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CONFORMAL FRACTALS, DIMENSIONS AND ERGODIC THEORYFeliks Przyty
ki & Mariusz Urba�nskiThis book is an introdu
tion to the theory of iteration of non-uniformly expandingholomorphi
 maps and topi
s in geometri
 measure theory of the underlying invariantfra
tal sets. Probability measures on these sets yield informations on Hausdor� and otherfra
tal dimensions and properties. The book starts with a 
omprehensive 
hapter onabstra
t ergodi
 theory followed by 
hapters on uniform distan
e expanding maps andthermodynami
al formalism. This material is appli
able in many bran
hes of dynami
alsystems and related �elds, far beyond the appli
ations in this book.Popular examples of the fra
tal sets to be investigated are Julia sets for rationalfun
tions on the Riemann sphere. The theory whi
h was initiated by Gaston Julia [J℄ andPierre Fatou [F℄ be
ame very popular sin
e the time when Benoit Mandelbrot's book [M℄with beautiful 
omputer made pi
tures appeared. Then it be
ame a �eld of spe
ta
ulara
hievements by top mathemati
ians during the last 20 years.Consider for example the map f(z) = z2 for 
omplex numbers z. Then the unit
ir
le S1 = fjzj = 1g is f -invariant, f(S1) = S1 = f�1(S1). For 
 � 0; 
 6= 0 andf
(z) = z2 + 
, there still exists an f
-invariant set J(f
) 
alled the Julia set of f
, 
loseto S1, homeomorphi
 to S1 via a homeomorphism h satisfying equality f Æ h = h Æ f
.However J(f
) has a fra
tal shape. For large 
 the 
urve J(f
) pin
hes at in�nitely manypoints; it may pin
h everywhere to be
ome a dendrite, or even 
rumble to be
ome a Cantorset. These sets satisfy two main properties, standard attributes of "
onformal fra
tal sets":1. Their fra
tal dimensions are stri
tly larger than the topologi
al dimension. 2. Theyare 
onformally "self-similar", namely arbitrarily small pie
es have shapes similar to largepie
es via 
onformal mappings, here via iteration of f .To measure fra
tal sets invariant under holomorphi
 mappings one applies probabilitymeasures 
orresponding to equilibria in the thermodynami
al formalism. This is a beautifulexample of interla
ing of ideas from mathemati
s and physi
s.A prototype lemma [B, Lemma 1.1℄ at the roots of the thermodynami
al formalismsays that for given real numbers a1; :::; an the quantityF (p1; :::pn) = nXi=1 �pi log pi + nXi=1 pi�ihas maximum value P = logPni=1 e�i as (p1; :::; pn) ranges over the simplex f(p1; :::; pn) :pi � 0;Pni=1 pi = 1g and the maximum is assumed only atp̂j = e�j � nXi=1 e�i��11



We 
an read �i; pi; i = 1; :::; n as a fun
tion (potential), resp. probability distribution, onthe �nite spa
e f1; :::; ng. Let us further follow Bowen [B℄: The quantityS = nXi=1 �pi log piis 
alled entropy of the distribution (p1; :::; pn). The maximizing distribution (p̂1; ::; p̂n) is
alled Gibbs or equilibrium state. In statisti
al me
hani
s �i = ��Ei, where � = 1=kT , Tis a temperature of an external "heat sour
e" and k a physi
al (Boltzmann) 
onstant. Thequantity E = Pni=1 piEi is the average energy. The Gibbs distribution maximizes thenthe expression S � �E = S � 1kT Eor equivalently minimizes the so-
alled free energy E � kTS. The nature prefers stateswith low energy and high entropy. It minimizes free energy.The idea of Gibbs distribution as limit of distributions on �nite spa
es of 
on�gurationsof states (spins for example) of intera
ting parti
les over in
reasing growing to1 boundedparts of the latti
e ZZd introdu
ed in statisti
al me
hani
s �rst by Bogolubov and Ha
et[BH℄ and playing there a fundamental role was applied in dynami
al systems to studyAnosov 
ows and hyperboli
 di�eomorphisms at the end of sixties by Ja. Sinai, D. Ruelleand R. Bowen. For more histori
al remarks see [Ru℄ or [Si℄. This theory met the notion ofentropy S borrowed from information theory and introdu
ed by Kolmogorov as an invariantof a measure-theoreti
 dynami
al system.Later the usefulness of these notions to the geometri
 dimensions has be
ome appar-ent. It was present already in [Billingsley℄ but 
ru
ial were papers by Bowen [Bo1℄ andM
Cluskey & Manning [M
M℄.In order to illustrate the idea 
onsider the following example: Let Ti : I ! I, i =1; :::; n > 1, where I = [0; 1℄ is the unit interval, Ti(x) = �ix + ai, where �i; ai are realnumbers 
hosen in su
h a way that all the sets Ti(I) are pairwise disjoint and 
ontainedin I. De�ne the limit set � as follows� = 1\k=0 [(i0;:::;ik)Ti0 Æ ::: Æ Tik(I) = [(i0;i1:::) limk!1Ti0 Æ ::: Æ Tik ;the latter union taken over all in�nite sequen
es (i0; i1; :::), the previous over sequen
es oflength k + 1.It o

urs that its Hausdor� dimension is equal to the only number � for whi
hj�1j� + :::+ j�nj� = 1:� is a Cantor set. It is self-similar with small pie
es similar to large pie
es with the useof linear (more pre
isely, aÆne) maps (Ti0 Æ ::: Æ Tik)�1. We 
all su
h a Cantor set linear.We 
an distribute measure � by setting �(Ti0 Æ ::: Æ Tik(I)) = ��i0 :::�ik��. Then for ea
hinterval J � I 
entered at a point of � its diameter raised to the power � is 
omparable2



to its measure � (this is immediate for the intervals Ti0 Æ ::: Æ Tik(I)). (A measure withthis property for all small balls 
entered at a 
ompa
t set, in a eu
lidean spa
e of anydimension, is 
alled a geometri
 measure.) Hen
eP(diamJ)� is bounded away from 0 and1 for all e
onomi
al (of multipli
ity not ex
eeding 2) 
overs of � by intervals J .Note that for ea
h k � restri
ted to the spa
e of unions of Ti0 Æ ::: Æ Tik(I), ea
hsu
h interval viewed as one point, is the Gibbs distribution, where we set �((i0; :::; ik)) =��((i0; :::; ik)) =Pl=0;:::;k � log�il . The number � is the unique 0 of the pressure fun
tionP(�) = 1k+1 logP(i0;:::;ik) e�a((i0;:::;ik)). In this spe
ial aÆne example this is independentof k. In general non-linear 
ase to de�ne pressure one passes with k to 1.The family Ti and 
ompositions is an example of very popular in re
ent years IteratedFun
tion System [Barnsley℄. Note that on a neighbourhood of ea
h Ti(I) we 
an 
onsiderT̂ := T�1i . Then � is an invariant repeller for the distan
e expanding map T̂ .)The relations between dynami
s, dimension and geometri
 measure theory start inour book with the theorem that the Hausdor� dimension of an expanding repeller is theunique 0 of the adequate pressure fun
tion for sets built with the help of C1+" usuallynon-linear maps in IR or 
onformal maps in IRd.This theory was developed for non-uniformly hyperboli
 maps or 
ows in the settingof smooth ergodi
 theory, see [HK℄, by Ma~n�e [M℄, Lai-Sang-Young and Ledrappier [LY℄;see [Pesin℄ for re
ent developments. The advan
ed 
hapters of our book are devoted to thistheory, but we restri
t ourselves to 
omplex dimension 1. So the maps are non-uniformlyexpanding and the main te
hni
al diÆ
ulties are 
aused by 
riti
al points, where we havestrong 
ontra
tion sin
e the derivative by de�nition is equal to 0 at 
riti
al points.A dire
tion not developed in this book are Conformal Iterated Fun
tion Systems within�nitely many generators Ti. They o

ur naturally as return maps in many important
onstru
tions, for example for rational maps with paraboli
 periodi
 points or in the In-du
ed Expansion 
onstru
tion for polynomials [GS℄. Beautiful examples are provided byin�nitely generated Kleinian groups [.℄. The systemati
 treatment of Iterated Fun
tionSystems with in�nitely many generators 
an be found in [MU1℄, [MU2℄, [MU3℄, [MPU℄and [U1℄ for example.Below is a short des
ription of the 
ontent of the book.Chapter 1 is an introdu
tion to abstra
t ergodi
 theory, here T is a probability mea-sure preserving transformation. The reader will �nd proofs of the fundamental theorems:Birkho� Ergodi
 Theorem and Shannon-M
Millan-Breiman Theorem. We introdu
e en-tropy, measurable partitions and dis
uss 
anoni
al systems of 
onditional measures inRohlin's Lebesgue spa
e the notion of natural extension (inverse limit in the appropriate
ategory). We follow here Rohlin's Theory [Ro℄, see also [FKS℄. Next to prepare to ap-pli
ations for �nite-to-one rational maps we sket
h Rohlin's theory on 
ountable-to-oneendomorphisms and introdu
e the notion of Ja
obian, see also [Parry℄. Finally we dis
ussmixing properties (K-propery, exa
tness, Bernoulli) and probability laws (Central LimitTheorem, abbr. CLT, Law of Iterated Logarithm, LIL, Almost Sure Invarian
e Prin-
iple, ASIP) for the sequen
e of fun
tions (random variables on our probability spa
e)� Æ Tn; n = 0; 1; :::.Chapter 2 is devoted to ergodi
 theory and termodynami
al formalism for general3




ontinuous maps on 
ompa
t metri
 spa
es. The main point here is the so 
alled VariationalPrin
iple for pressure, 
ompare the prototype lemma above. We apply also fun
tionalanalysis in order to explain Legendre transform duality between entropy and pressure.We follow here [Israel℄ and [Ruelle℄. This material is appli
able in large deviations andmultifra
tal analysis, and is dire
tly related to the uniqueness of Gibbs states question.In Chapters 1, 2 we often follow the beautiful book by Peter Walters [Wa℄.In Ch 3. distan
e expanding maps are introdu
ed. Analogously to Axiom A di�eomor-phisms [Smale, Bowen℄ or endomorphisms [Przy℄ we outline a topologi
al theory: spe
tralde
omposition, spe
i�
ation, Markov partition, and start a "bounded distortion" play withH�older 
ontinuous fun
tions.In Chapter 4 termodynami
al formalism and mixing properties of Gibbs measures foropen distan
e expanding maps T and H�older 
ontinuous potentials � are studied. To largeextend we follow [Bo℄ and [Ru℄. We prove the existen
e of Gibbs measures (states): mwith Ja
obian being exp�� up to a 
onstant fa
tor, and T -invariant � = �� equivalentto m. The idea is to use the transfer operator L�(u)(x) =Py2T�1(x) u(y) exp�(y) on theBana
h spa
e of H�older 
ontinuous fun
tions u. We prove the exponential 
onvergen
e��nLn�(u) ! (R u dm)u�, where � is the eigenvalue of the largest absolute value and u�the 
orresponding eigenfun
tion. One obtains u� = dm=d�. We dedu
e CLT, LIL andASIP, and the Bernoulli property for the natural extension.We provide three di�erent proofs of the uniqueness of the invariant Gibbs measure.The �rst, simplest, follows [Keller???℄, the se
ond relies on the prototype lemma, the thirdone on the di�erentiability of the pressure fun
tion in adequate fun
tion dire
tions.Finally we prove Ruelle's formulad2P (�+tu+sv)=dt dsjt=s=0 = limn!1 1n Z (n�1Xi=0(uÆT i�Z u d��) �(n�1Xi=0(vÆT i�Z v d��) d��:This expression for u = v is equal to �2 in CLT for the sequen
e u Æ Tn and measure ��.(In the book we use the letter T to denote a measure preserving transformation.Maps preserving an additional stru
ture, 
ontinuous smooth or holomorphi
 for example,are usually denoted f or g.)In Chapter 5 the metri
 spa
e with the a
tion of an open distan
e expanding mapis embedded in a smooth manifold and it is assumed that the map smoothly extendsto a neighbourhood. We 
all the spa
e with the extended dynami
s: Smooth ExpandingRepeller, abbr. SER. We study smoothness of the density u�. Finally we provide indetail D. Sullivan's theory 
lassifying line Cantor sets via s
aling fun
tion, sket
hed in [Su℄and dis
uss the realization problem [PT℄. We also dis
uss appli
ations for solenoids forFeigenbaum maps.In Chapter 6 we provide de�nitions of various "fra
tal dimensions": Hausdor�, boxand pa
king. We 
onsider also Hausdor� measures with gauge fun
tions difefrent fromt�. We prove "Volume Lemma" linking, roughly speaking, (global) dimension with lo
aldimensions.In Chapter 7 we �nally introdu
e Conformal Expanding Repellers, abbr. CER, andrelate pressure with Hausdor� dimension. We prove C?�1 dependen
e of the dimension on4



the parameter if the dependen
e on the parameter of the expanding map is C?. We dealwith smooth repellers in IR and 
onformal repellers in CI. Here 2 <? � !, the real analyti

ase.Next we follow the easy (uniform) part of [PUZ℄. We prove that for CER (X; f) andH�older 
ontinuous � : X ! R, for � = HD(��), Hausdor� dimension of the Gibbs measure�� (in�mum of Hausdor� dimensions of sets of full measure), either HD(X) = � themeasure �� is equivalent to ��, the Hausdor� measure in dimension �, and is a geometri
measure, or �� is singular with respe
t to �� and the right gauge fun
tion for the Hausdor�measure to be 
ompared to �� is �(�) = t� exp(
plog 1=t log log log 1=t). In the proof weuse LIL. This theorem is used to prove a di
hotomy for the harmoni
 measure on a Jordan
urve �, bounding a domain 
, whi
h is a repeller for a 
onformal expanding map. Either� is real analyti
 or harmoni
 measure is 
omparable to the Hausdor� measure with gaugefun
tion �(1). This yields an information about the lower and upper growth rates ofjR0(r�)j, for r % 1, for almost every � with j�j = 1 and univalent fun
tion R from theunit dis
 jzj < 1 to 
. This is a dynami
al 
ounterpart of Makarov's theory of boundarybehaviour for general simply 
onne
ted domains, [Makarov℄.We prove in parti
ular that for f
(z) = z2 + 
; 
 6= 0; 
 � 0 1 < HD(J(f
)) < 2.We show how to express in the language of pressure another interesting fun
tion:Rj�j=1 jR0(r�)jt jd�j for r% 1.We also look 
loser at the Gibbs measures, dis
uss so 
alled multifra
tal analysis, andstudy large deviations.Finally we apply our theory to the boundary of von Ko
h "snow
ake" and moregeneral Carleson fra
tals.Chapter 8 is devoted to Sullivan's rigidity theorem, saying that two non-linear ex-panding repellers (X; f); (Y; g) that are Lips
hitz 
onjugate (or more generally there existsa measurable 
onjuga
y that transforms a geometri
 measure on X to a geometri
 measureon Y , then the 
onjuga
y extends to a 
onformal one. This means that measures 
lassifynon-linear 
onformal repellers. This fa
t, annou
ed in [Su℄ only with a sket
h of the proof,is proved here rigorously for the �rst time. We sket
h also a generalization by E. Prado.In Chapter 9 we start to deal with non-uniform expanding phenomena. A heart ofthis 
hapter is the proof of the formula HD(�) = h�(f)=��(f) for an arbitrary f -invariantergodi
 measure � of positive Laypunov exponent �� := R log jf 0j d�.(The word non-uniform expanding is used just to say that we 
onsider (typi
al pointsof) an ergodi
 measure with positive Lyapunov exponent. In higher dimension one usesthe name non-uniform hyperboli
 for measures with all Lyapunov exponents non-zero.)It is so roughly be
ause a small dis
 around z, whose n-th image is large, has diameterof order j(fn)0(z)j�1 � exp�n�� and measure exp�nh�(f) (Shannon-M
Millan-Breimantheorem is involved here)Chapter 10 is devoted to 
onformal measures, namely probability measures with Ja-
obian Const exp�� or more spe
i�
ally jf 0j� in a non-uniformly expanding situation, inparti
ular for any rational mapping f on its Julia set J . It is proved that there exists aminimal exponent Æ(f) for whi
h su
h a measure exists and that Æ(f) is equal to ea
h ofthe following quantities:Dynami
al Dimension DD(J) := supfHD(�)g, where � ranges over all ergodi
 f -5



invariant measures on J of positive Lyapunov exponent.Hyperboli
 Dimension HyD(J) := supfHD(Y )g, where Y ranges over all ConformalExpanding Repellers in J , or CER's that are Cantor sets.It is an open problem whether for every rational mapping HyD(J) = HD(J) = boxdimension of J , but for many nonuniformly expandig mappings these equalities hold. Itis often easier to study the 
ontinuity of Æ(f) with respe
t to a parameter, than dire
tlyHausdor� dimension. So one obtains an information about the 
ontinuity of dimensionsdue to the above equalities.Most of the book was written in the years 1990-1992 and was le
tured to graduatestudents by ea
h of us in Warsaw, Yale and Denton. We negle
ted �nishing writing, butre
ently unexpe
tedly to us the methods in Chapter 10, relating hyperboli
 dimension tominimal exponent of 
onformal measure, were used to study the dependen
e on " of thedimension of Julia set for z2 + 1=4 + ", for " ! 0 and other paraboli
 bifur
ations, by A.Douady, P. Sentena
 and M. Zinsmeister in [DSZ℄ and by C. M
Mullen in [M
M℄. So wede
ided to make a �nal e�ort. Meanwhile ni
e books appeared on some topi
s of our book,let us mention [Fal
oner℄, [Zinsmeister℄, [Gora,Boyarsky℄, [Viana℄, but a lot of importantmaterial in our book is new or was hardly a

essible, or is written in an un
onventionalway.[Barnsley℄ ..................[Fal
oner℄ K. Fal
oner, Te
hni
s in Fra
tal Geometry[Zinsmeister℄ M. Zinsmeister, Le Formalisme Thermodynamique: Mode d'emploi[Boyarsky, G�ora℄ A. Boyarsky, P. G�ora, Laws of Chaos, Invariant Measures and Dy-nami
al Systems in One Dimension. Birkh�auser, Boston 1997[Viana℄ M. Viana,
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CHAPTER 0.BASIC EXAMPLES AND DEFINITIONSLet us start with de�nitions of dimensions. We shall 
ome ba
k to them in a moresystemati
 way in Chapter 5.De�nition 0.1. Let (X; �) be a metri
 spa
e. We 
all upper (lower) box dimensionof X the quantity lim sup(lim inf)r!0 logN(r)� log rwhere N(r) is the minimal number of balls of radius r whi
h 
over X.Sometimes the names 
apa
ity or Minkowski dimension or box-
ounting dimension areused. The name box dimension 
omes from the situation where X is a subset of a eu
lideanspa
e IRd. Then one 
an 
onsider only r = 2�n and N(2�n) 
an be repla
ed by the numberof dyadi
 boxes [ k12�n ; k1+12�n ℄� :::� [ kd2�n ; kd+12�n ℄; kj 2 ZZ interse
ting X.De�nition 0.2. Let (X; �) be a metri
 spa
e. For every � > 0 we de�ne ��(X) =limÆ!0 inffP1i=1(diamUi)�g, where the in�mum is taken over all 
ountable 
overs (Ui; i =1; 2; :::) of X by sets of diameter not ex
eeding Æ. ��(Y ) de�ned as above on all subsetsY � X is 
alled �-th outer Hausdor� measure.It is easy to see that there exists �0 : 0 � �0 � 1 su
h that for all � : 0 � � < �0��(X) = 1 and for all � : �0 < � ��(X) = 0. The number �0 is 
alled the Hausdor�dimension of X.Note that if in this de�nition we repla
e the assumption: sets of diameter not ex
eedingÆ by equal Æ, and limÆ!0 by lim inf or lim sup, we obtain box dimension.A standard example to 
ompare both notions is the set f1=n; n = 1; 2; :::g in IR. Itsbox dimension is equal to 1/2 and Hausdor� dimension is 0. If one 
onsiders f2�ng insteadone obtains both dimensions 0. Also linear Cantor sets in Introdu
tion have Hausdor� andbox dimensions equal. The reason for this is self-similarity.Example 0.3. Shifts spa
es. For every natural number d 
onsider the spa
e �d ofall in�nite sequen
es (i0; i1; :::) with in 2 f1; 2; :::; dg. Consider the metri
�((i0; i1; :::); (i00; i01; :::)) = 1Xn=0�njin � i0njfor an arbitrary 0 < � < 1. Sometimes it is more 
omfortable to use the metri
�((i0; i1; :::); (i00; i01; :::)) = ��minfn:in 6=i0ng, equivalent to the previous one. Consider � : �d ! �d de�ned by f((i0; i1; :::) = (i1; :::).The metri
 spa
e (�d; �) is 
alled one-sided shift spa
e and the map � the left shift. Often,1



if we do not spe
ify metri
 but are interested only in the 
artesian produ
t topology in�d = f1; :::; dgZZ+, we use the name topologi
al shift spa
e.One 
an 
onsider the spa
e ~�d of all two sides in�nite sequen
es (:::; i�1; i0; i1; :::).This is 
alled two-sided shift spa
e.Ea
h point (i0; i1; :::) 2 �d determines its forward traje
tory under �, but is equippedwith a Cantor set of ba
kward traje
tories. Together with the topology determined bythe metri
 P1n=�1 �jnjjin � i0nj the set ~�d 
an be identi�ed with the inverse limit (in thetopologi
al 
ategory) of the system :::! �d ! �d where all the maps ! are �.Note that the limit Cantor set � in Introdu
tion, with all �i = � is Lips
hitz homeo-morphi
 to �d, with the homeomorphism h mapping (i0; i1; :::) to Tk Ti0 Æ ::ÆTik(I). Notethat for ea
h x 2 �, h�1(x) is the sequen
e of integers (i0; i1; :::) su
h that for ea
h k,T̂ k(x) 2 Tik(I). It is 
alled a 
oding sequen
e. If we allow the end points of Ti(I) to overlap,in parti
ular � = 1=d and ai = (i� 1)=d, then � = I and h�1(x) =P1k=0(ik � 1)d�k�1.One generalizes the one (or two) -sided shift spa
e, 
alled sometimes full shift spa
eby 
onsidering the set �A for an arbitrary d�d { matrix A = (aij with aij = 0 or 1 de�nedby �A = f(i0; i1; :::) 2 �d : aitit+1 = 1 for every t = 0; 1; :::g:By the de�nition �(�A � �A. �A with the mapping � is 
alled a topologi
al Markov
hain. Here the word topologi
al is substantial, otherwise it is 
ustomary to think of a�nite number of states sto
hasti
 pro
ess, see Example 0.8.Example 0.4. Iteration of rational maps. Let f : CI ! CI be a holomorphi
mapping of the Riemann sphere CI. Then it must be rational, i.e. ratio of two polynomials.We assume that the topologi
al degree of f is at least 2. The Julia set J(f) is de�ned asfollows:J(f) = fz 2 CI : 8U 3 z ; U open, the family of iterates fn = f Æ ::: Æ f jU , n times, forn = 1; 2; ::: is not normal in the sense of Montel g.A family of holomorphi
 fun
tions ft : U ! CI is 
alled normal (in the sense of Montel)if it is pre-
ompa
t, namely from every sequen
e of fun
tions belonging to the family one
an 
hoose a subsequen
e uniformly 
onvergent (in the spheri
al metri
 on the Riemannsphere CI) on all 
ompa
t subsets of U .z 2 J(f) implies for example, that for every U 3 z the family fn(U) 
overs all CI butat most 2 points. Otherwise by Montel's theorem ffng would be normal on U .Another 
hara
terization of J(f) is that J(f) is the 
losure of repelling periodi
 points,namely those points z 2 CIfor whi
h there exists an integer n su
h that fn(z) = z andj(fn)0(z)j > 1.There is only �nite number of attra
ting periodi
 points, j(fn)0(z)j < 1; they lieoutside J(f), an un
ountable "
haoti
, repelling" Julia set. The la
k of symmetry betweenatra
ting and repelling phenomena is 
aused by the non-invertibility of f .It is easy to prove that J(f) is 
ompa
t, 
ompletely invariant: f(J(f)) = J(f) =f�1(J(f)), either nowhere dense or equal to the whole sphere (to prove this use Montel'stheorem).For polynomials, the set of points whose images under iterates fn; n = 1; 2; :::, tendto 1, basin of attra
tion to 1, is 
onne
ted and 
ompletely invariant. Its boundary is the2



Julia set.Che
k that all these general de�nitions and statements are 
ompatible with the dis-
ussion of f(z) = z2+ 
 in Introdu
tion. As introdu
tion to this theory we re
ommend forexample the books [Beardon℄, [Carleson, Gamelin℄ and [Steinmetz℄.Below are the 
omputer pi
tures of some Julia setsFIGURES: Rabbit, Sierpinski 
arpet (rational fun
tion of degree 2), Newton's methodA Julia set 
an have Hausdor� dimension arbitrarily 
lose to 0 (but not 0) and ar-bitrarily 
lose to 2 and even exa
tly 2 (being in the same time nowhere dense). It is notknown whether it 
an have positive Lebesgue measure. We shall 
ome ba
k to these topi
sin Chapters 6, 10.Example 0.5. Complex linear fra
tals. The linear Cantor set 
onstru
tion in IRdes
ribed in Introdu
tion 
an be generalized to 
onformal linear Cantor and other fra
talsets in CI:Let U � CI be a bounded 
onne
ted domain and Ti(z) = �iz + ai, where �i; ai are
omplex numbers, i = 1; :::; n > 1. Assume that 
losures 
lTi(U) are pairwise disjoint and
ontained in U . The limit Cantor set � is de�ned in the same way as in Introdu
tion.In Ch.7 we shall prove that it 
annot be the Julia set for a holomorphi
 extension ofT̂ = T�1i on Ti(U) for ea
h i, to the whole sphere CI.If we allow that the boundaries of Ti(U) interse
t or interse
t �U we obtain otherinteresting examplesFIGURES: Sierpinski 
arpet, Sierpinski gasket, boundary of von Ko
h snow
akeExamples 0.6. A
tion of Kleinian groups. Beautiful examples of fra
tal setsarise as limit sets of the a
tion of Kleinian groups on CI.Let Ho be the group of all homographies, namely the rational mappings of the Riemannsphere of degree 1, i.e. of the form z 7! az+b
z+d where ad� b
 6= 0. Every dis
rete subgroupof Ho is 
alled Kleinian group. If all the elements of a Kleinian group preserve the unitdis
 ID = fjzj < 1g, the group is 
alled Fu
hsian.Consider for example a regular hyperboli
 4n-gon in ID (equipped with the hyperboli
metri
) 
entered at 0. Denote the 
onse
utive sides by aji ; i = 1; :::; n; j = 1; :::; 4 in thelexi
ographi
al order: a11; :::a41; a12; :::. Ea
h side is 
ontained in the 
orresponding 
ir
le Cjiinterse
ting �ID at the right angles. Denote the dis
 bounded by Cji by Dji .It is not hard to see that the 
losures of Dji and Dj+2i are disjoint for ea
h i andj = 1; 2.FIGURE: regular hyperboli
 o
tagon, ID=G.Let gji ; j = 1; 2 be the unique homography preserving ID mapping aji to aj+2i and Dji tothe 
omplement of 
lDj+2i . It is easy to see that the family fgji g generates a Fu
hsian groupG. For an arbitrary Kleinian group G, the Poin
ar�e limit set �(G) = S limk!1 gk(z),3



the union taken over all sequen
es of pairwise di�erent gk 2 G su
h that gk(z) 
onverges,where z is an arbitrary point in CI. It is not hard to prove that �(G) does not depend onz. For the above example �(G) = �ID. If we 
hange slightly gji (the 
ir
les Cji 
hangeslightly), then either �(G) is a 
ir
le S (all new Cji interse
t S at the right angle), or itis a fra
tal Jordan 
urve. The phenomenon is similar to the 
ase of the maps z 7! z2 + 
des
ribed in Introdu
tion. For details see [Bowen℄, [Bowen, Series℄, [Sullivan℄. We providea sket
h of the proof in Chapter 7.If all the 
losures of the dis
s Dji ; i = 1; :::; n; j = 1; :::; 4 be
ome pairwise disjoint,�(G) be
omes a Cantor set (the group is 
alled then a S
hottky group or a Kleinian groupof S
hottky type).Examples 0.7. Higher dimensions. Though the book is devoted to 1-dimensionalreal and 
omplex iteration and arising fra
tals, Chapters 1-3 apply to general situations.A basi
 example is Smale's horseshoe. Take a square K = [0; 1℄� [0; 1℄ in the plane IR2and map it aÆnely to a strip by squeezing in the horizontal dire
tion and stret
hing inthe verti
al, for example f(x; y) = ( 13x+ 19 ; 3y� 13 ) and bend the strip by a new map g sothat the re
tangle [ 19 ; 49 ℄� [ 43 ; 83 ℄ is mapped to [ 59 ; 89 ℄� [� 13 ; 1℄. The resulting 
ompositionT = g Æ f maps K to a "horseshoe", see [Smale, p.773℄FIGURE: horseshoe, stadium extensionThe map 
an be easily extended to a C1-di�eomorphism of CI by mapping a "stadium"extending K to a bent "stadium", and its 
omplement to the respe
tive 
omplement. Theset �K of points not leaving K under a
tion of Tn; n = :::;�1; 0; 1; ::: is the 
artesian prod-u
t of two Cantor sets. This set is T -invariant, "uniformly hyperboli
". In the horizontaldire
tion we have 
ontra
tion, in the verti
al dire
tion uniform expansion. The situationis di�erent from the previous examples of �d or linear Cantor sets, where we had uniformexpansion in all dire
tions.Smale's horseshoe is a universal phenomenon. It is always present for an iterate of adi�eomorphism f having a transversal homo
lini
 point q for a saddle p. The stable andunstable manifolds W s(p) := fy : fn(y) ! pg;Wu(p) := fy : f�n(y) ! pg as n ! 1,interse
t transversally at q. For more details on hyperboli
 sets see [HK℄.FIGURE: homo
lini
 point and embedded horseshoe.Note that T j�K is topologi
ally 
onjugate to the left shift � on the two-sided shiftspa
e ~�2, namely there exists a homeomorphism h : �K ! ~�2 su
h that h Æ T = � Æ h.Compare h i Example 0.3. T on �K is the inverse limit of the mapping T̂ on the Cantorset des
ribed in Introdu
tion, similarly to the inverse limit ~�2 of � on �2. The philosophyis that hyperboli
 systems appear as inverse limits of expanding systems.A partition of a hyperboli
 set � into lo
al stable (unstable) manifolds: W s(x) =fy 2 � : (8n � 0)�(fn(x); fn(y)) � "(x)g for a small positive measurable fun
tion ", is4



an illustration of an abstra
t ergodi
 theory measurable partition � su
h that f(�) is �nerthan �, fn(�); n ! 1 
onverges to the partition into points and the 
onditional entropyH�(f(�)j�) is maximal possible, equal to the entropy h�(f); all this holds for an ergodi
invariant measure �.The inverse limit of the system :::! S1 ! S1 where all the maps are z 7! z2, is 
alleda solenoid. It has a group stru
ture: (:::; z�1; z0) �(:::; z0�1; z00) = (:::; z�1 �z0�1; z0 �z00), whi
his a traje
tory if both fa
tors are, sin
e the map z 7! z2 is a homomorphism of the groupS1. Topologi
ally the solenoid 
an be represented as the attra
tor A of the mapping of thesolid torus ID�S1 into itself f(z; w) = ( 13z+ 12w;w2). Its Hausdor� dimension is equal inthis spe
ial example to 1 + HD(A \ fw = w0g) = 1 + log 2log 3 for an arbitrary w0, as Cantorsets A\fw = w0g have Hausdor� dimensions log 2log 3 . These are linear Cantor sets dis
ussedin Introdu
tion.Espe
ially interesting is the question of Hausdor� dimension of A if z 7! 13z is repla
edby z 7! �(z) not 
onformal. But this higher dimensional problem goes beyond the s
opeof our book. See [Pesin℄.If the map z 7! z2 in the de�nition of solenoid is repla
ed by an arbitrary rationalmapping then if f is expanding on the Julia set, the solenoid is lo
ally the 
artesian produ
tof an open set in J(f) and the Cantor set of all possible 
hoises of ba
kward traje
tories. Ifhowever there are 
riti
al points in J(f) (or 
onverging under the a
tion of fn to paraboli
points in J(f)) the solenoid (inverse limit) is more 
ompli
ated, see [LM℄ for an attemptto des
ribe it, together with a neighbourhood 
omposed of traje
tories outside J(f). Weshall not dis
uss this in our book.Examples 0.8. Bernoulli shifts and Markov 
hains. For every positive num-bers p1; :::; pd su
h that Pdi=1 pi = 1, one introdu
es on the Borel subsets of �d (or~�d) a probability measure � by extending to the �-algebra of all Borel sets the fun
tion�(Ci0;i1;:::;it) = p0p1:::pt, where Ci0;i1;:::;it = f(i00; i01; :::) : i0s = is for every s = 0; 1; :::; tg.Ea
h su
h C is 
alled a �nite 
ylinder.The spa
e �d with the left shift � and the measure � is 
alled one-sided Bernoullishift.On a topologi
al Markov 
hain �A � �d with A = (aij) and an arbitrary d � dmatrix M = pij su
h that Pdj=1 pij = 1 for every i = 1; :::; d, pij � 0 and pij = 0if aij = 0, one 
an introdu
e a probability measure � on all Borel subsets of �A byextending �(Ci0;i1;:::;it) = pi0pi0i1 :::pit�1it . Here (p1; :::; pd) is an eigenve
tor ofM�, namelyPi pipij = pj , su
h that pi � 0 for every i = 1; :::; d and Pdi=1 = 1.The spa
e �A with the left shift � and the measure � is 
alled one-sided Markov 
hain.Note that � is �-invariant. Indeed,�([i (Ci;i0;:::;it)) =Xi pipii0pi0i1 :::pit�1it = pi0pi0i1 :::pit�1it = �(Ci0;:::;it):As in the topologi
al 
ase if we 
onsider ~�d rather than �d, we obtain two-sidedBernoulli shifts and two-sided Markov 
hains.5



Example 0.9. T
hebyshev polynomial Let us 
onsider the mapping T : [�1; 1℄![�1; 1℄ of the real interval [�1; 1℄ de�ned by T (x) = 2x2� 1. In the 
o-ordinates z 7! 2z itis just a restri
tion to an invariant interval of the mapping z 7! z2 � 2 dis
ussed alreadyin Introdu
tion. The interval [�1; 1℄ is Julia set of T .Noti
e that this map is the fa
tor of the mapping z 7! z2 on the unit 
ir
le fjzj = 1g inCI by the orthogonal proje
tion P to the real axis. Sin
e the length measure l is preservedby z 7! z2 its proje
tion is preserved by T . Its density with respe
t to the Lebesguemeasure on [�2; 2℄ is proportional to (dP=dl)�1, after normalization is equal to 1� 1p1�x2 .This measure satis�esmany properties of Gibbs invariant measures dis
ussed in Chapter4, though T is not expanding; it has a 
riti
al point at 0. This T is the simplest exampleof non-uniformly expanding maps to whi
h the advan
ed parts of the book are devoted.[Smale℄ S. Smale, Di�erentiable Dynami
al Systems. Bulletin of the Ameri
an Math-emati
al So
iety 73 (1967), 747-817.[Steinmetz℄ N. Steinmetz, Rational Iteration, Complex Dynami
s, Dynami
al Systems,Walter de Gruyter, Berlin 1993
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version De
.7, 1999last revised Feb. 23, 2002CHAPTER 1MEASURE PRESERVING ENDOMORPHISMSx1.1 MEASURE SPACES AND MARTINGALE THEOREMWe assume that the reader knows basi
 elements of measure and integral theory. Fora 
omplete treatment see for example [Halmos℄ or [Billingsley, 1979℄. We start with somebasi
s to �x notation and terminology.A family F of subsets of a set X is said to be a �-algebra if the following 
onditions aresatis�ed:(1.1.1) X 2 F ;(1.1.2) A 2 F ) A
 2 Fand(1.1.3) fAig1i=1 � F ) 1[i=1Ai 2 FIt follows from this de�nition that ; 2 F , that the �-algebra F is 
losed under 
ountableinterse
tions and subtra
tions of sets. If (1.1.3) is assumed only for �nite subfamilies ofF then F is 
alled an algebra. Fixed F , elements of the �{algebra F will be frequently
alled measurable sets. For any family F0 of subsets of X, we denote by �(F0) the minimal�{algebra that 
ontains F0 and 
all it the �{algebra generated by F0.A fun
tion on a �-algebra F , � : F ! [0;1℄, is said to be �-additive if for any 
ountablesubfamily fAig1i=1 of F 
onsisting of mutually disjoint sets, we have(1.1.4) �( 1[i=1Ai) = 1Xi=1 �(Ai)We say then that � is a measure. If we 
onsider in (1.1.4) only �nite families of sets, we say� is additive. The two notions: of additive and of �-additive, make sense for a �-algebra aswell as for an algebra, provided in the algebra 
ase in (1.1.4) that all Ai and their unionbelong to F . The simplest 
onsequen
es of the de�nition of measure are the following:(1.1.5) �(;) = 0;1



(1.1.6) if A;B 2 F and A � B then �(A) � �(B);(1.1.7) if A1 � A2 � : : : and fAig1i=1 � F then �( 1[i=1Ai) = supi �(Ai) = limi!1�(Ai):We say that the triple (X;F ; �) with a �-algebra F and � a measure on F is a measurespa
e. In this book we will always assume, unless the opposite is stated, that � is a �nitemeasure that is � : F ! [0;1). By (1.1.6) it equivalently means that �(X) < 1. If�(X) = 1, the triple (X;F ; �) is 
alled aprobability spa
e and � a probability measure.We say that �! IR is a measurable fun
tion, if ��1(J) 2 F for every interval J � IR(
ompare Se
.2). We say that � is �-integrable if R j�j d� < 1. We write � 2 L1(�).More generally, for every 1 � p <1 we write (R j�jp d�)1=p = jj�jjp and say � belongs toLp(�) = Lp(X;F ; �). If inf�(E)=0 supXnE j�j < 1 we say � 2 L1 and denote the latterexpression by jj�jj1. jj�jjp; 1 � p � 1 are 
alled Lp-norms of �. We usually identify inthis 
hapter fun
tions whi
h di�er only on a set of �-measure 0. Lp(X;F ; �)'s after theseidenti�
ations are Bana
h spa
es.We say that a property q(x), x 2 X, is satis�ed for � almost every x 2 X (abbr:a.e.), or �-a.e., if �(fx : q(x) is not satis�edg) = 0. We 
an 
onsider q as a subset of Xwith �(X n q) = 0.We shall often use in the book the following two fa
ts.Monotone Convergen
e Theorem. Suppose �1 � �2 � ::: is an in
reasing sequen
eof integrable, real-valued fun
tions on a probability spa
e (X;F ; �). Then � = limn!1 �nexists a.e. and limn!1 R �n d� = R � d�. (We allow +1's here.)andDominated Convergen
e Theorem. If �n; n � 1 is a sequen
e of measurable real-valued fun
tions on a probability spa
e (X;F ; �) and j�nj � g for an integrable fun
tiong and �n ! � a.e., then � is integrable and limn!1 R �n d� = R � d�.Re
all now that if F 0 is a sub-�-algebra of F and � : X ! IR is a �-integrable fun
tion,then there exists a unique (mod 0) fun
tion usually denoted by E(�jF 0) su
h that E(�jF 0)is F 0-measurable and(1.1.8) ZAE(�jF 0) d� = ZA � d�for all A 2 F 0. E(�jF 0) is 
alled 
onditional expe
tation value of the fun
tion � withrespe
t to the �-algebra F 0. Sometimes we shall use for E(�jF 0) the simpli�ed notation�F 0 . 2



For F generated by a �nite partition A (
f. Se
.3), one 
an think of E(�j�(A) as 
onstanton ea
h A 2 A equal to the average RA � d�=�(A).The existen
e of E(�jF 0) follows from famous the Radon-Nikodym theorem, saying thatif � � �, both measures de�ned on the same �-algebra F 0, (� � � means � absolutely
ontinuous with respe
t to �, i.e. �(A) = 0) �(A) = 0 for all A 2 F 0), then there existsa unique (mod 0) F 0-measurable, �-integrable fun
tion � = d�=d� : X ! IR+ su
h thatfor every A 2 F 0 ZA� d� = �(A):To dedu
e (1.1.8) we set �(A) = RA � d� for A 2 F 0. The tri
k is that we restri
t � fromF to F 0.If � 2 Lp(X;F ; �) then E(�jF 0) 2 Lp(X;F 0; �) for all �-algebras F 0 with Lp normsuniformly bounded. More pre
isely the operators �! E(�jF 0) are linear proje
tions fromLp(X;F ; �) to Lp(X;F 0; �), with Lp-norms equal to 1 (see Exer
ise 0.).We end this se
tion with the following version of Martingale Convergen
e Theo-rem.Theorem 1.1.1. If (Fn : n � 1) is either monotone in
reasing or monotone de
reasingsequen
e of �-algebras 
ontained in F , then for every � 2 Lp(�), 1 � p <1limn!1E(�jFn) = E(�jF 0); a.e. and in Lp;where F 0 is equal to either W1n=1 Fn or T1n=1 Fn respe
tively.In the theorem above we denoted by W1n=1 Fn the smallest �-algebra 
ontaining S1n=1Fn,the latter usually is not a �-algebra, but only an algebra. Compare Se
.6 where 
omplete�-algebras of this form in Lebesgue spa
e are 
onsidered.Remark 1.1.2. For the existen
e of F 0 and the 
onvergen
e in Lp no monotoni
ity isneeded. It is suÆ
ient to assume that for every A 2 F the limit limE(11AjFn) in measure� exists.(Re
all that  n is said to 
onverge in measure � to  if for every " > 0, limn!1 �(fx 2X : j n(x)�  (x)j � "g)! 0.)In this book we denote by 11A the indi
ator fun
tion of A, namely equal to 1 on A and to0 outside A.We shall not provide here a proof of Theorem 1.1.1 in the full generality . Let us providehowever a proof Theorem 1.1.1 (and Remark 1.1.2 in the 
ase limE(11AjFn) = 11A) for theL2-
onvergen
e for fun
tions � 2 L2(�). (This is the 
ase suÆ
ient for example to provethe important Lemma 1.8.6 later on in this 
hapter.)For the in
reasing sequen
e (Fn) we have the equality L2(X;F 0; �) = Sn L2(X;Fn; �).Indeed, for every B 2 F 0 there exists a sequen
e Bn 2 Fn, n � 1, su
h that �(B�Bn)! 0.(B � C = (B n C) [ (C nB) is the symmetri
 di�eren
e of sets B and C.)3



This follows for example from Carath�eodory's argument, see the note Theorem 1.7.2.We have �(B) equal to the outer measure of B 
onstru
ted from � restri
ted to thealgebra S1n=1Fn. In the Remark 1.1.2 
ase where we assumed limE(11AjFn) = 11A, thisis immediate.Hen
e L2(X;Fn; �) 3 11Bn ! 11B in L2(X;F ; �). Finally use the fa
t that everyfun
tion f 2 L2(X;F 0; �) 
an be approximated in the spa
e L2(X;F 0; �) by the stepfun
tions, i.e. �nite linear 
ombinations of indi
ator fun
tions. Therefore, sin
e E(�jFn)and E(�jF 0) are orthogonal proje
tions of � to L2(X;Fn; �) and L2(X;F 0; �) respe
tively(exer
ise) we obtain E(�jFn)! E(�jF 0) in L2.For a de
reasing sequen
e Fn use the equality L2(X;F 0; �) = Tn L2(X;Fn; �).x1.2 MEASURE PRESERVING ENDOMORPHISMS, ERGODICITYLet (X;F ; �) and (X 0;F 0; �0) be measure spa
es. A transformation T : X ! X 0 is saidto be measurable if T�1(A) 2 F for every A 2 F 0. If moreover �(T�1(A)) = �0(A) forevery A 2 F 0, then T is 
alled measure preserving. If (X;F ; �) = (X 0;F 0; �0) we 
all Ta measure preserving endomorphisms; we will say also that measure � is T{invariant, orthat T preserves �.If a measure preserving map T is invertible and the inverse T�1 is measurable, then
learly T�1 is also measure preserving. Therefore T is an isomorphism in the 
ategory ofmeasure spa
es. In the 
ase of (X;F ; �) = (X 0;F 0; �0) the transformation T is 
alled anautomorphism.We shall prove now the following very useful fa
t in whi
h the �nitness of measure is a
ru
ial assumption.Theorem 1.2.1. (Poin
ar�e Re
urren
e Theorem) If T : X ! X is a measure preservingendomorphism, then for every mesurable set A��fx 2 A : Tn(x) 2 A for in�nitely many n'sg� = �(A):Proof. Let N = N(T;A) = fx 2 A : Tn(x) =2 A 8n � 1g:We shall �rst show that �(N) = 0. Indeed, N is measurable sin
e N = A\�Tn�1 T�n(X nA)�. If x 2 N , then Tn(x) =2 A for all n � 1 and, in parti
ular, Tn(x) =2 N whi
h impliesthat x =2 T�n(N) and 
onsequently N \ T�n(N) = ; for all n � 1. Thus, all the sets N ,T�1(N), T�2(N); : : : are mutually disjoint sin
e if n1 � n2, thenT�n1(N) \ T�n2(N) = T�n1(N \ T�(n2�n1)(N)) = ;:Hen
e 1 � � 1[n=0T�n(N)! = 1Xn=0�(T�n(N)) = 1Xn=0�(N):4



Therefore �(N) = 0. Fix now k � 1 and putNk = fx 2 A : Tn(x) =2 A 8n � kg:Then Nk � N(T k; A) and therefore from what have been proved above it follows that�(Nk) � �(N(T k; A)) = 0. Thus��fx 2 A : Tn(x) 2 A for only �nitely many n'sg� = 0:The proof is �nished. |A measurable transformation T : X ! X of a measure spa
e (X;F ; �) is said to beergodi
 if for any measurable set A�(T�1(A)� A) = 0 ) �(A) = 0 or �(X nA) = 0(Re
all the notation B � C = (B n C) [ (C nB).)Note that we did not assume in the de�nition of ergodi
ity that � is T -invariant(neither that � is �nite). Suppose that for every E of measure 0 the set T�1(E) is also ofmeasure 0 (in Ch.4 we 
all this property of � with respe
t to T , ba
kward quasi-invariant).Then in the de�nition of ergodi
ity one 
an repla
e �(T�1(A)� A) = 0 by T�1(A) = A.Indeed having A as in the de�nition one 
an de�ne A0 = S1n=0T1m=n T�m(A). Then�(A0) = �(A) and T�1(A0) = A0. If we assumed that the latter implies �(A0) = 0 or�(X nA0) = 0, then �(A) = 0 or �(X nA) = 0.Let � : X ! IR be a measurable fun
tion. For any n � 1 we de�ne(1.2.1) Sn� = �+ � Æ T + : : :+ � Æ Tn�1Let I = fA 2 F : �(T�1(A) � A) = 0g. We 
all it �-algebra of T -invariant (mod0) sets. Note that every  : X ! IR, measurable with respe
t to I, is T -invariant (mod0), namely  Æ T =  , but on a set of measure � equal to 0. Indeed let A = fx 2X :  (x) 6=  Æ T (x)g and suppose �(A) > 0. Hen
e there exists a 2 IR su
h thatAa = fx 2 A :  (x) < a;  Æ T (x) > ag and �(Aa) > 0. (or a similar Aa with reversedinequalities). Sin
e Aa 2 I, there exists E � A of measure 0, su
h that T (Aa n E) � Aa,hen
e on Aa nE we have  =  Æ T . We arrived at a 
ontradi
tion.Theorem 1.2.2. (Birkho�'s Ergodi
 Theorem) If T : X ! X is a measure preservingendomorphism of a probability spa
e (X;F ; �) and � : X ! IR is an integrable fun
tionthen limn!1 1nSn�(x) = E(�jI) for �-a.e. x 2 XWe say that the time average exists for �-almost every x 2 X.5



In parti
ular Theorem 1.2.2 yields for T ergodi
 preserving �, that(1.2.1a) limn!1 1nSn�(x) = Z � d�; for �-a.e. xWe say that the time average equals the spa
e average.If � = 11A, the indi
ator fun
tion of a measurable set A, then we dedu
e that for a.e. xthe frequen
y of hitting A by the forward traje
tory equals to the measure (probability)of A, namely limn!1#f0 � j < n : T j(x) 2 Ag=n, is equal to �(A).This means for example that if we 
hoose a point in X in a eu
lidean spa
e at randomits suÆ
iently long forward traje
tory �lls X with the density being approximately thedensity of � with respe
t to the Lebesgue measure, provided � is equivalent to the Lebesguemeasure.On the �gure below, Fig.1.2a, for a randomly 
hosen ba
kward traje
tory xj ; j =0; 1; :::; n;, T (xk) = xk�1, for T (x) = 2x2 � 1 (see Example 0.9), for the interval [�1; 1℄divided into k = 100 equal pie
es, the graph of the fun
tion �1 + 2t=100 7! 100 �#f0 �j < n : �1 + 2t=100 � xj(x) < �1 + 2(t+ 1)=100g=n is plotted. It indeed resembles thegraph of 1=�p1� x2, Fig.1.2b, whi
h is the density of the invariant probability measureequivalent to the length measure.FIGURE 1.1, The density of an invariant measure for T (x) = 2x2 � 1.As a 
orollary of Birkho�'s Ergodi
 Theorem one 
an obtain von Neumann's Ergodi
Theorem. It says that if � 2 Lp(�) for 1 � p <1, then the 
onvergen
e to E(�jI) holdsin Lp. It is not diÆ
ult, see for example [Wa℄.Proof of Birkho�'s Ergodi
 Theorem. Let f 2 L1(�) and Fn = maxfPk�1i=0 f Æ T i :1 � k � ng, for n = 1; 2; :::. Then for every x 2 X, Fn+1(x) � Fn(T (x)) = f(x) �min(0; Fn(T (x))) � f(x) and is monotone de
reasing, sin
e Fn is monotone in
reasing.De�ne A = fx : supn nXi=0 f(T i(x)) =1gIf x 2 A then Fn+1(x) � Fn(T (x)) monotonously de
reases to f(x) as n ! 1. TheDominated Convergen
e Theorem then implies that(1.2.2) 0 � ZA(Fn+1 � Fn) d� = ZA(Fn+1 � Fn Æ T ) d�! ZA fd�:(We arrived at RA f d� � 0, whi
h is a variant of so-
alled Maximal Ergodi
 Theorem.)Noti
e that 1nPn�1k=0 f Æ T k � Fn=n, so outside A we have(1.2.3) lim supn!1 1n n�1Xk=0 f Æ T k � 0:6



Therefore, if the 
onditional expe
tation value fI of f is negative a.e., that is if RC fd� =RC fId� < 0 for all C 2 I with �(C) > 0, then, sin
e by de�nition A 2 I, (1.2.2) impliesthat �(A) = 0, and hen
e (1.2.3) holds a.e.. Now if we let f = ���I�", then fI = �" < 0.Note that �I Æ T = �I implies1n n�1Xk=0 f Æ T k = � 1n n�1Xk=0 � Æ T k�� �I � ":So (1.2.3) yields lim supn!1 1n n�1Xk=0 � Æ T k � �I + " a.e.Repla
ing � by �� gives lim infn!1 1n n�1Xk=0 � Æ T k � �I � " a.e.Thus limn!1 1nPn�1k=0 � Æ T k = �I a.e. |Re
all that at the end opposite to the absolute 
ontinuity (see Se
.1) there is thenotion of singularity. Finite measures �1 and �2 on a �-algebra F are 
alled mutuallysingular, �1 ? �2 if there exist disjoint sets X1; X2 2 F with �i(Xi) = 1 for i = 1; 2.Theorem 1.2.3. If T : X ! X is a map measurable with respe
t to a �-algebra F andif �1 and �2 are two di�erent T -invariant probability ergodi
 measures on F , then �1 and�2 are singular.Proof. Sin
e �1 and �2 are di�erent, there exists a measurable set A su
h that(1.2.2) �1(A) 6= �2(A)By Theorem 1.2.2 (Birkho�'s Ergodi
 Theorem) applied to �1 and �2 there exist setsX1; X2 2 F su
h that for every i = 1; 2 and every x 2 Xilimn!1 1nSn11A(x) = �i(A)and �i(Xi) = 1. Thus in view of (1.2.2) the sets X1 and X2 are disjoint. The proof is�nished. |Proposition 1.2.4. If T : X ! X is a measure preserving endomorphism of a probabilityspa
e (X;F ; �), then � is ergodi
 if and only if there is no T -invariant probability measureon F absolutely 
ontinuous with respe
t to � and di�erent from �.7



Proof. Suppose that � is ergodi
 and � is a T -invariant probability measure on F with� � �. Then � is also ergodi
. Otherwise there would exist A su
h that T�1(A) = Aand �(A); �(X n A) > 0 so �(A); �(X n A) > 0 so � would not be ergodi
. Hen
e byTheorem 1.2.3 � = �.Suppose in turn that � is not ergodi
 and let A 2 F be a T -invariant set su
h that0 < �(A) < 1. Then the 
onditional measure on A is also T -invariant but simultaneouslyit is distin
t from � and absolutely 
ontinuous with respe
t to �. The proof is �nished. |Observe now that the spa
e M(F) of probability measures on F is a 
onvex set i.e.the 
onvex 
ombination ��+(1��)�, 0 � � � 1, of two su
h measures is again in M(F).The subspa
e M(F ; T ) of M(F) 
onsisting of T -invariant measures is also 
onvex.Re
all that a point in a 
onvex set is said to be extreme if and only if it 
annot berepresented as a 
onvex 
ombination of two distin
t points with 
orresponding 
oeÆ
ient0 < � < 1. We shall prove the following.Theorem 1.2.5. The ergodi
 measures in M(F ; T ) are exa
tly the extreme points ofM(F ; T ).Proof. Suppose that �; �1; �2 2 M(F ; T ), �1 6= �2 and � = ��1 + (1 � �)�2 with0 < � < 1. Then �1 6= � and �1 � �. Thus in view of Proposition 1.2.4 mesure � is notergodi
.Suppose in turn that � is not ergodi
 and let A 2 F be a T -invariant set su
hthat 0 < �(A) < 1. Re
all that given B 2 F with �(B) > 0 the 
onditional measureA ! �(AjB) is de�ned by �(A \ B)=�(B). Thus the 
onditional measures �(�jA) and�(�jA
) are distin
t, T -invariant and � = �(A)�(�jA) + (1� �(A)�(�jA
). Consequently �is not en extreme point in M(F ; T ). The proof is �nished. |In Se
tion 8 we shall formulate a theorem on de
omposition into ergodi
 
omponents,that will better 
lear the situation. This will 
orrespond the Choquet Theorem in fun
tionalanalysis, see Ch.2.1.x1.3. ENTROPY OF PARTITIONLet (X;F ; �) be a probability spa
e. A partition of (X;F ; �) is a subfamily (a priorimay be un
ountable) of F 
onsisting of mutually disjoint elements whose union is X.If A is a partition and x 2 X then the only element of A 
ontaining x is denoted by A(x)or, if x 2 A 2 A, by A(x).If A and B are two partitions of X we de�ne their joinA _ B = fA \ B : A 2 A; B 2 BgWe write A � B if and only if B(x) � A(x) for every x 2 X, whi
h in other wordsmeans that ea
h element of the partition B is 
ontained in an element of the partition Aor equivalently A _ B = B. We sometimes say in this 
ase, that B is �ner than A or thatB is a re�nement of A. 8



Now we introdu
e the notion of entropy of a 
ountable (this word in
ludes in this book:�nite) partition and we 
olle
t its basi
 elementary properties. De�ne the fun
tion k :[0; 1℄! [0;1℄ putting(1.3.1) k(t) = ��t log t for t 2 (0; 1℄0 for t = 0Che
k that the fun
tion k is 
ontinuous. Let A = fAi : 1 � i � ng be a 
ountable partitionof X, where n is a �nite integer or 1. In the sequel we shall usually write 1.The entropy of A is the number(1.3.2) H(A) = 1Xi=1 ��(Ai) log�(Ai) = 1Xi=1 k(�(Ai))If A is in�nite, H(A) may happen to be in�nite too.De�ne I(x) = I(A)(x) := � log�(A(x)). This is 
alled an information fun
tion. Intu-itively I(x) is an information on an obje
t x given by the experiment A in the logarithmi
s
ale. Therefore the entropy in (1.3.2) is the integral (the average) of the informationfun
tion.Note that H(A) = 0 forA = fXg and that ifA is �nite, say 
onsists of n elements, then0 � H(A) � logn and H(A) = logn if and only if �(A1) = �(A2) = : : : = �(An) = 1=n.This follows from the fa
t that the logarithmi
 fun
tion is stri
tly 
on
ave.In this se
tion we deal with only one �xed measure �. If however we need to 
onsider moremeasures simultaneously (see for example Ch.2) we will rather use the notation H�(A) forH(A).Let A = fAi : i � 1g and B = fBj : j � 1g be two 
ountable partitions of X. The
onditional entropy H(AjB) of A given B is de�ned asH(AjB) = 1Xj=1 �(Bj) 1Xi=1 ��(Ai \Bj)�(Bj) log �(Ai \ Bj)�(Bj)=Xi;j ��(Ai \Bj) log �(Ai \ Bj)�(Bj)(1.3.3)The �rst equality, de�ning H(AjB), 
an be viewed as follows: one 
onsiders ea
h elementBj as a probability spa
e with 
onditional measure �(AjBj) = �(A)=�(Bj) for A � Bjand 
al
ulates the entropy of the partition of the set Bj into Ai \ Bj. Then one averagesthe result over the spa
e of Bj's. (This will be generalized in Def.1.8.3.)For ea
h x denote � log�((A(x) \ B(x)jB(x)) by I(x) or I(AjB)(x). The se
ondequality in (1.3.3) 
an be rewritten as(1.3.3a) H(AjB) = ZX I(AjB) d�:9



Note by the way that if ~B is the �-algebra 
onsisting of all unions of elements of B(i.e. generated by B, then I(x) = � log�((A(x) \ B(x))jB(x)) = � logE(11A(x)j ~B)(x), 
f(1.1.8).Note �nally that for any 
ountable partition A we have(1.3.4) H(AjfXg) = H(A):. Some futher basi
 properties of entropy of partitions are 
olle
ted in the following.Theorem 1.3.1. Let (X;F ; �) be a probability spa
e. If A, B and C are 
ountablepartitions of X then: H(A_ BjC) = H(AjC) + H(BjA _ C)(a) H(A_ B) = H(A) + H(BjA)(b) A � B ) H(AjC) � H(BjC)(
) B � C ) H(AjB) � H(AjC)(d) H(A_ BjC) � H(AjC) + H(BjC)(e) H(AjC) � H(AjB) + H(BjC)(f)Proof. Let A = fAn : n � 1g, B = fBm : m � 1g, and C = fCl : l � 1g. Without loosinggenerality we 
an assume that all these sets are of positive measure.(a) By (1.3.3) we haveH(A_ BjC) = �Xi;j;k �(Ai \Bj \ Ck) log �(Ai \ Bj \ Ck)�(Ck)But �(Ai \Bj \ Ck)�(Ck) = �(Ai \ Bj \ Ck)�(Ai \ Ck) �(Ai \ Ck)�(Ck)unless �(Ai \ Ck) = 0. But then the left hand side vanishes and we need not 
onsider it.Therefore H(A_ BjC) =�Xi;j;k �(Ai \Bj \ Ck) log �(Ai \ Ck)�(Ck)�Xi;j;k �(Ai \Bj \ Ck) log �(Ai \ Bj \ Ck)�(Ai \ Ck)=�Xi;k �(Ai \ Ck) log �(Ai \ Ck)�(Ck) + H(BjA _ C)=H(AjC) + H(BjA _ C)(b) Put C = fXg and apply (1.3.4) in (a). 10



(
) By (a) H(BjC) = H(A _ BjC) = H(AjC) + H(BjA _ C) � H(AjC)(d) Sin
e the fun
tion k de�ned by (1.3.1) is stri
tly 
on
ave, we have for every pair i; j(1.3.5) k Xl �(Cl \Bj)�(Bj) �(Ai \ Cl)�(Cl) ! �Xl �(Cl \ Bj)�(Bj) k��(Ai \ Cl)�(Cl) �But sin
e B � C, we 
an write above Cl \Bj = Cl, hen
e the left hand side equalsk��(Ai \ Bj)�(Bj) � = ��(Ai \ Bj)�(Bj) log �(Ai \Bj)�(Bj)Thus multiplying both sides of (1.3.5) by �(Bj) and summing over i and j we get�Xi;j �(Ai \ Bj) log �(Ai \Bj)�(Bj) � �Xi;j;l �(Cl \Bj)�(Ai \ Cl)�(Cl) log �(Ai \ Cl)�(Cl)= �Xi;l �(Cl)�(Ai \ Cl)�(Cl) log �(Ai \ Cl)�(Cl)or equivalently H(AjB) � H(AjC).Formula (e) follows immediately from (a) and (d) and formula (f) 
an proved by a straight-forward 
al
ulation (its 
onsequen
es are dis
ussed in Exer
ise 1.9). |x1.4. ENTROPY OF ENDOMORPHISM.Let (X;F ; �) be a probability spa
e and let T : X ! X be a measure preservingendomorphism of X. If A = fAigi2I is a partition of X then by T�1A we denote thepartition fT�1(Ai)gi2I . Note that for any 
ountable A(1.4.1) H(T�1A) = H(A)For all n � m � 0 denote the partition Wni=0 T�iA = A _ T�1(A) _ ::: _ T�n(A) =Wni=m T�i(A) by Anm. For m = 0 we shall sometimes use the notation An.Lemma 1.4.1. For any 
ountable A(1.4.2) H(An) = H(A) + nXj=1H(AjAj1)11



Proof. We prove this formula by indu
tion. If n = 0 it is tautology. Suppose it is truefor n� 1 � 0. Then with the use of Theorem 1.3.1(b) and (1.4.1) we obtainH(An) = H(An1 _ A) = H(An1 ) + H(AjAn1 ) = H(An�1) + H(AjAn1 ) = H(A) + nXj=1H(AjAj1)by the indu
tive assumption. Hen
e (1.4.2) holds for all n. |Lemma 1.4.2. The sequen
es 1n+1H(An) and H�AjAn1 ) are monotone de
reasing to alimit h(T;A).Proof. The sequen
e H�AjAn1 ); n = 0; 1; ::: is monotone de
reasing, by Theorem 1.3.1(d). Therefore the sequen
e of averages is also monotone de
reasing to the same limit,furthermore it 
oin
ides with the limit of the sequen
e 1n+1H(An) by (1.4.2). |The limit 1n+1H(An) whose existen
e has been shown in Lemma 1.4.2. is known as the(measure{theoreti
) entropy of T with respe
t to the partition A and is denoted by h(T;A)or by h�(T;A) if one wants to indi
ate the measure under 
onsideration. Intuitively thismeans the limit rate of the growth of average (integral) information (in logarithmi
 s
ale),under 
onse
utive experiments, for number of experiments tending to in�nity.Remark. To prove the existen
e of the limit 1n+1H(An), instead of relying on (1.4.2)and the monotoni
ity we 
ould use the estmatean+m = H(An+m�1) � H(An�1) + H(An+m�1n ) = an +H(Am�1) = an + am:following from Theorem 1.3.1 (e) and from (1.4.1), and apply the followingLemma 1.4.3. If fang1n=1 is a sequen
e of real numbers su
h that an+m � an + am forall n;m � 1 then limn!1 an exists and equals infn an=n. The limit 
ould be �1, but ifthe an's are bounded below, then the limit will be nonnegative.Proof. Fix m � 1. Ea
h n � 1 
an be expressed as n = km+ i with 0 � i < m. Thenann = ai+kmi+ km � aikm + akmkm � aikm + kamkm = aikm + ammIf n ! 1 then also k ! 1 and therefore lim supn!1 ann � amm . Thus lim supn!1 ann �inf amm . Now the inequality inf amm � lim infn!1 ann �nishes the proof. |.Noti
e that there exists a subadditive sequen
e (i.e. satisfying an+m � an + am) su
hthat the 
orresponding sequen
e an=n is not eventually de
reasing. Indeed, it suÆ
es toobserve that ea
h sequen
e 
onsisting of 1's and 2's is subadditive and to 
onsider su
h asequen
e having in�nitely many 1's and 2's. If for an n > 1 we have an = 1 and an+1 = 2we have ann < an+1n+1 . 12



Exer
ise. Prove that Lemma 1.4.1 remains true under the weaker assumptions that thereexists 
 2 R su
h that an+m � an + am + 
 for all n and m.The basi
 elementary properties of the entropy h(T;A) are 
olle
ted in the next theorembelow.Theorem 1.4.4. If A and B are 
ountable partitions of �nite entropy thenh(T;A) � H(A)(a) h(T;A_ B) � h(T;A) + h(T;B)(b) A � B ) h(T;A) � h(T;B)(
) h(T;A) � h(T;B) + H(AjB)(d) h(T; T�1(A)) = h(T;A)(e) If k � 1 then h(T;A) = h�T;Ak)(f) If T is invertible and k � 1 then h(T;A) = h�T; k_i=�k T i(A)�(g) The standard proof (see for example [Wa℄) based on Theorem 1.3.1 and formula (1.3.2)is left for the reader as an exer
ise. Let us prove only (d).h(T;A) = limn!1 1nH(An�1) � limn!1 1n�H(An�1jBn�1) + H(Bn�1)�� limn!1 1n n�1Xj=0H(T�j(A)jBn�1) + limn!1 1nH(Bn�1)� limn!1 1n n�1Xj=0H(T�j(A)jT�j(B)) + h(T;B) � H(AjB) + h(T;B):Here is one more useful fa
t, stronger than Th.1.4.4 (
):Theorem 1.4.5. If T : X ! X is a measure preserving endomorphism of a probabilityspa
e (X;F ; �) and A and Bm;m = 1; 2; ::: are 
ountable partitions of �nite entropy,and H(AjBm) ! 0 as m ! 1, then h(T;A) � lim infm!1 h(T;Bm). In parti
ular, forBm := Bm = Wmj=0 T�j(B), one obtains h(T;A) � h(T;B).Proof. By Theorem 1.4.4 (d), for every positive integer m,h(T;A) = H(AjBm) + h(T;Bm):Lettingm!1 this yields the �rst part of the assertion. For Bm = Bm, one 
an substitutein pla
e of the last summand h(T;Bm) = h(T;B), by Theorem 1.4.4(f). |13



The (measure-theoreti
) entropy of the endomorphism T : X ! X is de�ned as(1.4.3) h�(T ) = h(T ) = supA fh(T;A)gwhere the supremum is taken over all �nite (or 
ountable of �nite entropy) partitions ofX. See Exer
ise 12.It is 
lear from the de�nition that the entropy of T is an isomorphism invariant.Later on (see Th.1.8.7, Remark 1.8.7", Corollary 1.8"' and Exer
ise 1.9') we shalldis
uss the 
ases where H(AjBn) ! 0 for every A (�nite or of �nite entropy). This willallow us to write h�(T ) = limm!1 h(T;Bm) or h(T ) = h(T;B).Let us end this Se
tion with the following usefulTheorem 1.4.6. If T : X ! X is a measure preserving endomorphism of a probabilityspa
e (X;F ; �) then h(T k) = kh(T ) for all k � 1(a) If T is invertible then h(T�1) = h(T )(b)Proof. (a) Fix k � 1. Sin
elimn!1 1nH�n�1_j=0 T�kj�k�1_i=0 T�iA�� = limn!1 knkH�nk�1_i=0 T�iA� = kh(T;A)we have h�T k;Wk�1i=0 T�iA� = kh(T;A). Therefore(1.4.4) kh(T ) = k supA �nite h(T;A) = supA h�T k; k�1_i=0 T�iA� � supB h(T k;B) = h(T k)On the other hand by Theorem 1.4.4(
) we get h(T k;A) � h�T k;Wk�1i=0 T�iA� = kh(T;A)and therefore h(T k) � kh(T ). The result follows from this and (1.4.4).(b) In view of (1.4.1) for all �nite partitions A we haveH�n�1_i=0 T iA� = H�T�(n�1) n�1_i=0 T iA� = H�n�1_i=0 T�iA�This �nishes the proof. |x1.5. SHANNON-MCMILLAN-BREIMAN THEOREM.14



Let (X;F ; �) be a probability spa
e, T : X ! X be a measure preserving endomor-phism of X and A be a 
ountable �nite entropy partition of X.Lemma 1.5.1. (maximal inequality) For ea
h n = 1; 2; ::: let fn = I(AjAn1 ) and f� =supn�1 fn. Then for ea
h � and ea
h A 2 A�fx 2 A : f�(x) > �g � e��:Proof. For ea
h A 2 A and n = 1; 2; ::: let fAn = � logE(11AjAn1 ). Of 
ourse fn =PA2A 11AfAn . DenoteBAn = fx : fA1 (x); :::; fAn�1(x) � �; fAn (x) > �g:Sin
e BAn 2 F(An1 ), the �-algebra generated by An1 ,�(BAn \ A) = ZBAn 11A d� = ZBAn E(11AjAn1 ) d� = ZBAn e�fAn d� � e���(BAn ):Therefore �(fx 2 A : f�(x) > �g) = 1Xn=1�(BAn \ A) � e�� 1Xn=1�(BAn ) � e��: |Corollary 1.5.2. The fun
tion f� is integrable with integral bounded by H(A) + 1.Proof. Of 
ourse �fx 2 A : f� > �g � �(A), so �(fx 2 A : f� > �g) � minf�(A); e��g.So by Lemma 1.5.1ZX f� d� = XA2A ZA f� d� = XA2AZ 10 �fx 2 A : f� > �g d�� XA2A Z 10 minf�(A); e��g d� = XA2A�Z � log �(A)0 �(A) d�+ Z 1� log �(A) e�� d��= XA2A���(A)(log�(A)) + �(A)� = H(A) + 1: |Corollary 1.5.3. fn 
onverge a.e. and in L1.Proof. E(11AjAn1 ) is a martingale to whi
h we 
an apply Theorem 1.1.1. This gives
onvergen
e a.e., hen
e 
onvergen
e a.e. of ea
h fAn , hen
e fn. Now 
onvergen
e in L1follows from Corollary 1.5.2. and Dominated Convergen
e Theorem |15



Theorem 1.5.4. (Shannon-M
Millan-Breiman) Suppose that A is a 
ountable partitionof �nite entropy. Then there exist limitsf = limn!1 I(AjAn1 ) and fI(x) = limn!1 1n n�1Xi=0 f(T i(x)) for a.e. xand(1.5.1) limn!1 1n+ 1I(An) = fI a.e. and in L1:Furthermore(1.5.2) h(T;A) = limn!1 1n+ 1H(An) = Z fI d� = Z f d�:The limit f will gain a new interpretation in (1.8.6), in the 
ontext of Lebesgue spa
es,where the notion of information fun
tion I will be generalized.Proof. First note that fn = I(AjAn1 ) 
onverge to an integrable f by Corollary 1.5.3.(Caution: though integrals of fn de
rease to the entropy, Lemma 1.4.3, it is usually nottrue that fn de
rease.) Hen
e the a.e. 
onvergen
e of time averages to fI a.e. holds byBirkho�'s Ergodi
 Theorem. It will suÆ
e to prove (1.5.1) sin
e then (1.5.2), the se
ondequality, holds by integration and the last equality by Birkho�'s Ergodi
 Theorem, the
onvergen
e in L1.Let us now establish some identities (
ompare Lemma 1.4.3). Let fAn : n � 0g be asequen
e of 
ountable partitions. Then we haveI  n_i=0Ai! = I  A0j n_i=1Ai!+I  n_i=1Ai! = I  A0j n_i=1Ai!+I  A1j n_i=2Ai!+::+I(An):In parti
ular, it follows from the above formula that for Ai = T�iA, we haveI(An) = I(AjAn1 ) + I(T�1AjAn2 ) + : : :+ I(T�nA)= I(AjAn1 ) + I(AjAn�11 ) Æ T + : : : I(A) Æ Tn= fn + fn�1 Æ T + fn�2 Æ T 2 + : : :+ f0 Æ Tn;where fk = I(AjAk1), f0 = I(A). Now���� 1n+ 1I(An)� fI���� � ������ 1n+ 1 nXj=0(fn�i Æ T i � f Æ T i)������+ ������ 1n+ 1 nXj=0 f Æ T i � fI ������ :Sin
e by Birkho�'s Ergodi
 Theorem the latter term 
onverges to zero both almosteverywhere and in L1, it suÆ
es to prove that for n!1(1.5.3) 1n+ 1 nXi=0 gn�i Æ T i ! 0 a.e. and in L1:16



where gk = jf � fkj.Now, sin
e T is measure preserving, for every i � 0Z gn�i Æ T id� = Z gn�id�:Thus 1nPni=0 R gn�i Æ T i d� = 1nPni=0 R gn�i d� ! 0, sin
e fk ! f in L1 by Corollary1.5.3. Thus we established the L1 
onvergen
e in (1.5.3).Now, letGN = supn>N gn. Of 
ourse GN is monotone de
reasing and sin
e gn ! 0 a.e.(Corollary 1.5.3) we get GN & 0 a.e.. Moreover, by Corollary 1.5.2, G0 � supn fn+f 2 L1.For arbitrary N < n we have1n+ 1 nXi=0 gn�i Æ T i = 1n+ 1 n�N�1Xi=0 gn�i Æ T i + 1n+ 1 nXi=n�N gn�i Æ T i� 1n+ 1 n�N�1Xi=0 GN Æ T i + 1n+ 1 nXi=n�N G0 Æ T i:Hen
e, for KN = G0 +G0 Æ T + : : :+G0 Æ TNlim supn!1 1n+ 1 nXi=0 gn�i Æ T i � (GN )I + lim supn!1 1n+ 1KN Æ Tn�N = (GN )I a.e.;where (GN )I = limn!1 1n+1Pni=0GN Æ T i by Birkho�'s Ergodi
 Theorem.Now (GN )I de
reases with N be
ause GN de
reases, andZ (GN )I d� = Z GNd�! 0be
ause GN are non-negative uniformly bounded by G0 2 L1 and tend to 0 a.e..Hen
e (GN )I ! 0 a.e.. Thereforelim supn!1 1n+ 1 nXi=0 gn�i Æ T i ! 0 a.e.establishing the missing a.e. 
onvergen
e in (1.5.3). |As an immediate 
onsequen
e of (1.5.1) and 1.5.2) for T ergodi
, along with fI = R fI d�,we get the following:Theorem 1.5.5 (Shannon-M
Millan-Breiman, ergodi
 
ase) If T : X ! X is ergodi
 andA is a 
ountable partition of �nite entropy, thenlimn!1 1nI(An�1)(x) = h�(T;A): for a.e. x 2 X17



The left hand side 
an be viewed as a lo
al entropy at x. The Theorem says that at a.e. xthe lo
al entropy exists and is equal to the entropy (
ompare 
omments after (1.3.2) andLemma 1.4.2).x1.6. LEBESGUE SPACES, MEASURABLE PARTITIONS AND CANONICALSYSTEMS OF CONDITIONAL MEASURES.Let (X;F ; �) be a probability spa
e. We 
onsider only 
omplete measures (probabilities),namely su
h that every subset of a set of measure 0 is measurable. If a measure is not
omplete we 
an always 
onsider its 
ompletion, namely to in
lude in the 
ompletion ofF all sets A su
h that there exists B 2 F with A� B 
ontained in a set in F of measure0. Consider A, an arbitrary partition of X, not ne
essarily 
ountable nor 
onsisting ofmeasurable sets. By ~A we denote the sub �-algebra of F 
onsisting of those sets in F thatare unions of whole elements (�bres) of A. Note that ~A � �(A) de�ned in Se
.1 (in 
aseA � F) but the in
lusion 
an be stri
t. Obviously ~A � f;; Xg.De�nition 1.6.0. The partition A is 
alled measurable if it satis�es the followingseparation property.(1.6.1) There exists a sequen
e B= fBn : n � 1g � ~A su
h that for any two A1; A2 2 A withA1 6= A2 there is an integer n � 1 su
h that eitherA1 � Bn and A2 � X nBnor A2 � Bn and A1 � X nBnSin
e ea
h element of the measurable partition A 
an be represented as an interse
tionof 
ountably many elements Bn or their 
omplements, ea
h element of A is measurable.Let us stress however that the measurability of all elements of A is not suÆ
ient for A tobe a measurable partition (see Exer
ise 1). The sequen
e B is 
alled a basis for A.Remark 1.6.0a. A popular de�nition of an un
ountable measurable partition A isthat there exists a sequen
e of �nite partitions (re
all that this means: �nite partitionsinto measurable sets) An; n = 0; 1; :::, su
h that A = W1n=0An. Here (unlike later on) thejoin W is 
onsidered in the set-theoreti
 sense, i.e. as fAn1\An2\::: : Ani 2 Ani ; i = 1; :::g.Clearly it is equivalent to (1.6.1).Noti
e that for any measurable map T : X ! X 0 between probability measure spa
es, ifA is a measurable partition of X 0, then T�1(A) is a measurable partition of X.Now we pass to the very useful 
lass of probability spa
es: Lebesgue spa
es.De�nition 1.6.1. We 
all a sequen
e B= (Bn : n � 1) � F , basis of (X;F ; �) if the twofollowing 
onditions are satis�ed:(i) (1.6.1) holds for A = ", the partition into points;(ii) for any A 2 F there exists a set C 2 �(B) su
h that C � A and �(C nA) = 0.18



(Re
all, Se
.1, that �(B) denotes the smallest �-algebra 
ontaining all Bn 2B. Rohlinused the name Borel �-algebra.) ,(X;F ; �) satisfying (i) and (ii) for a basis B is 
alled separable.Now let " = �1 and B(")n = Bn if " = 1 and B(")n = X nBn if " = �1. To any sequen
e ofnumbers "n; n = 1; 2; ::: there 
orresponds the interse
tion T1n=1B("n)n . By (i) every su
hinterse
tion 
ontains no more than one point.The spa
e (X;F ; �) is said to be 
omplete with respe
t to a basis B if all the interse
-tions T1n=1B("n)n are non-empty. The spa
e (X;F ; �) is said to be 
omplete (mod 0) withrespe
t to a basis B if X 
an be in
luded as a subset of full measure into a 
ertain mea-sure spa
e (X;F; �) whi
h is 
omplete with respe
t to its own basis B = (Bn) satisfyingBn \X = Bn for all n.It turns out that a spa
e whi
h is 
omplete (mod 0) with respe
t to its one bases is also
omplete (mod 0) with respe
t to its every other basis.De�nition 1.6.2. The spa
e (X;F ; �) 
omplete (mod 0) with respe
t to one of its basesis 
alled Lebesgue spa
e.Exer
ise. If (X1;F1; �1) and (X2;F2; �2) are two probability spa
es with 
ompletemeasures, su
h that X1 � X2; �2(X2 n X1) = 0 and F1 = F2jX1 ; �1 = �2jF1 (whereF2jX1 := fA \X1 : A 2 F2g), then the �rst spa
e is Lebesgue i� the se
ond is.It is not diÆ
ult to 
he
k that (see Exer
ise 3) that (X;F ; �) is a Lebesgue spa
e ifand only if (X;F ; �) is isomorphi
 to the unit interval (equipped with 
lassi
al Lebesguemeasure) together with 
ountably many atoms.Theorem 1.6.3. Assume that T : X ! X 0 is a measurable inje
tive map from aLebesgue spa
e (X;F ; �) onto a separable spa
e (X 0;F 0; �0) and pre-images of the sets ofmesure 0 (or positive) are of measure 0 (resp. positive). Then the spa
e (X 0;F 0; �0) isLebesgue and T�1 is a measurable map.Remark that in parti
ular a measurable, measure preserving, inje
tive map between Lebe-sgue spa
es is an isomorphism. If X = X 0;F � F 0;F 6= F 0 and X 0;F 0; �0 is separable,then the above implies that (X;F ; �) is not Lebesgue.Let now (X;F ; �) be a Lebesgue spa
e and A be a measurable partition of X. We say thata property holds for all almost all atoms of A if and only if the union of atoms for whi
hit is satis�ed is measurable, of full measure. The following fundamental theorem holds:Theorem 1.6.4. For almost all A 2 A there exists a Lebesgue spa
e (A;FA; �A) su
hthat the following 
onditions are satis�ed:(1.6.2) If B 2 F , then B \ A 2 FA for almost all A 2 A.(1.6.3) The fun
tion X ! [0; 1℄, x 7! �A(x)(B \ A(x)) is F -measurable for all B 2 F , whereA(x) is the element of A 
ontaining x. 19



(1.6.4) �(B) = RX �A(x)(B \ A(x)) d�(x)Remark 1. One 
an 
onsider the quotient (fa
tor) spa
e (X=A;FA; �A) with X=A beingjust A and with FA = p( ~A) and �A(B) = �(p�1(B)) for the proje
tion p(x) = A(x). It
an be proved that the fa
tor spa
e is again a Lebesgue spa
e. Then x 7! �A(x)(B\A(x))is FA-measurable and the property 1.6.4 
an be rewritten in the form(1.6.5) �(B) = ZX=A �A(B \ A) d�A(A):Remark 2. If partition A is �nite or 
ountable, then the measures �A are just the
onditional measures given by the formulas �A(B) = �(A \B)=�(A).Remark 3. (1.6.4) 
an be rewritten for every �-integrable �, or non-negative �-measurable� if we allow +1-ies, asZ � d� = ZX�ZA(x) �jA(x) d�A(x)� d�(x):This is a version of the Fubini Theorem.The family of measures f�A : A 2 Ag is 
alled the 
anoni
al system of 
onditional measureswith respe
t to the partition A. It is unique (mod 0) in the sense that any other system�0A 
oin
ides with it for almost all atoms of A.The method of 
onstru
tion of the system �A is via 
onditional expe
tations val-ues with respe
t to the �-algebra ~A. Having 
hosen a basis (Bn) of the Lebesgue spa
e(X;F ; �), for every �nite interse
tion(1.6.6) B =\i B("ni)nione 
onsiders �B := E(11BjA), that 
an be 
onsidered as a fun
tion on the fa
tor spa
eX=A, unique on a.e. A 2 A su
h that for all Z 2 ~A�(B \ Z) = Zp(Z) �B(A) d�A(A):Clearly (Bn \ A) is a basis for all A. It is not hard to prove that for a.e. A, for ea
h Bfrom our 
ountable family (1.6.6), �B(A) as a fun
tion of B generates Lebesgue spa
e onA. Uniqueness of �B yields additivity.Theorem 1.6.5. If T : X ! X 0 is a measurable map of a Lebesgue spa
e (X;F ; �) ontoa Lebesgue spa
e (X 0;F 0; �0), then the indu
ed map from (X=�;F�; ��) for � = T�1("),to (X 0;F 0; �0) is an isomorphism. 20



Proof. This immediately follows from the fa
t that the quotient is a Lebesgue spa
e andfrom Theorem 1.6.2. |In what follows we 
onsider partitions (mod 0), i.e. we identify two partitions if they
oin
ide, restri
ted to a measurable subset of full measure. For these 
lasses of equivalen
ewe use the same notation �;� as in Se
tion 4. . They de�ne a partial order. If A� is afamily of measurable partitions of a measure spa
e (unlike in previous Se
tions the familymay be un
ountable), then by its produ
t A = W� A� we mean the measurable partitionA de�ned by(i) A � A� for every � ;(ii) if A0 � A� for every � and A0 is measurable, then A0 � A.Similarly, repla
ing � by �, we de�ne the interse
tion V� A� .The produ
t and interse
tion exist in a Lebesgue spa
e (i.e. the partially ordered stru
tureis 
omplete). They of 
ourse generalize the notions of Se
tion 4. Clearly for a 
ountablefamily of measurable partitions A� the above W and the set-theoreti
 one 
oin
ide (theassumption the spa
e is Lebesgue and the reasoning (mod 0) is not needed). In Exer
ise7 we give some examples.There is a natural one-to-one 
orresponden
e between the measurable partitions (mod 0)of a Lebesgue spa
e (A;F ; �) and the 
omplete �-subalgebras of F , i.e. su
h �-algebrasF 0 � F that the measure � restri
ted to F 0 is 
omplete. This 
orresponden
e is de�nedby the assignment to ea
h A the �-algebra F(A) of all sets whi
h 
oin
ide (mod 0) withthe sets of ~A (de�ned at the beginning of this Se
tion). To operations on the measurablepartitions (mod 0) 
orrespond operations on the 
orresponding �-algebras. Namely , if A�is a family of measurable partitions (mod 0), thenF(_� A� ) =_� F(A�); F( �̂ A� ) = �̂ F(A� ):Here V� F(A�) = T� F(A�) is the set-theoreti
 interse
tion of the �-algebras, whileW� F(A� ) is the set-theoreti
 interse
tion of all the �-algebras whi
h 
ontain all F(A�).For a monotone in
reasing (de
reasing) sequen
e of measurable partitions An and A =WnAn (A = VnAn respe
t.) we write An % A (or An & A). In the language ofmeasurable partitions of a Lebesgue spa
e the Martingale Theorem 1.1.1 
an be expressedas follows:Theorem 1.6.6. If An % A or An & A, then for every integrable fun
tion f , � a.s.E(f jAn) ! E(f jA), where for A any measurable partition one writes E(f jA)(x) :=R f jA(x) d�A(x).Proof. By the de�nition of 
anoni
al system of 
onditional measures and the de�nitionof 
onditional expe
tation value we have for every measurable partition A the identityE(f jA) = E(f jF(A)). |21



x1.7 ROHLIN NATURAL EXTENSIONWe shall prove here following very useful (see Ch.8.9)Theorem 1.7.1. For every measure preserving endomorphism T of a Lebesgue spa
e(X;F ; �) there exists a Lebesgue spa
e ( ~X; ~F; ~�) with measure preserving transformations�n : ~X ! X;n � 0 satisfying T Æ �n�1 = �n, whi
h is an inverse limit of the system::: T! X T! X.Re
all that in 
ategory theory [Lang, Ch.I℄, for a sequen
e (system) of obje
ts and mor-phisms ::: Mn�1! On Mn! :::::: M0! O0 an obje
t O equipped with morphisms �n : O ! On is
alled an inverse limit if Mn Æ�n�1 = �n and for every other O0 equipped with morphisms�0n : O0 ! On satisfying Mn Æ �0n�1 = �0n there exists a unique morphismM : O! O su
hthat �n ÆM = �0n for every n � 0. In parti
ular, for �0n := Mn Æ �n�1 : O ! On, thereexists M : O ! O su
h that �n ÆM = �0n = Mn Æ �n�1 for every n. It is easy to see thatM is an automorphism.Here obje
ts are probability spa
es or probability spa
es with 
omplete probabilities,and morphisms are measure preserving transformations or measure preserving transforma-tions up to sets of measure 0. (We have thus multiple meaning of Theorem 1.7.1.)Thus Theorem 1.7.1 produ
es a measure preserving automorphism ~T : ~X ! ~X satis-fying(1.7.1) �n Æ ~T = T Æ �n�1for every n � 0. This automorphism is 
alled Rohlin's natural extension of T .In the proof of the Theorem we shall use the followingTheorem 1.7.2 (On Extension of Measure). Every probability measure � (�-additive) onan algebra G0 of subsets of a set X 
an be uniquely extended to a measure on the �-algebraG generated by G0This Theorem 
an be proved with the use of the famous 
onstru
tion by Carath�eodory[Carath�eodory, Ch.V℄, namely by the 
onstru
tion of the outer measure: �e(A) = inf �(B) :B 2 G0; A � B for every A � X.We say that A is measurable (in Carath�eodory's sense) if for every E � X the outermeasure �e satis�es �e(E) = �e(E \ A) + �e(E n A). The family of these sets appears tobe a �-algebra 
ontaining G0, hen
e 
ontaining G.For a general de�nition of outer measure and sket
h of the theory see Ch.6.Proof of Theorem 1.7.1. We start with produ
ing inverse limit in the set-theoreti

ategory: Consider for ZZ�, the set of all non-positive integers, the spa
e(1.7.2) ~X = f(xn)n2ZZ� : T (xn) = xn+1 8n < 0g:22



and �i : ~X ! X the proje
tion to the i-th 
oordinate, �i((xn)n2ZZ) = xiNow provide ~X with a �-algebra ~F and probability measure ~�, so that ( ~X; ~F ; ~�)be
omes the inverse limit.Consider Gn = ��1n (F). Note that this is an in
reasing sequen
e of �-algebras withgrowing jnj be
ause ��1(A) = ��1n�1(T�1(A)) for every A 2 F . Write ~F0 = Sn�0 Gn. Thisis an algebra. For every A 2 F and n � 0 de�ne ~�(��1n (A)) := �(A). This is well-de�nedbe
ause if C = ��1n (A1) = ��1m (A2) for A1; A2 2 F and n < m then A1 = T�(m�n)(A2).Sin
e T preserves �, we have �(A1) = �(A2).The next step is to observe that ~� is �-additive on the algebra ~F0. For that we usethe assumption (X;F ; �) is a Lebesgue spa
e1. We just assume that X is a full Lebesguemeasure subset of the unit interval, with 
lassi
al Lebesgue measure and atoms, and the�-algebra of Lebesgue measurable sets F , see Exer
ise 3. Now it is suÆ
ient to provethat for every de
reasing sequen
e Ci 2 ~F0; i = 1; 2; ::: if Ti Ci = ; then ~�(Ci) ! 0.Suppose to the 
ontrary that there exists " > 0 su
h that ~�(Ci) � " for every i. Passingto a subsequen
e and reindexing we 
an write Cn = ��1�n(C 0n); n = 1; 2; :::. We 
onstru
t
ompa
t sets D0n � C 0n su
h that �(C 0n nD0n) � "2�(n+1) and T jD0n is 
ontinuous for all n(Lusin's Theorem, [Halmos, Se
.55℄).Write � =Q0�1X = f(xn)n2ZZ� : xn 2 Xg for the 
artesian produ
t of the 
ountablenumber of exemplars of X with the produ
t topology (
ompa
t by Ti
honov's Theorem).De�ne ~Xn := f(xi)i2ZZ� : T (xi) = xi+18n � i < 0g. Of 
ourse ~X � ~Xn � �. Denote by�n the proje
tion from ~Xn to the n-th 
oordinate.Then the setsDn = Tni=1(�i)�1(D0i) are 
ompa
t and de
reasing. They are non-emptybe
ause �(�n(Dn)) � "=2 by the 
onstru
tion, for all n. Therefore TnDn is non-empty(Cantor theorem). Noti
e �nally that TnDn � TCn so the latter set is non-empty. Wehave proved that ~� is �-additive on ~F0.The �nal step of the 
onstru
tion is the extension of ~� to the �-algebra ~F generatedby ~F0. It exists (and is unique) due to Theorem 1.7.2.If we work in the 
ategory of 
omplete measures we de�ne the �-algebra ~F as the
ompletion (by subsets of sets of measure 0) of the �-algebra generated by ~F0.Thus the probability spa
e ( ~X; ~F; ~�) has been 
onstru
ted. We leave 
he
king that itis indeed the inverse limit to the reader.Let us prove that the probability spa
e ( ~X; ~F ; ~�) with 
ompleted ~� is Lebesgue spa
e.Let (Bl) be a basis of (X;F ; �). Denote by �n the proje
tion of � to the n-th 
oordinatefor all n. (We use the same symbol as for proje
tions from ~X � � before. Re
all also thatproje
tions from intermediate domains have been denoted by �n.) Then 
learly the family��1n (Bl) is a basis of the partition " in �. The restri
tions of ��1n (Bl) to ~X generate the�-algebra ~F on ~X dis
ussed before (in the sense of Def.1.6.1 (ii)), be
ause (Bl) generatesF . We de�ne ~��;n� 0\i=�n ��1i (Ci)� := �� 0\i=�n T�(i�n)(Ci)�;1this "detail" has been ovelooked in [CFS℄ 23



for Ci = Tl(i)l=1B("l;i)l for all n � i � 0 and �1 sequen
es "l;i for l = 1; 2; :::; l(i). It is easyto see that the sequen
e ~��;n is 
ompatible on algebras: �nite unions of T0i=�n ��1l (Ci),namely ~��;n+1 extends ~��;n. (One says that this is a 
ompatible family of of �nite-dimensional probability distributions.)But � is 
ompa
t, hen
e ~��;n are �-additive on theunion of these algebras, hen
e extend to a measure (�-additive) ~�� on the �-algebra ~F�generated by them (Kolmogoro� Theorem, see bibliographi
al notes). The restri
tion of~�� to ~X 
oin
ides with ~� on ~F by the uniqueness in Theorem 1.7.2. The restri
tion of ~F�is a �-algebra so it 
ontains ~F . We shall know these �-algebras 
oin
ide if we verify that~X is ~��-measurable, i.e. ~X 2 ~F�.Thus the assertion to be proved is that ~X 2 ~F� and that ~X is of full measure ~��.This will prove that ( ~X; ~F; ~�) is 
omplete (mod 0) with respe
t to (Bl) restri
ted to ~X,hen
e it is Lebesgue spa
e.Re
all that ~X = Tn ~Xn and note that by Lusin Theorem for ea
h n there exist
ompa
t sets Dn;i � ~Xn; i = 1; 2; ::: su
h that ~���� n SiDn;i� = 0. Compa
t sets aremeasurable as their 
omplementary open sets are 
ountable unions of 
ylinders. |Remark 1. ~X 
an be interpreted as the spa
e of all ba
kward traje
tories for T . The map~T : ~X ! ~X 
an be de�ned by the formula(1.7.3) ~T ((xn)n2ZZ�) = (:::; x�2; x�1; x0; T (x0)):~X 
ould be de�ned in (1.7.2) as the spa
e of full traje
tories f(xn)n2ZZ ;T (xn) = xn+1g.Then (1.7.3) is the shift to the left.The formula (1.7.3) holds be
ause ~T de�ned by it, satis�es (1.7.1), and there holdsuniqueness of ~T satisfying (1.7.1)Remark 2. Alternatively to Lusin Theorem argument above, we 
ould �nd for ~Xn setsEn;i � ~Xn, with ~��(En;i n ~Xn) ! 0, whi
h are unions of 
ylinders T0i=�n ��1i (Ci). Thisagrees with the following general fa
t:If a sequen
e of sets � generates a �-algebra G with a mesure � on it (see Def.1.6.2(ii)) then for every A 2 G there exists C � A with �(C n A) = 0 su
h that C 2 �0d�Æ, i.e.C is a 
ountable interse
tion of 
ountable unions of �nite interse
tions of sets belongingto � or their 
omplements. Exer
ise: Prove this general fa
t, using Caratheodory's outermeasure 
onstru
ted on measurable sets.The 
onstru
tion via Lusin theorem presents ~X as �0d�Æ�Æ set up to measure 0 (as
ompa
t sets are in �0d�Æ). So it is not the most e
onomi
.Remark 3. Another way to prove Theorem 1.7.1 is to 
onstru
t �rst (�; ~F�; ~�P) onthe in�nite 
artesian produ
t �, and next ( ~X; ~F; ~�) as the restri
tion of the �rst probabilityspa
e to ~X. We have 
hosen a di�erent way in order to avoid in the 
onstru
tion the
orre
tness of the de�nition of ~�n's in the �nite produ
ts and the 
ompatibility. Weneeded it only to prove that the inverse limit is Lebesgue.24



We end this se
tion with another version of Theorem 1.7.1. Let us start withDe�nition 1.7.3. Suppose that T is an automorphism of a Lebesgue spa
e (X;F ; �). Let� be a measurable partition. Assume it is forward invariant, namely T (�) � �, equivalentlyT�1(�) � �. Then � is said to be exhausting if Wn�0 Tn(�) = ".Theorem 1.7.4. For every measure preserving endomorphism T of a Lebesgue spa
e(X;F ; �) there exists a Lebesgue spa
e ( ~X; ~F ; ~�) with an automorphism ~T , with a forwardinvariant exhausting measurable partition �, su
h that (X;F ; �) = ( ~X=�; ~F� ; ~�=�) thefa
tor spa
e, 
f.Se
.6, Remark 1, and T is fa
tor of ~T , namely T Æ p = p Æ ~T for theproje
tion p : ~X ! X.Proof. Take ( ~X; ~F ; ~�) and ~T from Theorem 1.7.1. Set � := ��10 ("). By (1.7.1) andT�1(") � " we get ~T�1(�) � �.If "0 = Wn�0 Tn(�) is not the partition of ~X into points, then ~T="0 is an automorphismof ( ~X="0; ~F"0; ~�"0). Moreover if we denote by p0 the proje
tion from ~X to ~X="0 then we
an write ��n = �0�n Æ p0 for some maps �0�n for every n � 0. By the de�nition of inverselimit p0 must have an inverse whi
h is impossible.The last part, thatWn�0 Tn(�) is the partition of ~X into points, has also an immediate,not 
ategory theory, proof following dire
tly from the form of ~X in (1.7.2). Indeed for n � 0Tn(�) at ~x = (:::; x�2; x�1; x0 is the n-th image of � at ~T�n(~x) i.e. at (:::; x�n�1; x�n).So it is equal to f(:::; x0�n�1; x0�n; :::; x0) 2 ~X : x�n = x�n)g. Interse
ting for n ! 1 weobtain f~xg.
x1.8 GENERALIZED ENTROPY, CONVERGENCE THEOREMS.This se
tion 
ontains generalizations of entropy notions introdu
ed in Se
tion 3 to the 
aseof all measurable partitions. The triple (X;F ; �) is assumed to be a Lebesgue spa
e.De�nition 1.8.1. If A is a measurable partition of X then its (generalized) entropy isde�ned as follows:H(A) =1 if A is not a 
ountable partition (mod 0);H(A) =PA2A��(A) log�(A) if A is a 
ountable partition (mod 0).Lemma 1.8.2. If An and A are measurable partitions of X and An % A, then H(An)%H(A).Proof. Write H(A) = R I(A) d� where I(A)(x) = � log�(A(x)) is the information fun
-tion (
ompare Se
.4, we set log 0 = �1, hen
e I(A)(x) =1 if �(A(x)) = 0, here). Writethe same for An. As �(An(x)) & �(A(x)) for a.e. x, the 
onvergen
e in the Lemmafollows from Monotone Convergen
e Theorem. |25



De�nition 1.8.3. If A and B are two measurable partitions of X, then the (generalized)
onditional entropy H(AjB) of partition A subje
t to B is de�ned by the following integral(1.8.1) H�(AjB) = ZX=B H�B (AjB) d�B(B)where AjB is the partition fA \ B : A 2 Ag of B and �B form a 
anoni
al systemof 
onditional measures (Se
. 7). Choose a sequen
e of �nite partitions An % A (seeRemark 1.6.0). The 
onditional entropy H�B (AnjB) is measurable as a fun
tion of B inthe fa
tor spa
e (X=B;FB; �B), hen
e of 
ourse as a fun
tion on (X;F ; �), sin
e it is a �nitesum of measurable fun
tions B 7! ��B(A\B) log�B(A\B). Sin
e AnjB %AjB for a.e.B, we obtain, by using Lemma 1.8.2, that H�B (AnjB)! H�B (AjB). Hen
e H�B (AjB) ismeasurable, so our de�nition of H�(AjB) makes sense (we allow 1's here).Of 
ourse (1.8.1) 
an be also written in the form(1.8.2) ZX H�B(x)(AjB(x)) d�(x);with H�B (AjB) understood as 
onstant fun
tion on ea
h B (
ompare (1.6.4) versus (1.6.5)).As in Se
.3 we 
an write(1.8.3) H�(AjB) = ZX I(AjB) d�;where I(AjB) is the 
onditional information fun
tion:I(AjB)(x) := � log�B(x)(A(x) \ B(x)).Indeed I(AjB) is non-negative and �-measurable as limn!1 I(AnjB) (a.e.), so (1.8.3)follows from (1.6.5a).Lemma 1.8.4. If fAn : n � 1g and A are measurable partitions, An &A and H(A1) <1then H(An)& H(A).Proof. The proof is similar to Proof of Lemma 1.8.2. |Theorem 1.8.5. If A;B are measurable partitions and fAn : n � 1g is an in
reasing(de
reasing and H(A1jB) <1) sequen
e of measurable partitions 
onverging to A, then(1.8.4) limn!1H(AnjB) = H(AjB)and the 
onvergen
e is respe
tively monotone.Proof. Applying Lemmas 1.8.2 and 1.8.4 we get the monotone 
onvergen
e H�B (AnjB)!H�B (AjB) for almost all B 2 X=B. Thus the integrals in the De�nition 1.8.3 
onverge bythe Monotone Convergen
e Theorem. |Theorem 1.8.6. If A;B are measurable partitions and fBn : n � 1g is a de
reasing(in
reasing and H(AjB1) <1) sequen
e of measurable partitions 
onverging to B, then(1.8.5) limn!1H(AjBn) = H(AjB)and the 
onvergen
e is respe
tively monotone.26



Proof 1. Assume �rst that A is �nite (or 
ountable with �nite entropy). Then the a.e.
onvergen
e I(AjBn)! I(AjB) follows from Martingale Convergen
e Theorem (more pre-
isely from Theorem 1.6.6), applied to f = 11A, the indi
ator fun
tion for ea
h A 2 A.Now it is suÆ
ient to prove supn I(AjBn) 2 L1 in order to use Dominated Convergen
eTheorem (
ompare Corollary 1.5.3) and (1.8.3). One 
an repeat Proofs of Lemma 1.5.1(for in
reasing Bn) and Corollary 1.5.2.The monotoni
ity of the sequen
e H(AjBn) relies on Theorem 1.3.d. However for in�niteBn one needs to approximate Bn by �nite (or �nite entropy) partitions. For details see[Rohlin 1967, Se
.5.12℄.For A measurable, represent A as limj!1Aj for an in
reasing sequen
e of �nitepartitions Aj ; j = 1; 2; ::, next refer to Th.1.8.5. In the 
ase of de
reasing Bn the proof isstraightforward. In the 
ase of in
reasing Bn useH(AjBn)�H(AjjBn) = H(Aj(Aj _ Bn)) � H(Aj(Aj _ B1)) � H(AjB1)� H(AjjB1):This implies that the 
onvergen
e as j ! 1 is uniform with respe
t to n, hen
e in thelimit H(AjBn)! H(AjB). |Proof 2. For A �nite (or 
ountable with �nite entropy) there is a simpler way toprove (1.8.5). We have for every A 2 A by Theorem 1.1.1, the 
onvergen
e in L2 applied toE(11AjF(Bn)), hen
e the 
onvergen
e in measure � of �Bn(x)(A\Bn(x)). By the 
ontinuityof the fun
tion k(t) = �t log t, see Se
.3, this implies the 
onvergen
e in measure �k(�Bn(x)(A \ Bn(x)))! k(�B(x)(A \ B(x))):(We do not assume x 2 A here.) Summing over A 2 A we obtain the 
onvergen
eH�Bn(x)(AjBn(x))! H�B(x)(AjB(x)) in measure �. These fun
tions are uniformly boundedby log#A ( or by H(A) ) and non-negative, hen
e we get the 
onvergen
e in L1 and in
onsequen
e, due to (1.8.2), we obtain (1.8.5). (Note that we have not used the a.e.
onvergen
e in Th.1.1.1, but only the 
onvergen
e in L2 proved there.) |Observe that we 
an rewrite now the de�nition of the entropy h�(T;A) from Se
tion 1.5as(1.8.6) h�(T;A) = H(AjA�); where A� := 1_n=1T�n(A):A 
ountable partition B is 
alled a 
ountable generator for an endomorphism of a Lebesguespa
e if Bm % ". Due to Theorem 1.8.6 we obtain the following fa
ts useful in 
omputingthe entropy for 
on
rete examples.Theorem 1.8.7. (a) If Bm is a sequen
e of �nite partitions of a Lebesgue spa
e, su
hthat Bm % ", then, for any endomorphism T of the spa
e, h(T ) = limm!1 h(T;Bm).(b) If B is a 
ountable generator of �nite entropy for an endomorphism T of a Lebesguespa
e, then h(T ) = h(T;B). 27



Proof. By Theorem 1.8.6 for every �nite A we have limm!1H(AjBm) = H(Aj") = 0,hen
e in view of Theorem 1.4.5, instead of supA in the de�nition of h(T ), it is suÆ
ient in(1.4.3) to 
onsider limm!1 h(T;Bm). This proves (a). Theorem 1.4.5 together with thede�nition of the generator prove also (b). |Remark 1.8.7'. For T an automorphism one 
onsiders two-sided 
ountable (in parti
ular�nite) generator: W1n=�1 Tn(B) = ". Then, as in the one-sided 
ase, H(B) �nite impliesh(T ) = h(T;B).Remark 1.8.7". In both Theorem 1.8.6 and Theorem 1.8.7(a) the assumption on themonotoni
ity of Bm 
an be weakened. Assume for example that A is �nite and Bm ! " inthe sense that for every measurable Y , E(11Y jBm)! 11Y in measure, as in Remark 1.1.2.Then H(AjBm)! 0, hen
e h(T ) = limm!1H(T;Bm).Indeed for H(AjBm)! 0 just repeat Proof 2 of Theorem 1.8.6. The 
onvergen
e in measure� of �Bn(x)(A\Bn(x))) to �"(x)(A\ "(x))) writes as E(11AjBn)! 11A, whi
h has just beenassumed.Corollary 1.8.7"'. If X is a 
ompa
t metri
 spa
e and F the �-algebra of Borel sets(generated by open sets), then if supB2Bm�diam(B)� ! 0 as m ! 1, then h(T ) =limm!1 H(T;Bm).Proof. It is suÆ
ient to 
he
k E(11AjBm) ! 11A in measure. First note that for everyÆ > 0 there exist an open set U and 
losed set K su
h that K � A � U and �(U nK) � Æ.This property is 
alled regularity of our measure � and is true for every �nite measure onthe �-algebra of Borel sets for a metri
 spa
e (
ompa
tness is not needed here). It 
an beproved by Caratheodory's argument, 
ompare Proof of Th.1.1.1. Namely we 
onstru
t theouter measure with the help of open sets, as in the sket
h of the proof of theorem 1.7.2(where we used G0) and noti
e that sin
e ea
h 
losed set is an interse
tion of a de
reasingsequen
e of open sets we will have the same outer measure if in the 
onstru
tion of outermeasure we use the algebra generated by open sets. Now we 
an refer to Theorem 1.7.2.Next, due to 
ompa
tness of X, hen
e K, for m large enough the set A0 := SfB 2 Bm :B \K 6= ;g 
ontains K and is 
ontained in U , hen
e �(A� A0) � Æ. This implies thatZX jE(11AjBm)� 11Aj d� =ZXn(A[A0)E(11AjBm) d�+ ZA�A0 jE(11AjBm)� 11Aj d�+ ZA\A0 1�E(11AjBm) d� �Æ�(X nA0)�(X n (A [ A0)) + Æ + �1� �(A \ A0)�(A0) ��(A \ A0) � 3Æ:Hen
e �fx : jE(11AjBm)� 11Aj � p3Æg � p3Æ. |For a simpler proof, omitting Theorem 1.8.6, see Exer
ise 1.9'.28



We end this Se
tion with the theorem on de
omposition into ergodi
 
omponents and the ad-equate entropy formula. Compare this with Choquet representation theorem: Th. 2.1.11,and Th. 2.1.13.Let T be a measure preserving endomorphism of a Lebesgue spa
e. A measurable partitionA is said to be T -invariant if T (A) � A for almost every A 2 A. The indu
ed mapTA = T jA : A ! A is a measurable endomorphism of the Lebesgue spa
e (A;FA; �A).One 
alls TA a 
omponent of T .Theorem 1.8.8. (a) There exists a smallest T -invariant measurable partition A (mod 0)(
alled the ergodi
 de
omposition). Almost all of its 
omponents are ergodi
.(b) h(T ) = RX=A h(TA) d�A(A).Proof. We shall not prove here the part (a). Let us mention only that the ergodi
de
omposition partition 
orresponds (see Se
.6) to the 
ompletion of I, the �-subalgebraof F 
onsisting of T invariant sets in F (
ompare Theorem 1.2.2).To prove the part (b) noti
e that for every T -invariant measurable partition A, forevery �nite partition � and almost every A 2 A, writing �A for the partition fs\A : s 2 �g,we obtain h(TA; �A) = H(�Aj��A) = ZA I�A(�Aj��A) d�A:Noti
e next that the latter information fun
tion is equal a.e. to I�(�j�� _A) restri
ted toA. Hen
e ZX=A h(TA) d�A(A) = ZX=A d�A ZA I�A(�Aj��A) d�A =ZX I�(�j�� _ A) d� = H(�j�� _ A) = h(T; �)The latter equality follows from an approximation of A by �nite T -invariant partitions� %A and from H(�j�� _ �) = H(� _ �j�� _ ��) = limn!1 1nH((� _ �)n) =limn!1 1nH(�n _ �) = limn!1 1nH(�n) = H(T; �):Let now �n be a sequen
e of �nite partitions su
h that �n % ". Then h(T; �n)% h(T )and h(TA; (�n)A)% h(TA). So h(T; �n) = RX=A h(TA; �n) d�A(A) and Lebesgue monotone
onvergen
e theorem prove (b) |x1.9 COUNTABLE TO ONE MAPS, JACOBIAN AND ENTROPY OF ENDOMOR-PHISMS .We start with a formulation of a deep theorem by Rohlin:29



Theorem 1.9.1. Suppose that A and B are two measurable partitions of a Lebesguespa
e (X;F ; �) su
h that AjB is 
ountable (mod 0 with respe
t to �B) for almost everyB 2 B. Then there exists a 
ountable partition 
 = f
1; 
2; :::g of X (mod 0) su
h thatsu
h that ea
h 
j 2 
 interse
ts almost every B at not more than one point, whi
h is thenan atom of �B , in parti
ular A _ B = 
 _ B (mod 0):Furthermore, if H(AjB) <1, then 
 
an be 
hosen so thatH(
) < H(AjB) + 3pH(AjB) <1:De�nition 1.9.2. Let (X;F ; �) be a Lebesgue spa
e. Let T : X ! X be a measurableendomorphism. We say that T is essentially 
ountable to one if the measures �A of a
anoni
al system of 
onditional measures for the partition A := T�1(") are purely atomi
(mod 0 with respe
t to �A), for almost all A. We say that T is 
ountable to one if we 
anomit the phrase "mod 0 with respe
t to �A" above.Lemma 1.9.3. If T is essentially 
ountable to one and preserves � then there exists ameasurable Y � X of full measure su
h that T (Y ) � Y and1. T�1(x) \ Y for a.e. x 2 Y is 
ountable, moreover it 
onsists only of atoms of the
onditional measure �T�1(x);2. T (B) is measurable if B � Y is measurable;3. T jY is forward quasi-invariant, namely �(B) = 0 for B � Y implies �(T (B)) = 0.Proof. Let Y 0 be the union of atoms mentioned in De�nition 1.9.2.. We 
an write, dueto Theorem 1.9.1, Y 0 = Sj 
j , so Y 0 is measurable. Set Y = T1n=0 T�n(Y 0). Denote thepartition T�1(") in Y by �. Property 1. follows from the 
onstru
tion. To prove 2. weuse the fa
t that (Y=�;F�; ��) is a Lebesgue spa
e and the fa
tor map T� : Y� ! X is anautomorphism (Th.1.6.5). So, for measurable B � Y , the set(1.9.1) fA 2 � : �A(B \ A) 6= 0g = fA 2 � : A \B 6= ;gis measurable by (1.6.3) and therefore its image under T� , equal to T (B), is measurable.If �(B) = 0, then the set in (1.9.1) has measure �� equal to 0, hen
e as T� is isomorphismwe obtain that T (B) is measurable, of measure 0. |The key property in the above proof is the equality (1.9.1). Without assuming that �Aare purely atomi
 there 
ould existed B of measure 0 with C := fA 2 � : �A(B \A) 6= 0gnot measurable in F� .To have su
h a situation just 
onsider a non-measurable C � Y=�. Consider thedisjoint union D := C [ Y and denote the embedded C by C 0. Finally, de�ning measureon D, put �(C 0) = 0 and � on the embedded Y . De�ne T (
0) = T (C) for C 3 
 and
0 being the image of 
 under the abovementioned embedding. Thus C 0 is measurable,30



of measure 0, whereas T (C 0) is not measurable be
ause C is not measurable and T� isisomorphism.De�nition 1.9.4. Let (X;F ; �) and (X 0;F 0; �0) be probability measure spa
es. LetT : X ! X 0 be a measurable homomorphism. We say that a real, nonnegative, measurablefun
tion J is a weak Ja
obian if there exists E of measure 0 su
h that for every measurableA � X n E on whi
h T is inje
tive, the set T (A) is measurable and �(T (A)) = RA J d�.We say J is strong Ja
obian if the above holds without assuming A � X nE.Noti
e that if T is forward quasi-invariant, namely (�(A) = 0) ) (�0(T (A)) = 0),then automati
ally weak Ja
obian is strong Ja
obian.Proposition 1.9.5. Let (X;F ; �) be Lebesgue spa
e and T : X ! X be a measurable,essentially 
ountable to one, endomorphism. Then there exists a weak Ja
obian J . It isunique (mod 0). For T restri
ted to Y (from Lemma 1.9.3.) J is strong Ja
obian.Proof. Consider the partition 
 = f
1; 
2; :::g given by Theorem 1.9.1. Then for ea
hj the map T j
j\Y is inje
tive. Moreover by Lemma 1.9.3 T j
j\Y maps measurable setsonto measurable sets and is forward quasi-invariant. Therefore J exists on ea
h 
j \ Y byRadon-Nikodym theorem.By the presentation of ea
h A � Y as S1j=1A\
j the fun
tion J satis�es the assertionof the Proposition. The uniqueness follows from the uniqueness of Ja
obian in Radon-Nikodym theorem on ea
h 
j \ Y .Theorem 1.9.6. Let (X;F ; �) be a Lebesgue spa
e. Let T : X ! X be a � preservingendomorphism, essentially 
ountable to one. Then its Ja
obian, strong on Y de�ned inLemma 1.9.3, weak onX, has logarithm equal to I("jT�1(")). (I stands for the informationfun
tion, see Se
tions 1.4 and 1.8)Proof. Consider already T restri
ted to Y . Let Z � Y be an arbitrary measurable setsu
h that T is 1{to{1 on it. For ea
h y 2 Y denote by A(y) the element of � = T�1(")
ontaining y. We obtain��T (Z)� = ��T�1�T (Z)�� = ZT�1�T (Z)� �ZA(y) 11 d�A(y)� d�(y) == ZT�1�T (Z)� �ZA(y) 11Z(y)Æ�A(y)fyg) d�A(y)� d�(y) == ZT�1�T (Z)� 11Z(y)=�A(y)fyg) d�(y) = ZZ 1=�A(y)fyg) d�(y) |Theorem 1.9.6 gives rise to the so 
alled Rohlin formula:31



Theorem 1.9.7. Let (X;F ; �) be a Lebesgue spa
e. Let T : X ! X be a � preservingendomorphism, essentially 
ountable to one. Suppose that on ea
h 
omponent A of theergodi
 de
omposition (
f. Th.1.8.8) the restri
tion TA has a 
ountable generator of �niteentropy. Then for the Ja
obian Jh�(T ) = H("jT�1(")) = Z I("jT�1(")) d� = Z log J d�:Proof. The third equality follows from Theorem 1.9.6, the se
ond one is the de�nitionof the 
onditional entropy, see Se
. 8. To prove the �rst equality we 
an assume, due toTheorem 1.8.8, that T is ergodi
. Then, for �, a 
ountable generator of �nite entropy, withthe use of Theorems 1.8.5 and 1.8.6, we obtainH("jT�1(") = H("j��) = limn!1H(�nj��) = H(�j��) = h(T; �) = h(T ):|Remark. The existen
e of a 
ountable generator is a general, not very diÆ
ult, fa
t,namely the following holds:Theorem 1.9.8. Let (X;F ; �) be Lebesgue spa
e. Let T : X ! X be a �-preservingaperiodi
 endomorphism, essentially 
ountable to one. Then there exists a 
ountable gen-erator, namely a 
ountable partition � su
h that �� = " (mod 0).Aperiodi
 means there exists no B of positive measure and a positive integer n so thatTnjB =id. For the proof see [Rohlin, 1967, Se
.10.12-13℄ or [Parry℄. To 
onstru
t � oneuses the partition 
 found for " and T�1(") a

ording to Theorem 1.9.1 and so-
alledRohlin towers.The existen
e of a generator with �nite entropy is in fa
t equivalent to H("j"�) = h(T ) <1. The proof of the impli
ation to the right is 
ontained in Proof of Th.1.9.7. The reverseimpli
ation, the 
onstru
tion of the partition, is not easy, it uses in parti
ular the estimatein Th.1.9.1.The existen
e of a generator with �nite entropy is a strong property. It may fail even forexa
t endomorphisms, see Se
.10 and Exer
ise 13. Neither its existen
e implies exa
tness,Exer
ise 13. To the 
ontrary, for automorphisms, two-sided generators, even �nite, alwaysexist, provided the map is aperiodi
.x1.10. MIXING PROPERTIES.In this se
tion we examine brie
y some mixing properties of a measure preserving endo-morphism, stronger than ergodi
ity. A measure preserving endomorphism is said to beweakly mixing if and only if for every two measurable sets A and Blimn!1 1n n�1Xj=0 j�(T�j(B) \A)� �(A)�(B)j = 032



To see that a weakly mixing transformation is ergodi
, suppose that T�1(B) = B. ThenT�k(B) = B for all k � 0 and 
onsequently for every n, 1nPn�1j=0 j�(T�j(B) \ A) ��(A)�(B)j = j�(B)� �(B)2j. Thus �(B)� �(B)2 = 0 and therefore �(B) = 0 or 1.A measure preserving endomorphism is said to be mixing if and only if for every twomeasurable sets A and B limn!1�(T�n(A) \B)� �(A)�(B) = 0Clearly, every mixing transformation is weakly mixing. The property equivalent to themixing property is the following: for every square integrable fun
tions f; glimn!1 Z f(g Æ Tn) d� = Z f d� Z g d�:Indeed, the former property follows from the latter one if we substitute the indi
atorfun
tions 11A; 11B in pla
e of f; g. To prove the opposite impli
ation noti
e that with thehelp of H�older inequality it is suÆ
ient to restri
t to simple fun
tions f = Pi ai11Ai ; g =Pj aj11Aj for �nite partitions (Ai) and (Bj). Then����Z f(g Æ Tn) d�� Z f d� Z g d����� = ������Xi;j aibj(�(Ai \ T�n(Bj))� �(Ai)�(Bj))������! 0be
ause every summand 
onverges to 0 as n!1.In the sequel we will deal also with stronger mixing properties. An endomorphism is 
alledK-mixing if for every measurable set A and every �nite partition Alimn!1 supB2F(A1n ) j�(A \B)� �(A)�(B)j = 0;Re
all that F(A1n ) for n � 0 means the 
omplete �-algebra assigned to the partitionA1n = W1j=n T�j(A). The following theorem provides us with alternative de�nitions of theK-mixing property in 
ase T is an automorphism.Theorem 1.10.1. If T : X ! X is a measure-preserving automorphism of a Lebesguespa
e, then the following 
onditions are equivalent:(a) T is K-mixing.(b) For every �nite partition A Tail(A) := V1n=0W1k=n T�k(A) is equal to the trivialpartition � = fXg(
) For every �nite partition A 6= �, h�(T;A) > 0 (T has 
ompletely positive entropy)(d) There exists a forward invariant exhausting measurable partition � (i.e. satisfyingT�1(�) � �, Tn(�)% ", see Def. 1.7.4) su
h that T�n(�)& �.33



The property Tail(A) = � is a version of the 0-1 Law. An automorphism satisfying (d)is usually 
alled: K-automorphism. The symbol K 
omes from the name: Kolmogorov.Ea
h partition satisfying the properties of � in (d) is 
alled K-partition.Remark: the properties (a)-(
) make sense for endomorphisms and they are equivalent(proofs are the same as for automorphisms). Moreover they hold for an endomorphis i�they hold for its natural extension.Proof. (a part of) To show the reader what is the Theorem about let us prove at leastsome impli
ations:(a))(b) Let A 2 F(Tail(A)) for a �nite partition A. Then A 2 F(W1k=n T�k(A))for every n. Hen
e, by K-mixing, �(A \ A)� �(A)�(A) = 0 and therefore �(A) = 0 or 1.(b))(
) Suppose h(T;A) = 0 for a �nite partition A. Then H(AjA�) = 0, hen
eI(AjA�) = 0 a.s. (see Se
.8), hen
e A � A�. Hen
e1_k=0T�k(A) = 1_k=1T�k(A) and 1_k=mT�k(A) = 1_k=nT�k(A)for every m;n � 0. So V1n=0W1k=n T�k(A) = W1k=0 T�k(A). The latter partition is TailA,so it is equal to � by (b). But it is �ner than A, hen
e A = �. So ea
h �nite partitiondi�erent from �, the trivial one, has positive entropy.(b))(d) (in 
ase there exists a �nite two-sided generator B, i.e. W1n=�1 Tn(B) = ")� = WT1n=0T�n(B) is exhausting. |Let us �nish the Se
tion with the following useful:De�nition 1.10.2. A measure preserving endomorphism is said to be exa
t if1̂n=0T�n(") = �;(Remind that " is the partition into points and � is the trivial partition fXg.)Exer
ise: Prove that exa
tness is equivalent to the property: �e(Tn(A)) ! 1 for everyA of positive measure (�e is outer measure), or to the property: �(Tn(A))! 1 provided�(A) > 0 and the sets Tn(A) are measurable.The property exa
t implies the natural extension is a K-automorphism (in Theorem1.10.1(d) set for � the lift of "). The 
onverse is of 
ourse false. Non-one atom spa
eautomorphisms are not exa
t. Observe however that if T is an automorphism and � is ameasurable partition satisfying (d), then the fa
tor map T=� on X=� is exa
t. Exer
ise:prove that T is the natural extension of T=�. Remind �nally (Se
. 9) that even for exa
tendomorphisms h("jT�1(")) 
an be stri
tly less than h(T ).34



x1.11. PROBABILITY LAWS AND BERNOULLI PROPERTY.For (X;F ; �) a probability spa
e (or whenever it is needed: a Lebesgue spa
e). Let f and gbe real square-integrable fun
tions on X. For every positive integer n the n-th 
orrelationof the pair f; g, is the numberCn(f; g) := Z f � (g Æ Tn) d�� Z f d� Z g d�:provided the above integrals exist. Noti
e that due to the T -invarian
e of � we 
an alsowrite Cn(f; g) = Z (f �Ef)�(g � Eg) Æ Tn� d�;where we write Ef = R f d� and Eg = R g d�Let g : X ! R be a square-integrable fun
tion. The limit(1.11.1) �2 = limn!1 1n Z �n�1Xj=0 g Æ T j � nEg�2 d�is 
alled asymptoti
 varian
e or dispersion, provided it exists.Write g0 = g �Eg. Then we 
an rewrite the above as�2 = limn!1 1n R �Pn�1j=0 g0 Æ T j�2 d�.Another useful expression for the asymptoti
 varian
e is the following(1.11.2) �2(g) = Z g20 d�+ 2 1Xj=1 Z g0 � (g0 Æ T j) d�:The 
onvergen
e of the series of 
orrelations Cn(g; g) in (1.11.2) easily implies that�2(g) from this formula is equal to �2 de�ned in (1.11.1), 
ompare the 
omputation in theproof of Theorem 1.11.3 later on.We say that the law of iterated logarithm, LIL, is satis�ed for g if �2(g) exists (i.e. theabove series 
onverges) and(1.11.3) lim supn!1 Pn�1j=0 g Æ T j � nEgpn log logn = p2�2 �� almost surely :(� almost surely, a.s., means � almost everywhere, a.e. This is the probability theorylanguage.)We say that the 
entral limit theorem, CLT, holds, if(1.11.4) � (x 2 X : Pn�1j=0 g Æ T j � nEgpn < r)!! 1�p2� Z r�1 e�t2=2�2 dt:35



For � 6= 0 the 
onvergen
e is for all r, for �2 = 0 the 
onvergen
e holds for r 6= 0 and onthe right hand side one sets 0 for r < 0 and 1 for r > 0.The LIL and CLT for �2 6= 0 are often, and this is the 
ase in Theorem 1.11.1 below,a 
onsequen
e of the almost sure invarian
e prin
iple, ASIP, whi
h says that the sequen
eof random variables g, g ÆT , g ÆT 2, 
entered at the expe
tation value i.e. provided Eg = 0,is "approximated with the rate n1=2�"" for an " > 0, depending on Æ in Theorem 1.11.1below, by a martingale di�eren
e sequen
e and a respe
tive Brownian motion.Theorem 1.11.1. Let (X;F ; �) be a probability spa
e and T an endomorphism preserving�. Let G � F be a �-algebra. Write Gnm := Wnj=m T�j(G) (notation from x.1.6) form � n � 1 and suppose that the following property 
alled �-mixing holds:There exists a sequen
e �(n); n = 0; 1; :: of positive numbers satisfying(1.11.5) 1Xn=1�1=2(n) <1su
h that for every A 2 Gm0 and B 2 G1n ; 0 � m � n we have(1.11.6) j�(A \B)� �(A)�(B)j � �(n�m)�(A):Finally 
onsider a G10 measurable fun
tion g : X ! IR su
h thatZ jgj2+Æ d� <1 for some Æ > 0;and that for all n � 1(1.11.7) �Z jh�E(hjGn0 )j2+Æ)��(2+Æ) � Kn�s; K > 0; s > 0 large enough:(A 
on
rete formula for s 
an be given, depending on Æ.)Then g satis�es CLT and LIL.LIL for �2 6= 0 is a spe
ial 
ase, for  (n) = p2 log logn, of the following: for every realpositive non-de
reasing fun
tion  one has, provided R g d� = 0,�fx 2 X : nXj=0 g(T j(x)) >  (n)p�2n for in�nitely many ng = 0 or 1a

ording as R11  (t)t exp(� 12 2(t)) dt 
onverges or diverges.As we already remarked, this Theorem, for �2 6= 0, is a 
onsequen
e of ASIP and the similar
on
lusions for the standard Brownian motion. We do not give the proofs here. For ASIPand further referen
es see [Philipp, Stout, Ch.4,7℄. Let us dis
uss only the existen
e of36



�2. It follows from the following 
onsequen
e of (1.11.6): For �; � square integrable realfun
tions on X, � measurable in Gm0 and � measurable in G1n we have(1.11.8) ����Z �� d�� E�E����� � 2(�(n�m))1=2k�k2k�k2:The proof of this inequality is not diÆ
ult, but tri
ky, with the use of H�older inequality,see [Ibragimov℄ or [Billingsley, 1968℄. It is suÆ
ient to work with the fun
tions � =Pi ai11Ai ; � = Pj aj11Aj for �nite partitions (Ai) and (Bj), as with mixing in Se
. 10.Note that if instead of (1.11.6) we have stronger:(1.11.9) j�(A \ B)� �(A)�(B)j � �(n�m)�(A)�(B);as will happen in Ch.3, then we very easily obtain in (1.11.7) the estimate by �(n �m)k�k1k�k1, by the 
omputation the same as for mixing in Se
.10.We may assume that g is 
entered at the expe
tation value. Write g = kn + rn =E(gjG[n=2℄0 ) + (g � E(gjG[n=2℄0 ). We have����Z g(g Æ Tn) d����� �����Z kn(kn Æ Tn) d�����+ ����Z kn(rn Æ Tn) d�����+ ����Z rn(kn Æ Tn) d�����+ ����Z rn(rn Æ Tn) d����� �2(�(n� [n=2℄))1=2kknk22 + 2kknk2krnk2 + krnk22 �2(�(n� [n=2℄))1=2kknk22 + 2K[n=2℄�skknk2 +K[n=2℄�2s;the �rst summand estimated a

ording to (1.11.8). For s > 1 we obtain 
onvergen
e ofthe series of 
orrelations.Let us go ba
k to the dis
ussion of the �-mixing. If G is asso
iated to a �nite partitionthat is a generator, �-mixing with �(n) ! 0 as n ! 1 implies K-mixing (see Se
.10).Indeed B is the same in both de�nitions, whereas A in K-mixing 
an be approximated bysets belonging to Gm0 . We leave details to the reader.Intuitively both notions mean that any event B in remote future weakly depends onthe present state A, i.e. j�(B)� �(BjA)j is small.In appli
ations G will be usually asso
iated to a �nite or 
ountable partition.In Theorems 1.11.1, the 
ase �2 = 0 is easy. It relies on Theorem 1.11.3 below. Let us�rst introdu
e the following fundamentalDe�nition 1.11.2. Two fun
tions f; g : X ! IR (or CI) are said to be 
ohomologous ina spa
e K of real (or 
omplex) -valued fun
tions on X (or f is 
alled 
ohomologous to g),if there exists h 2 K su
h that(1.11.10) f � g = h Æ T � h:37



If f; g are de�ned mod 0, then (1.11.10) is understood a.s.. This formula is 
alled a
ohomology equation.Theorem 1.11.3. Let f be a square integrable fun
tion on a probability spa
e (X;F ; �),
entered at the expe
tation value. Assume that P1n=0 nj R f � (f Æ Tn) d�j <1. Then thefollowing three 
onditions are equivalent:(a) �2(f) = 0;(b) All the sums Sn = Snf = Pn�1j=0 f Æ T j have the norm in L2 (the spa
e squareintegrable fun
tions) bounded by the same 
onstant;(
) f is 
ohomologous to 0 in the spa
e H = L2.Proof. (
))(a) follows immediately from (1.11.1) after substituting f = h Æ T � h. Letus prove (a))(b): Write Cj for the 
orrelation R f � (f Æ T j) d�; j = 0; 1; :::. ThenZ jSnj2 d� = nC20 + 2 nXj=1(n� j)Cj= n�C20 + 2 1Xj=1Cj�� 2n 1Xj=n+1Cj � 2 nXj=1 j � Cj = n�2 � In � IIn:Sin
e In ! 0 and IIn stays bounded as n!1 and �2 = 0, we dedu
e that all the sumsSn are uniformly bounded in L2.(b))(
): f = h Æ T � h for any h a limit in weak*-topology of the bounded sequen
e1nSn. We leave the easy 
omputation to the reader. (This 
omputation will be providedin detail in the similar situation of Bogolyubov-Krylov Theorem, in 2.1.14.). |Now Theorem 1.11.1 for �2 = 0 follow from (
), whi
h gives Pn�1j=0 f Æ T j = h Æ Tn � h,with the use of Borel-Cantelli lemma.Remark.. Th.1.11.1 in the two-sided 
ase: where g depens on Gj = T j(G) for j =:::;�1; 0; 1; ::: for an automorphism T , also holds. In 1.11.8 one should repla
e Gn0 by Gn�nGiven two �nite partitions A and B of a probability spa
e and " � 0 we say that B is"-independent of A if there is a subfamily A0 � A su
h that �(SA0) > 1� " and for everyA 2 A0(1.11.11) XB2B �����(A \B)�(A) � �(B)���� � ":Given an ergodi
 measure preserving endomorphism T : X ! X of a Lebesgue spa
e,a �nite partition A is 
alled weakly Bernoulli (abbr. WB) if for every " > 0 there isan N = N(") su
h that the partition Wsj=n T�j(A) is "-independent of the partitionWmj=0 T�j(A) for every 0 � m � n � s su
h that n�m � N .38



Of 
ourse in the de�nition of "-independen
e we 
an 
onsider any measurable (maybeun
ountable) partition A and write 
onditional measures �A(B) in (1.11.11). Then for Tan automorphism we 
an repla
e in the de�nition of WB Wsj=n T�j(A) by Ws�nj=0 T�j(A)and Wmj=0 T�j(A) by Wm�nj=�n T�j(A) and set n =1; n�m � N . WB in this formulationbe
omes one more version of weak dependen
e of present (and future) from remote past.If " = 0 and N = 1 then all partitions T�j(A) are mutually independent (re
all thatA;B are 
alled independent if �(A \ B) = �(A)�(B) for every A 2 A; B 2 B.). We saythen that A is Bernoulli. If A is a generator (two-sided generator), then 
learly T on(X;F ; �) is isomorphi
 to one-sided (two-sided) Bernoulli shift of ℄A symbols, see Chapter0, Examples 0.8. The following famous theorem of Friedman and Ornstein holds:Theorem 1.11.4. If A is a weakly Bernoulli �nite two-sided generating partition of Xfor an automorphism T , then T is isomorphi
 to a two-sided Bernoulli shift.Of 
ourse the standard Bernoulli partition (in parti
ular the number of its states) in theabove Bernoulli shift 
an be di�erent from the image under the isomorphism of the WBpartition.Bernoulli shift above is unique in the sense that ea
h two two-sided Bernoulli shiftsof the same entropy are isomorphi
 [O℄.Note that �-mixing in the sense (1.11.9), with �(n) ! 0, for G asso
iated to a �nitepartition A, implies weak Bernoulli.Central Limit Theorem is a mu
h weaker property than LIL. We want to end thisSe
tion with a useful abstra
t theorem that allows us to dedu
e CLT for g without spe
-ifying G. This Theorem similarly as Theorem 1.11.1 
an be proved with the use of anapproximation by a martingale di�eren
e sequen
e.Theorem 1.11.5. Let (X;F ; �) be a probability spa
e and T : X ! X an auto-morphism preserving �. Let F0 � F be a �-algebra su
h that T�1(F0) � F0. DenoteFn = T�n(F0) for all integer n = :::;�1; 0; 1; ::: Let g be a real square integrable fun
tion.If Xn�0 kE(gjFn)k2 + kg � E(gjF�n)k2 <1;then g satis�es CLT.Exer
ises.0. Prove that for any two �-algebras F 3 F 0 and � an F -measurable fun
tion, the
onditional expe
tation value operator Lp(X;F ; �) 3 � ! E(�jF 0) has norm 1 in Lp, forevery 1 � p � 1. (Hint: Prove that E((# Æ j�j)jF 0) � # Æ E((j�j)jF 0) for 
onvex #, inparti
ular for t 7! tp.) 39



1. Let T be an ergodi
 automorphism of a probability non-atomi
 measure spa
e andA its partition into orbits fTn(x); n = :::;�1; 0; 1:::g. Prove that A is not measurable.Suppose we do not assume ergodi
ity of T . What is the largest measurable partition,smaller than the partition into orbits? (Hint: Th.1.8.8.)2. Prove that the following partitions of measure spa
es are not measurable:(a) Let T : S1 ! S1 be a mapping of the unit 
ir
le with Haar measure de�ned byT (z) = e2�i�z for an irrational �. P is the partition into orbits;(b) T is the automorphism of the 2-dimensional torus IR2=ZZ2, given by a hyperboli
integer matrix of determinant 1. Let P be the partition into stable, or unstable, lines (i.e.straight lines parallel to an eigenve
tor of the matrix);(
) Let T : S1 ! S1 be de�ned by T (z) = z2. Let P be the partition into grandorbits, i.e. equivalen
e 
lasses of the relation x � y i� 9m;n � 0 su
h that Tm(x) = Tn(y).3. Prove that every Lebesgue spa
e is isomorphi
 to the unit interval equipped withthe Lebesgue measure together with 
ountably many atoms.4. Prove that every separable 
omplete metri
 spa
e with a measure on the �-algebra
ontaining all open sets, minimal among 
omplete measures, is Lebesgue spa
e.Hint: [Rohlin 1949, 2.7℄.5. Let (X;F ; �) be a Lebesgue spa
e. Then Y � X;�e(Y ) > 0 is measurable i�(Y;FY ; �Y ) is Lebesgue, where �e is the outer measure, FY = fA \ Y : A 2 Fg and�Y (A) = �e(A\Y )�e(Y ) .Hint: If B=(Bn) is a basis for (X;F ; �), then B0n = Bn\Y ) is a basis for (Y;FY ; �Y ).Add to Y one point for ea
h sequen
e (B0n)"n whose interse
tion is missing in Y and inthe spa
e ~Y obtained in su
h a way generate 
omplete measure spa
e ( ~Y ; ~F; ~�) from theextension ~B of the basis (B0n). Borel sets with respe
t to B in X 
orrespond to Borelsets with respe
t to ~B and sets of � measure 0 
orrespond to sets of ~� measure 0. Someasurability of Y implies ~�( ~Y n Y ) = 0.6. Prove Th.1.6.3.Hint: In the 
ase both spa
es are unit intervals with standard Lebesgue measure,
onsider all intervals J 0 with rational ends. J = T�1(J 0) is 
ontained in a Borel set BJwith �(BJ n J) = 0. Remove from X a Borel set of measure 0 
ontaining SJ (BJ n J).Then T be
omes a Borel map, hen
e it is a Baire fun
tion, hen
e due to the inje
tivity itmaps Borel sets to Borel sets.7. (a) Consider the unit square [0; 1℄�[0; 1℄ equipped with Lebesgue measure. For ea
hx 2 [0; 1℄ let Ax be the partition into points (x0; y) for x0 6= x and the interval fxg� [0; 1℄.What is VxAx ? Let Bx be the partition into the intervals fx0g� [0; 1℄ for x0 6= x and thepoints f(x; y) : y 2 [0; 1℄g. What is Vx Bx ?(b) Find two measurable partitions A;A0 of a Lebesgue spa
e su
h that their set-theoreti
 interse
tion (i.e. the largest partition su
h that A;A0 are �ner than it) is not40



measurable.8. Find an example of T : X ! X an endomorphism of a probability spa
e (X;F ; �),inje
tive and onto, su
h that for the system ::: T! X T! X, natural extension does notexist.Hint: Set X the unit 
ir
le and T irrational rotation. Let A be a set 
onsisting ofexa
tly one point in ea
h T -orbit. Set B = Sj�0 T j(A). Noti
e that B is not Lebesguemeasurable and that the outer measure of B is 1 (use unique ergodi
ity of T , i.e. that(1.2.1a) holds for every x)Let F be the �-algebra 
onsisting of all the sets C = B\D for D Lebesgue measurable,set �(C) = Leb(D), and of C � X n B, set then �(C) = 0. Note that Tn�0 Tn(B) = ;and in the set-theoreti
 inverse limit the set ��1�n(B) = ��10 (Tn(B)) would be of measure1 for every n � 0.9. (a) Prove that in a Lebesgue spa
e d(A;B) := H(AjB) + H(BjA) is a metri
 inthe spa
e Z of 
ountable partitions (mod 0) of �nite entropy. Prove that the metri
 spa
e(Z; d) is separable and 
omplete.(b) Prove that if T is an endomorphism of the Lebesgue spa
e, then the fun
tionA! h(T;A) is 
ontinuous for A 2 Z with respe
t to the above metri
 d.Hint: jh(T;A)� h(T;B)j � maxfH(AjB);H(BjA)g. Compare Proof of Th.1.4.5.9'. (a) Let d0(A;B) := Pi �(Ai � Bi) for partitions of a probability spa
e into rmeasurable sets A = fAi; i = 1; :::; rg and B = fBi; i = 1; :::; rg. Prove that for everyr and every d > 0 there exists d0 > 0 su
h that if A;B are partitions into r sets andd0(A;B) < d0, then d(A;B) < d(b) Using (a) give a simple proof of Corollary 1.8.7"'. (Hint: Given an arbitrary �niteA 
onstru
t B � Bm so that d0(A;B) be small for m large. Next use (a) and Theorem1.4.4.d).10. Prove that there exists a �nite generator for every T , a 
ontinuous positivelyexpansive map of a 
ompa
t metri
 spa
e (see the de�nition of positively expansive inCh.2, Se
.5).11. Compute the entropy h(T ) for Markov shifts.12. Prove that the entropy h(T ) de�ned either as supremum of H(T;A) over �-nite partitions, or over 
ountable partitions of �nite entropy, or as supH(�j��) over allmeasurable partitions � that are forward invariant (i.e. T�1(�) � �) is the same.13. Let T be an endomorphism of the 2-dimensional torus IR2=ZZ2, given by an integermatrix of determinant larger than 1 and with eigenvalues �1; �2 su
h that j�1j < 1 andj�2j > 1.Let S be the endomorphism of IR2=ZZ2 being the 
artesian produ
t of S1(x) = 2x (mod1) on the 
ir
le IR=ZZ and of S2(y) = y+ � (mod 1), the rotation by an irrational angle �.41



Whi
h of the maps T; S is exa
t? Whi
h has a 
ountable generator of �nite entropy?(Answer: T does not have the generator, but it is exa
t. The latter holds be
ause forea
h small parallelepiped P spanned by the eigendire
tions there exists n su
h that Tn(P )
overs the torus with multipli
ity bounded by a 
onstant not depending on P . See ??? Sis not exa
t, but it is ergodi
 and has a generator.)14. Prove that if the de�nition of partition A "-independent of partition B is repla
edbyPA2A;B2B j�(A\B)��(A)�(B)j, then the de�nition of weakly Bernoulli is equivalentto the old one. (Note that now the expression is symmetri
 with respe
t to A;B.)Bibliographi
al notes:For the Martingale Convergen
e Theorem see for example [Doob℄, [Billingsley, 1979℄,[Petersen℄ or [Stroo
k℄. Its standard proof goes via a maximal fun
tion. We followed thisway in Proof of Shannon, M
Millan, Breiman Theorem in Se
.5, L.1.5.1, where we reliedon [Petersen℄ and [Parry℄. Remark 1.1.2 is taken from [Neveu,Ch.4.3℄, see for example[Hoover℄ for a more advan
ed theory.Standard proofs of Birkho�'s Ergodi
 Theorem also use the idea of maximal fun
tion.This 
on
erns in parti
ular the extremaly simple proof in Se
. 2, whi
h has been takenfrom [KH℄.For the material of Se
.6 and related exer
ises see [Rohlin, 1949℄. It is also written inan elegant and a very 
on
ise way in [Cornfeld, Fomin, Sinai℄.The 
onsideration in Se
.7 leading to the extension of the 
ompatible family ~��;n to ~��is known as Kolmogoro� Theorem on the existen
e of sto
hasti
 pro
ess. First, one veri�es�-additivity of a measure on an algebra, next uses the Extension Theorem 1.7.2. Our proofof �-additivity of ~� on ~X via Lusin theorem is also a variant of Kolmogoro�'s proof. Theproofs of �-additivity on algebras depend unfortunately on topologo
al 
on
epts. Halmoswrote [Halmos, p. 212℄: "this pe
uliar and somewhat undesirable 
ir
umstan
e appears tobe unavoidable" Indeed the �-additivity may be not true, see [Halmos, p.214℄. Our exampleof non-existen
e of natural extension, Exer
ise 8, is in the spirit of Halmos' example. Theremight be troubles even with extending a measure from 
ylinders in produ
t of two measurespa
es, see [MR℄ for a 
ounterexample. On the other hand produ
t measures extend togenerated �-algebras without any additional assumptions [Halmos℄, [Billingsley, 1979℄.For Th.1.8.1: the existen
e of a 
ountable 
 su
h that A _ B = 
 _ B, see [Rohlin,1949℄; for the estimate that follows, see for example [Rohlin 1967℄ or [Parry℄. The simpleproof of Th.1.8.6 via 
onvergen
e in measure has been taken from [Rohlin 1967℄ and [Wa℄.Proof of Th.1.8.8 (b) is taken from [Rohlin, 1967, se
.8.10-11 and 9.8℄.For Th.1.9.6 see [Parry, L.10.5℄; our proof is di�erent. For the 
onstru
tion of generatorand 2-sided generator see again [Rohlin 1967℄,[Parry℄ or [CFS℄. The same are referen
esto the theory of measurable invariant partitions: exhausting and extremal, and to Pinskerpartition, whi
h we omitted be
ause we do not need these notions further in the book,but whi
h are fundamental to understand deeper the measure-theoreti
 entropy theory.Finally we en
ourage the reader to be
ome a
quainted with spe
tral theory in relation tomixing properties [CFS℄. 42
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CHAPTER 2ERGODIC THEORY ON COMPACT METRIC SPACESDe
.5, 1999 last revised Feb 24, 2002In the previous Chapter a measure preserved by a measurable map T was given a priori.Here a 
ontinuous mapping T of a topologi
al 
ompa
t spa
e is given and we look for variousmeasures preserved by T . Given a real 
ontinuous fun
tion � on X we try to maximizethe fun
tional measure theoreti
al entropy +integral, i.e. h�(T ) + R � d�. Supremumover all probability measures on the Borel �-algebra happens to be topologi
al pressure,similar to P in the prototype lemma on the �nite spa
e or P (�) for �� on the Cantor setdis
ussed in Introdu
tion. We dis
uss equilibria, namely measures on whi
h supremumis attained. This Chapter provides an introdu
tion to the theory 
alled thermodynami
alformalism, whi
h will be the main te
hni
al tool in this book. We shall 
ontinue tointrodu
e thermodynami
al formalism in more spe
i�
 situations in Chapter 4.x2.1 INVARIANT MEASURES FOR CONTINUOUS MAPPINGSWe re
all in this Se
tion basi
 fa
ts from fun
tional analysis to study the spa
e ofmeasures and invariant measures. We re
all Riesz representation theorem, weak� topology,S
hauder �xed point theorem. We re
all also Krein-Milman theorem on extremal pointsand its stronger form: Choquet representation theorem. This gives a variant of Ergodi
De
omposition Theorem from Chapter 1.Let X be a topologi
al spa
e. The Borel �-algebra B in subsets of X is de�ned asgenerated by open subsets of X. We 
all every probability measure on Borel �-algebra forX, a Borel probability measure on X. We denote the set of all su
h measures by M(X).Denote by C(X) the Bana
h spa
e of real 
ontinuous fun
tions on X with the supre-mum norm: j�j := supx2X j�(x)j. Sometimes we shall use the notation jj�jj1, introdu
edin Ch.1.1 in L1(�), though it is 
ompatible only if � is positive on open sets.Note that ea
h Borel probability measure � on X indu
es a bounded linear fun
tionalF� on C(X) de�ned by the formula(2.1.1) F�(�) = Z � d�:One 
an extend the notion of measure and 
onsider �-additive set fun
tion, anothername : signed measure. Just in de�nition of measure in Ch.1.1 
onsider � : F ! [�1;1)1



or � : F ! (�1;1℄ and keep the notation (X;F ; �) from Ch.1. The set of signedmeasures is a linear spa
e. On the set of �nite signed measures, namely with the range IR,one 
an introdu
e the following total variation norm:v(�) := sup nXi=1 j�(Ai)jsupremum taken over all �nite sequen
es of disjoint sets in F .It is easy to prove that every �nite signed measure is bounded and that it has �nitetotal variation. It is also not diÆ
ult to prove the followingTheorem 2.1.1. (Hahn-Jordan de
omposition). For every signed measure on a �-algebra F there exists A� 2 F and two measures �+ and �� su
h that � = �+ � ��; ��is zero on all measurable subsets of A�, �� is zero on all measurable subsets of X nA�.Noti
e that v(�) = �+(X) + ��(X).)A measure (or signed measure) is 
alled regular, if for every A 2 F and " > 0 thereexist E1; E2 2 F su
h that 
lE1 � A � intE2 and for every C 2 F ; C � E2 nE1 we havej�(C)j < ".If X is a topologi
al spa
e, denote the spa
e of all regular �nite signed measures asabove with the total variation norm by r
a(X). The abbreviation r
a repla
es regular
ountably additive.If F = B Borel �-algebra and X is metrizable, regularity holds for every �nite signedmeasure. It 
an be proved by Carath�eodory's outer measure argument, 
ompare Proof ofCorollary 1.8.7"'.Denote by C(X)� the spa
e of all bounded linear fun
tionals on C(X). This is 
alledthe dual spa
e. Bounded means here bounded on the unit ball in C(X), whi
h is equivalentto 
ontinuous. The spa
e C(X)� is equipped with the norm jjF jj = supfF (�) : � 2C(X); j�j � 1g, in whi
h it is a Bana
h spa
e.There is a natural order in r
a(X): �1 � �2 i� �2 � �1 is a measure.Also in the spa
e C(X)� one 
an distinguish positive fun
tionals, similarly to measuresin signed measures, as those whi
h are non-negative on the set of fun
tions C+(X) := f� 2C(X) : �(x) � 0 for every x 2 Xg. This gives the order: F � G for F;G 2 C(X)� i�G� F is positive.Remark that F 2 C(X)� is positive i� jjF jj = F (11), where 11 is the fun
tion on Xidenti
ally equal to 1. Also for every bounded linear operator F : CI(X)! C(X) whi
h ispositive, namely F (C+(X)) � C+(X), we have jjF jj = jF (11)j.Remark that (2.1.1) transforms measures to positive linear fun
tionals.2



The following fundamental theorem of F. Riesz says more about the transformation� 7! F� in (2.1.1) (see [DS, pp. 373,380℄ for the history of this theorem):Theorem 2.1.2 (Riesz representation theorem). If X is a 
ompa
t Hausdor�spa
e, the transformation � 7! F� de�ned by (2.1.1) is an isometri
 isomorphism betweenthe Bana
h spa
e C(X)� and r
a(X). Furthermore this isomorphism preserves order.In the sequel we shall often write � instead of F� and vi
e versa and �(�) or �� insteadof F�(�) or R � d�.Noti
e that in Theorem 2.1.2 the hard part is the existen
e, i.e. that for every F 2C(X)� there exists � 2 r
a(X) su
h that F = F�. The uniqueness is just the following:Lemma 2.1.3. If � and � are �nite regular Borel signed measures on a 
ompa
tHausdor� spa
e X, su
h that R � d� = R � d� for ea
h � 2 C(X), then � = �.Proof. This is an exer
ise on the use the regularity of � and �. Let � := ��� = �+��� in Hahn-Jordan de
omposition. Suppose that that � 6= �. Then �+ (or ��) is non-zero,say �+(X) = �+(A�) = " > 0, where A� is the set de�ned in Th.2.1.1. Let E1 be a 
losedset and E2 an open set, su
h that E1 � A� � E2 and ��(E2nA�) < "=3; �+(A�nE1) < "=3.There exists � 2 C(X) with values in [0; 1℄ identi
ally 1 on E1 and 0 on X n E2. ThenR � d� = RE1 � d� + RE2nA� � d� + RA�nE1 � d� � �+(E1)� "=3 � �+(A�)� 2"=3 > 0. |The spa
e C(X)� 
an be equipped with weak� topology. In the 
ase X is metrizable,i.e. if there exists a metri
 on X su
h that the topology indu
ed by this metri
 is theoriginal topology on X, weak� topology is 
hara
terized by the property that a sequen
efFn : n = 1; 2; : : :g of fun
tionals in C(X)� 
onverges to a fun
tional F 2 C(X)� if andonly if(2.1.2) limn!1Fn(�) = F (�)for every fun
tion � 2 C(X).If we do not assume X is metrizable, weak� topology is de�ned as the smallest onein whi
h all elements of C(X) are 
ontinuous on C(X)� (re
all that � 2 C(X) a
ts onF 2 C(X)� by F (f)). One says weak� to distinguish this topology from the weak topologywhere one 
onsiders all 
ontinuous fun
tionals on C(X)�, not only those represented byf 2 C(X). This dis
ussion of topologies 
on
erns of 
ourse every Bana
h spa
e B and itsdual B�.Using the bije
tion established by Riesz representation theorem we 
an move theweak� topology from C(X)� to r
a(X) and restri
t it to M(X). The topology on M(X)obtained in this way is usually 
alled weak� topology on the spa
e of probability measures(sometimes one omits � to simplify the language and notation but one still has in mindweak�, unless stated otherwise). In view of (2.1.2) if X is metrizable this topology is3




hara
terized by the property that a sequen
e f�n : n = 1; 2; : : :g of measures in M(X)
onverges to a measure � 2M(X) if and only if(2.1.3) limn!1 �n(�) = �(�)for every fun
tion � 2 C(X). Su
h 
onvergen
e of measures will be 
alled weak� 
onver-gen
e or weak 
onvergen
e and 
an be also 
hara
terized as follows.Theorem 2.1.4 Suppose that X is metrizable (we do not assume 
ompa
tness here). Asequen
e f�n : n = 1; 2; : : :g, of Borel probability measures on X 
onverges weakly to ameasure � if and only if limn!1 �n(A) = �(A) for every Borel set A su
h that �(�A) = 0.Proof. Suppose that �n ! � and �(�A) = 0. Then there exist sets E1 � intA;E2 �
lA su
h that �(E2 n E1) = " is arbitrarily small. Indeed metrizability of X implies thatevery open set, in parti
ular intA, is union of a sequen
e of 
losed sets and every 
losedset is an interse
tion of a sequen
e of open sets. For example intA = S1n=1fx 2 X :infz =2intA �(x; z) � 1=ng for a metri
 �.Next, there exist f; g 2 C(X) with range in the unit interval [0; 1℄ su
h that f isidenti
ally 1 on E1, 0 on X n intA, g identi
ally 1 on 
lA and 0 on X nE2. Then �n(f)!�(f) and �n(g) ! �(g). As �(E1) � �(f) � �(g) � �(E2) and �n(f) � �n(A) � �n(g)we obtain �(E1) � �(f) = limn!1 �n(f) � lim infn!1 �n(A)� lim supn!1 �n(A) � limn!1 �n(g) = �(g) � �(E2):As also �(E1) � �(A) � �(E2) we obtain, letting "! 0, limn!1 �n(A) = �(A).Proof in the opposite dire
tion follows from the de�nition of integral: approximateuniformly an arbitrary 
ontinuous fun
tion f by simple fun
tions Pki=1 "i11Ei where Ei =fx 2 X : "i � f(x) < "i+1g, for an in
reasing sequen
e "i; i = 1; :::; k su
h that "i�"i�1 < "and �(f�1(f"ig)) = 0, with " ! 0. This is possible to �nd su
h numbers "i be
ause only
ountably many sets f�1(a) for a 2 IR 
an have non-zero measure. |Example 2.1.5 The assumption �(�A) = 0 is substantial. Let X be the interval[0; 1℄. Denote by Æx the Dira
 measure 
on
entrated at the point x, whi
h is de�ned bythe following formula: Æx(A) = � 1; if x 2 A0; if x =2 Afor all sets A 2 B .Consider non-atomi
 probability measures �n supported respe
tively on the ballB(x; 1n ). The sequen
e �n 
onverges weakly to Æx but does not 
onverge on fxg.Of parti
ular importan
e is the following 4



Theorem 2.1.6. The spa
e M(X) is 
ompa
t in weak� topology.This theorem follows immediately from 
ompa
tness in weak� topology of any subset ofC(X)� 
losed in weak� topology, whi
h is bounded in the standard norm of the dual spa
eC(X)� (
ompare for example [DS, V.4.3℄, where this result is proved for all spa
es dual toBana
h spa
es) and from the way we introdu
ed the weak topology on M(X).It turns out (see [DS, V.5.1℄) that if X is 
ompa
t metrizable, the spa
e C(X)� withweak� topology is metrizable, hen
e in parti
ular M(X) is metrizable.Let now T : X ! X be a 
ontinuous transformation of X. The mapping T is measurablewith respe
t to the Borel �-algebra. In the very begining of Chap.1.2 we have de�ned T -invariant meaures � to satisfy the 
ondition � = � Æ T�1. It means that Borel probabilityT -invariant meaures are exa
tly �xed points of the transformation T� : M(X) ! M(X)de�ned by the formula T�(�) = � Æ T�1. It easily follows from the de�nitions that T� is
ontinuous.We denote the set of all T -invariant measures in M(X) by M(X;T ). This notationis 
onsistent with the notation from Chapter 1.2. We omit here �-algebra F be
ause it isalways Borel B.Noting that R � d(�ÆT�1) = R �ÆT d� for any � 2M(X) and any integrable fun
tion �(Prop. 1.2.0), it follows from Lemma 2.1.3 that a Borel probability measure � is T -invariantif and only if for every 
ontinuous fun
tion � : X ! IR(2.1.4) Z � d� = Z � Æ T d�:In order to look for �xed points for T� one 
an apply the following very general resultwhose proof (and the de�nition of lo
ally 
onvex topologi
al ve
tor spa
es, abbreviation:LCTVS) 
an be found for example in [DS℄ or [Edwards℄.Theorem 2.1.7. (S
hauder-Ty
hono� theorem [DS, V.10.5) If K is a non-empty 
ompa
t
onvex subset of an LCTVS then any 
ontinuous transformation H : K ! K has a �xedpoint.Assume from now on that X is 
ompa
t, metrizable. To apply S
hauder-Ty
hono� theorem 
onsider the LCTVS C(X)� with weak� topology and K � C(X)�,being the image ofM(X) under the identi�
ation between measures and fun
tionals, givenby Riesz representation theorem. Move also T� to K with the use of this identi�
ation.Note that the resulting 
ontinuous linear operator, denote it also by T�, 
onjugate to� 7! � Æ T , restri
ted to K, is 
ontinuous also in the weak� topology. This is an easy fa
tabout 
onjugate operators. We obtain 5



Theorem 2.1.8. (Bogolyubov{Krylov theorem [Walters, 6.9.1℄) There exists a Borelprobability measure � invariant under T .Thus, our M(X;T ) is non-empty. It is also weak� 
ompa
t, sin
e it is 
losed as theset of �xed points for a 
ontinuous transformation.As an immediate 
onsequen
e of this theorem and Theorem 1.8.8 (Ergodi
 De
ompo-sition Theorem), we get the following:Corollary 2.1.9. There exists a Borel ergodi
 probability measure � invariant under T .We shall use the notation Me(X;T ) for the set of all ergodi
 measures in M(X;T ).Write also E(M(X;T )) for the set of extreme points in M(X;T ).Thus, in view of Theorem 1.2.5 and Corollary 2.1.9, we know that Me(X;T ) =E(M(X;T )) 6= ;.In fa
t Corollary 2.1.9 
an be obtained in a more elementery way without using The-orem 1.8.8. Namely it now immediately follows from Theorem 1.2.5 and the followingTheorem 2.1.10. (Krein{Milman theorem on extremal points [DS, V.8.4℄) If K is a non-empty 
ompa
t 
onvex subset of an LCTVS then the set E(K) of extreme points of K isnonempty and moreover K is the 
losure of the 
onvex hull of E(K).Below we state Choquet representation theorem whi
h is stronger than Krein-Milmantheorem. It 
orresponds to the Ergodi
 De
omposition Theorem (Th. 1.8.8). We formulateit in C(X)� with weak� topology as in [Walters, p.153℄. The reader 
an �nd a generalLCTVS version for example in [Edwards℄. We rely here also on [Ruelle, Appendix A.5℄,where the reader 
an �nd further referen
es.Theorem 2.1.11. Choquet representation theorem. Let K be a nonempty 
ompa
t
onvex set in M(X) with weak� topology. Then for every � 2 K there exists a "massdistribution" i.e. measure �� 2M(E(K)) su
h that� = Z md��(m):This integral 
onverges in weak� topology whi
h means that for every f 2 C(X)(2.1.5) �(f) = Z m(f) d��(m):Noti
e that we have had already the formula analogous to (2.1.5) in Theorem 2.1.6.Noti
e that Krein-Milman theorem follows from Choquet representation theorem be-
ause one 
an weakly approximate �� by measures on E(K) with �nite support (�nitelinear 
ombinations of Dira
 measures). 6



Example. 2.1.12. For K = M(X) we have E(K) = fDira
 measures on Xg. Then��fÆx : x 2 Ag = �(A) for every A 2 B de�nes a Choquet representation for every� 2M(X). (Exer
ise)Choquet theorem asserts the existen
e of �� satisfying (2.1.5) but not uniqueness,whi
h is usually not true. A 
ompa
t 
losed set K with the uniqueness of �� satisfying(2.1.5), for every � 2M(K) is 
alled symplex.Theorem 2.1.13. K = M(X) or K = M(X;T ) for every 
ontinuous T : X ! X isa symplex.Proof in the 
ase of K = M(X) is very easy, see Example 2.1.12. A proof for K =M(X;T ) is also not hard. The reader 
an look in [Ruelle, A.5.5℄. Proof relies on thefa
t that two di�erent measures �1; �2 2 E(M(X;T )) are singular (see Theorem 1.2.3).Observe that jj�1 � �2jj = 2.One proves in fa
t that for every �1; �2 2M(X;T ), jj��1 � ��2 jj = jj�1 � �2jj.Let us go ba
k to S
hauder-Ty
hono� theorem (Th 2.1.7). We shall use it in this booklater, in Chapter 4 Se
.2, for maps di�erent from T�. Just Bogolyubov-Krylov theoremproved above with the help of Theorem 2.1.7, has a di�erent more elementary proof dueto the fa
t that T� is aÆne. A general theorem on the existen
e of a �xed point for afamily of 
ommuting 
ontinuous aÆne maps on K is 
alled Markov-Kakutani theorem ,[DS, V.10.6℄, [Walters, 6.9℄).2.1.14. An alternative proof of Theorem 2.1.8. Take an arbitrary � 2 M(X) and
onsider the sequen
e �n = �n(�) = 1n n�1Xj=0 T j� (�)In view of Theorem 2.1.4 it has a weakly 
onvergent subsequen
e, say f�nk : k = 1; 2; : : :g.Denote its limit by �. We shall show that � is T -invariant.We have T�(�nk) = T�( 1nk nk�1Xj=0 T j� (�)) = ( 1nk nk�1Xj=0 T j+1� (�))So for every � 2 C(X) we havej�(�)� T�(�(�))j = j limk!1��nk(�)� T�(�nk)(�)j� �limk!1 1nk j�(�)� Tnk� (�)(�)j � limk!1 2nk j�j = 0:This in view of Lemma 2.1.3 �nishes the proof. |7



Remark. If in the above proof we 
onsider � = Æx, a Dira
 measure, then T j� (Æx) =ÆT j(x) and �n(�) = 1nPn�1j=0 �(T j(x)). If we have a priori � 2M(X;T ) then�n(Æx) = 1n n�1Xj=0 ÆT j(x)is weakly 
onvergent for �-a.e.x 2 X by Birkho� ergodi
 theorem.Remark. Re
all that in Birkhof ergodi
 theorem (Chapter 1), for � 2 M(X;T )for every integrable f one 
onsiders limn!1 1nPn�1j=0 �(T j(x)) for a.e. x. This "almostevery" depends on f . If X is 
ompa
t, as in this Chapter, one 
an reverse the order ofquanti�
ators for 
ontinuous fun
tions.Namely there exists � 2 B su
h that �(�) = 1 and for every f 2 C(X) and x 2 � thelimit limn!1 1nPn�1j=0 f(T j(x)) exists.Remark. We 
ould take in 2.1.14 an arbitrary sequen
e �n 2M(X) and take �n :=�n(�n). This gives a general method of 
onstru
ting measures inM(X;T ), see for exampleProof of Variational prin
iple in Se
tion 4. (This point of view is taken from [Walters℄).We end this Se
tion with the following Lemma useful in the sequel.Lemma 2.1.15. For every �nite partition P of the spa
e (X;B; �) where X as aboveis a metrizable 
ompa
t spa
e, B is Borel �-algebra and � 2M(X;T ), ifPA2P �(�A) = 0,then the entropy H�(P) is a 
ontinuous fun
tion of � 2M(X;T ) at �. The entropy h�(T;P)is upper semi
ontinuous at �.Proof. The 
ontinuity of H�(P) follows immediately from Theorem 2.1.4. Thisapplied to the partitions Wn�1i=1 T�iP gives the upper semi
ontinuity of h�(T;P) as thelimit of the de
reasing sequen
e of 
ontinuous fun
tions 1nH�(Wn�1i=1 T�iP). See Lemma1.4.3. |

8



x2.2 TOPOLOGICAL PRESSURE AND TOPOLOGICAL ENTROPYThis se
tion is of topologi
al 
hara
ter and no measure is involved. We introdu
e andexamine here some basi
 topologi
al invariants 
oming from thermodynami
 formalism ofstatisti
al physi
s.Let U = fAigi2I and V = fBjgj2J be two 
overs of the 
ompa
t metri
 spa
e X 
onsideredin the previous se
tion. We de�ne the new 
over U _ V putting(2.2.1) U _ V = fAi \ Bj : i 2 I; j 2 Jgand we write(2.2.2) U � V () 8j2J 9i2I Bj � AiLet, as in the previous se
tion, T : X ! X be a 
ontinuous transformation of X. Let� : X ! IR be a 
ontinuous fun
tion, frequently 
alled it potential and let U be a �nite,open 
over of X. For every integer n � 1 we setUn = U _ T�1(U) _ : : : _ T�(n�1)(U);for every set Y � X Sn�(Y ) = sup�n�1Xk=0 � Æ T k(x) : x 2 Y 	and for every n � 1(2.2.3) Zn(�;U) = infV �XU2V expSn�(U)	where V ranges over all 
overs of X 
ontained (in the sense of in
lusion) in Un. Thequantity Zn(�;U) is sometimes 
alled the partition fun
tion.Lemma 2.2.1. The limit P(�;U) = limn!1 1n logZn(�;U) exists and moreover it is �nite.In fa
t P(�;U) � �jj�jj1.Proof. Fix m;n � 1 and 
onsider arbitrary 
overs V � Um, G � Un of X. If U 2V andV 2G then Sm+n�(U \ T�m(V )) � Sm�(U) + Sn�(V )and thus exp�Sm+n�(U \ T�m(V ))� � expSm�(U) expSn�(V )Sin
e U \ T�m(V ) 2 V _ T�m(G) � Um _ T�m(Un) = Um+n, we therefore obtainZm+n(�;U) �XU2VXV2G exp�Sm+nf(U \ T�m(V ))� �XU2VXV2G expSm�(U) expSn�(V )=XU2V expSm�(U)�XV2G expSn�(V )(2.2.4) 9



Ranging now over all V and G as spe
i�ed in de�nition (2.2.3) we get Zm+n(�;U) �Zm(�;U) � Zn(�;U) whi
h implies thatlogZm+n(�;U) � logZm(�;U) + logZn(�;U):Moreover, Zn(�;U) � exp(�njj�jj1). So, logZn(�;U) � �njj�jj1 and applying nowLemma 1.4.3 �nishes the proof. |Noti
e that, although in the notation P(�;U), the transformation T does not dire
tlyappear, however this quantity depends obviously also on T . If we want to indi
ate thisdependen
e we write P(T; �;U) and similarly Zn(T; �;U) for Zn(�;U). Given an open
over V of X let os
(�;V) = supV 2V�supfj�(x)� �(y)j : x; y 2 V g�:Lemma 2.2.2. If U and V are �nite open 
overs of X su
h that U � V, then P(�;U) �P(�;V)� os
(�;V).Proof. Take U 2 Un. Then there exists V = i(U) 2 Vn su
h that U � V . For everyx; y 2 V we have jSn�(x)� Sn�(y)j � os
(�;V)n and therefore(2.2.5) Sn�(U) � Sn�(V )� os
(�;V)nLet now G � Un be a 
over of X and let ~G = fi(U) : U 2 Ung. The family ~G is also anopen �nite 
over of X and ~G � Vn. In view of (2.2.5) and (2.2.3) we getXU2G expSn�(U) �XV2~G expSn�(V )e�os
(�;V)n � e�os
(�;V)nZn(�;V)Therefore applying (2.2.3) again, we get Zn(�;U) � exp(�os
(�;V)n)Zn(�;V). Hen
eP(�;U) � P(�;V)� os
(�;V).De�nition 2.2.3. Consider now the family of all sequen
es fVn : n = 1; 2; : : :g of open�nite 
overs of X su
h that(2.2.6) limn!1 diam(Vn) = 0and de�ne the topologi
al pressure P(T; �) as the supremum of upper limitslim supn!1 P(�;Vn)taken over all su
h sequen
es. Noti
e that by Lemma 2.2.1, P(T; �) � �jj�jj1.The following lemma gives us a simpler way to 
al
ulate topologi
al pressure showing thatin fa
t in its de�nition we do not have to take the supremum.Lemma 2.2.4. If fUn : n = 1; 2; : : :g is a sequen
e of open �nite 
overs of X su
h thatlimn!1 diam(Un) = 0, then the limit limn!1 P(�;Un) exists and equals P(T; �).10



Proof. Assume �rst that P(T; �) is �nite and �x " > 0. By the de�nition of pressure anduniform 
ontinuity of � there exists W, an open 
over of X, su
h that(2.2.7) os
(�;W) � "2 and P(�;W) � P(T; �)� "2 :Fix now q � 1 so large that for all n � q, diam(Un) does not ex
eed a Lebesgue numberof the 
over W. Take n � q. Then Un � W and applying (2.2.7) and Lemma 2.2.2 we get(2.2.8) P(�;Un) � P(�;W)� "2 � P(T; �)� "2 � "2 = P(T; �)� ":Hen
e, letting " ! 0, lim infn!1 P(�;Un) � P(T; �). This �nishes the proof in the 
aseof �nite pressure P(T; �). Noti
e also that a
tually the same proof goes through in thein�nite 
ase. |Sin
e in the de�nition of numbers P(�;U) no metri
 is involved, they do not depend on a
ompatible metri
 under 
onsideration. And sin
e also the 
onvergen
e to zero of diametersof a sequen
e of subsets of X does not depend on a 
ompatible metri
, we 
ome to the
on
lusion that the topologi
al pressure P(T; �) is independent of any 
ompatible metri
(depends of 
ourse on topology).The reader familiar with dire
ted sets will noti
e easily that the family of all �nite open
overs U of X equipped with the relation "�" is a dire
ted set and topologi
al pressureP(T; �) is the limit of the generalized sequen
e P(�;U). However we 
an assure him/herthat this remark will not be used anywhere in this book.If the fun
ion � is identi
ally zero, the pressure P(T; �) is usually 
alled topologi
al entropyof the map T and is denoted by htop(T ).In the rest of this se
tion we establish basi
 elementary properties of pressure and provideits more e�e
tive 
hara
terizations. Applying Lemma 2.2.2 we obtainCorollary 2.2.5. If U is a �nite, open 
over of X, then P(T; �) � P(�;U)� os
(�;U).Lemma 2.2.6. P(Tn; Sn�) = nP(T; �) for every n � 1. In parti
ular htop(Tn) =nhtop(T ).Proof. Put g = Sn�. Take U , a �nite open 
over of X. Let U = U _ T�1(U) _ : : : _T�(n�1)(U). Sin
e now we a
tually deal with two separate transformations T and Tn,we do not use the symbol Un just to avoid possible misunderstandings. For any m � 1
onsider an open set U 2 U_T�1(U)_: : :_T�(nm�1)(U) = U_T�n(U)_: : :_T�n(m�1)(U).Then for every x 2 U we havemn�1Xk=0 � Æ T k(x) = m�1Xk=0 g Æ Tnk(x)and therefore Smn�(U) = Smg(U), where the symbol Sm is 
onsidered with respe
t tothe map Tn. Hen
e Zmn(T; �;U) = Zm(Tn; g;U) and this implies that P(Tn; g;U) =11



nP(T; �;U). Sin
e given a sequen
e Uk of open 
overs of X whose diameters 
onverge tozero, the diameters of the sequen
e of its re�nements Uk also 
onverge to zero, applyingnow Lemma 2.2.4 �nishes the proof. |Lemma 2.2.7. If T : X ! X and S : Y ! Y are 
ontinuous mappings of 
ompa
t metri
spa
es and � : X ! Y is a 
ontinuous surje
tion su
h that S Æ � = � Æ T , then for every
ontinuous fun
tion � : Y ! IR we have P(S; �) � P(T; � Æ �).Proof. For every �nite, open 
over U of Y we get(2.2.9) P(S; �;U) = P(T; � Æ �; ��1(U)):In view of Corollary 2.2.5 we have(2.2.10)P(T; � Æ �) � P(T; � Æ �; ��1(U))� os
(� Æ �; ��1(U)) = P(T; � Æ �; ��1(U))� os
(�;U)Let fUn : n = 1; 2; : : :g, be a sequen
e of open �nite 
overs of Y whose diameters 
onvergeto 0. Then also limn!1 os
(�;Un)) = 0 and therefore, using Lemma 2.2.4, (2.2.9) and(2.2.10) we obtainP(S; �) = limn!1P(S; �;Un) = limn!1P(T; � Æ �; ��1(Un)) � P(T; � Æ �)The proof is �nished. |In the sequel we will need the following te
hni
al result.Lemma 2.2.8. If U is a �nite open 
over of X then P(�;Uk) = P(�;U) for every k � 1.Proof. Fix k � 1 and let 
 = supfjSk�1�(x)j : x 2 Xg. Sin
e Sk+n�1�(x) = Sn�(x) +Sk�1�(Tn(x)) for every n � 1 and x 2 X we getSn�(x)� 
 � Sk+n�1�(x) � Sn�(x) + 
and therefore for every n � 1 and every U 2 Uk+n�1Sn�(U)� 
 � Sk+n�1�(U) � Sn�(U) + 
Sin
e (Uk)n = Uk+n�1, these inequalities imply thate�
Zn(�;Uk) � Zn+k�1(�;U) � e
Zn(�;Uk):Letting now n!1, we get the result required. |x2.2a PRESSURE ON COMPACT METRIC SPACESLet � is a metri
 on X. For every n � 1 we de�ne on X the new metri
 �n by putting�n(x; y) = maxf�(T j(x); T j(y)) : j = 0; 1; : : : ; n� 1g12



Given r > 0 and x 2 X by Bn(x; r) we denote the open ball in the metri
 �n 
enteredat x and of radius r. Let " > 0 and let n � 1 be an integer. A set F � X is said to be(n; ")-spanning if and only if the family of balls fBn(x; ") : x 2 Fg 
overs the spa
e X.A set S � X is said to be (n; ")-separated if and only if �n(x; y) � " for any pair x; y ofdi�erent points in S. The following fa
t is obvious.Lemma 2.2.9. Every maximal in the sense of in
lusion (n; ")-separated set forms an(n; ")-spanning set.We would like to emphasize here that the world maximal refering to separated sets will bein this book always understood in the sense of in
lusion and not in the sense of 
ardinality.We �nish this se
tion with the following 
hara
terization of pressure.Theorem 2.2.10. For every " > 0 and every n � 1 let Fn(") be a maximal (n; ")-separatedset in X. ThenP(T; �) = lim"!0 lim supn!1 1n log Xx2Fn(") expSn�(x) = lim"!0 lim infn!1 1n log Xx2Fn(") expSn�(x)Proof. Fix " > 0 and let U(") be a �nite 
over of X by open balls of radii "=2. For anyn � 1 
onsider U , a sub
over of U(")n su
h thatZn(�;U(")) =XU2U expSn�(U);where Zn(�;U(")) was de�ned by formula (2.2.3). For every x 2 Fn(") let U(x) be anelement of U 
ontaining x. Sin
e Fn(") is an (n; ")-separated set, we dedu
e that thefun
tion x 7! U(x) is inje
tive. ThereforeZn(�;U(")) =XU2U expSn�(U) � Xx2Fn(") expSn�(U(x)) � Xx2Fn(") expSn�(x):Thus by Lemma 2.2.1P(�;U(")) � lim supn!1 1n log Xx2Fn(") expSn�(x):Hen
e, letting "! 0 and applying Corollary 2.2.4 we get(2.2.11) P(T; �) � lim sup"!0 lim supn!1 1n log Xx2Fn(") expSn�(x):Let now V be an arbitrary �nite open 
over of X and let Æ > 0 be a Lebesgue number ofV. Take " < Æ=2. Sin
e for any k = 0; 1; : : : ; n� 1 and for every x 2 Fn(")diam�T k(Bn(x; "))� � 2" < Æ;13



we 
on
lude that for some Uk(x) 2 VT k(Bn(x; ")) � Uk(x)Sin
e the family fBn(x; ") : x 2 Fn(")g 
overs X (by Lemma 2.2.9), it implies that thefamily fU(x) : x 2 Fn(")g � Vn also 
overs X, where U(x) = U0(x) \ T�1(U1(x)) \ : : : \T�(n�1)(Un�1(x)). ThereforeZn(�;V) � Xx2Fn(") expSn�(U(x)) � exp�os
(�;V)n) Xx2Fn(") expSn�(x)Hen
e P(�;V) � os
(�;V) + lim infn!1 1n log Xx2Fn(") expSn�(x)and 
onsequentlyP(�;V)� os
(�;V) � lim inf"!0 lim infn!1 1n log Xx2Fn(") expSn�(x):Letting diam(V)! 0 and applying Corollary 2.2.4 we getP(T; �) � lim inf"!0 lim infn!1 1n log Xx2Fn(") expSn�(x):Combining this and (2.2.11) �nishes the proof. |Frequently the limits lim supn!1 1n log Xx2Fn(") expSn�(x)and lim infn!1 1n log Xx2Fn(") expSn�(x)will be denoted respe
tively by P(T; �; ") and P(T; �; "). A
tually these depend also onthe sequen
e fFn(") : n = 1; 2; : : :g of maximal (n; ")-separated sets under 
onsideration.However it will be always 
lear from the 
ontext whi
h su
h sequen
e is meant.x2.3 VARIATIONAL PRINCIPLEIn this se
tion we shall prove the following theorem, 
alled variational prin
iple, whi
h hasa long history and whi
h establishes an interesting relationship between measure-theoreti
dynami
s and topologi
al dynami
s. 14



Theorem 2.3.1. (Variational prin
iple) If T : X ! X is a 
ontinuous transformation ofa 
ompa
t metri
 spa
e X and � : X ! IR is a 
ontinuous fun
tion thenP(T; �) = sup�h�(T ) + Z � d� : � 2M(T )� ;where M(T ) denotes the set of all Borel probability T -invariant measures on X.The proof of this theorem 
onsists of two parts. In the Part I we show that h�(T )+R � d� �P(T; �) for every measure � 2 M(T ) and the Part II is devoted to proving inequalitysupfh�(T ) + R � d� : � 2M(T )g � P(T; �).Proof of Part I. Let � 2 M(T ). Fix " > 0 and 
onsider a �nite partition U =fA1; : : : ; Asg of X into Borel sets. One 
an �nd 
ompa
t sets Bi � Ai, i = 1; 2; : : : ; s, su
hthat for the partition V = fB1; : : : ; Bs; X n (B1 [ : : : [Bs)g we haveH�(UjV) � ";where the 
onditional entropy H�(UjV) has been de�ned in (1.3.3).Therefore, as in the proof of Theorem 1.4.4 (d) we get for every n � 1(2.3.1) H�(Un) � H�(Vn) + n":Our �rst aim is to estimate from above the number H�(Vn) + R Sn� d�. Putting bn =PB2Vn expSn�(B), keeping notation k(x) = �x log x and using 
on
avity of the fun
tionlogarithm we obtain by Jensen inequalityH�(Vn) + Z Sn� d� � XB2Vn �(B)�Sn�(B)� log�(B)�= XB2Vn �(B) log�eSn�(B)=�(B)�� log� XB2Vn eSn�(B)�(2.3.2)(
ompare the Lemma in Introdu
tion).Take now 0 < Æ < 12 inff�(Bi; Bj) : 1 � i 6= j � sg > 0 so small that(2.3.3) j�(x)� �(y)j < "if �(x; y) < Æ. Consider an arbitrary maximal (n; Æ)-separated set En(Æ). Fix B 2 Vn.Then, by Lemma 2.2.9, for every x 2 B there exists y 2 En(Æ) su
h that x 2 Bn(y; Æ),when
e jSn�(x)�Sn�(y)j � "n by (2.3.3). Therefore, using �niteness of the set En(Æ), wesee that there exists y(B) 2 En(Æ) su
h that(2.3.4) Sn�(B) � Sn�(y(B)) + "n15



and B \Bn(y(B); Æ) 6= ;:The de�nitions of Æ and partition V imply that for every z 2 X#fB 2 V : B \B(z; Æ) 6= ;g � 2Thus #fB 2 Vn : B \ Bn(z; Æ) 6= ;g � 2nTherefore the fun
tion Vn 3 B 7! y(B) 2 En(Æ) is at most 2n to 1. Hen
e, using (2.3.4),2n Xy2En(Æ) expSn�(y) � XB2Vn exp�Sn�(B)� "n� = e�"n XB2Vn expSn�(B)Taking now the logarithms of both sides of this inequality, dividing them by n and applying(2.3.2), we getlog 2 + 1n log� Xy2En(Æ) expSn�(y)� � �"+ 1n log� XB2Vn expSn�(B)�� 1nH�(Vn) + 1n Z Sn� d�� ":So, by (2.3.1),1n log� Xy2En(Æ) expSn�(y)� � 1nH�(Un) + Z � d�� (2"+ log 2):In view of the de�nition of entropy h�(T;U) presented just after Lemma 1.4.2, by lettingn!1, we get P(T; �; Æ) � h�(T;U) + Z � d�� (2"+ log 2):Applying now Theorem 2.2.10 with Æ ! 0 and next letting " ! 0 and taking supremumover all Borel partitions U lead us to the followingP(T; �) � h�(T ) + Z � d�� log 2:And applying with every n � 1 this estimate to the transformation Tn and the fun
tionSn� we obtain P(Tn; Sn�) � h�(Tn) + Z Sn� d�� log 2or equivalently, by Lemma 2.2.6 and Theorem 1.4.6(a)nP(T; �) � nh�(T ) + n Z � d�� log 216



Dividing both sides of this inequality by n and letting then n ! 1, the proof of Part Ifollows. |In the proof of part II we will need the following two lemmas.Lemma 2.3.2. If � is a Borel probability measure on X, then for every " > 0 there existsa �nite partition A su
h that diam(A) � " and �(�A) = 0 for every A 2 A.Proof. Let E = fx1; : : : ; xsg be an "=4-spanning set (that is with respe
t to the metri
� = �0) of X. Sin
e for every i 2 f1; : : : ; sg the sets fx : �(x; xi) = rg, "=4 < r < "=2, are
losed and mutually disjoint, only 
ountably many of them 
an have positive measure �.Hen
e, there exists "=4 < t < "=2 su
h that for every i 2 f1; : : : ; sg(2.3.5) �(fx : �(x; xi) = tg) = 0De�ne indu
tively the sets A1; A2; : : : ; As putting A1 = fx : �(x; x1) � tg and for everyi = 2; 3; : : : ; s Ai = fx : �(x; xi) � tg n (A1 [A2 [ : : : [Ai�1)The family U = fA1; : : : ; Asg is a partition of X with diameter not ex
eeding ". Using(2.3.5) and noting that generally �(A n B) � �A [ �B, we 
on
lude by indu
tion that�(�Ai) = 0 for every i = 1; 2; : : : ; s. |Proof of Part II. Fix " > 0 and let En("), n = 1; 2; : : :, be a sequen
e of maximal(n; ")-separated set in X. For every n � 1 de�ne measures�n = Px2En(") Æx expSn�(x)Px2En(") expSn�(x) ; mn = 1n n�1Xk=0 �n Æ T�kwhere Æx denotes the Dira
 measure 
on
entrated at the point x (see (2.1.2)). Let fni; i =1; 2; : : :g be an in
reasing sequen
e su
h that mni 
onverges weakly, say to m and(2.3.9) limi!1 1ni log Xx2Eni (") expSn�(x) = lim supn!1 1n log Xx2En(") expSn�(x)Clearly m 2 M(T ). In view of Lemma 2.3.2 there exists a �nite partition 
 su
h thatdiam(
) � " and �(�G) = 0 for everyG 2 
. For any n � 1 put gn =Px2En(") expSn�(x).Sin
e #(G \ En(")) � 1 for every G 2 
n, we obtainH�n(
n) + Z Sn� d�n = Xx2En(")�� log�n(x) + Sn�(x)��n(x)= Xx2En(") expSn�(x)gn �Sn�(x)� log�expSn�(x)gn ��= g�1n Xx2En(") expSn�(x)�Sn�(x)� Sn�(x) + log gn� = log gn(2.3.10) 17



Fix now M 2 IN and n � 2M . For j = 0; 1; : : : ;M � 1 let s(j) = E(n�jM )� 1, where E(x)denotes the integer part of x. Note thats(j)_k=0T�(kM+j)
M = T�j
 _ : : : _ T�(s(j)M+j)�(M�1)
 = T�j
 _ : : : _ T�((s(j)+1)M+j�1)
and (s(j) + 1)M + j � 1 � n� j + j � 1 = n� 1Therefore, setting Rj = f0; 1; : : : ; j � 1; (s(j) + 1)M + j; : : : ; n� 1g, we 
an write
n = s(j)_k=0T�(kM+j)
M _ _i2Rj T�i
:Hen
e H�n(
n) � s(j)Xk=0H�n�T�(kM+j)
M�+ H�n� _i2Rj T�i
�� s(j)Xk=0H�nÆT�(kM+j)(
M) + log�#( _i2Rj T�i
)�:Summing now over all j = 0; 1; : : : ;M � 1 we then getMH�n(
n) � M�1Xj=0 s(j)Xk=0H�nÆT�(kM+j)(
M) + M�1Xj=0 log�#
#Rj�� n�1Xl=0 H�nÆT�l(
M) + 2M2 log#
 � nH 1nPn�1l=0 �nÆT�l(
M ) + 2M2 log#
:And applying (2.3.10) we obtainM log� Xx2En(") expSn�(x)� � nHmn(
M) +M Z Sn� d�n + 2M2 log#
Dividing both sides of this inequality by Mn, we get1n log� Xx2En(") expSn�(x)� � 1MHmn(
M) + Z � dmn + 2Mn log#
:Sin
e �T�1(A) � T�1(�A) for every set Aj � X, the measure m of the boundaries ofthe partition 
M is equal to 0. Letting therefore n ! 1 along the subsequen
e fnig we
on
lude from this inequality, (2.3.7) and Lemma 2.1.15 thatP(T; �; ") � 1MHm(
M ) + Z � dm:18



Now letting M !1 we getP(T; �; ") � hm(T; 
) + Z � dm � sup�h�(T ) + Z � d� : � 2M(T )� :Applying �nally Theorem 2.2.10 and letting "& 0, we get the desired inequality. |Corollary 2.3.4. Under assumptions of Theorem 2.3.1P(T; �) = supfh�(T ) + Z � d� : � 2Me(T )g;where Me(T ) denotes the set of all Borel ergodi
 probability T -invariant measures on X.Proof. Let � 2 M(T ) and let f�x : x 2 Xg be the ergodi
 de
omposition of �. Thenh� = R h�x d�(x) and R � d� = R (R � d�x) d�(x). Thereforeh� + Z � d� = Z �h�x + Z � d�x� d�(x)and 
onsequently there exists x 2 X su
h that h�x + R � d�x � h� + R � d� whi
h �nishesthe proof. |Corollary 2.3.5. If T : X ! X is a 
ontinuous transformation of a 
ompa
t metri
 spa
eX, � : X ! IR is a 
ontinuous fun
tion and Y is a forward invariant subset of X (i.e.T (Y ) � Y ), then P(T jY ; �jY ) � P(T; �).Proof. The proof follows immediatly from Theorem 2.3.1 by the remark that ea
h T jY -invariant measure on Y 
an be treated as a measure on X and is T -invariant. |x2.4 EQUILIBRIUM STATES AND EXPANSIVE MAPSWe keep in this se
tion the notation of the previous one. A measure � 2M(T ) is 
alled anequilibrium state for the transformation T and fun
tion � if P(T; �) = h�(T )+R � d�. Theset of all those measures will be denoted by E(�). In the 
ase � = 0 the equilibrium statesare also 
alled as maximal measures. Similarly (in fa
t even easier) as Corollary 2.3.5 one
an prove the following.Proposition 2.4.1 If E(�) 6= ; then E(�) 
ontains ergodi
 measures.As the following example shows there exist transformations and fun
tions whi
h admit noequilibrium states.Example 2.4.2. Let fTn : Xn ! Xngn�1 be a sequen
e of 
ontinuous mappings of
ompa
t metri
 spa
es Xn su
h that for every n � 1(2.4.1) htop(Tn) < htop(Tn+1) and supn htop(Tn) <119



The disjoint union �1n=1Xn of the spa
es Xn is a lo
ally 
ompa
t spa
e and let X =f!g[�1n=1Xn be its one-point (Alexandro�) 
ompa
ti�
ation. De�ne the map T : X ! Xby T jXn = Tn and T (!) = !. The reader will 
he
k easily that T is 
ontinuous. Supposethat � is an ergodi
 maximal measure for T . Then �(Xn) = 1 for some n � 1 and thereforehtop(T ) = h�(Tn) � htop(Tn) whi
h 
ontradi
ts formula (2.4.1) and Corollary 2.3.5. Inview of Proposition 2.4.1 this shows that T has no maximal measure.A more diÆ
ult problem is to �nd a transitive and smooth example (see for instan
e [Mi,1973℄).The remaining part of this se
tion is devoted to provide suÆ
ient 
onditions for the exis-ten
e of equilibrium states and we start with the following simple general 
riterion whi
hwill be the base to obtain all others.Proposition 2.4.3. If the fun
tion M(T ) 3 � ! h�(T ) is upper semi-
ontinuous thenea
h 
ontinuous fun
tion � : X ! IR has an equilibrium state.Proof. By the de�nition of weak topology the fun
tionM(T ) 3 �! R � d� is 
ontinuous.Therefore the lemma follows from the assumption, the sequential 
ompa
tness of the spa
eM(T ) and Theorem 2.3.1 (variational prin
iple). |As an immediate 
onsequen
e of this lemma and Theorem 2.3.1 we obtain the following.Corollary 2.4.4. If htop(T ) = 0 then ea
h 
ontinuous fun
tion on X has an equilibriumstate.A 
ontinuous transformation T : X ! X of a 
ompa
t metri
 spa
e X equipped with ametri
 � is said to be (positively) expansive if and only if9Æ > 0 [8n � 0 �(Tn(x); Tn(y)) � Æ℄ =) x = yand the number Æ whi
h has appeared in this de�nition is 
alled an expansive 
onstant.Although at the end of this se
tion we will introdu
e a related but di�erent notionof expansiveness of homeomorphisms we will frequently omit the word "positively". Notethat the property of being expansive does not depend on the 
hoi
e of a metri
 
ompatiblewith the topology. From now on in this 
hapter the transformation T will be assumedto be positively expansive, unless stated otherwise. The following lemma is an immediate
onsequen
e of expansiveness.Lemma 2.4.5. If A is a �nite Borel partition of X with diameter not ex
eeding anexpansive 
onstant then A is a generator for every Borel probability T -measure � on X.The main result 
on
erning expansive maps is the following.Theorem 2.4.6. If T : X ! X is positively expansive then the fun
tion M(T ) 3�! h�(T ) is upper semi-
ontinuous and 
onsequently (by Lemma 2.4.3) ea
h 
ontinuousfun
tion on X has an equilibrium state. 20



Proof. Let Æ > 0 be an expansive 
onstant of T and let � 2 M(T ). By Lemma 2.3.2there exists a �nite partition A of X su
h that diam(A) � Æ and �(�A) = 0 for everyA 2 A. Thus in view of Lemma 2.4.5 and Theorem 1.8.7(b) h�(T ) = h�(T;A) when
e bythe de�nition of the entropy h�(T;A) (
f. Lemma 1.4.2) there exists m � 1 su
h that(2.4.2) 1m+ 1H�(Am) � h�(T ) + "2Consider now a sequen
e f�n : n = 1; 2; : : :g of invariant measures 
onverging weakly to�. By the de�nition of the entropy of partition, by Theorem 2.1.15 and by the 
hoi
e ofpartition A, limn!1H�n(Am) = H�(Am). Therefore there exists n0 � 1 su
h that forevery n � n0 1m+ 1 jH�n(Am)� H�(Am)j � "2Combining this and 2.4.2, and using Lemma 1.4.3 we get for every n � n0h�n(T ) = h�n(T;A) � 1m+ 1H�n(Am) � 1m+ 1H�(Am) + "2 � h�(T ) + "The proof is �nished. |Below we prove three additional interesting results about expansive maps.Lemma 2.4.7. If U is a �nite open 
over of X with diameter not ex
eeding an expansive
onstant of an expansive map T : X ! X, then limn!1 diam(Un) = 0.Proof. Let U = fU1; U2; : : : ; Usg. By expansiveness for every sequen
e fan : n =0; 1; 2; : : :g of elements of the set f1; 2; : : : ; sg#� 1\n=0T�n(Uan� � 1and hen
e limk!1 diam� k\n=0T�n(Uan)� = 0Therefore, given a �xed " > 0 there exists a minimal �nite k = k(fang) su
h thatdiam� k\n=0T�n(Uan)� < "Note now that the fun
tion f1; 2; : : : ; sgIN 3 fang 7! k(fang) is 
ontinuous, even more, itis lo
ally 
onstant. Thus, by 
ompa
tness of the spa
e f1; 2; : : : ; sgIN , it is bounded, sayby t, and therefore diam(Un) < "21



for every n � t. The proof is �nished. |Combining now Lemma 2.2.4, Lemma 2.4.7 and Lemma 2.2.8 we get the following.Proposition 2.4.8. If U is a �nite open 
over of X with diameter not ex
eeding anexpansive 
onstant then P(T; �) = P(T; �;U).As the last result of this se
tion we shall prove the following.Proposition 2.4.9. There exists a 
onstant � > 0 su
h that 8 0 < " < � 9n(") � 1�(x; y) � " =) �n(")(x; y) > �Proof. Let U = fU1; U2; : : : ; Usg be a �nite open 
over of X with diameter not ex
eedingan expansive 
onstant Æ and let � be a Lebesgue number of U . Fix " > 0. In view ofLemma 2.4.7 there exists an n(") � 1 su
h that(2.4.3) diam(Un(")) < ":Let �(x; y) � " and suppose that �n(")(x; y) � �. Then8 (0 � j � n(")� 1) 9 (Uij 2 U) T j(x); T j(y) 2 Uijand therefore x; y 2 n(")�1\j=0 T�j(Uij ) 2 Un(")Hen
e diam(Un(")) � �(x; y) � " whi
h 
ontradi
ts (2.4.3). The proof is �nished. |As we mentioned at the begining of this se
tion there is a notion related to positive ex-pansiveness whi
h makes sense only for homeomorphisms. Namely we say that a homeo-morphism T : X ! X is expansive if and only if9Æ > 0 [8n 2 ZZ �(Tn(x); Tn(y)) � Æ℄ =) x = yWe will not explore this notion in our book { we only want to emphasize that for expansivehomeomorphisms analogous results (with obvious modi�
ations) 
an be proved (in thesame way) as for positively expansive mappings. Of 
ourse ea
h positively expansivehomeomorphism is expansive.x2.5 TOPOLOGICAL PRESSURE AS A FUNCTION ON THE BANACH SPACEOF CONTINUOUS FUNCTIONS. THE ISSUE OF UNIQUENESS OF EQUILIBRIUMSTATES 22



Let T : X ! X be a 
ontinuous mapping of a 
ompa
t topologi
al spa
e X. We shalldis
uss here the topologi
al pressure fun
tion P : C(X) ! IR, P(�) = P(T; �). Assumethat the topologi
al entropy is �nite, htop(T ) <1. Hen
e the pressure P is also �nite, forexample(2.5.1) P(�) � htop(T ) + jj�kj1:This estimate follows dire
tly from the de�nitions, see Se
tion 2. It is also an immediate
onsequen
e of Theorem 2.3.1 (Variational Prin
iple) in 
ase X is metrizable.Let us start with the following easyTheorem 2.5.1. The pressure fun
tion P is Lips
hitz 
ontinuous with the Lips
hitz
onstant 1.Proof. Let � 2 C(X). Re
all from Se
tion 2.2 that in the de�nition of pressure we have
onsidered the following partition fun
tionZn(�;U) = infV �XU2V expSn�(U)	;where V ranges over all 
overs of X 
ontained in Un. Now if also  2 C(X), then weobtain for every open 
over U and positive integer nZn( ;U)e�jj�� jj1n � Zn(�;U) � Zn( ;U)ejj�� jj1nTaking limits if n % 1 we get P( ) � jj� �  jj1 � P(�) � P( ) + jj� �  jj1, hen
ejP ( )� P (�)j � jj � �jj1. |Theorem 2.5.2. If X is metrizable, then the topologi
al pressure fun
tion P : C(X)! IRis 
onvex.we provide two di�erent proofs of this important theorem. One elementary, the se
ondrelying on the variational prin
iple (Theorem 2.3.1).Proof 1. By H�older inequality applied with the exponents a = 1=�; b = 1=(1 � �), sothat 1=a+ 1=b = �+ 1� � = 1 we obtain for an arbitrary �nite set E � X1n logXE eSn(��)+Sn(1��) ) = 1n logXE e�Sn(�)e(1��)Sn( ) �1n log�XE eSn(�)���XE eSn( )�1�� � � 1n log�XE eSn(�)�+ (1� �) 1n log�XE eSn( )�:To 
on
lude the proof use the de�nition of pressure via E = Fn(") that is (n; ")-separatedsets, Theorem 2.2.10. 23



Proof 2. It is suÆ
ient to prove that the fun
tionP̂ := sup�2M(X;T )L�� = h�(T ) + ��is 
onvex, be
ause by variational prin
iple P̂ (�) = P (�).We need to prove that the setA := f(�; y) 2 C(X)� IRg : y � P̂ (�))is 
onvex. Observe however that that by its de�nition A = T�2M(X;T ) L+� , where by L+�we denote the upper half spa
e f(f; y) : y � L��g. All the halfspa
es L+� are 
onvex, hen
eA is 
onvex as their interse
tion. |Remark 2.5.3. We 
an write L�� = ���(�h�(T )). The fun
tion P̂(�) = sup�2M(T ) L��de�ned on the spa
e C(X) is 
alled the Legendre-Fen
hel transform of the 
onvex fun
tion� 7! �h�(T ) on the 
onvex set M(T ). We shall abbreviate the name Legendre-Fen
heltransform to LF-transform. Observe that this transform generalizes the standard Legendretransformation of a stri
tly 
onvex fun
tion h on a �nite dimensional linear spa
e, say IRn,y 7! supx2IRn < x; y > �h(x), where < x; y > is the s
alar (inner) produ
t of x and y.Note that �h�(T ) is not stri
tly 
onvex (unless M(X;T ) is a one element spa
e)be
ause it is aÆne, see Th.1.4.7.Proof 2 just repeats the standard proof that Legendre transform is 
onvex.In the sequel we will need so 
alled geometri
 form of the Hahn-Bana
h theorem (see[Bourbaki, Th.1, Ch.2.5℄ or Ch. 1.7 of [Edwards, 1995℄.Theorem 2.5.4 (Hahn-Bana
h). Let A be an open 
onvex non-empty subset ofa real topologi
al ve
tor spa
e V and let M be a non-empty aÆne subset of V (linearsubspa
e moved by a ve
tor) whi
h does not meet A. Then there exists a 
odimension 1
losed aÆne subset H whi
h 
ontains M and does not meet A.Suppose now that P : V ! IR is an arbitrary 
onvex 
ontinuous fun
tion on a realtopologi
al ve
tor spa
e V . We 
all a 
ontinuous linear fun
tional F : V ! IR tangent toP at x 2 V if(2.5.2) F (y) � P (x+ y)� P (x)for every y 2 V . We denote the set of all su
h fun
tionals by V �x;P . Sometimes the termsupporting fun
tional is being used in the literature.Applying Theorem 2.5.4 we easily prove that for every x the set V �x;P is non-empty.Indeed, we 
an 
onsider the open 
onvex set A = f(�; y) 2 V � IRg : y > P (x)g in theve
tor spa
e V � IR with the produ
t topology and the one-point set M = fx; P (x)g, andde�ne a supporting fun
tional we look for, as having the graph H � fx; P (x)g in V � IR.24



We would also like to bring reader's attention to the following another general fa
t fromfun
tional analysis.Theorem 2.5.5. Let V be a Bana
h spa
e and P : V ! IR be a 
onvex 
ontinuousfun
tion. Then for every x 2 V the fun
tion P is di�erentiable at x in every dire
tion(Gateaux di�erentiable), or in a dense in the weak topology set of dire
tions, if and onlyif V �x;P is a singleton.Proof. Suppose �rst that P is not di�erentiable at some point x and dire
tion y. Choosean arbitrary F 2 V �x;P . Non-di�erentiability in the dire
tion y 2 V implies that there exist" > 0 and a sequen
e ftngn�1 
onverging to 0 su
h that(2.5.3) P (x+ tny)� P (x) � tnF (y) + "jtnj:In fa
t we 
an assume that all tn, n � 1, are positive by passing to a subsequen
e andrepla
ing y by �y if ne
essary. We shall prove that (2.5.3) implies the existen
e of F̂ 2V �x;P n fFg. Indeed, take Fn 2 V �x+tny;P . Then, by (2.5.1), we have(2.5.4) P (x)� P (x+ tny) � Fn(�tny)The inequalities (2.5.3) and (2.5.4) givetnF (y) + "tn � tnFn(y):Hen
e(2.5.5) (Fn � F )(y) � ":In the 
ase when P is Lips
hitz 
ontinuous, and this is the 
ase of topologi
al pressure see(Theorem 2.5.1) whi
h we are mostly interested in, all Fn's, n � 1, are uniformly bounded.Indeed, let L be a Lips
hitz 
onstant of P . Then for every z 2 V and every n � 1Fn(z) � P (x+ tny + z)� P (x+ tny) � LjjzjjSo, jjFnjj � L for every n � 1. Thus, there exists F̂ = limn!1 Fn, a weak�-limit of asequen
e fFngn�1 (subsequen
e of the previous sequen
e). By (2.5.5) (F̂ � F )(y) � ".Hen
e F̂ 6= F . Sin
eP (x+ tny + v)� P (x+ tny) � Fn(v) for all n and v 2 Vpassing with n to 1 and using 
ontinuity of P , we 
on
lude that F̂ 2 V �x;P .If we do not assume that P is Lips
hitz 
ontinuous, we restri
t Fn to the 1-dimensionalspa
e spanned by y i.e. we 
onsider FnjIRy. In view of (2.5.5) for every n � 1 there exists0 � sn � 1 su
h that Fn(sny) � F (sny) = ". Passing to a subsequen
e, we may assumethat limn!1 sn = s for some s 2 [0; 1℄. De�nefn = snFnjIRy + (1� sn)F jIRyThen fn(y) = F (y) = " hen
e jjfnjj = jjF jj = "jjyjj for every n � 1. Thus the sequen
effngn�1 is uniformly bounded and, 
onsequently, it has a weak-� limit f̂ : IRy! IR. Nowwe use Theorem 2.5.4 (Hahn-Bana
h) for the aÆne set M being the graph of f̂ translatedby (x; P (x)) in V � IR. for every � 2 IR and every n � 1. We extend M to H and �ndthe linear fun
tional F̂ 2 V �x;P whose graph is H. Sin
e F̂ (y)� F (y) = f̂(y)� F (y) = ",F̂ 6= F . 25



Suppose now that Proposition 2.5.4, V �x;P 
ontains at least two distin
t linear fun
tionals,say F and F̂ . So, F (y) � F̂ (y) > 0 for some y 2 V . Suppose on the 
ontrary that Pis di�erentiable in every dire
tion at the point x. In parti
ular P is di�erentiable in thedire
tion y. Hen
e limt!0 P (x+ ty)� P (x)t = limt!0 P (x� ty)� P (x)�tand 
onsequently limt!0 P (x+ ty) + P (x� ty)� 2P (x)t = 0:On the other hand, for every t > 0, we have P (x + ty) � P (x) � F (t) = tF (y) andP (x� ty)� P (x) � F̂ (�ty) = �tF̂ (y), hen
elim inft!0 P (x+ ty) + P (x� ty)� 2P (x)t � F (y)� F̂ (y) > 0:, a 
ontradi
tion.In fa
t F (y)�F̂ (y) = " > 0 implies F (y0)�F̂ (y0) � "=2 > 0 for all y0 in the neighbourhoodof y in the weak topology de�ned just by fy0 : (F � F̂ )(y � y0) < "=2g. Hen
e P is notdi�erentiable in a weak*-open set of dire
tions. |Let us go ba
k now to our spe
ial situation:Proposition 2.5.6. If � 2 M(T ) is an equilibrium state for � 2 C(X), then the linearfun
tional represented by � is tangent to P at �.Proof. We have �(�) + h� = P (�)and for every  2 C(X) �(�+  ) + h� � P (�+  ):Subtra
ting the sides of the equality from the respe
tive sides of the latter inequality weobtain �( ) � P (�+  )� P (�) whi
h is just the inequality de�ning tangent fun
tionals.|As an immediate 
onsequen
e of Proposition 2.5.6. and Theorem 2.5.5 we get the following.Corollary 2.5.7. If the pressure fun
tion P is di�erentiable at � in every dire
tion, or atleast in a dense in the weak topology set of dire
tions, then there is at most one equilibriumstate for �.Due to this Corollary, in future (see Chapter 4) to prove uniqueness it will be suÆ
ient toprove di�erentiability of the pressure fun
tion in a weak*-dense set of dire
tions.26



The next part of this se
tion will be devoted to kind of reversing Proposition 2.5.6 andCorollary 2.5.7. and better understanding of the mutual Legendre-Fen
hel transforms �hand P . This is a beautiful topi
 but will not have appli
ations in the rest of this book. Letus start with a 
hara
terization of T invariant measures in the spa
e of all signed measuresC(X)� provided by the pressure fun
tion P .Theorem 2.5.8. For every F 2 C(X)� the following three 
onditions are equivalent:(i) For every � 2 C(X) it holds F (�) � P(�).(ii) There exists C 2 IR su
h that for every � 2 C(X) it holds F (�) � P(�) + C.(iii) F is represented by a probability invariant measure � 2M(X;T ).Proof. (iii) ) (i) follows immediately from the variational prin
iple:F (�) � F (�) + h�(T ) � P(�) for every � 2 C(X):(i) ) (ii) is obvious. Let us prove that (ii) ) (iii). Take an arbitrary positive � 2 C(X),i.e. su
h that for every x 2 X; �(x) � 0. For every real t < 0 we haveF (t�) � P(t�) + CSin
e t� � 0 it immediately follows from (2.5.1) that P(t�) � P(0). Hen
e F (t�) �P (0) + C. So jtjF (�) � �(C + P(0)) hen
e F (�) � �(C + P(0))jtj :Letting t ! �1 we obtain F (�) � 0. We estimate the value of F on 
onstant fun
tionst. For every t > 0 we have F (t) � P(t) + C � P(0) + t + C. Hen
e F (1) � 1 + P(0)+Ct .Similarly F (�t) � P(�t) + C = P(0)� t + C and therefore F (1) � 1 � P(0)+Ct . Lettingt ! 1 we thus obtain F (1) = 1. Therefore by Theorem 2.1.1 (Riesz RepresentationTheorem) the fun
tional F is represented by a probability measure � 2 M(X). Let us�nally prove that � is T -invariant. For every � 2 C(X) and every t 2 IR we have by (i)F (t(� Æ T � �)) � P(t(� Æ T � �)) + CIt immediately follows from Theorem 2.3.1 (Variational prin
iple) that P(t(� Æ T � �)) =P(0). Hen
e jF (� Æ T )� F (�)j � ����P(0) + Ct ����:Thus, letting jtj ! 1, we obtain F (� Æ T ) = F (�), i.e T -invarian
e of �. |We shall prove the following.Corollary 2.5.9. Every fun
tional F tangent to P at � 2 C(X), i.e. F 2 C(X)��;P , isrepresented by a probability T -invariant measure � 2M(X;T ).27



Proof. Using Theorem 2.5.1, we get for every  2 C(X) thatF ( ) � P (�+  )� P (�) � P ( ) + jP (�+  )� P ( )j � P (�) � P ( ) + jj�jj1 � P (�):So 
ondition (ii) of Theorem 2.5.8 holds hen
e (iii) holds, F is represented by � 2M(X;T ).|We 
an now almost reverse Proposition 2.5.6. Namely being a fun
tional tangent to P at� implies being an "almost" equilibrium state for �.Theorem 2.5.10. F 2 C(X)��;P if and only if F , in other words the measure � = �F 2M(X;T ) representing F , is a weak�-limit of measures �n 2M(X;T ) su
h that�n�+ h�n(T )! P(�):Proof. In one way the proof is simple. Assume that � = limn!1 �n in the weak�topology and �n�+h�n(T )! P (�). We pro
eed as in Proof of Theorem 2.5.6. In view ofTheorem 2.3.1 (Variational prin
iple) �n( + �) + h�n(T ) � P(�+  ) whi
h means that�n( ) � P(�+ )�(�n�+h�n(T )). Thus, letting n!1, we get �( ) � P(�+ )�P( ).This means that � 2 C(X)��;P.Now, let us prove our Theorem in the other dire
tion. Re
all again that the fun
tion � 7!h�(T ) on M(T ) is aÆne, hen
e 
on
ave. Denote h� = lim sup�!� h�(T ), with � ! � inweak*-topology. It is also 
on
ave and upper semi
ontinuous onM(T ) :=M(X;T ). In thesequel we shall prefer to 
onsider the fun
tion � 7! �h�(T ) whi
h is lower semi
ontinuousand 
onvex.Step 1. For every # 2 C(X) we have�#� sup�2M(T )(�#��h�(T )) � �#� (�#��h�(T )) = �h�(T )):We obtained here �h�(T )) rather than merely �h�(T )) by taking every sequen
e �n ! �writing the right hand side of the above inequality : �# � (�n# � �h�n#(T )) and lettingn!1. So sup#2C(X)��#� sup�2M(T )(�#��h�(T ))� � �h�(T ):This says that the LF-transform of the LF-transform of �h�(T ) is less or equal to �h�(T ).Let us prove now the opposite inequality. We refer to the following 
orollary of the geo-metri
 form of Hahn-Bana
h Theorem [Bourbaki, Ch.II.x5. Prop.5℄:Let M be a 
losed 
onvex set in a lo
ally 
onvex ve
tor spa
e V . Then every lower semi-
ontinuous 
onvex fun
tion f de�ned in M is supremum of a family of fun
tions boundedfrom above by f , whi
h are restri
tions to M of 
ontinuous aÆne fun
tions in V .28



We shall apply this theorem to C�(X) endowed with weak�-topology and use the fa
t thatevery linear fun
tional 
ontinuous in this topology is represented by an element belongingto C(X). (This is a general fa
t 
on
erning pairs of ve
tor spa
es in duality, [Bourbaki,Ch.II.x6. Prop.3.℄.). Thus, for every " > 0 there exists  2 C(X) su
h that for every� 2M(T )(2.5.6) (� � �)( ) � �h�(T )��h� + "So � � sup�2M(T )(� ��h�(T )) � �h�(T )� ":Letting "! 0 we obtainsup#2C(X)��#� sup�2M(T )(�#��h�(T ))� � �h�(T ):Thus we proved the standard fa
t that the LF-transform of the LF-transform of �h�(T ) isba
k �h�(T ). Remind now that by variational prin
iple the LF-transform of �h�(T ), i.e.the supremum sup�2M(T )(�#��h�(T )) is pressure P(#). We 
on
lude that(2.5.7) h�(T ) = inf#2C(X)fP(#)� �#gStep 2. Fix � 2 C(X)��;P. From � � P (�+  )� P (�) we obtainP (�+  )� �(�+  ) � P(�)� �� for all  2 C(X)or(2.5.8) inf 2C(X)fP( )� � g � P(�)� ��(This expresses the fa
t that the supremum ( { in�mum above) in the de�nition of theLF-transform of P at F is attained at � at whi
h F is tangent to P .) By (2.5.7) and(2.5.8) we obtain(2.5.9) h� � P(�)� ��so by the de�nition of h� there exists a sequen
e of measures �n 2 M(T ) su
h thatlimn!1 �n = � and limn!1 h�n � P (�)� ��. The proof is �nished. |Remark. In Step 1 of the above proof it did not matter whether we 
onsidered � tangent toP or an arbitrary � 2M(T ). In Step 2, where we started with all � 2M(T ), 
onsidering" > 0 in (2.5.6) is ne
essary; without " > 0 this formula may happen to be false, seeExample 2.5.13. For � 2 C(X)��;P we obtain from (2.5.9) and inequality h�(T ) � P(�)���for every � 2M(T ) that h�(T )� h�(T ) � (�� �)� whi
h is just (2.5.6) with " = 0. So aposteriori we know that " in (2.5.6) 
an be omitted.29



The meaning of this, is that if � is tangent to P at � then � is tangent to �h, the LF-transform of P, at �.Conversely, if  satis�es (2.5.6) with " = 0 i.e.  is tangent to �h at � 2 M(T ) then inthe same way as in Step 2. we 
an prove the inequality analogous to (2.5.8), namely thatsup�2M(T ) � ��h�(T ) = P( ) � � ��h�(T ):Hen
e � is tangent to P at  (by the "if" part of Theorem 2.5.10).Assume now the upper semi
ontinuity of the entropy h�(T ) as a fun
tion of �. Then weobtain.Corollary 2.5.11. If the entropy is upper semi
ontinuous, then a fun
tional F 2 C(X)�is tangent to P at � 2 C(X) if and only if it is represented by a measure whi
h is anequilibrium state for �.Proof. This is just the previous Theorem with the observation that limn!1 h�n(T ) �h�T (T ). (Remark that this uses only the upper semi
ontinuity of the entropy at themeasure �.) |Re
all that already the upper semi
ontinuity above implies the existen
e of at least oneequilibrium state (Lemma 2.4.3)Now we 
an 
omplete Corollary 2.5.7.Corollary 2.5.12. If the entropy is upper semi
ontinuous then the pressure fun
tion Pis di�erentiable at � 2 C(X) in every dire
tion, or in a set of dire
tions dense in the weaktopology, if and only if there is at most one equilibrium state for �.Proof. This Corollary follows dire
tly from Corollary 2.5.11 and Theorem 2.5.5. |After dis
ussing fun
tionals tangent to P and proving that they 
oin
ide with the set ofequilibrium states for maps for whi
h the entropy is upper semi
ontinuous as the fun
tionon M(T ) the question arises of whether all measures in M(T ) are equilibrium states ofsome 
ontinuous fun
tions. The answer given below is no.Example 2.5.13. We shall 
onstru
t a measure m 2 M(T ) whi
h is not an equilibriumstate for any � 2 C(X). Here X is the one sided shift spa
e �2 with the left side shift map�. Sin
e this map is obviously expansive, it follows from Theorem 2.4.6 that the entropyfun
tion is upper semi
ontinues. Let mn 2 M(�) be the measure equidistributed on theset Pern of points of period n, i.e.mn = Xx2Pern 1Card Pern Æxwhere Æx is the Dira
 measure supported by x. mn 
onverge weak� to �max, the measure ofmaximal entropy: log 2. (Che
k that this follows for example from the proof of variational30



prin
iple, part II.) Let tn; n = 0; 1; 2; ::: be a sequen
e of positive real numbers su
h thatP1n=0 tn = 1. Finally de�ne m = 1Xn=0 tnmnLet us prove that there is no � 2 C(X) tangent to h at m. Let �n = Rn�max+Pn�1j=0 tjmj ,where Rn =P1j=n tj . We have of 
ourse hmn(�) = 0; n = 1; 2; :::. Also hm(�) = 0 . Thisfollows from the fa
t that h is aÆne onM(�), the fun
tion h is bounded by the topologi
alentropy htop(�) = log 2 and m = n�1Xj=0 tjmj + Rn 1Xj=n tjRnmj :Thus h�n(�)� hm(�) = Rnh�max(�) = Rn log 2and for an arbitrary � 2 C(�2)(�n �m)� = (Rn�max � 1Xj=n tjmj)� � Rn"where " ! 0 as n ! 1 be
ause mj ! �max. The inequality h�n(�) � hm(�) � Rn log 2and the latter inequality prove that � is not tangent to h at m. Indeed h�n(�)� hm(�) >(�n �m)� for n large, 
ontrary to (2.5.5) with " = 0.By Remark after Theorem 2.5.10 we know that m is not tangent to any � for thepressure fun
tion P. In fa
t it is easy to see it dire
tly: For an arbitrary � 2 C(�2)we have �max� < P(�) be
ause h�max(�) > 0, so mn� < P (�) for all n large enough asmn ! �max. Also mn� � P (�) for all n's. So for the average of mn's namely m we havem� < P(�). So � is not an equilibrium state. |The measure m in this example is very non-ergodi
, this is ne
essary as will follow fromExer
ise 5.EXERCISESExer
ise 1. Let T : X ! X and S : Y ! Y be two 
ontinuous maps of 
ompa
tmetri
 spa
es respe
tively. Show that htop(T � S) = htop(T ) + htop(S).Exer
ise 2. Prove that T : X ! X is an isometry of a 
ompa
t metri
 spa
e X, thenhtop(T ) = 0Exer
ise 3. Show that if T : X ! X is a lo
al homeomorphism of a 
ompa
t metri
spa
e, then the number d = #T�1(x) is �nite and independent of x 2 X.31



Exer
ise 4. With the assumtions and notation of Exer
ise 3, demonstrate that htop(T ) �log dExer
ise 5. Prove that if f :M !M is a C1 endomorphism of a 
ompa
t di�erentiablemanifold M , then htop(T ) � log deg(f). (Hint: see [MP℄).Exer
ise 6. Let S1 = fz 2 CI : jzj = 1g be the unit 
ir
le and let fn : S1 ! S1 be themap de�ned by the formula fn(z) = zn. Show that htop(fn) = logn.Exer
ise 7. Let �A : �A ! �A be the shift map generated by the in
iden
e matrix A.Prove that htop(�A) is equal to the logarithm of the spe
tral radius of A.Exer
ise 8. Show that for every 
ontinuous potential �, P(�) � htop(T ) + sup(�).Exer
ise 9. Provide an example of a transitive di�eomorphism without measures ofmaximal entropy.Exer
ise 10 Provide an example of a transitive di�eomorphism with at least measures ofmaximal entropy.Exer
ise 11. Find a sequn
e of 
ontinuous maps Tn : Xn ! Xn su
h that htop(Tn+1) >htop(Tn) and limn!1 htop(Tn) <1.Exer
ise 12. Prove that for an arbitrary 
onvex 
ontinuous fun
tion P : V ! IRon a real Bana
h spa
e V the set of tangent fun
tionals: Sx2V V �x;P is dense in the normtopology infF 2 V � : there exists C 2 IR su
h that for every x 2 V; F (x) � P (x) + Cg(su
h fun
tionals are 
alled P -bounded)Remark. The 
on
lusion is that for P the pressure fun
tion on C(X) tangent measures aredense in M(X;T ) , see Theorem 2.4.6. Hint: This follows from Bishop { Phelps Theorem,see [BP℄ or Israel's book [I, pp.112-115℄, whi
h 
an be stated as follows: For every P -bounded F0 x0 2 V and " > 0 there exists x 2 V and F 2 V � tangent to P at X su
hthat kF � F0k � " and kx� x0k � 1"�P (x0)� F0(x0) + s(x0)where s(F0) := supx02V F0x0 � P (x0) (the LF-transform of P . The idea of the proof ofthis theorem is as follows: If we repla
e P by Q(x0 := P (x)� F0(x) + s(x0) the theoremredu
es to the 
ase F0 � 0; s(F0) = 0. For ea
h x 2 V 
onsider the 
oneC(x) = f(x0; y) : y �Q(x) < �"kx0 � xkg:There is x 2 V su
h that C(x)\graphQ = fxg Now F 
an be de�ned as a fun
tional whi
hgraph translated by a 
onstant separates C(x) from fy � Q(x).Exer
ise 13. Prove that in the situation from Exer
ise 1 for every x 2 V V �x;P is 
onvexand weak�-
ompa
t.Exer
ise 14. Let E� denote the set of all equilibrium states for � 2 C(X).(i) Prove that E� is 
onvex.(ii) Find an example that E� is not weak�-
ompa
t.32



(iii) Prove that extremal points of E� are extremal points of M(X;T ).(iv) Prove that almost all measures in the ergodi
 de
omposition of an arbitrary � 2E� belong also to E�. (One says that every equilibrium state has a unique de
ompositioninto pure, i.e. ergodi
, equilibrium states .)Hints: In (ii) 
onsider a sequen
e of Smale horseshoes of topologi
al entropies log 2 
on-verging to a point �xed for T . To prove (iii) and (iv) use the fa
t that entropy is an aÆnefun
tion of measure.Exer
ise 15. Find an example showing that the point (iii) of Exer
ise 3 is false if we
onsider C(X)��;P rather than E�.Hint: An idea is to have two �xed points p; q and two traje
tories (xn); (yn) su
h thatxn ! p; yn ! q for n ! 1 and xn ! q; yn ! p for n ! �1. Now take a sequen
eof periodi
 orbits 
k approa
hing fp; qg [ fxng [ fyng with periods tending to 1. Taketheir Cartesian produ
ts with 
orresponding invariant subsets Ak's of small horseshoesof topologi
al entropies less than log 2 but tending to log 2, diameters of the horseshoesshrinking to 0 as k ! 1. Then for � � 0 C(X)��;P 
onsists only of measure 12 (Æp + Æq).One 
annot repeat the proof in Exer
ise 3(iii) with the fun
tion h� instead of the entropyfun
tion h�, be
ause h� is no more aÆne !This is Peter Walters' example, for details see the preprint [W2℄.Exer
ise 16. Suppose that the entropy fun
tion h� is upper semi
ontinuous (then forea
h � 2 C(x) C(X)��;P = E�, see Corollary 2.5.11). Prove that(i) every � 2 M(T ) whi
h is a �nite 
ombination of ergodi
 masures � = P tjmj ,mj 2 M(T ), is tangent to P more pre
isely there exists � 2 C(X) su
h that �;mj 2C(X)��;P and moreover they are equilibrium states for �.(ii) if � = RMe(T )md�(m) where Me(X;T ) 
onsists of ergodi
 measures in M(X;T )and � is a probability non-atomi
 measure onMe(X;T ), then there exists � 2 C(X) whi
hhas un
ountably many ergodi
 equilibria in the support of �.(iii) the set of elements of C(X) with un
ountably many ergodi
 equilibria is dense inC(X).Hint: By Bishop { Phelps Theorem (Exer
ise 12) there exists � 2 E� arbitrarily 
lose to�. Then in its ergodi
 de
omposition there are all the measures �j be
ause all ergodi
measures are far apart from ea
h other (in the norm in C(X)�). These measures byExer
ise 14 belong to the same E� what proves (i). For more details and proofs of (ii) and(iii) see [Israel, Theorem V.2.2 ℄ or [Ruelle, 1978, 3.17, 6.15℄.Remark. In statisti
al physi
s the o

uren
e of more then one equilibrium for � 2 C(X)is 
alled "phase transition". (iii) says that the set of fun
tions with "very ri
h" phasetransition is dense. For the further dis
ussion see also [Israel, V.2℄.Exer
ise 17. Prove the following. Let P : V ! IR be a 
ontinuous 
onvex fun
tion ona real Bana
h spa
e V with norm k � kV . Suppose P is di�erentiable at x 2 V in everydire
tion. Let W � V be an arbitrary linear subspa
e with norm k � kW su
h that theembedding W � V is 
ontinuous and the unit ball in (W; k � kW ) is 
ompa
t in (V; k � kV ).Then P jW is di�erentiable in the sense that there exists a fun
tional F 2 V � su
h that for33



y 2W it holds jP (x+ y)� P (x)� F (y)j = o(kykW ):Remark. In Chapter 3 we shall dis
uss W being the spa
e of H�older 
ontinuous fun
tionswith an arbitrary exponent � < 1 and the entropy fun
tion will be upper semi
ontinuous.So the 
on
lusion will be that uniqueness of the equilibrium state at an arbitrary � 2 C(X)is equivalent to the di�erentiability in the dire
tion of this spae
e of H�o .lder fun
tions.Exer
ise 18. (Walters) Prove that the pressure fun
tion P is Fre
het di�erentiable at� 2 C(X) if and only if P aÆne in a neighbourhood of �. Prove also the 
on
lusion: Pis Fre
het di�erentiable at every � 2 C(X) if and only if T is uniquely ergodi
, namely ifM(X;T ) 
onsists of one element.Exer
ise 19. Prove S. Mazur's Theorem: If P : V ! IR is a 
ontinuous 
onvex fun
tionon a real separable Bana
h spa
e V then the set of points at whi
h there exists a uniquefun
tional tangent to P is dense GÆ.Remark. In the 
ase of the pressure fun
tion on C(X) this says that for a dense GÆ set offun
tions there exists at most one equilibrium state. Mazur's Theorem 
ontrasts with thetheorem from Exer
ise 16 (iii).BIBLIOGRPHICAL NOTESThe 
on
ept of topologi
al pressure in dynami
al 
ontext was introdu
ed by D. Ruelle in[Ruelle, 1973℄ and sin
e then have been studied in many papers and books. Let us mentiononly [Bowen, 1975℄, [Wallters, 1976℄, [Wallters, 1982℄ and [Ruelle, 1978℄. The topologi
alentropy was introdu
ed earlier in [AKM, 1965℄. The variational prin
iple (Theorem 2.3.1)has been proved for some maps in [Ruelle, 1973℄. The �rst proofs of this prin
iple in its fullgenerality 
an be found in [Walters, 1976℄ and [Bowen, 1975℄. The simplest proof presentedin this 
hapter is taken from [Mi, 1976℄. In the 
ase of topologi
al entropy (potential � = 0)the 
orresponding results have been obtained earlier: Goodwyn in [Goodwyn, 1969℄ provedthe �rst part of the variational prin
iple, Dinaburg in [Dinaburg, 1971℄ proved its fullversion assuming that the spa
e X has �nite 
overing topologi
al dimension and �nallyGoodman proved in [Goodman, 1971℄ the variational prin
iple for topologi
al entropywithout any additional assumptions. The 
on
ept of equilibrium states and expansivemaps in mathemati
al setting was introdu
ed in [Ruelle, 1973℄ where the �rst existen
eand uniqueness type results have appeared. Sin
e then these 
on
epts have been exploredby many authors, in parti
ular in [Bowen, 1975℄ and [Ruelle, 1978℄. The material ofSe
tion 2.5 is mostly taken from [Ruelle, 1978℄, [Israel, 1979℄ and [Ellis, 1985℄.Referen
esN.Bourbaki: Espa
es Ve
toriels Topologiques. Masson,Paris, 1981.M.Denker, Ch.Grillenberger, K.Sigmund: Ergodi
 Theory on Compa
t Spa
es. Le
-ture Notes in Mathemati
s, 527, Springer-Verlag, Berlin 1976.
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CHAPTER 3DISTANCE EXPANDING MAPSversion Feb.1, 2000We devote this Chapter to a 
loser topologi
al study of distan
e expanding maps. Oftenhowever weaker assumptions will be suÆ
ient. We always assume the maps are 
ontinuouson a 
ompa
t metri
 spa
e X and usually assume the maps are open, whi
h means thatopen sets have open images. This is equivalent to saying that if f(x) = y and yn ! y thenthere exist xn ! x su
h that f(xn) = yn for n large enough.In theorems with assertions of topologi
al 
hara
ter the assumption that a map isonly expansive gives in fa
t always the same as if we assumed that the map is expanding,in view of Se
.6. We shall prove in Se
.6 that for every expansive map there always existsa metri
 
ompatible with the topology on X given by an original metri
, so that the mapis distan
e expanding in it.Re
all that for (X; �) a 
ompa
t metri
 spa
e, a 
ontinuous mapping T : X ! X issaid to be distan
e expanding (with respe
t to the metri
 �) if there exist 
onstants � > 1and � > 0 su
h that(3.1.1) �(x; y) � 2� =) �(Tn(x); Tn(y)) � ��(x; y)We say that T is distan
e expanding at a set Y � X if the above holds for everyx; y 2 B(z; �) for z 2 Y .In future we shall usually be able to assume that n = 1 i.e. that(3.1.2) �(x; y) � 2� =) �(T (x); T (y)) � ��(x; y)One 
an a
hieve this in two ways:(1) If T is Lips
hitz 
ontinuous (say with 
onstant L > 1) repla
e the metri
 �(x; y)by Pn�1j=0 �(T j(x); T j(y)). Of 
ourse then � and � 
hange. As an exer
ise you 
an 
he
kthat the number 1 + (�� 1)� L�1Ln�1� 
an play the role of � in (3.1.2).(2) Consider Tn instead of T .Sometimes we shall write for short expanding, instead of distan
e expanding.x3.1 DISTANCE EXPANDING OPEN MAPS, BASIC PROPERTIESLet us start with a lemma where we assume T : X ! X is a 
ontinuous open map ofa 
ompa
t metri
 spa
e X. We do not need to assume in this lemma that T is distan
eexpanding.Lemma 3.1.2. If T : X ! X is a 
ontinuous open map, then for every � > 0 there exists� > 0 su
h that T (B(x; �)) � B(T (x); �) for every x 2 X.1



Proof. For every x 2 X let�(x) = supfr > 0 : T (B(x; �)) � B(T (x); r)g:Sin
e T is open, �(x) > 0. Sin
e T (B(x; �)) � B(T (x); �(x)), it suÆ
es to show that� = inff�(x) : x 2 Xg > 0. Suppose 
onversely that � = 0. Then there exists a sequen
eof points xn 2 X su
h that(3.1.3) �(xn)! 0 as n!1and, as X is 
ompa
t, we 
an assume that xn ! y for some y 2 X. Hen
e B(xn; �) �B(y; 12�) for all n large enough. ThereforeT (B(xn; �)) � T �B(y; 12�)� � B(T (y); ") � B�T (xn); 12"�for some " > 0 and again for every n large enough. The existen
e of " su
h that the se
ondin
lusion holds follows from the openness of T . Consequently �(xn) � 12" for these n,whi
h 
ontradi
ts (3.1.3). |If T : X ! X is an open, expanding map, then by (3.1.1), for all x 2 X, the restri
tionT jB(x;�) is inje
tive and therefore it has an inverse map. The same holds for expanding atY for all x 2 Y . In view of Lemma 3.1.2 we 
an introdu
e the following de�nition.Notation 3.1.3. If T : X ! X is expanding then for all x 2 X the inverse of the mapT jB(x;�) restri
ted to the ball B(T (x); �) will be denoted by T�1x .Observe that for every y 2 X(3.1.4) T�1(B(y; �)) = [x2T�1(y)T�1x (B(y; �))Indeed, suppose that y0 = T (x0) 2 B(y; �). Then y 2 B(y0; �). Let x = T�1x0 (y). As T�1xand T�1x0 
oin
ide on y, they 
oin
ide on y0 be
ause they map y0 into B(x; �) and T isinje
tive on B(x; �). Thus x0 = T�1x (y0).A map T with the property that there exists � su
h that for ea
h B(x; �) (3.1.4) holdswith the sets in the union disjoint from ea
h other and T restri
ted to ea
h of them beinga homeomorphism, is 
alled a 
overing map. So we proved that a 
ontinuous open lo
allyinje
tive map of a 
ompa
t metri
 spa
e is a 
overing map. This is well known but wegave the proof for the 
ompleteness of the exposition.Immediately from De�nition 3.1.3 we have(3.1.5) T�1x (B(T (x); �)) � B(x; �)2



>From now on throughout this se
tion we assume also the expanding property, i.e. (3.1.2).We then get the following.Lemma 3.1.4. If x 2 X and y; z 2 B(T (x); �) then�(T�1x (y); T�1x (z)) � ��1�(y; z)In parti
ular T�1x (B(T (x); �)) � B(x; ��1�) � B(x; �).De�nition 3.1.5. For every x 2 X, every n � 1 and every j = 0; 1; : : : ; n� 1 write xj =T j(x). In view of Lemma 3.1.4 the 
omposition T�1x0 ÆT�1x1 Æ : : :ÆT�1xn�1 : B(Tn(x); �)! Xis well-de�ned and will be denoted by T�nx .Below we 
olle
t the basi
 elementary properties of maps T�nx following immediately fromthe above. For every y 2 X(3.1.6) T�n(B(y; �)) = [x2T�n(y)T�nx (B(y; �));(3.1.7) �(T�nx (y); T�nx (z)) � ��n�(y; z) for all y; z 2 B(Tn(x); �);(3.1.8) T�nx (B(Tn(x); r)) � B(x;minf�; ��nrg) for every r � �:Remark. All these properties hold, and notation makes sense, also for open mapsT : X ! X expanding at Y � X, provided x; T (x); :::; Tn(x) 2 Y .
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x3.2 SHADOWING OF PSEUDOORBITSWe keep the notation of Se
tion 3.1. We 
onsider an open distan
e expanding map T :X ! X with the 
onstants �, �, �.Let n be a non-negative integer or 1. Given � � 0 a sequen
e (xi : i = 0; : : : ; n) issaid to be an �-pseudo-orbit for T : X ! X if and only if for every i = 0; : : : ; n� 1(3.2.1) �(T (xi); xi+1) � �Of 
ourse every (real) orbit (x; T (x); : : : ; Tn(x)), x 2 X, is an �-pseudo-orbit for every� � 0. We shall prove a kind of a 
onverse fa
t, that in 
ase of open, distan
e expandingmaps, ea
h \suÆ
iently good" pseudo-orbit 
an be approximated (shadowed) by a realorbit. To make this pre
ise we pro
eed as follows. Let � > 0. We say that an orbit ofx 2 X, �-shadows the pseudo-orbit (xi : i = 0; :::; n) if and only if for every i = 0; : : : ; n(3.2.2) �(T i(x); xi) � �De�nition 3.2.0. We say that a 
ontinuous map T : X ! X has shadowing propertyif for every � > 0 there exists � > 0 su
h that for every �nite n every �-pseudo-orbit 
anbe �-shadowed by an orbit.Note that due to the 
ompa
tness of X this property implies the same with n = 1in
luded.Below is a simple observation on the uniqueness of the shadowing. Assume only thatT is expansive (
f. Se
tion 2.2.).Proposition 3.2.1. If 2� is less than an expansiveness 
onstant of T (we do not needto assume here that T is expanding with respe
t to the metri
 �) and n = 1 then thereexists at most one point x whose orbit �-shadows the pseudo-orbit (xi)1i=1.Proof. Suppose the forward orbits of x and y shadow (xi). Then for every n � 0 we have�(Tn(x); Tn(y)) � 2�. Then by the de�nition of the expansiveness x = y. |We shall now prove some less trivial results, 
on
erning the existen
e of �-shadowing orbits.Lemma 3.2.2. Let T : X ! X be an open distan
e expanding map. Let 0 < � < � ,0 < � � minf(� � 1)�; �g. If (xi : i = 0; 1; : : : ; n), 0 � n � 1, is an �-pseudo-orbit andx0i = T�1xi (xi+1), then(a) For all i = 0; 1; 2; : : : ; n� 1 T�1x0i (B(xi+1; �)) � B(xi; �)and 
onsequently for all i = 0; 1; : : : ; n the 
ompositionsTi = T�1x00 Æ T�1x01 Æ : : : Æ T�1x0i�1 : B(xi; �)! X4



are well-de�ned.(b) The sequen
e of 
losed sets Ti(B(xi; �)), i = 0; 1; : : : ; n, is de
reasing in the sense ofin
lusion.(
) The interse
tion n\i=0Ti(B(xi; �)is non-empty and the forward orbits (for times 0; 1; :::; n) of all the points of thisinterse
tion �-shadow the pseudo-orbit (xi : i = 0; 1; : : : ; n).Proof. In order to prove (a) observe that by (3.1.8) and (3.1.7) we haveT�1x0i (B(T (xi+1); �)) � B(x0i; ��1�) � B(xi; ��1� + ��1�)and ��1� + ��1� � �. The statement (b) follows immediately from (a). The �rst partof (
) follows immediately from (b) and the 
ompa
tness of the spa
e X. To prove these
ond part 
all the interse
tion whi
h appears in (
) by A. By the de�nition of A we haveT i(A) � B(xi; �) for all i = 0; 1; : : : ; n. Thus the forward orbit for the times 0; 1; :::; n ofevery point in A, � shadows (xi : i = 0; 1; : : : ; n). The proof is �nished. |As an immediate 
onsequen
e of Lemma 3.2.2 we get the following.Corollary 3.2.3. (Shadowing lemma) Every open, distan
e expanding map satis�es theshadowing property. More pre
isely, for all � > 0 and � > 0 as in Lemma 3.2.2 every�-pseudo-orbit (xi : i = 0; : : : ; n) 
an be �-shadowed by an orbit in X.As a 
onsequen
e of Corollary 3.2.3 we shall prove the following.Corollary 3.2.4. (Closing lemma) Let T : X ! X be an expansive map, satisfying theshadowing property. Then for every � > 0 there exists � > 0 su
h that if x 2 X and�(x; T l(x)) � � for some l � 1, then there exists a periodi
 point of period l whose orbit�-shadows the pseudo-orbit (x; T (x); : : : ; T l�1(x)). The 
hoi
es of � to � are the same asin the de�nition of shadowing, for 2� not ex
eeding the expansivness 
onstant.In parti
ular the above holds for T : X ! X open, expanding.Proof. Sin
e �(x; T l(x)) � �, the sequen
e made up as the in�nite 
on
atenation of thesequen
e (x; T (x); : : : ; T l�1(x)) is an �-pseudo-orbit. Hen
e, by shadowing with n = 1,there is a point y 2 X whose orbit �-shadows this pseudo-orbit. But note that then theorbit of the point T l(y) also does it and therefore, by Lemma 3.2.1, T l(y) = y. The proofis �nished. |Note that the assumption T is expansive is substantial. The adding ma
hine map, seeCh.0.3' ???, satis�es the shadowing property, whereas it has no periodi
 orbits at all. Infa
t the same proof yields the following periodi
 shadowing.5



De�nition 3.2.5. We say that a 
ontinuous map T : X ! X satis�es periodi
shadowing property if for every � > 0 there exists � > 0 su
h that for every �nite n andevery periodi
 �-pseudo-orbit x0; :::; xn�1, that is a sequen
e of points x0; :::; xn�1 su
hthat �(T (xi); x(i+1)(modn)) � �, there exists a point y 2 X of period n su
h that for all0 � i < n �(T i(y); xi) � �.Note that shadowing and periodi
 shadowing 
an hold for the maps that are notexpansive. One 
an just add arti�
ially the missing periodi
 orbits, of periods 2n to theadding ma
hine spa
e. This example appears in fa
t as the nonwandering set for anyFeigenbaum-like map of the interval, see Ch ??? (dawny 4.6)
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x3.3 SPECTRAL DECOMPOSITION. MIXING PROPERTIES.Let us start with general observations 
on
erning iterations of 
ontinuous mappingsDe�nition 3.3.1 We 
all a 
ontinuous mapping T : X ! X for a 
ompa
t metri
 spa
eX topologi
ally transitive if for all non-empty open sets U; V � X there exists n � 0 su
hthat Tn(U) \ V 6= ;. By the 
ompa
tness of X topologi
al transitivity implies that Tmaps X onto X.Example 3.3.2 Consider a topologi
al Markov 
hain �A, or ~�A in a one-sided or two-sided shift spa
e of d states, see Example 0.3. Observe that the left shift map s on thetopologi
al Markov 
hain is topologi
ally transitive i� the matrix A is irredu
ible that isfor ea
h i; j there exists an n > 0 su
h that the i; j-th entry Ani;j of the n-th 
ompositionmatrix An is non-zero.One 
an 
onsider a dire
ted graph 
onsisting of d verti
es su
h that there is an edge froma vertex vi to vj i� Ai;j 6= 0; then one 
an identify elements of the topologi
al Markov
hain with in�nite paths in the graph ( that is sequen
es of edges indexed by all integers ornonnegative integers depending as we 
onsider the two-sided or one-sided 
ase, su
h thatea
h edge begins at the vertex where the pre
eding edge ends). Then it is easy to see thatA is irredu
ible i� for every two verti
es v1; v2 there exists a �nite path from vi to vj .A notion stronger than the topologi
al transitivity, whi
h makes a non-trivial sense onlyfor f non-invertible, is the followingDe�nition 3.3.2 A 
ontinuous mapping T : X ! X for a 
ompa
t metri
 spa
e X is
alled topologi
ally exa
t (or lo
ally eventually onto) if for every open set U � X thereexists n > 0 su
h that Tn(U) = X.In Example 3.3.2 in the one-sided shift spa
e 
ase topologi
al exa
tness is equivalent tothe property that there exists n > 0 su
h that the matrix An has all entries positive. Su
ha matrix is 
alled aperiodi
.In the two-sided 
ase aperiodi
ity of the matrix is equivalent to topologi
al mixing ofthe shift map. We say a 
ontinuous map is topologi
ally mixing if for every non-emptyopen sets U; V � X there exists N > 0 su
h that for every n � N we have Tn(U)\V 6= ;.Proposition 3.3.3 The following 3 
onditions are equivalent:(1) T : X ! X is topologi
ally transitive.(2) For every non-empty open sets U; V � X and every N � 0 there exists n � N su
hthat Tn(U) \ V 6= ;.(3) There exists a T -traje
tory (xn; n = 0; 1; :::), su
h that every x 2 X is its !-limitpoint, that is for every N � 0 the set fxn : n > Ng is dense in X.Proof. Let us prove �rst the impli
ation (1))(3). So, suppose T : X ! X is topologi
ally7



transitive. Then for every open non-empty set V � X, the setK(V ) := fx 2 X : there exists n � 0 su
h that Tn(x) 2 V g = [n�0T�n(V )is open and dense in X. Let fVkgk�1 be a 
ountable basis of topology of X. By Baire's
ategory theorem, the interse
tionK := \k�1 \N�0K(T�N (Vk)is a dense GÆ subset of X. In parti
ularK is non-empty and by its de�nition the traje
toryfTn(x) : n � Ng is dense in X for every x 2 K. Thus (1) implies (3).Let us now prove that (3))(2). Indeed, if xn is a traje
tory satisfying the 
ondition(3), then for all non-empty open sets U; V � X and N � 0, there exist n � m > 0; n�m �N su
h that xm 2 U and xn 2 V . Hen
e Tn�m(U) \ V 6= ;. Thus (3) implies (2). Sin
e(2) implies (1) trivially the proof is 
omplete. |De�nition 3.3.a. A point x 2 X is 
alled wandering if there exists an open neighhbour-hood V of x su
h that V \ Tn(V ) = ; for all n � 1. Otherwise x is 
alled non-wandering.We denote the set of all non-wandering points for T by 
 or 
(T ).Proposition 3.3.b For T : X ! X satisfying the periodi
 shadowing property, the set ofperiodi
 points is dense in the set 
 of non-wandering points.Proof. Take any x 2 
(T ) and given � > 0 its neighborhood V in X of diameter �
hosen for � in the de�nition of periodi
 shadowing. Then by the de�nition of 
(T )there exists y 2 V and n > 0 su
h that Tn(y) 2 V . So rho(y; Tn(y)) � diamV hen
e(y; T (y); :::; Tn(y)) 
an be �-shadowed by a periodi
 orbit. We 
an take � arbitrarily smallhen
e we obtain the density of periodi
 points in 
(T ). |Remark 3.3.
. It is not true that for every open, distan
e expanding map T : X ! Xwe have Per = X. Here is an example: Let X = f(1=2)n : n = 0; 1; 2; :::g [ f0g. LetT ((1=2)n) = (1=2)(n�1) for n > 0, T (0) = 0; T (1) = 1. Let the metri
 be the restri
tionto X of the standard metri
 on the real line. This T is distan
e expanding on X but
(T ) = Per(T ) = f0g [ f1g. See also Exer
ise 3.3.1.Here is the main theorem of this se
tion. Its assertion holds under the assumption thatT : X ! X is open, distan
e expanding and even under weaker assumptions below.Theorem 3.3.4 (on the existen
e of Spe
tral De
omposition) Suppose that T :X ! X is an open map whi
h satis�es also the periodi
 shadowing property and isexpanding at the set Per(T ), the 
losure of the set of periodi
 points.Then Per(T ) is the union of �nitely many disjoint 
ompa
t sets 
j ; j = 1; :::; J with(T jPer(T ))�1(
j) = 
j8



and T j
j topologi
ally transitive.Ea
h 
j is the union of k(j) disjoint 
ompa
t sets 
kj whi
h are 
y
li
ally permutedby T and su
h that T k(j)j
kj is topologi
ally exa
t.Proof of Theorem 3.3.4 Let us start with de�ning an equivalen
e relation � on Per(T ).For x; y 2 Per(T ) we write x �! y if for every " > 0 there exist x0 2 X and positiveinteger m su
h that �(x; x0) < " and Tm(x0) = Tm(y). We write x � y if x � y and y � x.Of 
ourse for every x 2 Per(T ), x � x. Suppose that x � y and y � z. Let ky; kz denoteperiods of y; z respe
tively.Let x0 be 
lose to x and Tn(x0) = Tn(y) = y; an integer n satis�ying the latterequality exists sin
e we 
an take an integer so that the �rst equality holds and then takeany larger integer divisible by ky. Choose n divisible by kykz. Next, sin
e T is open, fory0 
lose enough to y, with Tm(y0) = Tm(z) = z for m divisible by kz, there exists x00 
loseto x0 su
h that Tm(x00) = y0. Hen
e Tn+m(x00) = Tm(y0) = y0 = Tn+m(y0), sin
e both mand n are divisible by kz. Thus x � z. This proof is illustrated at Fig 3.1.a.Fig.3.1.a Fig.3.1.bFig.3.1.b illustrates the transitivity for hyperboli
 sets Per(T ) (see Exer
ises or [KH℄???), where x � y if the unstable manifold of x interse
ts transversally the stable manifoldof y. In our expanding 
ase the role of transversality is played by the openness of T .Till this point we did not use the expanding assumption.Observe now that for every x; y 2 Per(T ), �(x; y) � � implies x � y. Indeed, we
an take x0 = T�nkxkyx (y) for n arbitrarily large. Then x0 is arbitrarily 
lose to x andTnkxky (x0) = y = Tnkxky (y). Hen
e the number of equivalen
e 
lasses of � , denote themP1; :::; PN , is �nite. Moreover the sets P 1; :::; PN are pairwise disjoint and the distan
esbetween them are at least �. We have T (Per(T )) = Per(T ) , and if x � y then T (x) � T (y).The latter follows straight from the de�nition of �. So T permutes the sets Pi. Thispermutation de
omposes into 
y
li
 permutations we were looking for. More pre
isely:
onsider the partition of Per(T ) into the sets of the form1[n=0Tn(P i); i = 1; :::; N:The unions are in fa
t over �nite families. It does not matter in whi
h pla
e the 
losure ispla
ed be
ause X is 
ompa
t so for every A � X we have T (A) = T (A). We 
onsider thispartition as a partition into 
j 's we were looking for. 
kj 's are the summands Tn(P i) inthe unions.Observe now that T is topologi
ally transitive on ea
h 
j .Indeed, if x; y belong to the same 
j there exist x0 2 B(x; �) and y0 2 B(y; �) su
h thatTn(x0) = Tn0(y) and Tm(y0) = Tm0(x) for some natural numbers n;m and n0 � ky;m0 �kx. For an arbitrary � > 0 
hoose � > 0 from the de�nition of periodi
 shadowing and9




onsider x00; y00 su
h that �(x00; x) � �; �(y00; y) � � and Tn1(x00) = x0; Tm1(y00) = y0 forsome natural numbers n1;m1, existing by the expanding property at Per(T ). Then thesequen
e of points T (x00); :::; Tn1+n+ky�n0(x00); T (y00); :::; Tm1+m+kx�m0(y00) is a periodi
�-pseudo-orbit, of period n1+n+ky�n0+m1+m+kx�m0, so it 
an be �-shadowed bya periodi
 orbit. Thus, there exists z 2 Per(T ) su
h that �(z; x) � � and �(TN (z); y) � �for an integer N > 0. Now take arbitrary neighbourhoods U 3 x and V 3 y and take �su
h that B(x; �) � U and B(y; �) � V . We �nd a periodi
 point z as above. Note that,provided � � �; z � x and TN (z) � y . We obtain TN (z) 2 TN (U \ 
j) \ (V \ 
j) sothis set is nonempty. This proves the topologi
al transitivity.Note that by the way we proved that the orbits x00; :::; Tn1(x00) = x0; :::; Tn(x0) withn1; n arbitrarily large, 
an be arbitrarily well shadowed by parts of periodi
 orbits. This
orresponds to the approximation of transversal 
y
les of hetero
lini
 orbits by periodi
ones, in the hyperboli
 theory (see also Exer
ise 3.3.3).This analogy justi�es the name hetero
lini
 
y
le points for the points x0 and y0, orhetero
lini
 
y
le orbits for their orbits dis
ussed above. Thus we provedLemma 3.3.7'. Under the assumptions of Theorem 3.3.4 every hetero
lini
 
y
le pointis a limit of periodi
 points.Now we 
an prove another fa
t interesting in itself:Lemma 3.3.8 T jPer(T ) is an open map.Proof. Fix x; y 2 Per(T ) and �(T (x); y) � " � �=3. Sin
e T is open, by Lemma 3.1.2,and due to the expanding property at Per(T ) there exists ŷ = T�1x (y) 2 B(x; ��1�=3) Wewant to prove that ŷ 2 Per(T ).There exist z1; z2 2 Per(T ) su
h that �(z1; x) � ��1�=3 and �(z2; y) � �=3. Hen
e�(T (z1); z2) � �, hen
e T (z1) � z2. Then T�1x (z2) is a hetero
lini
 
y
le point, so byLemma 3.3.7' it is a limit of periodi
 points. |We go ba
k to Proof of Theorem 3.3.4. We 
an prove now the topologi
al exa
tnessof T k(j)j
kj . So �x 
kj = Pi with T k(j)(Pi) = Pi. Let fxsg; s = 1; :::S be a �0=2-spanningset in Pi, where �0 is a 
onstant having the properties of � for the map T jPer, existing bythe openness of T jPer(T ) ( Lemma 3.1.2). Write k(Pi) =QSs=1 kxs . Take an arbitrary openset U � P i. It 
ontains a periodi
 point x.Note that for every ball B = B(y; r) in Per(T ) with the origin at y 2 Per(T ) andradius r less than � and ��ky�0, we have T ky (B) � B(y; �kyr). Repeating this step bystep we obtain Tnk(y)(B) � B(y; �0), (see (3.1.8).Let us go ba
k to U and 
onsider Bx = B(x; r) � U with r � ��k(Pi)�0. ThenTnk(Pi)(Bx) is an in
reasing family of sets for n = 0; 1; 2; :::.By the de�nition of �, the set Sn�0 Tnk(Pi)(Bx) 
ontains fxs :; s = 1; :::Sg, be
ausethe points xs are in the relation � with x. This uses the fa
t proved above, see Lemma3.3.7', that x0 in the de�nition of �, su
h that Tm(x0) = Tm(xs), belongs to Per(T ). Itbelongs even to Pi, sin
e for z 2 Per(T ) 
lose to x0 we have z � xs, with the use of the same10



x0 as one of a hetero
lini
 
y
le points. Hen
e, by the observation above Sn�0 Tnk(Pi)(Bx)
ontains the ball B(xs; �0) for ea
h s. So it 
ontains P i. Sin
e Tnk(Pi)(Bx) is an in
reasingfamily of open sets in Per(T ) that is 
ompa
t, just one of these sets 
overs Per(T ). Thetopologi
al exa
tness is proved. |Remark. It is easy to see that if T is a 
overing map than the assumption of periodi
shadowing 
an be skipped. We used it only to approximate hetero
lini
 
y
le points byperiodi
 ones. See also Exer
ise 3.3.2.As a 
orollary we obtain the following two theorems.Theorem 3.3.9. Let T : X ! X be an open distan
e expanding map, or expanding at theset Per(T ) satisfying the periodi
 shadowing property. Then, if T is topologi
ally transitive,or is surje
tive and its spe
tral de
omposition 
onsists of just one set 
1 = Sk(1)k=1 
k1 , thefollowing properties hold:1. The set of periodi
 points is dense in X, whi
h is thus equal to 
1.2. For every open U � X there exists N = N(U) su
h that SNj=0 T j(U) = X.3. (8r > 0)(9N)(8x 2 X)SNj=0 T j(B(x; r)) = X.4. The following spe
i�
ation property holds: For every � > 0 there exists a positiveinteger N su
h that for every n and every T -orbit (x0; :::xn) there exists a periodi
 pointy of period not larger than n+N whose orbit for the times 0; :::; n �-shadows (x0; :::xn).Proof. By the topologi
al transitivity for all open U there exist n � 1 su
h that Tn(U)\U 6= ;, (use the 
ondition (2) in Proposition 3.3.3 for N = 1). Hen
e for the set 
 of thenon-wandering points we have 
 = X. This gives the density of Per(T ) by Proposition3.3.b.If we assume only that there is one 
1(= 
 = Per(T )) in the Spe
tral De
omposition,then for an arbitrary z 2 X we �nd by the surje
tivity a ba
kward orbit z�n of z andnoti
e that z�n ! 
 and Tn(z) ! 
, that follows easily from the de�nition of 
. So forevery � > 0 there exist w1; w2 2 Per(T ) and natural numbers k; n su
h that T k(w2) � w1,�(w1; z�n) � � and �(w2; Tn(z)) � �. This allows to �nd a periodi
 point in B(z; �),where � > 0 is arbitrarily small and � 
hosen for � from the periodi
 shadowing property.We 
on
lude that X = SJj=1
j , ea
h 
j is T -invariant, 
losed, and also open sin
e
j 's are at least �-distant from ea
h other. So J = 1. Otherwise, by the topologi
altransitivity, for j 6= i there existed n su
h that Tn(
j) \ 
i 6= ;, what would 
ontradi
tthe T -invarian
e of 
j .Thus X = Sk(1)k=1(
k1) and the assertion 2. follows immediately from the exa
tness ofT k(1) on ea
h 
k1 ; k = 1; :::; k(1).The property 3. follows from 2. where given r we 
hoose N = maxfN(U)g where we
onsider a �nite 
overing of X by sets U of diameter not ex
eeding r=2. Indeed, then forevery B(x; r) the set U 
ontaining x is a subset ofB(x; r).Now let us prove the spe
i�
ation property. By the property 3. for every � > 0 thereexists N = N(�) su
h that for every v; w 2 X there exists m � N and z 2 B(v; �) su
h11



that Tm(z) 2 B(w;�). Consider any T -orbit x0; :::xn. Then 
onsider an �-pseudo-orbitx0; :::xn�1; z; :::; Tm�1(z) with m � N and z 2 B(xn; �; Tm(z) 2 B(x0; �). By Corollary3.2.4 we 
an �-shadow it by a periodi
 orbit of period n+m � n+N . |The same proof yieldsTheorem 3.3.10. Let T satis�es the assumptions of Theorem 3.3.9, and be alsotopologi
ally mixing, i.e. k(1) = 1. Then1. T is topologi
ally exa
t, i.e. for every open U � X there exists N = N(U) su
hthat TN (U) = X.2. (8r > 0)(9N)(8x 2 X) TN (B(x; r)) = X.

12



x3.4 H�OLDER CONTINUOUS FUNCTIONSFor distan
e expanding maps, H�older 
ontinuous fun
tions play a spe
ial role. Re
all thata fun
tion � : X ! CI (or IR) is said to be H�older 
ontinuous with an exponent 0 < � � 1if and only if there exists C > 0 su
h thatj�(y)� �(x)j � C�(y; x)�for all x; y 2 X. All H�older 
ontinuous fun
tions are 
ontinuous, if � = 1 they are usually
alled Lips
hitz 
ontinuous.Let C(X) denote as in the previous 
hapters the spa
e of all 
ontinuous, real or 
omplex-valued fun
tions de�ned on a 
ompa
t spa
e X and for  : X ! CI we write k k1 :=supfj (x)j : x 2 Xg for its supremum norm. For any � > 0 let H�(X) denote the spa
eof all H�older 
ontinuous fun
tions with exponent � > 0. If  2 H�(X) let#�;�( ) = sup� j (y)�  (x)j�(y; x)� : x; y 2 X; x 6= y and �(x; y) � ��and #�( ) = sup� j (y)�  (x)j�(y; x)� : x; y 2 X; x 6= y� :Note that #�( ) � max�2jj jj1�� ; #�;�( )� :The reader will 
he
k easily that H�(X) be
omes a Bana
h spa
e when equipped withthe norm k kH� = #�( ) + k k1:Thus, to estimate in future jj jjH� it is enough to estimate #�;�( ) and jj jj1:The following result is a straightforward 
onsequen
e of Arzela-As
oli theorem.Theorem 3.4.1. Any bounded subset of the Bana
h spa
e H�(X) with the norm k�kH� isrelatively 
ompa
t as a subset of the Bana
h spa
e C(X) with the supremum norm k � k1.Moreover if f n : n = 1; 2; : : :g is a sequen
e of 
ontinuous fun
tions in H�(X) su
h thatkxnkH� � C for all n � 1 and some 
onstant C and if limn!1 k n �  k1 = 0 for some 2 C(X), then  2 H�(X) and k kH� � C.Now let us formulate a simple but very basi
 lemma in whi
h you will see a 
oheren
e ofthe expanding property of T and the H�older 
ontinuity property of a fun
tion.Lemma 3.4.2 (pre-Bounded Distortion Lemma for Iteration). Let T : X ! Xbe a distan
e expanding map and � : X ! CI be a H�older 
ontinuous fun
tion with theexponent �. Then for every positive integer n and x; y 2 X su
h that(3.4.1) �(T j(x); T j(y)) < 2� for every j = 0; 1; :::; n� 113



we have(3.4.2) jSn�(x)� Sn�(y)j � �(Tn(x); Tn(y))�� #�(�)1� ����:If T is open we 
an assume x; y 2 T�nz (B(Tn(z); �) for a point z 2 X, instead of (3.4.1).Then in (3.4.2) we 
an repla
e #� by #�;�.The sense of (3.4.2) is that the 
oeÆ
ient #�(�)1���� does not depend on x; y; n).Proof. By (3.1.2) we have �(T j(x); T j(y)) � ��(n�j)�(Tn(y); Tn(z)) for every 0 � j � n.Hen
e j�(T j(y))� �(T j(z))j � #�(�)��(n�j)��(Tn(y); Tn(z))�ThusjSn�(y)� Sn�(z)j � #�(�)�(Tn(y); Tn(z))� n�1Xj=0 ��(n�j)�� #�(�)�(Tn(y); Tn(z))� 1Xj=0 ��j� = #�(�)1� ��� �(Tn(y); Tn(z))�The proof is �nished. |For an open distan
e expanding topologi
ally transitive map we 
an repla
e topologi
alpressure de�ned in Chapter 2 by a 
orresponding notion related with a "tree" of pre-imagesof an arbitrary point (
ompare this with Exer
ise 4 ??? in Chapter 2).Proposition 3.4.3. If T : X ! X is a topologi
ally transitive distan
e expanding map,then for every H�older 
ontinuous potential � : X ! IR and for every x 2 X there existsthe limit Px(T; �) := limn!1 1n log Xx2T�n(x) expSn�(x)and it is equal to the topologi
al pressure P(T; �). In addition, there exists a 
onstant Csu
h that for every x; y 2 X and every positive integer n(3.4.3) Px2T�n(x) expSn�(x)Py2T�n(y) expSn�(y) < CProof. If �(x; y) < � then (3.4.3) follows immediately from Lemma 3.4.2 with some
onstant, say C1. Now observe that by the topologi
al transitivity of T there exists N(depending on �) su
h that for all x; y 2 X there exists 0 � m < N su
h that Tm(B(x; �))\B(y; �) 6= ;. Indeed, for example by the 
ondition 3) in Proposition 3.3.3 we 
an �nd twoblo
ks of a traje
tory of z with dense !-limit set, say T k(z); :::; T k0(z) and T l(z); :::; T l0(z)14



with l > k0, ea
h �-dense in X. Then we set N = l0�k. We 
an �nd t between k and k' ands between l and l0 so that T t(z) 2 B(x; �) and T s(z) 2 B(y; �. We have m := s� t � N .Now �x arbitrary x; y 2 X. So, there exists a point y0 2 T�m(B(y; �))\ B(x; �). Wethen haveXx2T�n(x) expSn�(x) � C1 Xy02T�n(y0) expSn�(y0)= C1 exp(�Sm�(Tm(y0))) Xy02T�n(y0) expSn+m�(y0)� C1 exp(�m inf �) Xy02T�(n+m)(Tm(y0)) expSn+m�(y0)� C1 exp(�m inf �) Xy02T�(n+m)(Tm(y0)) expSn�(Tm(y0)) expSm�(y0)� C1 exp(m sup ��m inf �) Xy02T�(n+m)(Tm(y0)) expSn�(Tm(y0))� C1 exp(2N jj�jj1)DN Xy02T�n(Tm(y0)) expSn�(y0)� C21 exp(2N jj�jj) Xy2T�n(y) expSn�(y);where D = supf#(T�1(z)) : z 2 Xg <1. This proves (3.4.3).Observe that ea
h set T�n(x) is (n; 2�)-separated, when
elim supn!1 1n log Xx2T�n(x) expSn�(x) � P(T; �);by the 
hara
terization of pressure given in Theorem 2.2.10.In order to prove the opposite inequality �x " < 2� and for every n � 1, an (n; ")-separated set Fn. Cover X by �nitely many balls B(z1; "=2); B(z2; "=2); : : : ; B(zk; "=2).Then Fn = Fn \ �Skj=1 T�n�B(zj ; "=2)�� and thereforeXz2Fn exp(Sn�(z)) = kXj=1 XFn\T�n(B(zj ;"=2)) exp(Sn�(z)):Given y 2 X 
hoose as j(y) an arbitrary j su
h that y 2 T�n(B(zj(y); "=2)). Let zj(y) 2T�n(z) be de�ned by y 2 T�nzj(y)(B(zj(y); "=2). We shall show that the fun
tion y 7! zj(y)is inje
tive. Indeed, suppose that zj = zj(a) = zj(b) for some a; b 2 Fn \ T�n(B(zj; "=2)).Then �(T l(a); T l(b)) � �(T l(a); T l(zj)) + �(T l(zj); T l(b)) � "2 + "2 = "15



for every 0 � l � n. So, a = b sin
e Fn is (n; ")-separated.Hen
e, using (3.4.3), we obtainXz2Fn exp(Sn�(z)) � kXj=1CXzj exp(Sn�(zj)) � kC2 Xx2T�n(x) exp(Sn�(x))Letting n%1 and next "! 0, applying Theorem 2.2.10, we therefore getP(T; �) � lim infn!1 1n log Xx2T�n(x) expSn�(x):Thuslim infn!1 1n log Xx2T�n(x) expSn�(x) � P(T; �) � lim supn!1 1n log Xx2T�n(x) expSn�(x):So liminf=limsup above, the limit exists and is equal to P(T; �). |Remark 3.4.4. It follows from Proposition 3.4.3, the proof of the Variational Prin
iplePart II (see Se
tion 2.3) and the expansiveness of T that for every x 2 X every weak limitof the measures 1nPn�1k=0 �n Æ T�k where�n = Px2T�n(x) Æx expSn�(x)Px2T�n(x) expSn�(_x)and Æx denotes the Dira
 measure 
on
entrated at the point x, is an equilibrium state.In fa
t our very spe
ial situation allows to say a lot more about the measures involved.Chapter 3 will be devoted to this end.Let us �nish this se
tion with one more very useful fa
t (
ompare Theorem 1.11.3.)Proposition 3.4.5. Let T : X ! X be an open, distan
e expanding, topologi
allytransitive map. If �;  2 H�(X), then the following 
onditions are equivalent.(1) If x 2 X is a periodi
 point of T and if n denotes its period, then Sn�(x)�Sn (x) = 0.(2) There exists a 
onstant C > 0 su
h that for every x 2 X and integer n � 0, we havejSn�(x)� Sn (x)j � C.(3) There exists a fun
tion u 2 Ha su
h that ��  = u Æ T � u.Proof. The impli
ations (3) =) (2) =) (1) are very easy. The �rst one is obtainedby summing up the equation in (3) along the orbit x; T (x); :::; Tn�1(x) whi
h gives C =2 sup j� �  j. The se
ond one holds be
ause otherwise, if Sn�(x) � Sn (x) = K 6= 0 forx of period n, then we have Sjn�(x) � Sjn (x) = jK whi
h 
ontradi
ts (2) for j largeenough. Now let us prove (1) =) (3). Let x 2 X be a point su
h that for every N � 0the orbit (xn : n = N;N + 1; :::) is dense in X. Su
h x exists by topologi
al transitivity16



of T , see Proposition 3.3.3. Write � = � �  . De�ne u on the forward orbit of x, the setA = fxn : n = 0; 1; :::g by u(xn) = Sn�(x). If x is periodi
 then X is just the orbit of x andthe fun
tion u is well de�ned due to the equality in (1). So, suppose that x is not periodi
.Then xn 6= xm for m 6= n hen
e u is well de�ned on A. We will show that it extends ina H�older 
ontinuous manner to A = X. Indeed, if we take points xm; xn 2 A su
h thatm < n and �(xm; xn) < " for " small enough, then xm; :::; xn�1 
an be �-shadowed by aperiodi
 orbit y; :::; Tn�m�1(y) of period n�m by Corollary 3.2.4, where " is related to �in the same way as � related to � in that Corollary. Then by the Lemma 3.4.2ju(xn)� u(xm)j = jSn�(x)� Sm�(x)j = jSn�m�(xm)j= jSn�m�(xm)� Sn�m�(y)j � #(�)�"�:In parti
ular we proved that u is uniformly 
ontinuous on A whi
h allows to extend u
ontinuously to A. By taking limits we see that this extension satis�es the same H�olderestimate on A as on A. Also the equality in (3) true on A, extends to A by the de�nitionof u and by the 
ontinuity of � and u . The proof is �nished. |The equality in (3) is 
alled 
ohomology equation, u is a solution of the equation, seeCh.1.11.2. Here the 
ohomology equation is solvable in the spa
e K = H�. Note thatproving 3) =) 2) we used only the assumption that u is bounded. So, going through2) =) 1) =) 3) we prove that if the 
ohomology equation is solvable with u bounded,then automati
ally u 2 H�. Later on ??? you will see that an assumption that u is �nitemeasurable, for some probability T -invariant measure with support X, would be suÆ
ient,even under assumptions on T weaker than expanding. Often u is for
ed to be as good as� and  . This type of theorem is 
alled Liv�si
 type theorem.

17



x3.5 MARKOV PARTITIONS AND SYMBOLIC REPRESENTATIONWe shall prove in this se
tion that the topologi
al Markov 
hains (Ch.0.3) des
ribequite pre
isely dynami
s of general open expanding maps.This 
an be done through so 
alled Markov partitions of X. The sets of a partitionwill play the role of "
ylinders" fi0 = Const g in �A.De�nition 3.5.1. A �nite 
over < = fR1; : : : ; Rng of X is said to be a Markov partitionof the spa
e X for the mapping T if diam(<) < minf�; �g and the following 
onditions aresatis�ed.(a) R = IntRi for all i = 1; 2; : : : ; d(b) IntRi \ IntRj = ; for all i 6= j(
) IntRj \ T (IntRi) 6= ; =) Rj � T (Ri) for all i; j = 1; 2; : : : ; dTheorem 3.5.2. For the open, distan
e expanding mapping T there exist Markov parti-tions of arbitrarily small diameters.Proof. Fix � < minf�=4; �g and let � be the number asso
iated to � as in Lemma 3.2.2.Choose 0 < 
 � minf�=2; �=2g so small that(3.5.1) �(x; y) � 
 =) �(T (x); T (y)) � �=2and let E = fz1; : : : ; zrg be a 
-spanning set of X. De�ne the spa
e 
 putting
 = fq = (qi) 2 EZZ+ : �(T (qi); qi+1) � � for all i � 0gBy de�nition all elements of the spa
e 
 are �-pseudo-orbits and therefore in view ofCorollary 3.2.3 and Lemma 3.2.1 for every sequen
e q 2 
 there exists a unique pointwhose orbit for n = 0; 1; ::: �-shadows q. Denote this point by �(q). In this way we havede�ned a map � : 
! X. We will need some of its properties.Let us show �rst that � is surje
tive. Indeed, sin
e E is a 
 spanning set,for every x 2 X and every i � 0 there exists qi 2 E su
h that�(T i(x); qi) < 
and therefore, using also (3.5.1),�(T (qi); qi+1) � �(T (qi); T (T i(x))) + �(T i+1(x); qi+1) < �=2 + 
 � �=2 + �=2 = �for all i � 0. Thus q = (qi : i = 0; 1; : : :) 2 
 and (as 
 < �) x = �(q). The surje
tivity of� is proved.Now we shall show that � is 
ontinuous. For this aim we will need the followingnotation. If q 2 
 then we put(3.5.2) q(n) = fp 2 
 : pi = qi for every i = 0; 1; : : : ; ng18



To prove 
ontinuity suppose now that p; q 2 
, p(n) = q(n) with some n � 0 and denotex = �(q), y = �(p). Then for all i = 0; 1; : : : ; n�(T i(x); T i(y)) � �(T i(x); qi) + �(pi; T i(y)) � � + � = 2�As � < �, we therefore obtain by (3.1.2) that �(T i+1(x); T i+1(y)) � ��(T i(x); T i(y)) fori = 0; 1; : : : ; n� 1, (see (3.1.7)), and 
onsequently �(x; y) � ��n2�. The 
ontinuity of � isproved.Now for every k = 1; : : : ; r de�ne the setsPk = �(fq 2 
 : q0 = zkg)Sin
e � is 
ontinuous, 
 is a 
ompa
t spa
e, and the sets fq 2 
 : q0 = zkg are 
losed in
, all sets Pk are 
losed in X.Denote W (k) = fl : �(T (zk); zl) � �gWe have the following basi
 property satis�ed:(3.5.3) T (Pk) = [l2W (k)PlIndeed, if x 2 Pk then x = �(q) for q 2 
 with q0 = zk. By the de�nition of 
 we haveq1 = zl for some l 2W (k). We obtain T (x) 2 Pl.Conversely, let x 2 Pl for l 2 W (k). It means that x = �(q) for some q 2 
 withq0 = zl. By the de�nition of W (k) the 
on
atenation zkq belongs to 
 and therefore thepoint T (�(zkq)) �-shadows q. Thus T (�(zkq)) = �(q) = x hen
e x 2 T (Pk).Let now Z = X n 1[n=0T�n� r[k=1 �Pk�and for any x 2 Z denote P (x) = fk 2 f1; : : : ; rg : x 2 Pkg;Q(x) = fl =2 P (x) : Pl \ ( [k2P (x)Pk) 6= ;g;and S(x) = \k2P (x) IntPk n � [k2Q(x)Pk� = \k2P (x) IntPk n � [k=2P (x)Pk)�We shall show that the family fS(x) : x 2 Zg is in fa
t �nite and moreover, that the familyfS(x) : x 2 Zg is a Markov partition of diameter not ex
eeding 2�.19



Indeed, sin
e diam(Pk) � 2� for every k = 1; : : : ; r we have(3.5.4) diam(S(x)) � 2�As the sets S(x) are open, we have(3.5.5) IntS(x) = S(x)for all x 2 Z. This proves the property (a) of the Theorem.We shall now show that for every x 2 Z(3.5.6) T (S(x)) � S(Tx)Note �rst that for K(x) := Sk2P (x) Pk [ Sl2Q(x) Pl we have diamK � 8� and thereforeby the assumption � < �=4, the map T restri
ted to K is inje
tive.Consider k 2 P (x). Then there exists l 2 W (k) su
h that T (x) 2 Pl 
f. (3.5.3), andusing the de�nition of Z we get T (x) 2 Int(Pl). Using the assumption that T is open andnext (3.5.3) we obtain T (IntPk) = Int(T (Pk)) � IntPl � S(T (x))and therefore(3.5.7)) T ( \k2P (x) IntPk) � S(T (x))Now 
onsider k 2 Q(x). We remind (3.5.3) and observe that by the inje
tivity of T jKthe assumption x =2 Pk implies T (x) =2 Pl, l 2W (k).Thus T (Pk) � [l=2P (T (x))Plhen
e T ( [l2Q(x)Pl) \ S(T (x)) = ;Combining this and (3.5.7) givesT � \k2P (x) IntPk n � [k2Q(x)Pk�� � S(T (x))whi
h exa
tly means that formula (3.5.6) is satis�ed and therefore(3.5.8) T (S(x)) � S(Tx)We shall now prove the following 
laim.20



Claim. If x; y 2 Z then either S(x) = S(y) or S(x) \ S(y) = ;.Indeed, if P (x) = P (y) then also Q(x) = Q(y) and 
onsequently S(x) = S(y). IfP (x) 6= P (y) then there exists k 2 P (x)� P (y), say k 2 P (x) nP (y). Hen
e S(x) � IntPkand S(y) � X n Pk. Therefore S(x) \ S(y) = ; and the Claim is proved.(One 
an write the family S(x) as Wk=1;:::;rfIntPk; X nPkg, 
ompare notation in Ch.1.Then the assertion of the Claim is immediate.)Sin
e the family fP (x) : x 2 Zg is �nite so is the family fS(x) : x 2 Zg. Note thatS(x)\ S(y) = ; implies IntS(x)\ IntS(y) = ;. This is a general property of pairs of opensets, U \ V = ; implies U \ V = ; implies IntU \ V = ; implies IntU \ V = ; impliesIntU \ IntV = ;.In view of Baire's theorem the set Z is dense in X. Sin
e Sx2Z S(x) � Z, we thushave Sx2Z S(x) = X. That the family fS(x) : x 2 Zg is a Markov partition for T ofdiameter not ex
eeding 2� follows now from (3.5.5), (3.5.6), (3.5.4) and from the 
laim.The proof is �nished. |Ea
h Markov partition allows to introdu
e a 
oding (symboli
 representation) of T :X ! X as follows.Theorem 3.5.3. Let T : X ! X be an open, distan
e expanding map. Let fR1; :::; Rdgbe a Markov partition. Let A = (ai;j) be a d � d matrix with ai;j = 0 or 1, ai;j = 1 i�T (IntRi)\ IntRj 6= ;. Then 
onsider the one-sided topologi
al Markov 
hain �A with theleft shift �, see Ch.0.3. De�ne a mapping � : �A ! X by�((i0; i1; :::)) = 1\n=0T�n(Rin):Then � is well de�ned H�older 
ontinuous mapping onto X and T� = ��. Moreover�j��1(XnS1n=0 T�n(Si �Ri)) is inje
tive.Proof. For an arbitrary sequen
e (i0; i1; :::) 2 �A, ai;j = 1 implies T (Rin) � Rin+1 .Sin
e diamRin < 2�, T is inje
tive on Rin , hen
e there exists an inverse bran
h T�1Rinon Rin+1 The subs
ript Rin indi
ates that we take the bran
h leading to Rin , 
omparenotation from Ch.3.1. Thus, T�1Rin (Rin+1) � Rin . Hen
eT�1Ri0T�1Ri1 :::T�1Rin (Rin+1) � T�1Ri0T�1Ri1 :::T�1Rin�1 (Rin):So Tn�0 T�n(Rin) 6= ;, as the interse
tion of the above de
reasing family of 
ompa
t sets.We have used hereT�1Ri0 :::T�1Rin�1 (Rin) = T�1Ri0 :::T�1Rin�2 (T�1(Rin) \ Rin�1)= T�1Ri0 :::T�1Rin�3 (T�2(Rin) \ T�1Rin�1 \Rin�2) = ::: = n\k=0T�k(Rik)21



following from T�1Rik (A) = T�1(A) \Rik for every A � Rik+1 ; k = 0; :::; n� 1.Our in�nite interse
tion 
onsists of only one point, sin
e diamRi are less than theexpansivness 
onstant.Let us prove now that � is H�older 
ontinuous. Indeed, dist((in); (i0n)) � ��N1 impliesin = i0n for all n = 0; :::; N � 1, where we 
onsider distan
e in the metri
 �0 in Ch.0.3,with the fa
tor �0. Then, for x = �((in)); y = �((i0n)) and every n : 0 � n < N wehave Tn(x); Tn(y) 2 Rin , hen
e dist(Tn(x); Tn(y)) � diamRin � �, hen
e dist(x; y) ���(N�1)�. Therefore � is H�older with exponent minf1; log�0= log�g.Finally let us deal with the inje
tivity. If x = �((in)) and Tn(x) 2 IntRin for alln = 0; 1; :::, then Tn(x) =2 Rj for all j 6= in. So, if x 2 Tn T�n(Ri0n), then all i0n = in. |Remark. One would not think that � is always inje
tive on the whole �A. Considerfor example the mapping of the unit interval T (x) = 2x(mod 1), 
ompare Ch.0.3. Thendyadi
 expansion of x is not unique for x 2 S1n=0 T�n(f 12g). Dyadi
 expansion is theinverse, ��1, of the 
oding obtained from the Markov partition [0; 1℄ = f[0; 12 ℄; [ 12 ; 1℄g.Remind �nally that � : �A ! �A is an open, distan
e expanding map. The partitioninto the 
ylinders Ci := f(in) : i0 = ig for i = 1; :::; d, is a Markov partition into 
losed-opensets. The 
orresponding 
oding � is just the identity.Another fa
t 
on
erning a similarity between (�A; �) and (X;T ) is the followingTheorem 3.5.4. For every H�older 
ontinuous fun
tion � : X ! IR the fun
tion �Æ�is H�older 
ontinuous on �A and the pressures 
oin
ide, P(T; �) = P(�; � Æ �).Proof. The fun
tio � Æ� is H�older as a 
omposition of H�older 
ontinuous fun
tions.Consider next an arbitrary x 2 X nS1n=0 T�n(Si �Ri). Then, using Proposition 3.4.3 forT and � we obtainP(T; �) = Px(T; �) = P��1(x)(�; � Æ �) = P(�; � Æ �):The middle equality follows dire
tly from the de�nitions. |Finally we shall prove that � is inje
tive in a measure-theoreti
 sense.Theorem 3.5.5. For every ergodi
, invariant under the shift �, probability Borel measure� on �A, positive on open sets, the mapping � yields an isomorphism between � and themeasure � Æ ��1 on the Borel sets in X.Proof. The set � = Sdi=1 �(Ri), and hen
e ��1(�), have non-empty open 
omplementsin �A. We have also T (�) � � hen
e �(��1(�)) � ��1(�). Hen
e, by the �-invarian
e of �we get �(��1(�)) = �(�(��1(�))), equal to 0 or 1 by the ergodi
ity. But the 
omplementof ��1(�), as a non-empty open set, has positive measure �. Hen
e �(��1(�)) = 0. Hen
e�(E) = 0 for E := S1n=0 T�n(��1(�)) and by Theorem 3.5.3 � is inje
tive on �A nE. Thisproves that � is the required isomorphism. |22



x3.6 EXPANSIVE MAPS ARE EXPANDING IN SOME METRICTheorem 3.1.1 says that distan
e expanding maps are expansive. In this se
tion we provethe following mu
h more diÆ
ult result whi
h 
an be 
onsidered as a sort of the 
onversestatement and whi
h provides an additional strong justi�
ation to explore expanding maps.Theorem 3.6.1. If a 
ontinuous map T : X ! X of a 
ompa
t metri
 spa
e X is(positively) expansive then there exists a metri
 on X, 
ompatible with the topology, su
hthat the mapping T is distan
e expanding with respe
t to this metri
.The proof of Theorem 3.6.1 given here relies heavily on the old topologi
al result of Frink(see [Frn℄, 
omp.[K, p.185℄) whi
h we state below without proof.Lemma 3.6.2. (The Metrization Lemma of Frink) Let fUn : n � 0g be a sequen
e ofopen neighborhoods of the diagonal � � X �X su
h that U0 = X �X,(3.6.1) 1[n=1Un = �;and for every n � 1(3.6.2) Un Æ Un Æ Un � Un�1Then there exists a metri
 �, 
ompatible with the topology on X, su
h that for every n � 1(3.6.3) Un � f(x; y) : �(x; y) < 2�ng � Un�1:We will also need the following almost obvious result.Lemma 3.6.3. If T : X ! X is a 
ontinuous map of a 
ompa
t metri
 spa
e X and Tnis distan
e expanding for some n � 1 then T is distan
e expanding with respe
t to somesome metri
 
ompatible with the topology on X.Proof. Let � be a 
ompatible metri
 with respe
t to whi
h T is distan
e expanding andlet � > 1 and � > 0 be 
onstants su
h that�(Tn(x); Tn(y)) � ��(x; y)whenever �(x; y) < �. Put � = � 1n and de�ne the new metri
 �0 setting�0(x; y) = �(x; y) + 1� �(T (x); T (y)) + : : :+ 1�n�1 �(Tn�1(x); Tn�1(y))Then �0 is a metri
 on X 
ompatible with the topology and �0(T (x); T (y)) � ��0(x; y)whenever l�0(x; y) < �. | 23



Now we 
an pass to the proof of Theorem 3.6.1.Proof of Theorem 3.6.1. Let d be a metri
 on X 
ompatible with the topology, andlet 3� > 0 be an expansive 
onstant asso
iated to T whi
h does not ex
eed the 
onstant �
laimed in Proposition 2.4.9. For any n � 1 and 
 > 0 letVn(
) = f(x; y) 2 (X �X) : d(T j(x); T j(y)) < 
 for every j = 0; : : : ; ng.Then in view of Proposition 2.4.9 there exists M � 1 su
h that(3.6.4) VM (3�) � f(x; y) : d(x; y) < �g:De�ne U0 = X � X and Un = VMn(�) for every n � 1. We will 
he
k that the sequen
efUn : n � 0g satis�es the assumptions of Lemma 3.6.2. Indeed, (3.6.1) follows immediatelyfrom expasiveness of T and 
ondition (3.6.2) will be proved by indu
tion. For n = 1 nothinghas to be proved. Suppose that (3.6.2) holds for some n � 1 and let (x; u); (u; v); (v; y) 2Un+1. Then by the triangle inequalityd(T j(y); T j(x)) < 3� for every j = 0; : : : ; (n+ 1)M:Therefore, using (3.6.4), we 
on
lude thatd(T j(y); T j(x)) < � for every j = 0; : : : ;MnEquivalently (x; y) 2 VMn(�) = Un whi
h �nishes the proof of (3.6.2).So we have shown that the assumptions of Lemma 3.6.2 are satis�ed, and therefore weobtain a 
ompatible metri
 � on X satisfying (3.6.3). In view of Lemma 3.6.3 it suÆ
ies toshow that T 3M is expanding with respe
t to the metri
 �. So suppose that 0 < �(x; y) < 116 .Then by (3.6.1) there exists an n � 0 su
h that(3.6.5) (x; y) 2 Un n Un+1:As 0 < �(x; y) < 116 , this and (3.6.3) imply that n � 3. It follows from (3.6.5) andthe de�nitions of Un and VMn(�), that there exists Mn < j � (n + 1)M su
h thatd(T j(y); T j(x)) � �. Sin
e 3 � n we 
on
lude that d(T i(T 3M (x)); T i(T 3M (y))) � � forsome 0 � i � (n� 2)M and therefore (T 3M (x); T 3M(y)) =2 Un�2. Consequently, by (3.6.3)and (3.6.5) we obtain that�(T 3M (x); T 3M(y)) � 2�(n�1) = 2 � 2�n > 2�(x; y):The proof is �nished. |
24



Exer
ises.Exer
ise 3.2.1. Prove the following Shadowing Theorem generalizing Corollary 3.2.3(Shadowing lemma) and Corollary 3.2.4 (Closing lemma):Let T : X ! X be an open map, expanding at a 
ompa
t Y � X. Then, for every� > 0 there exists � > 0 su
h that for every map � : Z ! Z for a set Z and a map� : Z ! B(Y; �) satisfying �(T�(z);��(z)) � � for every z 2 Z, there exists a map	 : Z ! X satisfying T� = ��, hen
e T (Y 0) � Y 0 for Y 0 = 	(Z), and su
h that forevery z 2 Z, �(	(z);�(z)) � �. If Z is a metri
 spa
e and �;� are 
ontinuous, then 	 is
ontinuous. If T (Y ) � Y and the map T jY : Y ! Y be open, then Y 0 � Y .(Hint: see Ch.5.1.)Exer
ise 3.2.2. Prove the following stru
tural stability theorem.Let T : X ! X be an open map with a 
ompa
t Y � X su
h that T (Y ) � Y . Thenfor every � > 1 and � > 0 there exists � > 0 su
h that if S : X ! X is distan
e expandingat Y with the expansion fa
tor � and for all y 2 Y �(S(y); T (y)) � � then there existsa 
ontinuous mapping h : Y ! X su
h that ShjY = hT jY , in parti
ular S(Y 0) � Y 0 forY 0 = h(Y ), and �(h(z); z) � �.(Hint: apply the previous exer
ise for Z = Y;� = T jY ;� = id; T = S and Y = Y .Compare also Ch.5.1.)Exer
ise 3.3.1. Prove that every T : X ! X open, distan
e expanding, for X
ompa
t 
onne
ted, is topologi
ally exa
t.Exer
ise 3.3.2. Prove Lemma 3.3.7' and hen
e Theorem 3.3.4 (Spe
tral De
om-position) without the assumption of periodi
 shadowing, assuming that T is a bran
hed
overing of the Riemann sphere.Exer
ise 3.3.3. Prove the existen
e of stable and unstable manifolds for hyperboli
sets and Smale's Spe
tral De
omposition Theorem for Axiom A di�eomorphisms.An invariant set � for a di�eomorphism T is 
alled hyperboli
 if there exist 
onstants� > 1 and C > 0 su
h that the tangent bundle on X restri
ted to tangent spa
es overpoints in �, T�X de
omposes into DT -invariant subbundles T�X = Tu�X � T s�X su
hthat jjDTn(v)jj � C�n for all v 2 Tu�X and n � 0 and jjDTn(v)jj � C�n for all v 2 T s�Xand n � 0.Prove that for every x 2 � the sets Wu(x) = fy 2 X : �(Tn(x); Tn(y)) ! 0 asn !�1g, and W s(x) = fy 2 X : �(Tn(x); Tn(y)) ! 0 asn ! 1g are immersed manifolds.(They are 
alled unstable and stable manifolds.)Assume next that a di�eomorphism T : X ! X satis�es Smale's Axiom A 
ondition,that is the set of non-wandering points 
 is hyperboli
 and 
 = Per.Then the relation between periodi
 points is as follows. x � y if there are points z 2Wu(x)\W s(y) and z0 2Wu(y)\W s(x) whereWu(x)a andW s(y), andWu(y)a andW s(x)respe
tively, interse
t transversally, that is the tangent spa
es to these manifolds at z and z025



span the whole tangent spa
es. Prove that this relation yields Spe
tral De
omposition, asin Theorem 3.3.4, with topologi
al transitivity assertion rather than topologi
al exa
tnessof 
ourse.As one of the steps prove a lemma 
orresponding to Lemma 3.3.7' about approximationof a transversal hetero
lini
 
y
le points by periodi
 ones. That is assume that x1; x2; :::; xnare hyperboli
 periodi
 points (i.e. their orbits are hyperboli
 sets) for a di�eomorphism,and Wuxi has a point pi of transversal interse
tion with W sx(i+1)modn for ea
h i = 1; :::; n.Then pi 2 Per.(For the theory of hyperboli
 sets for di�eomorphisms see for example [KH℄.)Exer
ise 3.4.1. Prove dire
tly that 1) =) 2) in Proposition 3.4.5, using the spe
i-�
ation property, Theorem 3.2.9.*Exer
ise 3.5.1. Suppose T : X ! X is a distan
e expanding map on a 
losedsurfa
e. Prove that there exist a Markov partition for an iterate TN 
ompatible with a
ell 
omplex stru
ture. That is elements Ri of the partitions are topologi
al dis
s, the1-dimensional "skeleton" Si �Ri is a graph 
onsisting of a �nite number of 
ontinuous
urves "edges" interse
ting one another only at end points, 
alled "verti
es". Interse
tionof ea
h two Ri is empty or one vertex or one edge, ea
h vertex is 
ontained in 2 or 3 edges.(Hint: Start with any 
ellular partition, with Ri being ni
e topologi
al dis
s and
orre
t it by adding or subtra
ting 
omponents of T�N (Ri); T�2N (Ri), et
. See [FJ1℄ fordetails. )*Exer
ise 3.5.2. Prove that if T is an expanding map of the 2-dimensional torusIR2=ZZ2, a fa
tor map of a linear map of IR2 given by an integer matrix with two irrationaleigenvalues of di�erent moduli (for example � 0 11�1 7� but not �2 00 3�), then �Ri 
annot bedi�erentiable.(Hint: Smooth 
urves Tn(�Ri) be
ome more and more dense in IR2=ZZ2 as n ! 1,stret
hing in the dire
tion of the eigenspa
e 
orresponding to the eigenvalue with a largermodulus. So they 
annot omit IntRi.The same argument, looking ba
kward, says that the 
omponents of T�n(IntRi) aredense and very distorted, sin
e the eigenvalues have di�erent moduli. The 
urve �Ri mustmanouver between them, so it is "fra
tal". See [PU℄ for more details.)Histori
al and Bibliographi
al Notes.For Shadowing Lemma in the hyperboli
 setting see [Anosov℄, [Bowen℄ and [Kush-nirenko℄ or [KH℄ (for the variant as in Exer
ise 3.2.1. For the expanding 
ase see [Shub℄,where stru
tural stability was proved for X a di�erentiable manifold, T being C1. D.Sullivan introdu
ed in [Sullivan℄ the notion teles
ope for the sequen
e T�1x0i (B(xi+1; �)) �26



B(xi; �) to 
apture a shadowing orbit, hen
e to prove stability of expanding repellers, 
om-pare Ch.5.1. This stability was also proved in [Przyty
ki, 1977℄. Re
ently a 
omprehensivemonography on shadowing by S. Yu. Pilyugin [Pilyugin℄ appeared.The existen
e of Spe
tral De
omposition in the sense of Theorem 3.3.4 (see Exer
ise3.3.3.) was �rst proved by S. Smale [S℄ for di�eomorphisms whi
h he 
alled Axiom A, thatis the set of non-wandering points 
 is hyperboli
 and 
 = Per, see also [KH℄ and furtherhistori
al informations therein. In a topologi
al setting this was 
onsidered by Bowen[B2℄, 
alled Axiom A� and for Axiom A endomorphisms, 
overing the di�eomorphisms andexpanding (smooth) 
ases, in [Przyty
ki, 1977℄. For open, distan
e expanding maps 
 =Per (Proposition 3.3.b.) 
orresponds to the analogous fa
t for Anosov di�eomorphisms.
 = X is not known for Anosov di�eomorphisms. It is not true for some distan
e expandingendomorphisms (Remark 3.3.
), but true for X 
onne
ted (Exer
ise 3.3.1), see [Shub℄ inthe smooth 
ase.The 
onstru
tion of Markov partition in Se
. 5 is similar to the 
onstru
tion for basi
sets of Axiom A di�eomorphisms in [Bowen, 1975℄. For a general theory of 
ellular Markovpartitions, in
luding Exer
ise 3.5.1, see [FJ2℄. The fa
t that Hausdor� dimension of theboundaries of 2-dimensional 
ells is greater than 1, in parti
ular their non-di�erentiability,Exer
ise 3.5.2, follows from [PU℄.Referen
es[A℄ D. V. Anosov, On a 
lass of invariant sets of smooth dynami
al systems. Pro
eed-ings 5th Int. Conf. on Nonlin. Os
ill. 2. Kiev 1970, 39-45 (in Russian).[Bowen, 1975℄[B2℄ R. Bowen, Markov partitions for Axiom A di�eomorphisms. Amer. J. Math. 92(1970), 725-749.[FJ1℄ F. T. Farrell, L. E. Jones, Markov 
ell stru
tures for expanding maps in dimen-sion 2. Trans. Amer. Math. So
. 255 (1979), 315-327.[FJ2℄ F. T. Farrell, L. E. Jones, Markov Cell Stru
tures near a Hyperboli
 Sets.Memoirs of the AMS 491 (1993).[KH℄ A. Katok, B. Hasselblatt, Introdu
tion to the modern theory of dynami
al sys-tems. Cambrideg University Press 1995.[Kushnirenko℄ A. G. Kushnirenko, Problems in dynami
al systems theory on mani-folds. IX Mathemati
al Summer S
hool, Kiev 1972 (in Russian).[Pilyugin℄ S.Yu. Pilyugin, Shadowing in Dynami
al Systems. L.N.Math. 1706,Springer 1999.[Przyty
ki, 1977℄ F. Przyty
ki, On 
-stability and stru
tural stability of endomor-phisms satisfying Axiom A. Studia Math. 60 (1977), 61-77.[PU℄ F. Przyty
ki, M. Urba�nski,[Shub℄ M. Shub, Endomorphisms of 
ompa
t di�erentiable manifolds. Amer. J. Math.91 (1969), 175-199.[Sullivan℄ D. Sullivan, Seminar on 
onformal and hyperboli
 geometry. Preprint IHES,1982. 27



CHAPTER 4. THERMODYNAMICAL FORMALISM(version Nov.16, 2002)In Chapter 2 (Th. 2.4.6) we proved that for every positively expansive map of a 
ompa
tspa
e T : X ! X and an arbitrary 
ontinuous fun
tion � : X ! IR there exists an equi-librium state. In Remark 3.4.4 we provided a spe
i�
 
onstru
tion for T open distan
eexpanding topologi
ally transitive and � H�older. Here we shall 
onstru
t this equilibriummeasure with a greater 
are and study its mira
ulous regularity with respe
t to the "po-tential" fun
tion �, its "mixing" properties and uniqueness. So, for the whole 
hapterT : X ! X we �x an open, distan
e expanding, topologi
ally transitive map of a 
ompa
tmetri
 spa
e (X; �), with 
onstants �; �; � introdu
ed in Ch.3.SECTION 4.1. GIBBS MEASURES: INTRODUCTORY REMARKS.A probability measure � on X and Borel �-algebra of sets is said to be a Gibbs state(measure) for the potential � if there exist P 2 IR and C � 1 su
h that for all x 2 X andall n � 1(4.1.1) C�1 � ��T�nx (B(Tn(x); �))�exp(Sn�(x)� Pn) � CIf additionally � is T -invariant, we 
all � invariant Gibbs state (or measure).We denote the set of all Gibbs states of � by G�. It is obvious that if � is a Gibbsstate of � and � is equivalent to � with Radon-Nikodym derivatives uniformly boundedfrom above and below, then � is also a Gibbs state. The following proposition shows thatthe 
onverse is also true and it identi�es the 
onstant P appearing in the de�nition ofGibbs states as the topologi
al pressure of �.Proposition 4.1.1. If � and � are Gibbs states asso
iated to the map T and a H�older
ontinuous fun
tion � and the 
orresponding 
onstants are denoted respe
tively by P;Cand Q;D then P = Q = P(T; �) and the measures � and � are equivalent with mutualRadon-Nikodym derivatives uniformly bounded.Proof. Sin
e X is a 
ompa
t spa
e, there exist �nitely many points x1; : : : ; xl 2 X su
hthat B(x1; �) [ : : : [ B(xl; �) = X. We 
laim that for every 
ompa
t set A � X, everyÆ > 0 and for all n � 1 large enough(4.1.2) �(A) � CDl exp((Q� P )n)(�(A) + Æ)By the 
ompa
tness of A and by the regularity of the measure � there exists " > 0su
h that �(B(A; ")) � �(A) + Æ. Fix an integer n � 1 so large that ���n < "2 and forevery 1 � i � l let X(i) = fx 2 T�n(xi) : A \ T�nx (B(xi; �)) 6= ;g:1



Then A � l[i=1 [x2X(i)T�nx (B(xi; �)) � B(A; ")and sin
e for any �xed 1 � i � l the sets T�nx (B(xi; �)) for x 2 T�n(xi) are mutuallydisjoint, it follows from (4.1.1) that�(A) � �� l[i=1 [x2X(i) T�nx (B(xi; �))� � lXi=1 Xx2X(i) ��T�nx (B(xi; �))�� C lXi=1 Xx2X(i) exp(Sn�(x)� Pn) = C exp((Q� P )n) lXi=1 Xx2X(i) exp(Sn�(x)�Qn)� CD exp((Q� P )n) lXi=1 Xx2X(i) ��T�nx (B(xi; �))� � CD exp((Q� P )n)l�(B(A; "))� CDl exp((Q� P )n)(�(A) + Æ)Ex
hanging the roles of � and � we also obtain(4.1.3) �(A) � CDl exp((P �Q)n)(�(A) + Æ)for all n � 1 large enough. So, if P 6= Q, say P < Q, then it follows from (4.1.3) appliedto the 
ompa
t set X that �(X) = 0. Hen
e P = Q, and as by regularity of � and �,(4.1.2) and (4.1.3) 
ontinue to be true for all Borel subsets of X, we 
on
lude that � and� are equivalent with the Radon-Nikodym derivative d�=d� bounded from above by CDland from below by (CDl)�1 (letting Æ ! 0).It is left to show that P = P(T; �). Looking at the expression after the third inequalitysign in our estimates of �(A) with A = X we get0 = log�(X) � logC + log� lXi=1 Xx2X(i) exp(Sn�(x))�� Pn:Sin
e for every i, X(i) is an (�; n)-separated set, taking into a

ount division by n in thede�nition of pressure, we 
an repla
e here Pi by a largest summand for ea
h n. We getP � P (T; �).On the other hand for an arbitrary x 2 XXy2T�n(x) exp(Sn�(x)� Pn) � C Xy2T�n(x)��T�ny (B(x; �))� � C�(X) = Cgives P(T; �) = Px(T; �) � P . The proof is �nished. |2



Remark 4.1.2 To prove Proposition 4.1.1 ex
ept the part identifying P as P(T; �) weused only the inequalitiesC�1 � ��T�nx (B(Tn(x); �)�expPn��T�nx (B(Tn(x); �)� expQn � C:We used the fun
tion � in (4.1.1) and its H�older 
ontinuity only to prove that P = Q =P (T; �). H�older 
ontinuity allows us also to repla
e x in Sn�(x) by an arbitrary point
ontained in T�nx (B(Tn(x); �)).Remark 4.1.3. For R = fR1; :::; Rdg, a Markov partition of diameter smaller than �,(4.1.1) produ
es a 
onstant C depending on R (see Exer
ise 1) su
h that(4.1.4) C�1 � ��Rj0;:::;jn�1)exp(Sn�(x)� Pn) � Cfor every admissible sequen
e j0; j1; : : : jn�1 and every x 2 Rj0;:::;jn�1. In parti
ular (4.1.4)holds for the shift map of a one-sided topologi
al Markov 
hain.The following 
ompletes Proposition 4.1.1.Proposition 4.1.4. If � and  are two arbitrary H�older 
ontinuous fun
tions on X, thenthe following 
onditions are equivalent:(1) �� is 
ohomologous to a 
onstant in the spa
e of bounded fun
tions (see Def.1.11.2).(2) G� = G .(3) G� \G 6= ;.Proof. Of 
ourse (2) implies (3). That (1) implies (2) is also obvious. If (3) is satis�ed,that is if there exists � 2 G� \G , then it follows from (4.1.1) thatD�1 � exp(Sn(�)(x)� Sn( )(x)� nP(�) + nP( )) � Dfor some 
onstant D, all x 2 X and n 2 IN . Applying logarithms we see that the 
ondition(2) in Proposition 3.4.5 is satis�ed with � and  repla
ed by � � P(�) and  � P( )respe
tively. Hen
e, by this Proposition � � P (�) and  � P( ) are 
ohomologous whi
h�nishes the proof. |We shall prove later that the 
lass of Gibbs states asso
iated to T and � is not empty (Se
.3)and 
ontains exa
tly one Gibbs state whi
h is T -invariant (Corollary 4.2.9). A
tually weshall prove a stronger uniqueness theorem. We shall prove that any invariant Gibbs stateis an equilibrium state for T and � and prove (Se
.6) uniqueness of the equilibrium statefor open expanding T and H�older 
ontinuous �.Proposition 4.1.5 A probability T -invariant Gibbs state � is an equilibrium state for Tand �. 3



Proof. Consider an arbitrary �nite partition P into Borel sets of diameter less thanmin(�; �). Then for every x 2 X we have T�nx (B(Tn(x); �)) � Pn(x), where Pn(x) is theelement of the partition Pn = Wnj=0 P that 
ontains x. Hen
e ��T�nx (B(Tn(x); �))� ��(Pn(x)). Therefore by the Shannon-M
Millan-Breiman Theorem and (4.1.1) one obtainsh�(T ) � h�(T;P) � Z �lim supn!1 1n (nP(T; �))� Sn�(x)�d� = P(T; �)� Z � d�:or in other words, h�(T ) + R � d� � P(T; �) whi
h just means that � is an equilibriumstate. |
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SECTION 4.2. TRANSFER OPERATOR AND ITS CONJUGATE.MEASURE WITH PRESCRIBED JACOBIAN.Suppose �rst that we are in the situation of Chapter 1., i.e. T is a measurable map.Suppose that m is ba
kward quasi-invariant with respe
t to T , i.e.(4.2.1) T�(m) = m Æ T�1 � m:Then by the Radon-NikodymTheorem there exists anm-integrable fun
tion � su
h that forevery measurable set A � X we have m(T�1(A)) = RA�dm. One writes d(mÆT�1)=dm =�. In the situation of this Chapter, where T is a lo
al homeomorphism (one does not needexpanding yet) if T�1 has d bran
hes on a ball B(x; �) mapping the ball onto U1; :::; Udrespe
tively, then � =Pdj=1 �j where �j := d(mÆ (T jUj )�1)=dm. If we 
onsider measuresabsolutely 
ontinuous with respe
t to a ba
kward quasi-invariant "referen
e measure" mthen the transformation � 7! T�(�) 
an be rewritten in the language of densities withrespe
t to m as(4.2.1a) d�=dm 7! d(T��)=dm = dXj=1�(d�=dm) Æ (T jUj )�1��j :It is 
omfortable to de�ne 	(z) = d(mÆ(T jUj )�1)dm (T (z)), i.e. 	 = �j Æ T for z 2 Uj . Noti
ethat 	 is de�ned on a set whose T -image has full measure (a set maybe larger than a setof full measure), see Se
.6 for further dis
ussion.The transformation in (4.2.1a) 
an be 
onsidered as a linear operator Lm : L1(m)!L1(m), Lm(u)(x) = Xx2T�1(x)u(x)	(x):This makes sense, be
ause if we 
hange u on a set A of measure 0, then even ifm(T (A)) > 0,we have �j jT (A)\B(x;�) = 0 m-a.e., hen
e Lm(u) does not depend on u on T (A).We have the 
onvention that if u is not de�ned (on a set of measure 0) and 	 = 0, thenu	 = 0.Thus we obtain the following 
hara
terization of probability T -invariant measures abso-lutely 
ontinuous with respe
t to m.Proposition 4.2.0. A probability measure � = hm, h � 0, is T -invariant if and only ifLm(h) = h:After this introdu
tion, the appearen
e of the following linear operator, 
alled the Perron-Frobenius-Ruelle or Ruelle or Araki or also transfer operator, is not surprising:L�(u)(x) = Xx2T�1(x)u(x) exp(�(x)):If the fun
tion � is �xed we omit sometimes the subs
ript � at L. The fun
tion � is often
alled a potential fun
tion. 5



The transfer's 
onjugate operator will be our tool to �nd a quasi-invariant measure msu
h that 	 will be a s
alar multiple of exp�, hen
e Lm will be a s
alar multiple of L�.Then in turn we will look for �xed points of Lm to �nd invariant measures. Restri
tingour attention to exp�, we restri
t 
onsiderations to 	 stri
tly positive de�ned everywhere.One sometimes allows � to have the value �1, but we do not 
onsider this 
ase in ourbook.Let us be now more pre
ise. Consider L� a
ting on the Bana
h spa
e of 
ontinuousfun
tions L� : C(X) ! C(X). It is a 
ontinuous linear operator and its norm is equalto supxPx2T�1(x) exp(�(x)) = supL�(11) as this is a positive operator i.e. it maps realnon-negative fun
tions to real non-negative fun
tions (see Ch.2.1). Consider the 
onjugateoperator L�� : C�(X) ! C�(X). Note that as 
onjugate to a positive operator it is alsopositive, i.e. transforms measures into measures.Lemma 4.2.1. For every � 2 C�(X) and every Borel set A � X on whi
h T is inje
tive(4.2.2) L��(�)(A) = ZT (A) exp(� Æ (T jA)�1)d�Proof. It is suÆ
ient to prove (4.2.2) for A � B(x; r) with any x 2 X and r su
h that Tis inje
tive on B(x; 2r) (say r = �). Approximate in pointwise 
onvergen
e the indi
atorfun
tion �A by uniformly bounded 
ontinuous fun
tions with support in B = B(x; 2r).We have for any su
h fun
tion fL��(�)(f) = �(L�(f)) = ZT (B)(f exp(�)) Æ (T jB)�1d�:We used here the fa
t that the only bran
h of T�1 mapping T (B) to the support of fis that one leading T (B) to B. Passing with f to the limit �A on both sides (Lebesgue
onvergen
e theorem) gives (4.2.2). |Observe that whereas L� transports measure from the past, L�� pulls it ba
k from thefuture with Ja
obian exp�. This is the right operator to use, to look for the missing"referen
e measure" m.De�nition 4.2.2. Re
all from Chapter 1 (Def.1.9.4) that a measurable fun
tion J : X ![0;1) is 
alled the Ja
obian or thestrong Ja
obian of a map T : X ! X with respe
t toa measure � if for every Borel set A � X on whi
h T is inje
tive �(T (A)) = RA Jd�. Inparti
ular � is forward quasi-invariantJ is 
alled the weak Ja
obian if J : X ! [0;1) and there exists a Borel set E � X su
h that�(E) = 0 and for every Borel set A � X on whi
h T is inje
tive, �(T (A nE)) = RA Jd�.Noti
e that if � is ba
kward quasi-invariant then the 
ondition that J is the weakJa
obian translates to �(A) = RT (A) 1JÆ(T jA)�1 d�.6



Corollary 4.2.3. If a probability measure � satis�es L��(�) = 
� (i.e. � is an eigenmeasureof L�� 
orresponding to a positive eigenvalue 
), then 
 exp(��) is the Ja
obian of T withrespe
t to �.Proof. Substitute 
� in pla
e of L�(�) in (4.2.2). It then follows that � is ba
kward quasi-invariant and 
 exp(��) is the weak Ja
obian of T with respe
t to �. Sin
e 1exp(��) = exp�,it is positive everywhere, hen
e 
 exp(��) is the strong Ja
obian of T . |Theorem 4.2.4. Let T : X ! X be a lo
al homeomorphism of a 
ompa
t metri
 spa
e Xand let � : X ! IR be 
ontinuous. Then there exists a probability measure m = m� anda 
onstant 
 > 0, su
h that L��(m) = 
m. The fun
tion 
 exp(��) is the strong Ja
obianfor T with respe
t to the measure m.Proof. Consider the map l(�) := L�(�)L�(�)(11) on the 
onvex set of probability measureson X, i.e. on M(X), endowed with the weak* topology (Ch.2.1). The transformationl is 
ontinuous in this topology sin
e �n ! � weak* implies for every u 2 C(X) thatL�(�n)(u) = �n(L(u))! �(L(u)) = L�(�)(u). As M(X) is weak* 
ompa
t (see Th.2.1.6)we 
an use Theorem 2.1.7 (S
hauder-Ty
hono� �xed point theorem) to �nd m 2 M(X)su
h that l(m) = m. Hen
e L�(m) = 
m for 
 = L�(m)(11). Thus T has the Ja
obianequal to 
 exp(��), by Corollary 4.2.3. |Note again that we write exp� in order to guarantee it never vanishes, so that there existsthe Ja
obian for T with respe
t to m. To �nd an eigen-measure m for L� (i.e. with a weakJa
obian being a multiple of exp(��) ) we 
ould perfe
tly allow exp� = 0.We have the following 
omplementary fa
t in 
ase Ja
obian J exists.Proposition 4.2.4a. If T : X ! X is a lo
al homeomorphism of a 
ompa
t metri
 spa
eX and a Ja
obian J with respe
t to a probability measure m exists, then for every Borelset A 1d ZA J dm � m(T (A)) � ZA J dm:where d is the degree of T (d := supx2X ℄T�1(fxg)). In parti
ular if m(A) = 0, thenm(T (A)) = 0.Proof. Let us partition A into �nitely many Borel sets, say A1; A2; : : : ; An, of diametersso small that T restri
ted to ea
h of them is inje
tive. Then, on one hand,m(T (A)) = m� n[i=1T (Ai)� � nXi=1m(T (Ai)) = nXi=1 ZAi J dm = ZA J dm:and on the other hand, sin
e the multipli
ity of the family fT (Ai) : 1 � i � ng does notex
eed d,m(T (A)) = m� n[i=1T (Ai)� � 1d nXi=1m(T (Ai)) = 1d nXi=1 ZAi J dm = 1d ZA J dm:7



The proof is �nished. |Let us go ba
k to T , an open distan
e expanding topologi
ally transitive map.Proposition 4.2.5. The measure m is positive on non-empty open sets. Moreover forevery r > 0 there exists � = �(r) > 0 su
h that for every x 2 X, m(B(x; r)) � a.Proof. For every open U � X there exists n � 0 su
h that Snj=0 T j(U) = X (Theorem3.3.9). So, by Proposition 4.2.4a, m(U) = 0 would imply that1 = m(X) �Pnj=0m(T j(U)) = 0, a 
ontradi
tion.Finally let x1; :::; xm be an r=2-net in X and � := min1�j�mfm(B(xj; r=2))g. Sin
efor every x 2 X there exists j su
h that �(x; xj) � r=2, hen
e m(B(x; r)) � B(xj; r=2).Thus it is enough to set �(r) := �. |Proposition 4.2.6. The measure m is a Gibbs state of � and log 
 = P(T; �).Proof. We have for every x 2 X and every integer n � 0,m(B(x; �)) = ZT�nx (B(Tn(x);�)) 
n exp(�Sn�) dm:Sin
e, by Lemma 3.4.2, the ratio of the supremum and in�mum of the integrand of theabove integral is bounded from above by a 
onstant C > 0 and from below by C�1, weobtain 1 � m(B(x; �)) � C�1
n exp(�Sn�(x))m(T�nx (B(Tn(x); �)�)and �(�) � m(B(x; �)) � C
n exp(�Sn�(x))m(T�nx (B(Tn(x); �)�):Hen
e �(�)C�1 � m(T�nx (B(Tn(x); �)�)exp(Sn�(x)� n log 
) � Cand therefore m is a Gibbs state. That log 
 = P(T; �) follows now from Proposition 4.1.1.|We now also give a simple dire
t proof of equality log 
 = P(T; �). First note that by thede�nition of L� and a simple indu
tive argument, for every integer n � 0(4.2.2a) Ln�(u)(x) = Xx2T�n(x)u(x) exp(Sn�(x)):The estimate (3.4.3) translates to(4.2.3) C�1 � Ln(11)(x)=Ln(11)(y) � C for every x; y 2 X:Now 
n = 
nm(11) = (L�)n(m)(11) = m(Ln(11)) and hen
elog 
 = limn!1 1n logm(Ln(11)) = P (T; �):8



The latter equality follows from (4.2.3) and Proposition 3.4.3.Note that in the latter equality we used the property that m is a measure (positive).For m a signed eigen-measure and 
 a 
omplex eigenvalue for L� we would obtain onlylog j
j � P (T; �) (one should 
onsider a fun
tion u su
h that sup juj = 1 and m(u) = 1rather than the fun
tion 11) and indeed usually the point spe
trum of L� is big(ref ??????).We are in the position to prove already some ergodi
 properties of Gibbs states:Theorem 4.2.7. If T is topologi
ally exa
t, then the system (T;m) is exa
t in the measuretheoreti
 sense, namely for every A of positive measure m(Tn(A)) ! 1 as n ! 1, see1.10.3.The topologi
al 
ounterpart of this Theorem is the fa
t that topologi
al mixing impliestopologi
al exa
tness, Th.3.3.10.Proof. Let E be an arbitrary Borel set with m(E) > 0. By the regularity of m we
an �nd a 
ompa
t set A � E su
h that m(A) > 0. Fix an arbitrary " > 0. As in theproof of Proposition 4.1.1, we �nd for every n large enough, a 
overing of A by sets D�of the form T�nx (B(xi; �)); x 2 X(i); i = 1; :::; l su
h that m(S� D�) � m(A) + ". Hen
em(S�(D� nA)) � " . Sin
e the multipli
ity of this 
overing is at most l, we haveX� m(D� nA) � l":Hen
e P�m(D� nA)P�m(D�) � l"m(A) :Therefore for all n large enough there exists D = D� = T�nx (B), for some B = B(xi; �)),1 � i � l, su
h that m(D nA)m(D) � l"m(A) :Hen
e m(B n Tn(A))m(B) � RDnA 
n exp(�Sn�)dmRD 
n exp(�Sn�)dm � Cm(D nA)m(D) � C l"m(A)with C as in Proof of Proposition 4.2.6. By the topologi
al exa
tness of T , there existsN � 0 su
h that for every j we have TN (B(xj; �)) = X. In parti
ular TN (B) = X. So,using Proposition 4.2.4a, we getm(X n TN (Tn(A))) � m(TN (B n Tn(A))) � 
N (inf exp�)�N Cl"m(A) :Letting "! 0 we obtain m(X n TN (Tn(A)))! 0 as n!1. Hen
e m(TN+n(A))! 1. |9



We have 
onsidered here a spe
ial Gibbs measure m = m�. Noti
e however that byProposition 4.1.1 the assertion of Theorem 4.2.7 holds for every Gibbs measure asso
iatedto T and �.Corollary 4.2.8. If T is a topologi
ally transitive, open, distan
e expanding map, thenfor every H�older potential �, ea
h 
orresponding Gibbs measure is ergodi
.Proof. By Th.3.3.4 and Th.3.3.9 there exists a positive integer N su
h that TN istopologi
ally mixing on a TN -invariant 
losed-open set Y � X, whereSj=0;:::;N�1 T j(Y ) =X. So our TN jY , being also an open expanding map, is exa
t in the measure-theoreti
 senseby Theorem 3.7. So if m(E) > 0 then for every j = 0; :::; N � 1 we have m(TNnT j(E))!m(T j(Y )), hen
e m(Sn�0 Tn(E)) ! 1. For E being T -invariant this yields m(E) = 1.This implies ergodi
ity. |With the use of Proposition 1.2.4 we get the following fa
t promised in Se
tion 4.1.Corollary 4.2.9. If T is a topologi
ally transitive, open, distan
e expanding map, thenfor every H�older potential �, there is at most one 
orresponding invariant Gibbs measure.
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SECTION 4.3. ITERATION OF TRANSFER OPERATOR. EXISTENCEOF GIBBS STATES.It is 
omfortable to 
onsider the operator L� for � = ��P(T; �). That is L� = e�P(T;�)L�.(Re
all that P(T; �) = log 
.) Then for the referen
e measure m = m� satisfying L��(m) =eP(�)m we have L��(m) = m i.e.(4.3.1) Z udm = Z L�(u)dm for every u 2 C(X):For �xed � we often denote L� by L0. By (4.2.3) for every x; y 2 X; and non-negativeinteger n(4.3.2) Ln0 (11)(x)=Ln0 (11)(y) � C:Multiplying this inequality by Ln0 (11)(y) and then integrating with respe
t to the variablex and y we get respe
tively the �rst and the third of the following inequalities below(4.3.3) C�1 � inf Ln0 (11) � supLn0 (11) � C:By (3.4.2) for every x; y 2 X su
h that x 2 B(y; �) we have an inequality more re�nedthan (3.4.3). Namely(4.3.4)Ln�(11)(x)Ln�(11)(y) = Px2T�n(x) expSn�(x)Py2T�n(y) expSn�(y) � supx2T�n(x) expSn�(x)expSn�(yn(x)) � exp(C1�(x; y)�);where C1 = #�(�)1���� and yn(x) := T�nx (y). By this estimate and by (4.3.3) we get for alln � 1 and all x; y 2 X su
h that x 2 B(y; �)(4.3.6) ���Ln0 (11)(x)� Ln0 (11)(y)��� = ���Ln0 (11)(x)Ln0 (11)(y) � 1���Ln0 (11)(y) �Cj exp(C1�(x; y)�)� 1j � C2�(x; y)�with C2 depending on C;C1 and �.Proposition 4.3.1. There exists a positive fun
tion u� 2 H�(X) su
h that L0(u�) = u�and R u� dm = 1.Proof. By (4.3.6) and (4.3.3) the fun
tions Ln0 (11) have uniformly bounded norms inH�older spa
e H�(X), see Ch.3.4. Hen
e by Arzela-As
oli theorem there exists a limitu� 2 C(X) for a subsequen
e of un = 1nPn�1j=0 Lj0(11), n = 1; :::. Of 
ourse u� 2 H�(X),C�1 � u� � C, and using (4.3.3), a straightforward 
omputation shows that L0(u�) = u�(
ompare 2.1.14). Also R u� dm = limn!1 R un dm = R 11 dm = 1. The proof is �nished.| 11



Combining this proposition, Proposition 4.2.0, Proposition 4.2.6 and Corollary 4.2.9 weget the following.Theorem 4.3.2. For every H�older 
ontinuous fun
tion � : X ! IR there exists a uniqueinvariant Gibbs state asso
iated to T and �, namely �� = u�m�.In the rest of this Se
tion we provide a detailed study of iteration of L0 on the real or
omplex Bana
h spa
es C(X) and H�.De�nition 4.3.3. We 
all a 
ontinuous linear operator Q : B ! B on a Bana
h spa
e Balmost periodi
 if for every b 2 B the sequen
e Qn(b); n = 0; 1; ::: is relatively 
ompa
t, i.e.its 
losure in B is 
ompa
t (in the norm topology).Proposition 4.3.4. The operators Ln0 on C(X) have uniformly bounded norms for alln = 1; 2; :::.Proof. By the de�nition of L and by (4.3.3) for every u 2 C(X):(4.3.8) sup jLn0 (u)j � sup juj supLn0 (11) � C sup juj |Remark that instead of referring to the form of L one 
an only refer to the fa
t thatL is a positive operator, hen
e its norm is attained on 11.Theorem 4.3.5. The operator L0 is almost periodi
 on C(X). Moreover, all thefun
tions Ln0 (u) are equi
ontinuous and have uniformly bounded absolute values, providedL0's are asso
iated to � belonging to a bounded set in H� and u taken from a family ofequi
ontinuous fun
tions, of uniformly bounded absolute values.Proof. For every x 2 X and n > 0 denote exp(Sn�(x)) by En(x). Consider arbitrarypoints x 2 X; y 2 B(x; �). Use the notation yn(x) := T�nx (y), the same as in (4.3.4). Wehave for every u 2 C(X)jLn0 (u)(x)� Ln0 (u)(y)j = ��� Xx2T�n(x)u(x)En(x)� u(yn(x))En(yn(x)���� ��� Xx2T�n(x)u(x)(En(x)�En(yn(x)))���+ ��� Xx2T�n(x)En(yn(x))(u(x)� u(yn(x))���(4.3.9) � (sup juj)C2�(x; y)� + C supx2T�n(x) ju(x)� u(yn(x))j12



by (4.3.6) and (4.3.3). Denote a modulus of uniform 
ontinuity of u by h, i.e. 
onsideran in
reasing fun
tion h : IR+ ! IR+ su
h that lim"&0 h(") = 0 and for every z1; z2 2 Xju(z1)� u(z2)j � h(�(z1; z2)). (4.3.9) gives:(4.3.10) jLn0 (u)(x)� Ln0 (u)(y)j � (sup juj)C2�(x; y)� + Ch(�(x; y)) := g(�(x; y))We 
on
lude that all fun
tions Ln0 (u) have the same modulus of 
ontinuity g, dependingon h, sup j�j and jj�jjH� . They are also uniformly bounded by Proposition 4.3.4. Hen
eby Arzela-As
oli theorem the sequen
e Ln0 (u) is relatively 
ompa
t.If we 
onsider a family of fun
tions u rather than one fun
tion, we set h a modulus of
ontinuity of the family. |For u 2 H� we obtain the fundamental estimate (4.3.11):Theorem 4.3.6. There exist 
onstants C3; C4 > 0 su
h that for every u 2 H� all n =1; 2; :::and � > 1 from the expanding property of t(4.3.11) #�(Ln0 (u)) � C3��n�#�(u) + C4kuk1;Proof. Continuing the third line of (4.3.9) we obtainjLn0 (u)(x)� Ln0 (u)(y)j � kuk1C2�(x; y)� + C#�;�(u)��n��(x; y)�We have applied here the inequality �(x; yn(x)) � ��n�(x; y)This proves (4.3.11), provisionally with #�;� rather than #�, with C3 = C from (3.4.3)and (4.3.3) and with C4 = C2 (re
all that the latter 
onstant is of order CC1 where C1appeared in (4.3.4)). Passing to #� 
hanges C4 to maxfC4; 2C=��g, see (3.3.8) and Ch.3.4.|Corollary 4.3.7. There exist an integer N > 0; � < 1; C5 > 0 su
h that for every u 2 H�(4.3.12) kLN0 (u)kH� � �kukH� + C5kuk1Proof. This Corollary immediately follows from (4.3.11) and Proposition 4.3.4. |In fa
t (4.3.12) together with (4.3.8) imply a similar fa
t for iterates of LN , whi
hresembles ba
k (3.3.11). Namely the following holdsProposition 4.3.8.(4.3.13) 9C6 > 0 8n = 1; 2; ::: kLnN0 (u)kH� � �nk(u)kH� + C6kuk113



Proof. Substitute in (4.3.12) LN0 (u) in pla
e of u et
. n times using kLj0(u)k1 � Ckuk1.You obtain (4.1.13) with C6 = CC5=(1� �). |In Appendix we prove a general theorem by Iones
u-Tul
ea and Marines
u (abbr.:ITM), whi
h under assumptions (4.3.8), (4.3.12) gives an information about the spe
trumof L0. Ch.3 Se
.5 is devoted to this. This o

urs useful in other than expanding andH�older 
ases. Here, in the next Se
tion, assuming topologi
al mixing of T , we shall pro
eeddire
tly, not referring to ITM Theorem.Analogously to Ln0 
onsidered on C(X) the 
onvergen
e theorem below is a spe
ial
ase of a general theory of almost periodi
 operators, see Se
.5.
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SECTION 4. CONVERGENCE OF Ln. MIXING PROPERTIES OFGIBBS MEASURESRe
all that by Proposition 4.3.1 there exists a positive fun
tion u� 2 H�(X) su
hthat L0(u�) = u�.It is 
onvienient to repla
e the operator L0 by L̂(u) = 1u�L0(uu�).If we denote the operator of multipli
ation by a fun
tion w by the same symbol w thenwe 
an write L̂(u) = u�1� ÆL0 Æu�. Sin
e L̂ and L0 = L� are 
onjugate by the operator u�,their spe
tra are the same. In addition, as this operator is positive, non-negative fun
tionsgo to non-negative fun
tions. Hen
e measures are mapped to measures by the 
onjugateoperator.Proposition 4.4.2. L̂ = L where  = � + logu� � logu� Æ T = � � P(T; �) + logu� �logu� Æ T:Proof. L̂(u)(x) = 1u�(x) PT (x)=x u(x)u�(x) exp�(x) =PT (x)=x u(x) exp(�(x)+ logu�(x)� log u�(x)) |Note that the eigenfun
tion u� for L0 has 
hanged to the eigenfun
tion 11 for L̂. Inother words we have the following.Proposition 4.4.3. L̂(11) = 11, i.e. for every x 2 X(4.4.1) Xx2T�1(x) exp (x) = 1 |Note that Ja
obian of T with respe
t to the Gibbs measure � = u�m (see Th. 4.3.2) is(u�ÆT )(exp(��))u�1� = exp(� ). So for  the referen
e measure (with Ja
obian exp(� ))and the invariant Gibbs measure 
oin
ide.Note that passing from L�, through L�, to L we have been repla
ing � by 
ohomo-logi
al (up to a 
onstant) fun
tions. By Proposition 4.1.3. this does not 
hange the set ofGibbs states.One 
an think of the transformation u 7! u=u� as new 
oordinates on C(X) or H�(X)(real or 
omplex-valued fun
tions). L0 
hanges in these 
oordinates to L and the fun
-tional m(u) to m(u�u). The latter, denote it by m , is the eigenmeasure for L� with theeigenvalue 1. It is positive be
ause the operator u� is positive (see the 
omment above).So exp(� ) is the Ja
obian for m by Corollary 4.2.3. Hen
e by (4.4.1)m is T -invariant.This is our invariant Gibbs measure �.Proposition 4.3.4 applied to L̂ takes the form.15



Proposition 4.4.4. kL̂k1 = 1.Proof. sup jL̂(u)j � sup juj be
ause L̂ is an operator of "taking an average" of u fromthe past (by Proposition 4.4.3). The equality follows from L̂(11) = 11. |The topologi
al exa
tness of T gives a stronger result:Lemma 4.4.5. If T is topologi
ally exa
t, then given any in
reasing fun
tion g : IR+ !IR+ su
h that lim"&0 g(") = 0, (8Æ1 > 0 and K > 0) (9Æ2 = Æ2(g; Æ1; K) > 0 and a positiveinteger n = n(g; Æ1; K) > 0) su
h that for all � 2 H� with jj�jjH� � K and u 2 C(X; IR)with modulus of 
ontinuity g) (i.e. for every z1; z2 2 X ju(z1)� u(z2)j � g(�(z1; z2)), andsu
h that R ud� = 0 and sup juj � Æ1, we havesup jL̂n(u)j � sup juj � Æ2:Proof. Fix " > 0 so small that g(") < Æ1=2. Let n be as
ribed to " a

ording toProposition 3.3.10, namely (8x)Tn(B(x; ")) = X) . Sin
e R ud� = 0, there exist y1; y2 2 Xsu
h that u(y1) � 0 and u(y2) � 0. For an arbitrary x 2 X 
hoose x0 2 B(y1; ") \ T�n(x)(it exists by the de�nition of n). We have u(x0) � Æ1=2. SoL̂n(u)(x) = u(x0) expSn (x0) + Xx2T�n(x)nfx0gu(x) expSn (x)� (sup juj � Æ1=2) expSn (x0) + sup juj Xx2T�n(x)nfx0g expSn (x)� sup juj� Xx2T�n(x) expSn (x)�� (Æ1=2) expSn (x0) = sup juj � (Æ1=2) expSn (x0):Similarly for x0 2 B(y2; ") \ T�n(x)L̂n(u)(x) � � sup juj+ (Æ1=2) expSn (x0):Thus we proved our Lemma, with Æ2 := (Æ1=2) infx2X expSn (x).Note that we used here the existen
e of a uniform bound, sup j j � sup j�j+ 2 sup j-log(u�)j and sup j log(u�)j � logC, where C depends on K, see (4.2.3), (3.4.2), (3.4.3).|We shall prove now a theorem whi
h 
ompletes Proposition 4.3.4 and Theorem 4.3.5.Theorem 4.4.6. For every u 2 C(X;CI) and T , topologi
ally exa
t open expanding map,we have(4.4.2) 
�nLn�(u)�m�(u)u� ! 0 (
overges uniformly) as n!116



In parti
ular if R ud� = 0 then(4.4.3) L̂n(u)! 0Moreover the 
onvergen
es in (4.4.2) and (4.4.3) are uniform in every set of equi
on-tinuous fun
tions u of uniformly bounded absolute values, and � in a bounded set inH�(X).Proof. For real-valued u, with R ud� = 0, the sequen
e an(u) := sup jL̂n(u)j is de
reasingby Proposition 4.4.4. Suppose that limn!1 an = a > 0. By Theorem 4.3.5 all the iteratesL̂n(u) have a 
ommon modulus of 
ontinuity g. So applying Lemma 4.4.5 with this g andÆ1 = a we �nd n0; Æ2 su
h that sup jL̂n0�L̂n(u)�j � sup jL̂n(u)j � Æ2 for every n. So forn su
h that sup jL̂n(u)j < a + Æ2 we obtain sup jL̂n+n0(u)j < a, a 
ontradi
tion with thede�nition of a.This proves (4.4.3). For an arbitrary u 2 C(X; IR) we obtain from (4.4.3) due toL̂(11) = 11 L̂n(u)� �(u)11 = L̂n(u� �(u)11)! 0:Change now 
oordinates on C(X) to go ba
k to L0 and next repla
e it by 
�1L�. Oneobtains (4.4.2). Given a 
omplex-valued u de
ompose it into sum of real and imaginarypart.If we allow u and � to vary we modify the proof. The point is that by Lemma 4.4.5, forevery Æ1 > 0, for every m � sup jujn(g; Æ1; K)=Æ2(g; Æ1; K), we get in sup juj=Æ2(g; Æ1; K)steps, sup jL̂m(u)j � Æ1, where g is the modulus of 
ontinuity for the family fL̂n(u)gprovided by Theorem 4.3.5, and K bounds the norm in H� of the fun
tions �. LettingÆ1 ! 0 proves the Theorem. |Note that (4.4.2) means weak*-
onvergen
e of measureslimn!1 Xx2T�n(x) Æx � exp(Sn�(x))=
n ! u�(x)m�for every x 2 X. Using (4.4.2) also for u = 11 we obtain(4.4.3') limn!1 Xx2T�n(x) Æx � exp(Sn�(x))=Ln�(11)(x)! m�
In the sequel one 
an 
onsider either C(X; IR) or C(X;CI). Let us de
ide for C(X;CI).Note that by L��(m�) = 
m� we have the L-invariant de
ompositionC(X) = span(u�)� ker(m�):17



For u 2 span(u�) we have L�(u) = 
u. On ker(m�), by Th.4.4.6., 
�nLn� ! 0 in strongtopology. Denote (L�)jker(m�) by Lker;�. For Lker;� restri
ted to H� we 
an say more onthe above 
onvergen
e:Theorem 4.4.7. There exists an integer n > 0 su
h thatk
�nLnker;�kH� < 1:Proof. Again it is suÆ
ient to 
onsider real u with �(u) = 0 and the operator L̂. SetÆ = minf1=8C4; 1=4g, with C4 from (4.3.11). By Th.4.3.6. for u su
h that kukH� � 1 allfun
tions L̂n(u) have the same modulus of 
ontinuity g(") = C7"� for C7 = C3 + C4 > 0.Hen
e from Theorem 4.4.6. we 
on
lude that (9n1)(8n � n1)(8u : kukH� � 1)(4.4.4) kL̂n(u)k1 � Æ:Next, for n2 satisfying C3��n2�C7 + C4Æ � 1=4, again by Th.4.3.6. we obtain#�(L̂n2(L̂n1(u)) � 1=4:Hen
e jjL̂n1+n2(u)jjH� � 1=2: Theorem has been proved with n = n1 + n2. |Note that Theorem 4.4.6. 
ould be dedu
ed from Theorem 4.4.7 by approximation of
ontinuous fun
tions uniformly by H�older ones, and using Proposition 4.3.4.Corollary 4.4.8. The 
onvergen
es in Theorem 4.4.6 for u 2 H� are exponential. Namelythere exist 0 < � < 1 and C � 0 su
h that for every fun
tion u 2 H�(4.4.4') k
�nLn�(u)�m�(u)u�k1 � k
�nLn�(u)�m�(u)u�kH� � Cku�m�(u)u�kH��n:In parti
ular if R ud� = 0 then(4.4.4") kL̂n(u)k1 � kL̂n(u)kH� � CkukH��n:Now we 
an study "mixing" properties of the system (T; �) for our invariant Gibbsmeasure �. Roughly speaking the speed of mixing is related to the speed of 
onvergen
eof Lnker;� to 0.The �rst dynami
al (mixing) 
onsequen
e of Theorem 4.4.8 is the following resultknown as the exponential de
ay of 
orrelations, see the de�nition in Ch.1.11.Theorem 4.4.10. There exists C � 1 and � < 1 su
h that for all f 2 H�; g 2 L1(�)Cn(f; g) � C�nkf �EfkH�kg �Egk1:18



Proof. Write F = f � Ef;G = g �Eg. We obtainCn(f; g) = ��� Z F � (G Æ Tn) d���� = ��� Z L̂n�F � (G Æ Tn)� d����= ��� Z G � L̂n(F ) d���� � kGk1C�nkFkH� :We have used here a very important identity true for arbitrary F;G (EF;EG = 0 did notmatter), that(4.4.5) Ln�F � (G Æ Tn)� = G � Ln(F );whi
h follows immediately from the de�nition of L with an arbitrary potential �. NamelyL�n�F � (G Æ Tn)�(x) = Xx2T�n(x)G(x)F (x) expSn (x) = G(x)Ln�(F )(x) |Exer
ise. Prove that for every � square integrable fun
tions f; g one has R f � (g ÆTn) d� ! Ef � Eg. (Hint: approximate f and g by H�older fun
tions. Of 
ourse theinformation on the speed of 
onvergen
e would be
ome lost.)The 
onvergen
e in the exer
ise is one of equivalent de�nitions of the mixing prop-erty, see Ch.1.10. We proved however earlier the stronger property: measure-theoreti
alexa
tness, Th. 4.2.7.We 
an however make a better use of the exponential 
onvergen
e in Theorem 4.4.10.Theorem 4.4.11. Let (X;T ) be a topologi
ally mixing topologi
al one-sided Markov
hain with T the shift to the left and d � 2 symbols, see Ch.0. Let F be the �-algebra gen-erated by the partition A into sets with �xed 0-th 
oordinate, namely by A = fX1; :::; Xdgwhere Xj = f(a0; a1; :::) 2 X : a0 = jg. For every 0 � k � l write F lk for the �-algebragenerated by Alk = fWlj=k T�j(A) i.e. by the sets with �xed k; k + 1; :::; l'th 
oordinates.Let � : X ! IR be H�older 
ontinuous.Then there exist 0 < � < 1; C > 0 su
h that for every k � 0; f : X ! IR measurablein Fk0 and g being ��-integrable(4.4.6) j Z f � (g Æ Tn) d�� �Ef �Egj � C�n�kkf �Efk1kg �Egk1:Proof. Assume Ef = Eg = 0. By Theorem 4.4.10(4.4.7) �� Z f � (g Æ Tn) d��� = �� Z g � L̂n�k(L̂k(f)) d��� � kgk1C�n�kkL̂k(f)kH� :19



De
ompose f into real and imaginary parts and represent ea
h one by the di�eren
e ofnowhere negative fun
tions. This allows in the estimates whi
h follow to assume thatf � 0.Noti
e that for every 
ylinder A 2 A and x 2 A, in the expressionL̂k(f)(x) = XTk(y)=x f(y) expSk (y)there is no dependen
e of f(y) on x 2 A be
ause f is 
onstant on 
ylinders of Ak0 . SosupA L̂k(f)infA L̂k(f � supB2Ak0 supy;y02B exp�Sk (y)� Sk (y0)� � Ca 
onstant C resulting from Ch.3.4. SosupA L̂k(f) � C�(A) Z L̂k(f) d� = C�(A)kfk1 � � CinfA2A �(A)�kfk1 = C 0kfk1;where the latter equality de�nes C 0.It is left yet to estimate the #�;� and #� pseudonorms of L̂k(f), 
f.Ch.3.4. We assumethat � is less than the minimal distan
e between the 
ylinders in A. We have similarly to(4.3.6), for x; y belonging to the same 
ylinder A 2 A,���L̂k(f)(x)� L̂k(f)(y)��� = ���� L̂k(f)(x)L̂k(f)(y) � 1����jL̂k(f)(y)j� (expC1�(x; y)� � 1)kC 0kfk1 � C 00�(x; y)�kfk1:for a 
onstant C 00.Hen
e, #�;�(L̂k(f)) � kfk1C 00 and, passing to #� as in Ch.3.4,#�(L̂k(f)) � kfk1maxfC 00; 2C 0���g):Thus, 
ontinuing (4.4.7), we obtain for a 
onstant CCn(f; g) � kfk1kgk1C�n�k: |An immediate 
orollary from Theorem 4.4.11 is that for every B1 2 Fk0 and Borel B2(i.e. B2 2 F10 )(4.4.8) j�(B1 \ T�n(B2))� �(B1)�(B2)j � C�n�k�(B1)�(B2);20




ompare (1.11.9). Therefore, for every non-negative integer t and every A 2 Fk0 for the
onditional measures with respe
t to AXB2At0 j�(T�n(B)jA)� �(B)j � C�n�k:This means that A satis�es the weak Bernoulli property, hen
e the natural extension( ~X; ~T ; ~�) is measure-theoreti
ally isomorphi
 to a two-sided Bernoulli shift, see Ch.1.11.Corollary 4.4.12. Every topologi
ally exa
t, open, distan
e expanding map T , withinvariant Gibbs measure � = �� for a H�older 
ontinuous fun
tion �, has the naturalextension ( ~X; ~T ; ~�) measure-theoreti
ally isomorphi
 to a two-sided Bernoulli shift.Proof. Let � : �A ! X be the 
oding map from a one-sided topologi
al Markov 
hain,due to a Markov partition, see Ch.3.5. Sin
e � is H�older, the fun
tion � Æ � is also H�older
ontinuous, hen
e we 
an dis
uss the invariant Gibbs measure ��Æ�. For this measurewe 
an apply Theorem 4.4.11 and its 
onsequen
es. Re
all also that by Theorem 3.5.5 �yields a measure-theoreti
al isomorphism between ��Æ� and ��Æ� Æ ��1, Therefore to endthe proof it is enough to prove the following.Lemma 4.4.13. The measures �� and ��Æ� Æ ��1 
oin
ide.Proof. The fun
tion exp(�� Æ � + P � h) for h := logu�Æ� + logu�Æ� Æ �), is the strongJa
obian for the shift map � and the measure ��Æ�, where P is the pressure for both(�; � Æ�) and (T; �), see Theorem 3.5.4. Sin
e � yields a measure-theoreti
al isomorphismbetween ��Æ� and ��Æ� Æ ��1, the measure ��Æ� Æ ��1 is forward quasi-invariant under Tand has the strong Ja
obian exp(��+ P � h Æ ��1). The same up to a bounded fun
tionfa
tor is the Ja
obian of ��. Therefore both measures are equivalent, hen
e as ergodi
they 
oin
ide. |
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Chapter 3, Se
tion 5: More on almost periodi
 operatorsversion of June 9, 1997In this Se
tion we show how to dedu
e Theorem 4.4.6 (on 
onvergen
e) and Theo-rem 4.4.7 and Corollary 4.4.8 (exponential 
onvergen
e) from general fun
tional analysistheorems. We do not need this later on in this book, but the theorems are useful in otherimportant situations .....Re
all (Def.4.3.3) that Q : F ! F a 
ontinuous linear operator of a Bana
h spa
eis 
alled almost periodi
 if for every b 2 F the sequen
e Qn(b) is relatively 
ompa
t. ByBana
h-Steinhaus theorem there is a 
onstant C � 0 su
h that kQnk � C for every n � 0.Theorem 4.5.1. If Q : F ! F is an almost periodi
 operator on a 
omplex Bana
h spa
eF , then(4.5.1) F = F0 � Fu;where F0 = fx 2 F : limn!1 An(x) = 0g and Fu is the 
losure of the subspa
e of Fgenerated by eigenfun
tions of eigenvalues of modulus 1. Adding additional assumptionsone gains additional information on this de
omposition.De�nition 4.5.2. Let F = C(X) and suppose Q : F ! F is positive, namely f � 0implies Q(f) � 0. Then Q is 
alled primitive if for every f 2 C(X); f � 0; f 6� 0 thereexists n � 0 su
h that for every x 2 X it holds Qn(f)(x) > 0. If we 
hange the order ofthe quanti�
ators to: ... for every x there exists n ..., then we 
all Q nonde
omposable.Theorem 4.5.3 ForQ : C(X)! C(X) (real or 
omplex) linear positive primitive operatorof spe
tral radius equal to 1 we have dim span(C(X)u = 1 in the de
omposition (4.5.1),the eigenvalue 
orresponding to C(X)u is equal to 1 and the eigenfun
tion is positive(everywhere > 0). More pre
isely there exists a probability measure mQ on X and apositive fun
tion uQ su
h that for every u 2 C(X) we have strong 
onvergen
eQn(u)! uQ Z u dm:Proof. This is just a repetition of 
onsiderations of Se
tions 2-4. First �nd a prob-ability measure m su
h that Q�(m) = m as in Th.4.2.4. (we leave a proof that theeigenvalue is equal to 1, to the reader). Next �nd for Q an eigenfun
tion uQ � 0 aslimn!1 1nPn�1j=0 Qj(11). We have uQ = Q(uQ) > 0 be
ause Q is nonde
omposable. Fi-nally for Q̂(u) := Q(uuQ)u�1Q we have Q̂(11) = 11 (a positive operator with this property is
alled sto
hasti
) and we repeat Proof of Th. 4.4.6, repla
ing the property of topologi
alexa
tness by primitivity. |Noti
e that this yields Theorem 4.4.6 be
ause of22



Proposition 4.5.4. If an open expanding map T is topologi
ally exa
t then for every
ontinuous fun
tion � the transfer operator Q = L� is primitive.The proof is easy, it is in fa
t 
ontained in Proof of Lemma 4.4.5.Assume now only that T is topologi
ally transitive. Let 
k denote the sets from spe
tralde
omposition X = 
 = Snk=1
k as in Th.3.3.4. Write uQ 2 C(X) for an eigenfun
tionof the operator Q as before. Noti
e now (exer
ise!) that the spa
e Fu for the operatorQ = L� is spanned by n eigenfun
tions vt = Pnk=1 �
k��tkuQ; t = 1; :::; n, where �means indi
ator fun
tions, with � = "2�i=n. Ea
h vt 
orresponds to the eigenvalue �t.Thus the set of these eigenvalues is a 
y
li
 group.It is also an easy exer
ise to des
ribe Fu if X = 
 = SJj=1Sk(j)k=1 
kj . The set of eigen-values is the union of J 
y
li
 groups. It is harder to understand Fu and the 
orrespondingset of eigenvalues for T open expanding, without assuming 
 = X.Referen
es to the above theory are:[LL℄ M. Yu. Lyubi
h, Yu. I. Lyubi
h: Perron-Frobenius theory for almost periodi
operators and semigroups representations. Teoria Funk
ii 46 (1986), 54-72.[L℄ M. Yu. Lyubi
h: Entropy properties of rational endomorphisms of the Riemannsphere. ETDS (1983), 351-385.A general theorem related to Theorem 4.4.7 and Corollary 4.4.8 is the following.Theorem 4.5.5 (Iones
u{Tul
ea and Marines
u) Let (F; j � j) be a Bana
h spa
e equippedwith a norm j � j and let E � F be its linear subspa
e. Moreover the linear spa
e E isassumed to be equipped with a norm k � k whi
h satis�es the following two 
onditions.(1) Any bounded subset of the Bana
h spa
e E with the norm k�k is relatively 
ompa
tas a subset of the Bana
h spa
e F with the norm j � j.(2) If fxn : n = 1; 2; : : :g is a sequen
e of points in E su
h that kxnk � K1 for alln � 1 and some 
onstant K1, and if limn!1 jxn � xj = 0 for some x 2 F , then x 2 E andkxk � K1.Let Q : F ! F be a bounded linear operator whi
h preserves E, whose restri
tionto E is also bounded with respe
t to the norm k � k and whi
h satis�es the following two
onditions.(3) There exists a 
onstant K su
h that jQnj � K for all n = 1; 2; : : : .(4) 9N � 1 9� < 1 9K2 > 0 kQN (x)k � �kxk+K2jxj for all x 2 E.Then(5) There exists at most �nitely many eigenvalues of Q : F ! F of modulus 1, say
1; : : : ; 
p.(6) Let Fi = fx 2 F : Q(x) = 
ixg, i = 1; : : : ; p. Then Fi � E and dim(Fi) <1.23



(7) The operator Q : F ! F 
an be represented asQ = pXi=1 
iQi + Swhere Qi and S are bounded, Qi(F ) = Fi, supn�1 jSnj <1 andQ2i = Qi; QiQj = 0 (i 6= j); QiS = SQi = 0Moreover(8) S(E) � E and SjE 
onsidered as a linear operator on (E; k � k), is bounded andthere exist 
onstants K3 > 0 and 0 < ~� < 1 su
h thatkSnjEk � K3~�nfor all n � 1.The proof of this theorem 
an be found in [...℄ in the 
ase N = 1 (see assumpion 4).Its validity for any N � 1 is mentiond in Se
tion 9, p.145 of this paper. In Appendix ...we give a 
omplete proof.Now, in view of Theorem 3.4.1 and Corollary 4.3.7, Theorem 4.5.5 applies to the operatorQ = L� : C(X) ! C(X) if one substitutes F = C(X), E = H�(X). If T is topo-logi
ally exa
t and in 
on
equen
e Q is primitive on C(X), then dim(�Fi) = 1 and the
orresponding eigenvalue is equal to 1, as in Theorem 4.5.3.Example of appli
ation Lasota-Yorke, Ry
hlik: fun
tions of bounded variation.........................
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Se
. 4.6. UNIQUENESS OF EQUILIBRIUM STATESWe proved already the existen
e (Th.4.3.2) and uniqueness (Cor.4.2.9) of invariantGibbs states and proved that invariant Gibbs states are equilibrium states (Prop.4.1.5).Here we shall give 3 di�erent proofs of the uniqueness of equilibrium states.Let � be a T -invariant measure and let a �nite real fun
tion J� be the 
orrespondingJa
obian in the weak sense, J� is de�ned �-a.e. . By the invarian
e of � we have �(E) =0) �(T�1(E)) = �(E) = 0, i.e. � is ba
kward quasi-invariant. At the beginning of Se
.2we de�ned in this situation 	 = �x Æ T with �x = d�ÆT�1xd� de�ned for �-a.e. point in thedomain of a bran
h T�1x . (In Se
.2 we used notation �j for �x.) �x is strong Ja
obian forT�1x .Noti
e that for �-a.e. z(4.6.1) (J� Æ T�1x ) � �x(z) = � 1; if �x(z) 6= 0;0; if �x(z) = 0:Indeed, after removal of fz : �x(z) = 0g the measures � and � Æ T�1 are equivalent,hen
e Ja
obians of T and T�1x are mutual inverses. We 
an �x J� arbitrary, bounded, onT�(fz : �x(z) = 0g).Re
all that we have de�ned L� : L1(�)! L1(�), the transfer operator asso
iated withthe measure � as follows L�(g)(x) = Xy2T�1(x) g(y)	(y):Remind that if T maps a set A of measure 0 to a set of positive measure, then 	 isspe
i�ed, equal to 0, on a subset of A that is mapped by T to a set of full measure � inT (A).Then sin
e � is T -invariant, L�(11) = 11 and for every �-integrable g we haveR L�(g) d� = R g d�.Lemma 4.6.1. Let  : X ! IR be a 
ontinuous fun
tion su
h that L (11) = 11, i.e. forevery x, Py2T�1(x) exp (y) = 1, and let � be an ergodi
 equilibrium state for  . ThenJ� is strong Ja
obian and J� = exp(� ) �-almost everywhere .Proof. The proof is based on the following 
omputation using the inequality 1+log(x) � x,with the equality only for x = 1.1 = Z 11 d� � Z L�(J� exp ) d� = Z J� exp d�� Z �1 + log(J� exp �) d� = 1 + Z  d� + Z log J� d� = 1 + Z  d� + h�(T ) � 1:To obtain the �rst inequality, write L�(J� exp )(x) = Py2T�1(x) J�(y)(exp (y))	(y)whi
h is equal to 1 if (8y 2 T�1(x))	(y) > 0 or < 1 otherwise, by (4.6.1) and byPy2T�1(x) exp (y) = 1. 25



The last inequality follows fromZ  d� + h�(T ) = P ( ) � lim supn!1 1n log Xy2T�n(x) expSn (y) = 0;true, see Th.2.2.10, sin
e all points in T�n(x) are (n; �)-separated, � de�ned in Ch.3.Therefore all the inequalities in this proof must be
ome equalities. Therefore theJa
obian �x 6= 0 for ea
h bran
h T�1x and J� = exp(� ), �- a.e. |Noti
e that we have not assumed  is H�older above. Now we shall assume H�older.Theorem 4.6.2. There exists exa
tly one equilibrium state for ea
h H�older 
ontinuouspotential �.Proof. Let � be an equilibrium state for �. As in Se
.4 set  = ��P (T; �)+ log u� ÆT �logu� and � is also equilibrium state for  . Then by Lemma 4.6.1��T�nz (B(Tn(z); �))� = ZB(Tn(z);�) exp (Sn (T�nz (x))� d�(x) =ZB(Tn(z);�) u�(x)u�(Tn(x)) exp(Sn�� nP (T; �))(T�nz (x)) d�(x):So, by pre-bounded distortion lemma (Lemma 3.4.2),inf ju�jsup ju�jBC�1 � ��T�nz (B(Tn(z); �))�exp(Sn�� nP (T; �))(z) � sup ju�jinf ju�j C;where B = inff�(B(y; �)g. It is positive by Proposition 4.2.5.Therefore � is an invariant Gibbs state for �; unique by Corollary 4.2.9. |Remark 4.6.3. In fa
t already the knowledge that exp(� ) is weak Ja
obian impliesautomati
ally that it is a strong Ja
obian. Indeed by the invarian
e of � we haveXy2T�1(x)�y(y) = 1 = Xy2T�1(x) exp (y)and ea
h non-zero summand on the left is equal to a 
orresponding summand on the right.So there are no summands equal to 0.Uniqueness: Proof II. We shall provide a new proof of Lemma 4.6.1. It is not soelementary as the previous one, but it exhibits a relation with the �nite 
ase, the prototypelemma in Introdu
tion.For every y 2 X denote A(y) := T�1�T �fyg��. Let f�Ag denote the 
anoni
al systemof 
onditional measures for the partition of X into the sets A = A(y), see Ch.1.6. Sin
e26



there exists a �nite one-sided generator, see Lemma 2.4.5, with the use of Theorem 1.9.7we obtain0 = P (T;  ) = h�(T ) + Z  d� = H��" j T�1(")�+ Z  d� == Z � Xz2A(y) �A(y)(fzg)�� log ��A(y)(fzg)�+  (z)�� d�(y):The latter expression is always negative ex
ept for the 
ase �A(y)(z) = exp (z) �-a.e.by the prototype lemma. So for a set Y = T�1�T (Y )� of full measure �, for every y 2 Ywe have(4.6.2) �A(y)(fyg) = exp (y); in parti
ular �A(y)(fyg) 6= 0:So for every Borel set B � Y su
h that T is 1{to{1 on it, sin
e B interse
ts ea
hA(y) � T�1(T (B)) at pre
isely one point, we obtain��T (B)� = ��T�1�T (B)�� == ZT�1�T (B)� �ZA(y) 11B(z)Æ�A(y)(fzg) d�A(y)(z)� d�(y) == ZT�1�T (B)� 11B(y)=�A(y)(fyg) d�(y) = ZB 1=�A(y)(fyg) d�(y)Noti
e that we have proved in this 
omputation a general useful fa
t that 1=�A(y)(fyg))is weak Ja
obian for T and �. In absen
e of the property (4.6.2) that �A(y)(fyg) 6= 0 weshould have subtra
ted the set E = fy : �A(y)(y) = 0g of measure 0 under the integrals.Let us go ba
k to our situation. By (4.6.2) this Ja
obian is equal to exp� . Observealso that ��T (X n Y )� = 0 be
ause X n Y = T�1�T (X n Y )� and � is T -invariant. Soexp� is strong Ja
obian.Uniqueness. Proof III. Due to Corollary 2.5.7 it is suÆ
ient to prove the di�erentia-bility of the pressure P (T; �) as a fun
tion of 
ontinuous fun
tion � at H�older � in a setof dire
tions dense in the weak topology on C(X).Lemma 4.6.4. Let � : X ! IR be a H�older 
ontinuous fun
tion and �� denote theinvariant Gibbs measure. Let F : X ! IR be 
ontinuous. Then, for an arbitrary x 2 X,(4.6.3) limn!1 1nPy2T�n(x) SnF exp(Sn�)(y)Py2T�n(x) exp(Sn�)(y) = Z F d��:The 
onvergen
e is uniform for an equi
ontinuous family of F 's and �'s in a bounded setin the Bana
h spa
e of H�older fun
tions H�(X).27



Proof.The above left hand side expression 
an be written in the form:(4.6.4) limn!1 1nPn�1j=0 Ln�(F Æ T j)(x)Ln�(11)(x) = limn!1 1nPn�1j=0 Ln�j(F � Lj(11))(x)Ln(11)(x) :where L = L0 = e�P (T;�)L�, 
ompare the beginning of Se
.3.Sin
e F � Lj(11) is an equi
ontinuous family of fun
tions we obtainLn�j(F � Lj(11))(x)! u�(x) Z F � Lj(11) dm�as n� j !1, see Remark 4.4.6a.Therefore 
ontinuing (4.6.4) we obtainlimn!1 1nPn�1j=0 u�(x) R F � Lj(11) dm�u�(x) = limn!1 1n n�1Xj=0 Z F � Lj(11) dm� = Z F d��sin
e Lj(11) uniformly 
onverges to u� and �� = u�m�. |Now we shall 
al
ulate the derivative dP(T; � + t
)=dt for every H�older � and 
 atevery t. In parti
ular, this will give di�erentiability at t = 0. Thus our dense set ofdire
tions is spanned by H�older fun
tions 
.Theorem 4.6.5. We have ddtP(T; �+ t
) = Z 
 d��+t
for all t 2 IR.Proof. Write Pn(t) = 1n log Xy2T�n(x) exp(Sn(�+ t
))(y);(4.6.5) Qn(t) := (dPn=dt)(t) = 1nPy2T�n(x) Sn
(y) exp(Sn(�+ t
))(y)Py2T�n(x) exp(Sn(�+ t
)(y) :By Lemma 4.6.4 limn!1Qn(t) = R 
 d��+t
 and the 
onvergen
e is uniform with re-spe
t to t. Sin
e, in addition, limn!1 Pn(t) = P(t), we 
on
lude that P (T; � + t
) =limn!1 Pn(t) is di�erentiable and the derivative is equal to the limit of derivatives:limn!1Qn(t) = R 
 d��+t
 , |Noti
e that the di�erential (Gateaux) operator 
 7! R 
 d�� is indeed that one fromProposition 2.5.6. Noti
e also that a posteriori, by Cor.2.5.7, we proved that for � H�older
ontinuous, P (T; �) is di�erentiable in dire
tion of every 
ontinuous fun
tion. This is bythe way obvious in general: two di�erent supporting fun
tionals are di�erent restri
ted toany dense subspa
e. 28



x4.7. Probability laws and �2(u; v).Exponential 
onvergen
es in x4.4 allow to prove the probability laws.Theorem 4.7.1. Let T : X ! X be an open distan
e expanding topologi
ally exa
t mapand � the invariant Gibbs measure for a H�older fun
tion � : X ! IR. Then if g : X ! IRsatis�es(4.7.1) 1Xn=0 kL̂n(g � �(g))k2 <1;in parti
ular if g is H�older 
ontinuous, it satis�es CLT. If g is H�older 
ontinuous it satis�esLIL.Proof. First show how CLT 
an be dedu
ed from Theorem 1.11.5. We 
an assume�(g) = 0. Let ( ~X ~F ; ~�) be the natural extension (see Ch.1.7). Re
all that ~X 
an be viewedas the set of all T -traje
tories (xn)n2ZZ (or ba
kward traje
tories), ~T ((xn)) = (xn+1) and�n((xn)) = xn. It is suÆ
ient now to 
he
k (1.11.12) for the automorphism ~T the fun
tion~g = g Æ �0 and ~F0 = ��1(B) for the 
ompleted Borel �-algebra B. Sin
e ~g is measurablewith respe
t to ~F0 it is also measurable with respe
t to all ~Fn = ~T�n( ~F0) for n � 0 hen
e~g = E(~gj ~Fn). So we need only to prove P1n�0 kE(~gj ~Fn)k2 <1.Let us start with a general fa
t 
on
erning an arbitrary probability spa
e (X;F ; �)and a �-preserving endomorphism T .Lemma 4.7.2. Let U denote the unitary operator on L2(X;F ; �) asso
iated to T , namelyU(f) = f Æ T . Then for every k � 0 the operator UkU�k is the orthogonal proje
tion ofH0 = L2(X;F ; �) to Hk = L2(X;T�k(F); �).Proof. U� is the operator in the spa
e 
onjugate to H0 whi
h is H0 itself (a Hilbert spa
e).Uk(u) = u Æ T k is measurable with respe
t to T�k(F), so the range of UkU�k is indeed inHk = L2(X;T�k(F); �).For any u; v 2 H0 write R u � v d� =< u; v >, the s
alar produ
t of u and v. Forarbitrary f; g 2 H0 we 
al
ulate< UkU�k(f); g Æ T k >=< UkU�k(f); Uk(g) >=< U�k(f); g >=< f;Uk(g) >=< f; g Æ T k > :It is 
lear that all fun
tions in Hk = L2(X;T�k(F); �) are represented by g Æ T k forg 2 L2(X;F ; �). Therefore by the above equality for all h 2 Hk we obtain(4.7.2) < f � UkU�k(f); h >=< f; h > � < f; h >= 0:In parti
ular for f 2 Hk we 
on
lude from (4.7.2) for h = f � UkU�k(f), that < f �UkU�k(f); f � UkU�k(f) >= 0 hen
e UkU�k(f) = f . Therefore UkU�k is a proje
tion toHk, whi
h is orthogonal by (4.7.2). |29



Sin
e the 
onditional expe
tation value f ! E(f jT�k(F)) is the orthogonal proje
tion toHk we 
on
lude that E(f jT�k(F)) = UkU�k(f). Now, let us pass to our spe
ial situationof Theorem 4.7.1.Lemma 4.7.3. For every f 2 L2(X;F ; �) we have U�(f) = L̂(f).Proof. < U�f; g >=< f;Ug >= R f � (g Æ T ) d� = R L̂(f � (g Æ T )) d� =R (L̂(f)) � g d� =< L̂(f); g >. |Proof of Theorem 4.7.1. Con
lusion. We 
an assume that �(g) = 0. We have1Xn�0 kE(~gj ~Fn)k2 = 1Xn�0 kUnU�n(g)k2 = 1Xn�0 kL̂n(g)k2 <1;the latter has been assumed in (4.7.1). Thus CLT has been proved by applying Theorem1.11.5. If g is H�older 
ontinuous it satis�es (4.7.1). Indeed L̂k(g) 
onverges to 0 in the supnorm exponentially fast as k !1 by Corollary 4.4.8 (see (4.4.4")). This implies the same
onvergen
e in L2 hen
e the 
onvergen
e of the above series. |Now let us prove CLT and LIL with the use of Theorem 1.11.1 for H�older 
ontinuousg. As in Proof of Corollary 4.4.12, let � : �A ! X be a 
oding map from a 1-sidedtopologi
al Markov 
hain of d symbols due to a Markov partition, see Ch.3.5. Sin
e � isH�older 
ontinuous, if g and � are H�older 
ontinuous, then the 
ompositions g Æ �; � Æ �are H�older 
ontinuous. � is an isomorphism between the measures ��Æ� on �A and ��on X, see Ch.3.5 and Lemma 4.4.13. The fun
tion g Æ � satis�es the assumptions ofTheorem 1.11.1 with respe
t to the �-algebra F asso
iated to the partition of �A into 0-th
ylinders, see Theorem 4.4.11. �-mixing follows from (4.4.7) and the estimate in (1.11.7)is exponential with an arbitrary Æ due to the H�older property of g Æ�. Hen
e, by Theorem1.11.1, g Æ � and therefore g satisfy CLT and LIL.In Se
tion 4.6 we 
omputed the �rst derivative of the pressure fun
tion. Here using thesame method we 
ompute the se
ond derivative and see that it is a respe
tive dispersion(asymptoti
 varian
e) �2, see Ch.1.11.Theorem 4.7.4. For every �; u; v : X ! IR H�older 
ontinuous fun
tions there exists these
ond derivative(4.7.2) �2�s�tP (T; �+ su+ tv)js=t=0 = limn!1 1n Z Sn(u� ��u)Sn(v � ��v) d��;where �� is the invariant Gibbs measure for �. In parti
ular�2�t2P (T; �+ tv)jt=0 = �2��(u)(where the latter is the asymptoti
 varian
e dis
ussed in CLT, Ch1.11). In addition, thefun
tion (s; t) 7! P (T; �+ su+ tv) is C2-smooth.30



Proof. By Ch.4.6, see (4.6.3), (4.6.5),(4.7.3) �2�s�tP (T; �+ su+ tv)jt=0 = ��s limn!1 1nPy2T�n(x) Snv(y) expSn(�+ su)(y)Py2T�n(x) expSn(�+ su)(y) :Now we 
hange the order of �=�s and lim. This will be justi�ed if we prove the uniform
onvergen
e of the resulting derivative fun
tions.Fixed x 2 X and n we abbreviate in the further notation Py2T�n(x) to Py and 
omputeFn(s) := ��s�Py Snv(y) expSn(�+ su)(y)Py expSn(�+ su)(y) � =Py Snu(y)Snv(y) expSn(�+ su)(y)Py expSn(�+ su)(y) ��Py Snu(y) expSn(�+ su)(y)��Py Snv(y) expSn(�+ su)(y)��Py expSn(�+ su)(y)�2 =Ln�(Snu)(Snv)�(x)Ln(11)(x) � Ln(Snu)(x)Ln(11)(x) Ln(Snv)(x)Ln(11)(x) :As in Se
tion 6 we write here L = L0 = e�P (T;�+su)L�+su. It is useful to write the laterexpression for Fn(s) in the form(4.7.4) Fn(s) = Z (Snu)(Snv) d�s;n � Z (Snu) d�s;n Z (Snv) d�s;nor(4.7.5) Fn(s) = n�1Xi;j=0 Z (u Æ T i � �s;n(u Æ T i))(v Æ T j � �s;n(v Æ T j)) d�s;n;where �s;n is the probability measure distributed on T�n(x) a

ording to the weightsexp(Sn(�+ su))(y)=Py expSn(�+ su)(y).Note that 1nFn(s) with Fn(s) as in the formula (4.7.5) resembles already (4.7.2) be
ause�s;n ! m�+su in the weak�-topology, see (4.4.3'). However we still need to work a littlebit.For ea
h i; j denote the respe
tive summand in (4.7.5) by Ki;j . To simplify notation denoteu Æ T i by ui and v Æ T j by vj . We haveKi;j = Ln�(ui � �s;nui)(vj � �s;nvj)�(x)Ln(11)(x)31



and for 0 � i � j < n, using (4.4.5) twi
e,(4.7.6) Ki;j = Ln�j��Lj�i((u� �s;nui)Li(11))��v � �s;nvj��(x)Ln(11)(x) :By Corollary 4.4.8 for � < 1 and H�older norm jj � jjH� for an exponent � > 0, transformingthe integral as in Proof of Theorem 4.4.10, we getjjLj�i((u� �s;nui)Li(11))� u�+su�Z ui dm�+su � �s;nui)�jjH� � C� j�iwhere C depends only on H�older norms of u and � + su. The di�eren
e in the largeparentheses, denote it byDi;n, is bounded by C�n�i in the H�older norm, again by Corollary4.4.8.We 
on
lude that for all j the fun
tionsLj :=Xi�j Lj�i((u� �s;nui)Li(11))are uniformly bounded in the H�older norm jj � jjH� by a 
onstant C depending again onlyon jjujjH� and jj� + sujjH� . Hen
e summing over i � j in (4.7.6) and applying Ln�j weobtain ������ jXi=0Ki;j � jXi=0 Z (ui � �s;nui)(vj � �s;nvj) dm�+su������1 � C�n�j :Here C depends also on jjvjjH� . We 
an repla
e the �rst sum by the se
ond sum without
hanging the limit in (4.7.3) sin
e after summing over j = 0; 1; :::; n � 1, dividing by nand passing with n to 1, they lead to the same result. Let us show now that �s;n 
an berepla
ed by m�+su in the above estimate without 
hanging the limit in (4.7.3). Indeed,using the formula ab� a0b0 = (a� a0)b0 + a(b� b0), we obtain��� Z (ui �m�+suui)(vj �m�+suvj) dm�+su � Z (ui � �s;nui)(vj � �s;nvj) dm�+su��� �j(�s;nui �m�+suui) � (m�+suvj � �s;nvj)++ ��� Z (ui �m�+suui) � (�s;nvj �m�+suvj) dm�+su���:Sin
e Di;n � C�n�i and Dj;n � C�n�j , the �rst summand is bounded above by �n�i�n�j .Note that the se
ond summand is equal to 0. Thus, our repla
ememnt is justi�ed.The last step is to repla
e m = m�+su by the invariant Gibbs measure � = ��+su.Similarly as above we 
an repla
e m by � in mui;mvi. Indeed,(4.7.7)jmui � �uij = j Z u � Li(11) dm� Z uu�+su dmj = j Z u � (Li(11)� u�+su) dmj � Cm(u)� i:32



Thus the resulting di�eren
e is bounded by Cm(u)m(v)� i� j . Finally we justify the re-pla
ement of m by � at the se
ond integral in the previous formula. To simplify notationwrite F = u� �u;G = v � �v. Sin
e j � i, using (4.7.7), we 
an write�� Z (F Æ T i)(G Æ T j) dm� Z (F Æ T i)(G Æ T j) d��� == j Z (F � (G Æ T j�i)) Æ T i dm� Z (F � (G Æ T j�i)) Æ T i d�j� C� i Z jF � (G Æ T j�i)j dm � Cm(F )m(G)� i� j�i = Cm(F )m(G)� jby Theorem 4.4.10 (exponential de
ay of 
orrelations), the latter C depending again onthe H�older norms of u; v; � + su. Summing over all 0 � i � j < n gives the boundCm(F )m(G)Pn�1j=0 j� j and our repla
ement is justi�ed. For i > j we do the same re-pla
ements 
hanging the roles of u and v. The C2-smoothness follows from the uniformityof the 
onvergen
e of the sequen
e of the fun
tions Fn(s), for � + tv in pla
e of �, withrespe
t to the variables (s; t), resulting from the proof. |Exer
ises.Exer
ise 1. Prove that (4.1.1) with an arbitrary 0 < �0 � � in pla
e of � implies (4.1.1)for every 0 < �0 � � (with C depending on �0) .
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CHAPTER 6FRACTAL DIMENSIONS
In the �rst section of this chapter we we provide a more complete treatment of outermeasure indirectly begun in Chapter 1. The rest of this chapter is devoted to present basicde�nitions of pressure related to Hausdor� and packing measures, Hausdor� and packingdimensions of sets and measures and ball-counting dimensions.x6.1 OUTER MEASURESIn Section 1.1 we have introduced the abstract notion of measure. In the beginning of thissection we want to show how to construct measures starting with functions of sets calledouter measures which are required to satisfy much weaker conditions. Our exposition ofthis material is brief and the reader should �nd its complete treatment in all handbooksof geometric measure theory (see for ex. [Falconer, 1985], [Ma] or [Pe]).De�nition 6.1.1 An outer measure on a set X is a function � de�ned on all subsets of Xtaking values in [0;1] such that(6.1.1) �(;) = 0;(6.1.2) �(A) � �(B) if A � Band(6.1.3) �� 1[n=1An� � 1Xn=1�(An)for any countable family fAn : n = 1; 2; : : :g of subsets of X.A subset A of X is called �-measurable or simply measurable with respect to the outermeasure � if and only if(6.1.4) �(B) � �(B \A) + �(B nA)for all sets B � X. Check that the opposite inequality follows immediately from (6.1.3).Check also that if �(A) = 0 then A is �-measurable.Theorem 6.1.2. If � is an outer measure on X, then the family F of all �-measurablesets is a �-algebra and the restriction of � to F is a measure.1



Proof. Obviously X 2 F . By symmetry of (6.1.4), A 2 F if and only if Ac 2 F . So,the conditions (1.1.1) and (1.1.2) of the de�nition of �-algebra are satis�ed. To checkcondition (1.2.3) that F is closed under countable union, suppose that A1; A2; : : : 2 F andlet B � X be any set. Applying (6.1.4) in turn to A1; A2; : : : we get for all k � 1�(A) � �(B \ A1) + �(B nA1)� �(B \ A1) + �((B nA1) \ A2) + �(B nA1 nA2)� : : :� kXj=1 � �B n j�1[i=1Ai� \ Aj!+ ��B n k[j=1Aj�� kXj=1 � �B n j�1[i=1Ai� \ Aj!+ ��B n 1[j=1Aj�and therefore(6.1.5) �(A) � 1Xj=1 ���B n j�1[i=1Ai� \ Aj�+ ��B n 1[j=1Aj�Since B \ 1[j=1Aj = 1[j=1�B n j�1[i=1Ai� \Ajusing (6.1.3) we thus get�(A) � �� 1[j=1�B n j�1[i=1Ai� \ Aj�+ ��B n 1[j=1Aj�Hence condition (1.1.3) is also satis�ed and F is a �-algebra. To see that � is a measureon F i.e. that condition (1.1.4) is satis�ed, consider mutually disjoint sets A1; A2; : : : 2 Fand apply (6.1.5) with B = S1j=1Aj to get�� 1[j=1Aj� � 1Xj=1 �(Aj)Combining this with (6.1.3) we conclude that � is a measure on F . |Now, let (X; �) be a metric space. An outer measure � on X is said to be a metricouter measure if and only if(6.1.6) �(A [ B) = �(A) + �(B)2



for all positively separated sets A;B � X that is satisfying the following condition�(A;B) = inff�(x; y) : x 2 A; y 2 Bg > 0Recall that the Borel �-algebra on X is that generated by open, or equivalently closed, sets.We want to show that if � is a metric outer measure then the family of all �-measurablesets contains this �-algebra. The proof is based on the following version of Carath�eodory'slemma.Lemma 6.1.3. Let � be a metric outer measure on (X; �). Let fAn : n = 1; 2; : : :g be anincreasing sequence of subsets of X and denote A = S1n=1An. If �(An; A n An+1) > 0 forall n � 1, then �(A) = limn!1 �(An).Proof. By (6.1.3) it is enough to show that(6.1.7) �(A) � limn!1 �(An)If limn!1 �(An) =1, there is nothing to prove. So, suppose that(6.1.8) limn!1 �(An) = supn �(An) <1Let B1 = A1 and Bn = An n An�1 for n � 2. If n � m + 2, then Bm � Am andBn � A n An�1 � A n Am+1. Thus Bm and Bn are positively separated and applying(6.1.6) we get for every j � 1(6.1.9) �� j[i=1B2i�1� = jXi=1 �(B2i�1) and �� j[i=1B2i� = jXi=1 �(B2i)We have also for every n � 1�(A) = �� 1[k=nAk� = ��An [ 1[k=n+1Bk�� �(An) + 1Xk=n+1�(Bk) � liml!1 �(Al) + 1Xk=n+1�(Bk)(6.1.10)Since the sets Sji=1B2i�1 and Sji=1B2i appearing in (6.1.9) are both contained in A2j , itfollows from (6.1.8) and (6.1.9) that the series P1k=1 �(Bk) converges. Therefore (6.1.7)follows immediately from (6.1.10). The proof is �nished. |Theorem 6.1.4. If � is a metric outer measure on (X; �) then all Borel subsets of X are�-measurable. 3



Proof. Since the Borel sets form the least �-algebra containing all closed subsets ofX, it follows from Theorem 6.1.2 that it is enough to check (6.1.4) for every closed setA � X and every B � X. For all n � 1 let Bn = fx 2 B n A : �(x;A) � 1=ng. Then�(B \ A;Bn) � 1=n and by (6.1.6)(6.1.10) �(B \A) + �(Bn) = �((B \A) [Bn) � �(B)The sequence fBng1n=1 is increasing and, since A is closed, B nA = S1n=1Bn. In order toapply Lemma 6.1.3 we shall show that�(Bn; (B nA) nBn+1) > 0for all n � 1. And indeed, if x 2 (B n A) n Bn+1, then there exists z 2 A with �(x; z) <1=(n+ 1). Thus, if y 2 Bn, then�(x; y) � �(y; z)� �(x; z) > 1=n� 1=(n+ 1) = 1n(n+ 1)and consequently �(Bn; (B n A) n Bn+1) > 1=n(n + 1) > 0. Applying now Lemma 6.1.3with An = Bn shows that �(B n A) = limn!1 �(Bn). Thus (6.1.4) follows from (6.1.10).The proof is �nished. |x6.2 HAUSDORFF MEASURESLet � : [0;1) ! [0;1) be a non-decreasing function continuous at 0, positive on (0;1)and such that �(0) = 0. Let (X; �) be a metric space. For every � > 0 de�ne(6.2.1) ���(A) = inf� 1Xi=1 �(diam(Ui))	where the in�mum is taken over all countable covers fUi : i = 1; 2; : : :g of A of diameter notexceeding �. Conditions (6.1.1) and (6.1.2) are obviously satis�ed with � = ���. To check(6.1.3) let fAn : n = 1; 2; : : :g be a countable family of subsets of X. Given " > 0 for everyn � 1 we can �nd a countable cover fUni : i = 1; 2; : : :g of An of diameter not exceeding� such that P1i=1 �(diam(Uni )) � ���(An) + "=2n. Then the family fUni : n � 1; i � 1gcovers S1n=1An and���� 1[n=1An� � 1Xn=1 1Xi=1 �(diam(Uni )) � 1Xn=1���(An) + "Thus, letting "! 0, (6.1.3) follows proving that ��� is an outer measure. De�ne(6.2.2) ��(A) = lim�!0���(A) = sup�>0 ���(A)4



The limit exists, but may be in�nite, since ���(A) increases as � decreases. Since all ��� areouter measures, the same argument also shows that �� is an outer measure. Moreover ��turns out to be a metric outer measure, since if A and B are two positively separated setsin X, then no set of diameter less than �(A;B) can intersect both A and B. Consequently���(A [ B) = ���(A) + ���(B)for all � < �(A;B) and letting � ! 0 we get the same formula for �� which is just(6.1.6) with � = ��. The metric outer measure �� is called the Hausdor� outer measureassociated to the function �. Its restriction to the �-algebra of ��-measurable sets, whichby Theorem 6.1.4 includes all the Borel sets, is called the Hausdor� measure associated tothe function �.As an immediate consequence of the de�nition of Hausdor� measure and the properties ofthe function � we get the following.Proposition 6.2.1 The Hausdor� measure �� is non-atomic.Remark 6.2.2. A particular role is played by functions � of the form t ! t�, t; � > 0and in this case the corresponding outer measures are denoted by ��� and ��.Remark 6.2.3. Note that if �1 is another function but such that �1 and � restrected toan interval [0; "), " > 0, are equal, then the outer measures ��1 and �� are also equal. So,in fact, it is enough to de�ne the function � only on an arbitrarily small interval [0; ").Remark 6.2.4. Notice that we get the same values for ���(A), and consequently also for��(A), if the in�mum in (6.2.1) is taken only over covers consisting of sets contained inA. This means that the Hausdor� outer measure ��(A) of A is its intrinsic property, i.e.does not depend on in which space the set A is contained. If we treated A as the metricspace (A; �jA) with the metric �jA induced from �, we would get the same value for theHausdor� outer measure.If we however took the in�mum in (6.2.1) only over covers consisting of balls, we could getdi�erent "Hausdor� measure" which (dependently on �) would need not be even equivalentwith the Hausdor� measure just de�ned. To assure this last property � is from now onassumed to satisy the following condition.There exists a function C : (0;1)! [1;1) such that for every a 2 (0;1) and every t > 0su�ciently small (dependently on a)(6.2.3) C(a)�1�(t) � �(at) � C(a)�(t)Since (ar)t = atrt, all functions � of the form r ! rt, considered in Remark 6.2.2, satisfy(6.2.3) with C(a) = at. Check that all functions r ! rt exp(cplog log 1=t log log log 1=r,c � 0 also satisfy (6.2.3) with a suitable function C.5



De�nition 6.2.5. A countable collection f(xi; ri) : i = 1; 2; : : :g of pairs (xi; ri) 2 X �(0;1) is said to cover a subset A of X if A � S1i=1B(xi; ri), and is said to be centered atthe set A if xi 2 A for all i = 1; 2; : : :. The radius of this collection is de�ned as supi riand its diameter as the diameter of the family fB(xi; ri) : i = 1; 2; : : :g.For every A � X and every r > 0 let(6.2.4) �Br� (A) = inf� 1Xi=1 �(ri)	where the in�mum is taken over all collections f(xi; ri) : i = 1; 2; : : :g centered at the setA, covering A and of radii not exceeding r. Let(6.2.5) �B� (A) = limr!0�Br� (A) = supr>0 �Br� (A)The limit exists by the same argument as used for the limit in (6.2.2). We shall prove thefollowing.Lemma 6.2.6. For every set A � X1 � ��(A)�B� (A) � C(2)Proof. Since the diameter of any ball does not exceed its double radius, since the diameterof any collection f(xi; ri) : i = 1; 2; : : :g also does not exceed its double radius and sincethe function � is non- decreasing and satis�es (6.2.3), we see that for every r > 0 smallenough 1Xi=1 �(diam(B(xi; ri))) � 1Xi=1 �(2ri) � C(2) 1Xi=1 �(ri)and therefore �2r� (A) � C(2)�Br� (A). Thus, letting r ! 0,(6.2.6) ��(A) � C(2)�B� (A)On the other hand, let fUi : i = 1; 2; : : :g be a countable cover of A consisting of subsetsof A. For every i � 1 choose xi 2 Ui and put ri = diam(Ui). Then the collectionf(xi; ri) : i = 1; 2; : : :g covers A, is centered at A and1Xi=1 �(ri) = 1Xi=1 �(diam(Ui))which implies that �B�� (A) � ���(A) for every � > 0. Thus �B� (A) � ��(A) whichcombined with (6.2.6) �nishes the proof. | 6



Remark 6.2.7. The function of sets �B� need not to be an outer measure since condition(6.1.2) need not to be satis�ed. Since we will be never interested in exact computation ofHausdor� measure, only in establishing its positiveness or �niteness or in comparing theratio of its value with some other quantities up to bounded constants, we will be mostlydealing with �B�� and �B� using nevertheless always the symbols ���(A) and ��(A).x6.3 PACKING MEASURESLet, as in the previous section, � : [0;1)! [0;1) be a non-decreasing function such that�(0) = 0 and let (X; �) be a metric space. A collection f(xi; ri) : i = 1; 2; : : :g centered ata set A � X is said to be a packing of A if and only if for any pair i 6= j�(xi; xj) � ri + rjThis property is not generally equivalent to requirement that all the balls B(xi; ri) aremutually disjoint. It is obviously so if X is a Euclidean space. For every A � X and everyr > 0 let(6.3.1) ��r� (A) = sup� 1Xi=1 �(ri)	where the supremum is taken over all packings f(xi; ri) : i = 1; 2; : : :g of A of radius notexceeding r. Let(6.3.2) ���(A) = limr!0��r� (A) = infr>0��r� (A)The limit exists since ��r� (A) decreases as r decreases. In opposite to �B� the function ���satis�es condition (6.1.2), however it also need not to be an outer measure since this timecondition (6.1.3) need not to be satis�ed. To obtain an outer measure we put(6.3.3) ��(A) = inffX���(Ai)g;where the supremum is taken over all covers fAig of A. The reader will check easily,with similar arguments as in the case of Hausdor� measures, that �� is already an outermeasure and even more, a metric outer measure on X. It will be called the outer packingmeasure associated to the function �. Its restriction to the �-algebra of ��-measurablesets, which by Theorem 6.1.4 includes all the Borel sets, will be called packing measureassociated to the function �.Proposition 6.3.1. For every set A � X it holds ��(A) � C(2)��(A).Proof. First we shall show that for every set A � X and every r > 0(6.3.4) �2r� (A) � C(2)��r� (A)7



Indeed, if there is no �nite maximal (in the sense of inclusion) packing of the set A of theform f(xi; r)g, then for every k � 1 there exists a packing f(xi; r) : i = 1; : : : ; kg of A andtherefore ��r� (A) �Pki=1 �(r) = k�(r). Since �(r) > 0, this implies that ��r� (A) =1 and(6.3.4) holds. Otherwise, let f(xi; r) : i = 1; : : : ; lg be a maximal packing of A. Then thecollection f(xi; 2r) : i = 1; : : : ; lg covers A and therefore�2r� (A) � lXi=1 �(2r) � C(2)l�(r) � C(2)��r� (A)that is (6.3.4) is satis�ed. Thus letting r ! 0 we get(6.3.5) ��(A) � C(2)���(A)So, if fAngn�1 is a countable cover of A then,��(A) � 1Xn=1��(Ai) � C(2) 1Xn=1���(Ai)Hence, applying (6.3.3), the lemma follows. |x6.4 DIMENSIONSLet, similarly as in the two previous sections, (X; �) be a metric space. Recall (comp.Remark 6.2.2) that �t, t > 0, is the Hausdor� outer measures on X associated to thefunction r ! rt and all ��t are of corresponding meaning. Fix A � X. Since for every0 < � � 1 the function t ! ��t (A) is non-increasing, so is the function t ! �t(A).Furthermore, if s < t, then for every 0 < ���s(A) � �s�t��t (A)which implies that if �t(A) is positive, then �s(A) is in�nite. Thus there is a unique value,HD(A), called the Hausdor� dimension of A such that(6.4.1) �t(A) = �1 if 0 � t < HD(A)0 if HD(A) < t <1Note that similarly as Hausdor� measures (comp. Remark 6.2.4), Hausdor� dimension isconsequently also an intrinsic property of sets and does not depend on their complements.The following is an immediate consequence of the de�nitions of Hausdor� dimension andouter Hausdor� measures.Theorem 6.4.1. The Hausdor� dimension is a monotonic function of sets, that is ifA � B then HD(A) � HD(B). 8



We shall prove the following.Theorem 6.4.2. If fAngn�1 is a countable family of subsets of X thenHD([nAn) = supn fHD(An)g:Proof. Inequality HD([nAn) � supnfHD(An)g is an immediate consequence of The-orem 6.4.1. Thus, if supnfHD(An)g = 1 there is nothing to prove. So, suppose thats = supnfHD(An)g is �nite and consider an arbitrary t > s. In view of (6.4.1), �t(An) = 0for every n � 1 and therefore, since �t is an outer measure, �t([nAn) = 0. Hence, by(6.4.1) again, HD([nAn) � t. The proof is �nished. |As an immediate consequence of this theorem, Proposition 6.2.1 and formula (6.4.1) weget the following.Proposition 6.4.3. The Hausdor� dimension of any countable set is equal to 0.In exactly the same way as Hausdor� dimension HD one can de�ne packing� dimensionPD� and packing dimension PD using respectively ��t (A) and �t(A) instead of �t(A).The reader can check easily that results analogous to Theorem 6.4.1, Theorem 6.4.2 andProposition 6.4.3 are also true in these cases. As an immediate consequence of thesede�nitions and Proposition 6.3.1 we get the following.Lemma 6.4.4. HD(A) � PD(A) � PD�(A) for every set A � X.Now we shall de�ne the third basic dimension { ball-counting dimension frequently alsocalled box-counting dimension, Minkowski dimension or capacity. Let A be an arbitrarysubset of the metric space (X; �). We �rst need the following.De�nition 6.4.5. For every r > 0 consider the family of all collections f(xi; ri)g (seeDe�nition 6.2.5) of radius not exceeding r which cover A and are centered at A. PutN(A; r) = 1 if this family is empty. Otherwise de�ne N(A; r) to be the minimum ofall cardinalities of elements of this family. Note that one gets the same number if oneconsiders the subfamily of collections of radius exactly r and even only its subfamily ofcollections of the form f(xi; r)g.Now the lower ball-counting dimensions and upper ball-counting dimension of A are de�nedrespectively by(6.4.2) BD(A) = lim infr!0 logN(A; r)� log r and BD(A) = lim supr!0 logN(A; r)� log r :If BD(A) = BD(A), the common value is called simply ball-counting dimension and isdenoted by BD(A). The reader will easily prove the next theorem which explains thereason of the name box-counting dimension. The other names will not be discussed here.9



Proposition 6.4.6. Fix n � 1. For every r > 0 let L(r) be any lattice in IRn consistingof cubes of sides of length r. For any set A � IRn let L(A; r) denotes the number of cubesin L(r) which intersect A. ThenBD(A) = lim infr!0 logL(A; r)� log r and BD(A) = lim supr!0 logL(A; r)� log rRemark 6.4.7. Ball-counting dimension has properties which distinguish it qualitativelyfrom Hausdor� and packing dimensions. For instance BD(A) = BD(A) and BD(A) =BD(A) =. So, in particular there exist countable sets of positive ball-counting dimension,for example the set of rational numbers in the interval [0; 1]. Even more, there existcompact countable sets with this property like the set f1; 1=2; 1=3; : : : ; 0g � IR. On theother hand in many cases (see Theorem 6.6.6) all these dimensions coincide.Now we shall provide other characterizations of ball-counting dimension, which in partic-ular will be used to prove Lemma 6.4.8 and consequently Theorem 6.4.9 which establishesmost general relations between the dimensions considered in this section.Let A � X. For every r > 0 de�ne P (A; r) to be the supremum of cardinalities of allpackings of the set A of the form f(xi; r)g. First we shall prove the following.Lemma 6.4.7. For every set A � IRn and every r > 0N(A; 2r) � P (A; r) and P (A; r) � N(A; r):Proof. Let us start with the proof of the �rst inequality. If P (A; r) =1, there is nothingto prove. Otherwise, let f(xi; r) : i = 1; : : : ; kg be a packing of A with k = P (A; r). Thenthis packing is maximal in the sense of inclusion and therefore the collection f(xi; 2r) : i =1; : : : ; lg covers A. Thus N(A; 2r) � l = P (A; r). The �rst part of Lemma 6.4.7 is proved.If N(A; r) = 1, the second part is obvious. Otherwise consider a �nite packingf(xi; r) : i = 1; : : : ; kg of A and a �nite cover f(yj ; r) : j = 1; : : : ; lg of A centered at A.Then for every 1 � i � k there exists 1 � j = j(i) � l such that xi 2 B(yj(i); r) andevery ball B(yj; r) can contain at most one element of the set fxi : i = 1; : : : ; kg. So, thefunction i! j(i) is injective and therefore k � l. The proof is �nished. |As an immediate consequence of Lemma 6.4.7 we get the following.(6.4.3) BD(A) = lim infr!0 logP (A; r)� log r and BD(A) = lim supr!0 logP (A; r)� log r :Now we are in a position to prove the following.Lemma 6.4.8 For every set A � X we have PD�(A) = BD(A).Proof. Take t < BD(A). In view of (6.4.3) there exists a sequence frn : n = 1; 2; : : :gof positive reals converging to zero and such that P (A; rn) � r�tn for every n � 1. Then10



��rnt (A) � rtP (A; rn) � 1 and consequently ��t (A) � 1. Hence t � PD�(A) and thereforeBD(A) � PD�(A).In order to prove the converse inequality consider s < t < PD�(A). Then ��t (A) =1and therefore for every n � 1 there exists a �nite packing f(xn;i; rn;i) : i = 1; : : : ; k(n)g ofA of radius not exceeding 2�n and such that(6.4.4) k(n)Xi=1 rtn;i > 1Now for every m � n letlm = #fi 2 f1; : : : ; k(n)g : 2�(m+1) < rn;i � 2�mgThen by (6.4.4)(6.4.5) 1Xm=n lm2�nt > 1Suppose that lm < 2ns(1� 2(s�t)) for every m � n. Then1Xm=n lm2�nt < (1� 2(s�t)) 1Xm=1 2n(s�t) = 1This contradicts (6.4.5) and shows that for every n � 1 there exists m = m(n) � n suchthat lm � 2ns(1� 2(s�t))Hence P (A; 2�(m+1)) � 2ns(1� 2(s�t)), whencelogP (A; 2�(m+1))(m+ 1) log 2 � sk log 2(m+ 1) log 2Thus, letting n!1 (then also m = m(n)!1) we obtain BD(A) � s. So, we are done.|Combining now Lemma 6.4.4 and Lemma 6.4.8 and checking easily that HD(A) � BD(A)we obtain the following main general relation connecting all the dimensions under consid-eration.Theorem 6.4.9. For every set A � XHD(A) � minfPD(A);BD(A)g � maxfPD(A);BD(A)g � BD(A) = PD�(A)We �nish this section with the following de�nition.11



De�nition 6.4.10. Let � be a Borel measure on (X; �). Then the Hausdor� dimensionHD(�) of the measure � is de�ned asHD(�) = inffHD(Y ) : �(X n Y ) = 0gan analogous de�nition can be formulated for packing dimension.x6.5 BESICOVITCH COVERING THEOREMIn this section we prove only one result, the Besicovitch covering theorem. Although thistheorem seems to be almost always omitted in the classical geometric measure theory,we however consider it as one of most powerful geometric tools when dealing with someaspects of fractal sets. We refer the reader to Section 6.6 to verify our opinion.Theorem 6.5.1. (Besicovitch covering theorem) Let n � 1 be an integer. Then thereexists a constant b(n) > 0 such that the following claim is true.If A is a bounded subset of IRn then for any function r : A ! (0;1) there existsfxk : k = 1; 2; : : :g a countable subset of A such that the collection B(A; r) = f(xk; r(xk)) :k � 1g covers A and can be decomposed into b(n) packings of A.In particular it follows from Theorem 6.5.1 that #fB 2 B : x 2 Bg � b(n). Exactly thesame proof (world by world) goes if open balls in Theorem 6.5.1 are replaced by closedones.For any x 2 IRn, any 0 < r � 1 and any 0 < � < � by Con(x; �; r) we will denoteany solid central cone with vertex x, radius r and angle (Lebesgue measure on the unitsphere Sn�1) �. The proof of Theorem 6.5.1 is based on the following obvious geometricobservation.Observation 6.5.2. Let n � 1 be an integer. Then there exists �(n) > 0 so small thatthe following holds.If x 2 IRn, 0 < r < 1, if z 2 B(x; r) n B(x; r=3) and x 2 Con(z; �(n);1) then theset Con(z; �(n);1)nB(x; r=3) consists of two connected components (one of z and one of"1") and that containing z is contained in B(x; r).Proof of Theorem 6.5.1. We will construct the sequence fxk : k = 1; 2; : : :g inductively.Let a0 = supfr(x) : x 2 AgIf a0 =1 then one can �nd x 2 A with r(x) so large that B(x; r(x) � A and the proof is�nished.If a0 <1 choose x1 2 A so that r(x1) > a0=2. Fix k � 1 and assume that the pointsx1; x2; : : : ; xk have been already chosen. If A � B(x1; r(x1)) [ : : : [ B(xk; r(xk)) then theselection process is �nished. Otherwise putak = supfr(x) : x 2 A n �B(x1; r(x1)) [ : : : [B(xk; r(xk))�g12



and take(6.5.1) xk+1 2 A n �B(x1; r(x1)) [ : : : [B(xk; r(xk))�such that(6.5.2) r(xk+1) > ak=2In order to shorten notation from now on throughout this proof we will write rk for r(xk).By (6.5.1) we have xl =2 B(xk; rk) for all pairs k; l with k < l. Hence(6.5.3) kxk � xlk � r(xk)It follows from the construction of the sequence (xk) that(6.5.4) rk > ak�1=2 � rl=2and therefore rk=3 + rl=3 < rk=3 + 2rk=3 = rk. Joining this and (6.5.3) we obtain(6.5.5) B(xk; rk=3) \B(xl; rl=3) = ;for all pairs k; l with k 6= l since then either k < l or l < k.Now we shall show that the balls fB(xk; rk) : k � 1g cover A. Indeed, if the se-lection process stops after �nitely many steps this claim is obvious. Otherwise it followsfrom (6.5.5) that limk!1 rk = 0 and if x =2 S1k=1B(xk; rk) for some x 2 A then by con-struction rk > ak�1=2 � r(x) for every k � 1. The contradiction obtained proves thatS1k=1B(xk; rk) � A.The main step of the proof is given by the following.Claim. For every z 2 IRn and any cone Con(z; �(n);1) (�(n) given by Observation 6.5.2)#fk � 1 : z 2 B(xk; rk) nB(xk; rk=3) and xk 2 Con(z; �(n);1)g � 1 + 16nDenote by Q the set of integers whose cardinality is to be estimated. If Q = ;, there isnothing to prove. Otherwise let i = minQ. If k 2 Q and k 6= i then k > i and thereforexk =2 B(xi; ri). In view of this, Observation 6.5.2 applied with x = xi, r = ri, and thede�nition of Q, we get kz � xkk � 2ri=3, whence(6.5.6) rk � kz � xkk � 2ri=3On the other hand by (6.5.4) we have rk < 2ri and therefore B(xk; rk=3) � B(z; 4rk=3) �B(z; 8ri=3). Thus, using (6.5.5), (6.5.6) and the fact that the n-dimensional volume of ballsin IRn is proportional to the nth power of radii we obtain #Q � (8ri=3)n=(2ri=9)n = 12n.The proof of the claim is �nished. 13



Clearly there exists an integer c(n) � 1 such that for every z 2 IRn the space IRn canbe covered by at most c(n) cones of the form Con(z; �(n);1). Therefore it follows fromthe claim that for every z 2 IRn#fk � 1 : z 2 B(xk; rk) nB(xk; rk=3)g � c(n)12nThus applying (6.5.5)(6.5.7) #fk � 1 : z 2 B(xk; rk) � 1 + c(n)12nSince the ballB(0; 3=2) is compact, it contains a �nite subset P such thatSx2P B(x; 1=2) �B(0; 3=2). Now for every k � 1 consider the composition of the map IRn 3 x! rkx 2 IRnand the translation determined by the vector from 0 to xk. Call by Pk the image of Punder this translation. Then #Pk = #P , Pk � B(xk; 3rk=2) and(6.5.8) [x2PkB(x; rk=2) � B(0; 3rk=2)Consider now two integers 1 � k < l such that(6.5.9) B(xk; rk) \B(xl; rl) 6= ;Let y 2 IRn be the only point lying on the interval joining xl and x0 at the distancerk � rl=2 from xk. As xl =2 B(xk; rk), by (6.5.9) we have ky � xlk � rl + rl=2 = 3rl=2and therefore by (6.5.8) there exists z 2 Pl such that kz � yk < rl=2. Consequentlyz 2 B(xk; rl=2 + rk � rl=2) = B(xk; rk). Thus applying (6.5.7) with z being the elementsof Pl, we obtain the following(6.5.10) #f1 � k � l � 1 : B(xk; rk) \ B(xl; rl) 6= ;g � #P (1 + c(n)12n)for every l � 1.Putting b(n) = #P (1 + c(n)12n) + 1 this property allows us to decompose the set INof positive integers into b(n) subsets IN1; IN2; : : : ; INb(n) in the following inductive way. Forevery k = 1; 2; : : : ; b(n) set INk(b(n)) = fkg and suppose that for every k = 1; 2; : : : ; b(n)and some j � b(n) mutually disjoint families INk(j) have been already de�ned so thatIN1(j) [ INb(n)(j) = f1; 2; : : : ; jgThen by (6.5.10) there exists at least one 1 � k � b(n) such that B(xj+1; rj+1)\B(xi; ri) =; for every i 2 INk(j). We set INk(j + 1) = INk(j)[ fj + 1g and INl(j + 1) = INl(j) for alll 2 f1; 2; : : : ; b(n)g n fkg. Putting now for every k = 1; 2; : : : ; b(n)INk = INk(b(n)) [ INk(b(n) + 1) [ : : :we see from the inductive construction that these sets are mutually disjoint, that theycover IN and that for every k = 1; 2; : : : ; b(n) the families of balls fB(xl; rl) : l 2 INkg arealso mutually disjoint. The of proof the Besicovitch covering theorem is �nished. |14



We would like to emphasize here once more that the same statement remains true if openballs are replaced by closed ones. Also if instead of balls one considers n-dimensional cubes.Then although the proof is based on the same idea, however technically is considerablyeasier.x6.6 VOLUME LEMMASIn this section a function � : [0;1)! [0;1) is assumed to satisfy the same conditions asin Section 6.2 including (6.2.3) and moreover is assumed to be continuous. We start withthe following.Theorem 6.6.1. Let n � 1 be an integer and let b(n) be the constant claimed in Theo-rem 6.5.1 (Besicovitch covering theorem). Assume that � is a Borel probability measureon IRn and A is a bounded Borel subset of IRn. If there exists C 2 (0;1], (1=1 = 0),such that(a) for all (but countably many maybe) x 2 Alim supr!0 �(B(x; r))�(r) � Cthen ��(E) � b(n)C �(E) for every Borel set E � A. In particular ��(A) <1.or (b) for all x 2 A lim supr!0 �(B(x; r))�(r) � C <1then �(E) � C��(E) for every Borel set E � A.Proof. (a) In view of Proposition 6.2.1 we can assume that E does not intersect theexceptional countable set. Fix " > 0 and r > 0. Since � is a regular measure, there existsan open set G � E such that �(G) � �(E)+". By openness of G and by assumption (a), forevery x 2 E there exists 0 < r(x) < r such that B(x; r(x)) � G and (1=C+")�(B(x; r)) ��(r). Let f(xk; r(xk)) : k � 1g be the cover of E obtained by applying Theorem 6.5.1.(Besicovitch covering theorem) to the set E. Then�r�(E) � 1Xk=1�(r(xk)) � 1Xk=1(C�1 + ")�(B(xk; r(xk)))� b(n)(C�1 + ")�( 1[k=1B(xk; r(xk))) � b(n)(C�1 + ")(�(E) + ")Letting r! 0 we thus obtain ��(E) � b(n)(1=C+")(�(E)+") and therefore letting "! 0the part (a) follows (note that the proof is correct with C =1!).15



(b) Fix an arbitry s > C. Since for every r > 0 the function x ! �(B(x; r))=�(r)is measurable and since the supremum of a countable sequence of measurable functions isalso a measurable function, we conclude that for every k � 1 the function  k : A! IR ismeasurable, where  k(x) = sup��(B(x; r))�(r) : r 2 Q \ (0; 1=k]�and Q denotes the set of rational numbers. For every k � 1 let Ak =  �1k ((0; s]). In viewof measurability of the functions  k all the sets Ak are measurable. Take an arbitraryr 2 (0; 1=k]. Then there exists a sequence rj : j = 1; 2; : : :g of rational numbers convergingto r from above. Since the function � is continuous and the function t ! �(B(x; t)) isnon-decreasing, we have for every x 2 Ak�(B(x; r))�(r) � limj!1 �(B(x; rj))�(rj) � sSo, if F � Ak is a Borel set and if f(xi; ri) : i = 1; 2; : : :g is a collection centered at the setF , covering F and of radius not exceeding 0 < r � 1=k, then1Xi=1 �(ri) � s�1 1Xi=1 �(B(xi; ri)) � s�1�(F )Hence, �r�(F ) � s�1�(F ) and letting r! 0 we get��(E) � ��(F ) � s�1�(F )By the assumption of (b), [kAk = A and therefore, putting Bk = Akn(A1[A2[: : :[Ak�1),k � 1, we see that the family fBk : k � 1g is a countable partition of A into Borel sets.Therefore, if E � A then��(E) = 1Xk=1��(E \Ak) � s�1 1Xk=1�(E \ Ak) = s�1�(E)So, letting s& C �nishes the proof. |In an analogous way one can prove the following.Theorem 6.6.2. Let n � 1 be an integer and let b(n) be the constant claimed in Theo-rem 6.5.1 (Besicovitch covering theorem). Assume that � is a Borel probability measureon IRn and A is a bounded subset of IRn. If there exists C 2 (0;1], (1=1 = 0), such that(a) for all x 2 A lim infr!0 �(B(x; r))�(r) � C16



then �(E) � b(n)C��(E) for every Borel set E � A.or (b) for all x 2 A lim infr!0 �(B(x; r))�(r) � C <1then ��(E) � C�1�(E) for every Borel set E � A. In particular ��(A) <1.Note that each Borel measure � de�ned on a Borel subset B of Rn can be in a canonicalway considered as a measure on IRn by putting �(A) = �(A \ B) for every Borel setA � IRn.As a simple consequence of Theorem 6.6.1 we shall prove the following.Theorem 6.6.3. Suppose that � is a Borel probability measure on IRn, n � 1, and A isa bounded Borel subset of IRn.(a) If �(A) > 0 and there exists �1 such that for every x 2 Alim infr!0 log�(B(x; r))log r � �1then HD(A) � �1.(b) If there exists �2 such that for every x 2 Alim infr!0 log�(B(x; r))log r � �2then HD(A) � �2.Proof. (a) Take any 0 < � < �1. Then, by the assumption, lim supr!0 �(B(x; r))=r� � 1.Therefore applying Theorem 6.6.1(b) with �(t) = t�, we obtain ��(A) � �(A) > 0. HenceHD(A) � � by de�nition (6.4.1) and consequently HD(A) � �1.(b) Take now an arbitrary � > �2. Then by the assumption lim supr!0 �(B(x; r))=r� �1. Therefore applying Theorem 6.6.1(a) with �(t) = t� we obtain ��(A) < 1, whenceHD(A) � � and consequently HD(A) � �1. The proof is �nished. |Recall that the Hausdor� dimension of a Borel measure has been de�ned in De�ni-tion 6.4.10. As a consequence of Theorem 6.6.3 we shall prove the following.Corollary 6.6.4. Suppose that � is a Borel probability measure on IRn, n � 1.(a) If there exists �1 such that for �-a.e. x 2 IRnlim infr!0 log�(B(x; r))log r � �1then HD(�) � �1(b) If there exists �2 such that for �-a.e. x 2 IRnlim infr!0 log�(B(x; r))log r � �2then HD(�) � �2. 17



Proof. (a) Let Y � IRn be a Borel set such that �(Y ) = 1. By the assumption thereexists a bounded Borel subset A � Y with �(A) > 0 such that for every x 2 Alim infr!0 log�(B(x; r))log r � �1Thus, applying Theorem 6.6.3(a) we get HD(Y ) � HD(A) � �1 and taking in�mum,HD(�) � �1.(b) Decompose now the space IRn into a countable union [kXk of Borel bounded setsXk and let X � IRn be a Borel set of measure 1 whose every point satis�es the assumptionsof Corollary 6.6.4. Applying for every k � 1 Theorem 6.6.3(b) with A = X \ Xk we getHD(X \Xk) � �2 and we are done applying Theorem 6.4.2 since HD(�) � HD(X). |De�nition 6.6.5. Let X be a Borel bounded subset of IRn, n � 1. A Borel probabilitymeasure on X is said to be a geometric measure with an exponent t � 0 if and only if thereexists a constant C � 1 such thatC�1 � �(B(x; r))rt � Cfor every x 2 X and every 0 < r � 1.We shall prove the following.Theorem 6.6.6. If X is a Borel bounded subset of IRn, n � 1, and � is a geometricmeasure on X with an exponent t, then BD(X) exists andHD(X) = PD(X) = BD(X) = tMoreover the three measures �, �t and �t on X are equivalent with bounded Radon-Nikodym derivatives.Proof. The last part of the theorem follows immediately from Theorem 6.6.1 and The-orem 6.6.2 applied for A = X. Consequently also t = HD(X) = PD(X) and there-fore, in view of Theorem 6.4.9, we only need to show that BD(X) � t. And indeed, letf(xi; r) : i = 1; : : : ; kg be a packing of X. Thenkrt � C kXi=1 �(B(xi; r)) � Cand therefore k � Cr�t. Thus P (X; r) � Cr�t, whence logP (X; r) � logC � t log r.Applying now formula (6.4.3) �nishes the proof. |In particular it follows from this theorem that every geometric measure admits exactly oneexponent. Lots of examples of geometric measures will be provided in the next chapters.18
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CHAPTER 7. CONFORMAL EXPANDING REPELLERSNov. 23, 2002Conformal expanding repellers (abbreviation: CER's) were de�ned already in Chapter 5and some basi
 properties of expanding sets and repellers in dimension 1 were dis
ussedin Se
tion 5.2. A more advan
ed geometri
 theory in the real 1-dimensional 
ase wasdone in Se
tion 5.6 ???. But now we have a new tool: Frostman Lemma and relatedfa
ts from Chapter 6. Equipped with the theory of Gibbs measures and with the pressurefun
tion we are able to develop a geometri
 theory of CER's with Hausdor� measuresand dimension playing the 
ru
ial role. We shall present this theory for C1+" 
onformalexpanding repellers in IRd. Remind (Ch.5.2) that the assumed 
onformality for
es ford = 2 that f is holomorphi
 or antiholomorphi
 and for d � 3 that f is lo
ally a M�obiusmap. Conformality for d = 1 is meaningless, so we assume C1+" in order to be able to relyon the Bounded Distortion for Iteration lemma.We shall outline a theory of Gibbs measures from the point of view of multifra
-tal spe
tra of dimensions (Se
.2) and pointwise 
u
tuations due to the Law of IteratedLogarithm (Se
.3) .For d = 2 we shall apply this theory to study the boundary of the immediate basinof attra
tion to a sink for a rational mapping of the Riemann sphere in the 
ase the basinis simply-
onne
ted and the mapping on the boundary is expanding, for example for themapping z 7! z2 + 
 for j
j small, for a quasi
ir
le invariant under the a
tion of a quasi-Fu
hsian group ??????????????????????? and for the boundary of the "snow
ake". Inparti
ular we study harmoni
 measure. We shall derive from this an information aboutthe radial growth of the derivative of the Riemann mapping from the unit dis
 to thesimply-
onne
ted domain under 
onsideration.Se
tion 7.1.1. Pressure fun
tion and dimension.Let f : X ! X be a topologi
ally mixing 
onformal expanding repeller in IRd. As before weabbreviate notation of the pressure P(f; �), to P(�). We start with the following te
hni
allemma.Lemma 7.1.1. Letm be a Gibbs state (not ne
esserily invariant) on X and let � : X ! IRbe a H�older 
ontinuous fun
tion. Assume P(�) = 0. Then there is a 
onstant E � 1 su
hthat for all r small enough and all x 2 X there exists n = n(x; r) su
h that(7.1.0) logE + Sn�(x)� logE � log j(fn)0(x)j � logm(B(x; r))log r � � logE + Sn�(x)logE � log j(fn)0(x)j :Proof. Take an arbitrary x 2 X. Fix r 2 (0; C�1�) and let n = n(x; r) � 0 be the largestinteger so that(7.1.1) j(fn)0(x)jrC � �;where C = CMD is the multipli
ative distortion 
onstant (
orresponding to the H�older
ontinuous fun
tion log jf 0j), as in the Distortion Lemma for Iteration (Theorem 4.2.1),1



see Notation 5.2.2.??? Then(7.1.2) f�nx (B(fn(x); �)) � B(x; �j(fn)0(x)j�1C�1) � B(x; r):Now take n0 su
h that �n0�1 � C2. We then obtain(7.1.3) j(fn+n0)0jrC�1 � �:Hen
e, again by the Distortion Lemma for Iteration(7.1.4) f�n�n0x (B(fn+n0(x); �)) � B�x; �j(fn+n0)0(x)j�1C� � B(x; r):By the Gibbs property of the measure m, see (4.1.1), for a 
onstant E � 1 (the 
onstantC in (4.1.1)) we 
an writeE�1 � expSn�(x)m(f�nx (B(fn(x); �))) and expSn+n0�(x)m(f�(n+n0)x (B(fn+n0(x); �))) � E:Using this, (7.1.2), (7.1.4), the inequality Sn+n0�(x) � Sn�(x) + n0 inf �, and �nallyin
reasing E so that the new logE is larger than the old logE � n0 inf �, we obtain(7.1.5) logE + Sn�(x) � logm(B(x; r)) � � logE + Sn�(x):Using now (7.1.1) and (7.1.3), denoting L = sup jf 0j, and applying logarithms, we obtainlogE + Sn�(x)log j(fn)0(x)j�1 � n0 logL+ log � � logm(B(x; r)log r � � logE + Sn�(x)log j(fn)0(x)j�1� :In
reasing further E so that logE � n0 logL� log �, we 
an rewrite it in the "symmetri
"form of (7.1.0). |When we studied the pressure fun
tion � 7! P(�) in Chapters 2 and 4 the linear fun
tional 7! R  d�� appeared. This was the Gateaux di�erential of P at � (Theorem 2.5.5,Proposition 2.5.6 and (4.6.5')). Here the presen
e of an ambient smooth stru
ture (1-dimensional or 
onformal) distingushes  's of the form�t log jf 0j. We obtain a link betweenthe ergodi
 theory and the geometry of the embedding of X into IRd.De�nition 7.1.2. Let � be an ergodi
 f -invariant probability measure on X. Then byBirkho�'s Ergodi
 Theorem, for �-almost every x 2 X, the limit limn!1 1n log j(fn)0(x)jexists and is equal to R log jf 0jd�. We 
all this number the Lyapunov 
hara
teristi
 expo-nent of the map f with respe
t to the measure � and we denote it by ��(f). In our 
aseof expanding maps 
onsidered in this Chapter we obviously have ��(f) > 0.This de�nition does not demand the expanding property. It makes sense for an arbitraryinvariant subset X of IRd or the Riemann sphere �CI, for f 
onformal (or di�erentiable inthe real 
ase) de�ned on a neighbourhood of X. There is no problem with the integrability2



be
ause log jf 0j is upper bounded on X. We do not ex
lude the possibility that �� = �1.The notion of a Lyapunov 
hara
teristi
 exponent will play a 
ru
ial role also in subsequent
hapters where non-expanding invariant sets will be studied.Theorem 7.1.3. (Volume Lemma, expanding map, Gibbs measure 
ase). Letm be a Gibbs state for a topologi
ally mixing 
onformal expanding repeller X 2 IRd anda H�older 
ontinuous potential � : X ! IR . Then for m-almost every point x 2 X thereexists the limit limr!0 logm(B(x; r))log r :Moreover, this limit is almost everywhere 
onstant and is equal to h�(f)=��(f), where �denotes the only f -invariant probability measure equivalent to m.Proof. We 
an assume that P(�) = 0. We 
an a
hieve it by subtra
ting P(�) from �;the Gibbs measure 
lass will stay the same (see Proposition 4.1.4). In view of the Birkho�Ergodi
 Theorem, for �-a.e x 2 X we have.limn!1 1nSn�(x) = Z � d� and limn!1 1n log j(fn)0(x)j = ��(f):Combining these equalities with (7.8.0), along with the observation that n = n(x; r)!1as r ! 0, and using also the equality h�(f) + R �d� = P(�) = 0, we 
on
lude thatlimr!0 log�(B(x; r))log r = h�(f)��(f) :The proof is �nished. |As an immediate 
onsequen
e of this lemma and Corolaries 6.6.4 and 6.6.4a we get thefollowing.Theorem 7.1.4. If � is a Gibbs state for a 
onformal expanding repeller X 2 IRd and aH�older 
ontinuous potential � on X, then there exist Hausdor� and pa
king dimensionsof � and HD(�) = PD(�) = h�(f)=��(f):Using the above te
hnique we 
an �nd a formula for the Hausdor� dimension and otherdimensions of the whole set X. This is the solution of the non-linear problem, 
orre-sponding to the formula for Hausdor� dimension of the linear Cantor sets, dis
ussed in theintrodu
tion. As f is Lips
hitz 
ontinuous (or as f is forward expanding), the fun
tionP(t) := P(�t log jf 0j)is �nite (see 
omments at the beginning of Se
tion 2.5). As jf 0j � � > 1, it follows dire
tlyfrom the de�nition that P(t) is stri
tly de
reasing from +1 to �1. In parti
ular thereexists exa
tly one parameter t0 su
h that P(t0) = 0. We prove �rst the following.3



Theorem 7.1.5. (Existen
e of geometri
 measures). Let t0 be de�ned by P(t0) = 0.Write � for �t0 log jf 0j restri
ted to X. Then ea
h Gibbs state m 
orresponding to thefun
tion � is a geometri
 measure with the exponent t0. In parti
ular limr!0 logm(B(x;r))log r =t0 for every x 2 X.Proof. We put in (7.1.0) � = �t0 log jf 0j. Then using (7.1.1) (7.1.3) and sup jf 0j � L torepla
e j(fn)0(x)j�1 by r we obtainlogE + t0 log r� logE + log r � logm(B(x; r))log r � � logE + t0 log rlogE + log rwith a 
orre
ted 
onstant E. Hen
e(7.1.6) logE + t0 log rlog r � logm(B(x; r))log r � � logE + t0 log rlog rfor further 
ore
ted E. In 
onsequen
et0 � log�m(B(x; r))=E�log r and log�Em(B(x; r))�log r � t0;hen
e m(B(x; r))=E � rt0 and Em(B(x; r)) � rt0 :(In the denominators we passed in Proof of Theorem 7.1.1 from r to j(fn)0(x)j�1 and herewe passed ba
k, so at this point the proof 
ould be shortened. Namely we 
ould dedu
e(7.1.6) dire
tly from (7.1.5). However we needed to pass from j(fn)0(x)j�1 to r also innumerators and this point 
ould not be simpli�ed). |As an immediate 
onsequen
e of this theorem and Theorem 5.6.6 we get the following.Corollary 7.1.6. The Hausdor� dimension of X is equal to t0. Moreover it is equal tothe pa
king and Minkowski dimensions. All Gibbs states 
orresponding to the potential� = �t0 log jf 0j, as well as t0-dimensional Hausdor� and pa
king measures are mutuallyequivalent with bounded Radon-Nikodym derivatives.More on Volume Lemma. We end this se
tion with a version of the Volume Lemma fora Borel probability invariant measure on the expanding repeller (X; f). In Chapter 9 weshall prove this without the expanding assumption assuming only positivity of Lyapunovexponent (though assuming also ergodi
ity) and the proof will be diÆ
ult. So we prove �rsta simpler version, whi
h will be needed already in the next se
tion. We start with a simplefa
t following from Lebesgue Theorem of di�erentiability a.e. ([Lojasiewi
z, Th.7.1.4℄) Weprovide a proof sin
e it is very mu
h in the spirit of Chapter 6.Lemma 7.1.7. Every non-de
reasing fun
tion k : I ! IR de�ned on a bounded 
losedinterval I � IR is Lips
hitz 
ontinuous at Lebesgue almost every point in I. In other words,for every " > 0 there exist L > 0 and a set A � I su
h that jI n Aj < ", where j � j is theLebesque measure in IR, and at ea
h r 2 A the fun
tion k is Lips
hitz 
ontinuous with theLips
hitz 
onstant L. 4



Proof. Suppose on the 
ontrary, thatB = fx 2 I : supfy 2 I : x 6= y; jk(x)� k(y)jjx� yj g =1ghas positive Lebesgue measure. Write I = [a; b℄. We 
an assume, by taking a subset, thatB is 
ompa
t and 
ontains neither a nor b. For every x 2 B 
hoose x0 2 I; x0 6= x su
hthat(7.1.6') jk(x)� k(x0)jjx� x0j > 2k(b)� k(a)jBj :Repla
e ea
h pair x; x0 by y; y0 with (y; y0) � [x; x0℄, and y; y0 so 
lose to x; x0 that (7.1.6')still holds for y; y0 instead of x; x0. In 
ase when x or x0 equals a or b we do not makethe repla
ement.) We shall use for y; y0 the old notation x; x0 assuming x < x0. Now fromthe family of intervals (x; x0) 
hoose a �nite family I 
overing our 
ompa
t set B. Fromthis family it is possible to 
hoose a subfamily of intervals whose union still 
overs B andwhi
h 
onsists of two subfamilies I1 and I2 of pairwise disjoint intervals.Indeed. Start with I1 = (x1; x01) 2 I with minimal possible x = x1 and maximal inI in the sense of in
lusion. Having found I1 = (x1; x01); :::; In = (xn; x0n) we 
hoose In+1as follows. Consider In+1 := f(x; x0) 2 I : x 2 Si=1;:::;n Ii; x0 > supi=1;:::;n x0ig. If In+1is non-empty, we set (xn+1; x0n+1) so that x0n+1 = maxfx0 : (x; x0) 2 In+1g. If In+1 = ;,we set (xn+1; x0n+1) so that xn+1 is minimal possible to the right of maxfx0i : i = 1; :::; ngor equal to it, and maximal in I. In this 
onstru
tion the intervals (xn; x0n) with even nare pairwise disjoint, sin
e ea
h (xn+2; x0n+2) has not been a member of In+1. The sameis true for odd n's. We de�ne Ii for i = 1; 2 as the family of (xn; x0n) for even, respe
tivelyodd, n. In view of the pairwise disjointness intervals of families I1 and I2, monotoni
ityof k and (7.1.6'), we get thatk(b)� k(a) � Xn2I1 k(x0n)� k(xn) > 2k(b)� k(a)jBj Xn2I1(x0n � xn)and the similar inequality for n 2 I2. Hen
e, taking into a

ount that I1 [ I2 
overs B,we get2(k(b)� k(a)) > 2k(b)� k(a)jBj Xn2I1[I2(x0n � xn) � 2k(b)� k(a)jBj jBj = 2(k(b)� k(a));whi
h is a 
ontradi
tion �nishing the proof. |Corollary 7.1.8. For every Borel probability measure � on a 
ompa
t metri
 spa
e (X; �)and for every r > 0 there exists a �nite partition P = fPt; t = 1; :::;Mg of X into Borelsets of positive measure � and with diam(P) � r and there exists C > 0 su
h that forevery a > 0(7.1.7) �(�P;a) � Ca;where �P;a := Tt�Ss6=tB(Ps; a)�. 5



Proof. Let fx1; :::; xNg be a �nite r=4-net in X. Fix " 2 (0; r=4N). For ea
h fun
tiont 7! ki(t) := �(B(xi; t)), t 2 I = [r=4; r=2℄, apply Lemma 7.1.7 and �nd appropriate Liand Ai, for all i = 1; :::; N . Let L = maxfLi; i = 1; :::; Ng and let A = Ti=1;:::;N Ai. Theset A has positive Lebesgue measure by the 
hoi
e of ". So, we 
an 
hoose its point r0di�erent from r=4 and r=2. Therefore, for all a < a0 := minfr0� r=4; r=2� r0g and for alli 2 f1; 2; : : : ; ng; we have �(B(xi; r0 + a) nB(xi; r0 � a)) � 2La. Hen
e, putting�(a) =[i B(xi; r0 + a) nB(xi; r0 � a));we get �(�(a)) � 2LNa. De�ne P = fTNi=1B�(i)(xi; r0)g as a family over all fun
tions � :f1; :::; Ng ! f+;�g, where B+(xi; r0) := B(xi; r0) and B�(xi; r0) := X nB(xi; r0), ex
ept� yielding sets of measure 0, in parti
ular ex
ept empty interse
tions. After removing fromX of a set of measure 0, the partition P 
overs X. Sin
e r0 � r=4, the balls B(xi; r0)
over X. Hen
e, for ea
h non-empty Pt 2 P at least one value of � is equal to +. Hen
ediam(Pt) � 2r0 < r. Note now that �P;a � �(a). Indeed, let x 2 �P;a. Sin
e P 
overs Xthere exists t0 su
h that x 2 Pt0 so x =2 Pt for all t 6= t0. However, sin
e x 2 St6=t0 B(Pt; a),there exists t1 6= t0 su
h that dist(x; Pt1) < a. Let B = B(xi; r0) be su
h that Pt0 � B+and Pt1 � B�, or vi
e versa. In the 
ase when x 2 Pt0 � B+, by the triangle inequality�(x; xi) > r0 � a and sin
e �(x; xi) < r0, we get x 2 �(a). In the 
ase x 2 Pt0 � B� wehave x 2 B(xi; r0 + a) n B(xi; r0) � �(a). We 
on
lude that �(�P;a)) � �(�(a) � 2LNafor all a < a0. For a � a0 it suÆ
es to take C � 1=a0. So the 
orollary is proved, withC = maxf2LN; 1=a0g. |Remark. If X is embedded for example in a 
ompa
t manifold Y , then we 
an view � asa measure on Y , we �nd a partition P of Y and then �P;a = B(St=1;;;:M �Pt; a), providedM � 2. This justi�es the notation �P;a.Corollary 7.1.9. Let � be a Borel probability measure on a 
ompa
t metri
 spa
e (X; �)andlet f : X ! X be an endomorphism measurable with respe
t to the Borel �-algebra onX and preserving measure �. Le for every r > 0 let P = fPt; t = 1; :::;Mg be the partitionof X 
onstru
ted in Corollary 7.1.8. In parti
ular diam(P � r. Then for every Æ > 0 and�-a.e. x 2 X there exists n0 = n0(x) su
h that for every n � n0(7.1.8) B(fn(x); exp(�nÆ)) � P(fn(x))Proof. Let P be the partition from Corollary 7.1.8. Fix an arbitrary Æ > 0. Then byCorollary 7.1.8 1Xn=0 �(�P;exp(�nÆ))) � 1Xn=0C exp(�nÆ) <1:Hen
e by the f -invarian
e of �, we obtain1Xn=0 �(f�n(�P;exp(�nÆ))) <1:6



Applying now the Borel-Cantelli lemma for the family ff�n(�P;exp(�nÆ))g1=1 we 
on
ludethat for �-a.e x 2 X there exists n0 = n0(x) su
h that for every n � n0 we have x =2f�n(�P;exp(�nÆ)), so fn(x) =2 �P;exp(�nÆ). Hen
e, by the de�nition of �P;exp(�nÆ), if fn(x) 2P for some P 2 P, then fn(x) =2 Ss6=tB�Ps; exp(�nÆ)�. ThusB(fn(x); exp�nÆ) � P:We are done. |Theorem 7.1.10. (Volume Lemma, expanding map, any measure 
ase). Let �be an f -invariant Borel probability measure on a topologi
ally exa
t 
onformal expandingrepeller (X; f), where X � IRd.ThenHD�(�) � h�(f)��(f) � HD�(�):If in addition � is ergodi
, then HD(�) = h�(f)��(f) :Proof. Fix the partition P 
oming from Lemma 7.1.8 with r = minf�; �g, where � > wasde�ned in (3.1.1). Then, as we saw in Chapter 4(7.1.10) Pn+1(x) � f�nx (B(fn(x); �)):for every x 2 X and all n �. We shall work now to get a sort of opposite in
lusion.Consider an arbitrary Æ > 0 and x so that (7.1.8) from Corollary 7.1.9 is satis�ed foral n � n0(x). For every 0 � i � n de�ne k(i) = [i Ælog � + log �log � ℄ + 1, � > 1 being theexpanding 
onstant for f : X ! X (see (3.1.1)). Hen
e exp(�iÆ) � ���k and thereforef�kfi(x)(B(f i+k(x); �)) � B(f i(x); exp�iÆ). So, using (7.1.8) for i in pla
e of n, we getf�(i+k)x (B(f i+k(x); �)) � f�ix (P(f i(x))for all i � n0(x). From this estimate for all n0 � i � n, we 
on
lude thatf�(n+k(n))x (B(fn+k(n)(x); �) � Pn+1n0 (x):Noti
e that for �-a.e. x there is a > 0 su
h that B(x; a) � Pn0(x), by the de�nition of�P;� . Therefore for all n large enough(7.1.11) f�(n+k(n))x (B(fn+k(n)(x); �)) � Pn(x):It follows from (7.1.11) and (7.1.10) with n+ k(n) in pla
e of n, thatlimn!1 1n � log �(Pn(x)) � lim infn!1 � log ��f�(n+k(n))x (B(fn+k(n)(x); �))�n� lim supn!1 � log �(f�(n+k(n))x (B(fn+k(n)(x); �))n� limn!1 1n � log �(Pn(x))(Pn+k(n)+1)(x):7



The limits on the most left and most right-hand sides of these inequalities exist for �-a.e.x by the Shennon-M
Millan-Breiman Theorem (Theorem 1.5.4), see also (1.5.1), and theirratio is equal to 1. Letting Æ ! 0 we obtain the existen
e of the limit and the equality(7.1.12) h�(f;P; x) := limn!1 1n � log �(Pn(x))(Pn)(x) = limn!1 � log �(f�nx (B(fn(x); �))n :In view of Birkho�'s Ergodi
 Theorem, thelimit(7.1.13) ��(f; x) := limn!1 1n log j(fn)0(x)j;exists for �-a.e. x 2 X. Dividing side by side (7.1.12) by (7.1.13) and using (7.1.1)-(7.1.4),we get limr!0 log �(B(x; r))log r = h�(f;P; x)��(f; x) :Sin
e by the Shennon-M
Millan-Breiman Theorem, and Birkho�'s Ergodi
 Theorem,R h�(f;P; x) d�(x)R ��(f; x) d� = h�(f;P)��(f) : = h�(f)��(f) ;where the latter equality was written sin
e f is expansive and diam(P) is less than theexpansiveenss 
onstant of f : X ! X whi
h at least ex
esds �, there thus exists a pos-itive measure set where h�(f;P;x)��(f;x) � h�(f)��(f) and a positive measure set where the oppositeinequality holds. Therefore limr!0 log �(B(x; r))log r � h�(f)��(f)and the opposite inequality also holds on a positive measure set. In view of de�nitionsof HD� and HD� and by Corollary 6.6.4, this �nishes the proof of the �rst part of ourTheorem. In the ergodi
 
ase h�(f;P; x) = h�(f) and ��(f; x) = ��(f) for �-a.e. x 2 X.So limr!0 log �(B(x; r))log r = h�(f)��(f)and we are done in this 
ase as well. |Se
tion 7.8. Multifra
tal analysis of Gibbs state.In the previous se
tion we linked to a (Gibbs) measure only one dimension number, HD(m).Here one of our aims is to introdu
e 1-parameter families of dimensions, so-
alled spe
traof dimensions. In these de�nitions we do not need the mapping f . Let � be a Borelprobability measure on a metri
 spa
e X. Re
all from Chapter 6.7 that given x 2 X wede�ned the lower and upper pointwise dimension of � at x by putting respe
tivelyd�(x) = lim infr!0 log �(B(x; r))log r and d�(x) = lim supr!0 log �(B(x; r))log r :8



If d�(x) = d�(x), we 
all the 
ommon value the pointwise dimension of � at x and wedenote it by d�(x). The fun
tion d� is 
alled the dimension spe
trum of the measure �.For any � � 0 � 1 write X�(�) = fx 2 X : d�(x) = �g:The domain of d� namely the set S�X�(�) is 
alled a regular part of X and its 
omplementX̂ a singular part. The de
omposition of the set X asX = [0���1X�(�) [ X̂:is 
alled the multifra
tal de
omposition with respe
t to the dimension spe
trum.De�ne the F�(�)-spe
trum for dimensions fun
tion related to Hausdor� dimension byF�(a) = HD(X�(�));where we de�ne the domain of F� as f� : X�(�) 6= ;g.Note that by Theorem 7.1.5 if (X; f) is a topologi
ally exa
t expanding 
onformalrepeller and � = ��HD(X) log jf 0j then allX�(�) are empty ex
eptX�(HD(X)). In parti
ularthe domain of F� is in this 
ase just one point HD(X).Let for every real q 6= 1 Rq(�) := 1q � 1 limr!0 logPNi=1 �(Bi)qlog r ;where N = N(r) is the total number of boxes Bi of the form Bi = f(x1; :::; xd) 2 IRd :rkj � xj � r(kj + 1); j = 1; :::; dg for integers kj = kj(i) su
h that �(Bi) > 0. Thisfun
tion is 
alled R�enyi spe
trum for dimensions, provided the limit exists. It is easy to
he
k (exer
ise 7.2.1) that it is equal to the Hents
hel-Pro
a

ia spe
trumHPq(�) := 1q � 1 limr!0 log infGr PB(xi;r)2Gr �(B(xi; r))qlog r ;where in�mum is taken over all Gr being �nite or 
ountable 
overings of the (topologi
al)support of � by balls of radius r 
entered at xi 2 X, orHPq(�) := 1q � 1 limr!0 log RX �(B(x; r))q�1d�(x)log rprovided the limits exist. For q = 1 we de�ne the information dimension I(�) as follows.Set H�(r) = infFr �� XB2Fr �(B) log �(B)�;9



where in�mum is taken over all partitions Fr of a set of full measure � into Borel sets Bof diameter at most r. We de�ne I(�) = limr!0 H�(r)� log rprovided the limit exists. A 
omplement to Corollary 6.6.4 is that(7.8.0) HD�(�) � I(�) � PD�(�):For the proof see Exer
ise 7.2.5.Note that for R�enyi and HP dimensions it does not makeany di�eren
e whether we 
onsider 
overings of the topologi
al support (the smallest 
losedset of full measure) of a measure or any set of full measure, sin
e all balls have the sameradius r, so we 
an always 
hoose lo
ally �nite (number independent of r) sub
overing.These are "box type" dimension quantities.A priori there is no reason for the fun
tion F�(�) to behave ni
ely. If � is an f -invariantergodi
 measure for (X; f), a topologi
ally exa
t 
onformal expanding repeller, then at leastwe know that for �0 = HD(�), we have d�(x) = �0 for �-a.e. x (by the Volume Lemma:7.1.3 and Theorem 7.1.4 for a Gibbs measure � of a H�older 
ontinuous fun
tion and byTheorem 7.1.10 in the general 
ase). So, in parti
ular we know at least that the domainof F�(�) is nonempty. However for � 6= �0 we have then �(X�(�)) = 0 so X�(�) are notvisible for the measure �. Whereas the fun
tion HPq(�) 
an be determined by statisti
alproperties of �-typi
al (a.e.) traje
tory, the fun
tion F�(�) seems intra
table. Howeverif � = �� is an invariant Gibbs measure for a H�older 
ontinuous fun
tion (potential) �,then mira
ulously the above spe
tra of dimensions happen to be real-analyti
 fun
tionsand �F��(�p) and HPq(��) are mutual Legendre transforms. Compare this with thepair of Legendre-Fen
hel transforms: pressure and -entropy, Remark 2.5.3. Thus �x aninvariant Gibbs measure �� 
orresponding to a H�older 
ontinuous potential �. We 
anassume without loosing generality that P(�) = 0. Indeed, starting from an arbitrary �, we
an a
hieve this without 
hanging �� by subtra
ting from � its topologi
al pressure (as atthe beginning of the proof of Lemma 7.1.3). Having �xed �, in order to simplify notation,we denote X��(�) by X� and F�� by F . We de�ne a two-parameter family of auxiliaryfun
tions �q;t : X ! IR for q; t 2 IR, by setting�q;t = �t log jf 0j+ q�:Lemma 7.8.1. For every q 2 IR there exists a unique t = T (q) su
h that P(�q;t) = 0.Proof. This lemma follows from the fa
t the fun
tion t 7! P(�q;t) is de
reasing from1 to�1 for every q (see 
omments pre
eding Theorem 7.1.5 and at the beginning of Se
tion2.5) and the Darboux theorem. |We deal with invariant Gibbs measures ��q;T(q) whi
h we denote for abbreviation by �qand with the measure �� so we need to know a relation between them. This is explainedin the following. 10



Lemma 7.8.2. For every q 2 IR there exists C > 0 su
h that for all x 2 X and r > 0(7.8.1) C�1 � �q(B(x; r))rT (q)��(B(x; r))q � C:Proof. Let n = n(x; r) be de�ned as in Lemma 7.1.1. Then, by (7.1.5), (7.1.1) and (7.1.3),the ratios ��(B(x; r))expSn�(x) ; �q(B(x; r))j(fn)0(x)j�T (q) exp qSn�(x) ; rj(fn)0(x)j�1are bounded from below and above by positive 
onstants independent of x; r. This yieldsthe estimates (7.8.1) |Let us prove the following.Lemma 7.8.3. For any f -invariant ergodi
 probability measure � on X and for � -a.e.x 2 X we have d��(x) = R �d�� R log jf 0jd� :Proof. Using formula (7.1.0) in Lemma 7.1.1 and Birkho� 's Ergodi
 Theorem, we getd��(x) = limn!1 Sn�(x)log j(fn)0(x)j�1 = limn!1 1nSn�(x)limn!1 1n log j(fn)0(x)j�1 = R �d�� R log jf 0jd� : |One 
an 
on
lude from this, that the singular part X̂ of X has zero measure for everyf -invariant � . Yet the set X̂ is usually big, see Exer
ise 7.2.4.On the Legendre transform. Let k = k(q) : I ! IR be a 
onvex fun
tion on I =[�1(k); �2(k)℄ where �1 � �1(k) � �2(k) � 1 (i.e. I is either a point or a 
losed intervalor a semiline or IR). The Legendre transform of k is the fun
tion g of a new variable pde�ned by g(p) = supq2Ifpq � k(q)geverywhere where a �nite supremum exists. It 
an be easily proved (Exer
ise 7.2.2) thatthe domain of g is also either a point, or a 
losed interval or a semiline or IR. It is alsoeasy to show that g is 
onvex and that the Legendre transform is involutive. We then saythat the fun
tions k and g form a Legendre transform pair.Proposition 7.8.4. If two 
onvex fun
tions k and g form a Legendre transform pairthen g(k0(q)) = qk0(q)� k(q), where k0(q) is any number between the left and right handside derivative of k at q, whi
h are de�ned as �1;1 at �1(k), �2(k) respe
tively, ifthese end points are �nite. We set 0 � �1 = 0 in 
ase k0 = �1 at q = �i(k) = 0. If11



�2(k) = 1 (similarly if �1(k) = �1), then for k0(1) de�ned as limq!1 k0(q), it holdsg(k0(1)) = limq!1 g(k0(q)).Note that if k is C2 with k00 > 0, therefore stri
tly 
onvex, then also g00 > 0 at all pointsk0(q) for �1(k) < q < �2(k), therefore g is stri
tly 
onvex on [k0(�1(k)); k0(�2(k))℄. Outsidethis interval g is aÆne in its domain. If the domain of k is one point then g is aÆne on IRand vi
e versa.We are now in position to formulate our main theorem in this se
tion gathering in parti
ularsome fa
ts already proven.Theorem 7.8.5.(a) The pointwise dimension d��(x) exists for ��-almost every x 2 X andd��(x) = R �d��� R log jf 0jd�� = HD(��) = PD(��):(b) The fun
tion q 7! T (q) for q 2 IR, is real analyti
, T (0) = HD(X), T (1) = 0,T 0(q) = R �d�qR log jf 0jd�q < 0 and T 00(q) � 0.(
) For all q 2 IR we have �q(X�T 0(q)) = 1, where �q is the invariant Gibbs measure forthe potential �q;T (q), and HD(�q) = HD(X�T 0(q)).(d) For every q 2 IR, F (�T 0(q)) = T (q)� qT 0(q), i.e. p 7! �F (�p) is Legendre transformof T (q).If the measures �� and ��HD(X) log jf 0j (the latter dis
ussed in Theorem 7.1.5 andCorollary 7.1.6) do not 
oin
ide, then T 00 > 0 and F 00 < 0, i.e. the fun
tions T and Fare respe
tively stri
tly 
onvex on IR, and stri

tly 
on
ave on [�T 0(1);�T 0(�1)℄whi
h is a bounded interval in IR+ = f� 2 IR : � > 0g. If �� = ��HD(X) log jf 0j thenT is aÆne and the domain of F is one point �T 0.(e) For every q 6= 1 the HP and R�enyi spe
tra exist (i.e. limits in the de�nitions exist)and T (q)1�q = HPq(��) = Rq(��). For q = 1 the information dimension I(��) existsand limq!1;q 6=1 T (q)1� q = �T 0(1) = HD(��) = PD(��) = I(��):Insert Figures: graph of T , graph of F [Pesin, p.219, 220℄Proof. 1. Sin
e P(�) = 0, the part (a) is an immediate 
onsequen
e of Lemma 7.1.3and its se
ond and third equalities follow from Theorem 7.1.4. The �rst equality is also aspe
ial 
ase of Lemma 7.8.3 with � = ��.2. We shall prove some statements of the part (b). The fun
tion �q;t = �t log jf 0j + q�,from IR2 to C�(X), where � is a H�older exponent of the fun
tion �, is aÆne. Sin
e bya result of Ruelle (see [Ru℄)??????? the topologi
al pressure fun
tion P : C� ! IR is12



real analyti
, then the 
omposition whi
h we denote P(q; t) is real analyti
. Hen
e thereal analyti
ity of T (q) follows immediately from the Impli
it Fun
tion Theorem on
e weverify the non-degenera
y assumption. In fa
t C2-smoothness of P(q; t) is suÆ
ient topro
eed further (here only C1), whi
h has been proved in Theorem 4.7.4. Indeed, due toTheorem 4.6.5 for every (q0; t0) 2 IR2(7.8.2) �P(q; t))�t j(q0;t0) = � ZX log jf 0jd�q0;t0 < 0;where �q0;t0 is the invariant Gibbs state of the fun
tion �q0;t0 . Di�erentiating with respe
tto q the equality P(q; t) = 0 we obtain(7.8.3) 0 = �P(q; t)�t j(q;T (q)) � T 0(q) + �P(q; t))�q j(q;T (q))hen
e we obtain the standard formulaT 0(q) = ��P(q; t))�q j(q;T (q)).�P(q; t)�t j(q;T (q));Again using (4.6.5') and P(�q;T (q)) = 0, we obtain(7.8.4) T 0(q) = R �d�qR log jf 0jd�q � �h�q (f)R log jf 0jd�q < 0;the latter true sin
e the entropy of any invariant Gibbs measure for H�older fun
tion is pos-itive, see for example Theorem 4.2.7. The equality T (0) = HD(X) is just Corollary 7.1.2.T (1) = 0 follows from the equality P(�) = 0.3. The inequality T 00(q) � 0 follows from the 
onvexity of P(q; t), see Theorem 2.5.2.Indeed the assumption that the part of IR3 above the graph of P(q; t) is 
onvex impliesthat its interse
tion with the plane (q; t) is also 
onvex. Sin
e �P(q;t))�t j(q0;t0) < 0, this is thepart of the plane above the graph of T . Hen
e T is a 
onvex fun
tion. We avoided in theabove 
onsideration an expli
it 
omputation of T 00. However to dis
uss stri
t 
onvexity(a part of (d)) it is ne
essary to 
ompute it. Di�erentiating (7.8.3) with respe
t to q weobtain the standard formula(7.8.5) T 00(q) = T 0(q)2 �2P(q;t)�t2 + 2T 0(q)�2P(q;t)�q�t + �2P(q;t)�q2��P(q;t)�twith the derivatives of P taken at (q; T (q)). The numerator is equal to�T 0(q) ��t + ��q�2P(q; t) = �2�q (�T 0(q) log jf 0j+ �)by Theorem 4.7.4, sin
e this is the se
ond order derivative of P : C(X) ! IR in thedire
tion of the fun
tion �T 0(q) log jf 0j+ �.13



The inequality �2 � 0, true by de�nition, implies T 00 � 0 sin
e the denominator in(7.8.5) is positive by (7.8.2).By Theorem 1.11.3 �2�q (�T 0(q) log jf 0j+ �) = 0 if and only if the fun
tion�T 0(q) log jf 0j+� is 
ohomologous to a 
onstant, say to a. It follows then from the equalityin (7.8.4) that a = R a d�q = R (�T 0(q) log jf 0j + �)d�q = 0. Therefore T 0(q) log jf 0j is
ohomologous to � and, as P(�) = 0, also P(T 0(q) log jf 0j) = 0. Thus, by Theorem 7.1.5and Corollary 7.1.2, T 0(q) = �HD(X) and 
onsequently � is 
ohomologous to the fun
tion�HD(X) log jf 0j. This implies that �� = ��HD(X) log jf 0j, the latter being the equilibrium(invariant Gibbs) state of the potential �HD(X) log jf 0j. Therefore, in view of our formulafor T 00, if �� 6= ��HD(X) log jf 0j, then T 00(q) > 0 for all q 2 IR.4. We prove (
). By Lemma 7.8.3 applied to � = �q, there exists a set ~Xq � X, of fullmeasure �q, su
h that for every x 2 ~Xq there existsd��(x) = limr!0 log��(B(x; r))log r = R �d�q� R log jf 0jd�q = �T 0(q):the latter proved in (b). Hen
e ~Xq � X�T 0(q). Therefore �q(X�T 0(q)) = 1. By Lemma7.8.2 for every B = B(x; r)j log�q(B)� T (q) log r � q log��(B)j < Cfor some 
onstant C 2 IR. Hen
e(7.8.6) ��� log�q(B)log r � T (q)� q log��(B)log r ���! 0as r! 0. Using (7.8.6), observe that for every x 2 X�T 0(q), in parti
ular for every x 2 ~Xq,limr!0 log�q(B)log r = T (q) + q limr!0 log��(B)log r = T (q)� qT 0(q):Although ~Xq 
an be mu
h smaller than X�T 0(q), mira
ulously their Hausdor� dimensions
oin
ide. Indeed the measure �q restri
ted to either ~Xq or to X�T 0(q) satis�es the assump-tions of Theorem 6.6.3 with �1 = �2 = T (q)� qT 0(q). Therefore(7.8.7) HD( ~Xq) = HD(X�T 0(q)) = T (q)� qT 0(q)and 
onsequently F (�T 0(q)) = T (q)� qT 0(q):Remarks. (a) If we take a set larger than X�T 0(q), namely repla
ing in the de�nitionof X�(�) the dimension d� by the lower dimension d� we still obtain the same Hausdor�dimension, again by Theorem 6.6.3.(b) Some authors repla
e in the de�nition of X�(�) the value d�(x) by d�(x). Thenthere is no singular part. In view of a) the F�(�) spe
trum is the same for � = ��.14



(
) Noti
e that (7.8.7) means that HD(X�T 0(q)) is the value where the straight linetangent to the graph of T at (q; T (q)) interse
ts the range axis.In the next steps of the proof the following will be useful.Claim. (Variational Prin
iple fo T .) For any f -invariant ergodi
 probability measure �on X, 
onsider the following linear equation of variables q; tZ �q;td� + h� (f) = 0that is(7.8.8) t = t� (q) = h� (f)R log jf 0jd� + q R �d�R log jf 0jd� :Then for every q 2 IR T (q) = sup� ft� (q)g = t�q (q);Where the supremum is taken over all f -invariant ergodi
 probability measures � on X.Proof of the Claim. Sin
e R �q;td� + h� (f) � P(�q;t) and sin
e �P(q;t)�t < 0 (
omparethe proof of 
onvexity of T ), we obtaint� (q) � T (q):On the other hand by (7.8.8), and using P(�q;T (q) = 0, we obtaint�q (q) = h�q (f) + q R �d�qR log jf 0jd�q = T (q) R log jf 0jd�qR log jf 0jd�q = T (q):The Claim is proved. |5. We 
ontinue Proof of Theorem 7.8.5. We shall prove the missing parts of (d). We havealready proved ithatF (�T 0(q)) = HD(X�T 0(q)) = HD(�q) = T (q)� qT 0(q):Note that [�T 0(1);�T 0(�1)℄ � IR+ [ f0;1g sin
e T 0(q) < 0 for all q. Note �nally that�T 0(�1) = limq!�1 � R �d�qR log jf 0jd�q � sup(��)inf log jf 0j <1and �T 0(1) = limq!1 � R �d�qR log jf 0jd�q :15



The expressions under lim are positive, (see (7.8.4)). It is enough now to prove that theyare bounded away from 0 as q ! 1. To this end 
hoose q0 su
h that T (q0) < 0. By ourClaim (Variational Prin
iple for T ) t�q (q0) � T (q0). Sin
e t�q (0) � 0, we get�q0 R �d�qR log jf 0jd�q = t�q (0)� t�q (q0) � jT (q0)j:Hen
e �R �d�qR log jf 0jd�q � jT (q0)j=q0 > 0 for all q.6. To end the proof of (d) we need to prove the formula for F at �T 0(�1) (in 
ase Tis not aÆne) and to prove that for � =2 [�T 0(1);�T 0(�1)℄ the sets X��(�) are empty.First note the following.6a. For any f -invariant ergodi
 probability measure � on X, there exists q 2 IR [ f�1gsu
h that(7.8.9) R �d�R log jf 0jd� = R �d�qR log jf 0jd�q :(limq!�1 in the �1 
ase).Indeed, by the Claim the graphs of the fun
tions t� (q) and T (q) do not interse
ttransversally (they 
an be only tangent) and hen
e the �rst graph whi
h is a straight line,is parallel to a tangent to the graph of T at a point (q0; T (q0), or one of its asymptots,at �1 or +1. Now (7.8.9) follows from the same formula (7.8.8) for � = �q0 , sin
e thegraph of t�q0 is tangent to the graph of T just at (q0; T (q0)). (Note that the latter senten
eproves the formula T 0(q) = R �d�qR log jf 0jd�q in a di�erent way than in 2, namely via VariationalPrin
iple for T .).6b. Proof that X� = ; for � =2 [�T 0(1);�T 0(�1)℄. Suppose there exists x 2 X with� := d��(x) =2 [�T 0(1);�T 0(�1)℄. Consider any sequen
e of integers nk ! 1 and realnumbers b1; b2 su
h thatlimk!1 1nk Sn�(x) = b1; limk!1 1nk (� log j(fn)0(x)j) = b2and b1=b2 = �. Let � be any weak�-limit of the sequen
e of measures�nk := 1nk nk�1Xj=0 Æfj(x);where Æfj(x) is the Dira
 measure supported at f j(x), 
ompare Remark 2.1.14a. ThenR �d� = b1 and R (� log jf 0j)d� = b2. Due to Choquet Theorem (Se
tion 2 1) (or dueto the De
omposition into Ergodi
 Components Theorem, Theorem 1.8.8) we 
an assumethat � is ergodi
. Indeed, � is an "average" of ergodi
 measures. So among all ergodi
16



measure � involved in the average, there is �1 su
h that R �d�1R � log jf 0jd�1 � � and �2 su
h thatR �d�2R � log jf 0jd�2 � �. If � < �T 0(1) we 
onsider �1 as an ergodi
 � , if � > �T 0(�1) we
onsider �2. For the ergodi
 � found in this way, the limit � 
an be di�erent than for theoriginal � , but it will not belong to [�T 0(1);�T 0(�1)℄ and we shall use the same symbol� to denote it. By Birkho�'s Ergodi
 Theorem applied to the fun
tions � and log jf 0j, for� -a.e. x we have limn!1 Sn(�)(x)� log j(fn)0(x)j = �. Hen
e, applying Lemma 7.8.3, we get� = d��(x) = R �d�� R log jf 0jd� :Finally noti
e that by (7.8.9) there exists q 2 IR su
h that � = R �d�q�R log jf 0jd�q , when
e� 2 [�T 0(1);�T 0(�1)℄. This 
ontradi
tion �nishes the proof. |Remark. We have proved in fa
t that for all x 2 X any limit number of the quotienlog��(B(x; r)= log r as r! 0 lies in [�T 0(1);�T 0(�1)℄, the fa
t stronger than d��(x) 2[�T 0(1);�T 0(�1)℄ for all x in the regular part of X.6
. F (�T 0(�1)) = HD�X�T 0(�1)�. Consider any � being a weak*-limit of a subse-quen
e of �q as q tends to, say, 1. We shall try to pro
eed with � similarly as we didwith �q, though we shall meet some diÆ
ulties. We do not know whether � is ergodi
 (and
hoosing an ergodi
 one from the ergodi
 de
omposition we may loose the 
onvergen
e�q ! �). Nevertheless using Birkho� Ergodi
 Theorem and pro
eeding as in the proof ofLemma 7.8.3, we getR limn!1 1nSn�(x) d�(x)� R limn!1 1n log j(fn)0(x)j d�(x) = R � d�� R log jf 0j d� = limq!1 R �d�q� R log jf 0jd�q= limq!1(�T 0(q)) = �T 0(1)with the 
onvergen
e over a subsequen
e of q's. Sin
e we know already thatd��(x) = limn!1 1nSn�(x)� limn!1 1n log j(fn)0(x)j � �T 0(1);we obtain for every x in a set ~X� of full measure � that the limit d� (x) = �T 0(1). We
on
lude with ~X� � X�T 0(1). Now we use the Volume Lemma for the measure � . Thereis no reason for it to be Gibbs, neither ergodi
, so we need to refer to the version of VolumeLemma 
oming from Theorem 7.1.10. We obtainHD(X�T 0(1)) � HD�(�) � h� (f)R log jf 0j d� � lim infq!1 h�q (f)��q (f)= limq!1T (q)� qT 0(q) = F (�T 0(1)):17



We have used here the upper semi
ontinuity of the entropy fun
tion � ! h�(f) at � dueto the expanding property (see Theorem 2.4.6). It is only left to estimate HD(X�T 0(1))from above. As for �q, we have for every q and x 2 X�T 0(1) (see (7.8.6)) thatlimr!0 log�q(B)log r = T (q) + q limr!0 log��(B)log r = T (q)� qT 0(1) � T (q)� qT 0(q);Hen
e HD(X�T 0(1)) � T (q) � qT 0(q). Letting q ! 1 we obtain HD(X�T 0(1)) �F (�T 0(1)).7. HP and R�enyi spe
tra. Re
all that topologi
al supports of �� and �q are equalto X, sin
e these measures as Gibbs states for H�older fun
tions, do not vanish on opensubsets of X due to Proposition 4.2.5. For every Gr a �nite or 
ountable 
overing X byballs of radius r of multipli
ity at most C we have1 � XB2Gr �q(B) � C:Hen
e, by Lemma 7.8.2 C�1 � rT (q) XB2Gr ��(B)q � Cwith an appropriate another 
onstant C. Taking logarithms and, for q 6= 1, dividing by(1� q) log r yields (e) for q 6= 1.8. Information dimension. For q = 1 we have limq!1;q 6=1 T (q)1�q = �T 0(1) by thede�nition of derivative. It is equal to HD(��) = PD(��) by (a) and (b) and equal to I(��)by Exer
ise 7.8.5. |Exer
ises7.2.1. Prove the equalities of R�enyi and Hents
hel-Pro
a

ia spe
tra.7.2.2. Prove Proposition 7.8.4 about Legendre transform pairs and remarks pre
edingand following it.7.2.3. Prove for � = �T 0(1) that F (�) = � and F 0(�) = 1 (see Fig.1.) andF 0(�T 0(�1)) = �1.7.2.4. Prove that if � is not 
ohomologous to �HD(X) log jf 0j then the singular partX̂ of X is nonempty. Moreover HD(X̂) = HD(X).Hint: Using the Shadowing Lemma from Chapter 3, �nd traje
tories that have blo
ks
lose to blo
ks of traje
tories typi
al for ��HD(X) log jf 0j of length N inter
hanging withblo
ks 
lose to blo
ks typi
al for �� of length "N , for N arbitrarily large and " > 0arbitrarily small.7.2.5. De�ne the lower and upper information dimension I(�) and I(�) repla
ing inthe de�nition of I(�) the limit limr by the lower and upper limits respe
tively. Prove thatHD�(�) � I(�) � I(�) � PD�(�), see (7.8.0).Sket
h of the proof. For an arbitrary " > 0 there exist C > 0 and A � X, with�(X n A) � " su
h that for all r small enough there exists a partition Fr of A, satisfying18



H�(r) + " � �PB2Fr �(B) log �(B) � PB2Fr �(B)HD�(�) log 1CdiamB � HD�(�)(1 �") log 1Cr .On the other hand for the partition Br of X into interse
tions with boxes (
ubes) ofsides of length r (
ompare Proposition 6.4.6 and the partition involved in the de�nition ofR�enyi dimension, but 
onsider here disjoint 
ubes, that is open from one side), we haveI(�) = lim supr!0 H�(r)� log r � lim supr!0 �PB2Br �(B) log �(B)� log r � lim supr!0 R log �(Br(x)) d�(x)log r� Z �lim supr!0 log �(Br(x))log r �d�(x) � PD�(�);where Br(x) denotes the 
ube of side r 
ontaining x.Prove that it has been eligible here to use 
ubes instead of balls standing in the de�nitionof d�(x). For this aim prove that for �-a.e. x 2 X, we have lim log �(Br(x))log �(B(x;r)) = 1. UseBorel-Cantelli lemma.Prove that we 
ould use Fatou's lemma (
hanging the order of limsup and integral) indeeddue to the existen
e of a �-integrable fun
tion whi
h bounds from above all the fun
tionslog �(B(x; r))= log r (or log �(Br(x))= log r). Use again Borel-Cantelli lemma, for, say, r =2�k.7.2.6. Let � = �� be a measure of maximal entropy on a topologi
ally exa
t 
onformalexpanding repeller X su
h that every point x 2 X has exa
tly d preimages (so � = � log d).Prove (dedu
e from Theorem 7.8.5) that F (�) = supt2IR�t + �P(t)log d �, more 
on
retelyF (�) = T + �P(T )log d , where � = � log dP 0(T ) .7.2.7 Let �i : X ! IR be H�older 
ontinuous fun
tions for i = 1; :::; k and ��i theirGibbs measures. De�ne X�1;:::;�k = fx 2 X : d�i(x) = �i for all i = 1; :::; kg. De�ne�q1;:::;qk;t = �t log jf 0j +Pi qi�i and T (q1; :::; qk) as the only zero of the fun
tion t 7!P(�q1;:::;qk;t). Prove the same properties of T as in Theorem 7.8.5, in parti
ular thatHD(X�1;:::;�k) = inf(q1;:::;qk)2IRkXi qi�1 + T (q1; :::; qk)wherever the in�mum is �nite.Histori
al and bibliographi
al notesThe se
tion on multifra
tal analysis relies mainly on the monographs by Y. Pesin [P℄and K. Fal
oner [F3℄ (though details are modi�ed, for example we do not use Markovpartition ). The reader 
an �nd there 
omprehensive expositions and further referen
es.The development of this theory has been stimulated by physi
ists, the paper often quotedis [HJKPS℄.Bibliography[F3℄ K. Fal
oner "Te
hniques in Fra
tal Geometry". John Wiley and Sons, Chi
hester,1997. 19



[HJKPS℄ T.C. Hasley, M. Jensen, L. Kadano�, I. Pro
a

ia, B. Shraiman "Fra
talmeasures and their singularities: the 
hara
terization of strange sets". Phys. Rev. A 33.2(1986), 1141-1151.[P℄ Y.B. Pesin "Dimension Theory in Dynami
al Systems". The University of Chi
agoPress, Chi
ago and London, 1997.Se
tion 2. Flu
tuations for Gibbs measures.Theorem 7.2.1. Let f : X ! X be a holomorphi
 expanding repeller. Let � be aH�older 
ontinuous fun
tion and let �� be it's Gibbs measure. Then, with � = HD(��),either(a) � = HD(X) and �� � H� on X (if  = �+ � log jf 0j � P(�) is a 
oboundary) or(b) �� ? H� (if  = � + � log jf 0j � P(�) is not a 
oboundary) and moreover, thereexists 
0 > 0, (
0 = p2�2( )=���(f)), su
h that with the gauge fun
tion �
(r) =r� exp(
plog 1=r log3 1=r), where log3 means the iteration of the log fun
tion 3 times:(
) �� ? H�
 for all 0 < 
 < 
0, and(d) �� � H�
 for all 
 > 
0.Proof. If  is a 
oboundary, then it follows from equality � �  = �� log jf 0j + P(�)that P(�) = P(� �  ) = P(�) + P(�� log jf 0j). Thus P(�� log jf 0j) = 0 and the part(a) follows immediately from Theorem 7.1.1 and the observation saying that the potantial
ohomologi
al up to an additive 
onstant have the same Gibbs states.Suppose now that  is not a 
oboundary. As in the previous se
tion let � = inf jf 0j > 1.Re
all that then there exists � > 0 small enough that �rstly, f jA is one - to - one forall sets A � X with diam(A) � � and se
ondly, d(f(y); f(z)) � �d(y; z) if d(y; z) < � .Fix x 2 X and r > 0 su
h that r < � De�ne n = n(x; r) to be the least number su
hthat diam(fn(B(x; r))) � � . Sin
e f : X ! X is topologi
ally exa
t, n(x; r) is �nite. Byde�nition of n, diam(f j(B(x; r))) < � for all j = 0; 1; :::n� 1. Therefore fn j(B(x;r)) is one- to - one and m�(fn(B(x; r))) = ZB(x;r) exp(P (�)n� Sn�(z))dm�(z);where m� is the �xed point of the dual operator of L�, the transfer operator asso
iatedwith the fun
tion � � P(�). Sin
e the fun
tion � is H�older 
ontinuous, it follows from??? that there exists a 
onstant K > 0 su
h that jSn�(z) � Sn�(x)j � K for all x 2 X,z 2 B(x; r), and n = n(x; r). Hen
e, we gete�K exp(P (�)n� Sn�(x))m�(B(x; r)) � m�(fn(B(x; r)))� eK exp(P (�)n� Sn�(x))m�(B(x; r))or equivalentlye�K exp(Sn�(x)� P (�)n)m�(fn(B(x; r))) � m�(B(x; r))� eK exp(Sn�(x)� P (�)n)m�(fn(B(x; r))):20



Similarly, sin
e log jf 0(z)j is a H�older 
ontinuous fun
tion, there exists a 
onstant K1 > 0su
h that jSn(log jf 0(z)j)� Sn(log jf 0(x)j)j � K1for all x 2 X, z 2 B(x; r), and n = n(x; r). Thenj(fn)0(z)jj(fn)0(x)j � eK1Therefore diam(B(x; r))e�K1j(fn)0(x)j � diam(fn(B(x; r)))� diam(B(x; r))j(fn)0(x)jeK1 :Hen
e, diam(B(x; r))e�K1j(fn)0(x)j � �kf 0k, or equivalently r � 12eK1 j(fn)0(x)j�1�kf 0k.Also, sin
e diam(fn(B(x; r))) � � we get similarly r � 12e�K1 j(fn)0(x)j�1� . In 
on
lusion,(7.2.1) 12e�K1 j(fn)0(x)j�1� � r � 12eK1 j(fn)0(x)j�1�kf 0k:Hen
e, denoting plog(j(fn)0(x)j) log3(j(fn)0(x)j) by gn(x), we getm�(B(x; r))r� exp(
plog 1=r log3 1=r) � eK exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))r� exp(
plog 1=r log3 1=r)� eK exp(Sn�(x)� P (�)n)(12 1j(fn)0(x)jeK1 �)� exp(
qlog(2e�K1 j(fn)0(x)j�kf 0k ) log3(2e�K1 j(fn)0(x)j�kf 0k ))� Q exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(
gn(x)) ;where Q is a large enough 
onstant. Similarly,m�(B(x; r))r� exp(
plog 1=r log3 1=r)� e�K exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))r� exp(
plog 1=r log3 1=r)� e�K exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))(12 j(fn)0(x)j�1eK1�kf 0k)� exp(
plog(2eK1 j(fn)0(x)j��1) log3(2eK1 j(fn)0(x)j��1))� Q1 exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))j(fn)0(x)j�� exp(
gn(x)) (Q1 large enough)� Q2 exp(Sn�(x)� p(�)n)j(fn)0(x)j�� exp(
gn(x)) ;where Q2 = Q1minfm�(fn(B(x; r))) : x 2 X; r > 0g. Note that, sin
e the topologi
alsupport of �� and m� is equal to X, using the the Bounded Distortion Theorem we21



get Q2 > 0 be
ause fn(B(x; r)) � B(fn(x); rj(fn)0(x)jK�1) � B(fn(x); R), where R =K�1�e�K1 . Finally, we get0 < Q2 exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(
gn(x)) � m�(B(x; r))r� exp(
plog 1=r log3 1=r) � Q exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(
gn(x))Hen
e, �Q2 exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(
gn(x)) � � log" m�(B(x; r))r� exp(
plog 1=r log3 1=r)# :� log �Q exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(
gn(x))�Therefore, logQ2 + Sn�(x)� P (�)n+ � log j(fn)0(x)j � 
gn(x)� log" m�(B(x; r))r� exp(
plog 1=r log3 1=r)#� logQ+ Sn�(x)� P (�)n+ � log j(fn)0(x)j � 
gn(x);or equivalently,logQ2 + gn(x) �Sn�(x)� P (�)n+ � log j(fn)0(x)jgn(x) � 
�� log" m�(B(x; r))r� exp(
plog 1=r log3 1=r)#� logQ+ gn(x) �Sn�(x)� P (�)n+ � log j(fn)0(x)jgn(x) � 
� :(7.2.1)So, in order to pro
eed further, we are tempted to evaluate the following upper limit.lim supn!1 Sn (x)plog j(fn)0(x)j log3 j(fn)0(x)jFirst, by the Birkho� ergodi
 theorem, for every � > 0 there exists X1 � X su
h thatm�(X1) = 1 and forall x 2 X1 there exists N > 0 su
h that 8n � Nn(�� � �) � log j(fn)0(x)j � n(�� + �):Se
ond, sin
e  is not a 
oboundary, by the Law of Iterated Logarithms (see ???), thereexists X2 � X su
h that m�(X2) = 1, and forall x 2 X2lim supn!1 Sn (x)pn log2(n) = p2�2:22



Therefore, for all x 2 X1TX2lim supn!1 Sn (x)gn(x) � lim supn!1 Sn (x)pn(�� � �) log2(n(�� � �))� lim supn!1 Sn (x)p(�� � 2�)pn log2(n))= p2�2p(�� � 2�) :and lim supn!1 Sn (x)gn(x) � lim supn!1 Sn (x)pn(�� + �) log2(n(�� + �))� lim supn!1 Sn (x)p(�� + 2�)pn log2(n))= p2�2p(�� + 2�) :In 
on
lusion, forall x 2 X1TX2, we havep2�2p(�� + 2�) � lim supn!1 Sn (x)gn(x) � p2�2p(�� � 2�)Hen
e, letting �& 0, lim supn!1 Sn (x)gn(x) =s2�2�� :Thus, with �n(
) = gn(x) �Sn�(x)� P (�)n+ � log j(fn)0(x)jgn(x) � 
� ;we obtain(7.2.3) lim supn!1 �n(
) = 8<:1 if q 2�2�� > 
�1 if q 2�2�� < 
sin
e, limn!1 gn(x) =1, and this is be
ause f is expanding. By (7.2.1)lim supn!1 [logQ2 + �n(
)℄ � lim supr!0 log" m�(B(x; r))r� exp(
plog 1=r log3 1=r)#� lim supn!1 [logQ+ �n(
)℄:23



By (7.2.3), it giveslim supr!0 log" m�(B(x; r))r� exp(
plog 1=r log3 1=r)# = 8<:1 if q2�2�� > 
�1 if q 2�2�� < 
 :In other words, lim supr!0 m�(B(x; r))r� exp(
plog 1=r log3 1=r) = 8<:1 if q2�2�� > 
0 if q2�2�� < 
 :Therefore, by Theorem 5.??, �� ? H�
 for all 
 < q2�2�� and �� � Hg
 for all 
 > q2�2�� :The proof is �nished. |Note that this proof is done without the use of Markov partitions. Note also that the lastdisplay in the proof of Theorem 7.2.1 is known as a re�ned volume lemma.Se
tion 7.3. Radial behaviour of the Riemann map,I.In this se
tion f : X ! X 
ontinues to be a 
onformal expanding repeller and weassume additionally that X is a Jordan 
urve. We then 
all f a boundary expending
onformal repeller. Let 
 � CI be one of the 
omponents of CI n X and �x z0 2 
. LetD1 = fz : jzj < 1g. In view of Caratheodory's theorem, any Riemann map R : D1 ! 
(
onformal homeomorphism) sending zero to z0 (whi
h is unique up to rotation) extendshomeomorphi
ally to D1. For more information about a Riemann map we refer the readerto [?℄. We also assume that there exists an open topologi
al annulus A � CI surronding�
 su
h that f(A \ 
) � 
. Sin
e f is a lo
al homeomorphism, it is easy to see thatf�1(A\
) � 
. With all these assumptions we speak about the expanding map f : �
!�
 as a 
onformal boundary repeller with the Jordan domain 
. This enables us to liftthe map f to the 
losed topologi
al annulus B = R�1(A\
) � D1 one of whose boundary
omponents is the 
ir
le S1 by settingg = R�1 Æ f ÆR : B ! D1:Obviously g(B) � D1. Denoting by I : CI ! CI the inversion with respe
t to the unit 
ir
leS1 and applying the S
hwarz re
e
tion prin
iple we see see that g extends analyti
allyto the topologi
al annulus F = B [ I(B). Our �rst aim is to show that g is a boundaryexpending 
onformal repeller. We begin with the following.Lemma 7.3.1. There exists Æ > 0 su
h that for every z 2 S1 there exists a uniqueholomorphi
 inverse bran
h g�nz : B(gn(z); 2Æ) ! F sending gn(z) to z. If n is largeenough (independent of z), then j(g�nz )0(w)j � 1=2 for all w 2 B(gn(z); Æ). In parti
ularthe map g : S1 ! S1 is expanding. 24



Proof. Fix Æ > 0 so small that B(S1; 2Æ) � F . Fix z 2 S1 and 
onsider the ballB(gn(z); 2Æ). De�ne the inverse bran
h g�nz : D1 \ B(gn(z); 2Æ) ! CI of gn by puttingg�nz (w) = R�1 Æ f�nR(z) Æ R(w), where f�nR(z) is a lo
al holomorphi
 inverse bran
h of fnde�ned throughout a neighbourhood of fn(R(z)) sending fn(R(z)) to R(z). Noti
e thatg�nz (gn(z)) = z, g�nz is 
ontinuous and restri
ted to the set D1 \ B(gn(z); 2Æ) is analyti
.Sin
e f�n(A \ 
) � A \ 
, we 
on
lude that g�nz (D1 \ B(gn(z); 2Æ) � F \D1. Sin
e inaddition I(B(gn(z); 2Æ)) = B(gn(z); 2Æ) and I(F ) = F , applying the S
hwarz re
e
tionprin
iple again, we 
on
lude that g�nz extends to an analyti
 map g�nz : B(gn(z); 2Æ) !F . Sin
e gn Æ g�nz is an identity map on D1 \ B(gn(z); 2Æ) and g�nz is analyti
 on thisinterse
tion, we 
on
lude that gn Æ g�nz is an identity map on the entire ball B(gn(z); 2Æ).This means that g�nz : B(gn(z); 2Æ) ! F is a holomorphi
 inverse bran
h of gn sendinggn(z) to z. Sin
e limn!1 supz2S1 ndiam�f�nR(z)�R(B(gn(z); 2Æ)��o = 0;sin
e g�nz �D1 \ B(gn(z); 2Æ)� = R�1 �f�nR(z)�R(B(gn(z); 2Æ)��and sin
e R�1 : D1 ! 
 is a uniformly 
ontinuous funtion, we getlimn!1 supz2S1 ndiam�g�nz (D1 \B(gn(z); 2Æ)�o = 0:Sin
e g�nz �B(gn(z); 2Æ) \ (CI nD1)� = I�g�nz �B(gn(z); 2Æ) \ (CI nD1)��;we thefore see that limn!1 supz2S1 �diam �g�nz (B(gn(z); 2Æ)�	 = 0:Hen
e, applying Koebe's distortion theorem, we get thatlimn!1 supz2S1fj(g�nz )0(w)j : w 2 B(gn(z); Æ)g = 0:There thus exists n � 1 su
h thatsupz2S1fj(g�nz )0(w)j : w 2 B(gn(z); Æ)g � 12 :Hen
e, for every z 2 S1, j(gn)0(z)j = j(g�nz )0(gn(z))j�1 � 2 and the proof is 
omplete. |Lemma 7.3.2. There exists Æ > 0 su
h that if fx; g(x); g2(x); : : : ; gn(x)g � B(S1; Æ), thenthere exists a unique holomorphi
 inverse bran
h g�nx of gn de�ned on B(gn(x); 4Æ) andsending gn(x) to x. In addition, there exist � > 1 and C > 0 su
h that j(g�nx )0(w)j � C��nfor all w 2 B(gn(x); 4Æ). 25



Proof. It follows from Lemma 7.3.1 that there exist 
 > 0 and � > 1 su
h that for everyz 2 S1 and all w 2 B(gn(z); Æ),(7.3.1) j(g�nz )0(w)j � C��n:Fix q � 1 so large that C��q � 1=6. There obviously exists 0 < � < Æ=6 su
h thatfor every 1 � j � q and every x 2 CI su
h that fx; g(x); g2(x); : : : ; gj(x)g � B(S1; �),there exists a unique holomorphi
 bran
h g�jx : B(gj(x); 4�) ! F of gj sending gj(x)to x. Suppose now that j = q. Sin
e B(gq(x); 2�) \ S1 6= ;, we 
an take a point zlying in this interse
tion. Sin
e g�q(S1) = S1, we have g�qx (z) 2 S1. Sin
e in additionB(gq(x); 4�) � B(z; 6�) � B(z; Æ), it follows (7.3.1) that(7.3.2) j(g�qx )0(w)j � 16for all w 2 B(gq(x); 4�). Re
alling the 
hoi
e of w we therefore obtain that(7.3.3) g�qx (B(gq(x); 4�)) � B(S1; �) \B(x; �)Thus given a pie
e fx; g(x); : : : ; gn(x)g of the forward traje
tory of x, we 
an split it intoblo
ks gn(x); gn�1(x); : : : ; gn�q(x); gn�q(x); gn�q�1(x); : : : ; gn�2q(x); : : : ; xall of them of length q ex
ept the last one of length i � q. In view of (7.3.3) we 
anindu
tively form the 
ompositiong�ix Æ : : : Æ g�qgn�3q(x) Æ g�qgn�2q(x) Æ g�qgn�q(x)whi
h is an inverse bran
h g�nx of gn de�ned on B(gn(x); 4�) and sending gn(x) to x.Writing n = pq + i, 0 � i � q � 1 we see from (7.3.2) that for every w 2 B(gn(x); 4�), wehave j(g�nx )0(w)j �M �16�p �M �16�nq�1 ;where M = (minj�q�1 infz2F fj(gj)0(z)jg)�1. We are done rede�ning Æ to be �. |Proposition 7.3.3 With U = B(S1Æ), where Æ 
omes from Lemma 7.3.2,the map F :S1 ! S1 is a boundary expanding repeller.Proof. Sin
e RjS1 establishes a topologi
al 
onjuga
y between gjS1 and f j�
, the mapg : S1 ! S1 is topologi
ally transitive. Sin
e, by Lemma 7.3.1, g : S1 ! S1 is expanding,we only need to 
he
k that there exists an open set U � F 
ontaining S1 su
h thatTn�0 g�n(U) = S1. And indeed, suppose that fgn(x) : n � 0g � B(S1; Æ), where Æ istaken from Lemma 7.3.2. It follows from this lemma that for every n � 0 there exists aunique holomorphi
 inverse bran
h g�nx of gn de�ned on B(gn(x); 4Æ) and sending gn(x)to x. In addition diam�g�nx (B(gn(x); 3Æ)� � 6Æ
��n:26



Sin
e B(gn(x); 3Æ)\S1 6= ;, we 
an 
hoose a point w in this interse
tion. Then g�nx (w) 2 S1and thereforedist(x; S1) � jg�nx (gn(x))� g�nx (w)j � diam�g�nx (B(gn(x); 3Æ)� � 6Æ
��n:Letting n!1, we therefore 
on
lude that x 2 S1. Thus g be
omes a boundary expandingrepeller with U = B(S1; Æ). |Our next result is the following the following.Theorem 7.3.2. If � is a g-invariant ergodi
 probability measure of of positive entropyon S1, then the non-tangent limit limx!z � log jR0(x)jlog(1� jxj)exists for �-almost every point z 2 S1, is 
onstant almost everywhere (denote it by ��(R)),and ��(R) = 1� ��ÆR�1(f)��(g) :Proof. Given z 2 S1, 0 < � < �=2, and 0 < r < 1 letS�;r(z) = z � (1 + fx 2 CI n f0g : 0 < jxj � r; � � � � Arg(x) � � + �g):A straightforward trigonometri
al argment shoows that for all 0 < � < �=2, and 0 < r < 1there exists 0 < � < 1=2 su
h that for all z 2 S1 and all x 2 S�;r(z) we have(7.3.4) �jx� zj � 1� jxj:Fix now z 2 S1 and x 2 S�;r(z). It follows from Proposition 7.3.3 that there exists k � 1su
h that gj(x) 2 B(S1; Æ) for all 0 � j � k � 1 and gk(x) =2 B(S1; Æ) whi
h means that1� jgk(x)j � Æ. Therefore there exists the least n = n(x; z) � 0 su
h that(7.3.5) 1� jgn+1(x)j � Æ(8K��1)�1;where K � 1 is the Koebe's 
onstant assi
iated with the s
ale 1=2. Hen
e(7.3.6) 1� jgj(x)j < Æ(4K��1)�1 < Æfor all 0 � j � n. It therefore follows from Lemma 7.3.2 that thaere exists there a uniqueholomorphi
 inverse bran
h g�nx of gn de�ned on B(gn(x); 4Æ) and sending gn(x) to x.Let w = gn(x)=jgn(x)j. Then w 2 B(gn(x); 1� jgn(x)j) \ S1 and using (7.3.4) along withKoebe's Distortion Theorem, we get�jx� zj � 1� jxj� jx� g�nx (w)j = jg�nx (gn(x))� g�nx (w)j � Kjgn(x)� g�nx (w)jj(gn)0(x)j�1= K(1� jgn(x)j)j(gn)0(x)j�1: 27



Hen
e, applying Koebe's 14 -Theorem, we obtaing�nx �B(gn(x); 8K��1(1� jgn(x)j)� � B�x; 2K��1(1� jgn(x)j)j(gn)0(x)j�1�� B(x; 2jz � xj) 3 z:(7.3.7)It therefore follows from Koebe's Distortion Theorem that(7.3.8) K�1 � j(gn)0(x)jj(gn)0(z)j � K;that (using (7.3.4))1� jgn(x)j � jgn(z)� gn(x)j � Kj(gn)0(x)j � jz � xj � Kj(gn)0(x)j��1(1� jxj)= K��1j(gn)0(x)j(1� jxj);(7.3.9)and (using (7.3.7)) that1� jxj � jz � xj = jg�nx (gn(z))� g�nx (gn(x))j � Kj(gn)0(x)j�1jgn(z)� gn(x)j� Kj(gn)0(x)j�18K��1(1� jgn(x)j) = 8K2��1(1� jgn(x)j)j(gn)0(x)j�1:(7.3.10)Sin
e the Riemann map : D1 ! 
 is uniformly 
ontinuous, R(gn(x)) lies 
lose to R(gn(z)).Let f�nR(z) be a holomorphi
 inverse bran
h of fn de�ned on some small neighbourhoodof R(gn(z)), 
ontaining R(gn(x)) and sending R(gn(z)) = fn(R(z)) to R(z). Thenf�nR(z)(R(gn(x)) = x and applying Koebe's Distortion Theorem, we obtain(7.3.11) K̂�1 � j(fn)0(R(x))jj(fn)0(R(z))j � K̂;for some 
onstant K̂ independent of z, x and n. Sin
e(7.3.12) 1� jgn+1(x)j � jjg0jj(1� jgn(x)j);Combining (7.3.5), (7.3.6), (7.3.9), (7.3.10) and (7.3.12), we get(7.3.13) (8Kjjg0jj)�1�2Æ � (1� jxj)j(gn)0(x)j � KÆ:By Birkho�'s Ergodi
 Theorem there exists a Borel set Y 2 S1 su
h that �(Y ) = 1 andlimk!1 1k log j(gk)0(z)j = ��(g) and limn!1 1k log j(fk)0(R(z))j = ��ÆR�1(f):for all z 2 Y . Suppose that z 2 Y . Fix also " > 0. Then for all k suÆ
iently large(7.3.14) exp(k(��(g)� ")) � j(gk)0(z)j � exp(k((��(g) + "));28



and exp(k(��ÆR�1(f)� ")) � j(fk)0(R(z))j � exp(k((��ÆR�1(f) + ")):Combining these two formulas along with (7.3.8) and (7.3.11), we get for all n large enough(whi
h 
an be assured by taking x suÆ
iently 
lose to z),(7.3.15) exp(n(��(g)� 2")) � j(gn)0(x)j � exp(n(��(g) + 2"));and(7.3.16.) exp(n(��ÆR�1(f)� 2")) � j(fn)0(R(x))j � exp(n(��ÆR�1(f) + 2"))Combining (7.3.13) and (7.3.14), we getlog(4jjg0jj)�1Æ)� n(��(g) + 2") � log(1� jxj) � log(KÆ)� n(��(g)� 2"):Thus, for all n large enough(7.3.17) � log(1� jxj)��(g) + 3" � n � � log(1� jxj)��(g)� 3" :In view of Koebe's Distortion Theorem, (7.3.12) and (7.3.5) there exists a 
onstant Cdepending only on K, � and jjg0jj su
h thatC�1jR0(0)j � jR0(gn(x))j � CjR0(0)jTherefore, di�erentiating the equality R Æ gn = fn ÆR, we getjR0(x)j = j(gn)0(x)j jR0(g(x))jj(fn)0(R(x))j 2 �C�1jR0(0)j j(gn)0(x)jj(fn)0(R(x))j ; CjR0(0)j j(gn)0(x)jj(fn)0(R(x))j� :Hen
e, using (7.3.15), (7.3.16) and (7.3.17)jR0(x)j � CjR0(0)jj(gn)0(x)j � j(fn)0(R(x))j�1� CjR0(0)j exp(n(��(g) + 2")) exp(�n(��ÆR�1(f)� 2"))� exp�� log(1� jxj)��(g)� 3" (��(g)� ��ÆR�1(f) + 4")� :Thus � log jR0(x)jlog(1� jxj) � ��(g)� ��ÆR�1(f) + 4")��(g)� 3"and we obtain similarly � log jR0(x)jlog(1� jxj � ��(g)� ��ÆR�1(f)� 4")��(g) + 3"29



So, letting " ! 0 (whi
h for
es us to let n(x; z) ! 1 and whi
h in turn for
es us to letx! z) �nishes the proof. |In order to make use of this result we shall provide a simple proof of the following Propo-sition.Se
tion 7.4. Harmoni
 measure.In this se
tion we keep the notation of the previous one. The measure l ÆR�1, the imageof the image of the Lebesgue measure l on S1 under the Riemann map is said to bethe harmoni
 measure of �
 with respe
t to (or viewed from) the point z0. Sin
e allthe Riemann maps di�er by 
ompositions with M�bius transformations preserving t heunit 
ir
le, all the harmoni
 measures are strongly equivalent and 
orresponding Radon-Nikodyn derivatives are bounded away from zero and in�nity. In parti
ular all the harmoni
measures indu
e the same strong measure 
lass, whi
h as long as we are only interestedin metri
 properties of this 
lass, enables us to speak generally about a harmoni
 measurewithout spe
ifying the point z0. Writing ! we will a
tually mean the 
lass of all measuresequivalent with the harmoni
 measure with Radon-Nikodym derivatives bounded uniformlyfrom above and below. For more information about harmoni
 measure we refer the readerto [?℄. Our �rst aim is to represent harmoni
 measure as a Gibbs measure and then toapply the results of the previous se
tion. Sin
e the Hausdor� dimension of the 
ir
le S1 isequal to 1, it follows from Theorem 7.1.1 that P (g; �) = 0, where � = � log jg0j. Of 
oursethe Lebesgue measure l on S1 is equivalent with H1. Sin
e R is a topologi
al 
onjuga
ybetween g and f on S1, P (f; � Æ R�1) = P (g; �) = 0. Sin
e moreover R�1 is a metri

onjuga
y between metri
 dynami
al systems (f; �� ÆR�1) and (g; ��), we therefore haveh��ÆR�1(f) + Z � ÆR�1 d�� ÆR�1 = h��(g) + Z � d�� = 0:Sin
e in addition �� ÆR�1 2 !, the uniqueness of an equilibrium state for � ÆR�1 resultsin the following.Theorem 7.4.2. The harmoni
 measure ! 
oin
ides with the 
lass of the Gibbs states ofthe map f : X ! X and the H�older 
ontinuous potential � log jg0j ÆR�1.We now want to argue that HD(!) = 1. This is a general result due to Makarov (see ???)true for any simply 
onne
ted domain 
 with no dynami
s involved. We shall howeverprovide here a proof in the dynami
al 
ontext only whi
h is shorter and simpler than thegeneral one.Proposition 7.4.3. If ! is a harmoni
 measure on the boundary of a Jordan domain 
,then �l(R)(z) = 0 for l-a.e. z 2 S1, where l denotes the normalized Lebesgue measure onS1. 30



Proof. Fix z 2 S1 and 0 < r < 1. Then by the Koebe distortion theorem 2�1(1� r)�3 �jR0(z)j � (1� r)�3 whi
h implies that2 � � log jR0(rz)jlog(1� r) � 4for all r suÆ
iently 
lose to 1. Sin
e the Gibbs state of the fun
tion � log jg0j is a g-invariantprobability measure absolutely 
ontinuous with respe
t to the Lebesgue measure it followsfrom Theorem 7.4.2 that �l(R)(z) is 
onstant for l-a.e. z 2 S1. Hen
e�l(R) = Z �l(R) dl = Z limr!1 log jR0(rz)j� log(1� r) dl(z)= limr!1 1� log(1� r) Z log jR0(rz)j dl(z):Sin
e log jR0j is a harmoni
 fun
tion we 
an 
ontinue the above 
hain of equalities writing�l(R) = limr!1 r log jR0(0)j� log(1� r) = 0:The proof is �nished. |Corollary 7.4.4. Suppose that an expanding map f : �
! �
 is a 
onformal boundaryrepeller, and 
 is a Jordan domain. Then HD(!) = 1, for !, the harmoni
 measure viewedfrom 
.proof. Let � be the Gibbs state on S1 
orresponding to the potential � log jg0j. Simul-taneously � is the unique probability g-invariant measure equivalent with the Lebesguemeasure l on S1. Then � Æ R�1 is a probability f -invariant measure equivalent to !. Inview of Theorem 7.4.2 and Lemma 7.4.3, ��Æf�1(f) = ��(g) > 0. Sin
e R : S1 ! �
 is atopologi
al 
onjuga
y between g : S1 ! S1 and f : �
! �
, h�Æf�1(f) = h�(g). Thush�Æf�1(f)��Æf�1(f) = h�(g)��(g) :Sin
e HD(�) = 1, an immediate appli
ation of Lemma 7.1.4 (Volume Lemma) �nishes theproof. |Theorem 7.4.5. Let f : �
! �
 be a 
onformal boundary repeller, where 
 is a Jordandomain. Then either(a) ! � H1 on �
 (if log jg0j and log jf 0 ÆRj are 
ohomologous) or(b) ! ? H1 (if log jg0j and log jf 0 ÆRj are not 
ohomologous), and then there exists 
0 > 0su
h that with the gauge fun
tion �
(t) = t exp(
plog(1=t) log3(1=t)),! ? H�
 for all 0 � 
 < 
031



and ! � H�
 for all 
 > 
0:Proof. If log jg0j and log jf 0 ÆRj are 
ohomologous, then also the fun
tions � log jg0 ÆR�1jand � log jf 0j are 
ohomologous (with respe
t to the map f : �
! �
). By Theorem 7.4.2! is a Gibbs state of the potential � log jg0 Æ R�1j. Sin
e P(f;� log jf 0j) = P(f;� log jg0 ÆR�1j) = P(g;� log jg0j) = 0, it follows from Theorem 7.1.1 that HD(�
) = 1, and the Gibbsstates of the potential � log jf 0j are equivalent to the 1-dimensional Hausdor� measure on�
. So, the part (a) of Theorem 7.4.5 is proved.Suppose now that log jg0j and log jf 0 ÆRj are not 
ohomologous. Then � log jg0 ÆR�1j and� log jf 0j are not 
ohomologous. Let � be the invariant Gibbs state of � log jg0 ÆR�1j. ByCorollary 7.4.4 and Theorem 7.a.2, HD(�) = 1. Hen
e  = � log jg0ÆR�1j+HD(�) log jf 0j�P(f;� log jg0 Æ R�1j) is not a 
oboundary and, sin
e by Theorem 7.4.2 and Lemma 7.4.3,R log jf 0j d� = R log jg0 ÆR�1j d�, the potential  is not 
ohomologous to a 
onstant. These
ond part of Theorem 7.4.5 is now an immediate 
onsequen
e of Theorem 7.2.1(b). |Theorem 7.4.6. If f : �
! �
 is a 
onformal boundary repeller, 
 is a Jordan domainand the fun
tions log jg0j and log jf 0j Æ R are 
ohomologous, (this is exa
tly the 
ase ofTheorem 7.4.5(b)), then 
 is an analyti
 
urve. If additionally f extends analyti
ally ontoCI, then f is analyti
ally 
onjugate with a M�obius transformation and �
 is a geometri

ir
le.Proof. If the fun
tions log jg0j and log jf 0j ÆR are 
ohomologous, then a

ording to Theo-rem 7.4.5(a) the boundary �
 is a re
ti�able Jordan 
urve. So, in view of Riesz's theorem,the map R : S1 ! �
 transports the measure 
lass of the Lebesgue measure on S1 ontothe measure 
lass of H1 on �
. Let now R� : S1 ! �
 be the restri
tion to the unit
ir
le of the Riemann map indu
ed by the se
ond 
omponent of the 
omplement of �
.For te
hni
al reason, whi
h will be 
lear at the end of this proof we assume here that theRiemann map R� is de�ned on D1� = fz : jzj > 1g, the 
omplement of the 
losure of theunit disk D1. Sin
e �
 is a Jordan 
urve and sin
e f has no 
riti
al points on �
, thereexists an open neighborhood A� of �
 su
h that f(A� \ (CI n �
)) is well-de�ned, andmoreover f(A� \CI n �
) � CI n �
). Therefore, we 
an de�ne g� = R�1� Æ f ÆR�, the lift off via the Riemann map R� on the set D1� interse
ted with a suÆ
iently thin open annulussurronding S1. Set h = R�1� ÆRjS1 : S1 ! S1:Composing, if ne
essary, the Riemann maps R and R� with appropriate rotations, we mayassume that 1 is a �xed point of g and g� and h(1) = 1. Our �rst obje
tive is to demonstratethat h is real-analyti
. Indeed, Let �1 = �1l and �2 = �2l be the (unique) probabilitymeasures equivalent with the Lebesgue measure on the 
ir
le, respe
tively invariant underthe a
tion of g and g�. In view of Theorem 7.9.2 �1 and �2 are both Real-analyti
.Sin
e, also by Riesz's theorem, the map R� : S1 ! �
 transports the measure 
lass ofthe Lebesgue measure on S1 onto the measure 
lass of H1 on �
, the homeomorphismh : S1 ! S1 sends the measure 
lass of the Lebesgue measure on S1 onto itself. Sin
e hestablishes 
onjuga
y between g and g�, it therefore maps the invariant measure �1 ontosome probability g�-ivariant measure equivalent with the Lebesgue measure. Sin
e su
h a32



measure is unique, it must be equal to �2. Symboli
ally, �1 Æ h�1 = �2. De�ne now twofun
tions M;N : S1 ! [0; 1℄ by settingM(z) = �1([1; z℄) = Z z1 �1 dland N(z) = �2([1; z℄) = Z z1 �2 dl:Sin
e �1 Æ h�1 = �2 and h(1) = 1, the fun
tions M and N are related by the formulaN(h(z)) = M(z). Sin
e M and N are stri
tly in
reasing, we may solve the last equationfor h to get h = M Æ N�1. We are now done be
ause the real analyti
ity of �1 and �2(see ???) implies that the fun
tions M and N are real-analyti
 and this in turn resultsin real analyti
ity of h = M ÆN�1. Hen
e h extends to an analyti
 map ~h de�ned on anopen neighborhood H of S1 in CI. Sin
e h : S1 ! S1 preserves orientation, de
reasing H ifne
essary, we get ~h(H \D1�) � D1�. Thus we produ
ed two 
ontinuous maps R : D1 ! CIand R� Æ ~h : H \ D1� ! CI whi
h are analyti
 on D1 and H \ D1� respe
tively and whi
h
oin
ide on their 
ommon boundary, the unit 
ir
le S1. Thus R and R� Æ ~h glue togetherto an analyti
 map S : D1 [H ! CI. So, sin
e S(S1) = R(S1) = �
, the proof of the �rstpart is �nished.If now f extends analyti
ally to CI, that is if f is a rational fun
tion, then by the maximumprin
iple f(
) � 
, f(CI n
) � CI n 
, and both maps g and g� are de�ned on D1 and D1�respe
tively. Sin
e these maps are surje
tive, sin
e they extend 
ontinuously to D1 andD1� respe
tively, and sin
e they preserve the unit 
ir
le S1, it follows from the S
hwarzre
e
tion prin
iple that they extend analyti
ally to CI. Sin
e g and g� preserve S1 (weuse this fa
t se
ond time) they must be �nite Blas
hke produ
ts. Sin
e f(
) � 
 andf(CI n 
) � CI n 
, by the Montel theorem both 
 and CI n 
 are 
omponents of the Fatouset of f . And sin
e f j�
 is expanding, both 
 and CI n
 are basins of immediate attra
tionto stable �xed points. Conjugating f if ne
essary with a M�obius transformation we mayassume that this �xed point in D1 is 0 and that one in D1� 
oin
ides with 1. But everyBlas
hke produ
t B preserving S1 and having 0 as its �xed point, preserves the Lebesguemeasure on S1. In order to see it 
onsider an arbitrary 
ontinuous fun
tion � : S1 ! IRand then its harmoni
 extension ~� : D1 ! IR. Sin
e � ÆB is also harmoni
, we haveZS1 � ÆB dl = � ÆB(0) = �(0) = ZS1 � dl:whi
h means that B preserves the Lebesgue measure l. Thus, �1 = �2 = l and 
onsequentlyM = N and h is the identity map on S1. In 
on
lusion ~h is an identity map and R� andR = R�~h 
oin
ide on a neighborhood of S1. Thus R and R� glue together to an analyti
map ~R : CI ! CI. Sin
e ~R is inje
tive it must be a M�obius transformation and ~R�1 Æf ÆR�1is a �nite Blas
hke produ
t. The proof is �nished. |Se
tion 7.5. Radial behaviour of the Riemann map,II.33



Keeping notation from the previous se
tions we shall prove here the following .Theorem 7.5.1. Depending on whether 
(!) = 0 or 
(!) 6= 0, either �
 is real-analyti
and the Riemann map R : D1 ! 
 and its derivative R0 extend holomorphi
ally beyond�D1 or for almost every z 2 �D1(7.5.1) lim supr!1 jR0(rz)j exp 
plog(1=1� r) log3(1=1� r) = �1 if 
 � 
(!)0 if 
 > 
(!)and(7.5.2) lim supr!1 �jR0(rz)j exp 
plog(1=1� r) log3(1=1� r))�1 = �1 if 
 � 
(!)0 if 
 > 
(!)Moreover the radial limsup 
an be repla
ed by the nontangential one.Proof. Let n > 0 be the least integer for whi
h gn(rz) 2 B(0; r0) for some �xed r0 < 1.We have R0(rz) = ((fn)0(R(rz)))�1 �R0(gn(rz))�(gn)0(rz). Hen
e, for some 
onstant K > 0independent of r and zK�1 � jR0(rz)jj((fn)0(R(rz)))�1j � jR0(gn(rz))j � K:By the bounded distortion theorem the rz in the denominator 
an be repla
ed z and ndepends on r as des
ribed by (7.2.1) with r repla
ed by 1�r.Now we pro
eed as in the proofof Lemma 7.2.1 repla
ing deviations of Sn(�)� P (�)n+ � log j(fn)0(x)j by the deviationsof log j(gn)0(x)j � log j(fn)0(x)j. The proof is �nished. |Se
tion 7.6.. Pressure versus integral means of the Riemann mapIn this se
tion we establish a 
lose relation between integral means of derivatives of theRiemann map and topologi
al pressure of the fun
tion �t log jf 0j. Given t 2 IR de�ne�(t) = lim supr!1 log RS1 jR0(rz)jtdl(z)� log(1� r)We shall prove the following.Theorem 7.6.1. If the lifted map g : S1 ! S1 is of the form z 7! zd, d � 2, then�(t) = t� 1 + P(f;�t log jf 0j)log d :34



Proof. Fix 0 < r < 1 and divide the 
ir
le S1 into [2�=(1� r)℄ ar
s of length 1 � r andone ar
 of length � 1� r. Denote these ar
s by I1; I2; : : : ; Ik and Ik+1 respe
tively, wherek = [2�=(1� r)℄. ThenZS1 jR0(rz)jtdl(z) = k+1Xj=1 ZIj jR0(rz)jtdl(z) = k+1Xj=1 ZIj jR0(gn(rz))jt (jgn)0(rz)jtj(fn)0(R(rz))jtdl(z):Fix now n = n(r) to be the �rst integer for whi
h jgn(z)j < 1=2. Note that n is independentof z and that there exists a 
onstant A � 1 su
h that A�1 � jR0(w)j � A for all w 2B(0; 1=2). Hen
eZS1 jR0(rz)jtdl(z) � k+1Xj=1 ZIj (jgn)0(rz)jtj(fn)0(R(rz))jtdl(z): = k+1Xj=1 ZIj (dntj(fn)0(R(rz))jt dl(z):Now, by the Mean Value Theorem for every j = 1; 2; : : : ; k; k+ 1 there exists zj 2 Ij su
hthat ZIj (dntj(fn)0(R(rz))jtdl(z) = l(Ij) (dntj(fn)0(R(rzj))jt :Hen
e, as l(Ij) = 1� r for all j = 1; : : : ; klog ZS1 jR0(rz)jtdl(z)= log(1� r) + log0� kXj=1 (dntj(fn)0(R(rzj))jt + (dntj(fn)0(R(rzk+1))jt � l(Ik+1)t(1� r)t1A+ O(1)= log(1� r) + nt log d++ log0� kXj=1 exp n�1Xu=0�t log jf 0(R(gu(rzj)))j+ j(fn)0(R(rzj))jt l(Ik+1)t(1� r)t1A+ O(1)By our de�nition of n, (1=2)d � rdn � 1=2; hen
e d log(1=2) � dn log r � log(1=2). Sin
ethere exists a 
onstant B � 1 su
h that B�1(1�r) � � log r � B(1�r) for all r suÆ
iently
lose to 1, we get B�1 log 2 � dn(1 � r) � Bd log 2. Therefore � logB + log log 2 �n log d+log(1�r) � logB+log log 2+log d. Hen
e n log d�C � � log(1�r) � n log d+Cfor some universal 
onstant C. Thuslog RS1 jR0(rz)jtdl(z)� log(1� r) = �1 + t+1n log d log0� kXj=1 exp n�1Xu=0�t log jf 0(R(gu(rzj)))j+ exp n�1Xu=0�t log jf 0(R(gu(rzk+1)))j l(Ik+1)t(1� r)t1A+ o(1): 35



Now, using the fa
t that 0 � l(Ik+1)=(1� r) � 1, it follows from the de�nition of pressureand the bounded distortion property thatlim supr!1 log RS1 jR0(rz)jtdl(z)� log(1� r) = �1+t+ 1log dP(g;�t log jf 0ÆRj) = �1+t+P(f;�t log jf 0j)log d :The proof is �nished. |Se
tion 7.7. Geometri
 examples.This last se
tion of this 
hapter is devoted to explore appli
ations of previous se
tions togeometri
 examples like the Ko
h's snow
ake and Carleson's example. Following the ideaof the proof of Theorem 7.2.1 and 
opeing with a biggere number of te
hni
alities one 
anprove the following.Theorem 7.7.1. Let 
 be a simply 
onne
ted domain in CI with �
 a Jordan 
urve . Let�j , j = 1; 2 : : : ; k be a �nite family of 
ompa
t ar
s in �
 with pairwise disjoint interriors.Denote S �j by � (we do not assume that this 
urve is 
onne
ted. Assume that thereexists a family of 
onformal maps fj , j = 1; : : : ; k, (whi
h may reverse the orientation onCI) on neighbourhoods Uj of �j . For every j assume that fj(
 \ U � J) � 
, jf 0j > 1 onUj and(7.7.1) fj(�
 \ Uj) � �
:Assume also the Markov partition property: for every j = 1; : : : k, fj(�j) = Ss2Ij �s forsome subset Ij � f1; 2; : : : ; kg. Consider the k�k matrix A = Ajk where Ajk = 1 if k 2 Ijand Ajk = 0 if k =2 Ij . Then there exists a transition parameter 
(!; �) su
h that the
laims of tTheorem 7.6.5 and 7.6.6 hold.Example 1(the snow
ake). To every side of an equilateral triangle, in the middle we gluefrom outside as small as three times. To every side of the resulting polygon we we glueagain an equilateral triangle as small as three times and so on in�nitely many times. Thetriangles do not overlap in this 
onstru
tion and the boundary of the resulting domain 
is a Jordan 
urve.This 
 is 
alled the Ko
h's snow
ake. It was �rst des
ribe by HelgeKo
h in 1904. Denote the 
urve in �
 joining a point x 2 �
 to y 2 �
 in the 
lo
kwisedire
tion just by xy. For every �AiAi+1(mod12) � �
, i = 0; 1; : : : ; 11, we 
onsider its
ivering by the 
urves 12, 23, 45, 56 in 
 (see Fig.2). This 
overing together with theaÆne maps 12; 34! 12 ( preserving orientation on �
)23! 61 ( reversing orientation )56! 36 ( preserving orientation )45! 63 ( reversing orientation )36



gives a Markov partition of �i satisfying the assumptions of Theorem 6.7.1. Sin
e �
 (andevery its sub
urve) is de�nitely not real-analyti
 (HD(�
) = log 4= log 3), the assertionof Theorem 6.7.1 is valid with 
(!; �i) > 0. We may denote 
(!; �i) by 
(!) sin
e it isindependent of �i by symmetry.Example 2(Carleson's domain). We re
all Carleson's 
onstru
tion from [Ca2℄. We �xa broken line 
 with the �rst and last segment lying in the same straight line in IR2,with no other segments interse
ting the segment 1; d� 1 (see Fig. 3). Then we take aregular polygon 
1 with verti
es T0; T1; : : : ; Tn and glue to every side of it, from outside,the res
aled, not mirror re
e
ted, 
urve 
 so that the ends of the glued 
urve 
oin
idewith the ends of the side. The resulting 
urve bounds a se
ond polygon 
2. Denote itsverti
es by A0; A1; : : : (Fig. 4). Then we glue again the res
aled 
 to all sides of 
2and a third order polygon 
3 with verti
es B0; B1; : : :. Then we bild 
4 with verti
esC0; C1; : : :
5 with D0; D1; : : : et
. Assume that there is no self-interse
ting of the 
urves�
n in this 
onstru
tion. Moreover assume that in the limit we obtain a Jordan 
urveL = L(
1; 
) = �
. The natural Markov partition of ea
h 
urve TiTi+1in L into 
urvesAjAj+1 with f(AjAj+1) = TiTi+1, 
onsidered by Carleson does not satisfy the property(6.7.1) so we 
annot su

eed with it. Instead we pro
eed as follows: De�ne in an aÆnefashion f(Bd(j�1)+1Bdj�1) = A1Ad�1for every j = 1; 2 : : : ; d. Divide now every ar
 Bdj�1Aj for j = 1; 2 : : : ; d and AjBdj+1,j = 1; 2 : : : ; d into 
urves with ends in the verti
es of the polygon 
4 : Cj 2 Bdj1Aj,~Cj 2 AjBdj+1 respe
tively, the 
losest to Aj(6= Aj). Let for j = 1; 2; : : : ; d� 1,f(CjAj) = Bdj�1Aj ; f(Bdj�1Cj) = Ad�1Bd2�1;f(Aj ~Cj) = AjBdj+1; f( ~CjBdj+1) = B1A1:This gives a transitive aperiodi
 Markov partition of B1Bd2�1. We 
an 
onsider instead ofthe broken line 
 in the 
onstru
tion of 
, the line 
(2), 
onsisting of d2 segments, whi
harises by glueing to every side of 
 a res
aled 
. Conse
utive gluing of the res
aled 
(2)to the polygon 
(1) gives 
onse
utively 
3;
5 et
. The same 
onstru
tion as above givesa Markov partition of D1Dd2�1 in TiTi+1. By 
ontinuing this pro
edure we approximateTiTi+1, so from Theorem 6.7.1 and from symmetry we dedu
e that there exists a transitionparameter 
(!) su
h that the assertion of Theorem 6.6.5(b) is satis�ed. Observe thatCarleson's assumption that the broken line 1; 2; : : : ; d� 1 has no self-interse
tions has notbeen needed in these 
onsiderations. Also the assumption that 
(1) is a regular polygon 
anbe omitted; one 
an prove that 
(!) doesnot depend on TiTi+1 by 
onsidering a transitive,aperiodi
 Markov partition whi
h involves all the sides of 
1 simultaneously.Se
tion 7.9. Real analyti
ity of the density fun
tions. In this se
tion we
onsider potentials of the form �t log jf 0j, �xed points of the 
orresponding 
onjugatetransfer operators mt and invariant Gibbs states �t. Our aim is to show that the Radon-Nikodym derivative d�tdmt has a real-analyti
 extension. We begin with the following.37



De�nition 7.9.1. A 
onformal expanding repeller f : X ! X is said to be real-analyti
if it is 
ontained in a �nite union of pairwise disjoint real-analyti
 
urves whi
h will bedenoted by � = �f . Frequently in su
h a 
ontext we will alternatively speak about realanalyti
ity of the set X.The main (and only) result of this se
tion is the following.Theorem 7.9.2. If f : X ! X is an orientation preserving 
onformal expanding repeller,X � C, then the Radon-Nikodym derivative � = d�t=dmt has a real-analyti
 real-valuedextension on a neighbourhood of X in CI. If f is real-analyti
, then � has a real-analyti
extension on a neighbourhood of X in �.Proof. Observe that sin
e f is 
onformal and orientation preserving, f is holomorphi
on a neighbourhood of X in CI. Take r > 0 so small that for every x 2 X, every n � 1and every y 2 f�n(x) the holomorphi
 inverse bran
h f�ny : B(x; 2r) ! CI sending x toy is well-de�ned. Suppose �rst that f is real-analyti
. We need to show that there existsa holomorphi
 
omplex-valued extension of � on a neighbourhood of X in CI. Taking anappropriate atlas we may assume that X is 
ontained in a real axis (if a 
losed 
urve is a
omponent of � we 
an use Arg). For all k � 1 and all y 2 f�k(x) let �(k; y) = 1 or �1depending as f�ky preserves or reverses the orientation on �. Soj(f�ky )0(z)j = �(k; y)((f�ky )0(z))for all z 2 J(f) \ B(x; r). Consider the following sequen
e of 
omplex analyti
 fun
tionson z 2 B(x; r) gn(z) = Xy2f�n(x)��(n; y)((f�ny )0(z))�t exp(�nP (t)):There is no problem here with raising to the t-th power sin
e B(x; r), the domain of all�(n; y)(f�ny )0 is simply 
onne
ted. Sin
e the latter fun
tions are positive in IR, we 
an
hoose the bran
hes of the t-th powers to be also positive in IR. By Koebe's DistortionTheorem for every z 2 B(x; r=2), every n � 1 and every y 2 f�n(x) we have j(f�ny )0(z)j �Kj(f�ny )0(x)j. Hen
e jgn(z)j � Kgn(x). Sin
e, by (3.4.2) with u = 1 and 
 = p(t),the sequen
e gn(x) 
onverges, we see that the fun
tions fgnjB(x;r=2)gn�1 are uniformlybounded. So they form a normal family in the sense of Montel. Sin
e gn(z) 
onverges forall z 2 X \ B(x; r=2), it follows that gn 
onverges to an analyti
 fun
tion g on B(x; r=2)whose restri
tion to � is by our 
onstru
tion an extension of �.Let us pass now to the proof of the �rst part of this proposition. That is, we relax the Juliareal analyti
ity assumption and we want to 
onstru
t a real-analyti
 real-valued extensionof � to a neighbourhood of X in CI. Our strategy is to work in CI2, to use an appropriateversion of Montel's theorem and, in general, to pro
eed similarly as in the �rst part ofthe proof. So, �x v 2 X. Identify now CI, where our f a
ts, to IR2 with 
oordinates x; y,the real and 
omplex part of z. Embed this into CI2 with x; y 
omplex. Denote the above38



CI = IR2 by CI0. We may assume that v = 0 in CI0. Given k � 0 and vk 2 f�k(v) de�ne thefun
tion �vk : BCI0(0; 2r)! CI (the ball in CI0) by setting�vk(z) = (f�kvk )0(z)(f�kvk )0(0) ;Sin
e BCI0(0; 2r) � CI0 is simply 
onne
ted and �vn nowhere vanishes, all the bran
hes oflogarithm log �vn are well de�ned on BCI0(0; 2r). Choose this bran
h that maps 0 to 0 anddenote it also by log �vn . By Koebe's Distortion Theorem j�vk j and jArg�vk j are bouned onB(0; r) by universal 
onstants K1; K2 respe
tively. Hen
e j log �vk j � K = (logK1) +K2.We write log �vk = 1Xm=0 amzmand note that by Cau
hy's inequalities(7.9.1) jamj � K=rm:We 
an write for z = x+ iy in CI0Re log �vk = Re 1Xm=0 am(x+ iy)m = 1Xp;q=0Re�ap+q�p+ qq �iq�xpyq :=X 
p;qxpyq:In view of (2.1), we 
an estimate j
p;qj � jap+qj2p+q � Kr�(p+q)2p+q. Hen
e Re log �vkextends, by the same power series expansion P 
p;qxpyq, to the polydis
 DCI2(0; r=2) andits absolute value is bounded there from above by K. Now for every k � 0 
onsider areal-analyti
 fun
tion bk on BCI0(0; 2r) by settingbk(z) = Xvk2f�k(0) j(f�kvk )0(z)jt exp(�kP (t)):By (3.4.2) the sequen
e bk(0) is bounded from above by a 
onstant L. Ea
h fun
tion bkextends to the fun
tionBk(z) = Xvk2f�k(0) j(f�kvk )0(0)jtetRe log �vk (z) exp(�kP (t)):whose domain, similarly as the domains of the fun
tions Re log �vk , 
ontains the polydis
DCI2 (0; r=2). Finally we get for all k � 0 and all z 2 DCI2(0; r=4)jBk(z)j = Xvk2f�k(0) j(f�kvk )0(0)jteRe(tRe log �vk (z)) exp(�kP (t))� Xvk2f�k(0) j(f�kvk )0(0)jtetjRe log �vk (z)j exp(�kP (t))� eKt Xvk2f�k(0) j(f�kvk )0(0)jt exp(�kP (t)) � eKtL:39



Now by Cau
hy's integral formula (in DCI2(0; r=4)) for the se
ond derivatives we prove thatthe family Bn is equi
ontinuous on, say, DCI2 (0; r=5). Hen
e we 
an 
hoose a uniformly
onvergent subsequen
e and the limit fun
tion G is 
omplex analyti
 and extends � onX \ B(0; r=5), by (3.4.2). Thus we have proved that � extends to a 
omplex analyti
fun
tion in a neighbourhood of every v 2 X in CI2, i.e. real analyti
 in CI0. These extensions
oin
ide on the interse
tions of the neighbourhoods, otherwise X is real analyti
 and weare in the 
ase 
onsidered at the beginning of the proof. |
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CHAPTER 7. SULLIVAN'S CLASSIFICATION OF CONFORMALEXPANDING REPELLERS. Dijon, June, 1991(This is a very preliminary version of one of chapters of a book by Przytycki andUrba�nski, in preparation, on conformal fractals. It relies on ideas of the proof of therigidity theorem drafted by D. Sullivan in Proceedings of Berkeley's ICM in 1986.)In Chapter 4.6 we proved that the scaling function for an expanding repeller inthe line determines the C1+"-structure. In this chapter we will basically concentrateon nonlinear conformal expanding repellers, called CER's, proving that the class ofequivalence of the geometric measure determines the conformal structure.Section 1. Equivalent notions of linearity.De�nition 7.1.1. We call a CER (X; f) linear if one of the following conditionsholds:a) The Jacobian of f with respect to the Gibbs measure �X equivalent to a geo-metric measure mX on X , Jf , is locally constant.b) The function HD(X) log jf 0j is cohomologous to a locally constant function onX. c) The conformal structure on X admits a conformal a�ne re�nement so that f isa�ne (i.e., see Ch.4.3, there exists an atlas f'tg that is a family of conformal injections't : Ut ! CI where St Ut � X such that all the maps 't'�1s and 'tf'�1s are a�ne)Recall that as the conformal map f may change the orientation of CI on somecomponents of its domain we can write jf 0j but not f 0 unless f is holomorphic.Proposition 7.1.2. The conditions a), b) and c) are equivalent.Before we shall prove this proposition we distinguish among CER's real- analyticrepellers:De�nition 7.1.3. We call (X; f) real- analytic if X is contained in the union of a�nite family of real analytic open arcs and closed curves.Lemma 7.1.4. If there exists a connected open domain U in CI intersecting X fora CER (X; f) and if there exists a real analytic function k on it equal identically 0 onU \X but not on U then (X; f) is real-analytic.Proof. Pick an arbitrary x 2 U \ X. Then in a neighbourhood V of x the setE = fk = 0g is a �nite union of pairwise disjoint real- analytic curves and of the pointx. This follows from the existence of a �nite decomposition of the germ of E at x intoirreducible germs and the form of each such germ, see for example Proposition 5.8 inthe Malgrange book [Malgrange]. As the sets fn(X \ V ), n � 0 cover X, X is compactand f is open on X we conclude that X is contained in a �nite union of real-analytic1



curves 
j and a �nite set of points A such that the closures of 
j can intersect only inA. Suppose that there exists a point x 2 X such that X is not contained in anyreal-analytic curve in every neighbourhood of x. Then the same is true for every pointz 2 X \ f�nfxg, n � 0, hence for an in�nite number of points (because pre-images of xare dense in X by the topological exactness of f , see Ch.?). But we proved above thatthe number of such points is �nite so we arived at a contradiction. We conclude thatX is contained in a 1-dimensional real-analytic submanifold of CI.Proof of Proposition 7.1.2.a)) b). Let u be the eigenfunction Lu = u for the transfer operator L = L' forthe function ' = �� log jf 0j, where � = HD(X), as in Ch. 3.3.. Here the eigenvalue� = expP (f; ') is equal to 1, see Ch.6.2..For an arbitrary z 2 X we have in its neighbourhood in X(7.1.1) Const = log Jf = � log jf 0(x)j+ logu(f(x))� log u(x)b)) c). The function u extends to a real-analytic function uCI in a neighbourhoodof X, see Ch.4.4, so the function log Jf extends to a real-analytic function log JfCI bythe right hand side equality in the formula (7.1.1), for uCI instead of u. We have twocases: either log JfCI is not locally constant on every neighbourhood of X and then byLemma 7.1.4 (X; f) is real-analytic or log JfCI is locally constant. Let us consider �rstthe latter case.Fix z 2 X . Choose an arbitrary sequence of points zn 2 X, n � 0 such thatf(zn) = zn�1 and choose branches f�n� mapping z to zn. Due to the expanding propertyof f they are all well de�ned on a common domain around z. For every x close to zdenote xn = f�n� (x). We have dist(xn; zn)! 0 so by (7.1.1) for log JfCI
(7.1.2) 1Xn=1�(log jf 0(xn)j � log jf 0(zn)j)= loguCI(x)� loguCI(z) + limn!1(loguCI (zn)� loguCI(xn))= loguCI(x)� loguCI(z)We conclude that uCI(x) is a harmonic function in a neighbourhood of z in CI as thelimit of a convergent series of harmonic functions; we use the fact that the compositionsof harmonic functions with the conformal maps f�n� are harmonic. Close to z we takea so-called harmonic conjugate function h so that log u(x) + ih(x) is holomorphic.Write Fz = exp(logu + ih) and denote by ~Fz a primitive function for Fz in aneighbourhood of z. This is a chart because Fz(z) 6= 0. The atlas given by the charts~Fz is a�ne (conformal) by the construction. We have due to (7.1.1) for the extended uj( ~Ff(z) � f � ~F�1z )0(Fz(x))j = uCI (f(x))jf 0(x)j=uCI(x) = Constso the di�erential of f is locally constant in our atlas.2



In the case (X; f) is real-analytic we consider just the charts 't being primitivefunctions of u on real-analytic curves containing X into IR with unique complex exten-sions to neighbourhoods of these curves into a neighbourhood of IR in CI. The equalitylog JfCI = Const holds on these curves so the derivatives of 'tf'�1s are locally constant.c)) a). Denote the maps 'tf'�1s by ~ft;s. In a neighbourhood (in X) of anarbitrary z 2 X we have
(7.1.3) u(x) = limn!1Ln(1)(x) = limn!1 Xy2f�n(x) j(fn)0(y)j��= limn!1 j'0(x)j�Xy j'0(y)j��j ~f 0(y)j�n�= Const limn!1 j'0(x)j�Xy ~f 0(y)j�n� = j'0(x)j�ConstTo simplify the notation we omitted the indices at ' and ~f here, of course theydepend on z and y's more precisely on the branches of f�n on our neighbourhood of zmapping z to y's . Const also depends on z. We could omit the functions '0(y) in thelast line of (7.1.3) because the diameters of the domains of '0(y) which were involvedconverged to 0 when n ! 1 due to the expanding property of f , so these functionswere almost constant.Hence due to (7.1.3) in a neighbourhood of every x 2 X we getJf(x) = Const u(f(x))jf 0(x)j�=u(x) = Constj ~f 0(x)j� = Const |Remark 7.1.5. In the b))c) part of the proof of Proposition (7.1.2) as �� log jf 0jis harmonic we do not need to refer to Ch.4.4 for the real-analyticity of u . The formula(7.1.2) gives a harmonic extension of u to a neighbourhood of an arbitrary z 2 X,depending on the choice of the sequence (zn). If two extensions u1; u2 do not coincideon a neighbourhood of z then in a neighbourhood of z, X � fu1 � u2 = 0g . If theequation (7.1.1) does not extend to a neighbourhood of z then again X � fv = Constgfor a harmonic function v extending the right hand side of (7.1.1).In each of the both cases (X; f) happens to be real-analytic and to prove it wedo not need to refer to Malgrange's book as in the proof of Lemma 7.1.3. Indeed,for any non-constant harmonic function k on a neighbourhood of x 2 X such thatX � fk = 0g we consider a holomorphic function F such that k = ReF and F (x) = 0.Then E = fk = 0g = fReF = 0g. If F has a d-multiple zero at x then it is a standardfact that E is a union of d analytic curves intersecting at x within the angle �d .We end this Section with giving one more condition implying the linearity.Lemma 7.1.6. Suppose for a CER (X; f) that there exists a H�older continuous line�eld in the tangent bundle on a neighbourhood of X invariant under the di�erential of f .In other words there exists a complex valued nowhere zero H�older continuous function� such that for every x in a neighbourhood of X3



(7.1.4) Arg�(x) + Argf 0(x) = Arg�(f(x)) + "(x)�where "(x) is a locally constant function equal 0 or 1. This is in the case f preserves theorientation at x, if it reverses the orientation we replace in (7.2.1) Argf 0 by �Arg �f 0.Then (X; f) is linear.Proof. As in Proof of Proposition 7.1.2, the calculation (7.1.2), if f is holomorphicwe have for x in a neighbourhood of z 2 X in CIArg�(z)� Arg�(x) = 1Xn=1(Arg(f 0(zn))� Arg(f 0(xn)));if we allow f to reverse the orientation then we replace Argf 0 by �Arg �f 0 in the aboveformula for such n that f changes the orientation in a neighbourhood of xn. So Arg�(x)is a harmonic function. Close to z we �nd a conjugate harmonic function h so we geta family of holomorphic functions Fz = exp(�h+ iArg� which primitive functions givean atlas we have looked for.Remark 7.1.7. The condition for (X; f) in Lemma 7.1.6 is stronger than thelinearity property. Indeed we can de�ne f on the union of the discs D1 = fjzj < 1g andD2 = fjz�3j < 1g by f(z) = 5 exp 2�#i on D1 where # is irrational, and f(z) = 5(z�3)on D2. This is an example of an iterated function system from Ch.4.5. We get a CER(X; f) where X = T1n=0 f�n(fjzj < 5g). It is linear because it satis�es the conditionc). Meanwhile 0 2 X; f(0) = 0 and f 0(0) = 5 exp 2�#i, so the equation (7.1.4) has nosolution at x = 0 even for any iterate of f .Remark 7.1.8. If we assume in place of (7.1.4) that Argf 0(x) � Arg�(f(x)) �Arg�(x) is locally constant, then we get the condition equivalent to the linearity.
Section 2. Rigidity of nonlinear CER'sIn this section we shall prove the main theorem of Chapter 7:Theorem 7.2.1. Let (X; f); ((Y; g) be two non-linear conformal expanding re-pellers in CI. Let h be an invertible mapping from X onto Y preserving Borel �-algebrasand conjugating f to g, h � f = g � h. Suppose that one of the following assumption issatis�ed:1. h and h�1 are Lipschitz continuous.2. h and h�1 are continuous and preserve so-called Lyapunov spectra, namely for everyperiodic x 2 X and integer n such that fn(x) = x we have j(fn)0(x)j = j(gn)0(h(x))j.3. h� maps a geometric measure mX on X to a measure equivalent to a geometricmeasure mY on Y . 4



Then h extends from X (or from a set of full measure mX in the case 3.) to a conformalhomeomorphism on a neighbourhood of X.We start the proof with a discussion of the assumptions. The equivalence of theconditions 1. and 2. has been proved in Ch.4.3. The condition 1. implies 3. by thede�nition of geometric measures 5.6.5. One of the steps of the proof of Theorem willassert that 3. implies 1. under the non-linearity assumption. Without this assumptionthe assertion may happen false. A positive result is that if h is continuous then for aconstant C > 0 and every x1; x2 2 XC < jh(x1)� h(x2)jHD(Y )jx1 � x2jHD(X) < C�1:(We leave the proof to the reader.)It may happen that HD(X) 6= HD(Y ) for example if X is a 1/3 { Cantor set andfor g we remove each time half of the interval from the middle.A basic observation to prove Theorem 7.2.1 is that(7.2.1) Jg � h = Jf and moreover Jgj � h = Jf jfor every integer j > 0. This follows from gj � h = h � f j and Jh � 1. We recallthat we consider Jacobians with respect to the Gibbs measures equivalent to geometricmeasures.Observe �nally that (X,f) linear implies (Y,g) linear. Indeed, if (X; f) is linear thenJf hence Jg admit only a �nite number of values in view of Jg � h = Jf . As Jg iscontinuous this implies that Jg is locally constant i.e. (Y; g) is linear.Lemma 7.2.2. If a CER (X; f) is non-linear then there exists x 2 X such thatgradJfCI(x) 6= 0.Proof. If gradJfCI � 0 on X then as JfCI is real- analytic we have either gradJfCI �0 ona neighbourhood of X in CI or by Lemma 7.1.4 (X; f) is real-analytic and gradJfCI �0 on real- analytic curves containingX. In both cases by integration we obtain Jf locallyconstant on X what contradicts the non-linearity assumption.Now we can prove Theorem in the simplest case to show the reader the main ideaworking later also in the general case.Proposition 7.2.3. The assertion of Theorem 7.2.1 holds if we suppose addition-ally that (X; f) and Y; g) are real-analytic and the conjugacy h is continuous.Proof. Let M;N be real analytic manifolds containing X;Y respectively. By thenon-linearity of X and Lemma 7.2.2 there exists x 2 X and its neighbourhood U in Msuch that F := JfCI jU : U ! IR has a real-analytic inverse F�1 : F (U) ! U . Then inview of (7.2.1) h�1 = F�1 � JgCI on h(U \ X) so h�1 on h(U \ X) extends to a realanalytic map on a neighbourhood of h(U \X) in N .Now we use the assumption that h�1 is continuous so h(U \X) contains an openset v in Y . There exists a positive integer n such that gn(V ) = Y hence for every y 2 Y5



there exists a neighbourhood W of y in N such that a branch g�n� of g�n mapping yand even W \Y into V is well de�ned. So we have h�1 = fn �h�1 �g�n� extended on Wto a real-analytic map. This gives a real-analytic extension of h�1 on a neighbourhoodof Y because two such extensions must coincide on the intersections of their domainsby the real-analyticity and the fact that Y has no isolated points.Similarly using the non-linearity of (Y,g) and the continuity of h we prove that hextends analytically. By the analyticity and again lack of isolated points in X and Ythe extentions are inverse to each other, so h extends even to a biholomorphic map.Now we pass to the general case.Lemma 7.2.4. Suppose that there exists x 2 X such that gradJfCI(x) 6= 0 in thecaseX is real-analytic, or there exists an integer k � 1 such that det(gradJfCI ; grad(JfCI�fk)) 6= 0 in the other case .(In other words we suppose that JfCI , respect. (JfCI ; JfCI � fk), give a coordinatesystem on a real, respect. complex neighbourhood of x.)Suppose the analogous property for (Y; g).Let h : X ! Y satisfy the property 3. assumed in Theorem 7.2.1. Then h extendsfrom a set of full geometric measure in X to a bi-Lipschitz homeomorphism of X ontoY conjugating f with g.Proof. We can suppose that HD(X) � HD(Y ), recall that HD denotes Hausdor�dimension . Pick x with the property assumed in the Lemma. Let U be its neighbour-hood in M ( as in Proof of Proposition 7.2.3) or in CI if (X; f) is not real-analytic, sothat F := (JfCI ; JfCI � fk) is an embedding on U . Let y 2 Y be a density point ofthe set h(U \ X) with respect to the Gibbs measure �Y equivalent to the geometricmeasure mY . (Recall that we have proved that almost every point is a density point foran arbitrary probability measure on a euclidean space in Ch.5.2 relying on Besicovitch'sTheorem.) . So if we denote (JgCI ; JgCI � gk) in a neighbourhood (real or complex) of yby G, we have for every � > 0 such "0 = "0(�) > 0 that for every 0 < " < "0 :�Y (B(y; ") \ h(U \X))�Y (B(y; ")) > 1� �and h�1 = F�1 �G on h(U \X):(Observe that the last equality may happen false outside h(U \X) even very closeto y because h�1 may map such points to (JfCI ; JfCI � fk)�1 � G with a branch of(JfCI ; JfCI � fk)�1 di�erent from F�1.)Now for every " > 0 small enough there exists an integer n such that diamgnB(y; ")is greater than a positive constant , gnjB(y;") is injective and the distortion of gn onB(y; ") is bounded by a constant C, both constants depending only on (Y; g). Then if" < "0(�) we obtain for Y� := gn(h(U \X) \ B(y; ")),�Y (gn(B(y; ")) n Y��Y (gn(B(y; "))) < C�Y (B(y; ") n h(U \X))�Y (B(y; ")) < C�:So 6



(7.2.2) �Y (Y�)�Y (gn(B(y; "))) > 1� C�We havej(fn)0(h�1(y))jHD(X) � ConstJf(h�1(y)) = ConstJg(y) � Constj(fn)0(y)jHD(Y ):As we assumed HD(X) � HD(Y ) we obtain(7.2.3) j(fn)0(h�1(y))j � Constj(fn)0(y)jHD(Y )=HD(X) � Constj(fn)0(y)jThen due to the bounded distortion property for iteration of f and g we obtainthat h�1 = fnh�1g�1 is Lipschitz on Y� with Lipschitz constant independent of �, moreprecisely bounded by Const sup kD(F�1 � Gk, where F�1 � G is considered on a real(complex) neighbourhood of y and Const is that from (7.2.3).There exists an integer K > 0 such that for every n, gKgnB(y; "(n)) covers Y .Because Jg is bounded, separated from 0, this gives h�1 on gK(Y�) Lipschitz with aLipschitz constant independent from � and �(gK(Y�)) > 1 � Const � for � arbitrarilysmall. We conclude that h�1 is Lipschitz on a set of full measure �Y so it has a Lipschitzextension to Y .We conclude also that HD(X) = HD(Y ). Otherwise diamh�1(Y�)! 0, so becausesupp�X = X we would get diamX = 0. So we can replace above the roles of (X; f) and(Y; g) and prove that h is Lipschitz.The next step will assert that for non-linear repellers the assumptions of Lemma7.2.4 about the existence of coordinate systems are satis�ed.Lemma 7.2.5. If (X,f) is a non-linear CER then there exists x 2 X such thateither gradJfCI(x) 6= 0 in the case X is real-analytic, or there exists an integer k � 1such that det(gradJfCI ; grad(JfCI � fk)) 6= 0 in the case (X,f) is not real-analytic.Proof. We know already from Lemma 7.2.2 that there exists x̂ 2 X such thatgradJfCI(z) 6= 0 so we may restrict our considerations to the case (X; f) is not real-analytic.Suppose Lemma is false. Then for all k > 0 the functions�k := det(gradJfCI ; grad(JfCI � fk))are identically equal to 0 on X. LetW be a neighbourhood of x̂ in CI where gradJfCI 6= 0:Let us consider onW the line �eld V orthogonal to gradJfCI . Due to the topologicalexactness of f on X for every x 2 X there exists y 2 W \ X and n � 0 such thatfn(y) = x.Thus de�ne at x 7



(7.2.4) Vx := Dfn(Vy)We shall prove now that if x = fk(y) = f l(z) for some y; z 2W \X; k; l � 0, then(7.2.5) Dfk(Vy) = Df l(Vz):If (7.2.5) is false, then close to x there exist x0 2 X andm � 0 such that fm(x0) 2W(we again refer to the topological exactness of f) and Dfk(Vy0) 6= Df l(Vz0), wherefk(y0) = f l(z0) = x0, y0 2 X is close to y and z0 2 X is close to z. We obtainDfk+m(Vy0) 6= Df l+m(Vz0) so either Dfk+m(Vy0) 6= Vfm(x0) or Df l+m(Vz0) 6= Vfm(x0).Consider the �rst case (the second is of course similar). We obtain that Jf and Jf�fk+mgive a coordinate system in a neighbourhood of y0 i.e. �k+m(y0) 6= 0 contrary to thesupposition.Thus the formula (7.2.4) de�nes a line �eld at all points of X which is Df -invariant.Observe however that the same formula de�nes a real-analytic extension of the line �eldto a neighbourhood of x in CI because V is real-analytic on a neighbourhood of y 2 Wand f is analytic. Each two such germs of extensions related to two di�erent pre-imagesof x must coincide because they coincide on X, otherwise (X; f) would be real-analytic.Now we can choose a �nite cover Bj = B(xj; �j) of a neighbourhood of X with discs,xj 2 X so that for the respective Fj-branches of f�nj leading xj into W , we haveFj(3Bj) � W where 3Bj := B(xj ; 3�j). Hence the formula (7.2.4) de�nes V on 3Bj .So if Bi \ Bj 6= ;, then we have 3Bi � Bj or vice versa. So 3Bi \ 3Bj \X 6= 0 hencethe extensions of V on 3Bi and on 3Bj, in particular on Bi and on Bj , coincide on theintersection. This is so because they coincide on the intersection with X and (X; f isnot real-analytic.(We made the trick with 3� because it can happen that Bi\Bj 6= ; but Bi\Bj\X = ;.)Thus V extends real-analytically to a neighbourhood of X. This �eld is Df -invariant on a neighbourhood of X because we can de�ne it in a neighbourhood of x 2 Xand f(x) by (7.2.4) taking the same y 2W \X where fn(y) = x, fn+1(y) = f(x). So byLemma 7.1.7 (X; f) is linear what contradicts the assumption that (X; f) is non-linear.Corollary 7.2.6. If for (X; f); (Y; g) the assumptions of Theorem 7.2.1 are satis�edand if (y; g) is real-analytic then (X; f) is real-analytic too.Proof. Due to Lemma 7.2.5 the assumptions of Lemma 7.2.4 are satis�ed. Soh�1 = F�1 �G on a neighbourhood of y 2 Y by the continuity of h�1, (see the notationin Proof of Lemma 7.2.4). Denote a real-analytic manifold Y is contained in by N .Then JgCI 6= Const on any neighbourhood of y in N . Otherwise h�1 would be constant,but y is not isolated in Y so h�1 would not be injective.Remind that we can consider F�1 � G as a real analytic extension of h�1 to aneighbourhood V of y in N . So the di�erential of F�1G is 0 at most at isolated points,so di�erent from 0 at a point y0 2 V \ Y . We conclude due to the continuity of h thatin a neighbourhood of h�1(y0), X is contained in a real-analytic curve. So (X; f) is areal-analytic repeller. 8



Now we shall collect together what we have done and make a decidive step inproving Theorem 7.2.1, namely we shall prove that the conjugacy extends to a real-analytic di�eomorphism.Proof of Theorem 7.2.1. If both (X; f) and (Y; g) are real- analytic then theconjugacy extends real-analytically to a real-analytic manifold so complex analyticallyto its neighbourhood by Proposition 7.2.3. Its assumptions hold by Lemmas 7.2.4 and7.2.2. If both (X; f) and (Y; g) are not real-analytic (a mixed situation is excluded byCorollary 7.2.6), then by Lemma 7.2.4 which assumptions hold due to Lemma 7.2.5 wecan assume the conjugacy h is a homeomorphism of X onto Y . But h�1 extends to aneighbourhood of y 2 Y in CI to a real-analytic map. We use here again the notation ofProposition 7.2.4 and proceed precisely like in Proposition 7.2.3, Proposition 7.2.4 andCorollary 7.2.6 by writing h�1 = F�1 �G. This gives a real-analytic extension of h�1to a neighbourhood of an arbitrary y 2 Y by the formula fn � h�1 � g�1� precisely as inProof of Proposition 7.2.3.For two di�erent branches F1; F2 of g�n1 ; g�n2 respectively, mapping y into thedomain of F�1 �G germs of the extensions must coincide because they coincide on theintersection with Y , see Lemma 7.1.4.Now we build a real-analytic extension of h�1 to a neighbourhood of Y similarlyas we extended V in Proof of Lemma 7.2.5, again using the assumption (Y; g) is notreal-analytic.Similarly we extend h.Denote the extensions by ~h; ~h�1. We have ~h�1�~h and ~h� ~h�1 equal to the identity onX;Y respectively. The these compositions extend to the identities to neighbourhoods,otherwise (X; f) or (Y; g) would be real-analytic. We conclude that ~h is a real-analyticdi�eomorphism. Finally observe that g~h = ~hf on a neighbourhood of X because thisequality holds on X itself and our functions are real-analytic, otherwise (X; f) wouldbe real-analytic.The only thing we should still prove is the followingLemma 7.2.7. If (X; f) is a non-linear CER, not real-analytic , and there is areal-analytic di�eomorphism h on a neighbourhood of X to a neighbourhood of Y foranother CER (Y; g) such that h(X) = Y and h conjugates f with g in a neighbourhoodof X then h is conformal.Proof. Suppose for the simpli�cation that f; g and h preserve the orientation ofCI, we will comment the general case at the end.For any orientation preserving di�eomorphism � of a domain in CI into CI denotethe complex dilatation function by !� . We recall that !� := d�d�z =d�dz . (The reader notfamiliar with the complex dilatation and its properties is advised to read the �rst 10pages of the classical Ahlfors book [Ahlfors].) The geometric meaning of the argumentof !�(z) may be explained by the equality 12!� = � where � corresponds to the thedirection in which the di�erential D� at z attains its maximum. In another words it isthe direction of the smaller axis of the ellipse in the tangent space at z which is mappedby D� to the unit circle. Of course this makes sense if !(z) 6= 0. Observe �nally that!(z) = 0 i� d�d�z = 0. Let go back now to our concrete maps.If dhd�z � 0 on X then as dhd�z is a real-analytic function we have dhd�z � 0 on aneighbourhood of X, otherwise (X; f) would be real-analytic. But this means that h isholomorphic what proves our Lemma. It rests to prove that the case dhd�z 6� 0 on X is9



impossible.Observe that if dhd�z (x) = 0 then dhd�z (f(x)) = 0 because h = ghf�1� on a neighbour-hood of f(x) for the branch f�1� of f�1 mapping f(x) to x and because g and f�1� areconformal. So if there exists x 2 X such that dhd�z (x) 6= 0 then this holds also for all x'sfrom a neighbourhood and as a consequence of the topological exactness of f for all xin a neighbourhood of X. Thus we have a complex-valued function !h nowhere zero ona neighbourhood of X.Recall now that for any two orientation preserving di�eomorphisms � and 	, if 	is holomorphic then !	�� = !�and if � is conformal then !	 � � = ( �0j�0j)2!	�� = !�Applying it to the equation h � f = g � h we obtain!h � f = ( f 0jf 0j)2!h�f = ( f 0jf 0j )2!g�h = ( f 0jf 0j )2!h:Thus �(x) := 12!h(x) satis�es the equation (7.1.4) and by Lemma (7.1.6) (X; f)happens linear what contradics our assumption that it is non- linear.In the case a di�eomorphism reverses the orientation we write everywhere above!�� instead of !� and if � is conformal reversing orientation we write ��0 instead of �0.Additionally some omegas should be conjugated in the formulas above. We also arive at(7.1.4). (In this situation the complex notation is not confortable. Everythig gets trivialif we act with di�erentials on line �elds. We leave writing this down to the reader.)
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version of Nov.25, 2002 CHAPTER 9CONFORMAL MAPS WITH INVARIANTPROBABILITY MEASURES OF POSITIVE LYAPUNOV EXPONENT.
x9.1 RUELLE'S INEQUALITY.Let X be a 
ompa
t subset of the 
losed 
omplex plane CI and let A(X) denote theset of all 
ontinuous maps f : X ! X that 
an be analyti
ally extended to an openneighbourhood U(f) of X. In this se
tion we only work with the standard spheri
al metri
on CI, normalized so that the area of CI is 1. In parti
ular all the derivatives are 
omputedwith respe
t to this metri
.Let us re
all and extend De�nition 6.1.3. Let � be an f -invariant Borel probabilitymeasure on X. Sin
e jf 0j is bounded, the integral R log jf 0j d� is well-de�ned and moreoverR log jf 0j d� < +1. The number�� = ��(f) = Z log jf 0j d�is 
alled the Lyapunov 
hara
teristi
 exponent of � and f . Note that R log jf 0jd� = �1 isnot ex
luded. In fa
t it is possible, for example if X = f0g and f(z) = z2.By Birkho� Ergodi
 Theorem (Th 1.2.2) the Lyapunov 
hara
teristi
 exponent��(x) = limn!1 1n log j(fn)0(x)j exists for a.e. x, 
ompare Se
.6, and R ��(x) d�(x) = ��.(In fa
t one allows log jf 0j with integral �1 here, so one need extend slightly Th.1.2.2.This is not diÆ
ult.)The se
tion is devoted to prove the following.Theorem 9.1.1. (Ruelle's inequality) If f 2 A(X), then h�(f) � 2 R maxf0; ��(x)g d�.For ergodi
 � this yields h�(f) � 2maxf0; ��g.Proof. Consider a sequen
e of positive numbers ak & 0, and Pk; k = 1; 2; ::: an in
reasingsequen
e of partitions of the sphere CI 
onsisting of elements of diameters � ak and of(spheri
al) areas � 14a2k. Che
k that su
h partitions exist.For every g 2 A(X), x 2 X and k � 1 letN(g; x; k) = #fP 2 Pk : g(Pk(x) \ U(g)) \ P 6= ;gOur �rst aim is to show that for every k > k(g) large enough(9.1.1) N(g; x; k) � 4�(jg0(x)j+ 2)21



Indeed, �x x 2 X and 
onsider k so large that Pk(x) � U(g) and a Lips
hitz 
onstantof gjPk(x) does not ex
eed jg0(x)j + 1. Thus the set g(Pk(x)) is 
ontained in the ballB(g(x); (jg0(x)j+ 1)ak). Therefore if g(Pk(x)) \ P 6= ;, thenP � B(g(x); (jg0(x)j+ 1)ak + ak) = B(g(x); (jg0(x)j+ 2)ak)Hen
e N(g; x; k) � �(jg0(x)j+ 2)2a2k=14a2k = 4�(jg0(x)j+ 2)2 and (9.1.1) is proved.Let N(g; x) = supk>k(g)N(g; x; k). In view of (9.1.1) we get(9.1.2) N(g; x) � 4�(jg0(x)j+ 2)2Now note that for every �nite partition A one hash(g;A) = limn!1 1n+ 1H(An) = limn!1 1n+ 1�H(g�n(A)jAn�1)+ :::+H(g�1(A)jA)+H(A)�(9.1.3) � limn!1 1n�H(g�n(A)jg�(n�1)(A)) + :::+ H(g�1(A)jA)� = H(g�1(A)jA):(Compare this 
omputation with the one done in Theorem 1.4.5 or in Proof of Theo-rem 1.5.4, whi
h would result with h(g;A) � H(Ajg�1(A)).) Going ba
k to our situation,sin
eH�Pk(x)(g�1(Pk)jPk(x)) � log#fP 2 Pk : g�1(P ) \ Pk(x) 6= ;g = logN(g; x; k)and by Theorem 1.8.7.a, we obtainh�(g) � lim supk!1 H�(g�1(Pk)jPk) = lim supk!1 Z H�Pk(x)(g�1(Pk)jPk(x)) d�(x)� lim supk!1 Z logN(g; x; k) d�(x)� Z logN(g; x) d�(x):Applying this inequality to g = fn (n � 1 an integer) and employing (9.1.2) we geth�(f) = 1nh�(fn) � 1n Z logN(fn; x) d�(x) = Z 1n logN(fn; x) d�(x)� Z 1n log 4�(j(fn)0(x)j+ 2)2 d�(x)Sin
e 0 � 1n log(j(fn)0(x)j+2)2 � 2(log�supX jf 0j)+1) and limn!1 1n log(j(fn)0(x)j+2) =maxf0; ��(x)g for �-a.e x 2 X, it follows from the Dominated Convergen
e Theorem(Ch1.Se
.1) thath�(f) � limn!1 Z 1n log(j(fn)0(x)j+ 2)2 d�(x) = Z maxf0; 2��(x)g d�:2



The proof is 
ompleted. |Exer
ise. Prove the following general version of Theorem 8.1.1: Let X be a 
ompa
t f -invariant subset of a smooth Riemannian manifold for a C1 mapping f : U !M , de�nedon a neighbourhood U of X. Let � be an f -invariant Borel probability measure X. Thenh�(f) � ZX maxf0; �+� (x)g d�(x);where �+� (x) = limn!1 1n log k(Dfn)^k. Here Dfn is the di�erential and (Dfn)^ is theexterior power, the linear operator between the exterior algebras generated by the tangentspa
es at x and fn(x). The norm is indu
ed by the Riemann metri
. Saying dire
tlyk(Dfn)^k is supremum of the volumes of Dfn-images of unit 
ubes in k-dimensionalsubspa
es of TxM with k = 0; 1; :::; dimM .Note. Theorem 9.1.1 and Exer
ise rely on [Ruelle℄ D. Ruelle: An inequality of the entropyof di�erentiable maps. Bol. So
. Bras. Mat. 9 (1978), 83-87.x9.2. PESIN'S THEORYIn this se
tion we work in the same setting and we follow the same notation as in Se
tion 9.1.Lemma 9.2.1. If � is a Borel �nite measure on IRn, n � 1, a is an arbitrary point of IRnand the fun
tion z 7! log jz � aj is �-integrable, then for every C > 0 and every 0 < t < 1,Xn�1�(B(a; Ctn)) <1:Proof. Sin
e � is �nite and sin
e given t < s < 1 there exists q � 1 su
h that Ctn � snfor all n � q, without loosing generality we may assume that C = 1. Re
all that givenb 2 IRn, and two numbers 0 � r < R, R(b; r; R) = fz 2 CI : r � jz � bj < Rg. Sin
e� log(tn) � � log jz � aj for every z 2 B(a; tn) we get the following.Xn�1�(B(a; tn)) =Xn�1n�(R(a; tn+1; tn)) = �1log tXn�1� log(tn)�(R(a; tn+1; tn))� �1log t ZB(a;t)� log jz � aj d�(z) < +1The proof is �nished. |Lemma 9.2.2. If � is a Borel �nite measure on CI, n � 1, and log jf 0j is � integrable,then the fun
tion z 7! log jz � 
j 2 L1(�) for every 
riti
al point 
 of f . If additionally �is f -invariant, then also the fun
tion z 7! log jz � f(
)j 2 L1(�).3



Proof. That log jz� 
j 2 L1(�) follows from the fa
t that near 
 we have C�1jz� qjq�1 �jf 0(z)j � Cjz � 
jq�1, where q � 2 is the order of the 
riti
al point 
 and C � 1 is auniversal 
onstant, and sin
e out of any neighbourhood of the set of 
riti
al points of f ,jf 0(z)j is uniformly bounded away from zero and in�nity. In order to prove the se
ondpart of the lemma, 
onsider a ray R emanating from f(
) su
h that �(R) = 0 and a diskB(f(
); r) su
h that f�1
 : B(f(
); r) nR! CI, an inverse bran
h of f sending f(
) to 
, iswell-de�ned. Let D = B(f(
); r) n R. We may additionally require r > 0 to be so smallthat jz � f(
)j � jf�1
 (z)� 
jq. It suÆ
es to show that the integral RD log jz � f(
)j d�(z)is �nite. And indeed, by f -invarian
e of � we haveZD log jz � f(
)j d�(z) = ZX 1D(z) log jz � f(
)j d�(z) � ZX 1D(z) log jf�1
 (z)� 
jq d�(z)= ZX(1D Æ f)(z) log jz � 
jq d�(z) = ZX 1f�1(D) log jz � 
jq d�(z)Noti
e here that the fun
tion 1D(z) log jf�1
 (z)� 
jq is well-de�ned on X indeed and thatunlike most of our 
omparability signs, the sign in the formula above means an additive
omparability. The �niteness of the last integral follows from the �rst part of this lemma.|Theorem 9.2.3. Let (Z;F ; �) be a measure spa
e with an ergodi
 measure preservingautomorphism T : Z ! Z. Let f : X ! X be a 
ontinuous map from a 
ompa
t setX � CI onto itself having a holomorphi
 extention onto a neighbourhood of X (f 2 A(X)).Suppose that � is an f -invariant ergodi
 measure on X with positive Lyapunov exponent.Suppose also that h : Z ! X is a measurable mapping su
h that � Æ h�1 = � andh Æ T = f Æ h �-a.e.. Then for �-a.e. z 2 Z there exists r(z) > 0 su
h that for everyn � 1 there exists f�nxn : B(x; r(z)) ! CI, an inverse bran
h of fn sending x = h(z) toxn = h(T�n(z)). In addition, for an arbitrary �, ���(f) < � < 0, (not depending on z)and a 
onstant K(z) j(f�nxn )0(y)j < K(z)e�n and j(f�nxn )0(w)jj(f�nxn )0(y)j � Kfor all y; w 2 B(x; r(z)). K is here the Koebe 
onstant 
orresponding to the s
ale 1=2.Proof. Suppose �rst that ��Sn�1 fn(Crit(f))� > 0. Sin
e � is ergodi
 this implies that� must be 
on
entrated on a periodi
 orbit of an element w 2 Sn�1 fn(Crit(f)). Thismeans that w = fq(
) = fq+k(
) for some q; k � 1 and 
 2 Crit(f), and�(ffq(
); fq+1(
); : : : ; fq+k�1(
)g) = 1:Sin
e R log jf `j d� > 0, j(fk)`(fq(
))j > 1. Thus the theorem is obviously true for the seth�1(ffq(
); fq+1(
); : : : ; fq+k�1(
)g) of � measure 1.So, suppose that ��Sn�1 fn(Crit(f))� = 0. Set R = minf1; dist(X;CI n U(f))g and �x� 2 (e 14�; 1). Consider z 2 Z su
h that x = h(z) =2 Sn�1 fn(Crit(f)),limn!1 1n log j(fn)0(h(T�n(z))j = ��(f);4



and xn = h(T�n(z)) 2 B(f(Crit(f)); R�n) only for �nitely many n's. We shall �rstdemonstrate that the set of points satisfying these properties is of full measure �. Indeed,the �rst requirement is satis�ed by our hyphothesis, the se
ond is due to Birkho�'s ergodi
theorem. In order to prove that the set of points satisfying the third 
ondition has �measure 1 noti
e thatXn�1 ��Tn(h�1(B(f(Crit(f)); R�n)))� =Xn�1 ��h�1(B(f(Crit(f)); R�n))�=Xn�1�(B(f(Crit(f)); R�n)) <1;where the last inequality we wrote due to Lemma 9.2.2 and Lemma 9.2.1. The appli
ationof the Borel-Canteli lemma �nishes now the demonstration. Fix now an integer n1 = n1(z)so large that xn = h(T�n(z)) =2 B(f(Crit(f)); R�n) for all n � n1. Noti
e that be
ause ofour 
hoi
es there exists n2 � n1 su
h that j(fn)0(xn)j�1=4 < �n for all n � n2. Finally setS =Pn�1 j(fn)0(xn)j�1=4, bn = 12S�1j(fn+1)0(xn+1)j�14 , and� = �1n=1(1� bn)�1whi
h 
onverges sin
e the series Pn�1 bn 
onverges. Choose now r = r(z) so smallthat 16r(z)�KS3 � R, all the inverse bran
hes f�nxn : B(x0;�r(z)) ! CI are well-de�ned for all n = 1; 2; : : : ; n2 and diam�f�n2xn2 (B�x0; r�k�n2(1 � bk)�1)� � �n2R. Weshall show by indu
tion that for every n � n2 there exists an analyti
 inverse bran
hf�nxn : B�x0; r�k�n(1� bk)�1�! CI, sending x0 to xn and su
h thatdiam�f�nxn (B�x0; r�k�n(1� bk)�1)� � �nR:Indeed, for n = n2 this immediately follows from our requirements imposed on r(z). So,suppose that the 
laim is true for some n � n2. Sin
e xn = f�nxn (x0) =2 B(Crit(f); R�n)and sin
e �nR � R, there exists an inverse bran
h f�1xn+1 : B(xn; �nR) ! CI sendingxn to xn+1. Sin
e diam�f�nxn (B�(x0; r�k�n(1 � bk)�1)� � �nR, the 
omposition f�1xn+1 Æf�nxn B�x0; r�k�n(1� bk)�1)! CI is well-de�ned and forms the inverse bran
h of fn+1 thatsends x0 to xn+1. By the Koebe distortion theorem we now estimatediam�f�(n+1)xn+1 (B�x0; r�k�n+1(1� bk)�1))�� 2r�k�n+1(1� bk)�1j(fn+1)0(xn+1)j�1Kb�3n� 16r�KS3j(fn+1)0(xn+1)j�1j(fn+1)0(xn+1)j 34= 16r�KS3j(fn+1)0(xn+1)j� 14� R�n+1;where the last inequality sign we wrote due to our 
hoi
e of r and the number n2. Puttingr(z) = r=2 the se
ond part of this theorem follows now as a 
ombined appli
ation of theequality limn!1 1n log j(fn)0(xn)j = ��(f) and the Koebe distortion theorem. |5



As an immediate 
onsequen
e of Theorem 9.2.3 we get the following.Corollary 9.2.4. Assume the same notation and asumptions as in Theorem 9.2.3. Fix" > 0. Then there exist a set Z(") � Z, the numbers r(") 2 (0; 1) and K(") � 1 su
h that�(Z(")) > 1� ", r(z) � r(") for all z 2 Z(") and with xn = h(T�n(z))K(")�1 exp(�(�� + ")n) � j(f�nxn )(y)j � K(") exp(�(�� � ")n) and j(f�nxn )0(w)jj(f�nxn )0(y)j � Kfor all n � 1, all z 2 Z(") and all y; w 2 B(x0; r(")). K is here the Koebe 
onstant
orresponding to the s
ale 1=2.Remark 9.2.5. In our future appli
ations the system (Z; f; �) will be usually given bythe natural extension of the holomorphi
 system (f; �).x9.3 MA~N�E'S PARTITIONIn this se
tion, basi
ally following Ma~n�e's book ???, we 
onstru
t so 
alled Ma~n�e's partitionwhi
h will play an important role in the proof of a part of the Volume Lemma given in thenext se
tion. We begin with the following elementary fa
t.Lemma 9.3.1. If xn 2 (0; 1) for every n � 1 andP1n=1 nxn <1, thenP1n=1�xn log xn <1.Proof. Let S = fn : � log xn � ng. Then1Xn=1�xn log xn = Xn=2S�xn logxn +Xn2S�xn logxn � 1Xn=1nxn +Xn2S�xn logxnSin
e n 2 S means that xn � e�n and sin
e log t � 2pt for all t � 1, we haveXn2S xn log 1xn � 2 1Xn=1xnr 1xn � 2 1Xn=1 e� 12n <1The proof is �nished. |The next lemma is the main and simultaneously the last result of this se
tion.Lemma 9.3.2. If � is a Borel probability measure 
on
entrated on a bounded subsetM of a Eu
lidean spa
e and � : M ! (0; 1℄ is a measurable fun
tion su
h that log � is6



integrable with respe
t to �, then there exists a 
ountable measurable partition, 
alledMa~n�e's partition, P of M su
h that H�(P) <1 anddiam(P(x)) � �(x)for �-almost every x 2M .Proof. Let q be the dimension of the Eu
lidean spa
e 
ontainingM . Sin
eM is bounded,there exists a 
onstant C > 0 su
h that for every 0 < r < 1 there exists a partition Prof M of diameter � r and whi
h 
onsists of at most Cr�q elements. For every n � 0 putUn = fx 2 M : e�(n+1) < �(x) � e�ng. Sin
e log � is a non-positive integrable fun
tion,we have 1Xn=1�n�(Un) � 1Xn=1 ZUn log � d� = ZM log � d� > �1so that(9.3.1) 1Xn=1n�(Un) < +1:De�ne now P as the partition whose atoms are of the form Q \ Un, where n � 0 andQ 2 Prn , rn = e�(n+1). ThenH�(P) = 1Xn=0�� XUn�P2P �(P ) log�(P )�:But for every n � 0� XUn�P2P �(P ) log�(P ) = �(Un)XP � �(P )�(Un) log� �(P )�(Un)�� �(Un)XP �(P )�(Un) log(�(Un))� �(Un)(logC � q log rn)� �(Un) log�(Un)� �(Un) logC + q(n+ 1)�(Un)� �(Un) log�(Un):Thus, summing over all n � 0, we obtainH�(P) � logC + q + q 1Xn=0n�(Un) + 1Xn=0��(Un) log�(Un):Therefore looking at (9.3.1) and Lemma 9.3.1 we 
on
lude that H�(P) is �nite. Also, ifx 2 Un, then the atom P(x) is 
ontained in some atom of Prn and thereforediam(P(x)) � rn = e�(n+1) < �(x):Now the remark that the union of all the sets Un is of measure 1 
ompletes the proof. |7



x9.4 VOLUME LEMMA AND THE FORMULA HD(�) = h�(f)=��(f)In this se
tion we keep the notation of Se
tions 9.1 and 9.2 and our main purpose is toprove the following two results whi
h generalize the respe
tive results in Chapter 7.Theorem 9.4.1. If f 2 A(X) and � is an ergodi
 f -invariant measure with positiveLyapunov exponent, then HD(�) = h�(f)=��(f).Theorem 9.4.2. ( Volume Lemma) With the assumptions of Theorem 9.4.1limr!0 log(�(B(x; r)))log r = h�(f)��(f)for �-a.e. x 2 X.In view of Corollary 6.6.4, Theorem 9.4.1 follows from Theorem 9.4.2 and we only need toprove the latter one. Let us prove �rst(9.4.1) lim infr!0 log(�(B(x; r)))log r � h�(f)��(f)for �-a.e. x 2 X. By Corollary 7.1.9 there exists a �nite partition P su
h that for anarbitrary " > 0 and every x in a set Xo of full measure � there exists n(x) � 0 su
h thatfor all n � n(x).(9.4.2) B(fn(x); e�"n) � P(fn(x)):Let us work from now on in the natural extension ( ~X; ~f; ~�). Let ~X(") and r(") be givenby Corollary 9.2.4, i.e. ~X(") = Z("). In view of Birkho�'s Ergodi
 Theorem there existsa measurable set ~F (") � ~X(") su
h that ~�( ~F (")) = ~�( ~X(")) andlimn!1 1n n�1Xj=1 � ~X(") Æ ~fn(~x) = ~�( ~X("))for every ~x 2 ~F ("). Let F (") = �( ~F (")). Then �(F (")) = ~�(��1(F (")) � ~�( ~F (")) =~�( ~X(")) 
onverges to 1 if "& 0. Consider now x 2 F (")\Xo and take ~x 2 ~F (") su
h thatx = �(~x). Then by the above there exists an in
reasing sequen
e fnk = nk(x) : k � 1gsu
h that ~fnk(~x) 2 ~X(") and(9.4.3) nk+1 � nknk � "for every k � 1. Moreover, we 
an assume that n1 � n(x). Consider now an integer n � n1and the ball B�x;Cr(") exp(�(�� + (2 + log kf 0k)")n)�, where 0 < C < (Kr("))�1 is a
onstant (possibly depending on x) so small that(9.4.4) fq�B(x;Cr(") exp�(�� + (2 + log kf 0k)")n)� � P (fq(x))8



for every q � n1 and K(") � 1 is the 
onstant appearing in Corollary 9.2.4. Take nowany q, n1 � q � n, and asso
iate k su
h that nk � q � nk+1. Sin
e ~fnk(~x) 2 ~X(")and sin
e �( ~fnk(~x)) = fnk(x), Corollary 9.2.4 produ
es a holomorphi
 inverse bran
hf�nkx : B(fnk(x); r("))! CI of fnk su
h that f�nkx (fnk(x)) = x andf�nkx �B(fnk(x); r("))� � B�x;K(")r(")�1 exp(�(�� + ")nk)�:Sin
e B(x;Cr(") exp�(�� + (2 + log kf 0k)")n) � B�x;K(")�1r(") exp�(�� + ")nk)�, itfollows from Corollary 9.2.4 thatfnk�B(x;Cr(") exp� (�� + (2 + log kf 0k)")n)� �� B�fnk(x); CKr(")e���(n�nk) exp("(nk � (2 + log kf 0k)n))�:Sin
e n � nk and sin
e by (9.4.3) q � nk � "nk, we therefore obtainfq�B(x;Cr(") exp�(�� + (2 + log kf 0k)")n)� �� B(fq(x); CK(")r(")e���(n�nk) exp("(nk � (2 + log kf 0k)n)) exp((q � nk) log kf 0k)� B(fq(x); CK(")r(") exp�"(nk log kf 0k+ nk � 2n� n log kf 0k)�� B(fq(x); CK(")r(")e�"n) � B(fq(x); e�"q):Combining this, (9.4.2), and (9.4.4), we getB�x;Cr(") exp�(�� + (2 + log kf 0k)")n)� � n_j=0 f�j(P)(x):Therefore, applying Theorem 1.5.5 (the Shanon-M
Millan-Breiman Theorem), we havelim infn!1 � 1n log��B(x;Cr(") exp�(�� + (2 + log kf 0k)")n)� � h�(f;P) � h�(f)� "It means that denoting the number Cr(") exp�(�� + (2 + log kf 0k)")n) by rn, we havelim infn!1 log�(B(x; rn)log rn � h�(f)� "��(f) + (2 + log kf 0k)"Now, sin
e frng is a geometri
 sequen
e and sin
e " > 0 
an be taken arbitrarily small, we
on
lude that for �-a.e. x 2 Xlim infn!1 log�(B(x; r)log r � h�(f)��(f)This 
ompletes the proof of (9.4.1). |Remark. Sin
e here X � CI, we 
ould have 
onsidered a partition P of a neighbourhoodof X in CI where �P;a would have a more standard sense, see Remark after Corollary 7.1.8.Now let us prove that(8.4.5) lim supr!0 log(�(B(x; r)))log r � h�(f)=��(f)for �-a.e. x 2 X. 9



In order to prove this formula we again work in the natural extension ( ~X; ~f; ~�) and weapply Pesin theory. In parti
ular the sets ~X("), ~F (") � ~X(") and the radius r("), produ
edin Corollary 9.2.4 have the same neaning as in the proof of (9.4.1). To begin with noti
ethat there exist two numbers R > 0 and 0 < Q < minf1; r(")=2g su
h that the foloowingtwo 
onditions are satis�ed.(9.4.6) If z =2 B(Crit(f); R), then f jB(z;Q) is inje
tive.(9.4.7) If z 2 B(Crit(f); R), then f jB(z;Qdist(z;Crit(f))) is inje
tive.Observe also that if z is suÆ
iently 
lose to a 
riti
al point 
, then f 0(z) is of order(z � 
)q�1, where q � 2 is the order of 
riti
al point 
. In parti
ular the quotient of f 0(z)and (z� 
)q�1 remains bounded away from 0 and 1 and therefore there exists a 
onstantnumber B > 1 su
h that jf 0(z)j � Bdist(z;Crit(f)). So, in view of Theorem 9.2.2, thelogarithm of the fun
tion �(z) = Qminf1; dist(z; Crit(f)) is integrable and 
onsequentlyLemma 9.3.2 applies. Let P be the Ma~n�e's partition produ
ed by this lemma. ThenB(x; �(x)) � P(x) for �-a.e. x 2 X, say for a subset X� of X of measure 1. Consequently(9.4.8) Bn(x; �) = n�1\j=0 f�j�B(f j(x); �(f j(x)))� � Pn0 (x)for every n � 1 and every x 2 X�. By our 
hoi
e of Q and the de�nition of �, the fun
tionf is inje
tive on all balls B(f j(x); �(f j(x))), j � 0, and therefore fk is inje
tive on theset Bn(x; �) for every 0 � k � n � 1. Now, let x 2 F (") \ X� and let k be the greatestsubs
ript su
h that q = nk(x) � n � 1. Denote by f�qx the unique holomorphi
 inversebran
h of fq produ
ed by Corollary 9.2.4 whi
h sends fq(x) to x. Clearly Bn(x; �) �f�q(B(fq(x); �(fq(x)))) and sin
e fq is inje
tive on Bn(x; �) we even haveBn(x; �) � f�qx (B(fq(x); �(fq(x)))):By Corollary 9.2.4 diam�f�qx (B(fq(x); �(fq(x))))� � K exp(�q(��� ")). Sin
e by (9.4.3),n � q(1 + ") we �nally dedu
e thatBn(x; �) � B�x;K exp(�n�� � "1 + " )�:Thus, in view of (9.4.8) B�x;K exp(�n�� � "1 + " )� � Pn0 (x):Therefore, denoting by rn the radius of the ball above, it follows from Shanon-M
Millan-Breiman theorem that for �-a.e x 2 Xlim supn!1 � 1n log�(B(x; rn) � h�(f;P) � h�(f):10



So lim supn!1 log�(B(x; rn)log rn � h�(f)��(f)� " (1 + "):Now, sin
e frng is a geometri
 sequen
e and sin
e " 
an be taken arbitrarily small, we
on
lude that for �-a.e. x 2 Xlim supn!1 log�(B(x; r)log r � h�(f)��(f) :This 
ompletes the proof of (9.4.5) and be
ause of (9.4.1) also the proof of Theorem 9.4.2.|x9.5 PRESSURE-LIKE DEFINITION OF THE FUNCTIONAL h� + R � d�.In this se
tion we prepare some general tools used in the next se
tion to approximatetopologi
al pressure on hyperboli
 sets. No smoothness is assumed here, we work in purelymetri
 setting only. Our exposition is similar to that 
ontained in Chapter 2.Let T : X ! X be a 
ontinuous map of a 
ompa
t metri
 spa
e (X; �) and let � be aBorel probability measure on X. Given " > 0 and 0 � Æ � 1 a set E � X is said to be�� (n; "; Æ)-spanning if �� [x2EBn(x; ")� � 1� Æ:Let � : X ! IR be a 
ontinuous fun
tion. We de�neQ�(T; �; n; "; Æ) = infE �Xx2E expSn�(x)	where the in�mum is taken over all �� (n; "; Æ)-spanning sets E. The main result of thisse
tion is the following.Theorm 9.5.1. For every 0 < Æ < 1 and every ergodi
 measure �h�(T ) + Z � d� = lim"!0 lim infn!1 1n logQ�(T; �; n; "; Æ) = lim"!0 lim supn!1 1n logQ�(T; �; n; "; Æ)Proof. Denote the the number following the �rst equality sign by P�(T; �; Æ) and thenumber following the se
ond equality sign by P�(T; �; Æ). First, following essentially theproof of the Part I of Theorem 2.3.1, we shall show that(9.5.1) P�(T; �; Æ) � h�(T ) + Z � d�11



Indeed, similarly as in that proof 
onsider a �nite partition U = fA1; : : : ; Asg of X intoBorel sets and 
ompa
t sets Bi � Ai, i = 1; 2; : : : ; Asg, su
h that for the partition V =fB1; : : : ; Bs; X n (B1 [ : : : [ Bs)g we have H�(UjV) � 1. For every � > 0 and q � 1, setXq = fx 2 X : � 1n log��Vn(x)� � h�(T;V)� � for all n � q and1nSn�(x) � Z � d�� � for all n � qgFix now 0 � Æ < 1. It follows from Shannon-M
Millan-Breiman theorem and Birkho�'sergodi
 theorem that for q large enough �(Xq) > Æ. Take 0 < " < 12 minf�(Bi; Bj) : 1 �i < j � sg > 0 so small that j�(x)� �(y)j < �if �(x; y) � ". Sin
e for every x 2 X the set Bn(x; ") \ Xq 
an be 
overed by at most 2nelements of Vn, �(Bn(x; ") \Xq) � exp�n(log 2� h�(T;V) + �)�:Now let E be a � � (n; "; Æ)-spanning set for n � q, and 
onsider the set E0 = fx 2E : Bn(x; ") \ Xq 6= ;g. Take any point y(x) 2 Bn(x; ") \ Xq. Then by the 
hoi
e of ",Sn�(x)� Sn�(y) > �n�. Therefore we haveXx2E expSn�(x) exp��n�h�(T;V) + Z � d�� 3� � log 2�� �� Xx2E0 expSn�(x) exp��n�h�(T;V) + Z � d�� 3� � log 2��= Xx2E0 exp�Sn�(x)� n Z � d�� exp��n(h�(T;V)� 3� � log 2)�= Xx2E0 exp�Sn�(x)� Sn�(y) + Sn�(y)� n Z � d�� exp��n�h�(T;V)� 3� � log 2��� Xx2E0 exp(�n�) exp(�n�) exp(2n�) exp��n(h�(T;V)� � � log 2)�= Xx2E0 exp�n(log 2� h�(T;V) + �)�� Xx2E0 �(Bn(x; ") \Xq) � �(Xq)� Æ > 0whi
h implies that Q�(T; �; n; "; Æ) � h�(T;V) + Z � d�� 3� � log 2:Sin
e � > 0 is an arbitrary number and sin
e h�(T;U) � h�(T;V)+H�(UjV) � h�(T;V)+1,letting "! 0, we get P�(T; �; Æ) � h�(T;U)� 1 + Z � d�� log 212



Therefore, by the de�nition of entropy of an automorphism, P�(T; �; Æ) � h�(T )+R � d��log 2�1. Using now the standard tri
k, a
tually always applied in the setting we are whosepoint is to repla
e T by its arbitrary iterates T k and � by Sk�, we obtain kP�(T; �; Æ) �kh�(T ) + k R � d� � log 2 � 1. So, dividing this inequality by k, and letting k ! 1, we�nally obtain P�(T; �; Æ) � h�(T ) + Z � d�Now let us prove that(9.5.2) P�(T; �; Æ) � h�(T ) + Z � d�where P�(T; �; Æ) denotes limsup appearing in the statement of Theorm 9.5.1. Indeed, �x0 < Æ < 1, then " > 0 and � > 0. Let P be a �nite partition of X of diameter � ". ByShannon-M
Millan-Breiman theorem and Birkho�'s ergodi
 theorem there exists a Borelset Z � X su
h that �(Z) > 1� Æ and(9.5.3) 1nSn�(x) � Z � d�+ � and � 1n log�(Pn(x)) � h�(T ) + �for every n large enough and all x 2 Z. From ea
h element of Pn having non-empty inter-se
tion with Z 
hoose one point obtaining, say, a set fx1; x2; : : : ; xqg. Then Bn(xj; ") �Pn(xj) for every j = 1; 2; : : : ; q and therefore the set fx1; x2; : : : ; xqg is � � (n; "; Æ)-spanning. By the se
ond part of (9.5.3) we have q � exp(n(h�(T ) + �)). Using alsothe �rst part of (9.5.3), we getqXj=1 expSn�(xj) � exp(n(h�(T ) + � + Z � d�+ �))Therefore Q�(T; �; n; "; Æ) � exp(n(h�(T ) + � + R � d� + �)) and letting 
onsequtivelyn ! 1 and " ! 0, we obtain P�(T; �; Æ) � h�(T ) + R � d� + 2�. Sin
e � is an arbitrarypositive number, (9.5.2) is proved. This and (9.5.1) 
omplete the proof of Theorem 9.5.1.|.x9.6 KATOK'S THEORY { HYPERBOLIC SETS, PERIODIC POINTS, AND PRES-SUREIn this se
tion we again 
ome ba
k to the setting of Se
tion 9.1. So, let X be a 
ompa
tsubset of the 
losed 
omplex plane CI and let f : X ! X be a 
ontinuous map that 
an beanalyti
ally extended to an open neighbourhood U(f) of X.Let � be an f -invariant ergodi
 measure onX with positive Lyapunov exponent. h�(f)and let � : X ! IR be a real 
ontinuous fun
tion. Our �rst aim is to show that the number13



h�(f)+R � d� 
an be approximated by the topologi
al pressures of � on hyperboli
 subsetsof X and then as a straightforward 
onsequen
e we will obtain the same approximationfor the topologi
al pressure P(f; �).Theorm 9.6.1. If � is an f -invariant ergodi
 measure on X with positive Lyapunovexpenent �� and if � : X ! IR is a real-valued 
ontinuous fun
tion, then there exists asequen
e Xk, k = 1; 2; : : :, of 
ompa
t f - invariant subsets of U su
h that for every k therestri
tion f jXk is a 
onformal expanding repeller,lim infk!1 P(f jXk ; �) � h�(f) + Z � d�and if �k is any ergodi
 f -invariant measure on Xk, then the sequen
e �k, k = 1; 2; : : :,
onverges to � in the weak-*-topology on a 
losed neighbourhood of X.Proof. Sin
e P(f jXk ; � + 
) = P(f jXk ; �) + 
 and sin
e h�(f) + R (� + 
) d� = h�(f) +R � d� + 
, adding a 
onstant if ne
essary, we 
an assume that � is positive, that is thatinf � > 0. As in Se
tion 9.2 we work in the natural extension ( ~X; ~f; ~�). Given Æ > 0 let~X(Æ) and r(Æ) be produ
ed by Corollary 9.2.4. The set �( ~X(Æ)) is assumed to be 
ompa
t.This 
orollary implies the existen
e of a 
onstant �0 > 0 (possibly with a smaller radiusr(Æ)) su
h that(9.6.1) diam�f�nxn (B(�(~x); r(Æ))� � e�n�0for all ~x 2 ~X(Æ) and n � 0. Fix a 
ountable basis f jg1j=1 of the Bana
h spa
e C(X) ofall 
ontinuous real-valued fun
tions C(X). Fix � > 0 and an integer s � 1. In view ofTheorem 9.5.1 and 
ontinuity of fun
tions � and  i there exists " > 0 so small that(9.6.2) lim infn!1 1n logQ�(T; �; n; "; Æ)� (h�(f) + Z � d�) > ��;if jx� yj < ", then(9.6.3) j�(x)� �(y)j < �and(9.6.4) j i(x)�  i(y)j < 12�for all i = 1; 2; : : : ; s.Set � = r(Æ)=2 and �x a �nite �=2-spanning set of �( ~X(Æ)), say fx1; : : : ; xtg. That isB(x1; �=2) [ : : : [ B(xt; �=2) � �( ~X(Æ=2)). Let U be a �nite partion of X with diameter< �=2 and let n1 be suÆ
iently large that(9.6.5) exp(�n1�0) < minf�=3; K�1g:14



Given n � 1 de�ne~Xn;s = f~x 2 ~X(Æ) : ~fq(~x) 2 ~X(Æ) and �( ~fq(~x)) 2 U(~x)for some q 2 [n+ 1; (1 + �)n℄and ���� 1kSk( i)(�(~x))� Z  i d����� < 12�for every k � n and all i = 1; 2; : : : ; sg:By Birkho�'s ergodi
 theorem limn!1 �( ~Xn;s) = �( ~X(Æ)) > 1� Æ. Therefore there existsn � n1 so large that �( ~Xn;s) > 1 � Æ. Let Xn;s = �(( ~Xn;s)). Then �(Xn;s) > 1 � Æ andlet En � Xn;s be a maximal (n; ")-separated subset of Xn;s. Then En is a spanning set ofXn;s and therefore it follows from (8.6.2) that for all n large enough1n log Xx2En expSn�(x)� (h�(f) + Z � d�) > ��:Equivalently Xx2En exp(Sn�(x)) > exp(n(h�(f) + Z � d�� �)):For every q 2 [n+ 1; (1 + �)n℄ letVq = fx 2 En : fq(x) 2 U(x)gand let m = m(n) be a value of q that maximizesPx2Vq exp(Sn�(x)). Sin
e S(1+�)nq=n+1 Vq =En, we thus obtainXx2Vm expSn�(x) � (n�)�1 (1+�)nXq=n+1 Xx2Vq expSn�(x)� (n�)�1 Xx2En exp(Sn�(x)) � exp(n(h�(f) + Z � d�� 2�)):Consider now the sets Vm \ B(xj ; �=2), 1 � j � t and 
hoose the value i = i(m) of jthat maximizes Px2Vm\B(xj ;�=2) exp(Sn�(x)). Thus, writing Dm for Vm \ B(xi(m); �=2)we have Vm = Stj=1 Vm \ B(xi; �=2) andXx2Dm expSn�(x) � 1t exp(n(h�(f) + Z � d�� 2�)):Sin
e � is positive, this implies that(9.6.6) Xx2Dm expSm�(x) � 1t exp(n(h�(f) + Z � d�� 2�)):15



Now, if x 2 Dm, then jfm(x)�xij � jfm(x)�xj+ jx�xij < �=2+�=2 = � and thereforefm(x) 2 B(xi; �) � B(fm(x); 2�):Thus, by (9.6.1) and as m � n � n1, we have diam�fx�m(B(fm(x); 2�)� � exp(�m�0) <�=3, where ~x 2 ��1(x) \ ~Xn;s. Thereforef�mx (B(xi; �)) � B�xi; �2 + �3� = B�xi; 56��In parti
ular(9.6.7) f�mx (B(xi; �)) � B(xi; �)Consider now two distin
t points y1; y2 2 Dm. Then f�my2 (B(xi; �)) \ f�my1 (B(xi; �)) = ;and de
reasing � a little bit, if ne
essary, we may assume thatf�my2 (B(xi; �)) \ f�my1 (B(xi; �)) = ;:Let � = minn�;minndist�f�my2 (B(xi; �)); f�my1 (B(xi; �)� : y1; y2 2 Dm; y1 6= y2oo :De�ne now indu
tively the sequen
e of sets fX(j)g1j=0 
ontained in U(f) by settingX(0) = (B(xi; �) and X(j+1) = [x2Dm f�mx0 (X(j))By (9.6.7),fX(j)g1j=0, is a des
ending sequen
e of non-empty 
ompa
t sets, and thereforethe interse
tion X� = X�(�; s) = 1\j=0X(j)is also a non-empty 
ompa
t set. Moreover, by the 
onstru
tion fm(X�) = X�, fmjX�is topologi
ally 
onjugate to the full one-sided shift generated by an alphabet 
onsistingof #Dm elements and it immediately follows from Corollary 9.2.4 that fmjX� is an ex-panding map. Sin
e fmjX� is an open map, it is straightforward to 
he
k that the triple(fm; X�; Um) is a 
onformal expanding repeller with a suÆ
iently small neighborhood Umof X�. Thus (f;X(�; s);Ws), is also a 
onformal expanding repeller, whereX(�; s) = m�1[l=0 f l(X�) and Ws = m�1[l=0 f l(Um)16



Fix now an integer j � 1. For any j-tuple (z0; z1; : : : ; zj�1), zl 2 Dm 
hoose exa
tly onepoint y from the set f�mzj�1 Æ f�mzj�2 Æ : : :Æ f�mz0 (X�) and denote the made up set by Aj. Sin
eby (9.6.3) and (9.6.5) Sjm�(y) �Pj�1l=0 Sm�(zl)� jm� we see thatXy2Aj expSjm�(y) � � Xx2Dm expSm�(x)�j exp(�jm�)and 1j log Xy2Aj expSjm�(y) � log Xx2Dm expSm�(x)�m�In view of the de�nition of �, the set Aj is (j; �)-separated for fm and � is an expansive
onstant for fm. Hen
e, letting j !1 we obtainP(fmjX� ; Sm�) � log Xx2Dm expSm�(x)�m�� n�h�(f) + Z � d�� 2��� log t�m�where the last inequality was written in view of (9.6.6). Sin
e n+ 1 � m � n(1 + �) andsin
e inf � > 0 (and 
onsequently h�(f) + R � d� > 0), we getP(f jX(�;s); �) = 1mP(fmjX(�;s); �) � 1mP(fmjX� ; Sm�)� 11 + � �h�(f) + Z � d�� 2��� log tm � �Supposing now that n (and 
onsequently also m) was 
hoosen suÆ
iently large we getP(f jX(�; s); �) � 11 + � (h�(f) + Z � d�)� 4�:If now � is any ergodi
 f -invariant measure on X(�; s), then it follows from the de�nitionof the set ~Xn;s, the 
onstru
tion of the set X(�; s) and the Birkho� ergodi
 theoremthat j R  i d� � R  i d�j < � for every i = 1; 2; : : : ; s. Therefore putting for exampleXk = X(1=k; k), 
ompletes the proof of Theorem 9.6.1. |Remark 9.6.2. If the set X is repelling, that is if Tn�0 f�n(U) = X, then the sets Xk
onstu
ted in the proof of Theorem 9.6.1 are all 
ontained in X. In parti
ular we get thefollowing.Corollary 9.6.3. If the set X is repelling and if P(f; �) > sup �, then there exists asequen
e Xk, k = 1; 2; : : :, of 
ompa
t f -invariant subsets of X su
h that for every k, f jXkis a 
onformal expanding repeller,limk!1P(f jXk ; �) = P(f; �)17



and if �k is any ergodi
 f -invariant measure on Xk, then the sequen
e �k, k = 1; 2; : : :,
onverges to � in the weak-*-topology on X.Remark 9.6.4. Of 
ourse in Corollary 9.6.3 was suÆ
ient to assume that P(f; �) =supfh�(f) + R � d�g where the supremum is taken over all ergodi
 invariant measures ofpositive entropy, whi
h is assured for eaxample by inequality P(f; �) > sup�. Besides, ifthe fun
tion � has an equilibrium state of positive entropy, then the sequen
e �k 
an be
hoosen to 
onverge to this equilibrium state.Our last immediate 
on
lusion 
on
erns periodi
 points.Corollary 9.6.5. If f : X ! X is repelling and htop(f) > 0, then f has in�nitely manyperiodi
 points. Moreover the number of periodi
 points of period n grows exponentialyfast with n.
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CHAPTER 10CONFORMAL MEASURES
x10.1. GENERAL NOTION OF CONFORMAL MEASURES.Let T : X ! X be a 
ontinuous map of a 
ompa
t metri
 spa
e (X; �) and let g : X ! IRbe a non{negative measurable fun
tion. A Borel probability measure m on X is said tobe g{
onformal for T : X ! X if(10.1.1) m(T (A)) = ZA g dmfor any Borel set A � X su
h that T jA is inje
tive. Sets with this property will be 
alledspe
ial. There is a 
lose relation between 
onformal measures and Perron-Frobenius typeoperators. In order to des
ribe it noti
e �rst that(10.1.2) ZT (A) � dm = ZA(� Æ T )g dmfor any Borel fun
tion � and any spe
ial set A. Assume now (only till Proposition 10.1.1)additionally that T is bounded{to{one (i.e. the numbers of preimages of points are uni-formly bounded) and that g takes values in IR+. De�ne then the Perron{Frobenius operatorLg, asso
iated to T and g, putting for a measurable fun
tion � : X ! IR+Lg�(x) = XT (y)=x �(y)g(y)Lg� is a well de�ned measurable fun
tion. We shall prove the following.Proposition 10.1.1. Assume that there exists a �nite partition of X into spe
ial sets Xi(1 � i � s), su
h that all the maps T : Xi ! T (Xi) are measurable isomorphisms. Thenm is g{
onformal if and only if Lg a
ts on L1(m) and L�gm = m, where L�g is the operator
onjugate with Lg.Proof. Let m be g{
onformal and let � 2 L1(m). By (10.1.2)ZT (Xi) �g Æ �T jXi��1 dm = ZXi � dm1



for every i = 1; : : : ; s. Thus, summing over all i yieldsZX Lg� dm = ZX � dmConversely, assume that Lg a
ts on L1(m) and that m is a �xed point of L�g. Let A be aspe
ial set. Then, by the de�nition of the Perron{Frobenius operatorZA g dm = ZA f d(L�gm) = ZX Lg(1Ag) dm = ZX XT (y)=x 1A(y)m(dx) = m(T (A))Thus m is f -
onformal. |Now we shall provide a general method of 
onstru
ting 
onformal measures. The 
onstru
-tion will make use of the following simple analyti
al fa
t. For a sequen
e fan : n � 1g ofreals the number(10.1.3) 
 = lim supn!1 annwill be 
alled the transition parameter of fan : n � 1g. It is uniquely determined by theproperty that Xn�1 exp(an � ns)
onverges for s > 
 and diverges for s < 
. For s = 
 the sum may 
onverge or diverge.By a simple argument one obtains the following.Lemma 10.1.2. There exits a sequen
e fbn : n � 1g of positive reals su
h that1Xn=1 bn exp(an � ns)�<1 s > 
=1 s � 
and limn!1 bnbn+1 = 1.Proof. If P exp(an � n
) = 1, put bn = 1 for every n � 1. If P exp(an � n
) < 1,
hoose a sequen
e fnk : k � 1g of positive integers su
h that limk!1 nkn�1k+1 = 0 and"k := ankn�1k � 
! 0. Settingbn = exp�n� nk � nnk � nk�1 "k�1 + n� nk�1nk � nk�1 "k�� for nk�1 � n < nk;it is easy to 
he
k that the lemma follows. |Getting ba
k to dynami
s let fEng1n=1 be a sequen
e of �nite subsets of X su
h that(10.1.4) T�1(En) � En+1 for every n � 12



and let an = log� Xx2En exp(Sng(x))�where Sng = P0�k<n g Æ T k. Denote by 
 the transition parameter of this sequen
e.Choose a sequen
e fbn : n � 1g of positive reals as in lemma 10.1.2 for the sequen
efan : n � 1g. For s > 
 de�ne(10.1.5) Ms = 1Xn=1 bn exp(an � ns)and the normalized measure(10.1.6) ms = 1Ms 1Xn=1 Xx2En bn exp(Sng(x)� ns)Æx;where Æx denotes the unit mass at the point x 2 X. Let A be a spe
ial set. Using (10.1.4)and (10.1.6) it follows thatms(T (A)) = 1Ms 1Xn=1 Xx2En\T (A) bn exp(Sng(x)� ns)= 1Ms 1Xn=1 Xx2A\T�1En bn exp(Sng(T (x))� ns)= 1Ms 1Xn=1 Xx2A\En+1 bn exp[Sn+1g(x)� (n+ 1)s℄ exp(s� g(x))� 1Ms 1Xn=1 Xx2A\(En+1nT�1En) bn exp(Sng(T (x))� ns):(10.1.7)Set�A(s) == ������ 1Ms 1Xn=1 Xx2A\En+1 bn exp[Sn+1g(x)� (n+ 1)s℄ exp(s� g(x))� ZA exp(
� g) dms������3



and observe that�A(s) == 1Ms ���� 1Xn=1 Xx2A\En+1 exp[Sn+1g(x)� (n+ 1)s℄ exp(�g(x))(bnes � bn+1e
)� b1 Xx2A\E1 e
�s����� 1Ms 1Xn=1 Xx2A\En+1 ���� bnbn+1 � e
�s���� bn+1 exp(s� g(x)) exp�Sn+1g(x)� (n+ 1)s�+ 1Ms b1 exp(
� s) ℄(A \ E1)� 1Ms 1Xn=1 Xx2En+1 ���� bnbn+1 � e
�s���� bn+1 exp(s� g(x)) exp�Sn+1g(x)� (n+ 1)s�+ 1Ms b1 exp(
� s) ℄E1:By lemma 10.1.2 we have limn!1 bn+1=bn = 1 and lims&
Ms =1. Therefore(10.1.8) lims&
�A(s) = 0uniformly for all spe
ial sets A.Any weak a

umulation point, when s # 
, of the measures fms : s > 
g de�ned by (10.1.6)will be 
alled a limit measure (asso
iated to the fun
tion g and the sequen
e fEn : n � 1g).In order to �nd 
onformal measures among the limit measures, it is ne
essary to examine(10.1.7) in greater detail. To beginn with, for a Borel set D � X, 
onsider the following
ondition(10.1.9) lims&
 1Ms 1Xn=1 Xx2D\(En+1nT�1En) bn exp�Sng(T (x))� ns� = 0:We will need the following de�nitions.A point x 2 X is said to be singular for T if at least one of the following two 
onditions issatis�ed:(10.1.10) There is no open neighbourhood U of x su
h that T jU is inje
tive.(10.1.11) For all " > 0 there exists an open set U � B(x; ") su
h that T (U) is not an opensubset of X. 4



The set of all singular points is denoted by Sing(T ), the set of all points satisfying 
ondition(10.1.10) is denoted by Crit(T ) and the set of all points satisfying 
ondition (10.1.11) isdenoted by X0(T ).It is easy to give examples where X0 \ Crit(T ) 6= ;. If T : X ! X is an open map, nopoint satis�es 
ondition (10.1.11), that is X0(T ) = ;.In spite of what was assumed in [ECM℄ and similarly as in [Sul℄, the set Sing(T ) is notrequired to be �nite. Let us prove the following.Lemma 10.1.3. Let m be a Borel probability measure on X and let � be a 
ompa
t set
ontaining Sing(T ). If (10.1.1) holds for every spe
ial set A whose 
losure is disjoint from� and su
h that m(�A) = m(�T (A)) = 0, then (10.1.1) 
ontinues to hold for every spe
ialset A disjoint from �.Proof. Let A be a spe
ial set disjoint from �. Fix " > 0. Sin
e on the 
omplement of �the map T is open, for ea
h point x 2 A there exists an open neighbourhood U(x) of xsu
h that T jU(x) is a homeomorphism, m(�U(x)) = m(�T (U(x))) = 0, U(x) \ � = ; andsu
h that Z[U(x)nA g dm < "Choose a 
ountable family fUkg from fU(x)g whi
h 
overs A and de�ne re
ursively A1 =U1 and An = Un nSk<n Uk. By the assumption of the lemma, ea
h set Ak satis�es (10.1.1)and hen
e m(T (A)) = m( 1[k=1T (A \ Ak)) � 1Xk=1m(T (Ak))= 1Xk=1ZAk g dm = ZA g dm+ 1Xk=1 ZAknA g dm� ZA g dm+ ":If "! 0, it follows that m(T (B)) � ZB g dmfor any spe
ial set B disjoint from �. Using this fa
t, the lower bound for m(T (A)) isobtained from the following estimate, if "! 0:m(T (A)) = m( 1[k=1T (A \Ak)) = 1Xk=1m(T (A \Ak))= 1Xk=1 (m(T (Ak))�m(T (Ak nA))) � 1Xk=1 ZAk g dm� ZAknA g dm!= Z[k�1Ak g dm� Z[k�1AknA g dm � ZA g dm� ":5



This proves the lemma. |Lemma 10.1.4. Let m be a limit measure and let � be a 
ompa
t set 
ontaining Sing(T ).Assume that every spe
ial set D � X withm(�D) = m(�T (D)) = 0 and �D\� = ; satis�es
ondition (10.1.9). Then m(T (A)) = RA exp(
�f) dm for every spe
ial set A disjoint from�.Proof. Let D � X be a spe
ial set su
h that �D \ � = ; and m(�D) = m(�T (D)) = 0. Itfollows immediately from (10.1.7){(10.1.9) that m(T (D)) = RD exp(
 � f) dm. Applyingnow Lemma 10.1.3 
ompletes the proof. |Lemma 10.1.5 Let m be a limit measure. If 
ondition (10.1.9) is satis�ed for D = X,then m(T (A)) � RA exp(
� f) dm for every spe
ial set A disjoint from Crit(T ).Proof. Suppose �rst that A is 
ompa
t and m(�A) = 0. From (10.1.7), (10.1.8) and theassumption one obtains lims2J j ms(T (A))� ZA exp(
� f) dms j= 0where J denotes the subsequen
e along whi
h ms 
onverges to m. Sin
e T (A) is 
ompa
t,this impliesm(T (A)) � lim infs2J ms(T (A)) = lims2J ZA exp(
� f) dms = ZA exp(
� f) dmNow, drop the assumption m(�A) = 0 but keep A 
ompa
t and assume additionally thatfor some " > 0 the ball B(A; ") is also spe
ial. Choose a des
ending sequen
e An of
ompa
t subsets of B(A; ") whose interse
tion equals A and m(�An) = 0 for every n � 0.By what has been already provedm(T (A)) = limn!1m(T (An)) � ZAn exp(
� f) dm = ZA exp(
� f) dmlThe next step is to prove the lemma for A, an arbitrary open spe
ial set disjoint fromCrit(T ) by partitioning it by 
ountably many 
ompa
t sets. Then one approximates fromabove spe
ial sets of suÆ
iently small diameters by spe
ial open sets and the last step is topartition an arbitrary spe
ial set disjoint from Crit(T ) by sets of so small diameters thatthe lemma holds. |Lemma 10.1.6 Let � be a 
ompa
t subset of X 
ontaining Sing(T ). Suppose that forevery integer n � 1 there are a 
ontinuous fun
tion gn : X ! X and a measure mn on Xsatisfying (10.1.1) for g = gn and for every spe
ial set A � X with(a) A \ � = ;and satisfying mn(B) � ZB gn dmn6



for any spe
ial set B � X su
h that B\Crit(T ) = ;. Suppose, moreover, that the sequen
efgng1n=1 
onverges uniformly to a 
ontinuous fun
tion g : X ! IR. Then for any weaka

umulation point m of the sequen
e fmng1n=1 we have(b) m(T (A)) = ZA g dmfor all spe
ial sets A � X su
h that A \ � = ; and(
) m(T (B)) � ZB g dmfor all spe
ial sets B � X su
h that B \ Crit(T ) = ;.Moreover, if (a) is repla
ed by(a') A \ (� n (Crit(T ) nX0(T ))) = ;;then for any x 2 Crit(T ) nX0(T )(d) m(fT (x)g) � g(x)m(fxg) � q(x)m(fT (x)g)where q(x) denotes the maximal number of preimages of single points under the transfor-mation T restri
ted to a suÆ
iently small neighbourhood of x.The proof of property (b) is a simpli�
ation of the proof of Lemma 10.1.4 and the proofof property (
) is a simpli�
ation of the proof of Lemma 10.1.5. The proof of (d) uses thesame te
hni
s and is left for the reader.x10.2. SULLIVAN'S CONFORMAL MEASURES AND DYNAMICAL DIMENSION, I.Let, as in Chapter 9, X denote a 
ompa
t subset of the extended 
omplex plane CI andlet f 2 A(X) whi
h means that f : X ! X is a 
ontinuous map that 
an be analyti
allyextended to an open neighbourhood U(f) of X.Let t � 0. Any jf 0jt{
onformal measure for f : X ! X is 
alled a t{
onformal Sullivan'smeasure or even shorter a t{
onformal measure. Rewritting the de�ntion (10.1.1) it meansthat(10.2.1) m(f(A)) = ZA jf 0jt dmfor every spe
ial set A � X. An obvious but important property of 
onformal measures isformulated in the following 7



Lemma 10.2.1. If f : X ! X is lo
ally eventually onto, then every Sullivan's 
onformalmeasure is positive on nonempty open sets of X.In parti
ular it follows from this lemma that if f is lo
ally eventually onto, then for everyr > 0(10.2.2) M(r) = inffm(B(x; r)) : x 2 Xg > 0Denote by Æ(f) the in�nium over all exponents t � 0 for whi
h a t{
onformal measure forf : X ! X exists.Our aim in the two subsequent se
tions is to show the existen
e of 
onformal measures andeven more to establish more expli
ite dynami
al 
hara
terization of the number Æ(f). As amatter of fa
t we are going to prove that under some additional assumptions Æ(f) 
on
ideswith the dynami
al dimension DD(X) of X and the hyperboli
 dimension HyD(X) of Xwhi
h is de�ned as follows.DD(X) = supfHD(�) : � 2M+e (f)gHyD(X) = supfHD(Y ) : f jY is a 
onformal expanding repellergIn this se
tion we shall prove the following two results.Lemma 10.2.2. If f : X ! X is lo
ally eventually onto, then DD(X) � Æ(f).Proof. Our main idea "to get to a large s
ale" is the same as in [SulDU℄. However to 
arryit out we use Pesin theory des
ribed in Ch.8.2 instead of Mane's partition introdu
ed in[Mane℄ and applied in [SulDU℄. So, let � 2 M+e (f) and let m be a t{
onformal measure.We again work in the natural extension ( ~X; ~f; ~�). Fix " > 0 and let ~X(") and r(") begiven by Corollary 9.2.4. In view of the Birkho� ergodi
 theorem there exist a measurableset ~F (") � ~X(") su
h that ~�( ~F (")) = ~�( ~X(")) and an in
reasing sequen
e fnk = nk(~x) :k � 1g su
h that ~fnk(~x) 2 ~X(") for every k � 1. Let F (") = �( ~F (")). Then �(F (")) =~�(��1(F (")) � ~�( ~F (")) � 1 � 2". Consider now x 2 F (") and take ~x 2 ~F (") su
h thatx = �(~x). Sin
e ~fnk(~x) 2 ~X(") and sin
e �( ~fnk(~x) = fnk(x), Corollary 9.2.4 produ
es aholomorphi
 inverse bran
h f�nkx : B(fnk(x); r("))! CI of fnk su
h that f�nkx fnk(x) = xand f�nkx �B(fnk(x); r("))� � B�x;Kj(fnk)0(x)j�1r(")�Set rk(x) = Kj(fnk)0(x)j�1r("). Then by Corollary 9.2.4 and t{ 
onformality of mm(B(x; rk(x))) � K�tj(fnk)0(x)j�tm�B(fnk(x); r("))� �M(r("))�1K�2tr(")�trk(x)tTherefore, it follows from Theorem 5.5.1 (Besi
ovit
h 
overing theorem) that Ht(F (")) �M(r("))K2tr(")tb(2) < 1. Hen
e HD(F (")) � t. Sin
e ��S1n=1 F (1=n)� = 1, it impliesthat HD(�) � t. This �nishes the proof. |Theorem 10.2.3. If f : X ! X is lo
ally eventually onto and X is a repelling set for f ,then HyD(X) = DD(X). 8



Proof. In order to see that HyD(X) � DD(X) noti
e only that in view of Theorem 7.1.1there exists � 2 M+e (f jY ) � M+e (f) su
h that HD(�) = HD(Y ) . In order to prove thatDD(X) � CD(X) we will use Katok's theory from Se
tion 9.6 applied to �, an arbitraryergodi
 invariant measure of positive entropy. First, for every integer n � 0 de�ne on X anew 
ontinuous fun
tion �n = maxf�n; log jf 0jg:Then �n � log jf 0j and �n & log jf 0j pointwise on X. Sin
e in addition �n � log jjf 0jj, itfollows from the Lebesgue monotone 
onvergen
e theorem that limn!1 R �n d� = ��(f) =R log jf 0j d� > 0. Fix " > 0. Then for all n suÆ
iently large, say n � n0, R �nd� ���=(1� ") whi
h implies that(10.2.4) h�(f) = HD(�)�� � (1� ")HD(�) Z �n d�:Fix su
h n � n0. Let Xk � X, k � 0, be the sequen
e of 
onformal expanding repellersprodu
ed in Theorem 9.6.1 for the measure � and the fun
tion �HD(�)�n and let �k bean equilibrium state of the map f jXk and the potential �HD(�)�n restri
ted to Xk. Itfollows from the se
ond part of Theorem 9.6.1 that limk!1 R �n d�k = R �n d� > 0. Thusby Theorem 10.6.1 and (10.2.4)lim infk!1 �h�k �HD(�) Z �n d�k� = lim infk!1 P�f jXk ;�HD(�)�n�� h�(f)HD(�) Z �n d�� �HD(�) Z �n d�Hen
e, for all k large enoughh�k � HD(�) Z �n d�k � 2"HD(�) Z �n d� � HD(�) Z �n d�k � 3"HD(�) Z �n d�k= (1� 3")HD(�) Z �n d�k � (1� 3")HD(�) Z log jf 0j d�k:Thus HD(Xk) � HD(�k) = h�k(f)��k � (1� 3")HD(�):So, letting "! 0 �nishes the proof. |x10.3. SULLIVAN'S CONFORMAL MEASURES AND DYNAMICAL DIMENSION, II.In this se
tion f : CI ! CI is assumed to be a rational map of degree � 2 and X is its Juliaset J(f). Neverthless it is worth to mention that some results proved here 
ontinue to9



hold under weaker assumption that f jX is open or X is a perfe
t lo
ally maximal set forf . By Crit(f) we denote the set of all 
riti
al points 
ontained in the Julia set J(f).Lemma 10.3.1. If z 2 J(f) and ffn(z) : n � 0g \ Crit(f) = ;, then the seriesP1n=1 j(fn)0(z)j 13 diverges.Proof. By the assumption there exists " > 0 su
h that for every n � 0 the map f restri
tedto the ball B(fn(z); ") is inje
tive. Sin
e f is uniformly 
ontinuous there exists 0 < � < 1su
h that for every x 2 CI(10.3.1) f(B(x; �")) � B(f(x); "):Suppose that the series P1n=1 j(fn)0(z)j 13 
onverges. Then there exists n0 � 1 su
h thatsupn�n0(2j(fn)0(z)j) 13 < 1. Choose 0 < "1 = "2 = : : : = "no < �" so small that for everyn = 1; 2; : : : ; n0(10.3.2) fn restri
ted to the ball B(z; "n) is inje
tive.and(10.3.3) fn(B(z; "n)) � B(fn(z); ")For every n � n0 de�ne "n+1 indu
tively by(10.3.4) "n+1 = (1� (2j(fn)0(z)j) 13 )"n:Then 0 < "n < �" for every n � 1. Assume that (10.3.2) and (10.3.3) are satis�ed for somen � n0. Then by the K�obe Distortion Theorem ??? and (10.3.4) the set fn(B(z; "n+1)) is
ontained in the ball 
entered at fn(z) and of radius"n+1j(fn)0(z)j 2(1� "n+1="n)3 = 2"n+1j(fn)0(z)j2j(fn)0(z)j = "n+1 < �":Therefore, sin
e f is inje
tive on B(fn(z); "), formula (10.3.2) is satis�ed for n + 1 andusing also (10.3.1) we getfn+1(B(z; "n+1)) = f�fn(B(z; "n+1))� � f(B(fn(z); �")) � B(fn+1(z); "):Thus (10.3.3) is satis�ed for n+ 1.Let "n # "0. Sin
e the series P1n=1 j(fn)0(z)j 13 
onverges, it follows from (10.3.4) that"0 > 0. Clearly (10.3.2) and (10.3.3) remain true with "n repla
ed by "0. It follows that thefamily ffnjB(z; 12 "0)g1n=1 is normal and 
onsequently z =2 J(f). This 
ontradi
tion �nishesthe proof. |As an immediate 
onsequen
e of this lemma and of Birkho�'s Ergodi
 Theorem we getthe following. 10



Corollary 10.3.2. If � be an ergodi
 f{invariant measure for whi
h there exists a 
ompa
tset Y � J(f) su
h that �(Y ) = 1 and Y \ Crit(f) = ;, then �� � 0.Let now 
 be a �nite subset of S1n=1 fn(Crit(f)) su
h that(10.3.5) 
 \ ffn(
) : n = 1; 2 : : :g 6= ; for every 
 2 Crit(f)and(10.3.6) 
 \ Crit(f) = ;:Sets satisfying these 
onditions exist sin
e no 
riti
al point of f lying in J(f) 
an beperiodi
. Now let V � J(f) be an open neighbourhood of 
 and de�ne K(V ) to be the setof those points of J(f) whose forward traje
tory avoids V . Equivalently this means thatK(V ) = fz 2 J(f) : fn(z) =2 V for every n � 0g = 1\n=0 f�n(J(f) n V )Hen
e K(V ) is a 
ompa
t subset of J(f) and f(K(V )) � K(V ). Consequently we 
an
onsider dynami
al system f jK(V ) : K(V )! K(V ). Note that f(K(V )) = K(V ) does nothold for all sets V and that usually f�1(K(V )) 6� K(V ). Simple 
onsiderations based on(10.3.5) and the de�nition of sets K(V ) give the following.Lemma 10.3.3. Crit(f jK(V )) � Crit(f) \ K(V ) = ;, K(V )0(f) = Sing(f) � �V , and�t log jf 0j is a well{de�ned 
ontinuous fun
tion on K(V ).Fix now z 2 K(V ) and set En = f j�nK(V )(z), n � 0. Then En+1 = f j�1K(V )(En) andtherefore the sequen
e fEng satis�es (10.1.9) with D = K(V ). Take t � 0 and let 
(t; V )be the transition parameter asso
iated to this sequen
e and the fun
tion �t log jf 0j. PutP(t; V ) = P(f jK(V );�t log jf 0j). We shall prove the following.Lemma 10.3.4. 
(t; V ) � P(t; V ).Proof. Sin
e K(V ) is a 
ompa
t set disjoint from Crit(f), the map f jK(V ) is lo
ally !-to-1whi
h means that there exists Æ > 0 su
h that f jK(V ) restri
ted to any set with diameter� Æ is !to-1. Consequently, all the sets En are (n; ")-separated for " < Æ. Hen
e, therequired inequality 
(t; V ) � P(t; V ) follows immediately from Theorem .2.2.10. |The standard straightforward arguments showing 
ontinuity of topologi
al pressure provealso the following.Lemma 10.3.5. The fun
tion t 7! 
(t; V ) is 
ontinuous.Set s(V ) = infft � 0 : 
(t; V ) � 0g < +111



We shall prove the following.Lemma 10.3.6. s(V ) � DD(J(f)).Proof. Suppose that DD(J(f)) < s(V ) and take 0 � DD(J(f)) < t < s(V ). From this
hoi
e and by Lemma 10.3.4 we have 0 < 
(t; V ) � P(t; V ) and by Variational Prin
iple??? there exists � 2 Me(fK(V )) � Me(f) su
h that P(t; V ) � h�(f)� t��(f) + 
(t; V )=2.Therefore, by Corollary 10.3.2 and Lemma 10.3.3 we get h�(f) � 
(t; V )=2 > 0 andapplying additionally Theorem 9.1.1 (Ruelle's inequality), ��(f) > 0. Hen
e, it followsfrom Theorem 9.4.1 thatt � HD(�)� 12 
(t; V )�� < HD(�) � DD(J(f))This 
ontradi
tion �nishes the proof. |Let m be a limit measure on K(V ) asso
iated to the sequen
e En and the fun
tion�s(V ) log jf 0j. Sin
e 
(0; V ) � 0 and s(V ) < 1, it follows from Lemma 10.3.5 that
(s(V ); V ) = 0. Therefore, applying Lemma 10.1.4 and Lemma 10.1.5 with � = �V we seethatm(f(A)) � RA jf 0js(V ) dm for any spe
ial set A � K(V ) andm(f(A)) = RA jf 0js(V ) dmfor any spe
ial set A � K(V ) su
h that A \ �V = ;. Treating now m as a measure onJ(T ) and using straightforward measure{theoreti
 arguments we dedu
e from this that(10.3.7) m(f(A)) � ZA jf 0js(V ) dmfor any spe
ial set A � J(f) and(10.3.8) m(f(A)) = ZA jf 0js(V ) dmfor any spe
ial set A � J(f) su
h that A \ �V = ;. Now we are in position to prove thefollowing.Lemma 10.3.7. For every 
 there exist 0 � s(
) � DD(J(f)) and a Borel probabilitymeasure m on J(f) su
h that m(f(A)) � ZA jf 0js(
) dmfor any spe
ial set A � J(f) andm(f(A)) = ZA jf 0js(
) dmfor any spe
ial set A � J(f) disjoint from 
.12



Proof. For every n � 1 let Vn = B(
; 1n ) and let mn be the measure on J(f) satisfying(10.3.7) and (10.3.8) for the neighbourhood Vn. Using Lemma 10.1.6 we shall show thatany weak{* limit m of the sequen
e of measures fmng1n=1 satis�es the requirements ofLemma 10.3.7. Indeed, �rst observe that the sequen
e fs(Vn)g1n=1 is nonde
reasing anddenote its limit by s(
). Therefore the sequen
e of 
ontinuous fun
tions gn = jf 0js(Vn),n = 1; 2; : : :, de�ned on J(f) 
onverges uniformly to the 
ontinuous fun
tion g = jf 0js(
).Let A be a spe
ial subset of J(f) su
h that(10.3.9) A \ (Sing(f) [ 
) = ;:Then one 
an �nd a 
ompa
t set � � J(f) disjoint from A and su
h that Int(�) �Sing(f) [ 
. So, using also Lemma 10.3.3, we see that for any n suÆ
iently large, sayn � q,(10.3.10) Vn � � and Vn \ Crit(f) = ;:Therefore, by (10.3.7) and (10.3.8), we 
on
lude that Lemma 10.1.6 applies to the sequen
eof measures fmng1n=q and the sequen
e of fun
tions fgng1n=q. Hen
e, the �rst propertyrequired in our lemma is satis�ed for any spe
ial subset of J(f) disjoint from Crit(f) andsin
e A \ � = ;, the se
ond property is satis�ed for the set A. So, sin
e any spe
ialsubset of J(f) disjoint from Sing(f) [ 
 
an be expressed as a disjoint union of spe
ialsets satisfying (10.3.9), an easy 
omputation shows that the se
ond property is satis�edfor all spe
ial sets disjoint from Sing(f) [ 
. Therefore, in order to �nish the proof, it isenough to show that the se
ond requirement of the lemma is satis�ed for every point ofthe set Sing(f). First note that by (10.3.10) and (10.3.8), formula (a') in Lemma 10.1.6is satis�ed for every n � q and every x 2 Crit(f) n J(f)0(f). As f : J(f) ! J(f) is anopen map, the set J(f)0(f) is empty and Sing(f) = Crit(f). Consequently formula (d) ofLemma 10.1.6 is satis�ed for any 
riti
al point 
 2 J(f) of f . Sin
e g(
) = jf 0(
)js(
) = 0,this formula implies that m(f()) � 0. Thus m(ff(
)g) = 0 = jf 0(
)js(
)m(f
g). The proofis �nished. |Lemma 10.3.8. Let m be a the me the measure 
onstru
ted in Lemma 10.3.7. If forsome z 2 J(f) the series S(t; z) =P1n=1 j(fn)0(z)jt diverges then m(fzg) = 0 or a positiveiteration of z is a paraboli
 point of f . Moreover, if z itself is periodi
 then m(ff(z)g) =jf 0(z)jtm(fzg).Proof. Suppose that m(fzg) > 0. Assume �rst that the point z is not eventually periodi
.fhen by the de�nition of a 
onformal measure on the 
omplement of some �nite set weget 1 � m(ffn(z) : n � 1g) � m(fzg)P1n=1 j(fn)0(z)jt = 1, whi
h is a 
ontradi
tion.Hen
e z is eventually periodi
 and therefore there exist positive integers k and q su
h thatfk(fq(z)) = fq(z). Sin
e fq(z) 2 J(f) and sin
e the family of of all iterates of f on asuÆ
iently small neighbourhood of an attra
tive periodi
 point is normal, this implies thatj(fk)0(fq(z))j � 1. If j(fk)0(fq(z))j = � > 1 then, again by the de�nition of a 
onformalmeasure on the 
omplement of some �nite set, m(ffq(z)g) > 0 and m(ffkn(fq(z))g) ��ntm(ffq(z)g). Thusm(ffkn(fq(z))g) 
onverges to1, whi
h is a 
ontradi
tion. Thereforej(fk)0(fq(z))j = 1 whi
h �nishes the proof of the �rst assertion of the lemma. In order13



to prove the se
ond assertion assume that q = 1. Then, using the de�nition of 
onformalmeasures on the 
omplement of some �nite set again, we get m(ff(z)g) � m(fzg)jf 0(z)jtand on the other handm(fzg) = m(ffk�1(f(z))g) � m(ff(z)g)j(fk�1)0(f(z))jt = m(ff(z)g)jf 0(z)j�t:Therefore m(ff(z)g) = m(fzg)jf 0(z)jt. The proof is �nished. |Corollary 10.3.9. If for every x 2 Crit(f) one 
an �nd y(x) 2 ffn(x) : n � 0g su
h thatthe series S(t; y(x)) diverges for every 0 � t � DD(J(f)), then there exists an s-
onformalmeasure for f : J(f)! J(f) with 0 � s � DD(J(f)).Proof. Let m be a the me the measure 
onstru
ted in Lemma 10.3.7. Sin
e S(t; y(x))diverges for every 0 � t � DD(J(f)), we see that y(x) =2 Crit(f). If for some x 2 Crit(f),y(x) is a non-periodi
 point eventually falling into a paraboli
 point, then let z(x) be thisparaboli
 point; otherwise put z(x) = y(x). The set 
 = fz(x) : x 2 Crit(f)g meetsthe 
onditions (10.3.5), (10.3.6) and is 
ontained in S1n=1 fn(Crit(f)). Sin
e for everyt � 0 and z 2 J(f) the divergen
e of the series S(t; z) implies the divergen
e of the seriesS(t; f(z)), it follows immediately from Lemma 10.3.7 and Lemma 10.3.8 that the measurem is s-
onformal. |Now we are in position to prove the following main result of this se
tion.Theorem 10.3.10. HyD(J(f)) = DD(J(f)) = Æ(f) and there exists a Æ(f){
onformalmeasure for f : J(f)! J(f).Proof. For every x 2 Crit(f) the set ffn(x) : n � 0g is 
losed and forward invariant underf . Therefore, in view of Theorem 2.1.8 (Bogolubov-Krylov theorem) there exists � 2Me(f)supported on ffn(x) : n � 0g. By Corollary A of [Przyt, Lyap℄ there exists at least onepoint y(x) 2 ffn(x) : n � 0g su
h that lim supn!1 j(fn)0(y(x))j � 1 and 
onsequently theseries S(t; y(x)) diverges for every t � 0. So, in view of Corollary 10.3.9 there exists ans-
onformal measure for f : J(f) ! J(f) with 0 � s � DD(J(f)). Combining this withLemma 10.2.2 and Theorem 10.2.3 
omplete the proof. |x10.4. PESIN'S FORMULA.In this se
tion our aim is to prove two main theorems. The �rst one is as follows.Theorem 10.4.1. (Pesin's formula) Assume that X is a 
ompa
t subset of the 
losed
omplex plane CI and that f 2 A(X). If m is a t- 
onformal measure for f and � 2M+e (f)is absolutely 
ontinuous with respe
t to m, then HD(�) = t.Proof. In view of Lemma 10.2.2 we only need to prove that t � HD(�) and in order to dothis we essentially 
ombine the arguments from the proof of Lemma 10.2.2 and from theproof of formula (9.4.1). So, we work in the natural extension ( ~X; ~f; ~�). Fix 0 < " < ��=314



and let ~X(") and r(") be given by Corollary 9.2.4. In view of the Birkho� ergodi
 theoremthere exists a measurable set ~F (") � ~X(") su
h that ~�( ~F (")) � 1� 2" andlimn!1 1n n�1Xj=1 � ~X(") Æ ~fn(~x) = ~�( ~X("))for every ~x 2 ~F ("). Let F (") = �( ~F (")). Then �(F (")) = ~�(��1(F (")) � ~�( ~F (")) � 1�2".Consider now x 2 F (") \ Xo and take ~x 2 ~F (") su
h that x = �(~x). Then by the abovethere exists an in
reasing sequen
e fnk = nk(x) : k � 1g su
h that ~fnk(~x) 2 ~X(") and(10.4.1) nk+1 � nknk � "for every k � 1. Moreover Corollary 9.2.4 produ
es holomorphi
 inverse bran
hes f�nkx :B(fnk(x); r("))! CI of fnk su
h that f�nkx fnk(x) = x andf�nkx �B(fnk(x); r("))� � B�x;Kj(fnk)0(x)j�1r(")�Set rk = rk(x) = K�1j(fnk)0(x)j�1r("). By Corollary 9.2.4 rk � K�2 exp��(�� �")nk�r("). So, using Corollary 9.2.4 again and (10.4.1) we 
an estimaterk = rk+1j(fnk+1�nk)0(fnk(x))j � rk+1K exp��� + ")(nk+1 � nk)�� rk+1K exp��� + ")nk+1"� � Krk+1 exp��� � ")2nk+1"� � rk+1K(K�2r(")r�1k+1)2"= K1�4"r(")2"r1�2"k+1Take now any 0 < r � r1 and �nd k � 1 su
h that rk+1 < r � rk. Then using thisestimate, t-
onformality of m, and invoking Corollary 9.2.4 on
e more we getm(B(x; r)) � m(B(x; rk)) � Ktj(fnk)0(x)j�tm(B(x; r(")))� K2tr(")�trtk� K(3�4")tr(")2"tr(1�2")tSo, by Theorem 5.5.1 (Besi
ovit
h 
overing theorem) H(1�2")t(X) � H(1�2")t(F (")) > 0,when
e HD(X) � (1� 2")t. Letting "! 0 
ompletes the proof. |
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