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CONFORMAL FRACTALS, DIMENSIONS AND ERGODIC THEORY

Feliks Przytycki & Mariusz Urbanski

This book is an introduction to the theory of iteration of non-uniformly expanding
holomorphic maps and topics in geometric measure theory of the underlying invariant
fractal sets. Probability measures on these sets yield informations on Hausdorff and other
fractal dimensions and properties. The book starts with a comprehensive chapter on
abstract ergodic theory followed by chapters on uniform distance expanding maps and
thermodynamical formalism. This material is applicable in many branches of dynamical
systems and related fields, far beyond the applications in this book.

Popular examples of the fractal sets to be investigated are Julia sets for rational
functions on the Riemann sphere. The theory which was initiated by Gaston Julia [J] and
Pierre Fatou [F] became very popular since the time when Benoit Mandelbrot’s book [M]
with beautiful computer made pictures appeared. Then it became a field of spectacular
achievements by top mathematicians during the last 20 years.

Consider for example the map f(z) = 22 for complex numbers z. Then the unit
circle S = {]z| = 1} is f-invariant, f(S!) = S! = f~1(S!). For ¢ ~ 0,¢ # 0 and
fe(2) = 2% + ¢, there still exists an f.-invariant set J(f.) called the Julia set of f., close
to S', homeomorphic to S via a homeomorphism h satisfying equality f o h = ho f..
However J(f.) has a fractal shape. For large ¢ the curve J(f.) pinches at infinitely many
points; it may pinch everywhere to become a dendrite, or even crumble to become a Cantor
set.

These sets satisfy two main properties, standard attributes of ” conformal fractal sets”:
1. Their fractal dimensions are strictly larger than the topological dimension. 2. They
are conformally ”self-similar”, namely arbitrarily small pieces have shapes similar to large
pieces via conformal mappings, here via iteration of f.

To measure fractal sets invariant under holomorphic mappings one applies probability
measures corresponding to equilibria in the thermodynamical formalism. This is a beautiful
example of interlacing of ideas from mathematics and physics.

A prototype lemma [B, Lemma 1.1] at the roots of the thermodynamical formalism
says that for given real numbers ay, ..., a,, the quantity

F(py,..pn) = Y _ —pilogpi + > pidhi
1=1 =1

has maximum value P = logy -, e®t as (pi, ..., pn) ranges over the simplex {(p1, ..., pn) :
p; > 0,3 "  p; =1} and the maximum is assumed only at



We can read ¢;,p;,7 = 1,...,n as a function (potential), resp. probability distribution, on
the finite space {1,...,n}. Let us further follow Bowen [B]: The quantity

S=Y " —pilogpi
=1

is called entropy of the distribution (p1, ..., pn). The maximizing distribution (p1, .., Py) is
called Gibbs or equilibrium state. In statistical mechanics ¢; = —SFE;, where 8 = 1/kT, T
is a temperature of an external ”heat source” and k a physical (Boltzmann) constant. The
quantity £ = > | p;F; is the average energy. The Gibbs distribution maximizes then

the expression
1

S—-pE=S ﬁE
or equivalently minimizes the so-called free energy E — kT'S. The nature prefers states
with low energy and high entropy. It minimizes free energy.

The idea of Gibbs distribution as limit of distributions on finite spaces of configurations
of states (spins for example) of interacting particles over increasing growing to oo bounded
parts of the lattice Z? introduced in statistical mechanics first by Bogolubov and Hacet
[BH| and playing there a fundamental role was applied in dynamical systems to study
Anosov flows and hyperbolic diffeomorphisms at the end of sixties by Ja. Sinai, D. Ruelle
and R. Bowen. For more historical remarks see [Ru] or [Si]. This theory met the notion of
entropy S borrowed from information theory and introduced by Kolmogorov as an invariant
of a measure-theoretic dynamical system.

Later the usefulness of these notions to the geometric dimensions has become appar-
ent. It was present already in [Billingsley| but crucial were papers by Bowen [Bol] and
McCluskey & Manning [McM].

In order to illustrate the idea consider the following example: Let T; : I — I, ¢+ =
1,...,n > 1, where I = [0,1] is the unit interval, T;(xz) = A\;x + a;, where \;, a; are real
numbers chosen in such a way that all the sets T;(I) are pairwise disjoint and contained
in I. Define the limit set A as follows

A:ﬁ U Tiyo..oT; (I)= U lim T;, 0...0T;,,

k=0 (ig,...,3%) (40,31--.)

the latter union taken over all infinite sequences (ig, 41, ...), the previous over sequences of
length k£ + 1.
It occurs that its Hausdorff dimension is equal to the only number a for which

|A]* + o+ A =1,

A is a Cantor set. It is self-similar with small pieces similar to large pieces with the use
of linear (more precisely, affine) maps (T;, o ... o T;, ) L. We call such a Cantor set linear.
We can distribute measure p by setting p(Tj, 0 ... 0 Ty, (1)) = (Ajg-..Ai, ). Then for each
interval .J C I centered at a point of A its diameter raised to the power « is comparable
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to its measure p (this is immediate for the intervals T;, o ... o T;, (I)). (A measure with
this property for all small balls centered at a compact set, in a euclidean space of any
dimension, is called a geometric measure.) Hence Y (diam.J)® is bounded away from 0 and
oo for all economical (of multiplicity not exceeding 2) covers of A by intervals J.

Note that for each k p restricted to the space of unions of T;, o ... o T;, (I), each
such interval viewed as one point, is the Gibbs distribution, where we set ¢((ig, ..., %)) =
Ga (105 s 1)) = D 1o, @log Aj;. The number « is the unique 0 of the pressure function
P(a) = mg 108 Y, . iy €Peo#)) In this special affine example this is independent
of k. In general non-linear case to define pressure one passes with & to oc.

The family T; and compositions is an example of very popular in recent years [lterated
Function System [Barnsley]. Note that on a neighbourhood of each T;(I) we can consider
T := Tfl. Then A is an invariant repeller for the distance expanding map T)

The relations between dynamics, dimension and geometric measure theory start in
our book with the theorem that the Hausdorff dimension of an expanding repeller is the
unique 0 of the adequate pressure function for sets built with the help of C**¢ usually
non-linear maps in IR or conformal maps in IR%.

This theory was developed for non-uniformly hyperbolic maps or flows in the setting
of smooth ergodic theory, see [HK], by Mané [M], Lai-Sang-Young and Ledrappier [LY];
see [Pesin] for recent developments. The advanced chapters of our book are devoted to this
theory, but we restrict ourselves to complex dimension 1. So the maps are non-uniformly
expanding and the main technical difficulties are caused by critical points, where we have
strong contraction since the derivative by definition is equal to 0 at critical points.

A direction not developed in this book are Conformal Iterated Function Systems with
infinitely many generators T;. They occur naturally as return maps in many important
constructions, for example for rational maps with parabolic periodic points or in the In-
duced FEzxpansion construction for polynomials [GS]. Beautiful examples are provided by
infinitely generated Kleinian groups [.]. The systematic treatment of Iterated Function
Systems with infinitely many generators can be found in [MU1], [MU2], [MU3], [MPU]
and [U1] for example.

Below is a short description of the content of the book.

Chapter 1 is an introduction to abstract ergodic theory, here T' is a probability mea-
sure preserving transformation. The reader will find proofs of the fundamental theorems:
Birkhoft Ergodic Theorem and Shannon-McMillan-Breiman Theorem. We introduce en-
tropy, measurable partitions and discuss canonical systems of conditional measures in
Rohlin’s Lebesgue space the notion of natural extension (inverse limit in the appropriate
category). We follow here Rohlin’s Theory [Ro], see also [FKS]. Next to prepare to ap-
plications for finite-to-one rational maps we sketch Rohlin’s theory on countable-to-one
endomorphisms and introduce the notion of Jacobian, see also [Parry]. Finally we discuss
mixing properties (K-propery, exactness, Bernoulli) and probability laws (Central Limit
Theorem, abbr. CLT, Law of Iterated Logarithm, LIL, Almost Sure Invariance Prin-
ciple, ASIP) for the sequence of functions (random variables on our probability space)
poT" n=0,1,...

Chapter 2 is devoted to ergodic theory and termodynamical formalism for general
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continuous maps on compact metric spaces. The main point here is the so called Variational
Principle for pressure, compare the prototype lemma above. We apply also functional
analysis in order to explain Legendre transform duality between entropy and pressure.
We follow here [Israel] and [Ruelle]. This material is applicable in large deviations and
multifractal analysis, and is directly related to the uniqueness of Gibbs states question.

In Chapters 1, 2 we often follow the beautiful book by Peter Walters [Wal].

In Ch 3. distance expanding maps are introduced. Analogously to Axiom A diffeomor-
phisms [Smale, Bowen] or endomorphisms [Przy| we outline a topological theory: spectral
decomposition, specification, Markov partition, and start a "bounded distortion” play with
Holder continuous functions.

In Chapter 4 termodynamical formalism and mixing properties of Gibbs measures for
open distance expanding maps T and Holder continuous potentials ¢ are studied. To large
extend we follow [Bo] and [Ru]. We prove the existence of Gibbs measures (states): m
with Jacobian being exp —¢ up to a constant factor, and T-invariant p = pg equivalent
to m. The idea is to use the transfer operator Ly(u)(x) = 3, cp-1(,) uly) exp ¢(y) on the
Banach space of Holder continuous functions u. We prove the exponential convergence
"Ly (u) = ([ udm)ug, where £ is the eigenvalue of the largest absolute value and wuy
the corresponding eigenfunction. One obtains uy, = dm/dp. We deduce CLT, LIL and
ASIP, and the Bernoulli property for the natural extension.

We provide three different proofs of the uniqueness of the invariant Gibbs measure.
The first, simplest, follows [Keller???], the second relies on the prototype lemma, the third
one on the differentiability of the pressure function in adequate function directions.

Finally we prove Ruelle’s formula

n—1 n—1
1 , .
d*>P(¢p+tu+sv)/dt ds|i—s—o :nILIgCE/(igzo(uoTz—/udud))-(;:O(UOT’—/Udu¢)du¢.

This expression for u = v is equal to ¢2 in CLT for the sequence v o T™ and measure [

(In the book we use the letter T to denote a measure preserving transformation.
Maps preserving an additional structure, continuous smooth or holomorphic for example,
are usually denoted f or g.)

In Chapter 5 the metric space with the action of an open distance expanding map
is embedded in a smooth manifold and it is assumed that the map smoothly extends
to a neighbourhood. We call the space with the extended dynamics: Smooth Expanding
Repeller, abbr. SER. We study smoothness of the density ug. Finally we provide in
detail D. Sullivan’s theory classifying line Cantor sets via scaling function, sketched in [Su]
and discuss the realization problem [PT]|. We also discuss applications for solenoids for
Feigenbaum maps.

In Chapter 6 we provide definitions of various ”fractal dimensions”: Hausdorff, box
and packing. We consider also Hausdorff measures with gauge functions difefrent from
t*. We prove ”Volume Lemma” linking, roughly speaking, (global) dimension with local
dimensions.

In Chapter 7 we finally introduce Conformal Expanding Repellers, abbr. CER, and
relate pressure with Hausdorff dimension. We prove C*~! dependence of the dimension on

4



the parameter if the dependence on the parameter of the expanding map is C*. We deal
with smooth repellers in IR and conformal repellers in €. Here 2 <7 < w, the real analytic
case.

Next we follow the easy (uniform) part of [PUZ]. We prove that for CER (X, f) and
Hoélder continuous ¢ : X — R, for K = HD(u4), Hausdorff dimension of the Gibbs measure
pe (infimum of Hausdorff dimensions of sets of full measure), either HD(X) = & the
meastre fi4 is equivalent to A, the Hausdorff measure in dimension &, and is a geometric
measure, Or [i4 is singular with respect to A, and the right gauge function for the Hausdorff

measure to be compared to g is ®(x) = t* exp(cy/log 1/t logloglog 1/t). In the proof we
use LIL. This theorem is used to prove a dichotomy for the harmonic measure on a Jordan
curve 0, bounding a domain €2, which is a repeller for a conformal expanding map. Either
0 is real analytic or harmonic measure is comparable to the Hausdorff measure with gauge
function ®(1). This yields an information about the lower and upper growth rates of
|R'(r()|, for r 1, for almost every ¢ with || = 1 and univalent function R from the
unit disc |z| < 1 to . This is a dynamical counterpart of Makarov’s theory of boundary
behaviour for general simply connected domains, [Makarov].

We prove in particular that for f.(z) =22 +¢,c#0,c~ 01 <HD(J(f.)) < 2.

We show how to express in the language of pressure another interesting function:
flCIzl |R'(r¢)|t|dC| for r 7 1.

We also look closer at the Gibbs measures, discuss so called multifractal analysis, and
study large deviations.

Finally we apply our theory to the boundary of von Koch ”snowflake” and more
general Carleson fractals.

Chapter 8 is devoted to Sullivan’s rigidity theorem, saying that two non-linear ex-
panding repellers (X, f), (Y, g) that are Lipschitz conjugate (or more generally there exists
a measurable conjugacy that transforms a geometric measure on X to a geometric measure
on Y, then the conjugacy extends to a conformal one. This means that measures classify
non-linear conformal repellers. This fact, annouced in [Su] only with a sketch of the proof,
is proved here rigorously for the first time. We sketch also a generalization by E. Prado.

In Chapter 9 we start to deal with non-uniform expanding phenomena. A heart of
this chapter is the proof of the formula HD(u) = h,,(f)/x,.(f) for an arbitrary f-invariant
ergodic measure p of positive Laypunov exponent x,, := [log|f’| dp.

(The word non-uniform expanding is used just to say that we consider (typical points
of) an ergodic measure with positive Lyapunov exponent. In higher dimension one uses
the name non-uniform hyperbolic for measures with all Lyapunov exponents non-zero.)

It is so roughly because a small disc around z, whose n-th image is large, has diameter
of order |(f™)'(2)|~! ~ exp —ny, and measure exp —nh,(f) (Shannon-McMillan-Breiman
theorem is involved here)

Chapter 10 is devoted to conformal measures, namely probability measures with Ja-
cobian Const exp —¢ or more specifically |f’|* in a non-uniformly expanding situation, in
particular for any rational mapping f on its Julia set .J. It is proved that there exists a
minimal exponent d(f) for which such a measure exists and that 6(f) is equal to each of
the following quantities:

Dynamical Dimension DD(J) := sup{HD(u)}, where p ranges over all ergodic f-
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invariant measures on .J of positive Lyapunov exponent.

Hyperbolic Dimension HyD(J) := sup{HD(Y)}, where Y ranges over all Conformal
Expanding Repellers in J, or CER’s that are Cantor sets.

It is an open problem whether for every rational mapping HyD(.J) = HD(J) = box
dimension of .J, but for many nonuniformly expandig mappings these equalities hold. It
is often easier to study the continuity of §(f) with respect to a parameter, than directly
Hausdorff dimension. So one obtains an information about the continuity of dimensions
due to the above equalities.

Most of the book was written in the years 1990-1992 and was lectured to graduate
students by each of us in Warsaw, Yale and Denton. We neglected finishing writing, but
recently unexpectedly to us the methods in Chapter 10, relating hyperbolic dimension to
minimal exponent of conformal measure, were used to study the dependence on e of the
dimension of Julia set for 2% + 1/4 + ¢, for ¢ — 0 and other parabolic bifurcations, by A.
Douady, P. Sentenac and M. Zinsmeister in [DSZ] and by C. McMullen in [McM]. So we
decided to make a final effort. Meanwhile nice books appeared on some topics of our book,
let us mention [Falconer|, [Zinsmeister|, [Gora,Boyarsky|, [Viana], but a lot of important
material in our book is new or was hardly accessible, or is written in an unconventional
way.

[Barnsley| .....ccccceeenns

[Falconer] K. Falconer, Technics in Fractal Geometry

[Zinsmeister]| M. Zinsmeister, Le Formalisme Thermodynamique: Mode d’emploi

[Boyarsky, Géra] A. Boyarsky, P. Géra, Laws of Chaos, Invariant Measures and Dy-
namical Systems in One Dimension. Birkhauser, Boston 1997

[Viana] M. Viana,
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CHAPTER 0.

BASIC EXAMPLES AND DEFINITIONS

Let us start with definitions of dimensions. We shall come back to them in a more
systematic way in Chapter 5.

Definition 0.1. Let (X, p) be a metric space. We call upper (lower) box dimension
of X the quantity
log N(r)

lim sup(lim inf),
—logr

where N(r) is the minimal number of balls of radius r which cover X.

Sometimes the names capacity or Minkowski dimension or box-counting dimension are
used. The name box dimension comes from the situation where X is a subset of a euclidean
space IR?. Then one can consider only r = 27" and N(27") can be replaced by the number

of dyadic boxes [, L) x| x [t Eatl] k. € Z intersecting X.

Definition 0.2. Let (X, p) be a metric space. For every x > 0 we define A,(X) =
limgs_,o inf{> ;2 (diamU;)"}, where the infimum is taken over all countable covers (U;, i =
1,2,...) of X by sets of diameter not exceeding §. A.(Y) defined as above on all subsets
Y C X is called k-th outer Hausdorff measure.

It is easy to see that there exists kg : 0 < kg < 0o such that for all & : 0 < kK < Kg
A(X) = oo and for all Kk : kg < kK Ag(X) = 0. The number kg is called the Hausdorff
dimension of X.

Note that if in this definition we replace the assumption: sets of diameter not exceeding
0 by equal 9, and lims_,o by liminf or lim sup, we obtain box dimension.

A standard example to compare both notions is the set {1/n,n =1,2,...} in IR. Tts
box dimension is equal to 1/2 and Hausdorff dimension is 0. If one considers {27"} instead
one obtains both dimensions 0. Also linear Cantor sets in Introduction have Hausdorff and
box dimensions equal. The reason for this is self-similarity.

Example 0.3. Shifts spaces. For every natural number d consider the space %% of
all infinite sequences (ig, 41, ...) with 4,, € {1,2,...,d}. Consider the metric

p((ig, i1, ...), (i, 4", ...)) vanf,

for an arbitrary 0 < A < 1. Sometimes it is more comfortable to use the metric

p((’[:o, 7:17 )/ (7/6/ le/ )) — )\7 min{n:iniin}

, equivalent to the previous one. Consider o : ¢ — 3¢ defined by f((ig, i1, ...) = (i1, ...)-
The metric space (X%, p) is called one-sided shift space and the map o the left shift. Often,
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if we do not specify metric but are interested only in the cartesian product topology in
»d={1,.., d}Z+, we use the name topological shift space.

One can consider the space £% of all two sides infinite sequences (cers i1, 80, 81, o)
This is called two-sided shift space.

Each point (ig, i1, ...) € ¢ determines its forward trajectory under o, but is equipped
with a Cantor set of backward trajectories. Together with the topology determined by
the metric 3°°° ___ AlIl[4, — 4’ | the set %% can be identified with the inverse limit (in the
topological category) of the system ... — %% — ¢ where all the maps — are o.

Note that the limit Cantor set A in Introduction, with all A\; = X is Lipschitz homeo-
morphic to 3¢, with the homeomorphism h mapping (ig, i1, ...) to (), Ti, © ..o Ty, (I). Note
that for each x € A, h™'(z) is the sequence of integers (ig,41,...) such that for each k,
T* (x) € T;, (I). It is called a coding sequence. If we allow the end points of T;(I) to overlap,
in particular A = 1/d and a; = (i — 1)/d, then A =T and h~1(x) = > (i, — 1)d ¥ 1,

One generalizes the one (or two) -sided shift space, called sometimes full shift space
by considering the set ¥ 4 for an arbitrary d x d — matrix A = (a;; with a;; = 0 or 1 defined
by

Y4 = {(io,i1,-..) € %1 a4,4,,, =1 forevery t =0,1,...}.

By the definition o(¥4 C ¥4. ¥4 with the mapping o is called a topological Markov
chain. Here the word topological is substantial, otherwise it is customary to think of a
finite number of states stochastic process, see Example 0.8.

Example 0.4. Iteration of rational maps. Let f : @ — € be a holomorphic
mapping of the Riemann sphere @. Then it must be rational, i.e. ratio of two polynomials.
We assume that the topological degree of f is at least 2. The Julia set J(f) is defined as
follows:

J(f) ={z € @:VU > z ,U open, the family of iterates f™ = fo...o f|y, n times, for
n = 1,2, ... is not normal in the sense of Montel }.

A family of holomorphic functions f; : U — @'is called normal (in the sense of Montel)
if it is pre-compact, namely from every sequence of functions belonging to the family one
can choose a subsequence uniformly convergent (in the spherical metric on the Riemann
sphere @) on all compact subsets of U.

z € J(f) implies for example, that for every U > z the family f™(U) covers all @ but
at most 2 points. Otherwise by Montel’s theorem {f™} would be normal on U.

Another characterization of J(f) is that J(f) is the closure of repelling periodic points,
namely those points z € @for which there exists an integer n such that f™(z) = z and
(Y ()] > 1.

There is only finite number of attracting periodic points, [(f™)'(z)] < 1; they lie
outside J(f), an uncountable ”chaotic, repelling” Julia set. The lack of symmetry between
atracting and repelling phenomena is caused by the non-invertibility of f.

It is easy to prove that J(f) is compact, completely invariant: f(J(f)) = J(f) =
F7YJ(f)), either nowhere dense or equal to the whole sphere (to prove this use Montel’s
theorem).

For polynomials, the set of points whose images under iterates f™*,n = 1,2,..., tend
to oo, basin of attraction to oo, is connected and completely invariant. Its boundary is the
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Julia set.

Check that all these general definitions and statements are compatible with the dis-
cussion of f(z) = 22 + ¢ in Introduction. As introduction to this theory we recommend for
example the books [Beardon], [Carleson, Gamelin] and [Steinmetz].

Below are the computer pictures of some Julia sets

FIGURES: Rabbit, Sierpinski carpet (rational function of degree 2), Newton’s method

A Julia set can have Hausdorff dimension arbitrarily close to 0 (but not 0) and ar-
bitrarily close to 2 and even exactly 2 (being in the same time nowhere dense). It is not
known whether it can have positive Lebesgue measure. We shall come back to these topics
in Chapters 6, 10.

Example 0.5. Complex linear fractals. The linear Cantor set construction in IR
described in Introduction can be generalized to conformal linear Cantor and other fractal
sets in "

Let U C @ be a bounded connected domain and T;(z) = A;z + a;, where A;, a; are
complex numbers, i = 1,...,n > 1. Assume that closures clT;(U) are pairwise disjoint and
contained in U. The limit Cantor set A is defined in the same way as in Introduction.

In Ch.7 we shall prove that it cannot be the Julia set for a holomorphic extension of
T =T;" on T;(U) for each 4, to the whole sphere .

If we allow that the boundaries of T;(U) intersect or intersect U we obtain other
interesting examples

FIGURES: Sierpinski carpet, Sierpinski gasket, boundary of von Koch snowflake

Examples 0.6. Action of Kleinian groups. Beautiful examples of fractal sets
arise as limit sets of the action of Kleinian groups on (.

Let Ho be the group of all homographies, namely the rational mappings of the Riemann
sphere of degree 1, i.e. of the form 2z — ZEIZ where ad — be # 0. Every discrete subgroup
of Ho is called Kleinian group. If all the elements of a Kleinian group preserve the unit
disc ID = {|z| < 1}, the group is called Fuchsian.

Consider for example a regular hyperbolic 4n-gon in ID (equipped with the hyperbolic
metric) centered at 0. Denote the consecutive sides by al,i = 1,...,n,7 = 1,....4 in the

lexicographical order: al,...a%,al, .... Each side is contained in the corresponding circle C?
intersecting 91D at the right angles. Denote the disc bounded by C? by D..

It is not hard to see that the closures of Df and Dg“ are disjoint for each 7 and
j=1,2.

FIGURE: regular hyperbolic octagon, ID/G.
Let g’z,j =1, 2 be the unique homography preserving ID mapping (IZ to (],‘Z+2 and DZ to
the complement of 1D} 2 1tis easy to see that the family {g] } generates a Fuchsian group

G. For an arbitrary Kleinian group G, the Poincaré limit set A(G) = |Jlimg_ 00 gi(2),
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the union taken over all sequences of pairwise different g, € G such that gx(z) converges,
where z is an arbitrary point in €. Tt is not hard to prove that A(G) does not depend on
z.

For the above example A(G) = 9ID. If we change slightly gf (the circles CZ change
slightly), then either A(G) is a circle S (all new C?7 intersect S at the right angle), or it

is a fractal Jordan curve. The phenomenon is similar to the case of the maps z — 22 + ¢
described in Introduction. For details see [Bowen], [Bowen, Series], [Sullivan]. We provide
a sketch of the proof in Chapter 7.

If all the closures of the discs D’Z,i =1,....n,7 = 1,....,4 become pairwise disjoint,
A(G) becomes a Cantor set (the group is called then a Schottky group or a Kleinian group

of Schottky type).

Examples 0.7. Higher dimensions. Though the book is devoted to 1-dimensional
real and complex iteration and arising fractals, Chapters 1-3 apply to general situations.
A basic example is Smale’s horseshoe. Take a square K = [0, 1] x [0,1] in the plane IR?
and map it affinely to a strip by squeezing in the horizontal direction and stretching in
the vertical, for example f(x,y) = (%$ + %, 3y — %) and bend the strip by a new map ¢ so
that the rectangle [§, 3] x [3, 3] is mapped to [2, 3] x [—3,1]. The resulting composition
T = go f maps K to a "horseshoe”, see [Smale, p.773]

1 4 4 8 5 8
979 373

FIGURE: horseshoe, stadium extension

The map can be easily extended to a C*°-diffeomorphism of € by mapping a ”stadium”
extending K to a bent "stadium”, and its complement to the respective complement. The
set AK of points not leaving K under action of 7", n = ..., —1,0, 1, ... is the cartesian prod-
uct of two Cantor sets. This set is T-invariant, ”uniformly hyperbolic”. In the horizontal
direction we have contraction, in the vertical direction uniform expansion. The situation
is different from the previous examples of ©¢ or linear Cantor sets, where we had uniform
expansion in all directions.

Smale’s horseshoe is a universal phenomenon. It is always present for an iterate of a
diffeomorphism f having a transversal homoclinic point q for a saddle p. The stable and
unstable manifolds W#(p) := {y : f"(y) = p}, W"(p) :=={y : f"(y) — p} as n = o,
intersect transversally at ¢. For more details on hyperbolic sets see [HK].

FIGURE: homoclinic point and embedded horseshoe.

Note that T|yx is topologically conjugate to the left shift ¢ on the two-sided shift
space XN)Q, namely there exists a homeomorphism h : AKX — 2 such that hoT = o o h.
Compare h i Example 0.3. T on AX is the inverse limit of the mapping T on the Cantor
set described in Introduction, similarly to the inverse limit 2 of & on £2. The philosophy
is that hyperbolic systems appear as inverse limits of expanding systems.

A partition of a hyperbolic set A into local stable (unstable) manifolds: W*(z) =
{y e A: (Yn > 0)p(f™(x), f"(y)) < e(z)} for a small positive measurable function e, is
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an illustration of an abstract ergodic theory measurable partition & such that f(&) is finer
than &, f™(£),n — oo converges to the partition into points and the conditional entropy
H,(f(£)|€) is maximal possible, equal to the entropy h,(f); all this holds for an ergodic
invariant measure pu.

The inverse limit of the system ... — S' — S! where all the maps are z — 22, is called
a solenoid. Tt has a group structure: (...,z 1,20) (..., 2" 1,20) = (..., z_1-2" 1, 20 2), which
is a trajectory if both factors are, since the map z — 22 is a homomorphism of the group
S1. Topologically the solenoid can be represented as the attractor A of the mapping of the
solid torus ID x S* into itself f(z,w) = (32 + 3w, w?). Its Hausdorfl dimension is equal in

this special example to 1 + HD(AN{w = wp}) =1 + igg; for an arbitrary wg, as Cantor
log

sets AN{w = wo} have Hausdorff dimensions 1og§' These are linear Cantor sets discussed
in Introduction.

Especially interesting is the question of Hausdorff dimension of A if z — %z is replaced
by z — ¢(z) not conformal. But this higher dimensional problem goes beyond the scope
of our book. See [Pesin)].

If the map z — 22 in the definition of solenoid is replaced by an arbitrary rational
mapping then if f is expanding on the Julia set, the solenoid is locally the cartesian product
of an open set in J(f) and the Cantor set of all possible choises of backward trajectories. If
however there are critical points in J(f) (or converging under the action of f™ to parabolic
points in J(f)) the solenoid (inverse limit) is more complicated, see [LM] for an attempt
to describe it, together with a neighbourhood composed of trajectories outside J(f). We
shall not discuss this in our book.

Examples 0.8. Bernoulli shifts and Markov chains. For every positive num-
bers p1,...,pq such that Z?Zl p; = 1, one introduces on the Borel subsets of X% (or
f)d) a probability measure p by extending to the o-algebra of all Borel sets the function
(Cigin,....is) = PoP1---Dt, where Cy i 5o = {(ig, ), ...) i, = is for every s=0,1,...,t}.
Each such C is called a finite cylinder.

The space ¢ with the left shift ¢ and the measure p is called one-sided Bernoulli
shift.

On a topological Markov chain ¥4 C ¥% with A = (a;;) and an arbitrary d x d
matrix M = p;; such that Z?:ﬂ’ij = 1 for every ¢+ = 1,...,d, p;; > 0 and p;; = 0
if a;; = 0, one can introduce a probability measure p on all Borel subsets of ¥4 by
extending p(Ci, 4, ....4,) = PigPigis --Pi,_1i,- Here (p1, ..., pq) is an eigenvector of M*, namely
> ;i PiPij = pj, such that p; > 0 for every ¢ = 1,...,d and 2?21 = 1.

The space ¥ 4 with the left shift ¢ and the measure p is called one-sided Markov chain.

Note that p is o-invariant. Indeed,

.U(U(szozt)) = Zpipiiopioi1 Diy_vie = PioPigir-Pir_vie = H(Cig,....i1)-

i 7

As in the topological case if we consider %¢ rather than ¢, we obtain two-sided
Bernoulli shifts and two-sided Markov chains.



Example 0.9. Tchebyshev polynomial Let us consider the mapping T : [—1,1] —
[—1, 1] of the real interval [—1, 1] defined by T'(z) = 22® — 1. In the co-ordinates z — 2z it
is just a restriction to an invariant interval of the mapping z — 22 — 2 discussed already
in Introduction. The interval [—1, 1] is Julia set of T

Notice that this map is the factor of the mapping z — 22 on the unit circle {|z| = 1} in
@' by the orthogonal projection P to the real axis. Since the length measure [ is preserved
by z — 22 its projection is preserved by 7. Its density with respect to the Lebesgue
measure on [2,2] is proportional to (dP/dl) !, after normalization is equal to %\/11_7
This measure satisfiesmany properties of Gibbs invariant measures discussed in Chapter
4, though T is not expanding; it has a critical point at 0. This T is the simplest example
of non-uniformly expanding maps to which the advanced parts of the book are devoted.

[Smale| S. Smale, Differentiable Dynamical Systems. Bulletin of the American Math-
ematical Society 73 (1967), 747-817.

[Steinmetz] N. Steinmetz, Rational Iteration, Complex Dynamics, Dynamical Systems,
Walter de Gruyter, Berlin 1993
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CHAPTER 1
MEASURE PRESERVING ENDOMORPHISMS

§1.1 MEASURE SPACES AND MARTINGALE THEOREM

We assume that the reader knows basic elements of measure and integral theory. For
a complete treatment see for example [Halmos] or [Billingsley, 1979]. We start with some
basics to fix notation and terminology.

A family F of subsets of a set X is said to be a o-algebra if the following conditions are
satisfied:

(1.1.1) X eF,

(1.1.2) AceF = A°eF

and

(1.1.3) {A}2,cF = (JAier
=1

It follows from this definition that () € F, that the o-algebra F is closed under countable
intersections and subtractions of sets. If (1.1.3) is assumed only for finite subfamilies of
F then F is called an algebra. Fixed F, elements of the o—algebra F will be frequently
called measurable sets. For any family F of subsets of X, we denote by o(Fp) the minimal
o—algebra that contains Fy and call it the o—algebra generated by Fy.

A function on a o-algebra F, p: F — [0, 00], is said to be o-additive if for any countable

’

subfamily {A;}22, of F consisting of mutually disjoint sets, we have

3

(1.1.4) u(

Ai) = Z 1(Ai)

1

2

We say then that p is a measure. If we consider in (1.1.4) only finite families of sets, we say
1 is additive. The two notions: of additive and of o-additive, make sense for a o-algebra as
well as for an algebra, provided in the algebra case in (1.1.4) that all A; and their union
belong to F. The simplest consequences of the definition of measure are the following:

(1.1.5) w(0) = 0;



(1.1.6) if A,B€ F and A C B then u(A) < u(B);

(1.1.7)  if Ay C Ay C ... and {A4;};2; C F then ,u(U A;) = sup p(A;) = lim p(A;).

=1

We say that the triple (X, F, u) with a o-algebra F and p a measure on F is a measure
space. In this book we will always assume, unless the opposite is stated, that p is a finite
measure that is p : F — [0,00). By (1.1.6) it equivalently means that u(X) < oc. If
p(X) =1, the triple (X, F, u) is called aprobability space and p a probability measure.

We say that ¢ — IR is a measurable function, if ¢=1(.J) € F for every interval J C IR
(compare Sec.2). We say that ¢ is p-integrable if [|¢|dy < oco. We write ¢ € L'(p).
More generally, for every 1 < p < oo we write ([ [¢[P du)/? = ||¢||, and say ¢ belongs to
LP(p) = LP(X, F, p). If inf,(my—o supx\g [¢| < oo we say ¢ € L> and denote the latter
expression by ||¢||cc. ||@|lp. 1 < p < oo are called LP-norms of ¢. We usually identify in
this chapter functions which differ only on a set of y-measure 0. LP(X, F, u)’s after these
identifications are Banach spaces.

We say that a property ¢(z), € X, is satisfied for p almost every z € X (abbr:
a.e.), or p-a.e., if u({x : q(z) is not satisfied}) = 0. We can consider ¢ as a subset of X
with u(X \ ¢) = 0.

We shall often use in the book the following two facts.

Monotone Convergence Theorem. Suppose ¢; < ¢ < ... is an increasing sequence
of integrable, real-valued functions on a probability space (X, F, ). Then ¢ = lim,, o ¢pn
exists a.e. and limy, o0 [ ¢n dp = [ ¢pdu. (We allow +0c’s here.)

and

Dominated Convergence Theorem. If ¢,,n > 1 is a sequence of measurable real-
valued functions on a probability space (X, F, ) and |¢,| < g for an integrable function
g and ¢, — ¢ a.e., then ¢ is integrable and lim,_, [ ¢, du = [P dp.

Recall now that if ' is a sub-c-algebra of F and ¢ : X — IR is a p-integrable function,
then there exists a unique (mod 0) function usually denoted by F($|F’) such that E(¢|F’)
is F'-measurable and

(1.1.8) [ By du= [ sy

for all A € F'. E(¢|F') is called conditional expectation value of the function ¢ with
respect to the o-algebra F’. Sometimes we shall use for E(¢|F’) the simplified notation

brr.



For F generated by a finite partition A (cf. Sec.3), one can think of E(¢$|o(A) as constant
on each A € A equal to the average [, ¢ du/u(A).

The existence of E(¢|F’) follows from famous the Radon-Nikodym theorem, saying that
if v < p, both measures defined on the same c-algebra F', (v < p means v absolutely
continuous with respect to p, i.e. u(A) =0 = v(A) =0 for all A € F'), then there exists
a unique (mod 0) F'-measurable, p-integrable function ® = dv/dy : X — IRT such that
for every A € F'

/Aq)du =v(A).

To deduce (1.1.8) we set v(A) = [, ¢pdu for A € F'. The trick is that we restrict z from
F to F'.

If ¢ € LP(X,F,pn) then E(p|F') € LP(X,F', pu) for all o-algebras F' with LP norms
uniformly bounded. More precisely the operators ¢ — E(¢|F’) are linear projections from
LP(X,F,p) to LP(X,F', u), with LP-norms equal to 1 (see Exercise 0.).

We end this section with the following version of Martingale Convergence Theo-
rem.

Theorem 1.1.1. If (F,, : n > 1) is either monotone increasing or monotone decreasing
sequence of o-algebras contained in F, then for every ¢ € LP(u), 1 < p < 00
lim FE(¢|F,) = E(¢|F'), ae. andin LP,

n— 00

where F’ is equal to either \/__, F, or (), F, respectively.

In the theorem above we denoted by \/,—, F,, the smallest o-algebra containing |, Fn,
the latter usually is not a o-algebra, but only an algebra. Compare Sec.6 where complete
o-algebras of this form in Lebesgue space are considered.

Remark 1.1.2. For the existence of ' and the convergence in L? no monotonicity is
needed. It is sufficient to assume that for every A € F the limit lim F(1l 4|F;,) in measure
I exists.

(Recall that 1), is said to converge in measure v to v if for every € > 0, lim,,_, o pu({x €
X o |thn(z) = ¢p(2)| = €}) = 0.)

In this book we denote by 1 4 the indicator function of A, namely equal to 1 on A and to
0 outside A.

We shall not provide here a proof of Theorem 1.1.1 in the full generality . Let us provide
however a proof Theorem 1.1.1 (and Remark 1.1.2 in the case lim E(11 4|F,,) = 1 4) for the
L?-convergence for functions ¢ € L?(u). (This is the case sufficient for example to prove
the important Lemma 1.8.6 later on in this chapter.)

For the increasing sequence (F,,) we have the equality L*(X, F', p) = U, L*(X, Fp, p).
Indeed, for every B € F’ there exists a sequence B,, € F,,, n > 1, such that u(B+B,,) — 0.
(B+C = (B\C)U(C\ B) is the symmetric difference of sets B and C.)

3



This follows for example from Carathéodory’s argument, see the note Theorem 1.7.2.
We have u(B) equal to the outer measure of B constructed from p restricted to the
algebra (J;, F,,. In the Remark 1.1.2 case where we assumed lim E(1L4|F,) = 1 4, this
is immediate.

Hence L*(X,F,,u) > g, — lp in L?*(X,F,u). Finally use the fact that every
function f € L%(X,F’,u) can be approximated in the space L2(X,F’,u) by the step
functions, i.e. finite linear combinations of indicator functions. Therefore, since E($|F,)
and E($|F') are orthogonal projections of ¢ to L*(X, F,,, u) and L2(X, F', i) respectively
(exercise) we obtain E(¢|F,) — E(¢|F') in L?.

For a decreasing sequence F,, use the equality L?(X, F', u) =, L*(X, Fn, 1).

§1.2 MEASURE PRESERVING ENDOMORPHISMS, ERGODICITY

Let (X, F,pn) and (X', F', ') be measure spaces. A transformation T': X — X' is said
to be measurable if T~1(A) € F for every A € F'. If moreover u(T~1(A)) = p/(A) for
every A € F', then T is called measure preserving. If (X, F,pu) = (X', F',p') we call T
a measure preserving endomorphisms; we will say also that measure p is T—invariant, or
that T preserves .

If a measure preserving map 7 is invertible and the inverse T~! is measurable, then
clearly T—! is also measure preserving. Therefore T is an isomorphism in the category of
measure spaces. In the case of (X, F,pu) = (X', F', ') the transformation T is called an
automorphism.

We shall prove now the following very useful fact in which the finitness of measure is a
crucial assumption.

Theorem 1.2.1. (Poincaré Recurrence Theorem) If T : X — X is a measure preserving
endomorphism, then for every mesurable set A

p({z € A: T"(z) € A for infinitely many n’s}) = p(A).
Proof. Let
N=NT,A)={xc A:T"(x) ¢ AVn > 1}.

We shall first show that y(N) = 0. Indeed, N is measurable since N = AN (,,>; T (X\

A)). If z € N, then T"(z) ¢ A for all n > 1 and, in particular, T"(z) ¢ N which implies
that x ¢ T-™(N) and consequently N NT~™(N) = () for all n > 1. Thus, all the sets N,
T-Y(N), T"2(N),... are mutually disjoint since if n; < ns, then

T~ (N)NT™™(N)=T"""(NnT~™=")(N)) = 0.

Hence

o (Urnen) = S = S

4



Therefore pu(N) = 0. Fix now k£ > 1 and put
Ny ={xe€ A:T"(x) ¢ AVn > k}.

Then Ny C N(T*, A) and therefore from what have been proved above it follows that
1(Ng) < p(N(T*, A)) = 0. Thus

p({z € A: T"(z) € A for only finitely many n’s}) = 0.
The proof is finished. &

A measurable transformation T': X — X of a measure space (X, F, i) is said to be
ergodic if for any measurable set A

(T HA) = A)=0 = plA)=0o0r u(X\4) =0

(Recall the notation B+ C = (B\ C)U (C'\ B).)

Note that we did not assume in the definition of ergodicity that p is T-invariant
(neither that g is finite). Suppose that for every E of measure 0 the set T~ !(F) is also of
measure 0 (in Ch.4 we call this property of u with respect to T', backward quasi-invariant).
Then in the definition of ergodicity one can replace u(T~1(A) + A) = 0 by T~1(A) = A.
Indeed having A as in the definition one can define A’ = |, (oe_,, T~ ™(A). Then
w(A") = p(A) and T—1(A") = A’. If we assumed that the latter implies u(A’) = 0 or
p(X\ A") =0, then u(A) =0or u(X\ A4) =0.

Let ¢ : X — IR be a measurable function. For any n > 1 we define

(1.2.1) Spp=¢p+¢poT+...+poT" !

Let T ={A € F:pu(T1(A) + A) = 0}. We call it o-algebra of T-invariant (mod
0) sets. Note that every ¢ : X — IR, measurable with respect to Z, is T-invariant (mod
0), namely 9 o T" = 1, but on a set of measure p equal to 0. Indeed let A = {x €
X : ¢Y(x) # Y oT(x)} and suppose p(A) > 0. Hence there exists a € IR such that
A, ={x € A:¢(x) <a,poT(x) > a} and p(A4,) > 0. (or a similar A, with reversed
inequalities). Since A, € Z, there exists £ C A of measure 0, such that T'(A4, \ £) C A,,
hence on A, \ F we have ¢y =1 oT. We arrived at a contradiction.

Theorem 1.2.2. (Birkhoff’s Ergodic Theorem) If ' : X — X is a measure preserving
endomorphism of a probability space (X, F, ) and ¢ : X — IR is an integrable function
then

1
lim —S,¢(x) = E(¢|T) for p-ae. z € X
n—oo n

We say that the time average exists for py-almost every x € X.

5



In particular Theorem 1.2.2 yields for T ergodic preserving u, that

n—oo N

1
(1.2.1a) lim —S,¢(x) = /gbdu, for p-a.e. x

We say that the time average equals the space average.

If ¢ = 1 4, the indicator function of a measurable set A, then we deduce that for a.e. x
the frequency of hitting A by the forward trajectory equals to the measure (probability)
of A, namely lim,, o #{0 < j <n:T7(x) € A}/n, is equal to u(A).

This means for example that if we choose a point in X in a euclidean space at random
its sufficiently long forward trajectory fills X with the density being approximately the
density of u with respect to the Lebesgue measure, provided p is equivalent to the Lebesgue
measure.

On the figure below, Fig.1.2a, for a randomly chosen backward trajectory z;,j =
0,1,....,n,, T(xg) = x)_1, for T(z) = 222 — 1 (see Example 0.9), for the interval [—1,1]
divided into k£ = 100 equal pieces, the graph of the function —1 + 2¢/100 — 100 - #{0 <
J<mn:—1+2t/100 < zj(z) < —1+ 2(t+ 1)/100}/n is plotted. It indeed resembles the
graph of 1/mv/1 — 22, Fig.1.2b, which is the density of the invariant probability measure
equivalent to the length measure.

FIGURE 1.1, The density of an invariant measure for T'(z) = 22> — 1.

As a corollary of Birkhoff’s Ergodic Theorem one can obtain von Neumann’s Ergodic
Theorem. It says that if ¢ € LP(u) for 1 < p < oo, then the convergence to F(¢|Z) holds
in LP. It is not difficult, see for example [Wa).

Proof of Birkhoff’s Ergodic Theorem. Let f € L'(u) and F,, = max{Zfz_Ol foTt:
1 <k < n}, for n =1,2,.... Then for every z € X, Fyi1(z) — Fo(T(z)) = f(z) —
min(0, F,,(T'(z))) > f(x) and is monotone decreasing, since F;, is monotone increasing.
Define

A={z:sup) f(T'(z)) = oo}

If © € A then F,,41(x) — F,(T(x)) monotonously decreases to f(xz) as n — oo. The
Dominated Convergence Theorem then implies that

(We arrived at [ 4 dp >0, which is a variant of so-called Maximal Ergodic Theorem.)
Notice that %ZZ;S foT* < F,/n, so outside A we have

n—1

1
(1.2.3) limsup = Y foT* <0.

n—o0 k=0

6



Therefore, if the conditional expectation value fr of f is negative a.e., that is if fC fdu =
Jo frdp < 0 for all C € T with p(C) > 0, then, since by definition A € 7, (1.2.2) implies
that u(A) = 0, and hence (1.2.3) holds a.e.. Now if we let f = ¢p—¢z—¢, then fz = — < 0.
Note that ¢z o T = ¢z implies

1n—l 1n—1
SN Tk = (5Z¢0Tk) R
" k=0 " k=0

So (1.2.3) yields

1 n—1
lim sup — ng)oT’“ < ¢7+¢ a.e.
n—oo N
k=0
Replacing ¢ by —¢ gives
1 n—1
.. k
lggloréfﬁz¢oT > ¢7 — € a.e.
k=0
Thus lim,,_, e %ZZ;; poTF = ¢p1 a.e. &

Recall that at the end opposite to the absolute continuity (see Sec.l) there is the
notion of singularity. Finite measures pu; and po on a o-algebra F are called mutually
singular, p11 L po if there exist disjoint sets Xy, Xo € F with u;(X;) =1 fori =1, 2.

Theorem 1.2.3. If T : X — X is a map measurable with respect to a o-algebra F and
if 41 and po are two different T-invariant probability ergodic measures on F, then p; and
[t are singular.

Proof. Since p1 and ps are different, there exists a measurable set A such that

(1.2.2) p1(A) # p2(A)

By Theorem 1.2.2 (Birkhoft’s Ergodic Theorem) applied to g1 and ps there exist sets
X1, X9 € F such that for every ¢ = 1,2 and every z € X

1
lim —S,1a(z) = p;i(A)

n—oo 1,

and p;(X;) = 1. Thus in view of (1.2.2) the sets X; and X, are disjoint. The proof is
finished. &

Proposition 1.2.4. If T': X — X is a measure preserving endomorphism of a probability
space (X, F,v), then v is ergodic if and only if there is no T-invariant probability measure
on F absolutely continuous with respect to v and different from v.
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Proof. Suppose that v is ergodic and p is a T-invariant probability measure on F with
p < v. Then p is also ergodic. Otherwise there would exist A such that T71(A4) = A
and p(A), (X \ A) > 0 so v(A),v(X \ A) > 0 so v would not be ergodic. Hence by
Theorem 1.2.3 p = v.

Suppose in turn that v is not ergodic and let A € F be a T-invariant set such that
0 < v(A) < 1. Then the conditional measure on A is also T-invariant but simultaneously
it is distinct from v and absolutely continuous with respect to v. The proof is finished. &

Observe now that the space M(F) of probability measures on F is a convex set i.e.
the convex combination ap+ (1 —a)v, 0 < o < 1, of two such measures is again in M(F).
The subspace M(F,T) of M(F) consisting of T-invariant measures is also convex.

Recall that a point in a convex set is said to be extreme if and only if it cannot be
represented as a convex combination of two distinct points with corresponding coefficient
0 < a < 1. We shall prove the following.

Theorem 1.2.5. The ergodic measures in M (F,T) are exactly the extreme points of
M(F,T).

Proof. Suppose that p,pi,pus € M(F,T), up # p2 and g = ap; + (1 — a)pe with
0 <a<1. Then py; # p and py < p. Thus in view of Proposition 1.2.4 mesure g is not
ergodic.

Suppose in turn that g is not ergodic and let A € F be a T-invariant set such
that 0 < p(A) < 1. Recall that given B € F with u(B) > 0 the conditional measure
A — u(A|B) is defined by pu(A N B)/u(B). Thus the conditional measures pu(-|A) and
p(-|A°) are distinct, T-invariant and p = p(A)p(-|A) + (1 — p(A)p(-]A°). Consequently
is not en extreme point in M (F,T). The proof is finished. &

In Section 8 we shall formulate a theorem on decomposition into ergodic components,
that will better clear the situation. This will correspond the Choquet Theorem in functional
analysis, see Ch.2.1.

§1.3. ENTROPY OF PARTITION

Let (X, F, u) be a probability space. A partition of (X, F, ) is a subfamily (a priori
may be uncountable) of F consisting of mutually disjoint elements whose union is X.
If A is a partition and x € X then the only element of A containing x is denoted by A(x)
or,ifx € A€ A, by A(z).

If A and B are two partitions of X we define their join
AVB={ANB:Ae€ A Be B}

We write A < B if and only if B(z) C A(z) for every € X, which in other words
means that each element of the partition B is contained in an element of the partition A
or equivalently AV B = B. We sometimes say in this case, that B is finer than A or that
B is a refinement of A.



Now we introduce the notion of entropy of a countable (this word includes in this book:
finite) partition and we collect its basic elementary properties. Define the function & :
[0,1] — [0, 0] putting
—tlogt forte (0,1
(1.3.1) k(t) — { 8 (0.1]
0 fort =0

Check that the function k is continuous. Let A = {4; : 1 < i < n} be a countable partition
of X, where n is a finite integer or oc. In the sequel we shall usually write oc.
The entropy of A is the number

(1.3.2) = Z —u(A;) log u(A Zk

=1

If A is infinite, H(.A) may happen to be infinite too.

Define I(z) = I(A)(x) := —log pu(A(x)). This is called an information function. Intu-
itively I(x) is an information on an object x given by the experiment A in the logarithmic
scale. Therefore the entropy in (1.3.2) is the integral (the average) of the information
function.

Note that H(A) = 0 for A = { X} and that if A is finite, say consists of n elements, then
0 < H(A) < logn and H(A) = logn if and only if pu(A41) = u(A2) = ... = pu(4,) = 1/n.
This follows from the fact that the logarithmic function is strictly concave.

In this section we deal with only one fixed measure p. If however we need to consider more
measures simultaneously (see for example Ch.2) we will rather use the notation H,(A) for
H(A).

Let A={A4;:i>1} and B = {B; : j > 1} be two countable partitions of X. The
conditional entropy H(A|B) of A given B is defined as

= A;N B, A; N B,
H(AB) = Z“ ,);_mu(;) )logu(mgj))

(1.3.3) = Z —u(A; N By) log #Ai 0 B;)

1(Bj)

The first equality, defining H(A|B), can be viewed as follows: one considers each element
Bj as a probability space with conditional measure u(A|B;) = p(A)/n(B;) for A C B;
and calculates the entropy of the partition of the set B; into A; N B;. Then one averages
the result over the space of B;’s. (This will be generalized in Def.1.8.3.)

For each = denote —logu((A(x) N B(x)|B(z)) by I(z) or I(A|B)(z). The second
equality in (1.3.3) can be rewritten as

(1.3.3a) H(AB) = / I(AB) du

9



Note by the way that if B is the o-algebra consisting of all unions of elements of B
(i.e. generated by B, then I(x) = —log u((A(z) N B(x))B(z)) = —log E(1l 4(4)|B)(x), cf
(1.1.8).

Note finally that for any countable partition A we have

(1.3.4) H(A|{X)) = H(A).

Some futher basic properties of entropy of partitions are collected in the following.

Theorem 1.3.1. Let (X,F,u) be a probability space. If A, B and C are countable
partitions of X then:

(a) H(AV BIC) = H(AC) + H(BJAV C)
(b) H(AV B) = H(A) + H(B|A)

(c) A<B = H(AIC) < H(B|C)

(d) B<C = H(A|B) > H(A|C)

(e) H(AV B|C) < H(A|C) + H(B|C)

(f) H(A|C) < H(A[B) + H(BIC)

Proof. Let A= {A, :n>1}, B={B,,:m > 1}, and C = {C; : I > 1}. Without loosing
generality we can assume that all these sets are of positive measure.

(a) By (1.3.3) we have
ILL(AZ N Bj N Ck)
$(Ck)

H(AV BIC) = = > p(A; N B; N Cy)log
i,9,k

But
M(A,' N Bj N Ck) /L(AZ' N Bj N Ck) ,u(Ai N Ck)

1(Ch)  u(4;NCy) 1(Ch)

unless u(A; N Cy) = 0. But then the left hand side vanishes and we need not consider it.
Therefore

p(A; N Cy)
H(AV BIC) == 3 u(Ai 1 By N Gy log LE 20
M(AiﬁBjﬁCk)
— A;NB;NCE)lo :
=— ;N Cy) 7+H Bl|AVC
2 A G log =S+ HBIAV O

:H(A\C) L H(BIAVC)

(b) Put ¢ = {X} and apply (1.3.4) in (a).

10



(c) By (a)
TH(B|C) = H(AV BIC) = H(A|C) + H(BJAV C) > H(A|C)

(d) Since the function k defined by (1.3.1) is strictly concave, we have for every pair 4, j

,U(Cl N B. ) (A N C] [L C] N B M(Av a CI)
(1.3.5) k (2}: 5 ) Z < (O )

But since B < C, we can write above C; N B; = C}, hence the left hand side equals

MANB)\ _ AN By),  p(Ai 0 Bj)
k( 14(B;) >_ 11(B;) tog 14(Bj)

Thus multiplying both sides of (1.3.5) by u(B;) and summing over i and j we get

_ VliﬁB pANG) | p(Ai0C)
ZMAQB %:IMCZHB 1(Cr) tos w(Cy)
(A mCl) p(A; N Cy)
ZM Cl (C1) tog ©(Cr)

or equivalently H(A|B) > H(A|C).

Formula (e) follows immediately from (a) and (d) and formula (f) can proved by a straight-
forward calculation (its consequences are discussed in Exercise 1.9). &

§1.4. ENTROPY OF ENDOMORPHISM.

Let (X,F,u) be a probability space and let T : X — X be a measure preserving
endomorphism of X. If A = {A;}ics is a partition of X then by T-1A we denote the
partition {T~1(A;)}scr. Note that for any countable A

(1.4.1) H(T 'A) = H(A)

For all n > m > 0 denote the partition \/|_ T "A=AVT Y A)V..VT "(A) =
Vi T (A) by A". For m = 0 we shall sometimes use the notation A™.

=m

Lemma 1.4.1. For any countable A

(1.4.2) H(A™) = H(A) + f: H(AJA)

11



Proof. We prove this formula by induction. If n = 0 it is tautology. Suppose it is true
for n —1 > 0. Then with the use of Theorem 1.3.1(b) and (1.4.1) we obtain

H(A") = H(A} Vv A) = H(A7) + H(AJA]) = H(A™ 1) + H(AA}) = H(A) + zn: H(A[A])

j=1
by the inductive assumption. Hence (1.4.2) holds for all n. &

Lemma 1.4.2. The sequences ——H(A™) and H(A|A7T) are monotone decreasing to a

n+1
limit h(T, A).

Proof. The sequence H(.A|.A’f'), n = 0,1,... is monotone decreasing, by Theorem 1.3.1
(d). Therefore the sequence of averages is also monotone decreasing to the same limit,
furthermore it coincides with the limit of the sequence %HH(A") by (1.4.2). &

The limit %HH(A") whose existence has been shown in Lemma 1.4.2. is known as the
(measure—theoretic) entropy of T with respect to the partition A and is denoted by h(T', A)
or by h,(T,.A) if one wants to indicate the measure under consideration. Intuitively this
means the limit rate of the growth of average (integral) information (in logarithmic scale),
under consecutive experiments, for number of experiments tending to infinity.

Remark. To prove the existence of the limit H%LIH(A”), instead of relying on (1.4.2)
and the monotonicity we could use the estmate

Angm = HAMT ™) <HAM ) + HART™ ™Y = a, + HA™ Y = ap + an,.
following from Theorem 1.3.1 (e) and from (1.4.1), and apply the following

Lemma 1.4.3. If {a,}22, is a sequence of real numbers such that a,4m < ap + ayy, for
all n,m > 1 then lim,_, o a, exists and equals inf,, a,,/n. The limit could be —oc, but if
the a,,’s are bounded below, then the limit will be nonnegative.

Proof. Fix m > 1. Each n > 1 can be expressed as n = km + ¢ with 0 < i < m. Then

Un _ Gitkm _ % Okm _ G kam, — a;i  an

n  i+km — km km — km km — km m

If n — oc then also k — oo and therefore limsup,, ., = < %=. Thus limsup,, ., % <

inf <= Now the inequality inf 2= < liminf,_, ., %* finishes the proof. &.

Notice that there exists a subadditive sequence (i.e. satisfying a,1m < a, + am,) such
that the corresponding sequence a,,/n is not eventually decreasing. Indeed, it suffices to
observe that each sequence consisting of 1’s and 2’s is subadditive and to consider such a
sequence having infinitely many 1’s and 2’s. If for an n > 1 we have a,, = 1 and a,,4.1 = 2
we have 2= < %

12



Exercise. Prove that Lemma 1.4.1 remains true under the weaker assumptions that there
exists ¢ € R such that a,,4,, < a, + a,, + ¢ for all n and m.

The basic elementary properties of the entropy h(T,.A) are collected in the next theorem
below.

Theorem 1.4.4. If A and B are countable partitions of finite entropy then

(a) h(T, A) < H(A)
(b) h(T, AV B) <h(T, A) + h(T, B)
() A<B = h(T,A) <h(T,B)
(d) h(T, A) < h(T, B) + H(A|B)
() h(T, T~ (A)) =h(T, A)
(f) If k > 1 then h(T,.A) = h(T, A")
k
(2) If T is invertible and & > 1 then h(T, A) = h(T, \/ T*(A))
i=—k

The standard proof (see for example [Wal) based on Theorem 1.3.1 and formula (1.3.2)
is left for the reader as an exercise. Let us prove only (d).

(T, A) = lim ~H(A™ ) < lim l(H(A”—l1’>’"—1)+H(zs’"—1))

e n—00 1
< lim 1 SH(T—J'(AMB"—U + lim lH(B"—l)
n—o0 1, e n—oe 1
< lim 1 nf H(T™7(A)|T~7(B)) +h(T,B) < H(A|B) + h(T, B).
nevoo

Here is one more useful fact, stronger than Th.1.4.4 (c):

Theorem 1.4.5. If T : X — X is a measure preserving endomorphism of a probability
space (X,F,u) and A and B,,,m = 1,2,... are countable partitions of finite entropy,
and H(A|B,,) — 0 as m — oo, then h(T, A) < liminf,,,o h(T, B,,). In particular, for
B, :=B" =\/i_, T=7(B), one obtains h(T, A) < h(T, B).

Proof. By Theorem 1.4.4 (d), for every positive integer m,
h(T, A) = H(A|B,) + (T, Byy).
Letting m — oo this yields the first part of the assertion. For B,,, = B™, one can substitute

in place of the last summand h(7T, B™) = h(T, B), by Theorem 1.4.4(f). &

13



The (measure-theoretic) entropy of the endomorphism T : X — X is defined as

(1.4.3) h,(T) =h(T) = sip{h(T, A)}

where the supremum is taken over all finite (or countable of finite entropy) partitions of
X. See Exercise 12.

It is clear from the definition that the entropy of T is an isomorphism invariant.

Later on (see Th.1.8.7, Remark 1.8.77, Corollary 1.8”" and Exercise 1.9") we shall
discuss the cases where H(A|B,,) — 0 for every A (finite or of finite entropy). This will
allow us to write h,(T') = limy,— o0 h(T, By,) or h(T") = h(T', B).

Let us end this Section with the following useful

Theorem 1.4.6. If T : X — X is a measure preserving endomorphism of a probability
space (X, F, u) then

(a) h(T*) = kh(T) for all k > 1
(b) If T is invertible then h(T~!) = h(T)

Proof. (a) Fix k£ > 1. Since

n—1 k—1 nk—1

nli_)rgO%H(\/ M\ T7A)) = lim ﬁH \/ T™'A) = kh(T, A)

) n—oo nk
7=0 1=0

we have h(T*, \/f:_o1 T—'A) = kh(T, A). Therefore

k—1
(1.4.4) kh(T) =k sup h(T,A) = suph T+, \/ T7'A) < suph(Tk B) = h(T*)
A finite i=0

On the other hand by Theorem 1.4.4(c) we get h(T*, A) < h(T*, \/f;ol T'A) = kh(T, A)
and therefore h(T*) < kh(T'). The result follows from this and (1.4.4).

(b) In view of (1.4.1) for all finite partitions A we have

n—1
\/ T'A) (n=1) \/ T'A)=H(\/ T 'A)
=0

This finishes the proof. &
§1.5. SHANNON-MCMILLAN-BREIMAN THEOREM.
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Let (X, F, ) be a probability space, T : X — X be a measure preserving endomor-
phism of X and A be a countable finite entropy partition of X.

Lemma 1.5.1. (maximal inequality) For each n = 1,2, ... let f, = I(A|A?) and f* =
sup,,>1 fn. Then for each A and each 4 € A

p{z € A: f*(x) > A} <e

Proof. For each A € A and n = 1,2,... let f2 = —log E(14]A?). Of course f, =
> aca Lafi. Denote

= {z: f{{(@), o, fi 1 (@) < A () > A).
Since B2 € F(A?), the o-algebra generated by A7,

p(BA A = [ adp= [ B = [ e dp < e (B,
B2 B B

n

Therefore

p{r e A: f*(x) > A}) = Z,uBAﬁA AZ;LBA
n=1

Corollary 1.5.2. The function f* is integrable with integral bounded by H(A) + 1.

Proof. Of course p{x € A: f* > A} < u(A), so p({z € A: f* > A}) < min{u(A),e *}.
So by Lemma 1.5.1

/fdu—Z/f du—Z/ p{z e A f* > A}bdA

AcA AcA

< Z/ min{p(A),e *}dr =) / log“(A) dA+/OC e**dA)

AeA AeA 70 — log u(A)

=2 (_H(A)(log u(A)) + u(A)) = H(A) + 1.

AcA

Corollary 1.5.3. f,, converge a.e. and in L'.

Proof. FE(14]A7) is a martingale to which we can apply Theorem 1.1.1. This gives
convergence a.e., hence convergence a.e. of each f4, hence f,. Now convergence in L1
follows from Corollary 1.5.2. and Dominated Convergence Theorem &
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Theorem 1.5.4. (Shannon-McMillan-Breiman) Suppose that A is a countable partition
of finite entropy. Then there exist limits

n—1

f= nli_)ngo I(A|AT) and fz(z) = nh_)ngC % ; f(T'(x)) for a.e. x

and
: 1 ny __ : 1
(1.5.1) nlggon 1](.4 )= fr ae. andin L.
Furthermore
1
1.5.2 h(T = i H(A™) = dy = du.
(15.2) () = Jim —HA") = [ fzdu= [ fau

The limit f will gain a new interpretation in (1.8.6), in the context of Lebesgue spaces,
where the notion of information function I will be generalized.
Proof. First note that f,, = I(A|A}) converge to an integrable f by Corollary 1.5.3.
(Caution: though integrals of f, decrease to the entropy, Lemma 1.4.3, it is usually not
true that f, decrease.) Hence the a.e. convergence of time averages to fr a.e. holds by
Birkhoft’s Ergodic Theorem. It will suffice to prove (1.5.1) since then (1.5.2), the second
equality, holds by integration and the last equality by Birkhoff’s Ergodic Theorem, the
convergence in L.

Let us now establish some identities (compare Lemma 1.4.3). Let {4, : n > 0} be a
sequence of countable partitions. Then we have

I (\n/ Ai> =1 (Ao‘ \n/.Az) +1 (\n/ Ai) =1 (.»40 \n/Az> +1 (.,41‘ \7«41)—1—..4—[(.»4@.

In particular, it follows from the above formula that for A; = T—% A, we have

I(A™) = I(AJAT) + I(T7TAJAD) + ...+ I(T™™A)
= T(AJAY) + I(AJAT Do T +.. . I(A) o T"
=fotfo10T+ fu 20T’ +. ..+ foo T,

where fi, = I(A]|A}), fo = I(A). Now

n

1 1 : : 1 :
—I(A") — < |— n_ioT" — T —_— T — :
A = fr) < | D (faio T = fo )|+ g D foT' — [
7=0 7=0
Since by Birkhoft’s Ergodic Theorem the latter term converges to zero both almost
everywhere and in L', it suffices to prove that for n — oo

1
n+1

n
(1.5.3) Zgn,i oT" =0 a.e. and in L.

1=0
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where g = [f — fl.
Now, since T is measure preserving, for every ¢ > ()

/gni oT'dy = /gnidu-

Thus 23" [ gnoioTdu = 230 [gn_idu — 0, since fy — f in L' by Corollary
1.5.3. Thus we established the L' convergence in (1.5.3).
Now, let Gn = sup,,» y gn- Of course G is monotone decreasing and since g, — 0 a.e.
(Corollary 1.5.3) we get G \, 0 a.e.. Moreover, by Corollary 1.5.2, Gy < sup,, fn+f € L1.
For arbitrary N < n we have

1 n 1 n—N-—1 1 n
S guio Tl = gnoioT' + D ol
n+1i:0 n+1 P n+1i:n_N
1 n—N-—1 1 n
< GyoT' GooT".
Syl 2 N © +n+1,_z 00
1=0 i=n—N

Hence, for Kn = Go+GooT + ...+ Gyo TV

n
) 1
lim sup Zg"—i oT" < (Gn)z + limsup 1KN o N — (Gn)z a.e.,
1=0

n—ooo N+ 14 n—oo N

where (Gn)z = limy, 00 n%rl Yo oGno T* by Birkhoff’s Ergodic Theorem.
Now (Gn)z decreases with N because G decreases, and

/(GN)I dp = /GNdp 0

because Gy are non-negative uniformly bounded by Gy € L' and tend to 0 a.e..
Hence (Gn)z — 0 a.e.. Therefore

R ,
lim sup Zgn,i oT" — 0 a.e.
1=0

n—oo N 1 4
establishing the missing a.e. convergence in (1.5.3). [ )

As an immediate consequence of (1.5.1) and 1.5.2) for T' ergodic, along with fz = [ fzdpy,
we get the following:

Theorem 1.5.5 (Shannon-McMillan-Breiman, ergodic case) If T : X — X is ergodic and
A is a countable partition of finite entropy, then

lim lI(A"fl)(x) =h,(T, A). forae zeX

n—oo N
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The left hand side can be viewed as a local entropy at x. The Theorem says that at a.e. x
the local entropy exists and is equal to the entropy (compare comments after (1.3.2) and
Lemma 1.4.2).

§1.6. LEBESGUE SPACES, MEASURABLE PARTITIONS AND CANONICAL
SYSTEMS OF CONDITIONAL MEASURES.

Let (X, F, u) be a probability space. We consider only complete measures (probabilities),
namely such that every subset of a set of measure 0 is measurable. If a measure is not
complete we can always consider its completion, namely to include in the completion of
F all sets A such that there exists B € F with A + B contained in a set in F of measure
0. Consider A, an arbitrary partition of X, not necessarily countable nor consisting of
measurable sets. By A we denote the sub o-algebra of F consisting of those sets in F that
are unions of whole elements (fibres) of A. Note that A > o(A) defined in Sec.1 (in case
A C F) but the inclusion can be strict. Obviously A > {(, X}.

Definition 1.6.0. The partition A is called measurable if it satisfies the following
separation property.
(1.6.1) There exists a sequence B= {B,, : n > 1} C A such that for any two A, 4> € A with
A; # A, there is an integer n > 1 such that either

A C B, and AQCX\Bn

or

A C B, and A; C X\ B,

Since each element of the measurable partition A can be represented as an intersection
of countably many elements B,, or their complements, each element of A is measurable.
Let us stress however that the measurability of all elements of A is not sufficient for A to
be a measurable partition (see Exercise 1). The sequence B is called a basis for A.

Remark 1.6.0a. A popular definition of an uncountable measurable partition A is
that there exists a sequence of finite partitions (recall that this means: finite partitions
into measurable sets) A,,n = 0,1, ..., such that A =\/._, A,. Here (unlike later on) the
join \/ is considered in the set-theoretic sense, i.e. as {Ap, NAp, Ne. 1 Ay, € Ay i =1, 00
Clearly it is equivalent to (1.6.1).

Notice that for any measurable map T : X — X' between probability measure spaces, if
A is a measurable partition of X', then T !(A) is a measurable partition of X.

Now we pass to the very useful class of probability spaces: Lebesgue spaces.
Definition 1.6.1. We call a sequence B= (B,, : n > 1) C F, basis of (X, F, u) if the two
following conditions are satisfied:

(i) (1.6.1) holds for A = €, the partition into points;

(ii) for any A € F there exists a set C' € o(B) such that C' D A and u(C'\ A) = 0.

18



(Recall, Sec.1, that o(B) denotes the smallest o-algebra containing all B,, €B. Rohlin
used the name Borel o-algebra.) ,

(X, F, ) satisfying (i) and (ii) for a basis B is called separable.

Now let ¢ = +1 and B,(,,E) =B, ife=1and BT(,,E) = X\ B, if e = —1. To any sequence of
numbers €,,,n = 1,2, ... there corresponds the intersection (),_, B, By (i) every such
intersection contains no more than one point.

The space (X, F, u) is said to be complete with respect to a basis B if all the intersec-
tions (o, B are non-empty. The space (X, F, ) is said to be complete (mod 0) with
respect, to a basis B if X can be included as a subset of full measure into a certain mea-
sure space (X, F, i) which is complete with respect to its own basis B = (B,,) satisfying

B, N X = B, for all n.

It turns out that a space which is complete (mod 0) with respect to its one bases is also
complete (mod 0) with respect to its every other basis.

Definition 1.6.2. The space (X, F, ) complete (mod 0) with respect to one of its bases
is called Lebesgue space.

Exercise. If (X, Fy,pu1) and (Xo, Fa, u2) are two probability spaces with complete
measures, such that X7 C Xo, ua(X2 \ X1) = 0 and Fy = Fa|x,, 1 = po|r, (where
Folx, = {AN X1 : A€ Fp}), then the first space is Lebesgue iff the second is.

It is not difficult to check that (see Exercise 3) that (X, F, u) is a Lebesgue space if
and only if (X, F, ) is isomorphic to the unit interval (equipped with classical Lebesgue
measure) together with countably many atoms.

Theorem 1.6.3. Assume that T : X — X’ is a measurable injective map from a
Lebesgue space (X, F, u) onto a separable space (X', ', ') and pre-images of the sets of
mesure 0 (or positive) are of measure 0 (resp. positive). Then the space (X', F’, p') is
Lebesgue and T~! is a measurable map.

Remark that in particular a measurable, measure preserving, injective map between Lebe-
sgue spaces is an isomorphism. If X = X', F > F',F # F and X', F', i is separable,
then the above implies that (X, F, ) is not Lebesgue.

Let now (X, F, 1) be a Lebesgue space and A be a measurable partition of X. We say that
a property holds for all almost all atoms of A if and only if the union of atoms for which
it is satisfied is measurable, of full measure. The following fundamental theorem holds:

Theorem 1.6.4. For almost all A € A there exists a Lebesgue space (A, F4, pa) such
that the following conditions are satisfied:

(1.6.2) If B e F, then BN A € Fy4 for almost all A € A.

(1.6.3) The function X — [0,1], 2 = pa(z) (B N A(z)) is F-measurable for all B € F, where
A(z) is the element of A containing .
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(16.4) u(B) = [y ra) (BN A()) dp(z)

Remark 1. One can consider the quotient (factor) space (X/A, F, 1) with X/ A being
just A and with F4 = p(A) and pa(B) = p(p~*(B)) for the projection p(z) = A(zx). It
can be proved that the factor space is again a Lebesgue space. Then x — pa(x)(BNA(z))
is F g-measurable and the property 1.6.4 can be rewritten in the form

(1.6.5) u(m) = | B0 A da(4),

Remark 2. If partition A is finite or countable, then the measures p4 are just the
conditional measures given by the formulas pa(B) = p(AN B)/u(A).

Remark 3. (1.6.4) can be rewritten for every u-integrable ¢, or non-negative y-measurable
¢ if we allow 4-oc-ies, as

/QSdM:/X(/A(w)MA(z) dMA(x)> du(z).

This is a version of the Fubini Theorem.

The family of measures {u4 : A € A} is called the canonical system of conditional measures
with respect to the partition A. It is unique (mod 0) in the sense that any other system
w'y coincides with it for almost all atoms of A.

The method of construction of the system p4 is via conditional expectations val-
ues with respect to the o-algebra A. Having chosen a basis (B,,) of the Lebesgue space
(X, F, ), for every finite intersection

(1.6.6) B=B5"
i
one considers ¢p := E(Ip|A), that can be considered as a function on the factor space

X/ A, unique on a.e. A € A such that for all Z € A

WBN2)= / OB ()

Clearly (B,, N A) is a basis for all A. It is not hard to prove that for a.e. A, for each B
from our countable family (1.6.6), ¢p(A) as a function of B generates Lebesgue space on
A. Uniqueness of ¢p yields additivity.

Theorem 1.6.5. If T': X — X' is a measurable map of a Lebesgue space (X, F, u) onto
a Lebesgue space (X', F',u'), then the induced map from (X/(, Fe, pe) for ( = T 1(e),
to (X', F', 1) is an isomorphism.
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Proof. This immediately follows from the fact that the quotient is a Lebesgue space and
from Theorem 1.6.2. &

In what follows we consider partitions (mod 0), i.e. we identify two partitions if they
coincide, restricted to a measurable subset of full measure. For these classes of equivalence
we use the same notation <, > as in Section 4. . They define a partial order. If A, is a
family of measurable partitions of a measure space (unlike in previous Sections the family
may be uncountable), then by its product A =\/_.A, we mean the measurable partition
A defined by

(i) A > A, for every T;

(i) if A’ > A, for every 7 and A’ is measurable, then A" > A.

Similarly, replacing > by <, we define the intersection A_.A;.

The product and intersection exist in a Lebesgue space (i.e. the partially ordered structure
is complete). They of course generalize the notions of Section 4. Clearly for a countable
family of measurable partitions A, the above \/ and the set-theoretic one coincide (the
assumption the space is Lebesgue and the reasoning (mod 0) is not needed). In Exercise
7 we give some examples.

There is a natural one-to-one correspondence between the measurable partitions (mod 0)
of a Lebesgue space (A, F, ) and the complete o-subalgebras of F, i.e. such o-algebras
F' C F that the measure p restricted to F’ is complete. This correspondence is defined
by the assignment to each A the o-algebra F(A) of all sets which coincide (mod 0) with
the sets of A (defined at the beginning of this Section). To operations on the measurable
partitions (mod 0) correspond operations on the corresponding o-algebras. Namely , if A,
is a family of measurable partitions (mod 0), then

F(\/AT) = \/f(AT) f(/\AT) = /\f(AT)

Here A\ F(A:) = ), F(A:) is the set-theoretic intersection of the o-algebras, while
V., F(A;) is the set-theoretic intersection of all the o-algebras which contain all F(A;).

For a monotone increasing (decreasing) sequence of measurable partitions A, and A =
V,, An (A = A, A, respect.) we write A4, * A (or A, \, A). In the language of
measurable partitions of a Lebesgue space the Martingale Theorem 1.1.1 can be expressed
as follows:

Theorem 1.6.6. If A4, ~* A or A, \, A, then for every integrable function f, p a.s.
E(f|A,) — E(f|A), where for A any measurable partition one writes E(f|A)(z) :=
I Fla) dpag)-

Proof. By the definition of canonical system of conditional measures and the definition
of conditional expectation value we have for every measurable partition A the identity

E(flA) = E(fIF(A)). L
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§1.7 ROHLIN NATURAL EXTENSION
We shall prove here following very useful (see Ch.8.9)

Theorem 1.7.1. For every measure preserving endomorphism 7' of a Lebesgue space
(X, F, ) there exists a Lebesgue space (X, F, 1) with measure preserving transformations
T, : X = X,n < 0 satistying T o m,,_1 = m,, which is an inverse limit of the system

L5 xEhx

Recall that in category theory [Lang, Ch.I], for a sequence (system) of objects and mor-

phisms ... M@” O, My oo My Og an object O equipped with morphisms 7, : O — O,, is
called an inverse limit if M, om, 1 = m, and for every other O’ equipped with morphisms
m;, : O' — O, satistying M,, on] _; = =, there exists a unique morphism M : O — O such
that 7, o M = =« for every n < 0. In particular, for n,, :== M, om,_1 : O — O, there
exists M : O — O such that m, o M = ©], = M,, o m,,_1 for every n. It is easy to see that
M is an automorphism.

Here objects are probability spaces or probability spaces with complete probabilities,
and morphisms are measure preserving transformations or measure preserving transforma-
tions up to sets of measure 0. (We have thus multiple meaning of Theorem 1.7.1.)

Thus Theorem 1.7.1 produces a measure preserving automorphism T:X — X satis-

fying
(1.7.1) 0T =T om, 1

for every n < 0. This automorphism is called Rohlin’s natural extension of T.
In the proof of the Theorem we shall use the following

Theorem 1.7.2 (On Extension of Measure). Every probability measure v (o-additive) on
an algebra Gy of subsets of a set X can be uniquely extended to a measure on the ¢-algebra
G generated by Gy

This Theorem can be proved with the use of the famous construction by Carathéodory
[Carathéodory, Ch.V], namely by the construction of the outer measure: v.(A) = inf v(B) :
B € Gy, AC B for every A C X.

We say that A is measurable (in Carathéodory’s sense) if for every £ C X the outer
measure v, satisfies vo(F) = ve(E N A) + ve(F \ A). The family of these sets appears to
be a o-algebra containing Gg, hence containing G.

For a general definition of outer measure and sketch of the theory see Ch.6.

Proof of Theorem 1.7.1. We start with producing inverse limit in the set-theoretic
category: Consider for Z~, the set of all non-positive integers, the space

(1.7.2) X ={(#p)nez- : T(xn) = Tpy1 ¥n < 0}.
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and 7; : X — X the projection to the i-th coordinate, i ((Tn)nez) = i
Now provide X with a o-algebra F and probability measure it, so that (X,f, i)
becomes the inverse limit.

Consider G,, = 7, }(F). Note that this is an increasing sequence of o-algebras with

growing |n| because 7~ 1(A) = 7, ' (T~ 1(A)) for every A € F. Write Fy = |J,, < Gn- This
is an algebra. For every A € F and n < 0 define fi(r;'(A)) := u(A). This is well-defined
because if C' = n71(A1) = 7,1 (Ay) for A;, As € F and n < m then A} = T~"7")(Ay).
Since T preserves p, we have p(Aq1) = p(Asz).

The next step is to observe that p is o-additive on the algebra Fy. For that we use
the assumption (X, F, i) is a Lebesgue spacel. We just assume that X is a full Lebesgue
measure subset of the unit interval, with classical Lebesgue measure and atoms, and the
o-algebra of Lebesgue measurable sets F, see Exercise 3. Now it is sufficient to prove
that for every decreasing sequence C; € Fo,i = 1,2,... if N; Ci = 0 then i(C;) — 0.
Suppose to the contrary that there exists € > 0 such that (C;) > € for every i. Passing
to a subsequence and reindexing we can write C), = W:}L(C;l), n=1,2,.... We construct
compact sets D], C C}, such that p(C}, \ D},) < 2=+ and T|p, is continuous for all n
(Lusin’s Theorem, [Halmos, Sec.55]).

Write II = H(loo X = {(xn)nez- : xn € X} for the cartesian product of the countable
number of exemplars of X with the product topology (compact by Tichonov’s Theorem).
Define X" := {(z;)icz- : T(x;) = zix1Yn < i < 0}. Of course X C X™ C II. Denote by
7™ the projection from X™ to the n-th coordinate.

Then the sets D,, = (;—,(7%)~!(D}) are compact and decreasing. They are non-empty
because p(7™(Dy)) > €/2 by the construction, for all n. Therefore (1), D,, is non-empty
(Cantor theorem). Notice finally that (), D, C [ C), so the latter set is non-empty. We
have proved that ji is o-additive on Fy.

The final step of the construction is the extension of i to the o-algebra F generated
by Fo. It exists (and is unique) due to Theorem 1.7.2. }

If we work in the category of complete measures we define the o-algebra F as the
completion (by subsets of sets of measure 0) of the o-algebra generated by Fo.

Thus the probability space (f( . F, ft) has been constructed. We leave checking that it
is indeed the inverse limit to the reader.

Let us prove that the probability space ()Z', .7}, ft) with completed fi is Lebesgue space.
Let (B;) be a basis of (X, F, ). Denote by m, the projection of II to the n-th coordinate
for all n. (We use the same symbol as for projections from X C II before. Recall also that
projections from intermediate domains have been denoted by 7n™.) Then clearly the family
7, 1(B)) is a basis of the partition ¢ in II. The restrictions of m,, 1(B;) to X generate the
o-algebra F on X discussed before (in the sense of Def.1.6.1 (ii)), because (B;) generates

F. We define . .
ﬂl‘[,n,(ﬂ w;1(01)> ::u(‘ﬂ T*(ifn)(C’i)),

=N =N

this "detail” has been ovelooked in [CFS]

23



for C; = ﬂl(z) B(E’ D for alln < i <0 and +1 sequences ¢;; for [ =1,2,. l() It is easy

to see that the sequence fir,, is compatible on algebras: finite unions Of ﬂ 7r,_1(C'i),
namely firn+1 extends fir,. (One says that this is a compatible family of of finite-
dimensional probability distributions.)But II is compact, hence fir , are o-additive on the
union of these algebras, hence extend to a measure (o-additive) jiy on the g-algebra Fp
generated by them (Kolmogoroff Theorem, see bibliographical notes). The restriction of
1 to X coincides with [ on F by the uniqueness in Theorem 1.7.2. The restriction of Fn
is a o-algebra so it contains F. We shall know these o- algebras coincide if we verify that
X is fig-measurable, i.e. X € Fi.

Thus the assertion to be proved is that X e .7-"H and that X is of full measure fi-
This will prove that (X, F,fi) is complete (mod 0) with respect to (B;) restricted to X,
hence it is Lebesgue space.

Recall that X = ), X" and note that by Lusin Theorem for each n there exist

compact sets D,, ; C X" 4 =1,2,... such that jg (H \ U, Dn,i) = 0. Compact sets are

measurable as their complementary open sets are countable unions of cylinders. &

Remark 1. X can be interpreted as the space of all backward trajectories for T". The map
T : X — X can be defined by the formula

(173) T((xn)nez—) = (..../.T_2,.’E_1,.’E0,T(£U0)).

X could be defined in (1.7.2) as the space of full trajectories {(xn)nez;T(zn) = Tni1}-
Then (1.7.3) is the shift to the left.

The formula (1.7.3) holds because T defined by it, satisfies (1.7.1), and there holds
uniqueness of T satisfying (1.7.1)

Remark 2. Alternatively to Lusin Theorem argument above, we could find for X" sets
E,; D X", with fig(E,; \ X™) — 0, which are unions of cylinders (;__, ;7 *(C;). This
agrees with the following general fact.

i=—n

If a sequence of sets X generates a o-algebra G with a mesure v on it (see Def.1.6.2
(ii)) then for every A € G there exists C D A with v(C \ A) = 0 such that C' € X/ _.. i.e.
C is a countable intersection of countable unions of finite intersections of sets belonging
to X or their complements. Exercise: Prove this general fact, using Caratheodory’s outer
measure constructed on measurable sets.

The construction via Lusin theorem presents X as X/, ;. set up to measure 0 (as
compact sets are in ¥/,_s). So it is not the most economic.

Remark 3. Another way to prove Theorem 1.7.1 is to construct first (II, Fy, fip) on
the infinite cartesian product 11, and next (X, F, ) as the restriction of the first probability
space to X. We have chosen a different way in order to avoid in the construction the
correctness of the definition of fi,’s in the finite products and the compatibility. We
needed it only to prove that the inverse limit is Lebesgue.
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We end this section with another version of Theorem 1.7.1. Let us start with

Definition 1.7.3. Suppose that T is an automorphism of a Lebesgue space (X, F, u). Let
¢ be a measurable partition. Assume it is forward invariant, namely T'({) > (, equivalently
T-1(¢) < ¢. Then ( is said to be ezhausting if \/, -, T" () = e.

Theorem 1.7.4. For every measure preserving endomorphism 7' of a Lebesgue space
(X, F, ) there exists a Lebesgue space (X F, i) with an automorphism T, with a forward
invariant exhausting measurable partition ¢, such that (X,F,u) = (X/¢, Fe, i/C) the
factor space, cf.Sec.6, Remark 1, and 7T is factor of T, namely T"op = po T for the
projection p: X — X.

Proof. Take (g(,]:", fi) and T from Theorem 1.7.1. Set ¢ := m; '(¢). By (1.7.1) and
T 1(e) <eweget T7H() < C.

Ife' =\, 5, T™(¢) is not the partition of X into points, then T /¢’ is an automorphism
of (X /€', For, fier). Moreover if we denote by p’ the projection from X to X /e’ then we
can write 7_, = 7", o p’ for some maps «’,, for every n > 0. By the definition of inverse
limit p’ must have an inverse which is impossible.

The last part, that \/, ., T™(¢) is the partition of X into points, has also an immediate,

not category theory, proof following directly from the form of X in (1.7.2). Indeed for n > 0
T™(¢) at & = (...,x_a,T_1,To is the n-th image of ¢ at T~"(%) i.e. at (v, Z_p_1,T_p).
So it is equal to {(...,x’, &, ...x0) € X : &_p = z_y,)}. Intersecting for n — oc we
obtain {Z}.

§1.8 GENERALIZED ENTROPY, CONVERGENCE THEOREMS.

This section contains generalizations of entropy notions introduced in Section 3 to the case
of all measurable partitions. The triple (X, F, u) is assumed to be a Lebesgue space.

Definition 1.8.1. If A is a measurable partition of X then its (generalized) entropy is
defined as follows:
H(A) = oo if A is not a countable partition (mod 0);
H(A) =3 4c4 —1(A)log u(A) if A is a countable partition (mod 0).

Lemma 1.8.2. If A,, and A are measurable partitions of X and A,, * A, then H(A,) ~
H(A).

Proof. Write H(A) = [I(A)dp where I(A)(z) = — log u(A(z)) is the information func-
tion (compare Sec.4, we set log0 = —oo, hence I(A)(z) = oo if p(A(z)) = 0, here). Write

the same for A,. As u(A,(z)) \, p(A(x)) for a.e. x, the convergence in the Lemma
follows from Monotone Convergence Theorem. &
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Definition 1.8.3. If A and B are two measurable partitions of X, then the (generalized)
conditional entropy H(A|B) of partition A subject to B is defined by the following integral

(1.8.1) Hu(AIB) = [ Huy (AIB) dus(B)

X/B

where A|B is the partition {AN B : A € A} of B and pp form a canonical system
of conditional measures (Sec. 7). Choose a sequence of finite partitions A4, A (see
Remark 1.6.0). The conditional entropy H,,, (A, |B) is measurable as a function of B in
the factor space (X/B, Fg, ug), hence of course as a function on (X, F, u), since it is a finite
sum of measurable functions B — —up(AN B)logug(AN B). Since A,|B  A|B for a.e.
B, we obtain, by using Lemma 1.8.2, that H,, (A, |B) — H,,, (A|B). Hence H,,, (A|B) is
measurable, so our definition of H,,(A|B) makes sense (we allow oc’s here).
Of course (1.8.1) can be also written in the form

(18.2) /X ., (AB(2)) dpu(x),

with H, , (A|B) understood as constant function on each B (compare (1.6.4) versus (1.6.5)).
As in Sec.3 we can write
(1.8.3) H, (A|B) = / I(AB) dp,
b'e

where I(A|B) is the conditional information function:
IAIB)(x) = —log ps(a) (A(x) 1 B(x)).

Indeed I(A|B) is non-negative and p-measurable as lim,, . I(A,|B) (a.e.), so (1.8.3)
follows from (1.6.5a).

Lemma 1.8.4. If {A4,, : n > 1} and A are measurable partitions, A,, \, A and H(A4;) < oo
then H(A,) \,  H(A).

Proof. The proof is similar to Proof of Lemma 1.8.2. &

Theorem 1.8.5. If A, B are measurable partitions and {4, : n > 1} is an increasing
(decreasing and H(A;|B) < 0o) sequence of measurable partitions converging to .4, then

(1.8.4) Tim H(A,|B) = H(A|B)

and the convergence is respectively monotone.

Proof. Applying Lemmas 1.8.2 and 1.8.4 we get the monotone convergence H,, , (A, |B) —
H,, (A|B) for almost all B € X/B. Thus the integrals in the Definition 1.8.3 converge by
the Monotone Convergence Theorem. &

Theorem 1.8.6. If A, B are measurable partitions and {B,, : n > 1} is a decreasing
(increasing and H(A|B;) < oc) sequence of measurable partitions converging to B, then

(1.8.5) Tim H(A|B,) = H(A|B)

and the convergence is respectively monotone.
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Proof 1. Assume first that A is finite (or countable with finite entropy). Then the a.e.
convergence I(A|B,,) — I(A|B) follows from Martingale Convergence Theorem (more pre-
cisely from Theorem 1.6.6), applied to f = 1l 4, the indicator function for each A € A.

Now it is sufficient to prove sup,, I(A|B,,) € L! in order to use Dominated Convergence
Theorem (compare Corollary 1.5.3) and (1.8.3). One can repeat Proofs of Lemma 1.5.1
(for increasing B,,) and Corollary 1.5.2.

The monotonicity of the sequence H(A|B,,) relies on Theorem 1.3.d. However for infinite
B,, one needs to approximate B, by finite (or finite entropy) partitions. For details see
[Rohlin 1967, Sec.5.12].

For A measurable, represent A as lim;_,, A; for an increasing sequence of finite
partitions A4;,j = 1,2, .., next refer to Th.1.8.5. In the case of decreasing B,, the proof is
straightforward. In the case of increasing B,, use

H(A[B) — H(A;|Bn) = H(A|(A; V Bn)) < H(A|(A; V By)) < H(A|By) — H(Aj[By).

This implies that the convergence as j — oo is uniform with respect to n, hence in the

limit H(A|B,) — H(A|B). &

Proof 2. For A finite (or countable with finite entropy) there is a simpler way to
prove (1.8.5). We have for every A € A by Theorem 1.1.1, the convergence in L? applied to
E(1 4| F(B,)), hence the convergence in measure p of pig () (ANBy(x)). By the continuity
of the function k(t) = —tlogt, see Sec.3, this implies the convergence in measure y

F(115,(a) (A 0V B () — ki) (AN ().

(We do not assume =z € A here.) Summing over A € A we obtain the convergence
Hys, o) (AlBr (7)) — Hyy @) (AlB(7)) in measure p. These functions are uniformly bounded
by log #A ( or by H(A) ) and non-negative, hence we get the convergence in L' and in
consequence, due to (1.8.2), we obtain (1.8.5). (Note that we have not used the a.e.
convergence in Th.1.1.1, but only the convergence in L2 proved there.) &

Observe that we can rewrite now the definition of the entropy h, (7T, A) from Section 1.5
as

(1.8.6) h, (T, A) = H(AJA™), where A~ = §7 T="(A).

A countable partition B is called a countable generator for an endomorphism of a Lebesgue
space if B™ 7 e. Due to Theorem 1.8.6 we obtain the following facts useful in computing
the entropy for concrete examples.

Theorem 1.8.7. (a) If B,, is a sequence of finite partitions of a Lebesgue space, such
that B, " €, then, for any endomorphism T of the space, h(T) = limy, o h(T, B,,).

(b) If B is a countable generator of finite entropy for an endomorphism T of a Lebesgue
space, then h(T') = h(T, B).
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Proof. By Theorem 1.8.6 for every finite A we have lim,,—, . H(A|B;,) = H(Ale) = 0,
hence in view of Theorem 1.4.5, instead of sup 4 in the definition of h(T'), it is sufficient in
(1.4.3) to consider lim, o, h(T, B,,). This proves (a). Theorem 1.4.5 together with the
definition of the generator prove also (b). &

Remark 1.8.7°. For T' an automorphism one considers two-sided countable (in particular
finite) generator: \/,____ T™(B) = e. Then, as in the one-sided case, H(B) finite implies
h(T) = h(T, B).

Remark 1.8.7”. In both Theorem 1.8.6 and Theorem 1.8.7(a) the assumption on the
monotonicity of B, can be weakened. Assume for example that A is finite and B,,, — ¢ in
the sense that for every measurable Y, FE(lly|B,,) — 1y in measure, as in Remark 1.1.2.
Then H(A|B,,) — 0, hence h(T) = limy,—o H(T, B,,).

Indeed for H(.A|B,,) — 0 just repeat Proof 2 of Theorem 1.8.6. The convergence in measure
poof i, () (ANBL(x))) to ez (ANe(x))) writes as (1L 4|B,) — 14, which has just been
assumed.

Corollary 1.8.7”°. If X is a compact metric space and F the o-algebra of Borel sets
(generated by open sets), then if suppcp (diam(B)) — 0 as m — oo, then h(T) =
limy, 00 H(T, Bp).

Proof. It is sufficient to check E(14|B,,) — 14 in measure. First note that for every
d > 0 there exist an open set U and closed set K such that K C A C U and p(U\ K) < 6.
This property is called regularity of our measure p and is true for every finite measure on
the o-algebra of Borel sets for a metric space (compactness is not needed here). It can be
proved by Caratheodory’s argument, compare Proof of Th.1.1.1. Namely we construct the
outer measure with the help of open sets, as in the sketch of the proof of theorem 1.7.2
(where we used Gg) and notice that since each closed set is an intersection of a decreasing
sequence of open sets we will have the same outer measure if in the construction of outer
measure we use the algebra generated by open sets. Now we can refer to Theorem 1.7.2.

Next, due to compactness of X, hence K, for m large enough the set A’ := | J{B € B,, :
BN K # 0} contains K and is contained in U, hence pu(A + A’) < 4. This implies that

/ |E(]1A‘Bm) - ]1A| du =
X

/ E(]1A|Bm)du+/ E(14]By) — 11A|du+/ 1— E(4|By) du <
X\(AuA") A+ A’ ANA’

5 , u(An A" ,
S X\ (AUA) +a (1- W)M(Arm) < 36.
Hence p{z : [E(14|By) — 14| > V36} < V/34. L

For a simpler proof, omitting Theorem 1.8.6, see Exercise 1.9’.
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We end this Section with the theorem on decomposition into ergodic components and the ad-
equate entropy formula. Compare this with Choquet representation theorem: Th. 2.1.11,
and Th. 2.1.13.

Let T be a measure preserving endomorphism of a Lebesgue space. A measurable partition
A is said to be T-invariant if T(A) C A for almost every A € A. The induced map
Ta = T|a: A — Ais a measurable endomorphism of the Lebesgue space (A, F4, pa).
One calls Ty a component of T.

Theorem 1.8.8. (a) There exists a smallest T-invariant measurable partition .4 (mod 0)
(called the ergodic decomposition). Almost all of its components are ergodic.

(b) B(T) = [y, h(Ta) dpa(A).
Proof. We shall not prove here the part (a). Let us mention only that the ergodic
decomposition partition corresponds (see Sec.6) to the completion of Z, the o-subalgebra
of F consisting of T' invariant sets in F (compare Theorem 1.2.2).

To prove the part (b) notice that for every T-invariant measurable partition A, for
every finite partition £ and almost every A € A, writing £ 4 for the partition {sNA: s € £},
we obtain

h(Ta,€4) = H(ElET) = /A Ly (E41€3) dpia.

Notice next that the latter information function is equal a.e. to I,,(£|~ V A) restricted to
A. Hence

[ ndnaay = [ dpa [ T €alea) dua -
X/A X/ A A

/X (€16~ v A) dp = HE|E V A) = (T, €)

The latter equality follows from an approximation of A by finite T-invariant partitions
n /A and from

H(ele™ von) = H(EVnle™ V) = Tim CH((EV)") =

lim TH(EMV ) = lim TH(E") = H(T,)

n—oo N,

Let now &, be a sequence of finite partitions such that &, . Then h(T,&,)  h(T)
and h(T4, (§x)a) / h(Ta). So W(T.,&n) = [ 4 1(Ta, &) dua(A) and Lebesgue monotone

convergence theorem prove (b) &

§1.9 COUNTABLE TO ONE MAPS, JACOBIAN AND ENTROPY OF ENDOMOR-
PHISMS .

We start with a formulation of a deep theorem by Rohlin:
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Theorem 1.9.1. Suppose that A and B are two measurable partitions of a Lebesgue
space (X, F,p) such that A|p is countable (mod 0 with respect to pupg) for almost every
B € B. Then there exists a countable partition v = {71, 72, ...} of X (mod 0) such that
such that each «y; € v intersects almost every B at not more than one point, which is then
an atom of pp, in particular

AV B =~V B (mod0).

Furthermore, if H(A|B) < oo, then 7 can be chosen so that

H(y) < H(A|B) + 3 H(A|B) < 0.

Definition 1.9.2. Let (X,F, ) be a Lebesgue space. Let T': X — X be a measurable
endomorphism. We say that T is essentially countable to one if the measures pg of a
canonical system of conditional measures for the partition A := T~!(g) are purely atomic
(mod 0 with respect to p4), for almost all A. We say that T is countable to one if we can
omit the phrase "mod 0 with respect to p4” above.

Lemma 1.9.3. If T is essentially countable to one and preserves p then there exists a
measurable Y C X of full measure such that T(Y) C Y and

1. T7Yz)NY for a.e. © €Y is countable, moreover it consists only of atoms of the
conditional measure pp—1(z);

2. T(B) is measurable if B C Y is measurable;

3. Ty is forward quasi-invariant, namely pu(B) = 0 for B C Y implies u(T(B)) = 0.

Proof. Let Y’ be the union of atoms mentioned in Definition 1.9.2.. We can write, due
to Theorem 1.9.1, Y' = (J;v;, so Y’ is measurable. Set ¥ = No—oT~"(Y"). Denote the
partition T71(g) in Y by (. Property 1. follows from the construction. To prove 2. we
use the fact that (Y/(, Fe, p¢) is a Lebesgue space and the factor map T, : Y, — X is an
automorphism (Th.1.6.5). So, for measurable B C Y, the set

(1.9.1) {A€C:pa(BNA £0}={AecC:ANB#0}

is measurable by (1.6.3) and therefore its image under T, equal to T'(B), is measurable.
If u(B) = 0, then the set in (1.9.1) has measure p¢ equal to 0, hence as T is isomorphism
we obtain that T'(B) is measurable, of measure 0. &

The key property in the above proof is the equality (1.9.1). Without assuming that 4
are purely atomic there could existed B of measure 0 with C':={A € (: pa(BN A) # 0}
not measurable in Fe.

To have such a situation just consider a non-measurable C' C Y/({. Consider the
disjoint union D := C UY and denote the embedded C' by C’. Finally, defining measure
on D, put 4(C’") = 0 and p on the embedded Y. Define T(¢') = T(C) for C > ¢ and
¢’ being the image of ¢ under the abovementioned embedding. Thus C’ is measurable,
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of measure 0, whereas T'(C') is not measurable because C is not measurable and T, is
isomorphism.

Definition 1.9.4. Let (X, F,pu) and (X', F', ') be probability measure spaces. Let
T : X — X’ be a measurable homomorphism. We say that a real, nonnegative, measurable
function J is a weak Jacobian if there exists F of measure 0 such that for every measurable
A C X\ E on which T is injective, the set T'(A) is measurable and p(T(A)) = [, Jdp.
We say J is strong Jacobian if the above holds without assuming A € X \ E.

Notice that if T is forward quasi-invariant, namely (u(A) = 0) = (¢'(T(A4)) = 0),
then automatically weak Jacobian is strong Jacobian.

Proposition 1.9.5. Let (X, F, 1) be Lebesgue space and T : X — X be a measurable,
essentially countable to one, endomorphism. Then there exists a weak Jacobian J. It is
unique (mod 0). For T restricted to Y (from Lemma 1.9.3.) J is strong Jacobian.

Proof. Consider the partition v = {v1,72,...} given by Theorem 1.9.1. Then for each
j the map T'|,~y is injective. Moreover by Lemma 1.9.3 T'|,,ny maps measurable sets
onto measurable sets and is forward quasi-invariant. Therefore J exists on each v; NY by
Radon-Nikodym theorem.

By the presentation of each A C Y as U;‘;l ANy, the function J satisfies the assertion
of the Proposition. The uniqueness follows from the uniqueness of Jacobian in Radon-
Nikodym theorem on each y; NY.

Theorem 1.9.6. Let (X, F,v) be a Lebesgue space. Let T : X — X be a v preserving
endomorphism, essentially countable to one. Then its Jacobian, strong on Y defined in

Lemma 1.9.3, weak on X, has logarithm equal to I(¢|T~1(g)). (I stands for the information
function, see Sections 1.4 and 1.8)

Proof. Consider already T restricted to Y. Let Z C Y be an arbitrary measurable set
such that T is 1-to—1 on it. For each y € Y denote by A(y) the element of ( = T~ 1(¢)
containing y. We obtain

v(T(2)) = (T H(1(2))) = !/Tl(T(Z)) (_/A(y) MVA(y)) dv(y) =

- Tz(y)/vapiy}) dvae) | dv(y) =
Q/TI(T(Z)) (/A(y) () /vae{y}) dvag )) (%)
- /T1 (T(Z)) nZ(y)/VA(y){y}) dv(y) = /Z 1/VA(y){y}) dv(y)

Theorem 1.9.6 gives rise to the so called Rohlin formula:
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Theorem 1.9.7. Let (X, F, u) be a Lebesgue space. Let T : X — X be a y preserving
endomorphism, essentially countable to one. Suppose that on each component A of the
ergodic decomposition (cf. Th.1.8.8) the restriction T4 has a countable generator of finite
entropy. Then for the Jacobian J

ha(T) = HET™ @) = [ 117 @) du= [ 1og T d

Proof. The third equality follows from Theorem 1.9.6, the second one is the definition
of the conditional entropy, see Sec. 8. To prove the first equality we can assume, due to
Theorem 1.8.8, that T is ergodic. Then, for (, a countable generator of finite entropy, with
the use of Theorems 1.8.5 and 1.8.6, we obtain

H(elT~"(e) = H(el¢™) = Jim H(C"|¢™) = H(CCT) = h(T, () = h(T).4

Remark. The existence of a countable generator is a general, not very difficult, fact,
namely the following holds:

Theorem 1.9.8. Let (X, F,u) be Lebesgue space. Let T : X — X be a p-preserving
aperiodic endomorphism, essentially countable to one. Then there exists a countable gen-
erator, namely a countable partition ¢ such that (- = ¢ (mod 0).

Aperiodic means there exists no B of positive measure and a positive integer n so that
T™|p =id. For the proof see [Rohlin, 1967, Sec.10.12-13] or [Parry|. To construct ¢ one
uses the partition v found for ¢ and T~!(g) according to Theorem 1.9.1 and so-called
Rohlin towers.

The existence of a generator with finite entropy is in fact equivalent to H(e|e™) = h(T) <
oo. The proof of the implication to the right is contained in Proof of Th.1.9.7. The reverse
implication, the construction of the partition, is not easy, it uses in particular the estimate
in Th.1.9.1.

The existence of a generator with finite entropy is a strong property. It may fail even for
exact endomorphisms, see Sec.10 and Exercise 13. Neither its existence implies exactness,
Exercise 13. To the contrary, for automorphisms, two-sided generators, even finite, always
exist, provided the map is aperiodic.

§1.10. MIXING PROPERTIES.

In this section we examine briefly some mixing properties of a measure preserving endo-
morphism, stronger than ergodicity. A measure preserving endomorphism is said to be
weakly mixing if and only if for every two measurable sets A and B

n—1

Jim = ST B) 0 A) - (Ayu(B)| = 0
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To see that a weakly mixing transformation is ergodic, suppose that T='(B) = B. Then
T*(B) = B for all k > 0 and consequently for every n, %Z?:_ol \wW(T=7(B) N A) —
pu(A)p(B)| = |w(B) — u(B)?|. Thus p(B) — u(B)? = 0 and therefore u(B) =0 or 1.

A measure preserving endomorphism is said to be mizing if and only if for every two
measurable sets A and B

lim (T (A) N B) — p(A)u(B) =0

n—oo

Clearly, every mixing transformation is weakly mixing. The property equivalent to the
mixing property is the following: for every square integrable functions f, g

Jim f(goT")du—/fdu/gdu-

Indeed, the former property follows from the latter one if we substitute the indicator
functions 1 4, I g in place of f,g. To prove the opposite implication notice that with the
help of Hélder inequality it is sufficient to restrict to simple functions f = ). a;14,.9 =
>_;a;jlla; for finite partitions (4;) and (B;). Then

‘/f(goT")du—/fdu/gdu = > aib(u(A; NT™™(B;)) — p(Ai)p(B;))| — 0

%]

because every summand converges to 0 as n — oo.
In the sequel we will deal also with stronger mixing properties. An endomorphism is called
K-mixing if for every measurable set A and every finite partition A

lim  sup [u(ANB)—pu(A)u(B)| =0,

Recall that F(AS°) for n > 0 means the complete o-algebra assigned to the partition
A = Vj2,, T77(A). The following theorem provides us with alternative definitions of the
K-mixing property in case T' is an automorphism.

Theorem 1.10.1. If T : X — X is a measure-preserving automorphism of a Lebesgue
space, then the following conditions are equivalent:

(a) T is K-mixing.

(b) For every finite partition A Tail(A) := A>_; Ve, T ¥(A) is equal to the trivial
partition v = { X}

(c) For every finite partition A # v, h, (T, A) > 0 (T has completely positive entropy)

(d) There exists a forward invariant erhausting measurable partition « (i.e. satisfying
T 1(a) <a, T"(a) /e, see Def. 1.7.4) such that T-"(a) \, v.
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The property Tail(A) = v is a version of the 0-1 Law. An automorphism satisfying (d)
is usually called: K-automorphism. The symbol K comes from the name: Kolmogorov.
Each partition satisfying the properties of « in (d) is called K-partition.

Remark: the properties (a)-(c) make sense for endomorphisms and they are equivalent
(proofs are the same as for automorphisms). Moreover they hold for an endomorphis iff
they hold for its natural extension.

Proof. (a part of) To show the reader what is the Theorem about let us prove at least
some implications:
(a)=(b) Let A € F(Tail(A)) for a finite partition A. Then A € F(\/,—, T *(A))
for every n. Hence, by K-mixing, u(AN A) — u(A)u(A) = 0 and therefore u(A) =0 or 1.
(b)=(c) Suppose h(T, A) = 0 for a finite partition A. Then H(A|A~) = 0, hence
I(A|A7) =0 as. (see Sec.8), hence A < A~. Hence

\/ T7%(A) = \/ T7F(A4) and \/ T7%(A) = \/ T7H(A)
k=0 k=1 k=m k=n

for every m,n > 0. So Aoy Vien T7F(A) = Ve T7%(A). The latter partition is TailA,
so it is equal to v by (b). But it is finer than A, hence A = v. So each finite partition
different from v, the trivial one, has positive entropy.

(b)=-(d) (in case there exists a finite two-sided generator B, i.e. \/ - T (B) = ¢)

n=—oo

£ =\VT2,T"(B) is exhausting. &
Let us finish the Section with the following useful:

Definition 1.10.2. A measure preserving endomorphism is said to be ezract if

/\ T "(e) =v,

(Remind that ¢ is the partition into points and v is the trivial partition {X}.)

Exercise: Prove that exactness is equivalent to the property: p.(7"(A)) — 1 for every
A of positive measure (u, is outer measure), or to the property: u(T™(A)) — 1 provided
p(A) > 0 and the sets T"(A) are measurable.

The property ezact implies the natural extension is a K-automorphism (in Theorem
1.10.1(d) set for a the lift of €). The converse is of course false. Non-one atom space
automorphisms are not exact. Observe however that if T' is an automorphism and « is a
measurable partition satisfying (d), then the factor map T/« on X/« is exact. Exercise:
prove that T is the natural extension of T'/c. Remind finally (Sec. 9) that even for exact
endomorphisms h(e|T1(g)) can be strictly less than h(T).
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§1.11. PROBABILITY LAWS AND BERNOULLI PROPERTY.

For (X, F, i) a probability space (or whenever it is needed: a Lebesgue space). Let f and g
be real square-integrable functions on X. For every positive integer n the n-th correlation
of the pair f, g, is the number

Cn(f,9) = _/f-(goT")du!/fdu‘/gdu-

provided the above integrals exist. Notice that due to the T-invariance of p we can also
write

Cull.9)= (7 ED(lg -~ Bg)o1™)dn
where we write Ef = [ fdp and Eg= [gdu

Let g : X — R be a square-integrable function. The limit

n—1
(1.11.1) 0% = lim l/<z:goTj —nEg)Zd,u
§=0

n—oo N

is called asymptotic variance or dispersion, provided it exists.
Write g0 = g — Fg. Then we can rewrite the above as

N2
o2 = limy, 00 %f(Z;L:_Ol go © TJ> dpu.

Another useful expression for the asymptotic variance is the following
s .
(1112) @)= [dn+23" [0+ (g0oT)dp
j=1

The convergence of the series of correlations Cy, (g, g) in (1.11.2) easily implies that
02(g) from this formula is equal to o2 defined in (1.11.1), compare the computation in the
proof of Theorem 1.11.3 later on.

We say that the law of iterated logarithm, LIL, is satisfied for g if 0%(g) exists (i.e. the
above series converges) and

n—1 ]
rgoTI —nKg
(1.11.3) lim sup 25=0
n—00 \/ﬂlOg logn

(1 almost surely, a.s., means p almost everywhere, a.e. This is the probability theory
language.)
We say that the central limit theorem, CLT, holds, if

n—1 ;
;— o7 — 77E 1 r 2 2
(1.11.4) plere X: 2j=09 g <r — / et /29 dt.
NLD oV2r J_o

=V20% pu— almost surely .
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For o # 0 the convergence is for all r, for 62 = 0 the convergence holds for » # 0 and on
the right hand side one sets 0 for » < 0 and 1 for r > 0.

The LIL and CLT for 02 # 0 are often, and this is the case in Theorem 1.11.1 below,
a consequence of the almost sure invariance principle, ASIP, which says that the sequence
of random variables g, go T, goT?, centered al the expectation value i.e. provided Eg = 0,
is "approximated with the rate n'/2=” for an ¢ > 0, depending on ¢ in Theorem 1.11.1
below, by a martingale difference sequence and a respective Brownian motion.

Theorem 1.11.1. Let (X, F, 1) be a probability space and T' an endomorphism preserving
p. Let G C F be a o-algebra. Write G = \/;7’:m T77(G) (notation from §.1.6) for
m < n < oo and suppose that the following property called ¢-mizing holds:

There exists a sequence ¢(n),n = 0,1, .. of positive numbers satisfying

(o]

(1.11.5) D 4% (n) < oo

n=1

such that for every A € Gi* and B € G2°, 0 < m < n we have

(1.11.6) (AN B) = p(A)p(B)| < ¢(n — m)u(A).

Finally consider a Gg° measurable function g : X — IR such that
/ 91> dp < 0o for some § > 0,
and that for all n > 1

—(2+9)
> < Kn™® K >0,s> 0 large enough.

(1.11.7) (/|h—E(h|gg)|2+5)

(A concrete formula for s can be given, depending on §.)
Then g satisfies CLT and LIL.

LIL for 02 # 0 is a special case, for ¢(n) = \/2loglogn, of the following: for every real
positive non-decreasing function ¢ one has, provided [ gdu =0,

plr e X : Zg(Tj () > 9(n)Vo?n for infinitely many n} =0 or 1
=0

according as [;° wit) exp(—11)%(t)) dt converges or diverges.
1 ¢ 2

As we already remarked, this Theorem, for o2 # 0, is a consequence of ASIP and the similar
conclusions for the standard Brownian motion. We do not give the proofs here. For ASIP
and further references see [Philipp, Stout, Ch.4,7]. Let us discuss only the existence of
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a2, Tt follows from the following consequence of (1.11.6): For «, 8 square integrable real
functions on X, o measurable in G§* and B measurable in G,;° we have

(1.118) \ [ e~ BaBs] < 2060 - ) alal e

The proof of this inequality is not difficult, but tricky, with the use of Holder inequality,
see [Ibragimov| or [Billingsley, 1968]. Tt is sufficient to work with the functions a =
>iailla,, B =3 a;l,; for finite partitions (A4;) and (B;), as with mixing in Sec. 10.
Note that if instead of (1.11.6) we have stronger:

(1.11.9) [W(AN B) — p(A)u(B)| < ¢(n — m)u(A)u(B),

as will happen in Ch.3, then we very easily obtain in (1.11.7) the estimate by ¢(n —
m)||al|1]|B]]1, by the computation the same as for mixing in Sec.10.
We may assume that g is centered at the expectation value. Write g = k,, +r, =

E(g‘g([)nﬂ]) + (g — E(g\g([)"/z]). We have

<

‘/g(goT")du

‘/kn(lﬂnoT")du‘ + ‘/kn(rnoT”)d,u + /Tn(knOT")d,u + /’I’n(’f’n oT")du‘ <

2(¢(n — [n/2]) Y2 [knll3 + 2[lknll2rallz + lral3 <

2(¢(n — [n/2]) 2 knll3 + 2K [n/2] | [knll2 + K[n/2]7%,

the first summand estimated according to (1.11.8). For s > 1 we obtain convergence of
the series of correlations.

Let us go back to the discussion of the ¢-mixing. If G is associated to a finite partition
that is a generator, ¢-mixing with ¢(n) — 0 as n — oo implies K-mixing (see Sec.10).
Indeed B is the same in both definitions, whereas A in K-mixing can be approximated by
sets belonging to G*. We leave details to the reader.

Intuitively both notions mean that any event B in remote future weakly depends on
the present state A, i.e. |u(B) — p(BJA)| is small.

In applications G will be usually associated to a finite or countable partition.

In Theorems 1.11.1, the case 02 = 0 is easy. It relies on Theorem 1.11.3 below. Let us

first introduce the following fundamental

Definition 1.11.2. Two functions f,g: X — IR (or €) are said to be cohomologous in
a space IC of real (or complex) -valued functions on X (or f is called cohomologous to g),
if there exists h € IC such that

(1.11.10) f—g=hoT —h.
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If f,g are defined mod 0, then (1.11.10) is understood a.s.. This formula is called a
cohomology equation.

Theorem 1.11.3. Let f be a square integrable function on a probability space (X, F, u1),
centered at the expectation value. Assume that > oo n| [ f-(foT™)du| < co. Then the
following three conditions are equivalent:

(a) o*(f) =0; |

(b) All the sums S,, = S, f = Z;’;ol f o T7 have the norm in L? (the space square
integrable functions) bounded by the same constant;

(c) f is cohomologous to 0 in the space H = L2.

Proof. (c)=-(a) follows immediately from (1.11.1) after substituting f = ho T — h. Let
us prove (a)=-(b): Write C; for the correlation [ f-(foT7)du,j=0,1,.... Then

[ 180l du=nC3 4230~ )G,
7j=1

:n(C§+2§:0j) — o i Cj—2zn:j-0j:na2—1n—un.
j=1 j=1

j=n+1

Since I,, — 0 and I1,, stays bounded as n — oo and 02 = 0, we deduce that all the sums
S,, are uniformly bounded in L2.

(b)=(c): f =hoT — h for any h a limit in weak*-topology of the bounded sequence
%Sn. We leave the easy computation to the reader. (This computation will be provided
in detail in the similar situation of Bogolyubov-Krylov Theorem, in 2.1.14.). &

Now Theorem 1.11.1 for 62 = 0 follow from (c), which gives Z;L:_Ol foT/ =hoT™— h,
with the use of Borel-Cantelli lemma.

Remark.. Th.1.11.1 in the two-sided case: where g depens on G; = Tj(g) for j =
.., —1,0,1, ... for an automorphism 7', also holds. In 1.11.8 one should replace G§ by ",

Given two finite partitions A and B of a probability space and € > 0 we say that B is
e-independent of A if there is a subfamily A" C A such that p(|J.A") > 1 — ¢ and for every
Ac A

(1.11.11) > % — w(B)| <e.
BeB

Given an ergodic measure preserving endomorphism 7' : X — X of a Lebesgue space,
a finite partition A is called weakly Bernoulli (abbr. WB) if for every ¢ > 0 there is

“ . s 4 . . e
an N :‘N(s) such that the partition \/;_ T"7(A) is e-independent of the partition
\/;.n:OT_J(A) for every 0 < m < n < s such that n —m > N.
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Of course in the definition of e-independence we can consider any measurable (maybe
uncountable) partition .4 and write conditional measures p4(B) in (1.11.11). Then for T
an automorphism we can replace in the definition of WB \/j_ T77(A) by \/;Z{ T~7(A)
and \/;.n:0 T=I(A) by \/;.n:__nn T=7(A) and set n = oc,n —m > N. WB in this formulation
becomes one more version of weak dependence of present (and future) from remote past.
If e = 0 and N = 1 then all partitions T 7(A) are mutually independent (recall that
A, B are called independent if u(AN B) = u(A)u(B) for every A € A, B € B.). We say
then that A is Bernoulli. If A is a generator (two-sided generator), then clearly T' on
(X, F, p) is isomorphic to one-sided (two-sided) Bernoulli shift of 4 symbols, see Chapter
0, Examples 0.8. The following famous theorem of Friedman and Ornstein holds:

Theorem 1.11.4. If A is a weakly Bernoulli finite two-sided generating partition of X
for an automorphism 7', then T is isomorphic to a two-sided Bernoulli shift.

Of course the standard Bernoulli partition (in particular the number of its states) in the
above Bernoulli shift can be different from the image under the isomorphism of the WB
partition.

Bernoulli shift above is unique in the sense that each two two-sided Bernoulli shifts
of the same entropy are isomorphic [O].

Note that ¢-mixing in the sense (1.11.9), with ¢(n) — 0, for G associated to a finite
partition A, implies weak Bernoulli.

Central Limit Theorem is a much weaker property than LIL. We want to end this
Section with a useful abstract theorem that allows us to deduce CLT for g without spec-
ifying G. This Theorem similarly as Theorem 1.11.1 can be proved with the use of an
approximation by a martingale difference sequence.

Theorem 1.11.5. Let (X, F,u) be a probability space and T : X — X an auto-
morphism preserving pu. Let Fy C F be a o-algebra such that T=1(F;) C Fy. Denote
Fn =T "™(Fy) for all integer n = ..., —1,0, 1, ... Let g be a real square integrable function.
If

D IEIF) 2 +llg — B9l F-n)ll2 < oc,
n>0

then g satisfies CLT.
Exercises.

0. Prove that for any two c-algebras F > F' and ¢ an F-measurable function, the
conditional expectation value operator LP(X,F, u) > ¢ — E(¢|F') has norm 1 in LP, for
every 1 < p < oo. (Hint: Prove that E((d o |¢|)|F') > 9o E((|¢])|F') for convex 9, in
particular for ¢ — ¢?.)
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1. Let T be an ergodic automorphism of a probability non-atomic measure space and
A its partition into orbits {T"(x),n = ..., —1,0,1...}. Prove that A is not measurable.

Suppose we do not assume ergodicity of T'. What is the largest measurable partition,
smaller than the partition into orbits? (Hint: Th.1.8.8.)

2. Prove that the following partitions of measure spaces are not measurable:

(a) Let T : S' — S! be a mapping of the unit circle with Haar measure defined by
T(z) = €>™2 for an irrational a. P is the partition into orbits;

(b) T is the automorphism of the 2-dimensional torus IR?/Z?, given by a hyperbolic
integer matrix of determinant 1. Let P be the partition into stable, or unstable, lines (i.e.
straight lines parallel to an eigenvector of the matrix);

(c) Let T : S' — S! be defined by T(z) = 22. Let P be the partition into grand
orbits, i.e. equivalence classes of the relation z ~ y iff 3m,n > 0 such that T™(z) = T"(y).

3. Prove that every Lebesgue space is isomorphic to the unit interval equipped with
the Lebesgue measure together with countably many atoms.

4. Prove that every separable complete metric space with a measure on the o-algebra
containing all open sets, minimal among complete measures, is Lebesgue space.
Hint: [Rohlin 1949, 2.7].

> 0 is measurable iff

5. Let (X,F,u) be a Lebesgue space. Then Y C X, p(Y)
={ANY : A e F} and

(Y, Fy, py) is Lebesgue, where p. is the outer measure, Fy

oy (4) = B850

Hint: If B=(B,,) is a basis for (X, F, u), then B, = B, NY) is a basis for (Y, Fy, py).
Add to Y one point for each sequence (B;,)*" whose intersection is missing in ¥ and in
the space Y obtained in such a way generate complete measure space (Y, F, i) from the
extension B of the basis (B!). Borel sets with respect to B in X correspond to Borel
sets with respect to B and sets of i measure 0 correspond to sets of i measure 0. So

measurability of ¥ implies (Y \ Y) = 0.

6. Prove Th.1.6.3.

Hint: In the case both spaces are unit intervals with standard Lebesgue measure,
consider all intervals J’ with rational ends. J = T~!(.J') is contained in a Borel set B
with u(Bs\ J) = 0. Remove from X a Borel set of measure 0 containing J,;(Bs\ J).
Then T becomes a Borel map, hence it is a Baire function, hence due to the injectivity it
maps Borel sets to Borel sets.

7. (a) Consider the unit square [0, 1] [0, 1] equipped with Lebesgue measure. For each
x € [0,1] let A, be the partition into points (z’,y) for 2’ # x and the interval {z} x [0, 1].
What is A\, Az 7 Let B, be the partition into the intervals {«’} x [0, 1] for 2’ # « and the
points {(z,y) : y € [0,1]}. What is A, B, ?

(b) Find two measurable partitions A, A’ of a Lebesgue space such that their set-
theoretic intersection (i.e. the largest partition such that A, A’ are finer than it) is not
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measurable.

8. Find an example of T : X — X an endomorphism of a probability space (X, F, u),
injective and onto, such that for the system ... L x XL X, natural extension does not
exist.

Hint: Set X the unit circle and T irrational rotation. Let A be a set consisting of
exactly one point in each T-orbit. Set B = J;5, T7(A). Notice that B is not Lebesgue
measurable and that the outer measure of B is 1 (use unique ergodicity of T, i.e. that
(1.2.1a) holds for every x)

Let F be the o-algebra consisting of all the sets C' = BN D for D Lebesgue measurable,

set u(C) = Leb(D), and of C C X \ B, set then u(C) = 0. Note that (), 5, T"(B) =0

and in the set-theoretic inverse limit the set 7~} (B) = m, '(T™(B)) would be of measure

n
1 for every n > 0.

9. (a) Prove that in a Lebesgue space d(A, B) := H(A|B) + H(B|A) is a metric in
the space Z of countable partitions (mod 0) of finite entropy. Prove that the metric space
(Z,d) is separable and complete.

(b) Prove that if T" is an endomorphism of the Lebesgue space, then the function
A — h(T, A) is continuous for A € Z with respect to the above metric d.

Hint: |h(T, A) — h(T, B)| < max{H(A|B),H(B|A)}. Compare Proof of Th.1.4.5.

9. (a) Let do(A,B) := >, u(A; + B;) for partitions of a probability space into r
measurable sets A = {A;,i = 1,...,r} and B = {B;,i = 1,...,r}. Prove that for every
r and every d > 0 there exists dyg > 0 such that if A, B are partitions into r sets and
do(A, B) < dg, then d(A,B) < d

(b) Using (a) give a simple proof of Corollary 1.8.7”’. (Hint: Given an arbitrary finite
A construct B < By, so that do(A, B) be small for m large. Next use (a) and Theorem
1.4.4.d).

10. Prove that there exists a finite generator for every T', a continuous positively
expansive map of a compact metric space (see the definition of positively expansive in

Ch.2, Sec.5).
11. Compute the entropy h(T') for Markov shifts.

12. Prove that the entropy h(7T) defined either as supremum of H(T, A) over fi-
nite partitions, or over countable partitions of finite entropy, or as sup H({|{™) over all
measurable partitions ¢ that are forward invariant (i.e. T 1(£) < &) is the same.

13. Let T be an endomorphism of the 2-dimensional torus IR?/Z?2, given by an integer
matrix of determinant larger than 1 and with eigenvalues A, Ay such that [A;| < 1 and
|)\2| > 1.

Let S be the endomorphism of IR?/Z? being the cartesian product of S1(z) = 2z (mod
1) on the circle IR/Z and of S3(y) = y + « (mod 1), the rotation by an irrational angle .
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Which of the maps T, S is exact? Which has a countable generator of finite entropy?

(Answer: T does not have the generator, but it is exact. The latter holds because for
each small parallelepiped P spanned by the eigendirections there exists n such that 7" (P)
covers the torus with multiplicity bounded by a constant not depending on P. See 777 S
is not exact, but it is ergodic and has a generator.)

14. Prove that if the definition of partition A e-independent of partition B is replaced
by > aca pen (AN B) — u(A)u(B)], then the definition of weakly Bernoulli is equivalent
to the old one. (Note that now the expression is symmetric with respect to A, B.)

Bibliographical notes:

For the Martingale Convergence Theorem see for example [Doob], [Billingsley, 1979],
[Petersen] or [Stroock]. Its standard proof goes via a mazimal function. We followed this
way in Proof of Shannon, McMillan, Breiman Theorem in Sec.5, L.1.5.1, where we relied
on [Petersen| and [Parry]. Remark 1.1.2 is taken from [Neveu,Ch.4.3], see for example
[Hoover| for a more advanced theory.

Standard proofs of Birkhoft’s Ergodic Theorem also use the idea of maximal function.
This concerns in particular the extremaly simple proof in Sec. 2, which has been taken
from [KH].

For the material of Sec.6 and related exercises see [Rohlin, 1949]. It is also written in
an elegant and a very concise way in [Cornfeld, Fomin, Sinai.

The consideration in Sec.7 leading to the extension of the compatible family firr , to fin
is known as Kolmogoroff Theorem on the existence of stochastic process. First, one verifies
o-additivity of a measure on an algebra, next uses the Extension Theorem 1.7.2. Our proof
of o-additivity of i on X via Lusin theorem is also a variant of Kolmogoroff’s proof. The
proofs of o-additivity on algebras depend unfortunately on topologocal concepts. Halmos
wrote [Halmos, p. 212]: ”this peculiar and somewhat undesirable circumstance appears to
be unavoidable” Indeed the o-additivity may be not true, see [Halmos, p.214]. Our example
of non-existence of natural extension, Exercise 8, is in the spirit of Halmos’ example. There
might be troubles even with extending a measure from cylinders in product of two measure
spaces, see [MR] for a counterexample. On the other hand product measures extend to
generated o-algebras without any additional assumptions [Halmos], [Billingsley, 1979].

For Th.1.8.1: the existence of a countable v such that AV B = « V B, see [Rohlin,
1949]; for the estimate that follows, see for example [Rohlin 1967] or [Parry]. The simple
proof of Th.1.8.6 via convergence in measure has been taken from [Rohlin 1967] and [Wa).
Proof of Th.1.8.8 (b) is taken from [Rohlin, 1967, sec.8.10-11 and 9.8].

For Th.1.9.6 see [Parry, L.10.5]; our proof is different. For the construction of generator
and 2-sided generator see again [Rohlin 1967],[Parry] or [CFS]. The same are references
to the theory of measurable invariant partitions: exhausting and extremal, and to Pinsker
partition, which we omitted because we do not need these notions further in the book,
but which are fundamental to understand deeper the measure-theoretic entropy theory.
Finally we encourage the reader to become acquainted with spectral theory in relation to
mixing properties [CFS].
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Th. 1.11.1 can be found in [Philipp, Stout]. See also [PUZ, Part 1.]. For (1.11.8) see
[Tbragimov, 1.1.2] or [Billingsley, 1968]. For Th.1.11.3 see [Leonov], [Ibragimov, 1.5.2] or
[PUZ, Part 1., L.1]. Theorem 1.11.5 can be found in [Gordin]

References.

[Billingsley, 1965] P. Billingsley: Ergodic Theory and Information. Wiley, New York,
1965.

[Billingsley, 1979] P. Billingsley: Probability and Mesure. Wiley, New York, 1979.

[CFS] I.P.Cornfeld, S.V.Fomin, Ya.G.Sinai: Ergodic Theory. Springer-Verlag, New
York, 1982.

[Carathéodory| C. Carathéodory: Vorlesungen tiber reelle Funktionen. Leipzig-Berlin,
1927.

[Doob] J.I. Doob: Stochastic Processes, Wiley, New York, 1953

[Gordin]

[Hoover] D.N. Hoover: Convergence in distribution ond Skorokhod Convergence for
the general theory of processes. Probab. Th. Rel. Fields 89 (1991), 239-259.

[Ibragimov| I.A. Ibragimov: Some limit theorems for stationary processes. Theor.
Prob. Appl. 7 (1962), 349-382.

[KH] A. Katok, B. Hasselblatt: Introduction to the Modern Theory of Dynamical
Systems. Cambridge University Press, 1995

[Kolmogoroff] A.N. Kolmogoroff: Gundbegriffe der Wahrscheinlichkeitsrechnung.
Berlin 1933.

[Lang] S. Lang: Algebra. Addison-Wesley, 1970.

[Leonov] V.P. Leonov: On the dispersion of time-dependent means of stationary
stochastic process. Theor. Prob. Appl. 6 (1961), 93-101.

[MR] E. Marczewski, C. Ryll-Nardzewski:

[Neveu| Jacques Neveu: Bases Mathématiques du Calcul des Probabilités. Masson
et Cie, Paris, 1964.

[Parry] W.Parry: Entropy and Generators in Ergodic Theory. W.A.Benjamin, Inc.,
New York, 1969.

[Petersen| K. Petersen: Ergodic Theory. Cambridge University Press, 1983.

[Philipp, Stout] W.Philipp, W.Stout: Almost sure invariance principles for partial
sums of weakly dependent random variables. Mem.AMS 161 (1975).

[PUZ] F. Przytycki, M. Urbaniski, A. Zdunik: Harmonic, Gibbs and Hausdorff mea-
sures for holomorphic maps. Part 1. Anals of Math. 130 (1989), 1-40. Part 2. Studia
Math. 97 (1991), 189-225.

[Rohlin, 1949] V.A.Rohlin: On the fundamental ideas of measure theory. Mat.Sb.
67.1 (1949), 107-150. Amer. Math. Soc. Trans. (1)10 (1962), 1-54.

[Rohlin, 1967] V.A.Rohlin: Lectures on the entropy theory of transformations with
invariant measure. Uspehi Mat. Nauk 22.5 (1967), 3-56. Russian Math. Surveys, 22.5
(1967), 1-52.

43



[Stroock] D.W.Stroock: Probability Theory, an Analytic View. Cambridge University
Press, 1993.

[Wa] - P. Walters: An Itroduction to Ergodic Theory. Springer-Verlag, New York,
1982.

44



CHAPTER 2
ERGODIC THEORY ON COMPACT METRIC SPACES

Dec.5, 1999
last revised Feb 24, 2002

In the previous Chapter a measure preserved by a measurable map T was given a priori.
Here a continuous mapping T of a topological compact space is given and we look for various
measures preserved by T. Given a real continuous function ¢ on X we try to maximize
the functional measure theoretical entropy +integral, i.e. h,(T) + [ ¢dp. Supremum
over all probability measures on the Borel g-algebra happens to be topological pressure,
similar to P in the prototype lemma on the finite space or P(«a) for ¢, on the Cantor set
discussed in Introduction. We discuss equilibria, namely measures on which supremum
is attained. This Chapter provides an introduction to the theory called thermodynamical
formalism, which will be the main technical tool in this book. We shall continue to
introduce thermodynamical formalism in more specific situations in Chapter 4.

§2.1 INVARIANT MEASURES FOR CONTINUOUS MAPPINGS

We recall in this Section basic facts from functional analysis to study the space of
measures and invariant measures. We recall Riesz representation theorem, weak* topology,
Schauder fixed point theorem. We recall also Krein-Milman theorem on extremal points
and its stronger form: Choquet representation theorem. This gives a variant of Ergodic
Decomposition Theorem from Chapter 1.

Let X be a topological space. The Borel o-algebra B in subsets of X is defined as
generated by open subsets of X. We call every probability measure on Borel g-algebra for
X, a Borel probability measure on X. We denote the set of all such measures by M (X).

Denote by C(X) the Banach space of real continuous functions on X with the supre-
mum norm: |¢| := sup,¢y |¢(r)|. Sometimes we shall use the notation ||¢||, introduced
in Ch.1.1 in L°°(u), though it is compatible only if p is positive on open sets.

Note that each Borel probability measure p on X induces a bounded linear functional
F,, on C(X) defined by the formula

(2.1.1) Fu(o) = [ din

One can extend the notion of measure and consider g-additive set function, another
name : signed measure. Just in definition of measure in Ch.1.1 consider y : F — [—o0, o)
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or g : F — (—o0,00] and keep the notation (X,F,u) from Ch.1. The set of signed
measures is a linear space. On the set of finite signed measures, namely with the range IR,
one can introduce the following total variation norm:

v(p) = SUPZ |1(A;))]

supremum taken over all finite sequences of disjoint sets in F.

It is easy to prove that every finite signed measure is bounded and that it has finite
total variation. It is also not difficult to prove the following

Theorem 2.1.1. (Hahn-Jordan decomposition). For every signed measure on a o-
algebra F there exists A, € F and two measures p* and g~ such that p=pt —p=, p~
is zero on all measurable subsets of A,, p~ is zero on all measurable subsets of X \ A,,.

Notice that v(p) = pt(X) + p~(X).)

A measure (or signed measure) is called regular, if for every A € F and ¢ > 0 there
exist F1, Fy € F such that clE; C A C intFy and for every C € F, C C E3 \ E; we have
u(C)] <e.

If X is a topological space, denote the space of all regular finite signed measures as
above with the total variation norm by rca(X). The abbreviation rca replaces regular
countably additive.

If F = B Borel g-algebra and X is metrizable, regularity holds for every finite signed
measure. It can be proved by Carathéodory’s outer measure argument, compare Proof of
Corollary 1.8.77".

Denote by C(X)* the space of all bounded linear functionals on C(X). This is called
the dual space. Bounded means here bounded on the unit ball in C'(X), which is equivalent
to continuous. The space C(X)* is equipped with the norm ||F|| = sup{F(¢) : ¢ €
C(X),|¢| < 1}, in which it is a Banach space.

There is a natural order in rca(X): vy < vy iff v9 — 11 is a measure.

Also in the space C'(X)* one can distinguish positive functionals, similarly to measures
in signed measures, as those which are non-negative on the set of functions CT(X) := {¢ €
C(X) : ¢(z) > 0 for every x € X}. This gives the order: F < G for F,G € C(X)* iff
G — F is positive.

Remark that F' € C(X)* is positive iff ||F|| = F(1), where 1 is the function on X
identically equal to 1. Also for every bounded linear operator F' : €(X) — C(X) which is
positive, namely F(CT (X)) Cc Ct(X), we have ||F|| = |F(1)].

Remark that (2.1.1) transforms measures to positive linear functionals.



The following fundamental theorem of F. Riesz says more about the transformation
p— F, in (2.1.1) (see [DS, pp. 373,380] for the history of this theorem):

Theorem 2.1.2 (Riesz representation theorem). If X is a compact Hausdorff
space, the transformation p — F), defined by (2.1.1) is an isometric isomorphism between
the Banach space C(X)* and rca(X). Furthermore this isomorphism preserves order.

In the sequel we shall often write p instead of F), and vice versa and p(¢) or u¢ instead

of F,,(¢) or [ ¢dp.

Notice that in Theorem 2.1.2 the hard part is the existence, i.e. that for every F' €
C(X)* there exists p € rca(X) such that F' = F,,. The uniqueness is just the following:

Lemma 2.1.3. If p and v are finite regular Borel signed measures on a compact
Hausdorff space X, such that [ ¢du = [ ¢dv for each ¢ € C(X), then p = v.

Proof. This is an exercise on the use the regularity of g and v. Let n:= p—v =n* —
n~ in Hahn-Jordan decomposition. Suppose that that g # v. Then * (or ™) is non-zero,
say nt(X) =nt(A,) =€ > 0, where A, is the set defined in Th.2.1.1. Let Ey be a closed
set and E5 an open set, such that Ey C A, C Ey and ™ (Ex\4,) < /3, n7 (A, \E1) < /3.
There exists ¢ € C(X) with values in [0, 1] identically 1 on Ey and 0 on X \ Es. Then
Jodn= [ ¢dn+ [g\a ddn+ [4 \g ddn>nT(E) /3> nT(Ay) —26/3>0. &

The space C'(X)* can be equipped with weak* topology. In the case X is metrizable,
i.e. if there exists a metric on X such that the topology induced by this metric is the
original topology on X, weak* topology is characterized by the property that a sequence
{F, :n=1,2,...} of functionals in C(X)* converges to a functional F' € C(X)* if and
only if

(2.1.2) lim F,(¢) = F(¢)

n—o0

for every function ¢ € C(X).

If we do not assume X is metrizable, weak* topology is defined as the smallest one
in which all elements of C'(X) are continuous on C(X)* (recall that ¢ € C(X) acts on
F e C(X)* by F(f)). One says weak* to distinguish this topology from the weak topology
where one considers all continuous functionals on C(X)*, not only those represented by
f € C(X). This discussion of topologies concerns of course every Banach space B and its
dual B*.

Using the bijection established by Riesz representation theorem we can move the
weak™* topology from C(X)* to rca(X) and restrict it to M (X). The topology on M (X)
obtained in this way is usually called weak* topology on the space of probability measures
(sometimes one omits * to simplify the language and notation but one still has in mind
weak®, unless stated otherwise). In view of (2.1.2) if X is metrizable this topology is
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characterized by the property that a sequence {u, : n = 1,2,...} of measures in M(X)
converges to a measure p € M(X) if and only if

(2.1.3) m g, () = p(¢)

n—oo

for every function ¢ € C(X). Such convergence of measures will be called weak* conver-
gence or weak convergence and can be also characterized as follows.

Theorem 2.1.4 Suppose that X is metrizable (we do not assume compactness here). A
sequence {p, : m = 1,2,...}, of Borel probability measures on X converges weakly to a
measure p if and only if lim,, o pn(A) = p(A) for every Borel set A such that u(9A) = 0.

Proof. Suppose that p, — p and u(0A) = 0. Then there exist sets Ey C intA, E5 D
clA such that u(Es \ E1) = ¢ is arbitrarily small. Indeed metrizability of X implies that
every open set, in particular intA, is union of a sequence of closed sets and every closed
set is an intersection of a sequence of open sets. For example intA = |J,- {z € X :
inf,ginga p(7, 2) > 1/n} for a metric p.

Next, there exist f,g € C(X) with range in the unit interval [0, 1] such that f is
identically 1 on Fy1, 0 on X \intA, g identically 1 on clA and 0 on X \ F5. Then p,(f) —

u(f)band pin(g) = p(g). As p(E1) < p(f) < plg) < p(E2) and pn(f) < pa(A) < palg)
we obtain

p(Er) < p(f) = lim pn(f) < liminf pu, (A)

n— 00

< limsup i, (A) < lim p,(g) = p(g) < p(Fs).
n—00 n—o0
As also p(E7) < p(A) < p(Es) we obtain, letting e — 0, lim, o0 pn(A) = p(A).

Proof in the opposite direction follows from the definition of integral: approximate
uniformly an arbitrary continuous function f by simple functions ) ;_; e;1 g, where F; =
{r € X :¢; < f(x) < €441}, for an increasing sequence €;,1 = 1, ..., k such that ;—¢;_1 < ¢
and p(f~1({&;})) = 0, with ¢ — 0. This is possible to find such numbers ¢; because only
countably many sets f~!(a) for a € IR can have non-zero measure. &

Example 2.1.5 The assumption u(0A) = 0 is substantial. Let X be the interval
[0,1]. Denote by 4, the Dirac measure concentrated at the point x, which is defined by
the following formula:

1, ifzeA
3z (A) = ]
0, ifzé¢gA
for all sets A € B .
Consider non-atomic probability measures pu,, supported respectively on the ball

B(z,1). The sequence p, converges weakly to d, but does not converge on {z}.

Of particular importance is the following



Theorem 2.1.6. The space M (X) is compact in weak* topology.

This theorem follows immediately from compactness in weak* topology of any subset of
C(X)* closed in weak* topology, which is bounded in the standard norm of the dual space
C(X)* (compare for example [DS, V.4.3|, where this result is proved for all spaces dual to
Banach spaces) and from the way we introduced the weak topology on M (X).

It turns out (see [DS, V.5.1]) that if X is compact metrizable, the space C(X)* with
weak™ topology is metrizable, hence in particular M (X) is metrizable.

Let now T : X — X be a continuous transformation of X. The mapping T is measurable
with respect to the Borel o-algebra. In the very begining of Chap.1.2 we have defined T-
invariant meaures p to satisfy the condition g = p o T~!. It means that Borel probability
T-invariant meaures are exactly fixed points of the transformation T, : M(X) — M(X)
defined by the formula T, (u) = po T~1. It easily follows from the definitions that T, is
continuous.

We denote the set of all T-invariant measures in M (X) by M(X,T). This notation
is consistent with the notation from Chapter 1.2. We omit here g-algebra F because it is
always Borel B.

Noting that [ ¢d(poT 1) = [ ¢oT dp for any p € M (X) and any integrable function ¢
(Prop. 1.2.0), it follows from Lemma 2.1.3 that a Borel probability measure p is T-invariant
if and only if for every continuous function ¢ : X — IR

(2.1.4) /qﬁdu: /¢0Tdu.

In order to look for fixed points for T} one can apply the following very general result
whose proof (and the definition of locally convex topological vector spaces, abbreviation:
LCTYVS) can be found for example in [DS] or [Edwards].

Theorem 2.1.7. (Schauder-Tychonoff theorem [DS, V.10.5) If K is a non-empty compact
convex subset of an LCTVS then any continuous transformation H : K — K has a fixed
point.

Assume from now on that X is compact, metrizable. To apply Schauder-
Tychonoff theorem consider the LCTVS C(X)* with weak* topology and K C C(X)*,
being the image of M (X) under the identification between measures and functionals, given
by Riesz representation theorem. Move also T, to K with the use of this identification.
Note that the resulting continuous linear operator, denote it also by 7T, conjugate to
¢ — ¢oT, restricted to K, is continuous also in the weak® topology. This is an easy fact
about conjugate operators. We obtain



Theorem 2.1.8. (Bogolyubov-Krylov theorem [Walters, 6.9.1]) There exists a Borel
probability measure g invariant under T

Thus, our M(X,T) is non-empty. It is also weak* compact, since it is closed as the
set, of fixed points for a continuous transformation.

As an immediate consequence of this theorem and Theorem 1.8.8 (Ergodic Decompo-
sition Theorem), we get the following:

Corollary 2.1.9. There exists a Borel ergodic probability measure p invariant under 7.

We shall use the notation M.(X,T) for the set of all ergodic measures in M(X,T).
Write also E(M(X,T)) for the set of extreme points in M (X, T).

Thus, in view of Theorem 1.2.5 and Corollary 2.1.9, we know that M (X,T) =
E(M(X,T)) # 0.

In fact Corollary 2.1.9 can be obtained in a more elementery way without using The-
orem 1.8.8. Namely it now immediately follows from Theorem 1.2.5 and the following

Theorem 2.1.10. (Krein-Milman theorem on extremal points [DS, V.8.4]) If K is a non-
empty compact convex subset of an LCTVS then the set £(K) of extreme points of K is
nonempty and moreover K is the closure of the convex hull of £(K).

Below we state Choquet representation theorem which is stronger than Krein-Milman
theorem. It corresponds to the Ergodic Decomposition Theorem (Th. 1.8.8). We formulate
it in C(X)* with weak* topology as in [Walters, p.153]. The reader can find a general
LCTVS version for example in [Edwards]. We rely here also on [Ruelle, Appendix A.5]
where the reader can find further references.

3

Theorem 2.1.11. Choquet representation theorem. Let K be a nonempty compact
convex set in M (X) with weak* topology. Then for every p € K there exists a "mass
distribution” i.e. measure o, € M(E(K)) such that

p= /mda“(m).

This integral converges in weak* topology which means that for every f € C(X)

(2.1.5) () = [ () dasy ).

Notice that we have had already the formula analogous to (2.1.5) in Theorem 2.1.6.

Notice that Krein-Milman theorem follows from Choquet representation theorem be-
cause one can weakly approximate «, by measures on £(K) with finite support (finite
linear combinations of Dirac measures).



Example. 2.1.12. For K = M(X) we have £(K) = {Dirac measures on X }. Then
a,{d; : © € A} = p(A) for every A € B defines a Choquet representation for every
p € M(X). (Exercise)

Choquet theorem asserts the existence of «, satisfying (2.1.5) but not uniqueness,
which is usually not true. A compact closed set K with the uniqueness of «,, satisfying
(2.1.5), for every p € M(K) is called symplex.

Theorem 2.1.13. K = M(X) or K = M(X,T) for every continuous 7' : X — X is
a symplex.

Proof in the case of K = M(X) is very easy, see Example 2.1.12. A proof for K =
M(X,T) is also not hard. The reader can look in [Ruelle, A.5.5]. Proof relies on the
fact that two different measures p1, o € E(M(X,T)) are singular (see Theorem 1.2.3).
Observe that ||p1 — po|| = 2.

One proves in fact that for every pi, po € M(X,T), |log, — au, || = |1 — p2ll.

Let us go back to Schauder-Tychonoff theorem (Th 2.1.7). We shall use it in this book
later, in Chapter 4 Sec.2, for maps different from T,. Just Bogolyubov-Krylov theorem
proved above with the help of Theorem 2.1.7, has a different more elementary proof due
to the fact that T, is affine. A general theorem on the existence of a fixed point for a

family of commuting continuous affine maps on K is called Markov-Kakutani theorem ,
[DS, V.10.6], [Walters, 6.9]).

2.1.14. An alternative proof of Theorem 2.1.8. Take an arbitrary v € M(X) and
consider the sequence

|
—

n

HUn = Nn(l/) = Tg(:“)

S|+
<.
I
o

In view of Theorem 2.1.4 it has a weakly convergent subsequence, say {pn, : k=1,2,...}.
Denote its limit by p. We shall show that p is T-invariant.

We have
1 nk—l ) 1 nk—l '
T (pin,,) :T*(ﬁ Y Tiw) = (ﬁ > Tt (w)
=0 =0

So for every ¢ € C(X) we have

1(9) — Tala(6))) = | i (jany (6) = T (tn, ) (D)) <

lim —[p(g) — T2 (1)(6)] < Tim — | = 0.

k—oo N, k—oc Ny,

This in view of Lemma 2.1.3 finishes the proof. &
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Remark. If in the above proof we consider v = §,, a Dirac measure, then Tﬂ(&f) =

Ori (z) and fin, (@) = %ZJ:_& #(TI(x)). If we have a priori p € M(X,T) then

is weakly convergent for p-a.e.x € X by Birkhoff ergodic theorem.

Remark. Recall that in Birkhof ergodic theorem (Chapter 1), for p € M(X,T)
for every integrable f one considers limy, o + Z?;ol ¢(T7(x)) for a.e. x. This "almost
every” depends on f. If X is compact, as in this Chapter, one can reverse the order of
quantificators for continuous functions.

Namely there exists A € B such that u(A) =1 and for every f € C(X) and = € A the

limit limp oo 2 Y770 £(T7(z)) exists.

Remark. We could take in 2.1.14 an arbitrary sequence v,, € M(X) and take p, :=
tin (V). This gives a general method of constructing measures in M (X, T'), see for example
Proof of Variational principle in Section 4. (This point of view is taken from [Walters]).

We end this Section with the following Lemma useful in the sequel.

Lemma 2.1.15. For every finite partition P of the space (X, B, 1) where X as above
is a metrizable compact space, B is Borel o-algebra and 4 € M(X,T),if > 4, p p(0A) = 0,
then the entropy H, (P) is a continuous function of v € M (X, T) at u. The entropy h, (T, P)
is upper semicontinuous at pu.

Proof. The continuity of H,(P) follows immediately from Theorem 2.1.4. This
applied to the partitions \/?:_11 T—*P gives the upper semicontinuity of h,(T,P) as the

limit of the decreasing sequence of continuous functions %Hl,(\/?:_l1 T~'P). See Lemma
1.4.3. L)



§2.2 TOPOLOGICAL PRESSURE AND TOPOLOGICAL ENTROPY

This section is of topological character and no measure is involved. We introduce and
examine here some basic topological invariants coming from thermodynamic formalism of
statistical physics.

Let U = {A;}ier and V = {B;}cs be two covers of the compact metric space X considered
in the previous section. We define the new cover U vV V putting

(221) MVV:{AZQB]7EIJEJ}
and we write
(2.2.2) U<V Vjej EIvEI Bj C A;

Let, as in the previous section, T' : X — X be a continuous transformation of X. Let
¢ : X — IR be a continuous function, frequently called it potential and let U be a finite,
open cover of X. For every integer n > 1 we set

U =UvT*U)v...vT- "Dy,
for every set Y C X
n—1
Spd(Y) = sup{z poTF(z):z €Y}
k=0
and for every n > 1
(2.2.3) Zn($,U) = 1%f{UZ€VeXp Snd(U)}

where V ranges over all covers of X contained (in the sense of inclusion) in Y™. The
quantity Z,(¢,U) is sometimes called the partition function.

Lemma 2.2.1. The limit P(¢,U) = lim,,_, o + log Z,, (¢, U) exists and moreover it is finite.
In fact P(¢,U) > —||9||oo-

Proof. Fix m,n > 1 and consider arbitrary covers V C U™, G C U™ of X. If U €V and
V eg then
Smand(UNT™™(V)) < Smo(U) + Snd(V')

and thus
eXp(Sm+nq§(U N T’m(V))) < exp Spd(U) exp S, (V)
Since UNT~™(V) e VVT~™(G) CU™ NV T~™(U"™) = U™F™, we therefore obtain

Znn($U) <Y ) exp(Smanf (UNT (V) <Y exp Smd(U) exp Su(V)

Uey veGg Uey vVeg
(2.2.4) = " expSmd(U) x > exp Snp(V)
Uey veg



Ranging now over all V and G as specified in definition (2.2.3) we get Zyin(d,U) <
o (0, U) - Zp(¢p,U) which implies that

10g Zi1n (¢, U) < log Zy (¢, U) +log Zy (¢, U).
Moreover, Z,(¢,U) > exp(—n||o||o). So, log Z,(p,U) > —n||¢||e and applying now
Lemma 1.4.3 finishes the proof. &

Notice that, although in the notation P(¢,U), the transformation T does not directly
appear, however this quantity depends obviously also on T. If we want to indicate this
dependence we write P(T, ¢,U) and similarly Z,,(T,¢,U) for Z,(¢,U). Given an open
cover V of X let

osc(¢, V) = ‘S}lér;}(sw{\aﬁ(x) — )|z, y € V}).

Lemma 2.2.2. If i/ and V are finite open covers of X such that & > V, then P(¢,U) >
P(¢7 V) o OSC(¢7 V)

Proof. Take U € U™. Then there exists V = i(U) € V™ such that U C V. For every
z,y € V we have |S,é(z) — Spo(y)| < osc(g, V)n and therefore

(2.2.5) Sud(U) = Sud(V) — osc(¢. V)n

Let now G C U™ be a cover of X and let G = {i(U) : U € Y"}. The family G is also an
open finite cover of X and G C V™. In view of (2.2.5) and (2.2.3) we get

ZeXpS ¢ ZGXPS ¢ —oschV > —osc¢VnZ (¢ V)

Therefore applying (2.2.3) again, we get Z,(¢,U) > exp(—osc(p, V)n)Z,(¢,V). Hence
P(¢,L{) > P(¢7 V) - OSC((/j)a v)

Definition 2.2.3. Consider now the family of all sequences {V, : n = 1,2,...} of open
finite covers of X such that

(2.2.6) lim diam(V,) = 0

—> 00

and define the topological pressure P(T, ¢) as the supremum of upper limits

lim sup P(¢, V,,)

77— 00

taken over all such sequences. Notice that by Lemma 2.2.1, P(T,¢) > —||®||co-

The following lemma gives us a simpler way to calculate topological pressure showing that
in fact in its definition we do not have to take the supremum.

Lemma 2.2.4. If {U, : n = 1,2,...} is a sequence of open finite covers of X such that
lim,, 00 diam(U,) = 0, then the limit lim,,_, . P(¢,U,,) exists and equals P(T, ¢).

10



Proof. Assume first that P(T, ¢) is finite and fix € > 0. By the definition of pressure and
uniform continuity of ¢ there exists W, an open cover of X, such that

g

(2.2.7) osc(p, W) < 5

and P(¢p, W) > P(T, ¢)

N ™

Fix now ¢ > 1 so large that for all n > ¢, diam(l,,) does not exceed a Lebesgue number
of the cover W. Take n > q. Then U,, = W and applying (2.2.7) and Lemma 2.2.2 we get

(2:2.8) P(6.Un) 2 P(6,W) = = > P(T\¢) — = = = = P(T.¢) —c.
Hence, letting ¢ — 0, liminf,,_, o P(¢,U,) > P(T,¢). This finishes the proof in the case
of finite pressure P(T, ¢). Notice also that actually the same proof goes through in the

infinite case. &

Since in the definition of numbers P(¢,U) no metric is involved, they do not depend on a
compatible metric under consideration. And since also the convergence to zero of diameters
of a sequence of subsets of X does not depend on a compatible metric, we come to the
conclusion that the topological pressure P(T, ¢) is independent of any compatible metric
(depends of course on topology).

The reader familiar with directed sets will notice easily that the family of all finite open
covers U of X equipped with the relation ”<” is a directed set and topological pressure
P(T, ¢) is the limit of the generalized sequence P(¢,U). However we can assure him/her
that this remark will not be used anywhere in this book.

If the funcion ¢ is identically zero, the pressure P(T, ¢) is usually called topological entropy
of the map T and is denoted by hyop (7).

In the rest of this section we establish basic elementary properties of pressure and provide
its more effective characterizations. Applying Lemma 2.2.2 we obtain

Corollary 2.2.5. If U is a finite, open cover of X, then P(T, ¢) > P(¢,U) — osc(p,U).

Lemma 2.2.6. P(T",S,¢) = nP(T,¢) for every n > 1. In particular hy,,(T") =
nhmp(T).

Proof. Put g = S,¢. Take U, a finite open cover of X. Let Y = UV T YU)V ...V
T~V (U). Since now we actually deal with two separate transformations T and T™,
we do not use the symbol U™ just to avoid possible misunderstandings. For any m > 1
consider an open set U € UVT~HU)V.. NT~ =Dy =UVTU) V... vT~m=D(Y).
Then for every x € U we have

mn—1

S poTHa) = 3 go T ()

and therefore S,,,¢(U) = S,,,g(U), where the symbol Sy, is considered with respect to
the map T". Hence Z,,,(T,¢,U) = Z,,(T", g,U) and this implies that P(T™, g,U) =

11



nP(T, ¢,U). Since given a sequence Uy, of open covers of X whose diameters converge to
zero, the diameters of the sequence of its refinements U, also converge to zero, applying
now Lemma, 2.2.4 finishes the proof. &

Lemma 2.2.7. If T : X — X and S : Y — Y are continuous mappings of compact metric
spaces and 7 : X — Y is a continuous surjection such that Sonw = m o T, then for every
continuous function ¢ : Y — IR we have P(S, ¢) < P(T, ¢ o).

Proof. For every finite, open cover U of Y we get
(2.2.9) P(S, 6,U) = P(T, dom,m 1)),

In view of Corollary 2.2.5 we have
(2.2.10)
P(T,¢om) > P(T,¢omn" (U)) - osc(do m, 7 (U)) = P(T, ¢ om, 7~ (U)) - osc(,U)

Let {U, : n=1,2,...}, be a sequence of open finite covers of Y whose diameters converge
to 0. Then also lim,_,. 0sc(¢,U,)) = 0 and therefore, using Lemma 2.2.4, (2.2.9) and
(2.2.10) we obtain

P(S,$) = lim P(S,¢,U,) = lim P(T,¢pon, 7~ (U,)) < P(T,pom)
n—00 n—r 00
The proof is finished. &
In the sequel we will need the following technical result.

Lemma 2.2.8. If I/ is a finite open cover of X then P(¢,U*) = P(¢,U) for every k > 1.

Proof. Fix k > 1 and let v = sup{|Sk_16(z)| : * € X}. Since Sgin_10(x) = Spd(z) +
Sk—16(T™(x)) for every n > 1 and x € X we get

Snd(x) =7 < Skpn16(x) < Sud(z) + 7

and therefore for every n > 1 and every U € yk+tn—1
Sndp(U) = < Spyn19(U) < Snop(U) +
Since (U*)™ = UF+"~1, these inequalities imply that
e Zn (9 U) < Znih 1 (9, U) < € Zn (6, UF).
Letting now n — oo, we get the result required. &
§2.2a PRESSURE ON COMPACT METRIC SPACES
Let p is a metric on X. For every n > 1 we define on X the new metric p,, by putting
pn(2,y) = max{p(T? (z),T7(y)) : j = 0,1,...,n — 1}

12



Given r > 0 and 2 € X by B,(z,r) we denote the open ball in the metric p,, centered
at x and of radius r. Let ¢ > 0 and let » > 1 be an integer. A set F' C X is said to be
(n, e)-spanning if and only if the family of balls {B, (z,¢) : € F} covers the space X.
A set S C X is said to be (n,¢e)-separated if and only if p,(z,y) > € for any pair z,y of
different points in S. The following fact is obvious.

Lemma 2.2.9. Every maximal in the sense of inclusion (n,e)-separated set forms an
(n, €)-spanning set.

We would like to emphasize here that the world maximal refering to separated sets will be
in this book always understood in the sense of inclusion and not in the sense of cardinality.
We finish this section with the following characterization of pressure.

Theorem 2.2.10. For every ¢ > 0 and every n > 1 let F},(¢) be a maximal (n, ¢)-separated
set in X. Then

. 1 N |
P(T, ¢) = gl_I}(l) IITILIi)Solcl)p - log %:( )exp Spé(z) = Eh_r)r(l) lgggolf - log ; )exp Spo(x)
xC by (e xClhy(e

Proof. Fix ¢ > 0 and let U(e) be a finite cover of X by open balls of radii €/2. For any
n > 1 consider U, a subcover of U(e)™ such that

Zn(p,U()) =) exp Spd(U),
Ueu

where Z,,(¢,U(e)) was defined by formula (2.2.3). For every z € F,(¢) let U(x) be an
element of U containing x. Since F, () is an (n,e)-separated set, we deduce that the
function z — U(x) is injective. Therefore

Zn($,U(E) =) expSpd(U) > > expSad(U(x)) > > expSnd(z).
ved

z€F, (e) zEFy (g)
Thus by Lemma 2.2.1
1
P(¢,U(e)) > limsup — log g exp S, ¢(x).
n—oc T
€ F, ()

Hence, letting ¢ — 0 and applying Corollary 2.2.4 we get

1
(2.2.11) P(T, ¢) > limsup lim sup — log Z exp SpP(x).
n

e—=0 n—0C 2EF, (c)

Let now V be an arbitrary finite open cover of X and let § > 0 be a Lebesgue number of
V. Take € < §/2. Since for any k = 0,1,...,n— 1 and for every = € F,, (&)

diam (T%(B,,(z,¢))) < 2e < 6,

13



we conclude that for some U (z) € V
T*(Bp(x,€)) C Ug(x)

Since the family {B,(z,¢) : © € F,(¢)} covers X (by Lemma 2.2.9), it implies that the
family {U(z) : z € F,,(¢)} C V™ also covers X, where U(z) = Ug(z) N T~ (Uy(x))N...N
T (U,_1(x)). Therefore

Zn(9, V) < Z exp Sn(U(z)) < exp(osc(e, V)n) Z exp Sp ¢ ()

z€F, () zCFy,(e)

Hence

|
P(¢,V) < osc(o, V) + lgggf - log 6; )exp Spd(z)

and consequently

PR |
P(¢,V) — osc(¢, V) < hgi}l{I}lf]lm inf — log Z exp Spo(x).

n—00
z€Fy (g)

Letting diam (V) — 0 and applying Corollary 2.2.4 we get

P(T,gb)gnminfliminfllog > exp Sng(x).

e—»0 mn—oo 1N
z€Fy, (e)

Combining this and (2.2.11) finishes the proof. &

Frequently the limits
1
li —1 E Sn
imsup — log exp Sp (1)

n—00 2€F, (e)

and |
hnrr_l){)]gf - log Z exp Sp ()
z€Fy, (e)

will be denoted respectively by P(T, ¢,e) and P(T, ¢,e). Actually these depend also on
the sequence {F,(¢) : n = 1,2,...} of maximal (n,e)-separated sets under consideration.
However it will be always clear from the context which such sequence is meant.

§2.3 VARIATIONAL PRINCIPLE
In this section we shall prove the following theorem, called variational principle, which has
a long history and which establishes an interesting relationship between measure-theoretic

dynamics and topological dynamics.
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Theorem 2.3.1. (Variational principle) If T : X — X is a continuous transformation of
a compact metric space X and ¢ : X — IR is a continuous function then

p(r.6) =swp {,(1) + [ dauz e arn)},

where M (T) denotes the set of all Borel probability T-invariant measures on X.

The proof of this theorem consists of two parts. In the Part I we show that h,(T)+ [ ¢ dp <
P(T, ¢) for every measure p € M(T) and the Part II is devoted to proving inequality
supth, (1) + [ddp:pe M(T)} > P(T,¢).

Proof of Part I. Let 4 € M(T). Fix ¢ > 0 and consider a finite partition U =
{A1,..., As} of X into Borel sets. One can find compact sets B; C A;,i=1,2,...,s, such
that for the partition V = {Bi,...,Bs, X \ (B1 U...U B,)} we have

H, (UV) <,

where the conditional entropy H,, (U/|V) has been defined in (1.3.3).
Therefore, as in the proof of Theorem 1.4.4 (d) we get for every n > 1

(2.3.1) H,(U") <H,(V") + ne.

Our first aim is to estimate from above the number H,, (V") + [ S,¢du. Putting b, =
> Beyn XD Sp¢(B), keeping notation k(z) = —xlogx and using concavity of the function
logarithm we obtain by Jensen inequality

H, 07 + [ Supdu < 3 u(B)(S.0(8) - loga()

Beyn

= Y w(B)log(e5 )/ u(B))

Beyn

(2.3.2) <log( 3 e%no(®)
Beyn

(compare the Lemma in Introduction).
Take now 0 < § < 1 inf{p(B;, Bj) : 1 <i+# j < s} > 0 so small that

(2.3.3) [p(x) — d(y)| <e

if p(z,y) < 0. Consider an arbitrary maximal (n,d)-separated set E,(4). Fix B € V".
Then, by Lemma 2.2.9, for every x € B there exists y € F,(d) such that x € B,(y,d),
whence |S,,¢(z) — Spé(y)| < en by (2.3.3). Therefore, using finiteness of the set E,,(J), we
see that there exists y(B) € E,(d) such that

(2.3.4) Snd(B) < Snd(y(B)) + en

15



and
BN B,(y(B),6) # 0.

The definitions of § and partition ¥V imply that for every z € X
#{BeV:BNB(z,0) £0} <2

Thus
H#{B V" : BN B,(2,4) #0} <2"

Therefore the function V" 5 B — y(B) € E,(d) is at most 2" to 1. Hence, using (2.3.4),

2" ) expSnd(y) > > exp(Sud(B) —en) =e " Y expSu¢(B)

yEE, (5) Beyn Beyn

Taking now the logarithms of both sides of this inequality, dividing them by n and applying
(2.3.2), we get

1 1
log 2 + - log( Z exp Sn¢(y)) —€+ o 1Og( Z exp Sn¢(B))
yEE, (8) Beyn

1 1
> ZH,(V") + = | S,bdu—e.

Y

So, by (2.3.1),

1

n

%log( > expSud(y)) >

H,U")+ /qﬁd,u — (26 + log 2).
yEEn(5)

In view of the definition of entropy h,(T,U) presented just after Lemma 1.4.2, by letting
n — 00, we get

DT $.0) > by (LU) + [ by~ (26 + log2).

Applying now Theorem 2.2.10 with 4 — 0 and next letting ¢ — 0 and taking supremum
over all Borel partitions U lead us to the following

P(T, ¢) > h,(T) —I—/d)du log 2.

And applying with every n > 1 this estimate to the transformation 7™ and the function
S, ¢ we obtain

PIT™S0) 2 (1) + [ Suddp ~ log?

or equivalently, by Lemma 2.2.6 and Theorem 1.4.6(a)
nP(T, ¢) > nh,(T) + n/d)du —log2
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Dividing both sides of this inequality by n and letting then n — oc, the proof of Part 1
follows. &

In the proof of part IT we will need the following two lemmas.

Lemma 2.3.2. If p is a Borel probability measure on X, then for every € > 0 there exists
a finite partition A such that diam(A) < e and p(90A) = 0 for every A € A.

Proof. Let F = {x1,...,2s} be an ¢/4-spanning set (that is with respect to the metric
p = po) of X. Since for every i € {1,...,s} the sets {z: p(z,z;) =1}, /4 <r <e/2, are
closed and mutually disjoint, only countably many of them can have positive measure p.
Hence, there exists €/4 <t < ¢/2 such that for every i € {1,...,s}

(2.3.5) u({r  plar,5) = 1)) = 0
Define inductively the sets A, Ao, ..., A putting A7 = {z : p(z,z;) < t} and for every
1=2,3,...,8
Ai = {J,‘ . p(xxz) S t}\(Al UA2 U ...UAi_l)
The family U = {A1,..., As} is a partition of X with diameter not exceeding . Using

(2.3.5) and noting that generally d(A \ B) C 0A U 0B, we conclude by induction that
p(0A;) =0 forevery i =1,2,...,5. &

Proof of Part II. Fix ¢ > 0 and let E,(¢), n = 1,2,..., be a sequence of maximal
(n, e)-separated set in X. For every n > 1 define measures

- o 0z exp S, d(x e
Mn:ZEEn() (> mn:_ZNnOT_k

where §, denotes the Dirac measure concentrated at the point = (see (2.1.2)). Let {n;,i =
1,2,...} be an increasing sequence such that m,,, converges weakly, say to m and

.1 . 1
(2.3.9) lim — log Z exp Spé(z) = ]{r{’ri)s;ip - log Z exp Spé(z)
2EE,, (&) z€E, ()

Clearly m € M(T). In view of Lemma 2.3.2 there exists a finite partition v such that
diam(y) < e and pu(0G) = 0 for every G € 7. For any n > 1 put g, = ZmeEn(e) exp Spo(x).
Since #(G N E,(e)) <1 for every G € 4", we obtain

H,, (4") + / Subdiin = 3 (~10g jn(z) + Su(a)) pin (1)

z€E, ()

oy I (5 0 (SR

e 9
(2.3.10) =gt Z exp Snd(7) (Spd(z) — Snd(z) + log g,) = log gy,
z€E, (&)
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Fix now M € IN and n > 2M. For j =0,1,..., M — 1 let s(j) = E(
denotes the integer part of x. Note that

7) — 1, where E(x)

5(4)
\/ T EMADAM — iy oy T COMEN-M1) — iy oy 7 (OFOMA-1)

k=0

and
(s(+1I)M+j-1<n—j+j—-1=n-1

Therefore, setting R; = {0,1,...,57 —1,(s(j) + )M + j,...,n — 1}, we can write

s(7)
,yn:\/T (BMAJ) A M \/T 5.

k=0 iI€ER;
Hence
5(7)
H,un('yn) SZH“ (T (kM—I—J) \/ T 7
k=0 i€ER;
5(J)
<Y H, op-wain (VM) +log(#(\ T7))
k=0 i€ER;
Summing now over all j = 0,1,..., M — 1 we then get
M—1s(j) M-1
() <SS H, o naen (M) + Y log(#9#)
§j=0 k=0 §=0
n—1
< ZHM or—1 (VM) + 2M? log #v < nH1 et (M) + 2M % log #v
-0 1=0 Hn

And applying (2.3.10) we obtain
Miog( Y expSu(s) < b, (M) + M [ 8,6 dpo + 2007 log
zEE, () )
Dividing both sides of this inequality by Mn, we get
1 1 M
—1 S, < —H,,, (v dmy, +2—1 :
~ log( e;( )eXp B(x)) < - Hm, (7 )+/¢ 1 + 2 log #7

Since 0T 1(A) C T 1(DA) for every set A| C X, the measure m of the boundaries of
the partition v™ is equal to 0. Letting therefore n — oc along the subsequence {n;} we
conclude from this inequality, (2.3.7) and Lemma 2.1.15 that

P(T,,2) < = Hau (/¢dm.
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Now letting M — oo we get,

Tﬁﬂ¢¢><m4ﬂw%%/¢Mn<mm{hAT%%/¢muueAﬂTﬁ-
Applying finally Theorem 2.2.10 and letting £ \, 0, we get the desired inequality. &

Corollary 2.3.4. Under assumptions of Theorem 2.3.1

P(T. ) = sup{h,(T) + [ ddus p € M.(T)),

where M, (T') denotes the set of all Borel ergodic probability T-invariant measures on X.
Proof. Let p € M(T) and let {u, : © € X} be the ergodic decomposition of pu. Then
h, = [h,, du(z) and [¢dp= [([ ¢ dus)dp(z). Therefore

m+/@M:/@m+/MM>W@

and consequently there exists € X such that by, + [ ¢dp, > h, + [ ¢ dp which finishes
the proof. &

Corollary 2.3.5. If T : X — X is a continuous transformation of a compact metric space
X, ¢ : X = IR is a continuous function and Y is a forward invariant subset of X (i.e.
T(Y) CY), then P(T|y,dly) < P(T, ¢).

Proof. The proof follows immediatly from Theorem 2.3.1 by the remark that each T'|y-
invariant measure on Y can be treated as a measure on X and is T-invariant. &

§2.4 EQUILIBRIUM STATES AND EXPANSIVE MAPS

We keep in this section the notation of the previous one. A measure p € M(T) is called an
equilibrium state for the transformation T and function ¢ if P(T, ¢) = h,,(T) + [ ¢ dp. The
set of all those measures will be denoted by E(¢). In the case ¢ = 0 the equilibrium states
are also called as maximal measures. Similarly (in fact even easier) as Corollary 2.3.5 one
can prove the following.

Proposition 2.4.1 If E(¢) # () then E(¢) contains ergodic measures.

As the following example shows there exist transformations and functions which admit no
equilibrium states.

Example 2.4.2. Let {7}, : X,, — X,}n,>1 be a sequence of continuous mappings of
compact metric spaces X,, such that for every n > 1

(2.4.1) hiop(Thn) < hiop(Th+1) and sup hyep(7),) < 00
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The disjoint union @2 ;X,, of the spaces X,, is a locally compact space and let X =
{wludse ; X, be its one-point (Alexandroff) compactification. Define the map T : X — X
by T|x, = T, and T(w) = w. The reader will check easily that T is continuous. Suppose
that p is an ergodic maximal measure for 7. Then u(X,,) = 1 for some n > 1 and therefore
heop(T") = h,(Th) < hiep(T},) which contradicts formula (2.4.1) and Corollary 2.3.5. In
view of Proposition 2.4.1 this shows that T has no maximal measure.

A more difficult problem is to find a transitive and smooth example (see for instance [Mi,

1973]).

The remaining part of this section is devoted to provide sufficient conditions for the exis-
tence of equilibrium states and we start with the following simple general criterion which
will be the base to obtain all others.

Proposition 2.4.3. If the function M(T") > p — h,(T) is upper semi-continuous then
each continuous function ¢ : X — IR has an equilibrium state.

Proof. By the definition of weak topology the function M(T) > u — [ ¢ dp is continuous.
Therefore the lemma follows from the assumption, the sequential compactness of the space
M(T) and Theorem 2.3.1 (variational principle). &

As an immediate consequence of this lemma and Theorem 2.3.1 we obtain the following.

Corollary 2.4.4. If h,(T) = 0 then each continuous function on X has an equilibrium
state.

A continuous transformation T : X — X of a compact metric space X equipped with a
metric p is said to be (positively) expansive if and only if

30> 0[Vn = 0p(T"(z), T"(y)) <0l = ==y

and the number § which has appeared in this definition is called an expansive constant.

Although at the end of this section we will introduce a related but different notion
of expansiveness of homeomorphisms we will frequently omit the word ”positively”. Note
that the property of being expansive does not depend on the choice of a metric compatible
with the topology. From now on in this chapter the transformation 7" will be assumed
to be positively expansive, unless stated otherwise. The following lemma is an immediate
consequence of expansiveness.

Lemma 2.4.5. If A is a finite Borel partition of X with diameter not exceeding an
expansive constant then A is a generator for every Borel probability T-measure p on X.

The main result concerning expansive maps is the following.
Theorem 2.4.6. If T : X — X is positively expansive then the function M(T) >
p — h,,(T) is upper semi-continuous and consequently (by Lemma 2.4.3) each continuous

function on X has an equilibrium state.
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Proof. Let 4 > 0 be an expansive constant of T and let € M(T). By Lemma 2.3.2
there exists a finite partition A of X such that diam(A) < 6 and p(90A) = 0 for every
A € A. Thus in view of Lemma 2.4.5 and Theorem 1.8.7(b) h,(T) = h, (T, A) whence by
the definition of the entropy h, (7, .A) (cf. Lemma 1.4.2) there exists m > 1 such that

(2.4.2) %HH“(AW') < h(T) +

N ™

Consider now a sequence {y, : n = 1,2,...} of invariant measures converging weakly to
i. By the definition of the entropy of partition, by Theorem 2.1.15 and by the choice of
partition A, lim,, . H,, (A™) = H,(A™). Therefore there exists ng > 1 such that for
every n > ng )

mal Hy, (A™) — H (A™)] <

DN | ™

Combining this and 2.4.2, and using Lemma 1.4.3 we get for every n > ng

1 m 1
hﬂn(T) = hun(TaA> < mHun(A ) < 1

Hy(A™) + 5 <hy(T) +¢

DO | ™

The proof is finished. o
Below we prove three additional interesting results about expansive maps.

Lemma 2.4.7. If U is a finite open cover of X with diameter not exceeding an expansive
constant of an expansive map T : X — X, then lim,, ., diam(U™) = 0.

Proof. Let U = {U;,Us,...,Us}. By expansiveness for every sequence {a, : n =
0,1,2,...} of elements of the set {1,2,...,s}

#((1T7"(T,,) <1
n=0

and hence

lim diam( ()7 "(U,,)) =0

k— o0

Therefore, given a fixed € > 0 there exists a minimal finite k¥ = k({a,}) such that

k
diam ( ﬂ T="(U,,)) <c¢
n=0
Note now that the function {1,2,...,s}® 3 {a,} — k({a,}) is continuous, even more, it
is locally constant. Thus, by compactness of the space {1,2,..., S}N, it is bounded, say

by t, and therefore
diam(U") < ¢
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for every n > t. The proof is finished. &
Combining now Lemma 2.2.4, Lemma 2.4.7 and Lemma 2.2.8 we get the following.

Proposition 2.4.8. If U is a finite open cover of X with diameter not exceeding an
expansive constant then P(T, ¢) = P(T, ¢,U).

As the last result of this section we shall prove the following.
Proposition 2.4.9. There exists a constant n > 0 such that VO <e <n In(e) > 1

plz.y) > e = pue)y(e,y) > 1

Proof. Let U = {Uy,Us,...,Us} be a finite open cover of X with diameter not exceeding
an expansive constant 6 and let n be a Lebesgue number of /. Fix ¢ > 0. In view of
Lemma 2.4.7 there exists an n(e) > 1 such that

(2.4.3) diam(@U™)) < e.
Let p(z,y) > € and suppose that p,)(z,y) < 7. Then

V(0 <j<n(e)—1)3(U; €U) TV (2),T(y) € U,

25
and therefore

n(e)—1
x,y € ﬂ TI(U;,) € ue)
§=0

Hence diam(U™(®)) > p(x,y) > e which contradicts (2.4.3). The proof is finished. &

As we mentioned at the begining of this section there is a notion related to positive ex-
pansiveness which makes sense only for homeomorphisms. Namely we say that a homeo-
morphism T : X — X is expansive if and only if

A>0VneZ p(T"(z), T"(y)) < 0] = z =1y

We will not explore this notion in our book we only want to emphasize that for expansive
homeomorphisms analogous results (with obvious modifications) can be proved (in the
same way) as for positively expansive mappings. Of course each positively expansive
homeomorphism is expansive.

§2.5 TOPOLOGICAL PRESSURE AS A FUNCTION ON THE BANACH SPACE
OF CONTINUOUS FUNCTIONS. THE ISSUE OF UNIQUENESS OF EQUILIBRIUM
STATES
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Let T : X — X be a continuous mapping of a compact topological space X. We shall
discuss here the topological pressure function P : C(X) — IR, P(¢) = P(T,¢). Assume
that the topological entropy is finite, hi,,(7') < co. Hence the pressure P is also finite, for
example

(2.5.1) P(¢) < hiop(T) + ||l co-

This estimate follows directly from the definitions, see Section 2. It is also an immediate
consequence of Theorem 2.3.1 (Variational Principle) in case X is metrizable.

Let us start with the following easy

Theorem 2.5.1. The pressure function P is Lipschitz continuous with the Lipschitz
constant 1.

Proof. Let ¢ € C(X). Recall from Section 2.2 that in the definition of pressure we have
considered the following partition function

Zn(,U) = f{ ) exp Sug(U)

Uey

where V ranges over all covers of X contained in Y™. Now if also p € C(X), then we
obtain for every open cover U and positive integer n

Zn (i, U)e NO=Vllem < 7 (§,U) < Zn (3p,U)ellP=Vloem

Taking limits if n 7 oo we get P(¢) — || — ¥]|oc < P(¢p) < P(¢) + || — ©||0o, hence
[P() = P(9)] < |[$ — l|oc-

Theorem 2.5.2. If X is metrizable, then the topological pressure function P : C(X) — IR
is convex.

we provide two different proofs of this important theorem. One elementary, the second
relying on the variational principle (Theorem 2.3.1).

Proof 1. By Hoélder inequality applied with the exponents ¢ = 1/a,b = 1/(1 — «), so
that 1/a+ 1/b=a+ 1 — a =1 we obtain for an arbitrary finite set £ C X

110%2 S (@) +Sn(1—a)p) _ 10gz a8 () (1~ )Sn () <

1 « —Q 1 1
n IOg(Z €Sn(¢)) (Z eS"(’p))l < a- log(z es"(d’)) + (1 - a)ﬁ log(z eS"(w)).

E E E E

To conclude the proof use the definition of pressure via F = F,,(¢) that is (n, £)-separated
sets, Theorem 2.2.10.
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Proof 2. It is sufficient to prove that the function

A

P:= sup L,¢="h,(T)+ po
nEM(X,T)

is convex, because by variational principle P(¢) = P(¢).

We need to prove that the set,

A:={(¢,y) € C(X) x R} : y > P(¢))

is convex. Observe however that that by its definition A = (N, carx ) L, where by Lf

we denote the upper half space {(f,y) : y > L,¢}. All the halfspaces L: are convex, hence
A is convex as their intersection. &

Remark 2.5.3. We can write L,¢ = pu¢— (—h,(T)). The function P(¢) = SUpen(r) Lud
defined on the space C'(X) is called the Legendre-Fenchel transform of the convex function
p — —h,(T) on the convex set M(T). We shall abbreviate the name Legendre-Fenchel
transform to LF-transform. Observe that this transform generalizes the standard Legendre
transformation of a strictly convex function h on a finite dimensional linear space, say IR",
Y SUpPyemrn < T,y > —h(x), where < z,y > is the scalar (inner) product of = and y.

Note that —h,(T") is not strictly convex (unless M(X,T) is a one element space)
because it is affine, see Th.1.4.7.

Proof 2 just repeats the standard proof that Legendre transform is convex.

In the sequel we will need so called geometric form of the Hahn-Banach theorem (see
[Bourbaki, Th.1, Ch.2.5] or Ch. 1.7 of [Edwards, 1995].

Theorem 2.5.4 (Hahn-Banach). Let A be an open convex non-empty subset of
a real topological vector space V and let M be a non-empty affine subset of V' (linear
subspace moved by a vector) which does not meet A. Then there exists a codimension 1
closed affine subset H which contains M and does not meet A.

Suppose now that P : V — IR is an arbitrary convex continuous function on a real
topological vector space V. We call a continuous linear functional F': V — IR tangent to
PatzeVif

(2.5.2) F(y) < P(z +y) — P(x)

for every y € V. We denote the set of all such functionals by V' p. Sometimes the term
supporting functional is being used in the literature.

Applying Theorem 2.5.4 we easily prove that for every x the set V', is non-empty.
Indeed, we can consider the open convex set A = {(¢,y) € V x R} : y > P(z)} in the
vector space V x IR with the product topology and the one-point set M = {z, P(x)}, and
define a supporting functional we look for, as having the graph H — {z, P(z)} in V x IR.
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We would also like to bring reader’s attention to the following another general fact from
functional analysis.

Theorem 2.5.5. Let V be a Banach space and P : V — IR be a convex continuous
function. Then for every x € V the function P is differentiable at x in every direction
(Gateaux differentiable), or in a dense in the weak topology set of directions, if and only
if V' p is a singleton.

Proof. Suppose first that P is not differentiable at some point x and direction y. Choose
an arbitrary F' € V* 5. Non-differentiability in the direction y € V implies that there exist

"r7
e > 0 and a sequence {t,,},>1 converging to 0 such that

(2.5.3) Pz +tyy) — P(x) > t,F(y) + €l|tn].

In fact we can assume that all £,,, n > 1, are positive by passing to a subsequence and
replacing y by —y if necessary. We shall prove that (2.5.3) implies the existence of F' €

Ve p \{F}. Indeed, take F, € ity p- Lhen, by (2.5.1), we have
(2.5.4) P(z) — P(z +tyy) > Fpo(—tny)

The inequalities (2.5.3) and (2.5.4) give

tnF(y) + etn <t Fo(y).
Hence
(2.5.5) (F, — F)(y) > e.

In the case when P is Lipschitz continuous, and this is the case of topological pressure see
(Theorem 2.5.1) which we are mostly interested in, all F},’s, n > 1, are uniformly bounded.
Indeed, let L be a Lipschitz constant of P. Then for every z € V and every n > 1

F.(z) < Plx+tyy+2) — Plx+tyy) < L||2||

So, ||Fn|| < L for every n > 1. Thus, there exists F = limy_o0 By, a weak*-limit of a
sequence {F,},>1 (subsequence of the previous sequence). By (2.5.5) (F — F)(y) > e.
Hence F' # F. Since

P(x+tpy+v)— Plx+tpy) > Fy(v) forallnand v eV

passing with n to oo and using continuity of P, we conclude that Fe Ve p

If we do not assume that P is Lipschitz continuous, we restrict F,, to the 1-dimensional
space spanned by y i.e. we consider Fj,|g,. In view of (2.5.5) for every n > 1 there exists
0 < s, <1 such that F},(s,y) — F(s,y) = €. Passing to a subsequence, we may assume
that lim, s Sp, = s for some s € [0, 1]. Define

fn = SnFn‘IRy + (1 * Sn)F‘Ry
Then fn(y) = F(y) = € hence [[fn|| = [|F|| = ;77 for every n > 1. Thus the sequence

n tn>1 is uniformly bounded and, consequently, it has a weak-* limit f . IRy — IR. Now
> y y Y

we use Theorem 2.5.4 (Hahn-Banach) for the affine set M being the graph of f translated
by (z, P(z)) in V x IR. for every o € IR and every n > 1. We extend M to H and find

the linear functional F' € V; p whose graph is H. Since F(y)—F(y) = f(y) — F(y) = e,
F+F.
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Suppose now that Proposition 2.5.4, V', contains at least two distinct linear functionals,
say F and F. So, F(y) — F(y) > 0 for some y € V. Suppose on the contrary that P

is differentiable in every direction at the point x. In particular P is differentiable in the
direction y. Hence

P(x +ty) — P(x) P(x — ty) — P(x)

lim = lim
t—0 t t—0 —t
and consequently
P(x+t P(x —ty) — 2P(x
1o P+ ty) + Pla — ty) =) _,

t—0 t

On the other hand, for every ¢t > 0, we have P(zx + ty) — P(z) > F(t) = tF'(y) and
P(x —ty) — P(x) > F(—ty) = —tF(y), hence

P P(z — ty) — 2P
Fom inf (v +ty) + P(x —ty) (z)

> —F :
m i1 ; > F(y) = F(y) >0

, a contradiction.

A A

In fact F'(y) — F'(y) = ¢ > 0 implies F'(y') — F'(y') > ¢/2 > 0 for all y’ in the neighbourhood
of y in the weak topology defined just by {y' : (F — F)(y — y') < ¢/2}. Hence P is not
differentiable in a weak™-open set of directions. &

Let us go back now to our special situation:

Proposition 2.5.6. If 4 € M(T) is an equilibrium state for ¢ € C(X), then the linear
functional represented by u is tangent to P at ¢.

Proof. We have

and for every ¢ € C(X)
(o + ) +hy < P(d+ ).

Subtracting the sides of the equality from the respective sides of the latter inequality we
obtain pu(1) < P(¢ + 1) — P(¢) which is just the inequality defining tangent functionals.
&

As an immediate consequence of Proposition 2.5.6. and Theorem 2.5.5 we get the following.
Corollary 2.5.7. If the pressure function P is differentiable at ¢ in every direction, or at
least in a dense in the weak topology set of directions, then there is at most one equilibrium
state for ¢.

Due to this Corollary, in future (see Chapter 4) to prove uniqueness it will be sufficient to

prove differentiability of the pressure function in a weak*-dense set of directions.
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The next part of this section will be devoted to kind of reversing Proposition 2.5.6 and
Corollary 2.5.7. and better understanding of the mutual Legendre-Fenchel transforms —h
and P. This is a beautiful topic but will not have applications in the rest of this book. Let
us start with a characterization of T invariant measures in the space of all signed measures
C(X)* provided by the pressure function P.

Theorem 2.5.8. For every I' € C(X)* the following three conditions are equivalent:
(i) For every ¢ € C(X) it holds F(¢) < P(¢).
(ii) There exists C' € IR such that for every ¢ € C(X) it holds F(¢) < P(¢) + C.
(iii) F is represented by a probability invariant measure u € M (X, T).

Proof. (iii) = (i) follows immediately from the variational principle:

F(9) < F(9) + hu(T) < P(¢) for every ¢ € C(X).

(i) = (ii) is obvious. Let us prove that (ii) = (iii). Take an arbitrary positive ¢ € C(X),
i.e. such that for every x € X, ¢(z) > 0. For every real ¢ < 0 we have

F(t¢) < P(t¢) + C

Since t¢ < 0 it immediately follows from (2.5.1) that P(t¢) < P(0). Hence F(t¢) <
P(0)+ C. So

—(C +P(0
HF(@) = ~(C + PO) hence F(g) > — )
Letting ¢ — —oo we obtain F'(¢) > 0. We estimate the value of F' on constant functions

t. For every ¢t > 0 we have F(t) < P(t) + C < P(0)+ ¢+ C. Hence F(1) <1+ w.

Similarly F(—t) < P(—t) + C = P(0) — t + C and therefore F(1) > 1 — M. Letting
t — oo we thus obtain F(1) = 1. Therefore by Theorem 2.1.1 (Riesz Representation
Theorem) the functional F' is represented by a probability measure p € M(X). Let us
finally prove that p is T-invariant. For every ¢ € C'(X) and every ¢t € IR we have by (i)

FH(¢oT — $)) < P(t(¢oT - ¢)) +C

It immediately follows from Theorem 2.3.1 (Variational principle) that P(t(¢p o T — ¢)) =
P(0). Hence

[F(¢oT) — F($)| <

P(0)+C
—

Thus, letting |t| — oo, we obtain F(¢poT) = F(¢), i.e T-invariance of u. &

We shall prove the following.

Corollary 2.5.9. Every functional F' tangent to P at ¢ € C(X), i.e. F'€ C(X)} p, is
represented by a probability T-invariant measure p € M (X, T).
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Proof. Using Theorem 2.5.1, we get for every 1) € C'(X) that

F() < P(p+4) — P(¢) < P(¢) + |[P(¢ + ) — P()| = P(¢) < P(¢) + [|9]|« — P(9).

So condition (ii) of Theorem 2.5.8 holds hence (iii) holds, F' is represented by p € M (X, T).
[ )

We can now almost reverse Proposition 2.5.6. Namely being a functional tangent to P at
¢ implies being an "almost” equilibrium state for ¢.

Theorem 2.5.10. F € C(X);S,P if and only if F, in other words the measure y = pp €
M (X, T) representing F, is a weak*-limit of measures u,, € M (X, T) such that

pind +hy, (T) = P(9).

Proof. In one way the proof is simple. Assume that p = lim,_, p, in the weak*
topology and pn,¢+h, (1) — P(¢). We proceed as in Proof of Theorem 2.5.6. In view of
Theorem 2.3.1 (Variational principle) p, (v + ¢) + b, (T') < P(¢ + ¢) which means that

pn () < P(op+1) — (pnd+hy,, (T)). Thus, letting n — oo, we get pu(¢) < P(p+9) —P(e).
This means that p € C(X)} p.

Now, let us prove our Theorem in the other direction. Recall again that the function p +—
h,(T) on M(T) is affine, hence concave. Denote h,, = limsup,_,, h,(T), with » — p in
weak*-topology. It is also concave and upper semicontinuous on M (T) := M (X, T). In the
sequel we shall prefer to consider the function p +— —h,(T) which is lower semicontinuous
and convex.

Step 1. For every ¥ € C(X) we have

) — GSEI()T)(W — —h,(T)) < pd) = (9 — b, (T)) = ~h,(T)).

We obtained here —h, (7)) rather than merely —h, (T)) by taking every sequence ji,, — u
writing the right hand side of the above inequality : pd — (p,9 — —h,, ¥(T)) and letting
n — 00. SO

sup (,m9 — sup (v — —h,,(T))) < —h,(T).
9EC(X) veM(T)

This says that the LF-transform of the LF-transform of —h,,(T') is less or equal to —h,, (7).

Let us prove now the opposite inequality. We refer to the following corollary of the geo-
metric form of Hahn-Banach Theorem [Bourbaki, Ch.IL1.§5. Prop.5]:

Let M be a closed convex set in a locally convex vector space V. Then every lower semi-
continuous convex function f defined in M is supremum of a family of functions bounded
from above by f, which are restrictions to M of continuous affine functions in V.
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We shall apply this theorem to C*(X) endowed with weak*-topology and use the fact that
every linear functional continuous in this topology is represented by an element belonging
to C(X). (This is a general fact concerning pairs of vector spaces in duality, [Bourbaki,
Ch.IL.§6. Prop.3.].). Thus, for every € > 0 there exists 1p € C(X) such that for every
v e M(T)

(2.5.6) (v = )W) <, (T) — &, +e

So

W sup (v hy(T)) > Bu(T) <.
veM(T)

Letting € — 0 we obtain

sup (,m? — sup (vd— —h,,(T))) > —h,(T).
9eC(X) veM(T)

Thus we proved the standard fact that the LF-transform of the LF-transform of —h,,(T') is
back —h, (7). Remind now that by variational principle the LF-transform of —h, (T), i.e.
the supremum sup,, ¢ pr () (¥9 — —h, (T)) is pressure P(). We conclude that

(2.5.7) h,(T) = %ingX){P(ﬁ) — i}

Step 2. Fix p € C(X)} p. From pyp < P(¢ +¢) — P(¢) we obtain

P(¢+¢) —m(¢+¢) = P(p) —pug forall ¢ € C(X)

or

(2.5.8) inf{P() b} > P(g) - o

PeC(X

(This expresses the fact that the supremum ( — infimum above) in the definition of the
LF-transform of P at F is attained at ¢ at which F' is tangent to P.) By (2.5.7) and
(2.5.8) we obtain

(2.5.9) h, > P(¢) — pg

so by the definition of h, there exists a sequence of measures y, € M(T) such that
limy, 00 phr, = g and lim,,_, o hy,, > P(¢) — p¢. The proof is finished. &

Remark. In Step 1 of the above proof it did not matter whether we considered p tangent to
P or an arbitrary € M(T). In Step 2, where we started with all 4 € M(T'), considering
e > 0 in (2.5.6) is necessary; without € > 0 this formula may happen to be false, see
Example 2.5.13. For 4 € C'(X)} p we obtain from (2.5.9) and inequality h, (T') < P(¢)—v¢
for every v € M(T) that h,(T) — h,(T) < (u — v)$ which is just (2.5.6) with ¢ = 0. So a
posteriori we know that € in (2.5.6) can be omitted.
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The meaning of this, is that if p is tangent to P at ¢ then ¢ is tangent to —h, the LF-
transform of P, at pu.

Conversely, if 1) satisfies (2.5.6) with ¢ = 0 i.e. 1 is tangent to —h at p € M(T) then in
the same way as in Step 2. we can prove the inequality analogous to (2.5.8), namely that

sup v — —h,(T) = P(¢) < pup — —h, (T).
veM(T)

Hence p is tangent to P at 1 (by the 7if” part of Theorem 2.5.10).

Assume now the upper semicontinuity of the entropy h,(7') as a function of 4. Then we
obtain.

Corollary 2.5.11. If the entropy is upper semicontinuous, then a functional F' € C'(X)*
is tangent to P at ¢ € C(X) if and only if it is represented by a measure which is an
equilibrium state for ¢.

Proof. This is just the previous Theorem with the observation that lim,_,. h, (T) <
h,,(T). (Remark that this uses only the upper semicontinuity of the entropy at the
measure fi.) &

Recall that already the upper semicontinuity above implies the existence of at least one
equilibrium state (Lemma 2.4.3)

Now we can complete Corollary 2.5.7.

Corollary 2.5.12. If the entropy is upper semicontinuous then the pressure function P
is differentiable at ¢ € C(X) in every direction, or in a set of directions dense in the weak
topology, if and only if there is at most one equilibrium state for ¢.

Proof. This Corollary follows directly from Corollary 2.5.11 and Theorem 2.5.5. &

After discussing functionals tangent to P and proving that they coincide with the set of
equilibrium states for maps for which the entropy is upper semicontinuous as the function
on M(T) the question arises of whether all measures in M (T') are equilibrium states of
some continuous functions. The answer given below is no.

Example 2.5.13. We shall construct a measure m € M(T) which is not an equilibrium
state for any ¢ € C(X). Here X is the one sided shift space ¥.? with the left side shift map
o. Since this map is obviously expansive, it follows from Theorem 2.4.6 that the entropy
function is upper semicontinues. Let m, € M (o) be the measure equidistributed on the
set Per,, of points of period n, i.e.

1
Mn = Z Card Per,, &

xrE€Per,

where ¢, is the Dirac measure supported by z. m,, converge weak™ to fimax, the measure of
maximal entropy: log 2. (Check that this follows for example from the proof of variational
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principle, part I1.) Let ¢,,n = 0,1, 2, ... be a sequence of positive real numbers such that
322 o tn = 1. Finally define
oC
m = Z tpmy,
n=0

n=0'n
Let us prove that there is no ¢ € C(X) tangent to h at m. Let p,, = Rnumax—l—Z?;Ol tymg,
where R, =Y oo t;. We have of course h,,, (¢) =0, n=1,2,.... Also h,,(¢) =0 . This

follows from the fact that h is affine on M (o), the function h is bounded by the topological
entropy hiop(0) = log 2 and

n—1 [ele] ‘e
— J

Thus
h,, (¢) —hpy(o) = Ryhy,, . (0) = R, log2

and for an arbitrary ¢ € C(X?)

(Mn - m)QS = (Rn,urnax - thmj)¢ < R,¢e

j=n

where ¢ — 0 as n — oo because m; — fimax. The inequality h,, (o) — h,,(0) > Ry, log?2
and the latter inequality prove that ¢ is not tangent to A at m. Indeed hy,, (o) — hy,(0) >
(i, — m)¢ for n large, contrary to (2.5.5) with ¢ = 0.

By Remark after Theorem 2.5.10 we know that m is not tangent to any ¢ for the
pressure function P. In fact it is easy to see it directly: For an arbitrary ¢ € C(X?)
we have pmax¢p < P(¢) because h, . (o) > 0, so m,¢ < P(¢) for all n large enough as
My — Mmax. Also mpp < P(¢) for all n’s. So for the average of m,,’s namely m we have
meo < P(¢). So ¢ is not an equilibrium state. ' 3

The measure m in this example is very non-ergodic, this is necessary as will follow from
Exercise 5.

EXERCISES

Exercise 1. Let T : X — X and S : Y — Y be two continuous maps of compact
metric spaces respectively. Show that hiop (T X S) = hiop (1) + hiop(S).

Exercise 2. Prove that T': X — X is an isometry of a compact metric space X, then
htOp (T) — 0

Exercise 3. Show that if T : X — X is a local homeomorphism of a compact metric
space, then the number d = #T~!(z) is finite and independent of z € X.
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Exercise 4. With the assumtions and notation of Exercise 3, demonstrate that hyo, (7)) >
logd

Exercise 5. Prove that if f: M — M is a C'! endomorphism of a compact differentiable
manifold M, then hy,(7') > logdeg(f). (Hint: see [MP]).

Exercise 6. Let S' = {z € @': |z| = 1} be the unit circle and let f, : St — S! be the
map defined by the formula f,(z) = 2. Show that hy.,(f,) = logn.

Exercise 7. Let o4 : X4 — Y4 be the shift map generated by the incidence matrix A.
Prove that hy,p(04) is equal to the logarithm of the spectral radius of A.

Exercise 8. Show that for every continuous potential ¢, P(¢) < hiop(T") + sup(¢).

Exercise 9. Provide an example of a transitive diffeomorphism without measures of
maximal entropy.

Exercise 10 Provide an example of a transitive diffeomorphism with at least measures of
maximal entropy.

Exercise 11. Find a sequnce of continuous maps 7}, : X,, = X,, such that heop(Th41) >
heop (1) and limy, o hiop(Th) < 0.
Exercise 12. Prove that for an arbitrary convex continuous function P : V — IR

on a real Banach space V' the set of tangent functionals: |J . V' p is dense in the norm
topology in

{F € V*: there exists C' € IR such that for every z € V|, F(x) < P(z) + C}

(such functionals are called P-bounded)

Remark. The conclusion is that for P the pressure function on C'(X) tangent measures are
dense in M (X, T) , see Theorem 2.4.6. Hint: This follows from Bishop — Phelps Theorem,
see [BP] or Israel’s book [I, pp.112-115], which can be stated as follows: For every P-

bounded Fy zg € V and € > 0 there exists z € V and F' € V* tangent to P at X such
that

1
|F— Fo|| < e and ||z — x| < - (P(:EO) — Fo(xo) + s(xo)

where s(Fy) := sup,cy For' — P(2') (the LF-transform of P. The idea of the proof of
this theorem is as follows: If we replace P by Q(z0 := P(z) — Fy(x) + s(xg) the theorem
reduces to the case Fy = 0, s(Fy) = 0. For each € V consider the cone

C(x) = {(@',9) 1y — Q) < —ella’ — al}.

There is z € V such that C(xz) Ngraph@ = {x} Now F' can be defined as a functional which
graph translated by a constant separates C(z) from {y > Q(z).

Exercise 13. Prove that in the situation from Exercise 1 for every x € V' V' p is convex
and weak*-compact.

Exercise 14. Let E, denote the set of all equilibrium states for ¢ € C(X).
(i) Prove that Ey is convex.
(ii) Find an example that E, is not weak*-compact.
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(iii) Prove that extremal points of E, are extremal points of M (X, T).

(iv) Prove that almost all measures in the ergodic decomposition of an arbitrary u €
Eg4 belong also to Ey. (One says that every equilibrium state has a unique decomposition
into pure, i.e. ergodic, equilibrium states .)

Hints: In (ii) consider a sequence of Smale horseshoes of topological entropies log2 con-
verging to a point fixed for T'. To prove (iii) and (iv) use the fact that entropy is an affine
function of measure.

Exercise 15. Find an example showing that the point (iii) of Exercise 3 is false if we

consider C(X)} p rather than Ey.

Hint: An idea is to have two fixed points p,q and two trajectories (z,), (y,) such that
Ty — DyYn — q for n — oo and =, — q,y, — p for n - —oc. Now take a sequence
of periodic orbits 7, approaching {p,q} U {z,} U {y,} with periods tending to co. Take
their Cartesian products with corresponding invariant subsets Ag’s of small horseshoes
of topological entropies less than log2 but tending to log2, diameters of the horseshoes
shrinking to 0 as k — oo. Then for ¢ =0 C(X)} p consists only of measure 2(0p + 8.

One cannot repeat the proof in Exercise 3(iii) with the function h,, instead of the entropy
function h,, because h,, is no more affine !
This is Peter Walters’ example, for details see the preprint [W2].

Exercise 16. Suppose that the entropy function h, is upper semicontinuous (then for
each ¢ € C(z) C(X)j p = Ey, see Corollary 2.5.11). Prove that

(i) every p € M(T) which is a finite combination of ergodic masures p = ) ¢;m;,
m; € M(T), is tangent to P more precisely there exists ¢ € C(X) such that p,m; €
C(X)j p and moreover they are equilibrium states for ¢.

(ii) if p = [, ) mdx(m) where M.(X,T) consists of ergodic measures in M(X,T)
and « is a probability non-atomic measure on M. (X, T), then there exists ¢ € C'(X) which
has uncountably many ergodic equilibria in the support of a.

(iii) the set of elements of C'(X) with uncountably many ergodic equilibria is dense in
C(X).

Hint: By Bishop — Phelps Theorem (Exercise 12) there exists v € F, arbitrarily close to
p. Then in its ergodic decomposition there are all the measures ;1; because all ergodic
measures are far apart from each other (in the norm in C(X)*). These measures by
Exercise 14 belong to the same E, what proves (i). For more details and proofs of (ii) and
(iii) see [Israel, Theorem V.2.2 ] or [Ruelle, 1978, 3.17, 6.15].

Remark. In statistical physics the occurence of more then one equilibrium for ¢ € C(X)
is called "phase transition”. (iii) says that the set of functions with ”very rich” phase
transition is dense. For the further discussion see also [Israel, V.2].

Exercise 17. Prove the following. Let P : V — IR be a continuous convex function on
a real Banach space V' with norm || - [|y. Suppose P is differentiable at x € V in every
direction. Let W C V be an arbitrary linear subspace with norm || - || such that the
embedding W C V is continuous and the unit ball in (W, || - ||w) is compact in (V. |- ||v).
Then P|w is differentiable in the sense that there exists a functional F' € V* such that for
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y € W it holds
|P(z+y) — P(z) — F(y)| = olllyllw).

Remark. In Chapter 3 we shall discuss W being the space of Holder continuous functions
with an arbitrary exponent a < 1 and the entropy function will be upper semicontinuous.
So the conclusion will be that uniqueness of the equilibrium state at an arbitrary ¢ € C(X)
is equivalent to the differentiability in the direction of this spaece of Ho .lder functions.

Exercise 18. (Walters) Prove that the pressure function P is Frechet differentiable at
¢ € C(X) if and only if P affine in a neighbourhood of ¢. Prove also the conclusion: P
is Frechet differentiable at every ¢ € C(X) if and only if T is uniquely ergodic, namely if
M(X,T) consists of one element.

Exercise 19. Prove S. Mazur’s Theorem: If P : V — IR is a continuous convex function
on a real separable Banach space V then the set of points at which there exists a unique
functional tangent to P is dense Gj.

Remark. In the case of the pressure function on C'(X) this says that for a dense G set of
functions there exists at most one equilibrium state. Mazur’s Theorem contrasts with the
theorem from Exercise 16 (iii).

BIBLIOGRPHICAL NOTES

The concept of topological pressure in dynamical context was introduced by D. Ruelle in
[Ruelle, 1973] and since then have been studied in many papers and books. Let us mention
only [Bowen, 1975], [Wallters, 1976], [Wallters, 1982] and [Ruelle, 1978]. The topological
entropy was introduced earlier in [AKM, 1965]. The variational principle (Theorem 2.3.1)
has been proved for some maps in [Ruelle, 1973]. The first proofs of this principle in its full
generality can be found in [Walters, 1976] and [Bowen, 1975]. The simplest proof presented
in this chapter is taken from [Mi, 1976]. In the case of topological entropy (potential ¢ = 0)
the corresponding results have been obtained earlier: Goodwyn in [Goodwyn, 1969] proved
the first part of the variational principle, Dinaburg in [Dinaburg, 1971] proved its full
version assuming that the space X has finite covering topological dimension and finally
Goodman proved in [Goodman, 1971] the variational principle for topological entropy
without any additional assumptions. The concept of equilibrium states and expansive
maps in mathematical setting was introduced in [Ruelle, 1973] where the first existence
and uniqueness type results have appeared. Since then these concepts have been explored
by many authors, in particular in [Bowen, 1975] and [Ruelle, 1978]. The material of
Section 2.5 is mostly taken from [Ruelle, 1978], [Israel, 1979] and [Ellis, 1985].

References

N.Bourbaki: Espaces Vectoriels Topologiques. Masson,Paris, 1981.

M.Denker, Ch.Grillenberger, K.Sigmund: Ergodic Theory on Compact Spaces. Lec-
ture Notes in Mathematics, 527, Springer-Verlag, Berlin 1976.

34



CHAPTER 3
DISTANCE EXPANDING MAPS

version Feb.1, 2000

We devote this Chapter to a closer topological study of distance expanding maps. Often
however weaker assumptions will be sufficient. We always assume the maps are continuous
on a compact metric space X and usually assume the maps are open, which means that
open sets have open images. This is equivalent to saying that if f(z) = y and y,, — y then
there exist x,, — = such that f(x,) =y, for n large enough.

In theorems with assertions of topological character the assumption that a map is
only expansive gives in fact always the same as if we assumed that the map is expanding,
in view of Sec.6. We shall prove in Sec.6 that for every expansive map there always exists
a metric compatible with the topology on X given by an original metric, so that the map
is distance expanding in it.

Recall that for (X, p) a compact metric space, a continuous mapping 7 : X — X is
said to be distance expanding (with respect to the metric p) if there exist constants A > 1
and 1 > 0 such that

(3.1.1) p(r,y) <2n = p(T"(x),T"(y)) > Ap(w,y)

We say that T is distance expanding at a set Y C X if the above holds for every
z,y € B(z,n) for z€ Y.

In future we shall usually be able to assume that n = 1 i.e. that

(3.1.2) p(r,y) <2n = p(T(2),T(y)) > Ap(z,y)

One can achieve this in two ways:

(1) If T is Lipschitz continuous (say with constant L > 1) replace the metric p(z, y)
by Z;L;Ol p(T7(x),T7(y)). Of course then X\ and 5 change. As an exercise you can check
that the number 1+ (A — 1)(=%) can play the role of A in (3.1.2).

(2) Consider T™ instead of T

Sometimes we shall write for short expanding, instead of distance expanding.

63.1 DISTANCE EXPANDING OPEN MAPS, BASIC PROPERTIES
Let us start with a lemma where we assume T : X — X is a continuous open map of
a compact metric space X. We do not need to assume in this lemma that T is distance

expanding.

Lemma 3.1.2. If T : X — X is a continuous open map, then for every n > 0 there exists
¢ > 0 such that T(B(z,n)) D B(T(x),§) for every x € X.
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Proof. For every x € X let
§(z) = sup{r > 0: T(B(z,n)) > B(T(x),r)}.

Since T is open, {(z) > 0. Since T(B(z,n)) D B(T(x),{(x)), it suffices to show that
¢ = inf{{(z) : x € X} > 0. Suppose conversely that £ = 0. Then there exists a sequence
of points x,, € X such that

(3.1.3) €(xp) >0 as n— oo

and, as X is compact, we can assume that =, — y for some y € X. Hence B(x,,n) D
B(y, 2n) for all n large enough. Therefore

T(B(en ) > T (Bl g0)) > BTG).e) > B (T, 3e)

for some € > 0 and again for every n large enough. The existence of € such that the second
inclusion holds follows from the openness of T. Consequently &(x,) > %5 for these n,
which contradicts (3.1.3). &

If T : X — X is an open, expanding map, then by (3.1.1), for all z € X, the restriction
T'|B(x,y) is injective and therefore it has an inverse map. The same holds for expanding at
Y for all x € Y. In view of Lemma 3.1.2 we can introduce the following definition.

Notation 3.1.3. If T : X — X is expanding then for all x € X the inverse of the map
T|B(x,n restricted to the ball B(T(z), &) will be denoted by T, .

Observe that for every y € X

(3.1.4) T(By.)= |J T,'(B(y.9)

€T~ (y)

Indeed, suppose that y' = T(z') € B(y,£). Then y € B(y',€). Let x = T, (y). As T, *
and Tm_,1 coincide on y, they coincide on gy’ because they map y’ into B(x,n) and T is
injective on B(x,n). Thus 2’ =T, ' (y').

A map T with the property that there exists £ such that for each B(x,£) (3.1.4) holds
with the sets in the union disjoint from each other and T restricted to each of them being
a homeomorphism, is called a covering map. So we proved that a continuous open locally
injective map of a compact metric space is a covering map. This is well known but we
gave the proof for the completeness of the exposition.

Immediately from Definition 3.1.3 we have

(3.1.5) T, Y(B(T(x),¢)) C B(z,n)



JFrom now on throughout this section we assume also the expanding property, i.e. (3.1.2).
We then get the following.

Lemma 3.1.4. If x € X and y,z € B(T(x),€) then
P(T, (). T, () < A Holy. 2)
In particular T, 1 (B(T(x),£)) C B(x, A" 1€) C B(x,€).
Definition 3.1.5. For every x € X, every n > 1 and every j = 0,1,...,n — 1 write x; =
Ti(z). In view of Lemma 3.1.4 the composition T, ' o T, 'o...0T, 1 : B(T"(z),{) = X

is well-defined and will be denoted by T, ™.

Below we collect the basic elementary properties of maps 7, " following immediately from
the above. For every y € X

(3.1.6) T'By.O) = U T8

€T~ (y)
(3.1.7) p(T " (y), T, ™(2)) < A "p(y, 2) for all y,z € B(T™(x),¢&);
(3.1.8) T.."(B(T"(x),r)) C B(z,min{n, A~"r}) for every r < .

Remark. All these properties hold, and notation makes sense, also for open maps
T : X — X expanding at Y C X, provided z, T(z),...,T"(z) € Y.

?



§3.2 SHADOWING OF PSEUDOORBITS

We keep the notation of Section 3.1. We consider an open distance expanding map T :
X — X with the constants n, A, &.

Let n be a non-negative integer or oo. Given o > 0 a sequence (z; : i = 0,...,n) is
said to be an a-pseudo-orbit for T : X — X if and only if for every 1 =0,...,n —1

(3.2.1) p(T(2:), wip1) <

Of course every (real) orbit (z,7T(z),...,T"(z)), * € X, is an a-pseudo-orbit for every
a > 0. We shall prove a kind of a converse fact, that in case of open, distance expanding
maps, each “sufficiently good” pseudo-orbit can be approximated (shadowed) by a real
orbit. To make this precise we proceed as follows. Let 5 > 0. We say that an orbit of
x € X, B-shadows the pseudo-orbit (x; : i = 0,...,n) if and only if for every i =0,...,n

(3.2.2) p(T*(z),2;) < B

Definition 3.2.0. We say that a continuous map 7' : X — X has shadowing property
if for every B > 0 there exists a > 0 such that for every finite n every a-pseudo-orbit can
be p-shadowed by an orbit.

Note that due to the compactness of X this property implies the same with n = oo
included.

Below is a simple observation on the uniqueness of the shadowing. Assume only that
T is expansive (cf. Section 2.2.).

Proposition 3.2.1. If 23 is less than an expansiveness constant of T (we do not need
to assume here that T is expanding with respect to the metric p) and n = oc then there
exists at most one point x whose orbit S-shadows the pseudo-orbit (z;)92,.

Proof. Suppose the forward orbits of x and y shadow (z;). Then for every n > 0 we have
p(T™(x), T™(y)) < 28. Then by the definition of the expansiveness = = y. &

We shall now prove some less trivial results, concerning the existence of g-shadowing orbits.

Lemma 3.2.2. Let T': X — X be an open distance expanding map. Let 0 < § < £,

0 <a<min{(A—1)8,&}. If (x;:i=0,1,...,n), 0 <n < oo, is an a-pseudo-orbit and
i =T, (xit1), then

(a) Foralli=0,1,2,...,n—1

T, (B(wis1,B)) € B(xi, f)
and consequently for all ¢ = 0,1,...,n the compositions

Ti:Tm_(,)lon_alo...ongl : Bz, 8) > X

i —1
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are well-defined.
(b) The sequence of closed sets T;(B(z;,3)), i = 0,1,...,n, is decreasing in the sense of
inclusion.

(¢) The intersection
n

i=0
is non-empty and the forward orbits (for times 0,1,...,n) of all the points of this
intersection -shadow the pseudo-orbit (z; : i =0,1,...,n).

s

Proof. In order to prove (a) observe that by (3.1.8) and (3.1.7) we have

T, (B(T(zi11),8)) C Bz}, A"18) C B(zi, A-15 + A~ 1a)
and A7'8 4+ A7la < B. The statement (b) follows immediately from (a). The first part
of (c) follows immediately from (b) and the compactness of the space X. To prove the
second part call the intersection which appears in (¢) by A. By the definition of A we have
T4(A) C B(x;,B) for alli = 0,1,...,n. Thus the forward orbit for the times 0,1, ...,n of
every point in A, 8 shadows (z; : i =0,1,...,n). The proof is finished. &

3

As an immediate consequence of Lemma 3.2.2 we get the following.

Corollary 3.2.3. (Shadowing lemma) Every open, distance expanding map satisfies the
shadowing property. More precisely, for all 5 > 0 and @ > 0 as in Lemma 3.2.2 every
a-pseudo-orbit (z; :i=0,...,n) can be S-shadowed by an orbit in X.

As a consequence of Corollary 3.2.3 we shall prove the following.

Corollary 3.2.4. (Closing lemma) Let T : X — X be an expansive map, satisfying the
shadowing property. Then for every S > 0 there exists o > 0 such that if x € X and
p(z,T"(r)) < a for some | > 1, then there exists a periodic point of period | whose orbit
B-shadows the pseudo-orbit (x, T(z),...,T'~(zx)). The choices of a to 3 are the same as
in the definition of shadowing, for 23 not exceeding the expansivness constant.

In particular the above holds for T : X — X open, expanding.

Proof. Since p(x,T!(r)) < a, the sequence made up as the infinite concatenation of the
sequence (x,T(z),...,T""(r)) is an a-pseudo-orbit. Hence, by shadowing with n = oc,
there is a point y € X whose orbit S-shadows this pseudo-orbit. But note that then the
orbit of the point T!(y) also does it and therefore, by Lemma 3.2.1, T'(y) = y. The proof
is finished. &

Note that the assumption T is expansive is substantial. The adding machine map, see
Ch.0.3” 777, satisfies the shadowing property, whereas it has no periodic orbits at all. In
fact the same proof yields the following periodic shadowing.



Definition 3.2.5. We say that a continuous map T : X — X satisfies periodic
shadowing property if for every S > 0 there exists a > 0 such that for every finite n and
every pertodic a-pseudo-orbit xg,...,x, 1, that is a sequence of points xzg,....z, 1 such
that p(T(%:), T(i+1)(modn)) < @, there exists a point y € X of period n such that for all
0<i<n p(T"(y), =) <B.

Note that shadowing and periodic shadowing can hold for the maps that are not
expansive. One can just add artificially the missing periodic orbits, of periods 2" to the
adding machine space. This example appears in fact as the nonwandering set for any
Feigenbaum-like map of the interval, see Ch 777 (dawny 4.6)



§3.3 SPECTRAL DECOMPOSITION. MIXING PROPERTIES.
Let us start with general observations concerning iterations of continuous mappings

Definition 3.3.1 We call a continuous mapping T : X — X for a compact metric space
X topologically transitive if for all non-empty open sets U,V C X there exists n > 0 such
that T"(U) NV # . By the compactness of X topological transitivity implies that T
maps X onto X.

Example 3.3.2 Consider a topological Markov chain ¥ 4, or Y4 in a one-sided or two-
sided shift space of d states, see Example 0.3. Observe that the left shift map s on the
topological Markov chain is topologically transitive iff the matrix A is irreducible that is
for each i, j there exists an n > 0 such that the i, j-th entry A7, of the n-th composition
matrix A™ is non-zero.

One can consider a directed graph consisting of d vertices such that there is an edge from
a vertex v; to v; iff A; ; # 0; then one can identify elements of the topological Markov
chain with infinite paths in the graph ( that is sequences of edges indexed by all integers or
nonnegative integers depending as we consider the two-sided or one-sided case, such that
each edge begins at the vertex where the preceding edge ends). Then it is easy to see that
A is irreducible iff for every two vertices vy, vy there exists a finite path from v; to v;.

A notion stronger than the topological transitivity, which makes a non-trivial sense only
for f non-invertible, is the following

Definition 3.3.2 A continuous mapping 7' : X — X for a compact metric space X is
called topologically exact (or locally eventually onto) if for every open set U C X there
exists n > 0 such that 7" (U) = X.

In Example 3.3.2 in the one-sided shift space case topological exactness is equivalent to
the property that there exists n > 0 such that the matrix A™ has all entries positive. Such
a matrix is called aperiodic.

In the two-sided case aperiodicity of the matrix is equivalent to topological mixing of
the shift map. We say a continuous map is topologically mixing if for every non-empty
open sets U,V C X there exists N > 0 such that for every n > N we have T"(U)NV # (.

Proposition 3.3.3 The following 3 conditions are equivalent:

(1) T : X — X is topologically transitive.

(2) For every non-empty open sets U,V C X and every N > 0 there exists n > N such
that T"(U) NV # 0.

(3) There exists a T-trajectory (z,,n = 0,1,...), such that every z € X is its w-limit
point, that is for every N > 0 the set {z,, : n > N} is dense in X.

Proof. Let us prove first the implication (1)=-(3). So, suppose T': X — X is topologically
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transitive. Then for every open non-empty set V' C X, the set

K(V) :={x € X : there exists n > 0 such that T"(z) € V} = U (V)
n>0

is open and dense in X. Let {Vi};>1 be a countable basis of topology of X. By Baire’s
category theorem, the intersection

K:=) ) KT NW)

k>1N>0

is a dense G5 subset of X. In particular K is non-empty and by its definition the trajectory
{T™(x):n > N} is dense in X for every z € K. Thus (1) implies (3).

Let us now prove that (3)=(2). Indeed, if z,, is a trajectory satisfying the condition
(3), then for all non-empty open sets U,V C X and N > 0, there exist n > m > 0,n—m >
N such that z,, € U and x,, € V. Hence T"~™(U) NV # (). Thus (3) implies (2). Since
(2) implies (1) trivially the proof is complete.

Definition 3.3.a. A point z € X is called wandering if there exists an open neighhbour-
hood V of x such that VNT™(V) = for all n > 1. Otherwise z is called non-wandering.
We denote the set of all non-wandering points for 7" by Q or Q(T').

Proposition 3.3.b For T': X — X satisfying the periodic shadowing property, the set of
periodic points is dense in the set €2 of non-wandering points.

Proof. Take any z € Q(T) and given 8 > 0 its neighborhood V in X of diameter «
chosen for § in the definition of periodic shadowing. Then by the definition of Q(T)
there exists y € V and n > 0 such that T"(y) € V. So rho(y,T"(y)) < diamV hence
(y,T(y),...,T™(y)) can be B-shadowed by a periodic orbit. We can take /8 arbitrarily small
hence we obtain the density of periodic points in (7). &

Remark 3.3.c. It is not true that for every open, distance expanding map 7 : X — X
we have Per = X. Here is an example: Let X = {(1/2)" : n = 0,1,2,...} U {0}. Let
T((1/2)") = (1/2)»=V for n > 0, T(0) = 0,T(1) = 1. Let the metric be the restriction
to X of the standard metric on the real line. This T is distance expanding on X but
Q(T') = Per(T) = {0} U {1}. See also Exercise 3.3.1.

Here is the main theorem of this section. Its assertion holds under the assumption that
T : X — X is open, distance expanding and even under weaker assumptions below.

Theorem 3.3.4 (on the existence of Spectral Decomposition) Suppose that T :
X — X is an open map which satisfies also the periodic shadowing property and is
expanding at the set Per(T'), the closure of the set of periodic points.

Then Per(7") is the union of finitely many disjoint compact sets ;,j =1,.... J with

(T lprery) ' () =
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and T'|q; topologically transitive.
Each €2; is the union of k(j) disjoint compact sets Qf which are cyclically permuted

by T and such that T*()|q. is topologically exact.
J

Proof of Theorem 3.3.4 Let us start with defining an equivalence relation ~ on Per(7T).
For z,y € Per(T) we write x ~_, y if for every ¢ > 0 there exist ' € X and positive
integer m such that p(z,z') < e and T™(z') = T™(y). We write z ~y if z ~ y and y ~ x.
Of course for every = € Per(T), x ~ x. Suppose that z ~ y and y ~ z. Let k,, k, denote
periods of y, z respectively.

Let x' be close to x and T"(x') = T™(y) = y; an integer n satisfiying the latter
equality exists since we can take an integer so that the first equality holds and then take
any larger integer divisible by k,. Choose n divisible by k k.. Next, since T' is open, for
y' close enough to y, with T™(y') = T™(z) = z for m divisible by k,, there exists 2’ close
to 2’ such that T™(z") = y'. Hence T"T™(z") = T™(y') = y' = T"*™(y'), since both m
and n are divisible by k,. Thus x ~ z. This proof is illustrated at Fig 3.1.a.

Fig.3.1.a Fig.3.1.b

Fig.3.1.b illustrates the transitivity for hyperbolic sets Per(T') (see Exercises or [KH]
777), where x ~ y if the unstable manifold of x intersects transversally the stable manifold
of y. In our expanding case the role of transversality is played by the openness of T

Till this point we did not use the expanding assumption.

Observe now that for every z,y € Per(T), p(z,y) < £ implies x ~ y. Indeed, we
can take x' = T, "Fhv (y) for n arbitrarily large. Then ' is arbitrarily close to = and
Trkaky (') = 3 = T™=ky (). Hence the number of equivalence classes of ~ , denote them
Py, ..., Py, is finite. Moreover the sets P, ..., Py are pairwise disjoint and the distances
between them are at least {. We have T'(Per(T')) = Per(T) , and if z ~ y then T'(x) ~ T'(y).
The latter follows straight from the definition of ~. So T permutes the sets P;. This
permutation decomposes into cyclic permutations we were looking for. More precisely:
consider the partition of Per(7T') into the sets of the form

[j T (P;), i=1,...,N.
n=0

The unions are in fact over finite families. It does not matter in which place the closure is
placed because X is compact so for every A C X we have T(A) = T'(A). We consider this
partition as a partition into £;’s we were looking for. Q’;’S are the summands 7" (P;) in

the unions.

Observe now that T is topologically transitive on each ;.

Indeed, if z, y belong to the same €2; there exist 2’ € B(z,§) and y’' € B(y, £) such that
T™(z') =T"™ (y) and T™(y’) = T™°(x) for some natural numbers n, m and ng < k,, mg <
k,. For an arbitrary 8 > 0 choose a > 0 from the definition of periodic shadowing and
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consider 2",y such that p(z”’,2) < «, p(y",y) < o and T™ (2") =2', T™ (y"') = ¢ for
some natural numbers ny,mq, existing by the expanding property at Per(T). Then the
sequence of points T(x"), ..., T Hntky=no (/") T (y"), ..., T +mtke=mo (47} i5 3 periodic
a-pseudo-orbit, of period ny +n+ky —ng+mi +m+k; —mg, so it can be S-shadowed by
a periodic orbit. Thus, there exists z € Per(T) such that p(z,z) < 8 and p(T™(z2),y) < 8
for an integer N > (. Now take arbitrary neighbourhoods U > x and V > y and take 3
such that B(z,) Cc U and B(y,3) C V. We find a periodic point z as above. Note that,
provided 8 < &, z ~ x and TV (2) ~ y . We obtain TV (2) € TN(U N Q;) N (V N Q) so
this set is nonempty. This proves the topological transitivity.

Note that by the way we proved that the orbits x”,....,T™ (") = z’, ..., T™(x') with
n1,n arbitrarily large, can be arbitrarily well shadowed by parts of periodic orbits. This
corresponds to the approximation of transversal cycles of heteroclinic orbits by periodic
ones, in the hyperbolic theory (see also Exercise 3.3.3).

This analogy justifies the name heteroclinic cycle points for the points z' and y’, or
heteroclinic cycle orbits for their orbits discussed above. Thus we proved

Lemma 3.3.7°. Under the assumptions of Theorem 3.3.4 every heteroclinic cycle point
is a limit of periodic points.

Now we can prove another fact interesting in itself:

Lemma 3.3.8 T|m is an open map.

Proof. Fix z,y € Per(T) and p(T(z),y) < e < &/3. Since T is open, by Lemma 3.1.2,
and due to the expanding property at Per(T) there exists § = T, '(y) € Bz, A\71¢/3) We
want to prove that § € Per(T).

There exist 21,29 € Per(T) such that p(z1,2) < A71£/3 and p(z2,y) < £/3. Hence
p(T(z1),20) < &, hence T(z1) ~ z3. Then T, !(23) is a heteroclinic cycle point, so by

Lemma 3.3.7’ it is a limit of periodic points. &

We go back to Proof of Theorem 3.3.4. We can prove now the topological exactness
of Tk(j)|Q?. So fix QF = P; with TFO)(P)) = P;. Let {z,},5 = 1,...S be a ¢’/2-spanning
set in P;, where ¢’ is a constant having the properties of £ for the map 7', existing by
the openness of T|m ( Lemma 3.1.2). Write k(P;) = []°_, ks,. Take an arbitrary open

s=1"T
set U C P;. It contains a periodic point z.

Note that for every ball B = B(y,r) in Per(T) with the origin at y € Per(T) and
radius 7 less than 7 and A~%v¢’ we have T*v(B) D> B(y, A\*vr). Repeating this step by
step we obtain T™*W)(B) D B(y, ¢'), (see (3.1.8).

Let us go back to U and consider B, = B(z,r) C U with r < A7*(F)¢. Then
T™k(Pi)(B,) is an increasing family of sets for n = 0,1,2, ....

By the definition of ~, the set |J, <, T™*)(B,) contains {z, :, s = 1,...S}, because
the points =4 are in the relation ~ with . This uses the fact proved above, see Lemma

3.3.7°, that z’ in the definition of ~, such that T™(z') = T™(xy), belongs to Per(T). It
belongs even to P;, since for z € Per(T') close to z’ we have z ~ z,, with the use of the same
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' as one of a heteroclinic cycle points. Hence, by the observation above |, 5, 7" (B,)
contains the ball B(z,,¢’) for each s. So it contains P;. Since T"*)(B,) is an increasing
family of open sets in Per(T") that is compact, just one of these sets covers Per(T"). The
topological exactness is proved. &

Remark. It is easy to see that if T is a covering map than the assumption of periodic
shadowing can be skipped. We used it only to approximate heteroclinic cycle points by
periodic ones. See also Exercise 3.3.2.

As a corollary we obtain the following two theorems.

Theorem 3.3.9. Let T': X — X be an open distance expanding map, or expanding at the
set Per(T') satisfying the periodic shadowing property. Then, if T' is topologically transitive,
or is surjective and its spectral decomposition consists of just one set 21 = Uzg QF, the
following properties hold:

1. The set of periodic points is dense in X, which is thus equal to €.

2. For every open U C X there exists N = N(U) such that U;‘V:(] T'(U) = X.
3. (¥r > 0)3N)(vVz € X)U;_o T9(B(z,1)) = X.
4. The following specification property holds: For every 5 > 0 there exists a positive

integer N such that for every n and every T-orbit (zg,...z,) there exists a periodic point
y of period not larger than n + N whose orbit for the times 0, ...,n S-shadows (zg, ...z, ).

Proof. By the topological transitivity for all open U there exist n > 1 such that T"(U) N
U # 0, (use the condition (2) in Proposition 3.3.3 for N = 1). Hence for the set {2 of the
non-wandering points we have Q@ = X. This gives the density of Per(T) by Proposition
3.3.b.

If we assume only that there is one (= ©Q = Per(T')) in the Spectral Decomposition,
then for an arbitrary z € X we find by the surjectivity a backward orbit z_,, of z and
notice that z_,, — Q and T"(z) — Q, that follows easily from the definition of Q2. So for
every o > 0 there exist wy, ws € Per(T) and natural numbers k, n such that T*(w;) ~ wy,
p(wi,z ) < a and p(ws,T™(2)) < a. This allows to find a periodic point in B(z, ),
where 3 > 0 is arbitrarily small and « chosen for 8 from the periodic shadowing property.

We conclude that X = U;']:1 1, each 2; is T-invariant, closed, and also open since
1;’s are at least ¢-distant from each other. So J = 1. Otherwise, by the topological
transitivity, for j # i there existed n such that 77 (2;) N Q; # 0, what would contradict
the T-invariance of ;.

Thus X = UZS}(Q?) and the assertion 2. follows immediately from the exactness of
T+ on each QF, k=1,....k(1).

The property 3. follows from 2. where given r we choose N = max{N(U)} where we
consider a finite covering of X by sets U of diameter not exceeding r/2. Indeed, then for
every B(z,r) the set U containing x is a subset of B(z, ).

Now let us prove the specification property. By the property 3. for every a > 0 there
exists N = N(«) such that for every v,w € X there exists m < N and z € B(v, ) such
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that T™(z) € B(w,a). Consider any T-orbit xg,...z,. Then consider an a-pseudo-orbit
Ty T 152, T (2) with m < N and z € B(z,, o, T™(2) € B(zg,a). By Corollary
3.2.4 we can f-shadow it by a periodic orbit of period n+m <n + N. &

The same proof yields

Theorem 3.3.10. Let T satisfies the assumptions of Theorem 3.3.9, and be also
topologically mixing, i.e. k(1) = 1. Then

1. T is topologically exact, i.e. for every open U C X there exists N = N(U) such
that TNV (U) = X.
2. (Vr > 0)3N)(Vz € X) TN(B(z,7)) = X.
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§3.4 HOLDER CONTINUOUS FUNCTIONS

For distance expanding maps, Holder continuous functions play a special role. Recall that
a function ¢ : X — € (or IR) is said to be Hélder continuous with an exponent 0 < a <1
if and only if there exists C' > 0 such that

9(y) — ¢(x)| < Cply, z)”

for all x,y € X. All Holder continuous functions are continuous, if &« = 1 they are usually
called Lipschitz continuous.

Let C'(X) denote as in the previous chapters the space of all continuous, real or complex-
valued functions defined on a compact space X and for ¢ : X — € we write ||¢)||o =
sup{|y(z)| : x € X} for its supremum norm. For any « > 0 let H,(X) denote the space
of all Hélder continuous functions with exponent « > 0. If ¢ € Hy(X) let

Vag () = sup {W z,y € X, w# yand p(z,y) < é}
and
oy = BV )
Note that

Dolth) < max{%ﬂa,gw)}.

The reader will check easily that H,(X) becomes a Banach space when equipped with
the norm

19130 = Dal®) + (9]l

Thus, to estimate in future ||¢||4, it is enough to estimate ¥4 ¢(¢) and ||¢]|oc.
The following result is a straightforward consequence of Arzela-Ascoli theorem.
Theorem 3.4.1. Any bounded subset of the Banach space H, (X ) with the norm || ||, is
relatively compact as a subset of the Banach space C'(X) with the supremum norm || - ||s-
Moreover if {1, : n = 1,2,...} is a sequence of continuous functions in H,(X) such that
|Znl|#, < C for all n > 1 and some constant C' and if lim,,,« ||tVn — ¥|/oc = 0 for some

¥ € C(X), then ¢ € Ho(X) and |, < C.

Now let us formulate a simple but very basic lemma in which you will see a coherence of
the expanding property of T" and the Holder continuity property of a function.

Lemma 3.4.2 (pre-Bounded Distortion Lemma for Iteration). Let T : X — X

be a distance expanding map and ¢ : X — @ be a Holder continuous function with the
exponent . Then for every positive integer n and x,y € X such that

(3.4.1) p(T7(2), T’ (y)) < 2y for every j=0,1,....,n—1

13



we have

Vo (P) ) ‘

(3.4.2) 1Sa() — Sud(y)| < p(1™ (@), T () (52

If T is open we can assume z,y € T, "(B(T"(z),&) for a point z € X, instead of (3.4.1).
Then in (3.4.2) we can replace ¥, by Jq.¢.

The sense of (3.4.2) is that the coefficient 179:’)5@, does not depend on x,y,n).

Proof. By (3.1.2) we have p(T7(x), T7(y)) < A="=9) p(T™(y), T™(2)) for every 0 < j < n.
Hence

6(T7 (y)) — (T (2))] < Da(P)A™ =D p(T™ (y), T™(2))™
Thus

1Snd(y) — Snd(2)] < Ia(P)p(T™(y), T"(2))* i A~ (=

< D@ (1), T"(2)" S A = Doy e
§=0

The proof is finished. &

For an open distance expanding topologically transitive map we can replace topological
pressure defined in Chapter 2 by a corresponding notion related with a ”tree” of pre-images
of an arbitrary point (compare this with Exercise 4 777 in Chapter 2).

Proposition 3.4.3. If T : X — X is a topologically transitive distance expanding map,
then for every Holder continuous potential ¢ : X — IR and for every & € X there exists
the limit .

Po(T.¢):= lim —log Y expS,¢(7)

n—oo 1,
TeT—"(x)

and it is equal to the topological pressure P(T, ¢). In addition, there exists a constant C
such that for every z,y € X and every positive integer n

ZEGT*H () €xXp Snd)(T)

3.4.3
(3.4.3) Y g (y) P Snd(7)

<C

Proof. If p(xz,y) < & then (3.4.3) follows immediately from Lemma 3.4.2 with some
constant, say C7. Now observe that by the topological transitivity of T" there exists N
(depending on &) such that for all z,y € X there exists 0 < m < N such that 7™ (B(z,£))N
B(y, &) # 0. Indeed, for example by the condition 3) in Proposition 3.3.3 we can find two
blocks of a trajectory of z with dense w-limit set, say T%(2),...,T¥ (z) and T(2), ..., T" (2)
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with 1 > £/, each &-dense in X. Then we set N =1'—k. We can find ¢ between & and k’ and
s between [ and I’ so that T'(z) € B(z,€) and T*(z) € B(y,&. We have m := s —t < N.

Now fix arbitrary x,y € X. So, there exists a point y' € T-™(B(y,£)) N B(z,£). We
then have

Y expSup@ <C1 Y expSud(y)

TzeT—"(x) y_’ET*"(y’)
= Crexp(=Smd(T™ (W) D expSnime(y/)
Yy ET (')
< Cq exp(—minf ¢) Z exp Spm¢(y')

y €T~ (ntm)(T™ (y'))

< Cyexp(—minf ¢) > exp Spd(T™ (y')) exp Smé(y')
YTET—(nm) (T (1))

< Chexp(msup ¢ — minf ¢) Z exp Spd(T™ (y'))

YT (rtm) (T (y)
< Crexp2N||¢llo) DY > expSud(y)
y' €T~ (T™(y"))
< ClexpN|gll) > expSno(y),

yeT—"(y)

where D = sup{#(T~'(2)) : z € X} < oo. This proves (3.4.3).

Observe that each set T_”(x) is (n, 2n)-separated, whence

lim sup — L og > expSng(T) < P(T,¢),

71— 00 TET " (a)

by the characterization of pressure given in Theorem 2.2.10.

In order to prove the opposite inequality fix e < 2¢ and for every n > 1, an (n,¢)-
separated set Fj,. Cover X by finitely many balls B(z1,&/2), B(z2,€/2),..., B(zx,€/2).

Then F,, = F, N (U7 L T(B(z, 5/2))) and therefore

Z exp(Spo(z Z Z exp(Sné(2)).

z€F, J=1 F,0T~"(B(z;,6/2))

Given y € X choose as j(y) an arbitrary j such that y € T7"(B(z;(,),/2)). Let Zj) €
T~"(z) be defined by y € T%(B(zj(y), £/2). We shall show that the function y — Zjy
is injective. Indeed, suppose that zj = Zj) = Z;(p) for some a,b € F,, N T7"(B(z;,£/2)).
Then

=¢

p(T'(a), T'(b)) < p(T'(a), T'(Z) + p(T' (7). T'(b)) < 5 +

€
2
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for every 0 <1 < n. So, a = b since F,, is (n, c)-separated.
Hence, using (3.4.3), we obtain

k
D exp(Snp(2)) <Y _CD exp(Sn(7)) <KC® Y exp(Sne(T))
z€F, =1 z; TeT " (x)

Letting n " oo and next ¢ — 0, applying Theorem 2.2.10, we therefore get

P(T, ¢) < lim i]ﬂfl log Z exp S, o (T).

n—oc N
zeT " (x)

Thus

1 1
lim inf — 1 o) > P(T, ¢) > 1i —1 n®(T).
iminf — log Z exp S, ¢(T) > P(T, ¢) > imsup — log Z exp S, ¢(T)

n—oo 1
FET—" () neo TET—" ()

So liminf=limsup above, the limit exists and is equal to P(T, ¢). ' 3

Remark 3.4.4. It follows from Proposition 3.4.3, the proof of the Variational Principle
Part II (see Section 2.3) and the expansiveness of T' that for every z € X every weak limit

1 -1 —k
of the measures - >~ ptn o T~" where

ﬁeTfn(x) 5:1: €Xp ans(f)
FeT—n(z) €XP Sn (V)

Hn =

and J, denotes the Dirac measure concentrated at the point x, is an equilibrium state.
In fact our very special situation allows to say a lot more about the measures involved.
Chapter 3 will be devoted to this end.

Let us finish this section with one more very useful fact (compare Theorem 1.11.3.)

Proposition 3.4.5. Let T': X — X be an open, distance expanding, topologically
transitive map. If ¢, ¢ € H,(X), then the following conditions are equivalent.

(1) If x € X is a periodic point of T" and if n denotes its period, then S, ¢(z) — S, ¢ (x) = 0.
(2) There exists a constant C' > 0 such that for every z € X and integer n > 0, we have
(3) There exists a function u € H, such that ¢ —¢ =uoT — u.

Proof. The implications (3) = (2) = (1) are very easy. The first one is obtained
by summing up the equation in (3) along the orbit z, T'(x), ..., T" (x) which gives C =
2sup|¢ — |. The second one holds because otherwise, if S, ¢(x) — S,9(z) = K # 0 for
x of period n, then we have S;,¢(x) — Sjn(xz) = jK which contradicts (2) for j large
enough. Now let us prove (1) = (3). Let € X be a point such that for every N > 0
the orbit (z, : n = N, N +1,...) is dense in X. Such z exists by topological transitivity
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of T, see Proposition 3.3.3. Write n = ¢ — 1. Define u on the forward orbit of z, the set
A=A{x, :n=0,1,..} by u(x,) = Spn(z). If z is periodic then X is just the orbit of x and
the function u is well defined due to the equality in (1). So, suppose that x is not periodic.
Then z,, # x,, for m # n hence u is well defined on A. We will show that it extends in
a Holder continuous manner to A = X. Indeed, if we take points z,,, z, € A such that
m < n and p(Zm,,x,) < € for € small enough, then x,,,...,z, 1 can be B-shadowed by a
periodic orbit y, ..., T*~™~!(y) of period n — m by Corollary 3.2.4, where ¢ is related to 3
in the same way as « related to § in that Corollary. Then by the Lemma 3.4.2

[u(n) — w(m)| = [San(x) — Smti(@)] = [ S ()]
= ‘Snfmn(xm) - Snfmﬁ(?/)\ S 19(¢)a€a.

In particular we proved that wu is uniformly continuous on A which allows to extend u
continuously to A. By taking limits we see that this extension satisfies the same Holder
estimate on A as on A. Also the equality in (3) true on A, extends to A by the definition
of v and by the continuity of n and w . The proof is finished. &

The equality in (3) is called cohomology equation, u is a solution of the equation, see
Ch.1.11.2. Here the cohomology equation is solvable in the space K = H,. Note that
proving 3) = 2) we used only the assumption that u is bounded. So, going through
2) = 1) = 3) we prove that if the cohomology equation is solvable with u bounded,
then automatically u € H,. Later on 77?7 you will see that an assumption that w is finite
measurable, for some probability T-invariant measure with support X, would be sufficient,
even under assumptions on 7" weaker than expanding. Often u is forced to be as good as
¢ and 1. This type of theorem is called Livsic type theorem.
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§3.5 MARKOV PARTITIONS AND SYMBOLIC REPRESENTATION

We shall prove in this section that the topological Markov chains (Ch.0.3) describe
quite precisely dynamics of general open expanding maps.

This can be done through so called Markov partitions of X. The sets of a partition
will play the role of ”cylinders” {io = Const } in 3 4.

Definition 3.5.1. A finite cover it = {Ry,..., R,} of X is said to be a Markov partition
of the space X for the mapping 7" if diam(R) < min{n, £} and the following conditions are
satisfied.

(a) R=1IntR; foralli=1,2,...,d
(b) IntR; NIntR; = for all i # j
(¢) IntR; NT(IntR;) #0 = R; CT(R;) foralli,j=1,2,....d

’

Theorem 3.5.2. For the open, distance expanding mapping 7" there exist Markov parti-
tions of arbitrarily small diameters.

Proof. Fix 8 < min{n/4,¢} and let @ be the number associated to § as in Lemma 3.2.2.
Choose 0 < v < min{f/2, «/2} so small that

(3.5.1) plz,y) <v = p(T(2),T(y)) < /2

and let £ = {z1,..., 2} be a y-spanning set of X. Define the space  putting
Q={q=1(q;) € E”" . p(T(q:),qi+1) < a for all i > 0}

By definition all elements of the space ) are a-pseudo-orbits and therefore in view of
Corollary 3.2.3 and Lemma 3.2.1 for every sequence g € €2 there exists a unique point
whose orbit for n = 0,1, ... 8-shadows ¢. Denote this point by ©(g). In this way we have
defined a map © : 2 — X. We will need some of its properties.

Let us show first that © is surjective. Indeed, since E' is a 7 spanning set,
for every x € X and every ¢ > 0 there exists ¢; € F such that

p(T* (), 4i) <
and therefore, using also (3.5.1),
P(T(:); i+1) < p(T(q:). T(T*(2))) + p(T"(2), gis1) < /2 +7 < a/2+a/2=0

foralli > 0. Thusq=(¢; :i=0,1,...) € Q and (as v < 8) x = O(q). The surjectivity of
© is proved.

Now we shall show that © is continuous. For this aim we will need the following
notation. If g € €2 then we put

(3.5.2) gn)={peQ:p, =gq; forevery i =0,1,...,n}
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To prove continuity suppose now that p,q € Q, p(n) = ¢(n) with some n > 0 and denote
z=0(q), y=06(p). Then for all i =0,1,...,n

p(T" (%), T"(y)) < p(T* (%), q:) + p(pi, T"(y)) < B+ B =28

As B < &, we therefore obtain by (3.1.2) that p(T*T1(x), T*1(y)) > Ap(T*(x), T(y)) for
i=0,1,...,n—1, (see (3.1.7)), and consequently p(z,y) < A7"2/3. The continuity of © is
proved.

Now for every k = 1,...,r define the sets

P, =0({qeQ:q = z})

Since © is continuous, €2 is a compact space, and the sets {q € Q : go = 2} are closed in
Q, all sets P are closed in X.
Denote
W(k) ={l: p(T(2x),21) < o}

We have the following basic property satisfied:

(3.5.3) = U Pl

leW(k

Indeed, if € Py then 2z = O(q) for ¢ € Q with gy = z;. By the definition of 2 we have
g1 = # for some | € W (k). We obtain T'(z) € P,.

Conversely, let x € P, for | € W (k). It means that x = ©(g) for some ¢ € Q with
go = z;. By the definition of W (k) the concatenation zxq belongs to © and therefore the
point T'(©(zxq)) B-shadows ¢q. Thus T(O(zxq)) = ©(q) = = hence x € T(Fy).

Let now - .
z=x\{J1r (| or)
n=0 k=1
and for any = € Z denote

Plz)={ke{l,....r}:x € P},

Q@)= {1 ¢ Px): An( |J Py 0L

keP(x)
and
M ntP,\ ( U Pk,>: M IntP,\ ( U Pk)>
keP(x) kE€Q(x) keP(x) k¢ P(x)

We shall show that the family {S(x) : € Z} is in fact finite and moreover, that the family
{S(z) : x € Z} is a Markov partition of diameter not exceeding 2.
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Indeed, since diam(Py) < 20 for every k = 1,....r we have
(3.5.4) diam(S(x)) < 24

As the sets S(x) are open, we have

(3.5.5) IntS(z) = S(x)

for all = € Z. This proves the property (a) of the Theorem.

We shall now show that for every x € 7
(3.5.6) T(S(x)) D S(Tx)
Note first that for K(2) := Upep) Pr Y Uieq) 1 we have diamK < 83 and therefore
by the assumption 5 < n/4, the map T restricted to K is injective.

Consider k£ € P(z). Then there exists [ € W (k) such that T'(z) € P, cf. (3.5.3), and
using the definition of Z we get T'(z) € Int(F;). Using the assumption that 7" is open and
next (3.5.3) we obtain

T(IntPy) = Int(T(Py)) D Int P, D S(T'(x))
and therefore

(3.5.7)) T( (] IntP) > S(T(z))

keP(x)

Now consider k € Q(z). We remind (3.5.3) and observe that by the injectivity of T'|g
the assumption x ¢ Py implies T'(z) ¢ P, | € W (k).

Thus
Ty Y P
1¢P(T(z))
hence
7( |J P)nS(T(x) =0
leQ(x)

Combining this and (3.5.7) gives
ﬂ Int Py \ ( U Pk>> D S(T(x))
keP(x) keQ(x)

which exactly means that formula (3.5.6) is satisfied and therefore

(3.5.8) T(S(z)) > S(Tx)

We shall now prove the following claim.
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Claim. If 7,y € Z then either S(z) = S(y) or S(z)N S(y) = 0.

Indeed, if P(z) = P(y) then also Q(z) = Q(y) and consequently S(z) = S(y). If
P(x) # P(y) then there exists k € P(z) + P(y), say k € P(x)\ P(y). Hence S(x) C IntPy
and S(y) C X \ Pg. Therefore S(z) N S(y) = 0 and the Claim is proved.

(One can write the family S(z) as \/,_; ,{IntPy, X\ P}, compare notation in Ch.1.
Then the assertion of the Claim is immedia’%ei)

Since the family {P(z) : x € Z} is finite so is the family {S(z) : x € Z}. Note that
S(z) N S(y) = 0 implies Int.S(z) NIntS(y) = (). This is a general property of pairs of open
sets, UNV = () implies UNV = @ implies IntU NV = @ implies IntU NV = @ implies
IntU N IntV = (.

In view of Baire’s theorem the set Z is dense in X. Since (J,., S(r) > Z, we thus

have |J ., S(z) = X. That the family {S(z) : x € Z} is a Markov partition for T' of
diameter not exceeding 24 follows now from (3.5.5), (3.5.6), (3.5.4) and from the claim.

3

The proof is finished. L)

Each Markov partition allows to introduce a coding (symbolic representation) of T :
X — X as follows.
Theorem 3.5.3. Let T': X — X be an open, distance expanding map. Let {Rq, ..., R4}
be a Markov partition. Let A = (a; ;) be a d x d matrix with a; ; =0 or 1, a;; = 1 iff
T(IntR;) NIntR; # (). Then consider the one-sided topological Markov chain ¥4 with the
left shift o, see Ch.0.3. Define a mapping 7 : ¥4 — X by

m((io, i1, ..)) = [} T ™(Ri,)-

Then 7 is well defined Holder continuous mapping onto X and T'mr = wo. Moreover

Proof. For an arbitrary sequence (ig,i1,...) € ¥4, a;; = 1 implies T(R;,) D R; .
Since diamR;, < 2n, T is injective on R; , hence there exists an inverse branch T};iln
on R; ., The subscript R;, indicates that we take the branch leading to R;,, compare
notation from Ch.3.1. Thus, Tlgiln (Ri,.,) C R;,. Hence

Tlgii Tlgjl ...TI;; (Ri,..) C Tlg; Tﬁfl LTEE (R

‘n—1

So N> T~ (Ri,) # 0, as the intersection of the above decreasing family of compact sets.
We have used here

TpeTp' (Ri)=Tg .Tg  (T7(Ri,)NRi,_,)
n
=TplTg! (TR, )NT 'Ry, MRy, ) = o= [T H(Riy)
k=0
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following from T ' (A) = T~1(A) N R, for every A C R k=0,..n—1.
Zk "
Our infinite intersection consists of only one point, since diamR; are less than the
expansivness constant.

ik+1 9

Let us prove now that = is Holder continuous. Indeed, dist((i,), (i) < AT™ implies
in = i, for all n = 0,..., N — 1, where we consider distance in the metric p’ in Ch.0.3,
with the factor A'. Then, for z = 7((i,)), y = «w((i})) and every n : 0 < n < N we
have T™(x),T™(y) € R;,, hence dist(T™(x), T™(y)) < diamR; < &, hence dist(x,y) <

A~ (N=1¢. Therefore 7 is Holder with exponent min{1,log \'/log A}.

Finally let us deal with the injectivity. If © = «n((i,)) and T"(z) € IntR; for all
n=0,1,..., then T"(x) ¢ R; for all j # i,. So, ifx € (), T7"(Ry ), then all i), =i,. &

Remark. One would not think that « is always injective on the whole ¥ 4. Consider
for example the mapping of the unit interval T'(z) = 2z(mod 1), compare Ch.0.3. Then
dyadic expansion of z is not unique for z € (J;—,T7"({3}). Dyadic expansion is the
inverse, w1, of the coding obtained from the Markov partition [0, 1] = {[0, 3], [3.1]}.

Remind finally that o : X4 — ¥ 4 is an open, distance expanding map. The partition
into the cylinders C; := {(i,,) : io = i} for i = 1, ..., d, is a Markov partition into closed-open
sets. The corresponding coding « is just the identity.

Another fact concerning a similarity between (X 4,0) and (X, T) is the following
Theorem 3.5.4. For every Holder continuous function ¢ : X — IR the function ¢on
is Holder continuous on ¥ 4 and the pressures coincide, P(T, ¢) = P(o, ¢ o 7).

Proof. The functio m o ® is Holder as a composition of Holder continuous functions.
Consider next an arbitrary € X \ U, —_, T "(J; OR;). Then, using Proposition 3.4.3 for
T and o we obtain

P(T,¢) = Py(T,¢) = Pr-1(s)(0,pom) = P(0. ¢ o).
The middle equality follows directly from the definitions. &

Finally we shall prove that = is injective in a measure-theoretic sense.

Theorem 3.5.5. For every ergodic, invariant under the shift o, probability Borel measure
[t on X4, positive on open sets, the mapping 7 yields an isomorphism between y and the
measure pom ! on the Borel sets in X.

Proof. The set 0 = szl d(R;), and hence 7 1(9), have non-empty open complements
in ¥ 4. We have also T'(9) C d hence o(n~(d)) C 7~ 1(d). Hence, by the o-invariance of p
we get pu(r~1(0)) = u(a(n=1(d))), equal to 0 or 1 by the ergodicity. But the complement
of 771(d), as a non-empty open set, has positive measure p. Hence p(r—1(9)) = 0. Hence
p(E) =0for E:=J;", T "(7 () and by Theorem 3.5.3 7 is injective on X 4 \ E. This
proves that m is the required isomorphism. &
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§3.6 EXPANSIVE MAPS ARE EXPANDING IN SOME METRIC

Theorem 3.1.1 says that distance expanding maps are expansive. In this section we prove
the following much more difficult result which can be considered as a sort of the converse
statement and which provides an additional strong justification to explore expanding maps.

Theorem 3.6.1. If a continuous map T : X — X of a compact metric space X is
(positively) expansive then there exists a metric on X, compatible with the topology, such
that the mapping T is distance expanding with respect to this metric.

The proof of Theorem 3.6.1 given here relies heavily on the old topological result of Frink
(see [Frn], comp.[K, p.185]) which we state below without proof.

Lemma 3.6.2. (The Metrization Lemma of Frink) Let {U, : n > 0} be a sequence of
open neighborhoods of the diagonal A C X x X such that Uy = X x X,

(3.6.1) G U, = A,
n=1

and for every n > 1
(3.6.2) U,oU,oU, CU,_1
Then there exists a metric p, compatible with the topology on X, such that for every n > 1

(3.6.3) U, C{(x,y): p(x,y) <27"} CU,_1.

We will also need the following almost obvious result.

Lemma 3.6.3. If T : X — X is a continuous map of a compact metric space X and T
is distance expanding for some n > 1 then T is distance expanding with respect to some
some metric compatible with the topology on X.

Proof. Let p be a compatible metric with respect to which T' is distance expanding and
let A > 1 and n > 0 be constants such that

p(T" (), T"(y)) > Ap(z,y)
whenever p(z,y) <n. Put £ = Aw and define the new metric P setting

P (e, y) = pla,y) + gpmx), T(y) + ...+ 573_1 p(T" (), T" 1 (y))

Then p’ is a metric on X compatible with the topology and p'(T(x), T{y)) > &p'(x, )
whenever lp'(z,y) <n. &
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Now we can pass to the proof of Theorem 3.6.1.

Proof of Theorem 3.6.1. Let d be a metric on X compatible with the topology, and
let, 36 > 0 be an expansive constant associated to T" which does not exceed the constant n
claimed in Proposition 2.4.9. For any n > 1 and v > 0 let

V() = {(,9) € (X x X) : d(T(z), THy)) <7 for every j = 0,....n}.
Then in view of Proposition 2.4.9 there exists M > 1 such that
(3.6.4) Vm (30) € {(z,y) : d(z,y) < 0}.

Define Uy = X x X and U,, = Vi1, (0) for every n > 1. We will check that the sequence
{U, : n > 0} satisfies the assumptions of Lemma 3.6.2. Indeed, (3.6.1) follows immediately
from expasiveness of T and condition (3.6.2) will be proved by induction. For n = 1 nothing
has to be proved. Suppose that (3.6.2) holds for some n > 1 and let (z,u), (u,v), (v,y) €
Upn+1- Then by the triangle inequality

d(T? (y), T’ (z)) < 30 for every j =0,...,(n+ 1)M.
Therefore, using (3.6.4), we conclude that
d(TI(y), T?(z)) < 6 for every 5 =0,...,Mn

Equivalently (z,y) € Vi, (6) = U, which finishes the proof of (3.6.2).

So we have shown that the assumptions of Lemma 3.6.2 are satisfied, and therefore we
obtain a compatible metric p on X satisfying (3.6.3). In view of Lemma 3.6.3 it sufficies to

3M . . . . 1
show that T°* is expanding with respect to the metric p. So suppose that 0 < p(z,y) < 15.
Then by (3.6.1) there exists an n > 0 such that

(3.6.5) (z,y) € Uy \ Upy1.

As 0 < p(z,y) < {5, this and (3.6.3) imply that n > 3. It follows from (3.6.5) and
the definitions of U, and Vi, (0), that there exists Mn < j < (n + 1)M such that
d(T?(y), T’ (x)) > 0. Since 3 < n we conclude that d(T*(T3M (z)), T*(T*M (y))) > 6 for
some 0 < i < (n—2)M and therefore (T3 (z), T3M(y)) ¢ U,,_5. Consequently, by (3.6.3)

and (3.6.5) we obtain that
p(TM (@), TM(y)) 2 27D =2.27" > 2p(a.y).

The proof is finished. &
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Exercises.

Exercise 3.2.1. Prove the following Shadowing Theorem generalizing Corollary 3.2.3
(Shadowing lemma) and Corollary 3.2.4 (Closing lemma):

Let T : X — X be an open map, expanding at a compact Y C X. Then, for every
B > 0 there exists a > 0 such that for every map I' : 7 — Z for a set Z and a map
¢ : Z — B(Y,a) satisfying p(T®(z), ®I'(2)) < « for every z € Z, there exists a map
U : Z — X satisfying T® = ®T, hence T(Y') C Y’ for Y/ = ¥U(Z), and such that for
every z € Z, p(V(z),®(z)) < B. If Z is a metric space and T', & are continuous, then ¥ is
continuous. If T(Y) C Y and the map T|y : Y — Y be open, then Y’ C Y.

(Hint: see Ch.5.1.)

Exercise 3.2.2. Prove the following structural stability theorem.

Let T : X — X be an open map with a compact Y C X such that T(Y) C Y. Then
for every A > 1 and 8 > 0 there exists a > 0 such that if § : X — X is distance expanding
at Y with the expansion factor A and for all y € Y p(S(y),T(y)) < « then there exists
a continuous mapping h : Y — X such that Shly = ATy, in particular S(Y’) C Y’ for
Y' = h(Y), and p(h(z),z) < B.

(Hint: apply the previous exercise for Z =Y, T =T|y, & =id, T =S and Y =Y.
Compare also Ch.5.1.)

Exercise 3.3.1. Prove that every T : X — X open, distance expanding, for X
compact connected, is topologically exact.

Exercise 3.3.2. Prove Lemma 3.3.7° and hence Theorem 3.3.4 (Spectral Decom-
position) without the assumption of periodic shadowing, assuming that T is a branched
covering of the Riemann sphere.

Exercise 3.3.3. Prove the existence of stable and unstable manifolds for hyperbolic
sets and Smale’s Spectral Decomposition Theorem for Axiom A diffeomorphisms.

An invariant set A for a diffeomorphism T is called hyperbolic if there exist constants
A > 1 and C' > 0 such that the tangent bundle on X restricted to tangent spaces over
points in A, ThX decomposes into DT-invariant subbundles T) X = TR X & T{ X such
that ||DT™(v)|| > CA™ for all v € TY X and n > 0 and ||[DT"(v)|| > CA™ for all v € T} X
and n < 0.

Prove that for every x € A the sets W¥(z) = {y € X : p(T"(x),T™(y)) — 0 asn —
—oo}, and Wo(z) ={y € X : p(T"(z),T"(y)) — 0 asn — oo} are immersed manifolds.
(They are called unstable and stable manifolds.)

Assume next that a diffeomorphism 7' : X — X satisfies Smale’s Axiom A condition,
that is the set of non-wandering points €2 is hyperbolic and €2 = Per.

Then the relation between periodic points is as follows. x ~ y if there are points z €
WH(z)NW*(y) and 2’ € W¥(y)NW?*(z) where W*(z)a and W*(y), and W"(y)a and W*(z)
respectively, intersect transversally, that is the tangent spaces to these manifolds at z and 2’
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span the whole tangent spaces. Prove that this relation yields Spectral Decomposition, as
in Theorem 3.3.4, with topological transitivity assertion rather than topological exactness
of course.

As one of the steps prove a lemma, corresponding to Lemma 3.3.7’ about approximation
of a transversal heteroclinic cycle points by periodic ones. That is assume that x4, s, ..., z,,
are hyperbolic periodic points (i.e. their orbits are hyperbolic sets) for a diffeomorphism,
and W' has a point p; of transversal intersection with W7 for each 1 = 1, ...,n.

- Z(i+1)modn
Then p; € Per.
(For the theory of hyperbolic sets for diffeomorphisms see for example [KH].)

Exercise 3.4.1. Prove directly that 1) = 2) in Proposition 3.4.5, using the speci-
fication property, Theorem 3.2.9.

*Exercise 3.5.1. Suppose T : X — X is a distance expanding map on a closed
surface. Prove that there exist a Markov partition for an iterate T compatible with a
cell complex structure. That is elements R; of the partitions are topological discs, the
1-dimensional "skeleton” (J, OR; is a graph consisting of a finite number of continuous
curves ”"edges” intersecting one another only at end points, called ”vertices”. Intersection
of each two R; is empty or one vertex or one edge, each vertex is contained in 2 or 3 edges.

(Hint: Start with any cellular partition, with R; being nice topological discs and
correct it by adding or subtracting components of T~ (R;), T72N(R;), etc. See [FJ1] for
details. )

*Exercise 3.5.2. Prove that if T is an expanding map of the 2-dimensional torus
IR?/Z?, a factor map of a linear map of IR? given by an integer matrix with two irrational
eigenvalues of different moduli (for example (_011;) but not (g g))7 then OR; cannot be
differentiable.

(Hint: Smooth curves T™(dR;) become more and more dense in IR?/Z? as n — oc,
stretching in the direction of the eigenspace corresponding to the eigenvalue with a larger
modulus. So they cannot omit IntR;.

The same argument, looking backward, says that the components of T~"(IntR;) are
dense and very distorted, since the eigenvalues have different moduli. The curve dR; must
manouver between them, so it is "fractal”. See [PU] for more details.)

Historical and Bibliographical Notes.

nirenko] or [KH] (for the variant as in Exercise 3.2.1. For the expanding case see [Shub],
where structural stability was proved for X a differentiable manifold, T being C!. D.
Sullivan introduced in [Sullivan] the notion telescope for the sequence Tq;l(B(.’ItHl, B)) C

For Shadowing Lemma in the hyperbolic setting see [Anosov], [Bowen] and [Kush-
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B(z;, B) to capture a shadowing orbit, hence to prove stability of expanding repellers, com-
pare Ch.5.1. This stability was also proved in [Przytycki, 1977]. Recently a comprehensive
monography on shadowing by S. Yu. Pilyugin [Pilyugin] appeared.

The existence of Spectral Decomposition in the sense of Theorem 3.3.4 (see Exercise
3.3.3.) was first proved by S. Smale [S] for diffeomorphisms which he called Aziom A, that
is the set of non-wandering points €2 is hyperbolic and Q = Per, see also [KH] and further
historical informations therein. In a topological setting this was considered by Bowen
[B2], called Aziom A* and for Aziom A endomorphisms, covering the diffeomorphisms and
expanding (smooth) cases, in [Przytycki, 1977]. For open, distance expanding maps 2 =
Per (Proposition 3.3.b.) corresponds to the analogous fact for Anosov diffeomorphisms.
Q) = X is not known for Anosov diffeomorphisms. It is not true for some distance expanding
endomorphisms (Remark 3.3.c), but true for X connected (Exercise 3.3.1), see [Shub] in
the smooth case.

The construction of Markov partition in Sec. 5 is similar to the construction for basic
sets of Axiom A diffeomorphisms in [Bowen, 1975]. For a general theory of cellular Markov
partitions, including Exercise 3.5.1, see [FJ2]. The fact that Hausdorff dimension of the
boundaries of 2-dimensional cells is greater than 1, in particular their non-differentiability,
Exercise 3.5.2, follows from [PU]J.
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CHAPTER 4. THERMODYNAMICAL FORMALISM
(version Nov.16, 2002)

In Chapter 2 (Th. 2.4.6) we proved that for every positively expansive map of a compact
space T': X — X and an arbitrary continuous function ¢ : X — IR there exists an equi-
librium state. In Remark 3.4.4 we provided a specific construction for T" open distance
expanding topologically transitive and ¢ Holder. Here we shall construct this equilibrium
measure with a greater care and study its miraculous regularity with respect to the "po-
tential” function ¢, its "mixing” properties and uniqueness. So, for the whole chapter
T : X — X we fix an open, distance expanding, topologically transitive map of a compact
metric space (X, p), with constants n, A, ¢ introduced in Ch.3.

SECTION 4.1. GIBBS MEASURES: INTRODUCTORY REMARKS.

A probability measure g on X and Borel o-algebra of sets is said to be a Gibbs state
(measure) for the potential ¢ if there exist P € IR and C' > 1 such that for all x € X and
alln >1

u(T;(B(T (), €)))

exp(Sn(@) — Pn) =

(4.1.1) c!'<

If additionally y is T-invariant, we call p invariant Gibbs state (or measure).

We denote the set of all Gibbs states of ¢ by G4. It is obvious that if p is a Gibbs
state of ¢ and v is equivalent to u with Radon-Nikodym derivatives uniformly bounded
from above and below, then v is also a Gibbs state. The following proposition shows that
the converse is also true and it identifies the constant P appearing in the definition of
Gibbs states as the topological pressure of ¢.

Proposition 4.1.1. If 4 and v are Gibbs states associated to the map T and a Holder
continuous function ¢ and the corresponding constants are denoted respectively by P, C
and @, D then P = Q = P(T, ¢) and the measures p and v are equivalent with mutual
Radon-Nikodym derivatives uniformly bounded.

Proof. Since X is a compact space, there exist finitely many points z1,...,2; € X such
that B(z1,£) U ...U B(z,§) = X. We claim that for every compact set A C X, every
d > 0 and for all n > 1 large enough

(4.1.2) u(A) < CDlexp((Q — P)n)(v(A) + 6)

By the compactness of A and by the regularity of the measure v there exists ¢ > 0
such that v(B(A,¢)) < v(A) + 0. Fix an integer n > 1 so large that {A™" < § and for
every 1 <1 <[ let

X(i) ={z € T""(x:) : ANT,"(B(=:,€)) # 0}
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Then

ACU U 7o"(B(2:,€) C B(A,e)

i=1zcX (i)

and since for any fixed 1 < ¢ < [ the sets T, "(B(xz;,§)) for € T~"(z;) are mutually
disjoint, it follows from (4.1.1) that

SM(U U T "(B(z;, & ))) SZI: Z u(T, ™ (B(xi, £)))

1=12€ X (3) 1=1 x€ X (i)

1 !
<CY . > exp(Su(z) — Pn) = Cexp((Q — P)n) Y exp(Sn(a) — Qn)
i=1 zE€X (3) i=1 z€X (i)
!
< CDexp((Q — P)n Z Z v( B(z;,€))) < CDexp((Q — P)n)lv(B(A,¢))

1=1 2€X (%)
< CDIexp((Q — P)n)(v(A) +9)

Exchanging the roles of p and v we also obtain
(4.1.3) v(A) < CDlexp((P —Q)n)(u(A) + 9)

for all n > 1 large enough. So, if P # @, say P < @, then it follows from (4.1.3) applied
to the compact set X that v(X) = 0. Hence P = @, and as by regularity of p and v,
(4.1.2) and (4.1.3) continue to be true for all Borel subsets of X, we conclude that y and
v are equivalent with the Radon-Nikodym derivative du/dr bounded from above by C DI
and from below by (CDI)~! (letting § — 0).

It is left to show that P = P(T, ¢). Looking at the expression after the third inequality
sign in our estimates of u(A) with A = X we get

I
Ozlog,u(X)glogC—l—log(Z Z exp(Spd(z ) Pn.
i=1 zeX (i

Since for every i, X (i) is an (7, n)-separated set, taking into account division by n in the
definition of pressure, we can replace here ) ;. by a largest summand for each n. We get
P < P(T, ).

On the other hand for an arbitrary x € X

> exp(Spg(r) — Pn) < C Z B(x,€))) < Cu(X) = C
yeT " (z) yeT (=)
gives P(T, ¢) = P,(T, ¢) < P. The proof is finished. &



Remark 4.1.2 To prove Proposition 4.1.1 except the part identifying P as P(T, ¢) we
used only the inequalities

T

v (T ™ (B(

u(T—"<B<§“<m>,a>) xpPr_

c <
- (2),€)) expQn ~

We used the function ¢ in (4.1.1) and its Holder continuity only to prove that P = Q =
P(T, ¢). Holder continuity allows us also to replace z in S,¢(x) by an arbitrary point
contained in T, ™ (B(T™(z),£)).

Remark 4.1.3. For R = {Ry, ..., Ry}, a Markov partition of diameter smaller than &,
(4.1.1) produces a constant C' depending on R (see Exercise 1) such that

-1 < 'LL(R]‘OVHJ'nfl)

(4.1.4) ¢ < exp(Spp(x) — Pn) —

for every admissible sequence jo, j1,...jn—1 and every x € R;, . ;. ,. In particular (4.1.4)

holds for the shift map of a one-sided topological Markov chain.

The following completes Proposition 4.1.1.

Proposition 4.1.4. If ¢ and v are two arbitrary Holder continuous functions on X, then
the following conditions are equivalent:

(1) ¢—1) is cohomologous to a constant in the space of bounded functions (see Def.1.11.2).
(2) Gy =Gy.
(3) Gpy NGy #0.

Proof. Of course (2) implies (3). That (1) implies (2) is also obvious. If (3) is satisfied,
that is if there exists u € G N Gy, then it follows from (4.1.1) that

D71 < exp(Sn(¢)(x) — Su(¥)(x) — nP(¢) + nP(4)) < D

for some constant D, all x € X and n € IN. Applying logarithms we see that the condition
(2) in Proposition 3.4.5 is satisfied with ¢ and ¢ replaced by ¢ — P(¢) and 3 — P(3))
respectively. Hence, by this Proposition ¢ — P(¢) and ¢ — P(1) are cohomologous which
finishes the proof. &

We shall prove later that the class of Gibbs states associated to T" and ¢ is not empty (Sec.3)
and contains exactly one Gibbs state which is T-invariant (Corollary 4.2.9). Actually we
shall prove a stronger uniqueness theorem. We shall prove that any invariant Gibbs state
is an equilibrium state for 7" and ¢ and prove (Sec.6) uniqueness of the equilibrium state
for open expanding T" and Holder continuous ¢.

Proposition 4.1.5 A probability T-invariant Gibbs state p is an equilibrium state for T
and ¢.



Proof. Consider an arbitrary finite partition P into Borel sets of diameter less than
min(n, &). Then for every x € X we have T, ™"(B(T"(x),£)) D P™(x), where P™(x) is the
element of the partition P" = \/;‘:079 that contains z. Hence u(T,™(B(T"(z),¢))) >
pu(P"(x)). Therefore by the Shannon-McMillan-Breiman Theorem and (4.1.1) one obtains

(1) > 1, (T.P) > [ (timsup > (nP(T. 6)) ~ S,(0) ) = P(T.9) — [ i

n—oo TN

or in other words, h,(T) + [ ¢dp > P(T,¢) which just means that p is an equilibrium
state. &



SECTION 4.2. TRANSFER OPERATOR AND ITS CONJUGATE.
MEASURE WITH PRESCRIBED JACOBIAN.

Suppose first that we are in the situation of Chapter 1., i.e. T is a measurable map.
Suppose that m is backward quasi-invariant with respect to T, i.e.

(4.2.1) T.(m)=moT < m.

Then by the Radon-Nikodym Theorem there exists an m-integrable function ® such that for
every measurable set A C X we have m(T '(A)) = [, ®dm. One writes d(moT 1) /dm =
®. In the situation of this Chapter, where T' is a local homeomorphism (one does not need
expanding yet) if T-1 has d branches on a ball B(z,£) mapping the ball onto Uy, ..., Uy
respectively, then & = Z?Zl ®; where ®; := d(mo (T|y,)~")/dm. If we consider measures
absolutely continuous with respect to a backward quasi-invariant ”reference measure” m
then the transformation y +— T, (u) can be rewritten in the language of densities with
respect to m as
d
(4.2.1a) dp/dm — d(Typ)/dm =" ((du/dm) o (T|y,)™")®;.
j=1

It is comfortable to define ¥(z) = %(T(z))7 ie. U =@;oT for z € U;. Notice

that ¥ is defined on a set whose T-image has full measure (a set maybe larger than a set
of full measure), see Sec.6 for further discussion.

The transformation in (4.2.1a) can be considered as a linear operator L, : L'(m) —
L' (m),

Lon(u)(@) = Y u(@)¥(z).
zeET 1 ()

This makes sense, because if we change u on a set A of measure 0, then even if m(T'(A)) > 0,
we have ®;|p(4)nB(z,¢) = 0 m-a.e., hence Ly, (u) does not depend on u on T(A).

We have the convention that if u is not defined (on a set of measure 0) and ¥ = 0, then
ul = 0.

Thus we obtain the following characterization of probability T-invariant measures abso-
lutely continuous with respect to m.

Proposition 4.2.0. A probability measure ¢ = hm, h > 0, is T-invariant if and only if
Ly (h) = h.

After this introduction, the appearence of the following linear operator, called the Perron-
Frobenius-Ruelle or Ruelle or Araki or also transfer operator, is not surprising:

Lo = Y ul@m exp(d(@).
zeT 1 (z)

If the function ¢ is fixed we omit sometimes the subscript ¢ at £. The function ¢ is often
called a potential function.



The transfer’s conjugate operator will be our tool to find a quasi-invariant measure m
such that W will be a scalar multiple of exp ¢, hence L£,, will be a scalar multiple of L.
Then in turn we will look for fixed points of £, to find invariant measures. Restricting
our attention to exp ¢, we restrict considerations to ¥ strictly positive defined everywhere.

One sometimes allows ¢ to have the value —oo, but we do not consider this case in our
book.

Let us be now more precise. Consider L4 acting on the Banach space of continuous
functions L4 : C(X) — C(X). It is a continuous linear operator and its norm is equal
t0 Sup,, Y e () €XP(9(T)) = sup Ly (1) as this is a positive operator i.e. it maps real
non-negative functions to real non-negative functions (see Ch.2.1). Consider the conjugate
operator L} : C*(X) — C*(X). Note that as conjugate to a positive operator it is also
positive, i.e. transforms measures into measures.

Lemma 4.2.1. For every p € C*(X) and every Borel set A C X on which T is injective

(12:2) L) = [ exw(po (Tl in

Proof. It is sufficient to prove (4.2.2) for A C B(z,r) with any z € X and r such that T
is injective on B(x,2r) (say r = n). Approximate in pointwise convergence the indicator
function x4 by uniformly bounded continuous functions with support in B = B(x, 2r).
We have for any such function f

L3)(0) = Lol = [ (Fexp(@)) o (T]a) dp

T(B)

We used here the fact that the only branch of T—! mapping T(B) to the support of f
is that one leading T'(B) to B. Passing with f to the limit x4 on both sides (Lebesgue
convergence theorem) gives (4.2.2). &

Observe that whereas L4 transports measure from the past, ﬁ;’;) pulls it back from the
future with Jacobian exp¢. This is the right operator to use, to look for the missing
"reference measure” m.

Definition 4.2.2. Recall from Chapter 1 (Def.1.9.4) that a measurable function J : X —
[0,00) is called the Jacobian or thestrong Jacobian of a map T : X — X with respect to
a measure y if for every Borel set A C X on which T is injective u(T(A)) = [, Jdp. In
particular p is forward quasi-invariant

J is called the weak Jacobianif J : X — [0, 00) and there exists a Borel set E¥ C X such that
p(E) = 0 and for every Borel set A C X on which T is injective, u(T(A\ E)) = [, Jdp.
Notice that if p is backward quasi-invariant then the condition that J is the weak

Jacobian translates to pu(A) = fT(A) W dp.



Corollary 4.2.3. If a probability measure p satisfies E:‘;(u) = ¢ (i.e. pis an eigenmeasure
of L corresponding to a positive eigenvalue ¢), then cexp(—¢) is the Jacobian of T with
respect to .

Proof. Substitute cy in place of L*(u) in (4.2.2). Tt then follows that p is backward quasi-
invariant and cexp(—¢) is the weak Jacobian of T' with respect to u. Since exp(1_¢) = exp P,

it is positive everywhere, hence cexp(—¢) is the strong Jacobian of T. ' 3

Theorem 4.2.4. Let T : X — X be a local homeomorphism of a compact metric space X
and let ¢ : X — IR be continuous. Then there exists a probability measure m = my and
a constant ¢ > 0, such that £3(m) = cm. The function cexp(—¢) is the strong Jacobian
for T with respect to the measure m.

Proof. Consider the map I(u) := ﬁf(*u()u()ﬂ) on the convex set of probability measures

on X, i.e. on M(X), endowed with the weak* topology (Ch.2.1). The transformation
[ is continuous in this topology since p, — p weak® implies for every u € C(X) that
L*(pn)(w) = pn,(L(w)) = w(L(u)) = L*(p)(u). As M(X) is weak® compact (see Th.2.1.6)
we can use Theorem 2.1.7 (Schauder-Tychonoff fixed point theorem) to find m € M (X)
such that [(m) = m. Hence £L*(m) = e¢m for ¢ = L£*(m)(1l). Thus T has the Jacobian
equal to cexp(—¢), by Corollary 4.2.3. ' 3

Note again that we write exp ¢ in order to guarantee it never vanishes, so that there exists
the Jacobian for T with respect to m. To find an eigen-measure m for £* (i.e. with a weak
Jacobian being a multiple of exp(—¢) ) we could perfectly allow exp ¢ = 0.

We have the following complementary fact in case Jacobian J exists.

Proposition 4.2.4a. If T : X — X is a local homeomorphism of a compact metric space
X and a Jacobian J with respect to a probability measure m exists, then for every Borel
set A

é/AJdmgm(T(A))S/Jdm.

A

where d is the degree of T (d := sup,cx 7 *({z})). In particular if m(A4) = 0, then
m(T(A)) = 0.

Proof. Let us partition A into finitely many Borel sets, say Aq, Ao, ..., A,,, of diameters
so small that T restricted to each of them is injective. Then, on one hand,

() = m({J 7(40) < 32 m(T(4) = Z/A Jdm = /A J dm.

and on the other hand, since the multiplicity of the family {T'(A4;) : 1 < i < n} does not
exceed d,

m(T(A)) = m(g T(A)) > é;m(T(Ai)) - %;/A Jdm = %/A J dm.
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The proof is finished. [

Let us go back to T, an open distance expanding topologically transitive map.

Proposition 4.2.5. The measure m is positive on non-empty open sets. Moreover for
every r > 0 there exists & = a(r) > 0 such that for every x € X, m(B(x,r)) > a.
Proof. For every open U C X there exists n > 0 such that U:;L:(] T/(U) = X (Theorem
3.3.9). So, by Proposition 4.2.4a, m(U) = 0 would imply that
1=m(X) < Z?:o m(T7(U)) = 0, a contradiction.

Finally let 1, ..., 2, be an 7/2-net in X and o := mini<j<pm{m(B(x;,7/2))}. Since
for every © € X there exists j such that p(z,z;) < r/2, hence m(B(z,r)) D B(z;,7/2).
Thus it is enough to set a(r) := a. s

Proposition 4.2.6. The measure m is a Gibbs state of ¢ and logc = P(T, ¢).
Proof. We have for every x € X and every integer n > 0,

m(B(z,&)) = / " exp(—S,¢) dm.
T, " (B(T"(x).£))

Since, by Lemma 3.4.2, the ratio of the supremum and infimum of the integrand of the

above integral is bounded from above by a constant C' > 0 and from below by C~!, we

obtain

1> m(B(z,€)) > C~ ™ exp(—Snd(z))m(T, " (B(T"(z),£)))
and

a(§) < m(B(x,€)) < Cc" exp(—Snd(z))m(T; " (B(T"(2),€))).
Hence
m(T; " (B(T"(2),§)))
exp(Snd(z) —nloge) —
and therefore m is a Gibbs state. That logc = P(T, ¢) follows now from Proposition 4.1.1.
L

a(§)C! <

We now also give a simple direct proof of equality logc = P(T', ¢). First note that by the
definition of L4 and a simple inductive argument, for every integer n > 0

(4.2.2a) Lhw)(z)= > u(®)exp(Snd(T)).

€T " (x)
The estimate (3.4.3) translates to
(4.2.3) C™t <L) (z)/Lm(M)(y) < C  for every z,y € X.

Now ¢" = ¢"m(1l) = (L*)"(m) (1) = m(L™(1)) and hence

loge = Tim ~logm(£™(1)) = P(T, ).

n—,oo 1



The latter equality follows from (4.2.3) and Proposition 3.4.3.

Note that in the latter equality we used the property that m is a measure (positive).
For m a signed eigen-measure and ¢ a complex eigenvalue for £* we would obtain only
log|c] < P(T,¢) (one should consider a function u such that sup |u| = 1 and m(u) = 1
rather than the function 1) and indeed usually the point spectrum of £* is big(ref 777777).

We are in the position to prove already some ergodic properties of Gibbs states:
Theorem 4.2.7. If T is topologically exact, then the system (T, m) is exact in the measure
theoretic sense, namely for every A of positive measure m(T"(A)) — 1 as n — oo, see
1.10.3.

The topological counterpart of this Theorem is the fact that topological mixing implies
topological exactness, Th.3.3.10.

Proof. Let E be an arbitrary Borel set with m(E) > 0. By the regularity of m we
can find a compact set A C E such that m(A) > 0. Fix an arbitrary € > 0. As in the
proof of Proposition 4.1.1, we find for every n large enough, a covering of A by sets D,
of the form T, "(B(z;,§)),r € X(4),i = 1,...,1 such that m(|J, D,) < m(A) + . Hence
m(U, (D, \ 4)) < e . Since the multiplicity of this covering is at most [, we have

S m(D, \ A) < .

Hence
>, mD\A) _ e
>, m(Dy) T m(A)
Therefore for all n large enough there exists D = D, = T,,"(B), for some B = B(z;,£)),
1 <1 <, such that

m(D \ A) le
m(D)  ~ m(A)’

Hence
m(B\T"(A)) _ Jp\ac"exp(=Sad)dm (D A) le
B = [y en(—Saddm = mD) - Cm(d)

with C as in Proof of Proposition 4.2.6. By the topological exactness of T', there exists
N > 0 such that for every j we have TV (B(z;,€)) = X. In particular TV (B) = X. So,
using Proposition 4.2.4a, we get

_n Cle
m(A)

m(X\ TN(T"(A))) < m(TN (B\ T"(A))) < ¥ (inf exp ¢)

Letting ¢ — 0 we obtain m(X \ TN (T"(A))) — 0 as n — oc. Hence m(TN17(A)) — 1. &



We have considered here a special Gibbs measure m = mg. Notice however that by
Proposition 4.1.1 the assertion of Theorem 4.2.7 holds for every Gibbs measure associated
to T and ¢.

Corollary 4.2.8. If T is a topologically transitive, open, distance expanding map, then
for every Holder potential ¢, each corresponding Gibbs measure is ergodic.

Proof. By Th.3.3.4 and Th.3.3.9 there exists a positive integer N such that TV is
topologically mixing on a T"N-invariant closed-open set Y C X, where Uizo, N1 TI(Y) =

X. So our T¥ |y, being also an open expanding map, is exact in the measure-theoretic sense
by Theorem 3.7. So if m(E) > 0 then for every j = 0, ..., N — 1 we have m(TN"T7(E)) —
m(T7(Y)), hence m(lJ,~qT™(E)) — 1. For E being T-invariant this yields m(E) = 1.
This implies ergodicity. &

With the use of Proposition 1.2.4 we get the following fact promised in Section 4.1.

Corollary 4.2.9. If T is a topologically transitive, open, distance expanding map, then
for every Holder potential ¢, there is at most one corresponding invariant Gibbs measure.
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SECTION 4.3. ITERATION OF TRANSFER OPERATOR. EXISTENCE
OF GIBBS STATES.

It is comfortable to consider the operator EE for p = ¢ —P(T, ¢). That is ﬁg = e*P(T’¢)£¢.
(Recall that P(T), ) = logc.) Then for the reference measure m = my satisfying Lj(m) =
eP (@) m we have E%(m) =m i.e.

(4.3.1) /udm— /Ea(u)dm for every u € C(X).

For fixed ¢ we often denote Eg by Ly. By (4.2.3) for every z,y € X, and non-negative
integer n

(4.3.2) Lo(M)(z)/ Ly (M) (y) < C.

Multiplying this inequality by £ (1)(y) and then integrating with respect to the variable
x and y we get respectively the first and the third of the following inequalities below

(4.3.3) C™! <inf£(1l) < sup £i(1) < C.

By (3.4.2) for every z,y € X such that x € B(y,{) we have an inequality more refined
than (3.4.3). Namely
(4.3.4)

LYL)(x)  Dger—n () P Ind(T) exp Sp¢(T)

= <
LM ()  Dger—n(y) eXPSnd(y) — aeqs}ig(x) exp S (Yn (7))

< exp(Cip(z,y)%),

where C; = lﬂaﬁbl and y, () := T-"(y). By this estimate and by (4.3.3) we get for all

n > 1 and all ;, € X such that z € B(y,§)

£ (@) — L)) = | T — 125 <

Clexp(Cip(z,y)) — 1] < Cap(z,y)

(4.3.6)

with Cy depending on C,C; and £.

Proposition 4.3.1. There exists a positive function ug € Ho(X) such that Lo(ug) = ug
and [ugdm = 1.

Proof. By (4.3.6) and (4.3.3) the functions £ (1) have uniformly bounded norms in
Holder space Hq(X), see Ch.3.4. Hence by Arzela-Ascoli theorem there exists a limit
ugy € C(X) for a subsequence of u,, = %Z?;ol L(1), n =1,.... Of course ug € Ho(X)

C~ ! <uy < C, and using (4.3.3), a straightforward computation shows that Lo(ug) = ug
(compare 2.1.14). Also [ugdm = lim, o0 [undm = [ 1 dm = 1. The proof is finished.

[ )

5
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Combining this proposition, Proposition 4.2.0, Proposition 4.2.6 and Corollary 4.2.9 we
get the following.

Theorem 4.3.2. For every Holder continuous function ¢ : X — IR there exists a unique
invariant Gibbs state associated to T' and ¢, namely pgy = ugmg.

In the rest of this Section we provide a detailed study of iteration of Ly on the real or
complex Banach spaces C(X) and H,.

Definition 4.3.3. We call a continuous linear operator ) : B — B on a Banach space B
almost periodic if for every b € B the sequence Q™ (b),n = 0,1, ... is relatively compact, i.e.
its closure in B is compact (in the norm topology).

Proposition 4.3.4. The operators £ on C(X) have uniformly bounded norms for all
n=1,2,...

Proof. By the definition of £ and by (4.3.3) for every u € C(X):
(4.3.8) sup | L£§ ()| < sup |u|sup L£§ (1) < C'sup |u|
&

Remark that instead of referring to the form of £ one can only refer to the fact that
L is a positive operator, hence its norm is attained on 1.

Theorem 4.3.5. The operator L is almost periodic on C(X). Moreover, all the
functions £ (u) are equicontinuous and have uniformly bounded absolute values, provided
Lo’s are associated to ¢ belonging to a bounded set in H, and u taken from a family of
equicontinuous functions, of uniformly bounded absolute values.

Proof. For every x € X and n > 0 denote exp(S,¢(z)) by E,(z). Consider arbitrary
points z € X,y € B(x,£). Use the notation y, (%) := 1-"(y), the same as in (4.3.4). We
have for every u € C'(X)

L5 w)(@) — L)) = | Y @) Ea(E) — ula () Balyn (@)

TzeT " (x)

<| > w@E@) - Ealpn@)|+ | D Bulun@) (@) - ulyn(@)
)

zeT—"(x) TeT—"(z

(4.3.9) < (sup |u)Cop(z, y)* + C  sup  |u(T) — u(yn(T))]
zeT " (x)
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by (4.3.6) and (4.3.3). Denote a modulus of uniform continuity of u by h, i.e. consider
an increasing function h : IR™ — IR™ such that lim.\ g h(e) = 0 and for every 21,22 € X

lu(z1) — u(z2)| < h(p(2z1,22)). (4.3.9) gives:

(4310)  [£2(u)(x) — Low)()| < (sup [u])Capla, 1) + Chip(z,y)) = g(p(z, 9)

We conclude that all functions £f(u) have the same modulus of continuity g, depending
on h, sup|¢| and ||@||s,. They are also uniformly bounded by Proposition 4.3.4. Hence
by Arzela-Ascoli theorem the sequence L (u) is relatively compact.

If we consider a family of functions u rather than one function, we set h a modulus of
continuity of the family.

[ )

For u € H, we obtain the fundamental estimate (4.3.11):

Theorem 4.3.6. There exist constants Cs, Cy > 0 such that for every u € H,, all n =
1,2,...and A > 1 from the expanding property of ¢

(4.3.11) Vo (Ly (1)) < C3A™" g (u) + Cal|t] o,
Proof. Continuing the third line of (4.3.9) we obtain
£ (u)(z) = LG (w) ()] < llullocCap(z,y)* + Ca,e (WA p(x, y)*

We have applied here the inequality p(Z, y,,(T)) < A™"p(Z, )

This proves (4.3.11), provisionally with ¥, ¢ rather than 9,, with Cs = C from (3.4.3)
and (4.3.3) and with Cy = Cy (recall that the latter constant is of order CCy where C
appeared in (4.3.4)). Passing to 9, changes Cy to max{Cy,2C/£*}, see (3.3.8) and Ch.3.4.
[ )
Corollary 4.3.7. There exist an integer N > 0,7 < 1,Cs > 0 such that for every u € H,
(43.12) 1LY (@)l < Tllulse, + Cs lul o

Proof. This Corollary immediately follows from (4.3.11) and Proposition 4.3.4. &

In fact (4.3.12) together with (4.3.8) imply a similar fact for iterates of £~ which
resembles back (3.3.11). Namely the following holds

Proposition 4.3.8.

(4.3.13) 3Cs > 0Vn=1,2,... [|[L2N(u)]]2, < 7"(u)]|n, + Cs|lulls

13



Proof. Substitute in (4.3.12) £ (u) in place of u etc. n times using ||£7(1)]/oc < C|lt]|oc-
You obtain (4.1.13) with Cs = CC5/(1 — 7). &

In Appendix we prove a general theorem by Tonescu-Tulcea and Marinescu (abbr.:
ITM), which under assumptions (4.3.8), (4.3.12) gives an information about the spectrum
of Ly. Ch.3 Sec.5 is devoted to this. This occurs useful in other than expanding and
Holder cases. Here, in the next Section, assuming topological mixing of T', we shall proceed
directly, not referring to ITM Theorem.

Analogously to L considered on C'(X) the convergence theorem below is a special
case of a general theory of almost periodic operators, see Sec.5.
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SECTION 4. CONVERGENCE OF £". MIXING PROPERTIES OF
GIBBS MEASURES

Recall that by Proposition 4.3.1 there exists a positive function ug € Hqo(X) such
that Lo(ug) = uge.

It is convienient to replace the operator Lo by £(u) = LEg(uud))

If we denote the Operator of multiplication by a function w by the same symbol w then
we can write L( ) = Uy Yo oug. Since L and Lo = E are conjugate by the operator ug,
their spectra are the same. In addition, as this operator is positive, non-negative functions
2o to non-negative functions. Hence measures are mapped to measures by the conjugate
operator.

Proposition 4.4.2. £ = Ly where ¢ = ¢ + log ug —loguy oT = ¢ — P(T, ¢) + logugy —
logug oT.

Proof. L(u)(z) = m ZT(E):Q: w(T)ug(T) exp ¢(T) = ZT(E)::E u(z) exp(¢(T)

+log uy(z) — logug(x)) &

Note that the eigenfunction uy for £y has changed to the eigenfunction 1 for L. In
other words we have the following.

Proposition 4.4.3. £(1) = 1, i.e. for every z € X

(4.4.1) > expy(m) =1

TET-1 ()
&

Note that Jacobian of T' with respect to the Gibbs measure 1 = ugm (see Th. 4.3.2) is
(ug oT)(exp(—qS))ud_)1 = exp(—1). So for 1) the reference measure (with Jacobian exp(—1))
and the invariant Gibbs measure coincide.

Note that passing from L4, through L’g, to Ly we have been replacing ¢ by cohomo-
logical (up to a constant) functions. By Proposition 4.1.3. this does not change the set of
Gibbs states.

One can think of the transformation u — u/ug as new coordinates on C'(X) or Hqo(X)
(real or complex-valued functions). Ly changes in these coordinates to £, and the func-
tional m(u) to m(ugu). The latter, denote it by my, is the eigenmeasure for £, with the
eigenvalue 1. It is positive because the operator u, is positive (see the comment above).
So exp(—1) is the Jacobian for my, by Corollary 4.2.3. Hence by (4.4.1) m,; is T-invariant.
This is our invariant Gibbs measure p.

Proposition 4.3.4 applied to L takes the form.
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Proposition 4.4.4. ||£| = 1.

Proof. sup |ﬁ(?1)| < sup |u| because L is an operator of "taking an average” of u from
the past (by Proposition 4.4.3). The equality follows from L£(1) = 1. &

The topological exactness of T' gives a stronger result:

Lemma 4.4.5. If T is topologically exact, then given any increasing function g : IRT™ —
IR™ such that lim.\ 0 g(e) = 0, (Vd; > 0 and K > 0) (362 = d2(g. 1, K) > 0 and a positive
integer n = n(g, 01, K) > 0) such that for all ¢ € H,, with ||¢||, < K and u € C(X, IR)
with modulus of continuity g) (i.e. for every z1,29 € X |u(z1) —u(22)| < g(p(z1, 22)), and
such that [udp =0 and sup |u| > 1, we have

sup |£™(u)| < sup u| — ds.

Proof. Fix € > 0 so small that g(e) < §1/2. Let n be ascribed to e according to
Proposition 3.3.10, namely (Va)T"(B(z,¢)) = X) . Since [udp = 0, there exist y1,y2 € X
such that u(y1) < 0 and u(y2) > 0. For an arbitrary z € X choose 2’ € B(y1,e) N T~ "(x)
(it exists by the definition of n). We have u(z') < d1/2. So

L)) = ul@) exp Supp )+ Y (@) exp S (@)

zeT—"(x)\{='}

< (sup fu| — 61/2) exp Spip(z') +suplul Y expSpip(T)
zeT—"(z)\{z'}

<suplul( Y expSuth(E)) — (61/2) exp Spip(a') = sup [u] — (31/2) exp Sntp(z).

TeT " (x)
Similarly for 2’ € B(y2,e) N T~ "(z)
L™ (u)(x) > —sup |u| + (81/2) exp Spp(a’).
Thus we proved our Lemma, with 02 := (01/2) infze x exp Sp¢(x).
Note that we used here the existence of a uniform bound, sup || < sup |¢| + 2sup |-

log(ug)| and sup |log(ugs)| < logC, where C depends on K, see (4.2.3), (3.4.2), (3.4.3).
&

We shall prove now a theorem which completes Proposition 4.3.4 and Theorem 4.3.5.

Theorem 4.4.6. For every u € C(X, ) and T, topologically exact open expanding map,
we have

(4.4.2) c "Ly(u) —mg(u)ug — 0 (coverges uniformly) as n — oo
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In particular if [wudyp = 0 then
(4.4.3) LM(u) =0

Moreover the convergences in (4.4.2) and (4.4.3) are uniform in every set of equicon-

tinuous functions u of uniformly bounded absolute values, and ¢ in a bounded set in
Ha(X).
Proof. For real-valued u, with [udy = 0, the sequence a,(u) := sup |£7(u)| is decreasing
by Proposition 4.4.4. Suppose that lim,_,, a, = a > 0. By Theorem 4.3.5 all the iterates
£"(u) have a common modulus of continuity g. So applying Lemma 4.4.5 with this ¢ and
61 = a we find ng, dy such that sup [£"0 (ﬁ"(u))\ < sup |£"(u)| — 0y for every n. So for
n such that sup |£"(u)| < a + 83 we obtain sup |£"+"0 (u)| < a, a contradiction with the
definition of a.

This proves (4.4.3). For an arbitrary u € C(X,IR) we obtain from (4.4.3) due to
L(1)=1

L7 (w) — p(u)l = £(u — p(u)ll) — 0.

Change now coordinates on C(X) to go back to Ly and next replace it by ¢='L4. One
obtains (4.4.2). Given a complex-valued u decompose it into sum of real and imaginary
part.

If we allow v and ¢ to vary we modify the proof. The point is that by Lemma 4.4.5, for
every 61 > 0, for every m > sup |uln(g, 01, K)/d2(g, 1, K), we get in sup |u|/d2(g, 01, K)
steps, sup |[£™(u)| < 61, where g is the modulus of continuity for the family {£"(u)}
provided by Theorem 4.3.5, and K bounds the norm in H, of the functions ¢. Letting
01 — 0 proves the Theorem. F

Note that (4.4.2) means weak™-convergence of measures

nli)ngo_ Tz:( )55 X exp(Sp¢(T))/c" — ugp(x)my
zel'—"(x

for every x € X. Using (4.4.2) also for u = 1 we obtain

(4.4.3) lim Y 0 x exp(Sud(T))/L4(1) () = my
TeT—"(x)
In the sequel one can consider either C(X, IR) or C(X, ). Let us decide for C(X, T).
Note that by L£3(mg) = cmg we have the L-invariant decomposition

C(X) = span(ug) @ ker(my).
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For u € span(ug) we have L4(u) = cu. On ker(mg), by Th.4.4.6., ¢c™" LY — 0 in strong
topology. Denote (£¢)|ker(m¢) by Lyxer,¢- For Lyer 4 restricted to H, we can say more on
the above convergence:

Theorem 4.4.7. There exists an integer n > () such that

le™" Lher,p 2o < 1.

Proof. Again it is sufficient to consider real v with p(u) = 0 and the operator L. Set
6 = min{1/8Cy, 1/4}, with Cy from (4.3.11). By Th.4.3.6. for u such that [jul|z;, < 1 all
functions £™(u) have the same modulus of continuity g(e) = Cre® for C7; = C3 + Cy > 0.
Hence from Theorem 4.4.6. we conclude that (In1)(Vn > nqy)(Vu @ [|ully, <1)
(4.4.4) L7 () ]loe < 6.
Next, for ny satisfying CsA=™2*C7 + Cyd < 1/4, again by Th.4.3.6. we obtain
Do (L7 (L™ (1)) < 1/4.

Hence |[£™+72 ()3 < 1/2. Theorem has been proved with n = ny + ns. &

Note that Theorem 4.4.6. could be deduced from Theorem 4.4.7 by approximation of
continuous functions uniformly by Holder ones, and using Proposition 4.3.4.

Corollary 4.4.8. The convergences in Theorem 4.4.6 for u € H, are exponential. Namely
there exist 0 < 7 <1 and C > 0 such that for every function v € H,

(4.4.4) |le™" LG (u) —mg(u)uglloo < [le™™ LG (u) —mg(u)uglla, < Cllu—me(u)ugllp, 7
In particular if [udp = 0 then

(4.4.47) 1L (W)]loo < L™ (W)[#a < Cllulla, 7"

Now we can study ”"mixing” properties of the system (7, ) for our invariant Gibbs
measure p. Roughly speaking the speed of mixing is related to the speed of convergence
of Ly, , to 0.

The first dynamical (mixing) consequence of Theorem 4.4.8 is the following result
known as the exponential decay of correlations, see the definition in Ch.1.11.

Theorem 4.4.10. There exists C > 1 and p < 1 such that for all f € H,, g € LY(p)

Cn(f.9) <Cp"|f — Eflln.llg — Egl1.
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Proof. Write FF = f — Ef.G =g — Eg. We obtain

Coldon) = | [P Goryap = | [ £2(F (@ o) dy

~| [ 6 &P au <Gl Pl

We have used here a very important identity true for arbitrary F,G (EF, EG = 0 did not
matter), that

(4.4.5) LYF-(GoT™) =G - L"(F),
which follows immediately from the definition of £ with an arbitrary potential ¢. Namely

Ly"(F-(GoT™)(z)= Y G@)F(@) exp Suth(T) = Gla)Lj(F)(2)

zeT—"(x)
&

Exercise. Prove that for every p square integrable functions f, g one has [ f- (g o
T")dy — Ef - Fg. (Hint: approximate f and g by Holder functions. Of course the
information on the speed of convergence would become lost.)

The convergence in the exercise is one of equivalent definitions of the mizing prop-
erty, see Ch.1.10. We proved however earlier the stronger property: measure-theoretical
exactness, Th. 4.2.7.

We can however make a better use of the exponential convergence in Theorem 4.4.10.

Theorem 4.4.11. Let (X, T) be a topologically mixing topological one-sided Markov
chain with T the shift to the left and d > 2 symbols, see Ch.0. Let F be the o-algebra gen-
erated by the partition A into sets with fixed 0-th coordinate, namely by A = { X1, ..., X4}
where X; = {(ag,a1,...) € X : ag = j}. For every 0 < k <[ write F} for the o-algebra
generated by Al = {\/zzk T=7(A) i.e. by the sets with fixed k, k + 1,...,I’th coordinates.
Let ¢ : X — IR be Holder continuous.

Then there exist 0 < p < 1,C > 0 such that for every £ > 0, f : X — IR measurable
in F} and g being pg-integrable

(4.4.6) | /f (goT™) duy — Ef - Eg| < Cp" *|f — Ef|l1llg — Eqgllx-
Proof. Assume Ff = Fg =0. By Theorem 4.4.10
(447 / f(goT™) du| = / g £ R (R du| < [lglhCom M IR (),
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Decompose f into real and imaginary parts and represent each one by the difference of
nowhere negative functions. This allows in the estimates which follow to assume that
f=0.

Notice that for every cylinder A € A and = € A, in the expression

()= 3 Fy) ep Siily)

Tk (y)==
there is no dependence of f(y) on & € A because f is constant on cylinders of AF. So

Al
w < sup sup eXp(Skqp(y) — Smﬁ(y')) <(C
inf 4 LF(f BeAb y,y'eB

a constant C resulting from Ch.3.4. So
. C 4 C

sup £4(1) < o [ £ dn = el <

A i

u(4) a1 = i) W = €,

where the latter equality defines C’.

It is left yet to estimate the ¥, ¢ and ¥, pseudonorms of ﬁk(f), cf.Ch.3.4. We assume
that ¢ is less than the minimal distance between the cylinders in A. We have similarly to
(4.3.6), for z,y belonging to the same cylinder A € A,

: ()] = [ (G ey

< (exp Crp(z, y)* = DICf[lr < C"p(z, y)*[ fl]1.

for a constant C”'.
Hence, 94 ¢(LE(f)) < || f||1C" and, passing to ¥, as in Ch.3.4,

9o (LE(F)) < || flla max{C", 20°¢}).
Thus, continuing (4.4.7), we obtain for a constant C'
Cu(f.9) < If1llglhCp"~".

[ )

An immediate corollary from Theorem 4.4.11 is that for every By € F¥ and Borel B,
(1(3 Bs € fgo)

(4.4.8) [1(Br N T~"(By)) — p(B1)p(Ba)| < Cp™ " pu(B1)p(Bs),
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compare (1.11.9). Therefore, for every non-negative integer ¢ and every A € F¥ for the
conditional measures with respect to A

Y T (B)A) — u(B) < Cpm k.
BeA!

_ This means that A satisfies the weak Bernoulli property, hence the natural extension
(X, T, i) is measure-theoretically isomorphic to a two-sided Bernoulli shift, see Ch.1.11.

Corollary 4.4.12. FEvery topologically exact, open, distance expanding map T, with
invariant Gibbs measure p = pg for a Holder continuous function ¢, has the natural
extension (X, T, i) measure-theoretically isomorphic to a two-sided Bernoulli shift.

Proof. Let 7 : 34 — X be the coding map from a one-sided topological Markov chain,
due to a Markov partition, see Ch.3.5. Since 7 is Holder, the function ¢ o 7 is also Holder
continuous, hence we can discuss the invariant Gibbs measure pgor. For this measure
we can apply Theorem 4.4.11 and its consequences. Recall also that by Theorem 3.5.5 w
yields a measure-theoretical isomorphism between figor and pgor o 71, Therefore to end
the proof it is enough to prove the following.

Lemma 4.4.13. The measures g and figor © 71 coincide.

Proof. The function exp(—¢ om+ P — h) for h :=log ugor + log tpor © 0), is the strong
Jacobian for the shift map o and the measure 4o, where P is the pressure for both
(0,¢pom) and (T, ¢), see Theorem 3.5.4. Since 7 yields a measure-theoretical isomorphism
between pgor and figor © ™1, the measure figor o m~ ! is forward quasi-invariant under 7
and has the strong Jacobian exp(—¢ + P — hon~1). The same up to a bounded function
factor is the Jacobian of pg. Therefore both measures are equivalent, hence as ergodic
they coincide. &
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Chapter 3, Section 5: More on almost periodic operators
version of June 9, 1997

In this Section we show how to deduce Theorem 4.4.6 (on convergence) and Theo-
rem 4.4.7 and Corollary 4.4.8 (exponential convergence) from general functional analysis
theorems. We do not need this later on in this book, but the theorems are useful in other
important situations .....

Recall (Def.4.3.3) that @ : F — F a continuous linear operator of a Banach space
is called almost periodic if for every b € F' the sequence Q™ (b) is relatively compact. By
Banach-Steinhaus theorem there is a constant C' > 0 such that ||Q™| < C for every n > 0.

Theorem 4.5.1. If ) : F' — F'is an almost periodic operator on a complex Banach space
F', then

(4.5.1) F=F,0F,,

where Fy = {z € F : lim,,,o, A"(x) = 0} and F,, is the closure of the subspace of F
generated by eigenfunctions of eigenvalues of modulus 1. Adding additional assumptions
one gains additional information on this decomposition.

Definition 4.5.2. Let FF = C(X) and suppose @ : F — F is positive, namely f > 0
implies Q(f) > 0. Then Q is called primitive if for every f € C(X),f > 0, f # 0 there
exists n > 0 such that for every z € X it holds Q™(f)(xz) > 0. If we change the order of
the quantificators to: ... for every x there exists n ..., then we call QQ nondecomposable.

Theorem 4.5.3 For () : C(X) — C(X) (real or complex) linear positive primitive operator
of spectral radius equal to 1 we have dim span(C(X), = 1 in the decomposition (4.5.1),
the eigenvalue corresponding to C(X), is equal to 1 and the eigenfunction is positive
(everywhere > 0). More precisely there exists a probability measure mg on X and a
positive function ug such that for every u € C'(X) we have strong convergence

Q" (u) — uQ/udm.

Proof. This is just a repetition of considerations of Sections 2-4. First find a prob-
ability measure m such that Q*(m) = m as in Th.4.2.4. (we leave a proof that the
eigenvalue is equal to 1, to the reader). Next find for ) an eigenfunction ug > 0 as
lim,, oo %Z?:_Ol Q7(11). We have ug = Q(ug) > 0 because () is nondecomposable. Fi-
nally for Q(u) = Q(uuQ)uél we have Q(]l) = 1 (a positive operator with this property is
called stochastic) and we repeat Proof of Th. 4.4.6, replacing the property of topological
exactness by primitivity. [

Notice that this yields Theorem 4.4.6 because of
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Proposition 4.5.4. If an open expanding map T is topologically exact then for every
continuous function ¢ the transfer operator () = 55 is primitive.

The proof is easy, it is in fact contained in Proof of Lemma 4.4.5.

Assume now only that 7T is topologically transitive. Let Q* denote the sets from spectral
decomposition X = Q = J;_, QF as in Th.3.3.4. Write ug € C(X) for an eigenfunction
of the operator @) as before. Notice now (exercise!) that the space F, for the operator
Q = ﬁg is spanned by n eigenfunctions vy = Y ,_; Xar A *ug, t = 1,..,n, where x
means indicator functions, with A = 27/ Each v; corresponds to the eigenvalue \‘.
Thus the set of these eigenvalues is a cyclic group.

It is also an easy exercise to describe F, if X = Q = U‘j]:1 UZ(:J% QF. The set of eigen-
values is the union of J cyclic groups. It is harder to understand F;, and the corresponding
set of eigenvalues for T open expanding, without assuming 2 = X.

References to the above theory are:

[LL] M. Yu. Lyubich, Yu. I. Lyubich: Perron-Frobenius theory for almost periodic
operators and semigroups representations. Teoria Funkcii 46 (1986), 54-72.

[L] M. Yu. Lyubich: Entropy properties of rational endomorphisms of the Riemann
sphere. ETDS (1983), 351-385.

A general theorem related to Theorem 4.4.7 and Corollary 4.4.8 is the following.

Theorem 4.5.5 (Ionescu—Tulcea and Marinescu) Let (F,|-|) be a Banach space equipped
with a norm |- | and let E C F be its linear subspace. Moreover the linear space F is
assumed to be equipped with a norm || - || which satisfies the following two conditions.

(1) Any bounded subset of the Banach space E with the norm ||-|| is relatively compact
as a subset of the Banach space F' with the norm |- |.

(2) If {z,, : n = 1,2,...} is a sequence of points in F such that ||z,| < K; for all
n > 1 and some constant K1, and if lim,,_, o, |z, — x| = 0 for some = € F, then z € E and
Jall < 1.

Let Q : FF — F be a bounded linear operator which preserves E, whose restriction
to E is also bounded with respect to the norm || - || and which satisfies the following two
conditions.

(3) There exists a constant K such that |Q"| < K foralln =1,2,....

(4)3N>1 Fr<1 3Ky >0 |[|QN(2)] < 7|lz|| + Ka|z| for all z € E.

Then

(5) There exists at most finitely many eigenvalues of @) : FF — F of modulus 1, say

Y155 Vp-
(6) Let F; ={x € FF: Q(z) =z}, i=1,...,p. Then F; C E and dim(F};) < oc.
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(7) The operator @ : F' — F' can be represented as

p
Q:Z%’QH-S

=1

where @; and S are bounded, Q;(F') = F;, sup,,»; [S™| < oo and

LS

Q?=Qi, QiQ;=0(i#j), QiS=5Q;=0

Moreover
(8) S(F) C F and S|g considered as a linear operator on (F,|| - ||), is bounded and
there exist constants K3 > 0 and 0 < 7 < 1 such that

15" Bl < K57"
for all n > 1.

The proof of this theorem can be found in [...] in the case N = 1 (see assumpion 4).
Its validity for any N > 1 is mentiond in Section 9, p.145 of this paper. In Appendix ...
we give a complete proof.

Now, in view of Theorem 3.4.1 and Corollary 4.3.7, Theorem 4.5.5 applies to the operator
Q = Lz : C(X) — C(X) if one substitutes F = C(X), E = Hq(X). If T is topo-
logically exact and in concequence @ is primitive on C(X), then dim(®F;) = 1 and the
corresponding eigenvalue is equal to 1, as in Theorem 4.5.3.

Example of application Lasota-Yorke, Rychlik: functions of bounded variation
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Sec. 4.6. UNIQUENESS OF EQUILIBRIUM STATES

We proved already the existence (Th.4.3.2) and uniqueness (Cor.4.2.9) of invariant
Gibbs states and proved that invariant Gibbs states are equilibrium states (Prop.4.1.5).
Here we shall give 3 different proofs of the uniqueness of equilibrium states.

Let v be a T-invariant measure and let a finite real function .J,, be the corresponding
Jacobian in the weak sense, .J,, is defined v-a.e. . By the invariance of v we have v(F) =
0= v(T YF)) =v(E)=0,ie. vis backward quasi-invariant. At the beginning of Sec.2

-1
we defined in this situation ¥ = &, o T' with &, = dwzg}" defined for v-a.e. point in the
domain of a branch T, . (In Sec.2 we used notation ®; for ®,.) ®, is strong Jacobian for
T, 1.

Notice that for v-a.e. z

1, if &,(z 0;
(4.6.1) (Jl,oTz_l)-(I)m(z):{ L (=) #0:
0, if ®,(z)=0.
Indeed, after removal of {z : ®,(2) = 0} the measures v and v o T~! are equivalent,

hence Jacobians of T and T, ! are mutual inverses. We can fix .J, arbitrary, bounded, on
T=({z: ®,(2) = 0}).
Recall that we have defined £, : L'(v) — L'(v), the transfer operator associated with

the measure v as follows
L)) = D g@)T(y).
yeET~1(x)

Remind that if 7" maps a set A of measure 0 to a set of positive measure, then ¥ is
specified, equal to 0, on a subset of A that is mapped by T to a set of full measure v in
T(A).

Then since v is T-invariant, £, (1) = 1 and for every v-integrable g we have
[ L.(g9)dv = [gdv.

Lemma 4.6.1. Let ¢ : X — IR be a continuous function such that £, (1) = 1, i.e. for
every ., ZUET*I(Z‘) expt(y) = 1, and let v be an ergodic equilibrium state for ¥. Then

J, is strong Jacobian and J, = exp(—1) v-almost everywhere .

Proof. The proof is based on the following computation using the inequality 1+log(x) < z,
with the equality only for x = 1.

lz/lldyz/,CV(Jl,esz/))dV:/Jl,exp@/)du

> /(1+10g(J,,eXpw))dl/—1—l— /¢di/—|— /logJ,,dl/—1+/¢du+h,,(T) > 1.

To obtain the first inequality, write £, (J, exp9)(z) = > cr1(y) Jo(¥)(expip(y))¥(y)
which is equal to 1 if (Vy € T '(z))¥(y) > 0 or < 1 otherwise, by (4.6.1) and by
ZyET*](;p) exp ¢(y) = 1
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The last inequality follows from

/wdy + h,(T) = P(3)) > limsup % log Z exp Sp¥(y) =0,

n—00 yeT ()

true, see Th.2.2.10, since all points in T~ "(x) are (n,n)-separated, n defined in Ch.3.
Therefore all the inequalities in this proof must become equalities. Therefore the
Jacobian @, # 0 for each branch T, ! and J, = exp(—1)), v- a.e. &

Notice that we have not assumed 1 is Holder above. Now we shall assume Holder.

Theorem 4.6.2. There exists exactly one equilibrium state for each Holder continuous
potential ¢.

Proof. Let v be an equilibrium state for ¢. As in Sec.4 set ) = ¢ — P(T, ¢) +1loguyoT —
logug and v is also equilibrium state for ¢». Then by Lemma 4.6.1

AT B ) = [ e (ST ) dvte) =

Frow e ey 595 =P " ) ),

So, by pre-bounded distortion lemma (Lemma 3.4.2)

3

influg| o1 _ v(T;™(B(T"(2),€))) < Sup Jug|
sup |ug| = exp(Sng — nP(T,¢))(2) ~— influg|

where B = inf{v(B(y,&)}. It is positive by Proposition 4.2.5.
Therefore v is an invariant Gibbs state for ¢; unique by Corollary 4.2.9. &

Remark 4.6.3. In fact already the knowledge that exp(—1) is weak Jacobian implies
automatically that it is a strong Jacobian. Indeed by the invariance of v we have

Y ody=1= D expi(y)

yeT " (z) yeT ! (z)

and each non-zero summand on the left is equal to a corresponding summand on the right.
So there are no summands equal to 0.

Uniqueness: Proof II. We shall provide a new proof of Lemma 4.6.1. It is not so
elementary as the previous one, but it exhibits a relation with the finite case, the prototype
lemma in Introduction.

For every y € X denote A(y) := T~ ! (T({y})) Let {ra} denote the canonical system

of conditional measures for the partition of X into the sets A = A(y), see Ch.1.6. Since
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there exists a finite one-sided generator, see Lemma 2.4.5, with the use of Theorem 1.9.7
we obtain

P(T, ¢) = /wdy— E\T /wdy—
/ > v (N 1o (vagy ({(2)) + (=) dvly).

z€A(y)

The latter expression is always negative except for the case v4(,)(2) = exp(z) v-a.e.

by the prototype lemma. So for a set Y = T—1 (T(Y)) of full measure v, for every y € Y
we have

(4.6.2) VA(y)({y}) = exp¢(y), in particular VA(y)({y}) # 0.

So for every Borel set B C Y such that T is 1-to-1 on it, since B intersects each
A(y) C T~Y(T(B)) at precisely one point, we obtain

Notice that we have proved in this computation a general useful fact that 1/v4(,)({y}))
is weak Jacobian for T and v. In absence of the property (4.6.2) that v4(,)({y}) # 0 we
should have subtracted the set F' = {y : v4(,)(y) = 0} of measure 0 under the integrals.

Let us go back to our situation. By (4.6.2) this Jacobian is equal to exp —t). Observe
also that v(T(X \'Y)) = 0 because X \'Y = T}(T(X \ Y)) and v is T-invariant. So
exp —1) is strong Jacobian.

Uniqueness. Proof III. Due to Corollary 2.5.7 it is sufficient to prove the differentia-
bility of the pressure P(T,¢) as a function of continuous function ¢ at Holder ¢ in a set
of directions dense in the weak topology on C(X).

Lemma 4.6.4. Let ¢ : X — IR be a Holder continuous function and pg denote the
invariant GGibbs measure. Let F': X — IR be continuous. Then, for an arbitrary = € X,

S er e SaF exp(Su0)(v)
4.6.3 lim — =T = | B
( ) 'nLOC n ZyET " (z) exp(Snd)(y) / "o

The convergence is uniform for an equicontinuous family of F’s and ¢’s in a bounded set
in the Banach space of Holder functions H, (X).
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Proof.
The above left hand side expression can be written in the form:

AN Ly(FoTi)(x) LY Lni(F L LI(1) ()
(4.6.4) A @) = Jim = L (1) (z) ‘

where L = Ly = e*P(T’d’)qu, compare the beginning of Sec.3.
Since F' - £7(11) is an equicontinuous family of functions we obtain

LrI(F - LI (1)(2) — ug(w) /F - LI(1) dmyg

as n — j — oo, see Remark 4.4.6a.
Therefore continuing (4.6.4) we obtain

1 F.Li(l)d
o w s ue(@) [ F LI (W) dmg Z/F o1 dm¢_/pdﬂ¢
n—)OC/I’L

no0 ug(7)

since £7 (1) uniformly converges to ug and iy = ugmy. &

Now we shall calculate the derivative dP(T, ¢ + tv)/dt for every Holder ¢ and v at
every t. In particular, this will give differentiability at ¢ = 0. Thus our dense set of
directions is spanned by Holder functions +.

Theorem 4.6.5. We have

d
%P(T ¢+ty) = /’Yd,u¢+t7

for all ¢t € IR.
Proof. Write

Pult) = “log Y exp(Sa(+ 1) (w):

yeT—"(z)

& yer—n(z) Sn¥(y) exp(Sn (4 + 1)) (y)
ZyET*"(m) eXp( W(¢ =+ t’Y) (y>
By Lemma 4.6.4 lim,_, o Q,(t) = f*ydu¢+t,y and the convergence is uniform with re-

spect to t. Since, in addition, lim,,_, P,(t) = P(t), we conclude that P(T, ¢ + tvy) =
lim,, 00 P, (t) is differentiable and the derivative is equal to the limit of derivatives:

11mn—>oo Qn f’)’ d,u'dl—l-t'yu *

(4.6.5) Qn(t) := (dP,/dt)(t) =

Notice that the differential (Gateaux) operator v — [ v dpug, is indeed that one from
Proposition 2.5.6. Notice also that a posterior:, by Cor.2.5.7, we proved that for ¢ Holder
continuous, P(T, ¢) is differentiable in direction of every continuous function. This is by
the way obvious in general: two different supporting functionals are different restricted to
any dense subspace.
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§4.7. Probability laws and o2(u,v).
Exponential convergences in §4.4 allow to prove the probability laws.

Theorem 4.7.1. Let T : X — X be an open distance expanding topologically exact map
and p the invariant Gibbs measure for a Holder function ¢ : X — IR. Then if g : X — IR
satisfies

(4.7.1) Z 1£™ (g — 1(9))]2 < oo,

in particular if g is Holder continuous, it satisfies CLT. If g is Holder continuous it satisfies

LIL.

Proof. First show how CLT can be deduced from Theorem 1.11.5. We can assume
1(g) = 0. Let (XF, i) be the natural extension (see Ch.1.7). Recall that X can be viewed
as the set of all T-trajectories (z,)ncz (or backward trajectories), T((zn)) = (£n41) and
Tn((25)) = &, It is sufficient now to check (1.11.12) for the automorphism T the function
g = gom and .7-"0 = 7~ 1(B) for the completed Borel o- algebra B. Since g is measurable
with respect to fo it is also measurable with respect to all ]:n —T- (]:"0) for n < 0 hence
§ = E(§|F,). So we need only to prove Zn>0 | E(G|Fn)l2 < oo.

Let us start with a general fact concerning an arbitrary probability space (X, F, u)
and a p-preserving endomorphism 7.

Lemma 4.7.2. Let U denote the unitary operator on L2(X, F, u) associated to T', namely
U(f) = f oT. Then for every k > 0 the operator U¥U*¥ is the orthogonal projection of
Hy=L*(X,F,p) to Hy = L>(X, T7*(F), p).
Proof. U* is the operator in the space conjugate to Hy which is Hy itself (a Hilbert space).
Uk (u) = uo T* is measurable with respect to T~%(F), so the range of UFU*¥ is indeed in
Hy = L*(X, T *(F), p).

For any u,v € Hy write [w-vdy =< u,v >, the scalar product of v and v. For
arbitrary f,g € Hy we calculate

<UPU(f), g o TF >=< U U**(f),U*(g) >

=< U*M(f), 9 >=< f,U"(g) >=< f,goT" >

It is clear that all functions in Hy = L%(X,T~F(F),u) are represented by g o TF for
g € L3(X, F, ). Therefore by the above equality for all h € Hj, we obtain

(4.7.2) < [-UU**(f),h>=< f,h > — < f,h>=0.

In particular for f € Hy we conclude from (4.7.2) for h = f — UFU**(f), that < f —
URU*F(f), f — URU*F(f) >= 0 hence UFU**(f) = f. Therefore UFU** is a projection to
Hj,, which is orthogonal by (4.7.2). L]
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Since the conditional expectation value f — E(f|/T~*(F)) is the orthogonal projection to
Hj, we conclude that E(f|T—%(F)) = U*U**(f). Now, let us pass to our special situation
of Theorem 4.7.1.

Lemma 4.7.3. For every f € L?(X,F,u) we have U*(f) L(f).
Pr90f. <U*f,g >=< [ Ug>=[f-(9goT)dp= fﬁ (f-(goT))du=
JL)) -gdp=<L(f),9 > &

Proof of Theorem 4.7.1. Conclusion. We can assume that p(g) = 0. We have

Y IE@GIF) 2 =Y U (g)]l2 = Z 1£™(9)]l2 < oo,

n>0 n>0 n>0

the latter has been assumed in (4.7.1). Thus CLT has been proved by applying Theorem
1.11.5. If g is Holder continuous it satisfies (4.7.1). Indeed £¥(g) converges to 0 in the sup
norm exponentially fast as k& — oo by Corollary 4.4.8 (see (4.4.4”)). This implies the same
convergence in L? hence the convergence of the above series. &

Now let us prove CLT and LIL with the use of Theorem 1.11.1 for Holder continuous
g. As in Proof of Corollary 4.4.12, let # : ¥4 — X be a coding map from a 1-sided
topological Markov chain of d symbols due to a Markov partition, see Ch.3.5. Since 7 is
Holder continuous, if g and ¢ are Holder continuous, then the compositions g o w, ¢ o
are Holder continuous. = is an isomorphism between the measures pgor on X4 and pg
on X, see Ch.3.5 and Lemma 4.4.13. The function g o 7 satisfies the assumptions of
Theorem 1.11.1 with respect to the o-algebra F associated to the partition of ¥ 4 into 0-th
cylinders, see Theorem 4.4.11. ¢-mixing follows from (4.4.7) and the estimate in (1.11.7)
is exponential with an arbitrary é due to the Holder property of g o . Hence, by Theorem
1.11.1, g o  and therefore g satisfy CLT and LIL.

In Section 4.6 we computed the first derivative of the pressure function. Here using the
same method we compute the second derivative and see that it is a respective dispersion
(asymptotic variance) o2, see Ch.1.11.

Theorem 4.7.4. For every ¢, u,v : X — IR Holder continuous functions there exists the
second derivative
2

(4.7.2) P(T, ¢+ su+tv)|s=t=0 = lim — /S (u — peu)Sn(v — pev) dug,

0s0t n—00 N
where p4 is the invariant Gibbs measure for ¢. In particular
2
o2
(where the latter is the asymptotic variance discussed in CLT, Ch1.11). In addition, the
function (s,t) — P(T, ¢ + su + tv) is C*-smooth.

P(T, ¢+ tv)|i—o = O'Z¢ (u)
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Proof. By Ch.4.6, see (4.6.3), (4.6.5),

0> 9 w 2yeTn(x) Snv(y) exp S (¢ + su)(y)
P(T t)|i—o = =— lim =% i
psdr 0 = G S i) DS (B + 50) ()

(4.7.3)

Now we change the order of 9/0ds and lim. This will be justified if we prove the uniform
convergence of the resulting derivative functions.

Fixed x € X and n we abbreviate in the further notation ZueT*” () 1O Zy and compute

0 (22, Snv(y) exp Sn(+ su)(y)y
)= 5 s ) )

22y Snt(y)Snv(y) exp Sn(d + su)(y)
2y €xXD Sn(¢ + su)(y)

(32, Snuly) exp Su(¢ + su)(y)) (32, Snv(y) exp Su(d + su)(y))
(3, exp Su( + su)(y))”

L7((Snu)(Snv))(z) _ L(Snu)(z) L™(Snv)(2)
Lr(1)(x) Lr(W)(z) L) (x)

As in Section 6 we write here £ = Ly = e_P(T’¢+5“)E¢+su. It is useful to write the later
expression for F,(s) in the form

(4.7.4) Fo(s) = / (Stt) () djigm — / (Snt) dy / (Snv) dyg

or

(4.7.5) F,(s) = i /(u oT" — pgn(uoT))(woT? — g n(voT?)) dpg n,

1,j=0

where pi, ., is the probability measure distributed on T~"(x) according to the weights
exp(Sn (¢ + su))(y)/ X2, exp Sn(d + su)(y).

Note that & F,(s) with F,(s) as in the formula (4.7.5) resembles already (4.7.2) because
Psn — Mgty in the weak*-topology, see (4.4.3"). However we still need to work a little
bit.

For each 4, j denote the respective summand in (4.7.5) by K; ;. To simplify notation denote
uwoT* by u; and v o T? by v;. We have

£n((“i — s i) (V5 — ,Us,n”j)) (z)
(1))

Kij =
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and for 0 <7 < j < n, using (4.4.5) twice,
Lr=i ((ﬁj_i((u — s nty) LH(1))) (v — usmvj)) (x)
(4.7.6) K .
‘ L)

By Corollary 4.4.8 for 7 < 1 and Hélder norm || - ||, for an exponent az > 0, transforming
the integral as in Proof of Theorem 4.4.10, we get

17 (0 = ) £0) = g [ A = i), < €7

where C' depends only on Holder norms of u and ¢ + su. The difference in the large
parentheses, denote it by D; ., is bounded by Ct"~* in the Holder norm, again by Corollary
4.4.8.

We conclude that for all j the functions

Lj = Zﬁj_z((u - Hsnuz)'cz(]l))

i<j

are uniformly bounded in the H6lder norm || - ||3, by a constant C' depending again only
on ||u||y, and ||¢ + sul|3,. Hence summing over 7 < j in (4.7.6) and applying £"~7 we

obtain
E K E — U ) d
H 1,5 / ,U'S nuz s.,n'Uj) md)—l—su

Here C depends also on ||v||g,. We can replace the first sum by the second sum without
changing the limit in (4.7.3) since after summing over j = 0,1,...,n — 1, dividing by n
and passing with n to oo, they lead to the same result. Let us show now that ps , can be
replaced by mg4s, in the above estimate without changing the limit in (4.7.3). Indeed,
using the formula ab — o't/ = (a — a’)b’ + a(b — '), we obtain

<Cr,

‘/(Uw - m¢+suui)(vy Meptsulj )quﬁ—keu - /( — Hs, nu7>( — Ms,nUj )dm¢+eu S
|(ths i — Meptsuti) - (Mgtsuvs — fs,n0j)+

_|_

/(uv - m¢+suu7) (/1/9 nUj — Mep4suUj )qu’)+9u

Since D; ,, < C7m™ " and D;, < C7" 7, the first summand is bounded above by 77 #7717,
Note that the second summand is equal to 0. Thus, our replacememnt is justified.
The last step is to replace m = mg44, by the invariant Gibbs measure 1 = g4 su-

Similarly as above we can replace m by p in mu;, mv;. Indeed,
(4.7.7)

lmu; — pu;| = |/u L) dm — /uu¢+w dm| = / — Ugpysu) dm| < Cm(u)T’
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Thus the resulting difference is bounded by Cm(u)m(v)7é7r/. Finally we justify the re-
placement of m by u at the second integral in the previous formula. To simplify notation
write F' = u — pu, G = v — pwv. Since j > i, using (4.7.7), we can write

‘/(FOTi)(GOTj)dm—/(FoTi)(GoTj)dM‘ _
| [P (Gor i otiam— [(F(GorI )0

<ort / F - (GoT7 Y| dm < Cm(F)Ym(G)r'r7 " = Cm/(F)m(G)1?

by Theorem 4.4.10 (exponential decay of correlations), the latter C' depending again on
the Holder norms of u,v,¢ + su. Summing over all 0 < ¢ < j < n gives the bound
Cm(F)m(G) Z?:_Ol 477 and our replacement is justified. For ¢ > j we do the same re-
placements changing the roles of u and v. The C?-smoothness follows from the uniformity
of the convergence of the sequence of the functions F,,(s), for ¢ + tv in place of ¢, with
respect to the variables (s,t), resulting from the proof. ' 3

Exercises.

Exercise 1. Prove that (4.1.1) with an arbitrary 0 < ¢’ < & in place of £ implies (4.1.1)
for every 0 < ¢ < ¢ (with C depending on &') .
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CHAPTER 6
FRACTAL DIMENSIONS

In the first section of this chapter we we provide a more complete treatment of outer
measure indirectly begun in Chapter 1. The rest of this chapter is devoted to present basic
definitions of pressure related to Hausdorff and packing measures, Hausdorff and packing
dimensions of sets and measures and ball-counting dimensions.

§6.1 OUTER MEASURES

In Section 1.1 we have introduced the abstract notion of measure. In the beginning of this
section we want to show how to construct measures starting with functions of sets called
outer measures which are required to satisfy much weaker conditions. Our exposition of
this material is brief and the reader should find its complete treatment in all handbooks
of geometric measure theory (see for ex. [Falconer, 1985], [Ma] or [Pe]).

Definition 6.1.1 An outer measure on a set X is a function g defined on all subsets of X
taking values in [0, co] such that

(6.1.1) wu(@) =0,
(6.1.2) u(A) < u(B)if ACB
and

(6.1.3) n(U An) < D7 nlAn)

for any countable family {A4,, : n = 1,2,...} of subsets of X.

A subset A of X is called p-measurable or simply measurable with respect to the outer
measure p if and only if

(6.1.4) u(B) > u(BOA)+ (B A)

for all sets B C X. Check that the opposite inequality follows immediately from (6.1.3).
Check also that if p(A) = 0 then A is y-measurable.

Theorem 6.1.2. If i is an outer measure on X, then the family F of all u-measurable
sets is a g-algebra and the restriction of p to F is a measure.
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Proof. Obviously X € F. By symmetry of (6.1.4), A € F if and only if A° € F. So,
the conditions (1.1.1) and (1.1.2) of the definition of o-algebra are satisfied. To check
condition (1.2.3) that F is closed under countable union, suppose that Ay, As,... € F and
let B C X be any set. Applying (6.1.4) in turn to Ay, A, ... we get for all £ > 1

p(A) = p(B N Ay) + p(B\ Ay)

(BN A+ p((B\ A1) N Az) + u(B\ A1\ As)

(AVARAVARLVS

Y

iu ((B\JUAi) ﬂA]) + pu(B\ LkJAj)

i=1 j=1

> Zk:u ((B\UAO ﬂAj) + (B G 4A5)

j=1 i=1 j=1

and therefore
(6.1.5) 1(A) ZZ/L((B\ U 4i) nAj) + (B UAJ)

Since

using (6.1.3) we thus get
p(a) = w(J 3\ U 49 047) (3 U 4)

Hence condition (1.1.3) is also satisfied and F is a o-algebra. To see that p is a measure
on F i.e. that condition (1.1.4) is satisfied, consider mutually disjoint sets A1, Ag,... € F
and apply (6.1.5) with B = [J;2; A; to get

n(U 45) 2 D n(4;)
j=1 j=1
Combining this with (6.1.3) we conclude that p is a measure on F. &

Now, let (X, p) be a metric space. An outer measure g on X is said to be a melric
outer measure if and only if

(6.1.6) n(AU B) = u(A) + p(B)

2



for all positively separated sets A, B C X that is satisfying the following condition
p(A,B) =inf{p(z,y):x € A,y € B} >0

Recall that the Borel o-algebra on X is that generated by open, or equivalently closed, sets.
We want to show that if y is a metric outer measure then the family of all y-measurable
sets contains this o-algebra. The proof is based on the following version of Carathéodory’s
lemma.

Lemma 6.1.3. Let y be a metric outer measure on (X, p). Let {A, :n=1,2,...} be an
increasing sequence of subsets of X and denote A =, A,. If p(A,, A\ A,q1) > 0 for
all n > 1, then p(A) = lim, o 1(An).

Proof. By (6.1.3) it is enough to show that

(6.1.7) p(A) < lim p(4,)

n—oo

If limy, 00 1(Ay) = 00, there is nothing to prove. So, suppose that

(6.1.8) lim pu(A,) =sup pu(A,) < oc

n—oo

Let By = Ay and B, = A, \ A, 1 forn > 2. If n > m + 2, then B,, C A,, and
B, C A\ A,y C A\ Ap11. Thus B,, and B, are positively separated and applying
(6.1.6) we get for every 7 > 1

J

(6.1.9) N(U By 1) = ZM(Bzifl) and M(U Bs;) = ZN(B%)

=1 =1

We have also for every n > 1

w(A) = n(lJ Ar) =u(4u |J B
k=n k=n+1
(6.1.10) < p(An) + Y w(By) < lim u(A) + Y p(By)
k=n-+1 k=n+1

Since the sets U‘Zzl Bj;—1 and U'Zzl By appearing in (6.1.9) are both contained in Agj, it
follows from (6.1.8) and (6.1.9) that the series Y ,- | u(By) converges. Therefore (6.1.7)
follows immediately from (6.1.10). The proof is finished. &

Theorem 6.1.4. If y is a metric outer measure on (X, p) then all Borel subsets of X are
p-measurable.



Proof. Since the Borel sets form the least o-algebra containing all closed subsets of
X, it follows from Theorem 6.1.2 that it is enough to check (6.1.4) for every closed set
AC X and every B C X. Foralln > 11let B, ={x € B\ A: p(x,A) > 1/n}. Then
p(BNA,By,)>1/n and by (6.1.6)

(6.1.10) (BN A+ u(B,) = (BN AU By) < u(B)

The sequence {B,,}5> is increasing and, since A is closed, B\ A = J;_, B,,. In order to
apply Lemma 6.1.3 we shall show that

p(Bn; (B\ A)\ Bni1) >0

for all n > 1. And indeed, if z € (B\ A) \ By1, then there exists z € A with p(z,2z) <
1/(n+1). Thus, if y € By, then

1

pla.y) 2 ply2) = pl,z) > 1n=1/(n+1) = Zr==y

and consequently p(By, (B \ A)\ Bnt1) > 1/n(n+1) > 0. Applying now Lemma 6.1.3
with A,, = B,, shows that pu(B\ A) = lim,, o p(By,). Thus (6.1.4) follows from (6.1.10).
The proof is finished. &

§6.2 HAUSDORFF MEASURES

Let ¢ : [0,0c) — [0,0¢) be a non-decreasing function continuous at 0, positive on (0, c0)
and such that ¢(0) = 0. Let (X, p) be a metric space. For every § > 0 define

(6.2.1) AS(A) = inf{z ¢(diam(U;)) }

where the infimum is taken over all countable covers {U; : i = 1,2,...} of A of diameter not
exceeding §. Conditions (6.1.1) and (6.1.2) are obviously satisfied with p = Ag. To check
(6.1.3) let {A,, : n=1,2,...} be a countable family of subsets of X. Given £ > 0 for every
n > 1 we can find a countable cover {U* : i = 1,2,...} of A, of diameter not exceeding
§ such that Y72, ¢(diam(U7*)) < Aj(An) + /2", Then the family {U}* : n > 1,4 > 1}
covers | J77_ | A, and

A@(G Ay) qus (diam(U")) < iAg(A
n=1 n=11¢=1 n=1

Thus, letting e — 0, (6.1.3) follows proving that Ag) is an outer measure. Define

(6.2.2) Ay(A) = lim A} (A) = sup A} (A)



The limit exists, but may be infinite, since Aﬁ;(A) increases as 0 decreases. Since all Ag are
outer measures, the same argument also shows that Ay is an outer measure. Moreover Ay
turns out to be a metric outer measure, since if A and B are two positively separated sets
in X, then no set of diameter less than p(A, B) can intersect both A and B. Consequently

AL(AU B) = AY(A) + Ay (B)

for all § < p(A, B) and letting 6 — 0 we get the same formula for A4 which is just
(6.1.6) with p = Ag. The metric outer measure Ay is called the Hausdorff outer measure
associated to the function ¢. Its restriction to the o-algebra of Ag-measurable sets, which
by Theorem 6.1.4 includes all the Borel sets, is called the Hausdorff measure associated to
the function ¢.

As an immediate consequence of the definition of Hausdorff measure and the properties of
the function ¢ we get the following.

Proposition 6.2.1 The Hausdorff measure Ay is non-atomic.

Remark 6.2.2. A particular role is played by functions ¢ of the form ¢ — t*, t,a > 0
and in this case the corresponding outer measures are denoted by A% and A,.

Remark 6.2.3. Note that if ¢; is another function but such that ¢; and ¢ restrected to
an interval [0,¢), € > 0, are equal, then the outer measures Ay, and A4 are also equal. So,
in fact, it is enough to define the function ¢ only on an arbitrarily small interval [0, ¢).

Remark 6.2.4. Notice that we get the same values for Ag(A), and consequently also for
Ay(A), if the infimum in (6.2.1) is taken only over covers consisting of sets contained in
A. This means that the Hausdorff outer measure A,(A) of A is its intrinsic property, i.e.
does not depend on in which space the set A is contained. If we treated A as the metric
space (A, p|a) with the metric p|4 induced from p, we would get the same value for the
Hausdorff outer measure.

If we however took the infimum in (6.2.1) only over covers consisting of balls, we could get
different ”Hausdorff measure” which (dependently on ¢) would need not be even equivalent
with the Hausdorff measure just defined. To assure this last property ¢ is from now on
assumed to satisy the following condition.

There exists a function C : (0, 00) — [1, 00) such that for every a € (0,0c) and every ¢ > 0
sufficiently small (dependently on a)

(6.2.3) Cla)"1o(t) < d(at) < Cla)g(t)
Since (ar)t = a'r?, all functions ¢ of the form r — r?, considered in Remark 6.2.2, satisfy
(6.2.3) with C(a) = a’. Check that all functions r — 7’ exp(cy/loglog1/tlogloglog1/r,
¢ > 0 also satisfy (6.2.3) with a suitable function C.




Definition 6.2.5. A countable collection {(z;,r;) : i = 1,2,...} of pairs (z;,7;) € X X
(0, 0c) is said to cover a subset A of X if A C |J;=,; B(w;,7;), and is said to be centered at
the set A if z; € A for all i = 1,2,.... The radius of this collection is defined as sup, r;
and its diameter as the diameter of the family {B(z;, ;) :1=1,2,...}.

For every A C X and every r > 0 let
(6.2.4) AST(A) =inf{> " ¢(ry)}
i=1

where the infimum is taken over all collections {(z;,r;) : ¢ = 1,2,...} centered at the set
A, covering A and of radii not exceeding r. Let

(6.2.5) AZ(A) = lim AJ"(A) = sup A" (A)

r—0 r>0

The limit exists by the same argument as used for the limit in (6.2.2). We shall prove the
following.

Lemma 6.2.6. For every set A C X

Ay(A)

Iy

< C(2)

-

Proof. Since the diameter of any ball does not exceed its double radius, since the diameter
of any collection {(z;,7;) : i = 1,2,...} also does not exceed its double radius and since
the function ¢ is non- decreasing and satisfies (6.2.3), we see that for every r > 0 small
enough

s

Zcb(diam(B(mian))) <) #(2ri) <C(2) Z ()

i=1

and therefore A% (A) < C(Q)AfT (A). Thus, letting r — 0,
(6.2.6) Ay(A) < C(2)AF(4)
On the other hand, let {U; : i = 1,2,...} be a countable cover of A consisting of subsets

of A. For every ¢ > 1 choose z; € U; and put r; = diam(U;). Then the collection
{(zj,7;):1=1,2,...} covers A, is centered at A and

Z p(ri) = Z ¢(diam(U;))

which implies that Af‘s(A) < Ag(A) for every 6 > 0. Thus Ag(A) < Ay(A) which
combined with (6.2.6) finishes the proof. &



Remark 6.2.7. The function of sets Af need not to be an outer measure since condition
(6.1.2) need not to be satisfied. Since we will be never interested in exact computation of
Hausdorff measure, only in establishing its positiveness or finiteness or in comparing the
ratio of its value with some other quantities up to bounded constants, we will be mostly
dealing with Af‘s and Af using nevertheless always the symbols Ag(A) and Ag(A).

§6.3 PACKING MEASURES

Let, as in the previous section, ¢ : [0,00) — [0, 00) be a non-decreasing function such that
#(0) = 0 and let (X, p) be a metric space. A collection {(x;,r;) : i =1,2,...} centered at
a set A C X is said to be a packing of A if and only if for any pair 2 # j

p(@i, xj) = i +1;

This property is not generally equivalent to requirement that all the balls B(z;,r;) are
mutually disjoint. It is obviously so if X is a Euclidean space. For every A C X and every
r >0 let

(6.3.1) IL7 (A) = sup{_Z $(r:)}

where the supremum is taken over all packings {(z;,7;) : i = 1,2,...} of A of radius not
exceeding r. Let

(6.3.2) 15(4) = lim 1137 (4) = inf 1137 (4)

The limit exists since IT5" (A) decreases as r decreases. In opposite to Af the function 1T}
satisfies condition (6.1.2), however it also need not to be an outer measure since this time
condition (6.1.3) need not to be satisfied. To obtain an outer measure we put

(6.3.3) Ty (A) = inf{) TT;(4,)},

where the supremum is taken over all covers {A4;} of A. The reader will check easily,
with similar arguments as in the case of Hausdorff measures, that 11y is already an outer
measure and even more, a metric outer measure on X. It will be called the outer packing
measure associated to the function ¢. Its restriction to the o-algebra of Il,-measurable
sets, which by Theorem 6.1.4 includes all the Borel sets, will be called packing measure
associated to the function ¢.

Proposition 6.3.1. For every set A C X it holds Ay(A) < C(2)I14(A).
Proof. First we shall show that for every set A C X and every r» > 0

(6.3.4) AZ(A) < C(2)IT(A)
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Indeed, if there is no finite maximal (in the sense of inclusion) packing of the set A of the
form {(z;,r)}, then for every k > 1 there exists a packing {(z;,r):i=1,...,k} of A and
therefore IT"(A) > S°% | ¢(r) = k¢(r). Since ¢(r) > 0, this implies that IT%"(4) = oo and
(6.3.4) holds. Otherwise, let {(z;,7) : 4 =1,...,1} be a maximal packing of A. Then the
collection {(x;,2r) :i=1,...,1} covers A and therefore

AF(A) £ 3 ler) < ORI < ORI (4)

that is (6.3.4) is satisfied. Thus letting r — 0 we get
(6.3.5) Ay (A) < C(2)TTH(A)

So, if {A,}n>1 is a countable cover of A then,

Ag(A) <D Ag(Ai) < C2) D I (Ay)

Hence, applying (6.3.3), the lemma follows. &

§6.4 DIMENSIONS

Let, similarly as in the two previous sections, (X, p) be a metric space. Recall (comp.
Remark 6.2.2) that A;, ¢ > 0, is the Hausdorff outer measures on X associated to the
function 7 — r* and all A? are of corresponding meaning. Fix A C X. Since for every
0 < § < 1 the function + — A9(A) is non-increasing, so is the function ¢ — A;(A).
Furthermore, if s < t, then for every 0 < ¢

AZ(A) > 8" FAS(A)

which implies that if A;(A) is positive, then Ag(A) is infinite. Thus there is a unique value,
HD(A), called the Hausdorff dimension of A such that

oo if 0 <t < HD(A)

6.4.1 A (A) =
(6.4.1) (4 {0 if HD(A) < t < o0

Note that similarly as Hausdorff measures (comp. Remark 6.2.4), Hausdorff dimension is
consequently also an intrinsic property of sets and does not depend on their complements.
The following is an immediate consequence of the definitions of Hausdorft dimension and
outer Hausdorff measures.

Theorem 6.4.1. The Hausdorff dimension is a monotonic function of sets, that is if
A C B then HD(A) < HD(B).



We shall prove the following.

Theorem 6.4.2. If {A,,},>; is a countable family of subsets of X then
HD(U,A,) = sup{HD(4,,)}.

Proof. Inequality HD(U,A,) > sup,,{HD(4,)} is an immediate consequence of The-
orem 6.4.1. Thus, if sup,,{HD(A,)} = oc there is nothing to prove. So, suppose that
s = sup,,{HD(A,,)} is finite and consider an arbitrary ¢ > s. In view of (6.4.1), A;(A,) =0
for every n > 1 and therefore, since A; is an outer measure, A;(U,A,) = 0. Hence, by
(6.4.1) again, HD(U, A,,) < t. The proof is finished. &

As an immediate consequence of this theorem, Proposition 6.2.1 and formula (6.4.1) we
get the following.

Proposition 6.4.3. The Hausdorff dimension of any countable set is equal to 0.

In exactly the same way as Hausdorff dimension HD one can define packing® dimension
PD* and packing dimension PD using respectively II(A) and II;(A) instead of A (A).
The reader can check easily that results analogous to Theorem 6.4.1, Theorem 6.4.2 and
Proposition 6.4.3 are also true in these cases. As an immediate consequence of these
definitions and Proposition 6.3.1 we get the following.

Lemma 6.4.4. HD(A) < PD(A) < PD*(A) for every set A C X.

Now we shall define the third basic dimension  ball-counting dimension frequently also
called box-counting dimension, Minkowski dimension or capacity. Let A be an arbitrary
subset of the metric space (X, p). We first need the following.

Definition 6.4.5. For every r > 0 consider the family of all collections {(z;,7;)} (see
Definition 6.2.5) of radius not exceeding r which cover A and are centered at A. Put
N(A,r) = oo if this family is empty. Otherwise define N(A,r) to be the minimum of
all cardinalities of elements of this family. Note that one gets the same number if one
considers the subfamily of collections of radius exactly r and even only its subfamily of
collections of the form {(z;,7)}.

Now the lower ball-counting dimensions and upper ball-counting dimension of A are defined
respectively by

log N(A — log N (A
r—0  —logr r—0 —logr

If BD(A) = BD(A), the common value is called simply ball-counting dimension and is
denoted by BD(A). The reader will easily prove the next theorem which explains the
reason of the name box-counting dimension. The other names will not be discussed here.
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Proposition 6.4.6. Fix n > 1. For every r > 0 let £L(r) be any lattice in IR™ consisting
of cubes of sides of length 7. For any set A C IR™ let L(A,r) denotes the number of cubes
in £(r) which intersect A. Then

log L(A __ log L(A
r—0  —logr r—0  —logr

Remark 6.4.7. Ball-counting dimension has properties which distinguish it qualitatively
from Hausdorff and packing dimensions. For instance BD(A) = BD(A) and BD(4) =
W(A) =. So, in particular there exist countable sets of positive ball-counting dimension,
for example the set of rational numbers in the interval [0,1]. Even more, there exist
compact countable sets with this property like the set {1,1/2,1/3,..., 0} € IR. On the

i i

other hand in many cases (see Theorem 6.6.6) all these dimensions coincide.

Now we shall provide other characterizations of ball-counting dimension, which in partic-
ular will be used to prove Lemma 6.4.8 and consequently Theorem 6.4.9 which establishes
most general relations between the dimensions considered in this section.

Let A C X. For every r > 0 define P(A, ) to be the supremum of cardinalities of all
packings of the set A of the form {(z;,r)}. First we shall prove the following.

Lemma 6.4.7. For every set A C IR"” and every r > 0
N(A,2r) < P(A,r) and P(A,r) < N(A,r).

Proof. Let us start with the proof of the first inequality. If P(A,r) = oc, there is nothing
to prove. Otherwise, let {(z;,7):7=1,...,k} be a packing of A with k& = P(A,r). Then
this packing is maximal in the sense of inclusion and therefore the collection {(z;,2r) : i =
1,...,1} covers A. Thus N(A,2r) <l = P(A,r). The first part of Lemma 6.4.7 is proved.

If N(A,r) = oo, the second part is obvious. Otherwise consider a finite packing
{(ziy7) :i=1,....k} of A and a finite cover {(y;,7):j = 1,...,l} of A centered at A.
Then for every 1 < 4 < k there exists 1 < j = j(i) <! such that z; € B(y,;(i),r) and
every ball B(y;,r) can contain at most one element of the set {z; : ¢ =1,...,k}. So, the
function ¢ — j(4) is injective and therefore k& < [. The proof is finished. &

As an immediate consequence of Lemma 6.4.7 we get the following.

(6.4.3) BD(A) = liminf M and BD(A) = limsup 710gP(A, T>.
r—0  —logr r—0 —logr

Now we are in a position to prove the following.

Lemma 6.4.8 For every set A C X we have PD*(A) = BD(A).

Proof. Take t < BD(A). In view of (6.4.3) there exists a sequence {r, : n
of positive reals converging to zero and such that P(A,r,) > rt for every n

1,2,..)
1. Then

AV
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;" (A) > r*P(A,r,) > 1 and consequently TI¥(A) > 1. Hence ¢ < PD*(A) and therefore
BD(A) < PD*(A).

In order to prove the converse inequality consider s < ¢ < PD*(A). Then II;(A) = oo
and therefore for every n > 1 there exists a finite packing {(xy ;. 7n:) 11 =1,...,k(n)} of
A of radius not exceeding 27" and such that

k(n)
(6.4.4) Sk i>1
=1

Now for every m > n let
b = #{i€ {1, k(n)}: 27 M) < < 27m)

Then by (6.4.4)
(6.4.5) Y 12> 1

Suppose that I, < 2"*(1 — 267%) for every m > n. Then

i 2" < (1=2077) i gn(s—t) _ 1
m=n m=1

This contradicts (6.4.5) and shows that for every n > 1 there exists m = m(n) > n such
that
lm 2 2ns(1 o 2(5—15))

Hence P(A,27(m+1)) > ons(1 — 2(5=1)) whence

log P(A, 2~ (m+1)) . _ sklog?
(m+1)log2 — (m+1)log2

Thus, letting n — oo (then also m = m(n) — oc) we obtain BD(A) > s. So, we are done.

[ )

Combining now Lemma 6.4.4 and Lemma 6.4.8 and checking easily that HD(A) < BD(A)
we obtain the following main general relation connecting all the dimensions under consid-
eration.

Theorem 6.4.9. For every set A C X

HD(A) < min{PD(A), BD(A)} < max{PD(A), BD(A)} < BD(A) = PD*(A)

We finish this section with the following definition.
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Definition 6.4.10. Let p be a Borel measure on (X, p). Then the Hausdorff dimension
HD(p) of the measure p is defined as

HD(p) = inf{HD(Y) : u(X \ Y) =0}

an analogous definition can be formulated for packing dimension.

§6.5 BESICOVITCH COVERING THEOREM

In this section we prove only one result, the Besicovitch covering theorem. Although this
theorem seems to be almost always omitted in the classical geometric measure theory,
we however consider it as one of most powerful geometric tools when dealing with some
aspects of fractal sets. We refer the reader to Section 6.6 to verify our opinion.

Theorem 6.5.1. (Besicovitch covering theorem) Let n > 1 be an integer. Then there
exists a constant b(n) > 0 such that the following claim is true.

If A is a bounded subset of IR™ then for any function r : A — (0,00) there exists
{z, : k =1,2,...} a countable subset of A such that the collection B(A,r) = {(z, r(zg)) :
k > 1} covers A and can be decomposed into b(n) packings of A.

In particular it follows from Theorem 6.5.1 that #{B € B: z € B} < b(n). Exactly the
same proof (world by world) goes if open balls in Theorem 6.5.1 are replaced by closed
ones.

For any z € IR™, any 0 < r < oo and any 0 < o < m by Con(z, a,r) we will denote
any solid central cone with vertex z, radius r and angle (Lebesgue measure on the unit
sphere S™ 1) a. The proof of Theorem 6.5.1 is based on the following obvious geometric
observation.

Observation 6.5.2. Let n > 1 be an integer. Then there exists a(n) > 0 so small that
the following holds.

IfreR", 0<r<ooifze B(z,r)\ B(xz,r/3) and = € Con(z,®(n),oc) then the
set Con(z, a(n), 00) \ B(z,r/3) consists of two connected components (one of z and one of
"o¢”) and that containing z is contained in B(z,r).

Proof of Theorem 6.5.1. We will construct the sequence {z : k = 1,2,...} inductively.
Let
ag = sup{r(z) : x € A}

If ag = oc then one can find = € A with r(z) so large that B(x,r(z) D A and the proof is
finished.

If ag < oc choose 1 € A so that r(x1) > ag/2. Fix kK > 1 and assume that the points
T1,%2, ..., T have been already chosen. If A C B(z1,7(z1)) U...U B(zg, r(xx)) then the
selection process is finished. Otherwise put

ar = sup{r(z) : z € A\ (B(z1,r(z1)) U...UB(zk, r(z5)))}
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and take

(6.5.1) Tpy1 € A\ (B(z1,r(z1)) U...UB(zg, r(zg)))
such that
(6.5.2) T(:L'k_|_1) > ak/2

In order to shorten notation from now on throughout this proof we will write ry for r(zy).
By (6.5.1) we have x; ¢ B(xrg,ry) for all pairs k, 1 with k < [. Hence

(6.5.3) |2k — zif| = ()

It follows from the construction of the sequence (zj) that

(6.5.4) re > ag—1/2 > /2

and therefore r/3 + 7;/3 < 1 /3 + 21K /3 = ri. Joining this and (6.5.3) we obtain
(6.5.5) B(wy,71/3) N B(xy,71/3) = )

for all pairs k,l with k # [ since then either k <l or | < k.

Now we shall show that the balls {B(zg,r;) : k& > 1} cover A. Indeed, if the se-
lection process stops after finitely many steps this claim is obvious. Otherwise it follows
from (6.5.5) that limg_,oo rp = 0 and if & ¢ |-, B(zg, rx) for some = € A then by con-
struction rg > ag—1/2 > r(x) for every k > 1. The contradiction obtained proves that
Ui, B(zk, ) D A.

The main step of the proof is given by the following.

Claim. For every z € IR™ and any cone Con(z, a(n), oc) (a(n) given by Observation 6.5.2)
#{k>1:2z¢€ B(zg,rg) \ B(xg,71/3) and x5 € Con(z,(n),00)} <1+ 16"

Denote by @ the set of integers whose cardinality is to be estimated. If Q = (), there is
nothing to prove. Otherwise let 1 = min Q. If £ € Q and k # ¢ then £ > ¢ and therefore
zp & B(x;,r;). In view of this, Observation 6.5.2 applied with x = z;, r = r;, and the
definition of @), we get ||z — x| > 2r;/3, whence

(6.5.6) i > ||z = apll > 2ri/3

On the other hand by (6.5.4) we have ry < 2r; and therefore B(xy,r/3) C B(z,41/3) C
B(z,8r;/3). Thus, using (6.5.5), (6.5.6) and the fact that the n-dimensional volume of balls
in IR™ is proportional to the n*™ power of radii we obtain #Q < (8r;/3)"/(2r;/9)™ = 12",
The proof of the claim is finished.
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Clearly there exists an integer ¢(n) > 1 such that for every z € IR™ the space IR™ can
be covered by at most ¢(n) cones of the form Con(z, a(n),c0). Therefore it follows from
the claim that for every z € IR"

#{k>1:z¢€ B(xg,ry) \ Bk, r1/3)} < e(n)12”
Thus applying (6.5.5)
(6.5.7) #{k>1:2z¢€ B(xg,r,) <14+ c(n)l2"

Since the ball B(0,3/2) is compact, it contains a finite subset, P such that | J, . p B(z,1/2) D

B(0,3/2). Now for every k > 1 consider the composition of the map IR" 3 2 — rix € IR™
and the translation determined by the vector fﬁ)m 0 to xx. Call by P, the image of P
under this translation. Then #P, = #P, P, C B(xy, 3r;/2) and

(6.5.8) U B(z,m/2) > B(0,3r4/2)

Consider now two integers 1 < k < [ such that
(6.5.9) B(xg, re) N Bz, 1) # 0

Let y € IR™ be the only point lying on the interval joining x; and xy at the distance
rp — /2 from xp. As x; ¢ B(xg,rk), by (6.5.9) we have |y — x|| < r; +1/2 = 3r;/2
and therefore by (6.5.8) there exists z € P, such that ||z — y|| < /2. Consequently
z € B(xg, /2 + 1, —r1/2) = B(xg, ). Thus applying (6.5.7) with z being the elements
of P;, we obtain the following

(6.5.10) #{1 <k <l-1:B(zk, 1) N Bz, ) £ 0} <#P(1+c(n)12")

for every [ > 1.

Putting b(n) = #P(1 + ¢(n)12™) + 1 this property allows us to decompose the set IN
of positive integers into b(n) subsets INy, INs, . . ., INy(,y in the following inductive way. For
every k =1,2,...,b(n) set INy(b(n)) = {k} and suppose that for every k = 1,2,...,b(n)
and some j > b(n) mutually disjoint families INy(j) have been already defined so that

Wl(]) wa(n)(j) = {1727"'7j}

Then by (6.5.10) there exists at least one 1 < k < b(n) such that B(zj41,7j4+1)NB(x, 1) =
() for every i € INg(j). We set INg(j+1) = IN,(5) U{j + 1} and IN;(j + 1) = INy(j) for all
le{1,2,....b(n)}\ {k}. Putting now for every k =1,2,...,b(n)

we see from the inductive construction that these sets are mutually disjoint, that they
cover IN and that for every k =1,2,...,b(n) the families of balls {B(x;,r;) : | € IN,} are
also mutually disjoint. The of proof the Besicovitch covering theorem is finished. &
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We would like to emphasize here once more that the same statement remains true if open
balls are replaced by closed ones. Also if instead of balls one considers n-dimensional cubes.
Then although the proof is based on the same idea, however technically is considerably
easier.

§6.6 VOLUME LEMMAS

In this section a function ¢ : [0, 00) — [0, 00) is assumed to satisfy the same conditions as
in Section 6.2 including (6.2.3) and moreover is assumed to be continuous. We start with
the following.

Theorem 6.6.1. Let n > 1 be an integer and let b(n) be the constant claimed in Theo-
rem 6.5.1 (Besicovitch covering theorem). Assume that u is a Borel probability measure
on IR™ and A is a bounded Borel subset of IR™. If there exists C € (0,00], (1/oc = 0),
such that

(a) for all (but countably many maybe) z € A

then Ay(F) < M,LL(E) for every Borel set £ C A. In particular Ay(A4) < oo.

C
or

(b) for all z € A

hrjlj(l)lp% <(C<ox

then p(E) < CAg4(E) for every Borel set £ C A.

Proof. (a) In view of Proposition 6.2.1 we can assume that E does not intersect the
exceptional countable set. Fix e > () and r > (. Since p is a regular measure, there exists
an open set G O E such that u(G) < p(E)+e. By openness of G and by assumption (a), for
every z € E there exists 0 < r(z) < r such that B(x,r(z)) C G and (1/C+¢e)u(B(z,r)) >
¢(r). Let {(xk,r(zx)) : k > 1} be the cover of E obtained by applying Theorem 6.5.1.
(Besicovitch covering theorem) to the set E. Then

(C™" + &) u(B(zp, 7 (1))

NE

AG(B) < ¢(r(ay)) <

k

< b(n)(C +e)u({ Blan,r(zx))) < b(n)(C™1 + ) (W(E) +¢)

Cs -

™
I

1

Letting r — 0 we thus obtain Ay (E) < b(n)(1/C+e)(u(E)+e¢) and therefore letting e — 0
the part (a) follows (note that the proof is correct with C' = oo!).
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(b) Fix an arbitry s > C. Since for every r > 0 the function z — u(B(z,7))/d(r)
is measurable and since the supremum of a countable sequence of measurable functions is
also a measurable function, we conclude that for every £ > 1 the function ¢ : A — IR is
measurable, where

w(B(x,r))

:TEQﬁ(O,l/k]}

and () denotes the set of rational numbers. For every k > 1 let Ay = ¢ "((0, s]). In view
of measurability of the functions 1 all the sets A are measurable. Take an arbitrary
r € (0,1/k]. Then there exists a sequence r; : j = 1,2,...} of rational numbers converging
to r from above. Since the function ¢ is continuous and the function ¢ — p(B(x,t)) is
non-decreasing, we have for every = € Ay

p(B.r) _ o w(Blery) _
o) ST ey S

So, if FF C Ay is a Borel set and if {(x;,7;) : i =1,2,...} is a collection centered at the set
F', covering F' and of radius not exceeding 0 < r < 1/k, then

Zcb(n:) > 571 ZMB(:@, ri)) > s~ u(F)

Hence, A} (F) > s~ u(F) and letting 7 — 0 we get

Ag(B) > Ag(F) > s~ ' u(F)
By the assumption of (b), U, Ax, = A and therefore, putting By, = A\ (A1UAxU. . .UA, 1),
k > 1, we see that the family {By : k¥ > 1} is a countable partition of A into Borel sets.
Therefore, if E C A then

Ao(B) =S Ap(BEN A 2 s S (BN A) = 57 p(E)
k=1 k=1

So, letting s ™\, C finishes the proof. &
In an analogous way one can prove the following.

Theorem 6.6.2. Let n > 1 be an integer and let b(n) be the constant claimed in Theo-
rem 6.5.1 (Besicovitch covering theorem). Assume that p is a Borel probability measure
on IR™ and A is a bounded subset of IR™. If there exists C € (0, oc], (1/00 = 0), such that
(a) for all z € A
B(z,
tim inf A1)

r—0 ¢(T)
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then p(E) < b(n)CII4(E) for every Borel set E C A.
or

(b) for all z € A
lim inf 7M<B($’ ")
r—0 QS(T‘)

then 14 (F) < C~1pu(E) for every Borel set E C A. In particular I14(A) < oo.

>(C <o

Note that each Borel measure y defined on a Borel subset B of R™ can be in a canonical
way considered as a measure on IR™ by putting pu(A) = pu(A N B) for every Borel set
AcC IR™

As a simple consequence of Theorem 6.6.1 we shall prove the following.

Theorem 6.6.3. Suppose that p is a Borel probability measure on IR™, n > 1, and A is

a bounded Borel subset of IR".
(a) If u(A) > 0 and there exists #; such that for every z € A

r—0 log r

> 61
then HD(A) > 6.
(b) If there exists 65 such that for every x € A
1 Bz,
lim inf (28 HBE )
r—0 log r
then HD(A) < 6s.

Proof. (a) Take any 0 < @ < 6;. Then, by the assumption, limsup,._,, u(B(z,7))/r? < 1.
Therefore applying Theorem 6.6.1(b) with ¢(¢) = t?, we obtain Ag(A4) > u(A) > 0. Hence
HD(A) > 0 by definition (6.4.1) and consequently HD(A) > 0.

(b) Take now an arbitrary @ > 0. Then by the assumption limsup,._, (B (z, 7)) /r? >
1. Therefore applying Theorem 6.6.1(a) with ¢(¢) = % we obtain Ag(A) < oo, whence
HD(A) < 6 and consequently HD(A) < ;. The proof is finished. &

Recall that the Hausdorfl dimension of a Borel measure has been defined in Defini-
tion 6.4.10. As a consequence of Theorem 6.6.3 we shall prove the following.

Corollary 6.6.4. Suppose that u is a Borel probability measure on IR™, n > 1.
(a) If there exists 0y such that for p-a.e. x € IR™

1 B(z,
liminf—ogu( (@.7))

> b1
r—0 log r

then HD(u) > 64
(b) If there exists 65 such that for y-a.e. z € IR"

lim inf —log wB(w, 1))

< 0,
r—0 logr

then HD(p) < 0.
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Proof. (a) Let Y C IR™ be a Borel set such that u(Y) = 1. By the assumption there
exists a bounded Borel subset A C Y with p(A) > 0 such that for every x € A

log n(B(a.1) _

lim inf

r—0 log r

Thus, applying Theorem 6.6.3(a) we get HD(Y) > HD(A) > #; and taking infimum,

(b) Decompose now the space IR™ into a countable union Ui Xy of Borel bounded sets

X and let X C IR" be a Borel set of measure 1 whose every point satisfies the assumptions

of Corollary 6.6.4. Applying for every k > 1 Theorem 6.6.3(b) with A = X N X, we get
HD(X N Xj) < 05 and we are done applying Theorem 6.4.2 since HD(u) < HD(X). &

Definition 6.6.5. Let X be a Borel bounded subset of IR”, n > 1. A Borel probability
measure on X is said to be a geometric measure with an exponent £ > 0 if and only if there
exists a constant C' > 1 such that

for every x € X and every 0 < r < 1.
We shall prove the following.

Theorem 6.6.6. If X is a Borel bounded subset of IR", n > 1, and pu is a geometric
measure on X with an exponent ¢, then BD(X) exists and

HD(X) = PD(X) = BD(X) = ¢

Moreover the three measures u, A; and II; on X are equivalent with bounded Radon-
Nikodym derivatives.

Proof. The last part of the theorem follows immediately from Theorem 6.6.1 and The-
orem 6.6.2 applied for A = X. Consequently also ¢ = HD(X) = PD(X) and there-
fore, in view of Theorem 6.4.9, we only need to show that BD(X) < ¢t. And indeed, let
{(z;,r):i=1,...,k} be a packing of X. Then

k
krt < C’Z,u(B(xi./r)) <C
i=1

and therefore & < Cr~*. Thus P(X,r) < Cr~t, whence log P(X,r) < logC — tlogr.
Applying now formula (6.4.3) finishes the proof. &

In particular it follows from this theorem that every geometric measure admits exactly one
exponent. Lots of examples of geometric measures will be provided in the next chapters.
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BIBLIOGRAPHICAL NOTES

The history of notions and development of the geometric measure theory is very long, rich
and complicated and its outline exceeds the scope of this book. We refer the interested
reader to the books [Falconer, 1985] and [Mattila, 1995].
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CHAPTER 7. CONFORMAL EXPANDING REPELLERS
Nov. 23, 2002

Conformal expanding repellers (abbreviation: CER’s) were defined already in Chapter 5
and some basic properties of expanding sets and repellers in dimension 1 were discussed
in Section 5.2. A more advanced geometric theory in the real 1-dimensional case was
done in Section 5.6 777. But now we have a new tool: Frostman Lemma and related
facts from Chapter 6. Equipped with the theory of Gibbs measures and with the pressure
function we are able to develop a geometric theory of CER’s with Hausdorff measures
and dimension playing the crucial role. We shall present this theory for C'*¢ conformal
expanding repellers in IR?. Remind (Ch.5.2) that the assumed conformality forces for
d = 2 that f is holomorphic or antiholomorphic and for d > 3 that f is locally a Mobius
map. Conformality for d = 1 is meaningless, so we assume C''*¢ in order to be able to rely
on the Bounded Distortion for Iteration lemma.

We shall outline a theory of Gibbs measures from the point of view of multifrac-
tal spectra of dimensions (Sec.2) and pointwise fluctuations due to the Law of Iterated
Logarithm (Sec.3) .

For d = 2 we shall apply this theory to study the boundary of the immediate basin
of attraction to a sink for a rational mapping of the Riemann sphere in the case the basin
is simply-connected and the mapping on the boundary is expanding, for example for the
mapping z — 22 + ¢ for |¢| small, for a quasicircle invariant under the action of a quasi-

particular we study harmonic measure. We shall derive from this an information about
the radial growth of the derivative of the Riemann mapping from the unit disc to the
simply-connected domain under consideration.

Section 7.1.1. Pressure function and dimension.

Let f : X — X be a topologically mixing conformal expanding repeller in IR?. As before we
abbreviate notation of the pressure P(f, ¢), to P(¢). We start with the following technical
lemma.

Lemma 7.1.1. Let m be a Gibbs state (not necesserily invariant) on X and let ¢ : X — IR
be a Holder continuous function. Assume P(¢) = 0. Then there is a constant £ > 1 such
that for all » small enough and all z € X there exists n = n(xz,r) such that

log & + S,¢(x) < logm(B(z,r)) = log E + S, ¢(x)
—log B —log |(f™)'(x)] — logr ~ log B —log (™)' (x)|

Proof. Take an arbitrary z € X. Fix r € (0,C~1¢) and let n = n(z,7) > 0 be the largest
integer so that

(7.1.0)

(7.1.1) [(f") (@)rC <&,

where C' = Cyp is the multiplicative distortion constant (corresponding to the Holder
continuous function log|f’|), as in the Distortion Lemma for Tteration (Theorem 4.2.1),
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see Notation 5.2.2.777 Then

(7.1.2) FBU™@),9) > Bla€l(f") (@)Y S B, 7).
Now take ng such that A”0~1 > C2. We then obtain

(7.1.3) ((frrm) et > ¢

Hence, again by the Distortion Lemma for Iteration

(T14)  fTTBUT (), €) C B(a, € (f7) (2)|71C) € Bla,r).

By the Gibbs property of the measure m, see (4.1.1), for a constant E > 1 (the constant
C in (4.1.1)) we can write

—1 expanﬁ(:E) an expSn+n0¢(m)
B S T BE@.0) ™ T (e (2).6)

< FE.

Using this, (7.1.2), (7.1.4), the inequality S,4n,¢(x) > Spé(x) + nginf ¢, and finally
increasing F so that the new log ' is larger than the old log ¥ — ng inf ¢, we obtain

(7.1.5) log E+ Sp¢(x) > logm(B(x,r)) > —log E + Spé(x).
Using now (7.1.1) and (7.1.3), denoting L = sup |f’|, and applying logarithms, we obtain

log E + Spé(x) < logm(B(z,r) o= log E + Spé(z)
log |(f*)(z)|~" = nolog L +log& = logr = log|(f")/(z)|71¢"

Increasing further E so that log F > nglog L — log &, we can rewrite it in the "symmetric”
form of (7.1.0). &

When we studied the pressure function ¢ — P(¢) in Chapters 2 and 4 the linear functional
¢ — [4dp, appeared. This was the Gateaux differential of P at ¢ (Theorem 2.5.5,
Proposition 2.5.6 and (4.6.57)). Here the presence of an ambient smooth structure (1-
dimensional or conformal) distingushes 1’s of the form —tlog | f'|. We obtain a link between
the ergodic theory and the geometry of the embedding of X into IR?.

Definition 7.1.2. Let g be an ergodic f-invariant probability measure on X. Then by
Birkhoff’s Ergodic Theorem, for p-almost every z € X, the limit lim,_, = log |(f™)'(z)]
exists and is equal to [log|f’|du. We call this number the Lyapunov characteristic expo-
nent of the map f with respect to the measure p and we denote it by x,(f). In our case
of expanding maps considered in this Chapter we obviously have x,(f) > 0.

This definition does not demand the expanding property. It makes sense for an arbitrary
invariant subset X of IR? or the Riemann sphere @, for f conformal (or differentiable in

the real case) defined on a neighbourhood of X. There is no problem with the integrability
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because log | f'| is upper bounded on X. We do not exclude the possibility that x, = —oc.
The notion of a Lyapunov characteristic exponent will play a crucial role also in subsequent
chapters where non-expanding invariant sets will be studied.

Theorem 7.1.3. (Volume Lemma, expanding map, Gibbs measure case). Let
m be a Gibbs state for a topologically mixing conformal expanding repeller X € IR* and
a Holder continuous potential ¢ : X — IR . Then for m-almost every point © € X there
exists the limit

lim log m(B(z, r))
r—0 log r

Moreover, this limit is almost everywhere constant and is equal to h,(f)/x.(f), where u
denotes the only f-invariant probability measure equivalent to m.
Proof. We can assume that P(¢) = 0. We can achieve it by subtracting P(¢) from ¢;

the Gibbs measure class will stay the same (see Proposition 4.1.4). In view of the Birkhoff
Ergodic Theorem, for p-a.e x € X we have.

lim S, 6(z) :/qbdu and Tim L log | (")’ (@)] = xu(f).

n—oo N

Combining these equalities with (7.8.0), along with the observation that n = n(z,r) — oo
as r — 0, and using also the equality h,(f) + [ ¢dp = P(¢) = 0, we conclude that

lig 08 H(B (@, 1)) _ hu(f)

r—0 log r Xu(f)
The proof is finished. &

As an immediate consequence of this lemma and Corolaries 6.6.4 and 6.6.4a we get the
following.

Theorem 7.1.4. If ;1 is a Gibbs state for a conformal expanding repeller X € IR and a
Holder continuous potential ¢ on X, then there exist Hausdorff and packing dimensions
of 4 and

HD(p) = PD() = hyu(f)/xu(f)-

Using the above technique we can find a formula for the Hausdorff dimension and other
dimensions of the whole set X. This is the solution of the non-linear problem, corre-
sponding to the formula for Hausdorff dimension of the linear Cantor sets, discussed in the
introduction. As f is Lipschitz continuous (or as f is forward expanding), the function

P(t) :=P(~tlog|f'])

is finite (see comments at the beginning of Section 2.5). As |[f'| > A > 1, it follows directly
from the definition that P(t) is strictly decreasing from 400 to —oc. In particular there
exists exactly one parameter tq such that P(¢y) = 0. We prove first the following.
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Theorem 7.1.5. (Existence of geometric measures). Let ¢y be defined by P(tg) = 0.

Write ¢ for —tglog |f’| restricted to X. Then each Gibbs state m corresponding to the
log m(B(z,r)) _

function ¢ is a geometric measure with the exponent ty. In particular lim,_,q Tog 1

to for every x € X.
Proof. We put in (7.1.0) ¢ = —tglog|f’|. Then using (7.1.1) (7.1.3) and sup |f'| < L to
replace |(f™) (z)| ! by r we obtain

log E +tglogr < logm(B(z,r)) < —log E +tglogr

—log E +logr — log r ~ logE +logr

with a corrected constant . Hence
log E + tglogr < logm(B(x, 1)) < log B + tglogr

7.1.6
( ) logr - logr - logr

for further corected FE. In consequence

_ log(m(B(,r)/B)  log(Em(B(,r))

< to,

log r log r

hence
m(B(z,r))/E <r"® and Em(B(z,r)) > rto.

(In the denominators we passed in Proof of Theorem 7.1.1 from r to |(f™)(x)|~! and here
we passed back, so at this point the proof could be shortened. Namely we could deduce
(7.1.6) directly from (7.1.5). However we needed to pass from |[(f™)'(z)|~! to r also in
numerators and this point could not be simplified). &

As an immediate consequence of this theorem and Theorem 5.6.6 we get the following.

Corollary 7.1.6. The Hausdorff dimension of X is equal to tq. Moreover it is equal to
the packing and Minkowski dimensions. All Gibbs states corresponding to the potential
¢ = —tglog|f'|, as well as to-dimensional Hausdorff and packing measures are mutually
equivalent with bounded Radon-Nikodym derivatives.

More on Volume Lemma. We end this section with a version of the Volume Lemma for
a Borel probability invariant measure on the expanding repeller (X, f). In Chapter 9 we
shall prove this without the expanding assumption assuming only positivity of Lyapunov
exponent (though assuming also ergodicity) and the proof will be difficult. So we prove first
a simpler version, which will be needed already in the next section. We start with a simple
fact following from Lebesgue Theorem of differentiability a.e. ([Lojasiewicz, Th.7.1.4]) We
provide a proof since it is very much in the spirit of Chapter 6.

Lemma 7.1.7. Every non-decreasing function £ : I — IR defined on a bounded closed
interval I C IR is Lipschitz continuous at Lebesgue almost every point in I. In other words,
for every € > 0 there exist L > 0 and a set A C I such that |I\ 4| < €, where |- | is the
Lebesque measure in IR, and at each r € A the function & is Lipschitz continuous with the
Lipschitz constant L.



Proof. Suppose on the contrary, that

B={zel:sup{yel:x+#y, k(@) = k@)l
-y

2t =)

has positive Lebesgue measure. Write I = [a,b]. We can assume, by taking a subset, that
B is compact and contains neither a nor b. For every z € B choose 2’ € I, 2’ # x such
that

h(@) = K| _ k() — hla)

7.1.6’
(7.1.6 Py B

Replace each pair x, ' by y,y" with (y,4') D [z, '], and y,y’ so close to z,z’ that (7.1.6")
still holds for y, 4y’ instead of z,z’. In case when z or z’ equals a or b we do not make
the replacement.) We shall use for y, 3y’ the old notation z, 2’ assuming « < x’. Now from
the family of intervals (z,z') choose a finite family Z covering our compact set B. From
this family it is possible to choose a subfamily of intervals whose union still covers B and
which consists of two subfamilies Z! and Z? of pairwise disjoint intervals.

Indeed. Start with I; = (x1,2)) € Z with minimal possible z = z; and maximal in
7 in the sense of inclusion. Having found I = (4, 2}), ..., I, = (xn,z)) we choose I, 11
as follows. Consider Z,11 = {(z,2') € T 1z € U;—y, Li.2" > sup;=y 2} U L
is non-empty, we set (r,41,,,1) so that 7, ; = max{2’ : (z,2') € 11} Ty =0,
we set (Tn41,%,,1) so that x,,; is minimal possible to the right of max{z]:i=1,...,n}
or equal to it, and maximal in Z. In this construction the intervals (x,,x],) with even n
are pairwise disjoint, since each (%y42,%,,,,) has not been a member of 7, ;. The same
is true for odd n’s. We define Z* for i = 1,2 as the family of (z,,, ) for even, respectively
odd, n. In view of the pairwise disjointness intervals of families Z' and Z2, monotonicity

of k and (7.1.6), we get that
k(b) = k(a) > > k(x)) — k(zn) > 2@ > (@), —an)
n€Il nell

and the similar inequality for n € Z2. Hence, taking into account that Z' U Z? covers B
we get

3

2(50)  Ka)) > 250 E ST (ot ) MO s - )
nc€ZlUI?

which is a contradiction finishing the proof. &
Corollary 7.1.8. For every Borel probability measure v on a compact metric space (X, p)
and for every r > 0 there exists a finite partition P = {P;,t = 1,..., M} of X into Borel

sets of positive measure v and with diam(P) < r and there exists C' > 0 such that for
every a > ()

(7.1.7) v(0p.a) < Ca,

where dp , :==(), (US# B(P;, a))



Proof. Let {z;,...,zn} be a finite r/4-net in X. Fix ¢ € (0,7/4N). For each function
t — k;i(t) := v(B(x;,t)), t € I = [r/4,r/2], apply Lemma 7.1.7 and find appropriate L;
and A;, foralli=1,...,N. Let L =max{L;,i=1,..,N}andlet A=(),_; yAi The
set A has positive Lebesgue measure by the choice of €. So, we can choose its point rq
different from r/4 and r/2. Therefore, for all a < ag := min{ro —r/4,r/2 —1r¢} and for all

ie{l,2,....,n}, we have v(B(z;, 79 + a) \ B(x;,r9 — a)) < 2La. Hence, putting

A(a) = JB(xi.ro +a) \ B(zi,ro — a)),

2

we get v(A(a)) < 2LNa. Define P = {ﬂ L B9 (z;,70)} as a family over all functions & :

{1,...; N} = {+, -}, where BT (z;,79) := B(mz/m) and B~ (z;,r9) := X\ B(zi,r0), except
k yielding sets of measure 0, in particular except empty intersections. After removing from
X of a set of measure 0, the partition P covers X. Since ro > r/4, the balls B(z;,r)
cover X. Hence, for each non-empty P; € P at least one value of « is equal to +. Hence
diam(P;) < 2r¢ < r. Note now that 0p , C A(a). Indeed, let © € dp 4. Since P covers X
there exists to such that z € P, so x ¢ P, for all t # t,. However, since = € Ut#O B(P;,a),
there exists t1 # to such that dist(z, P;,) < a. Let B = B(=z;,1¢) be such that P,, C BT
and P, C B, or vice versa. In the case when z € P, C BT, by the triangle inequality
p(x,z;) > ro — a and since p(z,x;) < 19, we get © € A(a). In the case z € P, C B~ we
have x € B(zi,ro+ a) \ B(xi,70) C A(a). We conclude that v(0p,)) < v(A(a) < 2LNa
for all a < ag. For a > ag it suffices to take C' > 1/ag. So the corollary is proved, with
C = max{2LN, 1/ap}. &

Remark. If X is embedded for example in a compact manifold Y, then we can view v as
a measure on Y, we find a partition P of Y and then 0p o = B(U;—; 5 0P, a), provided
M > 2. This Justlﬁes the notation Op 4.

Corollary 7.1.9. Let v be a Borel probability measure on a compact metric space (X, p)
andlet f : X — X be an endomorphism measurable with respect to the Borel g-algebra on
X and preserving measure v. Le for every r > 0 let P = {P;,t = 1,..., M} be the partition
of X constructed in Corollary 7.1.8. In particular diam(P < r. Then for every § > 0 and
v-a.e. x € X there exists ng = ng(z) such that for every n > ng

(7.1.8) B(f™(x), exp(-—nd)) C P(f"(x))

Proof. Let P be the partition from Corollary 7.1.8. Fix an arbitrary 6 > 0. Then by
Corollary 7.1.8

Z V(0P exp(—ns))) < Z Cexp(—nd) < 0o
n=0 n=0

Hence by the f-invariance of v, we obtain

oo

D (T (0 exp(—ns))) < 0.

n=0



Applying now the Borel-Cantelli lemma for the family {f~"(0p exp(—ns)) }=1 We conclude
that for v-a.e x € X there exists ng = ng(x) such that for every n > ny we have = ¢
J7™ (0P exp(=ns))s 80 f™(2) & Op exp(—ns)- Hence, by the definition of 9p ¢yxp(—ns), if f™(2) €
P for some P € P, then f"(z) ¢ U, B(P;, exp(—nd)). Thus

B(f™(x),exp —nd) C P.
We are done. &
Theorem 7.1.10. (Volume Lemma, expanding map, any measure case). Let v

be an f-invariant Borel probability measure on a topologically exact conformal expanding
repeller (X, f), where X C IR%.Then

HD, (v) < i:i;; < HD*(v)
If in addition v is ergodic, then
_ h(f)
HD() = xv(f)

Proof. Fix the partition P coming from Lemma 7.1.8 with r = min{¢, n}, where > was
defined in (3.1.1). Then, as we saw in Chapter 4

(7.1.10) P (@) € £ (B(f"(2).€)).

for every x € X and all n >. We shall work now to get a sort of opposite inclusion.
Consider an arbitrary § > 0 and z so that (7.1.8) from Corollary 7.1.9 is satisfied for
al n > ng(z). For every 0 < i < n define k(i) = [ilOgA + llg—g—i} + 1, A > 1 being the
expanding constant for f : X — X (see (3.1.1)). Hence exp(—id) > ¢€A~F and therefore
ff_,.’(“w)(B(f”k(x),f)) C B(f*(z),exp —id). So, using (7.1.8) for i in place of n, we get

[ OB (B(f (@), €) C 71 (P(fi ()
for all i > ng(x). From this estimate for all ng < i < n, we conclude that
i RN (B(fHE (), €) € PR (a).

Notice that for v-a.e. « there is @ > 0 such that B(xz,a) C P"°(z), by the definition of
Op,. . Therefore for all n large enough

(7.1.11) [y RN B (), €)) € P ().
It follows from (7.1.11) and (7.1.10) with n + k(n) in place of n, that

_ —(n+k(n)) n+k(n)
lim l — logz/(’P”(m)) < liminf loglx(fm (B(f + (T)af)))

n—oo 1 n— oo n
—1 x—(n—l—k(n)) B( frtk(n)
< lim sup ogv(f (f (2),8))
n—00 n

< lim 1 log v(P™(2))(P"HEM+1) (1),

n—oc 1



The limits on the most left and most right-hand sides of these inequalities exist for v-a.e.
x by the Shennon-McMillan-Breiman Theorem (Theorem 1.5.4), see also (1.5.1), and their
ratio is equal to 1. Letting 6 — 0 we obtain the existence of the limit and the equality

(7.1.12) hy(f,P,z):= lim L g u(P"(2))(P™)(2) = Tim —logv(f, "(B(f"(2).£))

oo N, n—oc n

In view of Birkhoff’s Ergodic Theorem, thelimit

(7.1.13) xo(F) = Tim Llog|(/")'(2)]

exists for v-a.e. x € X. Dividing side by side (7.1.12) by (7.1.13) and using (7.1.1)-(7.1.4),
we get

L logu(B(x,r)) _ h(f.P.n)

r—>0  logr Xu(f, )
Since by the Shennon-McMillan-Breiman Theorem, and Birkhoft’s Ergodic Theorem,

[ b (. Poa) dvle) _1(P) _ ()
[ xu(f,2) dv xo(f) T xu(f)

where the latter equality was written since f is expansive and diam(P) is less than the

expansiveenss constant of f : X — X which at least excesds 7, there thus exists a pos-
h, (f,P.z) < hy (f)
] ) xv(fm) = xu(f)
inequality holds. Therefore

itive measure set where and a positive measure set where the opposite

. logv(B(x,7)) _ h,(f)
}1—% log r = xv(f)

and the opposite inequality also holds on a positive measure set. In view of definitions
of HD, and HD* and by Corollary 6.6.4, this finishes the proof of the first part of our
Theorem. In the ergodic case h,(f,P,z) = h,(f) and x,(f,z) = x.(f) for v-a.e. z € X.

So | B h
r—=0  logr Xv (f)
and we are done in this case as well. &

Section 7.8. Multifractal analysis of Gibbs state.

In the previous section we linked to a (Gibbs) measure only one dimension number, HD(m).
Here one of our aims is to introduce 1-parameter families of dimensions, so-called spectra
of dimensions. In these definitions we do not need the mapping f. Let v be a Borel
probability measure on a metric space X. Recall from Chapter 6.7 that given x € X we
defined the lower and upper pointwise dimension of v at x by putting respectively

d, () — liminf EXBE) 4G ) limsup 1287 BE )
0 logr r—0 logr



If d,(x) = dy,(z), we call the common value the pointwise dimension of v at z and we
denote it by dy,(z). The function d,, is called the dimension spectrum of the measure v.
For any a < 0 < oo write

Xo(a)={z € X :d,(z) = a}.

The domain of d;, namely the set | J,, X, (a) is called a regular part of X and its complement
X a singular part. The decomposition of the set X as

X= |J X(0)uXx.
0<a<occ

is called the multifractal decomposition with respect to the dimension spectrum.

Define the F,(«)-spectrum for dimensions function related to Hausdorff dimension by
F,(a) = HD(X,(«)),

where we define the domain of F, as {a: X, (a) # 0}.

Note that by Theorem 7.1.5 if (X, f) is a topologically exact expanding conformal
repeller and v = ji_pp(x)10g |/ then all X, (a) are empty except X, (HD(X)). In particular
the domain of F), is in this case just one point HD(X).

Let for every real ¢ # 1

N
1 lim log> ., v(B;)?
q—1r—=0 logr

’

R,(v) :=

where N = N(r) is the total number of boxes B; of the form B; = {(x1,...,14) € IR¢ :
rk; < z; < r(k;j+1), j =1,...d} for integers k; = k;(¢) such that v(B;) > 0. This
function is called Rényi spectrum for dimensions, provided the limit exists. It is easy to
check (exercise 7.2.1) that it is equal to the Hentschel-Procaccia spectrum

1 loginfg, - v(B(xi,r))?
HPy(v) := —— lim Ep(rurses. VBl )
q 11’—)0 log’]"

where infimum is taken over all G, being finite or countable coverings of the (topological)
support of v by balls of radius r centered at x; € X, or

1 i log [ v(B(z,r))? tdv(z)
qg—1 ro0 log r

HP,(v) :=

provided the limits exist. For ¢ = 1 we define the information dimension I(v) as follows.

Set
H,(r) =inf (— Y v(B)logv(B)).

BeF,

9



where infimum is taken over all partitions F, of a set of full measure v into Borel sets B
of diameter at most r. We define

H,
I(v) = lim (r)
r—0 —logr

provided the limit exists. A complement to Corollary 6.6.4 is that
(7.8.0) HD,(v) < I(v) < PD*(v).

For the proof see Exercise 7.2.5.Note that for Rényi and H P dimensions it does not make
any difference whether we consider coverings of the topological support (the smallest closed
set of full measure) of a measure or any set of full measure, since all balls have the same
radius r, so we can always choose locally finite (number independent of r) subcovering.
These are "box type” dimension quantities.

A priorithere is no reason for the function F,, () to behave nicely. If v is an f-invariant
ergodic measure for (X, f), a topologically exact conformal expanding repeller, then at least
we know that for ag = HD(v), we have d,(z) = «q for v-a.e. = (by the Volume Lemma:
7.1.3 and Theorem 7.1.4 for a Gibbs measure v of a Holder continuous function and by
Theorem 7.1.10 in the general case). So, in particular we know at least that the domain
of F,(v) is nonempty. However for oo # g we have then v(X,(a)) = 0 so X, (a) are not
visible for the measure v. Whereas the function HP,(v) can be determined by statistical
properties of v-typical (a.e.) trajectory, the function F,(«) seems intractable. However
if v = py is an invariant Gibbs measure for a Holder continuous function (potential) ¢,
then miraculously the above spectra of dimensions happen to be real-analytic functions
and —F,, (—p) and HPy(ug) are mutual Legendre transforms. Compare this with the
pair of Legendre-Fenchel transforms: pressure and -entropy, Remark 2.5.3. Thus fix an
invariant Gibbs measure pg4 corresponding to a Holder continuous potential ¢. We can
assume without loosing generality that P(¢) = 0. Indeed, starting from an arbitrary ¢, we
can achieve this without changing p, by subtracting from ¢ its topological pressure (as at
the beginning of the proof of Lemma 7.1.3). Having fixed ¢, in order to simplify notation,
we denote X, (o) by X, and F,, by F'. We define a two-parameter family of auxiliary
functions ¢, ; : X — IR for ¢q,t € IR, by setting

$qt = —tlog|f'| + q¢.

Lemma 7.8.1. For every ¢ € IR there exists a unique ¢ = T'(q) such that P(¢, ) = 0.

Proof. This lemma follows from the fact the function ¢t — P(¢, ) is decreasing from oc to

—oo for every ¢ (see comments preceding Theorem 7.1.5 and at the beginning of Section
2.5) and the Darboux theorem. [ )

We deal with invariant Gibbs measures pg, ..., which we denote for abbreviation by pq
and with the measure pg so we need to know a relation between them. This is explained
in the following.

10



Lemma 7.8.2. For every q € IR there exists C' > 0 such that for all x € X and r > 0

(7.8.1) o™ < rT(quf;EﬁgE;,)i))q =¢

Proof. Let n = n(x,r) be defined as in Lemma 7.1.1. Then, by (7.1.5), (7.1.1) and (7.1.3),
the ratios

.LL¢>(B(T7T)) /'Lq(B(TT)) r

exp Spp(z) " [(f") (2)|7T @D expqSng(x)” (") ()]~
are bounded from below and above by positive constants independent of z,r. This yields
the estimates (7.8.1) &

Let us prove the following.

Lemma 7.8.3. For any f-invariant ergodic probability measure 7 on X and for 7-a.e.
x € X we have
[ pdr

- — [log|f!|dr
Proof. Using formula (7.1.0) in Lemma 7.1.1 and Birkhoff ’s Ergodic Theorem, we get

dy, (2)

d, ()= lim Spo(zx) _ limy, s o0 %Sn¢(x) _ f pdT
o (@) = 0 G TV Tt Llog |7/ )L — [ log [ fdr

[ )

One can conclude from this, that the singular part X of X has zero measure for every
f-invariant 7. Yet the set X is usually big, see Exercise 7.2.4.

On the Legendre transform. Let & = k(q) : I — IR be a convex function on I =
[a1 (k), as(k)] where —oc < aq(k) < as(k) < oo (i.e. I is either a point or a closed interval
or a semiline or IR). The Legendre transform of k is the function g of a new variable p

defined by

9(p) = sup{pq — k(q)}
q€el
everywhere where a finite supremum exists. It can be easily proved (Exercise 7.2.2) that
the domain of g is also either a point, or a closed interval or a semiline or IR. It is also
easy to show that g is convex and that the Legendre transform is involutive. We then say
that the functions k£ and g form a Legendre transform pair.

Proposition 7.8.4. If two convex functions k£ and ¢ form a Legendre transform pair
then g(k'(q)) = qk’'(q) — k(q), where k’'(q) is any number between the left and right hand
side derivative of k at ¢, which are defined as —oc, 00 at aq(k), as(k) respectively, if
these end points are finite. We set 0 - 00 = 0 in case k' = +oo at ¢ = «a;(k) = 0. If

11



@z (k) = oo (similarly if a;(k) = —oc), then for k'(co) defined as lim,_,o k'(q), it holds
g(k'(00)) = limg_,00 g(k'(q))-

Note that if k is C? with k" > 0, therefore strictly convex, then also ¢” > 0 at all points
k'(q) for a1(k) < q < aa(k), therefore g is strictly convex on [k’ (a1 (k)), k' (a2 (k))]. Outside
this interval g is affine in its domain. If the domain of £ is one point then g is affine on IR
and wvice versa.

We are now in position to formulate our main theorem in this section gathering in particular
some facts already proven.

Theorem 7.8.5.
a) The pointwise dimension d,,, (x) exists for ugy-almost every z € X and
B He

J bdpy
d,,(r) = = HD(uy) = PD(pg).
no (2) ~Tlog |/ djg (1g) (1)
(b) The function ¢ — T(q) for ¢ € IR, is real analytic, T(0) = HD(X), T(1) = 0,
Pdpg
T'(q) = % < 0and T"(q) > 0.

(c) For all ¢ € IR we have pq(X_7i(q)) = 1, where pi4 is the invariant Gibbs measure for
the potential ¢4 1(q), and HD(pg) = HD(X_1(g)).

(d) For every g € IR, F(—T'(q)) = T(q) —qT"(q), i.e. p— —F(—p) is Legendre transform
of T(q).
If the measures g and p_HD(X)log|f'| (the latter discussed in Theorem 7.1.5 and
Corollary 7.1.6) do not coincide, then 7" > 0 and F" < 0, i.e. the functions T" and F'
are respectively strictly convex on IR, and stricctly concave on [—T"(o0), —T"(—00)]
which is a bounded interval in R* = {a € IR : o > 0}. If pg = pi_pp(x)10g | s then
T is affine and the domain of F' is one point —7".

(e) For every ¢ # 1 the HP and Rényi spectra exist (i.e. limits in the definitions exist)

and ?(qu) = HP,(pny) = Rq(pg). For ¢ = 1 the information dimension I(pg4) exists

and @
3 —q _— / fr— — —
¢ 111171(]1#1 1—¢ =-T'(1) HD(N¢) ID(Mqﬁ) I(u¢).

Insert Figures: graph of T, graph of F' [Pesin, p.219, 220]

Proof. 1. Since P(¢) = 0, the part (a) is an immediate consequence of Lemma 7.1.3
and its second and third equalities follow from Theorem 7.1.4. The first equality is also a
special case of Lemma 7.8.3 with 7 = p.

2. We shall prove some statements of the part (b). The function ¢, = —tlog|f'| + q¢,
from IR? to C?(X), where 0 is a Holder exponent of the function ¢, is affine. Since by

12



real analytic, then the composition which we denote P(q,1) is real analytic. Hence the
real analyticity of T'(q) follows immediately from the Implicit Function Theorem once we
verify the non-degeneracy assumption. In fact C?-smoothness of P(q,t) is sufficient to
proceed further (here only C1), which has been proved in Theorem 4.7.4. Indeed, due to
Theorem 4.6.5 for every (qo,%0) € IR?

doP(q,1))

.8.2
(7.8.2) ot

‘(QOJO) = - / 1Og|f/‘d:uqa-,tn < 07
JX

where fi4, 1, is the invariant Gibbs state of the function ¢4, ¢,. Differentiating with respect
to ¢ the equality P(q,t) = 0 we obtain

_ 9P(g, 1) L 9P(g,1))

(7.8.3) 0 qu,T(q)) -T'(q) quq,T(q))
hence we obtain the standard formula
_9P(g,1)) dP(q,t)

T/(Q): g |(QaT(Q)) ot |(q,T(Q))’

Again using (4.6.5") and P(¢q 7(4)) = 0, we obtain

, [ dduy —hy, (f)
T (g) —
D= Tlog g < Tog|flduy =

the latter true since the entropy of any invariant Gibbs measure for Holder function is pos-
itive, see for example Theorem 4.2.7. The equality 7'(0) = HD(X) is just Corollary 7.1.2.
T(1) = 0 follows from the equality P(¢) = 0.

3. The inequality T"(q) > 0 follows from the convexity of P(q,t), see Theorem 2.5.2.

Indeed the assumption that the part of IR3 above the graph of P(q,t) is convex implies

that its intersection with the plane (g, t) is also convex. Since ap(aqt’t)) [ (go,t0) < 0, this is the

part of the plane above the graph of T. Hence T is a convex function. We avoided in the
above consideration an explicit computation of T". However to discuss strict convexity
(a part of (d)) it is necessary to compute it. Differentiating (7.8.3) with respect to g we
obtain the standard formula

(7.8.4)

82P(q,t 82P(q,t 8%P(q,t
T'(q)2 552 + 2T (q) aq(gtf) + aég “

__9P(q,t)
ot

(7.8.5) T (q) =

with the derivatives of P taken at (¢, T'(¢)). The numerator is equal to

(T2 + %)zpm, £) = o2, (<T"(q) log |f'| + )

by Theorem 4.7.4, since this is the second order derivative of P : C(X) — IR in the
direction of the function —7"(q) log |f'| + ¢.
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The inequality o? > 0, true by definition, implies 7" > 0 since the denominator in
(7.8.5) is positive by (7.8.2).

By Theorem 1.11.3 o7, (—=T"(q)log|f'| + ¢) = 0 if and only if the function
~T'(q) log | f'|+ ¢ is cohomologous to a constant, say to a. It follows then from the equality
in (7.8.4) that a = [adu, = [(-T'(q)log|f'| + ¢#)du, = 0. Therefore T'(q)log|f’| is
cohomologous to ¢ and, as P(¢) = 0, also P(T"(¢) log |f’|) = 0. Thus, by Theorem 7.1.5
and Corollary 7.1.2, T'(q) = —HD(X) and consequently ¢ is cohomologous to the function
—HD(X)log|f'|. This implies that pg = p_mp(x)10g|#/|» the latter being the equilibrium
(invariant Gibbs) state of the potential —HD(X)log|f’|. Therefore, in view of our formula
for T", if p1y # p_up(xX)10g £/ then T"(q) > 0 for all ¢ € IR.

4. We prove (¢). By Lemma 7.8.3 applied to 7 = pg, there exists a set Xq C X, of full
measure fi,, such that for every € X, there exists

= —T'(q)-

. log py(B(z,r)) ¢dp
dp, (z) = lim 0 = — / 2
r—0 log r [ log|f'|dp,

the latter proved in (b). Hence X, C X_pi(g)- Therefore py(X_71(q)) = 1. By Lemma
7.8.2 for every B = B(x,r)

|log p1q(B) — T(q)logr — qlog ug(B)| < C
for some constant C' € IR. Hence

log 1q(B) T(g) - qlogu¢(B)

— 0
logr log r

(7.8.6)

as r — 0. Using (7.8.6), observe that for every 2 € X_r(4), in particular for every z € X'q,

. logp.(B) . logpuy(B) '
}%W =T(q) +Q}%W =T(q) — qT"(q).
Although Xq can be much smaller than X _ 74y, miraculously their Hausdorff dimensions

coincide. Indeed the measure p, restricted to either X, or to X_7/(4) satisfies the assump-
tions of Theorem 6.6.3 with 61 = 03 = T'(q) — ¢T"(q). Therefore

(7.8.7) HD(X,) = HD(X 11(y) = T(q) — ¢T"(q)

and consequently
F(=T"(q)) =T(q) — ¢T"(q).

Remarks. (a) If we take a set larger than X_r(4), namely replacing in the definition
of X, () the dimension d,, by the lower dimension d, we still obtain the same Hausdorff
dimension, again by Theorem 6.6.3.

(b) Some authors replace in the definition of X, («) the value d,(z) by d,(z). Then
there is no singular part. In view of a) the F, («) spectrum is the same for v = .
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(c) Notice that (7.8.7) means that HD(X _7(4)) is the value where the straight line
tangent to the graph of T at (g, T(q)) intersects the range axis.

In the next steps of the proof the following will be useful.

Claim. (Variational Principle fo T.) For any f-invariant ergodic probability measure 7
on X, consider the following linear equation of variables ¢, t

/ bosdr 4y (f) = 0

that is

IR0 R
~ Jlog|fldr " o fldr

(7.8.8) t=t-(q)

Then for every q € IR
T(q) = sup{t- (q)} = ¢y, (q),

Where the supremum is taken over all f-invariant ergodic probability measures 7 on X.

Proof of the Claim. Since [ ¢4 :d7m + h (f) < P(¢,+) and since % < 0 (compare
the proof of convexity of T'), we obtain

t-(q) < T(q)-

On the other hand by (7.8.8), and using P(¢q () = 0, we obtain

by () +af ¢dug _ T(q) [log|f"\dug
f10g|f/|dl‘q flog‘f/|dl‘q
The Claim is proved. F

5. We continue Proof of Theorem 7.8.5. We shall prove the missing parts of (d). We have
already proved ithat

=T(q).

tuq (Q) =

F(=T'(q)) = HD(X_1(q)) = HD(pq) = T'(q) — ¢T"(q)-

Note that [-T"(oc), —T"(—oc)] C IRT U {0, 00} since T'(¢q) < 0 for all gq. Note finally that

~T'(—00) = lim — [ ¢dig < sup(—¢)

<
g——oc [log|f'|dug — inflog|f’| >

and

— d
—T'(oo) = lim L/Mq.
g—oo [log|f'|dpg
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The expressions under lim are positive, (see (7.8.4)). It is enough now to prove that they
are bounded away from 0 as ¢ — oc. To this end choose ¢q such that T'(gy) < 0. By our
Claim (Variational Principle for T') £, (g0) < T(qo). Since t,, (0) > 0, we get

d
—qugﬁ—ﬁéu = 1, (0) = £, (g0) > |T(q0)]-
. . q

— [ bdu,
Hence m 2 |T(Q())|/Q() > 0 for all q.

6. To end the proof of (d) we need to prove the formula for F' at —T'(+oc0) (in case T
is not affine) and to prove that for a ¢ [-T"(oc), —T'(—oc)] the sets X, («) are empty.
First note the following.

6a. For any f-invariant ergodic probability measure 7 on X, there exists ¢ € IR U {£o0}
such that

J pdr J by

7.8.9 - ‘
(7.8.9) [log|f'|dr — [log|f'|du,

(limg—, +o0 in the +oo case).

Indeed, by the Claim the graphs of the functions ¢.(¢) and T'(q) do not intersect
transversally (they can be only tangent) and hence the first graph which is a straight line,
is parallel to a tangent to the graph of T at a point (g0, T(qo), or one of its asymptots,
at —oo or +00. Now (7.8.9) follows from the same formula (7.8.8) for 7 = p,, since the
graph of ¢, is tangent to the graph of T" just at (go, T'(qo)). (Note that the latter sentence

proves the formula T'(q) = in a different way than in 2, namely via Variational

Principle for T'.).

6b. Proof that X, = for a ¢ [-T'(cc), —T'(—oc)]. Suppose there exists € X with
a:=d,,(z) ¢ [-T"(c0), =T'(—o0)]. Consider any sequence of integers ng — oc and real
numbers by, by such that

lim iSngb(T) =by, lim i(—log (™) (2)]) = bo

k—o0 N, k—oo N
and by /by = a. Let 7 be any weak*-limit of the sequence of measures
ng—1
1 k
Tny ‘= n_k E 5f7(m)7
Jj=0

where 07;(,) is the Dirac measure supported at f7(z), compare Remark 2.1.14a. Then
[ ¢dr = by and [(—log|f'|)dr = by. Due to Choquet Theorem (Section 2 1) (or due
to the Decomposition into Ergodic Components Theorem, Theorem 1.8.8) we can assume
that 7 is ergodic. Indeed, 7 is an "average” of ergodic measures. So among all ergodic
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[ o

< a and vy such that
f —log | f'|dvn

measure v involved in the average, there is v; such that

d
f{% > a. If a < =T'(oc) we consider v; as an ergodic 7, if @ > —T'(—00) we
— log ' 25

consider v5. For the ergodic 7 found in this way, the limit « can be different than for the
original 7, but it will not belong to [-T"'(oc), —=T'(—oc)] and we shall use the same symbol

« to denote it. By Birkhoff’s Ergodic Theorem applied to the functions ¢ and log |f'|, for

Sn(¢)(x)

T-a.e. © we have lim,, oy @)] Hence, applying Lemma 7.8.3, we get

[ ¢pdr
 =d, (r)= ——F—.
R
Finally notice that by (7.8.9) there exists ¢ € IR such that o = %, whence
- og Hq
a € [-T'(c0), —=T'(—0o0)]. This contradiction finishes the proof. &

Remark. We have proved in fact that for all z € X any limit number of the quotien
log pig(B(w,7)/logr as r — 0 lies in [~T"(oc0), =T"'(—00)], the fact stronger than d,, () €
[—T"(c0), —=T'(—00)] for all z in the regular part of X.

6c. F(—T'(+00)) = HD(X_r/(100))- Consider any 7 being a weak*-limit of a subse-
quence of p, as ¢ tends to, say, co. We shall try to proceed with 7 similarly as we did
with 14, though we shall meet some difficulties. We do not know whether 7 is ergodic (and
choosing an ergodic one from the ergodic decomposition we may loose the convergence
pqg — 7). Nevertheless using Birkhoff Ergodic Theorem and proceeding as in the proof of
Lemma 7.8.3, we get

Slimy 00 =S, ¢(2) dr () _ Jgdr . [ ¢dpg
— [limy00 2 log |[(f7) (z)|dr(z)  — [log|f'|dr  a=occ — [log|f'|dpqg
= i (~T'(q)) = ~T"(oc)

q— 0o

with the convergence over a subsequence of ¢’s. Since we know already that

limy, o %Sn¢(T)

— hmn_mc %log |(fn)l(’l')| Z _TI(OC>7

du¢ (.’L‘) =

we obtain for every z in a set X, of full measure 7 that the limit d,(z) = —T"(oc). We
conclude with XT C X_7/(x0)- Now we use the Volume Lemma for the measure 7. There
is no reason for it to be Gibbs, neither ergodic, so we need to refer to the version of Volume
Lemma coming from Theorem 7.1.10. We obtain

* h‘r(f) LN h“q (f)
HD(X _11(o0y) = HD*(7) > Tlog |/ dr = hjﬂgolfm

= lim T(q) — qT"(q) = F(—T"(c)).

q—r0o0
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We have used here the upper semicontinuity of the entropy function v — h,(f) at 7 due
to the expanding property (see Theorem 2.4.6). It is only left to estimate HD(X_7/ (o)
from above. As for p14, we have for every ¢ and € X_7/ () (see (7.8.6)) that

log 114 (B)

.y 108 #q(B) : / /

i =gy~ Tl +alim =7 "= = T(g) = qT"(oc) < T(q) — aT"().
Hence HD(X _7/(o)) < T(q) — qT"(q). Letting ¢ — oc we obtain HD(X_7/(5)) <
F(=T"(c0)).

7. HP and Rényi spectra. Recall that topological supports of pgs and p, are equal
to X, since these measures as Gibbs states for Holder functions, do not vanish on open
subsets of X due to Proposition 4.2.5. For every G, a finite or countable covering X by
balls of radius r of multiplicity at most C we have

1< Y pe(B) <C.
Beg,

Hence, by Lemma 7.8.2
1 <70 Y uy(Byi < C
Beg,.

with an appropriate another constant C. Taking logarithms and, for ¢ # 1, dividing by
(1 —q)logr yields (e) for q # 1.

8. Information dimension. For ¢ = 1 we have limg 1 421 T(qu) = —T'(1) by the
definition of derivative. It is equal to HD(pg) = PD(pg) by (a) and (b) and equal to I(ug)
by Exercise 7.8.5. &
Exercises

7.2.1. Prove the equalities of Rényi and Hentschel-Procaccia spectra.

7.2.2. Prove Proposition 7.8.4 about Legendre transform pairs and remarks preceding
and following it.

7.2.3. Prove for « = —T'(1) that F(a) = a and F'(«) = 1 (see Fig.1.) and
F'(~T'(£o00)) = £o0.

7.2.4. Prove that if ¢ is not cohomologous to —HD(X) log|f’| then the singular part
X of X is nonempty. Moreover HD(X) = HD(X).

Hint: Using the Shadowing Lemma from Chapter 3, find trajectories that have blocks
close to blocks of trajectories typical for p_gp(x)iog || of length N interchanging with
blocks close to blocks typical for pg of length eN, for N arbitrarily large and ¢ > 0
arbitrarily small.

7.2.5. Define the lower and upper information dimension I(v) and I(v) replacing in
the definition of I(v) the limit lim, by the lower and upper limits respectively. Prove that
HD.(v) < I(v) < I(v) < PD*(v), see (7.8.0).

Sketch of the proof. For an arbitrary € > 0 there exist C' > 0 and A C X, with
v(X \ A) < e such that for all r small enough there exists a partition F, of A, satisfying

18



Hy(r) +e > =Y per v(B)logv(B) > > pcr v(B)HD.(v)log s1—ps > HD.(v)(1 —
e)log .

On the other hand for the partition B, of X into intersections with boxes (cubes) of
sides of length r (compare Proposition 6.4.6 and the partition involved in the definition of
Rényi dimension, but consider here disjoint cubes, that is open from one side), we have

_ H, - v(B)logv(B 1 d
I(v) = limsup (r) < lim sup ZBEB’” (B) log v )glimsup Jlogv(By (z)) dv(x)
r—o0 —logr r—0 —logr r—0 log r

1 B,
< /(limsup M)du(x) < PD*(v),
=0 logr

where B,.(z) denotes the cube of side r containing x.
Prove that it has been eligible here to use cubes instead of balls standing in the definition
- . o logv(Br(z) _

of d,(z). For this aim prove that for v-a.e. x € X, we have hm% = 1. Use
Borel-Cantelli lemma.
Prove that we could use Fatou’s lemma (changing the order of limsup and integral) indeed
due to the existence of a v-integrable function which bounds from above all the functions
logv(B(z,r))/logr (or logv(B,(z))/logr). Use again Borel-Cantelli lemma, for, say, r =
27k

7.2.6. Let ;1 = pg be a measure of maximal entropy on a topologically exact conformal
expanding repeller X such that every point € X has exactly d preimages (so ¢ = — logd).

Prove (deduce from Theorem 7.8.5) that F(«a) = suptelR(t + aP(t))7 more concretely

logd
Fla)=T+ O‘lﬁg(?, where o = — 11;3%151).

7.2.7 Let ¢; : X — IR be Holder continuous functions for ¢ = 1,...,k and pg, their
Gibbs measures. Define X, o, = {2 € X : d,,(z) = a; forall i = 1,...,k}. Define
baqr,...qnt = —tlog|f'| + >, qidi and T(q1,....qx) as the only zero of the function ¢ —

P(éq.....qn.t)- Prove the same properties of T' as in Theorem 7.8.5, in particular that

HD(Xq, ... a inf s+ T(qq, ..
( an) = (q1,.-qr)ERF Zq ! )

wherever the infimum is finite.

Historical and bibliographical notes

The section on multifractal analysis relies mainly on the monographs by Y. Pesin [P]
and K. Falconer [F3] (though details are modified, for example we do not use Markov
partition ). The reader can find there comprehensive expositions and further references.
The development of this theory has been stimulated by physicists, the paper often quoted
is [HJKPS].
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Section 2. Fluctuations for Gibbs measures.

Theorem 7.2.1. Let f : X — X be a holomorphic expanding repeller. Let ¢ be a
Hoélder continuous function and let pug be it’s Gibbs measure. Then, with K = HD(u4),
either
(a) k =HD(X) and pgy < H, on X (if oy = ¢+ wlog|f'| — P(¢) is a coboundary) or
(b) pe L H, (if w ¢+ nlog\f | — P(¢) is not a coboundary) and moreover, there

exists ¢y > 0, = /202())/xu,(f)), such that with the gauge function ¢.(r) =

r* exp(cy/log 1/7" logs 1/7), where logs means the iteration of the log function 3 times:

(c) pg L Hy, for all 0 < ¢ < ¢, and
(d) py < Hgy, for all ¢ > co.
Proof. If ¢ is a coboundary, then it follows from equality ¢ — ¢ = —klog|f’| + P(¢)
that P(¢) = P(¢p — ¢) = P(¢) + P(—rlog|f'|). Thus P(—~rlog|f’|) = 0 and the part
(a) follows immediately from Theorem 7.1.1 and the observation saying that the potantial
cohomological up to an additive constant have the same Gibbs states.

Suppose now that 1) is not a coboundary. As in the previous section let A = inf |[f’| > 1.
Recall that then there exists 7 > 0 small enough that firstly, f |4 is one - to - one for
all sets A C X with diam(A) < 7 and secondly, d(f(y), f(2)) > Ad(y,z) if d(y,z) < 7.
Fix x € X and r > 0 such that » < 7 Define n = n(z,r) to be the least number such
that diam(f™(B(z,r))) > 7. Since f : X — X is topologically exact, n(z,r) is finite. By
definition of n, diam(f7/(B(z,r))) < 7 for all j = 0,1,..n— 1. Therefore f™ |(p(z ) is one
- to - one and

molf" (Bl = [ exp(P(oIn— Sud(e))dma(e),

where mgy is the fixed point of the dual operator of Ly, the transfer operator associated
with the function ¢ — P(¢). Since the function ¢ is Holder continuous, it follows from
777 that there exists a constant K > 0 such that |S,¢(2) — Spo(x)| < K for all z € X,
z € B(x,r), and n = n(x,r). Hence, we get
e exp(P()n — Spd(w))me(B(z,r)) < mg(f"(B(z,r)))
< K exp(P(d)n — Sud(x))mg (B, 7))

or equivalently

e K exp(Sud(x) — P($)n)my(f* (B, 1)) < my(B(x, 1))
< e exp(Sud() — P($)n)my (7 (B(w,7))).
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Similarly, since log|f’(z)| is a Holder continuous function, there exists a constant K; > 0
such that

|Sn(log [ f(2)]) — Sn(log | f'(z)])] < Ky
forall x € X, z € B(z,r), and n = n(x,r). Then

[(F")'(2)]
(f) ()]

<ef

Therefore

diam(B(z, r))e " |(f") (2)] < diam(f" (B(, )
< diam(B(x, 1)) (") (2],

r))e (") (z)] < 7 f']l, or equivalently r < Fe"t[(f*)(2)[ | f.
B(z,7))) > 7 we get similarly r > e~ #1|(f")(z)|~!7. In conclusion,

Hence, diam(B(x,r
Also, since diam(f™

/_\v

(7.2.1) e H(f) (@) T <7 < —6 Y @)L

DN | —

Hence, denoting \/log(|(f")'(x)]) logs([(f")'(2)[) by gn (@), we get
mg(B(z,7)) o " exp(Sng(x) — P(d)n)my(f" (B(x, 1))
r#exp(cy/log1/rlogs 1/r) — r# exp(cy/log 1/rlogs 1/r)
e exp(Snd(z) — P($)n)

<

(% reprpiyams )" exp(eylog2e= K1 W log, (2= L L)

2 |(fm ’(15C 171
_ Qexp(Sud(z) — P($)n)

— () ()7 explegn (@)

where () is a large enough constant. Similarly,

mg(B(z,7))
r# exp(cy/log 1/rlogs 1/7)
L € exp(Sud(x) = P(@)n)my(f"(B(w,7)))
B i exp(cy/log 1/rlogs 1/7)
§ oK exp(Sut(x) = POm)molf(B. 1))
— Gl @) e | 1) exp(ey/log(2eX[(f7) () [7=1) logg (2e5 [(f)' (x) 771))
S Quexp(Sno(x) — P(g)n)mg(f*(B(z,r)))
N (/)" ()|~ exp(cgn ()
_ Quexp(Sud(x) — pl(é)n)
— () (@) 7 exp(egn (@)

where Q2 = Q1 min{my(f"(B(z,7))) : © € X,r > 0}. Note that, since the topological
support of p4 and mg is equal to X, using the the Bounded Distortion Theorem we

(@1 large enough)
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get Q2 > 0 because f*(B(x,r)) D B(f™(x),r|(f") (z)|K~') > B(f"(z), R), where R =
K~'re~ %1, Finally, we get

QQ exp(anb(.’I?) - P(¢)77) m¢(B(T T)) < Q eXp(Sn¢(m) * P(¢)”)

0< [(f™) (z)] =% exp(cgn(z)) = r#exp(cy/log 1/rlogs 1/r) — [(f™)'(z)| 7% exp(cgn(2))
Hence,
Q2 exp(Snd(z) — P(¢)n)} < log mg(B(z,r))
|(f™) ()|~ exp(egn(z)) | — & exp(cy/log 1/rlogg 1/1) |
oo | @ xP(Snd(z) — P(¢)n)
= o8 {I(f”)’(fr)l"‘exp(cgn(m))}
Therefore,

log Q2 + Snd(x) — P(d)n + klog |(f") (x)| — cgn(x)
my (B(z,r)) ]
% exp(cy/log 1/rlogg 1/r)
<logQ+ Spo(x) — P(¢)n + rlog|(f") (z)] — cgn (=),

< log

or equivalently,

-+ () [ 2221 = PO slog (7Y )| _ ]

< log [ my(B(z, 7)) ]
r# exp(cy/log1/rlogs 1/r)

Snd(x) = P(¢)n + klog|(f™) (x)| c}
gn($> .

(7.2.1) <logQ + gn(z) [

So, in order to proceed further, we are tempted to evaluate the following upper limit.

lim sup Sule)
n—oo \/log[(f™) ()] logs |(f™) ()]

First, by the Birkhoff ergodic theorem, for every ¢ > 0 there exists X; C X such that
me(X1) =1 and forall z € X there exists N > 0 such that Vn > N

n(x — €) < 1og (") (2)] < n(x +€).

Second, since 1 is not a coboundary, by the Law of Iterated Logarithms (see 777), there
exists Xo C X such that my(Xs) = 1, and forall z € X,

Snw(x)

lim sup ————2— = V202
n—oo y/nlogy(n)
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Therefore, for all z € X[ Xs

lim sup Snt () < lim sup Snth(x)
n—oo  Gn(T) n—oo /n(xu — €)logy(n(x, — €))
< lim sup Sntp(2)
n—00 \/(XN — 26) \/n 10g2 (n))
B 2072
V (Xu - 26)
and
lim sup Snt () > lim sup St ()
nooo gn(T) T nooe \/nlxu +€) logy(n(x, + €))
> lim sup St ()
n—oo \/(xu + 2€)y/nlogy(n))
B 202
V (Xu + 26) .
In conclusion, forall x € X1 X2, we have
202 Snt)(x) 202

< limsup <

\/ (X,u + 26) n— 00 gn(x) (XM — 26)

Hence, letting € \, 0,

. Spip(z) 202
lim sup — =,
n—00 Jn (l’) Xpu
Thus, with
Sn — P 1 n\/
i) = gola) | = S ]
we obtain
o if zi > c
(7.2.3) lim sup B, (c) = 3

. 2
n—00 —oo  if /2 <
Xp

since, limy, 00 gn(z) = 00, and this is because f is expanding. By (7.2.1)

[ mg(B(z, 7)) ]
% exp(cy/log1/rlogz 1/r)
< limsup[log Q + B, (c)].

n—oo

lim sup[log Q2 + . (c)] < limsup log

n—00 r—0
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By (7.2.3), it gives

. 202
. m¢(B(JJ,T)> 0 if E > cC
lim sup log = .
r—0 r# exp(cy/log 1/rlogs 1/7) oo if zﬁ <e
(1
In other words,
. 20.2
. m¢(B(x,r)) oo if E > cC
lim sup = .
r—0 75 exp(cy/log1/rlogs 1/r) 0 if zﬁ <e
(1

Therefore, by Theorem 5.77, ug L Hy, for all ¢ < 202 and pe < Hg, for all ¢ > @/E.
¢ X € X
The proof is finished.

Note that this proof is done without the use of Markov partitions. Note also that the last
display in the proof of Theorem 7.2.1 is known as a refined volume lemma.

Section 7.3. Radial behaviour of the Riemann map,I.

In this section f : X — X continues to be a conformal expanding repeller and we
assume additionally that X is a Jordan curve. We then call f a boundary expending
conformal repeller. Let 2 C @ be one of the components of @'\ X and fix zg € Q. Let
D! = {z: |z| < 1}. In view of Caratheodory’s theorem, any Riemann map R : D! — Q
(conformal homeomorphism) sending zero to zo (which is unique up to rotation) extends
homeomorphically to DT. For more information about a Riemann map we refer the reader
to [?]. We also assume that there exists an open topological annulus A C @ surronding
00 such that f(ANQ) C Q. Since f is a local homeomorphism, it is easy to see that
FHANQ) C Q. With all these assumptions we speak about the expanding map f : Q2 —
0 as a conformal boundary repeller with the Jordan domain 2. This enables us to lift
the map f to the closed topological annulus B = R=1(ANQ) C D! one of whose boundary
components is the circle S by setting

g=R 'ofoR:B— D'

Obviously g(B) C DI. Denoting by I : @ — @ the inversion with respect to the unit circle
S! and applying the Schwarz reflection principle we see see that g extends analytically
to the topological annulus F' = B U I(B). Our first aim is to show that g is a boundary
expending conformal repeller. We begin with the following.

Lemma 7.3.1. There exists § > 0 such that for every z € S! there exists a unique
holomorphic inverse branch g, " : B(g"(z),2d) — F sending ¢"(z) to z. If n is large
enough (independent of z), then |(g; ™)' (w)| < 1/2 for all w € B(g™(z),6). In particular
the map g : St — S is expanding.
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Proof. Fix § > 0 so small that B(S',20) C F. Fix z € S' and consider the ball
B(g™(z),26). Define the inverse branch ¢g;" : DI N B(g™(z),28) — @ of g" by putting
g;"(w) = R7'o ffg(’;) o R(w), where f};(”z’) is a local holomorphic inverse branch of f"
defined throughout a neighbourhood of f™(R(z)) sending f™(R(z)) to R(z). Notice that
g,"(g"(2)) = z, g, ™ is continuous and restricted to the set D' N B(g™(z), 24) is analytic.
Since f™(ANQ) C ANQ, we conclude that g, (D! N B(g"(z),26) € FN DL Since in
addition I(B(g™(z),20)) = B(¢9™(z),20) and I(F) = F, applying the Schwarz reflection
principle again, we conclude that g, ™ extends to an analytic map g, ™ : B(g"(2),2d) —
F. Since g™ o g, ™ is an identity map on D! N B(g"(z),2d) and g, ™ is analytic on this
intersection, we conclude that g™ o g, ™ is an identity map on the entire ball B(g"(z), 24).
This means that g;" : B(g"(2),20) — F' is a holomorphic inverse branch of ¢" sending
g"(z) to z. Since

lim sup {diam (flg("z) (R(B(g"(2), 25)))} =0,

n—oc ZESl

since

97" (D7 1 B(g"(2),20) = R (fafty (R(B(™ (=), 29)))

and since R~! : D! — Q is a uniformly continuous funtion, we get
. . —n/1 n _
nli)rréo ngg)l {dlam (gz (DN B(g (z),25))} =
Since
97" (B(g"().20) N (@\ DY) = I (9" (B(g"().20) 0 (@'\ DY))).
we thefore see that
lim sup {diam (g;"(B(g"(z),26))} =
n— 00 ZESl

Hence, applying Koebe’s distortion theorem, we get that

lim sup {|(g;™) (w)|: w € B(g"(z),8)} = 0.

7n—>00 ZESl

There thus exists n > 1 such that

sup {] (97 ()] w € Blg"(2),0)} <

l\')l»a

Hence, for every z € S, [(¢™)'(2)| = [(g7™)"(¢"™(2))|~! > 2 and the proof is complete. &

Lemma 7.3.2. There exists § > 0 such that if {m,g(m),gQ(m), ...,g™(x)} C B(S',4), then
there exists a unique holomorphic inverse branch g, " of g” deﬁned on B(g"(x),49) and
sending ¢"(z) to x. In addition, there exist A > 1 and C' > 0 such that |(g; ™)' (w)| < C

for all w € B(g"(x), 49).
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Proof. It follows from Lemma 7.3.1 that there exist ¢ > 0 and 5 > 1 such that for every
z € 8! and all w € B(g™(2),9),

(7.3.1) (g, ") (w)] < Cn~™.

Fix ¢ > 1 so large that Cnp~? < 1/6. There obviously exists 0 < # < /6 such that
for every 1 < j < ¢ and every x € @ such that {z, g(z),¢%(z),...,9’(x)} C B(S',0),
there exists a unique holomorphic branch g7 : B(g’(x),40) — F of g/ sending ¢/(x)
to 2. Suppose now that j = ¢q. Since B(g%(z),20) N S' # (), we can take a point z
lying in this intersection. Since g~ 9(S') = S, we have g, 9(z) € S!. Since in addition

B(g%(x),40) C B(z,60) C B(z,0), it follows (7.3.1) that

(7.3.2) (g2 1) (w)] <

| =

for all w € B(g%(x),40). Recalling the choice of w we therefore obtain that

(7.3.3) g79(B(g7(x), 40)) € B(S",0) N B(x.0)
Thus given a piece {z,g(z),...,9"(x)} of the forward trajectory of x, we can split it into
blocks

all of them of length ¢ except the last one of length i < ¢. In view of (7.3.3) we can
inductively form the composition
g;Z 60...0 gg_an.‘?)q(z) o gg_nq72q(z) o gg_anq(x)

which is an inverse branch g™ of ¢" defined on B(¢"(x),40) and sending ¢"(z) to x.
Writing n = pg+14, 0 < i < ¢ — 1 we see from (7.3.2) that for every w € B(g"(z),460), we

- ey < (§) <o (1)

where M = (minj<q—1 inf,er{|(g7)'(2)|})'. We are done redefining ¢ to be 6. &

s}

Proposition 7.3.3 With U = B(S'§), where § comes from Lemma 7.3.2,the map F :

St — S'is a boundary expanding repeller.

Proof. Since R|g: establishes a topological conjugacy between g|g: and f|sq, the map
g: St — S!is topologically transitive. Since, by Lemma 7.3.1, g : S — S is expanding,
we only need to check that there exists an open set U C F containing S! such that
N,>09 ™(U) = S'. And indeed, suppose that {g"(z) : n > 0} C B(S',d), where ¢ is
taken from Lemma 7.3.2. Tt follows from this lemma that for every n > 0 there exists a
unique holomorphic inverse branch g, ™ of g™ defined on B(¢"(x),46) and sending g"(z)
to . In addition

diam(g, " (B(g" (), 36)) < 66cA~ ™.
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Since B(g™(x),35)NS! # 0, we can choose a point w in this intersection. Then g "(w) € S*
and therefore

dist(z, S1) < g™ (¢"(2)) — g5 ™(w)| < diam (g™ (B(g" (x),30)) < 65cA™".

Letting n — oo, we therefore conclude that 2 € S'. Thus g becomes a boundary expanding

repeller with U = B(S1,§). &
Our next result is the following the following.

Theorem 7.3.2. If p is a g-invariant ergodic probability measure of of positive entropy
on S!, then the non-tangent limit

. —log|R! ()|
lim ——————
vz log(1 — [x])

exists for p-almost every point z € S, is constant almost everywhere (denote it by x,(R)),

and
XpoR—1 (f) .

X,u(g)
Proof. Given 2 € S1, 0 < a < 7/2,and 0 < r < 1 let

XM(R) =1-

Sar(z)=2z-1+{ze@\{0}:0< |z|<r7m—a<Arg(z) <7+ a}).

A straightforward trigonometrical argment shoows that for all 0 < o < w/2, and 0 < r < 1
there exists 0 < k < 1/2 such that for all z € S* and all z € S, ,.(z) we have

(7.3.4) kKl — 2z <1-—|z|.

Fix now 2z € S* and z € S, ,(2). It follows from Proposition 7.3.3 that there exists k > 1
such that ¢’ (x) € B(S',0) for all 0 < j < k — 1 and g¥F(z) ¢ B(S',§) which means that
1 — |g¥(x)| > §. Therefore there exists the least n = n(x, 2) > 0 such that

(7.3.5) 1— g™t (z)| > 0(8KK™1) 7,
where K > 1 is the Koebe’s constant assiciated with the scale 1/2. Hence
(7.3.6) 1—|g’(z)] < 6(4Kr™ )"t <6

for all 0 < 5 < n. It therefore follows from Lemma 7.3.2 that thaere exists there a unique
holomorphic inverse branch g, ™ of g" defined on B(g"(z),46) and sending ¢"(z) to z.
Let w = g™(x)/]g"(x)|. Then w € B(g™(x),1 — |g™(x)]) N S* and using (7.3.4) along with
Koebe’s Distortion Theorem, we get

Klz — 2| <1 |z

< |z — g, " (w)

| =19, " (9" (2)) — g, "(w)| < K|g"(z) — g, ™ (w)]|(g"™) (z)| "
= K(1—]g"(=)NI(g"™) ()|~
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Hence, applying Koebe’s %—Theorem, we obtain

07" (B(g" (@), 8K~ (1 lg"(2))) > Bl 265 (1 g"() (g™ ()] ")
(7.3.7) O B(z,2|z —x|) > .

It therefore follows from Koebe’s Distortion Theorem that

(7.3.8) K1'< lg™) @)l K

that (using (7.3.4))

1= g™(x)] < [g"(2) — g" ()| < K|(¢") (2)] - |2 — = < K|(g")" ()|~ (1 — |])
(7.3.9) = K7 |(g") (@)](1 — =),

and (using (7.3.7)) that

L—la| < |z =] = [g7"(9"(2) — 97" (9" (2))] < K|(g")' ()| 7 g™ (2) — " ()]
(7.3.10) < K[(¢")'(2)|7'8Kx™H (1 — |g"(2)]) = 8K~ (1 = |g™(2) (") (=)

Since the Riemann map : D! — Q is uniformly continuous, R(g™(z)) lies close to R(g™(z)).
Let fg(’; be a holomorphic inverse branch of f™ defined on some small neighbourhood

)
of R(¢9™(z)), containing R(g™(z)) and sending R(g™(z)) = f™(R(z)) to R(z). Then
fg&)(R(g"(x)) =z and applying Koebe’s Distortion Theorem, we obtain

: |(f™)' (B(2))]

(7.3.11) K< YRS K,

for some constant K independent of z, z and n. Since
(7.3.12) 1= g™ ()| < g'lI(1 = [g"(x)]),
Combining (7.3.5), (7.3.6), (7.3.9), (7.3.10) and (7.3.12), we get

(7.3.13) (8K|lg') w5 < (1 [2)|(g") ()] < K.

By Birkhoff’s Ergodic Theorem there exists a Borel set Y € S! such that u(Y) =1 and

i - 1og |(6")'(2)] = xu(9) and lim 1o (") (B(:)] = xper+ (1)

k—oo K

for all z € Y. Suppose that z € Y. Fix also € > 0. Then for all k sufficiently large

(7.3.14) exp(k(xu(9) =€) < 1(g")(2)] < exp(k((xulg) + ),
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and

exp(k(Xpor—1 (f) = €)) < [(f*) (R(2))] < exp(k((Xpor—1 (f) +)).

Combining these two formulas along with (7.3.8) and (7.3.11), we get for all n large enough
(which can be assured by taking x sufficiently close to z),

(7.3.15) exp(n(xu(g) —2¢)) < [(9") ()] < exp(n(xu(g) + 2¢)),
and
(7.3.16.) exp(n(Xuor—1 (f) — 2¢)) < (/") (R(7))] < exp(n(Xpor—1 (f) + 2¢))

Combining (7.3.13) and (7.3.14), we get

log(4]1g'[1)716) — n(xu(g) + 2¢) < log(1 — |z) < log(Kd) — n(xu(g) — 2¢).
Thus, for all n large enough

— log(1 — |z)
Xu(g) + 3¢

— log(1 — |«)

(7.3.17) o) &

<n<

In view of Koebe’s Distortion Theorem, (7.3.12) and (7.3.5) there exists a constant C
depending only on K, x and ||g’|| such that

CTHR'(0) < R (9" (2))| < CIR'(0),

Therefore, differentiating the equality Ro ¢ = f™ o R, we get

ot e B s e 16" (@)
RN = 16 @y © [ IOty

Hence, using (7.3.15), (7.3.16) and (7.3.17)
|R ()] < CIR'(0)][(g™)' ()] - [ (f") (R(x))|
< C|R'(0)] exp(n(xu(g) + 2¢)) exp(—n(Xpor1 (f) — 2€))

< exp — log(1 — |]) (Xu(g) - XuoRfl(f) + 45)) .

—(m

ot (@)
ROy T

Thus
~log R'()| _ Xul9) = Xpor—: (f) + 42)

log(1 — |z]) — Xxu(g) — 3¢

and we obtain similarly

—log |R'(x)| . Xu(9) = Xpor—1 (f) — 4e)
log(1— [z — Xulg) + 3¢
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So, letting e — 0 (which forces us to let n(z,z) — oo and which in turn forces us to let
x — z) finishes the proof. &

In order to make use of this result we shall provide a simple proof of the following Propo-
sition.

Section 7.4. Harmonic measure.

In this section we keep the notation of the previous one. The measure [ o R~!, the image
of the image of the Lebesgue measure [ on S under the Riemann map is said to be
the harmonic measure of 99 with respect to (or viewed from) the point zg. Since all
the Riemann maps differ by compositions with Mbius transformations preserving t he
unit circle, all the harmonic measures are strongly equivalent and corresponding Radon-
Nikodyn derivatives are bounded away from zero and infinity. In particular all the harmonic
measures induce the same strong measure class, which as long as we are only interested
in metric properties of this class, enables us to speak generally about a harmonic measure
without specifying the point zy. Writing w we will actually mean the class of all measures
equivalent with the harmonic measure with Radon-Nikodym derivatives bounded uniformly
from above and below. For more information about harmonic measure we refer the reader
to [?]. Our first aim is to represent harmonic measure as a Gibbs measure and then to
apply the results of the previous section. Since the Hausdorff dimension of the circle S? is
equal to 1, it follows from Theorem 7.1.1 that P(g, ) = 0, where ¢ = —log|g’|. Of course
the Lebesgue measure [ on S! is equivalent with H;. Since R is a topological conjugacy
between g and f on S, P(f,¢o R™') = P(g,¢) = 0. Since moreover R™! is a metric
conjugacy between metric dynamical systems (f, f1g © R™1) and (g, Le), we therefore have

STy PP SRRy PO

Since in addition p14 0 R~ € w, the uniqueness of an equilibrium state for ¢ o R~ results
in the following.

Theorem 7.4.2. The harmonic measure w coincides with the class of the Gibbs states of
the map f: X — X and the Holder continuous potential — log|g’| o R~ 1.

We now want to argue that HD(w) = 1. This is a general result due to Makarov (see 777)
true for any simply connected domain 2 with no dynamics involved. We shall however
provide here a proof in the dynamical context only which is shorter and simpler than the
general one.

Proposition 7.4.3. If w is a harmonic measure on the boundary of a Jordan domain €2,
then x;(R)(z) = 0 for l-a.e. 2 € S', where | denotes the normalized Lebesgue measure on
St
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Proof. Fix 2 € S and 0 < r < 1. Then by the Koebe distortion theorem 271(1 — )73 <
|R'(2)] < (1 — 7)™ which implies that

| /
o8| (r2)] _

log(1—r) —
for all r sufficiently close to 1. Since the Gibbs state of the function — log |¢’| is a g-invariant
probability measure absolutely continuous with respect to the Lebesgue measure it follows
from Theorem 7.4.2 that x;(R)(2) is constant for l-a.e. z € S1. Hence

xi(R) = /XZ(R)dl: /nmw

r—1 —log(1l —r) di()

1 !

Since log |R’| is a harmonic function we can continue the above chain of equalities writing

rlog |R'(0)|

= 0.
r—1 —log(1 —7)

xi(R) =

The proof is finished. L)

Corollary 7.4.4. Suppose that an expanding map f : 02 — 02 is a conformal boundary
repeller, and €2 is a Jordan domain. Then HD(w) = 1, for w, the harmonic measure viewed
from €.

proof. Let u be the Gibbs state on S! corresponding to the potential —log |g’|. Simul-
taneously p is the unique probability g-invariant measure equivalent with the Lebesgue
measure [ on S'. Then po R™! is a probability f-invariant measure equivalent to w. In
view of Theorem 7.4.2 and Lemma 7.4.3, X,07-1(f) = Xxu(g) > 0. Since R: S' - 9Qis a
topological conjugacy between g : St — St and f: 0Q — 0Q, h,op-1(f) = h,(g). Thus

huof*1 (f) hu(Q) )
Xuof*l(f) Xup (Q)

Since HD(u) = 1, an immediate application of Lemma 7.1.4 (Volume Lemma) finishes the
proof. &

Theorem 7.4.5. Let f : 92 — 0€) be a conformal boundary repeller, where €2 is a Jordan

domain. Then either

(a) w =< H; on 9N (if log|g’| and log |f’ o R| are cohomologous) or

(b) w L Hy (if log|g’| and log | f’ o R| are not cohomologous), and then there exists ¢g > 0
such that with the gauge function ¢.(t) = t exp(cy/log(1/t)logs(1/t))

5

wl Hyg, forall 0<c<c
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and
w <K Hy, forall ¢ > co.

Proof. If log |¢'| and log |f’ o R| are cohomologous, then also the functions — log|¢g’ o R !|
and — log | f'| are cohomologous (with respect to the map f : 92 — 992). By Theorem 7.4.2
w is a Gibbs state of the potential —log|g’ o R™!|. Since P(f, —log|f’|) = P(f, —logl|g’ o
R1) = P(g, —logl|g’|) = 0, it follows from Theorem 7.1.1 that HD(9) = 1, and the Gibbs
states of the potential — log|f’| are equivalent to the 1-dimensional Hausdorff measure on
0. So, the part (a) of Theorem 7.4.5 is proved.

Suppose now that log |¢’| and log|f’ o R| are not cohomologous. Then — log|g’ o R 1| and
—log|f’| are not cohomologous. Let p be the invariant Gibbs state of —log ¢’ o R™1|. By
Corollary 7.4.4 and Theorem 7.a.2, HD(u) = 1. Hence ¢ = —log|g’o R~ |[+HD(u) log | f'|—
P(f,—log|g’ o R71|) is not a coboundary and, since by Theorem 7.4.2 and Lemma, 7.4.3,
[log|f'|du = [log|g’ o R~ du, the potential ¢ is not cohomologous to a constant. The
second part of Theorem 7.4.5 is now an immediate consequence of Theorem 7.2.1(b). &

Theorem 7.4.6. If f: 002 — 01} is a conformal boundary repeller, €2 is a Jordan domain
and the functions log|¢’| and log|f’| o R are cohomologous, (this is exactly the case of
Theorem 7.4.5(b)), then  is an analytic curve. If additionally f extends analytically onto
@, then f is analytically conjugate with a Mébius transformation and 0 is a geometric
circle.

Proof. If the functions log |¢| and log |f’| o R are cohomologous, then according to Theo-
rem 7.4.5(a) the boundary 0 is a rectifiable Jordan curve. So, in view of Riesz’s theorem,
the map R : St — 0 transports the measure class of the Lebesgue measure on S' onto
the measure class of H; on 0. Let now R, : S' — 0 be the restriction to the unit
circle of the Riemann map induced by the second component of the complement of 9€2.
For technical reason, which will be clear at the end of this proof we assume here that the
Riemann map R, is defined on D! = {z : |z| > 1}, the complement of the closure of the
unit disk D'. Since 92 is a Jordan curve and since f has no critical points on 0%, there
exists an open neighborhood A, of 99 such that f(A, N (€\ 09)) is well-defined, and
moreover f(A, NT\ Q) C €\ IN). Therefore, we can define g, = R ! o f o R,, the lift of
f via the Riemann map R, on the set D} intersected with a sufficiently thin open annulus
surronding S*t. Set
h=R,'oR|g :S' = S"

Composing, if necessary, the Riemann maps R and R, with appropriate rotations, we may
assume that 1 is a fixed point of g and g, and h(1) = 1. Our first objective is to demonstrate
that h is real-analytic. Indeed, Let py = ¢1l and ps = ¢ol be the (unique) probability
measures equivalent with the Lebesgue measure on the circle, respectively invariant under
the action of g and g,. In view of Theorem 7.9.2 ¢; and ¢ are both Real-analytic.
Since, also by Riesz’s theorem, the map R, : S' — 09 transports the measure class of
the Lebesgue measure on S! onto the measure class of H; on 01, the homeomorphism
h : S' — S! sends the measure class of the Lebesgue measure on S' onto itself. Since h
establishes conjugacy between g and g,, it therefore maps the invariant measure p; onto
some probability g,-ivariant measure equivalent with the Lebesgue measure. Since such a
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meastire is unique, it must be equal to pus. Symbolically, p; o h™! = py. Define now two
functions M, N : S — [0, 1] by setting

M) = m12) = [ pa

and

N = (L) = [ g

Since py o h™t = py and h(1) = 1, the functions M and N are related by the formula
N(h(z)) = M(z). Since M and N are strictly increasing, we may solve the last equation
for h to get h = M o N='. We are now done because the real analyticity of ¢; and ¢
(see 777) implies that the functions M and N are real-analytic and this in turn results
in real analyticity of h = M o N~!. Hence h extends to an analytic map h defined on an
open neighborhood H of Stin @. Slnce h:S' — S preserves orientation, decreasing H if
necessary, we get h(H N D) C DI. Thus we produced two continuous maps R : D1 — €
and R, o h : HN D! — @ which are analytic on D! and H N D? respectively and which
coincide on their common boundary, the unit circle S'. Thus R and R, o h glue together
to an analytic map S : D' U H — @. So, since S(S!) = R(S!) = 09, the proof of the first
part is finished.

If now f extends analytically to @, that is if f is a rational function, then by the maximum
principle f(Q) C Q, f(T\ Q) C €\ Q, and both maps g and g, are defined on D! and D}
respectively. Since these maps are surjective, since they extend continuously to D! and
D! respectively, and since they preserve the unit circle S!, it follows from the Schwarz
reflection principle that they extend analytically to €. Since g and g* preserve S! (we
use this fact second time) they must be finite Blaschke products. Since f(Q) C £ and
f(@\ Q) c €\ Q, by the Montel theorem both © and @'\ Q are components of the Fatou
set of f. And since f|aq is expanding, both Q and @\ Q are basins of immediate attraction
to stable fixed points. Conjugating f if necessary with a Mobius transformation we may
assume that this fixed point in D! is 0 and that one in D} coincides with co. But every
Blaschke product B preserving S' and having 0 as its fixed point, preserves the Lebesgue
measure on S'. In order to see it consider an arbitrary continuous function ¢ : .S VS R
and then its harmonic extension ¢ : D' — IR. Since ¢ o B is also harmonic, we have

$oBdl=¢oB(0)=¢(0) = /Slgzﬁdl.

J St

which means that B preserves the Lebesgue measure I. Thus, p; = pz = [ and consequently
M = N and h is the identity map on S'. In conclusion h is an identity map and R, and
R = R,h coincide on a ‘mneighborhood of St. Thus R and R, glue together to an analytic
map R : @ — @. Since R is injective it must be a Mobius transformation and R~'o fo R™1
is a finite Blaschke product. The proof is finished. &

Section 7.5. Radial behaviour of the Riemann map,II.

33



Keeping notation from the previous sections we shall prove here the following .

Theorem 7.5.1. Depending on whether ¢(w) = 0 or ¢(w) # 0, either I is real-analytic
and the Riemann map R : D' — Q and its derivative R’ extend holomorphically beyond
dD" or for almost every z € D!

(7.5.1) limsup |R/(rz)| exp cy/log(1/1 — ) logs(1/1 — 1) =

r—1

{oo if ¢ < ¢(w)
0 ife>c(w)

and

oo if e < c(w)

0 ife>c(w)

(7.5.2) 1iI:l_§}lp(|R/(TZ)| exp c\/log(l/l — ) logz(1/1 — r) = {

Moreover the radial limsup can be replaced by the nontangential one.

Proof. Let n > 0 be the least integer for which ¢"(rz) € B(0,rp) for some fixed 7y < 1.
We have R'(rz) = ((f™)(R(rz)))~1-R'(g"(r2))-(9™)'(rz). Hence, for some constant K > 0
independent of  and z

» R (r2)]
K S YR B =

By the bounded distortion theorem the rz in the denominator can be replaced z and n
depends on r as described by (7.2.1) with r replaced by 1—r.Now we proceed as in the proof
of Lemma 7.2.1 replacing deviations of Sy, (¢) — P(¢)n + xlog|(f™) (z)| by the deviations
of log [(¢™) (z)| — log |(f™)'(x)|. The proof is finished. [ )

Section 7.6.. Pressure versus integral means of the Riemann map

In this section we establish a close relation between integral means of derivatives of the
Riemann map and topological pressure of the function —tlog|f’|. Given t € IR define

L log [¢1 | R (r2)[*dl(z)
Ble) = hr:l_?}lp —log(1—7)

We shall prove the following.

Theorem 7.6.1. If the lifted map g : S — S! is of the form z — 2%, d > 2, then

P(f. —tloglf)

By =t -1+ =
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Proof. Fix 0 < r < 1 and divide the circle S* into [27/(1 — r)] arcs of length 1 — 7 and
one arc of length <1 —r. Denote these arcs by I, I, ..., I} and Iy respectively, where
k=1[2n/(1 —r)]. Then

k+1 k+1 Y (p )|t
/ R (r2)[tdl(z Z/ R (r2)[tdl(z Z/ IR (g™ (r2) |(;|q),2é(ri))|tdz(z).

Fix now n = n(r) to be the first integer for which [¢g"(z)| < 1/2. Note that n is independent
of z and that there exists a constant A > 1 such that A=" < |R/(w)| < A for all w €
B(0,1/2). Hence

k+1

/51|R’rz|dl ki/ )( Z/ oy dm T -dl(2).

Now, by the Mean Value Theorem for every j = 1,2,...,k, k + 1 there exists z; € I; such
that

(dnt _ (dnt
/ Gy o)) = )y mGr e
Hence, as I(I;) =1—rforallj=1,...,k

log / R (ra)tdi(2)

<dm (a (i)’

= log(1 —r) + log Z Y (Rrz)) ] + TV R . o) +0(1)
=log(l — )+ nt log d+
+ log Zexp i: —tlog|f'(R(9"(rzj)))| + (f")'(R(rzj))|tl((1]]i+;;t +0(1)

By our definition of n, (1/2)% < %" < 1/2; hence dlog(1/2) < d™logr < log(1/2). Since
there exists a constant B > 1 such that B~ 1(1—7) < —logr < B(1—r) for all r sufficiently
close to 1, we get B~'log2 < d*(1 — r) < Bdlog2. Therefore —log B + loglog2 <
nlogd+log(1—r) <log B+loglog2+logd. Hence nlogd—C < —log(1—7) < nlogd+C
for some universal constant C. Thus

log [ |R/(r2)|"di(2)

=—-1+t
—log(1 —r) A
| k n—1 n-1 I(Ig41)"
o o8 | D exn D tlog| (Rl (1)) |+ exp Y tlog |/ (Rlg"(ra ) 7
’ ’ j=1 u=0 u=0
+o(1).
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Now, using the fact that 0 < [(Ix4+1)/(1 —7) <1, it follows from the definition of pressure
and the bounded distortion property that

log [ | (r2)|tdi(2)

1 P(f, —tlog|f’
= —1+i+ P(g, —tlog|f'oR|) = —1+i+ (f, ~tlog|f |)

lim ¢
H:l—?yp —log(1— ) log d log d
The proof is finished. &

Section 7.7. Geometric examples.

This last section of this chapter is devoted to explore applications of previous sections to
geometric examples like the Koch’s snowflake and Carleson’s example. Following the idea
of the proof of Theorem 7.2.1 and copeing with a biggere number of technicalities one can
prove the following.

Theorem 7.7.1. Let 2 be a simply connected domain in € with Q2 a Jordan curve . Let
dj, j = 1,2...,k be a finite family of compact arcs in J€2 with pairwise disjoint interriors.
Denote | J0; by 0 (we do not assume that this curve is connected. Assume that there
exists a family of conformal maps f;, j = 1,...,k, (which may reverse the orientation on
@) on neighbourhoods U; of d;. For every j assume that f;(QNU —J) C Q, [f'| > 1 on
Uj and

(7.7.1) £;(092NU;) C o9

Assume also the Markov partition property: for every j =1,...k, f;(9;) = Uselj 0s for
some subset I; C {1,2,...,k}. Consider the k x k matrix A = A where Aj;, =1ifk € I;
and Aj, = 0if k ¢ I;. Then there exists a transition parameter c(w,d) such that the
claims of tTheorem 7.6.5 and 7.6.6 hold.

Example 1(the snowflake). To every side of an equilateral triangle, in the middle we glue
from outside as small as three times. To every side of the resulting polygon we we glue
again an equilateral triangle as small as three times and so on infinitely many times. The
triangles do not overlap in this construction and the boundary of the resulting domain €2
is a Jordan curve.This  is called the Koch’s snowflake. It was first describe by Helge
Koch in 1904. Denote the curve in 0 joining a point x € 0€) to y € 02 in the clockwise
direction just by xy. For every 0A;A; 1(modi2y C 0, i = 0,1,...,11, we consider its

civering by the curves 12, 23, 45, 56 in Q (see Fig.2). This covering together with the
affine maps

12, 34 — 12 ( preserving orientation on 9df2)
23 — 61 ( reversing orientation )
56 — 36 ( preserving orientation )

45 — 63 ( reversing orientation )
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gives a Markov partition of 9; satisfying the assumptions of Theorem 6.7.1. Since 92 (and
every its subcurve) is definitely not real-analytic (HD(0€2) = log4/log3), the assertion
of Theorem 6.7.1 is valid with ¢(w,d;) > 0. We may denote c(w,d;) by ¢(w) since it is
independent of 0; by symmetry.

Example 2(Carleson’s domain). We recall Carleson’s construction from [Ca2]. We fix
a broken line v with the first and last segment lying in the same straight line in IR2,
with no other segments intersecting the segment 1,d — 1 (see Fig. 3). Then we take a
regular polygon Q! with vertices Ty, Ty, ..., T, and glue to every side of it, from outside,
the rescaled, not mirror reflected, curve v so that the ends of the glued curve coincide
with the ends of the side. The resulting curve bounds a second polygon Q2. Denote its
vertices by Ag, Ay,... (Fig. 4). Then we glue again the rescaled v to all sides of Q2
and a third order polygon €3 with vertices By, Bi,.... Then we bild Q* with vertices
Cy,C1,...Q% with Dy, Dy, ... etc. Assume that there is no self-intersecting of the curves
02" in this construction. Moreover assume that in the limit we obtain a Jordan curve
L = L(OQY,v) = 09Q. The natural Markov partition of each curve T;T;,1in £ into curves
AjA;y with f(AjAj41) = T;Ti41, considered by Carleson does not satisfy the property
(6.7.1) so we cannot succeed with it. Instead we proceed as follows: Define in an affine
fashion
f(Bag—1)+1Baj—1) = A1Aq_1

for every j = 1,2...,d. Divide now every arc Bgj_1A; for j = 1,2...,d and A;Bgji1,
j = 1,2...,d into curves with ends in the vertices of the polygon Q* : CJ ¢ By, Aj,
C7 € AjBgj4+1 respectively, the closest to A;(# A;). Let for j=1,2,...,d—1,

i

f(CIA;) = Byj_1A;, f(Bgj—1C?) = Ag_1Bg=_1,
f(A;C7) = AjBgjt1, f(C9Bgj11) = BiA;.

This gives a transitive aperiodic Markov partition of B1Bgz2_1. We can consider instead of
the broken line v in the construction of Q, the line 4(?), consisting of d? segments, which
arises by glueing to every side of v a rescaled . Consecutive gluing of the rescaled ~v(?
to the polygon QM) gives consecutively Q3, Q5 etc. The same construction as above gives
a Markov partition of D1Dg2 1 in T;T;41. By continuing this procedure we approximate
T;T;+1, so from Theorem 6.7.1 and from symmetry we deduce that there exists a transition
parameter c(w) such that the assertion of Theorem 6.6.5(b) is satisfied. Observe that
Carleson’s assumption that the broken line 1,2,...,d — 1 has no self-intersections has not
been needed in these considerations. Also the assumption that Q) is a regular polygon can
be omitted; one can prove that ¢(w) doesnot depend on T;T;; by considering a transitive,
aperiodic Markov partition which involves all the sides of Q! simultaneously.

Section 7.9. Real analyticity of the density functions. In this section we
consider potentials of the form —tlog|f’|, fixed points of the corresponding conjugate
transfer operators m; and invariant Gibbs states p;. Our aim is to show that the Radon-

Nikodym derivative 5’7’7‘1’; has a real-analytic extension. We begin with the following.
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Definition 7.9.1. A conformal expanding repeller f : X — X is said to be real-analytic
if it is contained in a finite union of pairwise disjoint real-analytic curves which will be
denoted by I' = I'y. Frequently in such a context we will alternatively speak about real
analyticity of the set X.

The main (and only) result of this section is the following.

Theorem 7.9.2. If f : X — X is an orientation preserving conformal expanding repeller,
X C C, then the Radon-Nikodym derivative p = du;/dm; has a real-analytic real-valued
extension on a neighbourhood of X in €. If f is real-analytic, then p has a real-analytic
extension on a neighbourhood of X in I'.

Proof. Observe that since f is conformal and orientation preserving, f is holomorphic
on a neighbourhood of X in €. Take r > 0 so small that for every x € X, every n > 1
and every y € f~"(z) the holomorphic inverse branch f, " : B(z,2r) — @ sending z to
y is well-defined. Suppose first that f is real-analytic. We need to show that there exists
a holomorphic complex-valued extension of p on a neighbourhood of X in €. Taking an
appropriate atlas we may assume that X is contained in a real axis (if a closed curve is a
component of I we can use Arg). For all k > 1 and all y € f~%(x) let v(k,y) =1 or —1
depending as fy_k preserves or reverses the orientation on I'. So

(f; ") ()] = vk, ) () (2))

for all z € J(f) N B(x,r). Consider the following sequence of complex analytic functions
on z € B(z,r)

t
()= 3 (v y)((f;7)(2)) exp(—nP(1).

yef (=)

There is no problem here with raising to the ¢-th power since B(xz,r), the domain of all
v(n,y)(f,; ™) is simply connected. Since the latter functions are positive in IR, we can
choose the branches of the ¢-th powers to be also positive in IR. By Koebe’s Distortion
Theorem for every z € B(x,7/2), every n > 1 and every y € f"(z) we have |(f, ™)' (2)] <
K|(f, ") (z)|. Hence [g,(z)] < Kgn(z). Since, by (3.4.2) with u = 1 and ¢ = p(?),
the sequence g,(x) converges, we see that the functions {g,|p(zr/2)}n>1 are uniformly
bounded. So they form a normal family in the sense of Montel. Since g,,(z) converges for
all z € X N B(x,7/2), it follows that g, converges to an analytic function g on B(z,r/2)

whose restriction to I' is by our construction an extension of p.

Let us pass now to the proof of the first part of this proposition. That is, we relax the Julia
real analyticity assumption and we want to construct a real-analytic real-valued extension
of p to a neighbourhood of X in @. Our strategy is to work in @2, to use an appropriate
version of Montel’s theorem and, in general, to proceed similarly as in the first part of
the proof. So, fix v € X. Identify now €, where our f acts, to IR? with coordinates z, y,
the real and complex part of z. Embed this into €% with z,y complex. Denote the above
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@€ = IR? by @). We may assume that v = 0 in @. Given k > 0 and v, € f~%(v) define the
function p,, : B (0,2r) — € (the ball in @) by setting

(/o) (2)

(for)'(0)’

Since Bg, (0,2r) C @4 is simply connected and p,, nowhere vanishes, all the branches of
logarithm log p,, are well defined on Bg, (0,2r). Choose this branch that maps 0 to 0 and
denote it also by log p,, . By Koebe’s Distortion Theorem |p,, | and |Argp,, | are bouned on
B(0,7) by universal constants K, K5 respectively. Hence |logp,, | < K = (log K1) + K.
We write

Puy, (Z) =

oC
10g P, = Z a'm,Z’m
m=0
and note that by Cauchy’s inequalities
(7.9.1) lam| < K/r™.

We can write for z = x 4 1y in ¢

Relog p,,, = Re Z am(x +iy)™ = Z Re (ap+q (p —;— q) iq>xpyq = Z cp,qPyL.

m=0 p.q=0

In view of (2.1), we can estimate |c, 4| < |aps,|2P1? < Kr~®+02P+4. Hence Relog p,,
extends, by the same power series expansion ) ¢, ,2Py?, to the polydisc D¢z (0,7/2) and
its absolute value is bounded there from above by K. Now for every k > 0 consider a
real-analytic function by on Bg, (0,2r) by setting

b(z) = D 155 (@) exp(=kP(t)).

Vg Ef—k(O)

By (3.4.2) the sequence by (0) is bounded from above by a constant L. Each function by
extends to the function

Br(z)= Y [(f,,")(0)["e"Re18 20 (2) exp(~EkP(t)).
v €f~F(0)

whose domain, similarly as the domains of the functions Relog p,, , contains the polydisc
D¢z (0,7/2). Finally we get for all £ > 0 and all z € Dgz(0,7/4)

Br(2)| = > ([, (0)[feRetR8 P02 oxp(—kP(1))
v €EFE(0)

< Y o) et Retos o ) exp(—k P(1))
v €EFE(0)

<N (1,5 (0)) exp(— kP(t)) < "L
v €~k (0)

39



Now by Cauchy’s integral formula (in Dgz (0,7 /4)) for the second derivatives we prove that
the family B, is equicontinuous on, say, Dgz(0,7/5). Hence we can choose a uniformly
convergent subsequence and the limit function G is complex analytic and extends p on
X N B(0,7/5), by (3.4.2). Thus we have proved that p extends to a complex analytic
function in a neighbourhood of every v € X in @2, i.e. real analytic in €. These extensions
coincide on the intersections of the neighbourhoods, otherwise X is real analytic and we
are in the case considered at the beginning of the proof. &

40



CHAPTER 7. SULLIVAN’S CLASSIFICATION OF CONFORMAL
EXPANDING REPELLERS.

Dijon, June, 1991

(This is a very preliminary version of one of chapters of a book by Przytycki and
Urbanski, in preparation, on conformal fractals. It relies on ideas of the proof of the
rigidity theorem drafted by D. Sullivan in Proceedings of Berkeley’s ICM in 1986.)

In Chapter 4.6 we proved that the scaling function for an expanding repeller in
the line determines the C'*é-structure. In this chapter we will basically concentrate
on nonlinear conformal expanding repellers, called CER’s, proving that the class of
equivalence of the geometric measure determines the conformal structure.

Section 1. Equivalent notions of linearity.

Definition 7.1.1. We call a CER (X, f) linear if one of the following conditions
holds:

a) The Jacobian of f with respect to the Gibbs measure px equivalent to a geo-
metric measure myx on X , .Jf, is locally constant.

b) The function HD(X)log |f’| is cohomologous to a locally constant function on
X.

c¢) The conformal structure on X admits a conformal affine refinement so that f is
affine (i.e., see Ch.4.3, there exists an atlas {¢;} that is a family of conformal injections
¢t : Uy — @ where | J, Uy D X such that all the maps @5 " and ¢y fo; ' are affine)

Recall that as the conformal map f may change the orientation of €' on some
components of its domain we can write |f’| but not f’ unless f is holomorphic.

Proposition 7.1.2. The conditions a), b) and ¢) are equivalent.

Before we shall prove this proposition we distinguish among CER’s real- analytic
repellers:

Definition 7.1.3. We call (X, f) real- analytic if X is contained in the union of a
finite family of real analytic open arcs and closed curves.

Lemma 7.1.4. If there exists a connected open domain U in € intersecting X for
a CER (X, f) and if there exists a real analytic function k£ on it equal identically 0 on
U N X but not on U then (X, f) is real-analytic.

Proof. Pick an arbitrary x € U N X. Then in a neighbourhood V of z the set
E = {k = 0} is a finite union of pairwise disjoint real- analytic curves and of the point
2. This follows from the existence of a finite decomposition of the germ of E at x into
irreducible germs and the form of each such germ, see for example Proposition 5.8 in
the Malgrange book [Malgrange]. As the sets f*(X NV), n > 0 cover X, X is compact
and f is open on X we conclude that X is contained in a finite union of real-analytic
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curves v; and a finite set of points A such that the closures of v; can intersect only in
A.

Suppose that there exists a point £ € X such that X is not contained in any
real-analytic curve in every neighbourhood of x. Then the same is true for every point
ze XNf™{zx}, n >0, hence for an infinite number of points (because pre-images of
are dense in X by the topological exactness of f, see Ch.?). But we proved above that
the number of such points is finite so we arived at a contradiction. We conclude that
X is contained in a 1-dimensional real-analytic submanifold of .

Proof of Proposition 7.1.2.

a)= b). Let u be the eigenfunction Lu = u for the transfer operator £ = L, for
the function ¢ = —rlog|f’|, where x = HD(X), as in Ch. 3.3.. Here the eigenvalue
A =exp P(f, ) is equal to 1, see Ch.6.2..

For an arbitrary z € X we have in its neighbourhood in X

(7.1.1) Const = log Jf = klog|f'(z)| + logu(f(z)) — logu(x)

b)=- ¢). The function u extends to a real-analytic function ug in a neighbourhood
of X, see Ch.4.4, so the function logJ f extends to a real-analytic function logJ f¢ by
the right hand side equality in the formula (7.1.1), for ug instead of u. We have two
cases: either log J fg is not locally constant on every neighbourhood of X and then by
Lemma 7.1.4 (X, f) is real-analytic or log J fg is locally constant. Let us consider first
the latter case.

Fix z € X . Choose an arbitrary sequence of points z, € X, n > 0 such that
f(zn) = 2,1 and choose branches f, ™ mapping z to z,. Due to the expanding property
of f they are all well defined on a common domain around z. For every x close to z
denote x, = f, " (z). We have dist(x,, z,) — 0 so by (7.1.1) for log.J f¢

Z (log | f'(zn)| — log | f'(zn)])
(7.1.2) _ log ugl(z) — log ug(z) + nli_)rgc(log ug(zn) — log ug(xy,))

= log ug(z) — log ug(%)

We conclude that ug(z) is a harmonic function in a neighbourhood of z in @' as the
limit of a convergent series of harmonic functions; we use the fact that the compositions
of harmonic functions with the conformal maps f, " are harmonic. Close to z we take
a so-called harmonic conjugate function h so that logu(x) + ih(x) is holomorphic.

Write F, = exp(logu + ih) and denote by F, a primitive function for F, in a
neighbourhood of z. This is a chart because F,(z) # 0. The atlas given by the charts
F, is affine (conformal) by the construction. We have due to (7.1.1) for the extended u

(Fyezy 0 f o F7 Y (Fu(2))| = ue(f ()| f'(x)| /ue(x) = Const
so the differential of f is locally constant in our atlas.
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In the case (X, f) is real-analytic we consider just the charts ¢; being primitive
functions of u on real-analytic curves containing X into IR with unique complex exten-
sions to neighbourhoods of these curves into a neighbourhood of IR in @. The equality
log .J f¢ = Const holds on these curves so the derivatives of ¢, fo; ! are locally constant.

c)= a). Denote the maps ¢;fo; ! by fN,«g In a neighbourhood (in X) of an
arbitrary z € X we have

u(w) = lim L"1)(@) = lim Y [/ ()"

n—oo n—oo
yef (=)
I / K / —K| £ —nkK
(7.1.3) = lim |¢'(2)]* Y 1¢'(y)[ 7" ()]

Y
= Const Jim |o'(@)]* 3 7)) = 1 (o) "Const

To simplify the notation we omitted the indices at ¢ and f here, of course they
depend on z and y’s more precisely on the branches of f~™ on our neighbourhood of 2
mapping z to y’s . Const also depends on z. We could omit the functions ¢’(y) in the
last line of (7.1.3) because the diameters of the domains of ¢'(y) which were involved
converged to 0 when n — oo due to the expanding property of f, so these functions
were almost constant.

Hence due to (7.1.3) in a neighbourhood of every =z € X we get

Jf(x) = Const u(f(z))|f ()| /u(z) = Const|f'(z)|* = Const
)

Remark 7.1.5. In the b)=-c) part of the proof of Proposition (7.1.2) as —« log | f’|
is harmonic we do not need to refer to Ch.4.4 for the real-analyticity of « . The formula
(7.1.2) gives a harmonic extension of u to a neighbourhood of an arbitrary z € X,
depending on the choice of the sequence (z,). If two extensions uj, us do not coincide
on a neighbourhood of z then in a neighbourhood of z, X C {u; — us = 0} . If the
equation (7.1.1) does not extend to a neighbourhood of z then again X C {v = Const}
for a harmonic function v extending the right hand side of (7.1.1).

In each of the both cases (X, f) happens to be real-analytic and to prove it we
do not need to refer to Malgrange’s book as in the proof of Lemma 7.1.3. Indeed,
for any non-constant harmonic function k£ on a neighbourhood of z € X such that
X C {k =0} we consider a holomorphic function F' such that k = ReF and F(x) = 0.
Then F = {k =0} = {ReF = 0}. If F' has a d-multiple zero at x then it is a standard

fact that E is a union of d analytic curves intersecting at z within the angle % .

We end this Section with giving one more condition implying the linearity.

Lemma 7.1.6. Suppose for a CER (X, f) that there exists a Hélder continuous line
field in the tangent bundle on a neighbourhood of X invariant under the differential of f.
In other words there exists a complex valued nowhere zero Holder continuous function
« such that for every x in a neighbourhood of X
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(7.1.4) Arga(x) + Argf'(x) = Arga(f(z)) + e(x)m

where () is a locally constant function equal 0 or 1. This is in the case f preserves the
orientation at x, if it reverses the orientation we replace in (7.2.1) Argf’ by —Argf’.
Then (X, f) is linear.

Proof. As in Proof of Proposition 7.1.2, the calculation (7.1.2), if f is holomorphic
we have for x in a neighbourhood of z € X in @

(o.@)

Arga(z) — Arga(z) = > (Arg(f'(2a)) — Arg([(xn))),

n=1

if we allow f to reverse the orientation then we replace Argf’ by —Argf’ in the above
formula for such n that f changes the orientation in a neighbourhood of x,,. So Arga(x)
is a harmonic function. Close to z we find a conjugate harmonic function h so we get
a family of holomorphic functions F, = exp(—h + iArga which primitive functions give
an atlas we have looked for.

Remark 7.1.7. The condition for (X, f) in Lemma 7.1.6 is stronger than the
linearity property. Indeed we can define f on the union of the discs Dy = {|z| < 1} and
Dy = {|z—3| < 1} by f(2) = 5exp 2ni on Dy where ¥ is irrational, and f(z) = 5(z—3)
on Ds. This is an example of an iterated function system from Ch.4.5. We get a CER
(X, f) where X = (2, f "({|z] < 5}). It is linear because it satisfies the condition
¢). Meanwhile 0 € X, f(0) = 0 and f'(0) = Hexp2ndi, so the equation (7.1.4) has no
solution at « = 0 even for any iterate of f.

Remark 7.1.8. If we assume in place of (7.1.4) that Argf’(z) — Arga(f(z)) —
Arga(z) is locally constant, then we get the condition equivalent to the linearity.

Section 2. Rigidity of nonlinear CER’s

In this section we shall prove the main theorem of Chapter 7:

Theorem 7.2.1. Let (X, f), ((Y,g) be two non-linear conformal expanding re-
pellers in @. Let h be an invertible mapping from X onto Y preserving Borel o-algebras
and conjugating f to g, ho f = g o h. Suppose that one of the following assumption is
satisfied:

1. h and A~! are Lipschitz continuous.

2. h and h~! are continuous and preserve so-called Lyapunov spectra, namely for every
periodic 2z € X and integer n such that f™(z) = = we have |(f") (z)| = |(g™) (h(x))].

3. h, maps a geometric measure mx on X to a measure equivalent to a geometric
measure my on Y.



Then h extends from X (or from a set of full measure mx in the case 3.) to a conformal
homeomorphism on a neighbourhood of X.

We start the proof with a discussion of the assumptions. The equivalence of the
conditions 1. and 2. has been proved in Ch.4.3. The condition 1. implies 3. by the
definition of geometric measures 5.6.5. One of the steps of the proof of Theorem will
assert that 3. implies 1. under the non-linearity assumption. Without this assumption
the assertion may happen false. A positive result is that if A is continuous then for a
constant C' > 0 and every z1,z9 € X

[A(w1) = h(wa)["P)

—1
— 15[HD(X) <0

C<

E

(We leave the proof to the reader.)
It may happen that HD(X) # HD(Y) for example if X is a 1/3 — Cantor set and
for ¢ we remove each time half of the interval from the middle.

A basic observation to prove Theorem 7.2.1 is that

(7.2.1) Jgoh=Jf and moreover Jg’ o h = Jf7

for every integer 5 > 0. This follows from ¢/ o h = ho f/ and Jh = 1. We recall
that we consider Jacobians with respect to the Gibbs measures equivalent to geometric
measures.

Observe finally that (X,f) linear implies (Y,g) linear. Indeed, if (X, f) is linear then
Jf hence Jg admit only a finite number of values in view of Jgo h = Jf. As Jg is
continuous this implies that Jg is locally constant i.e. (Y, g) is linear.

Lemma 7.2.2. If a CER (X, f) is non-linear then there exists x € X such that
gradJ fg(x) # 0.

Proof. If gradJ f¢ = 0 on X then as J fg is real- analytic we have either grad.J f¢ =
0 ona neighbourhood of X in € or by Lemma 7.1.4 (X, f) is real-analytic and gradJ f¢ =
0 on real- analytic curves containing X. In both cases by integration we obtain .J f locally
constant on X what contradicts the non-linearity assumption.

Now we can prove Theorem in the simplest case to show the reader the main idea
working later also in the general case.

Proposition 7.2.3. The assertion of Theorem 7.2.1 holds if we suppose addition-
ally that (X, f) and Y, g) are real-analytic and the conjugacy h is continuous.

Proof. Let M, N be real analytic manifolds containing X, Y respectively. By the
non-linearity of X and Lemma 7.2.2 there exists x € X and its neighbourhood U in M
such that F := Jfgly : U — IR has a real-analytic inverse F~1 : F(U) — U. Then in
view of (7.2.1) h™' = F~Y o Jgg on h(U N X) so h™! on h(U N X) extends to a real
analytic map on a neighbourhood of h(U N X) in N.

Now we use the assumption that ™! is continuous so A(U N X) contains an open
set v in Y. There exists a positive integer n such that ¢” (V) =Y hence for every y € Y
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n n

there exists a neighbourhood W of y in N such that a branch g, ™ of ¢7" mapping y
and even WNY into V is well defined. So we have h™! = f?oh~log, ™ extended on W
to a real-analytic map. This gives a real-analytic extension of A~! on a neighbourhood
of Y because two such extensions must coincide on the intersections of their domains
by the real-analyticity and the fact that Y has no isolated points.

Similarly using the non-linearity of (Y,g) and the continuity of h we prove that h
extends analytically. By the analyticity and again lack of isolated points in X and Y
the extentions are inverse to each other, so h extends even to a biholomorphic map.

Now we pass to the general case.

Lemma 7.2.4. Suppose that there exists © € X such that gradJ fg(z) # 0 in the
case X is real-analytic, or there exists an integer & > 1 such that det(gradJ fg, grad(J fgo
7)) # 0 in the other case .

(In other words we suppose that Jfg, respect. (Jfg, Jfeo f*), give a coordinate
system on a real, respect. complex neighbourhood of x.)

Suppose the analogous property for (Y, g).

Let h: X — Y satisfy the property 3. assumed in Theorem 7.2.1. Then A extends
from a set of full geometric measure in X to a bi-Lipschitz homeomorphism of X onto
Y conjugating f with g.

Proof. We can suppose that HD(X) > HD(Y), recall that HD denotes Hausdorff
dimension . Pick x with the property assumed in the Lemma. Let U be its neighbour-
hood in M ( as in Proof of Proposition 7.2.3) or in €' if (X, f) is not real-analytic, so
that F := (Jfg Jfeo f¥) is an embedding on U. Let y € Y be a density point of
the set h(U N X) with respect to the Gibbs measure uy equivalent to the geometric
measure my. (Recall that we have proved that almost every point is a density point for
an arbitrary probability measure on a euclidean space in Ch.5.2 relying on Besicovitch’s
Theorem.) . So if we denote (Jgg, Jggo g¥) in a neighbourhood (real or complex) of 3
by G, we have for every § > 0 such gg = £¢(d) > 0 that for every 0 < e < &g :

py (B(y,€) 0 h(U N X))

wBae) 0

and

hl=F1oG on WUNX).

(Observe that the last equality may happen false outside h(U N X) even very close
to y because h~! may map such points to (Jfg Jfoo f¥)~1 o G with a branch of
(Jfe. Jfoo fF)~! different from F~1.)

Now for every € > 0 small enough there exists an integer n such that diamg” B(y, ¢)
is greater than a positive constant , ¢"|g(y) is injective and the distortion of g" on
B(y,e) is bounded by a constant C, both constants depending only on (Y, g). Then if
e < g9(d) we obtain for Yy := ¢"(h(UN X) N B(y,¢)),

py (9" (B(y,€)) \ Ys - Cuy(B(% e) \ (U N X))
py (9"(B(y.¢€))) py (B(y,€))

< C.

So



py (Ys)
py (9™ (B(y,€)))

(7.2.2) >1—C6

We have

(™) (h—1(y)) PP < ConstJ f(h—1(y)) = ConstJg(y) < Const|(f™)' (y)P).

As we assumed HD(X) > HD(Y') we obtain

(723) ‘(fn)/(hfl(y))’ S COHSt|(fn)/(y)‘HD(Y)/HD(X) S COHSt‘(fn)/(y)’

Then due to the bounded distortion property for iteration of f and g we obtain
that h=1 = f?h~1g~1! is Lipschitz on Y; with Lipschitz constant independent of §, more
precisely bounded by Constsup ||[D(F~! o G||, where F~! o G is considered on a real
(complex) neighbourhood of y and Const is that from (7.2.3).

There exists an integer K > 0 such that for every n, ¢¥¢"B(y,e(n)) covers Y.
Because .Jg is bounded, separated from 0, this gives h~! on g¥(Y;) Lipschitz with a
Lipschitz constant independent from & and u(g% (Ys)) > 1 — Const d for § arbitrarily
small. We conclude that h~1 is Lipschitz on a set of full measure py so it has a Lipschitz
extension to Y.

We conclude also that HD(X) = HD(Y'). Otherwise diamh(Y;) — 0, so because
suppux = X we would get diamX = 0. So we can replace above the roles of (X, f) and
(Y, g) and prove that h is Lipschitz.

The next step will assert that for non-linear repellers the assumptions of Lemma
7.2.4 about the existence of coordinate systems are satisfied.

Lemma 7.2.5. If (X,f) is a non-linear CER then there exists z € X such that
either gradJ fg(x) # 0 in the case X is real-analytic, or there exists an integer k > 1
such that det(gradJ fg, grad(J fgo f¥)) # 0 in the case (X.f) is not real-analytic.

Proof. We know already from Lemma 7.2.2 that there exists £ € X such that
gradJ fe(z) # 0 so we may restrict our considerations to the case (X, f) is not real-
analytic.

Suppose Lemma, is false. Then for all £ > 0 the functions

®;, := det(gradJ fg, grad(J fg o f¥))

are identically equal to 0 on X. Let W be a neighbourhood of Z in @ where grad.J f¢ # 0.
Let us consider on W the line field V orthogonal to grad.J f¢. Due to the topological
exactness of f on X for every z € X there exists y € W N X and n > 0 such that

ft(y) ==
Thus define at z



(7.2.4) Ve 1= Dfn(Vy)

We shall prove now that if z = f*(y) = f!(z) for some y,z € WN X, k,I > 0, then

(7.2.5) Df*(vy) = Df'(V2).

If (7.2.5) is false, then close to x there exist ' € X and m > 0 such that f™(z') € W
(we again refer to the topological exactness of f) and Df*(V,) # Df'(V,), where
ff@") = fH(2) = ', 4y € X is close to y and 2/ € X is close to z. We obtain
DfFtm(y, ) £ DfIF™(V,)) so either DfFT™(V,/) # Vim (z1) OT DfiF™(V,)) # Vim (g1
Consider the first case (the second is of course similar). We obtain that .J f and .J fo fF+m
give a coordinate system in a neighbourhood of 4’ i.e. ®gi,,(y') # 0 contrary to the
supposition.

Thus the formula (7.2.4) defines a line field at all points of X which is D f-invariant.
Observe however that the same formula defines a real-analytic extension of the line field
to a neighbourhood of x in €' because V is real-analytic on a neighbourhood of y € W
and f is analytic. Each two such germs of extensions related to two different pre-images
of  must coincide because they coincide on X, otherwise (X, f) would be real-analytic.
Now we can choose a finite cover B; = B(z;,0;) of a neighbourhood of X with discs,
r; € X so that for the respective Fj-branches of f~™ leading z; into W, we have
F;(3B;) C W where 3B; := B(x;,3d;). Hence the formula (7.2.4) defines V on 3B;.
So if B; N B; # (), then we have 3B; C B, or vice versa. So 3B; N3B; N X # 0 hence
the extensions of V on 3B, and on 3B5;, in particular on B; and on B;, coincide on the
intersection. This is so because they coincide on the intersection with X and (X, f is

not real-analytic.
(We made the trick with 3§ because it can happen that B;NB; # 0 but B;,NB;NX = (.)

Thus V extends real-analytically to a neighbourhood of X. This field is Df-
invariant on a neighbourhood of X because we can define it in a neighbourhood of z € X
and f(z) by (7.2.4) taking the same y € WNX where f"(y) =z, f**(y) = f(x). So by
Lemma 7.1.7 (X, f) is linear what contradicts the assumption that (X, f) is non-linear.

Corollary 7.2.6. If for (X, f), (Y, g) the assumptions of Theorem 7.2.1 are satisfied
and if (y, g) is real-analytic then (X, f) is real-analytic too.

Proof. Due to Lemma 7.2.5 the assumptions of Lemma 7.2.4 are satisfied. So
h~! = F~1o@G on a neighbourhood of 4 € Y by the continuity of h~!, (see the notation
in Proof of Lemma 7.2.4). Denote a real-analytic manifold Y is contained in by N.
Then Jgg # Const on any neighbourhood of y in N. Otherwise h=! would be constant,
but ¥ is not isolated in Y so h~! would not be injective.

Remind that we can consider F~! o G as a real analytic extension of h~! to a
neighbourhood V of y in N. So the differential of F~1G is 0 at most at isolated points,
so different from 0 at a point ' € V. NY. We conclude due to the continuity of h that
in a neighbourhood of h=!(y'), X is contained in a real-analytic curve. So (X, f) is a
real-analytic repeller.



Now we shall collect together what we have done and make a decidive step in
proving Theorem 7.2.1, namely we shall prove that the conjugacy extends to a real-
analytic diffeomorphism.

Proof of Theorem 7.2.1. If both (X, f) and (Y, g) are real- analytic then the
conjugacy extends real-analytically to a real-analytic manifold so complex analytically
to its neighbourhood by Proposition 7.2.3. Its assumptions hold by Lemmas 7.2.4 and
7.2.2. Tf both (X, f) and (Y, g) are not real-analytic (a mixed situation is excluded by
Corollary 7.2.6), then by Lemma 7.2.4 which assumptions hold due to Lemma 7.2.5 we
can assume the conjugacy h is a homeomorphism of X onto Y. But h~! extends to a
neighbourhood of y € Y in €' to a real-analytic map. We use here again the notation of
Proposition 7.2.4 and proceed precisely like in Proposition 7.2.3, Proposition 7.2.4 and
Corollary 7.2.6 by writing h=! = FF'~! o G. This gives a real-analytic extension of A~}
to a neighbourhood of an arbitrary y € Y by the formula f"oh ! o g, ! precisely as in
Proof of Proposition 7.2.3.

For two different branches Fy, Fy of g™, g~ ™ respectively, mapping y into the
domain of F~! o G germs of the extensions must coincide because they coincide on the
intersection with Y, see Lemma 7.1.4.

Now we build a real-analytic extension of h~! to a neighbourhood of Y similarly
as we extended V in Proof of Lemma 7.2.5, again using the assumption (Y, g) is not
real-analytic.Similarly we extend h. 3 .

Denote the extensions by h, h—1. We have h—1oh and hoh~1 equal to the identity on
X, Y respectively. The these compositions extend to the identities to neighbourhoods,
otherwise (X, f) or (Y, g) would be real-analytic. We conclude that h is a real-analytic
diffeomorphism. Finally observe that gh = hf on a neighbourhood of X because this
equality holds on X itself and our functions are real-analytic, otherwise (X, f) would
be real-analytic.

The only thing we should still prove is the following

Lemma 7.2.7. If (X, f) is a non-linear CER, not real-analytic , and there is a
real-analytic diffeomorphism A on a neighbourhood of X to a neighbourhood of Y for
another CER (Y, g) such that h(X) =Y and h conjugates f with g in a neighbourhood
of X then h is conformal.

Proof. Suppose for the simplification that f,g and h preserve the orientation of
@, we will comment the general case at the end.

For any orientation preserving diffeomorphism & of a domain in €' into @ denote
the complex dilatation function by wg . We recall that wg := % %. (The reader not
familiar with the complex dilatation and its properties is advised to read the first 10
pages of the classical Ahlfors book [Ahlfors].) The geometric meaning of the argument
of we(2z) may be explained by the equality %wq) = « where a corresponds to the the
direction in which the differential D® at z attains its maximum. In another words it is
the direction of the smaller axis of the ellipse in the tangent space at z which is mapped
by D® to the unit circle. Of course this makes sense if w(z) # 0. Observe finally that

w(z) = 0 iff % = 0. Let go back now to our concrete maps.

If dh = 0 on X then as % is a real-analytic function we have % 0 on a

nelghbourhood of X, otherwise (X, f) would be real-analytic. But this means that h is
holomorphic what proves our Lemma. It rests to prove that the case d;? h 2 0on X is

9



impossible.

Observe that if % (z) = 0 then 9 (f(z)) = 0 because h = ghf, ! on a neighbour-
hood of f(xz) for the branch f, ! of f~! mapping f(z) to 2 and because g and f, ! are
conformal. So if there exists z € X such that 22 (z) # 0 then this holds also for all z’s
from a neighbourhood and as a consequence of the topological exactness of f for all «
in a neighbourhood of X. Thus we have a complex-valued function wy nowhere zero on
a neighbourhood of X.

Recall now that for any two orientation preserving diffeomorphisms ¢ and W, if ¥
is holomorphic then

Wood = We

and if ® is conformal then

o’
wg o P = (@)20)@0@ = We

Applying it to the equation ho f = g o h we obtain

! / /!
n o f = (o Vinos = (I wgen = (L)

Thus afz) := twy(z) satisfies the equation (7.1.4) and by Lemma (7.1.6) (X, f)
happens linear what contradics our assumption that it is non- linear.

In the case a diffeomorphism reverses the orientation we write everywhere above
wg instead of wg and if @ is conformal reversing orientation we write ®' instead of ®'.
Additionally some omegas should be conjugated in the formulas above. We also arive at
(7.1.4). (In this situation the complex notation is not confortable. Everythig gets trivial
if we act with differentials on line fields. We leave writing this down to the reader.)
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version of Nov.25, 2002

CHAPTER 9
CONFORMAL MAPS WITH INVARIANT

PROBABILITY MEASURES OF POSITIVE LYAPUNOV EXPONENT.

§9.1 RUELLE’S INEQUALITY.

Let X be a compact subset of the closed complex plane @ and let A(X) denote the
set of all continuous maps f : X — X that can be analytically extended to an open
neighbourhood U(f) of X. In this section we only work with the standard spherical metric
on @ normalized so that the area of @ is 1. In particular all the derivatives are computed
with respect to this metric.

Let us recall and extend Definition 6.1.3. Let p be an f-invariant Borel probability
measure on X. Since |f’| is bounded, the integral [log|f’| du is well-defined and moreover
[log|f'|dp < +oo. The number

X = xu(f) Z/loglf’du

is called the Lyapunov characteristic exponent of p and f. Note that [log|f'|du = —oc is
not excluded. In fact it is possible, for example if X = {0} and f(z) = 22.

By Birkhoff Ergodic Theorem (Th 1.2.2) the Lyapunov characteristic exponent
Xu(z) = limy,y00 < log |(f™)'(z)] exists for a.e. z, compare Sec.6, and [ x,(z) du(z) = X,
(In fact one allows log|f’| with integral —oc here, so one need extend slightly Th.1.2.2.
This is not difficult.)

The section is devoted to prove the following.

Theorem 9.1.1. (Ruelle’s inequality) If f € A(X), then h,(f) < 2 [ max{0, x,(z)} dp.
For ergodic p this yields h,(f) < 2max{0, x,}.

Proof. Consider a sequence of positive numbers ay \, 0, and P, k = 1,2, ... an increasing
sequence of partitions of the sphere @ consisting of elements of diameters < a; and of
(spherical) areas > 1a?. Check that such partitions exist.

For every g € A(X), x € X and k > 1 let

Our first aim is to show that for every k& > k(g) large enough

(9.1.1) N(g,z, k) < 4r(|g'(x)| + 2)?

1



Indeed, fix z € X and consider k so large that Pg(x) C U(g) and a Lipschitz constant
of g|p,(z) does not exceed |g'(x)| + 1. Thus the set g(Py(zx)) is contained in the ball
B(g(z), (l¢’'(x)] + 1)ay). Therefore if g(Pr(x)) N P # O, then

P c B(g(x), (I¢'(z)] + Dax + ar) = Blg(x), (|g'(x)| + 2)ar)

Hence N(g,z,k) < n(|g'(z)| + 2)%a2/%a; = 4n(|¢'(z)| + 2)? and (9.1.1) is proved.
Let N(g,z) = supgs g N(g, 2, k). In view of (9.1.1) we get

(9.1.2) N(g,z) < 4n(|lg'(x)| + 2)?

Now note that for every finite partition A one has

(Flg™™ (A" + .+ g™ (A)A) + TI(A))

913) < tim (Hg " (A)lg™ " D(A) + o+ g (A)A)) = Hig™ (A)|A).

(Compare this computation with the one done in Theorem 1.4.5 or in Proof of Theo-
rem 1.5.4, which would result with h(g, A) < H(AJg™1(A)).) Going back to our situation,
since

Hyp o) (97 (PR)[Pr(z)) <log#{P € Py, : g~ (P) N Py(x) # 0} = log N(g, =, k)

and by Theorem 1.8.7.a, we obtain

h,(g) < limsup H, (g7 (Px)|Px) = lim sup/H#Pkm (97 (Py)|Pr()) du(z)

k— o0 k— o0

< Tim sup / log N(g, 2, k) du(x) < / log N(g, ) dyu().

k—o00

Applying this inequality to g = f™ (n > 1 an integer) and employing (9.1.2) we get

hu(F) = (") < 5 [ Tog N 0) dute) = [ 1 10g N7 ) duo

< / og dm(|(/") ()| + 2)? di)

Since 0 < Llog(|(f™) (x)]+2)? < 2(log(supx | f'|)+1) and lim,, o *log(|(f™)'(z)|+2) =
max{0, Xu( )} for p-a.e x € X, it follows from the Dominated Convergence Theorem
(Chl.Sec.1) that

() < Jim [ log(((7) (@) + 2 dute) = [ max(0, 2, (2))

n—oo



The proof is completed. &

Exercise. Prove the following general version of Theorem 8.1.1: Let X be a compact f-
invariant subset of a smooth Riemannian manifold for a C' mapping f : U — M, defined
on a neighbourhood U of X. Let p be an f-invariant Borel probability measure X. Then

(1) < [ {0, (@)} duto).

where x () = lim, o0 = log [|(Df™)"]|. Here Df™ is the differential and (Df™)" is the
exterior power, the linear operator between the exterior algebras generated by the tangent
spaces at  and f™(x). The norm is induced by the Riemann metric. Saying directly
|(Df™)*]| is supremum of the volumes of Df™-images of unit cubes in k-dimensional

subspaces of T, M with k =0,1,...,dim M.

Note. Theorem 9.1.1 and Exercise rely on [Ruelle] D. Ruelle: An inequality of the entropy
of differentiable maps. Bol. Soc. Bras. Mat. 9 (1978), 83-87.

§9.2. PESIN’S THEORY
In this section we work in the same setting and we follow the same notation as in Section 9.1.

Lemma 9.2.1. If i is a Borel finite measure on IR"™, n > 1, a is an arbitrary point of IR"
and the function z — log|z — a| is p-integrable, then for every C' > 0 and every 0 < ¢ < 1,

Z p(B(a, Ct")) < oc.

n>1

Proof. Since y is finite and since given ¢t < s < 1 there exists ¢ > 1 such that Ct"” < s
for all n > ¢, without loosing generality we may assume that C' = 1. Recall that given
b € IR", and two numbers 0 < r < R, R(b,r,R) = {z € € : r < |z — b] < R}. Since
—log(t™) < —log |z — al for every z € B(a,t™) we get the following.

. log(t")u(R(a, tn—|—1, tn))

S Bl t™) = 3 nu(Rla, 174, 17)) =

n>1 n>1 IOgt n>1
—1
< — —log |z — a|ldu(z) < +oc
logt JB(ap
The proof is finished. &

Lemma 9.2.2. If p is a Borel finite measure on @, n > 1, and log|f’| is u integrable,
then the function z — log |z — ¢| € L'(u) for every critical point ¢ of f. If additionally u
is f-invariant, then also the function z — log |z — f(c)| € L' ().
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Proof. That log|z —¢| € L' (1) follows from the fact that near ¢ we have C~1|z — ¢|?7! <
|f'(2)] < Clz — ¢|97 !, where ¢ > 2 is the order of the critical point ¢ and C' > 1 is a
universal constant, and since out of any neighbourhood of the set of critical points of f,
|f'(2)] is uniformly bounded away from zero and infinity. In order to prove the second
part of the lemma, consider a ray R emanating from f(c) such that u(R) = 0 and a disk
B(f(c),r) such that f71: B(f(c),7) \ R — @, an inverse branch of f sending f(c) to c, is
well-defined. Let D = B(f(c),r)\ R. We may additionally require » > 0 to be so small
that |z — f(e)| < |f. 1(2) — ¢|? Tt suffices to show that the integral [, log|z — f(c)| du(z)
is finite. And indeed, by f-invariance of p we have

/D 10g|z—f(0)|du(2)=/X 1p(2) log |2 — £(c)] dyu(z) = / 15(2) log | £, (2) — |7 du(z)

JX
= [nonEoslz cldutz) = [ 14y loglz 7 du(z)
X X

Notice here that the function 1p(2)log |f71(2) — ¢|? is well-defined on X indeed and that
unlike most of our comparability signs, the sign in the formula above means an additive
comparability. The finiteness of the last integral follows from the first part of this lemma.

[ )

Theorem 9.2.3. Let (Z,F,v) be a measure space with an ergodic measure preserving
automorphism T : Z — Z. Let f : X — X be a continuous map from a compact set
X C @ onto itself having a holomorphic extention onto a neighbourhood of X (f € A(X)).
Suppose that p is an f-invariant ergodic measure on X with positive Lyapunov exponent.
Suppose also that h : Z — X is a measurable mapping such that v o h™! = pu and
hoT = foh v-a.e. Then for v-a.e. z € Z there exists r(z) > 0 such that for every
n > 1 there exists f;™ : B(z,r(z)) — @, an inverse branch of f" sending = h(z) to
zy = h(T7"(z)). In addition, for an arbitrary x, —x.(f) < x < 0, (not depending on z)
and a constant K (z)

—n\/
U
|(f2.")" (y)]
for all y,w € B(z,7(z)). K is here the Koebe constant corresponding to the scale 1/2.

Proof. Suppose first that (|, f™(Crit(f))) > 0. Since y is ergodic this implies that
p must be concentrated on a periodic orbit of an element w € |J,,~; f™(Crit(f)). This

means that w = f9(c) = f2t%(c) for some ¢,k > 1 and ¢ € Crit(f), and

p({F(e), f17H ), fT o)) = 1.
Since [log|f‘|dp > 0, |(f*)‘(f9(c))| > 1. Thus the theorem is obviously true for the set
R=Y({f9(c), f1*Y(c), ..., 1+ 1(c)}) of v measure 1.
So, suppose that p(U,~; f™(Crit(f))) = 0. Set R = min{1,dist(X,C\ U(f))} and fix
A € (e3x,1). Consider 2z € Z such that z = h(z) ¢ U, >, f"(Crit(f))

(£, (y)| < K(2)eX™ and

5

lim ~log | (/") (h(T"(2))| = xu(/).

n—oc N



and z, = WT"(z)) € B(f(Crit(f)), RA") only for finitely many n’s. We shall first
demonstrate that the set of points satisfying these properties is of full measure v. Indeed,
the first requirement is satisfied by our hyphothesis, the second is due to Birkhoft’s ergodic
theorem. In order to prove that the set of points satisfying the third condition has v
measure 1 notice that

D ow(T (B (Crit(f), RA™))) = > v(h~ (B(f(Crit(f)), RA™)))

n>1 n>1

= 3" W(B(F(Crit(f)), BAM)) < oo,

n>1

where the last inequality we wrote due to Lemma 9.2.2 and Lemma 9.2.1. The application
of the Borel-Canteli lemma finishes now the demonstration. Fix now an integer ny = n1(z)
so large that x,, = h(T7"(2)) ¢ B(f(Crit(f)), RA™) for all n > n;y. Notice that because of
our choices there exists ny > nq such that [(f7)(x,)|7Y/* < A" for all n > n,. Finally set

S = s (™) (@a)| 74, by = LS=(fm Y (2p41)| 7, and
=11, (1 —b,)*

which converges since the series ) ., b, converges. Choose now r = r(z) so small
that 167(z)[IKS® < R, all the inverse branches f;™ : B(zo,Ir(z)) — € are well-
defined for all n = 1,2,...,n9 and diam(f;nZQ(B(xo,erZnQ(l —br)™Y)) < A"2R. We
shall show by induction that for every m > ny there exists an analytic inverse branch
fal: B(:I:O, rHg>n(1 — bk)_l) — @, sending z¢ to x, and such that

diam(f; " (B(zo, "Hr>n(1 — bx) ")) < A"R.

Indeed, for n = ny this immediately follows from our requirements imposed on r(z). So,
suppose that the claim is true for some n > ny. Since z,, = f;"(xo) ¢ B(Crit(f), RA")
and since A"R < R, there exists an inverse branch f_! : B(x,,A\"R) — € sending

Tn41

T, 0 Tpy1. Since diam(f;™(B((zo. rIlk>n(l — bg)™')) < A"R, the composition f; ! o

Tpt1
fT:fB(xo, >y (1—bk) ') = €is well-defined and forms the inverse branch of f*** that
sends zg to x,+1. By the Koebe distortion theorem we now estimate

diam(_ T;(f'l“)(B (zo, Mgzny1(l —br) 1))
< 2rTg>ng1 (1= be) (") (2pga) |7 KD,

< 16rILK S3(F Y ()| L (P (200) |

= 16rTIK S®|(f" 1) (2p41)|”
< RAMTL

EN[

where the last inequality sign we wrote due to our choice of » and the number ny. Putting
r(z) = r/2 the second part of this theorem follows now as a combined application of the
equality lim, o = log |(f™)(zn)] = x,u(f) and the Koebe distortion theorem. &
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As an immediate consequence of Theorem 9.2.3 we get the following.

Corollary 9.2.4. Assume the same notation and asumptions as in Theorem 9.2.3. Fix
e > 0. Then there exist a set Z(e) C Z, the numbers r(e) € (0,1) and K(g) > 1 such that
w(Z(Ee)) >1—eg,r(z) >r(e) for all z € Z(e) and with z,, = h(T~"(2))

(fz,) (w)]
(f=") ()l

for all n > 1, all z € Z(e) and all y,w € B(zo,7r(¢)). K is here the Koebe constant
corresponding to the scale 1/2.

K(e)"exp(—(xu +e)n) < [(J2,) ()] < K(e) exp(—(x, — €)n) and

Remark 9.2.5. In our future applications the system (Z, f,v) will be usually given by
the natural extension of the holomorphic system (f, u).

§9.3 MANE’S PARTITION

In this section, basically following Mané’s book 777, we construct so called Mané’s partition
which will play an important role in the proof of a part of the Volume Lemma given in the
next section. We begin with the following elementary fact.

Lemma 9.3.1. Ifz;,, € (0,1) forevery n > land Y>>, nz, < oc, then > > | —x, log z,, <
00.

Proof. Let S = {n: —logx, > n}. Then

Z xnlogxn—z xnlogxn+z xnlogxn<2nxn+z —Z, log xy,

n¢S nes nes

Since n € S means that z,, < e~ " and since logt < 2/t for all t > 1, we have

anlogg<22xn\/;<2z

nes n=1

The proof is finished. &
The next lemma is the main and simultaneously the last result of this section.

Lemma 9.3.2. If p is a Borel probability measure concentrated on a bounded subset
M of a Euclidean space and p : M — (0, 1] is a measurable function such that logp is
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integrable with respect to u, then there exists a countable measurable partition, called
Mané’s partition, P of M such that H,(P) < oc and

diam(P(z)) < p(z)

for p-almost every x € M.

Proof. Let ¢ be the dimension of the Euclidean space containing M. Since M is bounded,
there exists a constant C' > 0 such that for every 0 < r < 1 there exists a partition P,
of M of diameter < r and which consists of at most Cr~? elements. For every n > 0 put
U, ={x € M:e () < p(x) < e™™}. Since logp is a non-positive integrable function,

we have - -
> —np(Un) =) / log pdp = / log pdp > —o0
n=1 n=1" Un JM

so that

(9.3.1) Z np(Uy) < +o0.

Define now P as the partition whose atoms are of the form @ N U,, where n > 0 and
Qe P, r=ec ™1, Then

oC

Hy(P)=> (= >, wP)logu(P)).

n=0 U,DPeP
But for every n > 0

— > u(P)logu(P ” ”(P) ) = u(Un)Y #(P) log(1(Un))

U,DPeP N(Un)

u(Un)(logC — qlog rn) — 1(Un) log (U,
1(Up)log C + q(n + 1) u(Un) — p(Up) log p(Uy).

<
<
Thus, summing over all n > 0, we obtain

H (73)<logC'+q—I—anu +Z ) log u(Uy,).

n=0

Therefore looking at (9.3.1) and Lemma 9.3.1 we conclude that H,(P) is finite. Also, if
x € Uy, then the atom P(x) is contained in some atom of P, and therefore

diam(P(z)) < 1, = e~ "D < p(a).

Now the remark that the union of all the sets U, is of measure 1 completes the proof. &



§9.4 VOLUME LEMMA AND THE FORMULA HD(u) = h, (f)/x,(f)

In this section we keep the notation of Sections 9.1 and 9.2 and our main purpose is to
prove the following two results which generalize the respective results in Chapter 7.

Theorem 9.4.1. If f € A(X) and p is an ergodic f-invariant measure with positive
Lyapunov exponent, then HD(u) = h,(f)/x.(f)-

Theorem 9.4.2. ( Volume Lemma) With the assumptions of Theorem 9.4.1

og(u(Bla.)) _ uf)
r—=0 logr Xu(f)

for p-a.e. x € X.

In view of Corollary 6.6.4, Theorem 9.4.1 follows from Theorem 9.4.2 and we only need to
prove the latter one. Let us prove first

e log(u(B(z, 7)) | hu(f)
(9-4.1) T gy = )

for p-a.e. x € X. By Corollary 7.1.9 there exists a finite partition P such that for an
arbitrary e > 0 and every x in a set X, of full measure p there exists n(x) > 0 such that
for all n > n(x).

(9.4.2) B(f"(x),e™") C P(f"(x)).

Let us work from now on in the natural extension (X, f, fi). Let X (¢) and r(¢) be given
by Corollary 9.2.4, i.e. X( ) = Z(e). In view of Birkhoff’s Ergodic Theorem there exists
a measurable set F( ) C X () such that i(F(e)) = ju(X(e)) and

n—1

1 e~
Jim Z; Xz (o) © ["(&) = (X (¢))
.7:
for every & € F(e). Let F(e) = n(F(g)). Then p(F(e)) = p(n ' (F(e £)) > i(F(e)) =
(X (€)) converges to 1 if e \ 0. Consider now z € F(e)N X, and take & € F(e) such that
x = w(Z). Then by the above there exists an increasing sequence {ny = ng(z) : k > 1}

such that f™ (&) € X(e) and

N1 — Ny
ng

(9.4.3) <e

for every k > 1. Moreover, we can assume that n; > n(z). Consider now an integer n > ny
and the ball B(z,Cr(e) exp(—(x, + (2 + log | f'[])e)n)), where 0 < C < (Kr(e)) ' is a
constant (possibly depending on z) so small that

(9.4.4) f4 (B(x, Cr(e)exp—(xu + (2 + log ||fl|‘)5)”)) C P(f%(z))

8



for every ¢ < n; and K(e) > 1 is the constant appearing in Corollary 9.2.4. Take now
any ¢, n1 < ¢ < n, and associate k such that nj; < ¢ < ngqqy. Since f™ () € X(E)
and since 7 (f™ (z)) = f™(z), Corollary 9.2.4 produces a holomorphic inverse branch
I ™ : B(f™(x),r(c)) — @ of f™ such that f, ™ (f™(x)) = = and

£ (B (2),1())) > Bla, K(@)r(e) " exp(—(xu + ).

Since B(z,Cr(e)exp—(x, + (2 + log || f'|)e)n) C B(x7 K(e)™'r(e)exp—(xu + 6)nk)), it
follows from Corollary 9.2.4 that

£ (B(a. Or(e) exp — (xu+ (2 + log | )e)m) ©
C B(/™ (x), CKr(e)e X ™) exp(e(ny, — (2 4+ log]|f|)n))).
Since n > ny and since by (9.4.3) ¢ — ny < eng, we therefore obtain
FUB(w, Cr(e) exp —(xu + (2 + log | f']))e)n)) C
(e)r(e)e =) exp(e(ny — (2 + log || f'])n)) exp((g — nx) log || £'[])

C B(f9(x),CK(e)r(e
C B(f4x),CK(e)r(e) exp(s(nk log || f'|| + nx — 2n — nlog ||f’||))
C B(fY(z),CK(e)r(e)e” ") C B(f(x),e 7).

Combining this, (9.4.2), and (9.4.4), we get
B(e.Cr(e) exp—(x,+ (2 log | F)e)m) € \/ £79(P)(a).
§=0
Therefore, applying Theorem 1.5.5 (the Shanon-McMillan-Breiman Theorem), we have
i~ 1o o (B, Or(e) exp— (o + (2 Tog 1)) 2 (. P) > h(7) — ¢

It means that denoting the number Cr(e) exp —(x, + (2 + log|| f'[|)e)n) by 7y, we have

1 Bz, r, h —
lim inf 108 AB @ ) ulf) — e ,
71— 00 logrn Xll,(f) + (2+10g||f H)g

Now, since {r,} is a geometric sequence and since £ > 0 can be taken arbitrarily small, we
conclude that for py-a.e. z € X

n—00 log 7 Xu(f)
This completes the proof of (9.4.1). &

Remark. Since here X C @, we could have considered a partition P of a neighbourhood
of X in € where 0p , would have a more standard sense, see Remark after Corollary 7.1.8.

Now let us prove that

1 B(z,
(8.4.5) lim sup og(u(B(w,1)))
r—0 log r

< () /xu(f)

for p-a.e. x € X.



In order to prove this formula we again work in the natural extension (X’ ) f . 1) and we
apply Pesin theory. In particular the sets X (g), F'(¢) C X () and the radius r(¢), produced
in Corollary 9.2.4 have the same neaning as in the proof of (9.4.1). To begin with notice
that there exist two numbers R > 0 and 0 < ) < min{1,r(e)/2} such that the foloowing
two conditions are satisfied.

(9.4.6) If z ¢ B(Crit(f), R), then f|p(, ) is injective.
(9.4.7) If z € B(Crit(f), R), then f|p(. @dist(z,Crit(£))) 1S injective.

Observe also that if z is sufficiently close to a critical point ¢, then f’(z) is of order
(z — )71, where q > 2 is the order of critical point ¢. In particular the quotient of f'(z)
and (z — ¢)?! remains bounded away from 0 and oo and therefore there exists a constant
number B > 1 such that |f'(z)] < Bdist(z, Crit(f)). So, in view of Theorem 9.2.2, the
logarithm of the function p(z) = Q min{1, dist(z, Crit(f)) is integrable and consequently
Lemma 9.3.2 applies. Let P be the Mané’s partition produced by this lemma. Then
B(z, p(z)) D P(x) for p-a.e. z € X, say for a subset X, of X of measure 1. Consequently

n—1

(9.4.8) Bu(z,p) = [ 7 (B(f(2), p(f(2)))) D Py (=)

i=0

for every n > 1 and every x € X,. By our choice of () and the definition of p, the function
f is injective on all balls B(f7(x), p(f/(x))), j > 0, and therefore f* is injective on the
set By (z,p) for every 0 < k <n —1. Now, let z € F(e) N X, and let k be the greatest
subscript such that ¢ = ng(z) < n — 1. Denote by f_ ¢ the unique holomorphic inverse
branch of f9 produced by Corollary 9.2.4 which sends f9(z) to x. Clearly B, (x,p) C
f~4UB(f%x),p(f%z)))) and since f7 is injective on B, (z, p) we even have

Bn(x,p) C [ 1(B(f1(z), p(f!(x)))).

By Corollary 9.2.4 diam(f;4(B(f(z), p(f%(z))))) < K exp(—q(x, —¢€)). Since by (9.4.3),
n < q(1 + ¢) we finally deduce that

Xu_g
Bn(z,p) C B(z, K exp(—n .
(2.0) € B(o. K exp(-nX—7))

Thus, in view of (9.4.8)

_ X,uig n
B(.’IZ,KGXP( n )) O Py (x).

Therefore, denoting by r, the radius of the ball above, it follows from Shanon-McMillan-
Breiman theorem that for p-a.e x € X

limsup —— log w(B(x, 7n) < hy (£, P) < hy(f).

n—00 n
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So
| 12 B h
li su Og ( (‘/E ,rn) < 1ad (.f)

n—o0 log ry, - Xu(f)*g(l—i_g)‘

Now, since {r,} is a geometric sequence and since € can be taken arbitrarily small, we
conclude that for p-a.e. x € X

| B h
n—o0 logr Xu(f)

This completes the proof of (9.4.5) and because of (9.4.1) also the proof of Theorem 9.4.2.
[ )

§9.5 PRESSURE-LIKE DEFINITION OF THE FUNCTIONAL h, + [ ¢du.

In this section we prepare some general tools used in the next section to approximate
topological pressure on hyperbolic sets. No smoothness is assumed here, we work in purely
metric setting only. Our exposition is similar to that contained in Chapter 2.

Let T : X — X be a continuous map of a compact metric space (X, p) and let u be a
Borel probability measure on X. Given e > 0 and 0 < § <1 a set £ C X is said to be
p— (n,e,d)-spanning if

,u( U Bn(a:,e)) >1-0.

reEE

Let ¢ : X — IR be a continuous function. We define

Qu(T, p.n,e,0) = i%f{z exp S, ¢ (x)

zeF

where the infimum is taken over all u — (n, €, §)-spanning sets E. The main result of this
section is the following.

Theorm 9.5.1. For every 0 < 6 < 1 and every ergodic measure p

/qﬁd,u— lim hmmf logQu(T b,n,e,0) = hm lim sup — logQ“(T ¢,n,e,0)

e—>0 n— n =20 nooc

Proof. Denote the the number following the first equality sign by P (T ¢,9) and the

number following the second equality sign by P, (T, ¢, ). First, follovvlng essentially the
proof of the Part I of Theorem 2.3.1, we shall show that

(9.5.1) P, (T, $,5) > hy( /qﬁdu

11



Indeed, similarly as in that proof consider a finite partition U = {A;,..., A5} of X into
Borel sets and compact sets B; C A;, i = 1,2,..., A}, such that for the partition V =
{Bl,...,BS,X\(Blu...UB.)} we have H (Z/{|V) < 1. For every > 0 and ¢ > 1, set

1
Xo={reX: —logp(V*(z)) >h,(T,V) 6 forall n>qand
n

—qu /¢du 6 for all n > q}

Fix now 0 < § < 1. It follows from Shannon-McMillan-Breiman theorem and Birkhofl’s
ergodic theorem that for ¢ large enough p(X,) > 6. Take 0 < & < 2 min{p(B;, B;) : 1 <
i < j <s}>0sosmall that

p(z) — o(y)| <0

if p(z,y) < e. Since for every x € X the set B, (z,¢) N X, can be covered by at most 2"
elements of V™,
1(Bn(z,e) N X,) < exp(n(log2 —h,(T,V)+0)).

Now let E be a p — (n,e,d)-spanning set for n > ¢, and consider the set ' = {z €
E : B,(z,e)N X, # 0}. Take any point y(z) € B,(z,e) N X,. Then by the choice of ¢,
Spd(x) — Spd(y) > —nb. Therefore we have

> exp Sup(x) exp(—n(h (T,V)+/¢du—30—log2))2

el

> Z exp Sy d(z) exp(—n(h,(T,V) + / ¢ dp — 30 —log2))
el

= Z exp(Sn(z) — n/qﬁdu) exp(—n(h,(T,V) — 30 — log2))
el

= 3 exp(Sud(e) = Sud(v) + Su0(y) 1 [ ) exp(n (1, (7,V) - 30 - log2)
reE!

> Z exp(—nd) exp(—nb) exp(2n0) exp(—n(h, (T, V) — 6 — log2))
xel'

= Z exp(n(log2 — h,(T,V) +0))
rxeFl'

> 3 (Bl 2) N Xg) 2 n(X,) — 5> 0
TeE!

which implies that

QulT 9o1.2,0) > 1, (V) + [ g — 30— log2,

Since 0 > 0 is an arbitrary number and since h, (T, U) < h, (T, V)+H,(U|V) < h,(T,V)+1
letting ¢ — 0, we get

P,.(T,¢,6) >h,(T,U) - 1+/¢dﬂ—log2

12



Therefore, by the definition of entropy of an automorphism, P, (T, ¢,6) > h,(T) + [ pdu—
log2—1. Using now the standard trick, actually always applied in the setting we are whose
point is to replace T by its arbitrary iterates T* and ¢ by S;¢, we obtain kBM(T, ¢,0) >
kh,(T)+ k [ ¢dp —log2 — 1. So, dividing this inequality by &, and letting k& — oc, we
finally obtain

P, (T, $,6) > h,( /qﬁd,u

Now let us prove that
(9.5.2) (T ¢,0) <h,( /gbdu

where Fu (T, ¢,0) denotes limsup appearing in the statement of Theorm 9.5.1. Indeed, fix
0<d<1,thene >0 and # > 0. Let P be a finite partition of X of diameter < . By
Shannon-McMillan-Breiman theorem and Birkhoft’s ergodic theorem there exists a Borel
set Z C X such that u(Z) >1— 4§ and

(9.5.3) —S o(z /qbd/,H—H and — llogu(P”( ) <h,(T)+6

for every n large enough and all z € Z. From each element of P" having non-empty inter-
section with Z choose one point obtaining, say, a set {z1,2s,...,24}. Then B,(zj,¢) D
P"(z;) for every j = 1,2,...,q and therefore the set {z1,2z2,...,24} is p — (n.€,9)-
spanning. By the second part of (9.5.3) we have ¢ < exp(n(hM(T) + 0)). Using also
the first part of (9.5.3), we get

S exp Spd(5) < exp(n(hy(T) +6 + / b dpi+ 0))

j=1

Therefore Q. (T, p,n,e,0) < exp(n(hy(T) 4+ 0 + [¢du + 0)) and letting consequtively
n — oo and € — 0, we obtain P, (T, $,6) < h,(T) + [ ¢du+ 26. Since 6 is an arbitrary
positive number, (9.5.2) is proved. This and (9.5.1) complete the proof of Theorem 9.5.1.

&.

§9.6 KATOK’S THEORY HYPERBOLIC SETS, PERIODIC POINTS, AND PRES-
SURE

In this section we again come back to the setting of Section 9.1. So, let X be a compact
subset of the closed complex plane € and let f : X — X be a continuous map that can be
analytically extended to an open neighbourhood U(f) of X.

Let p be an f-invariant ergodic measure on X with positive Lyapunov exponent. h,(f)
and let ¢ : X — IR be a real continuous function. Our first aim is to show that the number

13



h,(f)+ [ ¢ du can be approximated by the topological pressures of ¢ on hyperbolic subsets
of X and then as a straightforward consequence we will obtain the same approximation
for the topological pressure P(f, ¢).

Theorm 9.6.1. If y is an f-invariant ergodic measure on X with positive Lyapunov
expenent x, and if ¢ : X — IR is a real-valued continuous function, then there exists a
sequence X, kK =1,2,..., of compact f- invariant subsets of U such that for every k the
restriction f|x, is a conformal expanding repeller,

fiminf P(Sx,. 6) > (1) + [ 6

and if pg is any ergodic f-invariant measure on Xj, then the sequence pg, k = 1,2,...,
converges to u in the weak-*-topology on a closed neighbourhood of X.

Proof. Since P(f|x,.® +¢) = P(f|x,,¢) + ¢ and since h,(f) + [(¢ + ¢)dp = h,(f) +
f ¢ du + ¢, adding a constant if necessary, we can assume that ¢ is positive, that is that
inf ¢ > 0. As in Section 9.2 we work in the natural extension (X, 1, f). Given § > 0 let
X () and () be produced by Corollary 9.2.4. The set 7(X(d)) is assumed to be compact.

This corollary implies the existence of a constant x’ > 0 (possibly with a smaller radius
r(d)) such that

!

(9.6.1) diam(f; ™ (B(n(z),r(d))) < e "X

for all # € X(§) and n > 0. Fix a countable basis {1; 32, of the Banach space C(X) of
all continuous real-valued functions C'(X). Fix § > 0 and an integer s > 1. In view of
Theorem 9.5.1 and continuity of functions ¢ and ; there exists € > 0 so small that

n—oo

(9.6.2) lim inf — 1ogQu(T ¢,n,e,0) — /gf)dﬂ

if |z — y| < e, then

(9.6.3) $(x) — $ly)| < 0
and
(9.6.4) bila) — Biw)] < 3

foralls=1,2,...,s.

Set 8 = r(§)/2 and fix a finite 3/2-spanning set of (X (6)), say {z1,...,x;}. That is
B(z1,6/2)U...U B(x,8/2) D w(X(§/2)). Let U be a finite partion of X with diameter
< /2 and let nq be sufficiently large that

(9.6.5) exp(—n1x’) < min{3/3, K '}.

14



Given n > 1 define

Xns = {7 € X(8): fU#) € X(6) and 7r(fq(~)) € U(z)
for some q € [n+1,(1+60)n]

and Sk /% dp

foreveryk>n and all 1 =1 2....,3}.

< 9

By Birkhoff’s ergodic theorem lim,, o (X, 5) = (X (5)) > 1 — 6. Therefore there exists
n > ny so large that u()N(n,S) >1—90. Let X, s = 7r(()~(n75)). Then pu(X, ) > 1— ¢ and
let E, C X, s be a maximal (n, €)-separated subset of X,, ;. Then F,, is a spanning set of
X, s and therefore it follows from (8.6.2) that for all n large enough

%log Z exp Sp(z) — (hu(f) +/¢dﬂ) > —0.
zeE,

Equivalently

S exp(Sud(a) > expn((f) + [ Gdu—0)).

xel,

For every g € [n+ 1, (14 6)n] let

Vo={ze€E,: flz) cU(x)}

and let m = m(n) be a value of ¢ that maximizes }° ., exp(Sp¢(x)). Since Uqltlgj_rll V, =
E,,, we thus obtain
(146)n
D expSup(x) > (n0)"H Y Y exp Sng(x)
€V, g=n+1zeV,
> (00) 1 Y exp(Sud(@) > expny, () + [ b —20)
reE

Consider now the sets V,,, N B(z;,3/2), 1 < j < t and choose the value ¢ = i(m) of j
that maximizes ZTGV B(x;,8/2) exp(Sn¢(z)). Thus, writing Dy, for Vi, 0 B(z(m), 8/2)

we have V,,, = UF1 Vi 0 B(x;, 8/2) and

1
Z exp Spo(x) > —exp(n /qﬁdu —20))
x€D,, t

Since ¢ is positive, this implies that

(9.6.6) > expSube) > 7 expln, (1) + [ ddu—26))

x€D,,

15



Now, if x € Dy, then |f™(z) — x;| < |f™(z) — x|+ |z — x;| < /24 /2 = § and therefore

f"(x) € B(xi, B) € B(f™(x),20).

Thus, by (9.6.1) and as m > n > ny, we have diam(f,—m(B(f™(z),28)) < exp(—my’) <
£/3, where & € 7 (x) N Xms. Therefore

f."(B(z;,8)) C B <’rZ g + g) — B <’I"z —5>

In particular

(9.6.7) fo ™ (B(zi, 8)) C Bz, B)

Consider now two distinct points yi,y2 € Dp,. Then f ™ (B(zi, 8)) N [, (B(wi, 8)) = 0
and decreasing [ a little bit, if necessary, we may assume that

Ly (B(wi, B)) N £, (B(xi, B)) = 0.
Let
¢ = min { g, min {dist /3, (B(wi, ). ;™ (B(@ir B)) : 41,92 € Dmsth # w2 | -
Define now inductively the sequence of sets {X(j)};";o contained in U(f) by setting

X = (B(z;, B) and XUtD = U fx_om(X(j))
€D,

By (9.6.7),{X(j)};?°;0, is a descending sequence of non-empty compact sets, and therefore
the intersection

7=0

is also a non-empty compact set. Moreover, by the construction f™(X*) = X* f™|x.
is topologically conjugate to the full one-sided shift generated by an alphabet consisting
of #D,, elements and it immediately follows from Corollary 9.2.4 that f™|x~ is an ex-
panding map. Since f™|x~« is an open map, it is straightforward to check that the triple
(f™, X*,Up,) is a conformal expanding repeller with a sufficiently small neighborhood U,
of X*. Thus (f, X(6,s), W), is also a conformal expanding repeller, where

X(0.s)=|J fH(x*) and W, = U F{(Unm)

16



Fix now an integer j > 1. For any j-tuple (29, 21,...,%j-1), 21 € Dp, choose exactly one
point y from the set f7™ o f7™ o...0 [ (X*) and denote the made up set by A;. Since

by (9.6.3) and (9.6.5) S;mé(y) > 2,7;01 Sm@(z1) — jmb we see that

3 exp Simdly) > (S exp Spd(x))’ exp(—jmb)

yeA; TE€D,,

and

1
—log E exp Sim¢(y) > log E exp Spd(x) — mb
J ‘ ’

In view of the definition of £, the set A; is (j, §)-separated for f™ and £ is an expansive
constant for f™. Hence, letting 7 — oo we obtain

P(f™|x-,Sm¢) > log > expSpe(z) — mb

€D,

> n(h,(f) —|—/¢>du—29) —logt — mb

where the last inequality was written in view of (9.6.6). Since n+1 < m < n(1 + 6) and
since inf ¢ > 0 (and consequently h,(f) + [ ¢du > 0), we get

L P xe . Snd)
m
: (hu(f)+/¢du—29> _ost_

>
— 140 m

P(flx,s), ¢) = %P(fm|X(9,s)7 ¢) >

Supposing now that n (and consequently also m) was choosen sufficiently large we get

PU1x(0,9).0) = {1 (D) + [ i) 0.

146
If now v is any ergodic f-invariant measure on X (6, s), then it follows from the definition
of the set X, 5, the construction of the set X (6,s) and the Birkhoff ergodic theorem
that | [¢;dv — [4;dp|l < 0 for every i = 1,2,...,s. Therefore putting for example
X = X(1/k, k), completes the proof of Theorem 9.6.1. &

Remark 9.6.2. If the set X is repelling, that is if (), -, f~"(U) = X, then the sets X}
constucted in the proof of Theorem 9.6.1 are all contained in X. In particular we get the
following.

Corollary 9.6.3. If the set X is repelling and if P(f,¢) > sup ¢, then there exists a

sequence X, k= 1,2, ..., of compact f-invariant subsets of X such that for every &, f|x,
is a conformal expanding repeller,

Jim P(flx,, ¢) = P(f.4)
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and if pg is any ergodic f-invariant measure on Xj, then the sequence pg, k = 1,2,...,
converges to p in the weak-*-topology on X.

Remark 9.6.4. Of course in Corollary 9.6.3 was sufficient to assume that P(f,¢) =
sup{h,(f) + [ ¢ du} where the supremum is taken over all ergodic invariant measures of
positive entropy, which is assured for eaxample by inequality P(f, ¢) > sup ¢. Besides, if
the function ¢ has an equilibrium state of positive entropy, then the sequence p; can be
choosen to converge to this equilibrium state.

Our last immediate conclusion concerns periodic points.
Corollary 9.6.5. If f : X — X is repelling and h,p(f) > 0, then f has infinitely many

periodic points. Moreover the number of periodic points of period n grows exponentialy
fast with n.
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CHAPTER 10

CONFORMAL MEASURES

§10.1. GENERAL NOTION OF CONFORMAL MEASURES.

Let T : X — X be a continuous map of a compact metric space (X, p) and let g : X — IR
be a non negative measurable function. A Borel probability measure m on X is said to
be g—conformal for T : X — X if

(10.1.1) m(T(A)):/gdm

A

for any Borel set A C X such that T'|4 is injective. Sets with this property will be called
special. There is a close relation between conformal measures and Perron-Frobenius type
operators. In order to describe it notice first that

(10.1.2) /T(A) ¢ dm = /A(qﬁoT)g dm

for any Borel function ¢ and any special set A. Assume now (only till Proposition 10.1.1)
additionally that T' is bounded—to—one (i.e. the numbers of preimages of points are uni-
formly bounded) and that g takes values in IR,. Define then the Perron-Frobenius operator
L,, associated to T and g, putting for a measurable function ¢ : X — IR

~—

Lyp(x) = Z &

Tipes 9(y

~—

Ly¢ is a well defined measurable function. We shall prove the following.

Proposition 10.1.1. Assume that there exists a finite partition of X into special sets X;
(1 <i < s), such that all the maps T : X; — T(X;) are measurable isomorphisms. Then
m is g—conformal if and only if £, acts on L*(m) and Lym = m, where L is the operator
conjugate with L,.

Proof. Let m be g—conformal and let ¢ € L!(m). By (10.1.2)

10) -1
— o (T|x, dm = d
/T(Xi) 9 ( |XZ) " /Xz @ dm

1



for every 1 = 1,...,s. Thus, summing over all 7 yields

/Xﬁggbdm:/Xd)dm

Conversely, assume that £, acts on L'(m) and that m is a fixed point of L;. Let A be a
special set. Then, by the definition of the Perron Frobenius operator

‘/Agdm—/Afdw;m)—!/Xﬁg(l,qg) dm—‘/XT(z):_mlA(y)m(dm)—m(T(A))

Thus m is f-conformal. &

Now we shall provide a general method of constructing conformal measures. The construc-
tion will make use of the following simple analytical fact. For a sequence {a,, : n > 1} of
reals the number

(10.1.3) ¢ = limsup fn

n—oc N

will be called the transition parameter of {a, : n > 1}. It is uniquely determined by the

property that
Z exp(a, — ns)

converges for s > ¢ and diverges for s < ¢. For s = ¢ the sum may converge or diverge.
By a simple argument one obtains the following.

Lemma 10.1.2. There exits a sequence {b,, : n > 1} of positive reals such that

S <o s>c
Z by, exp(a, — ns)
I = s<c

bTL

bn+1
Proof. If ) exp(a, — nc) = oo, put b, = 1 for every n > 1. If > exp(a, — nc) < oc,
choose a sequence {ny : k > 1} of positive integers such that limy_, nkn,;{l = 0 and

and lim,, o

= ankn,;l — ¢ — 0. Setting

ne —n n—ng—1
b, = exp (n <76k_1 + 76}6)) for ng_1 < n < ng,
N — Ng—1 N — Nkg—1

it is easy to check that the lemma follows. &

Getting back to dynamics let {E,,}2°; be a sequence of finite subsets of X such that

(10.1.4) T YE,) C Epq1 for every n>1



and let

= log( Z eXp(Sn.C](x)))

where S, = Zo<k<ng o T*. Denote by ¢ the transition parameter of this sequence.
Choose a sequence {b, : n > 1} of positive reals as in lemma 10.1.2 for the sequence
{a, :m > 1}. For s > ¢ define

[ee]
(10.1.5) M, =" by exp(a, — ns)
and the normalized measure

(10.1.6) ms = L Z Z by exp(Spg(z) — ns)d,,

where 0, denotes the unit mass at the point z € X. Let A be a special set. Using (10.1.4)
and (10.1.6) it follows that

bn exp(Sng(z) — ns)

ms(T'(
n=1zcE,NT(A)

]\i[ Z Z by, exp(Sng(T(x)) — ns)

5 n=1 :L'EAﬂT*lEn

by, exp[Sn119(x) — (n + 1)s]exp(s — g(z))
n—= 1;C€AﬂEn+]

(e e]

(10.1.7) ! > > b exp(Sng(T(z)) — ns).

$ n=1 !IZEAﬂ(En+1\T71En)

— ]\2 Z Z by, exp[Spi19(x) — (n + 1)s]exp(s — g(x)) / exp(c — g) dmg

n=1 {EGAﬂEn+1 A



and observe that

AA(S) =
1 o0
M Z Z exp[Sn119(x) — (n+ 1)s] exp(—g(x))(b,e® — by 1€°)
Slp=1a2cAnE, 1
_ bl Z eC—s
r€EANE,
1 N bn c—s
= M Z Z b — e bnt1exp(s — g(x)) exp(Sny19(x) — (n+1)s)
5 n=12€ANE,4+, | "1
1
+ M. by exp(c — s) (AN Ey)
1 S b" c—s
< M, Z Z boir e bnt1exp(s — g(x)) exp(Snt19(z) — (n + 1)s)

n=1 ZBEEn+1

1

I

b1 exp(c — s) {E].

By lemma 10.1.2 we have lim,_,o0 bp41/b, = 1 and limg\ . My = co. Therefore

(10.1.8) lim A4 (s) = 0

uniformly for all special sets A.

Any weak accumulation point, when s | ¢, of the measures {my : s > ¢} defined by (10.1.6)
will be called a limit measure (associated to the function g and the sequence {E,, : n > 1}).

In order to find conformal measures among the limit measures, it is necessary to examine
(10.1.7) in greater detail. To beginn with, for a Borel set D C X, consider the following
condition

oo

1
(10.1.9) ll\rré L > > by, exp (Sng(T(z)) — ns) = 0.
n=1 TGDﬁ(En+1\T71En)

We will need the following definitions.

A point z € X is said to be singular for T if at least one of the following two conditions is
satisfied:

(10.1.10) There is no open neighbourhood U of x such that T'|y is injective.
(10.1.11) For all e > 0 there exists an open set U C B(x,¢) such that T(U) is not an open
subset of X.



The set of all singular points is denoted by Sing(7'), the set of all points satisfying condition
(10.1.10) is denoted by Crit(T') and the set of all points satisfying condition (10.1.11) is
denoted by X(T).

It is easy to give examples where Xog N Crit(T) # (. If T : X — X is an open map, no
point satisfies condition (10.1.11), that is Xo(T') = 0.

In spite of what was assumed in [ECM] and similarly as in [Sul], the set Sing(T") is not
required to be finite. Let us prove the following.

Lemma 10.1.3. Let m be a Borel probability measure on X and let I' be a compact set
containing Sing(7T'). If (10.1.1) holds for every special set A whose closure is disjoint from
I' and such that m(9A) = m(0T(A)) = 0, then (10.1.1) continues to hold for every special
set A disjoint from T'.

Proof. Let A be a special set disjoint from I'. Fix € > 0. Since on the complement of T’
the map T is open, for each point x € A there exists an open neighbourhood U(z) of z
such that T'|y () is a homeomorphism, m(0U (z)) = m(0T(U(z))) = 0, U(z) NI = () and

such that
/ gdm < €
UU (z)\ A

Choose a countable family {Uy} from {U(z)} which covers A and define recursively A; =
Uy and Ay, = Uy \Uj<,, Us- By the assumption of the lemma, each set Ay satisfies (10.1.1)
and hence

m(T(A)) = m(U T(AN Ag)) Zm

:;/A gdm = /gdm+2/k\A

§/ gdm + €.
A

m(T(B)) < / gdm

/B
for any special set B disjoint from I'. Using this fact, the lower bound for m(T(A)) is
obtained from the following estimate, if ¢ — 0:

If e — 0, it follows that

m(T(A)) = m(| ] T(AN Ay)) Zm (AN Ag))
k=1

o

> (m(T(AR) — m(T (A \ 4) > Z (/A gdm - /A k\Agdm)

:/ gdm — gdmZ/gdm—e.
. UkZlAk . UkZlAk\A JA

bt

1



This proves the lemma. &

Lemma 10.1.4. Let m be a limit measure and let I be a compact set containing Sing(T').
Assume that every special set D C X with m(0D) = m(0T (D)) = 0 and DNT = () satisfies
condition (10.1.9). Then m(T'(A)) = [, exp(c— f) dm for every special set A disjoint from
I.

Proof. Let D C X be a special set such that DNT = () and m(0D) = m(0T(D)) = 0. It
follows immediately from (10.1.7) (10.1.9) that m(T(D)) = [, exp(c — f) dm. Applying
now Lemma 10.1.3 completes the proof. &

Lemma 10.1.5 Let m be a limit measure. If condition (10.1.9) is satisfied for D = X,
then m(T(A)) > [, exp(c — f) dm for every special set A disjoint from Crit(T).

Proof. Suppose first that A is compact and m(9A) = 0. From (10.1.7), (10.1.8) and the
assumption one obtains

lim | ms(T(A)) —/ exp(c — f)dms |=0
seJ A

where J denotes the subsequence along which m, converges to m. Since T'(A) is compact,
this implies

m(T(A)) > liminf ms(T(A)) = lim | exp(c— f)dm, = / exp(c — f)dm
seJ s€J J A A

Now, drop the assumption m(9A) = 0 but keep A compact and assume additionally that

for some € > 0 the ball B(A,¢) is also special. Choose a descending sequence A,, of

compact subsets of B(A,e) whose intersection equals A and m(0A,) = 0 for every n > 0.

By what has been already proved

m(T(A)) = lim m(T(Ay,)) > / exp(c — f)dm = / exp(c — f)dml
The next step is to prove the lemma for A, an arbitrary open special set disjoint from
Crit(T) by partitioning it by countably many compact sets. Then one approximates from
above special sets of sufficiently small diameters by special open sets and the last step is to

partition an arbitrary special set disjoint from Crit(T) by sets of so small diameters that
the lemma holds. &

Lemma 10.1.6 Let I" be a compact subset of X containing Sing(7T). Suppose that for
every integer n > 1 there are a continuous function g,, : X — X and a measure m,, on X
satisfying (10.1.1) for g = g,, and for every special set A C X with

(a) ANT =0

and satisfying

ma(B) > [ g,
J B
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for any special set B C X such that BNCrit(T) = (). Suppose, moreover, that the sequence
{gn}22, converges uniformly to a continuous function g : X — IR. Then for any weak
accumulation point m of the sequence {m,, }5<; we have

(b) m(T(A) = [ gdm

A

for all special sets A C X such that ANT = () and

(©) m(1(5)) > [ gdm

B

for all special sets B C X such that B N Crit(T) = (.
Moreover, if (a) is replaced by

(a7) AN (I (Crit(T) \ Xo(T))) = 0,
then for any = € Crit(T) \ Xo(T)
(d) m({T(z)}) < g(z)m({z}) < g(z)m({T(2)})

where ¢(z) denotes the maximal number of preimages of single points under the transfor-
mation T restricted to a sufficiently small neighbourhood of =.

The proof of property (b) is a simplification of the proof of Lemma 10.1.4 and the proof
of property (c) is a simplification of the proof of Lemma 10.1.5. The proof of (d) uses the
same technics and is left for the reader.

§10.2. SULLIVAN’S CONFORMAL MEASURES AND DYNAMICAL DIMENSION, I.

Let, as in Chapter 9, X denote a compact subset of the extended complex plane € and
let f € A(X) which means that f: X — X is a continuous map that can be analytically
extended to an open neighbourhood U(f) of X.

Let ¢ > 0. Any |f’|' conformal measure for f : X — X is called a ¢ conformal Sullivan’s

measure or even shorter a t—conformal measure. Rewritting the defintion (10.1.1) it means
that

(10.2.1) m(f(A)) = /A [t dm

for every special set A C X. An obvious but important property of conformal measures is
formulated in the following



Lemma 10.2.1. If f : X — X is locally eventually onto, then every Sullivan’s conformal
measure is positive on nonempty open sets of X.

In particular it follows from this lemma that if f is locally eventually onto, then for every
r >0

(10.2.2) M(r) =inf{m(B(z,r)):z € X} >0

Denote by §(f) the infinium over all exponents ¢ > 0 for which a #—conformal measure for
f: X — X exists.

Our aim in the two subsequent sections is to show the existence of conformal measures and
even more to establish more explicite dynamical characterization of the number 6(f). As a
matter of fact we are going to prove that under some additional assumptions 6(f) concides
with the dynamical dimension DD(X) of X and the hyperbolic dimension HyD(X) of X
which is defined as follows.

DD(X) = sup{HD () : p € M(f)}
HyD(X) = sup{HD(Y) : f|y is a conformal expanding repeller}

In this section we shall prove the following two results.

Lemma 10.2.2. If f : X — X is locally eventually onto, then DD(X) < §(f).

Proof. Our main idea "to get to a large scale” is the same as in [SulDU]. However to carry
it out we use Pesin theory described in Ch.8.2 instead of Mane’s partition introduced in
[Mane] and applied in [SulDU]. So, let u € M (f) and let m be a t—conformal measure.
We again work in the natural extension (X, f, ). Fix e > 0 and let X (¢) and r(e) be
given by Corollary 9.2.4. In view of the Birkhoff ergodic theorem there exist a measurable
set F(e) € X(e) such that ji(F(e)) = i(X(¢)) and an increasing sequence {ny = ny () :
k > 1} such that f™ (%) € X(e) for every k > 1. Let F(e) = n(F(¢)). Then u(F(e)) =
p(r=Y(F(e)) > ﬂgﬁ’(a)) > 1 — 2¢. Consider now 2 € F'(¢) and take Z € F(¢) such that
x = 7(%). Since f™ (%) € X(e) and since 7(f™ (%) = f™ (x), Corollary 9.2.4 produces a
holomorphic inverse branch f-™ : B(f™(x),7(¢)) — @ of f™ such that f ™ f™ (z) = x
and

[ (B(f™ (@), 7(e)) € Bz, K[(f™)' ()" 'r(e))
Set 7 (z) = K|(f™)'(x)|~'r(¢). Then by Corollary 9.2.4 and ¢ conformality of m

m(B(w,rr(x))) > KH(f™) (@) m(B(f" (2),7(€))) > M(r(e)) " K~ *r(e) "ri(a)"

Therefore, it follows from Theorem 5.5.1 (Besicovitch covering theorem) that H;(F'(e)) <
M (r(e))K?r(e)'b(2) < oc. Hence HD(F(g)) < t. Since u(U,—, F(1/n)) = 1, it implies
that HD(u) < ¢. This finishes the proof.

Theorem 10.2.3. If f: X — X is locally eventually onto and X is a repelling set for f,
then HyD(X) = DD(X).



Proof. In order to see that HyD(X) < DD(X) notice only that in view of Theorem 7.1.1
there exists p € M (f|y) € M} (f) such that HD(u) = HD(Y') . In order to prove that
DD(X) < CD(X) we will use Katok’s theory from Section 9.6 applied to p, an arbitrary
ergodic invariant measure of positive entropy. First, for every integer n > 0 define on X a
new continuous function

¢n = max{—n,log|f’|}.

Then ¢, > log|f’| and ¢, \ log|f’| pointwise on X. Since in addition ¢,, < log||f’||, i
follows from the Lebesgue monotone convergence theorem that lim,, o f b dpe = xu(f)
[log|f'|dp > 0. Fix € > 0. Then for all n sufficiently large, say n > ng, [ ¢ndp
X/ (1 — €) which implies that

—
=t

IA I

(10.2. b () = HD(0) x> (1 = D) [

Fix such n > ng. Let X C X, k > 0, be the sequence of conformal expanding repellers
produced in Theorem 9.6.1 for the measure p and the function —HD(u)¢,, and let pg be
an equilibrium state of the map f|x, and the potential —HD(u)¢,, restricted to Xg. It

follows from the second part of Theorem 9.6.1 that limy_, . f On, Ay, = f ¢ dpp > 0. Thus
by Theorem 10.6.1 and (10.2.4)

lim inf (b, —HD(p) / G dpre) = lim inf P (f| x,, ~HD(12) )
> by (NHD(s) [ b dn
> ~HD() [ én du
Hence, for all k large enough
by > HD(0) [ s~ 228D () [ i > HD () [ s~ 3HD () [ 61

— (U= 39D () [ G dy > (1= 3)HD(w) [ log |7 .

Thus
HD(Xy) > HD(m) = 225) > (1 3emD ().

So, letting € — 0 finishes the proof. &
§10.3. SULLIVAN’S CONFORMAL MEASURES AND DYNAMICAL DIMENSION, II.
In this section f : @ — ('is assumed to be a rational map of degree > 2 and X is its Julia

set J(f). Neverthless it is worth to mention that some results proved here continue to

9



hold under weaker assumption that f|x is open or X is a perfect locally maximal set for
f. By Crit(f) we denote the set of all critical points contained in the Julia set J(f).

Lemma 10.3.1. If z € J(f) and {f"(2) : n > 0} N Crit(f) = 0, then the series
Yoo (M) (2)]7 diverges.

Proof. By the assumption there exists ¢ > () such that for every n > 0 the map f restricted
to the ball B(f"(z), ) is injective. Since f is uniformly continuous there exists 0 < o < 1
such that for every = € €

(10.3.1) J(B(z,ae)) C B(f(),e).

Suppose that the series Y. | |(f™)(2)|3 converges. Then there exists ng > 1 such that

SUP,>p, (21(f™)'(2) )2 < 1. Choose 0 < &1 = &3 = ... = &, < e so small that for every
n=1,2,...,n9

(10.3.2) [ restricted to the ball B(z,¢e,) is injective.

and

(10.3.3) ["(B(z,en)) C B(f"(2),¢)

For every n > ng define €,41 inductively by

(10.3.4) ent1 = (1= 2/(f") (2)))¥)en.

Then 0 < &, < ae for every n > 1. Assume that (10.3.2) and (10.3.3) are satisfied for some
n > ng. Then by the Kébe Distortion Theorem 77?7 and (10.3.4) the set f™(B(z,en41)) is
contained in the ball centered at f™(z) and of radius

2 e[
0 emifenl® 200" (2)

Therefore, since f is injective on B(f™(z),¢), formula (10.3.2) is satisfied for n + 1 and
using also (10.3.1) we get

=ent1 < QE.

ent1|(f™) (2)]

FPHB(z en41)) = F(F"(B(2:n41))) € F(B(f"(2),ae)) € B(f""(2),¢).

Thus (10.3.3) is satisfied for n + 1.

Let &, | €9. Since the series > I(f™)'(2)|7 converges, it follows from (10.3.4) that
gg > 0. Clearly (10.3.2) and (10.3.3) remain true with &, replaced by ¢. It follows that the
family {f"|p(;,1c0)}ne1 is normal and consequently z ¢ J(f). This contradiction finishes
the proof. s

As an immediate consequence of this lemma and of Birkhoff’s Ergodic Theorem we get
the following.
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Corollary 10.3.2. If i be an ergodic f invariant measure for which there exists a compact
set Y C J(f) such that u(Y) =1 and Y N Crit(f) = 0, then x, > 0.

Let now € be a finite subset of [J. 7, f(Crit(f)) such that

(10.3.5) Qn{fre):n=1,2...} £0 for every ¢ € Crit(f)
and
(10.3.6) QN Crit(f) = 0.

Sets satisfying these conditions exist since no critical point of f lying in J(f) can be
periodic. Now let V' C J(f) be an open neighbourhood of © and define K (V') to be the set
of those points of J(f) whose forward trajectory avoids V. Equivalently this means that

K(V)={z€J(f): [*(z) ¢ V for every n. > 0} = () F*(J(/)\V)

n=0

Hence K (V) is a compact subset of J(f) and f(K(V)) € K(V). Consequently we can
consider dynamical system f|g vy : K(V) — K (V). Note that f(K(V)) = K (V) does not
hold for all sets V and that usually f~1(K(V)) ¢ K(V). Simple considerations based on
(10.3.5) and the definition of sets K (V') give the following.

Lemma 10.3.3. Crit(f|x ) C Crit(f) N K(V) = 0, K(V)o(f) = Sing(f) C 9V, and
—tlog|f'| is a well-defined continuous function on K (V).

Fix now z € K(V) and set E, = f|;(’zv)(,z)7 n > 0. Then E,1; = f\;(:kv)(En) and
therefore the sequence {E,} satisfies (10.1.9) with D = K (V). Take ¢t > 0 and let ¢(¢, V)

be the transition parameter associated to this sequence and the function —tlog|f’|. Put
P(t,V) = P(f|kv), —tlog|f']). We shall prove the following.

Lemma 10.3.4. ¢(t,V) < P(¢, V).

Proof. Since K (V) is a compact set disjoint from Crit(f), the map f|x (v is locally !-to-1
which means that there exists § > 0 such that f|x ) restricted to any set with diameter
< 4 is lto-1. Consequently, all the sets F,, are (n,e)-separated for e < §. Hence, the
required inequality ¢(t, V') < P(t, V) follows immediately from Theorem .2.2.10. &

The standard straightforward arguments showing continuity of topological pressure prove
also the following.

Lemma 10.3.5. The function ¢ — ¢(¢, V) is continuous.

Set
s(V)=inf{t > 0:¢(t,V) <0} < 4+
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We shall prove the following.

Lemma 10.3.6. s(V) < DD(J(f)).

Proof. Suppose that DD(J(f)) < s(V) and take 0 < DD(J(f)) < t < s(V). From this
choice and by Lemma 10.3.4 we have 0 < ¢(t,V) < P(¢,V) and by Variational Principle
777 there exists p € Mc(fr(v)) C Mc(f) such that P(#, V) <h,(f) — txu(f) +c(t, V) /2.
Therefore, by Corollary 10.3.2 and Lemma 10.3.3 we get h,(f) > ¢(¢t,V)/2 > 0 and
applying additionally Theorem 9.1.1 (Ruelle’s inequality), x,(f) > 0. Hence, it follows
from Theorem 9.4.1 that

1e(t,V
r <) Y ap < Do)
2 Xu
This contradiction finishes the proof. &

Let m be a limit measure on K(V') associated to the sequence F, and the function
—s(V)log|f’|. Since ¢(0,V) > 0 and s(V) < oo, it follows from Lemma 10.3.5 that
c(s(V), V) = 0. Therefore, applying Lemma 10.1.4 and Lemma 10.1.5 with ' = 0V we see
that m(f(A4)) > [, |F/1*V) dm for any special set A C K (V) and m(f(A)) = [, |f'[*V) dm
for any special set A C K(V) such that AN JdV = (). Treating now m as a measure on
J(T) and using straightforward measure-theoretic arguments we deduce from this that

(10.3.7) m(f(A)) > / L 1FY) dm
A
for any special set A C J(f) and

(103.8) m(f(A)) = /A PPV dim

for any special set A C J(f) such that ANV = (). Now we are in position to prove the
following.

Lemma 10.3.7. For every €2 there exist 0 < s(Q2) < DD(J(f)) and a Borel probability
measure m on J(f) such that

mlf(A) = [ 171 dm
Ja
for any special set A C J(f) and
m( 7)) = [ 1719 dm
Ja

for any special set A C J(f) disjoint from €.
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(10.3.7) and (10.3.8) for the neighbourhood V,,. Using Lemma 10.1.6 we shall show that
any weak * limit m of the sequence of measures {m,, }°° ; satisfies the requirements of
Lemma 10.3.7. Indeed, first observe that the sequence {s(V,)}52, is nondecreasing and
denote its limit by s(€2). Therefore the sequence of continuous functions g, = |f/[*(V»),
n=1,2,..., defined on J(f) converges uniformly to the continuous function g = |f’|5(?).
Let A be a special subset of J(f) such that

Proof. For every n > 1let V,, = B(Q, 1) and let m,, be the measure on J(f) satisfying

(10.3.9) AN (Sing(f)uQ) = 0.

Then one can find a compact set I' C J(f) disjoint from A and such that Int(T") >
Sing(f) U Q. So, using also Lemma 10.3.3, we see that for any n sufficiently large, say
n > q,

(10.3.10) Vo.cI'  and  V,NCrit(f) = 0.

Therefore, by (10.3.7) and (10.3.8), we conclude that Lemma 10.1.6 applies to the sequence
of measures {m, };2, and the sequence of functions {g,},2,.- Hence, the first property
required in our lemma is satisfied for any special subset of J(f) disjoint from Crit(f) and
since ANT = 0, the second property is satisfied for the set A. So, since any special
subset of J(f) disjoint from Sing(f) U € can be expressed as a disjoint union of special
sets satisfying (10.3.9), an easy computation shows that the second property is satisfied
for all special sets disjoint from Sing(f) U . Therefore, in order to finish the proof, it is
enough to show that the second requirement of the lemma is satisfied for every point of
the set Sing(f). First note that by (10.3.10) and (10.3.8), formula (a’) in Lemma 10.1.6
is satisfied for every n > ¢ and every x € Crit(f) \ J(f)o(f). As f: J(f) — J(f) is an
open map, the set J(f)o(f) is empty and Sing(f) = Crit(f). Consequently formula (d) of
Lemma 10.1.6 is satisfied for any critical point ¢ € J(f) of f. Since g(c) = |f'(c)|*®¥ =0,
this formula implies that m(f()) < 0. Thus m({f(c)}) = 0 = |f'(c)|*Pm({c}). The proof
is finished. &

Lemma 10.3.8. Let m be a the me the measure constructed in Lemma 10.3.7. If for
some z € J(f) the series S(t,2) = Y oo [(f™)'(2)|" diverges then m({z}) = 0 or a positive
iteration of z is a parabolic point of f. Moreover, if z itself is periodic then m({f(z)}) =
11" (2)'m({z}).

Proof. Suppose that m({z}) > 0. Assume first that the point z is not eventually periodic.
fhen by the definition of a conformal measure on the complement of some finite set we
get 1> m({f™(z) : n > 1}) > m({z}) Yo, (/™) (2)|" = oo, which is a contradiction.
Hence z is eventually periodic and therefore there exist positive integers k and ¢ such that
fF(f4(z)) = fi(z). Since fi(z) € J(f) and since the family of of all iterates of f on a
sufficiently small neighbourhood of an attractive periodic point is normal, this implies that
|(FE) (fe(2)] > 1. If |(f*)'(f4(2))] = A > 1 then, again by the definition of a conformal
measure on the complement of some finite set, m({f9(z)}) > 0 and m({f*"(f9(2))}) >
A m({f9(2)}). Thus m({f**(f9(2))}) converges to oo, which is a contradiction. Therefore
|(£%)(f9(2))| = 1 which finishes the proof of the first assertion of the lemma. In order
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to prove the second assertion assume that ¢ = 1. Then, using the definition of conformal
measures on the complement of some finite set again, we get m({f(z)}) > m{{z})|f'(z)[*
and on the other hand

m({2}) = m({f*(F(2)}) > m{F (DI (F @) = m{F (DI ()]

Therefore m({f(2)}) = m({z})|f'(2)|*. The proof is finished. &

Corollary 10.3.9. If for every = € Crit(f) one can find y(z) € {f"(x) : n > 0} such that
the series S(t,y(x)) diverges for every 0 < ¢ < DD(J(f)), then there exists an s-conformal
measure for f: J(f) — J(f) with 0 < s < DD(J(f)).

Proof. Let m be a the me the measure constructed in Lemma 10.3.7. Since S(¢,y(z))
diverges for every 0 <t < DD(J(f)), we see that y(z) ¢ Crit(f). If for some = € Crit(f),
y(z) is a non-periodic point eventually falling into a parabolic point, then let z(z) be this
parabolic point; otherwise put z(z) = y(x). The set Q = {z(z) : € Crit(f)} meets
the conditions (10.3.5), (10.3.6) and is contained in [ J;—; f™(Crit(f)). Since for every
t > 0 and z € J(f) the divergence of the series S(t, z) implies the divergence of the series
S(t, f(z)), it follows immediately from Lemma 10.3.7 and Lemma 10.3.8 that the measure
m is s-conformal. &

Now we are in position to prove the following main result of this section.

Theorem 10.3.10. HyD(J(f)) = DD(J(f)) = d(f) and there exists a §(f)-conformal
measure for f: J(f) — J(f).

Proof. For every x € Crit(f) the set {f?(z) : n > 0} is closed and forward invariant under
f. Therefore, in view of Theorem 2.1.8 (Bogolubov-Krylov theorem) there exists p € M, (f)
supported on {f"(z):n > 0}. By Corollary A of [Przyt, Lyap| there exists at least one
point y(z) € [f7(z) :n > 0} such that limsup, .. (/") (y(z))| > 1 and consequently the
series S(t,y(x)) diverges for every ¢ > 0. So, in view of Corollary 10.3.9 there exists an
s-conformal measure for f : J(f) — J(f) with 0 < s < DD(J(f)). Combining this with
Lemma, 10.2.2 and Theorem 10.2.3 complete the proof. &

§10.4. PESIN’S FORMULA.

In this section our aim is to prove two main theorems. The first one is as follows.

Theorem 10.4.1. (Pesin’s formula) Assume that X is a compact subset of the closed
complex plane € and that f € A(X). If m is a t- conformal measure for f and y € M (f)
is absolutely continuous with respect to m, then HD(u) = ¢.

Proof. In view of Lemma 10.2.2 we only need to prove that ¢ < HD(u) and in order to do
this we essentially combine the arguments from the proof of Lemma 10.2.2 and from the
proof of formula (9.4.1). So, we work in the natural extension (X, f, fi). Fix 0 < e < x,,/3
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and let X (&) and r(¢) be given by Corollary 9.2.4. In view of the Birkhoff ergodic theorem
there exists a measurable set F'(¢) C X (¢) such that fi(F()) > 1 — 2¢ and

Jim Z Xx (o) © ["(&) = (X (¢))
for every & € F'(¢). Let F(e) = n(F(e)). Then p(F(e)) = jp(r~ ' (F(e))

>
Consider now =z € F(e) N X, and take & € F(e) such that z = 71'(57) T
there exists an increasing sequence {ny = ng(x) : k > 1} such that ™ (&

A(F(e)) > 1-2.
hen by the above
e X

(e) and

Ng41 — Nk

(10.4.1)
ng

<e¢

for every k > 1. Moreover Corollary 9.2.4 produces holomorphic inverse branches f; " :
B(f™(z),r(e)) — € of f™ such that f_ ™ f™(z) =z and

fo ™ (B(f™(x),7(e))) € Bz, K|(f™) (z)|""r(e))

Set ri, = rp(z) = K7 (f™) (z)]"'r(e). By Corollary 9.2.4 r;, < K 2exp(—(x, —
e)ng)r(€). So, using Corollary 9.2.4 again and (10.4.1) we can estimate

i = Trga[(F™ ) (F™ (2))] < g K exp(xp + ) (neg1 — ne))
<1 K exp(xu + 5)nk+1s) < Krgaa exp(xu — 5)2nk+15) < rk+1K(K_2r(5)rk_i1)2s
— K1_467"( )257,‘]1_'_?6

Take now any 0 < r < r; and find & > 1 such that rg4 1 < 7 < rg. Then using this
estimate, t-conformality of m, and invoking Corollary 9.2.4 once more we get

m(B(z, 7)) < m(B(z,rx)) < K*|(f™) ()] "'m(B(z,r(e)))

So, by Theorem 5.5.1 (Besicovitch covering theorem) H _9ey¢(X) > H(1 20y (F(€)) > 0,
whence HD(X) > (1 — 2¢)t. Letting e — 0 completes the proof.
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