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Fate has imposed upon our writing this
tome the yoke of a foreign tongue in
which we were not sung lullabies.

Freely adapted from Hermann Weyl
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Preface

The importance of path-integral methods in theoretical physics can hardly be disputed. Their applications
in most branches of modern physics have proved to be extremely fruitful not only for solving already
existing problems but also as a guide for the formulation and development of essentially new ideas and
approaches in the description of physical phenomena.

This book expounds the fundamentals of path integrals, of both the Wiener and Feynman type, and
their numerous applications in different fields of physics. The book has emerged as a result of many
courses given by the authors for students in physics and mathematics, as well as for researchers, over
more than 25 years and is based on the experience obtained from their lectures.

The mathematical foundations of path integrals are summarized in a number of books. But many
results, especially those concerning physical applications, are scattered in a variety of original papers and
reviews, often rather difficult for a first reading. In writing this book, the authors’ aim was twofold: first,
to outline the basic ideas underlying the concept, construction and methods for calculating the Wiener,
Feynman and phase-space quantum-mechanical path integrals; and second, to acquaint the reader with
different aspects concerning the technique and applications of path integrals.

It is necessary to note that, despite having almost an 80-year history, the theory and applications of
path integrals are still a vigorously developing area. In this book we have selected for presentation the
more or less traditional and commonly accepted material. At the same time, we have tried to include
some major achievements in this area of recent years. However, we are well aware of the fact that many
important topics have been either left out or are only briefly mentioned. We hope that this is partially
compensated by references in our book to the original papers and appropriate reviews.

The book is intended for those who are familiar with basic facts from classical and quantum
mechanics as well as from statistical physics. We would like to stress that the book is not just a linearly
ordered set of facts about path integrals and their applications, but the reader may find more effective ways
to learn a desired topic. Each chapter is self-contained and can be considered as an independent textbook:
it contains general physical background, the concepts of the path-integral approach used, followed by most
of the typical and important applications presented in detail. In writing this book, we have endeavored to
make it as comprehensive as possible and to avoid statements such as ‘it can be shown’ or ‘it is left as an
exercise for the reader’, as much as it could be done.

A beginner can start with any of the first two chapters in volume | (which contain the basic concepts
of path integrals in the theory of stochastic processes and quantum mechanics together with essential
examples considered in full detail) and then switch to his/her field of interest. A more educated user,
however, can start directly with his/her preferred field in more advanced areas of quantum field theory and
statistical physics (volume Il), and eventually return to the early chapters if necessary.

For the reader’s convenience, each chapter of the book is preceded by a short introductory section
containing some background knowledge of the field. Some sections of the book require also a knowledge
of the elements of group theory and differential (mainly Riemann) geometry. To make the reading
easier, we have added to the text a few supplements containing some basic concepts and facts from these

iX



X Preface

mathematical subjects. We have tried to use a minimum of mathematical tools. Thus, the proofs of a
number of theorems and details of applications are either briefly sketched or omitted, adequate references
being given to enable the interested reader to fully grasp the subject. An integral part of the presentation
of the material is the problems and their solutions which follow each topic discussed in the book. We do
hope that their study will be helpful for self-education, for researchers and teachers supervising exercise
sessions for students.

During the preparation of both volumes of this book the authors have benefited from discussions
on various physical and mathematical aspects related to path integrals with many of their colleagues.
We thank all of them for useful discussions and for their advice. Especially, it is a pleasure to express
our gratitude to Alexander Beilinson, Alan Carey, Wen-Feng Chen, Vladimir Fainberg, Dmitri Gitman,
Anthony Green, John van der Hoek, Mikhail loffe, Petr Kulish, Wolfgang Kummer, Antti Kupiainen,
Jorma Louko, the late Mikhail Marinov, Kazuhiko Nishijima, Matti Riti€én, Dmitri Polyakov, Adam
Schwimmer, Konstantin Selivanov and the late Euan Squires, and to acknowledge their stimulating
discussions, suggestions and criticism. Over the years, many students have provided us with useful
remarks and suggestions concerning the presentation of the material of the book. We thank all of them,
in particular Jari Heikkinen and Aleksi Vuorinen. We are deeply grateful to Claus Montonen, Peter
Presnajder and Anca Tureanu for their invaluable contributions and improvements throughout the book.
Itis also a great pleasure for us to express our gratitude to Jim Revill, Senior Academic Publisher of IOP,
for his fruitful cooperation and for his patience.

The financial support of the Academy of Finland under Project No 163394 is greatly acknowledged.

Masud Chaichian, Andrei Demichev
Helsinki, Moscow
December 2000



I ntroduction

The aim of this book is to present and explain the concept of the path integral which is intensively used
nowadays in almost all the branches of theoretical physics.

The notion ofpath integral (sometimes also callédnctional integral or integral over trajectoriesor
integral over histories or continuous integral) was introduced, for the first time, in the 1920s by Norbert
Wiener (1921, 1923, 1924, 1930) as a method to solve problems in the theory of diffusion and Brownian
motion. This integral, which is now also called fener integral, has played a central role in the further
development of the subject of path integration.

It was reinvented in a different form by Richard Feynman (1942, 1948) in 1942, for the reformulation
of quantum mechanics (the so-callekird formulation of quantum mechanics’ besides the Sxdinger
and Heisenberg ones). The Feynman approach was inspired by Dirac’s paper (1933) on the role of the
Lagrangian and the least-action principle in quantum mechanics. This eventually led Feynman to represent
the propagator of the Sabdinger equation by theomplex-valued path integral which now bears his
name. At the end of the 1940s Feynman (1950, 1951) worked out, on the basis of the path integrals,
a new formulation of quantum electrodynamics and developed the well-kdtagnam technique for
perturbation theory.

In the 1950s, path integrals were studied intensively for solving functional equations in quantum
field theory Schwinger equations). The functional formulation of quantum field theory was considered
in the works of Bogoliubov (1954), Gelfand and Minlos (1954), Khalatnikov (1952, 1955), Mathews and
Salam (1954), Edwards and Peierls (1954), Symanzik (1954), Fradkin (1954) and others. Other areas of
applications of path integrals in theoretical physics discovered in this decade were the study of Brownian
motion in an absorbing medium (see Kac (1959), Wiegel (1975, 1986) and references therein) and the
development of the theory of superfluidity (Feynman 1953, 1954, ter Haar 1954, Kikuchi 1954, 1955).
Starting from these pioneering works, many important applications of path integrals have been found in
statistical physics: in the theory of phase transitions, superfluidity, superconductivity, the Ising model,
quantum optics, plasma physics. In 1955, Feynman used the path-integral technique for investigating
the polaron problem (Feynman 1955) and invented his variational principle for quantum mechanics. This
work had an importantimpact on further applications of path integrals in statistical and solid state physics,
as well as in quantum field theory, in general.

At the same time, attempts were initiated to widen the class of exactly solvable path integrals, i.e. to
expand it beyond the class of Gaussian-like integrals. In the early 1950s, Ozaki (in unpublished lecture
notes, Kyushu University (1955)) started with a short-time action for a free particle written in Cartesian
coordinates and transformed it into the polar form. Later, Peak and Inomata (1969) calculated explicitly
the radial path integral for the harmonic oscillator. This opened the way for an essential broadening of
the class of path-integrable models. Further important steps in this direction were studies of systems on
multiply connected spaces (in particular, on Lie group manifolds) (Schulman 1968, Dowker 1972) and
the treatment of the quantum-mechanical Coulomb problem by Duru and Kleinert (1979), who applied
the so-called Kustaanheimo—Stiefel spacetime transformation to the path integral.
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In the 1960s, a new field of path-integral applications appeared, namely the quantizejaugef
fields, examples of which are the electromagnetic, gravitational and Yang—Mills fields. The specific
properties of the action functionals for gauge fields (their invariance with respect to gauge transformations)
should be taken into account when quantizing, otherwise wrong results emerge. This was first noticed by
Feynman (1963) using the example of Yang—Mills and gravitational fields. He showed that quantization by
straightforward use of the Fermi method, in analogy with quantum electrodynamics, violates the unitarity
condition. Later, as a result of works by De Witt (1967), Faddeev and Popov (1967), Mandelstam (1968),
Fradkin and Tyutin (1969) and 't Hooft (1971), the problem was solved and the path-integral method
turned out to be the most suitable one for this aim. In addition, in the mid-1960s, Berezin (1966) took
a crucial step which allowed the comprehensive use of path integration: he introduced integration over
Grassmann variables to describe fermions. Although this may be considered to be a formal trick, it opened
the way for a unified treatment of bosons and fermions in the path-integral approach.

In the 1970s, Wilson (1974) formulated the field theory of quarks and gluons (i.e. quantum
chromodynamics) on a Euclidean spacetilattice. This may be considered as the discrete form of
the field theoretical path integral. The lattice serves as both an ultraviolet and infrared cut-off which
makes the theory well defined. At low energies, it is the most fruitful method to treat the theory of strong
interactions (for example, making use of computer simulations). A few years later, Fujikawa (1979)
showed how thguantumanomalies emerge from the path integral. He realized that it is the ‘measure’ in
the path integral which is not invariant under a certain class of symmetry transformations and this makes
the latter anomalous.

All these achievements led to the fact that the path-integral methods have become an indispensable
part of any construction and study of field theoretical models, including the realistic theories of unified
electromagnetic and weak interactions (Glashow 1961, Weinberg 1967, Salam 1968) and gquantum
chromodynamics (the theory of strong interactions) (Gross and Wilczek 1973, Politzer 1973). Among
other applications of path integrals in quantum field theory and elementary particle physics, it is
worth mentioning the derivation of asymptotic formulas for infrared and ultraviolet behaviour of Green
functions, the semiclassical approximation, rearrangement and partial summation of perturbation series,
calculations in the presence of topologically non-trivial field configurations and extended objects (solitons
and instantons), the study of cosmological models and black holes and such an advanced application
as the formulation of the first-quantized theory of (super)strings and branes. In addition, the path-
integral technique finds newer and newer applications in statistical physics and non-relativistic quantum
mechanics, in particular, in solid body physics and the description of critical phenomena (phase
transitions), polymer physics and quantum optics, and in many other branches of physics. During the
two last decades of the millennium, most works in theoretical and mathematical physics contained some
elements of the path-integral technique. We shall, therefore, not pursue the history of the subject past
the 1970s, even briefly. Functional integration has proved to be especially useful for the description
of collective excitations (for example, quantum vortices), in the theory of critical phenomena, and for
systems on topologically non-trivial spaces. In some cases, this technique allows us to provide solid
foundations for the results obtained by other methods, to clarify the limits of their applicability and
indicate the way of calculating the corrections. If an exact solution is possible, then the path-integral
technigue gives a simple way to obtain it. In the case of physically realistic problems, which normally
are far from being exactly solvable, the use of path integrals helps to build up the qualitative picture
of the corresponding phenomenon and to develop approximate methods of calculation. They represent
a sufficiently flexible mathematical apparatus which can be suitably adjusted for the extraction of the
essential ingredients of a complicated model for its further physical analysis, also suggesting the method
for a concrete realization of such an analysis. One can justly say that path integration is an integral calculus
adjusted to the needs of contemporary physics.
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Univer sality of the path-integral formalism

The most captivating feature of the path-integral technique is that it provides a unified approach to solving
problems in different branches of theoretical physics, such as the theory of stochastic processes, quantum
mechanics, quantum field theory, the theory of superstrings and statistical (both classical and quantum)
mechanics.

Indeed, the general form of the basic object, namely the transition probabif{ity, t |Xo, to), in
the theory of stochastic processes, reads

1
W(xs, telxo. to) ~ > exp{—ﬁF[x(r)]} (0.0.1)

all trajectories
from xg to Xt

wherexg denotes the set of coordinates of the stochastic system under consideration at the initgal time
andW(xs, tf|Xo, to) gives the probability of the system to have the coordinateat the final timets.
The explicit form of the functionaF[x(7)], o < t < tf, as well as the value and physical meaning of
the constanD, depend on the specific properties of the system and surrounding medium (see chapter 1).
The summation sign symbolically denotes summation over all trajectories of the system. Of course, this
operation requires further clarification and this is one of the goals of this book.

In quantum mechanics, the basic object is the transition amplKude, t 1 |Xo, to), not a probability,
but the path-integral expression for it has a form which is quite similar to (0.0.1):

[
K, trlxoto) ~ ) eXp{ES[X(r)]} (0.0.2)
all trajectories
from xp to x;
or, in a more general case,
K (xt, tf|Xo, to) ~ > exp{lS[x(r), p(r)]} : (0.0.3)
h

all trajectories
in phase space
with fixed xo and x¢

Here,S[x(7)] is the action of the system in terms of the configuration space variables,Sthkite), p(z)]

is the action in terms of the phase-space variables (coordinates and momenta). Though now we have
purely imaginary exponents in contrast with the case of stochastic processes, the general formal structure
of expressions (0.0.1)—(0.0.3) is totally analogous. Moreover, as we shall see later, the path integrals
(0.0.2), (0.0.3) can be converted into the form (0.0.1) (i.e. with a purely real exponent) by a transition to
purely imaginary time variable$:— —it and, in many cases, this transformation can be mathematically
justified.

In the case of systems with an infinite number of degrees of freedom, it was also realized, even in
the 1960s, that an essential similarity between quantum field theory and (classical or quantum) statistical
physics exists. In particular, the vacuum expectations (Green functions) in quantum field theory are given
by expressions of the type:

- [
OA@I0~ > Al exp{ﬁsuo]} (0.0.4)
all field
configurations
where, on the left-hand sidéi(g@) is an operator made of the field operatgrand on the right-hand
side A(p) is the corresponding classical quantity. After the transition to purely imaginaryttime—it
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(corresponding to the so-called Euclidean quantum field theory), the vacuum expectation takes the form:

—~ 1
OA@I0)~ > Al exp{—ﬁsm} (0.0.5)

all field.
configurations

while in classical statistical mechanics, thermal expectation values are computed as

1
(A@)est ~ Y A(‘P)eXP{—kB—TEW]} (0.0.6)

call
configurations

(ks is the Boltzmann constant arid is the temperature). The similarity of the two last expressions is
obvious.

It is worth noting that historically quantum field theory is intimately linked with the classical field
theory of electromagnetism and with particle physics. Experimentally, it is intimately connected to high-
energy physics experiments at accelerators. The origins of statistical mechanics are different. Historically,
statistical mechanics is linked to the theory of heat, irreversibility and the kinetic theory of gases.
Experimentally, it is intimately connected with calorimetry, specific heats, magnetic order parameters,
phase transitions and diffusion. However, since equations (0.0.5) and (0.0.6) are formally the same,
we can mathematically treat and calculate them in the same way, extending the methods developed in
statistical physics to quantum field theory and vice versa.

It is necessary to stress the fact that both statistical mechanics and field theory deal with systems in
an infinite volume and hence with an infinite number of degrees of freedom. A major consequence of this
is that the formal definitions (0.0.4)—(0.0.6) by themselves have no meaning at all because they, at best,
lead to;. There is always a further definition needed to make sense of these expressions. In the case
of statistical mechanics, that definition is embodied in the thermodynamical limit which first evaluates
(0.0.6) in a finite volume and then takes the limit as the size of the box goes to infinity. In the case of
quantum field theory, the expressions (0.0.4), (0.0.5) need an additional definition which is provided by
a ‘renormalization scheme’ that usually involves a short-distance cut-off as well as a finite box. Thus,
in statistical mechanics, the (infrared) thermodynamical limit is treated explicitly, whereas in quantum
field theory, it is the short-distance (ultraviolet) cut-off that is discussed extensively. The difference in
focus on infrared cut-offs versus ultraviolet cut-offs is often one of the major barriers of communication
between the two fields and seems to constitute a major reason why they are traditionally considered to be
completely different subjects.

Thus, path-integral techniques provide a unified approach to different areas of contemporary physics
and thereby allow us to extend methods developed for some specific class of problems to other fields.
Though different problems require, in general, the use of different types of path integral—Wiener (real),
Feynman (complex) or phase space—this does not break down the unified approach due to the well-
established relations between different types of path integral. We present a general pattern for different
ways of constructing and applying path integrals in a condensed graphical form in appendix A. The
reader may use it for a preliminary orientation in the subject and for visualizing the links which exist
among various topics discussed in this monograph.

The basic difference between path integrals and multiple finite-dimensional integrals. why the
former isnot a straightforward generalization of the latter

From the mathematical point of view the phrase ‘path integral’ simply refers to the generalization of
integral calculus to functionals. The general approach for handling a problem which involves functionals
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was developed by Volterra early in the last century (see in Volterra 1965). Roughly speaking, he
considered a functional as a function of infinitely many variables and suggested a recipe consisting of
three steps:

(i) replace the functional by a function of a finite numbembf/ariables;
(i) perform all calculations with this function;
(i) take the limitin whichN tends to infinity.

However, the first attempts to integrate a functional over a space of functions were not very
successful. The historical reasons for these failures and the early history of Wiener’s works which made
it possible to give a mathematically correct definition of path integrals can be found in Kac (1959) and
Papadopoulos (1978).

To have an idea why the straightforward generalization of the usual integral calculus to functional
spaces does not work, let us remember that the basic object of the integral calcuRfsisrthe
Lebesgue measure (see, e.g., Shilov and Gurevich (1966)) and the basic notion for the axiomatic definition
of this measure i® Borel set: a set obtained by a countable sequence of unions, intersections and
complementations of subsetsof pointsx = (Xq, ..., Xn) € R" of the form

B={x]ag <x1<bg,...,an < Xn < bp}.

The Lebesgue measuge(i.e. a rule ascribing to any subset a number which is equal, loosely speaking,
to its ‘volume’) is uniquely defined, up to a constant factor, by the conditions:

(i) it takes finite values on bounded Borel sets and is positive on non-empty open sets;
(i) it is invariant with respect to translations &l'.

A natural question now appears: Does the Lebesgue measure exist for infinite-dimensional spaces? The
answer is negative. Indeed, consider the sfit€e Let {e1, e, ...} be some orthonormal basis Rf°,

By the sphere of radiu% with its centre at and B the sphere of radius 2 with its centre at the origin

(see in figure 0.1 a part of this construction related to a three-dimensional subsfR€g. dfhen, from

the property (i) of the Lebesgue measure, we have

0 < pn(B1) = u(Bp) = u(Bg) =--- < o0.

Note that the sphereBx have no intersections and, hence, the additivity of any measure gives the
inequality(B) > ", n(Bk) = oo, which contradicts condition (i) for a Lebesgue measure.

Thus the problem of the construction of path integrals can be posed and considered from a purely
mathematical point of view as an abstract problem of a self-consistent generalization of the notion of
an integral to the case of infinite-dimensional spaces. Investigations along this line represent indeed an
important field of mathematical research: see, e.g., Kac (1959), Gelfand and Yaglom (1960), Kuo (1975),
Simon (1979), De Witt-Morettet al (1979), Berezin (1981), Elliott (1982), Glimm and Jaffe (1987) and
references therein. We shall follow, however, another line of exposition, having in mind a corresponding
physical problem in all cases where path integrals are utilized. The deep mathematical questions we
shall discuss on a rather intuitive level, with the understanding that mathematical rigour can be supplied
whenever necessary and that the answers obtained do not differ, in any case, from those obtained after a
sound mathematical derivation. However, we do try to provide a flavour of the mathematical elegance in
discussing, e.g., the celebrated Wiener theorem, the Bohr—Sommerfeld quantization condition, properties
of the spectra of Hamiltonians derived from the path integrals etc.

Itis necessary to note that the available level of mathematical rigour is different for different types of
path integral. While the (probabilistic) Wiener path integral is based on a well-established mathematical
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Bkr1

Bki2
Bk

Figure 0.1. A three-dimensional part of the construction in the finite-dimensional sgate which proves the
impossibility of the direct generalization of the Lebesgue measure to the infinite-dimensional case.

background, the complex oscillatory Feynman and phase-space path integrals still meet some analytical
difficulties in attempts of rigorous mathematical definition and justification, in spite of the progress
achieved in works by Mizrahi (1976), Albeverio and Hgegh-Krohn (1976), Albeetrab (1979), De
Witt-Morette et al (1979) and others. Roughly speaking, the Wiener integral is based on a well-defined
functional integral (Gaussian) measure, while the Feynman and phase-space path integrals do not admit
any strictly defined measure and should be understood as more or less mathematically justified limits of
their finite-dimensional approximation. The absence of a measure in the case of the Feynman or phase-
space quantum-mechanical path integrals is not merely a technicality: it means that these inrfatct are
integrals; instead, they atimear functionals. In a profound mathematical analysis this difference might

be significant, since some analytical tools appropriate for integrals are not applicable to linear functionals.

What thisbook is about and what it contains

Different aspects concerning path integrals are considered in a number of books, such as those by Kac
(1959), Feynman and Hibbs (1965), Simon (1979), Schulman (1981), Langetiahé1982), Popov
(1983), Wiegel (1986), Glimm and Jaffe (1987), Rivers (1987), Ranfetgti(1990), Dittrich and Reuter
(1992), Mensky (1993), Das (1993), Kleinert (1995), Roepstorff (1996), Grosche (1996), Grosche and
Steiner (1998) and Toen(1998). Among some of the main review articles are those by Feynman (1948),
Gelfand and Yaglom (1960), Brush (1961), Garrod (1966), Wiegel (1975, 1983), Neveu (1977), DeWitt-
Moretteet al (1979) and Khandekar and Lawande (1986).

In contrast to many other monographs, in this book the concept of path integral is introduced in
a deductive way, starting from the original derivation by Wiener for the motion of a Brownian particle.
Besides the fact that the Wiener measure is one whose existence is rigorously proven, the Brownian motion
is a transparent way to understand the concept of a path integral as the way by which the Brownian particle
moves in space and time. Thus, the representation in terms of Wiener’s treatment of Brownian motion will
serve as a prototype, whenever we use path integrals in other fields, such as quantum mechanics, quantum
field theory and statistical physics.

Approximation methods, such as the semiclassical approximation, are considered in detail and in
the subsequent chapters they are used in quantum mechanics and quantum field theory. Special attention
is devoted to the change of variables in path integrals; this also provides a necessary experience when
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dealing with analogous problems in other fields. Some important aspects, like the gauge conditions in
quantum field theory, can similarly be met in the case of the Brownian motion of a particle with inertia
which involves path integrals with constraints. Several typical examples of how to evaluate such integrals
are given.

With the background obtained in chapter 1, chapter 2 continues to the cases of quantum mechanics.
We essentially use the similarity between Wiener and Feynman path integrals in the first section of
chapter 2 reducing, in fact, some quantum-mechanical problems to consideration of the corresponding
Wiener integral. On the other hand, there exists an essential difference between the two types (Wiener
and Feynman) of path integral. The origin of this distinction is the appearance of a new fundamental
object in quantum mechanics, hamely, the probabdlityplitude. Moreover, functional integrals derived
from the basic principles of quantum mechanics prove to be over paths jindbespace of the system
and only in relatively simple (though quite important and realistic) cases can be reduced to Feynman path
integrals over trajectories in thenfiguration space. We discuss this topic in sections 2.2 and 2.3. A
specific case in which we are strongly confined to work in the framework of phase-space path integrals
(or, at least, to start from them) is the study of systems watitlved phase spaces. The actuality of such a
study is confirmed, e.g., by the fact that the importmilomb problem (in fact, any quantum-mechanical
description of atoms) can be solved via the path-integral approach only within a formalism including the
phase space with curvilinear coordinates (section 2.5).

A natural application of path integrals in quantum mechanics, also considered in chapter 2, is the
study of systems withopological constraints, e.g., a particle moving in some restricted domain of the
entire spac® or with non-trivial, say periodic, boundary conditions (e.g., a particle on a circle or torus).
Although this kind of problem can, in principle, be considered by operator methods, the path-integral
approach makes the solution simpler and much more transparent. The last section of chapter 2 is devoted
to the generalization of the path-integral construction to the case of particles described by operators with
anticommutative (fermionic) or even more general defining relations (instead of the canonical Heisenberg
commutation relations).

In chapter 2 we also present and discuss important technical tools for the construction and calculation
of path integrals: operator symbol calculus, stochastic Ito calculus, coherent states, the semiclassical
(WKB) approximation, the perturbation expansion, the localization technique and path integration on
group manifolds. This chapter also contains some selected applications of path integrals serving to
illustrate the diversity and fruitfulness of the path-integral techniques.

In chapter 3 we proceed to discuss systems with an infinite number of degrees of freedom, that is,
to consider quantum field theory in the framework of the path-integral approach. Of course, quantum
field theory can be considered as the limit of quantum mechanics for systems with an infinite number
of degrees of freedom and with an arbitrary or non-conserved number of excitations (particles or
quasiparticles). Therefore, the starting point will be the quantum-mechanical phase-space path integrals
studied in chapter 2 which we suitably generalize for the quantization of the simplest field theories,
at first, including scalar and spinor fields. We derive the path-integral expression for the generating
functional of Green functions and develop the perturbation theory for their calculation. In most practical
applications in quantum field theory, these path integrals can be reduced to the Feynman path integrals
over the correspondingpnfiguration spaces by integrating over momenta. This is especially important
for relativistic theories where this transition allows us to keggicitly the relativistic invariance of all
expressions.

Apparently, the most important result of path-integral applications in quantum field theory is the
formulation of the celebrateBeynman rules and the invention of the Feynman diagram technique for
the perturbation expansion in the case of field theories with constraints, i.e. in the ogmeefield
theorieswhich describe all the realistic fundamental interactions of elementary particles. This is one of the
central topics of chapter 3. For pedagogical reasons, we start from an introduction to the quantization of
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quantum-mechanical systems with constraints and then proceed to the path-integral description of gauge
theories. We derive the covariant generating functional and covariant perturbation expansion for Yang—
Mills theories with exact and spontaneously broken gauge symmetry, including the resitistlard

model of electroweak interactions amgiantum chromodynamics, which is the gauge theory of the strong
interactions.

However, important applications of path integrals in quantum field theory go far beyond just
a convenient derivation of the perturbation theory rules. We consider various non-perturbative
approximations for calculations in field theoretical models, variational methods (including the Feynman
variational method in the non-relativistic field theory of the polaron), the description of topologically
non-trivial field configurations, semiclassical, in particulastanton, calculations, the quantization of
extended objectsglitons) and calculation of quantum anomalies.

The last section of chapter 3 contains some advanced applications of the path-integral technique in
the theory of quantum gravity, cosmology, black holes and in string theory, which is believed to be the
most plausible candidate (or, at least, a basic ingredient) for a ‘theory of everything’.

As we have previously pointed out, the universality of the path-integral approach allows us to apply
it without crucial modification to statistical (both classical and quantum) systems. We discuss how to
incorporate statistical properties into the path-integral formalism for the study of many-particle systems
in chapter 4. At first, we present, for its easier calculation, a convenient path-integral representation of the
so-called configuration integral entering ttlassical partition function. In the next section, we pass to
gquantum systems and, in order to establish a ‘bridge’ to what we considered in chapter 2, we introduce a
path-integral representation for an arbitrary fixed number ofindistinguishable particles obeying Bose
or Fermi statistics. We also discuss the generalization to the case of particlemweistatistics.

The next step is the transition to the case ofaabitrary number of particles which requires the
use of second quantization, and hence, field theoretical methods. Consideration of path-integral methods
in quantum field theory in chapter 3 proves to be highly useful in the derivation of the path-integral
representation for the partition functions of statistical systems with an arbitrary number of particles. We
present some of the most fruitful applications of the path-integral techniques to the study of fundamental
problems of quantum statistical physics, such as the analysis of critical phenomena (phase transitions),
calculations in field theory at finite (non-zero) temperature or at finite (fixed) energy, as well as the
study of non-equilibrium systems and the phenomena of superfluidity and superconductivity. One section
is devoted to the presentation of basic elements of the methetbdfastic quantization, which non-
trivially combines ideas borrowed from the theory of stochastic processes (chapter 1), quantum mechanics
(chapter 2) and quantum field theory (chapter 3), as well as methods of non-equilibrium statistical
mechanics. The last section of this chapter (and the whole book) is devoted to systems defined on lattices.
Of course, there are no continuous trajectories on a lattice and, hence, no true path integrals in this case.
But since in quantum mechanics as well as in quantum field theory the precise definition of a path integral
is heavily based on the discrete approximation, discrete-time or spacetime approximations prove to be the
most reliable method of calculations. Then the aim is to pass to the corresponding continuum limit which
just leads to what is called a ‘path integral’. However, in many cases there are strong reasons for direct
investigation of thediscrete approximations of the path integrals and their calculation, without going to
the continuum limit. Such calculations become extremely important and fruitful in situations when there
are simply no other suitable exact or approximate ways to reach physical results. This is true, in particular,
for the gauge theory aftrong interactions. We also consider physically discrete systems (in particular,
the Ising model) which do not require transition to the continuous limit at all, but which can be analyzed
by methods borrowed from the path-integral technique.

For the reader’'s convenience, each chapter starts with a short review of basic concepts in the
corresponding subject. The reader who is familiar with the basic concepts of stochastic processes,
quantum mechanics, field theory and statistical physics can skip, without loss, these parts (printed with
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a specific type in order to distinguish them) and use them in case of necessity, only for clarification

of our notation. A few supplements at the end of the book serve basically a similar aim. They contain
short information about some mathematical and physical objects necessary for understanding parts of the
text, as well as tables of useful ordinary and path integrals. Besides, each section is supplemented by a set
of problems (together with more or less detailed hints for their solution), which are integral parts of the
presentation of the material. In a few appendixes we have collected mathematical details of the proofs of
statements discussed in the main text, which can be skipped for a first reading without essential harm for
understanding.

An obvious problem in writing a book devoted to a wide field is that, while trying to describe the
diversity of possible ways of calculation, tricks and applications, the book does not become ponderous.
For this purpose and for a better orientation of the reader, we have separated the text in the subsections
into shorter topics (marked with the sigl) and have given each one an appropriate title. We have
tried to present the technical methods discussed in the book, whenever possible, accompanied by non-
trivial physical applications. Necessarily, these examples, to be tractable in a single book, contain
oversimplifications but the reader will find references to the appropriate literature for further details. The
present monograph can also be considered as a preparatory course for these original or review articles and
specialized books. The diversity of applications of path integrals also explains some non-homogeneity of
the text with respect to detailing the presentation and requirements with respect to prior knowledge of the
reader. In particular, chapters 1 and 2 include all details, are completely self-contained and require only a
very basic knowledge of mathematical analysis and non-relativistic guantum mechanics. For a successful
reading of the main part of chapter 3, it is helpful to have some acquaintance with a standard course of
quantum field theory, at least at a very elementary level. The last section of this chapter contains advanced
and currently developing topics. Correspondingly, the presentation of this part is more fragmentary and
without much detail. Therefore, their complete understanding requires rather advanced knowledge in the
theory of gravitation and differential geometry and can be achieved only by rather experienced readers.
However, even those readers who do not feel fully ready for reading this part are invited to go through it
(without trying to absorb all the details), in order to get an idea about this modern and fascinating area
of applications of path integrals. Chapter 4, which contains a discussion of path-integral applications for
solving various problems in statistical physics, is also necessarily written in a more fragmentary style in
comparison with chapters 1 and 2. Nevertheless, all crucial points are covered and though some prior
familiarity with the theory of critical phenomena is useful for reading this chapter, we have tried to make
the text as self-contained as possible.

Notational conventions

Some general notation:

Z integers

Z+ positive integers

R real numbers

C complex numbers

def definition

A operator

M matrix

1 identity operator or matrix

X vector

c* complex conjugation of € C
At Hermitian conjugation of the operat&
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MT
f(t, x)
f/(t, x)

O(e)
A={a|F}

P{A}

D(X)

dwx(7)

drx(7)

De(x)
C{Xq1,11; X2, 15}

C{x1,11; [AB], tp}

C{xq, t1; t2}
C{x1, 15 X2, tp; X3, 13}

W(X, t|Xg, tg)
K (X, t|Xp, to)

matrix transposition

_ . f .
time derivation: f (t, x) dEe “gtgx)

o . . def
derivation with respect to a space variaklef’(t, x) = %

a quantity of the order of

subsetA of elementsa (belonging to some larger set) which satisfy the
conditionF

probability of the evenA

dispersion of a random quantiy

Wiener functional integration measure

Feynman functional integration ‘measure’

general notation for a functional integration ‘measure’

set of trajectories starting &ft;) = x4 and having the endpoint(ty) =
X2

set of trajectories with the starting poirf = X(t1) and ending in the
interval[AB] € R at the timet,

set of trajectories with an arbitrary endpoint

set of trajectories having the starting and endpointxatand xz,
respectively, and passing through the pointt the timet,

transition probability in the theory of stochastic processes

transition amplitude (propagator) in quantum mechanics

G(x—Yy),D(x—vy),S(x—y) field theoretical Green functions

General comments:

Some introductory parts of chapters or sections in the book contain preliminaries (basic concepts,
facts, etc) on a field where path integrals find applications to be discussed later in the main part of the
corresponding chapters or sections. The text of these preliminaries is distinguistieddrgsent

specific print.

The symbol of averaging (mean value)-) acquires quite different physical and even mathematical
meaning in different parts of this book (e.g., in the sense of stochastic processes, quantum-mechanical
or statistical (classical or guantum) averaging). In many cases we stress its concrete meaning by an
appropriate subscript. But essentially, all the averggesare achieved by path integration of the
quantity A with a corresponding functional integral measure.

We assume the usual summation convention for repeated inglitess the opposite is indicated
explicitly; in ambiguous cases, we use the explicit sign of summation.

Operators are denoted by a ‘hatA, B, X, P, ... with the only exception that the time-ordering
operator (an operator acting on other operators) is denoté@d foy example:

T(@(xD)9(X2)).

Normally, vectors inR" andC" are marked by bold typex. However, in some cases, when it
cannot cause confusion as well as for an easier perception of cumbersome formulas, we use the
ordinary print for vectors in spaces of arbitrary dimension. As is customary, four-dimensional
vectors of the relativistic spacetime are always denoted by the usuax typéx?, x*, x2, x3} and

the corresponding scalar product reaxsg: dzef 0uvX*y”, whereg,, = diag(l, —1, —1, —1} is the
Minkowski metric. An expression of the typ@ﬁ is the shorthand form fog,,, A* A”. If the vector
indicesp, v, ... take in some expression with only spacelike value B, we shall denote them by
Latin letterd, k, . . . and use the following shorthand notatioh:B| = Zf’zl A B, whereA, By are
the spacelike components of some four-dimensional ve&grs= {Ag, A}, B, = {Bo, B/} in the
Minkowski spacetime.
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Throughout the book we use the same notation for probability densities in the case of random
variables having continuous values and for probability distributions when random variables have
discrete sets of values. We also take the liberty to use thepeiability density in cases when the

type of value (discrete or continuous) is not specified.

List of abbreviations:

BRST
CCR
ESKC
OPI
Pl
QFT
QCD
QED
SUSY
WKB
YM

Becchi—Rouet-Stora—Tyutin (symmetry)
canonical commutation relations
Einstein—Smoluchowski—Kolmogorov—Chapman (relation)
one-particle irreducible (diagram, Green function)
path integral

guantum field theory

quantum chromodynamics

quantum electrodynamics

supersymmetry

Wentzel-Kramers—Brillouin (approximation)
Yang—Mills (theory, fields)



Chapter 1

Path integralsin classical theory

The aim of this chapter is to present and to discuss the general concept and mathematical structure of
path integrals, introduced for the first time by N Wiener (1921, 1923, 1924, 1930), as a tool for solving
problems in the theory of classical systems subject to random influences from the surrounding medium.
The most famous and basic example of such a system is a particle performing the sdualeicin

motion. This phenomenon was discovered in 1828 by the British botanist R Brown, who investigated
the pollen of different plants dispersed in water. Later, scientists realized that small fractions of any kind
of substance exhibit the same behaviour, as a result of random fluctuations driven by the medium. The
theory of Brownian motion emerged in the beginning of the last century as a result of an interplay between
physics and mathematics and at present it has a wide range of applications in different areas, e.g., diffusion
in stellar dynamics, colloid chemistry, polymer physics, quantum mechanics.

In section 1.1, we shall discuss Wiener's (path-integral) treatment of Brownian motion which must
remain a prototype for us whenever dealing with a path integral. Section 1.2 is devoted to the more general
path integral description of various stochastic processes. We shall consider a Brownian particle with
inertia, systems of interacting Brownian particles, etc. The central point of this section is the famous and
very important Feynman—Kac formula, expressing the transition probability for a wide class of stochastic
processes in terms of path integrals. Besides, we shall congbneiating (also calledcharacteristic)
functionals for probabilities expressed via the path integrals and shortly discuss an application of the
path-integral technique in polymer physics. In both sections 1.1 and 1.2, we shall also present calculation
methods (including approximate ones) for path integrals.

1.1 Brownian motion: introduction to the concept of path integration

After a short exposition of the main facts from the physics of Brownian motion, we shall introduce in
this section th&\ener measure and the\ener integral, prove their existence, derive their properties and
learn the methods for practical calculations of path integrals.

1.1.1 Brownian motion of afreeparticle, diffusion equation and Markov chain

The apparently irregular motion that we shall describe, however non-deterministic it may be, still
obeys certain rules. The foundations of the strict theory of Brownian motion were developed in
the pioneering work by A Einstein (1905, 1906) (these fundamental works on Brownian motion
were reprinted in Einstein (1926, 1956)).

12
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<& Derivation of the diffusion equation: macroscopic consider ation

The heuristic and simplest way to derive the equation which describes the behaviour of particles
in a medium is the following one. Consider a large number of particles which perform Brownian
motion along some axis (for simplicity, we consider, at first, one-dimensional movement) and
which do not interact with each other. Let p(Xx, t) dx denote the number of particles in a small
interval dx around the position x, at a time t (i.e. the density of particles) and j (x, t) denote the
particle current, i.e. the net number of Brownian particles that pass the point x in the direction
of increasing values of x per unit of time. It is known as an experimental fact that the particle
current is proportional to the gradient of their density:

dp(X, 1)
ax

j(x,t)=—D (1.1.1)

This relation also serves as the definition of the diffusion constant D. If particles are neither
created nor destroyed, the density and the current obey the continuity equation

dp(x.H) (X1

1.1.2

at aXx ( )
which, due to (1.1.1), can also be written in the form:
2

p (X, t) _ D3 p(X,t)' (1.1.3)

ot X2

This is the well-known diffusion equation.

< Derivation of the diffusion equation: microscopic approach

A more profound derivation of the diffusion equation and further insight into the nature of the
Brownian motion can be achieved through the microscopic approach. In this approach, we
consider a particle which suffers displacements along the x-axis in the form of a series of steps
of the same length ¢, each step being taken in either direction within a certain period of time, say
of duration ¢. In essence, we may think of both space and time as being replaced by sequences
of equidistant sites, i.e. we consider now the discrete version of a model for the Brownian motion.
Assuming that there is no physical reason to prefer right or left directions, we may postulate that
forward and backward steps occur with equal probability % (the case of different left and right
probabilities is considered in problem 1.1.1, page 49, at the end of this section). Successive
steps are assumed to be statistically independent. Hence the probability for the transition from
X = j£ to the new position x = i ¢ during the time ¢ is

P _JL ifi—j=1 -
W(@ie—jl,e)=12 ) (,j €7 (1.1.4)
0 otherwise

where i and j are integers (the latter fact is expressed in (1.1.4) by the shorthand notation: i, j
belong (&) to the set Z of all positive and negative integers including zero).

The process of discrete random walk considered here represents the basic example of a
Markov chain (see, e.g., Doob (1953), Gnedenko (1968), Breiman (1968)):

e A sequence of trials forms a Markov chain (more precisely, a simple Markov chain)
if the conditional probability of the event Ai(s) from the set of K inconsistent events
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A(ls), A;S>, R A(KS) at the trial s(s =1, 2, 3, ...) depends only on the previous trial and does
not depend on the results of earlier trials.

This definition can be reformulated in the following way:

e Suppose that some physical system can be in one of the states A, Ap, ..., Ak and that
it can change its state at the moments tj,t2,t3,.... In the case of a Markov chain, the
probability of transition to a state Ai(ts), i = 1,2,..., K, at the time ts, depends on the
state Aj(ts—1) of the system at ts_1 and does not depend on states at earlier moments

ts—2,ts-3,....

Quite generally, a Markov chain can be characterized by a pair (W(ty), w(0)), where
W = (Wij(tn)) stands for what is called a transition matrix or a transition probability and
w(0) = (w;i(0)) is the initial probability distribution. In other words, w;j(0) is the probability of
the event i occurring at the starting time t = 0 and Wj (t,) defines the probability distribution
wj (tn) at the momentt,, n=1,2,3,...:

wi(t) = Y Wj (t)wj (0).
j

Due to the probabilistic nature of w; and W, we always have:
O<wi®=<1 » wi©O=1
i

O<Wj=1 Y Wj=L1
i

For discrete Brownian motion, the event i is identified with the particle position x = i¢ and the
(infinite) matrix W(e) has the components:

Wij (6) = W(i € — jL, ). (1.1.5)

After n steps (i.e. after the elapse of time ne, where n is a non-negative integer, n € Z; Z 4
is the set of all non-negative integers 0, 1, 2, ...) the resulting transition probabilities are defined
by the product of n matrices W(e):

W(i £ — je, ne) = (W"(e))ij. (1.1.6)

This is due to the characteristic property of a Markov chain, namely, the statistical independence
of successive trials (i.e. transitions to new sites at the moments t, = ne, n = 1,2,3.. ., in the
case of the Brownian motion).

If at the time t = O the position of the particle is known with certainty, say x = 0, we have
wi (0) = Ofori # 0and wo(0) = 1, or, using the Kronecker symbol §jj,

wi (0) = io. (1.1.7)

After the time ne > 0, the system has evolved and is described now by the new distribution

wi(ne) = Y (W"(#))ijwj (0)

J
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or, in matrix notation,
w(ne) = Ww(0). (1.1.8)

Thus W", regarded as a function of the relevant time variable n, defines the evolution of the
system. In probability theory, this has the evident probabilistic meaning of conditional probability:
it gives the probability of an eventi (in our case, the position of the Brownian particle at the site
i of the space lattice) under the condition that the event j (the position of the particle at the
site j) has occurred. Together with its property to define the evolution of the Markov chain, this
explains the name ‘transition probability’ for this quantity.

Now we want to derive an explicit expression for this transition probability. To this aim, let
us introduce the operators (infinite matrices):

R=|o . " . L=] : 0 (1.1.9)

(o J 0

which shift the particle’s position to the right and left respectively, by the amount ¢. Indeed, these
matrices have the elements

Rij = 8i(j+1)» Lij = 8i+1)j (1.1.10)
so that, for example, the action of the operator R gives

wj —>wi'=ZRijwj = wj_1
i

which means that the primed distribution is shifted to the right. To convince oneself, consider
the particular distribution w; = &k (i.e. the particle is located at the site defined by the number
k); after the action of R, we have

w = wi—1 = 8G—1k = Fik+1)

so that now the patrticle is located at the site (k + 1). Analogously, L shifts the distribution to the
left. Obviously, L = R~! and thus RL = LR = 1. This commutativity essentially simplifies the
calculation of powers of W. First, note that according to (1.1.4) and (1.1.10),

W= 2(R+L) (1.1.11)

and hence, using the binomial formula,

n

1
Wn — ? Z <r|2) RkLn—k
k=0
n

_ 1 n 2k—n __ 1o N\, n-2k
_ﬁ2<k)R _ﬁk—o W JE (1.1.12)

k=0
From the properties of the matrices L and R, it follows that

(RMij = 8ij+m)
(L™)ij = 8(i+m)j meZ
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so that the transition probabilities after n steps take the form:

0 if i —jl>n
or(i—j)+nisodd
W@t —je, ne) = i( n ) i — il <n (1.1.13)
2\ 3(n+i—j) =

and (i — j)+nis even.
Note that the process of Brownian motion has three obvious properties, namely, it is:

(i) homogeneous in space—the transition probability W is merely a function of the difference
(i—p;

(i) homogeneous in time—the transition probability W does not depend on the moment when
the particle starts to wander but only on the difference between the starting and final time;

(i) isotropic—the transition probability does not depend on the direction in space, i.e. W is left
unchanged if (i, j) is replaced by (—i, —j).

If we use the initial distribution as before, i.e. w;j (0) = §jo, then equations (1.1.13) and (1.1.8)
give for the evolution of the distribution

0 ifli| >nor( +n)isodd
wi (n) = z—ln (%(nn+ i)> if i| <nand (i +n) is even. (1.1.14)
Making use of the well-known recursion formula for binomial coefficients,
("= 00+ (")
and writing the space index as an argument,
wie. ne) E wi(n)
we can derive from (1.1.14) the following difference equation:
wX,t+e) = Jwx+ 6,1 + Jwx — £, 1) (1.1.15)
with x =i¢ and t = ne. Equation (1.1.15) can be rewritten as
wX,t+¢) —w(X,t) _ ﬁ wX+£,1) — 2wX, ) + wx — ¢, t)' (1.1.16)

£ 2e 22

Now we can pass to a macroscopic (large scale) description of the random walk by the limiting
process £ — 0, ¢ — 0, with the ratio ,
L

D= 2¢
held fixed. This process turns x and t into continuous variables: x € R (all real numbers), t € R,
(non-negative real numbers), which are much closer to our usual view of space and time. As
a result, equation (1.1.16) becomes the diffusion equation (1.1.3), with D being the diffusion
constant

(1.1.17)

dw(x,t) _ [ d2w(x,t)

o o (1.1.18)
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The obvious generalization of a finite collection x;, i = 1,..., N of random variables is a map
t — X, where t ranges over some interval. Any such map is called a stochastic process in
continuous time (see, e.g., Doob (1953) and Gnedenko (1968)). More details about stochastic
processes and their classification can be found in section 1.2.

The density p in (1.1.3) and the distribution w(Xx, t) are related by a constant factor, namely,
by the total number K of Brownian particles which are considered in the macroscopic derivation
of the diffusion equation (1.1.3):

p = Kuw.

<> Multidimensional diffusion equation

An analogous derivation of the diffusion equation can be carried out for a particle wandering in
a space of arbitrary dimension d, with the result:

Jw(X,t
%) = DA@Dw(x, ) (1.1.19)
where X = {x1, X, ..., X4} and A@ s the d-dimensional Laplacian (in Cartesian coordinates)
2 2
A _ d d

2 a2 o

We suggest the derivation of the multidimensional equation as an exercise for the reader (see
problem 1.1.2, page 49).

Equation (1.1.18) and its multidimensional generalization (1.1.19) (in particular, when a
Brownian particle wanders in realistic two- or three-dimensional space) form the basis of
Einstein’s theory of Brownian motion (Einstein 1905, 1906) (republished in Einstein (1926,
1956)).

The expression (1.1.17) for the diffusion constant shows that in the continuous limit, no
meaning can be attributed to the velocity of the Brownian particle, since the condition

EZ

— ——— constant
2¢ (,e—0

implies that the one-step ‘velocity’ £¢/¢, in the same limit, becomes infinite

L
- — o0.
€

In more mathematical terms, although continuous, a typical Brownian path is nowhere
differentiable as a function of time (for more details see the next subsection and problem 1.1.5,
page 53).

<> Solution of the diffusion equation

The solution of (1.1.18) with the continuous analog of the initial condition (1.1.7), i.e.

w(X, 1) t—ga(x) (1.1.20)
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(8(x) is the Dirac s-function) can be obtained by the Fourier transform

w(x,t) = /oo dk €@ (K, t). (1.1.21)

—00

Using the well-known Fourier representation for the §-function
1 (% dkx
3(X) = — dk € 1.1.22
) =3 [ N (1.1.22)

we can see that the initial condition (1.1.20), in terms of the Fourier image w(k, t), has the form

Wk, 0) = % (1.1.23)

After performing the Fourier transformation, the diffusion equation (1.1.18) becomes

dwk, 1)

= —DK2w(k, t) (1.1.24)

with the obvious solution 1
Wk, t) = w(k, 0)e DKt = 2—e—Dkzt (1.1.25)

JT

so that the distribution can be represented as follows:
* o1 ek
w(X, t) = dk —e X, (1.1.26)
oo 2

Shifting the integration variable, k — k — ix/(2Dt), and using the value of the Gaussian integral
o
/ dx e’ = \/E (1.1.27)
—00 o

(1.1.28)

we obtain

x,t) ! exp x°
w(X,t) = - .
/47 Dt 4Dt
By construction, the distribution (1.1.28) is a solution of the diffusion equation (1.1.18) with the
initial value (1.1.20) (the reader may also verify this fact directly).

Note that
00 00 1 X2
dxw(x,t =/ dx expy—¢ =1 1.1.29
/_oo Wb = | X ot o) ant (1.1.29)

which is compatible with the probabilistic interpretation of w(x,t) as being the probability of
finding the Brownian particle at the moment t at the place x, if the particle has been at the origin
x = 0 at the initial time t = 0.

The transition probability (1.1.6) in the continuous limit reads

WY = W(i£— e Ne)=W(jt Nelit,0)
——> W(xt, t|xo, 0) (1.1.30)

L,e—0
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or, for an arbitrary initial moment,
W(Xt, t|Xo, to) Xt = X(t) Xo = X(to) (1.1.31)

and the evolution of the probability density takes the form
(.¢]
w(Xt, t) =/ dxo W(xt, t|Xo, to)w(Xo, to). (1.1.32)
—00

Since w(Xp, tp) is an arbitrary function (satisfying, of course, the normalization condition
(1.1.29)), this means, in turn, that the transition probability also satisfies the diffusion equation

IWOK, tIX0, to) _ o A2WOX, t1xXo, to)

{ t 1.1.33
ot %2 0= ( )
with the initial condition
W(xt, tIxo, to) —> 8(X — Xo) (1.1.34)
—1o

which follows from (1.1.32). The solution of the diffusion equation (1.1.33) with the initial
condition (1.1.34) reads

1 _ 2
Wi, X0, o) = ——m e exp] — X X7 (1.1.35)
VA D(t — to) 4D(t —to)
and satisfies the normalization condition
o
/ dx¢ W(x, t|xo, to) = 1. (1.1.36)
—0o0

This is the normal (Gaussian) probability distribution with the mean value (mathematical
expectation) xp and the dispersion D = 2D(t — tp).

The relation (1.1.30) reflects the well-known fact (see, e.g., Gnedenko (1968) and Korn and
Korn (1968)) that the binomial distribution (1.1.13) converges to the normal distribution in the
limit of an infinite number of trials.

In higher-dimensional spaces, the equation, its solution, boundary and normalization
conditions have a form which is a straightforward generalization of the one-dimensional case:

IW(xt, t]Xo, t
+°°) = DADW(x, t|xo, to)  t>1o (1.1.37)
W(xt. t]Xo, to)ma(d)(xt — X0) (1.1.38)
1 (X — X0)?

W(xi, t|Xo, tg) = —————— expl ————> 1.1.39
(X tlX0.00) = B 10972 p{ 4D(t —to)} (1.1.39)

o0
/ d9% W(xt, t|Xo, to) = 1 (1.1.40)

—o0

where X = {X1, ..., Xd}, X> = X2 + X2 + - - + x3.
Due to the space and time homogeneity of the Brownian motion, the transition probability is
only a function of the differences of the variables:

W(Xs,tf|Xo, to) = W(X5 — Xo, tf — tg) = W(X, t). (1.1.41)
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6(t) \

Figure 1.1. Step-functioro(t).

We shall use this shortened notation along with the transition probabilities with complete
indication of all variables.

One more useful remark is that a slight modification of the solution (1.1.35) converts it into
the solution of the inhomogeneous diffusion equation

AW(X, t) 92W(x, t)
=D
at ax2

+ 8()8(X) (1.1.42)

(we return, for simplicity of notation, to the one-dimensional case but all the discussion can be
trivially generalized to an arbitrary dimension). Namely, we can extend the function W(x, t)
to the complete temporal line t € (—o0, 00), i.e. consider formally the transition probability
W(X¢, tf|Xo, to) also for t; < tg. To express the fact that non-vanishing W exists only for positive
values of the time variable t, we must multiply the solution (1.1.35) by the step-function (see
figure 1.1)

1 ift>0

o) = 1.1.43
© [ 0 ift<O. ( )
The reader may check that the function
W(X, t) o exp x> o<t <o (1.1.44)
= [ — <l< -1
4r Dt 4Dt

satisfies indeed the equation (1.1.42) (see problem 1.1.4, page 51). Thus from the mathematical
point of view, the transition probability W(x, t) in (1.1.44) is the Green function (or fundamental
solution) of the diffusion equation (1.1.33) because it satisfies equation (1.1.42) with the §-
functions as an inhomogeneous term.

Knowledge of the transition probability allows us to find the probability density w(x, t) at any
time t for any initial density w(xo, to) from the relation (1.1.32) (recall that the density (1.1.28)
has been obtained for the §-functional initial density (1.1.20)).

< Semigroup property of the transition probability: Einstein—-Smoluchowski—Kolmogorov—
Chapman (ESK C) relation

Now let us consider the probability densities at three instants of time

w(Xo, to) wx', t) w(X, t) to<t <t.
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The distribution w(x’,t") can be considered as an initial one for w(x, t), while w(Xg, tg) can serve
as an initial one for both distributions w(x, t) and w(x’, t"). Hence we can write

o0
w(x,t):/ dx’ W, t|x’, thw(x’,t")
—00

)
wX,t) = / dxo W(X, t|xo, to)w(Xo, to)

—00

o
w(x', 1) = / dxo W(X', t'|Xo, to)w (X0, o).
—00
Combining these equations gives

oo
W(X, t|Xo, to) = / dx’ W(x, t|x’, thW(x', t'|Xo, to) to <t <t. (1.1.45)
—00

This is the very important Einstein-Smoluchowski—Kolmogorov—Chapman (ESKC) relation.
The nature of this relation is quite analogous to the well-known Huygens—Fresnel principle
in optics and provides the causal description of the phenomenon under consideration, in our
case Brownian motion. It expresses also a general semigroup property of the transition
probability W(X, t|Xo, to), which is automatic for any random motion without memory and with
temporal homogeneity (Markov chain or Markov process; see more about random processes in
section 1.2).

In general terms, the semigroup property of a set of some objects F(t) depending on a
positive parameter t means that there exists a composition law F(t) * F(t’), satisfying the rule

F) « Ft') = Ft+t). (1.1.46)

In the case of transition probabilities, the composition law is defined by integration over the
intermediate coordinates. Using the homogeneity, we can rewrite the ESKC as follows:

o
W(X — Xg,t — tg) = / dx' W(x — X', t —thW(' — xo,t" — tg) (1.1.47)
—00

or, in symbolic form
W(t —tg) = W((t —t') + (' —tg)) = Wt —t') « W' — tg)

where ~
Wit —t) « W(t' —t) = / dX’ WX — X', t — tYW(X — Xo. t’ — to)

—00
so that the transition probability W does indeed satisfy the semigroup property (1.1.46). We
use the term ‘semigroup’ rather than just ‘group’ because it is impossible to define any kind of
inverse element (this is a necessary condition for a set of objects with a composition law to form
a group, see, e.g., Wybourn (1974), Barut and Raczka (1977) and Chaichian and Hagedorn
(1998)). In our case, an inverse element would correspond to a movement backward in time,
i.e. to the transition probability W(xs, tf|Xpg, to) with tf < tg. But, as follows from the explicit form
(1.1.35), the transition probability W(x; — Xg, t1 — to) for (t; —tg) < 0is meaningless (without the
step-function factor as in (1.1.44), which makes it just equal to zero for (t; — tg) < 0): the basic
relations (1.1.32) (for the majority of reasonable probability densities) and the composition law
(1.1.45) do not exist because of the exponential growing of the integrands.
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X

Figure 1.2. Trajectories of a Brownian particle starting from the origin and ending anywhere in thé\gate the
momentt.

1.1.2 Wiener'streatment of Brownian motion: Wiener path integrals

Now we start the discussion of the original approach to the description of Brownian motion by Wiener
(1921, 1923, 1924), where the concept of a path integral was first introduced.

<& Markovian property of Brownian motion, Markov and Wiener stochastic processes

Consider again (for simplicity) one-dimensional Brownian motion. Using the results of the preceding
subsection, the probability of a Brownian particle to be at the momanywhere in the interval[ AB]
(see figure 1.2) is given by

B
P{x(t) € [AB]} =/ dx w(x, t). (1.1.48)
A

Complete information about the stochastic process definitely contains more than just knowing the set of
probabilitiesP{x(t) € [AB]}. In particular, the essential characteristic of such a process is a probability
of a compound event. In the case of Brownian motion, this is the probability that the particle, starting

at x(0) = 0, successively passes through the gates< x(t1) < B, A < X(t2) < By, ..., Ay <

X(tn) < By at the corresponding instants of timety, ..., tn, as shown in figure 1.3. The statistical
independence of subsequent displacements of the Brownian particle (Markovian property) gives

P{X(t1) € [A1, B1], X(t2) € [A2, B2], ..., X(tn) € [An, BN} (1.1.49)
x2 2
(o 2L] o ool 2]
= X] ——— 2 Xpg—— =2 1
A 4 Dty A JAr D(to —t1)
(x3—X2)? (XN —XN-1)?
Bs exp[_4D3(t3—2t2)} / By eXp[_4DN(tN—NtNl_1)}
A

X dxs dxn .
Ag /4 D(t3 — t2) N Var D(tn — tn-1)

(1.1.50)
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BN
Bn-1

B1

B> AN
An-—1

tii=1..., N).

Recall that the probabilitfP{.A4;, A;} that somendependent events4; and.A; both occur, is given by

the product of the probabilities of the simple event{:A;, Aj} = P{Ai}P{Aj}. Thus the fact that

the right-hand side of (1.1.50) is a product tells us that, given the present pogitjoof the Brownian
particle, the distribution of(t") at some later tim€& (in the future) is completely determined and does not
depend on the past history of the path taken by the particle. This is the characteristic property of a Markov
chain introduced in the preceding subsection. Another way to express this fact is to note that, due to the
probability product form of the joint distribution, the characteristic property of the Brownian motion is
the independence of thecrements of particle positions at arbitrary sequence of timg$,, . . ., tn.

The Markov property is simply the probabilistic analog of a property familiar from the theory of
deterministic dynamical systems: given the initial data, then, by solving the equation of motion, the future
state of the system can be obtained without knowing what happened in the past. The present state already
contains all the information relevant for the future.

In the limit of continuous time, diminishing the sizes of each gate and infinitely increasing their
number, so that

ti —t_)=At >0 1<i<N

the positionx(t) of a particle depends on the continuous time variable and we obtain what is called

a stochagtic process (for more on stochastic processes, their classification and basic properties, see
section 1.2). A stochastic process with independent increments as in (1.1.50) is said to have no memory
and is termed Markov process. In general, the definition of a Markov process places no restriction either

on the initial distributionw(x, 0) or on thetransition probabilities:

Wixe, X0, o) dxe = P{X(t) € [Xc. X + dxe]. X(to) = Xo}  to <t

except normalization. But in the case of Brownian motion, the initial distribution is of the form (1.1.20)
(the initial point can, of course, be arbitrary, ie(x, t) t_()) 3(X — Xp)) and the transition probabilities
—
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are given by (1.1.35), so that they result in the joint distribution of the form (1.1.50). Such a stochastic
process is said to be\&ener process.

<& Transition to the limit of an infinite number of ‘gates: the Wiener measure and Wiener path
integral

Considering the continuous limit in (1.1.50), we obtain the probability that the Brownian particle moves
through an infinite number of infinitesimal ‘gatadx along the trajectorx(t)

lim exp

Z (X — Xi—1)? I dxi
At—0 ~AD(ti —ti-1) | \/ArD(E —ti_1)

N—o0

N
1 Xi — Xi-1
= lim ex —= ] At
Ati—0 p{ 4Di§(ti—til) ',H«MJTDAL

N—oo
1 [t L dx(r)
= ——— | drx? — 1.1.51
eXp{ 4D/o TX(T)}TEL«MnDdr (1.1.51)

in other words, we obtain the probability of the particle motion inside the infinitesimally thin tube
surrounding the patk(z), or simplymoving along the trajectory x(t).

Let us denote by {x1, t1; B, to} the set of trajectories starting at the poiat= Xx(t1) at the timet;
and having the endpoini(tz) in some domait3 of RY. In particular:

e (C{X1,11; X2, t2} denotes the set of trajectories starting at the poififf = x1 and having the endpoint
X(t2) = x2;

e ({x1,t1; [AB], tp} denotes, in the one-dimensional case, the set of trajectories with the starting point
X1 = X(t1) and ending in the gateAB] at the timet,.

However, in the special case, we shall simplify the notation as follows.

e If atrajectory has an arbitrary endpointin the interval fremo to oo for all coordinates, then we
shall omit the explicit indication of the whole spa®: C{x1, t1; RY, to} = C{xq, t1; to}.

Thus for exampleC{0, O; t} denotes the set of trajectories starting at the origih at 0 and having
arbitrary endpoints dt

This notation is applicable to spaces of arbitrary dimensions, but we continue to consider the one-
dimensional space because, being notationally simpler, it contains all the essential points for a path-
integral description of the Brownian motion in spaces of higher dimension.

It is clear that to obtain the probability that the particle ends up somewhere in theAdatat the
timet, we have to sum the probabilities (1.1.51) over the’§6t 0; [ AB], t} of all the trajectories which
end up in the intervdlA, B, i.e.

t

IF’{X(t)e[AB]}—/ 1—[ dx(r) { i/tdfxz(r)}
B C{0.0:[ABL.t} v4nDdr 4D Jo

B 1 X2
= dX ———expy] —— 1.1.52
/A JazDt P| Dt (1.1.52)
where the second equality follows from (1.1.48) and (1.1.28). The symbol

—/C{0,0;[AB].I}
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Xt

Figure 1.4. Trajectories of the Brownian particle with fixed initial and final points.

formally denotes the summation over the set of trajectories and since this set is continuous, we have used
the symbol of an integral. The summation over a set of trajectories of the type (1.1.52) is calldertre
path integral.

In the limiting caseA = B = X, the setC{0, 0; x, t} consists of paths for which both the initial
and final points are fixed (see figure 1.4). The integration over this set obviously gives the transition
probability (1.1.28)

1 x2
W(x,t0,0):/ dwx(t) = exp] ——— 1.1.53
vl C{0,0; .t} W A/ 4m Dt P1 " abt ( )
where the integration measure
def 1 /t .2 } L dx(r)
dwx(t) = exp{—— dr X°(t —_— 1.1.54
WX (1) p{ a5 |, () 11 NI (1.1.54)

is called theWiener measure (Wiener 1921, 1923, 1924, Paley and Wiener 1934). If we consider a set
of trajectories witharbitrary endpoints (see figure 1.5), the measure (1.1.54) is calledndenditional
Wener measure (or, sometimediull Wiener measure, or absolute Wener measure). From its probabilistic
meaning, the normalization condition

/ dwx(z) =1 (1.1.55)
Cixy.ty;t2}

follows, since the probability that the particle will end up anywhere is equal to unity. Here the class of
functionsx(t) € C{x1, t1;t2} : [t,t2] — RY is still to be defined (i.e. whether the trajectories are
smooth or differentiable as functions of the time variable). We shall study this important point later.

The so-calledonditional Wiener measure corresponds to integrations over sé6, 0; x:, t} of paths
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X

Figure 1.5. Samples of trajectories defining the unconditional Wiener measure.

with afixed endpoint as in figure 1.4. Obviously,

o
/ dwx (1) :/ dxt/ dwx (7). (1.1.56)
C{0,0;t} —00 C{0,0;x¢,t}

The same is true for Wiener integrals with a functioR@k(z)] as the integrand (we shall discuss path
integrals with functionals in more detail in the next subsection):

/ dwx(t) F[x(t)] = /oo dxt/ dwx (1) F[x(7)]. (1.1.57)
C{0,0:t} —o0 C{0,0; .t}

The conditional measure is directly related to the transition probability (see (1.1.53)).
In terms of the Wiener measure and integral, the Einstein—-Smoluchowski—Kolmogorov—Chapman
(ESKC) relation (1.1.47) takes the form

o0
/ dwx(7) =/ dx// dwx(7) dwx (). (1.1.58)
C{X0,0;xt,t} —00 C{xg,0;x',t"} C{X',t/;xt,t}

<& Similarity between the notions of ‘ probability’ and ‘ measure’

Starting from the Brownian transition probability and distribution we have naturally arrived at the measure
and integral over thdunctional infinite-dimensional space of all trajectoriesx(z). We would like

to emphasize that the appearance of a measure and integration in a probabilistic description of any
phenomenon is highly natural and practically unavoidable. The point is tineasure (understood as

a mathematically rigorous generalization of the intuitive notion of ‘volume’) anuichability satisfy

almost the same set of axioms. Without going into details, let us just compare the basic axioms satisfied
by a measure and a probability (see table 1.1).

The very idea that probability theory can be formulated on the basis of measure theory appeared
for the first time in the classical work by E Borel (1909). The most complete axiomatics of probability
theory were developed by Kolmogorov (1938) (also see Kolmogorov (1956)) and e.g., Doob (1953) and
Billingsley (1979) for an extensive introduction into the probability theory and its relation to the measure
theory). Thus measure theory provides the mathematical background for probability theory. In the case
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Table1.1.

Probability Measure
(axiomatic construction)

The probabilityP{.4}, defined on a class of evently, The measur@[S], defined on a class of point se&s

is a function with the properties: is a function of the sets with the properties:

(1) P{Aj} >0 (HulS1>0

(2) for any finite or countable sequence of mutually2) for any finite or countable set of mutually non-
incompatible eventsly, As, ..., intersecting set§;, S, . . .,
PAUA U ) =P{A) +P(A) +--  p[SIUS U] = ulS] + ulSl + -

(3) P{.ACeMaINy — 1 for a certain eveny(CeM@N —  (3) Probabilistic measures: subclass of measures,
Ui Aj (union of all possible events) such thatu[S] = 1 for the total seS = U; § (union

of all sets under consideration)

of Brownian motion we have to consider a probability (actually a probability density) of realization of a
given trajectory and hence the (Wiener) measure over the set of trajectories (paths) and the corresponding
Wiener path integral appears.

From the general point of view of probability theory constructing the (Wiener) path integral merely
means generalizing the notion of probability distributiongxi, ..., X,) to functional distributions
Q[ f (r)] describing the probability of finding a function from some appropriate set in the infinitesimal
vicinity of (in the infinitesimal tube around) some given functib(r) from this set:

w(X1, X2, ..., Xn) —> Q[f ()] (1.1.59)

def
(X1, .- -5 Xn))w = /dxl---dxnw(xl,...,xn)g(xl,.-.,xn)

s (F ()] = /Df(t)Q[f(t)]F[f(t)]. (1.1.60)

Here and throughout the book the notatien-) denotes an expectation (mean) value (in an appropriate
sense which varies in different parts of the book) @nfd(r) symbolically denotes a functional measure.
In the case of Brownian motion, we have

Df(0)Q[f(z)] = dwXx(7).

In (1.1.59) and (1.1.60), we have assumed that the probability distributions are normalized. Sometimes it
is convenient to use non-normalized functional distributions, writing

_ [ Di@Qlf(m]IF[f(1)]
(FIf(Mha = TDioRlf@] (1.1.61)

<& Set of trajectoriescontributing to the Wiener path integral: continuous but non-differentiable

Of course, the important question concerns the properties of the set of functions which must be
averaged over. Wiener (1921, 1923, 1924) has proved that in the case of path integrals (1.1.57) with
measure (1.1.54), the sétof functions which contribute to the integral consistscofitinuous but non-
differentiablefunctions. The latter is no longer surprising because consideration of the continuous limit for
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the Brownian motion in the preceding subsection has shown that the notion of velocity for the Brownian
particle is ill defined. Another way to see this is to calculate the mean vafi®f the squared shift using

the distribution (1.1.28):

t

5 (1.1.62)

o
(x?) = / dx x2w(x, t) =
—00
Thus the shift during the period of tinteis of the order,/(x2) ~ ./t (or, in a more general case,
V(X = %0)2) ~ /T —1p) and the speed of the Brownian particle at any moment of time is infinite:

NG
— —> OQ.
t t=0

On the other hand, we note that the transition probability
1 (X(t) = x(0))
W(xt, t|x0, 0) = ——exp{ ————————
(Xt, t|xo0, 0) =D p{ 2Dt

satisfies the characteristic property

lim W(Xt, t|Xo, 0) = 8 (Xt — Xo). (1.1.63)
t—0

Since thes-functions (x; — Xo) is equal to zero for; # Xo, the limit (1.1.63) shows that after the lapse

of an infinitesimally small period of time the particle appears to be inintfieitesimally small vicinity

of the initial pointxg. This means that all the paths are continuous at 0 and hence at any moment

7 (0 < 7 < t) (due to the homogeneity of a Brownian process in time, so that we can start from any
momentty which therefore becomes the initial time). That is why we denoted the class of functions under
the sign of the path integrals é(i.e. continuous functions).

Therefore, one of the most important peculiarities of the path integrals is that, contrary to the
propensity of our intuition to conceive them as sums over paths which are somehow ‘smooth’ (as depicted
in our simplified figures), they are, in reality, sums over fully ‘zigzag-like’ trajectories, corresponding
to non-differentiable functions (see figure 1.6). Note that this property of the trajectories of a Brownian
particle, which can be described more precisely in the framewofiactal theory (see, e.g., Mandelbrot
(1977, 1982)), has important physical consequences (for example, the chemoreception of living cells
and hence their normal functions would be impossible without such a specific property of the Brownian
trajectories, see Wiegel (1983)). The fractal corresponding to the Brownian motion possesses the space
dimension two, i.e. the trajectory of the Brownian particle is a ‘thick’ one, having non-zero area.

The formal notation in (1.1.51) and (1.1.52) containin@) is therefore somewhat misleading in
the sense that all the important (contributing to the integral) pathsoareifferentiablein the continuous
limit.

Since this point is very important for the correct understanding of path integrals in general and of
the Wiener path integral in particular, we summarize once more the essence and possible approaches to
definition of the path integral.

In the case of theMener path integral, there are essentially two approaches for giving a strict
definition:

(1) to define the path integral via a finite-dimensional approximation of the form (1.1.50) in the spirit of
the general Volterra approach to handling functionals (cf Introduction) and to consider a path integral
as the shorthand notation for the appropriate ‘continuous’ limit (1.1.51) when the numtieeof
dlices goes to infinity (the quotation marks stand for the peculiarities with the non-differentiability of
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Figure 1.6. Schematic illustration of the fact that the detailed consideration (‘under magnifying glasses’ with
increasing resolution) of Brownian trajectories reveals their fully ‘zigzag-like’ non-differentiable structure.

essential trajectories); table 1.2 summarizes the symbolic notation used in path-integral calculations
from the point of view of finite-dimensional approximations;

(2) to define the Wiener measure in the frame of the axiomatic probabilistic measure theory as a
Gaussian-type proper measure on the set of trajectories (paths) of the Brownian particle; in this
case, the right-hand side of expression (1.1.54) has a rather symbolic sense, as one more notation
for the defined (Wiener) measudg/x(t) with the property (1.1.55), which allows us to interpret the
corresponding integral as a probability.

The second approach is mathematically more refined and we shall discuss it and the related
mathematical details in the next subsection. One more reason for the use of differential notation in path
integrals will be discussed in section 1.2.7.

1.1.3 Wiener’'stheorem and theintegration of functionals

In view of its fundamental significance, let us formulate the Wiener result in the form of a theorem and

present its more rigorous proof (in comparison with the intuitive arguments presented at the end of the
preceding subsection), still skipping some minor mathematical details. This proof will give a deeper

insight into the peculiarities of path integrals as well as experience in handling them.

Theorem 1.1 (Wener’'stheorem). The Wiener path integral is equal to zero over both the set of
discontinuous and the set of differentiable trajectories. In more precise mathematical terms, the set of
discontinuous as well as the set of differentiable functions have a zero Wiener measure.

Proof. We shall discuss here in detail only the proof of the statement in the theorem about discontinuous
functions. The proof for differentiable functions (which is quite analogous) we leave to the reader as an
exercise (see problem 1.1.5, page 53).

Consider the sez{;]j of the functions«(t) on the interval O< t < 1 which satisfy the inequality

j+1 j h
Hereh > 0,1< A < +2,j =0,1,...,2" — 1, m € Z, (non-negative integers). The choice of a
unit time interval just simplifies the notation: it is clear that any time interval can be transformed into the
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Table 1.2. Path integral notation for the corresponding finite-dimensional approximations; for simplicity we consider
alltheAtj,i =1,..., N, to be equalAt; = ¢.

dx(t) ‘infinitesimally small’ collection of functionx(t) which obey the relations
X(tg) = Xo,
X1 < X(t1) < X1 +dxq,
X2 < X(t2) < Xo + dxXo,

XN < X(tN) < XN + dXN,
XN4+1 < X(EN+1) < XN+1 + dXn1, for theunconditional Wiener measure;
XN41 = X(t) = Xt, for theconditional Wiener measure.
In the finite-dimensional integral, this results in the appearance
N
of the measurd [ dx;
j=1

/l_[ dx(®) ! /oodx /Oodx /Oodx
24 VarDdt  (4rDe)NFD2 | V)2 N

for theunconditional Wiener measure

1 o0 o0 o0
- dx dxs. .. dxn,
(4 Dg)(N+1)/2 /m lﬁoo 2 /W N

for the conditional Wiener measure;

b2 1 2
dr x“(1) ;Z(XiJrl—Xi)
0 i—0
1 o0 o0 o0 . )
/de(t) W/ dX;L/ dX2~-~/ dXno1 ef4_E1)6 ZiN=o(X|+1*X|)2,
—00 —00 —00

for theunconditional Wiener measure;

1 /oo Xm/oo dxz.../Oo dxy € 307 Limo(+17%)7
(4 De)(N+D/2 | o —00 —00

for the conditional Wiener measure.

standard on¢0, 1] by rescaling. Another convenient simplification which we shall use in this proof is
the choice of a unit of length for space measurements (i.e. for the coordinatech that the diffusion
constant takes the value

D=1 (1.1.65)

To prove the statement of the theorem about discontinuous functions, we shall go through the
following steps:

e Step 1. Estimating the functional measure (‘volume’) of the functions belonging to théﬁﬁeti.e.
satisfying condition (1.1.64).

e Step 2. Estimating the Wiener measure of the unioh of all the setsZ't‘nj with arbitrarym, j but
fixed parameteh.
Step 3. Proof that the intersectiofi = []7°; Z" of all setsZ" has vanishing Wiener measure.
Step 4. Proof that any discontinuous function belongs to the interse@iand hence the set of all
discontinuous functions has also vanishing Wiener measure.
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Figure 1.7. Essential trajectories in the path integral (1.1.67) with the characteristic funefipn(1.1.66), in the
mj
proof of Wiener’s theorem.

Step 1. The Wiener integral over the séﬁ}”- of functions with arbitrary endpoints can be written
using thecharacteristic functional x,n , as
mj

/ dwX () xzn [X(0)] (1.1.66)
C{0,0;t} mj

(do not confuse such functionals with those in the probability theory which have the same name but quite
a different meaning, cf section 1.2.8). Recall that the characteristic function of a Sulb§sbme larger

setF’ is defined as follows:
[f]= 1 iffeF
XFLH =00 iffer.

For example, the characteristic function of an intefal B] C R has the form

00 = 1 ifxe[A, B]
XIABIPY =10 if x ¢ [A, B].

Thus the integration of this function ov&ris reduced to the integral only over the interval and is equal
to the length (one-dimensional volumeroeasure) of this subset of the whole real lirig

00 B
/ dx x;a.Bj(X) = / dx =B — A.
—00 A

Analogously, (1.1.66) with the appropriately chosen characteristic functigpal[x(r)] gives the
mj

measure (‘volume’) of functions satisfying (1.1.64).

Using the ESKC relation, the Wiener integral (1.1.66) can be presented in terms of three standard
(i.e. without the characteristic functionals) Wiener path integrals of the form (1.1.53), (1.1.55) and can, in
this way, be reduced to an ordinary two-dimensional integral (see figure 1.7)

f dwx(t) xzn [X(H)] = f déy dé; / dwx()
€{0.0;1} m |E1—&21> A C{0.0:£1.}/2M)
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X / dWx(r)/ dwx(t)
Cl1,)/2M&2,(j+1) /2™ Clé.(j+D/2m 1)

A N AP
= dey dy | e 2V [ e @’ (1.1.67)
l&1—E21> A ) g

28—t =n &=t
and integrating over the variabde expression (1.1.67) can be converted into a one-dimensional integral:

Making the change of variables

1 2 2 o 2 1 efhzgzm

e’ dne™ <
== ahem

NE PN VT Jhz/am

where = +/2/A, so that 1< 6 < /2.
Step 2. Now let us estimate the Wiener measure of the union
oo 2M-1
h_ h
z2'=U U zn
m=1 j:O
of all the setipnj . Since these sets with different valuesiandj have intersections, the measure of the
union Z" does not exceed the sum of the measure%ﬁ:gf

00
dwx(t) xzh < Zm/
/C{0,0;l} z Z

dwx (t) er’]‘qj

m—1 C{0,0;1}
o] 2 o0
2m h2g2m e 2\™
< e —_— — . 1.1.69
=3 e < T (o) @19

The second inequality follows from (1.1.68). To obtain the last inequality, the estithatem/(62™ — 1),
valid for sufficiently largen, has been used.
Step 3. The last sum in (1.1.69) is convergent, so that we have for the measure under consideration

_h2
€
dwx(t) xzh < ——(constant——— 0. (1.1.70)
—/é{0,0;l} z ﬁh h—oo
This, in turn, means that
/ dwx() xz=0 (1.1.71)
€{0,0;1}

whereZ = 2, 2.
Step 4. Now consider any discontinuous functig(t). By the definition of discontinuous functions,
for anyh there exist two pointg = j /2™ andt, = (j + 1)/2™ for somem and j, such that

X(t) — X(t1)] > h(ta — t)°%A = h(t — )2 O<e <1 (1.1.72)

Sinceh(t, — t1)1°%2 A = h/(2M°% A) = h/A™, any discontinuous function belongs to the Zﬁﬁ with

arbitraryh > 0: x(t) € Zrﬂ‘]- vV h and hence(t) € Z. Thus the discontinuous functions have zero measure
due to (1.1.71). In other words, the Wiener integral over the set of discontinuous trajectories is equal to



Brownian motion: introduction to the concept of path integration 33

zero. On the other hand, the set of all real functions has unit measure (cf (1.1.55)). From this fact we
immediately derive the fact that the setaohtinuous functions has unit measure, and, moreover, (1.1.72)
shows that functions satisfying theoldiér—Lipschitz condition (see, e.g., llyin and Poznyak (1982))

IX(t2) — X(t2)] < hitp —ta 27 (1.1.73)

also have unit measure (we shall use this fact later, in section 1.2.7).
The proof of Wiener's theorem for the case of differentiable trajectories is considered in
problem 1.1.5, page 53.

< Integration of functionals: general approach

So far, we have discussed mainly the Wiener measure of sets of trajectories. To develop the integration
theory further, we begin by considerisgnple functionals F[x(z)] for which the path integrals of the

form .

dX(‘L’) 1 qtg2
dwx(t) F[x E/ 2 e @b JoX@drpry 1.1.74
/C{o,o;t} wx(© Fix@! C{o,o;t}g, 47 Ddr x(@)] ( )

can be evaluated immediately. Measurable functionals will be defined as appropriate infinite limits of the
simple functionals. The proof of the Wiener theorem prompts the obvious example of a simple functional:
this is the characteristic functional of a measurable set. If we take

FIx(T)] = xv[x(D)]
whereyy is the characteristic functional of some ¥etf the trajectoriex () defined as

1 itx(m)eY

then the definition gives
| (@) vix1 = poc)

whereuw(Y) is the Wiener measure of the 8é{(cf explanation in the proof of Wiener's theorem, below
equation (1.1.66)).

As an example, let us choose the 8y, ..., xn) of the trajectories having fixed positions
X1, ..., XN at some sequendg, . . ., ty of the time variable:
1 if xX(t1) = X1, ..., X({N) = XN
X(T); X1, ..., XN] = .
xyIX(@): X, N {O otherwise.

The corresponding path integral is given by the product of the transition probabilities (cf (1.1.50) and
(1.1.51)) from the pointg(tj_1) to the next positiong(t;) in the sequence:

N
/ dwX(7) xy[X(T); X1, ..., XN] = HW(Xi,ti [Xi—1,ti—1)
€{0,0:t) i=1
N 1 (Xi — Xi—1)?
=[[ ——ep - ———
: 47Dt —ti_q) 4Dt —ti—1)

Xo =0, to = 0. (1.1.75)
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Now we can consider linear combinations of such characteristic functionals with some coefficients
FN(X1, ..., XND,

o o
FN[X(T)]Z/ / dXp---dXn FN(X1, .00, XND XY [X(T); X2, - .0, XN (1.1.76)
—00 —00
Making use of (1.1.75), the functional integration of these functionals can be easily reduced to the ordinary

finite-dimensional integration

f dwx (1) FnlX(D)] foo d dxy
WX (T N T — e
Clo.0:t) —00 /4Dty /AxD(tn — tn—1)

1S (% — Xi_1)2
x FN(X1, ..., XN) exXpl — — '_7'} 1.1.77
N (X1 N) p{ 4D; —— ( )

We see thaFn(Xy, ..., XN) should be such a function @, . . ., xy that the right-hand side of (1.1.77)
exists, e.g., it can be a polynomial.

Thesesimple functionalsform a vector spacg& and the Wiener path integral allows us to define the
norm (distance) - || in this vector space:

IF — G| = /dwx(r)|F — G (1.1.78)

(] - | on the right-hand side is just the absolute value of the difference of the two functionals), where
andG are two simple functionals (i.e. of the type (1.1.76)). Readers with mathematical orientation may
easily check that all the axioms for a norm are satisfied by (1.1.78). Having defined the norm (1.1.78), the
general problem of extending the path integral to a larger set of functionals can be accomplished by the
standard mathematical method. First, we define a sequefi€eof simple functionals with the property
IF® —F W) ——0
N,M—o0

called theCauchy sequence. The functionalF[x(7)] is said to beintegrable if there exists a Cauchy
sequencé& N of simple functionals such that

FN _ F (1.1.79)

N—o0

with respect to the norm (1.1.78). The path integral is then defined by

N— o0

/ dwx(t) FIx(m)] & fim / dwx(v) EnIX(0)]. (1.1.80)
C{0,0;t} C{0,0;t}

< Practical method of integration of functionals: approximation by piecewiselinear functions

In practice, we can use the fact that the set of functions possessing non-zero Wiener measure can be
uniformly approximated by piecewise linear functiahg(t) which are linear for € (tj_1, tj) and

IN() = X1 = X i=1,...,N

(see figure 1.8). This means that for asnand any functionx(t), there exist pointdo, t1, ..., tn;
N = N(¢) such that
X() —In(D)| < & N = N(e).
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In(T)

Figure 1.8. Approximation of a trajectorx(z) by the piecewise linear functiofy (7).

Then smooth functionals satisfy the inequality
[FIX()] = FlIn()]| < 8(e)

wheresd(¢) — 0 fore — 0. HoweverF[In(7)] = Fn(X1, ..., XN), since full information abouty (7) is
determined by the set of valugs = x(t1), ..., XN = X(tn). Therefore,

/ dwx () F[x()] — / dwx(t) Fn(X1, - .-, XN)
C{0,0;t} C{0,0;t}
5/ WX () [FIX(D)] = Fr (X, - . X))
C{0,0;t}

< / dwx(t) 8(g) = 8(¢).
€{0,0:t}

The set of simple functionalBy (X1, . . ., XN) = F[In(7)] with increasingN = 1, 2, ... thus provides a
Cauchy sequence approaching the given functional. Consequently, the sequence

/ dwx () Fi (X XN) /oo dxa dxn Fn (X XN)
WX(T N(AL, ..., AN) = NAAL, ..., AN
C{0,0:t) —00 /47Dty /ArD(tn —tn-1)

N 2
1 (Xi — Xi—1)
XeXp{_4_Z i —ti-a }

i=1

(N =1,2,3,...) can be used for the calculation of the desired Wiener integral:

lim /oo dxs d%n FN (XL, - o) XN)
N—co ) oo VATDL  AZDUN —tnp N

/ dwx(t) FIx(v)] =
C{0,0;t}
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1 L (% — Xi-1)2
X exp{ 15 ; — } (1.1.81)
This formula reduces the Wiener path integral to the limit of finite-dimensional integrals.

Since the natural numbe¥ is assumed to have arbitrary large (finite but unbounded) values, we
might justly speak of the path integral as an extension, to an infinite dimension, of the traditional notion
of a finite-dimensional integral. The corresponding finite-dimensional integral on the right-hand side of
(1.1.81) is termed discrete-time or time-sliced approximation of the path integral on the left-hand side.

<& Some mathematical remarks
We conclude this subsection with a few short mathematical remarks.

e Wiener constructed the functional measure at the beginning of the 1920s (Wiener 1921, 1923, 1924)
using an explicit mapping of the space of continuous functions into the intéyal c R (more
precisely, into the intervaD, 1) minus a set of zero measure). Under this mapping, a set of functions
(trajectories) passing through fixed gates (such functions are said to belong to cylindrical sets; Wiener
also called them ‘quasi-integrals’) as in figure 1.3 is transformed into the set on the unit interval with
an ordinary Lebesgue measure. The latter is numerically equal to the measure of the ‘quasi-integrals’
defined by (1.1.50). The reader can find this construction in Wiener’s original papers and in chapter
IX of the book by Paley and Wiener (1934).

e Later, mathematicians comprehensively studied the functional measure using the much more abstract
and powerful method of the axiomatic measure theory. The cornerstone of this approach is the
importantkKolmogorov theorem (see Kolmogorov (1956)), stating that for any given set of functions
satisfying some self-consistency conditions (in fact, these conditions endow the given set with the
properties of the probabilities of compound events) there exists & gef events) with additive
measureu and a set of measurable functioKst, w), o € Q, so that the measune defines the
probability of the corresponding compound event (of the type (1.1.49)). In the case of the Wiener
measure, the self-consistency condition mentioned in the Kolmogorov theorem is provided by the
ESKC relation. Note that using the abstract approach, we can construct a non-trivial (non-zero)
measure on the set afl real functions (including discontinuous functions); but in this case, the
physically important set of continuous functions proves to be unmeasurable.

e Since the self-consistency of the Wiener measure is based on the ESKC relation (1.1.45), it is
interesting to study other solutions of this relation. One class of the solutions has the following
form

1 [ :
fox.tho.0 = o= [ dp explipix — xol expl—tipl) 0 <a =2
27 J_o
The casex = 2 corresponds to Brownian motion.df< 2, it turns out that on the set of continuous

functions a non-trivial measure, analogous to (1.1.50), cannot be constructed. However, such a
measure exists on the set of functions continuous from the left (or from the right).

Further details on the mathematical theory of functional measure can be found in Kac (1959), Kuo
(1975), Simon (1979) and Reed and Simon (1975).
1.1.4 Methodsand examplesfor the calculation of path integrals

Basic methods for calculating path integrals are summarized in figure 1.9. In this subsection we shall
consider some of them, calculating important concrete examples of path integrals. Other methods are
treated in subsequent sections and chapters of the book.
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Methodsfor calculating
path integrals

/\

Exact calculations Approximate calculations Numerical methods
Change , . Semi- I
Discreti- ; Variational
of space zation classical Feynman'g C_:ompl_Jter
and time of time WKB method simulations
variableg (or space method
and time)
. or mode
Reduction| | expansion
to the
standard )
integral Perturbation
by ESKC theory
relation

Figure 1.9. Methods for calculations of path integrals.

We start from the discrete-time approximation. This method has special significance for path
integrals. First of all, the very definition of the latter is heavily based on such an approximation (especially,
in the case of path integrals in quantum mechanics, see the next chapter). Thus, if the multiple integral
obtained from a path integral after time-slicing can be calculated exactly, this gives, in the appropriate
limit, an exact expression for the initial path integral. Furthermore, if an exact calculation of the multiple
integral is impossible, the discrete approximation provides the basis for numerical calculations (as is
indicated in figure 1.9).

Example 1.1. To obtain some experience with the calculation of path integrals with the help distinete
approximation, suppose we do not know the right-hand side of (1.1.53) and we would like to calculate it
explicitly using (1.1.51). For the sake of simplicity, put = x; = O (i.e. we must integrate over the set

of pathsC{0, 0; 0, t}); later we shall see that even more general path integrals can be reduced to this type.
We take all the time intervals —tji_; tobe equaltj —ti_1 =e=t/(N+ 1) foranyi =1,..., N + 1.

The transition probabilityVV in terms of the discrete approximation has the form

1 o o
W(0,t]0,0) = I1 = lim 7/ dX/ dx
0,110,000 =11 o JEDoN ) 1 . 2

N
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../Oo dxn exp{ S Z(X.H —Xi) } (1.1.82)

The exponential in (1.1.82) is a bilinear form (recall tRgt= XN4+1 = 0):

N

N
D i1 —X)? =Y XcAdX (1.1.83)

i=0 k=1

whereA = (Ay) is the three-diagonal matrix

2 1.0 0 .- ... 0
-1 2 -1 0 --- 0
o -1 2 -1 O 0
A= : p (1.1.84)
o ... 0 -1 2 -1 0
O ... ... 0 -1 2 -1
0O .-+ . ... 0 -1 2

The N x N matrix A has zero matrix elements apart from those in the main diagonal and in the two
neighbouring diagonals.

Now we shall use a formula for theultidimensional Gaussian integral (its calculation pertains to
problem 1.1.6, page 53):

00 N
[ o e - Zbl,x.xj} s (11.85)

which is very important in numerous applications and for what follows in this book. Using this result for
the calculation of (1.1.82), we find that

1

W(@,1|0,0) = Iim —— (1.1.86)
st)go 4 De detAy

where the subscriptl indicates thaf\ is anN x N matrix. All that is needed now is the determinant of the
matrix An, which can be found as follows. First, we calculate Aigtby hand for small N: detA; = 2,
detA, = 3. This leads to the guess

detAy = N + 1. (1.1.87)
If detAy is expanded in the elements of the last column, we find that

detAn = 2detAn_1 — detAn_2.

This recursion relation is satisfied by (1.1.87) which proves its general validity. Substituting (1.1.87) into
(1.1.86), we obtain the expected result (cf (1.1.53))

W(0, t|0, 0) = (4r Dt)~ Y2, (1.1.88)

Another method to calculate (1.1.82), which we suggest to the reader as a useful exercise (see
problem 1.1.7, page 53), essentially amounts to performing the integrations one by one.

R o R
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Throughout the remainder of this subsection, we let the diffusion constant be

D= (1.1.89)

Bl

a convention which, if necessary, can always be achieved by an appropriate choice of the time and/or
space units.

Example 1.2. Let us calculate (1.1.74) for the simple functiofdk ()] = F(X(S)) = X(S), wheresis a
fixed time in the interval0, t] (the path integral with unconditional Wiener measure). To get accustomed
to the properties of path integrals we shall consider two ways of calculation.

Thefirst method uses the ESKC relation (1.1.58). Identically rewriting the path integral, we find that
the functional integration is reduced to the known expressions (1.1.55) and (1.1.53):

I, = / dwXx (1) X(S)
C{xo,0;t}

o0
= / dxs Xs/ dwx(7) dwx (1) (1.1.90)
—00 C{X0,0;Xs,S} C{Xs,S;t}

wherexs = x(S). The last path integral in (1.1.90) is equal to unity due to the normalization condition
(1.1.55), while (1.1.53) gives

© 1
o = dXs X
2 /;oo SSTS

Thesecond method to calculate (1.1.90) is based on the discrete approximation formula (1.1.51):

e 0sx0%/s 1 — xo (1.1.91)

N

N 2
~ 1M _ — Xi—-1)
'2 / H «/ﬂAtl { Z i —t_1 }X'
Y dx| ! (X — Xi—1)2
B / / l_[ «/nAh exp{ g i —ti-a }
00 dx; { N — Xi—1)2}
*mil:[rl VAL i:|2+1 b=t

Y X| X —x0)?| _
= ./700 dx ﬁexp{— , = Xo. (1.1.92)

In this calculation, we have chosen the tis® lie exactly on the discrete time slige s = t| and hence
X(S) = X|.

Integration of more general functionals can be worked out by the formula (1.1.80), i.e. using the
discrete approximation and limiting procedure.

Example 1.3. Let us calculate the average over the unconditional Wiener measure

I3 = / dwx(z) F[x()]
C{0,0;t}
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t
FIx(r)] = F</ a(r)x(f)df)
0

The functionsF (y) anda(r) must satisfy some conditions which will be revealed later. Formula
(1.1.80) for this case reads as follows:

for the functional

; (N)
I3 = Nlinoo I3
N N
© dxg dxn i — Xi—l)2
|‘N)=/ F( -x-At-)ex {— Rl 1.1.93
3 coo JTAL  JTAIN ;a‘ 1AL ) exp AL ( )
wherea; = a(tj), xj = X(tj). Making the change of variables
Vi = Xi — Xj—1, i=1...,N, (1.1.94)
with the unit Jacobian, (1.1.93) can be rewritten as
o0 N 2
|?(’N) = / dyl dyN exp{ _Zy_'}
oo VTAL  JTAIN Al
x F(y1(@1Aty + - - + anAtn) + - - - + Yynan AtN). (1.1.95)
Further, we introduce new variables:
N
z=AYy A=) aAlk 1<i=zN. (1.1.96)

k=i

In terms of these variablel%N) becomes (taking into account the Jacobian of (1.1.96)):

N 2

o dz dz z

|3(,N) :/ 1 N F(21+"‘+ZN)eXp{ — E AZIAt- } (1.2.97)
—00 \/nAfAtl \/nAf\lAtN i—1 A

Thus the problem is reduced to calculating the average of the function whose argument is the sum of
variables with the Gaussian distribution. To accomplish the calculations, first intreduce; + 2z,
¢ = 29, so that (1.1.97) is transformed into

|§N>=/°o d¢ /oo dn /oo dzs . _ 92
o [nmgaty oo frmiay e frmiatn A Aty
N
m-0% By 3
AZAL AdAL

X F(n+23+"'+ZN)eXP{— } (1.1.98)

i

2 At
— ATAY
Since the functior does not depend on the varialglewe can integrate over this variable in (1.1.98)
using Gaussian integration:

oo _ 72 2
/ o eXp:_(nzo ¢ }
—o0 \/nAiAtl\/nAgAtz AlAlL - AjAL

1 n2
- P\ T Aat + Aan [
\/n(AiAtHAgAtz) 1AL + ASAL
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This allows us to represent (1.1.98) in the form

|§N>=/ dn /oo dzs 92
—oo [ MAt +n AAL - [nA3Ats\Jn AR Aty

_772 N Z~2
x F +2zZ3+---+2N) X —_— — ! . 1.1.99
(n+25 N O NZan + AZAL 2 AZAY, (1.1:99)

The structure of this integral is quite similar to that of (1.1.98) except that the number of the variables of
integration is reduced thl — 1. After (N — 1) repetitions of this step, we come to the result

Z2
F(2) exp{—Ni} . (1.1.100)

LN _ /
3 2At
—o Jr SN APAY 2iz1 ATAL

In the continuous limitAti — 0, N — oo, we have

t
lim AI _/ dsa(s)

At,

t t 2
R= li AZAL =
Atlin;o; ZAt /odt[/r dsa(s)}

. F(z)
I3= lim 15V = / ) 1.1.101
o= mg1s" = | oz (1109

so that

Now we can formulate the conditions for the functch(S) and F(2): the former must be an integrable
function in the intervalO, t] (cf first equation in (1.1.101)) ané(z) must be continuous and may grow
at infinity with the only restriction of the existence of the integral (1.1.101). Explicit restoration of the
diffusion constanD reduces to the simple rescalify— 4DR.

[ fo) [

Example 1.4. Consider the Wiener integré} with the functional

t
FIx(v)] = exp{— / dr p(r)x%)}
0

t
|4=/ dwx (1) exp{—/ dr p(T)XZ(T)}. (1.1.102)
(0,0t} 0
Formula (1.1.51) gives (put, for simplicitghti = ¢ =t/N,i =1,..., N)
— i (N)
lg = N|£noo |4
 dx dXN N N (Xi — Xi— 1)2
[N — / 1.
Rl .. - IaP DL S Dy

i i=1

o0 dX]_ dXN

- {

=1

N

> aHX.xJ} (1.1.103)
i,j=1
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wherea = (g;j) is the three-diagonal matrix

1
a —— 0 0 0
&
1 1
-— a —- 0 : : 0
& 1 e 1
0O —— & —- 0 .0
& &
a= : U . : (1.1.104)
: i 1 :
0 0 — an-2 —- 0
o1 Y
0 0 - aNn—-1 ——
& 1 &
0 0 - aN
e
and
2 .
ai=aii=pi8+g i=1...,N—-1

aN = PNE + —.
&

Application of the result (1.1.85) to our calculationlafgives

1
[N _
4 V()N deta
1
— - 1.1.1
Jdetsa) ( 05)

and reduces the problem to finding the determinant of the medrix his determinant can be calculated
by the following trick. Denote b)D‘((N) the determinant of the matrix, obtained fre@ by removing the
firstk — 1 rows and columns, i.e.

£ak
-1
0
oM = |
0
0
0

-1
£ak+1
-1

0
-1
£AKk4-2

0

0
-1 0
-1 ean_2
0 -1

0

-1
gaN-1
-1

0
-1
gaN

(1.1.106)

The key observation for the calculation of the determinant is that the expansion of (1.1.106) in the elements
of the first row results in the recurrence relation:

N N N
D" = [Pke® + 21Dy} — Dty

or
DY — 2D} + D)
+1 k+2 (N)
3 = PO (1.1.107)
Introduce the variable K_1
S= ——
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In the continuous limitN — oo, the determinants become the functi@@') N—> D(s) and the finite
—> 00
difference equation (1.1.107) transforms into a differential one:

2
d'b@ _ p(r)D (7). (1.1.108)

dr?
The determinant of the matria corresponds to the value of the functi@(s) at the originDiN) —
D(0). Thus the value of the path integral is defined by a solution of equation (1.1.108). However, to pick
out the particular solution of the equation from the set of all solutions of (1.1.108), we must impose the
appropriate boundary conditions. To this aim we note, first, that

: N
D(t) = lim Dy =1 (1.1.109)
—00
since
DF\IN) = pN82 + 1.
Analogously,
(N) (N)
dD B o 1A » N
e | = (1.1.110)
dr =t N—o0 &
since
oM _ |pnaae?+2 -1
N-1—" -1 pN82 + 1
= pnpn—16? + 2pne? + pno1e? + 1
and hence N N
D -D
N N-1 _ O(e).

Thus the value of the functional integtalfrom (1.1.102) proves to be

1
4= 750

i.e. defined by the solution of the differential equation (1.1.108) satisfying the boundary conditions
(1.1.109) and (1.1.110). Of course, equation (1.1.108) cannot be solved analytically for an arbitrary
function p(s).

This method of the determinant calculation has been suggested by Gelfand and Yaglom (1960) and
is called theGelfand—Yaglom method.

(1.1.111)

In examples 1.2-1.4, we considered threonditional Wiener measure, i.e. integration over paths
with arbitrary endpoints. In the following example, we shall integrate the same functional as in
example 1.4 but use theonditional Wener measure, i.e. we shall integrate over the 240, O; xt, t}
with fixed endpointx; of trajectories (the calculation of the conditional Wiener integral of the functional
from example 1.2 we suggest as an exercise in problem 1.1.10, page 54).
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Example 1.5. Consider the analog of example 1.4 for doaditional measure:

t
|§°”d=/ dwX (1) exp{—/ dr p(t)Xz(f)}~ (1.1.112)
C{0,0;xt,t} 0

In the same manner as example 1.4 was solved, we can show (after rather cumbersome calculations)
that the Gelfand—Yaglom method now gives

I cond __

2@} (1.1.113)

1
e exp{ —X{ =
J/7D(0) ‘D
whereD(z) and 5(t) satisfy the differential equations

d?D(7)

9z = p(x)D(7)
D) =1 (1.1.114)
dD
dr

=0

T=t

and .

d“D(7) _ ~
9z - p(r)D(7)

D(t)=0 (1.1.115)

db

dr

=-1

T=t

For the special casp(s) = k2, equations (1.1.114) and (1.1.115) can be straightforwardly solved. We
suggest this to the readers as an exercise (problem 1.1.11, page 55). The resultis

/ k

We shall calculate this path integral by one more method in section 1.2.6 (cf (1.2.130) and (1.2.131)) for an
arbitrary time period and an arbitrary initial point (though this is not difficult to do by the Gelfand—Yaglom
method as well).

One can check in this particular case that the general relation (1.1.57) is indeed fulfilled:

l4(p(x)) = / dx 152" p(r)) = / dx;
. 1
- /D)’

! exp{—xzDLO)}
J/7D(0) ‘D

Note also that 1

| cond (¢ (_:.—th/t

4 (p(0) —>p(r)_)0 N
i.e. the path integral in this limit equals the fundamental solution of the diffusion equation or transition
probability, as it must because in this limiting case the integral (1.1.112) is reduced just to the conditional

Wiener measure.
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1.1.5 Changeof variablesin path integrals

In the case of usual finite-dimensional integrals, changes of integration variables prove to be a powerful
method of simplification and sometimes calculation of the integrals. The possibilities of functional
changes in path integrals are more restricted. Nevertheless, in some cases, they allow us to reduce certain
types of path integral to simpler ones and to calculate them in this way. In the present subsection we
shall consider general aspects of functional changes of integration variables and illustrate their possible
application by one example. Other applications of this technique pertain to the next subsections.

<> General approach to functional change of variablesin path integrals
Recall that in the case dfl-dimensional Lebesgue or Riemann integrals, after the substitution of the
integration variable$x, ..., XN} —> {V1, ... Yn}, such that

Xi =X (Y1, ...YN) i=1,...,N

9(X1,...,XN) .
(Y1, YN)

by b b) by, N
/ / dX1---dXNf(X1,---,XN)=/ / dyy---dyn If(y1, ..., yn)
ar an =Y ay

fyn ..o yn) = Fxa(yn), -, XN (YN))
a =x(@,...,ay)
bi = xi(by, ..., by)-

there appears the Jacobidn=

For example, for the simple substitutian= k; y; with the constant coefficients, the Jacobian is

N
J =l_[ki.

It is obvious that in the limiN — oo the Jacobian becomes zero (if ll< 1) or infinite (if all ki > 1)
and thus it is ill defined even for such a simple substitution.

However, there exist functional substitutions which lead to a finite Jacobian in the Wiener integral.
One possibility is provided by thieredholmintegral equation of the second kind:

b
y(t) = xt) + )L/ dsK(t, s)x(s) (1.1.117)
a

whereK (t, s) is a given function ot ands and is called théernel of the integral equation. Let us
remember some facts from the theory of integral equations (see, e.g., Tricomi (1957) and Korn and Korn
(1968)).

The solutiorx(t) of (1.1.117) can be represented in the form

b
X(t) =y@) — A/ ds R(t, s; L)y(s). (1.1.118)
a
The so-calledesolvent kernel R(t, s; 1) satisfies the equation

b
R(t,s; 1) +/\/ duK(t,wR(,s; A) = K(t,s).

a
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The resolvent kerndR(t, s; A) can be expressed in terms of two series in the parameter

D(,s; A
R(t,s: A) = %)) (1.1.119)
where

o0 )“k
D) = Z FCK (1.1.120)

k=0

o0 )\,k

Dt ;1) =Y 1 Dkt 9)
k=0

with Cy, Dk(t, s) defined by the recursion relations

b
Ck=/ dsDg_1(s, S) k=12...
a

b
Dk(t,s)=CkK(t,s)—k/ dr K(t,r)Di_a(r,s) k=1,2,...

a
with the initial values
Co=1
Do(t, s) = K(t, s).

We shall interpret the integral equation (1.1.117) as a functional substittipr> x(t).
The particular case of the Fredholm equation with~ t, called theVolterra integral equation,

proves to be especially important for functional changes of variables in the Wiener path integral. The

\olterra equation reads .
y(t) = x(t) + A/ dsK(t, s)x(s). (1.1.121)
a

This equation is obtained from (1.1.117) for the integral kefddél, s) satisfying the condition (see
figure 1.10)
K(,s) =0 for s >t.
If the kernelK (t, s) does not depend anin equation (1.1.121), the resulting equation,

t
y(t) = x(t) + A/ ds K (s)x(s) (1.1.122)

a

is equivalent to the differential one

y(t) = X(t) + AK ®)x(1). (1.1.123)

This special case is the most important for the applications in this subsection. Note that, in the case
of equation (1.1.122), the kern&l(t, s) must be discontinuous. Otherwise, it proves to be zero on the
diagonakK (t, t) = 0 and hence equation (1.1.122) becomes trivial. Since variation of values of a function

at a single point (that is on a set of measure zero) does not change the value of an integral, we can define

the value ofK ats =t in different ways. The most natural way is to define it through averaging:

lims_t—o K(t,s) +lims 110K (t,5)  limsi—oK(t,s)

Kt) = 5 = 5

(1.1.124)
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S
s=t
\
b \
K (t,s)=0
a 4
a b t

Figure 1.10. Domain of non-zero values of the kerr(t, s) for the Volterra equation (lower right hatched triangle)
and of its zero values (upper left empty triangle).

The Jacobian] (i) of the transformation (1.1.122) can be calculated easily with the help of the
discrete approximation of this relation:

Vi =X + A(Kaxa+ -+ - + Ki—1Xi—1 + 3Kixi)e. (1.1.125)
Herei =1,..., N ande = (b —a)/N. The Jacobian of (1.1.125)
1+ 1Kqe/2 0 0
INGY = )»K’ls 1+Af<2£/2 .0

: : . 0
AK1e AKoe ceee 14+ AKNE/2

is equal to the product of the diagonal elements due to its triangular structure:

N N
IN) = ]_[(1+ AKie/2) = l_[exp{AKis/2+ 0(2) (1.1.126)
i=1 i=1
so that
A b
JA) = lim InQ) = exp{—/ dsK(s)} . (1.1.127)
N— o0 2 a

It is seen that the value of the Jacobian and, hence, the value of the path integral obtained after
the change of variables depends on a choice of the prescriptidd®rats = t. In the discrete-time
approximation, the chosen definition (1.1.124) through averaging is equivalent to the soagdfeiht
prescription. We shall discuss this prescription in more detail in sections 2.2.5 and 2.5.1 in the framework
of quantum-mechanical path integrals. At the moment, we only note that we masteriori justify this
choice by the fact that transition probabilities obtained by a change of variables with this prescription
satisfy the normalization condition (see, e.g., section 1.2.2 and example 1.8, page 84).

<& An example of application of the functional changes of variables

Now we shall apply the transformation (1.1.125) for the calculation of the path intégr&bm
example 1.4, page 41, by another method, namely, by making use of the change of variables.
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To this aim, we start from the (unconditional) Wiener integral (on the standard time infervl

/ dwy(r) = 1 (1.1.128)
C{0,0;t}

and use the substitution corresponding to the Volterra equation (1.1.125) of the special form

) = X(t ds—x S 1.1.129
Y() = X(2) - / DX (1.1.129)
whereD(s) is the solution of the Cauchy problem:
DO | heDie =
ds? P B
Dt)=1 (1.1.130)
o,
dS s=t

The result of the substitution is

dx X(0) /t ( D )2 { 1/t D}
— d - = —— dc—; =1 1.1.131
/C{oou =0 \/ndr { 0 X DX eXp 2 Jo ’ D ( )

(the dot means time derivative; do not confudés) here with the diffusion constant which we have
chosen in this section to be 1/4). The second exponential in the integrand is the Jacobian. Let us calculate

it explicitly:
1/ D 1t
exp{—E/O drB} exp{—E/O din D(r)}

= exp{—%(ln D() —In D(O))} =.D(0)

having taken into account the boundary condition (1.1.130). The first exponent in (1.1.131) can be
transformed as follows:

/tdr<x——x) /drx —/dx —+/dr(—)
0
= /c; dt)'(z—szr:;—i—/:dr I:dir <—[D.))1|X2+/:dt (%>2X2
- [ [[ PR, [l (B
. ¢ =
=/0dt)'(2+/0dtgx2

Recalling thatD (s) satisfies equation (1.1.130), we have

t
/ dr (X— —X> / dr x2 —i—/ dr p(r)x (7)
0
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so that the equality (1.1.131) takes the form
t
V/D(0) dwx(7) exp{/ dr p(r)xz(t)} =,/DO)ls=1
C{0,0;t) 0

which exactly corresponds to the result of example 1.4Ji.e= 1//D(0).

1.1.6 Problems

Problem 1.1.1. Derive the diffusion equation for the so-call8érnoullian random walk for which the
probabilitiesp andq of left- and right-hand moves of the Brownian particle on a line are differest @,
p + q = 1). Compare the solution of this equation for the initial conditiaix, 0) = §(x) with that of
equation (1.1.18).

Hint. The matriceR andL of the right- and left-hand shifts (cf (1.1.9)) must be substituted nowmRy
and pL, respectively. Calculations analogous to those in equations (1.1.11)—(1.1.15) now give

wX,t4+¢)=pwX+£,t)+quwx—2,1).

The continuous limit may be applied as before d.e> 0,¢ — 0,¢%(2¢)~1 — D (the diffusion constant).
However, to avoid misbehaviour of the distribution functio(x, t), we require that the following limit

= lim f( —-q)
U_£—>88 P—d

be a finite quantity. As a result, the ordinary diffusion equation is replaced by

The parametew plays the role of a meadrift velocity. It is easy to check that by the Galilean
transformation
X =x—t

this equation is reduced to the diffusion equation (1.1.18). This means that the salytiart) of this
equation is related to that of (1.1.28) as follows:

wy(X, 1) = wX — vt, t).

Problem 1.1.2. Derive the evolution of the probability density for a Brownian particle wandering in a
multidimensional space and the corresponding diffusion equation (1.1.19) using the generalization of the
discrete transition operat®¥ used in section 1.1.1 for the one-dimensional case.

Hint. Consider the transition operat@ in thed-dimensional space (cf (1.1.8) and (1.1.11))

d
Wuw(x) = o 2w+ £e0 + w(x — teo) (1.1.132)
k=1

wheree (k = 1, ..., d) are vectors of an orthonormal basisif.
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The ordinary space is now represented by the discrete varigblegni¢, nat, ..., ngé}, n| € Z.
Making use of the Fourier transformation

/e )
w(X)=/ dp1dpz---dpg € w(p)
—m /L

~ ¢ —i px
WP =5— ) e Pwx)
mEZ
def
pPX = PiXy+ -+ PdXd
we can diagonalize the operatdtin (1.1.132):

Wi (p) = A(P)T(p)

d
1
Mp) =5 ) cospit)

k=1
so that afteN steps we obtain

~ def (SN m/t dnaipxs N
W(x, Ne) = WN(x)=c d®pe P N (p)
—m /L

wherec is the normalization constant. The power of the eigenvalueﬁ o&n be estimated as follows:

d
WNip) = exp{ N In (% Zcos(ka))}
k=1

= exp{E In (1— e p? + O(Z“))}
a £ 2d

= exp—Dtp? + O(£?)}

whereg is the time discretization scale; dzef Dk pﬁ andD is the generalization of (1.1.17) given now

by
2
D= Ilm —.
6%8 2ed

E—>

In the continuous limit,¢, e — 0, using the inverse Fourier transformation and the normalization
condition, we find that the multidimensional probability density at a tirhas the form

w(x,t) = (2n)_d/ ddpdPxe=DtP®

—0o0

2
_ ~d/2 _X
= (47 Dt) exp{ D1 , .

and satisfies thd-dimensional diffusion equation (1.1.19).

Problem 1.1.3. Show thathe Poisson distribution

(D"

Pn(t) == e7 n'
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satisfies the semigroup property (1.1.46) (i.e. the ESKC relation (1.1.45)), where the composition law (cf
(1.1.46)) is defined as

n n k n—k
_ N 5 AT) —(t—7) At —-1)
Y PPt -0 = 3 e e M

Thus the Poisson distribution defines a Markovian stochastic process with the transition probability
W(n, ting, to) = Ph_n,(t — tg). Of course, this is not a Gaussian and hence not a Wiener process.

Solution. We have to prove the equality:
W(k, 710, 0) « W(n, t|k, ) = W(n, t|0, 0)
that is
n
> P(T)Pak(t — 1) = Pa(t).

k=0
To this aim, we write:

Z Pk(t)Pnk(t — 1) = Ze—h ()‘t) —A(t—r)M

= (n —Kk)!
e Myn T (t - k
A Z k!(n — Kk)!
)Ln
g M _ \n— k
= Z k'(n_k); Kt — 1) (1.1.133)

The last sum can be recognized as the right-hand side of the binomial formula:

n!
[t+@—-1)]" Zk'(n : o k(t—t)n k

so that this sum is equal t8. Using this fact in (1.1.133), we obtain the required result:

3 Ru®) okt ) “unl — pa.
k=0

Problem 1.1.4. Show that the transition probability (1.1.44) is indeed fimedamental solution (Green
function) of the diffusion equation, i.e. it satisfies equation (1.1.42).

Solution. If t > 0O, both the function (1.1.44) and the equation (1.1.42) coincide with the solution (1.1.28)
and the homogeneous diffusion equation (1.1.18), respectively. Hence in this domain the function (1.1.44)
satisfies (1.1.42).

Consider some test-functioh € D(R?), where D(R?) is the set of compactly supported (i.e.
vanishing outside a compact domain) functiong @&fnd x. Using the definition of the derivative of
distributions (generalized functions), the condition

W(x,t)=0 ift <0
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and integrating by parts, we obtain

00 00 2
/ dt/ dxf(x,t)(aW;?’t)—DaV;/)(()Z(’t)>

Y Y af(x, 1) | 9%f(x,t)
__/0 dt/_oode(x,t)< ot +D 0 )

00 o0 2
— — lim / dt/ de(x,t)(af(X’t)+Da f(x’t)>

e—>+0 at ax2

o0 00 00 2
lim [/ dx W(x. s)f(x,e)+/ dt/ dx f(x, 1 (aw(x’t) _ p W, “)}
e 0 /oo e o at Ix2

IimO/ dx W(x, ¢) f (x,0) + IimO/ dx W(x, e)[f(Xx, &) — f(x,0)]

e+ e—>+

o

= |lim / dx W(x, ¢) f (x, 0).
=40 ) _~

In this derivation, we have used the fact thiéx, t) att > 0 is the solution of the homogeneous diffusion

equation (1.1.33), while the last equality is a consequence of the relation

o0
< constants/ dx W(x, ¢) = constante

—00

lim /OO dxW(x, e)[f(x, &) — f(x,0)]
e—=>+4+0 ) _~o

(in the latter equation we have used the normalization condition (1.1.29)). Since

W(X,t) — §(X)
t—0

according to the characteristic property (1.1.63), we obtain the equality

[e’s) 00 2
/ dt/ dx f(x. 1) (aw(x’t) _p? W(X’t)> — £(0,0)

ot 9x2

which is equivalent to equation (1.1.44) by the definition of{Hfenction.
Another way to reach the same result is simply to usektievn result (which, in fact, we have
proven earlier!) from the theory of distributions (distributions here mean generalized functions)

d
—O(t) =46(1).
at ®) )
Then it is easy to see thatii (), t) satisfies (1.1.24), the functigrt)w(x, t) is the solution of
d
E(@(t)w(k, 1) = —Dkze(t)w(k, t) —swr,t). (1.1.134)

Taking into account that the solution (1.1.25) of the initial equation at the origin has thewelué) =
1/2m, equation (1.1.134) can be rewritten in the form

N - 1
(k1) = ~DAZT(H. 1) — 5 -8(1)
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which is equivalent to (1.1.42) (after the Fourier transform).

Problem 1.1.5. Prove the Wiener theorem for differentiable functions: the set of differentiable functions
has zero measure.

Hint. Formulate the condition of differentiability as follows:
(X(t2) = X(t1)l,—t; < h(tz —t1)

and, using as a guide the proof of the Wiener theorem for discontinuous functions, show that the
path integral over the corresponding characteristic function of the form (1.1.66) is reduced to the one-

dimensional integral
2 h(ﬁ/A)”‘d o
= n
NE

(similar to that in (1.1.68)), wherd > /2 andm is an arbitrary positive integer. Hence this integral
vanishes in the limim — oc.

Problem 1.1.6. Calculate the multidimensional Gaussian integral (1.1.85)

00 N
/ dxq - - - dxn exp{—Zbinin}
o -~

whereb = (bjj) is an arbitrary positive definite, real symmetric matrix.

Solution. Sinceb is a real symmetric matrix, it can be diagonalized by an orthogonal transfornfion
N
Xi =Y _Cijyj detC =1 (1.1.135)

so that
b—B=C'bC Bij = Aidij.

In these new variableg, the integral is reduced to the product of the standard Gaussian integral (1.1.27)

= Vaow

The productrs - - - AN Of the diagonal elements of the matiikis obviously equal to its determinant,
which, due to the relations (1.1.135), is equal to the determinant of the niatriXhus for then-
dimensional Gaussian integral we obtain

00 N
/ dy; - --dyn exp{ — Z)Li in} l_[/ dy; exp{— )\|y| (\/_)N . (1.1.136)

00 N N
(V)
dxy---dxn ex {— E b~-xAx-} = . 1.1.137
/_oo P — detb ( )
Problem 1.1.7. Calculate (1.1.82) performing the integrations oxgrxo, . .., XN one by one.

Hint. Use the formula

00 T 12 ab
/ dx exp{—a(x — x')%2 — b(x — x")?} = (m) exp{—a — b(x’ - x”)z}
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which reflects the semigroup property (ESKC relation) of such Gaussian distributions.

Problem 1.1.8. Calculate the Wiener integral over trajectories from the &, 0; t} (i.e. with the
unconditional measure) with the functional

FIx(7)] = x(s)x(p)

wheres andp are two fixed moments of time with@ s < p < t.

Solution. Manipulations analogous to those in example 1.2, page 39 give

o= / dwx(t) X(8)X(p)
C{0,0;t}

o0
= / dxs dx, xsxp/ dwx(t) dWx(r)/ dwx(t)
—00 C{0,0;xs,s} C{Xs,S;Xp,p} C{Xp,p;t}

/ e dxed 1 <& 1 _px? g
= Xs X, XsX e s e s =_
NS ST TS /s J(p —S) 2

(Another possibility is to use the discrete approximation as in example 1.2.)
The path integrals is in fact the correlation function

x©x()w = / dwX () X(S)X(p) (1.1.138)
C{0,0;t}

with the average taken over the Wiener measiy®(t), so that we could write in general, for bath< p
andp < s,

(X(8)X(p))w = 3 Min(s, p). (1.1.139)
Problem 1.1.9. We have stressed that the Brownian motion is a homogeneous stochastic process, that
is, its characteristics do not depend on the overall shifting of time variables. However, the correlation
function (1.1.138) found in the preceding problem looks, at first sight, as if it woutdbi@variant with
respect to such a time shifting (see (1.1.139)). Explain this apparent contradiction.

Hint. Calculate the correlation function for arbitrary initial time to, that is, calculate the following path
integral:

/ dwX(T) X(S)X(p) to<s<p<t.
C{0,to;t}

Problem 1.1.10. Calculate the conditional integral (1.1.57) for the functioRpt(z)] = F(x(s)) = X(s),
wheres is a fixed point in the intervdD, t].

Solution. Making use of the ESKC relation (1.1.58) in the same manner as in example 1.2, we obtain
1 gond _ / dwX (1) X(5)
C{0,0;x¢,t}

o0
= / dXsXs/ dWX(T) dWX(T) (11140)
—00 C{0,0;xs,s} C{Xs,S Xt,t}
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so that (1.1.53) gives

X2 X X 2
cond * - e (ttf‘?
| = dxS xS
VT «/n(t —9)
_ XS % 1.1.141

Recall that the corresponding unconditional path integral is equal to zero (cf example 1.2).

Problem 1.1.11. Calculate the integrall, and Ijond, defined in (1.1.102) and (1.1.112), respectively, by
the Gelfand—Yaglom method for the particular case of the fungtian : p(r) = k? = constant.

Hint. The general solution of the equation

d?f

_ L2
az =X

f = C1e" + Cre ¥,

The boundary conditions (1.1.114) and (1.1.115) give

D(0) = coshkt)
D) = %sinr‘(kt).

Substitution of these expressions into (1.1.113) results in (1.1.116). For the unconditional integral, the
formula (1.1.111) give$s = 1/+/coshkt).

Problem1.1.12. Solve the Fredholm equation (1.1.117) #¢t,s) = 1,a=0,b = 1.
Solution. Equation (1.1.117) now reads
1
y(t) = x(t) +A/ dsx(s).
0

Using (1.1.120) and (1.1.121) or directly solving the equation for the resolvent kernel in this simple case,
we obtain

and the solution (1.1.118) has the form

X)) =yt) - m/ dsy(s).
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1.2 Wiener path integrals and stochastic processes

In this section, after a short excursion into the theory of stochastic processes, we shall consider the path-
integral method of analysis of basic stochastic equations and some applications to physical processes (a
Brownian particle with inertia and a system of interacting Brownian particles). The central point of this
section is theFeynman—Kac formula, expressing transition probabilities for a wide class of stochastic
processes in terms of path integrals. Also, we shall discuss the Wiener path integral in the space of
velocities and the Wiener path integral with constraints which, besides its direct meaning, serves as the
prototype for the extremely fruitful application of path-integral techniques in gauge-field theories (see
chapter 3). We shall continue the study of methods of calculations for path integrals, in particular, the
semiclassical approximation and the Fourier mode expansion. One more practically very useful object
which will be introduced in this section is the characteristic (generating) functional for Wiener processes.
Its analog plays an essential role in the path-integral formulation of quantum field theories (see chapter 3).
In conclusion of this section, we shortly consider an instructive and physically important application of
path integrals in polymer physics, which illustrates the fact that the path-integral methods developed for
the description of Brownian motion can be successfully applied to quite different physical problems.

1.2.1 A short excursion into the theory of stochastic processes

Recall that for the description of a random event in probability theory we introduce (see, e.g.,
Doob (1953), Feller (1951, 1961) and Gnedenko (1968)) a suitable ‘probability space’ (space
of elementary events) €, i.e. the set of all possible realizations of a given phenomenon and to
any subset A C Q we ascribe a non-negative number P{A}, the probability of the event A. In
particular, the probability space which describes the Brownian motion of a particle consists of
all possible trajectories and ascribing probabilities to their subsets leads to the construction of
the Wiener measure as we discussed in the preceding section. Mathematically this situation is
described via the introduction of a random variable &, defined as a function & = £(v), v € €, on
a probability space €. In fact, random variables serve as coordinates on spaces of elementary
events Q and, in the same way as coordinates of any space, put into correspondence with a
point of a space a real number (if this is a one-dimensional space) or a set of numbers (for
higher-dimensional spaces). Analogously to the freedom in the choice of coordinate frames for
an arbitrary space, a set of (basic) random variables on 2 can be defined in many different ways.

< Distribution, partition function and probability density

If £ takes a discrete set of values (finite or countable) xi, X2, ..., Xn, ..., then we can introduce
the set of probabilities
pk = P{v|E(v) = Xk} k=12,...,N (1.2.1)

called a probability distribution for the values of a random variable &. As we have already noted
in the preceding section, probability is closely related to (or in fact defines) the measure on a
space of elementary events. Practically, it is constructed using a partition function

Fe(X) = P{v|&(v) < X} —00 <X <00 (1.2.2)

so that the probability of a random variable & to be in an interval [A, B] is expressed in terms of
the Lebesgue-Stiltjes integral:

B
PlulA < £(v) < B}=/ dFe () (1.2.3)
A
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(such a function, of course, can be introduced for discrete sets of values of the random variable,
and in this case Fz = } ., - Pk). If it is desirable to consider a few random variables
simultaneously (for example, three coordinates x(t), y(t), z(t) of a Brownian particle at a moment
t), we introduce their joint distribution function

Fey,.tm (X1, - - -, Xm) = P{ul&1(v) < X1, ..., Em(v) < Xm}. (1.2.4)

In the case of a continuous distribution, the integral (1.2.3) turns into the Riemann integral
B
P{v|A < &(v) < B} :/ dx w(x) (1.2.5)
A

where the positive function w(x) > 0 is the probability density, which is related to the partition
function as

X
Fe(x) = / dy w(y). (1.2.6)
—00
If the partition function is differentiable, the inverse formula is
9F:(X)
- ) 1.2.7
w(X) o (1.2.7)

Partition functions and probability densities should obviously satisfy the normalization
condition

/ dF:(x) :/ dxw(x) = 1. (1.2.8)

A probability density of a few random variables is defined analogously.

Thus we can say that from the mathematical point of view, a space of elementary events Q
together with a set of random variables (coordinates) and a set of attributed probabilities defines
the space with the probabilistic (i.e. subject to the normalization condition (1.2.8)) measure.

<& Definition and classification of stochastic processes

A collection of random variables & defined on the same probability space Q2 and labelled by the
elements of some set 7T is called a random or stochastic function. For example, the coordinates
of the Brownian particle are stochastic functions defined on the half line [0, co) of a time variable.
For the special sets 7T, we use the following terminology:

e if T isthe set of integers 7Z, the stochastic function is called a stochastic chain or a stochastic
sequence;
if 7 is a multidimensional space RY, the stochastic function is called a stochastic field;
if 7 is the line R or an interval, the stochastic function is called a stochastic process.

An example of a stochastic chain is the discrete-time approximation of the Brownian motion
discussed in the preceding section, while its continuous limit corresponds to a stochastic
process. In this section, we shall consider the latter object.

All the information about a stochastic process is contained in the joint probability
distributions

wn (1,115 82,12 .. .5 NG IND (1.2.9)
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for collections of random variables &(t1), £(t2), ..., &(tn) with arbitrary N. They define the
mathematical expectation (or mean value) (f (&1, ..., &N)) of a function f (&, ..., &) of random
variables:
def
(1. 6n)) = /déldfz---d«‘EN wN (1, t1; .5 NG IND) (6L, L EN) (1.2.10)

(with the obvious substitution of the integral by the sum in the case of a discrete distribution).
For a deterministic process & = f (1), the probability densities are expressed by §-functions, e.g.,
w1, ) =8¢ — f(1).

It is worth noting that an explicit form of the joint distribution wy depends on the way of
averaging under consideration, for example:

e in the case of the correlation function (x(s)x(p))w for Brownian motion with arbitrary final
points (averaging over the unconditional Wiener measure), the joint distribution has the form
(cf problem 1.1.8, page 54)

w2 = W(X51 S|X01 O)W(X,Os p|X51 S)

e in the case of trajectories with a fixed final point (averaging over the conditional Wiener
measure), the joint probability reads as

w2 = W(Xs, S|X0, )W (X,, p|Xs, YW (Xt, t|Xs, p).

However, in contrast to the discrete sets of random variables as in (1.2.9), in many cases
it is more convenient to use the probability functional of w[&(z)] of a random variable &, i.e. the
continuous analog of the joint probability density (1.2.9). We proceeded along this way in the
preceding section for discussing Brownian motion (by having considered the probability that the
Brownian particle moves through infinitesimal gates dx along a given trajectory x(t), cf (1.1.51))
and reached the notion of the Wiener path integral.

All these definitions are easily generalized to multicomponent stochastic processes &(t) =
{E1(D), ..., Em(D)}.

As we have already mentioned, there are several classes of stochastic processes which are
of special importance in physics:

e Stationary processes. processes with joint (multipoint) probability characteristics which do
not depend on the choice of the starting moment or, in other words, are invariant with
respect to time translations. This means, in turn, that all characteristics depend only on
time differences, in particular, (£(t)) = constantaind (£ (t2)&(t1)) = f(t2 — t1).

e Markov processes: processes for which all joint (multipoint) probability characteristics are
expressed only in terms of a one-point probability density w(&;, t) and a two-point transition
probability W (&, t2|&;,,t1). The notion of transition probability implies that it satisfies the
semigroup property (1.1.46) or, in the terminology of the theory of stochastic process, the
ESKC relation (1.1.45). In more general words, this means that in a Markov process, the
future depends on the past only through the present moment state.

e Gaussian (normal) processes:. processes for which all joint (multipoint) probability
characteristics are expressed only in terms of a first wi(§) and second (transition)
wa(&2,£1) = W(&2, t2]€1, t1) probability density (and hence only in terms of the mean
value (£(t)) and correlation function (£ (t2)&(t1))), both joint probabilities having necessarily
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Gaussian (called also normal) form,

1 (s—a)2
= 1.2.11
wi(f) = wE) = N7 xp{ } ( )

2

/2w det(){j ) ij=1

where a, A, &, jj (i, ] = 1, 2) are the parameters of the distributions.

e Wiener process: a stationary Markov and Gaussian process with independent increments
& —¢&_1(0(4=1,...,n)foranyinstantoftimetyg <t; < --- < tn, is called a Wiener stochastic
process.

w2(&2, §1) =

I\)II—‘

AijGi — @) (&) — aj)} (1.2.12)

The reader may verify that the increments in the positions of the Brownian particle are
indeed independent (cf the remark after (1.1.50) and problem 1.2.1). So, as follows from the
discussion in the preceding section, Brownian motion is a Wiener process.

In what follows, we shall mention also the process called white noise:

e White noise process: a stationary stochastic process &(t) with completely independent
random variables at different moments, so that the correlation function is given by the §-
function

(§(t2)&(t1)) = Pod(t2 — t1) (1.2.13)

with a constant spectral density

O (w) = / d(tz — t1) (E(t2)& ()€™ = @y, (1.2.14)

The latter property explains the adjective ‘white’: white light also has constant spectral
density.

<& The Fokker—Planck equation for stochastic processes

In the preceding section we derived the diffusion equations (1.1.3), (1.1.19) and (1.1.33) using
natural physical assumptions and then convinced ourselves that the corresponding transition
probability (1.1.35), i.e. the fundamental solution of the diffusion equation, satisfies the ESKC
(semigroup) relation (1.1.45). From the point of view of the general theory and a classification
of stochastic processes given earlier, it is natural to reverse the steps and to start from the
fundamental properties of stochastic processes and then to derive the corresponding equations.
For Markov processes, and their particular subset of Wiener processes, such a fundamental
property is just the ESKC relation. It is instructive to find additional assumptions which allow us
to derive the corresponding differential (in particular, diffusion) equations from the ESKC relation.
Such an equation can be derived from the very definition of a Wiener process, i.e. from the
combination of the Markovian property (ESKC relation) with the Gaussian form of distributions
and independence of increments. However, we prefer to use, together with the ESKC relation,
the equivalent but physically more transparent additional assumptions.
Let a transition probability obey the conditions

lim <Xt — Xt> = A(Xs, T) (1.2.15)

t-t\ t—1
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2
lim <M> — 2B(X,.7) (1.2.16)
t—>1 t—1

.3
lim <u> _0 (1.2.17)
t—1 t—1

where (- - -) means the statistical averaging
o

(f (Xt — %)) =/ dxe f (¢ — XO)W(Xe, tXe, 7).
—0o0

Note that we consider here the mean values of the powers of increments, therefore 