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Casimir Force in Non-Planar Geometric Configurations

Sung Nae Cho

(ABSTRACT)

The Casimir force for charge-neutral, perfect conductors of non-planar geometric configurations have been investi-
gated. The configurations were: (1) the plate-hemisphere, (2) the hemisphere-hemisphere and (3) the spherical shell.
The resulting Casimir forces for these physical arrangements have been found to be attractive. The repulsive Casimir
force found by Boyer for a spherical shell is a special case requiring stringent material property of the sphere, as well
as the specific boundary conditions for the wave modes inside and outside of the sphere. The necessary criteria in
detecting Boyer’s repulsive Casimir force for a sphere are discussed at the end of this thesis.
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1. Introduction

The introduction is divided into three parts: (1)physics, (2) applications, and (3)developments. A brief outline of
the physics behind the Casimir effect is discussed in item (1). In the item (2), major impact of Casimir effect on
technology and science is outlined. Finally, the introduction of this thesis is concluded with a brief review of the past
developments, followed by a brief outline of the organization of this thesis and its contributions to the physics.

1.1. Physics

When two electrically neutral, conducting plates are placed parallel to each other, our understanding from classical
electrodynamics tell us that nothing should happen for these plates. The plates are assumed to be that made of perfect
conductors for simplicity. In 1948, H. B. G. Casimir and D. Polder faced a similar problem in studying forces between
polarizable neutral molecules in colloidal solutions. Colloidal solutions are viscous materials, such as paint, that
contain micron-sized particles in a liquid matrix. It had been thought that forces between such polarizable, neutral
molecules were governed by the van der Waals interaction. The van der Waals interaction is also referred to as
the Lennard-Jones interaction. It is a long range electrostatic interaction that acts to attract two nearby polarizable
molecules. Casimir and Polder found to their surprise that there existed an attractive force which could not be ascribed
to the van der Waals theory. Their experimental result could not be correctly explained unless the retardation effect
was included in the van der Waals’ theory. This retarded van der Waals interaction or Lienard-Wiechert dipole-dipole
interaction [1] is now known as the Casimir-Polder interaction [2]. Casimir, following this first work, elaborated on the
Casimir-Polder interaction in predicting the existence of an attractive force between two electrically neutral, parallel
plates of perfect conductors separated by a small gap [3]. This alternative derivation of the Casimir force is in terms of
the difference between the zero-point energy in vacuum and the zero-point energy in the presence of boundaries. This
force has been confirmed by experiments and the phenomenon is what is now known as the “Casimir Effect.” The
force responsible for the attraction of two uncharged conducting plates is accordingly termed the “Casimir Force.” It
was shown later that the Casimir force could be both attractive or repulsive depending on the geometry and the material
property of the conductors [4, 5, 6].

The Casimir effect is regarded as macroscopic manifestation of the retarded van der Waals interaction between
uncharged polarizable atoms. Microscopically, the Casimir effect is due to interactions between induced multipole
moments, where the dipole term is the most dominant contributor if it is non-vanishing. Therefore, the dipole interac-
tion is exclusively referred to, unless otherwise explicitly stated, throughout the thesis. The induced dipole moments
can be qualitatively explained by quantum fluctuations in matter which leads to the energy imbalance4E due to
charge-separation between virtual positive and negative charge contents that lasts for a time interval4t consistent
with the Heisenberg uncertainty principle4E4t ≥ h/4π, whereh is the Planck constant. The fluctuations in the
induced dipoles then result in fluctuating zero-point electromagnetic fields in the space around conductors. It is the
presence of these fluctuating vacuum fields that lead to the phenomenon of the Casimir effect. However, the dipole
strength is left as a free parameter in the calculations because it cannot be readily calculated. Its value must be deter-
mined from experiments.

Once this idea is accepted, one can then move forward to calculate the effective, temperature averaged, energy
due to the dipole-dipole interactions with the time retardation effect folded in. The energy between the dielectric
(or conducting) media is obtained from the allowed modes of electromagnetic waves determined by the Maxwell
equations together with the boundary conditions. The Casimir force is then obtained by taking the negative gradient
of the energy in space. This approach, as opposed to full atomistic treatment of the dielectrics (or conductors), is
justified as long as the most significant field wavelengths determining the interaction are large when compared with
the spacing of the lattice points in the media. The effect of all the multiple dipole scattering by atoms in the dielectric
(or conducting) media simply enforces the macroscopic reflection laws of electromagnetic waves. For instance, in the
case of the two parallel plates, the most significant wavelengths are those of the order of the plate gap distance. When
this wavelength is large compared with the interatomic distances, the macroscopic electromagnetic theory can be used
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1. Introduction

with impunity. But, to handle the effective dipole-dipole interaction Hamiltonian, the classical electromagnetic fields
have to be quantized. Then the geometric configuration can introduce significant complications, which is the subject
matter this study is going to address.

Finally, it is to be noticed that the Casimir force on two uncharged, perfectly conducting parallel plates originally
calculated by H. B. G. Casimir was done under the assumption of absolute zero temperature. In such condition, the
occupational numberns for photon is zero; and hence, there are no photons involved in Casimir’s calculation for his
parallel plates. However, the occupation number convention for photons refers to those photons with electromagnetic
energy in quantum ofEphoton = ~ω, where~ is the Planck constant divided by2π andω, the angular frequency.
The zero-point quantum of energy,Evac = ~ω/2, involved in Casimir effect at absolute zero temperature is also of
electromagnetic origin in nature; however, we do not classify such quantum of energy as a photon. Therefore, this
quantum of electromagnetic energy,Evac = ~ω/2, will be simply denoted “zero-point energy” throughout this thesis.
By convention, the lowest energy state, the vacuum, is also referred to as a zero-point.

1.2. Applications

In order to appreciate the importance of the Casimir effect from industry’s point of view, we first examine the theo-
retical value for the attractive force between two uncharged conducting parallel plates separated by a gap of distance
d : FC = −240−1π2d−4~c, wherec is the speed of light in vacuum andd is the plate gap distance. To get a sense of
the magnitude of this force, two mirrors of an area of∼ 1 cm2 separated by a distance of∼ 1µm would experience
an attractive Casimir force of roughly∼ 10−7N, which is about the weight of a water droplet of half a millimeter
in diameter. Naturally, the scale of size plays a crucial role in the Casimir effect. At a gap separation in the ranges
of ∼ 10nm, which is roughly about a hundred times the typical size of an atom, the equivalent Casimir force would
be in the range of1 atmospheric pressure. The Casimir force have been verified by Steven Lamoreaux [7] in 1996 to
within an experimental uncertainty of5%. An independent verification of this force have been done recently by U.
Mohideen and Anushree Roy [8] in 1998 to within an experimental uncertainty of1%.

The importance of Casimir effect is most significant for the miniaturization of modern electronics. The technology
already in use that is affected by the Casimir effect is that of the microelectromechanical systems (MEMS). These
are devices fabricated on the scale of microns and sub-micron sizes. The order of the magnitude of Casimir force at
such a small length scale can be enormous. It can cause mechanical malfunctions if the Casimir force is not properly
taken into account in the design, e.g., mechanical parts of a structure could stick together, etc [9]. The Casimir force
may someday be put to good use in other fields where nonlinearity is important. Such potential applications requiring
nonlinear phenomena have been demonstrated [10]. The technology of MEMS hold many promising applications in
science and engineering. With the MEMS soon to be replaced by the next generation of its kind, the nanoelectrome-
chanical systems or NEMS, understanding the phenomenon of the Casimir effect become even more crucial.

Aside from the technology and engineering applications, the Casimir effect plays a crucial role in accurate force
measurements at nanometer and micrometer scales [11]. As an example, if one wants to measure the gravitational
force at a distance of atomic scale, not only the subtraction of the dominant Coulomb force has to be done, but also
the Casimir force, assuming that there is no effect due to strong and weak interactions.

Most recently, a new Casimir-like quantum phenomenon have been predicted by Feigel [12]. The contribution of
vacuum fluctuations to the motion of dielectric liquids in crossed electric and magnetic fields could generate velocities
of∼ 50nm/s.Unlike the ordinary Casimir effect where its contribution is solely due to low frequency vacuum modes,
the new Casimir-like phenomenon predicted recently by Feigel is due to the contribution of high frequency vacuum
modes. If this phenomenon is verified, it could be used in the future as an investigating tool for vacuum fluctuations.
Other possible applications of this new effect lie in fields of microfluidics or precise positioning of micro-objects such
as cold atoms or molecules.

Everything that was said above dealt with only one aspect of the Casimir effect, the attractive Casimir force. In spite
of many technical challenges in precision Casimir force measurements [7, 8], the attractive Casimir force is fairly well
established. This aspect of the theory is not however what drives most of the researches in the field. The Casimir
effect also predicts a repulsive force and many researchers in the field today are focusing on this phenomenon yet to
be confirmed experimentally. Theoretical calculations suggest that for certain geometric configurations, two neutral
conductors would exhibit repulsive behavior rather than being attractive. The classic result that started it all is that
of Boyer’s work on the Casimir force calculation for an uncharged spherical conducting shell [4]. For a spherical
conductor, the net electromagnetic radiation pressure, which constitute the Casimir force, has a positive sign, thus
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1. Introduction

being repulsive. This conclusion seems to violate fundamental principle of physics for the fields outside of the sphere
take on continuum in allowed modes, where as the fields inside the sphere can only assume discrete wave modes.
However, no one has been able to experimentally confirm this repulsive Casimir force.

The phenomenon of Casimir effect is too broad, both in theory and in engineering applications, to be completely
summarized here. I hope this informal brief survey of the phenomenon could motivate people interested in this
remarkable area of quantum physics.

1.3. Developments

Casimir’s result of attractive force between two uncharged, parallel conducting plates is thought to be a remarkable
application of QED. This attractive force have been confirmed experimentally to a great precision as mentioned earlier
[7, 8]. However, it must be emphasized that even these experiments are not done exactly in the same context as
Casimir’s original configuration due to technical difficulties associated with Casimir’s idealized perfectly flat surfaces.

Casimir’s attractive force result between two parallel plates has been unanimously thought to be obvious. Its origin
can also be attributed to the differences in vacuum-field energies between those inside and outside of the resonator.
However, in 1968, T. H. Boyer, then at Harvard working on his thesis on Casimir effect for an uncharged spherical
shell, had come to a conclusion that the Casimir force was repulsive for his configuration, which was contrary to
popular belief. His result is the well known repulsive Casimir force prediction for an uncharged spherical shell of a
perfect conductor [4].

The surprising result of Boyer’s work has motivated many physicists, both in theory and experiment, to search for its
evidence. On the theoretical side, people have tried different configurations, such as cylinders, cube, etc., and found
many more configurations that can give a repulsive Casimir force [5, 13, 14]. Completely different methodologies
were developed in striving to correctly explain the Casimir effect. For example, the “Source Theory” was employed
by Schwinger for the explanation of the Casimir effect [14, 15, 16, 17]. In spite of the success in finding many boundary
geometries that gave rise to the repulsive Casimir force, the experimental evidence of a repulsive Casimir effect is yet
to be found. The lack of experimental evidence of a repulsive Casimir force has triggered further examination of
Boyer’s work.

The physics and the techniques employed in the Casimir force calculations are well established. The Casimir force
calculations involve summing up of the allowed modes of waves in the given resonator. This turned out to be one of the
difficulties in Casimir force calculations. For the Casimir’s original parallel plate configuration, the calculation was
particularly simple due to the fact that zeroes of the sinusoidal modes are provided by a simple functional relationship,
kd = nπ, wherek is the wave number,d is the plate gap distance andn is a positive integer. This technique can be
easily extended to other boundary geometries such as sphere, cylinder, cone or a cube, etc. For a sphere, the functional
relation that determines the allowed wave modes in the resonator iskro = αs,l, wherero is the radius of the sphere;
andαs,l, the zeroes of the spherical Bessel functionsjs. In the notationαs,l denoteslth zero of the spherical Bessel
function js. The same convention is applied to all other Bessel function solutions. The allowed wave modes of a
cylindrical resonator is determined by a simple functional relationkao = βs,l, whereao is the cylinder radius andβs,l
are now the zeroes of cylindrical Bessel functionsJs.

One of the major difficulties in the Casimir force calculation for nontrivial boundaries such as those considered in
this thesis is in defining the functional relation that determines the allowed modes in the given resonator. For example,
for the hemisphere-hemisphere boundary configuration, the radiation originating from one hemisphere would enter the
other and run through a complex series of reflections before escaping the hemispherical cavity. The allowed vacuum-

field modes in the resonator is then governed by a functional relationk
∥∥∥ ~R′2 − ~R′1

∥∥∥ = nπ, where
∥∥∥ ~R′2 − ~R′1

∥∥∥ is

the distance between two successive reflection points~R′1 and ~R′2 of the resonator, as is illustrated in Figure 3.1. As

will be shown in the subsequent sections, the actual functional form for
∥∥∥ ~R′2 − ~R′1

∥∥∥ is not simple even though the

physics behind
∥∥∥ ~R′2 − ~R′1

∥∥∥ is particularly simple: the application of the law of reflections. The task of obtaining

the functional relationk
∥∥∥ ~R′2 − ~R′1

∥∥∥ = nπ for the hemisphere-hemisphere, the plate-hemisphere, and the sphere

configuration formed by bringing in two hemispheres together is to the best of my knowledge my original development.
It constitutes the major part of this thesis.

This thesis is not about questioning the theoretical origin of the Casimir effect. Instead, its emphasis is on applying
the Casimir effect as already known to determine the sign of Casimir force for the realistic experiments. In spite of a
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1. Introduction

number of successes in the theoretical study of repulsive Casimir force, most of the configurations are unrealistic. In
order to experimentally verify Boyer’s repulsive force for a charge-neutral spherical shell made of perfect conductor,
one should consider the case where the sphere is formed by bringing in two hemispheres together. When the two
hemispheres are closed, it mimics that of Boyer’s sphere. It is, however, shown later in this thesis that a configuration
change from hemisphere-hemisphere to a sphere induces non-spherically symmetric energy flow that is not present
in Boyer’s sphere. Because Boyer’s sphere gives a repulsive Casimir force, once those two closed hemispheres are
released, they must repulse if Boyer’s prediction were correct. Although the two hemisphere configuration have been
studied for decades, no one has yet carried out its analytical calculation successfully. The analytical solutions on two
hemispheres, existing so far, was done by considering the two hemispheres that were separated by an infinitesimal
distance. In this thesis, the consideration of two hemispheres is not limited to such infinitesimal separations.

The three physical arrangements being studied in this thesis are: (1) the plate-hemisphere, (2) the hemisphere-
hemisphere and (3) the sphere formed by brining in two hemispheres together. Although there are many other boundary
configurations that give repulsive Casimir force, the configurations under consideration were chosen mainly because
of the following reasons: (1) to be able to confirm experimentally the Boyer’s repulsive Casimir force result for a
spherical shell, (2) the experimental work involving configurations similar to that of the plate-hemisphere configuration
is underway [10]; and (3) to the best of my knowledge, no detailed analytical study on these three configurations exists
to date.

My motivation to mathematically model the plate-hemisphere system came from the experiment done by a group
at the Bell Laboratory [10] in which they bring in an atomic-force-probe to a flopping plate to observe the Casimir
force which can affect the motion of the plate. In my derivations for equations of motion, the configuration is that of
the “plate displaced on upper side of a bowl (hemisphere).” The Bell Laboratory apparatus can be easily mimicked
by simply displacing the plate to the under side of the bowl, which I have not done. The motivation behind the
hemisphere-hemisphere system actually arose from an article by Kenneth and Nussinov [18]. In their paper, they
speculate on how the edges of the hemispheres may produce effects such that two arbitrarily close hemispheres cannot
mimic Boyer’s sphere. This led to their heuristic conclusion which stated that Boyer’s sphere can never be the same
as the two arbitrarily close hemispheres.

To the best of my knowledge, two of the geometrical configurations investigated in this thesis work have not yet
been investigated by others. They are the plate-hemisphere and the hemisphere-hemisphere configurations. This does
not mean that these boundary configurations were not known to the researchers in the field, e.g., [18]. For the case of
the hemisphere-hemisphere configuration, people realized that it could be the best way to test for the existence of a
repulsive Casimir force for a sphere as predicted by Boyer. The sphere configuration investigated in this thesis, which
is formed by bringing two hemispheres together, contains non-spherically symmetric energy flows that are not present
in Boyer’s sphere. In that regards, the treatment of the sphere geometry here is different from that of Boyer.

The basic layout of the thesis is as follows: (1)Introduction, (2) Theory, (3) Calculations, and (4)Results. The
formal introduction of the theory is addressed in chapters (1) and (2). The original developments resulting from this
thesis are contained in chapters (3) and (4). The brief outline of each chapter is the following: In chapter (1), a
brief introduction to the physics is addressed; and the application importance and major developments in this field
are discussed. In chapter (2), the formal aspect of the theory is addressed, which includes the detailed outline of
the Casimir-Polder interaction and brief descriptions of various techniques that are currently used in Casimir force
calculations. In chapter (3), the actual Casimir force calculations pertaining to the boundary geometries considered in

this thesis are derived. The important functional relation for
∥∥∥ ~R′2 − ~R′1

∥∥∥ is developed here. The dynamical aspect of

the Casimir effect is also introduced here. Due to the technical nature of the derivations, many of the results presented
are referred to the detailed derivations contained in the appendices. In chapter (4), the results are summarized. Lastly,
the appendices have been added in order to accommodate the tedious and lengthy derivations to keep the text from
losing focus due to mathematical details. To the best of my knowledge, everything in the appendices represent original
developments, with a few indicated exceptions.

The goal in this thesis is not to embark so much on the theory side of the Casimir effect. Instead, its emphasis is
on bringing forth the suggestions that might be useful in detecting the repulsive Casimir effect originally initiated by
Boyer on an uncharged spherical shell. In concluding this brief outline of the motivation behind this thesis work, I must
add that if by any chance someone already did these work that I have claimed to represent my original developments,
I was not aware of their work at the time of this thesis was being prepared. And, should that turn out to be the case, I
would like to express my apology for not referencing their work in this thesis.
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2. Casimir Effect

The Casimir effect is divided into two major categories: (1) the electromagnetic Casimir effect and (2) the fermionic
Casimir effect. As the titles suggest, the electromagnetic Casimir effect is due to the fluctuations in a massless Maxwell
bosonic fields, whereas the fermionic Casimir effect is due to the fluctuations in a massless Dirac fermionic fields. The
primary distinction between the two types of Casimir effect is in the boundary conditions. The boundary conditions
appropriate to the Dirac equations are the so called “bag-model” boundary conditions, whereas the electromagnetic
Casimir effect follows the boundary conditions of the Maxwell equations. The details of the fermionic force can be
found in references [14, 17].

In this thesis, only the electromagnetic Casimir effect is considered. As it is inherently an electromagnetic phe-
nomenon, we begin with a brief introduction to the Maxwell equations, followed by the quantization of electromag-
netic fields.

2.1. Quantization of Free Maxwell Field

There are four Maxwell equations:

~∇ • ~E
(
~R, t

)
= 4πρ

(
~R, t

)
, ~∇× ~E

(
~R, t

)
= −1

c

∂ ~B
(
~R, t

)

∂t
, (2.1)

~∇ • ~B
(
~R, t

)
= 0, ~∇× ~B

(
~R, t

)
=

4π
c
~J
(
~R, t

)
+

1
c

∂ ~E
(
~R, t

)

∂t
, (2.2)

where the Gaussian system of units have been adopted. The electric and the magnetic field are defined respectively by
~E = −~∇Φ− c−1∂t ~A and ~B = ~∇× ~A, whereΦ is the scalar potential and~A is the vector potential. Equations (2.1)
and (2.2) are combined to give

3∑

l=1

{
4π∂lρ+

4π
c2
∂tJl −

3∑
m=1

∂2
m

[
∂lΦ +

1
c
∂tAl + εljk∂jAk

]
+

4π
c
εlmn∂mJn

+
1
c2
∂2
t

[
∂lΦ +

1
c
∂tAl

]
+

1
c2
εljk∂j∂

2
tAk

}
êl = 0,

where the Einstein summation convention is assumed for repeated indices. Because the components along basis
directionêl are independent of each other, the above vector algebraic relation becomes three equations:

4π∂lρ+
4π
c2
∂tJl −

3∑
m=1

∂2
m

[
∂lΦ +

1
c
∂tAl + εljk∂jAk

]
+

4π
c
εlmn∂mJn

+
1
c2
∂2
t

[
∂lΦ +

1
c
∂tAl

]
+

1
c2
εljk∂j∂

2
tAk = 0, (2.3)

wherel = 1, 2, 3.
To understand the full implications of electrodynamics, one has to solve the above set of coupled differential equa-

tions. Unfortunately, they are in general too complicated to solve exactly. The need to choose an appropriate gauge
to approximately solve the above equations is not only an option, it is a must. Also, for what is concerned with the
vacuum-fields, that is, the radiation from matter when it is in its lowest energy state, information about the charge
densityρ and the current density~J must be first prescribed. Unfortunately, to describe properly the charge and current

5



2. Casimir Effect

densities of matter is a major difficulty in its own. Therefore, the charge densityρ and the current density~J are set to
be zero for the sake of simplicity and the Coulomb gauge,~∇ • ~A = 0, is adopted. Under these conditions, equation
(2.3) is simplified to∂2

l Al − c−2∂2
tAl = 0, wherel = 1, 2, 3. The steady state monochromatic solution is of the form

~A
(
~R, t

)
= α (t) ~A0

(
~R
)

+ α∗ (t) ~A∗0
(
~R
)

= α (0) exp (−iωt) ~A0

(
~R
)

+ α∗ (0) exp (iωt) ~A∗0
(
~R
)
,

where ~A0

(
~R
)

is the solution to the Helmholtz equation∇2 ~A0

(
~R
)

+ c−2ω2 ~A0

(
~R
)

= 0 andα (t) is the solution

of the temporal differential relation satisfying̈α (t) + ω2α (t) = 0. With the solution~A
(
~R, t

)
, the electric and the

magnetic fields are found to be

~E
(
~R, t

)
= −c−1

[
α̇ (t) ~A0

(
~R
)

+ α̇∗ (t) ~A∗0
(
~R
)]

and

~B
(
~R, t

)
= α (t) ~∇× ~A0

(
~R
)

+ α∗ (t) ~∇× ~A∗0
(
~R
)
.

The electromagnetic field Hamiltonian becomes:

HF =
1
8π

∫

R

[
~E∗ • ~E + ~B∗ • ~B

]
d3R =

k2

2π
‖α (t)‖2 , (2.4)

wherek is a wave number and~A0

(
~R
)

have been normalized such that
∫
R
A0,l (R) d3R = 1 with A0,l (R) represent-

ing thelth component of~A0

(
~R
)
.

We can transformHF into the “normal coordinate representation” through the introduction of “creation” and “an-
nihilation” operators,a† anda. The resulting field HamiltonianHF of equation (2.4) is identical in form to that of the
canonically transformed simple harmonic oscillator,HSH ∝ p2 + q2 → KSH ∝ a†a. For the free electromagnetic
field Hamiltonian, the canonical transformation is to follow the sequenceKSH ∝ ‖α (t)‖2 → HSH ∝ E2 +B2 under
a properly chosen generating function. The result is that with the following physical quantities,

q (t) =
i

c
√

4π
[α (t)− α∗ (t)] , p (t) =

k√
4π

[α (t) + α∗ (t)] ,

the free field Hamiltonian of equation (2.4) becomes

HF =
1
2

[
p2 (t) + ω2q2 (t)

]
, (2.5)

which is identical to the Hamiltonian of the simple harmonic oscillator. Then, through a direct comparison and
observation with the usual simple harmonic oscillator Hamiltonian in quantum mechanics, the following replacements
are made

α (t)→
√

2π~c2
ω

a (t) , α∗ (t)→
√

2π~c2
ω

a† (t) ,

and, the quantized relations for~A
(
~R, t

)
, ~E

(
~R, t

)
and ~B

(
~R, t

)
are found,

~A
(
~R, t

)
=

√
2π~c2
ω

[
a (t) ~A0

(
~R
)

+ a† (t) ~A∗0
(
~R
)]
,

~E
(
~R, t

)
= i
√

2π~ω
[
a (t) ~A0

(
~R
)
− a† (t) ~A∗0

(
~R
)]
,

6



2. Casimir Effect

~B
(
~R, t

)
=

√
2π~c2
ω

[
a (t) ~∇× ~A0

(
~R
)

+ a† (t) ~∇× ~A∗0
(
~R
)]
,

where it is understood that~A
(
~R, t

)
, ~E

(
~R, t

)
and ~B

(
~R, t

)
are now quantum mechanical operators.

The associated field Hamiltonian operator for the photon becomes

ĤF = ~ω
[
a† (t) a (t) +

1
2

]
, (2.6)

where the hat(∧) overHF now denotes an operator. The quantum mechanical expression for the free electromagnetic
field energy per mode of angular frequencyω′, summed over all occupation numbers becomes

HF ≡
∞∑

ns=0

〈
ns

∣∣∣ĤF
∣∣∣ns

〉
=

∞∑
ns=0

[
ns +

1
2

]
~ω′,

whereω′ ≡ ω′ (n) andns is the occupation number corresponding to the quantum state|ns〉 . Summation over all
angular frequency modesn and polarizationsΘω′ gives

HF =
∞∑

ns=0

{[
ns +

1
2

]
~Θω′

∞∑
n=0

ω′ (n)

}
≡

∞∑
ns=0

H′ns
,

whereH′ns
is defined by

H′ns
=

[
ns +

1
2

]
~Θω′

∞∑
n=0

ω′ (n) ,

{
ns = 0, 1, 2, 3, · · · ,

ω′ (n) ≡
∥∥∥~ω′ (n)

∥∥∥ > 0. (2.7)

Hereω′ (n) ≡
∥∥∥~ω′ (n)

∥∥∥ is the magnitude ofnth angular frequency of the electromagnetic field,~ω′ (n) =
∑3
i=1 ω

′
i (ni) êi,

and Θω′ is the number of independent polarizations of the field. The energy equation (2.7) is valid for the case
where the angular frequency vector~ω′n happens to be parallel to one of the coordinate axes. For the general case
where ~ω′n is not necessarily parallel to any one of coordinate axes, the angular frequency is given byω′ (n) ={∑3

i=1 [ω′i (ni)]
2
}1/2

. The stationary energy is therefore

H′ns,b ≡ H′ns
=

[
ns +

1
2

]
~cΘk′

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

{
3∑

i=1

[k′i (ni, Li)]
2

}1/2

, (2.8)

where the substitutionω′i (ni) = ck′i (ni, Li) have been made. HereLi is the quantization length,Θω′ has been been
changed toΘk′ , and the subscriptb ofH′ns,b

denotes bounded space.
When the dimensions of boundaries are such that the difference,4k′i (ni, Li) = k′i (ni + 1, Li) − k′i (ni, Li) , is

infinitesimally small, we can replace the summation in equation (2.8) by integration,

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

→
∫ ∞

n1=0

∫ ∞

n2=0

∫ ∞

n3=0

dn1dn2dn3 → [f1 (L1) f2 (L2) f3 (L3)]
−1

∫ ∞

0

∫ ∞

0

∫ ∞

0

dk′1dk
′
2dk

′
3,

where in the last step the functional definition fork′i ≡ k′i (ni, Li) = nifi (Li) have been used to replacedni by
dk′i/fi (Li) . In free space, the electromagnetic field energy for quantum state|ns〉 is given by

H′ns,u ≡ H′ns
=

[
ns + 1

2

]
~cΘk′

f1 (L1) f2 (L2) f3 (L3)

∫ ∞

0

∫ ∞

0

∫ ∞

0

{
3∑

i=1

[k′i (ni, Li)]
2

}1/2

dk′1dk
′
2dk

′
3, (2.9)

where the subscriptu ofH′ns,u denotes free or unbounded space, and the functionalfi (Li) in the denominator is equal
to ζzeron

−1
i L−1

i for a givenLi. Hereζzero is the zeroes of the function representing the transversal component of the
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Reference origin

d,1
p

p
d,2

RR
21

S

Induced dipoles

Figure 2.1.: Two interacting molecules through induced dipole interactions.

electric field.

2.2. Casimir-Polder Interaction

The phenomenon referred to as Casimir effect has its root in van der Waals interaction between neutral particles that
are polarizable. The Casimir force may be regarded as a macroscopic manifestations of the retarded van der Waals
force. The energy associated with an electric dipole moment~pd in a given electric field~E isHd = −~pd • ~E.When the
involved dipole moment~pd is that of the induced rather than that of the permanent one, the induced dipole interaction
energy is reduced by a factor of two,Hd = −~pd • ~E/2. The factor of one half is due to the fact thatHd now represents
the energy of a polarizable particle in an external field, rather than a permanent dipole. The role of an external field
here is played by the vacuum-field. Since the polarizability is linearly proportional to the external field, the average
value leads to a factor of one half in the induced dipole interaction energy. Here the medium of the dielectric is
assumed to be linear. Throughout this thesis, the dipole moments induced by vacuum polarization are considered as a
free parameters.

The interaction energy between two induced dipoles shown in Figure 2.1 are given by

Hint =
1
2

∥∥∥~R2 − ~R1

∥∥∥
−5

{
[~pd,1 • ~pd,2]

∥∥∥~R2 − ~R1

∥∥∥
2

− 3
[
~pd,1 •

(
~R2 − ~R1

)] [
~pd,2 •

(
~R2 − ~R1

)]}
,

where~Ri is the position ofith dipole. For an isolated system, the first order perturbation energy
〈
H(1)
int

〉
vanishes due

to the fact that dipoles are randomly oriented, i.e.,〈~pd,i〉 = 0. The first non-vanishing perturbation energy is that of the

second order,Ueff,static =
〈
H(2)
int

〉
=

∑
m 6=0 〈0 |Hint|m〉 〈m |Hint| 0〉 [E0 − Em]−1

, which falls off with respect

to the separation distance likeUeff,static ∝
∥∥∥~R2 − ~R1

∥∥∥
−6

. This is the classical result obtained by F. London for short

distance electrostatic fields. F. London employed quantum mechanical perturbation approach to reach his result on a
static van der Waals interaction without retardation effect in 1930.

The electromagnetic interaction can only propagate as fast as the speed of light in a given medium. This retardation
effect due to propagation time was included by Casimir and Polder in their consideration. It led to their surprising

discovery that the interaction between molecules falls off like
∥∥∥~R1 − ~R2

∥∥∥
−7

. It became the now well known Casimir-

Polder potential [2],

Ueff,retarded = − ~c
4π

∥∥∥~R2 − ~R1

∥∥∥
−7 {

23
[
α

(1)
E α

(2)
E + α

(1)
M α

(2)
M

]
− 7

[
α

(1)
E α

(2)
M + α

(1)
M α

(2)
E

]}
,

whereα(i)
E andα(i)

M represents the electric and magnetic polarizability ofith particle (or molecule).
To understand the Casimir effect, the physics behind the Casimir-Polder (or retarded van der Waals) interaction is

essential. In the expression of the induced dipole energyHd = −~pd • ~E/2, we rewrite~pd = α (ω) ~Eω for the Fourier
component of the dipole moment induced by the Fourier component~Eω of the field. Hereα (ω) is the polarizability.
The induced dipole field energy becomesHd = −α (ω) ~E†ω · ~Eω/2, where the(·) denotes the matrix multiplication

8



2. Casimir Effect

instead of the vector dot product(•) . Summing over all possible modes and polarizations, the field energy due to the
induced dipole becomes

Hd,1 = −1
2

∑

~k,λ

α1 (ωk) ~E
†
1,~k,λ

(
~R1, t

)
· ~E1,~k,λ

(
~R1, t

)
,

where the subscripts(1) and
(
1,~k, λ

)
denote that this is the energy associated with the induced dipole moment~pd,1

at location~R1 as shown in Figure 2.1. The total electric field~E1,~k,λ

(
~R1, t

)
in mode

(
~k, λ

)
acting on~pd,1 is given

by

~E1,~k,λ

(
~R1, t

)
= ~Eo,~k,λ

(
~R1, t

)
+ ~E2,~k,λ

(
~R1, t

)
,

where ~Eo,~k,λ

(
~R1, t

)
is the vacuum-field at location~R1 and ~E2,~k,λ

(
~R1, t

)
is the induced dipole field at~R1 due to

the neighboring induced dipole~pd,2 located at~R2. The effective Hamiltonian becomes

Hd,1 = −1
2

∑

~k,λ

{
α1 (ωk)

[
~E†
o,~k,λ

(
~R1, t

)
· ~Eo,~k,λ

(
~R1, t

)
+ ~E†

2,~k,λ

(
~R1, t

)
· ~E2,~k,λ

(
~R1, t

)

+ ~E†
o,~k,λ

(
~R1, t

)
· ~E2,~k,λ

(
~R1, t

)
+ ~E†

2,~k,λ

(
~R1, t

)
· ~Eo,~k,λ

(
~R1, t

)]}

= Ho +H~pd,2 +H~pd,1,~pd,2 ,

where

Ho = −1
2

∑

~k,λ

α1 (ωk) ~E
†
o,~k,λ

(
~R1, t

)
· ~Eo,~k,λ

(
~R1, t

)
,

H~pd,2 = −1
2

∑

~k,λ

α1 (ωk) ~E
†
2,~k,λ

(
~R1, t

)
· ~E2,~k,λ

(
~R1, t

)
,

H~pd,1,~pd,2 = −1
2

∑

~k,λ

α1 (ωk)
[
~E†
o,~k,λ

(
~R1, t

)
· ~E2,~k,λ

(
~R1, t

)
+ ~E†

2,~k,λ

(
~R1, t

)
· ~Eo,~k,λ

(
~R1, t

)]
.

Because only the interaction between the two induced dipoles is relevant to the Casimir effect, theH~pd,1,~pd,2 term is

considered solely here. In the language of field operators, the vacuum-field~Eo,~k,λ

(
~R1, t

)
is expressed as a sum:

~Eo,~k,λ

(
~R1, t

)
= ~E

(+)

o,~k,λ

(
~R1, t

)
+ ~E

(−)

o,~k,λ

(
~R1, t

)
,

where

~E
(+)

o,~k,λ

(
~R1, t

)
≡ i

√
2π~ωk
V

a~k,λ (0) exp (−iωkt) exp
(
i~k • ~R1

)
ê~k,λ,

~E
(−)

o,~k,λ

(
~R1, t

)
≡ −i

√
2π~ωk
V

a†~k,λ (0) exp (iωkt) exp
(
−i~k • ~R1

)
ê~k,λ.

In the above expressions,a†~k,λ anda~k,λ are the creation and annihilation operators respectively; andV, the quantization

volume;ê~k,λ, the polarization. By convention,~E(+)

o,~k,λ

(
~R1, t

)
is called the positive frequency (annihilation) operator

9



2. Casimir Effect

and ~E(−)

o,~k,λ

(
~R1, t

)
is called the negative frequency (creation) operator.

The field operator~E2,~k,λ

(
~R1, t

)
has the same form as the classical field of an induced electric dipole,

~E2,~k,λ

(
~R1, t

)
=

{
3

[
p̂d,2 • Ŝ

]
Ŝ − p̂d,2

} [
1
r3
‖~pd,2 (t− r/c)‖+

1
cr2

∥∥∥~̇pd,2 (t− r/c)
∥∥∥
]

− 1
c2r

{
p̂d,2 −

[
p̂d,2 • Ŝ

]
Ŝ

} ∥∥∥~̈pd,2 (t− r/c)
∥∥∥ ,

wherer =
∥∥∥~R2 − ~R1

∥∥∥ ≡
∥∥∥~S

∥∥∥ , Ŝ =
[
~R2 − ~R1

]
/

∥∥∥~R2 − ~R1

∥∥∥ , p̂d,2 = ~pd,2/ ‖~pd,2‖ as shown in Figure 2.1, andc

is the speed of light in vacuum. Because the dipole moment is expressed as~pd = α (ω) ~Eω, the appropriate dipole

moment in the above expression for~E2,~k,λ

(
~R1, t

)
is to be replaced by

~pd,2 =
∑

~k,λ

α2 (ωk)
[
~E

(+)

o,~k,λ

(
~R2, t

)
+ ~E

(−)

o,~k,λ

(
~R2, t

)]
,

whereα2 (ωk) is now the polarizability of the molecule or atom associated with the induced dipole moment~pd,2 at the

location ~R2. With this in place,~E2,~k,λ

(
~R1, t

)
is now a quantum mechanical operator.

The interaction Hamiltonian operator̂H~pd,1,~pd,2 can be written as

Ĥ~pd,1,~pd,2 = −1
2

∑

~k,λ

α1 (ωk)
[〈
~E

(+)

o,~k,λ

(
~R1, t

)
· ~E2,~k,λ

(
~R1, t

)〉
+

〈
~E2,~k,λ

(
~R1, t

)
· ~E(−)

o,~k,λ

(
~R1, t

)〉]
,

where we have taken into account the fact that~E
(+)

o,~k,λ

(
~R2, t

)
|vac〉 = 〈vac| ~E(−)

o,~k,λ

(
~R2, t

)
= 0. It was shown in [17]

in great detail that the interaction energy is given by

U (r) ≡ 〈H~pd,1,~pd,2

〉
= −2π~

V
RE

∑

~k,λ

k3ωkα1 (ωk)α2 (ωk) exp (−ikr) exp
(
i~k • ~r

)

×
[{

1−
[
ê~k,λ • Ŝ

]2
}

1
kr

+
{

3
[
ê~k,λ • Ŝ

]2

− 1
}{

1
k3r3

+
i

k2r2

}]
.

In the limit of r ¿ c/ |ωmn| , whereωmn is the transition frequency between the ground state and the first excited
energy state, or the resonance frequency, the above result becomes

U (r) ∼= −
[
3
4
~ωoα2

]
r−6, α = 2 [3~ωo]−1 ‖〈m |~pd| 0〉‖2 .

This was also the non-retarded van der Waals potential obtained by F. London. Hereωo is the transition frequency, and
α is the static (ω = 0) polarizability of an atom in the ground state. Once the retardation effect due to light propagation
is taken into account, the Casimir-Polder potential becomes,

U (r) ∼= −
[

23
4π
~cα1 (ω)α2 (ω)

]
r−7.

What we try to emphasize in this brief derivation is that both retarded and non-retarded van der Waals interac-
tion may be regarded as a consequence of the fluctuating vacuum-fields. It arises due to a non-vanishing corre-

lation of the vacuum-fields over distance ofr =
∥∥∥~R2 − ~R1

∥∥∥ . The non-vanishing correlation here is defined by〈
vac

∣∣∣ ~E(+)

o,~k,λ

(
~R1, t

)
· ~E(−)

o,~k,λ

(
~R2, t

)∣∣∣ vac
〉
6= 0. In more physical terms, the vacuum-fields induce fluctuating dipole

moments in polarizable media. The correlated dipole-dipole interaction is the van der Waals interaction. If the retar-
dation effect is taken into account, it is called the “Casimir-Polder” interaction.

In the Casimir-Polder picture, the Casimir force between two neutral parallel plates of infinite conductivity was

10



2. Casimir Effect

z=0 z=d

Figure 2.2.: A cross-sectional view of two infinite parallel conducting plates separated by a gap distance ofz = d. The
lowest first two wave modes are shown.

found by a simple summation of the pairwise intermolecular forces. It can be shown that such a procedure yields for
the force between two parallel plates of infinite conductivity [17]

~F (d;L, c)Casimir−Polder = − 207~c
640π2d4

L2. (2.10)

When this is compared with the force of equation (2.11) computed with Casimir’s vacuum-field approach, which will
be discussed in the next section, the agreement is within∼ 20% [17]. In other words, one can obtain a fairly reason-
able estimate of the Casimir effect by simply adding up the pairwise intermolecular forces. The recent experimental
verification of the Casimir-Polder force can be found in reference [19].

The discrepancy of∼ 20% between the two force results of equations (2.10) and (2.11) can be attributed to the fact
that the force expression of equation (2.10) had been derived under the assumption that the intermolecular forces were
additive in the sense that the force between two molecules is independent of the presence of a third molecule [17, 20].
The van der Waals forces are not however simply additive (see section 8.2 of reference [17]). And, the motivation
behind the result of equation (2.10) is to illustrate the intrinsic connection between Casimir-Polder interaction and the
Casimir effect, but without any rigor put into the derivation.

It is this discrepancy between the microscopic theories assuming additive intermolecular forces, and the experimen-
tal results reported in the early 1950s, that motivated Lifshitz in 1956 to develop a macroscopic theory of the forces
between dielectrics [21, 22]. Lifshitz theory assumed that the dielectrics are characterized by randomly fluctuating
sources. From the assumed delta-function correlation of these sources, the correlation functions for the field were
calculated, and from these in turn the Maxwell stress tensor was determined. The force per unit area acting on the two
dielectrics was then calculated as thezz component of the stress tensor. In the limiting case of perfect conductors, the
Lifshitz theory correctly reduces to the Casimir force of equation (2.11).

2.3. Casimir Force Calculation Between Two Neutral Conducting
Parallel Plates

Although the Casimir force may be regarded as a macroscopic manifestation of the retarded van der Waals force be-
tween two polarizable charge-neutral molecules (or atoms), it is most often alternatively derived by the consideration
of the vacuum-field energy~ω/2 per mode of frequencyω rather than from the summation of the pairwise intermolec-
ular forces. Three different methods widely used in Casimir force calculations are presented here. They are: (1) the
Euler-Maclaurin sum approach, (2) the vacuum pressure approach by Milonni, Cook and Goggin, and lastly, (3) the
source theory by Schwinger. The main purpose here is to exhibit their different calculational techniques.

2.3.1. Euler-Maclaurin Summation Approach

For pedagogical reasons and as a brief introduction to the technique, the Casimir’s original configuration (two charge-
neutral infinite parallel conducting plates) shown in Figure 2.2 is worked out in detail.
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2. Casimir Effect

Since the electromagnetic fields are sinusoidal functions, and the tangential component of the electric fields vanish
at the conducting surfaces, the functionsfi (Li) have the formfi (Li) = πL−1

i . The wave numbers are given by
k′i (ni, Li) = nifi (Li) = niπL

−1
i . Forns = 0 in equation (2.8), the ground state radiation energy is given by

H′ns,b =
1
2
~cΘk′

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

{
3∑

i=1

n2
iπ

2L−2
i

}1/2

.

For the arrangement shown in Figure 2.2, the dimensions are such thatL1 À L3 andL2 À L3, where(L1, L2, L3)
corresponds to(Lx, Ly, Lz) . The area of the plates are given byL1 × L2. The summation overn1 andn2 can be
replaced by an integration,

H′ns,b =
1
2
~cL1L2π

−2Θk′

∫ ∞

0

∫ ∞

0

∞∑
n3=0

{
[k′x]

2 +
[
k′y

]2 + n2
3π

2L−2
i

}1/2

dk′xdk
′
y.

For simplicity and without any loss of generality, the designation ofL1 = L2 = L andL3 = d yields the result

H′ns,b (d) =
Θk′

2
~c
L2

π2

∫ ∞

0

∫ ∞

0

∞∑
n3=0

{
[k′x]

2 +
[
k′y

]2 +
n2

3π
2

d2

}1/2

dk′xdk
′
y.

HereH′ns,b
(d) denotes the vacuum electromagnetic field energy for the cavity when plate gap distance isd. In the

limit the gap distance becomes arbitrarily large, the sum overn3 is also replaced by an integral representation to yield

H′ns,b (∞) =
Θk′

2
~c
L2

π2
lim
d→∞

(
d

π

∫ ∞

0

∫ ∞

0

∫ ∞

0

{
[k′x]

2 +
[
k′y

]2 + [k′z]
2
}1/2

dk′xdk
′
ydk

′
z

)
.

This is the electromagnetic field energy inside an infinitely large cavity, i.e., free space.

The work required to bring in the plates from an infinite separation to a final separation ofd is then the potential
energy,

U (d) = H′ns,b (d)−H′ns,b (∞)

=
Θk′

2
~c
L2

π2

[∫ ∞

0

∫ ∞

0

∞∑
n3=0

{
[k′x]

2 +
[
k′y

]2 +
n2

3π
2

d2

}1/2

dk′xdk
′
y

− lim
d→∞

(
d

π

∫ ∞

0

∫ ∞

0

∫ ∞

0

{
[k′x]

2 +
[
k′y

]2 + [k′z]
2
}1/2

dk′xdk
′
ydk

′
z

)]
.

The result is a grossly divergent function. Nonetheless, with a proper choice of the cutoff function (or regularization
function), a finite value forU (d) can be obtained. In the polar coordinates representation(r, θ) , we definer2 =
[k′x]

2 +
[
k′y

]2
anddk′xdk

′
y = rdrdθ, then

U (d) =
Θk′~cL2

2π2

[∫ π/2

θ=0

∫ ∞

r=0

∞∑
n3=0

√
r2 +

n2
3π

2

d2
rdrdθ

− lim
d→∞

(
d

π

∫ ∞

k′z=0

∫ π/2

θ=0

∫ ∞

r=0

√
r2 + [k′z]

2
rdrdθdk′z

)]
,

where the integration overθ is done in the range0 ≤ θ ≤ π/2 to ensurek′x ≥ 0 andk′y ≥ 0. For convenience, the
integration overθ is carried out first,

U (d) =
Θk′~cL2

4π

[∫ ∞

r=0

∞∑
n3=0

√
r2 +

n2
3π

2

d2
rdr − lim

d→∞

(
d

π

∫ ∞

k′z=0

∫ ∞

r=0

√
r2 + [k′z]

2
rdrdk′z

)]
.

As mentioned earlier,U (d) in current form is grossly divergent. The need to regularize this divergent function through
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2. Casimir Effect

some physically intuitive cutoff function is not a mere mathematical convenience, it is a must; otherwise, such a
grossly divergent function is meaningless in physics. A cutoff (or regularizing) function in the form off (k′) =

f

(√
r2 + [k′z]

2

)
(or f (k′) = f

(√
r2 + n2

3π
2d−2

)
) such thatf (k′) = 1 for k′ ¿ k′cutoff andf (k′) = 0 for

k′ À k′cutoff is chosen. Mathematically speaking, this cutoff functionf (k′) is able to regularize the above divergent
function. Physically, introduction of the cutoff takes care of the failure at small distance of the assumption that plates
are perfectly conducting for short wavelengths. It is a good approximation to assumek′cutoff ∼ 1/ao, whereao is
the Bohr radius. In this sense, one is inherently assuming that Casimir effect is primarily a low-frequency or long
wavelength effect. Hence, with the cutoff function substituted inU (d) above, the potential energy becomes

U (d) =
Θk′~cL2

4π

[ ∞∑
n3=0

∫ ∞

r=0

√
r2 +

n2
3π

2

d2
f

(√
r2 +

n2
3π

2

d2

)
rdr

− lim
d→∞

(
d

π

∫ ∞

k′z=0

∫ ∞

r=0

√
r2 + [k′z]

2
f

(√
r2 + [k′z]

2

)
rdrdk′z

)]
.

The summation
∑∞
n3=0 and the integral

∫∞
r=0

in the first term on the right hand side can be interchanged. The inter-
change of sums and integrals is justified due to the absolute convergence in the presence of the cutoff function. In
terms of the new definition for the integration variablesx = r2d2π−2 andκ = k′zdπ

−1, the above expression for
U (d) is rewritten as

U (d) =
1
8
Θk′~cL2π2

[
1
d3

∞∑
n3=0

∫ ∞

x=0

√
x+ n2

3f

(
π

d

√
x+ n2

3

)
dx

− lim
d→∞

(
1
d3

∫ ∞

κ=0

∫ ∞

x=0

√
x+ κ2f

(π
d

√
x+ κ2

)
dxdκ

)]

≡ 1
8
Θk′~cL2π2

[
1
2
F (0) +

∞∑
n3=1

F (n3)−
∫ ∞

κ=0

F (κ) dκ

]
,

where

F (n3) ≡ 1
d3

∫ ∞

x=0

√
x+ n2

3f

(
π

d

√
x+ n2

3

)
dx,

and

F (κ) ≡ lim
d→∞

(
1
d3

∫ ∞

x=0

√
x+ κ2f

(π
d

√
x+ κ2

)
dx

)
.

Then, according to the Euler-Maclaurin summation formula [23, 24],

∞∑
n3=1

F (n3)−
∫ ∞

κ=0

F (κ) dκ = −1
2
F (0)− 1

12
dF (0)
dκ

+
1

720
d3F (0)
dκ3

+ · · ·

for F (∞) → 0. Noting that fromF (κ) =
∫∞
κ2

√
rf

(
π
d

√
r
)
dr and dF (κ) /dκ = −2κ2f

(
π
dκ

)
, one can find

dF (0) /dκ = 0, d3F (0) /dκ3 = −4, and all higher order derivatives vanish if one assumes that all derivatives of the
cutoff function vanish atκ = 0. Finally, the result for the vacuum electromagnetic potential energyU (d) becomes

U (d;L, c) = −Θk′
~cπ2

1440d3
L2.

This result is finite, and it is independent of the cutoff function as it should be. The corresponding Casimir force for
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2. Casimir Effect

the two infinite parallel conducting plates is given by

~F (d;L, c) = −∂U (d;L, c)
∂d

= −Θk′
3~cπ2

1440d4
L2.

The electromagnetic wave has two possible polarizations,Θk′ = 2, therefore,

~F (d;L, c) = − ~cπ
2

240d4
L2. (2.11)

This is the Casimir force between two uncharged parallel conducting plates [3].
It is to be noted that the Euler-Maclaurin summation approach discussed here is just one of the many techniques that

can be used in calculating the Casimir force. One can also employ dimensional regularization to compute the Casimir
force. This technique can be found in section 2.2 of the reference [14].

2.3.2. Vacuum Pressure Approach

The Casimir force between two perfectly conducting plates can also be calculated from the radiation pressure exerted
by a plane wave incident normally on one of the plates. Here the radiation pressure is due to the vacuum electromag-
netic fields. The technique discussed here is due to Milonni, Cook and Goggin [25].

The Casimir force is regarded as a consequence of the radiation pressure associated with the zero-point energy of
~ω/2 per mode of the field. The main idea behind this techniques is that since the zero-point fields have the momentum
p′i = ~k′i/2, the pressure exerted by an incident wave normal to the plates is twice the energyH per unit volume of
the incident field. The pressure imparted to the plate is twice that of the incident wave for perfect conductors. If the
wave has an angle of incidenceθinc, the radiation pressure is

P = FA−1 = 2H cos2 θinc.

Two factors ofcos θinc appear here because (1) the normal component of the linear momentum imparted to the plate
is proportional tocos θinc, and (2) the element of areaA is increased by1/ cos θinc compared with the case of normal
incidence. It can be shown then

P = 2H cos2 θinc = 2× 1
2
× 1

2
~ω × V −1 × cos2 θinc =

~ω
2V

[k′z]
2
∥∥∥~k′

∥∥∥
−2

,

where the factor of half have been inserted because the zero-point field energy of a mode of energy~ω/2 is divided
equally between waves propagating toward and away from each of the plates. Thecos θinc factor have been rewritten

using the fact thatk′z = ~k′ • êz =
∥∥∥~k′

∥∥∥ cos θinc, where êz is the unit vector normal to the plate on the inside,∥∥∥~k′
∥∥∥ = ω/c andV is the quantization volume.

The successive reflections of the radiation off the plates act to push the plates apart through a pressureP. For large
plates wherek′x, k

′
y take on a continuum of values and the component along the plate gap isk′z = nπ/d, wheren is a

positive integer, the total outward pressure on each plate over all possible modes can be written as

Pout =
Θk′~c
2π2d

∞∑
n=1

∫ ∞

k′y=0

∫ ∞

k′x=0

[nπ/d]2√
[k′x]

2 +
[
k′y

]2 + [nπ/d]2
dk′xdk

′
y,

whereΘk′ is the number of independent polarizations.
External to the plates, the allowed field modes take on a continuum of values. Therefore, by the replacement of∑∞
n=1 → π−1d

∫∞
k′z=0

in the above expression, the total inward pressure on each plate over all possible modes is given
by

Pin =
Θk′~c
2π3

∫ ∞

k′z=0

∫ ∞

k′y=0

∫ ∞

k′x=0

[k′z]
2

√
[k′x]

2 +
[
k′y

]2 + [k′z]
2
dk′xdk

′
ydk

′
z.
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2. Casimir Effect

BothPout andPin are infinite, but their difference has physical meaning. After some algebraic simplifications, the
difference can be written as

Pout − Pin =
Θk′π

2~c
8d4

[ ∞∑
n=1

n2

∫ ∞

x=0

dx√
x+ n2

−
∫ ∞

u=0

∫ ∞

x=0

u2

√
x+ u2

dxdu

]
.

An application of the Euler-Maclaurin summation formula [23, 24] leads to the Casimir’s result

Pout − Pin = − π2~c
240d4

,

whereΘk′ = 2 for two possible polarizations for zero-point electromagnetic fields.

2.3.3. The Source Theory Approach

The Casimir effect can also be explained by the source theory of Schwinger [14, 15, 17]. An induced dipole~pd in a
field ~E has an energyHd = −~pd• ~E/2. The factor of one half comes from the fact that this is an induced dipole energy.
When there areN dipoles per unit volume, the associated polarization is~P = N~pd and the expectation value of the

energy in quantum theory is〈Hd〉 = − ∫ 〈
~pd • ~E/2

〉
d3 ~R. Here the polarizability in~pd is left as a free parameter

which needs to be determined from the experiment. The expectation value of the energy is then

〈Hd〉 = −1
2

∫ 〈
~pd • ~E(+) + ~E(−) • ~pd

〉
d3 ~R,

where~E(±)
(
~R, t

)
= ~E

(±)
v

(
~R, t

)
+ ~E

(±)
s

(
~R, t

)
. Here ~E(±)

v is the vacuum-field and~E(±)
s is the field due to other

sources. Since~E(+)
v

(
~R, t

)
|vac〉 = 〈vac| ~E(−)

v

(
~R, t

)
= 0, the above expectation value of the energy can be written

as

〈Hd〉 = −1
2

∫ 〈
~pd • ~E(+)

〉
d3 ~R+ c.c., (2.12)

wherec.c. denotes complex conjugation. From the fact that electric field operator can be written as an expansion in

the mode functions~Aα
(
~R
)
,

~E(+) = i
∑
α

√
2π~ωα

[
aα (t) ~Aα

(
~R
)
− a†α (t) ~A∗α

(
~R
)]
,

the Heisenberg equation of motion forȧα (t) andaα,s (t) are obtained as

ȧα (t) = −iωαaα (t) +

√
2πωα
~

∫
~A∗α

(
~R
)
• ~pd

(
~R, t

)
d3 ~R,

aα,s (t) =

√
2πωα
~

∫ t

0

exp (iωα [t′ − t]) dt′
∫

~A∗α
(
~R
)
• ~pd

(
~R, t′

)
d3 ~R,
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2. Casimir Effect

whereaα,s (t) is the source contribution part ofaα (t) . The “positive frequency” or the photon annihilation part of
~E

(+)
s

(
~R, t

)
can then be written as

~E(+)
s

(
~R, t

)
= 2πi

∑
α

ωα ~Aα

(
~R
) ∫ t

0

exp (iωα [t′ − t]) dt′
∫

~A∗α
(
~R′

)
• ~pd

(
~R′, t′

)
d3 ~R′

= 2πi
∫ ∫ t

0

∑
α

ωα ~Aα

(
~R
)
~A∗α

(
~R′

)
exp (iωα [t′ − t]) • ~pd

(
~R′, t′

)
dt′d3 ~R′

≡ 8π
∫ ∫ t

0

←−→
G(+)

(
~R, ~R′; t, t′

)
• ~pd

(
~R′, t′

)
dt′d3 ~R′,

where
←−→
G(+)

(
~R, ~R′; t, t′

)
is a dyadic Green function

←−→
G(+)

(
~R, ~R′; t, t′

)
=
i

4

∑
α

ωα ~Aα

(
~R
)
~A∗α

(
~R′

)
exp (iωα [t′ − t]) . (2.13)

Equations (2.12) and (2.13) lead to the result

〈Hd〉 = −8πRE
∫
~R

∫
~R′

∫ t

0

←−→
G

(+)
ij

(
~R, ~R′; t, t′

)〈
~pd,j

(
~R, t

)
• ~pd,i

(
~R′, t′

)〉
dt′d3 ~R′d3 ~R,

where the summation over repeated indices is understood, andRE denotes the real part. The above result is the energy
of the induced dipoles in a medium due to the source fields produced by the dipoles. It can be further shown that for
the infinitesimal variations in energy,

〈δHd〉 = −4RE
∫
~R

∫
~R′

∫ t

0

∫ ∞

0

Γij
(
~R, ~R′, ω

)〈
~pd,j

(
~R, t

)
• ~pd,i

(
~R′, t′

)〉
exp (iω [t′ − t]) dωdt′d3 ~R′d3 ~R,

whereΓij
(
~R, ~R′, ω

)
is related to

←−→
G

(+)
ij

(
~R, ~R′; t, t′

)
through the relation

←−→
G(+)

(
~R, ~R′; t, t′

)
=

1
2π

∫ ∞

0

Γij
(
~R, ~R′, ω

)
exp (iω [t′ − t]) dω.

The force per unit area can then be shown to be

F (d) =
i~

8π3

∫ ∞

0

∫
~k⊥

[ε2 − ε3] Γjj
(
d, d,~k⊥, ω

)
d2~k⊥dω, (2.14)

where the factor[ε2 − ε3] Γjj
(
d, d,~k⊥, ω

)
is given by

[ε2 − ε3] Γjj
(
d, d,~k⊥, ω

)
= 2 [K3 −K2] + 2K3

{([
K1 +K3

K1 −K3

] [
K2 +K3

K2 −K3

]
exp (2K3d)− 1

)−1

+
([

ε3K1 + ε1K3

ε3K1 − ε1K3

] [
ε3K2 + ε2K3

ε3K2 − ε2K3

]
exp (2K3d)− 1

)−1
}
.

HereK2 ≡ k2
⊥ − c−2ω2ε (ω) andεi is the dielectric constant corresponding to the regioni. The plate configuration

corresponding to the source theory description discussed above is illustrated in Figure 2.3.
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z=0 z=d

ε ε ε1 2 3

Figure 2.3.: A cross-sectional view of two infinite parallel conducting plates. The plates are separated by a gap distance
of z = d. Also, the three regions have different dielectric constantsεi (ω) .

The expression of force, equation (2.14), is derived from the source theory of Schwinger, Milton and DeRaad
[14, 15]. It reproduces the result of Lifshitz [21, 22], which is a generalization of the Casimir force involving perfectly
conducting parallel plates to that involving dielectric media. The details of this brief outline of the source theory
description can be found in references [14, 17].
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3. Reflection Dynamics

Once the idea of physics of vacuum polarization is taken for granted, one can move forward to calculate the effective,
temperature-averaged energy due to the dipole-dipole interactions with the time retardation effect folded into the van
der Waals interaction. The energy between the dielectric or conducting media is then obtained from the allowed
modes of electromagnetic waves determined by the Maxwell equations together with the electromagnetic boundary
conditions, granted that the most significant zero-point electromagnetic field wavelengths determining the interaction
are large when compared with the spacing of the lattice points in the media. Under such an assumption, the effect of
all the multiple dipole scattering by atoms in the dielectric or conducting media is to simply enforce the macroscopic
reflection laws of electromagnetic waves; and this allows the macroscopic electromagnetic theory to be used with
impunity in calculation of the Casimir force, granted the classical electromagnetic fields have been quantized. The
Casimir force is then simply obtained by taking the negative gradient of the energy in space.

In principle, the atomistic approach utilizing the Casimir-Polder interaction explains the Casimir effect observed
between any system. Unfortunately, the pairwise summation of the intermolecular forces for systems containing large
number of atoms can become very complicated. H. B. G. Casimir, realizing the linear relationship between the field
and the polarization, devised an easier approach to the calculation of the Casimir effect for large systems such as
two perfectly conducting parallel plates. This latter development is the description of the Euler-Maclaurin summation
approach shown previously, in which the Casimir force have been found by utilizing the field boundary conditions
only. The vacuum pressure approach originally introduced by Milonni, Cook and Goggin [25] is a simple elaboration
of Casimir’s latter invention utilizing the boundary conditions. The source theory description of Schwinger is an
alternate explanation of the Casimir effect which can be inherently traced to the retarded van der Waals interaction.

Because all four approaches which were previously mentioned, (1) the Casimir-Polder interaction, (2) the Euler-
Maclaurin summation, (3) the vacuum pressure and (4) the source theory, stem from the same physics of vacuum
polarization, they are equivalent. The preference of one over another mainly depends on the geometry of the boundaries
being investigated. For the type of physical arrangements of boundary configurations that are being considered in this
thesis, the vacuum pressure approach provides the most natural route to the Casimir force calculation. The three
physical arrangements for the boundary configurations considered in this thesis are: (1) the plate-hemisphere, (2)
the hemisphere-hemisphere and (3) a sphere formed by brining two hemispheres together. Because the geometric
configurations of items (2) and (3) are special versions of the more general, plate-hemisphere configuration, the basic
reflection dynamics needed for the plate-hemisphere case is worked out first. The results can then be applied to the
hemisphere-hemisphere and the sphere configurations later.

The vacuum-fields are subject to the appropriate boundary conditions. For boundaries made of perfect conductors,
the transverse components of the electric field are zero at the surface. For this simplification, the skin depth of
penetration is considered as zero. The plate-hemisphere under consideration is shown in Figure 3.1. The solutions
to the vacuum-fields are that of the Cartesian version of the free Maxwell field vector potential differential equation

∇2 ~A
(
~R
)
− c−2∂2

t
~A

(
~R
)

= 0, where the Coulomb gauge~∇• ~A = 0 and the absence of the sourceΦ
(
ρ,

∥∥∥~R
∥∥∥
)

= 0

have been imposed. The electric and the magnetic field component of the vacuum-field are given by~E = −c−1∂t ~A
and ~B = ~∇× ~A, where ~A is the free field vector potential. The zero value requirement for the transversal component

of the electric field at the perfect conductor surface implies the solution for~E is in the form of~E ∝ sin
(
2πλ−1

∥∥∥~L
∥∥∥
)
,

whereλ is the wavelength and
∥∥∥~L

∥∥∥ is the path length between the boundaries. The wavelength is restricted by the

conditionλ ≤ 2
∥∥∥ ~R′2 − ~R′1

∥∥∥ ≡ 2ξ2, where~R′2 and ~R′1 are two immediate reflection points in the hemisphere cavity

of Figure 3.1. In order to compute the modes allowed inside the hemisphere resonator, a detailed knowledge of the
reflections occurring in the hemisphere cavity is needed. This is described in the following section.
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3. Reflection Dynamics
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Figure 3.1.: The plane of incidence view of plate-hemisphere configuration. The waves that are supported through

internal reflections in the hemisphere cavity must satisfy the relationλ ≤ 2
∥∥∥ ~R′2 − ~R′1

∥∥∥ .

3.1. Reflection Points on the Surface of a Resonator

The wave vector directed along an arbitrary direction in Cartesian coordinates is written as

~k′1
(
k′1,x, k

′
1,y, k

′
1,z

)
=

3∑

i=1

k′1,iêi, k′1,i =





i = 1→ k′1,x, ê1 = x̂,
i = 2→ k′1,y, ê2 = ŷ
i = 3→ k′1,z, ê3 = ẑ.

(3.1)

Hence, the unit wave vector,̂k′1 =
∥∥∥~k′1

∥∥∥
−1 ∑3

i=1 k
′
1,iêi. Define the initial position~R′0 for the incident wave~k′1,

~R′0
(
r′0,x, r

′
0,y, r

′
0,z

)
=

3∑

i=1

r′0,iêi, r′0,i =





i = 1→ r′0,x,
i = 2→ r′0,y,
i = 3→ r′0,z.

(3.2)

Here it should be noted that~R′0 really has only componentsr′0,x and r′0,z. But nevertheless, one can always set
r′0,y = 0 whenever needed. Since no particular wave vectors with specified wave lengths are prescribed initially, it is
desirable to employ a parameterization scheme to represent these wave vectors. The line segment traced out by this
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3. Reflection Dynamics

wave vectork̂′1 is formulated in the parametric form

~R′1 = ξ1k̂′1 + ~R′0 =
3∑

i=1

[
r′0,i + ξ1

∥∥∥~k′1
∥∥∥
−1

k′1,i

]
êi, (3.3)

where the variableξ1 is a positive definite parameter. The restrictionξ1 ≥ 0 is necessary because the direction of the
wave propagation is set bŷk′1.Here ~R′1 is the first reflection point on the hemisphere. In terms of spherical coordinate
variables,~R′1 takes the form

~R′1 (r′i, θ
′
1, φ

′
1) = r′i

3∑

i=1

Λ′1,iêi,





Λ′1,1 = sin θ′1 cosφ′1,
Λ′1,2 = sin θ′1 sinφ′1,
Λ′1,3 = cos θ′1,

(3.4)

wherer′i is the hemisphere radius,θ′1 andφ′1 are the polar and the azimuthal angle respectively of~R′1 at the first
reflection point. Notice that subscripti of r′i denotes “inner radius” not a summation index.

By combining equations (3.3) and (3.4), we can solve for the parameterξ1. It can be shown that

ξ1 ≡ ξ1,p = −k̂′1 • ~R′0 +

√[
k̂′1 • ~R′0

]2

+ [r′i]
2 −

∥∥∥ ~R′0
∥∥∥

2

, (3.5)

where the positive root forξ1 have been chosen due to the restrictionξ1 ≥ 0. The detailed proof of equation (3.5) is
given in Appendix A, where the same equation is designated as equation (A.11).

Substitutingξ1 in equation (3.3), the first reflection point off the inner hemisphere surface is expressed as

~R′1
(
ξ1,p; ~R′0, k̂′1

)
=

3∑

i=1

[
r′0,i + ξ1,p

∥∥∥~k′1
∥∥∥
−1

k′1,i

]
êi, (3.6)

whereξ1,p is from equation (3.5).

The incoming wave vector~k′i can always be decomposed into parallel and perpendicular with respect to the local
reflection surface components,~k′i,‖ and ~k′i,⊥. It is shown in equation (A.14) of Appendix A that the reflected wave

vector ~k′r has the form~k′r = αr,⊥
[
n̂′ × ~k′i

]
× n̂′ − αr,‖n̂′ • ~k′in̂′, where the quantitiesαr,‖ andαr,⊥ are the

reflection coefficients and̂n′ is a unit surface normal. For the perfect reflecting surfaces,αr,‖ = αr,⊥ = 1. In

component form,~k′r =
∑3
l=1

{
αr,⊥

[
n′nk

′
i,ln

′
n − n′lk′i,nn′n

]
− αr,‖n′nk′i,nn′l

}
êl, where it is understood that̂n′ is

already normalized and Einstein summation convention is applied to the indexn. The second reflection point~R′2 is

found then by repeating the steps done for~R′1 and by using the expression~k′r ≡ ~k′r/
∥∥∥~k′r

∥∥∥ ,

~R′2 = ~R′1 + ξ2,pk̂′r = ~R′1 + ξ2,p
αr,⊥

[
n̂′ × ~k′i

]
× n̂′ − αr,‖n̂′ • ~k′in̂′∥∥∥αr,⊥

[
n̂′ × ~k′i

]
× n̂′ − αr,‖n̂′ • ~k′in̂′

∥∥∥
,

whereξ2,p is the new positive definite parameter for the second reflection point.

The incidence plane of reflection is determined solely by the incident wave~k′i and the local normal~n′i of the
reflecting surface. It is important to recognize the fact that the subsequent successive reflections of this incoming wave
will be confined to this particular incident plane. This incident plane can be characterized by a unit normal vector. For
the system shown in Figure 3.1,~k′i = ~k′1 and~n′n′i,1 = −ξ1,pk̂′1− ~R′0. The unit vector which represents the incident

plane is given bŷn′p,1 = −
∥∥∥~n′p,1

∥∥∥
−1 ∑3

i=1 εijkk
′
1,jr

′
0,kêi, where the summations over indicesj andk are implicit.

If the plane of incidence is represented by a scalar functionf (x′, y′, z′) , then its unit normal vector̂n′p,1 will satisfy
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3. Reflection Dynamics
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Figure 3.2.: The thick line shown here represents the intersection between hemisphere surface and the plane of inci-

dence. The unit vector normal to the incident plane is given byn̂′p,1 = −
∥∥∥~n′p,1

∥∥∥
−1 ∑3

i=1 εijkk
′
1,jr

′
0,kêi.

the relationship̂n′p,1 ∝ ~∇′fp,1 (x′, y′, z′) . It is shown from equation (A.43) of Appendix A that

fp,1 (ν′1, ν
′
2, ν

′
3) = −

∥∥∥~n′p,1
∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kν

′
i, i =





1→ ν′1 = x′,
2→ ν′2 = y′,
3→ ν′3 = z′,

(3.7)

where−∞ ≤ {ν′1 = x′, ν′2 = y′, ν′3 = z′} ≤ ∞.
The surface of a sphere or hemisphere is defined through the relationfhemi (x′, y′, z′) = [r′i]

2 − ∑3
i=1 [ν′i]

2
,

wherer′i is the radius of sphere and the subscripti denotes the inner surface. The intercept of interest is shown in
Figure 3.2. The intersection between the hemisphere surface and the incidence planefp,1 (ν′1, ν

′
2, ν

′
3) is given by

fhemi (x′, y′, z′)− fp,1 (x′, y′, z′) = 0. After substitution offp,1 (x′, y′, z′) andfhemi (x′, y′, z′) , we have

3∑

i=1

{
[ν′i]

2 −
∥∥∥~n′p,1

∥∥∥
−1

εijkk
′
1,jr

′
0,kν

′
i

}
− [r′i]

2 = 0, i =





1→ ν′1 = x′,
2→ ν′2 = y′,
3→ ν′3 = z′.

The term[r′i]
2 can be rewritten in the form[r′i]

2 =
∑3
i=1

[
r′i,i

]2
, wherer′i,1 = r′i,x′ , r

′
i,2 = r′i,y′ andr′i,3 = r′i,z′ .

Solving forν′i, it can be shown from equation (A.51) of Appendix A that

ν′i =
1
2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]2

+
[
r′i,i

]2
}1/2

, i = 1, 2, 3, (3.8)

whereεijk is the Levi-Civita coefficient. The result forν′i shown above provide a set of discrete reflection points found
by the intercept between the hemisphere and the plane of incidence.

Using spherical coordinate representations for the variablesr′i,1, r
′
i,2 andr′i,3, the initial reflection point~R′1 can be
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3. Reflection Dynamics
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Figure 3.3.: The surface of the hemisphere-hemisphere configuration can be described relative to the system origin
through~R, or relative to the hemisphere centers through~R′.

expressed in terms of the spherical coordinate variables(r′i, θ
′
1, φ

′
1) (equation (A.109) of Appendix A),

~R′1 (r′i, θ
′
1, φ

′
1) =

3∑

i=1

ν′1,i (r
′
i, θ

′
1, φ

′
1) êi, i =





1→ ν′1,1 = r′i sin θ
′
1 cosφ′1,

2→ ν′1,2 = r′i sin θ
′
1 sinφ′1,

3→ ν′1,3 = r′i cos θ′1,
(3.9)

wherer′i is the hemisphere radius,φ′1 andθ′1, the polar and azimuthal angle, respectively. They are defined in equations
(A.102), (A.103), (A.107) and (A.108) of Appendix A. Similarly, the second reflection point on the inner hemisphere
surface is given by equation (A.151) of Appendix A:

~R′2 (r′i, θ
′
2, φ

′
2) =

3∑

i=1

ν′2,i (r
′
i, θ

′
2, φ

′
2) êi, i =





1→ ν′2,1 = r′i sin θ
′
2 cosφ′2,

2→ ν′2,2 = r′i sin θ
′
2 sinφ′2,

3→ ν′2,3 = r′i cos θ′2,
(3.10)

where the spherical anglesφ′2 andθ′2 are defined in equations (A.143), (A.144), (A.148) and (A.149) of Appendix A.
In general, leaving the details to Appendix A, theN th reflection point inside the hemisphere is, from equation (A.162)
of Appendix A,

~R′N (r′i, θ
′
N , φ

′
N ) =

3∑

i=1

ν′N,i (r
′
i, θ

′
N , φ

′
N ) êi, i =





1→ ν′N,1 = r′i sin θ
′
N cosφ′N ,

2→ ν′N,2 = r′i sin θ
′
N sinφ′N ,

3→ ν′N,3 = r′i cos θ′N ,
(3.11)

where the spherical anglesθ′N andφ′N are defined in equations (A.158), (A.159), (A.160) and (A.161) of Appendix
A. The details of all the work shown up to this point can be found in Appendix A.

The previously shown reflection points (~R′1, ~R′2 and ~R′N ) were described relative to the hemisphere center. In
many cases, the preferred choice for the system origin, from which the variables are defined, depend on the physical
arrangements of the system being considered. For a sphere, the natural choice for the origin is its center from which the
spherical variables(r′i, θ

′, φ′) are prescribed. For more complicated configuration shown in Figure 3.3, the preferred
choice for origin really depends on the problem at hand. For this reason, a set of transformation rules between
(r′i, θ

′, φ′) and(ri, θ, φ) is sought. Here the primed set is defined relative to the sphere center and the unprimed set is
defined relative to the origin of the global configuration. In terms of the Cartesian variables, the two vectors~R and ~R′
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3. Reflection Dynamics

describing an identical point on the hemisphere surface are expressed by

~R (ν1, ν2, ν3) =
3∑

i=1

νiêi, ~R′ (ν′1, ν
′
2, ν

′
3) =

3∑

i=1

ν′iêi, (3.12)

where(ν1, ν2, ν3) → (x, y, z) , (ν′1, ν
′
2, ν

′
3) → (x′, y′, z′) and (ê1, ê2, ê3) → (x̂, ŷ, ẑ) . The vectors~R and ~R′ are

connected through the relation~R (ν1, ν2, ν3) =
∑3
i=1 [νT,i + ν′i] êi with ~RT ≡

∑3
i=1 νT,iêi which represents the

position of hemisphere center relative to the system origin. As a result, we have
∑3
i=1 [νi − νT,i − ν′i] êi = 0. In

terms of the spherical coordinate representation for(ν1, ν2, ν3) and(ν′1, ν
′
2, ν

′
3) , we can solve forθ andφ. As shown

from equations (B.10) and (B.12) of Appendix B, the result is

φ ≡ φ̀ (r′i, θ
′, φ′, νT,1, νT,2) = arctan

(
νT,2 + r′i sin θ

′ sinφ′

νT,1 + r′i sin θ′ cosφ′

)
, (3.13)

θ ≡ θ̀
(
r′i, θ

′, φ′, ~RT
)

= arctan


 {νT,1 + νT,2 + r′i sin θ

′ [cosφ′ + sinφ′]} [νT,3 + r′i cos θ′]−1

cos
(
arctan

(
νT,2+r′i sin θ′ sinφ′

νT,1+r′i sin θ′ cosφ′

))
+ sin

(
arctan

(
νT,2+r′i sin θ′ sinφ′

νT,1+r′i sin θ′ cosφ′

))

 , (3.14)

where the notatioǹφ andθ̀ indicates thatφ andθ are explicitly expressed in terms of the primed variables, respectively.
It is to be noticed that for the configuration shown in Figure 3.3, the hemisphere center is only shifted alongŷ by an
amount ofνT,2 = a, which leads toνT,i 6=2 = 0. Nevertheless, the derivation have been done for the case where
νT,i 6= 0, i = 1, 2, 3 for the generalization purpose.

With the magnitude
∥∥∥~R

∥∥∥ =
{∑3

i=1 [νT,i + r′iΛ
′
i]

2
}1/2

,whereΛ′1 (θ′, φ′) = sin θ′ cosφ′,Λ′2 (θ′, φ′) = sin θ′ sinφ′

andΛ′3 (θ′) = cos θ′, the vector~R
(
r′i, ~̀Λ, ~Λ

′, ~RT
)

is given by equation (B.13) of Appendix B as

~R
(
r′i, ~̀Λ, ~Λ

′, ~RT
)

=

{
3∑

i=1

[νT,i + r′iΛ
′
i]

2

}1/2 3∑

i=1

Λ̀iêi,





Λ̀1

(
θ̀, φ̀

)
= sin θ̀ cos φ̀,

Λ̀2

(
θ̀, φ̀

)
= sin θ̀ sin φ̀,

Λ̀3

(
θ̀
)

= cos θ̀.

(3.15)

The details of this section can be found in Appendices A and B.

3.2. Selected Configurations

Having found all of the wave reflection points in the hemisphere resonator, the net momentum imparted on both the
inner and outer surfaces by the incident wave is computed for three configurations: (1) the sphere, (2) the hemisphere-
hemisphere and (3) the plate-hemisphere. The surface element that is being impinged upon by an incident wave would

experience the net momentum change in an amount proportional to4~k′inner
(
; ~R′s,1, ~R′s,0

)
on the inner side, and

4~k′outer
(
; ~R′s,1 + aR̂′s,1

)
on the outer side of the surface. The quantities4~k′inner and4~k′outer are due to the

contribution from a single mode of wave traveling in particular direction. The notation
(
; ~R′s,1, ~R′s,0

)
of 4~k′inner

denotes that it is defined in terms of the initial reflection point~R′s,1 on the surface and the initial crossing point~R′s,0 of

the hemisphere opening (or the sphere cross-section). The notation
(
; ~R′s,1 + aR̂′s,1

)
of 4~k′outer implies the outer

surface reflection point. The total resultant imparted momentum on the hemisphere or sphere is found by summing
over all modes of wave, over all directions.
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Figure 3.4.: Inside the cavity, an incident wave~k′i on first impact point~R′i induces a series of reflections that propagate
throughout the entire inner cavity. Similarly, a wave~k′i incident on the impact point~R′i + aR̂′i, where

a is the thickness of the sphere, induces reflected wave of magnitude
∥∥∥~k′i

∥∥∥ . The resultant wave direction

in the external region is along~R′i and the resultant wave direction in the resonator is along− ~R′i due to
the fact there is exactly another wave vector traveling in opposite direction in both regions. In both cases,
the reflected and incident waves have equal magnitude due to the fact that the sphere is assumed to be a
perfect conductor.

3.2.1. Hollow Spherical Shell

A sphere formed by bringing in two hemispheres together is shown in Figure 3.4. The resultant change in wave vector
direction upon reflection at the inner surface of the sphere is from the equation (C.4) of Appendix C1,

4~k′inner
(
; ~R′s,1, ~R′s,0

)
= − 4nπ cos θinc∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
R̂′s,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · , (3.16)

whereθinc is from equation (A.115);~Rs,1
(
r′i, ~Λ

′
s,1

)
and ~Rs,2

(
r′i, ~Λ

′
s,2

)
follow the generic form shown in the equa-

tion (C.1) of Appendix C1,

~Rs,N

(
r′i, ~Λ

′
s,N

)
= r′i

3∑

i=1

Λ′s,N,iêi,





Λ′s,N,1
(
θ′s,N , φ

′
s,N

)
= sin θ′s,N cosφ′s,N ,

Λ′s,N,2
(
θ′s,N , φ

′
s,N

)
= sin θ′s,N sinφ′s,N ,

Λ′s,N,3
(
θ′s,N

)
= cos θ′s,N .

(3.17)

Here the labels have been attached to denote a sphere and the obvious index changes in the spherical variablesθ′s,N
andφ′s,N are understood from the set of equations (A.158), (A.159), (A.160) and (A.161).

Similarly, the resultant change in wave vector direction upon reflection at the outer surface of the sphere is from
equation (C.5) of Appendix C1,

4~k′outer
(
; ~R′s,1 + aR̂′s,1

)
= 4

∥∥∥~k′i,f
∥∥∥ cos θincR̂′s,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · . (3.18)
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The details of this section can be found in Appendix C1.

3.2.2. Hemisphere-Hemisphere

For the hemisphere, the changes in wave vector directions after the reflection at a pointR̂′h,1 inside the resonator, or
after the reflection at location~R′h,1 + aR̂′h,1 outside the hemisphere, can be found from equations (3.16) and (3.18)
with obvious subscript changes,

4~k′inner
(
; ~R′h,1, ~R′h,0

)
= − 4nπ cos θinc∥∥∥~Rh,2

(
r′i, ~Λ

′
h,2

)
− ~Rh,1

(
r′i, ~Λ

′
h,1

)∥∥∥
R̂′h,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · ; (3.19)

4~k′outer
(
; ~R′h,1 + aR̂′h,1

)
= 4

∥∥∥~k′i,f
∥∥∥ cos θincR̂′h,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · , (3.20)

where the reflection location~Rh,N
(
r′i, ~̀Λh,N , ~Λ

′
h,N ,

~RT,h

)
follows the generic form as shown in equation (C.6) of

Appendix C2,

~Rh,N

(
r′i, ~̀Λh,N , ~Λ

′
h,N , ~RT,h

)
=

{
3∑

i=1

[
νT,h,i + r′iΛ

′
h,N,i

]2
}1/2 3∑

i=1

Λ̀h,N,iêi. (3.21)

In the above equation, the subscripth denotes the hemisphere; and




Λ̀h,N,1
(
θ̀h,N , φ̀h,N

)
= sin θ̀h,N cos φ̀h,N ,

Λ̀h,N,2
(
θ̀h,N , φ̀h,N

)
= sin θ̀h,N sin φ̀h,N ,

Λ̀h,N,3
(
θ̀h,N

)
= cos θ̀h,N .

The expressions forΛ′h,N,i, i = 1, 2, 3, are defined identically in form. The angular variables in spherical coordi-

nates,θ̀h,N and φ̀h,N , can be obtained from equations (3.13) and (3.14), where the obvious notational changes are
understood. The implicit angular variables,θ′h,N andφ′h,N , are the sets defined in Appendix A, equations (A.158) and
(A.159) forθ′s,N , and the sets from equations (A.160) and (A.161) forφ′s,N .

Unlike the sphere situation, the initial wave vector could eventually escape the hemisphere resonator after some
maximum number of reflections. It is shown in the Appendix C2 that this maximum number for internal reflection is
given by equation (C.8),

Nh,max = [Zh,max]G , (3.22)

where the greatest integer function[Zh,max]G is defined in equation (C.7) of Appendix C2,

Zh,max =
1

π − 2θinc

[
π − arccos

(
1
2

{
r′i

∥∥∥ ~R′0
∥∥∥
−1

+ [r′i]
−1

∥∥∥ ~R′0
∥∥∥−

[
r′i

∥∥∥ ~R′0
∥∥∥
]−1

ξ21,p

})]
. (3.23)

Hereξ1,p is given in equation (3.5) andθinc is from equation (A.115).

The above results of4~k′inner
(
; ~R′h,1, ~R′h,0

)
and4~k′outer

(
; ~R′h,1 + aR̂′h,1

)
have been derived based on the

fact that there are multiple internal reflections. For a sphere, the multiple internal reflections are inherent. However, for
a hemisphere, it is not necessarily true that all incoming waves would result in multiple internal reflections. Naturally,
the criteria for multiple internal reflections are in order. If the initial direction of the incoming wave vector,k̂′1, is
given, the internal reflections can be either single or multiple depending upon the location of the entry point in the
cavity, ~R′0. As shown in Figure 3.5, these are two reflection dynamics where the dashed vectors represent the single
reflection case and the non-dashed vectors represent multiple reflections case. Because the whole process occurs in the
same plane of incidence, the vector~R′f = −λ0

~R′0 whereλ0 > 0. The multiple or single internal reflection criteria
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Figure 3.5.: The dashed line vectors represent the situation where only single internal reflection occurs. The dark line
vectors represent the situation where multiple internal reflections occur.

can be summarized by the relation found in equation (C.21) of Appendix C2:

∥∥∥ ~R′f
∥∥∥ =

1
2

∥∥∥ ~R′0
∥∥∥

[
3∑

n=1

k′1,n

] 



3∑

j=1

3∑

l=1

[∥∥∥~k′1
∥∥∥

2

− k′1,l
3∑

m=1

k′1,m

]
r′0,lr

′
0,j





−1
3∑

l=1

{
k′1,l [r

′
i]

2 − [
r′0,l

]2

+2 ~R′0 • ~k′1r′0,l −
∥∥∥ ~R′0

∥∥∥
2

k′1,l − 2r′0,l

[
3∑

l=1

k′1,l

]−1 3∑

i=1

[∥∥∥~k′1
∥∥∥

2

− k′1,i
3∑

m=1

k′1,m

]
r′0,i



 . (3.24)

Finally, because the hemisphere opening has a radiusr′i, the following criteria are concluded:




∥∥∥ ~R′f
∥∥∥ < r′i, Single− Internal −Reflection,

∥∥∥ ~R′f
∥∥∥ ≥ r′i, Multiple− Internal −Reflections,

(3.25)

where
∥∥∥ ~R′f

∥∥∥ is defined in equation (3.24). The details of this section can be found in Appendix C2.

3.2.3. Plate-Hemisphere

A surface is represented by a unit vectorn̂′p, which is normal to the surface locally. For the circular plate shown in

Figure 3.6, its orthonormal triad
(
n̂′p, θ̂′p, φ̂′p

)
has the form

n̂′p =
∑3
i=1 Λ′p,iêi, θ̂′p =

∑3
i=1

∂Λ′p,i

∂θ′p
êi, φ̂′p =

∑3
i=1

1
sin θ′p

∂Λ′p,i

∂φ′p
êi,
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Figure 3.6.: The orientation of a disk is given through the surface unit normaln̂′p. The disk is spanned by the two unit
vectorsθ̂′p andφ̂′p.

whereΛ′p,1
(
θ′p, φ

′
p

)
= sin θ′p cosφ′p, Λ′p,2

(
θ′p, φ

′
p

)
= sin θ′p sinφ′p andΛ′p,3

(
θ′p

)
= cos θ′p.

For the plate-hemisphere configuration shown in Figure 3.7, it can be shown that the element~Rp on the plane and
its velocityd~Rp/dt are given by (see equation (3.27) and (C.30) in Appendix C3:

~Rp

(
~̀Λp, ~Λ′p, ~RT,p

)
=





3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]2




1/2
3∑

i=1

Λ̀p,iêi, (3.26)

~̇Rp ≡ d~Rp
dt

=





3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]2




−1/2
3∑

j=1

3∑

k=1

([
νT,p,k + ν′p,θ′p

∂Λ′p,k
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,k
∂φ′p

][
ν̇T,p,k +

{
ν′p,θ′p

∂2Λ′p,k
∂

[
θ′p

]2 +
ν′p,φ′p
sin θ′p

(
∂2Λ′p,k
∂θ′p∂φ′p

− cot θ′p
∂Λ′p,k
∂φ′p

)}
θ̇′p

+

{
ν′p,θ′p

∂2Λ′p,k
∂φ′p∂θ′p

+
ν′p,φ′p
sin θ′p

∂2Λ′p,k
∂

[
φ′p

]2
}
φ̇′p + ν̇′p,θ′p

∂Λ′p,k
∂θ′p

+
ν̇′p,φ′p
sin θ′p

∂Λ′p,k
∂φ′p

]
Λ̀p,j

+
3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]2 [
∂Λ̀p,j
∂θ̀p

∂θ̀p
∂φ′p

θ̇′p +
∂Λ̀p,j
∂φ̀p

∂φ̀p
∂φ′p

φ̇′p

]
 êj , (3.27)

where
(
Λ̀p,1, Λ̀p,2, Λ̀p,3

)
is defined in equation (C.31) and the anglesφ̀p andθ̀p are defined in equations (C.27) and

(C.28) of Appendix C3. The subscriptp of φ̀p andθ̀p indicates that these are spherical variables for the points on the
plate of Figure 3.7, not that of the hemisphere. It is also understood thatΛ′p,3 andΛ̀p,3 are independent ofφ′p and

φ̀p, respectively. Therefore, their differentiation with respect toφ′p andφ̀p respectively vanishes. The quantitiesθ̇′p
andφ̇′p are the angular frequencies, andν̇T,p,i is the translation speed of the plate relative to the system origin. The

quantitiesν̇′p,θ′p andν̇′p,φ′p are the lattice vibrations along the directionsθ̂′p andφ̂′p respectively. For the static plate

without lattice vibrations,̇ν′p,θ′p andν̇′p,φ′p vanishes.

In the cross-sectional view of the plate-hemisphere system shown in Figure 3.8, the initial wave vector~k′i traveling
toward the hemisphere would go through a complex series of reflections according to the law of reflection and finally
exit the cavity. It would then continue toward the plate, and depending on the orientation of plate at the time of impact,
the wave-vector, now reflecting off the plate, would either escape to infinity or re-enter the hemisphere. The process
repeats successively. In order to determine whether the wave that just escaped from the hemisphere cavity can reflect
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Figure 3.7.: The plate-hemisphere configuration.

back from the plate and re-enter the hemisphere or escape to infinity, the exact location of reflection on the plate must
be known. This reflection point on the plate is found to be, from equation (C.54) of Appendix C3,

~Rp =





3∑
s=1



∂Λ′p,s
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,s
∂θ′p




2




1/2

×
[
C−1
β C−1

γ AγAβ + γoC
−1
β C−1

γ BγAβ + C−1
β BζBβ

] 3∑

i=1

Λ̀p,iêi, (3.28)

where the translation parameterνT,p,j = 0 and the terms(Aζ , Bζ , Cζ) , (Aγ , Bγ , Cγ) , (Aβ , Bβ , Cβ) andγo are
defined in equations (C.46), (C.49), (C.50) and (C.52) of Appendix C3. It is to be noticed that for a situation where
the translation parameterνT,p,j = 0, Λ̀ becomes identical toΛ′ in form. Results for̀Λ can be obtained fromΛ′ by a
simple replacement of primed variables with the unprimed ones.

Leaving the details to the relevant Appendix, the criterion whether the wave reflecting off the plate at location~Rp
can re-enter the hemisphere cavity or simply escape to infinity is found from the result shown in equation (C.58) of
Appendix C3,

ξκ,i =



νT,h,i + r′0,i −





3∑
s=1



∂Λ′p,s
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,s
∂θ′p




2




1/2

×
[
C−1
β C−1

γ AγAβ + γoC
−1
β C−1

γ BγAβ + C−1
β BζBβ

]
Λ̀p,i

) (
3∑

k=1

{
αr,⊥

[
kNh,max+1,in

′
p,kn

′
p,k

−n′p,ikNh,max+1,kn
′
p,k

]− αr,‖n′p,kkNh,max+1,kn
′
p,i

})−1
, (3.29)
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−
∥∥∥~n′p,1

∥∥∥
−1 ∑3

i=1 εijkk
′
1,jr

′
0,kêi.

wherei = 1, 2, 3 andξκ,i is the component of the scale vector~ξκ =
∑3
i=1 ξκ,iêi explained in the Appendix C3.

In the above re-entry criteria, it should be noticed that~R0 ≤ r′i. This impliesr′0,i ≤ r′i, wherer′i is the radius
of hemisphere. It is then concluded that all waves re-entering the hemisphere cavity would satisfy the condition
ξκ,1 = ξκ,2 = ξκ,3. On the other hand, those waves that escapes to infinity cannot have all threeξκ,i equal to a single
constant. The re-entry conditionξκ,1 = ξκ,2 = ξκ,3 is just another way of stating the existence of a parametric line
along the vector~kr,Nh,max+1 that happens to pierce through the hemisphere opening. In case such a line does not
exist, the initial wave direction has to be rotated into a new direction such that there is a parametric line that pierces
through the hemisphere opening. That is why all threeξκ,i values cannot be equal to a single constant. The re-entry
criteria are summarized here for bookkeeping purpose:

{
ξκ,1 = ξκ,2 = ξκ,3 →Wave−ReEnters−Hemisphere,

ELSE →Wave− Escapes− to− Infinity, (3.30)

whereELSE is the case whereξκ,1 = ξκ,2 = ξκ,3 cannot be satisfied. The details of this section can be found in
Appendix C3.

3.3. Dynamical Casimir Force

The phenomenon of Casimir effect is inherently a dynamical effect due to the fact that it involves radiation, rather than
static fields. One of my original objectives in studying the Casimir effect was to investigate the physical implications
of vacuum-fields on movable boundaries. Consider the two parallel plates configuration of charge-neutral, perfect
conductors shown in Figure 3.9. Because there are more wave modes in the outer region of the parallel plate res-
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z=0 z=d

Figure 3.9.: Because there are more vacuum-field modes in the external regions, the two charge-neutral conducting
plates are accelerated inward till the two finally stick.

onator, two loosely restrained (or unfixed in position) plates will accelerate inward until they finally meet. The energy
conservation would require that the energy initially confined in the resonator when the two plates were separated be
transformed into the heat energy that acts to raise the temperatures of the two plates.

Davies in 1975 [26], followed by Unruh in 1976 [27], have asked the similar question and came to a conclusion that
when an observer is moving with a constant acceleration in vacuum, the observer perceives himself to be immersed
in a thermal bath at the temperatureT = ~R̈/ [2πck′] , whereR̈ is the acceleration of the observer andk′, the wave
number. The details of the Unruh-Davies effect can also be found in the reference [17]. The other work that dealt
with the concept of dynamical Casimir effect is due to Schwinger in his proposals [14, 16] to explain the phenomenon
of sonoluminescense. Sonoluminescense is a phenomenon in which when a small air bubble filled with noble gas is
under a strong acoustic-field pressure, the bubble will emit an intense flash of light in the optical range.

Although the name “dynamical Casimir effect” have been introduced by Schwinger, the motivation and derivation
behind the dynamical Casimir force in this thesis did not stem from that of Schwinger’s work. Therefore, the dynami-
cal Casimir force here should not have any resemblance to Schwinger’s work to the best of my knowledge. I have only
found out of Schwinger’s proposals on sonoluminescense after my work on dynamical Casimir force have already
begun. The terminology “dynamical Casimir force” seemed to be appealing enough, I have personally used it at the
beginning of my work. After discovering Schwinger’s work on sonoluminescense, I have learned that Schwinger had
already introduced the terminology “dynamical Casimir effect” in his papers. My original development to the dynam-
ical Casimir force formalism is briefly presented in the following sections. The details of the derivations pertaining to
the dynamical Casimir force can be found in Appendix D.

3.3.1. Formalism of Zero-Point Energy and its Force

For massless fields, the energy-momentum relation isH′ns
≡ ETotal = pc, wherep is the momentum,c the speed

of light, andH′ns
is the quantized field energy for the harmonic fields of equation (2.8) for the bounded space, or

equation (2.9) for the free space. For the bounded space, the quantized field energyH′ns
≡ H′ns,b

of equation (2.8)
is a function of the wave numberk′i (ni) , which in turn is a function of the wave mode valueni and the boundary

functionalfi (Li) , whereLi is the gap distance in the direction of~Li =
[
~R′2 • êi − ~R′1 • êi

]
êi. Here ~R′1 and ~R′2

are the position vectors for the involved boundaries. As an illustration with the two plate configuration shown in
Figure 3.9,~R′1 may represent the plate positioned atz = 0 and ~R′2 may correspond to the plate at the positionz = d.
When the position of these boundaries are changing in time, the quantized field energyH′ns

≡ H′ns,b
will be modified

accordingly because the wave number functionalk′i (ni) is varying in time,

dk′i
dt

=
∂k′i
∂ni

dni
dt
fi (Li) + ni

∂fi
∂Li

dLi
dt

= fi (Li)
∂k′i
∂ni

ṅi + ni
∂fi
∂Li

L̇i.

Here the term proportional tȯni refers to the case where the boundaries remain fixed throughout all times but the
number of wave modes in the resonator are being driven by some active external influence. The term proportional to
L̇i represents the changes in the number of wave modes due to the moving boundaries.

For an isolated system, there are no external influences, henceṅi = 0. Then, the dynamical force arising from the
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Figure 3.10.: A one dimensional driven parallel plates configuration.

fact that the time variation of the boundaries is given by equation (D.17) of Appendix D1,

~F ′α =
3∑

i=1

{
ni
∂fi
∂Li

[
Cα,5

∂2H′ns

∂ [k′i]
2 + (1− δiα)

(
Cα,6 − Cα,7

[
ns +

1
2

]
k′i

)[
ns +

1
2

]]
L̇i

+
3∑

j=1

(1− δij)Cα,5nj ∂fj
∂Lj

∂2H′ns

∂k′j∂k
′
i

L̇j



 êα, (3.31)

whereCα,1, Cα,2, Cα,3, Cα,4, Cα,5, Cα,6 andCα,7 are defined in equations (D.6), (D.9), (D.14), (D.15) and (D.16)
of Appendix D1.

The force shown in the above expression vanishes for the one dimensional case. This is an expected result. To under-
stand why the force vanishes, we have to refer to the starting point equation (D.4) in the Appendix D1. The summation
there obviously runs only once to arrive at the expression,∂H′ns

/∂k′i =
[
ns + 1

2

]
~c. This is a classic situation where

the problem has been over specified. For the3D case, equation (D.4) is a combination of two constraints,
∑3
i=1 [p′i]

2

andH′ns
. For the one dimensional case, there is only one constraint,H′ns

. Therefore, equation (D.4) becomes an over
specification. In order to avoid the problem caused by over specifications in this formulation, the one dimensional
force expression can be obtained directly by differentiating equation (D.1) instead of using the above formulation for
the three dimensional case. The1D dynamical force expression for an isolated, non-driven systems then becomes (see
equation (D.18) of Appendix D1)

~F ′ =
n

c

∂f

∂L

∂H′ns

∂k′
L̇ê, (3.32)

where ~F ′ is an one dimensional force. Here the subscriptα of ~F ′α have been dropped for simplicity, since it is a one
dimensional force. The details of this section can be found in Appendix D1.

3.3.2. Equations of Motion for the Driven Parallel Plates

The Unruh-Davies effect states that heating up of an accelerating conductor plate is proportional to its acceleration
through the relationT = ~R̈/ [2πck′] , whereR̈ is the plate acceleration. A one dimensional system of two paral-
lel plates, shown in Figure 3.10, can be used as a simple model to demonstrate the complicated sonoluminescense
phenomenon for a bubble subject to a strong acoustic field.

The dynamical force for the1D, linear coupled system can be expressed with equation (3.32),

R̈1 − η1Ṙ1 − η2Ṙ2 = ξrp, R̈2 − η3Ṙ2 − η4Ṙ1 = ξlp, (3.33)

where the quantitiesη1, η2, η3, η4, ξrp, ξlp, R1, R2 are defined in equation (D.31) of Appendix D2. HereR1 represents
the center of mass position for the “Right Plate” andR2 represents the center of mass position for the “Left Plate” as
illustrated in Figure 3.10. With a slight modification, equation (3.33) for this linear coupled system can be written in
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the matrix form, (see equations (D.33), (D.34) and (D.35) of Appendix D2):

R1 =
∫ t

t0

R3dt
′, R2 =

∫ t

t0

R4dt
′,

and
[
Ṙ3

Ṙ4

]

︸ ︷︷ ︸
~̇Rη

=
[
η1 η2
η4 η3

]

︸ ︷︷ ︸
fMη

·
[
R3

R4

]

︸ ︷︷ ︸
~Rη

+
[
ξrp
ξlp

]

︸ ︷︷ ︸
~ξ

, (3.34)

where 



Ṙ1 = R3, Ṙ2 = R4,

Ṙ3 = R̈1 = ξrp + η1Ṙ1 + η2Ṙ2 = ξrp + η1R3 + η2R4,

Ṙ4 = R̈2 = ξlp + η3Ṙ2 + η4Ṙ1 = ξlp + η3R4 + η4R3.

The matrix equation has the solutions given by equations (D.51) and (D.52) of Appendix D2:

Ṙrp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1

ψ11 (t, t0) Ṙrp,cm,α (t0) + ψ12 (t, t0) Ṙlp,cm,α (t0)
exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ11 (t, t0)
∫ t

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ12 (t, t0)

×
∫ t

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′, (3.35)

Ṙlp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1

ψ21 (t, t0) Ṙrp,cm,α + ψ22 (t, t0) Ṙlp,cm,α (t0)
exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ21 (t, t0)
∫ t

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ22 (t, t0)

×
∫ t

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′, (3.36)

where the termsλ3 andλ4 are defined in equation (D.37); andψ11 (t, t0) , ψ12 (t, t0) , ψ21 (t, t0) andψ22 (t, t0) are
defined in equations (D.43) through (D.46) in Appendix D2. The quantitiesṘrp,cm,α andṘlp,cm,α are the speed of
the center of mass of “Right Plate” and the speed of the center of mass of the “Left Plate,” respectively, andα defines
the particular basis direction.

The corresponding positionsRrp,cm,α (t) andRlp,cm,α (t) are found by integrating equations (3.35) and (3.36) with
respect to time,

Rrp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1 ∫ t

t0

[
ψ11 (τ, t0) Ṙrp,cm,α (t0) + ψ12 (τ, t0) Ṙlp,cm,α (t0)

exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ11 (τ, t0)
∫ τ

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ12 (τ, t0)

×
∫ τ

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′
]
dτ +Rrp,cm,α (t0) , (3.37)

32



3. Reflection Dynamics

Rlp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1 ∫ t

t0

[
ψ21 (τ, t0) Ṙrp,cm,α (t0) + ψ22 (τ, t0) Ṙlp,cm,α (t0)

exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ21 (τ, t0)
∫ τ

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ22 (τ, t0)

×
∫ τ

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′
]
dτ +Rlp,cm,α (t0) . (3.38)

The remaining integrations are straightforward and the explicit forms will not be shown here.
One may argue that for the static case,Ṙrp,cm,α (t0) andṘlp,cm,α (t0) must be zero because the conductors seem

to be fixed in position. This argument is flawed, for any wall totally fixed in position upon impact would require an
infinite amount of energy. One has to consider the conservation of momentum simultaneously. The wall has to have
moved by the amount4Rwall = Ṙwall4t, where4t is the total duration of impact, anḋRwall is calculated from the
momentum conservation and it is non-zero. The same argument can be applied to the apparatus shown in Figure 3.10.
For that system

‖~pvirtual−photon‖ =
1
c
H′ns,< (t0) ,





Ṙrp,cm,α (t0) =
∥∥∥ ~̇Rlp,3 (t0) + ~̇Rrp,2 (t0)

∥∥∥ ,
Ṙlp,cm,α (t0) =

∥∥∥ ~̇Rrp,1 (t0) + ~̇Rlp,2 (t0)
∥∥∥ .

For simplicity, assuming that the impact is always only in the normal direction,

Ṙrp,cm,α (t0) =
2

mrpc

∥∥H′ns,3 (t0)−H′ns,2 (t0)
∥∥ , Ṙlp,cm,α (t0) =

2
mlpc

∥∥H′ns,1 (t0)−H′ns,2 (t0)
∥∥ ,

where the differences under the magnitude symbol imply field energies from different regions counteract the other.
The details of this section can be found in Appendix D2.
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4. Results and Outlook

The results for the sign of Casimir force on non-planar geometric configurations considered in this thesis will even-
tually be compared with the classic repulsive result obtained by Boyer decades earlier. For this reason, it is worth
reviewing Boyer’s original configuration as shown in Figure 4.1.

Sphere vacuum−field Poynting vector field lines

Edge of Universe

Sphere
Infinity

Figure 4.1.: Boyer’s configuration is such that a sphere is the only matter in the entire universe. His universe extends
to the infinity, hence there are no boundaries. The sense of vacuum-field energy flow is along the radial
vectorr̂, which is defined with respect to the sphere center.

T. H. Boyer in 1968 obtained a repulsive Casimir force result for his charge-neutral, hollow spherical shell of a
perfect conductor [4]. For simplicity, his sphere is the only object in the entire universe and, therefore, no external
boundaries such as laboratory walls, etc., were defined in his problem. Furthermore, the zero-point energy flow is
always perpendicular to his sphere. Such restriction can be a very stringent condition for the material property that a
sphere has to meet. For example, if one were to look at Boyer’s sphere, he would not see the whole sphere; but instead,
he would see a small spot on the surface of a sphere that happens to be in his line of sight. This happens because the
sphere in Boyer’s configuration can only radiate in a direction normal to the surface. One could equivalently argue that
Boyer’s sphere only responds to the approaching radiation at normal angles of incidence with respect to the surface of
the sphere. When the Casimir force is computed for such restricted radiation energy flow, the result is repulsive. This
can be attributed to the fact that closer to the sphere origin, the spherically symmetric radiation energy flow becomes
more dense and this density decreases as it gets further away from the sphere center. As an illustration, Boyer’s sphere
is shown in Figure 4.1. For the rest of the thesis, “Boyer’s sphere” would be strictly referred to as the sphere made of
such material property that it only radiates or responds to vacuum-field radiations at normal angle of incidence with
respect to its surface.

The formation of a sphere by bringing together two nearby hemispheres satisfying the material property of Boyer’s
sphere is illustrated in Figure 4.2. Since Boyer’s material property only allow radiation in the normal direction to its
surface, the radiation associated with each hemisphere would necessarily go through the corresponding hemisphere
centers. For clarity, let us define the unit radial basis vector associated with the left and right hemispheres byr̂L
andr̂R, respectively. If the hemispheres are made of normal conductors the radiation from one hemisphere entering
the other hemisphere cavity would go through a complex series of reflections before escaping the cavity. Here, a
conductor with Boyer’s stringent material property is not considered normal. Conductors that are normal also radiate
in directions non-normal to their surface, whereas Boyer’s conductor can only radiate normal to its surface. Due to
the fact that Boyer’s conducting materials can only respond to radiation impinging at a normal angle of incidence with
respect to its surface, all of the incoming radiation at oblique angles of incidence with respect to the local surface
normal is absorbed by the host hemisphere. This suggests that for the hemisphere-hemisphere arrangement made of
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Sphere vacuum−field Poynting vector field lines

Edge of Universe

Sphere

Poynting vector field line from left hemisphere

Edge of Universe

Infinity

InfinityPoynting vector field line from right hemisphere

Non−radial Poynting vector fields
due to configurational change

Figure 4.2.: Manufactured sphere, in which two hemispheres are brought together, results in small non-spherically
symmetric vacuum-field radiation inside the cavity due to the configuration change. For the hemispheres
made of Boyer’s material, these fields in the resonator will eventually get absorbed by the conductor
resulting in heating of the hemispheres.

vector field lines from left hemisphere
A virtual photon along one of the Poynting

δ
η

ξ

Figure 4.3.: The process in which a configuration change from hemisphere-hemisphere to sphere inducing virtual
photon in the direction other than̂r is shown. The virtual photon here is referred to as the quanta of
energy associated with the zero-point radiation.

Boyer’s material shown in Figure 4.2, the temperature of the two hemispheres would rise indefinitely over time. This
does not happen with ordinary conductors. This suggests that Boyer’s conducting material, of which his sphere is
made, is completely hypothetical. Precisely because of this material assumption, Boyer’s Casimir force is repulsive.

For the moment, let us relax the stringent Boyer’s material property for the hemispheres to that of ordinary con-
ductors. For the hemispheres made of ordinary conducting materials, there would result a series of reflections in one
hemisphere cavity due to those radiations entering the cavity from nearby hemisphere. For simplicity, the ordinary
conducting material referred to here is that of perfect conductors without Boyer’s hypothetical material property re-
quirement. Furthermore, only the radiation emanating normally with respect to its surface is considered. The idea
is to illustrate that the “normally emanated radiation” from one hemisphere results in elaboration of the effects of
“obliquely emanated radiation” on another hemisphere cavity. Here the obliquely emanated radiation means those
radiation emanating from a surface not along the local normal of the surface.

When two such hemispheres are brought together to form a sphere, there would exist some radiation trapped in the
sphere of which the radiation energy flow lines are not spherically symmetric with respect to the sphere center. To
see how a mere change in configuration invokes such non-spherically symmetric energy flow, consider the illustration
shown in Figure 4.3. For clarity, only one “normally emanated radiation” energy flow line from the left hemisphere is
shown. When one brings together the two hemispheres just in time before that quantum of energy escapes the hemi-
sphere cavity to the right, the trapped energy quantum would continuously go through series of complex reflections
in the cavity obeying the reflection law. But how fast or how slow one brings in two hemispheres is irrelevant in
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Poynting vector field lines originating

Lab boundary

from lab boundaries

Figure 4.4.: A realistic laboratory has boundaries, e.g., walls. These boundaries have effect similar to the field modes
between two parallel plates. In3D, the effects are similar to that of a cubical laboratory, etc.

boundary
Poynting vector field lines from lab

boundary and due to the configurational changes going
from hemisphere−hemisphere to a sphere.

Trapped Poynting vector field lines originally from laboratory

Figure 4.5.: The schematic of sphere manufacturing process in a realistic laboratory.

invoking such non-spherically symmetric energy flow because the gapδ can be chosen arbitrarily. Therefore, there
would always be a stream of energy quanta crossing the hemisphere opening withξ 6= 0 as shown in Figure 4.3. In
other words, there is always a time interval4t within which the hemispheres are separated by an amountδ before
closure. The quanta of vacuum-field radiation energy created within that time interval4t would always be satisfying
the conditionξ 6= 0, and this results in reflections at oblique angle of incidence with respect to the local normal of the
walls of inner sphere cavity. Only when the two hemispheres are finally closed, would thenξ = 0 and the radiation
energy produced in the sphere after that point would be spherically symmetric and the reflections would be normal to
the surface. However, those trapped quantum of energy that were produced prior to the closure of the two hemispheres
would always be reflecting from the inner sphere surface at oblique angles of incidence.

Unlike Boyer’s ideal laboratory, realistic laboratories have boundaries made of ordinary material as illustrated in
Figure 4.4. One must then take into account, when calculating the Casimir force, the vacuum-field radiation pressure
contributions from the involved conductors, as well as those contributions from the boundaries such as laboratory
walls, etc. We will examine the physics of placing two hemispheres inside the laboratory.

For simplicity, the boundaries of the laboratory as shown in Figure 4.5 are assumed to be simple cubical. Normally,
the dimension of conductors considered in Casimir force experiment is in the ranges of microns. When this is compared
with the size of the laboratory boundaries such as the walls, the walls of the laboratory can be treated as a set of infinite
parallel plates and the vacuum-fields inside the the laboratory can be treated as simple plane waves with impunity.

The presence of laboratory boundaries induce reflection of energy flow similar to that between the two parallel
plate arrangement. When the two hemisphere arrangement shown in Figure 4.2 is placed in such a laboratory, the
result is to elaborate the radiation pressure contributions from obliquely incident radiations on external surfaces of the
two hemispheres. If the two hemispheres are made of conducting material satisfying Boyer’s material property, the
vacuum-field radiation impinging on hemisphere surfaces at oblique angles of incidence would cause heating of the
hemispheres. It means that Boyer’s hemispheres placed in a realistic laboratory would continue to rise in temperature
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Figure 4.6.: The vacuum-field wave vectors~k′i,b and ~k′i,f impart a net momentum of the magnitude‖~pnet‖ =

~
∥∥∥~k′i,b − ~k′i,f

∥∥∥ /2 on differential patch of an areadA on a conducting spherical surface.

as a function of time. However, this does not happen with ordinary conductors.
If the two hemispheres are made of ordinary perfect conducting materials, the reflections of radiation at oblique

angles of incidence from the laboratory boundaries would elaborate on the radiation pressure acting on the external
surfaces of two hemispheres at oblique angles of incidence. Because Boyer’s sphere only radiates in the normal
direction to its surface, or only responds to impinging radiation at normal incidence with respect to the sphere surface,
the extra vacuum-field radiation pressures considered here, i.e., the ones involving oblique angles of incidence, are
missing in his Casimir force calculation for the sphere.

4.1. Results

T. H. Boyer in 1968 have shown that for a charge-neutral, perfect conductor of hollow spherical shell, the sign of
the Casimir force is positive, which means the force is repulsive. He reached this conclusion by assuming that all
vacuum-field radiation energy flows for his sphere are spherically symmetric with respect to its center. In other words,
only the wave vectors that are perpendicular to his sphere surface were included in the Casimir force calculation. In
the following sections, the non-perpendicular wave vector contributions to the Casimir force that were not accounted
for in Boyer’s work are considered.

4.1.1. Hollow Spherical Shell

As shown in Figure 4.6, the vacuum-field radiation imparts upon a differential patch of an areadA on the inner wall
of the conducting spherical cavity a net momentum of the amount

4~pinner = −1
2
~4~k′inner

(
; ~R′s,1, ~R′s,0

)
=

2nπ~ cos θinc∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
R̂′s,1,

{
0 ≤ θinc < π/2,
n = 1, 2, 3, · · · ,

where4~k′inner
(
; ~R′s,1, ~R′s,0

)
is from equation (3.16). The angle of incidenceθinc is from equation (A.115);

~Rs,1

(
r′i, ~Λ

′
s,1

)
and ~Rs,2

(
r′i, ~Λ

′
s,2

)
follow the generic form shown in equation (3.17).

Similarly, the vacuum-field radiation imparts upon a differential patch of an areadA on the outer surface of the
conducting spherical shell a net momentum of the amount

4~pouter = −1
2
~4~k′outer

(
; ~R′s,1 + aR̂′s,1

)
= −2~

∥∥∥~k′i,f
∥∥∥ cos θincR̂′s,1,

{
0 ≤ θinc < π/2,
n = 1, 2, 3, · · · ,
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where4~k′outer
(
; ~R′s,1 + aR̂′s,1

)
is from equation (3.18).

The net average force per unit time, per initial wave vector direction, acting on differential element patch of an area
dA is given by

~Fs,avg = lim
4t→1

(4~pouter
4t +

4~pinner
4t

)

or

~Fs,avg = 2~ cos θinc


 nπ∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
−

∥∥∥~k′i,f
∥∥∥

 R̂′s,1,

{
0 ≤ θinc < π/2,
n = 1, 2, 3, · · · .

Notice that ~Fs,avg is called a force per initial wave vector direction because it is computed for~k′i,b and ~k′i,f along
specific initial directions. Here~k′i,b denotes a particular initial wave vector~k′i entering the resonator at~Rs,0 as shown
in Figure 3.4. The subscriptb for ~k′i,b denotes the bounded space inside the resonator. The~k′i,f denotes a particular
initial wave vector~k′i impinging upon the surface of the unbounded region of sphere at point~R′s,1 + aR̂′s,1 as shown
in Figure 3.4. The subscriptf for ~k′i,f denotes the free space external to the resonator.

Because the wave vector~k′i,f resides in free or unbounded space, its magnitude
∥∥∥~k′i,f

∥∥∥ can take on a continuum

of allowed modes, whereas
∥∥∥~k′i,b

∥∥∥ have been restricted by
∥∥∥~L

∥∥∥ =
∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥ of equation

(C.2). The free space limit is the case where the radius of the sphere becomes very large. Therefore, by designating∥∥∥~k′i,f
∥∥∥ as

∥∥∥~k′i,f
∥∥∥ = lim

r′i→∞
nπ∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
,

and summing over all allowed modes, the total average force per unit time, per initial wave vector direction, per unit
area is given by

~Fs,avg =



∞∑
n=1

nπ2~ cos θinc∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
− lim
r′i→∞

∞∑
n=1

nπ2~ cos θinc∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥


 R̂′s,1.

In the limit r′i → ∞, the second summation to the right can be replaced by an integration,
∑∞
n=1 →

∫∞
0
dn. Hence,

we have

~Fs,avg =



∞∑
n=1

2~nπ cos θinc∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
− lim
r′i→∞

∫ ∞

0

2~nπ cos θinc∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
dn


 R̂′s,1,

or with the following substitutions,

k′i,f ≡
nπ∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
, dn =

1
π

∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥ dk′i,f ,

the total average force per unit time, per initial wave vector direction, per unit area is written as

~Fs,avg = 2~ cos θinc



∞∑
n=1

nπ∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥

− 1
π

lim
r′i→∞

∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
∫ ∞

0

k′i,fdk
′
i,f

]
R̂′s,1, (4.1)
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where0 ≤ θinc < π/2 andn = 1, 2, 3, · · · . The total average vacuum-field radiation force per unit time acting on the
uncharged conducting spherical shell is therefore

~Fs,total =
∑

{~k′i,b, ~k′i,f , ~R′s,0}

∫

S

~Fs,avg • d~Ssphere

or

~Fs,total =
∑

{~k′i,b, ~k′i,f , ~R′s,0}

∫

S



∞∑
n=1

2nπ~ cos θinc∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
− 2~

π
cos θinc

× lim
r′i→∞

∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
∫ ∞

0

k′i,fdk
′
i,f

]
R̂′s,1 • d~Ssphere, (4.2)

whered~Ssphere is a differential surface element of a sphere and the integration
∫
S

is over the spherical surface. The

term ~R′s,0 is the initial crossing point inside the sphere as defined in equation (3.2). The notation
∑
{~k′i,b,~k′i,f , ~R′s,0}

imply the summation over all initial wave vector directions for both inside
(
~k′i,b

)
and outside

(
~k′i,f

)
of the sphere,

over all crossing points given by~R′s,0.
It is easy to see that~Fs,avg of equation (4.1) is an “unregularized”1D Casimir force expression for the parallel

plates (see the vacuum pressure approach by Milonni, Cook and Goggin [25]). It becomes more apparent with the
substitution4t = d/c. An application of the Euler-Maclaurin summation formula [23, 24] leads to the regularized,
finite force expression. The force~Fs,avg is attractive because

cos θinc > 0

and

∞∑
n=1

nπ∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
<

1
π

lim
r′i→∞

∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
∫ ∞

0

k′i,fdk
′
i,f ,

where
∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥ is a constant for a given initial wave~k′i,b and the initial crossing point

~R′s,0 in the cross-section of a sphere (or hemisphere). The total average force~Fs,total, which is really the sum of
~Fs,avg over all ~R′s,0 and all initial wave directions, is therefore also attractive. For the sphere configuration of Figure
3.4, where the energy flow direction is not restricted to the direction of local surface normal, the Casimir force problem
becomes an extension of infinite set of parallel plates of a unit area.

4.1.2. Hemisphere-Hemisphere and Plate-Hemisphere

Similarly, for the hemisphere-hemisphere and plate-hemisphere configurations, the expression for the total average
force per unit time, per initial wave vector direction, per unit area is identical to that of the hollow spherical shell with
modifications,

~Fh,avg = 2~ cos θinc



∞∑
n=1

nπ∥∥∥~Rh,2
(
r′i, ~Λ

′
h,2

)
− ~Rh,1

(
r′i, ~Λ

′
h,1

)∥∥∥

− 1
π

lim
r′i→∞

∥∥∥~Rh,2
(
r′i, ~Λ

′
h,2

)
− ~Rh,1

(
r′i, ~Λ

′
h,1

)∥∥∥
∫ ∞

0

k′i,fdk
′
i,f

]
R̂′h,1, (4.3)

whereθinc ≤ π/2 andn = 1, 2, 3, · · · . The incidence angleθinc is from equation (A.115);~Rh,1
(
r′i, ~Λ

′
h,1

)
and

~Rh,2

(
r′i, ~Λ

′
h,2

)
follow the generic form shown in equation (3.21). This force is attractive for the same reasons as
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discussed previously for the hollow spherical shell case. The total radiation force averaged over unit time, over all
possible initial wave vector directions, acting on the uncharged conducting hemisphere-hemisphere (plate-hemisphere)
surface is given by

~Fh,total =
∑

{~k′i,b,~k′i,f , ~R′h,0}

∫

S



∞∑
n=1

2nπ~ cos θinc∥∥∥~Rh,2
(
r′i, ~Λ

′
h,2

)
− ~Rh,1

(
r′i, ~Λ

′
h,1

)∥∥∥
− 2~

π
cos θinc

× lim
r′i→∞

∥∥∥~Rh,2
(
r′i, ~Λ

′
h,2

)
− ~Rh,1

(
r′i, ~Λ

′
h,1

)∥∥∥
∫ ∞

0

k′i,fdk
′
i,f

]
R̂′h,1 • d~Shemisphere, (4.4)

whered~Shemisphere is now a differential surface element of a hemisphere and the integration
∫
S

is over the surface

of the hemisphere. The term~R′h,0 is the initial crossing point of the hemisphere opening as defined in equation (3.2).

The notation
∑
{~k′i,b, ~k′i,f , ~R′h,0} imply the summation over all initial wave vector directions for both inside

(
~k′i,b

)

and outside
(
~k′i,f

)
of the hemisphere-hemisphere (or the plate-hemisphere) resonator, over all crossing points given

by ~R′h,0.
It should be remarked that for the plate-hemisphere configuration, the total average radiation force remains identical

to that of the hemisphere-hemisphere configuration only for the case where the gap distance between plate and the
center of hemisphere is more than the hemisphere radiusr′i.When the plate is placed closer, the boundary quantization

length
∥∥∥~L

∥∥∥ must be chosen carefully to be either

∥∥∥~L
∥∥∥ =

∥∥∥~Rh,2
(
r′i, ~Λ

′
h,2

)
− ~Rh,1

(
r′i, ~Λ

′
h,1

)∥∥∥

or
∥∥∥~L

∥∥∥ =
∥∥∥~Rp

(
r′i, ~Λ

′
p

)
− ~Rh,Nh,max

(
r′i, ~Λ

′
h,Nh,max

)∥∥∥ .

They are illustrated in Figure 3.8. The proper one to use is the smaller of the two. Here~Rp

(
r′i, ~Λ

′
p

)
is from equation

(C.54) of Appendix C3 andNh,max is defined in equation (C.8) of Appendix C2.

4.2. Interpretation of the Result

Because only the specification of boundary is needed in Casimir’s vacuum-field approach as opposed to the use of a
polarizability parameter in Casimir-Polder interaction picture, the Casimir force is sometimes regarded as a configu-
rational force. On the other hand, the Casimir effect can be thought of as a macroscopic manifestation of the retarded
van der Waals interaction. And the Casimir force can be equivalently approximated by a summation of the constituent
molecular forces employing Casimir-Polder interaction. This practice inherently relies on the material properties of
the involved conductors through the use of polarizability parameters. In this respect, the Casimir force can be regarded
as a material dependent force.

Boyer’s material property is such that the atoms in his conducting sphere are arranged in such manner to respond
only to the impinging radiation at local normal angle of incidence to the sphere surface, and they also radiate only
along the direction of local normal to its surface. When the Casimir force is calculated for a sphere made of Boyer’s
fictitious material, the force is repulsive. Also, in Boyer’s original work, the laboratory boundary did not exist. When
Boyer’s sphere is placed in a realistic laboratory, the net Casimir force acting on his sphere becomes attractive because
the majority of the radiation from the laboratory boundaries acts to apply inward pressure on the external surface of
sphere when the angle of incidence is oblique with respect to the local normal. If the sphere is made of ordinary perfect
conductors, the impinging radiation at oblique angles of incidence would be reflected. In such cases the total radiation
pressure applied to the external local-sphere-surface is twice the pressure exerted by the incident wave, which is the
force found in equation (4.2) of the previous section. However, Boyer’s sphere cannot radiate along the direction that
is not normal to the local-sphere-surface. Therefore, the total pressure applied to Boyer’s sphere is half of the force
given in equation (4.2) of the previous section. This peculiar incapability of emission of a Boyer’s sphere would lead to
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Region
Apparatus

Figure 4.7.: To deflect away as much possible the vacuum-field radiation emanating from the laboratory boundaries,
the walls, floor and ceiling are constructed with some optimal curvature to be determined. The apparatus
is then placed within the “Apparatus Region.”

the absorption of the energy and would cause a rise in the temperature for the sphere. Nonetheless, the extra pressure
due to the waves of oblique angle of incidence is large enough to change the Casimir force for Boyer’s sphere from
being repulsive to attractive. The presence of the laboratory boundaries only act to enhance the attractive aspect of the
Casimir force on a sphere. The fact that Boyer’s sphere cannot irradiate along the direction that is not normal to the
local-sphere-surface, whereas ordinary perfect conductors irradiate in all directions, implies that his sphere is made
of extraordinarily hypothetical material, and this may be the reason why the repulsive Casimir force have not been
experimentally observed to date.

In conclusion, (1) the Casimir force is both boundary and material property dependent. The particular shape of the
conductor, e.g. sphere, only introduces the preferred direction for radiation. For example, radiations in direction nor-
mal to the local surface has bigger magnitude than those radiating in other directions. This preference for the direction
of radiation is intrinsically connected to the preferred directions for the lattice vibrations. And, the characteristic of
lattice vibrations is intrinsically connected to the property of material. (2) Boyer’s sphere is made of extraordinary
conducting material, which is why his Casimir force is repulsive. (3) When the radiation pressures of all angles of
incidence are included in the Casimir force calculation, the force is attractive for a charge-neutral sphere made of
ordinary perfect conductor.

4.3. Suggestions on the Detection of Repulsive Casimir Force for a
Sphere

The first step in detecting the repulsive Casimir force for a spherical configuration is to find a conducting material that
most closely resembles the Boyer’s material to construct two hemispheres. It has been discussed previously that even
Boyer’s sphere can produce attractive Casimir force when the radiation pressures due to oblique incidence waves are
included in the calculation. Therefore, the geometry of the laboratory boundaries have to be chosen to deflect away as
much as possible the oblique incident wave as illustrated in Figure 4.7. Once these conditions are met, the experiment
can be conducted in the region labeled “Apparatus Region” to observe Boyer’s repulsive force.

4.4. Outlook

The Casimir effect has influence in broad range of physics. Here, we list one such phenomenon known as “sonolumi-
nescense,” and, finally conclude with the Casimir oscillator.
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Figure 4.8.: The original bubble shape shown in dotted lines and the deformed bubble in solid line under strong acous-
tic field.

4.4.1. Sonoluminescense

The phenomenon of sonoluminescense remains a poorly understood subject to date [28, 29]. When a small air bubble
of radius∼ 10−3 cm is injected into water and subjected to a strong acoustic field of∼ 20 kHz under pressure roughly
∼ 1 atm, the bubble emits an intense flash of light in the optical range, with total energy of roughly∼ 107 eV. This
emission of light occurs at minimum bubble radius of roughly∼ 10−4 cm. The flash duration has been determined to
be on the order of100 ps [30, 31, 32]. It is to be emphasized that small amounts of noble gases are necessary in the
bubble for sonoluminescense.

The bubble in sonoluminescense experiment can be thought of as a deformed sphere under strong acoustic pressure.
The dynamical Casimir effect arises due to the deformation of the shape; therefore, introducing a modification to~L21 =∥∥∥~R2 − ~R1

∥∥∥ from that of the original bubble shape. Here~L21 is the path length for the reflecting wave in the original

bubble shape. In general~L21 ≡ ~L21 (t) =
∥∥∥~R2 (ri (t) , θ (t) , φ (t))− ~R1 (ri (t) , θ (t) , φ (t))

∥∥∥ . From the relations

found in this thesis work for the reflection points~R1 (ri (t) , θ (t) , φ (t)) and ~RN (ri (t) , θ (t) , φ (t)) , together with
the dynamical Casimir force expression of equation (3.31), the amount of initial radiation energy converted into heat
energy during the deformation process can be found. The bubble deformation process shown in Figure 4.8 is a
three dimensional heat generation problem. Current investigation seeks to determine if the temperature can be raised
sufficiently to cause deuterium-tritium (D-T) fusion, which could provide an alternative approach to achieve energy
generation by this D-T reaction (threshold∼ 17KeV ) [33]. Its theoretical treatment is similar to that discussed on
the1D problem shown in Figure 3.9.

4.4.2. Casimir Oscillator

If one can create a laboratory as shown in Figure 4.7, and place in the laboratory hemispheres made of Boyer’s material,
then the hemisphere-hemisphere system will execute an oscillatory motion. When two such hemispheres are separated,
the allowed wave modes in the hemisphere-hemisphere confinement would no longer follow Boyer’s spherical Bessel

function restriction. Instead it will be strictly constrained by the functional relation of
∥∥∥~R2 − ~R1

∥∥∥ , where~R1 and ~R2

are two neighboring reflection points. Only when the two hemispheres are closed, would the allowed wave modes
obey Boyer’s spherical Bessel function restriction.

Assuming that hemispheres are made of Boyer’s material and the laboratory environment is that shown in Figure 4.7,
the two closed hemispheres would be repulsing because Boyer’s Casimir force is repulsive. Once the two hemispheres
are separated, the allowed wave modes are governed by the internal reflections at oblique angle of incidence. Since the
hemispheres made of Boyer’s material are “infinitely unresponsive” to oblique incidence waves, all these temporary
non-spherical symmetric waves would be absorbed by the Boyer’s hemispheres and the hemispheres would heat up.
The two hemispheres would then attract each other and the oscillation cycle repeats. Such a mechanical system may
have application.
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1

Unclosed

Closed

R1R2
R

2 R

Figure 4.9.: The vacuum-field radiation energy flows are shown for closed and unclosed hemispheres. For the hemi-
spheres made of Boyer’s material, the non-radial wave would be absorbed by the hemispheres.
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Appendices

These are my original derivations and developments that were too tedious and lengthy to be included in the main
body of the thesis. There are five appendices: (1) Appendix A, (2) Appendix B, (3) Appendix C, (4) Appendix D
and Appendix E. The appendices C and D are further divided into subparts C.1, C.2, C.3, D.1 and D.2. The title and
the layout of the appendices closely follow the main body of the thesis. Finally, the appendix E have been added to
provide further list of references pertaining to the Casimir effect, but which were not explicitly used by this thesis.
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A. Reflection Points on the Surface of a
Resonator

In this appendix, the original derivations and developments of this thesis pertaining to the reflection dynamics are
included. It is referenced by the text of this thesis to supply all the details.

For the configuration shown in Figure 3.1, the wave vector directed along an arbitrary direction in Cartesian coor-
dinates is written as

~k′1
(
k′1,x, k

′
1,y, k

′
1,z

)
=

3∑

i=1

k′1,iêi, k′1,i =





i = 1→ k′1,x, ê1 = x̂,
i = 2→ k′1,y, ê2 = ŷ
i = 3→ k′1,z, ê3 = ẑ.

(A.1)

The unit wave vector is given by

k̂′1 =
∥∥∥~k′1

∥∥∥
−1 3∑

i=1

k′1,iêi. (A.2)

The initial crossing position~R′0 of hemisphere opening for the incident wave~k′1 is defined as

~R′0
(
r′0,x, r

′
0,y, r

′
0,z

)
=

3∑

i=1

r′0,iêi, r′0,i =





i = 1→ r′0,x,
i = 2→ r′0,y,
i = 3→ r′0,z.

(A.3)

It should be noticed here that~R′0 has only two components,r′0,x and r′0,z. But nevertheless, one can always set
r′0,y = 0 whenever needed. Since no particular wave with certain wavelength is prescribed initially, it is desirable to
employ a parameterization scheme to represent these wave vectors. The line segment traced out by the wave vector
k̂′1 is formulated in the parametric form

~R′1 = ξ1k̂′1 + ~R′0 =
3∑

i=1

[
r′0,i + ξ1

∥∥∥~k′1
∥∥∥
−1

k′1,i

]
êi, (A.4)

where the real variableξ1 is a positive definite parameter. The restrictionξ1 ≥ 0 is a necessary condition since the
direction of the wave propagation is set byk̂′1. Here ~R′1 denotes the first reflection point on the hemisphere. In terms
of spherical coordinates,~R′1 takes the form

~R′1 (r′i, θ
′
1, φ

′
1) = r′i

3∑

i=1

Λ′1,iêi,





Λ′1,1 = sin θ′1 cosφ′1,
Λ′1,2 = sin θ′1 sinφ′1,
Λ′1,3 = cos θ′1,

(A.5)

wherer′i is the hemisphere radius,θ′1 andφ′1 are the polar and azimuthal angles respectively of the first reflection
point ~R′1. The subscripti of r′i denotes “inner radius” and it is not a summation index. Equations (A.4) and (A.5) are
combined as

3∑

i=1

[
r′0,i + ξ1

∥∥∥~k′1
∥∥∥
−1

k′1,i − r′iΛ1,i

]
êi = 0. (A.6)

Because the basis vectorsêi are independent of each other, the above relations are only satisfied when each coefficients
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of êi vanish independently,

r′0,i + ξ1

∥∥∥~k′1
∥∥∥
−1

k′1,i − r′iΛ1,i = 0, i = 1, 2, 3. (A.7)

The three termsΛ1,i=1, Λ1,i=2 andΛ1,i=3 satisfy an identity

3∑

i=1

Λ2
1,i = 1. (A.8)

From equation (A.7),Λ2
1,i is computed for eachi :

Λ2
1,i = [r′i]

−2
{[
r′0,i

]2 + ξ21

∥∥∥~k′1
∥∥∥
−2 [

k′1,i
]2 + 2r′0,iξ1

∥∥∥~k′1
∥∥∥
−1

k′1,i

}
, i = 1, 2, 3.

Substituting the above result ofΛ2
1,i into equation (A.8) and after rearrangement, one obtains

ξ21

3∑

i=1

∥∥∥~k′1
∥∥∥
−2 [

k′1,i
]2 + 2ξ1

∥∥∥~k′1
∥∥∥
−1 3∑

i=1

r′0,ik
′
1,i +

3∑

i=1

[
r′0,i

]2 − [r′i]
2 = 0. (A.9)

Further simplifying, it becomes

ξ21 + 2k̂′1 • ~R′0ξ1 +
∥∥∥ ~R′0

∥∥∥
2

− [r′i]
2 = 0. (A.10)

There are two roots,

ξ1,a = −k̂′1 • ~R′0 −
√[

k̂′1 • ~R′0
]2

+ [r′i]
2 −

∥∥∥ ~R′0
∥∥∥

2

and

ξ1,b = −k̂′1 • ~R′0 +

√[
k̂′1 • ~R′0

]2

+ [r′i]
2 −

∥∥∥ ~R′0
∥∥∥

2

.

The root to be used should have a positive value. For the wave reflected within the hemisphere,~R′0 ≤ r′i,
√[

k̂′1 • ~R′0
]2

+ [r′i]
2 −

∥∥∥ ~R′0
∥∥∥

2

≥
∣∣∣k̂′1 • ~R′0

∣∣∣ ≥ −k̂′1 • ~R′0

where the equality
∣∣∣k̂′1 • ~R′0

∣∣∣ = −k̂′1 • ~R′0 happens when̂k′1 • ~R′0 ≤ 0. Therefore,ξ1,a ≤ 0 andξ1,b ≥ 0; the

positive rootξ1,b should be selected. For bookkeeping purposes,ξ1,b is designated asξ1,p :

ξ1,p = −k̂′1 • ~R′0 +

√[
k̂′1 • ~R′0

]2

+ [r′i]
2 −

∥∥∥ ~R′0
∥∥∥

2

. (A.11)

Using this positive root, the first reflection point of the inner hemisphere is found to be

~R′1
(
ξ1,p; ~R′0, k̂′1

)
=

3∑

i=1

[
r′0,i + ξ1,p

∥∥∥~k′1
∥∥∥
−1

k′1,i

]
êi. (A.12)

The incident wave~k′i, shown in Figure A.1 and wherei here stands for incident wave, can always be decomposed

46



A. Reflection Points on the Surface of a Resonator
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Figure A.1.: A simple reflection of incoming wave~k′i from the surface defined by a local normal~n′.

into components parallel and perpendicular to the vector~n′ normal to the reflecting surface,

~k′i = ~k′i,‖ + ~k′i,⊥ =
~n′ • ~k′i
~n′ • ~n′

~n′ +

[
~n′ × ~k′i

]
× ~n′

~n′ • ~n′
.

If the local normaln̂′ is already normalized to unity, the above expression reduces to

~k′i = n̂′ • ~k′in̂′ +
[
n̂′ × ~k′i

]
× n̂′. (A.13)

Here the angle between~k′i andn̂′ is π − θi. The action of reflection only modifies~k′i,‖ in the reflected wave. The

reflected wave part of~k′i in equation (A.13) is

~k′r = αr,⊥~k′i,⊥ − αr,‖~k′i,‖ = αr,⊥
[
n̂′ × ~k′i

]
× n̂′ − αr,‖n̂′ • ~k′in̂′, (A.14)

where~k′i,‖ have been rotated by180o on the plane of incidence. The new quantitiesαr,‖ andαr,⊥ are the reflection
coefficients. For a perfect reflecting surfaces,αr,‖ = αr,⊥ = 1. Because of the frequent usage of the component for
~k′r, equation (A.14) is also written in component form. The component of the double cross product

[
n̂′ × ~k′i

]
× n̂′

is computed first,
{[
n̂′ × ~k′i

]
× n̂′

}
l
= εlmn

[
n̂′ × ~k′i

]
m
n′n = εlmnεmqrn

′
qk
′
i,rn

′
n = εnlmεqrmn

′
qk
′
i,rn

′
n

= [δnqδlr − δnrδlq]n′qk′i,rn′n = δnqδlrn
′
qk
′
i,rn

′
n − δnrδlqn′qk′i,rn′n

= n′nk
′
i,ln

′
n − n′lk′i,nn′n

or

[
n̂′ × ~k′i

]
× n̂′ =

3∑

l=1

[
n′nk

′
i,ln

′
n − n′lk′i,nn′n

]
êl, (A.15)

where the summation over the indexn is implicit. In component form,~k′r is hence expressed as

~k′r =
3∑

l=1

{
αr,⊥

[
n′nk

′
i,ln

′
n − n′lk′i,nn′n

]− αr,‖n′nk′i,nn′l
}
êl, (A.16)

where it is understood̂n′ is already normalized.
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The second reflection point~R′2 is found by repeating the steps done for~R′1,

~R′2 = ~R′1 + ξ2,pk̂′r = ~R′1 + ξ2,p
αr,⊥

[
n̂′ × ~k′i

]
× n̂′ − αr,‖n̂′ • ~k′in̂′∥∥∥αr,⊥

[
n̂′ × ~k′i

]
× n̂′ − αr,‖n̂′ • ~k′in̂′

∥∥∥
,

whereξ2,p is the new positive parameter corresponding to the second reflection point. The procedure can be repeated
for any reflection point. Although this technique is sound, it can be noticed immediately that the technique suffers
from the lack of elegance. For this reason, the scalar field technique will be exclusively used in studying the reflection
dynamics. For a simple plane, the scalar field function can be inferred rather intuitively. However, for more complex
surfaces, one has to work it out to get the corresponding scalar field. For the purpose of generalization of the technique
to any arbitrary surfaces, we derive the scalar field functional for the plane in great detail.

In simple reflection dynamics, there exists a plane of incidence in which all reflections occur. The plane of incidence
is determined by the incident wave~k′i and the local surface normal~n′i. For the system shown in Figure 3.1,~k′i and
~n′i are given by

~k′i = ~k′1, ~n′n′i,1 ≡ − ~R′1
(
ξ1,p; ~R′0, k̂′1

)
= −ξ1,pk̂′1 − ~R′0.

The normal to the incidence plane is characterized by the cross product,

~n′p,1 = ~k′1 × ~n′n′i,1 = ~k′1 ×
[
−ξ1,pk̂′1 − ~R′0

]
= −~k′1 × ~R′0 = −

3∑

i=1

εijkk
′
1,jr

′
0,kêi,

where the summation over the indicesj andk are implicit. The normal to the incidence plane is normalized as

n̂′p,1 = −
∥∥∥~n′p,1

∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kêi. (A.17)

In order to take advantage of the information given above, the concept of scalar fields in mathematical sense is in
order. A functionalf (x′, y′, z′) is a scalar field if to each point(x′, y′, z′) of a region in space, there corresponds a
numberλ. The study of a scalar field is a study of scalar valued functions of three variables. Scalar fields are connected
to its normals, e.g., equation (A.17), through the relation

n̂′p,1 ∝ ~∇′fp,1 (x′, y′, z′) =
3∑

i=1

êi
∂

∂ν′i
fp,1 (x′, y′, z′) , i =





1→ ν′1 = x′,
2→ ν′2 = y′,
3→ ν′3 = z′.

(A.18)

Introducing a constant proportionality factorβp,1, equation (A.18) becomes

n̂′p,1 = βp,1

3∑

i=1

êi
∂

∂ν′i
fp,1 (x′, y′, z′) . (A.19)

The proportionality factorβp,1 is intrinsically connected to the normalization of~∇′fp,1. Because the vector̂n′p,1 is a
unit vector, its magnitude squared is

β2
p,1

3∑

i=1

[
∂

∂ν′i
fp,1 (x′, y′, z′)

]2

= 1 → βp,1 = ±
{

3∑

i=1

[
∂

∂ν′i
fp,1 (x′, y′, z′)

]2
}−1/2

.

In equation (A.19), the directions for vectorŝn′p,1 and ~∇′fp,1 are intrinsically built in. Therefore, the proportionality
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factorβp,1 has to be a positive quantity,

βp,1 =

{
3∑

i=1

[
∂

∂ν′i
fp,1 (x′, y′, z′)

]2
}−1/2

. (A.20)

Unfortunately, the exact form of the proportionality coefficientβp,1 requires the knowledge offp,1, which is yet to be
determined. However, we can use it formally for now until the solution forfp,1 is found.

Substituting the gradient function~∇′fp,1 into equation (A.19), and using equations (A.17) and (A.19), one arrives
at

3∑

i=1

[
∂

∂ν′i
fp,1 (x′, y′, z′) + β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]
êi = 0, i =





1→ ν′1 = x′,
2→ ν′2 = y′,
3→ ν′3 = z′.

(A.21)

Because the basis vectorsêi are linearly independent, the equation for each component is obtained as

∂

∂ν′i
fp,1 (α, β, γ) + β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k = 0, i =





1→ ν′1 = x′ = α,
2→ ν′2 = y′ = β,
3→ ν′3 = z′ = γ.

(A.22)

Integrating both sides of equation (A.22) over the variableν′i = α,

∫ α

α0

∂

∂α′
fp,1 (α′, β, γ) dα′ = −

∫ α

α0

β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εα′jkk
′
1,jr

′
0,kdα

′,

where the dummy variableα′ is introduced for integration purpose. The termsεα′jkk′1,jr
′
0,k, βp,1 and

∥∥∥~n′p,1
∥∥∥ are

independent of the dummy variableα′, and they can be moved out of the integrand,
∫ α

α0

∂

∂α′
fp,1 (α′, β, γ) dα′ = −β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εαjkk
′
1,jr

′
0,k

∫ α

α0

dα′. (A.23)

Because the total differential offp,1 is given by

dfp,1 =
∂fp,1
∂α′

dα′ +
∂fp,1
∂β

dβ +
∂fp,1
∂γ

dγ, α′ 6= β 6= γ, (A.24)

the term[∂fp,1/∂α′] dα′ can be written as

∂fp,1
∂α′

dα′ = dfp,1 − ∂fp,1
∂β

dβ − ∂fp,1
∂γ′

dγ.

The integration over the variableν′i = α in equation (A.23), with variablesν′i 6= α fixed, can be carried out with

dβ = dγ = 0,
∂

∂α′
fp,1 (α′, β, γ) dα′ = dfp,1 (α′, β, γ) (A.25)

as
∫ α

α0

dfp,1 (α′, β, γ) = −β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εαjkk
′
1,jr

′
0,k

∫ α

α0

dα′

to give

fp,1 (α, β, γ) = β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εαjkk
′
1,jr

′
0,k [α0 − α] + fp,1 (α0, β, γ) . (A.26)

The two terms
[
εαjkk

′
1,jr

′
0,k/

{
βp,1

∥∥∥~n′p,1
∥∥∥
}]

α0 and fp,1 (α0, β, γ) are independent ofα. These terms can only
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assume values ofν′i = β or ν′i = γ. By re-designatingα independent terms,

hp,1 (β, γ) = β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εαjkk
′
1,jr

′
0,kα0 + fp,1 (α0, β, γ) , (A.27)

equation (A.26) can be rewritten for bookkeeping purposes as

fp,1 (α, β, γ) = hp,1 (β, γ)− β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εαjkk
′
1,jr

′
0,kα. (A.28)

Substituting the result into equation (A.22) and performing a differentiation with respect to the variableν′i = β gives

∂

∂β

[
hp,1 (β, γ)− β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εαjkk
′
1,jr

′
0,kα

]
+ β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εβjkk
′
1,jr

′
0,k = 0

or

∂

∂β
hp,1 (β, γ) = −β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εβjkk
′
1,jr

′
0,k.

The integration of both sides with respect to the variableν′i = β yields the result

∫ β

β0

∂

∂β′
hp,1 (β′, γ) dβ′ = −

∫ β

β0

β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εβ′jkk
′
1,jr

′
0,kdβ

′ = −β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εβjkk
′
1,jr

′
0,k

∫ β

β0

dβ′,

where the dummy variableβ′ is introduced for integration purpose and the termsεβjkk
′
1,jr

′
0,k, βp,1 and

∥∥∥~n′p,1
∥∥∥ have

been taken out of the integrand because they are independent ofβ′. Following the same procedure used in equations
(A.24) through (A.25), the integrand[∂hp,1/∂β′] dβ′ on the left hand side of the integral is

∂

∂β′
hp,1 (β′, γ) dβ′ = dhp,1 (β′, γ) .

Consequently,hp,1 (β, γ) is given by

hp,1 (β, γ) = β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εβjkk
′
1,jr

′
0,k [β0 − β] + hp,1 (β0, γ) . (A.29)

The two terms
[
εβjkk

′
1,jr

′
0,k/

{
βp,1

∥∥∥~n′p,1
∥∥∥
}]

β0 andhp,1 (β0, γ) are independent ofβ. Theβ independent terms can

be re-designated as

gp,1 (γ) = β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εβjkk
′
1,jr

′
0,kβ0 + hp,1 (β0, γ) . (A.30)

For bookkeeping purposes, equation (A.29) is rewritten as

hp,1 (β, γ) = gp,1 (γ)− β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εβjkk
′
1,jr

′
0,kβ. (A.31)

Substitution ofhp,1 (β, γ) into equation (A.28) gives

fp,1 (α, β, γ) = gp,1 (γ)− β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1 [

εβjkk
′
1,jr

′
0,kβ + εαjkk

′
1,jr

′
0,kα

]
. (A.32)

Once more substitutingfp,1 (α, β, γ) into equation (A.22), and performing the differentiation with respect to the
variableν′i = γ, whereγ 6= α 6= β, we obtain

d

dγ

[
gp,1 (γ)− β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1 {

εβjkk
′
1,jr

′
0,kβ + εαjkk

′
1,jr

′
0,k

}
α

]
+ β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εγjkk
′
1,jr

′
0,k = 0
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or

d

dγ
gp,1 (γ) = −β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εγjkk
′
1,jr

′
0,k,

where the differentiation have been changed from∂ to d becausegp,1 is a function of single variable. The integration
of both sides with respect to the variableν′i = γ then gives

∫ γ

γ0

d

dγ′
gp,1 (γ′) dγ′ = −

∫ γ

γ0

β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εγ′jkk
′
1,jr

′
0,kdγ

′ = −β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εγjkk
′
1,jr

′
0,k

∫ γ

γ0

dγ′,

where the dummy variableγ′ have been introduced for integration purpose and the termsεγjkk
′
1,jr

′
0,k, βp,1 and∥∥∥~n′p,1

∥∥∥ have been taken out of the integrand because they are independent ofγ′. Knowing [dgp,1/dγ′] dγ′ = dgp,1,

the integration is carried out to yield

gp,1 (γ) = β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εγjkk
′
1,jr

′
0,k [γ0 − γ] + gp,1 (γ0) . (A.33)

The two terms
[
εγjkk

′
1,jr

′
0,k/

{
βp,1

∥∥∥~n′p,1
∥∥∥
}]

γ0 andgp,1 (γ0) are independent ofγ. The γ independent terms are

re-designated as

b0 = β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εγjkk
′
1,jr

′
0,kγ0 + gp,1 (γ0) . (A.34)

For bookkeeping purposes, equation (A.33) is rewritten as

gp,1 (γ) = b0 − β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1

εγjkk
′
1,jr

′
0,kγ. (A.35)

Substitutinggp,1 (γ) in equation (A.32), the result forfp,1 (α, β, γ) is found to be

fp,1 (α, β, γ) = b0 − β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kν

′
i, i =





1→ ν′1 = α = x′,
2→ ν′2 = β = y′,
3→ ν′3 = γ = z′.

(A.36)

The cross product expressed in terms of the Levi-Civita symbol is expanded to give

εx′jkk
′
1,jr

′
0,k = k′1,j=y′r

′
0,k=z′ − k′1,k=z′r′0,j=y′ , (A.37)

εy′jkk
′
1,jr

′
0,k = k′1,j=z′r

′
0,k=x′ − k′1,k=x′r′0,k=z′ , (A.38)

εz′jkk
′
1,jr

′
0,k = k′1,j=x′r

′
0,k=y′ − k′1,k=y′r′0,j=x′ . (A.39)

It is important to understand that the functionalfp,1 in equation (A.36) is a scalar field description of an infinite family
of parallel planes characterized by the normal given in equation (A.17),

n̂′p,1 = −
∥∥∥~n′p,1

∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kêi.

Because the normal̂n′p,1 is a cross product of the two vectors~k′1 and ~R′0, the surface represented by the scalar field
fp,1 is a plane spanned by all the scattered wave vectors. The graphical plot of the functionalfp,1 is illustrated in
Figure A.2. The three coefficients,

εαjkk
′
1,jr

′
0,k, εβjkk

′
1,jr

′
0,k, εγjkk

′
1,jr

′
0,k,
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Figure A.2.: Parallel planes characterized by a normaln̂′p,1 = −
∥∥∥~n′p,1

∥∥∥
−1 ∑3

i=1 εijkk
′
1,jr

′
0,kêi.

of the independent variablesα, β andγ define the slopes along the respective basesα̂, β̂ and γ̂. The integration
constantb0 provides infinite set of parallel planes whose common normal isn̂′p,1. For what is concerned with here,
only one of them containing the coordinate origin is required. It is convenient to choose the plane withb0 = 0. With
the plane ofb0 = 0 chosen, the scalar field of equation (A.36) is rewritten for the sake of bookkeeping purposes:

fp,1 (α, β, γ) = −β−1
p,1

∥∥∥~n′p,1
∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kν

′
i, i =





1→ ν′1 = α = x′,
2→ ν′2 = β = y′,
3→ ν′3 = γ = z′.

(A.40)

where−∞ ≤ {α, β, γ} ≤ ∞.

As mentioned before,fp,1 of equation (A.40) is a scalar field where~k′1 and ~R′0 are the two initially known vectors
which span locally the reflection surface. Other than~k′1 and ~R′0, any member vectors of the spanning set for the
incidence plane can also be used to determine the orientation of a surface. Then it is always true that

fp,1

(
α, β, γ; ~k′1, ~R′0

)
= fp,2

(
α, β, γ; ~k′2, ~R′1

)
= · · · = fp,N

(
α, β, γ; ~k′N , ~R′N

)
, (A.41)

where the integer indexN of ~k′N is used to enumerate the sequence of reflections; and the integer indexN of ~R′N is
used to enumerate the sequence of reflection points.

What is still yet undetermined in equation (A.40) is the proportionality factorβp,1. From equation (A.20), theβp,1
has an algebraic definition

βp,1 =

{
3∑

i=1

[
∂

∂ν′i
fp,1 (α, β, γ)

]2
}−1/2

, i =





1→ ν′1 = α,
2→ ν′2 = β,
3→ ν′3 = γ.
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The partial derivatives∂fp,1/∂ν′i are calculated with the solution offp,1 in equation (A.40),

∂

∂ν′i
fp,1 (α, β, γ) = −β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1 ∂

∂ν′i

3∑

i=1

εijkk
′
1,jr

′
0,kν

′
i = −β−1

p,1

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k;

which reduces to

βp,1


1−

∥∥∥~n′p,1
∥∥∥

{
3∑

i=1

[
εijkk

′
1,jr

′
0,k

]2
}−1/2


 = 0. (A.42)

The two possible solutions are eitherβp,1 = 0, or the term enclosed in the outermost square bracket must van-

ish. Becauseβp,1 = 0 is a useless trivial solution, the second solution has to be adopted. Since
∥∥∥~n′p,1

∥∥∥ =
{∑3

i=1

[
εijkk

′
1,jr

′
0,k

]2
}1/2

, the equation (A.42) is already satisfied for any value ofβp,1. Therefore,βp,1 is an arbi-

trary quantity, and it is simply chosen to be unity which makes the gradient function~∇′fp,1 automatically normalized.
The scalar field solutionfp,1 of equation (A.40) is now restated withβp,1 = 1,

fp,1 (α, β, γ) = −
∥∥∥~n′p,1

∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kν

′
i, i =





1→ ν′1 = α = x′,
2→ ν′2 = β = y′,
3→ ν′3 = γ = z′,

(A.43)

where−∞ ≤ {ν′1 = α = x′, ν′2 = β = y′, ν′3 = γ = z′} ≤ ∞.

The intercept between the plane of incidence, defined by equation (A.43), and the hemisphere is found through the
algebraic relation

x′2 + y′2 + z′2 = [r′i]
2
,

which can be written as

[r′i]
2 −

3∑

i=1

[ν′i]
2 = 0, i =





1→ ν′1 = x′,
2→ ν′2 = y′,
3→ ν′3 = z′,

(A.44)

where ther′i is the radius of sphere and the indexi denotes the radius of the inner surface. The intercept of interest is
shown in Figure 3.2.

One may be tempted to incorporate the surface vibration into equation (A.44) through a slight modification

[r′i (t)]
2 −

3∑

i=1

[ν′i]
2 = 0,

where the vibration have been introduced through the time variations in radius. Some have employed such a model
in describing the “Casimir radiation,” as well as the phenomenon of sonoluminescense mainly due to its simplicity
from the mathematical point of view [14, 29]. In general, if one wishes to incorporate the vibration of a surface, the
description of such system could be represented in the form

[r′i (θ
′, φ′, t)]2 −

3∑

i=1

[ν′i (θ
′, φ′)]2 = 0.

Since the radius function varies withθ′, φ′ andt, its treatment has to be postponed until the surface function can be
found in later sections. In the present discussion, the hemisphere is regarded as having no vibration.

Returning from the above short digression, the surface function of the sphere is expressed as the null function from
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equation (A.44),

fhemi (x′, y′, z′) = [r′i]
2 −

3∑

i=1

[ν′i]
2 = 0, i =





1→ ν′1 = x′,
2→ ν′2 = y′,
3→ ν′3 = z′.

(A.45)

The intersection between the two surfaces, the plane of incidence defined in equation (A.43) and the hemisphere
defined in equation (A.45), is found through the relation

fp,1 (x′, y′, z′)− fhemi (x′, y′, z′) = 0, (A.46)

which is equivalent to setting the scalar functionfp,1 (x′, y′, z′) = 0. Substituting expressions forfp,1 (x′, y′, z′) and
fhemi (x′, y′, z′) given in equations (A.43) and (A.45), we arrive at

3∑

i=1

{
[ν′i]

2 −
∥∥∥~n′p,1

∥∥∥
−1

εijkk
′
1,jr

′
0,kν

′
i

}
− [r′i]

2 = 0, i =





1→ ν′1 = α = x′,
2→ ν′2 = β = y′,
3→ ν′3 = γ = z′.

(A.47)

It is convenient to rewrite[r′i]
2 in the form

[r′i]
2 =

[
r′i,x′

]2 +
[
r′i,y′

]2 +
[
r′i,z′

]2 =
3∑

i=1

[
r′i,i

]2
, i =





1→ r′i,1 = r′i,x′ ,
2→ r′i,2 = r′i,y′ ,
3→ r′i,3 = r′i,z′ .

(A.48)

Equation (A.47) can then be written as

3∑

i=1

{
[ν′i]

2 −
∥∥∥~n′p,1

∥∥∥
−1

εijkk
′
1,jr

′
0,kν

′
i −

[
r′i,i

]2} = 0, i =





1→ ν′1 = α = x′; r′i,1 = r′i,x′ ,
2→ ν′2 = β = y′; r′i,2 = r′i,y′ ,
3→ ν′3 = γ = z′; r′i,3 = r′i,z′ .

(A.49)

Since the first two terms are already known, we can set each braced term equal to zero,

[ν′i]
2 −

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,kν

′
i −

[
r′i,i

]2 = 0, i = 1, 2, 3. (A.50)

The above relation, equation (A.50), is valid in determining the set of discrete reflection points. The solutions of this
quadratic equation are

ν′i =
1
2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]2

+
[
r′i,i

]2
}1/2

, i = 1, 2, 3, (A.51)

where the summation over the indicesj andk is implicit. The restriction ofν′i being real imposes the condition

[
1
2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]2

+
[
r′i,i

]2 ≥ 0, i = 1, 2, 3. (A.52)

In spherical coordinates, the three radial vector componentsr′i,1, r
′
i,2 andr′i,3 are

r′i,1 = r′i sin θ
′ cosφ′, r′i,2 = r′i sin θ

′ sinφ′, r′i,3 = r′i cos θ′, (A.53)

wherer′i,1 = r′i,x′ , r
′
i,2 = r′i,y′ andr′i,3 = r′i,z′ . Here the termsr′i, θ

′ andφ′ are the usual radial length, the polar and

the azimuthal angle. This guarantees that~R′ =
∑3
i=1 r

′
i,iêi is on the sphere, and justifies the step taken in equation

(A.50) since we are only interested in the conditions of the discriminants expressed by equation (A.52). Withr′i,i
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redefined in terms of spherical coordinates, the reality condition ofν′i in equation (A.52) becomes

[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′ cos2 φ′ ≥ 0, (A.54)

[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′ sin2 φ′ ≥ 0, (A.55)

[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 cos2 θ′ ≥ 0. (A.56)

Equations (A.54) through (A.56) provide allowed range ofν′i to ensure its value being real. The solution of equation
(A.56) is

cos2 θ′ ≥ −
[

1
2r′i

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]2

, (A.57)

which leads to two inequalities,

cos θ′ ≥ i 1
2r′i

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k, cos θ′ ≤ −i 1

2r′i

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k. (A.58)

These two inequalities cannot be satisfied simultaneously by the two vectors~R′0 and~k′1. We have to look forsin θ′

by combining equations (A.54) and (A.55) to give

1
4

∥∥∥~n′p,1
∥∥∥
−2 {[

ε1jkk
′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2} + [r′i]
2 sin2 θ′ ≥ 0,

which yields

sin2 θ′ ≥ −1
4

[r′i]
−2

∥∥∥~n′p,1
∥∥∥
−2 {[

ε1jkk
′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}
. (A.59)

The solutions are again two inequalities,

sin θ′ ≥ i

2r′i

∥∥∥~n′p,1
∥∥∥
−1 {[

ε1jkk
′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}
, (A.60)

sin θ′ ≤ − i

2r′i

∥∥∥~n′p,1
∥∥∥
−1 {[

ε1jkk
′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}
, (A.61)

which cannot be simultaneously satisfied by the vectors~R′0 and~k′1.We have to combine equations (A.57) and (A.59)
to give

tan2 θ′ ≥ [
ε3qrk

′
1,qr

′
0,r

]−2
{[
ε1jkk

′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}
, (A.62)

which leads to another two inequalities,

tan θ′ ≥ [
ε3qrk

′
1,qr

′
0,r

]−1
{[
ε1jkk

′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}1/2

, (A.63)

tan θ′ ≤ − [
ε3qrk

′
1,qr

′
0,r

]−1
{[
ε1jkk

′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}1/2

. (A.64)
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In the specified range forθ′, 0 ≤ θ′ ≤ π, the tangent function has the limits

lim
ε→0

(
0 ≤ θ′ ≤ 1

2
π − |ε|

)
⇒ 0 ≤ tan θ′ ≤ ∞, (A.65)

lim
ε→0

(
1
2
π + |ε| ≤ θ′ ≤ π

)
⇒ −∞ ≤ tan θ′ ≤ 0, (A.66)

whereε is infinitesimal quantity introduced for limiting purposes. Since there is no guarantee thatε3qrk
′
1,qr

′
0,r > 0 in

equations (A.63) and (A.64), one has to consider both cases whereε3qrk
′
1,qr

′
0,r > 0 andε3qrk′1,qr

′
0,r < 0. Therefore,

for the positive denominator case whereε3qrk′1,qr
′
0,r > 0, we have





ε3qrk
′
1,qr

′
0,r ≥ 0, limε→0

(
0 ≤ θ′ ≤ 1

2π − |ε|
)
,

0 ≤
(

tan θ′ ≥ [
ε3qrk

′
1,qr

′
0,r

]−1
{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)
≤ ∞;

(A.67)





ε3qrk
′
1,qr

′
0,r ≥ 0, limε→0

(
1
2π + |ε| ≤ θ′ ≤ π)

,

−∞ ≤
(

tan θ′ ≤ − [
ε3qrk

′
1,qr

′
0,r

]−1
{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)
≤ 0.

(A.68)

For the negative denominator case whereε3qrk
′
1,qr

′
0,r < 0, we rewrite equations (A.63) and (A.64) in the form

ε3qrk
′
1,qr

′
0,r ≤ 0 ⇒ −

∣∣ε3qrk′1,qr′0,r
∣∣ ≤ 0,

tan θ′ ≥ − ∣∣ε3qrk′1,qr′0,r
∣∣−1

{[
ε1jkk

′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}1/2

, (A.69)

tan θ′ ≤ ∣∣ε3qrk′1,qr′0,r
∣∣−1

{[
ε1jkk

′
1,jr

′
0,k

]2 +
[
ε2mnk

′
1,mr

′
0,n

]2}1/2

. (A.70)

The tangent function in the domain0 ≤ θ′ ≤ π has a discontinuity atθ′ = π/2, the inequality (A.69) has the limit
0 ≥ tan θ′ ≥ −∞, and the inequality (A.70) has the limit∞ ≥ tan θ′ ≥ 0. Therefore, the limits for a negative
denominator case whereε3qrk′1,qr

′
0,r < 0,





ε3qrk
′
1,qr

′
0,r ≤ 0, limε→0

(
0 ≤ θ′ ≤ 1

2π − |ε|
)
,

0 ≤
(

tan θ′ ≤ ∣∣ε3qrk′1,qr′0,r
∣∣−1

{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)
≤ ∞;

(A.71)





ε3qrk
′
1,qr

′
0,r ≤ 0, limε→0

(
1
2π + |ε| ≤ θ′ ≤ π)

,

−∞ ≤
(

tan θ′ ≥ − ∣∣ε3qrk′1,qr′0,r
∣∣−1

{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)
≤ 0.

(A.72)

Comparing equations (A.67), (A.68), (A.71) and (A.72), we see that two of them are identical when rewritten in
terms of the later convention whereε3qrk′1,qr

′
0,r ≤ 0 is expressed as−

∣∣ε3qrk′1,qr′0,r
∣∣ ≤ 0. The two tangent function

inequality limits are summarized below for bookkeeping purposes:




limε→0

(
0 ≤ θ′ ≤ 1

2π − |ε|
)
,

0 ≤
(

tan θ′ ≤ ∣∣ε3qrk′1,qr′0,r
∣∣−1

{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)
≤ ∞; (A.73)
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limε→0

(
1
2π + |ε| ≤ θ′ ≤ π)

,

−∞ ≤
(

tan θ′ ≥ − ∣∣ε3qrk′1,qr′0,r
∣∣−1

{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)
≤ 0. (A.74)

The corresponding arguments for inequalities in (A.73) and (A.74) are




limε→0

(
0 ≤ θ′ ≤ 1

2π − |ε|
)
,

θ′ = arctan

(
∣∣ε3qrk′1,qr′0,r

∣∣−1
{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)

; (A.75)





limε→0

(
1
2π + |ε| ≤ θ′ ≤ π)

,

θ′ = arctan

(
−

∣∣ε3qrk′1,qr′0,r
∣∣−1

{[
ε1jkk

′
1,jr

′
0,k

]2

+
[
ε2mnk

′
1,mr

′
0,n

]2}1/2
)
.

(A.76)

The spherical coordinate representation is incomplete without the azimuthal angleφ′.We have to solve for the allowed
range for the azimuthal angleφ′ by combining equations (A.54) and (A.55). From equation (A.54), we have

cos2 φ′ ≥ −
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2 [
r′i sin

2 θ′
]−2

and from equation (A.55),

sin2 φ′ ≥ −
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]2 [
r′i sin

2 θ′
]−2

.

They are combined to give

tan2 φ′ =
sin2 φ′

cos2 φ′
≥ [

ε1jkk
′
1,jr

′
0,k

]−2 [
ε2mnk

′
1,mr

′
0,n

]2
. (A.77)

The two inequalities are derived from the last equation,

tanφ′ ≥ [
ε1jkk

′
1,jr

′
0,k

]−1
ε2mnk

′
1,mr

′
0,n, tanφ′ ≤ − [

ε1jkk
′
1,jr

′
0,k

]−1
ε2mnk

′
1,mr

′
0,n. (A.78)

In the range ofφ′, 0 ≤ φ′ ≤ 2π, the tangent function has the limits

lim
ε→0

(
0 ≤ φ′ ≤ 1

2
π − |ε|

)
⇒ [0 ≤ tanφ′ ≤ ∞] , (A.79)

lim
ε→0

(
1
2
π + |ε| ≤ φ′ ≤ π − ε

)
⇒ [−∞ ≤ tanφ′ ≤ 0] , (A.80)

lim
ε→0

(
π + |ε| ≤ φ′ ≤ 3

2
π − |ε|

)
⇒ [0 ≤ tanφ′ ≤ ∞] , (A.81)

lim
ε→0

(
3
2
π + |ε| ≤ φ′ < 2π − |ε|

)
⇒ [−∞ ≤ tanφ′ < 0] , (A.82)

whereε is an infinitesimal number used in the limiting process. Because discontinuities occur atφ′ = π/2 and
φ′ = 3π/2, the inequalities (A.78) has the limits

0 ≤
(
tanφ′ ≥ [

ε1jkk
′
1,jr

′
0,k

]−1
ε2mnk

′
1,mr

′
0,n

)
≤ ∞,
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and
−∞ ≤

(
tanφ′ ≤ − [

ε1jkk
′
1,jr

′
0,k

]−1
ε2mnk

′
1,mr

′
0,n

)
≤ 0.

The ranges for inequalities in (A.79) through (A.82) can now be expressed explicitly as




limε→0

(
0 ≤ φ′ ≤ 1

2π − |ε|
)
, limε→0

(
π + |ε| ≤ φ′ ≤ 3

2π − |ε|
)
,

0 ≤
(

tanφ′ ≥
[
ε1jkk

′
1,jr

′
0,k

]−1

ε2mnk
′
1,mr

′
0,n

)
≤ ∞; (A.83)





limε→0

(
1
2π + |ε| ≤ φ′ ≤ π − ε) , limε→0

(
3
2π + |ε| ≤ φ′ < 2π − |ε|) ,

−∞ ≤
(

tanφ′ ≤ −
[
ε1jkk

′
1,jr

′
0,k

]−1

ε2mnk
′
1,mr

′
0,n

)
< 0. (A.84)

The solutions forφ′ are




limε→0

(
0 ≤ φ′ ≤ 1

2π − |ε|
)
, limε→0

(
π + |ε| ≤ φ′ ≤ 3

2π − |ε|
)
,

φ′ = arctan
([
ε1jkk

′
1,jr

′
0,k

]−1

ε2mnk
′
1,mr

′
0,n

)
; (A.85)





limε→0

(
1
2π + |ε| ≤ φ′ ≤ π − ε) , limε→0

(
3
2π + |ε| ≤ φ′ < 2π − |ε|) ,

φ′ = arctan
(
−

[
ε1jkk

′
1,jr

′
0,k

]−1

ε2mnk
′
1,mr

′
0,n

)
.

(A.86)

In order to haveν′i values being real, the allowed range ofθ′ is determined by equations (A.75) and (A.76) and the
allowed range ofφ′ is determined by equations (A.85) and (A.86). Having found valid ranges ofθ′ andφ′ in which
ν′i is real, the task is now shifted in locating reflection points on the inner hemisphere surface in spherical coordinates.
To distinguish one reflection point from the other, the notationν′i is modified toν′i → ν′1,i in equation (A.51). The first
index1 of ν′1,i denotes the first reflection point. In this notation, the second reflection point would beν′2,i and theN th
reflection point,ν′N,i. Then equation (A.53) is used to rewriter′i,i in terms of spherical coordinates. The Cartesian
coordinate variablesx′, y′ andz′ in equation (A.51) are expressed as

ν′1,1 ≡ x′1 =
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′1 cos2 φ′1

}1/2

, (A.87)

ν′1,2 ≡ y′1 =
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′1 sin2 φ′1

}1/2

, (A.88)

ν′1,3 ≡ z′1 =
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 cos2 θ′1

}1/2

. (A.89)

Although the first reflection point on hemisphere is fully described by~R′1 in equation (A.12), it is not convenient to
use ~R′1 in its current form. The most effective representation of~R′1 is in spherical coordinates. We setθ′ = θ′1 and
φ′ = φ′1 that describe the same reflection point~R′1 on the hemisphere. The subscript on the angular variablesθ′1
andφ′1 denotes first reflection point on the hemisphere surface. In terms of Cartesian variablesx′, y′ andz′, the first
reflection point on hemisphere is given by

~R′1 (x′1, y
′
1, z

′
1) =

3∑

i=1

ν′1,iêi, i =





1→ ν′1,1 = x′1,
2→ ν′1,2 = y′1,
3→ ν′1,3 = z′1.

(A.90)

The same point on the hemisphere, defined by equation (A.90), can be expressed in terms of a parametric representation
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of equation (A.12),

~R′1
(
ξ1,p; ~R′0, k̂′1

)
=

3∑

i=1

[
r′0,i + ξ1,p

∥∥∥~k′1
∥∥∥
−1

k′1,i

]
êi =

3∑

i=1

Υ1,iêi, (A.91)

where

Υ1,i = r′0,i + ξ1,p

∥∥∥~k′1
∥∥∥
−1

k′1,i, i = 1, 2, 3. (A.92)

Both representations,~R′1 (x′1, y
′
1, z

′
1) and ~R′1

(
ξ1,p; ~R′0, k̂′1

)
, describe the same point on the hemisphere. Therefore,

we have

~R′1 (x′1, y
′
1, z

′
1) = ~R′1

(
ξ1,p; ~R′0, k̂′1

)
→

3∑

i=1

[ν1,i −Υ1,i] êi = 0.

The components of the last equation are

ν′1,i −Υ1,i = 0, i = 1, 2, 3. (A.93)

Substituting expression ofν′1,i from equations (A.87), (A.88) and (A.89) into the above equation, we obtain

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′1 cos2 φ′1

}1/2

−Υ1,1 = 0, (A.94)

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′1 sin2 φ′1

}1/2

−Υ1,2 = 0, (A.95)

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 cos2 θ′1

}1/2

−Υ1,3 = 0, (A.96)

whereΥ1,i is defined in equation (A.92). To solve forθ′1, equation (A.96) is first rearranged,

±
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 cos2 θ′1

}1/2

= Υ1,3 − 1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k.

Square both sides and solve forcos2 θ′1, the result is

cos2 θ′1 = [r′i]
−2

[
Υ2

1,3 −Υ1,3

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]
. (A.97)

For reasons discussed earlier,θ′1 information from the sine function is also needed. Following the earlier procedures,
equations (A.94) and (A.95) are combined to yield the relation,

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′1 cos2 φ′1

}1/2

−Υ1,1

+
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2

+ [r′i]
2 sin2 θ′1 sin2 φ′1

}1/2

−Υ1,2 = 0,
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The equation is not easy to solve forsin2 φ′1. Fortunately, there is another way to extract the sine function which
requires the knowledge ofφ′1. The solution ofθ′1 is postponed until a solution ofφ′1 is found. To solve forφ′1, it is
desirable to solve forcos2 φ′1 andsin2 φ′1 from equations (A.94) and (A.95) first. Rearranging equation (A.94),

±
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′1 cos2 φ′1

}1/2

= Υ1,1 − 1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k,

and followed by squaring both sides, thencos2 φ′1 can be found to be

cos2 φ′1 = [r′i sin θ
′
1]
−2

[
Υ2

1,1 −Υ1,1

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]
. (A.98)

Similarly, rearranging equation (A.95),

±
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′1 sin2 φ′1

}1/2

= Υ1,2 − 1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

and squaring both sides, thensin2 φ′1 can be found to be

sin2 φ′1 = [r′i sin θ
′
1]
−2

[
Υ2

1,2 −Υ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]
. (A.99)

Finally, tan2 φ′1 can be obtained by combining equations (A.99) and (A.98),

tan2 φ′1 =
[
Υ2

1,1 −Υ1,1

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]−1 [
Υ2

1,2 −Υ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]
. (A.100)

Finally, the azimuthal angleφ′1 is found to be

φ′1 = arctan


±




Υ2
1,2 −Υ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

Υ2
1,1 −Υ1,1

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk′1,jr
′
0,k




1/2

 . (A.101)

The restriction ofφ′1 being real imposes the condition

Υ2
1,2 −Υ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

Υ2
1,1 −Υ1,1

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk′1,jr
′
0,k

≥ ς

or

Υ2
1,2 −Υ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n ≥ ςΥ2

1,1 − ςΥ1,1

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k,

whereς ≥ 0. Following equations (A.77) through (A.86), the following results are obtained:




limε→0

(
0 ≤ φ′1 ≤ 1

2π − |ε|
)
, limε→0

(
π + |ε| ≤ φ′1 ≤ 3

2π − |ε|
)
,

φ′1 = arctan

([
Υ2

1,2−Υ1,2‖ ~n′p,1‖−1
ε2mnk

′
1,mr

′
0,n

Υ2
1,1−Υ1,1‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k

]1/2
)

; (A.102)





limε→0

(
1
2π + |ε| ≤ φ′1 ≤ π − ε

)
, limε→0

(
3
2π + |ε| ≤ φ′1 < 2π − |ε|) ,

φ′1 = arctan

(
−

[
Υ2

1,2−Υ1,2‖ ~n′p,1‖−1
ε2mnk

′
1,mr

′
0,n

Υ2
1,1−Υ1,1‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k

]1/2
)
.

(A.103)
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Having found the solution forφ′1, we can proceed to finalize the task of solving for the polar angleθ′1. Combining the
results forcos2 φ′1 andsin2 φ′1 found in equations (A.98) and (A.99),sin2 θ′1 can be found to be

sin2 θ′1 = [r′i]
−2

[
Υ2

1,1 + Υ2
1,2 −

∥∥∥~n′p,1
∥∥∥
−1 {

Υ1,1ε1jkk
′
1,jr

′
0,k + Υ1,2ε2mnk

′
1,mr

′
0,n

}]
. (A.104)

Finally, tan2 θ′1 is constructed with equations (A.97) and (A.104),

tan2 θ′1 =
Υ2

1,1 + Υ2
1,2 −

∥∥∥~n′p,1
∥∥∥
−1 {

Υ1,1ε1jkk
′
1,jr

′
0,k + Υ1,2ε2mnk

′
1,mr

′
0,n

}

Υ2
1,3 −Υ1,3

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk′1,qr
′
0,r

. (A.105)

Thenθ′1 is given by

θ′1 = arctan


±




Υ2
1,1 + Υ2

1,2 −
∥∥∥~n′p,1

∥∥∥
−1 {

Υ1,1ε1jkk
′
1,jr

′
0,k + Υ1,2ε2mnk

′
1,mr

′
0,n

}

Υ2
1,3 −Υ1,3

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk′1,qr
′
0,r




1/2

 . (A.106)

Following equations (A.62) through (A.76), we arrive at




limε→0

(
0 ≤ θ′1 ≤ 1

2π − |ε|
)
,

θ′1 = arctan

([
Υ2

1,1+Υ2
1,2−‖ ~n′p,1‖−1{Υ1,1ε1jkk

′
1,jr

′
0,k+Υ1,2ε2mnk

′
1,mr

′
0,n}

Υ2
1,3−Υ1,3‖ ~n′p,1‖−1

ε3qrk′1,qr
′
0,r

]1/2
)

; (A.107)





limε→0

(
1
2π + |ε| ≤ θ′1 ≤ π

)
,

θ′1 = arctan

(
−

[
Υ2

1,1+Υ2
1,2−‖ ~n′p,1‖−1{Υ1,1ε1jkk

′
1,jr

′
0,k+Υ1,2ε2mnk

′
1,mr

′
0,n}

Υ2
1,3−Υ1,3‖ ~n′p,1‖−1

ε3qrk′1,qr
′
0,r

]1/2
)
.

(A.108)

The allowed angular values are all defined now:φ′1 by equations (A.102) and (A.103); andθ′1 by equations (A.107)
and (A.108). The initial reflection point on the inner hemisphere surface can be calculated by the equation:

~R′1 (r′i, θ
′
1, φ

′
1) =

3∑

i=1

ν′1,i (r
′
i, θ

′
1, φ

′
1) êi, i =





1→ ν′1,1 = r′i sin θ
′
1 cosφ′1,

2→ ν′1,2 = r′i sin θ
′
1 sinφ′1,

3→ ν′1,3 = r′i cos θ′1.
(A.109)

We still have to determine the maximum wavelength that can fit the hemispherical cavity. It is determined from
the distance between two immediate reflection points once they are found. We have to find expression describing the
second reflection point~R′2. In Figure 3.2, the angleψ1,2 satisfies the relation

ψ1,2 + θ2 + θr = π. (A.110)

Anglesθ2 andθr are equal due to the law of reflection, consequently

θ2 = θr = θ1, ψ1,2 = π − 2θi. (A.111)

It is important not to confuse the angleθi above with that of spherical polar angleθi which was previously denoted
with an indexi to indicate particular reflection point~R′i. Theθi in equation (A.111) is an angle of incidence, not a
polar angle. In order to avoid any further confusion in notation, equation (A.111) is restated with modifications applied
to the indexing convention for angle of incidence,

θi+1 = θr = θinc, ψi,i+1 = π − 2θinc. (A.112)
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The relation that connects angle of incidence to known quantities~k′1 and ~R′1 is

~k′1 • ~R′1 =
3∑

i=1

k′1,iν
′
1,i = r′i

∥∥∥~k′1
∥∥∥ cos θinc,

where
∥∥∥ ~R′1

∥∥∥ = r′i, and the indexi is not summed over. The incident angleθinc is given by

θinc = arccos

([
r′i

∥∥∥~k′1
∥∥∥
]−1 3∑

i=1

k′1,iν
′
1,i

)
. (A.113)

Substituting the explicit expression ofν′1,i :

ν′1,1 = x′1 = r′i sin θ
′
1 cosφ′1, ν′1,2 = y′1 = r′i sin θ

′
1 sinφ′1, ν′1,3 = z′1 = r′i cos θ′1, (A.114)

into equation (A.113), the incident angle is evaluated as

θinc = arccos




sin θ′1
[
k′x′1 cosφ′1 + k′y′1 sinφ′1

]
+ k′z′1 cos θ′1√[

k′x′1

]2

+
[
k′y′1

]2

+
[
k′z′1

]2


 , (A.115)

wherek′1,1 = k′x′1 , k
′
1,2 = k′y′1 andk′1,3 = k′z′1 . The second reflection point~R′2 has the form

~R′2
(
ν′2,1, ν

′
2,2, ν

′
2,3

)
=

3∑

i=1

ν′2,i
(
ν′1,1, ν

′
1,2, ν

′
1,3

)
êi, i =





1→ ν′2,1 = x′2, ν′1,1 = x′1,
2→ ν′2,2 = y′2, ν′1,2 = y′1,
3→ ν′2,3 = z′2, ν′1,3 = z′1.

(A.116)

The relation that connects two vectors~R′1 and ~R′2 is

~R′1 • ~R′2 = [r′i]
2 cosψ1,2, (A.117)

where
∥∥∥ ~R′1

∥∥∥ =
∥∥∥ ~R′2

∥∥∥ = r′i for a rigid hemisphere. Equivalently, this expression can be evaluated usingψ1,2, given

in equation (A.112), as

[r′i]
2 cos (π − 2θinc)−

3∑

i=1

ν′1,iν
′
2,i = 0. (A.118)

Equation (A.118) serves as one of the two needed relations. The other relation can be found from the cross product of
~R′1 and ~R′2,

~R′1 × ~R′2 =
3∑

i=1

εijkν
′
1,jν

′
2,kêi. (A.119)

Since ~R′1 and ~R′2 span the plane of incidence whose unit normal is given by equation (A.17),

n̂′p,1 = −
∥∥∥~n′p,1

∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kêi,
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the cross product of~R′1 and ~R′2 can be equivalently expressed as

~R′1 × ~R′2 = −Γ1,2

∥∥∥~n′p,1
∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,kêi, (A.120)

whereΓ1,2 is a proportionality factor. The factorΓ1,2 can be found simply by noticing

~R′1 × ~R′2 = Γ1,2n̂′p,1 →
∥∥∥ ~R′1 × ~R′2

∥∥∥ = Γ1,2

∥∥∥n̂′p,1
∥∥∥ = Γ1,2,

which leads to

Γ1,2 =
∥∥∥ ~R′1 × ~R′2

∥∥∥ = [r′i]
2 sin (π − 2θinc) . (A.121)

Equations (A.119) and (A.120) are combined as

3∑

i=1

[
εijkν

′
1,jν

′
2,k + Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]
êi = 0. (A.122)

The individual component equation is written

εijkν
′
1,jν

′
2,k + Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k = 0, i = 1, 2, 3. (A.123)

Equations (A.123) and (A.118) together provide the needed relations to specify the second reflection point~R′2 in
terms of the known quantities,~R′0, ~k′1 and ~R′1. It is convenient to expand equations (A.118) and (A.123) as

−[dΓ1,2/dθinc]/2︷ ︸︸ ︷
[r′i]

2 cos (π − 2θinc)−ν′1,1ν′2,1 − ν′1,2ν′2,2 − ν′1,3ν′2,3 = 0, (A.124)

ν′1,2ν
′
2,3 − ν′1,3ν′2,2 + Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k = 0, (A.125)

ν′1,3ν
′
2,1 − ν′1,1ν′2,3 + Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k = 0, (A.126)

ν′1,1ν
′
2,2 − ν′1,2ν′2,1 + Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k = 0. (A.127)

Equations (A.124) and (A.125) are added to yield

ν′1,1ν
′
2,1 +

[
ν′1,2 + ν′1,3

]
ν′2,2 +

[
ν′1,3 − ν′1,2

]
ν2,3 = Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k −

1
2
dΓ1,2

dθinc
. (A.128)

Equations (A.124) and (A.126) are added to give

[
ν′1,1 − ν′1,3

]
ν′2,1 + ν′1,2ν

′
2,2 +

[
ν′1,3 + ν′1,1

]
ν′2,3 = Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k −

1
2
dΓ1,2

dθinc
. (A.129)

Similarly, equations (A.124) and (A.127) are combined to give

[
ν′1,1 + ν′1,2

]
ν′2,1 +

[
ν′1,2 − ν′1,1

]
ν′2,2 + ν′1,3ν

′
2,3 = Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k −

1
2
dΓ1,2

dθinc
. (A.130)

63



A. Reflection Points on the Surface of a Resonator

Define the quantities




α1 = ν′1,2 + ν′1,3, α2 = ν′1,3 − ν′1,2, ζ1 = Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − 1

2
dΓ1,2
dθinc

,

α3 = ν′1,1 − ν′1,3, α4 = ν′1,3 + ν′1,1, ζ2 = Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k − 1

2
dΓ1,2
dθinc

,

α5 = ν′1,1 + ν′1,2, α6 = ν′1,2 − ν′1,1, ζ3 = Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k − 1

2
dΓ1,2
dθinc

,

(A.131)

whereΓ1,2 is defined in equation (A.121). Equations (A.128), (A.129) and (A.130) form a reduced set

ν′1,1ν
′
2,1 + α1ν

′
2,2 + α2ν

′
2,3 = ζ1, α3ν

′
2,1 + ν′1,2ν

′
2,2 + α4ν

′
2,3 = ζ2, α5ν

′
2,1 + α6ν

′
2,2 + ν′1,3ν

′
2,3 = ζ3 .

In matrix form it reads


ν′1,1 α1 α2

α3 ν′1,2 α4

α5 α6 ν′1,3




︸ ︷︷ ︸
fM0

·


ν′2,1
ν′2,2
ν′2,3


 =



ζ1
ζ2
ζ3


 , (A.132)

and its determinant is expressed as

det
(
M̃0

)
=

[
ν′1,1 + ν′1,2 + ν′1,3

] {[
ν′1,1

]2 +
[
ν′1,2

]2 +
[
ν′1,3

]2} = [r′i]
2 [
ν′1,1 + ν′1,2 + ν′1,3

]
. (A.133)

Three new matrices are then defined here as

M̃1 =



ζ1 α1 α2

ζ2 ν′1,2 α4

ζ3 α6 ν′1,3


 , M̃2 =



ν′1,1 ζ1 α2

α3 ζ2 α4

α5 ζ3 ν′1,3


 , M̃3 =



ν′1,1 α1 ζ1
α3 ν′1,2 ζ2
α5 α6 ζ3


 .

The variablesν′2,1, ν
′
2,2 andν′2,3 are solved with the Cramer’s Rule as

ν′2,1 = det
(
M̃1

)
/det

(
M̃0

)
, ν′2,2 = det

(
M̃2

)
/det

(
M̃0

)
, ν′2,3 = det

(
M̃3

)
/det

(
M̃0

)
.

Explicitly, they are given by

ν̀′2,1 ≡ ν′2,1 =
(
ν′1,1

[
ν′1,1 − ν′1,2 + ν′1,3

]
ζ1 +

{
ν′1,1

[
ν′1,2 − ν′1,3

]− [
ν′1,2

]2 − [
ν′1,3

]2}
ζ2

+
{
ν′1,1

[
ν′1,2 + ν′1,3

]
+

[
ν′1,2

]2 +
[
ν′1,3

]2}
ζ3

) [
ν′1,1 + ν′1,2 + ν′1,3

]−1 [r′i]
−2
, (A.134)

ν̀′2,2 ≡ ν′2,2 =
({
ν′1,2

[
ν′1,1 + ν′1,3

]
+

[
ν′1,1

]2 +
[
ν′1,3

]2}
ζ1 +

{
ν′1,2

[
ν′1,1 − ν′1,3

]
+

[
ν′1,2

]2}
ζ2

+
{
ν′1,2

[
ν′1,3 − ν′1,1

]− [
ν′1,1

]2 − [
ν′1,3

]2}
ζ3

) [
ν′1,1 + ν′1,2 + ν′1,3

]−1 [r′i]
−2
, (A.135)

ν̀′2,3 ≡ ν′2,3 =
({[

ν′1,1 − ν′1,2
]
ν′1,3 −

[
ν′1,1

]2 − [
ν′1,2

]2}
ζ1 +

{[
ν′1,1 + ν′1,2

]
ν′1,3 +

[
ν′1,1

]2 +
[
ν′1,2

]2}
ζ2

+
{[
ν′1,2 − ν′1,1

]
ν′1,3 +

[
ν′1,3

]2}
ζ3

) [
ν′1,1 + ν′1,2 + ν′1,3

]−1 [r′i]
−2
, (A.136)

where

ν′1,1 + ν′1,2 + ν′1,3 6= 0,



ν′1,1 = x′1 (r′i, θ1, φ1)
ν′1,2 = y′1 (r′i, θ1, φ1)
ν′1,3 = z′1 (r′i, θ1, φ1)


 ,



ν′2,1

(
ν′1,1, ν

′
1,2, ν

′
1,3

)
= x′2

ν′2,2
(
ν′1,1, ν

′
1,2, ν

′
1,3

)
= y′2

ν′2,3
(
ν′1,1, ν

′
1,2, ν

′
1,3

)
= z′2


 . (A.137)
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In the above set of equations,ν̀′2,i has been used to indicate thatν′2,i is now expressed explicitly in terms of the
Cartesian coordinates

(
ν′1,1, ν

′
1,2, ν

′
1,3

)
instead of spherical coordinates corresponding to the second reflection point,

(r′i, θ2, φ2) . The second reflection point inside the hemisphere is then from equation (A.116),

~R′2
(
ν̀′2,1, ν̀

′
2,2, ν̀

′
2,3

)
=

3∑

i=1

ν̀′2,iêi,

whereν̀′2,i, i = 1, 2, 3 are given in equations (A.134) through (A.136) with restriction given in equation (A.137). In

general, all subsequent reflection points~R′N can be expressed in generic form

~R′N
(
ν̀′N,1, ν̀

′
N,2, ν̀

′
N,3

)
=

3∑

i=1

ν̀′N,iêi

through iterative applications of the resultν̀′2,i, i = 1, 2, 3. This however proves to be very inefficient technique. A

better way is to express~R′N in terms of spherical coordinates. Because~R′2 belongs to a spanning set for the plane
of incidence whose unit normal iŝn′p,1 defined in equation (A.17), the component relationsν̀′2,i of equations (A.134),
(A.135) and (A.136) satisfy the intercept relation given in equation (A.51),

ν̀′2,i =
1
2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k ±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]2

+
[
r′i,i

]2
}1/2

, i = 1, 2, 3,

wherer′i,1 = r′i sin θ
′
2 cosφ′2, r

′
i,2 = r′i sin θ

′
2 sinφ′2 andr′i,3 = r′i cos θ′2. Here the subscript2 of angular variablesθ′2

andφ′2 denote the second reflection point. In terms of the angular variables, using the above expression forν̀′2,i, the
ν̀′2,1, ν̀

′
2,2 andν̀′2,3 are expressed as

∓
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′2 cos2 φ′2

}1/2

=
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′2,1, (A.138)

∓
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 sin2 θ′2 sin2 φ′2

}1/2

=
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k − ν̀′2,2, (A.139)

∓
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]2

+ [r′i]
2 cos2 θ′2

}1/2

=
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k − ν̀′2,3. (A.140)

Square both sides of equation (A.138),cos2 φ′2 can be solved as

cos2 φ′2 = [r′i sin θ
′
2]
−2

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′2,1

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2
}
. (A.141)

Similarly, square both sides of equation (A.139),sin2 φ′2 can be solved as

sin2 φ′2 = [r′i sin θ
′
2]
−2

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k − ν̀′2,2

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2jkk
′
1,jr

′
0,k

]2
}
. (A.142)
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The last two equations are divided to give

tan2 φ′2 =

[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′2,2

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2

[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk′1,jr
′
0,k − ν̀′2,1

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk′1,jr
′
0,k

]2 .

The azimuthal angleφ′2 is obtained as

φ′2 = arctan



±





[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′2,2

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2

[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk′1,jr
′
0,k − ν̀′2,1

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk′1,jr
′
0,k

]2





1/2


.

Following the procedures used in equations (A.77) through (A.86), the following results are arrived at




limε→0

(
0 ≤ φ′2 ≤ 1

2π − |ε|
)
, limε→0

(
π + |ε| ≤ φ′2 ≤ 3

2π − |ε|
)
,

φ′2 = arctan




{ h
1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n−ν̀′2,2

i2−
h

1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n

i2

h
1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k−ν̀′2,1

i2−
h

1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k

i2

}1/2

 ; (A.143)





limε→0

(
1
2π + |ε| ≤ φ′2 ≤ π − ε

)
, limε→0

(
3
2π + |ε| ≤ φ′2 < 2π − |ε|) ,

φ′2 = arctan


−

{ h
1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n−ν̀′2,2

i2−
h

1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n

i2

h
1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k−ν̀′2,1

i2−
h

1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k

i2

}1/2

 .

(A.144)

The solution forφ′2 forms a generic structure for any subsequent reflection points on the inner hemisphere surface.
TheN th azimuthal angleφ′N is found following a prescribed sequential steps

φ′1 → φ′2 → φ′3 → · · · → φ′N−1 → φ′N . (A.145)

By reversing the direction of sequence,φ′N can be expressed in terms of the initial azimuthal angleφ′1, φ
′
N = φ′N (φ′1) .

The polar angleθ′2 of the second reflection point can be found by squaring equation (A.140), which yields

cos2 θ′2 = [r′i]
−2

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k − ν̀′2,3

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3jkk
′
1,jr

′
0,k

]2
}
. (A.146)

Add together equations (A.141) and (A.142),sin θ′2 can be solved as

sin2 θ′2 = [r′i]
−2

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′2,1

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′2,2

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2
}
. (A.147)
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Finally, by dividing equations (A.146) and (A.147), we get

tan2 θ′2 =

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′2,1

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′2,2

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2
}

×
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r − ν̀′2,3

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r

]2
}−1

.

The polar angleθ′2 is given by

θ′2 = arctan

(
±

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′2,1

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′2,2

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2
}1/2

×
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r − ν̀′2,3

]2

−
[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r

]2
}−1/2


 .

Following the procedures given in equations (A.62) through (A.76), the following results are obtained





limε→0

(
0 ≤ θ′2 ≤ 1

2π − |ε|
)
,

θ′2 = arctan

({[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′2,1

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′2,2

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2
}1/2

×
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r − ν̀′2,3

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r

]2
}−1/2


 ;

(A.148)





limε→0

(
1
2π + |ε| ≤ θ′2 ≤ π

)
,

θ′2 = arctan

(
−

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′2,1

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′2,2

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2
}1/2

×
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r − ν̀′2,3

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r

]2
}−1/2


 .

(A.149)

The above result ofθ′2 forms a generic structure for any subsequent reflection points on the inner hemisphere surface.
TheN th polar angleθ′N can be obtained by following the sequential steps

θ′1 → θ′2 → θ′3 → · · · → θ′N−1 → θ′N . (A.150)

Equivalently, reversing the direction of sequence,θ′N can be expressed as a function of the initial polar angleθ′1,
θ′N = θ′N (θ′1) . With angular variableφ′2 defined in equations (A.143) and (A.144), andθ′2 defined in equations
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Figure A.3.: The two immediate neighboring reflection points~R′1 and ~R′2 are connected through the angleψ1,2.

Similarly, the two distant neighbor reflection points~R′i and ~R′i+2 are connected through the angle
Ωψi,i+1,ψi+1,i+2 .

(A.148) and (A.149), the second reflection point on the inner hemisphere surface is given by

~R′2 (r′i, θ
′
2, φ

′
2) =

3∑

i=1

ν′2,i (r
′
i, θ

′
2, φ

′
2) êi, i =





1→ ν′2,1 = r′i sin θ
′
2 cosφ′2,

2→ ν′2,2 = r′i sin θ
′
2 sinφ′2,

3→ ν′2,3 = r′i cos θ′2.
(A.151)

As shown in Figure A.3, two reflection points~R′1 and ~R′2 are related throughψ1,2, which is the angle measured
between the two. Since~R′j , where the indexj = 1, 2, · · · , Nmax andNmax is the last count of reflection before a
repeat in cycle, belongs to a spanning set for a plane of incidence whose unit normal isn̂′p,1 given in equation (A.17),
all reflections occur on the same plane of incidence. The task of determining theN th subsequent reflection point
~R′N is therefore particularly simple. The needed connection formulae between the initial reflection point~R′1 and the
N th subsequent reflection point~R′N is found through both scalar and vector cross product relations similar to those
given in equations (A.117) and (A.119). In order to generalize the previous result for~R′2 to ~R′N , recall the set from
equations (A.117) and (A.119),

~R′1 • ~R′2
~R′1 × ~R′2

}
⇔





[r′i]
2 cosψ1,2 −

∑3
i=1 ν

′
1,iν

′
2,i = 0,

∑3
i=1

[
εijkν

′
1,jν

′
2,k + Γ1,2

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]
êi = 0,

(A.152)

whereΓ1,2 = [r′i]
2 sinψ1,2 andψ1,2 = π − 2θinc. Because~R′N ∈

{
S : n̂′p,1

}
, it is true that

~R′1 × ~R′N ∝ ~R′1 × ~R′2.
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Therefore, we can write

~R′1 × ~R′N = Γ′1,N ~R′1 × ~R′2 = Γ′1,NΓ1,2n̂′p,1 = Γ1,N n̂′p,1,

whereΓ1,N = Γ′1,NΓ1,2 is a proportionality factor. Comparing the results,

{
~R′1 × ~R′N = Γ1,N n̂′p,1

}


{
~R′1 × ~R′2 = Γ1,2n̂′p,1

}
,

one obtains a set of relations similar to equation (A.152) for~R′N ,

~R′1 • ~R′N
~R′1 × ~R′N

}
⇔





[r′i]
2 cosψ1,N −

∑3
i=1 ν

′
1,iν

′
N,i = 0,

∑3
i=1

[
εijkν

′
1,jν

′
N,k + Γ1,N

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]
êi = 0.

(A.153)

In the above expression the indexN on ν′N,i andν′N,k denotes components corresponding to~R′N andψ1,N is the

angle measured between~R′1 and ~R′N . The proportionality factorΓ1,N is found to be

~R′1 × ~R′N = Γ1,N n̂′p,1 →
∥∥∥ ~R′1 × ~R′N

∥∥∥ = Γ1,N

∥∥∥n̂′p,1
∥∥∥ = Γ1,N ,

which yields

Γ1,N =
∥∥∥ ~R′1 × ~R′N

∥∥∥ = [r′i]
2 sinψ1,N .

The angleψ1,N is contained inΩψ1,2,ψN−1,N as shown in Figure A.3,

Ω ~R′1, ~R′N
≡ Ωψ1,2,ψN−1,N

= ψ1,2 + ψ2,3 + · · ·+ ψN−2,N−1 + ψN−1,N . (A.154)

For eachψi,i+1, the sum of inner angles of a triangle gives





ψ1,2 + θ2 + θr = π,
ψ2,3 + θ3 + θr+1 = π,

...
ψN−2,N−1 + θN−1 + θr+N−2 = π,
ψN−1,N + θN + θr+N−1 = π.

The law of reflection gives

θ2 = θ3 = · · · = θN−1 = θN = θr = θr+1 = · · · = θr+N−2 = θr+N−1 = θinc.

Hence, the anglesψi,i+1 are found to be

ψ1,2 = ψ2,3 = · · · = ψN−2,N−1 = ψN−1,N = π − 2θinc. (A.155)

The angleΩψ1,2,ψN−1,N is expressed as

Ωψ1,2,ψN−1,N = ψ1,2 + ψ2,3 + · · ·+ ψN−1,N = [π − 2θinc] + [π − 2θinc] + · · ·+ [π − 2θinc]

or

ψ1,N ≡ Ωψ1,2,ψN−1,N
= [N − 1] [π − 2θinc] . (A.156)

Hence forΓ1,N , we have the result:

Γ1,N = [r′i]
2 sin ([N − 1] [π − 2θinc]) . (A.157)
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The angular variablesθ′N andφ′N corresponding toN th reflection point~R′N are given as





limε→0

(
0 ≤ θ′N ≤ 1

2π − |ε|
)
, N ≥ 2,

θ′N≥2 = arctan

({[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′N,1

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′N,2

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2
}1/2

×
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r − ν̀′N,3

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r

]2
}−1/2


 ;

(A.158)





limε→0

(
1
2π + |ε| ≤ θ′N ≤ π

)
, N ≥ 2,

θ′N≥2 = arctan

(
−

{[
1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k − ν̀′N,1

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε1jkk
′
1,jr

′
0,k

]2

+
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n − ν̀′N,2

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε2mnk
′
1,mr

′
0,n

]2
}1/2

×
{[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r − ν̀′N,3

]2

−
[

1
2

∥∥∥~n′p,1
∥∥∥
−1

ε3qrk
′
1,qr

′
0,r

]2
}−1/2


 .

(A.159)





limε→0

(
0 ≤ φ′N ≤ 1

2π − |ε|
)
, limε→0

(
π + |ε| ≤ φ′N ≤ 3

2π − |ε|
)
, N ≥ 2,

φ′N≥2 = arctan




{ h
1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n−ν̀′N,2

i2−
h

1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n

i2

h
1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k−ν̀′N,1

i2−
h

1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k

i2

}1/2

 ; (A.160)





limε→0

(
1
2π + |ε| ≤ φ′N ≤ π − ε

)
, limε→0

(
3
2π + |ε| ≤ φ′N < 2π − |ε|) , N ≥ 2,

φ′N≥2 = arctan


−

{ h
1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n−ν̀′N,2

i2−
h

1
2‖ ~n′p,1‖−1

ε2mnk
′
1,mr

′
0,n

i2

h
1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k−ν̀′N,1

i2−
h

1
2‖ ~n′p,1‖−1

ε1jkk′1,jr
′
0,k

i2

}1/2

 ,

(A.161)

where
{
ν̀′N,i : i = 1, 2, 3

}
are given in equations (A.134), (A.135) and (A.136) together with the modificationν̀′2,i →

ν̀′N,i, ζ1 (Γ1,2) → ζ1 (Γ1,N ) , ζ2 (Γ1,2) → ζ2 (Γ1,N ) andζ3 (Γ1,2) → ζ3 (Γ1,N ) , whereΓ1,N is given in equation
(A.157). With angular variableθ′N≥2 defined in equations (A.158) and (A.159) andφ′N≥2 defined in equations (A.160)
and (A.161), theN th reflection point on the inner hemisphere surface is given by

~R′N (r′i, θ
′
N , φ

′
N ) =

3∑

i=1

ν′N,i (r
′
i, θ

′
N , φ

′
N ) êi, i =





1→ ν′N,1 = r′i sin θ
′
N cosφ′N ,

2→ ν′N,2 = r′i sin θ
′
N sinφ′N ,

3→ ν′N,3 = r′i cos θ′N ,
(A.162)

where the initial reflection point~R′1 is given in equation (A.109).

For a sphere, the maximum number of reflections are given by the equation

Ns,maxψN−2,N−1 = 2π,

whereψN−2,N−1 is the angle between two neighboring reflection points~R′N−1 and ~R′N−2; the subscriptNs,max
denotes the maximum number of reflection points for a sphere. The above result is a statement that the sum of all
angles is equal to2π. Application of the rule shown in equation (A.155) forψN−2,N−1 gives

Nmax [π − 2θinc] = 2π → Ns,max =
2π

π − 2θinc
, (A.163)
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whereθinc is given in equation (A.115). In explicit formNs,max is given by

Ns,max = 2π


π − 2 arccos




sin θ′1
[
k′x′1 cosφ′1 + k′y′1 sinφ′1

]
+ k′z′1 cos θ′1√[

k′x′1

]2

+
[
k′y′1

]2

+
[
k′z′1

]2







−1

. (A.164)
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B. Mapping Between Sets (r, θ, φ) and (r′, θ′, φ′)

In this appendix, the original derivations and developments pertaining to the mapping between the sets(r, θ, φ) and
(r′, θ′, φ′) used in this thesis are described in detail.

For a sphere, the natural choice for origin is the sphere center from which the spherical coordinates(r′i, θ
′, φ′)

are prescribed. For more complicated configurations, as shown in Figure 3.3, the preferred choice for the origin
depends upon the problem in hand. For this reason, this section is devoted in deriving a set of transformations between
(r′i, θ

′, φ′) and(ri, θ, φ) , where the primed set is defined relative to the sphere center, and the unprimed set is defined
relative to the global configuration origin. In Cartesian coordinates, the two vectors~R and ~R′ describing an identical
point on the hemisphere surface are expressed as

~R (ν1, ν2, ν3) =
3∑

i=1

νiêi, ~R′ (ν′1, ν
′
2, ν

′
3) =

3∑

i=1

ν′iêi, (B.1)

where 

ν1 = x
ν2 = y
ν3 = z


 ,



ν′1 = x′

ν′2 = y′

ν′3 = z′


 ,



ê1 = x̂
ê2 = ŷ
ê3 = ẑ


 .

Here ~R and ~R′ are the position vectors of the same location relative to the system origin and the hemisphere center,
respectively. The two vectors are related through a translation,

~R (ν1, ν2, ν3) = ~RT (νT,1, νT,2, νT,3) + ~R′ (ν′1, ν
′
2, ν

′
3) =

3∑

i=1

[νT,i + ν′i] êi, (B.2)

where ~RT =
∑3
i=1 νT,iêi is the position of hemisphere center relative to the system origin. Equation (B.2) can be

written as

3∑

i=1

[νi − νT,i − ν′i] êi = 0. (B.3)

and the component equations are

νi − νT,i − ν′i = 0, i = 1, 2, 3. (B.4)

It is to be emphasized that in the configuration shown in Figure 3.3, the hemisphere center is only shifted alongŷ
by the distanceνT,2 = a, thereforeνT,i 6=2 = 0. Nevertheless, the derivation is done for the case whereνT,i 6= 0,
i = 1, 2, 3 for general purpose. In explicit forms, they are written as

ν1 − νT,1 − ν′1 = 0, ν2 − νT,2 − ν′2 = 0, ν3 − νT,3 − ν′3 = 0. (B.5)

In spherical coordinates,


ν1 = ri sin θ cosφ = riΛ1 (θ, φ)
ν2 = ri sin θ sinφ = riΛ2 (θ, φ)

ν3 = ri cos θ = riΛ3 (θ)


 ,



ν′1 = r′i sin θ

′ cosφ′ = r′iΛ
′
1 (θ′, φ′)

ν′2 = r′i sin θ
′ sinφ′ = r′iΛ

′
2 (θ′, φ′)

ν′3 = r′i cos θ′ = r′iΛ
′
3 (θ′)


 , (B.6)

equation (B.5) is written as

ri sin θ cosφ− νT,1 − r′i sin θ′ cosφ′ = 0, (B.7)
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ri sin θ sinφ− νT,2 − r′i sin θ′ sinφ′ = 0, (B.8)

ri cos θ − νT,3 − r′i cos θ′ = 0, (B.9)

where the Cartesian variables{νi, ν′i : i = 1, 2, 3} were expressed in terms of the spherical coordinates. Thecosφ and
sinφ functions are obtained from equations (B.7) and (B.8),

cosφ =
νT,1 + r′i sin θ

′ cosφ′

ri sin θ
, sinφ =

νT,2 + r′i sin θ
′ sinφ′

ri sin θ
.

The azimuthal angleφ is given by

φ ≡ φ̀ (r′i, θ
′, φ′, νT,1, νT,2) = arctan

(
νT,2 + r′i sin θ

′ sinφ′

νT,1 + r′i sin θ′ cosφ′

)
, (B.10)

where the notatioǹφ indicates thatφ is explicitly expressed in terms of primed variables. Combining equations (B.7)
and (B.8), we have

ri sin θ [cosφ+ sinφ]− νT,1 − νT,2 − r′i sin θ′ [cosφ′ + sinφ′] = 0

which leads to

sin θ =
νT,1 + νT,2 + r′i sin θ

′ [cosφ′ + sinφ′]
ri [cosφ+ sinφ]

.

From equation (B.9), we have

cos θ = r−1
i [νT,3 + r′i cos θ′] .

Combining the above results forsin θ andcos θ; and, solving for the argumentθ,

θ = arctan
(
νT,1 + νT,2 + r′i sin θ

′ [cosφ′ + sinφ′]
[cosφ+ sinφ] [νT,3 + r′i cos θ′]

)
, (B.11)

whereφ is to be substituted in from equation (B.10). For convenience, the above result forθ is rewritten explicitly in
terms of primed variables,

θ̀
(
r′i, θ

′, φ′, ~RT
)

= arctan


 {νT,1 + νT,2 + r′i sin θ

′ [cosφ′ + sinφ′]} [νT,3 + r′i cos θ′]−1

cos
(
arctan

(
νT,2+r′i sin θ′ sinφ′

νT,1+r′i sin θ′ cosφ′

))
+ sin

(
arctan

(
νT,2+r′i sin θ′ sinφ′

νT,1+r′i sin θ′ cosφ′

))

 . (B.12)

Here the notatioǹθ indicates thatθ is explicitly expressed in terms of primed variables. The magnitude of a vector
describing hemisphere relative to system origin is found from equation (B.2),

ri

(
r′i, ~Λ

′, ~RT
)
≡

∥∥∥~R
∥∥∥ =

{
3∑

i=1

[νT,i + r′iΛ
′
i]

2

}1/2

,





Λ′1 (θ′, φ′) = sin θ′ cosφ′,
Λ′2 (θ′, φ′) = sin θ′ sinφ′,

Λ′3 (θ′) = cos θ′.

In terms of spherical coordinates, the position vector is expressed as

~R
(
r′i, ~̀Λ, ~Λ

′, ~RT
)

=

{
3∑

i=1

[νT,i + r′iΛ
′
i]

2

}1/2 3∑

i=1

Λ̀iêi,





Λ̀1

(
θ̀, φ̀

)
= sin θ̀ cos φ̀,

Λ̀2

(
θ̀, φ̀

)
= sin θ̀ sin φ̀,

Λ̀3

(
θ̀
)

= cos θ̀.

(B.13)
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In this appendix, the original derivations and developments in the thesis pertaining to the selected configurations: (1)
the hollow spherical shell, (2) the hemisphere-hemisphere and (3) the plate-hemisphere are described in detail.

C.1. Hollow Spherical Shell

For the reflection problem in a sphere as shown in Figure 3.4, the natural choice for a system origin is that of the
sphere center,~R′ = 0. TheN th reflection point inside the sphere is given by equation (A.162) as

~R′s,N
(
r′i, θ

′
s,N , φ

′
s,N

)
=

3∑

i=1

ν′s,N,i
(
r′i, θ

′
s,N , φ

′
s,N

)
êi,





ν′s,N,1 = r′i sin θ
′
s,N cosφ′s,N ,

ν′s,N,2 = r′i sin θ
′
s,N sinφ′s,N ,

ν′s,N,3 = r′i cos θ′s,N ,

where the labels have been attached to denote the sphere. Keeping in mind the obvious index changes, the angular
variableθ′s,N is defined in equations (A.158) and (A.159), andφ′s,N , in equations (A.160) and (A.161). Staying with

the notation of equation (B.13),~R′s,N is rewritten as

~Rs,N

(
r′i, ~Λ

′
s,N

)
= r′i

3∑

i=1

Λ′s,N,iêi,





Λ′s,N,1
(
θ′s,N , φ

′
s,N

)
= sin θ′s,N cosφ′s,N ,

Λ′s,N,2
(
θ′s,N , φ

′
s,N

)
= sin θ′s,N sinφ′s,N ,

Λ′s,N,3
(
θ′s,N

)
= cos θ′s,N ,

(C.1)

where the relationsνT,s,i = 0, and
∑3
i=1

[
Λ′s,N,i

]2 = 1 are used.
The maximum number of internal reflections for a spherical cavity before a repeat in cycle is given by equation

(A.163),

Ns,max =
2π

π − 2θinc
,

whereθinc is given in equation (A.115).

The distance
∥∥∥~L

∥∥∥ between two immediate neighboring reflection points on a sphere is

∥∥∥~L
∥∥∥ =

∥∥∥~Rs,2
(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥ . (C.2)

It should be noted that
∥∥∥~Rs,2 − ~Rs,1

∥∥∥ =
∥∥∥~Rs,j − ~Rs,j−1

∥∥∥ , j = 3, · · · , Ns,max. (C.3)

The only reason that~Rs,1 and ~Rs,2 are used is for the purpose of convenience.

To compute the resultant wave vector,~k′inner, acting at the point~R′s,1, the incident wave is first decomposed into
components parallel and perpendicular to the inner surface normal vector,−R̂′s,1,

~k′i,+ ≡ ~k′i = ~k′i‖ + ~k′i⊥ =
[
~k′i • R̂′s,1

]
R̂′s,1 +

[
R̂′s,1 × ~k′i

]
× R̂′s,1,

where the subscript(+) of ~k′i,+ denotes the particular contribution where the incident wave~k′i is approaching~R′s,1
from ~R′s,0. From equation (A.14) of Appendix A, the corresponding reflected wave vector can be expressed in terms
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of the incident wave as

~k′r,+ ≡ ~k′r =
[
R̂′s,1 ×

{[
~k′i • R̂′s,1

]
R̂′s,1 +

[
R̂′s,1 × ~k′i

]
× R̂′s,1

}]
× R̂′s,1

− R̂′s,1 •
{[
~k′i • R̂′s,1

]
R̂′s,1 +

[
R̂′s,1 × ~k′i

]
× R̂′s,1

}
R̂′s,1

=
[
R̂′s,1 ×

[
~k′i • R̂′s,1

]
R̂′s,1 + R̂′s,1 ×

{[
R̂′s,1 × ~k′i

]
× R̂′s,1

}]
× R̂′s,1

−
[
R̂′s,1 •

[
~k′i • R̂′s,1

]
R̂′s,1 + R̂′s,1 •

{[
R̂′s,1 × ~k′i

]
× R̂′s,1

}]
R̂′s,1,

whereαr,⊥ = αr,‖ = 1 andn̂′ → −R̂′s,1. BecauseR̂′s,1 ⊥
{[
R̂′s,1 × ~k′i

]
× R̂′s,1

}
andR̂′s,1 ‖

[
~k′i • R̂′s,1

]
R̂′s,1,

the above expression is simplified to

~k′r,+ =
[
R̂′s,1 ×

{[
R̂′s,1 × ~k′i

]
× R̂′s,1

}]
× R̂′s,1 −

[
~k′i • R̂′s,1

]
R̂′s,1.

The changes in resultant wave vector~k′inner at the point~R′s,1 due to~k′i,+ at location~R′s,0 is given by

4~k′inner,+
(
; ~R′s,1, ~R′s,0

)
= ~k′r,+ − ~k′i,+

=
[
R̂′s,1 ×

{[
R̂′s,1 × ~k′i

]
× R̂′s,1

}]
× R̂′s,1

−
[
R̂′s,1 × ~k′i

]
× R̂′s,1 − 2

[
~k′i • R̂′s,1

]
R̂′s,1

= −2
[
~k′i • R̂′s,1

]
R̂′s,1,

where
[
R̂′s,1 ×

{[
R̂′s,1 × ~k′i

]
× R̂′s,1

}]
× R̂′s,1 =

[
R̂′s,1 × ~k′i

]
× R̂′s,1.

For the incident wave traveling in the opposite direction, i.e., approaching~R′s,1 from ~R′s,2, one has

~k′i,− ≡ −~k′r = −~k′r,+, ~k′r,− ≡ −~k′i = −~k′i,+,

where the subscript(−) on ~k′i,− denotes the particular contribution where the incident wave~k′i is approaching~R′s,1
from ~R′s,2. In this case, the changes in the resultant wave vector~k′inner at the point~R′s,1 due to~k′i,− at the location
~R′s,0 is given by

4~k′inner,−
(
; ~R′s,1, ~R′s,0

)
= ~k′r,− − ~k′i,− = −~k′i,+ + ~k′r,+ = 4~k′inner,+

(
; ~R′s,1, ~R′s,0

)
.

The resultant wave vector~k′inner acting at the point~R′s,1 due to incident wave approaching~R′s,1 from ~R′s,0 and the
other incident wave approaching~R′s,1 from ~R′s,2 is therefore

4~k′inner
(
; ~R′s,1, ~R′s,0

)
≡ 4~k′inner,+

(
; ~R′s,1, ~R′s,0

)
+4~k′inner,−

(
; ~R′s,1, ~R′s,0

)

= −4
[
~k′i,b • R̂′s,1

]
R̂′s,1,

where the subscriptb of ~k′i,b denotes the wave vector for ambient fields inside cavity.

The wave number
∥∥∥~k′i,b

∥∥∥ that can be fit in the bounded space of a resonator is restricted by the boundary condition

∥∥∥~k′i,b
∥∥∥ = nπ

∥∥∥~L
∥∥∥
−1

= nπ
∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
−1

.
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The scalar product of~k′i,b andR̂′s,1 is

~k′i,b • R̂′s,1 =
∥∥∥~k′i,b

∥∥∥ cos θinc,

where the angle between the two vectors~k′i,b and ~Rs,1 is equal to the angle of incidenceθinc, as shown in equation
(A.115). The momentum transfer is proportional to

4~k′inner
(
; ~R′s,1, ~R′s,0

)
= − 4nπ cos θinc∥∥∥~Rs,2

(
r′i, ~Λ

′
s,2

)
− ~Rs,1

(
r′i, ~Λ

′
s,1

)∥∥∥
R̂′s,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · . (C.4)

Similarly, the resultant wave vector~k′outer acting at point~R′s,1 + aR̂′s,1 on the outer spherical surface, wherea is
the sphere thickness parameter, is given by

4~k′outer
(
; ~R′s,1 + aR̂′s,1

)
= −4

[
~k′i,f • R̂′s,1

]
R̂′s,1,

where the subscriptf of ~k′i,f denotes the wave vector of the ambient fields in free space, and the factor 4 is due to

the fact there are two incidence wave vectors from opposite directions. The free space wave number
∥∥∥~k′i,f

∥∥∥ has no

quantization restriction due to the boundary. And, the scalar product of~k′i,f andR̂′s,1 is

~k′i,f • R̂′s,1 =
∥∥∥~k′i,f

∥∥∥ cos (π − θinc) = −
∥∥∥~k′i,f

∥∥∥ cos θincR̂′s,1.

The momentum transfer is proportional to

4~k′outer
(
; ~R′s,1 + aR̂′s,1

)
= 4

∥∥∥~k′i,f
∥∥∥ cos θincR̂′s,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · . (C.5)

C.2. Hemisphere-Hemisphere

For the hemisphere-hemisphere configuration, the preferred choice for a system origin is that of~R = 0. TheN th
internal reflection point is given by equation (B.13),

~Rh,N

(
r′i, ~̀Λh,N , ~Λ

′
h,N , ~RT,h

)
=

{
3∑

i=1

[
νT,h,i + r′iΛ

′
h,N,i

]2
}1/2 3∑

i=1

Λ̀h,N,iêi, (C.6)

where the labelh denotes hemisphere; and




Λ̀h,N,1
(
θ̀h,N , φ̀h,N

)
= sin θ̀h,N cos φ̀h,N ,

Λ̀h,N,2
(
θ̀h,N , φ̀h,N

)
= sin θ̀h,N sin φ̀h,N ,

Λ̀h,N,3
(
θ̀h,N

)
= cos θ̀h,N .

The definitions forΛ′h,N,i, i = 1, 2, 3 are identical in form. The angular variables
(
θ̀h,N , φ̀h,N

)
are given in equations

(B.10) and (B.12), where the obvious notational changes are understood. The implicit angular variableθ′s,N is defined
in equations (A.158) and (A.159); andφ′s,N , defined in equations (A.160) and (A.161).

We have to determine the maximum number of internal reflections of the wave in the hemisphere cavity before its
escape. Three vectors~R′0, ξik̂′i and ~R′h,i ≡ ~R′i shown in Figure A.3 satisfy the relation

~R′h,i=1 − ~R′0 = ξi=1k̂′i=1,
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where the notationh of ~R′h,i=1 denotes the hemisphere. The path length squared is given by

∥∥∥ ~R′h,i=1 − ~R′0
∥∥∥

2

=
∥∥∥ ~R′h,1

∥∥∥
2

+
∥∥∥ ~R′0

∥∥∥
2

− 2 ~R′h,1 • ~R′0 = [r′i]
2 +

∥∥∥ ~R′0
∥∥∥

2

− 2r′i
∥∥∥ ~R′0

∥∥∥ cosψ0,1.

Since
∥∥∥ ~R′h,i=1 − ~R′0

∥∥∥
2

=
∥∥∥ξi=1k̂′i=1

∥∥∥
2

= ξ21 , the angleψ0,1 is found from the last equation to be

ψ0,1 = arccos
(

1
2

{
r′i

∥∥∥ ~R′0
∥∥∥
−1

+ [r′i]
−1

∥∥∥ ~R′0
∥∥∥−

[
r′i

∥∥∥ ~R′0
∥∥∥
]−1

ξ21

})
,

whereξ1 = ξ1,p is given in equation (A.11). The angleψ1,2 measured between the two vectors~R′h,1 and ~R′h,2 is

ψ1,2 = arccos
(
[r′i]

−2 ~R′h,1 • ~R′h,2
)

= arccos

(
3∑

i=1

Λ′h,1,iΛ
′
h,2,i

)
,

where ~R′h,1 and ~R′h,2 have been explicitly written forN = 1, 2 in equation (C.1), or equivalently,

ψ1,2 = π − 2θinc

from equation (A.112). Because a hemisphere is just a sphere halve, it is convenient to define a quantity

Zh,max =
1
ψ1,2

[π − ψ0,1] ,

or in explicit expression,

Zh,max =
1

π − 2θinc

[
π − arccos

(
1
2

{
r′i

∥∥∥ ~R′0
∥∥∥
−1

+ [r′i]
−1

∥∥∥ ~R′0
∥∥∥−

[
r′i

∥∥∥ ~R′0
∥∥∥
]−1

ξ21,p

})]
, (C.7)

whereξ1,p is given in equation (A.11) andθinc is given in equation (A.115). The maximum number of internal
reflections is then simply

Nh,max = [Zh,max]G , (C.8)

where the notation[Zh,max]G is the greatest integer ofZh,max and it is defined in equation (C.7).

The distance
∥∥∥~L

∥∥∥ between the two immediate neighboring reflection points of the hemisphere is

∥∥∥~L
∥∥∥ =

∥∥∥~Rh,2
(
r′i, ~̀Λh,2, ~Λ

′
h,2, ~RT,h

)
− ~Rh,1

(
r′i, ~̀Λh,1, ~Λ

′
h,1, ~RT,h

)∥∥∥ . (C.9)

It should be noted that
∥∥∥~Rh,2 − ~Rh,1

∥∥∥ =
∥∥∥~Rh,j − ~Rh,j−1

∥∥∥ , j = 3, · · · , Nh,max (C.10)

and the only reason that~Rh,1 and ~Rh,2 are used is for the purpose of convenience.

The change in wave vector direction upon reflection at the pointR̂′h,1 inside the resonator, or at the location
~R′h,1 + aR̂′h,1 outside of the hemisphere, is given by results found for the sphere case, equations (C.4) and (C.5),
with obvious subscript changes,

4~k′inner
(
; ~R′h,1, ~R′h,0

)
= − 4nπ cos θinc∥∥∥~Rh,2

(
r′i, ~Λ

′
h,2

)
− ~Rh,1

(
r′i, ~Λ

′
h,1

)∥∥∥
R̂′h,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · (C.11)
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and

4~k′outer
(
; ~R′h,1 + aR̂′h,1

)
= 4

∥∥∥~k′i,f
∥∥∥ cos θincR̂′h,1,

{
0 ≤ θinc < π/2,
n = 1, 2, · · · . (C.12)

The above results on4~k′inner
(
; ~R′h,1, ~R′h,0

)
and4~k′outer

(
; ~R′h,1 + aR̂′h,1

)
have been derived based upon the

fact that there are multiple internal reflections. For a sphere, the multiple internal reflections are inherent. However,
for a hemisphere, it is not necessarily true that all incoming waves would result in multiple internal reflections. The
criteria for multiple internal reflections are to be established. For a given initial incoming wave vectork̂′1, there can
be multiple or single internal reflections depending upon the location of point of entry into the cavity,~R′0. Shown
in Figure 3.5 are the two such reflections dynamics where the dashed vectors represent the single reflection case and
the non-dashed vectors represent the multiple reflection case. Because all the processes occur in the same plane of
incidence, the relationship~R′f = −λ0

~R′0 with λ0 ≥ 0 has to be true. Therefore, we will have

~R′1 = ~R′0 + ξpk̂′1, ~R′f ≡ −λ0
~R′0 = ~R′1 + ~k′2. (C.13)

After eliminating ~R′1 from the last two equations, we find

~R′0 = − [1 + λ0]
−1

[
ξpk̂′1 + ~k′2

]
. (C.14)

The direction of the reflected wave vector~k′2 cannot be arbitrary because it has to obey the reflection law. The
relationship between the directions of an incident and the associated reflection wave is shown in equation (A.14).
Designatingn̂′ = − ~R′1/r′i, ~k′r → ~k′2 and~k′i → ~k′1, the reflected wave vector~k′2 can be written in the form

~k′2 ∝ αr,⊥ [r′i]
−2

[
~R′1 × ~k′1

]
× ~R′1 − αr,‖ [r′i]

−2 ~R′1 • ~k′1 ~R′1

or, introducing a proportionality factorλ2, it becomes

~k′2 = λ2αr,⊥ [r′i]
−2

[
~R′1 × ~k′1

]
× ~R′1 − λ2αr,‖ [r′i]

−2 ~R′1 • ~k′1 ~R′1.

The goal is to relate~R′f , orλ0, in terms of~R′0. Substituting the expression for~R′1 from equation (C.13), we arrive at

~k′2 = −ξ2pλ2αr,‖ [r′i]
−2 ~k′1 + ξpλ2 [r′i]

−2
{
αr,⊥

[
~R′0 × ~k′1

]
× k̂′1 − αr,‖

[
~R′0 • ~k′1k̂′1 +

∥∥∥~k′1
∥∥∥ ~R′0

]}

+ λ2 [r′i]
−2

{
αr,⊥

[
~R′0 × ~k′1

]
× ~R′0 − αr,‖ ~R′0 • ~k′1 ~R′0

}
. (C.15)

Finally, equations (C.14) and (C.15) are combined to yield

ξ2pαr,‖~k′1 − ξp
{
αr,⊥

[
~R′0 × ~k′1

]
× k̂′1 − αr,‖

[
~R′0 • ~k′1k̂′1 +

∥∥∥~k′1
∥∥∥ ~R′0

]
+ λ−1

2 [r′i]
2
k̂′1

}

+αr,‖ ~R′0 • ~k′1 ~R′0 − αr,⊥
[
~R′0 × ~k′1

]
× ~R′0 − λ−1

2 [r′i]
2 [1 + λ0] ~R′0 = 0. (C.16)

Utilizing the formula
[
~A× ~B

]
× ~C =

∑3
l=1

{[
~A • ~C

]
Bl −

[
~B • ~C

]
Al

}
êl, the cross product are evaluated as





[
~R′0 × ~k′1

]
× k̂′1 ≡

∥∥∥~k′1
∥∥∥
−1 [

~R′0 × ~k′1
]
× ~k′1 =

∑3
l=1

{∥∥∥~k′1
∥∥∥
−1 [

~R′0 • ~k′1
]
k′1,l −

∥∥∥~k′1
∥∥∥ r′0,l

}
êl,

[
~R′0 × ~k′1

]
× ~R′0 =

∑3
l=1

{∥∥∥ ~R′0
∥∥∥

2

k′1,l −
[
~k′1 • ~R′0

]
r′0,l

}
êl,

~k′1 =
∑3
l=1 k

′
1,lêl,

~R′0 =
∑3
l=1 r

′
0,lêl.
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Rewriting equation (C.16) then

3∑

l=1

{
ξ2pαr,‖k

′
1,l + ξp

(
αr,‖

[
~R′0 • ~k′1

∥∥∥~k′1
∥∥∥
−1

k′1,l +
∥∥∥~k′1

∥∥∥ r′0,l
]
− αr,⊥

[
~R′0 • ~k′1

∥∥∥~k′1
∥∥∥
−1

k′1,l

−
∥∥∥~k′1

∥∥∥ r′0,l
]
− λ−1

2 [r′i]
2
∥∥∥~k′1

∥∥∥
−1

k′1,l

)
+ αr,‖ ~R′0 • ~k′1r′0,l − αr,⊥

×
[∥∥∥ ~R′0

∥∥∥
2

k′1,l − ~k′1 • ~R′0r′0,l
]
− λ−1

2 [r′i]
2 [1 + λ0] r′0,l

}
êl = 0,

which leads to the component equations

ξ2pαr,‖k
′
1,l + ξp

(
αr,‖

[
~R′0 • ~k′1

∥∥∥~k′1
∥∥∥
−1

k′1,l +
∥∥∥~k′1

∥∥∥ r′0,l
]
− αr,⊥

[
~R′0 • ~k′1

∥∥∥~k′1
∥∥∥
−1

k′1,l

−
∥∥∥~k′1

∥∥∥ r′0,l
]
− λ−1

2 [r′i]
2
∥∥∥~k′1

∥∥∥
−1

k′1,l

)
+ αr,‖ ~R′0 • ~k′1r′0,l − αr,⊥

×
[∥∥∥ ~R′0

∥∥∥
2

k′1,l − ~k′1 • ~R′0r′0,l
]
− λ−1

2 [r′i]
2 [1 + λ0] r′0,l = 0,

wherel = 1, 2, 3. For an isotropic system,αr,⊥ = αr,‖ = αr, the last equation reduces to

ξ2pαrk
′
1,l + ξp

[
2αr

∥∥∥~k′1
∥∥∥ r′0,l − λ−1

2 [r′i]
2
∥∥∥~k′1

∥∥∥
−1

k′1,l

]

+2αr ~R′0 • ~k′1r′0,l − αr
∥∥∥ ~R′0

∥∥∥
2

k′1,l − λ−1
2 [r′i]

2 [1 + λ0] r′0,l = 0,

wherel = 1, 2, 3. Because there are three such relations of the above, all three component equations are added to yield

ξ2p + ξp

[
3∑

l=1

k′1,l

]−1 3∑

l=1

[
2

∥∥∥~k′1
∥∥∥ r′0,l − λ−1

2 [r′i]
2
∥∥∥~k′1

∥∥∥
−1

k′1,l

]

+

[
3∑

l=1

k′1,l

]−1 3∑

l=1

{
2 ~R′0 • ~k′1r′0,l −

∥∥∥ ~R′0
∥∥∥

2

k′1,l − λ−1
2 [r′i]

2 [1 + λ0] r′0,l

}
= 0, (C.17)

where the both sides of the above equation have been multiplied by
[∑3

l=1 k
′
1,l

]−1

andαr = 1 have been chosen for

simplicity. Sinceξp is just a positive root ofξ1 of equation (A.9), it satisfies the equation

ξ21

1︷ ︸︸ ︷
3∑

l=1

∥∥∥~k′1
∥∥∥
−2 [

k′1,l
]2 +2ξ1

∥∥∥~k′1
∥∥∥
−1 3∑

l=1

r′0,lk
′
1,l +

3∑

l=1

[
r′0,l

]2 − [r′i]
2 = 0,

where the indexi have been changed tol in equation (A.9). The reflection coefficientαr have been set to a unity in
equation (C.17) for the very reason thatαr = 1 had been already imposed in the above relation, the equation (A.9).
Becauseξ1 ≡ ξp, and the fact that coefficient ofξ2p = ξ21 = 1 in equations (A.9) and (C.17), the two polynomials must
be identical. Therefore, subtracting equation (A.9) from equation (C.17), we obtain

ξp





[
3∑

l=1

k′1,l

]−1 3∑

l=1

[
2

∥∥∥~k′1
∥∥∥ r′0,l − λ−1

2 [r′i]
2
∥∥∥~k′1

∥∥∥
−1

k′1,l

]
− 2

∥∥∥~k′1
∥∥∥
−1 3∑

l=1

r′0,lk
′
1,l



 + [r′i]

2

+

[
3∑

l=1

k′1,l

]−1 3∑

l=1

{
2 ~R′0 • ~k′1r′0,l −

∥∥∥ ~R′0
∥∥∥

2

k′1,l − λ−1
2 [r′i]

2 [1 + λ0] r′0,l −
[
r′0,l

]2} = 0.
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Becauseξp is a particular value for the root ofξ1, for the case whereξp 6= 0, the above equation is satisfied only when
the coefficients of the different powers ofξp vanish independently. This is another way of stating that each coefficients
of the different powers ofξp in equations (A.9) and (C.17) must be proportional to each other. For the situation here,
they must be identical due to the fact that coefficients ofξ2p = ξ21 = 1. Hence, we have the conditions:





[∑3
l=1 k

′
1,l

]−1 ∑3
l=1

[
2

∥∥∥~k′1
∥∥∥ r′0,l − λ−1

2 [r′i]
2
∥∥∥~k′1

∥∥∥
−1

k′1,l

]
− 2

∥∥∥~k′1
∥∥∥
−1 ∑3

l=1 r
′
0,lk

′
1,l = 0,

[r′i]
2 +

[∑3
l=1 k

′
1,l

]−1 ∑3
l=1

{
2 ~R′0 • ~k′1r′0,l −

∥∥∥ ~R′0
∥∥∥

2

k′1,l − λ−1
2 [r′i]

2 [1 + λ0] r′0,l −
[
r′0,l

]2
}

= 0.
(C.18)

From the first expression of equation (C.18), we find

λ−1
2 = 2 [r′i]

−2

[
3∑

l=1

k′1,l

]−1 3∑

l=1

[∥∥∥~k′1
∥∥∥

2

− k′1,l
3∑

m=1

k′1,m

]
r′0,l. (C.19)

Solving forλ0 from the second expression of equation (C.18), we have

λ0 =

∑3
l=1

{
k′1,l + 2 ~R′0 • ~k′1r′0,l [r′i]−2 −

∥∥∥ ~R′0
∥∥∥

2

k′1,l [r
′
i]
−2 − λ−1

2 r′0,l −
[
r′0,l

]2

[r′i]
−2

}

λ−1
2

∑3
l=1 r

′
0,l

or, substituting the expression ofλ−1
2 given in equation (C.19), we have the result:

λ0 =
1
2

[
3∑

n=1

k′1,n

] 



3∑

j=1

3∑

l=1

[∥∥∥~k′1
∥∥∥

2

− k′1,l
3∑

m=1

k′1,m

]
r′0,lr

′
0,j





−1
3∑

l=1

{
k′1,l [r

′
i]

2 − [
r′0,l

]2

+2 ~R′0 • ~k′1r′0,l −
∥∥∥ ~R′0

∥∥∥
2

k′1,l − 2r′0,l

[
3∑

l=1

k′1,l

]−1 3∑

i=1

[∥∥∥~k′1
∥∥∥

2

− k′1,i
3∑

m=1

k′1,m

]
r′0,i



 . (C.20)

Referring back to Figure 3.5, the termλ0 is connected to~R′f through the relation~R′f ≡ −λ0
~R′0. Therefore, the

criterion for waves to have multiple or single internal reflection is contained in the controlled quantityλ0. The vector
~R′0 is a quantity that must be specified initially. Becauseλ0 is a positive definite scalar, we can rewrite it as

λ0 =
∥∥∥ ~R′f

∥∥∥
∥∥∥ ~R′0

∥∥∥
−1

=
∥∥∥ ~R′f

∥∥∥
{

3∑

i=1

[
r′0,i

]2
}−1/2

.

Substituting the above definition ofλ0 into equation (C.20), the quantity
∥∥∥ ~R′f

∥∥∥ can be solved as

∥∥∥ ~R′f
∥∥∥ =

1
2

∥∥∥ ~R′0
∥∥∥

[
3∑

n=1

k′1,n

] 



3∑

j=1

3∑

l=1

[∥∥∥~k′1
∥∥∥

2

− k′1,l
3∑

m=1

k′1,m

]
r′0,lr

′
0,j





−1
3∑

l=1

{
k′1,l [r

′
i]

2 − [
r′0,l

]2

+2 ~R′0 • ~k′1r′0,l −
∥∥∥ ~R′0

∥∥∥
2

k′1,l − 2r′0,l

[
3∑

l=1

k′1,l

]−1 3∑

i=1

[∥∥∥~k′1
∥∥∥

2

− k′1,i
3∑

m=1

k′1,m

]
r′0,i



 . (C.21)

Because the hemisphere opening has a radiusr′i, the following criteria are concluded:




∥∥∥ ~R′f
∥∥∥ < r′i, Single− Internal −Reflection,

∥∥∥ ~R′f
∥∥∥ ≥ r′i, Multiple− Internal −Reflections,

(C.22)
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where
∥∥∥ ~R′f

∥∥∥ is given in equation (C.21) andr′i is the radius of a hemisphere.

C.3. Plate-Hemisphere

The description of a surface is a study of the orientation of its local normaln̂′p, which is shown in Figure 3.6. In
spherical coordinates, the unit vectorsn̂′p, θ̂′p andφ̂′p are expressed as

n̂′p =
∑3
i=1 Λ′p,iêi, θ̂′p =

∑3
i=1

∂Λ′p,i

∂θ′p
êi, φ̂′p =

∑3
i=1

1
sin θ′p

∂Λ′p,i

∂φ′p
êi, (C.23)

where

Λ′p,1
(
θ′p, φ

′
p

)
= sin θ′p cosφ′p, Λ′p,2

(
θ′p, φ

′
p

)
= sin θ′p sinφ′p, Λ′p,3

(
θ′p

)
= cos θ′p. (C.24)

It is easy to show that the set of unit vectors
(
n̂′p, θ̂′p, φ̂′p

)
forms an orthonormal coordinates. Therefore, the points

on plane can be described by a2D coordinate system made ofθ̂′p andφ̂′p,

~R′p = ν′p,θ′p θ̂
′
p + ν′p,φ′p φ̂

′
p =

3∑

i=1

[
ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]
êi. (C.25)

If the plane’s orientation constantly changes in time about its origin, the points on the plane experience the velocity
d ~R′p/dt,

~̇R′p ≡
d ~R′p
dt

=
3∑

i=1

[
ν̇′p,θ′p

∂Λ′p,i
∂θ′p

+

{
ν′p,θ′p

∂2Λ′p,i
∂

[
θ′p

]2 +
ν′p,φ′p
sin θ′p

(
∂2Λ′p,i
∂θ′p∂φ′p

− cot θ′p
∂Λ′p,i
∂φ′p

)}
θ̇′p

+
ν̇′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

+

{
ν′p,θ′p

∂2Λ′p,i
∂φ′p∂θ′p

+
ν′p,φ′p
sin θ′p

∂2Λ′p,i
∂

[
φ′p

]2
}
φ̇′p

]
êi, (C.26)

whereθ̇′p, φ̇′p are the angular frequencies andν̇′p,θ′p , ν̇
′
p,φ′p are the lattice vibrations along the directionsθ̂′p andφ̂′p,

respectively. Here, it is understood thatΛ′p,3 is independent ofφ′p. Therefore, the differentiation ofΛ′p,3 with respect

to theφ′p vanishes. For the static plate in which there are no lattice vibrations,ν̇′p,θ′p andν̇′p,φ′p vanishes.
For the case of plate-hemisphere configuration shown in Figure 3.7, the points on the plate are represented by the

vector ~Rp relative to the system origin. Making the correspondence in equation (B.2),~R → ~Rn, ~RT → ~RT,p and
~R′ → n̂′p, the two angular variable sets

(
θ′p, φ

′
p

)
and(θ, φ) are connected through the relations given in equations

(B.10) and (B.12) withr′i → 1. Herer′i → 1 because
∥∥∥n̂′p

∥∥∥ = 1. Therefore, we obtain

φ̀p
(
θ′p, φ

′
p, νT,p,1, νT,p,2

)
= arctan

(
νT,p,2 + sin θ′p sinφ′p
νT,p,1 + sin θ′p cosφ′p

)
, (C.27)

θ̀p

(
θ′p, φ

′
p,
~RT,p

)
= arctan




{
νT,p,1 + νT,p,2 + sin θ′p

[
cosφ′p + sinφ′p

]} [
νT,p,3 + cos θ′p

]−1

cos
(
arctan

(
νT,p,2+sin θ′p sinφ′p
νT,p,1+sin θ′p cosφ′p

))
+ sin

(
arctan

(
νT,p,2+sin θ′p sinφ′p
νT,p,1+sin θ′p cosφ′p

))

 , (C.28)

where the subscriptp of φ̀p andθ̀p indicates that these are the spherical variables for the points on the plate shown in
Figure 3.7, and they are not that of the hemisphere. The vector~Rp becomes

~Rp = ~RT,p (νT,p,1, νT,p,2, νT,p,3) + ~R′p =
3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]
êi. (C.29)
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The magnitude
∥∥∥~Rp

∥∥∥ is given by

rp

(
~Λ′p, ~RT,p

)
≡

∥∥∥~Rp
∥∥∥ =





3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]2




1/2

.

In terms of the spherical coordinates,~Rp is expressed by

~Rp

(
~̀Λp, ~Λ′p, ~RT,p

)
=





3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]2




1/2
3∑

i=1

Λ̀p,iêi, (C.30)

where

Λ̀p,1
(
θ̀p, φ̀p

)
= sin θ̀p cos φ̀p, Λ̀p,2

(
θ̀p, φ̀p

)
= sin θ̀p sin φ̀p, Λ̀p,3

(
θ̀p

)
= cos θ̀p. (C.31)

Here, the subscriptp in ~Rp indicates that the vector~Rp describe the points on the plate. If the plane’s orientation
constantly changes in time about its origin, then the same orientation change observed relative to the system origin is
given by the velocityd~Rp/dt,

~̇Rp ≡ d~Rp
dt

=





3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]2




−1/2
3∑

j=1

3∑

k=1

([
νT,p,k + ν′p,θ′p

∂Λ′p,k
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,k
∂φ′p

][
ν̇T,p,k +

{
ν′p,θ′p

∂2Λ′p,k
∂

[
θ′p

]2 +
ν′p,φ′p
sin θ′p

(
∂2Λ′p,k
∂θ′p∂φ′p

− cot θ′p
∂Λ′p,k
∂φ′p

)}
θ̇′p

+

{
ν′p,θ′p

∂2Λ′p,k
∂φ′p∂θ′p

+
ν′p,φ′p
sin θ′p

∂2Λ′p,k
∂

[
φ′p

]2
}
φ̇′p + ν̇′p,θ′p

∂Λ′p,k
∂θ′p

+
ν̇′p,φ′p
sin θ′p

∂Λ′p,k
∂φ′p

]
Λ̀p,j

+
3∑

i=1

[
νT,p,i + ν′p,θ′p

∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

]2 [
∂Λ̀p,j
∂θ̀p

∂θ̀p
∂φ′p

θ̇′p +
∂Λ̀p,j
∂φ̀p

∂φ̀p
∂φ′p

φ̇′p

]
 êj , (C.32)

where it is understood thatΛ′p,3 andΛ̀p,3 are independent ofφ′p andφ̀p, respectively; and as a consequence, their dif-

ferentiation with respect toφ′p andφ̀p vanishes. Herėθ′p, φ̇′p are angular frequencies andν̇T,p,i is the translation speed

of plate relative to system origin. Also,̇ν′p,θ′p , ν̇
′
p,φ′p are lattice vibrations along directionŝθ′p andφ̂′p, respectively.

For a static plate in which there are no lattice vibrations,ν̇′p,θ′p andν̇′p,φ′p vanishes.

A cross-sectional view of the plate-hemisphere system is shown in Figure 3.8. The initial wave vector~k′i traveling
toward the hemisphere would go through reflections according to the law of reflection and finally exit. It then continues
toward the plate and reflect from it. Depending on the orientation of plate at the time of impact, the wave would either
escape to infinity or re-enter the hemisphere to repeat the process all over again.

The equation (C.25) defines points on a plate, the Figure 3.7, relative to the plate origin. IfSp is a set of points on
a plate whose members are defined by~R′p of equation (C.25), the wave reflection dynamics off the plate involve only
those points ofSp in the intersection between the plate and the plane of incidence whose unit normal isn̂′p,1 given
in equation (A.17). In order to determine the intersection between the plate and the incidence plane, the plate is first
represented by a scalar field. From equation (C.23), the unit plate normal is

n̂′p =
3∑

i=1

Λ′p,iêi.
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The scalar field corresponding to the unit normaln̂′p satisfies the relation

~∇′fp (ν′1, ν
′
2, ν

′
3) ≡

3∑

i=1

êi
∂fp
∂ν′i

=
3∑

i=1

Λ′p,iêi →
3∑

i=1

[
∂fp
∂ν′i
− Λ′p,i

]
êi = 0.

The individual component of the equation is given by

∂fp
∂ν′i
− Λ′p,i = 0, i = 1, 2, 3.

Notice thatΛ′p,i is independent ofν′i. An integration with respect toν′i yields the result

fp (ν′1, ν
′
2, ν

′
3) =

3∑

i=1

Λ′p,iν
′
i, (C.33)

where the integration constant is set to zero because the plate contains its local origin. The intersection between the
plane of incidence and the plate shown in Figure 3.6 satisfies the relation

fp (ν′1, ν
′
2, ν

′
3)− fp,1 (ν′1, ν

′
2, ν

′
3) = 0 →

3∑

i=1

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]
ν′i = 0, (C.34)

wherefp,1 (ν′1, ν
′
2, ν

′
3) is given in equation (A.43), andν′i is a scalar corresponding to the basisêi, of course. We have,

from equation (C.25),

ν′i = ν′p,θ′p
∂Λ′p,i
∂θ′p

+
ν′p,φ′p
sin θ′p

∂Λ′p,i
∂φ′p

, i = 1, 2, 3. (C.35)

Substitutingν′i into equation (C.34),ν′p,θ′p is solved as

ν′p,θ′p = −
ν′p,φ′p
sin θ′p

∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] , (C.36)

where the summation over indicesj, k, m andn is implicit, also the quotientν′p,φ′p/ sin θ′p has been moved out of the

summation. The~R′p given in equation (C.25) is then rewritten as

~R′p =
ν′p,φ′p
sin θ′p

3∑

i=1




∂Λ′p,i
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,i
∂θ′p




êi. (C.37)

Similarly, ~Rp given in equation (C.30) is rewritten as

~Rp =





3∑

i=1


νT,p,i +

ν′p,φ′p
sin θ′p



∂Λ′p,i
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,i
∂θ′p







2




1/2

×
3∑

i=1

Λ̀p,iêi, (C.38)
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whereΛ̀p,i is given in equation (C.31). IfNh,max is the maximum count of reflections within the hemisphere before
the wave escapes, the direction of the escaping wave, measured with respect to the system origin~R = 0, is

~kNh,max+1 = ~Rh,Nh,max+1 − ~Rh,Nh,max
, (C.39)

where~kNh,max+1 = ξNh,max+1
~k′Nh,max+1.Similarly, by the correspondence~Rh,Nh,max+1 → ~Rh,i+3 and~Rh,Nh,max

→
~Rh,i+2 in Figure 3.8, the direction of the escaping wave vector~k is equivalently described by the relation

ζ~kNh,max+1 = ~Rp − ~Rh,Nh,max
(C.40)

whereζ is an appropriate positive scale factor. Combining equations (C.39) and (C.40),~Rp is solved as

~Rp = ζ ~Rh,Nh,max+1 + [1− ζ] ~Rh,Nh,max
. (C.41)

Because both~Rp and~kNh,max+1 belong to a spanning set for the plane of incidence whose unit normal isn̂′p,1 given
in equation (A.17), we observe that the following relationship

~Rp × ~kNh,max+1 =
{
ζ ~Rh,Nh,max+1 + [1− ζ] ~Rh,Nh,max

}
× ~kNh,max+1 = γn̂′p,1 (C.42)

hold, whereγ is a proportional constant. Substituting the explicit form forn̂′p,1 from equation (A.17) into equation
(C.42), it simplifies into the following equation

3∑

i=1

[
ζεijkRh,Nh,max+1,jkNh,max+1,k + [1− ζ] εijkRh,Nh,max,jkNh,max+1,k + γ

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]
êi = 0,

and its component equations are given by

ζεijkRh,Nh,max+1,jkNh,max+1,k + [1− ζ] εijkRh,Nh,max,jkNh,max+1,k + γ
∥∥∥~n′p,1

∥∥∥
−1

εijkk
′
1,jr

′
0,k = 0,

wherekNh,max+1,k = Rh,Nh,max+1,k − Rh,Nh,max,k as described in equation (C.39). Finally, the scale factorζ is
solved as

ζ ≡ ζi =
[
εijkRh,Nh,max,jRh,Nh,max+1,k − εijkRh,Nh,max,jRh,Nh,max,k + γ

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

× [
εijkRh,Nh,max,jRh,Nh,max+1,k − εijkRh,Nh,max,jRh,Nh,max,k − εijkRh,Nh,max+1,jRh,Nh,max+1,k

+εijkRh,Nh,max+1,jRh,Nh,max,k

]−1
, (C.43)

wherei = 1, 2, 3; j = 1, 2, 3 andk = 1, 2, 3. Here, the notationζi have been adopted in place ofζ. It should be
understood that for irrotational3D vectors,ζ1 = ζ2 = ζ3 = ζ. For vectors in2D and1D space, it is understood then
ζ3, ζ2 are absent, respectively. In current form, equation (C.43) is incomplete becauseγ is still arbitrary. This happens
becauseν′p,θ′p andν′p,φ′p of ~Rp, equation (C.30), still needs to be related to the scale parameterζi. Substitutingζi for ζ
in equation (C.41), it is rewritten as

~Rp = ζi ~Rh,Nh,max+1 + [1− ζi] ~Rh,Nh,max

or using equation (C.6) to explicitly substitute for~Rh,Nh,max+1 and ~Rh,Nh,max
for N = Nh,max + 1, N = Nh,max,
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respectively; and, regrouping the terms

~Rp =
3∑

i=1


ζi





3∑

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max+1,j

]2





1/2

Λ̀h,Nh,max+1,i + [1− ζi]

×




3∑

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max,j

]2





1/2

Λ̀h,Nh,max,i


 êi, (C.44)

whereζ1 = ζ2 = ζ3 = ζ. The subscripti of r′i is not a summation index. Equating the above result for~Rp with that
of equation (C.38), we arrive at

3∑

i=1








3∑

j=1


νT,p,j +

ν′p,φ′p
sin θ′p



∂Λ′p,j
∂φ′p

−
∑3
x=1

∂Λ′p,x

∂φ′p

[
Λ′p,x +

∥∥∥~n′p,1
∥∥∥
−1

εxyzk
′
1,yr

′
0,z

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,j
∂θ′p







2




1/2

×Λ̀p,i − ζi





3∑

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max+1,j

]2





1/2

Λ̀h,Nh,max+1,i + [ζi − 1] Λ̀h,Nh,max,i

×




3∑

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max,j

]2





1/2

 êi = 0,

and its component equations are





3∑

j=1


νT,p,j +

ν′p,φ′p
sin θ′p



∂Λ′p,j
∂φ′p

−
∑3
x=1

∂Λ′p,x

∂φ′p

[
Λ′p,x +

∥∥∥~n′p,1
∥∥∥
−1

εxyzk
′
1,yr

′
0,z

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,j
∂θ′p







2




1/2

×Λ̀p,i − ζi





3∑

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max+1,j

]2





1/2

Λ̀h,Nh,max+1,i + [ζi − 1] Λ̀h,Nh,max,i

×




3∑

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max,j

]2





1/2

= 0, (C.45)

wherei = 1, 2, 3. Introducing the following definitions for convenience,





Aζ =
{∑3

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max+1,j

]2
}1/2

, Bζ =
{∑3

j=1

[
νT,h,j + r′iΛ

′
h,Nh,max,j

]2
}1/2

,

Cζ = −
(∑3

x=1

∂Λ′p,x

∂φ′p

[
Λ′p,x +

∥∥∥~n′p,1
∥∥∥
−1

εxyzk
′
1,yr

′
0,z

])

×
(∑3

l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk
′
1,mr

′
0,n

])−1

,

(C.46)
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the relation shown in equation (C.45) is rewritten as





3∑

j=1

[
νT,p,j +

ν′p,φ′p
sin θ′p

(
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

)]2




1/2

Λ̀p,i − ζiAζΛ̀h,Nh,max+1,i

+ [ζi − 1]BζΛ̀h,Nh,max,i = 0,

wherei = 1, 2, 3. There are three such relations, one for each value ofi. It is convenient to combine additively all
three relations to form





3∑

j=1

[
νT,p,j +

ν′p,φ′p
sin θ′p

(
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

)]2




1/2
3∑

i=1

Λ̀p,i − ζiAζ
3∑

i=1

Λ̀h,Nh,max+1,i

+ [ζi − 1]Bζ
3∑

i=1

Λ̀h,Nh,max,i = 0.

After regrouping the terms and squaring both sides, it becomes

3∑

j=1

[
νT,p,j +

ν′p,φ′p
sin θ′p

(
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

)]2

︸ ︷︷ ︸
LP

=

[
ζiAζ

∑3
i=1 Λ̀h,Nh,max+1,i − [ζi − 1]Bζ

∑3
i=1 Λ̀h,Nh,max,i∑3

l=1 Λ̀p,l

]2

.

The summation labeledLP is rewritten as

LP =
[
ν′p,φ′p

]2 3∑

j=1

1
sin2 θ′p

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2

+ ν′p,φ′p

3∑

j=1

[
2νT,p,j
sin θ′p

(
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

)
+ ν2

T,p,j

]
.

The above equation is simplified into a quadratic equation ofν′p,φ′p ,

[
ν′p,φ′p

]2 3∑

j=1

1
sin2 θ′p

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2

+ ν′p,φ′p

3∑

j=1

[
2νT,p,j
sin θ′p

(
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

)
+ ν2

T,p,j

]

−
[
ζiAζ

∑3
i=1 Λ̀h,Nh,max+1,i − [ζi − 1]Bζ

∑3
i=1 Λ̀h,Nh,max,i∑3

l=1 Λ̀p,l

]2

= 0.

The two rootsν′p,φ′p are given by

ν′p,φ′p =


−

3∑

j=1

[
νT,p,j
sin θ′p

(
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

)
+

1
2
ν2
T,p,j

]
±





1
4




3∑

j=1

[
2νT,p,j
sin θ′p

(
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

)
+ ν2

T,p,j

]


2

+
3∑

j=1

1
sin2 θ′p

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2
[
ζiAζ

∑3
i=1 Λ̀h,Nh,max+1,i − [ζi − 1]Bζ

∑3
i=1 Λ̀h,Nh,max,i∑3

l=1 Λ̀p,l

]2




1/2



×



3∑

j=1

1
sin2 θ′p

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2


−1

, (C.47)

whereAζ , Bζ andCζ are defined in equation (C.46). It is understood that one does not mix summation indices ofAζ ,
Bζ andCζ with those already present above. The result forν′p,φ′p is still incomplete because the factorγ in ζi needs
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to be fixed by normalization. Unfortunately, the translation property of the plate,νT,p,j , makes it difficult to extractζi
out of the radical. Besides the stated difficulty regardingζi, ν

′
p,φ′p

is still ambiguous in deciding which of the two roots
correspond to the actual reflection point on the plate. Fortunately, for the plate-hemisphere system of Figure 3.7, the
choice of system origin is arbitrary. One can always choose the plate origin to be the system origin and the translation
of the plate can be equivalently simulated by a translation of the hemisphere origin in the opposite direction. Then, in
the rest frame of the plate, the translational motion of the plate is zero, i.e.,νT,p,j = 0. In this frame,ν′p,φ′p takes on
much simplified form

ν′p,φ′p = ± sin θ′p
ζiAζ

∑3
i=1 Λ̀h,Nh,max+1,i − [ζi − 1]Bζ

∑3
i=1 Λ̀h,Nh,max,i{∑3

j=1

[
∂Λ′p,j

∂φ′p
− Cζ ∂Λ′p,j

∂θ′p

]2
}1/2 ∑3

l=1 Λ̀p,l

.

For the sign ambiguity inν′p,φ′p , it can be quickly fixed by noting that forνT,p,j = 0, equation (C.45) yields

ν′p,φ′p =
ζi

∑3
i=1

[
AζΛ̀h,Nh,max+1,i −BζΛ̀h,Nh,max,i

]
+Bζ

∑3
i=1 Λ̀h,Nh,max,i

[
sin θ′p

]−1
{∑3

j=1

[
∂Λ′p,j

∂φ′p
− Cζ ∂Λ′p,j

∂θ′p

]2
}1/2 ∑3

l=1 Λ̀p,l

, νT,p,j = 0, (C.48)

whereAζ , Bζ andCζ are defined in equation (C.46) withνT,p,j = 0. It is to be noticed that for a situation where
νT,p,j = 0, Λ̀ becomes identical toΛ′ in form. One can obtaiǹΛ simply by replacing the primed variables with the
unprimed ones inΛ′. For convenience,ζi of equation (C.43) is rewritten as

ζi = C−1
γ Aγ + γC−1

γ Bγ ,

where
{

Aγ = εijkRh,Nh,max,j

[
Rh,Nh,max+1,k −Rh,Nh,max,k

]
, Bγ =

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k,

Cγ = εijk
[
Rh,Nh,max,j −Rh,Nh,max+1,j

] [
Rh,Nh,max+1,k −Rh,Nh,max,k

]
.

(C.49)

Furthermore introducing the definitions,





Aβ =
∑3
i=1

[
AζΛ̀h,Nh,max+1,i −BζΛ̀h,Nh,max,i

]
, Bβ =

∑3
i=1 Λ̀h,Nh,max,i,

Cβ =
{∑3

j=1

[
∂Λ′p,j

∂φ′p
− Cζ ∂Λ′p,j

∂θ′p

]2
}1/2 ∑3

l=1 Λ̀p,l,
(C.50)

theν′p,φ′p of equation (C.48) is rewritten as

ν′p,φ′p =
[
C−1
β C−1

γ AγAβ + γC−1
β C−1

γ BγAβ + C−1
β BζBβ

]
sin θ′p, νT,p,j = 0.

Substituting the last expression forν′p,φ′p into equation (C.38), we arrive at

~Rp =
[
C−1
β C−1

γ AγAβ + γC−1
β C−1

γ BγAβ + C−1
β BζBβ

]{
3∑

i=1

[
∂Λ′p,i
∂φ′p

− Cζ
∂Λ′p,i
∂θ′p

]2
}1/2 3∑

i=1

Λ̀p,iêi, (C.51)

whereνT,p,i = 0. The vector cross product~Rp × ~kNh,max+1 is given by

~Rp × ~kNh,max+1 =
3∑

i=1

εijkRp,jkNh,max+1,kêi
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or

~Rp × ~kNh,max+1 =
[
C−1
β C−1

γ AγAβ + γC−1
β C−1

γ BγAβ + C−1
β BζBβ

]




3∑

j=1

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2




1/2

×
3∑

i=1

εijkΛ̀p,jkNh,max+1,kêi.

Finally, substituting above vector cross product~Rp × ~kNh,max+1 into equation (C.42) and regrouping the terms, it
becomes

3∑

i=1




[
C−1
β C−1

γ AγAβ + γC−1
β C−1

γ BγAβ + C−1
β BζBβ

]




3∑

j=1

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2




1/2

×εijkΛ̀p,jkNh,max+1,k − γ
∥∥∥~n′p,1

∥∥∥
−1

εijkk
′
1,jr

′
0,k

)
êi = 0,

wheren̂′p,1 =
∥∥∥~n′p,1

∥∥∥
−1 ∑3

i=1 εijkk
′
1,jr

′
0,kêi have been used. And for the component equations

[
C−1
β C−1

γ AγAβ + γC−1
β C−1

γ BγAβ + C−1
β BζBβ

]




3∑

j=1

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2




1/2

×εijkΛ̀p,jkNh,max+1,k − γ
∥∥∥~n′p,1

∥∥∥
−1

εijkk
′
1,jr

′
0,k = 0,

wherei = 1, 2, 3. There are three such relations and they are additively combined to yield

[
C−1
β C−1

γ AγAβ + γC−1
β C−1

γ BγAβ + C−1
β BζBβ

]




3∑

j=1

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2




1/2

×
3∑

i=1

εijkΛ̀p,jkNh,max+1,k − γ
∥∥∥~n′p,1

∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,k = 0.

Finally, γ is solved to give the result

γ ≡ γo =




∥∥∥~n′p,1
∥∥∥
−1 3∑

i=1

εijkk
′
1,jr

′
0,k − C−1

β C−1
γ BγAβ





3∑

j=1

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2




1/2

×
3∑

i=1

εijkΛ̀p,jkNh,max+1,k

)−1 ([
C−1
β C−1

γ AγAβ + C−1
β BζBβ

]

×




3∑

j=1

[
∂Λ′p,j
∂φ′p

− Cζ
∂Λ′p,j
∂θ′p

]2




1/2
3∑

i=1

εijkΛ̀p,jkNh,max+1,k


 . (C.52)

The parameterν′p,φ′p is now completely defined,

ν′p,φ′p =
[
C−1
β C−1

γ AγAβ + γoC
−1
β C−1

γ BγAβ + C−1
β BζBβ

]
sin θ′p, νT,p,j = 0, (C.53)

where(Aζ , Bζ , Cζ) , (Aγ , Bγ , Cγ) , (Aβ , Bβ , Cβ) andγo are given by equations (C.46), (C.49), (C.50) and (C.52),
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respectively. Withν′p,φ′p defined in equation (C.53), the reflection point on the plate is obtained from equation (C.38),

~Rp =





3∑
s=1



∂Λ′p,s
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,s
∂θ′p




2




1/2

×
[
C−1
β C−1

γ AγAβ + γoC
−1
β C−1

γ BγAβ + C−1
β BζBβ

] 3∑

i=1

Λ̀p,iêi, (C.54)

whereνT,p,j = 0. It should be noticed that for a situation whereνT,p,j = 0, Λ̀ becomes identical toΛ′ in form, andΛ̀
can be obtained simply by replacing the primed variables with the unprimed ones.

To see if the wave reflected from the plate at location~Rp re-enters the hemisphere cavity or escape to infinity, we
consider the reflected wave~kr,Nh,max+1,

~kr,Nh,max+1 = αr,⊥
[
n̂′p × ~kNh,max+1

]
× n̂′p − αr,‖n̂′p • ~kNh,max+1n̂′p, (C.55)

where the relation found in equation (A.14) have been used. As always, it is convenient to express vectors in
component forms. Making the changes in variables(l,m, n) → (i, j, k) , (m, q, r) → (j, l,m) , n̂′ → n̂′p and
~k′i → ~kNh,max+1, the component result of equation (A.16) is used to get

~kr,Nh,max+1 =
3∑

i=1

3∑

k=1

{
αr,⊥

[
kNh,max+1,in

′
p,kn

′
p,k − n′p,ikNh,max+1,kn

′
p,k

]

−αr,‖n′p,kkNh,max+1,kn
′
p,i

}
êi, (C.56)

wheren′p,i andn′p,k are coefficients of the normalized̂n′p. All wave vectors entering the hemisphere cavity satisfy the
relation

~Rp +
3∑

i=1

[
~ξκ • êi

] [
~kr,Nh,max+1 • êi

]
êi − ~R0 = 0, ~R0 =

3∑

i=1

[
νT,h,i + r′0,i

]
êi, (C.57)

where~ξκ is a real-valued positive scale vector and~R0 is the points on the opening face of hemisphere. The scale vector
~ξκ has the form

~ξκ =
3∑

i=1

ξκ,iêi.

With the scale vector~ξκ defined above; and,~Rp and~kr,Nh,max+1 defined in equations (C.54) and (C.56), respectively,
equation (C.57) is rewritten in component form

3∑

i=1








3∑
s=1



∂Λ′p,s
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,s
∂θ′p




2




1/2

×
[
C−1
β C−1

γ AγAβ + γoC
−1
β C−1

γ BγAβ + C−1
β BζBβ

]
Λ̀p,i + ξκ,i

3∑

k=1

{
αr,⊥

[
kNh,max+1,i

×n′p,kn′p,k − n′p,ikNh,max+1,kn
′
p,k

]− αr,‖n′p,kkNh,max+1,kn
′
p,i

}− νT,h,i − r′0,i
)
êi = 0,
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which yields the component equations,





3∑
s=1



∂Λ′p,s
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,s
∂θ′p




2




1/2

[
C−1
β C−1

γ AγAβ

+γoC−1
β C−1

γ BγAβ + C−1
β BζBβ

]
Λ̀p,i + ξκ,i

3∑

k=1

{
αr,⊥

[
kNh,max+1,in

′
p,kn

′
p,k

−n′p,ikNh,max+1,kn
′
p,k

]− αr,‖n′p,kkNh,max+1,kn
′
p,i

}− νT,h,i − r′0,i = 0,

wherei = 1, 2, 3. Finally, ξκ,i is solved as

ξκ,i =



νT,h,i + r′0,i −





3∑
s=1



∂Λ′p,s
∂φ′p

−
∑3
i=1

∂Λ′p,i

∂φ′p

[
Λ′p,i +

∥∥∥~n′p,1
∥∥∥
−1

εijkk
′
1,jr

′
0,k

]

∑3
l=1

∂Λ′p,l

∂θ′p

[
Λ′p,l +

∥∥∥~n′p,1
∥∥∥
−1

εlmnk′1,mr
′
0,n

] ∂Λ′p,s
∂θ′p




2




1/2

×
[
C−1
β C−1

γ AγAβ + γoC
−1
β C−1

γ BγAβ + C−1
β BζBβ

]
Λ̀p,i

) (
3∑

k=1

{
αr,⊥

[
kNh,max+1,in

′
p,kn

′
p,k

−n′p,ikNh,max+1,kn
′
p,k

]− αr,‖n′p,kkNh,max+1,kn
′
p,i

})−1
, (C.58)

wherei = 1, 2, 3.
The above result can be applied in setting the re-entry criteria. Notice that~R0 ≤ r′i, which impliesr′0,i ≤ r′i, where

r′i is the radius of the hemisphere. It can be concluded then that all waves re-entering hemisphere cavity would satisfy
the conditionξκ,1 = ξκ,2 = ξκ,3. On the other hand, those waves that escapes to infinity cannot have all threeξκ,i
equaling to a same constant. The re-entry conditionξκ,1 = ξκ,2 = ξκ,3 is just another way of stating the existence of
parametric line along the vector~kr,Nh,max+1 that happens to pierce through a hemisphere opening. When such a line
does not exist, the initial wave vector direction has to be rotated accordingly to a new direction, such that in its rotated
direction there is a parametric line that pierces through the hemisphere opening; it leads to the condition that all three
ξκ,i cannot equal to a same constant. The re-entry criteria are now summarized for bookkeeping purpose,

{
ξκ,1 = ξκ,2 = ξκ,3 →Wave−ReEnters−Hemisphere,

ELSE →Wave− Escapes− to− Infinity, (C.59)

whereELSE is the case whereξκ,1 = ξκ,2 = ξκ,3 cannot be satisfied.
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D. Dynamical Casimir Force

The original derivations and developments of this thesis pertaining to the dynamical Casimir force are included in this
appendix. It is referenced by the text of the thesis to supply all the fine details.

D.1. Formalism of Zero-Point Energy and its Force

For massless fields, the energy-momentum relation is given by

H′ns
≡ ETotal = pc, (D.1)

wherep is the momentum andc the speed of light. The field propagating in an arbitrary direction has a momentum
~p′ =

∑3
i=1 p

′
iêi. The associated field energy-momentum relation is hence

H′ns
− c

{
3∑

i=1

[p′i]
2

}1/2

= 0.

The differentiation of the above equation gives

d


H′ns

− c
{

3∑

i=1

[p′i]
2

}1/2

 ≡ dH′ns

− cd
{

3∑

i=1

[p′i]
2

}1/2

= 0. (D.2)

The total differential energydH′ns
is

dH′ns
=

3∑

i=1

∂H′ns

∂k′i

∂k′i
∂p′i

dp′i =
3∑

i=1

([
ns +

1
2

]
~
)−1 ∂H′ns

∂k′i
dp′i, (D.3)

where the relationp′i =
[
ns + 1

2

]
~k′i has been used. The total differential momentum is

d

{
3∑

i=1

[p′i]
2

}1/2

=

{
3∑

i=1

[p′i]
2

}−1/2 3∑

i=1

p′idp
′
i.

The combined result is

3∑

i=1




([
ns +

1
2

]
~
)−1 ∂H′ns

∂k′i
−

{
3∑

i=1

[p′i]
2

}−1/2

cp′i


 dp′i = 0. (D.4)

Because all the momentum differentials are linearly independent, their coefficients are zero,

([
ns +

1
2

]
~
)−1 ∂H′ns

∂k′i
−

{
3∑

i=1

[p′i]
2

}−1/2

cp′i = 0, i = 1, 2, 3.
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There are three such equations. Then, additively combining the three relations, and rearranging the terms, we have

{
3∑

i=1

[p′i]
2

}1/2 3∑

i=1

([
ns +

1
2

]
~
)−1 ∂H′ns

∂k′i
=

3∑

i=1

cp′i.

Squaring both sides to get rid of the radical leads to

[
3∑

i=1

([
ns +

1
2

]
~
)−1 ∂H′ns

∂k′i

]2 3∑

i=1

[p′i]
2 = c2

[
3∑

i=1

p′i

]2

. (D.5)

The summations
∑3
i=1 [p′i]

2 and
[∑3

i=1 p
′
i

]2

are rewritten as

3∑

i=1

[p′i]
2 = [p′α]2 +

3∑

i=1

(1− δiα) [p′i]
2 = [p′α]2 +

3∑

i=1

(1− δiα)
([
ns +

1
2

]
~
)2

[k′i]
2
,

[
3∑

i=1

p′i

]2

=

[
p′α +

3∑

i=1

(1− δiα) p′i

]2

= [p′α]2 + 2
3∑

i=1

(1− δiα) p′ip
′
α +

[
3∑

i=1

(1− δiα) p′i

]2

= [p′α]2 + 2
3∑

i=1

(1− δiα)
[
ns +

1
2

]
~k′ip′α +

([
ns +

1
2

]
~
)2

[
3∑

i=1

(1− δiα) k′i

]2

,

wherep′i has been replaced by
[
ns + 1

2

]
~k′i. Substituting the result into equation (D.5) and rearranging the terms in

powers ofp′α, we have



[
3∑

i=1

∂H′ns

∂k′i

]2

−
([
ns +

1
2

]
~c

)2

 [p′α]2 − 2

[
ns +

1
2

]
~

3∑

i=1

(1− δiα)
([
ns +

1
2

]
~c

)2

k′ip
′
α

−
[

3∑

i=1

(1− δiα)
([
ns +

1
2

]
~c

)2

k′i

]2

+

[
3∑

i=1

∂H′ns

∂k′i

]2 3∑

i=1

(1− δiα)
([
ns +

1
2

]
~
)2

[k′i]
2 = 0.

Defining the following quantities,

{
Cα,1 =

∑3
i=1

∂H′ns

∂k′i
, Cα,2 =

∑3
i=1 (1− δiα)

([
ns + 1

2

]
~c

)2
k′i,

Cα,3 =
∑3
i=1 (1− δiα)

([
ns + 1

2

]
~
)2 [k′i]

2
,

(D.6)

the above quadratic equation is rewritten as
[
C2
α,1 −

([
ns +

1
2

]
~c

)2
]

[p′α]2 − 2
[
ns +

1
2

]
~Cα,2p′α − C2

α,2 + C2
α,1Cα,3 = 0.

Finally, the rootp′α is found to be

p′α =

[
ns + 1

2

]
~Cα,2

C2
α,1 −

([
ns + 1

2

]
~c

)2 +





[
ns + 1

2

]2 ~2C2
α,2[

C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 +

C2
α,2 − C2

α,1Cα,3

C2
α,1 −

([
ns + 1

2

]
~c

)2





1/2

, (D.7)

where the positive root have been chosen sincep′α is anα component magnitude of the total field momentum~p′,
therefore it is a positive scalar,p′α ≥ 0.
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By definition, force is equal to the change in momentum per unit time,

~F ′ =
d

dt
~p′ =

d

dt

3∑
α=1

p′αêα =
3∑

α=1

[
dp′α
dt

êα + p′α
dêα
dt

]
=

3∑
α=1

dp′α
dt

êα =
3∑

α=1

~F ′α.

The explicit expression for~F ′α is found to be

~F ′α =







Cα,1Cα,4

[
C2
α,1Cα,3 − C2

α,2

]
[
C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 − 2

[
ns + 1

2

]2 ~2Cα,1C
2
α,2Cα,4[

C2
α,1 −

([
ns + 1

2

]
~c

)2
]3 −

Cα,1Cα,3Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2

− 2
[
ns + 1

2

]
~Cα,1Cα,2[

C2
α,1 −

([
ns + 1

2

]
~c

)2
]2


 dCα,1

dt
+




[
ns + 1

2

]2 ~2Cα,2Cα,4[
C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 +

Cα,2Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2

+

[
ns + 1

2

]
~

C2
α,1 −

([
ns + 1

2

]
~c

)2

)
dCα,2
dt

−
1
2C

2
α,1Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2

dCα,3
dt

}
êα, (D.8)

where

Cα,4 =




[
ns + 1

2

]2 ~2C2
α,2[

C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 +

C2
α,2 − C2

α,1Cα,3

C2
α,1 −

([
ns + 1

2

]
~c

)2




−1/2

. (D.9)

Before computing the three time derivativesdCα,1/dt, dCα,2/dt and dCα,3/dt, we should notice thatk′i (ni) =
nifi (Li) . Hence, the derivativedk′i/dt can be written as

dk′i
dt

=
∂k′i
∂ni

dni
dt
fi (Li) + ni

∂fi
∂Li

dLi
dt

= fi (Li)
∂k′i
∂ni

ṅi + ni
∂fi
∂Li

L̇i. (D.10)

The three derivativesdCα,1/dt, dCα,2/dt anddCα,3/dt are given by

dCα,1
dt

=
3∑

i=1

3∑

j=1

∂2H′ns

∂k′j∂k
′
i

dk′j
dt

=
3∑

i=1

3∑

j=1

∂2H′ns

∂k′j∂k
′
i

[
fj (Lj)

∂k′j
∂nj

ṅj + nj
∂fj
∂Lj

L̇j

]

=
3∑

i=1

∂2H′ns

∂ [k′i]
2

[
fi (Li)

∂k′i
∂ni

ṅi + ni
∂fi
∂Li

L̇i

]
+

3∑

i=1

3∑

j=1

{
(1− δij)

∂2H′ns

∂k′j∂k
′
i

×
[
fj (Lj)

∂k′j
∂nj

ṅj + nj
∂fj
∂Lj

L̇j

]}
, (D.11)

dCα,2
dt

=
3∑

i=1

(1− δiα)
[
ns +

1
2

] [
fi (Li)

∂k′i
∂ni

ṅi + ni
∂fi
∂Li

L̇i

]
, (D.12)

dCα,3
dt

= 2
3∑

i=1

(1− δiα)
[
ns +

1
2

]2

k′i

[
fi (Li)

∂k′i
∂ni

ṅi + ni
∂fi
∂Li

L̇i

]
, (D.13)

whereCα,1, Cα,2 andCα,3 are defined in equation (D.6). It is noted that the derivativedk′i/dt, and also each of
dCα,1/dt, dCα,2/dt anddCα,3/dt, consists of two contributing parts, one is proportional toṅi and the other involves
L̇i. The force expression in equation (D.8) has then two contributing parts. The force contribution involvingṅi has
a physical meaning that the boundaries are being driven to generate the extra wave modes that would otherwise be
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missing when such drivers were not present. The force contribution involvingL̇i is the effect of feedbacks from the
moving boundaries. This feedback effect due to the moving boundaries tends to either cool or heat the conducting
boundaries. For an isolated, non-driven conducting boundaries, the force contribution proportional toṅi vanishes. For
what is concerned with in this thesis, only isolated systems are studied; and, therefore,ṅi = 0. The expression of force
is then rewritten as

~F ′α =







Cα,1Cα,4

[
C2
α,1Cα,3 − C2

α,2

]
[
C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 − 2

[
ns + 1

2

]2 ~2Cα,1C
2
α,2Cα,4[

C2
α,1 −
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ns + 1

2

]
~c

)2
]3 −

Cα,1Cα,3Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2

− 2
[
ns + 1

2

]
~Cα,1Cα,2[

C2
α,1 −

([
ns + 1

2

]
~c

)2
]2







3∑
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∂2H′ns

∂ [k′i]
2 ni

∂fi
∂Li

L̇i +
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3∑

j=1

(1− δij)
∂2H′ns

∂k′j∂k
′
i

nj
∂fj
∂Lj

L̇j




+




[
ns + 1

2

]2 ~2Cα,2Cα,4[
C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 +

Cα,2Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2 +

[
ns + 1

2

]
~

C2
α,1 −

([
ns + 1

2

]
~c

)2




3∑

i=1

(1− δiα)

×
[
ns +

1
2

]
ni
∂fi
∂Li

L̇i −
1
2C

2
α,1Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2 2
3∑

i=1

(1− δiα)
[
ns +

1
2

]2

k′ini
∂fi
∂Li

L̇i

}
êα.

It can be simplified with the following definitions,

Cα,5 =
Cα,1Cα,4

[
C2
α,1Cα,3 − C2

α,2

]
[
C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 − 2

[
ns + 1

2

]2 ~2Cα,1C
2
α,2Cα,4[

C2
α,1 −

([
ns + 1

2

]
~c

)2
]3

− Cα,1Cα,3Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2 −
2

[
ns + 1

2

]
~Cα,1Cα,2[

C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 , (D.14)

Cα,6 =

[
ns + 1

2

]2 ~2Cα,2Cα,4[
C2
α,1 −

([
ns + 1

2

]
~c

)2
]2 +

Cα,2Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2 +

[
ns + 1

2

]
~

C2
α,1 −

([
ns + 1

2

]
~c

)2 , (D.15)

Cα,7 =
C2
α,1Cα,4

C2
α,1 −

([
ns + 1

2

]
~c

)2 . (D.16)

The dynamical force can then be rewritten as

~F ′α =
3∑

i=1

{
ni
∂fi
∂Li

[
Cα,5

∂2H′ns

∂ [k′i]
2 + (1− δiα)

(
Cα,6 − Cα,7

[
ns +

1
2

]
k′i

)[
ns +

1
2

]]
L̇i

+
3∑

j=1

(1− δij)Cα,5nj ∂fj
∂Lj

∂2H′ns

∂k′j∂k
′
i

L̇j



 êα, (D.17)

whereCα,5, Cα,6 andCα,7 are defined in equations (D.14), (D.15) and (D.16). The force equation (D.17) vanishes
for the1D case, which is an expected result. The reason is explained as follow: Recall that equation (D.4) reads

3∑

i=1




([
ns +

1
2

]
~
)−1 ∂H′ns

∂k′i
−

{
3∑

i=1

[p′i]
2

}−1/2

cp′i


 dp′i = 0.
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For the1D case, the summation runs only once and the above expression simplifies to
[([

ns +
1
2

]
~
)−1 ∂H′ns

∂k′i
− c

]
dp′i = 0 →

([
ns +

1
2

]
~
)−1 ∂H′ns

∂k′i
− c = 0.

This is a classic situation where the problem has been over specified. For the3D case, equation (D.4) is really a
combination of two constraints,

∑3
i=1 [p′i]

2 andH′ns
. For the1D case, there is only one constraint,H′ns

. Hence,
equation (D.4) becomes an over specification. In order to avoid the problem caused by over specifications in this
formulation, the one dimensional force expression can be obtained directly by differentiating equation (D.1) instead
of using the above formulation for the three dimensional case. We have then for the force expression in1D case:

p′ =
1
c
H′ns

→ dp′

dt
=

1
c

∂H′ns

∂k′
dk′

dt
=

1
c

∂H′ns

∂k′

[
f (L)

∂k′

∂n
ṅ+ n

∂f

∂L
L̇

]
.

For an isolated, non-driven systems,

~F ′ =
n

c

∂f

∂L

∂H′ns

∂k′
L̇ê, (D.18)

where ~F ′ is the force expression in1D space. Here the subscriptα of ~F ′α have been dropped for simplicity, since it
is a one dimensional force.

D.2. Equations of Motion for the Driven Parallel Plates

Consider the one dimensional system of two parallel plates shown in Figure 3.10. Defining the boundary lengthLi,<
as the magnitude of a vector̂ei

[
~L< • êi

]
, where< denotes the region, the following relation is found from Figure

3.10,

~L< = ~Rrp,< − ~Rlp,< =
3∑

i=1

[
~Rrp,< • êi − ~Rlp,< • êi

]
êi. (D.19)

Hence, the velocityd~L</dt is

d~L<
dt

=
d~Rrp,<
dt

− d~Rlp,<
dt

=
3∑

i=1

[
d~Rrp,<
dt

• êi − d~Rlp,<
dt

• êi
]
êi (D.20)

and the corresponding component magnitude is given by

L̇i,< ≡ d~L<
dt
• êi =

d~Rrp,<
dt

• êi − d~Rlp,<
dt

• êi. (D.21)

Substituting the resulṫLi,< of equation (D.21) forL̇α in the one dimensional dynamical force expression of equation
(D.18),

~F ′α,< =
nα,<
c

∂fα,<
∂Lα,<

∂H′ns,<
∂k′α,<

[
d~Rrp,<
dt

• êα − d~Rlp,<
dt

• êα
]
êα, (D.22)

where L̇i,< ≡ L̇α and i ≡ α. The subscript< denotes the corresponding quantities associated with the region
< = 1, 2, 3, e.g.,H′ns,< denotes the field energy in region<. For simplicity, the following notational convention is
adopted

Ṙa,b =
d~Ra
dt
• êb, R̈a,b =

d2 ~Ra
dt2

• êb,
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gα,< =
nα,<
c

(
∂fα,<
∂Lα,<

) (
∂H′ns,<
∂k′α,<

)
. (D.23)

The force expression of equation (D.22) is then rewritten as

~F ′α,< = gα,<
[
Ṙrp,<,α − Ṙlp,<,α

]
êα, (D.24)

Before writing down equations of motion for each plates illustrated in Figure 3.10, the associated center of mass
point relative the the surface point vectors~Rrp,<,α for each plates needs to be determined. The center of mass point
~Rrp,cmfor plate labeled “right plate” in Figure 3.10 is related to the surface point vector~Rrp,< through a relation

~Rrp,cm (t) = ~Rrp,<=2 (t) + ~Rrp,cm−< (t) ,

where~Rrp,cm−< (t) ≡ ~Rrp,cm−2 (t) is a displacement between surface and the center of mass point. Theα component
of the center of mass point~Rrp,cm is then

Rrp,cm,α (t) ≡ êα • ~Rrp,cm (t) = êα • ~Rrp,2 (t) + êα • ~Rrp,cm−2 (t) = Rrp,2,α (t) +Rrp,cm−2,α (t) . (D.25)

The component of the center of mass point speed is given by

Ṙrp,cm,α (t) = Ṙrp,2,α (t) + Ṙrp,cm−2,α (t) . (D.26)

Similarly, for the plate labeled “left plate,” the center of mass point is related to the surface vector point~Rlp,<=2 (t)
by

~Rlp,cm (t) = ~Rlp,<=2 (t)− ~Rlp,cm−< (t) ,

and the component along the directionêα is

Rlp,cm,α (t) = Rlp,2,α (t)−Rlp,cm−2,α (t) , Ṙlp,cm,α (t) = Ṙlp,2,α (t)− Ṙlp,cm−2,α (t) . (D.27)

Using the above center of mass relations, equations (D.25), (D.26) and (D.27), along with the force equation (D.24),
the net force acting on a plate labeled “right plate” along the direction ofêα in the configuration shown in Figure 3.10
is

mrpR̈rp,cm,α =
[
~F ′α,<=2 + ~F ′α,<=3

]
• êα

or

mrpR̈rp,cm,α = gα,2

[
Ṙrp,cm,α − Ṙlp,cm,α − Ṙrp,cm−2,α − Ṙlp,cm−2,α

]

+ gα,3

[
Ṙdpr,cm,α − Ṙrp,cm,α − Ṙdpr,cm−2,α − Ṙrp,cm−2,α

]
(D.28)

wheremrp is the mass of the “right plate.” If the plate surface is not vibrating longitudinally along the direction of
êα, the displacementsRrp,cm−2,α andRdpr,cm−2,α are constants; hence,Ṙrp,cm−2,α = Ṙdpr,cm−2,α = 0. For static
surfaces, the above net force relation simplifies to

mrpR̈rp,cm,α = srp,2gα,2

[
Ṙrp,cm,α − Ṙlp,cm,α

]
+ srp,3gα,3

[
Ṙdpr,cm,α − Ṙrp,cm,α

]
, (D.29)

wheresrp,2 andsrp,3 have been inserted for convenience due to the force sign convention to be set later. Similarly, for
the plate labeled “left plate” in Figure 3.10, the net force relation along the direction ofêα is

mlpR̈lp,cm,α (t) =
[
~F ′α,β,<=1 + ~F ′α,β,<=2

]
• êα
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or, for the case where plate surfaces do not have longitudinal vibrations,

mlpR̈lp,cm,α = slp,1gα,1

[
Ṙlp,cm,α − Ṙdpl,cm,α

]
+ slp,2gα,2

[
Ṙrp,cm,α − Ṙlp,cm,α

]
, (D.30)

wheremlp is a mass of “left plate” and the termsslp,1 andslp,2 have been inserted for convenience due to the force
sign convention to be set later. We have now the two coupled differential equations,

mrpR̈rp,cm,α + srp,3gα,3Ṙrp,cm,α − srp,2gα,2Ṙrp,cm,α + srp,2gα,2Ṙlp,cm,α = srp,3gα,3Ṙdpr,cm,α,

mlpR̈lp,cm,α + slp,2gα,2Ṙlp,cm,α − slp,1gα,1Ṙlp,cm,α − slp,2gα,2Ṙrp,cm,α = −slp,1gα,1Ṙdpl,cm,α.

Introducing the following definitions,





η1 = m−1
rp [srp,2gα,2 − srp,3gα,3] , η2 = −srp,2gα,2m−1

rp

η3 = m−1
lp [slp,1gα,1 − slp,2gα,2] , η4 = slp,2gα,2m

−1
lp ,

ξrp = srp,3gα,3m
−1
rp Ṙdpr,cm,α, ξlp = −slp,1gα,1m−1

lp ,

R1 = Rrp,cm,α, R2 = Rlp,cm,α,

(D.31)

the coupled differential equations are rewritten as

R̈1 − η1Ṙ1 − η2Ṙ2 = ξrp, R̈2 − η3Ṙ2 − η4Ṙ1 = ξlp. (D.32)

The equations of motion shown in equation (D.32) are a system of two linear second-order inhomogeneous differential
equations. In order to rewrite the coupled linear inhomogeneous differential equation (D.32) into a set of first-order
linear inhomogeneous equation, a set of new variables are defined first,





Ṙ1 = R3, Ṙ2 = R4,

Ṙ3 = R̈1 = ξrp + η1Ṙ1 + η2Ṙ2 = ξrp + η1R3 + η2R4,

Ṙ4 = R̈2 = ξlp + η3Ṙ2 + η4Ṙ1 = ξlp + η3R4 + η4R3.

(D.33)

Using these new variables defined in equation (D.33), equation (D.32) can be cast into first-order inhomogeneous
equation in matrix form,

~̇R = M̃ · ~R+ ~ξ →




Ṙ1

Ṙ2

Ṙ3

Ṙ4


 =




0 0 1 0
0 0 0 1
0 0 η1 η2
0 0 η4 η3


 ·




R1

R2

R3

R4


 +




0
0
ξrp
ξlp


 .

The above first-order inhomogeneous equation is equivalent to

R1 =
∫ t

t0

R3dt
′, R2 =

∫ t

t0

R4dt
′, (D.34)

and
[
Ṙ3

Ṙ4

]

︸ ︷︷ ︸
~̇Rη

=
[
η1 η2
η4 η3

]

︸ ︷︷ ︸
fMη

·
[
R3

R4

]

︸ ︷︷ ︸
~Rη

+
[
ξrp
ξlp

]

︸ ︷︷ ︸
~ξ

. (D.35)
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For the homogeneous system

[
Ṙ3

Ṙ4

]

︸ ︷︷ ︸
~̇Rη

=
[
η1 η2
η4 η3

]

︸ ︷︷ ︸
fMη

·
[
R3

R4

]

︸ ︷︷ ︸
~Rη

, (D.36)

the eigenvalues are found from the root of the characteristic equation

det
(
λĨ − M̃η

)
≡ λ2 − [η1 + η3]λ+ η1η3 − η2η4 = 0.

The two eigenvalues are

λ3 =
η1 + η3

2
+

{
1
4

[η1 − η3]2 + η2η4

}1/2

, λ4 =
η1 + η3

2
−

{
1
4

[η1 − η3]2 + η2η4

}1/2

. (D.37)

And, the two corresponding eigenvectors are found to be

~Rλ3 = R̀4

[ η2
λ3−η1

1

]
, R̀4 =

{[
η2

λ3 − η1

]2

+ 1

}−1/2

, (D.38)

and

~Rλ4 = R̀3

[
1

λ4−η1
η2

]
, R̀3 =

{
1 +

[
λ4 − η1
η2

]2
}−1/2

, (D.39)

whereR̀3 andR̀4 are the normalization constants. The solutions for the matrix equation (D.36) are then

~φλ3 = ~Rλ3 exp (λ3t) = R̀4

[ η2
λ3−η1 exp (λ3t)

exp (λ3t)

]
, ~φλ4 = ~Rλ4 exp (λ4t) = R̀3

[
exp (λ4t)

λ4−η1
η2

exp (λ4t)

]
.

The fundamental matrix solutioñΦ(t) =
[
~φλ3 (t) , ~φλ4 (t)

]
is given by

Φ̃ (t) =

[
η2

λ3−η1 R̀4 exp (λ3t) R̀3 exp (λ4t)
R̀4 exp (λ3t) λ4−η1

η2
R̀3 exp (λ4t)

]
. (D.40)

The fundamental matrix solutioñΦ(t) has an inverse

Φ̃−1 (t) =
1

det
(
Φ̃ (t)

)
[

λ4−η1
η2

R̀3 exp (λ4t) −R̀3 exp (λ4t)
−R̀4 exp (λ3t) η2

λ3−η1 R̀4 exp (λ3t)

]
,

where

det
(
Φ̃ (t)

)
=

[
λ4 − η1
λ3 − η1 − 1

]
R̀3R̀4 exp ([λ3 + λ4] t) . (D.41)

The principal matrix solutioñΨ(t, t0) = Φ̃ (t) · Φ̃−1 (t0) of equation (D.35) becomes then

Ψ̃ (t, t0) =
1

det
(
Φ̃ (t0)

)
[
ψ11 (t, t0) ψ12 (t, t0)
ψ21 (t, t0) ψ22 (t, t0)

]
, (D.42)
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where

ψ11 (t, t0) = R̀3R̀4

[
λ4 − η1
λ3 − η1 exp (λ3t+ λ4t0)− exp (λ4t+ λ3t0)

]
, (D.43)

ψ12 (t, t0) = R̀3R̀4

[
η2

λ3 − η1 exp (λ4t+ λ3t0)− η2
λ3 − η1 exp (λ3t+ λ4t0)

]
, (D.44)

ψ21 (t, t0) = R̀3R̀4

[
λ4 − η1
η2

exp (λ3t+ λ4t0)− λ4 − η1
η2

exp (λ4t+ λ3t0)
]
, (D.45)

ψ22 (t, t0) = R̀3R̀4

[
λ4 − η1
λ3 − η1 exp (λ4t+ λ3t0)− exp (λ3t+ λ4t0)

]
. (D.46)

The inverse of principal matrix solutioñΨ(t, t0) is

Ψ̃−1 (t, t0) =
1

det
(
Ψ̃ (t, t0)

)
det

(
Φ̃ (t0)

)
[

ψ22 (t, t0) −ψ12 (t, t0)
−ψ21 (t, t0) ψ11 (t, t0)

]
, (D.47)

where

det
(
Ψ̃ (t, t0)

)
=

[
det

(
Φ̃ (t0)

)]−2

[ψ11 (t, t0)ψ22 (t, t0)− ψ12 (t, t0)ψ21 (t, t0)] . (D.48)

Using a variation-of-parameters technique, the solution to the inhomogeneous first-order differential equation (D.35)
is

~Rη (t) = Ψ̃ (t, t0) · ~Rη (t0) + Ψ̃ (t, t0) ·
∫ t

t0

Ψ̃−1 (t′, t0) · ~ξ (t′) dt′,

where it is understood the multiplications are that of the matrix operations. Substituting into this integral equation the
results for~Rη (t) , ~ξ (t′) , Ψ̃ (t) andΨ̃−1 (t′) given by equations (D.35), (D.42) and (D.47),

[
R3 (t)
R4 (t)

]
=

1

det
(
Φ̃ (t0)

)
([

ψ11 (t, t0) ψ12 (t, t0)
ψ21 (t, t0) ψ22 (t, t0)

]
·
[
R3 (t0)
R4 (t0)

]
+

[
ψ11 (t, t0) ψ12 (t, t0)
ψ21 (t, t0) ψ22 (t, t0)

]

·
∫ t

t0





1

det
(
Ψ̃ (t′, t0)

)
[

ψ22 (t′, t0) −ψ12 (t′, t0)
−ψ21 (t′, t0) ψ11 (t′, t0)

]
·
[
ξrp (t′)
ξlp (t′)

]

 dt′




or

R3 (t) =
1

det
(
Φ̃ (t0)

)


ψ11 (t, t0)R3 (t0) + ψ12 (t, t0)R4 (t0) +

ψ11 (t, t0)

det
(
Φ̃ (t0)

)

×



∫ t

t0

ψ22 (t′, t0) ξrp (t′)

det
(
Ψ̃ (t′, t0)

) dt′ −
∫ t

t0

ψ12 (t′, t0) ξlp (t′)

det
(
Ψ̃ (t′, t0)

) dt′


 +

ψ12 (t, t0)

det
(
Φ̃ (t0)

)

×



∫ t

t0

ψ11 (t′, t0) ξlp (t′)

det
(
Ψ̃ (t′, t0)

) dt′ −
∫ t

t0

ψ21 (t′, t0) ξrp (t′)

det
(
Ψ̃ (t′, t0)

) dt′






 , (D.49)
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R4 (t) =
1

det
(
Φ̃ (t0)

)


ψ21 (t, t0)R3 (t0) + ψ22 (t, t0)R4 (t0) +

ψ21 (t, t0)

det
(
Φ̃ (t0)

)

×



∫ t

t0

ψ22 (t′, t0) ξrp (t′)

det
(
Ψ̃ (t′, t0)

) dt′ −
∫ t

t0

ψ12 (t′, t0) ξlp (t′)

det
(
Ψ̃ (t′, t0)

) dt′


 +

ψ22 (t, t0)

det
(
Φ̃ (t0)

)

×



∫ t

t0

ψ11 (t′, t0) ξlp (t′)

det
(
Ψ̃ (t′, t0)

) dt′ −
∫ t

t0

ψ21 (t′, t0) ξrp (t′)

det
(
Ψ̃ (t′, t0)

) dt′






 . (D.50)

It is noted from equation (D.34),R3 (t0) andR4 (t0) are initial speeds,

Ṙrp,cm,α (t0) ≡ Ṙ1 (t0) = R3 (t0) , Ṙlp,cm,α (t0) ≡ Ṙ2 (t0) = R4 (t0) .

Hence,

Ṙrp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1

ψ11 (t, t0) Ṙrp,cm,α (t0) + ψ12 (t, t0) Ṙlp,cm,α (t0)
exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ11 (t, t0)
∫ t

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ12 (t, t0)

×
∫ t

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′, (D.51)

Ṙlp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1

ψ21 (t, t0) Ṙrp,cm,α + ψ22 (t, t0) Ṙlp,cm,α (t0)
exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ21 (t, t0)
∫ t

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ22 (t, t0)

×
∫ t

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′, (D.52)

where substitutions have been made for the determinantsdet
(
Φ̃ (t0)

)
anddet

(
Ψ̃ (t′, t0)

)
from equations (D.41) and

(D.48). It is to be understood that the notation(; t0) onη1, λ3 andλ4 implies implicit time dependence for these terms.
Finally, integration of both sides of equations (D.51) and (D.52) with respect to time gives the results

Rrp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1 ∫ t

t0

[
ψ11 (τ, t0) Ṙrp,cm,α (t0) + ψ12 (τ, t0) Ṙlp,cm,α (t0)

exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ11 (τ, t0)
∫ τ

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ12 (τ, t0)

×
∫ τ

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′
]
dτ +Rrp,cm,α (t0) , (D.53)

Rlp,cm,α (t) =
[
λ4 (; t0)− η1 (; t0)
λ3 (; t0)− η1 (; t0)

− 1
]−1 ∫ t

t0

[
ψ21 (τ, t0) Ṙrp,cm,α (t0) + ψ22 (τ, t0) Ṙlp,cm,α (t0)

exp ([λ3 (; t0) + λ4 (; t0)] t0)

+ ψ21 (τ, t0)
∫ τ

t0

ψ22 (t′, t0) ξrp (t′)− ψ12 (t′, t0) ξlp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′ + ψ22 (τ, t0)

×
∫ τ

t0

ψ11 (t′, t0) ξlp (t′)− ψ21 (t′, t0) ξrp (t′)
ψ11 (t′, t0)ψ22 (t′, t0)− ψ12 (t′, t0)ψ21 (t′, t0)

dt′
]
dτ +Rlp,cm,α (t0) , (D.54)
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where the termsψ11, ψ12, ψ21 andψ22 are defined in equations (D.43), (D.44), (D.45) and (D.46). The remaining
integrations are straightforward; hence, their explicit forms are not shown.

As a closing remark of this section, one may argue that for the static case,Ṙrp,cm,α (t0) andṘlp,cm,α (t0) must
be zero because the conductors seem to be fixed in position. This argument is flawed for any wall totally fixed in
position upon impact would require an infinite amount of energy. One has to consider the conservation of momentum
simultaneously. The wall has to have moved by the amount4Rwall = Ṙwall4t, where4t is the total duration
of impact, andṘwall is calculated from the momentum conservation and it is non-zero. The same argument can be
applied to the apparatus shown in Figure 3.10. For that system

‖~pvirtual−photon‖ =
1
c
H′ns,< (t0) ,





Ṙrp,cm,α (t0) =
∥∥∥ ~̇Rlp,3 (t0) + ~̇Rrp,2 (t0)

∥∥∥ ,

Ṙlp,cm,α (t0) =
∥∥∥ ~̇Rrp,1 (t0) + ~̇Rlp,2 (t0)

∥∥∥

or, for simplicity, assuming impact without any angle,

Ṙrp,cm,α (t0) =
2

mrpc

∥∥H′ns,3 (t0)−H′ns,2 (t0)
∥∥ , Ṙlp,cm,α (t0) =

2
mlpc

∥∥H′ns,1 (t0)−H′ns,2 (t0)
∥∥ ,

where the difference under the magnitude symbol implies that the energies from different regions act to counteract
each other.
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