
Fermion Quantum Field Theory In Black-hole

Spacetimes

Syed Alwi B. Ahmad

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State

University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Physics

Lay Nam Chang, Chair

M. Blecher

T. Mizutani

B.K. Dennison

T. Takeuchi

April 18, 1997

Blacksburg, Virginia

Keywords : General Relativity, Quantum Field Theory

Copyright 1997, Syed Alwi B. Ahmad



Fermion Quantum Field Theory In Black-hole

Spacetimes

by

Syed Alwi B. Ahmad

Lay Nam Chang, Chair

Physics

(ABSTRACT)

The need to construct a fermion quantum field theory in black-hole spacetimes is an acute

one. The study of gravitational collapse necessitates the need of such. In this dissertation,

we construct the theory of free fermions living on the static Schwarzschild black-hole and

the rotating Kerr black-hole. The construction capitalises upon the fact that both black-

holes are stationary axisymmetric solutions to Einstein’s equation. A factorisability ansatz

is developed whereby simple quantum modes can be found, for such stationary spacetimes

with azimuthal symmetry. These modes are then employed for the purposes of a canonical



quantisation of the corresponding fermionic theory. At the same time, we suggest that it

may be impossible to extend a quantum field theory continuously across an event horizon.

This split of a quantum field theory ensures the thermal character of the Hawking radiation.

In our case, we compute and prove that the spectrum of neutrinos emitted from a black-hole

via the Hawking process is indeed thermal. We also study fermion scattering amplitudes

off the Schwarzschild black-hole.
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CHAPTER 1 : INTRODUCTION

The gravitational collapse of compact objects (white dwarfs, neutron stars) to form black-

holes still remains much of a problem in modern physics [1]. A detailed description of such

a collapse is still missing. In part, this is due to the extreme conditions found on these

compact objects. Typically, a neutron star is between 1 to 3 solar masses, with a radius

10−5 of the solar radius, is of nuclear densities (≤ 1015 g cm−3) and has a surface gravity

105 times solar. With surface gravities like these, general relativity is an integral part of

the description of neutron stars. At the same time, the nuclear densities of neutron stars

necessitates a quantum mechanical description of the neutron star matter. Indeed, the star

is supported against collapse primarily by the quantum mechanical, neutron degeneracy

pressure.

Depending on how one models the interior nuclear matter, neutron stars have a maximum

density beyond which they are unstable with respect to gravitational collapse. For stable

neutron stars, the extra mass needed to tip them over the stability limit can be acquired

via accretion processes such as in binary X-ray systems. Once tipped over the stability

limit, collapse is inevitable.

It is clear that the details of the collapse, is sensitive to the elementary particle physics

relevant at each stage of the process. Indeed, there has been some debate as to the existence
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of quark stars which could be created during the collapse of neutron stars. In this sense,

the gravitational collapse of compact objects, specifically neutron stars, can be used as a

tool in the study of elementary particles in the regime of strong gravitational forces.

Furthermore, there are many interesting and deep theoretical questions that one can pose

in this situation. For example, one may ask about the role that current algebra plays during

gravitational collapse since after all, gravity couples to the energy-momentum tensor of all

fields. Or one may ask about the implications of CP violation and CPT invariance on the

collapsing matter.

Unfortunately, such a program of investigation is difficult to carry out. For one thing,

the intractability of non-perturbative computations in realistic quantum field theories is

prohibitive enough even in ordinary Minkowskian spacetime. Compounding this, is the

presence of very strong gravitational fields which couples to the energy-momentum tensor

of all fields, and thereby making general relativistic effects non-negligible.

However the situation is not entirely hopeless. For within the context of quantum field

theory in curved spacetime [2], we may hope to gain some insight into the collapse process

simply by quantising the fields about a black-hole background and using these quantum

modes to study the detailed elementary particle physics of the problem. Of course, this

approach is restricted to regimes where gravity is treated as a classical field and is useful

only insofar as this semiclassical approximation is valid.
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Since the primary matter fields are all fermionic in Nature, it is therefore of some importance

to know how to build a fermion QFT in black-hole spacetimes. There has been some

previous work in this area by some authors [3,4]. Unfortunately, most authors rely on

the Newman-Penrose formalism which is not well adapted for computations in elementary

particle physics. On the other hand, in [4], there is no systematic procedure employed in

order to obtain the simplest possible mode solutions.

In this dissertation, I present a systematic approach to obtain fermion quantum modes in

black-hole spacetimes. In particular, the method that I propose produces quantum modes

which are analytically simple and have a direct physical interpretation. Moreover, I also

show that by using these modes, we can duplicate Hawking’s result on thermal radiation

from black-holes [5], therefore increasing our confidence in them.
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CHAPTER 2 : THE DIRAC EQUATION IN

BLACK-HOLE SPACETIMES

Let us first introduce our notation. We will always work with a metric of signature

(+,−,−,−) and Greek indices will refer to the general world-index, whilst Latin indices

refer to the flat Minkowskian tangent-space. Moreover, we take ηab to always represent the

Minkowskian metric and gµν to be the metric of curved spacetime. Our spinor conventions

generally follow that of Itzykson and Zuber [6].

We begin with the Dirac equation in a general curved spacetime [7,8]. It can be written as,

(i6D −m0)Ψ = 0 where m0 is the bare fermion mass and 6D is given in terms of the inverse

vierbeins, Ec
µ, and spin connection one-form, ωa

b,

6D = γcEc
µ∂µ + γcΓc (2.1)

and where

Γc =
1

2
i(ωab)cΣ

ab (2.2)

with Σab = 1
4
i[γa, γb] as the spinor representation matrices of the Lorentz group [7]. Of

course, the gamma matrices that we use, carry tangent space indices so that they take on the

familiar flat-spacetime form. A glance at the above two equations reveals a fundamental

difference between the usual Yang-Mills type coupling and gravitational couplings. The

non-compactness of the Lorentz group (as compared to the SU(N) groups), is reflected in
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the spinor representation of the Lorentz generators; they turn out to be commutators of the

gamma matrices. This means that in (2.1), the term γcΓc contains products of three gamma

matrices. Consequently further simplification may be obtained by multiplying out these

matrices. Such a situation could never arise in the Yang-Mills case because the generators

of the corresponding Lie algebra are not constructed from gamma matrices. Using the

identity, γaγbγc = ηabγc − ηacγb + ηbcγa + iεabcdγdγ5, we find for the Dirac equation, upon

simplification of (2.1),

iγcEc
µ∂µΨ− 1

4
i(ωab)c[η

caγb − ηcbγa]Ψ +
1

4
εabcd(ωab)cγdγ5Ψ−m0Ψ = 0 (2.3)

The term involving the epsilon tensor is intimately connected to the spin-tensor current

[9,10]. We will return to it later when we study the Kerr black-hole.

Although equation (2.3) appears rather formidable, it is actually not so in spacetimes which

possess enough symmetries. These symmetries which are encoded in the spin-connection

and the inverse vierbein can, and will be exploited when solving the Dirac equation in

black-hole spacetimes.

In particular, since all black-holes are stationary axisymmetric solutions of Einstein’s equa-

tion [11,12], it is therefore sufficient for us to focus on this class of spacetimes. The dis-

tinguishing feature of stationary axisymmetric spacetimes is that they possess a pair of

commuting Killing vector fields which may be taken to be the time-like vector field ∂
∂t
and

the spacelike vector field ∂
∂φ

in a coordinate system where t denotes a temporal coordi-
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nate and φ denotes an azimuthal coordinate. Because of the high degree of symmetry, it

is particularly advantageous to work in coordinate systems which manifestly reflects this

symmetry. However, the price we pay for physical clarity, is the loss of manifest general

covariance. In a very precise sense, we have made a convenient choice of gauge to find

exact solutions and so we lose gauge invariance. This is inevitable when constructing exact

solutions.

The key point to note is the very specific nature of axially symmetric solutions to Einstein’s

equation [11,12], which leads to a restricted form of the vierbein field, eaµ. For example, an

arbitrary axisymmetric spacetime (not necessarily a solution to Einstein’s equation) has a

metric tensor which may be written as,

gµνdx
µdxν = g00(x

1, x2)dt2 + 2g03(x
1, x2)dtdφ

+ g33(x
1, x2)dφ2

+ g11(x
1, x2)(dx1)2 + g22(x

1, x2)(dx2)2

+ 2g12(x
1, x2)dx1dx2

if we choose coordinates so that (x0, x3) = (t, φ). For axisymmetric solutions to Einstein’s

equation, the g12 term may be omitted whilst the g11 term is directly related to the g22

term [11,12], thus achieving greater simplification. This is not surprising since the Einstein

equation imposes further constraints on the general, axisymmetric, metric tensor which

are over and above those due to the azimuthal symmtery alone. With this in mind, the
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vierbein field for an axisymmetric solution may be written as,

eaµ =



e00 0 0 e30

0 e11 0 0

0 0 e22 0

e03 0 0 e33


(2.4)

where eaµ is a function of x1 and x2 alone. The inverse vierbein field, Ea
µ is also a funtion

of x1 and x2 alone and may be written as the inverse to eaµ. Furthermore, the components

of the vierbein field in (2.4) also has to obey some constraints that are due to the special

form of the metric tensor. It is easy to see from the conditions, ηabe
a
µe

b
ν = gµν and g12 = 0,

that the vierbein components satisfy the following constraints :

g00 = (e00)
2 − (e30)

2

g03 = (e00)(e
0
3)− (e30)(e

3
3)

g33 = (e03)
2 − (e33)

2 (2.5)

g11 = − (e11)
2

g22 = − (e22)
2

Clearly, the requirements of symmetry places severe restrictions on the theory that we shall

develop.
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Solving The Dirac Equation In Axially Symmetric Spacetimes

Using A Factorisability Ansatz

In this section we shall elaborate on how to solve (2.3) by using a factorisability ansatz.

We will derive an integrability condition which we shall show, is satisfied in any coordinate

system that reflects the full symmetry of the spacetime. In other words, the ansatz works

specially for axially symmteric spacetimes; without the azimuthal symmetry, the integra-

bility condition may not be satisfied. Also, it is important to note that this method does

not require the axially symmetric spacetime to be asymptotically flat. Therefore it may

even be applied to the Taub-NUT [13] spacetime.

We begin by imposing the following condition on Ψ in (2.3),

Ψ = f(x1, x2)Φ (2.6)

where the spinor, Φ, satisfies the reduced equation,

iγcEc
µ∂µΦ +

1

4
εabcd(ωab)cγdγ5Φ−m0Φ = 0 (2.7)

Then substitution of (2.6) into (2.3) and using (2.7) yields,

iγcEc
µ∂µf − 1

4
i(ωab)c[η

caγb − ηcbγa]f = 0 (2.8)

We can derive an integrability condition for f if we can first remove the gamma matrices in

equation (2.8). To this end, simply multiply (2.8) by γe on the left and take the matrix trace

8



(i.e use gamma trace identities) on both sides of the equation. Noting the anti-symmetry

of the spin-connection and relabelling indices, we find that

ηabEb
µ∂µf − 1

2
(ωba)bf = 0 (2.9)

From [8], we know that (ωb
a)c = −Ea

µEc
λ∂λe

b
µ + Ea

µebνΓ
ν
µλEc

λ where Γνµλ is the usual

Christoffel symbol. Armed with this information and the fact that Γλµλ = ∂µ log[e] =

∂µ log[
√−g] (where e is the vierbein determinant), we can simplify (2.9) to obtain,

∂µ log[f ] = −1

2
Eb

λ∂λe
b
µ + ∂µ log[e

1/2] (2.10)

It is advantageous to define a new function, h(x1, x2), such that f = he1/2 so that the

previous equation simplifies to

∂µ log[h] = −1

2
Eb

λ∂λe
b
µ (2.11)

Clearly the existence of h and the success of the factorisation ansatz depends on the inte-

grability of (2.11). However, the integrability of (2.11) is not a priori guaranteed unless the

vierbeins take on a very special form. That this is the case, is assured to us by the very

specific nature of the most general, canonical form for an axially symmetric solution to the

Einstein equation [11,12]. Let us see how this works.

First, when we evaluate (2.11) for various values of µ, and remembering that the vierbein

and inverse vierbein depends only on x1 and x2, we get,

∂0 log[h] = ∂t log[h] = 0
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∂3 log[h] = ∂φ log[h] = 0

∂1 log[h] = ∂1 log[(e
1
1)
−1/2]

= ∂1 log[(E1
1)1/2]

∂2 log[h] = ∂2 log[(e
2
2)
−1/2]

= ∂2 log[(E2
2)1/2]

Consequently we only need e11 and e
2
2 to be appropriately related to each other so as to

make the above equations integrable. But this is precisely the case with axially symmetric

solutions of Einstein’s equation [11,12]. And the factorisation ansatz works by this token.

Of course the reduced equation, (2.7), appears no less formidable than (2.3) but there is

a simplification. In order to further simplify (2.7), we have to consider two distinct cases

separately. These are the cases when the term, 1
4
εabcd(ωab)cγdγ5, vanishes or otherwise.

Obviously the case when this term vanishes is a lot easier to handle. In fact, when it does

not vanish then the general problem is insoluble except when the fermion is massless. We

briefly consider these cases separately below, leaving the detailed analysis to subsequent

chapters.
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Case One : 1
4
εabcd(ωab)cγdγ5 = 0

In this case (2.7) becomes, iγcEc
µ∂µΦ−m0Φ = 0, an analytically simple equation. There

is no further reduction necessary. This case corresponds to two physically important cases

which we shall study - flat Minkowskian spacetime and the Schwarzschild spacetime.

Case Two : 1
4
εabcd(ωab)cγdγ5 6=0

This the case that corresponds to the Kerr black-hole and Taub-NUT spacetime. In general,

(2.7) is insoluble in this situation except when the fermion is massless. For then, the bispinor

Φ is an eigenstate of γ5 and is either left or right handed depending on which eigenvalue

it corresponds to (±1). In other words the four-dimensional representation of gamma

matrices decomposes into the two dimensional representation of Pauli spin matrices. This

means that the γ5 becomes redundant and another factorisation is possible. We shall work

this out in detail later on in the chapter on the Kerr black-hole.

11



CHAPTER 3 : MINKOWSKI SPACETIME IN

SPHERICAL COORDINATES

In this chapter we shall solve the gravitationally coupled Dirac equation in Minkowski

spacetime, in spherical coordinates [14]. Although Minkowski spacetime is flat, some of the

results we obtain here will be used when we attack the Schwarzschild problem. Moreover

the Minkowskian theory will serve as a nice consistency check when we set the black-hole

parameters (mass and angular momentum) to zero - where we expect a “correspondence

principle” to hold. In any case, far from the black-hole, the mode solutions for the Dirac

equation should asymptotically reduce to those of the Minkowskian example. Hence the

Minkowskian case is the best point to begin our investigation of the Dirac equation in

black-hole spacetimes.

The Minkowskian line element in spherical coordinates reads as, ds2 = dt2−dr2− r2(dθ2+

r2 sin2 θdφ2) so that we may choose as basis one-forms, θ0 = dt, θ1 = dr, θ2 = rdθ, θ3 =

rsin θdφ. Using this set of basis one-forms and the formula, 2(ω)ab = θciaibdθc+ibdθa−iadθb,

we can work out the spin connection (ω)ab. Thus we find that,

(ω)01 = (ω)02 = (ω)03 = 0, (ω)12 =
1

r
θ2, (ω)13 =

1

r
θ3, (ω)23 =

cot θ

r
θ3 (3.1)

With the spin-connection determined as above, we can check that the term 1
4
εabcd(ωab)cγdγ5
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actually vanishes in this case. Therefore we may directly solve (2.11) to obtain a factori-

sation of the Dirac spinor, Ψ. But first, note that the vierbeins are given by e00 = 1, e11 =

1, e22 = r, e33 = r sin θ and the inverse vierbeins are simply the inverse to this diagonal set.

With this, it is easy to see from (2.10) and (2.11) that

f = e1/2 = r sin1/2 θ (3.2)

In particular, this means that Ψ = r sin1/2 θΦ where Φ solves

iγaEa
µ∂µΦ−m0Φ = 0 (3.3)

It is to this reduced equation that we now devote our attention. Define ~∇ by ~∇ = Ek
µ∂µ

where k = 1, 2, 3. After some manipulations we get,

iE0
µ∂µΦ = i

∂

∂t
Φ = −i~α · ~∇Φ+m0βΦ (3.4)

where ~α and β are the Dirac matrices. But ~∇ = Ek
µ∂µ = r̂ ∂

∂r
+ θ̂ 1

r
∂
∂θ

+ φ̂ 1
r sin θ

∂
∂φ

so that

the previous equation is nothing but the free Dirac equation in spherical coordinates. Here

we see how the factorisation ansatz works; all dependence on the spin connection has been

absorbed into the multiplicative factor f . As we shall see later, the same happens for

black-hole spacetimes too. We now solve the free equation in detail [14].

Define the orbital angular momentum operator to be ~L = −ir̂ ∧ ~∇ so that −i~∇ = −ir̂ ∂
∂r
−

1
r
r̂ ∧ ~L. Consequently, we get −i~α · ~∇ = −i(~α · r̂) ∂

∂r
− 1

r
~α · (r̂ ∧ ~L). The term ~α · (r̂ ∧ ~L) can

be simplified by using the identities (~α · ~A)(~α · ~B) = ~A · ~B + i~Σ · ( ~A ∧ ~B) with ~A = r̂ and
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~B = ~L and γ5~α = ~αγ5 = ~Σ. Of course, ~Σ is the usual spin matrix [6]. The simplification

we need is given by, i~α · (r̂ ∧ ~L) = (~α · r̂)(~Σ · ~L), because,

−i(~α · ~∇) = −i(~α · r̂) ∂
∂r

+
i

r
(~α · r̂)(~Σ · ~L)

= − i(~α · r̂)
[
∂

∂r
− 1

r
(~Σ · ~L)

]

= − i(~α · r̂)
[
∂

∂r
+
1

r
− 1

r
β2(~Σ · ~L+ 1)

]

where we have used the fact that β2 = 1. We can define a new operator, K, by

K = β(~Σ · ~L+ 1) = β(2~S · ~L+ 1) = β( ~J2 − ~L2 − ~S2 + 1) (3.5)

where ~S = 1
2
~Σ is the spin operator and ~J = ~L+ ~S is the total angular momentum operator.

And therefore we may now write,

i
∂

∂t
Φ = − i(~α · r̂)

[
∂

∂r
+
1

r
− 1

r
βK

]
Φ +m0βΦ = H0 (3.6)

where H0 is the free Dirac Hamiltonian. To proceed from here, we require a complete set of

commuting observables (CSCO) so that we may attempt a separation of variables in (3.6).

A Complete Set Of Commuting Observables

Finding a CSCO for (3.6) is quite easy because we are dealing with the free Dirac Hamil-

tonian in flat spacetime. As we show below, it is given by the set {H0, J
3, ~J2,P, K} where

P = βP is the parity operator acting on spinors and P is the parity operator acting on

coordinates. The proof is constructed in several stages and exhaustive use is made of the
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list of identities satisfied by the Dirac matrices, as given in [14]. Furthermore, we shall

employ the Dirac representation of the Dirac and gamma matrices.

H0, J
3 and ~J2 mutually commutes

Represent ~L and H0 by L
i = −iεijkxj∂k and H0 = −iαl∂l +m0β. Then,

[
Li, H0

]
=

[
−iεijkxj∂k,−iαl∂l +m0β

]
= −

[
εijkxj∂k, α

l∂l
]

= − εijkαl [xj∂k, ∂l]

= εijkαj∂k

Similarly,

[
Si, H0

]
=

[
1

2
Σi,−iαj∂j +m0β

]
= − i

2
γ5
[
αi, αj

]
∂j

= − i

2
γ5
(
2iεijkΣk∂j

)
= − εijkαj∂k

where we have used the fact that [Σi, β] = 0. Thus [Li + Si, H0] = [J i, H0] = 0 which

means that H0 commutes with J3 and ~J2. And since ~J2 is a Casimir operator of the

rotation group, the result follows.
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H0 commutes with K

Here we show that K commutes with H0. The proof is slightly longer than the previous

one.

[H0, K] =

[
−i(~α · r̂)

(
∂

∂r
+
1

r
− 1

r
βK

)
, K

]

= − i [(~α · r̂), K]

(
∂

∂r
+
1

r
− 1

r
βK

)

since [β,K] =
[
β, β

(
2~S · ~L+ 1

)]
=
[
β, ~S

]
= 0. Therefore we only need to prove that

[(~α · r̂), K] = 0. To this end, we note that

[~α · r̂, K] =
[
~α · r̂, β

(
2~S · ~L+ 1

)]
= − β(~α · r̂)

(
2~S · ~L+ 1

)
−
(
2~S · ~L+ 1

)
β(~α · r̂)

since {β, αi} = 0. Hence we find that the commutator may be cast into the form,

[~α · r̂, K] = −2
{
β(~α · r̂), ~S · ~L

}
− 2β(~α · r̂). On the other hand, we also have the iden-

tity {AB,C} = A{B,C} − [A,C]B so that if we put A = β, B = ~α · r̂ and C = ~S · ~L, we

get
{
β(~α · r̂), ~S · ~L

}
= β

{
~α · r̂, ~S · ~L

}
. Using this result, we can simplify the commutator

to obtain [~α · r̂, K] = −2β
{
(~α · r̂), ~S · ~L

}
−2β(~α · r̂) so that we now require the anticommu-

tator,
{
(~α · r̂), ~S · ~L

}
. To this end, put ~α · r̂ = αi

xi

r
where r = xixi and ~S · ~L = −iSjεjklxk∂l

in the anticommutator expression. After some simple manipulations, it can be shown that{
(~α · r̂), ~S · ~L

}
= iεijkSiαj

xk
r
. But 4iεijkSi = 2(αjαk − δjk) and {αj, αk} = 2δjk so that we

finally obtain
{
(~α · r̂), ~S · ~L

}
= −~α · r̂. With this, we see that [(~α · r̂), K] = 0. In particular,

this implies that H0 commutes with K.
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J i commutes with K

We now prove that K commutes with the generators of the rotation group.

[
Li, K

]
=

[
Li, β

(
2~S · ~L+ 1

)]
= 2βSj

[
Li, Lj

]
= 2βSjiε

ijkLk

On the other hand, it is trivial to verify that [Si, K] = −2βSjiεijkLk so that K commutes

with J i and hence with J3 and ~J2. Finally, we show that P commutes with H0, K and J i.

P commutes with H0, K and J i

Put P = βP . Then,

[P, H0] =
[
P,−iαi∂i +m0β

]
=

[
βP,−iαi∂i

]
= − i

(
βαiP∂i − αiβ∂iP

)

But P∂i = −∂iP so that [P, H0] = i {β, αi} ∂iP = 0 and hence P commutes with H0.

Next, we show that P commutes with J i.

[
P, J i

]
=

[
βP, J i

]
=

(
βPJ i − J iβP

)
17



But [P, J i] = 0 since J i is a pseudovector. Thus [P, J i] = [β, J i]P = 0 because [β, J i] = 0.

The final step is to prove that P commutes with K. For this purpose, consider

[P, K] =
[
βP, β

(
2~S · ~L+ 1

)]
= β

[
βP, 2~S · ~L

]
= 0

since ~S · ~L transforms as a scalar.

This completes our proof that
{
H0, K, J

3, ~J2,P
}
forms a complete set of commuting oper-

ators. We are now ready to perform a separation of variables in (3.6).

Separation Of Variables

Let Φmjκj be the simultaneous eigenstate of J
3, ~J2 and K. The eigenvalues corresponding

to J3 and ~J2 are well known and are given by,

~J2Φmjκj = j(j + 1)Φmjκj

J3Φmjκj = mjΦmjκj

with j = 1
2
, 3
2
, 5
2
, . . . and mj = −j, . . . ,+j so that we only have to determine the eigenvalues

corresponding to K. For this purpose, we consider K2 and use the commutator identity,

[β, Si] = 0, to get

K2 = β2
(
2~S · ~L+ 1

)2
18



= 4
(
~S · ~L

) (
~S · ~L

)
+ 4

(
~S · ~L

)
+ 1

= 4
[
1

4
~L2 +

i

2
~S ·
(
~L ∧ ~L

)]
+ 4

(
~S · ~L

)
+ 1

where we have used the identity
(
~σ · ~A

) (
~σ · ~B

)
= ~A · ~B+ i~σ ·

(
~A ∧ ~B

)
and ~S = 1

2

 ~σ 0

0 ~σ

.
But ~L ∧ ~L = i~L since −iεijkLiLj = Lk so that

K2 =
(
~L+ ~S

)2 − ~S2 + 1

= ~J2 − ~S2 + 1

But ~S2 = 3
4
so that K2 = ~J2 + 1

4
and hence if we set,

KΦmjκj = − κjΦmjκj

⇒ K2Φmjκj =
[
j(j + 1) +

1

4

]
Φmjκj

= (j +
1

2
)2Φmjκj

= (−κj)2Φmjκj

Therefore we conclude that the eigenvalue problem for K may be written as, KΦmjκj =

−κjΦmjκj with −κj = . . . , 3, 2, 1,−1,−2,−3, . . . and −κj 6= 0.

The explicit construction of the eigenfunction, Φmjκj , follows from the Clebsch-Gordon

addition of angular momenta [14]. Because of this, it turns out that these eigenfunctions are

also simultaneous eigenstates of parity, P. Consequently we can define these eigenfunctions
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as

Φ
(+)

mjκj=∓(j+ 1
2
)

=

 iΨ
mj

j∓ 1
2

0



Φ
(−)

mjκj=∓(j+ 1
2
)

=

 0

iΨ
mj

j± 1
2


where

Ψ
mj

j−1/2 =
1√
2j


√
j +mj Y

mj−1/2
j−1/2√

j −mj Y
mj+1/2
j−1/2



Ψ
mj

j+1/2 =
1√

2j + 2


√
j + 1−mj Y

mj−1/2
j+1/2

−
√
j + 1 +mj Y

mj+1/2
j+1/2



The Y m
l are the usual spherical harmonics. With these definitions, it is trivial to prove that

the Φ’s are parity eigenstates with opposite eigenvalues. Furthermore, they form a complete

and orthonormal set of bispinors over the sphere and satisfy the following orthonormality

and completeness relations,

∫
Φ(+)†
mjκj

Φ(+)
mj′κj′ dΩ =

∫
Φ(−)†
mjκj

Φ(−)
mj′κj′ dΩ = δmjmj′δκjκj′δjj′∑

jmjκj

[
Φ(+)
mjκj

(Ω)⊗ Φ(+)†
mjκj

(Ω′) + Φ(−)
mjκj

(Ω)⊗ Φ(−)†
mjκj

(Ω′)
]

= δ (Ω− Ω′) 14×4

The final task that we have to perform before we can achieve a separation of variables in

(3.6), is the determination of the action of H0 in (3.6) on these eigenfunctions. Only then

can we perform a partial wave expansion leading to a separation of variables. To this end,
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we shall need the following identity which is not difficult to prove,

(~σ · r̂) Ψmj

j±1/2 (r̂) = Ψ
mj

j∓1/2 (r̂)

Note the flip from j ± 1/2 to j ∓ 1/2. Armed with this identity, we can show that in the

Dirac representation,

i (~α · r̂) Φ(+)
mjκj

= − Φ(−)
mjκj

i (~α · r̂) Φ(−)
mjκj

= Φ(+)
mjκj

and we are now ready to perform a partial wave expansion. Set each partial wave of (3.6)

to be the sum of two independent pieces as thus,

ψmjκj = f+
mjκj

(r, t)Φ(+)
mjκj

+ f−mjκj
(r, t)Φ(−)

mjκj
(3.7)

Noting that in the Dirac representation we have β =

 1 0

0 −1

 then it is trivial to see

that the following simplifications are true,

βKΦ(+)
mjκj

= − κjΦ
(+)
mjκj

βKΦ(−)
mjκj

= κjΦ
(−)
mjκj

m0βΦ
(+)
mjκj

= m0Φ
(+)
mjκj

m0βΦ
(−)
mjκj

= −m0Φ
(−)
mjκj

With these, the partial wave (3.7) when substituted in (3.6) along with the time dependence,

f+
mjκj

(r, t) = e−iEta(r)

f−mjκj
(r, t) = e−iEtb(r)
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leads to the linear non-autonomous system,

d

dr

 a

b

 =
 −

1+κj
r

m0 + E

m0 −E −1−κj
r


 a

b

 (3.8)

Equation (3.8) above represents the radial Dirac equation - the angular pieces having been

separated as in (3.7). In the present Minkowskian case, the radial equation is amenable to

an exact and explicit solution. This will be done shortly. On the other hand, as we shall

see later on, the radial equation in a black-hole background is far more complicated. Only

a qualitative study of the radial equation is possible in that situation. Because of this, we

will also perform a simple qualitative analysis of (3.8) so that we may later on, compare,

the qualitative behaviours of the radial equations in black-hole and flat spacetimes.

The radial equation, (3.8), may be separated into two second-order differential equations

for a(r) and b(r). These equations must then be solved for the separate cases of when

κj < 0 and κj > 0. It turns out that the second-order differential equations that we seek

are of the form,

[
1

r2
d

dr

(
r2
d

dr

)
− `(`+ 1)

r2
+ p2

]
f(r) = 0

where p2 = E2 − m2
0 ≥ 0 is the momentum squared. Of course, the solutions to this

equation that are regular at r = 0 exist only for p ≥ 0 and integral ` ≥ 0. They are the

spherical Bessel functions j`.
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The equation for a(r)

The equation satisfied by a(r) is given by,[
1

r2
d

dr

(
r2
d

dr

)
− κj(κj + 1)

r2
+
(
E2 −m2

0

)]
a(r) = 0

For κj > 0, the solutions to this equation are {jκj (pr)}. On the other hand when κj < 0,

some rearrangement of the equation is needed in order to make an identification with ` ≥ 0.

Thus, rewrite

−κj(κj + 1)

r2
= − (−κj − 1)(−κj − 1 + 1)

r2

and since −κj − 1 ≥ 0 for κj < 0, we can identify ` with −κj − 1. Hence the solutions for

κj < 0 are {j−κj−1 (pr)}.

The equation for b(r)

The equation satisfied by b(r) is given by,[
1

r2
d

dr

(
r2
d

dr

)
− (−κj)(−κj + 1)

r2
+
(
E2 −m2

0

)]
b(r) = 0

For κj > 0, a slight rearrangement is needed. Rewrite

−(−κj)(−κj + 1)

r2
= − (κj − 1)(κj − 1 + 1)

r2

since κj − 1 ≥ 0 when κj > 0. Therefore the solutions when κj > 0 are {jκj−1 (pr)}. In the

case when κj < 0, no rearrangement of terms is needed as −κj > 0. And in that case the

acceptable solutions are {j−κj (pr)}.
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Altogether if we denote the a solutions by {jaκj } and the b solutions by {jbκj }, then we

have that

aκj =


κj : κj > 0

−κj − 1 : κj < 0

bκj =


κj − 1 : κj > 0

−κj : κj < 0

Notice that for all values of κj = . . . ,−3,−2,−1, 1, 2, 3, . . ., the inequality aκj 6= bκj holds.

This means that for each value of κj, the radial part of each partial wave decomposes into

two linearly independent pieces corresponding to the two Φ’s, just as in(3.7). Therefore

the partial wave expansion for an arbitrary solution to the gravitationally coupled Dirac

equation in Minkowski spacetime and in spherical coordinates, is thus given by

Ψ = e−iEtr sin1/2 θ

× ∑
jmjκj

[
Ajmjκjjaκj (pr)Φ

(+)
mjκj

(Ω) +Bjmjκjjbκj (pr) Φ
(−)
mjκj

(Ω)
]

(3.9)

where Ajmjκj and Bjmjκj are complex Fourier coefficients. Notice that we have included

the r sin1/2 θ factor on account of the factorisation ansatz. Also, we note that we have

recovered the usual spectrum of the free Dirac operator since either E ≤ −m0 or E ≥ m0.

Qualitative Analysis Of The Radial Equation

In this section, we perform a simple qualitative analysis of the radial Dirac equation - (3.8).
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In the present Minkowskian case, the analysis is particularly simple. However the methods

we employ here may be extended to black-hole spacetimes without much modification.

From (3.8), we define the matrix F(r) by,

F(r) =

 −
1+κj
r

m0 + E

m0 − E −1−κj
r


and we note that it is continuous on the domain r ∈ [0,∞). By the Fundamental Existence

Theorem of differential equations [15], we are thus assured of the existence of a unique

solution on r ∈ [0,∞). On the other hand, the Wronskian for the system (3.8) is given by

the Abel-Liouville formula as

W (r) = W (r0) exp
[∫ r

r0
TrF(s) ds

]
= W (r0)

(
r0
r

)2

Thus if W (r0) 6= 0 for some positive r0, then W (r) 6= 0 for all r. This means that we have

2 linearly independent solutions to the system. In particular, fixing free-particle boundary

conditions at r → ∞ and demanding regularity at r = 0 freezes out the exact solutions

that we previously obtained. To see this better, we recall that from Sturm-Liouville theory

[15], the second-order differential equation,

[
1

r2
d

dr

(
r2
d

dr

)
− `(`+ 1)

r2
+ p2

]
f(r) = 0

has two linearly independent solutions - the spherical Bessel functions, {j`} which is regular

at the origin and the spherical Neumann functions, {n`} which diverges at the origin. Our
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boundary conditions restricts us to the spherical Bessel functions. Indeed, for the Sturm-

Liouville problem with solutions y1(x) and y2(x),

d

dx

[
P (x)

dy

dx

]
+Q(x)y = 0

the Wronskian of the solutions (not to be confused with the Wronskian of a 2× 2 system)

may be defined as W [y1(x), y2(x)] =

∣∣∣∣∣∣∣∣∣
y1 y2

dy1
dx

dy2
dx

∣∣∣∣∣∣∣∣∣ and it satisfies the relation

W [y1(x), y2(x)]P (x) = constant.

In our case, it is clear that P = r2 and Q = −`(` + 1) + p2r2 and it is gratifying to know

that this relation is indeed satisfied since W [j`(pr), n`(pr)]r
2 = 1

p
= constant.

Normalisation And Inner Product

Before we proceed with the quantisation of the Dirac theory in the gravitationally coupled

Minkowskian case, we need to define a sensible inner product and normalisation for the

mode solutions that we have found. First of all, we recognise that the solution space

{j`} does not constitute an L2 Hilbert space; indeed, the standard normalisation for the

spherical Bessel functions are,

∫ ∞

0
r2j`(kr)j`′(k

′r) dr =
π

2k2
δ(k − k′)δ``′∫ ∞

0
k2j`(kr)j`′(kr

′) dk =
π

2r2
δ(r − r′)δ``′
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as it should be since our modes represent free spherical waves. Consequently we can only

hope to get delta-function normalisations. With this in mind, we recall that the standard

normalisation and inner-product for spinors is given by,

‖Ψ‖2 =
∫
Ψ†Ψ d(vol)3−space

〈Ψ1,Ψ2〉 =
∫
Ψ†

1Ψ2 d(vol)3−space

In the cases that we will be dealing with, the bispinor Ψ will always have the form

Ψ = e1/2h(r, θ)Φ as per the factorisation ansatz that we have discussed in Chapter 2.

Consequently, in a very precise sense, all information regarding the quantum state is car-

ried in the bispinor Φ with the he1/2 factor as “excess baggage”. Therefore, we define the

integration measure for the inner-product as,

dµ = d(vol)3−space h−2(r, θ)e−1 (3.10)

so that we have the following simplification,

〈Ψ1,Ψ2〉 =
∫
Ψ†

1Ψ2 dµ

=
∫ (

he1/2Φ1

)† (
he1/2Φ2

)
dµ

=
∫
Φ†1Φ2 d(vol)3−space

Clearly this approach to the inner-product may be generalised to the cases when the under-

lying spacetime is a black-hole. Having determined the inner-product of choice and with

the help of (3.9) plus the completeness relation satisfied by the spinor harmonics, it is easy
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to see that the correct, normalised eigenstate of the full Dirac Hamiltonian is given by

ΨEjmjκj = e−iEtr sin1/2 θ

× 1√
2

[
jaκj (pr) Φ

(+)
mjκj

(Ω) + jbκj (pr) Φ
(−)
mjκj

(Ω)
]

(3.11)

and is normalised according to,

〈
ΨEjmjκj ,ΨE′j′mj′κj′

〉
=

∫
Ψ†
Ejmjκj

ΨE′j′mj′κj′ dµ

= ei(E−E
′)t π

2p2
δ(p− p′)δjj′δmjmj′δκjκj′

But p2 = E2 −m2
0 so that

dp
dE

= E
p
and δ [p(E)− p′(E ′)] = δ(E−E′)

| dpdE | and thus,

〈
ΨEjmjκj ,ΨE′j′mj′κj′

〉
=

π

2 |E| pδ(E − E ′)δjj′δmjmj′δκjκj′ (3.12)

From this normalisation of the eigenstates, we can immediately read off the spectral measure

(density of states), ρ(E)dE = 2|E|p
π

, and verify the spectral expansion,

∫ ∑
jmjκj

ΨEjmjκj(~r)⊗Ψ†
Ejmjκj

(~r′) ρ(E)dE = δ(r − r′)δ(θ − θ′)δ(φ− φ′)

We are now ready to perform a quantisation of the theory that we have developed so far.

Quantisation

In order to quantise the theory that we have developed, it is necessary to specify positive

and negative frequency modes with respect to the timelike direction, t. But because the
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bispinor Φ(+)
mjκj

only has upper components whereas Φ(−)
mjκj

only has lower components, we

may define the required normalised modes as,

ujmjκj =

√
2

π
jaκj (pr)Φ

(+)
mjκj

(Ω) pr sin1/2 θ (positive frequency)

vjmjκj =

√
2

π
jbκj (pr)Φ

(−)
mjκj

(Ω) pr sin1/2 θ (negative frequency)

The normalisation of these modes are chosen so that,

∫
dµ ujmjκj (p)uj′mj′κj′ (p

′) = δjj′δmjmj′ δκjκj′δ(p− p′)∫
dµ vjmjκj(p)vj′mj′κj′ (p

′) = − δjj′δmjmj′ δκjκj′δ(p− p′)

where the bar over the spinors denotes Dirac adjoints i.e ψ = ψ†γ0. With this, we proceed

to expand a wave packet, ψ, as follows

ψ =
∫ ∞

0
dp

∑
jmjκj

[
e−iωptujmjκj(p)bjmjκj(p) + eiωptvjmjκj(p)d

†
jmjκj(p)

]
(3.13)

where ωp =
√
p2 +m2

0. In order to quantise the theory, the coefficients bjmjκj (p) and

d†jmjκj(p) must be elevated to be operators. And (3.13) must then be interpreted as the

quantum expansion of the field operator, ψ.

If we accept this implementation of the quantum principle, the next stage would be to

postulate the appropriate algebra for these operators. To this end, we follow the usual

prescription and adopt the creation and annihilation operator algebra for these operators,

{
bjmjκj (p), b

†
j′mj′κj′

(p′)
}

=
{
djmjκj(p), d

†
j′mj′κj′

(p′)
}
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= δjj′δmjmj′ δκjκj′δ(p− p′) (3.14)

{
bjmjκj(p), dj′mj′κj′ (p

′)
}

=
{
bjmjκj(p), d

†
j′mj′κj′

(p′)
}

= 0 (3.15)

Using this algebra and (3.13), it is in fact rather easy to prove that the equal time anti-

commutation relation for the field operator ψ is indeed satisfied,

{ψ(r, θ, φ), ψ(r′, θ′, φ′)}Equal Time = δ(r − r′)δ(θ − θ′)δ(φ− φ′) (3.16)

The particle concept is introduced by defining the appropriate vacuum state to be the

state |0〉 satisfying bjmjκj(p) |0〉 = djmjκj (p) |0〉 = 0. These states are particle states of

definite angular momenta and energy. One can proceed further to define the propagator

etc, but we shall refrain from doing that here. Suffice it to say that we have a well-defined

quantum field theory of Dirac particles in the gravitationally coupled Minkowski spacetime,

in spherical coordinates. In the next chapter, we shall construct a similar theory for the

Schwarzschild black-hole.
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CHAPTER 4 : THE DIRAC EQUATION IN

SCHWARZSCHILD SPACETIME

In this chapter, we shall construct a fermion quantum field theory living on the black-

hole, Schwarzschild, spacetime. Our approach will be different from the one in [4] because

we will systematically employ the factorisability ansatz as discussed in Chapter 2. The

case of the Schwarzschild black-hole is an important one; it being the “hydrogen atom” of

black-hole studies. The spherical symmetry of the Schwarzschild black-hole implies that

the angular components of the solutions to the Dirac equation are precisely the same spinor

harmonics used in the last chapter. This is a very useful simplification as only the radial

wavefunctions are different from the Minkowskian case. It turns out, as we shall see later

on, that the radial wavefunction cannot be expressed as a closed-form, analytic solution.

However this is not a hindrance to explicit calculations. Indeed, we shall compute the

spectrum of neutrino emission from Schwarzschild black-holes via the Hawking process, as

well as perform a partial-wave analysis of fermion scattering amplitudes using the solutions

presented here, in later chapters.

We begin our analysis with the Schwarzschild line element written in Schwarzschild coor-

dinates,

ds2 =
(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2
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Observe that in the correspondence limit, 2M
r
� 1, we ought to recover the Minkowskian

results. In particular, this should also apply to the solutions of the Dirac equation. From

the line element, we are motivated to choose as basis one-forms, the following set : θ0 =(
1− 2M

r

)1/2
dt, θ1 =

(
1− 2M

r

)−1/2
dr, θ2 = rdθ and θ3 = r sin θdφ. Notice that this basis

of one-forms is only valid outside the event horizon at r = 2M because of the coordinate

singularities encountered there. In fact, it is impossible to define a singularity free basis

of one-forms when using the Schwarzschild coordinates. This is a non-trivial issue as we

shall see later on. We need the spin-connection, and so by using the formula 2ωab =

θciaibdθc + ibdθa − iadθb, we compute the spin connection one-form to be,

(ω)01 =
M

r2

(
1− 2M

r

)−1/2

θ0

(ω)02 = (ω)03 = 0,

(ω)12 =
1

r

(
1− 2M

r

)1/2

θ2, (4.1)

(ω)13 =
1

r

(
1− 2M

r

)1/2

θ3,

(ω)23 =
cot θ

r
θ3

and with this, it is easy to verify that 1
4
εabcd(ωab)cγdγ5 = 0. We still need to specify a

vierbein set before we can apply (2.11) for the factorisation ansatz. To this end, our task

is almost trivial since the metric is diagonal; we choose the diagonal set e00 =
(
1− 2M

r

)1/2
,

e11 =
(
1− 2M

r

)−1/2
, e22 = r and e33 = r sin θ so that e = r2 sin θ. Then (2.10) and (2.11)
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yields

f =
(
1− 2M

r

)1/4

r sin1/2 θ (4.2)

Consequently the factorisation ansatz reduces our task to one of solving the reduced equa-

tion, iγcEc
µ∂µΦ−m0Φ = 0 where Ψ = fΦ solves the full Dirac equation in Schwarzschild

spacetime. This is pretty much the same as in the Minkowskian case. In fact, the

spherical symmetry of Schwarzschild spacetime implies that a separation of variables as

in the Minkowski case, applies identically to the present situation. Indeed, if we define

~∇ = Ek
µ∂µ = r̂

(
1− 2M

r

)1/2
∂
∂r
+ θ̂ 1

r
∂
∂θ
+ φ̂ 1

r sin θ
∂
∂φ
, then just as (3.6), we may write

H0Φ = i
(
1− 2M

r

)−1/2 ∂

∂t
Φ =

− i(~α · r̂)
[(

1− 2M

r

)1/2 ∂

∂r
+
1

r
− 1

r
βK

]
Φ+m0βΦ (4.3)

Following the Minkowskian example, we choose to work in the Dirac representation of

gamma and Dirac matrices, and we set each partial wave of (4.3) to be

ψmjκj = f+
mjκj

(r, t)Φ(+)
mjκj

+ f−mjκj
(r, t)Φ(−)

mjκj
(4.4)

When (4.4) is substituted into (4.3) along with the time dependence

f+
mjκj

(r, t) = e−iωtA(r)

f−mjκj
(r, t) = e−iωtB(r)

we get the radial Dirac equation - this time on a genuine black-hole background,

d

dr

 A

B

 =
1

1− 2M
r

 −
1+κj
r

(
1− 2M

r

)1/2
m0

(
1− 2M

r

)1/2
+ ω

m0

(
1− 2M

r

)1/2 − ω −1−κj
r

(
1− 2M

r

)1/2

 A

B

 (4.5)
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Clearly (4.5) exhibits features which are far more complicated than those of (3.8) - yet it

reduces to (3.8) in the correspondence limit when 2M
r
� 1. In the next section, we shall

present a detailed study of this equation.

The Radial Dirac Equation In Schwarzschild Spacetime

The radial Dirac equation in Schwarzschild spacetime, (4.5), stands in stark contrast to

the similar equation but in Minkowski spacetime - (3.8). Much of the analysis that we will

perform can only be of a qualitative nature, since (4.5) is analytically complicated.

The first thing we should note about the radial equation, is that it is singular at r = 2M

and is well-defined only for r > 2M . This is directly related to our choice of coordinates

and we will discuss this point later. Define the matrix,

F(r) =
1

1− 2M
r

 −
1+κj
r

(
1− 2M

r

)1/2
m0

(
1− 2M

r

)1/2
+ ω

m0

(
1− 2M

r

)1/2 − ω −1−κj
r

(
1− 2M

r

)1/2


where it is continuous on r > 2M . This means that solutions to the radial equation

exist and are continuous, on this semi-infinite interval. Furthermore, the Wronskian of the

system, W (r), is given by the Abel-Liouville formula as,

W (r) = W (r0)e
∫ r
r0

TrF(s) ds

=
[
r −M +

√
(r −M)2 −M2

]−2

so that W (r) = M−2 at the event horizon and is non-vanishing for all r ≥ 2M . This
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implies that the solutions to (4.5) are linearly independent for all r ≥ 2M . Notice that

W (r) becomes imaginary when r < 2M - a fact that is related to the choice of coordinates.

We can convert (4.5) into a pair of complicated second-order differential equations for A(r)

and B(r) via a simple, albeit tedious, elimination process. The equation for A(r), for

example, may be written as

(
1− 2M

r

)
d2A

dr2

+

2Mr2 +
2

r

(
1− 2M

r

)1/2

−
(
1− 2M

r

)1/2
m0

(
1− 2M

r

)1/2
+ ω

m0M

r2

 dA

dr

−
1 + κj

r2

(1− 2M

r

)1/2

− M

r

(
1− 2M

r

)−1/2

+
m0M
r

m0

(
1− 2M

r

)1/2
+ ω


+
m2

0

(
1− 2M

r

)
− ω2(

1− 2M
r

) − 1− κj
2

r2

A = 0 (4.6)

which is a messy equation indeed. However, it is easy to check that the potential term

(the last term which multiplies A(r)) is bounded from below on 2M ≤ r ≤ ∞ so that

the radial wavefunctions are meaningful there. The preceding equation is of the form

a0(r)
d2y
dr2

+a1(r)
dy
dr
+a2(r)y = 0 which can be put into the self-adjoint Sturm-Liouville format

if the following two conditions are met, (i) a0, a1 and a2 are continuous on the domain of

the problem and (ii) a0 6= 0 throughout the domain of the problem. The conversion to

a Sturm-Liouville problem can be effected by the multiplication factor 1
a0
exp

[∫ a1
a0
dr
]
to

obtain, d
dr

[
P (r)dy

dr

]
+ Q(r)y = 0 with P (r) = exp

[∫ a1
a0
dr
]
and Q(r) = a2

a0
P (r). In our

case, a0(r) = 1 − 2M
r

vanishes at r = 2M so that the preceding transformation will yield
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a singular Sturm-Liouville problem [15] since P (r) vanishes at the end-point, r = 2M . In

particular, we have that

P (r) =

(
1− 2M

r

) [
r −M +

√
(r −M)2 −M2

]2
m0

(
1− 2M

r

)1/2
+ ω

which clearly shows that P (r = 2M) = 0 and P (r)→ 4r2

m0+ω
when 2M

r
� 1.

To gain more information regarding the behaviour of the radial wave functions, we need

to check that it obeys the correspondence principle; it must behave like the Minkowskian

radial wave functions far away from the black-hole. To this end, we return to (4.5) and put

2M
r
� 1. Then we note that in this limit,

(
1− 2M

r

)−1/2

= 1 +
M

r
+O

(
M2

r2

)
(
1− 2M

r

)−1

= 1 +
2M

r
+O

(
M2

r2

)

so that (4.5) reduces to,

d

dr

 A

B

 =

 −
1+κj
r

(
1 + M

r

)
m0 + ω + M

r
(m0 + 2ω)

m0 − ω + M
r
(m0 − 2ω) −1−κj

r

(
1 + M

r

)

 A

B


and upon elimination of B(r) (dropping terms of O

(
M2

r2

)
and higher) we get,

d2A

dr2
+
2

r

dA

dr
− κj(κj + 1)

r2
A+ (ω2 −m2

0)A =

− 2M

r2
dA

dr
+
2M

r

κj(κj + 1)

r2
A+

M

r
(m2

0 − 4ω2)A

which is nothing more than the spherical Bessel equation on the left hand side plus inho-

mogeneous terms on the right hand side. This clearly demonstrates that the Schwarzschild
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radial wave functions are asymptotic to the Minkowskian ones, far away from the black-hole.

Furthermore, there is an obvious one-to-one correspondence between the Schwarzschild ra-

dial wave functions and the Minkowskian wave functions. The κj dependent term on the

right hand side ensures this.

Consequently we expect there to be two linearly independent solutions to the Schwarzschild

radial equation; Zaκj
(pr) and Zbκj

(pr) are the acceptable solutions that are regular at the

event horizon and are aymptotic to jaκj (pr) and jbκj (pr), respectively, and Q` - which

diverges at the event horizon. This is very much like the spherical Bessel and spherical

Neumann functions in the Minkowskian case with ω2 = p2 +m2
0.

In fact, we can evaluate the Wronskian of Z` and Q` exactly by using the formula,

W [Z`,Q`]P (r) = (constant)

to find that

W [Z`,Q`] = (constant)
m0

(
1− 2M

r

)1/2
+ ω(

1− 2M
r

) [
r −M +

√
(r −M)2 −M2

]2
When 2M

r
→ 0, W [Z`(pr),Q`(pr)]→ W [j`(pr), n`(pr)] =

1
pr2

= 1

r2
√

ω2−m2
0

and hence since,

lim
2M
r
→0
P (r) =

4r2

m0 + ω

we see that the constant is given by

(constant) =
4

m0 + ω

1

p
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Finally, we obtain

W [Z`(pr),Q`(pr)] =

1

p

4

m0 + ω

m0

(
1− 2M

r

)1/2
+ ω(

1− 2M
r

) [
r −M +

√
(r −M)2 −M2

]2
which diverges as

(
1− 2M

r

)−1
as r → 2M . For the purpose of computing scattering ampli-

tudes later on, we shall require the asymptotic behaviour of Z`(pr) near the event horizon,

r = 2M . For this purpose, we need the tortoise coordinate, r∗ = r+2M log
∣∣∣ r
2M

− 1
∣∣∣ which

is such that its derivative operator of first and second order may be written as,

d

dr∗
=

(
1− 2M

r

)
d

dr

d2

dr∗2
=

(
1− 2M

r

)2 d2

dr2
+
(
1− 2M

r

)
2M

r2
d

dr
.

Multiplying the second order differential equation for A(r), (4.6), by an extra factor of(
1− 2M

r

)
and simplifying using the preceding relations yields,

d2A

dr∗2
+ ω2A+

(
1− 2M

r

)3/2

{regular terms at r = 2M} dA
dr

+
(
1− 2M

r

)1/2

{regular terms at r = 2M}A = 0

showing that for the regular solution only, Z`(pr), the asymptotic behaviour at r = 2M is,

Z`(pr) ∼ e±iωr
∗

as r → 2M (4.7)

Of course, this analysis does not apply to the solution which diverges at the event horizon;

for there, we cannot drop the A and dA
dr

terms in the preceding differential equation, as the

event horizon is approached.
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Normalisation And Measure

Having elucidated the properties of the acceptable radial wave functions, we can now write

down the most general solution to the full Dirac equation, that is regular at the event

horizon,

Ψ = e−iωt
(
1− 2M

r

)1/4

r sin1/2 θ

× ∑
jmjκj

[
AjmjκjZaκj

(pr)Φ(+)
mjκj

(Ω) +BjmjκjZbκj
(pr)Φ(−)

mjκj
(Ω)

]
(4.8)

where we have inserted the factor of
(
1− 2M

r

)1/4
r sin1/2 θ on account of the factorisation

ansatz. Clearly this solution approaches the Minkowskian one when 2M
r
� 1 as required

by the correspondence principle. In particular, the spectrum of the free Dirac operator is

preserved by virtue of the relation, ω2 = p2 +m2
0.

Following the method outlined in the Minkowskian case, we can define the inner product

for the solution space, as follows

〈Ψ1,Ψ2〉 =
∫
Ψ†

1Ψ2 dµ

where dµ = d(vol)3−spaceh−2e−1 so that

〈Ψ1,Ψ2〉 =
∫
Φ†1Φ2 d(vol)3−space

=
∫
Φ†1Φ2 r2 sin θ

(
1− 2M

r

)−1/2

dr ∧ dθ ∧ dφ

where Ψ = fΦ = he1/2Φ as discussed in Chapter 2. With this in mind, we postulate the

following normalisation for the radial wave function which is to be interpreted strictly in
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the sense of the theory of distributions [16],

∫ ∞

2M
Z`(kr)Z`′(k

′r) r2
(
1− 2M

r

)−1/2

dr =
π

2k2
δ(k − k′)δ``′∫ ∞

0
Z`(kr)Z`′(kr

′) k2dk =
π

2r2

(
1− 2M

r

)−1/2

δ(r − r′)δ``′

just as for the normalisation of the spherical Bessel function. Using this normalisation, we

can define the properly normalised eigenstate of the full Dirac Hamiltonian as,

Ψωjmjκj = e−iωt
(
1− 2M

r

)1/4

r sin1/2 θ

× 1√
2

[
Zaκj

(pr)Φ(+)
mjκj

(Ω) + Zbκj
(pr)Φ(−)

mjκj
(Ω)

]
(4.9)

and where

〈
Ψωjmjκj ,Ψω′j′mj′κj′

〉
=

π

2|ω|pδ(ω − ω′)δjj′δmjmj′ δκjκj′ (4.10)

so that we may read off the spectral measure (density of states), ρ(ω)dω = 2|ω|p
π
dω, and

obtain the spectral expansion,

∫ ∑
jmjκj

Ψωjmjκj(~r)⊗Ψ†
ωjmjκj(

~r′) ρ(ω)dω = δ(r − r′)δ(θ − θ′)δ(φ− φ′).

We are now ready to quantise the Dirac theory in Schwarzschild spacetime.

Quantisation

Just as in the Minkowskian case, we must first define positive and negative frequency

modes. But this is easy since we can use the Minkowskian theory as a precedent. Indeed,
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we choose the following positive (ujmjκj ) and negative (vjmjκj) frequency modes :

ujmjκj(p) =

√
2

π
pZaκj

(pr)Φ(+)
mjκj

(Ω)
(
1− 2M

r

)1/4

r sin1/2 θ

vjmjκj(p) =

√
2

π
pZbκj

(pr)Φ(−)
mjκj

(Ω)
(
1− 2M

r

)1/4

r sin1/2 θ

As before, these modes are normalised as

∫
ujmjκj (p)uj′mj′κj′ (p

′) dµ = δ(p− p′)δjj′δmjmj′ δκjκj′∫
vjmjκj(p)vj′mj′κj′ (p

′) dµ = − δ(p− p′)δjj′δmjmj′δκjκj′

so that we can use them to define the quantum field operator,

ψ =
∫ ∞

0
dp

∑
jmjκj

[
e−iωptujmjκj(p)bjmjκj(p) + eiωptvjmjκj(p)d

†
jmjκj(p)

]

where bjmjκj (p) and d†jmjκj (p) are operators satisfying the usual fermionic creation and

annihilation operator algebra (see equations (3.13,14,15)). From here, it is not difficult to

prove that ψ also satisfies the usual equal time anti-commutation relation (see equation

(3.16)). Of course, we can also define the vacuum and other particle states exactly in the

same fashion as per the Minkowskian case - and a well defined quantum field theory has

been constructed.

Beyond The Event Horizon

In the previous sections, we have repeatedly observed that our choice of coordinates restricts

the construction of the Dirac theory, to regions outside the event horizon (r > 2M). Here

we will discuss the issue of extending the theory across the horizon.

41



First of all, in order to describe a Hamiltonian evolution of quantum modes, we need to

define a time-like Killing vector field. Or put in simple terms, we need to define the notion of

a temporal parameter. Of course, this can usually be done locally on the spacetime manifold

of interest and as such, poses no problem insofar as the local evolution of quantum modes

is concerned. However, the structure of general relativistic spacetimes [17,18] does not

guarantee the existence of a global time-like Killing vector field. And even if such vector

fields exist, it is in general unclear how we should select a particular one. Moreover, there is

also the problem of interpretation since the coordinate representation of such vector fields

may be very complicated and may involve the spatial coordinates as well. In short, the

Hamiltonian evolution of quantum modes is not guaranteed globally. Such is the situation

with the Schwarzschild black-hole - it has no global time-like Killing vector fields. In part,

this is due to the event horizon which acts as an obstruction to extending the time-like

vector field that we have chosen, into the horizon. Consequently, we cannot extend the

Dirac theory across the event horizon, using Schwarzschild coordinates. The time-like

Killing vector fields that we obtain from this choice of coordinates can only describe the

temporal evolution of quantum modes, outside the horizon.

But what about other coordinate systems ? These other systems all involve an analytic

extension [18] of the manifold in question. On the one hand, we have the Kruskal-Szekeres

maximal analytic extension, and on the other hand, we have the Eddington-Finkelstein ex-

tension [17,18,19]. Unfortunately, the Kruskal-Szekeres extension includes what we consider
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to be a non-physical white-hole. This is, of course, a personal judgement call. But until

such time when there is sufficient evidence to take this maximal extension seriously, it will

be prudent to exclude the region which constitutes the white-hole. And we are left with the

Eddington-Finkelstein extension, which fortunately, does not include extraneous features.

In this case there are, strictly speaking, two coordinate systems in question; the ingoing

and outgoing Eddington-Finkelstein systems [18]. Because they are so closely related, it

suffices to study just one of them. Since we are particularly interested in gravitational

collapse, we shall select the ingoing Eddington-Finkelstein system.

The ingoing Eddington-Finkelstein line element, regular at the horizon reads as,

ds2 =
(
1− 2M

r

)
dt′2 − 4M

r
dt′dr −

(
1 +

2M

r

)
dr2 − r2dΩ2

and it can be obtained from the Schwarzschild line element by the analytic continuation,

t′ = t + 2M log(r − 2M). Observe that it is not of the form expected of a stationary

axisymmetric solution due to the g01 term, −4M
r
dt′dr. This indicates that the gravitational

field within the horizon is dynamical - there are no static observers within the horizon.

Actually, this fact can be deduced directly from the Schwarzschild metric and so, it should

come as no surprise. What happens then to our factorisability ansatz ? The answer is that

it fails to apply here. However, the investigation of the Dirac theory on the Eddington-

Finkelstein extended manifold, is still a worthwhile pursuit. At the very least, we can learn

the effects of an event horizon on the structure of quantum field theory.

43



There is a legitimate temptation to search for another coordinate system which some-

how, diagonalises, the Eddington-Finkelstein metric. But we must be careful. Firstly, a

coordinate transformation like that must satisfy various smoothness and differentiability

conditions. Otherwise, we could just end up with the same analytic continuation that

takes us back to the diagonal Schwarzschild metric - and that, to say the least, would be

hilarious indeed ! Unfortunately, it can be shown that it is impossible to find a coordinate

transformation that will diagonalise the Eddington-Finkelstein metric. Therefore the issue

of reducing the Eddington-Finkelstein line element to a diagonal form is a hopelessly lost

cause. It simply cannot be done. We now present a short proof of this strange fact.

Begin with the Eddington-Finkelstein metric written in matrix format,

gµν =



1− 2M
r

−2M
r

0 0

−2M
r

−(1 + 2M
r
) 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ


Let us look for a coordinate transformation that could possibly diagonalise this metric

tensor. We shall later show that such a coordinate transformation does not exist. It is

clear that we only need to consider those transformations that diagonalise the block, (1− 2M
r
) −2M

r

−2M
r

−(1 + 2M
r
)


whose determinant is−1 - so that the block is of SO(1, 1) type. Therefore we are looking for
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a transformation whose Jacobian acts on the previous block by a similarity transformation,

reducing it to a diagonal form. And the method makes itself clear from the meaning of the

previous statement. We first look for its eigenvalues and they are,

λ+(r) =

√
1 +

4M2

r2
− 2M

r
> 0

λ−(r) = −
√
1 +

4M2

r2
− 2M

r
< 0.

Having found the eigenvalues of of the block matrix, we proceed to write down the action

of J on the block matrix,

J t

 (1− 2M
r
) −2M

r

−2M
r

−(1 + 2M
r
)

 J =

 λ+(R) 0

0 λ−(R)


where J t is the transpose of J and r and t are functions of R, T . But J can be written as,

J =


∂t′
∂T

∂t′
∂R

∂r
∂T

∂r
∂R


so that we only have to show that the elements of J constitute a non-integrable system.

For this purpose, we need the eigenvectors of the 2× 2 block. And they are,

vλ+ =
1

√
2
[
4M2

r2
+ 1 +

√
4M2

r2
+ 1

]1/2
 −

√
4M2

r2
+ 1− 1

2M
r



vλ− =
1

√
2
[
4M2

r2
+ 1−

√
4M2

r2
+ 1

]1/2

√

4M2

r2
+ 1− 1

2M
r


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From elementary linear algebra, we thus find that

J t =



−2M
r

√
2

[
4M2

r2
+1−

√
4M2

r2
+1

]1/2 = ∂T
∂t′

√
4M2

r2
+1−1

√
2

[
4M2

r2
+1−

√
4M2

r2
+1

]1/2 = ∂T
∂r

2M
r

√
2

[
4M2

r2
+1+

√
4M2

r2
+1

]1/2 = ∂R
∂t′

√
4M2

r2
+1+1

√
2

[
4M2

r2
+1+

√
4M2

r2
+1

]1/2 = ∂R
∂r


and where det J = −1 and J−1 = J t - by virtue of the fact that J is of SO(1, 1) type.

And now its clear that the elements of J constitute a non-integrable system. Therefore

there is no such transformation, R(r, t′) and T (r, t′), that leads to a diagonalisation of the

Eddington-Finkelstein metric.

Given this fact, the Dirac equation then requires a suitable vierbein set to be chosen. Since

we want our theory to make sense across the event horizon, we must choose a set that is

regular everywhere except, possibly, at the singularity. To this end, let the vierbein set be

written as

eaµ =



A(r, t′) C(r, t′) 0 0

B(r, t′) D(r, t′) 0 0

0 0 r 0

0 0 0 r sin θ


so that the constraint, eaµe

b
νηab = gµν translates into the following equations,

A2 − C2 = 1− 2M

r

B2 −D2 = −
(
1 +

2M

r

)
2(AB − CD) = −4M

r
.
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We also need to make a choice of a time-like vector field. Suppose that we want the vector to

be of the form E0
µ∂µ = E0

0∂0 (motivated by the Dirac equation) - in other words without

any spatial derivatives such as ∂1. Then from the vierbein and hence, inverse vierbein,

matrices, we have to set C = 0. From the 3 constraint equations, it then follows that

A =
(
1− 2M

r

)1/2

B =
−2M

r(
1− 2M

r

)1/2
D =

(
1− 2M

r

)−1/2

showing that we get a vierbein set that is singular at the horizon. This is not what

we want as it will lead to severe problems in trying to extend the Dirac theory into the

horizon. Hence any conceivable time-like vector field that we choose must contain a ∂1

term. Looking back at the Eddington-Finkelstein metric, we see that the coefficient of

the dr2 term is
(
1 + 2M

r

)
- a quantity that is completely regular except at the singularity.

We are thus motivated to choose e11 = D =
(
1 + 2M

r

)1/2
. In which case we find that the

vierbein and inverse vierbein components are,

B = 0

C =
2M
r(

1 + 2M
r

)1/2
A =

(
1 +

2M

r

)−1/2

E0
0 =

(
1 +

2M

r

)1/2
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E0
1 = −2M

r

(
1 +

2M

r

)−1/2

E1
0 = 0

E1
1 =

(
1 +

2M

r

)−1/2

Notice that gµνE0
µE0

ν = 1 so that E0
µ is a globally defined time-like vector field. This is

a necessary behaviour if we want to extend the theory into the horizon. Also, the basis

one-forms may be chosen to be,

θ0 =
(
1 +

2M

r

)−1/2

dt′

θ1 =
2M

r

(
1 +

2M

r

)−1/2

dt′ +
(
1 +

2M

r

)1/2

dr

θ2 = rdθ

θ3 = r sin θdφ

and the spin connection may be computed to be,

ω01 =
M

r2

(
1 +

2M

r

)−3/2

θ0 +
2M

r2

(
1 +

M

r

)(
1 +

2M

r

)−3/2

θ1

ω02 =
−2M
r2

(
1 +

2M

r

)−1/2

θ2

ω03 =
−2M
r2

(
1 +

2M

r

)−1/2

θ3

ω12 =
1

r

(
1 +

2M

r

)−1/2

θ2

ω13 =
1

r

(
1 +

2M

r

)−1/2

θ3

ω23 =
cot θ

r
θ3
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Notice that all the quantities that we have defined so far are regular everywhere except at

the singularity. At this point, we make use of (2.2) to find Γc (because we cannot follow

the factorisation procedure),

Γ0 =
−M
r2

(
1 +

2M

r

)−3/2

(
1

2
α1)

Γ1 =
−2M
r2

(
1 +

M

r

)(
1 +

2M

r

)−3/2 (1
2
α1
)

Γ2 =
2M

r2

(
1 +

2M

r

)−1/2 (1
2
α2
)
+
1

r

(
1 +

2M

r

)−1/2 (1
2
iΣ3

)
Γ3 =

2M

r2

(
1 +

2M

r

)−1/2 (1
2
α3
)
− 1

r

(
1 +

2M

r

)−1/2 (1
2
iΣ2

)
+
cot θ

r

(
1

2
iΣ1

)
.

Having all the ingredients ready, we then write down the Dirac eqn as

i

[(
1 +

2M

r

)1/2 ∂

∂t′
− 2M

r

(
1 +

2M

r

)−1/2 ∂

∂r

]
Ψ = −i~α · ~∇Ψ+m0βΨ

−iU(r)Ψ (4.11)

where U(r) is the matrix function

U(r) =

2M
r2
− M

r2
1+M

r

1+ 2M
r(

1 + 2M
r

)1/2 −
[
1

2

M

r2

(
1 +

2M

r

)−3/2

+
1

r

(
1 +

2M

r

)−1/2
]
α1

−
[
1

2

cot θ

r

]
α2. (4.12)

The equations written above reveal much about the behaviour of the Dirac theory inside

the horizon. For one thing the interaction potential, U(r), is in some sense, time dependent.

This is because the time-like vector field, E0
µ, contains spatial terms which are functions of
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r. Hence the mode solutions of the Dirac equation will most certainly be time dependent

too. Therefore it is unclear as to whether the theory described by (4.11) follows a Hamil-

tonian evolution in the canonical sense. Unfortunately, in cases like this, we are unawares

of any quantisation procedure that applies.

The same can be said for the outgoing Eddington-Finkelstein extension. We take this

result to be a strong indication that it is impossible to find an extension of the quantum

field theory into the horizon. This should not be surprising. There are other indications

that also hints at this. In the next chapter, we shall discuss the famous result of Hawking

- thermal emission from black-holes. There we shall present arguments that also support

this conclusion.
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CHAPTER 5 : THERMAL NEUTRINO EMISSION

FROM THE SCHWARZSCHILD BLACK-HOLE

In the previous chapter, we have suggested that it may be impossible to extend the quantum

field theory into the event horizon in a continuous manner linking the exterior of the horizon

to its interior. In support of this hypothesis, we present in this chapter, the famous thermal

Hawking radiation from black-holes [2,5]. However, instead of scalar fields, we shall use

the machinery of the previous chapter to show that neutrino emission from black-holes is

thermal. And we shall follow closely the calculations and discussions in [2,5].

Since the neutrino is massless according to our present understanding, we setm0 to be zero

in (4.6). Then as r →∞, the solutions to (4.6) may be approximated by e±iωr
∗
. And since

p = ω in the massless case, we may thus write for any incoming wave packet at infinity,

ψINC =
∫ ∞

0
dω

∑
jmjκj

[
e−iωvuωjmjκjbωjmjκj + eiωvvωjmjκjd

†
ωjmjκj

]
(5.1)

where v = t+ r∗ and where,

uωjmjκj =

√
2

π
ω
(
1− 2M

r

)1/4

r sin1/2 θ
1− γ5

2
Φ(+)
mjκj

vωjmjκj =

√
2

π
ω
(
1− 2M

r

)1/4

r sin1/2 θ
1− γ5

2
Φ(−)
mjκj

are the left handed neutrino wave functions. We shall study what happens to these modes in

the case of a gravitationally collapsing star under spherical collapse, to form a Schwarzschild
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black-hole. This case is slightly different from an eternal black-hole insofar as the boundary

conditions at infinity are very different in the two cases. Furthermore, the metric inside

the collapsing body is not given by the Schwarzschild metric. And because we don’t know

how to compute the back-reaction of the spacetime metric on the collapsing matter, we

shall also neglect the matter-gravitational coupling. The collapse process is best depicted

by using the following Penrose diagram.
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Fig.(1) The fate of neutrino waves during gravitational collapse

��
��

��
��

�

A
A
A
A
A
A
A
A

��
��

��
��

�

A
A
A
A
A
A
AA

��
��

��
��

�

A
A
A
A
A
A
AA

��
��

��
��

�

A
A
A
A
A
A
AA

��
��

��
��

�

A
A
A
A
A
A
A

��
��

��
��

��

A
A
A
A
A
AA

��
��

��
��

��

A
A
A
A
A
A

��
��

��
��

��

A
A
A
A
AA

��
��

��
��

��

A
A
A
AA

J +

J −

γ

Since the neutrinos are massless, they travel along null geodesics. Past infinity is represented

by J − and future infinity by J +. The rays arriving from past infinity are blue shifted within

the interior of the star, bounced of the center, and are tremendously red-shifted when they

leave the star (over compensation). However there is a point during the collapse process

for which rays arriving later than, all fall into the singularity. This last ray which can

escape to future infinity marks the formation of the event horizon, and is indicated by γ

in the diagram above and is formed at the coordinate time, v = v0. But because of the
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dense piling up of the rays near γ, we only need to figure out the relationship between the

incoming rays close to v = v0 and the outgoing rays that reach future infinity, in order to

describe the late time asymptotics of the escaping radiation.

The outgoing radiation at future infinity may be written in similar fashion as (5.1),

ψOUT =
∫ ∞

0
dω′

∑
j′mj′κj′

[
e−iω

′usω′j′mj′κj′aω′j′mj′κj′ + eiω
′uwω′j′mj′κj′ c

†
ω′j′mj′κj′

]
(5.2)

where u = t − r∗, sω′j′mj′κj′ and wω′j′mj′κj′ are the outgoing modes. The incoming and

outgoing modes may be related to each other via a Bogolubov transformation as follows,

e−iω
′usj′mj′κj′ =

∫ ∞

0
dω

∑
jmjκj

[
αω′ωe

−iωvuωjmjκj + βω′ωe
iωvvωjmjκj

]
. (5.3)

In the next section, we shall derive some elementary properties of the so-called Bogolubov

transformation, using a simplified notation.

The Bogolubov Transformation

The business of Bogolubov transformations is best written down in a very condensed and

simplified notation. Let ui = e−iωvuωjmjκj , vi = eiωvvωjmjκj , si = e−iω
′usω′j′mj′κj′ and

wi = eiω
′uwω′j′mj′κj′ . Then with the Hermitian inner product that we have defined, and

using a symbolic Kronecker delta to represent the delta function as well as other Kronecker

deltas, we see that

〈ui, uj〉 = δij
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〈ui, vj〉 = 0

〈vi, vj〉 = − δij

〈si, sj〉 = δij

〈si, wj〉 = 0

〈wi, wj〉 = − δij

If repeated indices now represent a generalised summation and integration, then (5.3) may

be written as

si = αijuj + βijvj (5.4)

so that

〈uk, si〉 = αik

〈vk, si〉 = − βik.

Now set wi = γijuj + δijvj , then,

〈wi, sj〉 = 0

= 〈wi, αjkuk + βjkvk〉

= γijαjk − δijβjk

and consequently we obtain,

wi = βijuj + αijvj. (5.5)
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These identities when taken together imply, in particular, that

ui = αijsj − βijwj (5.6)

vi = − βijsj + αijwj. (5.7)

These equations takes care of the relationships that exist between the Bogolubov coeffi-

cients. However there is more to be studied. For not only do we require the Bogolubov

coefficients, we also require a knowledge of how the various operators that appear in (5.1)

and (5.2) are related to each other. To this end, we consider the operatorial equality

∑
i

uibi + vid
†
i =

∑
j

sjaj + wjc
†
j

=
∑
j

aj

(∑
k

αjkuk + βjkvk

)
+ c†j

(∑
k

βjkuk + αjkvk

)

=
∑
k

∑
j

ajαjk + c†jβjk

 uk +
∑

j

ajβjk + c†jαjk

 vk
from which we obtain the relation,

bk =
∑
j

αjkaj + βjkc
†
j (5.8)

d†k =
∑
j

βjkaj + αjkc
†
j. (5.9)

Conversely, it can similarly be shown that

ak =
∑
j

αjkbj − βjkd
†
j (5.10)

c†k =
∑
j

−βjkbj + αjkd
†
j. (5.11)
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The Bogolubov coefficients also obey another non-trivial identity; plugging (5.8) into the

anti-commutation relation obeyed by bi and using the anti-commutation relations satisfied

by ai and ci, yields ∑
k

αjkαki + βjkβki = δij (5.12)

Of course, in the case of bosons obeying Bose statistics (e.g. the scalar field), then we

would have been forced to use commutation relations and there would be a minus instead

of a plus, on the left hand side of the preceding equation. This is all we need to know about

Bogolubov transformations in order to derive the thermal spectrum of neutrino emission

from black-holes.

Thermal Neutrino Flux

To compute the late time asymptotic radiation of neutrinos from the newly formed black-

hole, we must be able to compute the vacuum expectation value of the neutrino field in the

outgoing vacuum. In other words, we define the outgoing vacuum as ai |0〉out = ci |0〉out =

0 and ask how many incoming modes are there in this outgoing vacuum. But this is easily

answered since,

〈0, out|∑
k

b†kbk |0, out〉 = Trβ†β

∼ |β|2

where we have used (5.8) and the usual notions of creation and annihilation operators.

Consequently, we only need to determine βω′ω in (5.3). This in turn requires the overlap
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of the wave functions in (5.1) and (5.2), which translates into a knowledge of u = t− r∗ as

a function of v = t+ r∗. Now how do we find out what this relationship is ? The simplest

way to proceed, is by matching the interior metric of the star to the exterior metric, across

the surface of the star. And because we are dealing with a spherically symmetric situation,

the matching problem essentially reduces to a two-dimensional problem involving only the

radial and temporal coordinates. Therefore, we shall use the notation and terminology of

the two-dimensional physics and follow closely the method as outlined in [2].

Let the two-dimensional, radial and temporal metric outside the star be

ds2 = C(r)dudv

where u = t−r∗−R∗0, v = t+r∗−R∗0, r∗ =
∫
C−1 dr and R∗0 = some constant. We demand

that C → 1 and dC
dr
→ 0 as r →∞. There is an event horizon at some value of r for which

C = 0. In our case, C(r) = 1 − 2M
r
, vanishes at r = 2M and models the Schwarzschild

black-hole.

Inside the collapsing star, we take the metric to be

ds2 = A(U, V )dUdV

where A is an arbitrary smooth, non-singular function, U = τ −r+R0 and V = τ +r−R0.

Here, τ is the proper time as measured on the surface of the collapsing star and R0 is

some constant. From these expressions, we deduce that the star is at rest before τ = 0
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and assume that its surface shrinks along the world-line r = R(τ) for τ > 0. Furthermore,

these coordinates have been specially chosen so that τ = t = 0 at the onset of collapse and

u = v = U = V = 0 at the surface of the star.

We need to reflect the null rays at the center of the star (see Fig. (1)). And for this purpose

we can choose the boundary condition that the neutrino waves must vanish at r = 0 i.e.

ψ(r = 0) = 0. Now let the transformation linking the exterior and interior coordinates be

given by,

U = α(u)

v = β(V ).

At the center of the star where r = 0, U = U0 = τ + R0 and V = V0 = τ − R0. Hence

we see that the center of the star lies on the line V = U − 2R0. We need solutions of the

massless Dirac equation that vanishes along this line. But this is easy, given the preceding

transformation equations. Consider β(V ) = β(U − 2R0) = β [α(u)− 2R0] and set

ψINC + ψOUT ∼
[
e−iωv − e−iωβ[α(u)−2R0]

]
uωjmjκj + [c.c.]vωjmjκj .

These modes clearly vanish at the center of the star by construction. In particular, we see

that the simple incoming wave, e−iωv, has been converted by the process of collapse into a

complicated outgoing wave. This establishes the mode relation,

e−iωv = e−iωβ[α(u)−2R0]. (5.13)
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Intuitively, we expect the complicated phase factor, β [α(u)− 2R0], to reduce to a steadily

escalating redshift as the surface of the star approaches the event horizon. In the asymptotic

limit, this redshift is all that matters. But to determine the form of this redshift, we perform

the matching of the interior and exterior metrics across the surface of the star, r = R(τ).

To do this, we note that

dV − dU = 2dr

dv − du = 2dr∗

= 2C−1dr so that

dV − dU = C(dv − du). (5.14)

On the other hand, we also have the matching condition,

AdV dU = Cdvdu. (5.15)

From (5.14) and using the definition of U and V plus the fact that r = R(τ) on the surface

of the star, we obtain the following equation satisfied at the surface of the star,

dU

dV
=

1− Ṙ

1 + Ṙ
(5.16)

where Ṙ = dR
dτ
. Using the last three equations and after some simple algebra, it can be

shown that,

α′ =
dU

du
= C

(
1− Ṙ

) {[
AC

(
1− Ṙ2

)
+ Ṙ2

]1/2 − Ṙ
}−1

(5.17)

β ′ =
dv

dV
= C−1

(
1 + Ṙ

)−1
{[
AC

(
1− Ṙ2

)
+ Ṙ2

]1/2
+ Ṙ

}
(5.18)
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Now as the surface of the star approaches the event horizon, C → 0 and in this limit (with

the help of l’Hospital’s rule),

lim
C→0

α′ =
Ṙ − 1

2Ṙ
C (5.19)

lim
C→0

β ′ =
Ṙ − 1

2Ṙ
A. (5.20)

We may Taylor expand R(τ) in the preceding formulas as R(τ) = Rh + ν(τh − τ) +

O [(τh − τ)2] where Rh is the value of R at the horizon, τh is the value that τ takes at

the horizon and −ν = Ṙ(τh). We may also Taylor expand C and this takes the form,

C = C(r = Rh) +
dC
dr r=Rh

(r − Rh) + higher order terms. But C(r = Rh) = 0 by definition

and dC
dr r=Rh

= 2κ where κ is the surface gravity of the black-hole. Thus, C ≈ 2κ(R − Rh)

near the horizon. Plugging these inputs into (5.19) yields

κdu =
1

ν + 1

1

τh − τ
dU

and using U = τ − R +R0 in iterating τh − τ gives,

κdu =
dU

τh − U − Rh +R0

so that we finally obtain the asymptotic relation,

U = e−κu + constant. (5.21)

From (5.20), a similar treatment with A being approximately constant gives

v = AV
ν + 1

2ν
+ constant. (5.22)
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We now know the relationship between the exterior and interior coordinates - at least in

the asymptotic limit when the event horizon is approached. Plugging (5.21) and (5.22) in

the mode relation in (5.13) yields,

e−iωv = e−iω[ce
−κu+d] (5.23)

where c and d are constants. However, for the purpose of computing Bogolubov coefficients,

it is convenient to take the surface of integration to lie in the “in” region. Physically this

corresponds to selecting modes that are standard out going waves at J + but which become

complicated functions of v on J −. So all we need to do is functionally invert the mode

relation given above.

Set d = v0, corresponding to the latest advanced ray γ. Then,

u = −1

κ
log

(
v0 − v

c

)
− 1

κ
log(−1).

For αω′ω we take log(−1) = πi to obtain,

e−iωu = ei
ω
κ
log( v0−vc )e

πω
κ for v < v0 and 0 otherwise (5.24)

where the last condition comes from the fact that all rays arriving later than γ strike the

singularity, and do not escape to J +. For βω′ω we make use of the relation,

eiω
′uwω′jmjκj =

∫ ∞

0
dω

∑
jmjκj

[
e−iωvβω′ωuωjmjκj + eiωvαω′ωvωjmjκj

]

but this time, we take log(−1) = −πi (because of the complex conjugation of β) to obtain
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the equation,

eiωu = e−i
ω
κ
log( v0−vc )e

πω
κ for v < v0 and 0 otherwise (5.25)

This shows consistency in our approach. Thus by Fourier transform, we find that

αω′ω =
∫ ∞

−∞
dv

2π
eiωvei

ω′
κ

log( v0−vc )e
πω′
κ for v < v0 and 0 otherwise

=
∫ v0

−∞
dv

2π
eiωvei

ω′
κ

log( v0−vc )e
πω′
κ and similarly (5.26)

βω′ω =
∫ v0

−∞
dv

2π
eiωve−i

ω′
κ

log(v0−vc )e
πω′
κ (5.27)

What is left now, is the evaluation of the above integrals and the proof that the resulting

neutrino emission emanating from the newly formed black-hole is, indeed, thermal. To this

end the substitution, x = v0−v
c
, in (5.26) and (5.27) gives

αω′ω =
c

2π
e
πω′
κ eiωv0 Γ

(
1 + i

ω′

κ

)
1

(iωc)1+i
ω′
κ

(5.28)

βω′ω =
c

2π
e
πω′
κ eiωv0 Γ

(
1− i

ω′

κ

)
1

(iωc)1−i
ω′
κ

. (5.29)

And since Γ(1 + iy) = Γ(1− iy), we see that

|αω′ω|
|βω′ω|

= e
πω′
κ (5.30)

so that by (5.12) we obtain

|βω′ω|2 =
1

e
2πω′
κ + 1

(5.31)

which is the total neutrino flux emitted per unit frequency interval. The total flux is thus,

Trβ†β =
∫ ∞

0
dω

1

e
2πω
κ + 1
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which clearly shows its thermal character due to the Fermi-Dirac nature of the distribution.

The temperature of the distribution being κ
2π
. Of course, this result was obtained by

ignoring the effects of back-scattering of the incoming neutrino waves. In actuality, the last

equation would be modified by the presence of a gray body factor, Γωjmjκj , in the numerator

of the integrand as thus

Trβ†β =
∫ ∞

0
dω

Γωjmjκj

e
2πω
κ + 1

(5.32)

This ends our derivation of the thermal neutrino emission from a Schwarzschild black-hole.

In the next chapter, we shall focus on fermion scattering amplitudes off the same black-hole

- thereby allowing us to compute the gray body factor.

Partitioning Of The Quantum Field Theory By The Horizon

In the previous chapter we suggested that it may be impossible to extend the quantum

field theory continuously across the event horizon. The thermal Hawking radiation from

black-holes seem to support this idea. For one thing, if it is possible to continuously extend

the quantum field theory across the event horizon, then one expects there to be non-trivial

correlation functions between field operators localised within and exterior to the horizon.

Such correlations would be an obstruction to the thermal character of the Hawking flux.

Indeed, the thermal nature of the flux is exactly preserved only when the quantum field

theories are disjoint. For in that situation, the partition function of the theory would be

a direct product between the “exterior partition function” and the trace over all “interior
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states”. That, of course, will lead to a thermal structure for the Hawking flux.

The inclusion of “back-reaction effects” should not alter this view. After all, we can treat

the back-reaction in similar fashion as the waves stirred on the surface of a pond, after

a stone is thrown into it. Indeed, the “information loss paradox” [20] may very well be

explained in that manner. The information carried by an infalling particle is, in fact,

radiated away through a back-reaction mechanism which we have hitherto, been unable

to compute. Surely such a mechanism will depend on a quantum field theory in which

gravitation cannot be treated semi-classically. In such a scenario, the event horizon will

presumably fluctuate but in no way will it affect the idea that quantum field theories

are split across the horizon. Nowadays, a lot of effort has been spent in trying to use

superstring theories [21,22] - which are candidate theories of everything, in order to derive

a suitable back-reaction mechanism. Unfortunately, due to the non-perturbative nature of

the problem, little progress has been made.
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CHAPTER 6 : FERMION SCATTERING

AMPLITUDES OFF A SCHWARZSCHILD

BLACK-HOLE

In the last chapter, we mentioned that the thermal Hawking spectrum has to be convo-

luted with a gray body factor, Γωjmjκj which measures the effect of back-scattering of the

incoming neutrino waves. This raises the issue of fermion scattering amplitudes off black-

holes. For one thing, it is clear that we cannot expect analytic results. After all, even the

radial wave functions are only qualitatively known. Furthermore, the advent of high-speed

computers has made the need for closed-form, analytic solutions secondary.

The method that we shall adhere to can be found in many texts but shall follow closely

the discussion in [23]. It is the method of partial waves. We shall determine the scattering

and absorption cross sections via a partial wave analysis of these amplitudes. Hence our

results will be expressed in terms of phase shifts and so on. And of course, these phase

shifts are without an analytic, closed form expression. To compute these phase shifts, we

will need to do some asymptotics and matching of wave functions [23]. How can we do this

? First, we note that we are dealing with a long-range force. Thus we may truncate the

range of the force to a finite albeit large radial coordinate, R, where the force field may be

assumed to vanish beyond. The accuracy of our solutions increases as R→∞. A choice of
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R splits the domain 2M < R < ∞ into two regions and due consideration must be given

to the behaviour of the wave functions in the separate regions. Thus,

For r > R > 2M

This is the exterior region and the wave function here, Ψext, has the asymptotics,

Ψext ∼ Ψinc +Ψsca as r →∞ (6.1)

where the right hand side is a sum of the incident and scattered waves.

For 2M < r < R

This is the interior region and the wave function, Ψint, must be asymptotic to the trans-

mitted wave at the horizon,

Ψint ∼ Ψtrans as r → 2M (6.2)

and finally, we have a matching condition to be satisfied by the wave function at r = R.

For r = R

Here the interior wave function must match with the exterior one, so as to provide continuity

of the wave function.

Ψint = Ψext at r = R (6.3)
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The wave functions written in the above three equations are all of the form

Ψj =
(
1− 2M

r

)1/4

r sin1/2 θΦj

so that only a knowledge of Φ is sufficient. Since we truncate the gravitational field of the

black-hole at r = R, we take Φext, Φinc and Φsca to satisfy the Minkowskian Dirac equation.

This essentially means that we neglect terms of order 2M
r

for r > R.

The Incident Wave

For the incident wave, we take a wave packet formed by component plane waves travelling

along the positive z axis and with the spin pointing “up”. Following the spinor conventions

of [6], we choose to write

Φinc = I(p)e−iωteipr cos θu(1)(m0, pẑ) (6.4)

where I(p) is the momentum profile function and it is square-integrable. A partial wave

expansion yields,

Φinc = I(p)e−iωt
∫ ∞

0
dp′

∑
jmjκj[

Ajmjκjjaκj (p
′r)Φ(+)

mjκj
(Ω) +Bjmjκjjbκj (p

′r)Φ(−)
mjκj

(Ω)
]

(6.5)

where

Ajmjκj =
∫ ∞

0
dr r2jaκj (p

′r)
∫

dΩ eipr cos θΦ(+)†
mjκj

u(1)(m0, pẑ) (6.6)

Bjmjκj =
∫ ∞

0
dr r2jbκj (p

′r)
∫

dΩ eipr cos θΦ(−)†
mjκj

u(1)(m0, pẑ). (6.7)
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We can evaluate these Fourier coefficients directly by making use of the explicit represen-

tation of Φ(+)
mjκj

and Φ(−)
mjκj

, as well as the following information,

eipr cos θ =
∞∑
`=0

(2`+ 1)i`j`(pr)

√
4π

2`+ 1
Y m=0
`

u(1)(m0, pẑ) =


(
ω+m0

2m0

)1/2
ϕ(1)(m0, 0)

p

[2m0(ω+m0)]
1/2ϕ

(1)(m0, 0)


where the spinor conventions are from [6]. The final results of the computation are :

Ajmjκj=−(j+1/2) =

(−1)ij+1/2 π

2p2
δ(p− p′)

√
4π
√
j +mj

(
ω +m0

2m0

)1/2

δmj−1/2,0 (6.8)

Ajmjκj=(j+1/2) =

(−1)ij+3/2 π

2p2
δ(p− p′)

√
4π
√
j + 1−mj

(
ω +m0

2m0

)1/2

δmj−1/2,0 (6.9)

Bjmjκj=−(j+1/2) =

ij+1/2 π

2p2
δ(p− p′)

√
4π
√
j + 1−mj

p

[2m0(ω +m0)]
1/2
δmj−1/2,0 (6.10)

Bjmjκj=(j+1/2) =

ij−1/2 π

2p2
δ(p− p′)

√
4π
√
j +mj

p

[2m0(ω +m0)]
1/2
δmj−1/2,0 (6.11)

Notice the delta functions in these formulas - they are well taken care of by the integral

over p′ in (6.5). It is for this reason that we have chosen to work with the wave packet as

defined by (6.5).
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The Scattered Wave

First of all, we observe that the interactions do not contain any term that might cause a

spin-flip in the outgoing wave. Therefore we only need to consider an outgoing wave with

a spin-polarisation that is identical to the incident wave. Hence we set,

Φsca = eiωt
eipr

r
f(p,Ω)u(1)(m0, pr̂) (6.12)

Obviously, the scattering cross-section is encoded within f(p,Ω) which we shall determine

via a partial wave analysis. This is just ordinary quantum mechanics.

The Exterior Solution

The exterior solution may be chosen to be

Φext = e−iωt
∫ ∞

0
dp′

∑
jmjκj[

Cjmjκjbaκj (p
′r)Φ(+)

mjκj
+Djmjκjbbκj (p

′r)Φ(−)
mjκj

]
(6.13)

where since there is no regularity condition to be satisfied, we can allow for the presence

of a singular piece in b` at r = 0, and a phase shift to be determined later on,

b` = eiδ` [cos δ`j` − sin δ`n`]

∼ 1

2ipr

[
(−1)`+1e−ipr + e2iδ`eipr

]
as r →∞.

Of course, this description of the exterior wave function is incomplete because we need to

specify the Fourier coefficients in (6.13). Now how can we do this computation ? The
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answer is very simple. Since Φext ∼ Φinc + Φsca as r → ∞, we can match the incoming

parts, e−ipr, of the respective asymptotic expressions of Φinc with Φext. Hence we recall

that,

jj−1/2 ∼ 1

2ipr

[
(−1)j+1/2e−ipr + eipr

]
as r →∞

jj+1/2 ∼ 1

2ipr

[
(−1)j+3/2e−ipr + eipr

]
as r →∞

so that by plugging into (6.5) and (6.13) and by comparing the incoming parts, we obtain

Cjmjκj = I(p)Ajmjκj

Djmjκj = I(p)Bjmjκj .

This fixes the exterior wave function to be

Φext = e−iωtI(p)
∫ ∞

0
dp′

∑
jmjκj[

Ajmjκjbaκj (p
′r)Φ(+)

mjκj
+Bjmjκjbbκj (p

′r)Φ(−)
mjκj

]
(6.14)

in which the Fourier coefficients are explicitly known.

Computation Of The Phase Shifts

We are now ready to express f(p,Ω) as a partial wave expansion and also compute the

required phase shifts. From (6.1) and using the necessary asymptotic expressions, we find

that

Φsca ∼
∫ ∞

0
dp′ I(p)e−iωt

eip
′r

r

∑
jmjκj
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[
Ajmjκj

1

2ip′
[
e
2iδaκj − 1

]
Φ(+)
mjκj

+Bjmjκj

1

2ip′
[
e
2iδbκj − 1

]
Φ(−)
mjκj

]

as r → ∞ and where the phase shifts, δ` are from (6.13) and (6.14). Noting that Ajmjκj

and Bjmjκj contains delta functions, and using (6.12) as well as the identity,

u(1)
†
(m0, pr̂)u

(1)(m0, pr̂) =
ω

m0

we obtain the partial wave expansion,

f(p,Ω) =
m0

ω

∑
jmjκj

∫ ∞

0
dp′ I(p)

[
Ajmjκj

1

2ip

[
e
2iδaκj − 1

]
u(1)

†
(m0, pr̂)Φ

(+)
mjκj

+Bjmjκj

1

2ip

[
e
2iδbκj − 1

]
u(1)

†
(m0, pr̂)Φ

(−)
mjκj

]
. (6.15)

This is clearly a well-defined expression since the delta functions in Ajmjκj and Bjmjκj ,

takes care of the integration over p′. Hence we only need to determine the phase shifts. To

this end, we merely have to match the interior wave function to the exterior wave function

at r = R. Set the interior wave function to be

Φint = e−iωt
∫ ∞

0
dp′

∑
jmjκj[

EjmjκjZaκj
(p′r)Φ(+)

mjκj
+ FjmjκjZbκj

(p′r)Φ(−)
mjκj

]
(6.16)

so that by the continuity of the wave function at r = R, we get

EjmjκjZaκj
(p′r) = I(p)Ajmjκjbaκj (p

′r) (6.17)

FjmjκjZbκj
(p′r) = I(p)Bjmjκjbbκj (p

′r). (6.18)
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By matching of the logarithmic derivatives of the radial wave functions at r = R, we then

obtain the phase shifts as the ratio of Wronskians,

tan δ` =
W [Z`, j`]

W [Z`, n`]

∣∣∣∣∣
r=R

` = aκj , bκj . (6.19)

Equation (6.19) can be evaluated numerically for various values of R. Of course, the larger

R is, the better the approximation. We have not done this however. But presumably,

there will be an asymptotic value for which the ratio in (6.19) approaches, as R → ∞.

Such a limit would represent the “actual” phase shift. Moreover, if an analytic expression

is needed, then we must find an approximation of Z`. This can be achieved by many

approximation methods.

Absorption

First recall that Z` → e±iωr∗ as r → 2M . Hence the ingoing transmitted wave has the

asymptotic form,

Φtrans = e−iωte−ipr∗α(p,Ω)u(1)(m0,−pr̂). (6.20)

By comparison with (6.16) and following the same steps leading to (6.15), we then obtain

α(p,Ω) =
m0

ω

∫ ∞

0
dp′

∑
jmjκj[

Ejmjκju
(1)†(m0,−pr̂)Φ(+)

mjκj
+ Fjmjκju

(1)†(m0,−pr̂)Φ(−)
mjκj

]
(6.21)

which expresses the fermionic absorption characteristics of the black-hole, with respect to

known parameters.
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Cross-sections, Currents, Unitarity And The Grey Body Factor

The fermion current can be expressed as

Jµ = ΨγµΨ

= h2eΦγµΦ

= h2ejµ

= h2eEa
µja

where jµ is covariantly conserved i.e. ∇µj
µ = 1√−g∂µ [

√−gjµ] = 0. To see this, we only need

recall the measure used to define integration of fermion bilinears. Clearly it is sufficient to

study ja - as the other factors are fixed. We shall construct the currents for the incident,

scattered and absorbed waves - thereby deducing the respective cross-sections. To this end,

it is easy to see that the current of the incident wave is,

~jinc = I2(p)u(1)
†
(m0, pẑ)γ

0~γu(1)(m0, pẑ)

= I2(p)
p

m0
ẑ.

On the other hand, from (6.12), we discover that

~jsca =
|f(p,Ω)|2

r2
p

m0
r̂

and since f(p,Ω) ∝ I(p), it then follows that the elastic scattering cross-section is given by(
dσ

dΩ

)
elastic

=
|~jsca|
|~jinc|

r2

=
|f(p,Ω)|2
I2(p)

. (6.22)
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Similarly, the absorption cross-section is found to be

(
dσ

dΩ

)
absorption

=
|α(p,Ω)|2
I2(p)

. (6.23)

The expressions for the cross-sections are, of course, explicitly known from the previous

sections. We have successfully defined these cross-sections in terms of a partial wave ex-

pansion and computable phase shifts. What remains is to verify that these processes are

indeed unitary. Our strategy is simple - to prove unitarity, we shall simply establish the

Optical Theorem of Bohr, Peierls and Placzek [23]. If the Optical Theorem holds, then we

can be certain that the process is unitary. In order to prove the Optical Theorem, we begin

by an application of Gauss’ theorem to the covariant conservation of current,

∫
d4x

√−g 1√−g∂µ
[√−gjµ] =

∫
d3Sa

√−gja

= 0

and since ∂0 (
√−gj0) = 0, we find that for a large spherical surface (sphere at infinity), S,

∫
S
dS r̂ ·~j = 0 (6.24)

where dS r̂ = d~S is a unit normal vector of surface element. In our case, it is ~jext that is

applied to the previous result. And for a sufficiently large surface, ~jext = ~jinc +~jsca +~jint,

where ~jint is a current purely due to the interference between the incident and scattered

waves. In particular,

~jinc = I2(p)
p

m0

ẑ
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~jsca =

(
dσ

dΩ

)
elastic

I2(p)

r2
p

m0

r̂

~jint =
I(p)

r

p

m0
(1 + cos θ)Re

[
eipr(1−cos θ)f(p,Ω)

]
.

The contribution of the incident current vanishes by symmetry. It is only the current of

the scattered wave and the interference term that contributes. The integral,

∫
dΩ r2~jint · r̂ = I2(p)

p

m0

1

r
(2πr2)

×Re
∫ 1

−1
d(cos θ) (1 + cos θ)eipr(1−cos θ) f(p,Ω)

I(p)

= |~jinc|4πrRe
[
f(p, θ = 0)/I(p)

−ipr
]

= − |~jinc|4π
p
Im

f(p, θ = 0)

I(p)

has been evaluated in [23] and thus we finally obtain the Optical Theorem of Bohr, Peierls

and Placzek as

σelastic =
4π

p
Im

f(p, θ = 0)

I(p)
. (6.25)

Of course, we must remember that f(p, θ = 0) contains a factor of I(p) so that the last

result actually does not contain the momentum profile function. This proves that the

process we are studying is indeed a unitary process.

As for the gray body factor, mentioned in the last chapter, we can simply use the differential

absorption cross-section, with all momenta expressed as a function of energy, ω. Conse-

quently, the thermal spectrum of the neutrino emission is modulated by this absorption

cross-section.
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CHAPTER 7 : FERMIONS IN KERR AND

TAUB-NUT SPACETIMES

In the past several chapters, we have successfully constructed a theory of free fermions

living in a Schwarzschild spacetime. While this by itself is an interesting exercise, in

astrophysical situations we will usually have to deal with a rotating but uncharged, black-

hole. Hence it is absolutely essential for us to develop a quantum field theory of fermions

living in the Kerr spacetime. Again, we shall make use of our factorisation ansatz to help

us construct the fermion quantum field theory. The Kerr metric when written in Boyer-

Lindquist coordinates, reads as

ds2 =
∆− a2 sin2 θ

ρ2
dt2 − sin2 θ

ρ2

[
(r2 + a2)2 −∆a2 sin2 θ

]
dφ2

+
2a sin2 θ

ρ2

[
r2 + a2 −∆

]
dtdφ− ρ2dθ2 − ρ2

∆
dr2

where ∆ = r2 + a2 − 2Mr and ρ2 = r2 + a2 cos2 θ. It is clear that the Kerr metric is of the

stationary, axisymmetric type. Hence we can choose a vierbein set as follows,

eaµ =



A(r, θ) 0 0 C(r, θ)

0 ρ√
∆

0 0

0 0 ρ 0

B(r, θ) 0 0 D(r, θ)


(7.1)

so that e =
√−g = ρ2 sin θ. In particular, this vierbein set determines the choice of basis
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one-forms because θa = eaµdx
µ. In particular, we have

e00 = A

e03 = B

e30 = C

e33 = D

e11 =
ρ√
∆

and

e22 = ρ

so that our basis one-forms are

θ0 = Adt +Bdφ

θ1 =
ρ√
∆
dr

θ2 = ρdθ

θ3 = Cdt+Ddφ.

The constraint equations that we derive from gµν = ηabe
a
µe

b
ν are :

A2 − C2 =
∆− a2 sin2 θ

ρ2

B2 −D2 = −sin2 θ

ρ2

[
(r2 + a2)2 −∆a2 sin2 θ

]
2 [AB − CD] =

2a sin2 θ

ρ2

[
r2 + a2 −∆

]
. (7.2)

We have seen that it may be impossible to extend the quantum field theory, continuously

across an event horizon. Therefore, in searching for a suitable vierbein set, it is not neces-
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sary to impose any continuity condition across the horizons present in the Kerr spacetime.

In view of this, we shall first compute the spin connection - and then look for a vierbein

set that results in the greatest simplification. After a long and tedious calculation, we first

define the Wronskian of partial derivatives and determinant as

W [f, g]r = f
∂g

∂r
− g

∂f

∂r

W [f, g]θ = f
∂g

∂θ
− g

∂f

∂θ

Ξ = AD − BC

so that the spin connection may be written as :

ω01 =

[
∂A

∂r
D − ∂B

∂r
C

] √
∆

ρ

1

Ξ
θ0

+
1

2
W [A,B]r

√
∆

ρ

1

Ξ
θ3 +

1

2
W [C,D]r

√
∆

ρ

1

Ξ
θ3

ω02 =

[
∂A

∂θ
D − ∂B

∂θ
C

]
1

ρ

1

Ξ
θ0

+
1

2
W [A,B]θ

1

ρ

1

Ξ
θ3 +

1

2
W [C,D]θ

1

ρ

1

Ξ
θ3

ω03 = −1

2
W [A,B]r

√
∆

ρ

1

Ξ
θ1 − 1

2
W [A,B]θ

1

ρ

1

Ξ
θ2

+
1

2
W [C,D]r

√
∆

ρ

1

Ξ
θ1 +

1

2
W [C,D]θ

1

ρ

1

Ξ
θ2

ω12 =
a2 sin 2θ

2ρ3
θ1 +

r
√
∆

ρ3
θ2

ω13 =

[
∂D

∂r
A− ∂C

∂r
B

] √
∆

ρ

1

Ξ
θ3

−1

2
W [C,D]r

√
∆

ρ

1

Ξ
θ0 − 1

2
W [A,B]r

√
∆

ρ

1

Ξ
θ0

ω23 =

[
∂D

∂θ
A− ∂C

∂θ
B

]
1

ρ

1

Ξ
θ3
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−1

2
W [C,D]θ

1

ρ

1

Ξ
θ0 − 1

2
W [A,B]θ

1

ρ

1

Ξ
θ0

Using this result as an input, we can compute the term 1
4
εabcd(ωab)cγdγ5 to find that,

1

4
εabcd(ωab)cγdγ5 =

1

4
{W [A,B]θ −W [C,D]θ} 1

ρ

1

Ξ
γ1γ5

−1

4
{W [A,B]r −W [C,D]r}

√
∆

ρ

1

Ξ
γ2γ5. (7.3)

It is easy to see that this term cannot vanish without contradicting the constraint equa-

tions in (7.2). Thus for all consistent choices of a vierbein set, the term 1
4
εabcd(ωab)cγdγ5 is

non-vanishing. What is the meaning of this ? For one thing, the naive factorisation ansatz

will only reduce the Dirac equation to the form as given in (2.7). But this term, as was

pointed out earlier, is intimately related to the spin-tensor current [9,10]. In theories with

torsion, the term Sabc = Ψ1
4
εabcdγdγ5Ψ is the spin-tensor current obtained from the Dirac

Lagrangian by variation with respect to the spin connection, and is the source of torsion.

Hence in theories with torsion, the term 1
4
εabcd(ωab)cγdγ5 represents a true dynamical in-

teraction. However, we are dealing with torsionless manifolds. So to what extent is this

term representative of a true interaction ? Could it, for example, mean that the fermions

can actually “see” the rotation of the Kerr black-hole via a Lense-Thirring precession of

the spin axis ? We must be very cautious. After all, this term does not even transform as

a tensor. There is a way to find out if there is such a thing as a gravitationally induced

spin-precession. In the gauge theory analogy, the spin-precession term is clearly established

when we compute the square of the Dirac operator, 6D2. In the case of torsionless gravita-
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tion however, the square of the Dirac operator is given by 6D2 = gµνD
µDν + 1

4
R where R is

the scalar curvature. There is no term that could possibly represent a Lense-Thirring pre-

cession of the fermion spin axis. Hence we are forced to conclude that the 1
4
εabcd(ωab)cγdγ5

term does not represent a physical effect in the case of vanishing torsion. This means that

there ought to be a way to remove this term from (2.7). It turns out that we can remove

this term from (2.7) in the massless case via another factorisation process. In the next

section we will see how this works out.

The Factorisation Ansatz For The Kerr Metric

In order to reduce the Dirac equation to the form of (2.7), we will have to first apply the

usual factorisation ansatz that we have relied upon, in the previous chapters. From (7.1)

and (2.11), we see that

f = he1/2 =

(√
∆

ρ

)1/2

ρ sin1/2 θ. (7.4)

(2.7) itself suggests a situation when we can remove the offending term. Suppose the

fermions are massless. Then Φ will be an eigenstate of γ5. In that case, the γ5 in the of-

fending term is redundant because we have a reduction to a two dimensional representation

of the Pauli spin matrices. Indeed, let us see how this works. Define, left and right handed

bispinors as follows (using an obvious notation),

γ5ΦL = −ΦL

γ5ΦR = ΦR

80



so that they satisfy the projection equations,

PLΦL =
1− γ5

2
ΦL = ΦL

PRΦL =
1 + γ5

2
ΦL = 0

PLΦR =
1− γ5

2
ΦR = 0

PRΦR =
1 + γ5

2
ΦR = ΦR.

Then it is easy to see that for any two-component spinor, χ, we can construct a left and

right handed bispinor, in the Dirac representation, as follows :

ΦL =

 χ

−χ



ΦR =

 χ

χ


and (2.7) breaks down into two separate equations for the left and right handed massless

bispinors. As neutrinos are all observed to be left handed in nature, we shall only consider

the left handed case. In fact, the equation is given by

iγcEc
µ∂µΦL − 1

4
εabcd(ωab)cγdΦL = 0. (7.5)

We shall try out another factorisation. Set

ΦL = g(r, θ)χL where (7.6)

χL =

 ζ

−ζ

 (7.7)
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and where ζ is a two component spinor. We assume that χL satisfies,

iγcEc
µ∂µχL = 0 (7.8)

so that g(r, θ) must satisfy the constraint,

iηdcEc
µ∂µ log g − 1

4
εabcd(ωab)c = 0. (7.9)

What remains is to choose a vierbein set. To this end, we follow Unruh [4] and set

A =

√
∆

ρ

B = −
√
∆

ρ
a sin2 θ

C = −a sin θ
ρ

D =
r2 + a2

ρ
sin θ (7.10)

so that we obtain,

1

4
εabcd(ωab)cγd = −1

2

√
∆a cos θ

ρ3
γ1 − 1

2

ar sin θ

ρ3
γ2. (7.11)

Quite nicely, it turns out that (7.9) has a solution in this case. In fact, g is given by

g(r, θ) = e
i
2
arctan( ar cos θ). (7.12)

Hence we have successfully reduced the Dirac equation to the simpler equation, (7.8). In

particular, defining ~∇ in the usual manner, and working in the Dirac representation, (7.8)

yields the following equation for the two component spinor ζ :

i

(
r2 + a2

ρ
√
∆

)
∂

∂t
ζ = i~σ · ~∇ζ − i

a

ρ
√
∆

∂

∂φ
ζ. (7.13)
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Clearly we need to choose an ansatz that will lead to a separation of variables. This can be

done quite easily. Because we have azimuthal symmetry, we are led to consider an ansatz

for ζ that is simply

ζ =

 u

v

 e−iωte−imφ (7.14)

with u and v as functions to be determined. Of course, azimuthal symmetry and single-

valuedness fixes m to be an integer. Substitution into (7.13) results in a pair of equations

for u and v. These equations are coupled - and we shall subsequently uncouple them.

i
√
∆
∂

∂r
v +

∂

∂θ
v =

[
−ωa sin θ − m

sin θ
+
ma+ r2 + a2√

∆

]
u (7.15)

i
√
∆
∂

∂r
u− ∂

∂θ
u =

[
ωa sin θ +

m

sin θ
+
ma + r2 + a2√

∆

]
v (7.16)

To uncouple these equations, we consider the following linear combinations of u and v,

Z+ = u+ v = R1(r)S1(θ)

Z− = u− v = R2(r)S2(θ)

which upon substitution into (7.15) and (7.16) yields

i
√
∆
dR1

dr
− ma + r2 + a2√

∆
R1 = λR2 (7.17)

i
√
∆
dR2

dr
+
ma + r2 + a2√

∆
R2 = ξR1 (7.18)

dS1

dθ
+
(
ωa sin θ +

m

sin θ

)
S1 = ξS2 (7.19)

dS2

dθ
−
(
ωa sin θ +

m

sin θ

)
S2 = λS1. (7.20)
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Here, λ and ξ are the constants that appear when we apply a separation of variables. By

considering the effect of the transformation, θ → −θ on these equations, it is easy to deduce

the following fact.

λ = ξ (7.21)

S1(θ) = S2(−θ). (7.22)

Thus the equations for a massless fermion living on the Kerr spacetime, is indeed separable.

In particular, since the neutrino equation is linear, we can choose to expand any neutrino

wave packet in the following manner :

ΨL = e−iωte
i
2
arctan( ar cos θ)

(√
∆

ρ

)1/2

ρ sin1/2 θ
∑
m,λ[

AmλR1mλ
(r)Φ

(+)
mλ(θ)e

−imφ +BmλR2mλ
(r)Φ

(−)
mλ(θ)e

−imφ
]

(7.23)

where the spinorial analogues of the Legendre function, Φ
(±)
mλ(θ), are given by

Φ
(+)
mλ(θ) =



S1mλ
(θ)

0

−S1mλ
(θ)

0


(7.24)

Φ
(−)
mλ(θ) =



0

S2mλ
(θ)

0

−S2mλ
(θ)


. (7.25)
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We need not proceed any further from here. The manner in which we should quantise these

modes is transparent - given our efforts in the previous chapters. What is interesting is the

fact that the neutrino equation is amenable to an exact treatment in the Kerr spacetime, to

begin with. Furthermore, the modes that we obtain are quite simple - given the intricacies

of the Kerr metric. In the next section, we shall develop a similar theory for Taub-NUT

spacetime.

Taub-NUT Spacetime

The Taub-NUT solution to Einstein’s equation, represents a gravitational instanton and it

has a horizon [24,25]. What is interesting about this metric is that its not asymptotically

flat, though it is of stationary, axisymmetric type. Here we shall briefly present the results

of our computation. The calculations are identical to the case of the Kerr metric and,

again, solutions exist only for massless fermions.

The Taub-NUT metric is given by

ds2 =

[
1− 2Mr +N2

r2 +N2

] [
dt+ 4N sin2

θ

2
dφ

]2

−
[
1− 2Mr +N2

r2 +N2

]−1

dr2 −
(
r2 +N2

) [
dθ2 + sin2 θdφ2

]
.

If we define,

∆ = r2 − 2Mr

ρ2 = r2 +N2
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then we can rewrite the metric in a way that is similar to the Kerr metric viz,

ds2 =
∆

ρ
dt2 + 8

∆

ρ2
N sin2

θ

2
dtdφ

−
[
ρ2 sin2 θ − 16N2 sin4

θ

2

∆

ρ2

]
dφ2 − ρ2

∆
dr2 − ρ2dθ2.

Choosing a vierbein set like that in (7.1) with

A =

√
∆

ρ

B = 4N

√
∆

ρ
sin2

θ

2

C = 0

D = ρ sin θ

e11 =
ρ√
∆

e22 = ρ

and following exactly identical steps as in the case of the Kerr metric, yields,

f = he1/2 =

(√
∆

ρ

)1/2

ρ sin1/2 θ (7.26)

1

4
εabcd(ωab)cγd =

1

2
N

√
∆

ρ3
γ1 (7.27)

g(r, θ) = e
i
2
arctan r

N . (7.28)

And choosing a similar ansatz as (7.14) leads to the pair of coupled equations,

i
√
∆
∂

∂r
v +

∂

∂θ
v =

[
− m

sin θ
+ 2ωN tan

θ

2
+
ω(r2 +N2)√

∆

]
u (7.29)

i
√
∆
∂

∂r
u− ∂

∂θ
u =

[
m

sin θ
− 2ωN tan

θ

2
+
ω(r2 +N2)√

∆

]
v (7.30)
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which can be solved in exactly the same fashion as (7.14). We shall not do this here

though. After all, the motivation for studying the Taub-NUT case was to prove that the

factorisation ansatz does indeed, apply even to the non-asymptotically flat spacetimes that

are of stationary, axisymmetric type. It just so happens that, interestingly enough, the

Taub-NUT solution is also a gravitational instanton.

Thus in this chapter, we have shown how a fermion quantum field theory may be con-

structed on the Kerr and Taub-NUT spacetimes. Unfortunately, the only cases in which

we can explicitly construct such a theory, are the cases in which the fermions are massless.

At present, we are unawares of any successful attempt at a construction of a similar theory

for massive fermions. Even in the Newman-Penrose approach [3], the Dirac equation is

separable only in the case of massless fermions.
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CHAPTER 8 : CONCLUSIONS AND

SPECULATIONS

In the previous chapters, we have constructed a quantum field theory of free fermions in

black-hole spacetimes. We have also suggested that a quantum field theory is necessarily

split into two disjoint components across an event horizon. This will ensure the thermal

character of the Hawking radiation, but it would say nothing as regards to the information

loss paradox. We believe that the solution to the information loss problem lies in an hitherto

unknown back-reaction mechanism.

Much work still remains though. For one thing, our work has been based on the factorisation

ansatz which is valid only for stationary axisymmetric spacetimes. The factorisation leaves

behind an effective operator governing the dynamics which is manifestly non-unitary. It is

the total wave function inclusive of the factored pieces which obeys a unitary evolution.

How can we make sense of this ? It is not clear. Can we do without the factorisation ansatz

? Again, it is far from clear.

Secondly, there is the issue of pragmatic applications. Are the wave functions that we

have found, suitable for computations in semi-classical gravitational collapse ? We believe

so. Certainly the Schwarzschild wave functions are suitable for practical calculations in

gravitational collapse. It would be nice if one can build a theory of quarks and leptons
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using these wave functions. Then it will be possible to do high-energy particle physics even

in the strong gravitational field of a black-hole. This we believe to be possible and we are

in fact working on such matters at present.

Thirdly there is the issue of unifying Einstein’s theory of gravitation with a theory of matter.

Clearly if gravity is united in some specific way to a theory of matter (e.g. supergravity,

superstrings), then the gauge degree of freedom that we have in choosing a vierbein set

will be dynamical. In other words, the dynamics of such a theory will force upon us a

fixed choice of vierbeins. In which case, there is little we can do in terms of computational

power. What are the implications of this ? It remains to be seen - as there has been little

progress in this direction.

And finally, we are left to speculate on the role of torsion in fermionic theories in curved

spacetime. Unfortunately, theories with torsion suffer from one serious technical drawback.

Because of the Cartan structure equations [7], the spin connection is largely undetermined

until we specify the torsion tensor. However the torsion tensor itself is given by the matter

equations derived from the matter Lagrangian and requires the spin connection. Hence

theories with torsion are coupled in a highly non-trivial manner. How can we break this

chain of circular argument ? We are not sure. It appears to us that much needs to be done

in the way of making suitable approximations. But that is the crux of the matter........
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