̃ (q2

E/M
2) stands for

Π̃
(

q2
E/M

2
)

= i 2D/2
∫

dDk

(2π)D
i

k2 −M2

i

(k − q)2 −M2
,

and is calculated as follows:

Π̃
(

q2
E/M

2
)

= 2D/2
∫
dDkE
(2π)D

∫ 1

0
dx

1

[k2
E + q2

Ex(1− x) +M2]
2

= 2D/2S̄
1

2
Γ(D/2)Γ(2−D/2)

∫ 1

0
dx
[

q2
Ex(1− x) +M2

]D
2
−2

= −D
2
bε(1−D/2)

∫ 1

0
dx
[

q2
Ex(1− x) +M2

]D/2−2

As a result, the action for the quadratic deviations from ∆0 can be written as

1

N
δ2Γ = −1

2

[(

1

g0
+ A

)

|∆′|2 +
1

2
B
(

∆′2 + ∆′∗2
)
]

, (3.123)

with the coefficients

A = Π(q2
E/M

2)− Π̃(q2
E/M

2)

= −D
2
bεM

[

(D − 1)J ε1
(

q2
E/M

2
)

+ (1−D/2)J ε2(q
2
E/M

2)
]

, (3.124)

B = Π̃(q2
E/M

2)

=
D

2
bε(1−D/2)M εJ ε2

(

q2
E/M

2
)

(3.125)
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and the integrals

J ε1(z) =
∫ 1

0
dx [zx(1−x) + 1]D/2−1 , J ε2(z) =

∫ 1

0
dx [zx(1−x) + 1]D/2−2 . (3.126)

Thus the propagators of real and imaginary parts of the field ∆′ are

∆̇′re ∆̇′re = − i

N

1
1
g0

+ A +B
(3.127)

∆̇′im ∆̇′im = − i

N

1
1
g0

+ A−B (3.128)

and for the complex fields ∆′, ∆′†:

∆̇′† ∆̇′† = −2
i

N

1
(

1
g0

+ A
)2 − B2

(−B), (3.129)

∆̇′ ∆̇′† = −2
i

N

1
(

1
g0

+ A
)2 − B2

(

1

g0

+ A

)

. (3.130)

The expressions (3.127)–(3.130) can be made finite by using the gap equation
(3.114). The term involving 1/g0,

1

g0
+ A =

D

2
bεM

ε
{[

1− (D − 1)J ε1
(

q2
E/M

2
)]

− (1−D/2)J ε2
(

q2
E/M

2
)}

,

(3.131)

depends then only on the parameter M , and remains finite for ε → 0, where it
becomes

1

g0

+ A→ 1

2π

{[

J0
1

(

q2
E/M

2
)

+ 2
]

− J0
2

(

q2
E/M

2
)}

. (3.132)

The other matrix element B needs no renormalization, and has the ε→ 0 -limit

B →
ε→0

1

2π
J0

2

(

q2
E/M

2
)

. (3.133)

We now observe that there is a zero mass excitation in the imaginary part of the
∆′-field, the component of ∆ which points orthogonal to the real ground state value
∆0 = M . To show this we consider the denominator of the propagator (3.128):

1

g0
+ A− B = −D

2
bεM

ε
{[

1− (D − 1)J ε1
(

q2
E/M

2
)]

− (2−D)J ε2
(

q2
E/M

2
)}

.

(3.134)

By expanding it in powers of z = q2
E/M

2 ≈ 0

J ε1 ∼ 1 +
D − 2

12
z +O(z2),

J ε2 ∼ 1 +
D − 4

12
z +O(z2), (3.135)
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we find

1

g0
+A−B =

D

2
bε

{[

1−(D−1)
(

1+
D−2

12
z
)]

−(2−D)
(

1+
D−4

12
z
)}

+O(z2)

= −D
2
bε
D − 2

4
z +O(z2), (3.136)

such that the propagator of (3.128) becomes, expressed with proper Minkowski
square momentum q2 = −q2

E ,

∆̇′im ∆̇′im = − 1

N

2

D(D − 2)bε
4M2 i

q2
+ regular part at q2 = 0.

Since bε < 0 for D > ε the residue is positive

Res =
1

N

2

D(D − 2)bε
4M2 → 4π

N
M2, (3.137)

so that the propagator exhibits a proper particle pole at q2 = 0. The positive sign
is necessary for a positive norm of the corresponding particle state in the Hilbert
space.

In the limit ε→ 0, the explicit form of (3.136) may be obtained as follows:

1

g0

+ A−B →
ε→0

1

2π
[J(z) + 2− 2J0

2 (z)]. (3.138)

The integral J(z) is known from Eq. (3.63) as

J(z) = −2 + 2Θ cothΘ, (3.139)

where

Θ = atanh

√
z√

z + 4
, tanh Θ =

√

z

z + 4
(3.140)

The integral J0
2 (z) can be calculated as

J0
2 (z) =

1

z

2
√
z√

z + 4
atanh

√
z√

z + 4
=

2

z + 4
(J(z) + 2), (3.141)

so that with q2 = −q2
E

∆̇′im ∆̇′im =
i

N
2π

4M2 − q2

q2

1

J(−q2/M2) + 2

=
i

N
2π

4M2 − q2

q2

1

2θ coth θ
. (3.142)

The real part has for ε→ 0 the propagator

∆̇′re ∆̇′re = − i

N
2π

1

J(−q2/M2) + 2
. (3.143)
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When finding the pole at q2 = 0, we have said that this particle was a Nambu-
Goldstone boson. In order to justify this association, we have to exhibit the contin-
uous symmetry which has been broken spontaneously by the ground state solution.
Looking back at the original Lagrangian (3.91), we see that it is invariant under
global gauge transformations

ψ → eiαψ, α = const.

ψ̄ → e−iαψ. (3.144)

Similarly, the collective action (3.104) remains invariant if the collective field trans-
forms as

∆→ e2iα∆ (3.145)

This invariance has been used before when we chose a real ground state expectation
∆0. Any other phase would have given the same physical result. Of course, once
this phase is chosen, the invariance (3.144) is gone. Thus the zero-mass particle
is indeed a Nambu-Goldstone particle. It corresponds to excitation whose long-
wavelength limit reduces to a pure global gauge transformation.

Strictly speaking, this zero mass boson can only exist in dimensions D > 2, as
follows from a very general theorem due to Coleman.1 Indeed, we have seen before in
the Bose case that fluctuations prevent the spontaneous breakdown of a continuous
symmetry, which might be resent at the mean-field level. Thus we may conclude
that if fluctuations were included in the collective field, the theory would also exhibit
this general feature in two space-time dimensions. In the limit N →∞ there are no
fluctuations in ∆. Thus Coleman’s theorem should be satisfied after including all
1/N corrections. Things are more subtle, however. In two dimensios, there exists a
critical coupling strength where a quasi-ordered state exists. This will be discussed
in Subsection (??). The model above was first used in four dimensions by Nambu
and Jona-Lasinio to study the spontanoeus breakdown of chiral symmetry.2

These authors were the first to point out the existence of a Nambu-Goldstone
boson for spontaneously broken continous symmetry. Then inspiration came from
the theory of superconductivity which had just been invented by Bardeen, Cooper,
and Schrieffer.3 Actually, in that model one has to turn off magnetism to see the
Nambu-Goldstone bosons. The vector potential of the magnetic field removes this
mode, thereby acquiring a short range. This is the famous Meissner-Higgs effect,
discussed in Section ??.

The physical interpretation of the field ∆ is the following: Due to the attraction
for g0 < 0, the fermions form bound state pairs, called, Cooper pairs, which are
bosons and can form a condensate, just as before the bosonic φ fields in φ4 theory.
In fact, the effective potential for the ∆-field looks qualitatively very similar to
that of the bosonic potential v(∆) of the O(N)-symmetric theory for negative m2.

1S. Coleman, Comm. Math. Phys. 31, 259 (1973)
2Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)
3J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957)
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The origin is unstable and there is a new minimum at ∆0 6= 0 with an arbitrary
phase [see (3.98) with m0 = 0]. Just as in the previous model with an interaction

(g0/2N)
(

ψ̄aψa
)2

, the opposite sign g0 > 0 does not lead to a spontaneous symmetry
breakdown, and massless fermions remain massless.

Finally we must justify why we have called the vacuum expectation ∆0 = M a
fermion mass. Looking back at the collective effective action (??) we see that the
∆0 fields appear in the form

Ψ̄i/∂Ψ− 1

2
M
(

ΨTCΨ + Ψ̄CΨ̄T
)

=
1

2

(

ΨTC, Ψ̄
)
(

M i/∂
i/∂ M

)(

Ψ
CΨ̄T

)

. (3.146)

There is a simple transformation which brings this to the canonical Dirac form. Let
us introduce the γ5 matrix in 2 dimensions as

γ5 ≡ γ0γ1. (3.147)

Then

Ψ′ =
1− γ5

2
Ψ +

1 + γ5

2
CΨ̄T

Ψ̄ = Ψ̄
1 + γ5

2
+ ΨTC

1− γ5

2
(3.148)

has the property that

Ψ̄′Ψ =
1

2

(

ΨTCΨΨ̄ + Ψ̄CΨ̄T
)

−1

2

(

ΨTCγ5Ψ− Ψ̄γ5CΨ̄T
)

(3.149)

since
(

1 +±γ5

2

)2

=
1± γ5

2
.

But the γ5 contribution vanishes due to

CγT5 C
−1 = C

(

γ0γ′
)T
C−1 (3.150)

= −γ0γ′ = −γ5. (3.151)

In particular representation (??), γ5 becomes σ3, and the ransformation reads ex-
plicitly

Ψ′ =

(

−Ψ†1
Ψ2

)

, Ψ̄′ =
(

Ψ†2,−Ψ1

)

(3.152)
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so that have

Ψ̄′Ψ′ = −Ψ†2Ψ
†
1 − Ψ1Ψ2

=
1

2

(

ΨTCΨ + c.c.
)

=
1

2
(Ψ2,Ψ1)

(

0 −1
1 0

)(

Ψ1

Ψ2

)

+ c.c.

= −Ψ1Ψ2 + c.c. (3.153)

Ψ̄γ
0
1

↔
∂
0
1

Ψ = Ψ†
{

1
σ3

}

∂ 0
1
Ψ

= Ψ1

↔
∂
0
1

Ψ†1 ± Ψ2

↔
∂
0
1

Ψ†2

= Ψ†1
↔
∂
0
1

Ψ1 ± Ψ†2
↔
∂
0
1

ψ2 (3.154)

which may be compared directly with (3.146) using γ0 = σ′, γ′ = −iσ2, e = γ′. In
this context it should be mentioned that the whole model could have been written
in terms of φ′ fields from the outset. If we supplement the identity (3.149) by

Ψ̄′γ5Ψ
′ = −1

2

(

ΨTCΨ− Ψ̄CΨ̄T
)

+
1

2

(

ΨTCγ5Ψ + Ψ̄γ5CΨT
)

, (3.155)

where the second parenthesis again vanishes, we see that the exponent in (??) can
be written for zero sources and mass as

Ψ̄′ai/∂Ψa −
1

2
∆re

(

ΨT
aCΨa + Ψ̄aCΨ̄T

a

)

− 1

2
Im ∆

(

ΨT
aCΨa − Ψ̄aCΨ̄T

a

)

= Ψ̄′a (i/∂ − σ − iπγ5) Ψa −
N

2g0

(σ2 + π2) (3.156)

where we have identified

σ ≡ ∆re

π = −Im ∆. (3.157)

Notice that the invariance under global gauge transformation (3.144) becomes in
terms of Ψ′ fields an invariance under

Ψ′ ≡
(

−Ψ†1
Ψ2

)

→
(

−eiαΨ1

e−iαΨ2

)

=

(

eiα 0
0 e−iα

)

Ψ′ = eiαγ5Ψ′. (3.158)

Such transformations involving γ5 are referred to as chiral and play an important
role in particle physics. Under the chiral transformation, Ψ̄′Ψ′ and Ψ̄′iγ5Ψ behave
like a vector in a plane

Ψ̄′Ψ′ → Ψ̄′e2iαγ′ (3.159)

= cos 2αΨ̄′Ψ′ + sin 2αΨ̄′iγ5Ψ
′

Ψ̄′iγ5Ψ
′ → cos 2αΨ̄′iγ5Ψ

′ − sin 2αΨ̄′Ψ′. (3.160)
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Correspondingly, the transformation (3.145) becomes via (3.155)

(

σ
π

)

→
(

cos 2α sin 2α
− sin 2α cos 2α

)(

σ
π

)

, (3.161)

so that the form (3.172) is indeed chirally invariant.
The ground state breaks chiral invariance since σ acquires an expectation value

σ0 = M . The Nambu-Goldstone boson generated by this phase transition is the
massless field π. It is for this reason that the chiral invariance is believed to be
an important principle of strong interactions among elementary particles. There is
a particle in nature, the pion, whose mass is a particle in nature, the pion, whose
mass is 135 MeV and lies much lower than any other strongly interacting particle.
One therefore interpretes the pion as an almost Nambu-Goldstone particle of the
underlying Lagrangian. It was really in this context that Nambu initiated the study
of chiral symmetry in particle physics.

Finally, let us remark that the inclusion of an initial fermion mass m0 6= 0 is
possible but will not be cone since it merely makes the discussion more involved
while adding little to the understanding of the model.

3.0.1 Relation between Pairing and Gross-Neveu Model

Both models discussed in the last chapter showed spontaneous mass generation in
the limit of B →∞ only for one sign of the bare coupling constant, the Gross-Neveu
model only for an interaction

g0

N

(

ψ̄aψa
)2
, g0 < 0. (3.162)

the pairing model only for

g0

N
ψTa Cψaψ̄bcψ̄

T
b , g0 < 0. (3.163)

For particles, the latter case means attraction the first repulsion. In either case, the
opposite sing of g0 leaves the fermions massless for N → ∞. Let us now point out
that these two exactly soluble models seem to be the idealized descriptions of two
phases of the N = 1 model

L = ψ̄i/∂ψ +
g0

2

(

ψ̄ψ
)2

(3.164)

as long as D > 2.4 In this model, we still can introduce the collective field σ
according to the rules of Chapter 6. But for N = 1 the field σ will fluctuate.
Suppose now that fluctuations do not completely destroy the fact that for g0 < 0
there is solution in which a mass is generated spontaneously, i.e., that the N →∞
limit does give a qualitatively correct description of the system for g0 < 0.

4I. Ojima and R. Fukuda, Progr. Theor. Phys. 57, 1720 (1977)
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Then we might tend to believe that also the N = 1 version of the pairing model

L = ψ̄i/∂ψ +
g0

2
ψTCψψ̄Cψ̄T (3.165)

should have a solution for g0 < 0 which resembles that of the N →∞ limit, i.e., in
which there are massive fermions but Cooper pair bound states which carry massless
Nambu-Goldstone bosons. But the we may conclude that these solutions are just
two different phases of one and the same theory. For this we just note that the
interactions in the Lagrangians (3.164) and (3.165) go over into each other by a
simple change of sign of the coupling apart from a factors 2. This follows directly
by rewriting the interaction in terms of spin up and spin down components of the

ψ field ψ =

(

ψ1

ψ2

)

:

(ψ̄ψ)2 =
(

ψ†2ψ
†
1 + ψ†1ψ2

)2

= 2ψ†2ψ1ψ
†
1ψ2 (3.166)

Since ψ2
1 = ψ2

2 = 0, because of anticommutativity while

|ψ†Cψ|2 = | − ψ1ψ2 + ψ2ψ1|2

= 4(ψ2ψ1)
†ψ2ψ1 (3.167)

= −4ψ†2ψ1ψ
†
1ψ2.

Hence

(

ψ̄ψ
)2

= −1

2
|ψTCψ|2 (3.168)

such that our conclusion follows.
The N = 1 model seems to have two diferent phases: One for g0 < 0 or g > g∗ in

which case there are massive fermions and a spontaneously broken γ5 invariance; the
system remains symmetric under global gauge transformations. In the second case
g0 > 0, g < g∗, there are again massive fermions but, in addition, there are mass-
less Nambu-Goldstone modes due to a spontaneously broken gauge transformation.
Physically, the two phases will be distinguished by the long-range correlations which
are present in the second phase.

For N → ∞ either one of the phases is the exact and only consistent solution
depending on how one distributes the indices over the four Fermi fields.

We pointed out before the analogy between the coupling constant in ths model
and the temperature in systems with two space dimensions. Accepting this, the
behavior of this model looks very similar to that found experimentally in thin films
of 4He. There is a phase transition of a certain temperature Tc. Above Tc there
are only short-range correlations (the system is normal). Below there are long-
range correlations (the system is super-fluid) due to the goldstone excitations of the
condensate. We have said before that in exactly two dimesnions there can be no
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Nambu-Goldstone bosons. In a thin film, however, this theorem is circumvented
by a finite thickness of the film. This acts just as if the dimension was D = 2 + ε
with some small number ε. Due to this fact the second phase g0 > 0, for which
the renormalized g(T ) must lie only in a narrow range (0, g∗), [or (0, Tε)] which is
of order ε does really arise. Moreover, one may expect the effective value of g∗, to
grow with the thickness d of the film such that also Tc grows with d. This fact is
indeed observed experimentally.

In exactly two dimensions there is a subtlety due to the possibility of macroscopic
quantum fluctuations in which quantum vortices and antivortices can form just
as the vortex lines in superconductors. They attract each other by a logarithmic
potential just like an electron gas by Coulomb interaction. At a temperature Tc, the
long-range correlations due to this Coulomb interaction breaks down by screening
caused by the dissociation of vortex pairs into free vortices. Thus there is a phase
transition even though there can be no condensate. 5

3.0.2 Comparison with O(N)-Symmetric φ4-Model

After having observed the possibility of spontaneously generating a mass in a massles
theory via fluctuations we may look once more back at the scalar φ4 version of the
O(N) model in D = 4− ε dimensions. In the massless case the potential is

v(Φ,∆) =
1

2
∆Φ2

a −
N

4g0
∆2 +

1

2
NS̄D

1

2
Γ(D/2)Γ(1−D/2)

2

D
∆D/2

(3.169)

which may be written as

1

N
v(Φ,∆) =

1

2N
∆Φ2

a −
1

4g0
∆2 +

bε
4

∆D/2 (3.170)

with

bε =
4

D
S̄D

1

2
Γ(D/2)Γ(1−D/2)

=
4

D
S̄D

1

ε
≈ 1

8π2

1

ε
(3.171)

The gap equation reads

1

N
Φ2
a −

1

g0
∆− bε

D

4
∆

D
2
−1 = 0. (3.172)

A renormalized coupling constant may be introduced as

1

g0µ−ε
= bε +

1

g
(3.173)

5J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973)
V. Ambegaokar and S. Teitel, Phys. Rev. B 19, 1667 (1979).
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and v becomes

1

N
v(Φ,∆) =

1

2N
∆Φ2

a

−µ
−ε

4







∆2

g
+ bε





(

∆

µ2

)−ε/2
− 1



∆2






. (3.174)

In the renormalized form, g0 > or g0 < 0 implies g < g∗ or g > g∗ with g∗ = b−1
ε ≈

8π2ε. We now see that there is a O(N) symmetric phase with Φa = ϑ∆0 6= 0 for
g0 < 0 where the bosons acquire a mass. For g0 < 0 there is only the solution
Φa = 0, ∆0 = 0 which is again a symmetric phase, but contrary to the previous
one this is massless. As far as v′′ is concerned, both phases are stable. Consider,
however, the excitations: In the massless phase with g < g∗ we may calculate the
propagator Σ̇′Σ̇′ from the quadratic variation

δ2Γ[Φ,Σ] =
1

2
Σ′ Γ(2) Σ′ (3.175)

where in euclidean space

Γ(2) = −N
2

[

1

g0

+ I(q)

]

(3.176)

with [see (??), (??), and (??)]

I(q) =
∫ dDk

(2π)D
1

k2
E(k + q)2

E

=
(

1− D

2

)
D

k
bεµ
−ε
(

q2
E

µ2

)−ε/2

Γ(1− ε/2)2

Γ(2− ε) = cεµ
−ε
(

q2
E

µ2

)ε/2

(3.177)

so that

Σ̇′ Σ̇′ = −2i

N
µε

1

1/g0µ−ε + cε (g2
ε/µ

2)−ε/2
(3.178)

with cε = −
(

1− D
2

)
D
4
bε ∼ 1

8π2ε
. We now observe that for g0 > 0, i.e. g < g∗, this

is a physically acceptable quantity. There are no tachyons. For g0 < 0, however, or
g > g∗, there is a tachyon pole at

q2
E

µ2
=

(

1

q0µ−εcε

)−2/ε

(3.179)

as an indication that we have expanded around the wrong vacuum ∆0 = 0. We
must insert the spontaneously generated mass and find that this solution must be
rejected since it has a tachyon pole. The same observation was maded before at
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D = 4 in which g∗ = O where any g > 0 is larger than g∗. Alternatively, we can see
that in the D ∼ 4 -equation

1

g0µ−ε
=

1

g
− S̄4

1

ε
(3.180)

a finite renormalized coupling g can only be achieved in the limit ε→ 0 for negative
g0 < 0 in which case the φ4 potential turns the wrong way around. In this case
the only consistent solution for ε → 0 is the free one with g = 0. We now realize
the difference with the N → ∞ Fermi case. There were two possible consistent
phases, one in which a mass was spontaneously generated which was the phase
which was the one with g > g∗, g0 < 0 and another one for g < g∗ where the fermions
remain massless. Here only the phase which remains massless with δ < g∗, g0 > 0 is
acceptable.

The four dimensional theory has no consistent m = 0 ground state, except for
g = 0. The three dimensional does, however, have one for any g < g∗ ∼ 8π2ε. In
the Gross-Neveu model we pointed out the existence of certain power laws in the
massive phase. One concerned the physical mass as a function of g − g∗ or T − T c
[see (3.79)], the other was a power law for v(Σ) ∼ Σ0 at the critical point g = g∗,
i.e., at T = Tc. For T 6= Tc, this power was still found in the UV limit Σ � M ,
while for Σ�M we found the IR free point law v ∼ Σ2.

We now shall see that the O(N)-symmetric φ4 theory shows quite a similar power
behavior which, however, is opposite as far as IR and UV limits are concerend. For
this the mass parameter m2

0 has to be concerned as being proportional to (T/Tc − 1),
and the critical theory is that with m0 = 0. In order to see this consider the potential
(3.169)

1

N
v(Φ,∆) =

1

2N
∆Φ2

a +
m2

0

2g0
∆− 1

4g0
∆2

−bε
4

∆D/2 − m4
0

4g0
, (3.181)

where ∆ is the function of Φ2 for which v∆ = 0:

1

N
Φ2
a =

1

g0
∆− m2

0

g0
+
bε
2

D

2
∆

D
2
−ε. (3.182)

Suppose we are in the normal phase Φa = 0,∆0 6= 0, m2
0 → 0. Then from (3.163) we

see ∆ to behave as a function of m2
0 → 0 as

∆ ∼ (m2
0)

1/(1−ε/2). (3.183)

Inserting this into (3.181), we see that the minimal value of v has the power behavior

vmin ∼ (m2
0)

1+1/(1−ε/2). (3.184)
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At the critical point m0 = 0 we have

1

N
Φ2
a =

1

g0

∆ + bε
D

4
∆D/2−1. (3.185)

Contrary to the Gross-Neveu model there is no pure power behavior. Only if also
g0 = 0, g = 0 (free theory) or g0 =∞ (g = g∗) a pure power remains:

Φ2
a ∼ ∆, g0 = 0 g = 0 (or ∆→∞),

Φ2
a ∼ ∆D/2−1, g0 =∞ g = g∗ (or ∆→ 0).

(3.186)

The same behavior is found at any g for ∆ → ∞ (ultraviolet limit) or ∆ → ∞
(infrared limit), respectively. In the renormalized form of (3.186)

1

N
Φ2
a = µ−ε







1

g
− bε



1− D

4

(

∆

µ

)ε/2









∆, (3.187)

it is the arbitrary scale parameter µ which separates these two limits. For small ∆
the potential itself behaves as

v(Φ) ∼ (Φ2)1+1/(1−ε/2), (3.188)

as determined by the first and last term in (3.169). The small-∆ behavior can be
collected in the single formula valid for m2

0

v(Φ) ∼
[

m2
0

(

Φ2

m2
0

+
N

g0

)]1+1/(1−ε/2)
, (3.189)

which allows from writing (3.182) as
(

1

N
Φ2
a +

m2
0

g

)

∼ bε
D

4
∆D/2−1, (3.190)

valid for small and vanishing ∆ and reinserting, this into (3.181). If Φ is interpreted
as magnetization M and m2

0 ≈ (T/Tc − 1) as the deviation of the temperature from
the critical value, this corresponds to a general power law.

v(M) ∼ M δ+1f

(

T/T c − 1

M2/β

)

(3.191)

which was first observed experimentally by Widom in magnetic systems. In our case

β =
1

2
,

δ + 1

2
=

2− ε/2
1− ε/2 . (3.192)

For large ∆ (UV) there is again free field power behavior

1

N
Φ2
a +

m2
0

g0
∼ ∆ (3.193)
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v ∼ Φ2

(

Φ2
a

N
+
m2

0

g

)

. (3.194)

Noce that there is great similarity with the Gross-Neveu model as far as power
behaviors are concerned. But there is a difference as to the scales. In the GN
model, there is only one scale, the fermion mass M or the distance, of g from g∗

(i.e., T from Tc). The mass M separates UV and IR limits. Once at Tc where M = 0
there are pure powers. Away from Tc there are different powers in the UV and IR
limit with M = 0 agreeing with the UV limit. In the φ4 theory, the massless theory
at the point m2

0 = 0 still has freedom in the coupling. It can be anywhere between
zero and g∗. At both ends there are pure powers. In between there are powers in
the IR and UV limit. If m0 is taken away from zero, there are more power laws in
m2

0 ∼ (T/T c − 1) for fields and potential.

3.1 Finite-Temperature Properties

It is useful to study also the behavior of the Gross-Neveu model at a finite tem-
perature. The thermal properties of this model will closely resemble those of a
superconductor. For this we we confine the imaginary-time variable τ to the in-
terval τ ∈ (0, h̄β) with β = 1/kBT , and take the fields to be antiperiodic under
τ → τ + h̄β. Equivalently, we may think of this model as a nonlinear σ-model on
an infinitely long spatial strip with antiperiodic boundary conditions, whose width
along the τ -axis is β. In the limit N →∞, we can study the effects of temperature
exactly. For simplicity, we consider the model only for a vanishing initial bare mass
m0, The corresponding effective potential of the Σ-field in Eq. (3.15),

1

N
v(Σ) = − 1

N
Γ[Σ] =

1

2g0
Σ2 − tr(1)

1

2

∫
dDpE
(2π)D

log
[

p2
E + Σ2

]

(3.195)

is generalized to finite temperature T by exchanging the momentum integral by a
sum over Matsubara frequencies ωm = 2πmT/h̄, m = 0, ±1 ,±2, . . . :

∫
dDpE
(2π)D

→ dD−1p

(2π)D−1

1

h̄β

∞∑

ωm=−∞
, (3.196)

thus becoming (in natural units with kB = 1 and h̄ = 1)

1

N
v(Σ) =

1

2g0

Σ2(x)− 2D
1

2

∫
dD−1p

(2π)D−1
T

∞∑

m=−∞
log(ω2

m + p2
E + Σ2). (3.197)

The gap equation is obtained by minimizing this action and becomes [compare
(3.14)]

1

g0
= 2D/2

∫
dD−1pE
(2π)D−1

T
∞∑

m=−∞

1

ω2
m + p2

E + Σ2
, (3.198)
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the solution being called Σ0.
Using the well-known summation formula

T
∞∑

m=−∞

1

ω2
m + Ω2

=
1

2Ω
tanh

(
Ω

2T

)

, (3.199)

the gap equation becomes

1

g0
= 2D/2

∫
dD−1pE
(2π)D−1

1

2Ω
tanh

(
Ω

2T

)

. (3.200)

We shall renormalize this by adding and subtracting, on the right-hand side, the
zero-temperature limit:

1

g0

= 2D/2
∫
dDpE
(2π)D

1

p2
E + Σ2

+ 2D/2
∫
dDpE
(2π)D

1

2Ω

[

tanh
(

Ω

2T

)

− 1
]

. (3.201)

Near two dimensions, the first integral can be written as

2D/2−1SDΓ(D/2)Γ(1−D/2)(Σ2)
D
2
−1 = bε

D

2
Σε ≈ εµε − 1

π

[

log
Σ

µ
+

1

2

]

+O(ε)

(3.202)

[recall Eqs. (3.16), (3.19) according to which bε ≈ (2/D)(2π)−D/2, and using
Γ (1−D/2) ∼ 1/πε]. The renormalized gap equation reads therefore at ε = 0:

1

gR(µ2)
=

1

π
log

Σ

µ
+

1

π

∫ ∞

0

dp

Ω

[

tanh
(

Ω

2T

)

− 1
]

(3.203)

It is convenient to express the zero-temperature part of this equation without the
arbitrary scale parameter µ, using the renormalization invariant mass

M ≡ Σ0 = µ exp

[

− π

gR(µ)
− 1

2

]

which solves the zero-temperature gap equation. Then we arrive at the finite equa-
tion

1

π
log

(
Σ

Σ0

)

=
1

π
S1

(
Σ

2πT

)

(3.204)

with the function [ bosonic version of this will appear later in Eq. (??)]

S1

(
Σ

2πT

)

=
∫ ∞

0

dp

Ω

[

tanh
(

Ω

2T

)

− 1
]

= −2
∫ ∞

0
dp

1

Ω

[

eΩ/T + 1
]−1

. (3.205)

This accounts for all finite-temperature effects. This function depends only on the
dimensionless ratio Σ/T . We have divided this by one more factor 2π for later
convenience. The ratio Σ/2πT will in the following be denoted by ΣT , i.e.,

ΣT =
Σ

2πT
. (3.206)
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The solution Σ(T ) ≡ M(T ) of (3.204) is now the temperature-dependent fermion
mass. For T = 0, the function S1(ΣT ) vanishes and Σ(0) = Σ0 = M . As the
temperature rises, the fermion mass M(T ) decrease, until it vanishes at a certain
critical temperature Tc. The value of Tc is found by assuming Σ(T ) to be small, and
approximating the right-hand side of (3.205) by

2
∫ ∞

0

dp

2π

[

1

p
tanh

(
p

2T

)

− 1√
p2 + Σ2

]

. (3.207)

Integrating the first term by parts gives

1

π

{

log
(
p

2T

)

tanh
(
p

2T

)∣
∣
∣
∣

∞

0
−
∫ ∞

0
dx log x cosh−2 x

}

. (3.208)

The integral is convergent and gives − log (4eγ/π) where γ = 0.577 . . . is Euler’s
number. This follows at once from the formula

∫ ∞

0
dx xµ−1 cosh−2 ax =

4

(2a)µ

(

1− 22−µ
)

Γ(µ)ζ(µ− 1) (3.209)

in the limit µ ∼ 1, using ζ(0) = −1/2 and ζ ′(0) = −1
2
log(2π)Γ′(1) = −γ. The

second term in (3.207) can be integrated directly with the result asinh (p/Σ) =

log
[

p/Σ +
√

p2/Σ2 + 1
]

. Hence we find for (3.207)

1

π









log
(
p

2T

)

tanh
(
p

2T

)

−log




p

Σ
+

√

p2

Σ2
+ 1









∞

0

+log
(

4eγ

π

)





=

1

π
log

(

Σ
2eγ

πT

)

,

(3.210)

and (3.205) determines the critical temperature by the equation

log
(

Σ

Σ0

)

= log
(

Σ
2eγ

πT

)

, (3.211)

or

Tc = 2Σ0
eγ

π
= 2M

eγ

π
. (3.212)

At this temperature, the fermion mass M(T ) vanishes.
In order to study the full behavior of M(T ) as a function of T , the right-hand

side of the gap equation (3.204) has to be evaluated numerically. For this purpose,
we shall derive a more useful form of the gap equation. Let us go back once more
to the original form (3.198) and rewrite it for ε ∼ 0 as

1

g0
− 2D/2

∫
dDp

(2π)D
1

p2 + Σ2
=

1

g
− bεµε +

1

2π

[

log

(

Σ2

µ2

)

+
1

2

]

=
1

π
S1(ΣT ) = T

∞∑

m=0

1
√

ω2
m + Σ2

−
∫ ∞

0

dωm
2π

1
√

ω2
m + Σ2

. (3.213)
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This can again be written as in (3.204),

log
(

Σ

Σ0

)

= S1(ΣT ), (3.214)

where S1 is found in the form

S1(ΣT ) =

( ∞∑

m=0

−
∫ ∞

−1/2
dm

)

1
√
(

m + 1
2

)2
+ Σ2

T

, (3.215)

where we have used again the dimensionless ratio ΣT = Σ/2πT . It is useful to
reorganize the sum as follows:

S1(ΣT ) =
∞∑

m=0







1
√
(

m+ 1
2

)2
+ Σ2

T

− 1

m+ 1
2







+
∞∑

m=0

1

m + 1
2

−
∫ ∞

−1/2
dm

1
√
(

m+ 1
2

)2
+ Σ2

T

. (3.216)

The integral up to some large m = M gives arcsin (M/ΣT ) → log (2M/ΣT ). The

sum over 1/
(

m+ 1
2

)

is ψ (M + 1/2) and has the limit γ + log 2 + logM . Thus we

obtain for S1(ΣT ) the convergent sum

S1(ΣT ) =
∞∑

m=0







1
√
(

m+ 1
2

)2 − Σ2
T

− 1

m + 1
2







+ log (2eγΣT )

≡ S̃1(ΣT ) + log(2eγΣT ). (3.217)

The logarithm of ΣT cancels a similar term on the left-hand side of the gap equation
(3.204), and using the connection (3.212) between Σ0 and the critical temperature,
and substituting M for Σ0, we obtain the gap equation in a form most suitable for
a numerical evaluation:

log
(
T

Tc

)

= S̃1(ΣT ). (3.218)

This can be used to calculate T/Tc and M(T ) = Σ = 2πTΣT as a function of ΣT .
The resulting function M(T ) is plotted in Fig. 3.1. It is quite easy to calculate the

Figure 3.1 Solution of the temperature dependent gap equation, showing the decrease

of the fermion mass M(T ) = Σ(T ) with increasing temperature T/Tc.
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way in which M(T ) vanishes as T approaches the critical temperature. We simply
expand

S̃1(ΣT ) =
∞∑

k=1

(

−1/2
k

)

Σ2k
T

∞∑

m=0

1
(

m+ 1
2

)2k+1

= −Σ2
T

2

∞∑

m=0

1
(

m + 1
2

)3 +
3

8
Σ4
T

∞∑

m=0

1
(

m+ 1
2

)5 − . . . . (3.219)

Expanding near Tc the logarithm as log (T/Tc) ∼ T/Tc − 1, we find in a first ap-
proximation

M(T ) = Σ ≈ πTc

√

8

7ζ(3)

√

1− T

Tc
. (3.220)

In the opposite limit of low temperatures, the series (3.219) converges very slowly.
It is, however, easy to find out how Σ behaves near T = 0 by expanding in (3.205)

tanh
(

Ω

2T

)

− 1 = 2
∞∑

m̃=1

(−)m̃e−m̃Ω/T . (3.221)

Using the integral
∫ ∞

−∞
dp em̃

√
p2+Σ2/T = 2K0 (m̃Σ/T ) , (3.222)

where K0(z) is the associated Bessel function, we find the alternative expression

log
(

Σ

Σ0

)

= S1(ΣT ) =
1

ΣT
2

0∑

m̃=1

(−)m̃K0 (2πm̃ΣT ) . (3.223)

For small T , K0 (m̃Σ/T ) has the asymptotic behaviour

K0

(
m̃Σ

T

)

∼
√

π

2m̃Σ/T
e−Σ̃/T , (3.224)

so that we can expand

Σ = Σ0 −
√

2π

Σ0/T
e−Σ/T +O

(

e−2Σ/T
)

(3.225)

and see that Σ approaches its T = 0 -value Σ0 exponentially fast from below (see
Fig. 3.1).

It is instructive to go through the same discussion once more in D dimensions.
For this it is convenient to rewrite the gap equation (3.213) in accordance with the
general procedure of dimensional regularization in Section ?? as

1

g0

− 2D/2
∫ ∞

0

∫
dDp

(2π)D
e−τ(p

2+Σ2) =
ΣD−2

π
21−D/2π(1−D)/2Γ(3/2−D/2)S1(ΣT ).

(3.226)
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The left-hand side corresponds to the zero-temperature gap equation and is inte-
grated directly to

1

g0
− bΣ

D

2
Σε =

µε

g(µ)
− bε

(
D

2
Σε − µε

)

, (3.227)

while

S1(ΣT ) = πΣ2−D2D−1π(D−1)/2
[

Γ
(

3

2
− D

2

)]−1

(3.228)

×
∫ ∞

0
dτ
∫

dD−1p

(2π)D−1

(

T
∞∑

m=−∞

∫ ∞

−∞
dωr

)

exp
[

−τ
(

ω2
m + p2 + Σ2

)]

.

The p-integrals can now be done with the result

1

g0

− 2D/2
1

2D
πD/2

∫ ∞

0

dτ

τD/2
e−τΣ

2

= ΣD−221−D/2τ
1
2
−D

2
+Γ

(
3

2
− D

2

)

S1(ΣT ), (3.229)

where

S1(ΣT ) = 2πΣ2−D
[

Γ
(

3

2
− D

2

)]−1 ∫ ∞

0

dτ

τ (D−2)/2

(

T
∞∑

m=0

−
∫ ∞

0
dωm

)

e−τ(ω
2
m+ε2).

(3.230)

By performing the τ -integral in S1(ΣT ), we find

S1(ΣT ) = 2πΣ2−D
(

T
∞∑

m=0

−
∫ ∞

0
dωm

)

(ω2
m + Σ2)(D−3)/2

= Σ2−D
T

( ∞∑

m=0

−
∫ ∞

−1/2
dm

)[(

m +
1

2

)2

+ Σ2
T

](D−3)/2

. (3.231)

Let us expand the sum over m formally. Its its contributions to S1(ΣT ) is

S1(ΣT )|sum part = Σ2−D
T

[

1 +
∑

k=D

(

(D − 3)/2
k

)

Σ2k
T ζ (2k + 3−D, 1/2)

]

. (3.232)

The integral over ωm in (3.231) adds to this the T = 0 -limit

−2D/2−1π(D−1)/2
[

Γ
(

3

2
− D

2

)]−1

bε
D

2
π = −

(√
π

2

)[

Γ
(

3

2
− D

2

)]−1

Γ
(

1− D

2

)

.

(3.233)

For D near an even dimension D̄, say D = D̄+ε, the kth term with k = D̄/2−1 has

an 1/ε-singularity form ζ
(

1 + D̄ −D, 1/2
)

∼ (1/ε) [1 + εψ (1/2)] . This is cancelled
by a singularity of opposite sign in the bε-term. Observing that
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Σ2−D
T

(

(D − 3)/2
k

)

k= D̄
2

ΣD̄−2
T ζ

(

1− ε, 1
2

)

=
Γ((D − 2)/2)

Γ(D̄/2)Γ(1/2 + ε/2)
Σεζ

(

1− ε, 1
2

)

(3.234)

=
[

(3/2−D/2) Γ(D̄/2)Γ(1/2)
]−1

π

cos π
(

D̄/2− 1
) − −1

ε

{

1 +
ε

2
(−2 log ΣT + ψ(1/2))

}

(−1)τ/2

Γ(D̄/2)

√
π

ε

{

1 +
ε

2

(

−2 log ΣT + ψ(1/2)− ψ
(

3/2− D̄/2
))}

−
(

1

2

)√
π
[

Γ
(

3

2
− D

2

)]−1

Γ
(

1− D

2

)

= −
(

1

2

)√
π

[

Γ

3/2− D̄/2

]−1

(−)D̄/2
Γ(1 + ε/2)Γ(1− ε/2)

Γ(D/2)

2

ε

= − (−)D̄/2

Γ(D̄/2)Γ(3/2− D̄/2)

√
π

ε

{

1− ε

2

(

ψ(D̄/2) + ψ

(

3

2
− D̄

2

))}

,(3.235)

and adding the two terms gives

− (−)D̄/2

Γ(D̄/2)Γ(3/2− D̄/2)

√
π

2

{

2 log ΣT − ψ
(

1

2

)

− ψ
(

D̄

2

)}

= − (−)D̄/2

Γ(D̄/2)Γ(3/2−D/2)

√
π

2

{

log(2eγΣT )−
(

ψ

(

D̄

2

)

+ γ

)

/2

}

,(3.236)

where for D̄ = 2, ψ(D̄/2)+γ = 0 and for D̄ > 2, ψ(D̄/2)+γ = 1+ 1
D̄/2

+ . . . 1
D̄/2−1

.

Altogether we have for even D

S1(ΣT ) = − (−)D̄/2

Γ(D̄/2)Γ(3/2− D̄/2)

√
π

2
{log(2eγΣT )− (ψ(D/2) + γ) /2}

+
∞∑

k6=D̄(2−1

(

(D − 3)/2
k

)

Σ2k+2−D
T ζ

(

2k + 3−D, 1
2

)

. (3.237)

By taking the negative powers of Σ2
T out of the sum we can split

S1(ΣT ) = − (−)D/2

Γ(D/2)Γ(9/2−D/2)

√
π

2
{log (2eγΣT )− (ψ(D/2) + γ) /2}

+
D/2−2
∑

k

(

(D − 3)/2
k

)

Σ2k+2−D
T ζ

(

2k + 3−D, 1
2

)

+ S̃1(ΣT )(3.238)
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where the sum S̃1 can be obtained from (??) via D/2 subtractions (??)

S̃1(ΣT ) = Σ2−D
T

D∑

m=0







[(

m +
1

2

)2

+ Σ2
T

](D−3)/2

−
(

m +
1

2

)D−3

− (D − 3)/2Σ2
T

(

m+
1

2

)D−5

+ . . .

}

. (3.239)

This sum is convergent and is a power series in Σ2
T with S̃1(0) = 0. It is the

generalization of (??) to any even D. Let us now generalize the other expression
for S1(ΣT ) (??) and (??) to arbitrary D. Since S1(ΣT ) gives by finite temperature
correction to the gap equation with the normalization

Σ−1∆T tr(i/∂ − Σ)(0) = 2D/2
∫

dD−1

(2π)D−1

1

p2 + Σ2

=
ΣD−2

π
21−D/2π(1−D)/2Γ

(
3

2
− D

2

)

S1(ΣT ). (3.240)

By comparison with (??), we can identify

S1(ΣT ) = 2D−2π(D+1)/2Σ2−D
[

Γ
(

3

2
− D

2

)]−1 ∫ dD−1p

(2π)D−1

1

Ω

[

tanh
(

Ω

2T

)

− 1
]

+π
[

Γ
(

3

2
− D

2

)

Γ
(

D − 1

2

)]−1

Σ2−D
∫ ∞

0
dp pD−2 1

Ω

[

tanh
(

Ω

2T

)

− 1
]

,

(3.241)

where (1/Ω)
[

tanh
(

Ω
π

)

− 1
]

is conveniently rewritten as−2
[

1 + eΩ/T
]−1

. Expanding

this in powers of e−Ω/T we obtain

S1(ΣT ) = 2π
[

Γ
(

3

2
− D

2

)

Γ
(
D

2
− 1

2

)]−1 ∞∑

m̃=1

(−)m̃
∫ ∞

0
dp pD−2Ω−1e−m̃Ω/T .

(3.242)

Using the integral representation for the Bessel function Kν(z)

Kν(z) =
(
z

2

)ν Γ(1/2)

Γ(ν + (1/2)
∫ ∞

0
dss2ν(s2 + 1)−1/2e−z

√
s2+1, (3.243)

we find finally the expansion

S1(ΣT ) = π
[

Γ
(

3

2
− D

2

)

Γ
(

1

2

)]−1

2D/2
∞∑

m̃=1

(−)m̃ (2πm̃ΣT )1−D/2 KD/2−1(2πm̃ΣT ),

(3.244)
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which for D = 2 reduces properly to (3.222). Let us now calculate the finite temper-
ature correction to the free energy for all dimensions D. By integrating the identity
(??) and (??) in Σ2/2 we see that

(
1

N

)

v(ΣT ) =
Σ2

2g
− Tr log(i/∂ − ε)−∆T log(i/∂ − ε) (3.245)

with

∆TTr log(i/∂ − Σ) =
∫

dD−1

(2π)D−1

1

2

(

T
∞∑

m=−∞
−
∫ ∞

−∞
dωm

)

log
(

ω2
m − Ω2

)

= 2D/kT
∫

dD−1

(2π)D−1
log

(

1 + e−Ω/T
)

. (3.246)

We shall introduce again a function S0(ΣT ) so that

∆TTr log(i/∂ − Σ) = −ΣD

π
2−D/2π1/2−D/2Γ

(
1

2
− D

2

)

S0(ΣT ), (3.247)

and find for S0(ΣT ) the following expressions

S0(ΣT ) = 4πΣ−D
[

Γ
(

1

2
− D

2

)

Γ
(
D

2
− 1

2

)]−1

+ T
∫ ∞

0
dp pD−2 log

(

1 + e−Ω/T
)

,

(3.248)

or alternativeley:

S0(ΣT ) = Σ−DT

(

Σ∞m=0 −
∫ 0

−1/2
dm

)[(

m+
1

2

)2

+ Σ2
T

](D−1)/2

(3.249)

Since S0(ΣT ) is related to S1(ΣT ) by

S0(ΣT ) =
D − 1

2
Σ−DT

∫

dΣ2
T

(

ΣD−1
T S1(ΣT )

)

(3.250)

we can integrate (??) and see that the latter expression is separated into a conver-
gent sum

S̃0(ΣT ) = Σ−DT

∞∑

m=0







[(

m+
1

2

)2

+ Σ2
T

](D−1)/2

−
(

m− 1

2

)D−1

−
[
D − 1

2

]

Σ2
T

(

m +
1

2

)D−3

+ . . .

}

, (3.251)

with D/2 + 1 subtractions, plus a logarithm as well as negative powers of ΣT :

(−)D/2

Γ(D/2)Γ(1/2−D/2)

√
π

2

{

log(2γΣT )−
(

ψ
(
D

2
+

1

2

)

+ γ)/2
)}

. (3.252)



424 3 O(N)-Symmetric Four-Fermi Interaction in 2 + ε Dimensions

Thus we find

S0(ΣT ) = 2π2D/2
[
1

2
− D

2
Γ( 1

2)
]−1 ∞∑

m̃=1

(−)m̃ (2πm̃ΣT )−D/2KD/2(2πm̃ΣT ).(3.253)

This has to satisfy dΣD
T S0/dΣT = −(1 − D)ΣD−1

T S1, and a comparison with (??)
shows that it does, since

[

zD/2KD/2(z)
]′

= −zD/2KD/2−1(z). (3.254)

In the high-temperature limit, we can use the small-z approximation

KD/2(z) ∼
1

2
Γ
(
D

2

)(
z

2

)−D/2
(3.255)

and find

S0(ΣT )→ π1−DΣ−DT

[

Γ(D/2)

Γ(1/2−D/2)
Γ
(

1

2

)]

. (3.256)

The sum can be expressed as

(

1− 21−D
)

Σ∞m̃=1(m̃)−D =
(

1− 21−D
)

ζ(D). (3.257)

For D = 2 this gives

S0(ΣT ) → −T
2

Σ2
ζ(2)

∆T (ΣT ) → 1

π
T 2ζ(2) =

−T 2π

6
(3.258)

which is the well-known free energy of a hot (or massless) Fermi Gas in two dimen-
sions. It could have been obtained directly by dimensional regularization of

∆T = −
∫ dp

2
TΣm log(ω2

m + p2)

= −TΣm

√

ω2
m = −4πT 2ζ

(

−1,
1

2

)

= T 2π

6
. (3.259)

Since ζ (−1, 1
2) = (2−1 − 1)ζ(−1) = − 1

24
. In four dimensions, the result is

S0(ΣT ) =
1

π3
Σ−4
T

[

Γ
(

−3

2

)√
π
]−1 ∞∑

m̃=1

(−)m̃m̃−4

= Σ−424πT 4
[

Γ
(

−3

2

)√
π
]−1 7

8
ζ(4)

∆T (ΣT ) → −4T 4 7

8

π2

gD
(3.260)
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which follows also from

∆Tv = −2
∫ d3p

(2π)3
T
∑

m

log
(

ω2
m + p2

)

= 2
∫ ∞

0

dτ

τ

∫
d3p

(2π)3
T
∑

m

e−τ(ω
2
m+p2)

= (4π3/2)−1Γ (− 3
2)T

∑

m

= T 44π3/2Γ (− 3
2) ζ (−3, 1

2) . (3.261)

It is the fermion equivalent to the Stephan-Boltzmann law for the free energy (k =
internal energy density)

f = −1

3
= −4

(
2

3

π

60

)
7

8
T 4. (3.262)

In proper units

f = −1

3
= −4

(
2

3

σ

c

)
7

8
T 4 (3.263)

where

σ =
π2k4

B

60h̄3c2
≈ 5.67× 10−5 g

sec◦K4
(3.264)

is the Stephan Boltzmann constant. The factor 4 accounts for the two polarization
degree of freedom of each particles and antiparticles and the factor 7/8 for the
fermion nature recall that the Black-body radiation of photons has a free energy

f = −1

3
u = −2

(
2

3

T

c

)

T 4 = −2
π2

90
T 4 (3.265)

where the factor 2 accounts for the two polarization degrees of photons. In contrast
to the fermion case, there are no extra antiparticles.
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correspond to an imaginary mass, i. e. to a particle which travels with speed

faster than light (tachyon). In order to see this one only has to note that the
denominator is positive at q2 = remember −2m2 > 0 and goes to −∞ for q2 > +∞.
This tachyon pole is very much related to the complexity of the effective potential
for high values of the field: A tachyon has the property that its energy can be
made arbitarily negative. Therefore any ground state calculated from the effective
potential can at most be metastable. The high value of q2 at hwich the tachyon
pole appears reflects itself in the high field value for which the effective potential
becomes complex. Singularities of this type where first discussed by Landau in
quantum electrodynamics QED and are named after him.6

Notes and References

6L. D. Landau, in Niels Bohr and the Development of Physics, W. Pauli (ed. ), McGraw-Hill,
N. Y. , (1955).

H. Kleinert, COLLECTIVE QUNATUM FIELDS



/amd/apollo/0/home/ag-kleinert/kleinert/kleinert/books/cqf/cftlcrys.tex
Gedicht

Part V

Liquid Crystals

359





H. Kleinert, COLLECTIVE QUNATUM FIELDS
/amd/apollo/0/home/ag-kleinert/kleinert/kleinert/books/cqf/cftlcrys.tex

May 13, 2000

1
Field Theory of Liquid Crystals

361



H. Kleinert, COLLECTIVE QUNATUM FIELDS
/amd/apollo/0/home/ag-kleinert/kleinert/kleinert/books/cqf/cftlcrys.tex

May 13, 2000 A

2
Introduction

liquid crystal is a system of rod-like molecules which bahave under translations in the
same way as the molecules in an ordinary liquid while their molecular orientations
can undergo phase transitions into states of long-range order, a typical property of
crystals. In this part of the book we shall focus our attention on molecules whose
shape strongly deviates from spherical symmetry but which mechanically have no
dipole properties, i.e. a reversal of the direction of the principal axis remains is
energetically negligible. Examples for such systems are given by p, p′-azoxyanisole
shortly called PAA the formula or p-methoxybenzylidene-p-n-butylaniline, usually

Figure 2.1 Molecualar structure of PAA

abbreviated as MBBA

Figure 2.2 Molecualar structure of MBBA

362



2.1 Mean Field Theory of Nematic Order 363

For more elongated molecules it may happen that the atomic array exhibits a
slight screw-like structure. This is the case in many derivatives of steroids whose
prime example is cholesterol. Such molecules violate mirror reflection symmetry.

A rather satisfactory description of the long-range correlations in all such system
can be given by means of a collective field theory. It is constructed by using the
lowest non-vanishing multipole moment of the molecules as a local field characteriz-
ing the orientation of the molecules and expanding the free energy in a power series
in this field and its derivatives. The thermodynamic properties are then obtained
by calculating the partition function for all fluctuating field configurations.

Z =
∑

field
configurations

e−Energy/kT . (2.1)

If the system is not extremely close to a critical point, where fluctuations become
important, the partition function can be approximated by the field configuration
which extremizes the energy (saddle point method). This is equivalent to considering
the collective field as a mean field variable of the Landau type [2].

If a satisfactory microscopic description of the system is known, the collective
field theory can be derived from the microscopic one via simple path integral tech-
niques. This has been done successfully for other systems such as superconductors
[3] and superfluid 3He [2] [3].

If a satisfactory microscopic description of the system is known, the collective
field theory can be derived from the microscopic one via simple path integral tech-
niques. This has been done successfully for other systems such as superconductors
[2] and superfluid 3He2,3. In liquid crystals, however, where the status of micro-
scopic theory is not as satisfactory it is convenient to build up a collective field
theory purely on phenomenological grounds.

For this it is best to proceed backwards by starting with a Landau mean field
description in terms of a non-fluctuating order parameter [4], [5]. Theoretical state-
ments concerning the long-range properties of the system can be compared with
experiment and will be reliable as long as fluctuations are strongly suppressed by
the Boltzmann factor in ??. If critical points are approached, however, where fluc-
tuations do become important these may simply be included by assuming the order
parameter itself to be the fluctuating collective field.

2.1 Mean Field Theory of Nematic Order

2.2 Uniform Order

The lowest non-vanishing multipole moment of the elongatd molecules is of the
quadrupole type. Thus a traceless symmetric tensor Qαβ is the appropriate order
parameter for a Landau expansion [3] [5]. To lowest approximation, any other
physical property which is described by the same type of tensor must be a multiple
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of this order parameter Qαβ. Examples are the deviations of the dielectric tensor
εαβ or the magnetic permeability µαβ from the isotropic value

δε = εαβ − ε0δαβ

δµ = µαβ − µ0δαβ (2.2)

For if Q vanishes there can be no orientational preference and δαβε = 0, δµ = 0.
For small Q one can expand

δεαβ = M ε
αβγδQγδ + . . .

δεαβ = M ε
αβγδQγδ + . . . (2.3)

where from symmetry arguments Mαβγδ can only have the general form

Mαβγδ = aδαβδγδ +
b

2
(δαγδβδ + δαδδβγ) . (2.4)

But applied to a symmetric traceless tensor Qγδ, the a term vanishes while the b term
simply gives bQαβ. Hence, the deviations of electric and magnetic permeability are
proportional to Qαβ. This makes all properties of the order parameter observable
via some couplings

δHint =
∫

1

2
(ξEQαβEαEβ + ξMQαβHαHβ) d3x. (2.5)

It will be convenient to choose the normalization of Qαβ such that

Qαβ ≡ δεαβ , i.e. ξE ≡ 1. (2.6)

Locally, the symmetric order parameter may be diagonalized by a rotation and has
the form

Qαβ =







−Q1

−Q2

(Q1 + Q2)





 . (2.7)

If Q1 6= Q2 the order is called biaxial, if Q1 = Q2 it is called unaxial. Suppose Q1

and Q2 are of similar magnitude and both are positive or negative. In the first case
the dielectric tensor has two small and one larger component. This corresponds to
an ellipsoid of rod-like shape. For the opposite situation, Q1 ≈ Q2 < 0, the order
corresponds to a disc. For the molecular systems discussed before we expect the
rod-like option to have the lower energy. This will, in fact, emerge one very general
grounds, except for small regions of temperature and pressure (close to the critical
point in the phase diagram).

Let us now expand the free energy in powers of Qαβ. On invariance grounds we
can have terms

I2 = trQ2 (2.8)

I3 = trQ3 (2.9)
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I4 = trQ4 , I2
2 (2.10)

I5 = trQ5 , I2I3 (2.11)

I6 = trQ6 , I3
2, I2

3 (2.12)
... . (2.13)

But for traceless symmetric tensors there is only one independent invariant of forth
as well as of fifth order since

I4 =
1

2
I2

2 , I5 =
5

6
I2I3. (2.14)

At sixth order there are two invariants, which may be taken as I3
2 and I2

3. Then,
for space and time independent order parameter, the free energy may be expanded
as [7]

f =
1

2

(

a2I2 + a3I3 +
a4

2
I2

2 + a5I2I3 +
a6

2
I2
3 +

a′6
3

I2
3

)

+ O(Q7) (2.15)

Phase transitions take place roughly at room temperature. They are caused by the
fact that the coefficient of the quadratic invariant vanishes at some temperature T∗
and can be expanded in a small neighbourhood as

a2 ≈ a0
2

(

T

T∗
− 1

)

. (2.16)

Such a behaviour may be drived from any simple microscopic model [6] (see App.
A). The values of T∗ and a0

2 usually depend on pressure.
Also from model calculations one finds that the other coefficients are all of the

same order as a0
2. The only exception is a3 which is found to be small on experimental

grounds
a2

3

a0
2a4
� 1. (2.17)

Moreover, by increasing the pressure to several hundred atmospheres, the unequality
can be improved by a factor 4 or more and there is hope that the point a3 = 0 can be
reached at some pressure P∗ [8]. In the following we shall assume the existence of a
point (P ∗, T∗) in the PT diagram where both a2 and a3 vanish. The neighbourhood
of this point will be particularly accessible to theoretical investigations. Within the
PT diagram, the lines of constant a2 and a3 can be used to define a local coordinate
frame whose axes cross at (P ∗1 , T∗) at a non-zero angle (see Fig. 1). In models, the
coefficient a3 is negative at low pressure such that the a3 axis points roughly into
the direction of increasing P . With this mapping in mind we may picture all results
directly in the (a3, a2) plane with the a3 axis pointing to the right, and only a slight
d stortion has to be imagined in order to transfer the phase diagrams to the PT
plane.

Before starting it is useful to realize that the expansion 2.15, while being a com-
plicated sixth order polynomial in the eigenvalues Q1, Q2 of the diagonalized order
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parameter, is a simple third order polynomial in I2, I3. It is therefore convenient to
treat it directly as such. One only has to keep in mind the allowed range of I2, I3:
First of all, I2 is positive definite. Second, I3 is bounded by

I3
2 ≤ 1

6
I2

3. (2.18)

The boundary is precisely reached for the uniaxial phase1, one with I3 = I
3/2
2 /
√

6

of positive, rod-like order, the other with I3 = −I
3/2
2 /
√

6 of negative, disc-like
order. Only between these boundaries are I2, I3 independent corresponding to a
biaxial phase. The domain is shown in Fig. 2.

With this simplifying view of the expansion 2.15 let us, for a moment, consider
the expansion only up to the forth power and look for the minimum in I2 and I3.
Since ∂f/∂I3 = a3 there is no extremum in the allowed domain of Fig. 2 except for
a3 = 0. There the transition is of second order: For a2 > 0, T > T∗ one hase only
I2 = 0 and hence Q = 0 which is the isotropic phase. For a2 < 0, T < T∗ one finds
I2 = −a2/a4 and the system is ordered. Since I3 is not specified, the order can be
anywhere on the biaxial line in Fig. 2 between the rod-like and disc-like end points.
The energy is

f = −a2
2

4a4
= −a0

2
2

4a4

(

T

T∗
− 1

)2

. (2.19)

The specific heat has the usual jump

∆c = −T
∂2f

∂T 2
= − 1

T∗

1

2

a0
2
2

a4

(2.20)

when passing from T > T∗ to T < T∗.
The situation is quite different in the presence of the cubic term a3 6= 0. Since

there cannot be any minimum for independent I2 and I3, it must necessarily lie
at the uniaxial boundaries (there must exist a minimum since F is continuous in
Q1, Q2 and eventually F → ∞ for Q1, Q2 → ∞). Let us insert the particular
uniaxial parametrization

αβ = ϕε(0)(n) ≡ ϕ

√

3

2

(

nαnβ −
1

3
δαβ

)

(2.21)

where n is an arbitrary unit vector (ϕ > 0 rod-like, ϕ < 0 disc-like). Then we find,
using tr(ε(0)2) = 1, tr(ε(0)3) = 1/

√
6,

f =
1

2
a2ϕ

2 +
1

2
√

6
a3ϕ

3 +
a4

4
ϕ4. (2.22)

1Because of

tr





−Q1

−Q1

2Q1



 = ±
√

6






tr





−Q1

−Q1

2Q1





2






3/2

for Q10.
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This energy is minimal at ϕ = 0 with f = 0 and at

ϕ>
<

= − 3a3

4
√

6a4

(

1±
√

1− 96a2a4

9a3
2

)

(2.23)

which are the solutions of

f ′ =

(

a2 +
3

2
√

6
a3ϕ + a4ϕ

2

)

ϕ = 0. (2.24)

Combining (2.24) with (2.22) we see that the energy at ϕ>
<

is

f = −1

4
ϕ3

(

a3√
6

+ a4ϕ

)

. (2.25)

The energy vanishes at a point ϕ 6= 0, if ϕ>
<

satisfies

ϕ = − a3√
6a4

(2.26)

From (2.23) we see that this happens at a temperature Tc at which

a2 = a0
2

(

Tc

T∗
− 1

)

=
a3

2

12a4
. (2.27)

At this point the potential has the usual symmetric double-well form entered around
ϕ
2

(see Fig. 3). Now the transition is of first order: As T passes the temperature
Tc which lies above T∗, the order jumps discontinuously from the old minimum at
ϕ = 0 to the new one at ϕ = ϕ> (see Fig. 4) entropy changes by

∆s = − T

(

∂f

∂T

∣

∣

∣

∣

∣

T=Tc+ε

− ∂f

∂T

∣

∣

∣

∣

∣

T=Tc−ε

)

(2.28)

=
1

2

T

T∗
a0

2ϕ
2
> (2.29)

= − 1

T∗

a0
2a2

a4
(2.30)

giving a latent heat

∆q =
T

T∗

a0
2
2

a4

(

Tc

T∗
− 1

)

(2.31)

From 2.23 it is obvious that for a3 < 0 the order is positive uniaxial, for a3A0
negative. Thus up to quartic order we arrive a the phase diagram shown in Fig. 4.

Energetically, the higher powers of the free energy are negligible as long as ϕ>

is sufficiently small. From 2.26 and 2.27 we see that at the transition

ϕ> =

√

2a0
2

a4

√

Tc

T∗
− 1. (2.32)
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Since a0
2 and a4 are roughly of equal size, the corrections in the energy are of order

O
(√

Tc/T∗ − 1
)

. Experimentally we shall se that the temperature precocity of the

first order transition Tc/T∗ − 1 is extremely small, usually in the range 1
400

. Thus
higher terms in the expansion can change the enerty by a fex percent only.

Also the latent heat 2.28 is supprssed by the factor Tc

T∗

− 1 with repsect to the

natural scale
a02

2

a4
.

First order transitions with these properties are usually referred to as being
weakly of first order.

while for a2 > 0 and close to the critical point (P ∗, T∗) the higher orders
are rather insignificant, they do become relevant for a2 < 0, in particular in some
neighbourhood of the a3 = 0 line where the different phases are unspecified. In order
to get a qualitative picture let us neglect the a′6 term which could give only slight
quantitative changes but which would make the following discussion much more
clumsy. Varying f independently with respect to I2 and I3 we find the extremality
conditions

a2 + a4I2 + a5I3 = 0

a3 + a5I2 + a6I3 = 0 (2.33)

For
a4a6 − a5

2 > 0 (2.34)

or
a4a6 − a5

2 < 0 (2.35)

this can be solved by

(

I2

I3

)

=
1

a4a6 − a5
2

(

−a6 a5

a5 −a4

)(

a2

a3

)

. (2.36)

We shall exclude the accidental equality sign since a4, a5, a6 are rather invariable
material constants. The extremum is a minimum only under the condition 2.34. We
then have to see whether I2 and I3 remain inside the allowed domain I2

3 ≥ 6I3
2.

For this we simply map the position of the boundaries into (a2, a3) plane. On the
rod-like and disc-like boundaries,

a2 = −a4I2 ∓ a5
1√
6
I

3/2
2

a3 = −a5I2 ∓ a6
1√
6
I2

3/2. (2.37)

We may form two combinations

a2a5 − a3a4 = ±(a4a6 − a5
2)

1√
6
I2

3/2

a2a6 − a3a5 = −(a4a6 − a5
2)I2. (2.38)
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Inserting ?? into 2.38 gives

a2a5 − a3a− 4 = ±
(

a4a6 − a5
2
) 1√

6

[

a2a6 − a3a− 5

−(a4a6 − a5
2)

]3/2

. (2.39)

If the right-hand side were absent, this would give a straight line

a2 =
a4

a5
a3 (2.40)

in the a2, 3 diagram. But we can easily see that the right-hand side gives only a
correction of order a3

3/2 to this result: Inserting the lowest approximation 2.40, the
right-hand side becomes

± (a4a6 − a5
2)

1√
6

(

−a2

a4

)3/2

(2.41)

such that, up to order a2
3/2

a3a4 = a2a5 ∓ (a4a6 − a5
2)

1√
6

(

−a2

a4

)3/2

+ . . . . (2.42)

The two boundary curves are displayed on Fig. 5. Between these brances the order
is biaxial with a well determined ratio Q1

Q2
. One may envisage the effect of the higher

powers in the free energy expansion as having slightly rotated the vertical degenerate
line in Fig. 4 and opened it up into the two branches of Fig. 5 generating a hole
domain for the biaxial phase. Since the order parameter moves continuously towards
the uniaxial boundary the transition uniaxial to biaxial is of second order.

If the determinant a4a − 6 − a5
2 becomes smaller, the biaxial region shrinks.

For negative sign, it disappears and the two uniaxial regions overlap. Since only
one of them can have the lower energy there must be a line at which the transition
takes place. This is found most easily by considering the uniaxial energy in the
parametrization 2.21 where it reads

2f = a2ϕ
2 +

a3√
6
ϕ3 +

a4

2
ϕ4

a5√
6
ϕ5 +

a6

12
ϕ6 (2.43)

where a6

12
can be thought of containing also

a′

6

3
of the last term.

The minimum lies at
(

a2 +
3

2
√

6
a3ϕ + a4ϕ

2 +
5

2
√

6
ϕ3 + a6ϕ

4

)

ϕ = 0 (2.44)

up to a4 this was solved by

ϕ>
<

= − 3

4
√

6

a3

a4

(

±
√

1− 96a2a4

9a3
2

)

(2.45)
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and only ϕ> gave the minimum the other the maximum. As a5, a6 are turned on,
the maximum may become a minimum in order to see where this happens let us
assume a3 to be very small as compared with a2a4. Then ϕ is given for a3 >< 0 by

ϕ = ±
√

−a2

a4



1 +± 3

4
√

6

√

a3
2

−a2a4
+ . . .



 . (2.46)

Inserting this back into the energy we find that the two energies becomes equal at

a2 = a3
a4

a5
+

1√
6
a3

3/2a5
−1/2 + O(a2

3). (2.47)

For small a5 this reduces back to the line a3 = 0. While for a5 = 0 the transition
was of second order it is now of first order with a latent heat

∆q = − a3

2a4
T

∂a2

∂T
− T

∂a3

∂T

1

2a5
(a2a5 − a3a4). (2.48)

Let us finally calculate the correction to the isotropic-uniaxial curve 2.27 which was
shown in Fig. 4. For small a3 we find

a2 =
1

12

a3
2

a4

+
1

36

a3
3a5

a4
3

+ O(a3
4) (2.49)

which may be used to calculate a small correction to the latent heat 2.31.
All ordered phases described here are referred to as nematic.
described here are referred to as nematic.

2.3 Bending Energy

The order parameters discussed in the last section were independent of space and
time. In the laboratory, such configurations are difficult to realize. External bound-
aries usually do not permit a uniform order but enforce spatial variations. The sys-
tem tries, however, to keep the variations as smooth as possible. It exerts resistance
to local deformations. In order to parametrize the restoring forces one expands the
free energy in powers of the derivatives of the collective field Qαβ. If the fields bend
sufficiently smooth, the expansion may be terminated after the lowest derivative.

Due to rotational invariance, there can only be the following bending energies

fbend =
b

2
∂γQαβ∂γQαβ +

c1

2
∂αQαγ∂βQβγ +

c2

2
∂αQβγ∂βQαγ . (2.50)

As far as the total energy F =
∫

d3xf is concerned, the latter two terms may be
collected into one, say the first among them by substituting c1 → c1 + c2 ≡ c.

In the ordered phase which is usually of the rod-like type we may use the para-
metrization 2.21 and split the gradient of Qαβ into variation of the size ϕ and the
direction n.
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In the bulk liquid the size of the order parameter ϕ is caught in the potential min-
imum at ϕ> (see Fig. 3) and only the direction n will vary from point to point.
Then we can find from 2.50 the purely directional bending energy.

fbend,dir =
3

4
ϕ2 [a∂γ(nαnβ)∂γ(nαnβ)

+ c1∂α(nαnγ)∂β(nβnγ) + c2∂α(nβnγ)∂(nαnγ)] (2.51)

Since nα
2 = 1 one may use nα∂γnα = 0 and collect

fbend,dir =
3

4
ϕ2
{

b2n2
α,β + c1

[

(∂n)2 + (n∂n)2
]

+c2

[

(∂αnβ)(∂βnα) + (n∂n)2
]}

. (2.52)

We now rewrite

n2
α,β = (∇ · n)2 + (n · (∇× n))2 + (n× (∇× n))2 (2.53)

and
nα,γnγ,α = (∇)2 + ∂α(nβ∂βnα)− ∂β(nβ∂αnα) (2.54)

such that

fbend,dir =
3

2
ϕ2
{(

b +
c

2

)

(∇ · n)2 + b (n · (∇× n))2

+
(

b +
c

2

)

(n× (∇× n))2
}

+c2 [∂α(nβ∂βnα)− ∂β(nβ∂αnα)] . (2.55)

The latter is again a pure surface term.
The coefficients

K1 ≡ Ks = 3
(

b +
c

2

)

ϕ2

K2 ≡ Kt = 3bϕ2

K3 ≡ Kb = 3
(

b +
c

2

)

ϕ2 (2.56)

are known as Frank constants of textural bending. The subscripts s, t, b stand
for splay, twist, and bend and indicate that each term dominates a certain class of
distortions of the directional field. They are shown in Fig. 7a-c). The experimental
values of K1,2,3 lies in the order of 5 to 10× 10−7 dynes, for example [1]

MBBA , T ≈ 220 C K1,2,3 = (5.3± .5 , 2.2± .7 , 7.45± 1.1)× 10−7dynes

PAA , T ≈ 1250 C K1,2,3 = (4.5 , 2.9 , 9.5)× 10−7dynes. (2.57)

For topological reasons the field configurations may have singularities often called
defects. In their neighbourhood, also the size ϕ has spatial variations. The same
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thing happens near boundaries or at the interface between two phases. The deriva-
tive terms for these variations are found from 2.50 by calculating

∂γQαβ∂γQαβ = (∂ϕ)2 + (∂n)2terms

∂αQαγ∂βQβγ = ∂αϕ∂βϕ
1

2

(

nαnβ +
1

3
δαβ

)

3 [(∂αnα)nγ + nα(∂αnγ)]
(

nβnγ −
1

3
δβγ

)

∂βϕ + (∂n)2terms

1

2
(n∂ϕ)2 +

1

6
(∂ϕ)2 + 2(n∂ϕ)∂n − (n∂nγ)∂γ

ϕ (2.58)

∂αQβγ∂βQαγ = ∂αϕ∂βϕ
1

2
(nαnβ +

1

3
δαβ)

+3 [(∂αnβ)nγ + nβ(∂αnγ)]
(

nαnγ −
1

3
δαγ

)

∂β)∂βϕ + (∂n)2terms

=
1

2
(n∂ϕ)2 +

1

6
(Qϕ)2 + 2(n∂nγ)∂γϕ− (n∂ϕ)∂n

such that the remaining bending energies are

fbend = fbend,dir +
1

2

(

b +
c

6

)

(∂ϕ)2 +
c

2
(n∇ϕ)2

+
2c1 − c2

2
ϕ (n∇ϕ) (∇n) +

2c2 − c1

2
ϕ (n∇nα)∇αϕ (2.59)

2.4 Light Scattering

In bending energies determine the length scale at which local field fluctuations take
place. These in turn are directly observable in light scattering experiments.

Consider at first the region T > Tc. There the order parameter vanishes such
that the field Qααβ fluctuates around zero. If the temperature is sufficiently far
above Tc (precisely how far we shall see soon), the quadratic term in the energy
strongly confines such fluctuations and we can study their properties by considering
only the quadratic term in the free energy

f2 =
a2

2
Q2 +

b

2
(∂γQαβ) 2 +

c

2
∂αQαγ∂βQβγ + surface terms. (2.60)

Obviously, b/a2 and c/a2 have the dimension of a length square and it is useful to
define the squares of the so-called coherence lengths

ξ1
2(T ) ≡ b

a2

b

a0
2

1
T

T∗
− 1
≡ ξ0

1
2 1

T

T∗
− 1

ξ2
2(T ) =

c

a2

=
c

a0
2

1
T

T∗
− 1
≡ ξ0

2
2 1

T

T∗
− 1

(2.61)
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which increase as the temperature approaches T∗ from above. These length scales
will turn out to control the range of local fluctuations. Let us expand Q in a fourier
series

Qαβ(x) =
1√
V

∑

q

eiqxQαβ(a) (2.62)

where Qαβ
∗(q) = Qαβ(−q). Then the total energy becomes

F2 =
1

2

∑

q

Qαβ(−q)
[

(a + bq2)gαα′ + cqαqα′

]

Qα′β(q). (2.63)

The spin orbit coupling term c can be diagonalized most easily on states of fixed
helicity. The spin matrix for the tensor field is

(SγQ)αβ = −i (εγαα′Qα′β + (α↔ β)) . (2.64)

The helicity is defined as the projection of s along q

H = Sγ q̂γ . (2.65)

We now realize that

(HQ(−q))αβ (HQ(q))αβ =

(q̂γεγαα′Qα′β(−q) + (α, β)) (q̂δεδαα′′Qα′′β(q) + (α, β))

= 4Qαβ(−q)Qαβ(q)− 6Qαβ(−q)q̂αq̂α′Qα′β(q) (2.66)

such that (2.62) can be rewritten as

F 2 =
1

2

∑

q

{[

a +
(

b +
2

3
c
)

q2
]

|Qαβ(τ)|2 − c

6
|HQ(q)|2

}

. (2.67)

This is obviously diagonal on eigenstates of helicity. These are easily constructed.
First those of unit agular momentum: For this one simply takes the spherical com-
binations of unit vectors

ε(1) =
1√
2

(x̂ + iŷ) ,

ε(−1) = − 1√
2

(x̂ + iŷ) , (2.68)

ε(0) = ẑ,

which are eigenstates of S3 and (S)2:

S3ε±1 = ±1ε±1, S3ε0 = 0, (2.69)

S2ε±1 = 2ε±1, S2ε0 = 0, (2.70)
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and rotates them into the direction of q by

R(q̂) = e−iϕL3e−iθL2 =






cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1













cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ





 (2.71)

where ϕ and θ are the polar angles of q̂. Then x̂, ŷ turn into a local triped l(1), l(2), q̂

of unit vectors such that ε







+1
0
−1







(q) ≡ R(q̂)ε







1
0
−1







diagonalize H:

− iq̂γεγαβ

(

l
(1)
β ± il

(2)
β

)

= iq̂x
(

l(1) ± il(2)
)

= ±i
(

l)1) ± il(2)
)

(2.72)

−iq̂γεγαβq̂β = 0

with eigenvalues ±1, 0. Now we couple two of these symmetrically and obtain the
angular momentum two helicity tensors.

ε
(2)
αβ(q̂) = ε

(−2)∗
αβ (â) = lαlβ = ε(2)

(

1
q

)

ε
(1)
αβ(q) = −ε

(−1)∗
αβ (q̂) =

1√
2

(lαq̂β + lβ q̂α) = −ε(1) (−q̂) (2.73)

ε
(0)
αβ(q) =

√

3

2

(

q̂αq̂β −
1

3
δαβ

)

≡ ε(0) (−q̂)

where we have defined l ≡ 1√
2

(

l(1) + il(2)
)

. Since l2 = 0, ll∗ = 1 we varify directly
the orthogonality

tr
(

ε(m)(q̂)ε(m′)∗(q̂)
)

= δmm′ . (2.74)

The completeness relation is found to be

∑

m

ε
(m)
αβ (q̂)ε

(m)
γδ (q̂) = Iα,β,γ,δ (2.75)

where

Iα,β,γ,δ =
1

2
(δαγδβδ + δαδδβγ)−

1

3
δαβδγδ (2.76)

is the projection into the space of symmetric traceless tensors of spin 2, as it should.
The energy can now be diagonalized by expanding Qαβ(x) in terms of these

ε
(m)
αβ (q) eigenmodes as

Qαβ(x) =
∑

q,m=−1,...,2

(

eiqxεm
αβ (q̂)ϕ(m)(q) + c.c.

)

(2.77)
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where the energy takes the form

F =
∫

d3xf =
∑

q,m

τ (m)(q)|ϕ(m)(q)|2 (2.78)

with

τ (m)(q) = a2 +

[

b +

(

3

2
− m2

6

)

c

]

q2

= a2

{

1 +

(

ξ1
2 +

(

2

3
− m2

6

)

ξ2
2

)

q2

}

. (2.79)

We can now calculate the correlation functions of the field. If we rewrite

Z =
∑

Q

e−
1

kT
F (2.80)

in the diagonalized form we have

Z =
∑

ϕ(m)

exp







− 1

kT

∑

q,m

τ (m)(q)|ϕ(m)(q)|2






. (2.81)

Therefore the correlation functions are2

〈ϕ(m)(q)ϕ(m)∗(q′)〉 = δq,q′
kT/2

τ (m)(q)
. (2.82)

Translating this back to Qαβ we may write

〈Qαβ(q)Qγδ(q
′)∗〉 = δq, q′

∑

m

kT

τ (m)(q)
ε
(m)
αβ (q̂′) ε

(m)∗
γδ (q̂) (2.83)

or in x space

〈Qαβ(x)Qγδ(x
′)〉 = kT

∑

q

eiq(x−x) 1

ε(m)(q)
ε
(m)
αβ (q̂)ε

(m)∗
γδ (q̂) . (2.84)

These correlations are observable in inelastic scattering of visible light. With the
identification Qαβ = δεαβ there is an electric coupling

Hint =
1

2

∫

d3xEαQαβEβ. (2.85)

Let Ein be the field incoming light of momentum kin and frequency ω. For a given
fixed dielectric configuration ε(x), the polarization of the medium is given by

P (x)e−iωt =
1

4π
(ε(x)− 1)Eine

−i(ωt−kinx). (2.86)

2The factor 1
2 is due to the dependence of ϕ and ϕ∗, ϕ(m)(−q) = ϕ(m)∗(q).
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Since p may be considered as a density of radiating dipoles, these will emit light in
a spherical wave which at a large radius R away from the sample is

Eout(x
′) =

ω2

c2

1

R
eikRP⊥(x) (2.87)

where k = ω
c
, R = |x′ − x| and P⊥ is the component transverse to the direction of

the outgoing wave. Expanding R around x = 0, kR ≈ kR0−koutx and integrating
over the sample, the scattering amplitude A for incoming and outgoing polarization
directions εin, εout is given by

εoutEout(x
′) =

Ein

R0

eikR0A (2.88)

with

A =
ω2

4πc2
ε∗out

[∫

d3xe−iqx (εαβ(x)− 1)
]

εinβ (2.89)

where q = kout − kin is the momentum transfer. The square of A gives directly the
differential cross section per unit solid angle

dτ

dΩ
= |A|2. (2.90)

Eliminating the direct beam from the spatially constant part of ε we may write

dτ

dΩ
=

Ω4

(4πc2)2
ε∗outδε(q)εinε

∗
inδε

∗(q)εout. (2.91)

In the present case, the dielectric tensor has thermodynamic fluctuations and we
have tr eplace δε(q)δε∗(q) by the correlation function (2.85). This gives

dτ

dΩ
=

ω4

(4πc2)2

kT

2

∑

m

1

ε(m)(q)
|εoutε

(m)(q)εin|2. (2.92)

Let the incoming beam run in the z direction with the outgoing being rotated by
an angle θ towards the y axis (see Fig. 8). Then

kin = k(0, 0, 1), kout = k, (0, sin θ, cos θ). (2.93)

The momentum transfer is

q = q

(

0, cos
θ

2
, sin

θ

2

)

(2.94)

with
q2 = 2k2(1− cos θ). (2.95)

For an incoming polarization vertical to the scattering plane, i.e. along the x axis
which have

εin = εV = (1, 0, 0). (2.96)
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Let the final polarization be inclined by an angle ϕ against the vertical direction,
i.e.

Eout = (cos ϕ,− sin ϕ cos θ, sin ϕ sin θ). (2.97)

The tensors ε(m)(q̂) are all given in terms of q̂ and l which may be taken as

l =
1√
2

(

1,−i sin
θ

2
,−i cos

θ

2

)

= (l∗)∗ . (2.98)

In this way we find

ε∗outε
(+pm2)(q̂)εV =

1

2

(

cos ϕ∓ ϕ sin ϕ sin
θ

2

)

ε∗outε
(±1)(q̂)εV = −1

2
sin ϕ cos

θ

2
(2.99)

ε∗outε
(0)(q̂)εV = − 1√

6
cos ϕ.

If the initial polarization had been horizontal

εin = εH = (0, 1, 0) (2.100)

these scalar products would read

ε∗outε
(±2)(q̂)εH =

1

2
sin

θ

2

(

∓i cos ϕ− sin ϕ sin
θ

2

)

ε∗outε
(±1)(q̂)εH =

1

2
cos

θ

2
cos ϕ (2.101)

ε∗outε
(0)(q̂)εH = − 1√

6
sin ϕ

(

1 + cos2 θ

2

)

.

Inserting this into (2.92) we find the cross section for vertical incidence:

dσV

dΩ
=

ω4

(4πc2)2

kT

2

[

1

6T (0)(q)
cos2 ϕ +

1

4

(

1

τ (1)(q)
+

1

τ (−1)(a)

)

cos2 θ

2
sin2 ϕ

+
1

4

(

1

τ (2)(q)
+

1

τ (−2)(q)

)(

− sin2 θ

2
sin2 ϕ

)]

(2.102)

and

dσH

dΩ
=

ω4

(4πc2)2

kT

2

[

1

6T (0)(q)
sin2 ϕ

(

1 + cos2 θ

2

)

+
1

4

(

1

τ (1)(q)
+

1

τ (−1)(a)

)

cos2 θ

2
cos2 ϕ

+
1

4

(

1

τ (2)(q)
+

1

τ (−2)(q)

)

sin2

(

1− cos2 θ

2
sin2 ϕ

)]

. (2.103)
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The experimental results show very little q dependence such that one may conclude
that for visible light,

ξ1q � 1 , ξ2q � 1 (2.104)

i.e. the wave length is much larger than both coherence lengths. If we therefore
neglect ξ1, ξ2 for a moment, we see

τ (0) ≈ τ (±1) ≈ τ (±2) (2.105)

such that the intensity of the scattered light goes like

IV ∼
1

a2

[

1

6
cos2 ϕ +

1

2
cos2 θ

2
sin2 ϕ +

1

2

(

1− sin2 θ

2
sin2 ϕ

)]

. (2.106)

For final polarizations vertical or horizontal to the scattering plane at a scattering
angle = 900 this gives

IV V ∼
2

3a2

IHV ∼
1

2a2
(2.107)

such that
IV V

IHV
∼ 4

3
. (2.108)

This ratio is approximately observed experimentally for T sufficiently above T∗ [9].
As T approaches T∗, the coherence length grows larger and athe q dependence has
a chance of becoming observable. Expanding τ (m)−1(a) to lowest order in (ξq)2 we
find

τ (m)(q)−1 = a−1
2

[

1−
(

ξ1
2 +

(

2

3
− m2

6

)

ξ2
2

)

+ . . .

]

(2.109)

such that the intensities IV V , IHV behave as

IV V ∼
1

6

[

1−
(

ξ1
2 +

2

3
ξ2

2
)

q2
]

+
1

2

[

1− ξ1
2q2
]

+ . . .

IHV ∼
1

4

[

1−
(

ξ1
2 +

2

3
ξ2

2
)

q2
]

+
1

4

[

1− ξ1
2q2
]

+ . . . (2.110)

with their ratio being

IV V
−1/I−1

HV ∼
3

4

(

1− 1

12
ξ2

2q2 + . . .
)

. (2.111)

This result is in agreement with experiment [9], with ξ2
2 > 0 (in principle, c could

have been negative).
As the temperature drops towards T∗, the intensity of scattered light increases

like a−1
2 ∼

(

T
T∗

− 1
)−1

, (see (2.110) as a manifestation of increasing fluctuations.
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for a comparison with the data it is most convenient to plot the inverse intensity
against temperature which must behave for large enough T ( a few 0C above T∗) as

a0
2

(

T

T∗
− 1

)

+ ξ2q2 (2.112)

i.e. as a straight line, where ξ2 is a combination of ξ1
2 and ξ2

2 depending on the
polarizations (see Figs. 9, 10). Comparing such lines at different q values it is
possible to deduce the size of the coherence lengths, for example in MBBA (see
Figs. 10, 11)

ξ(T ) ≈ 5.5x
1

√

T

T∗
− 1

Å. (2.113)

As the temperature hits Tc which usually lies one half to one 0C above T∗, the data
points jump down to very small values, i.e. the intensity suddenly grows large (see
Fig. 9).

It is easy to explain this phenomenon. At Tc, the size of the order paraemter
jumps from ϕ = 0 to ϕ = ϕ> 6= 0. But tue to rotational invariance of the energy,
there is an infinite number of points in the Qαβ parameter space with the same
energy, namely all those which differ only by a rotation of the direction vector n.
Due to this continuous degeneracy, there will be very strong directional fluctuations.
It is these which scatter light at a much larger rate than before. Let us calculate
the cross section: From (2.21) we have

dσ

dΩ
=

ω4

(4π2c2)2
kT

3

4
ϕ2|ε∗outβδ(nαnβ)εinα|2. (2.114)

Thus we must calculate the correlation function

〈δ(nαnβ)δ(nγnδ)〉 = 〈δnαδnγ〉nβnδ+〈δnαδnδ〉nβnγ +〈δnβδnγ〉nαnδ+〈δnβδnδ〉nαnγ .

(2.115)

Thus we need the correlation function 〈δnαδnβ〉.
In order to find this let us consider the bending energy (2.55) for the Fourier

transformed field

δn(x) =
1√
V

∑

q

eiqxδn(q). (2.116)

Then

F =
1

2

∑

q

[

K1qαqβ + K2(nt× q)α(n× q)β + K3(nq)2δαβ

]

δnα(−q)δnα(q). (2.117)

In order to simplify the discussion suppose the system has an average orientation
n‖z. Then

F =
1

2

∑

q

[

K1qαqβ + K2q⊥αq⊥β + +K3qz
2δαβ

]

δnα(−q)δnα(q) (2.118)
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where q⊥ ≡ (−q2, q1, 0). The fluctuations can have only x and y components.3 We
can diagonalize this expression by introducing two orthogonal unit vectors e1(q) =
(q̂1, q̂2, 0) and e2(q) = q̂⊥. If we decompose

δn(q) = e1(q)δn1(q) + e2(q)δn2(q) (2.119)

we find the diagonal form

F =
1

2

∑

a=1,2

(

Kaq⊥
2 + K3qz

2
)

|δna(q)|2. (2.120)

Thus the fluctuations of δn1 and δn2 diverge for q → 0. The liquid crystal becomes
opaque.

In this fashion, the bending constants K1, K2, K3 can be measured with values
for which examples were quoted before.

2.5 Interfacial Tension between Nematic and Isotropic
Phase

At the different lines of first order phase transition, the order parameter moves from
one value to another. Due to the derivative terms in the free energy, this change
cannot take place abruptly but must be distributed over a length scale of the order
of ξ in order to save gradient energies. It is a simple application of mean field theory
to calculate the energy stored in the interface.

Experimentally this quantity can be measured in the form of a surface tension.
This may be deduced to light scattering experiments [12] or, more directly, by looking
at the curvature radius of a droplet of one phase embedded inside the other [13]. In
this way, the surface tension was found for MBBA to be

σ ≈ 2.3× 10−2 erg/cm2 [12] (2.121)

σ ≈ 1.6× 10−2erg/cm2. [13] (2.122)

An earlier measurement in another compound (PAP) gave a value two order of
magnitude smaller than that and seems to be too small to be correct.

For the calculation it is convenient to go to natural dimensionless quantities and
introduce a renormalized field

ϕαβ = −a4

a3

√

8

3
Qαβ (2.123)

a temperature parameter

τ =
4a4b

3a3
2

a0
2

b

(

T

T∗
− 1

)

(2.124)

3Since 1
2δ (nαnα)

2
= δnαnα = 0
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a length scale

ξc ≡
√

g

2

4a4b

3a3
2

(2.125)

and a energy density

f̃ =
2g

g

a4
3

a3
4
f ≡ f

κ
. (2.126)

This has the simple expansion

f̃ = τϕαβ
2 +

2

g
ξc

2

[

(∂γϕαβ)2 +
ξ2

2

ξ1
2
∂αϕαγ∂βϕβγ

]

−
√

6

3
ϕαβϕβγϕγα +

1

8

(

ϕαβ
2
)2

+ . . . . (2.127)

The nematic phase with the order parameter

ϕαβ = ϕε
(0)
αβ(n) (2.128)

has now a potential energy

f̃ = τϕ2 − 1

3
ϕ3 +

1

8
ϕ4 (2.129)

with a first order transition from ϕ = 0 to ϕ>

ϕ> =
1/3

2(1/8)
=

4

3
(2.130)

at

τc =
(1/3)2

4(1/8)
=

2

g
. (2.131)

This corresponds to T = Tc via (2.124). We can therefore rewrite

2

g
=

4a4ba
0
2

3a2
3b

(

Tc

T∗
− 1

)

=
2
g
ξc

2

ξ2
1(Tc)

(2.132)

which reveals the length scale ξc as the coherence length ξ1 at the transition tem-
perature.

Consider now a planar interface in the xy plane with the nematic and normal
phase for z � 0 and z � 0, respectively. If we assume all gradients to point along
the z axis, the bending energy is

f̃bend =
2

g
ξc

2

[

(∂zϕαβ)2 +
ξ2

2

ξ1
2
∂zϕzγ∂zϕzγ

]

. (2.133)

With the order parameter (2.128) and ϕ 6= 0, this is minimized by letting n point
orthogonal to the z axis. Then (2.133) becomes

2

g
ξc

2

(

1 +
1

6

ξ2
2

ξ1
2

)

(∂zϕ)2 . (2.134)
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Therefore the total energy across the interface reads at T = Tc

f̃ =
2

g
ξt
c
2
(∂zϕ)2 + τcϕ

2 − 1

3
ϕ3 +

1

8
ϕ4 (2.135)

where we have introduced the transverse coherence length at T = Tc

ξz
c = ξ1

2 +
1

6
ξ2

2|T=Tc
. (2.136)

If we adapt
√

2
g
ξc

z as our length scale we may rewrite

f̃ = (∂zϕ)2 + V (ϕ)

= (∂zϕ)2 + V0ϕ
2(ϕ− ϕ0)

2 (2.137)

where V0 = 1
8
, ϕ0 = 3

4
. The potential term (see Fig. 12) is of the standard

symmetric double well form with minima at ϕ = 0 and ϕ = 3
4
. Inside the interface,

the order parameter has to move from one value to the other while keeping the total
energy minimal, i.e. it has to satisfy the Euler Lagrange differential equation

∂z
2ϕ = V ′(ϕ). (2.138)

This precisely the same as the equation of motion of a point particle at position ϕ
as a function of ”time“ z but in the reversed potential. The solution corresponds to
a mass point rolling ”down“ the hill from ϕ = 0 through the ”valley“ at ϕ = ϕ0/2
up to the other hill at ϕ = ϕ0. the total ”engerg“ of this motion is conserved, i.e.

(∂zϕ)2 − V (ϕ) const. (2.139)

Far away from the interface, ϕ = 0 or ϕ0 and V = 0 such that const = 0. Thus we
may integrate

z =
∫ ϕ

0

dϕ′
√

V (ϕ′)
(2.140)

which is solved by

ϕ =
1

2
ϕ0

{

1 + th
z
√

V0ϕc

2

}

(2.141)

i.e. here

ϕ(z) =
2

3

{

1 + thz

3
√

2

}

. (2.142)

The total free energy for this parameter is found simply as

f̃ =
∫ ∞

−∞
dz
[

(∂zϕ)2 + V (ϕ)
]

(??)(??)

= 2
∫ ∞ϕ0

0
dzV (ϕ) = 2

∫ ϕ0

0
dϕ
√

V (ϕ) (2.143)

= 2
√

V0

∫ ϕ0

0
dϕ ϕ(ϕ− ϕ0) =

√
V0

3
ϕ0

3 =
16

81

√
2.
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This is the surface tension which back in physical units reads

σ =
16

81

√
2

√

2

9
ξz

cκ. (2.144)

The value fo κ involves a3 and a4 and which individually are somewhat hard to
determine. But here is a simple experimental quantity which contains κ rather
directly: The latent heat of the trasition. In MBBA, for example, one finds [15]
[16]:

∆q = 0.3kJ/mol ≈ 1.2J/g = 1.2 · 107 erg

g
. (2.145)

Within the present natural units, the latent heat is found from (??) as

∆q = κ
∂τ

∂T
T

(

∂f̃

∂τ

∣

∣

∣

∣

∣

ϕ=ϕc

−∂f̃

∂τ

∣

∣

∣

∣

∣

ϕ=0





= κ
2

g

(

ξc

ξ0

)2
Tc

T∗
ϕ2

c ≈
32

81

1
Tc

T∗
− 1

. (2.146)

Comparing this with (2.144) we find the simple relation

σ = ∆q
1

3
ξt
c

(

Tc

T∗
− 1

)

. (2.147)

For MBBA we may insert on the right-hand side ∆q from (2.145) and

ξc
t ≈ 150Å ,

Tc

T∗
− 1 ≈ 1

400
(2.148)

and find σ ≈ 1.5 × 10−2 erg/cm2 in reasonable agreement with the experimental
values (2.121), (2.122).

2.6 Cholesteric Liquid Crystals

The collective field theory developed up to this point is able to describe an ensemble
of rod-like, disc-like or biaxial order. In the introduction it was mentioned that in
cholesterol and similar compounds the molecular array exhibits a slight screw like
distortion. This violates mirror reflection (parity) symmetry. In order to describe
such systems we have to add a parity violating piece to the energy. To lowest order
there exists the following quadratic term with this property:

fpν = −2dεαβγQαβ∂γQβγ . (2.149)

This may be written alterntively in terms of the spin matrix (2.63) as

fp.ν. = −dQαβ (Si∂Q)αβ . (2.150)

For the Fourier transformed field, this becomes (q ≡ |q|)
fp.ν. = −d

∑

q

Qαβ(−q)q (HQ(q))αβ . (2.151)
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2.7 Small Fluctuations above Tc

If the temperature lies far enough above Tc (say a few 0C) the fluctuations are
dominated by the quadratic part of the free energy. Obviously, the normal modes
are still given by the different helicity tensors ε(2)(q̂) but now the energies behave
as

τ (0)(q) = a2

(

1 +
2

3
ξ1

2q2
)

τ (±1)(q) = a2

[

1 +
(

ξ1
2 +

1

2
ξ2

2
)

(

q2 +
d

b + c
2

q

)]

(2.152)

τ (±2)(q) = a2

[

1 + ξ1
2

(

q2 ∓ 2
d

b
q

)]

. (2.153)

These can be rewritten as

τ (±1) = a2

[

1− d2/a2
2

4(ξ2
1 + 1

2
ξ2

2)

]

+ a
(

ξ1
2 +

1

2
ξ2

2
)

(

q ∓ d

2b + c

)2

(2.154)

τ (±2) = a2

[

1− d2/a2
2

ξ1
2

]

+ a2ξ1
2

(

q ∓ d

b

)2

. (2.155)

The quantity d
b

has the dimension length −1 and may be used to define a new
characteristic parameter ξh as

d

b
≡ ξn

−1. (2.156)

Then τ (±1), τ (±2) take the form

τ (±1)(q) = a2

[(

1− 1

4

ξ1
2/ξn

2

1 + ξ2
2/2ξ1

2

)

+ ξ1
2
(

1 + ξ2
2/2ξ1

2
) (

q ∓ q(1)
)2
]

τ (±2)(q) = a2

[

(

1− ξ1
2/ξn

2
)

+ ξ1
2
(

q ∓ q(2)
)2
]

. (2.157)

While τ (0)(q) is unaffected by the parity violating d term, the helicity one and two
fluctuations now are strongest for the non-vanishing momenta (see Fig. 13)

q(1) ≡ 1

2ξn

1

1 + ξ2
2/2ξ1

2

q(2) =
1

ξn
. (2.158)

This fact will be seen to give rise to a number of distinctive physical properties of
cholesteric systems.
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2.8 Some Experimental Facts

As far as Raleigh scattering far above Tc is concerned, the momentum transfers are
so small that the result

IV H
−1

IV V
−1
≈ 4

3
(2.159)

is still expected to be true. Experimentally a slight deviation (1.448±.94) is observed
which has not yet been explained (see Fig. 14).

The most striking difference with respect to the nematic case, however, consists
in the following. The data points of I−1 do no longer end at a precocious phase
transition at Tc > T∗. Instead, they turn off the straight line and can now be
followed down to below T∗ (see Fig. 15) by half a degree where they suddenly
jump down to small values as the ordered phase is reached. These values are,
however, much (≈ 10 times) larger than those in the nematic ordered phase, i.e. the
scattered ligth intensity is much smaller. This indicates a lower level of degeneracy of
orientational degrees of freedom as compared to the nematic phase. There is another
characteristic feature which was observed by Reinitzer [18] in his first investigations
of such systems. The liquid appears in a bright blue color. For this reason, this
temperature regime is referred to as the blue phase.

When pressed into a thin layer betwee two glass plates, the liquid forms a great
number of domains, called plaquelets, some of them blue [19].

As the temperature is lowered by one more degree, the colors suddenly disappear
and the intensity of scattered light jumps up once more. Now the liquid shows the
same degree of opaqueness as nematic ordered phases. This temperature regime is
called the cholesteric phase.

If the liquid is subjected to more detailed optical investigations it reveals several
important phenomena.

1. The refractive indices for ordinary and extraordinary light rays are equal in
the blue phase but differ by about one percent in the cholesteric phase [19]
(see Fig. 16).

2. The cholesteric phase shows a single strong Bragg reflex of circularly polarized
light at normal incidence at barely UV wave lengths.

Thus, the liquid is capable of importing a certain momentum 4

q = 2k0 =
4π

λR
(2.160)

upon the incoming light of momentum k0 and wave length λR. The quantity
P = 4π/q is referred to as optical pitch.

4If the light is observed outside the medium, λR has to be replaced by λR/n.
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3. for oplique incidence there are also reflexes of higher order 2q, 3q, at Bragg
angles θ: 5

λR =
P

m
sin θ (2.161)

(θ = 900, normal incidence). But now the polarizations are elliptical.

4. Also the blue phase gives Bragg reflexes but with a larger pitch Pblue which
is about two times larger than that in the cholesteric phase (this is why the
color is blue rather than UV). Moreover, the plaquelets described above reflect
light at wave lengths which are integer fractions of the above pitch Pblue and
of Pblue ·

√
2. As a matter of fact, the directions of reflexes can be fitted by the

same Bragg condition as those in a bcc lattice
(

sin θ

λR/Pb

)2

=
m1

2 + m22 + m3
2

2
(2.162)

where the Miller indices can take integer values with even. The presence of
lattice planes (1, 1, 0), (2, 0, 0, ), (2, 0, 0) has apparently been established
[20].

5. There is one more important observation [20]. The wave length of reflected
light remains constant for about half a degree Celsius. Then it has jump to a
higher value and increases even more for another half degree before it falls back
to a low value as the cholesteric phase is reached. The jump is present only
for samples of shorter pitch (see Figs. 11, 12). We shall now try to understand
these properties theoretically.

2.9 Mean Field Description of Cholesteric Phase

In the presence of the parity violating term (2.150), the ground state is much harder
to determine than in nematics even at the mean field level. The reason is that a
constant field configuration can no longer give the lowest energy. For the following
discussion let us truncate the free energy after the quartic term, for simplicity. In
the natural units introduced before we may write the free energy density as

f̃ = (τ + 2α)ϕαβ
2 −
√

6

3
ϕαβϕβγϕγα +

1

8

(

ϕ2
αβ

)2

+2αξ2
n

[

(∂γϕαβ)2 +
ξ2

2

ξ1
2
∂αϕαγ∂βϕβγ

]

−4αξnεαβγϕαβ∂γϕβδ. (2.163)

Here we have introduced the additional dimensionless parameter

2α ≡ 4a4b

3a3
2

d2

b2
=

2

g
ξc

2/ξn
2 (2.164)

5If the light is observed outside the medium, λR has to be replaced by λR/n.
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and shifted τ to τ + 2α, i.e. in the cholesteric case we define

τ = 2α ≡ 4a4b

3a3
2

a0
2

b

(

T

T∗
− 1

)

≡ 2

g
ξc

2/ξ1
2(T ). (2.165)

The parameter α measures the cholesteric lenght scale χ4 with respect to the coher-
ence lenght ξc and will be called cholestericity. Obviously, the limit α → 0, d = 0
brings us back to the nematic case [see (??)] in which case (2.165) coincides with
the previous definition (2.124) and 2αξn

2 has to be replaced by 2
g
ξc

2.
We have seen in the last chapter that at the level of small fluctuations the last

term in (2.163) gives a preference to the helicity two (q ≈ q(2)) mode (see Fig. 13 )
we may therefore expect a lower energy for an ansatz:

ϕαβ =
1√
2V

(

ε(2)(q̂)eiqxϕ(2) + C.C.
)

. (2.166)

Inserting this into (2.163) we find

f̃ = τφ(2)2 +
1

8
ϕ(2)4 + 2α

(

q

q(2)
− 1

)2

ϕ(2)2. (2.167)

There is no cubic term since the product of three ε(2), ε(2)∗ tensors always vanishes.
For details of the calculation see the Appendix B. The energy is minimized by setting
q = q(2) where it becomes

f̃ = τϕ(2) +
1

8
ϕ(2)4 (2.168)

This is to be compared with the helicity zero expression:

f̃ = (τ + 2α)ϕ(0)2 − 1

3
ϕ(0)3 +

1

8
ϕ(0)4

+2dξn
2

(

1 +
2

3

ξ1
2

ξ2
2

)

q2ϕ(0)‘2 (2.169)

which is minimal at q = 0.
We now realize that for large enough α the energy (2.168) is always lower than

(2.169). For if 2α > 2
g
, the energy (2.169) vanishes for τ > 2

g
− 2α while (2.167) has

a second order phase transition at τ = 0 and starts being negative for T < 0. But
this is by far not the lowest possible energy. In order to see this let us combine both
helicities linearly and take

ϕαβ =
1√
V

[

ε(0)(n)ϕ(0) +
1√
2

(

ε(2)(q̂)eiqxϕ(2) + c.c.
)

]

. (2.170)

Now the energy has the form (see App. B)

f̃ = (τ + 2α)ϕ(0)2 + τ |ϕ(2)|2 − ϕ(0)3

3
− ϕ(0)|ϕ(2)|2

(

3|l · n|2 − 1
)

+
1

8

[(

ϕ(0)2 + |ϕ(2)|2
)

+ 6ϕ(0)|ϕ(2)|2
]

. (2.171)
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The two modes are coupled at the cubic level. This gives rise to a linear asymmetry
for the ϕ(0) amplitude such that it is pulled out of the equilibrium position to a new
minimum thereby reducing the remaining quartic potential for ϕ(2). This effect is
strongest if the cubic term is maximal and the quartic term minimal which happens
for

nl = 0. (2.172)

Thereby we are confronted with

f̃ = (τ + 2α)x2 + τy2 − x3

3
+ xy2 +

1

8

(

x2 + y2
)2

. (2.173)

Here we have changed variables from ϕ(0), ϕ(2) to x and y, for convenience. We
now minimize f̃ with respect to x and y and find

(τ + 2α)x− 1

2
x2 +

1

2
y2 + x(x2 + y2) = 0 (2.174)

τy + xy + y(x2 + y2) = 0. (2.175)

From these two equations we find

y2 = 3x2 − 4αx (2.176)

which inserted back into (2.172) gives

x2 + (1− α)x + τ = 0 (2.177)

i.e.

x1,2 = −




1− α

2
±
√

(1− α)2

4
− τ



 . (2.178)

At the extrema, the energy is

f̃ext = 2

(

x2 +
x3

3
− ατx

)

(2.179)

= 2

[

−τ 2 +
1

3
(1− α)τ − 4

3

(

(1− α)2

4
− τ

)

·




1− α

2
±
√

(1− α)2

4
− τ







 (2.180)

and we see that the + sign corrresponds to the lower value.
The phase transition takes place at τc = τc(α) where tildef vanishes. Instead of

solving f = 0 from (??) it is more convenient to take f = 0 (2.179) and combine it
with (2.177) to get two linear equations

x = −τ + α− α2

α + 1
3

(2.181)
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and

x =

(

α + 1
3

)

τ

τ + (α− 1)/3
. (2.182)

Once by eliminating the lowest and once the highest power in x. Comparing both
we obtain

gτ 2 + 2(gα− 1)τ − 3α(1− α)2 = 0 (2.183)

as the line in the α, τ plane where f̃ vanishes.

For α <, this happens first at a value τc > 0 which for α = 0 is the nematic value
2
9
, and decreases down to zero at α = 1. Above α = 1, the curve (2.181) does not

correspond t a minimum. In that region the phase transition takes place at τ = 0
and is of second order as can be seen directly from (??). The energy for small τ � 0
becomes for α > 1:

f̃ = −2τ 2

(

1 +
4

3(α− 1)

)

+ O(τ 3). (2.184)

The full behaviour of f̃ as a function of temperature τ and cholestericity α is shown
in form of a contour plot in Fig. 17.

The order parameters x and y are displayed in Fig. 18 and 19. The lines of
constant x are straight: ε = xα− (x2 + x). The ordered phase for α > 0 is referred
to as cholesteric phase.

Notice that for α → ∞, the helicity zero component becomes more and more
suppressed and only ϕ(2) = y survives.

What happens if also the helicity one component is admitted. In order to study
this let us assume all fields to vary only along the z axis. For symmetry reasons, we
may take l = 1√

2
(x̂ + iŷ) . Then n = ẑ from (2.172). If we now expand

ϕαβ(z) =
1√
V

[

ε(0)(ẑ)ϕ(0)(z) +
1√
z

(

ε(1)(ẑ) + ε(2)(ẑ)ϕ(2)(z) + c.c.
)

]

(2.185)

with real ε(0) and complex ϕ(1), ϕ(2) fields, we obtain from (2.163)

f̃ = (τ + 2α)
(

ϕ(0)2 + |ϕ(1)|2 + |ϕ(2)|2
)

−1

3
ϕ(0)3 − 1

2
ϕ(0)

(

|ϕ(1)|2 − 2|ϕ(2)|2
)

−
√

3

4

(

ϕ(2)∗ϕ(1)2 + c.c.
)

+
1

8

(

ϕ(0)2 + |ϕ(1)|2 + |ϕ(2)|2
)2

(2.186)

+2αξn2
(

r0

(

∂zϕ
(0)
)2

+ r1

(

∂zϕ
(1)|2 + |∂zϕ

(2)|2
)

−2αξn(ϕ
(1)∗ ∂

2
ϕ(1)ϕ(1) + 2ϕ(2)∗∂

2
ϕ(2)

)

.

Here we have introduced the convenient abbreviations

r0 ≡ 1 +
2

3

c1 + c2

b
=

4r1 − 1
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r1 ≡ 1 +
c1c2

2b
= 1 +

c

2b
(2.187)

which are accessible in the ordered phase via the ratio of Frank constants

r1 ≡
K1 + K3

2K2
=

K3 + K − b

2Kt
. (2.188)

In momentum space, the quadratic terms can be rewritten after a quadratic com-
pletion as (q ≡ qz)

f̃ =
∑

q

(

τ + 2α2αr0q
2
)

|ϕ(0)(q)|2

+

(

τ + 2α
(

1− 1

4r1

)

+ 2αr1

(

qξn ∓
1

2r1

)2
)

|ϕ(n)(q)|2

+
(

τ + 2α (qξn ∓ 1)2
)

|ϕ(±2)(q)|2. (2.189)

For very large α, this certainly is minimal at the former solution with q = 1
ξn

and no

ϕ(1) component can be present (just as the ϕ(0) for α→∞). But experimentally, α is
quite moderate: In a typical cholesteric system one has ξ0

1 ≈ Å and ξn ≈ 2000/4πÅ
such that α ≈ .21. Therefore, ϕ(1) could be present. From the energy we see that
the amplitude ϕ(1) enters only in second and for the order. Thus there can be a
second order phase transition with ϕ(1) 6= 0 developing from the previous solution
with ϕ(0), ϕ(2) 6= 0 along a line in the α, τ diagram where the coefficient of the
quadratic term becomes negative:

D ≡ τ + 2α
(

1− 1

4r1

)

+ 2αr1

(

1− 1

2r1

)2

−1

2
x−
√

3

2
y +

1

4

(

x2 + y2
)

� 0. (2.190)

Inserting the solutions (2.176) and (2.178) we find that this cannot happen. At

α = 0. x = −1
2
+
√

1
2
− τ , y = −

√
3x and x2 + x + τ = 0 such that D = 0. But for

all allowed α > 0, τ in the cholesteric phase we can verify that τ + α − x
2
−
√

3
2

y +
1
4
(x2 + y2) starts out with 0(α2) and is always > 0. But this ensures alsoe D > 0

since the first line in (2.190) is τ + α
(

1 + r1

2

)

and r1 > 0.

Let us take a look at the cholesteric order parameter with ϕ(0), ϕ(2). It may be
written in matrix form as

ϕαβ = ϕ(0) 1√
6







−1
−1

2





+
1√
2
ϕ(2)







1

2







1 i 0
ε −1 0
0 0 0





 eiqz + c.s.







=











− 1√
6

+ 1√
2
cos qz, −ϕ(2)

√
2

sin qz 0

− ϕ(2)
√

2
sin qz − 1√

6
ϕ(0) − 1√

2
ϕ(2) cos qz 0

0 0 2√
6
ϕ(0)











. (2.191)
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This has to be added to ε0δαβ in order to obtain the dielectric tensor which is usually
parametrized as

ε =







ε̄ + δ cos 2kz −δ sin 2kz 0
− δ sin 2kz ε̄− δ cos 2kz 0

0 0 ε3.





 (2.192)

Notice that the mixing between ϕ(0) and ϕ(2) induces, in general, biaxiality. The
local eigenvalues are now all three different ε̄ + δ1, ε̄− b1, ε3.

In order to interprete the order parameter (2.194) physically it is useful to realize

the following: Suppose the helicity zero rod-like form ε(0)(n) =
√

3
2

(

nαnβ − 1
3
δαβ

)

is taken with the direction

n(z) = (cos kz, − sin kz) (2.193)

rotating in the z plane while proceeding along the z direction. Then ε(0)(n(z))
becomes

ε(0) (n(z)) =

√

3

2







cos2 kz − 1
3
− sin kz cos kz 0

sin kz cos kz sin2 kz − 1
3

0
0 0 −1

3







=

√

3

2







1
6

+ 1
2
cos 2kz −sin2kz 0

sin 2kz 1
6
− 1

2
cos 2kz 0

0 0 −2
6







=
1

2

(

−ε(0)(z) +
√

3
1√
2

(

ε(2)(z)eiqz + c.c.
)

)

(2.194)

Thus it is precisely of the form (2.170) with the particular ratio

ϕ(2)

ϕ(1)
=

y

x
=
√

3. (2.195)

In this case we may interprete the solution (2.188) as a purely transverse helical
configuration of rod-like molecules. In the following section we shall see how these
parameters can be measured in optical experiments. It will turn out that the experi-
mental biaxiality remains small: the eigenvalue ε̄−δ is usually equal to ε3 (example:
ε̄ = 2.745, δ = .315, ε3 = 2.430 [21]).

Thus experimentally ϕ(ε) ≈
√

3ϕ(0). Looking back at (2.176) we notice that for
α = 0 this is automatically true (as it should since α = 0 corresponds to the absence
of the parity violating term). the uniaxiality remains approximately true for the
typical experimental value .21.

4√
3|x|

= 1− 2

3
α/|x|+ O(α2). (2.196)

Thus we find for the ratio of the dielectric eigenvalues in (??).

ε̄− δ

ε3
1 +

3

8





1
√

1
4
− τ
− 2

3



 . (2.197)
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2.10 Maier Saupe Model and Generalizations

The simplest microscopic model for the description of phase transitions in liquid
crystals was constructed by Maier and Saupe. It is based on the standard molecular
field approximation invented a long time ago by P. Weiss to explain ferromagnetism.
By construction, their model was confined to nematic systems. The molecules are
assumed to be non-polar, rod-like objects. If the direction of the body axis is
denoted by the unit vector n, the instantaneous orientation may be characterized
by the traceless tensor

Qmol
αβ = ε

(0)
αβ(n =

√

3

2

(

nαnβ −
1

3
δαβ

)

. (2.198)

In the normal phase, this field fluctuates around zero. Below the phase transition,
however, there is a non-vanishing average order

Qαβ = 〈Qmol
αβ 〉 = Sε(0)(m) = S

√

3

2

(

mαmβ −
1

3
δαβ

)

. (2.199)

This is due to the intermolecular forces which tend to align the instantenous value
(2.198) with the average value (2.199). The interaction may be approximated by an
orientational energy

Hor = −A0Q
mol
αβ Qαβ (2.200)

with some coupling strength A0. Inserting this into Boltzmann’s distribution law,
one finds the self-consistency relation

Qαβ = 〈Qαβ〉 = Z−1
∫

dn̂

4π
Qmol

αβ e−Hor/kT

Z =
∫

dn̂

4π
e−Hor/kT (2.201)

or, putting m in z direction, mz ≡ z

S = Z−1 3

2

∫ 1

0
dz
(

z2 − 1

3

)

e
3
2
A0S(z2− 1

3)/kT

z =
∫ 1

0
dze

3
2
A0S(z2− 1

3)/kT . (2.202)

With σ = S/κ and κ = kT
3
2
A0 , this takes the form

κσ = −1

2
+

3

2

1

3(r)

d

dσ
J(σ) (2.203)

where

J(σ) =
∫ 1

0
dzeσz2

(2.204)
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is related to Dawson’s integral

D(x) =
∫ x

0
ey2

dy = x +
x3

3 · 1!
+

x5

5 · 2!
+

x7

7 · 3!
+ . . . (2.205)

as

J(σ) =
1

−√σ
D(
√

σ). (2.206)

By a partial integration one sees that

J(σ) = eσ − 2σ
d

dσ
J(σ) (2.207)

such that equ. (2.203) can be written as

S = κσ = −1

2
+

2

3

1

2

(

eσ

√
σD(
√

σ)
− 1

σ

)

−1

2
+

3

2

(

1

3
+

4

45
σ − 23

33 · 5 · 7σ2 +
24

34 · 52 · 7σ3 + . . .

)

S(σ) (2.208)

f =
1

2
A0S

2 − kT log Z =
kT

3

(

κσ2 − 3 log Z
)

(2.209)

where Z is the partition function of (2.202)

Z =
∫ 1

0
dzeσ(z2− 1

3) = e−
1
3
σ 1√

σ
D(
√

σ). (2.210)

The solutions are found grahically. Equ. (2.208) is solved by the intersection of the
straight lines κσ with the curves S(σ), when plotting simultaneously f(σ) we see
the κ >� κc = .147, the only solution is S = σ = 0 (normal phase). At κ = κ0, the
order parameter jumps, in a first order phase transition, to

Sc = .43, σc = Sc/κc = 2.93 (2.211)

and for κ → 0 (i.e. T → 0), ϕ approaches unity corresponding to a perfect order
(see Fig. A1). The free energy density corresponding to equ. (2.202) is

f =
1

2
A0s

2 − kT log Z =
kT

3

(

κσ2 − 3 log Z
)

(2.212)

such that
3 log Z)− σ + 3 log J(σ). (2.213)

For small values of T we may use (??) and expand the free energy in powers of σ:

3f

kT
=
(

κ− 2

15

)

σ2 − 8

33 · 5 · 7σ3 +
22

33 · 52 · 7σ4 + . . . . (2.214)
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Conventionally one denotes the temperature at which the quadratic term changes
sign by T∗, i.e.

κ− 2

15
≡ 2

3

kT∗
A0

(

T

T∗
− 1

)

≡ κ∗
(

T

T∗
− 1

)

(2.215)

such that

κ∗ =
2kT∗
3A0

≡ 2

15
. (2.216)

With this notation, the expression (2.21) amounts to the Landau De Gennes free
energy expansion for the nematic liquid crystal. If terms beyond the forth powers
are neglected, the first order nature of the transition H is seen to arise from the
cubic term at a transition temperature Tt where

(cubic term)2

4 · quadratic · quartic term
=

cubic term

2 · quartic term

i.e.
Tc

T∗
− 1 =

(8/33 · 5 · 7)2

4(2/15)(4/33 · 52 · 7)
=

10

63
, σc = 5 (2.217)

or Tc

T∗

= 73
63
≈ 1.159

(

with Sc = κcσc = κ∗ Tc

T∗

σc ≈ 2
3

73
63

)

which lies somewhat higher

than the exact expression Tc

T∗

= κc
15
2
≈ 1.1. Experimentally, Tc lies much closer to T

(

Tc

T∗

≈ 1.0025
)

which shows that the cubic coefficient ot the theory is too large with
respect to quartic and quadratic ones, a well known weakness of the model.

The whole framework may be generalized to cholesteric liquid crystals. For this
purpose we find it useful to rewrite the free energy density (2.18) in another form
using the following auxiliary field quantity:

√

15

8π
nαnβQαβ ≡ Q(n). (2.218)

Now
f

kT
=

4π

3κ

∫ dn̂

4π
Q2 − log Z (2.219)

with a partition function

Z =
∫

dn̂

4π
e
√

4π

5
2
3
Q(n)/κ. (2.220)

Expanding in powers of we see

f

kT
=

1

3κ

(

κ− 2

15

)

4π
∫

dñ

4π
Q2

−
(

2

3κ

)3
√

4π

5

3
∫

dn̂

4π
Q3

+
(

2

3κ

)4
√

4π

5

4 



1

24

∫

dn̂

4π
Q4 − 1

8

(

∫

dn̂

4π
Q2

)2


 + . . . . (2.221)
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If we perform the angular averages
∫

dn̂

4π
Q2 =

15

8π

2

15
QαβQαβ

∫

dn̂

4π
Q3 =

(

15

8π

)3/2 8

105
QαβQβγQγα

∫

dn̂

4π
Q4 =

(

15

8π

)2 36

945

(

Qαβ
2
)2

(2.222)

this becomes

f

kT
=

1

3κ2

(

κ− 2

15

)

trQ2 −
√

6

3 · 5 · 7

(

2

3κ

)3

trQ3

+
1

700

(

2

3κ

)4

(trQ2)2 + . . . . (2.223)

Inserting here Qαβ = κσε(0)(m), trε(0)2 = 1, trε(0)3 = 1√
6
, we directly recover

(2.21).
This is the appropriate starting point for our generalization to cholesteric liquid

crystals. We proceed in two steps. First we allow for spatially varying field configu-
rations. if these are very smooth, it is sufficient to take only lowest order derivatives
into account and use the bending energies ( b, c > 0)

fbend

kT
=

b

2
(∂γQαβ)2 +

c

2
∂αQαγ∂βQβγ

∫

dn̂

[

c + b

2
(∂Q)2 − b

4
(S∂Q)2

]

(2.224)

where
S = −in× ∂n (2.225)

is the generator of rotations on the directional vector n. Second we introduce a
small parity violating derivative term:

f ′p.v.

kT
= −dεαβγQαβ∂γQβf = −i

∫

dnQS∂Q. (2.226)

Now the energy ftot = f +fder +fp.v. is sufficiently general to describe the cholesteric
phase transition.

Let us construct the cholesteric ground state. For this we consider small fluctu-
ations and expand Q into normal modes

Qαβ(x) =
∑

q

(

∑

m

ε
(m)
αβ (q̂)eiqxS(m)(q) + c.c.

)

. (2.227)

For the traceless symmetric field Qαβ there are five helicity tensors: ε(±2), ε(±1), ε(0)

as defind before,

ε(2)
p αβ(q̂)lαlβ = ε(−2)∗(q̂)
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ε
(1)
αβ(q̂) =

1√
2

(lαqβ + lβqα) = −ε(−1)∗(q̂) (2.228)

ε
(0)
αβ(q̂) =

√

3

2

(

q̂αqβ −
1

3
ααβ

)

= ε(0)∗(q̂)

and the quadratic part of the free energy becomes

f2

kT
=

∑

q

{

1

2

[

a +
(

b +
2

3
c
)

q2
]

|S(0)(q|2

+
1

2









a− d2

4
(

b + c
2

)



+
(

b +
c

2

)



q ∓ d

2
(

b + c
2

)





2




 |S(±1)(q)|2

+
1

2





(

a− d2

b

)

+ b

(

q ∓ d

b

)2


 |S(±2)(q|2






(2.229)

where

A =
2

3κ2

(

κ− 2

15

)

=
4

45

(

T

T∗
− 1

)

1

κ2
. (2.230)

From light scattering experiments one find S(2) and S(0) to be the modes of largest
fluctuations such that we may conclude <> 0. The S(2) mode has a non-vanishing
momentum

qn =
d

b
=

1

ξn

(2.231)

which gives rise to normal reflection of circularly polarized light of wavelength λR =
4πξn.

The cholesteric ground state may now be found from a superposition of the
dominant m = 2 and m = 0 modes

Qαβ = S(0)ε
(0)
αβ + S(2)

(

ε
(2)
αβeiqnx + c.c.

)

. (2.232)

Therefore
√

4π

5

2

3
Q(n) =

(

z2 − 1

2

)

S(0) +

√

2

3

(

1− z2
)

S(2) cos (qnx + δ) (2.233)

where δ is an arbitrary phase. Averaged over a period this results in a free energy
(

δ(m) ≡ κσ(m)
)

f

kT
=

1

3
κσ(0)2 +

2

3
κ

(

1− d2

κb

)

σ(2)

− 1

2π

∫ 2π

0
dδ log

∫ 1

0
dze(z2− 1

3)σ(0)+
√

2
3(1−z2)σ(2) cos δ

=
κ

3
σ(0)2 +

1

3
σ(0) (2.234)

+
2

3
κ

(

1− d2

κb

)

σ(2)2 − 1

2π

∫ 2π

0
dδ log J

(

σ(0), σ(2), δ
)
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where

J =
∫ 1

0
dze

z2

(

σ(0)−
√

2
3
σ(2) cos δ

)

(2.235)

is the generalization of the previous integral (2.204). In equilibrium, we now have
the equations

κσ(0) = −1

2
+

2

3

1

2π

∫ 2π

0
dδ

1

J

∂

∂σ(0)
J (2.236)

2κ

(

1− d2

κb

)

σ(2) =
3

2

1

2π

∫ 2π

0
dδ

1

J

∂

∂σ(2)
J. (2.237)

The first equation can again be expressed in the same fashion as before in (2.208

except that σ has to be replaced by σ(0) −
√

2
3
σ(2) cos δ and the average has to be

taken

κσ(0) =
1

2π

∫ 2π

0
dδS



σ(0) −
√

2

3
σ(2) cos δ



 (2.238)

while (2.237) has an additional weight factor (cos δ) ·
√

2
3
:

2κ

(

1− d2

κb

)

σ(2) =

√

2

3

1

2π

∫ 2π

0
dδ cos δS



σ(0) −
√

2

3
σ(2)



 . (2.239)

In order to establish contact with previous calculations of the cholesteric free
energy it is useful to go to the natural variables

κ− 2

15
=

2

21
(τ + 2α)

2α =
21

2

3

2

d2

b
(2.240)

f

kT
=

25

56
f̃ (2.241)

σ(0) =
15

4
x , σ(2) =

15

4

y√
2
. (2.242)

Then f̃ has the standardized expansion

f̃ = (τ + 2α)x2 + τy2 − 1

3
x3 + xy2 +

1

8

(

x2 + y2
)2

+ . . . (2.243)

in agreement with (??). We may now solve the equations

[

(τ + 2α) +
7

5

]

x =
21

5

1

2π

∫ 2π

0dδS

(

15

4

(

x− 1√
3
y cos δ

))

2
[

τ +
7

5

]

y =
√

3
21

5

1

2π

∫ 2π

0
dδ cos δS

(

15

4

(

x− 1√
3
y cos δ

))

(2.244)
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by iteration. The results for x, y, f̃ are shown in Fig. A2-4 in a contour plot where
they are compared with the values obtained previously from the Landau De Gennes
expansion (??) up to the quartic terms.

The main defect of the model is the large size of the cubic term with the actual
transition being much weaker of first order than that in the model. Now, can this
aspect be improved?

In the discussion of the free energy we have seen that for small cubic term a3

there is a region of biaxial order.
Thus the largeness of a3 in the model seems to be connected with the assumption

of uniaxial molecules at the microscopic level. Let us see whether this is, in fact,
true. Consider again the namatic free energy(2.28)

f

kT
=

1

3κ

(

κ− 2

15

)

4π
∫ dn

4π
Q2(n)−

(

2

3κ

)2 1

6

√

4π

5

3
∫ dn

4π
Q3(n)

+
(

2

3κ

)4 (4π

5

)2




1

24

∫

dn

4π
Q4(n)− 1

8

(

∫

dn

4ω
Q2(n)

)2


 . (2.245)

The integral over n correspond to averaging over all microscopic orientation of the
rod-like uniaxial molecules such that the orientational energy is proportional to

Q(n) =

√

15

8π

√

2

3
Qmol

αβ Qαβ =

√

15

8π

(

nαnβ −
1

3
δαβ

)

Qαβ. (2.246)

Suppose now the microscopic order parameter is biaxial

Qmol
αβ =

√

3

2

[(

nαnβ −
1

3
δαβ

)

+ ε
(

mαmβ −
1

3
δαβ

)]

(2.247)

where m is another unit vector orthogonal to n. If n, m point in z and x direction,

√

2

3
Qmol

αβ =







−1
3

−1
3

2
3





+ ε







−2
3

−1
3

−1
3







=
1

3







2ε− 1
−(1 + ε)

−(2− ε)





 . (2.248)

By an appropriate choice of ε we can now simulate any desired ratio for the three
principal axes for the molecules. The spatial averages are a little more involved. Let
us parametrize n and m in terms of angles as

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

m = (cos θ cos ϕ cos γ − sin ϕ sin γ,

cos θ sin ϕ cos γ + cos ϕ sin γ, − sin θ cos γ) . (2.249)
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Then the directional average must be performed as an integral

〈〉dir = 〈〉z〈〉γ
∫ dn

4π

∫ 2π

0

dγ

2π
=
∫ 1

1

dz

2

∫ 2π

0

2ϕ

2π

∫ 2π

0

dγ

2π
. (2.250)

Since the resulting invariants to be formed from Qαβ are unique up to quartic power

we may use the specific form Qαβ)







−Q
−Q

2Q





 and substitute, at the end,

Q2 = 1
6
trQ2, Q3 = 1

6
trQ3, Q4 = 1

36
(trQ2)

2
. Then

√

2

3
Qmol

αβ Qαβ = Q
[(

−nx
2 − nγ

2 + 2nz

)

+ ε
(

−mx2 −my
2 + 2mz

2
)]

= Q
(

3nz
2 − 1 + ε

(

3mz
2 − 1

))

= Q
(

3z2 − 1 + ε
(

3 cos2 α
(

1− z2
)

− 1
))

= Q
(

3z2a− b
)

(2.251)

where we have set

a = 1− ε cos2 γ , b = 1− ε
(

3 cos2 γ − 1
)

. (2.252)

the averages in z are easily performed and give

〈Q2(n)〉 =
15

8π

trQ2

6
〈9
5
a2 − 2ab + b2〉γ

〈Q3(n)〉 =
(

15

8π

)3/2 trQ3

6
〈27

7
a3 − 27

5
a2b + 3ab2 − b3〉γ

〈Q4(n)〉 =
(

15

8π

)2 (trQ2)2

36
〈81

9
a4 − 108

7
a3b +

54

5
a2b2 − 12

3
ab3 + b4〉γ.(2.253)

For ε = 0, a = b = 1 and we obtain back the previous results (2.222). Now there

is an additional average over γ. For this we remember 〈cos2n γ〉γ = (2n−1)!!
2n!!

, i.e.
1
2
, 3

8
, 5

16
, 35

(8·16) for n1 = 1, 2, 3, 4. Then we write a = 1 − εd, b = 1 − εβ with

α = cos2 γ, β = 3 cos2 γ − 1 and calculate

〈α〉 = 〈β〉 =
1

2
, 〈α2〉 =

3

8
, 〈αβ〉 = 5

8
, 〈β2〉 =

11

8

〈α3〉 =
5

16
, 〈α2β〉 =

9

16
, 〈αβ2〉 =

17

16
, 〈β3〉 =

29

16
(2.254)

〈α4〉 =
35

128
, 〈α3β〉 =

65

128
, 〈α2β2〉 =

123

128
, 〈αβ3〉 =

233

128
, 〈β4〉 =

467

128
.

Then we find

〈a2〉 = 1− ε +
3

8
ε2〈ab〉 = 1− ε +

5

8
ε2〈b2〉 = 1− ε +

11

8
ε2



400 2 Introduction

〈a3〉 = 1− 3

2
ε +

9

8
ε2 − 5

16
ε3

〈a2b〉 = 1− 3

2
ε +

13

8
ε2 − 9

16
ε3

〈ab2〉 = 1− 3

2
ε +

21

8
ε2 − 17

16
ε3

〈b3〉 = 1− 3

2
ε +

33

8
ε2 − 29

16
ε3

〈a4〉 = 1− 2ε +
18

8
ε2 − 5

4
ε3 +

35

128
ε4

〈a3b〉 = 1− 2ε + 3ε2 − 2ε3 +
65

128
ε4

〈a2b2〉 = 1− 2ε +
34

8
ε2 − 52

16
ε3 +

123

8 · 16
ε4

〈ab3〉 = 1− 2ε + 6ε2 − 80

16
ε3 +

233

8 · 16
ε4

〈b4〉 = 1− 2ε +
66

8
ε2 − 29

4
ε3 +

467

8 · 16
ε4. (2.255)

Combining these we obtain the following correction factors to the ε = 0 terms of
(2.253)

(

1− ε + ε2
)

(

1− 3

2
ε− 3

2
+ ε3

)

(2.256)

(

1− 2ε + 3ε2 − 2ε3 + ε4
)

=
(

1− ε + ε2
)2

.

Going back to (2.221) we see that the first coeffecients two multiply directly the
ε = 0 coefficients of (2.223) while the quartic term receives a combined correction
factor

a4 → a4

(

7

2

(

1− ε + ε2
)2 − 5

2

(

1− ε + ε2
)2
)

= a4

(

1− ε + ε2
)2

. (2.257)

Since the cubic factor may be written as
(

ε− 1
2

)

(ε + 1) (ε− 2) we see that we can

indeed make it arbitrary small, for example by choosing ε ≈ 1
2
. Notice that the

values ε = 1
2
, ε = −1, ε = 2 correspond to

√

3

2
Qmol =

1

2
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