
11.11.1999Chapters already renumbered, 2b=3 etCONFORMAL FRACTALS, DIMENSIONS AND ERGODIC THEORYFeliks Przytyki & Mariusz Urba�nskiThis book is an introdution to the theory of iteration of non-uniformly expandingholomorphi maps and topis in geometri measure theory of the underlying invariantfratal sets. Probability measures on these sets yield informations on Hausdor� and otherfratal dimensions and properties. The book starts with a omprehensive hapter onabstrat ergodi theory followed by hapters on uniform distane expanding maps andthermodynamial formalism. This material is appliable in many branhes of dynamialsystems and related �elds, far beyond the appliations in this book.Popular examples of the fratal sets to be investigated are Julia sets for rationalfuntions on the Riemann sphere. The theory whih was initiated by Gaston Julia [J℄ andPierre Fatou [F℄ beame very popular sine the time when Benoit Mandelbrot's book [M℄with beautiful omputer made pitures appeared. Then it beame a �eld of spetaularahievements by top mathematiians during the last 20 years.Consider for example the map f(z) = z2 for omplex numbers z. Then the unitirle S1 = fjzj = 1g is f -invariant, f(S1) = S1 = f�1(S1). For  � 0;  6= 0 andf(z) = z2 + , there still exists an f-invariant set J(f) alled the Julia set of f, loseto S1, homeomorphi to S1 via a homeomorphism h satisfying equality f Æ h = h Æ f.However J(f) has a fratal shape. For large  the urve J(f) pinhes at in�nitely manypoints; it may pinh everywhere to beome a dendrite, or even rumble to beome a Cantorset. These sets satisfy two main properties, standard attributes of "onformal fratal sets":1. Their fratal dimensions are stritly larger than the topologial dimension. 2. Theyare onformally "self-similar", namely arbitrarily small piees have shapes similar to largepiees via onformal mappings, here via iteration of f .To measure fratal sets invariant under holomorphi mappings one applies probabilitymeasures orresponding to equilibria in the thermodynamial formalism. This is a beautifulexample of interlaing of ideas from mathematis and physis.A prototype lemma [B, Lemma 1.1℄ at the roots of the thermodynamial formalismsays that for given real numbers a1; :::; an the quantityF (p1; :::pn) = nXi=1 �pi log pi + nXi=1 pi�ihas maximum value P = logPni=1 e�i as (p1; :::; pn) ranges over the simplex f(p1; :::; pn) :pi � 0;Pni=1 pi = 1g and the maximum is assumed only atp̂j = e�j � nXi=1 e�i��11



We an read �i; pi; i = 1; :::; n as a funtion (potential), resp. probability distribution, onthe �nite spae f1; :::; ng. Let us further follow Bowen [B℄: The quantityS = nXi=1 �pi log piis alled entropy of the distribution (p1; :::; pn). The maximizing distribution (p̂1; ::; p̂n) isalled Gibbs or equilibrium state. In statistial mehanis �i = ��Ei, where � = 1=kT , Tis a temperature of an external "heat soure" and k a physial (Boltzmann) onstant. Thequantity E = Pni=1 piEi is the average energy. The Gibbs distribution maximizes thenthe expression S � �E = S � 1kT Eor equivalently minimizes the so-alled free energy E � kTS. The nature prefers stateswith low energy and high entropy. It minimizes free energy.The idea of Gibbs distribution as limit of distributions on �nite spaes of on�gurationsof states (spins for example) of interating partiles over inreasing growing to1 boundedparts of the lattie ZZd introdued in statistial mehanis �rst by Bogolubov and Haet[BH℄ and playing there a fundamental role was applied in dynamial systems to studyAnosov ows and hyperboli di�eomorphisms at the end of sixties by Ja. Sinai, D. Ruelleand R. Bowen. For more historial remarks see [Ru℄ or [Si℄. This theory met the notion ofentropy S borrowed from information theory and introdued by Kolmogorov as an invariantof a measure-theoreti dynamial system.Later the usefulness of these notions to the geometri dimensions has beome appar-ent. It was present already in [Billingsley℄ but ruial were papers by Bowen [Bo1℄ andMCluskey & Manning [MM℄.In order to illustrate the idea onsider the following example: Let Ti : I ! I, i =1; :::; n > 1, where I = [0; 1℄ is the unit interval, Ti(x) = �ix + ai, where �i; ai are realnumbers hosen in suh a way that all the sets Ti(I) are pairwise disjoint and ontainedin I. De�ne the limit set � as follows� = 1\k=0 [(i0;:::;ik)Ti0 Æ ::: Æ Tik(I) = [(i0;i1:::) limk!1Ti0 Æ ::: Æ Tik ;the latter union taken over all in�nite sequenes (i0; i1; :::), the previous over sequenes oflength k + 1.It ours that its Hausdor� dimension is equal to the only number � for whihj�1j� + :::+ j�nj� = 1:� is a Cantor set. It is self-similar with small piees similar to large piees with the useof linear (more preisely, aÆne) maps (Ti0 Æ ::: Æ Tik)�1. We all suh a Cantor set linear.We an distribute measure � by setting �(Ti0 Æ ::: Æ Tik(I)) = ��i0 :::�ik��. Then for eahinterval J � I entered at a point of � its diameter raised to the power � is omparable2



to its measure � (this is immediate for the intervals Ti0 Æ ::: Æ Tik(I)). (A measure withthis property for all small balls entered at a ompat set, in a eulidean spae of anydimension, is alled a geometri measure.) HeneP(diamJ)� is bounded away from 0 and1 for all eonomial (of multipliity not exeeding 2) overs of � by intervals J .Note that for eah k � restrited to the spae of unions of Ti0 Æ ::: Æ Tik(I), eahsuh interval viewed as one point, is the Gibbs distribution, where we set �((i0; :::; ik)) =��((i0; :::; ik)) =Pl=0;:::;k � log�il . The number � is the unique 0 of the pressure funtionP(�) = 1k+1 logP(i0;:::;ik) e�a((i0;:::;ik)). In this speial aÆne example this is independentof k. In general non-linear ase to de�ne pressure one passes with k to 1.The family Ti and ompositions is an example of very popular in reent years IteratedFuntion System [Barnsley℄. Note that on a neighbourhood of eah Ti(I) we an onsiderT̂ := T�1i . Then � is an invariant repeller for the distane expanding map T̂ .)The relations between dynamis, dimension and geometri measure theory start inour book with the theorem that the Hausdor� dimension of an expanding repeller is theunique 0 of the adequate pressure funtion for sets built with the help of C1+" usuallynon-linear maps in IR or onformal maps in IRd.This theory was developed for non-uniformly hyperboli maps or ows in the settingof smooth ergodi theory, see [HK℄, by Ma~n�e [M℄, Lai-Sang-Young and Ledrappier [LY℄;see [Pesin℄ for reent developments. The advaned hapters of our book are devoted to thistheory, but we restrit ourselves to omplex dimension 1. So the maps are non-uniformlyexpanding and the main tehnial diÆulties are aused by ritial points, where we havestrong ontration sine the derivative by de�nition is equal to 0 at ritial points.A diretion not developed in this book are Conformal Iterated Funtion Systems within�nitely many generators Ti. They our naturally as return maps in many importantonstrutions, for example for rational maps with paraboli periodi points or in the In-dued Expansion onstrution for polynomials [GS℄. Beautiful examples are provided byin�nitely generated Kleinian groups [.℄. The systemati treatment of Iterated FuntionSystems with in�nitely many generators an be found in [MU1℄, [MU2℄, [MU3℄, [MPU℄and [U1℄ for example.Below is a short desription of the ontent of the book.Chapter 1 is an introdution to abstrat ergodi theory, here T is a probability mea-sure preserving transformation. The reader will �nd proofs of the fundamental theorems:Birkho� Ergodi Theorem and Shannon-MMillan-Breiman Theorem. We introdue en-tropy, measurable partitions and disuss anonial systems of onditional measures inRohlin's Lebesgue spae the notion of natural extension (inverse limit in the appropriateategory). We follow here Rohlin's Theory [Ro℄, see also [FKS℄. Next to prepare to ap-pliations for �nite-to-one rational maps we sketh Rohlin's theory on ountable-to-oneendomorphisms and introdue the notion of Jaobian, see also [Parry℄. Finally we disussmixing properties (K-propery, exatness, Bernoulli) and probability laws (Central LimitTheorem, abbr. CLT, Law of Iterated Logarithm, LIL, Almost Sure Invariane Prin-iple, ASIP) for the sequene of funtions (random variables on our probability spae)� Æ Tn; n = 0; 1; :::.Chapter 2 is devoted to ergodi theory and termodynamial formalism for general3



ontinuous maps on ompat metri spaes. The main point here is the so alled VariationalPriniple for pressure, ompare the prototype lemma above. We apply also funtionalanalysis in order to explain Legendre transform duality between entropy and pressure.We follow here [Israel℄ and [Ruelle℄. This material is appliable in large deviations andmultifratal analysis, and is diretly related to the uniqueness of Gibbs states question.In Chapters 1, 2 we often follow the beautiful book by Peter Walters [Wa℄.In Ch 3. distane expanding maps are introdued. Analogously to Axiom A di�eomor-phisms [Smale, Bowen℄ or endomorphisms [Przy℄ we outline a topologial theory: spetraldeomposition, spei�ation, Markov partition, and start a "bounded distortion" play withH�older ontinuous funtions.In Chapter 4 termodynamial formalism and mixing properties of Gibbs measures foropen distane expanding maps T and H�older ontinuous potentials � are studied. To largeextend we follow [Bo℄ and [Ru℄. We prove the existene of Gibbs measures (states): mwith Jaobian being exp�� up to a onstant fator, and T -invariant � = �� equivalentto m. The idea is to use the transfer operator L�(u)(x) =Py2T�1(x) u(y) exp�(y) on theBanah spae of H�older ontinuous funtions u. We prove the exponential onvergene��nLn�(u) ! (R u dm)u�, where � is the eigenvalue of the largest absolute value and u�the orresponding eigenfuntion. One obtains u� = dm=d�. We dedue CLT, LIL andASIP, and the Bernoulli property for the natural extension.We provide three di�erent proofs of the uniqueness of the invariant Gibbs measure.The �rst, simplest, follows [Keller???℄, the seond relies on the prototype lemma, the thirdone on the di�erentiability of the pressure funtion in adequate funtion diretions.Finally we prove Ruelle's formulad2P (�+tu+sv)=dt dsjt=s=0 = limn!1 1n Z (n�1Xi=0(uÆT i�Z u d��) �(n�1Xi=0(vÆT i�Z v d��) d��:This expression for u = v is equal to �2 in CLT for the sequene u Æ Tn and measure ��.(In the book we use the letter T to denote a measure preserving transformation.Maps preserving an additional struture, ontinuous smooth or holomorphi for example,are usually denoted f or g.)In Chapter 5 the metri spae with the ation of an open distane expanding mapis embedded in a smooth manifold and it is assumed that the map smoothly extendsto a neighbourhood. We all the spae with the extended dynamis: Smooth ExpandingRepeller, abbr. SER. We study smoothness of the density u�. Finally we provide indetail D. Sullivan's theory lassifying line Cantor sets via saling funtion, skethed in [Su℄and disuss the realization problem [PT℄. We also disuss appliations for solenoids forFeigenbaum maps.In Chapter 6 we provide de�nitions of various "fratal dimensions": Hausdor�, boxand paking. We onsider also Hausdor� measures with gauge funtions difefrent fromt�. We prove "Volume Lemma" linking, roughly speaking, (global) dimension with loaldimensions.In Chapter 7 we �nally introdue Conformal Expanding Repellers, abbr. CER, andrelate pressure with Hausdor� dimension. We prove C?�1 dependene of the dimension on4



the parameter if the dependene on the parameter of the expanding map is C?. We dealwith smooth repellers in IR and onformal repellers in CI. Here 2 <? � !, the real analytiase.Next we follow the easy (uniform) part of [PUZ℄. We prove that for CER (X; f) andH�older ontinuous � : X ! R, for � = HD(��), Hausdor� dimension of the Gibbs measure�� (in�mum of Hausdor� dimensions of sets of full measure), either HD(X) = � themeasure �� is equivalent to ��, the Hausdor� measure in dimension �, and is a geometrimeasure, or �� is singular with respet to �� and the right gauge funtion for the Hausdor�measure to be ompared to �� is �(�) = t� exp(plog 1=t log log log 1=t). In the proof weuse LIL. This theorem is used to prove a dihotomy for the harmoni measure on a Jordanurve �, bounding a domain 
, whih is a repeller for a onformal expanding map. Either� is real analyti or harmoni measure is omparable to the Hausdor� measure with gaugefuntion �(1). This yields an information about the lower and upper growth rates ofjR0(r�)j, for r % 1, for almost every � with j�j = 1 and univalent funtion R from theunit dis jzj < 1 to 
. This is a dynamial ounterpart of Makarov's theory of boundarybehaviour for general simply onneted domains, [Makarov℄.We prove in partiular that for f(z) = z2 + ;  6= 0;  � 0 1 < HD(J(f)) < 2.We show how to express in the language of pressure another interesting funtion:Rj�j=1 jR0(r�)jt jd�j for r% 1.We also look loser at the Gibbs measures, disuss so alled multifratal analysis, andstudy large deviations.Finally we apply our theory to the boundary of von Koh "snowake" and moregeneral Carleson fratals.Chapter 8 is devoted to Sullivan's rigidity theorem, saying that two non-linear ex-panding repellers (X; f); (Y; g) that are Lipshitz onjugate (or more generally there existsa measurable onjugay that transforms a geometri measure on X to a geometri measureon Y , then the onjugay extends to a onformal one. This means that measures lassifynon-linear onformal repellers. This fat, annoued in [Su℄ only with a sketh of the proof,is proved here rigorously for the �rst time. We sketh also a generalization by E. Prado.In Chapter 9 we start to deal with non-uniform expanding phenomena. A heart ofthis hapter is the proof of the formula HD(�) = h�(f)=��(f) for an arbitrary f -invariantergodi measure � of positive Laypunov exponent �� := R log jf 0j d�.(The word non-uniform expanding is used just to say that we onsider (typial pointsof) an ergodi measure with positive Lyapunov exponent. In higher dimension one usesthe name non-uniform hyperboli for measures with all Lyapunov exponents non-zero.)It is so roughly beause a small dis around z, whose n-th image is large, has diameterof order j(fn)0(z)j�1 � exp�n�� and measure exp�nh�(f) (Shannon-MMillan-Breimantheorem is involved here)Chapter 10 is devoted to onformal measures, namely probability measures with Ja-obian Const exp�� or more spei�ally jf 0j� in a non-uniformly expanding situation, inpartiular for any rational mapping f on its Julia set J . It is proved that there exists aminimal exponent Æ(f) for whih suh a measure exists and that Æ(f) is equal to eah ofthe following quantities:Dynamial Dimension DD(J) := supfHD(�)g, where � ranges over all ergodi f -5



invariant measures on J of positive Lyapunov exponent.Hyperboli Dimension HyD(J) := supfHD(Y )g, where Y ranges over all ConformalExpanding Repellers in J , or CER's that are Cantor sets.It is an open problem whether for every rational mapping HyD(J) = HD(J) = boxdimension of J , but for many nonuniformly expandig mappings these equalities hold. Itis often easier to study the ontinuity of Æ(f) with respet to a parameter, than diretlyHausdor� dimension. So one obtains an information about the ontinuity of dimensionsdue to the above equalities.Most of the book was written in the years 1990-1992 and was letured to graduatestudents by eah of us in Warsaw, Yale and Denton. We negleted �nishing writing, butreently unexpetedly to us the methods in Chapter 10, relating hyperboli dimension tominimal exponent of onformal measure, were used to study the dependene on " of thedimension of Julia set for z2 + 1=4 + ", for " ! 0 and other paraboli bifurations, by A.Douady, P. Sentena and M. Zinsmeister in [DSZ℄ and by C. MMullen in [MM℄. So wedeided to make a �nal e�ort. Meanwhile nie books appeared on some topis of our book,let us mention [Faloner℄, [Zinsmeister℄, [Gora,Boyarsky℄, [Viana℄, but a lot of importantmaterial in our book is new or was hardly aessible, or is written in an unonventionalway.[Barnsley℄ ..................[Faloner℄ K. Faloner, Tehnis in Fratal Geometry[Zinsmeister℄ M. Zinsmeister, Le Formalisme Thermodynamique: Mode d'emploi[Boyarsky, G�ora℄ A. Boyarsky, P. G�ora, Laws of Chaos, Invariant Measures and Dy-namial Systems in One Dimension. Birkh�auser, Boston 1997[Viana℄ M. Viana,
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November 14, 1999hapters renumbered, 2b=3 etCHAPTER 0.BASIC EXAMPLES AND DEFINITIONSLet us start with de�nitions of dimensions. We shall ome bak to them in a moresystemati way in Chapter 5.De�nition 0.1. Let (X; �) be a metri spae. We all upper (lower) box dimensionof X the quantity lim sup(lim inf)r!0 logN(r)� log rwhere N(r) is the minimal number of balls of radius r whih over X.Sometimes the names apaity or Minkowski dimension or box-ounting dimension areused. The name box dimension omes from the situation where X is a subset of a eulideanspae IRd. Then one an onsider only r = 2�n and N(2�n) an be replaed by the numberof dyadi boxes [ k12�n ; k1+12�n ℄� :::� [ kd2�n ; kd+12�n ℄; kj 2 ZZ interseting X.De�nition 0.2. Let (X; �) be a metri spae. For every � > 0 we de�ne ��(X) =limÆ!0 inffP1i=1(diamUi)�g, where the in�mum is taken over all ountable overs (Ui; i =1; 2; :::) of X by sets of diameter not exeeding Æ. ��(Y ) de�ned as above on all subsetsY � X is alled �-th outer Hausdor� measure.It is easy to see that there exists �0 : 0 � �0 � 1 suh that for all � : 0 � � < �0��(X) = 1 and for all � : �0 < � ��(X) = 0. The number �0 is alled the Hausdor�dimension of X.Note that if in this de�nition we replae the assumption: sets of diameter not exeedingÆ by equal Æ, and limÆ!0 by lim inf or lim sup, we obtain box dimension.A standard example to ompare both notions is the set f1=n; n = 1; 2; :::g in IR. Itsbox dimension is equal to 1/2 and Hausdor� dimension is 0. If one onsiders f2�ng insteadone obtains both dimensions 0. Also linear Cantor sets in Introdution have Hausdor� andbox dimensions equal. The reason for this is self-similarity.Example 0.3. Shifts spaes. For every natural number d onsider the spae �d ofall in�nite sequenes (i0; i1; :::) with in 2 f1; 2; :::; dg. Consider the metri�((i0; i1; :::); (i00; i01; :::)) = 1Xn=0�njin � i0njfor an arbitrary 0 < � < 1. Sometimes it is more omfortable to use the metri�((i0; i1; :::); (i00; i01; :::)) = ��minfn:in 6=i0ng, equivalent to the previous one. Consider � : �d ! �d de�ned by f((i0; i1; :::) = (i1; :::).The metri spae (�d; �) is alled one-sided shift spae and the map � the left shift. Often,1



if we do not speify metri but are interested only in the artesian produt topology in�d = f1; :::; dgZZ+, we use the name topologial shift spae.One an onsider the spae ~�d of all two sides in�nite sequenes (:::; i�1; i0; i1; :::).This is alled two-sided shift spae.Eah point (i0; i1; :::) 2 �d determines its forward trajetory under �, but is equippedwith a Cantor set of bakward trajetories. Together with the topology determined bythe metri P1n=�1 �jnjjin � i0nj the set ~�d an be identi�ed with the inverse limit (in thetopologial ategory) of the system :::! �d ! �d where all the maps ! are �.Note that the limit Cantor set � in Introdution, with all �i = � is Lipshitz homeo-morphi to �d, with the homeomorphism h mapping (i0; i1; :::) to Tk Ti0 Æ ::ÆTik(I). Notethat for eah x 2 �, h�1(x) is the sequene of integers (i0; i1; :::) suh that for eah k,T̂ k(x) 2 Tik(I). It is alled a oding sequene. If we allow the end points of Ti(I) to overlap,in partiular � = 1=d and ai = (i� 1)=d, then � = I and h�1(x) =P1k=0(ik � 1)d�k�1.One generalizes the one (or two) -sided shift spae, alled sometimes full shift spaeby onsidering the set �A for an arbitrary d�d { matrix A = (aij with aij = 0 or 1 de�nedby �A = f(i0; i1; :::) 2 �d : aitit+1 = 1 for every t = 0; 1; :::g:By the de�nition �(�A � �A. �A with the mapping � is alled a topologial Markovhain. Here the word topologial is substantial, otherwise it is ustomary to think of a�nite number of states stohasti proess, see Example 0.8.Example 0.4. Iteration of rational maps. Let f : CI ! CI be a holomorphimapping of the Riemann sphere CI. Then it must be rational, i.e. ratio of two polynomials.We assume that the topologial degree of f is at least 2. The Julia set J(f) is de�ned asfollows:J(f) = fz 2 CI : 8U 3 z ; U open, the family of iterates fn = f Æ ::: Æ f jU , n times, forn = 1; 2; ::: is not normal in the sense of Montel g.A family of holomorphi funtions ft : U ! CI is alled normal (in the sense of Montel)if it is pre-ompat, namely from every sequene of funtions belonging to the family onean hoose a subsequene uniformly onvergent (in the spherial metri on the Riemannsphere CI) on all ompat subsets of U .z 2 J(f) implies for example, that for every U 3 z the family fn(U) overs all CI butat most 2 points. Otherwise by Montel's theorem ffng would be normal on U .Another haraterization of J(f) is that J(f) is the losure of repelling periodi points,namely those points z 2 CIfor whih there exists an integer n suh that fn(z) = z andj(fn)0(z)j > 1.There is only �nite number of attrating periodi points, j(fn)0(z)j < 1; they lieoutside J(f), an unountable "haoti, repelling" Julia set. The lak of symmetry betweenatrating and repelling phenomena is aused by the non-invertibility of f .It is easy to prove that J(f) is ompat, ompletely invariant: f(J(f)) = J(f) =f�1(J(f)), either nowhere dense or equal to the whole sphere (to prove this use Montel'stheorem).For polynomials, the set of points whose images under iterates fn; n = 1; 2; :::, tendto 1, basin of attration to 1, is onneted and ompletely invariant. Its boundary is the2



Julia set.Chek that all these general de�nitions and statements are ompatible with the dis-ussion of f(z) = z2+  in Introdution. As introdution to this theory we reommend forexample the books [Beardon℄, [Carleson, Gamelin℄ and [Steinmetz℄.Below are the omputer pitures of some Julia setsFIGURES: Rabbit, Sierpinski arpet (rational funtion of degree 2), Newton's methodA Julia set an have Hausdor� dimension arbitrarily lose to 0 (but not 0) and ar-bitrarily lose to 2 and even exatly 2 (being in the same time nowhere dense). It is notknown whether it an have positive Lebesgue measure. We shall ome bak to these topisin Chapters 6, 10.Example 0.5. Complex linear fratals. The linear Cantor set onstrution in IRdesribed in Introdution an be generalized to onformal linear Cantor and other fratalsets in CI:Let U � CI be a bounded onneted domain and Ti(z) = �iz + ai, where �i; ai areomplex numbers, i = 1; :::; n > 1. Assume that losures lTi(U) are pairwise disjoint andontained in U . The limit Cantor set � is de�ned in the same way as in Introdution.In Ch.7 we shall prove that it annot be the Julia set for a holomorphi extension ofT̂ = T�1i on Ti(U) for eah i, to the whole sphere CI.If we allow that the boundaries of Ti(U) interset or interset �U we obtain otherinteresting examplesFIGURES: Sierpinski arpet, Sierpinski gasket, boundary of von Koh snowakeExamples 0.6. Ation of Kleinian groups. Beautiful examples of fratal setsarise as limit sets of the ation of Kleinian groups on CI.Let Ho be the group of all homographies, namely the rational mappings of the Riemannsphere of degree 1, i.e. of the form z 7! az+bz+d where ad� b 6= 0. Every disrete subgroupof Ho is alled Kleinian group. If all the elements of a Kleinian group preserve the unitdis ID = fjzj < 1g, the group is alled Fuhsian.Consider for example a regular hyperboli 4n-gon in ID (equipped with the hyperbolimetri) entered at 0. Denote the onseutive sides by aji ; i = 1; :::; n; j = 1; :::; 4 in thelexiographial order: a11; :::a41; a12; :::. Eah side is ontained in the orresponding irle Cjiinterseting �ID at the right angles. Denote the dis bounded by Cji by Dji .It is not hard to see that the losures of Dji and Dj+2i are disjoint for eah i andj = 1; 2.FIGURE: regular hyperboli otagon, ID=G.Let gji ; j = 1; 2 be the unique homography preserving ID mapping aji to aj+2i and Dji tothe omplement of lDj+2i . It is easy to see that the family fgji g generates a Fuhsian groupG. For an arbitrary Kleinian group G, the Poinar�e limit set �(G) = S limk!1 gk(z),3



the union taken over all sequenes of pairwise di�erent gk 2 G suh that gk(z) onverges,where z is an arbitrary point in CI. It is not hard to prove that �(G) does not depend onz. For the above example �(G) = �ID. If we hange slightly gji (the irles Cji hangeslightly), then either �(G) is a irle S (all new Cji interset S at the right angle), or itis a fratal Jordan urve. The phenomenon is similar to the ase of the maps z 7! z2 + desribed in Introdution. For details see [Bowen℄, [Bowen, Series℄, [Sullivan℄. We providea sketh of the proof in Chapter 7.If all the losures of the diss Dji ; i = 1; :::; n; j = 1; :::; 4 beome pairwise disjoint,�(G) beomes a Cantor set (the group is alled then a Shottky group or a Kleinian groupof Shottky type).Examples 0.7. Higher dimensions. Though the book is devoted to 1-dimensionalreal and omplex iteration and arising fratals, Chapters 1-3 apply to general situations.A basi example is Smale's horseshoe. Take a square K = [0; 1℄� [0; 1℄ in the plane IR2and map it aÆnely to a strip by squeezing in the horizontal diretion and strething inthe vertial, for example f(x; y) = ( 13x+ 19 ; 3y� 13 ) and bend the strip by a new map g sothat the retangle [ 19 ; 49 ℄� [ 43 ; 83 ℄ is mapped to [ 59 ; 89 ℄� [� 13 ; 1℄. The resulting ompositionT = g Æ f maps K to a "horseshoe", see [Smale, p.773℄FIGURE: horseshoe, stadium extensionThe map an be easily extended to a C1-di�eomorphism of CI by mapping a "stadium"extending K to a bent "stadium", and its omplement to the respetive omplement. Theset �K of points not leaving K under ation of Tn; n = :::;�1; 0; 1; ::: is the artesian prod-ut of two Cantor sets. This set is T -invariant, "uniformly hyperboli". In the horizontaldiretion we have ontration, in the vertial diretion uniform expansion. The situationis di�erent from the previous examples of �d or linear Cantor sets, where we had uniformexpansion in all diretions.Smale's horseshoe is a universal phenomenon. It is always present for an iterate of adi�eomorphism f having a transversal homolini point q for a saddle p. The stable andunstable manifolds W s(p) := fy : fn(y) ! pg;Wu(p) := fy : f�n(y) ! pg as n ! 1,interset transversally at q. For more details on hyperboli sets see [HK℄.FIGURE: homolini point and embedded horseshoe.Note that T j�K is topologially onjugate to the left shift � on the two-sided shiftspae ~�2, namely there exists a homeomorphism h : �K ! ~�2 suh that h Æ T = � Æ h.Compare h i Example 0.3. T on �K is the inverse limit of the mapping T̂ on the Cantorset desribed in Introdution, similarly to the inverse limit ~�2 of � on �2. The philosophyis that hyperboli systems appear as inverse limits of expanding systems.A partition of a hyperboli set � into loal stable (unstable) manifolds: W s(x) =fy 2 � : (8n � 0)�(fn(x); fn(y)) � "(x)g for a small positive measurable funtion ", is4



an illustration of an abstrat ergodi theory measurable partition � suh that f(�) is �nerthan �, fn(�); n ! 1 onverges to the partition into points and the onditional entropyH�(f(�)j�) is maximal possible, equal to the entropy h�(f); all this holds for an ergodiinvariant measure �.The inverse limit of the system :::! S1 ! S1 where all the maps are z 7! z2, is alleda solenoid. It has a group struture: (:::; z�1; z0) �(:::; z0�1; z00) = (:::; z�1 �z0�1; z0 �z00), whihis a trajetory if both fators are, sine the map z 7! z2 is a homomorphism of the groupS1. Topologially the solenoid an be represented as the attrator A of the mapping of thesolid torus ID�S1 into itself f(z; w) = ( 13z+ 12w;w2). Its Hausdor� dimension is equal inthis speial example to 1 + HD(A \ fw = w0g) = 1 + log 2log 3 for an arbitrary w0, as Cantorsets A\fw = w0g have Hausdor� dimensions log 2log 3 . These are linear Cantor sets disussedin Introdution.Espeially interesting is the question of Hausdor� dimension of A if z 7! 13z is replaedby z 7! �(z) not onformal. But this higher dimensional problem goes beyond the sopeof our book. See [Pesin℄.If the map z 7! z2 in the de�nition of solenoid is replaed by an arbitrary rationalmapping then if f is expanding on the Julia set, the solenoid is loally the artesian produtof an open set in J(f) and the Cantor set of all possible hoises of bakward trajetories. Ifhowever there are ritial points in J(f) (or onverging under the ation of fn to parabolipoints in J(f)) the solenoid (inverse limit) is more ompliated, see [LM℄ for an attemptto desribe it, together with a neighbourhood omposed of trajetories outside J(f). Weshall not disuss this in our book.Examples 0.8. Bernoulli shifts and Markov hains. For every positive num-bers p1; :::; pd suh that Pdi=1 pi = 1, one introdues on the Borel subsets of �d (or~�d) a probability measure � by extending to the �-algebra of all Borel sets the funtion�(Ci0;i1;:::;it) = p0p1:::pt, where Ci0;i1;:::;it = f(i00; i01; :::) : i0s = is for every s = 0; 1; :::; tg.Eah suh C is alled a �nite ylinder.The spae �d with the left shift � and the measure � is alled one-sided Bernoullishift.On a topologial Markov hain �A � �d with A = (aij) and an arbitrary d � dmatrix M = pij suh that Pdj=1 pij = 1 for every i = 1; :::; d, pij � 0 and pij = 0if aij = 0, one an introdue a probability measure � on all Borel subsets of �A byextending �(Ci0;i1;:::;it) = pi0pi0i1 :::pit�1it . Here (p1; :::; pd) is an eigenvetor ofM�, namelyPi pipij = pj , suh that pi � 0 for every i = 1; :::; d and Pdi=1 = 1.The spae �A with the left shift � and the measure � is alled one-sided Markov hain.Note that � is �-invariant. Indeed,�([i (Ci;i0;:::;it)) =Xi pipii0pi0i1 :::pit�1it = pi0pi0i1 :::pit�1it = �(Ci0;:::;it):As in the topologial ase if we onsider ~�d rather than �d, we obtain two-sidedBernoulli shifts and two-sided Markov hains.5



Example 0.9. Thebyshev polynomial Let us onsider the mapping T : [�1; 1℄![�1; 1℄ of the real interval [�1; 1℄ de�ned by T (x) = 2x2� 1. In the o-ordinates z 7! 2z itis just a restrition to an invariant interval of the mapping z 7! z2 � 2 disussed alreadyin Introdution. The interval [�1; 1℄ is Julia set of T .Notie that this map is the fator of the mapping z 7! z2 on the unit irle fjzj = 1g inCI by the orthogonal projetion P to the real axis. Sine the length measure l is preservedby z 7! z2 its projetion is preserved by T . Its density with respet to the Lebesguemeasure on [�2; 2℄ is proportional to (dP=dl)�1, after normalization is equal to 1� 1p1�x2 .This measure satis�esmany properties of Gibbs invariant measures disussed in Chapter4, though T is not expanding; it has a ritial point at 0. This T is the simplest exampleof non-uniformly expanding maps to whih the advaned parts of the book are devoted.[Smale℄ S. Smale, Di�erentiable Dynamial Systems. Bulletin of the Amerian Math-ematial Soiety 73 (1967), 747-817.[Steinmetz℄ N. Steinmetz, Rational Iteration, Complex Dynamis, Dynamial Systems,Walter de Gruyter, Berlin 1993
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version De.7, 1999last revised Feb. 23, 2002CHAPTER 1MEASURE PRESERVING ENDOMORPHISMSx1.1 MEASURE SPACES AND MARTINGALE THEOREMWe assume that the reader knows basi elements of measure and integral theory. Fora omplete treatment see for example [Halmos℄ or [Billingsley, 1979℄. We start with somebasis to �x notation and terminology.A family F of subsets of a set X is said to be a �-algebra if the following onditions aresatis�ed:(1.1.1) X 2 F ;(1.1.2) A 2 F ) A 2 Fand(1.1.3) fAig1i=1 � F ) 1[i=1Ai 2 FIt follows from this de�nition that ; 2 F , that the �-algebra F is losed under ountableintersetions and subtrations of sets. If (1.1.3) is assumed only for �nite subfamilies ofF then F is alled an algebra. Fixed F , elements of the �{algebra F will be frequentlyalled measurable sets. For any family F0 of subsets of X, we denote by �(F0) the minimal�{algebra that ontains F0 and all it the �{algebra generated by F0.A funtion on a �-algebra F , � : F ! [0;1℄, is said to be �-additive if for any ountablesubfamily fAig1i=1 of F onsisting of mutually disjoint sets, we have(1.1.4) �( 1[i=1Ai) = 1Xi=1 �(Ai)We say then that � is a measure. If we onsider in (1.1.4) only �nite families of sets, we say� is additive. The two notions: of additive and of �-additive, make sense for a �-algebra aswell as for an algebra, provided in the algebra ase in (1.1.4) that all Ai and their unionbelong to F . The simplest onsequenes of the de�nition of measure are the following:(1.1.5) �(;) = 0;1



(1.1.6) if A;B 2 F and A � B then �(A) � �(B);(1.1.7) if A1 � A2 � : : : and fAig1i=1 � F then �( 1[i=1Ai) = supi �(Ai) = limi!1�(Ai):We say that the triple (X;F ; �) with a �-algebra F and � a measure on F is a measurespae. In this book we will always assume, unless the opposite is stated, that � is a �nitemeasure that is � : F ! [0;1). By (1.1.6) it equivalently means that �(X) < 1. If�(X) = 1, the triple (X;F ; �) is alled aprobability spae and � a probability measure.We say that �! IR is a measurable funtion, if ��1(J) 2 F for every interval J � IR(ompare Se.2). We say that � is �-integrable if R j�j d� < 1. We write � 2 L1(�).More generally, for every 1 � p <1 we write (R j�jp d�)1=p = jj�jjp and say � belongs toLp(�) = Lp(X;F ; �). If inf�(E)=0 supXnE j�j < 1 we say � 2 L1 and denote the latterexpression by jj�jj1. jj�jjp; 1 � p � 1 are alled Lp-norms of �. We usually identify inthis hapter funtions whih di�er only on a set of �-measure 0. Lp(X;F ; �)'s after theseidenti�ations are Banah spaes.We say that a property q(x), x 2 X, is satis�ed for � almost every x 2 X (abbr:a.e.), or �-a.e., if �(fx : q(x) is not satis�edg) = 0. We an onsider q as a subset of Xwith �(X n q) = 0.We shall often use in the book the following two fats.Monotone Convergene Theorem. Suppose �1 � �2 � ::: is an inreasing sequeneof integrable, real-valued funtions on a probability spae (X;F ; �). Then � = limn!1 �nexists a.e. and limn!1 R �n d� = R � d�. (We allow +1's here.)andDominated Convergene Theorem. If �n; n � 1 is a sequene of measurable real-valued funtions on a probability spae (X;F ; �) and j�nj � g for an integrable funtiong and �n ! � a.e., then � is integrable and limn!1 R �n d� = R � d�.Reall now that if F 0 is a sub-�-algebra of F and � : X ! IR is a �-integrable funtion,then there exists a unique (mod 0) funtion usually denoted by E(�jF 0) suh that E(�jF 0)is F 0-measurable and(1.1.8) ZAE(�jF 0) d� = ZA � d�for all A 2 F 0. E(�jF 0) is alled onditional expetation value of the funtion � withrespet to the �-algebra F 0. Sometimes we shall use for E(�jF 0) the simpli�ed notation�F 0 . 2



For F generated by a �nite partition A (f. Se.3), one an think of E(�j�(A) as onstanton eah A 2 A equal to the average RA � d�=�(A).The existene of E(�jF 0) follows from famous the Radon-Nikodym theorem, saying thatif � � �, both measures de�ned on the same �-algebra F 0, (� � � means � absolutelyontinuous with respet to �, i.e. �(A) = 0) �(A) = 0 for all A 2 F 0), then there existsa unique (mod 0) F 0-measurable, �-integrable funtion � = d�=d� : X ! IR+ suh thatfor every A 2 F 0 ZA� d� = �(A):To dedue (1.1.8) we set �(A) = RA � d� for A 2 F 0. The trik is that we restrit � fromF to F 0.If � 2 Lp(X;F ; �) then E(�jF 0) 2 Lp(X;F 0; �) for all �-algebras F 0 with Lp normsuniformly bounded. More preisely the operators �! E(�jF 0) are linear projetions fromLp(X;F ; �) to Lp(X;F 0; �), with Lp-norms equal to 1 (see Exerise 0.).We end this setion with the following version of Martingale Convergene Theo-rem.Theorem 1.1.1. If (Fn : n � 1) is either monotone inreasing or monotone dereasingsequene of �-algebras ontained in F , then for every � 2 Lp(�), 1 � p <1limn!1E(�jFn) = E(�jF 0); a.e. and in Lp;where F 0 is equal to either W1n=1 Fn or T1n=1 Fn respetively.In the theorem above we denoted by W1n=1 Fn the smallest �-algebra ontaining S1n=1Fn,the latter usually is not a �-algebra, but only an algebra. Compare Se.6 where omplete�-algebras of this form in Lebesgue spae are onsidered.Remark 1.1.2. For the existene of F 0 and the onvergene in Lp no monotoniity isneeded. It is suÆient to assume that for every A 2 F the limit limE(11AjFn) in measure� exists.(Reall that  n is said to onverge in measure � to  if for every " > 0, limn!1 �(fx 2X : j n(x)�  (x)j � "g)! 0.)In this book we denote by 11A the indiator funtion of A, namely equal to 1 on A and to0 outside A.We shall not provide here a proof of Theorem 1.1.1 in the full generality . Let us providehowever a proof Theorem 1.1.1 (and Remark 1.1.2 in the ase limE(11AjFn) = 11A) for theL2-onvergene for funtions � 2 L2(�). (This is the ase suÆient for example to provethe important Lemma 1.8.6 later on in this hapter.)For the inreasing sequene (Fn) we have the equality L2(X;F 0; �) = Sn L2(X;Fn; �).Indeed, for every B 2 F 0 there exists a sequene Bn 2 Fn, n � 1, suh that �(B�Bn)! 0.(B � C = (B n C) [ (C nB) is the symmetri di�erene of sets B and C.)3



This follows for example from Carath�eodory's argument, see the note Theorem 1.7.2.We have �(B) equal to the outer measure of B onstruted from � restrited to thealgebra S1n=1Fn. In the Remark 1.1.2 ase where we assumed limE(11AjFn) = 11A, thisis immediate.Hene L2(X;Fn; �) 3 11Bn ! 11B in L2(X;F ; �). Finally use the fat that everyfuntion f 2 L2(X;F 0; �) an be approximated in the spae L2(X;F 0; �) by the stepfuntions, i.e. �nite linear ombinations of indiator funtions. Therefore, sine E(�jFn)and E(�jF 0) are orthogonal projetions of � to L2(X;Fn; �) and L2(X;F 0; �) respetively(exerise) we obtain E(�jFn)! E(�jF 0) in L2.For a dereasing sequene Fn use the equality L2(X;F 0; �) = Tn L2(X;Fn; �).x1.2 MEASURE PRESERVING ENDOMORPHISMS, ERGODICITYLet (X;F ; �) and (X 0;F 0; �0) be measure spaes. A transformation T : X ! X 0 is saidto be measurable if T�1(A) 2 F for every A 2 F 0. If moreover �(T�1(A)) = �0(A) forevery A 2 F 0, then T is alled measure preserving. If (X;F ; �) = (X 0;F 0; �0) we all Ta measure preserving endomorphisms; we will say also that measure � is T{invariant, orthat T preserves �.If a measure preserving map T is invertible and the inverse T�1 is measurable, thenlearly T�1 is also measure preserving. Therefore T is an isomorphism in the ategory ofmeasure spaes. In the ase of (X;F ; �) = (X 0;F 0; �0) the transformation T is alled anautomorphism.We shall prove now the following very useful fat in whih the �nitness of measure is aruial assumption.Theorem 1.2.1. (Poinar�e Reurrene Theorem) If T : X ! X is a measure preservingendomorphism, then for every mesurable set A��fx 2 A : Tn(x) 2 A for in�nitely many n'sg� = �(A):Proof. Let N = N(T;A) = fx 2 A : Tn(x) =2 A 8n � 1g:We shall �rst show that �(N) = 0. Indeed, N is measurable sine N = A\�Tn�1 T�n(X nA)�. If x 2 N , then Tn(x) =2 A for all n � 1 and, in partiular, Tn(x) =2 N whih impliesthat x =2 T�n(N) and onsequently N \ T�n(N) = ; for all n � 1. Thus, all the sets N ,T�1(N), T�2(N); : : : are mutually disjoint sine if n1 � n2, thenT�n1(N) \ T�n2(N) = T�n1(N \ T�(n2�n1)(N)) = ;:Hene 1 � � 1[n=0T�n(N)! = 1Xn=0�(T�n(N)) = 1Xn=0�(N):4



Therefore �(N) = 0. Fix now k � 1 and putNk = fx 2 A : Tn(x) =2 A 8n � kg:Then Nk � N(T k; A) and therefore from what have been proved above it follows that�(Nk) � �(N(T k; A)) = 0. Thus��fx 2 A : Tn(x) 2 A for only �nitely many n'sg� = 0:The proof is �nished. |A measurable transformation T : X ! X of a measure spae (X;F ; �) is said to beergodi if for any measurable set A�(T�1(A)� A) = 0 ) �(A) = 0 or �(X nA) = 0(Reall the notation B � C = (B n C) [ (C nB).)Note that we did not assume in the de�nition of ergodiity that � is T -invariant(neither that � is �nite). Suppose that for every E of measure 0 the set T�1(E) is also ofmeasure 0 (in Ch.4 we all this property of � with respet to T , bakward quasi-invariant).Then in the de�nition of ergodiity one an replae �(T�1(A)� A) = 0 by T�1(A) = A.Indeed having A as in the de�nition one an de�ne A0 = S1n=0T1m=n T�m(A). Then�(A0) = �(A) and T�1(A0) = A0. If we assumed that the latter implies �(A0) = 0 or�(X nA0) = 0, then �(A) = 0 or �(X nA) = 0.Let � : X ! IR be a measurable funtion. For any n � 1 we de�ne(1.2.1) Sn� = �+ � Æ T + : : :+ � Æ Tn�1Let I = fA 2 F : �(T�1(A) � A) = 0g. We all it �-algebra of T -invariant (mod0) sets. Note that every  : X ! IR, measurable with respet to I, is T -invariant (mod0), namely  Æ T =  , but on a set of measure � equal to 0. Indeed let A = fx 2X :  (x) 6=  Æ T (x)g and suppose �(A) > 0. Hene there exists a 2 IR suh thatAa = fx 2 A :  (x) < a;  Æ T (x) > ag and �(Aa) > 0. (or a similar Aa with reversedinequalities). Sine Aa 2 I, there exists E � A of measure 0, suh that T (Aa n E) � Aa,hene on Aa nE we have  =  Æ T . We arrived at a ontradition.Theorem 1.2.2. (Birkho�'s Ergodi Theorem) If T : X ! X is a measure preservingendomorphism of a probability spae (X;F ; �) and � : X ! IR is an integrable funtionthen limn!1 1nSn�(x) = E(�jI) for �-a.e. x 2 XWe say that the time average exists for �-almost every x 2 X.5



In partiular Theorem 1.2.2 yields for T ergodi preserving �, that(1.2.1a) limn!1 1nSn�(x) = Z � d�; for �-a.e. xWe say that the time average equals the spae average.If � = 11A, the indiator funtion of a measurable set A, then we dedue that for a.e. xthe frequeny of hitting A by the forward trajetory equals to the measure (probability)of A, namely limn!1#f0 � j < n : T j(x) 2 Ag=n, is equal to �(A).This means for example that if we hoose a point in X in a eulidean spae at randomits suÆiently long forward trajetory �lls X with the density being approximately thedensity of � with respet to the Lebesgue measure, provided � is equivalent to the Lebesguemeasure.On the �gure below, Fig.1.2a, for a randomly hosen bakward trajetory xj ; j =0; 1; :::; n;, T (xk) = xk�1, for T (x) = 2x2 � 1 (see Example 0.9), for the interval [�1; 1℄divided into k = 100 equal piees, the graph of the funtion �1 + 2t=100 7! 100 �#f0 �j < n : �1 + 2t=100 � xj(x) < �1 + 2(t+ 1)=100g=n is plotted. It indeed resembles thegraph of 1=�p1� x2, Fig.1.2b, whih is the density of the invariant probability measureequivalent to the length measure.FIGURE 1.1, The density of an invariant measure for T (x) = 2x2 � 1.As a orollary of Birkho�'s Ergodi Theorem one an obtain von Neumann's ErgodiTheorem. It says that if � 2 Lp(�) for 1 � p <1, then the onvergene to E(�jI) holdsin Lp. It is not diÆult, see for example [Wa℄.Proof of Birkho�'s Ergodi Theorem. Let f 2 L1(�) and Fn = maxfPk�1i=0 f Æ T i :1 � k � ng, for n = 1; 2; :::. Then for every x 2 X, Fn+1(x) � Fn(T (x)) = f(x) �min(0; Fn(T (x))) � f(x) and is monotone dereasing, sine Fn is monotone inreasing.De�ne A = fx : supn nXi=0 f(T i(x)) =1gIf x 2 A then Fn+1(x) � Fn(T (x)) monotonously dereases to f(x) as n ! 1. TheDominated Convergene Theorem then implies that(1.2.2) 0 � ZA(Fn+1 � Fn) d� = ZA(Fn+1 � Fn Æ T ) d�! ZA fd�:(We arrived at RA f d� � 0, whih is a variant of so-alled Maximal Ergodi Theorem.)Notie that 1nPn�1k=0 f Æ T k � Fn=n, so outside A we have(1.2.3) lim supn!1 1n n�1Xk=0 f Æ T k � 0:6



Therefore, if the onditional expetation value fI of f is negative a.e., that is if RC fd� =RC fId� < 0 for all C 2 I with �(C) > 0, then, sine by de�nition A 2 I, (1.2.2) impliesthat �(A) = 0, and hene (1.2.3) holds a.e.. Now if we let f = ���I�", then fI = �" < 0.Note that �I Æ T = �I implies1n n�1Xk=0 f Æ T k = � 1n n�1Xk=0 � Æ T k�� �I � ":So (1.2.3) yields lim supn!1 1n n�1Xk=0 � Æ T k � �I + " a.e.Replaing � by �� gives lim infn!1 1n n�1Xk=0 � Æ T k � �I � " a.e.Thus limn!1 1nPn�1k=0 � Æ T k = �I a.e. |Reall that at the end opposite to the absolute ontinuity (see Se.1) there is thenotion of singularity. Finite measures �1 and �2 on a �-algebra F are alled mutuallysingular, �1 ? �2 if there exist disjoint sets X1; X2 2 F with �i(Xi) = 1 for i = 1; 2.Theorem 1.2.3. If T : X ! X is a map measurable with respet to a �-algebra F andif �1 and �2 are two di�erent T -invariant probability ergodi measures on F , then �1 and�2 are singular.Proof. Sine �1 and �2 are di�erent, there exists a measurable set A suh that(1.2.2) �1(A) 6= �2(A)By Theorem 1.2.2 (Birkho�'s Ergodi Theorem) applied to �1 and �2 there exist setsX1; X2 2 F suh that for every i = 1; 2 and every x 2 Xilimn!1 1nSn11A(x) = �i(A)and �i(Xi) = 1. Thus in view of (1.2.2) the sets X1 and X2 are disjoint. The proof is�nished. |Proposition 1.2.4. If T : X ! X is a measure preserving endomorphism of a probabilityspae (X;F ; �), then � is ergodi if and only if there is no T -invariant probability measureon F absolutely ontinuous with respet to � and di�erent from �.7



Proof. Suppose that � is ergodi and � is a T -invariant probability measure on F with� � �. Then � is also ergodi. Otherwise there would exist A suh that T�1(A) = Aand �(A); �(X n A) > 0 so �(A); �(X n A) > 0 so � would not be ergodi. Hene byTheorem 1.2.3 � = �.Suppose in turn that � is not ergodi and let A 2 F be a T -invariant set suh that0 < �(A) < 1. Then the onditional measure on A is also T -invariant but simultaneouslyit is distint from � and absolutely ontinuous with respet to �. The proof is �nished. |Observe now that the spae M(F) of probability measures on F is a onvex set i.e.the onvex ombination ��+(1��)�, 0 � � � 1, of two suh measures is again in M(F).The subspae M(F ; T ) of M(F) onsisting of T -invariant measures is also onvex.Reall that a point in a onvex set is said to be extreme if and only if it annot berepresented as a onvex ombination of two distint points with orresponding oeÆient0 < � < 1. We shall prove the following.Theorem 1.2.5. The ergodi measures in M(F ; T ) are exatly the extreme points ofM(F ; T ).Proof. Suppose that �; �1; �2 2 M(F ; T ), �1 6= �2 and � = ��1 + (1 � �)�2 with0 < � < 1. Then �1 6= � and �1 � �. Thus in view of Proposition 1.2.4 mesure � is notergodi.Suppose in turn that � is not ergodi and let A 2 F be a T -invariant set suhthat 0 < �(A) < 1. Reall that given B 2 F with �(B) > 0 the onditional measureA ! �(AjB) is de�ned by �(A \ B)=�(B). Thus the onditional measures �(�jA) and�(�jA) are distint, T -invariant and � = �(A)�(�jA) + (1� �(A)�(�jA). Consequently �is not en extreme point in M(F ; T ). The proof is �nished. |In Setion 8 we shall formulate a theorem on deomposition into ergodi omponents,that will better lear the situation. This will orrespond the Choquet Theorem in funtionalanalysis, see Ch.2.1.x1.3. ENTROPY OF PARTITIONLet (X;F ; �) be a probability spae. A partition of (X;F ; �) is a subfamily (a priorimay be unountable) of F onsisting of mutually disjoint elements whose union is X.If A is a partition and x 2 X then the only element of A ontaining x is denoted by A(x)or, if x 2 A 2 A, by A(x).If A and B are two partitions of X we de�ne their joinA _ B = fA \ B : A 2 A; B 2 BgWe write A � B if and only if B(x) � A(x) for every x 2 X, whih in other wordsmeans that eah element of the partition B is ontained in an element of the partition Aor equivalently A _ B = B. We sometimes say in this ase, that B is �ner than A or thatB is a re�nement of A. 8



Now we introdue the notion of entropy of a ountable (this word inludes in this book:�nite) partition and we ollet its basi elementary properties. De�ne the funtion k :[0; 1℄! [0;1℄ putting(1.3.1) k(t) = ��t log t for t 2 (0; 1℄0 for t = 0Chek that the funtion k is ontinuous. Let A = fAi : 1 � i � ng be a ountable partitionof X, where n is a �nite integer or 1. In the sequel we shall usually write 1.The entropy of A is the number(1.3.2) H(A) = 1Xi=1 ��(Ai) log�(Ai) = 1Xi=1 k(�(Ai))If A is in�nite, H(A) may happen to be in�nite too.De�ne I(x) = I(A)(x) := � log�(A(x)). This is alled an information funtion. Intu-itively I(x) is an information on an objet x given by the experiment A in the logarithmisale. Therefore the entropy in (1.3.2) is the integral (the average) of the informationfuntion.Note that H(A) = 0 forA = fXg and that ifA is �nite, say onsists of n elements, then0 � H(A) � logn and H(A) = logn if and only if �(A1) = �(A2) = : : : = �(An) = 1=n.This follows from the fat that the logarithmi funtion is stritly onave.In this setion we deal with only one �xed measure �. If however we need to onsider moremeasures simultaneously (see for example Ch.2) we will rather use the notation H�(A) forH(A).Let A = fAi : i � 1g and B = fBj : j � 1g be two ountable partitions of X. Theonditional entropy H(AjB) of A given B is de�ned asH(AjB) = 1Xj=1 �(Bj) 1Xi=1 ��(Ai \Bj)�(Bj) log �(Ai \ Bj)�(Bj)=Xi;j ��(Ai \Bj) log �(Ai \ Bj)�(Bj)(1.3.3)The �rst equality, de�ning H(AjB), an be viewed as follows: one onsiders eah elementBj as a probability spae with onditional measure �(AjBj) = �(A)=�(Bj) for A � Bjand alulates the entropy of the partition of the set Bj into Ai \ Bj. Then one averagesthe result over the spae of Bj's. (This will be generalized in Def.1.8.3.)For eah x denote � log�((A(x) \ B(x)jB(x)) by I(x) or I(AjB)(x). The seondequality in (1.3.3) an be rewritten as(1.3.3a) H(AjB) = ZX I(AjB) d�:9



Note by the way that if ~B is the �-algebra onsisting of all unions of elements of B(i.e. generated by B, then I(x) = � log�((A(x) \ B(x))jB(x)) = � logE(11A(x)j ~B)(x), f(1.1.8).Note �nally that for any ountable partition A we have(1.3.4) H(AjfXg) = H(A):. Some futher basi properties of entropy of partitions are olleted in the following.Theorem 1.3.1. Let (X;F ; �) be a probability spae. If A, B and C are ountablepartitions of X then: H(A_ BjC) = H(AjC) + H(BjA _ C)(a) H(A_ B) = H(A) + H(BjA)(b) A � B ) H(AjC) � H(BjC)() B � C ) H(AjB) � H(AjC)(d) H(A_ BjC) � H(AjC) + H(BjC)(e) H(AjC) � H(AjB) + H(BjC)(f)Proof. Let A = fAn : n � 1g, B = fBm : m � 1g, and C = fCl : l � 1g. Without loosinggenerality we an assume that all these sets are of positive measure.(a) By (1.3.3) we haveH(A_ BjC) = �Xi;j;k �(Ai \Bj \ Ck) log �(Ai \ Bj \ Ck)�(Ck)But �(Ai \Bj \ Ck)�(Ck) = �(Ai \ Bj \ Ck)�(Ai \ Ck) �(Ai \ Ck)�(Ck)unless �(Ai \ Ck) = 0. But then the left hand side vanishes and we need not onsider it.Therefore H(A_ BjC) =�Xi;j;k �(Ai \Bj \ Ck) log �(Ai \ Ck)�(Ck)�Xi;j;k �(Ai \Bj \ Ck) log �(Ai \ Bj \ Ck)�(Ai \ Ck)=�Xi;k �(Ai \ Ck) log �(Ai \ Ck)�(Ck) + H(BjA _ C)=H(AjC) + H(BjA _ C)(b) Put C = fXg and apply (1.3.4) in (a). 10



() By (a) H(BjC) = H(A _ BjC) = H(AjC) + H(BjA _ C) � H(AjC)(d) Sine the funtion k de�ned by (1.3.1) is stritly onave, we have for every pair i; j(1.3.5) k Xl �(Cl \Bj)�(Bj) �(Ai \ Cl)�(Cl) ! �Xl �(Cl \ Bj)�(Bj) k��(Ai \ Cl)�(Cl) �But sine B � C, we an write above Cl \Bj = Cl, hene the left hand side equalsk��(Ai \ Bj)�(Bj) � = ��(Ai \ Bj)�(Bj) log �(Ai \Bj)�(Bj)Thus multiplying both sides of (1.3.5) by �(Bj) and summing over i and j we get�Xi;j �(Ai \ Bj) log �(Ai \Bj)�(Bj) � �Xi;j;l �(Cl \Bj)�(Ai \ Cl)�(Cl) log �(Ai \ Cl)�(Cl)= �Xi;l �(Cl)�(Ai \ Cl)�(Cl) log �(Ai \ Cl)�(Cl)or equivalently H(AjB) � H(AjC).Formula (e) follows immediately from (a) and (d) and formula (f) an proved by a straight-forward alulation (its onsequenes are disussed in Exerise 1.9). |x1.4. ENTROPY OF ENDOMORPHISM.Let (X;F ; �) be a probability spae and let T : X ! X be a measure preservingendomorphism of X. If A = fAigi2I is a partition of X then by T�1A we denote thepartition fT�1(Ai)gi2I . Note that for any ountable A(1.4.1) H(T�1A) = H(A)For all n � m � 0 denote the partition Wni=0 T�iA = A _ T�1(A) _ ::: _ T�n(A) =Wni=m T�i(A) by Anm. For m = 0 we shall sometimes use the notation An.Lemma 1.4.1. For any ountable A(1.4.2) H(An) = H(A) + nXj=1H(AjAj1)11



Proof. We prove this formula by indution. If n = 0 it is tautology. Suppose it is truefor n� 1 � 0. Then with the use of Theorem 1.3.1(b) and (1.4.1) we obtainH(An) = H(An1 _ A) = H(An1 ) + H(AjAn1 ) = H(An�1) + H(AjAn1 ) = H(A) + nXj=1H(AjAj1)by the indutive assumption. Hene (1.4.2) holds for all n. |Lemma 1.4.2. The sequenes 1n+1H(An) and H�AjAn1 ) are monotone dereasing to alimit h(T;A).Proof. The sequene H�AjAn1 ); n = 0; 1; ::: is monotone dereasing, by Theorem 1.3.1(d). Therefore the sequene of averages is also monotone dereasing to the same limit,furthermore it oinides with the limit of the sequene 1n+1H(An) by (1.4.2). |The limit 1n+1H(An) whose existene has been shown in Lemma 1.4.2. is known as the(measure{theoreti) entropy of T with respet to the partition A and is denoted by h(T;A)or by h�(T;A) if one wants to indiate the measure under onsideration. Intuitively thismeans the limit rate of the growth of average (integral) information (in logarithmi sale),under onseutive experiments, for number of experiments tending to in�nity.Remark. To prove the existene of the limit 1n+1H(An), instead of relying on (1.4.2)and the monotoniity we ould use the estmatean+m = H(An+m�1) � H(An�1) + H(An+m�1n ) = an +H(Am�1) = an + am:following from Theorem 1.3.1 (e) and from (1.4.1), and apply the followingLemma 1.4.3. If fang1n=1 is a sequene of real numbers suh that an+m � an + am forall n;m � 1 then limn!1 an exists and equals infn an=n. The limit ould be �1, but ifthe an's are bounded below, then the limit will be nonnegative.Proof. Fix m � 1. Eah n � 1 an be expressed as n = km+ i with 0 � i < m. Thenann = ai+kmi+ km � aikm + akmkm � aikm + kamkm = aikm + ammIf n ! 1 then also k ! 1 and therefore lim supn!1 ann � amm . Thus lim supn!1 ann �inf amm . Now the inequality inf amm � lim infn!1 ann �nishes the proof. |.Notie that there exists a subadditive sequene (i.e. satisfying an+m � an + am) suhthat the orresponding sequene an=n is not eventually dereasing. Indeed, it suÆes toobserve that eah sequene onsisting of 1's and 2's is subadditive and to onsider suh asequene having in�nitely many 1's and 2's. If for an n > 1 we have an = 1 and an+1 = 2we have ann < an+1n+1 . 12



Exerise. Prove that Lemma 1.4.1 remains true under the weaker assumptions that thereexists  2 R suh that an+m � an + am +  for all n and m.The basi elementary properties of the entropy h(T;A) are olleted in the next theorembelow.Theorem 1.4.4. If A and B are ountable partitions of �nite entropy thenh(T;A) � H(A)(a) h(T;A_ B) � h(T;A) + h(T;B)(b) A � B ) h(T;A) � h(T;B)() h(T;A) � h(T;B) + H(AjB)(d) h(T; T�1(A)) = h(T;A)(e) If k � 1 then h(T;A) = h�T;Ak)(f) If T is invertible and k � 1 then h(T;A) = h�T; k_i=�k T i(A)�(g) The standard proof (see for example [Wa℄) based on Theorem 1.3.1 and formula (1.3.2)is left for the reader as an exerise. Let us prove only (d).h(T;A) = limn!1 1nH(An�1) � limn!1 1n�H(An�1jBn�1) + H(Bn�1)�� limn!1 1n n�1Xj=0H(T�j(A)jBn�1) + limn!1 1nH(Bn�1)� limn!1 1n n�1Xj=0H(T�j(A)jT�j(B)) + h(T;B) � H(AjB) + h(T;B):Here is one more useful fat, stronger than Th.1.4.4 ():Theorem 1.4.5. If T : X ! X is a measure preserving endomorphism of a probabilityspae (X;F ; �) and A and Bm;m = 1; 2; ::: are ountable partitions of �nite entropy,and H(AjBm) ! 0 as m ! 1, then h(T;A) � lim infm!1 h(T;Bm). In partiular, forBm := Bm = Wmj=0 T�j(B), one obtains h(T;A) � h(T;B).Proof. By Theorem 1.4.4 (d), for every positive integer m,h(T;A) = H(AjBm) + h(T;Bm):Lettingm!1 this yields the �rst part of the assertion. For Bm = Bm, one an substitutein plae of the last summand h(T;Bm) = h(T;B), by Theorem 1.4.4(f). |13



The (measure-theoreti) entropy of the endomorphism T : X ! X is de�ned as(1.4.3) h�(T ) = h(T ) = supA fh(T;A)gwhere the supremum is taken over all �nite (or ountable of �nite entropy) partitions ofX. See Exerise 12.It is lear from the de�nition that the entropy of T is an isomorphism invariant.Later on (see Th.1.8.7, Remark 1.8.7", Corollary 1.8"' and Exerise 1.9') we shalldisuss the ases where H(AjBn) ! 0 for every A (�nite or of �nite entropy). This willallow us to write h�(T ) = limm!1 h(T;Bm) or h(T ) = h(T;B).Let us end this Setion with the following usefulTheorem 1.4.6. If T : X ! X is a measure preserving endomorphism of a probabilityspae (X;F ; �) then h(T k) = kh(T ) for all k � 1(a) If T is invertible then h(T�1) = h(T )(b)Proof. (a) Fix k � 1. Sinelimn!1 1nH�n�1_j=0 T�kj�k�1_i=0 T�iA�� = limn!1 knkH�nk�1_i=0 T�iA� = kh(T;A)we have h�T k;Wk�1i=0 T�iA� = kh(T;A). Therefore(1.4.4) kh(T ) = k supA �nite h(T;A) = supA h�T k; k�1_i=0 T�iA� � supB h(T k;B) = h(T k)On the other hand by Theorem 1.4.4() we get h(T k;A) � h�T k;Wk�1i=0 T�iA� = kh(T;A)and therefore h(T k) � kh(T ). The result follows from this and (1.4.4).(b) In view of (1.4.1) for all �nite partitions A we haveH�n�1_i=0 T iA� = H�T�(n�1) n�1_i=0 T iA� = H�n�1_i=0 T�iA�This �nishes the proof. |x1.5. SHANNON-MCMILLAN-BREIMAN THEOREM.14



Let (X;F ; �) be a probability spae, T : X ! X be a measure preserving endomor-phism of X and A be a ountable �nite entropy partition of X.Lemma 1.5.1. (maximal inequality) For eah n = 1; 2; ::: let fn = I(AjAn1 ) and f� =supn�1 fn. Then for eah � and eah A 2 A�fx 2 A : f�(x) > �g � e��:Proof. For eah A 2 A and n = 1; 2; ::: let fAn = � logE(11AjAn1 ). Of ourse fn =PA2A 11AfAn . DenoteBAn = fx : fA1 (x); :::; fAn�1(x) � �; fAn (x) > �g:Sine BAn 2 F(An1 ), the �-algebra generated by An1 ,�(BAn \ A) = ZBAn 11A d� = ZBAn E(11AjAn1 ) d� = ZBAn e�fAn d� � e���(BAn ):Therefore �(fx 2 A : f�(x) > �g) = 1Xn=1�(BAn \ A) � e�� 1Xn=1�(BAn ) � e��: |Corollary 1.5.2. The funtion f� is integrable with integral bounded by H(A) + 1.Proof. Of ourse �fx 2 A : f� > �g � �(A), so �(fx 2 A : f� > �g) � minf�(A); e��g.So by Lemma 1.5.1ZX f� d� = XA2A ZA f� d� = XA2AZ 10 �fx 2 A : f� > �g d�� XA2A Z 10 minf�(A); e��g d� = XA2A�Z � log �(A)0 �(A) d�+ Z 1� log �(A) e�� d��= XA2A���(A)(log�(A)) + �(A)� = H(A) + 1: |Corollary 1.5.3. fn onverge a.e. and in L1.Proof. E(11AjAn1 ) is a martingale to whih we an apply Theorem 1.1.1. This givesonvergene a.e., hene onvergene a.e. of eah fAn , hene fn. Now onvergene in L1follows from Corollary 1.5.2. and Dominated Convergene Theorem |15



Theorem 1.5.4. (Shannon-MMillan-Breiman) Suppose that A is a ountable partitionof �nite entropy. Then there exist limitsf = limn!1 I(AjAn1 ) and fI(x) = limn!1 1n n�1Xi=0 f(T i(x)) for a.e. xand(1.5.1) limn!1 1n+ 1I(An) = fI a.e. and in L1:Furthermore(1.5.2) h(T;A) = limn!1 1n+ 1H(An) = Z fI d� = Z f d�:The limit f will gain a new interpretation in (1.8.6), in the ontext of Lebesgue spaes,where the notion of information funtion I will be generalized.Proof. First note that fn = I(AjAn1 ) onverge to an integrable f by Corollary 1.5.3.(Caution: though integrals of fn derease to the entropy, Lemma 1.4.3, it is usually nottrue that fn derease.) Hene the a.e. onvergene of time averages to fI a.e. holds byBirkho�'s Ergodi Theorem. It will suÆe to prove (1.5.1) sine then (1.5.2), the seondequality, holds by integration and the last equality by Birkho�'s Ergodi Theorem, theonvergene in L1.Let us now establish some identities (ompare Lemma 1.4.3). Let fAn : n � 0g be asequene of ountable partitions. Then we haveI  n_i=0Ai! = I  A0j n_i=1Ai!+I  n_i=1Ai! = I  A0j n_i=1Ai!+I  A1j n_i=2Ai!+::+I(An):In partiular, it follows from the above formula that for Ai = T�iA, we haveI(An) = I(AjAn1 ) + I(T�1AjAn2 ) + : : :+ I(T�nA)= I(AjAn1 ) + I(AjAn�11 ) Æ T + : : : I(A) Æ Tn= fn + fn�1 Æ T + fn�2 Æ T 2 + : : :+ f0 Æ Tn;where fk = I(AjAk1), f0 = I(A). Now���� 1n+ 1I(An)� fI���� � ������ 1n+ 1 nXj=0(fn�i Æ T i � f Æ T i)������+ ������ 1n+ 1 nXj=0 f Æ T i � fI ������ :Sine by Birkho�'s Ergodi Theorem the latter term onverges to zero both almosteverywhere and in L1, it suÆes to prove that for n!1(1.5.3) 1n+ 1 nXi=0 gn�i Æ T i ! 0 a.e. and in L1:16



where gk = jf � fkj.Now, sine T is measure preserving, for every i � 0Z gn�i Æ T id� = Z gn�id�:Thus 1nPni=0 R gn�i Æ T i d� = 1nPni=0 R gn�i d� ! 0, sine fk ! f in L1 by Corollary1.5.3. Thus we established the L1 onvergene in (1.5.3).Now, letGN = supn>N gn. Of ourse GN is monotone dereasing and sine gn ! 0 a.e.(Corollary 1.5.3) we get GN & 0 a.e.. Moreover, by Corollary 1.5.2, G0 � supn fn+f 2 L1.For arbitrary N < n we have1n+ 1 nXi=0 gn�i Æ T i = 1n+ 1 n�N�1Xi=0 gn�i Æ T i + 1n+ 1 nXi=n�N gn�i Æ T i� 1n+ 1 n�N�1Xi=0 GN Æ T i + 1n+ 1 nXi=n�N G0 Æ T i:Hene, for KN = G0 +G0 Æ T + : : :+G0 Æ TNlim supn!1 1n+ 1 nXi=0 gn�i Æ T i � (GN )I + lim supn!1 1n+ 1KN Æ Tn�N = (GN )I a.e.;where (GN )I = limn!1 1n+1Pni=0GN Æ T i by Birkho�'s Ergodi Theorem.Now (GN )I dereases with N beause GN dereases, andZ (GN )I d� = Z GNd�! 0beause GN are non-negative uniformly bounded by G0 2 L1 and tend to 0 a.e..Hene (GN )I ! 0 a.e.. Thereforelim supn!1 1n+ 1 nXi=0 gn�i Æ T i ! 0 a.e.establishing the missing a.e. onvergene in (1.5.3). |As an immediate onsequene of (1.5.1) and 1.5.2) for T ergodi, along with fI = R fI d�,we get the following:Theorem 1.5.5 (Shannon-MMillan-Breiman, ergodi ase) If T : X ! X is ergodi andA is a ountable partition of �nite entropy, thenlimn!1 1nI(An�1)(x) = h�(T;A): for a.e. x 2 X17



The left hand side an be viewed as a loal entropy at x. The Theorem says that at a.e. xthe loal entropy exists and is equal to the entropy (ompare omments after (1.3.2) andLemma 1.4.2).x1.6. LEBESGUE SPACES, MEASURABLE PARTITIONS AND CANONICALSYSTEMS OF CONDITIONAL MEASURES.Let (X;F ; �) be a probability spae. We onsider only omplete measures (probabilities),namely suh that every subset of a set of measure 0 is measurable. If a measure is notomplete we an always onsider its ompletion, namely to inlude in the ompletion ofF all sets A suh that there exists B 2 F with A� B ontained in a set in F of measure0. Consider A, an arbitrary partition of X, not neessarily ountable nor onsisting ofmeasurable sets. By ~A we denote the sub �-algebra of F onsisting of those sets in F thatare unions of whole elements (�bres) of A. Note that ~A � �(A) de�ned in Se.1 (in aseA � F) but the inlusion an be strit. Obviously ~A � f;; Xg.De�nition 1.6.0. The partition A is alled measurable if it satis�es the followingseparation property.(1.6.1) There exists a sequene B= fBn : n � 1g � ~A suh that for any two A1; A2 2 A withA1 6= A2 there is an integer n � 1 suh that eitherA1 � Bn and A2 � X nBnor A2 � Bn and A1 � X nBnSine eah element of the measurable partition A an be represented as an intersetionof ountably many elements Bn or their omplements, eah element of A is measurable.Let us stress however that the measurability of all elements of A is not suÆient for A tobe a measurable partition (see Exerise 1). The sequene B is alled a basis for A.Remark 1.6.0a. A popular de�nition of an unountable measurable partition A isthat there exists a sequene of �nite partitions (reall that this means: �nite partitionsinto measurable sets) An; n = 0; 1; :::, suh that A = W1n=0An. Here (unlike later on) thejoin W is onsidered in the set-theoreti sense, i.e. as fAn1\An2\::: : Ani 2 Ani ; i = 1; :::g.Clearly it is equivalent to (1.6.1).Notie that for any measurable map T : X ! X 0 between probability measure spaes, ifA is a measurable partition of X 0, then T�1(A) is a measurable partition of X.Now we pass to the very useful lass of probability spaes: Lebesgue spaes.De�nition 1.6.1. We all a sequene B= (Bn : n � 1) � F , basis of (X;F ; �) if the twofollowing onditions are satis�ed:(i) (1.6.1) holds for A = ", the partition into points;(ii) for any A 2 F there exists a set C 2 �(B) suh that C � A and �(C nA) = 0.18



(Reall, Se.1, that �(B) denotes the smallest �-algebra ontaining all Bn 2B. Rohlinused the name Borel �-algebra.) ,(X;F ; �) satisfying (i) and (ii) for a basis B is alled separable.Now let " = �1 and B(")n = Bn if " = 1 and B(")n = X nBn if " = �1. To any sequene ofnumbers "n; n = 1; 2; ::: there orresponds the intersetion T1n=1B("n)n . By (i) every suhintersetion ontains no more than one point.The spae (X;F ; �) is said to be omplete with respet to a basis B if all the interse-tions T1n=1B("n)n are non-empty. The spae (X;F ; �) is said to be omplete (mod 0) withrespet to a basis B if X an be inluded as a subset of full measure into a ertain mea-sure spae (X;F; �) whih is omplete with respet to its own basis B = (Bn) satisfyingBn \X = Bn for all n.It turns out that a spae whih is omplete (mod 0) with respet to its one bases is alsoomplete (mod 0) with respet to its every other basis.De�nition 1.6.2. The spae (X;F ; �) omplete (mod 0) with respet to one of its basesis alled Lebesgue spae.Exerise. If (X1;F1; �1) and (X2;F2; �2) are two probability spaes with ompletemeasures, suh that X1 � X2; �2(X2 n X1) = 0 and F1 = F2jX1 ; �1 = �2jF1 (whereF2jX1 := fA \X1 : A 2 F2g), then the �rst spae is Lebesgue i� the seond is.It is not diÆult to hek that (see Exerise 3) that (X;F ; �) is a Lebesgue spae ifand only if (X;F ; �) is isomorphi to the unit interval (equipped with lassial Lebesguemeasure) together with ountably many atoms.Theorem 1.6.3. Assume that T : X ! X 0 is a measurable injetive map from aLebesgue spae (X;F ; �) onto a separable spae (X 0;F 0; �0) and pre-images of the sets ofmesure 0 (or positive) are of measure 0 (resp. positive). Then the spae (X 0;F 0; �0) isLebesgue and T�1 is a measurable map.Remark that in partiular a measurable, measure preserving, injetive map between Lebe-sgue spaes is an isomorphism. If X = X 0;F � F 0;F 6= F 0 and X 0;F 0; �0 is separable,then the above implies that (X;F ; �) is not Lebesgue.Let now (X;F ; �) be a Lebesgue spae and A be a measurable partition of X. We say thata property holds for all almost all atoms of A if and only if the union of atoms for whihit is satis�ed is measurable, of full measure. The following fundamental theorem holds:Theorem 1.6.4. For almost all A 2 A there exists a Lebesgue spae (A;FA; �A) suhthat the following onditions are satis�ed:(1.6.2) If B 2 F , then B \ A 2 FA for almost all A 2 A.(1.6.3) The funtion X ! [0; 1℄, x 7! �A(x)(B \ A(x)) is F -measurable for all B 2 F , whereA(x) is the element of A ontaining x. 19



(1.6.4) �(B) = RX �A(x)(B \ A(x)) d�(x)Remark 1. One an onsider the quotient (fator) spae (X=A;FA; �A) with X=A beingjust A and with FA = p( ~A) and �A(B) = �(p�1(B)) for the projetion p(x) = A(x). Itan be proved that the fator spae is again a Lebesgue spae. Then x 7! �A(x)(B\A(x))is FA-measurable and the property 1.6.4 an be rewritten in the form(1.6.5) �(B) = ZX=A �A(B \ A) d�A(A):Remark 2. If partition A is �nite or ountable, then the measures �A are just theonditional measures given by the formulas �A(B) = �(A \B)=�(A).Remark 3. (1.6.4) an be rewritten for every �-integrable �, or non-negative �-measurable� if we allow +1-ies, asZ � d� = ZX�ZA(x) �jA(x) d�A(x)� d�(x):This is a version of the Fubini Theorem.The family of measures f�A : A 2 Ag is alled the anonial system of onditional measureswith respet to the partition A. It is unique (mod 0) in the sense that any other system�0A oinides with it for almost all atoms of A.The method of onstrution of the system �A is via onditional expetations val-ues with respet to the �-algebra ~A. Having hosen a basis (Bn) of the Lebesgue spae(X;F ; �), for every �nite intersetion(1.6.6) B =\i B("ni)nione onsiders �B := E(11BjA), that an be onsidered as a funtion on the fator spaeX=A, unique on a.e. A 2 A suh that for all Z 2 ~A�(B \ Z) = Zp(Z) �B(A) d�A(A):Clearly (Bn \ A) is a basis for all A. It is not hard to prove that for a.e. A, for eah Bfrom our ountable family (1.6.6), �B(A) as a funtion of B generates Lebesgue spae onA. Uniqueness of �B yields additivity.Theorem 1.6.5. If T : X ! X 0 is a measurable map of a Lebesgue spae (X;F ; �) ontoa Lebesgue spae (X 0;F 0; �0), then the indued map from (X=�;F�; ��) for � = T�1("),to (X 0;F 0; �0) is an isomorphism. 20



Proof. This immediately follows from the fat that the quotient is a Lebesgue spae andfrom Theorem 1.6.2. |In what follows we onsider partitions (mod 0), i.e. we identify two partitions if theyoinide, restrited to a measurable subset of full measure. For these lasses of equivalenewe use the same notation �;� as in Setion 4. . They de�ne a partial order. If A� is afamily of measurable partitions of a measure spae (unlike in previous Setions the familymay be unountable), then by its produt A = W� A� we mean the measurable partitionA de�ned by(i) A � A� for every � ;(ii) if A0 � A� for every � and A0 is measurable, then A0 � A.Similarly, replaing � by �, we de�ne the intersetion V� A� .The produt and intersetion exist in a Lebesgue spae (i.e. the partially ordered strutureis omplete). They of ourse generalize the notions of Setion 4. Clearly for a ountablefamily of measurable partitions A� the above W and the set-theoreti one oinide (theassumption the spae is Lebesgue and the reasoning (mod 0) is not needed). In Exerise7 we give some examples.There is a natural one-to-one orrespondene between the measurable partitions (mod 0)of a Lebesgue spae (A;F ; �) and the omplete �-subalgebras of F , i.e. suh �-algebrasF 0 � F that the measure � restrited to F 0 is omplete. This orrespondene is de�nedby the assignment to eah A the �-algebra F(A) of all sets whih oinide (mod 0) withthe sets of ~A (de�ned at the beginning of this Setion). To operations on the measurablepartitions (mod 0) orrespond operations on the orresponding �-algebras. Namely , if A�is a family of measurable partitions (mod 0), thenF(_� A� ) =_� F(A�); F( �̂ A� ) = �̂ F(A� ):Here V� F(A�) = T� F(A�) is the set-theoreti intersetion of the �-algebras, whileW� F(A� ) is the set-theoreti intersetion of all the �-algebras whih ontain all F(A�).For a monotone inreasing (dereasing) sequene of measurable partitions An and A =WnAn (A = VnAn respet.) we write An % A (or An & A). In the language ofmeasurable partitions of a Lebesgue spae the Martingale Theorem 1.1.1 an be expressedas follows:Theorem 1.6.6. If An % A or An & A, then for every integrable funtion f , � a.s.E(f jAn) ! E(f jA), where for A any measurable partition one writes E(f jA)(x) :=R f jA(x) d�A(x).Proof. By the de�nition of anonial system of onditional measures and the de�nitionof onditional expetation value we have for every measurable partition A the identityE(f jA) = E(f jF(A)). |21



x1.7 ROHLIN NATURAL EXTENSIONWe shall prove here following very useful (see Ch.8.9)Theorem 1.7.1. For every measure preserving endomorphism T of a Lebesgue spae(X;F ; �) there exists a Lebesgue spae ( ~X; ~F; ~�) with measure preserving transformations�n : ~X ! X;n � 0 satisfying T Æ �n�1 = �n, whih is an inverse limit of the system::: T! X T! X.Reall that in ategory theory [Lang, Ch.I℄, for a sequene (system) of objets and mor-phisms ::: Mn�1! On Mn! :::::: M0! O0 an objet O equipped with morphisms �n : O ! On isalled an inverse limit if Mn Æ�n�1 = �n and for every other O0 equipped with morphisms�0n : O0 ! On satisfying Mn Æ �0n�1 = �0n there exists a unique morphismM : O! O suhthat �n ÆM = �0n for every n � 0. In partiular, for �0n := Mn Æ �n�1 : O ! On, thereexists M : O ! O suh that �n ÆM = �0n = Mn Æ �n�1 for every n. It is easy to see thatM is an automorphism.Here objets are probability spaes or probability spaes with omplete probabilities,and morphisms are measure preserving transformations or measure preserving transforma-tions up to sets of measure 0. (We have thus multiple meaning of Theorem 1.7.1.)Thus Theorem 1.7.1 produes a measure preserving automorphism ~T : ~X ! ~X satis-fying(1.7.1) �n Æ ~T = T Æ �n�1for every n � 0. This automorphism is alled Rohlin's natural extension of T .In the proof of the Theorem we shall use the followingTheorem 1.7.2 (On Extension of Measure). Every probability measure � (�-additive) onan algebra G0 of subsets of a set X an be uniquely extended to a measure on the �-algebraG generated by G0This Theorem an be proved with the use of the famous onstrution by Carath�eodory[Carath�eodory, Ch.V℄, namely by the onstrution of the outer measure: �e(A) = inf �(B) :B 2 G0; A � B for every A � X.We say that A is measurable (in Carath�eodory's sense) if for every E � X the outermeasure �e satis�es �e(E) = �e(E \ A) + �e(E n A). The family of these sets appears tobe a �-algebra ontaining G0, hene ontaining G.For a general de�nition of outer measure and sketh of the theory see Ch.6.Proof of Theorem 1.7.1. We start with produing inverse limit in the set-theoretiategory: Consider for ZZ�, the set of all non-positive integers, the spae(1.7.2) ~X = f(xn)n2ZZ� : T (xn) = xn+1 8n < 0g:22



and �i : ~X ! X the projetion to the i-th oordinate, �i((xn)n2ZZ) = xiNow provide ~X with a �-algebra ~F and probability measure ~�, so that ( ~X; ~F ; ~�)beomes the inverse limit.Consider Gn = ��1n (F). Note that this is an inreasing sequene of �-algebras withgrowing jnj beause ��1(A) = ��1n�1(T�1(A)) for every A 2 F . Write ~F0 = Sn�0 Gn. Thisis an algebra. For every A 2 F and n � 0 de�ne ~�(��1n (A)) := �(A). This is well-de�nedbeause if C = ��1n (A1) = ��1m (A2) for A1; A2 2 F and n < m then A1 = T�(m�n)(A2).Sine T preserves �, we have �(A1) = �(A2).The next step is to observe that ~� is �-additive on the algebra ~F0. For that we usethe assumption (X;F ; �) is a Lebesgue spae1. We just assume that X is a full Lebesguemeasure subset of the unit interval, with lassial Lebesgue measure and atoms, and the�-algebra of Lebesgue measurable sets F , see Exerise 3. Now it is suÆient to provethat for every dereasing sequene Ci 2 ~F0; i = 1; 2; ::: if Ti Ci = ; then ~�(Ci) ! 0.Suppose to the ontrary that there exists " > 0 suh that ~�(Ci) � " for every i. Passingto a subsequene and reindexing we an write Cn = ��1�n(C 0n); n = 1; 2; :::. We onstrutompat sets D0n � C 0n suh that �(C 0n nD0n) � "2�(n+1) and T jD0n is ontinuous for all n(Lusin's Theorem, [Halmos, Se.55℄).Write � =Q0�1X = f(xn)n2ZZ� : xn 2 Xg for the artesian produt of the ountablenumber of exemplars of X with the produt topology (ompat by Tihonov's Theorem).De�ne ~Xn := f(xi)i2ZZ� : T (xi) = xi+18n � i < 0g. Of ourse ~X � ~Xn � �. Denote by�n the projetion from ~Xn to the n-th oordinate.Then the setsDn = Tni=1(�i)�1(D0i) are ompat and dereasing. They are non-emptybeause �(�n(Dn)) � "=2 by the onstrution, for all n. Therefore TnDn is non-empty(Cantor theorem). Notie �nally that TnDn � TCn so the latter set is non-empty. Wehave proved that ~� is �-additive on ~F0.The �nal step of the onstrution is the extension of ~� to the �-algebra ~F generatedby ~F0. It exists (and is unique) due to Theorem 1.7.2.If we work in the ategory of omplete measures we de�ne the �-algebra ~F as theompletion (by subsets of sets of measure 0) of the �-algebra generated by ~F0.Thus the probability spae ( ~X; ~F; ~�) has been onstruted. We leave heking that itis indeed the inverse limit to the reader.Let us prove that the probability spae ( ~X; ~F ; ~�) with ompleted ~� is Lebesgue spae.Let (Bl) be a basis of (X;F ; �). Denote by �n the projetion of � to the n-th oordinatefor all n. (We use the same symbol as for projetions from ~X � � before. Reall also thatprojetions from intermediate domains have been denoted by �n.) Then learly the family��1n (Bl) is a basis of the partition " in �. The restritions of ��1n (Bl) to ~X generate the�-algebra ~F on ~X disussed before (in the sense of Def.1.6.1 (ii)), beause (Bl) generatesF . We de�ne ~��;n� 0\i=�n ��1i (Ci)� := �� 0\i=�n T�(i�n)(Ci)�;1this "detail" has been ovelooked in [CFS℄ 23



for Ci = Tl(i)l=1B("l;i)l for all n � i � 0 and �1 sequenes "l;i for l = 1; 2; :::; l(i). It is easyto see that the sequene ~��;n is ompatible on algebras: �nite unions of T0i=�n ��1l (Ci),namely ~��;n+1 extends ~��;n. (One says that this is a ompatible family of of �nite-dimensional probability distributions.)But � is ompat, hene ~��;n are �-additive on theunion of these algebras, hene extend to a measure (�-additive) ~�� on the �-algebra ~F�generated by them (Kolmogoro� Theorem, see bibliographial notes). The restrition of~�� to ~X oinides with ~� on ~F by the uniqueness in Theorem 1.7.2. The restrition of ~F�is a �-algebra so it ontains ~F . We shall know these �-algebras oinide if we verify that~X is ~��-measurable, i.e. ~X 2 ~F�.Thus the assertion to be proved is that ~X 2 ~F� and that ~X is of full measure ~��.This will prove that ( ~X; ~F; ~�) is omplete (mod 0) with respet to (Bl) restrited to ~X,hene it is Lebesgue spae.Reall that ~X = Tn ~Xn and note that by Lusin Theorem for eah n there existompat sets Dn;i � ~Xn; i = 1; 2; ::: suh that ~���� n SiDn;i� = 0. Compat sets aremeasurable as their omplementary open sets are ountable unions of ylinders. |Remark 1. ~X an be interpreted as the spae of all bakward trajetories for T . The map~T : ~X ! ~X an be de�ned by the formula(1.7.3) ~T ((xn)n2ZZ�) = (:::; x�2; x�1; x0; T (x0)):~X ould be de�ned in (1.7.2) as the spae of full trajetories f(xn)n2ZZ ;T (xn) = xn+1g.Then (1.7.3) is the shift to the left.The formula (1.7.3) holds beause ~T de�ned by it, satis�es (1.7.1), and there holdsuniqueness of ~T satisfying (1.7.1)Remark 2. Alternatively to Lusin Theorem argument above, we ould �nd for ~Xn setsEn;i � ~Xn, with ~��(En;i n ~Xn) ! 0, whih are unions of ylinders T0i=�n ��1i (Ci). Thisagrees with the following general fat:If a sequene of sets � generates a �-algebra G with a mesure � on it (see Def.1.6.2(ii)) then for every A 2 G there exists C � A with �(C n A) = 0 suh that C 2 �0d�Æ, i.e.C is a ountable intersetion of ountable unions of �nite intersetions of sets belongingto � or their omplements. Exerise: Prove this general fat, using Caratheodory's outermeasure onstruted on measurable sets.The onstrution via Lusin theorem presents ~X as �0d�Æ�Æ set up to measure 0 (asompat sets are in �0d�Æ). So it is not the most eonomi.Remark 3. Another way to prove Theorem 1.7.1 is to onstrut �rst (�; ~F�; ~�P) onthe in�nite artesian produt �, and next ( ~X; ~F; ~�) as the restrition of the �rst probabilityspae to ~X. We have hosen a di�erent way in order to avoid in the onstrution theorretness of the de�nition of ~�n's in the �nite produts and the ompatibility. Weneeded it only to prove that the inverse limit is Lebesgue.24



We end this setion with another version of Theorem 1.7.1. Let us start withDe�nition 1.7.3. Suppose that T is an automorphism of a Lebesgue spae (X;F ; �). Let� be a measurable partition. Assume it is forward invariant, namely T (�) � �, equivalentlyT�1(�) � �. Then � is said to be exhausting if Wn�0 Tn(�) = ".Theorem 1.7.4. For every measure preserving endomorphism T of a Lebesgue spae(X;F ; �) there exists a Lebesgue spae ( ~X; ~F ; ~�) with an automorphism ~T , with a forwardinvariant exhausting measurable partition �, suh that (X;F ; �) = ( ~X=�; ~F� ; ~�=�) thefator spae, f.Se.6, Remark 1, and T is fator of ~T , namely T Æ p = p Æ ~T for theprojetion p : ~X ! X.Proof. Take ( ~X; ~F ; ~�) and ~T from Theorem 1.7.1. Set � := ��10 ("). By (1.7.1) andT�1(") � " we get ~T�1(�) � �.If "0 = Wn�0 Tn(�) is not the partition of ~X into points, then ~T="0 is an automorphismof ( ~X="0; ~F"0; ~�"0). Moreover if we denote by p0 the projetion from ~X to ~X="0 then wean write ��n = �0�n Æ p0 for some maps �0�n for every n � 0. By the de�nition of inverselimit p0 must have an inverse whih is impossible.The last part, thatWn�0 Tn(�) is the partition of ~X into points, has also an immediate,not ategory theory, proof following diretly from the form of ~X in (1.7.2). Indeed for n � 0Tn(�) at ~x = (:::; x�2; x�1; x0 is the n-th image of � at ~T�n(~x) i.e. at (:::; x�n�1; x�n).So it is equal to f(:::; x0�n�1; x0�n; :::; x0) 2 ~X : x�n = x�n)g. Interseting for n ! 1 weobtain f~xg.
x1.8 GENERALIZED ENTROPY, CONVERGENCE THEOREMS.This setion ontains generalizations of entropy notions introdued in Setion 3 to the aseof all measurable partitions. The triple (X;F ; �) is assumed to be a Lebesgue spae.De�nition 1.8.1. If A is a measurable partition of X then its (generalized) entropy isde�ned as follows:H(A) =1 if A is not a ountable partition (mod 0);H(A) =PA2A��(A) log�(A) if A is a ountable partition (mod 0).Lemma 1.8.2. If An and A are measurable partitions of X and An % A, then H(An)%H(A).Proof. Write H(A) = R I(A) d� where I(A)(x) = � log�(A(x)) is the information fun-tion (ompare Se.4, we set log 0 = �1, hene I(A)(x) =1 if �(A(x)) = 0, here). Writethe same for An. As �(An(x)) & �(A(x)) for a.e. x, the onvergene in the Lemmafollows from Monotone Convergene Theorem. |25



De�nition 1.8.3. If A and B are two measurable partitions of X, then the (generalized)onditional entropy H(AjB) of partition A subjet to B is de�ned by the following integral(1.8.1) H�(AjB) = ZX=B H�B (AjB) d�B(B)where AjB is the partition fA \ B : A 2 Ag of B and �B form a anonial systemof onditional measures (Se. 7). Choose a sequene of �nite partitions An % A (seeRemark 1.6.0). The onditional entropy H�B (AnjB) is measurable as a funtion of B inthe fator spae (X=B;FB; �B), hene of ourse as a funtion on (X;F ; �), sine it is a �nitesum of measurable funtions B 7! ��B(A\B) log�B(A\B). Sine AnjB %AjB for a.e.B, we obtain, by using Lemma 1.8.2, that H�B (AnjB)! H�B (AjB). Hene H�B (AjB) ismeasurable, so our de�nition of H�(AjB) makes sense (we allow 1's here).Of ourse (1.8.1) an be also written in the form(1.8.2) ZX H�B(x)(AjB(x)) d�(x);with H�B (AjB) understood as onstant funtion on eah B (ompare (1.6.4) versus (1.6.5)).As in Se.3 we an write(1.8.3) H�(AjB) = ZX I(AjB) d�;where I(AjB) is the onditional information funtion:I(AjB)(x) := � log�B(x)(A(x) \ B(x)).Indeed I(AjB) is non-negative and �-measurable as limn!1 I(AnjB) (a.e.), so (1.8.3)follows from (1.6.5a).Lemma 1.8.4. If fAn : n � 1g and A are measurable partitions, An &A and H(A1) <1then H(An)& H(A).Proof. The proof is similar to Proof of Lemma 1.8.2. |Theorem 1.8.5. If A;B are measurable partitions and fAn : n � 1g is an inreasing(dereasing and H(A1jB) <1) sequene of measurable partitions onverging to A, then(1.8.4) limn!1H(AnjB) = H(AjB)and the onvergene is respetively monotone.Proof. Applying Lemmas 1.8.2 and 1.8.4 we get the monotone onvergene H�B (AnjB)!H�B (AjB) for almost all B 2 X=B. Thus the integrals in the De�nition 1.8.3 onverge bythe Monotone Convergene Theorem. |Theorem 1.8.6. If A;B are measurable partitions and fBn : n � 1g is a dereasing(inreasing and H(AjB1) <1) sequene of measurable partitions onverging to B, then(1.8.5) limn!1H(AjBn) = H(AjB)and the onvergene is respetively monotone.26



Proof 1. Assume �rst that A is �nite (or ountable with �nite entropy). Then the a.e.onvergene I(AjBn)! I(AjB) follows from Martingale Convergene Theorem (more pre-isely from Theorem 1.6.6), applied to f = 11A, the indiator funtion for eah A 2 A.Now it is suÆient to prove supn I(AjBn) 2 L1 in order to use Dominated ConvergeneTheorem (ompare Corollary 1.5.3) and (1.8.3). One an repeat Proofs of Lemma 1.5.1(for inreasing Bn) and Corollary 1.5.2.The monotoniity of the sequene H(AjBn) relies on Theorem 1.3.d. However for in�niteBn one needs to approximate Bn by �nite (or �nite entropy) partitions. For details see[Rohlin 1967, Se.5.12℄.For A measurable, represent A as limj!1Aj for an inreasing sequene of �nitepartitions Aj ; j = 1; 2; ::, next refer to Th.1.8.5. In the ase of dereasing Bn the proof isstraightforward. In the ase of inreasing Bn useH(AjBn)�H(AjjBn) = H(Aj(Aj _ Bn)) � H(Aj(Aj _ B1)) � H(AjB1)� H(AjjB1):This implies that the onvergene as j ! 1 is uniform with respet to n, hene in thelimit H(AjBn)! H(AjB). |Proof 2. For A �nite (or ountable with �nite entropy) there is a simpler way toprove (1.8.5). We have for every A 2 A by Theorem 1.1.1, the onvergene in L2 applied toE(11AjF(Bn)), hene the onvergene in measure � of �Bn(x)(A\Bn(x)). By the ontinuityof the funtion k(t) = �t log t, see Se.3, this implies the onvergene in measure �k(�Bn(x)(A \ Bn(x)))! k(�B(x)(A \ B(x))):(We do not assume x 2 A here.) Summing over A 2 A we obtain the onvergeneH�Bn(x)(AjBn(x))! H�B(x)(AjB(x)) in measure �. These funtions are uniformly boundedby log#A ( or by H(A) ) and non-negative, hene we get the onvergene in L1 and inonsequene, due to (1.8.2), we obtain (1.8.5). (Note that we have not used the a.e.onvergene in Th.1.1.1, but only the onvergene in L2 proved there.) |Observe that we an rewrite now the de�nition of the entropy h�(T;A) from Setion 1.5as(1.8.6) h�(T;A) = H(AjA�); where A� := 1_n=1T�n(A):A ountable partition B is alled a ountable generator for an endomorphism of a Lebesguespae if Bm % ". Due to Theorem 1.8.6 we obtain the following fats useful in omputingthe entropy for onrete examples.Theorem 1.8.7. (a) If Bm is a sequene of �nite partitions of a Lebesgue spae, suhthat Bm % ", then, for any endomorphism T of the spae, h(T ) = limm!1 h(T;Bm).(b) If B is a ountable generator of �nite entropy for an endomorphism T of a Lebesguespae, then h(T ) = h(T;B). 27



Proof. By Theorem 1.8.6 for every �nite A we have limm!1H(AjBm) = H(Aj") = 0,hene in view of Theorem 1.4.5, instead of supA in the de�nition of h(T ), it is suÆient in(1.4.3) to onsider limm!1 h(T;Bm). This proves (a). Theorem 1.4.5 together with thede�nition of the generator prove also (b). |Remark 1.8.7'. For T an automorphism one onsiders two-sided ountable (in partiular�nite) generator: W1n=�1 Tn(B) = ". Then, as in the one-sided ase, H(B) �nite impliesh(T ) = h(T;B).Remark 1.8.7". In both Theorem 1.8.6 and Theorem 1.8.7(a) the assumption on themonotoniity of Bm an be weakened. Assume for example that A is �nite and Bm ! " inthe sense that for every measurable Y , E(11Y jBm)! 11Y in measure, as in Remark 1.1.2.Then H(AjBm)! 0, hene h(T ) = limm!1H(T;Bm).Indeed for H(AjBm)! 0 just repeat Proof 2 of Theorem 1.8.6. The onvergene in measure� of �Bn(x)(A\Bn(x))) to �"(x)(A\ "(x))) writes as E(11AjBn)! 11A, whih has just beenassumed.Corollary 1.8.7"'. If X is a ompat metri spae and F the �-algebra of Borel sets(generated by open sets), then if supB2Bm�diam(B)� ! 0 as m ! 1, then h(T ) =limm!1 H(T;Bm).Proof. It is suÆient to hek E(11AjBm) ! 11A in measure. First note that for everyÆ > 0 there exist an open set U and losed set K suh that K � A � U and �(U nK) � Æ.This property is alled regularity of our measure � and is true for every �nite measure onthe �-algebra of Borel sets for a metri spae (ompatness is not needed here). It an beproved by Caratheodory's argument, ompare Proof of Th.1.1.1. Namely we onstrut theouter measure with the help of open sets, as in the sketh of the proof of theorem 1.7.2(where we used G0) and notie that sine eah losed set is an intersetion of a dereasingsequene of open sets we will have the same outer measure if in the onstrution of outermeasure we use the algebra generated by open sets. Now we an refer to Theorem 1.7.2.Next, due to ompatness of X, hene K, for m large enough the set A0 := SfB 2 Bm :B \K 6= ;g ontains K and is ontained in U , hene �(A� A0) � Æ. This implies thatZX jE(11AjBm)� 11Aj d� =ZXn(A[A0)E(11AjBm) d�+ ZA�A0 jE(11AjBm)� 11Aj d�+ ZA\A0 1�E(11AjBm) d� �Æ�(X nA0)�(X n (A [ A0)) + Æ + �1� �(A \ A0)�(A0) ��(A \ A0) � 3Æ:Hene �fx : jE(11AjBm)� 11Aj � p3Æg � p3Æ. |For a simpler proof, omitting Theorem 1.8.6, see Exerise 1.9'.28



We end this Setion with the theorem on deomposition into ergodi omponents and the ad-equate entropy formula. Compare this with Choquet representation theorem: Th. 2.1.11,and Th. 2.1.13.Let T be a measure preserving endomorphism of a Lebesgue spae. A measurable partitionA is said to be T -invariant if T (A) � A for almost every A 2 A. The indued mapTA = T jA : A ! A is a measurable endomorphism of the Lebesgue spae (A;FA; �A).One alls TA a omponent of T .Theorem 1.8.8. (a) There exists a smallest T -invariant measurable partition A (mod 0)(alled the ergodi deomposition). Almost all of its omponents are ergodi.(b) h(T ) = RX=A h(TA) d�A(A).Proof. We shall not prove here the part (a). Let us mention only that the ergodideomposition partition orresponds (see Se.6) to the ompletion of I, the �-subalgebraof F onsisting of T invariant sets in F (ompare Theorem 1.2.2).To prove the part (b) notie that for every T -invariant measurable partition A, forevery �nite partition � and almost every A 2 A, writing �A for the partition fs\A : s 2 �g,we obtain h(TA; �A) = H(�Aj��A) = ZA I�A(�Aj��A) d�A:Notie next that the latter information funtion is equal a.e. to I�(�j�� _A) restrited toA. Hene ZX=A h(TA) d�A(A) = ZX=A d�A ZA I�A(�Aj��A) d�A =ZX I�(�j�� _ A) d� = H(�j�� _ A) = h(T; �)The latter equality follows from an approximation of A by �nite T -invariant partitions� %A and from H(�j�� _ �) = H(� _ �j�� _ ��) = limn!1 1nH((� _ �)n) =limn!1 1nH(�n _ �) = limn!1 1nH(�n) = H(T; �):Let now �n be a sequene of �nite partitions suh that �n % ". Then h(T; �n)% h(T )and h(TA; (�n)A)% h(TA). So h(T; �n) = RX=A h(TA; �n) d�A(A) and Lebesgue monotoneonvergene theorem prove (b) |x1.9 COUNTABLE TO ONE MAPS, JACOBIAN AND ENTROPY OF ENDOMOR-PHISMS .We start with a formulation of a deep theorem by Rohlin:29



Theorem 1.9.1. Suppose that A and B are two measurable partitions of a Lebesguespae (X;F ; �) suh that AjB is ountable (mod 0 with respet to �B) for almost everyB 2 B. Then there exists a ountable partition  = f1; 2; :::g of X (mod 0) suh thatsuh that eah j 2  intersets almost every B at not more than one point, whih is thenan atom of �B , in partiular A _ B =  _ B (mod 0):Furthermore, if H(AjB) <1, then  an be hosen so thatH() < H(AjB) + 3pH(AjB) <1:De�nition 1.9.2. Let (X;F ; �) be a Lebesgue spae. Let T : X ! X be a measurableendomorphism. We say that T is essentially ountable to one if the measures �A of aanonial system of onditional measures for the partition A := T�1(") are purely atomi(mod 0 with respet to �A), for almost all A. We say that T is ountable to one if we anomit the phrase "mod 0 with respet to �A" above.Lemma 1.9.3. If T is essentially ountable to one and preserves � then there exists ameasurable Y � X of full measure suh that T (Y ) � Y and1. T�1(x) \ Y for a.e. x 2 Y is ountable, moreover it onsists only of atoms of theonditional measure �T�1(x);2. T (B) is measurable if B � Y is measurable;3. T jY is forward quasi-invariant, namely �(B) = 0 for B � Y implies �(T (B)) = 0.Proof. Let Y 0 be the union of atoms mentioned in De�nition 1.9.2.. We an write, dueto Theorem 1.9.1, Y 0 = Sj j , so Y 0 is measurable. Set Y = T1n=0 T�n(Y 0). Denote thepartition T�1(") in Y by �. Property 1. follows from the onstrution. To prove 2. weuse the fat that (Y=�;F�; ��) is a Lebesgue spae and the fator map T� : Y� ! X is anautomorphism (Th.1.6.5). So, for measurable B � Y , the set(1.9.1) fA 2 � : �A(B \ A) 6= 0g = fA 2 � : A \B 6= ;gis measurable by (1.6.3) and therefore its image under T� , equal to T (B), is measurable.If �(B) = 0, then the set in (1.9.1) has measure �� equal to 0, hene as T� is isomorphismwe obtain that T (B) is measurable, of measure 0. |The key property in the above proof is the equality (1.9.1). Without assuming that �Aare purely atomi there ould existed B of measure 0 with C := fA 2 � : �A(B \A) 6= 0gnot measurable in F� .To have suh a situation just onsider a non-measurable C � Y=�. Consider thedisjoint union D := C [ Y and denote the embedded C by C 0. Finally, de�ning measureon D, put �(C 0) = 0 and � on the embedded Y . De�ne T (0) = T (C) for C 3  and0 being the image of  under the abovementioned embedding. Thus C 0 is measurable,30



of measure 0, whereas T (C 0) is not measurable beause C is not measurable and T� isisomorphism.De�nition 1.9.4. Let (X;F ; �) and (X 0;F 0; �0) be probability measure spaes. LetT : X ! X 0 be a measurable homomorphism. We say that a real, nonnegative, measurablefuntion J is a weak Jaobian if there exists E of measure 0 suh that for every measurableA � X n E on whih T is injetive, the set T (A) is measurable and �(T (A)) = RA J d�.We say J is strong Jaobian if the above holds without assuming A � X nE.Notie that if T is forward quasi-invariant, namely (�(A) = 0) ) (�0(T (A)) = 0),then automatially weak Jaobian is strong Jaobian.Proposition 1.9.5. Let (X;F ; �) be Lebesgue spae and T : X ! X be a measurable,essentially ountable to one, endomorphism. Then there exists a weak Jaobian J . It isunique (mod 0). For T restrited to Y (from Lemma 1.9.3.) J is strong Jaobian.Proof. Consider the partition  = f1; 2; :::g given by Theorem 1.9.1. Then for eahj the map T jj\Y is injetive. Moreover by Lemma 1.9.3 T jj\Y maps measurable setsonto measurable sets and is forward quasi-invariant. Therefore J exists on eah j \ Y byRadon-Nikodym theorem.By the presentation of eah A � Y as S1j=1A\j the funtion J satis�es the assertionof the Proposition. The uniqueness follows from the uniqueness of Jaobian in Radon-Nikodym theorem on eah j \ Y .Theorem 1.9.6. Let (X;F ; �) be a Lebesgue spae. Let T : X ! X be a � preservingendomorphism, essentially ountable to one. Then its Jaobian, strong on Y de�ned inLemma 1.9.3, weak onX, has logarithm equal to I("jT�1(")). (I stands for the informationfuntion, see Setions 1.4 and 1.8)Proof. Consider already T restrited to Y . Let Z � Y be an arbitrary measurable setsuh that T is 1{to{1 on it. For eah y 2 Y denote by A(y) the element of � = T�1(")ontaining y. We obtain��T (Z)� = ��T�1�T (Z)�� = ZT�1�T (Z)� �ZA(y) 11 d�A(y)� d�(y) == ZT�1�T (Z)� �ZA(y) 11Z(y)Æ�A(y)fyg) d�A(y)� d�(y) == ZT�1�T (Z)� 11Z(y)=�A(y)fyg) d�(y) = ZZ 1=�A(y)fyg) d�(y) |Theorem 1.9.6 gives rise to the so alled Rohlin formula:31



Theorem 1.9.7. Let (X;F ; �) be a Lebesgue spae. Let T : X ! X be a � preservingendomorphism, essentially ountable to one. Suppose that on eah omponent A of theergodi deomposition (f. Th.1.8.8) the restrition TA has a ountable generator of �niteentropy. Then for the Jaobian Jh�(T ) = H("jT�1(")) = Z I("jT�1(")) d� = Z log J d�:Proof. The third equality follows from Theorem 1.9.6, the seond one is the de�nitionof the onditional entropy, see Se. 8. To prove the �rst equality we an assume, due toTheorem 1.8.8, that T is ergodi. Then, for �, a ountable generator of �nite entropy, withthe use of Theorems 1.8.5 and 1.8.6, we obtainH("jT�1(") = H("j��) = limn!1H(�nj��) = H(�j��) = h(T; �) = h(T ):|Remark. The existene of a ountable generator is a general, not very diÆult, fat,namely the following holds:Theorem 1.9.8. Let (X;F ; �) be Lebesgue spae. Let T : X ! X be a �-preservingaperiodi endomorphism, essentially ountable to one. Then there exists a ountable gen-erator, namely a ountable partition � suh that �� = " (mod 0).Aperiodi means there exists no B of positive measure and a positive integer n so thatTnjB =id. For the proof see [Rohlin, 1967, Se.10.12-13℄ or [Parry℄. To onstrut � oneuses the partition  found for " and T�1(") aording to Theorem 1.9.1 and so-alledRohlin towers.The existene of a generator with �nite entropy is in fat equivalent to H("j"�) = h(T ) <1. The proof of the impliation to the right is ontained in Proof of Th.1.9.7. The reverseimpliation, the onstrution of the partition, is not easy, it uses in partiular the estimatein Th.1.9.1.The existene of a generator with �nite entropy is a strong property. It may fail even forexat endomorphisms, see Se.10 and Exerise 13. Neither its existene implies exatness,Exerise 13. To the ontrary, for automorphisms, two-sided generators, even �nite, alwaysexist, provided the map is aperiodi.x1.10. MIXING PROPERTIES.In this setion we examine briey some mixing properties of a measure preserving endo-morphism, stronger than ergodiity. A measure preserving endomorphism is said to beweakly mixing if and only if for every two measurable sets A and Blimn!1 1n n�1Xj=0 j�(T�j(B) \A)� �(A)�(B)j = 032



To see that a weakly mixing transformation is ergodi, suppose that T�1(B) = B. ThenT�k(B) = B for all k � 0 and onsequently for every n, 1nPn�1j=0 j�(T�j(B) \ A) ��(A)�(B)j = j�(B)� �(B)2j. Thus �(B)� �(B)2 = 0 and therefore �(B) = 0 or 1.A measure preserving endomorphism is said to be mixing if and only if for every twomeasurable sets A and B limn!1�(T�n(A) \B)� �(A)�(B) = 0Clearly, every mixing transformation is weakly mixing. The property equivalent to themixing property is the following: for every square integrable funtions f; glimn!1 Z f(g Æ Tn) d� = Z f d� Z g d�:Indeed, the former property follows from the latter one if we substitute the indiatorfuntions 11A; 11B in plae of f; g. To prove the opposite impliation notie that with thehelp of H�older inequality it is suÆient to restrit to simple funtions f = Pi ai11Ai ; g =Pj aj11Aj for �nite partitions (Ai) and (Bj). Then����Z f(g Æ Tn) d�� Z f d� Z g d����� = ������Xi;j aibj(�(Ai \ T�n(Bj))� �(Ai)�(Bj))������! 0beause every summand onverges to 0 as n!1.In the sequel we will deal also with stronger mixing properties. An endomorphism is alledK-mixing if for every measurable set A and every �nite partition Alimn!1 supB2F(A1n ) j�(A \B)� �(A)�(B)j = 0;Reall that F(A1n ) for n � 0 means the omplete �-algebra assigned to the partitionA1n = W1j=n T�j(A). The following theorem provides us with alternative de�nitions of theK-mixing property in ase T is an automorphism.Theorem 1.10.1. If T : X ! X is a measure-preserving automorphism of a Lebesguespae, then the following onditions are equivalent:(a) T is K-mixing.(b) For every �nite partition A Tail(A) := V1n=0W1k=n T�k(A) is equal to the trivialpartition � = fXg() For every �nite partition A 6= �, h�(T;A) > 0 (T has ompletely positive entropy)(d) There exists a forward invariant exhausting measurable partition � (i.e. satisfyingT�1(�) � �, Tn(�)% ", see Def. 1.7.4) suh that T�n(�)& �.33



The property Tail(A) = � is a version of the 0-1 Law. An automorphism satisfying (d)is usually alled: K-automorphism. The symbol K omes from the name: Kolmogorov.Eah partition satisfying the properties of � in (d) is alled K-partition.Remark: the properties (a)-() make sense for endomorphisms and they are equivalent(proofs are the same as for automorphisms). Moreover they hold for an endomorphis i�they hold for its natural extension.Proof. (a part of) To show the reader what is the Theorem about let us prove at leastsome impliations:(a))(b) Let A 2 F(Tail(A)) for a �nite partition A. Then A 2 F(W1k=n T�k(A))for every n. Hene, by K-mixing, �(A \ A)� �(A)�(A) = 0 and therefore �(A) = 0 or 1.(b))() Suppose h(T;A) = 0 for a �nite partition A. Then H(AjA�) = 0, heneI(AjA�) = 0 a.s. (see Se.8), hene A � A�. Hene1_k=0T�k(A) = 1_k=1T�k(A) and 1_k=mT�k(A) = 1_k=nT�k(A)for every m;n � 0. So V1n=0W1k=n T�k(A) = W1k=0 T�k(A). The latter partition is TailA,so it is equal to � by (b). But it is �ner than A, hene A = �. So eah �nite partitiondi�erent from �, the trivial one, has positive entropy.(b))(d) (in ase there exists a �nite two-sided generator B, i.e. W1n=�1 Tn(B) = ")� = WT1n=0T�n(B) is exhausting. |Let us �nish the Setion with the following useful:De�nition 1.10.2. A measure preserving endomorphism is said to be exat if1̂n=0T�n(") = �;(Remind that " is the partition into points and � is the trivial partition fXg.)Exerise: Prove that exatness is equivalent to the property: �e(Tn(A)) ! 1 for everyA of positive measure (�e is outer measure), or to the property: �(Tn(A))! 1 provided�(A) > 0 and the sets Tn(A) are measurable.The property exat implies the natural extension is a K-automorphism (in Theorem1.10.1(d) set for � the lift of "). The onverse is of ourse false. Non-one atom spaeautomorphisms are not exat. Observe however that if T is an automorphism and � is ameasurable partition satisfying (d), then the fator map T=� on X=� is exat. Exerise:prove that T is the natural extension of T=�. Remind �nally (Se. 9) that even for exatendomorphisms h("jT�1(")) an be stritly less than h(T ).34



x1.11. PROBABILITY LAWS AND BERNOULLI PROPERTY.For (X;F ; �) a probability spae (or whenever it is needed: a Lebesgue spae). Let f and gbe real square-integrable funtions on X. For every positive integer n the n-th orrelationof the pair f; g, is the numberCn(f; g) := Z f � (g Æ Tn) d�� Z f d� Z g d�:provided the above integrals exist. Notie that due to the T -invariane of � we an alsowrite Cn(f; g) = Z (f �Ef)�(g � Eg) Æ Tn� d�;where we write Ef = R f d� and Eg = R g d�Let g : X ! R be a square-integrable funtion. The limit(1.11.1) �2 = limn!1 1n Z �n�1Xj=0 g Æ T j � nEg�2 d�is alled asymptoti variane or dispersion, provided it exists.Write g0 = g �Eg. Then we an rewrite the above as�2 = limn!1 1n R �Pn�1j=0 g0 Æ T j�2 d�.Another useful expression for the asymptoti variane is the following(1.11.2) �2(g) = Z g20 d�+ 2 1Xj=1 Z g0 � (g0 Æ T j) d�:The onvergene of the series of orrelations Cn(g; g) in (1.11.2) easily implies that�2(g) from this formula is equal to �2 de�ned in (1.11.1), ompare the omputation in theproof of Theorem 1.11.3 later on.We say that the law of iterated logarithm, LIL, is satis�ed for g if �2(g) exists (i.e. theabove series onverges) and(1.11.3) lim supn!1 Pn�1j=0 g Æ T j � nEgpn log logn = p2�2 �� almost surely :(� almost surely, a.s., means � almost everywhere, a.e. This is the probability theorylanguage.)We say that the entral limit theorem, CLT, holds, if(1.11.4) � (x 2 X : Pn�1j=0 g Æ T j � nEgpn < r)!! 1�p2� Z r�1 e�t2=2�2 dt:35



For � 6= 0 the onvergene is for all r, for �2 = 0 the onvergene holds for r 6= 0 and onthe right hand side one sets 0 for r < 0 and 1 for r > 0.The LIL and CLT for �2 6= 0 are often, and this is the ase in Theorem 1.11.1 below,a onsequene of the almost sure invariane priniple, ASIP, whih says that the sequeneof random variables g, g ÆT , g ÆT 2, entered at the expetation value i.e. provided Eg = 0,is "approximated with the rate n1=2�"" for an " > 0, depending on Æ in Theorem 1.11.1below, by a martingale di�erene sequene and a respetive Brownian motion.Theorem 1.11.1. Let (X;F ; �) be a probability spae and T an endomorphism preserving�. Let G � F be a �-algebra. Write Gnm := Wnj=m T�j(G) (notation from x.1.6) form � n � 1 and suppose that the following property alled �-mixing holds:There exists a sequene �(n); n = 0; 1; :: of positive numbers satisfying(1.11.5) 1Xn=1�1=2(n) <1suh that for every A 2 Gm0 and B 2 G1n ; 0 � m � n we have(1.11.6) j�(A \B)� �(A)�(B)j � �(n�m)�(A):Finally onsider a G10 measurable funtion g : X ! IR suh thatZ jgj2+Æ d� <1 for some Æ > 0;and that for all n � 1(1.11.7) �Z jh�E(hjGn0 )j2+Æ)��(2+Æ) � Kn�s; K > 0; s > 0 large enough:(A onrete formula for s an be given, depending on Æ.)Then g satis�es CLT and LIL.LIL for �2 6= 0 is a speial ase, for  (n) = p2 log logn, of the following: for every realpositive non-dereasing funtion  one has, provided R g d� = 0,�fx 2 X : nXj=0 g(T j(x)) >  (n)p�2n for in�nitely many ng = 0 or 1aording as R11  (t)t exp(� 12 2(t)) dt onverges or diverges.As we already remarked, this Theorem, for �2 6= 0, is a onsequene of ASIP and the similaronlusions for the standard Brownian motion. We do not give the proofs here. For ASIPand further referenes see [Philipp, Stout, Ch.4,7℄. Let us disuss only the existene of36



�2. It follows from the following onsequene of (1.11.6): For �; � square integrable realfuntions on X, � measurable in Gm0 and � measurable in G1n we have(1.11.8) ����Z �� d�� E�E����� � 2(�(n�m))1=2k�k2k�k2:The proof of this inequality is not diÆult, but triky, with the use of H�older inequality,see [Ibragimov℄ or [Billingsley, 1968℄. It is suÆient to work with the funtions � =Pi ai11Ai ; � = Pj aj11Aj for �nite partitions (Ai) and (Bj), as with mixing in Se. 10.Note that if instead of (1.11.6) we have stronger:(1.11.9) j�(A \ B)� �(A)�(B)j � �(n�m)�(A)�(B);as will happen in Ch.3, then we very easily obtain in (1.11.7) the estimate by �(n �m)k�k1k�k1, by the omputation the same as for mixing in Se.10.We may assume that g is entered at the expetation value. Write g = kn + rn =E(gjG[n=2℄0 ) + (g � E(gjG[n=2℄0 ). We have����Z g(g Æ Tn) d����� �����Z kn(kn Æ Tn) d�����+ ����Z kn(rn Æ Tn) d�����+ ����Z rn(kn Æ Tn) d�����+ ����Z rn(rn Æ Tn) d����� �2(�(n� [n=2℄))1=2kknk22 + 2kknk2krnk2 + krnk22 �2(�(n� [n=2℄))1=2kknk22 + 2K[n=2℄�skknk2 +K[n=2℄�2s;the �rst summand estimated aording to (1.11.8). For s > 1 we obtain onvergene ofthe series of orrelations.Let us go bak to the disussion of the �-mixing. If G is assoiated to a �nite partitionthat is a generator, �-mixing with �(n) ! 0 as n ! 1 implies K-mixing (see Se.10).Indeed B is the same in both de�nitions, whereas A in K-mixing an be approximated bysets belonging to Gm0 . We leave details to the reader.Intuitively both notions mean that any event B in remote future weakly depends onthe present state A, i.e. j�(B)� �(BjA)j is small.In appliations G will be usually assoiated to a �nite or ountable partition.In Theorems 1.11.1, the ase �2 = 0 is easy. It relies on Theorem 1.11.3 below. Let us�rst introdue the following fundamentalDe�nition 1.11.2. Two funtions f; g : X ! IR (or CI) are said to be ohomologous ina spae K of real (or omplex) -valued funtions on X (or f is alled ohomologous to g),if there exists h 2 K suh that(1.11.10) f � g = h Æ T � h:37



If f; g are de�ned mod 0, then (1.11.10) is understood a.s.. This formula is alled aohomology equation.Theorem 1.11.3. Let f be a square integrable funtion on a probability spae (X;F ; �),entered at the expetation value. Assume that P1n=0 nj R f � (f Æ Tn) d�j <1. Then thefollowing three onditions are equivalent:(a) �2(f) = 0;(b) All the sums Sn = Snf = Pn�1j=0 f Æ T j have the norm in L2 (the spae squareintegrable funtions) bounded by the same onstant;() f is ohomologous to 0 in the spae H = L2.Proof. ())(a) follows immediately from (1.11.1) after substituting f = h Æ T � h. Letus prove (a))(b): Write Cj for the orrelation R f � (f Æ T j) d�; j = 0; 1; :::. ThenZ jSnj2 d� = nC20 + 2 nXj=1(n� j)Cj= n�C20 + 2 1Xj=1Cj�� 2n 1Xj=n+1Cj � 2 nXj=1 j � Cj = n�2 � In � IIn:Sine In ! 0 and IIn stays bounded as n!1 and �2 = 0, we dedue that all the sumsSn are uniformly bounded in L2.(b))(): f = h Æ T � h for any h a limit in weak*-topology of the bounded sequene1nSn. We leave the easy omputation to the reader. (This omputation will be providedin detail in the similar situation of Bogolyubov-Krylov Theorem, in 2.1.14.). |Now Theorem 1.11.1 for �2 = 0 follow from (), whih gives Pn�1j=0 f Æ T j = h Æ Tn � h,with the use of Borel-Cantelli lemma.Remark.. Th.1.11.1 in the two-sided ase: where g depens on Gj = T j(G) for j =:::;�1; 0; 1; ::: for an automorphism T , also holds. In 1.11.8 one should replae Gn0 by Gn�nGiven two �nite partitions A and B of a probability spae and " � 0 we say that B is"-independent of A if there is a subfamily A0 � A suh that �(SA0) > 1� " and for everyA 2 A0(1.11.11) XB2B �����(A \B)�(A) � �(B)���� � ":Given an ergodi measure preserving endomorphism T : X ! X of a Lebesgue spae,a �nite partition A is alled weakly Bernoulli (abbr. WB) if for every " > 0 there isan N = N(") suh that the partition Wsj=n T�j(A) is "-independent of the partitionWmj=0 T�j(A) for every 0 � m � n � s suh that n�m � N .38



Of ourse in the de�nition of "-independene we an onsider any measurable (maybeunountable) partition A and write onditional measures �A(B) in (1.11.11). Then for Tan automorphism we an replae in the de�nition of WB Wsj=n T�j(A) by Ws�nj=0 T�j(A)and Wmj=0 T�j(A) by Wm�nj=�n T�j(A) and set n =1; n�m � N . WB in this formulationbeomes one more version of weak dependene of present (and future) from remote past.If " = 0 and N = 1 then all partitions T�j(A) are mutually independent (reall thatA;B are alled independent if �(A \ B) = �(A)�(B) for every A 2 A; B 2 B.). We saythen that A is Bernoulli. If A is a generator (two-sided generator), then learly T on(X;F ; �) is isomorphi to one-sided (two-sided) Bernoulli shift of ℄A symbols, see Chapter0, Examples 0.8. The following famous theorem of Friedman and Ornstein holds:Theorem 1.11.4. If A is a weakly Bernoulli �nite two-sided generating partition of Xfor an automorphism T , then T is isomorphi to a two-sided Bernoulli shift.Of ourse the standard Bernoulli partition (in partiular the number of its states) in theabove Bernoulli shift an be di�erent from the image under the isomorphism of the WBpartition.Bernoulli shift above is unique in the sense that eah two two-sided Bernoulli shiftsof the same entropy are isomorphi [O℄.Note that �-mixing in the sense (1.11.9), with �(n) ! 0, for G assoiated to a �nitepartition A, implies weak Bernoulli.Central Limit Theorem is a muh weaker property than LIL. We want to end thisSetion with a useful abstrat theorem that allows us to dedue CLT for g without spe-ifying G. This Theorem similarly as Theorem 1.11.1 an be proved with the use of anapproximation by a martingale di�erene sequene.Theorem 1.11.5. Let (X;F ; �) be a probability spae and T : X ! X an auto-morphism preserving �. Let F0 � F be a �-algebra suh that T�1(F0) � F0. DenoteFn = T�n(F0) for all integer n = :::;�1; 0; 1; ::: Let g be a real square integrable funtion.If Xn�0 kE(gjFn)k2 + kg � E(gjF�n)k2 <1;then g satis�es CLT.Exerises.0. Prove that for any two �-algebras F 3 F 0 and � an F -measurable funtion, theonditional expetation value operator Lp(X;F ; �) 3 � ! E(�jF 0) has norm 1 in Lp, forevery 1 � p � 1. (Hint: Prove that E((# Æ j�j)jF 0) � # Æ E((j�j)jF 0) for onvex #, inpartiular for t 7! tp.) 39



1. Let T be an ergodi automorphism of a probability non-atomi measure spae andA its partition into orbits fTn(x); n = :::;�1; 0; 1:::g. Prove that A is not measurable.Suppose we do not assume ergodiity of T . What is the largest measurable partition,smaller than the partition into orbits? (Hint: Th.1.8.8.)2. Prove that the following partitions of measure spaes are not measurable:(a) Let T : S1 ! S1 be a mapping of the unit irle with Haar measure de�ned byT (z) = e2�i�z for an irrational �. P is the partition into orbits;(b) T is the automorphism of the 2-dimensional torus IR2=ZZ2, given by a hyperboliinteger matrix of determinant 1. Let P be the partition into stable, or unstable, lines (i.e.straight lines parallel to an eigenvetor of the matrix);() Let T : S1 ! S1 be de�ned by T (z) = z2. Let P be the partition into grandorbits, i.e. equivalene lasses of the relation x � y i� 9m;n � 0 suh that Tm(x) = Tn(y).3. Prove that every Lebesgue spae is isomorphi to the unit interval equipped withthe Lebesgue measure together with ountably many atoms.4. Prove that every separable omplete metri spae with a measure on the �-algebraontaining all open sets, minimal among omplete measures, is Lebesgue spae.Hint: [Rohlin 1949, 2.7℄.5. Let (X;F ; �) be a Lebesgue spae. Then Y � X;�e(Y ) > 0 is measurable i�(Y;FY ; �Y ) is Lebesgue, where �e is the outer measure, FY = fA \ Y : A 2 Fg and�Y (A) = �e(A\Y )�e(Y ) .Hint: If B=(Bn) is a basis for (X;F ; �), then B0n = Bn\Y ) is a basis for (Y;FY ; �Y ).Add to Y one point for eah sequene (B0n)"n whose intersetion is missing in Y and inthe spae ~Y obtained in suh a way generate omplete measure spae ( ~Y ; ~F; ~�) from theextension ~B of the basis (B0n). Borel sets with respet to B in X orrespond to Borelsets with respet to ~B and sets of � measure 0 orrespond to sets of ~� measure 0. Someasurability of Y implies ~�( ~Y n Y ) = 0.6. Prove Th.1.6.3.Hint: In the ase both spaes are unit intervals with standard Lebesgue measure,onsider all intervals J 0 with rational ends. J = T�1(J 0) is ontained in a Borel set BJwith �(BJ n J) = 0. Remove from X a Borel set of measure 0 ontaining SJ (BJ n J).Then T beomes a Borel map, hene it is a Baire funtion, hene due to the injetivity itmaps Borel sets to Borel sets.7. (a) Consider the unit square [0; 1℄�[0; 1℄ equipped with Lebesgue measure. For eahx 2 [0; 1℄ let Ax be the partition into points (x0; y) for x0 6= x and the interval fxg� [0; 1℄.What is VxAx ? Let Bx be the partition into the intervals fx0g� [0; 1℄ for x0 6= x and thepoints f(x; y) : y 2 [0; 1℄g. What is Vx Bx ?(b) Find two measurable partitions A;A0 of a Lebesgue spae suh that their set-theoreti intersetion (i.e. the largest partition suh that A;A0 are �ner than it) is not40



measurable.8. Find an example of T : X ! X an endomorphism of a probability spae (X;F ; �),injetive and onto, suh that for the system ::: T! X T! X, natural extension does notexist.Hint: Set X the unit irle and T irrational rotation. Let A be a set onsisting ofexatly one point in eah T -orbit. Set B = Sj�0 T j(A). Notie that B is not Lebesguemeasurable and that the outer measure of B is 1 (use unique ergodiity of T , i.e. that(1.2.1a) holds for every x)Let F be the �-algebra onsisting of all the sets C = B\D for D Lebesgue measurable,set �(C) = Leb(D), and of C � X n B, set then �(C) = 0. Note that Tn�0 Tn(B) = ;and in the set-theoreti inverse limit the set ��1�n(B) = ��10 (Tn(B)) would be of measure1 for every n � 0.9. (a) Prove that in a Lebesgue spae d(A;B) := H(AjB) + H(BjA) is a metri inthe spae Z of ountable partitions (mod 0) of �nite entropy. Prove that the metri spae(Z; d) is separable and omplete.(b) Prove that if T is an endomorphism of the Lebesgue spae, then the funtionA! h(T;A) is ontinuous for A 2 Z with respet to the above metri d.Hint: jh(T;A)� h(T;B)j � maxfH(AjB);H(BjA)g. Compare Proof of Th.1.4.5.9'. (a) Let d0(A;B) := Pi �(Ai � Bi) for partitions of a probability spae into rmeasurable sets A = fAi; i = 1; :::; rg and B = fBi; i = 1; :::; rg. Prove that for everyr and every d > 0 there exists d0 > 0 suh that if A;B are partitions into r sets andd0(A;B) < d0, then d(A;B) < d(b) Using (a) give a simple proof of Corollary 1.8.7"'. (Hint: Given an arbitrary �niteA onstrut B � Bm so that d0(A;B) be small for m large. Next use (a) and Theorem1.4.4.d).10. Prove that there exists a �nite generator for every T , a ontinuous positivelyexpansive map of a ompat metri spae (see the de�nition of positively expansive inCh.2, Se.5).11. Compute the entropy h(T ) for Markov shifts.12. Prove that the entropy h(T ) de�ned either as supremum of H(T;A) over �-nite partitions, or over ountable partitions of �nite entropy, or as supH(�j��) over allmeasurable partitions � that are forward invariant (i.e. T�1(�) � �) is the same.13. Let T be an endomorphism of the 2-dimensional torus IR2=ZZ2, given by an integermatrix of determinant larger than 1 and with eigenvalues �1; �2 suh that j�1j < 1 andj�2j > 1.Let S be the endomorphism of IR2=ZZ2 being the artesian produt of S1(x) = 2x (mod1) on the irle IR=ZZ and of S2(y) = y+ � (mod 1), the rotation by an irrational angle �.41



Whih of the maps T; S is exat? Whih has a ountable generator of �nite entropy?(Answer: T does not have the generator, but it is exat. The latter holds beause foreah small parallelepiped P spanned by the eigendiretions there exists n suh that Tn(P )overs the torus with multipliity bounded by a onstant not depending on P . See ??? Sis not exat, but it is ergodi and has a generator.)14. Prove that if the de�nition of partition A "-independent of partition B is replaedbyPA2A;B2B j�(A\B)��(A)�(B)j, then the de�nition of weakly Bernoulli is equivalentto the old one. (Note that now the expression is symmetri with respet to A;B.)Bibliographial notes:For the Martingale Convergene Theorem see for example [Doob℄, [Billingsley, 1979℄,[Petersen℄ or [Strook℄. Its standard proof goes via a maximal funtion. We followed thisway in Proof of Shannon, MMillan, Breiman Theorem in Se.5, L.1.5.1, where we reliedon [Petersen℄ and [Parry℄. Remark 1.1.2 is taken from [Neveu,Ch.4.3℄, see for example[Hoover℄ for a more advaned theory.Standard proofs of Birkho�'s Ergodi Theorem also use the idea of maximal funtion.This onerns in partiular the extremaly simple proof in Se. 2, whih has been takenfrom [KH℄.For the material of Se.6 and related exerises see [Rohlin, 1949℄. It is also written inan elegant and a very onise way in [Cornfeld, Fomin, Sinai℄.The onsideration in Se.7 leading to the extension of the ompatible family ~��;n to ~��is known as Kolmogoro� Theorem on the existene of stohasti proess. First, one veri�es�-additivity of a measure on an algebra, next uses the Extension Theorem 1.7.2. Our proofof �-additivity of ~� on ~X via Lusin theorem is also a variant of Kolmogoro�'s proof. Theproofs of �-additivity on algebras depend unfortunately on topologoal onepts. Halmoswrote [Halmos, p. 212℄: "this peuliar and somewhat undesirable irumstane appears tobe unavoidable" Indeed the �-additivity may be not true, see [Halmos, p.214℄. Our exampleof non-existene of natural extension, Exerise 8, is in the spirit of Halmos' example. Theremight be troubles even with extending a measure from ylinders in produt of two measurespaes, see [MR℄ for a ounterexample. On the other hand produt measures extend togenerated �-algebras without any additional assumptions [Halmos℄, [Billingsley, 1979℄.For Th.1.8.1: the existene of a ountable  suh that A _ B =  _ B, see [Rohlin,1949℄; for the estimate that follows, see for example [Rohlin 1967℄ or [Parry℄. The simpleproof of Th.1.8.6 via onvergene in measure has been taken from [Rohlin 1967℄ and [Wa℄.Proof of Th.1.8.8 (b) is taken from [Rohlin, 1967, se.8.10-11 and 9.8℄.For Th.1.9.6 see [Parry, L.10.5℄; our proof is di�erent. For the onstrution of generatorand 2-sided generator see again [Rohlin 1967℄,[Parry℄ or [CFS℄. The same are referenesto the theory of measurable invariant partitions: exhausting and extremal, and to Pinskerpartition, whih we omitted beause we do not need these notions further in the book,but whih are fundamental to understand deeper the measure-theoreti entropy theory.Finally we enourage the reader to beome aquainted with spetral theory in relation tomixing properties [CFS℄. 42
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CHAPTER 2ERGODIC THEORY ON COMPACT METRIC SPACESDe.5, 1999 last revised Feb 24, 2002In the previous Chapter a measure preserved by a measurable map T was given a priori.Here a ontinuous mapping T of a topologial ompat spae is given and we look for variousmeasures preserved by T . Given a real ontinuous funtion � on X we try to maximizethe funtional measure theoretial entropy +integral, i.e. h�(T ) + R � d�. Supremumover all probability measures on the Borel �-algebra happens to be topologial pressure,similar to P in the prototype lemma on the �nite spae or P (�) for �� on the Cantor setdisussed in Introdution. We disuss equilibria, namely measures on whih supremumis attained. This Chapter provides an introdution to the theory alled thermodynamialformalism, whih will be the main tehnial tool in this book. We shall ontinue tointrodue thermodynamial formalism in more spei� situations in Chapter 4.x2.1 INVARIANT MEASURES FOR CONTINUOUS MAPPINGSWe reall in this Setion basi fats from funtional analysis to study the spae ofmeasures and invariant measures. We reall Riesz representation theorem, weak� topology,Shauder �xed point theorem. We reall also Krein-Milman theorem on extremal pointsand its stronger form: Choquet representation theorem. This gives a variant of ErgodiDeomposition Theorem from Chapter 1.Let X be a topologial spae. The Borel �-algebra B in subsets of X is de�ned asgenerated by open subsets of X. We all every probability measure on Borel �-algebra forX, a Borel probability measure on X. We denote the set of all suh measures by M(X).Denote by C(X) the Banah spae of real ontinuous funtions on X with the supre-mum norm: j�j := supx2X j�(x)j. Sometimes we shall use the notation jj�jj1, introduedin Ch.1.1 in L1(�), though it is ompatible only if � is positive on open sets.Note that eah Borel probability measure � on X indues a bounded linear funtionalF� on C(X) de�ned by the formula(2.1.1) F�(�) = Z � d�:One an extend the notion of measure and onsider �-additive set funtion, anothername : signed measure. Just in de�nition of measure in Ch.1.1 onsider � : F ! [�1;1)1



or � : F ! (�1;1℄ and keep the notation (X;F ; �) from Ch.1. The set of signedmeasures is a linear spae. On the set of �nite signed measures, namely with the range IR,one an introdue the following total variation norm:v(�) := sup nXi=1 j�(Ai)jsupremum taken over all �nite sequenes of disjoint sets in F .It is easy to prove that every �nite signed measure is bounded and that it has �nitetotal variation. It is also not diÆult to prove the followingTheorem 2.1.1. (Hahn-Jordan deomposition). For every signed measure on a �-algebra F there exists A� 2 F and two measures �+ and �� suh that � = �+ � ��; ��is zero on all measurable subsets of A�, �� is zero on all measurable subsets of X nA�.Notie that v(�) = �+(X) + ��(X).)A measure (or signed measure) is alled regular, if for every A 2 F and " > 0 thereexist E1; E2 2 F suh that lE1 � A � intE2 and for every C 2 F ; C � E2 nE1 we havej�(C)j < ".If X is a topologial spae, denote the spae of all regular �nite signed measures asabove with the total variation norm by ra(X). The abbreviation ra replaes regularountably additive.If F = B Borel �-algebra and X is metrizable, regularity holds for every �nite signedmeasure. It an be proved by Carath�eodory's outer measure argument, ompare Proof ofCorollary 1.8.7"'.Denote by C(X)� the spae of all bounded linear funtionals on C(X). This is alledthe dual spae. Bounded means here bounded on the unit ball in C(X), whih is equivalentto ontinuous. The spae C(X)� is equipped with the norm jjF jj = supfF (�) : � 2C(X); j�j � 1g, in whih it is a Banah spae.There is a natural order in ra(X): �1 � �2 i� �2 � �1 is a measure.Also in the spae C(X)� one an distinguish positive funtionals, similarly to measuresin signed measures, as those whih are non-negative on the set of funtions C+(X) := f� 2C(X) : �(x) � 0 for every x 2 Xg. This gives the order: F � G for F;G 2 C(X)� i�G� F is positive.Remark that F 2 C(X)� is positive i� jjF jj = F (11), where 11 is the funtion on Xidentially equal to 1. Also for every bounded linear operator F : CI(X)! C(X) whih ispositive, namely F (C+(X)) � C+(X), we have jjF jj = jF (11)j.Remark that (2.1.1) transforms measures to positive linear funtionals.2



The following fundamental theorem of F. Riesz says more about the transformation� 7! F� in (2.1.1) (see [DS, pp. 373,380℄ for the history of this theorem):Theorem 2.1.2 (Riesz representation theorem). If X is a ompat Hausdor�spae, the transformation � 7! F� de�ned by (2.1.1) is an isometri isomorphism betweenthe Banah spae C(X)� and ra(X). Furthermore this isomorphism preserves order.In the sequel we shall often write � instead of F� and vie versa and �(�) or �� insteadof F�(�) or R � d�.Notie that in Theorem 2.1.2 the hard part is the existene, i.e. that for every F 2C(X)� there exists � 2 ra(X) suh that F = F�. The uniqueness is just the following:Lemma 2.1.3. If � and � are �nite regular Borel signed measures on a ompatHausdor� spae X, suh that R � d� = R � d� for eah � 2 C(X), then � = �.Proof. This is an exerise on the use the regularity of � and �. Let � := ��� = �+��� in Hahn-Jordan deomposition. Suppose that that � 6= �. Then �+ (or ��) is non-zero,say �+(X) = �+(A�) = " > 0, where A� is the set de�ned in Th.2.1.1. Let E1 be a losedset and E2 an open set, suh that E1 � A� � E2 and ��(E2nA�) < "=3; �+(A�nE1) < "=3.There exists � 2 C(X) with values in [0; 1℄ identially 1 on E1 and 0 on X n E2. ThenR � d� = RE1 � d� + RE2nA� � d� + RA�nE1 � d� � �+(E1)� "=3 � �+(A�)� 2"=3 > 0. |The spae C(X)� an be equipped with weak� topology. In the ase X is metrizable,i.e. if there exists a metri on X suh that the topology indued by this metri is theoriginal topology on X, weak� topology is haraterized by the property that a sequenefFn : n = 1; 2; : : :g of funtionals in C(X)� onverges to a funtional F 2 C(X)� if andonly if(2.1.2) limn!1Fn(�) = F (�)for every funtion � 2 C(X).If we do not assume X is metrizable, weak� topology is de�ned as the smallest onein whih all elements of C(X) are ontinuous on C(X)� (reall that � 2 C(X) ats onF 2 C(X)� by F (f)). One says weak� to distinguish this topology from the weak topologywhere one onsiders all ontinuous funtionals on C(X)�, not only those represented byf 2 C(X). This disussion of topologies onerns of ourse every Banah spae B and itsdual B�.Using the bijetion established by Riesz representation theorem we an move theweak� topology from C(X)� to ra(X) and restrit it to M(X). The topology on M(X)obtained in this way is usually alled weak� topology on the spae of probability measures(sometimes one omits � to simplify the language and notation but one still has in mindweak�, unless stated otherwise). In view of (2.1.2) if X is metrizable this topology is3



haraterized by the property that a sequene f�n : n = 1; 2; : : :g of measures in M(X)onverges to a measure � 2M(X) if and only if(2.1.3) limn!1 �n(�) = �(�)for every funtion � 2 C(X). Suh onvergene of measures will be alled weak� onver-gene or weak onvergene and an be also haraterized as follows.Theorem 2.1.4 Suppose that X is metrizable (we do not assume ompatness here). Asequene f�n : n = 1; 2; : : :g, of Borel probability measures on X onverges weakly to ameasure � if and only if limn!1 �n(A) = �(A) for every Borel set A suh that �(�A) = 0.Proof. Suppose that �n ! � and �(�A) = 0. Then there exist sets E1 � intA;E2 �lA suh that �(E2 n E1) = " is arbitrarily small. Indeed metrizability of X implies thatevery open set, in partiular intA, is union of a sequene of losed sets and every losedset is an intersetion of a sequene of open sets. For example intA = S1n=1fx 2 X :infz =2intA �(x; z) � 1=ng for a metri �.Next, there exist f; g 2 C(X) with range in the unit interval [0; 1℄ suh that f isidentially 1 on E1, 0 on X n intA, g identially 1 on lA and 0 on X nE2. Then �n(f)!�(f) and �n(g) ! �(g). As �(E1) � �(f) � �(g) � �(E2) and �n(f) � �n(A) � �n(g)we obtain �(E1) � �(f) = limn!1 �n(f) � lim infn!1 �n(A)� lim supn!1 �n(A) � limn!1 �n(g) = �(g) � �(E2):As also �(E1) � �(A) � �(E2) we obtain, letting "! 0, limn!1 �n(A) = �(A).Proof in the opposite diretion follows from the de�nition of integral: approximateuniformly an arbitrary ontinuous funtion f by simple funtions Pki=1 "i11Ei where Ei =fx 2 X : "i � f(x) < "i+1g, for an inreasing sequene "i; i = 1; :::; k suh that "i�"i�1 < "and �(f�1(f"ig)) = 0, with " ! 0. This is possible to �nd suh numbers "i beause onlyountably many sets f�1(a) for a 2 IR an have non-zero measure. |Example 2.1.5 The assumption �(�A) = 0 is substantial. Let X be the interval[0; 1℄. Denote by Æx the Dira measure onentrated at the point x, whih is de�ned bythe following formula: Æx(A) = � 1; if x 2 A0; if x =2 Afor all sets A 2 B .Consider non-atomi probability measures �n supported respetively on the ballB(x; 1n ). The sequene �n onverges weakly to Æx but does not onverge on fxg.Of partiular importane is the following 4



Theorem 2.1.6. The spae M(X) is ompat in weak� topology.This theorem follows immediately from ompatness in weak� topology of any subset ofC(X)� losed in weak� topology, whih is bounded in the standard norm of the dual spaeC(X)� (ompare for example [DS, V.4.3℄, where this result is proved for all spaes dual toBanah spaes) and from the way we introdued the weak topology on M(X).It turns out (see [DS, V.5.1℄) that if X is ompat metrizable, the spae C(X)� withweak� topology is metrizable, hene in partiular M(X) is metrizable.Let now T : X ! X be a ontinuous transformation of X. The mapping T is measurablewith respet to the Borel �-algebra. In the very begining of Chap.1.2 we have de�ned T -invariant meaures � to satisfy the ondition � = � Æ T�1. It means that Borel probabilityT -invariant meaures are exatly �xed points of the transformation T� : M(X) ! M(X)de�ned by the formula T�(�) = � Æ T�1. It easily follows from the de�nitions that T� isontinuous.We denote the set of all T -invariant measures in M(X) by M(X;T ). This notationis onsistent with the notation from Chapter 1.2. We omit here �-algebra F beause it isalways Borel B.Noting that R � d(�ÆT�1) = R �ÆT d� for any � 2M(X) and any integrable funtion �(Prop. 1.2.0), it follows from Lemma 2.1.3 that a Borel probability measure � is T -invariantif and only if for every ontinuous funtion � : X ! IR(2.1.4) Z � d� = Z � Æ T d�:In order to look for �xed points for T� one an apply the following very general resultwhose proof (and the de�nition of loally onvex topologial vetor spaes, abbreviation:LCTVS) an be found for example in [DS℄ or [Edwards℄.Theorem 2.1.7. (Shauder-Tyhono� theorem [DS, V.10.5) If K is a non-empty ompatonvex subset of an LCTVS then any ontinuous transformation H : K ! K has a �xedpoint.Assume from now on that X is ompat, metrizable. To apply Shauder-Tyhono� theorem onsider the LCTVS C(X)� with weak� topology and K � C(X)�,being the image ofM(X) under the identi�ation between measures and funtionals, givenby Riesz representation theorem. Move also T� to K with the use of this identi�ation.Note that the resulting ontinuous linear operator, denote it also by T�, onjugate to� 7! � Æ T , restrited to K, is ontinuous also in the weak� topology. This is an easy fatabout onjugate operators. We obtain 5



Theorem 2.1.8. (Bogolyubov{Krylov theorem [Walters, 6.9.1℄) There exists a Borelprobability measure � invariant under T .Thus, our M(X;T ) is non-empty. It is also weak� ompat, sine it is losed as theset of �xed points for a ontinuous transformation.As an immediate onsequene of this theorem and Theorem 1.8.8 (Ergodi Deompo-sition Theorem), we get the following:Corollary 2.1.9. There exists a Borel ergodi probability measure � invariant under T .We shall use the notation Me(X;T ) for the set of all ergodi measures in M(X;T ).Write also E(M(X;T )) for the set of extreme points in M(X;T ).Thus, in view of Theorem 1.2.5 and Corollary 2.1.9, we know that Me(X;T ) =E(M(X;T )) 6= ;.In fat Corollary 2.1.9 an be obtained in a more elementery way without using The-orem 1.8.8. Namely it now immediately follows from Theorem 1.2.5 and the followingTheorem 2.1.10. (Krein{Milman theorem on extremal points [DS, V.8.4℄) If K is a non-empty ompat onvex subset of an LCTVS then the set E(K) of extreme points of K isnonempty and moreover K is the losure of the onvex hull of E(K).Below we state Choquet representation theorem whih is stronger than Krein-Milmantheorem. It orresponds to the Ergodi Deomposition Theorem (Th. 1.8.8). We formulateit in C(X)� with weak� topology as in [Walters, p.153℄. The reader an �nd a generalLCTVS version for example in [Edwards℄. We rely here also on [Ruelle, Appendix A.5℄,where the reader an �nd further referenes.Theorem 2.1.11. Choquet representation theorem. Let K be a nonempty ompatonvex set in M(X) with weak� topology. Then for every � 2 K there exists a "massdistribution" i.e. measure �� 2M(E(K)) suh that� = Z md��(m):This integral onverges in weak� topology whih means that for every f 2 C(X)(2.1.5) �(f) = Z m(f) d��(m):Notie that we have had already the formula analogous to (2.1.5) in Theorem 2.1.6.Notie that Krein-Milman theorem follows from Choquet representation theorem be-ause one an weakly approximate �� by measures on E(K) with �nite support (�nitelinear ombinations of Dira measures). 6



Example. 2.1.12. For K = M(X) we have E(K) = fDira measures on Xg. Then��fÆx : x 2 Ag = �(A) for every A 2 B de�nes a Choquet representation for every� 2M(X). (Exerise)Choquet theorem asserts the existene of �� satisfying (2.1.5) but not uniqueness,whih is usually not true. A ompat losed set K with the uniqueness of �� satisfying(2.1.5), for every � 2M(K) is alled symplex.Theorem 2.1.13. K = M(X) or K = M(X;T ) for every ontinuous T : X ! X isa symplex.Proof in the ase of K = M(X) is very easy, see Example 2.1.12. A proof for K =M(X;T ) is also not hard. The reader an look in [Ruelle, A.5.5℄. Proof relies on thefat that two di�erent measures �1; �2 2 E(M(X;T )) are singular (see Theorem 1.2.3).Observe that jj�1 � �2jj = 2.One proves in fat that for every �1; �2 2M(X;T ), jj��1 � ��2 jj = jj�1 � �2jj.Let us go bak to Shauder-Tyhono� theorem (Th 2.1.7). We shall use it in this booklater, in Chapter 4 Se.2, for maps di�erent from T�. Just Bogolyubov-Krylov theoremproved above with the help of Theorem 2.1.7, has a di�erent more elementary proof dueto the fat that T� is aÆne. A general theorem on the existene of a �xed point for afamily of ommuting ontinuous aÆne maps on K is alled Markov-Kakutani theorem ,[DS, V.10.6℄, [Walters, 6.9℄).2.1.14. An alternative proof of Theorem 2.1.8. Take an arbitrary � 2 M(X) andonsider the sequene �n = �n(�) = 1n n�1Xj=0 T j� (�)In view of Theorem 2.1.4 it has a weakly onvergent subsequene, say f�nk : k = 1; 2; : : :g.Denote its limit by �. We shall show that � is T -invariant.We have T�(�nk) = T�( 1nk nk�1Xj=0 T j� (�)) = ( 1nk nk�1Xj=0 T j+1� (�))So for every � 2 C(X) we havej�(�)� T�(�(�))j = j limk!1��nk(�)� T�(�nk)(�)j� �limk!1 1nk j�(�)� Tnk� (�)(�)j � limk!1 2nk j�j = 0:This in view of Lemma 2.1.3 �nishes the proof. |7



Remark. If in the above proof we onsider � = Æx, a Dira measure, then T j� (Æx) =ÆT j(x) and �n(�) = 1nPn�1j=0 �(T j(x)). If we have a priori � 2M(X;T ) then�n(Æx) = 1n n�1Xj=0 ÆT j(x)is weakly onvergent for �-a.e.x 2 X by Birkho� ergodi theorem.Remark. Reall that in Birkhof ergodi theorem (Chapter 1), for � 2 M(X;T )for every integrable f one onsiders limn!1 1nPn�1j=0 �(T j(x)) for a.e. x. This "almostevery" depends on f . If X is ompat, as in this Chapter, one an reverse the order ofquanti�ators for ontinuous funtions.Namely there exists � 2 B suh that �(�) = 1 and for every f 2 C(X) and x 2 � thelimit limn!1 1nPn�1j=0 f(T j(x)) exists.Remark. We ould take in 2.1.14 an arbitrary sequene �n 2M(X) and take �n :=�n(�n). This gives a general method of onstruting measures inM(X;T ), see for exampleProof of Variational priniple in Setion 4. (This point of view is taken from [Walters℄).We end this Setion with the following Lemma useful in the sequel.Lemma 2.1.15. For every �nite partition P of the spae (X;B; �) where X as aboveis a metrizable ompat spae, B is Borel �-algebra and � 2M(X;T ), ifPA2P �(�A) = 0,then the entropy H�(P) is a ontinuous funtion of � 2M(X;T ) at �. The entropy h�(T;P)is upper semiontinuous at �.Proof. The ontinuity of H�(P) follows immediately from Theorem 2.1.4. Thisapplied to the partitions Wn�1i=1 T�iP gives the upper semiontinuity of h�(T;P) as thelimit of the dereasing sequene of ontinuous funtions 1nH�(Wn�1i=1 T�iP). See Lemma1.4.3. |
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x2.2 TOPOLOGICAL PRESSURE AND TOPOLOGICAL ENTROPYThis setion is of topologial harater and no measure is involved. We introdue andexamine here some basi topologial invariants oming from thermodynami formalism ofstatistial physis.Let U = fAigi2I and V = fBjgj2J be two overs of the ompat metri spae X onsideredin the previous setion. We de�ne the new over U _ V putting(2.2.1) U _ V = fAi \ Bj : i 2 I; j 2 Jgand we write(2.2.2) U � V () 8j2J 9i2I Bj � AiLet, as in the previous setion, T : X ! X be a ontinuous transformation of X. Let� : X ! IR be a ontinuous funtion, frequently alled it potential and let U be a �nite,open over of X. For every integer n � 1 we setUn = U _ T�1(U) _ : : : _ T�(n�1)(U);for every set Y � X Sn�(Y ) = sup�n�1Xk=0 � Æ T k(x) : x 2 Y 	and for every n � 1(2.2.3) Zn(�;U) = infV �XU2V expSn�(U)	where V ranges over all overs of X ontained (in the sense of inlusion) in Un. Thequantity Zn(�;U) is sometimes alled the partition funtion.Lemma 2.2.1. The limit P(�;U) = limn!1 1n logZn(�;U) exists and moreover it is �nite.In fat P(�;U) � �jj�jj1.Proof. Fix m;n � 1 and onsider arbitrary overs V � Um, G � Un of X. If U 2V andV 2G then Sm+n�(U \ T�m(V )) � Sm�(U) + Sn�(V )and thus exp�Sm+n�(U \ T�m(V ))� � expSm�(U) expSn�(V )Sine U \ T�m(V ) 2 V _ T�m(G) � Um _ T�m(Un) = Um+n, we therefore obtainZm+n(�;U) �XU2VXV2G exp�Sm+nf(U \ T�m(V ))� �XU2VXV2G expSm�(U) expSn�(V )=XU2V expSm�(U)�XV2G expSn�(V )(2.2.4) 9



Ranging now over all V and G as spei�ed in de�nition (2.2.3) we get Zm+n(�;U) �Zm(�;U) � Zn(�;U) whih implies thatlogZm+n(�;U) � logZm(�;U) + logZn(�;U):Moreover, Zn(�;U) � exp(�njj�jj1). So, logZn(�;U) � �njj�jj1 and applying nowLemma 1.4.3 �nishes the proof. |Notie that, although in the notation P(�;U), the transformation T does not diretlyappear, however this quantity depends obviously also on T . If we want to indiate thisdependene we write P(T; �;U) and similarly Zn(T; �;U) for Zn(�;U). Given an openover V of X let os(�;V) = supV 2V�supfj�(x)� �(y)j : x; y 2 V g�:Lemma 2.2.2. If U and V are �nite open overs of X suh that U � V, then P(�;U) �P(�;V)� os(�;V).Proof. Take U 2 Un. Then there exists V = i(U) 2 Vn suh that U � V . For everyx; y 2 V we have jSn�(x)� Sn�(y)j � os(�;V)n and therefore(2.2.5) Sn�(U) � Sn�(V )� os(�;V)nLet now G � Un be a over of X and let ~G = fi(U) : U 2 Ung. The family ~G is also anopen �nite over of X and ~G � Vn. In view of (2.2.5) and (2.2.3) we getXU2G expSn�(U) �XV2~G expSn�(V )e�os(�;V)n � e�os(�;V)nZn(�;V)Therefore applying (2.2.3) again, we get Zn(�;U) � exp(�os(�;V)n)Zn(�;V). HeneP(�;U) � P(�;V)� os(�;V).De�nition 2.2.3. Consider now the family of all sequenes fVn : n = 1; 2; : : :g of open�nite overs of X suh that(2.2.6) limn!1 diam(Vn) = 0and de�ne the topologial pressure P(T; �) as the supremum of upper limitslim supn!1 P(�;Vn)taken over all suh sequenes. Notie that by Lemma 2.2.1, P(T; �) � �jj�jj1.The following lemma gives us a simpler way to alulate topologial pressure showing thatin fat in its de�nition we do not have to take the supremum.Lemma 2.2.4. If fUn : n = 1; 2; : : :g is a sequene of open �nite overs of X suh thatlimn!1 diam(Un) = 0, then the limit limn!1 P(�;Un) exists and equals P(T; �).10



Proof. Assume �rst that P(T; �) is �nite and �x " > 0. By the de�nition of pressure anduniform ontinuity of � there exists W, an open over of X, suh that(2.2.7) os(�;W) � "2 and P(�;W) � P(T; �)� "2 :Fix now q � 1 so large that for all n � q, diam(Un) does not exeed a Lebesgue numberof the over W. Take n � q. Then Un � W and applying (2.2.7) and Lemma 2.2.2 we get(2.2.8) P(�;Un) � P(�;W)� "2 � P(T; �)� "2 � "2 = P(T; �)� ":Hene, letting " ! 0, lim infn!1 P(�;Un) � P(T; �). This �nishes the proof in the aseof �nite pressure P(T; �). Notie also that atually the same proof goes through in thein�nite ase. |Sine in the de�nition of numbers P(�;U) no metri is involved, they do not depend on aompatible metri under onsideration. And sine also the onvergene to zero of diametersof a sequene of subsets of X does not depend on a ompatible metri, we ome to theonlusion that the topologial pressure P(T; �) is independent of any ompatible metri(depends of ourse on topology).The reader familiar with direted sets will notie easily that the family of all �nite openovers U of X equipped with the relation "�" is a direted set and topologial pressureP(T; �) is the limit of the generalized sequene P(�;U). However we an assure him/herthat this remark will not be used anywhere in this book.If the funion � is identially zero, the pressure P(T; �) is usually alled topologial entropyof the map T and is denoted by htop(T ).In the rest of this setion we establish basi elementary properties of pressure and provideits more e�etive haraterizations. Applying Lemma 2.2.2 we obtainCorollary 2.2.5. If U is a �nite, open over of X, then P(T; �) � P(�;U)� os(�;U).Lemma 2.2.6. P(Tn; Sn�) = nP(T; �) for every n � 1. In partiular htop(Tn) =nhtop(T ).Proof. Put g = Sn�. Take U , a �nite open over of X. Let U = U _ T�1(U) _ : : : _T�(n�1)(U). Sine now we atually deal with two separate transformations T and Tn,we do not use the symbol Un just to avoid possible misunderstandings. For any m � 1onsider an open set U 2 U_T�1(U)_: : :_T�(nm�1)(U) = U_T�n(U)_: : :_T�n(m�1)(U).Then for every x 2 U we havemn�1Xk=0 � Æ T k(x) = m�1Xk=0 g Æ Tnk(x)and therefore Smn�(U) = Smg(U), where the symbol Sm is onsidered with respet tothe map Tn. Hene Zmn(T; �;U) = Zm(Tn; g;U) and this implies that P(Tn; g;U) =11



nP(T; �;U). Sine given a sequene Uk of open overs of X whose diameters onverge tozero, the diameters of the sequene of its re�nements Uk also onverge to zero, applyingnow Lemma 2.2.4 �nishes the proof. |Lemma 2.2.7. If T : X ! X and S : Y ! Y are ontinuous mappings of ompat metrispaes and � : X ! Y is a ontinuous surjetion suh that S Æ � = � Æ T , then for everyontinuous funtion � : Y ! IR we have P(S; �) � P(T; � Æ �).Proof. For every �nite, open over U of Y we get(2.2.9) P(S; �;U) = P(T; � Æ �; ��1(U)):In view of Corollary 2.2.5 we have(2.2.10)P(T; � Æ �) � P(T; � Æ �; ��1(U))� os(� Æ �; ��1(U)) = P(T; � Æ �; ��1(U))� os(�;U)Let fUn : n = 1; 2; : : :g, be a sequene of open �nite overs of Y whose diameters onvergeto 0. Then also limn!1 os(�;Un)) = 0 and therefore, using Lemma 2.2.4, (2.2.9) and(2.2.10) we obtainP(S; �) = limn!1P(S; �;Un) = limn!1P(T; � Æ �; ��1(Un)) � P(T; � Æ �)The proof is �nished. |In the sequel we will need the following tehnial result.Lemma 2.2.8. If U is a �nite open over of X then P(�;Uk) = P(�;U) for every k � 1.Proof. Fix k � 1 and let  = supfjSk�1�(x)j : x 2 Xg. Sine Sk+n�1�(x) = Sn�(x) +Sk�1�(Tn(x)) for every n � 1 and x 2 X we getSn�(x)�  � Sk+n�1�(x) � Sn�(x) + and therefore for every n � 1 and every U 2 Uk+n�1Sn�(U)�  � Sk+n�1�(U) � Sn�(U) + Sine (Uk)n = Uk+n�1, these inequalities imply thate�Zn(�;Uk) � Zn+k�1(�;U) � eZn(�;Uk):Letting now n!1, we get the result required. |x2.2a PRESSURE ON COMPACT METRIC SPACESLet � is a metri on X. For every n � 1 we de�ne on X the new metri �n by putting�n(x; y) = maxf�(T j(x); T j(y)) : j = 0; 1; : : : ; n� 1g12



Given r > 0 and x 2 X by Bn(x; r) we denote the open ball in the metri �n enteredat x and of radius r. Let " > 0 and let n � 1 be an integer. A set F � X is said to be(n; ")-spanning if and only if the family of balls fBn(x; ") : x 2 Fg overs the spae X.A set S � X is said to be (n; ")-separated if and only if �n(x; y) � " for any pair x; y ofdi�erent points in S. The following fat is obvious.Lemma 2.2.9. Every maximal in the sense of inlusion (n; ")-separated set forms an(n; ")-spanning set.We would like to emphasize here that the world maximal refering to separated sets will bein this book always understood in the sense of inlusion and not in the sense of ardinality.We �nish this setion with the following haraterization of pressure.Theorem 2.2.10. For every " > 0 and every n � 1 let Fn(") be a maximal (n; ")-separatedset in X. ThenP(T; �) = lim"!0 lim supn!1 1n log Xx2Fn(") expSn�(x) = lim"!0 lim infn!1 1n log Xx2Fn(") expSn�(x)Proof. Fix " > 0 and let U(") be a �nite over of X by open balls of radii "=2. For anyn � 1 onsider U , a subover of U(")n suh thatZn(�;U(")) =XU2U expSn�(U);where Zn(�;U(")) was de�ned by formula (2.2.3). For every x 2 Fn(") let U(x) be anelement of U ontaining x. Sine Fn(") is an (n; ")-separated set, we dedue that thefuntion x 7! U(x) is injetive. ThereforeZn(�;U(")) =XU2U expSn�(U) � Xx2Fn(") expSn�(U(x)) � Xx2Fn(") expSn�(x):Thus by Lemma 2.2.1P(�;U(")) � lim supn!1 1n log Xx2Fn(") expSn�(x):Hene, letting "! 0 and applying Corollary 2.2.4 we get(2.2.11) P(T; �) � lim sup"!0 lim supn!1 1n log Xx2Fn(") expSn�(x):Let now V be an arbitrary �nite open over of X and let Æ > 0 be a Lebesgue number ofV. Take " < Æ=2. Sine for any k = 0; 1; : : : ; n� 1 and for every x 2 Fn(")diam�T k(Bn(x; "))� � 2" < Æ;13



we onlude that for some Uk(x) 2 VT k(Bn(x; ")) � Uk(x)Sine the family fBn(x; ") : x 2 Fn(")g overs X (by Lemma 2.2.9), it implies that thefamily fU(x) : x 2 Fn(")g � Vn also overs X, where U(x) = U0(x) \ T�1(U1(x)) \ : : : \T�(n�1)(Un�1(x)). ThereforeZn(�;V) � Xx2Fn(") expSn�(U(x)) � exp�os(�;V)n) Xx2Fn(") expSn�(x)Hene P(�;V) � os(�;V) + lim infn!1 1n log Xx2Fn(") expSn�(x)and onsequentlyP(�;V)� os(�;V) � lim inf"!0 lim infn!1 1n log Xx2Fn(") expSn�(x):Letting diam(V)! 0 and applying Corollary 2.2.4 we getP(T; �) � lim inf"!0 lim infn!1 1n log Xx2Fn(") expSn�(x):Combining this and (2.2.11) �nishes the proof. |Frequently the limits lim supn!1 1n log Xx2Fn(") expSn�(x)and lim infn!1 1n log Xx2Fn(") expSn�(x)will be denoted respetively by P(T; �; ") and P(T; �; "). Atually these depend also onthe sequene fFn(") : n = 1; 2; : : :g of maximal (n; ")-separated sets under onsideration.However it will be always lear from the ontext whih suh sequene is meant.x2.3 VARIATIONAL PRINCIPLEIn this setion we shall prove the following theorem, alled variational priniple, whih hasa long history and whih establishes an interesting relationship between measure-theoretidynamis and topologial dynamis. 14



Theorem 2.3.1. (Variational priniple) If T : X ! X is a ontinuous transformation ofa ompat metri spae X and � : X ! IR is a ontinuous funtion thenP(T; �) = sup�h�(T ) + Z � d� : � 2M(T )� ;where M(T ) denotes the set of all Borel probability T -invariant measures on X.The proof of this theorem onsists of two parts. In the Part I we show that h�(T )+R � d� �P(T; �) for every measure � 2 M(T ) and the Part II is devoted to proving inequalitysupfh�(T ) + R � d� : � 2M(T )g � P(T; �).Proof of Part I. Let � 2 M(T ). Fix " > 0 and onsider a �nite partition U =fA1; : : : ; Asg of X into Borel sets. One an �nd ompat sets Bi � Ai, i = 1; 2; : : : ; s, suhthat for the partition V = fB1; : : : ; Bs; X n (B1 [ : : : [Bs)g we haveH�(UjV) � ";where the onditional entropy H�(UjV) has been de�ned in (1.3.3).Therefore, as in the proof of Theorem 1.4.4 (d) we get for every n � 1(2.3.1) H�(Un) � H�(Vn) + n":Our �rst aim is to estimate from above the number H�(Vn) + R Sn� d�. Putting bn =PB2Vn expSn�(B), keeping notation k(x) = �x log x and using onavity of the funtionlogarithm we obtain by Jensen inequalityH�(Vn) + Z Sn� d� � XB2Vn �(B)�Sn�(B)� log�(B)�= XB2Vn �(B) log�eSn�(B)=�(B)�� log� XB2Vn eSn�(B)�(2.3.2)(ompare the Lemma in Introdution).Take now 0 < Æ < 12 inff�(Bi; Bj) : 1 � i 6= j � sg > 0 so small that(2.3.3) j�(x)� �(y)j < "if �(x; y) < Æ. Consider an arbitrary maximal (n; Æ)-separated set En(Æ). Fix B 2 Vn.Then, by Lemma 2.2.9, for every x 2 B there exists y 2 En(Æ) suh that x 2 Bn(y; Æ),whene jSn�(x)�Sn�(y)j � "n by (2.3.3). Therefore, using �niteness of the set En(Æ), wesee that there exists y(B) 2 En(Æ) suh that(2.3.4) Sn�(B) � Sn�(y(B)) + "n15



and B \Bn(y(B); Æ) 6= ;:The de�nitions of Æ and partition V imply that for every z 2 X#fB 2 V : B \B(z; Æ) 6= ;g � 2Thus #fB 2 Vn : B \ Bn(z; Æ) 6= ;g � 2nTherefore the funtion Vn 3 B 7! y(B) 2 En(Æ) is at most 2n to 1. Hene, using (2.3.4),2n Xy2En(Æ) expSn�(y) � XB2Vn exp�Sn�(B)� "n� = e�"n XB2Vn expSn�(B)Taking now the logarithms of both sides of this inequality, dividing them by n and applying(2.3.2), we getlog 2 + 1n log� Xy2En(Æ) expSn�(y)� � �"+ 1n log� XB2Vn expSn�(B)�� 1nH�(Vn) + 1n Z Sn� d�� ":So, by (2.3.1),1n log� Xy2En(Æ) expSn�(y)� � 1nH�(Un) + Z � d�� (2"+ log 2):In view of the de�nition of entropy h�(T;U) presented just after Lemma 1.4.2, by lettingn!1, we get P(T; �; Æ) � h�(T;U) + Z � d�� (2"+ log 2):Applying now Theorem 2.2.10 with Æ ! 0 and next letting " ! 0 and taking supremumover all Borel partitions U lead us to the followingP(T; �) � h�(T ) + Z � d�� log 2:And applying with every n � 1 this estimate to the transformation Tn and the funtionSn� we obtain P(Tn; Sn�) � h�(Tn) + Z Sn� d�� log 2or equivalently, by Lemma 2.2.6 and Theorem 1.4.6(a)nP(T; �) � nh�(T ) + n Z � d�� log 216



Dividing both sides of this inequality by n and letting then n ! 1, the proof of Part Ifollows. |In the proof of part II we will need the following two lemmas.Lemma 2.3.2. If � is a Borel probability measure on X, then for every " > 0 there existsa �nite partition A suh that diam(A) � " and �(�A) = 0 for every A 2 A.Proof. Let E = fx1; : : : ; xsg be an "=4-spanning set (that is with respet to the metri� = �0) of X. Sine for every i 2 f1; : : : ; sg the sets fx : �(x; xi) = rg, "=4 < r < "=2, arelosed and mutually disjoint, only ountably many of them an have positive measure �.Hene, there exists "=4 < t < "=2 suh that for every i 2 f1; : : : ; sg(2.3.5) �(fx : �(x; xi) = tg) = 0De�ne indutively the sets A1; A2; : : : ; As putting A1 = fx : �(x; x1) � tg and for everyi = 2; 3; : : : ; s Ai = fx : �(x; xi) � tg n (A1 [A2 [ : : : [Ai�1)The family U = fA1; : : : ; Asg is a partition of X with diameter not exeeding ". Using(2.3.5) and noting that generally �(A n B) � �A [ �B, we onlude by indution that�(�Ai) = 0 for every i = 1; 2; : : : ; s. |Proof of Part II. Fix " > 0 and let En("), n = 1; 2; : : :, be a sequene of maximal(n; ")-separated set in X. For every n � 1 de�ne measures�n = Px2En(") Æx expSn�(x)Px2En(") expSn�(x) ; mn = 1n n�1Xk=0 �n Æ T�kwhere Æx denotes the Dira measure onentrated at the point x (see (2.1.2)). Let fni; i =1; 2; : : :g be an inreasing sequene suh that mni onverges weakly, say to m and(2.3.9) limi!1 1ni log Xx2Eni (") expSn�(x) = lim supn!1 1n log Xx2En(") expSn�(x)Clearly m 2 M(T ). In view of Lemma 2.3.2 there exists a �nite partition  suh thatdiam() � " and �(�G) = 0 for everyG 2 . For any n � 1 put gn =Px2En(") expSn�(x).Sine #(G \ En(")) � 1 for every G 2 n, we obtainH�n(n) + Z Sn� d�n = Xx2En(")�� log�n(x) + Sn�(x)��n(x)= Xx2En(") expSn�(x)gn �Sn�(x)� log�expSn�(x)gn ��= g�1n Xx2En(") expSn�(x)�Sn�(x)� Sn�(x) + log gn� = log gn(2.3.10) 17



Fix now M 2 IN and n � 2M . For j = 0; 1; : : : ;M � 1 let s(j) = E(n�jM )� 1, where E(x)denotes the integer part of x. Note thats(j)_k=0T�(kM+j)M = T�j _ : : : _ T�(s(j)M+j)�(M�1) = T�j _ : : : _ T�((s(j)+1)M+j�1)and (s(j) + 1)M + j � 1 � n� j + j � 1 = n� 1Therefore, setting Rj = f0; 1; : : : ; j � 1; (s(j) + 1)M + j; : : : ; n� 1g, we an writen = s(j)_k=0T�(kM+j)M _ _i2Rj T�i:Hene H�n(n) � s(j)Xk=0H�n�T�(kM+j)M�+ H�n� _i2Rj T�i�� s(j)Xk=0H�nÆT�(kM+j)(M) + log�#( _i2Rj T�i)�:Summing now over all j = 0; 1; : : : ;M � 1 we then getMH�n(n) � M�1Xj=0 s(j)Xk=0H�nÆT�(kM+j)(M) + M�1Xj=0 log�##Rj�� n�1Xl=0 H�nÆT�l(M) + 2M2 log# � nH 1nPn�1l=0 �nÆT�l(M ) + 2M2 log#:And applying (2.3.10) we obtainM log� Xx2En(") expSn�(x)� � nHmn(M) +M Z Sn� d�n + 2M2 log#Dividing both sides of this inequality by Mn, we get1n log� Xx2En(") expSn�(x)� � 1MHmn(M) + Z � dmn + 2Mn log#:Sine �T�1(A) � T�1(�A) for every set Aj � X, the measure m of the boundaries ofthe partition M is equal to 0. Letting therefore n ! 1 along the subsequene fnig weonlude from this inequality, (2.3.7) and Lemma 2.1.15 thatP(T; �; ") � 1MHm(M ) + Z � dm:18



Now letting M !1 we getP(T; �; ") � hm(T; ) + Z � dm � sup�h�(T ) + Z � d� : � 2M(T )� :Applying �nally Theorem 2.2.10 and letting "& 0, we get the desired inequality. |Corollary 2.3.4. Under assumptions of Theorem 2.3.1P(T; �) = supfh�(T ) + Z � d� : � 2Me(T )g;where Me(T ) denotes the set of all Borel ergodi probability T -invariant measures on X.Proof. Let � 2 M(T ) and let f�x : x 2 Xg be the ergodi deomposition of �. Thenh� = R h�x d�(x) and R � d� = R (R � d�x) d�(x). Thereforeh� + Z � d� = Z �h�x + Z � d�x� d�(x)and onsequently there exists x 2 X suh that h�x + R � d�x � h� + R � d� whih �nishesthe proof. |Corollary 2.3.5. If T : X ! X is a ontinuous transformation of a ompat metri spaeX, � : X ! IR is a ontinuous funtion and Y is a forward invariant subset of X (i.e.T (Y ) � Y ), then P(T jY ; �jY ) � P(T; �).Proof. The proof follows immediatly from Theorem 2.3.1 by the remark that eah T jY -invariant measure on Y an be treated as a measure on X and is T -invariant. |x2.4 EQUILIBRIUM STATES AND EXPANSIVE MAPSWe keep in this setion the notation of the previous one. A measure � 2M(T ) is alled anequilibrium state for the transformation T and funtion � if P(T; �) = h�(T )+R � d�. Theset of all those measures will be denoted by E(�). In the ase � = 0 the equilibrium statesare also alled as maximal measures. Similarly (in fat even easier) as Corollary 2.3.5 onean prove the following.Proposition 2.4.1 If E(�) 6= ; then E(�) ontains ergodi measures.As the following example shows there exist transformations and funtions whih admit noequilibrium states.Example 2.4.2. Let fTn : Xn ! Xngn�1 be a sequene of ontinuous mappings ofompat metri spaes Xn suh that for every n � 1(2.4.1) htop(Tn) < htop(Tn+1) and supn htop(Tn) <119



The disjoint union �1n=1Xn of the spaes Xn is a loally ompat spae and let X =f!g[�1n=1Xn be its one-point (Alexandro�) ompati�ation. De�ne the map T : X ! Xby T jXn = Tn and T (!) = !. The reader will hek easily that T is ontinuous. Supposethat � is an ergodi maximal measure for T . Then �(Xn) = 1 for some n � 1 and thereforehtop(T ) = h�(Tn) � htop(Tn) whih ontradits formula (2.4.1) and Corollary 2.3.5. Inview of Proposition 2.4.1 this shows that T has no maximal measure.A more diÆult problem is to �nd a transitive and smooth example (see for instane [Mi,1973℄).The remaining part of this setion is devoted to provide suÆient onditions for the exis-tene of equilibrium states and we start with the following simple general riterion whihwill be the base to obtain all others.Proposition 2.4.3. If the funtion M(T ) 3 � ! h�(T ) is upper semi-ontinuous theneah ontinuous funtion � : X ! IR has an equilibrium state.Proof. By the de�nition of weak topology the funtionM(T ) 3 �! R � d� is ontinuous.Therefore the lemma follows from the assumption, the sequential ompatness of the spaeM(T ) and Theorem 2.3.1 (variational priniple). |As an immediate onsequene of this lemma and Theorem 2.3.1 we obtain the following.Corollary 2.4.4. If htop(T ) = 0 then eah ontinuous funtion on X has an equilibriumstate.A ontinuous transformation T : X ! X of a ompat metri spae X equipped with ametri � is said to be (positively) expansive if and only if9Æ > 0 [8n � 0 �(Tn(x); Tn(y)) � Æ℄ =) x = yand the number Æ whih has appeared in this de�nition is alled an expansive onstant.Although at the end of this setion we will introdue a related but di�erent notionof expansiveness of homeomorphisms we will frequently omit the word "positively". Notethat the property of being expansive does not depend on the hoie of a metri ompatiblewith the topology. From now on in this hapter the transformation T will be assumedto be positively expansive, unless stated otherwise. The following lemma is an immediateonsequene of expansiveness.Lemma 2.4.5. If A is a �nite Borel partition of X with diameter not exeeding anexpansive onstant then A is a generator for every Borel probability T -measure � on X.The main result onerning expansive maps is the following.Theorem 2.4.6. If T : X ! X is positively expansive then the funtion M(T ) 3�! h�(T ) is upper semi-ontinuous and onsequently (by Lemma 2.4.3) eah ontinuousfuntion on X has an equilibrium state. 20



Proof. Let Æ > 0 be an expansive onstant of T and let � 2 M(T ). By Lemma 2.3.2there exists a �nite partition A of X suh that diam(A) � Æ and �(�A) = 0 for everyA 2 A. Thus in view of Lemma 2.4.5 and Theorem 1.8.7(b) h�(T ) = h�(T;A) whene bythe de�nition of the entropy h�(T;A) (f. Lemma 1.4.2) there exists m � 1 suh that(2.4.2) 1m+ 1H�(Am) � h�(T ) + "2Consider now a sequene f�n : n = 1; 2; : : :g of invariant measures onverging weakly to�. By the de�nition of the entropy of partition, by Theorem 2.1.15 and by the hoie ofpartition A, limn!1H�n(Am) = H�(Am). Therefore there exists n0 � 1 suh that forevery n � n0 1m+ 1 jH�n(Am)� H�(Am)j � "2Combining this and 2.4.2, and using Lemma 1.4.3 we get for every n � n0h�n(T ) = h�n(T;A) � 1m+ 1H�n(Am) � 1m+ 1H�(Am) + "2 � h�(T ) + "The proof is �nished. |Below we prove three additional interesting results about expansive maps.Lemma 2.4.7. If U is a �nite open over of X with diameter not exeeding an expansiveonstant of an expansive map T : X ! X, then limn!1 diam(Un) = 0.Proof. Let U = fU1; U2; : : : ; Usg. By expansiveness for every sequene fan : n =0; 1; 2; : : :g of elements of the set f1; 2; : : : ; sg#� 1\n=0T�n(Uan� � 1and hene limk!1 diam� k\n=0T�n(Uan)� = 0Therefore, given a �xed " > 0 there exists a minimal �nite k = k(fang) suh thatdiam� k\n=0T�n(Uan)� < "Note now that the funtion f1; 2; : : : ; sgIN 3 fang 7! k(fang) is ontinuous, even more, itis loally onstant. Thus, by ompatness of the spae f1; 2; : : : ; sgIN , it is bounded, sayby t, and therefore diam(Un) < "21



for every n � t. The proof is �nished. |Combining now Lemma 2.2.4, Lemma 2.4.7 and Lemma 2.2.8 we get the following.Proposition 2.4.8. If U is a �nite open over of X with diameter not exeeding anexpansive onstant then P(T; �) = P(T; �;U).As the last result of this setion we shall prove the following.Proposition 2.4.9. There exists a onstant � > 0 suh that 8 0 < " < � 9n(") � 1�(x; y) � " =) �n(")(x; y) > �Proof. Let U = fU1; U2; : : : ; Usg be a �nite open over of X with diameter not exeedingan expansive onstant Æ and let � be a Lebesgue number of U . Fix " > 0. In view ofLemma 2.4.7 there exists an n(") � 1 suh that(2.4.3) diam(Un(")) < ":Let �(x; y) � " and suppose that �n(")(x; y) � �. Then8 (0 � j � n(")� 1) 9 (Uij 2 U) T j(x); T j(y) 2 Uijand therefore x; y 2 n(")�1\j=0 T�j(Uij ) 2 Un(")Hene diam(Un(")) � �(x; y) � " whih ontradits (2.4.3). The proof is �nished. |As we mentioned at the begining of this setion there is a notion related to positive ex-pansiveness whih makes sense only for homeomorphisms. Namely we say that a homeo-morphism T : X ! X is expansive if and only if9Æ > 0 [8n 2 ZZ �(Tn(x); Tn(y)) � Æ℄ =) x = yWe will not explore this notion in our book { we only want to emphasize that for expansivehomeomorphisms analogous results (with obvious modi�ations) an be proved (in thesame way) as for positively expansive mappings. Of ourse eah positively expansivehomeomorphism is expansive.x2.5 TOPOLOGICAL PRESSURE AS A FUNCTION ON THE BANACH SPACEOF CONTINUOUS FUNCTIONS. THE ISSUE OF UNIQUENESS OF EQUILIBRIUMSTATES 22



Let T : X ! X be a ontinuous mapping of a ompat topologial spae X. We shalldisuss here the topologial pressure funtion P : C(X) ! IR, P(�) = P(T; �). Assumethat the topologial entropy is �nite, htop(T ) <1. Hene the pressure P is also �nite, forexample(2.5.1) P(�) � htop(T ) + jj�kj1:This estimate follows diretly from the de�nitions, see Setion 2. It is also an immediateonsequene of Theorem 2.3.1 (Variational Priniple) in ase X is metrizable.Let us start with the following easyTheorem 2.5.1. The pressure funtion P is Lipshitz ontinuous with the Lipshitzonstant 1.Proof. Let � 2 C(X). Reall from Setion 2.2 that in the de�nition of pressure we haveonsidered the following partition funtionZn(�;U) = infV �XU2V expSn�(U)	;where V ranges over all overs of X ontained in Un. Now if also  2 C(X), then weobtain for every open over U and positive integer nZn( ;U)e�jj�� jj1n � Zn(�;U) � Zn( ;U)ejj�� jj1nTaking limits if n % 1 we get P( ) � jj� �  jj1 � P(�) � P( ) + jj� �  jj1, henejP ( )� P (�)j � jj � �jj1. |Theorem 2.5.2. If X is metrizable, then the topologial pressure funtion P : C(X)! IRis onvex.we provide two di�erent proofs of this important theorem. One elementary, the seondrelying on the variational priniple (Theorem 2.3.1).Proof 1. By H�older inequality applied with the exponents a = 1=�; b = 1=(1 � �), sothat 1=a+ 1=b = �+ 1� � = 1 we obtain for an arbitrary �nite set E � X1n logXE eSn(��)+Sn(1��) ) = 1n logXE e�Sn(�)e(1��)Sn( ) �1n log�XE eSn(�)���XE eSn( )�1�� � � 1n log�XE eSn(�)�+ (1� �) 1n log�XE eSn( )�:To onlude the proof use the de�nition of pressure via E = Fn(") that is (n; ")-separatedsets, Theorem 2.2.10. 23



Proof 2. It is suÆient to prove that the funtionP̂ := sup�2M(X;T )L�� = h�(T ) + ��is onvex, beause by variational priniple P̂ (�) = P (�).We need to prove that the setA := f(�; y) 2 C(X)� IRg : y � P̂ (�))is onvex. Observe however that that by its de�nition A = T�2M(X;T ) L+� , where by L+�we denote the upper half spae f(f; y) : y � L��g. All the halfspaes L+� are onvex, heneA is onvex as their intersetion. |Remark 2.5.3. We an write L�� = ���(�h�(T )). The funtion P̂(�) = sup�2M(T ) L��de�ned on the spae C(X) is alled the Legendre-Fenhel transform of the onvex funtion� 7! �h�(T ) on the onvex set M(T ). We shall abbreviate the name Legendre-Fenheltransform to LF-transform. Observe that this transform generalizes the standard Legendretransformation of a stritly onvex funtion h on a �nite dimensional linear spae, say IRn,y 7! supx2IRn < x; y > �h(x), where < x; y > is the salar (inner) produt of x and y.Note that �h�(T ) is not stritly onvex (unless M(X;T ) is a one element spae)beause it is aÆne, see Th.1.4.7.Proof 2 just repeats the standard proof that Legendre transform is onvex.In the sequel we will need so alled geometri form of the Hahn-Banah theorem (see[Bourbaki, Th.1, Ch.2.5℄ or Ch. 1.7 of [Edwards, 1995℄.Theorem 2.5.4 (Hahn-Banah). Let A be an open onvex non-empty subset ofa real topologial vetor spae V and let M be a non-empty aÆne subset of V (linearsubspae moved by a vetor) whih does not meet A. Then there exists a odimension 1losed aÆne subset H whih ontains M and does not meet A.Suppose now that P : V ! IR is an arbitrary onvex ontinuous funtion on a realtopologial vetor spae V . We all a ontinuous linear funtional F : V ! IR tangent toP at x 2 V if(2.5.2) F (y) � P (x+ y)� P (x)for every y 2 V . We denote the set of all suh funtionals by V �x;P . Sometimes the termsupporting funtional is being used in the literature.Applying Theorem 2.5.4 we easily prove that for every x the set V �x;P is non-empty.Indeed, we an onsider the open onvex set A = f(�; y) 2 V � IRg : y > P (x)g in thevetor spae V � IR with the produt topology and the one-point set M = fx; P (x)g, andde�ne a supporting funtional we look for, as having the graph H � fx; P (x)g in V � IR.24



We would also like to bring reader's attention to the following another general fat fromfuntional analysis.Theorem 2.5.5. Let V be a Banah spae and P : V ! IR be a onvex ontinuousfuntion. Then for every x 2 V the funtion P is di�erentiable at x in every diretion(Gateaux di�erentiable), or in a dense in the weak topology set of diretions, if and onlyif V �x;P is a singleton.Proof. Suppose �rst that P is not di�erentiable at some point x and diretion y. Choosean arbitrary F 2 V �x;P . Non-di�erentiability in the diretion y 2 V implies that there exist" > 0 and a sequene ftngn�1 onverging to 0 suh that(2.5.3) P (x+ tny)� P (x) � tnF (y) + "jtnj:In fat we an assume that all tn, n � 1, are positive by passing to a subsequene andreplaing y by �y if neessary. We shall prove that (2.5.3) implies the existene of F̂ 2V �x;P n fFg. Indeed, take Fn 2 V �x+tny;P . Then, by (2.5.1), we have(2.5.4) P (x)� P (x+ tny) � Fn(�tny)The inequalities (2.5.3) and (2.5.4) givetnF (y) + "tn � tnFn(y):Hene(2.5.5) (Fn � F )(y) � ":In the ase when P is Lipshitz ontinuous, and this is the ase of topologial pressure see(Theorem 2.5.1) whih we are mostly interested in, all Fn's, n � 1, are uniformly bounded.Indeed, let L be a Lipshitz onstant of P . Then for every z 2 V and every n � 1Fn(z) � P (x+ tny + z)� P (x+ tny) � LjjzjjSo, jjFnjj � L for every n � 1. Thus, there exists F̂ = limn!1 Fn, a weak�-limit of asequene fFngn�1 (subsequene of the previous sequene). By (2.5.5) (F̂ � F )(y) � ".Hene F̂ 6= F . SineP (x+ tny + v)� P (x+ tny) � Fn(v) for all n and v 2 Vpassing with n to 1 and using ontinuity of P , we onlude that F̂ 2 V �x;P .If we do not assume that P is Lipshitz ontinuous, we restrit Fn to the 1-dimensionalspae spanned by y i.e. we onsider FnjIRy. In view of (2.5.5) for every n � 1 there exists0 � sn � 1 suh that Fn(sny) � F (sny) = ". Passing to a subsequene, we may assumethat limn!1 sn = s for some s 2 [0; 1℄. De�nefn = snFnjIRy + (1� sn)F jIRyThen fn(y) = F (y) = " hene jjfnjj = jjF jj = "jjyjj for every n � 1. Thus the sequeneffngn�1 is uniformly bounded and, onsequently, it has a weak-� limit f̂ : IRy! IR. Nowwe use Theorem 2.5.4 (Hahn-Banah) for the aÆne set M being the graph of f̂ translatedby (x; P (x)) in V � IR. for every � 2 IR and every n � 1. We extend M to H and �ndthe linear funtional F̂ 2 V �x;P whose graph is H. Sine F̂ (y)� F (y) = f̂(y)� F (y) = ",F̂ 6= F . 25



Suppose now that Proposition 2.5.4, V �x;P ontains at least two distint linear funtionals,say F and F̂ . So, F (y) � F̂ (y) > 0 for some y 2 V . Suppose on the ontrary that Pis di�erentiable in every diretion at the point x. In partiular P is di�erentiable in thediretion y. Hene limt!0 P (x+ ty)� P (x)t = limt!0 P (x� ty)� P (x)�tand onsequently limt!0 P (x+ ty) + P (x� ty)� 2P (x)t = 0:On the other hand, for every t > 0, we have P (x + ty) � P (x) � F (t) = tF (y) andP (x� ty)� P (x) � F̂ (�ty) = �tF̂ (y), henelim inft!0 P (x+ ty) + P (x� ty)� 2P (x)t � F (y)� F̂ (y) > 0:, a ontradition.In fat F (y)�F̂ (y) = " > 0 implies F (y0)�F̂ (y0) � "=2 > 0 for all y0 in the neighbourhoodof y in the weak topology de�ned just by fy0 : (F � F̂ )(y � y0) < "=2g. Hene P is notdi�erentiable in a weak*-open set of diretions. |Let us go bak now to our speial situation:Proposition 2.5.6. If � 2 M(T ) is an equilibrium state for � 2 C(X), then the linearfuntional represented by � is tangent to P at �.Proof. We have �(�) + h� = P (�)and for every  2 C(X) �(�+  ) + h� � P (�+  ):Subtrating the sides of the equality from the respetive sides of the latter inequality weobtain �( ) � P (�+  )� P (�) whih is just the inequality de�ning tangent funtionals.|As an immediate onsequene of Proposition 2.5.6. and Theorem 2.5.5 we get the following.Corollary 2.5.7. If the pressure funtion P is di�erentiable at � in every diretion, or atleast in a dense in the weak topology set of diretions, then there is at most one equilibriumstate for �.Due to this Corollary, in future (see Chapter 4) to prove uniqueness it will be suÆient toprove di�erentiability of the pressure funtion in a weak*-dense set of diretions.26



The next part of this setion will be devoted to kind of reversing Proposition 2.5.6 andCorollary 2.5.7. and better understanding of the mutual Legendre-Fenhel transforms �hand P . This is a beautiful topi but will not have appliations in the rest of this book. Letus start with a haraterization of T invariant measures in the spae of all signed measuresC(X)� provided by the pressure funtion P .Theorem 2.5.8. For every F 2 C(X)� the following three onditions are equivalent:(i) For every � 2 C(X) it holds F (�) � P(�).(ii) There exists C 2 IR suh that for every � 2 C(X) it holds F (�) � P(�) + C.(iii) F is represented by a probability invariant measure � 2M(X;T ).Proof. (iii) ) (i) follows immediately from the variational priniple:F (�) � F (�) + h�(T ) � P(�) for every � 2 C(X):(i) ) (ii) is obvious. Let us prove that (ii) ) (iii). Take an arbitrary positive � 2 C(X),i.e. suh that for every x 2 X; �(x) � 0. For every real t < 0 we haveF (t�) � P(t�) + CSine t� � 0 it immediately follows from (2.5.1) that P(t�) � P(0). Hene F (t�) �P (0) + C. So jtjF (�) � �(C + P(0)) hene F (�) � �(C + P(0))jtj :Letting t ! �1 we obtain F (�) � 0. We estimate the value of F on onstant funtionst. For every t > 0 we have F (t) � P(t) + C � P(0) + t + C. Hene F (1) � 1 + P(0)+Ct .Similarly F (�t) � P(�t) + C = P(0)� t + C and therefore F (1) � 1 � P(0)+Ct . Lettingt ! 1 we thus obtain F (1) = 1. Therefore by Theorem 2.1.1 (Riesz RepresentationTheorem) the funtional F is represented by a probability measure � 2 M(X). Let us�nally prove that � is T -invariant. For every � 2 C(X) and every t 2 IR we have by (i)F (t(� Æ T � �)) � P(t(� Æ T � �)) + CIt immediately follows from Theorem 2.3.1 (Variational priniple) that P(t(� Æ T � �)) =P(0). Hene jF (� Æ T )� F (�)j � ����P(0) + Ct ����:Thus, letting jtj ! 1, we obtain F (� Æ T ) = F (�), i.e T -invariane of �. |We shall prove the following.Corollary 2.5.9. Every funtional F tangent to P at � 2 C(X), i.e. F 2 C(X)��;P , isrepresented by a probability T -invariant measure � 2M(X;T ).27



Proof. Using Theorem 2.5.1, we get for every  2 C(X) thatF ( ) � P (�+  )� P (�) � P ( ) + jP (�+  )� P ( )j � P (�) � P ( ) + jj�jj1 � P (�):So ondition (ii) of Theorem 2.5.8 holds hene (iii) holds, F is represented by � 2M(X;T ).|We an now almost reverse Proposition 2.5.6. Namely being a funtional tangent to P at� implies being an "almost" equilibrium state for �.Theorem 2.5.10. F 2 C(X)��;P if and only if F , in other words the measure � = �F 2M(X;T ) representing F , is a weak�-limit of measures �n 2M(X;T ) suh that�n�+ h�n(T )! P(�):Proof. In one way the proof is simple. Assume that � = limn!1 �n in the weak�topology and �n�+h�n(T )! P (�). We proeed as in Proof of Theorem 2.5.6. In view ofTheorem 2.3.1 (Variational priniple) �n( + �) + h�n(T ) � P(�+  ) whih means that�n( ) � P(�+ )�(�n�+h�n(T )). Thus, letting n!1, we get �( ) � P(�+ )�P( ).This means that � 2 C(X)��;P.Now, let us prove our Theorem in the other diretion. Reall again that the funtion � 7!h�(T ) on M(T ) is aÆne, hene onave. Denote h� = lim sup�!� h�(T ), with � ! � inweak*-topology. It is also onave and upper semiontinuous onM(T ) :=M(X;T ). In thesequel we shall prefer to onsider the funtion � 7! �h�(T ) whih is lower semiontinuousand onvex.Step 1. For every # 2 C(X) we have�#� sup�2M(T )(�#��h�(T )) � �#� (�#��h�(T )) = �h�(T )):We obtained here �h�(T )) rather than merely �h�(T )) by taking every sequene �n ! �writing the right hand side of the above inequality : �# � (�n# � �h�n#(T )) and lettingn!1. So sup#2C(X)��#� sup�2M(T )(�#��h�(T ))� � �h�(T ):This says that the LF-transform of the LF-transform of �h�(T ) is less or equal to �h�(T ).Let us prove now the opposite inequality. We refer to the following orollary of the geo-metri form of Hahn-Banah Theorem [Bourbaki, Ch.II.x5. Prop.5℄:Let M be a losed onvex set in a loally onvex vetor spae V . Then every lower semi-ontinuous onvex funtion f de�ned in M is supremum of a family of funtions boundedfrom above by f , whih are restritions to M of ontinuous aÆne funtions in V .28



We shall apply this theorem to C�(X) endowed with weak�-topology and use the fat thatevery linear funtional ontinuous in this topology is represented by an element belongingto C(X). (This is a general fat onerning pairs of vetor spaes in duality, [Bourbaki,Ch.II.x6. Prop.3.℄.). Thus, for every " > 0 there exists  2 C(X) suh that for every� 2M(T )(2.5.6) (� � �)( ) � �h�(T )��h� + "So � � sup�2M(T )(� ��h�(T )) � �h�(T )� ":Letting "! 0 we obtainsup#2C(X)��#� sup�2M(T )(�#��h�(T ))� � �h�(T ):Thus we proved the standard fat that the LF-transform of the LF-transform of �h�(T ) isbak �h�(T ). Remind now that by variational priniple the LF-transform of �h�(T ), i.e.the supremum sup�2M(T )(�#��h�(T )) is pressure P(#). We onlude that(2.5.7) h�(T ) = inf#2C(X)fP(#)� �#gStep 2. Fix � 2 C(X)��;P. From � � P (�+  )� P (�) we obtainP (�+  )� �(�+  ) � P(�)� �� for all  2 C(X)or(2.5.8) inf 2C(X)fP( )� � g � P(�)� ��(This expresses the fat that the supremum ( { in�mum above) in the de�nition of theLF-transform of P at F is attained at � at whih F is tangent to P .) By (2.5.7) and(2.5.8) we obtain(2.5.9) h� � P(�)� ��so by the de�nition of h� there exists a sequene of measures �n 2 M(T ) suh thatlimn!1 �n = � and limn!1 h�n � P (�)� ��. The proof is �nished. |Remark. In Step 1 of the above proof it did not matter whether we onsidered � tangent toP or an arbitrary � 2M(T ). In Step 2, where we started with all � 2M(T ), onsidering" > 0 in (2.5.6) is neessary; without " > 0 this formula may happen to be false, seeExample 2.5.13. For � 2 C(X)��;P we obtain from (2.5.9) and inequality h�(T ) � P(�)���for every � 2M(T ) that h�(T )� h�(T ) � (�� �)� whih is just (2.5.6) with " = 0. So aposteriori we know that " in (2.5.6) an be omitted.29



The meaning of this, is that if � is tangent to P at � then � is tangent to �h, the LF-transform of P, at �.Conversely, if  satis�es (2.5.6) with " = 0 i.e.  is tangent to �h at � 2 M(T ) then inthe same way as in Step 2. we an prove the inequality analogous to (2.5.8), namely thatsup�2M(T ) � ��h�(T ) = P( ) � � ��h�(T ):Hene � is tangent to P at  (by the "if" part of Theorem 2.5.10).Assume now the upper semiontinuity of the entropy h�(T ) as a funtion of �. Then weobtain.Corollary 2.5.11. If the entropy is upper semiontinuous, then a funtional F 2 C(X)�is tangent to P at � 2 C(X) if and only if it is represented by a measure whih is anequilibrium state for �.Proof. This is just the previous Theorem with the observation that limn!1 h�n(T ) �h�T (T ). (Remark that this uses only the upper semiontinuity of the entropy at themeasure �.) |Reall that already the upper semiontinuity above implies the existene of at least oneequilibrium state (Lemma 2.4.3)Now we an omplete Corollary 2.5.7.Corollary 2.5.12. If the entropy is upper semiontinuous then the pressure funtion Pis di�erentiable at � 2 C(X) in every diretion, or in a set of diretions dense in the weaktopology, if and only if there is at most one equilibrium state for �.Proof. This Corollary follows diretly from Corollary 2.5.11 and Theorem 2.5.5. |After disussing funtionals tangent to P and proving that they oinide with the set ofequilibrium states for maps for whih the entropy is upper semiontinuous as the funtionon M(T ) the question arises of whether all measures in M(T ) are equilibrium states ofsome ontinuous funtions. The answer given below is no.Example 2.5.13. We shall onstrut a measure m 2 M(T ) whih is not an equilibriumstate for any � 2 C(X). Here X is the one sided shift spae �2 with the left side shift map�. Sine this map is obviously expansive, it follows from Theorem 2.4.6 that the entropyfuntion is upper semiontinues. Let mn 2 M(�) be the measure equidistributed on theset Pern of points of period n, i.e.mn = Xx2Pern 1Card Pern Æxwhere Æx is the Dira measure supported by x. mn onverge weak� to �max, the measure ofmaximal entropy: log 2. (Chek that this follows for example from the proof of variational30



priniple, part II.) Let tn; n = 0; 1; 2; ::: be a sequene of positive real numbers suh thatP1n=0 tn = 1. Finally de�ne m = 1Xn=0 tnmnLet us prove that there is no � 2 C(X) tangent to h at m. Let �n = Rn�max+Pn�1j=0 tjmj ,where Rn =P1j=n tj . We have of ourse hmn(�) = 0; n = 1; 2; :::. Also hm(�) = 0 . Thisfollows from the fat that h is aÆne onM(�), the funtion h is bounded by the topologialentropy htop(�) = log 2 and m = n�1Xj=0 tjmj + Rn 1Xj=n tjRnmj :Thus h�n(�)� hm(�) = Rnh�max(�) = Rn log 2and for an arbitrary � 2 C(�2)(�n �m)� = (Rn�max � 1Xj=n tjmj)� � Rn"where " ! 0 as n ! 1 beause mj ! �max. The inequality h�n(�) � hm(�) � Rn log 2and the latter inequality prove that � is not tangent to h at m. Indeed h�n(�)� hm(�) >(�n �m)� for n large, ontrary to (2.5.5) with " = 0.By Remark after Theorem 2.5.10 we know that m is not tangent to any � for thepressure funtion P. In fat it is easy to see it diretly: For an arbitrary � 2 C(�2)we have �max� < P(�) beause h�max(�) > 0, so mn� < P (�) for all n large enough asmn ! �max. Also mn� � P (�) for all n's. So for the average of mn's namely m we havem� < P(�). So � is not an equilibrium state. |The measure m in this example is very non-ergodi, this is neessary as will follow fromExerise 5.EXERCISESExerise 1. Let T : X ! X and S : Y ! Y be two ontinuous maps of ompatmetri spaes respetively. Show that htop(T � S) = htop(T ) + htop(S).Exerise 2. Prove that T : X ! X is an isometry of a ompat metri spae X, thenhtop(T ) = 0Exerise 3. Show that if T : X ! X is a loal homeomorphism of a ompat metrispae, then the number d = #T�1(x) is �nite and independent of x 2 X.31



Exerise 4. With the assumtions and notation of Exerise 3, demonstrate that htop(T ) �log dExerise 5. Prove that if f :M !M is a C1 endomorphism of a ompat di�erentiablemanifold M , then htop(T ) � log deg(f). (Hint: see [MP℄).Exerise 6. Let S1 = fz 2 CI : jzj = 1g be the unit irle and let fn : S1 ! S1 be themap de�ned by the formula fn(z) = zn. Show that htop(fn) = logn.Exerise 7. Let �A : �A ! �A be the shift map generated by the inidene matrix A.Prove that htop(�A) is equal to the logarithm of the spetral radius of A.Exerise 8. Show that for every ontinuous potential �, P(�) � htop(T ) + sup(�).Exerise 9. Provide an example of a transitive di�eomorphism without measures ofmaximal entropy.Exerise 10 Provide an example of a transitive di�eomorphism with at least measures ofmaximal entropy.Exerise 11. Find a sequne of ontinuous maps Tn : Xn ! Xn suh that htop(Tn+1) >htop(Tn) and limn!1 htop(Tn) <1.Exerise 12. Prove that for an arbitrary onvex ontinuous funtion P : V ! IRon a real Banah spae V the set of tangent funtionals: Sx2V V �x;P is dense in the normtopology infF 2 V � : there exists C 2 IR suh that for every x 2 V; F (x) � P (x) + Cg(suh funtionals are alled P -bounded)Remark. The onlusion is that for P the pressure funtion on C(X) tangent measures aredense in M(X;T ) , see Theorem 2.4.6. Hint: This follows from Bishop { Phelps Theorem,see [BP℄ or Israel's book [I, pp.112-115℄, whih an be stated as follows: For every P -bounded F0 x0 2 V and " > 0 there exists x 2 V and F 2 V � tangent to P at X suhthat kF � F0k � " and kx� x0k � 1"�P (x0)� F0(x0) + s(x0)where s(F0) := supx02V F0x0 � P (x0) (the LF-transform of P . The idea of the proof ofthis theorem is as follows: If we replae P by Q(x0 := P (x)� F0(x) + s(x0) the theoremredues to the ase F0 � 0; s(F0) = 0. For eah x 2 V onsider the oneC(x) = f(x0; y) : y �Q(x) < �"kx0 � xkg:There is x 2 V suh that C(x)\graphQ = fxg Now F an be de�ned as a funtional whihgraph translated by a onstant separates C(x) from fy � Q(x).Exerise 13. Prove that in the situation from Exerise 1 for every x 2 V V �x;P is onvexand weak�-ompat.Exerise 14. Let E� denote the set of all equilibrium states for � 2 C(X).(i) Prove that E� is onvex.(ii) Find an example that E� is not weak�-ompat.32



(iii) Prove that extremal points of E� are extremal points of M(X;T ).(iv) Prove that almost all measures in the ergodi deomposition of an arbitrary � 2E� belong also to E�. (One says that every equilibrium state has a unique deompositioninto pure, i.e. ergodi, equilibrium states .)Hints: In (ii) onsider a sequene of Smale horseshoes of topologial entropies log 2 on-verging to a point �xed for T . To prove (iii) and (iv) use the fat that entropy is an aÆnefuntion of measure.Exerise 15. Find an example showing that the point (iii) of Exerise 3 is false if weonsider C(X)��;P rather than E�.Hint: An idea is to have two �xed points p; q and two trajetories (xn); (yn) suh thatxn ! p; yn ! q for n ! 1 and xn ! q; yn ! p for n ! �1. Now take a sequeneof periodi orbits k approahing fp; qg [ fxng [ fyng with periods tending to 1. Taketheir Cartesian produts with orresponding invariant subsets Ak's of small horseshoesof topologial entropies less than log 2 but tending to log 2, diameters of the horseshoesshrinking to 0 as k ! 1. Then for � � 0 C(X)��;P onsists only of measure 12 (Æp + Æq).One annot repeat the proof in Exerise 3(iii) with the funtion h� instead of the entropyfuntion h�, beause h� is no more aÆne !This is Peter Walters' example, for details see the preprint [W2℄.Exerise 16. Suppose that the entropy funtion h� is upper semiontinuous (then foreah � 2 C(x) C(X)��;P = E�, see Corollary 2.5.11). Prove that(i) every � 2 M(T ) whih is a �nite ombination of ergodi masures � = P tjmj ,mj 2 M(T ), is tangent to P more preisely there exists � 2 C(X) suh that �;mj 2C(X)��;P and moreover they are equilibrium states for �.(ii) if � = RMe(T )md�(m) where Me(X;T ) onsists of ergodi measures in M(X;T )and � is a probability non-atomi measure onMe(X;T ), then there exists � 2 C(X) whihhas unountably many ergodi equilibria in the support of �.(iii) the set of elements of C(X) with unountably many ergodi equilibria is dense inC(X).Hint: By Bishop { Phelps Theorem (Exerise 12) there exists � 2 E� arbitrarily lose to�. Then in its ergodi deomposition there are all the measures �j beause all ergodimeasures are far apart from eah other (in the norm in C(X)�). These measures byExerise 14 belong to the same E� what proves (i). For more details and proofs of (ii) and(iii) see [Israel, Theorem V.2.2 ℄ or [Ruelle, 1978, 3.17, 6.15℄.Remark. In statistial physis the ourene of more then one equilibrium for � 2 C(X)is alled "phase transition". (iii) says that the set of funtions with "very rih" phasetransition is dense. For the further disussion see also [Israel, V.2℄.Exerise 17. Prove the following. Let P : V ! IR be a ontinuous onvex funtion ona real Banah spae V with norm k � kV . Suppose P is di�erentiable at x 2 V in everydiretion. Let W � V be an arbitrary linear subspae with norm k � kW suh that theembedding W � V is ontinuous and the unit ball in (W; k � kW ) is ompat in (V; k � kV ).Then P jW is di�erentiable in the sense that there exists a funtional F 2 V � suh that for33



y 2W it holds jP (x+ y)� P (x)� F (y)j = o(kykW ):Remark. In Chapter 3 we shall disuss W being the spae of H�older ontinuous funtionswith an arbitrary exponent � < 1 and the entropy funtion will be upper semiontinuous.So the onlusion will be that uniqueness of the equilibrium state at an arbitrary � 2 C(X)is equivalent to the di�erentiability in the diretion of this spaee of H�o .lder funtions.Exerise 18. (Walters) Prove that the pressure funtion P is Frehet di�erentiable at� 2 C(X) if and only if P aÆne in a neighbourhood of �. Prove also the onlusion: Pis Frehet di�erentiable at every � 2 C(X) if and only if T is uniquely ergodi, namely ifM(X;T ) onsists of one element.Exerise 19. Prove S. Mazur's Theorem: If P : V ! IR is a ontinuous onvex funtionon a real separable Banah spae V then the set of points at whih there exists a uniquefuntional tangent to P is dense GÆ.Remark. In the ase of the pressure funtion on C(X) this says that for a dense GÆ set offuntions there exists at most one equilibrium state. Mazur's Theorem ontrasts with thetheorem from Exerise 16 (iii).BIBLIOGRPHICAL NOTESThe onept of topologial pressure in dynamial ontext was introdued by D. Ruelle in[Ruelle, 1973℄ and sine then have been studied in many papers and books. Let us mentiononly [Bowen, 1975℄, [Wallters, 1976℄, [Wallters, 1982℄ and [Ruelle, 1978℄. The topologialentropy was introdued earlier in [AKM, 1965℄. The variational priniple (Theorem 2.3.1)has been proved for some maps in [Ruelle, 1973℄. The �rst proofs of this priniple in its fullgenerality an be found in [Walters, 1976℄ and [Bowen, 1975℄. The simplest proof presentedin this hapter is taken from [Mi, 1976℄. In the ase of topologial entropy (potential � = 0)the orresponding results have been obtained earlier: Goodwyn in [Goodwyn, 1969℄ provedthe �rst part of the variational priniple, Dinaburg in [Dinaburg, 1971℄ proved its fullversion assuming that the spae X has �nite overing topologial dimension and �nallyGoodman proved in [Goodman, 1971℄ the variational priniple for topologial entropywithout any additional assumptions. The onept of equilibrium states and expansivemaps in mathematial setting was introdued in [Ruelle, 1973℄ where the �rst existeneand uniqueness type results have appeared. Sine then these onepts have been exploredby many authors, in partiular in [Bowen, 1975℄ and [Ruelle, 1978℄. The material ofSetion 2.5 is mostly taken from [Ruelle, 1978℄, [Israel, 1979℄ and [Ellis, 1985℄.ReferenesN.Bourbaki: Espaes Vetoriels Topologiques. Masson,Paris, 1981.M.Denker, Ch.Grillenberger, K.Sigmund: Ergodi Theory on Compat Spaes. Le-ture Notes in Mathematis, 527, Springer-Verlag, Berlin 1976.
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CHAPTER 3DISTANCE EXPANDING MAPSversion Feb.1, 2000We devote this Chapter to a loser topologial study of distane expanding maps. Oftenhowever weaker assumptions will be suÆient. We always assume the maps are ontinuouson a ompat metri spae X and usually assume the maps are open, whih means thatopen sets have open images. This is equivalent to saying that if f(x) = y and yn ! y thenthere exist xn ! x suh that f(xn) = yn for n large enough.In theorems with assertions of topologial harater the assumption that a map isonly expansive gives in fat always the same as if we assumed that the map is expanding,in view of Se.6. We shall prove in Se.6 that for every expansive map there always existsa metri ompatible with the topology on X given by an original metri, so that the mapis distane expanding in it.Reall that for (X; �) a ompat metri spae, a ontinuous mapping T : X ! X issaid to be distane expanding (with respet to the metri �) if there exist onstants � > 1and � > 0 suh that(3.1.1) �(x; y) � 2� =) �(Tn(x); Tn(y)) � ��(x; y)We say that T is distane expanding at a set Y � X if the above holds for everyx; y 2 B(z; �) for z 2 Y .In future we shall usually be able to assume that n = 1 i.e. that(3.1.2) �(x; y) � 2� =) �(T (x); T (y)) � ��(x; y)One an ahieve this in two ways:(1) If T is Lipshitz ontinuous (say with onstant L > 1) replae the metri �(x; y)by Pn�1j=0 �(T j(x); T j(y)). Of ourse then � and � hange. As an exerise you an hekthat the number 1 + (�� 1)� L�1Ln�1� an play the role of � in (3.1.2).(2) Consider Tn instead of T .Sometimes we shall write for short expanding, instead of distane expanding.x3.1 DISTANCE EXPANDING OPEN MAPS, BASIC PROPERTIESLet us start with a lemma where we assume T : X ! X is a ontinuous open map ofa ompat metri spae X. We do not need to assume in this lemma that T is distaneexpanding.Lemma 3.1.2. If T : X ! X is a ontinuous open map, then for every � > 0 there exists� > 0 suh that T (B(x; �)) � B(T (x); �) for every x 2 X.1



Proof. For every x 2 X let�(x) = supfr > 0 : T (B(x; �)) � B(T (x); r)g:Sine T is open, �(x) > 0. Sine T (B(x; �)) � B(T (x); �(x)), it suÆes to show that� = inff�(x) : x 2 Xg > 0. Suppose onversely that � = 0. Then there exists a sequeneof points xn 2 X suh that(3.1.3) �(xn)! 0 as n!1and, as X is ompat, we an assume that xn ! y for some y 2 X. Hene B(xn; �) �B(y; 12�) for all n large enough. ThereforeT (B(xn; �)) � T �B(y; 12�)� � B(T (y); ") � B�T (xn); 12"�for some " > 0 and again for every n large enough. The existene of " suh that the seondinlusion holds follows from the openness of T . Consequently �(xn) � 12" for these n,whih ontradits (3.1.3). |If T : X ! X is an open, expanding map, then by (3.1.1), for all x 2 X, the restritionT jB(x;�) is injetive and therefore it has an inverse map. The same holds for expanding atY for all x 2 Y . In view of Lemma 3.1.2 we an introdue the following de�nition.Notation 3.1.3. If T : X ! X is expanding then for all x 2 X the inverse of the mapT jB(x;�) restrited to the ball B(T (x); �) will be denoted by T�1x .Observe that for every y 2 X(3.1.4) T�1(B(y; �)) = [x2T�1(y)T�1x (B(y; �))Indeed, suppose that y0 = T (x0) 2 B(y; �). Then y 2 B(y0; �). Let x = T�1x0 (y). As T�1xand T�1x0 oinide on y, they oinide on y0 beause they map y0 into B(x; �) and T isinjetive on B(x; �). Thus x0 = T�1x (y0).A map T with the property that there exists � suh that for eah B(x; �) (3.1.4) holdswith the sets in the union disjoint from eah other and T restrited to eah of them beinga homeomorphism, is alled a overing map. So we proved that a ontinuous open loallyinjetive map of a ompat metri spae is a overing map. This is well known but wegave the proof for the ompleteness of the exposition.Immediately from De�nition 3.1.3 we have(3.1.5) T�1x (B(T (x); �)) � B(x; �)2



>From now on throughout this setion we assume also the expanding property, i.e. (3.1.2).We then get the following.Lemma 3.1.4. If x 2 X and y; z 2 B(T (x); �) then�(T�1x (y); T�1x (z)) � ��1�(y; z)In partiular T�1x (B(T (x); �)) � B(x; ��1�) � B(x; �).De�nition 3.1.5. For every x 2 X, every n � 1 and every j = 0; 1; : : : ; n� 1 write xj =T j(x). In view of Lemma 3.1.4 the omposition T�1x0 ÆT�1x1 Æ : : :ÆT�1xn�1 : B(Tn(x); �)! Xis well-de�ned and will be denoted by T�nx .Below we ollet the basi elementary properties of maps T�nx following immediately fromthe above. For every y 2 X(3.1.6) T�n(B(y; �)) = [x2T�n(y)T�nx (B(y; �));(3.1.7) �(T�nx (y); T�nx (z)) � ��n�(y; z) for all y; z 2 B(Tn(x); �);(3.1.8) T�nx (B(Tn(x); r)) � B(x;minf�; ��nrg) for every r � �:Remark. All these properties hold, and notation makes sense, also for open mapsT : X ! X expanding at Y � X, provided x; T (x); :::; Tn(x) 2 Y .

3



x3.2 SHADOWING OF PSEUDOORBITSWe keep the notation of Setion 3.1. We onsider an open distane expanding map T :X ! X with the onstants �, �, �.Let n be a non-negative integer or 1. Given � � 0 a sequene (xi : i = 0; : : : ; n) issaid to be an �-pseudo-orbit for T : X ! X if and only if for every i = 0; : : : ; n� 1(3.2.1) �(T (xi); xi+1) � �Of ourse every (real) orbit (x; T (x); : : : ; Tn(x)), x 2 X, is an �-pseudo-orbit for every� � 0. We shall prove a kind of a onverse fat, that in ase of open, distane expandingmaps, eah \suÆiently good" pseudo-orbit an be approximated (shadowed) by a realorbit. To make this preise we proeed as follows. Let � > 0. We say that an orbit ofx 2 X, �-shadows the pseudo-orbit (xi : i = 0; :::; n) if and only if for every i = 0; : : : ; n(3.2.2) �(T i(x); xi) � �De�nition 3.2.0. We say that a ontinuous map T : X ! X has shadowing propertyif for every � > 0 there exists � > 0 suh that for every �nite n every �-pseudo-orbit anbe �-shadowed by an orbit.Note that due to the ompatness of X this property implies the same with n = 1inluded.Below is a simple observation on the uniqueness of the shadowing. Assume only thatT is expansive (f. Setion 2.2.).Proposition 3.2.1. If 2� is less than an expansiveness onstant of T (we do not needto assume here that T is expanding with respet to the metri �) and n = 1 then thereexists at most one point x whose orbit �-shadows the pseudo-orbit (xi)1i=1.Proof. Suppose the forward orbits of x and y shadow (xi). Then for every n � 0 we have�(Tn(x); Tn(y)) � 2�. Then by the de�nition of the expansiveness x = y. |We shall now prove some less trivial results, onerning the existene of �-shadowing orbits.Lemma 3.2.2. Let T : X ! X be an open distane expanding map. Let 0 < � < � ,0 < � � minf(� � 1)�; �g. If (xi : i = 0; 1; : : : ; n), 0 � n � 1, is an �-pseudo-orbit andx0i = T�1xi (xi+1), then(a) For all i = 0; 1; 2; : : : ; n� 1 T�1x0i (B(xi+1; �)) � B(xi; �)and onsequently for all i = 0; 1; : : : ; n the ompositionsTi = T�1x00 Æ T�1x01 Æ : : : Æ T�1x0i�1 : B(xi; �)! X4



are well-de�ned.(b) The sequene of losed sets Ti(B(xi; �)), i = 0; 1; : : : ; n, is dereasing in the sense ofinlusion.() The intersetion n\i=0Ti(B(xi; �)is non-empty and the forward orbits (for times 0; 1; :::; n) of all the points of thisintersetion �-shadow the pseudo-orbit (xi : i = 0; 1; : : : ; n).Proof. In order to prove (a) observe that by (3.1.8) and (3.1.7) we haveT�1x0i (B(T (xi+1); �)) � B(x0i; ��1�) � B(xi; ��1� + ��1�)and ��1� + ��1� � �. The statement (b) follows immediately from (a). The �rst partof () follows immediately from (b) and the ompatness of the spae X. To prove theseond part all the intersetion whih appears in () by A. By the de�nition of A we haveT i(A) � B(xi; �) for all i = 0; 1; : : : ; n. Thus the forward orbit for the times 0; 1; :::; n ofevery point in A, � shadows (xi : i = 0; 1; : : : ; n). The proof is �nished. |As an immediate onsequene of Lemma 3.2.2 we get the following.Corollary 3.2.3. (Shadowing lemma) Every open, distane expanding map satis�es theshadowing property. More preisely, for all � > 0 and � > 0 as in Lemma 3.2.2 every�-pseudo-orbit (xi : i = 0; : : : ; n) an be �-shadowed by an orbit in X.As a onsequene of Corollary 3.2.3 we shall prove the following.Corollary 3.2.4. (Closing lemma) Let T : X ! X be an expansive map, satisfying theshadowing property. Then for every � > 0 there exists � > 0 suh that if x 2 X and�(x; T l(x)) � � for some l � 1, then there exists a periodi point of period l whose orbit�-shadows the pseudo-orbit (x; T (x); : : : ; T l�1(x)). The hoies of � to � are the same asin the de�nition of shadowing, for 2� not exeeding the expansivness onstant.In partiular the above holds for T : X ! X open, expanding.Proof. Sine �(x; T l(x)) � �, the sequene made up as the in�nite onatenation of thesequene (x; T (x); : : : ; T l�1(x)) is an �-pseudo-orbit. Hene, by shadowing with n = 1,there is a point y 2 X whose orbit �-shadows this pseudo-orbit. But note that then theorbit of the point T l(y) also does it and therefore, by Lemma 3.2.1, T l(y) = y. The proofis �nished. |Note that the assumption T is expansive is substantial. The adding mahine map, seeCh.0.3' ???, satis�es the shadowing property, whereas it has no periodi orbits at all. Infat the same proof yields the following periodi shadowing.5



De�nition 3.2.5. We say that a ontinuous map T : X ! X satis�es periodishadowing property if for every � > 0 there exists � > 0 suh that for every �nite n andevery periodi �-pseudo-orbit x0; :::; xn�1, that is a sequene of points x0; :::; xn�1 suhthat �(T (xi); x(i+1)(modn)) � �, there exists a point y 2 X of period n suh that for all0 � i < n �(T i(y); xi) � �.Note that shadowing and periodi shadowing an hold for the maps that are notexpansive. One an just add arti�ially the missing periodi orbits, of periods 2n to theadding mahine spae. This example appears in fat as the nonwandering set for anyFeigenbaum-like map of the interval, see Ch ??? (dawny 4.6)
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x3.3 SPECTRAL DECOMPOSITION. MIXING PROPERTIES.Let us start with general observations onerning iterations of ontinuous mappingsDe�nition 3.3.1 We all a ontinuous mapping T : X ! X for a ompat metri spaeX topologially transitive if for all non-empty open sets U; V � X there exists n � 0 suhthat Tn(U) \ V 6= ;. By the ompatness of X topologial transitivity implies that Tmaps X onto X.Example 3.3.2 Consider a topologial Markov hain �A, or ~�A in a one-sided or two-sided shift spae of d states, see Example 0.3. Observe that the left shift map s on thetopologial Markov hain is topologially transitive i� the matrix A is irreduible that isfor eah i; j there exists an n > 0 suh that the i; j-th entry Ani;j of the n-th ompositionmatrix An is non-zero.One an onsider a direted graph onsisting of d verties suh that there is an edge froma vertex vi to vj i� Ai;j 6= 0; then one an identify elements of the topologial Markovhain with in�nite paths in the graph ( that is sequenes of edges indexed by all integers ornonnegative integers depending as we onsider the two-sided or one-sided ase, suh thateah edge begins at the vertex where the preeding edge ends). Then it is easy to see thatA is irreduible i� for every two verties v1; v2 there exists a �nite path from vi to vj .A notion stronger than the topologial transitivity, whih makes a non-trivial sense onlyfor f non-invertible, is the followingDe�nition 3.3.2 A ontinuous mapping T : X ! X for a ompat metri spae X isalled topologially exat (or loally eventually onto) if for every open set U � X thereexists n > 0 suh that Tn(U) = X.In Example 3.3.2 in the one-sided shift spae ase topologial exatness is equivalent tothe property that there exists n > 0 suh that the matrix An has all entries positive. Suha matrix is alled aperiodi.In the two-sided ase aperiodiity of the matrix is equivalent to topologial mixing ofthe shift map. We say a ontinuous map is topologially mixing if for every non-emptyopen sets U; V � X there exists N > 0 suh that for every n � N we have Tn(U)\V 6= ;.Proposition 3.3.3 The following 3 onditions are equivalent:(1) T : X ! X is topologially transitive.(2) For every non-empty open sets U; V � X and every N � 0 there exists n � N suhthat Tn(U) \ V 6= ;.(3) There exists a T -trajetory (xn; n = 0; 1; :::), suh that every x 2 X is its !-limitpoint, that is for every N � 0 the set fxn : n > Ng is dense in X.Proof. Let us prove �rst the impliation (1))(3). So, suppose T : X ! X is topologially7



transitive. Then for every open non-empty set V � X, the setK(V ) := fx 2 X : there exists n � 0 suh that Tn(x) 2 V g = [n�0T�n(V )is open and dense in X. Let fVkgk�1 be a ountable basis of topology of X. By Baire'sategory theorem, the intersetionK := \k�1 \N�0K(T�N (Vk)is a dense GÆ subset of X. In partiularK is non-empty and by its de�nition the trajetoryfTn(x) : n � Ng is dense in X for every x 2 K. Thus (1) implies (3).Let us now prove that (3))(2). Indeed, if xn is a trajetory satisfying the ondition(3), then for all non-empty open sets U; V � X and N � 0, there exist n � m > 0; n�m �N suh that xm 2 U and xn 2 V . Hene Tn�m(U) \ V 6= ;. Thus (3) implies (2). Sine(2) implies (1) trivially the proof is omplete. |De�nition 3.3.a. A point x 2 X is alled wandering if there exists an open neighhbour-hood V of x suh that V \ Tn(V ) = ; for all n � 1. Otherwise x is alled non-wandering.We denote the set of all non-wandering points for T by 
 or 
(T ).Proposition 3.3.b For T : X ! X satisfying the periodi shadowing property, the set ofperiodi points is dense in the set 
 of non-wandering points.Proof. Take any x 2 
(T ) and given � > 0 its neighborhood V in X of diameter �hosen for � in the de�nition of periodi shadowing. Then by the de�nition of 
(T )there exists y 2 V and n > 0 suh that Tn(y) 2 V . So rho(y; Tn(y)) � diamV hene(y; T (y); :::; Tn(y)) an be �-shadowed by a periodi orbit. We an take � arbitrarily smallhene we obtain the density of periodi points in 
(T ). |Remark 3.3.. It is not true that for every open, distane expanding map T : X ! Xwe have Per = X. Here is an example: Let X = f(1=2)n : n = 0; 1; 2; :::g [ f0g. LetT ((1=2)n) = (1=2)(n�1) for n > 0, T (0) = 0; T (1) = 1. Let the metri be the restritionto X of the standard metri on the real line. This T is distane expanding on X but
(T ) = Per(T ) = f0g [ f1g. See also Exerise 3.3.1.Here is the main theorem of this setion. Its assertion holds under the assumption thatT : X ! X is open, distane expanding and even under weaker assumptions below.Theorem 3.3.4 (on the existene of Spetral Deomposition) Suppose that T :X ! X is an open map whih satis�es also the periodi shadowing property and isexpanding at the set Per(T ), the losure of the set of periodi points.Then Per(T ) is the union of �nitely many disjoint ompat sets 
j ; j = 1; :::; J with(T jPer(T ))�1(
j) = 
j8



and T j
j topologially transitive.Eah 
j is the union of k(j) disjoint ompat sets 
kj whih are ylially permutedby T and suh that T k(j)j
kj is topologially exat.Proof of Theorem 3.3.4 Let us start with de�ning an equivalene relation � on Per(T ).For x; y 2 Per(T ) we write x �! y if for every " > 0 there exist x0 2 X and positiveinteger m suh that �(x; x0) < " and Tm(x0) = Tm(y). We write x � y if x � y and y � x.Of ourse for every x 2 Per(T ), x � x. Suppose that x � y and y � z. Let ky; kz denoteperiods of y; z respetively.Let x0 be lose to x and Tn(x0) = Tn(y) = y; an integer n satis�ying the latterequality exists sine we an take an integer so that the �rst equality holds and then takeany larger integer divisible by ky. Choose n divisible by kykz. Next, sine T is open, fory0 lose enough to y, with Tm(y0) = Tm(z) = z for m divisible by kz, there exists x00 loseto x0 suh that Tm(x00) = y0. Hene Tn+m(x00) = Tm(y0) = y0 = Tn+m(y0), sine both mand n are divisible by kz. Thus x � z. This proof is illustrated at Fig 3.1.a.Fig.3.1.a Fig.3.1.bFig.3.1.b illustrates the transitivity for hyperboli sets Per(T ) (see Exerises or [KH℄???), where x � y if the unstable manifold of x intersets transversally the stable manifoldof y. In our expanding ase the role of transversality is played by the openness of T .Till this point we did not use the expanding assumption.Observe now that for every x; y 2 Per(T ), �(x; y) � � implies x � y. Indeed, wean take x0 = T�nkxkyx (y) for n arbitrarily large. Then x0 is arbitrarily lose to x andTnkxky (x0) = y = Tnkxky (y). Hene the number of equivalene lasses of � , denote themP1; :::; PN , is �nite. Moreover the sets P 1; :::; PN are pairwise disjoint and the distanesbetween them are at least �. We have T (Per(T )) = Per(T ) , and if x � y then T (x) � T (y).The latter follows straight from the de�nition of �. So T permutes the sets Pi. Thispermutation deomposes into yli permutations we were looking for. More preisely:onsider the partition of Per(T ) into the sets of the form1[n=0Tn(P i); i = 1; :::; N:The unions are in fat over �nite families. It does not matter in whih plae the losure isplaed beause X is ompat so for every A � X we have T (A) = T (A). We onsider thispartition as a partition into 
j 's we were looking for. 
kj 's are the summands Tn(P i) inthe unions.Observe now that T is topologially transitive on eah 
j .Indeed, if x; y belong to the same 
j there exist x0 2 B(x; �) and y0 2 B(y; �) suh thatTn(x0) = Tn0(y) and Tm(y0) = Tm0(x) for some natural numbers n;m and n0 � ky;m0 �kx. For an arbitrary � > 0 hoose � > 0 from the de�nition of periodi shadowing and9



onsider x00; y00 suh that �(x00; x) � �; �(y00; y) � � and Tn1(x00) = x0; Tm1(y00) = y0 forsome natural numbers n1;m1, existing by the expanding property at Per(T ). Then thesequene of points T (x00); :::; Tn1+n+ky�n0(x00); T (y00); :::; Tm1+m+kx�m0(y00) is a periodi�-pseudo-orbit, of period n1+n+ky�n0+m1+m+kx�m0, so it an be �-shadowed bya periodi orbit. Thus, there exists z 2 Per(T ) suh that �(z; x) � � and �(TN (z); y) � �for an integer N > 0. Now take arbitrary neighbourhoods U 3 x and V 3 y and take �suh that B(x; �) � U and B(y; �) � V . We �nd a periodi point z as above. Note that,provided � � �; z � x and TN (z) � y . We obtain TN (z) 2 TN (U \ 
j) \ (V \ 
j) sothis set is nonempty. This proves the topologial transitivity.Note that by the way we proved that the orbits x00; :::; Tn1(x00) = x0; :::; Tn(x0) withn1; n arbitrarily large, an be arbitrarily well shadowed by parts of periodi orbits. Thisorresponds to the approximation of transversal yles of heterolini orbits by periodiones, in the hyperboli theory (see also Exerise 3.3.3).This analogy justi�es the name heterolini yle points for the points x0 and y0, orheterolini yle orbits for their orbits disussed above. Thus we provedLemma 3.3.7'. Under the assumptions of Theorem 3.3.4 every heterolini yle pointis a limit of periodi points.Now we an prove another fat interesting in itself:Lemma 3.3.8 T jPer(T ) is an open map.Proof. Fix x; y 2 Per(T ) and �(T (x); y) � " � �=3. Sine T is open, by Lemma 3.1.2,and due to the expanding property at Per(T ) there exists ŷ = T�1x (y) 2 B(x; ��1�=3) Wewant to prove that ŷ 2 Per(T ).There exist z1; z2 2 Per(T ) suh that �(z1; x) � ��1�=3 and �(z2; y) � �=3. Hene�(T (z1); z2) � �, hene T (z1) � z2. Then T�1x (z2) is a heterolini yle point, so byLemma 3.3.7' it is a limit of periodi points. |We go bak to Proof of Theorem 3.3.4. We an prove now the topologial exatnessof T k(j)j
kj . So �x 
kj = Pi with T k(j)(Pi) = Pi. Let fxsg; s = 1; :::S be a �0=2-spanningset in Pi, where �0 is a onstant having the properties of � for the map T jPer, existing bythe openness of T jPer(T ) ( Lemma 3.1.2). Write k(Pi) =QSs=1 kxs . Take an arbitrary openset U � P i. It ontains a periodi point x.Note that for every ball B = B(y; r) in Per(T ) with the origin at y 2 Per(T ) andradius r less than � and ��ky�0, we have T ky (B) � B(y; �kyr). Repeating this step bystep we obtain Tnk(y)(B) � B(y; �0), (see (3.1.8).Let us go bak to U and onsider Bx = B(x; r) � U with r � ��k(Pi)�0. ThenTnk(Pi)(Bx) is an inreasing family of sets for n = 0; 1; 2; :::.By the de�nition of �, the set Sn�0 Tnk(Pi)(Bx) ontains fxs :; s = 1; :::Sg, beausethe points xs are in the relation � with x. This uses the fat proved above, see Lemma3.3.7', that x0 in the de�nition of �, suh that Tm(x0) = Tm(xs), belongs to Per(T ). Itbelongs even to Pi, sine for z 2 Per(T ) lose to x0 we have z � xs, with the use of the same10



x0 as one of a heterolini yle points. Hene, by the observation above Sn�0 Tnk(Pi)(Bx)ontains the ball B(xs; �0) for eah s. So it ontains P i. Sine Tnk(Pi)(Bx) is an inreasingfamily of open sets in Per(T ) that is ompat, just one of these sets overs Per(T ). Thetopologial exatness is proved. |Remark. It is easy to see that if T is a overing map than the assumption of periodishadowing an be skipped. We used it only to approximate heterolini yle points byperiodi ones. See also Exerise 3.3.2.As a orollary we obtain the following two theorems.Theorem 3.3.9. Let T : X ! X be an open distane expanding map, or expanding at theset Per(T ) satisfying the periodi shadowing property. Then, if T is topologially transitive,or is surjetive and its spetral deomposition onsists of just one set 
1 = Sk(1)k=1 
k1 , thefollowing properties hold:1. The set of periodi points is dense in X, whih is thus equal to 
1.2. For every open U � X there exists N = N(U) suh that SNj=0 T j(U) = X.3. (8r > 0)(9N)(8x 2 X)SNj=0 T j(B(x; r)) = X.4. The following spei�ation property holds: For every � > 0 there exists a positiveinteger N suh that for every n and every T -orbit (x0; :::xn) there exists a periodi pointy of period not larger than n+N whose orbit for the times 0; :::; n �-shadows (x0; :::xn).Proof. By the topologial transitivity for all open U there exist n � 1 suh that Tn(U)\U 6= ;, (use the ondition (2) in Proposition 3.3.3 for N = 1). Hene for the set 
 of thenon-wandering points we have 
 = X. This gives the density of Per(T ) by Proposition3.3.b.If we assume only that there is one 
1(= 
 = Per(T )) in the Spetral Deomposition,then for an arbitrary z 2 X we �nd by the surjetivity a bakward orbit z�n of z andnotie that z�n ! 
 and Tn(z) ! 
, that follows easily from the de�nition of 
. So forevery � > 0 there exist w1; w2 2 Per(T ) and natural numbers k; n suh that T k(w2) � w1,�(w1; z�n) � � and �(w2; Tn(z)) � �. This allows to �nd a periodi point in B(z; �),where � > 0 is arbitrarily small and � hosen for � from the periodi shadowing property.We onlude that X = SJj=1
j , eah 
j is T -invariant, losed, and also open sine
j 's are at least �-distant from eah other. So J = 1. Otherwise, by the topologialtransitivity, for j 6= i there existed n suh that Tn(
j) \ 
i 6= ;, what would ontraditthe T -invariane of 
j .Thus X = Sk(1)k=1(
k1) and the assertion 2. follows immediately from the exatness ofT k(1) on eah 
k1 ; k = 1; :::; k(1).The property 3. follows from 2. where given r we hoose N = maxfN(U)g where weonsider a �nite overing of X by sets U of diameter not exeeding r=2. Indeed, then forevery B(x; r) the set U ontaining x is a subset ofB(x; r).Now let us prove the spei�ation property. By the property 3. for every � > 0 thereexists N = N(�) suh that for every v; w 2 X there exists m � N and z 2 B(v; �) suh11



that Tm(z) 2 B(w;�). Consider any T -orbit x0; :::xn. Then onsider an �-pseudo-orbitx0; :::xn�1; z; :::; Tm�1(z) with m � N and z 2 B(xn; �; Tm(z) 2 B(x0; �). By Corollary3.2.4 we an �-shadow it by a periodi orbit of period n+m � n+N . |The same proof yieldsTheorem 3.3.10. Let T satis�es the assumptions of Theorem 3.3.9, and be alsotopologially mixing, i.e. k(1) = 1. Then1. T is topologially exat, i.e. for every open U � X there exists N = N(U) suhthat TN (U) = X.2. (8r > 0)(9N)(8x 2 X) TN (B(x; r)) = X.
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x3.4 H�OLDER CONTINUOUS FUNCTIONSFor distane expanding maps, H�older ontinuous funtions play a speial role. Reall thata funtion � : X ! CI (or IR) is said to be H�older ontinuous with an exponent 0 < � � 1if and only if there exists C > 0 suh thatj�(y)� �(x)j � C�(y; x)�for all x; y 2 X. All H�older ontinuous funtions are ontinuous, if � = 1 they are usuallyalled Lipshitz ontinuous.Let C(X) denote as in the previous hapters the spae of all ontinuous, real or omplex-valued funtions de�ned on a ompat spae X and for  : X ! CI we write k k1 :=supfj (x)j : x 2 Xg for its supremum norm. For any � > 0 let H�(X) denote the spaeof all H�older ontinuous funtions with exponent � > 0. If  2 H�(X) let#�;�( ) = sup� j (y)�  (x)j�(y; x)� : x; y 2 X; x 6= y and �(x; y) � ��and #�( ) = sup� j (y)�  (x)j�(y; x)� : x; y 2 X; x 6= y� :Note that #�( ) � max�2jj jj1�� ; #�;�( )� :The reader will hek easily that H�(X) beomes a Banah spae when equipped withthe norm k kH� = #�( ) + k k1:Thus, to estimate in future jj jjH� it is enough to estimate #�;�( ) and jj jj1:The following result is a straightforward onsequene of Arzela-Asoli theorem.Theorem 3.4.1. Any bounded subset of the Banah spae H�(X) with the norm k�kH� isrelatively ompat as a subset of the Banah spae C(X) with the supremum norm k � k1.Moreover if f n : n = 1; 2; : : :g is a sequene of ontinuous funtions in H�(X) suh thatkxnkH� � C for all n � 1 and some onstant C and if limn!1 k n �  k1 = 0 for some 2 C(X), then  2 H�(X) and k kH� � C.Now let us formulate a simple but very basi lemma in whih you will see a oherene ofthe expanding property of T and the H�older ontinuity property of a funtion.Lemma 3.4.2 (pre-Bounded Distortion Lemma for Iteration). Let T : X ! Xbe a distane expanding map and � : X ! CI be a H�older ontinuous funtion with theexponent �. Then for every positive integer n and x; y 2 X suh that(3.4.1) �(T j(x); T j(y)) < 2� for every j = 0; 1; :::; n� 113



we have(3.4.2) jSn�(x)� Sn�(y)j � �(Tn(x); Tn(y))�� #�(�)1� ����:If T is open we an assume x; y 2 T�nz (B(Tn(z); �) for a point z 2 X, instead of (3.4.1).Then in (3.4.2) we an replae #� by #�;�.The sense of (3.4.2) is that the oeÆient #�(�)1���� does not depend on x; y; n).Proof. By (3.1.2) we have �(T j(x); T j(y)) � ��(n�j)�(Tn(y); Tn(z)) for every 0 � j � n.Hene j�(T j(y))� �(T j(z))j � #�(�)��(n�j)��(Tn(y); Tn(z))�ThusjSn�(y)� Sn�(z)j � #�(�)�(Tn(y); Tn(z))� n�1Xj=0 ��(n�j)�� #�(�)�(Tn(y); Tn(z))� 1Xj=0 ��j� = #�(�)1� ��� �(Tn(y); Tn(z))�The proof is �nished. |For an open distane expanding topologially transitive map we an replae topologialpressure de�ned in Chapter 2 by a orresponding notion related with a "tree" of pre-imagesof an arbitrary point (ompare this with Exerise 4 ??? in Chapter 2).Proposition 3.4.3. If T : X ! X is a topologially transitive distane expanding map,then for every H�older ontinuous potential � : X ! IR and for every x 2 X there existsthe limit Px(T; �) := limn!1 1n log Xx2T�n(x) expSn�(x)and it is equal to the topologial pressure P(T; �). In addition, there exists a onstant Csuh that for every x; y 2 X and every positive integer n(3.4.3) Px2T�n(x) expSn�(x)Py2T�n(y) expSn�(y) < CProof. If �(x; y) < � then (3.4.3) follows immediately from Lemma 3.4.2 with someonstant, say C1. Now observe that by the topologial transitivity of T there exists N(depending on �) suh that for all x; y 2 X there exists 0 � m < N suh that Tm(B(x; �))\B(y; �) 6= ;. Indeed, for example by the ondition 3) in Proposition 3.3.3 we an �nd twobloks of a trajetory of z with dense !-limit set, say T k(z); :::; T k0(z) and T l(z); :::; T l0(z)14



with l > k0, eah �-dense in X. Then we set N = l0�k. We an �nd t between k and k' ands between l and l0 so that T t(z) 2 B(x; �) and T s(z) 2 B(y; �. We have m := s� t � N .Now �x arbitrary x; y 2 X. So, there exists a point y0 2 T�m(B(y; �))\ B(x; �). Wethen haveXx2T�n(x) expSn�(x) � C1 Xy02T�n(y0) expSn�(y0)= C1 exp(�Sm�(Tm(y0))) Xy02T�n(y0) expSn+m�(y0)� C1 exp(�m inf �) Xy02T�(n+m)(Tm(y0)) expSn+m�(y0)� C1 exp(�m inf �) Xy02T�(n+m)(Tm(y0)) expSn�(Tm(y0)) expSm�(y0)� C1 exp(m sup ��m inf �) Xy02T�(n+m)(Tm(y0)) expSn�(Tm(y0))� C1 exp(2N jj�jj1)DN Xy02T�n(Tm(y0)) expSn�(y0)� C21 exp(2N jj�jj) Xy2T�n(y) expSn�(y);where D = supf#(T�1(z)) : z 2 Xg <1. This proves (3.4.3).Observe that eah set T�n(x) is (n; 2�)-separated, whenelim supn!1 1n log Xx2T�n(x) expSn�(x) � P(T; �);by the haraterization of pressure given in Theorem 2.2.10.In order to prove the opposite inequality �x " < 2� and for every n � 1, an (n; ")-separated set Fn. Cover X by �nitely many balls B(z1; "=2); B(z2; "=2); : : : ; B(zk; "=2).Then Fn = Fn \ �Skj=1 T�n�B(zj ; "=2)�� and thereforeXz2Fn exp(Sn�(z)) = kXj=1 XFn\T�n(B(zj ;"=2)) exp(Sn�(z)):Given y 2 X hoose as j(y) an arbitrary j suh that y 2 T�n(B(zj(y); "=2)). Let zj(y) 2T�n(z) be de�ned by y 2 T�nzj(y)(B(zj(y); "=2). We shall show that the funtion y 7! zj(y)is injetive. Indeed, suppose that zj = zj(a) = zj(b) for some a; b 2 Fn \ T�n(B(zj; "=2)).Then �(T l(a); T l(b)) � �(T l(a); T l(zj)) + �(T l(zj); T l(b)) � "2 + "2 = "15



for every 0 � l � n. So, a = b sine Fn is (n; ")-separated.Hene, using (3.4.3), we obtainXz2Fn exp(Sn�(z)) � kXj=1CXzj exp(Sn�(zj)) � kC2 Xx2T�n(x) exp(Sn�(x))Letting n%1 and next "! 0, applying Theorem 2.2.10, we therefore getP(T; �) � lim infn!1 1n log Xx2T�n(x) expSn�(x):Thuslim infn!1 1n log Xx2T�n(x) expSn�(x) � P(T; �) � lim supn!1 1n log Xx2T�n(x) expSn�(x):So liminf=limsup above, the limit exists and is equal to P(T; �). |Remark 3.4.4. It follows from Proposition 3.4.3, the proof of the Variational PriniplePart II (see Setion 2.3) and the expansiveness of T that for every x 2 X every weak limitof the measures 1nPn�1k=0 �n Æ T�k where�n = Px2T�n(x) Æx expSn�(x)Px2T�n(x) expSn�(_x)and Æx denotes the Dira measure onentrated at the point x, is an equilibrium state.In fat our very speial situation allows to say a lot more about the measures involved.Chapter 3 will be devoted to this end.Let us �nish this setion with one more very useful fat (ompare Theorem 1.11.3.)Proposition 3.4.5. Let T : X ! X be an open, distane expanding, topologiallytransitive map. If �;  2 H�(X), then the following onditions are equivalent.(1) If x 2 X is a periodi point of T and if n denotes its period, then Sn�(x)�Sn (x) = 0.(2) There exists a onstant C > 0 suh that for every x 2 X and integer n � 0, we havejSn�(x)� Sn (x)j � C.(3) There exists a funtion u 2 Ha suh that ��  = u Æ T � u.Proof. The impliations (3) =) (2) =) (1) are very easy. The �rst one is obtainedby summing up the equation in (3) along the orbit x; T (x); :::; Tn�1(x) whih gives C =2 sup j� �  j. The seond one holds beause otherwise, if Sn�(x) � Sn (x) = K 6= 0 forx of period n, then we have Sjn�(x) � Sjn (x) = jK whih ontradits (2) for j largeenough. Now let us prove (1) =) (3). Let x 2 X be a point suh that for every N � 0the orbit (xn : n = N;N + 1; :::) is dense in X. Suh x exists by topologial transitivity16



of T , see Proposition 3.3.3. Write � = � �  . De�ne u on the forward orbit of x, the setA = fxn : n = 0; 1; :::g by u(xn) = Sn�(x). If x is periodi then X is just the orbit of x andthe funtion u is well de�ned due to the equality in (1). So, suppose that x is not periodi.Then xn 6= xm for m 6= n hene u is well de�ned on A. We will show that it extends ina H�older ontinuous manner to A = X. Indeed, if we take points xm; xn 2 A suh thatm < n and �(xm; xn) < " for " small enough, then xm; :::; xn�1 an be �-shadowed by aperiodi orbit y; :::; Tn�m�1(y) of period n�m by Corollary 3.2.4, where " is related to �in the same way as � related to � in that Corollary. Then by the Lemma 3.4.2ju(xn)� u(xm)j = jSn�(x)� Sm�(x)j = jSn�m�(xm)j= jSn�m�(xm)� Sn�m�(y)j � #(�)�"�:In partiular we proved that u is uniformly ontinuous on A whih allows to extend uontinuously to A. By taking limits we see that this extension satis�es the same H�olderestimate on A as on A. Also the equality in (3) true on A, extends to A by the de�nitionof u and by the ontinuity of � and u . The proof is �nished. |The equality in (3) is alled ohomology equation, u is a solution of the equation, seeCh.1.11.2. Here the ohomology equation is solvable in the spae K = H�. Note thatproving 3) =) 2) we used only the assumption that u is bounded. So, going through2) =) 1) =) 3) we prove that if the ohomology equation is solvable with u bounded,then automatially u 2 H�. Later on ??? you will see that an assumption that u is �nitemeasurable, for some probability T -invariant measure with support X, would be suÆient,even under assumptions on T weaker than expanding. Often u is fored to be as good as� and  . This type of theorem is alled Liv�si type theorem.
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x3.5 MARKOV PARTITIONS AND SYMBOLIC REPRESENTATIONWe shall prove in this setion that the topologial Markov hains (Ch.0.3) desribequite preisely dynamis of general open expanding maps.This an be done through so alled Markov partitions of X. The sets of a partitionwill play the role of "ylinders" fi0 = Const g in �A.De�nition 3.5.1. A �nite over < = fR1; : : : ; Rng of X is said to be a Markov partitionof the spae X for the mapping T if diam(<) < minf�; �g and the following onditions aresatis�ed.(a) R = IntRi for all i = 1; 2; : : : ; d(b) IntRi \ IntRj = ; for all i 6= j() IntRj \ T (IntRi) 6= ; =) Rj � T (Ri) for all i; j = 1; 2; : : : ; dTheorem 3.5.2. For the open, distane expanding mapping T there exist Markov parti-tions of arbitrarily small diameters.Proof. Fix � < minf�=4; �g and let � be the number assoiated to � as in Lemma 3.2.2.Choose 0 <  � minf�=2; �=2g so small that(3.5.1) �(x; y) �  =) �(T (x); T (y)) � �=2and let E = fz1; : : : ; zrg be a -spanning set of X. De�ne the spae 
 putting
 = fq = (qi) 2 EZZ+ : �(T (qi); qi+1) � � for all i � 0gBy de�nition all elements of the spae 
 are �-pseudo-orbits and therefore in view ofCorollary 3.2.3 and Lemma 3.2.1 for every sequene q 2 
 there exists a unique pointwhose orbit for n = 0; 1; ::: �-shadows q. Denote this point by �(q). In this way we havede�ned a map � : 
! X. We will need some of its properties.Let us show �rst that � is surjetive. Indeed, sine E is a  spanning set,for every x 2 X and every i � 0 there exists qi 2 E suh that�(T i(x); qi) < and therefore, using also (3.5.1),�(T (qi); qi+1) � �(T (qi); T (T i(x))) + �(T i+1(x); qi+1) < �=2 +  � �=2 + �=2 = �for all i � 0. Thus q = (qi : i = 0; 1; : : :) 2 
 and (as  < �) x = �(q). The surjetivity of� is proved.Now we shall show that � is ontinuous. For this aim we will need the followingnotation. If q 2 
 then we put(3.5.2) q(n) = fp 2 
 : pi = qi for every i = 0; 1; : : : ; ng18



To prove ontinuity suppose now that p; q 2 
, p(n) = q(n) with some n � 0 and denotex = �(q), y = �(p). Then for all i = 0; 1; : : : ; n�(T i(x); T i(y)) � �(T i(x); qi) + �(pi; T i(y)) � � + � = 2�As � < �, we therefore obtain by (3.1.2) that �(T i+1(x); T i+1(y)) � ��(T i(x); T i(y)) fori = 0; 1; : : : ; n� 1, (see (3.1.7)), and onsequently �(x; y) � ��n2�. The ontinuity of � isproved.Now for every k = 1; : : : ; r de�ne the setsPk = �(fq 2 
 : q0 = zkg)Sine � is ontinuous, 
 is a ompat spae, and the sets fq 2 
 : q0 = zkg are losed in
, all sets Pk are losed in X.Denote W (k) = fl : �(T (zk); zl) � �gWe have the following basi property satis�ed:(3.5.3) T (Pk) = [l2W (k)PlIndeed, if x 2 Pk then x = �(q) for q 2 
 with q0 = zk. By the de�nition of 
 we haveq1 = zl for some l 2W (k). We obtain T (x) 2 Pl.Conversely, let x 2 Pl for l 2 W (k). It means that x = �(q) for some q 2 
 withq0 = zl. By the de�nition of W (k) the onatenation zkq belongs to 
 and therefore thepoint T (�(zkq)) �-shadows q. Thus T (�(zkq)) = �(q) = x hene x 2 T (Pk).Let now Z = X n 1[n=0T�n� r[k=1 �Pk�and for any x 2 Z denote P (x) = fk 2 f1; : : : ; rg : x 2 Pkg;Q(x) = fl =2 P (x) : Pl \ ( [k2P (x)Pk) 6= ;g;and S(x) = \k2P (x) IntPk n � [k2Q(x)Pk� = \k2P (x) IntPk n � [k=2P (x)Pk)�We shall show that the family fS(x) : x 2 Zg is in fat �nite and moreover, that the familyfS(x) : x 2 Zg is a Markov partition of diameter not exeeding 2�.19



Indeed, sine diam(Pk) � 2� for every k = 1; : : : ; r we have(3.5.4) diam(S(x)) � 2�As the sets S(x) are open, we have(3.5.5) IntS(x) = S(x)for all x 2 Z. This proves the property (a) of the Theorem.We shall now show that for every x 2 Z(3.5.6) T (S(x)) � S(Tx)Note �rst that for K(x) := Sk2P (x) Pk [ Sl2Q(x) Pl we have diamK � 8� and thereforeby the assumption � < �=4, the map T restrited to K is injetive.Consider k 2 P (x). Then there exists l 2 W (k) suh that T (x) 2 Pl f. (3.5.3), andusing the de�nition of Z we get T (x) 2 Int(Pl). Using the assumption that T is open andnext (3.5.3) we obtain T (IntPk) = Int(T (Pk)) � IntPl � S(T (x))and therefore(3.5.7)) T ( \k2P (x) IntPk) � S(T (x))Now onsider k 2 Q(x). We remind (3.5.3) and observe that by the injetivity of T jKthe assumption x =2 Pk implies T (x) =2 Pl, l 2W (k).Thus T (Pk) � [l=2P (T (x))Plhene T ( [l2Q(x)Pl) \ S(T (x)) = ;Combining this and (3.5.7) givesT � \k2P (x) IntPk n � [k2Q(x)Pk�� � S(T (x))whih exatly means that formula (3.5.6) is satis�ed and therefore(3.5.8) T (S(x)) � S(Tx)We shall now prove the following laim.20



Claim. If x; y 2 Z then either S(x) = S(y) or S(x) \ S(y) = ;.Indeed, if P (x) = P (y) then also Q(x) = Q(y) and onsequently S(x) = S(y). IfP (x) 6= P (y) then there exists k 2 P (x)� P (y), say k 2 P (x) nP (y). Hene S(x) � IntPkand S(y) � X n Pk. Therefore S(x) \ S(y) = ; and the Claim is proved.(One an write the family S(x) as Wk=1;:::;rfIntPk; X nPkg, ompare notation in Ch.1.Then the assertion of the Claim is immediate.)Sine the family fP (x) : x 2 Zg is �nite so is the family fS(x) : x 2 Zg. Note thatS(x)\ S(y) = ; implies IntS(x)\ IntS(y) = ;. This is a general property of pairs of opensets, U \ V = ; implies U \ V = ; implies IntU \ V = ; implies IntU \ V = ; impliesIntU \ IntV = ;.In view of Baire's theorem the set Z is dense in X. Sine Sx2Z S(x) � Z, we thushave Sx2Z S(x) = X. That the family fS(x) : x 2 Zg is a Markov partition for T ofdiameter not exeeding 2� follows now from (3.5.5), (3.5.6), (3.5.4) and from the laim.The proof is �nished. |Eah Markov partition allows to introdue a oding (symboli representation) of T :X ! X as follows.Theorem 3.5.3. Let T : X ! X be an open, distane expanding map. Let fR1; :::; Rdgbe a Markov partition. Let A = (ai;j) be a d � d matrix with ai;j = 0 or 1, ai;j = 1 i�T (IntRi)\ IntRj 6= ;. Then onsider the one-sided topologial Markov hain �A with theleft shift �, see Ch.0.3. De�ne a mapping � : �A ! X by�((i0; i1; :::)) = 1\n=0T�n(Rin):Then � is well de�ned H�older ontinuous mapping onto X and T� = ��. Moreover�j��1(XnS1n=0 T�n(Si �Ri)) is injetive.Proof. For an arbitrary sequene (i0; i1; :::) 2 �A, ai;j = 1 implies T (Rin) � Rin+1 .Sine diamRin < 2�, T is injetive on Rin , hene there exists an inverse branh T�1Rinon Rin+1 The subsript Rin indiates that we take the branh leading to Rin , omparenotation from Ch.3.1. Thus, T�1Rin (Rin+1) � Rin . HeneT�1Ri0T�1Ri1 :::T�1Rin (Rin+1) � T�1Ri0T�1Ri1 :::T�1Rin�1 (Rin):So Tn�0 T�n(Rin) 6= ;, as the intersetion of the above dereasing family of ompat sets.We have used hereT�1Ri0 :::T�1Rin�1 (Rin) = T�1Ri0 :::T�1Rin�2 (T�1(Rin) \ Rin�1)= T�1Ri0 :::T�1Rin�3 (T�2(Rin) \ T�1Rin�1 \Rin�2) = ::: = n\k=0T�k(Rik)21



following from T�1Rik (A) = T�1(A) \Rik for every A � Rik+1 ; k = 0; :::; n� 1.Our in�nite intersetion onsists of only one point, sine diamRi are less than theexpansivness onstant.Let us prove now that � is H�older ontinuous. Indeed, dist((in); (i0n)) � ��N1 impliesin = i0n for all n = 0; :::; N � 1, where we onsider distane in the metri �0 in Ch.0.3,with the fator �0. Then, for x = �((in)); y = �((i0n)) and every n : 0 � n < N wehave Tn(x); Tn(y) 2 Rin , hene dist(Tn(x); Tn(y)) � diamRin � �, hene dist(x; y) ���(N�1)�. Therefore � is H�older with exponent minf1; log�0= log�g.Finally let us deal with the injetivity. If x = �((in)) and Tn(x) 2 IntRin for alln = 0; 1; :::, then Tn(x) =2 Rj for all j 6= in. So, if x 2 Tn T�n(Ri0n), then all i0n = in. |Remark. One would not think that � is always injetive on the whole �A. Considerfor example the mapping of the unit interval T (x) = 2x(mod 1), ompare Ch.0.3. Thendyadi expansion of x is not unique for x 2 S1n=0 T�n(f 12g). Dyadi expansion is theinverse, ��1, of the oding obtained from the Markov partition [0; 1℄ = f[0; 12 ℄; [ 12 ; 1℄g.Remind �nally that � : �A ! �A is an open, distane expanding map. The partitioninto the ylinders Ci := f(in) : i0 = ig for i = 1; :::; d, is a Markov partition into losed-opensets. The orresponding oding � is just the identity.Another fat onerning a similarity between (�A; �) and (X;T ) is the followingTheorem 3.5.4. For every H�older ontinuous funtion � : X ! IR the funtion �Æ�is H�older ontinuous on �A and the pressures oinide, P(T; �) = P(�; � Æ �).Proof. The funtio � Æ� is H�older as a omposition of H�older ontinuous funtions.Consider next an arbitrary x 2 X nS1n=0 T�n(Si �Ri). Then, using Proposition 3.4.3 forT and � we obtainP(T; �) = Px(T; �) = P��1(x)(�; � Æ �) = P(�; � Æ �):The middle equality follows diretly from the de�nitions. |Finally we shall prove that � is injetive in a measure-theoreti sense.Theorem 3.5.5. For every ergodi, invariant under the shift �, probability Borel measure� on �A, positive on open sets, the mapping � yields an isomorphism between � and themeasure � Æ ��1 on the Borel sets in X.Proof. The set � = Sdi=1 �(Ri), and hene ��1(�), have non-empty open omplementsin �A. We have also T (�) � � hene �(��1(�)) � ��1(�). Hene, by the �-invariane of �we get �(��1(�)) = �(�(��1(�))), equal to 0 or 1 by the ergodiity. But the omplementof ��1(�), as a non-empty open set, has positive measure �. Hene �(��1(�)) = 0. Hene�(E) = 0 for E := S1n=0 T�n(��1(�)) and by Theorem 3.5.3 � is injetive on �A nE. Thisproves that � is the required isomorphism. |22



x3.6 EXPANSIVE MAPS ARE EXPANDING IN SOME METRICTheorem 3.1.1 says that distane expanding maps are expansive. In this setion we provethe following muh more diÆult result whih an be onsidered as a sort of the onversestatement and whih provides an additional strong justi�ation to explore expanding maps.Theorem 3.6.1. If a ontinuous map T : X ! X of a ompat metri spae X is(positively) expansive then there exists a metri on X, ompatible with the topology, suhthat the mapping T is distane expanding with respet to this metri.The proof of Theorem 3.6.1 given here relies heavily on the old topologial result of Frink(see [Frn℄, omp.[K, p.185℄) whih we state below without proof.Lemma 3.6.2. (The Metrization Lemma of Frink) Let fUn : n � 0g be a sequene ofopen neighborhoods of the diagonal � � X �X suh that U0 = X �X,(3.6.1) 1[n=1Un = �;and for every n � 1(3.6.2) Un Æ Un Æ Un � Un�1Then there exists a metri �, ompatible with the topology on X, suh that for every n � 1(3.6.3) Un � f(x; y) : �(x; y) < 2�ng � Un�1:We will also need the following almost obvious result.Lemma 3.6.3. If T : X ! X is a ontinuous map of a ompat metri spae X and Tnis distane expanding for some n � 1 then T is distane expanding with respet to somesome metri ompatible with the topology on X.Proof. Let � be a ompatible metri with respet to whih T is distane expanding andlet � > 1 and � > 0 be onstants suh that�(Tn(x); Tn(y)) � ��(x; y)whenever �(x; y) < �. Put � = � 1n and de�ne the new metri �0 setting�0(x; y) = �(x; y) + 1� �(T (x); T (y)) + : : :+ 1�n�1 �(Tn�1(x); Tn�1(y))Then �0 is a metri on X ompatible with the topology and �0(T (x); T (y)) � ��0(x; y)whenever l�0(x; y) < �. | 23



Now we an pass to the proof of Theorem 3.6.1.Proof of Theorem 3.6.1. Let d be a metri on X ompatible with the topology, andlet 3� > 0 be an expansive onstant assoiated to T whih does not exeed the onstant �laimed in Proposition 2.4.9. For any n � 1 and  > 0 letVn() = f(x; y) 2 (X �X) : d(T j(x); T j(y)) <  for every j = 0; : : : ; ng.Then in view of Proposition 2.4.9 there exists M � 1 suh that(3.6.4) VM (3�) � f(x; y) : d(x; y) < �g:De�ne U0 = X � X and Un = VMn(�) for every n � 1. We will hek that the sequenefUn : n � 0g satis�es the assumptions of Lemma 3.6.2. Indeed, (3.6.1) follows immediatelyfrom expasiveness of T and ondition (3.6.2) will be proved by indution. For n = 1 nothinghas to be proved. Suppose that (3.6.2) holds for some n � 1 and let (x; u); (u; v); (v; y) 2Un+1. Then by the triangle inequalityd(T j(y); T j(x)) < 3� for every j = 0; : : : ; (n+ 1)M:Therefore, using (3.6.4), we onlude thatd(T j(y); T j(x)) < � for every j = 0; : : : ;MnEquivalently (x; y) 2 VMn(�) = Un whih �nishes the proof of (3.6.2).So we have shown that the assumptions of Lemma 3.6.2 are satis�ed, and therefore weobtain a ompatible metri � on X satisfying (3.6.3). In view of Lemma 3.6.3 it suÆies toshow that T 3M is expanding with respet to the metri �. So suppose that 0 < �(x; y) < 116 .Then by (3.6.1) there exists an n � 0 suh that(3.6.5) (x; y) 2 Un n Un+1:As 0 < �(x; y) < 116 , this and (3.6.3) imply that n � 3. It follows from (3.6.5) andthe de�nitions of Un and VMn(�), that there exists Mn < j � (n + 1)M suh thatd(T j(y); T j(x)) � �. Sine 3 � n we onlude that d(T i(T 3M (x)); T i(T 3M (y))) � � forsome 0 � i � (n� 2)M and therefore (T 3M (x); T 3M(y)) =2 Un�2. Consequently, by (3.6.3)and (3.6.5) we obtain that�(T 3M (x); T 3M(y)) � 2�(n�1) = 2 � 2�n > 2�(x; y):The proof is �nished. |
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Exerises.Exerise 3.2.1. Prove the following Shadowing Theorem generalizing Corollary 3.2.3(Shadowing lemma) and Corollary 3.2.4 (Closing lemma):Let T : X ! X be an open map, expanding at a ompat Y � X. Then, for every� > 0 there exists � > 0 suh that for every map � : Z ! Z for a set Z and a map� : Z ! B(Y; �) satisfying �(T�(z);��(z)) � � for every z 2 Z, there exists a map	 : Z ! X satisfying T� = ��, hene T (Y 0) � Y 0 for Y 0 = 	(Z), and suh that forevery z 2 Z, �(	(z);�(z)) � �. If Z is a metri spae and �;� are ontinuous, then 	 isontinuous. If T (Y ) � Y and the map T jY : Y ! Y be open, then Y 0 � Y .(Hint: see Ch.5.1.)Exerise 3.2.2. Prove the following strutural stability theorem.Let T : X ! X be an open map with a ompat Y � X suh that T (Y ) � Y . Thenfor every � > 1 and � > 0 there exists � > 0 suh that if S : X ! X is distane expandingat Y with the expansion fator � and for all y 2 Y �(S(y); T (y)) � � then there existsa ontinuous mapping h : Y ! X suh that ShjY = hT jY , in partiular S(Y 0) � Y 0 forY 0 = h(Y ), and �(h(z); z) � �.(Hint: apply the previous exerise for Z = Y;� = T jY ;� = id; T = S and Y = Y .Compare also Ch.5.1.)Exerise 3.3.1. Prove that every T : X ! X open, distane expanding, for Xompat onneted, is topologially exat.Exerise 3.3.2. Prove Lemma 3.3.7' and hene Theorem 3.3.4 (Spetral Deom-position) without the assumption of periodi shadowing, assuming that T is a branhedovering of the Riemann sphere.Exerise 3.3.3. Prove the existene of stable and unstable manifolds for hyperbolisets and Smale's Spetral Deomposition Theorem for Axiom A di�eomorphisms.An invariant set � for a di�eomorphism T is alled hyperboli if there exist onstants� > 1 and C > 0 suh that the tangent bundle on X restrited to tangent spaes overpoints in �, T�X deomposes into DT -invariant subbundles T�X = Tu�X � T s�X suhthat jjDTn(v)jj � C�n for all v 2 Tu�X and n � 0 and jjDTn(v)jj � C�n for all v 2 T s�Xand n � 0.Prove that for every x 2 � the sets Wu(x) = fy 2 X : �(Tn(x); Tn(y)) ! 0 asn !�1g, and W s(x) = fy 2 X : �(Tn(x); Tn(y)) ! 0 asn ! 1g are immersed manifolds.(They are alled unstable and stable manifolds.)Assume next that a di�eomorphism T : X ! X satis�es Smale's Axiom A ondition,that is the set of non-wandering points 
 is hyperboli and 
 = Per.Then the relation between periodi points is as follows. x � y if there are points z 2Wu(x)\W s(y) and z0 2Wu(y)\W s(x) whereWu(x)a andW s(y), andWu(y)a andW s(x)respetively, interset transversally, that is the tangent spaes to these manifolds at z and z025



span the whole tangent spaes. Prove that this relation yields Spetral Deomposition, asin Theorem 3.3.4, with topologial transitivity assertion rather than topologial exatnessof ourse.As one of the steps prove a lemma orresponding to Lemma 3.3.7' about approximationof a transversal heterolini yle points by periodi ones. That is assume that x1; x2; :::; xnare hyperboli periodi points (i.e. their orbits are hyperboli sets) for a di�eomorphism,and Wuxi has a point pi of transversal intersetion with W sx(i+1)modn for eah i = 1; :::; n.Then pi 2 Per.(For the theory of hyperboli sets for di�eomorphisms see for example [KH℄.)Exerise 3.4.1. Prove diretly that 1) =) 2) in Proposition 3.4.5, using the spei-�ation property, Theorem 3.2.9.*Exerise 3.5.1. Suppose T : X ! X is a distane expanding map on a losedsurfae. Prove that there exist a Markov partition for an iterate TN ompatible with aell omplex struture. That is elements Ri of the partitions are topologial diss, the1-dimensional "skeleton" Si �Ri is a graph onsisting of a �nite number of ontinuousurves "edges" interseting one another only at end points, alled "verties". Intersetionof eah two Ri is empty or one vertex or one edge, eah vertex is ontained in 2 or 3 edges.(Hint: Start with any ellular partition, with Ri being nie topologial diss andorret it by adding or subtrating omponents of T�N (Ri); T�2N (Ri), et. See [FJ1℄ fordetails. )*Exerise 3.5.2. Prove that if T is an expanding map of the 2-dimensional torusIR2=ZZ2, a fator map of a linear map of IR2 given by an integer matrix with two irrationaleigenvalues of di�erent moduli (for example � 0 11�1 7� but not �2 00 3�), then �Ri annot bedi�erentiable.(Hint: Smooth urves Tn(�Ri) beome more and more dense in IR2=ZZ2 as n ! 1,strething in the diretion of the eigenspae orresponding to the eigenvalue with a largermodulus. So they annot omit IntRi.The same argument, looking bakward, says that the omponents of T�n(IntRi) aredense and very distorted, sine the eigenvalues have di�erent moduli. The urve �Ri mustmanouver between them, so it is "fratal". See [PU℄ for more details.)Historial and Bibliographial Notes.For Shadowing Lemma in the hyperboli setting see [Anosov℄, [Bowen℄ and [Kush-nirenko℄ or [KH℄ (for the variant as in Exerise 3.2.1. For the expanding ase see [Shub℄,where strutural stability was proved for X a di�erentiable manifold, T being C1. D.Sullivan introdued in [Sullivan℄ the notion telesope for the sequene T�1x0i (B(xi+1; �)) �26



B(xi; �) to apture a shadowing orbit, hene to prove stability of expanding repellers, om-pare Ch.5.1. This stability was also proved in [Przytyki, 1977℄. Reently a omprehensivemonography on shadowing by S. Yu. Pilyugin [Pilyugin℄ appeared.The existene of Spetral Deomposition in the sense of Theorem 3.3.4 (see Exerise3.3.3.) was �rst proved by S. Smale [S℄ for di�eomorphisms whih he alled Axiom A, thatis the set of non-wandering points 
 is hyperboli and 
 = Per, see also [KH℄ and furtherhistorial informations therein. In a topologial setting this was onsidered by Bowen[B2℄, alled Axiom A� and for Axiom A endomorphisms, overing the di�eomorphisms andexpanding (smooth) ases, in [Przytyki, 1977℄. For open, distane expanding maps 
 =Per (Proposition 3.3.b.) orresponds to the analogous fat for Anosov di�eomorphisms.
 = X is not known for Anosov di�eomorphisms. It is not true for some distane expandingendomorphisms (Remark 3.3.), but true for X onneted (Exerise 3.3.1), see [Shub℄ inthe smooth ase.The onstrution of Markov partition in Se. 5 is similar to the onstrution for basisets of Axiom A di�eomorphisms in [Bowen, 1975℄. For a general theory of ellular Markovpartitions, inluding Exerise 3.5.1, see [FJ2℄. The fat that Hausdor� dimension of theboundaries of 2-dimensional ells is greater than 1, in partiular their non-di�erentiability,Exerise 3.5.2, follows from [PU℄.Referenes[A℄ D. V. Anosov, On a lass of invariant sets of smooth dynamial systems. Proeed-ings 5th Int. Conf. on Nonlin. Osill. 2. Kiev 1970, 39-45 (in Russian).[Bowen, 1975℄[B2℄ R. Bowen, Markov partitions for Axiom A di�eomorphisms. Amer. J. Math. 92(1970), 725-749.[FJ1℄ F. T. Farrell, L. E. Jones, Markov ell strutures for expanding maps in dimen-sion 2. Trans. Amer. Math. So. 255 (1979), 315-327.[FJ2℄ F. T. Farrell, L. E. Jones, Markov Cell Strutures near a Hyperboli Sets.Memoirs of the AMS 491 (1993).[KH℄ A. Katok, B. Hasselblatt, Introdution to the modern theory of dynamial sys-tems. Cambrideg University Press 1995.[Kushnirenko℄ A. G. Kushnirenko, Problems in dynamial systems theory on mani-folds. IX Mathematial Summer Shool, Kiev 1972 (in Russian).[Pilyugin℄ S.Yu. Pilyugin, Shadowing in Dynamial Systems. L.N.Math. 1706,Springer 1999.[Przytyki, 1977℄ F. Przytyki, On 
-stability and strutural stability of endomor-phisms satisfying Axiom A. Studia Math. 60 (1977), 61-77.[PU℄ F. Przytyki, M. Urba�nski,[Shub℄ M. Shub, Endomorphisms of ompat di�erentiable manifolds. Amer. J. Math.91 (1969), 175-199.[Sullivan℄ D. Sullivan, Seminar on onformal and hyperboli geometry. Preprint IHES,1982. 27



CHAPTER 4. THERMODYNAMICAL FORMALISM(version Nov.16, 2002)In Chapter 2 (Th. 2.4.6) we proved that for every positively expansive map of a ompatspae T : X ! X and an arbitrary ontinuous funtion � : X ! IR there exists an equi-librium state. In Remark 3.4.4 we provided a spei� onstrution for T open distaneexpanding topologially transitive and � H�older. Here we shall onstrut this equilibriummeasure with a greater are and study its miraulous regularity with respet to the "po-tential" funtion �, its "mixing" properties and uniqueness. So, for the whole hapterT : X ! X we �x an open, distane expanding, topologially transitive map of a ompatmetri spae (X; �), with onstants �; �; � introdued in Ch.3.SECTION 4.1. GIBBS MEASURES: INTRODUCTORY REMARKS.A probability measure � on X and Borel �-algebra of sets is said to be a Gibbs state(measure) for the potential � if there exist P 2 IR and C � 1 suh that for all x 2 X andall n � 1(4.1.1) C�1 � ��T�nx (B(Tn(x); �))�exp(Sn�(x)� Pn) � CIf additionally � is T -invariant, we all � invariant Gibbs state (or measure).We denote the set of all Gibbs states of � by G�. It is obvious that if � is a Gibbsstate of � and � is equivalent to � with Radon-Nikodym derivatives uniformly boundedfrom above and below, then � is also a Gibbs state. The following proposition shows thatthe onverse is also true and it identi�es the onstant P appearing in the de�nition ofGibbs states as the topologial pressure of �.Proposition 4.1.1. If � and � are Gibbs states assoiated to the map T and a H�olderontinuous funtion � and the orresponding onstants are denoted respetively by P;Cand Q;D then P = Q = P(T; �) and the measures � and � are equivalent with mutualRadon-Nikodym derivatives uniformly bounded.Proof. Sine X is a ompat spae, there exist �nitely many points x1; : : : ; xl 2 X suhthat B(x1; �) [ : : : [ B(xl; �) = X. We laim that for every ompat set A � X, everyÆ > 0 and for all n � 1 large enough(4.1.2) �(A) � CDl exp((Q� P )n)(�(A) + Æ)By the ompatness of A and by the regularity of the measure � there exists " > 0suh that �(B(A; ")) � �(A) + Æ. Fix an integer n � 1 so large that ���n < "2 and forevery 1 � i � l let X(i) = fx 2 T�n(xi) : A \ T�nx (B(xi; �)) 6= ;g:1



Then A � l[i=1 [x2X(i)T�nx (B(xi; �)) � B(A; ")and sine for any �xed 1 � i � l the sets T�nx (B(xi; �)) for x 2 T�n(xi) are mutuallydisjoint, it follows from (4.1.1) that�(A) � �� l[i=1 [x2X(i) T�nx (B(xi; �))� � lXi=1 Xx2X(i) ��T�nx (B(xi; �))�� C lXi=1 Xx2X(i) exp(Sn�(x)� Pn) = C exp((Q� P )n) lXi=1 Xx2X(i) exp(Sn�(x)�Qn)� CD exp((Q� P )n) lXi=1 Xx2X(i) ��T�nx (B(xi; �))� � CD exp((Q� P )n)l�(B(A; "))� CDl exp((Q� P )n)(�(A) + Æ)Exhanging the roles of � and � we also obtain(4.1.3) �(A) � CDl exp((P �Q)n)(�(A) + Æ)for all n � 1 large enough. So, if P 6= Q, say P < Q, then it follows from (4.1.3) appliedto the ompat set X that �(X) = 0. Hene P = Q, and as by regularity of � and �,(4.1.2) and (4.1.3) ontinue to be true for all Borel subsets of X, we onlude that � and� are equivalent with the Radon-Nikodym derivative d�=d� bounded from above by CDland from below by (CDl)�1 (letting Æ ! 0).It is left to show that P = P(T; �). Looking at the expression after the third inequalitysign in our estimates of �(A) with A = X we get0 = log�(X) � logC + log� lXi=1 Xx2X(i) exp(Sn�(x))�� Pn:Sine for every i, X(i) is an (�; n)-separated set, taking into aount division by n in thede�nition of pressure, we an replae here Pi by a largest summand for eah n. We getP � P (T; �).On the other hand for an arbitrary x 2 XXy2T�n(x) exp(Sn�(x)� Pn) � C Xy2T�n(x)��T�ny (B(x; �))� � C�(X) = Cgives P(T; �) = Px(T; �) � P . The proof is �nished. |2



Remark 4.1.2 To prove Proposition 4.1.1 exept the part identifying P as P(T; �) weused only the inequalitiesC�1 � ��T�nx (B(Tn(x); �)�expPn��T�nx (B(Tn(x); �)� expQn � C:We used the funtion � in (4.1.1) and its H�older ontinuity only to prove that P = Q =P (T; �). H�older ontinuity allows us also to replae x in Sn�(x) by an arbitrary pointontained in T�nx (B(Tn(x); �)).Remark 4.1.3. For R = fR1; :::; Rdg, a Markov partition of diameter smaller than �,(4.1.1) produes a onstant C depending on R (see Exerise 1) suh that(4.1.4) C�1 � ��Rj0;:::;jn�1)exp(Sn�(x)� Pn) � Cfor every admissible sequene j0; j1; : : : jn�1 and every x 2 Rj0;:::;jn�1. In partiular (4.1.4)holds for the shift map of a one-sided topologial Markov hain.The following ompletes Proposition 4.1.1.Proposition 4.1.4. If � and  are two arbitrary H�older ontinuous funtions on X, thenthe following onditions are equivalent:(1) �� is ohomologous to a onstant in the spae of bounded funtions (see Def.1.11.2).(2) G� = G .(3) G� \G 6= ;.Proof. Of ourse (2) implies (3). That (1) implies (2) is also obvious. If (3) is satis�ed,that is if there exists � 2 G� \G , then it follows from (4.1.1) thatD�1 � exp(Sn(�)(x)� Sn( )(x)� nP(�) + nP( )) � Dfor some onstant D, all x 2 X and n 2 IN . Applying logarithms we see that the ondition(2) in Proposition 3.4.5 is satis�ed with � and  replaed by � � P(�) and  � P( )respetively. Hene, by this Proposition � � P (�) and  � P( ) are ohomologous whih�nishes the proof. |We shall prove later that the lass of Gibbs states assoiated to T and � is not empty (Se.3)and ontains exatly one Gibbs state whih is T -invariant (Corollary 4.2.9). Atually weshall prove a stronger uniqueness theorem. We shall prove that any invariant Gibbs stateis an equilibrium state for T and � and prove (Se.6) uniqueness of the equilibrium statefor open expanding T and H�older ontinuous �.Proposition 4.1.5 A probability T -invariant Gibbs state � is an equilibrium state for Tand �. 3



Proof. Consider an arbitrary �nite partition P into Borel sets of diameter less thanmin(�; �). Then for every x 2 X we have T�nx (B(Tn(x); �)) � Pn(x), where Pn(x) is theelement of the partition Pn = Wnj=0 P that ontains x. Hene ��T�nx (B(Tn(x); �))� ��(Pn(x)). Therefore by the Shannon-MMillan-Breiman Theorem and (4.1.1) one obtainsh�(T ) � h�(T;P) � Z �lim supn!1 1n (nP(T; �))� Sn�(x)�d� = P(T; �)� Z � d�:or in other words, h�(T ) + R � d� � P(T; �) whih just means that � is an equilibriumstate. |
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SECTION 4.2. TRANSFER OPERATOR AND ITS CONJUGATE.MEASURE WITH PRESCRIBED JACOBIAN.Suppose �rst that we are in the situation of Chapter 1., i.e. T is a measurable map.Suppose that m is bakward quasi-invariant with respet to T , i.e.(4.2.1) T�(m) = m Æ T�1 � m:Then by the Radon-NikodymTheorem there exists anm-integrable funtion � suh that forevery measurable set A � X we have m(T�1(A)) = RA�dm. One writes d(mÆT�1)=dm =�. In the situation of this Chapter, where T is a loal homeomorphism (one does not needexpanding yet) if T�1 has d branhes on a ball B(x; �) mapping the ball onto U1; :::; Udrespetively, then � =Pdj=1 �j where �j := d(mÆ (T jUj )�1)=dm. If we onsider measuresabsolutely ontinuous with respet to a bakward quasi-invariant "referene measure" mthen the transformation � 7! T�(�) an be rewritten in the language of densities withrespet to m as(4.2.1a) d�=dm 7! d(T��)=dm = dXj=1�(d�=dm) Æ (T jUj )�1��j :It is omfortable to de�ne 	(z) = d(mÆ(T jUj )�1)dm (T (z)), i.e. 	 = �j Æ T for z 2 Uj . Notiethat 	 is de�ned on a set whose T -image has full measure (a set maybe larger than a setof full measure), see Se.6 for further disussion.The transformation in (4.2.1a) an be onsidered as a linear operator Lm : L1(m)!L1(m), Lm(u)(x) = Xx2T�1(x)u(x)	(x):This makes sense, beause if we hange u on a set A of measure 0, then even ifm(T (A)) > 0,we have �j jT (A)\B(x;�) = 0 m-a.e., hene Lm(u) does not depend on u on T (A).We have the onvention that if u is not de�ned (on a set of measure 0) and 	 = 0, thenu	 = 0.Thus we obtain the following haraterization of probability T -invariant measures abso-lutely ontinuous with respet to m.Proposition 4.2.0. A probability measure � = hm, h � 0, is T -invariant if and only ifLm(h) = h:After this introdution, the appearene of the following linear operator, alled the Perron-Frobenius-Ruelle or Ruelle or Araki or also transfer operator, is not surprising:L�(u)(x) = Xx2T�1(x)u(x) exp(�(x)):If the funtion � is �xed we omit sometimes the subsript � at L. The funtion � is oftenalled a potential funtion. 5



The transfer's onjugate operator will be our tool to �nd a quasi-invariant measure msuh that 	 will be a salar multiple of exp�, hene Lm will be a salar multiple of L�.Then in turn we will look for �xed points of Lm to �nd invariant measures. Restritingour attention to exp�, we restrit onsiderations to 	 stritly positive de�ned everywhere.One sometimes allows � to have the value �1, but we do not onsider this ase in ourbook.Let us be now more preise. Consider L� ating on the Banah spae of ontinuousfuntions L� : C(X) ! C(X). It is a ontinuous linear operator and its norm is equalto supxPx2T�1(x) exp(�(x)) = supL�(11) as this is a positive operator i.e. it maps realnon-negative funtions to real non-negative funtions (see Ch.2.1). Consider the onjugateoperator L�� : C�(X) ! C�(X). Note that as onjugate to a positive operator it is alsopositive, i.e. transforms measures into measures.Lemma 4.2.1. For every � 2 C�(X) and every Borel set A � X on whih T is injetive(4.2.2) L��(�)(A) = ZT (A) exp(� Æ (T jA)�1)d�Proof. It is suÆient to prove (4.2.2) for A � B(x; r) with any x 2 X and r suh that Tis injetive on B(x; 2r) (say r = �). Approximate in pointwise onvergene the indiatorfuntion �A by uniformly bounded ontinuous funtions with support in B = B(x; 2r).We have for any suh funtion fL��(�)(f) = �(L�(f)) = ZT (B)(f exp(�)) Æ (T jB)�1d�:We used here the fat that the only branh of T�1 mapping T (B) to the support of fis that one leading T (B) to B. Passing with f to the limit �A on both sides (Lebesgueonvergene theorem) gives (4.2.2). |Observe that whereas L� transports measure from the past, L�� pulls it bak from thefuture with Jaobian exp�. This is the right operator to use, to look for the missing"referene measure" m.De�nition 4.2.2. Reall from Chapter 1 (Def.1.9.4) that a measurable funtion J : X ![0;1) is alled the Jaobian or thestrong Jaobian of a map T : X ! X with respet toa measure � if for every Borel set A � X on whih T is injetive �(T (A)) = RA Jd�. Inpartiular � is forward quasi-invariantJ is alled the weak Jaobian if J : X ! [0;1) and there exists a Borel set E � X suh that�(E) = 0 and for every Borel set A � X on whih T is injetive, �(T (A nE)) = RA Jd�.Notie that if � is bakward quasi-invariant then the ondition that J is the weakJaobian translates to �(A) = RT (A) 1JÆ(T jA)�1 d�.6



Corollary 4.2.3. If a probability measure � satis�es L��(�) = � (i.e. � is an eigenmeasureof L�� orresponding to a positive eigenvalue ), then  exp(��) is the Jaobian of T withrespet to �.Proof. Substitute � in plae of L�(�) in (4.2.2). It then follows that � is bakward quasi-invariant and  exp(��) is the weak Jaobian of T with respet to �. Sine 1exp(��) = exp�,it is positive everywhere, hene  exp(��) is the strong Jaobian of T . |Theorem 4.2.4. Let T : X ! X be a loal homeomorphism of a ompat metri spae Xand let � : X ! IR be ontinuous. Then there exists a probability measure m = m� anda onstant  > 0, suh that L��(m) = m. The funtion  exp(��) is the strong Jaobianfor T with respet to the measure m.Proof. Consider the map l(�) := L�(�)L�(�)(11) on the onvex set of probability measureson X, i.e. on M(X), endowed with the weak* topology (Ch.2.1). The transformationl is ontinuous in this topology sine �n ! � weak* implies for every u 2 C(X) thatL�(�n)(u) = �n(L(u))! �(L(u)) = L�(�)(u). As M(X) is weak* ompat (see Th.2.1.6)we an use Theorem 2.1.7 (Shauder-Tyhono� �xed point theorem) to �nd m 2 M(X)suh that l(m) = m. Hene L�(m) = m for  = L�(m)(11). Thus T has the Jaobianequal to  exp(��), by Corollary 4.2.3. |Note again that we write exp� in order to guarantee it never vanishes, so that there existsthe Jaobian for T with respet to m. To �nd an eigen-measure m for L� (i.e. with a weakJaobian being a multiple of exp(��) ) we ould perfetly allow exp� = 0.We have the following omplementary fat in ase Jaobian J exists.Proposition 4.2.4a. If T : X ! X is a loal homeomorphism of a ompat metri spaeX and a Jaobian J with respet to a probability measure m exists, then for every Borelset A 1d ZA J dm � m(T (A)) � ZA J dm:where d is the degree of T (d := supx2X ℄T�1(fxg)). In partiular if m(A) = 0, thenm(T (A)) = 0.Proof. Let us partition A into �nitely many Borel sets, say A1; A2; : : : ; An, of diametersso small that T restrited to eah of them is injetive. Then, on one hand,m(T (A)) = m� n[i=1T (Ai)� � nXi=1m(T (Ai)) = nXi=1 ZAi J dm = ZA J dm:and on the other hand, sine the multipliity of the family fT (Ai) : 1 � i � ng does notexeed d,m(T (A)) = m� n[i=1T (Ai)� � 1d nXi=1m(T (Ai)) = 1d nXi=1 ZAi J dm = 1d ZA J dm:7



The proof is �nished. |Let us go bak to T , an open distane expanding topologially transitive map.Proposition 4.2.5. The measure m is positive on non-empty open sets. Moreover forevery r > 0 there exists � = �(r) > 0 suh that for every x 2 X, m(B(x; r)) � a.Proof. For every open U � X there exists n � 0 suh that Snj=0 T j(U) = X (Theorem3.3.9). So, by Proposition 4.2.4a, m(U) = 0 would imply that1 = m(X) �Pnj=0m(T j(U)) = 0, a ontradition.Finally let x1; :::; xm be an r=2-net in X and � := min1�j�mfm(B(xj; r=2))g. Sinefor every x 2 X there exists j suh that �(x; xj) � r=2, hene m(B(x; r)) � B(xj; r=2).Thus it is enough to set �(r) := �. |Proposition 4.2.6. The measure m is a Gibbs state of � and log  = P(T; �).Proof. We have for every x 2 X and every integer n � 0,m(B(x; �)) = ZT�nx (B(Tn(x);�)) n exp(�Sn�) dm:Sine, by Lemma 3.4.2, the ratio of the supremum and in�mum of the integrand of theabove integral is bounded from above by a onstant C > 0 and from below by C�1, weobtain 1 � m(B(x; �)) � C�1n exp(�Sn�(x))m(T�nx (B(Tn(x); �)�)and �(�) � m(B(x; �)) � Cn exp(�Sn�(x))m(T�nx (B(Tn(x); �)�):Hene �(�)C�1 � m(T�nx (B(Tn(x); �)�)exp(Sn�(x)� n log ) � Cand therefore m is a Gibbs state. That log  = P(T; �) follows now from Proposition 4.1.1.|We now also give a simple diret proof of equality log  = P(T; �). First note that by thede�nition of L� and a simple indutive argument, for every integer n � 0(4.2.2a) Ln�(u)(x) = Xx2T�n(x)u(x) exp(Sn�(x)):The estimate (3.4.3) translates to(4.2.3) C�1 � Ln(11)(x)=Ln(11)(y) � C for every x; y 2 X:Now n = nm(11) = (L�)n(m)(11) = m(Ln(11)) and henelog  = limn!1 1n logm(Ln(11)) = P (T; �):8



The latter equality follows from (4.2.3) and Proposition 3.4.3.Note that in the latter equality we used the property that m is a measure (positive).For m a signed eigen-measure and  a omplex eigenvalue for L� we would obtain onlylog jj � P (T; �) (one should onsider a funtion u suh that sup juj = 1 and m(u) = 1rather than the funtion 11) and indeed usually the point spetrum of L� is big(ref ??????).We are in the position to prove already some ergodi properties of Gibbs states:Theorem 4.2.7. If T is topologially exat, then the system (T;m) is exat in the measuretheoreti sense, namely for every A of positive measure m(Tn(A)) ! 1 as n ! 1, see1.10.3.The topologial ounterpart of this Theorem is the fat that topologial mixing impliestopologial exatness, Th.3.3.10.Proof. Let E be an arbitrary Borel set with m(E) > 0. By the regularity of m wean �nd a ompat set A � E suh that m(A) > 0. Fix an arbitrary " > 0. As in theproof of Proposition 4.1.1, we �nd for every n large enough, a overing of A by sets D�of the form T�nx (B(xi; �)); x 2 X(i); i = 1; :::; l suh that m(S� D�) � m(A) + ". Henem(S�(D� nA)) � " . Sine the multipliity of this overing is at most l, we haveX� m(D� nA) � l":Hene P�m(D� nA)P�m(D�) � l"m(A) :Therefore for all n large enough there exists D = D� = T�nx (B), for some B = B(xi; �)),1 � i � l, suh that m(D nA)m(D) � l"m(A) :Hene m(B n Tn(A))m(B) � RDnA n exp(�Sn�)dmRD n exp(�Sn�)dm � Cm(D nA)m(D) � C l"m(A)with C as in Proof of Proposition 4.2.6. By the topologial exatness of T , there existsN � 0 suh that for every j we have TN (B(xj; �)) = X. In partiular TN (B) = X. So,using Proposition 4.2.4a, we getm(X n TN (Tn(A))) � m(TN (B n Tn(A))) � N (inf exp�)�N Cl"m(A) :Letting "! 0 we obtain m(X n TN (Tn(A)))! 0 as n!1. Hene m(TN+n(A))! 1. |9



We have onsidered here a speial Gibbs measure m = m�. Notie however that byProposition 4.1.1 the assertion of Theorem 4.2.7 holds for every Gibbs measure assoiatedto T and �.Corollary 4.2.8. If T is a topologially transitive, open, distane expanding map, thenfor every H�older potential �, eah orresponding Gibbs measure is ergodi.Proof. By Th.3.3.4 and Th.3.3.9 there exists a positive integer N suh that TN istopologially mixing on a TN -invariant losed-open set Y � X, whereSj=0;:::;N�1 T j(Y ) =X. So our TN jY , being also an open expanding map, is exat in the measure-theoreti senseby Theorem 3.7. So if m(E) > 0 then for every j = 0; :::; N � 1 we have m(TNnT j(E))!m(T j(Y )), hene m(Sn�0 Tn(E)) ! 1. For E being T -invariant this yields m(E) = 1.This implies ergodiity. |With the use of Proposition 1.2.4 we get the following fat promised in Setion 4.1.Corollary 4.2.9. If T is a topologially transitive, open, distane expanding map, thenfor every H�older potential �, there is at most one orresponding invariant Gibbs measure.
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SECTION 4.3. ITERATION OF TRANSFER OPERATOR. EXISTENCEOF GIBBS STATES.It is omfortable to onsider the operator L� for � = ��P(T; �). That is L� = e�P(T;�)L�.(Reall that P(T; �) = log .) Then for the referene measure m = m� satisfying L��(m) =eP(�)m we have L��(m) = m i.e.(4.3.1) Z udm = Z L�(u)dm for every u 2 C(X):For �xed � we often denote L� by L0. By (4.2.3) for every x; y 2 X; and non-negativeinteger n(4.3.2) Ln0 (11)(x)=Ln0 (11)(y) � C:Multiplying this inequality by Ln0 (11)(y) and then integrating with respet to the variablex and y we get respetively the �rst and the third of the following inequalities below(4.3.3) C�1 � inf Ln0 (11) � supLn0 (11) � C:By (3.4.2) for every x; y 2 X suh that x 2 B(y; �) we have an inequality more re�nedthan (3.4.3). Namely(4.3.4)Ln�(11)(x)Ln�(11)(y) = Px2T�n(x) expSn�(x)Py2T�n(y) expSn�(y) � supx2T�n(x) expSn�(x)expSn�(yn(x)) � exp(C1�(x; y)�);where C1 = #�(�)1���� and yn(x) := T�nx (y). By this estimate and by (4.3.3) we get for alln � 1 and all x; y 2 X suh that x 2 B(y; �)(4.3.6) ���Ln0 (11)(x)� Ln0 (11)(y)��� = ���Ln0 (11)(x)Ln0 (11)(y) � 1���Ln0 (11)(y) �Cj exp(C1�(x; y)�)� 1j � C2�(x; y)�with C2 depending on C;C1 and �.Proposition 4.3.1. There exists a positive funtion u� 2 H�(X) suh that L0(u�) = u�and R u� dm = 1.Proof. By (4.3.6) and (4.3.3) the funtions Ln0 (11) have uniformly bounded norms inH�older spae H�(X), see Ch.3.4. Hene by Arzela-Asoli theorem there exists a limitu� 2 C(X) for a subsequene of un = 1nPn�1j=0 Lj0(11), n = 1; :::. Of ourse u� 2 H�(X),C�1 � u� � C, and using (4.3.3), a straightforward omputation shows that L0(u�) = u�(ompare 2.1.14). Also R u� dm = limn!1 R un dm = R 11 dm = 1. The proof is �nished.| 11



Combining this proposition, Proposition 4.2.0, Proposition 4.2.6 and Corollary 4.2.9 weget the following.Theorem 4.3.2. For every H�older ontinuous funtion � : X ! IR there exists a uniqueinvariant Gibbs state assoiated to T and �, namely �� = u�m�.In the rest of this Setion we provide a detailed study of iteration of L0 on the real oromplex Banah spaes C(X) and H�.De�nition 4.3.3. We all a ontinuous linear operator Q : B ! B on a Banah spae Balmost periodi if for every b 2 B the sequene Qn(b); n = 0; 1; ::: is relatively ompat, i.e.its losure in B is ompat (in the norm topology).Proposition 4.3.4. The operators Ln0 on C(X) have uniformly bounded norms for alln = 1; 2; :::.Proof. By the de�nition of L and by (4.3.3) for every u 2 C(X):(4.3.8) sup jLn0 (u)j � sup juj supLn0 (11) � C sup juj |Remark that instead of referring to the form of L one an only refer to the fat thatL is a positive operator, hene its norm is attained on 11.Theorem 4.3.5. The operator L0 is almost periodi on C(X). Moreover, all thefuntions Ln0 (u) are equiontinuous and have uniformly bounded absolute values, providedL0's are assoiated to � belonging to a bounded set in H� and u taken from a family ofequiontinuous funtions, of uniformly bounded absolute values.Proof. For every x 2 X and n > 0 denote exp(Sn�(x)) by En(x). Consider arbitrarypoints x 2 X; y 2 B(x; �). Use the notation yn(x) := T�nx (y), the same as in (4.3.4). Wehave for every u 2 C(X)jLn0 (u)(x)� Ln0 (u)(y)j = ��� Xx2T�n(x)u(x)En(x)� u(yn(x))En(yn(x)���� ��� Xx2T�n(x)u(x)(En(x)�En(yn(x)))���+ ��� Xx2T�n(x)En(yn(x))(u(x)� u(yn(x))���(4.3.9) � (sup juj)C2�(x; y)� + C supx2T�n(x) ju(x)� u(yn(x))j12



by (4.3.6) and (4.3.3). Denote a modulus of uniform ontinuity of u by h, i.e. onsideran inreasing funtion h : IR+ ! IR+ suh that lim"&0 h(") = 0 and for every z1; z2 2 Xju(z1)� u(z2)j � h(�(z1; z2)). (4.3.9) gives:(4.3.10) jLn0 (u)(x)� Ln0 (u)(y)j � (sup juj)C2�(x; y)� + Ch(�(x; y)) := g(�(x; y))We onlude that all funtions Ln0 (u) have the same modulus of ontinuity g, dependingon h, sup j�j and jj�jjH� . They are also uniformly bounded by Proposition 4.3.4. Heneby Arzela-Asoli theorem the sequene Ln0 (u) is relatively ompat.If we onsider a family of funtions u rather than one funtion, we set h a modulus ofontinuity of the family. |For u 2 H� we obtain the fundamental estimate (4.3.11):Theorem 4.3.6. There exist onstants C3; C4 > 0 suh that for every u 2 H� all n =1; 2; :::and � > 1 from the expanding property of t(4.3.11) #�(Ln0 (u)) � C3��n�#�(u) + C4kuk1;Proof. Continuing the third line of (4.3.9) we obtainjLn0 (u)(x)� Ln0 (u)(y)j � kuk1C2�(x; y)� + C#�;�(u)��n��(x; y)�We have applied here the inequality �(x; yn(x)) � ��n�(x; y)This proves (4.3.11), provisionally with #�;� rather than #�, with C3 = C from (3.4.3)and (4.3.3) and with C4 = C2 (reall that the latter onstant is of order CC1 where C1appeared in (4.3.4)). Passing to #� hanges C4 to maxfC4; 2C=��g, see (3.3.8) and Ch.3.4.|Corollary 4.3.7. There exist an integer N > 0; � < 1; C5 > 0 suh that for every u 2 H�(4.3.12) kLN0 (u)kH� � �kukH� + C5kuk1Proof. This Corollary immediately follows from (4.3.11) and Proposition 4.3.4. |In fat (4.3.12) together with (4.3.8) imply a similar fat for iterates of LN , whihresembles bak (3.3.11). Namely the following holdsProposition 4.3.8.(4.3.13) 9C6 > 0 8n = 1; 2; ::: kLnN0 (u)kH� � �nk(u)kH� + C6kuk113



Proof. Substitute in (4.3.12) LN0 (u) in plae of u et. n times using kLj0(u)k1 � Ckuk1.You obtain (4.1.13) with C6 = CC5=(1� �). |In Appendix we prove a general theorem by Ionesu-Tulea and Marinesu (abbr.:ITM), whih under assumptions (4.3.8), (4.3.12) gives an information about the spetrumof L0. Ch.3 Se.5 is devoted to this. This ours useful in other than expanding andH�older ases. Here, in the next Setion, assuming topologial mixing of T , we shall proeeddiretly, not referring to ITM Theorem.Analogously to Ln0 onsidered on C(X) the onvergene theorem below is a speialase of a general theory of almost periodi operators, see Se.5.
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SECTION 4. CONVERGENCE OF Ln. MIXING PROPERTIES OFGIBBS MEASURESReall that by Proposition 4.3.1 there exists a positive funtion u� 2 H�(X) suhthat L0(u�) = u�.It is onvienient to replae the operator L0 by L̂(u) = 1u�L0(uu�).If we denote the operator of multipliation by a funtion w by the same symbol w thenwe an write L̂(u) = u�1� ÆL0 Æu�. Sine L̂ and L0 = L� are onjugate by the operator u�,their spetra are the same. In addition, as this operator is positive, non-negative funtionsgo to non-negative funtions. Hene measures are mapped to measures by the onjugateoperator.Proposition 4.4.2. L̂ = L where  = � + logu� � logu� Æ T = � � P(T; �) + logu� �logu� Æ T:Proof. L̂(u)(x) = 1u�(x) PT (x)=x u(x)u�(x) exp�(x) =PT (x)=x u(x) exp(�(x)+ logu�(x)� log u�(x)) |Note that the eigenfuntion u� for L0 has hanged to the eigenfuntion 11 for L̂. Inother words we have the following.Proposition 4.4.3. L̂(11) = 11, i.e. for every x 2 X(4.4.1) Xx2T�1(x) exp (x) = 1 |Note that Jaobian of T with respet to the Gibbs measure � = u�m (see Th. 4.3.2) is(u�ÆT )(exp(��))u�1� = exp(� ). So for  the referene measure (with Jaobian exp(� ))and the invariant Gibbs measure oinide.Note that passing from L�, through L�, to L we have been replaing � by ohomo-logial (up to a onstant) funtions. By Proposition 4.1.3. this does not hange the set ofGibbs states.One an think of the transformation u 7! u=u� as new oordinates on C(X) or H�(X)(real or omplex-valued funtions). L0 hanges in these oordinates to L and the fun-tional m(u) to m(u�u). The latter, denote it by m , is the eigenmeasure for L� with theeigenvalue 1. It is positive beause the operator u� is positive (see the omment above).So exp(� ) is the Jaobian for m by Corollary 4.2.3. Hene by (4.4.1)m is T -invariant.This is our invariant Gibbs measure �.Proposition 4.3.4 applied to L̂ takes the form.15



Proposition 4.4.4. kL̂k1 = 1.Proof. sup jL̂(u)j � sup juj beause L̂ is an operator of "taking an average" of u fromthe past (by Proposition 4.4.3). The equality follows from L̂(11) = 11. |The topologial exatness of T gives a stronger result:Lemma 4.4.5. If T is topologially exat, then given any inreasing funtion g : IR+ !IR+ suh that lim"&0 g(") = 0, (8Æ1 > 0 and K > 0) (9Æ2 = Æ2(g; Æ1; K) > 0 and a positiveinteger n = n(g; Æ1; K) > 0) suh that for all � 2 H� with jj�jjH� � K and u 2 C(X; IR)with modulus of ontinuity g) (i.e. for every z1; z2 2 X ju(z1)� u(z2)j � g(�(z1; z2)), andsuh that R ud� = 0 and sup juj � Æ1, we havesup jL̂n(u)j � sup juj � Æ2:Proof. Fix " > 0 so small that g(") < Æ1=2. Let n be asribed to " aording toProposition 3.3.10, namely (8x)Tn(B(x; ")) = X) . Sine R ud� = 0, there exist y1; y2 2 Xsuh that u(y1) � 0 and u(y2) � 0. For an arbitrary x 2 X hoose x0 2 B(y1; ") \ T�n(x)(it exists by the de�nition of n). We have u(x0) � Æ1=2. SoL̂n(u)(x) = u(x0) expSn (x0) + Xx2T�n(x)nfx0gu(x) expSn (x)� (sup juj � Æ1=2) expSn (x0) + sup juj Xx2T�n(x)nfx0g expSn (x)� sup juj� Xx2T�n(x) expSn (x)�� (Æ1=2) expSn (x0) = sup juj � (Æ1=2) expSn (x0):Similarly for x0 2 B(y2; ") \ T�n(x)L̂n(u)(x) � � sup juj+ (Æ1=2) expSn (x0):Thus we proved our Lemma, with Æ2 := (Æ1=2) infx2X expSn (x).Note that we used here the existene of a uniform bound, sup j j � sup j�j+ 2 sup j-log(u�)j and sup j log(u�)j � logC, where C depends on K, see (4.2.3), (3.4.2), (3.4.3).|We shall prove now a theorem whih ompletes Proposition 4.3.4 and Theorem 4.3.5.Theorem 4.4.6. For every u 2 C(X;CI) and T , topologially exat open expanding map,we have(4.4.2) �nLn�(u)�m�(u)u� ! 0 (overges uniformly) as n!116



In partiular if R ud� = 0 then(4.4.3) L̂n(u)! 0Moreover the onvergenes in (4.4.2) and (4.4.3) are uniform in every set of equion-tinuous funtions u of uniformly bounded absolute values, and � in a bounded set inH�(X).Proof. For real-valued u, with R ud� = 0, the sequene an(u) := sup jL̂n(u)j is dereasingby Proposition 4.4.4. Suppose that limn!1 an = a > 0. By Theorem 4.3.5 all the iteratesL̂n(u) have a ommon modulus of ontinuity g. So applying Lemma 4.4.5 with this g andÆ1 = a we �nd n0; Æ2 suh that sup jL̂n0�L̂n(u)�j � sup jL̂n(u)j � Æ2 for every n. So forn suh that sup jL̂n(u)j < a + Æ2 we obtain sup jL̂n+n0(u)j < a, a ontradition with thede�nition of a.This proves (4.4.3). For an arbitrary u 2 C(X; IR) we obtain from (4.4.3) due toL̂(11) = 11 L̂n(u)� �(u)11 = L̂n(u� �(u)11)! 0:Change now oordinates on C(X) to go bak to L0 and next replae it by �1L�. Oneobtains (4.4.2). Given a omplex-valued u deompose it into sum of real and imaginarypart.If we allow u and � to vary we modify the proof. The point is that by Lemma 4.4.5, forevery Æ1 > 0, for every m � sup jujn(g; Æ1; K)=Æ2(g; Æ1; K), we get in sup juj=Æ2(g; Æ1; K)steps, sup jL̂m(u)j � Æ1, where g is the modulus of ontinuity for the family fL̂n(u)gprovided by Theorem 4.3.5, and K bounds the norm in H� of the funtions �. LettingÆ1 ! 0 proves the Theorem. |Note that (4.4.2) means weak*-onvergene of measureslimn!1 Xx2T�n(x) Æx � exp(Sn�(x))=n ! u�(x)m�for every x 2 X. Using (4.4.2) also for u = 11 we obtain(4.4.3') limn!1 Xx2T�n(x) Æx � exp(Sn�(x))=Ln�(11)(x)! m�
In the sequel one an onsider either C(X; IR) or C(X;CI). Let us deide for C(X;CI).Note that by L��(m�) = m� we have the L-invariant deompositionC(X) = span(u�)� ker(m�):17



For u 2 span(u�) we have L�(u) = u. On ker(m�), by Th.4.4.6., �nLn� ! 0 in strongtopology. Denote (L�)jker(m�) by Lker;�. For Lker;� restrited to H� we an say more onthe above onvergene:Theorem 4.4.7. There exists an integer n > 0 suh thatk�nLnker;�kH� < 1:Proof. Again it is suÆient to onsider real u with �(u) = 0 and the operator L̂. SetÆ = minf1=8C4; 1=4g, with C4 from (4.3.11). By Th.4.3.6. for u suh that kukH� � 1 allfuntions L̂n(u) have the same modulus of ontinuity g(") = C7"� for C7 = C3 + C4 > 0.Hene from Theorem 4.4.6. we onlude that (9n1)(8n � n1)(8u : kukH� � 1)(4.4.4) kL̂n(u)k1 � Æ:Next, for n2 satisfying C3��n2�C7 + C4Æ � 1=4, again by Th.4.3.6. we obtain#�(L̂n2(L̂n1(u)) � 1=4:Hene jjL̂n1+n2(u)jjH� � 1=2: Theorem has been proved with n = n1 + n2. |Note that Theorem 4.4.6. ould be dedued from Theorem 4.4.7 by approximation ofontinuous funtions uniformly by H�older ones, and using Proposition 4.3.4.Corollary 4.4.8. The onvergenes in Theorem 4.4.6 for u 2 H� are exponential. Namelythere exist 0 < � < 1 and C � 0 suh that for every funtion u 2 H�(4.4.4') k�nLn�(u)�m�(u)u�k1 � k�nLn�(u)�m�(u)u�kH� � Cku�m�(u)u�kH��n:In partiular if R ud� = 0 then(4.4.4") kL̂n(u)k1 � kL̂n(u)kH� � CkukH��n:Now we an study "mixing" properties of the system (T; �) for our invariant Gibbsmeasure �. Roughly speaking the speed of mixing is related to the speed of onvergeneof Lnker;� to 0.The �rst dynamial (mixing) onsequene of Theorem 4.4.8 is the following resultknown as the exponential deay of orrelations, see the de�nition in Ch.1.11.Theorem 4.4.10. There exists C � 1 and � < 1 suh that for all f 2 H�; g 2 L1(�)Cn(f; g) � C�nkf �EfkH�kg �Egk1:18



Proof. Write F = f � Ef;G = g �Eg. We obtainCn(f; g) = ��� Z F � (G Æ Tn) d���� = ��� Z L̂n�F � (G Æ Tn)� d����= ��� Z G � L̂n(F ) d���� � kGk1C�nkFkH� :We have used here a very important identity true for arbitrary F;G (EF;EG = 0 did notmatter), that(4.4.5) Ln�F � (G Æ Tn)� = G � Ln(F );whih follows immediately from the de�nition of L with an arbitrary potential �. NamelyL�n�F � (G Æ Tn)�(x) = Xx2T�n(x)G(x)F (x) expSn (x) = G(x)Ln�(F )(x) |Exerise. Prove that for every � square integrable funtions f; g one has R f � (g ÆTn) d� ! Ef � Eg. (Hint: approximate f and g by H�older funtions. Of ourse theinformation on the speed of onvergene would beome lost.)The onvergene in the exerise is one of equivalent de�nitions of the mixing prop-erty, see Ch.1.10. We proved however earlier the stronger property: measure-theoretialexatness, Th. 4.2.7.We an however make a better use of the exponential onvergene in Theorem 4.4.10.Theorem 4.4.11. Let (X;T ) be a topologially mixing topologial one-sided Markovhain with T the shift to the left and d � 2 symbols, see Ch.0. Let F be the �-algebra gen-erated by the partition A into sets with �xed 0-th oordinate, namely by A = fX1; :::; Xdgwhere Xj = f(a0; a1; :::) 2 X : a0 = jg. For every 0 � k � l write F lk for the �-algebragenerated by Alk = fWlj=k T�j(A) i.e. by the sets with �xed k; k + 1; :::; l'th oordinates.Let � : X ! IR be H�older ontinuous.Then there exist 0 < � < 1; C > 0 suh that for every k � 0; f : X ! IR measurablein Fk0 and g being ��-integrable(4.4.6) j Z f � (g Æ Tn) d�� �Ef �Egj � C�n�kkf �Efk1kg �Egk1:Proof. Assume Ef = Eg = 0. By Theorem 4.4.10(4.4.7) �� Z f � (g Æ Tn) d��� = �� Z g � L̂n�k(L̂k(f)) d��� � kgk1C�n�kkL̂k(f)kH� :19



Deompose f into real and imaginary parts and represent eah one by the di�erene ofnowhere negative funtions. This allows in the estimates whih follow to assume thatf � 0.Notie that for every ylinder A 2 A and x 2 A, in the expressionL̂k(f)(x) = XTk(y)=x f(y) expSk (y)there is no dependene of f(y) on x 2 A beause f is onstant on ylinders of Ak0 . SosupA L̂k(f)infA L̂k(f � supB2Ak0 supy;y02B exp�Sk (y)� Sk (y0)� � Ca onstant C resulting from Ch.3.4. SosupA L̂k(f) � C�(A) Z L̂k(f) d� = C�(A)kfk1 � � CinfA2A �(A)�kfk1 = C 0kfk1;where the latter equality de�nes C 0.It is left yet to estimate the #�;� and #� pseudonorms of L̂k(f), f.Ch.3.4. We assumethat � is less than the minimal distane between the ylinders in A. We have similarly to(4.3.6), for x; y belonging to the same ylinder A 2 A,���L̂k(f)(x)� L̂k(f)(y)��� = ���� L̂k(f)(x)L̂k(f)(y) � 1����jL̂k(f)(y)j� (expC1�(x; y)� � 1)kC 0kfk1 � C 00�(x; y)�kfk1:for a onstant C 00.Hene, #�;�(L̂k(f)) � kfk1C 00 and, passing to #� as in Ch.3.4,#�(L̂k(f)) � kfk1maxfC 00; 2C 0���g):Thus, ontinuing (4.4.7), we obtain for a onstant CCn(f; g) � kfk1kgk1C�n�k: |An immediate orollary from Theorem 4.4.11 is that for every B1 2 Fk0 and Borel B2(i.e. B2 2 F10 )(4.4.8) j�(B1 \ T�n(B2))� �(B1)�(B2)j � C�n�k�(B1)�(B2);20



ompare (1.11.9). Therefore, for every non-negative integer t and every A 2 Fk0 for theonditional measures with respet to AXB2At0 j�(T�n(B)jA)� �(B)j � C�n�k:This means that A satis�es the weak Bernoulli property, hene the natural extension( ~X; ~T ; ~�) is measure-theoretially isomorphi to a two-sided Bernoulli shift, see Ch.1.11.Corollary 4.4.12. Every topologially exat, open, distane expanding map T , withinvariant Gibbs measure � = �� for a H�older ontinuous funtion �, has the naturalextension ( ~X; ~T ; ~�) measure-theoretially isomorphi to a two-sided Bernoulli shift.Proof. Let � : �A ! X be the oding map from a one-sided topologial Markov hain,due to a Markov partition, see Ch.3.5. Sine � is H�older, the funtion � Æ � is also H�olderontinuous, hene we an disuss the invariant Gibbs measure ��Æ�. For this measurewe an apply Theorem 4.4.11 and its onsequenes. Reall also that by Theorem 3.5.5 �yields a measure-theoretial isomorphism between ��Æ� and ��Æ� Æ ��1, Therefore to endthe proof it is enough to prove the following.Lemma 4.4.13. The measures �� and ��Æ� Æ ��1 oinide.Proof. The funtion exp(�� Æ � + P � h) for h := logu�Æ� + logu�Æ� Æ �), is the strongJaobian for the shift map � and the measure ��Æ�, where P is the pressure for both(�; � Æ�) and (T; �), see Theorem 3.5.4. Sine � yields a measure-theoretial isomorphismbetween ��Æ� and ��Æ� Æ ��1, the measure ��Æ� Æ ��1 is forward quasi-invariant under Tand has the strong Jaobian exp(��+ P � h Æ ��1). The same up to a bounded funtionfator is the Jaobian of ��. Therefore both measures are equivalent, hene as ergodithey oinide. |
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Chapter 3, Setion 5: More on almost periodi operatorsversion of June 9, 1997In this Setion we show how to dedue Theorem 4.4.6 (on onvergene) and Theo-rem 4.4.7 and Corollary 4.4.8 (exponential onvergene) from general funtional analysistheorems. We do not need this later on in this book, but the theorems are useful in otherimportant situations .....Reall (Def.4.3.3) that Q : F ! F a ontinuous linear operator of a Banah spaeis alled almost periodi if for every b 2 F the sequene Qn(b) is relatively ompat. ByBanah-Steinhaus theorem there is a onstant C � 0 suh that kQnk � C for every n � 0.Theorem 4.5.1. If Q : F ! F is an almost periodi operator on a omplex Banah spaeF , then(4.5.1) F = F0 � Fu;where F0 = fx 2 F : limn!1 An(x) = 0g and Fu is the losure of the subspae of Fgenerated by eigenfuntions of eigenvalues of modulus 1. Adding additional assumptionsone gains additional information on this deomposition.De�nition 4.5.2. Let F = C(X) and suppose Q : F ! F is positive, namely f � 0implies Q(f) � 0. Then Q is alled primitive if for every f 2 C(X); f � 0; f 6� 0 thereexists n � 0 suh that for every x 2 X it holds Qn(f)(x) > 0. If we hange the order ofthe quanti�ators to: ... for every x there exists n ..., then we all Q nondeomposable.Theorem 4.5.3 ForQ : C(X)! C(X) (real or omplex) linear positive primitive operatorof spetral radius equal to 1 we have dim span(C(X)u = 1 in the deomposition (4.5.1),the eigenvalue orresponding to C(X)u is equal to 1 and the eigenfuntion is positive(everywhere > 0). More preisely there exists a probability measure mQ on X and apositive funtion uQ suh that for every u 2 C(X) we have strong onvergeneQn(u)! uQ Z u dm:Proof. This is just a repetition of onsiderations of Setions 2-4. First �nd a prob-ability measure m suh that Q�(m) = m as in Th.4.2.4. (we leave a proof that theeigenvalue is equal to 1, to the reader). Next �nd for Q an eigenfuntion uQ � 0 aslimn!1 1nPn�1j=0 Qj(11). We have uQ = Q(uQ) > 0 beause Q is nondeomposable. Fi-nally for Q̂(u) := Q(uuQ)u�1Q we have Q̂(11) = 11 (a positive operator with this property isalled stohasti) and we repeat Proof of Th. 4.4.6, replaing the property of topologialexatness by primitivity. |Notie that this yields Theorem 4.4.6 beause of22



Proposition 4.5.4. If an open expanding map T is topologially exat then for everyontinuous funtion � the transfer operator Q = L� is primitive.The proof is easy, it is in fat ontained in Proof of Lemma 4.4.5.Assume now only that T is topologially transitive. Let 
k denote the sets from spetraldeomposition X = 
 = Snk=1
k as in Th.3.3.4. Write uQ 2 C(X) for an eigenfuntionof the operator Q as before. Notie now (exerise!) that the spae Fu for the operatorQ = L� is spanned by n eigenfuntions vt = Pnk=1 �
k��tkuQ; t = 1; :::; n, where �means indiator funtions, with � = "2�i=n. Eah vt orresponds to the eigenvalue �t.Thus the set of these eigenvalues is a yli group.It is also an easy exerise to desribe Fu if X = 
 = SJj=1Sk(j)k=1 
kj . The set of eigen-values is the union of J yli groups. It is harder to understand Fu and the orrespondingset of eigenvalues for T open expanding, without assuming 
 = X.Referenes to the above theory are:[LL℄ M. Yu. Lyubih, Yu. I. Lyubih: Perron-Frobenius theory for almost periodioperators and semigroups representations. Teoria Funkii 46 (1986), 54-72.[L℄ M. Yu. Lyubih: Entropy properties of rational endomorphisms of the Riemannsphere. ETDS (1983), 351-385.A general theorem related to Theorem 4.4.7 and Corollary 4.4.8 is the following.Theorem 4.5.5 (Ionesu{Tulea and Marinesu) Let (F; j � j) be a Banah spae equippedwith a norm j � j and let E � F be its linear subspae. Moreover the linear spae E isassumed to be equipped with a norm k � k whih satis�es the following two onditions.(1) Any bounded subset of the Banah spae E with the norm k�k is relatively ompatas a subset of the Banah spae F with the norm j � j.(2) If fxn : n = 1; 2; : : :g is a sequene of points in E suh that kxnk � K1 for alln � 1 and some onstant K1, and if limn!1 jxn � xj = 0 for some x 2 F , then x 2 E andkxk � K1.Let Q : F ! F be a bounded linear operator whih preserves E, whose restritionto E is also bounded with respet to the norm k � k and whih satis�es the following twoonditions.(3) There exists a onstant K suh that jQnj � K for all n = 1; 2; : : : .(4) 9N � 1 9� < 1 9K2 > 0 kQN (x)k � �kxk+K2jxj for all x 2 E.Then(5) There exists at most �nitely many eigenvalues of Q : F ! F of modulus 1, say1; : : : ; p.(6) Let Fi = fx 2 F : Q(x) = ixg, i = 1; : : : ; p. Then Fi � E and dim(Fi) <1.23



(7) The operator Q : F ! F an be represented asQ = pXi=1 iQi + Swhere Qi and S are bounded, Qi(F ) = Fi, supn�1 jSnj <1 andQ2i = Qi; QiQj = 0 (i 6= j); QiS = SQi = 0Moreover(8) S(E) � E and SjE onsidered as a linear operator on (E; k � k), is bounded andthere exist onstants K3 > 0 and 0 < ~� < 1 suh thatkSnjEk � K3~�nfor all n � 1.The proof of this theorem an be found in [...℄ in the ase N = 1 (see assumpion 4).Its validity for any N � 1 is mentiond in Setion 9, p.145 of this paper. In Appendix ...we give a omplete proof.Now, in view of Theorem 3.4.1 and Corollary 4.3.7, Theorem 4.5.5 applies to the operatorQ = L� : C(X) ! C(X) if one substitutes F = C(X), E = H�(X). If T is topo-logially exat and in onequene Q is primitive on C(X), then dim(�Fi) = 1 and theorresponding eigenvalue is equal to 1, as in Theorem 4.5.3.Example of appliation Lasota-Yorke, Ryhlik: funtions of bounded variation.........................
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Se. 4.6. UNIQUENESS OF EQUILIBRIUM STATESWe proved already the existene (Th.4.3.2) and uniqueness (Cor.4.2.9) of invariantGibbs states and proved that invariant Gibbs states are equilibrium states (Prop.4.1.5).Here we shall give 3 di�erent proofs of the uniqueness of equilibrium states.Let � be a T -invariant measure and let a �nite real funtion J� be the orrespondingJaobian in the weak sense, J� is de�ned �-a.e. . By the invariane of � we have �(E) =0) �(T�1(E)) = �(E) = 0, i.e. � is bakward quasi-invariant. At the beginning of Se.2we de�ned in this situation 	 = �x Æ T with �x = d�ÆT�1xd� de�ned for �-a.e. point in thedomain of a branh T�1x . (In Se.2 we used notation �j for �x.) �x is strong Jaobian forT�1x .Notie that for �-a.e. z(4.6.1) (J� Æ T�1x ) � �x(z) = � 1; if �x(z) 6= 0;0; if �x(z) = 0:Indeed, after removal of fz : �x(z) = 0g the measures � and � Æ T�1 are equivalent,hene Jaobians of T and T�1x are mutual inverses. We an �x J� arbitrary, bounded, onT�(fz : �x(z) = 0g).Reall that we have de�ned L� : L1(�)! L1(�), the transfer operator assoiated withthe measure � as follows L�(g)(x) = Xy2T�1(x) g(y)	(y):Remind that if T maps a set A of measure 0 to a set of positive measure, then 	 isspei�ed, equal to 0, on a subset of A that is mapped by T to a set of full measure � inT (A).Then sine � is T -invariant, L�(11) = 11 and for every �-integrable g we haveR L�(g) d� = R g d�.Lemma 4.6.1. Let  : X ! IR be a ontinuous funtion suh that L (11) = 11, i.e. forevery x, Py2T�1(x) exp (y) = 1, and let � be an ergodi equilibrium state for  . ThenJ� is strong Jaobian and J� = exp(� ) �-almost everywhere .Proof. The proof is based on the following omputation using the inequality 1+log(x) � x,with the equality only for x = 1.1 = Z 11 d� � Z L�(J� exp ) d� = Z J� exp d�� Z �1 + log(J� exp �) d� = 1 + Z  d� + Z log J� d� = 1 + Z  d� + h�(T ) � 1:To obtain the �rst inequality, write L�(J� exp )(x) = Py2T�1(x) J�(y)(exp (y))	(y)whih is equal to 1 if (8y 2 T�1(x))	(y) > 0 or < 1 otherwise, by (4.6.1) and byPy2T�1(x) exp (y) = 1. 25



The last inequality follows fromZ  d� + h�(T ) = P ( ) � lim supn!1 1n log Xy2T�n(x) expSn (y) = 0;true, see Th.2.2.10, sine all points in T�n(x) are (n; �)-separated, � de�ned in Ch.3.Therefore all the inequalities in this proof must beome equalities. Therefore theJaobian �x 6= 0 for eah branh T�1x and J� = exp(� ), �- a.e. |Notie that we have not assumed  is H�older above. Now we shall assume H�older.Theorem 4.6.2. There exists exatly one equilibrium state for eah H�older ontinuouspotential �.Proof. Let � be an equilibrium state for �. As in Se.4 set  = ��P (T; �)+ log u� ÆT �logu� and � is also equilibrium state for  . Then by Lemma 4.6.1��T�nz (B(Tn(z); �))� = ZB(Tn(z);�) exp (Sn (T�nz (x))� d�(x) =ZB(Tn(z);�) u�(x)u�(Tn(x)) exp(Sn�� nP (T; �))(T�nz (x)) d�(x):So, by pre-bounded distortion lemma (Lemma 3.4.2),inf ju�jsup ju�jBC�1 � ��T�nz (B(Tn(z); �))�exp(Sn�� nP (T; �))(z) � sup ju�jinf ju�j C;where B = inff�(B(y; �)g. It is positive by Proposition 4.2.5.Therefore � is an invariant Gibbs state for �; unique by Corollary 4.2.9. |Remark 4.6.3. In fat already the knowledge that exp(� ) is weak Jaobian impliesautomatially that it is a strong Jaobian. Indeed by the invariane of � we haveXy2T�1(x)�y(y) = 1 = Xy2T�1(x) exp (y)and eah non-zero summand on the left is equal to a orresponding summand on the right.So there are no summands equal to 0.Uniqueness: Proof II. We shall provide a new proof of Lemma 4.6.1. It is not soelementary as the previous one, but it exhibits a relation with the �nite ase, the prototypelemma in Introdution.For every y 2 X denote A(y) := T�1�T �fyg��. Let f�Ag denote the anonial systemof onditional measures for the partition of X into the sets A = A(y), see Ch.1.6. Sine26



there exists a �nite one-sided generator, see Lemma 2.4.5, with the use of Theorem 1.9.7we obtain0 = P (T;  ) = h�(T ) + Z  d� = H��" j T�1(")�+ Z  d� == Z � Xz2A(y) �A(y)(fzg)�� log ��A(y)(fzg)�+  (z)�� d�(y):The latter expression is always negative exept for the ase �A(y)(z) = exp (z) �-a.e.by the prototype lemma. So for a set Y = T�1�T (Y )� of full measure �, for every y 2 Ywe have(4.6.2) �A(y)(fyg) = exp (y); in partiular �A(y)(fyg) 6= 0:So for every Borel set B � Y suh that T is 1{to{1 on it, sine B intersets eahA(y) � T�1(T (B)) at preisely one point, we obtain��T (B)� = ��T�1�T (B)�� == ZT�1�T (B)� �ZA(y) 11B(z)Æ�A(y)(fzg) d�A(y)(z)� d�(y) == ZT�1�T (B)� 11B(y)=�A(y)(fyg) d�(y) = ZB 1=�A(y)(fyg) d�(y)Notie that we have proved in this omputation a general useful fat that 1=�A(y)(fyg))is weak Jaobian for T and �. In absene of the property (4.6.2) that �A(y)(fyg) 6= 0 weshould have subtrated the set E = fy : �A(y)(y) = 0g of measure 0 under the integrals.Let us go bak to our situation. By (4.6.2) this Jaobian is equal to exp� . Observealso that ��T (X n Y )� = 0 beause X n Y = T�1�T (X n Y )� and � is T -invariant. Soexp� is strong Jaobian.Uniqueness. Proof III. Due to Corollary 2.5.7 it is suÆient to prove the di�erentia-bility of the pressure P (T; �) as a funtion of ontinuous funtion � at H�older � in a setof diretions dense in the weak topology on C(X).Lemma 4.6.4. Let � : X ! IR be a H�older ontinuous funtion and �� denote theinvariant Gibbs measure. Let F : X ! IR be ontinuous. Then, for an arbitrary x 2 X,(4.6.3) limn!1 1nPy2T�n(x) SnF exp(Sn�)(y)Py2T�n(x) exp(Sn�)(y) = Z F d��:The onvergene is uniform for an equiontinuous family of F 's and �'s in a bounded setin the Banah spae of H�older funtions H�(X).27



Proof.The above left hand side expression an be written in the form:(4.6.4) limn!1 1nPn�1j=0 Ln�(F Æ T j)(x)Ln�(11)(x) = limn!1 1nPn�1j=0 Ln�j(F � Lj(11))(x)Ln(11)(x) :where L = L0 = e�P (T;�)L�, ompare the beginning of Se.3.Sine F � Lj(11) is an equiontinuous family of funtions we obtainLn�j(F � Lj(11))(x)! u�(x) Z F � Lj(11) dm�as n� j !1, see Remark 4.4.6a.Therefore ontinuing (4.6.4) we obtainlimn!1 1nPn�1j=0 u�(x) R F � Lj(11) dm�u�(x) = limn!1 1n n�1Xj=0 Z F � Lj(11) dm� = Z F d��sine Lj(11) uniformly onverges to u� and �� = u�m�. |Now we shall alulate the derivative dP(T; � + t)=dt for every H�older � and  atevery t. In partiular, this will give di�erentiability at t = 0. Thus our dense set ofdiretions is spanned by H�older funtions .Theorem 4.6.5. We have ddtP(T; �+ t) = Z  d��+tfor all t 2 IR.Proof. Write Pn(t) = 1n log Xy2T�n(x) exp(Sn(�+ t))(y);(4.6.5) Qn(t) := (dPn=dt)(t) = 1nPy2T�n(x) Sn(y) exp(Sn(�+ t))(y)Py2T�n(x) exp(Sn(�+ t)(y) :By Lemma 4.6.4 limn!1Qn(t) = R  d��+t and the onvergene is uniform with re-spet to t. Sine, in addition, limn!1 Pn(t) = P(t), we onlude that P (T; � + t) =limn!1 Pn(t) is di�erentiable and the derivative is equal to the limit of derivatives:limn!1Qn(t) = R  d��+t , |Notie that the di�erential (Gateaux) operator  7! R  d�� is indeed that one fromProposition 2.5.6. Notie also that a posteriori, by Cor.2.5.7, we proved that for � H�olderontinuous, P (T; �) is di�erentiable in diretion of every ontinuous funtion. This is bythe way obvious in general: two di�erent supporting funtionals are di�erent restrited toany dense subspae. 28



x4.7. Probability laws and �2(u; v).Exponential onvergenes in x4.4 allow to prove the probability laws.Theorem 4.7.1. Let T : X ! X be an open distane expanding topologially exat mapand � the invariant Gibbs measure for a H�older funtion � : X ! IR. Then if g : X ! IRsatis�es(4.7.1) 1Xn=0 kL̂n(g � �(g))k2 <1;in partiular if g is H�older ontinuous, it satis�es CLT. If g is H�older ontinuous it satis�esLIL.Proof. First show how CLT an be dedued from Theorem 1.11.5. We an assume�(g) = 0. Let ( ~X ~F ; ~�) be the natural extension (see Ch.1.7). Reall that ~X an be viewedas the set of all T -trajetories (xn)n2ZZ (or bakward trajetories), ~T ((xn)) = (xn+1) and�n((xn)) = xn. It is suÆient now to hek (1.11.12) for the automorphism ~T the funtion~g = g Æ �0 and ~F0 = ��1(B) for the ompleted Borel �-algebra B. Sine ~g is measurablewith respet to ~F0 it is also measurable with respet to all ~Fn = ~T�n( ~F0) for n � 0 hene~g = E(~gj ~Fn). So we need only to prove P1n�0 kE(~gj ~Fn)k2 <1.Let us start with a general fat onerning an arbitrary probability spae (X;F ; �)and a �-preserving endomorphism T .Lemma 4.7.2. Let U denote the unitary operator on L2(X;F ; �) assoiated to T , namelyU(f) = f Æ T . Then for every k � 0 the operator UkU�k is the orthogonal projetion ofH0 = L2(X;F ; �) to Hk = L2(X;T�k(F); �).Proof. U� is the operator in the spae onjugate to H0 whih is H0 itself (a Hilbert spae).Uk(u) = u Æ T k is measurable with respet to T�k(F), so the range of UkU�k is indeed inHk = L2(X;T�k(F); �).For any u; v 2 H0 write R u � v d� =< u; v >, the salar produt of u and v. Forarbitrary f; g 2 H0 we alulate< UkU�k(f); g Æ T k >=< UkU�k(f); Uk(g) >=< U�k(f); g >=< f;Uk(g) >=< f; g Æ T k > :It is lear that all funtions in Hk = L2(X;T�k(F); �) are represented by g Æ T k forg 2 L2(X;F ; �). Therefore by the above equality for all h 2 Hk we obtain(4.7.2) < f � UkU�k(f); h >=< f; h > � < f; h >= 0:In partiular for f 2 Hk we onlude from (4.7.2) for h = f � UkU�k(f), that < f �UkU�k(f); f � UkU�k(f) >= 0 hene UkU�k(f) = f . Therefore UkU�k is a projetion toHk, whih is orthogonal by (4.7.2). |29



Sine the onditional expetation value f ! E(f jT�k(F)) is the orthogonal projetion toHk we onlude that E(f jT�k(F)) = UkU�k(f). Now, let us pass to our speial situationof Theorem 4.7.1.Lemma 4.7.3. For every f 2 L2(X;F ; �) we have U�(f) = L̂(f).Proof. < U�f; g >=< f;Ug >= R f � (g Æ T ) d� = R L̂(f � (g Æ T )) d� =R (L̂(f)) � g d� =< L̂(f); g >. |Proof of Theorem 4.7.1. Conlusion. We an assume that �(g) = 0. We have1Xn�0 kE(~gj ~Fn)k2 = 1Xn�0 kUnU�n(g)k2 = 1Xn�0 kL̂n(g)k2 <1;the latter has been assumed in (4.7.1). Thus CLT has been proved by applying Theorem1.11.5. If g is H�older ontinuous it satis�es (4.7.1). Indeed L̂k(g) onverges to 0 in the supnorm exponentially fast as k !1 by Corollary 4.4.8 (see (4.4.4")). This implies the sameonvergene in L2 hene the onvergene of the above series. |Now let us prove CLT and LIL with the use of Theorem 1.11.1 for H�older ontinuousg. As in Proof of Corollary 4.4.12, let � : �A ! X be a oding map from a 1-sidedtopologial Markov hain of d symbols due to a Markov partition, see Ch.3.5. Sine � isH�older ontinuous, if g and � are H�older ontinuous, then the ompositions g Æ �; � Æ �are H�older ontinuous. � is an isomorphism between the measures ��Æ� on �A and ��on X, see Ch.3.5 and Lemma 4.4.13. The funtion g Æ � satis�es the assumptions ofTheorem 1.11.1 with respet to the �-algebra F assoiated to the partition of �A into 0-thylinders, see Theorem 4.4.11. �-mixing follows from (4.4.7) and the estimate in (1.11.7)is exponential with an arbitrary Æ due to the H�older property of g Æ�. Hene, by Theorem1.11.1, g Æ � and therefore g satisfy CLT and LIL.In Setion 4.6 we omputed the �rst derivative of the pressure funtion. Here using thesame method we ompute the seond derivative and see that it is a respetive dispersion(asymptoti variane) �2, see Ch.1.11.Theorem 4.7.4. For every �; u; v : X ! IR H�older ontinuous funtions there exists theseond derivative(4.7.2) �2�s�tP (T; �+ su+ tv)js=t=0 = limn!1 1n Z Sn(u� ��u)Sn(v � ��v) d��;where �� is the invariant Gibbs measure for �. In partiular�2�t2P (T; �+ tv)jt=0 = �2��(u)(where the latter is the asymptoti variane disussed in CLT, Ch1.11). In addition, thefuntion (s; t) 7! P (T; �+ su+ tv) is C2-smooth.30



Proof. By Ch.4.6, see (4.6.3), (4.6.5),(4.7.3) �2�s�tP (T; �+ su+ tv)jt=0 = ��s limn!1 1nPy2T�n(x) Snv(y) expSn(�+ su)(y)Py2T�n(x) expSn(�+ su)(y) :Now we hange the order of �=�s and lim. This will be justi�ed if we prove the uniformonvergene of the resulting derivative funtions.Fixed x 2 X and n we abbreviate in the further notation Py2T�n(x) to Py and omputeFn(s) := ��s�Py Snv(y) expSn(�+ su)(y)Py expSn(�+ su)(y) � =Py Snu(y)Snv(y) expSn(�+ su)(y)Py expSn(�+ su)(y) ��Py Snu(y) expSn(�+ su)(y)��Py Snv(y) expSn(�+ su)(y)��Py expSn(�+ su)(y)�2 =Ln�(Snu)(Snv)�(x)Ln(11)(x) � Ln(Snu)(x)Ln(11)(x) Ln(Snv)(x)Ln(11)(x) :As in Setion 6 we write here L = L0 = e�P (T;�+su)L�+su. It is useful to write the laterexpression for Fn(s) in the form(4.7.4) Fn(s) = Z (Snu)(Snv) d�s;n � Z (Snu) d�s;n Z (Snv) d�s;nor(4.7.5) Fn(s) = n�1Xi;j=0 Z (u Æ T i � �s;n(u Æ T i))(v Æ T j � �s;n(v Æ T j)) d�s;n;where �s;n is the probability measure distributed on T�n(x) aording to the weightsexp(Sn(�+ su))(y)=Py expSn(�+ su)(y).Note that 1nFn(s) with Fn(s) as in the formula (4.7.5) resembles already (4.7.2) beause�s;n ! m�+su in the weak�-topology, see (4.4.3'). However we still need to work a littlebit.For eah i; j denote the respetive summand in (4.7.5) by Ki;j . To simplify notation denoteu Æ T i by ui and v Æ T j by vj . We haveKi;j = Ln�(ui � �s;nui)(vj � �s;nvj)�(x)Ln(11)(x)31



and for 0 � i � j < n, using (4.4.5) twie,(4.7.6) Ki;j = Ln�j��Lj�i((u� �s;nui)Li(11))��v � �s;nvj��(x)Ln(11)(x) :By Corollary 4.4.8 for � < 1 and H�older norm jj � jjH� for an exponent � > 0, transformingthe integral as in Proof of Theorem 4.4.10, we getjjLj�i((u� �s;nui)Li(11))� u�+su�Z ui dm�+su � �s;nui)�jjH� � C� j�iwhere C depends only on H�older norms of u and � + su. The di�erene in the largeparentheses, denote it byDi;n, is bounded by C�n�i in the H�older norm, again by Corollary4.4.8.We onlude that for all j the funtionsLj :=Xi�j Lj�i((u� �s;nui)Li(11))are uniformly bounded in the H�older norm jj � jjH� by a onstant C depending again onlyon jjujjH� and jj� + sujjH� . Hene summing over i � j in (4.7.6) and applying Ln�j weobtain ������ jXi=0Ki;j � jXi=0 Z (ui � �s;nui)(vj � �s;nvj) dm�+su������1 � C�n�j :Here C depends also on jjvjjH� . We an replae the �rst sum by the seond sum withouthanging the limit in (4.7.3) sine after summing over j = 0; 1; :::; n � 1, dividing by nand passing with n to 1, they lead to the same result. Let us show now that �s;n an bereplaed by m�+su in the above estimate without hanging the limit in (4.7.3). Indeed,using the formula ab� a0b0 = (a� a0)b0 + a(b� b0), we obtain��� Z (ui �m�+suui)(vj �m�+suvj) dm�+su � Z (ui � �s;nui)(vj � �s;nvj) dm�+su��� �j(�s;nui �m�+suui) � (m�+suvj � �s;nvj)++ ��� Z (ui �m�+suui) � (�s;nvj �m�+suvj) dm�+su���:Sine Di;n � C�n�i and Dj;n � C�n�j , the �rst summand is bounded above by �n�i�n�j .Note that the seond summand is equal to 0. Thus, our replaememnt is justi�ed.The last step is to replae m = m�+su by the invariant Gibbs measure � = ��+su.Similarly as above we an replae m by � in mui;mvi. Indeed,(4.7.7)jmui � �uij = j Z u � Li(11) dm� Z uu�+su dmj = j Z u � (Li(11)� u�+su) dmj � Cm(u)� i:32



Thus the resulting di�erene is bounded by Cm(u)m(v)� i� j . Finally we justify the re-plaement of m by � at the seond integral in the previous formula. To simplify notationwrite F = u� �u;G = v � �v. Sine j � i, using (4.7.7), we an write�� Z (F Æ T i)(G Æ T j) dm� Z (F Æ T i)(G Æ T j) d��� == j Z (F � (G Æ T j�i)) Æ T i dm� Z (F � (G Æ T j�i)) Æ T i d�j� C� i Z jF � (G Æ T j�i)j dm � Cm(F )m(G)� i� j�i = Cm(F )m(G)� jby Theorem 4.4.10 (exponential deay of orrelations), the latter C depending again onthe H�older norms of u; v; � + su. Summing over all 0 � i � j < n gives the boundCm(F )m(G)Pn�1j=0 j� j and our replaement is justi�ed. For i > j we do the same re-plaements hanging the roles of u and v. The C2-smoothness follows from the uniformityof the onvergene of the sequene of the funtions Fn(s), for � + tv in plae of �, withrespet to the variables (s; t), resulting from the proof. |Exerises.Exerise 1. Prove that (4.1.1) with an arbitrary 0 < �0 � � in plae of � implies (4.1.1)for every 0 < �0 � � (with C depending on �0) .
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CHAPTER 6FRACTAL DIMENSIONS
In the �rst section of this chapter we we provide a more complete treatment of outermeasure indirectly begun in Chapter 1. The rest of this chapter is devoted to present basicde�nitions of pressure related to Hausdor� and packing measures, Hausdor� and packingdimensions of sets and measures and ball-counting dimensions.x6.1 OUTER MEASURESIn Section 1.1 we have introduced the abstract notion of measure. In the beginning of thissection we want to show how to construct measures starting with functions of sets calledouter measures which are required to satisfy much weaker conditions. Our exposition ofthis material is brief and the reader should �nd its complete treatment in all handbooksof geometric measure theory (see for ex. [Falconer, 1985], [Ma] or [Pe]).De�nition 6.1.1 An outer measure on a set X is a function � de�ned on all subsets of Xtaking values in [0;1] such that(6.1.1) �(;) = 0;(6.1.2) �(A) � �(B) if A � Band(6.1.3) �� 1[n=1An� � 1Xn=1�(An)for any countable family fAn : n = 1; 2; : : :g of subsets of X.A subset A of X is called �-measurable or simply measurable with respect to the outermeasure � if and only if(6.1.4) �(B) � �(B \A) + �(B nA)for all sets B � X. Check that the opposite inequality follows immediately from (6.1.3).Check also that if �(A) = 0 then A is �-measurable.Theorem 6.1.2. If � is an outer measure on X, then the family F of all �-measurablesets is a �-algebra and the restriction of � to F is a measure.1



Proof. Obviously X 2 F . By symmetry of (6.1.4), A 2 F if and only if Ac 2 F . So,the conditions (1.1.1) and (1.1.2) of the de�nition of �-algebra are satis�ed. To checkcondition (1.2.3) that F is closed under countable union, suppose that A1; A2; : : : 2 F andlet B � X be any set. Applying (6.1.4) in turn to A1; A2; : : : we get for all k � 1�(A) � �(B \ A1) + �(B nA1)� �(B \ A1) + �((B nA1) \ A2) + �(B nA1 nA2)� : : :� kXj=1 � �B n j�1[i=1Ai� \ Aj!+ ��B n k[j=1Aj�� kXj=1 � �B n j�1[i=1Ai� \ Aj!+ ��B n 1[j=1Aj�and therefore(6.1.5) �(A) � 1Xj=1 ���B n j�1[i=1Ai� \ Aj�+ ��B n 1[j=1Aj�Since B \ 1[j=1Aj = 1[j=1�B n j�1[i=1Ai� \Ajusing (6.1.3) we thus get�(A) � �� 1[j=1�B n j�1[i=1Ai� \ Aj�+ ��B n 1[j=1Aj�Hence condition (1.1.3) is also satis�ed and F is a �-algebra. To see that � is a measureon F i.e. that condition (1.1.4) is satis�ed, consider mutually disjoint sets A1; A2; : : : 2 Fand apply (6.1.5) with B = S1j=1Aj to get�� 1[j=1Aj� � 1Xj=1 �(Aj)Combining this with (6.1.3) we conclude that � is a measure on F . |Now, let (X; �) be a metric space. An outer measure � on X is said to be a metricouter measure if and only if(6.1.6) �(A [ B) = �(A) + �(B)2



for all positively separated sets A;B � X that is satisfying the following condition�(A;B) = inff�(x; y) : x 2 A; y 2 Bg > 0Recall that the Borel �-algebra on X is that generated by open, or equivalently closed, sets.We want to show that if � is a metric outer measure then the family of all �-measurablesets contains this �-algebra. The proof is based on the following version of Carath�eodory'slemma.Lemma 6.1.3. Let � be a metric outer measure on (X; �). Let fAn : n = 1; 2; : : :g be anincreasing sequence of subsets of X and denote A = S1n=1An. If �(An; A n An+1) > 0 forall n � 1, then �(A) = limn!1 �(An).Proof. By (6.1.3) it is enough to show that(6.1.7) �(A) � limn!1 �(An)If limn!1 �(An) =1, there is nothing to prove. So, suppose that(6.1.8) limn!1 �(An) = supn �(An) <1Let B1 = A1 and Bn = An n An�1 for n � 2. If n � m + 2, then Bm � Am andBn � A n An�1 � A n Am+1. Thus Bm and Bn are positively separated and applying(6.1.6) we get for every j � 1(6.1.9) �� j[i=1B2i�1� = jXi=1 �(B2i�1) and �� j[i=1B2i� = jXi=1 �(B2i)We have also for every n � 1�(A) = �� 1[k=nAk� = ��An [ 1[k=n+1Bk�� �(An) + 1Xk=n+1�(Bk) � liml!1 �(Al) + 1Xk=n+1�(Bk)(6.1.10)Since the sets Sji=1B2i�1 and Sji=1B2i appearing in (6.1.9) are both contained in A2j , itfollows from (6.1.8) and (6.1.9) that the series P1k=1 �(Bk) converges. Therefore (6.1.7)follows immediately from (6.1.10). The proof is �nished. |Theorem 6.1.4. If � is a metric outer measure on (X; �) then all Borel subsets of X are�-measurable. 3



Proof. Since the Borel sets form the least �-algebra containing all closed subsets ofX, it follows from Theorem 6.1.2 that it is enough to check (6.1.4) for every closed setA � X and every B � X. For all n � 1 let Bn = fx 2 B n A : �(x;A) � 1=ng. Then�(B \ A;Bn) � 1=n and by (6.1.6)(6.1.10) �(B \A) + �(Bn) = �((B \A) [Bn) � �(B)The sequence fBng1n=1 is increasing and, since A is closed, B nA = S1n=1Bn. In order toapply Lemma 6.1.3 we shall show that�(Bn; (B nA) nBn+1) > 0for all n � 1. And indeed, if x 2 (B n A) n Bn+1, then there exists z 2 A with �(x; z) <1=(n+ 1). Thus, if y 2 Bn, then�(x; y) � �(y; z)� �(x; z) > 1=n� 1=(n+ 1) = 1n(n+ 1)and consequently �(Bn; (B n A) n Bn+1) > 1=n(n + 1) > 0. Applying now Lemma 6.1.3with An = Bn shows that �(B n A) = limn!1 �(Bn). Thus (6.1.4) follows from (6.1.10).The proof is �nished. |x6.2 HAUSDORFF MEASURESLet � : [0;1) ! [0;1) be a non-decreasing function continuous at 0, positive on (0;1)and such that �(0) = 0. Let (X; �) be a metric space. For every � > 0 de�ne(6.2.1) ���(A) = inf� 1Xi=1 �(diam(Ui))	where the in�mum is taken over all countable covers fUi : i = 1; 2; : : :g of A of diameter notexceeding �. Conditions (6.1.1) and (6.1.2) are obviously satis�ed with � = ���. To check(6.1.3) let fAn : n = 1; 2; : : :g be a countable family of subsets of X. Given " > 0 for everyn � 1 we can �nd a countable cover fUni : i = 1; 2; : : :g of An of diameter not exceeding� such that P1i=1 �(diam(Uni )) � ���(An) + "=2n. Then the family fUni : n � 1; i � 1gcovers S1n=1An and���� 1[n=1An� � 1Xn=1 1Xi=1 �(diam(Uni )) � 1Xn=1���(An) + "Thus, letting "! 0, (6.1.3) follows proving that ��� is an outer measure. De�ne(6.2.2) ��(A) = lim�!0���(A) = sup�>0 ���(A)4



The limit exists, but may be in�nite, since ���(A) increases as � decreases. Since all ��� areouter measures, the same argument also shows that �� is an outer measure. Moreover ��turns out to be a metric outer measure, since if A and B are two positively separated setsin X, then no set of diameter less than �(A;B) can intersect both A and B. Consequently���(A [ B) = ���(A) + ���(B)for all � < �(A;B) and letting � ! 0 we get the same formula for �� which is just(6.1.6) with � = ��. The metric outer measure �� is called the Hausdor� outer measureassociated to the function �. Its restriction to the �-algebra of ��-measurable sets, whichby Theorem 6.1.4 includes all the Borel sets, is called the Hausdor� measure associated tothe function �.As an immediate consequence of the de�nition of Hausdor� measure and the properties ofthe function � we get the following.Proposition 6.2.1 The Hausdor� measure �� is non-atomic.Remark 6.2.2. A particular role is played by functions � of the form t ! t�, t; � > 0and in this case the corresponding outer measures are denoted by ��� and ��.Remark 6.2.3. Note that if �1 is another function but such that �1 and � restrected toan interval [0; "), " > 0, are equal, then the outer measures ��1 and �� are also equal. So,in fact, it is enough to de�ne the function � only on an arbitrarily small interval [0; ").Remark 6.2.4. Notice that we get the same values for ���(A), and consequently also for��(A), if the in�mum in (6.2.1) is taken only over covers consisting of sets contained inA. This means that the Hausdor� outer measure ��(A) of A is its intrinsic property, i.e.does not depend on in which space the set A is contained. If we treated A as the metricspace (A; �jA) with the metric �jA induced from �, we would get the same value for theHausdor� outer measure.If we however took the in�mum in (6.2.1) only over covers consisting of balls, we could getdi�erent "Hausdor� measure" which (dependently on �) would need not be even equivalentwith the Hausdor� measure just de�ned. To assure this last property � is from now onassumed to satisy the following condition.There exists a function C : (0;1)! [1;1) such that for every a 2 (0;1) and every t > 0su�ciently small (dependently on a)(6.2.3) C(a)�1�(t) � �(at) � C(a)�(t)Since (ar)t = atrt, all functions � of the form r ! rt, considered in Remark 6.2.2, satisfy(6.2.3) with C(a) = at. Check that all functions r ! rt exp(cplog log 1=t log log log 1=r,c � 0 also satisfy (6.2.3) with a suitable function C.5



De�nition 6.2.5. A countable collection f(xi; ri) : i = 1; 2; : : :g of pairs (xi; ri) 2 X �(0;1) is said to cover a subset A of X if A � S1i=1B(xi; ri), and is said to be centered atthe set A if xi 2 A for all i = 1; 2; : : :. The radius of this collection is de�ned as supi riand its diameter as the diameter of the family fB(xi; ri) : i = 1; 2; : : :g.For every A � X and every r > 0 let(6.2.4) �Br� (A) = inf� 1Xi=1 �(ri)	where the in�mum is taken over all collections f(xi; ri) : i = 1; 2; : : :g centered at the setA, covering A and of radii not exceeding r. Let(6.2.5) �B� (A) = limr!0�Br� (A) = supr>0 �Br� (A)The limit exists by the same argument as used for the limit in (6.2.2). We shall prove thefollowing.Lemma 6.2.6. For every set A � X1 � ��(A)�B� (A) � C(2)Proof. Since the diameter of any ball does not exceed its double radius, since the diameterof any collection f(xi; ri) : i = 1; 2; : : :g also does not exceed its double radius and sincethe function � is non- decreasing and satis�es (6.2.3), we see that for every r > 0 smallenough 1Xi=1 �(diam(B(xi; ri))) � 1Xi=1 �(2ri) � C(2) 1Xi=1 �(ri)and therefore �2r� (A) � C(2)�Br� (A). Thus, letting r ! 0,(6.2.6) ��(A) � C(2)�B� (A)On the other hand, let fUi : i = 1; 2; : : :g be a countable cover of A consisting of subsetsof A. For every i � 1 choose xi 2 Ui and put ri = diam(Ui). Then the collectionf(xi; ri) : i = 1; 2; : : :g covers A, is centered at A and1Xi=1 �(ri) = 1Xi=1 �(diam(Ui))which implies that �B�� (A) � ���(A) for every � > 0. Thus �B� (A) � ��(A) whichcombined with (6.2.6) �nishes the proof. | 6



Remark 6.2.7. The function of sets �B� need not to be an outer measure since condition(6.1.2) need not to be satis�ed. Since we will be never interested in exact computation ofHausdor� measure, only in establishing its positiveness or �niteness or in comparing theratio of its value with some other quantities up to bounded constants, we will be mostlydealing with �B�� and �B� using nevertheless always the symbols ���(A) and ��(A).x6.3 PACKING MEASURESLet, as in the previous section, � : [0;1)! [0;1) be a non-decreasing function such that�(0) = 0 and let (X; �) be a metric space. A collection f(xi; ri) : i = 1; 2; : : :g centered ata set A � X is said to be a packing of A if and only if for any pair i 6= j�(xi; xj) � ri + rjThis property is not generally equivalent to requirement that all the balls B(xi; ri) aremutually disjoint. It is obviously so if X is a Euclidean space. For every A � X and everyr > 0 let(6.3.1) ��r� (A) = sup� 1Xi=1 �(ri)	where the supremum is taken over all packings f(xi; ri) : i = 1; 2; : : :g of A of radius notexceeding r. Let(6.3.2) ���(A) = limr!0��r� (A) = infr>0��r� (A)The limit exists since ��r� (A) decreases as r decreases. In opposite to �B� the function ���satis�es condition (6.1.2), however it also need not to be an outer measure since this timecondition (6.1.3) need not to be satis�ed. To obtain an outer measure we put(6.3.3) ��(A) = inffX���(Ai)g;where the supremum is taken over all covers fAig of A. The reader will check easily,with similar arguments as in the case of Hausdor� measures, that �� is already an outermeasure and even more, a metric outer measure on X. It will be called the outer packingmeasure associated to the function �. Its restriction to the �-algebra of ��-measurablesets, which by Theorem 6.1.4 includes all the Borel sets, will be called packing measureassociated to the function �.Proposition 6.3.1. For every set A � X it holds ��(A) � C(2)��(A).Proof. First we shall show that for every set A � X and every r > 0(6.3.4) �2r� (A) � C(2)��r� (A)7



Indeed, if there is no �nite maximal (in the sense of inclusion) packing of the set A of theform f(xi; r)g, then for every k � 1 there exists a packing f(xi; r) : i = 1; : : : ; kg of A andtherefore ��r� (A) �Pki=1 �(r) = k�(r). Since �(r) > 0, this implies that ��r� (A) =1 and(6.3.4) holds. Otherwise, let f(xi; r) : i = 1; : : : ; lg be a maximal packing of A. Then thecollection f(xi; 2r) : i = 1; : : : ; lg covers A and therefore�2r� (A) � lXi=1 �(2r) � C(2)l�(r) � C(2)��r� (A)that is (6.3.4) is satis�ed. Thus letting r ! 0 we get(6.3.5) ��(A) � C(2)���(A)So, if fAngn�1 is a countable cover of A then,��(A) � 1Xn=1��(Ai) � C(2) 1Xn=1���(Ai)Hence, applying (6.3.3), the lemma follows. |x6.4 DIMENSIONSLet, similarly as in the two previous sections, (X; �) be a metric space. Recall (comp.Remark 6.2.2) that �t, t > 0, is the Hausdor� outer measures on X associated to thefunction r ! rt and all ��t are of corresponding meaning. Fix A � X. Since for every0 < � � 1 the function t ! ��t (A) is non-increasing, so is the function t ! �t(A).Furthermore, if s < t, then for every 0 < ���s(A) � �s�t��t (A)which implies that if �t(A) is positive, then �s(A) is in�nite. Thus there is a unique value,HD(A), called the Hausdor� dimension of A such that(6.4.1) �t(A) = �1 if 0 � t < HD(A)0 if HD(A) < t <1Note that similarly as Hausdor� measures (comp. Remark 6.2.4), Hausdor� dimension isconsequently also an intrinsic property of sets and does not depend on their complements.The following is an immediate consequence of the de�nitions of Hausdor� dimension andouter Hausdor� measures.Theorem 6.4.1. The Hausdor� dimension is a monotonic function of sets, that is ifA � B then HD(A) � HD(B). 8



We shall prove the following.Theorem 6.4.2. If fAngn�1 is a countable family of subsets of X thenHD([nAn) = supn fHD(An)g:Proof. Inequality HD([nAn) � supnfHD(An)g is an immediate consequence of The-orem 6.4.1. Thus, if supnfHD(An)g = 1 there is nothing to prove. So, suppose thats = supnfHD(An)g is �nite and consider an arbitrary t > s. In view of (6.4.1), �t(An) = 0for every n � 1 and therefore, since �t is an outer measure, �t([nAn) = 0. Hence, by(6.4.1) again, HD([nAn) � t. The proof is �nished. |As an immediate consequence of this theorem, Proposition 6.2.1 and formula (6.4.1) weget the following.Proposition 6.4.3. The Hausdor� dimension of any countable set is equal to 0.In exactly the same way as Hausdor� dimension HD one can de�ne packing� dimensionPD� and packing dimension PD using respectively ��t (A) and �t(A) instead of �t(A).The reader can check easily that results analogous to Theorem 6.4.1, Theorem 6.4.2 andProposition 6.4.3 are also true in these cases. As an immediate consequence of thesede�nitions and Proposition 6.3.1 we get the following.Lemma 6.4.4. HD(A) � PD(A) � PD�(A) for every set A � X.Now we shall de�ne the third basic dimension { ball-counting dimension frequently alsocalled box-counting dimension, Minkowski dimension or capacity. Let A be an arbitrarysubset of the metric space (X; �). We �rst need the following.De�nition 6.4.5. For every r > 0 consider the family of all collections f(xi; ri)g (seeDe�nition 6.2.5) of radius not exceeding r which cover A and are centered at A. PutN(A; r) = 1 if this family is empty. Otherwise de�ne N(A; r) to be the minimum ofall cardinalities of elements of this family. Note that one gets the same number if oneconsiders the subfamily of collections of radius exactly r and even only its subfamily ofcollections of the form f(xi; r)g.Now the lower ball-counting dimensions and upper ball-counting dimension of A are de�nedrespectively by(6.4.2) BD(A) = lim infr!0 logN(A; r)� log r and BD(A) = lim supr!0 logN(A; r)� log r :If BD(A) = BD(A), the common value is called simply ball-counting dimension and isdenoted by BD(A). The reader will easily prove the next theorem which explains thereason of the name box-counting dimension. The other names will not be discussed here.9



Proposition 6.4.6. Fix n � 1. For every r > 0 let L(r) be any lattice in IRn consistingof cubes of sides of length r. For any set A � IRn let L(A; r) denotes the number of cubesin L(r) which intersect A. ThenBD(A) = lim infr!0 logL(A; r)� log r and BD(A) = lim supr!0 logL(A; r)� log rRemark 6.4.7. Ball-counting dimension has properties which distinguish it qualitativelyfrom Hausdor� and packing dimensions. For instance BD(A) = BD(A) and BD(A) =BD(A) =. So, in particular there exist countable sets of positive ball-counting dimension,for example the set of rational numbers in the interval [0; 1]. Even more, there existcompact countable sets with this property like the set f1; 1=2; 1=3; : : : ; 0g � IR. On theother hand in many cases (see Theorem 6.6.6) all these dimensions coincide.Now we shall provide other characterizations of ball-counting dimension, which in partic-ular will be used to prove Lemma 6.4.8 and consequently Theorem 6.4.9 which establishesmost general relations between the dimensions considered in this section.Let A � X. For every r > 0 de�ne P (A; r) to be the supremum of cardinalities of allpackings of the set A of the form f(xi; r)g. First we shall prove the following.Lemma 6.4.7. For every set A � IRn and every r > 0N(A; 2r) � P (A; r) and P (A; r) � N(A; r):Proof. Let us start with the proof of the �rst inequality. If P (A; r) =1, there is nothingto prove. Otherwise, let f(xi; r) : i = 1; : : : ; kg be a packing of A with k = P (A; r). Thenthis packing is maximal in the sense of inclusion and therefore the collection f(xi; 2r) : i =1; : : : ; lg covers A. Thus N(A; 2r) � l = P (A; r). The �rst part of Lemma 6.4.7 is proved.If N(A; r) = 1, the second part is obvious. Otherwise consider a �nite packingf(xi; r) : i = 1; : : : ; kg of A and a �nite cover f(yj ; r) : j = 1; : : : ; lg of A centered at A.Then for every 1 � i � k there exists 1 � j = j(i) � l such that xi 2 B(yj(i); r) andevery ball B(yj; r) can contain at most one element of the set fxi : i = 1; : : : ; kg. So, thefunction i! j(i) is injective and therefore k � l. The proof is �nished. |As an immediate consequence of Lemma 6.4.7 we get the following.(6.4.3) BD(A) = lim infr!0 logP (A; r)� log r and BD(A) = lim supr!0 logP (A; r)� log r :Now we are in a position to prove the following.Lemma 6.4.8 For every set A � X we have PD�(A) = BD(A).Proof. Take t < BD(A). In view of (6.4.3) there exists a sequence frn : n = 1; 2; : : :gof positive reals converging to zero and such that P (A; rn) � r�tn for every n � 1. Then10



��rnt (A) � rtP (A; rn) � 1 and consequently ��t (A) � 1. Hence t � PD�(A) and thereforeBD(A) � PD�(A).In order to prove the converse inequality consider s < t < PD�(A). Then ��t (A) =1and therefore for every n � 1 there exists a �nite packing f(xn;i; rn;i) : i = 1; : : : ; k(n)g ofA of radius not exceeding 2�n and such that(6.4.4) k(n)Xi=1 rtn;i > 1Now for every m � n letlm = #fi 2 f1; : : : ; k(n)g : 2�(m+1) < rn;i � 2�mgThen by (6.4.4)(6.4.5) 1Xm=n lm2�nt > 1Suppose that lm < 2ns(1� 2(s�t)) for every m � n. Then1Xm=n lm2�nt < (1� 2(s�t)) 1Xm=1 2n(s�t) = 1This contradicts (6.4.5) and shows that for every n � 1 there exists m = m(n) � n suchthat lm � 2ns(1� 2(s�t))Hence P (A; 2�(m+1)) � 2ns(1� 2(s�t)), whencelogP (A; 2�(m+1))(m+ 1) log 2 � sk log 2(m+ 1) log 2Thus, letting n!1 (then also m = m(n)!1) we obtain BD(A) � s. So, we are done.|Combining now Lemma 6.4.4 and Lemma 6.4.8 and checking easily that HD(A) � BD(A)we obtain the following main general relation connecting all the dimensions under consid-eration.Theorem 6.4.9. For every set A � XHD(A) � minfPD(A);BD(A)g � maxfPD(A);BD(A)g � BD(A) = PD�(A)We �nish this section with the following de�nition.11



De�nition 6.4.10. Let � be a Borel measure on (X; �). Then the Hausdor� dimensionHD(�) of the measure � is de�ned asHD(�) = inffHD(Y ) : �(X n Y ) = 0gan analogous de�nition can be formulated for packing dimension.x6.5 BESICOVITCH COVERING THEOREMIn this section we prove only one result, the Besicovitch covering theorem. Although thistheorem seems to be almost always omitted in the classical geometric measure theory,we however consider it as one of most powerful geometric tools when dealing with someaspects of fractal sets. We refer the reader to Section 6.6 to verify our opinion.Theorem 6.5.1. (Besicovitch covering theorem) Let n � 1 be an integer. Then thereexists a constant b(n) > 0 such that the following claim is true.If A is a bounded subset of IRn then for any function r : A ! (0;1) there existsfxk : k = 1; 2; : : :g a countable subset of A such that the collection B(A; r) = f(xk; r(xk)) :k � 1g covers A and can be decomposed into b(n) packings of A.In particular it follows from Theorem 6.5.1 that #fB 2 B : x 2 Bg � b(n). Exactly thesame proof (world by world) goes if open balls in Theorem 6.5.1 are replaced by closedones.For any x 2 IRn, any 0 < r � 1 and any 0 < � < � by Con(x; �; r) we will denoteany solid central cone with vertex x, radius r and angle (Lebesgue measure on the unitsphere Sn�1) �. The proof of Theorem 6.5.1 is based on the following obvious geometricobservation.Observation 6.5.2. Let n � 1 be an integer. Then there exists �(n) > 0 so small thatthe following holds.If x 2 IRn, 0 < r < 1, if z 2 B(x; r) n B(x; r=3) and x 2 Con(z; �(n);1) then theset Con(z; �(n);1)nB(x; r=3) consists of two connected components (one of z and one of"1") and that containing z is contained in B(x; r).Proof of Theorem 6.5.1. We will construct the sequence fxk : k = 1; 2; : : :g inductively.Let a0 = supfr(x) : x 2 AgIf a0 =1 then one can �nd x 2 A with r(x) so large that B(x; r(x) � A and the proof is�nished.If a0 <1 choose x1 2 A so that r(x1) > a0=2. Fix k � 1 and assume that the pointsx1; x2; : : : ; xk have been already chosen. If A � B(x1; r(x1)) [ : : : [ B(xk; r(xk)) then theselection process is �nished. Otherwise putak = supfr(x) : x 2 A n �B(x1; r(x1)) [ : : : [B(xk; r(xk))�g12



and take(6.5.1) xk+1 2 A n �B(x1; r(x1)) [ : : : [B(xk; r(xk))�such that(6.5.2) r(xk+1) > ak=2In order to shorten notation from now on throughout this proof we will write rk for r(xk).By (6.5.1) we have xl =2 B(xk; rk) for all pairs k; l with k < l. Hence(6.5.3) kxk � xlk � r(xk)It follows from the construction of the sequence (xk) that(6.5.4) rk > ak�1=2 � rl=2and therefore rk=3 + rl=3 < rk=3 + 2rk=3 = rk. Joining this and (6.5.3) we obtain(6.5.5) B(xk; rk=3) \B(xl; rl=3) = ;for all pairs k; l with k 6= l since then either k < l or l < k.Now we shall show that the balls fB(xk; rk) : k � 1g cover A. Indeed, if the se-lection process stops after �nitely many steps this claim is obvious. Otherwise it followsfrom (6.5.5) that limk!1 rk = 0 and if x =2 S1k=1B(xk; rk) for some x 2 A then by con-struction rk > ak�1=2 � r(x) for every k � 1. The contradiction obtained proves thatS1k=1B(xk; rk) � A.The main step of the proof is given by the following.Claim. For every z 2 IRn and any cone Con(z; �(n);1) (�(n) given by Observation 6.5.2)#fk � 1 : z 2 B(xk; rk) nB(xk; rk=3) and xk 2 Con(z; �(n);1)g � 1 + 16nDenote by Q the set of integers whose cardinality is to be estimated. If Q = ;, there isnothing to prove. Otherwise let i = minQ. If k 2 Q and k 6= i then k > i and thereforexk =2 B(xi; ri). In view of this, Observation 6.5.2 applied with x = xi, r = ri, and thede�nition of Q, we get kz � xkk � 2ri=3, whence(6.5.6) rk � kz � xkk � 2ri=3On the other hand by (6.5.4) we have rk < 2ri and therefore B(xk; rk=3) � B(z; 4rk=3) �B(z; 8ri=3). Thus, using (6.5.5), (6.5.6) and the fact that the n-dimensional volume of ballsin IRn is proportional to the nth power of radii we obtain #Q � (8ri=3)n=(2ri=9)n = 12n.The proof of the claim is �nished. 13



Clearly there exists an integer c(n) � 1 such that for every z 2 IRn the space IRn canbe covered by at most c(n) cones of the form Con(z; �(n);1). Therefore it follows fromthe claim that for every z 2 IRn#fk � 1 : z 2 B(xk; rk) nB(xk; rk=3)g � c(n)12nThus applying (6.5.5)(6.5.7) #fk � 1 : z 2 B(xk; rk) � 1 + c(n)12nSince the ballB(0; 3=2) is compact, it contains a �nite subset P such thatSx2P B(x; 1=2) �B(0; 3=2). Now for every k � 1 consider the composition of the map IRn 3 x! rkx 2 IRnand the translation determined by the vector from 0 to xk. Call by Pk the image of Punder this translation. Then #Pk = #P , Pk � B(xk; 3rk=2) and(6.5.8) [x2PkB(x; rk=2) � B(0; 3rk=2)Consider now two integers 1 � k < l such that(6.5.9) B(xk; rk) \B(xl; rl) 6= ;Let y 2 IRn be the only point lying on the interval joining xl and x0 at the distancerk � rl=2 from xk. As xl =2 B(xk; rk), by (6.5.9) we have ky � xlk � rl + rl=2 = 3rl=2and therefore by (6.5.8) there exists z 2 Pl such that kz � yk < rl=2. Consequentlyz 2 B(xk; rl=2 + rk � rl=2) = B(xk; rk). Thus applying (6.5.7) with z being the elementsof Pl, we obtain the following(6.5.10) #f1 � k � l � 1 : B(xk; rk) \ B(xl; rl) 6= ;g � #P (1 + c(n)12n)for every l � 1.Putting b(n) = #P (1 + c(n)12n) + 1 this property allows us to decompose the set INof positive integers into b(n) subsets IN1; IN2; : : : ; INb(n) in the following inductive way. Forevery k = 1; 2; : : : ; b(n) set INk(b(n)) = fkg and suppose that for every k = 1; 2; : : : ; b(n)and some j � b(n) mutually disjoint families INk(j) have been already de�ned so thatIN1(j) [ INb(n)(j) = f1; 2; : : : ; jgThen by (6.5.10) there exists at least one 1 � k � b(n) such that B(xj+1; rj+1)\B(xi; ri) =; for every i 2 INk(j). We set INk(j + 1) = INk(j)[ fj + 1g and INl(j + 1) = INl(j) for alll 2 f1; 2; : : : ; b(n)g n fkg. Putting now for every k = 1; 2; : : : ; b(n)INk = INk(b(n)) [ INk(b(n) + 1) [ : : :we see from the inductive construction that these sets are mutually disjoint, that theycover IN and that for every k = 1; 2; : : : ; b(n) the families of balls fB(xl; rl) : l 2 INkg arealso mutually disjoint. The of proof the Besicovitch covering theorem is �nished. |14



We would like to emphasize here once more that the same statement remains true if openballs are replaced by closed ones. Also if instead of balls one considers n-dimensional cubes.Then although the proof is based on the same idea, however technically is considerablyeasier.x6.6 VOLUME LEMMASIn this section a function � : [0;1)! [0;1) is assumed to satisfy the same conditions asin Section 6.2 including (6.2.3) and moreover is assumed to be continuous. We start withthe following.Theorem 6.6.1. Let n � 1 be an integer and let b(n) be the constant claimed in Theo-rem 6.5.1 (Besicovitch covering theorem). Assume that � is a Borel probability measureon IRn and A is a bounded Borel subset of IRn. If there exists C 2 (0;1], (1=1 = 0),such that(a) for all (but countably many maybe) x 2 Alim supr!0 �(B(x; r))�(r) � Cthen ��(E) � b(n)C �(E) for every Borel set E � A. In particular ��(A) <1.or (b) for all x 2 A lim supr!0 �(B(x; r))�(r) � C <1then �(E) � C��(E) for every Borel set E � A.Proof. (a) In view of Proposition 6.2.1 we can assume that E does not intersect theexceptional countable set. Fix " > 0 and r > 0. Since � is a regular measure, there existsan open set G � E such that �(G) � �(E)+". By openness of G and by assumption (a), forevery x 2 E there exists 0 < r(x) < r such that B(x; r(x)) � G and (1=C+")�(B(x; r)) ��(r). Let f(xk; r(xk)) : k � 1g be the cover of E obtained by applying Theorem 6.5.1.(Besicovitch covering theorem) to the set E. Then�r�(E) � 1Xk=1�(r(xk)) � 1Xk=1(C�1 + ")�(B(xk; r(xk)))� b(n)(C�1 + ")�( 1[k=1B(xk; r(xk))) � b(n)(C�1 + ")(�(E) + ")Letting r! 0 we thus obtain ��(E) � b(n)(1=C+")(�(E)+") and therefore letting "! 0the part (a) follows (note that the proof is correct with C =1!).15



(b) Fix an arbitry s > C. Since for every r > 0 the function x ! �(B(x; r))=�(r)is measurable and since the supremum of a countable sequence of measurable functions isalso a measurable function, we conclude that for every k � 1 the function  k : A! IR ismeasurable, where  k(x) = sup��(B(x; r))�(r) : r 2 Q \ (0; 1=k]�and Q denotes the set of rational numbers. For every k � 1 let Ak =  �1k ((0; s]). In viewof measurability of the functions  k all the sets Ak are measurable. Take an arbitraryr 2 (0; 1=k]. Then there exists a sequence rj : j = 1; 2; : : :g of rational numbers convergingto r from above. Since the function � is continuous and the function t ! �(B(x; t)) isnon-decreasing, we have for every x 2 Ak�(B(x; r))�(r) � limj!1 �(B(x; rj))�(rj) � sSo, if F � Ak is a Borel set and if f(xi; ri) : i = 1; 2; : : :g is a collection centered at the setF , covering F and of radius not exceeding 0 < r � 1=k, then1Xi=1 �(ri) � s�1 1Xi=1 �(B(xi; ri)) � s�1�(F )Hence, �r�(F ) � s�1�(F ) and letting r! 0 we get��(E) � ��(F ) � s�1�(F )By the assumption of (b), [kAk = A and therefore, putting Bk = Akn(A1[A2[: : :[Ak�1),k � 1, we see that the family fBk : k � 1g is a countable partition of A into Borel sets.Therefore, if E � A then��(E) = 1Xk=1��(E \Ak) � s�1 1Xk=1�(E \ Ak) = s�1�(E)So, letting s& C �nishes the proof. |In an analogous way one can prove the following.Theorem 6.6.2. Let n � 1 be an integer and let b(n) be the constant claimed in Theo-rem 6.5.1 (Besicovitch covering theorem). Assume that � is a Borel probability measureon IRn and A is a bounded subset of IRn. If there exists C 2 (0;1], (1=1 = 0), such that(a) for all x 2 A lim infr!0 �(B(x; r))�(r) � C16



then �(E) � b(n)C��(E) for every Borel set E � A.or (b) for all x 2 A lim infr!0 �(B(x; r))�(r) � C <1then ��(E) � C�1�(E) for every Borel set E � A. In particular ��(A) <1.Note that each Borel measure � de�ned on a Borel subset B of Rn can be in a canonicalway considered as a measure on IRn by putting �(A) = �(A \ B) for every Borel setA � IRn.As a simple consequence of Theorem 6.6.1 we shall prove the following.Theorem 6.6.3. Suppose that � is a Borel probability measure on IRn, n � 1, and A isa bounded Borel subset of IRn.(a) If �(A) > 0 and there exists �1 such that for every x 2 Alim infr!0 log�(B(x; r))log r � �1then HD(A) � �1.(b) If there exists �2 such that for every x 2 Alim infr!0 log�(B(x; r))log r � �2then HD(A) � �2.Proof. (a) Take any 0 < � < �1. Then, by the assumption, lim supr!0 �(B(x; r))=r� � 1.Therefore applying Theorem 6.6.1(b) with �(t) = t�, we obtain ��(A) � �(A) > 0. HenceHD(A) � � by de�nition (6.4.1) and consequently HD(A) � �1.(b) Take now an arbitrary � > �2. Then by the assumption lim supr!0 �(B(x; r))=r� �1. Therefore applying Theorem 6.6.1(a) with �(t) = t� we obtain ��(A) < 1, whenceHD(A) � � and consequently HD(A) � �1. The proof is �nished. |Recall that the Hausdor� dimension of a Borel measure has been de�ned in De�ni-tion 6.4.10. As a consequence of Theorem 6.6.3 we shall prove the following.Corollary 6.6.4. Suppose that � is a Borel probability measure on IRn, n � 1.(a) If there exists �1 such that for �-a.e. x 2 IRnlim infr!0 log�(B(x; r))log r � �1then HD(�) � �1(b) If there exists �2 such that for �-a.e. x 2 IRnlim infr!0 log�(B(x; r))log r � �2then HD(�) � �2. 17



Proof. (a) Let Y � IRn be a Borel set such that �(Y ) = 1. By the assumption thereexists a bounded Borel subset A � Y with �(A) > 0 such that for every x 2 Alim infr!0 log�(B(x; r))log r � �1Thus, applying Theorem 6.6.3(a) we get HD(Y ) � HD(A) � �1 and taking in�mum,HD(�) � �1.(b) Decompose now the space IRn into a countable union [kXk of Borel bounded setsXk and let X � IRn be a Borel set of measure 1 whose every point satis�es the assumptionsof Corollary 6.6.4. Applying for every k � 1 Theorem 6.6.3(b) with A = X \ Xk we getHD(X \Xk) � �2 and we are done applying Theorem 6.4.2 since HD(�) � HD(X). |De�nition 6.6.5. Let X be a Borel bounded subset of IRn, n � 1. A Borel probabilitymeasure on X is said to be a geometric measure with an exponent t � 0 if and only if thereexists a constant C � 1 such thatC�1 � �(B(x; r))rt � Cfor every x 2 X and every 0 < r � 1.We shall prove the following.Theorem 6.6.6. If X is a Borel bounded subset of IRn, n � 1, and � is a geometricmeasure on X with an exponent t, then BD(X) exists andHD(X) = PD(X) = BD(X) = tMoreover the three measures �, �t and �t on X are equivalent with bounded Radon-Nikodym derivatives.Proof. The last part of the theorem follows immediately from Theorem 6.6.1 and The-orem 6.6.2 applied for A = X. Consequently also t = HD(X) = PD(X) and there-fore, in view of Theorem 6.4.9, we only need to show that BD(X) � t. And indeed, letf(xi; r) : i = 1; : : : ; kg be a packing of X. Thenkrt � C kXi=1 �(B(xi; r)) � Cand therefore k � Cr�t. Thus P (X; r) � Cr�t, whence logP (X; r) � logC � t log r.Applying now formula (6.4.3) �nishes the proof. |In particular it follows from this theorem that every geometric measure admits exactly oneexponent. Lots of examples of geometric measures will be provided in the next chapters.18
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CHAPTER 7. CONFORMAL EXPANDING REPELLERSNov. 23, 2002Conformal expanding repellers (abbreviation: CER's) were de�ned already in Chapter 5and some basi properties of expanding sets and repellers in dimension 1 were disussedin Setion 5.2. A more advaned geometri theory in the real 1-dimensional ase wasdone in Setion 5.6 ???. But now we have a new tool: Frostman Lemma and relatedfats from Chapter 6. Equipped with the theory of Gibbs measures and with the pressurefuntion we are able to develop a geometri theory of CER's with Hausdor� measuresand dimension playing the ruial role. We shall present this theory for C1+" onformalexpanding repellers in IRd. Remind (Ch.5.2) that the assumed onformality fores ford = 2 that f is holomorphi or antiholomorphi and for d � 3 that f is loally a M�obiusmap. Conformality for d = 1 is meaningless, so we assume C1+" in order to be able to relyon the Bounded Distortion for Iteration lemma.We shall outline a theory of Gibbs measures from the point of view of multifra-tal spetra of dimensions (Se.2) and pointwise utuations due to the Law of IteratedLogarithm (Se.3) .For d = 2 we shall apply this theory to study the boundary of the immediate basinof attration to a sink for a rational mapping of the Riemann sphere in the ase the basinis simply-onneted and the mapping on the boundary is expanding, for example for themapping z 7! z2 +  for jj small, for a quasiirle invariant under the ation of a quasi-Fuhsian group ??????????????????????? and for the boundary of the "snowake". Inpartiular we study harmoni measure. We shall derive from this an information aboutthe radial growth of the derivative of the Riemann mapping from the unit dis to thesimply-onneted domain under onsideration.Setion 7.1.1. Pressure funtion and dimension.Let f : X ! X be a topologially mixing onformal expanding repeller in IRd. As before weabbreviate notation of the pressure P(f; �), to P(�). We start with the following tehniallemma.Lemma 7.1.1. Letm be a Gibbs state (not neesserily invariant) on X and let � : X ! IRbe a H�older ontinuous funtion. Assume P(�) = 0. Then there is a onstant E � 1 suhthat for all r small enough and all x 2 X there exists n = n(x; r) suh that(7.1.0) logE + Sn�(x)� logE � log j(fn)0(x)j � logm(B(x; r))log r � � logE + Sn�(x)logE � log j(fn)0(x)j :Proof. Take an arbitrary x 2 X. Fix r 2 (0; C�1�) and let n = n(x; r) � 0 be the largestinteger so that(7.1.1) j(fn)0(x)jrC � �;where C = CMD is the multipliative distortion onstant (orresponding to the H�olderontinuous funtion log jf 0j), as in the Distortion Lemma for Iteration (Theorem 4.2.1),1



see Notation 5.2.2.??? Then(7.1.2) f�nx (B(fn(x); �)) � B(x; �j(fn)0(x)j�1C�1) � B(x; r):Now take n0 suh that �n0�1 � C2. We then obtain(7.1.3) j(fn+n0)0jrC�1 � �:Hene, again by the Distortion Lemma for Iteration(7.1.4) f�n�n0x (B(fn+n0(x); �)) � B�x; �j(fn+n0)0(x)j�1C� � B(x; r):By the Gibbs property of the measure m, see (4.1.1), for a onstant E � 1 (the onstantC in (4.1.1)) we an writeE�1 � expSn�(x)m(f�nx (B(fn(x); �))) and expSn+n0�(x)m(f�(n+n0)x (B(fn+n0(x); �))) � E:Using this, (7.1.2), (7.1.4), the inequality Sn+n0�(x) � Sn�(x) + n0 inf �, and �nallyinreasing E so that the new logE is larger than the old logE � n0 inf �, we obtain(7.1.5) logE + Sn�(x) � logm(B(x; r)) � � logE + Sn�(x):Using now (7.1.1) and (7.1.3), denoting L = sup jf 0j, and applying logarithms, we obtainlogE + Sn�(x)log j(fn)0(x)j�1 � n0 logL+ log � � logm(B(x; r)log r � � logE + Sn�(x)log j(fn)0(x)j�1� :Inreasing further E so that logE � n0 logL� log �, we an rewrite it in the "symmetri"form of (7.1.0). |When we studied the pressure funtion � 7! P(�) in Chapters 2 and 4 the linear funtional 7! R  d�� appeared. This was the Gateaux di�erential of P at � (Theorem 2.5.5,Proposition 2.5.6 and (4.6.5')). Here the presene of an ambient smooth struture (1-dimensional or onformal) distingushes  's of the form�t log jf 0j. We obtain a link betweenthe ergodi theory and the geometry of the embedding of X into IRd.De�nition 7.1.2. Let � be an ergodi f -invariant probability measure on X. Then byBirkho�'s Ergodi Theorem, for �-almost every x 2 X, the limit limn!1 1n log j(fn)0(x)jexists and is equal to R log jf 0jd�. We all this number the Lyapunov harateristi expo-nent of the map f with respet to the measure � and we denote it by ��(f). In our aseof expanding maps onsidered in this Chapter we obviously have ��(f) > 0.This de�nition does not demand the expanding property. It makes sense for an arbitraryinvariant subset X of IRd or the Riemann sphere �CI, for f onformal (or di�erentiable inthe real ase) de�ned on a neighbourhood of X. There is no problem with the integrability2



beause log jf 0j is upper bounded on X. We do not exlude the possibility that �� = �1.The notion of a Lyapunov harateristi exponent will play a ruial role also in subsequenthapters where non-expanding invariant sets will be studied.Theorem 7.1.3. (Volume Lemma, expanding map, Gibbs measure ase). Letm be a Gibbs state for a topologially mixing onformal expanding repeller X 2 IRd anda H�older ontinuous potential � : X ! IR . Then for m-almost every point x 2 X thereexists the limit limr!0 logm(B(x; r))log r :Moreover, this limit is almost everywhere onstant and is equal to h�(f)=��(f), where �denotes the only f -invariant probability measure equivalent to m.Proof. We an assume that P(�) = 0. We an ahieve it by subtrating P(�) from �;the Gibbs measure lass will stay the same (see Proposition 4.1.4). In view of the Birkho�Ergodi Theorem, for �-a.e x 2 X we have.limn!1 1nSn�(x) = Z � d� and limn!1 1n log j(fn)0(x)j = ��(f):Combining these equalities with (7.8.0), along with the observation that n = n(x; r)!1as r ! 0, and using also the equality h�(f) + R �d� = P(�) = 0, we onlude thatlimr!0 log�(B(x; r))log r = h�(f)��(f) :The proof is �nished. |As an immediate onsequene of this lemma and Corolaries 6.6.4 and 6.6.4a we get thefollowing.Theorem 7.1.4. If � is a Gibbs state for a onformal expanding repeller X 2 IRd and aH�older ontinuous potential � on X, then there exist Hausdor� and paking dimensionsof � and HD(�) = PD(�) = h�(f)=��(f):Using the above tehnique we an �nd a formula for the Hausdor� dimension and otherdimensions of the whole set X. This is the solution of the non-linear problem, orre-sponding to the formula for Hausdor� dimension of the linear Cantor sets, disussed in theintrodution. As f is Lipshitz ontinuous (or as f is forward expanding), the funtionP(t) := P(�t log jf 0j)is �nite (see omments at the beginning of Setion 2.5). As jf 0j � � > 1, it follows diretlyfrom the de�nition that P(t) is stritly dereasing from +1 to �1. In partiular thereexists exatly one parameter t0 suh that P(t0) = 0. We prove �rst the following.3



Theorem 7.1.5. (Existene of geometri measures). Let t0 be de�ned by P(t0) = 0.Write � for �t0 log jf 0j restrited to X. Then eah Gibbs state m orresponding to thefuntion � is a geometri measure with the exponent t0. In partiular limr!0 logm(B(x;r))log r =t0 for every x 2 X.Proof. We put in (7.1.0) � = �t0 log jf 0j. Then using (7.1.1) (7.1.3) and sup jf 0j � L toreplae j(fn)0(x)j�1 by r we obtainlogE + t0 log r� logE + log r � logm(B(x; r))log r � � logE + t0 log rlogE + log rwith a orreted onstant E. Hene(7.1.6) logE + t0 log rlog r � logm(B(x; r))log r � � logE + t0 log rlog rfor further oreted E. In onsequenet0 � log�m(B(x; r))=E�log r and log�Em(B(x; r))�log r � t0;hene m(B(x; r))=E � rt0 and Em(B(x; r)) � rt0 :(In the denominators we passed in Proof of Theorem 7.1.1 from r to j(fn)0(x)j�1 and herewe passed bak, so at this point the proof ould be shortened. Namely we ould dedue(7.1.6) diretly from (7.1.5). However we needed to pass from j(fn)0(x)j�1 to r also innumerators and this point ould not be simpli�ed). |As an immediate onsequene of this theorem and Theorem 5.6.6 we get the following.Corollary 7.1.6. The Hausdor� dimension of X is equal to t0. Moreover it is equal tothe paking and Minkowski dimensions. All Gibbs states orresponding to the potential� = �t0 log jf 0j, as well as t0-dimensional Hausdor� and paking measures are mutuallyequivalent with bounded Radon-Nikodym derivatives.More on Volume Lemma. We end this setion with a version of the Volume Lemma fora Borel probability invariant measure on the expanding repeller (X; f). In Chapter 9 weshall prove this without the expanding assumption assuming only positivity of Lyapunovexponent (though assuming also ergodiity) and the proof will be diÆult. So we prove �rsta simpler version, whih will be needed already in the next setion. We start with a simplefat following from Lebesgue Theorem of di�erentiability a.e. ([Lojasiewiz, Th.7.1.4℄) Weprovide a proof sine it is very muh in the spirit of Chapter 6.Lemma 7.1.7. Every non-dereasing funtion k : I ! IR de�ned on a bounded losedinterval I � IR is Lipshitz ontinuous at Lebesgue almost every point in I. In other words,for every " > 0 there exist L > 0 and a set A � I suh that jI n Aj < ", where j � j is theLebesque measure in IR, and at eah r 2 A the funtion k is Lipshitz ontinuous with theLipshitz onstant L. 4



Proof. Suppose on the ontrary, thatB = fx 2 I : supfy 2 I : x 6= y; jk(x)� k(y)jjx� yj g =1ghas positive Lebesgue measure. Write I = [a; b℄. We an assume, by taking a subset, thatB is ompat and ontains neither a nor b. For every x 2 B hoose x0 2 I; x0 6= x suhthat(7.1.6') jk(x)� k(x0)jjx� x0j > 2k(b)� k(a)jBj :Replae eah pair x; x0 by y; y0 with (y; y0) � [x; x0℄, and y; y0 so lose to x; x0 that (7.1.6')still holds for y; y0 instead of x; x0. In ase when x or x0 equals a or b we do not makethe replaement.) We shall use for y; y0 the old notation x; x0 assuming x < x0. Now fromthe family of intervals (x; x0) hoose a �nite family I overing our ompat set B. Fromthis family it is possible to hoose a subfamily of intervals whose union still overs B andwhih onsists of two subfamilies I1 and I2 of pairwise disjoint intervals.Indeed. Start with I1 = (x1; x01) 2 I with minimal possible x = x1 and maximal inI in the sense of inlusion. Having found I1 = (x1; x01); :::; In = (xn; x0n) we hoose In+1as follows. Consider In+1 := f(x; x0) 2 I : x 2 Si=1;:::;n Ii; x0 > supi=1;:::;n x0ig. If In+1is non-empty, we set (xn+1; x0n+1) so that x0n+1 = maxfx0 : (x; x0) 2 In+1g. If In+1 = ;,we set (xn+1; x0n+1) so that xn+1 is minimal possible to the right of maxfx0i : i = 1; :::; ngor equal to it, and maximal in I. In this onstrution the intervals (xn; x0n) with even nare pairwise disjoint, sine eah (xn+2; x0n+2) has not been a member of In+1. The sameis true for odd n's. We de�ne Ii for i = 1; 2 as the family of (xn; x0n) for even, respetivelyodd, n. In view of the pairwise disjointness intervals of families I1 and I2, monotoniityof k and (7.1.6'), we get thatk(b)� k(a) � Xn2I1 k(x0n)� k(xn) > 2k(b)� k(a)jBj Xn2I1(x0n � xn)and the similar inequality for n 2 I2. Hene, taking into aount that I1 [ I2 overs B,we get2(k(b)� k(a)) > 2k(b)� k(a)jBj Xn2I1[I2(x0n � xn) � 2k(b)� k(a)jBj jBj = 2(k(b)� k(a));whih is a ontradition �nishing the proof. |Corollary 7.1.8. For every Borel probability measure � on a ompat metri spae (X; �)and for every r > 0 there exists a �nite partition P = fPt; t = 1; :::;Mg of X into Borelsets of positive measure � and with diam(P) � r and there exists C > 0 suh that forevery a > 0(7.1.7) �(�P;a) � Ca;where �P;a := Tt�Ss6=tB(Ps; a)�. 5



Proof. Let fx1; :::; xNg be a �nite r=4-net in X. Fix " 2 (0; r=4N). For eah funtiont 7! ki(t) := �(B(xi; t)), t 2 I = [r=4; r=2℄, apply Lemma 7.1.7 and �nd appropriate Liand Ai, for all i = 1; :::; N . Let L = maxfLi; i = 1; :::; Ng and let A = Ti=1;:::;N Ai. Theset A has positive Lebesgue measure by the hoie of ". So, we an hoose its point r0di�erent from r=4 and r=2. Therefore, for all a < a0 := minfr0� r=4; r=2� r0g and for alli 2 f1; 2; : : : ; ng; we have �(B(xi; r0 + a) nB(xi; r0 � a)) � 2La. Hene, putting�(a) =[i B(xi; r0 + a) nB(xi; r0 � a));we get �(�(a)) � 2LNa. De�ne P = fTNi=1B�(i)(xi; r0)g as a family over all funtions � :f1; :::; Ng ! f+;�g, where B+(xi; r0) := B(xi; r0) and B�(xi; r0) := X nB(xi; r0), exept� yielding sets of measure 0, in partiular exept empty intersetions. After removing fromX of a set of measure 0, the partition P overs X. Sine r0 � r=4, the balls B(xi; r0)over X. Hene, for eah non-empty Pt 2 P at least one value of � is equal to +. Henediam(Pt) � 2r0 < r. Note now that �P;a � �(a). Indeed, let x 2 �P;a. Sine P overs Xthere exists t0 suh that x 2 Pt0 so x =2 Pt for all t 6= t0. However, sine x 2 St6=t0 B(Pt; a),there exists t1 6= t0 suh that dist(x; Pt1) < a. Let B = B(xi; r0) be suh that Pt0 � B+and Pt1 � B�, or vie versa. In the ase when x 2 Pt0 � B+, by the triangle inequality�(x; xi) > r0 � a and sine �(x; xi) < r0, we get x 2 �(a). In the ase x 2 Pt0 � B� wehave x 2 B(xi; r0 + a) n B(xi; r0) � �(a). We onlude that �(�P;a)) � �(�(a) � 2LNafor all a < a0. For a � a0 it suÆes to take C � 1=a0. So the orollary is proved, withC = maxf2LN; 1=a0g. |Remark. If X is embedded for example in a ompat manifold Y , then we an view � asa measure on Y , we �nd a partition P of Y and then �P;a = B(St=1;;;:M �Pt; a), providedM � 2. This justi�es the notation �P;a.Corollary 7.1.9. Let � be a Borel probability measure on a ompat metri spae (X; �)andlet f : X ! X be an endomorphism measurable with respet to the Borel �-algebra onX and preserving measure �. Le for every r > 0 let P = fPt; t = 1; :::;Mg be the partitionof X onstruted in Corollary 7.1.8. In partiular diam(P � r. Then for every Æ > 0 and�-a.e. x 2 X there exists n0 = n0(x) suh that for every n � n0(7.1.8) B(fn(x); exp(�nÆ)) � P(fn(x))Proof. Let P be the partition from Corollary 7.1.8. Fix an arbitrary Æ > 0. Then byCorollary 7.1.8 1Xn=0 �(�P;exp(�nÆ))) � 1Xn=0C exp(�nÆ) <1:Hene by the f -invariane of �, we obtain1Xn=0 �(f�n(�P;exp(�nÆ))) <1:6



Applying now the Borel-Cantelli lemma for the family ff�n(�P;exp(�nÆ))g1=1 we onludethat for �-a.e x 2 X there exists n0 = n0(x) suh that for every n � n0 we have x =2f�n(�P;exp(�nÆ)), so fn(x) =2 �P;exp(�nÆ). Hene, by the de�nition of �P;exp(�nÆ), if fn(x) 2P for some P 2 P, then fn(x) =2 Ss6=tB�Ps; exp(�nÆ)�. ThusB(fn(x); exp�nÆ) � P:We are done. |Theorem 7.1.10. (Volume Lemma, expanding map, any measure ase). Let �be an f -invariant Borel probability measure on a topologially exat onformal expandingrepeller (X; f), where X � IRd.ThenHD�(�) � h�(f)��(f) � HD�(�):If in addition � is ergodi, then HD(�) = h�(f)��(f) :Proof. Fix the partition P oming from Lemma 7.1.8 with r = minf�; �g, where � > wasde�ned in (3.1.1). Then, as we saw in Chapter 4(7.1.10) Pn+1(x) � f�nx (B(fn(x); �)):for every x 2 X and all n �. We shall work now to get a sort of opposite inlusion.Consider an arbitrary Æ > 0 and x so that (7.1.8) from Corollary 7.1.9 is satis�ed foral n � n0(x). For every 0 � i � n de�ne k(i) = [i Ælog � + log �log � ℄ + 1, � > 1 being theexpanding onstant for f : X ! X (see (3.1.1)). Hene exp(�iÆ) � ���k and thereforef�kfi(x)(B(f i+k(x); �)) � B(f i(x); exp�iÆ). So, using (7.1.8) for i in plae of n, we getf�(i+k)x (B(f i+k(x); �)) � f�ix (P(f i(x))for all i � n0(x). From this estimate for all n0 � i � n, we onlude thatf�(n+k(n))x (B(fn+k(n)(x); �) � Pn+1n0 (x):Notie that for �-a.e. x there is a > 0 suh that B(x; a) � Pn0(x), by the de�nition of�P;� . Therefore for all n large enough(7.1.11) f�(n+k(n))x (B(fn+k(n)(x); �)) � Pn(x):It follows from (7.1.11) and (7.1.10) with n+ k(n) in plae of n, thatlimn!1 1n � log �(Pn(x)) � lim infn!1 � log ��f�(n+k(n))x (B(fn+k(n)(x); �))�n� lim supn!1 � log �(f�(n+k(n))x (B(fn+k(n)(x); �))n� limn!1 1n � log �(Pn(x))(Pn+k(n)+1)(x):7



The limits on the most left and most right-hand sides of these inequalities exist for �-a.e.x by the Shennon-MMillan-Breiman Theorem (Theorem 1.5.4), see also (1.5.1), and theirratio is equal to 1. Letting Æ ! 0 we obtain the existene of the limit and the equality(7.1.12) h�(f;P; x) := limn!1 1n � log �(Pn(x))(Pn)(x) = limn!1 � log �(f�nx (B(fn(x); �))n :In view of Birkho�'s Ergodi Theorem, thelimit(7.1.13) ��(f; x) := limn!1 1n log j(fn)0(x)j;exists for �-a.e. x 2 X. Dividing side by side (7.1.12) by (7.1.13) and using (7.1.1)-(7.1.4),we get limr!0 log �(B(x; r))log r = h�(f;P; x)��(f; x) :Sine by the Shennon-MMillan-Breiman Theorem, and Birkho�'s Ergodi Theorem,R h�(f;P; x) d�(x)R ��(f; x) d� = h�(f;P)��(f) : = h�(f)��(f) ;where the latter equality was written sine f is expansive and diam(P) is less than theexpansiveenss onstant of f : X ! X whih at least exesds �, there thus exists a pos-itive measure set where h�(f;P;x)��(f;x) � h�(f)��(f) and a positive measure set where the oppositeinequality holds. Therefore limr!0 log �(B(x; r))log r � h�(f)��(f)and the opposite inequality also holds on a positive measure set. In view of de�nitionsof HD� and HD� and by Corollary 6.6.4, this �nishes the proof of the �rst part of ourTheorem. In the ergodi ase h�(f;P; x) = h�(f) and ��(f; x) = ��(f) for �-a.e. x 2 X.So limr!0 log �(B(x; r))log r = h�(f)��(f)and we are done in this ase as well. |Setion 7.8. Multifratal analysis of Gibbs state.In the previous setion we linked to a (Gibbs) measure only one dimension number, HD(m).Here one of our aims is to introdue 1-parameter families of dimensions, so-alled spetraof dimensions. In these de�nitions we do not need the mapping f . Let � be a Borelprobability measure on a metri spae X. Reall from Chapter 6.7 that given x 2 X wede�ned the lower and upper pointwise dimension of � at x by putting respetivelyd�(x) = lim infr!0 log �(B(x; r))log r and d�(x) = lim supr!0 log �(B(x; r))log r :8



If d�(x) = d�(x), we all the ommon value the pointwise dimension of � at x and wedenote it by d�(x). The funtion d� is alled the dimension spetrum of the measure �.For any � � 0 � 1 write X�(�) = fx 2 X : d�(x) = �g:The domain of d� namely the set S�X�(�) is alled a regular part of X and its omplementX̂ a singular part. The deomposition of the set X asX = [0���1X�(�) [ X̂:is alled the multifratal deomposition with respet to the dimension spetrum.De�ne the F�(�)-spetrum for dimensions funtion related to Hausdor� dimension byF�(a) = HD(X�(�));where we de�ne the domain of F� as f� : X�(�) 6= ;g.Note that by Theorem 7.1.5 if (X; f) is a topologially exat expanding onformalrepeller and � = ��HD(X) log jf 0j then allX�(�) are empty exeptX�(HD(X)). In partiularthe domain of F� is in this ase just one point HD(X).Let for every real q 6= 1 Rq(�) := 1q � 1 limr!0 logPNi=1 �(Bi)qlog r ;where N = N(r) is the total number of boxes Bi of the form Bi = f(x1; :::; xd) 2 IRd :rkj � xj � r(kj + 1); j = 1; :::; dg for integers kj = kj(i) suh that �(Bi) > 0. Thisfuntion is alled R�enyi spetrum for dimensions, provided the limit exists. It is easy tohek (exerise 7.2.1) that it is equal to the Hentshel-Proaia spetrumHPq(�) := 1q � 1 limr!0 log infGr PB(xi;r)2Gr �(B(xi; r))qlog r ;where in�mum is taken over all Gr being �nite or ountable overings of the (topologial)support of � by balls of radius r entered at xi 2 X, orHPq(�) := 1q � 1 limr!0 log RX �(B(x; r))q�1d�(x)log rprovided the limits exist. For q = 1 we de�ne the information dimension I(�) as follows.Set H�(r) = infFr �� XB2Fr �(B) log �(B)�;9



where in�mum is taken over all partitions Fr of a set of full measure � into Borel sets Bof diameter at most r. We de�ne I(�) = limr!0 H�(r)� log rprovided the limit exists. A omplement to Corollary 6.6.4 is that(7.8.0) HD�(�) � I(�) � PD�(�):For the proof see Exerise 7.2.5.Note that for R�enyi and HP dimensions it does not makeany di�erene whether we onsider overings of the topologial support (the smallest losedset of full measure) of a measure or any set of full measure, sine all balls have the sameradius r, so we an always hoose loally �nite (number independent of r) subovering.These are "box type" dimension quantities.A priori there is no reason for the funtion F�(�) to behave niely. If � is an f -invariantergodi measure for (X; f), a topologially exat onformal expanding repeller, then at leastwe know that for �0 = HD(�), we have d�(x) = �0 for �-a.e. x (by the Volume Lemma:7.1.3 and Theorem 7.1.4 for a Gibbs measure � of a H�older ontinuous funtion and byTheorem 7.1.10 in the general ase). So, in partiular we know at least that the domainof F�(�) is nonempty. However for � 6= �0 we have then �(X�(�)) = 0 so X�(�) are notvisible for the measure �. Whereas the funtion HPq(�) an be determined by statistialproperties of �-typial (a.e.) trajetory, the funtion F�(�) seems intratable. Howeverif � = �� is an invariant Gibbs measure for a H�older ontinuous funtion (potential) �,then miraulously the above spetra of dimensions happen to be real-analyti funtionsand �F��(�p) and HPq(��) are mutual Legendre transforms. Compare this with thepair of Legendre-Fenhel transforms: pressure and -entropy, Remark 2.5.3. Thus �x aninvariant Gibbs measure �� orresponding to a H�older ontinuous potential �. We anassume without loosing generality that P(�) = 0. Indeed, starting from an arbitrary �, wean ahieve this without hanging �� by subtrating from � its topologial pressure (as atthe beginning of the proof of Lemma 7.1.3). Having �xed �, in order to simplify notation,we denote X��(�) by X� and F�� by F . We de�ne a two-parameter family of auxiliaryfuntions �q;t : X ! IR for q; t 2 IR, by setting�q;t = �t log jf 0j+ q�:Lemma 7.8.1. For every q 2 IR there exists a unique t = T (q) suh that P(�q;t) = 0.Proof. This lemma follows from the fat the funtion t 7! P(�q;t) is dereasing from1 to�1 for every q (see omments preeding Theorem 7.1.5 and at the beginning of Setion2.5) and the Darboux theorem. |We deal with invariant Gibbs measures ��q;T(q) whih we denote for abbreviation by �qand with the measure �� so we need to know a relation between them. This is explainedin the following. 10



Lemma 7.8.2. For every q 2 IR there exists C > 0 suh that for all x 2 X and r > 0(7.8.1) C�1 � �q(B(x; r))rT (q)��(B(x; r))q � C:Proof. Let n = n(x; r) be de�ned as in Lemma 7.1.1. Then, by (7.1.5), (7.1.1) and (7.1.3),the ratios ��(B(x; r))expSn�(x) ; �q(B(x; r))j(fn)0(x)j�T (q) exp qSn�(x) ; rj(fn)0(x)j�1are bounded from below and above by positive onstants independent of x; r. This yieldsthe estimates (7.8.1) |Let us prove the following.Lemma 7.8.3. For any f -invariant ergodi probability measure � on X and for � -a.e.x 2 X we have d��(x) = R �d�� R log jf 0jd� :Proof. Using formula (7.1.0) in Lemma 7.1.1 and Birkho� 's Ergodi Theorem, we getd��(x) = limn!1 Sn�(x)log j(fn)0(x)j�1 = limn!1 1nSn�(x)limn!1 1n log j(fn)0(x)j�1 = R �d�� R log jf 0jd� : |One an onlude from this, that the singular part X̂ of X has zero measure for everyf -invariant � . Yet the set X̂ is usually big, see Exerise 7.2.4.On the Legendre transform. Let k = k(q) : I ! IR be a onvex funtion on I =[�1(k); �2(k)℄ where �1 � �1(k) � �2(k) � 1 (i.e. I is either a point or a losed intervalor a semiline or IR). The Legendre transform of k is the funtion g of a new variable pde�ned by g(p) = supq2Ifpq � k(q)geverywhere where a �nite supremum exists. It an be easily proved (Exerise 7.2.2) thatthe domain of g is also either a point, or a losed interval or a semiline or IR. It is alsoeasy to show that g is onvex and that the Legendre transform is involutive. We then saythat the funtions k and g form a Legendre transform pair.Proposition 7.8.4. If two onvex funtions k and g form a Legendre transform pairthen g(k0(q)) = qk0(q)� k(q), where k0(q) is any number between the left and right handside derivative of k at q, whih are de�ned as �1;1 at �1(k), �2(k) respetively, ifthese end points are �nite. We set 0 � �1 = 0 in ase k0 = �1 at q = �i(k) = 0. If11



�2(k) = 1 (similarly if �1(k) = �1), then for k0(1) de�ned as limq!1 k0(q), it holdsg(k0(1)) = limq!1 g(k0(q)).Note that if k is C2 with k00 > 0, therefore stritly onvex, then also g00 > 0 at all pointsk0(q) for �1(k) < q < �2(k), therefore g is stritly onvex on [k0(�1(k)); k0(�2(k))℄. Outsidethis interval g is aÆne in its domain. If the domain of k is one point then g is aÆne on IRand vie versa.We are now in position to formulate our main theorem in this setion gathering in partiularsome fats already proven.Theorem 7.8.5.(a) The pointwise dimension d��(x) exists for ��-almost every x 2 X andd��(x) = R �d��� R log jf 0jd�� = HD(��) = PD(��):(b) The funtion q 7! T (q) for q 2 IR, is real analyti, T (0) = HD(X), T (1) = 0,T 0(q) = R �d�qR log jf 0jd�q < 0 and T 00(q) � 0.() For all q 2 IR we have �q(X�T 0(q)) = 1, where �q is the invariant Gibbs measure forthe potential �q;T (q), and HD(�q) = HD(X�T 0(q)).(d) For every q 2 IR, F (�T 0(q)) = T (q)� qT 0(q), i.e. p 7! �F (�p) is Legendre transformof T (q).If the measures �� and ��HD(X) log jf 0j (the latter disussed in Theorem 7.1.5 andCorollary 7.1.6) do not oinide, then T 00 > 0 and F 00 < 0, i.e. the funtions T and Fare respetively stritly onvex on IR, and stritly onave on [�T 0(1);�T 0(�1)℄whih is a bounded interval in IR+ = f� 2 IR : � > 0g. If �� = ��HD(X) log jf 0j thenT is aÆne and the domain of F is one point �T 0.(e) For every q 6= 1 the HP and R�enyi spetra exist (i.e. limits in the de�nitions exist)and T (q)1�q = HPq(��) = Rq(��). For q = 1 the information dimension I(��) existsand limq!1;q 6=1 T (q)1� q = �T 0(1) = HD(��) = PD(��) = I(��):Insert Figures: graph of T , graph of F [Pesin, p.219, 220℄Proof. 1. Sine P(�) = 0, the part (a) is an immediate onsequene of Lemma 7.1.3and its seond and third equalities follow from Theorem 7.1.4. The �rst equality is also aspeial ase of Lemma 7.8.3 with � = ��.2. We shall prove some statements of the part (b). The funtion �q;t = �t log jf 0j + q�,from IR2 to C�(X), where � is a H�older exponent of the funtion �, is aÆne. Sine bya result of Ruelle (see [Ru℄)??????? the topologial pressure funtion P : C� ! IR is12



real analyti, then the omposition whih we denote P(q; t) is real analyti. Hene thereal analytiity of T (q) follows immediately from the Impliit Funtion Theorem one weverify the non-degeneray assumption. In fat C2-smoothness of P(q; t) is suÆient toproeed further (here only C1), whih has been proved in Theorem 4.7.4. Indeed, due toTheorem 4.6.5 for every (q0; t0) 2 IR2(7.8.2) �P(q; t))�t j(q0;t0) = � ZX log jf 0jd�q0;t0 < 0;where �q0;t0 is the invariant Gibbs state of the funtion �q0;t0 . Di�erentiating with respetto q the equality P(q; t) = 0 we obtain(7.8.3) 0 = �P(q; t)�t j(q;T (q)) � T 0(q) + �P(q; t))�q j(q;T (q))hene we obtain the standard formulaT 0(q) = ��P(q; t))�q j(q;T (q)).�P(q; t)�t j(q;T (q));Again using (4.6.5') and P(�q;T (q)) = 0, we obtain(7.8.4) T 0(q) = R �d�qR log jf 0jd�q � �h�q (f)R log jf 0jd�q < 0;the latter true sine the entropy of any invariant Gibbs measure for H�older funtion is pos-itive, see for example Theorem 4.2.7. The equality T (0) = HD(X) is just Corollary 7.1.2.T (1) = 0 follows from the equality P(�) = 0.3. The inequality T 00(q) � 0 follows from the onvexity of P(q; t), see Theorem 2.5.2.Indeed the assumption that the part of IR3 above the graph of P(q; t) is onvex impliesthat its intersetion with the plane (q; t) is also onvex. Sine �P(q;t))�t j(q0;t0) < 0, this is thepart of the plane above the graph of T . Hene T is a onvex funtion. We avoided in theabove onsideration an expliit omputation of T 00. However to disuss strit onvexity(a part of (d)) it is neessary to ompute it. Di�erentiating (7.8.3) with respet to q weobtain the standard formula(7.8.5) T 00(q) = T 0(q)2 �2P(q;t)�t2 + 2T 0(q)�2P(q;t)�q�t + �2P(q;t)�q2��P(q;t)�twith the derivatives of P taken at (q; T (q)). The numerator is equal to�T 0(q) ��t + ��q�2P(q; t) = �2�q (�T 0(q) log jf 0j+ �)by Theorem 4.7.4, sine this is the seond order derivative of P : C(X) ! IR in thediretion of the funtion �T 0(q) log jf 0j+ �.13



The inequality �2 � 0, true by de�nition, implies T 00 � 0 sine the denominator in(7.8.5) is positive by (7.8.2).By Theorem 1.11.3 �2�q (�T 0(q) log jf 0j+ �) = 0 if and only if the funtion�T 0(q) log jf 0j+� is ohomologous to a onstant, say to a. It follows then from the equalityin (7.8.4) that a = R a d�q = R (�T 0(q) log jf 0j + �)d�q = 0. Therefore T 0(q) log jf 0j isohomologous to � and, as P(�) = 0, also P(T 0(q) log jf 0j) = 0. Thus, by Theorem 7.1.5and Corollary 7.1.2, T 0(q) = �HD(X) and onsequently � is ohomologous to the funtion�HD(X) log jf 0j. This implies that �� = ��HD(X) log jf 0j, the latter being the equilibrium(invariant Gibbs) state of the potential �HD(X) log jf 0j. Therefore, in view of our formulafor T 00, if �� 6= ��HD(X) log jf 0j, then T 00(q) > 0 for all q 2 IR.4. We prove (). By Lemma 7.8.3 applied to � = �q, there exists a set ~Xq � X, of fullmeasure �q, suh that for every x 2 ~Xq there existsd��(x) = limr!0 log��(B(x; r))log r = R �d�q� R log jf 0jd�q = �T 0(q):the latter proved in (b). Hene ~Xq � X�T 0(q). Therefore �q(X�T 0(q)) = 1. By Lemma7.8.2 for every B = B(x; r)j log�q(B)� T (q) log r � q log��(B)j < Cfor some onstant C 2 IR. Hene(7.8.6) ��� log�q(B)log r � T (q)� q log��(B)log r ���! 0as r! 0. Using (7.8.6), observe that for every x 2 X�T 0(q), in partiular for every x 2 ~Xq,limr!0 log�q(B)log r = T (q) + q limr!0 log��(B)log r = T (q)� qT 0(q):Although ~Xq an be muh smaller than X�T 0(q), miraulously their Hausdor� dimensionsoinide. Indeed the measure �q restrited to either ~Xq or to X�T 0(q) satis�es the assump-tions of Theorem 6.6.3 with �1 = �2 = T (q)� qT 0(q). Therefore(7.8.7) HD( ~Xq) = HD(X�T 0(q)) = T (q)� qT 0(q)and onsequently F (�T 0(q)) = T (q)� qT 0(q):Remarks. (a) If we take a set larger than X�T 0(q), namely replaing in the de�nitionof X�(�) the dimension d� by the lower dimension d� we still obtain the same Hausdor�dimension, again by Theorem 6.6.3.(b) Some authors replae in the de�nition of X�(�) the value d�(x) by d�(x). Thenthere is no singular part. In view of a) the F�(�) spetrum is the same for � = ��.14



() Notie that (7.8.7) means that HD(X�T 0(q)) is the value where the straight linetangent to the graph of T at (q; T (q)) intersets the range axis.In the next steps of the proof the following will be useful.Claim. (Variational Priniple fo T .) For any f -invariant ergodi probability measure �on X, onsider the following linear equation of variables q; tZ �q;td� + h� (f) = 0that is(7.8.8) t = t� (q) = h� (f)R log jf 0jd� + q R �d�R log jf 0jd� :Then for every q 2 IR T (q) = sup� ft� (q)g = t�q (q);Where the supremum is taken over all f -invariant ergodi probability measures � on X.Proof of the Claim. Sine R �q;td� + h� (f) � P(�q;t) and sine �P(q;t)�t < 0 (omparethe proof of onvexity of T ), we obtaint� (q) � T (q):On the other hand by (7.8.8), and using P(�q;T (q) = 0, we obtaint�q (q) = h�q (f) + q R �d�qR log jf 0jd�q = T (q) R log jf 0jd�qR log jf 0jd�q = T (q):The Claim is proved. |5. We ontinue Proof of Theorem 7.8.5. We shall prove the missing parts of (d). We havealready proved ithatF (�T 0(q)) = HD(X�T 0(q)) = HD(�q) = T (q)� qT 0(q):Note that [�T 0(1);�T 0(�1)℄ � IR+ [ f0;1g sine T 0(q) < 0 for all q. Note �nally that�T 0(�1) = limq!�1 � R �d�qR log jf 0jd�q � sup(��)inf log jf 0j <1and �T 0(1) = limq!1 � R �d�qR log jf 0jd�q :15



The expressions under lim are positive, (see (7.8.4)). It is enough now to prove that theyare bounded away from 0 as q ! 1. To this end hoose q0 suh that T (q0) < 0. By ourClaim (Variational Priniple for T ) t�q (q0) � T (q0). Sine t�q (0) � 0, we get�q0 R �d�qR log jf 0jd�q = t�q (0)� t�q (q0) � jT (q0)j:Hene �R �d�qR log jf 0jd�q � jT (q0)j=q0 > 0 for all q.6. To end the proof of (d) we need to prove the formula for F at �T 0(�1) (in ase Tis not aÆne) and to prove that for � =2 [�T 0(1);�T 0(�1)℄ the sets X��(�) are empty.First note the following.6a. For any f -invariant ergodi probability measure � on X, there exists q 2 IR [ f�1gsuh that(7.8.9) R �d�R log jf 0jd� = R �d�qR log jf 0jd�q :(limq!�1 in the �1 ase).Indeed, by the Claim the graphs of the funtions t� (q) and T (q) do not intersettransversally (they an be only tangent) and hene the �rst graph whih is a straight line,is parallel to a tangent to the graph of T at a point (q0; T (q0), or one of its asymptots,at �1 or +1. Now (7.8.9) follows from the same formula (7.8.8) for � = �q0 , sine thegraph of t�q0 is tangent to the graph of T just at (q0; T (q0)). (Note that the latter senteneproves the formula T 0(q) = R �d�qR log jf 0jd�q in a di�erent way than in 2, namely via VariationalPriniple for T .).6b. Proof that X� = ; for � =2 [�T 0(1);�T 0(�1)℄. Suppose there exists x 2 X with� := d��(x) =2 [�T 0(1);�T 0(�1)℄. Consider any sequene of integers nk ! 1 and realnumbers b1; b2 suh thatlimk!1 1nk Sn�(x) = b1; limk!1 1nk (� log j(fn)0(x)j) = b2and b1=b2 = �. Let � be any weak�-limit of the sequene of measures�nk := 1nk nk�1Xj=0 Æfj(x);where Æfj(x) is the Dira measure supported at f j(x), ompare Remark 2.1.14a. ThenR �d� = b1 and R (� log jf 0j)d� = b2. Due to Choquet Theorem (Setion 2 1) (or dueto the Deomposition into Ergodi Components Theorem, Theorem 1.8.8) we an assumethat � is ergodi. Indeed, � is an "average" of ergodi measures. So among all ergodi16



measure � involved in the average, there is �1 suh that R �d�1R � log jf 0jd�1 � � and �2 suh thatR �d�2R � log jf 0jd�2 � �. If � < �T 0(1) we onsider �1 as an ergodi � , if � > �T 0(�1) weonsider �2. For the ergodi � found in this way, the limit � an be di�erent than for theoriginal � , but it will not belong to [�T 0(1);�T 0(�1)℄ and we shall use the same symbol� to denote it. By Birkho�'s Ergodi Theorem applied to the funtions � and log jf 0j, for� -a.e. x we have limn!1 Sn(�)(x)� log j(fn)0(x)j = �. Hene, applying Lemma 7.8.3, we get� = d��(x) = R �d�� R log jf 0jd� :Finally notie that by (7.8.9) there exists q 2 IR suh that � = R �d�q�R log jf 0jd�q , whene� 2 [�T 0(1);�T 0(�1)℄. This ontradition �nishes the proof. |Remark. We have proved in fat that for all x 2 X any limit number of the quotienlog��(B(x; r)= log r as r! 0 lies in [�T 0(1);�T 0(�1)℄, the fat stronger than d��(x) 2[�T 0(1);�T 0(�1)℄ for all x in the regular part of X.6. F (�T 0(�1)) = HD�X�T 0(�1)�. Consider any � being a weak*-limit of a subse-quene of �q as q tends to, say, 1. We shall try to proeed with � similarly as we didwith �q, though we shall meet some diÆulties. We do not know whether � is ergodi (andhoosing an ergodi one from the ergodi deomposition we may loose the onvergene�q ! �). Nevertheless using Birkho� Ergodi Theorem and proeeding as in the proof ofLemma 7.8.3, we getR limn!1 1nSn�(x) d�(x)� R limn!1 1n log j(fn)0(x)j d�(x) = R � d�� R log jf 0j d� = limq!1 R �d�q� R log jf 0jd�q= limq!1(�T 0(q)) = �T 0(1)with the onvergene over a subsequene of q's. Sine we know already thatd��(x) = limn!1 1nSn�(x)� limn!1 1n log j(fn)0(x)j � �T 0(1);we obtain for every x in a set ~X� of full measure � that the limit d� (x) = �T 0(1). Weonlude with ~X� � X�T 0(1). Now we use the Volume Lemma for the measure � . Thereis no reason for it to be Gibbs, neither ergodi, so we need to refer to the version of VolumeLemma oming from Theorem 7.1.10. We obtainHD(X�T 0(1)) � HD�(�) � h� (f)R log jf 0j d� � lim infq!1 h�q (f)��q (f)= limq!1T (q)� qT 0(q) = F (�T 0(1)):17



We have used here the upper semiontinuity of the entropy funtion � ! h�(f) at � dueto the expanding property (see Theorem 2.4.6). It is only left to estimate HD(X�T 0(1))from above. As for �q, we have for every q and x 2 X�T 0(1) (see (7.8.6)) thatlimr!0 log�q(B)log r = T (q) + q limr!0 log��(B)log r = T (q)� qT 0(1) � T (q)� qT 0(q);Hene HD(X�T 0(1)) � T (q) � qT 0(q). Letting q ! 1 we obtain HD(X�T 0(1)) �F (�T 0(1)).7. HP and R�enyi spetra. Reall that topologial supports of �� and �q are equalto X, sine these measures as Gibbs states for H�older funtions, do not vanish on opensubsets of X due to Proposition 4.2.5. For every Gr a �nite or ountable overing X byballs of radius r of multipliity at most C we have1 � XB2Gr �q(B) � C:Hene, by Lemma 7.8.2 C�1 � rT (q) XB2Gr ��(B)q � Cwith an appropriate another onstant C. Taking logarithms and, for q 6= 1, dividing by(1� q) log r yields (e) for q 6= 1.8. Information dimension. For q = 1 we have limq!1;q 6=1 T (q)1�q = �T 0(1) by thede�nition of derivative. It is equal to HD(��) = PD(��) by (a) and (b) and equal to I(��)by Exerise 7.8.5. |Exerises7.2.1. Prove the equalities of R�enyi and Hentshel-Proaia spetra.7.2.2. Prove Proposition 7.8.4 about Legendre transform pairs and remarks preedingand following it.7.2.3. Prove for � = �T 0(1) that F (�) = � and F 0(�) = 1 (see Fig.1.) andF 0(�T 0(�1)) = �1.7.2.4. Prove that if � is not ohomologous to �HD(X) log jf 0j then the singular partX̂ of X is nonempty. Moreover HD(X̂) = HD(X).Hint: Using the Shadowing Lemma from Chapter 3, �nd trajetories that have blokslose to bloks of trajetories typial for ��HD(X) log jf 0j of length N interhanging withbloks lose to bloks typial for �� of length "N , for N arbitrarily large and " > 0arbitrarily small.7.2.5. De�ne the lower and upper information dimension I(�) and I(�) replaing inthe de�nition of I(�) the limit limr by the lower and upper limits respetively. Prove thatHD�(�) � I(�) � I(�) � PD�(�), see (7.8.0).Sketh of the proof. For an arbitrary " > 0 there exist C > 0 and A � X, with�(X n A) � " suh that for all r small enough there exists a partition Fr of A, satisfying18



H�(r) + " � �PB2Fr �(B) log �(B) � PB2Fr �(B)HD�(�) log 1CdiamB � HD�(�)(1 �") log 1Cr .On the other hand for the partition Br of X into intersetions with boxes (ubes) ofsides of length r (ompare Proposition 6.4.6 and the partition involved in the de�nition ofR�enyi dimension, but onsider here disjoint ubes, that is open from one side), we haveI(�) = lim supr!0 H�(r)� log r � lim supr!0 �PB2Br �(B) log �(B)� log r � lim supr!0 R log �(Br(x)) d�(x)log r� Z �lim supr!0 log �(Br(x))log r �d�(x) � PD�(�);where Br(x) denotes the ube of side r ontaining x.Prove that it has been eligible here to use ubes instead of balls standing in the de�nitionof d�(x). For this aim prove that for �-a.e. x 2 X, we have lim log �(Br(x))log �(B(x;r)) = 1. UseBorel-Cantelli lemma.Prove that we ould use Fatou's lemma (hanging the order of limsup and integral) indeeddue to the existene of a �-integrable funtion whih bounds from above all the funtionslog �(B(x; r))= log r (or log �(Br(x))= log r). Use again Borel-Cantelli lemma, for, say, r =2�k.7.2.6. Let � = �� be a measure of maximal entropy on a topologially exat onformalexpanding repeller X suh that every point x 2 X has exatly d preimages (so � = � log d).Prove (dedue from Theorem 7.8.5) that F (�) = supt2IR�t + �P(t)log d �, more onretelyF (�) = T + �P(T )log d , where � = � log dP 0(T ) .7.2.7 Let �i : X ! IR be H�older ontinuous funtions for i = 1; :::; k and ��i theirGibbs measures. De�ne X�1;:::;�k = fx 2 X : d�i(x) = �i for all i = 1; :::; kg. De�ne�q1;:::;qk;t = �t log jf 0j +Pi qi�i and T (q1; :::; qk) as the only zero of the funtion t 7!P(�q1;:::;qk;t). Prove the same properties of T as in Theorem 7.8.5, in partiular thatHD(X�1;:::;�k) = inf(q1;:::;qk)2IRkXi qi�1 + T (q1; :::; qk)wherever the in�mum is �nite.Historial and bibliographial notesThe setion on multifratal analysis relies mainly on the monographs by Y. Pesin [P℄and K. Faloner [F3℄ (though details are modi�ed, for example we do not use Markovpartition ). The reader an �nd there omprehensive expositions and further referenes.The development of this theory has been stimulated by physiists, the paper often quotedis [HJKPS℄.Bibliography[F3℄ K. Faloner "Tehniques in Fratal Geometry". John Wiley and Sons, Chihester,1997. 19



[HJKPS℄ T.C. Hasley, M. Jensen, L. Kadano�, I. Proaia, B. Shraiman "Fratalmeasures and their singularities: the haraterization of strange sets". Phys. Rev. A 33.2(1986), 1141-1151.[P℄ Y.B. Pesin "Dimension Theory in Dynamial Systems". The University of ChiagoPress, Chiago and London, 1997.Setion 2. Flutuations for Gibbs measures.Theorem 7.2.1. Let f : X ! X be a holomorphi expanding repeller. Let � be aH�older ontinuous funtion and let �� be it's Gibbs measure. Then, with � = HD(��),either(a) � = HD(X) and �� � H� on X (if  = �+ � log jf 0j � P(�) is a oboundary) or(b) �� ? H� (if  = � + � log jf 0j � P(�) is not a oboundary) and moreover, thereexists 0 > 0, (0 = p2�2( )=���(f)), suh that with the gauge funtion �(r) =r� exp(plog 1=r log3 1=r), where log3 means the iteration of the log funtion 3 times:() �� ? H� for all 0 <  < 0, and(d) �� � H� for all  > 0.Proof. If  is a oboundary, then it follows from equality � �  = �� log jf 0j + P(�)that P(�) = P(� �  ) = P(�) + P(�� log jf 0j). Thus P(�� log jf 0j) = 0 and the part(a) follows immediately from Theorem 7.1.1 and the observation saying that the potantialohomologial up to an additive onstant have the same Gibbs states.Suppose now that  is not a oboundary. As in the previous setion let � = inf jf 0j > 1.Reall that then there exists � > 0 small enough that �rstly, f jA is one - to - one forall sets A � X with diam(A) � � and seondly, d(f(y); f(z)) � �d(y; z) if d(y; z) < � .Fix x 2 X and r > 0 suh that r < � De�ne n = n(x; r) to be the least number suhthat diam(fn(B(x; r))) � � . Sine f : X ! X is topologially exat, n(x; r) is �nite. Byde�nition of n, diam(f j(B(x; r))) < � for all j = 0; 1; :::n� 1. Therefore fn j(B(x;r)) is one- to - one and m�(fn(B(x; r))) = ZB(x;r) exp(P (�)n� Sn�(z))dm�(z);where m� is the �xed point of the dual operator of L�, the transfer operator assoiatedwith the funtion � � P(�). Sine the funtion � is H�older ontinuous, it follows from??? that there exists a onstant K > 0 suh that jSn�(z) � Sn�(x)j � K for all x 2 X,z 2 B(x; r), and n = n(x; r). Hene, we gete�K exp(P (�)n� Sn�(x))m�(B(x; r)) � m�(fn(B(x; r)))� eK exp(P (�)n� Sn�(x))m�(B(x; r))or equivalentlye�K exp(Sn�(x)� P (�)n)m�(fn(B(x; r))) � m�(B(x; r))� eK exp(Sn�(x)� P (�)n)m�(fn(B(x; r))):20



Similarly, sine log jf 0(z)j is a H�older ontinuous funtion, there exists a onstant K1 > 0suh that jSn(log jf 0(z)j)� Sn(log jf 0(x)j)j � K1for all x 2 X, z 2 B(x; r), and n = n(x; r). Thenj(fn)0(z)jj(fn)0(x)j � eK1Therefore diam(B(x; r))e�K1j(fn)0(x)j � diam(fn(B(x; r)))� diam(B(x; r))j(fn)0(x)jeK1 :Hene, diam(B(x; r))e�K1j(fn)0(x)j � �kf 0k, or equivalently r � 12eK1 j(fn)0(x)j�1�kf 0k.Also, sine diam(fn(B(x; r))) � � we get similarly r � 12e�K1 j(fn)0(x)j�1� . In onlusion,(7.2.1) 12e�K1 j(fn)0(x)j�1� � r � 12eK1 j(fn)0(x)j�1�kf 0k:Hene, denoting plog(j(fn)0(x)j) log3(j(fn)0(x)j) by gn(x), we getm�(B(x; r))r� exp(plog 1=r log3 1=r) � eK exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))r� exp(plog 1=r log3 1=r)� eK exp(Sn�(x)� P (�)n)(12 1j(fn)0(x)jeK1 �)� exp(qlog(2e�K1 j(fn)0(x)j�kf 0k ) log3(2e�K1 j(fn)0(x)j�kf 0k ))� Q exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(gn(x)) ;where Q is a large enough onstant. Similarly,m�(B(x; r))r� exp(plog 1=r log3 1=r)� e�K exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))r� exp(plog 1=r log3 1=r)� e�K exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))(12 j(fn)0(x)j�1eK1�kf 0k)� exp(plog(2eK1 j(fn)0(x)j��1) log3(2eK1 j(fn)0(x)j��1))� Q1 exp(Sn�(x)� P (�)n)m�(fn(B(x; r)))j(fn)0(x)j�� exp(gn(x)) (Q1 large enough)� Q2 exp(Sn�(x)� p(�)n)j(fn)0(x)j�� exp(gn(x)) ;where Q2 = Q1minfm�(fn(B(x; r))) : x 2 X; r > 0g. Note that, sine the topologialsupport of �� and m� is equal to X, using the the Bounded Distortion Theorem we21



get Q2 > 0 beause fn(B(x; r)) � B(fn(x); rj(fn)0(x)jK�1) � B(fn(x); R), where R =K�1�e�K1 . Finally, we get0 < Q2 exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(gn(x)) � m�(B(x; r))r� exp(plog 1=r log3 1=r) � Q exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(gn(x))Hene, �Q2 exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(gn(x)) � � log" m�(B(x; r))r� exp(plog 1=r log3 1=r)# :� log �Q exp(Sn�(x)� P (�)n)j(fn)0(x)j�� exp(gn(x))�Therefore, logQ2 + Sn�(x)� P (�)n+ � log j(fn)0(x)j � gn(x)� log" m�(B(x; r))r� exp(plog 1=r log3 1=r)#� logQ+ Sn�(x)� P (�)n+ � log j(fn)0(x)j � gn(x);or equivalently,logQ2 + gn(x) �Sn�(x)� P (�)n+ � log j(fn)0(x)jgn(x) � �� log" m�(B(x; r))r� exp(plog 1=r log3 1=r)#� logQ+ gn(x) �Sn�(x)� P (�)n+ � log j(fn)0(x)jgn(x) � � :(7.2.1)So, in order to proeed further, we are tempted to evaluate the following upper limit.lim supn!1 Sn (x)plog j(fn)0(x)j log3 j(fn)0(x)jFirst, by the Birkho� ergodi theorem, for every � > 0 there exists X1 � X suh thatm�(X1) = 1 and forall x 2 X1 there exists N > 0 suh that 8n � Nn(�� � �) � log j(fn)0(x)j � n(�� + �):Seond, sine  is not a oboundary, by the Law of Iterated Logarithms (see ???), thereexists X2 � X suh that m�(X2) = 1, and forall x 2 X2lim supn!1 Sn (x)pn log2(n) = p2�2:22



Therefore, for all x 2 X1TX2lim supn!1 Sn (x)gn(x) � lim supn!1 Sn (x)pn(�� � �) log2(n(�� � �))� lim supn!1 Sn (x)p(�� � 2�)pn log2(n))= p2�2p(�� � 2�) :and lim supn!1 Sn (x)gn(x) � lim supn!1 Sn (x)pn(�� + �) log2(n(�� + �))� lim supn!1 Sn (x)p(�� + 2�)pn log2(n))= p2�2p(�� + 2�) :In onlusion, forall x 2 X1TX2, we havep2�2p(�� + 2�) � lim supn!1 Sn (x)gn(x) � p2�2p(�� � 2�)Hene, letting �& 0, lim supn!1 Sn (x)gn(x) =s2�2�� :Thus, with �n() = gn(x) �Sn�(x)� P (�)n+ � log j(fn)0(x)jgn(x) � � ;we obtain(7.2.3) lim supn!1 �n() = 8<:1 if q 2�2�� > �1 if q 2�2�� < sine, limn!1 gn(x) =1, and this is beause f is expanding. By (7.2.1)lim supn!1 [logQ2 + �n()℄ � lim supr!0 log" m�(B(x; r))r� exp(plog 1=r log3 1=r)#� lim supn!1 [logQ+ �n()℄:23



By (7.2.3), it giveslim supr!0 log" m�(B(x; r))r� exp(plog 1=r log3 1=r)# = 8<:1 if q2�2�� > �1 if q 2�2�� <  :In other words, lim supr!0 m�(B(x; r))r� exp(plog 1=r log3 1=r) = 8<:1 if q2�2�� > 0 if q2�2�� <  :Therefore, by Theorem 5.??, �� ? H� for all  < q2�2�� and �� � Hg for all  > q2�2�� :The proof is �nished. |Note that this proof is done without the use of Markov partitions. Note also that the lastdisplay in the proof of Theorem 7.2.1 is known as a re�ned volume lemma.Setion 7.3. Radial behaviour of the Riemann map,I.In this setion f : X ! X ontinues to be a onformal expanding repeller and weassume additionally that X is a Jordan urve. We then all f a boundary expendingonformal repeller. Let 
 � CI be one of the omponents of CI n X and �x z0 2 
. LetD1 = fz : jzj < 1g. In view of Caratheodory's theorem, any Riemann map R : D1 ! 
(onformal homeomorphism) sending zero to z0 (whih is unique up to rotation) extendshomeomorphially to D1. For more information about a Riemann map we refer the readerto [?℄. We also assume that there exists an open topologial annulus A � CI surronding�
 suh that f(A \ 
) � 
. Sine f is a loal homeomorphism, it is easy to see thatf�1(A\
) � 
. With all these assumptions we speak about the expanding map f : �
!�
 as a onformal boundary repeller with the Jordan domain 
. This enables us to liftthe map f to the losed topologial annulus B = R�1(A\
) � D1 one of whose boundaryomponents is the irle S1 by settingg = R�1 Æ f ÆR : B ! D1:Obviously g(B) � D1. Denoting by I : CI ! CI the inversion with respet to the unit irleS1 and applying the Shwarz reetion priniple we see see that g extends analytiallyto the topologial annulus F = B [ I(B). Our �rst aim is to show that g is a boundaryexpending onformal repeller. We begin with the following.Lemma 7.3.1. There exists Æ > 0 suh that for every z 2 S1 there exists a uniqueholomorphi inverse branh g�nz : B(gn(z); 2Æ) ! F sending gn(z) to z. If n is largeenough (independent of z), then j(g�nz )0(w)j � 1=2 for all w 2 B(gn(z); Æ). In partiularthe map g : S1 ! S1 is expanding. 24



Proof. Fix Æ > 0 so small that B(S1; 2Æ) � F . Fix z 2 S1 and onsider the ballB(gn(z); 2Æ). De�ne the inverse branh g�nz : D1 \ B(gn(z); 2Æ) ! CI of gn by puttingg�nz (w) = R�1 Æ f�nR(z) Æ R(w), where f�nR(z) is a loal holomorphi inverse branh of fnde�ned throughout a neighbourhood of fn(R(z)) sending fn(R(z)) to R(z). Notie thatg�nz (gn(z)) = z, g�nz is ontinuous and restrited to the set D1 \ B(gn(z); 2Æ) is analyti.Sine f�n(A \ 
) � A \ 
, we onlude that g�nz (D1 \ B(gn(z); 2Æ) � F \D1. Sine inaddition I(B(gn(z); 2Æ)) = B(gn(z); 2Æ) and I(F ) = F , applying the Shwarz reetionpriniple again, we onlude that g�nz extends to an analyti map g�nz : B(gn(z); 2Æ) !F . Sine gn Æ g�nz is an identity map on D1 \ B(gn(z); 2Æ) and g�nz is analyti on thisintersetion, we onlude that gn Æ g�nz is an identity map on the entire ball B(gn(z); 2Æ).This means that g�nz : B(gn(z); 2Æ) ! F is a holomorphi inverse branh of gn sendinggn(z) to z. Sine limn!1 supz2S1 ndiam�f�nR(z)�R(B(gn(z); 2Æ)��o = 0;sine g�nz �D1 \ B(gn(z); 2Æ)� = R�1 �f�nR(z)�R(B(gn(z); 2Æ)��and sine R�1 : D1 ! 
 is a uniformly ontinuous funtion, we getlimn!1 supz2S1 ndiam�g�nz (D1 \B(gn(z); 2Æ)�o = 0:Sine g�nz �B(gn(z); 2Æ) \ (CI nD1)� = I�g�nz �B(gn(z); 2Æ) \ (CI nD1)��;we thefore see that limn!1 supz2S1 �diam �g�nz (B(gn(z); 2Æ)�	 = 0:Hene, applying Koebe's distortion theorem, we get thatlimn!1 supz2S1fj(g�nz )0(w)j : w 2 B(gn(z); Æ)g = 0:There thus exists n � 1 suh thatsupz2S1fj(g�nz )0(w)j : w 2 B(gn(z); Æ)g � 12 :Hene, for every z 2 S1, j(gn)0(z)j = j(g�nz )0(gn(z))j�1 � 2 and the proof is omplete. |Lemma 7.3.2. There exists Æ > 0 suh that if fx; g(x); g2(x); : : : ; gn(x)g � B(S1; Æ), thenthere exists a unique holomorphi inverse branh g�nx of gn de�ned on B(gn(x); 4Æ) andsending gn(x) to x. In addition, there exist � > 1 and C > 0 suh that j(g�nx )0(w)j � C��nfor all w 2 B(gn(x); 4Æ). 25



Proof. It follows from Lemma 7.3.1 that there exist  > 0 and � > 1 suh that for everyz 2 S1 and all w 2 B(gn(z); Æ),(7.3.1) j(g�nz )0(w)j � C��n:Fix q � 1 so large that C��q � 1=6. There obviously exists 0 < � < Æ=6 suh thatfor every 1 � j � q and every x 2 CI suh that fx; g(x); g2(x); : : : ; gj(x)g � B(S1; �),there exists a unique holomorphi branh g�jx : B(gj(x); 4�) ! F of gj sending gj(x)to x. Suppose now that j = q. Sine B(gq(x); 2�) \ S1 6= ;, we an take a point zlying in this intersetion. Sine g�q(S1) = S1, we have g�qx (z) 2 S1. Sine in additionB(gq(x); 4�) � B(z; 6�) � B(z; Æ), it follows (7.3.1) that(7.3.2) j(g�qx )0(w)j � 16for all w 2 B(gq(x); 4�). Realling the hoie of w we therefore obtain that(7.3.3) g�qx (B(gq(x); 4�)) � B(S1; �) \B(x; �)Thus given a piee fx; g(x); : : : ; gn(x)g of the forward trajetory of x, we an split it intobloks gn(x); gn�1(x); : : : ; gn�q(x); gn�q(x); gn�q�1(x); : : : ; gn�2q(x); : : : ; xall of them of length q exept the last one of length i � q. In view of (7.3.3) we anindutively form the ompositiong�ix Æ : : : Æ g�qgn�3q(x) Æ g�qgn�2q(x) Æ g�qgn�q(x)whih is an inverse branh g�nx of gn de�ned on B(gn(x); 4�) and sending gn(x) to x.Writing n = pq + i, 0 � i � q � 1 we see from (7.3.2) that for every w 2 B(gn(x); 4�), wehave j(g�nx )0(w)j �M �16�p �M �16�nq�1 ;where M = (minj�q�1 infz2F fj(gj)0(z)jg)�1. We are done rede�ning Æ to be �. |Proposition 7.3.3 With U = B(S1Æ), where Æ omes from Lemma 7.3.2,the map F :S1 ! S1 is a boundary expanding repeller.Proof. Sine RjS1 establishes a topologial onjugay between gjS1 and f j�
, the mapg : S1 ! S1 is topologially transitive. Sine, by Lemma 7.3.1, g : S1 ! S1 is expanding,we only need to hek that there exists an open set U � F ontaining S1 suh thatTn�0 g�n(U) = S1. And indeed, suppose that fgn(x) : n � 0g � B(S1; Æ), where Æ istaken from Lemma 7.3.2. It follows from this lemma that for every n � 0 there exists aunique holomorphi inverse branh g�nx of gn de�ned on B(gn(x); 4Æ) and sending gn(x)to x. In addition diam�g�nx (B(gn(x); 3Æ)� � 6Æ��n:26



Sine B(gn(x); 3Æ)\S1 6= ;, we an hoose a point w in this intersetion. Then g�nx (w) 2 S1and thereforedist(x; S1) � jg�nx (gn(x))� g�nx (w)j � diam�g�nx (B(gn(x); 3Æ)� � 6Æ��n:Letting n!1, we therefore onlude that x 2 S1. Thus g beomes a boundary expandingrepeller with U = B(S1; Æ). |Our next result is the following the following.Theorem 7.3.2. If � is a g-invariant ergodi probability measure of of positive entropyon S1, then the non-tangent limit limx!z � log jR0(x)jlog(1� jxj)exists for �-almost every point z 2 S1, is onstant almost everywhere (denote it by ��(R)),and ��(R) = 1� ��ÆR�1(f)��(g) :Proof. Given z 2 S1, 0 < � < �=2, and 0 < r < 1 letS�;r(z) = z � (1 + fx 2 CI n f0g : 0 < jxj � r; � � � � Arg(x) � � + �g):A straightforward trigonometrial argment shoows that for all 0 < � < �=2, and 0 < r < 1there exists 0 < � < 1=2 suh that for all z 2 S1 and all x 2 S�;r(z) we have(7.3.4) �jx� zj � 1� jxj:Fix now z 2 S1 and x 2 S�;r(z). It follows from Proposition 7.3.3 that there exists k � 1suh that gj(x) 2 B(S1; Æ) for all 0 � j � k � 1 and gk(x) =2 B(S1; Æ) whih means that1� jgk(x)j � Æ. Therefore there exists the least n = n(x; z) � 0 suh that(7.3.5) 1� jgn+1(x)j � Æ(8K��1)�1;where K � 1 is the Koebe's onstant assiiated with the sale 1=2. Hene(7.3.6) 1� jgj(x)j < Æ(4K��1)�1 < Æfor all 0 � j � n. It therefore follows from Lemma 7.3.2 that thaere exists there a uniqueholomorphi inverse branh g�nx of gn de�ned on B(gn(x); 4Æ) and sending gn(x) to x.Let w = gn(x)=jgn(x)j. Then w 2 B(gn(x); 1� jgn(x)j) \ S1 and using (7.3.4) along withKoebe's Distortion Theorem, we get�jx� zj � 1� jxj� jx� g�nx (w)j = jg�nx (gn(x))� g�nx (w)j � Kjgn(x)� g�nx (w)jj(gn)0(x)j�1= K(1� jgn(x)j)j(gn)0(x)j�1: 27



Hene, applying Koebe's 14 -Theorem, we obtaing�nx �B(gn(x); 8K��1(1� jgn(x)j)� � B�x; 2K��1(1� jgn(x)j)j(gn)0(x)j�1�� B(x; 2jz � xj) 3 z:(7.3.7)It therefore follows from Koebe's Distortion Theorem that(7.3.8) K�1 � j(gn)0(x)jj(gn)0(z)j � K;that (using (7.3.4))1� jgn(x)j � jgn(z)� gn(x)j � Kj(gn)0(x)j � jz � xj � Kj(gn)0(x)j��1(1� jxj)= K��1j(gn)0(x)j(1� jxj);(7.3.9)and (using (7.3.7)) that1� jxj � jz � xj = jg�nx (gn(z))� g�nx (gn(x))j � Kj(gn)0(x)j�1jgn(z)� gn(x)j� Kj(gn)0(x)j�18K��1(1� jgn(x)j) = 8K2��1(1� jgn(x)j)j(gn)0(x)j�1:(7.3.10)Sine the Riemann map : D1 ! 
 is uniformly ontinuous, R(gn(x)) lies lose to R(gn(z)).Let f�nR(z) be a holomorphi inverse branh of fn de�ned on some small neighbourhoodof R(gn(z)), ontaining R(gn(x)) and sending R(gn(z)) = fn(R(z)) to R(z). Thenf�nR(z)(R(gn(x)) = x and applying Koebe's Distortion Theorem, we obtain(7.3.11) K̂�1 � j(fn)0(R(x))jj(fn)0(R(z))j � K̂;for some onstant K̂ independent of z, x and n. Sine(7.3.12) 1� jgn+1(x)j � jjg0jj(1� jgn(x)j);Combining (7.3.5), (7.3.6), (7.3.9), (7.3.10) and (7.3.12), we get(7.3.13) (8Kjjg0jj)�1�2Æ � (1� jxj)j(gn)0(x)j � KÆ:By Birkho�'s Ergodi Theorem there exists a Borel set Y 2 S1 suh that �(Y ) = 1 andlimk!1 1k log j(gk)0(z)j = ��(g) and limn!1 1k log j(fk)0(R(z))j = ��ÆR�1(f):for all z 2 Y . Suppose that z 2 Y . Fix also " > 0. Then for all k suÆiently large(7.3.14) exp(k(��(g)� ")) � j(gk)0(z)j � exp(k((��(g) + "));28



and exp(k(��ÆR�1(f)� ")) � j(fk)0(R(z))j � exp(k((��ÆR�1(f) + ")):Combining these two formulas along with (7.3.8) and (7.3.11), we get for all n large enough(whih an be assured by taking x suÆiently lose to z),(7.3.15) exp(n(��(g)� 2")) � j(gn)0(x)j � exp(n(��(g) + 2"));and(7.3.16.) exp(n(��ÆR�1(f)� 2")) � j(fn)0(R(x))j � exp(n(��ÆR�1(f) + 2"))Combining (7.3.13) and (7.3.14), we getlog(4jjg0jj)�1Æ)� n(��(g) + 2") � log(1� jxj) � log(KÆ)� n(��(g)� 2"):Thus, for all n large enough(7.3.17) � log(1� jxj)��(g) + 3" � n � � log(1� jxj)��(g)� 3" :In view of Koebe's Distortion Theorem, (7.3.12) and (7.3.5) there exists a onstant Cdepending only on K, � and jjg0jj suh thatC�1jR0(0)j � jR0(gn(x))j � CjR0(0)jTherefore, di�erentiating the equality R Æ gn = fn ÆR, we getjR0(x)j = j(gn)0(x)j jR0(g(x))jj(fn)0(R(x))j 2 �C�1jR0(0)j j(gn)0(x)jj(fn)0(R(x))j ; CjR0(0)j j(gn)0(x)jj(fn)0(R(x))j� :Hene, using (7.3.15), (7.3.16) and (7.3.17)jR0(x)j � CjR0(0)jj(gn)0(x)j � j(fn)0(R(x))j�1� CjR0(0)j exp(n(��(g) + 2")) exp(�n(��ÆR�1(f)� 2"))� exp�� log(1� jxj)��(g)� 3" (��(g)� ��ÆR�1(f) + 4")� :Thus � log jR0(x)jlog(1� jxj) � ��(g)� ��ÆR�1(f) + 4")��(g)� 3"and we obtain similarly � log jR0(x)jlog(1� jxj � ��(g)� ��ÆR�1(f)� 4")��(g) + 3"29



So, letting " ! 0 (whih fores us to let n(x; z) ! 1 and whih in turn fores us to letx! z) �nishes the proof. |In order to make use of this result we shall provide a simple proof of the following Propo-sition.Setion 7.4. Harmoni measure.In this setion we keep the notation of the previous one. The measure l ÆR�1, the imageof the image of the Lebesgue measure l on S1 under the Riemann map is said to bethe harmoni measure of �
 with respet to (or viewed from) the point z0. Sine allthe Riemann maps di�er by ompositions with M�bius transformations preserving t heunit irle, all the harmoni measures are strongly equivalent and orresponding Radon-Nikodyn derivatives are bounded away from zero and in�nity. In partiular all the harmonimeasures indue the same strong measure lass, whih as long as we are only interestedin metri properties of this lass, enables us to speak generally about a harmoni measurewithout speifying the point z0. Writing ! we will atually mean the lass of all measuresequivalent with the harmoni measure with Radon-Nikodym derivatives bounded uniformlyfrom above and below. For more information about harmoni measure we refer the readerto [?℄. Our �rst aim is to represent harmoni measure as a Gibbs measure and then toapply the results of the previous setion. Sine the Hausdor� dimension of the irle S1 isequal to 1, it follows from Theorem 7.1.1 that P (g; �) = 0, where � = � log jg0j. Of oursethe Lebesgue measure l on S1 is equivalent with H1. Sine R is a topologial onjugaybetween g and f on S1, P (f; � Æ R�1) = P (g; �) = 0. Sine moreover R�1 is a metrionjugay between metri dynamial systems (f; �� ÆR�1) and (g; ��), we therefore haveh��ÆR�1(f) + Z � ÆR�1 d�� ÆR�1 = h��(g) + Z � d�� = 0:Sine in addition �� ÆR�1 2 !, the uniqueness of an equilibrium state for � ÆR�1 resultsin the following.Theorem 7.4.2. The harmoni measure ! oinides with the lass of the Gibbs states ofthe map f : X ! X and the H�older ontinuous potential � log jg0j ÆR�1.We now want to argue that HD(!) = 1. This is a general result due to Makarov (see ???)true for any simply onneted domain 
 with no dynamis involved. We shall howeverprovide here a proof in the dynamial ontext only whih is shorter and simpler than thegeneral one.Proposition 7.4.3. If ! is a harmoni measure on the boundary of a Jordan domain 
,then �l(R)(z) = 0 for l-a.e. z 2 S1, where l denotes the normalized Lebesgue measure onS1. 30



Proof. Fix z 2 S1 and 0 < r < 1. Then by the Koebe distortion theorem 2�1(1� r)�3 �jR0(z)j � (1� r)�3 whih implies that2 � � log jR0(rz)jlog(1� r) � 4for all r suÆiently lose to 1. Sine the Gibbs state of the funtion � log jg0j is a g-invariantprobability measure absolutely ontinuous with respet to the Lebesgue measure it followsfrom Theorem 7.4.2 that �l(R)(z) is onstant for l-a.e. z 2 S1. Hene�l(R) = Z �l(R) dl = Z limr!1 log jR0(rz)j� log(1� r) dl(z)= limr!1 1� log(1� r) Z log jR0(rz)j dl(z):Sine log jR0j is a harmoni funtion we an ontinue the above hain of equalities writing�l(R) = limr!1 r log jR0(0)j� log(1� r) = 0:The proof is �nished. |Corollary 7.4.4. Suppose that an expanding map f : �
! �
 is a onformal boundaryrepeller, and 
 is a Jordan domain. Then HD(!) = 1, for !, the harmoni measure viewedfrom 
.proof. Let � be the Gibbs state on S1 orresponding to the potential � log jg0j. Simul-taneously � is the unique probability g-invariant measure equivalent with the Lebesguemeasure l on S1. Then � Æ R�1 is a probability f -invariant measure equivalent to !. Inview of Theorem 7.4.2 and Lemma 7.4.3, ��Æf�1(f) = ��(g) > 0. Sine R : S1 ! �
 is atopologial onjugay between g : S1 ! S1 and f : �
! �
, h�Æf�1(f) = h�(g). Thush�Æf�1(f)��Æf�1(f) = h�(g)��(g) :Sine HD(�) = 1, an immediate appliation of Lemma 7.1.4 (Volume Lemma) �nishes theproof. |Theorem 7.4.5. Let f : �
! �
 be a onformal boundary repeller, where 
 is a Jordandomain. Then either(a) ! � H1 on �
 (if log jg0j and log jf 0 ÆRj are ohomologous) or(b) ! ? H1 (if log jg0j and log jf 0 ÆRj are not ohomologous), and then there exists 0 > 0suh that with the gauge funtion �(t) = t exp(plog(1=t) log3(1=t)),! ? H� for all 0 �  < 031



and ! � H� for all  > 0:Proof. If log jg0j and log jf 0 ÆRj are ohomologous, then also the funtions � log jg0 ÆR�1jand � log jf 0j are ohomologous (with respet to the map f : �
! �
). By Theorem 7.4.2! is a Gibbs state of the potential � log jg0 Æ R�1j. Sine P(f;� log jf 0j) = P(f;� log jg0 ÆR�1j) = P(g;� log jg0j) = 0, it follows from Theorem 7.1.1 that HD(�
) = 1, and the Gibbsstates of the potential � log jf 0j are equivalent to the 1-dimensional Hausdor� measure on�
. So, the part (a) of Theorem 7.4.5 is proved.Suppose now that log jg0j and log jf 0 ÆRj are not ohomologous. Then � log jg0 ÆR�1j and� log jf 0j are not ohomologous. Let � be the invariant Gibbs state of � log jg0 ÆR�1j. ByCorollary 7.4.4 and Theorem 7.a.2, HD(�) = 1. Hene  = � log jg0ÆR�1j+HD(�) log jf 0j�P(f;� log jg0 Æ R�1j) is not a oboundary and, sine by Theorem 7.4.2 and Lemma 7.4.3,R log jf 0j d� = R log jg0 ÆR�1j d�, the potential  is not ohomologous to a onstant. Theseond part of Theorem 7.4.5 is now an immediate onsequene of Theorem 7.2.1(b). |Theorem 7.4.6. If f : �
! �
 is a onformal boundary repeller, 
 is a Jordan domainand the funtions log jg0j and log jf 0j Æ R are ohomologous, (this is exatly the ase ofTheorem 7.4.5(b)), then 
 is an analyti urve. If additionally f extends analytially ontoCI, then f is analytially onjugate with a M�obius transformation and �
 is a geometriirle.Proof. If the funtions log jg0j and log jf 0j ÆR are ohomologous, then aording to Theo-rem 7.4.5(a) the boundary �
 is a reti�able Jordan urve. So, in view of Riesz's theorem,the map R : S1 ! �
 transports the measure lass of the Lebesgue measure on S1 ontothe measure lass of H1 on �
. Let now R� : S1 ! �
 be the restrition to the unitirle of the Riemann map indued by the seond omponent of the omplement of �
.For tehnial reason, whih will be lear at the end of this proof we assume here that theRiemann map R� is de�ned on D1� = fz : jzj > 1g, the omplement of the losure of theunit disk D1. Sine �
 is a Jordan urve and sine f has no ritial points on �
, thereexists an open neighborhood A� of �
 suh that f(A� \ (CI n �
)) is well-de�ned, andmoreover f(A� \CI n �
) � CI n �
). Therefore, we an de�ne g� = R�1� Æ f ÆR�, the lift off via the Riemann map R� on the set D1� interseted with a suÆiently thin open annulussurronding S1. Set h = R�1� ÆRjS1 : S1 ! S1:Composing, if neessary, the Riemann maps R and R� with appropriate rotations, we mayassume that 1 is a �xed point of g and g� and h(1) = 1. Our �rst objetive is to demonstratethat h is real-analyti. Indeed, Let �1 = �1l and �2 = �2l be the (unique) probabilitymeasures equivalent with the Lebesgue measure on the irle, respetively invariant underthe ation of g and g�. In view of Theorem 7.9.2 �1 and �2 are both Real-analyti.Sine, also by Riesz's theorem, the map R� : S1 ! �
 transports the measure lass ofthe Lebesgue measure on S1 onto the measure lass of H1 on �
, the homeomorphismh : S1 ! S1 sends the measure lass of the Lebesgue measure on S1 onto itself. Sine hestablishes onjugay between g and g�, it therefore maps the invariant measure �1 ontosome probability g�-ivariant measure equivalent with the Lebesgue measure. Sine suh a32



measure is unique, it must be equal to �2. Symbolially, �1 Æ h�1 = �2. De�ne now twofuntions M;N : S1 ! [0; 1℄ by settingM(z) = �1([1; z℄) = Z z1 �1 dland N(z) = �2([1; z℄) = Z z1 �2 dl:Sine �1 Æ h�1 = �2 and h(1) = 1, the funtions M and N are related by the formulaN(h(z)) = M(z). Sine M and N are stritly inreasing, we may solve the last equationfor h to get h = M Æ N�1. We are now done beause the real analytiity of �1 and �2(see ???) implies that the funtions M and N are real-analyti and this in turn resultsin real analytiity of h = M ÆN�1. Hene h extends to an analyti map ~h de�ned on anopen neighborhood H of S1 in CI. Sine h : S1 ! S1 preserves orientation, dereasing H ifneessary, we get ~h(H \D1�) � D1�. Thus we produed two ontinuous maps R : D1 ! CIand R� Æ ~h : H \ D1� ! CI whih are analyti on D1 and H \ D1� respetively and whihoinide on their ommon boundary, the unit irle S1. Thus R and R� Æ ~h glue togetherto an analyti map S : D1 [H ! CI. So, sine S(S1) = R(S1) = �
, the proof of the �rstpart is �nished.If now f extends analytially to CI, that is if f is a rational funtion, then by the maximumpriniple f(
) � 
, f(CI n
) � CI n 
, and both maps g and g� are de�ned on D1 and D1�respetively. Sine these maps are surjetive, sine they extend ontinuously to D1 andD1� respetively, and sine they preserve the unit irle S1, it follows from the Shwarzreetion priniple that they extend analytially to CI. Sine g and g� preserve S1 (weuse this fat seond time) they must be �nite Blashke produts. Sine f(
) � 
 andf(CI n 
) � CI n 
, by the Montel theorem both 
 and CI n 
 are omponents of the Fatouset of f . And sine f j�
 is expanding, both 
 and CI n
 are basins of immediate attrationto stable �xed points. Conjugating f if neessary with a M�obius transformation we mayassume that this �xed point in D1 is 0 and that one in D1� oinides with 1. But everyBlashke produt B preserving S1 and having 0 as its �xed point, preserves the Lebesguemeasure on S1. In order to see it onsider an arbitrary ontinuous funtion � : S1 ! IRand then its harmoni extension ~� : D1 ! IR. Sine � ÆB is also harmoni, we haveZS1 � ÆB dl = � ÆB(0) = �(0) = ZS1 � dl:whih means that B preserves the Lebesgue measure l. Thus, �1 = �2 = l and onsequentlyM = N and h is the identity map on S1. In onlusion ~h is an identity map and R� andR = R�~h oinide on a neighborhood of S1. Thus R and R� glue together to an analytimap ~R : CI ! CI. Sine ~R is injetive it must be a M�obius transformation and ~R�1 Æf ÆR�1is a �nite Blashke produt. The proof is �nished. |Setion 7.5. Radial behaviour of the Riemann map,II.33



Keeping notation from the previous setions we shall prove here the following .Theorem 7.5.1. Depending on whether (!) = 0 or (!) 6= 0, either �
 is real-analytiand the Riemann map R : D1 ! 
 and its derivative R0 extend holomorphially beyond�D1 or for almost every z 2 �D1(7.5.1) lim supr!1 jR0(rz)j exp plog(1=1� r) log3(1=1� r) = �1 if  � (!)0 if  > (!)and(7.5.2) lim supr!1 �jR0(rz)j exp plog(1=1� r) log3(1=1� r))�1 = �1 if  � (!)0 if  > (!)Moreover the radial limsup an be replaed by the nontangential one.Proof. Let n > 0 be the least integer for whih gn(rz) 2 B(0; r0) for some �xed r0 < 1.We have R0(rz) = ((fn)0(R(rz)))�1 �R0(gn(rz))�(gn)0(rz). Hene, for some onstant K > 0independent of r and zK�1 � jR0(rz)jj((fn)0(R(rz)))�1j � jR0(gn(rz))j � K:By the bounded distortion theorem the rz in the denominator an be replaed z and ndepends on r as desribed by (7.2.1) with r replaed by 1�r.Now we proeed as in the proofof Lemma 7.2.1 replaing deviations of Sn(�)� P (�)n+ � log j(fn)0(x)j by the deviationsof log j(gn)0(x)j � log j(fn)0(x)j. The proof is �nished. |Setion 7.6.. Pressure versus integral means of the Riemann mapIn this setion we establish a lose relation between integral means of derivatives of theRiemann map and topologial pressure of the funtion �t log jf 0j. Given t 2 IR de�ne�(t) = lim supr!1 log RS1 jR0(rz)jtdl(z)� log(1� r)We shall prove the following.Theorem 7.6.1. If the lifted map g : S1 ! S1 is of the form z 7! zd, d � 2, then�(t) = t� 1 + P(f;�t log jf 0j)log d :34



Proof. Fix 0 < r < 1 and divide the irle S1 into [2�=(1� r)℄ ars of length 1 � r andone ar of length � 1� r. Denote these ars by I1; I2; : : : ; Ik and Ik+1 respetively, wherek = [2�=(1� r)℄. ThenZS1 jR0(rz)jtdl(z) = k+1Xj=1 ZIj jR0(rz)jtdl(z) = k+1Xj=1 ZIj jR0(gn(rz))jt (jgn)0(rz)jtj(fn)0(R(rz))jtdl(z):Fix now n = n(r) to be the �rst integer for whih jgn(z)j < 1=2. Note that n is independentof z and that there exists a onstant A � 1 suh that A�1 � jR0(w)j � A for all w 2B(0; 1=2). HeneZS1 jR0(rz)jtdl(z) � k+1Xj=1 ZIj (jgn)0(rz)jtj(fn)0(R(rz))jtdl(z): = k+1Xj=1 ZIj (dntj(fn)0(R(rz))jt dl(z):Now, by the Mean Value Theorem for every j = 1; 2; : : : ; k; k+ 1 there exists zj 2 Ij suhthat ZIj (dntj(fn)0(R(rz))jtdl(z) = l(Ij) (dntj(fn)0(R(rzj))jt :Hene, as l(Ij) = 1� r for all j = 1; : : : ; klog ZS1 jR0(rz)jtdl(z)= log(1� r) + log0� kXj=1 (dntj(fn)0(R(rzj))jt + (dntj(fn)0(R(rzk+1))jt � l(Ik+1)t(1� r)t1A+ O(1)= log(1� r) + nt log d++ log0� kXj=1 exp n�1Xu=0�t log jf 0(R(gu(rzj)))j+ j(fn)0(R(rzj))jt l(Ik+1)t(1� r)t1A+ O(1)By our de�nition of n, (1=2)d � rdn � 1=2; hene d log(1=2) � dn log r � log(1=2). Sinethere exists a onstant B � 1 suh that B�1(1�r) � � log r � B(1�r) for all r suÆientlylose to 1, we get B�1 log 2 � dn(1 � r) � Bd log 2. Therefore � logB + log log 2 �n log d+log(1�r) � logB+log log 2+log d. Hene n log d�C � � log(1�r) � n log d+Cfor some universal onstant C. Thuslog RS1 jR0(rz)jtdl(z)� log(1� r) = �1 + t+1n log d log0� kXj=1 exp n�1Xu=0�t log jf 0(R(gu(rzj)))j+ exp n�1Xu=0�t log jf 0(R(gu(rzk+1)))j l(Ik+1)t(1� r)t1A+ o(1): 35



Now, using the fat that 0 � l(Ik+1)=(1� r) � 1, it follows from the de�nition of pressureand the bounded distortion property thatlim supr!1 log RS1 jR0(rz)jtdl(z)� log(1� r) = �1+t+ 1log dP(g;�t log jf 0ÆRj) = �1+t+P(f;�t log jf 0j)log d :The proof is �nished. |Setion 7.7. Geometri examples.This last setion of this hapter is devoted to explore appliations of previous setions togeometri examples like the Koh's snowake and Carleson's example. Following the ideaof the proof of Theorem 7.2.1 and opeing with a biggere number of tehnialities one anprove the following.Theorem 7.7.1. Let 
 be a simply onneted domain in CI with �
 a Jordan urve . Let�j , j = 1; 2 : : : ; k be a �nite family of ompat ars in �
 with pairwise disjoint interriors.Denote S �j by � (we do not assume that this urve is onneted. Assume that thereexists a family of onformal maps fj , j = 1; : : : ; k, (whih may reverse the orientation onCI) on neighbourhoods Uj of �j . For every j assume that fj(
 \ U � J) � 
, jf 0j > 1 onUj and(7.7.1) fj(�
 \ Uj) � �
:Assume also the Markov partition property: for every j = 1; : : : k, fj(�j) = Ss2Ij �s forsome subset Ij � f1; 2; : : : ; kg. Consider the k�k matrix A = Ajk where Ajk = 1 if k 2 Ijand Ajk = 0 if k =2 Ij . Then there exists a transition parameter (!; �) suh that thelaims of tTheorem 7.6.5 and 7.6.6 hold.Example 1(the snowake). To every side of an equilateral triangle, in the middle we gluefrom outside as small as three times. To every side of the resulting polygon we we glueagain an equilateral triangle as small as three times and so on in�nitely many times. Thetriangles do not overlap in this onstrution and the boundary of the resulting domain 
is a Jordan urve.This 
 is alled the Koh's snowake. It was �rst desribe by HelgeKoh in 1904. Denote the urve in �
 joining a point x 2 �
 to y 2 �
 in the lokwisediretion just by xy. For every �AiAi+1(mod12) � �
, i = 0; 1; : : : ; 11, we onsider itsivering by the urves 12, 23, 45, 56 in 
 (see Fig.2). This overing together with theaÆne maps 12; 34! 12 ( preserving orientation on �
)23! 61 ( reversing orientation )56! 36 ( preserving orientation )45! 63 ( reversing orientation )36



gives a Markov partition of �i satisfying the assumptions of Theorem 6.7.1. Sine �
 (andevery its suburve) is de�nitely not real-analyti (HD(�
) = log 4= log 3), the assertionof Theorem 6.7.1 is valid with (!; �i) > 0. We may denote (!; �i) by (!) sine it isindependent of �i by symmetry.Example 2(Carleson's domain). We reall Carleson's onstrution from [Ca2℄. We �xa broken line  with the �rst and last segment lying in the same straight line in IR2,with no other segments interseting the segment 1; d� 1 (see Fig. 3). Then we take aregular polygon 
1 with verties T0; T1; : : : ; Tn and glue to every side of it, from outside,the resaled, not mirror reeted, urve  so that the ends of the glued urve oinidewith the ends of the side. The resulting urve bounds a seond polygon 
2. Denote itsverties by A0; A1; : : : (Fig. 4). Then we glue again the resaled  to all sides of 
2and a third order polygon 
3 with verties B0; B1; : : :. Then we bild 
4 with vertiesC0; C1; : : :
5 with D0; D1; : : : et. Assume that there is no self-interseting of the urves�
n in this onstrution. Moreover assume that in the limit we obtain a Jordan urveL = L(
1; ) = �
. The natural Markov partition of eah urve TiTi+1in L into urvesAjAj+1 with f(AjAj+1) = TiTi+1, onsidered by Carleson does not satisfy the property(6.7.1) so we annot sueed with it. Instead we proeed as follows: De�ne in an aÆnefashion f(Bd(j�1)+1Bdj�1) = A1Ad�1for every j = 1; 2 : : : ; d. Divide now every ar Bdj�1Aj for j = 1; 2 : : : ; d and AjBdj+1,j = 1; 2 : : : ; d into urves with ends in the verties of the polygon 
4 : Cj 2 Bdj1Aj,~Cj 2 AjBdj+1 respetively, the losest to Aj(6= Aj). Let for j = 1; 2; : : : ; d� 1,f(CjAj) = Bdj�1Aj ; f(Bdj�1Cj) = Ad�1Bd2�1;f(Aj ~Cj) = AjBdj+1; f( ~CjBdj+1) = B1A1:This gives a transitive aperiodi Markov partition of B1Bd2�1. We an onsider instead ofthe broken line  in the onstrution of 
, the line (2), onsisting of d2 segments, whiharises by glueing to every side of  a resaled . Conseutive gluing of the resaled (2)to the polygon 
(1) gives onseutively 
3;
5 et. The same onstrution as above givesa Markov partition of D1Dd2�1 in TiTi+1. By ontinuing this proedure we approximateTiTi+1, so from Theorem 6.7.1 and from symmetry we dedue that there exists a transitionparameter (!) suh that the assertion of Theorem 6.6.5(b) is satis�ed. Observe thatCarleson's assumption that the broken line 1; 2; : : : ; d� 1 has no self-intersetions has notbeen needed in these onsiderations. Also the assumption that 
(1) is a regular polygon anbe omitted; one an prove that (!) doesnot depend on TiTi+1 by onsidering a transitive,aperiodi Markov partition whih involves all the sides of 
1 simultaneously.Setion 7.9. Real analytiity of the density funtions. In this setion weonsider potentials of the form �t log jf 0j, �xed points of the orresponding onjugatetransfer operators mt and invariant Gibbs states �t. Our aim is to show that the Radon-Nikodym derivative d�tdmt has a real-analyti extension. We begin with the following.37



De�nition 7.9.1. A onformal expanding repeller f : X ! X is said to be real-analytiif it is ontained in a �nite union of pairwise disjoint real-analyti urves whih will bedenoted by � = �f . Frequently in suh a ontext we will alternatively speak about realanalytiity of the set X.The main (and only) result of this setion is the following.Theorem 7.9.2. If f : X ! X is an orientation preserving onformal expanding repeller,X � C, then the Radon-Nikodym derivative � = d�t=dmt has a real-analyti real-valuedextension on a neighbourhood of X in CI. If f is real-analyti, then � has a real-analytiextension on a neighbourhood of X in �.Proof. Observe that sine f is onformal and orientation preserving, f is holomorphion a neighbourhood of X in CI. Take r > 0 so small that for every x 2 X, every n � 1and every y 2 f�n(x) the holomorphi inverse branh f�ny : B(x; 2r) ! CI sending x toy is well-de�ned. Suppose �rst that f is real-analyti. We need to show that there existsa holomorphi omplex-valued extension of � on a neighbourhood of X in CI. Taking anappropriate atlas we may assume that X is ontained in a real axis (if a losed urve is aomponent of � we an use Arg). For all k � 1 and all y 2 f�k(x) let �(k; y) = 1 or �1depending as f�ky preserves or reverses the orientation on �. Soj(f�ky )0(z)j = �(k; y)((f�ky )0(z))for all z 2 J(f) \ B(x; r). Consider the following sequene of omplex analyti funtionson z 2 B(x; r) gn(z) = Xy2f�n(x)��(n; y)((f�ny )0(z))�t exp(�nP (t)):There is no problem here with raising to the t-th power sine B(x; r), the domain of all�(n; y)(f�ny )0 is simply onneted. Sine the latter funtions are positive in IR, we anhoose the branhes of the t-th powers to be also positive in IR. By Koebe's DistortionTheorem for every z 2 B(x; r=2), every n � 1 and every y 2 f�n(x) we have j(f�ny )0(z)j �Kj(f�ny )0(x)j. Hene jgn(z)j � Kgn(x). Sine, by (3.4.2) with u = 1 and  = p(t),the sequene gn(x) onverges, we see that the funtions fgnjB(x;r=2)gn�1 are uniformlybounded. So they form a normal family in the sense of Montel. Sine gn(z) onverges forall z 2 X \ B(x; r=2), it follows that gn onverges to an analyti funtion g on B(x; r=2)whose restrition to � is by our onstrution an extension of �.Let us pass now to the proof of the �rst part of this proposition. That is, we relax the Juliareal analytiity assumption and we want to onstrut a real-analyti real-valued extensionof � to a neighbourhood of X in CI. Our strategy is to work in CI2, to use an appropriateversion of Montel's theorem and, in general, to proeed similarly as in the �rst part ofthe proof. So, �x v 2 X. Identify now CI, where our f ats, to IR2 with oordinates x; y,the real and omplex part of z. Embed this into CI2 with x; y omplex. Denote the above38



CI = IR2 by CI0. We may assume that v = 0 in CI0. Given k � 0 and vk 2 f�k(v) de�ne thefuntion �vk : BCI0(0; 2r)! CI (the ball in CI0) by setting�vk(z) = (f�kvk )0(z)(f�kvk )0(0) ;Sine BCI0(0; 2r) � CI0 is simply onneted and �vn nowhere vanishes, all the branhes oflogarithm log �vn are well de�ned on BCI0(0; 2r). Choose this branh that maps 0 to 0 anddenote it also by log �vn . By Koebe's Distortion Theorem j�vk j and jArg�vk j are bouned onB(0; r) by universal onstants K1; K2 respetively. Hene j log �vk j � K = (logK1) +K2.We write log �vk = 1Xm=0 amzmand note that by Cauhy's inequalities(7.9.1) jamj � K=rm:We an write for z = x+ iy in CI0Re log �vk = Re 1Xm=0 am(x+ iy)m = 1Xp;q=0Re�ap+q�p+ qq �iq�xpyq :=X p;qxpyq:In view of (2.1), we an estimate jp;qj � jap+qj2p+q � Kr�(p+q)2p+q. Hene Re log �vkextends, by the same power series expansion P p;qxpyq, to the polydis DCI2(0; r=2) andits absolute value is bounded there from above by K. Now for every k � 0 onsider areal-analyti funtion bk on BCI0(0; 2r) by settingbk(z) = Xvk2f�k(0) j(f�kvk )0(z)jt exp(�kP (t)):By (3.4.2) the sequene bk(0) is bounded from above by a onstant L. Eah funtion bkextends to the funtionBk(z) = Xvk2f�k(0) j(f�kvk )0(0)jtetRe log �vk (z) exp(�kP (t)):whose domain, similarly as the domains of the funtions Re log �vk , ontains the polydisDCI2 (0; r=2). Finally we get for all k � 0 and all z 2 DCI2(0; r=4)jBk(z)j = Xvk2f�k(0) j(f�kvk )0(0)jteRe(tRe log �vk (z)) exp(�kP (t))� Xvk2f�k(0) j(f�kvk )0(0)jtetjRe log �vk (z)j exp(�kP (t))� eKt Xvk2f�k(0) j(f�kvk )0(0)jt exp(�kP (t)) � eKtL:39



Now by Cauhy's integral formula (in DCI2(0; r=4)) for the seond derivatives we prove thatthe family Bn is equiontinuous on, say, DCI2 (0; r=5). Hene we an hoose a uniformlyonvergent subsequene and the limit funtion G is omplex analyti and extends � onX \ B(0; r=5), by (3.4.2). Thus we have proved that � extends to a omplex analytifuntion in a neighbourhood of every v 2 X in CI2, i.e. real analyti in CI0. These extensionsoinide on the intersetions of the neighbourhoods, otherwise X is real analyti and weare in the ase onsidered at the beginning of the proof. |
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CHAPTER 7. SULLIVAN'S CLASSIFICATION OF CONFORMALEXPANDING REPELLERS. Dijon, June, 1991(This is a very preliminary version of one of chapters of a book by Przytycki andUrba�nski, in preparation, on conformal fractals. It relies on ideas of the proof of therigidity theorem drafted by D. Sullivan in Proceedings of Berkeley's ICM in 1986.)In Chapter 4.6 we proved that the scaling function for an expanding repeller inthe line determines the C1+"-structure. In this chapter we will basically concentrateon nonlinear conformal expanding repellers, called CER's, proving that the class ofequivalence of the geometric measure determines the conformal structure.Section 1. Equivalent notions of linearity.De�nition 7.1.1. We call a CER (X; f) linear if one of the following conditionsholds:a) The Jacobian of f with respect to the Gibbs measure �X equivalent to a geo-metric measure mX on X , Jf , is locally constant.b) The function HD(X) log jf 0j is cohomologous to a locally constant function onX. c) The conformal structure on X admits a conformal a�ne re�nement so that f isa�ne (i.e., see Ch.4.3, there exists an atlas f'tg that is a family of conformal injections't : Ut ! CI where St Ut � X such that all the maps 't'�1s and 'tf'�1s are a�ne)Recall that as the conformal map f may change the orientation of CI on somecomponents of its domain we can write jf 0j but not f 0 unless f is holomorphic.Proposition 7.1.2. The conditions a), b) and c) are equivalent.Before we shall prove this proposition we distinguish among CER's real- analyticrepellers:De�nition 7.1.3. We call (X; f) real- analytic if X is contained in the union of a�nite family of real analytic open arcs and closed curves.Lemma 7.1.4. If there exists a connected open domain U in CI intersecting X fora CER (X; f) and if there exists a real analytic function k on it equal identically 0 onU \X but not on U then (X; f) is real-analytic.Proof. Pick an arbitrary x 2 U \ X. Then in a neighbourhood V of x the setE = fk = 0g is a �nite union of pairwise disjoint real- analytic curves and of the pointx. This follows from the existence of a �nite decomposition of the germ of E at x intoirreducible germs and the form of each such germ, see for example Proposition 5.8 inthe Malgrange book [Malgrange]. As the sets fn(X \ V ), n � 0 cover X, X is compactand f is open on X we conclude that X is contained in a �nite union of real-analytic1



curves j and a �nite set of points A such that the closures of j can intersect only inA. Suppose that there exists a point x 2 X such that X is not contained in anyreal-analytic curve in every neighbourhood of x. Then the same is true for every pointz 2 X \ f�nfxg, n � 0, hence for an in�nite number of points (because pre-images of xare dense in X by the topological exactness of f , see Ch.?). But we proved above thatthe number of such points is �nite so we arived at a contradiction. We conclude thatX is contained in a 1-dimensional real-analytic submanifold of CI.Proof of Proposition 7.1.2.a)) b). Let u be the eigenfunction Lu = u for the transfer operator L = L' forthe function ' = �� log jf 0j, where � = HD(X), as in Ch. 3.3.. Here the eigenvalue� = expP (f; ') is equal to 1, see Ch.6.2..For an arbitrary z 2 X we have in its neighbourhood in X(7.1.1) Const = log Jf = � log jf 0(x)j+ logu(f(x))� log u(x)b)) c). The function u extends to a real-analytic function uCI in a neighbourhoodof X, see Ch.4.4, so the function log Jf extends to a real-analytic function log JfCI bythe right hand side equality in the formula (7.1.1), for uCI instead of u. We have twocases: either log JfCI is not locally constant on every neighbourhood of X and then byLemma 7.1.4 (X; f) is real-analytic or log JfCI is locally constant. Let us consider �rstthe latter case.Fix z 2 X . Choose an arbitrary sequence of points zn 2 X, n � 0 such thatf(zn) = zn�1 and choose branches f�n� mapping z to zn. Due to the expanding propertyof f they are all well de�ned on a common domain around z. For every x close to zdenote xn = f�n� (x). We have dist(xn; zn)! 0 so by (7.1.1) for log JfCI
(7.1.2) 1Xn=1�(log jf 0(xn)j � log jf 0(zn)j)= loguCI(x)� loguCI(z) + limn!1(loguCI (zn)� loguCI(xn))= loguCI(x)� loguCI(z)We conclude that uCI(x) is a harmonic function in a neighbourhood of z in CI as thelimit of a convergent series of harmonic functions; we use the fact that the compositionsof harmonic functions with the conformal maps f�n� are harmonic. Close to z we takea so-called harmonic conjugate function h so that log u(x) + ih(x) is holomorphic.Write Fz = exp(logu + ih) and denote by ~Fz a primitive function for Fz in aneighbourhood of z. This is a chart because Fz(z) 6= 0. The atlas given by the charts~Fz is a�ne (conformal) by the construction. We have due to (7.1.1) for the extended uj( ~Ff(z) � f � ~F�1z )0(Fz(x))j = uCI (f(x))jf 0(x)j=uCI(x) = Constso the di�erential of f is locally constant in our atlas.2



In the case (X; f) is real-analytic we consider just the charts 't being primitivefunctions of u on real-analytic curves containing X into IR with unique complex exten-sions to neighbourhoods of these curves into a neighbourhood of IR in CI. The equalitylog JfCI = Const holds on these curves so the derivatives of 'tf'�1s are locally constant.c)) a). Denote the maps 'tf'�1s by ~ft;s. In a neighbourhood (in X) of anarbitrary z 2 X we have
(7.1.3) u(x) = limn!1Ln(1)(x) = limn!1 Xy2f�n(x) j(fn)0(y)j��= limn!1 j'0(x)j�Xy j'0(y)j��j ~f 0(y)j�n�= Const limn!1 j'0(x)j�Xy ~f 0(y)j�n� = j'0(x)j�ConstTo simplify the notation we omitted the indices at ' and ~f here, of course theydepend on z and y's more precisely on the branches of f�n on our neighbourhood of zmapping z to y's . Const also depends on z. We could omit the functions '0(y) in thelast line of (7.1.3) because the diameters of the domains of '0(y) which were involvedconverged to 0 when n ! 1 due to the expanding property of f , so these functionswere almost constant.Hence due to (7.1.3) in a neighbourhood of every x 2 X we getJf(x) = Const u(f(x))jf 0(x)j�=u(x) = Constj ~f 0(x)j� = Const |Remark 7.1.5. In the b))c) part of the proof of Proposition (7.1.2) as �� log jf 0jis harmonic we do not need to refer to Ch.4.4 for the real-analyticity of u . The formula(7.1.2) gives a harmonic extension of u to a neighbourhood of an arbitrary z 2 X,depending on the choice of the sequence (zn). If two extensions u1; u2 do not coincideon a neighbourhood of z then in a neighbourhood of z, X � fu1 � u2 = 0g . If theequation (7.1.1) does not extend to a neighbourhood of z then again X � fv = Constgfor a harmonic function v extending the right hand side of (7.1.1).In each of the both cases (X; f) happens to be real-analytic and to prove it wedo not need to refer to Malgrange's book as in the proof of Lemma 7.1.3. Indeed,for any non-constant harmonic function k on a neighbourhood of x 2 X such thatX � fk = 0g we consider a holomorphic function F such that k = ReF and F (x) = 0.Then E = fk = 0g = fReF = 0g. If F has a d-multiple zero at x then it is a standardfact that E is a union of d analytic curves intersecting at x within the angle �d .We end this Section with giving one more condition implying the linearity.Lemma 7.1.6. Suppose for a CER (X; f) that there exists a H�older continuous line�eld in the tangent bundle on a neighbourhood of X invariant under the di�erential of f .In other words there exists a complex valued nowhere zero H�older continuous function� such that for every x in a neighbourhood of X3



(7.1.4) Arg�(x) + Argf 0(x) = Arg�(f(x)) + "(x)�where "(x) is a locally constant function equal 0 or 1. This is in the case f preserves theorientation at x, if it reverses the orientation we replace in (7.2.1) Argf 0 by �Arg �f 0.Then (X; f) is linear.Proof. As in Proof of Proposition 7.1.2, the calculation (7.1.2), if f is holomorphicwe have for x in a neighbourhood of z 2 X in CIArg�(z)� Arg�(x) = 1Xn=1(Arg(f 0(zn))� Arg(f 0(xn)));if we allow f to reverse the orientation then we replace Argf 0 by �Arg �f 0 in the aboveformula for such n that f changes the orientation in a neighbourhood of xn. So Arg�(x)is a harmonic function. Close to z we �nd a conjugate harmonic function h so we geta family of holomorphic functions Fz = exp(�h+ iArg� which primitive functions givean atlas we have looked for.Remark 7.1.7. The condition for (X; f) in Lemma 7.1.6 is stronger than thelinearity property. Indeed we can de�ne f on the union of the discs D1 = fjzj < 1g andD2 = fjz�3j < 1g by f(z) = 5 exp 2�#i on D1 where # is irrational, and f(z) = 5(z�3)on D2. This is an example of an iterated function system from Ch.4.5. We get a CER(X; f) where X = T1n=0 f�n(fjzj < 5g). It is linear because it satis�es the conditionc). Meanwhile 0 2 X; f(0) = 0 and f 0(0) = 5 exp 2�#i, so the equation (7.1.4) has nosolution at x = 0 even for any iterate of f .Remark 7.1.8. If we assume in place of (7.1.4) that Argf 0(x) � Arg�(f(x)) �Arg�(x) is locally constant, then we get the condition equivalent to the linearity.
Section 2. Rigidity of nonlinear CER'sIn this section we shall prove the main theorem of Chapter 7:Theorem 7.2.1. Let (X; f); ((Y; g) be two non-linear conformal expanding re-pellers in CI. Let h be an invertible mapping from X onto Y preserving Borel �-algebrasand conjugating f to g, h � f = g � h. Suppose that one of the following assumption issatis�ed:1. h and h�1 are Lipschitz continuous.2. h and h�1 are continuous and preserve so-called Lyapunov spectra, namely for everyperiodic x 2 X and integer n such that fn(x) = x we have j(fn)0(x)j = j(gn)0(h(x))j.3. h� maps a geometric measure mX on X to a measure equivalent to a geometricmeasure mY on Y . 4



Then h extends from X (or from a set of full measure mX in the case 3.) to a conformalhomeomorphism on a neighbourhood of X.We start the proof with a discussion of the assumptions. The equivalence of theconditions 1. and 2. has been proved in Ch.4.3. The condition 1. implies 3. by thede�nition of geometric measures 5.6.5. One of the steps of the proof of Theorem willassert that 3. implies 1. under the non-linearity assumption. Without this assumptionthe assertion may happen false. A positive result is that if h is continuous then for aconstant C > 0 and every x1; x2 2 XC < jh(x1)� h(x2)jHD(Y )jx1 � x2jHD(X) < C�1:(We leave the proof to the reader.)It may happen that HD(X) 6= HD(Y ) for example if X is a 1/3 { Cantor set andfor g we remove each time half of the interval from the middle.A basic observation to prove Theorem 7.2.1 is that(7.2.1) Jg � h = Jf and moreover Jgj � h = Jf jfor every integer j > 0. This follows from gj � h = h � f j and Jh � 1. We recallthat we consider Jacobians with respect to the Gibbs measures equivalent to geometricmeasures.Observe �nally that (X,f) linear implies (Y,g) linear. Indeed, if (X; f) is linear thenJf hence Jg admit only a �nite number of values in view of Jg � h = Jf . As Jg iscontinuous this implies that Jg is locally constant i.e. (Y; g) is linear.Lemma 7.2.2. If a CER (X; f) is non-linear then there exists x 2 X such thatgradJfCI(x) 6= 0.Proof. If gradJfCI � 0 on X then as JfCI is real- analytic we have either gradJfCI �0 ona neighbourhood of X in CI or by Lemma 7.1.4 (X; f) is real-analytic and gradJfCI �0 on real- analytic curves containingX. In both cases by integration we obtain Jf locallyconstant on X what contradicts the non-linearity assumption.Now we can prove Theorem in the simplest case to show the reader the main ideaworking later also in the general case.Proposition 7.2.3. The assertion of Theorem 7.2.1 holds if we suppose addition-ally that (X; f) and Y; g) are real-analytic and the conjugacy h is continuous.Proof. Let M;N be real analytic manifolds containing X;Y respectively. By thenon-linearity of X and Lemma 7.2.2 there exists x 2 X and its neighbourhood U in Msuch that F := JfCI jU : U ! IR has a real-analytic inverse F�1 : F (U) ! U . Then inview of (7.2.1) h�1 = F�1 � JgCI on h(U \ X) so h�1 on h(U \ X) extends to a realanalytic map on a neighbourhood of h(U \X) in N .Now we use the assumption that h�1 is continuous so h(U \X) contains an openset v in Y . There exists a positive integer n such that gn(V ) = Y hence for every y 2 Y5



there exists a neighbourhood W of y in N such that a branch g�n� of g�n mapping yand even W \Y into V is well de�ned. So we have h�1 = fn �h�1 �g�n� extended on Wto a real-analytic map. This gives a real-analytic extension of h�1 on a neighbourhoodof Y because two such extensions must coincide on the intersections of their domainsby the real-analyticity and the fact that Y has no isolated points.Similarly using the non-linearity of (Y,g) and the continuity of h we prove that hextends analytically. By the analyticity and again lack of isolated points in X and Ythe extentions are inverse to each other, so h extends even to a biholomorphic map.Now we pass to the general case.Lemma 7.2.4. Suppose that there exists x 2 X such that gradJfCI(x) 6= 0 in thecaseX is real-analytic, or there exists an integer k � 1 such that det(gradJfCI ; grad(JfCI�fk)) 6= 0 in the other case .(In other words we suppose that JfCI , respect. (JfCI ; JfCI � fk), give a coordinatesystem on a real, respect. complex neighbourhood of x.)Suppose the analogous property for (Y; g).Let h : X ! Y satisfy the property 3. assumed in Theorem 7.2.1. Then h extendsfrom a set of full geometric measure in X to a bi-Lipschitz homeomorphism of X ontoY conjugating f with g.Proof. We can suppose that HD(X) � HD(Y ), recall that HD denotes Hausdor�dimension . Pick x with the property assumed in the Lemma. Let U be its neighbour-hood in M ( as in Proof of Proposition 7.2.3) or in CI if (X; f) is not real-analytic, sothat F := (JfCI ; JfCI � fk) is an embedding on U . Let y 2 Y be a density point ofthe set h(U \ X) with respect to the Gibbs measure �Y equivalent to the geometricmeasure mY . (Recall that we have proved that almost every point is a density point foran arbitrary probability measure on a euclidean space in Ch.5.2 relying on Besicovitch'sTheorem.) . So if we denote (JgCI ; JgCI � gk) in a neighbourhood (real or complex) of yby G, we have for every � > 0 such "0 = "0(�) > 0 that for every 0 < " < "0 :�Y (B(y; ") \ h(U \X))�Y (B(y; ")) > 1� �and h�1 = F�1 �G on h(U \X):(Observe that the last equality may happen false outside h(U \X) even very closeto y because h�1 may map such points to (JfCI ; JfCI � fk)�1 � G with a branch of(JfCI ; JfCI � fk)�1 di�erent from F�1.)Now for every " > 0 small enough there exists an integer n such that diamgnB(y; ")is greater than a positive constant , gnjB(y;") is injective and the distortion of gn onB(y; ") is bounded by a constant C, both constants depending only on (Y; g). Then if" < "0(�) we obtain for Y� := gn(h(U \X) \ B(y; ")),�Y (gn(B(y; ")) n Y��Y (gn(B(y; "))) < C�Y (B(y; ") n h(U \X))�Y (B(y; ")) < C�:So 6



(7.2.2) �Y (Y�)�Y (gn(B(y; "))) > 1� C�We havej(fn)0(h�1(y))jHD(X) � ConstJf(h�1(y)) = ConstJg(y) � Constj(fn)0(y)jHD(Y ):As we assumed HD(X) � HD(Y ) we obtain(7.2.3) j(fn)0(h�1(y))j � Constj(fn)0(y)jHD(Y )=HD(X) � Constj(fn)0(y)jThen due to the bounded distortion property for iteration of f and g we obtainthat h�1 = fnh�1g�1 is Lipschitz on Y� with Lipschitz constant independent of �, moreprecisely bounded by Const sup kD(F�1 � Gk, where F�1 � G is considered on a real(complex) neighbourhood of y and Const is that from (7.2.3).There exists an integer K > 0 such that for every n, gKgnB(y; "(n)) covers Y .Because Jg is bounded, separated from 0, this gives h�1 on gK(Y�) Lipschitz with aLipschitz constant independent from � and �(gK(Y�)) > 1 � Const � for � arbitrarilysmall. We conclude that h�1 is Lipschitz on a set of full measure �Y so it has a Lipschitzextension to Y .We conclude also that HD(X) = HD(Y ). Otherwise diamh�1(Y�)! 0, so becausesupp�X = X we would get diamX = 0. So we can replace above the roles of (X; f) and(Y; g) and prove that h is Lipschitz.The next step will assert that for non-linear repellers the assumptions of Lemma7.2.4 about the existence of coordinate systems are satis�ed.Lemma 7.2.5. If (X,f) is a non-linear CER then there exists x 2 X such thateither gradJfCI(x) 6= 0 in the case X is real-analytic, or there exists an integer k � 1such that det(gradJfCI ; grad(JfCI � fk)) 6= 0 in the case (X,f) is not real-analytic.Proof. We know already from Lemma 7.2.2 that there exists x̂ 2 X such thatgradJfCI(z) 6= 0 so we may restrict our considerations to the case (X; f) is not real-analytic.Suppose Lemma is false. Then for all k > 0 the functions�k := det(gradJfCI ; grad(JfCI � fk))are identically equal to 0 on X. LetW be a neighbourhood of x̂ in CI where gradJfCI 6= 0:Let us consider onW the line �eld V orthogonal to gradJfCI . Due to the topologicalexactness of f on X for every x 2 X there exists y 2 W \ X and n � 0 such thatfn(y) = x.Thus de�ne at x 7



(7.2.4) Vx := Dfn(Vy)We shall prove now that if x = fk(y) = f l(z) for some y; z 2W \X; k; l � 0, then(7.2.5) Dfk(Vy) = Df l(Vz):If (7.2.5) is false, then close to x there exist x0 2 X andm � 0 such that fm(x0) 2W(we again refer to the topological exactness of f) and Dfk(Vy0) 6= Df l(Vz0), wherefk(y0) = f l(z0) = x0, y0 2 X is close to y and z0 2 X is close to z. We obtainDfk+m(Vy0) 6= Df l+m(Vz0) so either Dfk+m(Vy0) 6= Vfm(x0) or Df l+m(Vz0) 6= Vfm(x0).Consider the �rst case (the second is of course similar). We obtain that Jf and Jf�fk+mgive a coordinate system in a neighbourhood of y0 i.e. �k+m(y0) 6= 0 contrary to thesupposition.Thus the formula (7.2.4) de�nes a line �eld at all points of X which is Df -invariant.Observe however that the same formula de�nes a real-analytic extension of the line �eldto a neighbourhood of x in CI because V is real-analytic on a neighbourhood of y 2 Wand f is analytic. Each two such germs of extensions related to two di�erent pre-imagesof x must coincide because they coincide on X, otherwise (X; f) would be real-analytic.Now we can choose a �nite cover Bj = B(xj; �j) of a neighbourhood of X with discs,xj 2 X so that for the respective Fj-branches of f�nj leading xj into W , we haveFj(3Bj) � W where 3Bj := B(xj ; 3�j). Hence the formula (7.2.4) de�nes V on 3Bj .So if Bi \ Bj 6= ;, then we have 3Bi � Bj or vice versa. So 3Bi \ 3Bj \X 6= 0 hencethe extensions of V on 3Bi and on 3Bj, in particular on Bi and on Bj , coincide on theintersection. This is so because they coincide on the intersection with X and (X; f isnot real-analytic.(We made the trick with 3� because it can happen that Bi\Bj 6= ; but Bi\Bj\X = ;.)Thus V extends real-analytically to a neighbourhood of X. This �eld is Df -invariant on a neighbourhood of X because we can de�ne it in a neighbourhood of x 2 Xand f(x) by (7.2.4) taking the same y 2W \X where fn(y) = x, fn+1(y) = f(x). So byLemma 7.1.7 (X; f) is linear what contradicts the assumption that (X; f) is non-linear.Corollary 7.2.6. If for (X; f); (Y; g) the assumptions of Theorem 7.2.1 are satis�edand if (y; g) is real-analytic then (X; f) is real-analytic too.Proof. Due to Lemma 7.2.5 the assumptions of Lemma 7.2.4 are satis�ed. Soh�1 = F�1 �G on a neighbourhood of y 2 Y by the continuity of h�1, (see the notationin Proof of Lemma 7.2.4). Denote a real-analytic manifold Y is contained in by N .Then JgCI 6= Const on any neighbourhood of y in N . Otherwise h�1 would be constant,but y is not isolated in Y so h�1 would not be injective.Remind that we can consider F�1 � G as a real analytic extension of h�1 to aneighbourhood V of y in N . So the di�erential of F�1G is 0 at most at isolated points,so di�erent from 0 at a point y0 2 V \ Y . We conclude due to the continuity of h thatin a neighbourhood of h�1(y0), X is contained in a real-analytic curve. So (X; f) is areal-analytic repeller. 8



Now we shall collect together what we have done and make a decidive step inproving Theorem 7.2.1, namely we shall prove that the conjugacy extends to a real-analytic di�eomorphism.Proof of Theorem 7.2.1. If both (X; f) and (Y; g) are real- analytic then theconjugacy extends real-analytically to a real-analytic manifold so complex analyticallyto its neighbourhood by Proposition 7.2.3. Its assumptions hold by Lemmas 7.2.4 and7.2.2. If both (X; f) and (Y; g) are not real-analytic (a mixed situation is excluded byCorollary 7.2.6), then by Lemma 7.2.4 which assumptions hold due to Lemma 7.2.5 wecan assume the conjugacy h is a homeomorphism of X onto Y . But h�1 extends to aneighbourhood of y 2 Y in CI to a real-analytic map. We use here again the notation ofProposition 7.2.4 and proceed precisely like in Proposition 7.2.3, Proposition 7.2.4 andCorollary 7.2.6 by writing h�1 = F�1 �G. This gives a real-analytic extension of h�1to a neighbourhood of an arbitrary y 2 Y by the formula fn � h�1 � g�1� precisely as inProof of Proposition 7.2.3.For two di�erent branches F1; F2 of g�n1 ; g�n2 respectively, mapping y into thedomain of F�1 �G germs of the extensions must coincide because they coincide on theintersection with Y , see Lemma 7.1.4.Now we build a real-analytic extension of h�1 to a neighbourhood of Y similarlyas we extended V in Proof of Lemma 7.2.5, again using the assumption (Y; g) is notreal-analytic.Similarly we extend h.Denote the extensions by ~h; ~h�1. We have ~h�1�~h and ~h� ~h�1 equal to the identity onX;Y respectively. The these compositions extend to the identities to neighbourhoods,otherwise (X; f) or (Y; g) would be real-analytic. We conclude that ~h is a real-analyticdi�eomorphism. Finally observe that g~h = ~hf on a neighbourhood of X because thisequality holds on X itself and our functions are real-analytic, otherwise (X; f) wouldbe real-analytic.The only thing we should still prove is the followingLemma 7.2.7. If (X; f) is a non-linear CER, not real-analytic , and there is areal-analytic di�eomorphism h on a neighbourhood of X to a neighbourhood of Y foranother CER (Y; g) such that h(X) = Y and h conjugates f with g in a neighbourhoodof X then h is conformal.Proof. Suppose for the simpli�cation that f; g and h preserve the orientation ofCI, we will comment the general case at the end.For any orientation preserving di�eomorphism � of a domain in CI into CI denotethe complex dilatation function by !� . We recall that !� := d�d�z =d�dz . (The reader notfamiliar with the complex dilatation and its properties is advised to read the �rst 10pages of the classical Ahlfors book [Ahlfors].) The geometric meaning of the argumentof !�(z) may be explained by the equality 12!� = � where � corresponds to the thedirection in which the di�erential D� at z attains its maximum. In another words it isthe direction of the smaller axis of the ellipse in the tangent space at z which is mappedby D� to the unit circle. Of course this makes sense if !(z) 6= 0. Observe �nally that!(z) = 0 i� d�d�z = 0. Let go back now to our concrete maps.If dhd�z � 0 on X then as dhd�z is a real-analytic function we have dhd�z � 0 on aneighbourhood of X, otherwise (X; f) would be real-analytic. But this means that h isholomorphic what proves our Lemma. It rests to prove that the case dhd�z 6� 0 on X is9



impossible.Observe that if dhd�z (x) = 0 then dhd�z (f(x)) = 0 because h = ghf�1� on a neighbour-hood of f(x) for the branch f�1� of f�1 mapping f(x) to x and because g and f�1� areconformal. So if there exists x 2 X such that dhd�z (x) 6= 0 then this holds also for all x'sfrom a neighbourhood and as a consequence of the topological exactness of f for all xin a neighbourhood of X. Thus we have a complex-valued function !h nowhere zero ona neighbourhood of X.Recall now that for any two orientation preserving di�eomorphisms � and 	, if 	is holomorphic then !	�� = !�and if � is conformal then !	 � � = ( �0j�0j)2!	�� = !�Applying it to the equation h � f = g � h we obtain!h � f = ( f 0jf 0j)2!h�f = ( f 0jf 0j )2!g�h = ( f 0jf 0j )2!h:Thus �(x) := 12!h(x) satis�es the equation (7.1.4) and by Lemma (7.1.6) (X; f)happens linear what contradics our assumption that it is non- linear.In the case a di�eomorphism reverses the orientation we write everywhere above!�� instead of !� and if � is conformal reversing orientation we write ��0 instead of �0.Additionally some omegas should be conjugated in the formulas above. We also arive at(7.1.4). (In this situation the complex notation is not confortable. Everythig gets trivialif we act with di�erentials on line �elds. We leave writing this down to the reader.)
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version of Nov.25, 2002 CHAPTER 9CONFORMAL MAPS WITH INVARIANTPROBABILITY MEASURES OF POSITIVE LYAPUNOV EXPONENT.
x9.1 RUELLE'S INEQUALITY.Let X be a ompat subset of the losed omplex plane CI and let A(X) denote theset of all ontinuous maps f : X ! X that an be analytially extended to an openneighbourhood U(f) of X. In this setion we only work with the standard spherial metrion CI, normalized so that the area of CI is 1. In partiular all the derivatives are omputedwith respet to this metri.Let us reall and extend De�nition 6.1.3. Let � be an f -invariant Borel probabilitymeasure on X. Sine jf 0j is bounded, the integral R log jf 0j d� is well-de�ned and moreoverR log jf 0j d� < +1. The number�� = ��(f) = Z log jf 0j d�is alled the Lyapunov harateristi exponent of � and f . Note that R log jf 0jd� = �1 isnot exluded. In fat it is possible, for example if X = f0g and f(z) = z2.By Birkho� Ergodi Theorem (Th 1.2.2) the Lyapunov harateristi exponent��(x) = limn!1 1n log j(fn)0(x)j exists for a.e. x, ompare Se.6, and R ��(x) d�(x) = ��.(In fat one allows log jf 0j with integral �1 here, so one need extend slightly Th.1.2.2.This is not diÆult.)The setion is devoted to prove the following.Theorem 9.1.1. (Ruelle's inequality) If f 2 A(X), then h�(f) � 2 R maxf0; ��(x)g d�.For ergodi � this yields h�(f) � 2maxf0; ��g.Proof. Consider a sequene of positive numbers ak & 0, and Pk; k = 1; 2; ::: an inreasingsequene of partitions of the sphere CI onsisting of elements of diameters � ak and of(spherial) areas � 14a2k. Chek that suh partitions exist.For every g 2 A(X), x 2 X and k � 1 letN(g; x; k) = #fP 2 Pk : g(Pk(x) \ U(g)) \ P 6= ;gOur �rst aim is to show that for every k > k(g) large enough(9.1.1) N(g; x; k) � 4�(jg0(x)j+ 2)21



Indeed, �x x 2 X and onsider k so large that Pk(x) � U(g) and a Lipshitz onstantof gjPk(x) does not exeed jg0(x)j + 1. Thus the set g(Pk(x)) is ontained in the ballB(g(x); (jg0(x)j+ 1)ak). Therefore if g(Pk(x)) \ P 6= ;, thenP � B(g(x); (jg0(x)j+ 1)ak + ak) = B(g(x); (jg0(x)j+ 2)ak)Hene N(g; x; k) � �(jg0(x)j+ 2)2a2k=14a2k = 4�(jg0(x)j+ 2)2 and (9.1.1) is proved.Let N(g; x) = supk>k(g)N(g; x; k). In view of (9.1.1) we get(9.1.2) N(g; x) � 4�(jg0(x)j+ 2)2Now note that for every �nite partition A one hash(g;A) = limn!1 1n+ 1H(An) = limn!1 1n+ 1�H(g�n(A)jAn�1)+ :::+H(g�1(A)jA)+H(A)�(9.1.3) � limn!1 1n�H(g�n(A)jg�(n�1)(A)) + :::+ H(g�1(A)jA)� = H(g�1(A)jA):(Compare this omputation with the one done in Theorem 1.4.5 or in Proof of Theo-rem 1.5.4, whih would result with h(g;A) � H(Ajg�1(A)).) Going bak to our situation,sineH�Pk(x)(g�1(Pk)jPk(x)) � log#fP 2 Pk : g�1(P ) \ Pk(x) 6= ;g = logN(g; x; k)and by Theorem 1.8.7.a, we obtainh�(g) � lim supk!1 H�(g�1(Pk)jPk) = lim supk!1 Z H�Pk(x)(g�1(Pk)jPk(x)) d�(x)� lim supk!1 Z logN(g; x; k) d�(x)� Z logN(g; x) d�(x):Applying this inequality to g = fn (n � 1 an integer) and employing (9.1.2) we geth�(f) = 1nh�(fn) � 1n Z logN(fn; x) d�(x) = Z 1n logN(fn; x) d�(x)� Z 1n log 4�(j(fn)0(x)j+ 2)2 d�(x)Sine 0 � 1n log(j(fn)0(x)j+2)2 � 2(log�supX jf 0j)+1) and limn!1 1n log(j(fn)0(x)j+2) =maxf0; ��(x)g for �-a.e x 2 X, it follows from the Dominated Convergene Theorem(Ch1.Se.1) thath�(f) � limn!1 Z 1n log(j(fn)0(x)j+ 2)2 d�(x) = Z maxf0; 2��(x)g d�:2



The proof is ompleted. |Exerise. Prove the following general version of Theorem 8.1.1: Let X be a ompat f -invariant subset of a smooth Riemannian manifold for a C1 mapping f : U !M , de�nedon a neighbourhood U of X. Let � be an f -invariant Borel probability measure X. Thenh�(f) � ZX maxf0; �+� (x)g d�(x);where �+� (x) = limn!1 1n log k(Dfn)^k. Here Dfn is the di�erential and (Dfn)^ is theexterior power, the linear operator between the exterior algebras generated by the tangentspaes at x and fn(x). The norm is indued by the Riemann metri. Saying diretlyk(Dfn)^k is supremum of the volumes of Dfn-images of unit ubes in k-dimensionalsubspaes of TxM with k = 0; 1; :::; dimM .Note. Theorem 9.1.1 and Exerise rely on [Ruelle℄ D. Ruelle: An inequality of the entropyof di�erentiable maps. Bol. So. Bras. Mat. 9 (1978), 83-87.x9.2. PESIN'S THEORYIn this setion we work in the same setting and we follow the same notation as in Setion 9.1.Lemma 9.2.1. If � is a Borel �nite measure on IRn, n � 1, a is an arbitrary point of IRnand the funtion z 7! log jz � aj is �-integrable, then for every C > 0 and every 0 < t < 1,Xn�1�(B(a; Ctn)) <1:Proof. Sine � is �nite and sine given t < s < 1 there exists q � 1 suh that Ctn � snfor all n � q, without loosing generality we may assume that C = 1. Reall that givenb 2 IRn, and two numbers 0 � r < R, R(b; r; R) = fz 2 CI : r � jz � bj < Rg. Sine� log(tn) � � log jz � aj for every z 2 B(a; tn) we get the following.Xn�1�(B(a; tn)) =Xn�1n�(R(a; tn+1; tn)) = �1log tXn�1� log(tn)�(R(a; tn+1; tn))� �1log t ZB(a;t)� log jz � aj d�(z) < +1The proof is �nished. |Lemma 9.2.2. If � is a Borel �nite measure on CI, n � 1, and log jf 0j is � integrable,then the funtion z 7! log jz � j 2 L1(�) for every ritial point  of f . If additionally �is f -invariant, then also the funtion z 7! log jz � f()j 2 L1(�).3



Proof. That log jz� j 2 L1(�) follows from the fat that near  we have C�1jz� qjq�1 �jf 0(z)j � Cjz � jq�1, where q � 2 is the order of the ritial point  and C � 1 is auniversal onstant, and sine out of any neighbourhood of the set of ritial points of f ,jf 0(z)j is uniformly bounded away from zero and in�nity. In order to prove the seondpart of the lemma, onsider a ray R emanating from f() suh that �(R) = 0 and a diskB(f(); r) suh that f�1 : B(f(); r) nR! CI, an inverse branh of f sending f() to , iswell-de�ned. Let D = B(f(); r) n R. We may additionally require r > 0 to be so smallthat jz � f()j � jf�1 (z)� jq. It suÆes to show that the integral RD log jz � f()j d�(z)is �nite. And indeed, by f -invariane of � we haveZD log jz � f()j d�(z) = ZX 1D(z) log jz � f()j d�(z) � ZX 1D(z) log jf�1 (z)� jq d�(z)= ZX(1D Æ f)(z) log jz � jq d�(z) = ZX 1f�1(D) log jz � jq d�(z)Notie here that the funtion 1D(z) log jf�1 (z)� jq is well-de�ned on X indeed and thatunlike most of our omparability signs, the sign in the formula above means an additiveomparability. The �niteness of the last integral follows from the �rst part of this lemma.|Theorem 9.2.3. Let (Z;F ; �) be a measure spae with an ergodi measure preservingautomorphism T : Z ! Z. Let f : X ! X be a ontinuous map from a ompat setX � CI onto itself having a holomorphi extention onto a neighbourhood of X (f 2 A(X)).Suppose that � is an f -invariant ergodi measure on X with positive Lyapunov exponent.Suppose also that h : Z ! X is a measurable mapping suh that � Æ h�1 = � andh Æ T = f Æ h �-a.e.. Then for �-a.e. z 2 Z there exists r(z) > 0 suh that for everyn � 1 there exists f�nxn : B(x; r(z)) ! CI, an inverse branh of fn sending x = h(z) toxn = h(T�n(z)). In addition, for an arbitrary �, ���(f) < � < 0, (not depending on z)and a onstant K(z) j(f�nxn )0(y)j < K(z)e�n and j(f�nxn )0(w)jj(f�nxn )0(y)j � Kfor all y; w 2 B(x; r(z)). K is here the Koebe onstant orresponding to the sale 1=2.Proof. Suppose �rst that ��Sn�1 fn(Crit(f))� > 0. Sine � is ergodi this implies that� must be onentrated on a periodi orbit of an element w 2 Sn�1 fn(Crit(f)). Thismeans that w = fq() = fq+k() for some q; k � 1 and  2 Crit(f), and�(ffq(); fq+1(); : : : ; fq+k�1()g) = 1:Sine R log jf `j d� > 0, j(fk)`(fq())j > 1. Thus the theorem is obviously true for the seth�1(ffq(); fq+1(); : : : ; fq+k�1()g) of � measure 1.So, suppose that ��Sn�1 fn(Crit(f))� = 0. Set R = minf1; dist(X;CI n U(f))g and �x� 2 (e 14�; 1). Consider z 2 Z suh that x = h(z) =2 Sn�1 fn(Crit(f)),limn!1 1n log j(fn)0(h(T�n(z))j = ��(f);4



and xn = h(T�n(z)) 2 B(f(Crit(f)); R�n) only for �nitely many n's. We shall �rstdemonstrate that the set of points satisfying these properties is of full measure �. Indeed,the �rst requirement is satis�ed by our hyphothesis, the seond is due to Birkho�'s ergoditheorem. In order to prove that the set of points satisfying the third ondition has �measure 1 notie thatXn�1 ��Tn(h�1(B(f(Crit(f)); R�n)))� =Xn�1 ��h�1(B(f(Crit(f)); R�n))�=Xn�1�(B(f(Crit(f)); R�n)) <1;where the last inequality we wrote due to Lemma 9.2.2 and Lemma 9.2.1. The appliationof the Borel-Canteli lemma �nishes now the demonstration. Fix now an integer n1 = n1(z)so large that xn = h(T�n(z)) =2 B(f(Crit(f)); R�n) for all n � n1. Notie that beause ofour hoies there exists n2 � n1 suh that j(fn)0(xn)j�1=4 < �n for all n � n2. Finally setS =Pn�1 j(fn)0(xn)j�1=4, bn = 12S�1j(fn+1)0(xn+1)j�14 , and� = �1n=1(1� bn)�1whih onverges sine the series Pn�1 bn onverges. Choose now r = r(z) so smallthat 16r(z)�KS3 � R, all the inverse branhes f�nxn : B(x0;�r(z)) ! CI are well-de�ned for all n = 1; 2; : : : ; n2 and diam�f�n2xn2 (B�x0; r�k�n2(1 � bk)�1)� � �n2R. Weshall show by indution that for every n � n2 there exists an analyti inverse branhf�nxn : B�x0; r�k�n(1� bk)�1�! CI, sending x0 to xn and suh thatdiam�f�nxn (B�x0; r�k�n(1� bk)�1)� � �nR:Indeed, for n = n2 this immediately follows from our requirements imposed on r(z). So,suppose that the laim is true for some n � n2. Sine xn = f�nxn (x0) =2 B(Crit(f); R�n)and sine �nR � R, there exists an inverse branh f�1xn+1 : B(xn; �nR) ! CI sendingxn to xn+1. Sine diam�f�nxn (B�(x0; r�k�n(1 � bk)�1)� � �nR, the omposition f�1xn+1 Æf�nxn B�x0; r�k�n(1� bk)�1)! CI is well-de�ned and forms the inverse branh of fn+1 thatsends x0 to xn+1. By the Koebe distortion theorem we now estimatediam�f�(n+1)xn+1 (B�x0; r�k�n+1(1� bk)�1))�� 2r�k�n+1(1� bk)�1j(fn+1)0(xn+1)j�1Kb�3n� 16r�KS3j(fn+1)0(xn+1)j�1j(fn+1)0(xn+1)j 34= 16r�KS3j(fn+1)0(xn+1)j� 14� R�n+1;where the last inequality sign we wrote due to our hoie of r and the number n2. Puttingr(z) = r=2 the seond part of this theorem follows now as a ombined appliation of theequality limn!1 1n log j(fn)0(xn)j = ��(f) and the Koebe distortion theorem. |5



As an immediate onsequene of Theorem 9.2.3 we get the following.Corollary 9.2.4. Assume the same notation and asumptions as in Theorem 9.2.3. Fix" > 0. Then there exist a set Z(") � Z, the numbers r(") 2 (0; 1) and K(") � 1 suh that�(Z(")) > 1� ", r(z) � r(") for all z 2 Z(") and with xn = h(T�n(z))K(")�1 exp(�(�� + ")n) � j(f�nxn )(y)j � K(") exp(�(�� � ")n) and j(f�nxn )0(w)jj(f�nxn )0(y)j � Kfor all n � 1, all z 2 Z(") and all y; w 2 B(x0; r(")). K is here the Koebe onstantorresponding to the sale 1=2.Remark 9.2.5. In our future appliations the system (Z; f; �) will be usually given bythe natural extension of the holomorphi system (f; �).x9.3 MA~N�E'S PARTITIONIn this setion, basially following Ma~n�e's book ???, we onstrut so alled Ma~n�e's partitionwhih will play an important role in the proof of a part of the Volume Lemma given in thenext setion. We begin with the following elementary fat.Lemma 9.3.1. If xn 2 (0; 1) for every n � 1 andP1n=1 nxn <1, thenP1n=1�xn log xn <1.Proof. Let S = fn : � log xn � ng. Then1Xn=1�xn log xn = Xn=2S�xn logxn +Xn2S�xn logxn � 1Xn=1nxn +Xn2S�xn logxnSine n 2 S means that xn � e�n and sine log t � 2pt for all t � 1, we haveXn2S xn log 1xn � 2 1Xn=1xnr 1xn � 2 1Xn=1 e� 12n <1The proof is �nished. |The next lemma is the main and simultaneously the last result of this setion.Lemma 9.3.2. If � is a Borel probability measure onentrated on a bounded subsetM of a Eulidean spae and � : M ! (0; 1℄ is a measurable funtion suh that log � is6



integrable with respet to �, then there exists a ountable measurable partition, alledMa~n�e's partition, P of M suh that H�(P) <1 anddiam(P(x)) � �(x)for �-almost every x 2M .Proof. Let q be the dimension of the Eulidean spae ontainingM . SineM is bounded,there exists a onstant C > 0 suh that for every 0 < r < 1 there exists a partition Prof M of diameter � r and whih onsists of at most Cr�q elements. For every n � 0 putUn = fx 2 M : e�(n+1) < �(x) � e�ng. Sine log � is a non-positive integrable funtion,we have 1Xn=1�n�(Un) � 1Xn=1 ZUn log � d� = ZM log � d� > �1so that(9.3.1) 1Xn=1n�(Un) < +1:De�ne now P as the partition whose atoms are of the form Q \ Un, where n � 0 andQ 2 Prn , rn = e�(n+1). ThenH�(P) = 1Xn=0�� XUn�P2P �(P ) log�(P )�:But for every n � 0� XUn�P2P �(P ) log�(P ) = �(Un)XP � �(P )�(Un) log� �(P )�(Un)�� �(Un)XP �(P )�(Un) log(�(Un))� �(Un)(logC � q log rn)� �(Un) log�(Un)� �(Un) logC + q(n+ 1)�(Un)� �(Un) log�(Un):Thus, summing over all n � 0, we obtainH�(P) � logC + q + q 1Xn=0n�(Un) + 1Xn=0��(Un) log�(Un):Therefore looking at (9.3.1) and Lemma 9.3.1 we onlude that H�(P) is �nite. Also, ifx 2 Un, then the atom P(x) is ontained in some atom of Prn and thereforediam(P(x)) � rn = e�(n+1) < �(x):Now the remark that the union of all the sets Un is of measure 1 ompletes the proof. |7



x9.4 VOLUME LEMMA AND THE FORMULA HD(�) = h�(f)=��(f)In this setion we keep the notation of Setions 9.1 and 9.2 and our main purpose is toprove the following two results whih generalize the respetive results in Chapter 7.Theorem 9.4.1. If f 2 A(X) and � is an ergodi f -invariant measure with positiveLyapunov exponent, then HD(�) = h�(f)=��(f).Theorem 9.4.2. ( Volume Lemma) With the assumptions of Theorem 9.4.1limr!0 log(�(B(x; r)))log r = h�(f)��(f)for �-a.e. x 2 X.In view of Corollary 6.6.4, Theorem 9.4.1 follows from Theorem 9.4.2 and we only need toprove the latter one. Let us prove �rst(9.4.1) lim infr!0 log(�(B(x; r)))log r � h�(f)��(f)for �-a.e. x 2 X. By Corollary 7.1.9 there exists a �nite partition P suh that for anarbitrary " > 0 and every x in a set Xo of full measure � there exists n(x) � 0 suh thatfor all n � n(x).(9.4.2) B(fn(x); e�"n) � P(fn(x)):Let us work from now on in the natural extension ( ~X; ~f; ~�). Let ~X(") and r(") be givenby Corollary 9.2.4, i.e. ~X(") = Z("). In view of Birkho�'s Ergodi Theorem there existsa measurable set ~F (") � ~X(") suh that ~�( ~F (")) = ~�( ~X(")) andlimn!1 1n n�1Xj=1 � ~X(") Æ ~fn(~x) = ~�( ~X("))for every ~x 2 ~F ("). Let F (") = �( ~F (")). Then �(F (")) = ~�(��1(F (")) � ~�( ~F (")) =~�( ~X(")) onverges to 1 if "& 0. Consider now x 2 F (")\Xo and take ~x 2 ~F (") suh thatx = �(~x). Then by the above there exists an inreasing sequene fnk = nk(x) : k � 1gsuh that ~fnk(~x) 2 ~X(") and(9.4.3) nk+1 � nknk � "for every k � 1. Moreover, we an assume that n1 � n(x). Consider now an integer n � n1and the ball B�x;Cr(") exp(�(�� + (2 + log kf 0k)")n)�, where 0 < C < (Kr("))�1 is aonstant (possibly depending on x) so small that(9.4.4) fq�B(x;Cr(") exp�(�� + (2 + log kf 0k)")n)� � P (fq(x))8



for every q � n1 and K(") � 1 is the onstant appearing in Corollary 9.2.4. Take nowany q, n1 � q � n, and assoiate k suh that nk � q � nk+1. Sine ~fnk(~x) 2 ~X(")and sine �( ~fnk(~x)) = fnk(x), Corollary 9.2.4 produes a holomorphi inverse branhf�nkx : B(fnk(x); r("))! CI of fnk suh that f�nkx (fnk(x)) = x andf�nkx �B(fnk(x); r("))� � B�x;K(")r(")�1 exp(�(�� + ")nk)�:Sine B(x;Cr(") exp�(�� + (2 + log kf 0k)")n) � B�x;K(")�1r(") exp�(�� + ")nk)�, itfollows from Corollary 9.2.4 thatfnk�B(x;Cr(") exp� (�� + (2 + log kf 0k)")n)� �� B�fnk(x); CKr(")e���(n�nk) exp("(nk � (2 + log kf 0k)n))�:Sine n � nk and sine by (9.4.3) q � nk � "nk, we therefore obtainfq�B(x;Cr(") exp�(�� + (2 + log kf 0k)")n)� �� B(fq(x); CK(")r(")e���(n�nk) exp("(nk � (2 + log kf 0k)n)) exp((q � nk) log kf 0k)� B(fq(x); CK(")r(") exp�"(nk log kf 0k+ nk � 2n� n log kf 0k)�� B(fq(x); CK(")r(")e�"n) � B(fq(x); e�"q):Combining this, (9.4.2), and (9.4.4), we getB�x;Cr(") exp�(�� + (2 + log kf 0k)")n)� � n_j=0 f�j(P)(x):Therefore, applying Theorem 1.5.5 (the Shanon-MMillan-Breiman Theorem), we havelim infn!1 � 1n log��B(x;Cr(") exp�(�� + (2 + log kf 0k)")n)� � h�(f;P) � h�(f)� "It means that denoting the number Cr(") exp�(�� + (2 + log kf 0k)")n) by rn, we havelim infn!1 log�(B(x; rn)log rn � h�(f)� "��(f) + (2 + log kf 0k)"Now, sine frng is a geometri sequene and sine " > 0 an be taken arbitrarily small, weonlude that for �-a.e. x 2 Xlim infn!1 log�(B(x; r)log r � h�(f)��(f)This ompletes the proof of (9.4.1). |Remark. Sine here X � CI, we ould have onsidered a partition P of a neighbourhoodof X in CI where �P;a would have a more standard sense, see Remark after Corollary 7.1.8.Now let us prove that(8.4.5) lim supr!0 log(�(B(x; r)))log r � h�(f)=��(f)for �-a.e. x 2 X. 9



In order to prove this formula we again work in the natural extension ( ~X; ~f; ~�) and weapply Pesin theory. In partiular the sets ~X("), ~F (") � ~X(") and the radius r("), produedin Corollary 9.2.4 have the same neaning as in the proof of (9.4.1). To begin with notiethat there exist two numbers R > 0 and 0 < Q < minf1; r(")=2g suh that the foloowingtwo onditions are satis�ed.(9.4.6) If z =2 B(Crit(f); R), then f jB(z;Q) is injetive.(9.4.7) If z 2 B(Crit(f); R), then f jB(z;Qdist(z;Crit(f))) is injetive.Observe also that if z is suÆiently lose to a ritial point , then f 0(z) is of order(z � )q�1, where q � 2 is the order of ritial point . In partiular the quotient of f 0(z)and (z� )q�1 remains bounded away from 0 and 1 and therefore there exists a onstantnumber B > 1 suh that jf 0(z)j � Bdist(z;Crit(f)). So, in view of Theorem 9.2.2, thelogarithm of the funtion �(z) = Qminf1; dist(z; Crit(f)) is integrable and onsequentlyLemma 9.3.2 applies. Let P be the Ma~n�e's partition produed by this lemma. ThenB(x; �(x)) � P(x) for �-a.e. x 2 X, say for a subset X� of X of measure 1. Consequently(9.4.8) Bn(x; �) = n�1\j=0 f�j�B(f j(x); �(f j(x)))� � Pn0 (x)for every n � 1 and every x 2 X�. By our hoie of Q and the de�nition of �, the funtionf is injetive on all balls B(f j(x); �(f j(x))), j � 0, and therefore fk is injetive on theset Bn(x; �) for every 0 � k � n � 1. Now, let x 2 F (") \ X� and let k be the greatestsubsript suh that q = nk(x) � n � 1. Denote by f�qx the unique holomorphi inversebranh of fq produed by Corollary 9.2.4 whih sends fq(x) to x. Clearly Bn(x; �) �f�q(B(fq(x); �(fq(x)))) and sine fq is injetive on Bn(x; �) we even haveBn(x; �) � f�qx (B(fq(x); �(fq(x)))):By Corollary 9.2.4 diam�f�qx (B(fq(x); �(fq(x))))� � K exp(�q(��� ")). Sine by (9.4.3),n � q(1 + ") we �nally dedue thatBn(x; �) � B�x;K exp(�n�� � "1 + " )�:Thus, in view of (9.4.8) B�x;K exp(�n�� � "1 + " )� � Pn0 (x):Therefore, denoting by rn the radius of the ball above, it follows from Shanon-MMillan-Breiman theorem that for �-a.e x 2 Xlim supn!1 � 1n log�(B(x; rn) � h�(f;P) � h�(f):10



So lim supn!1 log�(B(x; rn)log rn � h�(f)��(f)� " (1 + "):Now, sine frng is a geometri sequene and sine " an be taken arbitrarily small, weonlude that for �-a.e. x 2 Xlim supn!1 log�(B(x; r)log r � h�(f)��(f) :This ompletes the proof of (9.4.5) and beause of (9.4.1) also the proof of Theorem 9.4.2.|x9.5 PRESSURE-LIKE DEFINITION OF THE FUNCTIONAL h� + R � d�.In this setion we prepare some general tools used in the next setion to approximatetopologial pressure on hyperboli sets. No smoothness is assumed here, we work in purelymetri setting only. Our exposition is similar to that ontained in Chapter 2.Let T : X ! X be a ontinuous map of a ompat metri spae (X; �) and let � be aBorel probability measure on X. Given " > 0 and 0 � Æ � 1 a set E � X is said to be�� (n; "; Æ)-spanning if �� [x2EBn(x; ")� � 1� Æ:Let � : X ! IR be a ontinuous funtion. We de�neQ�(T; �; n; "; Æ) = infE �Xx2E expSn�(x)	where the in�mum is taken over all �� (n; "; Æ)-spanning sets E. The main result of thissetion is the following.Theorm 9.5.1. For every 0 < Æ < 1 and every ergodi measure �h�(T ) + Z � d� = lim"!0 lim infn!1 1n logQ�(T; �; n; "; Æ) = lim"!0 lim supn!1 1n logQ�(T; �; n; "; Æ)Proof. Denote the the number following the �rst equality sign by P�(T; �; Æ) and thenumber following the seond equality sign by P�(T; �; Æ). First, following essentially theproof of the Part I of Theorem 2.3.1, we shall show that(9.5.1) P�(T; �; Æ) � h�(T ) + Z � d�11



Indeed, similarly as in that proof onsider a �nite partition U = fA1; : : : ; Asg of X intoBorel sets and ompat sets Bi � Ai, i = 1; 2; : : : ; Asg, suh that for the partition V =fB1; : : : ; Bs; X n (B1 [ : : : [ Bs)g we have H�(UjV) � 1. For every � > 0 and q � 1, setXq = fx 2 X : � 1n log��Vn(x)� � h�(T;V)� � for all n � q and1nSn�(x) � Z � d�� � for all n � qgFix now 0 � Æ < 1. It follows from Shannon-MMillan-Breiman theorem and Birkho�'sergodi theorem that for q large enough �(Xq) > Æ. Take 0 < " < 12 minf�(Bi; Bj) : 1 �i < j � sg > 0 so small that j�(x)� �(y)j < �if �(x; y) � ". Sine for every x 2 X the set Bn(x; ") \ Xq an be overed by at most 2nelements of Vn, �(Bn(x; ") \Xq) � exp�n(log 2� h�(T;V) + �)�:Now let E be a � � (n; "; Æ)-spanning set for n � q, and onsider the set E0 = fx 2E : Bn(x; ") \ Xq 6= ;g. Take any point y(x) 2 Bn(x; ") \ Xq. Then by the hoie of ",Sn�(x)� Sn�(y) > �n�. Therefore we haveXx2E expSn�(x) exp��n�h�(T;V) + Z � d�� 3� � log 2�� �� Xx2E0 expSn�(x) exp��n�h�(T;V) + Z � d�� 3� � log 2��= Xx2E0 exp�Sn�(x)� n Z � d�� exp��n(h�(T;V)� 3� � log 2)�= Xx2E0 exp�Sn�(x)� Sn�(y) + Sn�(y)� n Z � d�� exp��n�h�(T;V)� 3� � log 2��� Xx2E0 exp(�n�) exp(�n�) exp(2n�) exp��n(h�(T;V)� � � log 2)�= Xx2E0 exp�n(log 2� h�(T;V) + �)�� Xx2E0 �(Bn(x; ") \Xq) � �(Xq)� Æ > 0whih implies that Q�(T; �; n; "; Æ) � h�(T;V) + Z � d�� 3� � log 2:Sine � > 0 is an arbitrary number and sine h�(T;U) � h�(T;V)+H�(UjV) � h�(T;V)+1,letting "! 0, we get P�(T; �; Æ) � h�(T;U)� 1 + Z � d�� log 212



Therefore, by the de�nition of entropy of an automorphism, P�(T; �; Æ) � h�(T )+R � d��log 2�1. Using now the standard trik, atually always applied in the setting we are whosepoint is to replae T by its arbitrary iterates T k and � by Sk�, we obtain kP�(T; �; Æ) �kh�(T ) + k R � d� � log 2 � 1. So, dividing this inequality by k, and letting k ! 1, we�nally obtain P�(T; �; Æ) � h�(T ) + Z � d�Now let us prove that(9.5.2) P�(T; �; Æ) � h�(T ) + Z � d�where P�(T; �; Æ) denotes limsup appearing in the statement of Theorm 9.5.1. Indeed, �x0 < Æ < 1, then " > 0 and � > 0. Let P be a �nite partition of X of diameter � ". ByShannon-MMillan-Breiman theorem and Birkho�'s ergodi theorem there exists a Borelset Z � X suh that �(Z) > 1� Æ and(9.5.3) 1nSn�(x) � Z � d�+ � and � 1n log�(Pn(x)) � h�(T ) + �for every n large enough and all x 2 Z. From eah element of Pn having non-empty inter-setion with Z hoose one point obtaining, say, a set fx1; x2; : : : ; xqg. Then Bn(xj; ") �Pn(xj) for every j = 1; 2; : : : ; q and therefore the set fx1; x2; : : : ; xqg is � � (n; "; Æ)-spanning. By the seond part of (9.5.3) we have q � exp(n(h�(T ) + �)). Using alsothe �rst part of (9.5.3), we getqXj=1 expSn�(xj) � exp(n(h�(T ) + � + Z � d�+ �))Therefore Q�(T; �; n; "; Æ) � exp(n(h�(T ) + � + R � d� + �)) and letting onsequtivelyn ! 1 and " ! 0, we obtain P�(T; �; Æ) � h�(T ) + R � d� + 2�. Sine � is an arbitrarypositive number, (9.5.2) is proved. This and (9.5.1) omplete the proof of Theorem 9.5.1.|.x9.6 KATOK'S THEORY { HYPERBOLIC SETS, PERIODIC POINTS, AND PRES-SUREIn this setion we again ome bak to the setting of Setion 9.1. So, let X be a ompatsubset of the losed omplex plane CI and let f : X ! X be a ontinuous map that an beanalytially extended to an open neighbourhood U(f) of X.Let � be an f -invariant ergodi measure onX with positive Lyapunov exponent. h�(f)and let � : X ! IR be a real ontinuous funtion. Our �rst aim is to show that the number13



h�(f)+R � d� an be approximated by the topologial pressures of � on hyperboli subsetsof X and then as a straightforward onsequene we will obtain the same approximationfor the topologial pressure P(f; �).Theorm 9.6.1. If � is an f -invariant ergodi measure on X with positive Lyapunovexpenent �� and if � : X ! IR is a real-valued ontinuous funtion, then there exists asequene Xk, k = 1; 2; : : :, of ompat f - invariant subsets of U suh that for every k therestrition f jXk is a onformal expanding repeller,lim infk!1 P(f jXk ; �) � h�(f) + Z � d�and if �k is any ergodi f -invariant measure on Xk, then the sequene �k, k = 1; 2; : : :,onverges to � in the weak-*-topology on a losed neighbourhood of X.Proof. Sine P(f jXk ; � + ) = P(f jXk ; �) +  and sine h�(f) + R (� + ) d� = h�(f) +R � d� + , adding a onstant if neessary, we an assume that � is positive, that is thatinf � > 0. As in Setion 9.2 we work in the natural extension ( ~X; ~f; ~�). Given Æ > 0 let~X(Æ) and r(Æ) be produed by Corollary 9.2.4. The set �( ~X(Æ)) is assumed to be ompat.This orollary implies the existene of a onstant �0 > 0 (possibly with a smaller radiusr(Æ)) suh that(9.6.1) diam�f�nxn (B(�(~x); r(Æ))� � e�n�0for all ~x 2 ~X(Æ) and n � 0. Fix a ountable basis f jg1j=1 of the Banah spae C(X) ofall ontinuous real-valued funtions C(X). Fix � > 0 and an integer s � 1. In view ofTheorem 9.5.1 and ontinuity of funtions � and  i there exists " > 0 so small that(9.6.2) lim infn!1 1n logQ�(T; �; n; "; Æ)� (h�(f) + Z � d�) > ��;if jx� yj < ", then(9.6.3) j�(x)� �(y)j < �and(9.6.4) j i(x)�  i(y)j < 12�for all i = 1; 2; : : : ; s.Set � = r(Æ)=2 and �x a �nite �=2-spanning set of �( ~X(Æ)), say fx1; : : : ; xtg. That isB(x1; �=2) [ : : : [ B(xt; �=2) � �( ~X(Æ=2)). Let U be a �nite partion of X with diameter< �=2 and let n1 be suÆiently large that(9.6.5) exp(�n1�0) < minf�=3; K�1g:14



Given n � 1 de�ne~Xn;s = f~x 2 ~X(Æ) : ~fq(~x) 2 ~X(Æ) and �( ~fq(~x)) 2 U(~x)for some q 2 [n+ 1; (1 + �)n℄and ���� 1kSk( i)(�(~x))� Z  i d����� < 12�for every k � n and all i = 1; 2; : : : ; sg:By Birkho�'s ergodi theorem limn!1 �( ~Xn;s) = �( ~X(Æ)) > 1� Æ. Therefore there existsn � n1 so large that �( ~Xn;s) > 1 � Æ. Let Xn;s = �(( ~Xn;s)). Then �(Xn;s) > 1 � Æ andlet En � Xn;s be a maximal (n; ")-separated subset of Xn;s. Then En is a spanning set ofXn;s and therefore it follows from (8.6.2) that for all n large enough1n log Xx2En expSn�(x)� (h�(f) + Z � d�) > ��:Equivalently Xx2En exp(Sn�(x)) > exp(n(h�(f) + Z � d�� �)):For every q 2 [n+ 1; (1 + �)n℄ letVq = fx 2 En : fq(x) 2 U(x)gand let m = m(n) be a value of q that maximizesPx2Vq exp(Sn�(x)). Sine S(1+�)nq=n+1 Vq =En, we thus obtainXx2Vm expSn�(x) � (n�)�1 (1+�)nXq=n+1 Xx2Vq expSn�(x)� (n�)�1 Xx2En exp(Sn�(x)) � exp(n(h�(f) + Z � d�� 2�)):Consider now the sets Vm \ B(xj ; �=2), 1 � j � t and hoose the value i = i(m) of jthat maximizes Px2Vm\B(xj ;�=2) exp(Sn�(x)). Thus, writing Dm for Vm \ B(xi(m); �=2)we have Vm = Stj=1 Vm \ B(xi; �=2) andXx2Dm expSn�(x) � 1t exp(n(h�(f) + Z � d�� 2�)):Sine � is positive, this implies that(9.6.6) Xx2Dm expSm�(x) � 1t exp(n(h�(f) + Z � d�� 2�)):15



Now, if x 2 Dm, then jfm(x)�xij � jfm(x)�xj+ jx�xij < �=2+�=2 = � and thereforefm(x) 2 B(xi; �) � B(fm(x); 2�):Thus, by (9.6.1) and as m � n � n1, we have diam�fx�m(B(fm(x); 2�)� � exp(�m�0) <�=3, where ~x 2 ��1(x) \ ~Xn;s. Thereforef�mx (B(xi; �)) � B�xi; �2 + �3� = B�xi; 56��In partiular(9.6.7) f�mx (B(xi; �)) � B(xi; �)Consider now two distint points y1; y2 2 Dm. Then f�my2 (B(xi; �)) \ f�my1 (B(xi; �)) = ;and dereasing � a little bit, if neessary, we may assume thatf�my2 (B(xi; �)) \ f�my1 (B(xi; �)) = ;:Let � = minn�;minndist�f�my2 (B(xi; �)); f�my1 (B(xi; �)� : y1; y2 2 Dm; y1 6= y2oo :De�ne now indutively the sequene of sets fX(j)g1j=0 ontained in U(f) by settingX(0) = (B(xi; �) and X(j+1) = [x2Dm f�mx0 (X(j))By (9.6.7),fX(j)g1j=0, is a desending sequene of non-empty ompat sets, and thereforethe intersetion X� = X�(�; s) = 1\j=0X(j)is also a non-empty ompat set. Moreover, by the onstrution fm(X�) = X�, fmjX�is topologially onjugate to the full one-sided shift generated by an alphabet onsistingof #Dm elements and it immediately follows from Corollary 9.2.4 that fmjX� is an ex-panding map. Sine fmjX� is an open map, it is straightforward to hek that the triple(fm; X�; Um) is a onformal expanding repeller with a suÆiently small neighborhood Umof X�. Thus (f;X(�; s);Ws), is also a onformal expanding repeller, whereX(�; s) = m�1[l=0 f l(X�) and Ws = m�1[l=0 f l(Um)16



Fix now an integer j � 1. For any j-tuple (z0; z1; : : : ; zj�1), zl 2 Dm hoose exatly onepoint y from the set f�mzj�1 Æ f�mzj�2 Æ : : :Æ f�mz0 (X�) and denote the made up set by Aj. Sineby (9.6.3) and (9.6.5) Sjm�(y) �Pj�1l=0 Sm�(zl)� jm� we see thatXy2Aj expSjm�(y) � � Xx2Dm expSm�(x)�j exp(�jm�)and 1j log Xy2Aj expSjm�(y) � log Xx2Dm expSm�(x)�m�In view of the de�nition of �, the set Aj is (j; �)-separated for fm and � is an expansiveonstant for fm. Hene, letting j !1 we obtainP(fmjX� ; Sm�) � log Xx2Dm expSm�(x)�m�� n�h�(f) + Z � d�� 2��� log t�m�where the last inequality was written in view of (9.6.6). Sine n+ 1 � m � n(1 + �) andsine inf � > 0 (and onsequently h�(f) + R � d� > 0), we getP(f jX(�;s); �) = 1mP(fmjX(�;s); �) � 1mP(fmjX� ; Sm�)� 11 + � �h�(f) + Z � d�� 2��� log tm � �Supposing now that n (and onsequently also m) was hoosen suÆiently large we getP(f jX(�; s); �) � 11 + � (h�(f) + Z � d�)� 4�:If now � is any ergodi f -invariant measure on X(�; s), then it follows from the de�nitionof the set ~Xn;s, the onstrution of the set X(�; s) and the Birkho� ergodi theoremthat j R  i d� � R  i d�j < � for every i = 1; 2; : : : ; s. Therefore putting for exampleXk = X(1=k; k), ompletes the proof of Theorem 9.6.1. |Remark 9.6.2. If the set X is repelling, that is if Tn�0 f�n(U) = X, then the sets Xkonstuted in the proof of Theorem 9.6.1 are all ontained in X. In partiular we get thefollowing.Corollary 9.6.3. If the set X is repelling and if P(f; �) > sup �, then there exists asequene Xk, k = 1; 2; : : :, of ompat f -invariant subsets of X suh that for every k, f jXkis a onformal expanding repeller,limk!1P(f jXk ; �) = P(f; �)17



and if �k is any ergodi f -invariant measure on Xk, then the sequene �k, k = 1; 2; : : :,onverges to � in the weak-*-topology on X.Remark 9.6.4. Of ourse in Corollary 9.6.3 was suÆient to assume that P(f; �) =supfh�(f) + R � d�g where the supremum is taken over all ergodi invariant measures ofpositive entropy, whih is assured for eaxample by inequality P(f; �) > sup�. Besides, ifthe funtion � has an equilibrium state of positive entropy, then the sequene �k an behoosen to onverge to this equilibrium state.Our last immediate onlusion onerns periodi points.Corollary 9.6.5. If f : X ! X is repelling and htop(f) > 0, then f has in�nitely manyperiodi points. Moreover the number of periodi points of period n grows exponentialyfast with n.
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CHAPTER 10CONFORMAL MEASURES
x10.1. GENERAL NOTION OF CONFORMAL MEASURES.Let T : X ! X be a ontinuous map of a ompat metri spae (X; �) and let g : X ! IRbe a non{negative measurable funtion. A Borel probability measure m on X is said tobe g{onformal for T : X ! X if(10.1.1) m(T (A)) = ZA g dmfor any Borel set A � X suh that T jA is injetive. Sets with this property will be alledspeial. There is a lose relation between onformal measures and Perron-Frobenius typeoperators. In order to desribe it notie �rst that(10.1.2) ZT (A) � dm = ZA(� Æ T )g dmfor any Borel funtion � and any speial set A. Assume now (only till Proposition 10.1.1)additionally that T is bounded{to{one (i.e. the numbers of preimages of points are uni-formly bounded) and that g takes values in IR+. De�ne then the Perron{Frobenius operatorLg, assoiated to T and g, putting for a measurable funtion � : X ! IR+Lg�(x) = XT (y)=x �(y)g(y)Lg� is a well de�ned measurable funtion. We shall prove the following.Proposition 10.1.1. Assume that there exists a �nite partition of X into speial sets Xi(1 � i � s), suh that all the maps T : Xi ! T (Xi) are measurable isomorphisms. Thenm is g{onformal if and only if Lg ats on L1(m) and L�gm = m, where L�g is the operatoronjugate with Lg.Proof. Let m be g{onformal and let � 2 L1(m). By (10.1.2)ZT (Xi) �g Æ �T jXi��1 dm = ZXi � dm1



for every i = 1; : : : ; s. Thus, summing over all i yieldsZX Lg� dm = ZX � dmConversely, assume that Lg ats on L1(m) and that m is a �xed point of L�g. Let A be aspeial set. Then, by the de�nition of the Perron{Frobenius operatorZA g dm = ZA f d(L�gm) = ZX Lg(1Ag) dm = ZX XT (y)=x 1A(y)m(dx) = m(T (A))Thus m is f -onformal. |Now we shall provide a general method of onstruting onformal measures. The onstru-tion will make use of the following simple analytial fat. For a sequene fan : n � 1g ofreals the number(10.1.3)  = lim supn!1 annwill be alled the transition parameter of fan : n � 1g. It is uniquely determined by theproperty that Xn�1 exp(an � ns)onverges for s >  and diverges for s < . For s =  the sum may onverge or diverge.By a simple argument one obtains the following.Lemma 10.1.2. There exits a sequene fbn : n � 1g of positive reals suh that1Xn=1 bn exp(an � ns)�<1 s > =1 s � and limn!1 bnbn+1 = 1.Proof. If P exp(an � n) = 1, put bn = 1 for every n � 1. If P exp(an � n) < 1,hoose a sequene fnk : k � 1g of positive integers suh that limk!1 nkn�1k+1 = 0 and"k := ankn�1k � ! 0. Settingbn = exp�n� nk � nnk � nk�1 "k�1 + n� nk�1nk � nk�1 "k�� for nk�1 � n < nk;it is easy to hek that the lemma follows. |Getting bak to dynamis let fEng1n=1 be a sequene of �nite subsets of X suh that(10.1.4) T�1(En) � En+1 for every n � 12



and let an = log� Xx2En exp(Sng(x))�where Sng = P0�k<n g Æ T k. Denote by  the transition parameter of this sequene.Choose a sequene fbn : n � 1g of positive reals as in lemma 10.1.2 for the sequenefan : n � 1g. For s >  de�ne(10.1.5) Ms = 1Xn=1 bn exp(an � ns)and the normalized measure(10.1.6) ms = 1Ms 1Xn=1 Xx2En bn exp(Sng(x)� ns)Æx;where Æx denotes the unit mass at the point x 2 X. Let A be a speial set. Using (10.1.4)and (10.1.6) it follows thatms(T (A)) = 1Ms 1Xn=1 Xx2En\T (A) bn exp(Sng(x)� ns)= 1Ms 1Xn=1 Xx2A\T�1En bn exp(Sng(T (x))� ns)= 1Ms 1Xn=1 Xx2A\En+1 bn exp[Sn+1g(x)� (n+ 1)s℄ exp(s� g(x))� 1Ms 1Xn=1 Xx2A\(En+1nT�1En) bn exp(Sng(T (x))� ns):(10.1.7)Set�A(s) == ������ 1Ms 1Xn=1 Xx2A\En+1 bn exp[Sn+1g(x)� (n+ 1)s℄ exp(s� g(x))� ZA exp(� g) dms������3



and observe that�A(s) == 1Ms ���� 1Xn=1 Xx2A\En+1 exp[Sn+1g(x)� (n+ 1)s℄ exp(�g(x))(bnes � bn+1e)� b1 Xx2A\E1 e�s����� 1Ms 1Xn=1 Xx2A\En+1 ���� bnbn+1 � e�s���� bn+1 exp(s� g(x)) exp�Sn+1g(x)� (n+ 1)s�+ 1Ms b1 exp(� s) ℄(A \ E1)� 1Ms 1Xn=1 Xx2En+1 ���� bnbn+1 � e�s���� bn+1 exp(s� g(x)) exp�Sn+1g(x)� (n+ 1)s�+ 1Ms b1 exp(� s) ℄E1:By lemma 10.1.2 we have limn!1 bn+1=bn = 1 and lims&Ms =1. Therefore(10.1.8) lims&�A(s) = 0uniformly for all speial sets A.Any weak aumulation point, when s # , of the measures fms : s > g de�ned by (10.1.6)will be alled a limit measure (assoiated to the funtion g and the sequene fEn : n � 1g).In order to �nd onformal measures among the limit measures, it is neessary to examine(10.1.7) in greater detail. To beginn with, for a Borel set D � X, onsider the followingondition(10.1.9) lims& 1Ms 1Xn=1 Xx2D\(En+1nT�1En) bn exp�Sng(T (x))� ns� = 0:We will need the following de�nitions.A point x 2 X is said to be singular for T if at least one of the following two onditions issatis�ed:(10.1.10) There is no open neighbourhood U of x suh that T jU is injetive.(10.1.11) For all " > 0 there exists an open set U � B(x; ") suh that T (U) is not an opensubset of X. 4



The set of all singular points is denoted by Sing(T ), the set of all points satisfying ondition(10.1.10) is denoted by Crit(T ) and the set of all points satisfying ondition (10.1.11) isdenoted by X0(T ).It is easy to give examples where X0 \ Crit(T ) 6= ;. If T : X ! X is an open map, nopoint satis�es ondition (10.1.11), that is X0(T ) = ;.In spite of what was assumed in [ECM℄ and similarly as in [Sul℄, the set Sing(T ) is notrequired to be �nite. Let us prove the following.Lemma 10.1.3. Let m be a Borel probability measure on X and let � be a ompat setontaining Sing(T ). If (10.1.1) holds for every speial set A whose losure is disjoint from� and suh that m(�A) = m(�T (A)) = 0, then (10.1.1) ontinues to hold for every speialset A disjoint from �.Proof. Let A be a speial set disjoint from �. Fix " > 0. Sine on the omplement of �the map T is open, for eah point x 2 A there exists an open neighbourhood U(x) of xsuh that T jU(x) is a homeomorphism, m(�U(x)) = m(�T (U(x))) = 0, U(x) \ � = ; andsuh that Z[U(x)nA g dm < "Choose a ountable family fUkg from fU(x)g whih overs A and de�ne reursively A1 =U1 and An = Un nSk<n Uk. By the assumption of the lemma, eah set Ak satis�es (10.1.1)and hene m(T (A)) = m( 1[k=1T (A \ Ak)) � 1Xk=1m(T (Ak))= 1Xk=1ZAk g dm = ZA g dm+ 1Xk=1 ZAknA g dm� ZA g dm+ ":If "! 0, it follows that m(T (B)) � ZB g dmfor any speial set B disjoint from �. Using this fat, the lower bound for m(T (A)) isobtained from the following estimate, if "! 0:m(T (A)) = m( 1[k=1T (A \Ak)) = 1Xk=1m(T (A \Ak))= 1Xk=1 (m(T (Ak))�m(T (Ak nA))) � 1Xk=1 ZAk g dm� ZAknA g dm!= Z[k�1Ak g dm� Z[k�1AknA g dm � ZA g dm� ":5



This proves the lemma. |Lemma 10.1.4. Let m be a limit measure and let � be a ompat set ontaining Sing(T ).Assume that every speial set D � X withm(�D) = m(�T (D)) = 0 and �D\� = ; satis�esondition (10.1.9). Then m(T (A)) = RA exp(�f) dm for every speial set A disjoint from�.Proof. Let D � X be a speial set suh that �D \ � = ; and m(�D) = m(�T (D)) = 0. Itfollows immediately from (10.1.7){(10.1.9) that m(T (D)) = RD exp( � f) dm. Applyingnow Lemma 10.1.3 ompletes the proof. |Lemma 10.1.5 Let m be a limit measure. If ondition (10.1.9) is satis�ed for D = X,then m(T (A)) � RA exp(� f) dm for every speial set A disjoint from Crit(T ).Proof. Suppose �rst that A is ompat and m(�A) = 0. From (10.1.7), (10.1.8) and theassumption one obtains lims2J j ms(T (A))� ZA exp(� f) dms j= 0where J denotes the subsequene along whih ms onverges to m. Sine T (A) is ompat,this impliesm(T (A)) � lim infs2J ms(T (A)) = lims2J ZA exp(� f) dms = ZA exp(� f) dmNow, drop the assumption m(�A) = 0 but keep A ompat and assume additionally thatfor some " > 0 the ball B(A; ") is also speial. Choose a desending sequene An ofompat subsets of B(A; ") whose intersetion equals A and m(�An) = 0 for every n � 0.By what has been already provedm(T (A)) = limn!1m(T (An)) � ZAn exp(� f) dm = ZA exp(� f) dmlThe next step is to prove the lemma for A, an arbitrary open speial set disjoint fromCrit(T ) by partitioning it by ountably many ompat sets. Then one approximates fromabove speial sets of suÆiently small diameters by speial open sets and the last step is topartition an arbitrary speial set disjoint from Crit(T ) by sets of so small diameters thatthe lemma holds. |Lemma 10.1.6 Let � be a ompat subset of X ontaining Sing(T ). Suppose that forevery integer n � 1 there are a ontinuous funtion gn : X ! X and a measure mn on Xsatisfying (10.1.1) for g = gn and for every speial set A � X with(a) A \ � = ;and satisfying mn(B) � ZB gn dmn6



for any speial set B � X suh that B\Crit(T ) = ;. Suppose, moreover, that the sequenefgng1n=1 onverges uniformly to a ontinuous funtion g : X ! IR. Then for any weakaumulation point m of the sequene fmng1n=1 we have(b) m(T (A)) = ZA g dmfor all speial sets A � X suh that A \ � = ; and() m(T (B)) � ZB g dmfor all speial sets B � X suh that B \ Crit(T ) = ;.Moreover, if (a) is replaed by(a') A \ (� n (Crit(T ) nX0(T ))) = ;;then for any x 2 Crit(T ) nX0(T )(d) m(fT (x)g) � g(x)m(fxg) � q(x)m(fT (x)g)where q(x) denotes the maximal number of preimages of single points under the transfor-mation T restrited to a suÆiently small neighbourhood of x.The proof of property (b) is a simpli�ation of the proof of Lemma 10.1.4 and the proofof property () is a simpli�ation of the proof of Lemma 10.1.5. The proof of (d) uses thesame tehnis and is left for the reader.x10.2. SULLIVAN'S CONFORMAL MEASURES AND DYNAMICAL DIMENSION, I.Let, as in Chapter 9, X denote a ompat subset of the extended omplex plane CI andlet f 2 A(X) whih means that f : X ! X is a ontinuous map that an be analytiallyextended to an open neighbourhood U(f) of X.Let t � 0. Any jf 0jt{onformal measure for f : X ! X is alled a t{onformal Sullivan'smeasure or even shorter a t{onformal measure. Rewritting the de�ntion (10.1.1) it meansthat(10.2.1) m(f(A)) = ZA jf 0jt dmfor every speial set A � X. An obvious but important property of onformal measures isformulated in the following 7



Lemma 10.2.1. If f : X ! X is loally eventually onto, then every Sullivan's onformalmeasure is positive on nonempty open sets of X.In partiular it follows from this lemma that if f is loally eventually onto, then for everyr > 0(10.2.2) M(r) = inffm(B(x; r)) : x 2 Xg > 0Denote by Æ(f) the in�nium over all exponents t � 0 for whih a t{onformal measure forf : X ! X exists.Our aim in the two subsequent setions is to show the existene of onformal measures andeven more to establish more expliite dynamial haraterization of the number Æ(f). As amatter of fat we are going to prove that under some additional assumptions Æ(f) onideswith the dynamial dimension DD(X) of X and the hyperboli dimension HyD(X) of Xwhih is de�ned as follows.DD(X) = supfHD(�) : � 2M+e (f)gHyD(X) = supfHD(Y ) : f jY is a onformal expanding repellergIn this setion we shall prove the following two results.Lemma 10.2.2. If f : X ! X is loally eventually onto, then DD(X) � Æ(f).Proof. Our main idea "to get to a large sale" is the same as in [SulDU℄. However to arryit out we use Pesin theory desribed in Ch.8.2 instead of Mane's partition introdued in[Mane℄ and applied in [SulDU℄. So, let � 2 M+e (f) and let m be a t{onformal measure.We again work in the natural extension ( ~X; ~f; ~�). Fix " > 0 and let ~X(") and r(") begiven by Corollary 9.2.4. In view of the Birkho� ergodi theorem there exist a measurableset ~F (") � ~X(") suh that ~�( ~F (")) = ~�( ~X(")) and an inreasing sequene fnk = nk(~x) :k � 1g suh that ~fnk(~x) 2 ~X(") for every k � 1. Let F (") = �( ~F (")). Then �(F (")) =~�(��1(F (")) � ~�( ~F (")) � 1 � 2". Consider now x 2 F (") and take ~x 2 ~F (") suh thatx = �(~x). Sine ~fnk(~x) 2 ~X(") and sine �( ~fnk(~x) = fnk(x), Corollary 9.2.4 produes aholomorphi inverse branh f�nkx : B(fnk(x); r("))! CI of fnk suh that f�nkx fnk(x) = xand f�nkx �B(fnk(x); r("))� � B�x;Kj(fnk)0(x)j�1r(")�Set rk(x) = Kj(fnk)0(x)j�1r("). Then by Corollary 9.2.4 and t{ onformality of mm(B(x; rk(x))) � K�tj(fnk)0(x)j�tm�B(fnk(x); r("))� �M(r("))�1K�2tr(")�trk(x)tTherefore, it follows from Theorem 5.5.1 (Besiovith overing theorem) that Ht(F (")) �M(r("))K2tr(")tb(2) < 1. Hene HD(F (")) � t. Sine ��S1n=1 F (1=n)� = 1, it impliesthat HD(�) � t. This �nishes the proof. |Theorem 10.2.3. If f : X ! X is loally eventually onto and X is a repelling set for f ,then HyD(X) = DD(X). 8



Proof. In order to see that HyD(X) � DD(X) notie only that in view of Theorem 7.1.1there exists � 2 M+e (f jY ) � M+e (f) suh that HD(�) = HD(Y ) . In order to prove thatDD(X) � CD(X) we will use Katok's theory from Setion 9.6 applied to �, an arbitraryergodi invariant measure of positive entropy. First, for every integer n � 0 de�ne on X anew ontinuous funtion �n = maxf�n; log jf 0jg:Then �n � log jf 0j and �n & log jf 0j pointwise on X. Sine in addition �n � log jjf 0jj, itfollows from the Lebesgue monotone onvergene theorem that limn!1 R �n d� = ��(f) =R log jf 0j d� > 0. Fix " > 0. Then for all n suÆiently large, say n � n0, R �nd� ���=(1� ") whih implies that(10.2.4) h�(f) = HD(�)�� � (1� ")HD(�) Z �n d�:Fix suh n � n0. Let Xk � X, k � 0, be the sequene of onformal expanding repellersprodued in Theorem 9.6.1 for the measure � and the funtion �HD(�)�n and let �k bean equilibrium state of the map f jXk and the potential �HD(�)�n restrited to Xk. Itfollows from the seond part of Theorem 9.6.1 that limk!1 R �n d�k = R �n d� > 0. Thusby Theorem 10.6.1 and (10.2.4)lim infk!1 �h�k �HD(�) Z �n d�k� = lim infk!1 P�f jXk ;�HD(�)�n�� h�(f)HD(�) Z �n d�� �HD(�) Z �n d�Hene, for all k large enoughh�k � HD(�) Z �n d�k � 2"HD(�) Z �n d� � HD(�) Z �n d�k � 3"HD(�) Z �n d�k= (1� 3")HD(�) Z �n d�k � (1� 3")HD(�) Z log jf 0j d�k:Thus HD(Xk) � HD(�k) = h�k(f)��k � (1� 3")HD(�):So, letting "! 0 �nishes the proof. |x10.3. SULLIVAN'S CONFORMAL MEASURES AND DYNAMICAL DIMENSION, II.In this setion f : CI ! CI is assumed to be a rational map of degree � 2 and X is its Juliaset J(f). Neverthless it is worth to mention that some results proved here ontinue to9



hold under weaker assumption that f jX is open or X is a perfet loally maximal set forf . By Crit(f) we denote the set of all ritial points ontained in the Julia set J(f).Lemma 10.3.1. If z 2 J(f) and ffn(z) : n � 0g \ Crit(f) = ;, then the seriesP1n=1 j(fn)0(z)j 13 diverges.Proof. By the assumption there exists " > 0 suh that for every n � 0 the map f restritedto the ball B(fn(z); ") is injetive. Sine f is uniformly ontinuous there exists 0 < � < 1suh that for every x 2 CI(10.3.1) f(B(x; �")) � B(f(x); "):Suppose that the series P1n=1 j(fn)0(z)j 13 onverges. Then there exists n0 � 1 suh thatsupn�n0(2j(fn)0(z)j) 13 < 1. Choose 0 < "1 = "2 = : : : = "no < �" so small that for everyn = 1; 2; : : : ; n0(10.3.2) fn restrited to the ball B(z; "n) is injetive.and(10.3.3) fn(B(z; "n)) � B(fn(z); ")For every n � n0 de�ne "n+1 indutively by(10.3.4) "n+1 = (1� (2j(fn)0(z)j) 13 )"n:Then 0 < "n < �" for every n � 1. Assume that (10.3.2) and (10.3.3) are satis�ed for somen � n0. Then by the K�obe Distortion Theorem ??? and (10.3.4) the set fn(B(z; "n+1)) isontained in the ball entered at fn(z) and of radius"n+1j(fn)0(z)j 2(1� "n+1="n)3 = 2"n+1j(fn)0(z)j2j(fn)0(z)j = "n+1 < �":Therefore, sine f is injetive on B(fn(z); "), formula (10.3.2) is satis�ed for n + 1 andusing also (10.3.1) we getfn+1(B(z; "n+1)) = f�fn(B(z; "n+1))� � f(B(fn(z); �")) � B(fn+1(z); "):Thus (10.3.3) is satis�ed for n+ 1.Let "n # "0. Sine the series P1n=1 j(fn)0(z)j 13 onverges, it follows from (10.3.4) that"0 > 0. Clearly (10.3.2) and (10.3.3) remain true with "n replaed by "0. It follows that thefamily ffnjB(z; 12 "0)g1n=1 is normal and onsequently z =2 J(f). This ontradition �nishesthe proof. |As an immediate onsequene of this lemma and of Birkho�'s Ergodi Theorem we getthe following. 10



Corollary 10.3.2. If � be an ergodi f{invariant measure for whih there exists a ompatset Y � J(f) suh that �(Y ) = 1 and Y \ Crit(f) = ;, then �� � 0.Let now 
 be a �nite subset of S1n=1 fn(Crit(f)) suh that(10.3.5) 
 \ ffn() : n = 1; 2 : : :g 6= ; for every  2 Crit(f)and(10.3.6) 
 \ Crit(f) = ;:Sets satisfying these onditions exist sine no ritial point of f lying in J(f) an beperiodi. Now let V � J(f) be an open neighbourhood of 
 and de�ne K(V ) to be the setof those points of J(f) whose forward trajetory avoids V . Equivalently this means thatK(V ) = fz 2 J(f) : fn(z) =2 V for every n � 0g = 1\n=0 f�n(J(f) n V )Hene K(V ) is a ompat subset of J(f) and f(K(V )) � K(V ). Consequently we anonsider dynamial system f jK(V ) : K(V )! K(V ). Note that f(K(V )) = K(V ) does nothold for all sets V and that usually f�1(K(V )) 6� K(V ). Simple onsiderations based on(10.3.5) and the de�nition of sets K(V ) give the following.Lemma 10.3.3. Crit(f jK(V )) � Crit(f) \ K(V ) = ;, K(V )0(f) = Sing(f) � �V , and�t log jf 0j is a well{de�ned ontinuous funtion on K(V ).Fix now z 2 K(V ) and set En = f j�nK(V )(z), n � 0. Then En+1 = f j�1K(V )(En) andtherefore the sequene fEng satis�es (10.1.9) with D = K(V ). Take t � 0 and let (t; V )be the transition parameter assoiated to this sequene and the funtion �t log jf 0j. PutP(t; V ) = P(f jK(V );�t log jf 0j). We shall prove the following.Lemma 10.3.4. (t; V ) � P(t; V ).Proof. Sine K(V ) is a ompat set disjoint from Crit(f), the map f jK(V ) is loally !-to-1whih means that there exists Æ > 0 suh that f jK(V ) restrited to any set with diameter� Æ is !to-1. Consequently, all the sets En are (n; ")-separated for " < Æ. Hene, therequired inequality (t; V ) � P(t; V ) follows immediately from Theorem .2.2.10. |The standard straightforward arguments showing ontinuity of topologial pressure provealso the following.Lemma 10.3.5. The funtion t 7! (t; V ) is ontinuous.Set s(V ) = infft � 0 : (t; V ) � 0g < +111



We shall prove the following.Lemma 10.3.6. s(V ) � DD(J(f)).Proof. Suppose that DD(J(f)) < s(V ) and take 0 � DD(J(f)) < t < s(V ). From thishoie and by Lemma 10.3.4 we have 0 < (t; V ) � P(t; V ) and by Variational Priniple??? there exists � 2 Me(fK(V )) � Me(f) suh that P(t; V ) � h�(f)� t��(f) + (t; V )=2.Therefore, by Corollary 10.3.2 and Lemma 10.3.3 we get h�(f) � (t; V )=2 > 0 andapplying additionally Theorem 9.1.1 (Ruelle's inequality), ��(f) > 0. Hene, it followsfrom Theorem 9.4.1 thatt � HD(�)� 12 (t; V )�� < HD(�) � DD(J(f))This ontradition �nishes the proof. |Let m be a limit measure on K(V ) assoiated to the sequene En and the funtion�s(V ) log jf 0j. Sine (0; V ) � 0 and s(V ) < 1, it follows from Lemma 10.3.5 that(s(V ); V ) = 0. Therefore, applying Lemma 10.1.4 and Lemma 10.1.5 with � = �V we seethatm(f(A)) � RA jf 0js(V ) dm for any speial set A � K(V ) andm(f(A)) = RA jf 0js(V ) dmfor any speial set A � K(V ) suh that A \ �V = ;. Treating now m as a measure onJ(T ) and using straightforward measure{theoreti arguments we dedue from this that(10.3.7) m(f(A)) � ZA jf 0js(V ) dmfor any speial set A � J(f) and(10.3.8) m(f(A)) = ZA jf 0js(V ) dmfor any speial set A � J(f) suh that A \ �V = ;. Now we are in position to prove thefollowing.Lemma 10.3.7. For every 
 there exist 0 � s(
) � DD(J(f)) and a Borel probabilitymeasure m on J(f) suh that m(f(A)) � ZA jf 0js(
) dmfor any speial set A � J(f) andm(f(A)) = ZA jf 0js(
) dmfor any speial set A � J(f) disjoint from 
.12



Proof. For every n � 1 let Vn = B(
; 1n ) and let mn be the measure on J(f) satisfying(10.3.7) and (10.3.8) for the neighbourhood Vn. Using Lemma 10.1.6 we shall show thatany weak{* limit m of the sequene of measures fmng1n=1 satis�es the requirements ofLemma 10.3.7. Indeed, �rst observe that the sequene fs(Vn)g1n=1 is nondereasing anddenote its limit by s(
). Therefore the sequene of ontinuous funtions gn = jf 0js(Vn),n = 1; 2; : : :, de�ned on J(f) onverges uniformly to the ontinuous funtion g = jf 0js(
).Let A be a speial subset of J(f) suh that(10.3.9) A \ (Sing(f) [ 
) = ;:Then one an �nd a ompat set � � J(f) disjoint from A and suh that Int(�) �Sing(f) [ 
. So, using also Lemma 10.3.3, we see that for any n suÆiently large, sayn � q,(10.3.10) Vn � � and Vn \ Crit(f) = ;:Therefore, by (10.3.7) and (10.3.8), we onlude that Lemma 10.1.6 applies to the sequeneof measures fmng1n=q and the sequene of funtions fgng1n=q. Hene, the �rst propertyrequired in our lemma is satis�ed for any speial subset of J(f) disjoint from Crit(f) andsine A \ � = ;, the seond property is satis�ed for the set A. So, sine any speialsubset of J(f) disjoint from Sing(f) [ 
 an be expressed as a disjoint union of speialsets satisfying (10.3.9), an easy omputation shows that the seond property is satis�edfor all speial sets disjoint from Sing(f) [ 
. Therefore, in order to �nish the proof, it isenough to show that the seond requirement of the lemma is satis�ed for every point ofthe set Sing(f). First note that by (10.3.10) and (10.3.8), formula (a') in Lemma 10.1.6is satis�ed for every n � q and every x 2 Crit(f) n J(f)0(f). As f : J(f) ! J(f) is anopen map, the set J(f)0(f) is empty and Sing(f) = Crit(f). Consequently formula (d) ofLemma 10.1.6 is satis�ed for any ritial point  2 J(f) of f . Sine g() = jf 0()js(
) = 0,this formula implies that m(f()) � 0. Thus m(ff()g) = 0 = jf 0()js(
)m(fg). The proofis �nished. |Lemma 10.3.8. Let m be a the me the measure onstruted in Lemma 10.3.7. If forsome z 2 J(f) the series S(t; z) =P1n=1 j(fn)0(z)jt diverges then m(fzg) = 0 or a positiveiteration of z is a paraboli point of f . Moreover, if z itself is periodi then m(ff(z)g) =jf 0(z)jtm(fzg).Proof. Suppose that m(fzg) > 0. Assume �rst that the point z is not eventually periodi.fhen by the de�nition of a onformal measure on the omplement of some �nite set weget 1 � m(ffn(z) : n � 1g) � m(fzg)P1n=1 j(fn)0(z)jt = 1, whih is a ontradition.Hene z is eventually periodi and therefore there exist positive integers k and q suh thatfk(fq(z)) = fq(z). Sine fq(z) 2 J(f) and sine the family of of all iterates of f on asuÆiently small neighbourhood of an attrative periodi point is normal, this implies thatj(fk)0(fq(z))j � 1. If j(fk)0(fq(z))j = � > 1 then, again by the de�nition of a onformalmeasure on the omplement of some �nite set, m(ffq(z)g) > 0 and m(ffkn(fq(z))g) ��ntm(ffq(z)g). Thusm(ffkn(fq(z))g) onverges to1, whih is a ontradition. Thereforej(fk)0(fq(z))j = 1 whih �nishes the proof of the �rst assertion of the lemma. In order13



to prove the seond assertion assume that q = 1. Then, using the de�nition of onformalmeasures on the omplement of some �nite set again, we get m(ff(z)g) � m(fzg)jf 0(z)jtand on the other handm(fzg) = m(ffk�1(f(z))g) � m(ff(z)g)j(fk�1)0(f(z))jt = m(ff(z)g)jf 0(z)j�t:Therefore m(ff(z)g) = m(fzg)jf 0(z)jt. The proof is �nished. |Corollary 10.3.9. If for every x 2 Crit(f) one an �nd y(x) 2 ffn(x) : n � 0g suh thatthe series S(t; y(x)) diverges for every 0 � t � DD(J(f)), then there exists an s-onformalmeasure for f : J(f)! J(f) with 0 � s � DD(J(f)).Proof. Let m be a the me the measure onstruted in Lemma 10.3.7. Sine S(t; y(x))diverges for every 0 � t � DD(J(f)), we see that y(x) =2 Crit(f). If for some x 2 Crit(f),y(x) is a non-periodi point eventually falling into a paraboli point, then let z(x) be thisparaboli point; otherwise put z(x) = y(x). The set 
 = fz(x) : x 2 Crit(f)g meetsthe onditions (10.3.5), (10.3.6) and is ontained in S1n=1 fn(Crit(f)). Sine for everyt � 0 and z 2 J(f) the divergene of the series S(t; z) implies the divergene of the seriesS(t; f(z)), it follows immediately from Lemma 10.3.7 and Lemma 10.3.8 that the measurem is s-onformal. |Now we are in position to prove the following main result of this setion.Theorem 10.3.10. HyD(J(f)) = DD(J(f)) = Æ(f) and there exists a Æ(f){onformalmeasure for f : J(f)! J(f).Proof. For every x 2 Crit(f) the set ffn(x) : n � 0g is losed and forward invariant underf . Therefore, in view of Theorem 2.1.8 (Bogolubov-Krylov theorem) there exists � 2Me(f)supported on ffn(x) : n � 0g. By Corollary A of [Przyt, Lyap℄ there exists at least onepoint y(x) 2 ffn(x) : n � 0g suh that lim supn!1 j(fn)0(y(x))j � 1 and onsequently theseries S(t; y(x)) diverges for every t � 0. So, in view of Corollary 10.3.9 there exists ans-onformal measure for f : J(f) ! J(f) with 0 � s � DD(J(f)). Combining this withLemma 10.2.2 and Theorem 10.2.3 omplete the proof. |x10.4. PESIN'S FORMULA.In this setion our aim is to prove two main theorems. The �rst one is as follows.Theorem 10.4.1. (Pesin's formula) Assume that X is a ompat subset of the losedomplex plane CI and that f 2 A(X). If m is a t- onformal measure for f and � 2M+e (f)is absolutely ontinuous with respet to m, then HD(�) = t.Proof. In view of Lemma 10.2.2 we only need to prove that t � HD(�) and in order to dothis we essentially ombine the arguments from the proof of Lemma 10.2.2 and from theproof of formula (9.4.1). So, we work in the natural extension ( ~X; ~f; ~�). Fix 0 < " < ��=314



and let ~X(") and r(") be given by Corollary 9.2.4. In view of the Birkho� ergodi theoremthere exists a measurable set ~F (") � ~X(") suh that ~�( ~F (")) � 1� 2" andlimn!1 1n n�1Xj=1 � ~X(") Æ ~fn(~x) = ~�( ~X("))for every ~x 2 ~F ("). Let F (") = �( ~F (")). Then �(F (")) = ~�(��1(F (")) � ~�( ~F (")) � 1�2".Consider now x 2 F (") \ Xo and take ~x 2 ~F (") suh that x = �(~x). Then by the abovethere exists an inreasing sequene fnk = nk(x) : k � 1g suh that ~fnk(~x) 2 ~X(") and(10.4.1) nk+1 � nknk � "for every k � 1. Moreover Corollary 9.2.4 produes holomorphi inverse branhes f�nkx :B(fnk(x); r("))! CI of fnk suh that f�nkx fnk(x) = x andf�nkx �B(fnk(x); r("))� � B�x;Kj(fnk)0(x)j�1r(")�Set rk = rk(x) = K�1j(fnk)0(x)j�1r("). By Corollary 9.2.4 rk � K�2 exp��(�� �")nk�r("). So, using Corollary 9.2.4 again and (10.4.1) we an estimaterk = rk+1j(fnk+1�nk)0(fnk(x))j � rk+1K exp��� + ")(nk+1 � nk)�� rk+1K exp��� + ")nk+1"� � Krk+1 exp��� � ")2nk+1"� � rk+1K(K�2r(")r�1k+1)2"= K1�4"r(")2"r1�2"k+1Take now any 0 < r � r1 and �nd k � 1 suh that rk+1 < r � rk. Then using thisestimate, t-onformality of m, and invoking Corollary 9.2.4 one more we getm(B(x; r)) � m(B(x; rk)) � Ktj(fnk)0(x)j�tm(B(x; r(")))� K2tr(")�trtk� K(3�4")tr(")2"tr(1�2")tSo, by Theorem 5.5.1 (Besiovith overing theorem) H(1�2")t(X) � H(1�2")t(F (")) > 0,whene HD(X) � (1� 2")t. Letting "! 0 ompletes the proof. |

15


