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Abstract

In this book we study quantum mechanical path integrals in curved
and flat target space (nonlinear and linear sigma models), and use the
results to compute the anomalies of n-dimensional quantum field theories
coupled to external gravity and gauge fields. Even though the quantum
field theories need not be supersymmetric, the corresponding quantum
mechanical models are often supersymmetric. Calculating anomalies us-
ing quantum mechanics is much simpler than using the full machinery of
quantum field theory.

In the first part of this book we give a complete derivation of the path
integrals for supersymmetric and non-supersymmetric nonlinear sigma
models describing bosonic and fermionic point particles (commuting co-
ordinates xi(t) and anticommuting variables ψa(t) = eai (x(t))ψ

i(t)) in
a curved target space with metric gij(x) = eai (x)e

b
j(x)δab. All our cal-

culations are performed in Euclidean space. We consider a finite time
interval because this is what is needed for the applications to anomalies.
As these models contain double-derivative interactions, they are diver-
gent according to power counting, but ghost loops cancel the divergences.
Only the one- and two-loop graphs are power counting divergent, hence in
general the action may contain extra finite local one- and two-loop coun-
terterms whose coefficients should be fixed. They are fixed by imposing
suitable renormalization conditions. To regularize individual diagrams we
use three different regularization schemes:
(i) time slicing (TS), known from the work of Dirac and Feynman
(ii) mode regularization (MR), known from instanton and soliton physics3

(iii) dimensional regularization on a finite time interval (DR), discussed
in this book.

The renormalization conditions relate a given quantum Hamiltonian Ĥ
to a corresponding quantum action S, which is the action which appears
in the exponent of the path integral. The particular finite one- and two-
loop counterterms in S thus obtained are different for each regularization
scheme. In principle, any Ĥ with a definite ordering of the operators can
be taken as the starting point, and gives a corresponding path integral,
but for our physical applications we shall fix these ambiguities in Ĥ by re-
quiring that it maintains reparametrization and local Lorentz invariance
in target space (commutes with the quantum generators of these symme-
tries). Then there are no one-loop counterterms in the three schemes, but
only two-loop counterterms. Having defined the regulated path integrals,

3 Actually, the mode expansion was already used by Feynman and Hibbs to compute
the path integral for the harmonic oscillator.
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the continuum limit can be taken and reveals the correct “Feynman rules”
(the rules how to evaluate the integrals over products of distributions and
equal-time contractions) for each regularization scheme. All three regu-
larization schemes give the same final answer for the transition amplitude,
although the Feynman rules are different.

In the second part of this book we apply our methods to the evalua-
tion of anomalies in n-dimensional relativistic quantum field theories with
bosons and fermions in the loops (spin 0, 1/2, 1, 3/2 and selfdual antisym-
metric tensor fields) coupled to external gauge fields and/or gravity. We
regulate the field-theoretical Jacobian for the symmetries whose anoma-
lies we want to compute with a factor exp(−βR), where R is a covariant
regulator which is fixed by the symmetries of the quantum field theory,
and β tends to zero only at the end of the calculation. Next we intro-
duce a quantum-mechanical representation of the operators which enter in
the field-theoretical calculation. The regulator R yields a corresponding
quantum mechanical Hamiltonian Ĥ. We rewrite the quantum mechani-
cal operator expression for the anomalies as a path integral on the finite
time interval −β ≤ t ≤ 0 for a linear or nonlinear sigma model with action
S. For given spacetime dimension n, in the limit β → 0 only graphs with
a finite number of loops on the worldline contribute. In this way the cal-
culation of the anomalies is transformed from a field-theoretical problem
to a problem in quantum mechanics. We give details of the derivation
of the chiral and gravitational anomalies as first given by Alvarez-Gaumé
and Witten, and discuss our own work on trace anomalies. For the for-
mer one only needs to evaluate one-loop graphs on the worldline, but for
the trace anomalies in 2 dimensions we need two-loop graphs, and for
the trace anomalies in 4 dimensions we compute three-loop graphs. We
obtain complete agreement with the results for these anomalies obtained
from other methods. We conclude with a detailed analysis of the gravita-
tional anomalies in 10 dimensional supergravities, both for classical and
for exceptional gauge groups.
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Preface

In 1983, L. Alvarez-Gaumé and E. Witten (AGW) wrote a fundamen-
tal article in which they calculated the one-loop gravitational anoma-
lies (anomalies in the local Lorentz symmetry of 4k + 2 dimensional
Minkowskian quantum field theories coupled to external gravity) of com-
plex chiral spin 1/2 and spin 3/2 fields and real selfdual antisymmetric
tensor fields1 [1]. They used two methods: a straightforward Feynman
graph calculation in 4k + 2 dimensions with Pauli-Villars regularization,
and a quantum mechanical (QM) path integral method in which corre-
sponding nonlinear sigma models appeared. The former has been dis-
cussed in detail in an earlier book [3]. The latter method is the subject
of this book. AGW applied their formulas to N = 2B supergravity in
10 dimensions, which contains precisely one field of each kind, and found
that the sum of the gravitational anomalies cancels. Soon afterwards,
M.B. Green and J.H. Schwarz [4] calculated the gravitational anomalies
in one-loop string amplitudes, and concluded that these anomalies cancel
in string theory, and therefore should also cancel in N = 1 supergravity
with suitable gauge groups for the N = 1 matter couplings. Using the
formulas of AGW, one can indeed show that the sum of anomalies in
N = 1 supergravity coupled to super Yang-Mills theory with gauge group
SO(32) or E8 ×E8, though nonvanishing, is in the technical sense exact:
it can be removed by adding a local counterterm to the action. These two
papers led to an explosion of interest in string theory.

We discussed these two papers in a series of internal seminars for ad-
vanced graduate students and faculty at Stony Brook (the “Friday semi-
nars”). Whereas the basic philosophy and methods of the paper by AGW
were clear, we stumbled on numerous technical problems and details.
Some of these became clearer upon closer reading, some became more
baffling. In a desire to clarify these issues we decided to embark on a
research project: the AGW program for trace anomalies. Since gravi-
tational and chiral anomalies only contribute at the one-worldline-loop
level in the QM method, one need not be careful with definitions of the
measure for the path integral, choice of regulators, regularization of diver-
gent graphs etc. However, we soon noticed that for the trace anomalies
the opposite is true: if the field theory is defined in n = 2k dimensions,

1 Just as one can shift the axial anomaly from the axial-vector current to the vector
current, one can also shift the gravitational anomaly from the general coordinate
symmetry to the local Lorentz symmetry [2]. Conventionally one chooses to preserve
general coordinate invariance. However, AGW chose the symmetric vielbein gauge,
so that the symmetry whose anomalies they computed was a linear combination of
Einstein symmetry and a compensating local Lorentz symmetry.
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one needs (k + 1)-loop graphs on the worldline in the QM method. As
a consequence, every detail in the calculation matters. Our program of
calculating trace anomalies turned into a program of studying path inte-
grals for nonlinear sigma models in phase space and configuration space,
a notoriously difficult and controversial subject. As already pointed out
by AGW, the QM nonlinear sigma models needed for spacetime fermions
(or selfdual antisymmetric tensor fields in spacetime) have N = 1 (or
N = 2) worldline supersymmetry, even though the original field theories
were not spacetime supersymmetric. Thus we had also to wrestle with
the role of susy in the careful definitions and calculations of these QM
path integrals.

Although it only gradually dawned upon us, we have come to recognize
the problems with these susy and nonsusy QM path integrals as prob-
lems one should expect to encounter in any quantum field theory (QFT),
the only difference being that these particular field theories have a one-
dimensional (finite) spacetime, as a result of which infinities in the sum of
Feynman graphs for a given process cancel. However, individual Feynman
graphs are power-counting divergent (because these models contain dou-
ble derivative interactions just like quantum gravity). This cancellation
of infinities in the sum of graphs is perhaps the psychological reason why
there is almost no discussion of regularization issues in the early literature
on the subject (in the 1950 and 1960’s). With the advent of the renor-
malization of gauge theories in the 1970’s also issues of regularization of
nonlinear sigma models were studied. It was found that most of the regu-
larization schemes used at that time (the time-slicing method of Dirac and
Feynman, and the mode regularization method used in instanton and soli-
ton calculations of nonabelian gauge theories) broke general coordinate
invariance at intermediate stages, but that by adding noncovariant coun-
terterms, the final physical results were still general coordinate invariant
(we shall use the shorter term Einstein invariance for this symmetry in
this book). The question thus arose how to determine those counterterms,
and understand the relation between the counterterms of one regulariza-
tion scheme and those of other schemes. Once again, the answer to this
question could be found in the general literature on QFT: the imposition
of suitable renormalization conditions.

As we tackled more and more difficult problems (4-loop graphs for trace
anomalies in six dimensions) it became clear to us that a scheme which
needed only covariant counterterms would be very welcome. Dimensional
regularization (DR) is such a scheme. It had been used by Kleinert and
Chervyakov [5] for the QM of a one dimensional target space on an infi-
nite worldline time interval (with a mass term added to regulate infrared
divergences). We have developed instead a version of dimensional regu-
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larization on a compact space; because the space is compact we do not
need to add by hand a mass term to regulate the infrared divergences
due to massless fields. The counterterms needed in such an approach are
indeed covariant (both Einstein and locally Lorentz invariant).

The quantum mechanical path integral formalism can be used to com-
pute anomalies in quantum field theories. This application forms the
second part of this book. The anomalies are first written in the quantum
field theory as traces of a Jacobian with a regulator, TrJe−βR, and then
the limit β → 0 is taken. Chiral spin 1/2 and spin 3/2 fields and selfdual
antisymmetric tensor (AT) fields can produce anomalies in loop graphs
with external gravitons or external gauge (Yang-Mills) fields. The treat-
ment of the spin 3/2 and AT fields formed a major obstacle. In the article
by AGW the AT fields are described by a bispinor ψαβ, and the vector
index of the spin 3/2 field and the β index of ψαβ are treated differently
from the spinor index of the spin 1/2 and spin 3/2 fields and the α index
of ψαβ . In [1] one finds the following transformation rule for the spin 3/2
field (in their notation)

−δηψA = ηiDiψA +Daηb(T
ab)ABψB (0.0.1)

where ηi(x) yields an infinitesimal coordinate transformation xi → xi +
ηi(x), and A = 1, 2, ...n is the vector index of the spin 3/2 (gravitino)
field, while (T ab)AB = −i(δaAδbB − δbAδ

a
B) is the generator of the Eu-

clidean Lorentz group SO(n) in the vector representation. One would
expect that this transformation rule is a linear combination of an Ein-
stein transformation δEψA = ηi∂iψA (the index A of ψA is flat) and a local
Lorentz rotation δlLψAα = 1

4η
iωiAB(γAγB)α

βψAβ + ηiωiA
BψBα. However

in (0.0.1) the term ηiωiA
BψBα is lacking, and instead one finds the second

term in (0.0.1) which describes a local Lorentz rotation with parameter
2(Daηb − Dbηa) and this local Lorentz transformation only acts on the
vector index of the gravitino. We shall derive (0.0.1) from first principles,
and show that it is correct provided one uses a particular regulator R.

The regulator for the spin 1/2 field λ, for the gravitino ψA, and for
the bispinor ψαβ is in all cases the square of the field operator for λ̃,

ψ̃A and ψ̃αβ , where λ̃, ψ̃A and ψ̃αβ are obtained from λ, ψA and ψαβ
by multiplication by g1/4 = (det eµ

m)1/2. These “twiddled fields” were
used by Fujikawa, who pioneered the path integral approach to anomalies
[6]. An ordinary Einstein transformation of λ̃ is given by δλ̃ = 1

2(ξµ∂µ +

∂µξ
µ)λ̃, where the second derivative ∂µ can also act on λ̃, and if one

evaluates the corresponding anomaly AnE = Tr1
2(ξµ∂µ + ∂µξ

µ)e−βR for
β tending to zero by inserting a complete set of eigenfunctions ϕ̃n of R
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with eigenvalues λn, one finds

AnE = lim
β→0

∫

dx ϕ̃∗
n(x)

1

2
(ξµ∂µ + ∂µξ

µ)e−βλnϕ̃n(x) . (0.0.2)

Thus the Einstein anomaly vanishes (partially integrate the second ∂µ)
as long as the regulator is hermitian with respect to the inner product
(λ̃1, λ̃2) =

∫
dx λ̃∗1(x)λ̃2(x) (so that the ϕ̃n form a complete set), and

as long as both ϕ̃n(x) and ϕ̃∗
n(x) belong to the same complete set of

eigenstates (as in the case of plane waves g
1
4 eikx). One can always make

a unitary transformation from the ϕ̃n to the set g
1
4 eikx, and this allows

explicit calculation of anomalies in the framework of quantum field theory.
We shall use the regulator R discussed above, and twiddled fields, but
then cast the calculation of anomalies in terms of quantum mechanics.

Twenty year have passed since AGW wrote their renowned article. We
believe we have solved all major and minor problems we initially ran
into. The quantum mechanical approach to quantum field theory can be
applied to more problems than only anomalies. If future work on such
problems will profit from the detailed account given in this book, our
scientific and geographical Odyssey has come to a good ending.
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Brief summary of the three regularization schemes

For experts who want a quick review of the main technical issues cov-
ered in this book, we give here a brief summary of the three regularization
schemes described in the main text, namely: time slicing (TS), mode reg-
ularization (MR), and dimensional regularization (DR). After this sum-
mary we start this book with a general introduction to the subject of path
integrals in curved space.

Time Slicing
We begin with bosonic systems with an arbitrary Hamiltonian Ĥ quadratic

in momenta. Starting from the matrix element 〈z| exp(− β
h̄Ĥ)|y〉 (which

we call the transition amplitude or transition element) with arbitrary but

a priori fixed operator ordering in Ĥ, we insert complete sets of position
and momentum eigenstates, and obtain the discretized propagators and
vertices in closed form. These results tell us how to evaluate equal-time
contractions in the corresponding continuum Euclidean path integrals, as
well as products of distributions which are present in Feynman graphs,
such as

I =

∫ 0

−1

∫ 0

−1
δ(σ − τ)θ(σ − τ)θ(τ − σ) dσdτ .

It is found that δ(σ− τ) should be viewed as a Kronecker delta function,
even in the continuum limit, and the step functions as functions with
θ(0) = 1

2 (yielding I = 1
4). Kronecker delta function here means that

∫
δ(σ − τ)f(σ) dσ = f(τ), even when f(σ) is a product of distributions.

We show that the kernel 〈xk+1| exp(− ε
h̄Ĥ)|xk〉 with ε = β/N may be

approximated by 〈xk+1|(1− ε
h̄Ĥ)|xk〉. For linear sigma models this result

is well-known and can be rigorously proven (“the Trotter formula”). For

nonlinear sigma models, the Hamiltonian Ĥ is rewritten in Weyl ordered
form (which leads to extra terms in the action for the path integral of order
h̄ and h̄2), and the midpoint rule follows automatically (so not because we
require gauge invariance). The continuum path integrals thus obtained
are phase-space path integrals. By integrating out the momenta we obtain
configuration-space path integrals. We discuss the relation between both
of them (Matthews’ theorem), both for our quantum mechanical nonlinear
sigma models and also for 4-dimensional Yang-Mills theories.

The configuration space path integrals contain new ghosts (anticom-
muting bi(τ), ci(τ) and commuting ai(τ)), obtained by exponentiating
the factors (det gij(x(τ)))

1/2 which result when one integrates out the
momenta. At the one-loop level these ghosts merely remove the overall
δ(σ − τ) singularity in the ẋẋ propagator, but at higher loops they are
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as useful as in QCD and electroweak gauge theories. In QCD one can
choose a unitary gauge without ghosts, but calculations become horren-
dous. Similarly one could start without ghosts and try to renormalize
the theory in a consistent manner, but this is far more complicated than
working with ghosts. Since the ghosts arise when we integrate out the
momenta, it is natural to keep them. We stress that at any stage all
expressions are finite and unambiguous once the operator Ĥ has been
specified. As a result we do not have to fix normalization constants at the
end by physical arguments, but “the measure” is unambiguously derived
in explicit form. Several two-loop and three-loop examples are worked
out, and confirm our path integral formalism in the sense that the results
agree with a direct evaluation using operator methods for the canonical
variables p̂ and x̂.

We then extend our results to fermionic systems. We define and use
coherent states, define Weyl ordering and derive a fermionic midpoint
rule, and obtain also the fermionic discretized propagators and vertices in
closed form, with similar conclusions as for the continuum path integral
for the bosonic case.

Particular attention is paid to the operator treatment of Majorana
fermions. It is shown that “fermion-doubling” (by adding a full set of
noninteracting Majorana fermions) and “fermion halving” (by combining
pairs of Majorana fermions into Dirac fermions) yield different propaga-
tors and vertices but the same physical results such as anomalies.

Mode Regularization
As quantum mechanics can be viewed as a one-dimensional quantum

field theory (QFT), we can follow the same approach in quantum me-
chanics as familiar from four-dimensional quantum field theories. One
way to formulate quantum field theory is to expand fields into a complete
set of functions, and integrate in the path integral over the coefficients of
these functions. One could try to derive this approach from first princi-
ples, starting for example from canonical methods for operators, but we
shall follow a different approach for mode regularization. Namely we first
write down formal rules for the path integral in mode regularization with-
out derivation, and a posteriori fix all ambiguities and free coefficients by
consistency conditions.

We start from the formal sum over paths weighted by the phase fac-
tor containing the classical action (which is like the Boltzmann factor of
statistical mechanics in our Euclidean treatment), and next we suitably
define the space of paths. We parametrize all paths as a background
trajectory, which takes into account the boundary conditions, and quan-
tum fluctuations, which vanish at the time boundaries. Quantum fluc-
tuations are expanded into a complete set of functions (the sines) and
path integration is generated by integration over all Fourier coefficients
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appearing in the mode expansion of the quantum fields. General covari-

ance demands a nontrivial measure Dx =
∏

t

√

det gij(x(t)) d
nx(t). This

measure is formally a scalar, but it is not translationally invariant un-
der xi(t) → xi(t) + εi(t). To derive propagators it is more convenient
to exponentiate the nontrivial part of the measure by using ghost fields
∏

t

√

det gij(x(t)) ∼
∫
DaDbDc exp(− ∫ dt 1

2 gij(x)(a
iaj + bicj)). At this

stage the construction is still formal, and one regulates it by integrating
over only a finite number of modes, i.e. by cutting off the Fourier sums
at a large mode number M . This makes all expressions well-defined and
finite. For example in a perturbative expansion all Feynman diagrams
are unambiguous and give finite results. This regularization is in spirit
equivalent to a standard momentum cut-off in QFT. The continuum limit
is achieved by sending M to infinity. Thanks to the presence of the ghost
fields (i.e. of the nontrivial measure) there is no need to cancel infinities
(i.e. to perform infinite renormalization). This procedure defines a con-
sistent way of doing path integration, but it cannot determine the overall
normalization of the path integral (in QFT it is generically infinite). More
generally one would like to know how MR is related to other regulariza-
tion schemes. As is well-known, in QFT different regularization schemes
are related to each other by local counterterms. Defining the necessary
renormalization conditions introduces a specific set of counterterms of or-
der h̄ and h̄2, and fixes all of these ambiguities. We do this last step
by requiring that the transition amplitude computed in the MR scheme
satisfies the Schrödinger equation with an a priori fixed Hamiltonian Ĥ
(the same as for time slicing). The fact that one-dimensional nonlinear
sigma models are super-renormalizable guarantees that the counterterms
needed to match MR with other regularization schemes (and also needed
to recover general coordinate invariance, which is broken by the TS and
MR regularizations) are not generated beyond two loops.

Dimensional Regularization

The dimensionally regulated path integral can be defined following steps
similar to those used in the definition of the MR scheme, but the regular-
ization of the ambiguous Feynman diagrams is achieved differently. One
extends the one dimensional compact time coordinate −β ≤ t ≤ 0 by
adding D extra non-compact flat dimensions. The propagators on the
worldline are now a combined sum-integral, where the integral is a mo-
mentum integral as usual in dimensional regularization. At this stage
these momentum space integrals define expressions where the variable D
can be analytically continued into the complex plane. We are not able
to perform explicitly these momentum integrals, but we assume that for
arbitrary D all expressions are regulated and define analytic functions,
possibly with poles only at integer dimensions, as in usual dimensional reg-
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ularization. Feynman diagrams are written in coordinate space (t-space),
with propagators which contain momentum integrals. Time derivatives
d/dt become derivatives ∂/∂tµ, but how the indices µ get contracted fol-
lows directly from writing the action in D + 1 dimensions. We perform
operations which are valid at the regulated level (like partial integration
with absence of boundary terms) to cast the integrals in alternative forms.
Dropping the boundary terms in partial integration is always allowed in
the extra D dimension, as in ordinary dimensional regularization, but it
is only allowed in the original compact time dimension when the bound-
ary term explicitly vanishes because of the boundary conditions. Using
partial integrations one rewrites the integrands such that undifferentiated
D + 1 dimensional delta functions δD+1(t, s) appear, and these allow to
reduce the original integrals to integrals over fewer loops which are finite
and unambiguous, and can by computed even after removing the regu-
lator, i.e. in the limit D = 0. This procedure makes calculations quite
easy, and at the same time frees us from the task of computing the ana-
lytical continuation of the momentum integrals at arbitrary D. This way
one can compute all Feynman diagrams. As in MR one determines all
remaining finite ambiguities by imposing suitable renormalization con-
ditions, namely requiring that the transition amplitude computed with
dimensional regularization satisfies the Schrödinger equation with an a
priori given ordering for the Hamiltonian operator Ĥ, the same as used in
mode regularization and time slicing. There are only covariant finite coun-
terterms. Thus dimensional regularization preserves general coordinate
invariance also at intermediate steps, and is the most convenient scheme
for higher loop calculations. When extended to N = 1 susy sigma-models,
dimensional regularization also preserves worldline supersymmetry, as we
show explicitly.
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Part 1

Path Integrals for Quantum Mechanics
in Curved Space





1
Introduction to path integrals

Path integrals play an important role in modern quantum field theory.
One usually first encounters them as useful formal devices to derive Feyn-
man rules. For gauge theories they yield straightforwardly the Ward iden-
tities. Namely, if BRST symmetry (“quantum gauge invariance”) holds
at the quantum level, certain relations between Green’s functions can be
derived from path integrals, but details of the path integral (for example,
the precise form of the measure) are not needed for this purpose1. Once
the BRST Ward identities for gauge theories have been derived, unitarity
and renormalizability can be proven, and at this point one may forget
about path integrals if one is only interested in perturbative aspects of
quantum field theories. One can compute higher-loop Feynman graphs
or make applications to phenomenology without having to deal with path
integrals.

However, for nonperturbative aspects, path integrals are essential. The
first place where one encounters path integrals in the study of nonper-
turbative aspects of quantum field theory is in the study of instantons
and solitons. Here advanced methods based on path integrals have been
developed. The correct measure for instantons, for example, is needed for
the integration over collective coordinates. In particular, for supersym-
metric nonabelian gauge theories, there are only contributions from the
zero modes which depend on the measure for the zero modes, while the
contributions from the nonzero modes cancel between boson and fermions.

1 To prove that the BRST symmetry is free from anomalies, one may either use
regularization-free cohomological methods, or one may perform explicit loop graph
calculations using a particular regularization scheme. When there are no anomalies
but the regularization scheme does not preserve the BRST symmetry, one can in
general add local counterterms to the action at each loop level to restore the BRST
symmetry. In these manipulations the path integral measure is usually not taken
into account.
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Another area where the path integral measure is important is quantum
gravity. In modern studies of quantum gravity based on string theory, the
measure is crucial to obtain the correct correlation functions. Finally, in
lattice simulations the Euclidean version of the path integral is used to
define the theory at the nonperturbative level.

In this book we study a class of simple models which lead to path
integrals in which no infinite renormalization is needed, but some indi-
vidual diagrams are divergent and need be regulated, and subtle issues
of regularization and measures can be studied explicitly. These models
are the quantum mechanical (one-dimensional) nonlinear sigma models.
The one-loop and two-loop diagrams in these models are power-counting
divergent, but the infinities cancel in the sum of diagrams for a given
process at a given loop-level.

Quantum mechanical nonlinear sigma models are toy models for realis-
tic path integrals in four dimensions because they describe curved target
spaces and contain double-derivative interactions (quantum gravity has
also double-derivative interactions). The formalism for path integrals in
curved space has been discussed in great generality in several books and
reviews [7, 8, 9, 10, 11, 12, 13, 14, 15]. In the first half of this book we
define the path integrals for these models and discuss various subtleties.
However, quantum mechanical nonlinear sigma models can also be used to
compute anomalies of realistic four-dimensional and higher-dimensional
quantum field theories, and this application is thoroughly discussed in
the second half of this report. Quantum mechanical path integrals can
also be used to compute correlation functions and effective actions, but
for these applications we refer to the literature [16, 17, 18].

1.1 Quantum mechanical path integrals in curved space
require regularization

The path integrals for quantum mechanical systems we shall discuss have
a Hamiltonian Ĥ(p̂, x̂) which is more general than T̂ (p̂) + V̂ (x̂). We shall
typically be discussing models with a Euclidean Lagrangian of the form

L = 1
2gij(x)

dxi

dt
dxj

dt + iAi(x)
dxi

dt + V (x) where i, j = 1, .., n. These sys-
tems are one-dimensional quantum field theories with double-derivative
interactions, and hence they are not ultraviolet finite by power counting;
rather, the one-loop and two-loop diagrams are divergent as we shall dis-
cuss in detail in the next section. The ultraviolet infinities cancel in the
sum of diagrams, but one needs to regularize individual diagrams which
are divergent. The results of individual diagrams are then regularization-
scheme dependent, and also the results for the sum of diagrams are finite
but scheme dependent. One must then add finite counterterms which
are also scheme dependent, and which must be chosen such that cer-
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tain physical requirements are satisfied (renormalization conditions). Of
course, the final physical answers should be the same, no matter which
scheme one uses. Since we shall be working with actions defined on the
compact time-interval [−β, 0], there are no infrared divergences. We shall
also discuss nonlinear sigma models with fermionic point particles ψa(t)
with again a = 1, .., n. Also loops containing fermions can be divergent.
For applications to chiral and gravitational anomalies the most important
cases are the rigidly supersymmetric models, in particular the models with
N = 1 and N = 2 supersymmetry, but non-supersymmetric models with
or without fermions will also be used as they are needed for application
to trace anomalies.

In the first part of this book, we will present three different regulariza-
tion schemes, each with its own merit, which will produce different but
equivalent ways of computing path integrals in curved space, at least per-
turbatively. The final answers for the transition elements and anomalies
all agree.

Quantum mechanical path integrals can be used to compute anoma-
lies of n-dimensional quantum field theories. This was first shown by
Alvarez-Gaumé and Witten [1, 19, 20], who studied various chiral and
gravitational anomalies (see also [21, 22]). Subsequently, Bastianelli and
van Nieuwenhuizen [23, 24] extended their approach to trace anomalies.
We shall in the second part of this book discuss these applications. With
the formalism developed below one can now compute any anomaly, and
not only chiral anomalies. In the work of Alvarez-Gaumé and Witten,
the chiral anomalies themselves were directly written as a path integral
in which the fermions have periodic boundary conditions. Similarly, the
trace anomalies lead to path integrals with antiperiodic boundary condi-
tions for the fermions. These are, however, only special cases, which we
shall recover from our general formalism.

Because chiral anomalies have a topological character, one would ex-
pect that details of the path integral are unimportant and only one-loop
graphs on the worldline contribute. In fact, in the approach of AGW this
is indeed the case 2. On the other hand, for trace anomalies, which have no
topological interpretation, the details of the path integral do matter and
higher loops on the worldline contribute. In fact, it was precisely because
3-loop calculations of the trace anomaly based on quantum mechanical
path integrals did initially not agree with results known from other meth-
ods, that we started a detailed study of path integrals for nonlinear sigma
models. These discrepancies have been resolved in the meantime, and the

2 Their approach combines general coordinate and local Lorentz transformations, but
if one directly computes the anomaly of the Lorentz operator γµνγ5 one needs higher
loops.
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resulting formalism is presented in this book.
The reason that we do not encounter infinities in loop calculations for

QM nonlinear sigma models is different from a corresponding statement
for QM linear sigma models. For a linear sigma model with a kinetic term
1
2 ẋ

iẋi, the propagator behaves as 1/k2 for large momenta, and vertices
from V (x) do not contain derivatives, hence loops

∫
dk[...] will always be

finite. For nonlinear sigma models with L = 1
2gij(x)ẋ

iẋj , propagators still
behave like k−2 but vertices now behave like k2 (as in ordinary quantum
gravity) hence single loops are linearly divergent by power counting, and
double loops are logarithmically divergent. It is clear by inspection of

〈z|e−(β/h̄)Ĥ |y〉 =

∫ ∞

−∞
〈z|e−(β/h̄)Ĥ |p〉〈p|y〉 dnp (1.1.1)

that no infinities should be present: the matrix element 〈z| exp(− β
h̄Ĥ)|y〉

is finite and unambiguous. Indeed, we could in principle insert a complete
set of momentum eigenstates and then expand the exponent and move all
p̂ operators to the right and all x̂ operators to the left, taking commutators
into account. The integral over dnp is a Gaussian and converges. To any
given order in β we would then find a finite and well-defined expression3.
Hence, also the path integrals should be finite.

The mechanism by which loops based on the path integrals in (1.1.8)
are finite, is different in phase space and configuration space path inte-
grals. In the phase space path integrals the momenta are independent
variables and the vertices contained in H(p, x) are without derivatives.
(The only derivatives are due to the term pẋ, whereas the term 1

2p
2 is free

from derivatives). The propagators and vertices are nonsingular functions
(containing at most step functions but no delta functions) which are in-
tegrated over the finite domain [−β, 0], hence no infinities arise. In the
configuration space path integrals, on the other hand, there are diver-
gences in individual loops, as we mentioned. The reason is that although
one still integrates over the finite domain [−β, 0], single derivatives of the
propagators are discontinuous and double derivatives are divergent (they
contain delta functions).

However, since the results of configuration space path integrals should
be the same as the results of phase space path integrals, these infinities
should not be there in the first place. The resolution of this paradox
is that configuration space path integrals contain a new kind of ghosts.
These ghosts are needed to exponentiate the factors (det gij)

1/2 which
are produced when one integrates out the momenta. Historically, the
cancellation of divergences at the one-loop level was first found by Lee

3 This program is executed in section 2.5 to order β. For reasons explained there, we
count the difference (z − y) as being of order β1/2.
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and Yang [25] who studied nonlinear deformations of harmonic oscillators,
and who wrote these determinants as new terms in the action of the form

1

2

∑

t

ln det gij(x(t)) =
1

2
δ(0)

∫

tr ln gij(x(t)) dt . (1.1.2)

To obtain the right hand side one may multiply the left hand side by
∆t
∆t and replace 1

∆t by δ(0) in the continuum limit. For higher loops, it
is inconvenient to work with δ(0); rather, we shall use the new ghosts
in precisely the same manner as one uses the Faddeev-Popov ghosts in
gauge theories: they occur in all possible manners in Feynman diagrams
and have their own Feynman rules. These ghosts for quantum mechanical
path integrals were first introduced by Bastianelli [23].

In configuration space, loops with ghost particles cancel thus diver-
gences of loops in corresponding graphs without ghost particles. Generi-
cally one has

+ = finite .

However, the fact that the infinities cancel does not mean that the re-
maining finite parts are unambiguous. One must regularize the divergent
graphs, and different regularization schemes can lead to different finite
parts, as is well-known from field theory. Since our actions are of the
form

∫ 0
−β L dt, we are dealing with one-dimensional quantum field theo-

ries in a finite “spacetime”, hence translational invariance is broken, and
propagators depend on t and s, not only on t − s. In coordinate space
the propagators contain singularities. For example, the propagator for
a free quantum particle q(t) corresponding to L = 1

2 q̇
2 with boundary

conditions q(−β) = q(0) = 0 is proportional to ∆(σ, τ) where σ = s/β
and τ = t/β with −β ≤ s, t ≤ 0

〈q(σ)q(τ)〉 ≈ ∆(σ, τ) = σ(τ + 1)θ(σ − τ) + τ(σ + 1)θ(τ − σ) . (1.1.3)

It is easy to check that ∂2
σ∆(σ, τ) = δ(σ−τ) and ∆(σ, τ) = 0 at σ = −1, 0

and τ = −1, 0 (use ∂σ∆(σ, τ) = τ + θ(σ − τ)).
It is clear that Wick contractions of q̇(σ) with q(τ) will contain a factor

of θ(σ− τ), and q̇(σ) with q̇(τ) a factor δ(σ− τ). Also the propagators for
the ghosts contain factors δ(σ − τ). Thus one needs a consistent, unam-
biguous and workable regularization scheme for products of the distribu-
tions δ(σ− τ) and θ(σ− τ). In mathematics the products of distributions
are ill-defined [26]. Thus it comes as no surprise that in physics different
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regularization schemes give different answers for such integrals. For exam-
ple, consider the following two familiar ways of evaluating the product of
distributions: smoothing of distributions, and using Fourier transforms.
Suppose one is required to evaluate

I =

∫ 0

−1

∫ 0

−1
δ(σ − τ)θ(σ − τ)θ(σ − τ) dσdτ . (1.1.4)

Smoothing of distribution can be achieved by approximating δ(σ−τ) and
θ(σ − τ) by some smooth functions and requiring that at the regulated
level one still has the relation δ(σ − τ) = ∂

∂σθ(σ − τ). One obtains then
1
3

∫ 0
−1

∫ 0
−1

∂
∂σ (θ(σ − τ))3dσdτ = 1

3 . On the other hand, if one would in-
terpret the delta function δ(σ − τ) to mean that one should evaluate the
function θ(σ − τ)2 at σ = τ one obtains 1

4 . One could also decide to use
the representations

δ(σ − τ) =

∫ ∞

−∞

dλ

2π
eiλ(σ−τ)

θ(σ − τ) =

∫ ∞

−∞

dλ

2πi

eiλ(σ−τ)

λ− iε with ε > 0 . (1.1.5)

Formally ∂σθ(σ − τ) = δ(σ − τ) − ε θ(σ − τ), and upon taking the limit
ε tending to zero one would again expect the value 1

3 for I. However, if
one first integrates over σ and τ , one finds

I =

(∫ ∞

−∞

dy

2π

(2− 2 cos y)

y2

)(∫ ∞

−∞

dλ

2πi

1

λ− iε

)2

=
1

4
(1.1.6)

where we applied contour integration to
∫∞
−∞

dλ
2πi

1
λ−iε = 1

2 . Clearly using
different methods to evaluate I leads to different answers. Without further
specifications integrals such as I are ambiguous and make no sense.

In the applications we are going to discuss, we sometimes choose a reg-
ularization scheme that reduces the path integral to a finite-dimensional
integral. For example for time slicing one chooses a finite set of interme-
diate points, and for mode regularization one begins with a finite number
of modes for each one-dimensional field. Another scheme we use is dimen-
sional regularization: here one regulates the various Feynman diagrams
by moving away from d = 1 dimensions, and performing partial integra-
tions which make the integral manifestly finite at d = 1. Afterwards one
returns to d = 1 and computes the values of these finite integrals. One
omits boundary terms in the extra dimensions; this can be justified by
noting that there are factors eik(t−s) in the propagators due to transla-
tion invariance in the extra D dimensions. They yield the Dirac delta
functions δD(k1 +k2 + · · ·+kn) upon integration over the extra space co-
ordinates. A derivative with respect to the extra space coordinate which
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yields, for example, a factor k1 can be replaced by −k2−k3−· · ·−kn due
to the presence of the delta function, and this replacement is equivalent
to a partial integration without boundary terms.

In time slicing we find the value I = 1
4 for (1.1.4): in fact, as we shall

see, the delta function is in this case a Kronecker delta which gives the
product of the θ functions at the point σ = τ . In mode regularization, one
finds I = 1

3 because now δ(σ−τ) is indeed ∂σθ(σ−τ) at the regulated level.
In dimensional regularization one must first decide which derivatives are
contracted with which derivatives (for example (µ∆ν) (µ∆) (∆ν)), but
one does not directly encounter I in the applications4.

As we have seen, different procedures (regularization schemes) lead to
finite well-defined results for a given diagram which are in general dif-
ferent in different regularization schemes, but there are also ambiguities
in the vertices: the finite one- and two-loop counterterms have not been
fixed. The physical requirement that the theory be based on a given quan-
tum Hamiltonian removes the ambiguities in the counterterms: for time
slicing Weyl ordering of Ĥ directly produces the counterterms, while for
the other schemes the requirement that the transition element satisfies
the Schrödinger equation with a given Hamiltonian Ĥ fixes the countert-
erms. Thus in all these schemes the regularization condition is that the
transition element be derived from the same particular Hamiltonian Ĥ.

The first scheme, time slicing (TS), has the advantage that one can
deduce it directly from the operatorial formalism of quantum mechanics.
This regularization can be considered to be equivalent to lattice regular-
ization of standard quantum field theories. It is the approach followed
by Dirac and Feynman. One must specify the Hamiltonian Ĥ with an
a priori fixed operator ordering; this ordering corresponds to the renor-
malization conditions in this approach. All further steps are finite and
unambiguous. This approach breaks general coordinate invariance in tar-
get space which is then recovered by the introduction of a specific finite
counterterm ∆VTS in the action of the path integral. This counterterm
also follows unambiguously from the initial Hamiltonian and is itself not
coordinate invariant either. However, if the initial Hamiltonian is general

4 For an example of an integral where dimensional regularization is applied, consider

J =

∫ 0

−1

dσ

∫ 0

−1

dτ (•∆•) (•∆) (∆•)

=

∫ 0

−1

dτ

∫ 0

−1

dσ [1 − δ(σ − τ)] [τ + θ(σ − τ)] [σ + θ(τ − σ)] . (1.1.7)

One finds J = − 1
6

for TS, see (2.6.35). Further J = − 1
12

for MR, see (3.3.9). In
dimensional regularization one rewrites the integrand as (µ∆ν) (µ∆) (∆ν) and one
finds J = − 1

24
, see (4.1.24).
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coordinate invariant (as an operator, see section 2.5) then also the final
result (the transition element) will be in general coordinate invariant.

The second scheme, mode regularization (MR), will be constructed di-
rectly without referring to the operatorial formalism. It can be thought
of as the equivalent of momentum cut-off in QFT, and it is close in spirit
to a Wilsonian approach5. It is also close to the intuitive notion of path
integrals, that are meant to give a global picture of the quantum phe-
nomena (while one may view the time discretization method closer to
the local picture of the differential Schrödinger equation, since one imag-
ines the particle propagating by small time steps). Mode regularization
gives in principle a non-perturbative definition of path integrals in that
one does not have to expand the exponential of the interaction part of the
action. However, also this regularization breaks general coordinate invari-
ance, and one needs a different finite noncovariant counterterm ∆VMR to
recover it.

Finally, the third regularization scheme, dimensional regularization (DR),
is the one based on the dimensional continuation of the ambiguous inte-
grals appearing in the loop expansion. It is inherently a perturbative
regularization, but it is the optimal one for perturbative computations in
the following sense. It does not break general coordinate invariance at in-
termediate stages and the counterterm ∆VDR relating it to other schemes
is Einstein and local Lorentz invariant.

All these different regularization schemes will be presented in separate
chapters. Since our derivation of the path integrals contains several steps
which each require a detailed discussion, we have decided to put all these
special discussions in separate sections after the main derivation. This
has the advantage that one can read each section for its own sake. The
structure of our discussions can be summarized by the flow chart in figure
1.

We shall first discuss time slicing, the lower part of the flow chart. This
discussion is first given for bosonic systems with xi(t), and afterwards for
systems with fermions. In the bosonic case, we first construct discretized
phase-space path integrals, then derive the continuous configuration-space
path integrals, and finally the continuous phase-space path integrals. We
show that after Weyl ordering of the Hamiltonian operator Ĥ(x̂, p̂) one
obtains a path integral with a midpoint rule (Berezin’s theorem). Then
we repeat the analysis for fermions.

5 In more complicated cases, such as path integrals in spaces with a topological vac-
uum (for example the kink background in Euclidean quantum mechanics), the mode
regularization scheme and the momentum regularization scheme with a sharp cut-off
are not equivalent (they give for example different answers for the quantum mass
of the kink). However, if one replaces the sharp energy cut-off by a smooth cut-off,
those schemes become equivalent [27].
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Figure 1: Flow chart.

Next we consider mode number regularization (the upper part of the
flow chart). Here we define the path integrals ab initio in configuration
space with the naive classical action and a counterterm ∆L which is at first
left unspecified. We then proceed to fix ∆L by imposing the requirement
that the Schrödinger equation be satisfied with a specific Hamiltonian Ĥ.
Having fixed ∆L, one can proceed to compute loops at any desired order.

Finally we present dimensional regularization along similar lines. Each
section can be read independently of the previous ones.

In all three cases we define the theory by the Hamiltonian Ĥ and then
construct the path integrals and Feynman rules which correspond to Ĥ.
The choice of Ĥ defines the physical theory. One may be prejudiced
about which Ĥ makes physical sense (for example many physicists re-

quire that Ĥ preserves general coordinate invariance) but in our work

one does not have to restrict oneself to these particular Ĥ’s. Any Ĥ, no
matter how unphysical, leads to a corresponding path integral and corre-
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sponding Feynman rules. The path integral and Feynman rules depend
on the regularization scheme chosen but the final result for the transitions
element and correlation functions are the same in each scheme.

In the time slicing (TS) approach we shall solve some of the follow-

ing basic problems: given a Hamiltonian operator Ĥ(p̂, x̂) with arbitrary
but a-priori fixed operator ordering, find a path integral expression for the
matrix element 〈z| exp(−β

h̄Ĥ)|y〉 6. (The bra 〈z| and ket |y〉 are eigen-

states of the position operator x̂i with eigenvalues zi and yi, respectively.
For fermions we shall use coherent states as bra and ket). One way to
obtain such a path integral representation is to insert complete sets of
x- and p-eigenstates (namely N sets of p-eigenstates and N − 1 sets of
x-eigenstates), in the manner first studied by Dirac [28] and Feynman
[29, 30], and leads to the following result

〈z|e−(β/h̄)Ĥ |y〉 ≈
∫ N−1∏

i=1

dxi
N∏

i=1

dpi e
−(1/h̄)

∫ 0

−β L dt
(1.1.8)

where L = −ipi(t)dx
i

dt +H(p, x) in our Euclidean phase space approach 7.
However, several questions arise if one studies (1.1.8):

(i) Which is the precise relation between Ĥ(p̂, x̂) and H(p, x)? Different

operator orderings of Ĥ are expected to lead to different functionsH(p, x).

Are there special orderings of Ĥ (for example, orderings such that Ĥ is
invariant under general coordinate transformations at the operator level)
for which H(p, x) is particularly simple?
(ii) What is the precise meaning of the measures Π[dxi][dpi] in phase space
and Π[dxi] in configuration space? Is there a normalization constant in
front of the path integral? Does the measure depend on the metric? The
Liouville measure Π[dxi][dpi] is not a canonical invariant measure because
there is one more dp than dx. Does this have implications?
(iii) Which are the boundary conditions one must impose on the paths
over which one sums? One expects that all paths must satisfy the Dirichlet
boundary conditions xi(−β) = yi and xi(0) = zi, but are there also
boundary conditions on pi(t)? Is it possible to consider classical paths
in phase space which satisfy boundary conditions both at t = −β and at
t = 0?

6 The results are for Euclidean path integrals. All our results hold equally well
in Minkowskian time, at least at the level of perturbation theory, with operators
exp(− i

h̄
Ĥt) and path integrals with exp i

h̄

∫
LMdt, where LM is the Lagrangian in

Minkowskian time, related to the Euclidean Lagrangian L by a Wick rotation.
7 In classical mechanics LM = pq̇ − H(p, q) but we prefer to work in Euclidean time

with actions which contain a positive definite term + 1
2
q̇2, and thus we define L =

−ipq̇ +H(p, q) in Euclidean time.
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(iv) How does one compute in practice such path integrals? Performing
the integrations over dxi and dpj for finite N and then taking the limit
N →∞ is in practice hardly possible. Is there a simpler scheme by which
one can compute the path integral loop-by-loop, and what are the precise
Feynman rules for such an approach? Does the measure contribute to the
Feynman rules?

(v) It is often advantageous to use a background formalism and to de-
compose bosonic fields x(t) into background fields xbg(t) and quantum
fluctuations q(t). One can then require that xbg(t) satisfies the boundary
conditions so that q(t) vanishes at the endpoints. However, inspired by
string theory, one can also compactify the interval [−β, 0] to a circle, and
then decompose x(t) into a center of mass coordinate xc and quantum
fluctuations about it. What is the relation between both approaches?

(vi) When one is dealing with N = 1 supersymmetric systems, one has
real (Majorana) particles ψa(t). How does one define the Hilbert space

in which Ĥ is supposed to act? Must one also impose an initial and a
final condition on ψa(t), even though the Dirac equation is only linear in

(time) derivatives? We shall introduce operators ψ̂a and ψ̂†
a and construct

coherent states by contracting them with Grassmann variables η̄a and ηa.
If ψ̂†

a is the hermitian conjugate of ψ̂a, then is η̄a the complex conjugate
of ηa?

(vii) In certain applications, for example the calculation of trace anoma-
lies, one must evaluate path integrals over fermions with antiperiodic
boundary conditions. In the work of AGW the chiral anomalies came
from the zero mode of the fermions. For antiperiodic boundary conditions
there are no zero modes. How then should one compute trace anomalies
form quantum mechanics?

These are some of the questions which come to mind if one contemplates
(1.1.8) for some time. One can find in the literature discussions of some of
these questions, but we have made an effort to give a consistent discussion
of all of them. Answers to these questions can be found in chapter 8. New
is an exact evaluation of all discretized expressions in the TS scheme as
well as the derivation of the MR and DR schemes in curved space.

1.2 Power counting and divergences

Let us now give some examples of divergent graphs. The precise form of
the vertices is given later, in (2.1.82), but for the discussion in this section
we only need the qualitative features of the action. The propagators we
are going to use later in this book are not of the simple form 1

k2 for a scalar,

rather, they have the form
∑∞
n=1

2
π2n2 sin(πnτ) sin(πnσ) due to boundary

conditions. (Even the propagator for time slicing can be cast into this
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form by Fourier transformation). However for ultraviolet divergences, the
sum of 1

n2 is equivalent to an integral over 1
k2 , and in this section we

analyze Feynman graphs with 1
k2 propagators. The physical justification

is that ultraviolet divergences should not feel the boundaries.
Consider first the self energy. At the one loop level the self energy

without external derivatives receives contributions from the following two
graphs

+ .

We used the vertices from 1
2(gij(x) − gij(z))(q̇

iq̇j + aiaj + bicj). Dots
indicate derivatives and dashed lines ghost particles. The two divergences
are proportional to δ2(σ − τ) and cancel, but there are ambiguities in
the finite part which must be fixed by suitable conditions. (In quantum
field theories with divergences we call these conditions renormalization
conditions). In momentum space both graphs are linearly divergent, but
the linear divergence

∫
dk cancels in the sums of the graphs, and the two

remaining logarithmic divergences
∫ dkk

k2 cancel by symmetric integration
leaving in general a finite but ambiguous result.

Another example is the self-energy with one external derivative

.

This graph is logarithmically divergent, but using symmetric integration
it leaves again a finite but ambiguous part.

All three regularization schemes give the same answer for all one-loop
graphs, so the one-loop counterterms are the same; in fact, there are no
one-loop counterterms at all in any of the schemes if one starts with an
Einstein invariant Hamiltonian 8.

At the two-loop level, there are similar cancellations and ambiguities.
Consider the following vacuum graphs (vacuum graphs will play an im-
portant role in the applications to anomalies)

+ + .

8 If one would use the Einstein-noninvariant Hamiltonian g1/4−αp̂i
√
ggij p̂jg

1/4+α, one
would obtain in the TS scheme a one-loop counterterm proportional to h̄pig

ij∂j ln g
in phase space, or h̄ẋi∂iln g in configuration space. See appendix B.
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Again the infinities in the upper loop of the first two graphs cancel, but
the finite part is ambiguous. The last graph is logarithmically divergent
by power counting, and also the two subdivergences are logarithmically
divergent by power counting, but actual calculation shows that it is fi-
nite but ambiguous (the leading singularities are of the form

∫ dkk
k2 and

cancel due to symmetric integration). The sum of the first two graphs
yield (1

4 ,
1
4 ,

1
8) in TS, MR and DR, respectively, while the last graph yields

(−1
6 ,− 1

12 ,− 1
24). This explicitly proves that the results for power-counting

logarithmically divergent graphs are ambiguous, even though the diver-
gences cancel.

It is possible to use standard power counting methods as used in ordi-
nary quantum field theory to determine all possibly ultraviolet divergent
graphs. Let us interpret our quantum mechanical nonlinear sigma model
as a particular QFT in one Euclidean time dimension. We consider a toy
model of the type

S =

∫

dt

(

1

2
g(φ)φ̇φ̇+A(φ)φ̇+ V (φ)

)

(1.2.1)

where the functions g(φ), A(φ) and V (φ) describe the various couplings.
For simplicity we omit the indices i and j.

The choice g(φ) = 1, A(φ) = 0, V (φ) = 1
2m

2φ2 reproduces a free
massive theory, namely an harmonic oscillator of “mass” (frequency) m.

From this one deduces that the field φ has mass dimension M− 1
2 . Next,

let us consider general interactions and expand them in Taylor series

V (φ) =
∞∑

n=0

Vnφ
n, A(φ) =

∞∑

n=0

An+1φ
n, g(φ) =

∞∑

n=0

gn+2φ
n . (1.2.2)

These expansions identify the coupling constants Vn, An, gn, whose sub-
script indicates how many fields a given vertex contains. We easily deduce
the following mass dimensions for such couplings

[Vn] = M
n
2
+1 ; [An] = M

n
2 ; [gn] = M

n
2
−1 . (1.2.3)

The interactions correspond to the terms with n ≥ 3, so all coupling
constants have positive mass dimensions. This implies that the theory
is super-renormalizable. This means that from a certain loop level on,
there are no more superficial divergences by power counting. We can
work this out in more detail. Given a Feynman diagram, let us indicate
by L the number of loops, I the number of internal lines, Vn, An and gn
the numbers of the corresponding vertices present in the diagram. One
can associate to the diagram a superficial degree of divergence D by

D = L− 2I +
∑

n

(An + 2gn) (1.2.4)
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reflecting the fact that each loop gives a momentum integration
∫
dk, the

propagators give factors of k−2, and the An and gn vertices bring in at
worst one and two momenta, respectively. Also, the number of loops is
given by

L = I −
∑

n

(Vn +An + gn) + 1 . (1.2.5)

Combining these two equations we find that the degree of divergence D
is given by

D = 2− L−
∑

n

(2Vn +An) . (1.2.6)

Let us analyze the consequences of this formula by considering first the
case with nontrivial V (φ) couplings only (linear sigma models). Then
(1.2.6) shows that no divergences can ever arise. As a consequence, no
ambiguities are expected either in the path integral quantization of the
model. This is the class of models with H = T (p) + V (x) which is
extensively discussed in many textbooks [30, 11, 12, 13, 14, 15, 31, 32, 33,
34, 35].

Next, let us consider a nontrivial A(φ). From (1.2.6) we see that there
is now a possible logarithmic superficial divergence in the one loop graphs
with a single vertex An (n can be arbitrary, since the extra fields that are
not needed to construct the loop can be taken as external)

.

The logarithmic singularity actually cancels by symmetric integration,
but the leftover finite part must be fixed unambiguously by specifying a
renormalization condition. If A corresponds to an electromagnetic field,
gauge invariance can be used as renormalization condition which fixes
completely the ambiguity. In the continuum theory, the action

∫
Aj ẋ

jdt
is invariant under the gauge transformation δAj = ∂jλ(x). Feynman
[29] found that with TS one must take Aj at the midpoints 1

2(xk+1 +
xk) in order to obtain the Schrödinger equation with gauge invariant

Hamiltonian H = 1
2m(p̂ − e

c Â)2 + V̂ . 9 For further discussion, see for

9 To avoid confusion we mention already at this point that in our treatment of path in-
tegrals there are no ambiguities. If one takes a Hamiltonian which is gauge invariant
(commutes with the generator of gauge transformations at the operator level), then
the corresponding path integral uses the midpoint rule, but using another Hamilto-
nian, the midpoint rule does not hold.
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example ref. [11], chapter 4 and 5. If the regularization scheme chosen to
define the above graphs does not respect gauge invariance, one must add
a local finite counterterms by hand to restore gauge invariance.

Finally, consider the most general case with g(φ). There can be linear
and logarithmic divergences in one-loop graphs as in

+

and logarithmic divergences at two loops

+ .

Notice that (1.2.6) is independent of gn. This implies that at the one-
and two-loop level one can construct an infinity of divergent graphs form
a given divergent graph by inserting gn vertices. The following diagrams
illustrate this fact

.

As we shall see, the nontrivial path integral measure cancels the leading
divergences, but we repeat that finite ambiguities remain which must
be fixed by renormalization conditions. Of course, general coordinate
invariance must also be imposed, but this symmetry requirement is not
enough to fix all the renormalization conditions. One can understand
this from the following observation. In the canonical approach different
ordering of the Hamiltonian gijp

ipj lead to ambiguities proportional to
(∂igjk)

2 and ∂i∂jgkl and from them one can form the scalar curvature R.
So one can always add to the Hamiltonian a term proportional to R and
still maintain general coordinate invariance in target space. In fact, we
should distinguish between an explicit R term in the Hamiltonian Ĥ, and
an explicit R term in the action which appears in the path integrals. In
all three schemes we shall discuss, one always produces a term 1

8R in the

action as one proceed from Ĥ to the path integral. So for a free scalar
particle with Ĥ without an R term the path integral contains a term 1

8R

in the potential. However, in susy theories Ĥ is obtained by evaluating

17



the susy anticommutator {Q̂, Q̂}, one finds that Ĥ contains a term − 1
8R,

and then in the corresponding path integral one does not obtain an R
term.

1.3 A brief history of path integrals

Path integrals yield a third approach to quantum physics, in addition
to Heisenberg’s operator approach and Schrödinger’s wave function ap-
proach. They are due to Feynman [29], who developed in the 1940’s an
approach Dirac had briefly considered in 1932 [28]. In this section we
discuss the motivations which led Dirac and Feynman to associate path
integrals (with i

h̄ times the action in the exponent) with quantum me-
chanics. In mathematics Wiener had already studied path integrals in the
1920’s but these path integrals contained (−1) times the free action for
a point particle in the exponent. Wiener’s path integrals were Euclidean
path integrals which are mathematically well-defined but Feynman’s path
integrals do not have a similarly solid mathematical foundation. Never-
theless, path integrals have been successfully used in almost all branches
of physics: particle physics, atomic and nuclear physics, optics, and sta-
tistical mechanics [11].

In many applications one uses path integrals for perturbation theory, in
particular for semiclassical approximations, and in these cases there are no
serious mathematical problems. In other applications one uses Euclidean
path integrals, and in these cases they coincide with Wiener’s path inte-
grals. However, for the nonperturbative evaluations of path integrals in
Minkowski space a completely rigorous mathematical foundation is lack-
ing. The problems increase in dimensions higher than four. Feynman was
well aware of this problem, but the physical ideas which stem from path
integrals are so convincing that he (and other researchers) considered this
not worrisome.

Our brief history begins with Dirac who wrote in 1932 an article in a
USSR physics journal [28] in which he tried to find a description of quan-
tum mechanics which was based on the Lagrangian instead of the Hamil-
tonian approach. Dirac was making with Heisenberg a trip around the
world, and took the trans-Siberian railway to arrive in Moscow. In those
days all work in quantum mechanics (including the work on quantum
field theory) started with the Schrödinger equation or operator methods
in both of which the Hamiltonian played a central role. For quantum me-
chanics this was fine, but for relativistic field theories an approach based
on the Hamiltonian had the drawback that manifest Lorentz invariance
was lost (although for QED it had been shown that physical results were
nevertheless relativistically invariant). Dirac considered the transition
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element

〈x2, t2|x1, t1〉 = K(x2, t2|x1, t1) = 〈x2|e−
i
h̄
Ĥ(t2−t1)|x1〉 (1.3.1)

(for time independent H), and asked whether one could find an expres-
sion for this matrix element in which the action was used instead of the
Hamiltonian. (The notation 〈x2, t2|x1, t1〉 is due to Dirac who called this
element a transformation function. Feynman introduced the notation
K(x2, t2|x1, t1) because he used it as the kernel in an integral equation
which solved the Schrödinger equation.) Dirac knew that in classical me-
chanics the time evolution of a system could be written as a canonical
transformation, with Hamilton’s principal function S(x2, t2|x1, t1) as gen-
erating functional. This function S(x2, t2|x1, t1) is the classical action
evaluated along the classical path that begins at the point x1 at time t1
and ends at the point x2 at time t2. In his 1932 article Dirac wrote that
〈x2, t2|x1, t1〉 corresponds to exp i

h̄S(x2, t2|x1, t1). He used the words “cor-
responds to” to express that at the quantum level there were presumably
corrections so that the exact result for 〈x2, t2|x1, t1〉 was different from
exp i

h̄S(x2, t2|x1, t1). Although Dirac wrote these ideas down in 1932,
they were largely ignored until Feynman started his studies on the role of
the action in quantum mechanics.

End 1930’s Feynman started studying how to formulate an approach to
quantum mechanics based on the action. The reason he tackled this prob-
lem was that with Wheeler he had developed a theory of quantum elec-
trodynamics from which the electromagnetic field had been eliminated.
In this way they hoped to avoid the problems of the self-acceleration and
infinite self-energy of an electron which are due to the interactions of
an electron with the electromagnetic field and which Lienard, Wiechert,
Abraham and Lorentz had in vain tried to solve. The resulting “Wheeler-
Feynman theory” arrived at a description of the interactions between two
electrons in which no reference was made to any field. It is a so-called
action-at-a-distance theory, in which it took a finite nonzero time to travel
the distance from one electron to the others. These theories were nonlo-
cal in space and time. (In modern terminology one might say that the
fields Aµ had been integrated out from the path integral by completing
squares). Fokker and Tetrode had found a classical action for such a
system, given by

S = −
∑

i

m(i)

∫ (dxµ(i)
ds(i)

dxν(i)
ds(i)

ηµν
) 1

2ds(i) (1.3.2)

− 1

2

∑

i6=j
e(i)e(j)

∫ ∫

δ[(xµ(i) − x
µ
(j))

2]
dxρ(i)
ds(i)

dxσ(i)
ds(i)

ηρσds(i)ds(j) .
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Here the sum over (i) denotes a sum over different electrons. So, two
electrons only interact when the relativistic four-distance vanishes, and
by taking i 6= j in the second sum, the problem of infinite selfenergy was
eliminated. Wheeler and Feynman set out to quantize this system, but
Feynman noticed that a Hamiltonian treatment was hopelessly compli-
cated10. Thus Feynman was looking for an approach to quantum me-
chanics in which he could avoid the Hamiltonian. The natural object to
use was the action.

At this moment in time, an interesting discussion helped him further.
A physicist from Europe, Herbert Jehle, who was visiting Princeton, men-
tioned to Feynman (spring 1941) that Dirac had already in 1932 studied
the problem how to use the action in quantum mechanics. Together they
looked up Dirac’s paper, and of course Feynman was puzzled by the am-
biguous phrase “corresponds to” in it. He asked Jehle whether Dirac
meant that they were equal or not. Jehle did not know, and Feynman de-
cided to take a very simple example and to check. He considered the case
t2 − t1 = ε very small, and wrote the time evolution of the Schrödinger
wave function ψ(x, t) as follows

ψ(x, t+ ε) =
1

N

∫

exp
( i

h̄
εL(x, t+ ε; y, t)

)

ψ(y, t)dy . (1.3.3)

With L = 1
2mẋ

2 − V (x) one obtains, as we now know very well, the
Schrödinger equation, provided the constant N is given by

N =

(
2πih̄ε

m

) 1
2

(1.3.4)

(nowadays we call dy
N the Feynman measure). Thus, as Dirac correctly

guessed, 〈x2, t2|x1, t1〉 was analogous to exp i
h̄εL for small ε = t2 − t1;

however they were not equal but rather proportional.
There is an amusing continuation of this story [36]. In the fall of 1946

Dirac was giving a lecture at Princeton, and Feynman was asked to in-
troduce Dirac and comment on his lecture afterwards. Feynman decided
to simplify Dirac’s rather technical lecture for the benefit of the audi-
ence, but senior physicists such as Bohr and Weisskopf did not appreciate
much this watering down of the work of the great Dirac by the young and
relatively unknown Feynman. Afterwards people were discussing Dirac’s

10 By expanding expressions such as 1
∂2

x+∂2

t
−m2

in a power series in ∂t, and using Os-

trogradsky’s approach to a canonical formulation of systems with higher order ∂t
derivatives, one can give a Hamiltonian treatment, but one must introduce infinitely
many auxiliary fields B,C, ... of the form ∂tA = B, ∂tB = C, .... All these auxiliary
fields are, of course, equivalent to the oscillators of the original electromagnetic field.
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lecture and Feynman who (in his own words) felt a bit let down hap-
pened to look out of the window and saw Dirac laying on his back on a
lawn and looking at the sky. So Feynman went outside and sitting down
near Dirac asked him whether he could ask him a question concerning
his 1932 paper. Dirac consented. Feynman said “Did you know that the
two functions do not just ‘correspond to’ each other, but are actually pro-
portional?” Dirac said “Oh, that’s interesting”. And that was the whole
reaction that Feynman got from Dirac.

Feynman then asked himself how to treat the case that t2 − t1 is not
small. This Dirac had already discussed in his paper: by inserting com-
plete set of x-eigenstates one obtains

〈xf , tf |xi, ti〉 =

∫

〈xf , tf |xN−1, tN−1〉〈xN−1, tN−1|xN−2, tN−2〉 . . .
. . . 〈x1, t1|xi, ti〉dxN−1 . . . dx1 . (1.3.5)

Taking tj − tj−1 small and using that for small tj − tj−1 one can use
N−1 exp i

h̄(tj − tj−1)L for the transformation function, Feynman arrived
at

〈xf , tf |xi, ti〉 =

∫

exp
[ i

h̄

N−1∑

j=0

(tj+1 − tj)L(xj+1, tj+1;xj , tj)
]dxN−1...dx1

NN
.

(1.3.6)

At this point Feynman recognized that one obtains the action in the
exponent and that by first summing over j and then integrating over x
one is summing over paths. Hence 〈xf , tf |xi, ti〉 is equal to a sum over all
paths of exp i

h̄S with each path beginning at xi, ti and ending at xf , tf .
Of course one of these paths is the classical path, but by summing over

all other paths (arbitrary paths not satisfying the classical equation of
motion) quantum mechanical corrections are introduced. The tremendous
result was that all quantum corrections were included if one summed
the action over all paths. Dirac had entertained the possibility that in
addition to summing over paths one would have to replace the action S
by a generalization which contained terms with higher powers in h̄.

Reviewing this development more than half a century later, when path
integrals have largely superseded operators methods and the Schrödinger
equation for relativistic field theories, one notices how close Dirac came to
the solution of using the action in quantum mechanics, and how different
Feynman’s approach was to solving the problem. Dirac anticipated that
the action had to play a role, and by inserting complete set of states he did
obtain (1.3.6). However, he did not pursue the observation that the sum of
terms in (1.3.6) is the action because he anticipated for large t2−t1 a more
complicated expression. Feynman, on the other hand, started by working
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out a few simple examples, curious to see whether Dirac was correct that
the complete result would need a more complicated expression than the
action, and found in this way that the truth lies in between: Dirac’s
transformation functions (Feynman’s transition kernel K) is equal to the
exponent of the action up to a constant. This constant diverges as ε tends
to zero, but for N →∞ the result for K (and other quantities) is finite.

Feynman initially believed that in his path integral approach to quan-
tum mechanics ordering ambiguities of the p and x operators of the op-
erator approach would be absent (as he wrote in his PhD thesis of may
1942). However, later in his fundamental 1948 paper in Review of Mod-
ern Physics [29], he realized that the same ambiguities would be present.
For our work the existence of these ambiguities is very important and we
shall discuss in great detail how to remove them. Schrödinger [37] had
already noticed that ordering ambiguities occur if one tries to promote a
classical function F (p, x) to an operator F̂ (p̂, x̂). Furthermore, one can in
principle add further terms linear and of higher order in h̄ to such oper-
ators F̂ . These are further ambiguities which have to be fixed before one
can make definite predictions.

Feynman evaluated the kernels K(xj+1, tj+1|xj , tj) for small tj+1 − tj
by inserting complete sets of momentum eigenstates |pj〉 in addition to
position eigenstates |xj〉. In this way he constructed phase space path
integrals. We shall follow the same approach for the nonlinear sigma
models we consider. It has been claimed in [11] that “... phase space
path integrals have more troubles than merely missing details. On this
basis they should have been left out [from the book] ....”. We have come
to a different conclusion: they are well-defined and can be used to de-
rive the usual configuration space path integrals from the operatorial
approach by adding integrations over intermediate momenta. A continu-
ous source of confusion is the notation dx(t) dp(t) for these phase space
path integrals. Many authors, who attribute more meaning to the symbol
than dx1 . . . dxN−1dp1 . . . dpN , assume that this measure is invariant un-
der canonical transformations, and apply the powerful methods developed
in classical mechanics for the Liouville measure. However, the measure
dx(t) dp(t) in path integrals is not invariant under canonical transforma-
tions of the x’s and the p’s because there is one more p integration then
x integrations in

∏
dxj

∏
dpj .

Another source of confusion for phase space path integrals arise if one
tries to interpret them as integrals over paths around classical solutions
in phase space. Consider Feynman’s expression

K(xj , tj |xj−1, tj−1) = 〈xj |e−
i
h̄
Ĥ(tj−tj−1)|xj−1〉

=

∫
dpj
2π
〈xj |e−

i
h̄
Ĥ(tj−tj−1)|pj〉〈pj |xj−1〉 . (1.3.7)
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For 〈xj |e−
i
h̄
Ĥ(tj−tj−1)|xj−1〉 one can substitute exp i

h̄S(xj , tj |xj−1, tj−1)
where in S one uses the classical path from xj , tj to xj−1, tj−1. In a sim-

ilar way some authors have tried to give meaning to 〈xj |e−
i
h̄
Ĥ(tj−tj−1)|pj〉

by considering a classical path in phase space. For example in [11] the
author considers two possibilities: (i) a classical path from xj−1, tj−1 to
xj , tj during which p is a constant and equal to pj , or (ii) a classical path
from xj−1 at tj−1 to p = pj+ 1

2
at the midpoint tj− 1

2
≡ tj−1 + 1

2(tj − tj−1),

and then another classical path in phase space from p = pj+ 1
2

at the mid-

point t = tj+ 1
2

to xj+1 at tj+1. The first interpretation is inconsistent

because once xj−1 and xj are specified, one cannot specify also p for solu-
tions of the Hamiltonian equations of motion. The second interpretation
is not inconsistent, but impractical. On the interval tj− 1

2
≤ t ≤ tj−1 one

may use pj−1(xj− 1
2
− xj−1) − ( 1

2mp
2
j−1 − V (xj)) in the exponent for the

transition element where the symbol xj− 1
2

denotes then the value of x(t)

for this classical trajectory at t = tj− 1
2
. On the next interval tj ≤ t ≤ tj− 1

2

one may use pj− 1
2
(x′j − xj− 1

2
)− ( 1

2mp
2
j− 1

2

− V (xj−1)) where now x′j is the

value of x(t) for this classical solution with x = xj− 1
2

at t = tj− 1
2

and

p = pj− 1
2

at t = tj− 1
2
. Thus one must solve equations of motion, and

put the result into the path integral. We shall not try to interpret the
transition elements in phase space in terms of classical paths, but only do
what we are supposed to do: integrate over the pj and xj .

Yet another source of confusion has to do with path integrals over
fermions for which one needs Grassmann numbers and Berezin integration
[38]

∫

dθ = 0 ,

∫

dθθ = 1 . (1.3.8)

Some authors claim that the notion of anticommuting classical fields
makes no sense, and that only quantized fermionic fields are consistent.
However, the notion of Grassmann variables is completely consistent if one
uses it only at the intermediate stages to construct for example coherent
states: all one does is making use of mathematical identities. We begin
with fermionic harmonic oscillator operators ψ̂ and ψ̂† and construct co-
herent bra and kets states |η〉 and 〈η̄| in Hilbert space. In applications one
takes traces over these coherent states using Berezin integration rules for
the integrations over η and η̄. One ends up with physical results which are
independent from Grassmann variables, and since all intermediary steps
are mathematical identities, defined by Berezin in [38, 9], there are at no
point conceptual problems in the treatment of path integrals for fermions.
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2
Time slicing

In this chapter we discuss quantum mechanical path integrals defined by
time slicing. Our starting point is an arbitrary but fixed Hamiltonian
operator Ĥ. We obtain the Feynman rules for nonlinear sigma models,
first for bosonic point particles xi(t) with curved indices i = 1, .., n and
then for fermionic point particles ψa(t) with flat indices a = 1, .., n. In
the bosonic case we first discuss in detail the configuration space path
integrals, and then return to the corresponding phase space integrals. In
the fermionic case we use coherent states to define bras and kets, and we
discuss the proper treatment of Majorana fermions, both in the operato-
rial and in the path integral approach. Finally we compute directly the

transition element 〈z|e−(β/h̄)Ĥ |y〉 to order β (two-loop order) using oper-
ator methods, and compare with the results of a similar calculation based
on the perturbative evaluation of the path integral with time slicing reg-
ularization. Complete agreement is found. These results were obtained
in [39, 40, 41]. Additional discussions are found in [42, 43, 44, 45, 46, 47].

The quantum action, i.e. the action to be used in the path integral,
is obtained from the quantum Hamiltonian by mathematical identities,
and the quantum Hamiltonian is fixed by the quantum field theory whose
anomalies we study in part II of the book. Hence, there is no ambiguity
in the quantum action. It contains local finite counterterms of order
h̄2. They were first obtained by Gervais and Jevicki [48]. Even earlier
Schwinger [49] and later Christ and T.D. Lee [50] found by the same
method that four-dimensional Yang–Mills theory in the Coulomb gauge
has such counterterms.
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2.1 Configuration space path integrals for bosons from time
slicing

Consider a quantum Hamiltonian Ĥ(x̂, p̂) with a definite ordering of the
operators p̂i and x̂j . We will mostly focus on the operator

Ĥ(x̂, p̂) =
1

2
g−1/4p̂ig

ijg1/2p̂jg
−1/4 (2.1.1)

where g = det gij(x) and we omitted hats on x̂ in the metric for nota-
tional simplicity. This Hamiltonian is Einstein invariant (it commutes
with the generator of general coordinate transformations, see section 2.5,
in particular (2.5.9)) but our methods apply also to other Hamiltonians,

for example Ĥ = 1
2 p̂ig

ij p̂j or the nonhermitian operator 1
2g
ij p̂ip̂j . The

reason we focus on (2.1.1) is that it leads to the regulators which we
use in the second part of this book to compute anomalies by quantum
mechanical methods.

The essential object from which all other quantities can be calculated,
is the transition element (also sometime scalled transition amplitude)

T (z, y;β) = 〈z|e−(β/h̄)Ĥ |y〉 (2.1.2)

where |y〉 and 〈z| are eigenstates of the position operator x̂i

x̂i|y〉 = yi|y〉, 〈z|x̂i = 〈z|zi (2.1.3)

with yi and zi real numbers. We normalize the x and p eigenstates as
follows

∫

|x〉g(x)1/2〈x| dnx = I → 〈x|y〉 = g(x)−1/2δ(n)(x− y) (2.1.4)

where I is the identity operator and
∫

|p〉〈p| dnp = I → 〈p|p′〉 = δ(n)(p− p′) . (2.1.5)

The delta function δ(n)(x− y) is defined by
∫
δ(n)(x− y)f(y)dny = f(x).

Since x̂i and p̂i are diagonal and real on these complete sets of orthonor-
mal states, they are both hermitian. The Hamiltonian in (2.1.1) is then
also hermitian, but we could in principle also allow nonhermitian Hamil-
tonians. However, we stress that x̂i and p̂i are always hermitian.

We have chosen the normalization in (2.1.4) in order that T (z, y;β) will
be a bi-scalar (a scalar under general coordinate transformations of z and
y separately). There is no need to choose the normalization in (2.1.4) and
one could also use for example

∫ |x〉〈x| dnx = I. However, (2.1.4) leads
to simpler formulas. For example the inner product of two states 〈ϕ|ψ〉
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takes the familiar form
∫ √

g(x)ϕ∗(x)ψ(x) dnx. As a consequence wave
functions ψ(x) = 〈x|ψ〉 are scalar functions under a change of coordinates.

The inner product between x- and p-eigenstates yields plane waves with
an extra factor g−1/4

〈x|p〉 = e(i/h̄)pjx
j

(2πh̄)n/2g1/4(x)
. (2.1.6)

As a check note that
∫ 〈p|x〉g(x)1/2〈x|p′〉 dnx = δn(p − p′), in agreement

with the completeness relations.
We now insert N complete sets of momentum eigenstates and N − 1

complete sets of position eigenstates into the transition element. Defining
β = Nε we obtain

T (z, y;β) = 〈z|
(

e−(ε/h̄)Ĥ
)N
|y〉

= 〈z|e−(ε/h̄)Ĥ |pN 〉
∫

dnpN 〈pN |xN−1〉
∫

g(xN−1)
1/2 dnxN−1

〈xN−1|e−(ε/h̄)Ĥ |pN−1〉
∫

dnpN−1 〈pN−1|xN−2〉
∫

g(xN−2)
1/2 dnxN−2

· · · · · ·
〈x1|e−(ε/h̄)Ĥ |p1〉

∫

dnp1 〈p1|y〉 . (2.1.7)

We have written the integration symbols between the bras and kets to
which they belong in order to simplify the notation. It is natural to
denote z by xN and y by x0. The order in which xi and pj appear can be
indicated as follows

¾ r

z = xN

pN

xN−1

pN−1

xN−2 . . . . x1

p1

r

y = x0

Although the p’s occur between x’s, we do not imply that a kind of mid-
point rule holds. Only the ordering of the p’s and x’s matters.

We now rewrite the operators exp(− ε
h̄Ĥ(x̂, p̂)) in Weyl-ordered form.

This means that after the rewriting this operator is symmetric in all
x̂ and p̂ it contains. Weyl ordering is discussed in appendix B. As an
example of such a rewriting consider the operator x̂p̂. We rewrite it as
1
2(x̂p̂+ p̂x̂) + 1

2(x̂p̂− p̂x̂) = 1
2(x̂p̂+ p̂x̂) + 1

2 ih̄, and we denote the result by

(x̂p̂)W . So in this example x̂p̂ = (x̂p̂)W + 1
2 ih̄. In more general cases, one

has the formula O(x̂, p̂) = O(x̂, p̂)W + more, where “more” may contain
further operators which depends on x̂ and p̂, and which we again rewrite
in a symmetrical way.
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The reason we rewrite operators in Weyl-ordered form is that Weyl
ordering leads to the midpoint rule in the following way

∫

〈xk|
(

e−(ε/h̄)Ĥ
)

W
|pk〉〈pk|xk−1〉 dnpk

=

∫

〈xk|pk〉
(

e−(ε/h̄)H( 1
2
(xk+xk−1), pk)

)

W
〈pk|xk−1〉 dnpk . (2.1.8)

This formula is also proven in appendix B. The meaning of this equation is
that one may extract the Weyl ordered operator from the matrix element
and replace it by a function by replacing each p̂i by pk,i and each x̂i by
1
2(xik + xik−1). A more precise notation for the function in the second line
would have been

(

e−(ε/h̄)Ĥ
)

W

(

x̂→ 1

2
(xk + xk−1), p̂→ pk

)

. (2.1.9)

We should first Weyl order the whole operator exp(− ε
h̄Ĥ), and not only

Ĥ, and then replace x̂i by 1
2(xik + xik−1) and p̂i by pk,i. For simplicity we

use the notation in (2.1.8).

In general, we cannot write down a closed expression for (exp(− ε
h̄Ĥ))W .

However, for path integrals one may replace (exp(− ε
h̄Ĥ))W by exp(− ε

h̄ĤW ),
because the difference cancels in the path integral, as we discuss below
(2.1.15). So it is sufficient to Weyl order the Hamiltonian itself. The
result for the particular Hamiltonian in (2.1.1) reads as follows

Ĥ(x̂, p̂) =

(
1

2
gij p̂ip̂j

)

W
+
h̄2

8
(R+ gijΓkilΓ

l
jk) . (2.1.10)

The definition of the scalar curvature R is given in appendix A and the

Weyl ordered operator
(

1
2g
ij p̂ip̂j

)

W
is according to appendix B given by

(
1

2
gij p̂ip̂j

)

W
=

1

8
gij p̂ip̂j +

1

4
p̂ig

ij p̂j +
1

8
p̂ip̂jg

ij . (2.1.11)

Note that (2.1.10) is an identity: the same operator Ĥ of (2.1.1) appears
on both sides, but subsequently the right hand side is converted into a
function according to (2.1.8).

In the discretized path integral we then encounter the functions

exp

{

− ε
h̄

[

1

2
gij(x̄)pk,ipk,j +

h̄2

8

(

R(x̄) + gij(x̄)Γmil (x̄)Γ
l
jm(x̄)

)
]}

(2.1.12)
where x̄ = 1

2(xk + xk−1). Note that the term with the scalar curvature

R and its coefficient 1
8 as well as the ΓΓ term are a mathematical con-

sequence of rewriting the particular Hamiltonian in (2.1.1). If we would

27



have started from another Hamiltonian (in particular another operator or-
dering) we would have found different coefficients in (2.1.12). We choose
this Hamiltonian with this precise ordering since in the applications to
anomalies we wish to preserve general coordinate invariance.

Up to this point we have presented the standard approach to path in-
tegrals. In the rest of this chapter we evaluate the transition element
without making any of the usual approximations. We must do this be-
cause for nonlinear sigma models we need propagators of the quantum
fields q(t) with double time derivatives, 〈q̇(t1)q̇(t2)〉. As a result, in the
evaluation of the transition element in terms of Feynman graphs we shall
encounter expressions which contain products of distributions, for ex-
ample δ(t1 − t2)θ(t1 − t2)θ(t2 − t1), and equal-time contractions. Such
expressions are ambiguous, one can get different answers depending on
how one regulates the distributions. We could at this point introduce
further physical requirements which fix the ambiguities. This procedure
has been used before for linear sigma models, namely if one tries to define
the path integral for L = 1

2(ẋi)2 + ẋiAi(x) + V (x). It makes a differ-
ence whether one discretizes to (xk−xk−1)Ai(xk) or (xk−xk−1)Ai(xk−1)
[30, 11]. One way to fix this ambiguity is to require that the transition
element be gauge-invariant, and one discovers that this is achieved by
using the midpoint rule (xk − xk−1)Ai(

1
2(xk + xk−1)). One could also

have started with a Hamiltonian operator Ĥ whose operator ordering
of ẋiAi(x) is gauge-invariant, namely commutes with the operator Ĝ of

gauge transformations. Using this particular Ĥ, the time slicing method
– with complete p and x eigenstates – produces automatically the mid-
point rule, and thus gauge invariance. Similarly, by taking the particular
Ĥ in (2.1.1) which is invariant under general coordinate transformations,
all ambiguities are fixed, and the time slicing method – with complete
p and x eigenstates – leads to well-defined and unambiguous expressions
for the products of distributions. Taking at the very end the limit ε→ 0,
N → ∞, Nε = β, one derives the rules how to evaluate integrals over
products of distributions in the continuum theory.

Since the following discussions in this chapter must be precise and there-
fore technical in order not to miss subtleties in the product of distribu-
tions, it may help the reader if we first give a short non-technical summary
of the results to be obtained. Such a summary follows in the next three
paragraphs.

We begin by integrating over the N momenta p1, .., pN . This leads to a

product of N determinants (det gij(xk+1/2))
1
2 were xk+1/2 = 1

2(xk+xk+1).
We exponentiate these determinants using ghost fields ak+1/2, bk+1/2 and
ck+1/2. This yields discretized configuration path integrals for the transi-
tion element. We decompose xk into background fields xbg,k and quantum
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fields qk, and decompose the discretized action into a part S(0) quadratic
in qk, and an interaction part S(int). We require that the xbg,k satisfy the

field equation of S(0) and the boundary conditions that xbg be equal to
z or y at the boundaries. Because the xbg,k satisfy the field equation of

S(0) and not of the full action S, there will be terms in S(int) linear in
q. We introduce external sources F and G which couple to 1

2(xk + xk−1)

and (xk − xk−1), and extract S(int) from the path integral, as usual in
quantum field theory. Then we want to integrate over q but the action
S(0) is not diagonal in q. In order to diagonalize S(0) we make an or-
thogonal change of integration variables with unit Jacobian. The actual
integration over q can then be performed in closed form, but it requires a
few relatively unknown identities for products involving sines and cosines.
The final result is given in (2.1.48 – 2.1.50). By differentiation with re-
spect to the sources F and G and similar external sources A, B, C for the
ghosts, we find the discretized propagators in closed form. The results
are given in (2.1.53) for 〈q̇q̇〉, in (2.1.69) for 〈qq̇〉, in (2.1.75) for 〈qq〉, and
in (2.1.78) and (2.1.79) for the ghosts. These result can also be written
in the continuum limit, see (2.1.81), but if one computes diagrams in
the continuum limit, one should use the rules which we derive from the
discretized approach how to treat products of distributions.

For fermionic models with operators ψ̂a and ψ̂†
a we begin by introduc-

ing bras 〈η̄| and kets |η〉 in terms of coherent states which depend on
Grassmann variables η̄a and ηa. We treat η and η̄ as independent vari-
ables. This is the approach to be used for complex (Dirac) fermions, so
for N = 2 models. We could equally well have defined η̄ to be the complex
conjugate of η because the only property we need is the integration over
the Grassmann variables, and this integration is the same whether η̄ is
an independent variable or the complex conjugate of η. The transition

element we wish to compute is 〈η̄|e−β
h̄
Ĥ |η〉 and we insert again complete

sets |χk〉〈χ̄k| of coherent states to arrive at a discretized path integral.

After defining Weyl ordering for anticommuting operators ψ̂a and ψ̂†
a, we

obtain again a midpoint rule for the variables χak. We decompose again
the variables χak and χ̄ka into background parts ξak and ξ̄ka and quantum

parts ψak and ψ̄ka. We decompose S into a part S(0) that is quadratic in

ψak and ψ̄ka, and the rest S(int). We require that ξ and ξ̄ satisfy the field

equation of S(0), and the boundary conditions that ξ = η at the right and
ξ̄ = η̄ at the left. We treat also ξ and ξ̄, ψ and ψ̄, as independent Grass-
mann variables; again it makes no difference whether they are related by
complex conjugation or not. We couple ψak and ψ̄ka to external sources
K̄ka and Ka

k , complete squares and integrate over ψak and ψ̄ka. For the
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propagators of ψ and ψ̄ we find the following exact discretized result

〈ψakψ̄lb〉 =

{
δba if k ≥ l
0 if k < l

. (2.1.13)

(Time ordering is always understood, so the case k < l refers to −〈ψ̄lbψak〉).
Due to the midpoint rule, we rather need the propagator for ψak+1/2 =
1
2(ψak + ψak−1). It reads

〈ψak−1/2ψ̄lb〉 =







δba if k > l
1
2δ
b
a if k = l

0 if k < l

. (2.1.14)

It becomes θ(t− t′) in the continuum limit, but θ(0) is now equal to 1/2.

Finally we consider Majorana fermions ψ̂a1 . We add another set of

free Majorana fermions ψ̂a2 , and define operator ψ̂a = 1√
2
(ψ̂a1 + iψ̂a2) and

ψ̂†
a = 1√

2
(ψ̂a1 − iψ̂a2) . We can then apply the results for Dirac spinors.

We consider again the transition element 〈η̄|e−β
h̄
Ĥ |η〉. The Hamiltonian

operator Ĥ depends on ψ̂ and ψ̂†, and after a Weyl ordering the midpoint
rule yields the function H(χ̄ka, χ

a
k−1/2) where χak−1/2 = 1

2(χak + χak−1).

Because initially Ĥ depended only on ψa1 , the action in the final path
integral contains H which depends on (χak−1/2 + χ̄ak)/

√
2 where χak−1/2 =

ηa + ψak−1/2 and χ̄ka = η̄a + ψ̄ka. The propagator for ψa1k ≡ (ψa
k− 1

2

+

ψ̄ka)/
√

2 follows from the propagator 〈ψakψ̄lb〉 for the Dirac spinors and
reads

〈ψa1kψb1l〉 =
1

2
δab







1 if k > l
0 if k = l
−1 if k < l

. (2.1.15)

In the continuum limit this becomes 〈ψa1(t)ψb1(t
′)〉 = 1

2δ
ab[θ(t− t′)−θ(t′−

t)]. With this propagator we can compute the transition element in a loop
expansion, and the transition element will be used to compute anomalies.
We now return to the detailed derivation of these results.

We present the proof that one may replace (exp(− ε
h̄H))W by exp(− ε

h̄HW )
in the path integral. In general Weyl ordering and exponentiation do
not commute, (exp(− ε

h̄H))W 6= exp(− ε
h̄HW ) and whereas HW was easy

to write down, a closed expression for (exp(− ε
h̄H))W cannot be written

down. One expects, however, that a suitable approximation of the ker-
nels, containing only terms of order ε, suffices. It might seem that p is
of order ε−1/2 due to the term exp(− 1

2εp
2) in the action, see (2.1.12).

Expansion of exp(− ε
h̄HW ) would contain terms of the form εsprf(x) for

which s ≥ 2 and such terms could still be of order ε if r is sufficiently
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large. We are now going to give an argument that p is actually of order
unity, and therefore only the terms with one explicit ε need be retained.
Hence, we may use as kernel exp(− ε

h̄HW (1
2(xk + xk−1), pk)). In other

words, the Trotter-like approximation

〈x| exp
(

− ε
h̄
Ĥ
)

|p〉 ' 〈x|
(

1− ε

h̄
Ĥ
)

|p〉 =
(

1− ε

h̄
H
)

〈x|p〉

' exp
(

− ε
h̄
H
)

〈x|p〉 (2.1.16)

is still correct if used inside (2.1.8), but we repeat that H is not simply

〈x|Ĥ|p〉 as in the usual models with H = T (p)+V (x), but rather it equals
HW at the midpoints.

To prove this claim, we note that the kernels are exactly equal to
∫

dnpk e
i
h̄
~p·~∆xk−1/2

(

e−
ε
h̄
H(x̄k−1/2, pk)

)

W
(2.1.17)

∆xk−1/2 ≡ xk − xk−1

x̄k−1/2 ≡
1

2
(xk + xk−1) .

The difference between (exp(− ε
h̄H))W and exp(− ε

h̄HW ) consists of two
kinds of terms
(i) terms without a p. These are certainly of higher order in ε and can be
omitted.
(ii) terms with at least one p.
In order to evaluate (2.1.17) one has to proceed as follows, as will be
discussed in detail below. One extracts the interaction part of H from the
path integral, while the terms quadratic in p and x yields the propagators.
One then constructs Feynman graphs with H (int)(p, x̄) as vertices and
phase-space propagators for p and x̄. The crucial observation is now that
the phase space propagators 〈pk,ipl,j〉 and 〈pk,ix̄jl−1/2〉 are both of order

unity, and not of order ε−1 and ε−1/2, respectively1. An explicit proof
is given later when we construct the discretized propagators for 〈pp〉 and
〈px〉, see eq. (2.2.6). However, already at this point one might note that
the pp propagator is not only determined by the term − ε

2gpp contained
in H but also by ip∆x. Completing squares, it is p′ = (p − i∆x/ε)
which is of order ε−1/2. In the pp propagator the singularities of the
p′p′ and ∆x∆x propagators cancel each other. (The origin of the more
singular nature of the ẋẋ propagator can be understood from canonical
formalism: the xx propagator contains a time-ordering step function θ(t−
t′), and differentiation yields a δ(t− t′)). As a consequence, the pp and pq

1 We shall actually decompose x(t) = xbg(t) + q(t), and then we obtain propagators
pk q̄l−1/2 instead of pkx̄l−1/2.
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propagators are of order one, and this proves the Trotter formula also for
nonlinear sigma models. (Already for linear sigma models withH = T+V
a completely rigorous proof of the Trotter formula uses Banach spaces [11],
so for our nonlinear sigma models a completely rigorous proof is probably
very complicated. However, we have identified the essential reason why
p can be treated as being of order unity, and this is enough to justify
(2.1.16)).

Using Weyl ordering and the midpoint rule to replace the operators
exp(− ε

h̄Ĥ) by functions, we substitute the value of the various inner prod-
ucts. We arrive at

TN (z, y;β) =

∫

· · ·
∫
e[(i/h̄)pN ·(z−xN−1)− ε

h̄
HW ( 1

2
(z+xN−1),pN )]

(2πh̄)ng(z)1/4g(xN−1)1/4
g(xN−1)

1/2

e[(i/h̄)pN−1·(xN−1−xN−2)− ε
h̄
HW ( 1

2
(xN−1+xN−2),pN−1)]

(2πh̄)ng(xN−1)1/4g(xN−2)1/4
g(xN−2)

1/2

· · · · · ·

e[(i/h̄)p1·(x1−y)− ε
h̄
HW ( 1

2
(x1+y),p1)]

(2πh̄)ng(x1)1/4g(y)1/4





n∏

j=1

dpj1...dp
j
Ndx

j
1...dx

j
N−1



 .(2.1.18)

We note that all factors g cancel except an overall factor

[g(z)g(y)]−1/4 . (2.1.19)

Furthermore we find in the exponents either coordinate differences xk −
xk−1 or coordinate averages 1

2(xk + xk−1), but the integration measure is
∏n
j=1 dx

j
N−1...dx

j
1. In the continuum limit the exponent becomes of the

form 1
h̄

∫
(ipẋ−H(x, p))dt, but we shall not yet take the continuum limit.

We shall now go from phase space to configuration space by integrating
over the momenta. We therefore assume that the terms in the Hamilto-
nian contain at most two momenta. Without loss of generality we put

H(x̄, p) =
1

2
gij(x̄)pipj + V (x̄) . (2.1.20)

(We can also allow terms linear in p, but terms quartic or cubic in p we
shall not consider). We find N Gaussian integrals (for k = 1, N)

∫

exp

[

− ε

2h̄
gij
(
xk + xk−1

2

)

pk,ipk,j +
i

h̄
pk,j(x

j
k − x

j
k−1)

] n∏

j=1

dpk,j

(2.1.21)
which yield N determinants upon completing squares

(
2πh̄

ε

) 1
2
n

[det gij(x̄k−1/2)]
−1/2 (2.1.22)
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where we recall the notation

x̄i
k− 1

2
≡ 1

2
(xik + xik−1) . (2.1.23)

The discretized configuration space path integral then becomes

TN (z, y;β) = [g(z)g(y)]−1/4(2πh̄)−nN
∫

dnxN−1...d
nx1

[(
2πh̄

ε

)nN
2

N∏

k=1

det gij(x̄k−1/2)
1/2

]

exp

{

−
N∑

k=1

1

2h̄ε
gij(x̄k− 1

2
)
(

xik − xik−1

) (

xjk − x
j
k−1

)

− ε

h̄
V (x̄k− 1

2
)

}

.

(2.1.24)

We recall the definitions xN = z and x0 = y.
Before we introduce external sources to compute discretized propaga-

tors, we remove the factors det g1/2(x̄) from the measure by exponentiat-
ing them with new ghost fields. If there would have been factors g−1/2(x̄)
instead of g1/2(x̄) we could replace them by

∫
da exp aigija

j with com-

muting ghosts. However, we have g1/2 instead of g−1/2. By writing this
as g1/2 = g−1/2g, we can still exponentiate if we introduce two anticom-
muting real ghosts bi and ci and one commuting real ghost ai.2 Then
the Berezin integral over b and c yields det gij and the ordinary Gaussian

integral over a yields (det gij)
−1/2. Altogether one finds the following

result

[

det gij(x̄k−1/2)
]1/2

= α

∫




n∏

j=1

dajk−1/2db
j
k−1/2dc

j
k−1/2





exp

[

− ε

2β2h̄
gij(x̄k−1/2)

(

bik−1/2c
j
k−1/2 + aik−1/2a

j
k−1/2

)]

.(2.1.25)

We define the normalization constant α such that the integral precisely
yields g1/2(x̄k−1/2); since we shall later do the integral over a, b, c, see
(2.1.41), the normalization constant α will cancel, and for that reason
we shall not bother to determine its value. The reason we have inserted
the coefficients −ε(2β2h̄)−1 is that we obtain then in the continuum limit
the same normalization for the ghost action as for the nonghost part, see
(2.1.80). (The factor ε

β becomes dτ and the overall factor becomes 1
2βh̄).

2 One might think that one could simply use one real anticommuting ghost αi to obtain

a result like
∫ ∏n

j=1
dαje−α

kgklα
l ∼ (det gkl)

+1/2. However, since αkgklα
l vanishes

for symmetric gkl and anticommuting αk, one must use the slightly more complicated
approach with a, b and c ghosts.
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We have given the ghosts ai, bi and ci which belong to g(x̄k−1/2) the
subscripts k− 1/2. This brings out clearly that the ghosts are defined by
integrating out the momenta which were located between the coordinates.
Similarly, we could have written the momenta as pjk−1/2 instead of pjk to

indicate that they occur between xjk and xjk−1.
To proceed, we decompose the action for the xk and the ghosts into a

free and an interacting part

S = S(0) + S(int) . (2.1.26)

The results should not depend on how one makes this split, but for prac-
tical purposes we take S(0) as simple as possible. Since we obtain the
answer for T (z, y;β) defined in (2.1.2) as an expansion about z (in sec-
tion 2.5 we perform this calculation), we find it convenient for purposes
of comparison to take the metric in S(0) also at the point z. We could
also have taken the metric in S(0) at for example the midpoint 1

2(z + y),
or perhaps at geodesic midpoints.

Next we decompose xik into a background part xibg,k and a quantum

part qik
xik = xibg,k + qik , (k = 0, ..., N) . (2.1.27)

For k = 0 we define xi0 = yi and for k = N one has xiN = zi. We
shall assume that the background xibg,k satisfy the boundary conditions

xibg,0 = yi and xibg,N = zi, hence qik vanishes for k = 0 and k = N .

Furthermore we assume that xibg,k is a solution of the N − 1 equations of

motion of S(0)

gij(z)
(

xjk+1 − 2xjk + xjk−1

)

= 0 , (k = 1, ..., N − 1) . (2.1.28)

In the continuum limit one obtains

xibg(t) = zi +
t

β
(zi − yi) = zi + τ(zi − yi) (2.1.29)

where τ = t/β and τ runs from −1 to 0. At this point the time coordinate
t appears. We take it to run from −β to 0 in order that the point z
corresponds to t = 0, but other definitions are of course also possible.

We thus define

S(0) =
N∑

k=1

[
1

2ε
gij(z)(q

i
k − qik−1)(q

j
k − q

j
k−1)

+
ε

2β2
gij(z)(b

i
k−1/2c

j
k−1/2 + aik−1/2a

j
k−1/2)

]

. (2.1.30)
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By definition then, S(int) = S−S(0). Note that S(int) contains terms linear
in q, see (2.1.82). As already mentioned, this is due to the fact that xbg(t)

is a solution of the field equations of S(0), and not of the field equation of
S. Also note that S(0) does not depend on V so that the propagators we
obtain are model independent (V independent).

We should comment on why we require xi(t) to satisfy the equations of
motion of S(0). The reason is that the complete solution of the equations
of motion of S cannot be given in closed form, so we settle for S(0). This
has the drawback that terms linear in q will be produced if we expand
S(int) in terms of q about xbg and these give rise to tadpole diagrams.

However, as we shall discuss, these tadpole diagrams are of order β1/2, so
to a given order in β, only a few tadpoles contribute.

The decomposition of S into S(0) + S(int) is standard in perturbation
theory, but in most cases one puts all terms proportional to q2 into S(0),
and not only the q2 term with gij(z). For example, in instanton physics

S(0) contains the q2 term in the background of the full instanton, and not
for example the instanton at a particular point. Because one is dealing
then with a particular background (the instanton) instead of an arbitrary
metric gij(x), one can determine the propagator in that background, and

with this choice of S(0) there are no tadpoles. In our case it is impossible
to determine explicitly the exact propagator in an arbitrary background,
hence we settle for S(0) in which we use gij(x) at point x = z.

To obtain discretized propagators, we could couple the qik to external
sources. However, since the discretized action only depends on qik−1/2 =
1
2(qik + qik−1)) and 1

ε (q
i
k− qik−1), we couple these combinations to indepen-

dent real discretized external sources

−1

h̄
S(sources, nonghost) =

N∑

k=1

(

Fk−1/2,j

qjk − q
j
k−1

ε
+Gk−1/2,jq

j
k−1/2

)

.

(2.1.31)
We should now complete squares in S(0) + S(sources, nonghost) and then

integrate over dxik = dqik. However, the action S(0) is not diagonal in qik.
Therefore we first make an orthogonal transformation which diagonalizes
S(0).

We introduce modes for the quantum fluctuations by the orthogonal
transformation

qjk =
N−1∑

m=1

rjm

√

2

N
sin

(
kmπ

N

)

; k = 1, .., N − 1 . (2.1.32)

The orthogonality of the real (N −1)× (N−1) matrix Om
k =

√
2
N sin kmπ

N

follows from the trigonometric formula 2 sinα sinβ = cos(α−β)−cos(α+
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β). One finds

N−1∑

m=1

Omj O
m
k =

1

N

N−1∑

m=1

(

cos
(j − k)mπ

N
− cos

(j + k)mπ

N

)

. (2.1.33)

The sum over the cosines is easy. For integer p one has

N−1∑

m=1

cos
pmπ

N
=

1

2

N−1∑

m=1

(

e
ipmπ
N + e

−ipmπ
N

)

=
1

2





N∑

m=−N+1

e
ipmπ
N − 1− (−)p





=
1

2

2N∑

m=1

e
ipmπ
N − 1

2
− 1

2
(−)p = Nδp,0 −

1

2
− 1

2
(−)p . (2.1.34)

Using this result in (2.1.33) we find

N−1∑

m=1

Omj O
m
k = δj,k (2.1.35)

since (−)j−k equals of course (−)j+k. Because Omj is orthogonal, we can

replace
∏N−1
k=1 dq

j
k by

∏N−1
m=1 dr

j
m.

The orthogonality of Om
j implies that S(0) is diagonal in rjm. To demon-

strate this we just evaluate S(0)

S(0) =
1

2ε

N∑

k=1

gij(z)(q
i
k − qik−1)(q

j
k − q

j
k−1)

=
1

2ε
gij(z)

N∑

k=1

N−1∑

m,n=1

(Omk −Omk−1)r
i
m(Onk −Onk−1)r

j
n

=
1

2ε
gij(z)





N−1∑

m=1

2rimr
j
m −

N−1∑

k=1

N−1∑

m,n=1

Omk (Onk−1 +Onk+1)r
i
mr

j
n



 .

(2.1.36)

(We shifted k → k+1 in the last term which is allowed since Om
k vanishes

for k = 0 and k = N). Using sinα + sinβ = 2 sin 1
2(α + β) cos 1

2(α − β)
we obtain Onk−1 + Onk+1 = 2Onk cos nπN . Using again the orthogonality of
Omj we find

S(0) =
1

ε

N−1∑

m=1

gij(z)r
i
mr

j
m

(

1− cos
mπ

N

)

. (2.1.37)
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The path integral with S(0) and the external sources then becomes in
the non-ghost sector

Z
(0)
N (F,G) = (factor in (2.1.24))

∫




n∏

j=1

N−1∏

m=1

drjm



 expE

E = − 1

εh̄

N−1∑

m=1

gij(z)r
i
mr

j
m

(

1− cos
mπ

N

)

(2.1.38)

+
N−1∑

k=1

{
1

ε
(Fk−1/2,j − Fk+1/2,j) +

1

2
(Gk−1/2,j +Gk+1/2,j)

}

×
{
N−1∑

m=1

√

2

N
rjm sin

kmπ

N

}

.

By (factor in (2.1.24)) we mean both factors in front of the exponential.
Summations over i, j = 1, n are always understood. For vanishing F and
G one recovers the transition element T (z, y;β).

Completing squares is now straightforward and performing the integra-
tion over drim yields

Z
(0)
N (F,G) = (factor in (2.1.24))

(N−1∏

m=1

(πεh̄)n/2
√

g(z)(1− cos mπN )n/2

)

exp

{N−1∑

m=1

εh̄

4
(
1− cos mπN

)

[
2

ε

√

2

N
sin

mπ

2N

N−1∑

k=0

cos

{(

k +
1

2

)
mπ

N

}

Fk+1/2,j

+

√

2

N
cos

mπ

2N

N−1∑

k=0

sin

{(

k +
1

2

)
mπ

N

}

Gk+1/2,j

]2}

. (2.1.39)

The square denoted by [..]2 is taken with gij(z), so written out in full it
reads gij(z)[..]i[..]j .

We similarly couple the ghosts aik+1/2, b
i
k+1/2 and cik+1/2 to external

(commuting or anticommuting) sources as follows

−1

h̄
S(sources, ghosts) =

N−1∑

k=0

(Ak+1/2,ia
i
k+1/2+b

i
k+1/2Bk+1/2,i+Ck+1/2,ic

i
k+1/2) .

(2.1.40)
Completing squares and integrating over a, b, c we find, using (2.1.25),

Z(0)(A,B,C) = g(z)N/2 exp
N−1∑

k=0

β2h̄

ε
gij(z)
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[

2Ck+1/2,iBk+1/2,i +
1

2
Ak+1/2,iAk+1/2,j

]

. (2.1.41)

The factor g(z)N/2 is due to integration over a, b, c and corresponds to
the N factors g(xk−1/2)

1/2 which we exponentiated in (2.1.25). The inte-
gration over a, b, c cancels then the normalization constant α in (2.1.25)
which we never computed for this reason.

The complete discretized transition element becomes now

T (z, y;β) = [g(z)g(y)]−1/4(2πh̄)−nN
[(

2πh̄

ε

)nN/2

g(z)N/2
]

[

(πεh̄)n(N−1)/2g(z)−N/2+1/2
N−1∏

m=1

(

1− cos
mπ

N

)−n/2]

[

e−(1/h̄)Sinte−(1/h̄)S(F,G,A,B,C)
] ∣
∣
∣
0

(2.1.42)

where the symbol |0 indicates that all sources (F,G,A,B,C) are set to
zero after differentiation. The first line is due to the factor in (2.1.24)
and the various inner products and the integration over momenta and a, b
and c, the second line is due to the second factor in (2.1.39) and accounts
for the integration over rjm, while − 1

h̄S[F,G,A,B,C] denotes the terms

bilinear in external sources. In the interaction term S int the quantum
fields qjk − q

j
k−1, q

j
k−1/2, a, b and c should be replaced by derivatives with

respect to the corresponding sources F j
k−1/2, G

j
k−1/2, A,B,C as usual in

quantum field theory
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Using the identity3

N−1∏

m=1

2

(

1− cos
mπ

N

)

= N (2.1.47)

we find

T (z, y;β) =

[
g(z)

g(y)

]1/4 1

(2πh̄β)n/2

(

e−(1/h̄)Sinte−(1/h̄)S[F,G,A,B,C]
) ∣
∣
∣
0

(2.1.48)
where we recall for completeness

−1

h̄
S[F,G,A,B,C] =

N−1∑

m=1

εh̄

4
(
1− cos mπN

)

[

2

ε

√

2

N
sin

mπ

2N

N−1∑

k=0

cos

{(

k +
1

2

)
mπ

N

}

Fk+1/2,j

+

√

2

N
cos

mπ

2N

N−1∑

k=0

sin

{(

k +
1

2

)
mπ

N

}

Gk+1/2,j

]2

3 To prove this identity, consider the function

f(x) =

2N−1∏

k=0

(

x− cos
kπ

N

)

= (x2 − 1)

[
N−1∏

k=1

(

x− cos
kπ

N

)
]2

. (2.1.43)

The function p(x) = −1 + (x + i
√

1 − x2)2N has zeros at the roots of unity, hence
at x = cos kπ

N
for k = 0, 1, . . . , 2N − 1. In particular, its real part vanishes there.

Since Re p(x) is a polynomial in x of degree x2N , we see that f(x) and Re p(x) are
proportional. Since Re p(x) = a2Nx

2N + . . . with

a2N =
∑

k even

(
2N

k

)

= lim
x→1

(
1

2
(1 + x)2N +

1

2
(1 − x)2N

)

= 22N−1, (2.1.44)

we find f(x) = 21−2N Re p(x). Furthermore, near x = 1 we have

Re p(x) = x2N −
(

2N

2

)

x2N−2(1 − x2) + O(1 − x2)2 − 1

= (x2 − 1)

[

(x2N − 1)/(x2 − 1) +

(
2N

2

)

x2N−2

]

+ O(1 − x2)2 . (2.1.45)

Hence

22N−1

N−1∏

k=1

(

x− cos
kπ

N

)2

=
Re p(x)

x2 − 1
→ x2N − 1

x2 − 1
+

(
2N

2

)

= N +

(
2N

2

)

= 2N2

(2.1.46)
as x→ 1. This proves the identity.
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+
N−1∑

k=0

β2h̄

ε
gij(z)

[

2Ck+1/2,iBk+1/2,j +
1

2
Ak+1/2,iAk+1/2,j

]

.

(2.1.49)

The interactions are given by

−1

h̄
Sint =

N∑

k=1

{

− 1

2εh̄
[gij(x̄k−1/2)− gij(z)](xik − xik−1)(x

j
k − x

j
k−1)

− 1

2εh̄
gij(z)[(x

i
k − xik−1)(x

j
k − x

j
k−1)− (qik − qik−1)(q

j
k − q

j
k−1)]

− ε

2β2h̄
[gij(x̄k−1/2)− gij(z)](aik−1/2a

j
k−1/2 + bik−1/2c

j
k−1/2)

− ε
h̄
V (x̄k)

}

. (2.1.50)

where V (x̄k) is the order h̄2 counterterm given in (2.1.12). As already
discussed, the quantum fields qik, a

i
k−1/2, b

i
k−1/2 and cik−1/2 in Sint should

be replaced by the corresponding differential operators with respect to
the external sources; this is, of course, standard practice in quantum field
theory.

The expression for T (z, y;β) in (2.1.48) is an exact expression to order
ε. It was derived with much labor but the final result is very simple.

It contains the Feynman measure, and the factor [g(z)/g(y)]
1
4 is due to

expanding the metric in Sint about z. If we had expanded about the
midpoint this factor would even have been absent. Using this exact ex-
pression we can now find unambiguous Feynman rules at the discretized
level.

We obtain the discretized propagators by twice differentiating the ex-
pression exp(− 1

h̄S[F,G,A,B,C]) with respect to F,G,A,B,C and then
putting external sources to zero. An easy case is the q̇q̇ propagator, by
which we mean

〈(

qik+1 − qik
ε

)(

qjk′+1 − q
j
k′

ε

)〉

; 0 ≤ k, k′ ≤ N . (2.1.51)

According to (2.1.31) it is given by

〈q̇ik+1/2q̇
j
k′+1/2〉 =

∂

∂Fk+1/2,i

∂

∂Fk′+1/2,j
exp

(

− 1

h̄
S[F,G,A,B,C]

)∣
∣
∣
0

= 2
N−1∑

m=1

εh̄

4(1− cos mπN )
gij(z)

(

2

ε

√

2

N
sin

mπ

2N

)2

× cos(k + 1/2)
mπ

N
cos(k′ + 1/2)

mπ

N
. (2.1.52)
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Twice the square of the sine cancels the factor 1−cos in the denominator,
and using 2 cosα cosβ = cos(α+ β) + cos(α− β) one finds from (2.1.34)

〈q̇ik+1/2q̇
j
k′+1/2〉 =

h̄

Nε
gij(z)

N−1∑

m=1

(

cos(k + k′ + 1)
mπ

N
+ cos(k − k′)mπ

N

)

=
h̄

Nε
gij(z)(−1 +Nδk,k′) . (2.1.53)

Since in the continuum limit 1
ε δk,k′ becomes δ(t− t′), we find in the con-

tinuum limit with t = kε− β

〈q̇i(t)q̇j(t′)〉 = h̄gij(z)

(

− 1

β
+ δ(t− t′)

)

. (2.1.54)

Let us compare this with the result we would have obtained naively (i.e.
disregarding all subtleties involving discretizations). The naive continuum
propagator is obtained from

exp

[

− 1

2h̄

∫ 0

−β
gij q̇

iq̇jdt+

∫ 0

−β
qiJidt

]

(2.1.55)

by the usual steps

〈qi(t)qj(t′)〉 =
δ

δJi(t)

δ

δJj(t′)
exp

[(

− h̄
2

)

gij(z)

∫ 0

−β
Ji(t

′′)
1

∂2/∂t2
Jj(t

′′)dt′′
]

= −h̄gij(z) 1

∂2/∂t2
δ(t− t′) . (2.1.56)

Differentiating with respect to t and t′ yields only the delta function: one
misses the terms with − 1

β in (2.1.54). However, this is due to not hav-
ing taken into account the boundary conditions. Imposing the boundary
condition q(0) = q(−β) = 0 one must add suitable terms linear in t and
t′ to (2.1.56) so that the propagator vanishes at t = 0,−β and t′ = 0,−β
while still ∂2/∂t2〈qi(t)qj(t′)〉 = −h̄gij(z)δ(t− t′). The naive result, as one
may check, is

〈qi(t)qj(t′)〉 = −h̄gij(z) 1

β
[t(t′ + β)θ(t− t′) + t′(t+ β)θ(t′ − t)] . (2.1.57)

It follows that naively

〈q̇i(t)q̇j(t′)〉 = −h̄gij(z)
[
1

β
− δ(t− t′)

]

. (2.1.58)

This agrees with our discretized expression in (2.1.53), but note that the
symbol δ(t− t′) is proportional to a Kronecker delta function in
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the discretized case. Thus when one evaluates Feynman graphs, this
Kronecker δ(t− t′) instructs one to set everywhere in the integrand t = t′,
and not to replace δ(t− t′) by some smooth function. This will be crucial
when we evaluate Feynman graphs with equal-time contractions.

Next we evaluate the qq̇ propagator. By this we mean 〈 12(qk+1 +

qk)
1
ε (qk′+1 − qk′)〉, of course. It is given by

〈qik+1/2q̇
j
k′+1/2〉 =

∂

∂Gk+1/2,i

∂

∂Fk′+1/2,j
exp

(

− 1

h̄
S[F,G,A,B,C]

)∣
∣
∣
0

= 2
N−1∑

m=1

εh̄gij(z)

4
(
1− cos mπN

)
4

Nε
sin

mπ

2N
cos

mπ

2N

× sin

{

(k +
1

2
)
mπ

N

}

cos

{

(k′ + 1/2)
mπ

N

}

= h̄gij(z)
1

N

N−1∑

m=1

cos
mπ

2N




sin
(

k + 1
2

)
mπ
N

sin mπ
2N



 cos(k′ + 1/2)
mπ

N
.

(2.1.59)

To evaluate this series, we introduce the notation

ζ = exp
iπ

2N
(2.1.60)

and find then

1

4N

N−1∑

m=1

(ζm+ ζ−m)(ζ2km+ ζ(2k−2)m+ . . . ζ−2km)(ζ(2k′+1)m+ ζ−(2k′+1)m) .

(2.1.61)
(In the ratio (ζ(2k+1)m−ζ−(2k+1)m)/(ζm−ζ−m) only powers of ζ2 remain).
There are then four series to sum, which we write in the following four
lines

1

4N

N−1∑

m=1








ζ(2k+2k′+2)m + ζ(2k+2k′)m + . . .+ ζ(−2k+2k′+2)m+

ζ(2k+2k′)m + ζ(2k+2k′−2)m + . . .+ ζ(−2k+2k′)m+

ζ−(2k+2k′)m + ζ−(2k−2+2k′)m + . . .+ ζ−(−2k+2k′)m+

ζ−(2k+2k′+2)m + ζ−(2k+2k′)m + . . .+ ζ−(−2k+2k′+2)m







.

(2.1.62)
We have written the terms in the last two lines with increasing expo-

nents, since this allows us to combine in the same column the terms in
the first and fourth row, or the second and third row. Using (2.1.34)

N−1∑

m=1

(ζ2pm + ζ−2pm) = −1− (−)p + 2Nδp,0 (2.1.63)
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we find for (2.1.62)

1

4N

k+k′+1∑

p=−k+k′+1

(−1− (−)p + 2Nδp,0)

+
1

4N

k+k′∑

p=−k+k′
(−1− (−)p + 2Nδp,0) . (2.1.64)

The terms with (−)p cancel. In the remainder we distinguish the cases
k > k′, k < k′ and k = k′. We get then

1

4N

(

− (2k + 1) + 2Nδk>k′ − (2k + 1) + 2Nδk≥k′
)

= −(k + 1/2)

N
+

1

2
δk>k′ +

1

2
δk≥k′ (2.1.65)

where δk>k′ equals unity if k > k′ and zero otherwise. Therefore

〈qik+1/2q̇
j
k′+1/2〉 = h̄gij(z)

[

−(k + 1/2)

N
+







0 if k < k′

1/2 if k = k′

1 if k > k′







]

.(2.1.66)

In the continuum limit this becomes

〈qi(t)q̇j(t′)〉 = h̄gij(z)

[

− t+ β

β
+ θ(t− t′)

]

(2.1.67)

which agrees with the naive continuum result obtained by differentiating
(2.1.57)

〈qi(t)q̇j(t′)〉 = (−h̄gij(z)) 1

β

[
tθ(t− t′) + (t+ β)θ(t′ − t)] . (2.1.68)

The discretized approach tells us that θ(t−t′) = 1/2 at t = t′. However,
at the point t = t′ = 0, the naive continuum propagator in (2.1.68) does
not vanish and thus violates the boundary conditions. In the discretized
approach one should write qk as qk−1/2 + 1

2(qk − qk−1) and then there
are no problems at the boundary. One finds by combining (2.1.66) and
(2.1.53) the following result

〈qik+1q̇
j

k′+ 1
2

〉 = h̄gij(z)

[

−(k + 1)

N
+

1

2
δk,k′ + θk,k′

]

(2.1.69)

which vanishes for k + 1 = N . The extra term 1
2δk,k′ saves the day.

The reason that the continuum approach fails to give zero while the dis-
cretized approach yields the correct result is that qi(t) should be defined
at midpoints, and thus never really reaches the endpoints.
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Finally, we consider the qq propagators. This is the most complicated
propagator. It is given by

〈qik+1/2q
j
k′+1/2〉 =

∂

∂Gk+1/2,i

∂

∂Gk′+1/2,j
exp

(

− 1

h̄
S[G,F,A,B,C, 0]

)∣
∣
∣
0

= 2
N−1∑

m=1

εh̄gij(z)

4
(
1− cos mπN

)

(√

2

N
cos

mπ

2N

)2

× sin

(

k +
1

2

)
mπ

N
sin
(
k′ + 1/2

) mπ

N

=
εh̄

2N
gij(z)

N−1∑

m=1

(

cos
mπ

2N

)2



sin
(

k + 1
2

)
mπ
N

sin mπ
2N





(

sin (k′ + 1/2) mπN
sin mπ

2N

)

.

(2.1.70)

Again we write the ratios of sines as polynomials in ζ2, with 2k+1 and
2k′ + 1 terms, respectively. This leads to the series

1

4

N−1∑

m=1

(ζm + ζ−m)2(ζ2km + ζ(2k−2)m + . . . ζ−2km)

× (ζ2k′m + ζ(2k′−2)m + . . . ζ−2km′
)

=
1

4

N−1∑

m=1

k∑

α=−k

k′∑

β=−k′
(ζ(2α+2β+2)m + 2ζ(2α+2β)m + ζ(2α+2β−2)m) .

(2.1.71)

Replacing α → −α and β → −β in half of the terms (which yields the
same result), we obtain cosines

=
1

2

N−1∑

m=1

k∑

α=−k

k′∑

β=−k′

[

cos(α+ β + 1)
mπ

N
+ cos(α+ β)

mπ

N

]

(2.1.72)

and using the formula in (2.1.34) for summing cosines we obtain

=
1

2

k∑

α=−k

k′∑

β=−k′

[

− 1

2
− 1

2
(−)α+β+1 +Nδα+β+1,0

−1

2
− 1

2
(−)α+β +Nδα+β,0

]

=
1

2

k∑

α=−k

k′∑

β=−k′
[−1 +N(δα+β+1,0 + δα+β,0)] . (2.1.73)
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It is again easiest to consider the cases k > k′, k < k′ and k = k′

separately. We find

〈qik+1/2q
j
k′+1/2〉 =

εh̄

4N
gij(z)

×


−(2k + 1)(2k′ + 1) +







2N(2k′ + 1) for k > k′

N(4k + 1) for k = k′

2N(2k + 1) for k < k′









 .

(2.1.74)

The last term contains a discretized theta function

〈qik+1/2q
j
k′+1/2〉 = εh̄gij(z)

[

− (k + 1/2)(k′ + 1/2)

N

+

(

k′ +
1

2

)

θ(k, k′) + (k + 1/2)θ(k′, k)− 1

4
δk,k′

]

.

(2.1.75)

In the continuum limit this becomes

〈qi(t)qj(t′)〉 = −βh̄gij(z)
[
(β + t)

β

(β + t′)
β

−(β + t′)
β

θ(t− t′)− (β + t)

β
θ(t′ − t)

]

(2.1.76)

which agrees with the naive continuum propagator−h̄gij(z) 1
β [t(t′+β)θ(t−

t′) + t′(t+ β)θ(t′ − t)] except that the value θ(0) = 1/2 is now justified.
As a check we may combine the propagators for qq̇ and qq, and check

that 〈qi
k+ 1

2

qjk′〉 indeed vanishes for k′ = 0 or k′ = N. One finds by using

qk′+1 = qk′+ 1
2

+ ε
2 q̇k′+ 1

2
and combining (2.1.75) and (2.1.66) the following

result

〈qi
k+ 1

2
qjk′+1〉 = εh̄gij(z)

[

−(k + 1
2)(k′ + 1)

N
+ (k′ + 1)θ(k, k′) + (k +

1

2
)θ(k′, k)− 1

4
δk,k′

]

.

(2.1.77)

This expression indeed vanishes at k′ + 1 = N , while the naive contin-
uum limit does not vanish at t′ = 0. Similar results hold for the other
endpoint. One could try to improve the naive continuum results by ex-
tending the integration region beyond [−β, 0], and require that also for
t > 0 and t < −β the propagator satisfies ∂2

t 〈q(t)q(t′)〉 ∼ δ(t − t′) while
still q(0) = q(−β) = 0. This is possible, but the resulting function is quite
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complicated. Rather, we shall derive rules for products of continuum
distributions which follow directly from the corresponding discretized ex-
pressions.

Finally we determine the propagators of the ghosts. We find from
(2.1.49) and (2.1.40)

〈bik+1/2c
j
k′+1/2〉 = − ∂

∂Bk+1/2,i

∂

∂Ck′+1/2,j
e−

1
h̄
S[F,G,A,B,C]

∣
∣
∣
0

= −2β2h̄

ε
gij(z)δk,k′ → −2β2h̄gij(z)δ(t− t′) (2.1.78)

〈aik+1/2a
j
k′+1/2〉 =

∂

∂Ak+1/2,i

∂

∂Ak′+1/2,j
e−

1
h̄
S[F,G,A,B,C]

∣
∣
∣
0

=
β2h̄

ε
gij(z)δk,k′ → β2h̄gij(z)δ(t− t′) . (2.1.79)

Again we note that the δ(t − t′) in the continuum limit should be inter-
preted as Kronecker delta function; moreover, in the discretized approach
the ghosts are only defined on midpoints.

We now summarize our results for the path integral representation of
〈z| exp(−β

h̄Ĥ)|y〉 for bosonic systems in configuration space. It can be

written in terms of propagators and vertices from S(int) as follows

〈z| exp
(

−β
h̄
Ĥ
)

|y〉 =

[
g(z)

g(y)

]1/4 1

(2πβh̄)n/2
〈e− 1

h̄
S(int)〉

Sint = S − S(0)

−1

h̄
S = − 1

βh̄

∫ 0

−1

1

2
gij(x)

(

dxi

dτ

dxj

dτ
+ bi(τ)cj(τ) + ai(τ)aj(τ)

)

dτ

−βh̄
8

∫ 0

−1

(

R(x) + gij(x)Γlik(x)Γ
k
jl(x)

)

dτ

−1

h̄
S(0) = − 1

βh̄

∫ 0

−1

1

2
gij(z)

(

dqi

dτ

dqj

dτ
+ bi(τ)cj(τ) + ai(τ)aj(τ)

)

dτ

(2.1.80)

xi(τ) = xibg(τ) + qi(τ)

xibg(τ) = zi + τ(zi − yi)

〈qi(σ)qj(τ)〉 = −βh̄gij(z)∆(σ, τ)

〈qi(σ)q̇j(τ)〉 = −βh̄gij(z)(σ + θ(τ − σ)))
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〈bi(σ)cj(τ)〉 = −2βh̄gij(z)∂2
σ∆(σ, τ)

〈q̇i(σ)q̇j(τ)〉 = −βh̄gij(z)(1− δ(τ − σ)))

〈ai(σ)aj(τ)〉 = βh̄gij(z)∂2
σ∆(σ, τ) (2.1.81)

∆(σ, τ) = σ(τ + 1)θ(σ − τ) + τ(σ + 1)θ(τ − σ)

∂2
σ∆(σ, τ) = δ(σ − τ) .

Since only the combination βh̄ occurs, β counts the number of loops. To
obtain a uniform overall factor (βh̄)−1 in the action we normalized the
ghost actions as in (2.1.25). By expanding exp(− 1

h̄S
int) and using these

propagators, we can evaluate 〈z| exp(−β
h̄Ĥ)|y〉 to any order in loops. The

transition element T (z, y;β) is due to the vacuum expectation value of
exp(− 1

h̄S
int): loops with internal quantum fields but no external quantum

fields.
The interactions are more explicitly given by

−1

h̄
Sint = − 1

βh̄

∫ 0

−1

{
1

2
gij(x)[(z

i − yi)(zj − yj) + 2(zi − yi)q̇j ]

+
1

2
(gij(x)− gij(z))(q̇iq̇j + bicj + aiaj)

}

dτ

= − 1

βh̄

∫ 0

−1

[
1

2
gij(z)(z

i − yi)(zj − yj) + gij(z)(z
i − yi)q̇j

+
1

2
∂kgij(z)(z

i − yi)(zj − yj)((z − y)kτ + qk)

+∂kgij(z)(z
i − yi)q̇j((zk − yk)τ + qk)

+
1

4
∂k∂lgij(z)((z

k − yk)τ + qk)((zl − yl)τ + ql)

×[(zi − yi)(zj − yj) + 2(zi − yi)q̇j ]

+ . . .+
1

2
(gij(x)− gij(z))(q̇iq̇j + bicj + aiaj)

]

dτ

−βh̄
8

∫ 0

−1

[

R(xbg + q) + gij(xbg + q)Γlik(xbg + q)Γkjl(xbg + q)
]

dτ .

(2.1.82)

We now briefly discuss and check some of the terms in the action. We
do this because all our later calculations will be based on this action, so
we should be absolutely sure it is correct. The classical terms (the terms
without q’s or ghosts) yield in the path integral a factor

� + + + · · ·
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= exp

{

− 1

βh̄

[
1

2
gij(z)(z

i − yi)(zj − yj)

−1

4
(zk − yk)∂kgij(z)(zi − yi)(zj − yj)

+
1

12
∂k∂lgij(z)(z

i − yi)(zj − yj)(zk − yk)(zl − yl) + . . .

]}

.

(2.1.83)

These terms are not equal to an expansion of the classical action about
z because xbg(τ) is only a solution of S(0). Rather, tree graphs with

vertices which are linear in q from S(int) contribute as well to the order
1/βh̄ terms. Let us study this further. The term with q̇j in the first line
of − 1

h̄S
int vanishes due to the boundary conditions, but the vertices

�����
����� �

= − 1

βh̄

∫ 0

−1

1

2
∂kgij

{

(zi − yi)(zj − yj)qk

−2(zi − yi)(zk − yk)qj)
}

dτ

=
1

βh̄
Γij;k(z − y)i(z − y)j

∫ 0

−1
qk dτ (2.1.84)

do contribute. (We partially integrated to obtain the second term). Two
of these vertices produce a tree graph which contributes a term

����	
����	

����	
����	

= − 1

βh̄

1

24
Γij;kΓi′j′;k′(z − y)i(z − y)i

′
(z − y)j(z − y)j′gkk′

(2.1.85)

where we used that
∫ 0
−1

∫ 0
−1 dσdτ ∆(σ− τ) = − 1

12 . This indeed completes
the classical action to this order in β (see (2.5.32)). Tree graphs with two
q-propagators contribute at the β3/2 level, and so on. Hence, the tree
graph part is in good shape.


���
�

�
=

� �����
�����

+ �����
�����
�����

+ .. + ���� 
���� 

�!�� 
�!�� 

Figure 2: The expansion of the classical action evaluated for a geodesic
from y to z, expanded in terms of y − z. The internal propagators come
from the quantum fields q, and external lines denote factors y − z.
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Next consider the one-loop part (the part independent of h̄). Expanding
the measure [g(z)/g(y)]1/4 one finds a factor 1 + 1

4g
ij(z − y)k∂kgij(z)

multiplying exp(− 1
h̄Scl[z, y;β]). This factor is canceled by the one-loop

equal-time contractions from the vertices in the last line of − 1
h̄S

int

− 1

βh̄
(zk − yk)1

2
∂kgij(z)

∫ 0

−1
τ 〈q̇iq̇j + bicj + aiaj〉 dτ (2.1.86)

and from the vertex in the third line

− 1

βh̄
(∂kgij)(z

i − yi)
∫ 0

−1
〈q̇jqk〉dτ . (2.1.87)

The latter does not contribute since

〈q̇jqk〉 ∼ (τ + 1)θ(σ − τ) + τθ(τ − σ) = τ +
1

2
at σ = τ (2.1.88)

which integrates to zero. In the former all δ(σ − τ) cancel, as the dis-
cretized approach rigorously shows, and with

〈q̇iq̇j + bicj + aiaj〉σ=τ = −h̄βgij(z) (2.1.89)

it yields −1/4(zk − yk)∂kgij(z)gij(z), canceling the factor from the mea-
sure.

� + + = 0 .

Figure 3: At the one-loop level the contributions of the measure, denoted
by a black box, cancel loops with q and ghost loops. External lines denote
again factors y − z.

There are many other one- and two-loop graphs, and the contribu-
tion from each corresponds to a particular term in the expansion of
〈z| exp(−β

h̄Ĥ)|y〉 about z. In particular, the two loop graph with one
q̇q̇, one q̇q and one qq̇ propagator agrees with the transition element only
if

∫ 0

−1

∫ 0

−1
δ(σ − τ)θ(σ − τ)θ(τ − σ) dσdτ =

1

4
. (2.1.90)

This result immediately follows from the discretized approach, where
δ(σ − τ) is a Kronecker delta and θ(σ − τ) = 1/2 at σ = τ. We shall
give a complete analysis of all two-loop graphs in section 2.6.
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2.2 The phase space path integral and Matthews’ theorem

To obtain the phase space path integral and phase space Feynman dia-
grams for the transition element, we go back to the discretized expression
for T (z, y;β) in (2.1.18) with the momenta not yet integrated out, and add
external sources for qk−1/2 ≡ 1

2(qk + qk−1) and pk because these are the
variables on which H depends. Since the free equation of motion for pk
reads gij(z)pk,j = i(qik− qik−1)/ε (see below), we denote the sources for pk

by −iF jk−1/2 where F jk−1/2 = gij(z)Fk−1/2,i. By replacing Fk−1/2,j
qj
k
−qj

k−1

ε

by −ipk,jF jk−1/2 we can compare later the results of the phase space and

the configuration space approach. Hence

Z(F,G, z, y;β) = [g(z)g(y)]−1/4(2πh̄)−nN
n∏

j=1

(
N∏

k=1

dpk,j

N−1∏

l=1

dxjl

)

exp

[
N∑

k=1

{
i

h̄
pk · (xk − xk−1)−

ε

h̄
H(pk, xk−1/2)

−iF jk−1/2pk,j +Gk−1/2,jq
j
k−1/2

}]

. (2.2.1)

Next we decompose H into H (0) +H(int) where

H(0) =
N∑

k=1

1

2
gij(z)pk,ipk,j , (2.2.2)

and we decompose again x = xbg + q, but we add the term i
h̄pk,j(x

j
bg,k −

xjbg,k−1) to − ε
h̄H

(int). The term i
h̄pk,j

qj
k
−qj

k−1

ε is part of S(0).
We then complete squares in the terms depending on p in the sum of

ipk(qk − qk−1)− εH(0) and the source terms, and perform the p-integrals.
This yields

Z(F,G, z, y;β) = [g(z)g(y)]−1/4(2πh̄)−nN

[(
2πh̄

ε

) 1
2
nN

g(z)
1
2
N

]
∫ n∏

j=1

dxjN−1...dx
j
1

exp






− ε
h̄
H(int)



pk,j → i
∂

∂F jk−1/2

, xjk−1/2 → xj
bg,k− 1

2

+
∂

∂Gk−1/2,j











exp

{
N∑

k=1

ε

2h̄

[

− ih̄
ε
F jk−1/2 +

i

ε
(qjk − q

j
k−1)

]2

+Gk−1/2,jq
j
k−1/2

}

.

(2.2.3)
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The square in the last line of (2.2.3) is again taken with gij(z); expand-
ing this square we find back the terms of the configuration space path
integral, multiplied by the factor

exp

{

− h̄
2ε

(
N∑

k=1

gij(z)F
i
k−1/2F

j
k−1/2

)}

. (2.2.4)

The propagators are again obtained by differentiation with respect to the
sources in (2.2.1). It follows that the discrete qq propagators are the same,
while the pq propagator in the phase-space approach is equal to i times
the q̇q propagator in the configuration space approach, in agreement with
the linearized field equations gijpk,j = i(qik − qik−1)/ε. However, the pp
propagator is not equal to minus the q̇q̇ propagator; rather, there is an
extra term proportional to δk,k′ which comes from the term with F 2

〈pk,ipl,j〉 = −gii′(z)gjj′(z)〈q̇i
′
k−1/2q̇

j′

l−1/2〉+
h̄

ε
gij(z)δk,l . (2.2.5)

The last term cancels the singularity h̄
ε g
ij(z)δk,l in the term with 〈q̇ik−1/2q̇

j
l−1/2〉,

see (2.1.53). Hence, as well-known, the phase-space propagator is nonsin-
gular for short distances. The continuum limit reads

〈pi(σ)pj(τ)〉 =
1

β
h̄gij(z)

〈qi(σ)pj(τ)〉 = −ih̄δij(σ + θ(τ − σ)) = 〈pj(τ)qi(σ)〉
〈qi(σ)qj(τ)〉 = −βh̄gij(z)∆(σ, τ) . (2.2.6)

Using

−1

h̄
H(int) =

N∑

k=1

[

− ε

2h̄
[gij(xk−1/2)− gij(z)]pk,ipk,j

+
i

h̄
pk,j(x

j
bg,k − x

j
bg,k−1)− ε

h̄

8
(R+ gijΓik

lΓjl
k)

]

(2.2.7)

we can again compute the transition element loop-by-loop. In the contin-
uum limit we find

−1

h̄

∫ 0

−β
H(int)dt = −β

h̄

∫ 0

−1

1

2
(gij(x)− gij(z))pipjdτ

+
i

h̄

∫ 0

−1
pj(z

j − yj)dτ − βh̄

8

∫ 0

−1
(R+ gijΓil

kΓjk
l)dτ . (2.2.8)

The tree graph with two p(z − y) vertices now yields the leading term
− 1

2βh̄gij(z)(z
i − yi)(zj − yj) in the classical action, see section 2.5, in
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particular (2.5.30), and the reader can check a few other graphs. Of
course, the propagators as well as the vertices differ in the phase space
approach (the latter contain gij(x) instead of gij(x) and there are no
ghosts), but the result for 〈z| exp(− ε

h̄H)|y〉 should be the same according
to Matthews’ theorem.4 We shall later check this in a few examples.

In the phase space approach, we have trajectories xj(t) and pj(t), but
we imposed only boundary conditions on xj(t), namely xj(0) = zj and
xj(−β) = yj . This is the correct number of boundary conditions, both
in configuration and phase space, and we need only boundary conditions
on x because we consider T (z, y;β). One could also consider transition
elements with a p-eigenstate at t = 0 and/or t = −β, and then one would
need boundary conditions for the trajectories pj(t). (One could also ob-

tain these transition elements by Fourier transform of 〈z| exp(−βĤ)|y〉).
For T (z, y;β) no boundary condition on pj(t) are needed to make the
p integrals convergent because pj(t) has no zero modes. (A zero mode
is a mode which drops out of the action). There are no zero modes for
pj(t) because it appears without derivatives in the action, with a leading

term p2. For qj(t), only differences qjk − q
j
k−1 appear in the discretized

expressions of T (z, y;β), hence we must fix the zero mode of qj(t) by
suitable boundary conditions. The complete sets of pk states were in-
serted between x-eigenstates, so one can view them as being defined at
midpoints, not at the endpoints, and this suggests that for the compu-
tation of T (z, y;β) one should not impose boundary conditions on the
momenta as well. The most compelling reason is that there are no clas-
sical trajectories in phase space which connect two arbitrary points in
phase space. (In the so-called holomorphic approach [32], one introduces
variables z ∼ x + ip and z̄ ∼ x − ip, and then one does impose separate
boundary conditions at both endpoints but the classical zcl and z̄cl are
then not each others complex conjugates.)

It is instructive to see how in the continuum approach the p-propagators
are obtained. The kinetic terms in the phase space approach are given by

−1

h̄
S(0) =

i

h̄

∫ 0

−β
pj q̇

j dt− 1

h̄

∫ 0

−β

1

2
gij(z)pipj dt . (2.2.9)

The kinetic matrix for (pi, q
j) is thus (replacing gij(z) and h̄ by unity for

4 The original Matthews’ theorem only applied to meson field theories with at most
one time-derivative in the interaction [51]. It was extended to quantum mechanical
models with q̇q̇ interactions and higher-time derivatives by Nambu [52]. Provided
one adds the new ghosts as we have done, the equivalence between the Lagrangian
and Hamiltonian approach also holds for nonlinear sigma models. For a general proof
of Matthews’ theorem based on path integrals see [53].

52



notational simplicity)

K =

(
1 −i∂t
i∂t 0

)

, (2.2.10)

and the Feynman (translationally invariant) propagator is its inverse

G =

(

0 − i
2ε(t− t′)

i
2ε(t− t′) −1

2(t− t′)θ(t− t′) + (t↔ t′)

)

. (2.2.11)

It satisfies KG = δ(t − t′). To satisfy the boundary condition q(0) =
q(−β) = 0, while still satisfying KG = δ(t−t′), we add to G a polynomial
in t, t′ which is annihilated by K

P (t, t′) =

(
p1(t

′) p2(t
′)

−itp1(t
′)− iq1(t′) −itp2(t

′)− iq2(t′)
)

. (2.2.12)

We then require that (G+ P )12 vanishes at t′ = 0,−β, and (G+ P )21 at
t = 0,−β, and (G + P )22 at all t = 0,−β and t′ = 0,−β. (These entries
correspond to 〈pq〉, 〈qp〉 and 〈qq〉, respectively). The solution is

P (t, t′) =





1
β −i

(
t′
β + 1

2

)

−i
(
t
β + 1

2

)

− tt′
β − 1

2(t+ t′)



 . (2.2.13)

Adding P to G, it is clear that the naive continuum results in (2.2.6)
agree with the discretized propagators, again except when both t and t′

lie on the boundaries. For these values one must again use the discretized
propagators.

The Feynman propagator in (2.2.11) is given in position space, but for
an analysis of the divergences in loops it is more convenient to give it
in momentum space. The Fourier transform of (2.2.11) may not seem
obvious, but it helps to first add a small mass term 1

2m
2q2 to S(0). The

kinetic operator now becomes

K =

(
1 −i∂t
i∂t m2

)

, (2.2.14)

and the Feynman propagator becomes

G(t− t′;m2) =

(
m
2 e

−m|t−t′| − i
2ε(t− t′)e−m|t−t′|

i
2ε(t− t′)e−m|t−t′| 1

2me
−m|t−t′|

)

. (2.2.15)

For small m one recovers (2.2.11), except that one finds in the qq prop-
agator the constant 1

2m . It cancels in KG, but if one were to evaluate

Feynman graphs for a massive theory (with for example V = 1
2m

2q2+λq4)
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in the infinite t-interval one would need to include the contributions from
this 1

2m term. The limit m → 0 would then lead to infrared divergences
which makes the theory ill-defined. On a finite t-interval one must spec-
ify boundary conditions, similarly to what we did in the massless theory
with the matrix P in (2.2.13), and the mass singularity is removed by
the boundary conditions. The Fourier transform of G(t− t′;m2) is easily
found

G(t− t′;m2) =

∫ ∞

−∞

dk0

2π
eik0(t−t′)





m2

k2
0+m2

−k0
k2
0+m2

k0
k2
0+m2

1
k2
0+m2



 . (2.2.16)

By decomposing m2 into (k2
0 +m2)− k2

0 we see once again how the delta
function singularity in the q̇q̇ propagator is canceled in the pp propagator:
the propagator in (2.2.16) is clearly nonsingular as t′ → t, but the q̇q̇
propagator corresponds to the numerator k2

0 and is singular as t′ → t. We
can now study divergences in phase space.

All loops computed with phase space Feynman diagrams are finite be-
cause in t-space all propagators are bounded and all integration regions
are finite. One can also explain by power counting methods (which are
formulated in momentum space) why phase-space path integrals are con-
vergent, while configuration space path integrals are only convergent after
taking the ghosts into account. The kinetic matrix has entries unity (from
the p2 term) and k (from the pq̇ term). Disregarding P (t, t′), on an infi-
nite interval the pp propagators vanish, while the qq propagators behave
like 1

k2 for large k but the pq propagators go only like
∫
dkk/k2 and would

seem to lead to a ultraviolet divergence. However, the integral over k/k2

vanishes since it is odd in k. These results do not change if there is a
mass term of the form 1

2m
2q2 present.

To illustrate the calculations in phase space by another example, con-
sider the following Hamiltonian

Ĥ =
1

2
gαpig

1/2gijpjg
− 1

2
−α . (2.2.17)

For α = −1/4, this is just (2.1.1), but for α 6= −1/4 there are extra terms
proportional to α+ 1/4

Ĥ = Ĥ(α = −1/4) + Ĥ(α+ 1/4) ;

Ĥ(α+
1

4
) =

1

2
(α+

1

4
)ih̄

{

pi, g
ij∂j ln g

}

−1

2
(α+

1

4
)2h̄2gij(∂i ln g)(∂j ln g) . (2.2.18)

Since the extra terms are Weyl-ordered, we can at once go to the phase-
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space path integral. Suppose we were to compute

Trσ(x)e−
β
h̄
H =

∫

dx0

√

g(x0)σ(x0)〈x0|e−
β
h̄
H |x0〉 . (2.2.19)

(These kinds of expressions are found when one evaluates trace anomalies,
but these interpretations do not concern us at this point). The path
integral leads to

〈e−
β
h̄

∫ 0

−1
H(int)dτ

e−
β
h̄

∫ 1

0
H(int)(α+1/4)dτ 〉 (2.2.20)

with H(int) given by (2.2.8) and

−β
h̄
H(int)(α+

1

4
) = −i(α+

1

4
)(βpi)g

ij∂j ln g

+
1

2
(βh̄)(α+

1

4
)2gij(∂i ln g)(∂j ln g) . (2.2.21)

Since the trace is cyclic, the result for the path integral should be α
independent. To order (α + 1

4) there are no contributions since pi is
a quantum field whose vacuum expectation value vanishes.5 However,
to order (α + 1

4)2 there are two contributions: a tree graph with two

(α+ 1
4) vertices and a pp propagator, and further the vertex proportional

to (α + 1
4)2. Using the pp propagators from (2.2.6), the sum of both

contributions clearly cancels, as it should.
Upon eliminating the momenta pj , the phase space path integral be-

comes a configuration space path integral, and infinities are introduced
which are canceled by new ghosts, as we have discussed. The phase-space
approach should yield the same finite answers as the configuration space
approach. That this indeed happens is called Matthews’ theorem. We
illustrate it with a few examples, although a formal path integral proof
can also be given, see [53].

The interaction part of the action for the phase space path integral
differs from that for the configuration space path integral by the following
terms

−1

h̄

∫ 0

−β

{

H
(int)
phase(p, q)−H

(int)
conf (q)

}

dt =

−β
h̄

∫ 0

−1

1

2

{

gij(x)− gij(z)
}

pipjdτ

+
1

βh̄

∫ 0

−1

1

2
{gij(x)− gij(z)}

(

q̇iq̇j + bicj + aiaj
)

dτ

5 There is also a term linear in p in H(α = − 1
4
), namely the term −i

∫ 0

−1
pj(z

j −yj) dτ
in (2.2.7), but it does not contribute to the trace in (2.2.19) because z = y = x0 in
the trace.
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+
i

h̄

∫ 0

−1
pj(z

j − yj)dτ +
1

βh̄

∫ 0

−1

1

2
gij(x)(z

i − yi)(zj − yj)dτ

+
1

βh̄

∫ 0

−1
gij(x)(z

i − yi)q̇jdτ where x = z + τ(z − y) + q .

(2.2.22)

Inserting the complete field equation for p, namely pi = i
β gij(x)ẋ

i, into

the complete action for p, which reads − 1
2g
ij(x)pipj + ipẋ, one obtains, of

course, the complete action in configuration space, namely − 1
2gij(x)ẋ

iẋj

plus ghosts. However, if one calculates in perturbation theory, one de-
composes p and q into a free part (in-and-out fields) and the rest. These
free parts satisfy free field equations which differ, of course, from the full

field equations and for p they read p
(0)
i = i

β gij(z)q̇
j . Substituting these

free field equations into the kinetic part of the phase space action (of the
form ipq̇ − 1

2p
2) one finds the free part of the configuration space action

(−1
2 q̇

2), but the interaction parts of the phase-space and config-
uration space actions differ after substituting the free p field
equations. The difference is easily calculated in our case

−1

h̄
∆S =

1

βh̄

∫ 0

−1

1

2

{

gij(z)g
jk(x)gkl(z) + gil(x)− 2gil(z)

}

q̇iq̇l dτ

+
1

βh̄

∫ 0

−1

1

2
{gij(x)− gij(z)} (bicj + aiaj) dτ

+
1

βh̄

∫ 0

−1
{gij(x)− gij(z)} q̇i(zj − yj) dτ

+
1

βh̄

∫ 0

−1

1

2
gij(x)(z

i − yi)(zj − yj) dτ . (2.2.23)

Clearly, for linear sigma models with gij = δij and no background fields
(z = y), the actions are the same, ∆S = 0. The claim of Matthews’
theorem is now that the effects of the extra term h̄gij(z)δ(σ − τ) in the
q̇iq̇j propagator cancel the effects due to ∆S. In other words the phase
space approach and the configuration space approach should give the same
result.

To avoid confusion, we spell out the procedure in detail. In the phase

space approach one has an interaction L
(int)
phase(p, q). The interactions in the

configuration space approach are given by L
(int)
conf (q̇, q). The statement that

these interactions are different means that L
(int)
phase(p, q) 6= L

(int)
conf (q̇, q) where

p should be eliminated using the field equations of motion of S(0). This

field equation reads pi = gij(z)q̇
j . If one changes the notation in L

(int)
phase

and writes L
(int)
phase(iq̇, q), then one may use the same propagators for 〈qq〉
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and 〈qq̇〉 as in configuration space approach, but for 〈q̇q̇〉 the propagators
in the phase space approach and the configuration space approach are
different. The claim of Matthews’ theorem is then that one may either

work with L
(int)
phase and the nonsingular propagator for 〈q̇q̇〉, or with L

(int)
conf

but with singular propagators for 〈q̇q̇〉. Green functions (with p identified
with iq̇ on external lines) should be the same.

To bring out the essentials, we consider a simplified model, in which
z = y and gij(z) = δij and gij(x)−δij ≡ Aij(q) and we choose an ordering

of Ĥ such that there are no extra terms of order h̄2. Furthermore, the
model is one-dimensional, so i, j = 1. This leads to L = 1

2β q̇(1+A)q̇ with

A = A(q). We define H in the Euclidean case by iq̇p − H = −L. This

yields H = β
2 p

1
1+Ap. Then the interaction Hamiltonian and Lagrangian

read, respectively,

−1

h̄
H(int) =

β

2h̄
p

A

1 +A
p ⇔ − 1

h̄
L(int) = − 1

2βh̄
(q̇Aq̇ + bAc+ aAa) .

(2.2.24)
The free field equation for p reads βp = iq̇, and substitution into H int

produces a result which differs from −Lint because instead of A one finds
A/(1 + A) at vertices (and because there are no ghosts in H int). How-
ever, also the 〈q̇q̇〉 and 〈pp〉 propagators are different. In the phase space
approach the qq one-loop selfenergy receives contributions from a p-loop
and a seagull graph with a pp loop

�

�

+

�

.

The external lines denote A(q). In the configuration space approach there
are q̇q̇ loops and ghost loops but no seagull graph

�

�

+

�

�

+

�

�

.

Matthews’ theorem claims that both results are equal. Comparing both
results, we see that in the configuration space approach one is left with
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the integrand

1

4

{

(•∆•)2 − (••∆)2
}

=
1

4
{1− 2δ(σ − τ)} . (2.2.25)

The factor 1 agrees with the result one obtains in the Hamiltonian ap-
proach from the p-loop, whereas the factor 1

4(−2)δ(σ− τ) agrees with re-
sult one obtains in the Hamiltonian approach from the the seagull graph.
(To write the integration

∫
dτ of the seagull graph also as a double in-

tegral
∫
dτ
∫
dσ we added the factor δ(τ − σ). The δ(σ − τ) contracts

the selfenergy graph to a seagull graph.) Hence, the extra term in the q̇q̇
propagator (the δ(σ− τ)) gives the same contribution as the extra vertex
(ppAA).

The reader may verify that also other Green’s functions give the same
results. For example the p − p selfenergy gives the same result as minus
the q̇q̇ selfenergy (the minus sign comes from the factor i in p = iq̇)
because the mixed loops (with Ap and pA propagators or with Aq̇ and
q̇A propagators) agree, whereas in the phase-space case the loop with an
AA and a pp propagator plus the seagull graph with an AA propagator
gives the same result as in the configuration case the loop with an AA
and a q̇q̇ propagator. There are no ghost contributions to the 1-loop pp
selfenergy.

The difference between the Hamiltonian and Lagrangian approach to
quantum field theories with derivative interactions historically first be-
came a source of confusion in the 1940’s when “mesotron theories” (theo-
ries with scalar fields) were studied with gradient couplings. (QED was in
this respect simpler because it had no derivatives interactions, but scalar
QED with L = −|∂µϕ− ieAµϕ|2 was studied and it has the same difficul-
ties). Matthews’ theorem [51] clarified the situation for these theories, and
a general analysis for quantum mechanical models with double-derivatives
interactions was given by Nambu [52], and later by Lee and Yang [25].
By the 1970’s it had become clear that one could use the action itself
to obtain the interaction vertices, and the propagators were “covariant”,
by which is meant that propagators of derivatives fields were equal to
derivatives of propagators of the fields

〈∂µAν(x)∂ρAσ(y)〉 =
∂

∂xµ
∂

∂yρ
〈Aν(x)Aσ(y)〉 . (2.2.26)

To retain part of the canonical methods so that one could work out the
radiative corrections to current algebra, one introduced the notion of a
T ∗ product, so one wrote 〈B(x)C(y)〉 = 〈Ω|T ∗B(x)C(y)|Ω〉, where |Ω〉
denotes the vacuum. This T ∗ operator commutes with derivatives, and is
thus different from the usual time ordering symbol T which involves theta
functions θ(x0 − y0) and θ(y0 − x0) and thus does not commute with ∂

∂x0
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and ∂
∂y0

. In fact, for one time derivative the results of using T ∗ or T are

still the same because

∂

∂x0
〈Ω|TAµ(x)Aν(y)|Ω〉

= 〈Ω|T∂0Aµ(x)Aν(y)|Ω〉+ δ(x0 − y0)[Aµ(x), Aν(y)]

= 〈Ω|T∂0Aµ(x)Aν(y)|Ω〉
= 〈Ω|T ∗∂0Aµ(x)Aν(y)|Ω〉 (2.2.27)

since [Aµ(x), Aν(y)] = 0. But for two time derivatives the Hamiltonian
(canonical) propagator with T and the Lagrangian (covariant) propagator
with T ∗ differ. For example, for QED

∂

∂x0

∂

∂y0
〈Ω|TAµ(x)Aν(y)|Ω〉 =

∂

∂x0
〈Ω|TAµ(x)∂0Aν(y)|Ω〉

= 〈Ω|T∂0Aµ(x)∂0Aν(y)|Ω〉+ δ(x0 − y0)[Aµ(x), ∂0Aν(y)]

= 〈Ω|T ∗∂0Aµ(x)∂0Aν(y)|Ω〉+ ih̄δ4(x− y)ηµν (2.2.28)

where we used that ∂0Aν = P (Aν) + . . ..
As we have already seen in the case of nonlinear sigma models, in

the canonical approach there are extra vertices and extra terms in the
propagators, but all these extra effects cancels if one computes Green’s
functions. In the 1960’s “current algebra” was developed as a tool to
deal with the strong interactions in a nonperturbative way. This was an
operator formalism, which therefore used T products, but complicated
noncovariant extra terms (“Schwinger terms”) were found to be present
in the commutation relations of (in particular the space components of)
currents. To simplify the current algebras, the T ∗ product was introduced,
and relations between the current algebra with T ordering and with T ∗

ordering were developed. Here, of course, the theorems by Matthews
and Nambu were of some use. We shall not enter a discussion of current
algebras, but instead we now study the same problems in nonabelian
gauge theory. We do this for a change in Minkowski space.

Consider the nonghost sector. After adding the gauge fixing term
L(fix) = −1

2(∂µA
µ)2 the Lagrange density reads

L(q) = −1

2
(∂µA

µ)2 − 1

4
F 2
µν

=
1

2
(∂0Aj)

2 − 1

2
(∂0A0)

2 +
1

2
(∂jA0)

2 − 1

2
(∂iAj)

2

+ ∂0AjA0 ∧Aj − ∂jA0A0 ∧Aj −
1

4
(F 2

ij)
int +

1

2
(A0 ∧Aj)2

(2.2.29)
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where (F 2
ij)

int = F 2
ij − (∂iAj − ∂jAi)2 and A ∧B denotes fabcAbBc. The

conjugate momenta are

pj ≡ p(Aj) = ∂0Aj +A0 ∧Aj = D0Aj = D0A
j

p0 ≡ p(A0) = −∂0A0 = ∂0A
0 . (2.2.30)

The Hamiltonian density H = Ȧµp
µ − L becomes

H(p, q) =
1

2
(pj)2 + pjAj ∧A0 −

1

2
(p0)2 − 1

2
(∂jA0)

2

+ ∂jA0A0 ∧Aj +
1

2
(∂iAj)

2 +
1

4
(F 2

ij)
int . (2.2.31)

The Lagrangian density in the phase space approach is then

L(p, q) = pjȦj + p0Ȧ0 −H(p, q) . (2.2.32)

We define L(0) to be the terms quadratic in fields. The interactions in
phase space are given by

L(int)
phase(p, q) = −H(int)(p, q) = −pjAj ∧A0 − ∂jA0A0 ∧Aj −

1

4
(F 2

ij)
int .

(2.2.33)

On the other hand, in configuration space the interactions follow from
(2.2.29)

L(int)
conf (q) = −1

4
(F 2

µν)
int =

1

2
(F 2

0j)
int − 1

4
(F 2

ij)
int

=
[

(∂jA0 − ∂0Aj)Aj ∧A0 −
1

4
(F 2

ij)
int
]

+
1

2
(A0 ∧Aj)2 .

(2.2.34)

The reason for grouping these terms in this way will become clear.
If one first eliminates pµ = ∂S/∂Ȧµ from the action

∫ L(p, q) by using
the full nonlinear field equation pj = D0A

j and p0 = −∂0A0, one recovers,

of course L(q). One may check this by replacing pj in L(int)
phase(p, q) by

D0A
j , and further by substituting pj = A0 ∧Aj into the terms of L(p, q)

which are bilinear in p and q. One finds then

L(int)
phase − L

(int)
conf = −A0 ∧AjAj ∧A0 +A0 ∧AjȦj

−
[

∂A0A0 ∧Aj +
1

2
(A0 ∧Aj)2

]

− 1

2
(A0 ∧Aj)2 = 0 .

(2.2.35)

Suppose one performs perturbation theory, using the interaction pic-
ture, both with the Hamiltonian theory in phase space and with the La-
grangian theory in configuration space. One has then the vertices from
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L(int)
phase and L(int)

conf , and the propagators as they are found from the terms
bilinear in p and q, and linear in q, respectively

The propagators 〈pjAµ〉 and 〈p0Aµ〉 in phase space are the same as the
propagators 〈∂0A

jAµ〉 and 〈∂0A
0Aµ〉 in configurations space. Thus one

may substitute, as far as the propagators are concerned, the linear field
equation of pµ into the propagators. However, as we already discussed,
the 〈pµpν〉 propagators are not equal to the 〈∂0A

µ∂0A
ν〉 propagators (they

differ by contact terms with δ4(x− y)). To facilitate comparison, we may
therefore replace everywhere (both in the phase space action and in the
phase space propagators) pµ by ∂0A

µ, but then there are two sources of
extra terms in the phase space approach:

(i) the vertices L(int)
phase(p

µ → ∂0A
µ) differ from those in L(int)

conf by extra

terms L(int) extra
phase (p, q) = −1

2(Aj ∧A0)
2,

(ii) the propagators 〈∂0A
µ∂0A

ν〉phase in the phase space theory differ from
the propagators 〈∂0A

µ∂0A
ν〉conf of the covariant Lagrangian by the extra

contact terms

〈∂0A
µ∂0A

ν〉phase − 〈∂0A
µ∂0A

ν〉conf = −ih̄δ4(x− y)ηµν . (2.2.36)

The content of Matthews’ theorem is that all extra contributions cancels.
We now check this in a few instructive examples.

Consider first the A0A0 self-energy in the phase-space approach at the
one loop level. There is one extra diagram

∼ i

h̄

∫ (

−1

2

)

A0〈AiAi〉A0 (2.2.37)

where the cross denotes that this is an extra vertex. To find the extra
contributions from the propagators one first determine all interaction with
one time derivative. These are given by L(int) = −∂0AjAj∧A0. These are
ordinary vertices (vertices in the covariant theory), so there are no cross
contributions where both extra vertices and extra propagators contribute.
Two such vertices yield the following extra contribution

=
( i

h̄

)2 1

2!

∫ ∫

A0〈AiAi〉(−ih̄δ4(x− y))A0
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=
i

h̄

∫
1

2
A0〈AiAi〉A0 . (2.2.38)

The cross denotes the extra term in the propagator. Clearly the extra
contributions indeed exactly cancel

+ = 0 .

The same cancellation follows for the AjAj one-loop selfenergy.

Let us now see if the ghost sector gives extra contributions. The ghost
action is

L = −∂µb(∂µc+Aµ ∧ c) = ḃ(ċ+A0 ∧ c)− ∂jbDjc . (2.2.39)

The conjugate momenta (using left-differentiation, so p(b) = ∂
∂ḃ
S) are

p(b) = (ċ+A0 ∧ c) = D0c , p(c) = −ḃ . (2.2.40)

The Lagrangian in phase space (for left-differentiation) is

Lphase = ċp(c) + ḃp(b)− (p(b)− [A0, c])p(c)− ∂jbDjc . (2.2.41)

The interactions in phase space are

L(int)
phase = −p(c)A0 ∧ c− ∂jb(Aj × c) . (2.2.42)

The interactions in configuration space are

L(int)
conf = ∂0bA0 ∧ c− ∂jb(Aj × c) . (2.2.43)

Substituting the linearized field equation for p(c) we find that there are
no extra vertices

L(int)
phase(−p(c) = ḃ)− L(int)

conf = 0 . (2.2.44)

There are also no contributions with an extra propagator term since these
would have to come from 〈∂0b∂0c〉 but there are no interactions with ∂0c.
Thus in the ghost sector there are no subtleties.
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2.3 Path integrals for Dirac fermions

We shall now discuss the extension of the time slicing approach to fermions.
We distinguish between complex (Dirac) fermions and real (Majorana)
fermions. The latter have some special problems, so we begin with Dirac
fermions ψ for which the conjugate momentum (∂ψ̇\∂S = −iψ† when we
remove ψ̇ from the left) is not proportional to ψ. In order to integrate in
the path integral over fermions fields ψ, one must introduce Grassmann
variables. It is sometimes said that path integrals with Grassmann vari-
ables are mathematically not well founded. We have two answers to such
criticisms:
(i) In our approach we begin with operators (such as ψ̂ and ψ̂†) with-
out any Grassmann variables. Then when we convert expressions such as
Tr J exp(−βH) into discretized path integrals we introduce Grassmann
variables by means of mathematical identities. So the discretized path-
integrals are mathematically well-defined.
(ii) The question whether the continuum limit of the path integrals exists
is easier to prove for fermions than bosons because there are no conver-
gence problems with Berezinian integration:

∫
dθ θ = 1. In particular, in

our applications to anomalies we need only graphs with a given number of
loops. We are then working at the level of perturbation theory, and at this
level path integrals with fermions are manifestly finite and well-defined
(as they are also when bosons are presents).

For fermions the problem is to evaluate again expressions such as Tr J exp(−βH),
where H contains now also fermions. This Hamiltonian is constructed
from the Minkowskian action as H = q̇p−L, but once it is constructed, it
is a well-defined operator which acts in a well-defined Hilbert space. Her-
miticity, general coordinate invariance of H and positivity of the energy
define H uniquely up to corrections proportional to h̄2R. Supersymme-
try even determines the coefficient of R. In particular, there is no Wick
rotation needed: all fermionic operators ψ and ψ† in J and H are oper-
ators of the Minkowski theory, and ψ† is equal the hermitian conjugate
of ψ. When we insert complete sets of states in exp(− β

h̄H) we will be
led to a Euclidean path integral, but we arrive at this path integral by a
series of identities, and not by a Wick rotation of the fermionic fields ψ
and ψ†. The Minkowskian action for a free complex (Dirac) fermion in n
dimensions is

S =

∫ [

−(ψ†iγ0)

(

γ0 ∂

∂t
+ γk

∂

∂xk

)

ψ

]

dnx , (γ0)2 = −1 . (2.3.1)

For one-component spinors ψ in quantum mechanics this reduces to

S =

∫

iψ†ψ̇ dt . (2.3.2)
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The conjugate momentum of ψ is −iψ† and the equal-time anticommu-
tation relations yield {ψ,ψ} = {ψ†, ψ†} = 0 and further

{−iψ†, ψ} =
h̄

i
→ {ψ,ψ†} = h̄ . (2.3.3)

If there are more than one pair of ψ and ψ† we denote them by an index

a = 1, .., n, as in ψa and ψ†
b . Then

{ψa, ψ†
b} = h̄ δab . (2.3.4)

In curved space this index a is a flat index, related to a curved index i by
the vielbein fields eai(x) as usual in general relativity

ψa(t) = eai(x(t))ψ
i(t) . (2.3.5)

It is convenient to work with flat indices for fermions and curved indices
for bosons. Thus we shall be using xi(t) and ψa(t) where in both cases i
and a run form 1 to n.

Having defined the basic operators ψa and ψ†
b we shall be using, we

rewrite the trace as a path integral by inserting a complete set of states

constructed from ψa and ψ†
b . In this way we shall arrive at a path integral

representation of Tr J exp(−βH). This path integral has the appearance
of a Euclidean path integral (no i

h̄ in front of the action). One might
then, out of curiosity, wonder whether this Euclidean path integral could
also have been obtained from a Minkowskian path integral by making a

Wick rotation on the spinor fields ψa and ψ†
b (and of course rotating the

Minkowskian time tM to −itE where tE is the Euclidean time). This is a
tricky question which we do not need to answer because we are using well-
defined operators with given (anti) commutation relations, which were
derived from the Minkowski theory but which in our applications lead to
Euclidean path integrals. We repeat that we do not need to make any
Wick rotation on the fermionic fields. The Wick rotation on fermionic
fields has been discussed in [54].

One could try to parallel the bosonic treatment, and introduce eigen-
states of ψ̂, namely bras and kets, as well as also introduce a complete set
of “momentum” eigenstates, i.e. eigenstates of ψ̂† which are again bras
and kets. These eigenstates are coherent states as we shall see, so this
approach would lead to four kinds of coherent states, with several inner
products to be specified. This is one of the approaches in the literature
[55], but we shall follow a simpler approach which for bosons has already
been discussed in textbooks [32, 33]. Namely we shall only need one kind
of coherent bras and one kind of coherent kets, and thus need only one
inner product.
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We begin with Dirac fermions ψ̂a and ψ̂†
b with the usual equal-time

canonical anticommutation relations

{ψ̂a, ψ̂†
b} = h̄δab ; {ψ̂a, ψ̂b} = {ψ̂†

a, ψ̂
†
b} = 0 . (2.3.6)

For N = 1 supersymmetric system with Majorana fermions the conjugate
momentum is proportional to ψa itself, and for certain purposes one can
use Dirac brackets without having to distinguish between annihilation
and creation operators. For our purposes, however, we need to be able
to distinguish between ψ̂ and ψ̂†, and we shall later show how to do this
for N = 1 models. (We shall either add another set of free Majorana
fermions and then construct a larger Hilbert space, or combine pairs of
Majorana spinors into ψ̂ and ψ̂† and construct a smaller Hilbert space.
Both approaches yield the same final results for physical quantities as we
shall see). We repeat that in this section we restrict our attention to Dirac
fermions. This is enough for N = 2 models.

To define fermionic coherent states without having to write factors of
h̄±1/2 all the time, it is useful to introduce rescaled variables ψ̂a → h̄1/2ψ̂a

and ψ̂†
a → h̄1/2ψ̂†

a, satisfying
{

ψ̂a, ψ̂†
b

}

= δab . (2.3.7)

Later we shall scale back to reintroduce the factors of h̄. The coherent
states we need are then defined by (dropping hats from now on)

|η〉 = eψ
†
aη
a |0〉 ; ψa|0〉 = 0 (2.3.8)

〈η̄| = 〈0|eη̄aψa ; 〈0|ψ†
a = 0 . (2.3.9)

We choose the ηa and η̄a as independent complex (i.e., without reality

conditions) Grassmann variables even though ψ†
b = (ψb)†. Therefore we

write η̄a instead of η†a. (We could equally well have chosen η̄a to be given
by (ηa)† because this does not change the result of the Grassmann inte-
gration). The state |0〉 is the Fock vacuum for the ψ’s, and by definition it
commutes with the Grassmann numbers: |0〉ηa = ηa|0〉 and |0〉η̄a = η̄a|0〉.
The same property holds by definition for 〈0|.

It is clear that these coherent states satisfy the following relations

ψa|η〉 = ηa|η〉 ; 〈η̄|ψ†
a = 〈η̄|η̄a . (2.3.10)

To prove this one may expand the exponent. There are then only a finite
number of terms because η̄a1 η̄a2 = 0 when a1 = a2.

The inner product is given by

〈η̄|η〉 = eη̄aη
a
. (2.3.11)
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This relation follows from eAeB = eBeAe[A,B] with A = η̄aψ
a and B =

ψ†
aη
a. Since [A,B] commutes with A and B there are no further terms in

the Baker-Campbell-Hausdorff formula.
Grassmann integration is defined by
∫

dηaηb = δab ,

∫

dη̄aη̄b = δab ,

∫

dηa = 0 ,

∫

dη̄a = 0 . (2.3.12)

So, for example,

∫ n∏

a=1

dη̄adη
a
(

1 +
n∑

b=1

ηbη̄b
)

= δn,1 . (2.3.13)

Identities for one fermion are easily extended to the case of several
fermions by observing that one can factorize into spaces with different a,
for example

e
∑n

a=1
ψ†
aη
a

=
n∏

a=1

eψ
†
aη
a

= eψ
†
1 η

1
eψ

†
2 η

2
... eψ

†
n η

n
. (2.3.14)

The completeness relation reads

I =

∫ ( n∏

a=1

dη̄adη
a
)

|η〉e−η̄aηa〈η̄| . (2.3.15)

For one pair of η̄ and η the completeness relation is easily checked by
expanding the exponent
∫

dη̄dη(1 + ψ†η)|0〉(1− η̄η)〈0|(1 + η̄ψ) = |0〉〈0|+ ψ†|0〉〈0|ψ . (2.3.16)

The right hand side is the identity operator in Fock space. Note the
opposite sign in the exponent of the inner product and decomposition of
unity. From now on we shall mean by dξ̄dξ the product

dξ̄dξ ≡
n∏

a=1

(
dξ̄adξ

a) = dξ̄1dξ
1 . . . dξ̄ndξ

n = dξ̄n . . . dξ̄1dξ
1 . . . dξn .

(2.3.17)
We consider now the transition element between two coherent states

〈η̄|e−β
h̄
Ĥ |η〉 . (2.3.18)

We assume that Ĥ depends on ψ̂a, ψ̂†
a (and on x̂i, p̂i which we suppress

writing) with again an arbitrary but definite a priori operator ordering.

In order to compute traces like Tr J exp(−β
h̄H), we shall use the com-

pleteness relation for coherent states to define the trace, and then all
Grassmann variables are integrated over and disappear.
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We begin by inserting N−1 complete sets of coherent states and obtain
then (for clarity writing the integral signs between the coherent states to
which they belong)

〈η̄|e−β
h̄
Ĥ |η〉

= 〈η̄|e− ε
h̄
Ĥ |ηN−1〉

∫

dη̄N−1dηN−1e
−η̄N−1ηN−1〈η̄N−1|e−

ε
h̄
Ĥ |ηN−2〉

. . . 〈η̄1|e−
ε
h̄
Ĥ |η〉 ; η̄ ≡ η̄N , η ≡ η0 , ε = β/N . (2.3.19)

This is analogous to the insertion of N − 1 sets of x eigenstates by Dirac.
Next we introduce N other complete sets of coherent states which are
analogous to the N complete sets of p eigenstates of Feynman. We do
this to obtain a fermionic midpoint rule. We consider thus

〈η̄k+1|e−
ε
h̄
Ĥ |ηk〉 =

∫

dχ̄kdχk〈η̄k+1|e−
ε
h̄
Ĥ |χk〉e−χ̄kχk〈χ̄k|ηk〉 . (2.3.20)

Weyl ordering of fermionic operators ψ̂a and ψ̂†
a is defined by expanding

(η̄aψ̂
a+ ηaψ̂†

a)
N and retaining all terms with a given number of operators

in the order they come. For one fermion one has

(m+n)!(ψ̂mψ̂†n)W =

(
∂

∂η̄

)m ( ∂

∂η

)n

(η̄ψ̂+ηψ̂†)N ; N = m+n (2.3.21)

where m and n can only take the value 0 and 1. For several fermions one
has for example

(ψ̂aψ̂†
b)W =

1

2
(ψ̂aψ̂†

b − ψ̂
†
bψ̂

a)

(ψ̂aψ̂bψ̂†
c)W =

1

6
(2ψ̂aψ̂bψ̂†

c − ψ̂aψ̂†
cψ̂

b + ψ̂bψ̂†
cψ̂

a + 2ψ̂†
cψ̂

aψ̂b)

=
1

2
(ψ̂aψ̂bψ̂†

c + ψ̂†
cψ̂

aψ̂b) (2.3.22)

where in the last line we kept ψaψb together. Weyl ordering of fermions
is further explained and worked out in appendix C.

Given a Weyl ordered operator B̂(ψ̂†, ψ̂), the following midpoint rule
holds

〈η̄|B̂|η〉 =

∫

dχ̄dχe−χ̄χ〈η̄|χ〉B
(

χ̄,
1

2
(χ+ η)

)

〈χ̄|η〉

=

∫

dχ̄dχe−χ̄χ〈η̄|χ〉B
(1

2
(η̄ + χ̄), χ

)

〈χ̄|η〉 . (2.3.23)

Both formulas are true, but we shall only use the first one. The proof
of this fermionic midpoint rule can either be given by following the same
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steps as in the bosonic case, or by starting with an operator (ψ̂†)k (or (ψ̂)k)

for which (2.3.23) is obvious, and then using the property that if Â is Weyl

ordered then also 1
2(ψ̂Â± Âψ̂) is Weyl ordered. Repeated application of

this property to Â = (ψ̂†)k then proves the fermionic midpoint rule for

any operator B̂ which is a polynomial in ψ̂ and ψ̂†.
Next we use again the linear approximation. That is, we replace the

Weyl-ordered operators (exp(− ε
h̄Ĥ))W by exp(− ε

h̄ĤW ). In matrix ele-
ments (in particular the kernels of the path integral) these two expressions
differ by terms which are of order ε2 and higher, and in the path integral
these extra terms do not contribute. For example, if Ĥ = ψ̂†

aψ̂
a then

(Ĥ)W = 1
2(ψ̂†

aψ̂
a− ψ̂aψ̂†

a)+n and the ε2 terms in (exp(− ε
h̄Ĥ))W are given

by ε2

2h̄2 (ψ̂†
aψ̂

aψ̂†
bψ̂

b)W while exp(− ε
h̄ĤW ) yields ε2

2h̄2 (ψ̂†
aψ̂

a)W (ψ̂†
bψ̂

b)W . The

difference is ε2n
8h̄2 , see appendix C, equation (C.14). These terms of order

ε2 do not contribute for ε → 0. In the bosonic case one had two terms
p∆q and εp2 in the exponent and whereas p′ = p− i

ε∆q is of order ε−1/2,
the phase space variable p itself is of order ε0. For fermions there are not
two terms in the exponent, but only one term χ̄∆χ. Thus for fermions
there are no subtleties.

After rewriting the Hamiltonian in Weyl ordered form and applying the
linear approximation we arrive at

〈η̄| exp
(

−β
h̄
Ĥ
)

|η〉 =

∫
(
N−1∏

k=1

dη̄kdηke
−η̄kηk

)(
N−1∏

k=0

dχ̄kdχke
−χ̄kχk

)

N−1∏

k=0

〈η̄k+1|χk〉 exp

(

− ε
h̄
H

(

χ̄k,
1

2
(ηk + χk)

))

〈χ̄k|ηk〉 (2.3.24)

where 〈η̄N | = 〈η̄| and |η0〉 = |η〉. Substituting the inner products for
coherent states, and using the lemma

∫

dη̄kdηke
−η̄k(ηk−χk−1)f(ηk) = f(χk−1) (2.3.25)

we arrive at the following suggestive result

〈η̄| exp
(

−β
h̄
Ĥ
)

|η〉 =

∫
(
N−1∏

k=0

dχ̄kdχk

)

exp

[

η̄χN−1 − ε
N−1∑

k=0

{

χ̄k

(
χk − χk−1

ε

)

+
1

h̄
H

(

χ̄k,
χk + χk−1

2

)}]

(2.3.26)

where χ−1 ≡ η.
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In the continuum limit one obtains the action S =
∫
χ̄χ̇ dtE for χ in the

exponent of e−
1
h̄
S . This action could have been obtained by starting form

the Minkowski action S = i
2

∫
χ̄χ̇ dtM and then continuing tM → −itE

to Euclidean time tE . However, we started from the Minkowski action
which we only used to derive the anticommutation relation of the ψa and
ψ†
a, then we took the Hamiltonian (the usual Hamiltonian of Minkowski

space) and started computing 〈η̄|e−β
h̄
Ĥ |η〉 using well-defined rules. The

outcome is (2.3.26), with the action S =
∫
χ̄χ̇ dtE for χ. We shall refer to

this as the Euclidean action for χ.
The term η̄χN−1 is the extra term which one encounters already in

path integrals with bosonic coherent states [32, 33]. It comes from the
inner product 〈η̄|χN−1〉. It is needed in the continuum theory with η̄χ(0)−
∫ 0
−β χ̄(t)χ̇(t)dt in order that the field equation for χ(t) be given by d

dt χ̄(t) =

0 without extra boundary terms. (Note that χ(t = −β) = η and χ̄(t =
0) = η̄ hence δχ(t) vanishes at t = −β but not at t = 0). However, we
shall go on with the discretized approach and not yet make this (or any
other further) approximations.

Since η̄χN−1 is at most linear in quantum deviations we get rid of this
term by introducing again the background formalism. We decompose χk
and χ̄k into a background part ξk and ξ̄k, and a quantum part ψk and ψ̄k

χak = ξak+ψak with k = −1, .., N−1 , χ̄ka = ξ̄ka+ψ̄ka with k = 0, .., N .
(2.3.27)

Again ξak and ξ̄ka are independent complex Grassmann variables, and
idem for ψak and ψ̄ka. For k = −1 we already defined χ−1 = η. The
background fermions are supposed to satisfy the boundary conditions,
hence χ−1 = ξ−1 = η and ψ−1 = 0. Similarly χ̄N = ξ̄N = η̄ and ψ̄N = 0.
Of course dχ̄kadχ

a
k = dψ̄kadψ

a
k , since Berezin integration is translationally

invariant.
Next we split off a free partH (0) fromH. In our applications, we always

shall choose H(0) = 0 for the fermions, so we concentrate on this case.
However, nonvanishing H (0) can also be handled by our methods. (All
our applications are to massless fermions; had there been a mass term
present, we would have put it into H (0)).

To be able to extract the interaction part of the action from the path
integral, we introduce external sources K̄ka and Ka

k which couple to ψak
and ψ̄ka, and study the quadratic part of the path integral first

Z
(0)
N (K, K̄) =

∫
(
N−1∏

k=0

dψ̄kadψ
a
k

)

exp
(

−1

h̄
S(0)

)

−1

h̄
S(0) = −

N−1∑

k=0

ψ̄ka(ψ
a
k − ψak−1) +

N−1∑

k=0

(K̄kaψ
a
k + ψ̄kaK

a
k )
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(2.3.28)

where we recall that ψa−1 = 0. All remaining parts of χ̄χ̇ and η̄χN−1 in

(2.3.26) combine with H into what we shall call H (int). Just as in the
bosonic case, the kinetic terms are not diagonal. In the bosonic case we
made therefore first an orthogonal transformation on the qjk which diago-
nalized the kinetic terms, but the fermionic kinetic terms are sufficiently
simple that we need not first diagonalize them. By completing squares
one finds

−ψ̄kaAklψal + K̄kaψ
a
k + ψ̄kaK

a
k = −(ψ̄ka − K̄k′aA

−1
k′k)Akl(ψ

a
l −A−1

ll′ K
a
l′)

+K̄ka(A
−1)klK

a
l (2.3.29)

where A is the lower triangular matrix

Akl = δkl − δk,l+1 ; k, l = 0, N − 1 ; A =









1 0 0 . 0
−1 1 0 . 0
0 −1 1 . .
. . . . 0
0 . 0 −1 1









(2.3.30)
The inverse of the matrix A is given by

A−1
kl = 0 if k < l

A−1
kl = 1 if k ≥ l ; A−1 =









1 0 0 . 0
1 1 0 . 0
1 1 1 . .
. . . . 0
1 1 . 1 1









(2.3.31)

(hence A−1 is also lower triangular). The integration over ψ̄ka and ψak in

Z(0)(K, K̄) yields unity since detAkl = 1. Hence

Z
(0)
N (K, K̄) = exp

N−1∑

k,l=0

K̄kaA
−1
kl K

a
l . (2.3.32)

The propagators follow by twice differentiating Z (0). We find

〈ψakψ̄lb〉 =
∂

∂Kb
l

∂

∂K̄ka
Z(0)

∣
∣
∣
∣
K=K̄=0

= A−1
kl δ

a
b . (2.3.33)

Since H depends on χ̄k and 1
2(χk+χk−1), we rather need the propagators

for the ψk−1/2 where

ψk−1/2 ≡
1

2
(ψk + ψk−1) . (2.3.34)
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One clearly has

〈ψak−1/2ψ̄lb〉 =
1

2
(A−1

k,l +A−1
k−1,l)δ

b
a =







1 if k > l
1/2 if k = l
0 if k < l






δba . (2.3.35)

The right-hand side contains the same discretized theta function as en-
countered in the bosonic case. The ψψ and ψ̄ψ̄ propagators clearly vanish.
In the continuum limit

〈ψa(t)ψ̄b(t′)〉 = θ(t− t′)δab (2.3.36)

but when in doubt we shall go back to the discretized propagators with
the discretized theta function.

The correlation function obtained from the path integral formalism
are always time-ordered, an automatic consequence of the time-slicing in
which the factors exp(−εĤ/h̄) move one from one time to the next. Thus
the fermion propagator in (2.3.36) should be interpreted as

〈ψa(t)ψ̄b(t′)〉 = δab if t > t′

〈ψa(t)ψ̄b(t′)〉 =
1

2
δab if t = t′

〈ψ̄b(t′)ψa(t)〉 = 0 if t′ > t (2.3.37)

The equal-time propagator is now well-defined.
The fermionic path integral for the transition element in the discretized

formulation reads

T (η̄, η;β) =

[

exp

(

−1

h̄
H(int)

)

exp K̄kaA
−1
kl K

a
l

]

K=K̄=0
(2.3.38)

where H(int) follows from (2.3.26) and (2.3.27)

−1

h̄
H int

= − ε
h̄

N−1∑

k=0

H

(

ψ̄ka → −
∂

∂Ka
k

,
1

2
(ψak + ψak−1)→

1

2

(

∂

∂K̄ka
+

∂

∂K̄k−1,a

))

+η̄aξ
a
N−1 −

N−1∑

k=0

ξ̄ka(ξ
a
k − ξak−1) . (2.3.39)

We have suppressed the dependence of H on ξ̄ka and 1
2(ξak + ξak−1) for

notational simplicity. All terms linear in quantum fields except those in
H cancel if we require that the background fermions ξ and ξ̄ satisfy the
(discretized) equations of motion of S(0). In particular, the term η̄ψ(0)
cancels against the term

∫
χ̄ψ̇ coming form the last term in (2.3.39). The
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background fermions fields are then all constant because H (0) = 0. Hence
ξak = ηa, for all k = −1, 0, 1, .., N − 1 and ξ̄ka = η̄a for all k = 0, 1, .., N . It
is instructive to check that all terms linear in the quantum variables ψak
and ψ̄k,a cancel.

The path integral can now formally be written in the continuum limit
as

〈η̄|e−βH |η〉 =

∫

dψ̄dψ e
−
∫ 0

−β ψ̄ψ̇ dt−
1
h̄

∫ 0

−β Hdt+η̄aη
a

=
〈

e
− 1
h̄

∫ 0

−β S
(int)dt+η̄aηa

〉

(2.3.40)
with propagators 〈ψa(t)ψ̄b(t′)〉 = θ(t − t′)δab , and S(int) = H because we

took H(0) = 0. The Hamiltonian H depends on η̄a+ ψ̄a(t) and ηa+ψa(t)
and ψ(t) vanishes at t = −β while ψ̄(t) vanishes at t = 0. The extra term
eη̄aη

a
will play an important role in the computation of anomalies. It is

equal to the inner product 〈η̄|η〉 = eη̄aη
a
.

2.4 Path integrals for Majorana fermions

In the previous section we developed a path integral formalism for Dirac

spinors ψa and ψ†
b satisfying {ψa, ψ†

b} = h̄δba. However, for many ap-
plications one needs Majorana spinors. The Dirac bracket for Majorana
spinors ψa reads {ψa, ψb} = h̄δba, but one cannot directly construct a path
integral formalism for Majorana spinors because we need separate opera-

tors ψa and ψ†
b in order to construct coherent states. There are two ways

to achieve this objective: either by adding an extra set of free Majorana
fermions, or by combining pairs of Majorana spinors into complex spinors
ψ and ψ†. We discuss these constructions separately. When one is dealing
with one Majorana spinor (or an odd number of Majorana spinors), only
the former procedure can be used.

Doubling of Majorana spinors. One way to construct separate
operators ψ and ψ† is to extend the set of interacting Majorana spinors
ψa1 with a = 1, .., n by adding another set of free Majorana spinors ψa2
with again a = 1, .., n. The Hamiltonian depends only on ψa1 but not on
ψa2 . We then combine ψa1 and ψa2 into creation and annihilation operators
as follows

ψa =
1√
2
(ψa1 + iψa2) ; ψ†

a =
1√
2
(ψa1 − iψa2) . (2.4.1)

For convenience we rescale the fermions such that there are no h̄ in the
brackets

{ψai , ψbj} = δabδij ; {ψa, ψ†
b} = δba . (2.4.2)

Further, of course, {ψa, ψb} = {ψ†
a, ψ

†
b} = 0.
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Given these operators ψ and ψ† we can now construct the path integral.
The transition element is according to (2.3.26)

〈η̄|e−βH(ψ1)|η〉 =

∫ N−1∏

k=0

dχ̄kdχk eη̄χN−1

exp
(

−ε
N−1∑

k=0

χ̄k(χk − χk−1)/ε−
ε

h̄
HW (χ̄k, (χk + χk−1)/2)

)

(2.4.3)

where the operators ψ̂a1 in H are first written as (ψ̂a+ ψ̂†
a)/
√

2, and again
χ−1 = η. After Weyl reordering with respect to ψ and ψ† one then
finds HW as a function of χ̄k and (χk + χk−1)/2 according to Berezin’s
theorem. In fact, because H originally only depended on ψa1 but not on
ψa2 , it depends only on the sum of χ̄k and 1

2(χk + χk−1). One may then
introduce a background/quantum split of χ and χ̄ and H then depends
only on ψ1,bg +ψ1,qu. One constructs propagators for ψ1,qu, and the path
integral becomes an integral over ψ1,bg.

In applications one begins by considering a trace Tr J exp(−βH) in
a quantum field theory, and then converts this trace to a problem in
quantum mechanics by representing the Dirac matrices γa by Majorana
spinors

√
2 ψ̂a1 with the same anticommutation relations. One then adds

free fermions ψ̂a2 as explained above. Since J and H depend on ψ̂1, one

combines ψ̂1 and ψ̂2 into ψ̂ = (ψ̂1 + iψ̂2)/
√

2 and ψ̂† = (ψ̂1 − iψ̂2)/
√

2.

The matrix elements of ψ̂1 are the same as the matrix element of γa.
Thus the trace is still well-defined: the Hilbert space on which ψ̂1 acts is
obtained by acting with ψ̂† on the vacuum annihilated by ψ. Adding a
free set of fermions implies that one is considering a larger Hilbert space.
One must then afterwards divide by the dimension of the subspace which
is due to ψ2. For an application where this construction is explained in
great detail, see section 6.1.

Halving of Majorana spinors. The other way of constructing path
integrals for Majorana spinors ψa is to combine pairs of Majorana spinors
into complex Dirac spinors. This evidently is only possible if one has an
even number of Majorana spinors. One defines then

χA =
1√
2
(ψ2A−1 + iψ2A) ; χ†

A =
1√
2
(ψ2A−1 − iψ2A) (2.4.4)

where A = 1, .., n/2 and {χA, χ†
B} = δAB. The inverse relations are given

by

ψa =
1√
2
(χ(a+1)/2 + χ†

(a+1)/2) if a is odd
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ψa =
1√
2
(−iχa/2 + iχ†

a/2) if a is even . (2.4.5)

We define then again bras |η〉 and kets 〈η̄| by using the operators χ† and
χ, respectively, to construct coherent states. The Hamiltonian depends on

ψa, so we should first express ψa in terms of χA and χ†
A, then Weyl-order

this expression, and then go over to the path integral. Once again, we
may then introduce a background/quantum split for the fermions and end
up with a path integral for the transition element 〈η̄| exp(−βH)|η〉 where
one integrates over η̄ and η, see (6.2.47). Then one changes integration
variables from the n/2+n/2 variables η̄ and η to new variables ψa1 where
a = 1, .., n, and one ends up with a path integral over these ψa1 . For an
application where all details are discussed see section 6.2 below (6.2.5).

We conclude this section with a discussion of how antiperiodic boundary
conditions (APB) and periodic boundary conditions (PBC) arise in the
continuum path integrals. We will derive these results straightforwardly
from our discretized path integrals. When we compute anomalies in the
second part of this report we shall explicitly perform the integrals over
Grassmann variables at the discretized level, and then we shall not need
to know whether in the continuum limit fermionic fields are periodic or
antiperiodic. However, in the approach of Alvarez-Gaumé and Witten
the continuum limit is first taken, and then one must evaluate one-loop
determinants with certain boundary conditions for the quantum fields.

Let us first go back to Dirac fermions and the transition element 〈η̄| exp(−βH)|η〉.
Recall the expression in (2.4.3). We want to take the trace of this transi-
tion element, so first we discuss how to take the trace of an operator.

The trace of an operator A is given by

TrA =

∫ √

g(x0)
n∏

i=1

dxi0

n∏

a=1

(dχadχ̄a) e
χ̄χ 〈χ̄, x0|A|χ, x0〉 (2.4.6)

where
∏n
a=1(dχ

adχ̄a) can be written as dχ1 . . . dχndχ̄n . . . dχ̄1. The states
|χ, x0〉 and 〈χ̄, x0| contain the fermionic coherent states. The factor
√

g(x0) comes from the completeness relation
∫ |x〉

√

g(x)〈x|dx = I. We
take here the Grassmann variables χ and χ̄ as independent and not re-
lated by complex conjugation. The only property they satisfy is Berezin
integration

∫
dχ̄a χ̄a = 1 and

∫
dχa χa = 1 for fixed a. Note that the

order of dχdχ̄ and the sign in the exponent exp(χ̄χ) are different in
the trace formula from the completeness relation in (2.3.15). To check
this trace formula, consider one pair χ, χ̄. Then

∫
dχdχ̄ (1 + χ̄χ) 〈0|(1 +

χ̄ψ)A(1 + ψ†χ)|0〉 is equal to 〈0|A|0〉 + 〈0|ψAψ†|0〉 = 〈0|A|0〉 + 〈1|A|1〉,
where |1〉 = ψ†|0〉. We assume here that χ commutes with A, so A must
have even statistics (we sometimes use the not quite correct terminology
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that A is commuting). This is indeed equal to TrA.6

We now return to the trace of the transition element

Tr e−βH =

∫

dηadη̄a eη̄η 〈η̄| exp(−βH)|η〉 . (2.4.7)

The transition element contains the expected path integral over dχdχ̄ with
action − ∫ 0

−β χ̄χ̇dt− 1
h̄

∫ 0
−β Hdt, plus the extra term η̄χ(0). Performing the

integration over dη̄ of
eη̄η eη̄χ(0) (2.4.8)

leads to a factor (η+χ(0)) which is a fermionic delta function δ(η+χ(0))
because

∫
dη(η + χ(0))f(η) = f(−χ(0)). Subsequent integration over η

leads then to
χ(0) = −η (ABC) . (2.4.9)

Recalling that χ(−β) = η, this means that the path integral is over paths
χ(t) with ABC.

On the other hand, consider the trace with a matrix γ5, Tr γ5e−βH .
As we show in section 6.1, the QM operator corresponding to γ5 is (−)F

where F is the fermion number operator. The path integral is as before,
except that γ5|η〉 = | − η〉 7. The extra terms are now

e−η̄η eη̄χ(0) . (2.4.10)

Integration over dη̄ now yields a factor (−η+χ(0)). Thus one obtains the
same path integral as before, but now with periodic boundary conditions

χ(0) = η (PBC) . (2.4.11)

6 At the risk of confusing the non-expert reader, let us mention that one can actu-
ally distinguish between a trace and a supertrace, where by supertrace we mean the
usual trace but with a minus sign for the fermionic states. The Jacobian in quan-
tum field theory leads to a superdeterminant and a supertrace; this is not a choice
but can be proven [56]. In the quantum mechanical model one can also distinguish
between an ordinary trace and a supertrace. Both traces are mathematically consis-
tent operations, and only physics can decide which one to choose. In the quantum
mechanical case one needs the ordinary trace since one is taking the trace in spinor
space. The 2n/2 states in spinor space split into two sets, one set with even num-
bers of ψ† operator and the other set with an odd number. For two states |0〉 and
|1〉 ≡ ψ†|0〉, the trace of an operator A is 〈0|A|0〉+〈1|A|1〉 while the supertrace would
be 〈0|A|0〉 − 〈1|A|1〉. We need a trace in the QM case because in the original formu-
lation in terms of quantum field theory we needed a trace. The issue whether one
should use a trace or a supertrace in finite temperature physics arose in the 1980’s.
In [57] a trace had been used, but in [58] it was argued that one needs a supertrace.
It was finally settled that one needs a trace [59].

7 The proof is as follows. Consider for simplicity 2 dimensions. Then γ5 = −iγ1γ2 =
ψψ† − ψ†ψ with ψ = 1

2
(γ1 + iγ2) and ψ† = 1

2
(γ1 − iγ2). Acting with this γ5 on

|η〉 = eψ
†η|0〉 = (1 + ψ†η)|0〉 yields | − η〉.
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2.5 Direct evaluation of the transition element to order β.

In this section we shall determine the transition element 〈z| exp(− β
h̄Ĥ)|y〉

to order β for the Hamiltonian

Ĥ =
1

2
g−1/4p̂ig

1/2gij p̂jg
−1/4 . (2.5.1)

We shall not use path integrals but operatorial methods. We shall insert
a complete set of p eigenstates, expand the exponent, move p̂ operators
to the p eigenstate and x̂ to the x eigenstate, and in this way one gets an
answer that is completely unambiguous. We shall determine the order β
corrections to the flat space transition element. The operator Ĥ corre-
sponds to the regulator of scalar field theories which preserves Einstein
invariance. Because the leading term in the transition element is propor-
tional to exp(−(z − y)2/2βh̄) we take z − y to be of order

√
β. At no

stage in the calculation is there any ambiguity: we move operators p̂ next
to eigenstates |p〉 or 〈p| where they become c-numbers p, and operator
x̂ next to eigenstates |x〉 or 〈x| where they become c-numbers x, taking
carefully commutators into account. The path integral should exactly re-
produce these results, and this is verified through two-loop orders in the
next section.

We expand the exponent and take all terms in the expansion into ac-
count which contain none, one or two commutators. The final result will
factorize into a classical part, a one-loop part which is given by the Van
Vleck-Morette determinant, and a two-loop part proportional to the scalar
curvature. As expected the final result preserves Einstein invariance: it
is a biscalar as we shall explain.

We first prove that the operator Ĥ in (2.5.1) is Einstein invariant. We
follow here DeWitt [9]. To demonstrate this, we note that infinitesimal
general coordinate transformations xi → x′i ≡ xi + ξi(x) are generated
by the antihermitian operator

ĜE =
1

2ih̄
(p̂kξ

k(x̂) + ξk(x̂)p̂k) . (2.5.2)

Coordinates transforms then as

δx̂j = [x̂j , ĜE ] = ξj(x̂) . (2.5.3)

The momenta transform as follows

δp̂j = [p̂j , ĜE ] = −1

2

(

p̂k
∂ξk(x̂)

∂xj
+
∂ξk(x̂)

∂xj
p̂k

)

(2.5.4)

which agrees with the symmetrized tensor law p′j = 1
2

{
∂xk

∂x
′j , pk

}

for x
′j =

xj + ξj . (There is, of course, no transport term −ξk∂kpj because pj does

76



not depend on xk). To simplify the notation we shall from now on omit
the hats on operators. For what follows, it is useful to rewrite this result

in factored form as p′j = ∂xi

∂x
′j (pi + more). To this purpose we write

p′j =
∂xi

∂x′j pi −
1

2

[

∂xi

∂x′j , pi

]

(2.5.5)

and rewrite the last term as follows [7, 9]
[

∂xi

∂x′j , pi

]

= ih̄
∂x

′k

∂xi
∂2xi

∂x′k∂x′j = ih̄
∂

∂x′j
ln det

∂xi

∂x′k

=
∂xi

∂x′j

(

ih̄
∂

∂xi
ln

∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣

)

.

Hence under a finite general coordinate transformation the momenta
transform as follows

p′j =
∂xi

∂x′j

(

pi −
1

2
ih̄

∂

∂xi
ln

∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣

)

. (2.5.6)

Consider now the operator g1/4pig
−1/4 where g = det gij . Using g′(x′) =

∣
∣
∣
∂x
∂x′

∣
∣
∣

2
g(x), it is seen to transform as follows 8

(g′)1/4p′i(g
′)−1/4

= g1/4

∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣

1/2 ∂xj

∂x′i

(

pj −
1

2
ih̄

∂

∂xj
ln

∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣

) ∣
∣
∣
∣

∂x

∂x′

∣
∣
∣
∣

−1/2

g−1/4

= g1/4 ∂x
j

∂x′i pjg
−1/4 =

∂xj

∂x′i (g
1/4pjg

−1/4) . (2.5.7)

Similarly

(g′)−1/4p′i(g
′)1/4 =

(

g−1/4pjg
1/4
) ∂xj

∂x′i . (2.5.8)

8 The transformation rule g′(x′) =
∣
∣ ∂x
∂x′

∣
∣
2
g(x), if of course well-known from the ten-

sor calculus of classical general relativity, but we should really derive this result
by evaluating the commutator of ĜE with g(x̂). One can achieve this by writ-
ing ĜE as the sum of the orbital part given in (2.5.2) and the following spin
part Ĝspin(ξ) =

∫
dnx (ξλ∂λgµν + (∂µξ

λ)gλν + (∂νξ
λ)gµλ)

∂
∂gµν

. The structure of

a generator as a sum of an orbital part and a spin part is well-known from the
case of Lorentz symmetry. The orbital and spin generator always commute. The
spin generator must therefore satisfy the same algebra as the orbital generator,
[ĜE(ξ1), ĜE(ξ2)] = ĜE(∂νξ1ξ

ν
2 − ξν1∂νξ2), and this fixes the spin generator [60]. In

the commutator of ĜE the transport term from the orbital part cancels the transport
term of the spin part (so that a scalar field φ(x̂) actually commutes with ĜE). It is
then straightforward to check that Ĥ commutes with ĜE .
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Returning to the Hamiltonian, we obtain

Ĥ ′ =
1

2

(

g−1/4pkg
1/4 ∂x

k

∂x′i

)(

∂x
′i

∂xm
∂x

′j

∂xn
gmn

)(

∂xl

∂x′j g
1/4plg

−1/4

)

= Ĥ .

(2.5.9)

Hence, we demonstrated that Ĥ is Einstein invariant, [Ĥ, ĜE ] = 0. In a

similar manner one can demonstrate that Ĥ is Lorentz invariant when
fermions are present, provided one replaces pi by a Lorentz covariant
derivatives πi. (For N = 2 models the Lorentz generator is given by Ĵ =
1
2λab(x)ψ

a
αψ

b
α = λab(x)ψ

†aψb with α = 1, 2 and δψc = [ψc, Ĵ ] = λcbψ
b.

It leaves the coordinates xi inert but transforms the momenta pj). It is

defined by πi = pi − ih̄
2 ωiabψ

a
αψ

b
α and it is Lorentz invariant if one also

adds a spin term with ∂/∂ωiab to Ĵ which transforms ωiab , similar to the

spin term in Ĝ 7
E . For N = 1 models α = 1, and using Dirac brackets the

same results are obtained.
We turn now to the task of evaluating

〈x| exp

(

−β
h̄
Ĥ

)

|p〉 (2.5.10)

with

Ĥ =
1

2
g−1/4p̂ig

1/2gij p̂jg
−1/4 . (2.5.11)

Expanding the exponent in (2.5.10), we define

〈x|Ĥk|p〉 ≡
2k∑

l=0

Akl (x)p
l〈x|p〉 (2.5.12)

where Akl (x) is a c-number function and pl denotes a homogeneous poly-
nomial of order l in the momenta.

In order to compute the transition amplitude 〈x| exp
(

−β
h̄Ĥ

)

|y〉 to or-

der β compared to the leading terms, it will turn out that we only need
the terms on the right-hand side of (2.5.12) with l = 2k, 2k−1, and 2k−2.
The proof will be given in (2.5.16). We find, defining p2 = gij(x)pipj ,

Ak2k(x)p
2k =

(
1

2
p2
)k

. (2.5.13)

Since this is the term containing the maximal number of p’s, it can be
easily computed because all p̂ operators are just replaced by the corre-
sponding c-numbers when acting on |p〉.

The next term is

Ak2k−1(x)p
2k−1 (2.5.14)

= −ih̄k
(

1

2
p2
)k−1 1

2
(∂ig

ij)pj − ih̄
(

k

2

)(
1

2
p2
)k−2 1

2
gij(∂ig

kl)pjpkpl .
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In this expression one of the p̂’s acts as a derivative, whereas the other
2k − 1 are replaced by the corresponding c-numbers. The first term in
(2.5.14) comes about when the derivative acts within the same factor Ĥ
in which it appears, and is multiplied by k since there are k factors of
Ĥ. The second term arises if this derivative acts on a different factor of
Ĥ. For this to occur there are

(k
2

)
possible combinations, and taking into

account that there are two p̂’s in Ĥ we get an extra factor 2. Notice that
in both cases the terms involving a derivative acting on g cancel.

The last term we have to calculate is obtained when two of the p̂’s act
as derivatives

Ak2k−2(x)p
2k−2 =

h̄2k

(
1

2
p2
)k−1 [ 1

32
gij(∂i log g)(∂j log g) +

1

8
gij(∂i∂j log g)

+
1

8
(∂ig

ij)(∂j log g)

]

−h̄2

(

k

2

)(
1

2
p2
)k−2 [1

2
gij(∂i∂kg

kl) +
1

4
(∂ig

ij)(∂kg
kl)

+
1

4
(∂ig

ik)(∂kg
jl) +

1

4
gik(∂i∂kg

jl)

]

pjpl

−h̄2

(

k

3

)(
1

2
p2
)k−3 [1

2
gikgjl(∂i∂jg

mn) +
3

4
gim(∂ig

kl)(∂jg
jn)

+
1

2
gjl(∂jg

ik)(∂ig
mn) +

1

4
gij(∂ig

kl)(∂jg
mn)

]

pkplpmpn

−h̄2

(

k

4

)(
1

2
p2
)k−4 [3

4
gijgmn(∂ig

kl)(∂ng
pq)

]

pjpkplpmpppq . (2.5.15)

The first set of terms appears when both derivatives act within the same
factor Ĥ; again there are k terms of this kind.

The next set of terms arises when only two of the factors Ĥ play a role.
There are four possibilities: (i) one p̂ from the left factor acts on the right
factor, while another p̂ from the right factor acts within the right factor,
(ii) the first p̂ acts within the first Ĥ, while the second p̂ acts within the

second Ĥ, (iii) both p̂’s come from the left Ĥ, but one of them acts inside

the left Ĥ while the other acts on the right Ĥ, and (iv) both p̂’s from

the left Ĥ act on the right Ĥ. In all cases it is easy to see that again the
derivatives on g cancel.

The following set of terms in (2.5.15) comes from combinations using

three factors Ĥ, hence its overall factor is
(k
3

)
. There are again four cases:

(i) a p̂ from the first Ĥ and p̂ from the second Ĥ hit the third Ĥ, (ii) one
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p̂ acts inside the factor Ĥ in which it appears whereas a p̂ from another
Ĥ hits the remaining Ĥ (there are 3 terms of this kind), (iii) a p̂ from the

first Ĥ hits the second Ĥ, and a p̂ from the second Ĥ hits the third Ĥ,
and (iv) of the two p̂’s from the first Ĥ one acts on the second, and one

on the third Ĥ.
Finally, the term with

(k
4

)
in (2.5.15) involves four factors Ĥ, such

that one p̂ from one Ĥ hits another Ĥ, and the other p̂ from one of the
remaining factors Ĥ hits the last Ĥ.

The reason further terms do not contribute can be most easily seen if

we rescale q =
√

β
h̄p. Then the transition amplitude becomes

〈z| exp

(

−β
h̄
Ĥ

)

|y〉 =

∫

dnp〈z| exp

(

−β
h̄
Ĥ

)

|p〉〈p|y〉

= g−1/4(z)g−1/4(y)(2πh̄)−n
(
h̄

β

)n/2 ∫

dnq exp

(

i
qi(z − y)i√

βh̄

)

∞∑

k=0

(−1)k

k!

(
β

h̄

)k 2k∑

l=0

Akl (z)q
l
(
β

h̄

)−l/2
(2.5.16)

where the first factor is due to the values of 〈z|p〉 and 〈p|y〉. If we consider
z−y of order

√
β, the q’s are of order β0. Then only the Ak2k−1 and Ak2k−2

terms contribute through order β compared to the leading term Ak2k.
The sum over k in (2.5.16) can be performed for fixed l. All terms

in (2.5.13)-(2.5.15) have a prefactor (p2)k−s/(k − s)! with s = 0, 1, 2, 3, 4
which leads to a factor exp(−p2/2βk) after summing over k. Integration
over p is then straightforward and one obtains

〈z| exp

(

−β
h̄
Ĥ

)

|y〉 =

g−1/4(z)g−1/4(y)(4π2h̄β)−n/2
∫

dnq exp

(

−1

2
gij(z)qiqj + i

qi(z − y)i√
βh̄

)

[

1 + i
√
βh̄

{
1

2
(∂ig

ij)qj −
1

4
gij(∂ig

kl)qjqkql

}

+βh̄

{[

− 1

32
gij(∂i log g)(∂j log g)−1

8
gij(∂i∂j log g)

−1

8
(∂ig

ij)(∂j log g)

]

−
[
1

4
gij(∂i∂kg

kl)+
1

8
(∂ig

ij)(∂kg
kl) +

1

8
(∂ig

ik)(∂kg
jl)

+
1

8
gik(∂i∂kg

jl)

]

qjql
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+

[
1

12
gikgjl(∂i∂jg

mn) +
1

8
gim(∂ig

kl)(∂jg
jn)

+
1

12
gjl(∂jg

ik)(∂ig
mn) +

1

24
gij(∂ig

kl)(∂jg
mn)

]

qkqlqmqn

−
[

1

32
gijgmn(∂ig

kl)(∂ng
pq)

]

qjqkqlqmqpqq

}

+O(β3/2)

]

. (2.5.17)

The terms from (2.5.13) only give the leading exponential, but the terms
from (2.5.14) give the two terms with

√
βh̄, while the four sets of terms

in (2.5.15) give the terms proportional to βh̄. We have boldfaced the
terms which are present if one does not take any commutators between
different factors Ĥ into account. The last boldfaced term is clearly due to
expanding the exponent of the first boldfaced term. The remaining terms,
also of order β, are crucial to obtain the correct result for 〈z| exp(− β

h̄H)|y〉
to order β. To avoid confusion: if one uses Weyl ordering to evaluate the
path integral rather than directly evaluating the transition element, one
need not take these commutators into account, but only those which follow
from Weyl ordering Ĥ itself.

We can now complete the square in the exponent and integrate out the
momenta qi, since the integral becomes just a sum of Gaussian integrals
which can easily be evaluated. The problem is then to factorize the result
such that it is manifestly a scalar both in z and y (a ‘bi-scalar’) under
general coordinate transformations. We expect, of course, to find at least
the classical action integrated along a geodesic. In the expansion of this
functional around x(0) = z, one finds many of the terms in (2.5.17).
However, there are terms left over. They combine into R or Rij , while
expansion of g(y) yields terms with ∂ log g or derivatives thereof. With
this in mind, we write the result in a factorized form, where in one factor
we put all terms which possibly can come from expanding some power of
g(y), while into another factor we put the expanded action and curvature
terms. It is quite nontrivial, and an excellent check on the results obtained
so far, that this factorization is at all possible. The resulting expression
is

〈z| exp

(

−β
h̄
Ĥ

)

|y〉 = g−1/4(z)g−1/4(y)(2πh̄β)−n/2

[

g1/2(z) + g1/4(z)(y − z)i(∂ig1/4(z))

+
1

2
g1/4(z)(y − z)i(y − z)j(∂i∂jg1/4(z))

]

exp

(

− 1

2βh̄
gij(z)(y − z)i(y − z)j

)

×
[

1− 1

4

1

βh̄
(∂kgij(z))(y − z)i(y − z)j(y − z)k
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+
1

2

(
1

4

1

βh̄
(∂kgij(z)(y − z)i(y − z)j(y − z)k

)2

− 1

12

1

βh̄

(

∂k∂lgij(z)−
1

2
gmn(z)Γ

m
ij (z)Γ

n
kl(z)

)

×(y − z)i(y − z)j(y − z)k(y − z)l

− 1

12
βh̄R(z)− 1

12
Rij(z)(y − z)i(y − z)j +O(β3/2)

]

(2.5.18)

where the Ricci tensor is defined in Appendix A. For example, the term
proportional to (y−z)i∂ig1/4 in the first pair of square brackets comes from
the terms with (∂jg

ij)qj and gij(∂ig
kl)qjqkqk in (2.5.17) after integration

over q.
Note that since the difference (y−z) is of order

√
β, all terms are of order

β or less. The terms within the first pair of square brackets are, through
order β, equal to g1/4(z)g1/4(y) and cancel the factors g−1/4(z)g−1/4(y)
in front of the whole expression. The terms with ∂kgij and its square are
clearly the first two terms in an expansion of an exponent. This suggests
to exponentiate all terms, yielding

〈z| exp

(

−β
h̄
Ĥ

)

|y〉 = (2πh̄β)−n/2 exp

{

−β
h̄

[
1

2
gij(z)

+
1

4
∂kgij(z)(y − z)k

+
1

12

(

∂k∂lgij(z)−
1

2
gmn(z)Γ

m
ij (z)Γ

n
kl(z)

)

(y − z)k(y − z)l
]

×(y − z)i
β

(y − z)j
β

− 1

12
βh̄R(z)− 1

12
Rij(z)(y − z)i(y − z)j +O(β3/2)

}

. (2.5.19)

We shall now show that all terms in the exponent except the last two
just correspond to an expansion around z of the classical action, which is
equal to the integral along the geodesic joining z and y of the invariant
line element.

The classical action Scl[z, y;β] is given by

Scl[z, y;β] =

∫ 0

−β

1

2
gij [xcl(t)]

dxicl(t)

dt

dxjcl(t)

dt
dt (2.5.20)

where xicl satisfies the equation of motion obtained from the Euler-Lagrange
variational principle

Dtdtx
i ≡ ẍi + Γijkẋ

j ẋk = 0 (2.5.21)
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together with the boundary conditions

xi(−β) = yi , xi(0) = zi . (2.5.22)

(To avoid confusion about the notation we consider functions xi(t) and
endpoints yi and zi). Expanding xicl(t) into a Taylor series

xicl(t) =
∞∑

n=0

tn

n!
∂nxicl(0) (2.5.23)

xicl(0) = zi , ẍicl(0) = −Γijk(z)ẋ
j
cl(0)ẋ

k
cl(0) , etc. (2.5.24)

we see that we can express xicl(t) into xi(0) and ẋi(0). The value of ẋi(0)
follows from the boundary condition at t = −β. Namely, equation (2.5.23)
at t = −β yields

yi = zi − βẋicl(0) +
1

2
β2ẍicl(0)−

1

6
β3 ...

xicl (0) + . . .

ẋicl(0) = (zi − yi)/β +
1

2
βẍicl(0)−

1

6
β2 d

dt
(ẍicl(0)) + . . .

=
1

β
(z − y)i − 1

2
βΓijk(z)ẋ

j
cl(0)ẋ

k
cl(0) +

1

6
β2 d

dt
(Γiklẋ

k
clẋ

l
cl) + . . . .

(2.5.25)

Solving iteratively for ẋicl(0) to order (z − y) yields

ẋicl(0) =
1

β
(z − y)i − 1

2β
Γijk(z − y)j(z − y)k (2.5.26)

+
1

6β
(∂lΓ

i
jk + ΓisjΓ

s
kl)(z − y)j(z − y)k(z − y)l + . . . . (2.5.27)

From these results we can obtain an expansion of the classical action
in terms of zi and (z − y)i by Taylor expanding the Lagrangian L(t)

Scl[z, y;β] =

∫ 0

−β

(

L(0) + t
d

dt
L(0) + ...

)

dt . (2.5.28)

However, L(t) is conserved

d

dt

(
1

2
gij ẋ

iẋj
)

= gij ẍ
iẋj +

1

2
∂kgij ẋ

kẋiẋj

= gij(ẍ
i + Γiklẋ

kẋl)ẋj = 0 for x = xcl (2.5.29)

hence only L(0) contributes in (2.5.28). We find then

Scl[z, y;β] = βL(0) =
β

2
gij(z)ẋ

i
cl(0)ẋ

j
cl(0) =

1

2β
gij(z)
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[

(z − y)i − 1

2
Γikl(z − y)k(z − y)l

+
1

6
(∂kΓ

i
lm + ΓiskΓ

s
lm)(z − y)k(z − y)l(z − y)m

]

[

(z − y)j − 1

2
Γjpq(z − y)p(z − y)q

+
1

6
(∂pΓ

j
qr + ΓjtpΓ

t
qr)(z − y)p(z − y)q(z − y)r

]

+ . . . . (2.5.30)

The terms quartic in (z − y) have as coefficient

[
1

8
gijΓ

i
klΓ

j
mn +

1

6
gsn(∂kΓ

s
lm + ΓstkΓ

t
lm)

]

. (2.5.31)

The last two terms in (2.5.31) yield actually − 1
6 times the first gΓΓ plus

a ∂∂g term. Hence one finally arrives at

Scl[z, y;β] =
1

β

[
1

2
gij(z)(z − y)i(z − y)j

−1

4
∂kgij(z)(z − y)i(z − y)j(z − y)k

+

(
1

12
∂k∂lgmn(z)−

1

24
gij(z)Γ

i
klΓ

j
mn(z)

)

×(z − y)k(z − y)l(z − y)m(z − y)n
]

+O(z − y)5 . (2.5.32)

These terms agree perfectly with the first four terms in (2.5.19).
The transition amplitude can then be written as

〈z|e−β
h̄
Ĥ |y〉 =

1

(2πh̄β)n/2
e−

1
h̄
Scl[z,y;β]

[

1− 1

24
βh̄(R(z) +R(y))

− 1

24
(Rij(z) +Rij(y))(z − y)i(z − y)j +O(β3/2)

]

. (2.5.33)

We have replaced R(z) by 1
2(R(z) + R(y)) which is allowed to order β,

to show that the result is symmetric under exchange of z and y. These
results were obtained in [41]. The transition amplitude up to order β5/2

(3 loops) can be found in [61].
Of course, the composition rule for path integrals should hold

∫

〈z|e−β
h̄
Ĥ |x〉

√

g(x)〈x|e−β
h̄
Ĥ |y〉 dnx = 〈z|e− 2β

h̄
Ĥ |y〉 . (2.5.34)
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A quick way to check this is to use normal coordinates around x since then
only the leading term in the classical action survives (for normal coordi-
nates ∂igjk(x) = ∂(i∂jgkl)(x) = 0 while gij(z) = gij(x)− 1

3Riklj(Γ)(x)(z−
x)k(z − x)l through order β). Taking the opposite point of view, we can
impose the composition rule and find then that this fixes the coefficient
of the Ricci tensor, but not that of the scalar curvature. The latter terms
yield the trace anomaly in d = 2 dimensions, and its coefficient should not
be fixed by requiring the composition rule to hold because we can view
h̄2R as a potential term in the action, and the composition rule should
hold for any potential.

The terms with Rij can be expressed in terms of the classical action.
One should expect this: they are one loop terms and hence should be
proportional to the determinant of the double derivative of the classical
action (see for example the textbook by Schulman [11]). One may check
that (2.5.32) yields

Dij ≡ −
∂

∂zi
∂

∂yj
Scl[z, y;β] =

1

β

[

gij(z)− Γjk;i(z − y)k

−3

4
∂i∂(kglj)(z − y)k(z − y)l

+

{

∂(i∂jgmn) −
1

2
gstΓ

s
(ijΓ

t
mn)

}

(z − y)m(z − y)n
]

. (2.5.35)

Hence, using the notation Dij = 1
β [gij −∆gij ], we have

detD = β−ng(z)
[

1− gij∆gij −
1

2
gij∆gjkg

kl∆gli +
1

2
(gij∆gjk)

2 + . . .

]

.

(2.5.36)
Since the first term in−gij∆gij is equal to−gijΓjk;i(z−y)k =−1

2g
ij∂kgij(z−

y)k ∼ g−1/2(z)g1/2(y)−1, we can remove the term proportional to (z−y)Γ
from detD by replacing g(z) by g1/2(z)g1/2(y)

detD = β−ng(z)1/2g1/2(y)[1 + ...] . (2.5.37)

This parametrization makes sense because g(z)−1/2
[

det ∂
∂zi

∂
∂yj

S
]

g−1/2(y)

is a biscalar. If we now work out the remaining terms in (2.5.37) denoted
by . . ., one finds a nice surprise

gij
[

−3

4
∂i∂(kglj) + ∂(i∂jgkl) −

1

2
gstΓ

s
(ijΓ

t
kl) +

1

2
Γjk,ng

nmΓml,i

]

×(z − y)k(z − y)l = −1

6
Rkl(z − y)k(z − y)l (2.5.38)

Hence the Rij terms in (2.5.33) can be written as
(

1− 1

12
Rij(z − y)i(z − y)j

)

=
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βn/2g−1/4(z)

(

det− ∂

∂zi
∂

∂yj
Scl

)1/2

g−1/4(y) ≡ D̃1/2 . (2.5.39)

The final result for the transition element becomes

〈z|e−β
h̄
Ĥ |y〉 =

1

(2πh̄β)n/2
e−

1
h̄
Scl[z,y;β]D̃1/2

×
[

1− 1

24
βh̄ (R(z) +R(y)) +O(β3/2)

]

. (2.5.40)

The Einstein invariance is manifest: the transition element is a biscalar
(it does not depend on the coordinates one chooses around z and y, nor
on the choice of coordinates anywhere else).

The Van Vleck determinant D̃ is h̄-independent and thus it yields the
one-loop corrections. In the next section we shall directly calculate the
one-loop and two-loop Feynman diagrams, and indeed obtain the Van
Vleck determinant as part of the one-loop corrections. In flat space,
it reduces to unity in our normalization. The factor (2πh̄β)−n/2 is the
Feynman measure. (Since ∂

∂yj
Scl[z, y;β] = −pj where pj is the momentum

conjugate to yj , one could interpret detD as the Jacobian for the change
of variable p(y)→ z.)

We have thus obtained the order β corrections to the transition ele-
ment 〈z| exp(−β

h̄Ĥ)|y〉 by direct evaluation. Another way to obtain these
corrections is to use the Schrödinger equation,

−h̄ ∂

∂β
〈z| exp(−β

h̄
Ĥ)|y〉 =

∫

〈z|Ĥ|x〉
√

g(x)〈x| exp(−β
h̄
Ĥ)|y〉 dnx

= H(z)〈z| exp(−β
h̄
Ĥ)|y〉 = H(y)〈z| exp(−β

h̄
Ĥ)|y〉 . (2.5.41)

In the last step we used that the left-hand side of this equation is sym-
metric in z, y. This follows either from general arguments, or by look-
ing at the explicit expression we obtained for 〈z| exp(− β

h̄Ĥ)|y〉. Since

〈z| exp(−β
h̄Ĥ)|y〉 is given by an expansion about z, it is evidently much

easier to evaluate the action of H(y) than that of H(z).
The operator H(z) is given by

H(z) = − h̄
2

2
g−1/2∂ig

1/2gij∂j . (2.5.42)

Let us show in some detail how this asymmetric looking expression arises.

Define x̂i(t) = exp
(
i
h̄Ĥt

)

x̂i exp
(

− i
h̄Ĥt

)

, and |x, t〉 = e
i
h̄
Ĥt|x〉 (“moving

frames”) as eigenstates of x̂i(t). Similarly we introduce |p, t〉 = e
i
h̄
Ĥt|p〉.

As before 〈x, t|x′, t〉 = g−1/2(x)δ(n)(x − x′) and 〈p, t|p′, t〉 = δ(n)(p − p′).
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Given a state |ψ〉 in the Hilbert space, ψ(x, t) = 〈x, t|ψ〉 is the Schrödinger
wave function. In this x-representation, p̂j(t) is represented when acting
on ψ(x, t) by

(px)j = g−1/4(x)
h̄

i

∂

∂xj
g1/4(x) (2.5.43)

as follows from

〈x, t|p̂j(t)|x′, t〉 =
∫

〈x, t|p, t〉〈p, t|p̂j(t)|x′, t〉 dnp =

∫

pj〈x, t|p, t〉〈p, t|x′, t〉 dnp =

∫

pj
exp i

h̄(x− x′) · p
(2πh̄)ng1/4(x)g1/4(x′)

dnp

= g−1/4(x)g−1/4(x′)
h̄

i

∂

∂xj
δ(n)(x− x′)

= g−1/4(x)g−1/4(x′)
h̄

i

∂

∂xj
g1/2(x)〈x, t|x′, t〉

= g−1/4(x)
h̄

i

∂

∂xj
g1/4(x)〈x, t|x′, t〉 . (2.5.44)

The Dirac delta function is defined by
∫
δ(n)(x− x′)f(x′)dnx′ = f(x). In

the last step we moved g−1/4(x′) past ∂
∂xj

and then converted g−1/4(x′)δ(n)(x−
x′) to g−1/4(x)δ(n)(x−x′). A quick argument to justify (2.5.43) is to note
that with the

√
g in the inner product in x-space the operator (px)j is

hermitian. Similarly one may derive

〈x, t|p̂j |x′, t〉 = −g−1/4(x′)
h̄

i

∂

∂x′j
g1/4(x′)〈x, t|x′, t〉 . (2.5.45)

It then follows that

〈x, t|Ĥ(t)|x′, t〉 = 〈x|1
2
g−1/4(x̂)p̂ig

1/2(x̂)gij(x̂)p̂jg
−1/4(x̂)|x′〉

=
1

2
g−1/4(x)

(

g−1/4(x)
h̄

i

∂

∂xi
g1/4(x)

)

g1/2(x)gij(x)〈x|p̂jg−1/4(x)|x′〉

= H(x)〈x|x′〉 . (2.5.46)

From (2.5.45) one finds that this expression is also equal to H(x′)〈x|x′〉,
and this proves the last step of (2.5.41). One may now check that the
transition element given in (2.5.33) satisfies

[

H(y) + h̄
∂

∂β

]

〈z|e−β
h̄
Ĥ |y〉 = 0 . (2.5.47)

Already at the level of the terms of the form (z−y)∂g this is quite a good
check.
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2.6 Two-loop path integral evaluation of the transition
element to order β.

In this section we shall explicitly verify through two loops that the path

integral corresponding to the Hamiltonian Ĥ = 1
2g

−1/4pig
1/2gijpjg

−1/4
i for

path xi(t) satisfying xi(−β) = yi, xi(0) = zi, reproduces to order β the

results of the previous section for the matrix elements 〈z| exp
(

−β
h̄H

)

|y〉.
We recall that from (2.1.80)

〈z| exp
(

−β
h̄
H
)

|y〉 ≡ Z[z, y, β] =

[
g(z)

g(y)

]1/4 1

(2πβh̄)n/2
〈e− 1

h̄
Sint〉 (2.6.1)

where the brackets 〈..〉 indicate that all quantum fields qi(τ), bi(τ), ci(τ)
and ai(τ) are to be contracted using the propagators

〈qi(σ)qj(τ)〉 = −βh̄gij(z)∆(σ − τ)
〈qi(σ)q̇j(τ)〉 = −βh̄gij(z)(σ + θ(τ − σ))

〈q̇i(σ)q̇j(τ)〉 = −βh̄gij(z)(1− δ(σ − τ))
〈bi(σ)cj(τ)〉 = −2βh̄gij(z)δ(σ − τ)
〈ai(σ)aj(τ)〉 = βh̄gij(z)δ(σ − τ)
∆(σ, τ) = σ(τ + 1)θ(σ − τ) + τ(σ + 1)θ(τ − σ) . (2.6.2)

We also recall the definition of the interactions

Sint =
1

β

∫ 0

−1

1

2
gij(x)(ẋ

iẋj + bicj + aiaj)dτ

− 1

β

∫ 0

−1

1

2
gij(z)(q̇

iq̇j + bicj + aiaj)dτ

+
βh̄2

8

∫ 0

−1
(R+ gijΓkilΓ

l
jk)dτ ,

xi(t) = zi + (z − y)iτ + qi(τ) , τ = t/β . (2.6.3)

We shall encounter at various points ill-defined expressions to which
we shall give meaning by going back to the discretized approach. Since
each Feynman graph corresponds in a 1-1 fashion to terms in the answer
for 〈z| exp(−β

h̄Ĥ)|y〉, derived in the previous section without any ambigu-
ities, this procedure will in a very direct way produce a list of continuum
integrals for products of distributions. At the end of this section we shall
check that our discretized Feynman rules produce these continuum inte-
grals.

We shall organize the calculation as follows: first we compute all tree
graphs (first from one vertex Sint then from two vertices Sint), then all
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one-loop graphs (first from one Sint then from two Sint), and finally all
two loop graphs (first those from one Sint, then the one-particle reducible
ones from two Sint and finally the one-particle irreducible ones from two
Sint). There will be no contributions from three Sint vertices to order β.

Tree graphs. They consist of the classical vertices themselves and tree
graphs with q-propagators. The former are given by

• = − 1

h̄
Sint = − 1

2βh̄

(

gij(z)− 1
2(z − y)k∂kgij(z)

+1
6(z − y)k(z − y)l∂k∂lgij(z)

)

(z − y)i(z − y)j .

(2.6.4)
These terms are part of the classical action Scl[z, y;β] in (2.5.32); the
terms with two and three factors (z − y) are already correct, while those
with four (z− y) and ∂k∂lgij are also correct, but the ∂g∂g(z− y)4 terms
are lacking. They come from the tree graph with one propagator and two
Sint. It yields

•−−−•

=

(−1

βh̄

)2 1

2!

∫ 0

−1

∫ 0

−1
〈1
2
gij(x)ẋ

iẋj
1

2
gmn(x)ẋ

mẋn〉 dσdτ (terms with one ∆)

=
1

8β2h̄2

∫ 0

−1

∫ 0

−1
dσdτ

[

(∂kgij)(∂lgmn)(−h̄βgkl)∆(σ, τ)

×(z − y)i(z − y)j(z − y)m(z − y)n
+4(∂kgij(z + (z − y)σ))(−h̄βgkm)∆•(σ, τ)gnm(z + (z − y)τ)
quad× (z − y)i(z − y)j(z − y)n
+4gij(z + (z − y)σ)gmn(z + (z − y)τ)
quad× (−h̄βgim(z))•∆•(σ, τ)(z − y)j(z − y)n

]

. (2.6.5)

We used the notation ∆•(σ, τ) = ∂
∂τ∆(σ, τ) and •∆(σ, τ) = ∂

∂σ∆(σ, τ) and
•∆•(σ, τ) = ∂

∂σ
∂
∂τ∆(σ, τ). There are terms with three and four factors of

(z−y) in (2.6.5). Since the former were already accounted for, the (z−y)3

terms above should vanish. This leads to a first condition on continuum
integrals

∫ 0

−1

∫ 0

−1
∆•(σ, τ) dσdτ + 2

∫ 0

−1

∫ 0

−1
σ •∆•(σ, τ) dσdτ = 0 . (2.6.6)

Since the terms of the form ∂i∂jgkl(z − y)4 were also already recovered
in (2.6.4), also the terms from the last line in (2.6.5), with gij or gmn
expanded to second order, or the terms from the second line expanded to
first order, should vanish. This leads to another condition

∫ 0

−1

∫ 0

−1
σ2 •∆•(σ, τ) dσdτ +

∫ 0

−1

∫ 0

−1
σ∆•(σ, τ) dσdτ = 0 . (2.6.7)
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The ∂g∂g(z − y)4 terms from (2.6.5) are given by

(

− 1

8βh̄
∂kgij∂lgmn

)

(z − y)j(z − y)n

×
[

gkl(z − y)i(z − y)m
∫ 0

−1

∫ 0

−1
∆

+(z − y)i(z − y)lgkm4

∫ 0

−1

∫ 0

−1
τ ∆•

+(z − y)k(z − y)lgim4

∫ 0

−1

∫ 0

−1
στ •∆•

]

(2.6.8)

where we introduced the obvious notation
∫ ∫

τ∆• ≡ ∫ 0
−1

∫ 0
−1 τ

∂
∂τ∆(σ, τ) dσdτ .

We get the correct terms of the form ∂g∂g(z−y)4 which occur in the clas-
sical action in (2.5.32) provided the following integrals are correct

∫ 0

−1

∫ 0

−1
∆(σ, τ) dσdτ = − 1

12
∫ 0

−1

∫ 0

−1
τ ∆•(σ, τ) dσdτ = +

1

12
∫ 0

−1

∫ 0

−1
στ •∆•(σ, τ) dσdτ = − 1

12
. (2.6.9)

If the integrals in (2.6.7 – 2.6.9) have the values indicated, the tree graph
contributions correctly reproduce the classical action to order β. We first
consider all other graphs and integrals, and then we shall discuss these
integrals.

We considered only the connected tree graphs because we compared the
result with Scl instead of exp(−Scl/h̄). The reader may have wondered
why we did not consider connected tree graphs with 3 or more vertices.
The reason is that these graphs do not contribute at order β. The vertices
at the end of such a tree graph contain at least two factors z−y (use that
∫ 0
−1 q̇dσ = 0 since q(σ) vanishes at the boundaries). Any vertex which is

not a vertex at the ends contains at least one factor z− y. Thus the total
number of factors z−y is 5 or more, which leads to contributions of order
β3/2 or higher.

One-loop graphs. From the vertex Sint one finds, by expanding gij once,
the following equal time contractions

+

= − 1

2βh̄
(z − y)k∂kgij(z)

∫ 0

−1
τ (•∆• + ∆••)σ=τ dτ(−βh̄gij(z))
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− 1

βh̄
∂kgij(z)

∫ 0

−1
(∆•)σ=τ dτ(z − y)j(−βh̄gik(z)) . (2.6.10)

Since we already know from the previous section that the sum of all
one-loop graphs is given by − 1

12Rij(z)(z − y)i(z − y)j , these equal-time
contractions with ∂g should cancel the contribution from the measure
[g(z)/g(y)]1/4. This yields the conditions

∫ 0

−1
τ (•∆• + ∆••)σ=τ dτ = −1

2
∫ 0

−1
(∆•)σ=τ dτ = 0 . (2.6.11)

These equal-time contractions are a priori ill-defined in field theory, but
we deduce their value unambiguously as the limit from the discretized
expressions.

By expanding gij to second order in one vertex Sint, one finds further
equal-time one-loop contractions with ∂∂g

+

=

(−1

βh̄

)
1

4
∂k∂lgij(z)

∫ 0

−1
dτ
[

(z − y)kτ(z − y)lτ (•∆• + ∆••)σ=τ g
ij(z)

+4(z − y)kτ(z − y)i(∆•)σ=τg
lj(z)

+(z − y)i(z − y)jgkl(z) (∆)σ=τ ] dτ(−βh̄) . (2.6.12)

There is also a term of the form (∂k∂lgij)(z − y)k(z − y)lgij coming from

the measure factor [g(z)/g(y)]1/4. Its coefficient is −1/8.
To obtain the linearized contribution

− 1

12
Riklj(z − y)k(z − y)lgij ∼

1

24
(−∂i∂jgkl − ∂k∂lgij + 2∂i∂lgkj)g

ij(z − y)k(z − y)l (2.6.13)

we need the following equal-time contractions

∫ 0

−1
τ2 (•∆• + ∆••) dτ =

1

3
∫ 0

−1
τ ∆• σ=τ dτ =

1

12
∫ 0

−1
∆σ=τ dτ = −1

6
. (2.6.14)
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Next we consider the contributions with ∂g∂g. They come from one-
loop graphs with two verticesH int. They can either consist of two unequal-
time propagators, or one tree-graph propagator times an equal time loop.
We first consider the one-loop graphs with two equal-time propagators.
The contractions of two factors (q̇q̇ + bc+ aa) yield (dots denote deriva-
tives)

+

=

(−1

βh̄

)2 1

2!

∫ 0

−1
dσ

∫ 0

−1
dτ

1

2
∂kgij

1

2
∂lgmn(z − y)kσ(z − y)lτ

[2gimgjn{•∆•(σ, τ)•∆•(σ, τ)− ••∆(σ, τ)∆••(σ, τ)}(−βh̄)2]
=

1

4
∂kgij∂lgmng

imgjn(z − y)k(z − y)lI (2.6.15)

where I is fixed by requiring that these terms complete the Ricci tensor

I =

∫

(•∆• •∆• − ••∆ ∆••)στ dσdτ = − 5

12
. (2.6.16)

In addition there are contributions with qq̇ propagators (indicated by
putting a dot above them) and qq propagators (without dot). Namely

=

(−1

βh̄

)2 1

2!

(
1

2
∂kgij

)(
1

2
∂lgmn

)

gimgjl8

∫ 0

−1

∫ 0

−1
σ •∆•(σ, τ) •∆(σ, τ)(z − y)k(z − y)n(−βh̄)2dσdτ .

(2.6.17)

This should vanish, hence

∫ 0

−1

∫ 0

−1
σ •∆•(σ, τ) •∆(σ, τ) dσdτ = 0 . (2.6.18)

Further,

=

(−1

βh̄

)2 1

2!

1

2
∂kgij

1

2
∂lgmng

kmgil4(z − y)j(z − y)n

∫ 0

−1

∫ 0

−1

•∆(σ, τ)∆•(σ, τ)(−βh̄)2dσdτ . (2.6.19)

We need ∫ 0

−1

∫ 0

−1

•∆(σ, τ)∆•(σ, τ) dσdτ = − 1

12
. (2.6.20)
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Finally

=

(−1

βh̄

)2 1

2!

1

2
∂kgij

1

2
∂lgmng

klgim

4

∫ 0

−1

∫ 0

−1
∆(σ, τ) •∆•(σ, τ) dσdτ(z − y)j(z − y)n (2.6.21)

We need ∫ 0

−1

∫ 0

−1
∆(σ, τ) •∆•(σ, τ) dσdτ =

1

12
. (2.6.22)

We now record the one-particle reducible one-loop graphs with one
equal-time propagator and one tree propagator. We need one vertex with
one q, and the other vertex with three q’s, or one q and two ghosts. In
all cases we consider terms proportional ∂kgij ∂lgmn. We then find the
following results provided the integrals have the values indicated (the
symbol α denotes ∂kgij∂lgmn )

+ = − 1

48
αgijgkl(z − y)m(z − y)nI

I =

∫ 0

−1

∫ 1

−1
[•∆•(σ, σ) + ••∆(σ, σ)] ∆(σ, τ) dσdτ = − 1

12
, (2.6.23)

+ =
1

24
αgijgkm(z − y)l(z − y)nI

I =

∫ 0

−1

∫ 0

−1
[•∆•(σ, σ) + ••∆(σ, σ)] ∆•(σ, τ) τ dσdτ =

1

12
, (2.6.24)

=
1

24
αgikgjl(z − y)m(z − y)nI

I =

∫ 0

−1

∫ 0

−1
∆•(σ, σ) •∆(σ, τ) dσdτ =

1

12
, (2.6.25)

= − 1

12
αgikgjm(z − y)l(z − y)nI

I =

∫ 0

−1

∫ 0

−1
∆•(σ, σ) •∆•(σ, τ) τ dσdτ = − 1

12
. (2.6.26)

If all the integrals in (2.6.10 – 2.6.26) have the values indicated, the
one-loop contributions correctly reproduce the Van Vleck-Morette deter-
minant in (2.5.37).
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Two loop contributions. The two loop graphs should reproduce the
terms of order βh̄ in the transition element. These were found to be
given by

−βh̄
12
R(z) (2.6.27)

We quote again the various graphs and below them the values which the
corresponding integrals should have.

First there is the figure 8 graph due to one vertex

+

= − 1

βh̄

∫
1

4
∂k∂lgij〈qkql(q̇iq̇j + bicj + aiaj)〉dτ(−βh̄)2

=
1

24
βh̄∂k∂lgij(z)(g

klgijI1 − gikgjlI2)

I1 =

∫ 0

−1
∆(τ, τ) [•∆•(τ, τ) + ••∆(τ, τ)] dτ = −1

6

I2 =

∫ 0

−1
∆•(τ, τ) ∆•(τ, τ) dτ =

1

12
. (2.6.28)

Next there are the products of two equal-time loops connected by an
unequal-time propagator

+ + +

= βh̄
1

96
αgklgijgmn (∂kgim) (∂lgjn) I

I =

∫ 0

−1

∫ 0

−1
[•∆•(σ, σ) + ∆••(σ, σ)] ∆(σ, τ) [••∆(τ, τ) + ∆••(τ, τ)] dσdτ

= − 1

12
, (2.6.29)

+

= −βh̄ 1

24
αgijglmgkn (∂mgij) (∂ngkl) I

I =

∫ 0

−1

∫ 0

−1
{•∆•(σ, σ) + ••∆(σ, σ)}∆•(σ, τ)∆•(τ, τ)dσdτ

=
1

12
, (2.6.30)
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= βh̄
1

24
αgikgjmgln (∂mgij) (∂ngkl) I

I =

∫ 0

−1

∫ 0

−1

•∆(σ, σ)•∆•(σ, τ)∆•(τ, τ)dσdτ = − 1

12
. (2.6.31)

Finally there are the two-loop graphs with the form of a setting sun. They
come from all possible contractions of q(q̇q̇+bc+aa) times q(q̇q̇+bc+aa)

+ = −βh̄ 1

16
αgklgimgjn (∂kgij) (∂lgmn) I

I =

∫ 0

−1

∫ 0

−1
∆(σ, τ) [•∆•(σ, τ)•∆•(σ, τ)− ••∆(σ, τ)∆••(σ, τ)] dσdτ

=
1

4
, (2.6.32)

= βh̄
1

12
αgkmgingjl (∂kgij) (∂lgmn) I

I =

∫ 0

−1

∫ 0

−1

•∆•(σ, τ) ∆•(σ, τ) •∆(σ, τ) dσdτ = −1

6
. (2.6.33)

The sum of all these two-loop contributions plus the contribution from
the counterterm should be equal to −βh̄ 1

12R. Different regularization
schemes lead to different counterterms, and thereby the one- and two-loop
graphs give different results if one uses different regularization methods.

In time slicing the counterterm is −β
h̄
h̄2

8

(

R+ ΓkilΓ
l
jkg

ij
)

. Hence, the sum

of all two-loop graphs evaluated above should be equal to βh̄
24R+ βh̄

8 (ΓΓ).
Expanding the ΓΓ term one finds two structures of the form ∂g∂g, while
R contains three more structures with ∂g∂g, and two structures of the
form ∂∂g. All these terms match:

2− loop =
1

24
( g − ∂αgα) +

1

96

(

∂αg∂
αg − 4∂αgg

α + 4gαg
α

−6(∂αgβγ)
2 + 8∂αgβγ∂βgαγ

)

(
1

8
− 1

12

)

R =
1

24
( g − ∂αgα +

1

2
∂αgβγ∂βgαγ −

3

4
(∂αgβγ)

2

+
1

4
∂αg∂

αg − ∂αggα + gαg
α)

1

8
ΓΓ =

1

8

(
1

2
∂αgβγ∂βgαγ −

1

4
(∂αgβγ)

2
)

. (2.6.34)

Contraction are performed with the metric gij , for example (∂igjk)
2 =

gii
′
gjj

′
gkk

′
(∂igjk)(∂i′gj′k′).
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We now discuss the integrals we encountered. We first make a list.

Trees
∫ ∫

∆•(σ, τ) + 2

∫ ∫

σ•∆•(σ, τ) = 0
∫ ∫

σ2•∆•(σ, τ) +

∫ ∫

σ∆•(σ, τ) = 0
∫ ∫

∆(σ, τ) = − 1

12
,

∫ ∫

τ∆•(σ, τ) =
1

12
,

∫ ∫

σ•∆•(σ, τ)τ = − 1

12

One-loop

∫ ∫

(•∆• •∆• − ••∆∆••) στ = − 5

12
,

∫ ∫

σ •∆• •∆ = 0
∫ ∫

•∆∆• = − 1

12
,

∫ ∫

∆•∆• =
1

12
∫

τ(•∆•(τ, τ) + ∆••(τ, τ)) = −1

2
,

∫

τ2(•∆•(τ, τ) + ∆••(τ, τ)) =
1

3
∫

∆(τ, τ) = −1

6
,

∫

∆•(τ, τ) = 0 ,

∫

∆•(τ, τ)τ =
1

12

Two-loop

∫ ∫

(•∆•(σ, σ) + ••∆(σ, σ))∆(σ, τ) = − 1

12
∫ ∫

(•∆•(σ, σ) + ••∆(σ, σ)∆•(σ, τ)τ =
1

12
∫ ∫

(∆•(σ, σ)•∆(σ, τ)) =
1

12
∫ ∫

∆•(σ, σ)•∆•(σ, τ)τ = − 1

12
∫

∆(τ, τ)(•∆•(τ, τ) + ••∆(τ, τ)) = −1

6
,

∫

∆•(τ, τ)∆•(τ, τ) =
1

12
∫ ∫

(•∆•(σ, σ) + ••∆(σ, σ))∆(σ, τ)(•∆•(τ, τ) + ••∆(τ, τ)) = − 1

12
∫ ∫

(•∆•(σ, σ) + ••∆(σ, σ))∆•(σ, τ)∆•(τ, τ) =
1

12
∫ ∫

•∆(σ, σ)•∆•(σ, τ)∆•(τ, τ) = − 1

12
∫ ∫

∆(σ, τ)(•∆•(σ, τ)•∆•(σ, τ)− ••∆(σ, τ)∆••(σ, τ)) =
1

4
(with TS)

∫ ∫

•∆•(σ, τ)∆•(σ, τ)•∆(σ, τ) = −1

6
(with TS) . (2.6.35)
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Only if all these integrals have the values indicated is there complete
agreement between the Feynman diagram result and the operator ap-
proach result.

Using the naive continuum limits

∆(σ, τ) = σ(τ + 1)θ(σ − τ) + τ(σ + 1)θ(τ − σ)

∆•(σ, τ) = σ + θ(τ − σ) , ∆•(τ, τ) = τ + 1/2
•∆•(σ, τ) = 1− δ(σ − τ) , ••∆(σ, τ) = δ(σ − τ)
•∆•(σ, σ) = 1− δ(σ − σ) , ••∆(σ, σ) = δ(σ − σ) (2.6.36)

we find complete agreement for the transition element provided we in-
terpret δ(σ − τ) as a Kronecker delta. The expressions δ(σ − σ) cancel
always since they only appear in the combination •∆•(σ, σ)− ••∆(σ, σ). In
the next chapters we discuss two other regularization schemes; these also
lead to complete agreement.
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3
Mode regularization

In this section we discuss path integrals defined by mode regularization
(MR). Ideally, one would like to derive mode regularization from first
principles, namely starting from the transition amplitude defined as the
matrix element of the evolution operator 〈xkf |exp(−βĤ)|xki 〉, as done in
the time slicing regularization of the previous section (we set h̄ = 1 in this
chapter). However, a derivation along those lines seems quite laborious
and will not be attempted. We find it easier to take a more pragmatic
approach, and present a quick construction of the mode-regulated path
integral. This can be done by recalling general properties of quantum
field theories (QFT) in d dimensions as a guideline, and specializing those
properties to the simpler context of one dimension.

General theorems for quantum field theories with local Lagrangians
guarantee the possibility of constructing a consistent perturbative ex-
pansion by renormalizing the infinities away. Renormalization is usually
achieved by adding local counterterms with infinite coefficients to the
original Lagrangian. At the same time finite local counterterms relate
different regularization schemes to each other. More precisely, the finite
counterterms, left undetermined after the removal of divergences, are fixed
by imposing a sufficient number of renormalization conditions. All reg-
ularization schemes should then produce the same physical results. The
renormalization program through counterterms is performed iteratively,
loop by loop.

Let us consider the simple case of a scalar QFT, which is enough for our
purposes. One can classify the interactions as non-renormalizable, renor-
malizable, and super-renormalizable according to the mass dimension of
the corresponding coupling constant being negative, zero, and positive,
respectively. Coupling constants with negative mass dimensions render
the theory non-renormalizable, since one is forced to introduce an infi-
nite number of counterterms (of a structure not contained in the original
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Lagrangian) to cancel the divergences of the Feynman graphs. These
theories are generically considered to be effective field theories, like the
Fermi theory of the weak interactions, gravity, and supergravity. Renor-
malizable interactions allow instead for infinities to be removed with the
use of a finite number of counterterms, though at each loop the coeffi-
cients of the counterterms receive additional infinite contributions, as in
QED and in the Standard Model. Finally, super-renormalizable interac-
tions generate a perturbative expansion which can be made finite at any
loop by counterterms that can appear only up to a finite loop order, like
perturbative λφ3 theory in four dimensions.

Our one-dimensional nonlinear sigma model is super-renormalizable
(recall the explicit power counting exercise presented in the introduction).
Thus the QFT theorems guarantee that one needs to consider countert-
erms only up to a finite loop order. In addition, we will see that there is
no need to cancel infinities thanks to the inclusion of the extra vertices
coming form the measure. Therefore only finite counterterms can appear.
We will show that they appear only up to 2 loops. As described above
they are needed to satisfy the renormalization conditions. The precise
renormalization conditions that we impose are contained in the following
requirement: the transition amplitude computed with the regulated path
integral must satisfy the Schrödinger equation with a given Hamiltonian
operator. Without loss of generality, we choose this operator to be the
one containing the covariant Laplacian without any additional coupling to
the scalar curvature (if desired, extra couplings can always be introduced
by including them into the potentials V and Ai). This renormalization
condition fixes completely the counterterm VMR as well as the overall
normalization of the path integral. In this way, also the MR scheme is
fully specified and can be used in applications.

Mode regularization for one dimensional nonlinear sigma models was
introduced in [23, 24, 60]. The latter reference contain the correct coun-
terterm VMR. This regularization was used in [61] to compute the transi-
tion amplitude at three loops. Related references are [62, 63]. A previous
use of mode regularization for quantizing nonlinear sigma models was
attempted in [64].

3.1 Mode regularization in configuration space

We start from a general classical action in Euclidean time for the fields
xi with i = 1, .., n

S =

∫ tf

ti

dt

[
1

2
gij(x)

dxi

dt

dxj

dt
+ iAi(x)

dxi

dt
+ V (x)

]

(3.1.1)
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and try to define directly the transition amplitude as a path integral

〈xkf , tf |xki , ti〉 =

∫

BC
Dx e−S (3.1.2)

Dx =
∏

ti<t<tf

√

det gij(x(t)) d
nx(t) (3.1.3)

where BC indicates the boundary conditions at initial and final time
xk(ti) = xki and xk(tf) = xkf . The measure Dx is formally a scalar since
it is the product of scalar measures. The action is also a scalar and the
transition element should therefore be a scalar when properly defined.

Usually one considers in QFT the path integral representation for the
transition amplitude from the in-vacuum to the out-vacuum, which cor-
responds to an infinite propagation time. In quantum mechanics one can
afford to be more general, and ask for the transition amplitude between
an arbitrary initial state |Ψi〉 at time ti and an arbitrary final state |Ψf〉 at
time tf . For simplicity we consider initial and final states as eigenstates of
the position operator, since a general transition amplitude is then given
by

〈Ψf , tf |Ψi, ti〉 =
∫

dnxf

√

g(xf)

∫

dnxi

√

g(xi) Ψ∗
f (xf) 〈xf , tf |xi, ti〉 Ψi(xi) .

(3.1.4)

Note again that the transition amplitude on the right hand side, given in
(3.1.2), is formally a scalar since the measure factors for integrating over
the initial and final points are not included into (3.1.3). Therefore they
appear in (3.1.4).

The nontrivial measure in (3.1.3) is not translationally invariant under
xi(t)→ xi(t) + εi(t). This makes it difficult to generate the perturbative
expansion: one cannot complete squares and shift integration variables
to derive the propagators as usual. A standard trick to obtain a trans-
lationally invariant measure is to introduce ghost fields and exponentiate
the nontrivial factor appearing in (3.1.3)

∏

ti<t<tf

√

det gij(x(t)) =

∫

DaDbDc e−Sgh (3.1.5)

Sgh =

∫ tf

ti

dt
1

2
gij(x)(a

iaj + bicj) (3.1.6)

where the translationally invariant measures for the ghosts are given by

Da =
∏

ti<t<tf

dna(t) , Db =
∏

ti<t<tf

dnb(t) , Dc =
∏

ti<t<tf

dnc(t) . (3.1.7)

100



The ghosts ai are commuting while the ghosts bi and ci are anticommut-
ing, so they reproduce the same measure factor that is also obtained by
integrating out the momenta in phase space.

Up to this point the whole construction is completely formal and we
should try to give it a concrete meaning. Thus, we must introduce a reg-
ularization scheme to define the path integral and evaluate it unambigu-
ously. The regularization will bring along a corresponding counterterm
∆V which will be used to satisfy the renormalization conditions men-
tioned before. In particular, the counterterm will restore the symmetries
which may be accidentally broken by the regularization (one may recall
that no anomalies are expected in quantum mechanics). The regulariza-
tion that we choose to present in this chapter is equivalent to a cut-off in
the loop momenta. Since the momenta on a compact space are discrete
this scheme is called mode regularization.

To get started it is convenient to shift and rescale the time parameter in
order to extract the total propagation time β out of the action S = 1

βS
′.

We do this by defining t = tf + βτ with β = tf − ti, so that −1 ≤ τ ≤ 0.
The full rescaled action reads

S′ =

∫ 0

−1
dτ

[
1

2
gij(x)ẋ

iẋj + iβAi(x)ẋ
i + β2

(

V (x) + VMR(x)
)]

(3.1.8)

where ẋi = dxi

dτ . We have denoted by VMR the counterterm required by

mode regularization. Note that exp(− 1
βS

′) is now the weight factor for
the sum over paths, so that the total propagation time β plays here a role
similar to the Planck constant h̄ (which we have set to one) and can be
used to count the number of loops. In the loop expansion generated by β
the potentials V and VMR start contributing only at two loops, while Ai
starts at one loop1. From now on we drop the prime on S.

For an arbitrary metric gij(x) one is only able to calculate the path inte-
gral in a perturbative expansion in β and in the coordinate displacements
ξi ≡ xii − xif . Thus we start by parametrizing

xi(τ) = xibg(τ) + qi(τ) (3.1.9)

where xibg(τ) is a background trajectory and qi(τ) the quantum fluctua-
tions. After choosing a coordinate system in which one carries out the
computations, the background trajectory is most conveniently taken to
satisfy the free equations of motion in the chosen reference frame. It is a

1 Reintroducing h̄ one can see that the classical potentials V and Ai are of order h̄0,
while the counterterm VMR will turn out to contribute only at the two-loop level
(order h̄2). Thus if one uses h̄ to count loops, V appears at the tree level, but if
one uses β then V starts contributing at two loops. In Feynman graphs one might
represent V by a cross to indicate that it is a term of order β2.
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function linear in τ connecting the initial point xii to the final point xif ,
enforcing the correct boundary conditions

xibg(τ) = xif − ξiτ , with ξi ≡ xii − xif (3.1.10)

where xf = z and xi = y was the notation used in the previous chapter.
Note that by free equations of motion we mean those arising from (3.1.8)
by neglecting the potentials V +VMR (which are explicitly of order β2) and
Ai (which is explicitly of order β), and by keeping the constant leading
term in the expansion of the metric gij(x) around the final point xif (thus
making the space effectively flat). Of course one could have taken any
other point to expand about. Also, one could use the exact solution of
the classical equations of motion as the background trajectory, but this
cannot change the result of the computation. It would just correspond to
a different parametrization of the space of paths.

The quantum fields qi(τ) in (3.1.9) should vanish at the time boundaries
since the boundary conditions are already included in xibg(τ). Therefore
they can be expanded in a sine series. For the ghosts we use the same
Fourier expansion. This cannot be justified with the same rigor as for the
fields x, but we can give the following arguments. First of all, in (3.1.3)
there are no factors (det gij)

1/2 at the end points; they do not appear be-
cause we want to introduce them explicitly later in (3.1.4) in order that
the transition amplitude be a biscalar. Since the factors (det gij)

1/2 were
exponentiated with ghosts, we do not need ghosts at the end points, and
the way to achieve this is to impose as boundary conditions that they
vanish at the end points. Another argument is that with these bound-
ary condition, the expansion into modes defines a well-defined functional
space, at least as well defined as for the x. Of course, any choice of func-
tional space is a priori equally acceptable, since the role of the ghost is to
remove ambiguities in the ẋẋ propagators: one might even prefer to use
cosines instead of sines in the expansion of the ghosts, but one would get
the same answers. To conclude: we expand all ghosts into a series with
sines2.

Hence

φi(τ) =
∞∑

m=1

φim sin(πmτ) (3.1.11)

where φi stands for all the quantum fields qi, ai, bi, ci. The functional
space of paths is now concretely defined by the space of all Fourier co-

2 A suggestive way to interpret this is by considering a background/quantum split,
where the background carries the boundary conditions implied by the classical equa-
tion of motion, while the quantum part is required to vanish at the time boundaries
so not to modify the boundary conditions of the background. In our case the classical
solutions of the ghost field equations are ai = bi = ci = 0.
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efficients φim = (qim, a
i
m, b

i
m, c

i
m). Similarly, the path integral measure is

properly defined in terms of integration over the Fourier coefficients φim
as follows

Dx =
∏

ti<t<tf

√

det gij(x(t)) Dx = Dq

∫

DaDbDc e
− 1
β
Sgh

DqDaDbDc = lim
M→∞

A
M∏

m=1

n∏

i=1

mdqimda
i
mdb

i
mdc

i
m , (3.1.12)

where A is a constant, and the ghosts have been rescaled (a, b, c) →
1
β (a, b, c) to normalize the ghost action as Sgh =

∫ 0
−1 dτ

1
2gij(x)(a

iaj+bicj).

Note that we have used Dx ≡ ∏

τ d
nx(τ) =

∏

τ d
nq(τ) ≡ Dq which is

formally justified by the translational invariance of these free measures.
In any case the second line in (3.1.12) defines precisely what we mean by
path integration. Note also that with this definition the path integral for
a free particle in Cartesian coordinates reduces to

∫

Dx exp
(

− 1

β
Sfree

)

= A exp
(

− 1

2β
δijξ

iξj
)

(3.1.13)

where

Sfree =

∫ 0

−1
dτ

1

2
δij(ẋ

iẋj + aiaj + bicj) . (3.1.14)

(We used that the set
√

2 sin(πmτ) is orthonormal and that Grassmann
integration yields

∫
db dc b c = −1). It is well-known that A = (2πβ)−

n
2 ,

however this value can also be deduced from the consistency requirement
of satisfying the “renormalization conditions”, as will be shown later on.
Note that any other constant metric in (3.1.13) and (3.1.14), as for exam-
ple the choice gij(xf) we are going to use, does not change the normaliza-
tion of the measure in (3.1.12): the Jacobian for the change of variables of
the commuting fields qi, ai is exactly canceled by the corresponding Jaco-
bian for the anticommuting fields bi, ci (i.e., this linear change of variables
has unit super-Jacobian).

The way to implement mode regularization is now quite clear and al-
ready suggested by (3.1.12): limiting the integration for each field up to a
finite mode number M gives a natural regularization of the path integral.
One computes all quantities of interest at finite M . This necessarily gives
a finite and unambiguous result. Then one sends M → ∞ to reach the
continuum limit. This regularization is enough to resolve all ambiguities
in the product of distributions, as we shall see.

We now start to describe in detail the perturbative expansion and give
the formulas for the propagators in mode regularization. The perturbative
expansion is generated by splitting the action into a quadratic part S2,

103



which defines the propagators, and an interacting part Sint, which gives
the vertices3. We do this splitting by expanding the action about the final
point xif . Recalling that

xi(τ) = xif − ξiτ + qi(τ) , (ξi ≡ xii − xif)
ẋi(τ) = q̇i(τ)− ξi (3.1.15)

we obtain
S = S2 + Sint (3.1.16)

where

S2 =

∫ 0

−1
dτ

1

2
gij(xf) (ξiξj + q̇iq̇j + aiaj + bicj) (3.1.17)

Sint =

∫ 0

−1
dτ

[
1

2
(gij(x)− gij(xf)) (ẋiẋj + aiaj + bicj)

+ i βAi(x)ẋ
i + β2(V (x) + VMR(x))

]

. (3.1.18)

Note that also a term linear in q̇i appears in S2, but due to the bound-
ary conditions on qi its integral vanishes, and thus has been dropped.
Inserting the mode expansions (3.1.11) into S2 one obtains

S2 =
1

2
gij (xf)ξ

iξj +
1

4
gij(xf)

M∑

m=1

(

π2m2qimq
j
m + aima

j
m + bimc

j
m

)

(3.1.19)

The propagators are easily obtained by using this S2 in the path integral,
adding sources, and completing squares as usual. As an example, let’s see
in detail the derivation for the mode regulated propagator 〈qi(τ)qj(σ)〉.
Using the mode expansion (3.1.11) we obtain

〈qi(τ)qj(σ)〉 =
〈 M∑

m=1

qim sin(πmτ)
M∑

n=1

qjn sin(πnσ)
〉

=
M∑

m=1

M∑

n=1

〈qimqjn〉 sin(πmτ) sin(πnσ) . (3.1.20)

Adding sources for the qim modes, completing squares and shifting inte-
gration variables produces the correlator

〈qimqjn〉 = βgij(xf)δmn
2

π2m2
(3.1.21)

3 In the previous chapter the quadratic part was called the free part and denoted by
S(0).
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which is just the inverse of the quadratic formQ appearing in the exponent
(exp[−1

2 φQφ]). Using (3.1.21) into (3.1.20) one gets

〈qi(τ)qj(σ)〉 = βgij(xf)
M∑

m=1

2

π2m2
sin(πmτ) sin(πmσ) . (3.1.22)

To check the normalization, note that acting with the field operator

− 1
β gki(xf)

∂2

∂τ2 produces the Dirac delta function in the space of functions

that vanish at the boundaries, δ(τ, σ) =
∑

2 sin(πmτ) sin(πmσ). Simi-
larly one obtains the ghost propagators. Thus we get the following list of
propagators

〈qi(τ)qj(σ)〉 = −β gij(xf) ∆(τ, σ)

〈ai(τ)aj(σ)〉 = β gij(xf) ∆gh(τ, σ) (3.1.23)

〈bi(τ)cj(σ)〉 = −2β gij(xf) ∆gh(τ, σ)

where ∆ and ∆gh are regulated by the mode cut-off

∆(τ, σ) =
M∑

m=1

[

− 2

π2m2
sin(πmτ) sin(πmσ)

]

(3.1.24)

∆gh(τ, σ) =
M∑

m=1

2 sin(πmτ) sin(πmσ) . (3.1.25)

Note that at the regulated level (M big, but fixed) one has the relation
∆gh(τ, σ) = ••∆(τ, σ) = ∆••(τ, σ), where as usual left and right dots indi-
cate derivatives with respect to left and right variables. These functions
have the following limiting value for M →∞

∆(τ, σ) → τ(σ + 1)θ(τ − σ) + σ(τ + 1)θ(σ − τ) (3.1.26)

∆gh(τ, σ) → δ(τ − σ) . (3.1.27)

Conversely, the Fourier transform of these relations yields back (3.1.24)
and (3.1.25).

More generally, in loop computations one needs also the propagators for
〈q̇i(τ)qj(σ)〉, 〈qi(τ)q̇j(σ)〉 and 〈q̇i(τ)q̇j(σ)〉, so that it is useful to explicitly
record the corresponding formulas

•∆(τ, σ) =
M∑

m=1

[

− 2

πm
cos(πmτ) sin(πmσ)

]

(3.1.28)

∆•(τ, σ) =
M∑

m=1

[

− 2

πm
sin(πmτ) cos(πmσ)

]

(3.1.29)

•∆•(τ, σ) =
M∑

m=1

[

−2 cos(πmτ) cos(πmσ)

]

(3.1.30)
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whose limiting values for M →∞ can be computed as

•∆(τ, σ) → σ + θ(τ − σ) (3.1.31)

∆•(τ, σ) → τ + θ(σ − τ) (3.1.32)
•∆•(τ, σ) → 1− δ(τ − σ) . (3.1.33)

In addition, at coinciding times σ = τ one has

∆(τ, τ) → τ(τ + 1) (3.1.34)

•∆(τ, τ) → τ +
1

2
(3.1.35)

∆•(τ, τ) → τ +
1

2
. (3.1.36)

These limiting values, and in fact all formal expressions in the limit
M →∞, are the same as in time-slicing. However at finite M these regu-
larized propagators have different properties from the propagators which
are regularized by time-slicing. Consider as an example the expression

I =

∫ 0

−1

∫ 0

−1
dτdσ •∆(τ, σ) •∆•(τ, σ) ∆•(τ, σ) .

With time-slicing the result is I(TS) = −1/6. However, with mode num-
ber regularization one obtains a different answer I(MR) = −1/12. To
derive this result we use that at the regulated level boundary terms in
partial integration are well-defined

∫ 0

−1

∫ 0

−1
dτdσ •∆(τ, σ) •∆•(τ, σ) ∆•(τ, σ) =

∫ 0

−1

∫ 0

−1
dτdσ

1

2
∂σ(

•∆(τ, σ))2 ∆•(τ, σ) .

We can partially integrate with ∂σ without encountering boundary terms
because •∆(τ, σ) vanish at the boundary points σ = 0 and σ = −1. We
obtain then −1

2(•∆(τ, σ))2∆••(τ, σ) in the integrand. Next we may replace
∆••(τ, σ) by ••∆(τ, σ) because this relation is clearly satisfied at the regu-
lated level. Finally we combine − 1

2(•∆(τ, σ))2••∆(τ, σ) = −1
6∂τ (

•∆(τ, σ))3.
The integration over τ can be performed, and at this point one may take
the continuum limit because the integrand is finite and well-behaved. This
yields

I(MR) = −1

6

∫ 0

−1
dσ (•∆)3

∣
∣
∣

τ=0

τ=−1
= −1

6

∫ 0

−1
dσ ((σ + 1)3 − σ3) = − 1

12
.

3.2 The two loop amplitude and the counterterm VMR

We now compute the transition amplitude at the two-loop level, using
mode regularization. We count the coordinate displacement ξi = xii − xif
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as order
√
β. More precisely, we evaluate all graphs which contribute to

order β; these are not only the two-loop graphs but also one-loop graphs
with vertices of order β and tree graphs with vertices of order β2. We
take ξi of order

√
β because at the end we will use the resulting transition

amplitude to evolve wave functions, and a Gaussian integral over the
displacements ξi will make them effectively of order

√
β. Taking this into

account we can Taylor expand the interaction potentials in Sint given in
(3.1.18) around the final point xif . We classify the vertices as

Sint = S3 + S4 + . . . (3.2.1)

with

S3 =

∫ 0

−1
dτ

[
1

2
∂kgij(q

k − ξkτ)(ξiξj − 2 ξiq̇j + q̇iq̇j + aiaj + bicj)

]

− iβAiξi

(3.2.2)

S4 =

∫ 0

−1
dτ

[
1

4
∂k∂lgij(q

kql + ξkξlτ2 − 2 qkξlτ)

×(ξiξj − 2 ξiq̇j + q̇iq̇j + aiaj + bicj)

+ iβ∂jAi(q
j − ξjτ)(q̇i − ξi)

]

+ β2(V + VMR) . (3.2.3)

In this expansion all geometrical quantities, like gij and ∂kgij , as well as
Ai, V , VMR, and derivatives thereof, are constants since they are evalu-
ated at the final point xif , but for notational simplicity we do not exhibit
explicitly this dependence, as no confusion can arise. Each term 1

βSn

contributes effectively as β
n
2
−1. For example, S3 is of order β

3
2 because ξ

is of order β
1
2 and each q is also of order β

1
2 because the q propagator is

of order β. Similarly for the ghost fields and their propagator. Note also
that a term originating from the expansion of the velocity ẋi = q̇i − ξi in
the Ai term of (3.2.2) integrates to zero and has been canceled. To obtain
all corrections to the amplitude of a free particle to order β2 we need at
most the vertex S4. (Two loops come from terms with βL−1 with L = 2).

Thus, the perturbative quantum expansion reads:

〈xkf , tf |xki , ti〉 =

∫

BC
Dx exp

[

− 1

β
S
]

= A e
− 1

2β
gijξ

iξj 〈e−
1
β
Sint〉

= A e
− 1

2β
gijξ

iξj
(〈

1− 1

β
S3 −

1

β
S4 +

1

2β2
S2

3

〉

+O(β
3
2 )

)

= A e
− 1

2β
gijξ

iξj
exp

(

− 1

β
〈S3〉 −

1

β
〈S4〉+

1

2β2
〈S2

3〉c +O(β
3
2 )

)

(3.2.4)
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where the brackets 〈· · ·〉 denote the averaging with the free action S2,
and amount to using the propagators given in (3.1.23). In fact, we have
extracted the coefficient A together with the exponential of the quadratic
action S2 evaluated on the background trajectory so that the normaliza-
tion of the remaining path integral is such that 〈1〉 = 1. In the last line
only connected graphs appear in the exponent; this is indicated by the
subscript c where it is needed.

Using standard Wick contractions one gets

− 1

β
〈S3〉 = − 1

β

1

2
∂kgij

[

βξkgij I1 + 2βξigjkI2 +
1

2
ξiξjξk

]

+ iAiξ
i

= − 1

4β
∂kgijξ

iξjξk + iAiξ
i . (3.2.5)

On the right hand side there are terms without quantum fields and terms
due to the contraction of two quantum fields. The latter contributions are
denoted by I1 and I2, and correspond to the Feynman diagrams in (3.2.8)

and (3.2.9). For example I1 is due to
∫ 0
−1 dτ τ 〈q̇q̇ + aa+ bc〉. Similarly

− 1

β
〈S4〉 = − 1

β

1

4
∂k∂lgij

[

β2(gijgkl I3 + 2gikgjlI4)

−β(gijξkξl I5 + gklξiξjI6 + 4gjkξiξl I7) +
1

3
ξiξjξkξl

]

−i∂jAi
(

−βgij I8 −
1

2
ξiξj

)

− β(V + VMR)

= ∂k∂lgij

[
β

24
(gijgkl − gikgjl) +

1

24
(2gjkξiξl − gijξkξl − gklξiξj)

− 1

12β
ξiξjξkξl

]

+
i

2
∂jAiξ

iξj − β(V + VMR) . (3.2.6)

Now in the expression for the connected graphs with two S3 vertices one
does not need terms corresponding to ξ6 because they could only come
from squaring the classical contributions in S3, and would correspond to
disconnected graphs. Thus we find

1

2β2
〈S2

3〉c =
1

2β2

1

4
∂kgij∂lgmn

[

−β3
(

2gklgimgjn I9 + 4gkmgilgjn I10

+gklgijgmn I11 + 4gkigjlgmn I12 + 4gkiglmgjn I13

)

+β2
(

4ξiξm(gklgjn I14 + gkngjl I15) + 2ξkξlgimgjn I16

+8ξkξmgilgjn I17 + 2ξiξj(gklgmn I18 + 2gkmgln I19)

+4ξkξi(gjlgmn I20 + 2gjmgln I21)
)

− β
(

ξiξjξmξngkl I22
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+4ξkξiξmξngjl I23 + 4ξkξiξlξmgjn I24

)]

= ∂kgij∂lgmn

[

− β

96

(

6gklgimgjn − 4gkmgilgjn − gklgijgmn

+4gkigjlgmn − 4gkiglmgjn
)

+
1

48

(

2ξiξm(gklgjn − gkngjl)

+ξkξlgimgjn − ξiξj(gklgmn − 2gkmgln)

+2ξkξi(gjlgmn − 2gjmgln)
)

+
1

96β

(

ξiξjξmξngkl − 4ξkξiξmξngjl + 4ξkξiξlξmgjn
)]

.

(3.2.7)

These results inserted into (3.2.4) give the transition amplitude at the
two-loop approximation. The integrals needed for computing the various
Feynman diagrams are evaluated using mode regularization, namely first
they are computed at finite M (and so without ambiguities) and then the
M → ∞ limit is taken. We first list them here, and then explain in the
next section how the computations in mode regularization are most easily
performed.

I1 = + =

∫ 0

−1
dτ τ (•∆• + ••∆)|τ = 0 (3.2.8)

I2 = =

∫ 0

−1
dτ •∆|τ = 0 (3.2.9)

I3 = + =

∫ 0

−1
dτ ∆|τ (•∆• + ••∆)|τ = −1

6
(3.2.10)

I4 = =

∫ 0

−1
dτ •∆2|τ =

1

12
(3.2.11)

I5 = + =

∫ 0

−1
dτ τ2 (•∆• + ••∆)|τ = −1

6
(3.2.12)

I6 = =

∫ 0

−1
dτ ∆|τ = −1

6
(3.2.13)
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I7 = =

∫ 0

−1
dτ τ •∆|τ =

1

12
(3.2.14)

I8 = =

∫ 0

−1
dτ •∆|τ = 0 (3.2.15)

I9 = + =

∫ 0

−1

∫ 0

−1
dτdσ∆ (•∆•2 − ••∆2) =

1

4
(3.2.16)

I10 = =

∫ 0

−1

∫ 0

−1
dτdσ •∆ •∆• ∆• = − 1

12
(3.2.17)

I11 = + + +

=

∫ 0

−1

∫ 0

−1
dτdσ (•∆• + ••∆)|τ ∆ (•∆• + ••∆)|σ = − 1

12
(3.2.18)

I12 = +

=

∫ 0

−1

∫ 0

−1
dτdσ •∆|τ •∆ (•∆• + ••∆)|σ =

1

12

(3.2.19)

I13 = =

∫ 0

−1

∫ 0

−1
dτdσ •∆|τ •∆• ∆•|σ = − 1

12
(3.2.20)

I14 = =

∫ 0

−1

∫ 0

−1
dτdσ •∆• ∆ =

1

12
(3.2.21)

I15 = =

∫ 0

−1

∫ 0

−1
dτdσ •∆ ∆• = − 1

12
(3.2.22)

I16 = +

=

∫ 0

−1

∫ 0

−1
dτdσ τ (•∆•2 − ••∆2)σ =

1

12

(3.2.23)
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I17 = =

∫ 0

−1

∫ 0

−1
dτdσ τ •∆• •∆ = 0 (3.2.24)

I18 = +

=

∫ 0

−1

∫ 0

−1
dτdσ∆ (•∆• + ••∆)|σ = − 1

12

(3.2.25)

I19 = =

∫ 0

−1

∫ 0

−1
dτdσ∆• ∆•|σ =

1

12
(3.2.26)

I20 = +

=

∫ 0

−1

∫ 0

−1
dτdσ τ •∆ (•∆• + ••∆)|σ =

1

12

(3.2.27)

I21 = =

∫ 0

−1

∫ 0

−1
dτdσ τ •∆• ∆•|σ = − 1

12
(3.2.28)

I22 = =

∫ 0

−1

∫ 0

−1
dτdσ∆ = − 1

12
(3.2.29)

I23 = =

∫ 0

−1

∫ 0

−1
dτdσ τ •∆ =

1

12
(3.2.30)

I24 = =

∫ 0

−1

∫ 0

−1
dτdσ τ •∆• σ = − 1

12
. (3.2.31)

These are the tree, one- and two-loop graphs which contribute to the
transition amplitude to order β or less. Dots denote derivatives, and the
cross on I8 denotes ∂jAi. Dotted lines denote ghosts, solid internal lines
denote q-propagators, and external lines denote factors of ξ. Note how
ghost graphs combine with divergent graphs without ghosts to yield finite
results. This aspect will be discussed at length in the next section.
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Now we come to the task of imposing the “renormalization conditions”
which fix the overall normalization of the path integrals as well as the
counterterm VMR. We require that the transition amplitude (3.2.4)
should yield the correct time evolution of an arbitrary wave function
Ψ(x, t)

Ψ(xf , tf) =

∫

dnxi

√

g(xi)〈xif , tf |xii , ti〉Ψ(xi, ti) (3.2.32)

and verify whether Ψ(xf , tf) solves the Schrödinger equation with a given
Hamiltonian. We consider the Hamiltonian in the coordinate representa-
tion with the covariant Laplacian ∇2

A = gij(∇i+Ai)(∂j+Aj) and without
any coupling to the scalar curvature

H = −1

2
∇2
A + V . (3.2.33)

This Hamiltonian can arise as a possible quantization of the classical
model in (3.1.1) and thus is a consistent requirement. It is the x-space
representation of the abstract operator in (2.1.1) with Ai and V terms
added.

Since the transition amplitude is given in terms of an expansion around
the final point (xf , tf), we Taylor expand the wave function Ψ(xi, ti) and
the measure

√

g(xi) in eq. (3.2.32) about that point, perform the integra-
tion over dnxi, and match the various terms. Thus we insert

Ψ(xi, ti) = Ψ(xf , tf)− β∂tΨ(xf , tf) + ξi∂iΨ(xf , tf)

+
1

2
ξiξj∂i∂jΨ(xf , tf) +O(β

3
2 )

√

g(xi) =
√

g(xf)

(

1 + ξiΓik
k +

1

2
ξiξj(∂iΓjk

k + Γik
kΓjl

l) +O(ξ3)

)∣
∣
∣
xf

(3.2.34)

as well as (3.2.4) into (3.2.32). In the last expansion we have used that
1√
g∂i
√
g = 1

2g
mn∂igmn = Γik

k. All quantities are now evaluated at the

point (xf , tf). For notational simplicity we do not indicate this dependence
from now on, as no confusion can arise. The integrals over dnxi = dnξ
give Gaussian averages since the transition amplitude (3.2.4) contains the

exponential factor e
− 1

2β
gijξ

iξj
. These averages are easily carried out using

“Wick contractions” with the basic “propagator” 〈ξiξj〉 = βgij . This also
explains why we counted ξi ∼ √β in the expansion of the wave functions
in (3.2.34).

From the various terms in the expansion of (3.2.32) we find the follow-
ing. The leading term (order β0) fixes A

Ψ = A(2πβ)
n
2 Ψ → A = (2πβ)−

n
2 . (3.2.35)
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This yields the Feynman measure, as expected.
The terms of order β involve the counterterm VMR. We fix it by re-

quiring that (3.2.32) yields the prescribed Schrödinger equation for Ψ. At
order β one finds

β

[

−∂tΨ +
1

2
∇2
AΨ−

(

V + VMR −
1

8
R+

1

24
gijgmngklΓim

kΓjn
l
)

Ψ

]

= 0 .

(3.2.36)
For example, V + VMR comes from (3.2.6), and the A2 term in 1

2∇2
AΨ

comes from expanding exp
(

− 1
β 〈S3〉

)

in (3.2.4). Thus fixing

VMR =
1

8
R− 1

24
gijgmngklΓim

kΓjn
l (3.2.37)

gives the correct Schrödinger equation with the Hamiltonian in (3.2.33).
Higher order terms in β yield equations which must be automatically

satisfied, since we have completely fixed all the “free” parameters entering
mode regularization. This can be explicitly checked. A closely related
check is that applying MR to evaluate trace anomalies in 4 dimensions (a
three-loop calculation) produces the correct results.

We see here a difference with the TS method: in TS we first determined
the counterterm from Weyl ordering, and then we did loop calculations.
In MR we needed first to do loop calculations to order β to fix the coun-
terterm, but then one can go ahead and do further loop calculations.

To summarize, we have described the mode regularization scheme for
computing the path integral and have derived the corresponding countert-
erm VMR. With precisely this counterterm the path integrals will produce
a solution of the Schrödinger equation with Hamiltonian H = − 1

2∇2
A+V .

Any Hamiltonian for the Schrödinger equation can always be cast in the
form (3.2.33) with suitable Ai and V . In particular, the mode regulated
path integral with VMR gives a general coordinate invariant results for the
transition element. We stress that given an arbitrary but fixed Hamilto-
nian Ĥ we obtain always the same VMR in the action for the path integral,
but of course the action which corresponds to Ĥ will look different for dif-
ferent Ĥ’s. The total action for the path integral is the sum of:
(i) the sigma model action in (3.1.1),
(ii) the counterterm VMR ((i) + (ii) produce now the covariant Hamilto-
nian in (3.2.33)),
(iii) the extra terms present when the Hamiltonian is noncovariant (or
contains an additional coupling to the scalar curvature). These are given
by the extra terms in V and Ai by which the noncovariant Hamiltonian
differs from the covariant Hamiltonian.

Thus, the mode regularization method can handle any Hamiltonian
which is at most quadratic in the momenta.
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3.3 Calculation of Feynman graphs in mode regularization

In this section we analyze in detail mode regularization, and explain how
to efficiently evaluate Feynman diagrams.

First of all, all possible divergences are canceled by the ghost contribu-
tions. This is seen in diagrams like those in eqs. (3.2.8) or (3.2.10). Let’s
consider for example the case of I3 in (3.2.10)

I3 = + =

∫ 0

−1
dτ ∆|τ (•∆• + ••∆)|τ (3.3.1)

where we must insert for the ∆’s on the right-hand side the discretized
propagator as given in (3.1.24). At finite M each of the two diagrams
produce a finite result since each one corresponds to a finite sum of finite
integrals. However, only the sum of the two diagrams has a finite limit
for M →∞. To compute this final value one can evaluate both terms at
finite M , combine them, and then take the limit M → ∞. This way of
proceeding, though correct, is extremely laborious.

An easier way to proceed is to use partial integration to cast the integral
into a form which can be computed directly and without ambiguities by
taking the M →∞ limit inside the integral. Along the way one may use
simple identities valid at the regulated level, like the following one

(•∆• + ••∆)|τ =
M∑

m=1

[

−2 cos2(πmτ) + 2 sin2(πmτ)
]

= ∂τ

M∑

m=1

[

− 2

πm
sin(πmτ) cos(πmτ)

]

= ∂τ (
•∆|τ ) . (3.3.2)

Thus we compute

I3 =

∫ 0

−1
dτ ∆|τ (•∆• + ••∆)|τ =

∫ 0

−1
dτ ∆|τ ∂τ (•∆|τ )

= −
∫ 0

−1
dτ ∂τ (∆|τ ) •∆|τ . (3.3.3)

In the partial integration no boundary terms are picked up since both ∆|τ
and •∆|τ vanish at τ = −1, 0. In fact, notice that at the regulated level •∆|τ
always vanishes at those boundaries, even though its limit for M →∞ is
discontinuous at those points, see eq. (3.1.35) (continued along the whole
line−∞ < τ <∞, the function •∆|τ limits to the periodic triangular “saw-
tooth”). Finally, the last integral in (3.3.3) can be computed directly in
the continuum limit, since only step functions and no delta functions arise
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in single derivatives acting on ∆. Thus for M →∞ one can use the limits
(3.1.34)–(3.1.36) directly inside the integral to obtain

I3 = −
∫ 0

−1
dτ [∂τ (τ

2 + τ)]
(

τ +
1

2

)

= −2

∫ 0

−1
dτ
(

τ +
1

2

)2
= −1

6
.(3.3.4)

Let us next discuss the computations of the diagrams in (3.2.16) and
(3.2.17), whose values differ in all three different regularization schemes
discussed in this book. First we look at

I9 = + =

∫ 0

−1

∫ 0

−1
dτdσ∆ (•∆•2 − ••∆2) . (3.3.5)

The minus sign is due to the closed ghost loop. Using partial integration
we compute

I9 =

∫ ∫

∆ (•∆• •∆• − ••∆ ••∆)

=

∫ ∫

(−•∆ ∆• •∆• −∆ ∆• ••∆• + •∆ •∆ ••∆ + ∆ •∆ •••∆) . (3.3.6)

There are no boundary contributions because ∆ vanishes at the bound-
aries. Now we notice that the second and forth term cancel because at
the regulated level we can exchange two left derivatives with two right
ones (i.e. ••∆ = ∆••, see eq. (3.1.24)). Once again we see how the ghosts
cancel a potential divergence. The first term in (3.3.6) equals −I10 while
the remaining third term gives

∫ ∫

•∆ •∆ ••∆ =

∫ ∫

•∆ •∆ ∆•• = −2

∫ ∫

•∆• •∆ ∆• = −2I10 . (3.3.7)

The boundary terms cancel because •∆(τ, σ) vanish at σ = 0,−1. Thus
I9 = −3I10. So let us look at

I10 = =

∫ 0

−1

∫ 0

−1
dτdσ •∆ •∆• ∆• . (3.3.8)

By using partial integration we obtain

I10 =

∫ ∫

•∆ •∆• ∆• =
1

2

∫ ∫

∆• (•∆2)• = −1

2

∫ ∫

∆•• (•∆2)

= −1

2

∫ ∫

••∆ •∆2 = −1

6

∫ 0

−1

∫ 0

−1
dτ dσ •(•∆3) = −1

6

∫ 0

−1
dσ •∆3

∣
∣
∣

τ=0

τ=−1

= −1

6

∫ 0

−1
dσ ((σ + 1)3 − σ3) = − 1

12
. (3.3.9)
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Again we first used ••∆ = ∆•• and then used that •∆(0, σ) = σ + 1 and
•∆(−1, σ) = σ, see (3.1.31). In this last step one should be careful in
checking that the discretized functions really limit to the above values
(up to sets of points of zero measure). Indeed one can verify that

•∆(0, σ) =
M∑

m=1

[

− 2

πm
sin(πmσ)

]

→ σ + 1 (3.3.10)

•∆(−1, σ) =
M∑

m=1

[

− 2

πm
(−1)m sin(πmσ)

]

→ σ . (3.3.11)

Thus we obtained I10 = −1/12 and I9 = 1/4.
To summarize, in computing mode-regulated integrals it is convenient

to use partial integration together with the following identities valid at
finite M

••∆(τ, σ) = ∆••(τ, σ) (3.3.12)
•∆•(τ, τ) + ••∆(τ, τ) = ∂τ (

•∆(τ, τ)) (3.3.13)

∂τ (∆(τ, τ)) = 2∆•(τ, τ) (3.3.14)

∆•(τ, τ) = 0 at τ = −1, 0 (3.3.15)

and the following limits for M →∞

∆(τ, σ) → τ(σ + 1)θ(τ − σ) + σ(τ + 1)θ(σ − τ) (3.3.16)
•∆(τ, σ) → σ + θ(τ − σ) (3.3.17)

∆•(τ, σ) → τ + θ(σ − τ) (3.3.18)

∆(τ, τ) → τ2 + τ (3.3.19)

∆•(τ, τ) = •∆(τ, τ) → τ +
1

2
. (3.3.20)
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4
Dimensional regularization

In this chapter we discuss path integrals defined by dimensional regular-
ization (DR). In contrast to the previous TS and MR schemes, this type
of regularization seems to have no meaning outside perturbation theory.
However it leads to the simplest set up for perturbative calculations. In
fact the associated counterterm VDR turns out to be covariant, and the
additional vertices obtained by expanding VDR, needed at higher loops,
can be obtained with relative easiness (using for example Riemann normal
coordinates).

Dimensional regularization is based on the analytic continuation in the
number of dimensions of the momentum integrals corresponding to Feyn-
man graphs (1→ D+ 1 with arbitrary complex D, in our case). At com-
plexD we assume that the regularization of UV divergences is achieved by
the analytic continuation as usual. The limit D → 0 is taken at the end.
Again one does not expect divergences to arise in quantum mechanics
when the regulator is removed (D → 0), and thus no infinite countert-
erms are necessary to renormalize the theory: potential divergences are
canceled by the ghosts.

To derive the dimensional regularization scheme, one can employ a set
up quite similar to the one described in the previous chapter for mode
regularization. The only difference will be the prescriptions to regulate
ambiguous diagrams.

One novelty of the dimensional regularization described in this chapter
is that it addresses UV regularization on a compact space, namely on a
one-dimensional segment corresponding to the finite time β = tf − ti. On
such a space there cannot be infrared divergences, so that occasional mix-
ing between IR and UV divergences (which sometimes occurs in infinite
space) does not arise. On a compact space the momenta are discrete, and
the Feynman graphs contain discrete sums

∑

kn [..] rather then continu-
ous integrals

∫
dk[..]. The latter are easily extended to arbitrary D and
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computed, but the former are more difficult to treat. In general we have
not been able to compute explicitly the combined sum and integrals in
complex D + 1 dimensions, and test if poles arise only at some integer
value of D. However, assuming that to be the case, we will show how one
can compute the regulated graphs directly at D → 0 and with relative
easiness.

Dimensional regularization for bosonic nonlinear sigma models with fi-
nite propagation time and with the correct counterterm VDR which we
present in the following section was developed in [65]. It was extended to
fermions and to supersymmetric nonlinear sigma models in [18]. In the
infinite propagation time limit, dimensional regularization was previously
employed in [5] and the corresponding covariant counterterm was identi-
fied in [66]. An extended use of DR for computing trace anomalies in 6
dimensions is described in [67, 68]. Moreover DR has been employed in
[17, 18] to describe quantum field theories in a gravitational background
within the worldline formalism. Additional discussions have been pre-
sented in [69].

For pedagogical purposes it is useful to first read the chapter on mode
regularization, but the expert reader interested in learning directly the
DR scheme can start here.

4.1 Dimensional regularization in configuration space

We start from the classical action in Euclidean time for the fields xi with
i = 1, .., n

S =

∫ tf

ti

dt

[
1

2
gij(x)

dxi

dt

dxj

dt
+ iAi(x)

dxi

dt
+ V (x)

]

(4.1.1)

and aim to quantize the theory by defining directly the transition ampli-
tude as a path integral

〈xkf , tf |xki , ti〉 =

∫

BC
Dx e−S (4.1.2)

Dx =
∏

ti<t<tf

√

det gij(x(t)) d
nx(t) (4.1.3)

where BC indicates the boundary conditions at initial and final time,
xk(ti) = xki and xk(tf) = xkf . Since this quantum theory is super-
renormalizable, we first proceed formally and derive the Feynman graphs,
then we introduce the dimensional regularization procedure to give a
meaning to the ambiguous integrals and compute them, and finally we cal-
culate the transition amplitude at two loops. Imposing the same “renor-
malization conditions” as used in the TS and MR schemes will determine
the counterterm VDR and the overall normalization of the path integral.
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The measure Dx in (4.1.3) is formally a scalar under general coordinate

transformations, but the factor
∏

t

√

det gij(x(t)) is field dependent and

makes the measure unsuitable to generate the perturbative expansion.
Thus it is useful to introduce ghost fields ai, bi, ci (with ai commuting
and bi, ci anticommuting) to exponentiate this field dependent factor.
No boundary conditions should be imposed on the path integral for the
ghosts as they are auxiliary algebraic fields (by this we mean that no
initial or final point value for these fields can be specified in the transition
amplitude (4.1.2)).

It is also convenient to shift and rescale the time parameter t, so that
the total propagation time β can be extracted from the action S → 1

βS.
Defining t = tf + βτ with β = tf − ti, so that −1 ≤ τ ≤ 0, and rescaling
suitably the ghost fields one obtains the following complete action

S =

∫ 0

−1
dτ

[
1

2
gij(x)(ẋ

iẋj + aiaj + bicj)

+ iβAi(x)ẋ
i + β2

(

V (x) + VDR(x)
)]

(4.1.4)

where ẋi = dxi

dτ . We have denoted by VDR the counterterm which is needed

for dimensional regularization. Note that since exp(− 1
βS) is the weight

factor for the sum over paths, the time β plays a role analogous to the
Planck constant h̄ (which is set to one in this chapter) and can be used
to count the number of loops.

For an arbitrary metric gij(x) one can calculate the path integral in a
perturbative expansion in β and the coordinate displacements ξi ≡ xii−xif .
We perform a background/quantum split and parametrize

xi(τ) = xibg(τ) + qi(τ) (4.1.5)

where xibg(τ) is a background trajectory and qi(τ) the quantum fluctua-
tions. After choosing the coordinate system to be employed for carrying
out the computations, the background trajectory is taken to satisfy the
free equations of motion gij(xf)∂

2
τx

j(τ) = 0. It incorporates the correct
boundary conditions

xibg(τ) = xif − ξiτ , with ξi ≡ xii − xif . (4.1.6)

Note that by free equations of motion we mean the ones arising from
(4.1.4) by neglecting the potentials V +VDR (which are explicitly of order
β2) and Ai (which is explicitly of order β), and by keeping the constant
leading term in the expansion of the metric gij(x) around the final point
xif (thus making the space effectively flat). Of course one could as well
take any other point to linearize the metric. For the ghost fields one can
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as well perform a background/quantum split. However the background
ghost fields vanish as a consequence of their algebraic equation of motion.

The quantum fields are all taken to vanish at the time boundaries since
the boundary conditions are already included in the background configu-
rations. Therefore they can be expanded in a Fourier sine series

φi(τ) =
∞∑

m=1

φim sin(πmτ) (4.1.7)

where φi stands for all the quantum fields qi, ai, bi, ci. The functional
space of paths is now defined as the space of all Fourier coefficients
φim = (qim, a

i
m, b

i
m, c

i
m). Similarly, the path integral measure is defined

in terms of integration over the Fourier coefficients φim. Thus we obtain
the following path integral

〈xkf , tf |xki , ti〉 =

∫

BC
DqDaDbDc e

− 1
β
S

(4.1.8)

S =

∫ 0

−1
dτ

[
1

2
gij(x)(ẋ

iẋj + aiaj + bicj)

+ iβAi(x)ẋ
i + β2(V (x) + VDR(x))

]

(4.1.9)

xi(τ) = xibg(τ) + qi(τ) (4.1.10)

DqDaDbDc = A
∞∏

m=1

n∏

i=1

mdqimda
i
mdb

i
mdc

i
m, (4.1.11)

where A is a constant which will fixed later on (we will find again the
Feynman measure A = (2πβ)−

n
2 ).

The perturbative expansion is generated by splitting the action into a
quadratic part S2 which defines the propagators, and an interacting part
Sint which gives the vertices. If the theory is free and Sint vanishes, there
would not be any real reason to introduce a regularization. However,
when the theory is interacting with a nontrivial field dependent metric,
one must regulate the ambiguous Feynman graphs. In dimensional regu-
larization these graphs are extended to D + 1 dimensions. To recognize
how to uniquely do this extension in each Feynman graph, we introduce D
extra infinite regulating dimensions t = (t1, . . . , tD) and extend directly
the action. After having obtained from this action the corresponding
Feynman diagrams, and in principle computed them at arbitrary D, one
takes the limit D → 0. Introducing tµ ≡ (τ, t) with µ = 0, 1, . . . , D and
dD+1t = dτdDt, the action in D + 1 dimensions reads

S =

∫

Ω
dD+1t

[
1

2
gij
(

∂µx
i∂µx

j + aiaj + bicj
)
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+iβAi∂0x
i + β2(V + VDR)

]

(4.1.12)

where Ω = I × RD is the region of integration containing the finite in-
terval I = [−1, 0]. Note that the contraction of the indices µ in the term
quadratic in derivatives tells us how momenta get contracted in higher
dimensions. Note also that the coupling to the abelian gauge field Ai is
not modified in higher dimensions (∂0x

i ≡ ∂τx
i = ẋi). In addition, in

D + 1 dimensions the background solution (4.1.6) is left unchanged, so
that the split S = S2 + Sint is given by

S2 =
1

2
gij (xf)ξ

iξj +

∫

Ω
dD+1t

1

2
gij(xf) (∂µq

i∂µq
j + aiaj + bicj)

(4.1.13)

Sint =

∫

Ω
dD+1t

[
1

2
(gij(x)− gij(xf)) (∂µx

i∂µx
j + aiaj + bicj)

+iβAi(x)∂0x
i + β2(V (x) + VMR(x))

]

. (4.1.14)

A term linear in ∂0q
i appearing in S2 integrates to zero and thus has been

dropped.
The regulated propagators are given by

〈xi(t)xj(s)〉 = −β gij(xf ) ∆(t, s) (4.1.15)

〈ai(t)aj(s)〉 = β gij(xf ) ∆gh(t, s) (4.1.16)

〈bi(t)cj(s)〉 = −2β gij(xf ) ∆gh(t, s) (4.1.17)

where

∆(t, s) =

∫
dDk

(2π)D

∞∑

m=1

−2

(πm)2 + k2
sin(πmτ) sin(πmσ) eik·(t−s)

(4.1.18)

∆gh(t, s) =

∫
dDk

(2π)D

∞∑

m=1

2 sin(πmτ) sin(πmσ) eik·(t−s)

= δ(τ, σ) δD(t− s) = δD+1(t, s) . (4.1.19)

Here

δ(τ, σ) =
∞∑

m=1

2 sin(πmτ)sin(πmσ) (4.1.20)

is the Dirac delta on the space of functions vanishing at τ, σ = −1, 0.
Note that the function ∆(t, s) satisfies the relation (Green’s equation)

∂2
µ∆(t, s) = ∆gh(t, s) = δD+1(s, t) . (4.1.21)
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Formally, the D → 0 limits of these propagators are the usual ones

∆(τ, σ) = τ(σ + 1)θ(τ − σ) + σ(τ + 1)θ(σ − τ) (4.1.22)

∆gh(τ, σ) = ••∆(τ, σ) = δ(τ, σ) (4.1.23)

where dots on the left/right side denote derivatives with respect to the
first/second variable, respectively. However, such limits can be used only
after one has defined the integrands in an unambiguous form by mak-
ing use of the manipulations allowed by the regularization scheme. It
is difficult to compute the integrals in Feynman graphs for arbitrary D.
However, this is not strictly necessary. We can use various manipula-
tions which are identities at the regulated level (and thus can be safely
performed) to cast the integrals in alternative forms. This way one tries
to reach a form which can be unambiguously computed by removing the
regulator D → 0. This is the same strategy we used in MR to compute
quickly the various regulated integrals.

In particular, in DR one can often use partial integration without the
need of including boundary terms: this is always allowed in the extra D
dimension because of momentum conservation, while it can be achieved
along the finite time interval direction whenever there is an explicit func-
tion vanishing at the boundary τ = −1, 0 (for example the propagator
of the coordinates ∆(t, s)). Along the way one may find terms of the
form ∂2

µ∆(t, s) which according to eq. (4.1.21) give Dirac delta functions.
The latter can be safely used only at the regulated level, i.e. in D + 1
dimensions. By performing such partial integrations one tries to arrive at
a form of the integrals which are unambiguous even in the limit D → 0.
At this point they can be safely and easily calculated in this limit.

We will give more details on how to compute integrals in DR in section
4.3. For the moment an explicit example will suffice to describe how the
above rules are concretely used:

I10 =

∫ 0

−1
dτ

∫ 0

−1
dσ (•∆) (∆•) (•∆•)→

∫

dD+1t

∫

dD+1s (µ∆) (∆ν) (µ∆ν)

=

∫

dD+1t

∫

dD+1s (µ∆) µ

(
1

2
(∆ν)

2
)

= −1

2

∫

dD+1t

∫

dD+1s (µµ∆) (∆ν)
2

= −1

2

∫

dD+1t

∫

dD+1s δD+1(t, s) (∆ν)
2 = −1

2

∫

dD+1t (∆ν)
2|t

→ −1

2

∫ 0

−1
dτ (∆•)2|τ = − 1

24
(4.1.24)

where the symbol |τ means that one should set σ = τ . We have extended
the notation to µ∆ and ∆µ to indicate derivatives with respect to the
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first or second variable. Thus I10(DR) = − 1
24 . In MR this integral was

equal to I10(MR) = − 1
12 . The difference between both schemes occurred

when we obtained (µµ∆) (∆ν)
2. In both schemes we can still replace

µµ∆ by ∆µµ, but in DR we then set ∆µµ equal to the delta function
(a distribution), while in MR ∆µµ = ∆•• is still regulated and yields
∆••(∆•)2 = 1

3∂τ (∆
•)3.

Thus, we see that the rules of computing in DR are quite similar to
those used in MR, except for the different options allowed for partial
integrations. In DR the rule for contracting which index with which index
follows directly from the extended action in (4.1.12). Thus only certain
partial integrations lead to the Green equation ∂2

µ∆(t, s) = δD+1(s, t)
in D + 1 dimensions. At the same time the complex number D is the
regulator, so that the discrete mode sums in (4.1.7) and (4.1.11) are really
summed up to infinity. Instead in MR one regulates by cutting off all mode
sums at a large mode number M and then performs partial integrations:
now all derivatives are of the same nature and different options of partial
integrations arise. This explains the origin of the differences between
these two regularizations.

4.2 Two loop transition amplitude and the counterterm VDR

We now compute the transition amplitude in dimensional regularization
at the two-loop level (to order β), treating the coordinate displacement

ξi as being of order β
1
2 . The perturbative expansions is precisely of the

same form as given in section 3.2 to which we refer. The only difference
is in the calculation of the integrals I1, .., I24, which must be evaluated
with the rules of dimensional regularization just described.

Proceeding to this task, one notices that all these integrals computed
in DR acquire the same value as in MR, except I9 and I10. We already
described in (4.1.24) how to compute I10(DR) = − 1

24 . As for I9 we obtain

I9(DR) = −3I10(DR) = 1
8 . We will discuss these integrals in the next

section.
Thus, it is straightforward to compute the difference between the DR

and MR transition amplitude without counterterms

∆〈xkf , tf |xki , ti〉 ≡ 〈xkf , tf |xki , ti〉(DR)− 〈xkf , tf |xki , ti〉(MR)

= A e
− 1

2β
gijξ

iξj 1

2β2

1

4
∂kgij∂lgmn(−β3)

[

2gklgimgjn [I9(DR)− I9(MR)]

+4gkmgilgjn [I10(DR)− I10(MR)]
]

. (4.2.1)

After integration over ξi one finds
∫

dnξ∆〈xkf , tf |xki , ti〉 =
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= β
( 1

32
gklgimgjn∂kgij∂lgmn −

1

48
gkmgilgjn∂kgij∂lgmn

)

=
β

24
gijgmngklΓim

kΓjn
l . (4.2.2)

Recalling eqs. (3.2.36) and (3.2.37), this implies that the complete coun-
terterm necessary to satisfy the renormalization conditions in dimensional
regularization is covariant and equals

VDR =
1

8
R (4.2.3)

while the value of the constant A is again fixed to be A = (2πβ)−
n
2 . This

result shows that general covariance as well as gauge invariance are auto-
matically preserved by dimensional regularization on the finite interval.

4.3 Calculation of Feynman graphs in dimensional
regularization

In this section we analyze in some detail the principles to be followed in the
application of dimensional regularization and explain through examples
how to evaluate efficiently all Feynman diagrams.

First of all, all possible divergences are canceled by ghost contributions.
This is seen in diagrams like those in eqs. (3.2.8) or (3.2.10). Let’s
consider for example the case of I3 in (3.2.10) which is regulated in DR
as follows

I3(DR) = + =

∫

dD+1t∆|t (µ∆µ + µµ∆)|t .

(4.3.1)

Note that we use here ∆gh = µµ∆ for the ghost propagator, i.e. the
Green equation (4.1.21). Because there is a ∆ with two derivatives, we
shall use various allowed manipulations to arrive at an expression where
all ∆ carry at most one derivative, and then we can take the limit D → 0
without encountering ambiguities or divergences. Recall that we denote
by a subscript 0 the derivative along the original compact time direc-
tion. By inspecting formulas (4.1.18) and (4.1.19), one gets the following
identity for ∆(t, s)

(µ∆µ + µµ∆)|t = 0( 0∆|t) . (4.3.2)

Inserting this identity into (4.3.1), one can partially integrate the ∂0 with-
out picking up boundary terms and obtains

I3(DR) = −
∫

dD+1t ∂0(∆|t) 0∆|t → −
∫ 0

−1
dτ ∂τ (∆|τ ) •∆|τ
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= −
∫ 0

−1
dτ ∂τ (τ

2 + τ)
(

τ +
1

2

)

= −1

6
. (4.3.3)

Let’s now discuss the integral

I9 = + =

∫ 0

−1

∫ 0

−1
dτdσ∆ (•∆•2 − ••∆2) . (4.3.4)

In dimensional regularization

I9(DR) =

∫ 0

−1
dτ

∫ 0

−1
dσ ∆ (•∆•2 −∆2

gh) →

→
∫

dD+1t

∫

dD+1s ∆(µ∆ν µ∆ν − µµ∆ νν∆) =

=

∫ ∫ (

−(µ∆) (∆ν) (µ∆ν)−∆ (∆ν) (µµ∆ν)

+(µ∆) (µ∆) (νν∆) + ∆ (µ∆) (µνν∆)

)

=

∫ ∫ (

−(µ∆) (∆ν) (µ∆ν) + (µ∆) (µ∆) (νν∆)

)

= −I10(DR) +

∫

dD+1t

∫

dD+1s (µ∆)2δD+1(t, s)

= −I10(DR) +

∫

dD+1t (µ∆)2|t
= −3I10(DR) . (4.3.5)

We used the identity µµ∆ν = ∆νµµ, obvious from (4.1.18), and recog-
nized that the second and fourth term in the second line cancel. Fi-
nally we used the last-but-one line of (4.1.24) which tells that I10(DR) =
−1

2

∫
dD+1t (µ∆)2|t. Thus, I9(DR) = −3I10(DR) which is the same re-

lation as in MR. The value of I10(DR) was already obtained in (4.1.24)
and differs from I10(MR).

Finally, we study the integral I8 which is related to gauge invariance

I8 = =

∫ 0

−1
dτ •∆|τ . (4.3.6)

where the cross indicates the location of the vertex and denotes the factor
∂jAi in (3.2.3) (there are no ξi factors, so no external lines according to
our graphical notation). Computationally this diagram is rather simple.
By power counting it is logarithmically divergent, and one could get any
value for this diagram by using different prescriptions. Symmetric integra-
tion gives zero, but asymmetric integration schemes may easily produce a
nonvanishing answer. All three schemes, DR, MR and TS, gives the same
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answer which preserves gauge invariance. In DR one can write it as

I8(DR) =

∫

dD+1t (0∆)|t →
∫ 0

−1
dτ •∆|τ = 0 (4.3.7)

which is directly computed in the D = 0 limit.

4.4 Path integrals for fermions

In this section we describe the dimensional regularization of fermionic
path integrals. We shall discuss explicitly path integrals for Majorana
fermions on a circle with periodic (PBC) or antiperiodic boundary con-
ditions (ABC), as these are the only boundary conditions that will be
directly needed in the applications to anomalies. First we consider the
path integral with ABC and describe how to extend dimensional regular-
ization to fermions. The requirement that a two-loop computation with
DR reproduces known results (namely those obtained by time slicing)
fixes once for all the two loop counterterm due to fermions. As we shall
see this counterterm vanishes in DR. Since counterterms are due to ul-
traviolet effects, the infrared vacuum structure and the related boundary
conditions on the fields should not matter in their evaluation. Therefore
the same counterterm should apply to the fermionic path integral with
PBC as well. No higher-loop contributions to the counterterm are ex-
pected as the model is super-renormalizable, just like the purely bosonic
case. We end the section by presenting the essential formulas for the
fermionic path integral with PBC.

Let us consider the N = 1 supersymmetric model written in terms of
fermions with flat target-space indices

S =

∫ 0

−1
dτ

[
1

2
gij(x)(ẋ

iẋj + aiaj + bicj) +
1

2
ψa(ψ̇

a + ẋiωi
a
b(x)ψ

b)

+β2
(

V (x) + VCT (x) + V ′
CT (x)

)]

(4.4.1)

where V ′
CT (x) denotes the additional counterterm which may arise from

the fermions ψa in the chosen regularization scheme. This N = 1 model
is described in detail in appendix D. It is classically supersymmetric if
all the potential terms which are multiplied by β2 are set to zero (note
also that the ghosts are set to zero by their algebraic equations of motion
and can be eliminated). Supersymmetry may be broken by boundary
conditions, e.g. periodic for the bosons and antiperiodic for the fermions.
To start with we assume antiperiodic boundary conditions (ABC) for the
Majorana fermions ψa(0) = −ψa(−1). Majorana fermions realize the
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Dirac gamma matrices in a path integral context, and ABC compute the
trace over the Dirac matrices1.

Now we may explicitly compute by time slicing the transition amplitude
for going from the background point x at time t = 0 back to the same
point x at a later time t = β using ABC for the Majorana fermions. In
the two loop approximation this computation gives

Z ≡ tr 〈x|e−βĤ |x〉 = 2
n
2

(2πβ)
n
2

(

1− β

24
R+O(β2)

)

(4.4.2)

where the trace on the left-hand side is only over the Dirac matrices and
where

Ĥ = Q̂2 = −1

2
/D /D = −1

2

(

DiDi +
1

4
R
)

(4.4.3)

is the supersymmetric Hamiltonian of the N = 1 model. This Hamilto-
nian is the square of the supercharge Q̂, realized by the Dirac operator

Q̂ =
i√
2

/D =
i√
2
γaea

iDi , Di = ∂i +
1

4
ωiabγ

aγb (4.4.4)

with ωiab the spin connection (see appendix A). Note that there is an
explicit coupling to the scalar curvature arising in (4.4.3). Thus one needs
to use V = −1

8R in the action together with the time slicing counterterms

VTS = 1
8(R + gijΓkilΓ

l
jk) and V ′

TS = 1
16g

ijωi
abωjab (see eq. ... ). For

convenience we will later rederive this value of V ′
TS .

Now we want to reproduce eq. (4.4.2) with a path integral over Ma-
jorana fermions in dimensional regularization. This will unambiguously
fix the additional counterterm V ′

DR(x) due to the fermions. Note that
in dimensional regularization the potential V = − 1

8R cancels exactly the

counterterm VDR = 1
8R due to the bosons.

We focus directly on the regularization of the Feynman graphs arising
in perturbation theory. To recognize how to dimensionally continue the
various Feynman graphs we extend the action to D dimensions as follows

S =

∫

Ω
dD+1t

[
1

2
gij(∂µx

i∂µx
j + aiaj + bicj)

+
1

2
ψ̄aγ

µ(∂µψ
a + ∂µx

iωi
a
bψ

b) + β2V ′
DR

]

(4.4.5)

1 One may avoid the path integral over Majorana fermions by explicitly using a matrix
valued action: one drops the kinetic term for fermions and replaces the potential term
ẋiωiabψ

aψb by the matrix 1
2
ẋiωiabγ

aγb. The path integral then requires an explicit
time ordering prescription to evaluate the exponential of the matrix valued action

and maintain gauge invariance (T e
− 1

β
S
) [24].
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where Ω = I × RD is the region of integration containing the finite in-
terval I = [−1, 0] and γµ are the gamma matrices in D + 1 dimensions
({γµ, γν} = 2δµν). As before tµ = (τ, t) with µ = 0, 1, . . . , D. Here we
assume that we can continue to those Euclidean integer dimensions where
Majorana fermions can be defined. The Majorana conjugate is defined
by ψ̄a = ψTa C± with a suitable charge conjugation matrix C± such that
ψ̄aγµψb = −ψ̄bγµψa. This can be achieved for example in 2 dimensions2.
This requirement guarantees that the coupling ωiabψ

aψb = −ωiabψbψa in
(4.4.1) is nonvanishing when extended to D + 1. The actual details how
to represent C± and the gamma matrices in D + 1 dimensions are not
important. These gamma matrices only serve as a book-keeping device
to keep track how derivatives are going to be contracted in higher dimen-
sions. Apart from the above requirements, no additional Dirac algebra
for γµ in D + 1 dimensions is needed.

The bosonic and ghost propagators are as in the previous sections.
The fermionic fields with ABC on the worldline, ψa(0) = −ψa(−1), can
be expanded in half-integer modes

ψa(τ) =
∑

r∈Z+ 1
2

ψar e2iπrτ (4.4.6)

and have the following unregulated propagator

〈ψa(τ)ψa(σ)〉 = βδab∆AF (τ − σ)

∆AF (τ − σ) =
∑

r∈Z+ 1
2

1

2πri
e2iπr(τ−σ) . (4.4.7)

Note that the Fourier sum defining ∆AF is conditionally convergent for
τ 6= σ and yields

∆AF (τ − σ) =
1

2
ε(τ − σ) (4.4.8)

where ε(x) = θ(x) − θ(−x) is the sign function (with the value ε(0) = 0
obtained by symmetrically summing the Fourier series). The function
∆AF satisfies

∂τ∆AF (τ − σ) = δAF (τ − σ) (4.4.9)

where δAF (τ −σ) is the Dirac’s delta function on functions with antiperi-
odic boundary conditions

δAF (τ − σ) =
∑

r∈Z+ 1
2

e2iπr(τ−σ) . (4.4.10)

2 In Euclidean 2d one can choose γ1 = σ3, γ2 = σ1 and C+ = 1. Recall that C± is
defined by C±γ

µC−1
± = ±γµT .
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The dimensionally regulated propagator obtained by adding the extra
coordinates reads

〈ψa(t)ψ̄b(s)〉 = β δab∆AF (t, s) (4.4.11)

where the function

∆AF (t, s) = −i
∫

dDk

(2π)D

∑

r∈Z+ 1
2

2πrγ0 + ~γ · k
(2πr)2 + k2

e2iπr(τ−σ)eik·(t−s)

(4.4.12)

satisfies

γµ
∂

∂tµ
∆AF (t, s) = − ∂

∂sν
∆AF (t, s)γν = δAF (τ − σ)δD(t− s) . (4.4.13)

These are the essential relations needed to extend DR to fermions. They
keep track of which derivative is contracted to which vertex to produce
the D + 1 delta function. The delta function is only to be used in D + 1
dimensions, as we assume that the regularization due to the extra dimen-
sions is taking place3. By using partial integration one casts the various
loop integrals in a form which can be computed by sending first D → 0.
Then one can use γ0 = 1 and no extra factors arise from the Dirac algebra
in D + 1 dimensions.

We are now ready to perform the two-loop calculation in the N = 1
nonlinear sigma model using DR. The bosonic vertices together with the
ghosts, V and VDR give the same contribution calculated in section 3.2.
The overall normalization of the fermionic path integral gives the extra
factor 2

n
2 which equals the number of components of a Dirac fermion in

n (even) dimensions. This already produces the full expected result in
(4.4.2).

Thus the sum of the additional fermion graphs arising from the cubic
vertex contained in ∆S =

∫ 0
−1 dτ

1
2 ẋ

iωiabψ
aψb and the extra countert-

erm V ′
DR must vanish at two loops. The cubic vertex arise by evalu-

ating the spin connection at the background point x and reads ∆S3 =
1
2ωiab

∫ 0
−1 dτ q̇

iψaψb. Using Wick contractions we identify the following

contribution to 〈e−
1
β
Sint〉

1

2β2
〈(∆S3)

2〉 = 1

2β2
(−2)

(1

2
ωiab

)2
(−β3)

3 Again, we are not able to show this in full generality, and at this stage this rule is
taken as an assumption which has turned out to be consistent in all the examples
we have been dealing with. One way to prove it explicitly would be to compute all
integrals arising in perturbation theory at arbitrary D and then check the location
of the poles.
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×
∫ 0

−1

∫ 0

−1
dτdσ •∆•(τ, σ)[∆AF (τ, σ)]2 . (4.4.14)

Using DR this graph is regulated by

∫ 0

−1

∫ 0

−1
dτdσ •∆•(τ, σ)[∆AF (τ, σ)]2 →

→ −
∫ ∫

µ∆ν(t, s) tr [γµ∆AF (t, s)γν∆AF (s, t)] (4.4.15)

(note the minus sign obtained in exchanging t and s in the last propagator;
it is the usual minus sign arising for fermionic loops). We can partially
integrate ∂µ without picking boundary terms and obtain

2

∫ ∫

∆ν(t, s) tr [(γµ∂µ∆AF (t, s))γν∆AF (s, t)]

= 2

∫ ∫

∆ν(t, s) tr [δD+1(t, s)γν∆AF (s, t)]

= 2

∫

∆ν(t, t) tr [γν∆AF (t, t)]

→ 2

∫ 0

−1
dτ ∆•(τ, τ)∆AF (0)] = 0 (4.4.16)

because ∆AF (0) = 1
2ε(0) = 0 (and γ0 = 1 at D = 0). As this example

shows, the Dirac gamma matrices in D+1 are just a book-keeping device
to keep track where one can use the Green equation (4.4.13).

Thus no contribution arises from the fermions at this order, and this
implies that the extra counterterm must vanish

V ′
DR = 0 . (4.4.17)

This is what one expects to preserve supersymmetry: the counterterm
VDR is exactly canceled by the tree level potential V = − 1

8R needed
to have the correct coupling to the scalar curvature in the Hamilto-
nian (4.4.3) while no extra contribution to the counterterm arises from
fermions. Thus dimensional regularization without any counterterm
and without extra order β2 tree level potential preserves the super-
symmetry of the classical N = 1 action

S =

∫ 0

−1
dτ

[
1

2
gij(x)ẋ

iẋj +
1

2
ψa(ψ̇

a + ẋiωi
a
b(x)ψ

b)

]

. (4.4.18)

In fact the amount of curvature coupling in the Hamiltonian H brought in
by DR is of the exact amount to render it supersymmetric at the quantum
level.
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To compare with TS, we can compute the graph (4.4.14) using the TS
rules. Now we must use that •∆•(τ, σ) = 1 − δ(τ, σ). The Dirac delta
functions is ineffective as ε(0) = 0, but the rest gives

1

2β2
〈(∆S3)

2〉(TS) =
1

2β2
(−2)

(1

2
ωiab

)2
(−β3)

∫ 0

−1

∫ 0

−1
dτdσ

1

4

=
β

16
(ωiab)

2 (4.4.19)

This is canceled by using an extra counterterm V ′
TS = β2

16 (ωiab)
2 which at

this order contributes with a term − 1
βV

′
TS (evaluated at the background

point x).
Let us conclude this section by considering briefly the case of Majorana

fermions with PBC. Now the mode expansion of ψa(τ) requires integer
modes

ψa(τ) =
∑

n∈Z
ψan e2iπnτ . (4.4.20)

The zero modes ψa0 of the kinetic operator (∂τ ) are treated separately, and
the unregulated propagator in the sector of periodic functions orthogonal
to the zero mode reads

〈ψa(τ)ψa(σ)〉 = βδab∆PF (τ − σ) (4.4.21)

∆PF (τ − σ) =
∑

n6=0

1

2πni
e2iπn(τ−σ) (4.4.22)

where the function ∆PF satisfies

∂τ∆PF (τ − σ) = δPF (τ − σ)− 1 (4.4.23)

with δPF (τ − σ) the Dirac’s delta on periodic functions. Its continuum
limit can be obtained by summing up the series and reads (for (τ − σ) ∈
[−1, 1])

∆PF (τ − σ) =
1

2
ε(τ − σ)− (τ − σ) . (4.4.24)

Curved indices
It is interesting to consider the case of fermions with curved target-space

indices. This is equivalent to the case of fermions with flat target-space
indices: it is just a change of integration variables in the path integral.
However it is an useful exercise to work out since some formulas will
become simpler. The classical N = 1 supersymmetric sigma model is
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written as

S =

∫ 0

−1
dτ

1

2
gij(x)

[

ẋiẋj + ψi(ψ̇j + ẋlΓlk
j(x)ψk)

]

. (4.4.25)

The fermionic term could also be written more compactly in terms of the
covariant derivative D

dτψ
j = ψ̇j + ẋlΓlk

j(x)ψk. Note that the action is
written in terms of the metric and Christoffel connection and there is no
need of introducing the vielbein and spin connection. Writing out the
Christoffel connection in terms of the metric shows also that the coupling
to the metric gij is linear (see appendix D, eq. (D.7)).

The bosonic part of the path integral has been already described and
goes on unchanged. For the fermionic part we can now derive the correct
path integral measure by taking into account the jacobian from the change
of variable from the free measure with flat indices

Dψa = D(eai(x)ψ
i) = Det−1(eai(x))Dψ

i

=




∏

−1≤τ<0

1
√

det gij(x(τ))



Dψi . (4.4.26)

Note the inverse determinant which is due to the Grassmann nature of
the integration variables. The extra factor appearing in the measure can
be exponentiated using bosonic ghosts αi(τ) with the same boundary
condition of the fermions (ABC or PBC) and it leads to the extra term
in the ghost action

Sextragh =

∫ 0

−1
dτ

1

2
gij(x)α

iαj . (4.4.27)

One can check that the counterterms of dimensional regularization are
left unchanged. The full quantum action for the N = 1 supersymmetric
sigma model reads

S =

∫ 0

−1
dτ

1

2
gij(x)

[

ẋiẋj + aiaj + bicj + ψi(ψ̇j + ẋlΓlk
j(x)ψk) + αiαj

]

(4.4.28)

and appears in the path integral as

Z =

∫

DxDaDbDcDψDα e
− 1
β
S
. (4.4.29)

Supersymmetry is not broken by boundary conditions if one uses peri-
odic boundary conditions for both bosons and fermions. Then the effect
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of the ghosts cancels by themselves (they have the same boundary condi-
tions) and can be eliminated altogether




∏

−1≤τ<0

√

det gij(x(τ))








∏

−1≤τ<0

1
√

det gij(x(τ))



 = 1 . (4.4.30)

One can now recognize that the potential divergence arising in the bosonic
ẋẋ contractions are canceled by the fermionic ψψ̇ contractions. The
remaining UV ambiguities are treated by dimensional regularization as
usual. This scheme seems to be the best one to test, for example, that
the Witten index (i.e. the gravitational contribution to the abelian chi-
ral anomaly for a spin 1/2 field) does not get higher order corrections in
worldline loops, and is thus β independent.

If one used ABC, the ghosts have different boundary conditions, their
cancellation is not complete and they should be kept.
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Part 2

Applications to Anomalies





5
Introduction to anomalies

We now start the second part of this book, namely the computation of
anomalies in higher dimensional quantum field theories by using quantum
mechanical (QM) path integrals. As we shall see, the ordinary Dirac
action for a chiral fermion in n dimensions has anomalies which can be
computed by using an N = 1 supersymmetric (susy) nonlinear sigma
model in one (timelike) dimension. Although this relation between a
nonsusy quantum field theory (QFT) and a susy QM system may seem
surprising at first sight, it becomes plausible if one notices that the Dirac
operator γµDµ contains Dirac matrices γm (where γµ = γmem

µ with em
µ

the inverse vielbein field) satisfying the same Clifford algebra {γ l, γm} =
2δlm with l,m = 1, .., n flat indices as the equal-time anticommutation
rules of a fermionic quantum mechanical point particle ψa(t) with a =
1, .., n, namely {ψa(t), ψb(t)} = h̄δab. 1 This suggests a representation
of operators which appear in the QFT (γm) in terms of QM operators
(ψa(t)), namely

γm ↔
√

2

h̄
ψa(t) . (5.0.1)

It is also natural to represent the coordinates xµ in the QFT by a corre-
sponding point particle xi(t) in QM. Hence one is led to suspect that the
expression for the anomaly in terms of the operators ∂

∂xµ , γm etc. of the
quantum field theory can be rewritten as an expression in terms of the
operators of a corresponding QM model with bosonic xi(t) and fermionic
ψa(t). These QM models are often supersymmetric. Of course, it had
been known long before the 1980’s that many calculations in field theory

1 To distinguish objects in quantum field theory from objects in quantum mechanics,
we use vectors indices µ (curved) and m (flat) in field theory, and vector indices i
(curved) and a (flat) for the point particle in quantum mechanics. We are always
in Euclidean space with metric δmn = (1, . . . , 1) in tangent space, unless stated
otherwise.
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can be simplified by just using first quantization (with point particles) in-
stead of second quantization [70, 71], and thus one might expect that also
the calculation of anomalies may drastically simplify if one uses quantum
mechanics. This is indeed the case.

The anomalies we shall compute are chiral anomalies for n-dimensional
chiral fermions and selfdual antisymmetric tensor fields (AT) coupled to
external gravitational and gauge fields, and trace anomalies for various
fields coupled to gravity in 2 and 4 dimensions. These anomalies are
anomalies in the local Lorentz, chiral and scale symmetry of the fields.
(As we shall discuss, we only use regularization schemes that maintain
Einstein (general coordinate) invariance so there are no separate Einstein
anomalies). Before analyzing the formalism of quantum mechanics to cal-
culate anomalies, it is useful to demonstrate that such anomalies really
exist. We therefore start this chapter in section 5.1 with an explicit com-
putation of anomalies in the simplest case: two dimensional field theories
(one space and one time dimension). In this case we use a regularization
scheme that is special for 2 dimensions: analytic regularization. To use
this scheme we must use Minkowski space, so in this subsection we are in
Minkowski space. First we calculate the chiral anomaly for a complex one-
component fermion coupled to an external Maxwell or Yang-Mills field.
Then we compute the gravitational anomaly for a real one-component chi-
ral fermion coupled to an external gravitational field. Finally we compute
the trace anomaly for a real nonchiral (two-component) fermion coupled
to external gravity. These calculations will confirm the existence of chiral,
gravitational and trace anomalies in 2 dimensions, and in the rest of the
book we calculate similar anomalies in higher dimensions, using quantum
mechanics.

In section 5.2 we discuss general aspects of the approach of calculating
anomalies in field theories by using quantum mechanics. Field theories
coupled to external gravitational fields will lead to quantum mechanical
nonlinear sigma models, while field theories coupled to gauge fields will
lead to linear sigma models. As we already observed, Dirac matrices
correspond to fermionic point particle operators ψa(t). To describe the
anomalies in terms of quantum mechanical operators, we shall use Fu-
jikawa’s approach [6]. In this approach the anomaly for a QFT is given
by the trace of the regulated Jacobian associated with a given symme-
try, and this Jacobian is an expression which depends on ∂

∂xµ , external
fields Aαµ(x) and emµ (x), Lie-algebra matrices Tα, and Dirac matrices γm.
First we shall construct an explicit expression for the anomaly in terms
of quantum mechanical operators, and then we switch to quantum me-
chanical path integrals. At that point we take over all results of the first
part of the book on the construction of properties of path integrals for
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nonlinear sigma models.

In section 5.3 we give a brief history of anomalies.

5.1 The simplest case: anomalies in 2 dimensions

In this section we present an explicit calculation of chiral, gravitational
and trace anomalies in a toy model: the theory of massless fermions cou-
pled to external gauge and gravitational fields in 2 dimensions. In this
model the full effective action can be computed explicitly and its response
to gauge and gravitational transformations can be easily studied.

a. The chiral anomaly

We start discussing the classical Lagrangian of Dirac and Weyl fermions
coupled to a gauge field. Then we proceed to analyze three typical cases.
In (i) we present the calculation of the chiral anomaly due to a Weyl
fermion. This is an example of a gauge anomaly, i.e. an anomaly in a
current which is coupled to a gauge field. The corresponding effective
action is not gauge invariant, and there is no local counterterm that can
be added to the effective action to restore gauge invariance. The anomaly
is thus a genuine anomaly. It satisfies certain consistency conditions, and
thus it is called a “consistent anomaly”. One particular consequence of
the consistency conditions is that the anomaly cannot be gauge invariant.
Nevertheless, it can be related to a “covariant anomaly”, which is gauge
invariant but cannot be interpreted as the gauge variation of an effective
action. (ii) Then we add the contribution of another Weyl fermion, but
with opposite chirality. The two Weyl fermions with opposite chiralities
make up a Dirac fermion. The vector current of the Dirac fermion is cou-
pled to a U(1) gauge field Aµ. The action has a local vector symmetry
UV (1) and a rigid chiral symmetry UA(1). 2 The total anomaly cancels
in the UV (1) symmetry and the full effective action is UV (1) gauge invari-
ant. (iii) However, the UA(1) symmetry is anomalous and we compute
the corresponding anomaly. It is invariant under transformations of the
gauge group UV (1) and it is an example of a rigid anomaly since the
corresponding current is not coupled to gauge fields (although we could
couple it to an external axial vector field, see previous footnote.) It is
again a genuine anomaly and it satisfies again consistency conditions.

Let us start describing the classical Lagrangian of a massless Dirac field

2 Actually, in 2 dimensions, the gauge field Aµ can be decomposed into light-cone com-
ponents A+ and A− which couple to left-moving and right-moving massless fermions.
Then this model has even a local UA(1) symmetry, but in our discussion we consider
the UA(1) symmetry only as a rigid symmetry.
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λ coupled to a UV (1) gauge field Aµ

L = −λ̄ γµ(∂µ − iAµ)λ , λ̄ ≡ λ†iγ0 (5.1.1)

where the Dirac matrices satisfy {γµ, γν} = 2ηµν , with (γ0)2 = −1. The
classical symmetries are the UV (1) gauge transformations with infinitesi-
mal local parameter α(x)

δλ(x) = iα(x)λ(x)

δλ̄(x) = −iα(x)λ̄(x)

δAµ(x) = ∂µα(x) (5.1.2)

and the axial UA(1) transformations with infinitesimal constant parameter
β

δλ(x) = iβγ5λ(x)

δλ̄(x) = iβλ̄(x)γ5

δAµ(x) = 0 . (5.1.3)

The chiral matrix γ5 is chosen to satisfy γ2
5 = 1 and {γ5, γ

µ} = 0. This
model exists in any even spacetime dimension n, since then one can con-
struct a matrix γ5 with the required properties. In this section we re-
strict our attention to n = 2 by taking η11 = −η00 = 1 and γ5 ≡ γ1γ0.
We will also use the antisymmetric tensor εµν , which we normalize to
ε01 = −ε01 = 1. With this normalization one can verify that the following
identity is satisfied by the gamma matrices: γµγ5 = εµνγν . We choose
the following representation of the gamma matrices

γ0 = −iσ2 =

(
0 −1
1 0

)

, γ1 = σ1 =

(
0 1
1 0

)

, γ5 =

(
1 0
0 −1

)

(5.1.4)

and represent the Dirac spinor as

λ = 2−
1
4

(
λL
λR

)

(5.1.5)

where the Weyl components λL and λR are eigenstates of γ5 with eigen-
values +1 and −1, respectively. It is useful to eliminate completely the
gamma matrices from the Lagrangian (5.1.1). Using light-cone coordi-
nates x± = 1√

2
(x0 ± x1) one obtains

L = iλ†L(∂+ − iA+)λL + iλ†R(∂− − iA−)λR . (5.1.6)

It is evident that one can consider a model with a single Weyl fermion,
for example the left moving fermion λL, by setting the other chirality to
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zero. In this case the two classical symmetries discussed above are not
independent.

i) Now let us consider the path integral quantization of the left moving
fermion λL

S[λL, λ
†
L, A] =

∫

d2x iλ†L(∂+ − iA+)λL
∫

DλLDλ†L eiS[λL,λ
†
L,A] = e iWL[A] . (5.1.7)

The one-loop effective action WL[A] is a functional of the gauge field Aµ,
and is formally given by the logarithm of a functional determinant

WL[A] = −i log Det (i∂+ +A+) . (5.1.8)

For our purposes it is simpler to view the effective action perturbatively,
namely as the sum of all one loop graphs with external gauge fields

WL[A] = + ��� + ��� ��� + · · · (5.1.9)

The first graph is a constant. It can be removed by a suitable normal-
ization of the path integral. The second graph vanishes by symmetric
integration. Thus let us take a closer look at the third graph. Expanding
(5.1.7) to second order in Aµ we obtain

iW
(2)
L [A] =

1

2
〈(iSint)2〉 (5.1.10)

= −1

2

∫

d2xd2y A+(x)
〈

λ†L(x)λL(x)λ†L(y)λL(y)
〉

A+(y)

(5.1.11)

where we have split S = S0+Sint, with S0 =
∫
d2x iλ†L∂+λL the free action

which yields the propagator, and Sint =
∫
d2x A+λ

†
LλL which describes

the interaction with the gauge field Aµ.

The propagator is readily obtained

〈λL(x)λ†L(y)〉 =
1

∂+
δ2(x− y) =

∫
d2p

(2π)2
eip·(x−y)

2ip−
p2 − iε (5.1.12)

where p · x = p+x
+ + p−x−, p2 ≡ pµpµ = −2p+p− with p± = 1√

2
(p0 ± p1)

and −iε is the Feynman prescription that enforces the correct boundary
conditions. It is easier to Fourier transform to momentum space by setting
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A+(x) =
∫ d2p

(2π)2
e−ip·xA+(p). We obtain 3

W
(2)
L [A] =

i

2

∫
d2p

(2π)2
A+(p)U(p)A+(−p) (5.1.13)

with

U(p) ≡
∫

d2x e−ip·x 〈λ†L(x)λL(x)λ†L(0)λL(0)〉

= �

�����

�

� �

=

∫
d2k

(2π)2
2(p− + k−)

(p+ k)2 − iε
2k−
k2 − iε

=

∫
dk−dk+

(2π)2
1

p+ + k+ + iε
2(p−+k−)

1

k+ + iε
2k−

. (5.1.14)

We now perform analytic regularization [72]. This scheme is suitable
for a chiral theory. One can first perform the integral over k+ by using a
contour in the complex k+-plane. To get a nonvanishing result, the two
poles at

k+ = − iε

2k−
, k+ = −p+ −

iε

2(p− + k−)
(5.1.15)

must be on opposite sides of the real k+-axis, otherwise one could close
the contour on the side without poles, obtaining a vanishing result. Let
us first assume p− > 0. Then the two poles are on opposite sides if k− < 0
and k− + p− > 0, and

U(p) =
1

(2π)2

∫ 0

−p−
dk− 2πi

1

p+
=

i

2π

p−
p+

. (5.1.16)

Similarly, when p− < 0, the two poles are on opposite sides if k− > 0 and
k− + p− < 0, and the same final result is obtained

U(p) =
1

(2π)2

∫ −p−

0
dk− (−2πi)

1

p+
=

i

2π

p−
p+

. (5.1.17)

The effective action to this order is thus

W
(2)
L [A] = − 1

4π

∫
d2p

(2π)2
A+(p)

p−
p+
A+(−p) . (5.1.18)

3 The notation A+(x) for the function and A+(p) for its Fourier transform should not
cause confusion, as we indicate the arguments explicitly.
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One may check that for abelian gauge fields higher order contributions to
the effective action vanish, so this result is exact. For nonabelian gauge
fields one finds nonlocal terms with 3,4,5 ... external Aµ’s, but only the
term with two Aµ fields contributes to the anomaly [73].

Let us now analyze the gauge invariance. Under a gauge transformation

δAµ(x) = ∂µα(x) → δAµ(p) = −ipµα(p) (5.1.19)

the effective action is not gauge invariant

δWL[A] =
i

2π

∫
d2p

(2π)2
α(p) p−A+(−p)

=
1

2π

∫

d2xα(x) ∂−A+(x) . (5.1.20)

Thus, it seems that the gauge symmetry has an anomaly. However, before
deciding that this is a true anomaly, one must make sure that there does
not exists a local counterterm whose variation cancels the anomaly. Since
the anomaly is Lorentz invariant, we consider the most general Lorentz-
invariant local counterterm with the correct dimension

Wloc[A] = β

∫

d2xAµ(x)A
µ(x) = −2β

∫

d2xA−(x)A+(x)

= −2β

∫
d2p

(2π)2
A−(p)A+(−p) (5.1.21)

where β is an arbitrary parameter. Its gauge variation is easily computed

δWloc[A] = 2iβ

∫
d2p

(2π)2
α(p)

(

p−A+(−p) + p+A−(−p)
)

. (5.1.22)

Clearly, no value of β can make the effective action WL[A]+Wloc[A] gauge
invariant. Thus the final conclusion is that there is an anomaly in the
gauge symmetry.

Let us pause for a moment and make various comments.
• To compute the effective action we have used analytic regularization

which regulates the logarithmic divergent graph in (5.1.14) and auto-
matically removes the divergence. This is one possible renormalization
condition. For other renormalization conditions we may need to add the
local counterterm in (5.1.21) with a particular value of β.
• One-loop effective actions which are computed with different regu-

larization schemes can only differ by local counterterms. The addition
of the most general local counterterm allows one to scan all possible reg-
ularizations at once. If the anomaly does not vanish for any possible
counterterm, it means that the anomaly is not an artefact of the chosen
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regularization scheme. It is a genuine effect appearing in the quantum
theory.
• One can write the gauge variation of the effective action also as follows

δW [A] =

∫

d2x δAµ(x)
δW [A]

δAµ(x)
= −

∫

d2xα(x)∂µJ
µ(x) (5.1.23)

where Jµ(x) ≡ δW [A]
δAµ(x) is sometimes called the induced current. (It corre-

sponds to the expectation value of the current coupled to the gauge field,
jµ = iλ̄γµλ, namely Jµ = 〈jµ〉). The gauge anomaly then reads

∂µJ
µ(x) = − 1

2π
∂−A+(x) . (5.1.24)

One may note that this expression is not gauge invariant.
• The consistency conditions are integrability conditions which follow

from applying the commutator algebra of the symmetries to the effective
action. The algebra of the gauge symmetry in eq. (5.1.2) is abelian and
reads

[δ(α1), δ(α2)] = 0 (5.1.25)

while the anomaly can be denoted by

δ(α)W [A] ≡ A[α,A] . (5.1.26)

Combining these two equations gives the consistency condition for the
anomaly of a chiral fermion

δ(α1)A[α2, A] = δ(α2)A[α1, A] . (5.1.27)

The anomaly is given by

A[α,A] =
1

2π

∫

d2xα(x)∂−A+(x) (5.1.28)

and clearly satisfies (5.1.27).
• A consequence of the consistency conditions is that the consistent

gauge anomaly cannot be gauge invariant. This is immediately obvious
by inspection of (5.1.24). More generally one can prove this property as
follows. Let us introduce the shift transformation

δsAµ = sµ (5.1.29)

as a trick to study the gauge current Jµ, since then δsW [A] =
∫
d2x sµJ

µ

(recall eq. (5.1.23)). It is clear that

[δs, δ(α)]Aµ = 0 (5.1.30)
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if one defines δ(α)sµ = 0. However, evaluating this commutator on the
effective action produces

[δs, δ(α)]W [A] = δsA[α,A]−
∫

d2x (δ(α)Jµ)sµ = 0 (5.1.31)

which shows that the current Jµ must transform nontrivially under a
gauge transformation and thus cannot be gauge invariant (unless the
anomaly A vanishes or is Aµ independent).

• One can introduce another anomaly, called the covariant anomaly,
which is not obtained by varying the effective action, but which is gauge
covariant (or rather gauge invariant in our case). It is by definition the
divergence of a “covariant current” obtained by adding a suitable local
(in general noncovariant) term J̃µ to the consistent current Jµ. For J− =
1
2π

∂−
∂+
A+ it is clear that J̃− = − 1

2πA− yields a gauge-invariant current

J− + J̃− =
1

2π

1

∂+
(∂−A+ − ∂+A−) (5.1.32)

whose anomaly is covariant

∂+(J− + J̃−) =
1

2π
(∂−A+ − ∂+A−) . (5.1.33)

We stress that this “covariant anomaly” cannot be obtained as the gauge
variation of the effective action, as it does not satisfy the consistency
conditions.

ii) Let us now add the contribution of a right handed fermion to the
previous model. The total action is the sum of the chiral actions and
the path integral factorizes. So we only need to consider the extra terms
coming from

S[λR, λ
†
R, A] =

∫

d2x iλ†R(∂− − iA−)λR
∫

DλRDλ†R eiS[λR,λ
†
R,A] = e iWR[A] . (5.1.34)

The calculation is quite similar to the one described above and produces
the following contribution to the effective action

WR[A] = − 1

4π

∫
d2p

(2π)2
A−(p)

p+

p−
A−(−p) . (5.1.35)

The sum WL[A]+WR[A] is still not gauge invariant, but adding the local
counterterm Wloc in (5.1.21) with β = − 1

4π makes the final effective action
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gauge invariant

W [A] = WL[A] +WR[A] +Wloc[A]

= − 1

4π

∫
d2p

(2π)2

(

p+A−(p)− p−A+(p)
) 1

p+p−

×
(

p+A−(−p)− p−A+(−p)
)

=
1

4π

∫

d2xF+−
1

∂+∂−
F+− . (5.1.36)

Equivalently, the induced gauge current is conserved: ∂µJ
µ(x) = 0. This

is an example of anomaly cancellation. One may notice that our simple
model turned out to have just vectorial couplings. A manifestly gauge
invariant regularization can be used in similar models, and it is enough
to guarantee absence of anomalies. For example, in the case above a
Pauli-Villars regularization maintains gauge invariance and would have
produced automatically the correct local counterterm in the effective ac-
tion. In models with chiral coupling, where a manifest gauge invariant
regularization is lacking, cancellation of anomalies must be checked by
hand, as in the Standard Model of particle physics.
iii) Finally, let us discuss the anomaly in a global current. The model

above with a Dirac fermion enjoys at the classical level the axial symmetry
given in eq. (5.1.3). It is quite simple to see that this symmetry is
anomalous. The Noether current associated to this symmetry is jµ5 =
iλ̄γµγ5λ. Thanks to the reducibility of the Lorentz group in 2 dimensions,
we can actually use a trick to reinterpret Aµ also as the gauge field (or
source) coupled to jµ5 . In fact, we can substitute Aµ = Bνενµ (so A+ = B+

but A− = −B−) and use ενµγ
µ = γνγ5

iAµλ̄γ
µλ = iBνενµλ̄γ

µλ = iBµλ̄γ
µγ5λ . (5.1.37)

The transformation
δ(β)Bµ(x) = ∂µβ(x) (5.1.38)

gauges the symmetry in (5.1.3) and can be used to test the conservation
of the axial current jµ5 = iλ̄γµγ5λ. On one hand we can compute the
variation of the effective action W [A] as

δ(β)W [A] =

∫

d2x
(

δ(β)Bµ(x)
)δW [A(B)]

δBµ(x)

= −
∫

d2xβ(x)∂µ〈jµ5 (x)〉 . (5.1.39)

On the other hand the explicit form of W [A] computed in (5.1.36) yields,
using δ(β)A+ = ∂+β but δ(β)A− = −∂−β,

δ(β)W [A] = − 1

π

∫

d2xβ(x)F+−(x) . (5.1.40)
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Thus

∂µ〈jµ5 〉 =
1

π
F+−(x) = − 1

2π
εµνFµν(x) . (5.1.41)

This is the anomaly in the global axial UA(1) current which is manifestly
invariant under the UV (1) gauge group, as expected since the UV (1) gauge
symmetry is not anomalous. Since the only local counterterm which de-
pends on A+ and A− and is Lorentz invariant is δL = βA+A−, and
since its coefficient was already fixed by requiring cancellation of the vec-
tor anomaly, one cannot remove the chiral (or better the axial vector)
anomaly by a local counterterm: the axial anomaly is a genuine anomaly.
The 4-dimensional analogue of this anomaly is the original ABJ anomaly
which is gauge invariant and related to pion decay.

b. The gravitational anomaly
We follow [1] and construct the gravitational anomaly for a real chiral

spin 1/2 field coupled to gravity in 1+1 dimensions.
The classical Lagrangian reads

L = −1

2
eλ̄ γmem

µ∂µλ , λ̄ ≡ λT iγ0 (5.1.42)

and is invariant under general coordinate transformations given by

δλ = ξµ∂µλ

δeµ
m = ξν∂νeµ

m + ∂µξ
νeν

m

δe = ∂µ(ξ
µe) . (5.1.43)

It is also invariant under local Lorentz transformations given by

δλ =
1

4
λmnγmnλ , γmn ≡

1

2
[γm, γn]

δeµ
m = λmneµ

n

δe = 0 . (5.1.44)

To prove the last statement, note that the Lorentz variation

δL = −1

2
eλ̄ γmem

µ 1

4
(∂µλ

pq)γpqλ (5.1.45)

vanishes since a Majorana spinor satisfies the identity λ̄γmλ = 0 while
γmγpq = δmp γq − δmq γp. In higher dimensions, or for a complex (=Dirac)
spinor in 2 dimensions, one needs a term with the spin connection

L = −eλ̄ γmemµ
(

∂µ +
1

4
ωµ

pqγpq

)

λ , λ̄ ≡ λ†iγ0 (5.1.46)
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but in 2 dimensions this term vanishes for real λ, as we explained before.
Consider now a chiral fermion satisfying (1 − γ5)λ = 0. Since γ5 =

γ1γ0 =

(
1 0
0 −1

)

, this field has only an upper component which we

denote by λ−, so λ =

(
λ−
0

)

. The action for λ− = λL reduces to

L = −1

2
eλT iγ0(γmem

µ)∂µλ

=
i

2
eλT (e0

µ + γ5e1
µ)∂µλ

=
i

2
eλTL(e0

µ + e1
µ)∂µλL

=
i√
2
eλ−(e+

µ∂µ)λ− , e±µ =
1√
2
(e0

µ ± e1µ) . (5.1.47)

There follow now a few typical two-dimensional manipulations which al-
low us to write the action such that it only depends on one component of
the gravitational field [74]. First we write e+

µ∂µ as e+
+̃∂++e+

−̃∂− where

∂± = 1√
2
(∂0± ∂1) and hence em

±̃ = 1√
2
(em

0± em1). Then we extract the

field e+
+̃ and redefine λ− such that it absorbs e+

+̃

L =
i√
2
(
√

e e++̃λ−)(∂+ + h++∂−)(λ−
√

e e++̃) (5.1.48)

where

h++ =
e+

−̃

e++̃
. (5.1.49)

Clearly, h++ is Lorentz invariant, and also

λ̃− =
√

e e++̃λ− (5.1.50)

is Lorentz invariant because vielbeins rotate twice as fast as spinors under
Lorentz rotations. 4

One can find a simpler expressions for the spinor λ̃− by using the ex-
plicit form of the inverse vielbein

e em
µ =

(
e−̃

− −e+̃−

−e−̃+ e+̃
+

)

, eµ
m =

(
e+̃

+ e+̃
−

e−̃
+ e−̃

−

)

. (5.1.51)

4 The Lorentz invariance is manifest from the matching of + and − indices. Some
people write ++ and = for the indices of vector fields, and other

√
+ and

√
− for

the indices of spinor fields. We use only indices + and − but the reader need to
remember that vectors and spinors transforms differently.
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Then

λ̃− =
√

e−̃−λ− , h++ = −e+̃
−

e−̃− (5.1.52)

and the Lagrangian reads

L =
i√
2
λ̃−∂+λ̃− +

1√
2
h++T−− , T−− = iλ̃−∂−λ̃− . (5.1.53)

The λ̃− are left moving fields which transforms as follows under general
coordinate transformations

δλ̃− = ξµ∂µλ̃− +
1

2

1
√

e−̃−
(∂−ξαeα−)λ−

= ξµ∂µλ̃− +
1

2
(∂−ξ− − ∂−ξ+h++)λ̃− . (5.1.54)

In particular, under transformations with ξ−, λ̃− transforms as a “half-
vector” (due to the factor 1

2), and this forms the starting point for con-

formal field theory where λ̃− has conformal spin 1
2 .

The field h++ transforms as follows under general coordinate transfor-
mations

δh++ = ξα∂αh++ −
1

e−̃− (∂+ξ
αeα

−) +
e+̃

−

(e−̃−)2
(∂−ξαeα−)

= ξα∂αh++ + (∂+ξ
+)h++ − ∂+ξ

− + (∂−ξ+)h2
++ − (∂−ξ−)h++ .

(5.1.55)

So, to lowest order in h++, we have δh++ = −∂+ξ
− = ∂+ξ+ (since η+− =

−1).

A similar treatment of right-moving fermions satisfying (1 + γ5)λ = 0
shows that they couple only to

h−− = −e−̃
+

e+̃
+
. (5.1.56)

As the third field which parametrizes the space of symmetric vielbeins we
take

h+− = h−+ = e+̃
me−̃

nηmn = −e+̃+e−̃
− − e+̃−e−̃

+

δh+− = ∂+ξ− + ∂−ξ+ + . . . . (5.1.57)

All 3 fields h++, h−− and h+− are Lorentz invariant.

149



Let us now compute the effective action for the theory with λ̃−. To
one-loop order it is given by the sums of graphs

+ + + · · · (5.1.58)

The anomaly resides only in the first graph, so we only evaluate this graph.
Afterwards we will comment on the graphs with 3 and more h-fields. The
λ̃ propagator is of course unchanged

1

∂+
δ2(x− y) =

∂−
∂+∂−

δ2(x− y) =

∫
d2k

(2π)2
2ik−
k2 − iεe

ik(x−y) . (5.1.59)

Hence

�

�����

�

� �

∼
∫ ∫

d2xd2y h++(x)〈T−−(x)T−−(y)〉h++(y)

∼
∫ ∫

d2xd2y h++(x)h++(y)〈λ̃−(x)∂−λ̃−(x)λ−(y)∂−λ̃−(y)〉

∼
∫

d2p h++(p)h++(−p)
∫

d2k

(2π)2
(2k− + p−)2

k− + p−
(k + p)2 − iε

k−
k2 − iε

∼
∫

d2p h++(p)h++(−p)

×
∫
dk+dk−
(2π)2

(2k− + p−)2
1

k+ + p+ + iε
2(k−+p−)

1

k+ + iε
2k−

. (5.1.60)

We use again contour integration for the integral over k+, which is non-
vanishing (for p+ > 0) when −p− < k− < 0. We are then left with an
integral of the form

∫ 0

−p−
dk−

(2k− + p−)2

p+
∼ p3

−
p+

. (5.1.61)

Hence the effective action is proportional to

Seff ∼
∫

d2p h++(p)h++(−p)p
3
−
p+

. (5.1.62)

We are now in a position to check whether the effective action is still
gauge (Einstein) invariant. Using the linearized transformation rules

δh++(p) = ∂+ξ+ + · · · = −ip+ξ+(p) + · · · (5.1.63)
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we find

δSeff ∼
∫

d2p ξ+(p)p3
−h++(−p) . (5.1.64)

The result is rigidly Lorentz invariant (+ and − indices match; rigid
Lorentz transformations act on curved indices).

So the effective action is not gauge invariant, but one should still check
that its variation cannot be canceled by the variation of a suitable local
counterterm in the action. The most general counterterm whose variation
has the same number of fields as Seff and is Lorentz invariant reads

∆S =

∫

d2p [Ah++(p)p−p−h+−(−p)
+Bh++(p)p+p−h−−(−p)
+Ch+−(p)p+p−h+−(−p)
+Dh+−(p)p+p+h−−(−p)] . (5.1.65)

One may check that for no value of the constants A,B,C,D the varia-
tion of ∆S can cancel δSeff . Hence there exists a genuine gravitational
anomaly in 1+1 dimensions for chiral spinors.

One expects that for nonchiral spinors, there is no genuine gravitational
anomaly. Consider the sum of the actions for λL and λR. The effective
action action is now a sum of an effective action for λ̃− depending on h++,
and another effective action for λ̃+ depending on h−−. The variation of
this sum of effective actions is proportional to

δSeff = δ(SLeff + SReff )

∼
∫

d2p [ξ+(p)p3
−h++(−p) + ξ−(p)p3

+h−−(−p)] (5.1.66)

Now however there is a local counterterm whose variation cancels δSeff ,
namely

∆S ∼
∫

d2p [−4h++(p)p−p−h+−(−p)
+2h++(p)p+p−h−−(−p)
+4h+−(p)p+p−h+−(−p)
−4h+−(p)p+p+h−−(−p)] . (5.1.67)

In fact, using appendix A, one may show that the effective action Seff +
∆S is given by

Seff + ∆S ∼
∫

d2p
R(p)R(−p)
p+p−

∼
∫

d2x eR(x)
1
R(x) (5.1.68)
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where R(p) ∼ p2
+h−−(p)+p2

−h++(p)−2p+p−h+−(p) is the linearized form
of the scalar curvature.

c. The trace anomaly
Finally we demonstrate also the presence of a trace anomaly in 2 di-

mensions. We consider a real nonchiral fermion. The classical action is in-
dependent of h+− so that the classical stress tensor is traceless: T+− = 0.
(We obtain T+− by varying h+− in the classical action). At the quantum
level, Seff is still independent of h−+, so T+− still vanishes at the one-
loop level. However, if we make the effective action Einstein invariant by
adding the local counterterm ∆S, the effective action starts depending
on h−+, and thus there is a trace anomaly. From the expression for ∆S,
and δR ∼ 2p+p−δh+− + · · · we see that the trace anomaly is given by

Tµ
µ ∼ R in 1 + 1 dimensions. (5.1.69)

We have seen in concrete two dimensional models the various aspects
of anomalies: anomalies in gauge and gravitational currents, anomalies
in rigid currents, and cancellation of anomalies. In higher dimensions the
full effective action is not explicitly calculable in closed form, but one can
still study the anomalous behavior of the various Feynman graphs. In
the remaining part of the book we will use the general method based on
(susy) quantum mechanics to compute the anomalies.

5.2 How to calculate anomalies using quantum mechanics

Anomalies arise when a classical action has a symmetry but the corre-
sponding effective action is no longer invariant under this symmetry. The
anomaly is then by definition the variation of the effective action under
the symmetry. At the one-loop level the anomaly is a local polynomial
in the fields and derivatives of the fields with finite coefficients. In the
path integral for quantum field theories the anomaly appears if one makes
an infinitesimal change of integration variables which amounts to a sym-
metry transformation. The action in the path integral is invariant under
this change of variables, but if there is an anomaly the Jacobian 1 + Tr J
for an infinitesimal change of integration variables is not unity. This is a
true anomaly only if it cannot be removed by adding local counterterms
to the action without spoiling other symmetries. The infinitesimal part of
the Jacobian, Tr J , is the trace of an operator summed over all points in
spacetime (i.e. the trace of an infinite dimensional matrix) which must be
properly defined by regularization. Thus the expression for the anomaly
in terms of the operators of the QFT is

An = lim
β→0

Tr Je−βR (5.2.1)
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where R is the regulator (also an operator) [6]. The trace is over a
complete set of states, for which we can take for example the set of plane
waves, or the set of eigenfunctions of the regulator R. (In the latter
case one would prefer to use a positive-definite self-adjoint regulator R
because then the eigenfunctions form a complete orthonormal set with
positive eigenvalues).

Consider first the case that the integration variable in the path integral
which we use to describe the spinor field in the quantum field theory is
an Einstein scalar λ(x) (and of course a Lorentz spinor). Then a natural
choice as regulatorR for the Jacobian of the n-dimensional Dirac action is
the square of the Dirac operator, R ∼ /D /D. Using standard manipulations
with Dirac matrices, one can simplify /D /D to /D /D = DµDµ + 1

4R, where

the second Dµ on the right hand side is given by Dµ = ∂µ + 1
4ωµ

mnγmγn
while the first Dµ on the right hand side contains an extra term with a
Christoffel connection which acts on the index µ of the second Dµ. One
can remove this Christoffel term by rewriting DµDµ as 1√

gDµ
√
ggµνDν

where both Dµ and Dν now only contain the spin connection5

R ∼ 1√
g
Dµ
√
ggµνDν +

1

4
R , Dµ = ∂µ +

1

4
ωµmnγ

mγn (5.2.2)

Replacing γm by
√

2
h̄ ψ

a and making also the usual identification6

h̄

i

∂

∂xj
←→ g1/4 pj g

−1/4 (5.2.3)

we interpret the regulator R as ( 1
h̄ times) the Hamiltonian of a system

with bosonic point particles xi(t) and fermionic point particles ψa(t). We

multiply R in (5.2.2) by
(
h̄
i

)2
to replace ∂µ by pi, and by a factor 1/2

5 The expansion proceeds as follows: /D /D = 1
2
{γµ, γν}DµDν + 1

2
[γµ, γν ]DµDν =

DµDµ + 1
4
[γµ, γν ][Dµ, Dν ] where all derivatives Dµ are fully gravitationally covari-

ant, so for example [Dµ, γ
ν ] = 0 and Dµeν

m = 0. The second term yields a cur-
vature 1

8
γµγνRµν

mn(ω)γmn. Since we always take for ωµ
mn the usual spin con-

nection ωµ
mn(e) which corresponds to the Christoffel connection via the vielbein

postulate, see appendix A, then Rµν
mn(ω) satisfies the cyclic identity Rµ[νmn] = 0

and the Ricci tensor is symmetric. It follows that γνγmnRµν
mn = 2eνmγnRµν

mn

since γνmnRµν
mn = 0 due to the cyclic identity. Further, γµ(eνmγnRµν

mn(ω)) =
eνme

µ
nRµν

mn(ω) = R because the Ricci tensor is symmetric. The final result is the
term 1

4
R in /D /D. Moreover in general relativity one proves that the covariant diver-

gence of a contravariant vector density
√
gvµ is equal to the ordinary derivative, i.e.

Dµ(
√
gvµ) = ∂µ(

√
gvµ). This yields (5.2.2).

6 We derived this relation in (2.5.43); we recall that it follows from hermitic-
ity of pj and the hermiticity of g−1/4 h̄

i
∂
∂xj g

1/4 with the inner product 〈ψ|ϕ〉 =
∫ √

g ψ∗(x)ϕ(x) dnx.
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to obtain the conventional normalization H = 1
2p

2 + · · ·. This leads to

the following Hamiltonian for the bosonic point particle xi(t) and the
fermionic point particle ψa(t)

Ĥ =
1

2
g−1/4

(

pi −
i

2
ωi
abψaψb

)

g1/2gij
(

pj −
i

2
ωj

cdψcψd
)

g−1/4 − h̄2

8
R .

(5.2.4)

Note that x, p and ψ are all operators in this expression. To avoid confu-
sion we mention that we shall later Weyl-order this Hamiltonian, which
will produce another term with R.

We now ask the crucial question: which quantum-mechanical nonlinear
sigma model leads to this Hamiltonian? The answer is the N = 1 su-
persymmetric nonlinear sigma model which in Minkowskian time is given
by

L =
1

2
gij ẋ

iẋj +
i

2
ψa(ψ̇

a + ẋjωj
abψb) . (5.2.5)

In this expression x and ψ are of course classical functions of t, not
operators. We discuss this model in appendix D, where it is shown
that the classical action S =

∫
Ldt is supersymmetric. For this model

pj(x) = ∂
∂ẋj

L = gjkẋ
k + i

2ωj
abψaψb and the conjugate momentum of the

fermion is given by πa(ψ) = ∂
∂ψ̇a

L = − i
2ψa. The classical Hamiltonian is

given by

Hcl = ẋjpj + ψ̇aπa − L . (5.2.6)

The terms with ψ̇ cancel in this expression and elimination of ẋ yields the
following result

Hcl =
1

2

(

pi −
i

2
ωi
abψaψb

)

gij
(

pj −
i

2
ωj

cdψcψd
)

. (5.2.7)

The term − h̄2

8 R is absent in this expression because it is a quantum effect,

as it is clear from the h̄2 in (5.2.4).
To write this classical Hamiltonian at the quantum level as an opera-

tor which is general coordinate and local Lorentz invariant (meaning it
should commute with the operators which generate infinitesimal general
coordinate and local Lorentz transformations), one must add the factors
with g−1/4 and g1/2 as in (5.2.4). We discussed this in the beginning of
section 2.5. The scalar curvature is Einstein and locally Lorentz invari-
ant by itself, so its coefficient is not fixed by requiring Einstein and local

Lorentz invariance only. However the term − h̄2

8 R in (5.2.4) with this pre-
cise coefficient is fixed by susy (on the worldline). The argument goes as
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follows. The quantum susy generator7 is given by

Q̂ = ψceic

(

g1/4pig
−1/4 − i

2
ωi
abψaψb

)

=
(

g−1/4pig
1/4 − i

2
ωi
abψaψb

)

ψceic . (5.2.8)

It commutes with the generator

GE =
1

2ih̄

(

pkξ
k(x) + ξk(x)pk

)

+ terms acting on eiaand ωiab (5.2.9)

of general coordinate transformations in (2.5.2), (2.5.7) [9]. This fixes
the factors g1/4 and g−1/4 in Q. It also commutes with the generator
of local Lorentz rotations, J = { 1

2λab(x)ψ
aψb+ terms acting on eia and

ωiab} because ψceic and (g1/4pig
−1/4 − i

2ωi
abψaψb) are separately locally

Lorentz invariant, see below eq. (2.5.9). Defining Ĥ = 1
2{Q̂, Q̂} one

finds (5.2.4) including the term − h̄2

8 R. Thus whereas Einstein and local
Lorentz symmetry do not fix the coefficient of the R term in the quantum
Hamiltonian, rigid susy of the QM model does.

Once the action for the quantum field theory in n dimensions is given,
the consistent regulator for the Jacobian can be constructed. By a consis-
tent regulator we mean a regulator which produces consistent anomalies,
namely anomalies which satisfy the consistency conditions which follow
from the fact that the anomalies are the gauge variation of the one-
loop effective action Γ. If there are no anomalies, the effective action
(due to fermion loops with external Yang-Mills or gravitational fields) is
gauge invariant, but if there are anomalies, the gauge variation with pa-
rameter λa(x) of the effective action Γ leads to the consistent anomaly:
δ(gauge, λa(x)) Γ = λa(x)Ana(x). No ambiguities about the coefficient
of the term with the scalar curvature R in the regulator exist: it follows
straightforwardly from working out /D /D as we showed. However, the ac-
tion of the quantum field theory itself may contain nonminimal terms
with scalar or other curvatures. In that case the regulator will inherit the
same terms. In [75] consistent regulators for quantum field theories are
constructed using Pauli-Villars regularization of the action.

However, it is not necessary to use consistent regulators for the purpose
of calculating anomalies; one may also use for example covariant regula-
tors. When anomalies cancel with one regulator, they also cancel for

7 In general a generator of a symmetry is the space integral of the time component
of the corresponding Noether current. For quantum mechanics there are no space
coordinates, so the charge is the current. The susy Noether current is most easily
obtained by making a susy variation with a local (time-dependent) susy parameter
ε(t), and collecting all terms proportional to ε̇. This yields the expression for Q in the
text. The order of the factors with g±1/4 in Q̂ is determined by the transformation

rule (g1/4pig
−1/4)′ = ∂xj

∂x′i
(g1/4pjg

−1/4).
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another regulator (possibly after adding local counterterms to the action)
and working with covariant regulators has the advantage that calculations
are simpler. For this reason we shall use covariant regulators to evalu-
ate the anomalies in the local Lorentz symmetry and gauge symmetry of
loops with chiral fermions and selfdual antisymmetric tensors.

The anomaly in the field theory is proportional to Tr Je−βR where 1+J
is the infinitesimal Jacobian for the symmetry whose anomaly we want
to compute. For example, for the rigid chiral symmetry δψ ∼ γ5ψ of
massless Dirac actions the Jacobian is proportional to γ5 and we shall
construct a quantum mechanical representation for γ5. One is then led
to the expression

An = lim
β→0

Tr γ5e−
β
h̄
H (5.2.10)

as an operator expression in the quantum mechanical model. This ex-
pression can now be rewritten as a quantum mechanical path integral by
inserting complete sets of states as explained in the first part of this book.
In this way we see how the problem of evaluating a functional trace in n
dimensions gets mapped into a problem in susy quantum mechanics. We
shall systematically calculate the following anomalies

1. The usual abelian γ5 anomaly for complex (Dirac) spin 1/2 fields
coupled to external gravity (the gravitational contribution to the
chiral anomaly). The transformation rules for this rigid symmetry
multiply fermions by iαγ5. The Feynman graphs which yield this
anomaly are fermion loops with external gravitons at all vertices,
except one vertex where the axial vector current is present. Taking
the divergence of this axial vector current (contracting the vertex
with the momentum which flows in or out at this vertex) produces
the anomaly. This anomaly will be shown to be present only in 4k
dimensions. The calculation of this anomaly is very simple, but for
didactical reasons we shall spell out each step in detail. As a curious
technical point we already mention that only loops with scalar point
particles xi contribute, but no loops with fermions or ghosts.

2. Next we compute the same γ5 anomaly for spin 1/2 fields, but now
coupled to external Yang-Mills fields instead of external gravitons
fields. We call this the abelian chiral anomaly, to distinguish it
from the gauge anomaly for chiral fermions coupled to Yang–Mills
fields which corresponds to Tr γ5 Tα in Fujikawa’s approach. The
latter is called the nonabelian chiral anomaly. In that case the
gauge fields are also transformed under symmetry transformations.
To deal with the internal symmetry generators Tα in the quantum
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mechanical model we introduce new ghosts c∗ and c. The corre-
sponding nonlinear sigma model is discussed in appendix E. A few
technical problems are encountered and solved: one must take traces
only over one-particle states, and to achieve this we construct a suit-
able projection operator [40]. We can then give a full path integral
treatment of these anomalies. (In the work by Alvarez-Gaumé and
Witten [1], and also earlier work by us [24], the internal sector was
still treated with operatorial methods).

3. Then we consider “Einstein-Lorentz anomalies” for chiral spin 1/2
fields. These are also called gravitational anomalies and are anoma-
lies in either Einstein or local Lorentz symmetry. The Feynman
graphs which yield the effective action are polygons with fermions
in the loop and gravitons sticking out. Just as with vector and ax-
ial vector symmetry in gauge theories, one can push the anomaly
from the Einstein to the Lorentz sector or back [2]. We shall find it
advantageous to consider a suitable linear combination of these two
local symmetries to compute its anomaly. The Jacobian becomes
then covariant: it can be written in terms of covariant derivatives
J = 1

2(Dµξ
µ + ξµDµ) in which, as we shall see, the Christoffel con-

nections cancel. It will turn out that gravitational anomalies only
exist in 4k + 2 dimensions.

4. Next we consider mixed gravitational and nonabelian chiral Yang–
Mills anomalies, corresponding to loops with chiral spin 1/2 fields
coupled to external gravitational and gauge fields. The Jacobians
are proportional to 1

2(Dµξ
µ + ξµDµ) and iηαTαγ

5, respectively. As
a particular case they contain the purely gravitational anomaly as
well as the purely nonabelian chiral anomaly. These anomalies cor-
respond to a breakdown of the reparametrization and gauge invari-
ances of the effective action for chiral fermions coupled to gravity
and nonabelian gauge fields. These anomalies are fatal: in four
dimensions they imply a breakdown of renormalizability and uni-
tarity of the QFT, and one should try to find a collection of fields
for which the anomalies cancel each other. In higher dimensions
both gauge and gravitational quantum field theories are not renor-
malizable, but it is believed that anomalies should still cancel in
order that the theory still makes sense.

5. After these studies of anomalies for spin 1/2 fields we turn to spin
3/2 fields. For readers unfamiliar with supergravity we give a short
self-contained discussion of the quantization and the ghost structure
of supergravity. We then compute the gravitational contribution to
the abelian γ5 anomaly for spin 3/2 in 4k dimensions. The corre-
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sponding Feynman graphs consist of a spin 3/2 loop with gravitons
sticking out, and at one vertex the axial current is present. From a
technical point of view this calculation is amusing because it com-
bines the results in 1 and 2.

6. Next we calculate the gravitational anomaly for spin 3/2 fields, cor-
responding to loops of chiral 3/2 fields coupled to external gravity.
Now we are dealing with spin 3/2 loops with gravitons at all ver-
tices. So this section is the spin 3/2 counterpart of the discussion
in section 3. Again there is an anomaly only in 4k + 2 dimensions.
Spin 3/2 fields do not couple in supergravity to Yang–Mills fields,
hence there is no discussion of mixed anomalies for loops with spin
3/2 fields.

7. Finally we discuss gravitational anomalies due to loops with selfdual
antisymmetric tensor fields coupled to external gravity. Again cou-
plings to an arbitrary Yang–Mills group does not exist. The problem
that there is no covariantly gauge fixed action for selfdual antisym-
metric tensor fields was circumvented by Alvarez-Gaumé and Wit-
ten [1] by using ordinary (unconstrained, namely non-selfdual) fields
in loops, and coupling only one vertex to the selfdual part of the
stress tensor. It seems not well-known that there exist local actions
for selfdual antisymmetric tensor fields in even dimensions. These
actions can be found in [76, 77, 78], and one can use them to cal-
culate the selfdual tensor anomalies in 4k+ 2 dimensions in exactly
the same way as the other anomalies8. One obtains the same result
as AGW [78].

After these chiral anomalies we turn to trace anomalies. Here the situa-
tion is much more delicate: one needs to evaluate higher-loop graphs and
the calculations depend very much on the precise definition of the mea-
sure, Hamiltonian, and Feynman rules. Let us once again state that by
Feynman rules we mean not only certain formal expressions for the prop-
agators and vertices, but also the precise rules how to compute integrals
over products of these. The precise rules were in great details derived in
part I, and we shall now reap the fruits of that labor. We consider

1. trace anomalies for scalar and spin 1/2 fields in 2 dimensions,

2. trace anomalies for spin 0, spin 1/2, and spin 1 fields in 4 dimensions.
For spin 1 fields we need to include the contributions to the spin 1
trace anomaly which come from the Faddeev-Popov ghosts.

8 Covariant actions for selfdual antisymmetric fields can be formulated at the classical
level [79] but their covariant quantization remains problematic. When quantized
noncovariantly they reduce to the actions in [76, 77, 78] and thus lead to the same
anomaly computation [80].
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Before turning to the calculation of these anomalies, we want to test
the QM approach in a case where we know beforehand that there should
be no anomalies. This case is Einstein symmetry. Consider the Ein-
stein transformation of a scalar field ϕ, given by δEϕ = ξµ(x)∂µϕ(x).

It simplifies the analysis if one takes instead the variable ϕ̃ = g1/4ϕ as
fundamental variable. The inner product in the space of variables ϕ̃ is
(ϕ̃1, ϕ̃2) =

∫
ϕ̃∗

1(x)ϕ̃2(x) dx without extra factors of
√
g (the usual fac-

tor of
√
g has been absorbed into the definition of ϕ̃). Then δEϕ̃ =

ξµ∂µϕ̃ + 1
2(∂µξ

µ)ϕ̃ because ϕ̃ is a scalar half-density, and we can write

this as δEϕ̃ = 1
2(ξµ∂µ + ∂µξ

µ)ϕ̃. The Jacobian is now

J =
1

2
(ξµ∂µ + ∂µξ

µ) (5.2.11)

where the derivative ∂µ can act past ξµ. The anomaly is then

An = lim
β→0

Tr Je−βR . (5.2.12)

We now show that this symmetry has no anomaly. As regulator we con-
sider an arbitrary operatorR with complete set of eigenfunctions ϕ̃N with
eigenvalues λ2

N . One finds then

An(E) =
1

2
Tr(ξµ∂µ + ∂µξ

µ)e−βR

=
1

2

∫
∑

N

ϕ̃∗
N (ξµ∂µ + ∂µξ

µ)e−βλ
2
N ϕ̃N d

nx

=
1

2

∫

∂µ
(∑

N

ϕ̃∗
Nξ

µϕ̃Ne
−βλ2

N

)

dnx (5.2.13)

as long as the complete set contains both ϕ̃N and ϕ̃∗
N (plane waves are

an example). In general the λ2
N increase fast enough with increasing N

so that the sum over N converges, and assuming that ξµ(x) vanishes for
large x one finds that Einstein symmetry indeed has no anomaly.

In practice one can calculate anomalies by using a complete set of plane
waves, as shown by Fujikawa for chiral anomalies [6]. For Einstein sym-
metries a two parameter class of regulators has been considered in [81]

R = −g−α∂µgµνgβ∂νg−α . (5.2.14)

This operator is hermitian in the space of fields ϕ̃ with inner product
〈ϕ̃|ψ̃〉 =

∫
dx ϕ̃∗(x)ψ̃(x). Hence it can be diagonalized and e−βR becomes

then e−βλ
2
N when acting on ψ̃N . The explicit calculation of the Einstein

anomaly with this regulator using a complete set of plane waves is te-
dious but straightforward (one has to use the Baker-Campbell-Hausdorff
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theorem), and the result is that the Einstein anomaly given by (5.2.12)
indeed vanishes for arbitrary α and β.

So let us now repeat this calculation using the QM model, and check
that the Einstein anomaly still vanishes. This provides a test of the
method. We start from the field ϕ̃ and represent9 ∂µ by i

h̄pi (we recall our
notation that µ, ν · · · denote indices in the QFT, and i, j · · · corresponding
indices in the QM model). The operator 1

2(ξµ∂µ + ∂µξ
µ) turns into

J =
i

2h̄
(ξi(x)pi + piξ

i(x)) (5.2.15)

which is Weyl ordered. We can then rewrite the trace as a path integral,
as explained in part I of this book. We recall that we replace x by x0 + q
where the quantum fluctuations q vanish at the endpoints t = −β and
t = 0. It further simplifies the analysis if we write J as exp(J) and
later take the term linear in ξ. It is then convenient to integrate out
the momenta and obtain a path integral in configuration space10. The
Einstein anomaly (if nonvanishing) is then obtained by expanding

An = lim
β→0

∫

dx0

√

g(x0)
1

(2πβh̄)n/2

〈

e
− 1
h̄
Sint− 1

β

∫ 0

−β
1
h̄
ξi(x)gij(x)

dxj

dt
dt
〉

(5.2.16)

and keeping the terms linear in ξi. The factor 1/β in front of the second
term in the exponent is important, so let us explain in detail its origin.
We write J as N times ε

βJ where β = Nε. Then we exponentiate. The

sum over the N terms with ε turns into an integral 1
β

∫ 0
−β dt, and this

yields the result.
The interactions were discussed in part I of this book and read

−1

h̄
Sint = − 1

βh̄

∫ 0

−1

1

2
[gij(x0 + q)− gij(x0)](q̇

iq̇j + bicj + aiaj)dτ

−βh̄
8

∫ 0

−1
(R+ gijΓlikΓ

k
jl)dτ . (5.2.17)

(Because in the trace the initial and final point coincide, the classi-
cal trajectory xcl(t) is simply x0.) Expanding gij(x0 + q) − gij(x0) we
find in normal coordinates (in which ∂kgij(x0) = 0) terms of the form
1
βh̄q

kqlRiklj(q̇
iq̇j + bicj + aiaj) and higher order terms. The term with ξ

9 With the Fujikawa variables ϕ̃ the scalar product is given by 〈ϕ̃|ψ̃〉 =
∫
dnx ϕ̃∗(x)ψ̃(x)

and the hermitian operator pi is simply represented by h̄
i
∂i.

10 Details are as follows. The phase space action contains 1
h̄

∫ 0

−β(ipiq̇
i − 1

2
gijpipj) dt+

i
βh̄

∫ 0

−β piξ
i dt. Completing squares and integrating over pi yields (5.2.16).
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can be rewritten as

−Vξ = − 1

βh̄

∫ 0

−1
ξi(x0 + q)gij(x0 + q)q̇j dτ

= − 1

βh̄

∫ 0

−1
qkq̇j [∂kξ

i(x0)gij(x0) + ξi(x0)∂kgij(x0)] dτ + · · ·

= − 1

βh̄

( ∫ 0

−1
qkq̇j dτ

)

gij(x0)Dkξ
i(x0) + · · ·

= − 1

βh̄

( ∫ 0

−1
qkq̇j dτ

)

Dkξj(x0) + · · · (5.2.18)

where the terms denoted by · · · contain more q fields. We rescaled t =
βτ , but this did not change the prefactor 1

β because q̇j(t) dt = q̇j(τ) dτ .

Because q vanishes at the endpoints (τ = 0 and τ = −1) the integral
∫ 0
−1 q

kq̇j dτ is antisymmetric in k and j.
The Einstein anomaly is given by the β independent terms, hence the

factor (βh̄)−n/2 in the Feynman measure should be compensated by fac-
tors βh̄ produced by loops. Since we expect no anomaly in the Einstein
transformations, the terms in the final expression of order (βh̄)0 should
vanish. We need Feynman graphs with precisely one vertex Vξ and any
number of other vertices. All vertices are proportional to 1

βh̄ (or βh̄, see

the last term in Sint) and the q propagators to βh̄.
In n = 2 dimensions there is a factor (βh̄)−1 in the measure, hence the

sum of all Feynman graphs with one factor βh̄ should vanish11. There is
one graph which could possibly contribute

where the dot denotes the vertex Vξ. The vertex in the middle contains
Riklj . It is of order βh̄, and if it would be nonvanishing, there would be
an Einstein anomaly. However, the result must be of the form of Dmξn
times a curvature, and this product always vanishes since the curvature
can have at most two indices, hence it is either Ricci curvature Rmn or
gmnR, and in both cases the contraction with the antisymmetric Dmξn
vanishes.

We could go on to check that also in n = 4 dimensions the QM ap-
proach yields vanishing Einstein anomaly. Now the sums of all graphs

11 There is even a graph of zeroth order in βh̄, namely . If nonvanishing this

would yield a divergent contribution proportional to 1
β

to the anomaly. Fortunately

its contribution vanishes due to
∫

∆•(τ, τ) dτ = 0, see section 2.5.
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proportional to (βh̄)2 should vanish. The graphs to be analyzed are the
irreducible graphs

and the product of graphs

× .

The cross in the fourth graph indicates the counterterm, and all vertices
on the far left come from Vξ. We shall encounter similar graphs in the
chiral and trace anomalies, and since we are mostly interested in nonvan-
ishing anomalies we leave the analysis that there is no Einstein anomaly
in d = 4 as an exercise.

We close this section by briefly reviewing the algorithm of refs. [75]
for determining those regulators R which produce consistent anomalies.
The regulators we shall use in the next sections are covariant regulators,
not consistent regulator, so for this reason the discussion of how to con-
struct a consistent regulator is not needed: we include it for the sake of
interest. (To be precise, we will actually employ consistent regulators in
the computation of the anomalies in the nongauged U(1) axial symmetry
and in the the trace anomalies). The basic idea is to regulate the quan-
tum theory by the Pauli-Villars (PV) method. In a path integral context
one introduces PV fields which are designed to keep the measure of the
path integral invariant. Then one computes the anomalies which are now
only due to the noninvariance of the PV mass term. From this compu-
tation one reads off the regulators and quantum integration variables to
be used in Fujikawa’s scheme in order to reproduce the same anomalies.
Since the PV method yields consistent anomalies, being a Feynman graph
computation, one obtains “consistent” regulators. The method goes as
follows. Let us denote by φ the original fields and by ψ the PV fields.
The regulated action has the generic form

L =
1

2
φTTOφ+

1

2
ψTTOψ +

1

2
MψTTψ (5.2.19)

where M is the regulating mass of the Pauli-Villars fields. For reasons to
become clear we denote the kinetic term by TO instead of O. The mass
term should only be quadratic in the quantum fields, but T may depend
on background fields (on the metric, for example). The invariance of
the original action under δφ = Kφ is extended to an invariance of the
massless part of the PV action by δψ = Kψ, so that only the PV mass
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term breaks the symmetry (if one can find a symmetrical mass term, then
the symmetry will be anomaly free. We assume for simplicity that the
transformation rules are linear in φ). We refer to TO as the kinetic matrix
and to T as the mass matrix, and they both may depend on background
fields which may get transformed under the symmetry variation. The
anomalous response of the path integral Z to a symmetry variation is
now due to the mass term only, since the measure of the PV fields is
defined in such a way that at the one loop level its Jacobian cancels the
Jacobian from the fields φ. One obtains12

δZ ∼ Tr

[

1
2

(

TK +KTT + δT

)

M

(

TM + TO
)−1]

=

= Tr

[(

K + 1
2T

−1δT

)(

1 + O
M

)−1]

. (5.2.20)

We replaced KTT by TK, since T and TO are symmetric, and we used
the ψ propagator from (5.2.19). In the limit M to infinity the function

(1 + O
M )−1 of the regulator O leads to same anomaly as e

O
M , hence one

identifies the regulator R as well as the infinitesimal Jacobian J

R = O , J = K +
1

2
T−1δT . (5.2.21)

The variables ϕ̃ (and λ̃ for fermions) have a mass term mϕ̃ϕ̃ for which the
mass matrix T is constant, so that the infinitesimal Jacobian simplifies to
the naive one, namely J = K.

For many cases the regulatorO is enough, while in other cases (typically
when O is a first order differential operator, as for fermions) one has to
improve it. One way to do this is achieved by inserting the identity
1 = (1 − O

M )−1(1 − O
M ) into (5.2.20), and using the invariance of the

massless part of the action (5.2.19) which implies

TO +
1

2
δTO +

1

2
TδO = 0 . (5.2.22)

The product (K + 1
2T

−1δT )(1− O
M ) can be simplified, and one obtains

δZ ∼ Tr

[(

K + 1
2T

−1δT + 1
2δOM−1

)(

1− O2

M2

)−1]

→ R = −O2 , J = K + 1
2T

−1δT + 1
2δOM−1 . (5.2.23)

12 First vary the mass term, then integrate out all ψ fields, and write the resulting
determinants as a product of the determinant of (TO+TM) and a determinant with
δT and K, finally re-exponentiate the first determinant to yield back the original
action for ψ.
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The regulator is now O2 but the Jacobian has acquired an extra term
1
2δOM−1. For many applications this last term can be omitted when M
tends to infinity.

For the variables ϕ̃ and the spinors λ̃, the operator TO is given by

g−
1
4∂µ
√
ggµν∂µg

− 1
4 and g

1
4 /Dg−

1
4 , respectively, and T = 1 in both cases.

Then one obtains the regulator for ϕ̃ we have used. For λ̃ the regulator

becomes instead −g 1
4 /D /Dg−

1
4 , and this regulator will be used in the next

section. Furthermore in the basis with ϕ̃ one has h̄
i ∂µ = pµ without extra

factors g
1
4 .

5.3 A brief history of anomalies

When physicists tried to compute radiative corrections to processes in
QED in the 1930’s, they of course stumbled on divergences and other
inconsistencies. Even the simplest loop diagrams presented enormous
difficulties, and some physicists (Heisenberg and Pauli at one time or
another, and also Dirac and Oppenheimer) blamed QED itself for these
difficulties. In the 1940’s the problems became more focused. A diagram
which exhibited very clearly some difficulties was the photon selfenergy
diagram due to an electron loop (we use of course modern terminology)

∂µ〈0 | Tjµem(x)jνem(y) | 0〉 = 0 ? (5.3.1)

Gauge invariance required that this diagram be transversal, and on-shell it
should vanish because the photon should remain massless, but Tomonaga
and collaborators found it to be infinite, as well as not gauge invariant
[82]. They studied the e2 corrections to the Klein-Nishina formula for
Compton scattering and reported that “there is an infinity containing
[the] electromagnetic potential bilinearly ... in the ... the vacuum po-
larization effect. [It] cannot be subtracted by amalgamation [removal by
renormalization] as in the case of mass-type and charge-type infinities”.
This divergence could be identified as a photon mass, but unlike the mass
divergence of the electron which could be “amalgamated” into an already
existing electron mass, the photon mass divergence could not be dealt
with in the same way because there is no photon mass in Maxwell’s equa-
tions [83]. Oppenheimer commented in a note attached to this article:
“As ... Schwinger and others have shown, the very greatest care must be
taken in evaluating such selfenergies lest, instead of the zero value they
should have, they give non-gauge covariant, noncovariant, in general in-
finite results ... . I would conclude ... [that] ... the difficulties ... result
from ... an inadequate identification, of light quantum self-energies.” [83]
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Motivated by this problem, two of Tomonaga’s collaborators, Fukuda
and Miyamoto [84], examined the next simplest diagram, namely the
triangle diagram.

�

�

�

�

It was supposed to describe the decay π → pp̄ → γ + γ. They consid-
ered the cases that the neutral meson (π0, Yukawa’s U particle) was a
scalar, pseudoscalar or pseudovector, with couplings fUψ̄ψ, fUψ̄γ5ψ and
(f/2m)ψ̄γ5γ

µψUµ, respectively, where m is the proton mass. They found
two problems
1) the results were not gauge covariant since bare Aµ appeared in the
result
2) the results for the decay into two photons of a pseudovector Uµ and
a pseudoscalar U particle were not the same if they set Uµ = ∂µU , even
though the interactions were the same after partial integration and using
the Dirac equation of motion.
They concluded: “Evidently these inconsistent results arise from the
mathematical difficulty of obtaining [a] definite expression using the singu-
lar function of Jordan and Pauli. At present we know [of] no appropriate
prescription which makes one free from ambiguities of this kind”. The

singular function in question was D(x) =
∫ d3k

(2π)3
sin(kx−ωt)

2ω which appears

in the equal-time canonical commutation relations.
Steinberger [85], then a theorist at Princeton, heard from Yukawa (who

was visiting Princeton) about the work of Fukuda and Miyamoto (see
footnote 11 of his article) and he applied the brand new Pauli-Villars
regularization scheme [86] to the triangle graph and an array of other
problems. Tomonaga was of course also quite interested in these con-
sistency problems, and with coworkers he also applied the Pauli-Villars
regularization scheme to the calculation of the triangle graph [87]. The
conclusion of these studies was a partial success: the scheme did maintain
gauge invariance and Lorentz invariance, and it led to a finite result for
the triangle graph, but the actual value for this finite result seemed to
depend on how the calculations were performed, and the relation between
pseudovector and pseudoscalar couplings was still not satisfied [85, 87].
In modern terms: there was a chiral anomaly! However, this was not yet
fully understood at that time. Rather, it seemed to lead to the perplexing
conclusion that the lifetime of the neutral pion was ambiguous: “We see
that there remains still some ambiguity how to use the regulator, and this
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ambiguity would be solved only by some experiment which could detect
the γ- decay of [the] neutretto” [87]. (Neutretto was another name for
π0).

Schwinger made in 1951 a fresh attack on the problem of gauge invari-
ance of the photon selfenergy and the triangle diagrams. He introduced a
regularization scheme (point splitting) which preserves gauge invariance
at all intermediate stages. As he wrote in “On gauge invariance and vac-
uum polarization” [71]: “This paper is based on the elementary remark
that the extraction of gauge invariant results from a formally gauge invari-
ant theory is ensured if one employs methods of solution that involve only
gauge covariant quantities”. He then proceeded to solve the equations of
motion of an electron in an electromagnetic field

dxµ

ds
= 2πµ ;

dπµ
ds

= e(Fµνπ
ν + πνFµν) +

1

2
eσλν

∂Fλν
∂xµ

(5.3.2)

where πµ = pµ−eAµ, and s is the proper time. He found that the photon
selfenergy did vanish on-shell, so gauge invariance was preserved. How-
ever, he also concluded that the pseudovector coupling gave the same
result for the triangle graph describing π0 decay as the pseudoscalar cou-
pling, namely

Leff =
α

π

f

m
π0 ~E · ~H . (5.3.3)

Although this was the result which seemed to solve the earlier problems,
we now know that the pseudovector and pseudoscalar couplings should
not be the same: there is an axial anomaly! It has been argued that he
moved the anomaly from the right-hand side of the anomaly equation to
the left-hand side [88] 13.

In the 1950’s and 1960’s field theory fell from favor, and alternative
physical theories took the limelight: Regge theory, the S-matrix program
of Chew, and current algebra. Although the first two alternatives were

13 In section 5 of ref. [71] he used “point splitting”, a regularization scheme in x-
space that is completely equivalent to the Pauli-Villars scheme in momentum space.
According to this scheme the axial current is written as

ψ̄
(

x+
1

2
ε
)

γ5γµ

(

exp ie

∫ x+ 1

2
ε

x− 1

2
ε

Aµdx
µ
)

ψ
(

x− 1

2
ε
)

(5.3.4)

and the exponential factor (later called a Wilson line) is added to keep electromag-
netic gauge invariance. Schwinger defined ∂µ[tr γ5γ

µG(x, x)] by limx′, x′′→x[(∂
′
µ −

ieAµ(x
′)) + (∂′′

µ + ieAµ(x
′′))]tr γ5γ

µG(x′, x′′) because “[this] structure is dictated by
the requirement that only gauge covariant quantities be employed”. However if one
adds a Wilson line, one should use ordinary instead of covariant derivatives. If one
would have required in the Pauli-Villars scheme that the U(1) vector gauge invari-
ance is maintained, the ambiguities in this scheme would also have been fixed, and
one would have obtained the same result as point splitting.
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meant to replace field theory, it was natural to try to build field theoret-
ical models which gave a representation of current algebra and in which
the consistency of current algebra could be tested. In fact, many of the
physicists who worked on current algebra in those days later helped to
create modern quantum gauge field theory.

One such attempt was a beautiful little article in 1960 by Gell-Mann
and Levy on the linear sigma model [89], in which PCAC (the partially
conserved axial-vector current relation) was satisfied: ∂µj

µ
5 = fπm

2
ππ(x)

where fπ is the π-decay constant (93 MeV). The model contained, in ad-
dition to the nucleons, the three pions π±, π0 and a scalar meson σ, with
an SO(4) symmetry which was spontaneously broken, giving the nucle-
ons a mass. If a term linear in σ was added to the action, this explicit
symmetry breaking also gave the pions a mass. This model became oblig-
atory reading for graduate students at Utrecht University (where one of
us obtained his PhD). In Stony Brook B. Lee started studying the renor-
malization program of spontaneously broken field theories and wrote an
influential small book [90] on the renormalization of this model.14 G. ’t
Hooft heard B. Lee at the Cargèse summer school lecture on this topic,
and upon returning to Utrecht, he decided to start applying these ideas
to gauge theories, with well-known consequences.

In 1969 two important articles were submitted for publication within
two weeks from each other, one by Bell and Jackiw [92], and the other by
Adler [93]. Bell and Jackiw noted that the amplitude for π0 → γγ could
be parametrized as follows

Tµν(p, q) = εµναβpαqβT (k2) (5.3.5)

where p and q were the on-shell photon momenta, and k = p+ q was the
pion momentum. They used the linear sigma model and considered both
the case with k2 off-shell as well as the case with k2 + m2 = 0 for an
on-shell pion. Their amplitude satisfied gauge invariance (pµT

µν(p, q) =
qνT

µν(p, q) = 0) as well as Bose symmetry (T µν(p, q) = T νµ(q, p)). They
noted that Steinberger had calculated T (k2) using the same graphs that
occur in the linear sigma model and had found a nonzero result (T (0) =
g4π2/m). On the other hand Veltman and Sutherland [94] had found that
T (0) = 0 if one used an off-mass-shell pion field that was equal to the
divergence of the axial current (PCAC). The puzzle that T (0) should on
the one hand be nonvanishing and on the other hand be vanishing was the
problem Bell and Jackiw decided to tackle. They noted that the problem

14 Because there were no direct axial-vector couplings in this model, no problems with
the chiral anomaly were encountered. (However, the chiral symmetry between pions
and σ meson allowed one to define an axial vector current, and its renormalization
was also studied [91]).
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was “in the same tradition as that of the photon mass, noncanonical terms
in commutators – Schwinger terms – and violations of the Jacobi identity.”
They claimed that this “demonstrates in a very simple example [the linear
σ model] the unreliability of the formal manipulations common to current-
algebra calculations”, but then they went on to “develop a variation which
respects PCAC, as well as Lorentz and gauge invariance, and find that
indeed the explicit perturbation calculation also then yields T (0) = 0”.15

In their appendix they noted the hallmark of an anomaly: “Since the
integral is linearly divergent a shift of variable picks up a surface term”.
(The procedure which yielded T (0) = 0 amounted to adding a nonlocal
counter term to the action [95], but this violates renormalizability).

Adler just studied the AVV triangle graph in spinor QED, and took the
results as they came: “ ... we demonstrate the uniqueness of the triangle
diagrams [by imposing vector gauge invariance] ... and discuss a possible
connection between our results and the π0 → 2γ and η → 2γ decays ...
[The] partial conservation of the axial-vector current ... must be modified
in a well-defined manner, which completely alters the PCAC predictions
for the π0 and the η two-photon decays”. Here is the axial anomaly in
all its glory: it could not be clearer. He used an explicit expression for
the triangle graph which Rosenberg had obtained already in 1963 [96].
Rosenberg considered electromagnetic properties of neutrinos in the V-
A theory, and expanded the amplitude for the triangle graph coupled
to two photons and a neutrino current in form factors, some of which
were divergent and others which were finite. Then he imposed vector
gauge invariance, and this expressed the divergent form factors in terms
of convergent ones. However, Rosenberg did not study whether the (naive)
axial vector Ward identity failed in the case of the triangle graphs; that
was done by Bell and Jackiw, and Adler.

With the demonstration of ’t Hooft in 1971 that nonabelian pure gauge
theories are renormalizable, it was realized that anomalies would spoil
renormalizability and unitarity [97]. Thus one had to make sure that
anomalies (more precisely anomalies in the gauge transformations of chi-
ral spin 1/2 fields, the quarks and leptons) would cancel. In the Standard
Model the gauge group SU(3) has no anomalies because it does not couple
to chiral quarks, while SU(2) has no anomalies because all of its repre-
sentations are pseudoreal. Only the U(1) hypercharge gauge symmetry is
potentially anomalous, but its anomalies cancel because the sum of elec-
tric charges of all quarks and leptons in a given family cancels16. Thus

15 This variation was the old Pauli-Villars regularization scheme, applied to the
Steinberger calculation, but with mass-dependent coupling constants for the extra
regulator-fermions.

16 Triangle graphs with one U(1) gauge field and two SU(2) gauge fields are proportional
to the sum of the hypercharges of the left-handed doublets. This sum clearly vanishes:
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the threat of anomalies in the Standard Model was averted.
Having settled the issue of the chiral anomalies in nongravitational the-

ories, it was realized first by Kimura, and later by Delbourgo and Salam,
and then by Eguchi and Freund (who corrected a factor two in the paper
by Delbourgo and Salam) that one could also encounter anomalies if one
couples fermions to external gravity instead of external electromagnetism
[98]. These authors considered triangle graphs in four dimensions with
nonchiral (Dirac) fermions in the loop, with one vertex given by the axial
current ψ̄γ5γµψ and the other two vertices given by hµνTµν where Tµν is
the stress tensor for fermions. They found indeed anomalies of the form
εµνρσRµν

mnRρσmn.
This in turn lead to a related problem: if one couples chiral fermions to

external gravity, are there anomalies in the conservation of the stress ten-
sor which are the counterpart of the anomalies in the gauge invariance of
chiral gauge theories? It was soon realized that the nonconservation of the
stress tensor is closely related to the presence of local Lorentz anomalies
and the symmetry of the stress tensor; in fact we discuss the precise rela-
tion in section 6.3. It was then found that gravitational contributions to
the chiral anomaly do cancel in the Standard Model17, while local Lorentz
anomalies can only occur in 4k+2 dimensions, and thus yield no potential
problems for the Standard Model. Also in the minimally supersymmet-
ric Standard Model all non gravitational and gravitational contribution
to the chiral anomalies cancel, because the two Higgsinos have opposite
electric charge. However, one can also write down models in which the
nongravitational anomalies cancel, but the gravitational anomalies do not
cancel. Thus (external) gravity fits remarkably well with the Standard
Model and its minimal supersymmetric extension. All these anomalies
were treated in a uniform way, and for all dimensions at once, in the fun-
damental paper by Alvarez-Gaumé and Witten [1], on which part of this
book is based.

In addition to anomalies in chiral models there are also trace anomalies
which occur when (rigid or local) scale invariance of the classical action is
broken at the quantum level. For rigid scale transformations this was first
shown by Coleman and Jackiw in 1971 [99], while the breakdown of local

1
6
×3×2+(− 1

2
)×2 = 0. Furthermore, triangle graphs with three U(1) gauge fields are

proportional to the sum of the cubes of the hypercharges of all left-handed fermions
(rewriting right handed fermions as charge conjugates of left handed fermions), which
also vanishes: ( 1

6
)3 × 6 + (− 2

3
)3 × 3 + ( 1

3
)3 × 3 + (− 1

2
)3 × 2 + (1)3 = 0.

17 These triangle graphs with one U(1) gauge field and two gravitons are proportional
to the sum of the hypercharges of all left-handed fermions (rewriting right handed
fermions as charge conjugates of left handed fermions), which is also the sum of
their electric charges because the hypercharge is the average electric charge for each
multiplet. Again this sum vanishes.
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(Weyl) scale invariance for massless vectors and spinors in 4 dimensions
coupled to gravity was first observed by Capper and Duff [100]. In the
latter case the most general form of the trace anomaly was found to be
given by [101]

Tµ
µ = aR (d = 2)

Tµ
µ = aR2 + bR2

µν + cR2
µνρσ + d R+ e(F aµ )2 (d = 4) . (5.3.6)

The term R could be removed by a local counterterm ∆L ∼ R2, but
the other terms were genuine anomalies. The coefficients in the d = 4
trace anomaly are not all independent, but rather, as required by the
consistency conditions, they combine as follows [102]

Tµ
µ = α

(

C2
µνρσ +

2

3
R
)

+ β
(

εεRR
)

+ γ(F aµν)
2 (5.3.7)

where C2
µνρσ = R2

µνρσ − 2R2
µν + 1

3R
2 is the square of the Weyl tensor, and

(εεRR) = R2
µνρσ − 4R2

µν +R2 yields the Euler invariant.
The constants a in d = 2 and α, β, γ in d = 4 also parametrize the one

loop divergences due to matter loops with external gravity [103].
For scalars an improvement term ∼ Rϕ2 can be added to the ac-

tion which then becomes classically Weyl invariant, but a genuine trace
anomaly develops at the quantum level. In a theory with NS real scalars,
NF spin 1/2 Dirac fermions, and NV real vectors fields the d = 4 trace
anomaly is given by

α =
1

120(4π)2

(

NS + 6NV + 12NF

)

β = − 1

360(4π)2

(

NS + 11NV + 62NF

)

. (5.3.8)

It follows from unitarity that all coefficients in α must be positive, so that
trace anomalies cannot cancel in rigidly susy d = 4 models. In models
where the scale invariance is already explicitly broken at the classical
level, one can nevertheless define a trace anomaly by

An(Weyl) = gµν〈Tµν〉reg − 〈gµνTµν〉reg . (5.3.9)

For example, using dimensional regularization, one uses γµγµ = gµνgµν =
n in the first term, but γµγµ = gµνgµν = 4 in the second term. Moreover
it was found in [104] that one can write a scalar in d = 4 either as ϕ
or a rank two antisymmetric gauge field ϕµν , but the trace anomalies
are different. A rank 3 antisymmetric gauge field is dual to nothing, but
it nevertheless yields a nonvanishing trace anomaly. If one reduces by
trivial Kaluza-Klein reduction d = 10 type IIB supergravity one finds
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in d = 4 not the usual 70 scalars, but rather 63 scalars, 7 fields ϕµν
and one field ϕµνρ. One can use index theorems to compute the axial
and conformal anomalies for arbitrary spin in gravity and supergravity
[105]. By considering background fields with Rµν = 0 the trace anomaly
becomes proportional to (α+ β)R2

µνρσ. The combined trace anomaly for

these spin 2, 3
2 , 1,

1
2 , 0 fields then cancels in N = 8 d = 4 supergravity.

171



6
Chiral anomalies from susy quantum

mechanics

6.1 The abelian chiral anomaly for spin 1/2 fields coupled to
gravity in 4k dimensions

As a first application of the formalism we have developed, we shall com-
pute the anomaly in the chiral symmetry δλ = iαγ5λ for a massless Dirac
fermion λ in n dimensions coupled to external gravity (n is even) [98].
The real parameter α is an infinitesimal constant and γ5 is proportional
to the product γ1 . . . γn and hermitian (hence (γ5)

2 = 1). This anomaly is
sometimes called the gravitational chiral anomaly, although a more pre-
cise name would be the gravitational contribution to the abelian chiral
anomaly. If there is an anomaly, the axial vector current is no longer
conserved at the quantum level.

The Lagrangian of the field theory in n Minkowski dimensions is given
by

L = −e λ̄ eµmγmDµλ , λ̄ = λ†iγ0 , (γ0)2 = −1 (6.1.1)

where e = (det emµ ), eµm is the inverse of the vielbein field emµ , and Dµλ =

∂µλ + 1
4ωµmn(e)γ

mγn with ωµmn(e) the spin connection of appendix A.
In Minkowski space the chiral transformation law δλ = iαγ5λ implies
that δλ̄ = iαλ̄γ5 because λ̄ = λ†iγ0, but in Euclidean space λ and λ̄ are
independent complex spinors and then δλ̄ = iαλ̄γ5 follows from requiring
chiral invariance of the action1.

If in the path integral

Z[emµ ] =

∫

DλDλ̄ e−
∫
dnxL (6.1.2)

1 In the Euclidean case, α can even be complex, but since only α and not α∗ appears in
the transformation laws of λ and λ̄, the fact that α may be complex does not enlarge
the symmetry group.
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one makes a chiral change of integration variables λ′ = (1 + iαγ5)λ and
λ̄′ = λ̄(1 + iαγ5) with local α(x), one obtains the Jacobian we shall
compute, and a term

∫
(∂µα)jµ5 dx in the action, where the Noether current

jµ5 is the axial-vector current. Since the path integral does of course
not change under a change of integration variables, the Jacobian yields
the expectation value of the divergence of the axial-vector current. The
corresponding Feynman graphs are single loops with λ in the loops, and
gravitons sticking out from all vertices, except at one vertex where one has
(∂µα)jµ5 . One could have gauged the axial U(1) symmetry by introducing
a gauge field with coupling −Aµjµ5 at this vertex. Then the chiral anomaly
causes a breakdown of the gauge invariance of the effective action under
δAµ = ∂µα.

The infinitesimal chiral transformations of λ and λ̄ are equal: they are
given for both λ and λ̄ by the matrix

J = iαγ5 . (6.1.3)

Its trace yields the Jacobian, but one should regulate this trace. Of course,
one can compute Feynman diagrams with the spin 1/2 field in the loop,
with at one vertex the axial-vector current, while at the other vertices
external gravitons couple to the fermion. There are vertices with one,
two, or more gravitons. Clearly, a background field formalism is called
for, which takes the sum of all vertices into account at once. Such a back-
ground field formalism has been developed by Fujikawa [6], who showed
that in path integrals the anomaly is given by the regulated Jacobian

An = lim
β→0

Tr J e−βR . (6.1.4)

As regulator we use a covariant regulator which is obtained as follows.

As spin 1/2 fields we take λ̃ = g
1
4λ and ˜̄λ = g

1
4 λ̄ (recall that if one

takes these fields as integration variables in the path integral, the Einstein
anomalies are immediately seen to be absent for any selfadjoint regulator).

The field operator for λ̃ and ˜̄λ is g
1
4 /Dg−

1
4 . The covariant regulator is

proportional to the square of this Dirac operator. Hence

R = −1

2
g

1
4 /D2g−

1
4 (6.1.5)

and this regulator is the same for λ̃ and ˜̄λ because the Dirac operator

stands between λ̃ and ˜̄λ. (The factor 1/2 is conventional and could have
been absorbed into β). One could now directly calculate the trace in
(6.1.4) using this regulator. However, for higher dimensions n, the calcu-
lations become progressively more complicated due to the algebra of the
many Dirac matrices, and a simpler method than the Fujikawa method is
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needed. This is the method of supersymmetric quantum mechanics (susy
QM). As we discussed in chapter 5, one uses a representation of the oper-
ators xµ, ∂µ and γm (which are the only ingredients entering in J and R)

in terms of quantum mechanical operators x̂i, p̂i and ψ̂a, with the same
(anti)-commutation relations in a Hilbert space with the same dimension
and with the same hermiticity properties. The regulator becomes in the
QM model the Hamiltonian of a simple susy QM model, the so-called
N = 1 model. As we shall see, the presence of fermions in the QM model
will remove all factors of β from the measure, and as a consequence, in
the limit β tending to zero, only one-loop graphs need be computed. For
this particular anomaly, loops with QM ghosts or QM fermions do not
even contribute, but this is in general not the case.

Underlying this approach is the fact that all different representations of
the canonical (anti) commutation relations which preserve the hermiticity
of the operators are unitarily equivalent2. Since the anomaly we are going
to calculate is proportional to a trace in a Hilbert space, and traces are
invariant under similarity transformations, the anomaly does not depend
on the representation chosen. The representation in terms of QM leads to
particularly simple calculations, and this is the reason why we transform
the quantum field theory problem into a problem in quantum mechanics.

We choose to work in Euclidean space because in this case the Gaussian
integrals we need to evaluate are well-defined. One could have started in
Minkowski space, but then one would need at some point to make a Wick
rotation to evaluate these Gaussian integrals, so it is easier to start from
the beginning in Euclidean space.

The matrix γ5 denotes the product of all Dirac matrices, and in order
that (γ5)

2 = +1 we normalize it as follows

γ5 = (−i)n/2γ1 . . . γn (6.1.6)

where {γm, γk} = 2δmk and all γ’s are hermitian (including γ5). For
n = 2, with γ1 = σ1 and γ2 = σ2, γ5 equals the Pauli matrix σ3, while
in n = 4 we have γ5 = −γ1γ2γ3γ4. The anomaly can be written as
Tr γ5 exp(−βR), where the regulator R which preserves Einstein (general
coordinate) and local Lorentz invariance is given by

R = −1

2
g

1
4 /D /Dg−

1
4

2 For the quantum mechanical variables p and q this is a theorem due to von Neumann
[106]. For the fermionic extension with ψa ∼ γm one can use finite group theory to
prove that there is only one faithful irreducible representation of the Clifford algebra
in even dimensions [56, 107], hence the dimension of the fermionic part of the Hilbert
space is fixed and is equal to 2n/2.
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= −1

2

(

g
1
4 gµνD(ω,Γ)

µ Dνg
− 1

4 + γmγn
1

4
Rmnpq(ω)γpγq

)

= −1

2
g−

1
4Dµ
√
ggµνDν g

− 1
4 − 1

8
R (6.1.7)

(with /D = γµDµ , γµ = eµmγ
m , Dµ = ∂µ +

1

4
ωµmn(e)γ

mγn) .

In the second line we have written D
(ω,Γ)
µ for the first derivative because

it contains in addition to the spin connection a Christoffel symbol that
acts in the index ν of the derivative Dν . To obtain the third line, we
used that in general relativity the covariant derivative of a contravariant
vector density equals the ordinary derivative. Hence, no Christoffel con-
nections are present in Dµ, but Dµ contains of course terms with the spin
connection.

We representR in terms of quantum mechanical operators x̂i, p̂i and ψ̂a

and denote the result by Ĥ. Of course, [p̂i, x̂
j ] = h̄

i δ
j
i . However this does

not fix the x-representation of p̂j completely, namely (px)j = gα h̄i
∂
∂xj

g−α

is still possible for arbitrary α. Hermiticity of (px)j fixes the factors of gα.

The relation is then h̄
i ∂µ = pµ without extra factors of g

1
4 because we use

λ̃ as basic fields, and h̄
i

∂
∂xµ is hermitian if

∫ ˜̄λ1λ̃2 d
nx is the inner product.

We find then the Hamiltonian discussed in appendix B, eq. (B.25).

The Dirac matrices γm(m = 1, .., n) can be viewed as operators in
a 2n/2 dimensional linear vector space, with anticommutation relations
{γm, γk} = 2δmk. Of course, we must take n to be an even number if we
want to define a matrix γ5. In the QM model, we introduce corresponding
operators ψa1(a = 1, .., n) satisfying {ψa1 , ψb1} = δab. The reason for the
subscript 1 will become clear shortly. Hence γm ↔

√
2ψa1 . Flat vector

indices m,n... in quantum field theory correspond to indices a, b... in the
QM model. In a given dimension of spacetime there may or may not
exist a Majorana representation of the Dirac matrices, but we always use
a hermitian representation of the Dirac matrices in Euclidean space, and
hence the ψa1 are hermitian.

In our formalism, we need operators ψ†
a and ψb satisfying {ψ†

a, ψ
b} = δa

b

(and {ψa, ψb} = {ψ†
a, ψ

†
b} = 0). We therefore introduce new operators

ψa2(a = 1, .., n) which are free (i.e., the Hamiltonian Ĥ (to be constructed)
will be independent of ψa2) and satisfy {ψa2 , ψb2} = δab and {ψa1 , ψb2} = 0.
We then define

ψa ≡ (ψa1 + iψa2)/
√

2 ; ψ†
a = (ψa1 − iψa2))/

√
2 . (6.1.8)

In particular, γm ↔ (ψa+ψ†
a). The operators ψa and ψ†

b then indeed have
the desired anticommutation relations. (At this point, ψa1 and ψa2 have
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been introduced without any considerations involving canonical quanti-

zation. Hence, in {ψa, ψ†
b} = δab there are no factors h̄. This simplifies

the notation. One could rescale the ψa and ψ†
a with factors

√
h̄ to revert

to the usual normalization of fermion fields).
The space in which ψa2 acts has also dimension 2n/2, just like the space

for ψa1 . So we take as Hilbert space the direct product of the spaces for
ψa1 an ψa2 . In the Hamiltonian ψa

2 is absent but when we convert the

operator expression to a path integral, we will find terms − ∫ 0
−1 ψ̄aψ̇

adτ
in the action, so that effectively terms with ψa2 are present in the action
which appears in the path integrals. The linear vector space obtained by
acting with ψ†

a on the ψ-vacuum, has dimension 2n. (The ψ-vacuum is
defined by ψa|0〉 = 0). In traces over the direct product of both spaces we
therefore divide by hand by 2n/2, since the original problem only involved
the space of ψa1 .

There is a more minimal but also more cumbersome way of deriving
the results without extra ψa2 . We can begin with operators ψ̂a1 satisfying

{ψ̂a1 , ψ̂b1} = δab, but then we can combine pairs of them into ψ and ψ̄†.
For example (ψ1

1 + iψ̂2
1)/
√

2 = ψI and (ψ1
1 − iψ̂2

1)/
√

2 = ψ†
I . The Hilbert

space has now dimension 2n/2. The final Feynman rules for the approach
with extra ψa2 and the approach in which one combines Majorana spinors
differ, but physical results (such as the transition element) are the same.
We shall discuss and use both approaches. The approach in which one
combines spinors is purely deductive and uses only the original Hilbert
space, but the approach with ψa2 is algebraically somewhat simpler.

The γ5 anomaly for the field λ in the QFT can now be written in the
QM model as the trace in (6.1.4) with J = γ5 in (6.1.6)

An = lim
β→0

1

2n/2
(−i)n/2 Tr

n∏

a=1

(ψ̂a + ψ̂†
a) e

−β
h̄
Ĥ

Ĥ =
1

2
g−1/4πi

√
ggijπjg

−1/4 − h̄2

8
R

πi = p̂i −
ih̄

2
ωiab(e)ψ̂

a
1 ψ̂

b
1 (6.1.9)

where ψa1 and ψb1 are to be written in terms of ψa and ψ†
a using (6.1.8).

We have redefined β such that it has the dimensions of a time. We shall
first compute (6.1.9) which is proportional to the anomaly for the field
λ in (6.1.1), but at the end we must add to this result the contribution
from λ̄. Since these two contributions are equal (because the Jacobians
and the regulators are equal), we shall just multiply the final result by a
factor −2iα to obtain the correct normalization. (The minus sign is due
to the fact that the traces over fermions acquire a minus sign. This in
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turn is due to the fact that the Jacobian for bosonic and fermionic fields
in quantum field theory is a super-determinant, see the appendix of [56]).

Using the trace formula in (2.4.6)

TrA =

∫ √

g(x0)
n∏

i=1

dxi0

n∏

a=1

(dχadχ̄a) e
χ̄χ 〈χ̄, x0|A|χ, x0〉 (6.1.10)

and the completeness relation in (2.3.15)

I =

∫ ( n∏

a=1

dη̄adη
a
)

|η〉e−η̄aηa〈η̄| (6.1.11)

we obtain for the chiral anomaly (omitting the overall factor −2iα for the
time being, and not yet taking the limit of vanishing β)

An =
(−i)n/2

2n/2

∫
(

n∏

i=1

dxi0

)
√

g(x0)
n∏

a=1

(dη̄adη
adχadχ̄a)

eχ̄χ 〈χ̄|
n∏

a=1

(ψ̂a + ψ̂†
a)|η〉 e−η̄η 〈η̄, x0|e−

β
h̄
Ĥ |χ, x0〉 . (6.1.12)

Since
∏

(ψ̂a+ ψ̂†
a) is already Weyl ordered (each factor is separately Weyl

ordered, and different factors anticommute), we can at once evaluate the

first matrix element. For the matrix element 〈η̄, x0|e−
β
h̄
Ĥ |χ, x0〉 we sub-

stitute the result derived in chapter 2. We recall that this involves a Dirac
action with fields ψ and ψ̄, together with an extra term η̄χ, see (2.3.40).
We found that

〈η̄, x0|e−
β
h̄
Ĥ |χ, x0〉 =

1

(2πβh̄)n/2

〈

e
− 1
h̄

∫ 0

−β S
(int)dt+η̄aχa

〉

(6.1.13)

where in general S(int) depends on both η̄a + ψ̄a(t) and χa + ψa(t), with
propagator 〈ψa(t)ψ̄b(t′)〉 = θ(t− t′)δab.

In chapter 2 we discussed all aspects of the path integral at the dis-
cretized level, but we shall now use a continuum notation, and only go
back to discretized expressions when this is necessary to resolve ambi-
guities. This simplifies the notation, but it should be stressed that all
our continuum expressions stand for more complicated but well-defined
discretized expressions.

Since in our case the Hamiltonian depends only on ψa1 , the expectation

value of exp
(

− 1
h̄S

int
)

will only depend on x0 and (χa+η̄a)/
√

2, but not on

χa− η̄a (except for the boundary term exp(η̄χ)). Hence, three of the four
Grassmann integrations over η, η̄, χ and χ̄ will be very simple. Finally,
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the measure factor [g(z)/g(y)]1/4 in the transition element in (2.1.80)
becomes unity since z = y = x0. After integrating out the p’s, we obtain

An =
1

2n/2

∫

dx0

√

g(x0) dη̄dηdχdχ̄ e
χ̄χ e−η̄η eη̄χ

[

(−i)n/2eχ̄η
n∏

a=1

(ηa + χ̄a)

]

1

(2πβh̄)n/2
〈e−

1
h̄
Sint(x0,

η̄+χ√
2

)〉 .

(6.1.14)

The factor in square brackets comes form the matrix element of γ5 and the

rest of the second line comes from the transition element 〈η̄, x0|e−
β
h̄
Ĥ |χ, x0〉.

We take a closer look at the action. Rewriting the quantum Hamilto-
nian in (6.1.9) in Weyl-ordered form yields

HW =

(
1

2
gijπiπj

)

S
+
h̄2

8
gij
(

ΓlikΓ
k
jl +

1

2
ωi
abωjab

)

(6.1.15)

because the scalar curvature R from Weyl ordering the bosonic sector,
see (B.25), cancels the scalar curvature R in (6.1.9). In appendix C we
show that Weyl ordering of the fermions in the N = 2 Hamiltonian gives
a contribution 1

8ωω. The result in (6.1.15) refers to an N = 1 model, see
appendix D, and for that reason a factor 1/2 appears in front of the ωω
term.

Having integrated over pi, one finds in the path integral the following
action

−1

h̄
S = − 1

βh̄

∫ 0

−1

1

2
gij(x0 + q)(q̇iq̇j + bicj + aiaj) dτ + η̄ψ(0)

−
∫ 0

−1
ψ̄aψ̇

a dτ −
∫ 0

−1

1

2
ψa1 q̇

iωiab(x0 + q)ψb1dτ

−βh̄
8

∫ 0

−1
(ΓΓ +

1

2
ωω) dτ (6.1.16)

where ψ1 = (ψ + ψ̄)/
√

2. This is the N = 1 model in appendix D, eq.
(D.7), but in Euclidean space, and with the order h̄2 counterterms and
the extra term η̄ψ(0) whose presence we derived in (2.3.26) and whose
role is to cancel boundary terms in the ψ field equation. Substituting
ψ̄a = η̄a + ψ̄qu,a and ψa = χa + ψaqu with constant background fermions
χa and η̄a, one finds

−1

h̄
S = − 1

βh̄

∫ 0

−1

1

2
gij(x0 + q)(q̇iq̇j + bicj + aiaj) dτ

+η̄χ−
∫ 0

−1
ψ̄qu,aψ̇

a
qudτ
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−1

2

∫ 0

−1
q̇iωiab(x0 + q)(ψa1,bg + ψa1,qu)(ψ

b
1,bg + ψb1,qu) dτ

−βh̄
8

∫ 0

−1
(ΓΓ +

1

2
ωω) dτ (6.1.17)

where ψa1,bg = (η̄a + χa)/
√

2 and ψa1,qu = (ψaqu) + ψ̄aqu)/
√

2 .3 Note that
the term η̄ψqu(0) (with undetermined ψqu(0)) has canceled. The terms

− 1
βh̄

∫ 0
−1

1
2gij(x0)(q̇

iq̇j+bicj+aiaj) dτ−∫ 0
−1 ψ̄qu,aψ̇

a
qu dτ yield the propaga-

tors, and the rest yields the vertices. These results were derived in chapter
2, and the reader may look there for more details on the derivation.

After doing the loop integrations, the result for 〈exp(− 1
h̄S

int)〉 will only

depend on ψa1,bg = (χa + η̄a)/
√

2. Hence we can first do the χ̄ and η
integrals, while the χ − η̄ integral will effectively remove ψa2 from the
trace. We shall then be left with an integral over ψa1,bg = (χa + η̄a)/

√
2.

There follows now an orgy of Grassmann integrations. Readers who are
only interested in the final result may jump to (6.1.24).

In the χ̄, η sector we find the following integral (use
∫
dη̄dηdχdχ̄ =

∫
dη̄dχdχ̄dη)

∫

dχ̄dη e−η̄η eχ̄χ eχ̄η
n∏

a=1

(ηa + χ̄a) . (6.1.18)

The last factor is a fermionic delta function δ(η + χ̄), hence exp(χ̄η) can
be replaced by unity. For the same reason we can make the following
rewriting in the exponent

−η̄η + χ̄χ = −1

2
(η − χ̄)(χ− η̄) . (6.1.19)

Using

dχ̄dη = dχ̄n . . . dχ̄1dη1 . . . dηn (6.1.20)

= 2nd(χ̄n + ηn) . . . d(χ̄1 + η1)d(η1 − χ̄1) . . . d(ηn − χ̄n)

(not with a factor 2−n because we need the super Jacobian) and pulling
∏

(η+ χ̄) to the left past d(η− χ̄), we obtain a factor (−)n times
∫
d(χ̄+

η)
∏

(η + χ̄) = 1. Then we get

2n
∫

d(η − χ̄)(−)ne−
1
2
(η−χ̄)(χ−η̄) =

n∏

a=1

(χa − η̄a) . (6.1.21)

3 More precisely, in the discretized approach the interactions depend on ψak−1/2 =

(ψak+ψak−1)/2 and ψ̄k,a, and then this leads to ψa1,k = (ψak−1/2+ψ̄k,a)/
√

2 and ψa1,qu =

(ψaqu,k−1/2 + ψ̄k,a)/
√

2. From these discretized results we derived the propagators in
chapter 2.
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Hence we end up with another fermionic delta function, which again will
make the corresponding Grassmann integral trivial.

At this point we have obtained

An =
(−i)n/2

(4πβh̄)n/2

∫

dx0

√

g(x0) dη̄dχ
∏

(χ− η̄) eη̄χ
〈

exp

[

− 1

βh̄

∫ 0

−1

1

2
(gij(x0 + q)− gij(x0))(q̇

iq̇j + bicj + aiaj) dτ

−1

2

∫ 0

−1
q̇iωiab(x0 + q)(ψa1,bg + ψa1,qu)(ψ

b
1,bg + ψb1,qu) dτ

−βh̄
8

∫ 0

−1
(ΓΓ +

1

2
ωω) dτ

]〉

. (6.1.22)

We combined the bosonic measure (2πβh̄)−n/2 with the factor 2−n/2 which
accounted for the dimension of the space in which ψa2 acts. The “extra
term” eη̄χ in the action is annihilated by the fermionic delta
function

∏
(χa − η̄a), and we proceed to do the (χ− η̄) integrals.

We perform once more the transition from the variables η̄ and χ to
χ+ η̄ and η̄ − χ. For any function F of χ+η̄√

2
one has

∫

dη̄dχ
∏

(χ− η̄)F
(χ+ η̄√

2

)

=

∫

2nd(η̄ + χ)d(χ− η̄)
∏

(χ− η̄)F
(χ+ η̄√

2

)

=

∫

2nd(χ+ η̄)F
(χ+ η̄√

2

)

=

∫

2nd(
√

2ψa1,bg)F (ψa1,bg)

=

∫

2n/2
n∏

a=1

dψa1,bgF (ψa1,bg) . (6.1.23)

We used that d(η̄+χ)d(χ−η̄) ≡ d(η̄+χ)n . . . d(η̄+χ)1d(χ−η̄)1 . . . d(χ−η̄)n
equals d(χ+η̄)d(−η̄+χ) ≡ d(χ+η̄)1 . . . d(χ+η̄)nd(−η̄+χ)n . . . d(−η̄+χ)1

to do the integral over
∏

(χ− η̄) = (χ− η̄)1 . . . (χ− η̄)n.
Next we rescale ψ1,qu and ψ1,bg by a factor (

√
βh̄)−1. The rescal-

ing of ψa1,bg removes the βh̄ dependence of the measure (use

dψ = d(ψ′/
√
βh̄) =

√
βh̄dψ′) and will have enormous consequences. The

rescaling of ψ1 adds a factor 1/βh̄ to the vertices with fermions and a
factor βh̄ to the propagators of the fermions. Dropping the primes on ψ ′

we arrive at

An =
(−i)n/2
(2π)n/2

∫ n∏

i=1

dxi0

√

g(x0)
n∏

a=1

dψa1,bg

〈

exp
(

−1

h̄
Sint

)〉
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−1

h̄
Sint = − 1

βh̄

∫ 0

−1

1

2
(gij(x0 + q)− gij(x0))(q̇

iq̇j + bicj + aiaj) dτ

− 1

βh̄

∫ 0

−1

1

2
q̇iωiab(x0 + q)(ψa1,bg + ψa1,qu)(ψ

b
1,bg + ψb1,qu)dτ

−βh̄
8

∫ 0

−1
(ΓΓ +

1

2
ωω) dτ . (6.1.24)

The expectation value 〈...〉 indicates that all quantum fields (qi, ψa1,qu and
a, b, c ghosts) must be contracted using the propagators of chapter 2.
However, in the end we must take the limit β → 0, and since all propa-
gators are proportional to βh̄ and all vertices to 1

βh̄ (or even βh̄ for the

ΓΓ + 1
2ωω term), we conclude:

1) only one-loop graphs survive the βh̄ → 0 limit. (At higher loops
there are more propagators than vertices).

2) the a, b, c ghosts do not contribute at the one-loop level because
their vertices involve at least 3 quantum fields.

3) the ΓΓ + 1
2ωω term can be discarded as it is of higher order in β.

4) there are no terms linear in quantum fields, so no tadpoles, because
the integral of q̇iωiab(x0)ψ

a
1,bgψ

b
1,bg vanishes due to the boundary

conditions on qi.

5) we can for convenience choose a frame with ωiab(x0) = 0. Then
ωiab(x0+q) is at least linear in quantum fields. Expanding ωiab(x0+
q) to first order, one can set ψa1,qu = 0 in the one-but-last line of
(6.1.24).

6) the only remaining vertex is

−1

h̄
Sint = − 1

βh̄

∫ 0

−1

1

2
q̇iqj∂jωiab(x0)ψ

a
1,bgψ

b
1,bgdτ

= − 1

βh̄

1

4

∫ 0

−1
qiq̇jRijab(ω(x0))ψ

a
1,bgψ

b
1,bgdτ (6.1.25)

where Rijab(ω)(x0) = ∂iωjab(e(x0))+ωiacωj
c
b− (i↔ j) and we used that

∫
qiq̇jdτ is antisymmetric in i and j. (Since qi vanishes at the endpoints

we are allowed to partially integrate).
Hence, we need only compute closed q-loops, with q-propagators and

Rij(x0) ≡ Rijab(ω(x0))ψ
a
1,bgψ

b
1,bg sticking out of each vertex. Then

An =
(−i)n/2
(2π)n/2

∫

dx0

√

g(x0) dψ1,bg 〈e−
1
βh̄

1
4
Rij(x0)

∫ 0

−1
qiq̇jdτ 〉 . (6.1.26)
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This formula contains the chiral anomaly for any dimension, and the
explicit evaluation of the expression 〈...〉 is far simpler than the corre-
sponding Feynman graph calculation. Expanding the exponent, one ob-
tains disconnected graphs: sums of products of closed q loops are found,
which yield terms like (trR2)2 and trR4, for example. If one writes the
result for 〈...〉 as exp[− 1

h̄W (loops)], then W (loops) contains only single

closed loops (because exp[− 1
h̄W (loops)] is the generating functional for

connected graphs). To obtain the final formula for the anomaly one must
expand the exponent, and one finds then back the products of closed
loops.

The evaluation of the sum of connected closed loops in W (loops) yields
a sum of graphs, each with k vertices and k propagators. The propagators
read

〈qi(σ)qj(τ)〉 = −βh̄gij(x0)∆(σ, τ) (6.1.27)

where ∆(σ, τ) was defined (1.1.3). The gij(x0) contract the first two
indices of the curvatures to a trace over k curvature tensors. Hence

−1

h̄
W (loops) =

∞∑

k=2

1

k!

1

4k
(trRk)(k − 1)! 2k−1

∫ 0

−1
dτ1 · · ·

∫ 0

−1
dτk

•∆(τ1, τ2)
•∆(τ2, τ3) . . .

•∆(τk, τ1) . (6.1.28)

The factor (k − 1)! states that one can contract the k vertices in (k − 1)!
ways, while the symmetry of each vertex in both q’s yields a factor 2k−1

(partial integration is allowed since qi(σ) = 0 at the end points). There
remains an overall factor 1/2. Because tr R = 0 we started the summation
at k = 2.

The integrals

Ik =

∫ 0

−1
dτ1 · · ·

∫ 0

−1
dτk (τ2 + θ(τ1 − τ2))

(τ3 + θ(τ2 − τ3)) . . . (τ1 + θ(τk − τ1)) (6.1.29)

are most easily evaluated by first computing the generating function
∑∞
k=1

yk

k Ik. In fact, the expression for the anomaly has precisely this

structure, with y = R
2 . The first few Ik are easily evaluated. One finds

I1 = 0, and

I2 =

∫ 0

−1
dτ1

∫ 0

−1
dτ2 (τ2 + θ(τ1 − τ2))(τ1 + θ(τ2 − τ1))

=
1

4
+ 2

∫ 0

−1
dτ1

∫ 0

τ1
τ2 dτ2 = − 1

12
(6.1.30)
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etc. Using induction (see appendix A.4 of [40]), the general result is found

∞∑

k=2

yk

k
Ik = ln

y/2

sinh y/2
= − 1

3!

(y

2

)2
+ . . . . (6.1.31)

Using this result, we find for the gravitational contribution to the chiral
anomaly of a Dirac fermion in n dimensions due to the transformation
law δλ = iαγ5λ and δλ̄ = iαλ̄γ5

An = (−2iα)
(−i)n/2
(2π)n/2

∫

dxi0

√

g(x0) dψ
a
1,bg exp

[
1

2
tr ln

(
R/4

sinhR/4

)]

R = Rij = Rijabψ
a
1,bgψ

b
1,bg . (6.1.32)

The factor −2iα is of course due to the Jacobian in (6.1.3), and the factor
1/2 in the exponent is the overall factor 1/2 mentioned below (6.1.28).
Furthermore, the factor (−i)n/2 is due to the definition of γ5, and the
factor (2π)−n/2 is due to the Feynman measure. Since only the term with
precisely n factors ψ1,bg can contribute to the Grassmann integral (so only

the terms proportional to Rn/2), we can absorb the overall normalization
factor into the trace

An = (−2iα)

(
∫ n∏

i=1

dxi0

√

g(x0)

)

×
(
∫ n∏

a=1

dψa1,bg

)

exp
1

2
tr ln

[ −iR/8π
sinh(−iR/8π)

]

(6.1.33)

The matrix −iRjkabψa1,bgψb1,bg is real, so the anomaly is purely imaginary.

In the path integral in Euclidean space, we find 〈(∂µα)jµ5 〉 − 〈2iαγ5〉 = 0,
but jµ5 has no definite reality properties in Euclidean space. In Minkowski
space one has i times the action in the path integral: now i〈(∂µα)jµ5 〉 is
antihermitian. The anomaly we have computed is imaginary, both in
Euclidean and in Minkowski space. (Making a Wick rotation the factor
i from the ε symbol cancels the factor i from dnx.) Only traces with
an even number of Riemann tensors are present (because x−1 sinhx is
even in x. As a consequence, no factors of i survive in the expansion of
the exponent.) Since each Rij contains two ψ’s, this means that there is
only a gravitational contribution to the chiral anomaly in n = 4k
dimensions. In particular there is a gravitational contribution to the
chiral anomaly in d = 4 but not in d = 2 or d = 10. For n = 4, the terms
with four ψa1 yields εabcdRijabRijcd times a factor 1

3!
1

(8π)2
1
2 = 1

192 (2π)2
,

times (−2iα), which is the correct result for Dirac spinors [98].
This result contains the complete dependence on all gravitational fields

(not only the leading term) since we used the spin connections ωiab(e)
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as external fields. Although we put ωiab at the point x0 equal to zero,
the complete γ5 anomaly does not contain further terms with bare ω’s.
This follows either from a direct calculation, or from the fact that chiral
transformations and local Lorentz transformations commute. Since we
used a regulator which preserves Einstein and local Lorentz symmetry,
the anomaly must be locally Lorentz invariant:

δlLAn(chiral) = 0 . (6.1.34)

The same holds for the Einstein symmetry. Hence, (6.1.33) is the complete
answer.

Note also that one obtains in the exponent a sum of terms, so that the
anomaly corresponds to sums of products of traces over Riemann ten-
sors. For example, in d = 8 one finds two terms with four curvatures,
proportional to trR4 and (trR2)2. This is different from the Yang-Mills
contribution to the abelian chiral anomaly which always has the form
Tr(F n/2). 4 In Feynman diagram language this means that disconnected
graphs contribute to the gravitational chiral anomaly. The group theoret-
ical reason is that the Lorentz generators do not commute with the Dirac
matrices, whereas the Yang-Mills generators of course commute with the
Dirac matrices.

One might worry that our procedure of introducing free ψa2 at the begin-
ning violates local Lorentz invariance. Since we started with a regulator
which is locally Lorentz invariant, and all other steps were mathemat-
ical identities, local Lorentz invariance cannot be lost. As a check one
might repeat the calculations with ωiab(x0) not vanishing. One should
find that terms with bare ω’s cancel. In fact, if one defines that the ψa2
are inert under local Lorentz transformations, the action preserves local
Lorentz symmetry because the ψa2 do not couple, and then local Lorentz
invariance should remain preserved at all stages.

In the next anomaly we use an alternative approach in which one does
not add free ψa2 (“doubling”) but combines pairs of spinors into ψ and
ψ̄ (“halving”). One could repeat the calculations of this section using
halving instead of doubling; the answer should be the same.

A comment on supersymmetry. Starting from the non-susy Dirac action
in n dimensional space, we found an action for the QM path integral
which turns out to be the N = 1 susy QM model for spinors ψa1 plus

4 Jumping ahead, we shall see that for spin 1/2 the Yang-Mills contributions to the

abelian chiral anomaly are due to the factor Tr e
1

2
F , whereas the gravitational contri-

butions are due to the factor exp[ 1
2
tr ln( R/4

sinhR/4
)]. Because in the latter case the trace

occurs in the exponent, one obtains an expression of the form exp[ a trR2+b trR4+· · ·].
Expanding one obtains products of traces. From Tr e

1

2
F one obtains of course only

a single trace.
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terms of order h̄2 due to Weyl ordering. This classical N = 1 action (with
Euclidean time) is given by

L =
1

2
gij ẋ

iẋj +
1

2
ψa1(ψ̇a1 + ẋiωiab(e)ψ

b
1) (6.1.35)

and is invariant under

δxi = −iε ψa1eai , δψa1 = iei
aẋiε− δxjωjabψb1 . (6.1.36)

(In one-dimensional worldspace there are Euclidean Majorana spinors).
In flat space L = 1

2(ẋi)2 + 1
2ψ

i
1ψ̇

i
1 is clearly invariant under δxi = −iεψi1

and δψi1 = iẋiε (because δL = −ẋi(iεψ̇i1) + (iẋiε)ψ̇i1 = 0), while in curved
space one just covariantizes these rules (δψa1 + δxjωj

a
bψ

b
1 is covariant

under local Lorentz transformations, see (D.54)). We refer to appendix
D for more details. The ΓΓ + ωω/2 terms we found in the regulator
were quantum effects due to regularization by time slicing. They did
not contribute to the gravitational γ5 anomaly, but they do contribute to
the trace anomaly. Using dimensional regularization these noncovariant
terms are absent. Another way of obtaining the regulator R would have
been to first construct the supersymmetry generator Q at the quantum
level, whose operator ordering is fixed by requiring that it be Einstein and
local Lorentz invariant. We discussed this in chapter 5. Then Ĥ = Q̂Q̂ is
clearly a supersymmetric, Einstein and locally Lorentz invariant regula-
tor. This reproduces the regulator in (6.1.9); in particular the coefficient
of the curvature in that expression is fixed by supersymmetry. We did
not impose supersymmetry from the beginning, but rather we chose a
regulator which was the square of the field operator of the fermions. So
we took the action of the quantum field theory as our starting point, and
this fixed the R term in the quantum action.

Let us now discuss the relation between our calculations and those of [1].
One can either evaluate the Feynman graphs with l external sources Rij
and then summing over l, or directly evaluate the propagator in a gravita-
tional background and using that the sum of one-loop graphs corresponds
to the determinant of the field operator. The former approach is the most
natural at this point, since we have already determined the propagators
and interaction vertices. However, it needs some special tricks [40]. The
latter approach is used in [1] and we sketch in this footnote the connec-
tion. If one goes back to the discretized path integral with z = y = x0 and
adds a final integration with dx0 to the N − 1 integrations dx1...dxN−1,
one obtains for N → ∞ a continuous path integral over Dx(τ) with pe-
riodic boundary conditions (PBC). The part quadratic in quantum fields
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q yields then the one-loop determinant

〈

exp
(

− 1

βh̄

1

4
Rij(x0)

∫ 0

−1
qiq̇jdτ

)〉

=

[

det(−gij(x0)∂
2
τ + 1

2Rij(x0)∂τ )

det(−gij(x0)∂2
τ )

]−1/2

.

(6.1.37)
Transforming gij(x0) to δij and diagonalizing the hermitian n×n matrix
1
2Rijabψ

a
1ψ

b
1 with eigenvalues (y1, .., yn), one obtains for the ratio of the

two determinants

n∏

k=1

∞∏

n=−∞

′(
1 +

iyk
2πn

)

=
n∏

k=1

∞∏

n=1

(

1 +
y2
k

4π2n2

)

=
n∏

k=1

sinh(yk/2)

yk/2
. (6.1.38)

The prime indicates that one should omit the zero mode with n = 0 (one
can regularize the infrared divergence corresponding to n = 0 by giving
the quantum field a small mass. Then for n = 0 there is a nonvanishing
contribution to both determinants which cancels in the ratio). This can

be rewritten as exp tr ln

(
sinh R

4
R
4

)

. Bringing this to power − 1/2 yields

indeed the expected result.

6.2 The abelian chiral anomaly for spin 1/2 fields coupled to
Yang-Mills fields in 2k dimensions

The next anomaly we consider is the abelian chiral (γ5) anomaly in loops
with Dirac fermions, coupled to external Yang-Mills fields instead of ex-
ternal gravitational fields. This is the same calculation as in the previous
section, but with gravity replaced by Yang-Mills fields. We can again
make a local chiral transformation of the integration variables of the path
integral, and find then that the anomaly is equal to the divergence of the
abelian axial-vector current λ̄γ5γ

µλ. There is now no metric gij(x), so in
the QM approach we are now dealing with linear sigma models, and no
a, b, c ghosts will be present. The regulator for the quantum field theory
will contain new objects, namely the matrices for the generators in the
representation of the gauge group for the fermions. These matrices will
be denoted by (Tα)MN , and in the QM model new internal ghosts must
be introduced. These ghosts will be denoted by ĉM and ĉ∗M and satisfy
the anticommutation relations {ĉM , ĉ∗N} = δMN . We shall omit the hats
most of the time.

As we shall explain, the ghosts c and c∗ act only in the one-particle
subspace of the whole Fock space obtained by acting with one c∗ on
the c-vacuum, and the matrices Tα are represented in this subspace by
c∗M (Tα)MNc

N . (It is also possible to represent Tα with ghosts satisfy-
ing commutation relations, as d∗M (Tα)MNd

N where [dM , d∗N ] = δMN ,
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but this has the disadvantage that the Fock space becomes infinite di-
mensional. Incidentally, note that one can not represent the Dirac matri-
ces (γm)αβ with either commuting or anticommuting ghosts as d†γmd or
c†γmc, since they satisfy anticommutation relations). In their pioneering
article, Alvarez-Gaumé and Witten [1] used an operator (Hamiltonian)
approach for the internal ghost sector, but we shall treat the ghosts on
equal footing with the nonghost sector, namely by a path integral ap-
proach.

The action of the quantum field theory we consider is given by

L = −λ̄γµDµλ ; Dµλ
M = ∂µλ

M + gAµ
α(Tα)MNλ

N (6.2.1)

with [Tα, Tβ ] = fαβ
γTγ and [Dµ, Dν ] = gFµν

αTα. The regulator in the
quantum field theory, as obtained in the previous section, or from the
construction of [75], is R ∼ /D /D = DµD

µ + 1
2γ

µγν(gFµν). The massless
Dirac action has the rigid chiral symmetry

δλ = iαγ5λ , δλ̄ = iαλ̄γ5 (6.2.2)

and in quantum field theory the anomaly is given by

An = −2iα lim
β→0

Tr γ5 e
β
h̄
R . (6.2.3)

We shall omit for the time being the overall prefactor−2iα. The operators
γ5 andR depend on xµ, ∂µ, γ

µ (in flat space we do not distinguish between
flat and curved indices) and (Tα)MN , and the trace is over the internal
indices M,N as well as over the spinor indices, and, of course, over all
points in spacetime.

To construct the corresponding QM model, we represent again xµ by
x̂i, the hermitian operator h̄

i ∂µ by p̂i, and γm by the hermitian operators√
2ψ̂a1 , with [x̂i, p̂j ] = ih̄δij and {ψ̂a1 , ψ̂b1} = δab. This yields again the

regulator in (6.1.7), but now in flat space and coupled to Yang-Mills
fields. The matrices (Tα)MN are represented by operators

T̂α = ĉ∗M (Tα)MN ĉ
N (6.2.4)

which act in the sector of the one-particle states |N〉 (omitting hats)

|N〉 = c∗N |0〉 , cM |0〉 = 0 . (6.2.5)

There are, of course, also two-particle etc. states c∗Mc∗N |0〉 etc., but if

we start with a one-particle state, the operators T̂α will never bring us
outside this subspace. The action of T̂α on |N〉 is just like the matrix
(Tα)MN acts on vectors in the carrier space of the representation R, and

products of the operators T̂α lead to matrix multiplication.
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To construct operators ψ†
a and ψa from the ψa1 , we could again add a

set of free fermions ψa2 and proceed as in the previous section. The reader
may follow this approach as an exercise; the answer for the anomaly will
be the same. Here we follow an alternative approach: we combine pairs
of hermitian fermions into Dirac spinors. Namely, we define

χA =
1√
2
(ψ2A−1

1 + iψ2A
1 ) ; χ†

A =
1√
2
(ψ2A−1

1 − iψ2A
1 )

ψa1 =
1√
2
(χ(a+1)/2 + χ†

(a+1)/2) for a odd

ψa1 =
−i√

2
(χa/2 − χ†

a/2) for a even . (6.2.6)

In order to define a matrix γ5, we need an even number of dimensions
n = 2k. The indices a run from 1 to n as always but A = 1, . . . n/2, and

{χA, χ†
B} = δAB ; {χA, χB} = {χ†

A, χ
†
B} = 0 . (6.2.7)

Weyl ordering will be defined with respect to the operators χ and χ†.
We first must write γ5 as an operator constructed from the χ and χ†.

Recalling the definition γ5 = (−i)n/2γ1γ2 · · · γn and γm ∼
√

2ψa we get

γ5 = (−i)n/2(χ1 + χ†
1)(−i)(χ1 − χ†

1) . . .

· · · (χn/2 + χ†
n/2)(−i)(χn/2 − χ

†
n/2)

= (−1)n/2
n/2
∏

A=1

(χA + χ†
A)(χA − χ†

A)

=

n/2
∏

A=1

(χAχ†
A − χ

†
Aχ

A) =

n/2
∏

A=1

(1− 2χ†
Aχ

A) (6.2.8)

where we used χAχ†
A = 1−χ†

Aχ
A. Since χ†

Aχ
A for fixed A is a projection

operator, we can also write this as

γ5 =

n/2
∏

A=1

e−iπχ
†
Aχ

A
= e−iπ

∑n/2

A=1
χ†
Aχ

A

= (−)F (6.2.9)

where F =
∑n/2
A=1 χ

†
Aχ

A is the fermion number operator. Indeed, the

operator exp(−iπχ†
Aχ

A) for fixed A is equal to

1+

(

−iπ+
(−iπ)2

2!
. . .

)

χ†
Aχ

A = 1+(e−iπ−1)χ†
Aχ

A = 1−2χ†
Aχ

A . (6.2.10)
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Hence the Jacobian can be written in two ways

J =

n/2
∏

A=1

(1− 2χ†
Aχ

A) = (−)F (6.2.11)

In ref. [1] (−)F is used; we shall also use this expression5.
Next we consider the regulator R. The Hamiltonian of the QM model

is obtained from the Euclidean regulator R ∼ DµD
µ + 1

2γ
µγν(gFµν) of

the quantum field theory by replacing all operators of the quantum field
theory by corresponding operators in the QM model, and reads, after
multiplication by 1

2(h̄/i)2,

Ĥ =
1

2
π̂iπ̂jδ

ij − h̄

2

2

ψ̂a1 ψ̂
b
1gFab

α(A(x̂))ĉ∗Tαĉ

Dµ = ∂µ + gAµ
αTα → π̂i = p̂i − ih̄gAµα(x̂)ĉ∗Tαĉ . (6.2.12)

The operator Ĥ is an operator constructed from the action of the quantum
field theory in Euclidean space. The operators ψ̂a1 are hermitian, and if

one defines that ĉ∗M is the hermitian conjugate of ĉM , then Ĥ is formally
hermitian. Since we are in flat (Euclidean) space, the indices of πi and πj
are contracted with δij , so we are dealing with linear sigma models, and
there is no difference between curved indices i, j and flat indices a, b. The
ψ̂a1 in (6.2.12) are understood to be expressed in terms of χ̂ and χ̂† by
(6.2.6). Note that there are no counterterms generated if we rewrite the

fermions ψ̂a1 in Ĥ into Weyl ordered form because Fab is antisymmetric
whereas Weyl ordering produces only an extra term with δab. The ghosts
ĉ and ĉ∗ should not be rewritten in Weyl ordered form for reasons soon
to be explained. We drop again hats.

The anomaly is now given by

An = lim
β→0

Tr′ e−iπχ
†χ e−

β
h̄
H (6.2.13)

where the prime indicates that we are evaluating the trace only over the
one-particle ghost sector (the states |N〉 = c∗N |0〉). To write the trace
as an unconstrained trace, we introduce the one-particle ghost projection
operator Pgh. We claim that [40]

Pgh = : xe−x : , x ≡ c∗McM (6.2.14)

where : : indicates normal ordering with respect to c∗M and cN . Indeed,
on the vacuum Pgh|0〉 = 0, while on the one-particle states

Pgh|N〉 = : x− x2 + . . . : |N〉 = : x : |N〉 = |N〉 (6.2.15)

5 In string theory, the operator (−)F is part of the so-called GSO projection operator.
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Of course : x2 : vanishes on |N〉 because it contains two annihilation
operators which stand to the right of the two creation operators. On
two-particle states

|M,N〉 ≡ c∗Mc∗N |0〉 (6.2.16)

Pgh vanishes

Pgh|M,N〉 = : x− x2 +
1

2
x3 + . . . : |M,N〉

= : x− x2 : |M,N〉
= (2− : x2 :)|M,N〉 = 0 (6.2.17)

since : x2 : |M,N〉 = c∗P c∗QcQcP c∗Mc∗N |0〉 = 2|M,N〉. The reader may
check that Pgh also vanishes on 3-particle states. (Only : x − x2 + 1

2x
3 :

contributes, and yields 3− 3.2 + 1
23! = 0). For a proof that Pgh vanishes

on all ghost states, see section 12 of [40].
The anomaly can thus be written as the following unconstrained trace

An = lim
β→0

Tr e−iπχ
†
Aχ

A
: c∗McMe−c

∗
N c

N
: e−

β
h̄
H . (6.2.18)

To write out the trace on a basis of fermionic coherent states we introduce
decompositions of unity in the internal (Yang-Mills ghost) space and in
the fermionic (χ, χ†) space

Igh =

∫

dη̄ghdηgh |ηgh〉e−η̄ghηgh〈η̄gh|

If =

∫

dη̄fdηf |ηf 〉e−η̄fηf 〈η̄f | (6.2.19)

as we discussed in section (2.4). The coherent states denoted by a sub-
script gh (for ghosts) are constructed from the operators cM and c∗N ,
and the coherent states with a subscript f (for fermion) are constructed

from the operators χA and χ†
A. The trace over internal ghost states and

fermionic states of a bosonic operator Â is given by, respectively,

trgh Â =

∫

dχghdχ̄gh e
χ̄ghχgh 〈χ̄gh|Â|χgh〉

trf Â =

∫

dχfdχ̄f e
χ̄fχf 〈χ̄f |Â|χf 〉 (6.2.20)

as we discussed in the previous section. Whenever we write a multiple
integral such as dη, it is ordered as dη1..dηn, while the integrals over
barred fermions such as dη̄ are ordered in the opposite order dη̄n..dη̄1.
Recall that χf consists of χAf with A = 1, . . . , n/2, while χgh contains χMgh
with M = 1, . . .dimR, where dimR is the dimension of the Yang-Mills
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representation of the fermions in the original QFT. Hence (omitting the
symbol limβ→0 for the time being)

An = trx0trf trgh 〈x0, χ̄gh, χ̄f |e−iπχ
†
f
χfPghIghIfe

−β
h̄
H |χf , χgh, x0〉

(6.2.21)

where trx0 =
∫ ∏n

i=1 dx
i
0. This trace factorizes into a ghost trace and a

fermionic trace.
The ghost part yields
∫

dχghdχ̄gh e
χ̄ghχgh dη̄ghdηgh e

−η̄ghηgh 〈χ̄gh|Pgh|ηgh〉〈η̄gh|e−
β
h̄
H |χgh〉 .

(6.2.22)

Since Pgh = : xe−x : projects the coherent state |ηgh〉 onto its one-particle
part, Pgh|ηgh〉 = c∗Mη

M
gh|0〉, the first matrix element is easily computed

and yields
〈χ̄gh|Pgh|ηgh〉 = χ̄ghηgh . (6.2.23)

Note that in this case we did not use Weyl ordering to evaluate this matrix
element. We begin with the integral over χ̄gh

∫

dχ̄gh e
χ̄ghχghχ̄ghηgh =

=

∫

dχ̄gh,dimR . . . dχ̄gh,1
(∑

M

χ̄gh,Mη
M
gh

)

eχ̄ghχgh . (6.2.24)

For given M , each χ̄gh,N integral yields χNgh, except the integral which

contains χ̄gh,Mη
M
gh in the integrand, which yields ηMgh. Hence the χ̄gh

integrals yield

dimR∑

M=1

χdimR
gh . . . χM+1

gh ηMgh χ
M−1
gh . . . χgh

1 . (6.2.25)

Next we perform the ηgh integrations
∫

dη1
gh . . .

∫

dηdimR
gh e−η̄ghηgh

∑

M

( ∏

N>M

χNgh

)

ηMgh

( ∏

N<M

χNgh

)

. (6.2.26)

Again each dηgh integral yields a factor η̄gh, except in one case where the

ηMgh in the integrand yields unity. The result will be called P gh
η̄,χ and reads

P ghη̄,χ =
dimR∑

M=1

(

η̄gh,1χ
1
gh

)

. . .
(

η̄gh,M−1 χ
M−1
gh

)

(

η̄gh,M+1χ
M+1
gh

)

. . .
(

η̄gh,dimR χ
dimR
gh

)

. (6.2.27)
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Clearly this operator deletes in an arbitrary function of η̄gh and χgh all
terms with two or more η̄gh’s and χgh’s. It is thus a kind of projection
operator onto terms which are linear in (or independent of ) η̄ and χ. We

denote it by P ghη̄,χ. We interrupt the discussion of the ghost sector at this
point and first perform the trace in the fermionic sector.

In the fermionic sector we must first evaluate the matrix element of γ5.
We find

〈χ̄f |e−iπχ
†
Aχ

A |ηf 〉 = 〈χ̄f |
n/2
∏

A=1

(1− 2χ†
Aχ

A)|ηf 〉

= eχ̄fηf
n/2
∏

A=1

(1− 2χ̄f,Aη
A
f ) = e−χ̄fηf . (6.2.28)

To obtain this result, we used the definition of coherent states and the
identity

1− 2χ̄f,Aη
A
f = e−2χ̄f,Aη

A
f . (6.2.29)

The Grassmann integral over χ̄f and ηf can now be done, yielding

∫

dχfdχ̄f e
χ̄fχf dη̄fdηf e

−η̄fηf e−χ̄fηf

=

∫

dχfdη̄f

(∫

dηfdχ̄f e
χ̄f (χf−ηf ) e−η̄fηf

)

=

∫

dχfdη̄f

(∫

dηf (χ
n/2
f − ηn/2f ) . . . (χ1

f − η1
f )e

−η̄fηf
)

=

∫

dη̄fdχf e
−η̄fχf . (6.2.30)

In the last line we used that
∏

(χf − ηf ) is a fermionic delta function,
and replaced exp(−η̄fηf ) by exp(−η̄fχf ). We also canceled a sign factor

(−)n/2 by interchanging dχf and dη̄f . This yields

An =

∫
(
∏

i

dxi0

)
(

dχghdη̄ghP
gh
η̄,χ

) (
dη̄fdχfe

−η̄fχf )

〈x0, η̄gh, η̄f |e−
β
h̄
H |χf , χgh, x0〉 . (6.2.31)

The regulated trace of γ5 contains the transition element

〈x0, η̄gh, η̄f |e−
β
h̄
H |χf , χgh, x0〉 =

1

(2πβh̄)n/2
〈e− 1

h̄
Sint〉 (6.2.32)

where in the exponent the extra terms χ̄ghψgh(0) and χ̄fψf (0) are present.
The action S is obtained by inserting complete sets of states. For the
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fermions we use coherent states depending on ψAf,k, ψ̄f,k,A and ψMgh,k,

ψ̄gh,k,M . Then the operators ψ̂1 and ĉ∗ and ĉ are replaced by ψ1 ≡
(ψf + ψ̄f )/

√
2 and ψgh and ψ̄gh. The momenta are integrated out from

∫ 0

−1

[
i

h̄
pj ẋ

j − β

h̄

{
1

2
(pj − ih̄gAjαψ̄ghTαψgh)2

− h̄
2

2
ψa1ψ

b
1gFab

αψ̄ghTαψgh

}]

dτ . (6.2.33)

Then the terms quadratic in Aαj cancel and only the familiar ẋjAαj inter-

action is left. In the path integral the integration variables are ψAf , ψ̄f,A,

ψMgh, ψ̄gh,M and qi. We make a decomposition into background fields and
quantum fields as follows

ψAf = χAf + ψA , ψ̄f,A = η̄f,A + ψ̄A

ψMgh = χMgh + cM , ψ̄gh,M = η̄gh,M + c̄M (6.2.34)

and find then along the same lines as in (6.1.16)6

−1

h̄
S = − 1

βh̄

∫ 0

−1

1

2
q̇iq̇i dτ + (η̄ghχgh + η̄fχf )

−
∫ 0

−1

(

ψ̄Aψ̇
A + c̄M ċ

M
)

dτ

−
∫ 0

−1
q̇jgAj

α(x0 + q)(Tα) dτ

+βh̄

∫ 0

−1

1

2
ψa1ψ

b
1gFab

α(x0 + q)(Tα) dτ (6.2.35)

where

(Tα) ≡ ψ̄gh,M (Tα)MNψ
N
gh = (η̄gh,M + c̄M )(Tα)MN (χNgh + cN ) (6.2.36)

and ψa1 is expressed in terms of ψAf , ψ̄fA as in (6.2.6), which themselves

are further decomposed as in (6.2.34). Thus qi, ψA, ψ̄A, c
M and c̄M are the

quantum variables, and x0, χ
A
f , η̄f,A, χMgh, η̄gh,M the background variables.

The coupling −q̇Aα(Tα) came from integrating out the momenta, and
the c̄c terms in (Tα) combine with the kinetic term c̄M ċ

M to a covariant
derivative

Dτc
M = ċM + q̇jgAj

α(x0 + q)(Tα)MNc
N (6.2.37)

6 Recall that except in the vertices, all terms linear in quantum fields cancel. In
particular exp[η̄ψf (0) −

∫
ψ̄f ψ̇f dτ ] becomes equal to exp[η̄χ−

∫
ψ̄ψ̇ dτ ].
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but note that there are also background fields in the interaction term.
The anomaly now reduces to

An =
1

(2πβh̄)n/2

∫

dx0dχghdη̄ghP
gh
η̄,χ e

η̄ghχgh dη̄fdχf

〈

exp
(

−
∫ 0

−1
q̇jgAj

α(x0 + q)(η̄gh + c̄)Tα(χgh + c) dτ
)

exp
(

βh̄

∫ 0

−1

1

2
ψa1ψ

b
1gFab

α(η̄gh + c̄)Tα(χgh + c) dτ
)〉

.(6.2.38)

The term exp(η̄gh χgh) in the ghost sector of this expression is the “extra
term” in the action which remains after substitution of (6.2.34), but the
corresponding term exp(η̄fχf ) in the fermionic sector has canceled with
the factor exp(−η̄fχf ) in (6.2.31). We rescale the fermionic variables

η̄f,A, χAf , ψA and ψ̄A, but not the ghost variables, by a factor (βh̄)−1/2 (so

one sets χAf = χ′A
f /
√
h̄β and then drops the prime). Then the measure

becomes βh̄ independent

An =
1

(2π)n/2

∫

dx0dη̄fdχf

∫

dχghdη̄ghP
gh
η̄,χe

η̄ghχgh

〈

exp
(

−
∫ 0

−1
q̇jgAj

α(x0 + q)(η̄gh + c̄)Tα(χgh + c) dτ
)

exp
(1

2

∫ 0

−1
ψa1ψ

b
1gFab

α(x0 + q)(η̄gh + c̄)Tα(χgh + c) dτ
)〉

.

(6.2.39)

After this rescaling the fermion and boson propagators 〈ψAψ̄B〉 and 〈qiqj〉
are proportional to βh̄, but the ghost propagators 〈cM c̄N 〉 are βh̄ inde-
pendent7. All vertices are h̄β independent. It follows that in the limit of
vanishing β, only graphs with ghost propagators or without any propaga-
tors contribute. Hence we may set the quantum fields q, ψA and ψ̄A equal
to zero, and replace ψa1 and ψb1 by their background values, which we de-
note by ψabg and ψbbg. Then only the vertex with 1

2ψ
a
bgψ

b
bggF

α
ab(x0)(η̄gh +

c̄)Tα(χgh + c) will contribute, but the vertex with with q̇igAαi (x0)(η̄gh +
c̄)Tα(χgh + c) does not contribute since we set q = 0.

The propagator due to
∫ 0
−1 c̄M ċ

Mdτ is the same as for
∫ 0
−1 ψ̄qu,Aψ̇

A
qudτ

7 More precisely, having introduced external sources K and K̄ which couple to the
fermionic quantum integration variables ψ̄ and ψ, completed squares, and integrated
out the fermionic quantum variables, Sint depends on χ + δ

δK̄
and η − δ

δK
. By

rescaling δ
δK

and δ
δK̄

the same way as η̄ and χ, we must also rescale K and K̄ in the
source term K̄AK. This produces the βh̄ dependence of the ψψ̄ propagator, and the
βh̄ independence of the vertices.

194



given by (2.3.36), namely

〈cM (σ)c̄N (τ)〉 = δMNθ(σ − τ) . (6.2.40)

It follows that closed ghost loops do not contribute (a closed loop always
moves somewhere backwards in time.) Only tree graphs with ghosts can
contribute, with at one end a field η̄gh and at the other end a field χgh.
In fact, only terms with precisely one η̄gh and one χgh contribute due to

the operator P ghη̄,χ.
The ghost tree graphs are obtained by expanding

exp(
1

2
ψabgψ

b
bggFab

α(x0)

∫ 0

−1
(η̄gh + c̄)Tα(χgh + c)dτ (6.2.41)

and contracting the vertices with ghost propagators. If one has k vertices
one obtains

1

k!
k!

(
1

2

)k ∫ 0

−1
. . .

∫ 0

−1
dσ1 . . . dσk η̄ghFcc̄ F . . . cc̄ Fχgh (6.2.42)

where F ≡ ψabgψbbggFabα(x0)Tα is a matrix in the internal symmetry space,
and where the factor k! in the numerator is due to the fact that one can
order the k vertices into a tree in precisely k! ways. The integral over the
σk yields

∫ 0

−1
dσ1 . . .

∫ 0

−1
dσk θ(σ1 − σ2) . . . θ(σk−1 − σk) =

1

k!
. (6.2.43)

Hence, the ghost trees yield

η̄gh exp
(1

2
F
)

χgh . (6.2.44)

The term without any F vertices is provided by expanding the factor

exp(η̄ghχgh) in (6.2.39). Due to the P ghη̄,χ, only terms with precisely one

η̄gh,M and χMgh with the same M will contribute, and they yield a trace in
the space of the representation of the fermions

∫

dχghdη̄gh (
∑

M

∏

N 6=M
η̄gh,Nχ

N
gh) η̄gh e

1
2
Fχgh = Tr e

1
2
F . (6.2.45)

All ghost variables are now gone.
The anomaly becomes

An =
1

(2π)n/2

∫

dx0dη̄fdχfTr exp

(
1

2
ψabgψ

b
bggFab

α(x0)Tα

)

(6.2.46)
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where ψabg is expressed in term of the constant background fields χAf and
η̄f,A (introduced in (6.2.34)) as in (6.2.6). Finally we transform integra-
tion variables from dη̄f,Adχ

A
f to dψabg. We find8

dη̄f,n/2 . . . dη̄f,1dχ
1
f . . . χ

n/2
f = (−i)n/2dψ1

bg . . . dψ
n
bg . (6.2.47)

The final result for the abelian chiral anomaly for complex spin 1/2
fields coupled to external Yang-Mills gauge fields in n = 2k dimensions is
given by

An = (−2iα)
(−i)n/2
(2π)n/2

∫

dx0dψ
1
bg . . . dψ

n
bg Tr exp

(
1

2
ψabgψ

b
bggFab

)

=
(−2iα)

(2π)n/2

(
ig

2

)n/2

εa1...an

∫

Tr(Fa1a2 . . . Fan−1an)dx0 (6.2.48)

where we reinstated the factor (−2iα) mentioned before (6.2.3). A fac-
tor (−)n/2 has been canceled by another factor (−)n/2 arising from the
formula

∫

dψ1
bg . . . dψ

n
bg ψ

a1
bg . . . ψ

an
bg = (−)n/2εa1··· an . (6.2.49)

Thus we obtain the familiar result that the divergence of the axial-
vector current is proportional to εF..F , but the great advantage of this
expression is that it yields the result for all n in a simple compact for-
mula. The anomaly is proportional to the totally symmetrized trace of
the generators of the gauge group in the representation of the spin 1/2
fields, a d-symbol, and if for a particular group the d-symbol vanishes,
there is no corresponding anomaly. Again the anomaly is imaginary. For
example, in 2 dimensions, there is only a U(1) anomaly because trTα = 0
for the representations of simple Lie algebras, and the factor Tα = i of
the U(1) group cancels the factor (−i)n/2, leaving only the i in −2iα.

On the other hand, when the symmetrized trace over a product of gen-
erators in a particular representation of the gauge group is nonvanishing,
there is an abelian chiral Yang-Mills anomaly in that representation . For
certain groups and representations the trace over an odd number of gen-
erators vanishes (for example for real representation of SO(N)) and in
these cases there are only anomalies possible in 4k dimensions.

We obtained the Hamiltonian H in (6.2.12) from the regulatorR = /D /D
of the QFT by replacing the operators of the QFT by corresponding

8 As a check note that for n = 2 one finds

dψ1
bgdψ

2
bg = d((χ+ η̄)/

√
2)d((−i)(χ− η̄)/

√
2) = 2id(χ+ η̄)d(χ− η̄) .

Furthermore d(χ+ η̄)d(χ− η̄) = 1
2
dη̄dχ (and not 2dη̄dχ).
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operators in the QM model. When we followed these steps for the case
that Di = ∂i + 1

4ωi
mnγmγn we found the N=1 susy model. This suggest

that also for Di = ∂i+gAαi Tα there is a corresponding susy model. There
is indeed such a model and this model is discussed in appendix E. The
interaction term in (6.2.35) with the Yang–Mills curvature is needed to
supersymmetrize the interaction with ẋA. It is interesting to note that
once again an ordinary non-supersymmetric quantum gauge field theory
has produced a supersymmetric QM model that yields its anomalies.

6.3 Lorentz anomalies for chiral spin 1/2 fields coupled to
gravity in 4k + 2 dimensions

Another important anomaly concerns the violation of the conservation
of the stress tensor at the quantum level. Actually, there are two local
symmetries which can be violated at the quantum level: Einstein (gen-
eral coordinate) invariance and local Lorentz symmetry. The anomalies
in Einstein and local Lorentz symmetry can be moved from one to the
other, just like anomalies in the vector or axial-vector gauge invariance
[2]. In principle, one should consider at the quantum level the Noether
current for the rigid BRST symmetry which gets contributions from all
local symmetries in the classical action: Einstein symmetry, local Lorentz
symmetry (and local supersymmetry if spin 3/2 fields are present). We
consider, however, external gravitational fields, and then the quantum
actions still have classical Einstein and local Lorentz symmetries. Even
when we consider spin 3/2 fields and add a gauge fixing term for the
local supersymmetry (which is needed to be able to construct propaga-
tors for the spin 3/2 fields), we still preserve Einstein and local Lorentz
gauge symmetry in the quantum action if the gauge fixing term for local
supersymmetry preserves these spacetime symmetries.

The gravitational anomalies we shall obtain are covariant anomalies:
they depend only on Riemann curvatures and do not contain terms with
bare ωiab. We achieve this by using regulators which are both Einstein
and locally Lorentz invariant, and which are vector-like (treat left-handed
and right-handed spinors the same way), but in the Jacobian an extra
factor γ5 appears to take into account that we compute the anomalies
for chiral complex Dirac fermions. (Chiral fermions satisfy λ̃ = 1

2(1 +

γ5)λ̃, but the term with 1
2 λ̃ does not contribute, leaving only the term

with 1
2γ5λ̃). As a result, these anomalies will not satisfy the consistency

conditions which are present if the anomaly is the response of the effective
action under a gauge transformation. One could construct a consistent
regulator to be sure that the anomalies satisfy the consistency conditions.
However, proceeding this way is extremely tedious, because the regulator
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is not manifestly Lorentz invariant. It is much simpler to use instead
regulators which are also Lorentz invariant, since then the anomaly will
be also Lorentz covariant. This can be done, but these regulators are not
“consistent” and the anomaly will not satisfy the consistency conditions.
This is not a problem because there is a well-defined procedure to obtain
the consistent anomaly from the covariant one. As to the Jacobian, we
shall consider a particular combination of general coordinate and local
Lorentz transformations which leads to covariant transformation laws,
and then we shall prove that if one uses also our covariant regulator, one
obtains in this way (twice) the local Lorentz anomaly.

We shall now first define the covariant transformation law. Then we
shall determine the regulator by requiring that a certain identity involving
the Jacobian and the regulator holds. These are issues which are not
explicitly discussed in [1] and which have confused us for a very long
time, but through the work of Endo [132, 109] we finally clarified these
issues.

We begin with the concept of a covariant Einstein transformation, de-
noted by δcov. This is a combination of an ordinary Einstein ( = gen-
eral coordinate) transformation with the usual parameter ξµ and a local
Lorentz transformation with composite parameter λmn = ξµωµmn

δcov(ξ) = δE(ξ) + δlL(ξµωµmn) (6.3.1)

where the ordinary Einstein and local Lorentz transformation on the viel-
bein are given as usual by

δE(ξ)eµ
m = ξν∂νeµ

m + (∂µξ
ν)eν

m

δlL(λmn)eµ
m = λmneµ

n . (6.3.2)

The covariant Einstein transformation on the vielbein is then

δcov(ξ)eµ
m = ξν∂νeµ

m + (∂µξ
ν)eν

m + ξνων
m
neµ

n

= ξνDν(ω)eµ
m + (∂µξ

ν)eν
m

= ξν(Dν(ω)eµ
m −Dµ(ω)eν

m) + ξνDµ(ω)eν
m + (∂µξ

ν)eν
m

= Dµ(ω)(ξνeν
m) = Dµ(ω)ξm . (6.3.3)

We used the vielbein postulate Dν(ω)eµ
m−Dµ(ω)eν

m = 0. The notation
Dµ(ω) indicates that this derivative contains spin connections but no
Christoffel symbols, and ξm = ξνeν

m.
Another symmetry which plays a role in the computation of the anoma-

lies is a symmetrized version of δcov. This symmetrized covariant Einstein
transformation of the vielbein field is defined by

δsym(ξ)eµ
m =

1

2

(

Dµ(ω)ξm +Dm(Γ)ξµ
)

. (6.3.4)
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It is a combination of a covariant Einstein transformation and a lo-
cal Lorentz transformation with parameter λmn = 1

2(Dmξn − Dnξm) ≡
D[mξn]. Namely,

δsym(ξ)eµ
m = Dµξ

m − 1

2
(Dµξ

m −Dmξµ)

= δcov(ξ)eµ
m +

1

2
(Dmξne

n
µ − enµDnξ

m)

= δcov(ξ)eµ
m + δlL(D[mξn])eµ

m . (6.3.5)

Its physical meaning is clear: if one begins with symmetric vielbein fields,
then the particular combination of Einstein and local Lorentz transfor-
mations which constitutes δsym preserves the symmetry of the vielbein
fields.

The anomaly due to δcov is the response of the effective action Γ under
a covariant Einstein transformation. Using the chain rule we find

Ancov(ξ) = δcov(ξ)Γ[eµ
m] =

∫

dx (δcov(ξ)eµ
m(x))

δΓ

δeµm(x))

=

∫

dx eDµξ
m Tm

µ = −
∫

dx e ξm(DµTm
µ) (6.3.6)

where we defined the stress tensor Tm
µ by

Tm
µ =

1

e

δΓ

δeµm(x)
. (6.3.7)

For L = −1
2

√
ggµν∂µϕ∂νϕ this definition yields the usual normalization

Tµν = ∂µϕ∂νϕ + ··. Hence the covariant divergence of the stress tensor
DµTm

µ is the covariant Einstein anomaly.
The local Lorentz anomaly is the response of the effective action under

a local Lorentz transformation

AnlL(λmn) = δlL(λmn)Γ[eµ
m] =

∫

dxλmneµ
n(x)

δΓ

δeµm(x)

=

∫

dx e λmneµ
nTm

µ =

∫

dx e λmnT
mn

=

∫

dx e λmnT
mn
A (6.3.8)

where TmnA = 1
2(Tmn − Tnm) indicates the antisymmetric part of Tmn.

Hence the antisymmetric part of the stress tensor of the effective action
is the local Lorentz anomaly.

We can also define an anomaly due to a symmetric Einstein transfor-
mation

Ansym(ξ) = δsym(ξ)Γ[eµ
m] =

∫

dx (δsym(ξ)eµ
m(x))

δΓ

δeµm(x))
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=

∫

dx e
1

2

(

Dµ(ω)ξm +Dm(Γ)ξµ
)

Tm
µ

= −
∫

dx e ξν(DµT
µν) (6.3.9)

where T µνS = 1
2(Tµν + T νµ).

By applying (6.3.5) to the effective action we obtain the following rela-
tion between the anomalies

Ancov(ξ) = Ansym(ξ)−AnlL(D[mξn]) . (6.3.10)

We can restate the results we have obtained for anomalies as two theo-
rems.
Theorem I: the stress tensor is covariantly conserved if and only if the
effective action is invariant under a covariant Einstein transformation (see
(6.3.6).
Theorem II: the stress tensor is symmetric if and only if the effective
action is locally Lorentz invariant (see (6.3.8).
When there are matter fields ϕ on which Γ also depends, so Γ = Γ[emµ , ϕ],
these two theorems remain true “on-shell”, namely when the matter field
equations ∂Γ

∂ϕ = 0 are satisfied. Again, covariant Einstein and local

Lorentz anomalies break these symmetries. The anomaly (nonconser-
vation) of T µν(S) = 1

2(Tµν + T νµ) is sometimes called the “general coordi-

nate anomaly” [108], but note that is really a combination of a covariant
Einstein anomaly (which itself is a combination of an ordinary Einstein
anomaly and a local Lorentz anomaly) and the local Lorentz anomaly
itself.

In the path integral formalism, the transformation of the fields in the
measure yields the Jacobian, which in turn yields the anomaly. So we
now study how spin 1/2 field transforms under these symmetries. For a

spinor half-density λ̃ = g
1
4λ, the covariant translation is given by

δcovλ̃ = ξµ∂µλ̃+
1

2
(∂µξ

µ.)λ̃+
1

4
(ξµωµ

mn)γmnλ̃ . (6.3.11)

The dot in (∂µξ
µ.) indicates that the derivative ∂µ does not act to the

right of the dot. For later purposes we write the expression for δcov in
terms of the following derivative

D̃µ(ω) ≡ g 1
4Dµ(ω)g−

1
4 . (6.3.12)

It is straightforward to verify that

δcovλ̃ =
1

2
(ξµDµ(ω) +Dµ(ω)ξµ)λ̃
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=
1

2
(ξµDµ(ω,Γ) +Dµ(ω,Γ,Γ)ξµ)λ̃

=
1

2
(ξµD̃µ(ω) + D̃µ(ω,Γ)ξµ)λ̃ . (6.3.13)

In the second line the notation Dµ(ω,Γ) indicates that this derivative

contains one Christoffel symbol (for the density character of λ̃), and
Dµ(ω,Γ,Γ) contains two Christoffel symbols (one for the density char-

acter of λ̃ and another for the index µ on ξµ). These Γ terms cancel as
one easily verifies using 1

2∂µ ln g = Γνµν and Dµ(ω,Γ)λ̃ = Dµ(ω)λ̃− 1
2Γνµν λ̃.

In the third line the Γ in D̃µ(ω,Γ) acts on ξµ and the tilde on D̃µ takes

care of the density character of λ̃. This proves that the third line is equal
to the second line.

We shall use covariant Einstein transformations to compute anomalies
for the following reason. The first line in (6.3.13) contains the same
operator Dµ(ω) in the first term and in the second term. The Jacobian
is thus Weyl-ordered, and it may be replaced by a function in the path
integral formalism according to Berezin’s theorem. However, we use the
third line in (6.3.13) to derive a property of the regulator we are going to
use.

Consider the regulator

R = /̃D /̃D/M2 . (6.3.14)

The operator /̃D is the field operator for λ̃. This regulator satisfies a
crucial identity

Identity : Tr γ5

(

/ξ /̃D(ω) + /̃D(ω) /ξ
)

eR = 0 . (6.3.15)

We stress that all operators D̃µ(ω) in this expression are the same, and
given by

/̃D = g
1
4γµ(∂µ +

1

4
ωµ

mnγmn)g
− 1

4 . (6.3.16)

The proof of (6.3.15) is trivial: use in the second term γ5 /̃D(ω) = − /̃D(ω)γ5,

then use cyclicity to move /̃D(ω) to the right, and finally pull /̃D(ω) past

eR (which is possible because R only depends on /̃D(ω)). One obtains
then minus the first term.

Next we expand the identity in (6.3.15) as follows

0 = Tr γ5

(

/ξ /̃D(ω) + /̃D(ω) /ξ
)

eR

= Tr γ5γ
µγν

(

ξµD̃ν(ω) + D̃µ(ω,Γ)ξν)
)

eR

= Tr γ5

[(

ξµD̃µ(ω) + D̃µ(ω,Γ)ξµ
)

+ γµν
(

ξµD̃ν(ω)− D̃ν(ω,Γ)ξµ
)]

eR

= Tr γ5

[(

ξµD̃µ(ω) + D̃µ(ω,Γ)ξµ
)

+ γµν
(

Dµ(Γ)ξν .
)]

eR . (6.3.17)
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Again the dot in (Dµ(Γ)ξν .) indicates that (Dµ(Γ)ξν) is a function and

that Dµ(Γ) does not act beyond ξν . The Γ in D̃µ(Γ) acts on the index of

ξν . The first term is just twice the Jacobian for δcovλ̃ (see the third line
in (6.3.13)), while the second term is four times the Jacobian for a local
Lorentz transformation with parameter D[mξn]. Hence we have found
another relation between the gravitational anomalies of spin 1/2 fields

AnEcov(ξ) + 2AnlL(D[mξn]) = 0 . (6.3.18)

However, this relation only holds if one uses /̃D /̃D as regulator for
the spin 1/2 field.

Finally, we return to our original question: what anomaly are we going
to calculate, and what regulator must we use to compute the covariant
anomaly the easiest way? The answer follows from (6.3.18). The regulator

is R = /̃D /̃D/M2, and we compute the covariant Einstein anomaly. For
this particular regulator the covariant Einstein anomaly is equal to −2
times the local Lorentz anomaly.

We shall now construct the quantum mechanical model for this anomaly.

On the basis with inner product 〈λ̃1, λ̃2〉 =
∫ ˜̄λ1λ̃2 d

nx the operator h̄
i

∂
∂xµ

is hermitian. Hence in the corresponding QM model h̄
i

∂
∂xµ is replaced

by pi. The Jacobian J = 1
2(ξµDµ(ω) + Dµ(ω)ξµ) from the first line

of (6.3.13) corresponds then to i
2h̄(ξi(x)πi + πiξ

i(x)). The regulator

R = /̃D /̃D = g−1/4Dµ(ω)
√
ggµνDν(ω)g−1/4 + 1

4R becomes then the Hamil-
tonian derived before.

An(grav) ≡ Ancov = −2 Tr
1

2
(Dµξ

µ + ξµDµ)

(
1 + γ5

2

)

e−
β
h̄
R̃

= −2i

h̄
Tr

1

2
(πiξ

i + ξiπi)

(
1 + γ5

2

)

e−
β
h̄
H

πi = pi −
ih̄

2
ωiabψ

a
1ψ

b
1

H =
1

2
g−1/4πi

√
ggijπjg

−1/4 − h̄2

8
R . (6.3.19)

The factor −2 in front takes into account that λ̃ and ˜̄λ are independent
fields in Euclidean space. The operator R̃ should act in the space of chiral
spinors, and in the space of nonchiral spinors one needs the projection
operator 1

2(1 + γ5) to project on the chiral subspace. The term with

− h̄2

8 R is due to expanding − /D /D/2. Note that the operator /̃D does not
map the space of chiral spinors into itself, rather it maps chiral spinor
into antichiral spinors and vice-versa. However R maps chiral spinors
into chiral spinors and antichiral spinors into antichiral spinors. Note
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that πiξ
i + ξiπi is already Weyl ordered. Thus, in the path integral we

will obtain simply the function πiξ
i+ξiπi = 2πiξ

i. This is one reason why
we chose λ̃ as basic field variable. Another reason is that the Jacobian for
Einstein transformations becomes a total derivative on a basis with λ̃, see
chapter 5. Only the term with γ5 will contribute (for nonchiral spinors
there is no gravitational anomaly). So we must evaluate

An (grav) = − i

2h̄
Tr γ5(πiξ

i + ξiπi)e
−β
h̄
H . (6.3.20)

We would like to bring the operator πiξ
i + ξiπi into the exponent, as

a term which is added to H. At the end we then expand in terms of
ξi and take the term linear in ξi. To achieve this we decompose the
operator −i

2h̄ (πiξ
i+ξiπi) into N times O = −iε

2h̄β (πiξ
i+ξiπi) where Nε = β,

and making use of the cyclicity of the trace, and the fact that γ5 and H
commute, we write the trace as

Tr γ5

(

Oe−Nε
h̄
H + e−

ε
h̄
HOe−(N−1) ε

h̄
H

+ . . .+ e−
(N−1)ε

h̄
HOe− ε

h̄
H
)

; ε =
β

N
. (6.3.21)

Instead of O we write expO and obtain then a path integral with modified
Hamiltonian H + i

2β (πiξ
i + ξiπi). (Strictly speaking one should use the

Baker-Campbell-Hausdorff theorem to combine e−
ε
h̄
HeO, but the terms

involving commutators are of higher order in ε or ξ and can be neglected).
Inserting complete sets of x, p eigenstates and coherent states for the
fermions ψa1 , ψ

a
2 (with a free set ψ2 added as explained in section 6.1), one

obtains the phase space path integral.
The next step is to integrate out the momenta from

− ε

2h̄
gij(x̄k)πk,iπk,j +

i

h̄
pk,i(x

i
k − xik−1)−

iε

βh̄
πk,iξ

i(x̄k) (6.3.22)

where x̄k = (xk + xk−1)/2. This yields, as before, the interaction term

in the covariant derivative in − 1
2

∫ 0
−1 ψ

a
1
D
Dτψ

a
1dτ , while the gravitational

Jacobian ξiπi is replaced by 1
βh̄

∫ 0
−1 ξ

igij(x)ẋ
j dτ . Similarly to (6.1.24) we

arrive at

An(grav) =
(−i)n/2

(2πβh̄)n/2

∫ n∏

i=1

dxi0

√

g(x0)
n∏

a=1

dψa1,bg

〈

exp

(

− 1

βh̄

1

2

∫ 0

−1
(gij(x0 + q)− gij(x0))(q̇

iq̇j + bicj + aiaj)dτ

)

exp

(

−
∫ 0

−1

1

2
q̇iωiab(x0 + q)(ψa1,bg + ψaqu)(ψ

b
1,bg + ψbqu)dτ

)
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exp

(

− βh̄

8

∫ 0

−1
(ΓΓ +

1

2
ωω)dτ

)

exp

(
1

βh̄

∫ 0

−1
q̇iξj(x0 + q)gij(x0 + q)dτ

)〉

. (6.3.23)

The last exponent does not contain a term linear in q since
∫
q̇dτ = 0.

Expanding ξj and gij to first order in q, the last term can be written

as 1
βh̄

∫ 0
−1 q̇

iqkDkξi(x0)dτ , where
∫ 0
−1 q̇

iqkdτ is antisymmetric in i and k.

Rescaling the ψa1 as before, the factors 1
h̄β in the measure cancel, while the

vertex with q̇ωψ1ψ1 acquires a factor 1
h̄β . If we also choose a local Lorentz

frame in which ωiab(x0) = 0, there is only the vertex with qiq̇jRijabψ
a
1ψ

b
1

which we encountered before, and a new vertex of the form (Diξj)q
iq̇j .

They combine into the vertex

−1

h̄
S(int) = − 1

βh̄

[
1

4
Rijab(x0)ψ

a
1ψ

b
1 −Diξj

] ∫ 0

−1
qiq̇jdτ . (6.3.24)

Hence, the gravitational anomaly is obtained from the abelian chiral
anomaly in (6.1.33) by adding −D[iξj] to 1

4Rijabψ
a
1ψ

b
1, where D[iξj] =

1
2(Diξj −Djξi).

We conclude that the gravitational anomaly of a complex chiral spinor
in n dimensions is given by

An(grav, spin 1/2) =

= i

∫

dxi0

√

g(x0)dψ
a
1,bg exp

1

2
tr ln

(

−iR̃/8π
sinh(−iR̃/8π)

) ∣
∣
∣
∣
∣
term linear in ξ

R̃ ≡ Rijabψa1ψb1 − 4Diξj . (6.3.25)

This anomaly is (−2) times the local Lorentz anomaly as we showed in
(6.3.18). We absorbed the factors (−i)n/2 into the exponent because then
−iR̃ is hermitian. One factor i is left in front because one must expand
the exponent to first order in ξ, hence, once again, the anomaly is purely
imaginary. Expanding the term in the exponent, and retaining the terms
linear in ξ, one is now left with an odd number of R terms. Hence there
are only gravitational anomalies in n = 4k + 2 dimensions (there
were only gravitational chiral anomalies in n = 4k dimensions). So, when
one discusses gravitational anomalies for chiral spinors in string models
in 10 dimensions, one means local Lorentz anomalies (anomalies in the
conservation of the stress tensor if it has been made symmetric by a
suitable Lorentz transformation) but not gravitational contributions to
the rigid abelian chiral anomaly.
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6.4 Mixed Lorentz and non-abelian gauge anomalies for chiral
spin 1/2 fields coupled to gravity and Yang-Mills fields in

2k dimensions

We consider a complex chiral (Weyl) spin 1/2 field in n = 2k dimen-
sions, coupled to both external gravitational fields and to external Yang-
Mills fields with gauge group G with antihermitian generators Tα. Mixed
anomalies can occur, namely anomalies in the Einstein-Lorentz symmetry
and in the Yang-Mills symmetry of one loop graphs coupled both to gravi-
tons and to gauge bosons. We determine them in this section. We shall

again switch to nonchiral complex Dirac fermions on the basis λ̃ = g
1
4λ,

and use a projection operator 1
2(1 + γ5) in the Jacobian. As before only

the term with 1
2γ

5 contributes.
The first time anomalies can appear is in (k + 1)-polygon graphs; for

example in triangle graphs in 4 dimensions. There can then be graphs
with (k+1) external gravitons, or with k gravitons and one external gauge
field, or with (k−1) gravitons and two gauge fields, up to (k+1) external
gauge fields. Given a graph with r external gauge fields, the trace over
the generators Tα of the gauge fields yields a factor

TrS(Tα1Tα2 . . . Tαr) (6.4.1)

where the subscript S indicates that one should totally symmetrize with
respect to the indices α1, α2 . . . αr. If and only if this trace does not vanish
there can be an anomaly in this graph. However, even if the symmetrized
trace is nonvanishing, there need not be an anomaly. For example, for
r = 0, we already saw that purely gravitational anomalies can only occur
in n = 4k+2 dimensions. Graphs with only external gauge fields (the case
r = k+1) are anomalous whenever the symmetrized trace with r = n/2+1
matrices is nonvanishing. In 4 dimensions this occurs whenever there is
a cubic Casimir operator (the dαβγ symbol) in the gauge group, and in
n dimensions whenever there is a rank (k + 1) Casimir operator. The
general case is most easily explained if one has the explicit result in hand,
so we first derive the general formulas for mixed gravitational and gauge
anomalies.

The Dirac operator in the n-dimensional field theory is given by

/D = eµmγ
mDµ , Dµ = ∂µ +

1

4
ωµmn(e)γ

mγn + gAαµTα . (6.4.2)

The corresponding nonlinear sigma model is a combination of the N = 1
nonlinear sigma model of section 6.1 and appendix D, and the linear sigma
model with extra ghosts of appendix E. It reads in Minkowski time

LM =
1

2
gij(x)ẋ

iẋj +
i

2
ψa

(

ψ̇a + ẋkωk
a
bψ

b
)
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+ ic∗A[ċA + ẋkAαk (x)(Tα)ABc
B]

+
1

2
ψiψjFij

αc∗A(Tα)ABc
B . (6.4.3)

The sum of the first three terms and the sum of the last three terms are
separately supersymmetric. In Euclidean space we obtain

LE =
1

2
gij(x)ẋ

iẋj +
1

2
ψa

(

ψ̇a + ẋkωk
a
bψ

b
)

+ c∗A[ċA + ẋkAαk (x)(Tα)ABc
B]

− 1

2
ψiψjFij

αc∗A(Tα)ABc
B . (6.4.4)

The regulator for the n-dimensional spinor λ̃ = g1/4λ of the quantum
field theory is given by

R = −g1/4 /D /Dg−1/4

= −g−1/4Dµg
1/2gµνDνg

−1/4 − 1

4
R− 1

2
γµγνFαµνTα (6.4.5)

where Dµ and Dν contain spin and gauge connections but no Christoffel
symbol. We derived this regulator in section 6.1, see (6.1.7).

The Jacobian for Einstein–Lorentz transformations and for separate
Yang–Mills transformations of λ̃ and its conjugate field is given by com-
bining (6.3.13) and a gauge transformation with parameter η

J =
(1

2
(ξµDµ +Dµξ

µ)− ηαTα
) 1 + γ5

2
. (6.4.6)

where we repeat that the derivative Dµ contains a spin connection and a
gauge connection. The mixed anomalies in the QFT are then

An(mixed) = (−2) lim
β→0

Tr Je−
β
h̄
R . (6.4.7)

In the corresponding QM approach the anomalies are given by

An(mixed) = Tr
[(

γ5
−i
2h̄

(πiξ
i + ξiπi) + γ5η

αc∗Tαc
)

e−
β
h̄
H
]

(6.4.8)

where πi was defined in (6.3.19).
We exponentiate the Jacobian as in section 6.3. After integrating out

the momenta, we find then in the action the nonlinear sigma model of
appendix E, together with the term 1

βh̄

∫ 0
−1 q̇

iξj(x0 +q)gij(x0 +q)dτ which
we already found in section 6.3 and the term

∫ 0

−1
ηα(x0 + q)(η̄gh + c̄gh)Tα(χgh + cgh)dτ (6.4.9)
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which is new. Inspection of (6.2.39) shows then that only the combination

1

2
F̃ =

(1

2
ψa1,bgψ

b
1,bggF

α
ab + ηα

)

(η̄gh + c̄gh)Tα(χgh + cgh) (6.4.10)

appears. From (6.3.24) we also find that only the combination

R̃ij = Rijabψ
a
1,bgψ

b
1,bg − 2(Diξj −Djξi) (6.4.11)

occurs. The mixed anomaly is then given by the same formulas as derived
in sections 6.2 and 6.3 but with F̃ and R̃ instead of F and R, where now

1

2
F̃ =

1

2
ψa1,bgψ

b
1,bggF

α
abTα + ηαTα (6.4.12)

according to (6.2.48) and R̃ is given in (6.4.11)

An(mixed, spin 1/2) =
(−i)n/2
(2π)n/2

∫

dxi0

√

g(x0)dψ
a
1,bg

(

Tr e
1
2
F̃
)

exp
1

2
tr ln

(

R̃/4

sinh R̃/4

)

. (6.4.13)

The trace tr is over matrices R̃ij but the trace Tr is in the space of the
representation of the fermion (the space with matrices (Tα)M

N ). The
anomalies are obtained by expanding both factors and extracting the
terms linear in ξm or ηα. A given anomaly depends in general both on F
and R.

At this point we can make a consistency check between the abelian
chiral anomaly of section 6.2 and the gauge anomaly of this section. Con-
sider a local chiral U(1) gauge transformation (for example the U(1) of
the Standard Model). We can view it as an abelian chiral transformation

(with Tα = −i) and evaluate Tr e
1
2
F . We can also treat it as a gauge

anomaly in which case we introduce ghosts to construct c∗Tαc with Tα
a constant, and then must evaluate Tr e

1
2
F̃ by taking the term linear in

η. The answer should be the same9, and it is the same because Tr (F/2)n

n!

equals the term linear in η in Tr (F̃ /2)n+1

(n+1)! .

Consider now a one-loop graph with a complex chiral spin 1/2 field
in the loop and with p external gravitons and q external gauge fields.
The integration over ψai,bg requires p + q = 1

2n + 1, so the first time

anomalies are possible in n dimensions is in polygon graphs with 1
2n+ 1

9 The abelian chiral anomaly we computed in section 6.2 referred to a nonchiral fermion
with Jacobian −2iαγ5. In this section we have used a chiral fermion by inserting the
projection operator 1

2
(1 + γ5) in the trace. Hence for comparison one should take 1

2

times the abelian chiral anomaly of a nonchiral fermion.
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sides. The gauge variation of a graviton yields a factor D[mξn], while the
gauge variation of a Yang–Mills field yields a factor ηαTα in (6.4.13). Since
the second factor in (6.4.13) is even in R̃, there are only anomalies
(both gravitational or gauge anomalies) if there are an even
number of external gravitons (p even).

In 10 dimensions, the first time anomalies appear is in hexagon graphs.
There is a purely gravitational anomaly with 6 external gravitons, because
10 is in the set 4k + 2. There is a mixed anomaly with 4 external gauge
fields and 2 gravitons if the gauge group is such that TrF 4 is nonvanishing
in the representation of the fermions. There is always a mixed anomaly
with 2 external gauge fields and 4 gravitons, because every gauge group
has a quadratic Casimir operator, but a purely gauge anomaly only exists
if TrF 6 is nonvanishing.

In 4 dimensions the first time anomalies appear is in triangle graphs.
There is no purely gravitational anomaly, only a mixed anomaly if G =
U(1) (the abelian chiral gravitational anomaly of section 6.1), and only
a pure gauge anomaly if G has a nonvanishing dαβγ symbol in the repre-
sentation of the fermions.

6.5 The abelian chiral anomaly for spin 3/2 fields coupled to
gravity in 4k dimensions.

In this section we extend the calculation of the gravitational corrections
to the abelian chiral anomaly (“the γ5 anomaly”) from the case of the
spin 1/2 field to the case of spin 3/2. This introduces supergravity, be-
cause the only consistent interactions for spin 3/2 with other fields are
the interactions of supergravity models. Earlier models, with spin 3/2
only coupled to spin 1, turned out to be inconsistent or trivial, while the
couplings of spin 3/2 fields to spin 2 are consistent if they are given by
N = 1 supergravity. One can also couple spin 3/2 fields to spin 1 and spin
0 fields, but only if at the same time one couples the spin 3/2 to gravity
and these interactions are given by a supergravity model with N > 1 (N
is the number of real spin 3/2 fields). In this section we consider only
loops with spin 3/2 fields in the loop and external gravity fields. The spin
2 and 3/2 interactions may be part of a more complicated supergravity
model, but that does not make a difference for the computation of the
one-loop anomalies. Only the minimal gravitational couplings of gravity
to spin 3/2 contribute, so torsion due to gravitinos may be ignored. We
assume that the reader has no knowledge of supergravity, and start from
the beginning.

In 3 + 1 dimensional Minkowski spacetime, the real spin 3/2 field
ψµ

α(with µ = 0, ., 3 the vector index and α = 1, .., 4 the correspond-
ing 4-component spinor index) is the gauge field for local supersymmetry
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(=supergravity). The classical action for the spin 3/2 field in 3 + 1 di-
mensional Minkowski spacetime coupled to external gravitational fields
reads

L3/2 = −1

2
eψ̄µγ

µρσDρψσ (6.5.1)

e = det eµ
m ; γµ = em

µγm

Dρψσ = ∂ρψσ +
1

4
ωρmn(e)γ

mγnψσ

ψ̄ = ψTC ; CγµC−1 = −(γµ)T

where γµρσ equals the totally antisymmetrized product of γµ, γρ and γσ

(so γµρσ = 1
6(γµγργσ+5 other terms)), and γm are constant 4×4 matrices.

The form of the action for the spin 3/2 gauge field is fixed by requiring
invariance of the free spin 3/2 action in flat spacetime under δψµ = ∂µε;
in fact, it already follows from requiring that the residue of the free field
propagator be without ghosts [56]. Thus, also for local supersymmetry,
gauge invariance follows from unitarity. (When one does not treat gravity
as external, one needs also, of course, the Einstein action, and all the other
paraphernalia of supergravity. In particular, the spin connection ωρmn
contains then torsion terms bilinear in gravitinos. For the calculation
of anomalies with spin 3/2 loops, we can restrict ourselves to external
gravitational fields and use the spin connection ωρmn(e) of appendix A
which only depends on the external vielbein field eµ

m). In principle one
should add a Christoffel connection in the definition ofDρψσ but it cancels
in L3/2 because Dρψσ appears in the action only as antisymmetric in ρ
and σ.

This classical spin 3/2 action is gauge invariant by itself provided the
background fields are Ricci-flat (Einstein spaces with Rµν = 0): it is
locally supersymmetric. Under δψσ = Dσε, δeµ

m = 0 one obtains, using
that the commutator of two covariant derivatives is a curvature,

δL3/2 = −1

2
eψ̄µγ

µρσ 1

2
(
1

4
Rρσmnγ

mγnε)

−1

2
e(Dµε̄)γ

µρσDρψσ . (6.5.2)

After partial integration (using that Dµ commutes with e and γµ because
we have omitted the torsion terms in the spin connection) one finds

δL3/2 = − 1

16
eψ̄µγ

µρσγmγnεRρσmn +
1

16
eε̄γµρσRµρmnγ

mγnψσ

= − 1

16
eRρσmnψ̄µ{γµρσγmγn + γmγnγµρσ}ε . (6.5.3)
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(We used ε̄γµρσγmγnψσ = −ψ̄σγnγmγσρµε; this relation follows from
ε̄ = εTC and the property CγmT = −γmC). In the anticommutator
{γµρσ, γmn} there are only terms with a totally antisymmetric product of
five Dirac matrices or terms with one Dirac matrix. The terms with a
totally antisymmetric product of three Dirac matrices cancel in the anti-
commutator. (They survive in the commutator). Those with five Dirac
matrices do not contribute in 3+1 dimensions because a tensor with 5
indices which is totally antisymmetric vanishes in less then 5 dimensions,
and also because of the cyclic identity of the Riemann tensor. In higher
dimensions, these terms still vanish due to the cyclic identity of the Rie-
mann tensor. The variations with one Dirac matrix can only contract
with a Ricci tensor Rµν . In fact, this could have been anticipated because
there are not enough free indices to contract with a full Riemann tensor.
One finds δL3/2 = 1

2e(Rµν − 1
2gµνR)(ψ̄µγνε). When Rµν = 0, one calls

the gravitational field Ricci flat. Hence: for Ricci flat backgrounds the
gravitino action is gauge invariant (locally supersymmetric).

If one treats the gravitational field dynamically, there is no longer a re-
striction to Ricci-flatness, provided one also transforms the gravitational
field (the vielbein field eµ

m) under local supersymmetry. It transforms as
δeµ

m = ε̄γmψµ, and also this variation is multiplied by the Einstein tensor
Gµν = Rµν− 1

2gµνR; in fact, the sum of all local supersymmetry variations
cancel. From now on we continue with arbitrary gravitational fields; for
spin 3/2 loops coupled to gravity the spacetime symmetries (general coor-
dinate and local Lorentz transformations) of the fields (vielbein eµ

m and
gravitino ψµ) are as usual, and the classical action is also invariant under
local supersymmetry if one transforms eµ

m as we discussed. The previ-
ous derivation with external gravitational fields was given for readers who
are not familiar with supergravity. Readers who want an introduction to
supergravity are referred to [56].

Because there is a local supersymmetry one must add a gauge fixing
term and a ghost action. Without gauge fixing term the kinetic opera-
tor cannot be inverted, and no graphs with spin 3/2 in the loop can be
constructed. With gauge-fixing term the local supersymmetry gets bro-
ken, but we shall choose the local supersymmetry gauge-fixing term such
that the classical spacetime symmetries remain unbroken. As gauge fixing
term the most convenient choice is γµψµ = 0 leading to

L(fix) =
1

4
eψ̄µγ

µ /Dγνψν (6.5.4)

which preserves general coordinate invariance and local Lorentz symme-
try but breaks local supersymmetry. The corresponding Faddeev-Popov
ghost action follows then from applying δψµ = Dµε to γµψµ and contract-
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ing with the antighost of supersymmetry

L(FP ghost) = −eb̄α( /Dc)α (6.5.5)

where bα and cα are real commuting ghosts (the spinor index α will be
dropped below). (One should also vary the vielbein in γµ = eµmγ

m, but
this yields a term (b̄γmψµ)(ψ̄mγ

µc) in the ghost action which does not
contribute at the one-loop level. It is used, however, to fix the chiral
symmetry transformation rules, see below).

To obtain (6.5.4) in the exponent of the path integral, one starts from
the gauge fixing term δ[γ · ψ − F ] with F an independent anticommut-
ing Majorana spinor, and then one inserts unity into the path integral

as follows: I =
∫
[dF ]exp(F̄ /DF )(det /D)−

1
2 . Integration over F yields

(det /D)1/2 which cancels the factor (det /D)−1/2 . The normalization fac-
tor (det /D)−1/2 can be exponentiated to give another ghost, the so-called
Nielsen-Kallosh ghost. It is really a commuting complex ghost (a pair
B,C of real ghosts10) and an anticommuting real ghost A, as we now
explain, just like the a, b, c ghosts of the QM model. Because the Dirac
action for one real commuting ghost vanishes, one writes (det /D)−1/2 as
(det /D)1/2/(det /D) and then exponentiation of (det /D)1/2 gives a real an-
ticommuting A ghost while det /D−1 yields commuting B,C ghosts. The
total Nielsen-Kallosh ghost action reads

L(NK ghosts) = −e
2
Ā /DA− e

2
B̄ /DC . (6.5.6)

The classical action together with its gauge fixing term can be written
in a very simple form

L(3/2) =
e

4
ψ̄µγ

σ /Dγµψσ . (6.5.7)

This result follows from the identity − 1
2γ

µρσ+ 1
4γ

µγργσ = 1
4γ

σγργµ. This
action is clearly invariant under rigid chiral transformations

δψµ = iαγ5ψµ, δψ̄µ = iαψ̄µγ5 (6.5.8)

with real constant α, because the field operator contains an odd number
of Dirac matrices. Each ghost action in (6.5.5) and (6.5.6) is by itself chi-
rally invariant, for arbitrary chiral weights. One may fix these weights by
considering the full quantum supergravity action (with Einstein action
and various couplings between ghosts and gravitinos). Requiring that
the whole ghost sector (b, c, A,B,C) be also invariant under γ5 transfor-
mations fixes then the relative chiral weights of the various ghost fields,

10 A pair of real ghosts can, of course, be replaced with one complex (Dirac) ghost.
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and the net result is that, as far as γ5 transformations are concerned,
the ghost sector acts as if it contained only one anticommut-
ing complex chiral spin 1/2 field with opposite chiral weight as
the gravitino11. So the final result for the anomaly will be the result
of Tr γ5 for ψµ minus the result of Tr γ5 for one chiral Dirac fermion (a
chiral Dirac fermion is equivalent to a nonchiral real (Majorana) fermion;
one can rewrite one in terms of the other in four dimensions).

We now consider the gravitational contribution to the abelian chiral (γ5)
anomaly. Since the gravitino in N = 1 supergravity has no Yang-Mills
index, it can only couple to gravity. Hence we can only consider the chiral
anomaly, due to a spin 3/2 loop with (infinitely many) external gravitons
at the vertices, and the abelian chiral current as one of its vertices. In the
path integral approach, the anomaly in the conservation of this current
is, up to an overall constant −2iα,

An = Tr γ5 e
βR . (6.5.9)

In addition there is a trace for the ghost which we add later. We must
now discuss the regulator for the spin 3/2 field.

A mass term for the gravitino which preserves both Einstein invariance
and local Lorentz symmetry is given by L(m) = − e

2mψ̄mψ
m where ψm =

em
µψµ has flat indices. It follows that ψ̃m = e1/2ψm is the field whose

mass term is proportional to the unit matrix. One could then use its
field operator to yield the regulator. Namely, if Rm

n is the full kinetic
operator for ψ̃m, then its square is the regulator which preserves general
coordinate and local Lorentz symmetry

R = Rm
pRp

n

Rm
n = g1/4γnγργmDρg

−1/4

Dµ = δnmδ
β
α∂µ +

1

4
ωµpq(γ

pγq)αβδ
n
m + ωµm

nδβα . (6.5.10)

11 The details are as follows. Variation of the vielbein in the gauge fixing term γµψµ, and
contracting the result with the antighost to obtain the ghost action as usual, produces
a term (b̄γmψµ)(ψ̄mγ

µc) in the ghost action. Chiral invariance requires then that the
Faddeev–Popov ghosts b and c have the same chiral weight as the gravitino. The

operator ( /D)−
1

2 is exponentiated by means of Nielsen–Kallosh ghosts; since it acts in
the space which contains γ ·ψ, the spinors in this space have opposite chirality of the
gravitino. We find then for the total effective chiral weight in ghost space (defining
the chiral weight as the weight one chiral complex anticommuting spinor should have
in order to reproduce the same anomaly): −1(b) − 1(c) − 1(A) + 1(B) + 1(C) = −1.
Physically the role of the ghosts is as follows: the Faddeev–Popov ghosts b and
c remove as usual the unphysical longitudinal and time components of the vector-
spinor field ψαµ . This corresponds to the gauge symmetry δψαµ = ∂µε

α+.... On-shell a
physical massless spin 3/2 particle should have two polarizations with helicity ±3/2.
This is indeed achieved because on-shell γµψµ = 0. The Nielsen–Kallosh ghosts
remove the γ · ψ part from the gravitino.
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Actually the mass term which does not lead to tachyons is not ψ̄mψ
m, but

rather ψ̄mγ
mnψn. The corresponding regulator would then be the square

of (T−1)m
sRs

n where T−1 is the inverse of γmn. These operators are all
difficult to work with.

A much simpler regulator which yields the same chiral anomalies is the
Dirac operator (see Alvarez-Gaumé and Witten [1])

R3/2(D) ∼ g1/4 /D /Dg−1/4

=
(

g−1/4Dµ
√
ggµνDνg

−1/4
)α

β δm
n

+
1

2

(1

4
γµγνRµνpq(ω)γpγq

)α

β δm
n

+
1

2
(γµγν)αβRµνm

n(ω) . (6.5.11)

The term with four Dirac matrices can be simplified to 1
4R.12 It acts still

in the combined vector-spinor space, and Dµ contains again a spinor and
a vector connection, as in (6.5.10). Hence, the anomaly becomes (up to
a factor −2iα)

An = Tr γ5 e
R3/2(D) − tr γ5 e

R1/2(D) (6.5.12)

where the first trace Tr is over vector and spinor indices of the gravitino,
while the second trace tr is only over spinor indices of the ghost. We have
added the subscripts 3/2 and 1/2 to R(D) to stress that R3/2(D) has
an extra term ωµ

mn with respect to R1/2(D). The trace with R3/2(D)
has a minus sign because it is due to an anticommuting ghost field, as we
explained above.

Alvarez-Gaumé and Witten give a general proof that one may use /D /D
for the γ5 anomaly of spin 3/2 fields. We present here a direct proof, see
also [109]. We do this for general dimensions. The spin 3/2 action in n
dimensions reads

L0 = −e
2
ψ̄µγ

[µγνγρ] Dνψρ . (6.5.13)

Again, this results follows from the fact that in flat space this is the only
action that is invariant under δψµ = ∂µε. After adding a gauge fixing
term

Lfix =
n− 2

8
eψ̄µγ

µγνγρDνψρ (6.5.14)

12 Write γνγpγq as γνpq+eνpγq+ηpqγν−eνqγp. Then γνpq does not contribute due to the
cyclic identity. There remain only Ricci tensors Rµν , and since these are symmetric
(recall that we dropped the torsion terms), the remaining two Dirac matrices γµγν

can be replaced by gµν .
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and choosing a new basis for the spin 3/2 fields

χµ = ψµ −
1

2
γµγ · ψ → ψµ = χµ −

1

n− 2
γµγ · χ (6.5.15)

the action becomes a sum of Dirac actions

L0 + Lfix = −1

2
eχ̄µ /Dχµ = −1

2
eχ̄m /Dχm . (6.5.16)

The field χm transforms of course in the same way as ψm under spacetime
transformations and γ5 transformations, and the regulator for the spin 3/2
field χm is thus g1/4 /D /Dg−1/4, for the same reasons as for the spin 1/2
field.13

We are now ready to compute the gravitational contribution to the γ5

anomaly. We do this in n dimensions for one complex nonchiral gravitino.
This is the procedure we have also followed for the spin 1/2 case. (In 3+1
dimensions, a chiral gravitino is complex and can be rewritten as a real
nonchiral gravitino, but in other dimensions this is not always true). We
repeat the steps taken in the case of the γ5 anomalies for spin 1/2. We
continue to write the term with the spin 1/2 Lorentz generator in terms
of ψa1 , but the term with the spin 1 generator we treat like the internal
generator of a Yang-Mills group14. Hence, the internal matrix Ai

αTα
with Tα now the Lorentz generators, is represented by c∗aωiabcb (just like
Ai

αTα was represented by Ai
αc∗Tαc). The spin 1/2 term 1

4ωµmnγ
mγn

becomes 1
2ωiabψ

a
1ψ

b
1. Note that although in (6.5.10) the spin connection

terms which act on the flat spinor and flat vector index of the gravitinos
appear on equal footing, we treat them differently in the QM model.
Hence the QM treatment for spin 3/2 combines the gravitational and
Yang-Mills treatment for spin 1/2 .

The ghosts require again a one-particle projection operator, and this
yields upon combining (6.1.24) and (6.2.39)

An =
(−i)n/2
(2π)n/2

∫

dx0

√

g(x0)dψ1,bg

∫

dχdη̄ P ghη̄,χ e
η̄χ

〈

exp
(

− 1

βh̄

∫ 0

−1

1

2
(gij(x0 + q)− gij(x0))(q̇

iq̇j + bicj + aiaj) dτ
)

13 One can write down an Einstein and locally Lorentz invariant mass term for χm,
namely eχ̄mχ

m. This is not the mass term which is without ghosts and tachyons,
but it serves our purposes to construct a regulator [75].

14 The deeper reason these separate treatments of the vector part and the spinor part of
the generators make sense is that the trace of a direct product is the product of the
traces. In group theory one uses this simple fact to compute traces over products of
generators in a given representation R (such as the d

(R)
abc symbols) which are built from

direct products of the fundamental representation F (yielding a relation between d
(R)
abc

and d
(F )
abc ).
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exp
(

− 1

βh̄

1

2

∫ 0

−1
q̇iωiab(x0 + q)ψa1ψ

b
1 dτ

)

exp
(

−
∫ 0

−1
q̇iωi

a
b(x0 + q)c∗acb dτ

)

exp
(1

2

∫ 0

−1
c∗aR

a
bcd(ω(x0 + q))cbψc1ψ

d
1 dτ

)

exp
(

−βh̄
8

∫ 0

−1
(ΓΓ +

1

2
ωω) dτ

)〉

(6.5.17)

where as in (6.1.24) ψ1 stands for ψ1,bg + ψ1,qu, and as in (6.2.39) c (c∗)
stands for χ+cqu (η̄+c∗qu). Recall that we only rescaled the ψa1 but not the

ghosts; this removed the βh̄ from the measure. The term 1
4 h̄γ

µγνRµνm
n in

the regulator − 1
h̄(− h̄2

2 R) becomes a term βh̄
∫ 0
−1

1
2c

∗Rcψ1ψ1 in the action
and becomes h̄β independent after the rescaling of ψa1 , see the one-but-last
line. The term with ΓΓ+ 1

2ωω does not contribute, since it is proportional

to h̄β, and also the terms with q̇iq̇j + bicj + aiaj and q̇iωi
a
bc

∗
ac
b do not

contribute for the same reason as before. The vertex with 1
h̄β q̇

iωiabψ
a
1ψ

b
1

yields the vertex
∫
dτ q̇iqjRijabψ

a
1ψ

b
1 upon expanding ωiab, but the vertex

with
∫
dτ q̇iωiabc

∗acb does not contribute because the propagator for q̇i

brings in a factor β whereas this vertex is β-independent.
In fact, only closed q-loops with Rψ1ψ1 at the vertices, or ghost

trees with Rψ1ψ1 at the vertices contribute. As we have seen, the
latter give a factor tr exp( 1

2R..abψ
a
1,bgψ

b
1,bg), and the former give the factor

with exp 1
2tr ln[R4 / sinh(R4 )]. The final result is

An(γ5, spin 3/2) = (−2iα)
(−i)n2
(2π)

n
2

∫
(

n∏

i=1

dxi0

√

g(x0)

)(
n∏

a=1

dψa1,bg

)

[(

tr e
1
2
R
)

− 1
]

exp
1

2
tr ln

(
R/4

sinh(R/4)

)

R ≡ Rm
n
abψ

a
1,bgψ

b
1,bg (6.5.18)

where the factor −2iα mentioned above (6.5.9) has been reinserted. The
first trace corresponds to the result in (6.2.48) and contains the contribu-
tions due to the vector index m of the gravitino ψm

α; the exponent with
the second trace corresponds to the result in (6.1.32) and takes care of
the contributions due to the spinor index α of the gravitino ψm

α, and the
factor −1 accounts for the contributions of the supersymmetry ghosts.
In the Yang-Mills case the trace could be over any representation of the
gauge group, and we denoted this trace by Tr. Because both traces in
(6.5.18) are over the indices m and n of Rmn, we denote both by the same
symbol tr.
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As an application we compute the γ5 anomaly for spin 3/2 loops in 4
dimensions. The answer is known to be −21 times the same anomaly for a

spin 1/2 loop [110]. Expanding the factor
(

tr e
1
2
R
)

−1 gives a contribution
1
8trR2. The second exponent gives the contribution of a spin 1/2 loop,

which is −1
2tr
(
R
4

)2
1
3! = − 1

192trR2. This second contribution is multiplied

by (trI) − 1 = 3 (after gauge fixing the field ψm represents 4 spin 1/2
spinors, but the ghosts remove one spin 1/2 spinor). Then one finds for
n = 4

An(γ5, spin 3/2 in n = 4) =
2iα

4π2

∫ [1

8
trR2 − 3

1

192
trR2

]

=
2iα

4π2

∫ [ 21

192
trR2

]

= −21An(γ5, spin 1/2 in n = 4) . (6.5.19)

where trR2 is equal to εµνρσRµν
mnRρσmn. This is indeed the correct

result.15

6.6 Lorentz anomalies for chiral spin 3/2 fields coupled to
gravity in 4k + 2 dimensions

We now discuss the anomaly in the combined Einstein and local Lorentz
symmetries when a chiral spin 3/2 field in a loop couples to an external
gravitational field. We take the spin 3/2 field to be complex. In certain
dimensions, chiral spinors can be real (Majorana-Weyl spinors) and for
these cases one must divide the result for a complex chiral gravitino by a
factor 2.

It is preferable to have a covariant expression for the spin 3/2 transfor-
mation rule under spacetime transformations, and a covariant expression
for the corresponding Jacobian, because then the answer for the anomaly
will be a relatively simple expression involving only curvatures. This can
be achieved by taking certain linear combinations of Einstein transforma-
tions and local Lorentz transformations. For spin 1/2 fields, we already
explained this before. The case of spin 3/2 is more complicated. To wet
the appetite of the reader for this problem, we first quote the transfor-
mation rules16 used by Alvarez-Gaumé and Witten [1]

δAWψm =
1

2
(ξµDµ +Dµξ

µ)ψm + [(Dmξ
n)− (Dnξm)]ψn

15 In [1] one finds the result
∏n/2

i=1

xi/2
sinh(xi/2)

instead of exp[ 1
2
tr ln( R/4

sinh(R/4)
)] where R

denotes the matrix Rm
n = Rm

n
abψ

a
1,bgψ

b
1,bg which is made block diagonal with blocks

of the type
(

0 xi
−xi 0

)
along the diagonal. These formulas agree and the factor 1/2 in

the exponent is correct, as one may check. For example,
∑

i
(xi

2
)2 = 1

2
tr(R

4
)2.

16 It took us many years to find a clear rigorous derivation of these rules. We thank R.
Endo whose help was essential.
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Dmξ
n = em

µ(∂µξ
n + ωµ

n
pξ
p) , ξn = eµ

nξµ

Dµψ
a
m = ∂µψ

a
m + ωµm

nψan +
1

4
ωm

pq(γpγq)
a
bψ

b
m . (6.6.1)

The spin 3/2 field ψm, the so-called gravitino, is a Lorentz vector-spinor.
This explains the term ωµm

nψn in the last line. The spin 3/2 trans-
formation rule contains thus both a covariant translation and an extra
covariant local Lorentz transformation acting only on the vector
index of the gravitino. Its meaning is at first sight rather mysterious.

We now proceed to derive this transformation rule. Several steps in
the derivation are identical to the steps taken in the spin 1/2 case, but
there are new aspects due to the spin one index of the gravitino, and in
order not to have to refer back all the time to the spin 1/2 case, we give
a complete derivation of the spin 3/2 case from scratch.

An Einstein transformation of a spin 3/2 gravitino with a flat index,
ψm = em

µψµ, is given by

δE(ξ)ψm = ξµ∂µψm . (6.6.2)

We aim at covariant transformation rules and covariant regulators for rea-
sons explained before. Hence we prefer to consider the following transfor-
mation rule

δcov(ξ)ψm = ξµDµψm = ξµ∂µψm+
1

4
ξµωµrsγ

rγsψm+ξµωµm
nψn . (6.6.3)

This is a linear combination of Einstein transformations ξµ∂µψm and local
Lorentz transformation with parameter ξµωµmn, namely 1

4ξ
µωµrsγ

rγsψm+
ξµωµm

nψn. We called this contribution a covariant Einstein transforma-
tion in section 6.3. So Dµψm is completely covariant and includes the
spin connection for both (vector and spinor) indices of ψm. When we use
path integral techniques to convert the trace TrJeR into a path integral,
the corresponding operator becomes a corresponding function provided it
is Weyl ordered. This is Berezin’s theorem which we discussed in part
I of this book. Thus, rather then δψm = ξµDµψm we would like to use
the transformation rule δψm = 1

2(ξµDµ(ω) +Dµ(ω)ξµ)ψm. Note that the
same operator Dµ(ω) should appear in the term ξµDµ(ω) as in the term
Dµ(ω)ξµ. This is not a covariant expression, of course, because for it to
be covariant would also need a Christoffel symbol Γννµ to take care of the

index of ξµ. However, if we take ψ̃m = g1/4ψm as basic variable, the
transformation rule δψ̃m = 1

2(ξµDµ(ω) + Dµ(ω)ξµ)ψ̃m is covariant.
Let us prove this.

Consider a covariant Einstein transformation, a combination of an Ein-
stein transformation with parameter ξµ and a local Lorentz transforma-

217



tion with composite parameter λmn = ξµωµ
mn. Then the field ψ̃m trans-

forms as follows

δcov(ξ)ψ̃m = ξµ∂µψ̃m +
1

2
(∂µξ

µ)ψ̃m +
1

4
ξµωµrsγ

rγsψ̃m + ξµωµm
nψ̃n .

(6.6.4)
The term 1

2(∂µξ
µ)ψ̃m is needed in the transformation rule of a half-density

according to the rules of tensor calculus in general relativity. We can
rewrite this results as follows

δcov(ξ)ψ̃m =
1

2
(ξµDµ(ω) +Dµ(ω)ξµ)ψ̃m (6.6.5)

where both the derivatives can act on ψ̃m. This is indeed a covariant
transformation law in Weyl ordered form and we used it in the spin 1/2
case, but it does not lead to the easiest way to compute the anomaly for
spin 3/2. The easiest way to derive the anomaly is to use the law used in
[1], and we now proceed to derive it.

The crux to the derivation of the transformation law in (6.6.1) is an
identity satisfied by the regulator R where

R = −1

2
/̃D /̃D , /̃D = g1/4γµDµ(ω)g−1/4 (6.6.6)

and Dµ(ω) is the derivative which also appears in δcovψ̃m. The operator

/̃D is the field operator for ψ̃m in the Dirac action L = ψ̄m
√
g /Dψm =

¯̃
ψm /̃Dψ̃m. One obtains the second form of L by changing variables from
ψm to ψ̃m = g1/4ψm. We can write δcovψ̃m in terms of derivatives D̃µ(ω)
as follows

δcov(ξ)ψ̃m =
1

2
(ξµD̃µ(ω) + D̃µ(ω,Γ)ξµ)ψ̃m (6.6.7)

where the Γ in D̃µ(ω,Γ) acts on the index ξµ as usual. It is easy to
show that this expression is the same as (6.6.5), because the two terms
1
2ξ
µg1/4∂µg

−1/4 cancel the term 1
2Γµν

µξν . We showed this already for the
spin 1/2 case in (6.3.13) We are now ready to derive the identity we need.
It reads

Lemma : Ancov(ξ
µ) = −2AnlL

(1/2)(D[mξn]) . (6.6.8)

In other words, the anomaly An = TrJeR with R given by (6.6.6) and
J the Jacobian for δcov is the same as minus twice the anomaly with the
same R but J due to a local Lorentz transformation which only acts on
the spin 1/2 index of the gravitino.

The proof of this lemma is the same as in the spin 1/2 case, see (6.3.15),
but since there are now also terms acting on the vector index of the
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gravitino, we shall present the complete proof for spin 3/2 case. Consider
the expression

Tr γ5

(

/ξ /̃D
(2ω)

+ /̃D
(2ω)

/ξ
)

e
˜/D

(2ω) ˜/D
(2ω)

(6.6.9)

where we repeat that /̃D
(2ω)

= γµD̃
(2ω)
µ has no Γ-term, but two ω-terms,

one acting on the spin 1/2 index and the other acting on the spin 1 index.

We pull the second /̃D
(2ω)

to the left past the matrix γ5 (this yields a

minus sign), and then, using cyclicity of the trace, and commuting /̃D
(2ω)

past e
˜/D

(2ω) ˜/D
(2ω)

one obtains zero

Tr γ5

(

/ξ /D(2ω) + /D(2ω) /ξ
)

e
˜/D

(2ω) ˜/D
(2ω)

= Tr γ5

(

/ξ /D(2ω) − /ξ /D(2ω)
)

e
˜/D

(2ω) ˜/D
(2ω)

= 0 . (6.6.10)

Next we rewrite (6.6.9). We pull the two Dirac matrices to the left, and
taking symmetric and antisymmetric parts, we obtain

0 =
(

/ξ /̃D
(2ω)

+ /̃D
(2ω)

/ξ
)

= γµγν
(

ξµD̃
(2ω)
ν + D̃(2ω,Γ)

µ ξν
)

=
(

ξµD̃(2ω)
µ + D̃(2ω,Γ)

µ ξµ
)

+ γµν
(

ξµD̃
(2ω)
ν − D̃(2ω,Γ)

ν ξµ
)

. (6.6.11)

The Γ-term in the last D̃
(2ω,Γ)
ν derivative acts on the vector index of ξµ.

Note now that in

ξµD̃
(2ω)
ν − D̃(2ω,Γ)

ν ξµ = −
(

D(Γ)
ν ξµ

)

(6.6.12)

the derivative no longer acts past ξµ. The Γ-term cancels after contracting
with γµν . Thus, inside the regulated trace one has the identity

(

ξµD̃(2ω)
µ + D̃(2ω,Γ)

µ ξµ
)

− γµν(∂νξµ) = 0 . (6.6.13)

The last term can be written with flat indices as follows

γµν(∂νξµ) = γmn(D(ω)
n ξm) (6.6.14)

where D
(ω)
n ξm = en

µ(∂µξm+ωµm
nξn). In the first term we can replace D̃µ

by Dµ and drop the Γ-term in D̃
(2ω,Γ)
ν because these three Γ-term cancel

each other. So finally

(

ξµD(2ω)
µ +D(2ω)

µ ξµ
)

− γmn(D(ω)
n ξm) = 0 . (6.6.15)

219



Recalling the definition of δcov in (6.6.5), we have found

Tr

[

δcov(ξ
µ) + 2δ

(1/2)
lL

(D
(ω)
m ξn −D(ω)

n ξm
2

)]

eR = 0 . (6.6.16)

This concludes the proof of the lemma in (6.6.8).
To calculate the gravitational anomalies, Alvarez-Gaumé and Witten

did not use δcov to obtain the Jacobian, but rather 2δsym, where δsym is
the same combinations of symmetries as in the spin 1/2 case

2δsym(ξ) = 2δcov(ξ) + 2δlL(
Dmξn −Dnξm

2
) . (6.6.17)

For the spin 3/2 field a local Lorentz transformation contains a part which
acts on the spin 1/2 index and also a part which acts on the vector index

2δsymψ̃m = 2δcovψ̃m + 2δ
1/2
lL ψ̃m + 2δ1lLψ̃m . (6.6.18)

Using (6.6.16) this can also be written as

δAW = 2δsym = δcov(ξ
µ) + 2δ

(1)
lL (D[mξn]) (spin 3/2) . (6.6.19)

This is precisely the mysterious transformation law in (6.6.1)!
We now turn to the calculation of the gravitational anomaly for complex

chiral spin 3/2 fields in n dimensions using

δAW ψ̃m =
1

2
(ξµDµ +Dµξ

µ)ψ̃m + [(Dmξ
n)− (Dnξm)]ψ̃n . (6.6.20)

There is, of course, one question left. Are the transformations laws in
the spin 1/2 and spin 3/2 case the same combinations of Einstein and
local Lorentz transformations? Obviously they should be the same if
one wants to study cancellation of anomalies in theories with different
spin contents. The spin 1/2 transformation law we used to compute the
gravitational anomaly was

δcov(ξ)λ̃ =
1

2
(ξµDµ +Dµξ

µ)λ̃ . (6.6.21)

We proved the identity

δcov(ξ)λ̃+ 2δlL(D[mξn])λ̃ = 0 . (6.6.22)

We also encountered another combination of symmetries

δsym(ξ)λ̃ = δcov(ξ)λ̃+ 2δlL(D[mξn])λ̃ . (6.6.23)
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Hence, for spin 1/2, δcovλ̃ is twice δsymλ̃

δcov (̃ξ)λ = 2δsym(ξ)λ̃ . (6.6.24)

For spin 3/2 fields, we have just derived that the AWG law is twice δsym

δAW ψ̃m = 2δsym(ξ)ψ̃m . (6.6.25)

Hence, if one uses δcovλ̃ to compute anomalies in the spin 1/2 case, we
should use δAW ψ̃m to compute the same anomalies in the spin 3/2 case.

The calculation is similar to the calculation for the spin 1/2 case in
section 6.3, except that we treat the last term in (6.6.20) as a Yang–Mills
symmetry, so with extra ghosts according to the methods of section 6.2.
As in (6.4.6) the covariant derivative Dµ contains both a spin connection
acting on the spinor index and a spin connection acting on the vector
index of the gravitino; the whole Dµ becomes the covariant conjugate
momentum πi, see (6.4.8). After integrating out the momenta one obtains
a term q̇iωiabψ

a
1ψ

b
1 which yields q̇iqjRijabψ

a
1ψ

b
1, as in (6.5.17).

The contribution from δcov(ξ) combines with a term Rijklψ
iψj q̇kql in

the action into the combination

(1

4
Rijklψ

iψj −D[kξl]
)

q̇kql . (6.6.26)

We encountered this combination in the spin 1/2 case. The contribution

from 2δ
(1)
lL (D[mξn]) combines with a term ψiψjRijklc

∗kcl into

(1

4
Rijklψ

iψj −D[kξl]
)

c∗kcl . (6.6.27)

So, thanks to the extra spin 1 Lorentz transformation in (6.6.1), the final

answer only depends on the combination
(

1
4Rijklψ

iψj −D[kξl]
)

, both in

the spin 1/2 sector and in the spin 1 sector. This is closely related to the
descent equations from two dimensions higher [111, 2].

We can then directly write down the result for the gravitational anomaly
for a complex chiral gravitino in n dimensions

An(grav, spin 3/2) =
(−i)n2
(2π)

n
2

∫ (

dnxi0

√

g(x0)

)( n∏

a=1

dψa1,bg

)

[(

tr e
1
2
R̃
)

− 1
]

exp
1

2
tr ln

(

R̃/4

sinh(R̃/4)

)

(6.6.28)

where everywhere R̃ stands for Rabcdψ
a
1,bgψ

b
1,bg − 2(Daξb − Dbξa). Thus

the relative normalizations of the two terms in (6.6.20) is just so that the
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Einstein-Lorentz anomaly in 4k+2 dimensions is obtained from the chiral
anomaly (more precisely for the gravitational contribution to the chiral
U(1) anomaly in 4k+4 dimensions) by the uniform shift R→ R− 1

4Dξ.
17

The last factor comes from the spin 1/2 sector, see (6.3.25), and takes
into account the transformation law δψ̃m = 1

2(ξnDn + Dnξ
n)ψ̃m. The

first factor takes into account the vector index of ψ̃m, see (6.2.48), and
gets its contributions from δψ̃m = (Dmξ

n − Dnξm)ψ̃n. The Yang–Mills
curvature F of (6.2.46) is replaced by R. Finally the term −1 is due to
the ghost sector; as we have discussed, we need to subtract one chiral
complex ghost. If one is dealing with real chiral spin 3/2 fields, one needs
to divide the result by 2.

6.7 Lorentz anomalies for selfdual antisymmetric tensor fields
coupled to gravity in 4k + 2 dimensions

In addition to chiral fermions, also selfdual (or antiselfdual) antisymmet-
ric tensor gauge fields in 4k + 2 dimensions can produce gravitational
(Lorentz) anomalies. From string theory one already knows an exam-
ple: a chiral boson in 2 dimensions is a selfdual antisymmetric tensor
(∂µϕ = εµν∂

νϕ implies (∂0 + ∂1)ϕ = 0), and in string theory such a field
has a gravitational anomaly. To discuss the higher dimensional case, we
first need some formalism for antisymmetric tensor (AT) gauge fields.

The field strength and the Lagrangian for an arbitrary antisymmetric
tensor gauge field with p indices (a p-form) in Minkowski space are defined
by

Fµ1...µp+1 = ∂µ1Aµ2...µp+1 ± p cyclic permutations

L = − e

2 · (p+ 1)!
Fµ1...µp+1Fν1...νp+1 g

µ1ν1 ...gµp+1νp+1 (6.7.1)

with e = det emµ . For a scalar and a vector field these definitions yield
the Klein-Gordon and Maxwell actions, respectively. The stress tensor
follows from the coupling to gravity

L =
1

2
hµνTµν(F ) +O(h2) (6.7.2)

17 The Dµ’s in 1
2
(ξµDµ + Dµξ

µ) lead again to a term with q̇iξj(x0 + q)gij(x0 + q) in

the action which can be written in the form q̇iqkDkξi, see the last term in (6.3.23).
Together with the term with Rijabψ

a
1ψ

b
1 due to expanding the q̇iωiab term in the

action, these two contributions yield the term with exp 1
2
tr ln

(
R̃/4

sinh(R̃/4)

)

. On the

other hand the term c∗a(R
a
bcdψ

c
1ψ

d
1)cb coming from the commutator γµγν [Dµ, Dν ] in

the regulator and the last term in (6.6.20) together produce tr e
1

2
R̃ as in (6.5.17) and

(6.5.18).
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and reads in flat space

Tµν(F ) =
1

p!
Fµµ1...µpFν

µ1...µp − 1

2 · (p+ 1)!
ηµν(Fµ1...µp+1)

2 (6.7.3)

where gµν = ηµν + hµν . With these normalizations the kinetic term has
the standard form L = 1

2·p!(∂tAµ1...µp)
2+... and the stress tensor for a field

strength with 2k+1 indices in 4k+2 dimensions is traceless. Generalizing
the Lorentz gauge for a vector field, we add a gravitationally covariant
gauge fixing term for the abelian gauge symmetry

Lfix = − e

2 · (p− 1)!
(gµµ1DµAµ1...µp)

2 (6.7.4)

and find then a diagonal kinetic term

L+ Lfix = − e

2 · p! (DµAµ1...µp)
2 . (6.7.5)

We shall use tensors with flat indices, and in that case the covariant
derivatives will contain spin connections instead of Christoffel connec-
tions. Faddeev-Popov ghosts will also be needed in general, but they will
not contribute to the chiral anomalies (they do contribute to the trace
anomalies).

Consider a one-loop graph with an antisymmetric tensor field in the
loop coupled to external gravity. Let the field strength be selfdual; we
shall denote such fields by selfdual AT. In Minkowski spacetime this is
only possible in 4k + 2 dimensions

Fµ1...µ2k+1
=

e

(2k + 1)!
εµ1...µ2k+1ν1...ν2k+1

F ν2k+1...ν1 . (6.7.6)

(On the other hand, in Euclidean space this is only possible in 4k dimen-
sions, instantons being an example with k = 1 18). We shall consider
real selfdual AT in Minkowski space; if Aµ1...µ2k

is complex, the anomaly
is twice as large. In general no covariant action is known for a selfdual
antisymmetric tensor field with which one can easily compute19 although
actions which are not (manifestly) covariant exist [76, 77, 78] whose field
equations are the duality conditions (which, together with the Bianchi
identity ∂[µFµ1...µ2k+1] = 0 imply the field equation ∇µ1Fµ1...µ2k+1

= 0).
They yield the correct gravitational anomalies [78], but because they are
not covariant they look unusual.

18 In Euclidean space 1
2
εµναβε

αβστ = +(δσµδ
τ
ν + · · ·), but also in Minkowski space

1
3!
εµνραβγε

αβγστκ = +(δσµδ
τ
ν δ
κ
ρ + · · ·) because interchanging αβγ and στκ yields a

minus sign that compensates the minus sign in ε012345 = −ε012345.
19 A classical covariant action with scalar fields in the denominator does exist [79], but

it is not clear how to covariantly gauge fix it.
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The first question that one would like to be answered is: are there
really anomalies in the conservation of the stress tensor for selfdual anti-
symmetric tensor fields? We already mentioned an example: chiral bosons
in two dimensions. In 1+1 dimensions a selfdual scalar satisfies the equa-
tion ∂µϕ = eεµν∂

νϕ, which in flat space light cone coordinates becomes
∂−ϕ = (∂t − ∂x)ϕ = 0. This defines what is known as a chiral boson. In
conformal field theory a real chiral boson can be fermionized to a complex
chiral fermion, and since chiral fermions do have gravitational (Lorentz)
anomalies in 4k + 2 dimensions, as we saw in section 6.3, we have ob-
tained an example of a selfdual antisymmetric tensor with a gravitational
anomaly. One can also directly compute the diagram which contains the
anomaly, similar to the calculation of the anomaly of a spin 1/2 field
in 2 dimensions which we performed in section 5.2. The corresponding
diagram for a scalar in the loop reads

V (p) = =

∫

d2x 〈T++(x)T++(y)〉eip(x−y) . (6.7.7)

If ∂−ϕ = 0, on-shell the coupling to gravity reduces to 1
2h

++T++ where
T++ = ∂+ϕ∂+ϕ, and we can compute V (p) using either x-space methods
of conformal field theory or momentum space methods [1].

A non-manifestly covariant action describing a chiral boson in two di-
mensions has been introduced by Floreanini and Jackiw in [76] and cou-
pled to gravity in [77, 135]. It can be used to prove explicitly the existence
of a gravitational anomaly for this bosonic system, as we shall briefly re-
view now. The action describing a chiral boson coupled to gravity is

L = ϕ̇ϕ′ − Fϕ′ϕ′ (6.7.8)

where dot and prime indicate derivatives with respect to time x0 = τ and

space x1 = σ, and F = e0+

e1+ = −E−1

E−0 . It is convenient for the moment to

denote by Ea
µ the inverse of the vielbein eµ

a. The equation of motion
reads

∂

∂σ

(

ϕ̇− Fϕ′
)

= 0 (6.7.9)

and with suitable spacelike boundary conditions it gives the correct chiral
equation in curved space

ϕ̇− Fϕ′ = 0 → E−µ∂µϕ = 0 . (6.7.10)

The Lagrangian is not manifestly covariant. Nevertheless it is invariant
under the following general coordinate transformations

δϕ = (ξ1 + Fξ0)ϕ′

δeµ
a = ξν∂νeµ

a + (∂µξ
ν)eν

a (6.7.11)
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from which it follows

δF = ξν∂νF + ∂0ξ
1 + F (∂0ξ

0 − ∂1ξ
1)− F 2∂1ξ

0 . (6.7.12)

Note that on-shell the transformation rule of the chiral boson ϕ coincides
with the usual transformation rule of a scalar field.

To compute the gravitational anomaly it is convenient to express F in

terms of the variable h−− = e1+−e0+

e1++e0+ = − e−̃
−

e+̃
− , already used in section 5.1,

see eq. (5.1.56). One then finds F = 1−h−−
1+h−−

. It is now easy to extract

from the Lagrangian the linearized coupling to h−−

L = L0 + Lint = (ϕ̇ϕ′ − ϕ′ϕ′) + 2h−−ϕ′ϕ′ + · · · . (6.7.13)

The free propagator is given by

〈ϕ(x)ϕ(y)〉 = − i
2

(

∂1(∂1 − ∂0)
)−1

δ2(x− y)

=

∫
d2p

(2π)2
eip·(x−y)

i√
2

p+

p1

1

p2 − iε (6.7.14)

where p · x = p+x
+ + p−x−, p2 ≡ pµp

µ = −2p+p−, p± = 1√
2
(p0 ± p1)

and −iε is the Feynman prescription giving the correct causal boundary
conditions. The leading term of the effective action is then

W (2)[h] =
i

2
〈S2
int〉

=
i

2

∫ ∫

d2xd2y 2h−−(x)
〈

ϕ′(x)ϕ′(x)ϕ′(y)ϕ′(y)
〉

2h−−(y)

=
i

2

∫
d2p

(2π)2
h−−(p)U(p)h−−(−p) (6.7.15)

where

U(p) ≡ 4

∫

d2x e−ip·x
〈

ϕ′(x)ϕ′(x)ϕ′(0)ϕ′(0)
〉

= �

�����

�

� �

= −4

∫
d2k

(2π)2
(p1 + k1)(p+ + k+)

(p+ k)2 − iε
k1k+

k2 − iε (6.7.16)

Analytic regularization can be employed as in section 5.2 to obtain

U(p) =
i

24π

(p3
+

p−
− 3p2

+

)

. (6.7.17)
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Up to the local term −3p2
+, which can be canceled by a counterterm, the

resulting effective action

W
(2)
eff = − 1

48π

∫
d2p

(2π)2
h−−(p)

(p3
+

p−
− 3p2

+

)

h−−(−p) (6.7.18)

produces the expected gravitational anomaly, as in (5.1.62) for the chiral
fermion (there we looked at the opposite chirality). These calculations
confirm that there is a genuine gravitational anomaly for this selfdual
antisymmetric tensor field. This construction can be extended to 4k + 2
dimensions to calculate the correct gravitational anomalies for selfdual
AT fields using the Feynman rules obtained from an action [78].

Let us now sketch how we are going to compute the gravitational
anomaly of the real selfdual AT in n = 4k + 2 dimensions, using quan-
tum mechanics and following [1]. First we add a whole array of other
real AT which are not selfdual and which therefore have no anomalies:
F = 0, Fµ = ∂µA,Fµν = ∂µAν −∂νAµ,..., Fµ1...µn = 0. The reason we add
these AT is based on a simple but useful fact: one can use bispinors20

ψαβ to describe their field strengths all at once

ψαβ =
1

2n/4

n∑

l=0

1

l!
(γml...m1)αβ Fm1...ml

, n = 4k + 2

Fm1...ml
=

1

2n/4
ψαβ(γm1...ml

)βα . (6.7.19)

For example in 2 dimensions we have ψαβ = 1√
2
γµαβ∂µϕ. Chirality of

ψαβ , defined by (γ5)α
α′
ψα′β = ψαβ , implies selfduality of the AT. Since

the AT only couple to gravity by means of their field strength Fm1...ml

we can build Feynman graphs if we know the vertices for the interaction
of Fm1...ml

with gravity, and the propagators of Fm1...ml
. Knowing the

vertices and propagators of Fm1...ml
we can construct those for ψαβ . The

calculation of Feynman graphs along these lines was performed in [1], and
discussed in a textbook [3]. Here we are interested in the QM approach to
these problems. We shall write down a covariant transformation law for

ψ̃αβ ≡ g
1
4ψαβ, compute the corresponding Jacobian, and use a regulator

exp(−βR̃) with R = /̃D /̃D in the trace, just as for the chiral spin 1/2

and 3/2 fields. Here /̃D is a Dirac operator for the bispinor which will be

20 Bispinors are also called Dirac-Kähler fermions. They were introduced by Kähler in
1960 [112] and discussed by Banks et al. [113]. Actually, already in 1929 C. Lanczos,
nowdays best known for his work in classical mechanics, had studied a modification
of the Dirac equation of 1928 with quaternions [114]. He found that this modified
theory described an antisymmetric tensor. Quaternions can be represented by the
four Pauli matrices (I, ~σ) as the bispinor σµαα̇.
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described below (see eq. (6.7.36)). For the Jacobian the two indices α and
β of ψαβ are treated differently, just as the spinor and vector indices of the
gravitino. We call the corresponding spaces the α space and the β space.
We find again a covariant translation in both the α space and β space,
while in the β space we find an additional Lorentz transformation which
acts on the spinor index. As in the spin 3/2 case, one needs this extra
term in the tranformation law in order that the action of the nonlinear
sigma model only contains the combination R̃ij = Rij − 2(Diξj −Djξi).
Hence, the only difference from the spin 3/2 case is that the extra Lorentz
transformation acts on a spinor index instead of a vector index. We use
ghosts c∗ and c in β space, and fermions ψa1 in α space, again as in the
case of spin 3/2. 21 Finally we reduce the trace to Feynman graphs in
quantum mechanics and find again the anomaly as a product of a factor
for the α trace and a factor for the β trace.

We now give the details. First we discuss the properties of the gamma
matrices γm in 4k + 2 dimensions. We consider n = 4k + 2 dimensional
Euclidean spaces because the regulator regulates in all directions in mo-
mentum space only if we use Euclidean space. In the space with 2,10,18,...
dimensions a symmetric Majorana representation exists [107]: all Dirac
matrices γm can be chosen as real and symmetric 2n/2×2n/2 matrices sat-
isfying {γm, γn} = δmn with δmn = (+1, ...,+1).22 In all even dimensions
there is a charge conjugation matrix C+ satisfying C+γmC

−1
+ = +γTm,

which is related to the usual charge conjugation matrix C− satisfying
C−γmC

−1
− = −γTm by C+ = C−γ5 as one easily checks. This matrix

C+ is the unit matrix in our case, and we will use it to raise and lower
spinor indices. Hence we need not be careful whether the spinor indices
are up or down. Furthermore, it is now clear that ψαβ in (6.7.19) is real
for real Fm1...ml

(actually, as explained below, we use in Euclidean space
complex field strengths). The chirality matrix denoted by γ5 is given

21 In [1] the extra spinor index β is treated on equal footing with the spinor index α,
by introducing a second set of Grassmann variables ψa2 in addition to the Grassmann
variables ψa1 in α space, rather then treating β space as an internal space and using
ghosts c∗α and cβ . In the susy model underlying the approach of [1], the ψa1 and
ψa2 appear symmetrically, and this yields an N = 2 model. It can be obtained by
dimensional reduction from the N = (1, 1) model in 1 + 1 dimensions, see appendix
D.

22 From supergravity or string theory one knows that there exists a Majorana represen-
tation in ten-dimensional Minkowski space with a real matrix γ5 [133]. Interchanging
the matrix γ0 and γ5, one obtains a Majorana representation in Euclidean space. The
chirality matrix in Euclidean space is equal to iγ0, hence purely imaginary and anti-
symmetric. The same results hold in two dimensions with σ1 and σ3. In six Euclidean
dimensions, an example of a purely imaginary antisymmetric representation is given
by the set of matrices γk ⊗ σ2, iγ1γ2γ3 ⊗ σ1, iγ1γ2γ3 ⊗ σ3, and γ5 ⊗ I, where the γµ
form a Majorana representation in four Minkowski dimensions.
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by γ5 = (−i)n/2γ1...γn (where γn = −iγ0 such that γ2
n = 1) so that γ5

is purely imaginary and antisymmetric with square unity. In the oppo-
site case, Euclidean spaces with 6,14,22,... dimensions, one can choose
an antisymmetric purely imaginary representation of the Dirac matrices.
Then C− equals the unit matrix. We shall continue below with the case
of 2,10,18,... dimensions, but there is a parallel treatment for the cases
n = 6, 14, 22, ....

We define

γm1...mp =
1

p!

(

γm1 ...γmp ± (p!− 1) permutations
)

. (6.7.20)

So γm1...mp is the totally antisymmetric part of the product of p Dirac
matrices with strength one. Two formulas one needs are

(γm1...mp)
T = γmp...m1 (6.7.21)

Tr γm1...mpγnp...n1 = 2n/2(δm1n1 ...δmpnp ± (p!− 1)perms of(n1...np)) .

For example for n = 2 and p = 2 one has (γ12)
T = γ21 and

Tr γmnγrs = 2(δmsδnr − δmrδns) . (6.7.22)

The propagator of an arbitrary AT in Euclidean space is

〈Aµ1...µp(x)Aν1...νp(y)〉 =

∫
dnk

(2π)n
eik(x−y)

1

k2

×(δµ1ν1 ...δµpνp ± (p!− 1) perms of(ν1...νp)) . (6.7.23)

(and 〈ϕ(x)ϕ(y)〉 =
∫ dnk

(2π)n e
ik(x−y) 1

k2 for a scalar). Our metric is such that

k2 = k2
1 + · · · + k2

n in n-dimensional Euclidean space. For our purposes
we need the propagator of two field strengths in momentum space

〈Fµ1...µp+1(k)Fν1...νp+1(−k)〉 =
1

k2
(kµ1kν1δµ2ν2 ...δµp+1νp+1 (6.7.24)

± all permutations of µi and all cyclic permutations of νi) .

This propagator has (p+ 1)(p+ 1)! terms.
The propagator of the tensors Fµ1...µp+1 determines the propagator of

the bispinor. We claim that the latter is given by

〈ψαβ(k)ψγδ(−k)〉 =
1

2k2

[

(γ5k/)αγ(γ5k/)βδ + k2δαγδβδ
]

. (6.7.25)

To prove this formula we insert the definition of the bispinors in (6.7.19)
into the left-hand side

1

2n/2

n∑

l=0

〈Fµ1...µl(k)Fν1...νl(−k)〉(γµl...µ1)αβ(γ
νl...ν1)γδ

1

l!

1

l!
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=
1

2n/2

n∑

l=0

1

k2
(kµ1kν1δ

µ2
ν2 ...δ

µl
νl

)(γµl...µ1)αβ(γ
νl...ν1)γδ

1

(l − 1)!

=
1

2n/2
1

k2

n∑

l=0

kµkν(γµl...µ2µ)αβ(γ
µl...µ2

ν)γδ
1

(l − 1)!
. (6.7.26)

On the other hand, a Fierz rearrangement of the first term on the right-
hand side of (6.7.25) yields 23

1

2k2
(γ5k/)αγ(γ5k/)βδ =

−1

2k2
(γ5k/)αγ(k/γ5)δβ

=
1

2n/2
−1

2k2

n∑

l=0

1

l!
(γµ1...µl)αβ(k/γ5γ

µl...µ1γ5k/)δγ

=
1

2n/2
−1

2k2

n∑

l=0

1

l!
(γµ1...µl)αβk

2(γµl...µ1)δγ

+
1

2n/2
−1

2k2

n∑

l=0

(−1)l

(l − 1)!
2kµ1(γµ1...µl)αβ(k/γ

µl...µ2)δγ . (6.7.27)

The first term is a Fierz rearrangement of − 1
2k2k

2δαγδδβ and the second
term become equal to (6.7.26) after using

(k/γµl...µ2)δγ = (−)l−1(k/γµ2...µl)γδ = (−)l−1kν(γ
νµ2...µl)γδ . (6.7.28)

This proves the expression for the ψαβ propagator.
The sum of the stress tensors of the AT fields in terms of bispinors is

given by

Tµν(ψ) =
1

4
ψαβψγδ(γµγ5)

αγ(γνγ5)
βδ + (µ↔ ν) . (6.7.29)

Note that the two types of indices α and β are propagated independently
in (6.7.25) and do not get mixed by the interactions in (6.7.29).

We shall again calculate the anomaly in Euclidean space, but here we
run into the problem that tensors which are selfdual in Minkowski space,
no longer are selfdual in Euclidean space because the square of the duality
operator F → ∗F equals −1 in Euclidean space. To still be able to
use Euclidean space we therefore complexify the AT in Minkowski space,
and divide the final answer for the anomaly by a factor 2 to undo the
complexification.

23 The general formula reads MαγNδβ = 1

2n/2

∑n

l=0
1
l!
(γµ1...µl)αβ(Nγ

µl...µ1M)δγ and

can be proven by taking the trace with (γνl...ν1)δα using 1

2n/2
Trγµ1...µlγ

νl...ν1 =

δν1µ1
...δ

νl
µl ± (l! − 1) permutations.
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The duality operation from one field strength to the dual of another
becomes F → i ∗F in Euclidean space. It corresponds to multiplication
of one of the indices of ψαβ by γ5, for example

ψαβ → (γ5)α
α′
ψα′β . (6.7.30)

(Recall that γ5 is purely imaginary in Euclidean space). In particular the
field strength with 2k + 1 indices is mapped into i times its own dual.
Hence the matrix 1

2(1 + γ5)α
α′

projects this field strength onto to its
selfdual part. Consider a Feynman graph with gravitational couplings to
Tµν(F ) at all vertices, except at one vertex where one couples to a selfdual

AT as 1
2h

µνTµν
(

1
2(F + i ∗F )

)

. It corresponds in the bispinor approach to

a loop with couplings to Tµν(ψ) at all vertices, except at one vertex where
one projects onto a chiral bispinor (which we denote by ψL). The stress
tensor at this vertex reads

Tµν(ψL) =
1

4

(1 + γ5

2

)

α

α′
ψα′β

(1 + γ5

2

)

γ

γ′ψγ′δ(γµγ5)
αγ(γνγ5)

βδ

+(µ↔ ν) . (6.7.31)

The transformation rule δsym of the AT is, as in the spin 3/2 case, a
sum of a covariant translation and a Lorentz transformation; the latter
acts on the flat vector indices of the AT

δsym(ξ)F̃m1...mn =
[1

2
(Dµξ

µ + ξµDµ) + δlL(D[mξn])
]

F̃m1...mn . (6.7.32)

In the bispinor approach this corresponds to

δsym(ξ)ψ̃αβ =
1

2
(Dµξ

µ + ξµDµ)ψ̃αβ (6.7.33)

+
1

4
D[mξn](γ

mn)α
α′
ψ̃α′β +

1

4
D[mξn](γ

mn)β
β′
ψ̃αβ′

where the Lorentz transformation now acts both on the α and β in-
dices. The last term can also be written as − 1

4D[mξn]ψαβ′(γmn)β
′
β be-

cause spinor indices are raised and lowered by the charge conjugation
matrix which is the unit matrix. Now we would like to compute the grav-
itational anomaly due to 2δsym(ξ), which is precisely the transformation
used both in the spin 1/2 and 3/2 cases. To rewrite this transformation
in a useful form which will make the calculation easy, we derive again
a lemma, this time applied to the bispinor instead of the spin 3/2 field.

The lemma uses the regulator R = /̃D /̃D, where the Dirac matrices γµ

which contract Dµ act in α space (i.e. as matrix multiplication from the
left). The lemma states that for the anomaly calculation δcov(ξ) equals

−2δ
(α−space)
lL (D[mξn]), where the Lorentz transformation δ

(α−space)
lL acts in
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α-space and is analogous to the δ
(1/2)
lL acting in the spinor space of the

gravitino. Thus with this regulator one finds the relation

2δsym(ξ) = δcov(ξ) + 2δ
(β−space)
lL (D[mξn]) (6.7.34)

Then the transformation law of the bispinor density which produces the
Jacobian can be written as

δAW ψ̃αβ = [δcov(ξ) + 2δ
(β−space)
lL (D[mξn])]ψ̃αβ (6.7.35)

=
1

2
(Dµξ

µ + ξµDµ)αβ
α′β′

ψ̃α′β′ + 2δα
α′ 1

4
D[mξn](γ

mn)β
β′
ψ̃α′β′ .

The covariant derivative (Dµ)αβ
α′β′

contains spin connection terms which
act on both spinor indices of ψαβ . (The Lorentz transformations can be
transferred from Fm1...mn to ψαβ because the Dirac matrices are Lorentz

invariant tensors). The regulator is proportional to /̃D /̃D where

/̃D = g1/4(γµ)αα′′
[

δα
′′

α′ ∂µδ
β
β′ +

1

4
ωµmn(γ

mn)α
′′
α′ δββ′

+
1

4
ωµmn(γ

mn)ββ′ δα
′′

α′

]

g−1/4 . (6.7.36)

The connection in the β sector can be treated as a Yang–Mills field, so
adding anticommuting ghosts we write

γmn = c∗β(γ
mn)ββ′cβ

′
, {cβ , c∗γ} = δβγ (β sector) (6.7.37)

This is analogous to the replacement of the internal symmetry generators
(Ta)

I
J which we discussed before.

The term in the α sector is treated as for the spin 1/2 case, hence in
the α sector we set

γmn = 2ψa1ψ
b
1 , {ψa1 , ψb1} = δab (α sector) . (6.7.38)

The regulator /̃D /̃D leads to a term withDµD
µ and a term with γµν [Dµ, Dν ].

The latter contains curvatures in the α sector and curvatures in the β sec-
tor

/̃D /̃D = g−
1
4Dµ
√
ggµνDνg

− 1
4

+ψa1ψ
b
1

(1

2
Rabcdψ

c
1ψ

d
1 +

1

4
Rabmnc

∗γmnc
)

.

(6.7.39)

The operator Dµ is given by the expression inside the square brackets in
(6.7.36).
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The covariant translation in (6.7.35) yields a term D[iξj]q
iq̇j in the α

sector, while the extra Lorentz transformation of the β indices (whose
parameter was D[mξn] ) produces a term D[mξn]c

∗γmnc in the β sector.
In both the α sector and the β sector we again encounter the combination

1

4
Rmnabψ

a
1ψ

b
1 −D[mξn] . (6.7.40)

The trace in the α sector leads to qq̇ loops which produce a factor

exp
1

2
tr ln

(

R̃/4

sinh R̃/4

)

. (6.7.41)

where the trace tr is over the vector indices of R̃ij = R̃ijabψ
a
1ψ

b
1. This was

discussed in section 6.3. The trace in the β sector produces a trace

Tr eF/2 = Tr exp
1

8
ψa1ψ

b
1Rabmnγ

mn (6.7.42)

where the trace Tr is over the spinor indices of γmn. This was discussed
in section 6.2 (the antihermitian matrices 1

2γ
mn (m < n) correspond to

the antihermitian Yang–Mills generators Tα).
Putting these factors together, we find for the gravitational anomaly

due to a selfdual real antisymmetric tensor field in n dimensions

An(grav, AT) =
(−i)n2
(2π)

n
2

∫ (

dnxi0

√

g(x0)

)( n∏

a=1

dψa1,bg

)

(

−1

4

)

Tr exp

(
1

8
ψa1ψ

b
1R̃abmnγ

mn
)

exp
1

2
tr ln

(

R̃/4

sinh(R̃/4)

)

(6.7.43)

The minus sign in the factor − 1
4 is due to the fact that we are now comput-

ing a loop with bosonic bispinors instead of fermionic fields. The factor 1
4

is due to the factor 1
2 from the chiral projection operator 1

2(1 + γ5) which

appears in the Jacobian, and the factor 1
2 one needs to undo the complex-

ification of the AT which was needed to be able to go to Euclidean space.
Since the symmetrized trace of an odd number of Lorentz generators van-
ishes24 the first factor only yields products of an even number of R̃ terms,

24 From group theory we know that SO(2n) has Casimir operators of rank 2, 4, ..., 2n−
2, n. However the trace over n generators in the spinor representation vanishes. In
10 dimensions the first factor yields a contributions with six R̃ factors (a hexagon
graph), but not a contribution with five R̃ factors; for example, the product of five
Lorentz generators with all indices different from each other is proportional to the
trace of the chirality matrix γ5, which vanishes.
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and so does the second factor because x
sinhx is even in x. It follows that

there is only a gravitational anomaly in n = 4k+ 2 dimensions, as
in the case of spin 1/2 and 3/2 fields.

The trace over the spinor indices in Tr exp
(

1
8R̃mnγ

mn
)

with R̃mn =

Rmnabψ
a
1ψ

b
1 − 4D[mξn] can be rewritten as a trace over the vector indices

of R̃mn as follows. We can skew diagonalize the real antisymmetric matrix
R̃mn so that it attains the 2× 2 block form

R̃mn =












x1

−x1

x2

−x2

.
.












(6.7.44)

with real xj . We then decompose the 22k+1 dimensional spinor space as a
direct product of 2k+1 two-dimensional spinor spaces, and we can choose
γmn such that γ12 acts nontrivially only in the first two-dimensional sub-
space, γ34 in the second two-dimensional subspace, etc. Then the expo-
nent of the direct sum becomes the direct product of the exponents

exp
1

8
R̃mnγ

mn =

n/2
⊗

l=1

exp
1

4
R̃2l−1,2lγ

2l−1,2l . (6.7.45)

In each subspace the trace yields 2 cosh R̃2l−1,2l since the square of γ2l−1,2l

equals minus unity and R̃2
mn has −x2

j along the diagonal. Except for

the factor 22k+1 which is the dimension of the spinor space, this is the
same result as one obtains from exp tr ln cosh R̃. Hence we can make the
following replacement in the expression for the anomaly

Tr e(
1
8
R̃mnγmn) = 22k+1 exp tr ln cosh R̃/4 . (6.7.46)

In the end, we need 2k + 2 factors R̃ because we need one factor with
D[mξn] and 2k + 1 factors Rmnabψ

a
1ψ

b
1 to saturate the integral over the

fermionic zero modes. We can then absorb a factor 22k+2 into R̃mn, which
leads to another overall factor 1

2 . The overall factor is then − 1
8 .

Our final answer for the gravitational anomaly of a real selfdual AT is
given by

An(grav, AT) =
(−i)n2
(2π)

n
2

∫ (

dnxi0

√

g(x0)

)( n∏

a=1

dψa1,bg

)

(

−1

8

)

exp
1

2
tr ln

(

R̃/2

tanh(R̃/2)

)

(6.7.47)
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where R̃ = Rmnabψ
a
1ψ

b
1 − 2(Dmξn −Dnξm). We need 1

2n+ 1 factors of R̃

in n dimensions to saturate the Grassmann integral (one of the R̃ should
yield the Dξ). The α index has yielded the usual result for spin 1/2
with the sinh, while the β index has yielded a similar result but with
cosh. Together they yield the tanh. The prefactor − 1

8 comes form the
1
2 in 1

2(1 + γ5), from the fact that we consider real AT fields, and from
the conversion of the trace over β spinor space into a trace over vector
indices.

The reason β space gives a different result from α space can be traced
to the fact that we acted with the operator 1

2(1 + γ5) only in the α space
to project out the selfdual part of the AT fields. In the approach of ref.
[1] this means that the fermions ψa1 have periodic boundary conditions
whereas the fermions ψa2 are antiperiodic (see (2.4.7) and (2.4.9) and
footnote 21).

6.8 Cancellation of gravitational anomalies in IIB supergravity

The gravitational anomaly for a complex chiral spin 1/2 field, a complex
chiral spin 3/2 field, and a real selfdual antisymmetric tensor field are
given by

An(grav, spin 1/2) =

∫

exp
1

2
tr ln

(

R̃/4

sinh(R̃/4)

)

An(grav, spin 3/2) =

∫ [(

tr eR̃/2
)

− 1
]

exp
1

2
tr ln

(

R̃/4

sinh(R̃/4)

)

An(grav, AT) =

∫

−1

8
exp

1

2
tr ln

(

R̃/2

tanh(R̃/2)

)

. (6.8.1)

where we recall that R̃ = Rijabψ
a
1,bgψ

b
1,bg − 4D[iξj]. The symbol

∫
denotes

the measure (−i)n/2
(2π)n/2

∫ ∏n
i=1 dx

i
0

√

g(x0)
∏n
i=a dψ

a
1,bg.

As a first application we check that in 1+1 dimensions the gravitational
anomaly for a complex chiral spin 1/2 field is equal to the gravitational
anomaly of a real selfdual antisymmetric tensor (chiral boson25). This
result is well-known in string theory where it is used in the calculation of
the central charge [133]. For this purpose we need the term quadratic in
R̃ (one of these R̃ yields the contribution proportional to D[iξj]). We find

25 A selfdual antisymmetric tensor in 2 dimensions satisfies ∂µϕ = εµν∂
νϕ or (∂0 +

∂1)ϕ = 0, and thus describes a left-moving (chiral) boson.
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for a complex chiral spin 1/2 field

exp
1

2
tr ln

(

R̃/4

sinh(R̃/4)

)

= exp
[

− 1

2
tr ln

(

1 +
1

3!
(R̃/4)2 + ...

)]

= ... − 1

12
tr(R̃/4)2 + ... (6.8.2)

while for the chiral boson we obtain, using tanhx = x− 1
3x

3 + · · ·,

−1

8
exp

1

2
tr ln

(

R̃/2

tanh(R̃/2)

)

= −1

8
exp

[

− 1

2
tr ln

(

1− 1

3
(R̃/2)2 + ...

)]

= ... − 1

48
tr(R̃/2)2 + ... . (6.8.3)

Clearly the anomalies are equal.
A less obvious case is IIB supergravity. This theory contains: a com-

plex chiral spin 3/2 field, a complex antichiral spin 1/2 field, and a real
five-index selfdual antisymmetric field strength. To check that the sum of
these anomalies cancels, too, we must expand the formulas for the anoma-
lies to sixth order in R̃. Let us simplify the notation and denote R̃/4 by
y and tr yn by tn.

The spin 1/2 field yields

An(1/2) = exp

[

−1

2
tr ln

(

1 +
1

3!
y2 +

1

5!
y4 +

1

7!
y6 + ...

)]

= exp

[

− 1

12
t2 +

1

360
t4 −

1

5670
t6 + ...

]

= 1 +

[

− 1

12
t2

]

+

[
1

360
t4 +

1

288
t22

]

+

[

− 1

5670
t6 −

1

4320
t2t4 −

1

10368
t32

]

+ ... . (6.8.4)

The spin 3/2 field yields

An(3/2) =

[

tr

(

1 + 2y2 +
2

3
y4 +

4

45
y6 + ...

)

− 1

]

An(1/2)

=

(

(n− 1) + 2t2 +
2

3
t4 +

4

45
t6 + ...

)

An(1/2)

= (n− 1) +

[(

2− (n− 1)

12

)

t2

]

+

[(
2

3
+

(n− 1)

360

)

t4 +

(

−1

6
+

(n− 1)

288

)

t22

]

+

[(
4

45
− (n− 1)

5670

)

t6 +

(

− 1

20
− (n− 1)

4320

)

t2t4
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+

(
1

144
− (n− 1)

10368

)

t32

]

+ ... .

(6.8.5)

The selfdual AT field yields

An(AT ) = −1

8
exp

[

−1

2
tr ln

(

1− 1

3
4y2 +

2

15
16y4 − 17

315
64y6 + ...

)]

= −1

8
exp

[
2

3
t2 −

28

45
t4 +

1984

2835
t6 + ...

]

= −1

8
+

[

− 1

12
t2

]

+

[
7

90
t4 −

1

36
t22

]

+

[

− 248

2835
t6 +

7

135
t2t4 −

1

162
t32

]

+ ... .

(6.8.6)

One may check that for n = 10 all terms of sixth order in R̃ (the terms
with t6, t2t4 and t32) cancel in the following combination

An(3/2)−An(1/2) +An(AT ) = 0 . (6.8.7)

Indeed
(

4

45
− 9

5670

)

+
1

5670
− 248

2835
= 0

(

− 1

20
− 9

4320

)

+
1

4320
+

7

135
= 0

(
1

144
− 9

10368

)

+
1

10368
− 1

162
= 0 . (6.8.8)

This corresponds to the cancellation of gravitational anomalies in type
IIB supergravity [1].

6.9 Cancellation of anomalies in N = 1 supergravity

As we mentioned in the introduction, Alvarez-Gaumé and Witten derived
compact expressions for chiral and gravitational anomalies in any dimen-
sions in 1983 [1]. Then they applied these formulas to IIB supergravity
in 9 + 1 dimensions where gravitational anomalies are present, and found
that they cancel. We discussed this in the preceding section. They also
applied these formulas to N = 1 supergravity in 9+1 dimensions coupled
to Yang-Mills theory, but in this case the sum of all anomalies did not can-
cel, and they concluded that the N = 1 theory is anomalous. Green and
Schwarz [4] noted that even if anomalies do not seem to cancel, it is some-
times still possible to construct a local counterterm in the action whose
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variation cancels the anomalies. In such cases one has candidate anoma-
lies which are not genuine anomalies. They indeed were able to construct
such counterterms, but only for certain choices of the gauge group of the
Yang-Mills theory, namely SO(32) and E8 × E8. Thus this constituted
a double success: N = 1 supergravity was also non-anomalous, and in
addition the gauge groups were determined. In this section we show that
anomalies in N = 1 supergravity can indeed be canceled; this is straight-
forward and only the expressions of the gravitational anomalies which we
obtained before are needed. It should be noted that Green and Schwarz
also showed that in string theory the anomalies in the Yang-Mills sector
(the open string sector) cancel. They considered the NSR string. There
are in this case three sets of string loop diagrams to be computed: a planar
graph, nonorientable graphs (graphs with an odd number of twists) and
nonplanar graphs (graphs with an even number of twists). The last graphs
do not produce anomalies, while the first two graphs contain anomalies
which sum up to a complicated expression multiplied by a factor (1+ 32η

n ),
where η = −1 for SO(n), η = +1 for Usp(n) and η = 0 for U(n) [115].
Thus also in string theory the anomalies of the open string cancel, but
only for SO(32). The cancellation of the Yang–Mills anomalies in N = 1
supergravity for the group E8 × E8 corresponds in string theory to can-
cellation of anomalies of the heterotic string. The analysis of the closed
string, which should lead to cancellations of anomalies involving external
gravitons has never been worked out. (TRUE???)

The anomaly cancellation in the dual version of N = 1 supergravity
(with a 6-form instead of a 2-form field B) was given in [116].

After this work on 9+1 dimensional supergravity, similar work was done
in other models. For example, in 6 dimensions the authors of [117] studied
cancellation of gravitational anomalies for supergravity coupled to several
matter multiplets, and found several solutions. There are again B∧R∧R
counterterms [116]. There exist auxiliary fields for N = 2 supergravity
in 6 dimensions [118], so one could in principle construct supergravity
actions with Chern-Simons terms (using tensor calculus supergravity).
More recently, anomaly cancellation on K3 × S1/Z2 has been discussed
[119].

The field content of N = 1 supergravity coupled to N = 1 supersym-
metric Yang–Mills theory is given by

(eµ
m, ψµL, χR, Bµν , ϕ) and (Aaµ, λ

a
L) (6.9.1)

where ψµL is a Majorana-Weyl (real chiral) gravitino, χR a real antichiral
“dilatino”, and eµ

m is the real vielbein, Bµν is a real antisymmetric tensor,
while ϕ is the real dilaton. Further Aaµ is the Yang-Mills field with gauge
group G, and λaL are real chiral “gauginos” (partners of the gauge fields).
Note that the gauginos are in the same representation of G as the gauge
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fields, namely the adjoint representation. This is due to supersymmetry
which requires that the fermionic partner of the gauge field be in the same
representation of the gauge group G as the gauge field. The chirality of
the gaugino is the same as that of the gravitino but opposite to that of
the dilatino. Furthermore, all fermionic fields are real fields in Minkowski
space, so we should add an extra factor 1

2 to our formulas for anomalies
because they were given for complex chiral fermions. However, since
we shall require that anomalies cancel, we shall not keep these overall
factors 1

2 . Ahead of time we mention that the antisymmetric tensor field
Bµν , though not selfdual nor antiselfdual, will play a crucial role in the
construction of counterterms, and precisely because the representation
of the gauginos is the adjoint representation, it is possible to cancel the
Yang-Mills anomalies.

For readers not familiar with supersymmetry and supergravity, we men-
tion that the N = 1 in “N = 1 supergravity” refers to the fact that there
is only one real chiral gravitino and one real chiral supersymmetry pa-
rameter. The IIB theory has two real chiral gravitinos which one often
combines into one complex gravitino (as we did in the previous section).
There is also a IIA supergravity theory with one real chiral and one real
antichiral gravitino; this is a “vector theory” with one real nonchiral grav-
itino, which is free from anomalies. (One might call this theory N = (1, 1)
supergravity, and the previous one N = (2, 0) supergravity, but this ter-
minology is not common). The number of bosonic states matches the
number of fermionic states, both for the N = 1 Yang-Mills theory and
for the N = 1 supergravity theory: 8 = 8 for the Yang-Mills theory and
(1
28× 9− 1) + 1

28× 7 + 1 = 1
2(8− 1)× 16 + 1

216 = 64 for the supergravity
theory.

There are three sets of anomalies to be dealt with, which we now first
briefly introduce:
I) Purely Yang-Mills anomalies. These are due to a hexagon loop
with the gaugino λ in the loop coupled to external Yang-Mills fields.

�

Wiggly lines denote external Yang-Mills gauge fields. There are no loops
with a dilatino or gravitino because these fields have no minimal couplings
to the Yang-Mills fields. (There are nonminimal couplings of the form
ψ̄µγνλFµν but these do not lead to anomalies). We shall see that the
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counterterm which cancels these anomalies in the case of G = SO(32)
has the form

∆LSO(32) ∼ B trF 4 + ω0
3Y ω

0
7Y . (6.9.2)

For E8 × E8 the counterterm is different, and we shall construct it in
appendix F. The counterterm is a ten-form which is integrated over ten-
dimensional space. The symbols ω0

k denote Chern-Simons k-forms, and
the subscript Y stands for Yang-Mills. The reasons that Chern-Simons
actions appear has to do with the fact that the anomalies we derived be-
fore are covariant anomalies, whereas the counterterm which we shall
construct cancel consistent anomalies. The latter are obtained by us-
ing the descent equations as we shall discuss, and the descent equations
produce Chern-Simons terms. If the covariant anomalies cancel, then
also the consistent anomalies cancel, and vice-versa. This is discussed in
general articles on anomalies [2] and we refer to these articles for proofs.
However, the fundamental anomalies are the consistent anomalies because
they yield the variation of the effective action. The consistent anomalies
can be constructed in two steps: first the general form is given by the
descent equations, and then the coefficients are fixed by matching the
leading term of the consistent and covariant anomalies (up to an overall
constant [2]). Thus we shall cancel consistent anomalies by counterterms,
while the covariant anomalies are merely a technical tool.

The hexagon graph is the first graph which can be anomalous (just like
the triangle graph is the first graph which is anomalous in four space-
time dimensions). There are also polygon graphs with 7 vertices, 8 ver-
tices, etc., but these graphs merely complete the leading expression from
the hexagon graph. The complete consistent anomaly must satisfy the
so-called consistency conditions which are so strong that if one knows
the leading term of the consistent anomaly (corresponding to hexagon
graphs), the other terms are completely fixed. (Because the transforma-
tion law δAµ = ∂µΛ + [Aµ,Λ] is nonlinear in Aµ, one obtains relations
between terms with different numbers of A fields). The leading term
in the consistent anomaly is equal to the leading term in the covariant
anomaly up to an overall factor ( d2 + 1)−1, but since we are concerned
with the question when anomalies cancel, we shall not keep track of this
overall constant. Thus, if the leading terms in the one-loop anomaly can-
cel, all nonleading terms also cancel. We shall actually obtain directly the
complete formulas for the consistent anomalies and the complete coun-
terterms, so we shall not restrict ourselves to only the leading terms.

II) Purely gravitational anomalies. The counterpart of the purely
Yang-Mills anomalies are the one-loop graphs with only external gravi-
tons. Since all fields couple minimally to gravity, but only chiral fermions
yield anomalies (there are no selfdual antisymmetric tensor fields inN = 1
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supergravity), the graphs to be studied are the following

�
+ � + ���

Curly lines denote gravitons. The counterterm which cancels these anoma-
lies will be derived below and has the generic form

∆Lgrav ∼ B(trR4 + (trR2)2) + ω0
3L ω

0
7L . (6.9.3)

The subscript L stands for Lorentz. This counterterm is of course inde-
pendent of the gauge group G, so it is the same for the SO(32) theory
and the E8×E8 theory. Its structure is very similar to the counterterm in
the pure Yang-Mills case, but note that the we now need Lorentz Chern-
Simons terms, instead of Yang-Mills Chern-Simons terms. In the N = 1
supergravity theory one encounters Yang-Mills Chern-Simons terms in
the action and in the transformation rules, but no Lorentz Chern-Simons
terms [120]. Thus in order to cancel anomalies one has to go beyond the
minimal N = 1 supergravity theory. It is not known whether one can
construct an extended supergravity theory with a finite number of fields
which contains Lorentz Chern-Simons terms in the action. Most experts
believe that this is not possible, and that by adding a Lorentz Chern-
Simons term to minimal N = 1 supergravity, and adding further terms
to obtain local supersymmetry, the answer is the full string effective ac-
tion (whatever that means). Formally, Lorentz Chern-Simons terms are
similar to Yang-Mills Chern-Simons terms. The only difference is that
the Lorentz group SO(9, 1) is noncompact, whereas we shall only con-
sider compact Lie groups for the gauge fields. The anomaly cancellation
is a local phenomenon (local in spacetime) at the perturbative (one-loop)
level, so issues of compactness or noncompactness do not matter as far
as anomaly cancellation is concerned. (We shall, however, sometimes
perform partial integrations, so to be precise we should state that we
restrict ourselves to manifolds without boundaries, such as compactified
R10 space).

III) Mixed anomalies. The third and last class of anomalies are the
mixed anomalies: hexagon graphs with at least one graviton and at least
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one gauge field.

�

We may distinguish the case with r gauge fields where r = 1, 2, 3, 4, 5.
(The case r = 0 and r = 6 correspond to purely gravitational and purely
Yang-Mills anomalies, and for given r the gravitons and the gauge fields
may appear in any order). The structure of the counterterm which cancels
these anomalies is of a form which we might expect in view of the coun-
terterms previously given. For SO(32) the counterterm has the following
form

∆Lmixed,SO(32) ∼ B(trF 2trR2 + ω
(0)
3L ω

(0)
3Y (trF 2 + trR2)

+ω
(0)
3L ω

(0)
7Y + ω

(0)
7L ω

(0)
3Y . (6.9.4)

The counterterm for the E8 × E8 case is again different. There are no

counterterms of the form ω
(0)
3L ω

(0)
3L (trF 2 + trR2) or ω

(0)
3Y ω

(0)
3Y (trF 2 + trR2)

because they vanish. (The 6-forms ω
(0)
3L ω

(0)
3L and ω

(0)
3Y ω

(0)
3Y vanish since

interchanging two 3-forms yields one overall minus sign). Actually, we
shall not separately construct the counterterm for the mixed anomalies
but rather construct the whole counterterm at one fell swoop. The reason
is that the field Bµν transforms simultaneously into gauge fields and into
gravitational fields; as we shall discuss

δgaugeB = ω
(1)
2Y − ω

(1)
2L . (6.9.5)

Here ω
(1)
2Y and ω

(1)
2L are 2-forms which are constructed from the variation

of ω
(0)
3Y and ω

(0)
3L as we shall discuss. It is clear that substituting δgaugeB

in the counterterms ∆Lgrav and ∆LYM yields variations which contain
simultaneously gravitational fields and gauge fields (“mixed variations”).
Rather than first constructing ∆LYM and ∆Lgrav, and then using their
mixed variations in the construction of ∆Lmixed, it is easier to construct
the complete ∆Ltotal at once.

However, to isolate the salient points where one finds the restrictions on
the gauge group, we shall first construct ∆Lgrav and ∆LYM separately.
Then, as we already said, we shall construct ∆Ltotal.

The covariant gauge anomalies for a complex spin 1/2 field were derived
earlier

AnYM =

∫

Tr e
1
2
F̃
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1

2
F̃ ≡ 1

2
FαabTαψ

a
1,bgψ

b1, bg + ηαTα . (6.9.6)

The symbol
∫

was defined below (6.8.1). In 10 dimensions we need the
terms with six F̃ (recall that we need terms linear in ηα, so in one curva-
ture we must take the term ηαTα; we are then left with five curvatures,
i.e. a ten-from). Thus the anomaly is proportional to

AnYM ∼ Tr F̃ 6 . (6.9.7)

(The precise coefficient in front does not concern us here; later when we
construct ∆Ltotal we shall be careful with coefficients). There are now
two issues we must deal with:
(i) the relation between traces of expressions in the adjoint representation
(in particular Tr F̃ 6) and traces in the vector representation (which we
shall denote by the symbol tr).
(ii) the construction of consistent anomalies from the descent equations.
We now briefly discuss these issues, and then return to the construction
of counterterms.

Traces in group theory
Consider the adjoint representation of SO(n). (We begin with SO(n)

because this is the simplest example, but we shall also discuss the other
groups). The carrier space (the space o which the group acts) is given by
a “vector” vkl = −vlk where k, l = 1, ..., n. The group SO(n) acts on vkl
as follows

vkl → v′kl = (Ωv)kl ; (Ωv)kl =
∑

m<n

Ωkl
mnvmn . (6.9.8)

Thus the pair of indices I = (k, l) with k < l runs over N = 1
2n(n − 1)

values, and we can also write

vI → v′I = ΩI
JvJ , I, J = 1, .., N . (6.9.9)

On the other hand, the adjoint transformation can also be written in
terms of the defining representation of SO(n) (the n× n real orthogonal
matrices denoted by On

n′
). Namely

(Ωv)I = (Ωv)kl =
∑

k′, l′
Ok

k′Ol
l′vk′l′ = 2

∑

k′<l′
Ok

k′Ol
l′vk′l′ . (6.9.10)

Note that we discuss here group elements for finite transformations, thus
OT = O−1 and O itself is not antisymmetric, however vkl is antisymmet-
ric. We can then write the following relation between the adjoint and
vector representation of SO(n)

Ωkl
mn = Ok

mOl
n −OknOlm (6.9.11)
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where k < l and m < n. Readers who are not sure whether one should
add a factor 1/2 or not, may check this relation for the case of SO(3).

We need relations between traces of products of generators in the ad-
joint representation, and similar traces in the defining representation.
They can all be derived by taking the trace of the group elements in
(6.9.11). Namely, set m = k and n = l, and sum over k and l from 1 to
n. This yields

Tr Ω =
∑

I

ΩI
I =

∑

k<l

Ωkl
kl =

1

2

∑

k, l

Ωkl
kl

=
1

2

N∑

k=1

N∑

l=1

(

Ok
kOl

l −OklOlk
)

=
1

2

[

(trO)2 − tr (O2)
]

. (6.9.12)

To find expressions for traces over elements in the enveloping Lie algebra
(products of elements in the Lie algebra such as Tr F̃ 6), we write Ω = eA

and O = eA where A lies in the adjoint representation and A lies in the
vector representation of the Lie algebra of SO(n). From (6.9.12) one finds
(after multiplying by 2 to simplify the notation)

2Tr eA = 2Tr
(

1 +A+
1

2!
(A)2 +

1

3!
(A)3 + · · ·

)

=
[

tr (1 +A+
1

2!
(A)2 +

1

3!
(A)3 + · · ·)

]2

−
[

tr (1 + 2A+
1

2!
(2A)2 + · · ·)

]

. (6.9.13)

Comparing terms with the same number of factors yields a hierarchy of
relations for SO(n)

2 Tr 1 = (tr 1)2 − tr 1 = n(n− 1)

TrA = 0 (because trA = 0)

TrA2 = (n− 2)trA2

TrA4 = (n− 8)trA4 + 3(trA2)2

TrA6 = (n− 32)trA6 + 15(trA2)(trA4) . (6.9.14)

The first line gives the dimension of the adjoint representation.
For Sp(n) one finds the same formulas, but with + signs instead of −

signs because the adjoint representation for Sp(n) is given by a tensor
vkl which is symmetric26 (vkl = vlk). As we shall see, anomalies which
are factorized (such as trF 2trF 4) can be canceled by counterterms, but

26 The group Sp(n) leaves the bilinear form xiΩijy
j (i, j = 1, ..., n) invariant, where Ωij
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non-factorized expressions (such as trF 6) can never be canceled. This
immediately rules out the Sp(n) groups, and of the SO(n) groups only
SO(32) needs to be kept.

What about SU(n), or the exceptional groups? For SU(n) the carrier
space for the adjoint representation in terms of the vector (= defining)
representation is given by vectors vi

j

(Uv)i
j = Ui

j ;k
l vk

l = ui
k(u∗)j l vk

l . (6.9.15)

This adjoint representation is obtained by taking the direct product of
the n and n∗ of SU(n) and removing the trace27, hence v is traceless,
vk
k = 0. Thus the dimension of the adjoint representation of SU(n) is

n2 − 1. We have then

Ui
j ;k

l = ui
k(u∗)j l −

1

n
δji δ

k
l (6.9.16)

and taking the trace we obtain

TrU = (tru)(tru∗)− 1 . (6.9.17)

Setting U = eA and u = eA, with A in the adjoint representation of the
Lie algebra of SU(n), and A in the vector representation, leads to

Tr
(

1 +A+
1

2!
(A)2 +

1

3!
(A)3 + · · ·

)

=

tr
(

1 +A+
1

2!
(A)2 + · · ·

)

tr
(

1 +A+
1

2!
(A
)2

+ · · ·
)∗
− 1 . (6.9.18)

Equating terms with the same number of generators yields

Tr 1 = n2 − 1

TrA = 0 (because trA = 0)

TrA2 = n(trA2 + trA∗2)

TrA3 = n(trA3 + trA∗3)

TrA4 = n(trA4 + trA∗4) + 6(trA2)(trA∗2)

TrA6 = n(trA6 + trA∗6) + 15(trA2)(trA∗4)

+15(trA4)(trA∗2) + 20(trA3)(trA∗3) . (6.9.19)

is non-degenerate and antisymmetric Ωij = −Ωji. Then for infinitesimal transforma-
tions x → Mx one obtains MTΩ + ΩM = 0. The matrices ΩM are symmetric, and
define Sp(n) (they are the generators of Sp(n) in the defining representation). They
act on vkl just as in (6.9.10), but now (6.9.11) obtains a + sign instead of a − sign.
Actually in supergravity and string theory one uses the group Usp(n) which is the
intersection of U(n) and Sp(n,C). It has the same symmetry properties as Sp(n).

27 One may identify each vi
j with an n×n matrix with only an entry in the i-th row and

j-th column; if the sum of these matrices vi
j is a matrix v which is antihermitian then

the transformation rule for v correspond to a commutator of v with the generators
in the fundamental representation. Clearly the carrier space define by v is n2 − 1
dimensional.
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The first line gives the dimension of the adjoint representation. Because
the generators A of SU(n) in the fundamental representation are anti-
hermitian n × n matrices and the trace is invariant under transposition,
we may replace tr(A∗)k by (−)k trAk. Hence, all SU(n) groups must be
rejected because the coefficient of the leading term (2n) never vanishes.
Also U(n) must be rejected because the only difference with SU(n) is the
relation Tr I = n2 − 1 which becomes Tr I = n2 for U(n).

Finally we consider the exceptional groups. Here the coefficient of
the leading term sometimes vanishes identically, due to properties of the
Casimir invariants Ck. Let us first list these Casimir invariants for the
simple Lie groups

SU(n) : C2, C3, · · · , Cn
SO(2n+ 1) : C2, C4, · · · , C2n

Sp(2n) : C2, C4, · · · , C2n

SO(2n) : C2, C4, · · · , C2n−2, Cn

G2 : C2, C6

F4 : C2, C6, C8, C12

E6 : C2, C5, C6, C8, C9, C12

E7 : C2, C6, C8, C10, C12, C14, C18

E8 : C2, C8, C12, C14, C18, C20, C24, C30 . (6.9.20)

The Casimir operators Ck for a representation R are obtained by contract-
ing a totally symmetric irreducible tensor in the adjoint representation
da1...ak with the generators in the representation R

Ck(R) = da1...akT (R)
a1
· · ·T (R)

ak
. (6.9.21)

By irreducible we mean that “traces” (contractions with lower-order in-
variant tensors) have been removed. The usual Casimir operator corre-
sponds to the quadratic Casimir operator, with dab equal to the inverse of
the Killing metric gab = fpa

qfqb
p. (According to the definition of semisim-

ple groups, these groups have an invertible Killing metric). For example,

for SU(3) one has C2(R) = gabT
(R)
a T

(R)
b and C3(R) = dabcT

(R)
a T

(R)
b T

(R)
c ,

with dabc the “d-symbols” which yield the chiral triangle anomalies in 4
dimensions28. For SO(6) one has C2 = gabTaTb, C3 = εijklmnTijTklTmn
(where Tij with i < j corresponds to Ta) and C4 = TijT

jkTklT
li.

One can construct invariant tensors by taking traces over products of

generators, tr(T
(R)
a1 · · ·T (R)

ak ) ≡ T
(R)
a1...ak . These T

(R)
a1...ak are invariant ten-

28 For SU(n) we define the d symbols by {T (F )
a , T

(F )
b } = 1

n
gab + idabcg

cdT
(F )
d , where

(F ) denotes the fundamental representation. One usually normalizes the generators

such that gab = −δab. In that case trT
(F )
a T

(F )
b = − 1

2
δab.
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sors. Again we may restrict our attention to T
(R)
a1...ak which are totally

symmetric and irreducible. Since for given k there is only at most one

such invariant tensor, we have T
(R)
a1...ak = Tk(R)da1...ak . For the quadratic

Casimir operators one has T
(R)
ab = T2(R)gab where T2(R) are called the

Dynkin labels. There is a simple relation between C2(R) and T2(R), ob-
tained by tracing C2(R)

dimG T2(R) = dimR C2(R) (6.9.22)

where dimG denotes the number of generators of the gauge group, and
dimR denotes the dimension of the representation R.

For certain representations of certain groups it may happen that for
certain k the trace trF k does not contain only a term with the irreducible
da1...ak but also products of terms with lower dimensional da1...al . Sup-
pose this happens for two representations R1 and R2. Then one finds
a relation of the form tr1F

k = a tr2F
k + b (tr2F

k−m)(tr2F
m) + · · ·. In

particular, for our purposes it will be crucial that the trace of F 6 in the
adjoint representation, denoted by TrF 6, does not contain a term with
the maximal Casimir invariant da1...a6 . As we now discuss in more detail,
this means that TrF 6 factorizes, and factorization will permit the con-
struction of counterterms which cancel anomalies. The trace TrF 6 can
be written in terms Casimir invariants which are irreducible and totally
symmetric invariant tensors in the adjoint representation. For example,
for SO(n) one should symmetrize TrTa1 · · ·Ta6 and remove traces to ob-
tain C6. (The Kronecker symbol δab is an invariant tensor of SO(n)). For
other groups one should subtract contractions with all invariant tensors
if they exists. Then TrF 6 becomes a polynomial in the invariant tensors
da1···ak contracted with curvatures F a1 . . . F ak . Next note that TrF k con-
tains a term with da1···ak if the latter exists, but the coefficient of this
term may vanish.

Consider now E8. Since it has no Casimir invariants of rank less than 8
except the quadratic Casimir invariant, it follows that TrF 6 must factorize
into a constant times (TrF 2)3. For E7 one will still be left with a term
involving C6 and for E6, F4 and G2 the same situation holds. We analyze
these groups in appendix F, but we mention here that their anomalies
cannot be canceled: these groups must be rejected. So, only E8 has a
chance to be anomaly free. At this point we mention ahead of time that
from an analysis of anomalies in the purely gravitational sector it will
follow that the number of generators should be 496. Miraculously, this is
the number of generators of E8 × E8 and of SO(32). So, our analysis of
traces in the fundamental representation of the gauge groups has narrowed
the choice of the gauge groups down to E8 × E8 and SO(32).

Actually there are two further solutions. One possibility is [U(1)]496;
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here anomalies can be canceled but since it not known how to construct a
string theory which has this gauge group and also produces the Standard
Model group SU(3)× SU(2)× U(1) by some other mechanism, this case
has received little attention. Another possibility is E8 × [U(1)]248, but
again no string theory is known which can accommodate this group, and
we shall not pursue this possibility further.

Descent equations

We summarize here the construction of the consistent Yang-Mills and
gravitational anomalies in n dimensions from invariant polynomials in
n + 2 dimensions by means of the descent equations. For proofs see [2]
or [134]. The construction proceeds in 5 steps. Afterwards we shall give
examples.

1. One starts from an invariant (n + 2)-form In+2 with n even, for
example trF

n
2
+1, or trR

n
2
+1, or trR

n
2
−1trR2, or trF

n
2
−1trR2, etc. The

curvatures are defined by F = dA + AA and R = dω + ωω. Any repre-
sentation of the Yang-Mills generators can be used.

2. Since dIn+2 = 0 (easy to prove, using dF = [F,A] and dR = [R,ω]
and cyclicity of the trace), In+2 is closed and therefore exact, In+2 =

dω
(0)
n+1 (closure implies exactness, at least locally in n + 2 dimensions).

The (n+ 1)-form ω
(0)
n+1 is the Chern-Simons term.

3. The gauge variation of the Chern-Simons term is an exact form

δgauge ω
(0)
n+1 = dω(1)

n where ω(1)
n = trΛd(...) . (6.9.23)

The proof of this relation can be found in [2]. This shows that the Chern-
Simons term is invariant under rigid (constant Λ) gauge transformations,
and the Chern-Simons action (the integrated Chern-Simons term) is in-
variant under infinitesimal gauge transformations (if there are no bound-
aries).

4. The consistent anomaly G is given by

G(Λ) = (n+ 2)

∫

ω(1)
n . (6.9.24)

Note that G is linear in the local gauge parameter Λ(x). To indicate
this we write G(Λ). Because we can choose Λ(x) nonvanishing only in
a small region, the integral is always well defined. If one begins with a
compact n+ 1 dimensional manifold B whose boundary is n-dimensional
spacetime Σ, then the gauge variation of the Chern-Simons term in B is
the consistent anomaly in Σ

δgauge

∫

B
ω

(0)
n+1 =

∫

Σ
ω(1)
n . (6.9.25)

247



5. The consistent anomaly G(Λ) must satisfy the consistency condi-
tions29

δgauge(Λ1)G(Λ2)− δgauge(Λ2)G(Λ1) = G([Λ1,Λ2]) . (6.9.26)

The reason is that the consistent anomaly is the response of the effective
action Γ under a gauge variation:

G(Λ) = δgauge(Λ)Γ =

∫

dx
(

δgauge(Λ)Aaµ(x)
) δ

δAaµ(x)
Γ . (6.9.27)

The consistency conditions state that two ordinary derivatives δ
δAaµ

of the

effective action Γ commute. Let us prove thatG in (6.9.25) indeed satisfies
the consistency conditions in (6.9.26). Imagine that the n-dimensional
space Σ over which G ≡ ∫Σ g is integrated is the boundary of a (n + 1)-

dimensional ball B. Then, using that dg = δgauge ω
(0)
n+1, we obtain

G(Λ) =

∫

B
dg(Λ) = δgauge(Λ)

∫

B
ω

(0)
n+1 . (6.9.28)

Since [δgauge(Λ1), δgauge(Λ2)] = δgauge([Λ1,Λ2]), the consistency condi-
tions are satisfied.

Let us now give two examples; these examples will be used in the con-
struction of the counterterms.

Example 1: d = 2.
In this case one begins with I4 = trF 2 (or TrF 2; it does not matter
which representation one uses for the descent equations). Then the Chern-
Simons form is

ω
(0)
3 = tr(FA− 1

3
A3) . (6.9.29)

Since δgauge ω
(0)
3 = d(trΛdA), as one readily verifies by using δgaugeA =

DΛ = dΛ + [A,Λ] and δgaugeF = [F,Λ], we find

ω
(1)
2 = trΛdA . (6.9.30)

So the consistent anomaly in 2 dimensions is

G(Λ) = 4

∫

d2x trΛdA . (6.9.31)

The consistency conditions reduce to
∫

d2x
(

tr(Λ2dDΛ1)− tr(Λ1dDΛ2)
)

=

∫

d2x tr([Λ1,Λ2]dA) (6.9.32)

29 In the BRST formalism one replaces Λ by a ghost c. Then the BRST variation
removes the terms G([Λ1,Λ2]) on the right hand side and the consistency condi-
tions reduce to the statement that the consistent anomaly must be BRST invariant:
QG(c) = 0.
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which is clearly true since dd = 0, and

trΛ2d[A,Λ1]− trΛ1d[A,Λ2]

= 2tr[Λ1,Λ2]dA− trAd[Λ1,Λ2]

= tr[Λ1,Λ2]dA+ d(tr[Λ1,Λ2]A) . (6.9.33)

Example 2: d = 6.
We start from I8 = trF 4. Then the Chern-Simons term is

ω
(0)
7 = tr

[

(dA)3A+
8

5
(dA)2A3 +

4

5
dAA2dAA+ 2dAA5 +

4

7
A7
]

= tr
[

F 3A− 2

5
F 2A3 − 1

5
FA2FA+

1

5
FA5 − 1

35
A7
]

. (6.9.34)

One may check that dω
(0)
7 = trF 4. To compute the gauge variation of this

expression, all terms due to δgaugeA = [A,Λ] and δgauge F = [F,Λ] cancel
in the trace due to cyclicity, and one only needs to use δgaugeA = dΛ.
One finds that

δgauge ω
(0)
7 = tr[F 3dΛ + · · ·] = dtr[ΛdAdAdA+ · · ·] . (6.9.35)

Since δgauge ω
(0)
7 = dω

(1)
6 one obtains

ω
(1)
6 = trΛd(dAdAA+ · · ·) (6.9.36)

and the consistent anomaly is now

G(Λ) = 8

∫

d6x trΛd(dAdAA+ · · ·) . (6.9.37)

The reader may complete the terms denoted by ellipses, but we shall not
need the explicit form of these terms.

Cancellation of pure gravitational anomalies
The covariant purely gravitational anomalies due to spin 3/2 gravitinos

and spin 1/2 gauginos and a spin 1/2 dilatino were given in (6.8.4) –
(6.8.6). The gaugino consists of dimG spin 1/2 fields, because gauginos
are in the adjoint representation. The hexagon graphs correspond to
terms with six curvatures, and extracting an overall minus sign we get

Angrav = (dimG− 1)An(1/2) +An(3/2)

= (dimG− 1)

[
1

5670
t6 +

1

4320
t2t4 +

1

10368
t32

]

+

[(

− 4

45
+

9

5670

)

t6 +

(
1

20
+

9

4320

)

t2t4

+

(

− 1

144
+

9

10368

)

t32

]

=
dimG− 496

5670
t6 +

dimG+ 224

4320
t2t4 +

dimG− 64

10368
t32 (6.9.38)

249



where tn = tr yn and y = R̃/4π. (All fields are real, so we should add
an overall factor 1/2, but at this point we are not interested in overall
factors). As we explained before, products of traces have a chance of being
canceled. Hence, since trR̃6 is nonvanishing (it is easy to write down a
10×10 antisymmetric matrix A for which trA6 is nonvanishing), we must
restrict the number of generators dimG of the gauge group G by

dimG = 496 . (6.9.39)

The remaining terms then simplify considerably

Angrav = c trR̃2
[

trR̃4 +
1

4
(trR̃2)2

]

(6.9.40)

where the constant c (c = 1/6) does not interest us at this point. We want
now to apply the descent equations to find the consistent anomaly and the
counterterm, but for this we must first find the invariant 12-form I12 from
which to start. One obtains I12 by replacing R̃ by R in Angrav; indeed,
it will reproduce the leading terms in Angrav as we shall see. Thus,

I12 = c trR2
[

trR4 +
1

4
(trR2)2

]

. (6.9.41)

Since dI12 = 0, I12 itself is dω
(0)
11L where

ω
(0)
11L = α cω

(0)
3L

[

trR4 +
1

4
(trR2)2

]

+ (1− α)c trR2
[

ω
(0)
7L +

1

4
ω

(0)
3L trR2

]

. (6.9.42)

As a check note that dω
(0)
3L = trR4 and d(ω

(0)
7L + 1

4ω
(0)
3L trR2) equals trR4 +

1
4(trR2)2, so we have a free parameter α in ω

(0)
11L. We now show that as

far as cancellation of anomalies by counterterms is concerned, any value
of α can be taken.

Since the terms proportional to α are annihilated by d, they are d-exact.

(They are given by αd(−ω(0)
3Lω

(0)
7L )). Since any term dX in ω

(0)
11L = ...+dX

will lead to a term δgaugeX in the anomaly which can be removed by a
counterterm ∆L = −X, any choice of α will be allowed. We shall impose
Bose symmetry (α = 4/12) because this will yield an expression for the
consistent anomaly whose leading term agrees with the leading term of
the covariant anomaly

ω
(0)
11L =

c

12

[

4ω
(0)
3L

(

trR4+
1

4
(trR2)2

)

+8trR2
(

ω
(0)
7L +

1

4
ω

(0)
3L trR2

)]

. (6.9.43)
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The gauge variation of this Chern-Simons term is then the following
exact form

δgauge ω
(0)
11L = dω

(1)
10L

=
4c

12
dω

(1)
2L

(

trR4 +
1

4
(trR2)2

)

+
8c

12
d
(

ω
(1)
6L trR2 +

1

4
ω

(1)
2L (trR2)2

)

. (6.9.44)

Hence the consistent anomaly (with all subleading terms included) reads

Gcons = c′
∫

dx
[

ω
(1)
2L

(

trR4 +
1

4
(trR2)2

)

+ 2
(

ω
(1)
6L +

1

4
ω

(1)
2L trR2

)

trR2
]

.

(6.9.45)

Let us now compare this result with the covariant anomaly in (6.9.40)
by expanding R̃ij = Rij − 2(Diξj −Djξi) and taking the terms linear in
(Diξj −Djξi)

Gcov = c′′
∫

dx
[

(trDξR)(trR4 +
3

4
(trR2)2) + 2(trDξR3)trR2

]

. (6.9.46)

Since the leading term in ω
(1)
2L and (trDξR) are ΛdA and Dξdω, respec-

tively, they agree if we note that A = ω for the Lorentz group, and identify

Λ with Dξ. Similarly, ω
(1)
6L and trDξR3 agree as far as the leading terms

are concerned. Hence the consistent and covariant anomalies agree, and
this was done by fixing α according to Bose symmetry.

The counterterm whose variation is equal to minus the consistent anomaly,
is given by

∫

∆Lgrav = c′
∫

[αB(trR4 + β(trR2)2) + γω
(0)
3Lω

(0)
7L ] (6.9.47)

where the constants α, β and γ are still to be determined. To construct
the gauge variation of this counterterm, one must first discuss how the
2-form B transforms.

In the N = 1 supergravity theory coupled to Yang-Mills theory, the

action contains the modified field strength H = dB + ω
(0)
3Y . Supersym-

metry requires this combination [120, 133], but we can rescue Yang-Mills

gauge invariance by defining that δgaugeB = −ω(1)
2Y . We now extend the

definition of δgaugeB to include a term ω
(1)
2L because then we shall be able

to cancel anomalies
δgaugeB = ω

(1)
2L − ω

(1)
2Y . (6.9.48)

Although we shall not need it, let us mention that this suggests also to
introduce a modified field strength

H = dB + ω
(0)
3Y − ω

(0)
3L . (6.9.49)
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It is invariant both under gauge transformations and under local Lorentz
transformations. One then finds from

∫
dH = 0 over a compact space

that
∫
(trR2− trF 2) = 0. This is used for Kaluza-Klein compactifications

to Calabi-Yau manifolds.
With the gauge variation of B fixed, we can now construct the varia-

tion of the counterterm. It varies into the following purely gravitational
expression

δ∆Lgrav = c′[αω(1)
2L (trR4 + β(trR2)2) + γdω

(1)
2Lω

(0)
7L + γω

(0)
3L dω

(1)
6L ] (6.9.50)

where we used that δgaugeB = ω
(1)
2L + · · ·. Partially integrating to make

curvatures out of the Chern-Simons terms yields

δ∆Lgrav = c′[αω(1)
2L (trR4 + β(trR2)2)− γ(ω(1)

2L trR4 − ω(1)
6L trR2)] (6.9.51)

Let us now compare this expression with the consistent anomaly in (6.9.46).
Choosing −α+ γ = 1, γ = −2 and αβ = −3/4, the variation of the coun-
terterm cancels the gravitational consistent anomaly. Hence, the purely
gravitational anomalies can always be canceled by a suitable counterterm,
as long as the gauge group G has 496 generators.

Cancellation of pure Yang-Mills anomalies
We now consider the opposite case, namely the pure Yang-Mills anoma-

lies (anomalies due to Yang-Mills gauge transformations which only de-
pend on Yang-Mills fields). The covariant Yang-Mills anomalies due to
hexagon graphs with a gaugino in the loop are proportional to TrF̃ 6. We
already discussed that for SO(32) the anomaly factorizes into (trF̃ 2)(trF̃ 4)
where the trace tr is now over the defining (vector) representation. Hence,
we start from I12 = trF 2trF 4 and obtain the Chern-Simons term in 11
dimensions by extracting d

ω
(0)
11Y = αω

(0)
3Y trF 4 + (1− α)ω

(0)
7Y trF 2 . (6.9.52)

Bose symmetry sets α = 4
12 and (1−α) = 8

12 , but this time we keep α to
see where it ends up. The consistent anomaly is then

Gcons =

∫

dx
[

αω
(1)
2Y trF 4 + (1− α)ω

(1)
6Y trF 2

]

. (6.9.53)

The counterterm is now of the form

∆LYM = aB(trF 4 + b(trF 2)2) + cω
(0)
3Y ω

(0)
7Y . (6.9.54)

where the constants a, b and c are to be determined. Variation yields

δgauge ∆LYM = [−aω(1)
2Y (trF 4 + b(trF 2)2) + c(dω

(1)
2Y ω

(0)
7Y + ω

(0)
3Y dω

(1)
6Y )]

= [−aω(1)
2Y (trF 4 + b(trF 2)2)− cω(1)

2Y trF 4 + cω
(1)
6Y trF 2] . (6.9.55)
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where we have used δgaugeB = −ω(1)
2Y . Hence, for a+ c = α, c = α−1 and

b = 0, the Yang-Mills anomalies are also canceled. These equations have
a solution for any α. Hence, the purely gauge (Yang-Mills) anomalies
can be canceled for SO(32). In appendix F we obtain the same result for
E8 × E8.

Cancellation of mixed anomalies: the complete counterterm

Finally, we consider mixed anomalies. In fact, as explained before,
we consider all anomalies together. The covariant anomalies come from
An3/2(ψµ), An1/2(χ) and An1/2(λ), but only An1/2(λ) depends on F̃ .
The purely gravitational anomalies are recorded in (6.8.4), (6.8.5) and

(6.8.6). We need to multiply the result for An1/2 in (6.8.4) by TreF̃ − 1

where the −1 refers to the dilatino. We absorb a factor − i
2π into each R̃

and F̃ . The total result for the terms which contribute to the anomaly in
10 dimensions reads

An3/2(ψµ) +An1/2(χ) +An1/2(λ) =

=

∫

dx
{(

− 4

45
+

9

5670

)

tr(R̃/8π)6

+
( 1

20
+

9

4320

)

tr(R̃/8π)2tr(R̃/8π)4

+
(

− 1

144
+

9

10368

)

(tr(R̃/8π)2)3

+
[

1 +
1

12
tr(R̃/8π)2 +

1

360
tr(R̃/8π)4 +

1

288
(tr(R̃/8π)2)2

+
1

5670
tr(R̃/8π)6 +

1

4320
tr(R̃/8π)4tr(R̃/8π)2

+
1

10368
(tr(R̃/8π)2)3

]

×
[

(dimG− 1)− 1

2
Tr(F̃ /4π)2 +

1

24
Tr(F̃ /4π)4

− 1

720
Tr(F̃ /4π)6

]}

. (6.9.56)

The −1 in (dimG − 1) accounts for An1/2(χ). The mixed anomalies

involve TrF̃ 2 and TrF̃ 4. Substituting dimG = 496, but not yet using any
other properties of the gauge group, yields for the total covariant anomaly
in ten dimensions

An(total) =
1

(4π)6

∫

dx
1

48

[
1

8
trR̃2trR̃4 +

1

32
(trR̃2)3

−
( 1

240
trR̃4 +

1

192
(trR̃2)2

)

TrF̃ 2
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+
1

24
trR̃2TrF̃ 4 − 1

15
TrF̃ 6

]

. (6.9.57)

In order that the total set of anomalies can be canceled by a counterterm
involving the field B, the anomaly must factorize as follows

An(total) =
1

(4π)6

∫

dx
1

48
(trR̃2 + atrF̃ 2)X (6.9.58)

where a is a constant, and X is a polynomial in R̃ and F̃ . This is only
possible if TrF̃ 6 factorizes: it should be possible to write it as a linear
combination of TrF̃ 4 TrF̃ 2 and (TrF̃ 2)3

TrF̃ 6 = bTrF̃ 4TrF̃ 2 + c (TrF̃ 2)3 . (6.9.59)

Note that so far we have only been dealing with traces Tr over the ad-
joint representation. Later we shall express the traces TrF 4 and TrF 2 for
SO(32) in terms of the traces trF 4 and trF 2 over the defining represen-
tation. For E8 ×E8 all results will be given in the adjoint representation
because in that case the adjoint representation is equal to the defining
representation.

The purely gravitational and purely Yang-Mills terms can always be
factorized when (6.9.59) holds, and then the anomaly must be of the
form

An ∼ (trR̃2 + aTrF̃ 2)
[1

8
trR̃4 +

1

32
(trR̃2)2 + d trR̃2TrF̃ 2

− b

15a
TrF̃ 4 − c

15a
(TrF̃ 2)2

]

. (6.9.60)

Note that there appears a new constant in X, namely d.
In order that this formula also correctly reproduces the cross terms, the

following conditions should be satisfied

R4F 2 terms : − 1

240
=
a

8
⇒ a = − 1

30

R2F 4 terms : − 1

24
= − b

15a
⇒ b =

1

48

(R2)2F 2 terms : − 1

192
=

a

32
+ d ⇒ d = − 1

240

R2(F 2)2 terms : 0 = − c

15a
+ ad ⇒ c = − 1

(120)2
. (6.9.61)

Hence, anomaly cancellation is only possible if

TrF̃ 6 =
1

48
TrF̃ 4TrF̃ 2 − 1

1202
(TrF̃ 2)3 . (6.9.62)
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If this relation holds, factorization of the anomaly is possible, and the
anomaly is given by

An =
1

(4π)6

∫

dx
(

trR̃2 − 1

30
TrF̃ 2

)[1

8
trR̃4 +

1

32
(trR̃2)2

− 1

240
trR̃2TrF̃ 2 +

1

24
TrF̃ 4 − 1

7200
(TrF̃ 2)2

]

. (6.9.63)

We now specialize to the case SO(32) for which

TrF 2 = 30trF 2

TrF 4 = 24trF 4 + 3(trF 2)2

TrF 6 = 15trF 4trF 2 . (6.9.64)

Expressing TrF 6 in terms of TrF 4 and TrF 2, one finds that (6.9.59) is sat-
isfied. In terms of the traces over the fundamental representation (6.9.63)
reduces to

I12 =
1

(4π)6

∫

dx

[
1

48

(

trR̃2 − trF̃ 2
)

(

trF̃ 4 − 1

8
trF̃ 2trR̃2 +

1

8
trR̃4 +

1

32
(trR̃2)2

)]

. (6.9.65)

Note that no term with ((trF̃ 2)3 is present. The consistent anomaly is
thus

G ∼
∫

dx
[

β(ω
(1)
2Y − ω

(1)
2L )

(

trF 4 − 1

8
trF 2trR2 +

1

8
trR4 +

1

32
(trR2)2

)

+(1− β)(trF 2 − trR2)
(

ω
(1)
6Y −

α

8
ω

(1)
2Y trR2 − (1− α)

8
trF 2ω

(1)
2L

+
1

8
ω

(1)
6L +

1

32
ω

(1)
2L trR2

)]

(6.9.66)

where α and β are free parameters.
We can now construct the counterterm. We have a two-parameter

solution, depending on α and β, but using Bose symmetry we set α = 1
2

and β = 1
3 . Then the counterterm is given by

∆Ltotal ∼
1

3
B
[

trF 4 +−1

8
trF 2trR2 +

1

8
trR4 +

1

32
(trR2)2

]

+
2

3
(ω3Y − ω3L)X7 (6.9.67)

where dX7 = X8 with X8 the coefficient of 1
3B

X7 = ω7Y −
1

16
ω3Y trR2 − 1

16
trF 2ω3L +

1

8
ω7L +

1

32
ω3LtrR2 . (6.9.68)
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Variation of this counterterm indeed cancels the consistent anomaly. Note
that the transformation rule of B is fixed by requiring that anomalies

cancel; it reads δB = ω
(1)
2L −ω

(1)
2Y , and for example δB = ω

(1)
2L +ω

(1)
2Y , would

have made anomaly cancellation impossible.

6.10 The SO(16)× SO(16) string

As a last example of anomaly cancellation in a field theory we consider
the SO(16) × SO(16) heterotic string theory. The massless sector leads
to a field theory in 10 dimensions with gauge group SO(16)×SO(16) and
chiral spin 1/2 fermions in the 16×16 vector representation of SO(16)×
SO(16), and further antichiral spin 1/2 fermions in the 128× 1 and the
1×128 spinor representations of SO(16)×SO(16). Hence there are again
Yang-Mills anomalies and gravitational anomalies, and we shall apply the
general formulas to check whether these anomalies cancel. The anomalies
are contained in the expressions

(

tr16×16 e
−iF̃ /4π − tr128×1 e

−iF̃ /4π − tr1×128 e
−iF̃ /4π

)

× exp

[
1

2
tr log

( −iR̃/8π
sinh(−iR̃/8π)

)]

(6.10.1)

Denoting tr16×16 − tr128×1 − tr1×128 by Tr, the relevant terms are

Antotal = (TrI)An1/2 −
(1

2
TrF̃ 2

)( 1

16

)( 1

360
TrR̃4 +

1

288
(TrR̃2)2

)

+
( 1

24
TrF̃ 4

)( 1

48
TrR̃2

)

− 1

720
TrF̃ 6 . (6.10.2)

First of all we note that TrI = 256 − 128 − 128 = 0, hence the purely
gravitational anomalies cancel: −32 = 16(−2). Also TrF 2 = 0 but to
prove this relation, and deduce other relations for TrF 4 and TrF 6, we
must first express TrF p into tr16F

p where by tr16F
p we mean the trace

over the defining vector representation of SO(16). We shall now first
derive expressions for TrF 2, TrF 4 and TrF 6, and then return to the issue
whether one can find a counterterm to cancel anomalies.

To begin with, consider the spinor representation of SO(16), denoted
by its dimension 128. We claim that

tr128F
2 = 16tr16F

2 . (6.10.3)

To show this, we consider the generator A for a rotation in the x-y plane,
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corresponding to A = 1
2γ1γ2 in the spinor representation

A16 =







0 1 0 .
−1 0 0 .
0 0 0 .
. . . .







16×16

A128 =
1

2
γ12 . (6.10.4)

Since chiral spinors of SO(16) have 1
2256 = 128 component, while trA2

16 =

−2, and trA2
128 = −1

4128, we see that (6.10.3) holds: −32 = 16(−2).
Consider next TrF 2. It contains tr16×16F

2 = 16(tr16F
2
1 + tr16F

2
2 ) and

tr128×1F
2 = 16tr16F

2
1 and tr1×128F

2 = 16tr16F
2
2 . Thus indeed TrF 2 = 0.

We turn to the expression TrF 4. It contains the following contributions

tr16×16F
4 = 16tr16F

4
1 + 16tr16F

4
2 + 6tr16F

2
1 tr16F

2
2 (6.10.5)

note that F = F1 ⊗ I2 + I1 ⊗ F2, hence F 4 contains cross terms)

tr128×1F
4 = 16tr128F

4
1 , tr1×128F

4 = 16tr128F
4
2 . (6.10.6)

To proceed we must express tr128F
4 into tr16F

4. We do this as follows:
we assume

tr128F
4 = atr16F

4 + b(tr16F
2)2 (6.10.7)

and evaluate these expression for two suitable generators. The first choice
is obviously given by (6.10.4). The second choice of a suitable generator
is the simultaneous rotation in the x-y and x-z plane

A′
16 =





0 1 1
−1 0 0
−1 0 0





16×16

A′
128 =

1

2
γ1γ2 +

1

2
γ1γ3 . (6.10.8)

The first generator in (6.10.4) satisfies

(A128)
4 =

1

16
, (A16)

2 = −I , (A16)
4 = I (6.10.9)

and (6.10.7) yields 1
16128 = 2a + 4b. The second generator satisfies

(A′
128)

2 = −1
2 , hence

(A′
128)

4 =
1

4
, (A′

16)
2 =





−2 0 0
0 −1 −1
0 −1 −1





16×16

(A′
16)

4 =





4 0 0
0 2 0
0 2 0





16×16

. (6.10.10)
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Then (6.10.7) yields 1
4128 = 8a + 16b. From these relations one finds a

and b

tr128F
4 = −8tr16F

4 + 6(tr16F
2)2 . (6.10.11)

From here it is easy to obtain TrF 4 in terms of tr16F
4 and tr16F

2.
Namely

TrF 4 = tr16×16F
4 − tr128F

4
1 − tr128F

4
2

= 24tr16F
4
1 + 24tr16F

4
2 − 6(tr16F

2
1 )2 − 6(tr16F

2
2 )2

+6tr16F
2
1 tr16F

2
2 . (6.10.12)

The last expression we need is the relation between TrF 6 and trF 6, trF 4

and trF 2. We claim that

TrF 6 = atr16F
6 + btr16F

4tr16F
2 + c(tr16F

2)3 (6.10.13)

with a = 16, b = −15 and c = 15
4 . This relation follows again by pos-

tulating this expression and then evaluating it for 3 suitable generators.
As such we take the rotation in the x-y plane in (6.10.4), the simultane-
ous rotation in the x-y and x-z planes given in (6.10.8), and finally the
simultaneous rotation in the x-y, x-z and y-z planes

A′′
16 =





0 1 −1
−1 0 1
1 −1 0





16×16

(A′′
16)

2 =





−2 1 −1
1 −2 1
1 1 −2





16×16

(A′′
16)

4 =





6 −3 −3
−3 6 −3
−3 −3 6





16×16

A′′
128 =

1

2
γ1γ2 +

1

2
γ1γ3 +

1

2
γ2γ3 (A′′

128)
4 = −3

4
. (6.10.14)

One finds then the following 3 equations for a, b, c

(−1

4
)3128 = a(−2) + b(−4) + c(−8)

(−1

2
)3128 = a(−16) + b(−32) + c(−64)

(−3

4
)3128 = a(−54) + b(−108) + c(−216) . (6.10.15)

This yields indeed

tr128F
6 = 16tr16F

6 − 15tr16F
4tr16F

2 +
15

4
(tr16F

2)3 . (6.10.16)
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From here it is straightforward to evaluate TrF 6

TrF 6 = tr16×16F
6 − tr128F

6
1 − tr128F

6
2

=
{

16tr16F
6
1 + 15tr16F

4
1 tr16F

2
2 + 15tr16F

2
1 tr16F

4
2 + 16tr16F

6
2

}

−
{

16tr16F
6
1 − 15tr16F

4
1 tr16F

2
1 +

15

4
(tr16F

2
1 )3

+16tr16F
6
2 − 15tr16F

4
2 tr16F

2
2 +

15

4
(tr16F

2
2 )3
}

= 15(tr16F
4
1 + tr16F

4
2 )(tr16F

2
1 + tr16F

2
2 )

−15

4

[

(tr16F
2
1 )3 + (tr16F

2
2 )3
]

(6.10.17)

Note that the dangerous non-factorized terms tr16F
6
1 and tr16F

6
2 have

canceled.
Finally we add up all contributions to the anomalies

Antotal = (
1

24
TrF̃ 4)(

1

48
TrR̃2)− 1

720
TrF̃ 6 . (6.10.18)

We expect this expression factorizes. Indeed does factorize

Antotal =
1

24× 48

[

TrR̃2 − tr16F̃
2
1 − tr16F̃

2
2

]

tr16F̃
4 . (6.10.19)

From here on, we follow the same path as before: we omit the twiddles
in Antotal to obtain I12, extract an exterior derivative d to obtain the 11
dimensional Chern-Simons term, and vary it to obtain the integrand for
the consistent anomaly. One expression for the latter is

G =
1

3
c

∫

dx (ω
(1)
2L − ω

(1)
2Y1
− ω(1)

2Y2
)TrF 4

+
2

3
c

∫

dx [trR2 − tr16F
2
1 − tr16F

2
2 ]ω

(1)
6Y (6.10.20)

where TrF 4 = dX7 and δX7 = dω
(1)
6Y . The last term is rewritten as

2
3c
∫
dx (ω

(0)
3L − ω

(0)
3Y1
− ω(0)

3Y2
δX7. The counterterm whose variation cancel

G is then given by

∆Ltotal = BTrF 4 − 2

3
(ω

(0)
3L − ω

(0)
3Y1
− ω(0)

3Y2
)X7 . (6.10.21)

Thus the gravitational, Yang-Mills and mixed anomalies of the Majorana-
Weyl fermions in the SO(16)× SO(16) string can be canceled by a suit-
able counterterm. This is a nontrivial result because the string is not
finite (there are infrared divergences due to dilaton tadpoles). However,
it is modular invariant (large-diffeomorphism anomalies on the worldsheet
cancel).
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7
Trace anomalies from ordinary and susy

quantum mechanics

We now turn to a second class of anomalies, namely the trace anoma-
lies. These are anomalies in the local scale invariance of actions for scalar
fields, spin 1/2 fields and certain vector and antisymmetric tensor fields
(vectors in n = 4, antisymmetric tensors with two indices in n = 6, etc.).
From a technical point of view, these anomalies are very interesting, be-
cause one needs higher loop graphs on the worldline to compute them.
In fact, due to the β dependence of the measure of the quantum mechan-
ical path integrals, A = (2πh̄β)−

n
2 , one needs (n2 + 1)-loop calculations

in quantum mechanics for the one-loop trace anomalies of n dimensional
quantum field theories. Already in 2 dimensions one needs 2-loop graphs,
and in 4 dimensions 3-loop graphs. Another interesting technical point
regards the fermions. In the path integral they now have antiperiodic
boundary conditions. Originally we devised a path integral approach in
which fermions were still treated by an operator formalism, and in which
actions are operator valued [24]. We shall instead present here a complete
path integral approach, with ordinary actions, in which the fermions are
described in the path integral by Grassmann fields. The results we get
agree with the results in the literature for trace anomalies obtained by
different methods (see [121], for example).

We shall separately discuss the anomalies for spin 0, spin 1/2 and spin
1 fields.

7.1 Trace anomalies for scalar fields in 2 and 4 dimensions

The classical action of a massless real scalar field ϕ in n dimensions, which
we take for definiteness with Euclidean signature, is Weyl invariant after
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one adds a so-called improvement term to the action

S =

∫

dnx
√
g
1

2

(

gµν∂µϕ∂νϕ− ξRϕ2
)

, ξ =
(n− 2)

4(n− 1)

δWϕ =
1

4
(2− n)σ(x)ϕ , δW gµν = σ(x)gµν . (7.1.1)

The proof of the Weyl invariance is easy if one uses δWR = −σR + (n−
1)DµDµσ, see appendix A. In the QFT path integral we integrate over

ϕ̃ = g1/4ϕ and then one obtains a functional Z of the metric

Z[gµν ] =

∫

[dϕ̃]e−
1
h̄
S[ϕ̃,gµν ] . (7.1.2)

The field ϕ̃ transform under Weyl rescaling as δW ϕ̃ = 1
2σϕ̃ in any di-

mension. Under an infinitesimal local scale transformation of the met-
ric, combined with a compensating change of the integration variable
ϕ̃ → ϕ̃ + δW ϕ̃ such that the action remains invariant, one obtains the
following Jacobian

AnW (spin 0) =

∫

dnx δW g
µν δ

δgµν
Z[g] =

1

2h̄

∫

dnx
√
gσgµν〈Tµν〉

= lim
β→0

Tr
∂δW ϕ̃

∂ϕ̃
e−βR = lim

β→0
Tr

1

2
σe−βR . (7.1.3)

We defined the stress tensor by Tµν = 2√
g

δ
δgµν S. Classically S[gµν +

δW gµν , ϕ̃ + δW ϕ̃] = S[gµν , ϕ̃], hence on-shell the trace of the classical

stress tensor vanishes, 2δW gµν
δ

δgµν
S =

√
gσTµ

µ = 0. At the quantum

level, there is an anomaly, proportional to the regulated trace of the unit
operator. The regulator R is fixed by requiring that it preserves Einstein
invariance and reads

R = −g−1/4∂µ
√
ggµν∂νg

−1/4 − ξR . (7.1.4)

This regulator can be derived from the algorithm of [75]: one adds a
mass term

√
gm2ϕ2 to the Weyl invariant action which preserves Einstein

symmetry but breaks Weyl invariance, and one constructs R from the
terms quadratic in quantum fields. The fact that one cannot write down
a mass term which is simultaneously Einstein and Weyl invariant implies
that there may be an anomaly in these symmetries. In fact, we shall see
that an anomaly appears in even dimensions. We choose again to preserve
the Einstein symmetry, thus locating the anomaly in the Weyl symmetry.

To evaluate the anomaly we shall use the same quantum mechanical
approach as for the chiral anomalies, and consider

AnW (spin 0) = lim
β→0

TrσS(x)e−
β
h̄
Ĥ
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Ĥ =
1

2
g−1/4pi

√
ggijpjg

−1/4 − 1

2
h̄2ξR (7.1.5)

where σS(x) = 1
2σ(x) is the product of the Weyl weight of ϕ̃ and the Weyl

rescaling parameter.
Trace anomalies for scalars in 2 dimensions

To evaluate the trace (local scale) anomaly for a real scalar field in n
dimensions, we use the transition element discussed in part one of this
book. In terms of σS = 1

2σ we obtain

AnW (spin 0, n = 2) = TrσS(x)e−
β
h̄
H

=

∫ n∏

i=1

dxi0

√

g(x0)σS(x0)〈x0|e−
β
h̄
H |x0〉

=

∫

dx0

√

g(x0)σS(x0)
1

(2πβh̄)n/2
〈e− 1

h̄
S(int)〉 , (7.1.6)

−1

h̄
Sint = − 1

βh̄

∫ 0

−1

1

2

{

gij(x0 + q)− gij(x0)
}

(q̇iq̇j + bicj + aiaj)

−βh̄
∫ 0

−1

(1

8
R+

1

8
gijΓik

lΓjl
k − 1

2
ξR
)

dτ . (7.1.7)

One can use any regularization discussed in the first part of this book
and for definiteness we have chosen time slicing, so that we have included
the corresponding counterterm in the action. In n = 2 dimensions the
action for a scalar is Weyl invariant by itself, ξ = 0, which has enormous
implications for string theory. We must extract the term proportional
to βh̄ from 〈exp(− 1

h̄S
int)〉 to cancel the factor (βh̄)−1 in the measure.

Since propagators are proportional to βh̄ while vertices are proportional
to (βh̄)−1 or βh̄, we need tree graphs with one vertex proportional to βh̄,
or graphs with one more propagator than vertices.

To facilitate the computation, we introduce normal coordinates in which
the symmetrized derivatives ∂(i∂j...∂lΓmn)

p at x = x0 vanish. Then

gij(x0 + q) = gij(x0)−
1

3
Riklj(x0)q

kql − 1

6
DmRiklj(x0)q

mqkql

−Rmniklj(x0)q
mqnqkql + · · · (7.1.8)

where

Rmniklj =
1

20
DmDnRiklj +

2

45
RikmpRljn

p . (7.1.9)

All Riemann curvatures in this chapter are curvatures in terms of Christof-
fel symbols, and not spin connections. We refer to appendix A for defini-
tions.
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Only the 2-loop graph with the topology of the number 8, and the
tree graph with the R and ΓΓ vertex (but with Γijk(x0) = 0 in normal
coordinates) contribute. We find

AnW (spin 0, n = 2) =

∫

d2x0

√

g(x0)σS(x0)
1

(2πβh̄)
∫ 0

−1

[(

− 1

2

1

βh̄

)〈

− 1

3
Rikljq

kql(q̇iq̇j + bicj + aiaj)
〉

+ (−βh̄)1

8
R

]

dτ

=

∫
d2x

2π

√

g(x)σS(x)

×
[
1

6

1

(βh̄)2
Riklj

∫ 0

−1
〈qkql(q̇iq̇j + bicj + aiaj)〉dτ − 1

8
R

]

. (7.1.10)

The propagators 〈qi(σ)qj(τ)〉 = −βh̄gij(z)∆(σ, τ) with ∆(σ, τ) = σ(τ +
1)θ(σ−τ)+τ(σ+1)θ(τ−σ) and 〈ai(σ)aj(τ)〉+〈bi(σ)cj(τ)〉 = −βh̄gij(z)••∆(σ, τ)
with ••∆(σ, τ) = ∂2

σ∆(σ, τ) help in canceling the factor (βh̄)−2.
The two-loop graph yields, using Rikljg

kl = −Rij , the following integral
over equal-time propagators

=
1

6
R

∫ 0

−1
[−∆(•∆• + ••∆) + •∆ •∆] dτ

=
1

6
R

∫ 0

−1

(

−τ(τ + 1) + (τ +
1

2
)2
)

dτ =
1

24
R . (7.1.11)

We used here time slicing, according to which •∆•(σ, τ) = 1− δ(σ, τ) and
••∆(σ, τ) = δ(σ, τ) where δ(σ, τ) is a Kronecker delta at equal times σ =
τ . Furthermore, the θ(σ, τ) in •∆(σ, τ) = τ − θ(σ, τ) equals 1

2 at equal
time contractions. One obtains then the nonsingular integrals in (7.1.11).
Other schemes give the same result. For example in mode regularization
the ΓΓ term, though different, again does not contribute since Γij

k(x0) =
0 in normal coordinates, and using the properties of ∆(σ, τ) in mode
regularization to partially integrate, see (3.3.3), one finds the same result.

Altogether one finds in terms of σS = 1
2σ

AnW (spin 0, n = 2) =

∫
d2x0

2π

√

g(x0)σS(x0)

(−1

12

)

R . (7.1.12)

Trace anomalies for scalars in 4 dimensions
For a real scalar field we now must evaluate

AnW (spin 0, n = 4) =

∫

d4x
√

g(x0)σS(x0)
1

(2πβh̄)2

〈

exp

[

− 1

βh̄

1

2

∫ 0

−1

(

− 1

3
Riklj(x0)q

kql − 1

6
DmRiklj(x0)q

mqkql
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−Rmniklj(x0)q
mqnqkql + . . .

)

(q̇iq̇j + bicj + aiaj)dτ

−βh̄
∫ 0

−1

(
1

8
R+

1

8
gijΓik

lΓjl
k − 1

2
ξR

)

dτ

] 〉

(7.1.13)

where ξ = 1/6. Clearly we now need the terms proportional to (βh̄)2

from 〈exp(− 1
h̄S

int)〉. In particular, one finds a contribution from the ΓΓ
vertices, due to expanding both Γ(x0+q) into qm∂mΓ(x0) and contracting
with an equal-time loop. One must also expand the counterterm with the
scalar curvature terms to order q2, and contract the two q fields to a
loop. Since there are no 3-point vertices in normal coordinates (because
in normal coordinates Γij

k(x0) = 0), we do not need the 5-point vertices.
However, one needs the 6-point vertices which yield “clover-leaf graphs”,
and 4-point vertices which yield “3-bubble graphs” and “eye-graphs”.
Finally, there are also disconnected diagrams: one-half of the square of
the n = 2 result; however with ξ = 1

6 in n = 4 their contribution cancels,
as one may easily check from (7.1.7) and (7.1.11)

1

2!

(

+ •
)2

= 0 . (7.1.14)

The other contributions, together with the graphs from which they are
obtained, follow. First there are the contributions from two Rqq(q̇q̇+bc+
aa) vertices. These yield “three-bubble graphs”

=
1

72
(−βh̄)2

[

−1

6
R2
ij

]

(7.1.15)

and “eye-graphs”

=
1

72
(−βh̄)2

[

−1

4
R2
ijkl

]

. (7.1.16)

Then there are the contributions from one Rq4(q̇q̇+bc+aa) vertex. They
yield various “clover-leaf graphs”

=
1

72
(−βh̄)2

[
3

20
D2R+

1

10
R2
ijkl +

1

15
R2
ij

]

. (7.1.17)
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The propagators in these graphs denote q or a, b, c ghost propagators.
Finally there are the one-loop graph contributions from the R and ΓΓ

vertices; using ξ = 1/6 they yield

=

{

−βh̄
24

(
1

2
D2R

)

− βh̄

8
gmngij∂mΓik

l∂nΓjl
k
}

×(−βh̄)
{∫ 0

−1
∆(τ, τ)dτ

}

. (7.1.18)

Since in Riemann normal coordinates

∂mΓik
l =

1

3
(∂mΓik

l + ∂iΓkm
l + ∂kΓmi

l)

+
1

3
(∂mΓik

l − ∂iΓmkl) +
1

3
(∂mΓik

l − ∂kΓiml)

=
1

3
Rmik

l +
1

3
Rmki

l (7.1.19)

we obtain for (7.1.18), using
∫ 0
−1 ∆(τ, τ)dτ = −1

6 ,

(

−1

6

)

(βh̄)2
[

1

48
D2R+

1

72
(Rmikl +Rmkil)(R

milk +Rmlik)

]

. (7.1.20)

Using the cyclic identity for the Riemann curvatures to obtainRmilkR
mlik =

1
2(Rmilk)

2, the Rijkl
2 terms acquire a factor (−1−1/2−1/2+1/2) = −3/2

and the one-loop graphs yield

=
1

72
(βh̄)2

[

−1

4
D2R+

1

4
R2
ijkl

]

. (7.1.21)

Adding all terms, the contributions from the eye-graphs cancel those
from the ΓΓ term, and the R2

ijkl terms only come from the clover-leaf
graphs. We obtain

AnW (spin 0, n = 4) =

∫
d4x

(2π)2

√

g(x)σS(x)
[

aR2
ijkl + bR2

ij + cR2 + dD2R
]

(7.1.22)
with σS = σ/2 and

a =
1

720
, b = − 1

720
, c = 0, d = − 1

720
. (7.1.23)

This is the correct result.
Let us now compare this calculation based on time slicing with the

equivalent one in dimensional regularization (DR). In DR the counterterm
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is covariant, VDR = 1
8R, so that we should drop the ΓΓ term the in last

line of (7.1.13), but of course the Feynman graphs should be evaluated in
DR. The counterterm graph needs no regularization and dropping the ΓΓ
term we get

=
1

72
(βh̄)2

[

−1

4
D2R

]

. (7.1.24)

All the other graphs give in DR the same contribution as in TS, except
for the “eye-graph” which yield

=
1

72
(βh̄)2 3R2

ijklK (7.1.25)

where

K =

∫ 0

−1
dτ

∫ 0

−1
dσ {∆2[(•∆•)2−(∆••)2]−2 ∆ •∆ ∆• •∆•+(•∆)2(∆•)2} . (7.1.26)

This graph should vanish because the ΓΓ term is absent, and the “eye-
graph” canceled the ΓΓ in time slicing. Clearly the first three terms in
K need regularization (also recall that in the sum of the first two terms
divergences cancel). Using DR we get for the first three terms

∫

dD+1t

∫

dD+1s {∆2[(µ∆ν)
2 − (∆νν)(∆µµ)]− 2 ∆(µ∆)(∆ν)(µ∆ν)}

=

∫ ∫

{2 ∆(∆ν)
2(µµ∆)− 4 ∆(µ∆)(∆ν)(µ∆ν)}

=

∫ ∫

{4 ∆ (∆ν)
2(µµ∆) + 2 (µ∆)2(∆ν)

2}

→ 4

∫ 0

−1
dτ ∆(∆•)2|τ + 2

∫ 0

−1
dτ

∫ 0

−1
dσ (•∆)2(∆•)2 . (7.1.27)

We have twice integrated by parts in the first term of the first line so
that the second term due to the ghosts is canceled. In the second line
we have integrated by parts the derivative µ in (∆ν)(µ∆ν) = 1

2 µ(∆
2
ν).

Finally in the third line we have used that µµ∆(t, s) = δD+1(t, s), used
the Dirac delta function in D + 1 dimensions, and then removed the
regulating parameter D → 0. The final expression in the fourth line
is then evaluated at D = 0. In fact the limiting values of the various
functions (like (∆•)|τ ) given as Fourier series have no ambiguities when
multiplied together and can be safely used inside integrals. Adding to
this result the last term in (7.1.26) and using (3.3.16 – 3.3.20) we get

K = 4

∫ 0

−1
dτ ∆(∆•)2|τ+3

∫ 0

−1
dτ

∫ 0

−1
dσ (•∆)2(∆•)2 = − 1

30
+

1

30
= 0 . (7.1.28)
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Thus the “eye diagrams” vanish and the total result for the anomaly is
the same as obtained before in time slicing. We see that DR is computa-
tionally simpler, since one does not have to expand the noncovariant ΓΓ
counterterm in normal coordinates (which is rather laborious in higher
dimensions). This simplification turns out to be quite useful for the cal-
culation at the forth-loop order, needed to calculate the trace anomaly
for a scalar in 6 dimensions. The QM path integral method [67, 68], again
produces the expected result [122].

7.2 Trace anomalies for spin 1/2 fields in 2 and 4 dimensions

For complex spin 1/2 fields (Dirac fields) in n dimensions, the action

S =

∫ √
gψ̄γmem

µDµψd
nx ; Dµψ = ∂µψ +

1

4
ωµ

mnγmγnψ (7.2.1)

is locally scale invariant in any dimension under1

δWψ =
1

4
(1− n)σ(x)ψ, δW em

µ = −1

2
σ(x)em

µ . (7.2.2)

We use again an Euclidean signature so that ψ and ψ̄ are independent
complex Grassmann variables. So for fermions there is no improvement
term.

We use ψ̃ = g1/4ψ and ˜̄ψ = g1/4ψ̄ as integration variables in the path
integral. In any dimension δW ψ̃ = 1

4σ(x)ψ̃. We introduce the parameter

σF = −2
1

4
σ = −1

2
σ (7.2.3)

which contains the Weyl weight of ψ and ψ̄ and the minus sign for the
fermionic Jacobian. One finds then

AnW (Dirac) = lim
β→0

TrσF (x)e−βR . (7.2.4)

The regular R is now the square of the Dirac operator as in (6.1.7). Hence

Ĥ =
1

2
g−1/4πi

√
ggijπjg

−1/4 − 1

8
h̄2R

πi = pi −
ih̄

2
ωiabψ

a
1ψ

b
1 . (7.2.5)

To evaluate this anomaly, we will have to use fermions with antiperi-
odic boundary conditions.They yield the propagators obtained in previous

1 The proof is easy: for constant σ the weights clearly cancel, while for local σ(x) the
terms with ∂µσ produced by Dµψ cancel if one uses (A.19).
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chapters. The general formula for the spin 1/2 trace anomaly is

AnW (Dirac) =

∫

dnx0

√

g(x0)σF (x0)
2n/2

(2πβh̄)n/2
〈e− 1

h̄
Sint〉 (7.2.6)

with

−1

h̄
Sint = − 1

βh̄

∫ 0

−1
dτ

1

2

[

gij(x0 + q)− gij(x0)
]

(q̇iq̇j + bicj + aiaj)

− 1

βh̄

∫ 0

−1
dτ

1

2
q̇iωiabψ

a
1ψ

b
1

−βh̄
∫ 0

−1
dτ

1

8

(

gijΓik
lΓjl

k +
1

2
gijωiabωj

ab
)

(7.2.7)

where the ψa1 are Majorana spinors with propagator 〈ψa1(σ)ψb1(τ)〉 =
1
2βh̄δ

abε(σ − τ). We have normalized the expectation value such that

it yields unity when there are no interactions, 〈1〉 = 1. The factor 2n/2

in the measure is needed since the trace over the fermionic states should
yield 2n/2 (we consider here even n dimensions).

There is no term with the scalar curvature in the last line in (7.2.7)
because the Riemann term from the Weyl reordering of the bosonic part
of the Hamiltonian cancels with the R term from expanding /D /D, while
for fermions there is no improvement term.
Trace anomalies for fermions in 2 dimensions

The trace anomaly for complex spin 1/2 fields is thus given by

AnW (Dirac, n = 2) =

∫

d2x0

√

g(x0)σF (x0)
2

2πβh̄
〈

exp
[

− 1

βh̄

∫ 0

−1

1

2
{gij(x0 + q)− gij(x0)}

(

q̇iq̇j + bicj + aiaj
)

dτ

− 1

βh̄

∫ 0

−1

1

2
q̇iωiabψ

a
1ψ

b
1dτ − βh̄

∫ 0

−1

1

8

(

ΓΓ +
1

2
ωω
)

dτ
]〉

(7.2.8)

The terms with ψ1 do not contribute if one uses normal coordinates in
which ωiab(x0) = 0, because the graph with the topology of the number
8 with one q loop and one ψ1 loop vanishes (ωiab is traceless). So, also
the spin 1/2 anomaly in n = 2 dimensions comes only from the purely
bosonic sector, namely from the two-loop graph in (7.1.11) which yielded
1
24R

AnW (Dirac n = 2) = 2

∫
d2x

2π

√

g(x)σF (x)
1

24
R . (7.2.9)

Hence, as well known from string theory, the trace anomaly for real spin
0 fields and complex spin 1/2 fields in two dimensions are equal (recall
that σF = −σS).
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Trace anomalies for fermions in 4 dimensions
Next we consider the trace anomaly for Dirac fermions in n = 4 dimen-

sions. The expression for the anomaly to be evaluated is given by

AnW (Dirac n = 4) =

∫

d4x0

√

g(x0)σF (x0)
22

(2πβh̄)2
〈e− 1

h̄
Sint〉 (7.2.10)

where as before the expectation value is unity if Sint vanishes, while the
factor 22 yields the dimensions of the fermionic part of the Hilbert space.
Using normal coordinates, in which ∂(jωi)ab(x0) = 0, Sint reduces to

−1

h̄
Sint = − 1

βh̄

∫ 0

−1

(

− 1

3
Rikljq

kql − 1

6
DmRikljq

mqkql

−Rmnikljqmqnqkql + . . .
)

(q̇iq̇j + bicj + aiaj)dτ

−1

4

1

βh̄

∫ 0

−1

(

q̇iqjRjiab (ω(x0))ψ1
aψ1

b + . . .
)

dτ

−βh̄
8

∫ 0

−1

(

gijΓik
lΓjl

k +
1

2
gijωiabωj

ab
)

dτ . (7.2.11)

Curvatures depending on Γik
l are denoted with indices i, j, k, l, while cur-

vatures depending on ωiab are denoted by Rijab. Since only squares of
each appear below and they only differ by a sign, one needs not be careful
about the sign difference, but using a different notation helps to identify
the corresponding Feynman graphs.

The total contribution to 〈e− 1
h̄
Sint〉 is a sum of the following terms:

(i) the contributions from the first two lines in (7.2.11). They are the
sum of (7.1.15), (7.1.16) and (7.1.17)

+ + �
� �

=
(βh̄)2

720

[

−3

2
R2
ijkl −R2

ij +
3

2
D2R

]

(7.2.12)

(ii) the contributions from the ΓΓ and ωω terms; they yield�
= −βh̄

8

[
1

9
(−3

2
)R2

ijkl +
1

8
R2
ijab

]

(−βh̄)
( ∫ 0

−1
∆(τ, τ)dτ

)

=
−(βh̄)2

192
R2
ijkl

(

− 1

6

)

(7.2.13)
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(iii) disconnected graphs: one-half of the square of the 2-loop graphs in
(7.1.14)

1

2!

( )2

=
(βh̄)2

2!

(

− 1

24
R
)2

(7.2.14)

(iv) the contribution from the graphs with fermions

=
1

32

1

(βh̄)2
(7.2.15)

×
〈 ∫ 0

−1
(q̇iqjRjiabψ

a
1ψ

b
1)(σ)dσ

∫ 0

−1
(q̇kqlRlkcdψ

c
1ψ

d
1)(τ)dτ

〉

= −(βh̄)2

16
R2
ijab

∫ 0

−1

∫ 0

−1
(•∆•∆− •∆∆•)

1

4
ε2(σ − τ)dσdτ .

Solid lines lines indicate scalars and dotted lines denote fermions.
Other contractions vanish since Rijab is traceless in ij and in ab.
However, this graph vanishes, since •∆∆• = ∆ and with time slicing
•∆• = 1− δ(σ − τ), Hence

•∆•∆− •∆∆• = •∆•∆−∆ = −δ(σ − τ)∆(σ, τ) (7.2.16)

and δ(σ − τ)ε2(σ − τ) vanishes according to our rule that δ(σ − τ)
is a Kronecker delta. Hence, again no fermion loops contribute in
time slicing.

The final result is

AnW (Dirac, n = 4) =

∫
d4x

(2π)2

√

g(x)σF (x)4

[ (−3/2

720
+

1

288

)

R2
ijkl

− 1

720
R2
ij +

1

2!

(

− 1

24
R

)2

+
1

480
D2R

]

=

∫
d4x

(2π)2

√

g(x)σF (x)

[

− 7

1440
R2
ijkl −

1

180
R2
ij +

1

288
R2 +

1

120
D2R

]

(7.2.17)

This is the correct result.
Let us check once more this final result by employing dimensional reg-

ularization (DR) instead of time slicing (TS). In DR the fermions do not
modify the counterterm which came form the bosonic sector, and thus
the last line of the action in (7.2.11) is now absent. As we have seen from
the previous computation in TS, apart form the coefficient 22 (which is
due to the normalization of the fermionic path integral) only the coun-
terterm 1

2ωω gave an additional contribution with respect to the anomaly
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of a scalar field with the coupling ξ = 1
4 . In DR the 1

2ωω counterterm
is absent and thus the extra contribution can only come from a nonvan-
ishing fermionic loop. This fermionic loop is the one in (7.2.16) that was
vanishing in TS

= −(βh̄)2

16
R2
ijab

∫ 0

−1
dτ

∫ 0

−1
dσ [•∆• ∆− •∆∆•] ∆2

AF (7.2.18)

where we recall that all functions ∆ and ∆AF are functions of τ and
σ (recall that ∆AF is antisymmetric, ∆AF (τ, σ) = −∆AF (σ, τ), in fact
∆AF (τ, σ) = 1

2ε(τ − σ) where ε(x) is the sign function ε(x) = x
|x|).

We regulate the first term in (7.2.18) with DR. The second contribution
in (7.2.18) does not need regularization and could be directly computed
integrating the sums of the Fourier mode expansions defining the prop-
agators, but we carry it along anyway. In order to apply DR we must
generalize propagators and interactions as discussed in chapter 4. We
obtain

∫ 0

−1
dτ

∫ 0

−1
dσ [•∆• ∆− •∆∆•]∆2

AF →

→
∫

dD+1t

∫

dD+1s {(µ∆ν ∆− µ∆ ∆ν) tr[−γµ∆AF (t, s)γν∆AF (s, t)]

=

∫

dD+1t

∫

dD+1s ∆ν ∆ tr[2 (γµ
∂

∂tµ
∆AF (t, s))

︸ ︷︷ ︸

δD+1(t,s)

γν∆AF (s, t)]

−2

∫

dD+1t

∫

dD+1s µ∆ ∆ν tr[−γµ∆AF (t, s)γν∆AF (s, t)]

= −2

∫

dD+1t

∫

dD+1s µ∆ ∆ν tr[−γµ∆AF (t, s)γν∆AF (s, t)]

→ −2

∫ 0

−1
dτ

∫ 0

−1
dσ •∆∆•∆2

AF =
1

24
(7.2.19)

where in the second line we integrated by parts the µ derivative in µ∆ν ,
which when acting on fermions produces a delta functions (“equation of
motion terms”). The delta function is integrated in D+1 dimensions and
gives a vanishing contribution as ∆AF (0) = 0. The remaining terms are
then computed at D → 0, where •∆∆• = ∆ and ∆2

AF = 1
4 .

This gives the same contribution as the ωω term in (7.2.13), and thus
one obtains the correct answer for the trace anomaly also in dimensional
regularization.
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7.3 Trace anomalies for a vector field in 4 dimensions

The Maxwell action is Weyl invariant in 4 dimensions if one does not
transform Aµ but only the metric. However, to quantize one must add a
gauge fixing term and a ghost action, which themselves are not Weyl
invariant. We compute the trace anomaly from the general formula

An = Tr (σV e
−β
h̄
RV ) + Tr (σgh e

−β
h̄
Rgh) where the second term yields

the contribution from the ghosts. The sum of the contributions from
the Maxwell field and its ghosts will satisfy the Wess–Zumino consistency
conditions, justifying to some extent this procedure of adding the contri-
butions from Weyl noninvariant actions to compute the Weyl anomaly of
a classically Weyl invariant system. The sum of the gauge fixing term and
the ghost action is BRST exact, and as the vacuum is BRST invariant,
one could rigorously justify our procedure2. This approach has been used
before [121, 123], and we follow it here. We take as path integral variables
Ãm = g1/4em

µAµ and represent again the vector indices by ghosts, just
as in the case of the Yang–Mills anomalies of section 7.2.

The classical Maxwell action

L = −1

4

√
ggµρgνσFµνFρσ (7.3.1)

is Weyl invariant under δW gµν = σ(x)gµν and δWAµ = 0. For definite-

ness we use again an Euclidean signature. The field Ãm = g1/4em
µAµ

transforms as

δW Ãm =
1

2
σÃm in n = 4 . (7.3.2)

As gauge fixing term we use the Fermi-Feynman term in curved space
L = −1

2

√
g(DµAµ)

2 with DµAµ = gµν(∂µAν − Γµν
ρAρ). The gauge fixed

action then becomes

L = −1

2

√
g(DµAν)(DρAσ)g

µρgνσ +
1

2
AµR

µνAν (7.3.3)

where Rµν is defined in appendix A. As regulator in the space with Ãm
we obtain

(RV )mn = (g−1/4Dµ
√
ggµνDνg

−1/4)mn +Rmn (7.3.4)

where both Dµ and Dν only contain a spin connection for the vector index

of Ãm
(Dµ)

m
n = ∂µδ

m
n + ωµ

m
n . (7.3.5)

2 This situation reminds one of the quantization of susy Yang–Mills theories, where
in x-space gauge-fixing and ghost terms break susy. One can use an extension of
the Batalin-Vilkovisky method to derive Ward identities which treat susy and gauge
symmetry on a par [124].
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The Hamiltonian for the corresponding quantum mechanical model is
given by

ĤV =
1

2
g−1/4πi

√
ggijπjg

−1/4 − h̄2

2
c∗mR

m
nc
n

πi = pi − ih̄(c∗m ωimncn) . (7.3.6)

where the vector ghosts satisfy the equal-time canonical commutation re-
lations {cn, c∗m} = δnm. We continue to denote the indices for the internal
vector space by m,n, p, q, ... and the indices for the coordinates and mo-
menta in the QM model by i, j, k, l, .... This is useful for keeping track
of the various contributions, but there is of course no intrinsic difference
between both kinds of indices.

In the path integral we need the Hamiltonian in Weyl ordered form.
However, as explained in section 7.2 where we evaluated the traces over
the ghosts, one should not Weyl order the ghosts, rather products
of c∗ωc correspond to products of matrices. One obtains

HV =

(
1

2
gij π̂iπ̂j

)

W
+
h̄2

8
(R+ gijΓkilΓ

l
jk)−

h̄2

2
(c∗mR

m
nc
n) . (7.3.7)

The first three terms are the same as for a scalar, except that π con-
tains c∗ωc terms. We repeat that one should not Weyl order the terms
proportional to (c∗ωc) and (c∗ωc)(c∗ωc).

The anomaly comes from a trace over the space of Ãm and a trace over
the space of the ghosts. We first discuss the former. The contribution to
the anomaly from Ãm reads

An(Ãm) = TrσV e
−β
h̄
ĤV =

∫

d4x0

√

g(x0)σV (x0)
1

(2πβh̄)2
〈e− 1

h̄
SintV 〉
(7.3.8)

where σV = 1
2σ and

−1

h̄
SintV = − 1

βh̄

∫ 0

−1

1

2
[gij(x0 + q)− gij(x0)](q̇

iq̇j + bicj + aiaj) dτ

−
∫ 0

−1
q̇i(c∗m ωi

m
nc
n) dτ +

βh̄

2

∫ 0

−1
c∗mR

m
nc
n dτ

−βh̄
8

∫ 0

−1

[

R+ gijΓik
lΓjl

k
]

dτ . (7.3.9)

We need all graphs of order (βh̄)2 to cancel the factor (βh̄)−2 in the
Feynman measure. The q and a, b, c propagators are of order βh̄, but the
〈cmc∗n〉 ghost propagator is βh̄-independent

〈qi(σ)qj(τ)〉 = −βh̄gij(x0)∆(σ, τ)

〈cm(σ)c∗n(τ)〉 = δmn θ(σ − τ) . (7.3.10)
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As already explained in section (7.2) we only get trees for the ghosts,
and integration over the Grassmann variables at the front and at the back
of the tree leads to a trace over the indices at the ends of the tree.

Using Riemann normal coordinates, the expansion of gij(x0+q)−gij(x0)
contains terms with 2,3,4... q-fields, leading to 4,5,6... point functions for
the q fields and a, b, c ghosts. The contributions from this term alone were
already determined when we calculated the trace anomaly of a scalar
in 4 dimensions. There are no contributions from the product of this
vertex and the second vertex to order (βh̄)2 because the Riemann tensor
is traceless, but products of the first and last vertex lead to disconnected
graphs whose contribution is proportional to the product of the two-loop
graph for a scalar in n = 2 with the scalar curvature.

The next vertex is the q̇(c∗ωc) vertex. In a frame were ωi
m
n(x0) = 0,

and ∂(jωi)
m
n(x0) = 0, it becomes

−
∫ 0

−1
qiq̇j(c∗m

1

2
Rij

m
nc
n) dτ . (7.3.11)

The square of this vertex yields an R2
ijmn term. To order (βh̄)2 there are

no contributions from the product of this vertex with the vertices in the
last line of (7.3.9).

Finally, in the last line of Sint the (c∗Rc) vertex can either be squared
to yield an R2

mn term, or the Rmn inside (c∗Rc) can be expanded to
second order in q to yield a D2R term, or it can be multiplied with the
−1

8(R + ΓΓ) terms to yield a R2 term. The −1
8(R + ΓΓ) terms can be

squared to to yield an R2 term, or the R and ΓΓ terms can be expanded
to second order to yield a D2R and an R2

ijkl term.

The contributions proportional to (h̄β)2 are as follows3

+ + �
� �

= 4

[

− 1

480
R2
ijkl −

1

720
R2
ij +

1

480
D2R

]

( )2

=
1

2!
4

(
1

24
R

)2

( )(� + � ) =

(
1

24
R

)(
1

2
R− 4

8
R

)

= 0

3 Recall that one obtains an integral
∫
dχghdη̄ghP

gh
η̄,χ while the transition element con-

tains a factor eη̄ghχ
gh

. For the interactions which are independent of the ghost fields

the factor η̄ghχ
gh, obtained by expanding eη̄ghχ

gh

, saturates the integral over dχgh
and dη̄gh, and one obtains a factor Tr I = 4.
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= − 1

48
R2
ijmn

� =
1

8
R2
mn

=
1

24
D2R

(

�

) (
�

)

= − 1

16
R2

(
�

)2
= 4

1

2!

(
1

8
R

)2

=
1

32
R2

= 4

[

− 1

96
D2R+

1

288
R2
ijkl

]

(7.3.12)

Dotted lines indicate ghosts, and external ghosts are traced over. To eval-
uate the fourth diagram we used that

∫ ∫
dσdτ (•∆•∆−•∆∆•)θ = − ∫ ∫ dσdτ δ(σ−

τ)∆(σ − τ)θ(σ − τ) = − 1
2

∫
dτ τ(τ + 1) = 1

12 .
The QFT Faddeev-Popov ghosts, denoted by B and C, contribute, too.

Their action reads

L(ghosts) =
√
g BgµνDµDνC . (7.3.13)

The regulator which follows from this action is the same as for scalar fields
but without improvement term. Under rigid scale transformation one has
in 4 dimensions δWB = −1

2σB and idem for C. Defining B̃ = g1/4B and

C̃ = g1/4C one has δW B̃ = 1
2σB̃ and δW C̃ = 1

2σC̃. Defining a parameter
σgh which takes into account the minus sign in the Jacobian for both
ghosts

σgh = (−2)
1

2
σ (7.3.14)

we obtain

An(ghosts) = Trσgh e
−β
h̄
Rgh

=

∫

d4x0

√

g(x0)σgh(x0)
1

(2πβh̄)2
〈e−

1
h̄
Sintgh 〉 (7.3.15)

where

−1

h̄
Sintgh = − 1

βh̄

∫ 0

−1

1

2
[gij(x0 + q)− gij(x0)](q̇

iq̇j + bicj + aiaj) dτ

− βh̄

8

∫ 0

−1

[

R+ gijΓik
lΓjl

k
]

dτ . (7.3.16)
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The contributions of the ghosts are not multiplied by a factor 4 because
there is no integration over internal symmetry ghosts (but since σgh =

(−2)1
2σ, the ghosts still subtract two degrees of freedom from Ãm). One

finds to order (βh̄)2 the following contributions from the Faddeev–Popov
ghosts to the trace anomaly

+ +
� � �

=

[

− 1

480
R2
ijkl −

1

720
R2
ij +

1

480
D2R

]

(

+ � )2

=
1

2!

(
1

24
R− 1

8
R

)2

=
1

288
R2

= − 1

96
D2R+

1

288
R2
ijkl (7.3.17)

Adding the contributions of the ghosts to the contributions of the vec-
tor, not forgetting the factor −2 from σgh(x0) = −2σV (x0), one obtains
the total result

AnW (Maxwell, n = 4) = (7.3.18)

=

∫
d4x

(2π)2

√

g(x)σV (x)

[

− 13

720
R2
ijkl +

11

90
R2
ij −

5

144
R2 +

1

40
D2R

]

.

This is the correct result. The coefficient of D2R is scheme dependent
(a counterterm R2 can change it) but we find agreement with DeWitt
(second reference in [8]), while Duff finds a coefficient − 1

60 .

7.4 String inspired approach to trace anomalies
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Conclusions and Summary
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Appendix A

Riemann curvatures

To define the Riemann curvatures in terms of a connection Γij
k or spin

connection ωi
a
b, we begin with the “vielbein postulate”

Diej
a ≡ ∂ieja − Γij

kek
a + ωi

a
be
b
j = 0 . (A.1)

This equation has a geometrical meaning. Consider a vector field vi(x)
with curved indices, and use the vielbein field ei

a(x) to construct a cor-
responding vector field va(x) ≡ vi(x)ei

a(x) with flat indices. Parallel
transport of vi(x) along a distance ∆xj with an arbitrary connection
field Γij

k(x) leads to a vector field ṽi(x + ∆x) at x + ∆x defined by
ṽi(x + ∆x) = vi(x) − vk(x)∆xjΓjk

i(x). Similarly parallel transport of
va(x) along the distance ∆xj with an arbitrary connection field ωi

a
b(x)

yields a vector field ṽa(x + ∆x) at x + ∆x defined by ṽa(x + ∆x) =
va(x) − ∆xjωj

a
b(x)v

b(x). The vielbein postulate in (A.1) states that
ṽi(x) and ṽa(x) are related to each other the same way as vi(x) and va(x)
are related, ṽa(x + ∆x) ≡ ṽi(x + ∆x)ei

a(x + ∆x). Indeed, expansion to
first order in ∆x reproduces (A.1). Thus there is only one vector field
which one can write as vi(x) or as va(x), and only one connection, which
is given by Γij

k(x) if one writes the vector field as vi(x), or given by
ωi
a
b(x) if one uses va(x) to represent the vector field. In other words, the

operations of parallel transport and conversion from curved to flat indices
(or vice-versa) commute.

We next require that length is preserved by parallel transport. The
square of the length of a vector va is by definition vaδabv

b in Euclidean
space (or vaηabv

b in Minkowski space). Length is preserved if and only if
ωiab ≡ ωicbδca is antisymmetric in ab. This we shall always assume to be
the case. For a vector vi we define the square of the length by vigijv

j where
the metric is related to the vielbein by gij = ei

aej
bδab in Euclidean space

(and gij = ei
aej

bηab in Minkowski space). The connection Γij
k preserves
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length if it satisfies Γij;k + Γik;j − ∂igjk = 0 (with Γij;k ≡ Γij
lglk), which

is equivalent to the antisymmetry of ωiab if the vielbein postulate holds.
The covariant derivatives of vectors are proportional to the difference

of the original vector field and the parallel transported vector field

vi(x+ ∆x)− ṽi(x+ ∆x) = ∆xjDjv
i(x)

⇒ Djv
i = ∂jv

i + Γjk
ivk

va(x+ ∆x)− ṽa(x+ ∆x) = ∆xjDjv
a(x)

⇒ Djv
a = ∂jv

a + ωj
a
bv
b . (A.2)

By requiring that Dj(wiv
i) = ∂j(wiv

i) = Dj(wav
a) one also derives that

Djwi = ∂jwi − Γji
kwk and Djwa = ∂jwa + ωja

bwb.
From (A.1) we can express ωi

a
b in terms of Γij

k and ei
a. If Γij

k has an
antisymmetric piece 1

2(Γij
k − Γji

k) = Tij
k, this piece is called the torsion

tensor. If there is no torsion, Γij
k is the usual Christoffel symbol

{
k
i j

}

=
1

2
gkl(∂igjl + ∂jgil − ∂lgij) (A.3)

as one easily shows by using Digjk = 0. Torsion preserves length if Tijl ≡
Tij

kgkl is totally antisymmetric. However, until (A.13) we do not make
the assumption that torsion is absent.

From [Di, Dj ]e
a
k = 0 one finds

[Di, Dj ]e
a
k = −Rijkl(Γ)eal +Rij

a
b(ω)ek

b = 0 (A.4)

where evidently

Rijk
l(Γ) = ∂iΓjk

l + Γim
lΓjk

m − (i↔ j) (A.5)

Rij
a
b(ω) = ∂iωj

a
b + ωi

a
cωj

c
b − (i↔ j) . (A.6)

Hence
Rijk

a(Γ) = Rij
a
k(ω) . (A.7)

The variation of a curvature is the covariant derivative of the variation
of the corresponding connection

δRijk
l(Γ) = DiδΓjk

l −DjδΓik
l

δRij
a
b(ω) = Diδωj

a
b −Djδωi

a
b (A.8)

where

DiδΓjk
l = ∂iδΓjk

l − Γij
mδΓmk

l − Γik
mδΓjm

l + Γim
lδΓjk

m

Diδωj
a
b = ∂iδωj

a
b − Γij

mδωm
a
b + ωi

a
cδωj

c
b + ωib

cδωj
a
c . (A.9)
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From (A.6) it follows that Rijab(ω) is antisymmetric in its last two
indices. Then (A.7) can also be written as

Rijka(Γ) = −Rijka(ω) (A.10)

The Ricci tensor is defined by

Rij = Rikj
k(Γ) = Rik

k
j(ω) (A.11)

and the scalar curvature is given by

R = gijRij . (A.12)

From now on in this appendix we assume that Γij
k is the Christoffel

symbol. At the linearized level gij ' ηij + hij , and

Rlin
ijkl(Γ) =

1

2
(∂i∂khjl + ∂j∂lhik − ∂j∂khil − ∂i∂lhjk) (A.13)

Rlin
ij =

1

2
(−∂ihj − ∂jhi + ∂i∂jh+ hij) (A.14)

where hi = ∂jhij , h = ηijhij while = ηij∂j∂j . Clearly

Rlin = −∂ihi + h = (−∂i∂j + ∂k∂kη
ij)hij . (A.15)

In section 2.6 we need the full nonlinear expression of R in terms of
g ≡ gijgkl∂k∂lgij , ∂

jgj ≡ gikgjl∂k∂lgij , ∂kg ≡ gij∂kgij , g
i ≡ gijgkl∂kglj ,

and gk ≡ gij∂igjk. Straightforward evaluation yields

R =
1

2
gikgjl(∂i∂kgjl − ∂i∂lgjk − ∂j∂kgil + ∂j∂lgik) + (∂g)(∂g) terms

= g − ∂jgj −
3

4
(∂kgij)

2 +
1

2
(∂igjk) ∂jgik +

1

4
(∂jg)

2 − (∂jg) g
j + g2

j .

(A.16)

In the section 2.6 we also need the full nonlinear expression for the Rie-
mann curvature in the form Rikjl(Γ) = 1

2(∂i∂jgkl+3 terms)+(∂g)2 terms.
Straightforward evaluation yields

Rikjl(Γ) =
1

2
(∂i∂jgkl − ∂i∂lgkj − ∂k∂jgil + ∂k∂lgij)

+(Γij
mΓkl

n − Γkj
mΓil

n)gmn . (A.17)

As a check we note that the expression on the right-hand side has all the
symmetries of the left-hand side: antisymmetry in each pair, symmetry
under pair exchange, and the cyclic identity.
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For the calculations of trace anomalies we need to know how the scalar
curvature transforms under local Weyl rescalings

δW gij = σ(x)gij

δW ei
a =

1

2
σ(x)ei

a . (A.18)

Using the vielbein postulate and (A.3), one finds

δW ωi
a
b = δW (Γij

k ek
aeb

j)− 1

2
δab ∂iσ

=
1

2
(ei

aeb
j − eibeja)∂jσ . (A.19)

Substitution into (A.8) yields then in n dimensions

δW R = −σR+ (n− 1)DiDiσ . (A.20)
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Appendix B

Weyl ordering of bosonic operators

In this appendix we discuss the concept of Weyl ordering. For a detailed
account, see for example [34].

To evaluate matrix elements of the form M = 〈z|Ô|y〉 with 〈z| and |y〉
eigenstates of the position operator x̂i and Ô(x̂, p̂) an arbitrary operator,
we first insert a complete set of momentum eigenstates I =

∫ |p〉〈p|dnp

M =

∫

〈z|Ô|p〉〈p|y〉 dnp . (B.1)

It is then very convenient to rewrite Ô as a Weyl-ordered operator ÔW ,
because, as we shall prove, one can then replace in ÔW (x̂, p̂) the operators
x̂i and p̂j by the c-number values 1

2(zi+yi) and pj , respectively. If we de-

note the corresponding function of 1
2(zi+yi) and pi by OW ((z + y)/2, p),

we can prove the following

Theorem : M =

∫

〈z|p〉OW ((z + y)/2, p) 〈p|y〉 dnp . (B.2)

We must clearly first define what the Weyl ordering is, and in particular
how to construct the operator ÔW from a given operator Ô. In this
construction we shall also need the notion of a symmetrized operator ÔS .
We shall show that in general an operator Ô can be rewritten as a sum
of the corresponding symmetrized operator ÔS and more terms

Ô = ÔS +more = ÔW . (B.3)

As the notation indicates, the operator ÔW is equal to the original opera-
tor Ô, but it is written in such a way that x̂ and p̂ appear symmetrically.

Let us first give a few examples. The operator x̂p̂ can clearly be written
as the sum of 1

2(x̂p̂+ p̂x̂) and 1
2(x̂p̂− p̂x̂). The latter term is equal to 1

2 ih̄.
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The former term is the symmetrized form of x̂p̂, so (x̂p̂)S ≡ 1
2(x̂p̂ + p̂x̂).

We then have

x̂p̂ = (x̂p̂)S +
1

2
ih̄ ≡ (x̂p̂)W , p̂x̂ = (p̂x̂)S −

1

2
ih̄ ≡ (p̂x̂)W . (B.4)

Clearly (x̂p̂)S is equal to (p̂x̂)S , but (x̂p̂)W is not equal to (p̂x̂)W . As a
second example consider the operator x̂x̂p̂p̂. Its symmetrized form, as we
shall discuss below, can be written as

(x̂x̂p̂p̂)S =
1

4
x̂x̂p̂p̂+

1

2
p̂x̂x̂p̂+

1

4
p̂p̂x̂x̂ . (B.5)

One may then check that

x̂x̂p̂p̂− (x̂x̂p̂p̂)S = 2ih̄(x̂p̂)S −
1

2
h̄2 . (B.6)

So in this example we have

x̂x̂p̂p̂ = (x̂x̂p̂p̂)S + 2ih̄(x̂p̂)S −
1

2
h̄2 ≡ (p̂x̂x̂p̂)W . (B.7)

The term 2ih̄(x̂p̂)S − 1
2 h̄

2 corresponds to the term denoted by more in
(B.3). So, as an operator (x̂x̂p̂p̂)W is equal to x̂x̂p̂p̂, but for our purposes
it is useful to use the fundamental commutation relations to write x̂x̂p̂p̂
in such a way that all x̂ and p̂ appear symmetrically, and if this is the
case we call this expression the Weyl ordered form.

In general, we call an operator Â(x̂, p̂) symmetrized, if all operator x̂i

and p̂j appear in all possible orderings with equal weights. The sym-
metrized form of monomials are produced by the formula

(αip̂i + βj x̂
j)N =

∑

mi,nj

N !
∏

i,j

1

Πmi! Πnj !
(αi)mi(βj)

nj
(

(p̂i)
mi(x̂j)nj

)

S

∑

mi +
∑

nj = N (B.8)

or, equivalently,

N !
∏

i,j

(p̂mii (x̂j)nj )S =
∏

i,j

( ∂

∂αi

)mi ( ∂

∂βj

)nj
(αip̂i + βj x̂

j)N

∑

mi +
∑

nj = N . (B.9)

We shall discuss this result by first considering one pair of variables x̂ and
p̂.
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For one set of operators p̂ and x̂ one has (omitting hats for notational
simplicity)

(xp)S =
1

2
(xp+ px) = (px)S

(x2p)S =
1

3
(x2p+ xpx+ px2)

=
1

4
(x2p+ 2xpx+ px2)

=
1

2
(x2p+ px2) . (B.10)

To derive the last two relations from the first one, one may repeatedly
use the basic identity 2xpx = x2p+ px2. More generally

(xnp)S =
1

n+ 1

n∑

l=0

xn−lpxl

=
1

2n

n∑

l=0

(

n

l

)

xn−lpxl

=
1

2
(xnp+ pxn) . (B.11)

To prove these relations one may combine the terms with xn−lpxl and
xlpxn−l and move the p’s past the xl (or past the xn−l). The commutators
then cancel again. (As is clear from (B.11), when n is even, there is a
term for which n − l = l which one should first split into two terms.
For example, for n = 2 one first rewrites 2xpx as xpx + xpx and then
the commutators [x, p]x + x[p, x] cancel again). Of course, by the same
argument one also has

(xp2)S =
1

3
(xp2 + pxp+ p2x) =

1

4
(xp2 + 2pxp+ p2x) =

1

2
(xp2 + p2x) .

(B.12)
The next term with two p’s in this series is

(x2p2)S =
1

6

( x2p2 + xpxp + xp2x + p2x2

+ pxpx + px2p

)

=
1

4
(x2p2 + 2xp2x+ p2x2)

=
1

4
(x2p2 + 2px2p+ p2x2) . (B.13)

Note that in the second line, the p2 are kept together, while in the third
line the x2 are kept together. We shall achieve this for all cases which
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follow below. To obtain this result, we wrote the second term in the first
line as 1

12(xpxp+xpxp) and used the [x, p] commutation relations for the

underlined operators; similarly for the term 1
6pxpx. Then we used that in

the remainder −xp2x+ px2p = −x[p2, x] + [p, x2]p = 0.
In a similar manner one shows that

(x3p2)S =

(

5

2

)−1

[x3p2 + ...] (10 terms)

=
1

8
(x3p2 + 3x2p2x+ 3xp2x2 + p2x3) (keeping p2 together)

=
1

4
(x3p2 + 2px3p+ p2x3) (keeping x3 together) . (B.14)

(We obtained the last line by writing the term 3x2p2x as 2
3 times 3(p2x3+

[x2, p2]x) plus 1
3 times 3(x3p2 + x2[p2, x]), and similarly for 3xp2x2, since

in this way the commutators cancel).
In general

(xnp2)S =
2

(n+ 1)(n+ 2)

n∑

l,m=0

xn−l−mpxlpxm

=
1

2n

n∑

l=0

(

n

l

)

xn−lp2xl

=
1

4
(xnp2 + 2pxnp+ p2xn) . (B.15)

The most general formula for one pair of canonical variables is then

(xmpr)S =
1

2m

m∑

l=0

(

m

l

)

xm−lprxl (keeping pr together)

=
1

2r

r∑

k=0

(

r

k

)

pr−kxmpk (keeping xm together) . (B.16)

Consider now the matrix element M = 〈z|(x̂mp̂r)S |y〉 where we re-
instated the hats. Inserting a complete set of p-states and using the
symmetrized expression with pr kept together one finds

M =

∫

〈z| 1

2m

m∑

l=0

(

m

l

)

x̂m−lp̂r|p〉〈p|x̂l|y〉 dnp

=

∫

〈z|p〉 1

2m

m∑

l=0

(

m

l

)

zm−lylpr〈p|y〉 dnp

=

∫

〈z|p〉
(
z + y

2

)m

pr〈p|y〉 dnp . (B.17)
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This is enough to prove the theorem in (B.2) because any Weyl ordered
operator is a sum of symmetrized terms (see for example (B.7)). In par-

ticular, for any Weyl-ordered hamiltonian operator ĤW (x̂, p̂) we find the
midpoint rule

〈z|ĤW (x̂, p̂)|y〉 =

∫

〈z|p〉HW

(
1

2
(z + y), p

)

〈p|y〉 dnp . (B.18)

Consider now as a particular case the operator

Ĥ =
1

2
g−1/4pig

1/2gijpjg
−1/4 . (B.19)

To write it in Weyl-ordered form we first simplify this expression by mov-
ing pi to the left and pj to the right. The result is

Ĥ =
1

2

(

pi −
1

4
ih̄∂i ln g

)

g−1/4g1/2gijg−1/4
(

pj +
1

4
ih̄∂j ln g

)

=
1

2
pig

ijpj +
h̄2

8
∂i
(

gij∂j ln g
)

+
h̄2

32
gij(∂i ln g)(∂j ln g) . (B.20)

The first term is not yet Weyl-ordered, hence we rewrite it using its sym-
metrized form, keeping the x operators in gij(x) together. The sym-
metrized form of 1

2pig
ijpj is

1

2
(pig

ijpj)S =
1

8
(pipjg

ij + 2pig
ijpj + gijpipj) . (B.21)

The difference between 1
2pig

ijpj and its symmetrized form is given by

1

2
(pig

ijpj)−
1

2
(pig

ijpj)S =
1

8
pi[g

ij , pj ] +
1

8
[pi, g

ij ]pj

=
1

8
[pi, [g

ij , pj ]] =
h̄2

8
∂i∂jg

ij . (B.22)

Hence, Ĥ reads in Weyl-ordered form

Ĥ =
1

2
(pig

ijpj)S +
h̄2

8

[

∂i∂jg
ij + ∂i(g

ij∂j ln g) +
1

4
gij(∂i ln g)(∂j ln g)

]

=
1

2
(pig

ijpj)S +
h̄2

8
(∂i∂jg

ij + g−1/4∂i(g
1/4gij∂j ln g)) . (B.23)

The last two terms can be written in terms of Christoffel symbols and
the scalar curvature. To find the coefficient of R we evaluate the leading
terms of the form ∂i∂jgkl and find with (A.15)

− h̄
2

8
gik(∂i∂jgkl)g

jl +
h̄2

8
gijgkl∂i∂jgkl + · · · =

h̄2

8
R+ · · · . (B.24)
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The final result reads

Ĥ =
1

2
(pig

ijpj)S +
h̄2

8
(R+ gijΓlikΓ

k
jl) = ĤW . (B.25)

An easy way to check the coefficient of the Christoffel term is to consider
the one-dimensional case where R vanishes. On the other hand, an easy
way to check the coefficient of the term with R is to go to a frame where
∂igjk vanishes at a given point. However, the fact that Ĥ is of the form
given in (B.25) only follows from an explicit computation.
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Appendix C

Weyl ordering of fermionic operators

In this appendix we extend the Weyl ordering of bosonic canonical vari-
ables discussed in the previous appendix to the case of fermionic canonical
variables.

Consider operators O(ψ̂a, ψ̂†
b) depending on fermionic canonical vari-

ables ψ̂a and ψ̂†
b (a, b = 1, n) which satisfy

{ψ̂a, ψ̂b} = 0 ; {ψ̂a, ψ̂†
b} = h̄δab ; {ψ̂†

a, ψ̂
†
b} = 0 . (C.1)

We define the antisymmetric ordering, which we still denote by a subscript

S, as the ordering which results if one expands (αaψ̂
a+βbψ̂†

b)
N where αa

and βb are Grassmann variables. Hence

∏

a,b

N !
(

(ψ̂a)ma(ψ̂†
b)
nb
)

S
=
∏

a,b

(
∂

∂αa

)ma ( ∂

∂βb

)nb

(αaψ̂
a + βbψ̂†

b)
N (C.2)

where N = Σma + Σnb and the order in which the ψ̂a and ψ̂†
b appear

on the left-hand side is the same as the order in which the ∂
∂αa

and ∂
∂βb

appear on the right-hand side. For example

(ψ̂aψ̂†
b)S =

1

2
(ψ̂aψ̂†

b − ψ̂
†
bψ̂

a) (C.3)

and

(ψ̂aψ̂bψ̂†
c)S =

1

6
(ψ̂aψ̂bψ̂†

c − ψ̂bψ̂aψ̂†
c − ψ̂aψ̂†

cψ̂
b + ψ̂bψ̂†

cψ̂
a

+ ψ̂†
cψ̂

aψ̂b − ψ̂†
cψ̂

bψ̂a)

=
1

3

(

ψ̂aψ̂bψ̂†
c −

1

2
ψ̂aψ̂†

cψ̂
b +

1

2
ψ̂bψ̂†

cψ̂
a + ψ̂†

cψ̂
aψ̂b

)

=
1

2
(ψ̂aψ̂bψ̂†

c + ψ̂†
cψ̂

aψ̂b)
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=
1

4
(ψ̂aψ̂bψ̂†

c − ψ̂aψ̂†
cψ̂

b + ψ̂bψ̂†
cψ̂

a + ψ̂†
cψ̂

aψ̂b) . (C.4)

As in the bosonic case one has for any function f(ψ̂)

(ψ†
aψ

†
bf(ψ))S =

1

4

(

ψ†
aψ

†
bf(ψ)± ψ†

af(ψ)ψ†
b ∓ ψ

†
bf(ψ)ψ†

a + f(ψ)ψ†
aψ

†
b

)

(C.5)

where the upper (lower) signs apply when f(ψ) is commuting (anticom-

muting). For any function g(ψ̂†) one has the equivalent results

(ψ̂aψ̂bg(ψ†))S =
1

4

(

ψ̂aψ̂bg(ψ̂†)± ψ̂ag(ψ̂†)ψ̂b ∓ ψ̂bg(ψ†)ψ̂a + g(ψ†)ψ̂aψb
)

.

(C.6)

Let us now write the N = 2 supersymmetric Hamiltonian in Weyl-
ordered form. The action in Minkowski time reads (see appendix D)

L =
1

2
gij ẋ

iẋj +
i

2
ψaα(ψ̇aα + ẋiωi

a
bψ

b
α) +

1

8
Rabcd(ω)ψaαψ

b
αψ

c
βψ

d
β (C.7)

where summation over α = 1, 2 and β = 1, 2 is understood, a = 1, . . . , n,
and i = 1, . . . , n, and ωi

a
b(x) is the spin connection. The curvature

Rabcd(ω) is defined in appendix A.
The momentum pi conjugate to xi is given by

pi = gij ẋ
j +

i

2
ωiabψ

a
αψ

b
α . (C.8)

Further, one has for a fixed value of a the relation 1
2ψ

a
αψ̇

a
α = ψ̄aψ̇

a +

total derivative, with ψa = (ψ1 + iψ2)/
√

2 and ψ̄a = (ψ1 − iψ2)/
√

2.
Then, using left derivatives to define anticommuting canonically conjugate
momenta

p(ψ)a =
∂

∂ψ̇a
S = −iψ̄a ⇒ {ψ̄a, ψb} = h̄δba . (C.9)

The classical Hamiltonian then reads

H = ẋipi + ψ̇ap(ψ)a − L

= gijpi

(

pj −
i

2
ωjabψ

a
αψ

b
α

)

+ iψ̄aψ̇a

−1

2
gij
(

pi −
i

2
ωiabψ

a
αψ

b
α

)(

pj −
i

2
ωjcdψ

c
βψ

d
β

)

− iψ̄aψ̇a

− i
2
gij
(

pj −
i

2
ωjabψ

a
αψ

b
α

)

ωicdψ
c
βψ

d
β −

1

8
Rabcdψ

a
αψ

b
αψ

c
βψ

d
β
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=
1

2
gij
(

pi −
i

2
ωiabψ

a
αψ

b
α

)(

pj −
i

2
ωjcdψ

c
βψ

d
β

)

−1

8
Rabcdψ

a
αψ

b
αψ

c
βψ

d
β . (C.10)

In terms of ψa and ψ̄a this becomes

H =
1

2
gij(pi − iωiabψ̄aψb)(pj − iωjcdψ̄cψd)

−1

2
Rabcdψ̄

aψbψ̄cψd . (C.11)

We now define the corresponding Hamiltonian operator. We fix the
operator ordering by requiring that Ĥ be general coordinate (Einstein)
invariant and locally Lorentz invariant, namely it should commute with
the generators of general coordinate and local Lorentz transformations.
To achieve this, the same factors g±1/4 as in the bosonic case are needed.
The N = 2 Hamiltonian operator thus becomes

Ĥ =
1

2
g−1/4

(

pi − iωiabψ̄aψb
)

g1/2gij
(

pj − iωjcdψ̄cψd
)

g−1/4

−1

2
Rabcdψ̄

aψbψ̄cψd (C.12)

where {ψa, ψ̄b} = h̄δab .
To write this operator in Weyl-ordered form, i.e. to rewrite it such that

all canonical variables appear symmetrized or antisymmetrized, we note
that the two-fermion terms are already antisymmetrized, since {ψ̄a, ψb}
is proportional to δba and ωiab is traceless. For the same reason we can

write the four-fermion term in Ĥ as follows

Ĥ(ψ4) = −1

2
(gijωiabωjcd +Rabcd(ω))ψ̄aψbψ̄cψd

= − 1

16
(gijωiabωjcd +Rabcd(ω)){[ψ̄a, ψb], [ψ̄c, ψd]} (C.13)

We now first prove the following

Lemma :
1

8
{[ψ̄a, ψb], [ψ̄c, ψd]} − (ψ̄aψbψ̄cψd)S =

h̄2

4
δadδbc . (C.14)

Proof: (ψ̄aψbψ̄cψd)S = −(ψ̄aψ̄cψbψd)S . Next rewrite this term, once
keeping ψbψd together and once keeping ψ̄aψ̄c together

(ψ̄aψ̄cψbψd)S =
1

8

[

ψ̄aψ̄cψbψd + ψ̄aψbψdψ̄c − ψ̄cψbψdψ̄a + ψbψdψ̄aψ̄c

+ψ̄aψ̄cψbψd + ψbψ̄aψ̄cψd − ψdψ̄aψ̄cψb + ψbψdψ̄aψ̄c

]
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Adding this to

1

8
{[ψ̄a, ψb], [ψ̄c, ψd]}

=
1

8

[

+ψ̄aψbψ̄cψd − ψbψ̄aψ̄cψd − ψ̄aψbψdψ̄c + ψbψ̄aψdψ̄c

+ψ̄cψdψ̄aψb − ψdψ̄cψ̄aψb − ψ̄cψdψbψ̄a + ψdψ̄cψbψ̄a

]

one finds by combining corresponding pairs of terms

h̄

8
(ψ̄aδbcψd + 0 + 0 + ψbδadψ̄c + ψ̄cδadψb + 0 + 0 + ψdδbcψ̄a) =

h̄2

4
δadδbc .

It follows that

Ĥ(ψ4) = Ĥ(ψ4)S −
h̄2

8
δadδbc(gijωiabωjcd +Rabcd(ω))

= Ĥ(ψ4)S +
h̄2

8
(gijωiabωj

ab −R) . (C.15)

The terms in Ĥ without fermions yield back the Hamiltonian of the
bosonic model obtained in (B.25)

Ĥ(no ψ) =
1

2
(gijpipj)S +

h̄2

8
(R+ gijΓkilΓ

l
jk) . (C.16)

The two-fermion terms are also Weyl-ordered in the sector with x and p

− i
4
g−1/4pig

1/4gijωjcdψ
c
βψ

d
β −

i

4
g1/4ωiabψ

a
αψ

b
αg

ijpjg
−1/4

= − i
4
{pi, gijωjcdψcβψdβ} . (C.17)

We therefore conclude that rewriting (C.12) in Weyl-ordered form yields

Ĥ(N = 2) =

(
1

2
gijπiπj −

1

2
Rabcd(ω)ψ̄aψbψ̄cψd

)

S

+
h̄2

8
gij(ΓlikΓ

k
jl + ωiabωj

ab) (C.18)

πi = pi − iωiabψ̄aψb .

We note that the terms with R from the bosonic sector and the (ψ)4

sector cancel.
One can even achieve a formulation of the N = 2 model where the ΓΓ

and ωω terms cancel. Although the choice of ψa as basic variable is very
suitable (since it yields as kinetic term simply iψaαψ̇

a
α) one can make a

different choice, namely ψi with curved index i. Since ψa = eaiψ
i, the
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action becomes i
2gijψ

i
α(ψ̇jα + ẋkΓjklψ

l
α). We used the “vielbein postulate”

∂ie
a
j − Γij

keak + ωi
a
be
b
j = 0 of (A.1). The momentum conjugate to ψi ≡

(ψi1 + iψi2)/
√

2 is then p(ψ)j = −iψ†
j ≡ −igij(ψj1 − iψj2)/

√
2 and the

canonical commutation relations become

{ψi, ψ†
j} = δij h̄ . (C.19)

(Note that the Jacobi identity for (pj(ψ), ψi, ψ̄k) is still satisfied because
the bracket of ψi and ψ̄k is a constant). The conjugate momentum of xi

becomes pi = gij ẋ
j + i

2Γil;kψ
k
αψ

l
α. The Hamiltonian now reads

Ĥ =
1

2
g−1/4

(

pi −
i

2
Γil;kψ

k
αψ

l
α

)

gijg1/2
(

pj −
i

2
Γjn;mψ

m
β ψ

n
β

)

g−1/4

−1

2
Rabcd(ω)ψ̄aψbψ̄cψd (C.20)

and the four-fermi terms now read

−1

2

(

gijΓil;kΓjn;m +Rklmn(ω)
)

ψ̄kψlψ̄mψn . (C.21)

The antisymmetrization of h̄2ψ̄kψlψ̄mψn yields a factor 1
4g
knglm and this

produces a term

− h̄
2

8
(gijΓkilΓ

l
jk +R) . (C.22)

Adding (C.16) and (C.22), all h̄2 terms now cancel.
For practical calculations, the choice of ψa as basis variable is preferred,

even at the expense of the extra h̄2 terms.
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Appendix D

Nonlinear susy sigma models and d = 1
superspace

As explained in the introduction, for the computation of anomalies in
d-dimensional quantum field theories which themselves need not be su-
persymmetric field theories, supersymmetric d = 1 nonlinear σ-models
(a particular class of supersymmetric quantum mechanical models) are
needed. One can write down these models in “t space”, beginning with a
kinetic terms gij(ϕ)∂tϕ

i∂tϕ
j for the bosonic fields ϕi(t) and finding fur-

ther terms with fermionic ψi(t), by using the so-called Noether method.
This is instructive if one is interested in the structure of the theory, in
particular the leading terms of the action and transformation rules. To
obtain the complete answer, the Noether method is somewhat cumber-
some (although it always yields the complete answer if such a complete
answer exists). We shall begin by using this Noether method for the mod-
els we are interested in; the procedure becomes clear along the way, and
has pedagogical value. Then, however, we shall follow the superspace ap-
proach, and obtain the complete answer at once. The superspace method
is less intuitive, but once one has understood the overall structure of a the-
ory, the superspace approach gives complete answers while avoiding the
tedious labour of the Noether approach. The Noether method and the
superspace method are complementary. We end by deriving the N = 1
and N = 2 models.

The Noether method. In the Noether method we start with a bosonic
and fermionic kinetic term

Lkin =
1

2
gij(ϕ)

[

ϕ̇iϕ̇j + iψiψ̇j
]

. (D.1)

By a dot we indicate a d/dt derivative (we are in Minkowskian time), and
ϕi(t) is a real function. The anticommuting ψi(t) are by definition real
under hermitian conjugation, and we added the factor i in order that the
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action be hermitian

(iψiψ̇j)† = −iψ̇jψi = +iψiψ̇j . (D.2)

For superspace applications it is natural that ϕi and ψi have the same
index i, because then one can construct a superfield ϕi + iθψi. However,
one can use either ψi or ψa = eaiψ

i, where eai (ϕ) are the vielbein fields
which are square roots of the metric, gij = eai e

b
jηab (in target space). At

the end of this appendix we shall mention the changes which occur if one
uses ψa, but for now we use ψi.

Under supersymmetry transformations, ϕi should transform into ψi,
and vice-versa. From the action we see that the dimension of ϕi, denoted
by [ϕi], differs from that of ψi by one-half the dimension of t (which has
by definition minus one, [t] = −1). Namely: 2[ϕ] − 2[t] = 2[ψ] − [t].
Since the action is dimensionless (if h̄ = 1), we find [ϕ] = −1/2 and
[ψ] = 0. It follows that if δϕi ∼ εψi, then [ε] = −1/2. Consequently, in
δψi ∼ εϕi we need a derivative to make the dimensions come out right:
δψi ∼ εϕ̇i. We do not consider terms with ε̇ because we consider at this
point rigid susy models which have by definition a constant ε. Since ψi

and ϕi are real, also ε must be real or purely imaginary. Choosing ε to
be real we need a factor i in δϕi ∼ iεψi. To obtain δϕi = −iεψi, one
can scale ε appropriately. Then δψi = βϕ̇iε, and the value β = 1 will be
shown to follow by requiring invariance of the action, or closure of the
supersymmetry algebra. Hence, we assume the following transformation
rules

δϕi = −iεψi , δψi = βϕ̇iε , (β = 1) . (D.3)

The parameter ε is constant. We could study locally supersymmetric
theories (supergravity theories1) with a local parameter ε(t) and a gauge
field for supersymmetry, but we shall only need rigidly supersymmetric
theories with constant ε.

We now begin the Noether procedure. We vary L using δϕi and δψi

given above, and find

δL(kin) =
1

2
(∂kgij)(−iεψk)

(

ϕ̇iϕ̇j + iψiψ̇j
)

+
1

2
gij

[

2ϕ̇i
d

dt
(− iεψj) + iβ(ϕ̇iε)ψ̇j + iβψi

d

dt
(ϕ̇jε)

]

. (D.4)

In the action, this expression is integrated over t, and if we partially
integrate the last term to remove double derivatives, all ϕ̇ψ̇ terms cancel

1 A discussion of supergravity in quantum mechanics is given in [125]. One can couple
ϕ and ψ to the supergravity gauge fields (the vielbein and the gravitino), but no
gauge action for supergravity itself exists in d = 1 dimensions.
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if β = 1. We are left with the variation

δL(kin) =
(

− i

2
∂kgij

)

ε
(

ψkϕ̇iϕ̇j + iψkψiψ̇j − ϕ̇kψiϕ̇j
)

(D.5)

where we used that β = 1 and ε and ψi anticommute: εψi = −ψiε. There
are no terms with ε̇ because ε is constant.

We now observe that the combination −iεψk can be written as δϕk and
so one might be tempted to write the first term in δL(kin) as [ 1

2∂kgij ]δϕ
kϕ̇iϕ̇j .

However, this is just how we found this term, so we would go backwards.
We can also consider another combination, for example ϕ̇iε, and replace it
by δψi. We shall choose the latter alternative for reasons to become clear.
Our aim is to find a new term in the action, L(extra), such that δL (extra)
= −δL(kin). Then, obviously, the t-integral of L = L(kin) + L(extra) is
invariant. We claim that a solution is

L (extra) =
i

2
(∂kgij)(ψ

iϕ̇jψk) . (D.6)

To verify this claim, note that we need not vary ∂kgij(ϕ), because it
would yield (∂l∂kgij) (−iεψl) and since ψlψk is antisymmetric in l, k, this
variation would vanish. The variation of ψi cancels the ψkϕ̇iϕ̇j in (D.5).
The variation of ϕ̇j in L (extra) cancels the ψψψ̇ term in δL (kin). Finally,
the variations of ψk in L (extra) cancel the ϕ̇kψiϕ̇j term in δL (kin).

Hence, I ≡ ∫ Ldt with

L =
1

2
gijϕ̇

iϕ̇j +
i

2
ψi(gijψ̇

j + ∂kgijϕ̇
jψk) (D.7)

is invariant under the transformation laws in (D.3). We can rewrite the
action in a way which has a geometrical meaning

ψi(gijψ̇
j + ∂kgijϕ̇

jψk) = ψigij(ψ̇
j + ϕ̇kΓkl

jψl) ≡ ψigij
D

Dt
ψj (D.8)

where Γkl
j is the Christoffel symbol. The derivative D

Dtψ
j transforms as

a contravariant vector under general diffeomorphisms xi → xi + ξi(x), as
we shall shortly discuss.

To obtain the Noether current for supersymmetry, we let ε become a
local parameter, and repeat the evaluation of δL. The terms proportional
to ε̇ then yield the Noether current [56]. From (D.4) we obtain one such
term, namely when the d

dt in the first term inside the square brackets hits
the ε. The last term in (D.4) was partially integrated, so it does not yield a
ε̇ term. Another term with ε̇might seem to come from varying ϕ̇j in (D.6),
but this contribution vanishes as it is proportional to ∂kgijψ

iψj . Hence,
we find that the Noether current for supersymmetry is proportional to

jN = gijϕ̇
iψj . (D.9)
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It is now clear that the other way to proceed mentioned under (D.5),
namely replacing −iεψk by δϕk in δL(kin), would not have worked. It
would have led to an L (extra) = 1

2∂kgijϕ
kϕ̇iϕ̇j but whereas variation

of ϕk would have canceled the first term in δLkin (by construction), the
other variations would not have been canceled. One might have expected
this, since a coordinate ϕk is not a tensor in general relativity (in contrast
to ϕ̇k or δϕk), so that the action should not contain undifferentiated ϕ’s
(except in gij(ϕ)).

The difficult step was to find the correct L (extra). One might have
guessed this result by noting that the terms in parentheses in (D.7) form
a covariant derivative

ψi(gijψ̇
j + ∂kgijϕ̇

jψk) = ψj
D

Dt
ψj , ψj = gjiψ

i

D

Dt
ψj = ψ̇j + ϕ̇kΓkl

jψl , Γkl
j =

1

2
gjm

[

∂kglm + ∂lgkm − ∂mgkl
]

.

(D.10)

The covariant derivative D
Dtψ

j is indeed a contravariant vector under in-

finitesimal general coordinate transformation in spacetime (because Γkl
j

is a connection: δΓkl
j = ∂k∂lξ

j + . . .)

ϕi → ϕi + ξi(ϕ) , ψi → ψi +
∂ξi

∂ϕj
ψj

D

Dt
ψj → D

Dt
ψj +

∂ξj

∂ϕk
D

Dt
ψk . (D.11)

A less insightful, but still correct way to obtain the result in (D.7)
would have been to write down all possible candidates for L (extra), with
arbitrary coefficients, and then fixing these coefficients by requiring that,
up to partial integrations, δL (extra) = −δL (kin). However, one would
like to have a method which guarantees success even if one is not clever
enough to use such tricks or patient enough to do much algebra, and such
a method is the superspace method.

The superspace method. In d = 1 N = 1 superspace, one has one
bosonic coordinate which we call t (because d = 1), and one fermionic
coordinate θ (because N = 1). The θ’s are Grassmann variables, {θ, θ} =
2θθ = 0, and by definition θ is real, (θ)† = θ. In this superspace, we
consider superfields, i.e., fields depending on t and θ.

We consider superfields with an index, φi(t, θ). Expanding in powers
of θ, there are only two terms since θ2 = 0, and we define

φi(t, θ) = ϕi(t) + iβθψi(t) (D.12)
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where β is a real constant to be fixed later. The factor i is again needed
in order that φi(t, θ) be real, and we require that φi(t, θ) be real because
ϕi(t) is real.

We shall now obtain the transformation law of φi(t, θ) under super-
symmetry and construct an invariant action involving superfields φi by
using an approach called the “coset method” which is also used in more
complicated cases (the d = 4, N = 1 or N = 2 cases in particular). This
approach starts from a superalgebra which is at the basis of the whole
approach. In our case we shall use the superalgebra of supersymmetric
quantum mechanics, with Hamiltonian H and supersymmetry generator
Q

{Q,Q} = 2H , [Q,H] = 0 . (D.13)

In fact, [Q,H] = 0 follows from {Q,Q} = 2Q2 = 2H. We shall assume
that H and Q are hermitian, (H)† = H and (Q)† = Q. Given any superal-
gebra, one first deduces how supercoordinates transform under supersym-
metry. Then one finds how superfields transform under supersymmetry.

To deduce how the supercoordinates x and θ transform, one takes a
group element of the form

g(t, θ) = eitH+θQ (D.14)

where g† = g−1 (at least formally because (θQ)† = Q†θ† = Qθ = −θQ).
We multiply from the left by a group element

h(α, ε) = eiαH+εQ (D.15)

and we work to linear order in α and ε (“h near the origin”). Since the
product can again be written as an exponent, with multiple commutators
of εH and εQ in the exponent, we have

h(α, ε)g(t, θ) = g(t+ δt, θ + δθ) (D.16)

where δt and δθ are linear in α and ε. Using the Baker-Campbell-
Hausdorff formula for the bosonic objects iαH, εQ, itH and θQ we get

eiαH+εQ eitH+θQ = ei(t+α)H+(θ+ε)Q+ 1
2
[εQ,θQ] . (D.17)

No further commutators are needed, since

[εQ, θQ] = −εθ{Q,Q} = −2εθH (D.18)

which commutes with all generators (H and Q). Hence

δt = α+ iεθ , δθ = ε . (D.19)
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To check that this forms indeed a representation of the superalgebra, we
rewrite this as

δt = [t, iαH + εQ] , δθ = [θ, iαH + εQ] (D.20)

and by equating (D.19) and (D.20) we find the generators H and Q in
the supercoordinate representation

H = i
∂

∂t
, Q = − ∂

∂θ
− iθ ∂

∂t
. (D.21)

As one may check, one indeed has a representation of the superalgebra in
terms of differential operators. For example

{Q,Q} = 2H . (D.22)

We now declare φi(t, θ) to be scalar superfields. By this we mean the
same as, for example, in ordinary quantum mechanics: the transformation
of the fields is induced by the transformation of the (super) coordinates

φ′i(t′, θ′) = φi(t, θ) . (D.23)

Putting φ′ = φ+ δφ and (t′, θ′) = (t, θ) + (δt, δθ), we obtain

δφ =

(

− δt ∂
∂t
− δθ ∂

∂θ

)

φ

=

[

− α ∂
∂t
− ε
(
∂

∂θ
+ iθ

∂

∂t

)]

φ

= [iαH + εQ, φ] . (D.24)

From (D.20) and (D.24) we see that coordinates and fields transform
contragradiently, again a well-known result from ordinary quantum me-
chanics (and just a consequence of the definition φ′(t′, θ′) = φ(t, θ)).

We have now obtained the supersymmetry generator

Q = −
(
∂

∂θ
+ iθ

∂

∂t

)

. (D.25)

Let us check whether the components ϕi(t) and ψi(t) transform as in
(D.3).

εQφi = −ε
(
∂

∂θ
+ iθ

∂

∂t

)(

ϕi(t) + iβθψi(t)
)

= δϕi(t) + iβθδψi(t) . (D.26)

Equating terms with and without θ yields

δϕi(t) = −εiβψi(t)
iβθδψi(t) = −εiθϕ̇i(t) = iθεϕ̇i . (D.27)
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It is clear that for β = 1 we retrieve the transformation rules of ϕi(t) and
ψi(t) which we obtained in (D.3). Hence, we have obtained so far the
following results

φi = ϕi(t) + iθψi(t)

εQ = −ε
(
∂

∂θ
+ iθ

∂

∂t

)

δφi = [εQ, φi] . (D.28)

For the construction of invariant actions it is useful to have an operator
which anticommutes with Q. Such an operator is given by

D =
∂

∂θ
− iθ ∂

∂t
. (D.29)

It is formally obtained by the same steps as Q, but using right mul-
tiplication for h and g. Since left and right multiplication commute,
(h1g)h2 = h1(gh2), it follows that Q and D anticommute. Let us check
explicitly that {D,Q} = 0. This follows by writing out all terms as

−{D,Q} =

{
∂

∂θ
− iθ ∂

∂t
,
∂

∂θ
+ iθ

∂

∂t

}

=

{
∂

∂θ
, iθ

}
∂

∂t
+

{

− iθ , ∂

∂θ

}
∂

∂t
= 0 . (D.30)

We can now at once write down a set of invariant actions for φi. We
claim that for any m and n the following action is invariant under (D.28)

I =

∫

dtdθ
(

Dmφi
)(

Dnφj
)

gij(φ) . (D.31)

To see why δI = 0, note that δgij(φ) = [εQ, gij(φ)], because of (D.28),
and

δ(Dmφi) ≡ Dmδφi = Dm
(

εQφi
)

=
(

εQ(Dmφi)
)

(D.32)

where we used in the last step that εQD = DεQ. Hence

δ
(

DmφiDnφj gij(φ)
)

=
(

εQ[DmφiDnφjgij(φ)]
)

. (D.33)

(We write δφi = (εQφi) to indicate that the differential operator Q acts
on φi but not beyond φi. We could equivalently write δφi = [εQ, φi]).
Now ∫

dtdθ εQL = 0 (D.34)
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for any L, because the d
dt in Q yields zero (assuming, as we always do,

that all functions vanish at t = ±∞), while the ∂/∂θ in Q also gives zero
due to the following property.

Theorem :

∫

dθ
∂

∂θ
f(θ) = 0 for any f(θ) . (D.35)

The proof of this theorem is trivial: f(θ) = f0 + θf1 and
∫
dθθ = 1 but

∫
dθ = 0, so

∫
dθ ∂

∂θ f(θ) =
∫
dθf0 = 0.

We now use the superspace formalism to construct the N = 1 and
N = 2 nonlinear sigma models which play a central role in the second
part of this book.
The N = 1 model. This model is used for the calculation of chiral
anomalies of spin 1/2 fields. We have seen that for any m and n the
action I =

∫
dtdθ (Dmφi)(Dnφj)gij(φ) is a supersymmetric action. Which

m and n should we take? We want an action which contains, to begin
with, the kinetic term 1

2gij(ϕ)ϕ̇iϕ̇j . Since D = ∂/∂θ − iθ∂/∂t satisfies

D2 = −i ∂
∂t

, iD2φi = ϕ̇i + iθψ̇i

Dφi =

(
∂

∂θ
− iθ ∂

∂t

) (

ϕi + iθψi
)

= iψi − iθϕ̇i (D.36)

we see that for m = 1, n = 2 (or m = 2, n = 1) we obtain this kinetic
term. So we take as action

I = α

∫

dtdθ(Dφi)(D2φj)gij(φ)

= α

∫

dtdθ
[

iψi − iθϕ̇i
][

− iϕ̇j + θψ̇j
]

[

gij(ϕ) + iθψk ∂kgij(ϕ)
]

(D.37)

where α is a constant we shall soon fix. To obtain a nonzero result for
the θ integral, we need only the terms proportional to θ. There are only
three such terms, and we find

L = −αϕ̇iϕ̇jgij − iαψiψ̇jgij − iαψiϕ̇jψk∂kgij(ϕ) . (D.38)

(In obtaining this result, we moved θ to the left of all ψ functions, which
causes some minus signs). For α = − 1

2 , this is indeed the action of (D.7)
obtained from the Noether method, but now the last term comes out
automatically. In Euclidean space, we find, putting t = −itE

LE =
1

2
gijϕ̇

iϕ̇j +
1

2
ψigij

(

ψ̇j + ϕ̇lΓjlkψ
k
)

. (D.39)
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Another way to see that one needs the combination D2φiDφj in the
action is to use dimensional arguments. Since [dt] = −1, [dθ] = +1/2
(note that [θ] = −1/2 but

∫
dθθ = 1), [D] = [∂/∂θ] = 1/2 and [φi] =

[ϕi] = −1/2 (because
∫
dtϕ̇iϕ̇j should be dimensionless), we see that the

action in (D.31) is dimensionless provided −1+1/2+(m+n) 1
2+2(−1/2) =

0, hence m + n = 3. For m = 0 and m = 3 one obtains (D3φi)φjgij(φ)
which is not a tensor in target space, hence only (D2φi)(Dφj)gij(φ) is
allowed.

One can write down a supersymmetric extension of the Ai(x)ẋ
i cou-

pling, namely
∫
dθAi(φ)(Dφj). One can also try to add a potential term

V (φ) to the action. Then
∫

dtdθ V (φ) =

∫

dtdθ
[

V (ϕ)+ iθψk∂kV
]

=

∫

dt iψk(t)∂kV (ϕ) . (D.40)

It follows that the resulting potential is fermionic, so not very interesting
for most applications. However, the next model allows useful potentials.
The N = 2 model. This model is used for the calculation of chiral
anomalies of selfdual antisymmetric tensor fields. If one uses a d = 1, N =
2 superspace approach with coordinates t, θ, θ̄ ≡ (θ)†, where of course
{θ, θ̄} = 0, then a suitable action is

I =

∫

dtdθdθ̄(Dφi)(D̄φj)gij(φ)

D =

(
∂

∂θ̄
− iθ ∂

∂t

)

, D̄ =

(
∂

∂θ
− iθ̄ ∂

∂t

)

Q = −
(
∂

∂θ̄
+ iθ

∂

∂t

)

, Q̄ = −
(
∂

∂θ
+ iθ̄

∂

∂t

)

. (D.41)

The susy of this action follows immediately from the observation that D
and D̄ anticommute with Q and Q̄. One could also choose a real basis,
with D+ = ∂

∂θ+ − iθ+∂t and D− = ∂/∂θ− − iθ−∂t where θ+ + iθ− =
√

2θ

and θ+ − iθ− =
√

2θ̄. Then
√

2D = D+ + iD− and
√

2D̄ = D+ − iD−,
and the action is written as

∫

dtdθ+dθ− gijD+φ
iD−φj . (D.42)

The underlying superalgebra is now

{Q, Q̄} = −{D, D̄} = 2H

[H,D] = [H, D̄] = [H,Q] = [H, Q̄] = 0

{Q,Q} = {Q̄, Q̄} = {D,D} = {D̄, D̄} = 0 . (D.43)

In the coordinate representation, H = i ∂∂t . Again [H,D] = [H, D̄] =
[H,Q] = [H, Q̄] = 0 follows from the definition 2H = {Q, Q̄}. Most
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importantly, D and D̄ anticommute with Q and Q̄. The reader may
apply the coset formalism discussed above to derive (D.41).

Dimensional arguments reveal that one needs one D and one D̄ in the
action (two D’s would yield zero as Dφi and Dφj anticommute). Putting

φi = ϕi + iθψ̄i + iθ̄ψi + θ̄θF i (D.44)

one finds after integration over θ and θ̄

L = gij(ϕ̇
iϕ̇j + F iF j) + igij

(

ψi
D

Dt
ψ̄j + ψ̄j

D

Dt
ψi
)

−(∂k∂lgij)(ψ
iψ̄jψkψ̄l)− 2ψ̄iΓij

lψjFl . (D.45)

The transformation rules δφ = [ε̄Q, φ] + [εQ̄, φ] preserve the reality of φ
and yield

δϕi = −iε̄ψi − iεψ̄i , δF i = −ε̄ψ̇i + ε ˙̄ψi

δψi = ϕ̇iε+ iF iε , δψ̄i = −ϕ̇iε̄+ iF iε̄ . (D.46)

Substituting the algebraic field equation F i = ψ̄jΓjk
iψk, the fields ψi and

ψ̄i transform as follows

δ(ε)ψi + δ(ε)ϕjΓjlψ
l = ϕ̇iε

δ(ε̄)ψ̄i + δ(ε̄)ϕjΓjlψ̄
l = ϕ̇iε̄ . (D.47)

The left-hand sides transform covariantly (as contravariant vectors) under
general coordinate transformation ϕi → ϕi + ξi(ϕ). The left-hand side
defines a covariant variation, similar to a covariant derivative, see (D.10).

The terms with ∂kglm covariantize the ψ derivatives. Eliminating F i

one obtains in the action (ψ̄Γψ)2 terms which covariantize ∂k∂lgij to a full
Riemann tensor (see appendix A). This yields, adding an overall factor
1/2, and decomposing ψ = (ψ1 + iψ2)/

√
2 and ψ̄ = (ψ1 − iψ2)/

√
2,

L =
1

2
gijϕ̇

iϕ̇j +
i

2
gijψ

i
α

(

ψ̇jα + ϕ̇kΓjklψ
l
α

)

−1

8
Rijkl(Γ)ψiαψ

j
αψ

k
βψ

l
β (D.48)

with Rijk
l(Γ) = ∂iΓjk

l + ΓlimΓmjk − (i ↔ j). To cast the 4-fermion term
in this form, one may use the cyclic identity for the Riemann tensor.
Note that Rijk

a(Γ) = Rij
a
k(ω). In Euclidean space LE = 1

2gijϕ̇
iϕ̇j +

1
2gijψ

i
α
D
Dtψ

j
α + 1

8Rabcdψ
a
αψ

b
αψ

c
βψ

d
β.

The potential term which we write as (−i)W (φ) to make it real now
yields

∫

dtdθdθ̄ W (φ) =

∫

dt
[

F k∂kW (ϕ)− ψiψ̄j∂i∂jW (ϕ)
]

. (D.49)
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Eliminating F k by its field equation

F k = gkl∂lW (D.50)

yields in t-space a positive definite bosonic potential

V =
1

2
gij∂iW (ϕ)∂jW (ϕ) . (D.51)

Finally, we come back to our promise to discuss the changes that occur
if one uses ψa instead of ψi. We begin with the N = 1 model. We recall
that ψa = eai (ϕ)ψi. The transformation rule of ψa becomes

δψa = eai δψ
i + (δeai )ψ

i = eai ϕ̇
iε+ δϕj∂je

a
iψ

i . (D.52)

Next we use the vielbein postulate

∂je
a
i = −ωjabebi + Γji

keak . (D.53)

Because δϕj contains ψj , the Christoffel term cancels when inserted into
(D.52), and we find

δψa + δϕjωj
a
bψ

b = eai ϕ̇
iε . (D.54)

The left hand side looks like a covariant derivative (with d
dt replaced by

δ) and is indeed locally Lorentz covariant, just as the right-hand side. For
curved indices one would expect

δψi + δϕjΓjk
iψk = ϕ̇iε (D.55)

but the term with Christoffel symbol cancels, see (D.3).
In the action for the N = 1 model we have found the covariant deriva-

tive, see (D.8),

gijψ
i
( D

dt
ψj
)

= gijψ
i
(

ψ̇j + ϕ̇lΓlk
jψk

)

. (D.56)

It is straightforward to check that if one replaces the curved ψi by flat ψa

one finds the corresponding covariant derivatives

ψa
( D

dt
ψa
)

= ψa
(

ψ̇a + ϕ̇jωj
a
bψ

b
)

. (D.57)

For the N = 2 model one finds covariant derivatives of ψ and ψ̄ (both
for curved or flat indices), and in the transformation rules one finds now
pullback terms both in the flat and curved case. The reason one finds
now also for curved indices a covariantizing term in δψi is that this term
now is of the form ψ̄Γψ instead of ψΓψ.
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Appendix E

Nonlinear susy sigma models for internal
symmetries

In the main text, we were led to conjecture the existence of an exten-
sion of the usual N = 1 nonlinear supersymmetric σ-model for quantum
mechanics which contains a term proportional to

c∗A (TI)
A
B cB Ai

I(ϕ) . (E.1)

Here the antihermitian matrices TI generate a Lie algebra in the same rep-
resentation as the spin 1/2 fields of the original spacetime quantum field
theory, while c∗A(t) and cB(t) are now anticommuting functions, which we
call antighost and ghost, respectively. In this section we shall construct
this extension.

The usualN = 1 susy nonlinear σ-model in 0+1 dimensional Minkowski
time is given by

L =
1

2
gij(ϕ)ϕ̇iϕ̇j +

i

2
ψa
(

ψ̇a + ϕ̇kωk
a
bψ

b
)

. (E.2)

We introduced vielbein fields ei
a(ϕ) satisfying ei

aej
bηab = gij and defined

ψa = ei
aψi. Then (E.2) follows from (D.6) and (D.7) by using “the

vielbein postulate” as in (D.57)

∂iej
a − Γij

kek
a + ωi

a
be
b
j = 0 . (E.3)

Hermiticity requires the factor i. If we had chosen ψi instead of ψa to
work with, there would have also been a metric gij in front of the fermionic
terms.

We now require that the quantum mechanical Hamiltonian H should
be a representation of the regulator ( /D)( /D) with /D = γaea

i(ϕ)Di and

Di =

(

∂i +
1

4
ωiabγ

aγb +Ai
ITI

)

. (E.4)
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We have absorbed the Yang–Mills coupling constant in Ai
I . In the main

text we have seen that the covariant derivative is proportional to gij ẋ
j .

Here we denote ẋi by ϕ̇i, hence we anticipate that the conjugate momen-
tum for ϕi should be given by

pi = gijϕ̇
j +

i

2
ωiabψ

aψb + iAIi

(

c∗TIc
)

(E.5)

where the ghost field c∗ is the hermitian conjugate of c, so c∗ = (c)∗.
Inverting this relation we obtain

ϕ̇i = gij
(

pj −
i

2
ωjabψ

aψb − iAIjc∗TIc
)

= −igij
(

h̄
∂

∂ϕj
+

1

2
ωjabψ

aψb +AIjc
∗TIc

)

. (E.6)

To obtain the correct anticommutator for c∗ and c after canonical quan-
tization, {cA, c∗B} = h̄δAB, we add the kinetic term ic∗Aċ

A. The normal-
ization of this kinetic term is such that pA = ∂

∂ċA
L satisfies the quantum

anticommutator {pA, cB} = −h̄iδAB. Furthermore from (E.2) we find
{ψa(t), ψb(t)} = h̄δab. Hence we must construct an action which leads to
(E.5).

These considerations lead us to consider the following action

L =
1

2

(

gijϕ̇
iϕ̇j + iψa(ψ̇a + ϕ̇kωk

a
bψ

b)

)

+ ic∗Aċ
A + iϕ̇kAIk(ϕ)(c∗TIc) . (E.7)

Since the TI are antihermitian and c∗ = (c)∗, the action is hermitian. As
it turns out, this action is not yet supersymmetric. To find the terms
which complete it, we shall analyze how it transforms. We already know
that the c-independent part is invariant, so we study the c-dependent
terms.

We begin by varying the ϕ fields in L(c), using the known susy rule for
δϕ

δϕi = −iεψi , δψi = ϕ̇iε

ψa = ψiei
a(ϕ) , ei

aej
bδab = gij . (E.8)

We find for this variation

δL(c) =

{

i
d

dt

(

− iεψk
)

Ak
I(ϕ) + iϕ̇k

(

∂lAk
I
) (

− iεψl
)}(

c∗TIc
)

. (E.9)

Partially integrating the first term, we produce an ordinary curl of the
vector field Ak

I , plus a t-derivative of c∗Tc. The latter we can cancel
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by suitable susy laws for c∗A and cB, such that they combine also to a
t-derivative of c∗Tc. Clearly

δcA = +iεψkAk
I(TI)

A
Bc

B

δc∗A = −iεψkAkIc∗B(TI)
B
A (E.10)

does the job since, using a partial integration, we obtain

δ
(

ic∗ċ
)

= ic∗
d

dt

(

iεψk Ak
ITIc

)

+ i
(

− iεψkAkIc∗TI
)

ċ

= εψkAk
I d

dt

(

c∗TIc
)

(E.11)

which indeed cancels the terms in (E.9) proportional to d
dt(c

∗TIc) obtained
by partially integrating the first term in (E.9).

The remainder reads

δL(c) = ϕ̇kεψl
(

∂lAk
I − ∂kAlI

) (

c∗TIc
)

. (E.12)

Substituting the rules for δc∗A and δcB into the last term of (E.7) yields a
commutator of two TI matrices and completes the ordinary curl in (E.12)
to a nonabelian curl. Hence, at this point we have

δL(c) = ϕ̇k(εψl)Flk
I(c∗TIc)

Flk
I = ∂lAk

I − ∂kAlI + f IJKAl
JAk

K . (E.13)

To cancel this δL(c), we observe that the combination ϕ̇kε is equal to δψk.
(As in appendix D, we could also consider the combination εψl as coming
from δϕl, but this would lead to bare ϕl in the new term in the action,
which we already saw does not work). Hence, we add the following extra
term to the action.

L(extra) =
1

2
ψkψlFkl

I
(

c∗TIc
)

. (E.14)

(We need the factor 1/2 since the variation of ψk and ψl both give a εϕ̇
term).

We have at this point canceled all variations of L(c), but we still have to
vary F and c∗Tc in L(extra). These variations cancel by themselves, due
to the Bianchi identity for Fkl

I as we now demonstrate. The variations
of the ϕ fields in Fkl

I produce (∂iFkl
I)(−iεψi). Variation of c∗TIc yields

iεψiAi
Jc∗[TI , TJ ]c. These two variations combine into

δL(extra) =
1

2
ψkψl

(

− iεψi
)[

∂iFkl
K + fKJIAi

JFkl
I
(

c∗TKc
)]

= − iε
2

(

ψiψkψl
)(

DiFkl
K
) (

c∗TKc
)

(E.15)
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where DiFjk = ∂iFjk + [Ai, Fjk] for Fij = Fij
ITI . This indeed vanishes

since ψiψkψl is totally antisymmetric, while DiFkl + 2 cyclic terms = 0
due to the Bianchi identity.

We conclude that

L(ghost) = ic∗Aċ
A +

(

iϕ̇iAi
I +

1

2
ψiψjFij

I
) (

c∗A(TI)
A
Bc

B
)

(E.16)

is supersymmetric by itself under

δcA = iεψiAi
I(TI)

A
Bc

B , δc∗A = −iεψiAiIc∗B(TI)
B
A

δϕi = −iεψi , δψi = ϕ̇iε . (E.17)

The susy Noether charge Q for the model consisting of the sum of (E.2)
and (E.16) is unchanged. To see this, we repeat the analysis of varying
L(ghost) in (E.16), this time with local ε = ε(t). Nowhere do we pick up
an ε̇ term, and hence L(ghost) is even locally supersymmetric. Therefore
δL(total) = −iε̇gijϕ̇iψj as before, and

Q = gijϕ̇
iψj = ψaeaiϕ̇

i . (E.18)

We can write the ghost part of the action in a more covariant form as

L(ghost) =

[

ic∗A
D

Dt
cA +

1

2
ψiψjc∗Fijc

]

D

Dt
cA =

d

dt
cA + ϕ̇i(Aic)

A , Ai = Ai
I TI . (E.19)

In this form, the local Yang-Mills (gauge) invariance of the action under

δAi
I = ∂iλ

I + f IJKAi
JλK with ∂iλ

I ≡ ∂

∂ϕi
λI(ϕ) (E.20)

and δcA = −λI(TI)ABcB, δc∗A = c∗B(TI)
B
Aλ

I becomes manifest. For
example, the c∗Fc term varies into

λK
(

− c∗[TJ , TK ]cF J + f IJKF
Jc∗TIc

)

(E.21)

which clearly vanishes. Furthermore, the covariant derivative D
Dtc

A trans-

forms indeed like cA itself.
The Yang-Mills symmetry could have been used to anticipate the term

with Ai in the ghost action, but the term with Fij (a so-called Pauli term)
is typical for supersymmetry and is not required by Yang-Mills symmetry.
In a similar way, it follows that the action is invariant under general
coordinate transformations and local Lorentz transformations in target
space, with δϕi = ξi(ϕ), δϕ̇i = (∂ξi(ϕ)/∂ϕj)ϕ̇j , δψa = λab(ϕ)ψb, δgij =
∂iξ

kgkj + (i↔ j).
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Appendix F

Gauge anomalies for exceptional groups

In the main text we showed that gravitational and gauge anomalies cancel
in 10 dimensions for N = 1 supergravity coupled to Yang-Mills theory if
the gauge group G is either SO(32) or E8 ×E8. None of the other “clas-
sical groups” (SO(n), SU(n) and Sp(n)) was allowed. We now complete
this analysis by discussing the exceptional groups, namely G2, F4, E6,
E7, and E8. As we have shown in the main text, cancellation of grav-
itational anomalies allows only Lie groups with 496 generators. There
are clearly many products of simple Lie algebras with this number of
generators. In particular there are semisimple Lie algebras with one or
more exceptional groups as simple factors. However, we can at once rule
out these exceptional groups if we study one-loop hexagon graphs with 6
gauge fields all belonging to the same exceptional Lie group, and if fac-
torization of the kind discussed in the main text does not occur. In 4
dimensions gauge anomalies are proportional to the symmetrized trace of
3 generators, dabc(R) = tr(Ta{Tb, Tc}) where Ta are the generators of the
gauge group in a representation R, and thus real or pseudoreal represen-
tations do not carry anomalies [126]. A representation R can only carry
an anomaly if dabc(R) is nonvanishing, and this is only possible if there
exists a cubic Casimir operator for the group. In 10 dimensions gauge
anomalies are proportional to the symmetrized trace of 6 generators, and
then real or pseudoreal representations can carry anomalies. Now anoma-
lies can only be present if there exists a sixth-order Casimir operator for
the group, and even if it exists, it may still happen that for a particular
representation the value of the sixth-order Casimir operator is zero, or
factorizes into a product of lower-dimensional Casimir operators.

What follows is amusing group theory. Readers who are somewhat rusty
in their G2 or F4 may brush up their knowledge of exceptional groups by
working their way through the discussions below.
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G2
Do anomalies cancel for G2? This group has 14 generators, and the

fundamental representation (at the same time the defining representation)
is the 7. 1 We consider the maximal subgroup SU(3). The 14 of G2

decomposes under SU(3) into 8 + 3 + 3∗. In fact, the 7 of G2 is most
easily defined by first decomposing it under SU(3) as 7 → 3 + 3∗ + 1
and then defining the action of SU(3) (with parameters λαβ) and the
extra generators (with parameters σ̄α and σα) on the 7 = {xα, x̄α, y} in
manifestly SU(3) covariant form [127]

δxα = λαβx
β +

1√
2
εαβγ σ̄βx̄γ + σαy

δx̄α = λ̄α
βx̄β +

1√
2
εαβγσ

βxγ + σ̄αy

δy = −a(σ̄αxα + σαx̄α) (a = 1 see below) . (F.1)

We defined x̄α = (xα)∗, λ̄αβ = (λαβ)
∗, and σ̄α = (σα)∗, and y is real. By

rescaling of y and σα we can achieve that only a has to be fixed. The
dimensions of representations and the number of parameters always refer
to real quantities. For example, the 7 has seven real dimensions (x + x̄,
−i(x − x̄), and the real y), and there are 14 real parameters (λ + λ̄,
−i(λ − λ̄), σ + σ̄, and −i(σ − σ̄)). The anti-hermiticity of the SU(3)
generators λαβ requires that λ be equal to −λ†, namely λβα = −λ̄αβ , and
furthermore they are traceless, λαα = 0.

These transformations form a closed algebra. For the SU(3) commu-
tators one has

[δ(λ2), δ(λ1)] = δ([λ1, λ2]) (F.2)

while 2

[δ(λ), δ(σ)] = δ(σ′ = −λσ) . (F.3)

Finally,

[δ(σ2), δ(σ1)] = δ(λ′αβ) + δ
(

σ′α =
√

2εαβγ σ̄1βσ̄2γ

)

λ′αβ =
3

2
(σα1 σ̄2β − σα2 σ̄1β)−

1

2
δαβ ((σ̄1 · σ2 − σ̄2 · σ1)

)

. (F.4)

1 For any group the defining representation is the representation one uses to define the
group, whereas the fundamental representation has by definition the property that
its tensor products yield all other representations. Thus for SO(n) with odd n the
vector representation is the defining representation, but the spinor representation is
the fundamental representation.

2 To prove (F.3) one needs the “Schouten identity” λαβε
βγδ = λγβε

αβδ + λδβε
αγβ and

the anti-hermiticity relation λαβ = −λ̄βα. The former follows by antisymmetrizing
the 4 contravariant indices α, β, γ, δ.
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Closure of the (σ, σ) commutator fixes a = 1, and this defines then the
group G2 as well as the defining representation 7.

The decomposition of the generators of G2 into the 8 of SU(3) and
the remaining 6 is not a symmetric decomposition (because of the term
with δ(σ′α) in (F.4)). A maximally noncompact version of an algebra
always yields a symmetric decomposition, and has the property that the
number of noncompact generators minus the number of compact gener-
ators is equal to its rank (8 − 6 = 2 for G2). Such a decomposition is
also called a Cartan decomposition [128]. The decomposition into the
subgroup SU(3) and six coset generators is not a Cartan decomposition
because the subgroup SU(3) does not have 6 generators. For G2 a Cartan
decomposition is for example into the generators of SU(2) × SU(2) and
the (2,4) coset generators. The 7 decomposes under SU(2)×SU(2) into
(1,3) + (2,2) [129]. One can find the maximal regular subalgebras of G2

from its extended Dynkin diagram [130]

G′
2 = ������������������������������

������������������������������

G2 = ������������������������������

������������������������������

(F.5)

Deleting one dot, one finds the maximal (rank 2) regular subalgebras
SU(3), SU(2)× SU(2) and of course G2 itself.

Since G2 has only two Casimir operators, C2 and C6, we know that

TrF 6 = αtrF 6 + β(trF 2)3 (F.6)

with α and β to be computed. The trace Tr is over the adjoint represen-
tation 14, while the trace tr is over the fundamental 7. If it would turn
out that α vanishes, anomaly cancellation is possible. To compute α and
β we choose two particular generators of the subgroup SU(3), namely λ3

and λ8, and evaluate the trace relation (F.6) on each of them. We specify
SU(3) by the following generators λk normalized to trλkλl = −1

2δkl

λ1 = − i
2





0 1 0
1 0 0
0 0 0



 λ2 = − i
2





0 −i 0
i 0 0
0 0 0





λ3 = − i
2





1 0 0
0 −1 0
0 0 0



 λ4 = − i
2





0 0 1
0 0 0
1 0 0





λ5 = − i
2





0 0 −i
0 0 0
i 0 0



 λ6 = − i
2





0 0 0
0 0 1
0 1 0





λ7 = − i
2





0 0 0
0 0 −i
0 i 0



 λ8 = − i

2
√

3





1 0 0
0 1 0
0 0 −2



 . (F.7)
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The first three generators λ1, λ2 and λ3 define an SU(2) subgroup of
SU(3), while (λ4, λ5) and (λ7, λ6) form doublets under this SU(2). 3

[λ3, λ1] = λ2 ; [λ3, λ2] = −λ1 ; [λ3, λ4] =
1

2
λ5

[λ3, λ5] = −1

2
λ4 ; [λ3, λ6] = −1

2
λ7 ; [λ3, λ7] =

1

2
λ6

[λ8, λ4] =

√
3

2
λ5 ; [λ8, λ5] = −

√
3

2
λ4 ; [λ8, λ6] =

√
3

2
λ7

[λ8, λ7] = −
√

3

2
λ6 . (F.8)

We now evaluate the trace Tr on the 8+3+3∗, and the trace tr on the
3 + 3∗ + 1. We find for the generator λ3 that λ2

3 is diagonal on all states.
It is then easy to obtain

Tr(λ3)
6 = (−2− 1

16
) + (

−2− 2

64
) = −2− 1

8
(F.9)

tr(λ3)
6 = − 4

64
tr(λ3)

2 = −1 (F.10)

where we used that (λ3)
2 vanishes on y and equals − 1

4I on two of the
three states in 3 and 3∗. As a check one may rederive these relations using
(6.9.19) for SU(3). Hence from λ3 we learn that − 17

8 = α(− 1
16) + β(−1).

Similarly we find for the generator λ8

Tr(λ8)
6 = (−3

4
)34− (

1

12
)3(66 + 66)

tr(λ8)
6 = (− 1

12
)3(66 + 66) tr(λ8)

2 = − 1

12
(6 + 6) . (F.11)

Hence λ8 tells us that −27
16 − 11

144 = α(− 11
144)+β(−1). There is no solution

of both equations with α = 0, and since α is nonzero, TrF 6 does not fac-
torize for G2. Hence, this group produces gauge anomalies which cannot
be canceled by a counterterm.

F4
Next we consider the group F4. It has 52 generators, the defining

representation is the 26, and SO(9) is a maximal regular subalgebra. (A
regular subalgebra H of G has roots which are a subset of the roots of
G, and Cartan generators which are a linear combination of the Cartan
generators of G. If it is maximal, the rank of H is equal to the rank of G).

3 An SO(3) subgroup of SU(3) is generated by λ4, λ5 and 1
2
λ3 + 1

2

√
3λ8.
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Spinors ψα of SO(9) have 16 components, and SO(9) has 36 generators,
so we expect that under SO(9) the 26 and the 52 decompose as follows

26→ 9 + 16 + 1
52→ 36 + 16 . (F.12)

So the 26 consists of a vector vi, a spinor ψα and a scalar s, all real. We
define F4 by its action on the 26 [127]. Manifest SO(9) covariance allows
only

δvi = Λijv
j + λαΓiαβψ

β

δψα =
1

4
Λij(Γij)

α
βψ

β + vi(Γi)
α
βλ

β + sλα

δs = aλαψα (a = 3, see below) . (F.13)

Orthogonal groups leave yiδijx
j invariant, hence δikΛ

k
j + Λkiδkj = 0.

Then Λij = −Λji where Λij = δikΛ
k
j are the 36 real parameters of SO(9),

and λα are the 16 extra real parameters. Again only a has to be fixed.
Since the Dirac matrices (with {Γi,Γj} = 2δij) in 9 Euclidean dimensions
can be taken to be real and symmetric 16 × 16 matrices [56, 107], the
26 is real. In fact, the charge conjugation matrix is the unit matrix since
CΓi = Γi,TC for C = 1. (In odd dimensions one has either CΓi = −Γi,TC
or CΓi = +Γi,TC, but not both possibilities. Here, clearly one has the
+ sign). Because C = 1, the matrices Γiαβ and (Γi)αβ in (F.13) are the
same.

To show that (F.13) defines a Lie algebra, we must show that the com-
mutators close. Of course the subalgebra of SO(9) closes, [δ(Λ2), δ(Λ1)] =
δ([Λ1,Λ2]). Also [δ(Λ), δ(λ)] is, as expected, equal to δ(λ′ = −1

4ΛjkΓjkλ).

The crucial question is whether [δ(λ2), δ(λ1)] closes. On s and vi one eas-
ily establishes that this commutator is equal to an SO(9) rotation with
composite parameter Λ′

ij = 2λ1Γijλ2. On ψ a Fierz rearrangement yields

[δ(λ2), δ(λ1)]ψ =
1

16
(λ2Γ

iOIΓiλ1 + aλ2O
Iλ1)OIψ − (1↔ 2) . (F.14)

Only OI ∼ Γjkl and OI ∼ Γjk contribute (the rest, I and Γi and Γijkl,
are symmetric matrices); the contribution of the former cancels if one
chooses a = 3, and then the contribution of the latter yield the correctly
normalized SO(9) rotation. Hence, (F.13) defines a Lie algebra, namely
F4.

The decomposition of the generators of F4 into generators of SO(9)
and coset generators is not a Cartan decomposition because that would
require 24 subgroup generators and 28 coset generators; however, it still
is a symmetric decomposition (because two λ transformations only pro-
duce an SO(9) rotation). Hence, not every symmetric decomposition is
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a Cartan decomposition. (The reverse is, however, true: every Cartan
decomposition is a symmetric decomposition). Of course, 24 is the num-
ber of generator of SU(5), but 28 is not the sum of the dimensions of a
set of irreducible representations of SU(5) (except if one has many SU(5)
singlets). In fact, we may use a so-called extended Dynkin diagram [130]
to find all maximal regular subalgebra of F4

F ′
4 = ������������������������������

������������������������������

������������������������������

������������������������������
����������
����������
	�	�	
�
�

����������

F4 = ������������

������������������������������

������������������������������

������������������������������
������

������
������������

������
������ (F.15)

Deleting any point gives the following set of maximal regular subalgebras
of F4

4

SO(9); SU(2)× SU(4); SU(3)× SU(3); Sp(6)× SU(2) . (F.16)

The last one yields the Cartan decomposition F4/Sp(6) × SU(2), and
the 28 dimensional coset is indeed a representation of Sp(6) × SU(2),
namely 28 = (14, 2) (where 14 is the antisymmetric symplectic-traceless
representation tij = −tji of Sp(6)).

The group F4 has 4 Casimir operators (because it has rank 4), namely
C2, C6, C8, C12. So, as in the case of G2, we know that

TrF 6 = α trF 6 + β (trF 2)3 (F.17)

and the issue is whether α = 0.
We need two particular generators of SO(9) to be able to fix α and β.

As such, we take a rotation in the 1-2 plane of R9, and a simultaneous
rotation in the 1-2 plane and the 1-3 plane. These generators have the
following form in the defining representation of SO(9)

TI =







0 1 0 .
−1 0 0 .
0 0 0 .
. . . .







9×9

TII =







0 1 1 .
−1 0 0 .
−1 0 0 .
. . . .







9×9

. (F.18)

In the spinor representation of SO(9) they are given by 1
2γ

1γ2 and 1
2γ

1γ2+
1
2γ

1γ3, respectively.
We evaluate the trace Tr on the 36 and 16 of SO(9), and the trace tr

on the 9, 16 and 1 of SO(9). One obtains, using (6.9.14) for the 36 of
SO(9)

Tr(TI)
6 = −14− 16

64

tr(TI)
6 = −2− 16

64
= −9

4
, tr(TI)

2 = −2− 16

4
= −6 . (F.19)

4 Actually, it is known [129] that for the exceptional groups there are 5 regular subal-
gebras obtained this way which are not maximal, and one of these exceptions is for
F4 where SU(2) × SU(4) is contained in SO(9).
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Hence the first equation for α and β is − 57
4 = α(−9

4) + β(−216).
The computation of the traces with TII is simplified by noting that for

the vector representation

T 2
II =







−2 0 0 .
0 −1 0 .
0 0 −1 .
. . . 0







9×9

(F.20)

while for the spinor representation T 2
II = −1

2I16×16. Now one finds, again
using (6.9.14) to compute TrT 6

II on the adjoint representation 36,

Tr(TII)
6 = −23(−10) + 15(−4)6− 16

8
= −132

tr(TII)
6 = −10− 16

8
= −12 , tr(TII)

2 = −4− 16

2
. (F.21)

Hence the second equation for α and β is −132 = α(−12) + β(−12).
Again, there is no solution to (F.17) with α = 0, hence also for F4 gauge
anomalies do not cancel.

E6
The group E6 has 78 generators, and the fundamental representation

is the 27. Suitable subgroups and the corresponding decompositions are
[129]

SO(10)× U(1) : 78→ 45(0) + 16(−3) + 16∗(3) + 1(0)
27→ 16(1) + 10(−2) + 1(4)

Usp(8) : 78→ 36 + 42
27→ 27

F4 : 78→ 52 + 26
27→ 26 + 1 (F.22)

None of these is a maximal regular subalgebra, as one may deduce from
the extended Dynkin diagram for E6

E′
6 = E6 = (F.23)

In the literature the coset E6/Usp(8) has been studied in detail [137,
138], so let us choose Usp(8) as the subgroup of E6. The corresponding
decomposition of E6 is a Cartan decomposition. The group E6 acts on
the 27 as

δzαβ = Λαγz
γβ + Λβγz

αγ + Σαβ
γδz

γδ (F.24)
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where zαβ = −zβα with α, β = 1, 8 and zαβΩαβ = 0 with Ωαβ the metric
of Sp(8). The generators of Usp(n) in the defining representation are the
antihermitian matrices Λαβ preserving zαΩαβy

β . Hence Λαβ = −(Λβα)∗

and ΛγαΩγβ ≡ Λβα = −ΩαγΛ
γ
β = Λαβ . This shows that there are 36

generators. For n = 2 one easily checks that Usp(2) = SU(2), but for
higher n the dimension of SU(n) is larger then that of Usp(n). Fur-
thermore, Σαβγδ ≡ Σα′β′

γδΩα′αΩβ′β is totally antisymmetric, traceless
with respect to Ωαβ , and satisfies the reality condition (Σαβγδ)∗ = Σαβγδ

where ΣαβγδΩαα′Ωδδ′ ≡ Σα′β′γ′δ′ with ΩαβΩγβ = δαγ . The Σαβ
γδ are the

42 generators of the coset E6/Usp(8).
There are 3 Casimir operators with rank ≤ 6, namely C2, C5 and C6,

but only C2 and C6 play a role in the decomposition of TrF 6

TrF 6 = a trF 6 + b (trF 2)3 . (F.25)

We leave the proof that a is nonvanishing as an exercise. (Hint: two
suitable 8 × 8 matrices in the defining representation of Usp(8) are the
matrices with iσ3 or iσ1 in the first 2× 2 block, and for TrT 6 over the 36
one may use (6.9.14) with + signs instead of − signs).

E7
The group E7 has 133 generators, and SU(8) is a maximal subgroup.

The fundamental representation is the 56, spanned by antisymmetric xij

and xij = (xij)∗ with i, j = 1, 8. E7 is defined by its action on the 56 as
follows [131]

δxij = Λikx
kj + Λjkx

ik +
1

4!
εijklmnopΣmnopx̄kl

δx̄ij = Λ̄i
kx̄kj + Λ̄j

kx̄ik + Σijklx
kl . (F.26)

As before x̄ij = (xij)∗ and Λ̄i
k = (Λik)

∗. The Λik yield the 63 real
parameters of SU(8), hence they are antihermitian and traceless, Λ̄i

k =
−Λki, and Λii = 0, while the Σijkl are totally antisymmetric and satisfy
the selfduality relation (∗Σ)ijkl ≡ (Σijkl)

∗ = 1
4!ε

ijklmnopΣmnop, yielding
the remaining 70 real parameters of E7. Thus under SU(8) the adjoint
representation of E7 decomposes as follows: 133→ 63+70. Furthermore,
the 56 of E7 decomposes into the 28+28∗ of SU(8) as is clear from (F.26).
(If we only allow real group parameters, the 56 remains irreducibe under
SU(8)). This definition of E7 in terms of SU(8) resembles the definition
of G2 in terms of SU(3), but E7/SU(8) yields a Cartan decomposition.

The relevant Casimir operators are in this case C2 and C6, so

TrF 6 = a trF 6 + b (trF 2)3 . (F.27)

where the trace “Tr” is over the adjoint representation of E7 and the trace
“tr” is over the fundamental representation of E7.
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Decomposing the adjoint and fundamental representation of E7 with
respect to SU(8), and denoting the resulting SU(8) representations by
their dimensionality we find from (F.27)

Tr63F
6 + tr70F

6 = 2atr28F
6 + 8b(tr28F

2)3 . (F.28)

We choose again suitable generators for F , namely any linear combina-
tion A of the 7 independent generators which are diagonal (and imaginary)
in the fundamental representation 8 of SU(8). We denote these entries
by ai with i = 1, 8, and have then the constraint

∑
ai = 0.

The trace of A6 in the adjoint representation of SU(8) follows from
(6.9.19)

Tr63A
6 = 16

∑

a6
i + 30(

∑

a2
i )(
∑

a4
j )− 20(

∑

a3
i )

2 . (F.29)

All sums run over 1 ≤ i ≤ 8 and 1 ≤ j ≤ 8.
For the trace of A6 in the 70 of SU(8) we use that states are labeled by

i < j < k < l5 and A is represented on these states by (ai + aj + ak + al).
We rewrite the restricted sum as a combination of unrestricted sums

∑

i<j<k<l

(ai + aj + ak + al)
6 =

1

24

[ ∑

i,j,k,l

(ai + aj + ak + al)
6

−6
∑

i=j,k,l

(2ai + ak + al)
6 + 3

∑

i=j,k=l

(2ai + 2ak)
6

+8
∑

i=j=k,l

(3ai + al)
6 − 6

∑

i=j=k=l

(4ai)
6
]

. (F.30)

As a check one may verify that the number of terms on the left hand side
is equal to that on the right hand side. This expression can be expanded
into terms with

∑
a6
i , (

∑
a4
i )(
∑
a2
j ) and (

∑
a2
i )

3. Since A depends on

5 As the 70 independent components of Σijkl we can take the real parts Rijkl and
the imaginary parts Iijkl with i, j, k, l running from 1 to 7. The selfduality relation
expresses Rijk8 and Iijk8 in terms of these 70 components. The matrix A maps Rijkl
into −(αi + αj + αk + αl)Iijkl, and Iijkl into (αi + αj + αk + αl)Rijkl, where the
diagonal entries a1, .., a8 of A, satisfying a1 + · · · + a8 = 0, have been written as
aj = iαj with real αj . Then A2 is separately diagonal on the 35 states Rijkl and the
35 states Iijkl. The trace of A2p becomes

tr70A
2p = (−2)

∑

1≤i<j<k<l≤7

(αi + αj + αk + αl)
2p

=
∑

1≤i<j<k<l≤8

(ai + aj + ak + al)
2p

because the terms with an index α8 gives the same contribution as the terms without
an index α8.
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7 arbitrary parameters, there is enough resolving power to treat these
invariants as independent.

For the traces of A6 and A2 over 28 of SU(8) one finds easily

tr28A
6 =

1

2

[∑

i,j

(ai + aj)
6 −

∑

i=j

(2ai)
6
]

tr28A
2 =

1

2

[∑

i,j

(ai + aj)
2 −

∑

i=j

(2ai)
2
]

. (F.31)

Finally we collect all terms with
∑
a6
i . There are no terms of this kind

proportional to b, and our aim is to show that a is nonvanishing. Thus
we assume that a vanishes, and show that this leads to a contradiction,
namely we show that the sum of all terms in Tr133A

6 which are propor-
tional to

∑
a6
i does not vanish. From the 63 we find a coefficient 16, while

the 70 yields the following coefficient

1

24

[

4− 6(26 + 2) + 3(26 + 26) + 8(36 + 1)− 6(46)
]

=
1

24

[

− 3 · 27 + 3 · 27 + 23 · 36 − 3 · 213
]

= 35 − 210 . (F.32)

Clearly a is nonvanishing, and hence also the group E7 leads to gauge
anomalies in ten dimensions.

E8×E8
We mentioned in the main text that also for the gauge group E8 × E8

all anomalies in 10-dimensional simple supergravity coupled to Yang-Mills
theory can be canceled by a counterterm. We give here the details.

From (6.9.57) we see that we must factorize TrF̃ 6 in order to have a
chance to cancel the anomalies. As we already discussed in the main
text, for E8 TrF̃ 6 factorizes. In facts, also TrF̃ 4 factorizes. Consequently,
also for E8×E8 these traces factorize. This guarantees that the anomaly
factorizes. We first prove this factorization and then explicitly construct
the counterterm. Hence E8 × E8 is as good a candidate as SO(32).

For E8 we have the following relations

TrF 6 =
1

7200
(TrF 2)3

TrF 4 =
1

100
(TrF 2)2 . (F.33)

To derive these relations, we consider a particular generator A of E8 and
compute TrA6,TrA4 and TrA2 separately. To find a suitable generator of
E8, we note that SO(16) is a maximal regular subalgebra of E8, and the
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adjoint representation 248 of E8 decomposes under this SO(16) into the
adjoint 120 of SO(16) and the spinor representation 128 of SO(16). We
then act with A separately onto the 120 part and the 128 part of 248.
Let the SO(16) generator be a rotation in the x-y plane of R16; then the
spinor representation6 is given by the 128 × 128 matrix 1

2γ
1γ2. So the

generator A lies in the SO(16) subgroup of E8, and its representation in
the vector representation and in the spinor representation is given by

Avector =







0 1 0 .
−1 0 0 .
0 0 0 .
. . . .







16×16

Aspinor =

(
1

2
γ1γ2

)

128×128
(F.34)

From applying (6.9.14) to SO(16) we find TrA2 = (n − 2)trA2
vector =

14(−2) on the 120, and from ( 1
2γ

1γ2)2 = −1
4I one obtains TrA2

spinor =

−1
4128 on the 128. Together TrA2 = −60 for E8. For TrA4 one finds in

the same way TrA4 = 14(+2) + 1
16128 = 36. Finally, TrA6 = 14(−2) −

1
64128 = −30. With these results one obtains (F.33).

For E8 × E8 one has TrF n = dimE8 (TrI F
n + TrII F

n) where TrIF
n

refers to the trace in the first E8, and TrII F
n to the second E8. Further-

more, dimE8 equal 248. Then

TrF 6 =
dimE8

7200

[

(TrI F
2)3 + (TrII F

2)3
]

. (F.35)

This can be factorized using x3 + y3 = (x+ y)(x2 − xy + y2)

TrF 6 =
dimE8

7200

[

TrI F
2 + TrII F

2
]

×
[

(TrI F
2)2 − (TrI F

2)(TrII F
2) + (TrII F

2)2
]

. (F.36)

For TrF 4 one finds

TrF 4 = dimE8

(

TrI F
4 + TrII F

4
)

=
dimE8

100

[

(TrI F
2)2 + (TrII F

2)2
]

. (F.37)

Finally, one has of course

TrF 2 = dimE8

(

TrI F
2 + TrII F

2
)

. (F.38)

6 The Dirac matrices in 16 dimensions are 256 × 256 matrices, which can be chosen
to be block off-diagonal. Then 1

2
γ1γ2 is block diagonal with one 128 × 128 block for

chiral spinors and the other 128 × 128 block for antichiral spinors. These two spinor
representations are inequivalent, just as in the case of SO(8). In the text we mean
by 1

2
γ1γ2 one of these 128 × 128 blocks.
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The first question to be settled is whether the factorization in (6.9.62)
holds for E8 ×E8. Substitution of (F.35), (F.37) and (F.38) into (6.9.62)
shows that it does hold. The counterterm is now constructed the same
way as for SO(32), see section 6.9. The 12-form from which the descent
equation start is given by (6.9.63). Note that the traces TrF n in this
formula refer to traces over E8 × E8. The counterterm is then given by

∆L = BX8 +
(

trR2 − 1

30
TrF 2

)

X7 (F.39)

where dX7 = X8 and

X8 =
1

8
trR4 +

1

32
(trR2)2 − 1

240
trR2TrF 2 +

1

24
TrF 4 − 1

7200
(TrF 2)2 .

(F.40)
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