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Abstract

We present a comprehensive semiclassical investigation of the three-dimensional Sinai billiard, addressing
a few outstanding problems in `quantum chaosa. We were mainly concerned with the accuracy of the
semiclassical trace formula in two and higher dimensions and its ability to explain the universal spectral
statistics observed in quantized chaotic systems. For this purpose we developed an e$cient KKR algorithm
to compute an extensive and accurate set of quantal eigenvalues. We also constructed a systematic method to
compute millions of periodic orbits in a reasonable time. Introducing a proper measure for the semiclassical
error and using the quantum and the classical databases for the Sinai billiards in two and three dimensions,
we concluded that the semiclassical error (measured in units of the mean level spacing) is independent of
the dimensionality, and diverges at most as log +. This is in contrast with previous estimates. The classical
spectrum of lengths of periodic orbits was studied and shown to be correlated in a way which induces the
expected (random matrix) correlations in the quantal spectrum, corroborating previous results obtained in
systems in two dimensions. These and other subjects discussed in the report open the way to extending the
semiclassical study to chaotic systems with more than two freedoms. ( 2000 Elsevier Science B.V. All rights
reserved.

PACS: 05.45.#b; 03.65.Sq

Keywords: Quantum chaos; Billiards; Semiclassical approximation; Gutzwiller trace formula
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1. Introduction

The main goal of `quantum chaosa is to unravel the special features which characterize the
quantum description of classically chaotic systems [1,2]. The simplest time-independent systems
which display classical chaos are two-dimensional, and therefore most of the research in the "eld
focused on systems in 2D. However, there are very good and fundamental reasons for extending the
research to higher number of dimensions. The present paper reports on our study of a paradigmatic
three-dimensional system: The 3D Sinai billiard. It is the "rst analysis of a system in 3D which was
carried out in depth and detail comparable to the previous work on systems in 2D.

The most compelling motivation for the study of systems in 3D is the lurking suspicion that the
semiclassical trace formula [2] } the main tool for the theoretical investigations of quantum chaos
} fails for d'2, where d is the number of freedoms. The grounds for this suspicion are the following
[2]. The semiclassical approximation for the propagator does not exactly satisfy the time-depen-
dent SchroK dinger equation, and the error is of order +2 independently of the dimensionality. The
semiclassical energy spectrum, which is derived from the semiclassical propagator by a Fourier
transform, is therefore expected to deviate by O(+2) from the exact spectrum. On the other hand, the
mean spacing between adjacent energy levels is proportional to +d [3] for systems in d dimensions.
Hence, the "gure of merit of the semiclassical approximation, which is the expected error expressed
in units of the mean spacing, is O(+2~d), which diverges in the semiclassical limit +P0 when d'2!
If this argument were true, it would have negated our ability to generalize the large corpus of results
obtained semiclassically, and checked for systems in 2D, to systems of higher dimensions. Amongst
the primary victims would be the semiclassical theory of spectral statistics, which attempts to
explain the universal features of spectral statistics in chaotic systems and its relation to random
matrix theory (RMT) [4,5]. RMT predicts spectral correlations on the range of a single spacing,
and it is not likely that a semiclassical theory which provides the spectrum with an uncertainty
which exceeds this range, can be applicable or relevant. The available term by term generic
corrections to the semiclassical trace formula [6}8] are not su$cient to provide a better estimate
of the error in the semiclassically calculated energy spectrum. To assess the error, one should
substitute the term by term corrections in the trace formula or the spectral f function which do not
converge in the absolute sense on the real energy axis. Therefore, to this date, this approach did not
provide an analytic estimate of the accuracy of the semiclassical spectrum.

Under these circumstances, we initiated the present work which addressed the problem of the
semiclassical accuracy using the approach to be described in the sequel. Our main result is that in
contrast with the estimate given above, the semiclassical error (measured in units of the mean
spacing) is independent of the dimensionality. Moreover, a conservative estimate of the upper
bound for its possible divergence in the semiclassical limit is O(Dlog+D). This is a very important
conclusion. It allows one to extend many of the results obtained in the study of quantum chaos in
2D to higher dimensions, and justi"es the use of the semiclassical approximation to investigate
special features which appear only in higher dimensions. We list a few examples of such e!ects:

f The dual correspondence between the spectrum of quantum energies and the spectrum of actions
of periodic orbits [9}11] was never checked for systems in more than 2D. However, if the
universality of the quantum spectral correlations is independent of the number of freedoms, the
corresponding range of correlations in the spectrum of classical actions is expected to depend on
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the dimensionality. Testing the validity of this prediction, which is derived by using the trace
formula, is of great importance and interest. It will be discussed at length in this work.

f The full range of types of stabilities of classical periodic orbits that includes also the loxodromic
stability [2] can be manifest only for d'2.

f Arnold's di!usion in the KAM regime is possible only for d'2 (even though we do not
encounter it in this work).

Having stated the motivations and background for the present study, we shall describe the strategy
we chose to address the problem, and the logic behind the way we present the results in this report.

The method we pursued in this "rst exploration of quantum chaos in 3D, was to perform
a comprehensive semiclassical analysis of a particular yet typical system in 3D, which has a well-
studied counterpart in 2D. By comparing the exact quantum results with the semiclassical theory,
we tried to identify possible deviations which could be attributed to particular failures of the
semiclassical approximation in 3D. The observed deviations, and their dependence on + and on the
dimensionality, were used to assess the semiclassical error and its dependence on +. Such an
approach requires the assembly of an accurate and complete databases for the quantum energies
and for the classical periodic orbits. This is a very demanding task for chaotic systems in 3D, and it
is the main reason why such studies were not performed before.

When we searched for a convenient system for our study, we turned immediately to billiards.
They are natural paradigms in the study of classical and quantum chaos. The classical mechanics of
billiards is simpler than for systems with potentials: The energy dependence can be scaled out, and
the system can be characterized in terms of purely geometric data. The dynamics of billiards
reduces to a mapping through the natural PoincareH section which is the billiard's boundary. Much
is known about classical billiards in the mathematical literature (e.g. [12]), and this information is
crucial for the semiclassical application. Billiards are also very convenient from the quantal point of
view. There are specialized methods to quantize them which are considerably simpler than those
for potential systems [13]. Some of them are based on the boundary integral method (BIM) [14],
the KKR method [15], the scattering approach [16,17] and various improvements thereof
[18}20]. The classical scaling property is manifest also quantum mechanically. While for potential
systems the energy levels depend in a complicated way on + and the classical actions are non-trivial
functions of E, in billiards, both the quantum energies and the classical actions scale trivially in
+ and JE, respectively, which simpli"es the analysis considerably.

The particular billiard we studied is the 3D Sinai billiard. It consists of the free space between
a 3-torus of side S and an inscribed sphere of radius R, where 2R(S. It is the natural extension of
the familiar 2D Sinai billiard, and it is shown in Fig. 1 using three complementary representations.
The classical dynamics consists of specular re#ections from the sphere. If the billiard is desymmet-
rized, specular re#ections from the symmetry planes exist as well. The 3D Sinai billiard has several
advantages. It is one of the very few systems in 3D which are rigorously known to be ergodic and
mixing [21}23]. Moreover, since its introduction by Sinai and his proof of its ergodicity [21], the
2D Sinai billiard was subject to thorough classical, quantal and semiclassical investigations
[15,17,21,24}27]. Therefore, much is known about the 2D Sinai billiard and this serves us as an
excellent background for the study of the 3D counterpart. The symmetries of the 3D Sinai billiard
greatly facilitate the quantal treatment of the billiard. Due to the spherical symmetry of the
inscribed obstacle and the cubic-lattice symmetry of the billiard (see Fig. 1(c)) we are able to use the
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Fig. 1. Three representations of the 3D Sinai billiard: (a) original, (b) 48-fold desymmetrized (maximal desymmetrization)
into the fundamental domain, (c) unfolded to R3.

KKR method [15,28}30] to numerically compute the energy levels. This method is superior to
the standard methods of computing generic billiard's levels. In fact, had we used the standard
methods with our present computing resources, it would have been possible to obtain only
a limited number of energy levels with the required precision. The KKR method enabled us to
compute many thousands of energy levels of the 3D Sinai billiard. The fact that the billiard is
symmetric means that the Hamiltonian is block-diagonalized with respect to the irreducible
representations of the symmetry group [31]. Each block is an independent Hamiltonian which
corresponds to the desymmetrized billiard (see Fig. 1(b)) for which the boundary conditions are
determined by the irreducible representations. Hence, with minor changes one is able to compute
a few independent spectra that correspond to the same 3D desymmetrized Sinai billiard but with
di!erent boundary conditions } thus one can easily accumulate data for spectral statistics. On the
classical level, the 3D Sinai billiard has the great advantage of having a symbolic dynamics. Using
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Fig. 2. Some bouncing-ball families in the 3D Sinai billiard. Upper "gure: Three families parallel to the x, y and z axis.
Lower "gure: top view of two families.

the centers of spheres which are positioned on the in"nite Z3 lattice as the building blocks of this
symbolic dynamics, it is possible to uniquely encode the periodic orbits of the billiard [27,32]. This
construction, together with the property that periodic orbits are the single minima of the length
(action) function [27,32], enables us to systematically "nd all of the periodic orbits of the billiard,
which is crucial for the application of the semiclassical periodic orbit theory. We emphasize
that performing a systematic search of periodic orbits of a given billiard is far from being trivial
(e.g. [2,33}36]) and there is no general method of doing so. The existence of such a method for
the 3D Sinai billiard was a major factor in favour of this system.

The advantages of the 3D Sinai billiard listed above are gained at the expense of some
problematic features which emerge from the cubic symmetry of the billiard. In the billiard there
exist families of periodic, neutrally stable orbits, the so called `bouncing-balla families that
are illustrated in Fig. 2. The bouncing-ball families are well-known from studies of, e.g., the 2D
Sinai and the stadium billiards [15,17,37,38]. These periodic manifolds have zero measure in phase
space (both in 2D and in 3D), but nevertheless strongly in#uence the dynamics. They are
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responsible for the long (power-law) tails of some classical distributions [39,40]. They are also
responsible for non-generic e!ects in the quantum spectral statistics, e.g., large saturation values of
the number variance in the 2D Sinai and stadium billiards [37]. The most dramatic visualization of
the e!ect of the bouncing-ball families appears in the function D(l),+

n
cos(k

n
l) } the `quantal

length spectruma. The lengths l that correspond to the bouncing-ball families are characterized by
large peaks that overwhelm the generic contributions of unstable periodic orbits [38] (as is
exempli"ed by Fig. 28). In the 3D Sinai billiard the undesirable e!ects are even more apparent than
for the 2D billiard. This is because, in general, the bouncing balls occupy 3D volumes rather than
2D areas in con"guration space and consequently their amplitudes grow as k1 (to be contrasted
with k0 for unstable periodic orbits). Moreover, for R(S/2 there is always an in"nite number of
families present in the 3D Sinai billiard compared to the "nite number which exists in the 2D Sinai
and the stadium billiards. The bouncing balls are thoroughly discussed in the present work, and
a large e!ort was invested in devising methods by which their e!ects could be "ltered out.

After introducing the system to be studied, we shall explain now the way by which we present the
results. The semiclassical analysis is based on the exact quantum spectrum, and on the classical
periodic orbits. Hence, the "rst sections are dedicated to the discussion of the exact quantum and
classical dynamics in the 3D Sinai billiard, and the semiclassical analysis is deferred to the last
sections. The sections are grouped as follows:

f Quantum mechanics and spectral statistics (Sections 2 and 3).
f Classical periodic orbits (Section 4).
f Semiclassical analysis (Sections 5}7).

In Section 2 we describe the KKR method which was used to numerically compute the quantum
spectrum. Even though it is a rather technical section, it gives a clear idea of the di$culties
encountered in the quantization of this system, and how we used symmetry considerations and
number-theoretical arguments to reduce the numerical e!ort considerably. The desymmetrization
of the billiard according to the symmetry group is worked out in detail. This section ends with
a short explanation of the methods used to ensure the completeness and the accuracy of the
spectrum.

The study of spectral statistics, Section 3, starts with the analysis of the integrable billiard (R"0)
case. This spectrum is completely determined by the underlying classical bouncing-ball manifolds
which are classi"ed according to their dimensionality. The two-point form factor in this case is not
Poissonian, even though the system is integrable. Rather, it re#ects the number-theoretical
degeneracies of the Z3 lattice resulting in non-generic correlations. Turning to the chaotic (R'0)
cases, we investigate some standard statistics (nearest-neighbour, number variance) as well as the
auto-correlations of the spectral determinant, and compare them to the predictions of RMT. The
main conclusion of this section is that the spectral #uctuations in the 3D Sinai billiard belong to the
same universality class as in the 2D analogue.

Section 4 is devoted to the systematic search of the periodic orbits of the 3D Sinai billiard. We
rely heavily on a theorem that guarantees the uniqueness of the coding and the variational
minimality of the periodic orbit lengths. The necessary generalizations for the desymmetrized
billiard are also explained. Once the algorithm for the computation of periodic orbits is outlined,
we turn to the de"nition of the spectrum of lengths of periodic orbits and to the study of its
statistics. The number of periodic orbits with lengths smaller than ¸ is shown to proliferate
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exponentially. We check also classical sum rules which originate from ergodic coverage, and
observe appreciable corrections to the leading term due to the in"nite horizon of the Sinai billiard.
Turning our attention to the two-point statistics of the classical spectrum, we show that it is not
Poissonian. Rather, there exist correlations which appear on a scale larger than the nearest spacing.
This has very important consequences for the semiclassical analysis of the spectral statistics. We
study these correlations and o!er a dynamical explanation for their origin.

The semiclassical analysis of the billiard is the subject of Section 5. As a prelude, we propose and
use a new method to verify the completeness and accuracy of the quantal spectrum, which is based
on a `universala feature of the classical length spectrum of the 3D Sinai billiard. The main purpose
of this section is to compare the quantal computations to the semiclassical predictions according to
the Gutzwiller trace formula, as a "rst step in our study of its accuracy. Since we are interested in
the generic unstable periodic orbits rather than the non-generic bouncing balls, special e!ort is
made to eliminate the e!ects of the latter. This is accomplished using a method that consists of
taking the derivative with respect to a continuous parameterization of the boundary conditions on
the sphere.

In Section 6 we embark on the task of estimating the semiclassical error of energy levels. We "rst
de"ne the measures with which we quantify the semiclassical error, and demonstrate some useful
statistical connections between them. We then show how these measures can be evaluated for
a given system using its quantal and semiclassical length spectra. We use the databases of the 2D
and 3D Sinai billiards to derive the estimate of the semiclassical error which was already quoted
above: The semiclassical error (measured in units of the mean spacing) is independent of the
dimensionality, and a conservative estimate of the upper bound for its possible divergence in the
semiclassical limit is O(Dlog+D).

Once we are reassured of the reliability of the trace formula in 3D, we return in Section 7 to the
spectral statistics of the quantized billiard. The semiclassical trace formula is interpreted as an
expression of the duality between the quantum spectrum and the classical spectrum of lengths. We
show how the length correlations in the classical spectrum induce correlations in the quantum
spectrum, which reproduce rather well the RMT predictions.

The work is summarized in Section 8.
To end the introductory notes, a review of the existing literature is in order. Only very few

systems in 3D were studied in the past. We should "rst mention the measurements of 3D acoustic
cavities [41}45] and electromagnetic (microwaves) cavities [46}49]. The measured frequency
spectra were analysed and for irregular shapes (notably the 3D Sinai billiard) the level statistics
conformed with the predictions of RMT. Moreover, the length spectra showed peaks at the lengths
of periodic manifolds, but no further quantitative comparison with the semiclassical theory was
attempted. However, none of the experiments is directly relevant to the quantal (scalar) problem
since the acoustic and electromagnetic vector equations cannot be reduced to a scalar equation in
the con"gurations chosen. Therefore, these experiments do not constitute a direct analogue of
quantum chaos in 3D. This is in contrast with #at and thin microwave cavities which are equivalent
(up to some maximal frequency) to 2D quantal billiards.

A few 3D billiards were discussed theoretically in the context of quantum chaos. Polyhedral
billiards in the 3D hyperbolic space with constant negative curvature were investigated by Aurich
and Marklof [50]. The trace formula in this case is exact rather than semiclassical, and thus the
issue of the semiclassical accuracy is not relevant. Moreover, the tetrahedral that was treated had
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exponentially growing multiplicities of lengths of classical periodic orbits, and hence cannot be
considered as generic. Prosen considered a 3D billiard with smooth boundaries and 48-fold
symmetry [19,20] whose classical motion was almost completely (but not fully) chaotic. He
computed many levels and found that level statistics reproduce the RMT predictions with some
deviations. He also found agreement with Weyl's law (smooth density of states) and identi"ed
peaks of the length spectrum with lengths of periodic orbits. The majority of high-lying eigenstates
were found to be uniformly extended over the energy shell, with notable exceptions that were
`scarreda either on a classical periodic orbit or on a symmetry plane. Henseler et al. treated
the N-sphere scattering systems in 3D [51] in which the quantum mechanical resonances were
compared to the predictions of the Gutzwiller trace formula. A good agreement was observed for
the uppermost band of resonances and no agreement for other bands which are dominated by
di!raction e!ects. Unfortunately, conclusive results were given only for non-generic con"gurations
of two and three spheres for which all the periodic orbits are planar. In addition, it is not clear
whether one can infer from the accuracy of complex scattering resonances to the accuracy of real
energy levels in bound systems. Recently, Sieber [52] calculated the 4]4 stability (monodromy)
matrices and the Maslov indices for general 3D billiards and gave a practical method to compute
them, which extended our previous results for the 3D Sinai billiard [53,54]. (See also Note added
in proof.)

2. Quantization of the 3D Sinai billiard

In the present section we describe the KKR determinant method [28}30,55] to compute the
energy spectrum of the 3D Sinai billiard, and the results of the numerical computations. The KKR
method, which was used by Berry for the 2D Sinai billiard case [15], is most suitable for our
purpose since it allows to exploit the symmetries of the billiard to reduce the numerical e!ort
considerably. The essence of the method is to convert the SchroK dinger equation and the boundary
conditions into a single integral equation. The spectrum is then the set of real wavenumbers
k
n

where the corresponding secular determinant vanishes. As a matter of fact, we believe that only
with the KKR method could we obtain a su$ciently accurate and extended spectrum for the
quantum 3D Sinai billiard. We present in this section also some numerical aspects and verify the
accuracy and completeness of the computed levels.

We go into the technical details of the quantal computation because we wish to show the high
reduction factor which is gained by the KKR method. Without this signi"cant reduction the
numerical computation would have resulted in only a very limited number of levels [46,48]. The
reader who is not interested in these technical details should proceed to Section 2.4. To avoid
ambiguities, we strictly adhere to the conventions in [56].

2.1. The KKR determinant

We "rst consider the 3D `Sinai torusa, which is the free space outside of a sphere of radius
R embedded in a 3-torus of side length S (see Fig. 1). The SchroK dinger equation of an electron of
mass m and energy E is reduced to the Helmholtz equation:

+2t#k2t"0, k,J2mE/+ . (1)
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The boundary conditions on the sphere are taken to be the general linear (self-adjoint) conditions:

i cos a )t#sin a ) R
n(
t"0 , (2)

where n( is the normal pointing outside the billiard, i is a parameter with dimensions of k, and
a3[0,p/2] is an angle that interpolates between Dirichlet (a"0) and Neumann (a"p/2) con-
ditions. These `mixeda boundary conditions will be needed in Section 5 when dealing with the
semiclassical analysis. Applying the KKR method, we obtain the following quantization condition
(see [54] for a derivation and for details):

det[A
lm,l{m{

(k)#kP
l
(kR;i, a)d

ll{
d
mm{

]"0, l, l@"0, 1, 2,2, !l4m4l, !l@4m@4l@ ,

(3)

where k is the wavenumber under consideration and

A
lm,l{m{

(k),4pil~l{+
LM

i~LC
LM,lm,l{m{

D
LM

(k), ¸"0, 1, 2,2, M"!¸,2,¸ , (4)

D
LM

(k),(!ik)C +
q|Z3@M0N

h`
L

(kSo)>H
LM

(Xq)#
1

J4p
d
L0D , (5)

C
LM,lm,l{m{

,P
p

0

dhP
2p

0

d/>
LM

(h,/)>H
lm

(h,/)>
l{m{

(h,/) , (6)

P
l
(kR;i, a),

iR cos a ) n
l
(kR)!kR sin a ) n@

l
(kR)

iR cos a ) j
l
(kR)!kR sin a ) j@

l
(kR)

(7)

"cot[g
l
(kR;i, a)] . (8)

In the above j
l
, n

l
, h`

l
are the spherical Bessel, Neumann and Hankel functions, respectively [56],

>
lm

are the spherical harmonics [56] with argument Xq in the direction of q, and g
l

are the
scattering phase shifts from the sphere, subject to the boundary conditions (2).

The physical input to the KKR determinant is distributed in a systematic way: The terms
A

lm,l{m{
(k) contain information only about the structure of the underlying Z3 lattice, and are

independent of the radius R of the inscribed sphere. Hence they are called the `structure functionsa
[28,30]. Moreover, they depend on a smaller number of `building blocka functions D

LM
(k) which

contain the in"nite lattice summations. The diagonal term kP
l
(kR)d

ll{
d
mm{

contains the information
about the inscribed sphere, and is expressed in terms of the scattering phase shifts from the sphere.
This elegant structure of the KKR determinant (3) prevails in more general situations and remains
intact even if the Z3 lattice is replaced by a more general one, or if the `harda sphere is replaced by
a `softa spherical potential with a "nite range (`mu$n-tina potential) [28}30]. This renders the
KKR a powerful quantization method. In all these cases the structure functions A

lm,l{m{
depend

only on the underlying lattice, and the relation (8) holds with the appropriate scattering matrix.
Thus, in principle, the structure functions (or rather D

LM
) can be tabulated once for a given lattice

(e.g. cubic) as functions of k, and only P
l

need to be re-calculated for every realization of the
potential (e.g. changing R). This makes the KKR method very attractive also for a large class of
generalizations of the 3D Sinai billiard.

The determinant (3) is not yet suitable for numerical computations. This is because the lattice
summations in D

LM
are only conditionally convergent and have to be resummed in order to give
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absolutely and rapidly convergent sums. This is done using the Ewald summation technique, which
is described in Appendices C}E. The further symmetry reductions of the KKR determinant, which
are one of the most important advantages of this method, are discussed in the following.

2.2. Symmetry considerations

As can be seen from Eqs. (4)}(8) and from Appendix C, the main computational e!ort involved in
computing the KKR determinant is consumed in the lattice sums D

LM
(k) which need to be

evaluated separately for every k. Therefore, it is imperative to use every possible means to
economize the computational e!ort invested in calculating these functions. For this purpose, we
shall exploit the cubic symmetry of the 3D Sinai billiard as well as other relations that drastically
reduce the computational e!ort.

2.2.1. Group-theoretical resummations
For the practical (rapidly convergent) computation, the functions D

LM
are decomposed into

three terms which are given in Appendix C (see also Appendix D). Eqs. (C.16)}(C.19) express
D(2)

LM
as a sum over the direct cubic lattice, whereas, D(1)

LM
is a sum over the reciprocal cubic lattice,

which is also a cubic lattice. Thus, both sums can be represented as

D(j)
LM

(k)" +
q|Z3

f (j)(o; k)>H
LM

(Xq), j"1, 2 . (9)

We show in Appendix G that lattice sums of this kind can be rewritten as

D(j)
LM

(k)"+
q
p

f (j)(o
p
; k)

l(q
p
)

+
g( |Oh

>H
LM

(X
g( qp

) , (10)

where O
h

is the cubic symmetry group [31], and q
p
,(i

1
, i
2
, i
3
) resides in the fundamental section

04i
1
4i

2
4i

3
. The terms l(q

p
) are integers which are explicitly given in Appendix G. The inner

sums are independent of k, and can thus be tabulated once for all. Hence the computation of the
k dependent part becomes 48 times more e$cient (for large, "nite lattices) when compared to (9)
due to the restriction of q

p
to the fundamental section.

A further reduction can be achieved by a unitary transformation from the M>
LM

N basis to the
more natural basis of the irreducible representations (irreps) of O

h
:

>(c)
LJK

(X),+
M

a(L)HcJK,M
>

LM
(X) , (11)

where c3[1,2,10] denotes the irrep under consideration, J counts the number of the inequivalent
irreps c contained in ¸, and K"1,2, dim(c) is the row index within the irrep. The functions
>(c)

LJK
are known as the `cubic harmonicsa [57]. Combining (10) and (11), and using the unitarity of

the transformation as well as the `great orthonormality theorema of group theory [31] we arrive at

D(j)
LM

(k)"+
J

a(L)H
sJ,M

D(j)
LJ

(k) , (12)

D(j)
LJ

(k)"48+
q
p

f (j)(o
p
; k)

l(q
p
)
>(s)H

LJ
(Xq

p
) . (13)
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The superscript (s) denotes the totally symmetric irrep and the subscript k was omitted since s is
one-dimensional. The constant coe$cients a(L)H

sJ,M
can be taken into the (constant) coe$cients

C
LM,lm,l{m{

resulting in

A
lm,l{m{

(k)"4pil~l{+
LJ

i~LD
LJ

(k)C
LJ,lm,l{m{

, (14)

D
LJ

(k)"D(1)
LJ

(k)#D(2)
LJ

(k)#D(3)
00

(k)d
L0

, (15)

C
LJ,lm,l{m{

"+
M

a(L)H
sJ,M

C
LM,lm,l{m{

. (16)

We show in Appendix F that for large ¸ the number of D
LJ

(k)'s is smaller by a factor +1/48
than the number of D

LM
(k)'s. This means that the entries of the KKR determinant are now

computed using a substantially smaller number of building blocks for which lattice summations are
required. Thus, in total, we save a saving factor of 482"2304 over the more naive scheme (4)}(6).

2.2.2. Number-theoretical resummations
In the above we grouped together lattice vectors with the same magnitude, using the geometrical

symmetries of the cubic lattice. One can gain yet another reduction factor in the computational
e!ort by taking advantage of a phenomenon which is particular to the cubic lattice and stems from
number theory. The lengths of lattice vectors in the fundamental sector show an appreciable
degeneracy, which is not connected with the O

h
symmetry. For example, the lattice vectors (5, 6, 7)

and (1, 3, 10) have the same magnitude, J110, and are not geometrically conjugate by O
h
. This

number-theoretical degeneracy is both frequent and signi"cant, and we use it in the following way.
Since the square of the magnitude is an integer we can write

D(j)
LJ

(k)"
=
+
n/1

f (j)(o
p
"Jn; k)C +

o2
p/n

48
l(q

p
)
>(s)H

LJ
(Xq

p
)D . (17)

The inner sums incorporate the number-theoretical degeneracies. They are k independent, and
therfore can be tabulated once for all.

To show the e$ciency of (17) let us restrict our lattice summation to o
p
4o

.!9
(which we always

do in practice). For large o
.!9

the number of lattice vectors in the fundamental domain is po3
.!9

/36,
and the number of summands in (17) is at most o2

.!9
. Thus, the saving factor is at least po

.!9
/36. In

fact, as shown in Appendix H, there are only (asymptotically) (5/6)o2
.!9

terms in (17), which sets the
saving factor due to number-theoretical degeneracy to be po

.!9
/30. In practice, o

.!9
"O(100) and

this results in a reduction factor of about 10, which is signi"cant.

2.2.3. Desymmetrization
The symmetry of the 3D Sinai torus implies that the wavefunctions can be classi"ed according to

the irreps of O
h

[31]. Geometrically, each such irrep corresponds to speci"c boundary conditions
on the symmetry planes that de"ne the desymmetrized 3D Sinai billiard (see Fig. 1). This allows us
to `desymmetrizea the billiard, that is to restrict ourselves to the fundamental domain with speci"c
boundary conditions instead of considering the whole 3-torus. We recall that the boundary
conditions on the sphere are determined by P

l
(k) and are independent of the irrep under
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consideration. For simplicity, we shall restrict ourselves to the two simplest irreps which are both
one-dimensional:

c"a: This is the totally antisymmetric irrep, which corresponds to Dirichlet boundary condi-
tions on the planes.

c"s: This is the totally symmetric irrep, which corresponds to Neumann boundary conditions
on the planes.

The implementation of this desymmetrization is straightforward (see [54] for details) and results
in a new secular equation:

det[A(c)
lj,l{j{

(k)#kP
l
(kR)d

ll{
d
jj{

]"0 , (18)

where c is the chosen irrep and

A(c)
lj,l{j{

(k)"4pil~l{+
LJ

i~LD
LJ

(k)C(c)
LJ,lj,l{j{

, (19)

C(c)
LJ,lj,l{j{

"+
mm{

a(l)cj,ma(l{)Hcj{,m{
C

LJ,lm,l{m{
(20)

" +
Mmm{

a(L)H
sJ,M

a(l)cj,ma(l{)Hcj{,m{
C

LM,lm,l{m{
. (21)

The desymmetrization of the problem has a few advantages:
Computational ezciency: In Appendix F we show that for large ¸'s the number of cubic

harmonics >(c)
LJK

that belong to a one-dimensional irrep is 1/48 of the number of the spherical
harmonics>

LM
. Correspondingly, if we truncate our secular determinant such that ¸4¸

.!9
, then

the dimension of the new determinant (18) is only 1/48 of the original one (3) for the fully symmetric
billiard. Indeed, the desymmetrized billiard has only 1/48 of the volume of the symmetric one, and
hence the density of states is reduced by 48 (for large k). However, due to the high cost of computing
a determinant (or performing a singular-value decomposition) [58] the reduction in the density of
states is over-compensated by the reduction of the matrix size, resulting in a saving factor of 48.
This is proven in Appendix B, where it is shown in general that levels of desymmetrized billiards are
computationally cheaper than those of billiards which possess symmetries. Applied to our case, the
computational e!ort to compute a given number N of energy levels of the desymmetrized billiard is
48 times cheaper than computing N levels of the fully symmetric billiard.

Statistical independence of spectra: The spectra of di!erent irreps are statistically independent
since they correspond to di!erent boundary conditions. Thus, if the fully symmetric billiard is
quantized, the resulting spectrum is the union of 10 independent spectra (there are 10 irreps of O

h
[31]), and signi"cant features such as level rigidity will be severely blurred [59]. To observe generic
statistical properties and to compare with the results of RMT, one should consider each spectrum
separately, which is equivalent to desymmetrizing the billiard.

Rigidity: The statistical independence has important practical consequences. Spectral rigidity
implies that it is unlikely to "nd levels in close vicinity of each other. Moreover, the #uctuations in
the spectral counting functions are bounded. Both features of rigidity are used in the numerical
algorithm which computes the spectrum, as is described in more detail in Section 2.3.
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To summarize this subsection, we have demonstrated that the high symmetry features of the 3D
Sinai billiard are naturally incorporated in the KKR method. This renders the computation of its
spectrum much more e$cient than in the case of other, less symmetric 3D billiards. Thus, we expect
to get many more levels than the few tens that can be typically obtained for generic billiards
[46,48]. In fact, this feature is the key element which brought this project to a successful conclusion.
We note that other specialized computation methods, which were applied to highly symmetric 3D
billiards, also resulted in many levels [19,20].

This completes the theoretical framework established for the e$cient numerical computation of
the energy levels. In the following we discuss the outcome of the actual computations.

2.3. Numerical aspects

We computed various energy spectra, de"ned by di!erent combinations of the physically
important parameters:

1. The radius R of the inscribed sphere (the side S was always taken to be 1).
2. The boundary conditions on the sphere: Dirichlet/Neumann/mixed: 04a4p/2.
3. The boundary conditions on the symmetry planes of the cube: Dirichlet/Neumann. These

boundary conditions correspond to the antisymmetric/symmetric irrep of O
h
, respectively. Due

to the lattice periodicity, Dirichlet (Neumann) boundary conditions on the symmetry planes
induce Dirichlet (Neumann) also on the planes between neighbouring cells.

The largest spectral stretch that was obtained numerically corresponded to R"0.2 and Dirichlet
boundary condition everywhere. It consisted of 6697 levels in the interval 0(k4281.078. We
denote this spectrum in the following as the `longest spectruma.

The practical application of (18) brings about many potential sources of divergence: The KKR
matrix is in"nite-dimensional in principle, and each of the elements is given as an in"nite sum over
the cubic lattice. To regulate the in"nite dimension of the matrix we use a physical guideline,
namely, the fact that for l'kR the phase shifts decrease very rapidly toward zero, and the matrix
becomes essentially diagonal. Therefore, a natural cuto! is l

.!9
"kR, which is commonly used (e.g.

[17]). In practice, one has to go slightly beyond this limit, and to allow a few evanescent modes:
l
.!9

"kR#l
%7!/

. To "nd a suitable value of l
%7!/

we used the parameters of the longest spectrum
and computed the 17 eigenvalues in the interval 199.5(k(200 with l

%7!/
"0, 2, 4, 6, 8, 10 (l

.!9
has

to be odd). We show in Fig. 3 the successive deviations of the computed eigenvalues between
consecutive values of l

%7!/
. The results clearly indicate a 10-fold increase in accuracy with each

increase of l
%7!/

by 2. A moderately high accuracy of O(10~4) relative to level spacing requires
l
%7!/

"8 which was the value we used in our computations.
To regulate the in"nite lattice summations in D

LJ
we used successively larger subsets of the

lattice. The increase was such that at least twice as many lattice points were used. Our criterion of
convergence was that the maximal absolute value of the di!erence between successive computa-
tions of D

LJ
was smaller than a prescribed threshold:

max
LJ

DDi
LJ

!Di`1
LJ

D(e . (22)
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Fig. 3. Accuracy of eigenvalues as a function of the number of evanescent modes l
%7!/

. The case considered was R"0.2
and Dirichlet boundary conditions everywhere. The "gure shows the absolute di!erences of the eigenvalues between two
successive values of l

%7!/
, multiplied by the smooth level density. That is, `0}2a means dM (k

n
)Dk

n
(l
%7!/

"2)!k
n
(l
%7!/

"0)D
,D*N

n
D. We show 17 eigenvalues in the interval 199.5(k(200.

The threshold e"10~6 was found to be satisfactory, and we needed to use a sub-lattice with
maximal radius of 161.

The KKR program is essentially a loop over k which sweeps the k-axis in a given interval. At
each step the KKR matrix M(k) is computed, and then its determinant is evaluated. In principle,
eigenvalues are obtained whenever the determinant vanishes. In practice, however, the direct
evaluation of the determinant su!ers from a few drawbacks:

f The numerical algorithms that are used to compute det M(k) are frequently unstable. Hence, it is
impossible to use them beyond some critical k which is not very large.

f For moderately large k's, the absolute values of detM(k) are very small numbers that result in
computer under#ows (in double precision mode), even for k-values which are not eigenvalues.

f Due to "nite precision and rounding errors, detM(k) never really vanishes for eigenvalues.

A superior alternative to the direct calculation of the determinant is to use the singular-value-
decomposition (SVD) algorithm [58], which is stable under any circumstances. In our case, M is
real and symmetric, and the output are the `singular valuesa p

i
which are the absolute values of the

eigenvalues of M. The product of all of the singular values is equal to DdetMD, which solves the
stability problem. To cure the other two problems consider the following `conditioning measurea:

r(k),
$*.M(k)

+
i/1

ln p
i
(k) . (23)

The use of the logarithm circumvents the under#ow problem. Moreover, we always expect some of
the smallest singular values to re#ect the numerical noise, and the larger ones to be physically
relevant. Near an eigenvalue, however, one of the `relevanta singular values must approach zero,
resulting in a `dipa in the graph of r(k). Hence, by tracking r as a function of k, we locate its dips and
take as the eigenvalues the k values for which the local minima of r are obtained. Frequently,
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one encounters very shallow dips (typically ;1) which are due to numerical noise and should be
discarded.

To ensure the location of all of the eigenvalues in a certain k interval, the k-axis has to be sampled
densely. However, oversampling should be avoided to save computer resources. In order to choose
the sampling interval *k in a reasonable way, we suggest the following. If the system is known to
be classically chaotic, then we expect the quantal nearest-neighbour distribution to follow the
prediction of random matrix theory (RMT) [2]. In particular, for systems with time-reversal
symmetry:

P(s)+
p
2
s, s;1, s,(k

n`1
!k

n
)dM ((k

n
#k

n`1
)/2) , (24)

where dM (k) is the smooth density of states. The chance of "nding a pair of energy levels in the
interval [s, s#ds] is P(s) ds. The cumulative probability of "nding a pair in [0, s] is therefore
crudely given by

I(s)+P
s

0

P(s@) ds@+
p
4
s2, s;1 . (25)

A more re"ned calculation, taking into account all the possible relative con"gurations of the pair in
the interval [0, s] gives

Q(s)+
p
6
s2, s;1 . (26)

If we trace the k-axis with steps *k and "nd an eigenvalue, then the chance that there is another one
in the same interval *k is Q(*kdM (k)). If we prescribe our tolerance Q to lose eigenvalues, then we
should choose

*k"
s(Q)
dM (k)

+

1
dM (k)S

6Q
p

.
(27)

In the above, we assumed that the dips in r(k) are wide enough, such that they can be detected over
a range of several *k's. If this is not the case and the dips are very sharp, we must re"ne *k. In our
case dips were quite sharp, and in practice we needed to take Q of the order 10~5}10~6.

2.4. Verixcations of low-lying eigenvalues

After describing some numerical aspects of the computation, we turn to various tests of the
integrity and completeness of the computed spectra. In this subsection we compare the computed
low-lying eigenvalues for R'0 with those of the R"0 case. In the next one we compare the
computed stair-case function to Weyl's law.

The theoretical background for the comparison between low-lying eigenvalues to those of the
R"0 case is as follows. The lowest l value, for which there exist antisymmetric cubic harmonics, is
l"9 [57]. Consequently, for cases with Dirichlet conditions on the symmetry planes, the lowest
l-values in the KKR matrix is l"9. Thus, for kR(9 the terms P

l
(kR) in equation (18) are very

small, and the matrix approximately equals the matrix obtained for an empty tetrahedron. The
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Fig. 4. The unfolded di!erences *N
n

for the low-lying levels of the 3D Sinai billiard with R"0.2 and Dirichlet
everywhere. We indicated by the vertical line k"45 the theoretical expectation for transition from small to large *N.
The line *N"0 was slightly shifted upwards for clarity.

Fig. 5. N
04#

(k) for the longest spectrum of the 3D billiard. The data are smoothed over 50 level intervals.

`empty tetrahedrona eigenvalues can be calculated analytically:

kR/0
n

"

2p
S

Jl2#m2#n2, 0(l(m(n . (28)

We hence expect

k
n
+kR/0

n
for k

n
[9/R . (29)

Similar considerations were used by Berry [15] for the 2D Sinai billiard, where he also calculated
the corrections to the low-lying eigenvalues. In Fig. 4 we plot the unfolded di!erence
*N

n
,dM (k

n
)Dk

n
!kR/0

n
D for the longest spectrum (R"0.2, Dirichlet everywhere). One clearly

observes that indeed the di!erences are very small up to k"9/0.2"45, and they become of
order 1 afterwards, as expected. This con"rms the accuracy and completeness of the low-lying
levels. Moreover, it veri"es the correctness of the rather complicated computations of the terms
A

lj,l{j{
which are due to the cubic lattice.

2.5. Comparing the exact counting function with Weyl's law

It is by now a standard practice (see e.g. [17]) to verify the completeness of a spectrum by
comparing the resulting stair-case function N(k),dMk

n
4kN to its smooth approximation NM (k),

known as `Weyl's lawa. In Appendix I we derive Weyl's law for the 3D Sinai billiard (Eq. (I.13)),
and now consider the di!erence N

04#
(k),N(k)!NM (k). Any jump of N

04#
by $1 indicates

a redundant or missing eigenvalue. In fact, this tool is of great help in locating missing eigenvalues.
In Fig. 5 we plot N

04#
for the longest spectrum. It is evident that the curve #uctuates around 0 with

no systematic increase/decrease trends, which veri"es the completeness of the spectrum. The
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average of N
04#

over the available k-interval is (!4)]10~4 which is remarkably smaller than any
single contribution to NM (note that we had no parameters to "t). This is a very convincing
veri"cation for both the completeness of the spectrum as well as the accuracy of the Weyl's law
(I.13). We also note that the typical #uctuations grow quite strongly with k. This is due to the e!ects
of the bouncing-ball families (see Section 1) and will be discussed further in Section 3.3.

3. Quantal spectral statistics

Weyl's law provides the smooth behaviour of the quantal density of states. There is a wealth of
information also in the #uctuations, and their investigation is usually referred to as `spectral
statisticsa. Results of spectral statistics that comply with the predictions of random matrix theory
(RMT) are generally considered as a hallmark of the underlying classical chaos [2,17,24,59,60].

In the case of the Sinai billiard we are plagued with the existence of the non-generic bouncing-
ball manifolds. They in#uence the spectral statistics of the 3D Sinai billiard. It is therefore desirable
to study the bouncing balls in some detail. This is done in the "rst subsection, where we discuss the
integrable case (R"0) that contains only bouncing-ball manifolds.

For the chaotic cases R'0 we consider the two simplest spectral statistics, namely, the
nearest-neighbour distribution and two-point correlations. We compute these statistics for the
levels of the 3D Sinai billiard, and compare them to RMT predictions. In addition, we discuss
the two-point statistics of spectral determinants that was recently suggested by Kettemann,
Klakow and Smilansky [61] as a characterization of quantum chaos.

3.1. The integrable R"0 case

If the radius of the inscribed sphere is set to 0, we obtain an integrable billiard which is the
irreducible domain whose volume is 1/48 of the cube. It is plotted in Fig. 6. This tetrahedron
billiard is a convenient starting point for analysing the bouncing-ball families, since it contains no
unstable periodic orbits but only bouncing balls. Quantum mechanically, the eigenvalues of the
tetrahedron are given explicitly as:

k
(nml)

"

2p
S

Jn2#m2#l2, 0(n(m(l3N . (30)

The spectral density d
R/0

(k)"+=
0:n:m:l

d(k!k
(nml)

) can be Poisson resummed to get

d
R/0

(k)"
S3k2

96p2
+

pqr|Z
sinc(kSJp2#q2#r2)

!

S2k
32p

+
pq|Z

J
0
(kSJp2#q2)!

S2k

16J2p
+
pq|Z

J
0AkSSp2#

q2

2 B
#

3S
16p

+
p|Z

cos(kSp)#
S

8J2p
+
p|Z

cosAk
S

J2
pB

#

S

6J3p
+
p|Z

cosAk
S

J3
pB!

5
16

d(k!0) . (31)
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In the above sinc(x),sin(x)/x, sinc(0),1, and J
0

is the zeroth-order Bessel function. Let us
analyse this expression in some detail. Terms which have all summation indices equal to 0 give the
smooth part of the density, and all the remaining terms constitute the oscillatory part. Collecting the
smooth terms together we get

dM
R/0

(k)"
S3k2

96p2
!

S2k
32p

(1#J2)#
S

144p
(27#9J2#8J3)!

5
16

d(k!0) . (32)

This is Weyl's law for the tetrahedron, which exactly corresponds to (I.13) with R"0 (except the
last term for which the limit RP0 is di!erent).

As for the oscillatory terms, it is "rst useful to replace J
0
(x) by its asymptotic approximation [62]

which is justi"ed in the semiclassical limit kPR:

J
0
(x)+S

2
px

cosAx!
p
4B, xPR . (33)

Using this approximation we observe that all of the oscillatory terms have phases which are of the
form (k]length#phase). This is the standard form of a semiclassical expression for the density
of states of a billiard. To go a step further we notice that the leading-order terms, which are
proportional to k1 ("rst line of (31)), have lengths SJp2#q2#r2 which are the lengths of the
periodic orbits of the 3-torus, and therefore of its desymmetrization into the tetrahedron. This
conforms with the expressions derived by Berry and Tabor [63,64] for integrable systems. The
other, sub-leading, oscillatory contributions to (31) correspond to `impropera periodic manifolds,
in the sense that their dynamics involves non-trivial limits. Some of these periodic orbits are
restricted to symmetry planes or go along the edges. Of special interest are the periodic orbits that
are shown in Fig. 6. They are isolated, but are neutrally stable and hence are non-generic. Their
contributions are contained in the last two cosine terms of (31), and the one with length S/J3 is the
shortest neutral periodic orbit. Other sub-leading oscillatory contributions are discussed in [54].
We therefore established an interpretation in terms of (proper or improper) classical periodic orbits
of the various terms of (31).

3.1.1. Two-point statistics of the integrable case
We continue by investigating the two-point statistics of the tetrahedron, which will be shown to

provide some non-trivial and interesting results. Since we are interested in the limiting statistics as
kPR, we shall consider only the leading term of (31), which is the "rst term. Up to a factor of 48,
this is exactly the density of states d

T
3 of the cubic 3-torus, and thus for simplicity we shall dwell on

the 3-torus rather than on the tetrahedron:

d
T

3(k)" +
q|Z3

dAk!
2p
S

oB"
S3k2

2p2
+

q|Z3

sinc(kSo) . (34)

We observe that both the quantal spectrum and the classical spectrum (the set of lengths of periodic
orbits) are supported on the cubic lattice Z3, and this strong duality will be used below.

The object of our study is the spectral form factor, which is the Fourier transform of the
two-point correlation function of the energy levels [59]. For billiards it is more convenient to
work with the eigenwavenumbers k

n
rather than with the eigenenergies E

n
. Here the form factor is
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Fig. 6. Upper: geometry of the tetrahedron (R"0) billiard. Lower: neutral periodic orbits in the desymmetrized 3D

Sinai. The billiard is indicated by boldface edges. Dot-dash line: The shortest neutral periodic orbit of length S/J3.

Double dot-dash line: Neutral periodic orbit of length S/J2.

given by

K(q; k)"
1
N K

n2
+

n/n1

exp[2pidM (k)k
n
q]K

2
. (35)

In the above N,n
2
!n

1
#1, and k

n
are the eigenvalues in the interval [k

n1
, k

n2
] centred around

k"(k
n1
#k

n2
)/2. It is understood that the interval contains many levels but is small enough such

that the average density is almost a constant and is well approximated by dM (k).
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In the limit qPR the phases in (35) become random in the generic case, and therefore K(q)P1.
However, if the levels are degenerate, more care should be exercised, and one obtains

K(q; k)"
1
N

+
n

g
k
(k

n
)"

1
N

+@
i

g2
k
(k

i
), qPR , (36)

where g
k
(k

n
) is the degeneracy of k

n
and the primed sum is only over distinct values of k

i
. Since

N"+@
i
g
k
(k

i
) we obtain

K(q; k)"
+@

i
g2
k
(k

i
)

+@
i
g
k
(k

i
)
"

Sg2
k
(k)T

Sg
k
(k)T

, qPR , (37)

where S ) T denotes an averaging over k
i
's near k. In the case of a constant g the above expression

reduces to K(qPR)"g, but it is important to note that K(qPR)OSgT for non-constant
degeneracies. Using the relation o"kS/(2p) (see Eq. (34)) and Eqs. (H.6), (H.8) in Appendix H we
get

K
T

3 (q; k)"
Sg2o(kS/(2p))T
Sgo(kS/(2p))T

"

bS
2p

k, qPR , (38)

where b+9.8264 is a constant. That is, contrary to the generic case, the saturation value of the
form factor grows linearly with k due to number-theoretical degeneracies.

Turning to the form factor in the limit qP0, we "rst rewrite (34) as d
T

3(k)"dM (k)#+
j
A

j
sin(k¸

j
).

Then, using the diagonal approximation as suggested by Berry [4,65], and taking into account the
degeneracies gl (¸j

) of the lengths we have

K(q; k)"
1

4dM 2(k)
+
j

@g2l (¸j
)DA

j
D2d(q!¸

j
/¸

H
), q;1 . (39)

In the above the prime denotes summation only over distinct classical lengths, and ¸
H
,2pdM (k) is

called the Heisenberg length. The coe$cients A
j
are functions of ¸

j
and therefore can be replaced

by the function A(q). For q large enough such that the periodic manifolds have a well-de"ned
classical density dM

#-
(l), the summation over delta functions can be replaced by multiplication with

¸
H
dM
#-
(l)/Sgl(l)T with l"¸

H
q such that

K(q; k)"A
pDA2(q)DdM

#-
(l)

2dM (k) B
Sg2l (l)T
Sgl(l)T

, q;1 . (40)

A straightforward calculation shows that the term in brackets is simply 1, which is the generic
situation for the integrable case (Poisson statistics) [4,66]. Hence, we obtain

K(q; k)"
Sg2l (l)T
Sgl(l)T

, qP0 . (41)

Since, as we noted above, the lengths of the classical periodic orbits are supported on the Z3 lattice,
we can write using l"So:

K(q; k)"
Sg2o(l/S)T
Sgo(l/S)T

"

bk2S2

p
q, qP0 , (42)
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Fig. 7. The scaled quantal form factor of the tetrahedron for various k-values compared with GUE and Poisson. Note
the log}log scales.

where we used again Eqs. (H.6), (H.8). This is a very surprising result, since it implies that contrary
to the generic integrable systems, which display Poisson level statistics with K"1, here KJq
which is typical to chaotic systems! This peculiarity is manifestly due to the number-theoretical
degeneracies of Z3.

If we now combine the two limiting behaviours of the form factor in the simplest way, we can
express it as a scaled RMT-GUE form factor:

K
T

3 (q; k)+K
=
)K

GUE
(cq) (43)

where K
=
"Sbk/(2p) and c"2Sk. For the tetrahedron we have the same result with K

=
PK

=
/48

and cPc/48. This prediction is checked and veri"ed numerically in Fig. 7 where we computed the
quantal form factor of the tetrahedron around various k-values. The agreement of the two
asymptotes to the theoretical prediction (43) is evident and the di!erence from Poisson is well
beyond the numerical #uctuations.

3.2. Nearest-neighbour spacing distribution

We now turn to the chaotic case R'0. One of the most common statistical measures of
a quantum spectrum is the nearest-neighbour distribution P(s). If fact, it is the simplest statistics
to compute from the numerical data. We need only to consider the distribution of the scaled
(unfolded) spacings between neighbouring levels:

s
n
,NM (k

n`1
)!NM (k

n
)+dM (k

n
)(k

n`1
!k

n
) . (44)

It is customary to plot a histogram of P(s), but it requires an arbitrary choice of the bin size. To
avoid this arbitrariness, we consider the cumulant distribution:

I(s),P
s

0

ds@P(s@) (45)
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Fig. 8. Di!erences of integrated nearest-neighbour distribution for R"0.2 (up) and R"0.3 (down). Set d1, 2, 3 refer to
the division of the spectrum into 3 domains. Data are slightly smoothed for clarity.

for which no bins are needed. Usually, the numerical data are compared not to the exact P
RMT

(s)
but to Wigner's surmise [2], which provides an accurate approximation to the exact P

RMT
(s) in

a simple closed form. In our case, since we found a general agreement between the numerical data
and Wigner's surmise, we choose to present the di!erences from the exact expression for I

GOE
(s)

taken from Dietz and Haake [67]. In Fig. 8 we show these di!erences for R"0.2, 0.3 and Dirichlet
boundary conditions (6697 and 1994 levels, respectively). The overall result is an agreement
between the numerical data and RMT to better than 4%. This is consistent with the general
wisdom for classically chaotic systems in lower dimensions, and thus shows the robustness of the
RMT conjecture [27] for higher-dimensional systems (3D in our case).

Beyond this general good agreement it is interesting to notice that the di!erences between the
data and the exact GOE for R"0.2 seem to indicate a systematic modulation rather than
a statistical #uctuation about the value zero. The same qualitative result is obtained for other
boundary conditions with R"0.2, substantiating the conjecture that the deviations are systematic
and not random. For R"0.3 the di!erences look random and show no particular pattern.
However, for the upper third of the spectrum one observes structures which are similar to the
R"0.2 case (see Fig. 8, lower part).
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Currently, we have no theoretical explanation of the above-mentioned systematic deviations.
They might be due to the non-generic bouncing balls. To assess this conjecture we computed P(s)
for R"0.2, 0.3 with Dirichlet boundary conditions in the spectral interval 150(k(200. The
results (not shown) indicate that the deviations are smaller for the larger radius. This is consistent
with the expected weakening of the bouncing-ball contributions as the radius grows, due to larger
shadowing and smaller volumes occupied by the bouncing-ball families. Hence, we can conclude
that the bouncing balls are indeed prime candidates for causing the systematic deviations of P(s). It
is worth mentioning that a detailed analysis of the P(s) of spectra of quantum graphs show similar
deviations from P

RMT
(s) [68].

3.3. Two-point correlations

Two-point statistics also play a major role in quantum chaos. This is mainly due to their
analytical accessibility through the Gutzwiller trace formula as demonstrated by Berry [4,65].
There is a variety of two-point statistical measures which are all related to the pair-correlation
function [59]. We chose to focus on R2(l) which is the local variance of the number of levels in an
energy interval that has the size of l mean spacings. The general expectation for generic systems,
according to the theory of Berry [4,65], is that R2 should comply with the predictions of RMT for
small values of l (universal regime) and saturate to a non-universal value for large l's due to the
semiclassical contributions of short periodic orbits. The saturation value in the case of generic
billiards is purely classical (k-independent). The e!ect of the non-generic bouncing-ball manifolds
on two-point spectral statistics was discussed in the context of 2D billiards by Sieber et al. [37] (for
the case of the stadium billiard). They found that R2 can be decomposed into two parts: A generic
contribution due to unstable periodic orbits and a non-generic contribution due to bouncing balls:

R2(l)+R2
UPO

(l)#R2
""

(l) . (46)

The term R2
""

has the structure:

R2
""

(l)"kF
45!$*6.

(l/dM (k)) , (47)

where F
45!$*6.

is a function which is determined by the bouncing balls of the stadium billiard, and is
given explicitly in [37]. In particular, for large values of l the term R2

""
#uctuated around an

asymptotic value:

R2
""

(l)+kF
45!$*6.

(R), lPR . (48)

One can apply the arguments of Sieber et al. [37] to the case of the 3D Sinai billiard and obtain for
the leading-order bouncing balls (see (34)):

R2
""

(l)+k2F
3D4"

(l/dM (k)) , (49)

with F
3D4"

characteristic to the 3D Sinai billiard. Asymptotically, we expect

R2
""

(l)+k2F
3D4"

(R), lPR . (50)

The function F
3D4"

can be written down, albeit it contains the areas of the cross-sections of the
various bouncing-ball manifolds, for which we have no explicit expressions. Therefore, we shall
investigate the scaling features of R2

""
without insisting on its explicit form.

H. Primack, U. Smilansky / Physics Reports 327 (2000) 1}107 25



Fig. 9. The number variance R2(l) for the longest spectrum. Upper plot: full l-range, lower plot: a magni"cation of small
l range.

Fig. 10. Rescaled number variance (51) for the longest spectrum.

The numerical computations of R2 for the longest spectrum (R"0.2, Dirichlet everywhere) are
shown in Fig. 9. We divided the spectrum into four intervals such that dM did not vary much within
each interval. This is a pre-requisite for a meaningful semiclassical analysis. It is evident from the
"gure that for small values of l (up to +1) there is an agreement with GOE. Moreover, the
agreement with GOE is much better than with either GUE or Poisson, as expected. This is in
agreement with the common knowledge in quantum chaos [59], and again, substantiates the RMT
conjecture also for chaotic systems in 3D. For larger l values there are marked deviations which
saturate into oscillations around k-dependent asymptotic values. It is clearly seen that the
saturation values grow faster than k, which is consistent with (50). To test (49) quantitatively, we
plotted in Fig. 10 the rescaled function:

S2
""

(q; k),
1
k2

[R2(qdM (k))!R2
GOE

(qdM (k))] (51)
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Fig. 11. Comparison between the number variances for two di!erent radii R"0.2, 0.3 of the inscribed sphere of the 3D
Sinai billiard. In both cases we considered the spectral interval 120(k(160 and used Dirichlet boundary conditions.

which according to (49) is the k-independent function F
3D4"

(q). Indeed, there is a clear data collapse
for q[5, and the saturation values of S2

""
are of the same magnitude for all values of k. This veri"es

(49) and demonstrates the important part which is played by the bouncing balls in the two-point
(long-range) statistics.

For generic systems the agreement between R2 and RMT should prevail up to lH, where

lH"
¸
H
(k)

¸
.*/

"

2pdM (k)
¸

.*/

. (52)

In the above ¸
H

is Heisenberg length and ¸
.*/

is the length of the shortest periodic orbit. For the
cases shown in Fig. 9 the value of lH is of the order of 100. Nevertheless, the deviations from
the universal predictions start much earlier. This is again a clear sign of the strong e!ect of the
bouncing-balls. To substantiate this claim, we compare in Fig. 11 the number variances for R"0.2
and 0.3 in the same k interval and with the same boundary conditions (Dirichlet). The in#uence of
the bouncing balls is expected to be less dominant in the R"0.3 case, since there are fewer of them
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with smaller cross sections. This is indeed veri"ed in the "gure: The agreement with GOE
predictions lasts much longer (up to l+6) in the R"0.3 case, and the saturation value is smaller,
as expected.

3.4. Auto-correlations of spectral determinants

The two-point correlations discussed above are based on the quantal spectral densities.
Kettemann et al. [61] introduced the auto-correlations of quantal spectral determinants as a tool
for the characterization of quantum chaos. Spectral determinants are de"ned as

Z(E)"0 Q E"E
n

, (53)

that is, they are 0 i! E is an eigenenergy. The (unnormalized) correlation function of a spectral
determinant is de"ned as

C(u;E),
1

*EP
E`*E@2

E~*E@2
dE@ZAE@#

u
2dM BZHAE@!

u
2dM B, u;*E . (54)

There are various motivations to study the function C(u) [61]:

1. There is a marked di!erence in the behaviour of C(u) for rigid and non-rigid spectra. For
completely rigid spectra the function C(u) is oscillatory, while for Poissonian spectra it rapidly
decays as a Gaussian. For the RMT ensembles it shows damped oscillations which are due to
rigidity.

2. The function C(u) contains information about all n-point correlations of the spectral densities.
Thus, it is qualitatively distinct from the two-point correlations of spectral densities and
contains new information.

3. The Fourier transform of C(u) exhibits in an explicit and simple way symmetry properties which
are due to the reality of the energy levels.

4. In contrast to spectral densities, the semiclassical expressions for spectral determinants can be
regularized using the method of Berry and Keating [69]. Regularized semiclassical spectral
determinants contain a "nite number of terms, and are manifestly real for real energies.

5. The semiclassical expression for C(u) is closely related to the classical Ruelle zeta function.

To study C(u) numerically, regularizations are needed. For the 3D Sinai billiard the longest
spectrum was divided into an ensemble of 167 intervals of N"40 levels, and each interval was
unfolded to have mean spacing 1 and was centered around E"0. For each unfolded interval I

j
the

function C
j
(u) was computed using equation (69) of [61], with *E"JN. The ensemble average

function C(u) was normalized such that C(0)"1. The results of the computation are shown in
Fig. 12. The agreement with RMT is quite good up to u+3, that is for short energy scales for
which we indeed expect universality to hold.

4. Classical periodic orbits

In this section we present a comprehensive study of the periodic orbits of the 3D Sinai billiard.
By `periodic orbitsawe mean throughout this section generic, isolated and unstable periodic orbits
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Fig. 12. The two-point correlation function of spectral determinants C(u) for the 3D Sinai billiard (longest spectrum).
The spectrum was divided into 167 intervals of 40 levels each and the average correlation function is shown. The
continuous line is the RMT-GOE theoretical curve, and the dashed line is the numerical correlation. The correlation
function is normalized to 1 for u"0. With kind permission from the authors of [61].

which involve at least one bounce from the sphere. Thus, bouncing-ball orbits are not treated
here. The classical periodic orbits are the building blocks for the semiclassical Gutzwiller trace
formula, and are therefore needed for the semiclassical analysis to be presented in the next
sections.

4.1. Periodic orbits of the 3D Sinai torus

We found it necessary and convenient to "rst identify the periodic orbits of the symmetric 3D
Sinai billiard on the torus, and to compute their lengths and stabilities. The periodic orbits of the
desymmetrized 3D Sinai billiard could then be derived by an appropriate classical desymmetriz-
ation procedure.

The basic problem is how to "nd in a systematic (and e$cient) way all the periodic orbits of the
3D Sinai billiard up to a given length ¸

.!9
. In dealing with periodic orbits of the Sinai billiard it is

very helpful to consider its unfolded representation that tessellates R3 } as is shown in Fig. 1. We
start by considering the periodic orbits of the fully symmetric 3D Sinai billiard on the torus (ST).
This case is simpler than the desymmetrized billiard, since it contains no boundaries and the tiling
of the R3 space is achieved by simple translations along the cubic lattice Z3. In the unfolded
representation every orbit is described by a collection of straight segments which connect spheres.
At a sphere, the incident segment re#ects specularly. A periodic orbit of period n is not necessarily
periodic in the unfolded representation, but rather, it obeys the restriction that the segments repeat
themselves after n steps modulo a translation by a lattice vector (see Fig. 13). If we "x an origin for
the lattice, we can assign to every orbit (not necessarily periodic) a `code worda by concatenating
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Fig. 13. Representation of a periodic orbit of the Sinai 2-torus. Left: one cell representation, Right: unfolded repre-
sentation.

the `addressesa (locations of the centers on the Z3 lattice) of the spheres from which it re#ects. The
code word can consist of either the absolute addresses of the spheres or alternatively, the address of
the sphere relative to the previous one. We shall adopt the latter convention and use the relative
addresses as the `lettersa from which the code word is composed. This relative coding has the
advantage that a periodic orbit is represented by a periodic code word. The number of possible
letters (`alphabeta) is obviously in"nite and the letter (0, 0, 0) is excluded. A periodic orbit can be
represented by any cyclic permutation of its code. To lift this ambiguity, we choose a convenient
(but otherwise arbitrary) lexical ordering of the letters and use the code word which is lexically
maximal as the unique representative of the periodic orbit:

(periodic orbit of ST)C="(w
1
, w

2
,2,w

n
), w

i
3Z3C(0, 0, 0) ,

="maxM=,PK =,PK 2=,2,PK n~1=N ,
(55)

where PK ="(w
2
, w

3
,2, w

n
,w

1
) is the operation of a cyclic permutation of the code word.

Let us consider the code word = with n letters:

="(w
1
, w

2
,2, w

n
), w

i
"(w

ix
, w

iy
, w

iz
) . (56)

It relates to the n#1 spheres centred at c
1
"(0, 0, 0), c

2
"w

1
, c

3
" w

1
#w

2
,2, c

n`1
"

w
1
#2#w

n
. Let us choose arbitrary points on each of the spheres, and connect them by

straight segments. We get a piecewise straight line which leads from the "rst to the last sphere.
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Fig. 14. A shadowed (classically forbidden) periodic orbit of the Sinai 3-torus.

In general, this line is not a classical orbit because the specular re#ection conditions are not
satis"ed. To "nd a periodic orbit, we specify the positions of the points on each sphere by two
angles h

i
, u

i
. The length of the line is a function of M(h

i
,u

i
)D
i/1,2,n

N. Periodic orbits on the ST must
have identical coordinates for the "rst and the last points (modulo a lattice translation), hence
h
n`1

"h
1
, u

n`1
"u

1
and we have only 2n independent variables to completely specify a periodic

set of segments, with length:

¸
W

(h
1
,2, h

n
, u

1
,2, u

n
)"

n
+
i/1

¸
i
(h

i
, h

i`1
, u

i
, u

i`1
) , (57)

where ¸
i
are the lengths of the segments that correspond to the letter w

i
. To satisfy the condition of

specular re#ection we require that the length ¸
W

is extremal with respect to any variation of its
variables.

The following theorem guarantees two essential properties of the coding and of the periodic
orbits which are identi"ed as the extrema of (57) [27,32]:

Theorem. To each code word W of the 3D ST there corresponds at most one periodic orbit which is the
only minimum of ¸

W
.

The theorem contains two statements: First, that periodic orbits are necessarily minima of the
length, and not saddles or maxima. Second, that there are no local minima besides the global one.
The phrase `at mosta in the theorem above needs clari"cation: For each code word= the length
function ¸

W
is a continuous function in all of its variables over the compact domain which is

the union of the spheres. Therefore ¸
W

must have a global minimum within this domain. This
minimum can be, however, classically forbidden, meaning that at least one of its segments
cuts through one or more spheres in the lattice (that might or might not be a part of the code)
rather than re#ecting from the outside. This obstruction by an intervening sphere will be called
`shadowinga. An example is shown in Fig. 14. The forbidden periodic orbits are excluded from the
set of classical periodic orbits. (They also do not contribute to the leading order of the trace formula
[15,70] and therefore are of no interest in our semiclassical analysis.) If all the segments are
classically allowed, then we have a valid classical periodic orbit. Finally, we would like to mention
that the minimality property was already implied in the work of Sieber [60], and the explicit
versions of the theorem were proved simultaneously by Bunimovich [27] (general formulation,
applies in particular to the 3D case) and Schanz [32] (restricted to the 2D Sinai billiard).

The number of letters in the codes of periodic orbits of length less than ¸
.!9

can be bounded
from above by the following argument. To each letter w there corresponds a minimal segment
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length ¸
.*/

(w)'0 which is the minimum distance between the spheres centred at (0, 0, 0) and at
w"(w

x
, w

y
, w

z
):

¸
.*/

(w)"SJw2
x
#w2

y
#w2

z
!2R . (58)

In the above, S is the lattice constant (torus's side) and R is the radius of the sphere. The smallest
possible ¸

.*/
(w) is obtained for w"(1, 0, 0) and equals S!2R,¸

.*/
. We readily conclude that

the code word cannot contain more letters than the integer part of ¸
.!9

/¸
.*/

.
We are now in a position to formulate an algorithm for a systematic search of all the periodic

orbits of length up to ¸
.!9

of the 3D Sinai torus:

1. Collect all of the admissible letters into an alphabet. An admissible letter w satis"es
(a) wO(0, 0, 0).
(b) w is not trivially impossible due to complete shadowing, e.g., like (2, 0, 0)"2](1, 0, 0).
(c) ¸

.*/
(w)4¸

.!9
.

2. De"ne an arbitrary lexical order of the letters.
3. From the admissible alphabet construct the set of admissible code words="(w

1
,2, w

n
), such

that
(a) ¸

.*/
(=),+n

i/1
¸

.*/
(w

i
)4¸

.!9
.

(b) w
i
Ow

i`1
} no a priori complete shadowing.

(c) = is lexically maximal with respect to cyclic permutations:="maxMPK i=, i"0,2, n!1N.
4. For each candidate code word = minimize numerically the function ¸

W
. According to the

theorem, there should be exactly one minimum, which is the global one.
5. Check whether the resulting periodic orbit is shaded. Accept only periodic orbits which are not

shaded.

Once the periodic orbit is identi"ed, its monodromy (stability) matrix is computed according to
the recipe given in Appendix J.

4.2. Periodic orbits of the 3D Sinai billiard } classical desymmetrization

If we desymmetrize the ST into the Sinai billiard (SB), we still "nd that the SB tessellates the
R3 space. Hence, each periodic orbit of the ST is necessarily also a periodic orbit of the SB. The
converse is not true, i.e., periodic orbits of the SB are not necessarily periodic in ST. However, it is
easy to be convinced that if a periodic orbit of SB is repeated su$ciently many times, it becomes
also periodic in ST. An example is shown in Fig. 15. From a more abstract point of view, this is
because the cubic group O

h
is "nite. Thus in principle one could use the algorithm given above to

systematically "nd all the periodic orbits of the SB. This is, however, highly ine$cient because by
analysing the group O

h
we "nd that in order to "nd all the periodic orbits of the SB up to ¸

.!9
we

must "nd all of the periodic orbits of ST up to 6¸
.!9

. Due to the exponential proliferation
of periodic orbits this would be a colossal waste of resources which would diminish our ability to
compute periodic orbits almost completely. To circumvent this di$culty, without losing the useful
uniqueness and minimality properties which apply to the ST, we make use of the property that
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Fig. 15. Desymmetrization of orbits from the Sinai torus to the Sinai billiard. For clarity we show an example in 2D. Left:
a primitive periodic orbit in the ST. Right: the corresponding periodic orbit in the SB. We observe that the latter is 4 times
shorter than the former.

periodicity in the SB is synonymous to periodicity in ST modulo an element g(3O
h
. This simple

geometrical observation is a manifestation of the fact that the tiling of R3 by the SB is generated by
the group O

h
?Z3. Thus, we can represent the periodic orbits of the SB by using their unfolded

representation, augmented by the symmetry element g( according to which the periodic orbits
closes:

Periodic orbit of SB C=K ,(=; g( )"(w
1
,w

2
,2, w

n
; g( ) . (59)

The coding is not yet well-de"ned since a given periodic orbit can in general be represented by
several codes. Similarly to the case of the ST, there is a degeneracy with respect to the starting
point. However, in the case of the SB this is not simply related to cyclic permutations. Rather, if
a periodic orbit is described by (w

1
, w

2
,2, w

n
; g( ) then it is also described by

(w
2
, w

3
,2,w

n
, g( w

1
; g( ), (w

3
,w

4
,2, g( w

1
, g( w

2
; g( ),2 ,

(g( w
1
, g( w

2
,2, g( w

n
; g( ), (g( w

2
, g( w

3
,2, g( 2w

1
; g( ),2 ,

F

(g( ((g( )~1w
1
, g( ((g( )~1w

2
,2, g( ((g( )~1w

n
; g( ),2, (g( ((g( )~1w

n
,w

1
, w

2
,2,w

n~1
; g( ) .

(60)

In the above /(g( ) is the period of g( , which is de"ned as the smallest natural number for which
g( ((g( )"e( , where e( is the identity operation. For O

h
in particular /(g( )3M1, 2, 3, 4, 6N. The above

generalized cyclic permutation invariance is due to the periodicity modulo g( of the periodic orbits
of the SB in the unfolded representation. In addition to the generalized cyclic invariance there is
also a geometrical invariance of orbits of the SB in the unfolded representation. Indeed, if we
operate on an orbit in the unfolded representation with any hK 3O

h
we obtain the same orbit in

the SB. This symmetry is carried over also to the codes. If a periodic orbit is described by
(w

1
, w

2
,2, w

n
; g( ) then it is also described by

(hK w
1
, hK w

2
,2, hK w

n
; hK g( hK ~1) ∀hK 3O

h
. (61)

To summarize, a periodic orbit of the SB can be encoded into a code word up to degeneracies due
to generalized cyclic permutations and geometrical operations. The set of operations which relate
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the various codes for a given periodic orbit is a group to which we refer as the invariance
group.

In order to lift this degeneracy and to obtain a unique mapping of periodic orbits of the SB to
code words we need to specify a criterion for choosing exactly one representative. There are many
ways of doing this, but we found it convenient to apply the natural mapping of periodic orbits of
the SB to those of the ST, and there, to choose the maximal code. More speci"cally:

1. Select the alphabet according to the rules prescribed in the preceding subsection, and de"ne
ordering of letters.

2. Extend the word=K into =I :

=I ,(w
1
, w

2
,2, w

n
, g( w

1
, g( w

2
,2, g( w

n
, g( 2w

1
,2, g( ((g( )~1w

1
,2, g( ((g( )~1w

n
) . (62)

The code =I describes the periodic orbit of the SB which is continued /(g( ) times to become
periodic in the ST. Applying a generalized cyclic permutation on=K is equivalent to applying the
standard cyclic permutation on=I . Applying a geometrical operation hK on=K is equivalent to
operating letter by letter with hK on =I . The invariance group corresponding to =I is
H"C?O

h
, where C is the group of cyclic permutations of order n )/(g( ). The simple decompo-

sition of H is due to the commutativity of C and O
h
, and it greatly facilitates the computations.

3. If =I is maximal with respect to the invariance group H, then the corresponding =K is the
representative of the periodic orbit.

A comment on the uniqueness of this selection process is appropriate at this point. For any=K we
can uniquely construct the corresponding=I and the invariance group and check the maximality
of =I . Hence, we are able to uniquely decide whether =K is a valid representative code or not.
However, there are cases in which more than one =K correspond to the same maximal =I . It is
straightforward to show that in these cases the basic code word = is symmetric under some
operation(s): ="kK=, kK 3O

h
. To such symmetric codes must correspond symmetric periodic

orbits, which is necessitated by the uniqueness theorem for the ST. But for the SB the symmetry of
the orbit means that it is wholly contained in a symmetry plane, and therefore is not a proper
classical orbit. Such orbits are nevertheless required for the semiclassical analysis and will be
treated in the next section when dealing with semiclassical desymmetrization. In summary, we have
shown so far that the mapping of a given proper periodic orbit to a code is well-de"ned and
unique.

In order for the coding to be useful and powerful, we need to establish uniqueness in the opposite
direction, that is to show that for a given (unsymmetrical) =K there corresponds at most one
(proper) classical periodic orbit. The mapping=K C=I is very useful in that respect. Indeed, if there
were two distinct periodic orbits of the SB with the same coding=K , then we could repeat them /(g( )
times to get two distinct periodic orbits of the ST with the same code=I , which is in contradiction
with the theorem above. This proves the uniqueness of the relation between codes and periodic
orbits.

To facilitate the actual computation of periodic orbits of the SB, we have to establish their
minimality property, similarly to the ST case. We need to prove that the length of a periodic orbit is
a minimum, and that it is the only minimum. The minimality of a periodic orbit of the SB is proven
by using again the unfolding to periodic orbits of ST, and noting that a minimum of ¸

WI
is

34 H. Primack, U. Smilansky / Physics Reports 327 (2000) 1}107



necessarily also a minimum of ¸
WK

, since the latter is a constrained version of the former. Thus,
periodic orbits of the SB are minima of ¸

WK
. We "nally have to show that there exists only a single

minimum of ¸
WK

. The complication here is that, in principle, a minimum of ¸
WK

does not necessarily
correspond to a minimum of ¸

WI
, since there are, in general, more variables in the latter. We resolve

this di$culty by using arguments from the proof of Schanz [32] as follows. A necessary condition
for minimality is that orbits are either externally re#ected from the scatterers or cut through them
in straight segments. Internal re#ections are not allowed for a minimum. Thus, if we extend
a minimum of SB to ST, we necessarily get an orbit with no internal re#ections. According to
Schanz [32], there is exactly one such orbit, which is the minimum in ST. This proves the
uniqueness of the (global) minimum of ¸

WK
in SB.

These results allow us to use essentially the same algorithm as for the ST for the systematic
search of periodic orbits of the SB. We need to extend the codes and the length functions to include
a group element g( , and to modify the rules according to which we choose an admissible and
lexically maximal code word =K . One also has to modify the computations of the monodromy
matrix, as described in Appendix J.

4.3. The properties and statistics of the set of periodic orbits

The algorithm described above is capable of "nding all of the periodic orbits up to any desired
length. Before discussing the properties of this set, we "nd it appropriate to display a few typical
periodic orbits, which were computed for the desymmetrized billiard with R"0.2 (and S"1). The
orbits are represented in an unfolded way in Figs. 16}19.

In this subsection we shall study in detail the spectrum of lengths of periodic orbits, a small
interval thereof is shown in Fig. 20. Each horizontal strip provides the lower end of the length
spectrum of Sinai billiards with 0.024R40.36. The spectrum corresponding to the lowest value
of R shows clustering of the lengths near the typical distances of points of the Z3 lattice
(1,J2, J3, 2,2). Once R is increased, some of the periodic orbits which were allowed for the
smaller R are decimated because of the increased e!ect of shadowing. However, their lengths
become shorter, resulting in the proliferation of the periodic orbits with their length. This is best
seen in the spectrum which corresponds to the largest value of R } the graphics is already not
su$ciently "ne to resolve the individual lengths.

After these introductory comments, we now study the length spectrum in detail, and compare the
theoretical expectations with the numerical results. The exponential proliferation of the periodic
orbits puts a severe limit on the length range which we could access with our "nite computer
resources. However, we were able to compute the periodic orbits for a few values of the radius R,
and concentrated on the R"0.2 case in order to be able to perform a semiclassical analysis of the
longest quantal spectrum (see next section). For this radius we found all the 586,965 periodic orbits
up to length 5. This number of periodic orbits includes repetitions and time-reversed conjugates.
We also computed for this radius all the 12,928,628 periodic orbits up to length 10 which have no
more than 3 re#ections. This comprises the database on which we based our further numerical
studies and illustrations. The systematic algorithm which was used to produce this data set,
together with a few tests which will be described here and in the next section, lead us to believe that
the data set is both accurate and complete.
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Fig. 16. A sample of periodic orbits of the desymmetrized 3D Sinai billiard with S"1, R"0.2 with a single re#ection.
The periodic orbits are shown in the unfolded representation. The `fulla spheres are those from which the periodic orbit
re#ects. The `fainta dotted spheres are those from which there is no re#ection.

Fig. 17. A sample of periodic orbits of the 3D SB with 2 re#ections.

Periodic orbits are expected to proliferate exponentially (e.g., [2]). That is, the number N
-%/

(l) of
periodic orbits of length less than l should approach asymptotically [2]:

N
-%/

(l)+
exp(jl)

jl
, lPR, (63)

where j is the topological entropy (per unit length). To examine the validity of the above formula in
our case we use the numerical data to compute

j
/6.

(l),
1
l
lnA +

L%3'yLjyl

¸
jB , (64)

where ¸
%3'

is a length below which we do not expect universality (i.e. the law (63)) to hold. The
exponential proliferation implies:

j
/6.

(l)+
1
l
lnDejl!ejL%3' D!

ln j
l

Pj, lPR. (65)

36 H. Primack, U. Smilansky / Physics Reports 327 (2000) 1}107



Fig. 18. A sample of periodic orbits of the 3D SB with 4 re#ections.

Fig. 19. A sample of periodic orbits of the 3D SB with 7 re#ections. The bottom periodic orbit undergoes 8 re#ections.

Therefore, we expect j
/6.

(l) to approach a constant value j when l is su$ciently larger than ¸
%3'

. In
Fig. 21 we show the results of the numerical computation of j

/6.
for the R"0.2 database and for

¸
%3'

"2.5. The "gure clearly indicates a good agreement between the data and the theory (65) for
j"3.2.

One of the hallmarks of classically ergodic systems is the balance between the proliferation
of periodic orbits and their stability weights due to ergodic coverage of phase space. This is
a manifestation of the uniform coverage of phase space and is frequently referred to as the
`Hannay}Ozorio de Almeida sum rulea [71]. It states that

p(l),+
PO

¸
p

Ddet(I!M
j
)D
d(l!¸

j
)P1, lPR, (66)

where ¸
p

is the primitive length and M
j
is the stability (monodromy) matrix [2] (see Appendix J for

explicit expressions). The above relation is meaningful only after appropriate smoothing. For
generic billiards the only classical length scale is the typical length traversed between re#ections,
and we expect (66) to approximately hold after a few re#ections. In the Sinai billiard we are faced
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Fig. 20. Length spectra of periodic orbits for Sinai billiards with R values between 0.02 and 0.36 in steps of *R"0.02.
The vertical bars indicate the lengths of periodic orbits.

Fig. 21. The quantity j
/6.

(cf. RHS of Eq. (64)) computed from the periodic orbit database of R"0.2. We used
¸
%3'

"2.5. The theoretical "t is according to Eq. (65).

with the problem of an `in"nite horizona, that is, that the length of free #ight between consecutive
re#ections is unbounded. This is just another manifestation of the existence of the bouncing-ball
families. According to [39,40] this e!ect is responsible for a non-generic power-law tail in p(l):

p(l)+1!
a(R)

l
, (67)

where a(R) is a parameter that depends on the radius R. When R increases the in#uence (measure in
con"guration space) of the bouncing balls is reduced, and we expect a(R) to decrease. To check (67)
we computed numerically the cumulant:

P(l)"P
l

L%3'

dl@p(l@)+ +
L%3'yLjyl

¸
p

DI!M
j
D
, (68)

which should be compared to the theoretical expectation:

P(l)"(l!¸
%3'

)!a(R)lnA
l

¸
%3'
B . (69)

The results are shown in Fig. 22. We considered R"0.2 and 0.3 and included periodic orbits up to
¸
.!9

"10 with number of re#ections n43. The restriction on n facilitates the computation and is
justi"ed for moderate values of l since the contributions from higher n's are small. The observed
deviation between the theoretical and numerical curves for R"0.3 at lZ8 is due to the fact that
periodic orbits with n"4 become signi"cant in this region. The above numerical tests con"rm the
validity of (67), with a(R) which is a decreasing function of R. In particular, for the length interval
considered here, there is a signi"cant deviation from the fully ergodic behaviour (66).
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Fig. 22. The function P(l) (cf. RHS of Eq. (68)) computed for R"0.2 and 0.3 and "tted according to Eq. (69). We also
show the asymptotic prediction (66).

The sum-rule (66) which formed the basis of the previous analysis is an expression of the ergodic
nature of the billiards dynamics. In the next subsection we shall make use of similar sum-rules
which manifest the ergodicity of the PoincareH map obtained from the billiard #ow by, e.g., taking
the surface of the sphere and the tangent velocity vector as the PoincareH section. The resulting
return-map excludes the bouncing-ball manifolds since they do not intersect the section. However,
their e!ect is noticed because between successive collisions with the sphere the trajectory may
re#ect o! the planar faces of the billiard an arbitrary number of times. Thus, the number of periodic
orbits which bounce n times o! the sphere (n-periodic orbits of the map) is unlimited, and the
topological entropy is not well de"ned. Moreover, the length spectrum of n-periodic orbits is not
bounded. These peculiarities, together with the fact that the symbolic code of the map consists of an
in"nite number of symbols, are the manifestations of the in"nite horizon of the unfolded Sinai
billiard. The return map itself is discontinuous but it remains area preserving, so the formulas
which we use below, and which apply to generic maps, can be used here as well.

The classical return probability is de"ned as the trace of the n-step classical evolution operator
(see, e.g., [72] and references therein). It is given by

;(n), +
j|Pn

n
p,j

Ddet(I!M
j
)D

, (70)

where n is the number of times the periodic orbit re#ects from the sphere, P
n

is the set of all
n-periodic orbits, n

p,j
is the period of the primitive periodic orbit of which j is a repeated traversal.

As a consequence of the ergodic nature of the map ;(n)P1 in the limit nPR. However, due to
the e!ect of the in"nite horizon, the number of periodic orbits inP

n
is in"nite, and in any numerical

simulation it is important to check to what degree the available data set satis"es the sum rule. For
this purpose we de"ne the function

;(l; n), +
j inPn

n
p,j

Ddet(I!M
j
)D
H(l!¸

j
) , (71)
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Fig. 23. Upper plot: the function;(l; n) (cf. Eq. (71)) for the cases R"0.4, n"1, 2, 3. Lower plot: the function R;(l; n)/Rl
for the same cases. Both plots indicate the saturation of the classical return probability in spite of the in"nitely many
periodic orbits in P

n
.

which takes into account only n-periodic orbits with ¸
j
4l. In Fig. 23 we plot ;(l; n) for R"0.4

and n"1, 2, 3. The results clearly indicate that for the present data saturation is reached, and once
n52 the asymptotic value is very close to 1. Even at n"1 one gets ;(n"1)+0.8 which is
surprisingly close to 1, bearing in mind that we are dealing with the "xed points of the map! It
should be noted that to reach saturation in the case R"0.4, n"3 one needs 536,379 periodic
orbits up to l"12, whose computation consumes already an appreciable amount of time. Thus, we
are practically restricted to the few lowest n's in our computations. As can be seen in Fig. 23 the
function R;(l; n)/Rl is mostly supported on a "nite interval of ¸ values. Its width will be denoted
by *¸(n).
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4.4. Periodic orbit correlations

In the previous subsection we discussed various aspects of the one-point statistics of the classical
periodic orbits, and demonstrated their consistency with the standard results of ergodic theory.
Here, we shall probe the length spectrum further, and show that this spectrum is not Poissonian.
Rather, there exist correlations between periodic orbits which have far-reaching e!ects on the
semiclassical theory of spectral statistics of the quantum billiard. The semiclassical theory will be
dealt with in Section 7, and here we restrict ourselves to purely classical investigations.

Above we introduced the PoincareH return map of the sphere, and have shown that the ergodicity
of this map implies a sum rule for the set of n-periodic orbits of the map. We de"ne the weighted
density of lengths of n-periodic orbits as follows:

d
#-
(l; n), +

j|Pn

AI
j
d(l!¸

j
) , (72)

where AI
j

are given by

AI
j
"

n
p,j

(!1)bj

Ddet(I!M
j
)D1@2

, (73)

and b
j

is the number of times the trajectory re#ects from the planar boundaries. The amplitudes
AI

j
are related to the standard semiclassical amplitudes A

j
de"ned in (99) by AI

j
"pnp

j
A

j
/¸

j
.

The density (72) is di!erent from the density p(l) de"ned previously (66) since: (a) it relates to the
subset of the n-periodic orbits of the return map of the sphere, (b) it assigns a signed weight to each
of the d-functions located at a particular length, and (c) the absolute value of the weights in (72) are
the square roots of the weights in (66). Densities with signed weights are not encountered frequently
in spectral theory, but they emerge naturally in the present context. At this point the de"nition of
d
#-
(l; n) might look unfamiliar and strange, but the reason for this particular choice will become

clear in the sequel.
To examine the possible existence of correlations in the length spectrum, we study the corre-

sponding auto-correlation function

R
#-
(dl; n),P

=

0

dl d
#-
(l#dl/2; n) d

#-
(l!dl/2; n) . (74)

The two-point form factor is the Fourier transform of R
#-
(dl; n), and it reads explicitly as

K
#-
(k; n)"P

`=

~=

e*kxR
#-
(x; n) dx"K +

j|Pn

AI
j
exp(ik¸

j
)K
2

. (75)

The form factor has the following properties:

f K
#-
(k; n) is a Fourier transform of a distribution and therefore it displays #uctuations, which

become stronger as the number of contributing orbits increases. Therefore, any discussion of this
function requires some smoothing or averaging. We shall specify the smoothing we apply in the
sequel.
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f At k"0,

K
#-
(0; n)"K +

j|Pn

AI
j K

2
. (76)

Because of the large number of periodic orbits, the sum of the signed amplitudes is e!ectively
reduced due to mutual cancellations. Its value can be estimated by assuming that the signs are
random. Hence,

K
#-
(0; n)+ +

j|Pn

DAI
j
D2 , (77)

which will be shown below to be bounded.
f At large values of k,

K
#-
(k; n)+ +

j|Pn

g
j
DAI

j
D2 for kPR, (78)

where g
j

is the number of isometric periodic orbits of length ¸
j
. Since large #uctuations are

endemic to the form factor, this relation is meaningful when k-averaging is applied. Comparing
the last sum with (70) we can write

K
#-
(k; n)+Sn

p,j
g
j
T;(n) for kPR. (79)

In our case of the 3D SB, n
p,j

"n for the large majority of the periodic orbits in P
n
, which is the

generic situation for chaotic systems. Also, g
j
"2 for almost all the periodic orbits with n53.

Thus, one can safely replace Sn
p,j

g
j
T with 2n for large n. Moreover, as we saw above, ;(n)P1

for large n, hence K
#-
P2n for large k and n.

f If the length spectrum as de"ned above were constructed by a random sequence of lengths with
the same smooth counting function ;(l; n), or if the phases were picked at random, one would
obtain the Poisson behaviour of the form factor, namely, a constant

K
#-
(k; n)+Sn

p
g
p
T;(n) for k'

2p
*¸(n)

. (80)

Here, *¸(n) is the e!ective width of the length distribution de"ned above.

Thus, we could identify two-point correlations in the classical length spectrum by computing
K

#-
(k; n) and observing deviations from the k-independent expression (80).

4.4.1. Numerical tests
We used the periodic orbit database at our disposal to compute the form factors for several

values of n and R. In each case presented we made sure that the function ;(l; n) is numerically
saturated. This guarantees that the (in"nitely many) neglected periodic orbits have very small
weight, and are thus insigni"cant.

In Fig. 24 we present the numerical results, where we plotted the function

C
#-
(k; n),

1
k!k

.*/
P

k

k.*/

dk@K
#-
(k@; n) , (81)
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Fig. 24. The averaged classical form factor C
#-
(k; n) (cf. (81)) of the 3D SB for several values of n and R. We also plot the

averaged form factors with signs of the amplitudes scrambled, without cross-family terms, and with amplitudes averaged
over family (length-correlation only). See text for details.

designed to smooth the #uctuations in K
#-
(k; n) [11]. We started the integration at k

.*/
'0 to

avoid the large peak near k"0, which otherwise overwhelms the results. In any case, the neglected
small-k region is irrelevant for the semiclassical theory of quantal spectral correlations. Analysing
the results, we note that the asymptotic form factors (denoted in Fig. 24 as `full classical form
factora) approach constant values, which are indeed close to 2n, as predicted. More signi"cant
are the deviations from the constant (Poissonian) result at low k, which demonstrate unambigu-
ously the existence of correlations in the classical spectra. The structure of the form factor indicates
that the classical spectrum is rigid on the scale of a correlation length j(n;R), which can be de"ned
as the inverse of the k value at which the form factor makes its approach to the asymptotic value
[11]. In the following we shall describe a few tests which prove that the observed correlations are
real, and not a numerical artifact or a trivial consequence of the way in which the length spectral
density is de"ned.

The spectral density d
#-
(l; n) has an e!ective "nite width *¸(n) which was de"ned above. The fact

that the lengths are constrained to this interval induces trivial correlations which appear on the
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scale *¸(n), and we should check that this scale is su$ciently remote from the correlation scale
j(n;R). To this end, and to show that the observed classical correlations are numerically signi"cant,
we scrambled the signs of the weights AI

j
by multiplying each of them with a randomly chosen sign.

We maintained, however, the time-reversal symmetry by multiplying conjugates by the same sign.
The resulting form factors (denoted as `Scrambled signsa in Fig. 24), are consistent with the
Poissonian value 2n for essentially all k values, and the di!erence between the scrambled and
unscrambled data is large enough to add con"dence to the existence of the classical correlations.
This indicates also that the correlations are not due to the e!ective width of d

#-
(l; n), since both the

scrambled and unscrambled data have the same e!ective width.
On the other extreme, one might suspect that the classical correlations are due to rigidity on the

scale of one mean spacing between lengths of periodic orbits. This is certainly not the case, since the
typical mean length spacing for the length spectra shown in Fig. 24 is 10~3}10~4, which implies
a transition to the asymptotic value for much larger k-values than observed. We therefore conclude
that the correlation length j(n;R) is much larger than the mean spacing between neighbouring
lengths. This is the reason why various studies of the length-spectrum statistics [60,73] claimed that
it is Poissonian. Indeed it is Poissonian on the scale of the mean spacing where these studies were
conducted. The correlations become apparent on a very di!erent (and much larger) scale, and there
is no contradiction. The coexistence of a Poissonian behaviour on the short length scales, and
apparent rigidity on a larger scale was discussed and explained in [11]. It was suggested there that
a possible way to construct such a spectrum is to form it as a union of N<1 statistically
independent spectra, all having the same mean spacing DM , and which show spectral rigidity on the
scale of a single spacing. The combined spectrum with a mean spacing DM /N will be Poissonian when
tested on this scale, since the spectra are independent. However, the correlations on the scale DM
will persist in the combined spectrum. A simple example will illustrate this construction. Take
a random (Poissonian) spectrum with a mean spacing 1. Generate a shifted spectrum by adding
jM <1 to each spectral point and combine the original and the shifted spectra to a single spectrum.
On the scale 1 the combined spectrum is Poissonian. However, the fact that each spectral point is
(rigidly) accompanied by another one, a distance jM apart, is a correlation which will be apparent at
the scale jM only. We use this picture in our attempt to propose a dynamical origin of the length
correlations.

4.4.2. The dynamical origin of the correlations
As was already mentioned, the idea that periodic orbit correlations exist originates from the

quantum theory of spectral statistics which is based on trace formulas. The classical correlations
are shown to be a manifestation of a fundamental duality between the quantum and the classical
descriptions [9,11]. However, the e!ect is purely classical, and hence should be explained in
classical terms, without any reference to the quantum mechanical analogue. The essential point is
to "nd the classical origin of the partition of the periodic orbits to independent and uncorrelated
families, as was explained in the previous section. So far, all the attempts to "nd the classical roots
of these correlations failed, and till now there is no universal theory which provides the classical
foundations for the e!ect. For the Sinai billiard in 3D there seems to exist a physical}geometrical
explanation, which is consistent with our data, and which is supported by further numerical tests.

Consider the Sinai billiard with a sphere with a vanishingly small radius. In this case, all
the periodic orbits which are encoded by words = built of the same letters w

i
are isometric,
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independently of the ordering of the letters or the attached symmetry element g( . This phenomenon
can be clearly seen in the spectrum of lengths corresponding to R"0.02 in Fig. 20. In this case, it
is clear that the spectrum of lengths is a union of `familiesa of periodic orbits, each family is
characterized by a unique set of building blocks w

i
, which are common to the family members.

When the radius R increases and becomes comparable to the linear dimension of the billiard, the
approximate isometry and the resulting correlations breaks down, and one should use a more
re"ned and restrictive de"nition of a family. The aim is to "nd a partition to families which will
restrict the membership in a family to the smallest set, without losing any of the correlation
features. The most restrictive de"nition of a family in the present context will be to include all the
periodic orbits which share the same ="(w

1
,w

2
,2,w

n
) part of the code and have di!erent

admissible g( symmetry elements. Words which are built of the same letters but in a di!erent order
de"ne di!erent families. Since there are 48 possible g( 's, each family consists of at most 48 members
and will be denoted by X(=). It should also be noted that the signs of the weights AI

j
within a family

do not change with R since they re#ect the parity of g( . The partition of the set of periodic orbits in
families is not particular to just a few orbits, but rather, is valid for the entire set. This partition is
the proposed source of the correlations that were observed in the form factor. This concept is
illustrated in Fig. 25, and graphic representations of two families are displayed in Fig. 26. The most
outstanding feature which emerges from Fig. 26 is that the orbits occupy a very narrow volume of
phase-space throughout most of their length, and they fan out appreciably only at a single sphere.

The above arguments suggest that the main source of correlations are the similarities of orbits
within each family X(=). To test this argument we performed a numerical experiment, in which we
excluded the inter-family terms of the form factor, leaving only the intra-family terms. This excludes
family}family correlations and maintains only correlations within the families. The results are
shown in Fig. 24 (denoted by `Neglecting cross-family contributionsa). The obvious observation is
that the form factors were only slightly a!ected, proving that periodic-orbit correlations do not
cross family lines! Thus, the main source of correlations is within the families X(=). We mention
that very similar results are obtained if inter-family sign randomization is applied instead of the
exclusion of cross-terms. We note, that in most cases a periodic orbit and its time-reversal
conjugate do not belong to the same family. Thus, neglecting the cross-family terms leads to partial
breaking of time-reversal, which we compensated for by rectifying the intra-family form factor such
that it will have the same asymptotic value as the full one.

It is interesting to check whether the correlations are due to the lengths or due to the size of the
amplitudes. To examine that, we not only neglected the cross-family terms, but also replaced the
amplitudes AI

j
within each family by constants multiplied by the original signs, such that the overall

asymptotic contribution of the family does not change. The results are also plotted in Fig. 24
(denoted as `Length correlations onlya). The resulting (recti"ed) form factors display slightly
diminished correlations. However there is no doubt that almost all correlations still persist. This
proves that the correlations between the magnitudes of the weights play here a relatively minor
role, and the correlations are primarily due to the lengths.

There are a few points in order. First, the numerical results presented here concerning the
classical correlations are similar to those of Ref. [11]. However, here we considered the classical
mapping rather than the #ow, and this reduces the numerical #uctuations signi"cantly. Using the
mapping also enables the quantitative comparison to the semiclassical theory, which will be
discussed in Section 7. Second, it is interesting to enquire whether the average number of family
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Fig. 25. Two periodic orbits which are members of the same family of the quarter 2D SB. The two periodic orbits have
the same=, hence they re#ect o! the same discs. But they correspond to two diwerent symmetry elements, and hence are
di!erent. For simplicity, the illustration is made for the 2D SB, but the same principle applies also to the 3D Sinai billiard.
Left: unfolded representation, right: standard representation.

Fig. 26. Two families of periodic orbits of the 3D SB, represented in the unfolded representation of the SB. The faint
spheres do not participate in the code.

members N
&!.

(n;R) increases or decreases with n. Since, if it decreases, our explanation of the origin
of correlations becomes invalid for large n. The numerical results clearly indicate that N

&!.
(n;R),

computed as a weighted average with the classical weights, increases with n, which is encouraging.
For example, for the case R"0.4 we obtained N

&!.
"9.64, 18.31, 21.09, 28.31 for n"1, 2, 3, 4,

respectively.
Thus, we were able to identify the grouping of orbits into `familiesa with the same code word
= but with di!erent symmetry g( as the prominent source of the classical correlations in the 3D
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Sinai billiard. In each family the common geometric part of the code= sets the mean length and
the di!erent group elements g( introduce the modulations. This pattern repeats for all the families,
but the lengths of di!erent families are not correlated. This "nding conforms very well with the
general scheme which was proposed to explain the typical correlations in the classical spectrum
[9,74]. However, a classical derivation of a quantitative expression for the correlations length j is
yet to be done.

4.4.3. Length correlations in the 3-Torus
The ideas developed above about the correlations between periodic orbits in the fully chaotic

billiard, have an analogue in the spectrum of lengths of periodic tori in the integrable case of
the 3-torus. In Section 3 we studied the quantum 3-torus of size S and showed in Section 3.1.1 that
due to number theoretical degeneracies, the quantum form factor is not Poissonian. The form
factor displays a negative (repulsive) correlation which levels o! at qH"1/c"1/(2Sk). This
can be transcribed into an expression for the correlation length of the classical spectrum in the
following way.

Expressing qH in units of length we obtain

¸H"2pdM (k)qH"S2k/2p . (82)

Consequently,

kH(¸)"2p¸/S2 , (83)

from which we read o!

j(¸)"S2/¸ . (84)

Since the lengths of the periodic orbits are of the form ¸
j
"S]Jinteger, the minimal spacing

between periodic orbits near length ¸ is

D
.*/

(¸)"S2/2¸ , (85)

and therefore

j(¸)"2D
.*/

(¸) . (86)

In other words, the classical correlation length of the 3-torus coincides (up to a factor 2) with the
minimal spacing between the periodic orbits. Therefore, j(¸) indeed signi"es the correlation length
scale between periodic orbits, which is imposed by their number-theoretical structure.

5. Semiclassical analysis

In the previous sections we accumulated information about the quantum spectrum and about
the periodic orbits of the 3D Sinai billiard. The stage is now set for a semiclassical analysis of the
billiard. We shall focus on the analysis of the semiclassical Gutzwiller trace formula [2] that reads
in the case of the Sinai billiard:

d(k),
=
+
n/1

d(k!k
n
)+dM (k)#d

""
(k)#+

PO

A
j
cos(k¸

j
) . (87)
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The quantum spectral density on the RHS is expressed as the sum of three terms. The term dM is
the smooth density of states (see Appendix I). The term d

""
consists of the contributions of the

non-generic bouncing-ball manifolds. It contains terms of the form (31) with di!erent prefactors
(which are possibly 0) due to partial or complete shadowing of the bouncing-ball family by the
sphere. The last term is the contribution of the set of generic and unstable periodic orbits,
where ¸

j
denote their lengths and A

j
are semiclassical amplitudes. One of the main objective of the

present work was to study the accuracy of (87) by a direct numerical computation of the di!erence
between its two sides. This cannot be done by a straightforward substitution, since three obstacles
must be removed:

f The spectrum of wavenumbers k
n

was computed for the fully desymmetrized Sinai billiard. To
write the corresponding trace formula, we must remember that the folding of the Sinai torus into
the Sinai billiard introduces new types of periodic orbits due to the presence of symmetry planes,
edges and corners. Strictly speaking, the classical dynamics of these orbits is singular, and
becomes meaningful only if proper limits are taken. As examples we mention periodic orbits that
bounce o! a corner, or that are wholly con"ned to the symmetry planes. These periodic orbits
are isolated and unstable, and should not be confused with the bouncing-ball families which are
present both in the ST and in the SB. For periodic orbits that re#ect from a corner but are not
con"ned to symmetry planes, the di$culty is resolved by unfolding the dynamics from the SB to
the ST as was described in the previous section. Periodic orbits which are con"ned to symmetry
planes are more troublesome since there is more than one code word=K which correspond to the
same periodic orbit. We denote the latter as `impropera. The 3D Sinai billiard is abundant with
improper periodic orbits, and we cannot a!ord treating them individually as was done, e.g. by
Sieber [60] for the 2D hyperbola billiard. Rather, we have to "nd a general and systematic
method to identify them and to calculate their semiclassical contributions. This will be done in
the next subsection. (The semiclassical contributions of the improper periodic manifolds for the
integrable case R"0 were discussed in Section 3.1.)

f As it stands, Eq. (87) is a relation between distributions rather than between functions, and hence
must be regulated when dealing with actual computations. Moreover, even though our quantum
and classical databases are rather extensive, the sums on the two sides of the equation can never
be exhausted. We overcome these problems by studying the weighted `length spectruma
obtained from the trace formula by a proper smoothing and Fourier transformation. It is de"ned
in Section 5.2.

f Finally, we must "nd ways to rid ourselves from the large, yet non-generic contributions of the
bouncing-ball families. This was achieved using rather elegant tricks which are described in
Sections 5.4 and 5.5 below.

5.1. Semiclassical desymmetrization

To derive the spectral density of the desymmetrized Sinai billiard we make use of its expression
in terms of the (imaginary part of the) trace of the SB Green function. This Green function satis"es
the prescribed boundary conditions on all the boundaries of the fundamental domain, and the trace
is taken over its volume. In the following we shall show how to transform this object into a trace
over the volume of the entire ST, for which all periodic orbits are proper (no symmetry planes). This
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will eliminate the di$culty of treating the improper orbits. To achieve this goal we shall use
group-theoretical arguments [31,60,75}77]. The "nal result is essentially contained in [78].

When desymmetrizing the ST into SB, we have to choose one of the irreps of O
h

to which the
eigenfunctions of the SB belong (see Section 2.2.3). We denote this irrep by c. We are interested in
the trace of the Green function of the SB over the volume of the SB which is essentially the density
of states:

¹,Tr
SB

G(c)
SB

(r, r@) . (88)

One can apply the projection operation [31] and express G(c)
SB

using the Green function of the ST:

G(c)
SB

(r, r@)"
1
lc

+
g( |Oh

s(c)H(g( )G
ST

(r, g( r@) , (89)

where s(c)(g( ) is the character of g( in the irrep c and lc is the dimension of c. It can be veri"ed that the
above G

SB
satis"es the inhomogeneous Helmholtz equation with the correct normalization, and it

is composed only of eigenfunction that transform according to c. Thus,

¹"

1
lc

+
g( |Oh

s(c)H(g( )Tr
SB

G
ST

(r, g( r@) . (90)

To relate Tr
SB

with Tr
ST

we use the relation

G
ST

(r, r@)"G
ST

(hK r, hK r@) ∀hK 3O
h

(91)

which can be proven by e.g. using the spectral representation of G
ST

. In particular, we can write

G
ST

(r, r@)"
1
48

+
hK |Oh

G
ST

(hK r, hK r@) . (92)

Combining (92) with (90) we get

¹"

1
48lc

+
g( ,hK |Oh

s(c)H(g( )Tr
SB

G
ST

(hK r, hK g( r@)

"

1
48lc

+
g( , hK |Oh

s(c)H(hK g( hK ~1)Tr
SB

G
ST

(hK r, (hK g( hK ~1)hK r@)

"

1
48lc

+
hK ,kK |Oh

s(c)H(kK )Tr
SB

G
ST

(hK r, kK hK r@) . (93)

To obtain the second line from the "rst one, we recall that the character is the trace of the irrep
matrix, and we have in general Tr(ABC)"Tr(CAB), therefore s(g( )"s(hK g( hK ~1). The third line is
obtained from the second one by "xing hK and summing over g( . Since hK g(

1
hK ~1"hK g(

2
hK ~1Q g(

1
"g(

2
the summation over g( is a rearrangement of the group. We now apply the geometrical identity

+
hK |Oh
P
SB

d3r f (hK r)"P
ST

d3r f (r) (94)
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to cast (93) into the desired form:

¹"

1
48lc

+
g( |Oh

s(c)H(g( )Tr
ST

G
ST

(r, g( r@) , (95)

where we relabelled kK as g( for convenience. The result (95) is the desired one, since ¹ is now
expressed using traces over ST which involve no symmetry planes. Semiclassically, formula (95)
means that we should consider all the periodic orbits of the ST modulo a symmetry element g( to get
the density of states of the SB. Therefore, the di$culty of handling improper orbits is eliminated,
since in the ST all of the isolated periodic orbits are proper.

Let us elaborate further on (95) and consider the various contributions to it. A proper periodic
orbit of the SB with code (=; g( ) has 48 realizations in the ST which are geometrically distinct. They
are obtained from each other by applying the operations of O

h
. These conjugate periodic orbits are

all related to the same g( and thus have the same lengths and monodromies. Consequently they all
have the same semiclassical contributions. Hence, their semiclassical contribution to ¹ is the same
as we would get from naively applying the Gutzwiller trace formula to the SB, considering only
proper periodic orbits. This result is consistent with our "ndings about classical desymmetrization
(Section 4.2 above). For the improper periodic orbits there is a di!erence, however. There are
genuine semiclassical e!ects due to desymmetrization for unstable periodic orbits that are con"ned
to planes or to edges, notably large reduction in the contributions for Dirichlet conditions on the
symmetry planes.

To demonstrate this point, let us consider in some detail an example of the periodic orbit that
traverses along the 8-fold edge AE in Fig. 1. For the ST (no desymmetrization) its semiclassical
contribution is

A
1
"R/2p . (96)

For the SB there are 8 code words that correspond to the periodic orbit(s) which traverses along
this 8-fold edge. A calculation yields for the semiclassical contribution:

A
8
"

R
8pC2$2J1!2b$bA

2!b
1!bBD , (97)

where b,R/S. The upper sign is for the case of the totally symmetric irrep, and the lower one for
the totally antisymmetric irrep. In the antisymmetric case we get for b;1:

A
8
/A

1
+(b/2)4 , (98)

which means that the desymmetrization greatly reduces the contribution of this periodic orbit
in case of Dirichlet boundary conditions on the planes. For the case of our longest spectrum
(R"0.2, S"1) this reduction factor is approximately 2]10~4 which makes the detection of this
periodic orbit practically impossible. For Neumann boundary conditions the contribution is
comparable to the ST case and is appreciable.

Formula (95) together with the algorithm described above are the basis for our computations of
the semiclassical contributions of the periodic orbits of the SB. Speci"cally, the contribution of
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a code=K is given by

A
WK
"

¸10
WK

K
W
K s(c)H(g( )p

W
K

plcr Ddet(I!M
WK

)D1@2
, (99)

where ¸10
W
K is the length of the periodic orbit, K

WK
" (number of distinct realizations of =K

under O
h
)/48 and r is the repetition index. The term p

WK
is due to the re#ections from the spheres

and is determined by the boundary conditions on them. For Neumann boundary conditions
p
WK
"1, for Dirichlet boundary conditions p

WK
"(!1)n, where n is the number of bounces.

5.2. Length spectrum

Having derived the explicit expression for the semiclassical amplitudes for the SB (99), we are in
position to transform the trace formula (87) to a form which can be used for numerical computa-
tions which test its validity. We de"ne the length spectrum as the Fourier transform of the density of
states:

D(l ),
1

J2pP
`=

~=

d(k)e*kldk"
1

J2p
+
n

e*kn l . (100)

For convenience, we de"ne d(!k),d(k)Nk
~n

"!k
n

and the sum is carried out for all
n3ZCM0N. Using the trace formula (87) we obtain semiclassically

D
4#

(l)"DM (l)#D
""

(l)#+
PO
S

p
2
A

j
[d(l!¸

j
)#d(l#¸

j
)] .

(101)

In the above DM (l) is a singularity at l"0 which is due to the smooth density of states. The length
spectrum is sharply peaked near lengths of periodic orbits hence its name. To regularize (101) such
that it can be applied to "nite samples of the quantum spectrum, we use a weight function and
construct the weighted length spectrum [79]:

D(w)(l; k),
1

J2pP
`=

~=

w(k!k@)d(k@)e*k{ldk@"
1

J2p
+
n

w(k!k
n
)e*kn l , (102)

where w is a weight function (with an e!ective "nite support) that is concentrated at the origin. The
corresponding semiclassical expression is:

D(w)
4#

(l; k)"DM (w)(l )#D(w)
""

(l )#+
PO

A
j

2
[w( (l!¸

j
)e*k(l~Lj )#w( (l#¸

j
)e*k(l`Lj )] , (103)

where w( (l),(1/J2p):`=
~=

w(k)e*kldk is the Fourier transform of w(k).
In principle, d(k) and D(l) contain the same information and are therefore equivalent. However,

for our purposes, it is advantageous to use the length spectrum D(l ) (and in practice D(w)(l;k)) rather
than the spectral density (87) for the following reasons:

f The regularized semiclassical length spectrum, D(w)
4#

, is absolutely convergent for suitably chosen
weight functions [79] (e.g. Gaussians). This is in contrast with the original trace formula (87).
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Fig. 27. Absolute value of the quantal length spectra DD(w)D with a Gaussian window, p"30, compared to the theoretical
prediction (105). The location of the shortest bouncing ball is indicated by the vertical line.

f There is an exact mathematical result [80] that states that for billiards the singular supports of
D(l) and of D

4#
(l) are the same, if the in"nite spectra are considered. This exact quantum}classical

result speci"cally relates to the length spectra. It is therefore useful to identify and treat transient
e!ects (e.g. di!raction contributions) for "nite spectra using the length representation.

f The trace formula (87) can be considered as a means to quantize a chaotic system, since it
expresses the quantal density of states in terms of the classical length spectrum. However, in
practice, this is not convenient because the semiclassical amplitudes are only leading terms in
asymptotic series in k (equivalently in +). For "nite values of k there can be large deviations due
to sub-leading corrections [6,7] and also due to signi"cant di!raction corrections [8,81,38].
Treating the trace formula the other way (`inverse quantum chaologya) is advantageous because
the quantal amplitudes have all equal weights 1.

f The appearance of peaks in both d(k) and D(l) comes as a result of the constructive interference of
many oscillatory contributions. Any missing or spurious contribution can blur the peaks (see
Fig. 27 for an example with a single energy level missing). For the energy levels we have a good
control on the completeness of the spectrum due to Weyl's law (see Appendix I). As discussed
above, this is not the case for periodic orbits where we do not have an independent veri"cation of
their completeness. Hence it is advantageous to use the energy levels which are known to be
complete in order to reproduce peaks that correspond to the periodic orbits.

f For the Sinai billiard the low-lying domain of the spectrum is peculiar due to e!ects of
desymmetrization (see Section 2.4). For Dirichlet boundary conditions on the planes, the levels
k
n
R(9 are very similar to those of the integrable case (R"0). The `chaotica levels for which

the semiclassical approximation is valid (k
n
R'9) thus start higher up, which makes the

semiclassical reproduction of them very di$cult in practice even with the use of Berry}Keating
resummation techniques [69]. On the other hand, using the quantum levels we can reproduce
a few isolated length peaks, as will be seen in the sequel.

In the following we shall demonstrate a stringent test of the completeness and of the accuracy of
the quantal spectrum using the length spectrum. Then we shall investigate the agreement between
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the quantal and the semiclassical length spectra. We shall employ a technique to "lter the e!ects
of the bouncing balls, such that only generic contributions remain.

5.3. A semiclassical test of the quantal spectrum

In the following we use the length spectrum in order to develop a stringent test of the
completeness and integrity of the quantal spectrum. This supplements the integrity and complete-
ness analysis of the quantal spectrum done in Sections 2.4 and 2.5. The idea is to focus on an
isolated contribution to the length spectrum that can be compared to an analytical result. In
Section 3.1 we discussed the integrable billiard (R"0) and observed that there are contributions to
the density of states due to isolated but neutral periodic orbits. The shortest periodic orbit of this
kind has length S/J3+0.577S and was shown in Fig. 6. Its contribution must prevail for R'0
until it is shadowed by the inscribed sphere, which occurs at R"S/J6+0.41S. Being the shortest
bouncing ball, it is isolated from the lengths of other bouncing balls. The only generic periodic
orbit, for R"0.2, which comes near this length, is the shortest unstable periodic orbit of length
0.6S. However, for Dirichlet boundary conditions on the planes the latter is practically eliminated
due to symmetry e!ects as was discussed in Section 5.1. Since other periodic orbits are fairly
distant, this shortest bouncing ball is an ideal test-ground of the length spectrum. Using (31) and
a Gaussian window:

w(k!k@)"
1

J2pp2
expC!

(k!k@)2
2p2 D , (104)

one obtains the contribution of the shortest bouncing ball to the length spectrum:

D(w)
4#,4)035%45v""

(l; k)"
e*k(l~S@J3)

(6p)3@2
exp[!(l!S/J3)2p2/2] . (105)

Due to its isolation, one expects that the shortest bouncing ball gives the dominant contribution to
the length spectrum near its length. Thus, for l+S/J3, one has DD(8)

4#
D+DD(w)

4#,4)035%45v""
D. The latter is

independent of k. To test the above relation, we computed the quantal length spectrum D(w) for
R"0 and R"0.2 for two di!erent values of k, and compared with (105). The results are shown in
Fig. 27, and the agreement is very satisfactory.

To show how sensitive and stringent this test is, we removed from the R"0.2 quantal spectrum
a single level, k

1500
"175.1182, and studied the e!ect on the length spectrum. As is seen in the

"gure, this is enough to severely damage the agreement between the quantum data and the
theoretical expectation. Therefore, we conclude that our spectrum is complete and also accurate to
a high degree.

5.4. Filtering the bouncing-balls I: Dirichlet}Neumann diwerence

The ultimate goal of our semiclassical analysis is to test the predictions due to Gutzwiller's trace
formula. Since the 3D Sinai is meant to be a paradigm for 3D systems, we must remove the
in#uence of the non-generic bouncing-ball families and "nd a way to focus on the contributions of
the generic and unstable periodic orbit. This is imperative, because in the 3D Sinai billiard the
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Fig. 28. Quantal length spectra for R"0 and 0.2 compared to semiclassical length spectrum for R"0.2 that contains
only generic, unstable periodic orbits. In all cases k"160, p"30. The locations of the bouncing balls are indicated:
daggers for 2-parameter bouncing balls that occupy 3D volume in con"guration space, stars for 2D bouncing balls and
crosses for 1D bouncing balls.

bouncing balls have contributions which are much larger than those of the generic periodic orbits.
Inspecting Eqs. (31) and (99), we "nd that the contributions of the leading-order bouncing balls are
stronger by a factor of k than those of the generic periodic orbits. This is worse than in the 2D case,
where the factor is Jk. To show how overwhelming is the e!ect of the bouncing balls, we plot in
Fig. 28 the quantal lengths spectra DD(w)D for R"0 and 0.2 (Dirichlet everywhere) together with
DD(w)

4#
D which contains contributions only from generic and unstable periodic orbits. One observes

that all the peaks in the quantal length spectra are near lengths of the bouncing balls. Contribu-
tions of generic periodic orbits are completely overwhelmed by those of the bouncing balls and
cannot be traced in the quantal length spectrum of R"0.2. Also, we see that for R"0.2 the peaks
are in general lower than for R"0. This is because of the (partial or complete) shadowing e!ect of
the inscribed sphere that reduces the prefactors of the bouncing balls as R increases.

In the case of the 2D Sinai billiard it was possible to analytically "lter the e!ect of the bouncing
balls from the semiclassical density of states [37,17]. In three dimensions this is much more
di$cult. The functional forms of the contributions to the density of states of the bouncing balls
are given in (31), but it is a di$cult geometric problem to calculate the prefactors which are
proportional to the cross sections of the bouncing-ball manifolds in con"guration space. The
desymmetrization makes this di$culty even greater and the calculations become very intricate. In
addition, there is always an inxnite number of bouncing-ball manifolds in the 3D Sinai. This is in
contrast with the 2D Sinai, in which a "nite (and usually quite small for moderate radii) number of
bouncing-ball families exist. All this means that an analytical subtraction of the bouncing-ball
contributions is very intricate and vulnerable to errors which are di$cult to detect and can have
a devastating e!ect on the quantal-semiclassical agreement.

In order to circumvent these di$culties, we present in the following an e$cient and simple
method to get rid of the bouncing balls. The idea is simple: the bouncing balls are exactly those
periodic orbits that do not re#ect from the sphere. Therefore, changing the boundary conditions on
the sphere does not a!ect the bouncing-ball contributions. Thus, the semiclassical density of states
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Fig. 29. Dirichlet}Neumann di!erence length spectra for R"0.2, with k"100, p"30. The semiclassical length
spectrum is computed according to (108). The daggers, stars and crosses indicate the positions of the bouncing balls (refer
to Fig. 28) and the vertical bars indicate the positions of the generic, unstable periodic orbits.

for Dirichlet/Neumann boundary conditions on the sphere is

d
D@N

"dM
D@N

#d
""
#d(04#)

D@N
. (106)

The di!erence d
D
!d

N
is hence independent (in leading approximation in k) of d

""
and has the

standard form of a trace formula:
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Here A(D)
j

, A(N)
j

are the coe$cients that correspond to Dirichlet and Neumann cases, respectively. In
fact, for Dirichlet, each re#ection with the sphere causes a sign change, while for Neumann there are
no sign changes. Therefore,

A(D~N)
j

,A(D)
j

!A(N)
j

"G
2A(D)

j
odd number of reflections ,

0 even number of reflections ,
(108)

and we expect to observe in the length spectrum of d
D~N

contributions only due to generic periodic
orbits with an odd number of re#ections. The results of the numerical computations are presented
in Fig. 29 where we compare the quantal (exact) vs. semiclassical (theoretical) length spectra. We
observe on the outset that in contrast to Fig. 28 the quantal and semiclassical length spectra are
of similar magnitudes and the bouncing balls no longer dominate. The peaks near lengths that
correspond to the bouncing balls are greatly diminished, and in fact we see that the peak
corresponding to the shortest bouncing ball (l+0.577) is completely absent, as predicted by the
theory. Even more important is the remarkable agreement between the quantal and the semiclassi-
cal length spectra which one observes near various peaks (e.g. near l"0.75, 1.25, 2). Since the
semiclassical length spectrum contains only generic contributions from unstable periodic orbits,
this means that we demonstrated the existence and the correctness of these Gutzwiller contri-
butions in the quantal levels. Therefore, one can say that at least as far as length spectra are
concerned, the semiclassical trace formula is partially successful. There are, however, a few
locations for which there is no agreement between the quantal and the semiclassical length spectra.

H. Primack, U. Smilansky / Physics Reports 327 (2000) 1}107 55



The places where this discrepancy takes place are notably located near 3D bouncing-ball lengths.
This suggests that there are `remnantsa of the bouncing-ball contributions that are not "ltered by
the Dirichlet}Neumann di!erence procedure. It is natural to expect that these remnants are most
prominent for the strongest (3D) bouncing balls. The origin of these remnants are the periodic
orbits that are exactly tangent to the sphere. As an example, consider the 3D bouncing-ball families
that are shown in Fig. 2 (upper part). The corresponding tangent orbits constitute a 1-parameter
family that surrounds the sphere like a `coronaa. For a single tangent traversal their contributions
acquire opposite signs for Dirichlet and Neumann boundary conditions on the sphere. Hence, the
Dirichlet}Neumann di!erence procedure still include these contributions which is apparent in the
large discrepancy near l"1. For two tangent traversals the Dirichlet and Neumann contributions
have the same sign and hence cancel each other. This is indeed con"rmed in Fig. 29 where we
observe that near l"2 there is no discrepancy between the quantal and the semiclassical length
spectra.

The above-mentioned tangent orbits belong to the set of points in phase space in which the
classical mapping is discontinuous. Semiclassically they give rise to di!raction e!ects. Tangent
orbits were treated for the 2D case in our work [38,81]. To eliminate their e!ects we need
to sharpen our tools and to "nd a better "ltering method than the Dirichlet}Neumann di!erence
procedure. This is performed in the following using mixed boundary conditions.

5.5. Filtering the bouncing-balls II: mixed boundary conditions

The idea behind the Dirichlet}Neumann di!erence method was to subtract two spectra which
di!er only by their boundary conditions on the sphere. This can be generalized, if one replaces the
discrete `parametera of Dirichlet or Neumann conditions by a continuous parameter a, and studies
the di!erences of the corresponding densities of states d(k; a

1
)!d(k; a

2
). In Section 2 we discussed

the mixed boundary conditions regarding the exact quantization of the 3D SB and gave the
a-dependent expressions for the quantal phase shifts. Mixed boundary conditions were extensively
discussed in [82,83].

To include the mixed boundary conditions in the semiclassical trace formula we generalize the
results of Berry [15]. There, he derived the trace formula for the 2D Sinai billiard from an
expansion of the KKR determinant in terms of traces. If one uses the 3D KKR matrix with (8) and
performs a similar expansion, the result is a modi"cation of the Gutzwiller terms as follows:

A
j
cos(k¸

j
)PA

j
cos(k¸

j
#n

j
p#/

j
) , (109)

/
j
"(!2)

nj

+
i/1

arctanA
i cot a

k cos h(j)
i
B . (110)

Here A
j
are the semiclassical coe$cients for the Dirichlet conditions on the sphere (cf. Eq. (99)) and

n
j
counts the number of re#ections from the sphere. The angles h(j)

i
are the re#ection angles from the

sphere measured from the normal of the jth periodic orbit. It is instructive to note that the phases
(110) above are exactly the same as those obtained by a plane wave that re#ects from an in"nite
plane with mixed boundary conditions (2). This is consistent with the local nature of the semiclassi-
cal approximation. A prominent feature of the mixed boundary conditions which is manifest in
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(109) is that they do not a!ect the geometrical properties (length, stability) of the periodic orbits.
Rather, they only cause a change of a phase which depends on the geometry of the periodic orbit.
This is due to the fact that the mixing parameter a has no classical analogue. The invariance of
periodic orbits with respect to a renders the mixed boundary conditions an attractive parameter
for, e.g. investigations of parametric statistics. This was discussed and demonstrated in detail
in [83].

We are now in a position to apply the mixed boundary conditions to get an e$cient "ltering of
the bouncing-ball contributions. We "rst note that if we "x i, then the levels are functions of a:
k
n
"k

n
(a). Let us consider the derivative of the quantal counting function at a"0:

dI (k),
RN(k; a)
Ra Ka/0

"+
n

R
RaH[k!k

n
(a)]Ka/0

"+
n
A!

dk
n
(a)

da Ba/0

d(k!k
n
) , (111)

where k
n
"k

n
(0) are the Dirichlet eigenvalues. Hence, the quantity dI is a weighted density of states

with delta-peaks located on the Dirichlet eigenvalues.
The semiclassical expression for dI does not contain the leading contribution of the bouncing

balls, since this contribution is independent of a. The semiclassical contributions of the isolated
periodic orbits to dI are of the form A

j
B

j
cos(k¸

j
), where

B
j
"

2k
i

nj
+
i/1

cos h(j)
i

. (112)

This is easily derived from (109) and (110). Since the re#ection angles h(j)
i

are in the range [0,p/2],
the coe$cient B

j
vanishes if and only if h(j)

i
"p/2 for all i"1,2, n

j
, which is an exact tangency.

Therefore, exactly tangent periodic orbits are also eliminated by the derivative method. This is the
desired e!ect of the mixed boundary conditions method that serves to further clean the spectrum
from sub-leading contributions of the bouncing balls. We summarize Eqs. (111) and (112):

dI (k)"+
n

v
n
d(k!k

n
)+(4.005)

5%3.
)#+

PO

A
j
B
j
cos(k¸

j
), v

n
,A!

Rk
n
Ra Ba/0

. (113)

To check the utility of dI and to verify (113) we computed both sides of (113) for R"0.2 and
i"100. The quantal spectrum was computed for a"0.003 and the derivatives v

n
were obtained

by the "nite di!erences from the a"0 (Dirichlet) spectrum. The coe$cients B
j
were extracted from

the geometry of the periodic orbits. In Figs. 30 and 31 the length spectra are compared. The
agreement between the quantal and the semiclassical data is impressive, especially for the lower
l-values. There are no signi"cant remnants of peaks near the bouncing-ball locations, and the peaks
correspond to the generic and unstable periodic orbits. This demonstrates the utility of using dI as
an e$cient means for "ltering the spectrum from the non-generic e!ects.

The quantal-semiclassical agreement of the length spectra is not perfect, however, and it is
instructive to list possible causes of this disagreement. We "rst recall that the semiclassical
amplitudes A

j
are the leading terms in an asymptotic series, hence we expect corrections of order

1/k to the weights of periodic orbits. They are denoted as + corrections and were treated in detail by
Gaspard and Alonso [6] and by Alonso and Gaspard [7]. In our case, however, 1/k+1/100 and
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Fig. 30. Length spectra for the mixed boundary conditions derivative method (113). Data are for R"0.2, k"150,
p"30, i"100. The dashed line represents DD(w)(l)!D(w)

4#
(l)D. The daggers, stars and crosses indicate the positions of the

bouncing balls (refer to Fig. 28) and the vertical bars indicate the positions of the generic, unstable periodic orbits.

Fig. 31. Continuation of Fig. 30 to 2.54l45. We did not indicate the locations of unstable periodic orbits due to their
enormous density.

these corrections are not expected to be dominant. More important are di!raction corrections
which are also "nite k e!ects that stem from the existence of a concave component (the sphere) in
the billiard. Several kinds of di!raction corrections to the trace formula were analysed for 2D
billiards. Vattay et al. [8] considered creeping orbits, and we considered in [38,81] penumbra
corrections. (The penumbra is the region in phase space which is close to tangency:
Dl!kRD+(kR)1@3, where +l is the angular momentum.) We list the various di!raction corrections
in the following:

Creeping orbits: These are orbits which are classically forbidden. They `creepa over concave parts
of the billiard, and their semiclassical contribution is exponentially small in k1@3, which should be
negligible for the k values that we consider.

Exactly tangent orbits: These were already mentioned above, and we showed that their contribu-
tions are eliminated to a large extent by the mixed boundary conditions procedure. For 2D systems
we found, however, that this is true in leading order only, and there are small remnants of the
tangent orbits in the weighted density dI [38]. The magnitude of the remnants in 2D is O(1/Jk),
which is smaller than O(k0) of a generic unstable periodic orbit. In 3D, a similar analysis shows that
the remnants of each family of tangent orbits is O(k0) which is the same magnitude as for unstable
periodic orbits. Reviewing Figs. 30 and 31, we can observe some of the peaks of the quantal-
semiclassical di!erence near lengths that correspond to exactly tangent orbits.

Unstable and isolated periodic orbits that traverse the penumbra: We have shown in [81,38] that
for periodic orbits which just miss tangency with a concave component of the billiard boundary,
there is a correction to the semiclassical amplitude A

j
which is of the same magnitude as A

j
itself.

These O(1) di!raction corrections are the most important corrections to the trace formula for
generic billiards. For periodic orbits which re#ect at an extreme forward direction from a concave
component, the amplitude A

j
is very small due to the extreme classical instability. If we include

58 H. Primack, U. Smilansky / Physics Reports 327 (2000) 1}107



di!raction corrections, the semiclassical contributions of these orbits get much larger. Therefore,
the semiclassical contributions of periodic orbit that traverse the penumbra must be radically
corrected. Moreover, we found that if one considers all the periodic orbits up to the Heisenberg
length ¸

H
,2pdM (k) (necessary to obtain a resolution of one mean level spacing), then almost all of

the periodic orbits are vulnerable to penumbra di!raction corrections.
Classically forbidden periodic orbits that traverse the shaded part of the penumbra: Penumbra

di!raction e!ects lead to semiclassical contributions from periodic orbits that slightly traverse
through a concave component. Since they do not relate to classically allowed orbits, they represent
new contributions to the trace formula rather than corrections of existing ones. Their magnitudes
are comparable to those of generic unstable periodic orbits.

The above list of corrections, which was compiled according to studies of 2D billiards, suggests
that there is a wealth of e!ects that must be considered if one wishes to go beyond the Gutzwiller
trace formula. It is very di$cult to implement these corrections systematically even for 2D billiards,
and it goes beyond the scope of the present work to study them further for the 3D Sinai billiard. We
mention in passing that except exact tangency, the penumbra e!ects are transient and depend
on k.

According to the mathematical theorem [80] mentioned above, the quantal and the semiclassical
length spectra are asymptotically the same. The signi"cance of our "ndings in this section is that we
have shown that the quantal-semiclassical agreement is achieved already for "nite and moderate
values of k and that the corrections are not very large (for the l-range we looked at). This is very
encouraging, and justi"es an optimistic attitude to the validity of the semiclassical approximation
in 3D systems. However, obtaining accurate energy levels from the trace formula involves many
contributions from a large number of periodic orbits. Therefore, one cannot directly infer at this
stage from the accuracy of the peaks of the length spectrum to the accuracy of energy levels. There
is a need to quantify the semiclassical error and to express it in a way which makes use of the above
semiclassical analysis. This is done in Section 6.

6. The accuracy of the semiclassical energy spectrum

One of the most important applications of the trace formula is to explain the spectral statistics
and their relation to the universal predictions of Random Matrix Theory (RMT) [4,5]. However,
a prerequisite for the use of the semiclassical approximation to compute short-range statistics is
that it is able to reproduce the exact spectrum within an error comparable to or less than the mean
level spacing! This is a demanding requirement, and quite often it is doubted whether the
semiclassical approximation is able to reproduce precise levels for high-dimensional systems on the
following grounds. The mean level spacing depends on the dimensionality (number of freedoms) of
the system, and it is O(+d) [3]. Gutzwiller [2] quotes an argument by Pauli [87] to show that in
general the error margin for the semiclassical approximation scales as O(+2) independently of the
dimensionality. Applied to the trace formula, the expected error in units of the mean spacing, which
is the "gure of merit in the present context, is therefore expected to be O(+2~d). We shall refer to this
as the `traditional estimatea. It sets d"2 as a critical dimension for the applicability of the
semiclassical trace formula and hence for the validity of the conclusions which are drawn from it.
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The few systems in d'2 dimensions which were numerically investigated display spectral statistics
which adhere to the predictions of RMT as accurately as their counterparts in d"2 [53,54,19].
Thus, the traditional estimate cannot be correct in the present context, and we shall explain the
reasons why it is inadequate.

In this section we shall develop measures for the accuracy of the semiclassical energy levels. We
shall then derive formulas to evaluate these measures. Using our quantal and classical (periodic
orbits) databases for the 2D and 3D Sinai billiards, we shall apply the formulas and get numerical
bounds for the semiclassical errors.

The problem of the accuracy of the energy spectrum derived from the semiclassical trace formula
was hardly discussed in the literature. Gutzwiller quotes the traditional estimate of O(+2~d) [2,75].
Gaspard and Alonso [6], Alonso and Gaspard [7] and Vattay et al. [8] derived explicit and generic
+ corrections for the trace formula, but do not address directly the issue of semiclassical accuracy of
energy levels. Boasman [88] estimates the accuracy of the BIM [14] for 2D billiards in the case that
the exact kernel is replaced by its asymptotic approximation. He "nds that the resulting error is of
the same magnitude as the mean spacing, in agreement with the traditional estimate. However, the
dependence of the semiclassical error on the dimensionality is not established. We also mention
a recent work by Dahlqvist [89] in which the semiclassical error due to penumbra (di!raction)
e!ects is analytically estimated for the 2D Sinai billiard. The results are compatible with the ones
reported here.

6.1. Measures of the semiclassical error

In order to de"ne a proper error measure for the semiclassical approximation of the energy
spectrum one has to clarify a few issues. In contrast with the EBK quantization which gives an
explicit formula for the spectrum, the semiclassical spectrum for chaotic systems is implicit in
the trace formula, or in the semiclassical expression for the spectral determinant. To extract the
semiclassical spectrum we recall that the exact spectrum, ME

n
N, can be obtained from the exact

counting function:

N(E),
=
+
n/1

H(E!E
n
) (114)

by solving the equation

N(E
n
)"n!1

2
, n"1, 2,2 . (115)

In the last equation, an arbitrarily small amount of smoothing must be applied to the Heavyside
function. In analogy, one obtains the semiclassical spectrum ME4#

n
N as [50]

N
4#

(E4#
n
)"n!1

2
, n"1, 2,2 , (116)

where N
4#

is a semiclassical approximation of N. Note that N
4#

with which we start is not
necessarily a sharp counting function. However, once ME4#

n
N is known, we can `rectifya the smooth

N
4#

into the sharp counting function Nj
4#

[5]:

Nj
4#

(E),
=
+
n/1

H(E!E4#
n
) . (117)
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The most obvious choice for N
4#

is the Gutzwiller trace formula [2] truncated at the Heisenberg
time, which is what we shall use. Alternatively, one can start from the regularized Berry}Keating
Zeta function f

4#
(E) [69], and de"ne N

4#
"NM !(1/p) Im log f

4#
(E#i0), which yields N

4#
"Nj

4#
.

Next, in order to de"ne a quantitative measure of the semiclassical error, one should establish
a one-to-one correspondence between the quantal and the semiclassical levels, namely, one should
identify the semiclassical counterparts of the exact quantum levels. In classically chaotic systems,
for which the Gutzwiller trace formula is applicable, the only constant of the motion is the energy.
This is translated into a single `gooda quantum number in the quantum spectrum, which is the
ordinal number of the levels when ordered by their magnitude. Thus, the only correspondence
which can be established between the exact spectrum ME

n
N and its semiclassical approximation,

ME4#
n
N, is

E
n
%E4#

n
. (118)

This is to be contrasted with integrable systems, where it is appropriate to compare the exact and
approximate levels which have the same quantum numbers.

The natural scale on which the accuracy of semiclassical energy levels should be measured is the
mean level spacing (dM (E))~1. We shall be interested here in the mean semiclassical error, and
possible measures are the mean absolute di!erence

e(1)(E),SdM (E
n
)DE

n
!E4#

n
DT

E
(119)

or the variance

e(2)(E),S(dM (E
n
)(E

n
!E4#

n
))2T

E
, (120)

where S ) T denotes averaging over a spectral interval *E centred at E. The interval *E is large
enough so that the mean number of levels *E ) dM (E)<1. Yet, *E is small enough on the classical
scale, such that dM (E)+constant over the interval considered.

We shall now compare two di!erent estimates for the semiclassical error. The "rst one is the
traditional estimate:

e53!$*5*0/!-"O(+2~d)PG
const, d"2

R, d53
as +P0 (121)

(cf. Section 1). It claims that the semiclassical approximation is (marginally) accurate in two
dimensions, but it fails to predict accurate energy levels for three dimensions or more. We
emphasize that the traditional estimate is a qualitative error measure, emerging from global error
estimate of the time propagator. Hence, it cannot be directly connected to either e(1) or e(2). We
mention it here since it is the one usually quoted in the literature.

One may get a di!erent estimate of the semiclassical error, if the Gutzwiller trace formula (GTF)
is used as a starting point. Suppose that we have calculated N

4#
to a certain degree of precision, and

we compute from it the semiclassical energies E4#
n

using (116). Denote by *N
4#

the higher order
terms which were neglected in the calculation of N

4#
. The expected error in E4#

n
can be estimated by

including *N
4#

and calculating the energy di!erences d
n
. That is, we consider

N
4#

(E4#
n
#d

n
)#*N

4#
(E4#

n
#d

n
)"n!1

2
. (122)
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Combining (116) and (122) we get (to "rst order in d
n
)

d
n
+

!*N
4#

(E4#
n
)

RN
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(E4#
n
)/RE+
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n
)

dM (E4#
n
)

. (123)

In the above we assumed that the #uctuations of N
4#

around its average are not very large. Thus,

e(1),GTF+dM (E4#
n
)Dd

n
D+*N

4#
(E4#

n
) . (124)

Let us apply the above formula and consider the case in which we take for N
4#

its mean part NM ,
and that we include in NM terms of order up to (and including) +~m,m4d. For *N

4#
we use both the

leading correction to NM and the leading order periodic orbit sum which is formally (termwise) of
order +0. Hence,

e(1),GTF
NM

"O(+~m`1)#O(+0)"O(+.*/(~m`1, 0)) . (125)

We conclude that approximating the energies only by the mean counting function NM up to (and
not including) the constant term, is already su$cient to obtain semiclassical energies which are
accurate to O(+0)"O(1) with respect to the mean density of states. Note again that no periodic
orbit contributions were included in N

4#
. Including less terms in NM will lead to a diverging

semiclassical error, while more terms will be masked by the periodic orbit (oscillatory) term. One
can do even better if one includes in N

4#
the smooth terms up to and including the constant term

(O(+0)) together with the leading-order periodic orbit sum which is formally also O(+0). The
semiclassical error is then

e(1),GTF
10

"O(+1) . (126)

That is, the semiclassical energies measured in units of the mean level spacing are asymptotically
accurate independently of the dimension! This estimate grossly contradicts the traditional estimate
(121) and calls for an explanation.

The "rst point that should be noted is that the order of magnitude (power of +) of the periodic
orbit sum, which we considered above to be O(+0), is only a formal one. Indeed, each term which is
due to a single periodic orbit is of order O(+0). However, the periodic orbit sum absolutely diverges,
and at best it is only conditionally convergent. To give it a numerical meaning, the periodic orbit
sum must therefore be regularized. This is e!ectively achieved by truncating the trace formula or
the corresponding spectral f function [26,69,84,90]. However, the cuto! itself depends on +. One
can conclude that the simple-minded estimate (126) given above is at best a lower bound, and the
error introduced by the periodic orbit sum must be re-evaluated with more care. This point will be
dealt with in great detail in the sequel, and we shall eventually develop a meaningful framework for
evaluating the magnitude of the periodic orbit sum.

The disparity between the traditional estimate of the semiclassical error and the one based on the
trace formula can be further illustrated by the following argument. The periodic orbit formula is
derived from the semiclassical propagator K

4#
using further approximations [2]. Therefore one

wonders, how can it be that further approximations of K
4#

actually reduce the semiclassical error
from (121) to (126)? The puzzle is resolved if we recall that in order to obtain e(1),GTF

10
above we

separated the density of states into a smooth part and an oscillating part, and we required that the
smooth part is accurate enough. To achieve this, we have to go beyond the leading Weyl's term and
to use specialized methods to calculate the smooth density of states beyond the leading order.
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Fig. 32. Illustration of DN(E)!Nj
4#

(E)D for small deviations between quantum and semiclassical energies: e(1);dM ~1,DM .
The quantum staircase N(E) is denoted by the full line and the semiclassical staircase Nj

4#
(E) is denoted by the dashed line.

The di!erence is shaded.

These methods are mostly developed for billiards [82,91,92]. In any case, to obtain e(1),GTF
10

we have
added additional information which goes beyond the leading semiclassical approximation.

A direct check of the accuracy of the semiclassical spectrum using the error measures e(1), e(2) is
exceedingly di$cult due to the exponentially large number of periodic orbits needed. The few cases
where such tests were carried out involve 2D systems and it was possible to check only the lowest
(less than a hundred) levels (e.g. [60,73]). The good agreement between the exact and the
semiclassical values con"rmed the expectation that in 2D the semiclassical error is small. In 3D,
the topological entropy is typically much larger [50,54], and the direct test of the semiclassical
spectrum becomes prohibitive.

Facing with this grim reality, we have to introduce alternative error measures which yield the
desired information, but which are more appropriate for a practical calculation. We construct the
measure

d(2)(E),SDN(E)!Nj
4#

(E)D2T
E

. (127)

As before, the triangular brackets indicate averaging over an energy interval *E about E. We shall
now show that d(2) faithfully re#ects the deviations between the spectra, and is closely related to
e(1) and e(2). Note that the following arguments are purely statistical and apply to every pair of
staircase functions.

Suppose "rst that all the di!erences E4#
n
!E

n
are smaller than the mean spacing. Then, DN!Nj

4#
D

is either 0 or 1 in most of the cases (see Fig. 32). Hence, DN!Nj
4#

D"DN!Nj
4#

D2 along most of the
E-axis. Consequently,

d(2)(E)+SDN(E)!Nj
4#

(E)DT
E

for small deviations . (128)

The right-hand side of the above equation (the fraction of non}zero contributions) equals e(1). Thus,

d(2)+e(1) for small deviations . (129)
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If, on the other hand, deviations are much larger than one mean spacing, the typical horizontal
distance dM DE!E

n
D should be comparable to the vertical distance DN!Nj

4#
D, and hence, in this limit

d(2)+e(2) for large deviations . (130)

Therefore, we expect d(2) to interpolate between e(1) and e(2) throughout the entire range of
deviations. This behaviour was indeed observed in a numerical tests which were performed to
check the above expectations [93]. Moreover, it was shown in [93] that d(2) is completely
equivalent to e(2) when the spectral counting functions are replaced with their smooth counterparts,
provided that the smoothing width is of the order of one mean level spacing and the same
smoothing is applied to both counting functions. That is,

d(2)
4.005)

+e(2) for all deviations . (131)

In testing the semiclassical accuracy, this kind of smoothing is essential and will be introduced by
truncating the trace formula at the Heisenberg time t

H
,hdM . These properties of the measure d(2),

and its complete equivalence to e(2) for smooth counting functions, renders it a most appropriate
measure of the semiclassical error.

We now turn to the practical evaluation of d(2). To perform the energy averaging, we choose
a positive window function w(E@!E) which has a width *E near E and is normalized by
:`=
~=

dE@w2(E@)"1. It falls o! su$ciently rapidly so that all the expressions which follow are well
behaved. We consider the following counting functions that have an e!ective support on an
interval of size *E about E:

NK (E@;E),w(E@!E)N(E@) , (132)

NK j
4#

(E@;E),w(E@!E)Nj
4#

(E@) . (133)

The functions NK and NK j
4#

are sharp staircases, since the multiplication with w preserves the
sharpness of the stairs (it is not a convolution!). We now explicitly construct d(2)(E) as

d(2)(E)"P
`=

~=

dE@DNK (E@; E)!NK j
4#

(E@;E)D2

"P
`=

~=

dE@DN(E@)!Nj
4#

(E@)D2w2(E@!E) . (134)

To obtain d(2)
4.005)

we need to smooth N and Nj
4#

over a scale of order of one mean spacing. One can,
e.g., replace the sharp stairs by error functions. As for Nj

4#
, we prefer to simply replace it with the

original N
4#

, which we assume to be smooth over one mean spacing. That is, we suppose that
N

4#
contains periodic orbits up to Heisenberg time. Hence,

d(2)
4.005)

(E)"P
`=

~=

dE@DN4.005)(E@)!N
4#

(E@)D2w2(E@!E) . (135)

A comment is in order here. Strictly speaking, to satisfy (131) we need to apply the same smoothing
to N and to Nj

4#
, and in general Nj,4.005)

4#
ON

4#
, but there are di!erences of order 1 between the

two functions. However, since our goal is to determine whether the semiclassical error remains
"nite or diverges in the semiclassical limit +P0, we disregard such inaccuracies of order 1.
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If a more accurate error measure is needed, then more care should be practised in this and in the
following steps.

Applying Parseval's theorem to (135) we get

d(2)
4.005)

(E)"
1
+P

`=

~=

dtDDK (t;E)!DK
4#

(t;E)D2 , (136)

where

DK (t;E),
1

J2pP
`=

~=

dE@NK 4.005)(E@; E) exp(iE@t/+) , (137)

DK
4#

(t;E),
1

J2pP
`=

~=

dE@NK
4#

(E@;E) exp(iE@t/+) . (138)

We shall refer to DK , DK
4#

as the (regularized) quantal and semiclassical time spectra, respectively.
These functions are the analogs of the length spectra D(l; k) used in Section 5 for the billiard
problem. The analogy becomes clear by invoking the Gutzwiller trace formula and expressing the
semiclassical counting function as a mean part plus a sum over periodic orbits. We have

N
4#

(E)"NM (E)#+
10

+A
j
(E)

¹
j
(E)

sin[S
j
(E)/+!l

j
p/2] , (139)

where A
j
"¹

j
/(p+r

j
JDdet(I!M

j
)D) is the semiclassical amplitude of the jth periodic orbit, and

¹
j
,S

j
,l
j
, M

j
, r

j
are its period, action, Maslov index, monodromy matrix and repetition index,

respectively. Then, the corresponding time spectrum reads

DK
4#

(t;E)+DM (t;E)#
1
2i

+
10

+A
j
(E)

¹
j
(E)

]Me(*@+)*Et`Sj (E)+w( ([t#¹
j
(E)]/+)!e(*@+)*Et~Sj (E)+w( ([t!¹

j
(E)]/+)N . (140)

In the above, the Fourier transform of w is denoted by w( . It is a localized function of t whose
width is *t++/*E. The sum over the periodic orbits in D

4#
therefore produces sharp peaks centred

at times that correspond to the periods ¹
j
. The term DM corresponds to the smooth part

and is sharply peaked near t"0. To obtain (140) we expanded the actions near E to "rst order:
S
j
(E@)+S

j
(E)#(E@!E)¹

j
(E). We note in passing that this approximate expansion of S

j
can be

avoided altogether if one performs the Fourier transform over +~1 rather than over the energy.
This way, an action spectrum will emerge, but also here the action resolution will be "nite, because
the range of +~1 should be limited to the range where dM (E; +) is approximately constant. It turns
out, therefore, that the two approaches are essentially equivalent, and for billiards they are
identical.

The manipulations performed thus far were purely formal, and did not manifestly circumvent the
di$cult task of evaluating d(2)

4.005)
. However, the introduction of the time spectra and formula (136)

put us in a better position than the original expression (134). The advantages of using the time
spectra in the present context are the following:
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f The semiclassical time spectrum DK
4#

(t;E) is absolutely convergent for all times (as long as the
window function w is well behaved, e.g. it is a Gaussian). This statement is correct even if the sum
(140) extends over the entire set of periodic orbits! This is in contrast with the trace formula
expression for N

4#
(and therefore NK

4#
) which is absolutely divergent if all of the periodic orbits

are included.
f Time scale separation: As we noted above, the time spectrum is peaked at times that correspond

to periods of the classical periodic orbits. This allows us to distinguish between various
qualitatively di!erent types of contributions to d(2)

4.005)
.

We shall now pursue the separation of the time scales in detail. We "rst note that due to NK , NK
4#

being real, there is a t% (!t) symmetry in (136), and therefore the time integration can be
restricted to the limits 0 to #R: d(2)"(1/+):`=

~=
2"(2/+):=

0
2 . We now divide the time axis

into four intervals:

04t4*t: The shortest time scale in our problem is *t"+/*E. The contributions to this
time interval are due to the di!erences between the exact and the semiclassical
mean densities of states. This is an important observation, since it allows us to
distinguish between the two sources of semiclassical error } the error that
emerges from the mean densities and the error that originates from the #uctuat-
ing part (periodic orbits). Since we are interested only in the semiclassical error
that results from the #uctuating part of the spectral density, we shall ignore this
regime in the following.

*t4t4t
%3'

: This is the non-universal regime [65], in which periodic orbits are still sparse,
and cannot be characterized statistically. The `ergodica time scale t

%3'
is purely

classical and is independent of +.
t
%3'

4t4t
H
: In this time regime periodic orbits are already in the universal regime and are

dense enough to justify a statistical approach to their proliferation and stability.
The upper limit of this interval is the Heisenberg time t

H
"hdM (E), which is the

time that is needed to resolve the quantum (discrete) nature of a wavepacket with
energy concentrated near E. The Heisenberg time is `quantala in the sense that it
is dependent of +: t

H
"O(+1~d).

t
H
4t(R: This is the regime of `longa orbits which is e!ectively truncated from the

integration as a result of the introduction of a smoothing of the quantal and
semiclassical counting functions, with a smoothing scale of the order of a mean
level spacing.

Dividing the integral (136) according to the above time intervals, we can rewrite d(2)
4.005)

:

d(2)
4.005)

(E)"AP
t%3'

*t
#P

tH

t%3'

#P
=

tH
B

2dt
+

DDK (t;E)!DK
4#

(t;E)D2

,d(2)
4)035

#d(2)
.
#d(2)

-0/'
. (141)

As explained above, d(2)
-0/'

can be ignored due to smoothing on the scale of a mean level spacing. The
integral d(2)

4)035
is to be neglected for the following reason. The integral extends over a time interval

which is "nite and independent of +, and therefore it contains a "xed number of periodic orbits
contributions. The semiclassical approximation provides, for each individual contribution, the
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leading order in +, and therefore [80] we should expect

d(2)
4)035

P0 as +P0 . (142)

Our purpose is to check whether the semiclassical error is "nite or divergent as +P0, and to study
whether the rate of divergence depends on dimensionality. Eq. (142) implies that d(2)

4)035
cannot a!ect

d(2) in the semiclassical limit and we shall neglect it in the following.
We remain with

d(2)
4.005)

+d(2)
.

, (143)

which will be our object of interest from now on.
The fact that t

H
is extremely large on the classical scale renders the calculation of all the periodic

orbits with periods less than t
H

an impossible task. However, sums over periodic orbits when
the period is longer than t

%3'
tend to meaningful limits, and hence, we would like to recast the

expression for d(2)
.

in the following way. Write d(2)
.

as

d(2)
.
"

2
+P

tH

t%3'

dtSDDK (t)!DK
4#

(t)D2T
t

(144)

"

2
+P

tH

t%3'

dtSDDK (t)D2T
t
]C

SDDK (t)!DK
4#

(t)D2T
t

SDDK (t)D2T
t

D (145)

,

2
+P

tH

t%3'

dtSDDK (t)D2T
t
]C(t)"P

tH

t%3'

envelope]correlation , (146)

where the parametric dependence on E was omitted for brevity. The smoothing over t is explicitly
indicated to emphasize that one may use a statistical interpretation for the terms of the integrand.
This is so because in this domain, the density of periodic orbits is so large that within a time interval
of width +/*E there are exponentially many orbits whose contributions are averaged due to the
"nite resolution.

We note now that we can use the following relation between the time spectrum and the spectral
form factor K(q):

SDDK (t)D2T
t

+
dt"

K(q)
4p2q2

dq (147)

where q,t/t
H

is the scaled time. The above form factor is smoothed according to the window
function w. Hence,

d(2)
4.005)

+

1
2p2P

1

q%3'
dq

K(q)C(q)
q2

. (148)

For generic chaotic systems we expect that K(q) agrees with the results of RMT in the universal
regime q'q

%3'
[4,24,65]. Therefore

q4K(q)4gq for q
%3'

(q41 , (149)

where g"1 for systems which violate time reversal symmetry, and g"2 if time reversal symmetry
is respected. This implies that the evaluation of d(2)

4.005)
reduces to

d(2)
4.005)

+

g
2p2P

1

q%3'
dq

C(q)
q

, (150)
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where we took the upper bound gq for K(q). The dependence on + in this expression comes from the
lower integration limit which is proportional to +d~1 as well as from the implicit dependence of
the function C on +.

Formula (150) is our main theoretical result. However, we do not know how to evaluate the
correlation function C(q) from "rst principles. The knowledge of the + corrections to each of the
terms in the semiclassical time spectrum is not su$cient since the resulting series which ought to
be summed is not absolutely convergent. Therefore we have to recourse to a numerical analysis,
which will be described in the next section. The numerical approach requires one further approxi-
mation, which is imposed by the fact that the number of periodic orbits with t(t

H
is prohibitively

large. We had to limit the database of periodic orbits to the domain t(t
#16

with t
%3'

;t
#16

;t
H
.

The time t
#16

has no physical origin, it represents only the limits of our computational resources.
Using the available numerical data we were able to compute C(t) numerically for all t

%3'
(t(t

#16
and we then extrapolated it to the entire domain of interest. We consider this extrapolation
procedure to be the main source of uncertainty. However, since the extrapolation is carried out in
the universal regime, it should be valid if there are no other time scales between t

%3'
and t

H
.

6.2. Numerical results

We used the formalism and de"nitions presented above to check the accuracy of the semiclassi-
cal spectra of the 2D and 3D Sinai billiards. The most important ingredient in this numerical
study is that we could apply the same analysis to the two systems, and by comparing them to give
a reliable answer to the main question posed in this section, namely, how does the semiclassical
accuracy depend on dimensionality.

The classical dynamics in billiards depends on the energy (velocity) trivially, and therefore the
relevant parameter is the length rather than the period of the periodic orbits. Likewise, the
quantum wavenumbers k

n
are the relevant variables in the quantum description. From now on

we shall use the variables (l, k) instead of (t,E), and use `length spectraa rather than `time spectraa.
The semiclassical limit is obtained for kPR and O(+) is equivalent to O(k~1). Note also that for
a billiard NM (k)+Akd where A is proportional to the billiard's volume.

We start with the 2D Sinai billiard, which is the free space between a square of edge S and an
inscribed disc of radius R, with 2R(S. Speci"cally, we use S"1 and R"0.25 and consider the
quarter desymmetrized billiard with Dirichlet boundary conditions for the quantum calculations.
The quantal database consists of the lowest 27,645 eigenvalues in the range 0(k(1320, with
eigenstates which are either symmetric or antisymmetric with respect to re#ection on the main
diagonal. The classical database consists of the shortest 20,273 periodic orbits (including time
reversal, re#ection symmetries and repetitions) in the length range 0(l(5. For each orbit, the
length, the stability determinant and the re#ection phase were recorded. The numerical work is
based on the quantum spectra and on the classical periodic orbits which were computed by Schanz
and Smilansky [17,94] for the 2D billiard.

We begin the numerical analysis by demonstrating numerically the correctness of Eq. (142). That
is, that for each individual contribution of a periodic orbit, the semiclassical error indeed vanishes
in the semiclassical limit. In Fig. 33 we plot DD!D

4#
D for l"0.5 as a function of k. This length

corresponds to the shortest periodic orbit, that is, the one that runs along the edge that connects
the circle with the outer square. For D

4#
we used the Gutzwiller trace formula. As is clearly seen
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Fig. 33. The absolute di!erence between the quantal and the semiclassical (Gutzwiller) length spectra for the 2D Sinai
billiard at l"0.5. This length corresponds to the shortest unstable periodic orbit. The average log}log slope is about
!1.1, indicating approximately k~1 decay. The data were averaged with a Gaussian window.

Fig. 34. The functions C(l; k) for quarter 2D Sinai billiard S"1,R"0.25 with Dirichlet boundary conditions. The
window w(k@!k) was taken to be a Gaussian with standard deviation p"60. We averaged C(l; k) over l-intervals of
+0.2 in accordance with (145) to avoid sharp peaks due to small denominators. The averaging, however, is "ne enough
not to wash out all of the features of C(l; k). The vertical bars indicate the locations of primitive periodic orbits, and the
daggers indicate the locations of the bouncing-ball families.

from the "gure, the quantal}semiclassical di!erence indeed vanishes (approximately as k~1), in
accordance with (142). We emphasize again that this behaviour does not imply that d(2) vanishes in
the semiclassical limit, since the number of periodic orbits included depends on k. It implies only
that d(2)

4)035
vanishes in the limit, since it consists of a "xed and "nite number of periodic orbit

contributions. We should also comment that penumbra corrections to individual grazing orbits
introduce errors which are of order k~c with 0(c(1 [38,81]. However, since the de"nition of
`grazinga is in itself k dependent, one can safely neglect penumbra corrections in estimating the
large k behaviour of d(2)

4)035
.

We now turn to the main body of the analysis, which is the evaluation of d(2)
.

for the 2D Sinai
billiard. Based on the available data sets, we plot in Fig. 34 the function C(l; k) in the interval
2.5(l(5 for various values of k. One can observe, that as a function of l the functions C(l; k)
#uctuate in the interval for which numerical data were available, without exhibiting any systematic
mean trend to increase or to decrease. We therefore approximate C(l; k) by

C(l;k)+const ) f (k),C
!7'

(k) . (151)

As mentioned above, we extrapolate this formula in l up to the Heisenberg length ¸
H
"2pdM (k) and

using (150) we obtain

d(2),2D
4.005)

"

C
!7'

(k)
2p2

ln(¸
H
/¸

%3'
)"C

!7'
(k)O(lnk) . (152)

The last equality is due to ¸
H
"O(kd~1). To evaluate C

!7'
(k) we averaged C(l; k) over the interval

¸
%3'

"3.5(l(5"¸
#16

and the results are shown in Fig. 35. We choose ¸
%3'

"3.5 because the
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Fig. 35. Averaging in l of C(l; k) for 2D Sinai billiard as a function of k.

density of periodic orbits is large enough for this length (see Fig. 34) to expect universal behaviour
of the periodic orbits. (For the Sinai billiard described by #ow the approach to the invariant
measure is algebraic rather than exponential [39,40], and thus one cannot have a well-de"ned ¸

%3'
.

At any rate, the speci"c choice of ¸
%3'

did not a!ect the results in any appreciable way.) Inspecting
C

!7'
(k), it is di$cult to arrive at "rm conclusions, since it seems to #uctuate around a constant

value up to k+900 and then to decline. If we approximate C
!7'

(k) by a constant, we get
a `pessimistica value of d(2):

d(2),2D
4.005)

(k)"O(ln k)"O(ln +) `pessimistica (153)

while if we assume that C
!7'

(k) decays as a power law, C
!7'

(k)"k~b, b'0, then

d(2),2D
4.005)

(k)"O(k~b ln k)P0 `optimistica . (154)

Collecting the two bounds we get

O(k~b ln k)4d(2),2D
4.005)

(k)4O(ln k) . (155)

Our estimates for the 2D Sinai billiard can be summarized by stating that the semiclassical error
diverges no worse than logarithmically (meaning, very mildly). It may well be true that the
semiclassical error is constant or even vanishes in the semiclassical limit. To reach a conclusive
answer one should invest exponentially larger amount of numerical work.

There are a few comments in order here. Firstly, the quarter desymmetrization of the 2D Sinai
billiard does not exhaust its symmetry group, and in fact, a re#ection symmetry around the
diagonal of the square remains. This means, that the spectrum of the quarter 2D Sinai billiard is
composed of two independent spectra, which di!er by their parity with respect to the diagonal. If
we assume that the semiclassical deviations of the two spectra are not correlated, the above
measure is the sum of the two independent measures. It is plausible to assume also that both
spectra have roughly the same semiclassical deviation, and thus d(2),2D

4.005)
is twice the semi-

classical deviation of each of the spectra. Secondly, we recall that the 2D Sinai billiard contains
`bouncing-balla families of neutrally stable periodic orbits [15,17,37]. We have subtracted their
leading-order contribution from DK such that it includes (to leading order) only contributions from
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Fig. 36. Veri"cation of Eq. (156) for the quarter 2D Sinai billiard. We plot I(m),:2mdm@ K(m@)/m@ 2 and compare the
quantum data with RMT. The minimal m corresponds to ¸

%3'
"3.5. The integration is done for smoothing, and we "x

the upper limit to avoid biases due to non-universal regime. Note the logarithmic scale.

Fig. 37. The numerical values of d(2)
4.005)

for the quarter 2D Sinai billiard. We included also the contribution d(2)
4)035

of the
non-universal regime. The contributions from the time interval t

%3'
4t4t

#16
are contained in d(2)

.,#16
, and d(2)

.,%95
is

the extrapolated value for t
#16

4t4t
H

(refer to Eq. (141) and to the end of Section 6.1).

generic, isolated and unstable periodic orbits. This is done since we would like to deduce from the
2D Sinai billiard on the 2D generic case in which the bouncing-balls are not present. (In the Sinai
billiard, which is concave, there are also di!raction e!ects [38,81], but we did not treat them here.)
Thirdly, the analogue of (147) for billiards reads

SDDK (l)D2T
l
dl"

K(m)
4p2m2

dm (156)

when m,l/¸
H
. In Fig. 36 we demonstrate the compliance of the form factor with RMT GOE

using the integrated version of the above relation, and taking into account the presence of two
independent spectra. Finally, it is interesting to know the actual numerical values of d(2),2D

4.005)
(k) for

the k values that we considered. We carried out the computation, and the results are presented in
Fig. 37. One observes that for the entire range we have d(2),2D

4.005)
(k)+0.1;1, which is very

encouraging from an `engineeringa point of view.
We now turn to the analysis of the 3D Sinai billiard. We use the longest quantal spectrum

(R"0.2, Dirichlet) and the classical periodic orbits with length 0(l(5.
To treat the 3D Sinai billiard we have to somewhat modify the formalism which was presented

above. This is due to the fact that in the 3D case the contributions of the various non-generic
bouncing-ball manifolds overwhelm the spectrum [53,54], and unlike the 2D case, it is di$cult to
explicitly eliminate their (leading-order) contributions (cf. the discussion in Section 5.4). Since our
goal is to give an indication of the semiclassical error in generic systems, it is imperative to avoid
this dominant and non-generic e!ect.

We shall use the mixed boundary conditions, which were discussed in Section 5.5 and were
shown to largely "lter the bouncing-ball e!ects. Speci"cally, we consider dI (cf. (113)) for our
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purposes. Let us construct the weighted counting function

NI (k),P
k

0

dk@ dI (k@)"+
n

v
n
H(k!k

n
) . (157)

The function NI is a staircase with stairs of variable height v
n
. As explained above, its advantage

over N is that it is semiclassically free of the bouncing balls (to leading order) and corresponds
only to the generic periodic orbits [83]. Similarly, we construct from dI

4#
the function NI

4#
. Having

de"ned NI , NI
4#

, we proceed in analogy to the Dirichlet case. We form from NI , NI
4#

the functions
NK , NK

4#
, respectively, by multiplication with a window function w(k@!k) and then construct the

measure d(2) as in (134). The only di!erence is that the normalization of w must be modi"ed to
account for the `velocitiesa v

n
such as

dM ~1(k)+
n

v2
n
Dw(k

n
!k)D2"1 . (158)

The above considerations are meaningful provided the `velocitiesa v
n

are narrowly distributed
around a well-de"ned mean v(k), and we consider a small enough k-interval, such that v(k) does not
change appreciably within this interval. Otherwise, d(2) is greatly a!ected by the #uctuations of v

n
(which is undesired) and the meaning of the normalization is questionable. We shall check this
point numerically.

To demonstrate the utility of the above construction using the mixed boundary conditions, we
return to the 2D case. We set i"100p, and note that the spectrum at our disposal for the mixed
case was con"ned to the interval 0(k(600. First, we want to examine the width of the
distribution of the v

n
's. In Fig. 38 we plot the ratio of the standard deviation of v

n
to the mean,

averaged over the k-axis using a Gaussian window. We use the same window also in the
calculations below. The observation is that the distribution of v

n
is moderately narrow and the

width decreases algebraically as k increases. This justi"es the use of the mixed boundary conditions
as was discussed above. One also needs to check the validity of (156), and indeed we found
compliance with GOE also for the mixed case (results not shown). We next compare the functions
C(l;k) for both the Dirichlet and the mixed boundary conditions. It turns out that also in the mixed
case the functions C(l; k) #uctuate in l with no special tendency (not shown). The averages C

!7'
(k)

for the Dirichlet and mixed cases are compared in Fig. 39. The values in the mixed case are
systematically smaller than in the Dirichlet case which is explained by the e$cient "ltering of
tangent and close to tangent orbits that are vulnerable to large di!raction corrections [81,38].
However, from k"250 on the two graphs show the same trends, and the values of C

!7'
in both

cases are of the same magnitude. Thus, the qualitative behaviour of d(2)
4.005)

is shown to be
equivalent in the Dirichlet and mixed cases, which gives us con"dence in using d(2)

4.005)
together with

the mixed boundary conditions procedure.
We "nally applied the mixed boundary conditions procedure to compute d(2)

4.005)
for the

desymmetrized 3D Sinai with S"1, R"0.2 and set i"100. We "rst veri"ed that also in the 3D
case the velocities v

n
have a narrow distribution } see Fig. 38. Next, we examined Eq. (156) using

quantal data, and discovered that there are deviations form GOE (Fig. 40). We have yet no
satisfactory explanation of these deviations, but we suspect that they are caused because the
ergodic limit is not yet reached for the length regime under consideration due to the e!ects of the
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Fig. 38. Calculation of Q,JSv2
n
T!Sv

n
T2/DSv

n
TD for quarter 2D Sinai billiard (up) and for the desymmetrized 3D Sinai

billiard (down).
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Fig. 39. Comparison of C
!7'

(k) for Dirichlet and mixed boundary conditions for the quarter 2D Sinai billiard. We used
a Gaussian window with p"40.

Fig. 40. Check of Eq. (156) for the desymmetrized 3D Sinai billiard. The minimal m corresponds to ¸
%3'

"2.5. The
function I(m) is de"ned as in Fig. 36. Note the logarithmic scale.

in"nite horizon which are more acute in 3D. Nevertheless, from observing the "gure as well as
suggested by semiclassical arguments, it is plausible to assume that K(m)Jm for small m. Hence, this
deviation should not have any qualitative e!ect on d(2) according to (150). Similarly to the 2D case,
the function C(l; k) #uctuates in l, with no special tendency (Fig. 41). If we average C(l; k) over the
universal interval ¸

%3'
"2.54l4¸

#16
"5, we obtain C

!7'
(k) which is shown in Fig. 42. The

averages C
!7'

(k) are #uctuating with a mild decrease in k, and therefore we can again conclude that

O(k~b ln k)4d(2),3D
4.005)

4O(ln k) , (159)

where the `optimistica measure (leftmost term) corresponds to C
!7'

(k)"O(k~b), b'0, and the
`pessimistica one (rightmost term) is due to C

!7'
(k)"const. In other words, the error estimates

(155), (159) for the 2D and the 3D cases, respectively, are the same, and in sharp contrast to the
traditional error estimate which predicts that the errors should be di!erent by a factor O(+~1). On
the basis of our numerical data, and in spite of the uncertainties which were clearly delineated, we
can safely rule out the traditional error estimate.

Our main "nding is that the upper bound on the semiclassical error is a logarithmic divergence,
both for a generic 2D and 3D systems (Eqs. (155), (159)). In this respect, there are a few points which
deserve discussion.

To begin, we shall try to evaluate d(2)
4.005)

using the explicit expressions for the leading corrections
to the semiclassical counting function of a 2D generic billiard system, as derived by Alonso and
Gaspard [7]:

N(k)"NM (k)#+
j

A
j

¸
j

sinCk¸j
#

Q
j

k
#O(1/k2)D , (160)
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Fig. 41. The functions C(l; k) for desymmetrized 3D Sinai billiard S"1, R"0.2 with mixed boundary conditions. We
took a Gaussian window with p"20, and smoothed over l-intervals of +0.3. The upper vertical bars indicate the
locations of primitive periodic orbits.

Fig. 42. Averaging in l of C(l; k) for 3D Sinai billiard as a function of k. The averaging was performed in the interval
¸
%3'

"2.5(l(5"¸
#16

.

where A
j
are the standard semiclassical amplitudes, ¸

j
are the lengths of periodic orbits and Q

j
are

the k-independent amplitudes of the 1/k corrections. The Q
j
's are explicitly given in [7].

We ignored in the above equation the case of odd Maslov indices. If we calculate from N(k)
the corresponding length spectrum DK (l; k) using a (normalized) Gaussian window w(k@!k)"
(1/ 4Jpp2) exp[!(k@!k)2/(2p2)], we obtain

DK (l; k)+
iJp

2 4Jp
+
j

A
j

¸
j

[e*k(l~Lj )~* Qj @ke~(l~Lj )2p2@2!e*k(l`Lj )`* Qj @ke~(l`Lj )2p2@2] . (161)

In the above we regarded the phase e*Qj @k as slowly varying. The results of Alonso and Gaspard [7]
suggest that the Q

j
are approximately proportional to the length of the corresponding periodic

orbits:

Q
j
+Q¸

j
. (162)

We can therefore well approximate DK as

DK (l; k)+
iJp

2 4Jp
e~*Ql@k+

j

A
j

¸
j

[2]"e~*Ql@kDK
4#vGTF

, (163)

where DK
4#vGTF

is the length spectrum which corresponds to the semiclassical Gutzwiller trace
formula for the counting function (without 1/k corrections). We are now in a position to evaluate
the semiclassical error, indeed:

d(2)
4.005)

(k)"2P
LH

L.*/

dlDDK (l; k)!DK
4#vGTF

(l; k)D2"8P
LH

L.*/

dl sin2A
Ql
2kBDDK (l; k)D2 . (164)
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If we use Eq. (156) and K(l)+gl/¸
H

(which is valid for l(¸
H

for chaotic systems), we get

d(2)
4.005)

(k)+
2g
p2P

LH

L.*/

dl
l

sin2A
Ql
2kB"

2g
p2P

QLH @(2k)

QL.*/ @(2k)

dt
sin2(t)

t
. (165)

For kPR we have that

P
QL.*/ @(2k)

0

dt
sin2(t)

t
+P

QL.*/ @(2k)

0

dt ) t"O(1/k2) (166)

which is negligible, hence we can replace the lower limit in (165) with 0:

d(2)
4.005)

(k)+
2g
p2P

QLH @2k

0

dt
sin2(t)

t
. (167)

This is the desired expression. The dimensionality enter in d(2)
4.005)

(k) only through the power of k
in ¸

H
.

Let us apply Eq. (167) to the 2D and the 3D cases. For 2D we have to leading order that
¸
H
"Ak, where A is the billiard's area, thus,

d(2),2D
!/!-:5*#!-

(k)+
2g
p2P

QA@2

0

dt
sin2(t)

t
"const"O(k0) (168)

which means that the semiclassical error in 2D billiards is of the order of the mean spacing, and
therefore the semiclassical trace formula is (marginally) accurate and meaningful. This is compat-
ible with our numerical "ndings.

For 3D, the coe$cients Q
j
were not obtained explicitly, but we shall assume that they are still

proportional to ¸
j

(Eq. (162)) and therefore that (167) holds. For 3D billiards ¸
H
"(</p)k2 to

leading order, where < is the billiard's volume. Thus the upper limit in (167) is Q<k/(2p) which is
large in the semiclassical limit. In this case, we can replace sin2(t) with its mean value 1/2 and the
integrand becomes essentially 1/t which results in

d(2),3D
!/!-:5*#!-

(k)"O(ln k) . (169)

That is, in contrast to the 2D case, the semiclassical error diverges logarithmically and the
semiclassical trace formula becomes meaningless as far as the prediction of individual levels is
concerned. This statement is compatible with our numerical results within the numerical disper-
sion. However, it relies heavily on the assumption that Q

j
+Q¸

j */ 3D
, for which we can o!er no

justi"cation. We note in passing, that the logarithmic divergence persists also for d'3.
Another interesting point relates to integrable systems. It can happen that for an integrable

system it is either di$cult or impossible to express the Hamiltonian as an explicit function of the
action variables. In that case, we cannot assign to the levels other quantum numbers than their
ordinal number, and the semiclassical error can be estimated using d(2). However, since for
integrable systems K(q)"1, we get that

d(2),*/5
4.005)

+

1
2p2P

1

q%3'
dq

C(q)
q2

. (170)
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Therefore, for deviations which are comparable to the chaotic cases, C(q)"O(1), we get
d(2),*/5
4.005)

"O(+1~d) which is much larger than for the chaotic case and diverges for d51.
Formula (150) for the semiclassical error contains semiclassical information in two respects.

Obviously, C(q), which describes the di!erence between the quantal and the semiclassical length
spectra, contains semiclassical information. But also the fact that the lower limit of the integral in
(150) is "nite is a consequence of semiclassical analysis. If this lower limit is replaced by 0, the
integral diverges for "nite values of +. Therefore, the fact that the integral has a lower cuto!, or
rather, that D is exactly 0 below the shortest period, is a crucial semiclassical ingredient in our
analysis.

Finally, we consider the case in which the semiclassical error is estimated with no periodic orbits
taken into account. That is, we want to calculate SDN(E)!NM (E)D2T

E
which is the number variance

R2(x) for the large argument x"*EdM (E)<1. This implies C(q)"1, and using (150) we get that
d(2)
4.005)

"g/(2p2) ln(t
H
/t

%3'
), which in the semiclassical limit becomes g/(2p2) ln(t

H
)"O(ln +). This

result is fully consistent and compatible with previous results for the asymptotic (saturation) value
of the number variance R2 (see for instance [65,95,96]). It implies also that the pessimistic error
bound (153) is of the same magnitude as if periodic orbits were not taken into account at all.
(Periodic orbits improve, however, quantitatively, since in all cases we obtained C

!7'
(1.) Thus, if

we assume that periodic orbit contributions do not make N
4#

worse than NM , then the pessimistic
error bound O(ln +) is the maximal one in any dimension d. This excludes, in particular, algebraic
semiclassical errors, and thus refutes the traditional estimate O(+2~d).

7. Semiclassical theory of spectral statistics

In Section 3 we studied several quantal spectral statistics of the Sinai billiard and have shown
that they can be reproduced to a rather high accuracy by the predictions of Random Matrix
Theory (RMT). In the present section we would like to study the spectral two-point correlation
function in the semiclassical approximation, and to show how the classical sum rules and
correlations of periodic orbits, which were de"ned in Section 4, can be used to reconstruct, within
the semiclassical approximation, the predictions of RMT.

The starting point of the present discussion is the observation that the semiclassical spectrum
can be derived from a secular equation of the form [26,84]

Z
4#

(k),det(I!S(k))"0 , (171)

where S(k) is a (semiclassically) unitary matrix which depends parametrically on the wavenumber k.
In the semiclassical approximation, the unitary operator S(k) can be considered as the quantum
analogue of a classical PoincareH mapping, which for billiard systems in d dimensions, is the classical
billiard bounce map. The dimension N(k) of the Hilbert space on which S(k) acts, can be expressed
within the semiclassical approximation, in terms of the phase-space volume of the PoincareH section
M as follows:

N(k)"[N(k)], N(k)"
M

(2p+)d~1
, (172)
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where [ ) ] stands for the integer value. For a billiard in two dimensions N(k)"Lk/p, where
L is the circumference of the billiard. In the case of the fully desymmetrized 3D Sinai billiard, for
which we consider the sphere return map, N(k)"k2R2/48. The reason why we de"ned the smooth
function N(k) will become clear in the sequel.

The eigenvalues of S(k) are on the unit circle: Mexp(ih
l
(k))NN(k)

l/1
. If for a certain k, one of the

eigenphases is an integer multiple of 2p, then Eq. (171) is satis"ed, and this value of k belongs to
the spectrum. Because of this connection between the billiard spectrum on the k-axis and the
eigenphase spectrum on the unit circle, the statistics of k-intervals can be read o! the corresponding
statistics of the eigenphase intervals averaged over an appropriate k-interval where N(k) is constant
[26,84]. For this reason, it is enough to study the eigenphase statistics, and if they can be
reproduced by the predictions of RMT for the relevant circular ensemble, the wavenumber spectral
statistics will conform with the prediction of RMT for the corresponding Gaussian ensemble.

The spectral density of the matrix S(k) can be written as

d
2.

(h; k),
N(k)
+
l/1

d(h!h
l
(k))"

N(k)
2p

#

1
2p

=
+
n/1

(e~*nhtrSn#e*nhtr (Ss)n) . (173)

The corresponding two-point correlation function is derived by computing

C
2
(g)"

2p
NTP

2p

0

dh
2p

d
2.Ah#

g
2
; kB d

2.Ah!
g
2
; kBU , (174)

where S ) T denotes an average over a k-interval where N(k) takes the constant value N. The
two-point spectral form factor is de"ned as the Fourier coe$cients of C

2
(g), and by substituting

(173) in (174), one "nds that they are equal to (1/N)SDtrSn(k)D2T. RMT provides an explicit
expression

1
N

SDtrSn(k)D2T
RMT

"KbA
n
NB , (175)

where b is the standard ensemble label [59]. The most important fact to be noticed is that n, the
`topological timea, is scaled by N, which plays here the ro( le of the Heisenberg time. For a Poisson
ensemble,

1
N

SDtrSn(k)D2T
P0*440/

"1 . (176)

From now on we shall be concerned with the circular orthogonal ensemble (COE: b"1). The
function K

COE
(q) is a monotonically increasing function which starts as 2q near the origin, and

bends towards its asymptotic value 1 in the vicinity of q"1. For an explicit expression consult, e.g.
[72]. Our aim is to show that the semiclassical expression for (1/N)SDtrSn(k)D2T reproduces this
behaviour when the correlations of periodic orbits are properly taken into account.

Recalling that the unitary matrix S(k) is the quantum analogue of the PoincareH map, one can
express trSn(k) in terms of the n-periodic orbits of the mapping. If the semiclassical mapping is
hyperbolic, and the billiard bounce map is considered, one gets [72]

trSn(k)+ +
j|Pn

n
p,j

Ddet(I!M
j
)D1@2

e*kLj (!1)bj . (177)
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Here P
n
is the set of all n-periodic orbits of the bounce map, n

p,j
is the period of the primitive orbit

of which the n-periodic orbit is a multiple. The monodromy matrix is denoted M
j
, ¸

j
is the length,

and b
j

is the number of bounces from the boundaries (for a Dirichlet boundary condition). Note
that when the PoincareH section consists of a part of the boundary (as is the case for the sphere
return map in the 3D Sinai billiard), b

j
can be di!erent from n. Recalling the de"nition of

the classical density d
#-
(l; n) (72) in Section 4.4, and realizing that the pre-exponential factors are just

the AI
j

coe$cients (73), we deduce that within the semiclassical approximation,

P
2p

0

e*nh d
2.

(h; k) dh"tr Sn(k)+P
=

0

e*kl d
#-
(l; n) dl . (178)

This equation is of fundamental importance, because it expresses the duality between the quantum
mechanical spectral density and the classical length density via their Fourier transforms [11].
Hence, the spectral form factors of the classical and the quantum spectral distributions are also
related by

1
N

SDtrSn(k)D2T"
1
N

SK
#-
(k; n)T"

1
NTK +

j|Pn

AI
j
e*kLj K

2

U . (179)

We have shown already in Section 4.4 that the length spectrum as de"ned by the classical density
(72) contains non-trivial correlations. They appear on a scale j(n;R) which is inversely proportional
to the value of k where the classical correlation function approaches it asymptotic value gn. What
remains to be seen now is the extent by which the semiclassical expression (179) reproduces the
expected universal scaling and the detailed functional dependence on the scaled topological time
q"n/N as predicted by RMT.

The large k limit of K
#-
(k; n) was written explicitly in (79) and veri"ed numerically:

K
#-
(kPR; n)+Sn

p
g
p
T );(n)+2n . (180)

This limit corresponds to the limit n/N(k)P0 so that

(1/N)SDtrSn(k)D2T+2n/N , (181)

which is identical to the behaviour of K
COE

(q) in the small q limit [59]. Therefore, the classical
uniform coverage of phase space guarantees the adherence to RMT in the limit qP0. This result
was derived originally by Berry in his seminal paper [4]. It is the `diagonal approximationa
which can be used as long as the range of k values is larger than j(n;R)~1. In other words, this
approximation is valid on the scale on which the classical length spectrum looks uncorrelated. This
observation shows that the domain of validity of the diagonal approximation has nothing to do
with the `Ehrenfest timea, sometimes also called the `log + timea. Rather, it depends on the
correlation length in the classical spectrum j(n;R), as displayed by the classical form factor.

Given the classical correlation function, K
#-
(k; n), it cannot be meaningfully compared to the

COE result at all values of the parameters. This is because once N(k)"1, one cannot talk about
quantum two-point correlations, since the spectrum consists of a single point on the unit circle. In
other words, this is the extreme quantum limit, where the Hilbert space consists of a single state.
Therefore, the k-values to be used must exceed in the case of the 3D Sinai billiard k

.*/
"J96/R,

which corresponds to N(k)"2. Hence, the values of q"n/N which are accessible are restricted to
the range 04q4n/2.
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Fig. 43. Comparing the classical form factor with the universal RMT predictions for various cases of the 3D SB.

In Fig. 43 we summarize our numerical results by comparing the form factor obtained from
periodic orbit theory K

#-
with the theoretical RMT prediction K

COE
. What we actually show is the

running average,

C(q),
1
qP

q

0

dq@
q@
n

K
#-
(q@) , (182)

where K
#-
(q),K

#-
(k(q; n); n). The corresponding COE curve (cf. Eqs. (175) and (179)) is given by

C(q),
1
qP

q

0

dq@K
COE

(q@) . (183)

The `diagonal approximationa curve is obtained by replacing K
COE

(q) by 2q, namely, classical
correlations are ignored. The data sets which were chosen are those for which su$ciently many
periodic orbits were computed so that the sum rule;(n; l)+1 was satis"ed. We did not include the
n"1 data because they are non-generic. As clearly seen from the "gure, the data are consistent
with the RMT expression and they deviate appreciably from the diagonal approximation. This is
entirely due to the presence of classical correlations, and it shows that the classical correlations are
indeed responsible for the quantitative agreement. Note also that the data represents four di!erent
combinations of n and R, which shows that the classical scaling is indeed consistent with the
universal scaling implied by RMT. In Fig. 44 we present essentially the same data, but integrated
and plotted using the variable k, similarly to Section 4. The integration started at k

.*/
for

a meaningful comparison with RMT. Again, we observe the quantitative agreement, which is
especially good for the higher n values (n"3, 4).

In Section 4.4 we showed that the classical correlations originate to a large extent from the X(=)
families of periodic orbits. Moreover, the form factor which was calculated by neglecting cross-
family contributions was much smoother than the original one. It is therefore appealing to take
advantage of this smoothness and compare the numerical and theoretical form factors themselves
instead of their running averages. We de"ne
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Fig. 44. The classical form factor compared with the universal RMT predictions for various cases of the 3D SB in the
variable k.

K
#-
(N; n),SK

#-
(k; n)T

N
"

1
k(N#1)!k(N)P

k(N`1)

k(N)

dk@K
#-
(k@; n) (184)

which is the semiclassical ensemble average of the form factor. In Fig. 45 we compare K
#-
(N; n) with

N )K
COE

(n/N). The classical form factor included intra-family contribution only, and we multiplied
it by a factor such that asymptotically it will match the theoretical value 2n. This factor compen-
sates for the partial breaking of time-reversal symmetry and for the fact that the classical saturation
is to values slightly below 2n for the n's under consideration. One observes that the agreement is
quite good, and in any case the classical form factor is sharply di!erent from the diagonal
approximation, meaning that classical correlations are important. In Fig. 46 we present the same
results with q"n/N as the variable. It again shows that the classical form factor agrees with the
COE expression beyond the validity range of the diagonal approximation. The range of q where
a good agreement is observed increases with n as expected, but the estimated domain of valid
comparison q(2n seems to be too optimistic.
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Fig. 45. The classical form factor K
#-
(N; n) compared to RMT COE. The variable is N.

In summary, we can say that the present results show that the semiclassical theory based on
the Gutzwiller trace formula is capable to reproduce the COE form factor beyond the `diagonal
approximationa. To do this, one has to include the classical correlations in the way which was done
here, and once this is done, there is no need to augment the theory by uncontrolled `higher ordera
or `di!ractivea corrections as was done in [85,86] and by others. The results obtained in the
present section are corroborated by a recent analysis of periodic orbit lengths correlations in
billiards constructed from octagonal modular domains in the hyperbolic plain [74]. The same
quality of agreement was obtained between the classical form factor and the corresponding RMT
result. These billiards are in two dimensions, and therefore the scaling laws depend di!erently on k,
and the fact that the resulting scaled quantities agree with the expressions derived from RMT gives
further support to the line of thinking developed here. We have grounds to believe that the classical
correlations are universal in hyperbolic systems, and have to do with the self-similar organization
of the set of periodic orbits. The previous numerical studies which were conducted also on di!erent
systems support this conjecture [9,11].
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Fig. 46. The classical form factor K
#-
(N; n) compared to RMT COE. The control variable is q"n/N.

8. Summary

In the present paper we tried to provide a complete description of a paradigmatic three-
dimensional quantum system which is chaotic in the classical limit } the three-dimensional Sinai
billiard. This study is called for especially because most of the detailed investigations in the "eld
were carried out for systems in two dimensions.

Our main purpose in this study was to emphasize and clarify issues which are genuinely related
to the three dimensional character of the system. The question which concerned us most was
whether the semiclassical approximation } the main theoretical tool in the "eld } is su$ciently
accurate for the spectral analysis of systems in three dimensions.

We were able to obtain accurate and extensive databases for the quantum energy levels and for
the classical periodic orbits. These allowed us to check various properties of the quantum spectrum,
and in particular to study the applicability of the semiclassical approximation. The main con-
clusion from our work is that contrary to various expectations, the semiclassical accuracy,
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measured in units of the mean spacing, does not diverge as a +~(d~2). Our numerical tests and
analytical arguments indicate an error margin which at worst diverges weakly (logarithmically)
with +.

One of the main problems which we had to overcome was how to separate the generic features
which are common to all chaotic systems, from the system speci"c attributes, which in the present
case are the `bouncing balla manifolds of periodic orbits. We should emphasize that in d dimen-
sions the bouncing-ball manifolds contribute terms of order k(d~1)@2, which are much larger than
the order 1 contributions due to generic periodic orbits. Hence it is clear that as the dimension
increases, the extracting of generic features becomes more di$cult, and one has also to control
higher + corrections, such as, e.g., di!raction corrections to the bouncing ball contributions. We
developed a method to circumvent some of these di$culties which was su$cient for the 3D Sinai
billiard case, namely, we focused on the derivative of the spectrum with respect to the boundary
condition. This method is a powerful means which can also be used in other instances, where
non-generic e!ects should be excluded.

One of the issues which are essential to the understanding of trace formulae and their applica-
tion, was "rst mentioned by Gutzwiller in his book, under the title of the `third entropya [2].
Gutzwiller noticed that in order that the series over periodic orbits can be summed up (in some
sense) to a spectral density composed of d functions, the phases of the contributing terms should
have very special relations. The more quantitative study of this problem started when Argaman
et al. [9] de"ned the concept of periodic orbit correlations. The dual nature of the quantum
spectrum of energies and the classical spectrum of periodic orbit was further developed in [11]. It
follows that the universality of the quantum spectral #uctuations implies that the correlation length
in the spectrum of the classical actions depends on the dimensionality in a speci"c way. This was
tested here for the "rst time, and the mechanism which induces classical correlations was discussed.

Our work on the Sinai billiard in three dimensions proved beyond reasonable doubt that the
methods developed for two dimensional chaotic systems can be extended to higher dimensions.
Of utmost importance and interest is the study of classical chaos and its quantum implications
in many body systems. This is probably the direction to which the research in `quantum chaosa
will be advancing.
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Appendix A. E7cient quantization of billiards: BIM vs. full diagonalization

In this appendix we wish to compare two possible quantization schemes for billiards: direct
diagonalization (DD) of the Hamiltonian matrix vs. the boundary integral method (BIM) (see e.g.
[14,88]). The diagonalization is a generic method to solve the time-independent SchroK dinger
equation, while the BIM is specialized for billiards. To compare the two methods, we estimate the
complexity of computing all of the eigenvalues up to a given wavenumber k.

To "nd the matrix elements of the Hamiltonian we treat the billiard boundaries as very high
potential walls. The linear dimension M(k) of the Hamiltonian matrix that is needed for "nding
eigenvalues around k is

M
DD

(k)"OAA
S
jB

d

B"O((kS)d) , (A.1)

where S is the typical linear dimension of the billiard, j"2p/k is the wavelength and d is the
dimensionality of the billiard. The above estimate is obtained by enclosing the billiard in a hyper-
cube with edge S and counting the modes up to wavenumber k. The numerical e!ort to "nd
eigenvalues of a matrix is of order of its linear dimension to the power 3. Thus, the numerical e!ort
to "nd all the eigenvalues of the billiard up to k using DD is estimated as

C
DD

(k)"O(M3
DD

(k))"O((kS)3d) . (A.2)

The expected number of eigenvalues up to k is given to a good approximation by Weyl's law, which
for billiards reads

N(k)"O((kS)d) . (A.3)

Thus, the numerical e!ort to calculate the "rst (lowest) N eigenvalues of a billiard in d dimension in
the direct Hamiltonian diagonalization is

C
DD

(N)"O(N3) (A.4)

which is independent of the dimension.
As for the BIM, one traces the k-axis and searches for eigenvalues rather than obtaining them by

one diagonalization. This is done by discretizing a kernel function on the boundary of the billiard
and looking for zeroes of the resulting determinant. The linear dimension of the BIM matrix is

M
BIM

"OAA
S
jB

d~1

B"O((kS)d~1)"O(N1~1@d) . (A.5)

This estimate is obtained from discretizing the boundary of the billiards which is of dimension
d!1 by hypercubes of edge j. The numerical e!ort of calculating the determinant once is

c
BIM

(k)"O(M3
BIM

(k))"O((kS)3(d~1)) . (A.6)

(In practice, one often uses the SVD algorithm [58], which is much more stable than a direct
computation of the determinant and has the same complexity.) Using the relation (A.3) we "nd that
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the numerical e!ort to "nd an eigenvalue near the Nth one is estimated by

c
BIM

(N)"O(N3~3@d) . (A.7)

To get the above result we assumed that a "xed number of iterations (evaluations of the
determinant) is needed to detect each eigenvalue, which is justi"ed at least for the case where level
repulsion is expected. Thus, the complexity to calculate all the eigenvalues up to the Nth is

C
BIM

(N)"O(N)c
BIM

(N)"O(N4~3@d) . (A.8)
In particular,

C
BIM

(N)"G
O(N5@2) for d"2 ,

O(N3) for d"3 .

We conclude that the BIM is more e$cient than DD for 2 dimensions, and for 3 dimensions they
are of the same level of complexity. In practice, however, it seems that the BIM is better also in
3 dimensions, since the DD matrices can be prohibitly large, and manipulating them (if possible)
can be very expensive due to memory limitations. Also one has to take into account that due to
evanescent modes, the numerical proportionality factor in (A.5) is actually close to 1, while for (A.1)
the factor can be large if high accuracy is desired. This is due to the fact that the o!-diagonal matrix
elements of the Hamiltonian decay only like a power law due to the sharp potential and hence very
large matrices are needed in order to obtain accurate eigenvalues.

Appendix B. Symmetry reduction of the numerical e4ort in the quantization of billiards

Consider a d-dimensional billiard which is invariant under a group G of geometrical symmetry
operations. We want to compare the numerical e!ort that is needed to compute the lowest
N eigenvalues of the fully symmetric billiard with that of computing the lowest N eigenvalues of the
desymmetrized billiard. By `desymmetrizedawe mean the following: if X is the full billiard domain,
then the desymmetrized billiard u is such that 6

g( |G
g( u"X. If one uses the direct diagonalization

(DD) of the Hamiltonian matrix, then there is no advantage to desymmetrization, because the
prefactor in (A.4) should not depend on the shape of the billiard if its aspect ratio is close to 1.
Therefore, the numerical e!ort of computing the lowest N levels of either the fully symmetric or the
desymmetrized billiard is more or less the same using DD. On the other hand, as we show in the
sequel, desymmetrization is very advantageous within the framework of the BIM.

We "rst note that considering a particular irreducible representation c of G is equivalent to
desymmetrization of the billiard together with imposing boundary conditions that are prescribed
by c. The dimension of c is denoted as dc and the order of G is denoted as NG . Given a complete
basis of functions in which the functions are classi"ed according to the irreps of G, then the fraction
of the basis functions that belong to the irrep c is d2c/NG,Fc . This is also the fraction of
eigenvalues that belong to c out of the total number of levels, when we consider a large number of
levels. Using the notations of Appendix A, we thus have

M(c)
BIM

(k)"FcMBIM
(k) ,

N(c)(k)"FcN(k) ,
(B.1)
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where the quantities with superscript c correspond to the desymmetrized billiard, and the others to
the fully symmetric one. Using (A.5) and repeating arguments from Appendix A results in

C(c)
BIM

(N)"F3@dc C
BIM

(N) . (B.2)

In the equation above we replaced N(c)PN. Thus, the decrease in the density of states is more than
compensated by the reduction in the size of the secular matrix and the overall numerical e!ort
is diminished by a factor of F3@dc . For example, in the case of the 3D Sinai billiard and for
a one-dimensional irrep, the saving factor is

F3@dc "A
12

48B
3@3

"

1
48

(B.3)

which is a very signi"cant one.

Appendix C. Resummation of D
LM

using the Ewald summation technique

In general, the Ewald summation technique is used to calculate (conditionally convergent)
summations over lattices MqN:

S"+
q

f (q) . (C.1)

One splits the sum S into two sums S
1
, S

2
which depend on a parameter g:

S"S
1
#S

2
"+

q

f
1
(q; g)#+

q

f
2
(q; g) . (C.2)

This splitting is usually performed by representing f (x) as an integral, and splitting the integral at g.
The idea is to resum S

1
on the reciprocal lattice Mu N using the Poisson summation formula:

S
1
"+

u
Pddo exp(2piqu) f

1
(q; g),+

u

fK
1
(u; g) , (C.3)

and to choose g such that both S
1

and S
2

will rapidly converge.
We need to apply the Ewald summation technique to D

LM
(k), given explicitly in Eq. (5), which

constitute the main computational load. This is because they include summations over the
Z3 lattice which need to be computed afresh for each new value of k. It is possible to apply the
Ewald technique directly to each D

LM
, but it is much simpler to take an indirect route: we shall

Ewald resum the free Green function on the 3-torus, and then read o! the D
LM
's as expansion

coe$cients.
We start with the free outgoing Green function on the three-dimensional torus:

GT
0
(q)"!

1
4p

+
q|Z3

exp(ikDq!qD)
Dq!qD

, (C.4)
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Fig. 47. Contours for the integral evaluation of GT
0
. In the above h,arctan[Im(k)/Re(k)]/2!p/4.

where we took the side of the torus to be 1 for simplicity and de"ned q,r!r@. To split the sum we
use an integral representation of the summands [55,30]:

exp(ikDq!qD)
Dq!qD

"

2

JpP
=

0(C)

expC!(q!q)2m2#
k2

4m2Ddm , (C.5)

where the integration contour C is shown in Fig. 47. It is assumed that k has an in"nitesimal
positive imaginary part, which is taken to 0 at the end of the calculation. We now deform the
contour into C@ (see Fig. 47), such that it runs along the real axis for m'Jg/2, and split the integral
at this point as follows:

GT
0
(q)"GT

1
(q)#GT

2
(q) , (C.6)

GT
1
(q)"!

1

2pJp
+
q P

Jg@2

0(C{)

expC!(q!q)2m2#
k2

4m2Ddm , (C.7)

GT
2
(q)"!

1

2pJp
+
q P

=

Jg@2
expC!(q!q)2m2#

k2

4m2Ddm . (C.8)

The summation in GT
2

is rapidly convergent, due to the fact that we integrate over the tails of
a rapidly decaying function in m (faster than a Gaussian), and we start further on the tail when
o grows. In order to make GT

1
also rapidly convergent, we need to Poisson resum it. We use the

identity

+
q

exp[!(q!q)2m2]"
pJp
m3

+
u

expC
(2pg)2
4m2

#i(2pu)qD , (C.9)
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which is obtained by explicitly performing the integrals of the Poisson summation. Thus,

GT
1
(q)"!

1
2
+
u

exp(2piuq)P
Jg@2

0(C{)

dm
m3

expM[k2!(2pg)2]/4m2N (C.10)

"+
u

exp(2piuq) expM[k2!(2pg)2]/gN
k2!(2pg)2

. (C.11)

The second line was obtained from the "rst one by performing the integrals explicitly. The
expression obtained for GT

1
is also rapidly convergent, and is suitable for computations. We thus

succeeded in rewriting GT
0

as two rapidly converging sums (C.11), (C.8). We note that the results
(C.11), (C.8) are valid for general lattices, the cubic lattice being a special case [30].

The heart of the above resummation of GT
0

was the integral representation (C.5) which is
non-trivial. In Appendix D we present an alternative derivation of the above results using more
intuitive, physical arguments.

It remains to extract the D
LM
's from the resummed GT

0
. The basic relation is [30]

GT
0
(q)"+

LM

j
L
(kq)>

LM
(Xq)CDLM

(k)#
k

J4p

n
0
(kq)

j
0
(kq)

d
L0D . (C.12)

Using expansion theorems [56] applied to (C.8) and (C.11) one can rewrite GT
0

as

GT
0
(q)"+

LM

>
LM

(Xq )G+
u

4piLek2@g>H
LM

(X
u
)j
L
(2pgq)

e~(2pg)2@g
k2!(2pg)2

!+
q

2iL

Jp
>H

LM
(Xq)P

=

Jg@2
dm j

L
(!2ioqm2) expC!(o2#q2)m2#

k2

4m2DH . (C.13)

Comparing Eqs. (C.12) and (C.13), and using the orthogonality of the spherical harmonics>
LM

(Xq ),
one obtains

D
LM

(k)"
1

j
L
(kq)C+

u

2#+
q

2!

k

J4p
n
0
(kq)d

L0D . (C.14)

This is the Ewald-resummed expression of D
LM

(k). It has the interesting feature that even though
each of the terms explicitly depends on q, the total expression is independent of q. The same applies
also to g. This freedom can be used to simplify the expression (C.14), since for qP0 the spherical
Bessel functions simplify to powers [30]

j
L
(aq)P

(aq)L
(2¸#1)!!

, (C.15)

which are computationally less demanding. Taking the limit is straightforward for ¸O0, while
for D

00
there is a complication due to the singularity of n

0
(kq). As shown in Appendix E this
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singularity is exactly cancelled by the q"0 term, resulting in a "nite expression also for D
00

. The
"nal result is

D
LM

"D(1)
LM

#D(2)
LM

#D(3)
00

d
L0

, (C.16)

D(1)
LM

"4piLk~Lek2@g+
u

(2pg)L>H
LM

(X
u
)

e~(2pg)2@g
k2!(2pg)2

, (C.17)

D(2)
LM

"

2L`1k~L

Jp
+

qE0

oL>H
LM

(Xq)P
=

Jg@2
dm m2L expC!o2m2#

k2

4m2D , (C.18)

D(3)
00

"!

Jg
2p

=
+
n/0

(k2/g)n
n!(2n!1)

, (C.19)

with the convention gLD
g/0,L/0

"1. This completes the task of Ewald-resumming the building
blocks D

LM
(k) into rapidly convergent series.

Appendix D. `Physicala Ewald summation of GT
0
(q)

In this appendix we present a derivation of the results (C.11), (C.8) by a method that is di!erent
than the one used in Appendix C. The present method is physically appealing and does not require
the use of complicated integral representations. It is inspired by Appendix B of Kittel's book [97]
which deals with the problem of calculating Madelung constants (electrostatic potentials) of ion
crystals.

In the sequel we use q,r!r@ and adopt the following notational convention: For any quantity
X(q) we add a superscript ¹ to denote its lattice sum:

XT(q),+
q

X(q!q) . (D.1)

We start from the Helmholtz equation for G
0
:

(+2r #k2)G
0
(q)"d(q) . (D.2)

Due to linearity, the function GT
0

satis"es

(+2r #k2)GT
0
(q)"dT(q) . (D.3)

The RHS of (D.3) can be interpreted as a `charge distributiona which is composed of point
charges on a lattice. Each such point charge d(q!q) induces a `potentiala G

0
(q!q)"

!exp(ikDq!qD)/(4pDq!qD) which is long-ranged due to the sharpness of the charge. (This is in
analogy to the electrostatic case.) Hence, the lattice sum of potentials GT

0
is conditionally conver-

gent. To overcome this di$culty we introduce an arbitrary charge distribution j(q) and rewrite
(D.3) as

GT
0
(q)"GT

1
(q)#GT

2
(q) , (D.4)

(+2#k2)GT
1
(q)"jT(q) , (D.5)

(+2#k2)GT
2
(q)"dT(q)!jT(q) . (D.6)
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We want j(q!q) to e!ectively screen the d(q!q) charges, making G
2

short-ranged. This will
result in rapid convergence of GT

2
. (Note, that Eqs. (D.4)}(D.6) hold also for the quantities without

the T superscript due to linearity.) On the other hand, j(q) must be smooth enough, such that
GT

1
will rapidly converge when Poisson resumed. It is hence plausible to choose a (spherically

symmetric) Gaussian charge distribution for j(q):

j(q)"A exp(!aq2) , (D.7)

where A and a are yet arbitrary parameters.
We calculate "rst G

2
(q) by rewriting the inducing charge as an integral over d charges, and using

the fact that each d charge contributes G
0

to the potential:

(+2#k2)G
2
(q)"d(q)!j(q)"d(q)!Pd3Qj(Q)d(q!Q) . (D.8)

Hence,

G
2
(q)"G

0
(q)!Pd3Qj(Q)G

0
(q!Q)

"G
0
(q)C1!AA

p
aB

3
e~k

2@4aD#
A

2aqP
=

0

dt e~a(t`q)2cos(kt) . (D.9)

The "rst term is long-ranged due to G
0
, and the second term is short-ranged due to the integral that

is rapidly decreasing as a function of q. To make G
2

short ranged, we thus have to set the coe$cient
of G

0
to 0, which is satis"ed if we choose

A"A(k, a)"A
a
pB

3
expA

k2

4aB . (D.10)

Therefore, we get for GT
2

a rapidly convergent sum:

GT
2
(q)"!

Ja ek2@4a
2pJp

+
q

1
Dq!qDP

=

0

dt exp[!a(t#Dq!qD)2] cos(kt) . (D.11)

This can be re-expressed in a more compact form using complement error functions with complex
arguments:

GT
2
(q)"!

1
2p

+
q

1
Dq!qD

ReCexp(!ikDq!qD) erfcAJaDq!qD!
ik

2JaBD , (D.12)

where

erfc(z),
1

JpP
=

z

e~u
2 du . (D.13)

To calculate GT
1

we can directly Poisson resum (D.11). Alternatively, we can use again the
Helmholtz equation for GT

1
(D.5) to simplify the calculations. We expand GT

1
in the reciprocal
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lattice:

GT
1
(q)"+

u
Pd3o exp(2piqu)G

1
(q!q)

"+
u

exp(2piqu)Pd3o exp(!2piqu)G
1
(q),+

u

exp(2piqu)G
1u

, (D.14)

where the second line was obtained from the "rst one by shifting the origin of the integration.
Similarly for jT(q):

j(q)"+
u

exp(2piqu)j
u

. (D.15)

Inserting (D.14) and (D.15) into (D.5) and using the orthogonality of the Fourier components, we
get the simple relation between G

1u
and j

u
:

G
1u
"

j
u

k2!(2pg)2
. (D.16)

When inserted back into (D.14) we "nally get for GT
1
:

GT
1
(q)"+

u

exp(2piuq)exp[k2!(2pg)2/4a]
k2!(2pg)2

. (D.17)

This expression is identical with (C.11) if we set 4a"g. It can be shown [55] that also the
expressions for GT

2
, (C.8) and (D.12) are identical. However, Eq. (D.12) is more convenient if one

needs to compute GT
0
(q), since it involves well-tabulated computer-library functions [58] and saves

the burden of numerical integrations. On the other hand, the expression (C.8) is more convenient as
a starting point for calculating D

LM
(k).

To summarize, we re-derived the Ewald-resummed form of GT
0
(q) using the underlying

Helmholtz equation. We used a physically intuitive argument of screening potentials that was
shown to be equivalent to the more abstract integral representation of G

0
(q), Eq. (C.5).

Appendix E. Calculating D(3)
00

We need to calculate (refer to Eq. (C.14) and its subsequent paragraph):

D(3)
00

,lim
q?0
G

1
j
0
(kq)C

1

J4p

cos(kq)
q

!

1
pP

=

Jg@2
dm expA!q2m2#

k2

4m2BDH , (E.1)

where we used the explicit expression n
0
(x)"!cos(x)/x. Taking the limit of the denominator is

trivial, since j
0
(kq)P1. For qP0 we can write

1

J4p

cos(kq)
q

"

1

J4pq
#O(q) , (E.2)
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which contains 1/q singularity. As for the term with the integral, we expand exp(k2/4m2) in a Taylor
series, and transforming to the variable t"qm one gets:

!

1
pP

=

Jg@2
dm expA!q2m2#

k2

4m2B"!

1
pq

=
+
n/0

(kq)2n
4nn! P

=

qJg@2
dt t~2n e~t

2 . (E.3)

For n"0:

P
=

qJg@2
dt e~t

2
"AP

=

0

!P
qJg@2

0
Bdt e~t

2
"

Jp
2

!

1
2
Jgq#O(q2) . (E.4)

For n'0 we integrate by parts:

P
=

qJg@2
dt t~2n e~t

2
"

1
2n!1A

1
2
JgqB

~2n`1
e~gq2@4#O(q~2n`3) . (E.5)

Collecting everything together back to (E.1), the 1/q singularities cancel, and we remain with the
"nite expression:

D(3)
00

"!

Jg
2p

=
+
n/0

(k2/g)n
n!(2n!1)

. (E.6)

Appendix F. The `cubic harmonicsa >(c)
LJK

F.1. Calculation of the transformation coezcients a(L)cJK,M

We want to calculate the linear combinations of spherical harmonics that transform according to
the irreducible representations of the cubic group O

h
. This problem was addressed by von der Lage

and Bethe [57] which coined the term `cubic harmonicsa for these combinations. They gave an
intuitive scheme that was used to calculate the "rst few cubic harmonics, but their arguments are
di$cult to extend for large ¸'s. Moreover, their method is recursive, because one has to ortho-
gonalize with respect to all lower lying combinations. This is cumbersome to implement numer-
ically and might result in instabilities for large ¸'s. The only other work on the subject that we are
aware of [98] specializes in the symmetric representation and gives only part of the combinations.
It also expresses the results not in terms of spherical harmonics, but rather as polynomials that are
di$cult to translate to >

LM
's.

We describe in the following a simple and general numerical method to calculate the cubic
harmonics in a non-recursive way. This is based on a general theorem that states that a function
f (c) transforms according to the irrep c i! it satis"es [31]

PK (c)f (c)"f (c) (F.1)

where PK (c) is the projection operator onto the subspace that belongs to c:

PK (c)"
lc

N
G

+
g( |G

s(c)H(g( )g( . (F.2)

H. Primack, U. Smilansky / Physics Reports 327 (2000) 1}107 93



We denoted by lc the dimension of c, N
G

is the number of elements in the group G, and s(c)(g( ) are
the characters. The realization of PK (c) as a matrix in an arbitrary basis results in general in an
in"nite matrix. However, in the case of the cubic harmonics, we know that O

h
LO(3), thus the

operations of g(3O
h

do not mix di!erent ¸'s. Hence, working in the >
LM

basis, we can write the
cubic harmonics as the "nite combinations:

>(c)
LJ

(X)"
`L
+

M/~L

a(L)
H

cJ,M
>

LM
(X) , (F.3)

where J enumerates the irreps c in ¸. For simplicity we consider 1-dimensional irreps. Applying
(F.1), (F.2) to (F.3) and using the Wigner matrices D(L)(g( ) to express the operations of g( on
>

LM
[56], we get the following (2¸#1)](2¸#1) linear system:

+
M{

[P(c,L)
MM{

!d
MM{

]a(L)
H

cJ,M{
"0 , (F.4)

where

P(c,L)
MM{

"

1
48

+
g( |G

s(c)H(g( )D(L)
MM{

(g( ) . (F.5)

The above equations are best solved using SVD algorithm [58], and the (orthonormalized)
eigenvectors that belong to the zero singular values are the required coe$cients a(L)HcJ,M{

. For
multi-dimensional irreps one needs to classify the cubic harmonics also with respect to the row
K inside the irrep. This can be done by simple modi"cation of the above procedure, using the
appropriate projectors [31].

The above general procedure can be simpli"ed for speci"c irreps. In the following we shall
concentrate on the completely antisymmetric irrep c"a and further reduce the linear system (F.4).
We "rst note that the antisymmetric cubic harmonics must satisfy per de"nition:

g( >(a)
LJ

(X)"s(a)(g( )>(a)
LJ

(X)"(!1)(1!3*5: 0& g( )>(a)
LJ

(X) ∀g(3O
h

. (F.6)

We then choose a few particular g( 's for which the operations on >
LM

(X) are simple:

r(
x
(xyz),(!xyz): r(

x
>

LM
(h,/)">

LM
(h,!/)"(!1)M>

L~M
(h,/) ,

r(
y
(xyz),(x!yz): r(

y
>

LM
(h,/)">

LM
(h,p!/)">

L~M
(h, /) ,

r(
z
(xyz),(xy!z): r(

z
>

LM
(h,/)">

LM
(p!h,/)"(!1)L`M>

LM
(h,/) ,

p(
xy

(xyz),(yxz): p(
xy
>

LM
(h, /)">

LM
(h, p

2
!/)"(!i)M>

L~M
(h,/) .

(F.7)

Applying (F.6) and (F.7) to (F.3) results in the following `selection rulesa:

a(L)H
aJ,M

"0, ¸O2p#1, MO4q, p, q3N ,

a(L)H
aJ,~M

"!a(L)
H

aJ,M

(F.8)

which reduces the number of independent coe$cients to be computed by a factor of 16. The form
of the projector matrix P(aL) can also be greatly reduced, if we observe that the group O

h
can be
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written as the following direct multiplication:

O
h
"G

3
?G

16
, (F.9)

G
3
"Me( , c( , c( 2N e("identity, c( (xyz)"(yzx) , (F.10)

G
16

"Me( , p(
xy

N?Me( , r(
x
N?Me( , r(

y
N?Me( , r(

z
N (F.11)

and consequently, the projector can be written as

PK (a)"PK
3
PK

16
, (F.12)

PK
3
"e(#c(#c( 2 , (F.13)

PK
16

"(e(!p(
xy

)(e(!r(
x
)(e(!r(

y
)(e(!r(

z
) . (F.14)

The operator PK
16

acts as the identity on the subspace de"ned by (F.8) and hence we need to
consider only the operation of PK

3
. Simple manipulations give the following set of equations:

+
q{;0

C2d(L)
4q,4q{A

p
2B!d

4q,4q{Da(L)HaJ,4q{
"0, q'0, ¸"2p#1 . (F.15)

The matrices d(L)
4q,4q{

are the `reduceda Wigner matrices, which are real [56], thus the resulting
coe$cients are also real. The above is a square linear system, which is 8 times smaller than the
general one (F.4).

F.2. Counting the >(c)
LJ
's

The number of the irreps c of O
h
that are contained in the irrep ¸ of O(3) is given by the formula

[31]:

NcL"
1
48

+
g( |Oh

s(c)H(g( )s
L
(g( ) (F.16)

where s
L
(g( ) are the characters of the irrep ¸. An explicit calculation shows that the main

contributions for large ¸'s come from the identity and from the inversion operations, thus

NcL+[1$(!1)L]
lc (2¸#1)

48
. (F.17)

where the $ corresponds to the parity of c. Since for lc-dim irrep we have lc basis functions, and
there are 2¸#1 basis functions in the irrep ¸, the fraction of cubic harmonics that belong to c is

Fc+ 1
48

l2c (F.18)

in accordance with the general relation

+
c

l2c"48 . (F.19)

Consequently, the fraction of cubic harmonics that belong to the Kth block of c is

FcK+ 1
48

lc . (F.20)
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Appendix G. Evaluation of l(q
p
)

G.1. Proof of Eq. (10)

We need to prove the relation

+
g( |Oh

>
LM

(X
g( q

)"l(q
p
) +
q{|S(qp )

>
LM

(Xq{
) , (G.1)

where q
p
,(i, j, k) is the unique vector in the set O

h
q which resides in the fundamental domain

i5j5k50, S(q
p
) is the collection of all distinct vectors obtained by the operations g( q

p
, g(3O

h
,

and l(q
p
) is an integer.

Proof. Let H be the set of all g(3O
h

under which q
p

is invariant:

g( q
p
"q

p
Qg(3H . (G.2)

The set H is a subgroup since

1. The identity e(3H.
2. The set H is closed under multiplication, since if g(

1
, g(

2
3H then g(

1
(g(

2
q
p
)"g(

1
q
p
"q

p
.

3. The set H is closed under inversion: g( ~1q
p
"g( ~1(g( q

p
)"q

p
.

The order of (number of terms in) H is denoted as NH . We assume that H is the maximal
invariance subgroup, and construct the right cosets g(H"Mg( hK

1
,2N. According to [31] there are

N
c
"48/NH mutually exclusive such cosets C

1
,2, C

Nc
. (The number 48 is the order of O

h
.) Their

union is O
h
. For each coset C

i
we can de"ne

q
i
,C

i
q
p

(G.3)

which is meaningful due to the invariance of q
p

under H.
We want to prove the following

Lemma. q
i
Oq

j
iw iOj.

Proof. Assume the opposite, then in particular

g(
i
q
p
"g(

j
q
p

Q (g( ~1
j

g(
i
)q

p
"q

p

Q g( ~1
j

g(
i
"h3H

Q g(
i
"g(

j
h

QC
i
"C

j

in contradiction to the assumption. The last line was obtained using the rearrangement theorem
[31] applied to the group H. h
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We now set

S(q
p
)"

Nc

Z
i/1

q
i

(G.4)

l(q
p
)"NH"integer (G.5)

and since +
g( |Oh

"+Nc
i/1

+
g( |Ci

we proved (G.1). h

G.2. Calculating l(q
p
)

We give an explicit expression of l(q
p
). Consider q

p
"(i, j, k) such that i5j5k50 without loss

of generality. Then

l(q
p
)"l

p
(q

p
)l
s
(q

p
) , (G.6)

l
p
(q

p
)"G

1, iOjOkOi ,

2, i"jOk or iOj"k or i"kOj ,

6, i"j"k ,

(G.7)

l
s
(q

p
)"2(j;%30 */$*#%4) . (G.8)

We prove this formula in the following. First we observe that O
h

can be decomposed as

O
h
"P

3
?S

3
, (G.9)

P
3
"group of permutation of 3 numbers , (G.10)

S
3
"M$$$N"3 sign changes . (G.11)

Let H
P
,H

S
be the subgroups of P

3
,S

3
, respectively, under which q

p
is invariant.

Lemma. H"H
P
?H

S
.

Proof. Let g("p( s( , where g(3O
h
, p(3P

3
and s(3S

3
. This representation of g( is always possible

according to (G.9). If s( NH
S

then s( q
p
Oq

p
, thus necessarily there is at least one sign change in s( q

p
with respect to q

p
. Consequently, g( q

p
Oq

p
, because permutations only change the order of indices

and cannot restore the di!erent sign(s). We conclude that g( NH. Thus, g(3HNs(3H
S
. For every

g(3H we must have therefore g( q
p
"p( s( q

p
"p( q

p
"q

p
which proves that also p(3H

P
. h

We conclude that NH"order(H
P
) )order(H

S
). This is manifest in Eqs. (G.6)}(G.8).

Appendix H. Number-theoretical degeneracy of the cubic lattice

H.1. First moment

The following arguments are due to Keating [99]. We "rst need to estimate the fraction of
integers that can be expressed as a sum of 3 squares. The key theorem is due to Gauss and Legendre
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and states that

q"i2#j2#k2, i, j, k3NQ qO4m(8l#7), m, l3N . (H.1)

From this we can estimate that the fraction of integers which cannot be expressed as a sum of
3 squares of integers is

1
8A1#

1
4
#

1
42

#2B"
1
6

. (H.2)

In the above we used the fact (which is easily proven) that if q"4m(8l#7) then m, l are uniquely
determined. Therefore, asymptotically only 5/6 of the integers are expressible as a sum of three
squares.

Our object of interest is the degeneracy factor go(o) de"ned as

go(o),d(j3Z3 D i"o) . (H.3)

The number of Z3-lattice points whose distance from the origin is between o and o#*o is
estimated by considering the volume of the corresponding spherical shell:

No+4po2*o . (H.4)

Since o2 is an integer, the number of integers in the same interval is

no+2o*o . (H.5)

Taking into account that only 5/6 of the integers are accessible, we obtain

Sgo(o)T"
No

(5/6)no
"

12p
5

o . (H.6)

H.2. Second moment

Here we use a result due to Bleher and Dyson [100], brought to our attention by Rudnick:

N
+
k/1

g2o(Jk)"cN2#error, c"
16p2

7
f(2)
f(3)

+30.8706 . (H.7)

Di!erentiating by N and considering only integers for which goO0 one obtains

Sg2o(o)T+12
5
co2+74.0894o2 . (H.8)

Therefore,

Sg2o(o)T/Sgo(o)T+bo, b"c/p+9.8264 . (H.9)

Appendix I. Weyl's law

A very important tool in the investigation of eigenvalues is the smooth counting function, known
as Weyl's law. For billiards it was thoroughly discussed e.g. by Balian and Bloch [82] and by Baltes
and Hilf [91]. We construct in the following the expression for the 3D Sinai billiard. In general, it
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takes on the form

NM (k)"N
3
k3#N

2
k2#N

1
k#N

0
, (I.1)

where we included terms up to and including the constant term. In fact, for the nearest-neighbour
and two-point spectral statistics the constant term N

0
is unimportant, since it shifts the unfolded

spectrum x
n
,NM (k

n
) uniformly. Nevertheless, for completeness we shall calculate this term. We

enumerate the contributions in the case of Dirichlet boundary conditions one by one and then
write down the full expression. Fig. 6 should be consulted for the geometry of the billiard.

N
3
: There is only one contribution due to the volume of the billiard:

N
3
"

volume
6p2

"

1
288p2AS3!

4
3
pR3B . (I.2)

N
2
: The contribution is due to the surface area of the planes#sphere:

N
2
"!

surface
16p

"!

1
384p

[6(1#J2)S2!7pR2] . (I.3)

N
1
: Here we have contributions due to the curvature of the sphere and due to 2-surface edges:

Curvature:

N#637!563%
1

"

1
12p2P

463&!#%

dsC
1

R
1
(s)

#

1
R

2
(s)D"!

R
72p

, (I.4)

where R
1
, R

2
are the principal local radii of curvature.

Edges: We have 6 plane}plane edges and 3 plane}sphere edges. Their contributions are given by

N%$'%4
1

"

1
24p

+
%$'%4

A
p
a
j

!

a
j

p B¸j
"

S
144p

(27#9J2#8J3)#
R

24pA
9p
8
!

95
12B , (I.5)

where ¸
j

are the lengths of the edges, and a
j

are the corresponding angles.
N

0
: There are three terms here due to square of the curvatures, 3-surface corners and curvature

of the edges:

Curvature2:

N#637!563%
2

0
"

1
512pP

463&!#%

dsC
1

R
1
(s)

!

1
R

2
(s)D

2
"0 . (I.6)

H. Primack, U. Smilansky / Physics Reports 327 (2000) 1}107 99



3-surface corners: In the 3D Sinai billiard we have 6 corners due to intersection of 3 surfaces; 3 of
them are due to intersection of 3 symmetry planes and the other 3 are due to intersection of
2 symmetry planes and the sphere. The corners are divided into 4 types as follows:

1]a,(453, 54.743, 36.263) ,

3]b,(453, 903, 903) ,

1]c,(603, 903, 903) ,

1]d,(903, 903, 903) .

As for the corners b, c, d which are of the type (/, 903, 903) there is a known expression for their
contribution [91]:

c
(
"!

1
96A

p
/
!

/
pB . (I.7)

Therefore,

cb"! 5
128

, cc"! 1
36

, cd"! 1
64

. (I.8)

As for the corner a, we calculate its contribution from the R"0 integrable case (`the pyramida).
The constant term in the case of the pyramid is !5/16 [53] and originates only from 3-plane
contributions (there are no curved surfaces or curved edges in the pyramid). The pyramid has
4 corners: 2 of type a and 2 of type b. Using cb above we can therefore eliminate ca :

2ca#2(! 5
128

)"! 5
16
Nca"! 15

128
. (I.9)

Hence, the overall contribution due corners in the 3D Sinai is

N3v463&!#%
0

"1(! 15
128

)#3(! 5
128

)#1(! 1
36

)#1(! 1
64

)"! 5
18

. (I.10)

Curvature of edges: We have 3 edges which are curved. They are 903 edges that are due to
plane-sphere intersections. Baltes and Hilf [91] quote the constant term (!1/12)#(1/256)(H/R)
for the circular cylinder, where H is the height and R is the radius of the cylinder. We conclude from
this that the H-independent term !1/12 is due to the curvature of the 903 edges between the
2 bases and the tube. Assuming locality, it is then plausible to conjecture that the contribution due
to the curvature of a 903 edge is

!

1
48pP

%$'%

dl
R(l)

, (I.11)

where R(l) is the local curvature radius of the edge. When applied to our case (R(l)"!R), we get

N#637. %$'%
0

" 1
64

. (I.12)
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Putting everything together we get

NM (k)"
1

288p2AS3!
4
3
pR3Bk3!

1
384p

[6(1#J2)S2!7pR2]k2

#C
S

144p
(27#9J2#8J3)#RA

3
64

!

11
32pBDk!

151
576

. (I.13)

Appendix J. Calculation of the monodromy matrix

The monodromy matrix measures the linear response to in"nitesimal displacements of the initial
conditions of a classical orbit. Its eigenvalues determine the stability of the orbit. Due to the
symplectic form of the equations of motion, if j is an eigenvalue of the monodromy matrix then
also jH, 1/j and 1/jH [2]. Therefore, generically the eigenvalues come in groups of four:

j"exp($u$iv), u, v3R . (J.1)

In d dimensions the monodromy has 2(d!1) eigenvalues. Therefore, only for d53 the generic
situation (291) can take place. In two dimensions there are only two eigenvalues and consequently
one obtains the following three possible situations (which are special cases of (J.1) with either u or
v set to 0):

f Elliptic: j
1,2

"exp($iv), stable orbit.
f Parabolic: j

1,2
"1 or j

1,2
"(!1), neutrally stable orbit.

f Hyperbolic: j
1,2

"exp($u) or j
1,2

"!exp($u), unstable orbit.

The parabolic case with the `#a sign is denoted as `direct parabolica and with `!a sign it is
denoted as `inverse parabolica. Similar terminology applies to the hyperbolic case. The generic
case (J.1) is designated as `loxodromic stabilitya [2].

J.1. The 3D Sinai torus case

We wish to calculate explicitly the 4]4 monodromy matrices in the case of the 3D Sinai torus.
There are (at least) two possible ways to tackle this problem. One possibility is to describe the
classical motion by a discrete (Hamiltonian, area-preserving) mapping between consecutive re#ec-
tions from the spheres. The mapping is generated by the straight segment that connects the two
re#ection points, and the monodromy can be explicitly calculated from the second derivatives
of the generating function. This straightforward calculation was performed for the 2D case (for
general billiards) e.g. in [72] and it becomes very cumbersome for three dimensions. Rather, we
take the alternative view of describing the classical motion as a continuous #ow in time, as was
done e.g. by Sieber [60] for the case of the 2D hyperbola billiard. We separate the motion into the
sections of free propagation between spheres and re#ections o! the spheres, and the monodromy
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matrix takes the general form

M"Mn`10n
1301

Mn
3%&

2M302
1301

M2
3%&

M201
1301

M1
3%&

, (J.2)

where Mi`10i
1301

describes the free propagation from sphere i to sphere i#1 and Mi
3%&

describes the
re#ection from the sphere i. To explicitly calculate the matrices one has to choose a well-de"ned (and
convenient) coordinate system, which is a non-trivial task in three dimensions. If we denote the
direction along the orbit by `1a, then we have two more directions, denoted henceforth `2a and `3a.
Hence there is a rotation freedom in choosing the directions 2 and 3. For convenience of calculation of
M

3%&
we choose the following local convention for coordinates: Near sphere i there exists the plane

P
i

which is uniquely de"ned (except for normal incidence) by the incoming segment, the outgoing
segment and the normal to the sphere i at the re#ection point. Direction 1 is obviously in P

i
. We

uniquely de"ne direction 3 to be perpendicular to P
i
along the direction of the cross product of the

outgoing direction with the normal. Direction 2 is then uniquely de"ned as e(
2
,e(

3
]e(

1
such that

a right-handed system is formed. Obviously e(
2

is contained in P
i
. The uniqueness of the local

coordinate system guarantees that the neighbourhoods of the initial and the "nal points of the periodic
orbits are correctly related to each other. To account for the local coordinate systems we need to apply
a rotation between every two re#ections that aligns the `olda system to the `newa one. Hence,

M"Mn`10n
1301

Mn`10n
305

Mn
3%&

2M302
1301

M302
305

M2
3%&

M201
1301

M201
305

M1
3%&

. (J.3)

We should also "x the convention of the rows and columns of M in order to be able to write explicit
expressions. It is chosen to be

A
dq

2
dp

2
dq

3
dp

3
B
&*/!-

"MA
dq

2
dp

2
dq

3
dp

3
B
*/*5*!-

. (J.4)

A detailed calculations gives the explicit expressions for M
1301

, M
3%&

and M
305

:

Mi`10i
1301

"A
1 ¸

i`10i
/p 0 0

0 1 0 0

0 0 1 ¸
i`10i

/p

0 0 0 1 B , (J.5)

Mi
3%&

"A
!1 0 0 0

! 2p
R #04 bi

!1 0 0

0 0 1 0

0 0 2p#04 bi

R
1B , (J.6)

Mi`10i
305

"A
cos a

i`10i
0 !sin a

i`10i
0

0 cosa
i`10i

0 !sin a
i`10i

sin a
i`10i

0 cos a
i`10i

0

0 sin a
i`10i

0 cos a
i`10i

B . (J.7)
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In the above p is the absolute value of the momentum which is a constant, ¸
i`10i

is the length of
the orbit's segment between spheres i and i#1, b

i
is the re#ection angle with respect to the normal

of the sphere i and a
i`10i

is the angle that is needed to re-align the coordinate system from sphere
i to i#1. Even though the entries of M are dimensional, the eigenvalues of M are dimensionless.
Hence, the eigenvalues cannot depend on p, which is the only variable with dimensions of
a momentum. (All other variables have either dimension of length or are dimensionless.) Therefore,
one can set p"1 for the sake of the calculations of the eigenvalues of M. The formulas above for
the monodromy were veri"ed numerically for a few cases against a direct integration of the
equations of motion near a periodic orbit of the Sinai torus. We mention the work of Sieber
[52] which extends the calculation of the monodromy matrix to an arbitrary billiard in three
dimensions.

J.2. The 3D Sinai billiard case

We next deal with the calculation of the monodromy matrix for the periodic orbits of the
desymmetrized 3D Sinai billiard. In principle, one can follow the same procedure as above, and
calculate the monodromy as for the Sinai torus case, this time taking into account the presence of
the symmetry planes. A re#ection with a symmetry plane is described by

M1-!/%
3%&

"A
!1 0 0 0

0 !1 0 0

0 0 1 0

0 0 0 1B , (J.8)

which is simply M
3%&

with RPR. This method, however, is computationally very cumbersome
because of the need to fold the orbit into the desymmetrized Sinai billiard. Instead, we can use the
monodromy matrix that is calculated for the unfolded periodic orbit, because the initial and "nal
(phase space) neighbourhoods are the same modulo g( . A calculation shows, that in order to align
the axes correctly, one needs to reverse direction 3 if g( is not a pure rotation:

M
WK
"A

1 0 0 0

0 1 0 0

0 0 p(g( ) 0

0 0 0 p(g( )BM6/&0-$%$
WK

, (J.9)

where p(g( ) is the parity of g( :

p(g( )"G
#1, g( is a rotation ,

!1, g( is an improper rotation (rotation#inversion) .
(J.10)

The above formulas were veri"ed numerically for a few cases by comparing the result (J.9) to
a direct integration of the classical dynamics in the desymmetrized Sinai billiard.
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Note added in proof

Papenbrock and Prosen recently considered a model of self bound, interacting 3-body system in
2-D [101]. The numerically computed spectral statistics agrees with the RMT predictions. In
conjunction with the experiments of the Darmstadt group [48] Hesse computed the spectrum of
the 3-D Maxwell equation for the Sinai billiard in 3-D [102].
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