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Remembering Bob
Alwyn Scott

In the summer of 1962, young Robert Dana Parmentier was finishing a
master’s thesis in the Department of Electrical Engineering at the Univer-
sity of Wisconsin, where it had been decided to support a major expansion
of laboratory facilities in the rapidly developing area of solid state electron-
ics. Jim Nordman and I—both spanking new PhDs—were put in charge of
this effort, and we soon found ourselves involved in a variety of unfamiliar
activities, including the slicing, polishing, cleaning, and doping of semicon-
ductor crystals prior to the formation of p-n junctions by liquid and vapor
phase epitaxy in addition to the more conventional process of dot alloying.
We had much to learn, and welcomed Bob as a collaborator as he worked
toward his doctorate in the area.

It was an exciting time, with research opportunities beckoning to us from
several directions. From a more general perspective than had been origi-
nally contemplated by the Department, we began studying—both exper-
imentally and theoretically—nonlinear electromagnetic wave propagation
on semiconductor junctions with transverse dimensions large compared to a
wave length. And there were many interesting nonlinear effects to consider.

Using ordinary reverse biased semiconductor diodes, the nonlinear ca-
pacitance of the junction causes shock waves, suggesting a means for gen-
eration of short pulses. At high doping levels, the junctions emit light to
become semiconductor lasers, and at yet higher doping levels the negative
conductance discovered by Leo Esaki appears, leading to a family of trav-
eling wave amplifiers and oscillators. In 1966, this latter effect was also
realized on insulating junctions between superconducting metals, rendered
nonlinear through Ivar Giaever’s tunneling of normal electrons.

As a basis for our theoretical work, we started with John Scott Russell’s
classic Report on Waves, a massive work that had been resting on a shelf
of the University Library for well over a century, and in 1963 two events
occurred that were to have decisive influences on Bob’s professional life.
The first of these was a Nobel Prize award to the British electrophysiolo-
gists Alan Hodgkin and Andrew Huxley for their masterful experimental,
theoretical and numerical investigations of nonlinear wave propagation on
a nerve fiber. This seminal work—to which applied mathematicians made
no contributions whatsoever—pointed the way to Bob’s doctoral research
on the neuristor, a term recently coined for an electronic analog of a nerve
axon.

The other event of 1963 was the experimental verification of Brian Joseph-
son’s prediction of tunneling by coupled electron pairs between supercon-
ducting metals, leading to an unusual sort of nonlinear inductor for which
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current is a periodic function of the magnetic flux. From this effect, the
relevant nonlinear wave equation for transverse electromagnetic waves on
a strip-line structure takes the form

∂2φ

∂x2 − ∂2φ

∂t2
= sin φ , (0.1)

where φ is a normalized measure of the magnetic flux trapped between the
two superconducting strips.

Originally proposed in 1938 to describe dislocation dynamics in crystals
and later to become widely known as the sine-Gordon equation, this is a
nonlinear wave equation that conserves energy (which nerves and neuristors
do not), and by the spring of 1966 we were aware that it carries little lumps
of magnetic flux very much as Scott Russell’s Great Wave of Translation
transported lumps of water on the Union Canal near Edinburgh.

Just as Equation (0.1) can be viewed as a nonlinear augmentation of the
standard wave equation, the system

∂2u

∂x2 − ∂u

∂t
= u(u − a)(u − 1) , (0.2)

is a nonlinear augmentation of the linear diffusion equation. Originally
proposed in 1937 to describe the diffusion of genetic variations in spatially
distributed populations, Equation (0.2) is the basic equation of excitable
media, now known to have a variety of applications in chemistry and bi-
ology. Since it has a nonlinear traveling wave solution that represents the
leading edge of a Hodgkin–Huxley nerve impulse, this equation is of central
interest in the theory of a neuristor.

From a broader perspective, Equation (0.1) describes basic features of
nonlinear wave propagation on closed (or energy conserving) systems, while
Equation (0.2) plays the same role for open (or energy dissipating) systems;
thus the two equations are fundamentally different and their traveling wave
solutions have quite different behaviors. Equation (0.1) can be realized
through Josephson tunneling and Equation (0.2) through both Esaki and
Giaever tunneling. Interestingly, these three young researchers shared the
Nobel Prize in physics in 1973.

Bob’s doctoral research was concerned with both theoretical and exper-
imental studies of these two equations, and his thesis was characterized
by two unique features: it was entirely his own work and it was easily the
shortest thesis that I have ever approved. Looking through The Supercon-
ductive Tunnel Junction Neuristor today, I am impressed by his simple and
direct prose, and filled again with the delicious sense of how exciting was
nonlinear science in those early days. So much was sitting just in front of
us, waiting to be discovered.

This thesis was a tour de force, consisting of five distinct contributions.

• On the theoretical side, he introduced the idea of studying traveling
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wave stability in a moving frame, using this concept to establish the
stability of step (or level changing) solutions of Equation (0.2).

• Again theoretically, he considered an augmentation of Equation (0.2)
with a realistic description of superconducting surface impedance,
leading to the hitherto unexpected possibility of a pulse-shaped trav-
eling wave. The existence of such a solution is important if the super-
conducting transmission line is to be employed as a neuristor; a fact
recognized in US Patent Number 3,717,773 “Neuristor transmission
line for actively propagating pulses,” which was awarded on February
20, 1973.

• On the experimental side of his research, Bob constructed an elec-
tronic transmission line model of the superconducting neuristor—
using Esaki tunnel diodes—demonstrating that his neuristor does in-
deed have pulse-like solutions. Nowadays, this sort of check would be
done on a digital computer, but in the 1960s electronic modeling was
an effective, if tedious, approach.

• Extending fabrication procedures previously developed in our labora-
tory, he constructed tin–tin oxide–lead superconducting tunnel trans-
mission lines of the Giaever type, showing that they could function as
neuristors by propagating traveling pulses as predicted by his theory.
This part of the research was a major effort, involving the making
of 80 superconducting transmission lines, of which only 8 (all con-
structed during winter months when the air in the laboratory was
very dry) were usable.

• Finally, Bob fabricated several superconducting transmission lines of
the Josephson type—by reducing the thickness of the oxide layer—
and showed that they could support pulse-like solutions of varying
speeds, in agreement with the properties of Equation (0.1). These
were the first such systems ever constructed.

All of this work was clearly presented in 94 double spaced pages—to
which I do not recall making a single editorial correction—leading me to
suspect (only half in jest) that the worth of a thesis is inversely proportional
to its weight.

But it would be incorrect to leave the impression that Bob occupied himself
only with scientific matters, for his social conscience was keenly developed.
As the folly of the Vietnam War unfolded throughout the 1960s and the
city of Madison became polarized into flocks of “hawks” and “doves,” he
was in the vanguard of Americans working for an end to the killing and
a peaceful resolution of the conflict. Although those were difficult years
for the University of Wisconsin, the activities of concerned and committed
students like Bob showed it to be a truly great educational institution.
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Having completed his thesis in September of 1967, he spent the 1967–68
academic year as a postdoctoral assistant in the Electronics Department
of Professor Georg Bruun at the Technical University of Denmark, where
a group was then engaged in a substantial program of neuristor research.
It was during this period that Bob took the opportunity to visit Prague
and share the euphoria of that beautiful city in its short-lived release from
foreign domination, an experience that left a strong impression, deepening
his suspicion of the motivations behind many official actions.

In the fall of 1968 Bob was recruited by Wisconsin’s Electrical Engineer-
ing Department as a tenure track assistant professor, a signal honor for
the department then had a firm policy against hiring its own graduates in
order to avoid “inbreeding.” The reasons for this departure from standard
procedure was that integrated circuit technology was becoming an impor-
tant aspect of solid state electronics, and both Jim Nordman and I were
fully occupied with our own research activities. As the most competent
person we knew, Bob was brought on board and charged with developing
an integrated circuits laboratory.

Not surprisingly, he was also caught up by the general feeling of student
unrest that characterized those days, eagerly embracing novel approaches
to teaching that would supersede the dull habits of the past. Following
his lead, we presented some courses together on the relationships between
modern technology and national politics that attracted both graduate and
undergraduate students from a wide spectrum of university departments.
One such class, I recall, met by an evening campfire in a wooded park
on Madison’s Lake Mendota, where we would sit in a circle discussing
philosophy, science, technology, and politics as the twilight deepened. The
circle is important. Under Bob’s inspiration, we were all students—the
highest status of an academic—striving together to understand.

So two salient characteristics of Bob’s nature become evident: a sure-
footed and independent approach to his professional work, and a deeply
rooted concern for the spiritual health of his society. But there was more.

Bob had a way of quietly influencing events, of deftly intervening at the
critical moment without worrying about taking credit for the results. From
Denmark in the spring of 1968, he wrote that I should look at the papers
of one E R Caianiello, who was doing interesting work on the theory of
the brain, a vast subject toward which Bob’s neuristor studies beckoned.
Upon being contacted, Professor Caianiello responded that he would be
pleased to deliver some reprints in person, as he was soon to be visiting in
Chicago. Over a lunch by the lake, I vividly recall, he sketched plans for
the Laboratorio di Cibernetica, a new sort of research institution that was
then being launched in the village of Arco Felice, near Naples.

Following ideas that had been advanced a decade before by the Ameri-
can mathematician Norbert Wiener, the Laboratorio staff would comprise
mathematicians, physicists, engineers, chemists, computer scientists, elec-
trophysiologists, and neurobiologists—working in a collaborative effort to
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understand the dynamic nature of a brain. As Wayne Johnson (who was
just completing an experimental doctorate in superconductive devices) and
I marveled at the scope of this scheme, Eduardo paused, looking thought-
fully at Wayne, and said: “I want you to come to Arco Felice and make
Josephson junctions.” In that moment, the Naples–Madison axis began.

Bob was the fourth Madisonian to trek to the Laboratorio, and the expe-
rience took hold of his psyche to an unanticipated degree. Encouraged by
some subtle cultural chords, it seems, this Wisconsin boy felt immediately
at home. There was something in the air of the mezzogiorno that resonated
with deeper aspects of his spirit. Was it the haunting presence of Homer’s
“wine dark sea” or the glow of afternoon sunlight on Vesuvio’s gorse? Or
the exuberant dance of the olive trees in an autumn breeze, their silver
underskirts flashing in the sun? Contributing perhaps to Bob’s sense of be-
longing to Campania was the marvelous cucina napoletana and the fierce
humor and independence of a people who have endured centuries of foreign
domination. All of these reasons and more, I suspect, drew Bob into the
bosom of Southern Italy.

Madison’s loss was the gain of Naples as Bob carried his talent and ex-
perience in integrated circuit technology into this new environment, deftly
wedding the new photo-lithographic fabrication techniques to emerging
studies of nonlinear wave propagation on long Josephson junctions. Through-
out the 1970s, theoretical, numerical and experimental research in the
nonlinear science of Josephson transmission lines—described by physically
motivated perturbations of the sine-Gordon equation—began to grow and
prosper under the leadership of Bob and Antonio Barone and their students
and colleagues, now far too many to list.

Although our personal and professional lives were entwined over more
than three decades, Bob and I published very little together. One excep-
tion, of which I am particularly proud, was a paper that emerged from a
famous soliton workshop that he organized in the summer of 1977 at the
University of Salerno, to which he had moved a couple of years earlier. Held
at the old quarters of the Physics Department in the middle of the city,
this meeting attracted several stars of nonlinear science and provided un-
usual opportunities for real scientific and personal interactions. One formal
talk in the morning was followed by lunch at a local restaurant that would
have pleased Ernest Hemingway, lasting for a minimum of three hours and
boasting unbounded conversation. Then in the late afternoon we would
gather for another formal talk, after which smaller groups would carry on
into the evening. It was from this inspired disorganization—perhaps only
possible in the mezzogiorno—that it became clear how to solve Equation
(0.1) with boundary conditions, making possible the analytic calculation
of zero field steps in long (but finite) Josephson junctions.

In the mid-seventies, Bob’s bent for subtly influencing events was exer-
cised again. Having become friends with Niels Falsig Pedersen through
meetings at international conferences, Bob encouraged the initiation of
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studies on Josephson junction solitons among physicists and applied math-
ematicians at DTU, anticipating the advantages that could be gained from
a collaboration between those near the top and bottom (geographically
speaking) of Europe. During the 1980s, as is evident from several chapters
of this book, such research came of age. In the best traditions of non-
linear science, a remarkable ménage à trois of experimental, theoretical
and numerical work emerged, relating the deep insights of soliton theory
to a growing spectrum of experimental observations on long Josephson
junctions. Reflecting the earlier Hodgkin-Huxley work on nerves, this in-
ternational effort serves as a paradigm of how nonlinear science should be
conducted.

Throughout these developments, Bob’s steady influence was ever present,
leading the group mind away from the abrasive competition that is all
too common in many areas of modern science. Much of the civilized tone
characterizing current investigations of superconductive devices stems from
Bob’s guiding hand.

Looking wistfully back over these fleeting years, I see a paradox in Bob’s
nature. Although ever tolerant of human foibles, sensitive to cultural im-
peratives, and ready to seek an intelligent compromise among conflicting
personalities, he remained wary to the end of petty bureaucrats and mean
spirited power games. Indeed, the last email messages we exchanged in
December of 1996 were about codes for protecting internet users against
prying officials of government.

Heading into the twenty-first century, practitioners of nonlinear science
will miss Bob’s wise and gentle counsel. While discussing his tragic death,
Antonio Barone mentioned that in such cases, one often remarks that the
departed person was a “good guy.”

“But, you know,” said Antonio, “Bob, he really was a good guy.”
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PREFACE

The world of science has seen many successes over the past century, but
none has been more striking than the recent flowering of nonlinear research.
Largely ignored in the realms of physics until some three decades ago, stud-
ies of the emergence of coherent structures from the underlying nonlinear
dynamics is now a vital facet of applied and theoretical science, providing
ample evidence—for those who still need it—that

The whole is more than the sum of its parts.

In this book, twenty-eight distinguished contributors describe these devel-
opments from the perspectives of their individual interests, paying partic-
ular attention to those aspects that seem to be of importance for the the
coming century. Although the chapters included here comprise but a small
portion of the current activities, we expect the readers to be impressed by
its diversity and challenge.
The story opens with two fundamental chapters, underlying all of the

others. The first of these presents a general description of coherent phenom-
ena in a variety of experimental settings, including plasma physics, fluid
dynamics and nonlinear optics. The second is a review of developments in
perturbation theory that have been profoundly influenced by research in
nonlinear science since the mid 1960s.
The next four chapters describe various studies of Josephson junction su-

perconductive devices, which have both stimulated and been encouraged by
corresponding developments in nonlinear science. Undreamed of 40 years
ago, these devices have increased the sensitivities of magnetometers and
voltmeters by several orders of magnitude, and they promise corresponding
advances in submillimeter wave oscillators and in the speed of digital com-
putations. Not unrelated to recent progress in the development of supercon-
ductors with higher operating temperatures are the quasi-two-dimensional
magnets that support vortex structures as described in Chapter 7. This is an
exciting field of theoretical study that stems directly from recent advances
in condensed matter physics.
Without doubt, the most important technical application of the ubiqui-

tous and hardy soliton is as a carrier of digital information along optical
fibers. In recognition of this, five chapters are included on various aspects
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of modern optical research, ranging from general studies of basic proper-
ties to more detailed considerations of current design objectives. We believe
these chapters will provide the reader with an unusually clear exposure to
both the theoretical and the practical implications of optical solitons for
the coming century.
Another significant branch of present day nonlinear science is that of non-

linear lattices. Going back to the early 1980s, this work is introducing the
revolutionary concept of local modes into the study of molecular crystals.
Of the six chapters in this area, the first deals with dislocation dynam-
ics in crystals, and the second suggests the key role that two-dimensional
breathers may have played in the formation of crystal structures, such as
muscovite mica. Other chapters deal with novel phenomena arising from
more than one length scale, mechanical models for lattice solitons, and
the quantum theory of solitons in real lattices. From such work, we be-
lieve, may emerge basic elements for coherent information processing in
the terahertz (far infra-red) region of the electromagnetic spectrum. The
final chapter in this nonlinear lattice segment of the book describes ways
in which “colored” thermal noise can give rise to molecular motors at the
scale of nanometers. This idea has important implications for transport
mechanisms that may operate within living cells, setting the stage for the
final four chapters which address the nonlinear science of life.
Just as the past 100 years have been called the “century of physics,” we

expect that the next will be recognized as the “century of biology.” Since
almost every aspect of biology is nonlinear, this is the area in which we see
the new ideas having their greatest impact. Thus the last four chapters are
devoted to physical aspects of biological research.
The first of these describes various attempts to understand the dynamics

of DNA in the context of modern biophysics. This survey provides the
reader with a hierarchy of mathematical models, each gaining in accuracy
as the computational difficulties correspondingly increase. Related to this
chapter is the following one, describing exact numerical solutions for the
dynamics of certain helical biomolecules that are components of natural
protein.
The penultimate chapter—on exploratory investigations of the nonlinear

dynamics of bacterial populations—is intended to draw physical scientists
into the study of life. Similarly, the final chapter attempts to encourage
young experimentalists and theorists to consider the most intricate dy-
namical system in the known universe: the human brain.

It is our hope that the readers of this book will make a significant con-
tribution to research activities in the “century of biology.”

Lyngby and Tucson The Editors
1999
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1
Nonlinear Coherent Phenomena in
Continuous Media
E.A. Kuznetsov
V.E. Zakharov

ABSTRACT This review is devoted to description of coherent nonlin-
ear phenomena in almost conservative media with applications to plasma
physics, fluid dynamics and nonlinear optics. The main attention in the
review is paid to consideration of solitons, collapses, and black holes. The
latter is a quasi-stationary singular object which appear after the forma-
tion of a singularity in nonlinear wave systems. We discuss in details the
qualitative reasons of the wave collapse and a difference between solitons
and collapses, and apply to their analysis exact methods based on the
integral estimates and the Hamiltonian formalism. These approaches are
demonstrated mainly on the basic nonlinear models, i.e. on the nonlinear
Schrödinger equation and the Kadomtsev-Petviashvili equation and their
generalizations.

1 Introduction

All real continuous media, including vacuum, are nonlinear. Nonlinearity
might be a cause of quite opposite physical effects. One of them is phase
randomization leading to formation of a chaotic state - weak or strong
wave turbulence. Wind-driven waves on the ocean surface is the classical
example of that sort. Another group of effects is spontaneous generation
of coherent structures. These structures may be localized in space or both
in space and in time. Phases of Fourier harmonics, forming the structures,
are strongly correlated.
Very often coherent structures coexist with wave turbulence. A simple

example of the coherent structure is ‘white caps’ on the crest of gravity
wave of high amplitude. Elementary visual observation shows that just
before breaking, a wave crest takes the universal, wedge-type shape. Ap-
parently, the harmonics composing this shape have correlated phases. The
wave breaking is an important mechanism of energy and momentum dis-
sipation on the ocean. A satisfactory theory of this basic effect is not yet
developed.

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 3−45, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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A more standard example of a coherent structure is a solitary wave on the
surface of shallow water. These examples present two major types of coher-
ent structures - collapses and solitons. Solitons are stationary, spatially lo-
calized wave packets, which are very common in nonlinear media. Collapses
are almost as wide-spread phenomena as solitons. These are catastrophic
processes of concentration of wave energy in localized space domains lead-
ing to absorption of at least part of this energy. Collapses are an important
mechanism of the wave energy dissipation in almost conservative media,
in particular, they play essential roles for many methods of fusion plasma
heating.
Collapses and solitons are not all the coherent structures that can be

found in nonlinear media. Rich families of coherent structures exist in ac-
tive media, providing the balance between pumping and dissipation. Among
them there are patterns described by the Ginsburg-Landau type equations
and spiral waves in reaction-diffusion systems. Rolls and hexagons in the
Benard convection are such examples. But even in almost conservative me-
dia one can find coherent structures different from solitons and collapses.
One can mention, for instance, “black holes”, which are persistent localized
regions of the wave energy dissipation arising in some cases after the act
of wave collapse resulting in the formation of a singularity.
In this paper we shall discuss coherent structures in almost conservative

media only. We concentrate our attention mostly on collapses and solitons,
which are, in our opinion, closely related phenomena. In many important
physical situations, collapse is a result of the soliton instability (for more
details, see two reviews [1, 2] and references therein). We shall briefly dis-
cuss also the theory of black holes in the models describing by the nonlinear
Schrödinger equation (NLSE). Using the Hamiltonian formalism gives us
an opportunity to study the problem of coherent structures in its maximum
generality (see also our recent review [3] devoted to this subject). Physical
examples used in the paper are taken mostly from hydrodynamics, nonlin-
ear optics, and plasma physics.

2 Phase randomization in nonlinear media

Let as consider wave propagation in a uniform boundless conservative
medium. The wave field will be described by the complex normal variable
ak(t), satisfying the equation of motion

∂ak
∂t

= −i
δH

δa∗
k

. (1.1)

In the linear approximation

H = H0 =
∫

ω(k)|ak|2dk, (1.2)
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where ω(k) is the dispersion law. In this case equation (1.1) is trivially
integrated

∂ak(t)
∂t

+ iω(k)ak(t) = 0, (1.3)

ak(t) = C(k)e−iω(k)t. (1.4)

For a localized wave packet one should require
∫ |C(k)|2dk < ∞. For the

system of monochromatic waves the distribution of ak is a set of δ functions

C(k) =
∑

Cnδ(k − kn). (1.5)

In the linear approximation phases of each waves arg ak = φk grow linearly
in time

φk(t) = φk(0) + ω(k)t

and, respectively, the trajectory of the system winds on the infinitely-
dimensional torus. The phase φk is defined modulo 2π. Therefore for
two waves with incommensurable frequencies ω(k) and ω(k1) difference
(or sum) in phases φk(t)∓ φk1(t) = φk (0)∓ φk1(0) + (ω(k)∓ ω(k1))t with
time becomes random function on the interval 2π. Thus, for continuous
dependence ω = ω(k) (except ω(k) =const), the linear dispersion leads to
complete phase randomness for the wave distribution.
Now let us introduce into (1.1) a quadratic nonlinearity. It is enough to

replace

H → H0 +H1, (1.6)

H1 = −1
2

∫
V kk1k2

(
ak

∗ak1ak2 + akak
∗
1
ak

∗
2

)
δk−k1−k2dkdk1dk2 . (1.7)

Here V kk1k2 are coupling coefficients for three-wave interaction. The equa-
tion of motion (1.1) takes now the form

∂ak

∂t
+ iω(k)ak +

i

2

∫ {
V kk1k2ak1ak2δk−k1−k2 +

2V k1kk2ak1ak
∗
2
δk−k1+k2

}
dk1dk2 = 0. (1.8)

The Equation (1.8) describes several nonlinear effects. Suppose that the
equations

k1 = k2 + k3, ω(k1) = ω(k2) + ω(k3) (1.9)

have nontrivial real solutions, as for instance, if ω(0) = 0 and ω′′ > 0.
Suppose further that at t = 0

ak = C
(0)
1 δ(k − k1) + C

(0)
2 δ(k − k2) + C

(0)
3 δ(k − k3), (1.10)
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where k1,k2,k3 satisfy the equations (1.9). Then at t > 0, in the limit
of small enough intensities of waves, the complex amplitude ak(t) can be
sought in the form

ak =
3∑
i=1

Ci(t)e−iω(ki )tδ(k − ki) (1.11)

where Ci(t) obey the system of ordinary differential equations, the so-called
three-waves system [4]

∂C1

∂t
= iV C2C3,

∂C2

∂t
= iV C1C

∗
3

∂C3

∂t
= iV C1C

∗
2 . (1.12)

Here the coupling coefficient V = V kk1k2 .
Equation (1.12) can be easily solved in elliptic functions. The initial data

C1 = 0, C2 = C
(0)
2 , C3 = C

(0)
3

separate the solution describing growth of C1. In particular, at small time

C1 � iV C
(0)
2 C

(0)
3 t.

This is the simplest nonlinear process - resonant “mixing” of two monochro-
matic waves.
The equations (1.12) describe also another very important nonlinear pro-

cess, namely, the decay instability of the monochromatic waves. Let at t = 0

C1 = Aeiφ, C2 = q, C3 = iq∗eiφ, |q| � A. (1.13)

Now for small times
C2 � qeγt (1.14)

where γ = |v||A| is the growth rate of the so-called decay instability. This
solution describes exponential growth of the waves C2, C3. Their phases
(C2 = |C2|eiφ2 , C3 = |C3|eiϕ3) satisfy the condition

φ2 + φ3 = φ+ π/2. (1.15)

Thus, the sum of phases φ2 and φ3 is fixed. But a phase of one of the
waves in this pair (phase of q) is quite arbitrary. We found that in the
most idealized case (when due to the decay instability only one pair of
monochromatic waves is excited) this process yields the correlation for sum
of phases of the excited waves and simultaneously introduces to the wave
system an element of randomness, namely, the phase of q. In more realistic
case the instability excites a whole ensemble of wave pairs satisfying the
conditions (1.9) up to the accuracy of γ. Each exited pair adds one random
phase. The exited waves are also unstable. Multiplication of the process
of instability has to create in the system a lot of new waves with random
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phases and to cause finally complete turbulization of the wave field. We
must stress that this scenario is just a very plausible conjecture. It would
be very important to check it by a direct numerical experiment. The point of
common belief is the following. As a result of multiple events of the wave
mixing and decay instability, after some time phases become completely
random. In this case the wave field can be described statistically by the
correlation function

〈aka
∗
k′〉 = nkδkk′ . (1.16)

Here nk is the quasi-particle density (or the wave action). This quantity for
sufficiently small wave intensity satisfies the kinetic equation (for details
see [5])

∂nk

∂t
= St(n, n), (1.17)

St(n, n) =
∫ {

Akk1k2 − Ak1kk2 − Ak2kk1

}
dk1dk2,

Akk1k2 = 4π|V kk1k2 |2
(
nk1nk2 − nknk1 − nknk2

) ·
δk−k1−k2

δω(k)−ω(k1 )−ω(k2 ).

The kinetic equation accounts for the correlation in wave phases (1.15) in
the first order with respect to the matrix element V kk1k2 that, in partic-
ular, provides a nonzero three wave correlation function 〈aka

∗
k1a

∗
k2〉 =

Jkk1k2δk−k1−k2 .
The state of the wave field described by the kinetic equation (1.17) is

called weak turbulence. Direct numerical examination of the theory of weak
turbulence is one of the most interesting problem in computational physics
at the time.
It might happen that equations (1.9) have no real solutions. In this case

the first interacting term in the Hamiltonian has to be taken in the form

H1 =
1
2

∫
Tkk1k2k3ak

∗ak
∗
1
ak2ak3δk+k1−k2−k3dkdk1dk2dk3. (1.18)

Equation (1.8) transforms now into the form

∂ak

∂t
+ iω(k)ak =

−i

∫
Tkk1k2k3ak

∗
1
ak2ak3δk+k1−k2−k3dk1dk2dk3. (1.19)

Equation (1.8) has the natural constants of motion, i.e., the Hamiltonian
and the momentum

H = H0 +H1 and P =
∫

kakak
∗dk. (1.20)
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The Equation (1.19) has the additional invariant N =
∫
akak

∗dk. If H1 �
H0 the equation (1.19) can be considered as linear and again has a solution
(1.4), (1.5), but elementary process of the nonlinear wave interaction are
now different.
If wave vectors k1k2k3 of three monochromatic waves satisfy the condi-

tion
−ω(k1) + ω(k2) + ω(k3) = ω(−k1 + k2 + k3), (1.21)

they pump a new wave with the wave vector

k = −k1 + k2 + k3. (1.22)

This is a “resonant mixing” of wave triads. Another type of nonlinear in-
teraction is an instability of monochromatic waves. As in the previous case
they lead to excitation of wave pairs. In the case of instability of an in-
dividual wave with the wave vector k0 there excites a pair with the wave
vectors k2,k3, satisfying the conditions

k2 + k3 = 2k0, ω(k2) + ω(k3) = 2ω(k0). (1.23)

Phases of new waves φ2, φ3 are connected with the phase of the initial wave
φ0 by the relation

φ2 + φ3 = 2φ0 + π/2. (1.24)

Their difference φ2 −φ3 is again arbitrary. Hence this instability introduces
an element of chaos to the system.
Another instability taking place in the system (1.19) is instability of

wave pairs. If initially the wave field consists of two monochromatic waves
with wave vectors k0,k1, two other waves grow exponentially, if their wave
vectors k2,k3 satisfy the resonant conditions

k2 + k3 = k0 + k1, ω(k2) + ω(k3) = ω(k0) + ω(k1). (1.25)

Now
φ2 + φ3 = φ0 + φ1 + π/2.

The phase difference φ2 − φ3 is arbitrary again.
Combination of instability and wave mixing causes complete stochasti-

zation of phases. Weak turbulence in the framework of the model (1.19) is
described by the kinetic equation

∂nk

∂t
= St(n, n, n), (1.26)

St(n, n, n) = 4π
∫

|Tkk1k2k3
|2δk+k1−k2−k3

δω(k)+ω(k1 )−ω(k2 )−ω(k3 )·



1. Nonlinear Coherent Phenomena in Continuous Media 9

[nk1nk2nk3 + nknk2nk3 − nknk1nk2nknk1nk3 ]dk1dk2dk3.

It should be noted that the equations (1.23) not necessarily have real solu-
tions. In an isotropic medium ω = ω(|k|), the sufficient condition for their
existence is ω′ > 0; ω′′ < 0. If ω(0) = 0, ω′

k > 0, ω′′ > 0, the only solution
of (1.22) is k2 = k3 = k0. In this case stochastization is less obvious and
one has to expect formation of coherent structures. We study them in the
next section.

3 Nonlinear Schrödinger equation

In some important physical situation, for instance, for waves on the surface
of ideal fluid of finite depth Tkk1k2k3 has indeterminacies at k1 = k2 =
k3 = k. We will study only the simplest case when T is a continuous
function on this submanifold. Denote T (k) = Tkkkk. Then the equation
(1.19) has the exact solution

ak = Ae−iω̃(k0 )t, ω̃k0 = ωk0 + T (k0)|A|2. (1.27)

Here, due to the obvious symmetry relation T ∗
kk1k2k3 = Tk2k3kk1 , T (k)

is a real function.
Let us consider a solution of (1.19) that is close to the exact nonlinear

monochromatic wave (1.27). Now

ak(t) = C(κ, t)e−iω(k0 )t, κ = k − k0, (1.28)

C(κ) = 0 if |κ| � |k0|.
Expanding ω(k) in the Taylor series

ω(k) = ω(k0 + κ) = ω(k0) + κp
∂ω

∂kp
+
1
2
κpκq

∂ω

∂kp∂kq
+ ...,

one can find that the Fourier transform from C(κ, t),

ψ(r, t) =
∫

C(κ, t)eiκrdκ,

satisfies the nonlinear Schrödinger equation (NLSE)

∂ψ

∂t
+ (v∇)ψ − iωαβ

∂2ψ

∂xα∂xβ
= iT |ψ|2ψ. (1.29)

Here v = ∂ω/∂k|
k=k0

is the group velocity,

ωαβ =
1
2

∂ω

∂kα∂kβ

∣∣∣
k=k0

, T = −T (k0).



10 E.A. Kuznetsov, V.E. Zakharov

Going to the frame of reference moving with the group velocity one can
eliminate the first space derivative. We now obtain

∂ψ

∂t
− iωαβ

∂2ψ

∂xα∂xβ
= iT |ψ|2ψ. (1.30)

The monochromatic wave is described now by the solution of (1.28)

ψ = AeiT |A|2t. (1.31)

One can study the stability of this solution, assuming

ψ = AeiT |A|2t(1 + δψe
i(Ωt−pr )).

In the linear approximation |δψ| � 1, one can obtain

Ω2 = (ωαβpαpβ)2 − 2T |A|2ωαβpαpβ . (1.32)

If eigenvalues of the tensor ωαβ have different signs, equation (1.31) yields
instability at any sign of T . The domain of the instability in the p-space is
concentrated along the cone

ωαβpαpβ = 0. (1.33)

If p � k0, this instability goes to the “second order decay instability”
obeying the resonant conditions (1.23). If all eigenvalues of ωαβ are of the
same sign, instability takes place if

Tωαβpαpβ > 0. (1.34)

This instability is called the modulation instability (for details, see [1, 6, 7]).
In this case the NLSE can be reduced to the form

iψt +∆ψ + 2|ψ|2ψ = 0. (1.35)

We will call this equation the compact focusing NLSE. The domain of the
instability of monochromatic wave is bounded now by the condition

|ωαβpαpβ + β| < |T |A2. (1.36)

If Tωαβpαpβ < 0 , the monochromatic wave is stable and the NLSE can
be simplified to the canonical form

iψt +∆ψ − 2|ψ|2ψ = 0. (1.37)

This is the compact defocusing NLSE. Among non-compact NLSE the most
interesting ones have the following canonical forms

iψt + ψxx − ψyy + 2|ψ|2ψ = 0, (1.38)
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iψt +∆⊥ψ − ψxx + 2|ψ|2ψ = 0. (1.39)

Here ∆⊥ = ∂2/∂y2 + ∂2/∂z2. Equation (1.37) describes nonlinear modula-
tions of gravity waves on a surface of deep water, while (1.38) is applicable
to propagation of electromagnetic wave packets in media with negative
(normal) dispersion. All species of the NLSE describe some coherent struc-
tures. Only for the compact cases (1.35) and (1.37) they are studied in a
proper degree.

4 Solitons in the focusing NSLE

Development of instability of the monochromatic wave (condensate) in the
framework of the compact focusing NLSE (1.35) does not lead to formation
of weak-turbulent state directly. It leads first to formation of the coherent
structures - solitons or collapses. In the quantum mechanical analogy, the
NLSE (1.35) describes the motion of a particle in a self-consistent poten-
tial with attraction, where the attraction is the main cause of existence of
the localized coherent structures. The nature of these structures depends
essentially on the spatial dimension D. The most important coherent struc-
ture in (1.35) has maximal spatial symmetry. We will discuss only these
structures.
Equation (1.35) can be rewritten as follows

iψt + ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 0, 0 < r < ∞. (1.40)

This equation preserves two basic constant of motion: number of particles

N = 2D−1π

∞∫
0

rD−1|ψ|2dr (1.41)

and the Hamiltonian

H = 2D−1π

∞∫
0

rD−1(|ψr|2 − |ψ|4)dr = X − Y, (1.42)

where we denote

X = 2D−1π

∞∫
0

rD−1|ψr|4dr, Y = 2D−1π

∫
rD−1|ψ|4dr.

The Equation (1.40) has stationary solutions of the form

ψ = ϕ(r)eiλ
2t (1.43)
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where ϕ(r) satisfies the equation

−λ2ϕ+∆ϕ+ 2ϕ3 = 0 (1.44)

Here ∆ϕ = ϕrr + (D − 1)ϕr/r. The solution (1.43) is a soliton if ϕ(r) → 0
at r → ∞ and integrals N,X, Y are finite. It is possible to show that the
solutions of equation (1.44) for D ≤ 4 decrease exponentially at infinity
and this provides finiteness of the integrals N,X, Y .
The solution of equation (1.44) is a stationary point of the Hamiltonian

for fixed number of particles N

δ(H + λ2N) = 0. (1.45)

The solution of (1.44) can be rescaled: ϕ(r, λ) = λϕ0(λr), where ϕ0(ξ)
satisfies the equation

−ϕ0 +∆ϕ0 + 2ϕ3
0 = 0. (1.46)

Hence N = λ2−DN0 with N0 = 2D−1π
∞∫
0
rD−1ϕ2

0(r)dr. Let us perform the

transform
ψ(r) → a−D/2ψ

( r

a

)
(1.47)

preserving the number of particles. As a result, the Hamiltonian takes a
dependence on the parameter a

H(a) =
X

a2 − Y

aD
. (1.48)

According to (1.45) at the soliton solution ∂H/∂a|a=1 = 0. Using (1.46) it
is easy to get that at these solutions [1, 6]

Xs =
D

4− D
N2

0 /Ns, Ys =
2

4− D
N2

0 /Ns, Hs =
D − 2
4− D

N2
0 /Ns. (1.49)

Here the index s denotes values of the integrals on the soliton solution.
Since X,Y are positive, soliton solutions exist only if D < 4. Formulas
(1.49), (1.58) make it possible to solve easily the question of soliton stability.
If D < 2, Hs < 0, and the value a = 1 realizes the minimum of the
Hamiltonian (1.48). Hence in this case one can assume that the soliton is
stable. This result occurs to be true not only for scaling perturbations but
also for the general ones that can be proved rigorously (see, for instance,
[1],[8]).
This proof is based on the integral estimates of the Sobolev type. These

inequalities arise as sequences of the general imbedding theorems between
the spaces Lp and W 1

2 with the norms,

‖ψ‖p =
[∫

|ψ|pdr
]1/p

, (p > 0), ‖ψ‖W 1
2
=

[∫
(|ψ|2 + |∇ψ|2)dr

]1/2

.
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respectively. Namely, there exists such a constant B > 0 so that the fol-
lowing inequality between norms is valid (see, e.g., [9, 10]):[∫

|ψ|pdr
]1/p

≤ B

[∫
(|ψ|2 + |∇ψ|2)dr

]1/2

if D <
2
p
(p+4) and r ∈ �D.

(1.50)
In this formula each integral is assumed to be convergent. Making in (1.50)
the transform r →αr, it becomes∫

|ψ|pdr ≤ B1

[
αq

∫
|ψ|2dr+αq−2

∫
|∇ψ|2dr

]p/2
with q = d

(
1− 2

p

)
.

Calculation of the minimum of the r.h.s. of this inequality with respect to
scaling parameter α gives the multiplicative variant of the Sobolev inequal-
ity [9, 10],∫

|ψ|pdr ≤C

(∫
|ψ|2dr

)(2−q)p/4 (∫
|∇ψ|2dr

)qp/4

, (1.51)

where C is a new constant.
In particular, for p = 4 we have (compare with [11])∫

|ψ|4dr ≤C

(∫
|ψ|2dr

)(4−D)/2 (∫
|∇ψ|2dr

)D/2

(1.52)

This inequality can be improved by finding the best constant C in (1.52).
For this aim consider the functional

J{ψ} = N (4−D)/2XD/2

Y
, (1.53)

so that
C−1 = minJ{ψ} . (1.54)

To find C consider all extremals of the functional J{ψ} and take among
these the one which gives a minimal value for J . Note, this functional is
invariant with respect to two independent dilatations: ψ → αψ and r →βr.
Therefore the corresponding Euler-Lagrange equation for the functional
extremum leads to

−ψ +∇2ψ + 2|ψ|2ψ = 0,

coinciding with Eq. (1.46) for the soliton solutions. A minimal value of
J{u} is attained on radically-symmetric distribution without nodes and
simultaneously satisfied by Eq.(1.46). This distribution is the ground state
soliton for the stationary NLSE. Hence, with account of (1.49) the best
constant is equal to

C =
2

N0d(4− D)

(
4− D

D

)d/2

. (1.55)
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Here N0D is the number of particles in the ground state soliton Ns depend-
ing on the dimension D. For example, in the 1D case N01 = 2, at D = 2,
according to [14] N02 = 5.84 and for D = 3, N03 = 9.47 [2]. As a result,
the inequality (1.52) reads (see, for instance, [1] and [12])

Y ≤ CN (4−d)/2Xd/2. (1.56)

This inequality allows immediately to get a proof of 1D soliton stability.
Substituting (1.56) at D = 1 into expression (1.42) for the Hamiltonian and
taking into account relations (1.49 ) we arrive at the following estimate (see,
for instance, [13])

H ≥ X − CX1/2N3/2 = Hs + (X1/2 − X1/2
s )2. (1.57)

Thus, a 1D soliton realizes the global minimum (in the given class!) of
the Hamiltonian and therefore is stable not only with respect to small
perturbations but also against finite ones1.
If D > 2, the stationary point yields a positive value of H, so that,

instead of being a minimum in the one-dimensional case, solitons realize
the maximum of the Hamiltonian, which is now unbounded from below and
can take (at a → 0 ) arbitrary large negative values. On the other hand,
transformations of the type

ψ(r) → ψ(r)eisr
2

(1.58)

increases the integral X, leaving integrals N and Y unchanged. Hence the
soliton solution is a saddle point, leading to the conjecture about instability
of the soliton for 2 < D < 4. This fact can be proved rigorously too.
The case D = 2 is special. Now N = N0 and H ≡ 0. This result should

be discussed separately. The parameter λ characterizes an inverse spatial
size (width) of the soliton. Independence of λ of the basic constants of
motion for D = 2 means that the soliton is “soft” - it can be compressed or
inflated without changing its energy and number of particles. In the linear
approximation the soliton is marginally stable [15]. More detailed study
shows that the soliton is unstable with respect to perturbations of finite
amplitude.
The application of the procedure (1.57) at D = 2 gives

H ≥ X

(
1− N

N02

)
.

1These inequalities were first used for the stability study of ion-acoustic soli-
tons in magnetized plasma [73] based on the proof of the boundedness of the
Hamiltonian. Later this approach was widely applied for the stability proof of
the different kinds of solitons (see, for instance, [1]). The acknowledged best use
of these inequalities for the collapse problem was presented by Weinstein [12].
Later more general results are reviewed in the paper [2].
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From this estimate one can conclude that the Hamiltonian is bounded
from below, taking non-negative values if the number of particles does not
exceed the number of particles Ns at the ground state soliton solution. Its
minimal value, equal to zero, is retained for distributions with vanishing
mean square value of the wave number,

〈
k2〉 = X

N
→ 0.

Thus in this region of the phase space asymptotic states of any initial
condition will be dispersively spreading distribution, i.e., asymptotically
free fields.
In the three-dimensional case the analogous integral estimate for H [19],

H ≥ X − CX3/2N1/2, (1.59)

does not allow us to make any conclusion about soliton stability (note that
maximum of the r.h.s. of (1.59) corresponds to a 3D soliton). Recall that
the linear stability analysis predicts the instability of three-dimensional
solitons [1, 15].
For D = 1 equation (1.40) is integrable [16] and has infinite number of

extra constants of motion [16]. In this case a soliton can be found in the
explicit form

ϕ0(x) =
1

coshx
. (1.60)

For D = 4 at λ = 0 the equation (1.46),

ϕ′′
0 +

3ϕ′
0

r
+ 2ϕ3

0 = 0, (1.61)

has the exact solution
ϕ0 =

2
r2 + 1

. (1.62)

This is a limiting case for the soliton solutions. Now ϕ0 vanishes powerfully
at r → ∞, that results in the logarithmical divergence of N0 at r → ∞.

5 Collapses in the NLSE

ForD ≥ 2 solitons are either unstable or do not exist. In this case the major
coherent structure is a collapsing cavity (the region of higher wave intensity)
leading to the formation of localized singularities of wave amplitude in a
finite time.
One of the main reasons for the wave collapse existence is the Hamilto-

nian unboundedness. In such systems, like the NLSE, collapse can be rep-
resented as a process of falling down of some “particle” in a self-consistent
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unbounded potential. Indeed, the picture is more complicated than consid-
ered above. From the very beginning we have a spatially-distributed system
with infinite number of degrees of freedom and therefore, rigorously speak-
ing, it is hard to describe such a system by its reduction to a system of
ODEs. The NLSE is a wave system and wave radiation plays a very essen-
tial role for blow-up.
Let Ω be an arbitrary region with a negative Hamiltonian HΩ. Then

using the mean value theorem for the integral YΩ,∫
Ω

|ψ|4 dr ≤max
r∈Ω

|ψ|2
∫

Ω
|ψ|2dr,

one can get (compare with [6] and [72]) the following inequality

max
x∈Ω

|ψ|2 ≥ |HΩ|
NΩ

. (1.63)

Here the expression in the r.h.s. of the inequality has the meaning of the
mean energy per one quasi-particle. From this inequality, valid also when
Ω = �3, it follows that max |ψ|2 as a function of t always is majorized by
the conservative value. So, vanishing or yet some sufficient decreasing of
the initially existed maximum of |ψ|2 are impossible.
Let the Hamiltonian be negative initially in some separate region Ω,

HΩ < 0, and the radiation emerge from this region. In the outer region,
far from Ω, radiative waves will have small amplitudes. Consequently, their
nonlinear interaction will be negligible with respect to their dispersion and
they will have a positive Hamiltonian. Therefore due to the wave radiation,
the Hamiltonian of the region HΩ will become more and more negative in-
creasing its absolute value, that is possible only due to the unboundedness
of the Hamiltonian. Simultaneously, NΩ as a positive value will decrease so
that the ratio in the r.h.s. of the inequality (1.63) will increase. It automat-
ically leads to the growth of the maximal value of |ψ|2. Thus, radiation, as
a dissipative process promotes the wave collapse.
The occurrence of wave collapses can be proved by use of the virial

theorem. From (1.40) one can derive the relation

d2

dt2

∫
r2|ψ|2dr = 4[2H − (D − 2)Y ]. (1.64)

At D = 2 this relation can be integrated twice

〈r2〉 =
∫
r2|ψ|2dr∫ |ψ|2dr = 4

H

N
t2 + C1t+ C2, (1.65)

where the constants C1, C2 are defined from the initial conditions. Hence it
is seen that for H < 0, in spite of the values C1,2 there always exists a finite
time when the right hand side of (1.65) vanishes. Thus, H < 0 represent a
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sufficient condition for the collapse, which was found by Vlasov, Petrishchev
and Talanov (the VPT criterion [17]). For D = 3 the equality (1.65) can
be replaced by the inequality

〈r2〉 < 4
H

N
t2 + C1t+ C2. (1.66)

from which follows the same sufficient criterion H < 0 [6]. This estimate,
however, is rather rough and can be improved. As was shown in a recent
paper [19], the collapse threshold is defined by the unstable ground state
soliton solution which in some sense plays the role of separatrix between
collapsing and noncollapsing solution. It was proved in [19] that at D = 3
the equality (1.64) can be changed to the inequality

d2

dt2

∫
r2|ψ|2dr < 8(H − HN ). (1.67)

Here HN = N2
0 /N is the value of the Hamiltonian of the ground state

soliton (compare with (1.49)). Hence the equation (1.67) gives the sharper
criterion for collapse [18, 19]

H ≤ HN . (1.68)

What is the scenario of the collapse? For D > 2 NLSE (1.40) has the
self-similar solution

ψ(r, t) =
1

(t0 − t)1/2+iκ(D) g(ξ), ξ =
r√

t0 − t
(1.69)

where g(ξ) satisfies the equation

gξξ +
(
D − 1

ξ
+

iξ

2

)
gξ +

(
i

2
− κ

)
g + 2|g|2g = 0, (1.70)

gξ|ξ=0 = 0, g(∞) = 0.

Here κ = κ(D) is the eigenvalue of the nonlinear boundary problem (1.70).
It is easy to show that as ξ → ∞

g(ξ) � ξ−(1+2iκ), (1.71)

hence |ψ|2 → 1/r2 as t → t0. For D > 2 the singularity (1.71) is inte-
grable.
There is a plausible hypothesis: the self-similar solution (1.69) describes

collapse in a general position. So far, the only way to check this conjecture
is by a numerical experiment. Two series of experiments performed by two
independent groups confirmed the hypothesis with a very high accuracy
[20, 23]. This problem was also discussed in many other papers. We would
like to draw attention to some of them - [74] and [30].
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A generic case D > 2 can be called supercritical. The case D = 2 is
critical. This case is especially interesting because it describes stationary
self-focusing of electromagnetic waves in a nonlinear Kerr dielectric.
For D ≤ 2 the singularity (1.71) is non-integrable, and the boundary

problem (1.70) cannot have regular solutions. In the critical case D =
2, Ns = N0, Hs = 0, and one can guess that the collapse is the compressing
soliton [24]

|ψ|2 = 1
f2ϕ

2
0

(
r

f

)
+ ..., f = f(t0 − t), f(0) = 0. (1.72)

In the strictly self-similar case f(ξ) =
√
ξ. As far the divergence at D = 2

is very weak (logarithmic) one can conjecture that now

f(ξ) =

√
ξ

b(ξ)
.

Here b(ξ) is a “slow” function and b(0) = ∞. It was shown [27, 28] that

b(ξ) � ln ln
(
1
ξ

)
.

This result is confirmed by numerical experiments with satisfactory accu-
racy [21, 34, 33, 22] and also analytically [29].
At the end of this section we want to discuss the possibility of collapse in

the non-compact NLSE (1.37) and (1.38). First of all, it is easy to show that
solitons are absent in this case. The explanation of this fact is very sim-
ple. In the transverse plane, equation (1.38) describes attraction between
particles, but, in contrast, along the x-axis repulsion. Moreover, from the
virial identities for mean transverse size and mean longitudinal size one can
show that collapse of the wave packet as a whole is impossible at the stage
of the compression of the wave packet in all directions ([35]). Numerical
integration of these equations (as it was published in the first paper [36],
devoted to this subject, as well as in the recent one [37]), demonstrates
the fractal behavior of the system. The initial distribution with sufficiently
large amplitude at the beginning demonstrates compression in the trans-
verse plane; at the later stage the wave packet undergoes waving instability
that results in splitting of the packet into two packets. At the next stage
dynamics of each secondary packet repeats the fate of the original one.

6 Weak, strong and superstrong collapses

The central problem of the physical theory of collapse is the estimate of
the efficiency of collapse as a nonlinear mechanism of wave energy dissipa-
tion. To achieve that we must include the nonlinear dissipative terms into
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equations describing the collapsing medium. The nonlinear Schrödinger
equation could be modified as follows

i(ψt + β|ψ|mψ) + ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 0. (1.73)

Here for β > 0 the second term is responsible for the nonlinear dissipation.
For a sufficiently large degree of nonlinearity m, the equation (1.73) has
regular solutions for some small β. The amount of absorbed energy during
the collapse is characterized by the integral

I ≡ dN

dt
= βπ

∫
dt

∞∫
0

|ψ|m+2(2r)D−1dr. (1.74)

Our aim now will be to estimate integral (1.74) at β → 0. When approach-
ing the collapse, there are two possibilities. In the critical case, D = 2, a
strong collapse occurs when a finite amount of energy is accumulated at a
collapse point and, as a result, the δ-type singularity is formed. The direct
numerical solution of the equation (1.73) confirmed that idea. It was found
that the part of energy absorbed during the collapse is about 15% to 25%
from the value of Ncr [21, 22]. This part practically does not change with
the decreasing of β, and slightly reduces when m is increased. In the su-
percritical case, the integrable singularity of wave energy density is formed
in the collapse point. We have

|ψ|2 ∼ 1/r2. (1.75)

Let the characteristic size of the collapsing cavity be of the order of r0 then
the characteristic formation time of that scale is ∆t ∼ r2

0. Substituting into
(1.74), we obtain

I ∼ β(∆t)(D−m)/2 ∼ βrD−m
0 . (1.76)

From (1.76) it is clear that the nonlinear damping is efficient if m ≥ D.
If we agree that all energy in the collapse zone, ∆N ∼ rD−2

0 (D − 2), is
absorbed, we have

r0 ∼ [β(D − 2)]
1

m−2 , I ∼ (D − 2)−
m−D
m−2 β

D−2
m−2 . (1.77)

So, I → 0 at β → 0. Such a collapse can be called weak [8]. From (1.77) we
can see that for D → 2 the weak collapse becomes a strong one.
The previous considerations were based on the assumption that only

the energy arrived at the collapse moment of time t = t0 dissipates in
the collapse point. That is not always true. In the point of collapse there
could be formed a zone of energy dissipation that absorbs the energy from
the surrounding area. In this case the life time of the collapse τ � ∆t,
and one must solve the problem of the entire wave packet to estimate the
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absorbed energy. We suggest calling such a black hole regime a “superstrong
collapse”, because for a sufficiently large τ the full absorbed energy can
exceed the absorption energy for the strong collapse regime. To describe
the superstrong collapse it is necessary to obtain solutions of the stationary
equation

iβ|ψ|m + ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 2|ψ0|2ψ (1.78)

with boundary conditions

ψr|r=0 = 0, ψ → ψ0 as r → ∞.

The existence of the black hole also means that at the limit β → 0, the
equation

ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 2|ψ0|2ψ (1.79)

has a singular solution with a constant energy flux to the collapse point at
r = 0

P = lim
r→0

π(2r)D−1 Im(ψψ∗
r ). (1.80)

Let D > 2. Then the equation

ψrr +
D − 1

r
ψr + 2|ψ|2ψ = 0 (1.81)

has the exact solution [23]

ψ = A0/r, A0 =
(
D − 3
2

)1/2

. (1.82)

This solution can be used as a first step to construct a singular solution of
the equation (1.81). Indeed, the solution near zero could be found as

|ψ| = A0

r
(1 +A1r

µ + ...), ψ → ψ0, µ = 2(4− D) > 0. (1.83)

Here A1 is an arbitrary constant, and A1 = qP 2, where q is some multiplier.
By the selection of P one can obtain the asymptotic solution of the equation
(1.83) for r → ∞. The numerical integration of (1.78) showed that in the
interval 3 < D < 4 the solution describing the superstrong collapse really
can be constructed. Such solutions exist in a rather important physical case
at D = 3, which corresponds to a 3−D nonstationary self-focusing. In this
case the main asymptotic term at zero is a stationary solution [31, 32]

|ψ| = 1
2r| ln r|1/2 .

Superstrong collapse can exist also for power nonlinearity |ψ|2nψ where
nD > 4. Thus, at D = 4 the equation (1.81) has an exact singular solution

|ψ| = B/r,
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whose amplitude is defined by the flux P from the equation

B4(B2 − 1) = P 2.

Finally, when D > 4, equation (1.81) has quasi-classical stationary solu-
tions with an asymptotic expansion at zero

|ψ| =
c

rγ
(1 + c1r

ν + ...), c = P 2, γ = α(α − 1),

ν = α(2D − 8) > 0, α =
1
3
, c1(D) > 0.

It is important that the quasi-classical criterion for this solution improves
while approaching the singular point (r = 0).
The existence of such solutions was also confirmed by the numerical

integration of equation (1.78) at ψ0 = 0 [23, 21].

7 Anisotropic black holes

As we saw in the previous section the black hole regime becomes quasi-
classical starting from D = 4. In this section we want to present an example
showing how, due to the medium anisotropy, the “effective dimension D′′

can be greater than 4 and, as a consequence, the black-hole regime can be
realized.
We consider the upper-hybrid waves Langmuir waves in a plasma with

sufficiently small magnetic field (ωpe � ωce) when all changes in the dis-
persion law are expressed in the form of the additive term

ωk = ωpe

(
1 +

3
2
k2r2

d +
1
2
ω2
ce

ω2
pe

k2
⊥
k2

)
, (1.84)

where ωce, ωpe are electron gyrofrequency and electron plasma frequency,
respectively, rd = vTe/ ωpe is the Debye radius, k⊥ is the component
transverse to the external magnetic field B0, directed along the z axis. In
the dispersion law (1.84), the first term describes the potential electron
plasma oscillations with a plasma frequency. Other terms are due to slower
processes. In isotropic case (ωce = 0) (1.84) transforms into the dispersion
law for the Langmuir waves.
The nonlinear effect, in a small-amplitude region (E2/8πnT � m/M),

m and M being the electron and ion masses, respectively, corresponds to
the nonlinear frequency shift due to the interaction with slow adiabatic
plasma flows induced by high-frequency plasma oscillations. In this limit,
the equation for the envelope of high-frequency oscillations in dimensionless
variables can be written as follows [38]

∆(iψt +∆ψ)− σ∆⊥ψ +∇(|∇ψ|2∇ψ) = 0, (1.85)
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where ψ is the envelope of high-frequency waves and σ = ω2
ce/2ω

2
pe. Re-

spectively, the low-frequency plasma fluctuations follow adiabatically the
pondermotive pressure of high-frequency waves,

n = −|∇ψ|2.
The equation (1.85) at zero magnetic field transforms into the Zakharov
equation describing collapse of Langmuir waves [6] in the so-called static
approximation.
The equation (1.85) can be further reduced under additional assump-

tions. It is known that due to weak turbulent processes, such as induced
scattering of ions or four-wave interaction, the energy transfer by cascade
to the region ωk → ωpe. If one studies these processes in more details, it is
possible to find that they lead, in the first stage, for waves with (krd)2 < σ,
to a rapid decrease of k⊥, and only subsequently, to a reduction of kz up to
a zero value. This means that the wave condensate will have characteristic
longitudinal scales smaller than the transverse ones. Under this assumption
Eq. (1.85) reads as follows

∂2

∂z2

(
iψt +

∂2

∂z2ψ

)
−∆⊥ψ +

∂

∂z

(∣∣∣∣∂ψ∂z
∣∣∣∣
2
∂ψ

∂z

)
= 0. (1.86)

where we put, without any restriction, the constant σ = 1, that corresponds
to a simple rescaling.
The equation (1.86) can also be written in the Hamiltonian form

i
∂2

∂z2ψt =
δH

δψ∗ , (1.87)

where the Hamiltonian

H =
∫
(|ψzz|2 + |∇⊥ψ|2 − 1

2
|ψz|4)dr ≡I1 + I2 − I3. (1.88)

The possible stationary solutions of this equation should correspond to the
soliton-like solution

ψ = ψ0 exp(iλ2t),

where ψ0 satisfies the equation

∂2

∂z2

(−λ2ψ0 + ψ0zz
) −∆⊥ψ0 +

(
|ψ0z|2 ψ0z

)
= 0. (1.89)

Localized solutions of this equation simultaneously represent stationary
points of the Hamiltonian for a fixed number of particles N =

∫ |ψz|2dr
(coinciding up to a constant multiplier with the energy of high-frequency
waves),

δ(H + λ2N) = 0. (1.90)
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Performing now the scaling transformation retaining N ,

ψ → a1/2

b
ψ

(z

a
,
r⊥
b

)
,

instead of (1.47) for the NLSE, H (1.88) becomes a function of two scaling
parameters,

H(a, b) =
I1
a2 +

I2
b2
a2 − I3

ab2
. (1.91)

The variational problem (1.90) now yields two relations between integrals
Il (l = 1, 2, 3) on the solution ψ0

−2I1 + 2I2 + I3 = 0, −I2 + I3 = 0. (1.92)

Another relation follows after multiplication of (1.89) by ψ0 and integration

λ2N + I1 + I2 − 2I3 = 0. (1.93)

After a simple algebra based on (1.92) and (1.93), one can show that

I1 = −2λ2N < 0,

contradicting the sign of I1 which is positive definite. This contradiction
implies that for (1.86) stationary soliton solutions do not exist [39]. This is
possible to understand considering the NLSE (1.40) as an example. Accord-
ing to (1.49), soliton solutions in the NLSE exist for D ≤ 4 and are absent
for D > 4 that corresponds to the well-known general fact, i.e., to increase
of the role of nonlinear effects with growth of dimension D. Consider now
the parabolic family b = γa2, where γ is a constant. For this kind of curve,
the first two terms in H(a, b) (1.91) have the same (self-similar) behavior
(dependence)

H(a, γ) =
1
a2

(
I1 +

I2
γ2

)
− 1

a5

(
I3
γ2

)
. (1.94)

Hence, firstly, one can see that the Hamiltonian is unbounded from below as
a → 0 that is one of the necessary conditions for the existence of collapse.
Secondly, the comparison of (1.94) with (1.48) shows that the equation
(1.86) is equivalent to the NLSE with D = 5. According to our classifica-
tion presented in the previous sections, the dimension D = 5 corresponds
to superstrong collapse providing existence of quasi-stationary black-hole
regime. Moreover, this regime can be described in terms of semi-classical
approach. The latter assumes solutions of the equation (1.86) in the form
ψ = AeiΦ where we impose the following (semi-classical) restrictions on
the phase Φ and the amplitude A

|Φt|T � 1, |Φz|Lz � 1, |∇⊥Φ|L⊥ � 1. (1.95)
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Here T is the characteristic time of the amplitude variation, Lz and L⊥ are
characteristic longitudinal and transverse scales of the amplitude, respec-
tively.
Under these assumptions, in the leading order we have the Hamilton-

Jacobi equation for the eikonal Φ

Φt +Ω(∇Φ)− n = 0 (1.96)

where Ω(k) = k2
z + k2

⊥/k
2
z is the dispersion relation for small-amplitude

waves describing by the linearized equation (1.86), k = ∇Φ is the wave
vector and n = |ψz|2 � A2Φ2

z is the wave intensity. At the next order we
arrive at the continuity equation for n

nt + div(nV ) = 0. (1.97)

Here V = ∂Ω/∂k is the group velocity. Eqs. (1.96), (1.97) retain the Hamil-
tonian structure

nt =
δH

δΦ
, Φt = −δH

δn
,

H =
∫ [

Ω(∇Φ)n − n2

2

]
dr.

It is possible to show that Eqs. (1.96) and (1.97) have the whole family
of collapsing solutions starting from semi-classical strong collapse up to
the weakest collapse corresponding to self-similar solution of the equation
(1.86) (for details, see [40, 39]). All semi-classical collapsing regimes occur
to be unstable. Therefore at the initial stage of a collapse we have the
formation of a weak singularity which later on serves as the origin for the
appearance of a black hole. To find a structure of a black hole, it is enough
to take semi-classical equations (1.96), (1.97) and to seek for solutions in
the form of an anisotropic funnel

Φ =
1
z
φ(η), n =

1
z4 g(η). (1.98)

Here η = r⊥/z3 is a new self-similar variable and the function g(η), as it is
easy to show, obeys the ordinary differential equation

gg′ + 3η(g + 3ηg′)4 = 0. (1.99)

Solutions of this equation only depend on the constant

P =
∫ ∞

0
(1− 3ηg′g−1)g′dη,

which is the energy flux into the singularity. Numerical calculations of (1.99)
showed the existence of monotonically vanishing solutions with the asymp-
totics g ∼ η−1/3 at η → ∞. It should be added that the semi-classical
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criterion (1.95) for the solution (1.98) improves as r approaches the singu-
lar point.
The similar situation arises for lower-hybrid waves near the lower-hybrid

resonance ωLH . In the case, when ωce � ωpe, the dispersion law of waves
is

ωk = ωLH

(
1 + k2

⊥R
2 +

1
2
m

M

k2
z

k2
⊥

)
,

where R = [3/4+(3Ti/Te)]rce, rce is the electron gyro-radius, while m and
M are the electron and ion mass, respectively. For low wave intensity, as
for UH waves, the low-frequency plasma-density variation is related to the
high-frequency pondermotive force through [41, 42]

n = i[∇ψ × ∇ψ∗]z . (1.100)

Here, as in a previous case, we write (1.100) in dimensionless variables,
ψ stands for the envelope of the high-frequency electric potential of LH
waves.
The evolution equation for the envelope is obtained by usual average over

the high-frequency ωLH [41, 42]

∆⊥(iψt +∆⊥ψ)− α∂2
zψ − ∇⊥([∇⊥ψ × ∇⊥ψ∗]z[n × ∇⊥ψ]) = 0. (1.101)

Here n = B0|B0| and α is a constant. This equation can be written in the
Hamiltonian form

∆⊥iψt =
δH

δψ∗ , (1.102)

H =
∫ (

|∆⊥ψ|2 + |ψz|2 + 1
2
[∇⊥ψ × ∇⊥ψ∗]2

)
dr ≡I1 + I2 − I3.

The same analysis as it was done for UH waves demonstrates that soli-
tons are absent for the model (1.101). The Hamiltonian under scaling
transformations, ψ(z, r⊥) → a−1/2ψ(z/a, r⊥/b), regaining the wave energy
N =

∫ |∇⊥ψ|2dr, behaves as follows [39]

H(b, γ) =
1
b2

(
I1 + γ2I2

) − 1
b4

(
I3
γ

)
,

where H(b, γ) is taken along the parabolas a = γb2. Thus, for the effective
dimension D = 4 weak collapse forms initially a singularity, which eventu-
ally transforms into a black hole. It is interesting to note that the effective
dimension D for the black-hole regime corresponds to a lower boundary of
the semiclassical black holes [45].
At the end of this Section we would like to note the recent experimental

observations of quasi-stationary localized structures in the auroral iono-
sphere (at altitudes near 800 km) [43]. The wavelet analysis of these mea-
surements by the plasma wave interferometer aboard the AMICIST rocket
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demonstrated in the region of lower-hybrid frequency the existence of long-
life-time solitary structures possessing rotating eigenmodes [44]. These ob-
servations are consistent with the results of three-dimensional numerical
experiments which showed the presence of a cavity density. In our opinion,
these objects are the first candidates for black holes.

8 Structure in media with weak dispersion

Let us consider another situation where phase stochastization plays a less
important role than coherent structures. This is propagation of waves in a
media with weak dispersion. Suppose first that dispersion is absent entirely.
In an isotropic medium

ω(k) = c|k| (1.103)

where c has a meaning of sound speed.
Now resonant conditions (1.9) can be satisfied only if all three vectors

k1,k2,k3 are parallel. In particular, they are satisfied, if k2 = k3 = k,k1 =
2k. It means that the monochromatic wave cannot exist for a long time; it
produces second harmonic, then zero and higher harmonics. Phases of all
harmonics are correlated. This creates favorable conditions for the forma-
tion of coherent structures. This family is especially rich, if the dispersion
relation is not exactly linear

ω(|k|) = c(|k|+ L(k)), |L(k)| � k, L(0) = 0. (1.104)

If L′′(k) > 0, the resonant conditions (1.9) are satisfied when all three
vectors ki are almost parallel. Then it is possible to consider the situation
when the support of the function a(k) is concentrated on an almost one
dimensional set. In other words, one can present the wave vector in the
form

k = (p, q)

and consider the complex amplitude a(p, q) �= 0 only if |q| � p, p > 0. Here
p, q are components along and across the direction of the wave propagation.
Now

|k| =
√
p2 + q2 � p+

1
2

q2

p
, (1.105)

and one can put approximately

ω(p, q) � c

(
p+

1
2

q2

p
+ L(p)

)
, L(−p) = −L(p). (1.106)

The most natural model of acoustic waves is compressible ideal hydro-
dynamics with dependence of internal energy of both density ρ and its
gradient. In particular, ion-acoustic waves in isotropic plasma relate to this
kind of waves and can be described in terms of ideal hydrodynamics with
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dispersion. We can use this model for calculation of the coupling coefficient
for three-wave interaction. Skipping the details (see [3], e. g.), we present
the result of these calculations

V (k,k1,k2) � V (p, p1, p2) = µ(pp1p2)1/2; pi > 0 (1.107)

where µ is a constant expressing through the characteristics of the media:
mean density, sound speed and internal energy.
Let D be the space dimension. One can introduce a new unknown func-

tion

u(x, r, t) = − 1
(2π)D

∫
p>0

√
p(ap,q + a∗

−p,−q)e
ip(x−t)+iqr dpdq. (1.108)

After simple transformation one can find that in this case (1.8) takes the
form

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
+

∧
L u − ν

∂2u

∂x2

)
= −∆⊥u. (1.109)

Here
∧
L

(
∂

∂x

)
= i

∧
L

(
−i

∂

∂x

)
= − ∧

L

(
− ∂

∂x

)
(1.110)

is the operator responsible for dispersion and ∆⊥ is the Laplacian with
respect to r. In the two dimensional space ∆⊥u = uyy, in the three-
dimensional case r = (y, z) and ∆⊥u = uyy + uzz. In equation (1.109)
we introduced the dissipative (viscous) term νuxx.
If ω2 = ω2(k2) is an analytic function of k2 L(p) is an odd function:

L(p) = −L(−p). In the simplest case

L(p) = ±p3,
∧
L

(
∂

∂x

)
= ∓ ∂3

∂x3 . (1.111)

In the 2D case for ν = 0 we obtain now the Kadomtsev-Petviashvili equa-
tions [46, 47]:

the KPI equation -

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− ∂3u

∂x3

)
= −∂2u

∂y2 (1.112)

and the KPII equation -

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
+

∂3u

∂x3

)
= −∂2u

∂y2 . (1.113)

The KPI equation describes acoustic-type waves with positive disper-
sion. These are magneto-acoustic waves in strongly magnetized plasma
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with propagation angles not close to transverse and parallel directions of
an external magnetic field, phonons under some conditions [48], gravity-
capillary waves for the shallow water limit.
The KPII equation corresponds to the negative dispersion. Gravity waves

for shallow water, ion-acoustic waves in isotropic plasma, magneto-acoustic
waves for perpendicular to magnetic field propagation belong to such type
of waves.
The general equation (1.109) can be called the generalized KP equation.

We note that this equation is written in a frame moving with the sound
speed c, which coincides with the group velocity of the waves at k = 0.
All other terms describe slow process with respect to this propagation: the
second term represents the nonlinear renormalization of the sound speed,
the third one is responsible for weak dispersion and, finally, the term in the
r.h.s. of (1.109) refers to transverse diffraction of acoustic waves.
In many interesting cases, L(p) is not an analytic function in the vicin-

ity of p = 0. In this case L (∂/∂x) is a pseudo-differential operator. For
instance, among the operators

L(p) = ±p|p|2s, s > 0,
∧
L= ∓ ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

(1.114)

the choice s = 1/2 , ∆⊥u = 0, ν = 0 corresponds to the well-known
Benjamin-Ono equation applicable for description of internal waves. The
generalized KP equation (GKP) describes the wide spectrum of coherent
structures including solitons, collapses and black holes. Let us consider the
simplest examples of such structures.
Neglecting by dispersion, dissipation and diffraction, one arrives at the

Hopf equation
∂u

∂t
+ u

∂u

∂x
= 0. (1.115)

The general solution of this equation is given in the implicit form

x = ut+ F (u) (1.116)

where F (u) is arbitrary function. Let F (u) = −ut0+u3. The corresponding
solution has a self-similar form

u = (t0 − t)1/2g
(

x

(t0 − t)3/2

)
. (1.117)

Here g(ξ) is the solution of the cubic equation

g3 = g + ξ. (1.118)

The solution (1.117) describes self-similar wave collapse. As a result, the
first derivative of u becomes infinite in a finite time. Indeed, according to
(1.117)

∂u

∂x
|x=0 � 1

t0 − t
.
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At the moment of collapse (t = t0) u = x1/3. This example of the wave
collapse is known as the wave breaking.
Let us consider the influence of the neglected factors to the process of

collapse. Taking into account the dependence of the diffraction term we
have the dispersionless KP equation

∂

∂x

(
∂u

∂t
+ u

∂u

∂x

)
= −∂2u

∂y2 . (1.119)

In 3D media one has to replace ∂2u/∂y2 by ∆⊥u. Weak dependence on
the perpendicular coordinate in the solution (1.116) might be taken into
account by replacing in the solution (1.116) t0 → t0 + εy2. In this case,
comparing competing terms in (1.119) ,

∂

∂x

(
u
∂u

∂x

)
� 1

(t0 − t)2
;

∂2u

∂y2 � ε

(t0 − t)3/2
, (1.120)

one can see that weak dependence on the perpendicular coordinates does
not arrest the wave breaking.
On the contrary, both dissipation and dispersion arrest the collapse. In

the presence of dissipation the equation (1.109) transforms (in the one-
dimensional case) into the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 . (1.121)

As soon as for the wave breaking uux � 1/(t0 − t)1/2 and the dissipation
term can be estimated as uxx � 1/(t0−t)5/2 , collapse is seen to be arrested
even by an infinitesimally small viscosity ν. To estimate the dissipation
efficiency one can exploit the identity

∂

∂t

∫ ∞

−∞
u2dx = −ν

∫ ∞

−∞
u2
xdx. (1.122)

As soon as u2
x � 1/x4/3, the integral in the right hand side of (1.122)

converges as t approaches t0

ν

∫ ∞

−∞
u2
xdx � ν

(t0 − t)1/2
.

Similarly, the total amount of absorbed energy is

∆E =
∫ t0

0
dt

∂

∂t

∫ ∞

−∞
u2dx � 2νt01/2.

Note that ∆E → 0 as ν → 0. By definition this is weak collapse.



30 E.A. Kuznetsov, V.E. Zakharov

What is the remote results of the collapse in this case? The Burgers
equation (1.121) has a solution in the form of a stationary propagating
shock wave

u =
2s

1 + exp[s(x+ st)/ν]
. (1.123)

Calculating now the rate of dissipation for this solution, one can get

ν

(
∂u

∂x

)2

=
s4

4ν cosh4[s(x+ st)/ν]
.

Thus, dissipation is concentrated in a very small domain near x = −st.
The shock wave is a moving sink of energy, i.e. a black hole of codimension
1. It can be compared with the black hole of dimension zero (codimension
three) which can arise after the formation of weak singularity in the 3D
NLSE (see Section 6).
Another fundamental effect, arresting the collapse of gradients, is the

wave dispersion. Suppose that

L

(
∂

∂x

)
u = − ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u, (1.124)

where |∂/∂x|2s is the operator with symbol |k|2s. Then the equation (1.109)
in 1D case takes the form of the generalized Korteweg-de-Vries equation
(GKDV).

∂u

∂t
+ u

∂u

∂x
− ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = 0 (1.125)

For s = 1 this equation transforms into the classical KDV equation. At
s = 1/2 (1.125) coincides with the Benjamin-Ono equation.
Comparison of linear and nonlinear terms in (1.125) shows that the col-

lapse of gradients (wave breaking) is impossible for any s > 0. The equation
(1.125) can be presented as follows

∂u

∂t
=

∂

∂x

δH

δu
(1.126)

where

H = T − U, T =
1
2

∫ ∞

−∞

(∣∣∣∣ ∂

∂x

∣∣∣∣
s

u

)2

dx, U =
1
6

∫ ∞

−∞
u3dx. (1.127)

The equation (1.125) preserves the Hamiltonian H and the momentum
P = 1

2

∫ ∞
−∞ u2dx.

Let us look for soliton solutions of (1.125) in the form of a stationary
propagating wave u = u(x − V t). After one integration we obtain

−V u+
1
2
u2 −

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = 0. (1.128)
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This equation follows from the variational problem

δ(H + V P ) = 0, (1.129)

demonstrating that soliton solutions are stationary points of the Hamilto-
nian for fixed momentum P. As far as the operator |∂/∂x|2s, it is positive
definite. Therefore solitons (as localized objects) can exist only for V > 0.

Only in this case the linear operator
∧
R= V + |∂/∂x|2s in the stationary

equation (1.128) is positive definite and reversible. Otherwise the solution
of (1.128) has oscillating asymptotics at infinity.
By multiplying (1.128) by u/2 and integrating with respect to x one can

get the relation

3
2
U − T = V P. (1.130)

Let u(x) be a solution of (1.128). Consider the functions u(x, a) =
a−1/2u (x/a) depending on the scaling parameter a. Then

H =
T

a2s − U

a1/2 (1.131)

(here U, T are calculated on the solution u(x)). For this kind of deformation
the condition (1.127) now reads as ∂H/∂a|a=1 = 0 or

1
2
U − 2sT = 0, U = 4sT,

which in combination with (1.130) gives

T =
V P

6s − 1
, U =

4sV P

6s − 1
, H =

1− 4s
6s − 1

V P. (1.132)

Here both functionals U and T are positive definite for s > 1/6. For the
model (1.125) this defines the region of the soliton existence. For s > 1/4
the Hamiltonian on the soliton solutions is negative, Hs < 0. In this case
it is possible to show that the stationary point u(x) is not only the local
but the global minimum of the functional H that, in accordance with the
Lyapunov theorem, provides the soliton stability.
For s < 1/4 Hs > 0. Letting a → 0 in (1.112) one can see that in this

case H can be made arbitrary negatively large. Solitons in this region of
the parameter V represent saddle points and one may expect that they are
unstable.
For any s the equation (1.124) allows the self-similar substitution

u = (t0 − t)1+1/2sF (ξ) , ξ =
x

(t0 − t)1/(1+2s) . (1.133)

For this family of self-similar solutions we have

P � (t0 − t)
1−4s
1+2s . (1.134)
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Hence one can see that a localized solution can exist only for s > 1/4,
coinciding with the interval for soliton stability. The solution (1.133) at 0 <
s < 1/4 describes weak collapse leading to the formation of an integrable
singularity: u ≈ 1/|x|2s. At s = 1/4 we have the regime of strong collapse
corresponding to the critical NLSE considered in Section 6.
The results of this Section can be easily extended to a more general equation

∂u

∂t
+ up

∂u

∂x
− ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = 0. (1.135)

We now consider reference [50] where for the critical KDV equation at s = 1
and p = 2 the corresponding theory for strong collapse was developed. In
particular, it was shown that the asymptotic form of the collapsing distri-
bution approaches the soliton form at the collapse time, and the absorbed
energy into singularity corresponds to the soliton energy. For p > 2 (s = 1)
collapse becomes weak. Stable solitons appear for p < 2 [49].
Very interesting coherent structures are described by the dissipative gen-

eralized KDV equation

∂u

∂t
+ up

∂u

∂x
+

∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u = ν
∂2u

∂x2 . (1.136)

For s > 1/4 this equation describes the so-called collisionless shock waves
discovered by R.Z. Sagdeev [51]. For the unstable case s ≤ 1/4 the coherent
structures have not been studied yet.

9 Singularities on a fluid surface

For sea surface waves, the wave breaking leads to an infinite second deriva-
tive of the surface profile (so that angles or cones appear on the surface).
In this field, the first important results date back to the middle of the last
century and belong to the famous Stokes [52]. Using the apparatus of com-
plex analysis, Stokes discovered that the critical angle for the surface slope
of stationary gravity waves for the deep water case was equal to 120◦. For
larger angles stationary gravity waves were assumed to be absent. Check-
ing analyticity violation is the most sensitive tool for studying that set of
collapses. Loss of analyticity of vortex sheets at the nonlinear stage of the
Kelvin-Helmholz instability [53] is such an example. Various aspects of the
singularity formation for vortex sheet motion have so far been studied in
a number of papers, both numerically and analytically [53]-[58]. The pa-
per [56] should be mentioned in particular, which provides a considerable
numerical evidence of arising of the infinite surface curvature in a finite
time. The root (in space) character of the arising singularity has also been
checked in [56].
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Below we present some recent results [59, 60] devoted to the free surface
hydrodynamics of an ideal fluid. Adopting only the small slope approxima-
tion, in absence of both gravity and capillarity, this system was effectively
examined. In particular, it was shown that for two-dimensional flows the
velocity component v, tangent to the free surface, obeys the equation, for-
mally coinciding with the Hopf equation (1.115),

∂v±

∂t
+ v± ∂v±

∂x
= 0. (1.137)

Here v± is analytical continuation of v(x, t) to the upper (+) and lower
(−) half-planes of the variable x. On the real axis v = 1

2 (v
+ + v−) and

functions v(±) are complex conjugate. The free surface elevation η(x, t) in
this approximation (|∇η| � 1) is defined from integration of the equation

∂η

∂t
= − ∧

H v. (1.138)

Here

(Ĥf)(x) =
1
π
V.P.

∫ +∞

−∞

f(x′)
x′ − x

dx′.

is the Hilbert transform. Both equations for v and η are integrable. The
integrability of these equations originates from the solution of the Laplace
equation in the fluid bulk.
Autonomy of the equation for the tangent velocity component from ele-

vation η is one of the main features of this system2. It admits, as for (1.115),
the standard method of characteristics, but the analyticity requirement for
functions v± leads in comparison with solution (1.116) to some changes in
the form of general solution. Omitting all details of the general solution
analysis ( see [60, 59]), we present here only the main results.
The formation of singularities on the free surface for small angle ap-

proximation can be considered as the process of the wave breaking in the
complex plane to which the solution can be extended. This results in the
motion of both branch points of the analytical continuation of the velocity
potential and singular points of the analytical extension of the surface ele-
vation. When for the first time the most “rapid” singular point reaches the

2Equation (1.137), after separation of imaginary and real parts, transforms
into a system of the gas dynamic type with negative pressure,

ut + (uv)x = 0,

vt + vvx =
1
2
(u2)x

where u is normal component of the velocity. It is interesting that this system
also follows from the quasi-classical limit of the fifth NLSE.
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real axis it just indicates the appearance of the singularity. Respectively
three kinds of singularities are possible. For the first kind at the touching
moment, the tangent velocity on the surface has an infinite first derivative
and simultaneously the second space derivative of the surface coordinate
z = η(x, t), i.e. ηxx, also tends to infinity. These are weak singularities of
the root character ( ηxx ∼| x |−1/2). This kind of singularities turns out to
be consistent with an assumption about small surface angles. It is shown
that the interaction of two movable branch points of the tangent velocity
can lead under some definite conditions to the formation of the second
type of singularities - wedges on the surface shape. Close to the collapse
time the self-similar solution for such singularities is compatible with the
complete system of equations describing arbitrary angle values. The third
type is caused by the initial analytical properties of η0(x), resulting in the
formation of strong singular surface profile.
As was shown in [61], the equation of motion for free surface hydrody-

namics with finite depth in the absence of capillarity can also be integrated
effectively in the small angle approximation. Of course, the root singulari-
ties, as well as all others have the same asymptotic behavior as for the deep
water case. Another interesting effect is connected with the possibility to
integrate the free surface hydrodynamics in the limit of large surface gra-
dients. In this case, as it was shown in [62], the equation can be reduced to
the so-called Laplacian growth equation (LGE)3 which allows application
of the pole decomposition. The latter means that a system of equations has
an exact solution in the form of finite sum of poles, residues of which are
constants and pole positions (in complex plane) obey a closed dynamical
system of ordinary differential equations. In the case of the LGE this dy-
namical system allows complete integration. Similarly, the solution can be
written in an implicit form (for more details see [65, 66, 62, 61]).

10 Solitons and collapses in the generalized KP
equation

Let us take into account the diffraction term, that corresponds to con-
sideration of the dependence on perpendicular coordinates in the GKDV
equation. Assuming maximum symmetry in the perpendicular plane we

3At first this equation was derived in 1945 by Polubarinova-Kochina and Galin
[63, 64] for boundary flows in porous media. Later it became clear that this
equation is applicable for description of the boundary motion for phase transition
of the first kind.



1. Nonlinear Coherent Phenomena in Continuous Media 35

will study the following version of the equation (1.109)

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− ∂

∂x

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

u

)
=

α

rd−1

∂

∂r
rd−1 ∂

∂r
u. (1.139)

Here α = ±1, d is the dimension of the perpendicular plane, r is the radius
in this plane.
The equation (1.139) can be written in the Hamiltonian form (1.126)

H = T − U +W (1.140)

where

T =
1
2

∫ (∣∣∣∣ ∂

∂x

∣∣∣∣
s

u

)2

dxdr, U =
1
6

∫
u3dxdr, (1.141)

2W =
α

2

∫
(∇⊥w)2dxdr w =

∫ x

−∞
udx. (1.142)

This equation conserves the Hamiltonian and the momentum

P = 1/2
∫

u2dxdr. (1.143)

Soliton solutions of the equation (1.139) have the form

u = us(x − V t, r) (1.144)

with the boundary condition us → 0 in all directions at infinity,
√
x2 + r2 →

∞, and requiring finite momentum P < ∞.
Solitons are solutions of the stationary KP equation

R̂w =

[(
V +

∣∣∣∣ ∂

∂x

∣∣∣∣
2s

)
∂2

∂x2 +
α

rd−1

∂

∂r
rd−1 ∂

∂r

]
w =

∂

∂x

(
u2

2

)
, (1.145)

which can be presented as the variational problem (1.129) where H and P
are given by (1.141) and (1.143), respectively. Soliton solutions exist only
for α = +1 and positive V. For all other cases the operator R̂ is not sign
definite and it cannot provide a vanishing soliton solution at

√
x2 + r2 → ∞

(for more details see [67, 72, 68, 13]).
Multiplying now (1.145) by w/2 and integrating with respect to x and

r, one obtain

−V P − T − W +
3
2
U = 0. (1.146)

Let us take a trial function for the variational problem (1.129) with H and
P given by (1.141) and (1.143) in the form, retaining the total momentum
P,

u(x, r, a, b) = a−1/2b−d/2us (x/a, r/b) . (1.147)
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As a result, the Hamiltonian becomes the function of two scaling parameters
a and b

H =
T

a2s +
a2

b2
W − U

a1/2bd/2
. (1.148)

By inserting (1.147) into (1.129) we get

∂H

∂a

∣∣∣∣
a=b=1

= 0,
∂H

∂b

∣∣∣∣
a=b=1

= 0. (1.149)

This yields

−2sT + 2W +
1
2
U = 0, −2W +

d

2
U = 0. (1.150)

Solving now the linear system (1.146) and (1.150) one can get

T =
d+ 1

6s − 1− d(1 + s)
V Ps, U =

4s
6s − 1− d(1 + s)

V Ps

W =
sd

6s − 1− d(1 + s)
V Ps, Hs =

d(1 + s) + 1− 4s
6s − 1− d(1 + s)

V Ps.(1.151)

These formulas become identical to (1.132) at d = 0. From (1.151) one can
see that on the soliton solutions T and W must have the same (positive)
sign. Hence it follows that multidimensional solitons exist only if α > 0. In
other words, multidimensional solitons exist only for the KPI equation and
its generalization. This conclusion (α > 0, V > 0) corresponds completely
to the requirement of sign-definiteness of the operator R in the equation
(1.145). In the following we shall assume α = 1.
From relations (1.151), we get the necessary conditions for existence of

solitons
s >

1 + d

6− d
. (1.152)

The sufficient condition for soliton stability is again Hs < 0, implying

s >
d+ 1
4− d

. (1.153)

In the interval
1 + d

6− d
< s ≤ d+ 1

4− d
, (1.154)

solitons are unstable.
Let us consider now the most important physical examples of equation

(1.139). For d = 1 and s = 1 (1.139) is nothing more than the classical
(2D) KPI equation (1.112) (where it is necessary to change u → −u and
t → −t). We see that the condition (1.153) is satisfied now, and the soliton
is stable [69]. The soliton in this case has the form of a lump and can be
found analytically [70]. Another example arises if s = 1 and d = 2. In this
case (1.139) is the KPI equation for a three-dimensional media. Now the
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criterion (1.154) is satisfied and the soliton exists but is unstable. This fact
was established in the paper [69]. Development of the soliton instability
results into collapse of acoustic waves confirmed by numerical experiments
[71, 72].
Consider the GKPI equation in the three-dimensional case with power

nonlinearity
∂

∂x
[ut + γ(γ − 1)uγ−2ux] = ∆⊥u (1.155)

for which the Hamiltonian is of the form

H =
1
2

∫
(ux)2dr+

1
2

∫
(∇⊥w)2dr−

∫
uγdr. (1.156)

This equation generalizes the KDV equation (1.135) with power nonlin-
earity to many dimensions. In particular, the classical KPI equation corre-
sponds to γ = 3. The case γ = 4 is possible if for some physical reason the
three-wave matrix element vanishes. For instance, such a situation takes
place for special angles of propagation of acoustic-type waves in a ferro-
magnet [75]. In this case, as it was shown at first in this paper it is possible
to write down the analog of the virial theorem.
Consider the quantity I =

∫
r2
⊥u

2dr which, because of conservation of
the x component of the momentum, Px = 1

2

∫
u2dr, has the meaning of

mean transverse size of the wave distribution. Let us find the first derivative
of I with respect to time. By means of (1.155) we have

It = −4
∫

u(r⊥∇⊥)wdr.

Calculating now the second derivative of I one can get

Itt = 4
[
2

∫
(∇⊥w)2dr − d(γ − 2)

∫
uγdr

]
.

By use of (1.156) the r. h. s. of this equation can be rewritten

Itt = 4
[
4H − 2

∫
(ux)2dr+β

∫
uγdr

]
, (1.157)

where β=4−d(γ − 2). At d = 2 (the 3D case) and γ = 4 the coefficient
β = 0. In this case from the equation (1.157) one can get the following
inequality [75]

Itt < 16H. (1.158)

Hence we have the same sufficient condition H < 0, as for the NLSE.
For the classical 3D KPI equation (d = 2, γ = 3) the coefficient β =
4−2(γ − 2) > 0 and in the virial identity (1.157) the two last terms have
different signs and therefore, even for H < 0, it is difficult to get a certain



38 E.A. Kuznetsov, V.E. Zakharov

answer about the sign of the r. h. s. of (1.157) and that is so, despite the
unboundedness of the Hamiltonian from below. But if the Hamiltonian
of some region Ω is negative, then, following to the arguments analogous
to section 3, it is possible to show that radiation of waves from this area
promotes collapse. Radiation reduces the Hamiltonian of the cavity Ω so
thatHΩ becomes more negative. Simultaneously, due to the unboundedness
of the Hamiltonian, the maximal value of the wave amplitude into the cavity
will increase, and this process continues up to the singularity formation [72].
At the moment there are no analytical arguments whether the collapse
time (for d = 2 and γ = 3) is finite or infinite. Meanwhile, the numerical
experiments performed in [71, 72] indicate that this time is finite.
One more physical example is s = 1/2, d = 1. We have now the following

equation
∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− ∂2

∂x2

∧
H u

)
=

∂2u

∂y2 . (1.159)

This equation describes two-dimensional Tolman-Schlichting waves in the
laminar boundary layer. In this case again the condition (1.154) is fulfilled
and 2D solitons are unstable.
In the case of soliton instability

s <
d+ 1
4− d

(1.160)

the equation (1.139) describes weak collapse. The corresponding self-similar
solution is

u = (t0 − t)−2s/(2s+1)F

(
x

(t0 − t)1/(2s+1) ,
r

(t0 − t)(s+1)/(2s+1)

)
. (1.161)

Collapse leads to the formation of an integrable singularity for t → t0

u =
1
x2sϕ

( r

xs+1

)
. (1.162)

More detailed structures of collapses as well as the role of dissipation in
arresting collapse and the formation of black holes have not properly been
studied so far.

11 Self-focusing in the boundary layer

Now we demonstrate how the tools considered above work for the two-
dimensional model,

ut =
∂

∂x
k̂u − 6uux =

∂

∂x

δH

δu
(1.163)
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where the Hamiltonian becomes

2H =
∫ (

1
2
uk̂u − u3

)
dr ≡1

2
I1 − I2.

Here k̂ is the integral operator, its Fourier transform is the modulus |k| =
(k2
x+k2

y)
1/2. This equation describes low-frequency oscillations of the bound-

ary layer within the high Reynolds number, Re � 1, with the mean velocity
profile v =

∧
x U(z) (0 ≤ z < ∞). The function U(z) is assumed to be a

monotonically growing function with a constant value at the infinity. The
dimensionless amplitude u is connected with the velocity fluctuations along
mean flow by means of the relation

δvx ≈ −6huU ′(z), (1.164)

where h = U(0)/U ′(0) is a thickness of the boundary layer.
Equation (1.163) was derived first by V.I. Shrira [77]. It represents the

two-dimensional generalization of the well-known Benjamin-Ono (BO) equa-
tion describing long waves in stratified liquids. One should note that for this
problem this equation was also derived in the 1D case first in the papers
[81], taking into account the small viscosity.
The simplest soliton in this model are of the form u = us(x − V t, y).

Their shape is defined from the equation

−V us − k̂us + 3u2
s = 0. (1.165)

For the 1D case the solution of this equation can be found explicitly

us =
2V

3(x2V 2 + 1)
(V > 0). (1.166)

In the 2D case the model has a ground state soliton that is a cylindri-
cally symmetric solution without nodes. Such a solution was found in [82]
numerically.
It is very important to note that the velocities of the 2D ground state

solitons as well as their amplitudes are positive quantities. In physical vari-
ables both the 1D and 2D solitons, upon applying the relation (1.164),
move in the upstream direction and have negative amplitudes. The latter
means that in the real hydrodynamic system solitons look like holes in the
mean velocity profile, therefore they move slower than the main flow. When
the soliton amplitude grows, the soliton velocity decreases and vice versa.
This physical reasoning suggests a possibility for the appearance of the
wave collapse in this system and the instability of 1D solitons with respect
to two-dimensional perturbations as well (for details, see [78, 79]). This
instability is analogous to the Kadomtsev-Petviashvili instability [46, 47].
In the two-dimensional case, as was shown in [80], it is possible to develop
a quasi-classical nonlinear theory of this instability taking a solution in the
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form of the 1D soliton (1.166) with slowly varying parameters depending
on y and t.
The soliton (1.163) in this model, as many others, represents a stationary

point of H for fixed x-projection of the momentum P = 1/2
∫
u2dr

δ

δu
(H + V Px) = 0.

A minimum of H (for fixed P ) is found in the one-dimensional case. It
follows from the estimates analogous to (1.56)

∫
u3dr ≤ C

(∫
uk̂udr

)D/2 (∫
u2dr

)(3−D)/2

,

with the best constant C attaining its value at the ground state soliton

C = I2sI
−D/2
1s (2Ps)

(D−3)/2
.

Hence it is easy to get the estimate

H ≥ Hs + 1/2(I1/2
1 − I

1/2
1s )2, (1.167)

which becomes precise on the 1D soliton. Thus, in the one-dimensional
case the soliton is proved to be stable with respect to 1D perturbations,
but optionally against small ones [83, 78, 79].
In 2D case this system demonstrates the critical behavior like the 2D

cubic NLSE. In particular, the Hamiltonian is bounded from below by
zero,

H ≥ 1
2

[
1−

(
P

Ps

)1/2
] ∫

uk̂udr,

if the total perturbation power does not exceed the critical value equal to
Ps. If initially the Hamiltonian is negative, H < 0, then it is unbounded
from below. The latter follows from the scaling transformation, retaining
P ,

us(r) → 1
ad/2

us(r/a). (1.168)

Under these transformationsH becomes a function of the scaling parameter
a,

H(a) =
I1s
2a

− I2s
ad/2

, (1.169)

and is unbounded from below as a → 0, starting from d ≥ 2. It is enough to
state that in this case the formation of a singularity is possible due to small
amplitude waves radiated from the region with negative Hamiltonian. In
this case the inequality corresponding to (1.63) is of the form
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maxx∈Ωu ≤ |HΩ|
2PΩ

. (1.170)

Numerical integration of the equation (1.163) confirmed the main theoret-
ical predictions.
For all initial conditions with P > Ps andH < 0, the significant growth of

amplitude was observed at the peak moving with increasing acceleration.
The temporal behavior of the peak velocity and of the peak amplitude
are familiar, indicating that the collapse is of self-similar nature. Upon
approaching the singularity the peak anisotropy vanishes, and the peak
distribution becomes nearly symmetric.
For the initial conditions with P < Ps (H > 0) a slow evolution took

place: the distribution of u slowly decayed near the maximum. The spec-
trum evolution for Px < Px,cr demonstrated the energy transfer to the
long-wave region, which on a qualitative level is in agreement with the
estimate (1.170).
In conclusion of this section, we would like to point out several interesting

experiments [76], summarizing the results of many years of experimental
studies of the onset of the coherent structures in the boundary layer of the
blowing plate by the mechanical vibrating system near the edge of the plate
(see, also [84], [85]). According to these experimental data, one-dimensional
solitons are exited at the initial stage, later (for larger distances from the
plate edge) one-dimensional solitons demonstrate their instability which
results “in the formation of thorns”, i.e., the localized three-dimensional
coherent structures. Self-focusing of the above structures is observed at
longer distances. A later stage of the development of the thorns-solitons
leads to the formation of vortices and to their eventual separation.
The above theory and numerical experiments as well explain all these

experimental observations, but not the formation of vortices, for which
equation (1.163) becomes inapplicable. The threshold character of the wave
collapse in the boundary layer described by Eq. (1.163) also explains why
in many other experimental studies in the boundary layer such bright phe-
nomena as self-focusing of solitons and collapse have not been observed or
have not been distinguished on the background of the turbulent noise. The
collapse is possible to observe starting from the finite energy of the pulse
as it was in experiments [76]. If the pulse amplitude is small enough then
this phenomena is absent.
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[37] L. Bergé, E.A. Kuznetsov, J.J. Rasmussen, E.G. Shapiro, and S.K. Turitsyn,
JOSA B 13, 1879 (1996).

[38] V.V. Krasnosel’skikh and V.I. Sotnikov, Fizika Plazmy (Soviet Plasma
Physics) 48, 603 (1988).

[39] E.A. Kuznetsov and M.M. Scoric, Phys. Rev. A 38, 1422 (1988).

[40] E.A. Kuznetsov and S.K. Turitsyn, Fizika Plazmy (Sov. Plasma Phys.), 16,
901 (1990).

[41] B.I. Sturman, ZhETF 71, 613 (1976) [Sov. Phys. JETP 44, 322 (1976)];
S.L.Musher, B.I.Sturman and A.M.Runbenchik, Plasma Phys. 20, 1131
(1978).

[42] S.L. Musher and B.I. Sturman, Pisma ZhETF, 22, 537 (1975) [JETP Lett.
22, 265 (1975)].

[43] J. Bonnell, P. Kintner, J.E. Wahlund, K.Lynch and R.Arnoldy, Geophys.
Res. Lett. 23, 3297 (1996).

[44] J.L. Pincon, P.M. Kintner, P.W. Schuck, and C.E. Seyler, Observations and
analysis of lower hybrid solitary structures as rotating eigenmodes, Preprint,
LPCE/CNRS, Orleans, France (1996).

[45] E.A. Kuznetsov, unpublished (1997).

[46] B.B. Kadomtsev and V.I. Petviashvili, Sov.Phys.Dokl. 15 539 (1970).

[47] B.B. Kadomtsev. Collective Phenomena in Plasma. Moscow, Nauka, (1976).

[48] V.L. Gurevich, Kinetics of Phonon Systems, Nauka, Moscow (1980) (in Rus-
sian).

[49] E.A. Kuznetsov, Physics Letters A101, 314 (1984).



44 E.A. Kuznetsov, V.E. Zakharov

[50] D.E. Pelinovsky and R.H.J. Grimshaw, An asymptotic approach to solitary
wave instability and critical collapse in long-wave KDV-type evolution equa-
tions, Preprint of Monash University, No. 95/35.

[51] R.Z. Sagdeev, Voprosy teorii plazmy (Problems of plasma theory), Atomiz-
dat, Moscow, vol.4 (1964).

[52] G.G. Stokes, Mathematical Physical Papers, vol.1 p. 225, Cambridge Uni-
versity Press (1880).

[53] D.W. Moore, Proc. Roy. Soc. A365, 105 (1979).

[54] G.R. Baker, D.I. Meiron and S.A. Orzag, J. Fluid Mech. 123, 477 (1982).

[55] M.S. Longuet-Higgins, In: Nonlinear Waves, ed. L.Denath (Cambridge Univ.
Press 1983) p.1.

[56] M. Shelley, J. Fluid Mech. 244, 493 (1992).

[57] R.E. Caflish, O.F. Orellana and M. Siegel, SIAM J. Appl.Math. 50, 1517
(1990).

[58] G. Baker, R. Caflish and M. Siegel, J.Fluid Mech. 252, 51 (1993).

[59] E.A. Kuznetsov, M.D. Spector and V.E. Zakharov, Phys. Lett. 182A 387
(1993).

[60] E.A. Kuznetsov, M.D. Spector and V.E. Zakharov, Phys. Rev. E 49 1283
(1994).

[61] A.I. Dyachenko, E.A. Kuznetsov, and V.E. Zakharov, Fizika Plazmy (Rus-
sian Plasma Physics) 22, 916 (1996).

[62] A.I. Dyachenko and V.E. Zakharov, Phys. Lett. A 221, 80 (1996).

[63] P.Ya. Polubarinova-Kochina, Dokl. Akad. Nauk SSSR 47, 254 (1945); Prikl.
Matem. Mech. 164, 383 (1945).

[64] L.A. Galin. Dokl. Akad. Nauk SSSR 47, 246 (1945).

[65] M.B. Mineev and S.P. Dawson, Phys. Rev. E 50, 24 (1994).

[66] S.P. Dawson and M.B. Mineev, Physica D73, 373 (1994).

[67] V.I. Petviashvili, in: Nelineinye volny (Nonlinear waves), ed. A.V.Gaponov-
Grekhov, Moscow, Nauka, p. 5 (1979); Fizika plazmy (Sov. Plasma Physics)
2, 469 (1976).

[68] J. Nycander, Chaos 4, 253 (1994).

[69] E.A. Kuznetsov and S.K. Turitsyn, ZhETF 82, 1457 (1982) [Sov.Phys. JETP
55, 844 (1982)].

[70] L.A. Bordag, A.R. Its, A.V. Matveev, S.V.Manakov and V.E.Zakharov,
Phys. Lett. 63A, 205 (1979).

[71] E.A. Kuznetsov, S.L. Musher and A.V. Shafarenko, Pis’ma ZhETF 37, 204
(1983) [JETP Lett. 37, 241 (1983)].

[72] E.A. Kuznetsov and S.L. Musher, ZhETF 91, 1605 (1986) [Sov.Phys. JETP
64, 947 (1986)].

[73] V.E. Zakharov and E.A. Kuznetsov, Zh. Eksp. Teor. Fiz. 66, 594 (1974)
[Sov. Phys. JETP 39, 285 (1974)].



1. Nonlinear Coherent Phenomena in Continuous Media 45

[74] K. Rypdal, J. Juul Rasmussen and K. Thomsen, Physica D16, 339 (1984).

[75] S.K. Turitsyn and G.E. Falkovich, Zh. Eksp. Teor. Fiz. 89, 258 (1985)
[Sov.Phys. JETP 62, 146 (1985)].

[76] Yu.S. Kachanov and O.S. Ryzhov, Sib. Fiz.-Tekh.Journ. N1, 34, (1992) (in
Russian); Y.S.Kachanov, O.S.Ryzhov and F.T.Smith, J. Fluid Mech. 251,
273 (1993).

[77] V.I. Shrira, Doklady AN SSSR 308, 732 (1989) (in Russian).

[78] A.I. Dyachenko and E.A. Kuznetsov, Pis’ma ZHETF, 59 103 (1994) [JETP
Lett. 39, 108 (1994)].

[79] A.I. Dyachenko and E.A. Kuznetsov, Physica D87, 301 (1995).

[80] D.E. Pelinovsky and V.I. Shrira, Phys. Lett. A 206, 195 (1995).

[81] V.I. Zhuk and O.S. Ryzhov, Doklady AN SSSR 263, 56 (1982) (see also:
O.S.Ryzhov, Zh.Vych.Mat.i Mat.Fiz. 29, 1804 (1990)) (both in Russian).

[82] A.A. Abramyan, Ya.A. Stepanyants and V.I. Shrira, Doklady AN SSSR 327,
460 (1992).

[83] M. Weinstein, Comm. Partial Diff. Eq. 12 (10), 1133 (1978).

[84] V.N. Borodulin and Yu.S. Kachanov, Izv. Sib. Branch USSR Ac.Sci. N18,
65 (1988) (in Russian).

[85] Yu.S. Kachanov, V.V. Kozlov, V.Ya. Levchenko and P.M. Ramazanov,
Sib.Branch USSR Ac.Sci. N2, 124 (1989) (in Russian).



This is page 47
Printer: Opaque this

2
Perturbation Theories for Nonlinear
Waves
Lev Ostrovsky
Konstantin Gorshkov

ABSTRACT Some ideas and theories developed since 1960s to describe
nonlinear waves with slowly varying parameters (modulated waves) are out-
lined. These theories are associated with different versions of the asymp-
totic perturbation method. In this framework, both quasi-periodic and soli-
tary waves (solitons) can be treated. A scheme for reduction of a quasi-
hyperbolic system to one or more evolution equations is also presented.
Some challenges for the theory are briefly discussed.

1 Introduction

Among the most remarkable achievements of nonlinear wave theory by
the eve of the 21st century, many of us will cite the development of exact
methods such as the inverse scattering method in the theory of integrable
nonlinear wave equations. At the same time, among the most effective tools
for solving practical problems (apart from direct numerical simulations),
the outstanding role of approximate analytical methods will probably be
appreciated as well.

Perturbation methods in mechanics had been developed in the 19th cen-
tury for astronomical applications. Later, they occupied an outstanding
place in quantum physics, to mention only two very important applications.
These methods were first elaborated for the cases when small perturbations
in the equations or initial conditions would result in small changes in the
solutions. However, in many cases, small perturbations may change the so-
lutions rather strongly, and the smallness of the former is reflected only in
the slowness of the latter’s variation compared to the characteristic time
scale of the process. An adequate tool for solving such problems is the
asymptotic perturbation theory, which constructs a series in a small pa-
rameter that may not converge, but its lower-order terms turn out to be
the closer to the exact solution, the smaller is the expansion parameter.
The main term of such an expansion differs from the unperturbed solu-
tion in that it contains slowly varying parameters; their variation can be
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 Springer-Verlag Berlin Heidelberg 2000



48 Lev Ostrovsky, Konstantin Gorshkov

found from “compatibility,” or “orthogonality,” conditions which secure the
finiteness of the higher-order perturbations.

For ordinary differential equations, these methods have been most thor-
oughly elaborated by Bogolubov and Mitropolsky [1]. The idea of the
method can be demonstrated at an example of a simple anharmonic os-
cillator with damping

d2x

dt2
+ ω2

0x = −ενω2
0x

3 − εadx
dt
, (2.1)

where ε is a small parameter. At ε = 0 the immediate solution is x = X = A
sin(ω0t+ψ). For ε �= 0, seeking a solution in the form x = X+εx1 +ε2x2...,
and substituting into (2.1), we readily obtain x1 = (3νω0A

3/8)t cos(ω0t+
ψ) + (aA/2)t sin(ω0t + ψ), i.e., a secularly increasing solution. To get rid
of this growth, it is sufficient to represent the zero-order solution in the
form X = A(εt) sin(ωt+ ψ) with ω = ω0 + εω1 + .... After that, it is easy
to see that the basic equation will be satisfied to the first approximation
if A = A0e

−at/2, and ω1 = 3νA2/8. The first-order perturbation remains
finite: x1 = −(νA3/32) sin3(ωt + ψ). (The dissipative term yields only a
second-order variation of oscillation frequency.)

In this elementary example the main idea of the asymptotic theory is
readily seen: a small perturbation in governing equations results in finite
deviations in the solution of the unperturbed one due to resonance action
of the perturbation in the basic equation. Fortunately, however, due to
its resonance character, this deviation has the same structure as the basic
solution, and it can be incorporated into the latter by letting its param-
eters (amplitude, phase) vary slowly in time, thus keeping the rest of the
perturbations small (nonresonant).

Another important class of systems is associated with fast-relaxing sys-
tems when the small parameter appears as a factor in highest-derivative
terms. For example, Eq. (2.1) can have a small factor ε in front of the first
term on its left side instead of those on the right. In this case, the motion
can be divided into the “slow” stage when the first term can be neglected,
and the “fast” one when the zero-derivative terms are negligible. The cor-
responding oscillations can then be described by using matched asymptotic
expansions; they acquire a characteristic “sawtooth” shape [1, 40, 41].

There exists a huge variety of nonlinear ODEs that are important for
physical and technical applications and have been effectively solved with
the help of the asymptotic perturbation theory. Among the historic achieve-
ments, we only mention the theory of the van der Pol oscillator, for which
the perturbation theory gives an analytical expression for an attractor:
limit cycle in the phase plane of the system, and which has played an out-
standing role as a realistic model of electronic generators (see, e.g., [2]).
Also, many early models of a laser were based on ODEs and their solutions
with a slowly-varying amplitudes.
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2 Modulated waves

The word “modulated” came from radio engineering and signal theory. In
application to waves, it was first used by Ryutov in 1940 [3] for quasihar-
monic waves of the form

u = A(r,t)eiθ(r,t) + c.c., (2.2)

where the amplitude, A, instantaneous frequency, ω = θt, and wave vector,
k = −∇θ, are slowly varying in time and space. In other words, they depend
on “slow” variables τ = εt and ρ = εr (again, ε is a small parameter). In
that work, Ryutov considered mostly classical geometrical optics of linear
inhomogeneous media.

For a nonlinear case, a systematic consideration of modulated wave prop-
agation started in 1960s with, as it seems, the works by Ostrovsky and es-
pecially Whitham. The former paper [4] deals with a plane electromagnetic
wave of the form (2.2). Substitution into Maxwell equations with nonlinear
equations of state yields the solution for the wave amplitude in the form of
a simple wave well known in fluid mechanics

|A| = F [t− x/cg (|A|)] , (2.3)

where cg is the nonlinear group velocity, depending on the wave amplitude;
e.g., in a nonlinear dielectric, c2g =dD0/dE0, D0 and E0 being the ampli-
tudes of electric induction and electric field, respectively. The wave phase
and frequency become modulated due to amplitude modulation, also. It
was also stated that, as a result of breaking the “envelope wave” (2.3) , an
envelope shock can be formed as a “step” in the amplitude, provided the
medium has an inertia (such as relaxation of the Kerr-effect in liquids), and
a boundary condition at the shock was written. The results obtained in [4]
are valid when the wave dispersion in the vicinity of carrier frequency is
weak in comparison with nonlinearity (as in nonlinear optics of very short
and intensive laser pulses).

A very general analysis of the problem has been performed by Whitham
[5, 6]. He considered an arbitrary system described by a Lagrangian
L(q,

.
qt, qx), where q is a canonical variable or a vector of variables. Repre-

senting again these variables in the form (2.2) , substituting into the expres-
sion for L, and averaging over the wave period, one obtains an averaged
Lagrangian, L(A,ω, k), where again, ω = θt and k = −θx. Considering
A and θ as new “canonical” variables, Whitham introduced the “averaged
variational principle” to obtain variational equations

∂L

∂A
= 0, (2.4)

and
∂

∂t

(
∂L

∂ω

)
− ∂

∂x

(
∂L

∂k

)
= 0. (2.5)
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The first of these equations represents a dispersion relation ω = ω(k, |A|);
in a linear case, when L = g(ω, k) |A|2 , it gives just g = 0, and consequently,
L = 0. This means that in a linear progressive wave, the virial theorem is
valid: average kinetic and potential energies are equal. The second equation
describes space-time variation of slowly varying quantities; for closure, one
should add a kinematic equation

∂k

∂t
+
∂ω

∂x
= 0. (2.6)

Whitham applied this approach to a wider class of nonlinear quasiperi-
odic (not necessarily harmonic) waves in the form u = F (θ,A), where A is
a parameter (or parameters) of a wave, such as its amplitude. This can be
applied, for instance, to the solutions of the Korteweg-de Vries equation in
the form of “cnoidal” waves. Later, a similar approach was applied to de-
scribe the transformation of shallow-water sea waves from weakly nonlinear
to soliton-like while approaching the shore [7] and to construct a self-similar
solution describing the disintegration of an initial stepwise wave to solitons
[8].

Whitham’s paper [5] was followed by Lighthill’s [9] who considered an
important case of weakly nonlinear waves for which the dispersion relation
takes the form ω = f(k) + α|A|2. He found that the system (2.5) , (2.6)
can be of either a hyperbolic or elliptic type, and in the latter case, a
periodic wave train is unstable with respect to modulating perturbations.
He also gave a criterion for wave stability (hyperbolicity), which includes
both nonlinearity and dispersion parameters and is known as Lighthill’s
criterion.

Shortly afterwards, higher-order dispersive effects were considered to
yield the nonlinear Schrödinger equation (NSE), and many of its impor-
tant consequences, including the existence of envelope solitons, “dark soli-
tons,” etc. This development was particularly stimulated by the progress in
nonlinear optics (see the pioneering works by Bloembergen and Khokhlov
([10] and [11]), devoted to the resonance wave interactions, and the pa-
pers of the 1960s [12]-[19] that have introduced the NSE and such notions
as self-modulation, envelope solitons, and envelope shocks. An important
contribution was made by Benjamin and Feir [20], who have shown that
the surface gravity (Stokes) waves in water are modulationally unstable.
However, all these physical results are beyond the scope of this paper.

Finally, a concept of modulated solitary waves was also introduced.
Namely, it was supposed that the unperturbed governing equations have
a family of localized, solitary solutions, and then a perturbation method
is used to generate both slow variations of the “body” of the solution in
the vicinity of a solitary wave and a nonstationary “radiation tail” that
propagates behind (and sometimes ahead of) the primarily localized wave.
These problems are also considered below.
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3 Direct perturbation method

In what follows, we briefly outline the perturbation schemes, starting with
that for quasiperiodic (not necessarily quasiharmonic) waves [21].

Consider a system of N nonlinear equations

M(u, ut,ux, τ, ρ) = εR, (2.7)

where M is a column of nonlinear functions, R describes perturbations,
τ = εt, ρ = εx, and u is a vector of unknown variables. Suppose that for
ε = 0, this system has a family of 2π-periodic solutions

u = U(θ,A), (2.8)

where again θ = ωt−kx, and A = A1, ...Am is a set of integration constants.
For ε �= 0, the solution is represented by an asymptotic series

u = U(θ,A, τ, ρ) +
∑

n

εnu(n)(θ, τ, ρ), (2.9)

with the same definition of variables ω (τ, ρ) = θt, k (τ, ρ) = −θx, and
A (τ, ρ) is a slowly-varying amplitude. Substituting into system (2.7) we
obtain, in each order of ε, a linear system

∧
P u

(n) = H(n),
∧
P=

∂M (0)

∂Uθ

d

dθ
− ∂M

(0)

∂U
. (2.10)

Here M (0) is taken from (2.7) for ε = 0. The “forcing” H(n) depends on
previous-order functions; for example,

H(1) = R(0) − ∂M
(0)

∂Ut
Uτ − ∂M

(0)

∂Ux
Ux. (2.11)

A general solution for (2.10) in each order can be represented in the form

u(n) = Y

[
C(n) +

∫ θ

0
Y ∗H(n)dθ′

]
, (2.12)

with C(n) (τ, ρ) as integration constants. Here, Y and Y ∗ are the eigenma-

trices for the operator
∧
P and its conjugate counterpart, respectively.

It is important that m + 1 columns of matrix Y are known here just

because
∧
P follows from the variation of the vector M ; namely,

Y1 = Uθ, Yi = UAi , i = 2, 3, ...m+ 1. (2.13)

These solutions remain bounded only if the orthogonality conditions are
fulfilled ∫ 2π

0
Y ∗

i H
(n)dθ′ = 0, i = 1, 2, ...m+ 1 (2.14)
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together with a proper selection of parameters C(n). The relations (2.14)
are, in fact, differential equations for slowly varying functions in each ap-
proximation.

A more detailed consideration is available for Lagrangian systems [22]

∂

∂t

∂L
∂ut

+
∂

∂x

∂L
∂ux

− ∂L
∂u

= εH(n). (2.15)

In this case, the variational operator
∧
P is of second order and self-conjugate

∧
P=

d

dθ

(
∂2L
∂U2

θ

d

dθ
+
∂2L
∂Uθ∂U

)
− ∂

2L
∂U2 − ∂2L

∂Uθ∂U

d

dθ
. (2.16)

For a Lagrangian system when R = 0 and the wave is modulated due to
initial of boundary conditions, the system (2.15) can be written, in the
first-order approximation, in the form (2.5). This means that Whitham’s
averaged variational principle follows from the perturbation theory as a
first-order result.

If x is a vector, these solutions can be expanded to describe three-
dimensional waves, thus yielding the equations of nonlinear space-time ge-
ometrical optics.

4 Perturbation theories for solitary waves

A very actively developed branch of “perturbation wave science” is devoted
to solitons (and, more generally, solitary waves) 1. Several schemes have
been suggested for solitons, which can be divided into two classes: “direct”
methods similar to that discussed above for periodic waves, and “inverse”
methods based on perturbations in the scheme of inverse scattering for
equations close to fully integrable ones. We shall briefly outline each of
them.

4.1 Direct perturbation method for solitons: quasistationary
approach

This method has been discussed by the authors and Pelinovsky in 1974 [23]
in an application to nonlinear electromagnetic waves, and then in several
other papers (e. g., by Grimshaw for the KdV equation [32] and by the

1We do not discuss the definition of the term “soliton” here; note that we
are among those who believe that this term should be applied to all conservative
localized nonlinear steady waves which are able to preserve their integrity upon
interactions and other perturbations, rather than only those escaping unchanged
from interactions.
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authors for a general system [24]). Up to some point, this scheme is similar
to that described above for periodic waves. Considering system (2.7), we
suppose that, at ε = 0, it has a family of solitary solutions u = U (ζ, V,A) ,
where ζ = x − V t. These solutions tend to constants at infinities: U(ζ →
±∞) = U± (A) . (In general, U+ �= U−; moreover, this consideration can
also be applied for nonconservative solitary formations such as shock waves
and autowaves.) Then at ε �= 0, we represent the solution in the form (2.9)
with ζ = x − ∫

V (τ, ρ)dt instead of θ. As a result, we obtain an equation
similar to (2.12) . To prevent the growth of perturbations at infinities, the
orthogonality conditions must be met for all eigenmatrices Yi (suppose
i = 2, 3, ...l) tending to zero at infinity

∫ ∞

−∞
Y ∗

i H
(n)dζ ′ = 0, i = 2, 3, ...l. (2.17)

Note that in cases of solitons with exponential asymptotics, they prevent
exponential growth at infinity rather than power-law (secular) one as in
the case of periodic waves. However, if the limits for some matrices Yi

are nonzero but finite, a secular growth at infinity is also possible, and to
eliminate it, the following algebraic conditions must be added

lim
ζ→±∞

Y ∗
i H

(n) = 0, i = l + 1, l + 2, ...m+ 1. (2.18)

Together with a proper selection of the integration parameters C, the above
conditions (2.17) and (2.18) are necessary for the finiteness of perturba-
tions. The first set of them gives equations for the soliton amplitude. The
second set of equations matches the solitary wave to the nonlocalized field
component, a radiation. This matching is somewhat analogous to that men-
tioned above for the relaxing systems described by ODE and also to the
problems typical of hydrodynamic boundary layers. (Indeed, in the case of
a gas-dynamic shock wave, condition (2.18) gives the boundary conditions
on a shock which connect it with isenthropic flow outside the narrow shock
area.) The nonzero asymptotic perturbations U (n)

± arise in higher approx-
imations (n > 1). By using (2.12) , they can be matched in the vicinity of
a solitary wave by a boundary condition

U
(n)
+ − U (n)

− = Yi

∫ ∞

−∞
Y ∗

i H
(n)dζ ′, i = l + 1, l + 2, ...m+ 1. (2.19)

As a result, we have a complete description of the behavior of a solitary
wave (the small radiation field is described by the linearized basic system
(2.7) ) with perturbations uniformly bounded for all x.

Analogously, the perturbation scheme can be constructed for solitary
waves in Lagrangian systems [24], as discussed below for soliton interaction.
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4.2 Nonstationary approach
To describe the nonstationary part of the solution, a radiation, a more
general scheme, first developed by Keener and McLaughlin in 1977 [25, 26],
is more adequate. The solution is represented as

u = U(θ,A, τ, ρ) +
∑

n

εnu(n) (x, t) . (2.20)

It yields again a linear system for u(n) in each order

∧
P u

(n) = H(n),
∧
P=

∂M (0)

∂Ut

∂

∂t
+
∂M (0)

∂Ux

∂

∂x
− ∂M

(0)

∂U
, (2.21)

and, for example,

H(1) = R(0) − ∂M
(0)

∂Ut
Uτ − ∂M

(0)

∂Ux
Ux. (2.22)

A general solution to (2.21) in each order can be represented in the form

u(n)(x, t) =
∑

n

Cd (t)Yd (x, t) +
∫ ∞

−∞
dkCc (t)Yc (x, t) , (2.23)

where C are coefficients to be found. Subscripts “d” and “c” denote the

discrete and continuous parts of the operator
∧
P spectrum, respectively. If

∧
P is written in a normal form with respect to ∂tu

(n)
, functions Cd,c satisfy

a system
dCd,c

dt
=

∫ ∞

−∞
Y ∗

d,cH
(n)dx. (2.24)

A characteristic feature of such a scheme is secular divergence of coeffi-
cients C in time. For the continuous-spectrum coefficients, Cc, such a di-
vergence is typically associated with nonlocalized functions Yk (radiation),
so that secular growth of C is due to spreading of the region occupied by
radiated waves that remain finite in each point; hence, the corresponding
parts of perturbations u(n) do not build up. On the other hand, the co-
efficients Cd correspond to spatially-localized, discrete-spectrum functions
Yd, so that the discrete-spectrum parts of u(n) grow in time rather than
spread in space. Orthogonality conditions (2.17) suppress the Cd growth
and define the variation of soliton parameters (such as its amplitude) in
time. Here again, the variations of the basic solution with respect to soliton
parameters (cf.(2.13)) are among the localized eigenfunctions. Keener and
McLaughlin [26] have shown that, if the basic (at ε = 0) system is fully
integrable, the entire discrete spectrum is covered by these “variational”
solutions. Moreover, in this case all continuous-spectrum functions can be
represented in a similar way. As a result, the orthogonality conditions (2.17)
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are sufficient to eliminate all divergences; at least in the first approxima-
tion, the amount of resonances is equal to that of the parameters Ai(t) to
be determined. As a result, the description is reduced to the solution of a
finite-dimensional ODE system

dAi

dt

∫ ∞

−∞
Y ∗

d UAi
dx =

∫ ∞

−∞
Y ∗

d H
(n)dx; i, d = 1, 2, ...m. (2.25)

It is worth noting that when the orthogonality conditions similar to (2.17)
are satisfied, the discrete-spectrum perturbation disappears, and u(n) con-
sists of the continuous-spectrum part of (2.23) only.

4.3 Inverse-scattering perturbation scheme
The schemes outlined above do not depend on the integrability or non-
integrability of the basic equations. For systems close to integrable ones, an
alternative scheme is also applicable that is based on the inverse scattering
method, first suggested in 1977 by Karpman and Maslov [28] (see also [29]-
[31] and [46]). According to this method, the basic equation is represented
in an evolutional form

∂tu =
∧
S [u] + ε

∧
R [u], (2.26)

where
∧
S [u] and ε

∧
R [u] are nonlinear differential operators, and (2.26) is

fully integrable at ε = 0 and can be solved by the inverse scattering method
(see, e.g., [18]). As known, integrable evolution equations (including KdV,
MKdV, SG, and NLS 2) can be represented in terms of a compatibility
condition for a pair of linear equations for a function ψ

∂xψ = X (λ, u)ψ; ∂tψ = T (λ, u)ψ. (2.27)

Here, the matrices X and T have the elements depending on the spectral
parameter λ and having the solutions of the basic evolution equation as
coefficients. As a first stage, the direct problem is solved for the first of
these equations, in which the variable t is treated as a parameter. In cases
when both X and T are 2×2 matrices, the solution procedure is equiv-
alent to finding the scattering coefficient r(λ) (-∞ < λ < ∞), together
with eigenvalues λn and amplitude coefficients bn for discrete-spectrum
eigenfunctions. These scattering data can be expressed in terms of Yost
coefficients that relate two equivalent sets of eigenfunctions of continuous
spectrum: r(λ, t) = b(λ, t)a−1(λ.t). The values of λn are given by zeroes
of the function a(λ.t) in the upper half-plane of the complex parameter λ,
where this function is analytical; then bn(t) = b(λ = λn, t).

2We use generally accepted abbreviations for the equations: Korteweg-de
Vries, Modified Korteweg-de Vries, Sine-Gordon, and Nonlinear Schrödinger.
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The equations for a and b follow from the analysis of asymptotic be-
haviour of the continuous-spectrum functions at x→ ∞; they read as

.
a (λ, t) = 0,

.

b (λ, t) = iΩ (λ)b(λ, t). (2.28)

(The function Ω(λ) coincides with the left-hand part of the dispersion rela-
tion ω(k) for the linearized equation (2.26) at ε = 0.) From the analytical
properties of functions a and b in the upper half-plane of λ, one readily
finds equations for λn and bn

.

λn= 0,
.

bn= iΩ(λn)bn(t). (2.29)

From the scattering data known for all t, one can unambiguously restore
u(x, t) by using the integral equation of the inverse scattering problem.
Note that all known N -soliton solutions are associated with nonreflecting
potentials, for which r(λ, t) ≡ 0. In these cases, the constants λn define the
amplitudes and velocities of interacting solitons, and bn(λn, t) describe their
phases. From (2.29) it directly follows that the amount and parameters of
solitons are the same before and after interactions (elastic collision).

For ε �= 0, the perturbed equation (2.26) is associated with the same lin-
ear operator X, so that the direct scattering problem remains unchanged.
However, temporal evolution of scattering data does not obey Eqs. (2.28)
and (2.29) anymore. One of the possible ways to describe this evolution is
based on the representation of scattering data as functionals of the “scatter-
ing potential” u(x, t). By definition, the time derivatives of these functionals
are represented as [18]

dF

dt
=

∫ ∞

−∞

δF

δu

∂u

∂t
dx, F = {a, b, λn, bn}, (2.30)

where the variational derivatives δF/δu can be expressed in terms of eigen-
functions of the scattering problem. For Eq. (2.26) , this relationship takes
the form

dF

dt
=

∫ ∞

−∞

δF

δu

∧
S (u)dx+

∫ ∞

−∞

δF

δu

∧
R (u)dx, (2.31)

where the first term in the right-hand part is the same as for ε = 0. As
a result, evolution equations for the scattering data acquire the following
structure [26]

.
a (λ, t) = εA(u, λ), (2.32)
.

b (λ, t) = iΩ(λ)b(λ, t) + εB(u, λ),
.

λn = εΛn(u),
.

bn = iΩ(λn)bn(t) + εBn(u).

Here, A,B,Λn, and Bn can be defined from the second term in (2.31) ,
but only as functionals of the unknown solution u(x, t). However, by using
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the expansion of (2.9) type for u and the corresponding expansions for the
parameters in question, A (u) = A (U) + εA(1) + ... etc., where U(x, t) is
again a known basic solution for ε = 0, such as an N -soliton solution. As
a result, in the first approximation, the functional derivatives are trans-
formable to explicit functions of U depending on parameters λn, bn, and λ
that closes the equations (2.32). Their solution provides the time depen-
dences of scattering data and soliton parameters. Then, by restoring the
scattering potential, one finds the perturbation u(1)(x, t). After that, the
next-order terms can be added to the system (2.32), and so on.

4.4 “Equivalence principle”
As expected, the results obtained in a framework of different perturbation
schemes are essentially the same. In particular, the “direct” and “inverse”
schemes considered above yield identical equations for soliton parameters
and for (at least) first-order perturbations, although some formal differences
can exist. For relatively simple but very typical examples of perturbed
KdV, MKdV, and SG equations, when a basic soliton U(x, t) depends on
one (phase) variable ζ = x − V (λ0)t − X0 and contains two parameters,
λ0 and X0, the equations for these parameters, obtained from the inverse
scheme in the first approximation, have the form

dλ0

dt
= εE (X0, λ0, t) ;

dX0

dt
= V (λ0) + εD (X0, λ0, t) . (2.33)

When solving the same problem with the direct method, one obtains the
same equations, but without the last term (εD) in the second equation.
This difference is due to the different amounts of localized eigenfunctions
used in the two schemes. Whereas the solution UX0 ∼ Uζ is present in
both schemes, the solution Uλ0 ∼ UV appears only in the inverse (partial-
difference) scheme (in the quasistationary approach, UV is not an eigen-
function). This circumstance was mentioned, e.g., by Ablowitz and Kodama
[47]. However, the term with D is, in fact, a second-order correction to the
soliton velocity. In the direct scheme, a similar correction (∼ UV ) appears
in the expression for u(1). Moreover, a consistent use of the term εD to find
a correction to the phase variable ζ is possible only together with terms of
order ε2 in the first equation (2.33) ; this fact is well known in oscillation
theory [1]. In general, the two schemes satisfy the “equivalence principle,”
necessary for the correct use of either of them. Personally, we prefer the di-
rect method because of its relative simplicity and universality: the scheme
is constructed similarly both for integrable and non-integrable equations
and, moreover, for solitons and quasiperiodic waves. 3

3Eqs. (2.33) also describe small perturbations in the form of small-scale oscilla-
tions [26, 28, 29], which are absent in the quasistationary equations; as mentioned,
however, these equations are not completely consistent.
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4.5 Example: soliton interaction in Lagrangian systems
In [24], the case was considered when two or more (N) solitons interact on
the x−axis in such a way that at any moment, they are separated by finite
but large (compared to their characteristic lengths) distances. In this case,
they interact by their “tails,” and the solution in the vicinity of an i-th
soliton can be sought in the form

ui = U(ζ − si) +
∑
j �=i

U(ζ − sj) +
∑

n

εnu(n)(ζ − si,τ, ρ), (2.34)

where s is the soliton center coordinate, so that dsi/dt = εV , and V is
taken the same for all solitons. It is supposed that Vi − Vj = ∆Vij is of
order ε, and the values of “tails” of neighbouring solitons at the site of the
i -th one are of order ε2.

After some transformations, from the orthogonality condition (2.17) , it
follows that in the second approximation (which is the first nontrivial in
this case), the coordinates of solitons satisfy the equations of Newtonian
mechanics for classical particles

M
..
si=

∑
i �=j

f(si − sj), (2.35)

where f is defined by the soliton asymptotics (exponential, algebraic, etc.).
This equation corresponds to the collision of particles with a Lagrangian

Leff =
M

2

∑ .
s
2
i +

∑
Φ(si − sj), (2.36)

with the pair potential Φ expressed in terms of soliton asymptotics. It is
worth noting that

M =
dP

dV
, P =

∫ ∞

−∞
dζ
∂L

∂Ut
Uζ , (2.37)

so that P is the total wave momentum of the soliton, and M is its field
mass.

From here, it is easy to understand the main types of two-soliton in-
teraction [24, 57]. Indeed, its character depends on the sign and shape of
the function f in (2.35). Positive f corresponds to repulsion of particles,
as in the majority of integrable equations (like KdV); negative f yields
attraction producing a breather, as in the sine-Gordon equation. Finally,
for oscillatory behaviour of f , when solitary solutions have tails of the
type e−λ|x|cos(λx), the interactions are of a more complicated character:
they include equilibrium points, oscillating bound states, and repulsing in-
teractions, depending on initial conditions. Note that the equilibrium is,
in fact, a stationary bound state that corresponds to a new, “two-hump”
soliton; a countable amount of “multisolitons” can be constructed in this



2. Perturbation Theories for Nonlinear Waves 59

way [42]. The latter case is realized, for example, for the KdV equation
modified by an additional dispersive term with the 5th derivative of the
unknown function [38]. Many types of soliton interactions were observed in
electromagnetic lines [43, 44]. Note that in these experiments, the birth of
new solitons upon interaction was observed. An approximate approach to
description of such cases was also discussed [35, 51].

Of interest also are “soliton lattices”, i.e., quasiperiodic sets of solitons. In
particular, for repulsing interactions these lattices are stable, for attracting
interactions they are unstable, and for oscillating potentials both stable
and unstable lattices are possible. In the latter case, the stochastization of
the soliton set can occur [44].

4.6 Radiation from solitons
An important problem is that of soliton radiation due to perturbations,
such as interaction with other solitons. Different problems of soliton radia-
tion were considered, for example, in [39, 33, 55]. In the Lagrangian scheme,
the radiation appears in the second approximation; in general, u(2) can be

represented as u(2)l +u(2)r +
∧
A U2, where the first term is a localized pertur-

bation deforming a soliton, the second is nonlocalized radiation, and the
third is the “tail field” of the neighbouring soliton(s) on the site of the con-
sidered one. Interestingly, in such integrable equations as MKdV, SG, and
NSE, the radiative part u(2)l for soliton interactions is not present, whereas
for KdV it does occur, but only in the region between interacting soli-
tons and it asymptotically disappears at t → ∞, when solitons diverge in
space. It can be said, consecutively, that along with the exchange of energy
and momentum, the interacting KdV solitons “exchange radiation:” one of
the solitons (the frontal one) radiates a field that is eventually completely
absorbed by the other.

In other cases (small dissipation, solitary wave interaction in non-integra-
ble equations, etc.), the radiation spreads beyond solitons. (The condition
of its decay at infinity for any finite t is still fulfilled.) The corresponding
nonstationary term should be matched with the quasistationary asymptotic
of a solitary wave, which, in turn, obeys the boundary condition (2.19) . In
fact, the method of matched asymptotic expansions, that is well known in
oscillation theory [40] and the theory of boundary layer [45], is employed
here. Naturally, the energy loss for radiation results in the decay of the
localized part.4

Finally, we shall make one practical, important remark regarding soli-

4An interesting recent example [54] is “terminal damping” of solitary waves
in rotating systems. It was shown before that rotation prevents the existence of
solitary waves. As a result, an initial pulse close to a KdV soliton radiates a
dispersive wave and disappears in a finite time.
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ton interaction. The applicability of the above method is often actually
wider than for well-separated, close-velocity solitons. In another extreme
case, when one soliton is much larger (and narrower) than the other, the
smaller one can be considered as a slowly varying pedestal for the stronger
one, and the perturbation method is applicable again [39]. Moreover, the
direct application of the expansion (2.34) is justified even for an arbitrary
ratio of soliton amplitudes. Indeed, a real small parameters of the problem,
are, e.g., ε = (V1 − V2) / (V1 + V2) for KdV and ε = V for SG, both are
always less than 1. This makes the quasistationary perturbation approach
reasonably adequate for all ratios of soliton parameters. A confirmation
can be readily found by comparison with exact solutions for such equations
as KdV, MKdV, SG, and NSE. For example, an exact two-soliton solution
of MKdV can be represented as

uss(x, t) =
∑
1,2

(θ1,2)x (cosh θ1,2)−1 (2.38)

θ1,2 = ς − 2ε2t± cosh−1
[

1
ε

cosh ε(ς − 2t)
]
,

where ς = V0
(
x− 4V 2

0 t
)
, V0 is the average of partial velocities of solitons,

V1,2, and ε = (V1 − V2) / (V1 + V2) < 1. The signs + and - correspond
to the first and second soliton, respectively. Expanding (2.38) in ε, it is
easy to see that the first terms in this expansion coincide with the solution
obtained by the perturbation method, both for the perturbation u(1) and
for the parameters of solitons.

5 Asymptotic reduction of nonlinear wave
equations

When dealing with evolution equations like KdV in mathematics, one has
to remember that in physics, such equations are usually an approximation
for a situation when both nonlinear and dispersive terms in a basic system
are small. In other words, this system must be close to a linear hyper-
bolic one. There exist numerous ways to reduce the basic equations to the
equations like Burgers, KdV, and others. We can refer, for example, to the
early paper by Khokhlov [52], who reduced the equations for nondispersive
electromagnetic waves to the form of Burgers equation just by introducing
the “travelling” coordinate ζ = x− ct, c being the linear wave speed. The
series of papers by Taniuti and others [48, 49] was devoted to such a re-
duction for a general system of 1-D equations. Another, iterative scheme,
which directly exploits the quasi-hyperbolicity of basic equations (which is,
in fact, equivalent to weak dispersion), was suggested in [50] (see also [57]).
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We shall outline this scheme briefly. Consider a system

ut+
∧
B ux = ε

∧
R (u, x, t) , (2.39)

where u is a column vector of N variables,
∧
B is a square matrix of constant

coefficients, and
∧
R is a vector operator that is responsible, in general, for

nonlinearity, dispersion, and dissipation effects. At ε = 0, this system is
supposed to be hyperbolic. It is convenient to diagonalize this system by a
change of variables

u(x, t) =
N∑

n=1

Fn(x, t)rn, (2.40)

where Fn are scalar functions, and rn are eigenvectors of the problem. At
ε = 0, we have Fn = Fn(x − cnt), where cn are characteristic velocities of

normal waves defined as eigenvalues of matrix
∧
B; i.e.,

det | ∧
B −cn

∧
I | = 0,

∧
B rn = cnrn. (2.41)

(
∧
I is a unit matrix.)

For ε �= 0, after substituting (2.40) into (2.39) and multiplying by the

left eigenvector lm of the matrix
∧
B (i.e. lm· ∧

B= cm
∧
I), the latter system

can be readily transformed into a set of equations for coupled normal waves
Fm

Fmt + cmFmx = ε (lm · rm) R (Fn, x, t) . (2.42)

As a result, we have N weakly coupled normal modes, each propagating
along its own characteristic, dx/dt = cn. In practice, only few of these
modes are usually excited, so that in the basic approximation, the order
of the system is much less than N. The rest of the modes can be found
from linear equations of (2.42) with known right-hand parts. Then, the
iteration procedure is used: substitute the solution of the linear group of
equations into the “main,” coupled equations, and solve them again, then
find again the perturbing modes from linear equations, etc. A majority
of evolution equations, such as KdV, follow from this scheme as a first
one-wave approximation (after introduction of a travelling coordinate, ζ =
x−ct), and the two-dimensional equations, like Kadomtsev-Petviashvili and
Khokhlov-Zabolotskaya-Kuzhetsov equations, in the second approximation.

6 Conclusions

In this book, a question like “What would one expect of nonlinear wave
theory (let us call it NWT) on the eve of the 21th century?” seems quite
natural, but there is hardly anyone able to give a general answer. It can be
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stated that in the second half of our century, NWT has been consolidated
as an independent branch of science and as such, it includes a solid math-
ematical basis and numerous applications. Like those in oscillation theory,
approximate methods form one of the most important parts of NWT. In
the above consideration, we did not present all known perturbation schemes
for waves, while space restrictions prevented us from discussing a variety
of applications, some of them quite remarkable. Still, we hope that the pa-
per has demonstrated the universality of asymptotic approaches in NWT
and their generic connections with other areas of mathematical physics and
oscillation theory. Practical applications of asymptotic perturbation meth-
ods are extended from nonlinear optics to plasma physics to electronics to
astrophysics.

A look at the recent development in this area shows a number of rel-
evant problems that can be expected to remain a challenge through the
beginning of the next century. (Some of them have been already mentioned
above). Evidently, the analysis of higher approximations (including soliton
radiation) and of 2-D and 3-D schemes is still far from being completed.
The same is true for complex cases of soliton interaction in non-integrable
systems that may result in birth and disappearance of solitons in the pro-
cess of interaction. Multisoliton dynamics and soliton lattices are worth
studying, in particular, the stochastic soliton ensembles and “soliton tur-
bulence.” A perturbation approach to solitons in discrete systems is quite
possible, too. Also, an extension of perturbation schemes used for solitons,
to localized hydrodynamic structures such as vortices, can give new results
in this rather classical area [53]. However, the perspectives of the theory
might go far beyond the soliton-related problems. In fact, “nonlinear ge-
ometrical acoustics” employed the approximate approach for shock waves
for a rather long time (see, e.g., the recent books [56]). Finally, slow-varying
autowaves of the reaction-diffusion type will probably become a subject for
the perturbation theory. Even this rather unorganized list demonstrates
that asymptotic methods will almost definitely remain an effective tool
helping to meet the new challenges in wave theory.
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Josephson Devices
Antonio Barone
Sergio Pagano

ABSTRACT In this chapter we briefly review the main applications of
Josephson effect together with the most successful devices realized. We will
give an overview of the various devices, providing also some basic concepts
of the underlying physical mechanisms involved, and the associated limit
performances. Some considerations on the concrete possibilities of success-
ful “market ready” implementation will also be given.

1 Introduction

Some stimulating aspects of Josephson structures have been considered in
detail in other contributions to the present volume. In this review we shall
confine our attention to the main features of superconductive electronics
which, as far as the active devices is concerned, can be considered as entirely
based on the Josephson junctions.
We consider first the physical principles underlying the operation of such

devices in the various applications both potential or already realized.
It is quite usual to distinguish electronic components in the two classes

of “analog” and “digital” devices. In both cases one can resort to general
properties of superconductivity and specific features of the Josephson effect.
Within these classes of devices the most stimulating aspects which make

the superconductive technology quite competitive are the possibility of en-
hancing processing speed of digital circuits and realizing magnetic field
sensors of extreme sensitivity. The former is based on the intrinsic speed
that Josephson junctions, in different configurations (latching mode, RSFQ
mode, etc.), can offer and, even more, the extremely low power dissipation
involved. This last issue is further improved by the possibility of super-
conductive interconnection of microstrips which allows a sort of ballistic
transfer of pulses due to the very low attenuation and dispersion.
As for the magnetic field sensors the unparalleled competitiveness lies in

the combination of fundamental properties of superconductivity, such as
the flux quantization, with the intrinsic possibilities of Josephson circuits.
Of course, when discussing of the actual potential of superconductive

devices, it is mandatory to take into account the fantastic growth of the
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performances of semiconducting devices in the last decades.
In this chapter we will briefly recall the main features of the Josephson

effect, we will discuss the main applications of SQUID systems, also in con-
sideration of the new possibilities offered by the high-Tc superconductors,
and finally we will discuss in some detail the digital and high frequency
devices. In the concluding remarks we will address some issues related to
market opportunities and limitations.

2 Elements of the Josephson effect

To make this chapter self-contained, we shall first recall the basic relations
which govern the Josephson effect [14]

I = Ic sinφ (3.1a)

V =
h̄

2e
∂φ

∂t
. (3.1b)

As we know these express the circumstance that V = 0 implies constant
phase difference between the two superconductors and therefore a super-
current of maximum value Ic flowing through the barrier with zero voltage
drop. This is the essence of dc-Josephson effect (see Figure 1).
If we apply a voltage, V, across the junction, equation (3.1b) gives,

by integration, φ = φ0 + 2eV/h̄ and thus, through (3.1a), an alternat-
ing current I = Ic sin(φ0 + 2πνt) with a frequency to voltage ratio ν/V =
483.6MHz/µV which is the a.c. Josephson effect. Equation (3.1b) gives a
time modulation of the phase by the voltage. It does occur however also a
space modulation by an applied magnetic field as described by the following
equation

∇φ =
2e
h̄
dµ0 H × n (3.1c)

with d = t+λL1+λL2 where µ0 is the vacuum permeability, t is the junction
barrier thickness (∼= 1nm) and λL1 and λL2 are the London penetration
depths of the two superconducting layers. Equations (3.1) can be combined
[3] giving the well known Sine-Gordon equation

∂2φ

∂x2 +
∂2φ

∂y2
+
1
v2
∂2φ

∂t2
= 1

λ2
j

sinφ (3.2)

with v = c
√
t/εrε0µ0d and λj =

√
h̄/2eµ0Jcd .

λj gives a measure of the distance, from the junction edge, within which
the tunneling supercurrent is confined by the self magnetic field, namely
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FIGURE 1. Experimental current-voltage characteristics of a high quality
Nb-based Josephson junction. The scale is X = 1mV/div and Y = 0.1mA/div.
Courtesy of Istituto di Cibernetica del CNR, Italy.

the field generated by the currents flowing into the junction. Junctions of
linear dimensions smaller, or larger, than λj are classified as “small” and
“large” junctions respectively.
In the case of small junctions it is easy to show that

Ic =
+∞∫
−∞

I(x)eıkxdx (3.3)

where I(x) is the current density profile in the junction barrier and k =
2πd/Φ0Hy (Φ0 being the flux quantum). That is, the dependence of the
maximum Josephson current on the applied magnetic field is given by the
modulus of the Fourier transform of the current density profile I(x). For
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a rectangular junction, in terms of magnetic flux threading the junction,
Φ = HyLd, we have a Fraunhofer-like pattern

Ic = Ic(0) 1
πΦ/Φ0

sin(πΦ/Φ0) . (3.4)

In addition to this diffraction behavior, interference phenomena can also
occur when a system of two Josephson junctions closed by a superconduct-
ing loop is considered

Ic = Ic(0) cos(Φe/Φ0) (3.5)

where Φe represents the flux enclosed in the loop and the periodicity is
given by a flux quantum. As we shall see in the following section, these
concepts lead to the most important family of devices: the SQUID’s.

3 SQUIDs

The SQUID (Superconducting QUantum Interference Device) is probably
the most simple and successful device realized using Josephson junctions. It
cleverly combines two important physical principles of superconductivity:
the correlation between the magnetic field and the order parameter phase,
which leads to the flux quantization, and the correlation between the order
parameter phase and the current through a tunnel junction (equations 1),
which leads to the Josephson effect. The former is made explicit by

J = ρe/m (h̄∇φ− 2eA) (3.6)

where J is the current density, ρ the order parameter amplitude, e and m
the electron charge and mass respectively, φ the order parameter phase,
and A the vector potential. It is straightforward to show that, by inte-
grating (3.6) along a path inside (J = 0) a superconducting loop, the flux
of magnetic field threading the loop itself must be an integer multiple of
Φ0. A SQUID consists generally of a superconducting loop interrupted by
one (rf-SQUID) or two (dc-SQUID) Josephson junctions. In this way a
magnetic field coupled to the loop will modify the phase along it, and,
consequently, the current crossing the junctions (3.1a). As a result we have
a device capable of converting small changes of the magnetic flux, in the
scale of fractions of Φ0, into electrically measurable quantities.
Although the first realizations of SQUIDs, which date back three decades,

involved bulk superconductors with junctions formed by point contacts,
nowadays the planar thin film technology is widely used which allows fine
control of the device geometry and characteristics, as shown in Figure 2.
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FIGURE 2. Micro-photograph of a planar Nb-based dc-SQUID magnetometer
for biomagnetic measurements. The superconductive loop is made by the large
square washer to the right, on top of which a spiral coil, belonging to the input
transformer, is integrated. The two junctions forming the SQUID are the small
squares to the left of the figure, while the two small horizontal stripes are shunting
resistors used to make the junctions I-V characteristic single-valued. Courtesy of
the Istituto di Cibernetica del CNR, Italy.

The complete theory of operation of a SQUID is rather complex, as it
is necessary to take into account the loop inductance, possible junction
differences and thermally generated noise, as well as the effect of externally
coupled circuits. A detailed treatment can be found in [3, 37].
An important SQUID parameter is: β = 2πLIc/Φ0, which is the ratio

between the maximum flux that can be generated by a persistent current in
the loop and the flux quantum. For practical SQUID operation this param-
eter has to be about unity, in order to obtain an optimal critical current
modulation, as described in (3.5). This requirement implies the need of
small values of L and consequently small area loop (few tens of µm2). This
would greatly reduce the magnetic field sensitivity of the SQUID. In or-
der to measure very weak magnetic fields normally a superconducting flux
transformer is used so that the effective sensing area and field sensitivity
result greatly enhanced. Another important component of a SQUID mag-
netometer is the readout electronics. Indeed, as it is evident from (3.5), the
SQUID response is periodic in magnetic field with a periodicity of Φ0. The
purpose of the readout electronics is to amplify and linearize the output
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signal. The first goal is accomplished by an rf flux modulation and phase
detection technique, and the second one by a negative flux feedback that
exactly compensates the external field. A modern SQUID magnetometer
has a noise level of few µΦ0 and a magnetic field sensitivity of few fT (10−10

the Earth magnetic field). This performance, together with a dc limited low
frequency response, make the SQUID an ideal sensor in all situations where
very weak magnetic fields have to be measured.
A major field of application of SQUID magnetometers in undoubtedly

biomagnetism, where the very tiny magnetic fields generated by currents
flowing in neuronal and muscular tissues have to be recorded. The main
interests are in magneto-encephalography, for the study of normal, evoked
and pathological currents generated in the brain by neuronal activity, in
magneto-cardiography, for the study of pattern of the currents flowing in
the heart tissues, in fetal magneto-cardiography, for the investigation of the
fetal heart in situations when standard techniques (electro-cardiography)
are not usable, and in the study of magnetic contaminants in lungs and
liver.
The last years have witnessed an impressive improvement in biomagnetic

SQUID systems. From single sensor systems, which were difficult to use,
required extreme shielding against external noise, and needed a long time
to perform a complete scanning of the surface of interest (head or chest),
to modern multi-channel magneto-encephalographic systems, which con-
tain many SQUID sensors (up to more than 100) in various gradiometric
configurations, combined analog and digital readout electronics to opti-
mize SQUID operation and performances, active shielding, and concurrent
bio-electrical signal and head position recording [35].
Another application where the extreme sensitivity of the SQUID can

be very useful is the non-destructive testing of materials. This field has a
very broad interest, ranging from aircraft aging to nuclear power plants
pipeline testing. In all these cases the sensitivity at low frequencies of the
SQUIDs allows the investigation of material properties and defects to a
depth not easily accessible by traditional systems. As an example, with a
SQUID eddy current system it is possible to locate defects in multi-layered
aluminum foils down to a depth in excess of 1 cm. However, differently
from the case of biomagnetism, this application requires the possibility of
moving the SQUID system into an uncontrolled environment. This porta-
bility issue raises two main problems: refrigeration and noise cancellation.
While for the second problem various solutions have been and still are be-
ing, developed like active shielding and gradiometric sensors, the first one
is still a major task. In this context SQUIDs based on high-Tc materials
may have a better chance. Indeed in this case the advantages of simplified
cryogenic requirements, T < 90K instead of T < 10K, largely compensate
for the limitations in sensitivity and reliability due to the use of unfriendly
ceramic materials [35].
Finally it is worth mentioning some small but significant SQUID applica-
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tions where the unusual performances of these sensors are essential. These
are the displacement sensor for the gravitational wave antenna, capable of
detecting displacements of the order of 10−18m/

√
Hz, low noise amplifiers

for dark matter detection experiments, magnetic microscopy, and low field
nuclear magnetic resonance imaging [35].

4 Digital devices

Besides early attempts (40 years ago!) based on the “switching” between
the superconducting and normal state used by the archetype “cryotron”,
a large amount of research activity was developed all over the world in
the following years to realize superconductive computer devices. Among
the largest efforts we must recall the IBM and the following MITI projects
which were essentially closed in the 1983 and 1990 respectively, without
reaching the objective of commercialization although after a collection of
excellent specific results [8, 3]. Original experimental results obtained by
Matisoo [19] demonstrated the possibility of transition between the V = 0
state to the V = 2∆/e state with a switching time less than 1 ns. The back-
switching to the V=0 requires a longer time. Flip-flop mode operation was
also achieved with two junctions systems. In the following years shorter
switching time were reached. It is the case of the observation by Jutzi et
al. [13] of a switching time of about 38 ps. In all these experiments the
switching mode was of the “latching” type requiring thereby a specific
resetting operation (decrease of the gate current). Actually, a voltage Vm

exists such that, when a resistive loading is considered, if the load line
intersects the quasiparticle branch of the I-V characteristics at V < Vm, a
“self-resetting” process is allowed in which the junction switches back to the
zero voltage state independently of the control current. For intermediate
values of the loading a “non-latching” behavior can be realized in which
the reset occurs as soon as the control current is removed.
Addressing the reader to the specific bibliography [8, 3] we can mention

that the “latching” mode operation circuitry was adopted making thereby
a superconductive version of the semiconductor computer device architec-
ture. In the 1985 Likharev and coworkers [18] proposed a new family of dig-
ital devices based on intrinsic properties of superconductors which should
guarantee ultrafast digital electronics. This rapid Single-Flux-Quantum
(RSFQ) circuitry is indicated as the most challenging research issue toward
a competitive ultrafast superconductive digital electronics. The RSFQ cir-
cuit allows the storage of digital bits as single magnetic flux quanta trapped
in superconducting loops. In the simplest configuration, one can consider
a superconducting loop interrupted by just one Josephson over-damped
junction. This represents a DC/SFQ converter in that it generates a SFQ
pulse V(t) as soon as an input ramp signal reaches a certain threshold
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value. We are dealing, therefore, with a quantum interferometer by which
we could appreciate a quantized voltage drop across the junction produced
by a change in the magnetic flux of one quantum Φ0. The switching be-
tween the two states occurs within a time of the order of a picosecond (it
is actually limited through fundamental considerations by the energy gap
value of the superconductor employed). In practical circuit configuration,
an important problem lies in the transfer of such a flux quantum bit (SFQ)
to another cell. This is accomplished by passive superconductive microstrip
lines which allow a sort of ballistic transfer. Picoseconds pulses can indeed
travel at a speed close to the velocity of light with negligible dissipation and
dispersion. Of course the interconnections can be conceived also as active
transmission lines including extra Josephson devices when pulse amplifica-
tion is required.
The simplest RSFQ logic element can be represented by a flip-flop device

configuration consisting of a superconducting loop containing two junc-
tions. In this system a SFQ pulse produces the switching of the device
between two flux states 0 and 1. The device is current biased to apply a
magnetic flux Φ0/2 to the loop creating thereby a condition of two possible
flux states n = 0 and n = 1. The flipping from state 0 to state 1 is produced
by a SFQ pulse which transfers a quantum Φ0 across the first junction. A
reset SFQ pulse can reproduce the initial state. Such a resetting process
expels a quantum Φ0 from the second junction leading thereby to an output
SFQ pulse which, in turn, can drive another device. A variety of a large
RSFQ family can be thus generated with quite complex configurations.
Design and implementation of such circuitry employing low-Tc supercon-
ductors has been widely demonstrated. The niobium trylayer technology,
developed also in different contexts, guarantees a quite reliable circuit im-
plementation. As already mentioned, the combination of high speed and
low dissipation presents an attractive perspective. Indeed simple circuits
with junctions having a size of 1 − 2µm allowed operation at frequency
up to about 400 GHz while submicron technology would promise speed
of LSI of 100-200 GHz. The potential of RSFQ circuits technology spans
over a large variety of applications. These include such as communication,
radio astronomy, NDE (Non Destructive Evaluation) etc. where speed up
of the processing of both digital signal and imaging is of paramount impor-
tance. Accordingly, different circuit configurations are investigated such as
analog to digital converters for radars, communications systems or digital
magnetometers for NDE, Biomagnetism, etc.
As for the extremely challenging perspective of a competitive supercon-

ducting superfast general-purpose computer there is an ambitious projec-
tion made by Likharev [17] in the last year. It consists of a peta flops-
scale (1015 floating point operations per second) computer based on RSFQ
technology. The intrinsic potential of this technology and preliminary es-
timates of the systems design [7] show great advantages over a possible
semiconductor version of a computer with petaflops scale performance. As
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for other superconducting applications, the required cryogenic environment
remains a drawback although the final evaluation is always related to the
cost/benefit ratio. From this perspective, of high-Tc superconductor imple-
mentation would be attractive. However the degree of maturity of such a
technology, specially for complex systems of loop arrays of junction devices,
appears not yet sufficient, although it is continuously improving (e.g. see
[12]).

5 Detectors

Another important field of application on which the Josephson junction
technology has a significant impact is radiation detection. In this area the
history dates back several decades [1]). Originally the main reasons of in-
terest lie in both the possibility of reaching very high energy resolution, due
to the smallness of the energy gap (say 3 orders of magnitude smaller than
for semiconductors) and in the radiation hardness offered by various super-
conductors materials. Confining the attention to superconducting detectors
in junction configurations, the role of quasiparticle tunneling for energy
spectroscopy has been widely demonstrated. In this case the junctions are
of Josephson type because of the large tunneling barrier transparency re-
quired, though the actual mode of operation is not based on the Josephson
supercurrent. Rather the junction operates with a bias loading into the sub-
gap region. The energy released in the absorber, namely the junction elec-
trodes, create quasiparticles and phonons. The resulting non-equilibrium
conditions determine an overall scenario that is quite complex. The quasi-
particles produced cross the junction barrier leading to an increase of the
subgap current which in turn produces the signal. The tunneling of such
quasiparticles is in competition with the quasiparticle recombination pro-
cess and quasiparticle losses. The interplay of these various rates determines
the actual response of the detector. Indeed the production of quasiparticles
results from the breaking of Cooper pairs by phonons. The whole evolution
of such a three-fluid system (pairs, quasiparticles and phonons) is described
by fundamental equations that govern non-equilibrium superconductivity.
As previously discussed, junctions employed for energy spectroscopy oper-
ate in the quasiparticle regime and the Josephson current is suppressed by
a suitable applied magnetic field. There is however also the possibility of us-
ing the intrinsic properties of the Josephson effect itself in the fast particle
detection [4]. Indeed, in this context, junction detector configurations can
be considered that offer faster response, digital output and simple interface
with Josephson junction circuitry. Fast discrimination in a time down to 1
ps can be obtained. RSFQ latching operation, as discussed previously, can
be also adopted. The main drawbacks with this technology lie in the energy
threshold to produce Josephson switching and in the extreme sensitivity
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to magnetic field. The former requires very small junction dimensions (say
5× 5µm2) while, the latter demands efficient local shielding. Of course the
problem of 2D geometrical efficiency can be solved by producing large ar-
rays of junctions. This, in turn, requires an advanced technology in order
to reach a close control of the junctions barrier thickness and therefore the
necessary Josephson current density uniformity. Spatial resolution is set by
the specific lithographic processes and favored by intrinsic superconduct-
ing properties. Micron and submicron technologies have been proven. High
packing density is allowed by the very low power dissipation. Moreover dis-
persionless propagation via superconducting microstrips, is also obtained.
It is of interest to consider that, so far, we have identified the absorber
of the detector with the junction itself (its superconducting electrodes).
Indeed it is of interest to investigate detector configurations in which the
absorber is decoupled from the sensor. This is the case of ref. [6] where
a relatively large crystal has been considered as absorber and the signal
detection is performed by a junction sensor (junctions arrays). Finally, let
us remark the fundamental importance of combining the various super-
conducting detector configurations with suitable associate superconductive
electronics: Josephson junctions and SQUIDs, SFQ logic etc. Passive and
active superconductive devices for processing of the detector signals could
play a significant role also in hybrid structures [28].

6 Voltage standard

As we showed in section 1, a constant voltage difference V across a junc-
tion determines a linear increase in time of the phase, and consequently
the supercurrent in the junction oscillates at a relatively high frequency
f ∼= 0.5 GHz/µV ). This behavior, called the ac Josephson effect, im-
plies that a Josephson junction can be essentially considered as a voltage
controlled microwave oscillator. A natural question arises whether such os-
cillator can be phase-locked to an external one. The early experiments of
Shapiro [32] indeed showed this possibility with the appearance of con-
stant voltage steps in the dc I-V characteristics of the junction (inverse
ac Josephson effect) as a signature. A simple analysis [3] shows that such
steps occur at voltages Vn = nh/2eFrf , where Frf is the frequency of the
applied microwave field, and n is an integer. The corresponding current
amplitude can be easily calculated, under the hypothesis of a voltage bi-
ased junction, as In = I0Jn(2eVrf/hFrf ), where Jn is the nth order Bessel
function of first kind and Vrf the voltage amplitude of the microwave field.
It was immediately clear that the relation between the applied frequency
Frf and the step voltage Vn could be used to determine the value of the
constant e/h [29], or, once its value was fixed as an universal constant,
to define a voltage standard from a frequency standard. In the latter case
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the advantage is that the frequency standard is known with a very high
precision (10−12), while the traditional voltage standard, based on Weston
cells, is accurate only to few parts in 107.
The practical implementation of a Josephson based voltage standard,

however, has not been not simple, for a number of reasons. One is that, due
to the smallness of the constant h/2e, the voltage spacing of the rf-induced
current steps (called Shapiro steps) is rather small, about 2µV/GHz. Using
single junctions connected to standard X-band (8− 12Ghz) systems, step
voltages up to few mV were obtained [11]. However the necessity of com-
paring the Josephson standard with secondary standards (typically Zener
diodes at 1 or 10 V) required the use of resistive voltage dividers that, even
in their best implementations, spoiled most of the intrinsic precision of the
Josephson standard. One additional problem encountered in the develop-
ment of a suitable Josephson voltage standard was the possible triggering of
intrinsic chaotic dynamics of the junction [15], especially when the driving
frequency is close to the characteristic Josephson frequency (the so-called
plasma frequency) or when the junction size is larger than the characteristic
Josephson length (λj).
To overcome these difficulties a number of designs were explored. The

most successful was developed by NIST-USA and later by PTB-Germany
jointly with ETL-Japan, employing a large array of series connected Nb-
based small Josephson junctions biased by an high frequency microwave
field (F = 70 − 90GHz) [10, 27, 21]. In these devices a large number
(more than 10000) of junctions are built on specially designed integrated
transmission lines. The design is such that each junction receives about the
same amount of microwave energy from the external source, while all the
junctions are connected in series from the dc point of view, so that the
overall voltage is the sum of the voltage of the single junctions. In Figure 3
is shown an example of such arrays capable of generating 10 V fabricated
at PTB [20].
In this type of device the main fabrication issues are chip uniformity of

the junction characteristics and process yield, considering the large number
of elements involved. For these same reasons an implementation using high-
Tc superconductors and junctions is impossible with the present level of
technology.
Recently a new interesting design for the implementation of an integrated

Josephson voltage standard has been proposed [5]. It consists of a double
array of Josephson junctions: one is acting as microwave source and the
other as detector and generator of constant voltage steps. The peculiarity
lies in the fact that the source junctions are operating in a phase-locked
resonant flux mode, in which one magnetic flux quantum (fluxon) oscillates
inside each junction, and all the oscillators are phase-locked because of
mutual interaction. If a phase-locking of the Josephson oscillators to an
external low frequency reference signal could be also achieved, then a simple
low-cost voltage standard system could be fabricated and made available
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FIGURE 3. Photograph of a 10 V voltage-standard array with 13924 junctions
arranged in four microwave paths. The chip is inserted into a microwave transmis-
sion line and the microwave signal is coupled through the fin-line antenna to the
right. The dc-current bias and voltage pick up contacts are shown on the left. The
ground plane and the load extend over the circuit. (Courtesy of PTB-Germany).

to calibration laboratories.
Although the current implementation of the dc-Josephson voltage stan-

dard can be considered a mature technology, there is the need for the devel-
opment of Josephson based ac-voltage standards. This is because modern
high resolution ADC and DAC requires high precision ac-waveforms to be
calibrated (a 20 bit DAC require a voltage precision better than 1 ppm).
In this case a device is needed capable of generating programmable voltage
waveforms with frequencies up to few kHz and with very high time and
amplitude precision. A number of different solutions have been recently
proposed to address this problem [31, 33], some by changing in a pro-
grammed way the Shapiro step on which the junctions are biased, others
by employing rather complex digital Josephson circuitry. Although very
promising, these approaches require relatively complex designs and have to
be considered still at a development stage.

7 Microwave oscillators

As we showed in the previous section, a Josephson junction can be consid-
ered as a voltage controlled oscillator. It is therefore natural to try to use
this property to fabricate cryogenic microwave oscillators to power various
types of devices, such as SIS mixers, voltage standard arrays, digital cir-
cuits, etc. The main advantages of Josephson oscillators are a wide tunabil-
ity, compared to other microwave sources, and a small radiation linewidth.
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The former derives directly from the linear proportionality between dc-bias
voltage and emitted frequency, the latter mainly from the low operating
temperature.
A drawback, however, is the very low power available from a single junc-

tions, being generally less than 1nW and strongly dependent on the junc-
tion parameters and operating frequency. In order to overcome this diffi-
culty two different configurations have been considered: large junction ar-
rays and long junctions in the flux-flow regime. The first approach consists
in the realization of arrays of junctions in various configurations: 1D, 2D,
stacked, with the aim of summing coherently the microwave signal gener-
ated by each junction, thus achieving more emitted power. This technique
relies on the possibility of phase-locking the signal generated by a junction
by means of an external periodic excitation. In this case the excitation is
given by the other junctions of the array by means of an appropriate cou-
pling mechanism. The specific way this mechanism is realized determines
the capacity of the array of acting as a coherent source. Against such be-
havior are the unavoidable differences among the junctions in the array (a
direct consequence of the fabrication processes), the effect of external elec-
tromagnetic disturbances, which couple to the array as bias current and
magnetic field, and the position dependence of the applied microwave field.
An example of microwave oscillator realized with a Josephson array is

the device developed at Stony Brook [Lukens], where 40 junctions were
connected in series and to a common load. In this case the coupling occurs
because of the common load and of the standing wave generated along the
array. This type of coupling, named “global coupling”, does not provide
a very strong coupling among the individual junctions and therefore the
mutual phase-locking is easily destroyed. Nevertheless with proper design
and fabrication quality it was possible to achieve a microwave generation
at 350GHz with a power of about 1µW [36].
Other ways of coupling the junctions of an array are the use of a common

microwave resonator which accumulates the signal emitted by the junctions,
properly tuned to the resonator fundamental frequency, and feeds it back to
the other junctions in the array. In this way a much more efficient coupling
can be achieved, if a high-Q resonator is used, although only at frequencies
corresponding to the normal modes of the resonator.
A different approach involves junctions connected in parallel arrays. Each

junction is coupled to the others through a direct interaction. Indeed, due to
the fluxoid quantization rule, the currents circulating in the superconduct-
ing loops forming the “elementary cells” of the array are not independent.
In this way the current in each branch influences the current in all the
others, with a spatially decaying strength, thus achieving a mechanism for
phase-locking the junction of the array. However this mechanism tends to
be local, being due to mutual magnetic coupling between the various array
branches, and long range fluctuations are possible. This type of array real-
izes the discrete version of a long Josephson junction and, with the proper
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parametrization, can exhibit most of the dynamical features of the long
junction. In particular a dynamical state in which a train of magnetic flux
quanta moves along the array can be realized [9]. This discrete flux flow
generates a microwave radiation if the array is properly terminated, and
could be employed for the realization of a simple microwave source.
In order to enhance the mutual coupling a much better configuration

involves a 2D array of Josephson junctions. Now each junction is close to a
relatively large number of other junctions, thus making the mutual phase-
locking stronger. However the large number of junctions involved in a 2D
array poses severe restrictions on the fabrication technology. An interesting
recent experimental investigation [2] reports the coherent emission from 2D
arrays of junctions coupled to a common groundplane. A 150 GHz emission
is observed with a detected power up 0.12µW from a 3x230 junctions array.
The progressive mutual coupling of the junctions in the array could be
obtained by varying the number of active (voltage biased) rows and the
expected square law was observed. However an unexplained threshold was
also observed for the starting of the phase locking, confirming that in such
systems the overall dynamics is quite complex and the number of degrees
of freedom quite large.
A completely different type of microwave oscillator can be realized using

long Josephson junctions. As we recalled at the beginning of the chapter, a
long junction has at least one of its dimensions larger then the Josephson
penetration length (λj). In this case its electrodynamics is described by a
perturbed form of the sine-Gordon equation. It is well known that the sine-
Gordon equation admits solitonic solutions. These correspond to magnetic
field flux quanta (fluxons) that are trapped in the junction barrier and can
move along the junction, pushed by dc the bias current [26]. With the use of
an appropriate dc magnetic field, fluxons can be continuously injected in the
junction at one edge, accelerated by the bias current toward the opposite
edge and here absorbed by a suitable load. As a result a train of fast (few ps
wide) voltage pulses can be observed at the load and possibly used signal
source. The pulse width and spacing can be, to some extend, modulated
by the dc-bias current and magnetic field, thus providing a simple means
to tune the generated frequency. This type of oscillator, called Flux Flow
Oscillator (FFO), has proven to be a reliable wideband and easy tunable
oscillator suitable for integration with a SIS mixer in a single-chip sub-mm
wave receiver up to 500GHz [22, 23, 24, 25, 34, 30]. The remaining problems
for this application are related to the control of the signal linewidth, which
should be better than 1 ppm of the oscillator frequency, for which has
been recently proposed a solution based on the use of an external precision
source, a PLL and an additional mixer stage [16].
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8 Conclusions

In concluding this short review of some of the applications of supercon-
ductivity we wish to make few considerations on the cryogenic and market
aspects.
Since the beginning of the development of Josephson junction devices

in the early sixties, it has been shown many times that superconductive
circuits can achieve performances beyond the reach of competing technolo-
gies. Even compared with the exponential growth of semiconductor circuits
speed and complexity, the comparatively simpler Josephson circuits keep
concrete, although nowadays substantially reduced, performance margins.
However, with the possible only exception of SQUID biomagnetic sys-

tems, where there is no competing technology, the superconductive elec-
tronics has never really become a marketable technology. The main problem
lies not in the performances, but in the practical, and sometimes psychologi-
cal, problems related to the cryogenic requirements. It is simply not possible
to envisage a large scale product which requires liquid helium cooling, with
the accompanying problem of periodic refilling the storage dewar. Indeed
the only example of such technology is given by the MRI systems, where
again there is no substitute for superconductive magnets, which however
are large and expensive systems and have reached a relatively good level
of user-friendliness.
The recent improvements in the technology of cryocoolers could change

this picture by providing simple electrically powered cryogenic cooling sys-
tems that could eliminate the need for liquid cooling. If, or when, compact
cooling systems is developed, there will be a chance of seeing portable
instruments based on superconductive circuits, which will make supercon-
ductive electronics a reality.
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Josephson Flux-Flow Oscillators in
Microwave Fields
Mario Salerno
Mogens Samuelsen

ABSTRACT In this chapter we investigate, both analytically and numer-
ically, the flux-flow resonance of long Josephson junctions in the presence
of microwave fields. We consider the microwaves to be coupled to the junc-
tion both uniformly in space and through boundary conditions. Using a
perturbation analysis around the rotating background we derive analytical
expressions for the current-voltage characteristics. The dependence of the
flux-flow step on the amplitude of the rf-field and the appearance of satel-
lite steps are explained. As a result we find that for uniform microwave
fields the satellite steps are spaced around the main flux-flow resonance by
both odd and even harmonics of the rf-frequency, while for non-uniform
fields only the even harmonic satellites are present. These results are in
good agreement with direct numerical integration of the system.

1 Introduction

In the past years a great deal of interest have been devoted to the study
of the Josephson flux-flow oscillator, i.e. a long Josephson junction oper-
ating in the flux-flow regime [1]-[10]. The interest in such a device resides
in its relatively high output power (of the order of µW at .4 - 1 THz)
[1, 7], wide bandwidth, and easy tunability, these being attractive features
for applications in superconducting millimeter-wave electronics [3, 5, 8, 9].
The flux-flow regime is achieved when a sufficiently large external mag-
netic field is applied to the junction so that an unidirectional motion of
fluxons, created at one edge and destroyed at the other, is generated. This
dynamics gives rise in the current-voltage (IV ) characteristics to an high
voltage step (flux-flow step) split into a series of equally spaced Fiske [11]
substeps. Recently, an analytical description of these resonances in the ab-
sence of external microwave fields was provided [10]. On the other hand,
it is known that the application of a microwave field to the junction cre-
ates new resonances (satellites) around the main flux-flow resonance [4, 6].
Although this phenomenon was observed both numerically and experimen-
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 Springer-Verlag Berlin Heidelberg 2000
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tally, a theoretical explanation of it is still lacking.
The aim of this chapter is to provide a simple theory that accounts for the

appearance of satellite steps in the IV - characteristics of Josephson flux-
flow oscillators. To this end we use a perturbative expansion [12] around the
uniform rotating background to derive analytical expressions for the IV -
characteristics in the presence of both uniform and non-uniform microwave
fields. As a result we show that for microwave fields uniformly applied to
the junction, flux-flow satellite steps appear at both even and odd har-
monics of the rf-frequency, while for non-uniform microwave fields applied
at the edges of the junction, only even satellites steps apparently appear.
Moreover, the flux-flow and the satellite steps can be reduced or enhanced
by changing the amplitude of the microwave field. We check these results
by comparing our analytical expressions for the IV -characteristics with di-
rect numerical integrations of the system, finding an excellent agreement
between theory and experiment.
The content of the chapter is summarized as follows. In section 2 we con-

sider the case of flux-flow oscillators in the presence of uniform microwave
fields and use a first order perturbation theory to derive the analytical ex-
pression for the IV -curve. We show that satellite steps around the main
flux-flow resonance are spaced by both odd and even harmonics of the rf-
frequency. In section 3 we consider the case of microwave fields applied
to the junction through boundary conditions. We show that in this case,
only even satellite steps appear in the IV -characteristics. In section 4 we
compare our analytical results with direct numerical simulations of the per-
turbed sine-Gordon system. Finally, in the conclusions we summarize the
main results of the chapter.

2 Flux-flow oscillators in uniform microwave fields

The electrodynamics of a Josephson junction in the presence of both mi-
crowaves and external magnetic fields is described by the perturbed sine-
Gordon equation [11, 13]

Φxx − Φtt = sin(Φ) + αΦt − η + ηrf sin(Ωt− θ0), (4.1)

subject to the boundary conditions

Φx(0, t) = Γ + Γ1 sin(Ωt),
Φx(L, t) = Γ + Γ2 sin(Ωt). (4.2)

In Eq. (4.1) space and time have been normalized to the Josephson pen-
etration length λJ and to the inverse plasma frequency ω−1

0 , respectively.
α denotes the loss parameter associated to the quasiparticle tunneling, η
represent the dc-bias current and Γ is the normalized external magnetic
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field. Note that the rf-field can be applied to the junction either uniformly
i.e. ηrf �= 0, Γ1 = Γ2 = 0, or non-uniformly through boundary conditions
i.e. ηrf = 0, Γ1 �= 0,Γ2 �= 0.
In this section we consider the case of uniform coupling, so we fix ηrf �= 0

and Γ1 = Γ2 = 0 in Eqs. (4.1) and (4.2). Since the flux-flow regime is char-
acterized by excitations which travel on top of a fast rotating background,
it is natural to assume a solution of Eq. (4.1) of the form

Φ = Φ0 +Ψ(x, t), (4.3)

where
Φ0 = ωt+ Γx+ β sin(Ωt) + θ1 (4.4)

represents the rotating background field with frequency ω, on which is
superimposed a uniform oscillation with the same frequency of the rf-field.
Here Ψ(x, t) is a small modulation (Ψ � 1) around Φ0 and θ1 is an arbitrary
phase. We see that the boundary conditions in Eq. (4.2) (with Γ1 = Γ2 = 0)
are fulfilled if Ψ(x, t) satisfies

Ψx(0, t) = Ψx(L, t) = 0. (4.5)

In the following we look for fields Ψ which satisfy Eq. (4.5) and which
have both zero space and time averages < Ψ >= Ψ = 0 (here and in the
following <> and overline denote respectively time and space averages).
Inserting the expansion Eq. (4.3) into Eq. (4.1) and using the smallness of
Ψ, we obtain the following linearized equation

Ψxx −Ψtt − αΨt = αω − η + (ηrf cos(θ0)− βΩ2) sin(Ωt)− (4.6)
(ηrf sin(θ0)− αβΩ) cos(Ωt) + sin(Φ0) + cos(Φ0)Ψ.

To eliminate from this equation the explicit dependence on the frequency
Ω we choose

β =
ηrf

Ω
√
Ω2 + α2

, tan(θ0) =
α

Ω
. (4.7)

Note that this elimination is exact and puts no restriction on the size of
ηrf . By expanding the last two terms of Eq. (4.6), using the Bessel relation

eiβ sin(Ωt) =
∞∑

m=−∞
Jm(β)eimΩt, (4.8)

and using Eqs. (4.4) and (4.7), we can rewrite Eq. (4.6) in the form

Ψxx −Ψtt − αΨt = αω − η +
∞∑

m=−∞
Jm(β)(sin(Γx+ ω̃mt+ θ1)) + (4.9)

∞∑
m=−∞

Jm(β)(cos(Γx+ ω̃mt+ θ1))Ψ,
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where
ω̃m = ω +mΩ. (4.10)

Note that the dependence on the amplitude of the rf-field is in the argument
of the Bessel function Jm(β) and that the frequency ω is shifted to ω̃m =
ω +mΩ. To solve Eq. (4.9) we expand the function Ψ as a double Fourier
series of the form

Ψ(x, t) =
∞∑

n=0,m=−∞
(An,m cos(ω̃mt) +Bn,m sin(ω̃mt)) cos(knx), (4.11)

with kn = π
Ln, so that the boundary conditions in Eq. (4.5) are automati-

cally satisfied. By substituting this expression in Eq. (4.9) and projecting
along the kn, ω̃m modes we obtain

An,m =
2

1 + δn,0

(ω̃2
m − k2

n)Ĩc(n,m) + αω̃mĨs(n,m)
(ω̃2

m − k2
n)2 + α2ω̃2

m

, (4.12)

Bn,m =
2

1 + δn,0

(ω̃2
m − k2

n)Ĩc(n,m)− αω̃mĨs(n,m)
(ω̃2

m − k2
n)2 + α2ω̃2

m

, (4.13)

where

Ĩs(n,m) = Jm(β)ΓL
(cos(θ1)− cos(knL) cos(ΓL+ θ1))

(Γ2L2 − k2
nL

2)
,

Ĩc(n,m) = Jm(β)ΓL
(sin(ΓL+ θ1) cos(knL)− sin(θ1))

(Γ2L2 − k2
nL

2)
. (4.14)

Assuming ω̃m �= 0 the dc- part of Eq. (4.9) is computed as

η − αω = < Ψcos(Φ0) >, (4.15)

with the double averaged term (which is different from zero mainly for
ω̃m �= 0) given by

< Ψcos(Φ0) > =
1
2L

∞∑
n=0

∞∑
m=−∞

(An,mĨc(n,m)−Bn,mĨs(n,m)). (4.16)

The IV -characteristics is then obtained from the balance between the dc-
part of Eq. (4.16) and αω − η, this giving

η = αω +
1
2

∞∑
n,m=−∞

J2
m(β)

(ΓL
2 )

2

(ΓL+knL
2 )2

sin2(ΓL−knL
2 )

(ΓL−knL
2 )2

αω̃m

(ω̃2
m − k2

n)2 + α2ω̃2
m

.

(4.17)
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In deriving this expression we have substituted Eq. (4.16) into Eq. (4.15)
and used Eqs. (4.12), (4.13), and (4.14), together with the assumption
ω̃m �= 0. It is interesting to note that Eq. (4.17) is independent on the
phase angle θ1 and it has vertical asymptotes for ω = mΩ, m=0,1,2... .
We also remark that although Eq. (4.17) is derived under the assumption
ω �= mΩ, the above singularities reflect the presence of phase locking [15].
One can indeed show that the weight of the singularity at ω = mΩ in
Eq. (4.17) is proportional to the square of the locking range in current of
the m-th phase locked step and that the vertical distance between the two
hyperbolic-like branches of the singularity is equal to the locking range [16].
Finally, we note that for ηrf = 0 is Jm(β) = δm,0 and the above expression
for the IV -curve reduces to the one derived in Refs. [10, 14] in absence of
microwaves.

3 Flux-flow oscillators in non-uniform microwave
fields

In this section we consider the case of a Josephson flux-flow oscillator cou-
pled to the microwave field through the boundary conditions. The model
is now

Φxx − Φtt = sin(Φ) + αΦt − η, (4.18)
with

Φx(0, t) = Γ + Γ1 sin(Ωt),
Φx(L, t) = Γ + Γ2 sin(Ωt). (4.19)

We assume a solutions for the field equation Eq. (4.18) of the form

Φ = ωt+ Γx+ f(x) sin(Ωt) + g(x) cos(Ωt) + Ψ(x, t) + θ1, (4.20)

where Ψ is, as before, a small field (Ψ � 1) with zero averages satisfying
the boundary conditions in Eq. (4.5), θ1 is an arbitrary phase, and f(x),
g(x) are unknown functions which we assume to satisfy

g′(0) = g′(L) = 0,
f ′(0) = Γ1, f ′(L) = Γ2,

(4.21)

(here prime denotes the x-derivative). Note that these boundary conditions
are consistent with the ones in Eq. (4.19) if the field Ψ satisfies Eq. (4.5).
Inserting Eq. (4.20) into Eq. (4.18) and using the smallness of Ψ we obtain
the following linearized equation

Ψxx −Ψtt − αΨt = αω − η
−(f ′′(x) + f(x)Ω2 + αg(x)Ω) sinΩt
−(g′′(x) + g(x)Ω2 − αf(x)Ω) cosΩt

+sin(Γx+ ωt+ f(x) sinΩt+ g(x) cosΩt+ θ1)
+ cos(Γx+ ωt+ f(x) sinΩt+ g(x) cosΩt+ θ1)Ψ.

(4.22)
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To simplify this equation we eliminate the explicit Ω dependence by taking
f(x) and g(x) to be solutions of the system

f ′′(x) + Ω2f(x) + αΩg(x) = 0,
g′′(x) + Ω2g(x)− αΩf(x) = 0. (4.23)

In the following we assume the existence of the functions f(x) and g(x),
leaving the solution of the system Eq. (4.23) with the boundary conditions
in Eq. (4.21) to the Appendix. Knowing f(x) and g(x), we can rewrite Eq.
(4.22) in the form

Ψxx −Ψtt − αΨt = αω − η
+sin(Γx+ ωt+ h(x) sin(Ωt+ φ(x)) + θ1)
+ cos(Γx+ ωt+ h(x) sin(Ωt+ φ(x)) + θ1)Ψ,

(4.24)

with h(x), φ(x), given by

h(x) =
√
f(x)2 + g(x)2, tanφ(x) =

g(x)
f(x)

. (4.25)

Note that the derivation of Eq. (4.24) is exact and there are no restriction
on the size of Γ1 and Γ2. Using the Bessel identity of Eq. (4.8) we can
rewrite Eq. (4.24) as

Ψxx −Ψtt − αΨt = αω − η
+

∑
m Jm(h(x))(sin(Γx+mφ(x)) cos(ω̃mt+ θ1)
+ cos(Γx+mφ(x)) sin(ω̃mt+ θ1))

+
∑

m Jm(h(x))(cos(Γx+mφ(x)) cos(ω̃mt+ θ1)
− sin(Γx+mφ(x)) sin(ω̃mt+ θ1))Ψ,

(4.26)

with ω̃m given by Eq. (4.10). To solve this equation we expand the function
Ψ as a double Fourier series of the form

Ψ =
∑

nm(Cnm cos(ω̃mt+ θ1) +Dnm sin(ω̃mt+ θ1)) cos knx, (4.27)

with kn = π
Ln, so that the boundary conditions in Eq. (4.5) are automat-

ically satisfied. By substituting Eq. (4.27) into Eq. (4.26) and projecting
along the kn, ω̃m, modes we get

Cnm =
(ω̃2

m − k2
n)S̃(n,m) + αω̃mC̃(n,m)

((ω̃2
m − k2

n)2 + α2ω̃2
m)

, (4.28)

Dnm =
(ω̃2

m − k2
n)C̃(n,m)− αω̃mS̃(n,m)

((ω̃2
m − k2

n)2 + α2ω̃2
m)

, (4.29)

where

C̃(n,m) =
1
L

∫ L

0
cos(knx)Jm(h(x)) cos(Γx+mφ(x))dx, (4.30)

S̃(n,m) =
1
L

∫ L

0
cos(knx)Jm(h(x)) sin(Γx+mφ(x))dx. (4.31)
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The IV -characteristics then follows from the dc-part of Eq. (4.26) as

η = αω +
1
2

∑
n,m

(CnmC̃(n,m)−DnmS̃(n,m)) (4.32)

= αω +
1
2

∑
n,m

(C̃(n,m)2 + S̃(n,m)2)
αω̃m

(ω̃2
m − k2

n)2 + α2ω̃2
m

.

(Note that in deriving Eq. (4.32) we used ω̃m �= 0). This expression, al-
though exact, is quite complicated to analyze and in general it must be
numerically evaluated. To get a physical understanding of Eq. (4.32), ho-
wever, we can simplify it by assuming

Ω � ω,Γ. (4.33)

In this case the integrals C̃ and S̃ in Eq. (4.32) can be approximated as

C̃(n,m) � C(n,Γ)B(m,C)− S(n,Γ)B(m,S),
S̃(n,m) � S(n,Γ)B(m,C) + C(n,Γ)B(m,S),

(4.34)

with
B(m,C) = 1

L

∫ L

0 Jm(h(x)) cos(mφ(x))dx,
B(m,S) = 1

L

∫ L

0 Jm(h(x)) sin(mφ(x))dx,
(4.35)

and
C(n,Γ) = ΓL cos(knL) sin(ΓL)

(ΓL)2−(knL)2 ,

S(n,Γ) = ΓL(1−cos(knL) cos(ΓL))
(ΓL)2−(knL)2 .

(4.36)

Eq. (4.32) can be then rewritten as

η = αω + 1
2

∑
n,m(C(n,Γ)

2 + S(n,Γ)2)×
(B(m,C)2 +B(m,S)2)×

αω̃m

((ω̃2
m−k2

n)2+α2ω̃2
m) .

(4.37)

A further simplification is achieved by observing that the integrals in Eq.
(4.35) can be put in the form [17]

B(m,C) = 1
L

∫ L

0

∑
M (−1)MJm+2M (f(x))J2M (g(x))dx,

B(m,S) = 1
L

∫ L

0

∑
M (−1)MJm+2M+1(f(x))J2M+1(g(x))dx.

(4.38)

From the appendix we have that f(x) and g(x) are almost harmonic func-
tions and they oscillate many times in the interval [0, L]. This implies that
the integrals in Eq. (4.38) for odd values of m are very small, i.e.

B(2m+ 1, C) � 0, B(2m+ 1, S) � 0. (4.39)

Using Eq. (4.39) together with the relations

B(−2m,C) = B(2m,C), B(−2m,S) = −B(2m,S), B(0, S) = 0, (4.40)
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we can finally approximate the IV -curve as

η � αω +
∞∑

n,m=−∞

1
2
(B(2m,C)2 +B(2m,S)2)×

(ΓL)2 sin2(ΓL− knL)/2)
(ΓL+ knL)2(ΓL− knL)/2)2

× (4.41)

α(ω + 2mΩ)
((ω + 2mΩ)2 − k2

n)2 + α2(ω + 2mΩ)2
.

Note that the sum on n gives rise, as before, to Fiske resonances spaced
by π

L with the Fraunhofer factor enhancing the ones for which kn is close
to Γ +MΩ, M = 0, 2, 4, ... . It is remarkable that, in spite of the different
coupling mechanism, the IV -curve has almost the same structure as in
the uniform case (see Eq. (4.17)). In the present case, however, the sum
is only over the even M = 2m values, this implying that in the IV -curve
satellite steps appear at voltages ω = Γ+MΩ, i.e. they are spaced by even
harmonics of the rf-frequency (note that it is the spatial variation of f(x)
and g(x) which average out the odd’s satellites).

4 Numerical experiment

In order to check the analytical expressions for the IV - characteristics
derived above, we have performed a direct numerical integration of Eq. (4.1)
subject to the boundary conditions in Eq. (4.2). For fixed values of magnetic
field, damping constant, amplitude and frequency of the rf-field and length
of the junction, we computed the normalized average voltage across the
junction V = < Φt > ≡ ω as a function of the bias current, taking as initial
condition n = ΓL

2π fluxons equally spaced along the junction. The numerical
IV - characteristics was obtained by integrating Eq. (4.1) long enough to
eliminate all transients and measuring for each value of the bias current the
corresponding average voltage. To trace the IV -curves the bias current was
increased in small steps from η = 0 to η = 1 and then back to zero. At each
η-step the final configuration of the field in the junction was used as initial
condition for the next η-step. In Fig. 1 we report the IV -characteristics of
a long Josephson junction in the presence of an uniform microwave field of
amplitude ηrf = 3.0 and without rf-fields at the boundaries (Γ1 = Γ2 = 0
in Eq. (4.2)), for parameter values α = 0.1, L = 15,Γ = 6, Ω = 1.4. From
this figure we see the presence of a flux-flow step at ω = Γ and two satellite
steps at ω = Γ ± Ω, both consisting of few Fiske substeps spaced by π

L
as predicted by our analysis. Small satellite steps at ω = Γ ± 2Ω are also
visible. Here the thin curve refers to the analytical expression in Eq. (4.17)
while the thick one represents the numerical results. The insets of Fig. 1
show the first two satellite steps at ω = Γ±Ω in more details from which we
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FIGURE 1. IV -characteristics of a long Josephson junction in the presence of
an uniform microwave field of amplitude ηrf = 3.0 and frequency Ω = 1.4 and
with zero rf-fields at the boundaries (Γ1 = Γ2 = 0 in Eq. (4.2)), for parameter
values, α = 0.1, L = 15, Γ = 6. The insets A and B show an enlargement of the
satellite steps at ω = Γ − Ω and ω = Γ + Ω, respectively. The thin curve refers
to the analytical expression in Eq. (4.17) while the thick curve is obtained from
numerical integrations of Eq. (4.1).

also see the appearance of hysteretic phenomena (arrows show the direction
of switching). Note that two of the numerical Fiske substeps appear broken
due to our unidirectional procedure of varying the bias current. From this
figure it is evident that, except for stability problems not included in our
analysis, the two curves overlap in most part of the plot giving an excellent
agreement between analytical and numerical results (note that there is no
overlapping with the part of the theoretical curve which has negative slope
because of its instability). By increasing the amplitude of the microwave
field, Eq. (4.17) predicts a Jm(β)2 modulation of the flux-flow resonance
with a total suppression of the step for appropriate values of ηrf . This is
actually what we find, as reported in Fig. 2. In this figure the numerical
and the analytical IV -curves are shown for the same parameter values of
Fig. 1 but for ηrf = 5.0. We see that the satellite steps are still present
but the main resonance at ω = Γ has disappeared. Comparing Fig. 1 with
Fig. 2 we see that the agreement between numerical and theoretical curves
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FIGURE 2. Same as in Fig. 2 but for rf-field amplitude ηrf = 5.0.

improves by increasing the amplitude of the microwave field. This can be
understood from the fact that by increasing ηrf one reduces the size of the
flux-flow resonances so that the deviation of the IV -characteristics from
the ohmic line (which is a measure of Ψ), becomes small. The number of
satellite steps that can appear in the IV -characteristics increases with the
amplitude of the rf-field. This suggests the possibility of using the flux-
flow oscillator as a mixer device for high frequency electronics (i.e. one can
pump a signal at frequency Ω and detect it at frequency Γ±mΩ). In the
case of non-uniform microwave fields applied at the edges of the junction,
the behavior is quite different. In the following we shall consider only the
symmetric coupling (Γ1 = Γ2) since the asymmetric one (Γ1 = −Γ2) gives
qualitatively similar results. In Fig. 3 we report the IV -characteristics of
a long Josephson junction with the same parameter values as in Fig. 1
but in the presence of a symmetric rf-field at the boundaries of amplitude
Γ1 = Γ2 = 3.0 (with ηrf = 0 in Eq. (4.1)). In this figure the thin line refers
to the numerical evaluation of Eq. (4.32) while the thick one represents the
numerical integration of Eq. (4.1). From this figure we see a flux-flow step
at ω = Γ and two satellite steps at ω = Γ ± 2Ω. Note that there are no
satellite steps at ω = Γ±Ω and that the resonances are split into Fiske sub-
steps spaced by π

L as predicted by our analysis. We also note the presence of
a strong phase locked step interacting with a Fiske resonance (for uniform
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FIGURE 3. The IV -characteristics of a long Josephson junction in the pres-
ence of a non-uniform symmetric microwave field at the boundaries of ampli-
tude Γ1 = Γ2 = 3.0, frequency Ω = 1.4 and without rf-field along the junction
(ηrf = 0). The parameter values of the junction are the same as in Fig. 1. Insets
A, B show an enlargement of the satellite steps at ω = Γ − 2Ω and ω = Γ + 2Ω,
respectively. The thin curve refers to the analytical expression in Eq. (4.32) while
the thick line is obtained from numerical integrations of Eq. (4.1).

couplings this interaction is absent (see Figs. 1 and 2) due to the weakness
of phase lock [18]). This is evident from the inset A of Fig. 3 in which we see
a big vertical step at ω = 2Ω close to the flux-flow satellite at ω = Γ− 2Ω.
Note that the phase locked step is asymmetric around the ohmic line (the
upper branch is much bigger that the lower one) and its distance from the
Fiske sub-step in the satellite is about π

L . This suggests that the asymmetric
step arises from the rectification and amplification of the Fiske sub-step in
the satellite, due to its overlapping with a phase locked resonance (note
that in Fig. 3 small symmetric phase locked steps are also visible). This
also suggests that, by properly tuning the dc-magnetic field, the length of
the junction and the applied rf-frequency, one can create large asymmetric
phase lock steps in the IV -characteristics of a long Josephson junction: an
interesting feature for practical applications. Finally, in the inset B of Fig.
3 the satellite step at ω = Γ+2Ω is reported in more detail. We remark that
although the agreement between the analysis and the numerical experiment
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is good, it is not as good as in the case of uniform coupling. This is partially
due to the lack of a closed exact analytical expression and to the difficulty
to compute numerically the sums in Eq. (4.32).

5 Conclusions

We have presented a simple theory for long Josephson flux-flow oscilla-
tors in the presence of microwave fields, which accounts for the appear-
ance of satellite steps around the main flux-flow resonance. We derived
analytical expressions for the IV -characteristics for both uniform and non-
uniform couplings of the microwaves to the junction. As a result we showed
that: i) for uniform coupling satellite steps are spaced by both even and
odd harmonics of the rf-frequency, ii) for non-uniform couplings (through
boundary conditions) only the even satellite steps are present in the IV -
characteristics. This different behavior of the system can in turn be useful
to distinguish the type of microwave coupling realized in a real experiment.
These results were shown to be in good agreement with direct numerical
integrations of the system, confirming the validity of our approach.
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One of us (MS) wishes to acknowledge financial support from the INFM
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6 Appendix

In this Appendix we show how to solve system Eq. (4.23) together with
the boundary conditions in Eq. (4.21). To this end we note that system Eq.
(4.23) is equivalent to the fourth order differential equation(

(∂2
x +Ω

2)2 + α2Ω2)F (x) = 0. (4.42)

It is then convenient to shift the x-coordinate z = x − L/2 and use the
symmetric and the asymmetric (in the coordinate z) solutions of Eq. (4.42)
which, in vector notation, can be written as

s(z) =
(

s1(z)
s2(z)

)
=

(
cosΩ1z cosh α1z

2
sinΩ1z sinh α1z

2

)
, (4.43)

a(z) =
(

a1(z)
a2(z)

)
=

(
cosΩ1z sinh α1z

2
sinΩ1z cosh α1z

2

)
. (4.44)



4. Josephson Flux-Flow Oscillators in Microwave Fields 99

We can express the solution of the general problem in Eqs. (4.23) and
(4.21) as a linear combination of the solutions fs, gs, fa, ga satisfying the
boundary conditions

g′
s(±

L

2
) = 0, g′

a(±
L

2
) = 0, (4.45)

f ′
s(±

L

2
) = Γ0, f ′

a(±
L

2
) = ±Γ0. (4.46)

Introducing the matrix

M =
(

α1
2 −Ω1
Ω1

α1
2

)
, (4.47)

with

Ω1 =

√√
Ω4 + α2Ω2 +Ω2

2
, (4.48)

α1 =
√
2(

√
Ω4 + α2Ω2 − Ω2), (4.49)

we can write these solutions in the form

gs(z) = λsstr(
L

2
) · i · M−1 · a(z),

ga(z) = λaatr(
L

2
) · i · M−1 · s(z), (4.50)

fs(z) = −λsstr(
L

2
) · M−1 · a(z),

fa(z) = −λsatr(
L

2
) · M−1 · s(z).

Here tr means transpose, λs, λa, are arbitrary constants, and i is the imag-
inary unit matrix

i =
(
0 −1
1 0

)
.

Note that α1Ω1 = αΩ and, for small damping, Ω1 � Ω and α1 � α. It is
worth to remark that the boundary conditions for the g’s in Eq. (4.45) are
automatically satisfied independently of the λ’s, while the ones for the f ’s
are satisfied if

λs = − Γ0

str(L
2 ) · s(L

2 )
,

λa = − Γ0

atr(L
2 ) · a(L

2 )
.
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Finally, the solution of the boundary value problem in Eqs. (4.23) and
(4.21) for arbitrary values Γ1,Γ2 is constructed as

f(x) = fa(z +
L

2
)− fs(z +

L

2
), (4.51)

g(x) = ga(z +
L

2
)− gs(z +

L

2
), (4.52)

with λs, λa in Eq. (4.50) given by

λs = −
(Γ1+Γ2)

2

str(L
2 ) · s(L

2 )
,

λa = −
(Γ1−Γ2)

2

atr(L
2 ) · a(L

2 )
.
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5
Coupled Structures of Long Josephson
Junctions
G. Carapella
G. Costabile

ABSTRACT
Long Josephson junctions are very attractive non-linear systems where soli-
tonic dynamics [14] is fully developed and directly related to experimentally
observable quantities. In this system the soliton occurs as a solution of the
sine-Gordon equation describing the long junction; physically, it represents
a fluxon, a current vortex enclosing a flux quantum. Coherent motion of
fluxons is an intriguing subject, also because of its possible practical appli-
cations. In fact, microwave and far infrared fluxon oscillators [15] greatly
enhance their performances if such a motion is established. Here we will con-
sider three different coupled structures of long Josephson junctions where
coherent fluxon motion is experimentally demonstrated.

1 Stacks of two long Josephson junctions

In this system, the coupling between junctions originates from the screen-
ing currents in the common electrode when its thickness is about equal or
smaller than the London penetration depth λL. This “magnetic” coupling,
which has been formalized in a model [16] for the multilayered structures,
accounts for many dynamical phenomena in long stacked junctions, includ-
ing synchronization of fluxon motion.

1.1 The physical system and its model
If we refer voltage and current polarities to the intermediate electrode in the
stack with “double overlap” geometry shown in Fig. 1, the model equations
are [16], [9]

ϕxx − ϕtt = sin(ϕ) + αϕt + εψxx − γA,
ψxx − ψtt = sin(ψ) + αψt + εϕxx + γB ,

ϕx (0) = ϕx (l) = η (1 + ε) ,
ψx (0) = ψx (l) = η (1 + ε) ,

(5.1)

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 103−119, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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FIGURE 1. Stack with “double
overlap” geometry.

where ε, −1 < ε < 0, is the magnetic coupling constant, defined as a
function of the thickness d of the intermediate electrode of the stack and
the thickness t of the insulating barriers by

ε = − λL
sinh(d/λL)

1
[t+ λL + λL coth(d/λL)]

. (5.2)

The lengths in Eqs. (5.1) are normalized to the Josephson penetration
length λJ =

√
h̄c2/8πed′(1 − ε2)J0, where d′ = t+λL+λL coth(d/λL) and

J0 is the critical current density of the junctions. The time is normalized to
the inverse of the plasma frequency ωJ = c/λJ , where c = c

√
t/εrd′(1 − ε2)

is the Swihart velocity. Moreover, l = L/λJ is the normalized length of the
junctions, α = (1/R)

√
h̄/ (2eCJ0) is the ohmic dissipation (where R is

the transverse resistance) and γA,B = IA,B/J0LW are the normalized bias
currents. The η term in the boundary conditions accounts for an external
magnetic field H (e.g., given by a coil) applied perpendicularly to the long
dimension of the stack: η = Hc/(4πλJJ0(1 − ε2)).

In the absence of perturbations (γA = γB = α = η = 0), the Hamiltonian
of the coupled system is

H =
∫ ∞

−∞

[
1
2
ϕ2
x +

1
2
ϕ2
t + 2 − cosϕ+

1
2
ψ2
x +

1
2
ψ2
t − cosψ − εϕxψx

]
dx,

(5.3)
where, for the sake of simplicity, we assumed infinite length junctions. An
exact solution of the unperturbed coupled system is [12]

ϕ = σψ = 4 arctan
[
− exp

[
γ

(
u√

1 − σε

)
x− ut√
1 − σε

]]
(5.4)

with γ(y) ≡ 1/
√

1 − y2. For σ = 1 this solution describes a fluxon-fluxon
bound state travelling with velocity u upperly bound by the asymptotic
velocity u+ =

√
1 − ε, while for σ = −1 it describes a fluxon-antifluxon

bound state whose asymptotic velocity is u− =
√

1 + ε. By inserting so-
lution Eq. (5.4) in Eq. (5.3) we get the energy of the two bound states
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as

Hb = 16
√

1 − σε γ

(
u√

1 − σε

)
. (5.5)

From Eq. (5.5) it is seen that the antipolar state is energetically favorable
with respect to the homopolar state, but for velocity larger than about
u−. The stability of the homopolar state for velocity between u− and u+ is
discussed in detail in Ref. [12] and is explained on the basis of the occurrence
of two characteristic velocities u− and u+ in the coupled system. However,
possibly due to the difficulty of reaching “in flight” the range of velocities
between u− and u+, we did not observe this state in our stacks.

Turning to the fluxon-antifluxon state, we can calculate the correspond-
ing singular branch in the IV -characteristics (the so called first Zero Field
Step, ZFS1) using a simple energetic approach [13]. Differentiating with
respect to the time the energy Eq. (5.3) and using Eqs. (5.1) we get

dH

dt
=

∫ ∞

−∞

[
γAϕt − γBψt − αϕ2

t − αψ2
t

]
dx. (5.6)

Following the classical approach [13] we assume that the dominant pertur-
bation is in the velocity and we assume also the existence of a stationary
velocity u that makes the energy Eq. (5.5) stationary. The relevant veloc-
ity of our state is then found inserting the fluxon-antifluxon solution in
Eq. (5.6) with dH/dt = 0 (power balance) to have [2]

γA + γB
2

=
4α
π

u

u−
1√

1 − (
u
u−

)2
, (5.7)

where u− =
√

1 + ε. By noticing that the measured voltage of the ZFS1 is
proportional to the stationary velocity, VZFS1 = uΦ0/L, and that γA and
γB are proportional to the physical bias currents, γA,B = IA,B/J0LW , the
Eq. (5.7) really describes the IV -curve of the ZFS1.

In the non-tunneling limit and in the absence of perturbations (sinφ =
sinψ = γA = γB = α = η = 0) Eqs. 5.1 reduce to equations for two coupled
transmission lines

ϕxx − ϕtt − εψxx = 0,
ψxx − ψtt − εϕxx = 0. (5.8)

Looking for plane wave solutions ϕ = Aei(kx−ωt), ψ = Bei(kx−ωt) we get
two characteristic electromagnetic waves velocities u+ =

√
1 − ε (in phys-

ical units: c+ = c
√

1 − ε) for in-phase mode (A = B) and u− =
√

1 + ε
[c− = c

√
1 + ε] for out-of-phase mode (A = −B). Since all of the current

singularities exhibit asymptotic voltage proportional to the velocity of the
electromagnetic waves in the junctions (Swihart velocity), all the current
singularities accounting for the different regimes already known from sin-
gle junctions [Zero Field Steps (ZFS’s), Fiske Steps (FS’s) and Flux Flow
Steps (FFS’s)] will exhibit two characteristic voltage spacings in the stack
of two junctions.
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FIGURE 2. To the left, from top to the bottom: Three ZFS’s recorded in junction
B for junction A at IA = 1mA; voltage of junction A while B is swept on these
steps; voltage in junction A as a function of the voltage in junction B. The stack
has ε = −0.56 and lA ≈ lB = 13. To the right, top: IV -curves of the ZFS1
recorded in a stack with ε = −0.42, lA ≈ lB = 15 for different bias currents in
junction A. The curves are replotted in the inset using the mean current axis. To
the right, bottom: Here the curves refer to the stack with ε = −0.89, lA ≈ lB = 10
and also ZFS2 is considered.

1.2 Experiments on stacks of two long Josephson junctions
As was noted above, the antipolar (fluxon-antifluxon) state is energetically
favorable in the two-stack junctions, so ZFS’s with asymptotic velocity
c− are expected to appear in the IV -characteristics of the stack when
we have no applied magnetic field. The ZFS1 accounts for an oscillatory
motion of one fluxon-antifluxon pair, the ZFS2 for two oscillating pairs,
and so on. The experimental evidence [4, 2] for three of such a ZFS’s in a
Nb/AlOx/Nb/AlOx/Nb stack is shown in the upper left corner of Fig. 2.
On these steps, the voltage of the junction A, biased with constant current,
follows exactly the voltage of junction B (voltage polarities are referred
to the intermediate electrode), indicating that the fluxon and antifluxons
constituting the pairs are really bounded. In the upper right corner of
Fig. 2 are shown the IV -curves of a ZFS1 recorded from junction B using
the current in junction A as a parameter: as the current in junction A is
increased, the curves shift toward the bottom; all the curves essentially fall
on the top of each other if represented with a “mean current” axis defined
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by Is = (IA+IB)/2. For a stack with ε = −0.89 (lower left corner in Fig. 2)
we plotted also ZFS2 and replotted it using the mean current axis in the
inset. The result suggests that also higher order steps are driven by a force
proportional to Is = (IA + IB)/2.

Though Eq. (5.7) was obtained assuming a perfect fluxon-antifluxon state
and infinite-length junctions, it describes the principal features of the ex-
perimental IV -curve summarized in Fig. 2. In fact Eq. (5.7) predicts u−

(c− in physical units) as the asymptotic velocity of the step and the shift
of the IV -curve if the bias current of one of the two junctions is used as a
parameter. Moreover, from Eq. (5.7) it is evident that the force driving the
state is the average of the bias currents, or in other words that the curves
must fall on the top of each other if represented with the mean current axis
(insets in Fig. 2).

In Fig. 3, we report the power spectra of the radiation received [2, 5]
from the ZFS’s in a stack with ε = −0.56. Apart from the spurious spectral
components (due to an instrumental effect), the fundamental frequency of
the emitted signal is found to satisfy the same frequency-voltage relation
as the ZFS’s in single overlap junctions

fZFSN =
1
2
Φ−1

0
VZFSN
N

=
1
2
483.6

MHz

µV
VZFS1, (5.9)

where N is the order of the step. We remark that when we are on the
ZFS’s, the a.c. signals generated by the two junctions are opposite in sign.
So, we could conclude that the net signal generated at the edge of the stack
should be the sum of nearly opposite signals and consequently too small
to be detected. Nevertheless, we received appreciable radiation from the
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2 Parallel arrays of Josephson junctions

Coherence should be expected if the interaction between fluxons is attrac-
tive. Due to their physical nature, homopolar fluxons localized in the same
plane will statically repel each other; on the contrary, they will attract
each other if they are localized in parallel planes. Following this intuitive
physical consideration, we here consider a structure, consisting of a parallel
array of long Josephson junctions, where the condition for the observation
of coherence is satisfied.

2.1 The physical system and its model
To model the parallel array of Fig. 5(b), we can start from the description
of the two-dimensional Josephson junction in Fig. 5(a), that is modelled as
[10]

ϕxx + ϕyy − ϕtt = sinϕ+ αϕt

ϕx(0) = ϕx(l) = ηe ≡ He/Hc

ϕy(0) = −ηT − χ ≡ −HT /Hc − IA/2λJJ0L

ϕy(w) = −ηT + χ ≡ −HT /Hc + IA/2λJJ0L

(5.10)

where ϕ is the phase difference between the two superconducting electrodes
and where we have accounted for an externally applied magnetic field Ha =
(HT , He, 0) as well as for the field generated by the bias current IA. The
parallel array of long junctions (that are assumed one-dimensional for the
sake of simplicity) in Fig. 5(b) becomes the continuous system of Fig. 5(a)
in the limit

p → ∞, ∆y → 0; p∆y = W. (5.11)
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For a finite separation between the junctions ∆y and for a finite number
of junctions p, we can think of the system in Fig. 5(b) as the y−discretized
version of the continuous system in Fig.5(a). Thus, the model for the par-
allel array of long Josephson junctions will be obtained by discretizing the
model Eqs.(5.10) in the y−direction

ϕ(x, y, t) → ϕ(x, [n− 1]∆y, t) ≡ ϕn(x, t).

Hence, our model is [6]

ϕntt = ϕnxx − sinϕn − αϕnt + 1
β (ϕn+1 − 2ϕn + ϕn−1) 2 ≤ n ≤ p− 1

ϕ1tt = ϕ1xx − sinϕ1 − αϕ1t + 2
β (ϕ2 − ϕ1) + pγb + 2ηT /

√
β

ϕptt = ϕpxx − sinϕp − αϕpt + 2
β (ϕp−1 − ϕp) + pγb − 2ηT /

√
β

ϕnx(0) = ϕnx(l) = ηe,
(5.12)

where we have defined β ≡ (∆y/λJ)
2 and γb is the bias current per junction,

normalized to the critical current of the single junction.
In the absence of perturbations (α = ηe = ηT = γb = 0) Eqs.(5.12)

simplify to a system of “elastically” coupled sine-Gordon equations

ϕntt = ϕnxx − sinϕn +
1
β

(ϕn+1 − 2ϕn + ϕn−1) (5.13)

with the Hamiltonian

H =
∑
m

∫ l

0

[
1
2

(ϕmx)
2 +

1
2

(ϕmt)
2 + p− cosϕm +

1
2β

(ϕm − ϕm−1)
2
]
dx.

(5.14)
Some analytical calculations can easily be carried out if we assume infinite
length junctions. In this case, two homopolar (fluxon-fluxon) or two antipo-
lar (fluxon-antifluxon) solitons separated by ξ along the x-direction, moving
with translational velocity u and localized in two contiguous junctions are
described as

ϕm = 4 arctan
[
exp(γ

(
x− ξ

2 − ut
)]

ϕm−1 = 4 arctan
[
exp(σγ

(
x+ ξ

2 − ut
)]

,
(5.15)

where σ = ±1 and γ = 1/
√

1 − u2. The interaction energy between the
two solitons is found inserting these solutions in the nearest-neighbours
interaction energy

EI(ξ, u) ≡ Em,m−1 =
1
2β

∫ ∞

−∞
dx (ϕm − ϕm−1)

2
. (5.16)

Numerical evaluation of the integral in Eq. (5.16) shows that EI(ξ) has a
quasi-parabolic behavior in the static regime (γ = 1) and such a behavior
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is conserved in the relativistic regime for ξ � 1. However, the interaction
energy is found attractive (repulsive) for two homopolar (antipolar) fluxons.
Similar results are found for long but finite junctions. The quasi-parabolic
behavior observed for γξ < 1 can be recovered if we expand to order ξ2 the
integrand in Eq. (5.16). An approximate analytic form for the interaction
energy and the interaction force is then found as

EI(ξ, γ) ≈ σ 8γ
2β ξ

2

FI(ξ, γ) ≡ −∂EI

∂ξ = −σ 8γ
β ξ,

(5.17)

where we recall that β = ∆y2. The situation is opposite with respect to
the one in which the solitons are in the same plane. Here the solitons are
in parallel planes and, as we should intuitively expect, we find attractive
interaction for homopolar (σ = 1) solitons and repulsive interaction for
antipolar (σ = −1) solitons. Obviously, this kind of interaction helps the
coherent motion of homopolar solitons arranged in more or less ordered
rows (“strings”).

Neglecting the tunneling (α = sinϕn = 0), our array becomes a system
of coupled transmission lines described by

ϕnxx +
1
β

(ϕn+1 − 2ϕn + ϕn−1) − ϕntt = 0. (5.18)

The dispersion relation of the structure is obtained substituting a plane
wave solution

ϕn(x) = Aei(kxx+(n−1)
√
βky−ωt)

in (5.18) and cavity modes resonances are then found imposing open circuit
boundary conditions, with the result

ωj,m =

√(
jπ

l

)2

+
4
β

sin2 mπ

2(p− 1)
(5.19)

where m, j are integers. These resonances are practically excited by a mag-
netic field and are manifested as current singularities in the IV -characteristics.
The voltages of occurrence are found [1] matching the Josephson oscilla-
tion frequency with the cavity frequency (5.19). So, if we apply only a
magnetic field along the y-direction, the cavity modes will have voltages
Vj = jΦ0c/2L, i.e., a series of singularities spaced half the voltage spacing
of the ZFS’s. If we apply a field only in the x-direction, the cavity modes
will have the voltages

Vm = c
Φ0

∆y

∣∣∣∣sin mπ

2(p− 1)

∣∣∣∣ (5.20)

i.e., a series of singularities not evenly spaced, and limited in voltage.
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2.2 Numerical and experimental results on five-junctions
parallel arrays

Due to the attractive interaction, we expect that coherent oscillatory mo-
tion of fluxons in zero magnetic field can take place in our parallel array,
i.e., we can expect to observe a ZFS1 due to a string of p fluxons (one per
junction) in oscillatory motion, a ZFS2 due to a string of 2p fluxons (two per
junction) in oscillatory motion etc. ... These coherent ZFS’s should appear
in the IV - characteristics at the same voltages as in the single junction, and
with a current amplitude p times the current of the single junction. Due
to the coherent motion, the emitted radiation should have the same fun-
damental frequency Eq. (5.9) of the single junction. Numerical simulations
[6] of model Eqs. (5.12) confirm this picture, as shown in Fig. 6(a).

In Fig. 7(a) there are shown the first three ZFS’s recorded [6] in an
array of five (600 × 20)µm2 junctions, separated by 20µm. The coupling
parameter for this array was β = 0.05. The observed voltage spacing is
39µV , the amplitude of the current is five times the expected amplitude of
the ZFS of the single junction. With this voltage spacing we expect, from
the Eq. (5.9), electromagnetic radiation in the X-band when the array is
polarized on these ZFS’s. The signals detected when the array is polarized
on the ZFS3 and on the ZFS1 are shown in Fig. 7(a). The signal levels are
relatively high, though we have not used any impedance matching circuit,
and the linewidth is quite narrow. So, also taking into account the numerical
results of Fig. 6(a), we take the results in Fig. 7(a) as an experimental
evidence of coherent oscillatory motion of homopolar fluxons in a parallel
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[20] to generate, at zero d.c. voltage, a nearly sinusoidal a.c. signal with
doubled amplitude with respect to the junctions φ1 and φ2. Similar features
are exhibited by the “transverse” junctions (ψ1, ψ3, ... or ψ2, ψ4....) in the
array shown in Fig. 8(b). Moreover, these transverse junctions also add their
signals and impedances, making the array capable of large output voltage
and impedance with negligible power emitted into higher harmonics.

3.1 The model
If we neglect the self-inductance of the loop and the mutual inductance
between the junctions, the coupling between the junctions in the triangu-
lar cell shown in Fig. 8(a) originates from the quantization of the axial
magnetic flux Φ linked to the cell [1]

ψ1(x, t) = φ1(x, t) − φ2(x, t) + 2πΦ/Φ0 − 2πn, (5.21)

where Φ0 = h/2e is the flux quantum. Assuming the three junctions to
be identical and taking into account Eq. (5.21), we can easily derive the
coupled equations that model the system as

φ1,xx − φ1,tt = αφ1,t − βφ1,xxt − γb
+ 2

3 sinφ1 + 1
3 sinφ2 + 1

3 sin (φ1 − φ2 + 2πΦ/Φ0) ,
φ2,xx − φ2,tt = αφ2,t − βφ2,xxt − γb

+ 2
3 sinφ2 + 1

3 sinφ1 + 1
3 sin (φ2 − φ1 − 2πΦ/Φ0) ,

φ1,x(0) + βφ1,xt(0) = η,
φ2,x(l) + βφ2,xt(l) = η,

(5.22)

where γb is the normalized bias current, α accounts for the ohmic dissipa-
tion in the barrier and β for the surface impedance of the electrodes, l is
the normalized length of the junctions, and η is the normalized magnetic
field applied in the y direction [Fig. 8(a)].

Some analytical traveling wave solutions ϕk(ξ) = ϕk[γ(x − ut)] of the
unperturbed (α = β = γb = η = 0) system have been reported [19] for two
values of the axial flux, i.e., Φ = 0 and Φ = Φ0/2. The stable (lower energy)
solutions 6K = [φ1(ξ), φ2(ξ)], generally named Kinks in the following, are
summarized in Table 5.1. In the table we reported also the fluxon content
of the waves constituting the Kink, defined as Φk = 2π−1

∫ +∞
−∞ φk,xdx. As
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TABLE 5.1. Basic stable Kinks.
Φ = 0 → φ(ξ) = 4 tan−1 [exp(ξ)]

Kink φ1 Φ1 φ2 Φ2

(EF) φ(ξ) +1 0 0
(EB) 0 0 φ(ξ) +1
(EC) φ(ξ) +1 φ(ξ) +1
Φ = Φ0/2 → φ(ξ) = 2 tan−1

{
3−1/2 tanh

[
8−1/2(ξ)

]}
Kink φ1 Φ1 φ2 Φ2

(ab) 2φ(ξ) + 3π +2/3 φ(ξ) + 2π +1/3
(bc) φ(ξ) + 4π +1/3 2φ(ξ) + 3π +2/3
(cd) −φ(ξ) + 4π −1/3 φ(ξ) + 4π +1/3

is seen in Table 5.1 the basic Kinks (EF), (EB), (EC) and their anti-Kinks
(FE), (BE), (CE), obtained substituting ξ with −ξ in the Kinks defini-
tions, consist of components with an integer fluxon content. Conversely, at
Φ = Φ0/2 the basic Kinks have a fractional fluxon content.

3.2 Numerical and experimental results
In the presence of perturbations only the (EC) Kink (see Table 5.1) is
found stable in simulations [7] at Φ = 0. The stationary regime consists of
a (EC) Kink travelling toward one edge of the cell where it is reflected as
an anti-Kink (CE) and again as (EC) at the other edge, so establishing
an oscillatory motion. In other words, at Φ = 0 the dynamics of the ZFS1
in the triangular cell is equivalent to the dynamics of the ZFS1 in single
overlap junction, with the role of the single fluxon played now by a pair of
bounded fluxons (one in the junction φ1, the other in the junction φ2). The
analogy with single junctions is recovered also for the higher order ZFS’s,
with a bunch (EC)-(EC) (two fluxons in each junction) accounting for the
ZFS2, a bunch (EC)-(EC)-(EC) for the ZFS3, and so on. The singularities
in the IV -characteristics of the cell corresponding to these dynamical states
are similar to the ones of the single junction: a series of steps spaced by
∆V = 2π/l (in physical units ∆V = Φ0c/L), as it is shown in Fig. 9.

In the presence of an axial flux Φ = Φ0/2 the initial (EC) Kink (a
fluxon in each junction) evolves into an excitation consisting of a (bc)-
(ab) bunch. Hence, there is again a total flux quantum traveling in both
biased junctions. The excitation is accelerated toward one edge of the cell
where it is reflected as (ba)-(cb), and so forth. In other words, we observe
an oscillation similar to the one accounting for the ZFS1 at Φ = 0, but now
the flux quantum is carried by the (bc)-(ab) excitation. As is seen in Fig. 9
the current step in the IV -characteristics corresponding to this dynamical
state at Φ = Φ0/2 has the same asymptotic voltage but a critical current
much smaller than the ZFS1 at Φ = 0.

Higher order steps exhibit a more complex dynamics. The ZFS2 at Φ =
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FIGURE 9. To the left: Numerically obtained ZFS’s at Φ = 0 (continuous line)
compared with the ZFS’s at Φ = Φ0/2 (open circles). To the right: ZFS’s recorded
in a device with l = 7 at Φ ≈ Φ0/2.

Φ0/2 consist of a (bc)-(ab) and a (ba)-(cb) counter-oscillating in the junc-
tions, in a fashion similar to the symmetric mode [15] of the single overlap
junctions. However, both in the single junction and in the cell at Φ = 0,
the excitations carrying more flux quanta tend to oscillate bunched in the
junction (bunch mode [15]). Here, instead, the higher order steps are almost
exclusively related to symmetric modes. In some cases, the cell exhibits an
hybrid behavior, as the one encountered in the ZFS3. Here, a transition is
observed from a symmetric mode to a bunch mode when the bias exceeds
a critical value. The current step in the IV -characteristics is broken at the
critical value of the bias corresponding to the transition, as shown in Fig. 9.

To the right of Fig. 9 are shown steps recorded at Φ ≈ Φ0/2 and B = 0
in a device that we fabricated. The junctions in the cell have normalized
length l = 7. Apart from the fourth step, that accounts for an external
resonance, the steps at Φ = 0 were found similar to the ones shown here,
but with a higher critical current. This is in qualitative agreement with the
numerical results shown to the left of Fig. 9. Moreover, the voltage spacing
of the first three steps was found to be two times the voltage spacing of the
Fiske steps observed in magnetic field. So, we can take the steps in Fig. 3.2
as the experimental evidence [7] for the discussed ZFS’s in the triangular
cell.

In Fig. 3.2 are shown the numerically obtained IV -characteristics of the
cell for values of the magnetic field that induce resonant flux flow steps. As
it is seen in this figure, both for Φ = 0 and for Φ = Φ0/2 the IV -curves
consist of a step broken in sub-steps separated by the characteristics voltage
spacing ∆FS = π/l (in physical units: ∆FS = Φ0c/2L) of the cavity modes
(Fiske steps). The voltage signals generated at one edge of the junctions
are, however, different in the two cases. At Φ = 0, the signal generated
by the ψ1 junction is found to be zero. At Φ = Φ0/2 the signal generated
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FIGURE 10. (a) Numeri-
cally obtained IV -curves of
the resonant flux flow steps
at Φ = 0 and Φ = Φ0/2
and analysis of the voltage
signals (at Φ = Φ0/2) gen-
erated at one edge of the
cell by the junctions when
biased at the marked point.
(b) Same as in (a), but here
η = 5.

                                            

FIGURE 11. (a) Resonant
flux flow steps recorded in
a device with l = 23 at
Φ = 0 and Φ ≈ Φ0/2. (b)
Steps recorded in the device
at Φ ≈ Φ0/2 for different
magnetic fields.

by the ψ1 junction is, instead, other than zero and exhibits an enhanced
spectral purity, as it is better seen in the signal analysis at Φ = Φ0/2 shown
in Fig. 3.2.

In the simulations, we observed this property also at the values of the
magnetic field that induce the pure flux flow regime. We also noted that the
flux flow branches in the IV -characteristics at Φ = Φ0/2 start at slightly
higher voltage (but the signal frequency was the same as in the Φ = 0
case). Moreover, for quite large field values, the critical current of the flux
flow state was found lower in the Φ0/2 case than in the Φ = 0 case, as it is
also seen in Fig. 3.2(b).
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Experimental [8] resonant flux flow steps recorded in a device with l = 23
at Φ = 0 and Φ ≈ Φ0/2 are shown in Fig. 3.2(a). Here on the current axis
is reported the total current IT flowing in the device, that is parallel biased
as shown in Fig. 8. As it is seen, the characteristics voltage spacing of the
Fiske steps, here ∆FS = 15µV, occurs for both the values of the axial flux,
with the resonant flux flow steps at Φ ≈ Φ0/2 slightly lower in current.
Moreover, the family of resonant flux flow steps at Φ ≈ Φ0/2 is also found
slightly shifted toward higher voltages, in agreement with the qualitative
indications of the numerical simulations [see Fig. 3.2(b)]. In Fig. 3.2(b) we
show some steps recorded at Φ ≈ Φ0/2 for different values of the magnetic
field. For magnetic field values larger than B = 4 gauss, also the pure flux
flow regime is exhibited by the device, up to a voltage value of 1500 µV.
From the Josephson frequency-voltage relation f = Φ−1

0 V , this says that
the device might be able to generate a signal of appreciable power and
good spectral purity up to about 700 GHz when operated in the flux flow
regime.
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6
Stacked Josephson Junctions
N.F. Pedersen

1 Introduction

The topic of fluxons in Josephson junctions appears often and in many con-
texts within superconductivity. The potential applications and the appear-
ance of high-Tc superconductivity are some of the reasons for this recently
increased interest. Several comprehensive reviews of fluxons (solitons) in
long Josephson junctions [8], [2], [10], [9] exist, of which particularly the
most recent [9] gives an excellent overview of the state of the art for low-
Tc niobium-type long Josephson junctions. In recent years the properties
of long Josephson junctions stacked on top of each other has been studied
quite intensively. This is because such systems model existing low-Tc super-
conducting multilayers. In addition these models have revealed surprising
dynamical properties. The appearance of high-Tc ceramic superconductors
has also had quite an impact on the topic of fluxons in superconductors,
in particular stacked long Josephson junctions. Here the fluxons play a
very important role, for example, in the BSCCO type of material with a
layered structure and big anisotropy. Dynamic properties of fluxons are
also relevant for the material properties such as the bulk current density
and the behaviour near the transition temperature. Some of these high-Tc

phenomena we will try to include in our description below.

2 Short summary of fluxon properties

An excellent mathematical description of fluxons in long Josephson junc-
tions may be found, for example, in Ref. [9]. We will thus only summa-
rize the most important properties here, and rely on Ref. [8], [2], [10], [9]
for details. Fluxon propagation in a long quasi-one-dimensional Josephson
junction is assumed to be described by the perturbed sine-Gordon equation
[8], [2], [10], [9] for the quantum mechanical phase difference, φ(x, t),

−φxx + φtt + αφt + sinφ = γ . (6.1)

Here, subscripts x and t denote differentiation with respect to normalized
space and time, respectively. The sine-Gordon equation with its boundary

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 121−136, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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conditions may appear in different ways depending on the geometry of
the junction [8], [2], [10], [9]. The most often used geometry is the so-called
overlap geometry described by Eq. (6.1) together with boundary conditions
φx = 0 at both ends x = 0 and x = L of the junction. Another frequently
used geometry is the annular geometry obtained by joining the two ends
of the junction (x = 0 and x = L) (see Ref. [10]). For this geometry the
boundary conditions are φ(x = 0) = φ(x = L) + 2pπ. The dimensionless
parameter α describes the damping, with typical values in the range 0.01
< α < 0.1 for low-Tc systems. The parameter γ describes the normalized
bias current which is a controllable parameter in experiments, with typical
values in the range 0 < γ < 1. The time t is measured in units of 1/ω0,
where ω0 is the plasma frequency, and length x is measured in units of the
Josephson penetration depth λj (see Ref. [8], [2], [10], [9]). Typical values
of ω0 and λj for low- and high-Tc superconductors are 1011 and 1012 rad/s
and 10−5 and 10−6 m, respectively. Particularly for high-Tc systems these
parameters are not well known, as there is not yet a well established theory
for the superconductivity itself.

x

2 π

φ

(a)

x

φt

(b)

FIGURE 1. Appearance of a fluxon in a long Josephson junction as a 2π kink in
the phase difference φ(x). (1b) as a voltage pulse φt(x).

The simplest solution to Eq. (6.1) is the fluxon or soliton which is a lo-
calized 2π kink in the phase difference φ moving with a velocity u. This
velocity is determined as a balance between the losses α and the bias γ.
The velocity u is measured in units of c, where c is the velocity of light
in the junction, often called the Swihart velocity. With a perturbational
approach u is approximately given by the expression [8], [2], [10], [9]

u = 1/
√
(1 + (4α/πγ)2). (6.2)

and thus may assume values 0 < u < 1. Note that for low values of the bias



6. Stacked Josephson Junctions 123

current the velocity is proportional to the bias u ∼ γ, while for large values
of γ/α a saturation occurs such that the velocity approaches the velocity
of light in the junction, c. This is often referred to as relativistic behaviour.
The qualitative appearance of such kink solutions is shown in Fig. 1 for the
case of the simple single-fluxon solution. The time derivative of the phase
φt is the voltage, and the fluxon solution of Eq. (6.1) appears as a voltage
pulse moving along the long Josephson junction with a velocity given by
Eq. (6.2). The simplified picture presented here can be improved by taking
boundary effects, multisoliton solutions and fluxon collisions into account;
however, for these more elaborate descriptions the reader is referred to Ref.
[8], [2], [10], [9]

3 Stacked junctions

A new superconducting system that is described by special fluxon solutions
is the long stacked Josephson junction which is sketched in Fig. 2. It consists
of N alternating superconducting and isolating layers here shown in the
overlap geometry for N = 4.

I

x=0 x=L

S

FIGURE 2. An example of a long Josephson stack: the fourfold stack of the
overlap geometry. In a typical experiment the magnetic field H is applied in the
plane of the tunnel barriers and the bias current flows across them.

The equations for such a stacked junction system may be obtained from a
generalization of the Josephson junction equations using the London and
Maxwell equations [15]. A simplified version of the stacked junction equa-
tions may be written [15] (in unnormalized units)
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Here φi,i−1 is the phase difference between superconducting layers i and
i− 1, and we have defined the effective magnetic thickness d′

i,i−1

d′
i,i−1 = di,i−1 + λi coth

(
ti
λi

)
+ λi−1 coth

(
ti−1

λi−1

)
, (6.4)

and the parameter si describing the coupling between layers by

si = − λi

sinh ti/λi
. (6.5)

Here λi is the London penetration depth λL of the superconducting layer
i, and ti is the thickness of this layer, i runs from zero to N , di,i−1 is the
thickness of the isolating layer between superconducting layers i and i− 1.
From the usual Josephson junction model we now introduce the capacitive,
resistive and Josephson currents between S-layers i and i−1, and we define
the total current of them, by JZ

i,i−1

JZ
i,i−1 ≡ h̄

2e
Ci,i−1

∂2φi,i−1

∂t2
+
h̄

2e
Gi,i−1

∂φi,i−1

∂t
+ Ji,i−1 sinφi,i−1 (6.6)

Here Ci,i−1 is the unit area capacitance, Gi,i−1 the unit area conductivity
and Ji,i−1 the dc maximum Josephson current density between S-layers i
and i − 1.We note here that an external bias current may be included in
Eq. (6.3) if necessary, as described in Ref. [15].
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4 Fluxon solutions, selected examples

In the following we will illustrate some of the consequences of the general
equations derived in the previous section. The numerical part of the exam-
ples are selected so that realistic low-Tc junction parameters are used, and
some of the predicted effects have already been observed in experiments in
Niobium thin film systems (Ref. [14] gives several examples). With other
parameter values, high-Tc systems of the BSCCO type may be simulated.

4.1 The coherent 2-fluxon mode
The equations of the previous section have solutions in which fluxons in
different layers move coherently (or phase-locked). This is a very interesting
type of motion, which has been studied in planar systems [7],[5]. For sim-
plicity let us assume three superconducting layers with the bias current of
the overlapping geometry as in Fig. 2. We assume that the top and bottom
layers have the same properties, and the two insulating layers have equal
properties, i.e. N = 3 superconducting layers, d1,0 = d2,1 ≡ d, t2 = t0, λ2
= λ0 (but may be different from λ1). The two tunnel junctions have the
same properties described by C, G, and J . From Eq. (6.5) we obtain after
some calculations (see Ref. [15])

h̄

2eµ0



∂2φ1,0

∂x2

∂2φ2,1

∂x2


 = −IB(d′ + s)

(
1
1

)
+


 d′ s

s d′






h̄C

2e
∂2φ1,0

∂t2
+
h̄G

2e
∂φ1,0

∂t
+ J sinφ1,0

h̄C

2e
∂2φ2,1

∂t2
+
h̄G

2e
∂φ2,1

∂t
+ J sinφ2,1


 , (6.7)

d′ = d+ λ0 coth
(
t0
λ0

)
+ λ1 coth

(
t1
λ1

)
, s1 = − λ1

sinh(t1/λ1)
. (6.8)

Let us now look for a coherent mode with the property φ1,0(x, t) =
φ2,1(x, t) ≡ φ(x, t). In that case Eq. (6.7) becomes

h̄

2eµ0

∂2φ

∂x2 = (d′ + s)
(
h̄C

2e
∂2φ

∂t2
+
h̄G

2e
∂φ

∂t
+ J sinφ− IB

)
. (6.9)

This equation is almost the same as the perturbed sine-Gordon equation
(6.1) known from conventional long Josephson junctions [9]. The main dif-
ference is a change of the length scale due to the factor (d′+s) in Eq. (6.9).
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If we go through the normalizations as for example done in Ref. [10], we
find that the effective Josephson penetration depth λ(2)

J becomes

λ
(2)
J = (h̄/2eµ0(d′ + s)J)

1
2 (6.10)

and the velocity of light in the barrier is

c(2) =
1√
εµ0

(d/(d′ + s))
1
2 . (6.11)

Compared to the single junction soliton case we note that

λ
(2)
J

λ
(1)
J

=
c(2)

c(1)
=

√
d′

d′ + s
, (6.12)

where superscript (1) refer to the single junction soliton case. Since s < 0
(Eq. (6.8)) we note that c(2) is larger than c(1), i.e. we may exceed the
velocity of light in the single junction case.
We also note that if we arrange a bias situation such that we extract

a bias current IBI , from the center layer such that IBI = −2IB (see Fig.
4) the solutions discussed above become antisymmetric in the sense that
now a soliton and an antisoliton move together in a coherent mode. The
equation of motion, the penetration depth and the velocity of light can
be obtained from Eqs. (6.9), (6.10) and (6.11) by substituting −s for s. It
should be noted that this coherent soliton - antisoliton state is not possible
in conventional single long Josephson junctions.
Above we have concentrated on the coherent modes of the N = 3 super-

conducting layer system. Of course other modes than the coherent ones are
possible. An example will be shown below.
For N > 3 we can follow the same procedure as used above. A compli-

cation of course is the boundaries created by the top and bottom layers.
For N � 1 it may be justified to neglect effects from these two layers and
assume that all the intervening layers are identical. In that case we may
obtain coherent solutions of the same nature as for the N = 3 case dis-
cussed above. For the N layer system (N � 1) each of the N − 1 coherent
solitons will then obey the equation

h̄

2eµ0

∂2φ

∂x2 = (d′ + 2s)(
h̄C

2e
∂2φ

∂t2
+
h̄G

2e
∂φ

∂t
+ J sinφ− IB), (6.13)

and the characteristic length and velocity are now

λ
(N−1)
J =

(
h̄/2eµ0(d′ + 2s)J

) 1
2 (6.14)

c(N−1) =
1√
εµ0

(
d/(d′ + 2s)

) 1
2 . (6.15)
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4.2 The two modes of the two fluxon case
We have made numerical simulations corresponding to the two fluxon co-
herent state described in Eq. (6.9). The normalizations are performed using
the usual one soliton case with the velocity of light given by c(1) and the
Josephson penetration depth λ(1)

J . The parameters are: N = 3 (2 junc-
tions), α = 0.1, L=5 and the coupling parameter S= -0.3 where the loss
parameter α is defined by α = G(h̄/2eCJ)1/2. Three fluxons are trapped
in each of the annular junctions A and B, which are biased in series [14].

FIGURE 3. Numerical calculation of the IV curve for a twofold annular stack.
Parameters are described in the text. The insets shows the waveforms for the two
branches corresponding to junctions A and B.

Figure 3 shows the static IV curve for the coherent 2 junction mode. Also
shown is another mode found during the simulations. For this mode the
motion is symmetric in the sense that when the fluxon in junction (0.1) is
at x = L then the fluxon in junction (2.1) is at x = 0. The waveforms of the
in phase and out of phase modes are shown in the insets. For the coherent
mode in Fig. 3 the asymptotic value of the voltage is approximately 1.20
times higher that of the single junction case (dashed line). This factor is in
good agreement with the theoretical expression. c(2)/c(1) = 1/

√
1 + S.

We note that the losses appear to play a bigger role for the symmetric
mode. Even though the solitons are in different lines, they interact with
each other, and “pseudo collisions” take place. The line shape for the in
phase mode (coherent) is shown in the upper inset in Fig. 3. Here it should
be noted that the two solitons are fully identical, i.e., there is no phaseshift
between them, as is usually the case for coherent modes in other comparable
systems [6].
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The behavior resembles qualitatively the system of two solitons in one
junction with surface losses. Also here both the bunched and the symmetric
modes exist, although their stability ranges are distinctly different from Fig.
3. However in both cases high bias seems to favor the coherent or bunched
mode.

5 Stacked junction plasma oscillation solutions

This topic has very recently become a very active area in connection with
high-Tc BSCCO type superconductors (see for example Ref. [3]). For a
single small area Josephson junction the derivation of the plasma resonance
was made in Ref. [1], [4], [11]. Kirchhoff’s law for the Josephson junction
equivalent circuit leads to

CJdV/dt+ V/R+ i0 sinϕ = idc + irf sinωt (6.16)

with ∂φ/∂t = (2e/h̄)V , where all variables and parameters have their
standard meaning. Assuming idc < i0 and irf/i0 small, we may assume
ϕ = ϕ0 + ϕ1, with sin ϕ0 = idc/i0 and | ϕ1 | � 1. After some algebra we
find [1], [4], [11], [13]

ϕ1 =
2eirf

h̄Cj

√
(ω2 − ω2

p)2 + (ω/CR)2
sin(ωt+Θ) (6.17)

and the normalized rf-voltage amplitude, Vrf , is given by

Vrf = (h̄ω/2e)ϕ1. (6.18)

The plasma frequency ωp is given by

ωp =
√
2ei0 cosϕ0/h̄Cj (6.19)

where sin ϕ0 = idc/i0 and the maximum plasma frequency ωp0 =
√
2ei0/h̄CJ .

The Q of the plasma resonance is given by Q=ωpCJR. We note that the
plasma oscillation is a longitudinal oscillation of Cooper pairs across the
barrier. Alternatively we may describe it as an inductance-and-capacitance
resonance between the Josephson inductance Lj = h̄/(2ei0 cosφ0) and the
capacitance CJ . It is typically in the microwave frequency range.
Let us now for the stacked junction system (Ref. [12]) consider a small

rf bias current in addition to the dc bias current, similarly to the single
junction case, Eq. (6.16). In the present paper, however, we will assume a
space dependent rf current such that

IB = Idc + Irf cos(kx− ωt) (6.20)
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A spatially dependent bias is physically realistic. For instance, without
a ground plane a current concentration near the edges may occur in the
superconducting electrodes. In such cases, the rf bias may be expanded in
its Fourier components. When the rf term is small and the system becomes
linear, the solution for the system is a superposition of the solutions for
each Fourier element and thus considering the case of equation (6.20) is
general and sufficient. The derivation below follows that of Ref. [12].
For the phase differences φi,i−1 between the superconducting layers i and

i− 1 we will - in analogy with the derivation in Ref. [11] assume the form

φi,i−1 = φ
(0)
i,i−1 + φ

(1)
i,i−1 (6.21)

where φ(0)
i,i−1 is a dc term and | φ(1)

i,i−1 | � 1 is assumed to vary at the
frequency ω. Accordingly we find

sinφi,i−1 ∼= sinφ(0)
i,i−1 + cos(φ(0)

i,i−1)φ
(1)
i,i−1. (6.22)

Inserting the bias current, Eq. (6.20), in Eq. (6.3) and applying the ap-
proximation Eq. (6.22) we obtain equations for the terms at zero frequency
and the terms at the angular frequency ω.
The equation for the dc terms gives

Idc = Ji,i−1 sinφ
(0)
i,i−1 (6.23)

which determines the dc part of the phases φ(0)
i,i−1. For the remaining terms

at angular frequency ω we get the following coupled linear equations

h̄

2eµ0
∂xx




φ
(1)
1,0
...
...

φ
(1)
i,i−1
...
...

φ
(1)
N,N−1




= (6.24)
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d′
1,0 s1
s1 d′

2,1 s2 0
. . . . . . . . .

si−1 d′
i,i−1 si
. . . . . .

0
. . . . . . sN−1

sN−1 d′
N,N−1







∆JZ(1)
1,0
...
...

∆JZ(1)
i,i−1
...
...

∆JZ(1)
N,N−1




where

∆JZ(1)
i,i−1 =

h̄
2eCi,i−1∂ttφ

(1)
i,i−1 +

h̄
2eGi,i−1∂tφ

(1)
i,i−1 +

Ji,i−1

(
cosφ(0)

i,i−1

)
φ

(1)
i,i−1 − Irf cos(kx− ωt). (6.25)

For mathematical convenience, Irf cos(kx − ωt) is here replaced with the
complex form (Irf/2) exp[j(kx−ωt)], where j2 = −1. As is well known, the
final physical quantities can be obtained by a summation of the solution
in this case and the solution in the case where the bias has its complex
conjugate form. Then the solution of Eq. (6.24) is




H1 − k2 s1Ω2,1
s1Ω1,0 H2 − k2 s2Ω3,2 0

. . . . . . . . .
si−1Ωi−1,i−2 Hi − k2 siΩi+1,i

. . . . . . . . .

0
. . .

HN − k2




×




A1,0
...
...

Ai,i−1
...
...

AN,N−1




= −2eµ0

h̄
· Irf

2




d′
1,0 + s1

d′
2,1 + s1 + s2

...
d′

i,i−1 + si−1 + si
...
...

d′
N,N−1 + sN−1



, (6.26)

Ωi,i−1 ≡ µ0Ci,i−1ω
2 − 2eµ0

h̄
Ji,i−1 cosφ

(0)
i,i−1 + iωµ0Gi,i−1 , (6.27)



6. Stacked Josephson Junctions 131

and Hi=d′
i,i−1Ωi,i−1.

In the following we will simplify the problem by assuming identical layers.
This permits us to drop unnecessary subscripts in the equation above, and
by introducing H = d′Ω and S = s/d′, we get




H − k2 SH
SH H − k2 0

. . . . . . . . .
SH H − k2 SH

. . . . . . . . .

0
. . . . . . SH

SH H − k2




(6.28)

×




A1,0
...
...

Ai,i−1
...
...

AN,N−1




= − 1
λ2

exc




1 + S
1 + 2S

...
1 + 2S

...
1 + 2S
1 + S




where

λ−2
exc =

2eµ0d

h̄

Irf

2
(6.29)

defines a length scale for the applied rf bias current.
First we find the solution to Eq. (6.28) with no applied rf current, i.e.

having the right hand side of Eq. (6.28) equal to zero. In that case we find
([12]),

k2 = H
{
1 − 2S cos

(
mπ

N + 1

) }
, for m=1,2,...N, (6.30)

where N is the number of stacks, and m is the mode number. The solution
Ai,i−i for mode number m is

Am
i,i−1 =

√
2

N + 1
sin

[
i (N + 1 −m)π

N + 1

]
. (6.31)

From Eq. (6.30), we get explicitly the k − ω plasma dispersion relation for
each mode m,

ω2 − ω2
p − [c(N)

m ]2k2 + jωG/C = 0 (6.32)
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where

ωp =
√
2eJ cosφ(0)/h̄C, (6.33)

c(N)
m =

c0[
1 − 2S cos(mπ/(N + 1))

]1/2 (6.34)

with c0 = (µ0d
′C)−1/2. We find from Eq. (6.32) that k is imaginary due to

the presence of losses, and thus a mode which is once excited is damped
with time. In the lossless limit, we have k − ω dispersion curves, ω2 =

ω2
p +

[
c
(N)
m

]2
k2. Figure 4 shows the dispersion curves for the case of 3

junctions. At ω � ωp, dω/dk approaches asymptotically the Swihart-type
velocities, c(N)

m , in the case of an N junction stack, i.e., the characteristic
velocity of electromagnetic waves in the N -stack system with no tunnel
currents. As will be shown below, in the presence of an rf bias current,
plasma resonances may appear on some selected modes of these k − ω
dispersion curves.

k / (ωp / c0)

ω
/ω

p

0 1 2 3 4 50

1

2

3

4

5

6

7

8

m=1

m=2

m=3

FIGURE 4. Plasma dispersion curves for 3 junctions. S = -0.4.

As the simplest non-trivial case let us first study the case N = 2 with an
rf excitation of the form Irf cos(kx− ωt). Equation (6.20) gives a solution
of the form

{
φ

(1)
1,0

φ
(1)
2,1

}
=

2eIrf

h̄C

cos(kx− ωt+ θ)√(
ω2 − ω2

p − c2+k2
)
+ (ωG/C)2

{ 1
1

}
(6.35)
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with tan θ =
ωG/C(

ω2 − ω2
p − c2+k2

) , and c(2)2 ≡ c+ =
c0√
1 + S

.

We notice that Eq. (6.35) has a form analogous to Eq. (6.17) for the sin-
gle junction case. Note also that φ(1)

1,0 and φ(1)
2,1 are in phase and identi-

cal, and their magnitudes are enhanced on the plasma dispersion curve
corresponding to the c+ mode, i.e., the plasma resonance takes place on
the c+ mode. On the other hand on the c− mode with the characteristic
velocity, c(2)1 ≡ c− = c0/

√
1 − S, and where the opposite phase relation

(φ(1)1,0 = −φ(1)
2,1) is found, a resonance does not appear, because, for rea-

sons of symmetry, it is not being exited by Irf , applied in series through
the two junctions.
In the case of three junction stack (N = 3), the solution of Eq. (6.27)

becomes ([12]), (note that A = φ(1) ∝ Vrf )

A1,0 = A3,2 = − 1
λ2

exc

· (1 + S)(H2 − k2) + (1 + 2S)SH[
(1 +

√
2S)H − k2

] · [
(1 − √

2S)H − k2
] , (6.36)

A2,1 = − 1
λ2

exc

· (1 + 2S)(H2 − k2) − 2(1 + S)SH[
(1 +

√
2S)H − k2

] · [
(1 − √

2S)H − k2
] . (6.37)

We change the terms appearing in the denominators in Eq. (6.36) and
(6.37) to the more explicit forms(

1 +
√
2S

)
H − k2 = c−2

1

(
ω2 − ω2

p − c21k2) + iωG/C (6.38)

and (
1 −

√
2S

)
H − k2 = c−2

3

(
ω2 − ω2

p − c23k2) + iωG/C (6.39)

with c
(3)
1 ≡ c1 = c0√

1 − √
2S

and c(3) ≡ c3 = c0√
1 +

√
2S
.

These equations show that resonances take place on the plasma dispersive
curves of the c1 and c3 modes. (See Fig. 3.) The c2 mode does not appear as
a resonance, which is also understandable from symmetry considerations.
Equation (6.36) also assures φ(1)

1,0 = φ
(1)
3,2 , in any case, i.e. the oscillation of

the first and third junctions are completely in phase and identical.
In order to determine the relationship between A10 and A21 we take the

ratio A21/A10. Let us first consider the case where the k − ω relationship
is on the c3 mode curve, i.e., ω2 = ω2

p + c
2
3k

2. In this case we find [12],
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2,1
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FIGURE 5. Schematic drawing of the complex junction voltages for the two
resonance modes of a three-stack

A2,1

A1,0
=

−√
2k2c20

(
1 +

√
2
)
S + jωG/C

−k2c20
(
1 +

√
2
)
S + jωG/C

. (6.40)

From this equation and recalling S < 0, we find that A21 and A10 changes
with time almost in phase and | A21 |>| A10 | that is shown in Fig. 5 (left
part). Due to the losses, the phase of A10 is slightly delayed with respect to
the phase of A21. In the lossless limit, we see that A21 and A10 are perfectly
in phase and | A21 | / | A10 |= √

2.
Similarly, at the resonance condition of the c1 mode(ω2 = ω2

p + c
2
1k

2), we
obtain

A2,1

A1,0
=

−√
2k2c20

(√
2 − 1

)
S + jωG/C

−k2c20
(√

2 − 1
)
S + jωG/C

. (6.41)

Again we find that | A21 |>| A10 |, but A21 and A10 changes with time
almost in an anti-phase manner as shown in Fig. 5 (right part). In the
lossless limit, | A21 | / | A10 |= √

2, and A21 has the perfectly opposite
phase of A32. From Fig. 5, a large voltage amplitude across the stack may
be expected as for the c3 resonance condition.
For the case of N -stacks we find that the highest phase velocity c(N)

N

mode always corresponds to all junctions oscillating in phase as the plasma
resonance. The general picture may be understood from Fig. 6. Possible
dispersion modes with stack plasma resonances are found as every second
mode by counting downwards from the c(N)

N mode, which has the highest
velocity.
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FIGURE 6. Resonance modes of an N -stack. Circles represent allowed modes
and crosses, prohibited modes.

6 Conclusion

A system consisting of alternating layers of superconducting and insulating
thin films has been considered. We assume the dimensions in the plane to
be large so that the system resembles stacked long Josephson junctions.
An implicit assumption is that the film thickness is not large compared
to the London penetration depth. This condition can be readily met in
niobium-nitride or niobium systems, as well as in high-Tc BSCCO systems.
Our analysis shows a variety of interesting behavior, of particular interest

is the mode of N −1 coherent solitons in a structure with N superconduct-
ing layers. This mode may have practical interest in connection with phase-
locking of Josephson oscillators. Other types of motion that we observed in
numerical simulations are unique to the three dimensional structure, and
do not exist in the one or two dimensional sine-Gordon systems that have
mostly been considered until now.

7 References
[1] P. W. Anderson. In E. R. Caianiello, editor, Lectures on the Many - Body

Problem, Vol. II, p. 113, New York, 1964. Academic.

[2] A. Barone and G. Paterno. Physics and Applications of the Josephson Effect.
Wiley, New York, 1982.

[3] In M. Tachiki and T. Yamashita, editors, Proceedings of the First Interna-
tional Symposium on Intrinsic Josephson effects and THz plasma oscillations



136 N.F. Pedersen

in high Tc superconductors, North-Holland, 1997.

[4] A. J. Dahm, A. Denenstein, T. F. Finnegan, D. N. Langenberg, and D. J.
Scalapino. Phys. Rev. Lett., 20, 859E, 1968, Erratum ibid 20, 1020, 1968.

[5] A. Davidson, N. Grønbech-Jensen, and N. F. Pedersen. IEEE Trans. on
Magn., 27, 3347, 1991.

[6] P. S. Lomdahl, O. H. Sørensen, and P. L. Christiansen. Phys.Rev. B, 25,
5737, 1982.

[7] R. Monaco, S. Pagano, and G. Costabile. Phys. Lett. A, 131, 122, 1988.

[8] D. W. McLaughlin and A. C. Scott. Phys.Rev. A, 18, 1652, 1978.

[9] R. D. Parmentier. In H. Weinstock and R. W. Ralston, editors, The New
Superconducting Electronics, p. 469, Dordrecht, 1993. Kluwer.

[10] N. F. Pedersen. In S. E. Trullinger, V. E. Zakharov, and V. L. Pokrovsky,
editors, Solitons, p. 469, Amsterdam, 1986. Elsevier.

[11] N. F. Pedersen, T. F. Finnegan, and D. N. Langenberg. Phys. Rev. B, 6,
4151, 1972.

[12] N. F. Pedersen and S. Sakai. Phys. Rev. B, 58, 2820, 1998.

[13] N. F. Pedersen, M. R. Samuelsen, and K. Saermark. J. Appl Phys.,44, 5120,
1973.

[14] N. F. Pedersen and A. V. Ustinov. Supercond. Sci. Technol., 8, 389, 1995.

[15] S. Sakai, P. Bodin, and N. F. Pedersen. J. Appl. Phys., 73, 2411, 1993.



This is page 137
Printer: Opaque this

7
Dynamics of Vortices in
Two-Dimensional Magnets
Franz G. Mertens
Alan R. Bishop

ABSTRACT Theories, simulations and experiments on vortex dynamics
in quasi-two-dimensional magnetic materials are reviewed. These materials
can be modelled by the classical two-dimensional anisotropic Heisenberg
model with XY (easy-plane) symmetry. There are two types of vortices,
characterized by their polarization (a second topological charge in addi-
tion to the vorticity): Planar vortices have Newtonian dynamics (even-
order equations of motion) and exhibit strong discreteness effects, while
non-planar vortices have non-Newtonian dynamics (odd-order equations of
motion) and smooth trajectories. These results are obtained by a collective
variable theory based on a generalized travelling wave ansatz which allows
a dependence of the vortex shape on velocity, acceleration etc.. An alterna-
tive approach is also reviewed and compared, namely the coupling of the
vortex motion to certain quasi-local spinwave modes.
The influence of thermal fluctuations on single vortices is investigated. Dif-
ferent types of noise and damping are discussed and implemented into the
microscopic equations which yields stochastic equations of motion for the
vortices. The stochastic forces can be explicitly calculated and a vortex
diffusion constant is defined. The solutions of the stochastic equations are
compared with Langevin dynamics simulations. Moreover, noise-induced
transitions between opposite polarizations of a vortex are investigated.
For temperatures above the Kosterlitz-Thouless vortex-antivortex unbind-
ing transition, a phenomenological theory, namely the vortex gas approach,
yields central peaks in the dynamic form factors for the spin correlations.
Such peaks are observed both in combined Monte Carlo- and Spin Dyna-
mics-Simulations and in inelastic neutron scattering experiments. However,
the assumption of ballistic vortex motion appears questionable.

1 Introduction

During the past 15 years an increasing interest in two-dimensional (2D)
magnets has developed. This is a result of (i) the investigation of a wide
class of well-characterized quasi-2D magnetic materials that allow a de-
tailed experimental study of their properties (inelastic neutron scatter-

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 137−170, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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ing, nuclear magnetic resonance, etc.), and (ii) the availability of high-
speed computers with the capabilities for simulations of large lattices.
Examples of these materials are (1) layered magnets [1], like K2CuF4,
Rb2CrCl4, (CH3NH3)2CuCl4 and BaM2(XO4)2 with M = Co,Ni, . . . and
X = As,P, . . .; (2) CoCl2 graphite intercalation compounds [2], (3) mag-
netic lipid layers [3], like Mn(C18H35O2)2. For the first class of these exam-
ples, the ratio of inter- to intraplane magnetic coupling constants is typi-
cally 10−3 to 10−6. This means that the behavior is nearly two-dimensional
as concerns the magnetic properties. For the second class, the above ratio
of the coupling constants can be tuned by choosing the number of interca-
lated graphite layers. For the third class, even monolayers can be produced,
using the Langmuir-Blodgett method.

Many of the above materials have an “easy-plane” or XY -symmetry. This
means that the spins prefer to be oriented in the XY -plane, which is defined
as the plane in which the magnetic ions are situated. The simplest model
for this symmetry is the 2D classical anisotropic Heisenberg Hamiltonian
(see Ref. [4])

H = −J
∑

<m,n>

[Sm
x Sn

x + Sm
y Sn

y + (1 − δ)Sm
z Sn

z ] , (7.1)

where < m,n > labels nearest neighbors of a 2D lattice; usually a square
lattice is used. The subscripts x, y and z stand for the components of the
classical spin vector S; the spin length S is set to unity by the redefinition
J → J/S2. J is the magnetic coupling constant, both ferro- and antiferro-
magnetic materials were investigated. The anisotropy parameter δ lies in
the range 0 < δ ≤ 1; note that δ = 1 corresponds to the XY -model, not
to the so-called planar model where the spins are strictly confined to the
XY -plane; this confinement is possible only if one is not interested in the
dynamics. Instead of the exchange anisotropy in the Hamiltonian (7.1), one
can also use an on-site anisotropy term (Sm

z )2, which yields similar results.
There are two kinds of excitations: Spin waves which are solutions of the

linearized equations of motion, and vortices which are topological collective
structures. The vortices are responsible for a topological phase transition
[5, 6] at the Kosterlitz-Thouless transition temperature TKT. Below TKT,
vortex-antivortex pairs are thermally excited and destroyed; above TKT
these bound pairs dissociate and the density of free vortices increases with
temperature. It must be noted that an order-disorder phase transition is
not possible according to the Mermin-Wagner-Theorem [7]; the reason is
that all long-range order is destroyed by the long-wave linear excitations
in all 1D and 2D models with continuous symmetries.

Both theory [8] and Monte Carlo simulations [9] showed that TKT is only
very weakly dependent on the anisotropy δ, except for δ extremely close to
0, when TKT → 0. For the materials mentioned above, coupling constants
were estimated from fits to spin-wave theory, and δ values are in the range
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0.01 − 0.6, where TKT is still close to its value for δ = 1.
However, the out-of-plane structure of the vortices (i. e., the structure

of the Sz components) depends crucially on δ, while the in-plane structure
(Sx and Sy components) remains the same [10]. For δ > δc(≈ 0.297 for
a square lattice [11]), static vortices have null Sz components, they are
termed “in-plane” or planar vortices in the literature. For δ < δc there are
“out-of-plane” or “non-planar” vortices which exhibit a localized structure
of the Sz components around the vortex center. This structure falls off
exponentially with a characteristic length, the vortex core radius [10]

rv =
1
2

√
1 − δ

δ
, (7.2)

in units of the lattice constant a. The core radius increases with diminishing
δ, allowing a continuous crossover to the isotropic Heisenberg model (δ = 0)
where the topological excitations are merons and instantons [12], rather
than vortices.

Compared to the vortices in classical fluids [13] and superfluids [14],
there is an important difference: The vortices of the easy-plane Heisenberg
model carry two topological charges, instead of one: (1) The vorticity q =
±1,±2, . . . which is defined in the usual way: The sum of changes of the
azimuthal angle φ = arctan(Sy/Sx) on an arbitrary closed contour around
the vortex center yields 2πq; if the center is not inside the contour the
sum is zero. In the following only the cases q = +1 (vortex) and q = −1
(antivortex) will be considered, the cases |q| > 1 would be relevant only for
high temperatures. (2) The polarization or polarity p: For the non-planar
vortices p = ±1 indicates to which side of the XY -plane the out-of-plane
structure points, while p = 0 for the planar vortices (Fig. 1).

(a)
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FIGURE 1. (a) In-plane structure of a static planar vortex (q = +1). (b)
Out-of-plane structure of a static non-planar vortex with polarization p = +1.
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Both topological charges 1 are crucial for the vortex dynamics, which is
governed by two different forces: (1) 2D Coulomb-type forces F, which are
proportional to the product of the vorticities of two vortices and inversely
proportional to their distance (assuming that the distance is larger than
2rv, such that the out-of-plane structures do not overlap), (2) a “gyrocou-
pling” force [16, 17]

FG = Ẋ × G (7.3)

where Ẋ is the vortex velocity, and X(t) is the trajectory of the vortex
center.

The force (7.3) is formally equivalent to the Magnus force in fluid dy-
namics and to the Lorentz force on an electric charge. The gyrocoupling
vector [18]

G = 2πqp ez , (7.4)

where ez is the unit vector in z-direction, does not represent an external
field but is an intrinsic quantity, namely a kind of self-induced magnetic
field which is produced by the localized Sz-structure and carried along by
the vortex. For antiferromagnets G vanishes.

Since the gyrovector (7.4) contains the product of both topological char-
ges, the dynamics of the two kinds of vortices is completely different:
(1) For planar vortices G = 0, therefore they have a Newtonian dynamics

MẌ = F , (7.5)

where the vortex mass M will be defined in section 2.2. However, in the
simulations the trajectories are not smooth due to strong discreteness ef-
fects [19].
(2) Non-planar vortices have smooth trajectories if the diameter 2rv of
the out-of-plane structure is considerably larger than the lattice constant
[19]; i. e., if δ is not close to δc. For steady state motion, the dynamics is
described by the Thiele equation [16, 17]

Ẋ × G = F , (7.6)

which was derived from the Landau-Lifshitz equation (section 2) for the
spin vector Sm(t). This equation is identical to Hamilton’s equations with
Hamiltonian (1.1).

However, for arbitrary motion the Thiele equation (1.5) is only an ap-
proximation because a rigid vortex shape was assumed in the derivation. If
a velocity dependence of the shape is allowed [20, 21], an inertial term MẌ
appears on the l. h. s. of Eq. (7.6). However, this second-order equation
could not be confirmed by computer simulations [23, 24]. The reason will

1From the viewpoint of homotopy groups, q and Q = − 1
2qp are π1- and π2-

topological charges, respectively; see Ref. [15].
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be discussed in section 2; in fact, a collective variable theory reveals that
the dynamics of non-planar vortices can only be described by odd-order
equations of motion. Therefore the dynamics is non-Newtonian.

Another interesting topic is the dynamics under the influence of thermal
fluctuations (section 3). Here white noise and damping are implemented in
the Landau-Lifshitz equation. The same type of collective variable theory
as in section 2 then yields stochastic equations of motion for the vortices.
The stochastic forces on the vortices can be calculated and the solutions of
the equations of motion are compared with Langevin dynamics simulations.
In this way, the diffusive vortex motion can be well understood.

For somewhat higher temperatures (still below TKT) the thermal noise
can induce transitions of non-planar vortices from one polarization to the
opposite one. Theoretical estimates of the transition rate are compared
with Langevin dynamics simulations (section 3.3).

For the temperature range above TKT, so far only a phenomenological
theory exists, the vortex-gas approach (section 4). It contains only two
free parameters (the density of free vortices and their r.m.s. velocity). The
theory predicts “central peaks” in the dynamic form factors for both in-
plane and out-of-plane spin correlations. Such peaks are observed both
in computer simulations and in inelastic neutron scattering experiments,
and many of the predicted features are confirmed. However, a recent direct
observation of the vortex motion in Monte Carlo simulations has revealed
that a basic assumption of the theory, namely a ballistic vortex motion,
might not be valid. (In section 4 we confine ourselves to the ferromagnetic
case, although easy-plane antiferromagnets were also investigated).

The conclusion in section 5 will discuss the ingredients of a theory which
can fully explain all observations above TKT.

2 Collective variable theories at zero temperature

2.1 Thiele equation
The spin dynamics is given by the Landau-Lifshitz equation, which is the
classical limit of the Heisenberg equation of motion for the spin operator
Sm,

dSm

dt
= −Sm × ∂H

∂Sm
(7.7)

where H is the Hamiltonian, in our case that of the anisotropic Heisenberg
model (7.1). The meaning of Eq. (7.7) is that the spin vector Sm precesses
in a local magnetic field B, with cartesian components Bα = −∂H/∂Sm

α .
In spin dynamics simulations (see below), the Landau-Lifshitz equation is
integrated numerically for a large square lattice, typically with 72 × 72
lattice points. As initial condition a vortex is placed on the lattice and the
trajectory X(t) of the vortex center is monitored.
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This trajectory is then compared with theory, i. e. with the solution of an
equation of motion for the vortex. The standard procedure to obtain this
equation consists in taking the continuum limit Sm(t) = S(r, t) where r is
a vector in the XY plane, and in developing a collective variable theory.
The simplest version makes the travelling wave ansatz [16, 17]

S(r, t) = S(r − X(t)) , (7.8)

where the functions Sα on the r. h. s. describe the vortex shape. (Strictly
speaking, these functions should bear an index to distinguish them from
the functions on the l. h. s.)

As the equation of motion is expected to contain a force, the following
operations are performed with Eq. (7.7) which yield force densities

S
(

∂S
∂Xi

× dS
dt

)
= −S

(
∂S
∂Xi

×
[
S × δH

δS

])
= −S2 δH

δS
∂S
∂Xi

= −S2 ∂H
∂Xi

(7.9)
with i = 1, 2 and Hamiltonian density H. According to the ansatz (7.8),

dS
dt

=
∂S
∂Xj

Ẋj (7.10)

is inserted, with summation over repeated indices. Integration over r then
yields the equation of motion

GẊ = F , (7.11)

with the force
Fi = −

∫
d2r

∂H
∂Xi

, (7.12)

and the gyrocoupling tensor

Gij =
∫

d2r S
∂S
∂Xi

× ∂S
∂Xj

=
∫

d2r

{
∂φ

∂Xi

∂ψ

∂Xj
− ∂φ

∂Xj

∂ψ

∂Xi

}
. (7.13)

The expression on the right was obtained by introducing the two canonical
fields

φ = arctan(Sy/Sx), ψ = Sz (7.14)

instead of the three spin components Sα with the constraint S = 1. The
static vortex structure is [10]

φ0 = q arctan
x′

2

x′
1

(7.15)

ψ0 = p

[
1 − a2

1

(
r′

rv

)2
]

for r′ 	 rv (7.16)

ψ0 = pa2

√
rv

r′ e
−r′/rv for r′ 
 rv (7.17)
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where the constants a1 and a2 can be used for a matching, and

r′ = r − X . (7.18)

The integral then yields

Gij = Gεij , G = 2πqp (7.19)

where εij is the antisymmetric tensor. Interestingly, only the value p of the
Sz component at the vortex center enters the final result [18], i. e., the
out-of-plane vortex structure needs not to be explicitly known here.

As G is antisymmetric, Eq. (7.11) is identical to the Thiele equation (7.6)
with gyrovector G = Gez. Since p = 0 and thus G = 0 for planar vortices,
the Thiele equation is incomplete in this case. Obviously there must be a
non-vanishing term on the l. h. s., this will be an inertial term (section 2.2).
Moreover, the ansatz (7.8), and thus the Thiele equation, is only valid for
steady-state motion when the vortex shape is rigid (in the moving frame).
This includes not only translational motion with constant velocity V0 but
also rotational motion with constant angular velocity ω0. Both types of mo-
tion can be obtained by considering two non-planar vortices at a distance
2R0 which drive each other by their Coulomb force F = 2πq1q2/(2R0).
For a certain velocity this force is compensated by the gyrocoupling force
(7.3). In fact, since each vortex carries two charges, there are four physi-
cally different scenarios which represent stationary solutions of the Thiele
equation. They fall into two classes: If the gyrovectors of the two vortices
are parallel (i. e., q1p1 = q2p2), a vortex-vortex or vortex-antivortex pair
rotates with ω0 on a circle with radius R0 around each other, where

ω0R
2
0 =

1
2

q2

p1
=

1
2

q1

p2
. (7.20)

If the gyrovectors are antiparallel, the pair performs a parallel transla-
tional motion with velocity V0 and distance 2R0, where V0R0 = q2/(2p1) =
−q1/(2p2).

Both kinds of scenarios also appear for vortices in (super)fluids [13, 14].
However, in these contexts there are only two physically different situations:
vortex-vortex rotation and vortex-antivortex translation.

2.2 Vortex mass
The above scenarios for magnetic vortices were not tested by computer
simulations until 1994, and the results were surprising [22, 23]: Using a
square or circular system with free boundary conditions, two of the four
scenarios (vortex-vortex rotation and vortex-antivortex translation) were
confirmed, but not the two other ones: For vortex-antivortex rotation and
vortex-vortex translation the observed trajectories showed pronounced os-
cillations around the trajectories predicted by the Thiele equation (7.6) or
(7.11), see Fig. 2.
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FIGURE 2. Vortex-antivortex rotation on a circular system with radius L = 36
and free boundary conditions. Only the trajectory of the vortex center is plotted,
the center of the antivortex is always opposite. The mean trajectory is a circle
with radius R0 = 15.74.

In fact, such oscillations had already been predicted [20, 21] by assuming
that the vortex shape in the travelling wave ansatz (7.8) depends explic-
itly on the velocity Ẋ. This leads to an additional term (∂S/∂Ẋj) Ẍj in
Eq. (7.10) and thus to an inertial term in the Thiele equation

MẌ + GẊ = F , (7.21)

where M is the mass tensor

Mij =
∫

d2r S
∂S
∂Xi

× ∂S
∂Ẋj

=
∫

d2r

{
∂φ

∂Xi

∂ψ

∂Ẋj

− ∂φ

∂Ẋj

∂ψ

∂Xi

}
. (7.22)

This integral can be easily evaluated if the vortex is placed at the center of a
circular system with radius L and free boundary conditions. The dominant
contribution stems from the outer region ac ≤ r ≤ L, with ac � 3rv, where
the velocity dependent parts of the vortex structure are [10, 24]

ψ1 =
q

4δr2 (x2Ẋ1 − x1Ẋ2) . (7.23)

φ1 = p(x1Ẋ1 + x2Ẋ2) (7.24)
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Together with the static parts φ0 from Eq. (7.15) and ψ0, which falls off
exponentially outside the core (7.2), the rest mass M is obtained

Mij = Mδij , M =
πq2

4δ
ln

L

ac
+ CM . (7.25)

The constant CM stems from the inner region 0 ≤ r ≤ ac, where the
vortex structure is not well known due to the discreteness, but CM is not
important for discussion. There is also a velocity dependent contribution to
the mass which is negligible because the vortex velocities in the simulations
are always much smaller than the spin wave velocity, which is the only
characteristic velocity of the system.

The above vortex mass is consistent with other results in the literature:
Generalizing the momentum of solitons in 1D magnets [25], the vortex
momentum

P = −
∫

d2r ψ∇φ (7.26)

is defined and can be shown to be a generator of translations [21]. Then
P = MẊ results, but P is not a canonical momentum because the Poisson
bracket {P1, P2} = G does not vanish. For the kinetic energy MẊ2/2 is
obtained [10], therefore this energy and the rest energy E = π ln(L/ac)+CE

both show the same logarithmic dependence on the system size L.
For a continuum model of a 2D ferromagnet with uniaxial symmetry and

a magnetostatic field, a slightly different vortex momentum was defined
[26], namely

PPT =
∫

d2r r × g , (7.27)

where g = ∇φ×∇ψ represents the gyrovector density, cf. Eq. (7.13), which
is related to the gyrovector as described below Eq. (7.19). The definition
(7.27) depends on the choice of origin of the system and is not a generator
of translations. Nevertheless, if the time derivative of PPT is set equal to
the force F on the vortex, the generalized Thiele equation (7.21) is again
obtained [21]. Therefore the vortex dynamics is qualitatively the same, as
will be discussed now.

Eq. (7.21) has the same form as that for an electric charge e in a plane
with a perpendicular magnetic field B and an in-plane electric field E. I. e.,
the vortex motion is completely analogous to the Hall effect: The trajectory
is a cycloid with frequency

ωc =
G

M
, (7.28)

cf. the cyclotron frequency eB/(Mc), where c is the speed of light. It is
possible to transform to a frame where the force F vanishes and the vortex
rotates (i. e., guiding center coordinates [27, 26, 21]).

The cycloidal trajectories can explain qualitatively the oscillations ob-
served in the simulations (Fig. 2). Moreover, the fact that oscillations are
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observed only for two of the four scenarios for two vortices (see above) can
also be explained: A generalization of the ansatz (7.8) to the case of two
vortices yields two coupled equations of motion with a 2-vortex mass tensor
[28, 23]. In the case of vortex-vortex rotation and vortex-antivortex trans-
lation there are cancellations in this mass tensor which prevent oscillations,
in agreement with the simulations.

However, a quantitative comparison of Eq. (7.21) and the simulations
reveals two severe discrepancies [23, 24]:
(1) The mass M = G/ωc which is obtained from Eq. (7.28) by inserting
the observed frequency, turns out to be much larger than predicted by
Eq. (7.25). Moreover, the dependence on the system size L is linear, while
Eq. (7.25) predicts a logarithmic dependence.
(2) Instead of the one frequency ωc of Eq. (7.28), two frequencies ω1,2 are
observed in the spectrum of the oscillations (Fig. 3). As ω1 and ω2 are close
to each other, a pronounced beat is observed in the trajectories (Fig. 2):
The cycloidal frequency is (ω1+ω2)/2, but the shape of the cycloids changes
slowly with (ω2 − ω1)/2.

Both discrepancies have nothing to do with 2-vortex effects, because they
also occur in 1-vortex simulations [24]. Here the vortex is driven by image
forces, in analogy to electrostatics. The most convenient geometry is a
circular system with radius L and free boundaries. In this case there is only
one image vortex, which has opposite vorticity but the same polarization
[22, 29]. The radial coordinate of the image is L2/R, where R is the vortex
coordinate. The vortex trajectory can be fitted very well to a superposition
of two cycloids. This observation will be explained in the next section.

2.3 Hierarchy of equations of motion
Recently a general collective variable theory was developed for nonlinear
coherent excitations in classical systems with arbitrary Hamiltonians [24].
In this theory the dynamics of a single excitation is governed by a hier-
archy of equations of motion for the excitation center X(t). The type of
the excitation determines on which levels the hierarchy can be truncated
consistently: “Gyrotropic” excitations are governed by odd-order equations
and thus do not have Newtonian dynamics, e. g. Galileo’s law is not valid.
“Non-gyrotropic” excitations are so-to-speak the normal case, because they
are described by even-order equations, i. e. by Newton’s equation in the first
approximation.

Examples of the latter class are kinks in 1D models like the nonlinear
Klein-Gordon family and the planar vortices of the 2D anisotropic Heisen-
berg model (7.1). The non-planar vortices of this model represent the sim-
plest gyrotropic example. 3D models have not been considered so far.

The basis of the above collective variable theory is a “generalized trav-
elling wave ansatz” for the canonical fields in the Hamiltonian. For a spin
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FIGURE 3. Upper panel: Fourier spectrum of the radial displacements
r(t) = R(t) − R0 of the vortex in Fig. 2 from the mean trajectory; the inte-
gration time is 20000 in units (JS)−1. Lower panel: Spectrum of the azimuthal
displacements ϕ(t) = φ(t)−ω0t from the mean trajectory, where ω0 is the angular
velocity.

system, as considered in this review, this ansatz reads

S(r, t) = S(r − X, Ẋ, Ẍ, . . . ,X(n)) . (7.29)

This generalization of the standard travelling wave ansatz (7.8) yields an
(n+1)th-order equation of motion for X(t), because Eq. (7.10) is replaced
by

dS
dt

=
∂S
∂Xj

Ẋj +
∂S
∂Ẋj

Ẍj + · · · + ∂S

∂X
(n)
j

X
(n+1)
j . (7.30)

The same procedure as described below Eq. (7.10) then yields the (n+1)th-
order equation.

The case n = 1 corresponds to the second-order equation (7.21). In
one dimension the antisymmetric tensor G from Eq. (7.13) vanishes and
(7.21) reduces to a Newtonian equation. The same is true for the 2D planar
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vortices where Gij = 0 because p = 0 in Eq. (7.19).
The case n = 2 yields the third-order equation

A
...
X + MẌ + GẊ = F(X) (7.31)

with the third-order gyrotensor

Aij =
∫

d2r S
∂S
∂Xi

× ∂S
∂Ẍj

=
∫

d2r

{
∂φ

∂Xi

∂ψ

∂Ẍj

− ∂φ

∂Ẍj

∂ψ

∂Xi

}
. (7.32)

For the above 1D models and the 2D planar vortices nothing changes be-
cause Aij turns out to be zero (below). But the 2D non-planar vortices are
the first gyrotropic example.

For the calculation of the integral (7.32) the acceleration dependence of
the outer region of the vortex is needed [24]

ψ2 =
p

4δ
(x1Ẍ1 + x2Ẍ2) (7.33)

φ2 =
q

8δ
(x2Ẍ1 − x1Ẍ2) ln

r

eL
. (7.34)

Together with the static parts φ0 and ψ0 this yields

Aij = Aεij , A =
G

16δ
(
L2 − a2

c

)
+ CA , (7.35)

where the constant CA stems from the inner region.
In the simulations the dynamic in-plane structures φ1 and φ2 cannot be

clearly observed because it is difficult to subtract the static structure φ0
which varies drastically with the vortex position. However, the dynamic
out-of-plane structures, ψ1 and ψ2, can be observed and distinguished by
looking at specific points of the trajectory: e. g., at the turning points in
Fig. 4 the acceleration is maximal while the velocity is small. Figs. 5, 6
confirm the structure of ψ2 in the outer region, they also show that this
structure oscillates as a whole, with frequency (ω1 + ω2)/2. An alternative
interpretation of this oscillating structure in terms of certain “quasilocal”
spinwaves will be given in section 2.4.

As ψ2 and φ2 depend linearly on Ẍj and as Aij contains derivatives with
respect to Ẍj , the leading contribution to Aij is independent of velocity and
acceleration. There are higher-order terms which are negligible, though; cf.
the discussion of the mass. For these reasons the l. h. s. of the equation of
motion (7.31) is linear.

The radial Coulomb force F on the r. h. s. can be linerarized by expanding
in the small radial displacement r(t) = R(t)−R0 from the mean trajectory
which is a circle of radius R0

F (R) = F (R0) + F ′(R0)r . (7.36)
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FIGURE 4. First part of the trajectory of a vortex with q = p = 1 on a circular
system with radius L = 36 and free boundary conditions. The small diamonds
(�) mark the position of the vortex in time intervals of 10(JS)−1.

The third-order equation of motion (7.31) then has the following solutions
[24]: A stationary solution and a superposition of two cycloids

r(t) = a1 cosω1t + a2 cosω2t (7.37)
R0ϕ(t) = b1 sinω1t + b2 sinω2t

where ϕ = φ − ωot is the azimuthal displacement. The results for ω1,2 can
be considerably simplified for R0 	 L, which is the case in the simulations.
The frequencies ω1,2 form a weakly-split doublet. The mean frequency de-
pends on A, but not on M :

ω̄ =
√

ω1ω2 =
√

G/A ∼ 1/L (7.38)

for large L. Contrary to this, the splitting of the doublet

∆ω = ω2 − ω1 = M/A ∼ lnL

L2 (7.39)

is proportional to the mass.
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FIGURE 5. Out-of-plane structure of the vortex at the 7th turning point of the
trajectory in Fig. 4. Here the acceleration has a maximum and points in the radial
direction, while the velocity is small and points in the azimuthal direction.

As G = 2πqp is known from Eq. (7.19), the last two equations are suf-
ficient to determine M and A by using the frequencies ω1,2 observed in
the simulations. In Ref. [24] the data for lattice sizes L = 24 . . . 72 were
extrapolated for R0 → 0 by using several runs for small R0/L, because the
theoretical predictions (7.25) and (7.35) were made for R0 = 0. For the
anisotropy δ = 0.1 the data for A are well represented by A = CLα + A0
with α = 2.002, C = 4.67 and A0 = 40. This agrees rather well with the
L2-term in (7.35); the constant CA cannot be tested. However, M ≈ 15
is nearly independent of L, in contrast to the logarithmic dependence in
Eq. (7.25). This can be connected to the observation that the velocity
dependent part ψ1 seems to approach an L-independent constant at the
boundary, in contrast to the predicted 1/r-decay in Eq. (7.23).

A very interesting point is the discussion of the size dependence of the
different terms in the equation of motion (7.31). As every time derivative
of Xi contributes a factor of ω1,2 = O(1/L), the orders of the terms are
A

...
Xi = O(1/L),MẌi = O(lnL/L2) and GẊi = O(1/L). Therefore the

strong third-order term cannot be neglected when the weak second-order
term is retained. This is the reason for the two severe discrepancies between
the simulations and the predictions of the second-order equation (7.21),
which were discussed in section 2.2. However, the neglection of both the
second- and third-order terms represents a consistent first approximation,
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FIGURE 6. Same as in Fig. 5, but at the 8th turning point, where the accelaration
points in the negative radial direction.

namely, the Thiele equation (7.11).
The next consistent approximation in the hierarchy is the third-order

equation (7.31), as discussed above. An investigation of even higher-order
terms in Ref. [24] confirms the conjecture that only the odd-order equations
of the hierarchy represent valid approximations for gyrotropic excitations
(For non-gyrotropic ones all members of the hierarchy are even).

The odd higher-order equations predict additional frequency doublets
ω3,4, ω5,6 etc. These frequencies normally vanish in the background of the
spectrum. However, they become visible if the simulations are specially
designed: For a vortex in the center of a quadratic system with antiperiodic
boundary conditions, all image forces cancel exactly and only the small
pinning forces remain. For this configuration two additional doublets with
strongly decaying amplitudes were indeed observed [24].

Finally we mention that cycloidal vortex trajectories have been found
not only in field-theoretic models for magnets [26, 30], but also for (1) neu-
tral and (2) charged superfluids:
(1) In the Ginzburg-Landau theory, which describes vortex motion in thin,
neutral, superfluid films, the usual assumption of incompressibility was
dropped [31]. A moving vortex then exhibits a density profile in the region
outside the vortex core. This profile is similar to the velocity dependent out-
of-plane structure (7.23) of the magnetic vortices, and the consequences are
also similar: There are small-amplitude cycloids [32] superimposed on the
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trajectories in both 2-vortex scenarios (vortex-vortex rotation and vortex-
antivortex translation, see end of section 2.1).
(2) For the dynamics of vortices in a charged superfluid the same kind of
superimposed cycloids was found, again for both 2-vortex scenarios [33].
Here a field-theoretic model was used, where a charged scalar field is min-
imally coupled to an electromagnetic field and a φ4-potential is included;
this is proposed as a phenomenological model for a superconductor.

However, compared to the dynamics of magnetic vortices as reviewed in
this article, there is an important difference: For all the models discussed
above, there is only one cycloidal frequency; correspondingly the vortex
dynamics is governed by second-order equations of motion.

It will be interesting to study many other physical contexts in which topo-
logical vortex structures appear (e. g., dislocations in solids and flux lat-
tices, vortex filaments in compressible fluids and complex Ginzburg-Landau
models). We expect that the details of the vortex dynamics differ, depend-
ing on the order of the equations of motion, for instance (see beginning of
this section).

2.4 An alternative approach: coupling to magnons
The spirit of the generalized travelling wave ansatz (7.29) differs consider-
ably from the well-known standard ansatz, which reads for a spin system

S(r, t) = S0(r − X(t)) + χ(r, t) . (7.40)

Here S0 represents the static structure of a single nonlinear coherent exci-
tation (a vortex in our case) and χ represents a magnon field (or meson
field for other kinds of systems). Since S0 is static, but the shape of the
excitation usually depends on the velocity, a part of the dynamics obviously
must be taken over by the spin waves.

Based on earlier work, this concept has very recently been carried through
[40]. First, the magnon modes in the presence of a single static vortex were
obtained by a numerical diagonalization for relatively small, discrete sys-
tems with fixed (Dirichlet) boundary conditions (BC) [34, 35, 36]. Analyti-
cal investigations were done for planar vortices in antiferromagnets [37, 39]
and ferromagnets [38, 39]. These articles demonstrated nontrivial proper-
ties of the eigenmodes, e. g., the presence of quasi-local (resonance type)
[34, 35] or truly local [36] modes. Moreover, the relevance of these modes
for the vortex dynamics was shown, in particular the transition between
planar and non-planar vortices was investigated [34, 35].

However, for non-planar vortices all this was based on numerical diago-
nalization. But very recently, a general theory of vortex-magnon coupling
was developed for arbitrarily large systems with circular symmetry and
general BC [40]. The S-matrix for vortex-magnon scattering was calculated
and expressed by Bessel and Neumann functions. Using the S-matrix, gen-
eral formulas for the eigenfrequencies were obtained, as a function of the
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parameters and size of the system, and for different BC, namely for Dirich-
let (fixed) and Neumann (free) BC.

There is a very good agreement between the frequencies of the two lowest
quasi-local modes and the frequencies ω1,2, which were observed for the
vortex trajectories in spin dynamics simulations for the discrete system
(section (2.2). The error is only 0.8 % for the mean frequency ω̄ =

√
ω1ω2

and 4 % for the splitting ∆ω = ω2 − ω1. This demonstrates very clearly
that the cycloidal vortex motion is accompanied by certain magnon modes,
namely by quasi-local modes. These modes are both extended (like the other
magnon modes) and local, because they exhibit a localized structure around
the vortex center (Fig. 7). The structure of these modes is qualitatively
similar to the dynamic vortex structure, which oscillates with the rythm
of the cycloidal motion (Figs. 5, 6). However, only the out-of-plane part ψ
of this structure can be clearly observed, and only in the outer region (see
section 2.3).

As the frequencies ω1,2 in the cycloidal vortex motion are the same as
the frequencies of the lowest quasi-local modes, and as the latter ones were
calculated analytically, the parameters A and M in the third-order equation
of motion (7.31) can also be calculated analytically [40]. The results can be
expressed by the first root x1 of the equation aJ1(x) + bxJ ′

1(x)rv/L = 0,
where J1 is a Bessel function. The values for a and b define the boundary
conditions: a = 0, b = 1 for free BC and vice versa for fixed BC.

The general result
A =

π

2δx2
1
L2 (7.41)

in the limit of large L specializes to A = 4.634L2 for δ = 0.1 and free BC,
which agrees perfectly with the result 4.67L2.002 from the simulations (sec-
tion 2.3). For fixed BC A = 1.07L2 is about four times smaller. The general
result for the vortex mass M is much more complicated than Eq. (7.41) and
can be found in Ref. [40]. The numerical value M = 14.74 for δ = 0.1 and
free BC agrees well with the value 15 from the simulations (section 2.3).
However, both results are independent of the system size L, in contrast to
the logarithmic L-dependence (7.25) predicted by the integral (7.22) in the
collective variable theory, cf. the discussion in section 2.3. For fixed BC,
M = 7.661 is obtained, about half of the above value for free BC.

The fact that both the mass M and the factor A in the third-order
gyrocoupling term depend strongly on the boundary conditions appears
very natural because the vortices are not localized excitations like solitons
in 1D; the in-plane vortex structure falls off as 1/r.

It is important to note that the higher-lying quasi-local modes could be
calculated by the same methods and are expected to agree with the higher-
order doublets ω3,4, ω5,6, . . . appearing in the spectrum of the trajectories.
Each additional doublet corresponds to taking into account two additional
orders in the generalized travelling wave ansatz (7.29), as discussed in sec-
tion 2.3.
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FIGURE 7. One of the two low-lying quasi-local spin wave modes in a complex
representation, obtained by a numerical diagonalization for a circular system with
a vortex in its center, from [29] (In this reference m corresponds to our ψ).

Finally, we mention the recent development of a very general collec-
tive variable theory for an arbitrary Hamiltonian H[φ, ψ] supporting non-
linear coherent excitations, without making any approximations [29, 41].
This theory starts with the standard ansatz for φ(r, t) and ψ(r, t), cf.
Eq. (7.40), but imposes constraints between the meson fields and the func-
tions φ0(r;X1, . . . , Xm) and ψ0(r;X1, . . . , Xm), which describe the shape
of the excitation. Here the Xi(t) are m collective variables for the position
and the internal modes of the excitation (if there are any). There are then
2m constraints in order to preserve the correct number of degrees of free-
dom. Consequently, the mathematical formalism is based on the classical
limit of Dirac’s quantum mechanics for constraint systems. The equations
of motion for the collective variables are a generalization of Thiele’s equa-
tion (7.11). The rank of the gyrocoupling matrix G is used to classify the
excitations: In the case of vanishing G the excitations have an effective
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mass and exhibit Newtonian dynamics; in the case of regular G, the ex-
citations behave like charged, massless particles in an external magnetic
field, similar to the gyrotropic excitations defined in section 2.3. The above
theory is a generalization of earlier work of Tomboulis [42], Boesch et al.
[43], and Willis et al. [44], which applies only to “standard” Hamiltonians
(i. e., consisting of the sum of kinetic and potential energy terms). This
generalization is necessary, e. g., in the case of magnetic systems which
cannot be modelled by standard Hamiltonians.

3 Effects of thermal noise on vortex dynamics

3.1 Equilibrium and non-equilibrium situations
As already mentioned in the introduction, below TKT vortex-antivortex
pairs appear and vanish spontaneously due to thermal fluctuations. But
these pairs do not move and therefore give no contribution to the dynamic
correlation functions. Above TKT, some of the pairs unbind and the free
vortices can move. In section 4, this situation will be investigated by a
phenomenological theory, namely the vortex gas approach.

On the other hand, the effect of thermal fluctuations on single vor-
tices can be studied by putting a vortex in a thermal bath. This is a
non-equilibrium situation, in fact it takes a long time until equilibrium
is reached: The vortex very slowly approaches the boundary where it anni-
hilates together with an image antivortex; during this process spin waves
are radiated which are eventually thermalized.

The vortex motion with thermal noise is a random walk process, where
a vortex diffusion constant can be defined. This offers the possibility to
develop an ab-initio theory for the dynamic form factors. This can be
compared with the phenomenological vortex gas approach, which assumes,
however, a ballistic motion (section 4).

3.2 Collective variable theory and Langevin dynamics
simulations

In principle, the generalization of a collective variable theory to finite tem-
peratures is a straightforward procedure consisting of 4 steps:
(1) Thermal noise and damping (because of the fluctuation-dissipation the-
orem) are introduced into the microscopic equations.
(2) A travelling wave ansatz for a nonlinear coherent excitation is made
which yields equations of motion with stochastic forces acting on the exci-
tation.
(3) The solutions of these stochastic ode’s are used to calculate the vari-
ances of the trajectory, which contain as a factor an effective diffusion
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constant for this excitation. The dependences of this constant on the tem-
perature and other parameters can be discussed.
(4) The predicted variances and the effective diffusion constant are com-
pared with the same quantities as observed in Langevin dynamics simula-
tions.

Step 1: Introduction of thermal noise

This step is problematic, although there are many papers in which the
problems are either not appreciated or hidden. There are basically two
major problems:
(a) The microscopic equations can often be written in different ways which
are equivalent. In the case of spin systems, the Landau-Lifshitz equation for
the spin S is equivalent to the Hamilton equations for φ and ψ. However,
if noise is implemented, e. g., by an additive term, the results may be
qualitatively different (see below).
(b) Typically, either additive or multiplicative noise can be used, but many
papers do not give a reason why one of the two types was chosen. However,
the results are usually qualitatively different for the two types of noise.

In the case of the vortex dynamics, both major problems have been
investigated in a preprint [45]: Additive noise in the Hamilton equations
yields a vortex diffusion constant DV which depends logarithmically on
the system size, while in the multiplicative case DV is independent of the
system size. Additive noise in the Landau-Lifshitz equation [46, 47] yields a
diffusion constant with the same logarithmic term as in the case of additive
noise in the Hamilton equations, but the small constants that appear in
addition to the logarithmic term differ for the two cases because the vortex
core gives different contributions.

Unfortunately, the additive noise in the Landau-Lifshitz equation has
an unphysical feature, namely the spin length is not conserved. In the
collective variable theory this problem is overcome by a constraint, while
in the simulations a renormalization of the spin length is necessary after
every time step2.

However, taking additive noise and using such tricks are not really nec-
essary, because there is a better noise term that eventually leads to the
same results, but which is well motivated on physical grounds and which
conserves the spin length [45, 48]: In the Landau-Lifshitz equation (7.7)
each spin Sm precesses in a local magnetic field B which is the gradient of
the energy with respect to the spin components. This local field is the only
way through which the spin Sm can feel any changes in its environment.
Adding a thermal noise term to the local field thus accounts for the interac-

2Technically, this is achieved by adding a Lagrange parameter multiplying the
constraint [46]. This means that a multiplicative noise term appears besides the
additive one.
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tion of the spin with magnons, phonons and any other thermally generated
excitations. The stochastic Landau-Lifshitz equation then reads

dSm

dt
= −Sm ×

[
∂H

∂Sm
+ hm(t)

]
− εSm × dSm

dt
. (7.42)

Because of the cross product with Sm this noise is multiplicative. In Ref.
[45] Gaussian white noise is used:

< hm
α > = 0 (7.43)

< hm
α (t)hn

β(t
′) > = Dδmnδαβδ(t − t′) , (7.44)

where D = 2εkBT is the diffusion constant and α, β denote cartesian com-
ponents. Following Refs. [16, 17, 18], a Gilbert damping with damping
parameter ε was chosen in Eq. (7.42), chiefly because it is isotropic, in
contrast to the Landau-Lifshitz damping [49].

Strictly speaking, the three equations (7.42) do not really represent
Langevin equations, because all the components of dSm/dt appear in each
equation due to the cross product. To properly introduce the noise, one
first has to group all the time derivatives on the l. h. s. of the equation, and
only then one can introduce independent white noise terms for each spin
component. But this procedure eventually produces only a renormalization
of the damping parameter ε in the order of ε2. In the simulations values of
ε in the order of 10−3 were used, and therefore the correction factor can
even be neglected.

Another, even more important issue is the interpretation of the stochastic
differential equation (7.42). As the noise is multiplicative, Ito and Stratono-
vic̆ interpretations do not coincide, in contrast to the additive noise case [50,
51]. In principle, when thinking of thermal excitations interacting with the
spins, there would be a finite correlation time which would lead to a colored
noise term. Taking white noise means taking the limit of zero correlation
time, and therefore the stochastic Landau-Lifshitz equation (7.42) must be
interpreted in the Stratonovic̆ sense.

As noted in the beginning of this subsection, the remaining three steps
of the stated procedure are straightforward. Therefore we present here only
the results for the case of non-planar vortices.

Step 2: Stochastic equation of motion

The generalized travelling wave ansatz (7.29) up to order n = 2 yields
the third-order stochastic ode

A
...
X + MẌ + GẊ = F(X) + Fmult(t) (7.45)

The tensors A,M and G are the same as in Eqs. (7.19), (7.25) and (7.35),
except that all the vanishing components in these three expressions are now
replaced by damping terms proportional to ε. Thus the damping appears
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at every order in Eq. (7.45). Without Fmult, the solution is obtained in
complete analogy to section 2.3: Two cycloids are superimposed on an
outward spiral on a circle (Fig. 8). In the simulations the purpose of the
damping is to dissipate the energy which is supplied to the system by the
kicks of the noise. Therefore the range of ε (for a given system size L) must
be determined in which the cycloidal frequencies ω1,2 in the trajectories are
not influenced by the damping [46]. The result is the condition εL 	 6.

FIGURE 8. Schematic sketch of the vortex motion as governed by the Lan-
dau-Lifshitz equation with Gilbert damping. The plot is approximate and does
not correspond to an actual simulation.

The stochastic force in (7.45)

Fmult
i (t) =

1
S2

∫
d2r

∂S
∂Xi

h(r, t) , (7.46)

which stems from the multiplicative noise in Eq. (7.42), has zero mean and
the correlation function [45]

< Fmult
i (t)Fmult

j (t′) >= Dδijδ(t − t′)
∫

d2r
∂S
∂Xi

∂S
∂Xj

. (7.47)

Putting the vortex on the center of a circular system of radius L with free
BC, the leading contribution to the variance is obtained [47] by using the
static vortex structure (7.15) to (7.17)

Var
(
F st

i

)
= DV δ(t − t′) (7.48)
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with the vortex diffusion constant

DV = Dπ

(
ln

L

ac
+ C

)
. (7.49)

Here C stems from the inner vortex region 0 ≤ r ≤ ac and is obtained by
numerical integration [47].

The variance (7.48) is a remarkable result for two reasons:
(a) The stochastic forces acting on the vortex represent additive white noise
with an effective diffusion constant. The point is that this was shown by
going from the microscopic level, where multiplicative white noise was im-
plemented, to the level of the collective variables. This approach is much
more satisfying than assuming ad hoc a noise term on the collective variable
level.
(b) The mean and variance of the stochastic force (7.46) turn out to be the
same as those of the stochastic force

F add
i =

1
S2

∫
d2r

(
S × ∂S

∂Xi

)
η(r, t) , (7.50)

which resulted from starting with additive white noise η(r, t) in the Landau-
Lifshitz equation; this noise has already been discussed in step 1. This
equivalence of the two forces means that in the case of the vortices additive
noise and the multiplicative noise in Eq. (7.42) have the same effect on the
vortex dynamics. This is a nontrivial result, because normally a qualitative
difference is expected (cf. the discussion in step 1). Qualitatively, this result
can be understood by noting that the renormalization of the spin length in
the case of additive noise introduces effectively a multiplicative noise term,
in addition to the additive one (cf. footnote in step 1).

Step 3: Variances of the vortex trajectory

The inhomogeneous stochastic third-order ode (7.45) can be solved [47]
by a standard Green function formalism, because the l. h. s. is linear and
the deterministic force F(X) on the r. h. s. can be linearized by expanding
in the displacement x(t) = X(t)−X0(t) from the mean trajectory X0(t) on
which the vortex is driven by F, cf. Eq. (7.36). Knowing x(t), the variance
matrix

σ2
ij(t) = 〈xixj〉 − 〈xi〉〈xj〉. (7.51)

can be calculated; here i, j denote polar coordinates R and φ. Each element
of the matrix (7.51) turns out to consist of 36 terms. In order to facilitate
the discussion several simplifications can be made which give the following
results [47]:

σ2
RR(t) =

DV

(2π)2

[
t +

1
4β

(1 − e−2βt) − 2
ω̄

e−βt sin ω̄t +
1
4ω̄

e−2βt sin 2ω̄t

]
,

(7.52)
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with ω̄ =
√

ω1ω2 and β � ε/5 is the damping constant for the vortex mo-
tion. For large times, t 
 1/β, only the first term remains and the variance
is linear in time: the standard random walk result. Interestingly, this re-
sult is identical to the one which is obtained by omitting the second- and
third-order terms in the stochastic equation of motion (7.45). This obvi-
ously means that these two terms have the following effects:
(a) They produce the oscillatory parts in Eq. (7.52), which are naturally
connected to the cycloidal oscillations in the vortex trajectories,
(b) for small times, t 
 1/β, the slope of σ2

RR, averaged over the oscilla-
tions, is larger by a factor of 3/2 compared to late times.

However, the first effect cannot be observed in the simulations because
the oscillations are hidden in strong discreteness effects (see next step). For
this reason we discuss only the long-time behavior of the other elements of
the variance matrix

σ2
Rφ(t) =

1
2

DV

(2π)2
kF ′

0

2π
t2 (7.53)

σ2
φφ(t) =

DV

(2π)2

[
t +

1
3

(
kF ′

0

2π

)2

t3

]
(7.54)

with k = 1−F0/(F ′
0R0) and F0 = F (R0), F ′

0 = F ′(R0). The quadratic and
cubic time dependences are non-standard results which appear in addition
to the standard linear dependence because the deterministic force field
F (R) = F0 +F ′

0(R−R0) is inhomogeneous. F is a radial force which drives
the vortex in the azimuthal direction, due do the gyrocoupling force (7.3).
Therefore, only the φ-components of σ2 are affected: σ2

Rφ acquires a factor
kF ′

0/(2π) · t, while σ2
φφ acquires it twice.

Step 4: Langevin dynamics simulations

The stochastic Landau-Lifshitz equation (7.42) was solved numerically
for a large circular lattice with free BC and one vortex driven by a radial
image force [45, 46, 47]. The mean trajectory is an outward spiral. Therefore
a small damping parameter ε was chosen in order to allow long integration
times.

There are several qualitatively distinct temperature regimes. For 0 ≤
T < T3 ≈ 0.05 (in dimensionless units, where TKT ≈ 0.70 for the XY-
model [52, 53]), two frequencies are observed in the oscillations around
the mean trajectory which can be identified with the cycloidal frequencies
ω1,2 in section 2.3. As these frequencies are constant in the whole regime,
the third-order equation of motion (7.45) with temperature independent
parameters can in fact describe the vortex dynamics.

For T3 < T < T1 ≈ 0.3 the above two frequencies cannot be observed any
longer due to large fluctuations , thus the first-order equation of motion is
sufficient here. However, in some of the runs the vortex suddenly changed
its direction of motion; this will be explained in the next subsection.
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Finally, for T > T1, a single vortex theory is no longer adequate because
here the probability for the spontaneous appearance of vortex-antivortex
pairs in the neighborhood of the single vortex becomes too large.

0.001 0.010
T

0.01

0.10

1.00

D
V

FIGURE 9. Vortex diffusion constant DV as a function of temperature, for
ε = 0.002 and L = 24. Solid line: Theoretical results from Eq. (7.49); dashed
line: Adjusted DV from fitting the theoretical curves for σ2(t) to the simulation
data.

The linear, quadratic, and cubic time dependences in Eqs. (7.52) - (7.54)
are well confirmed by the simulations. Therefore the factor DV can be
fitted and turns out to differ from the predicted vortex diffusion constant
(7.49) only by a nearly temperature independent factor of about 1.8, see
Fig. 9 (The constant C in (7.49) was obtained by a numerical integration
over the vortex core [46]). This agreement is amazingly good, taking into
account that the simulations were performed for a discrete lattice while the
theory works in the continuum limit and uses additional approximations,
like the expansion (7.36) of the Coulomb force.

Although discreteness effects are hardly visible in the trajectories of non-
planar vortices at zero temperature [19], see also Fig. 2, these effects are
very important at finite temperatures: Fig. 10 clearly demonstrates that the
variance of the trajectory shows a pronounced peak whenever the vortex
center moves over a ridge of the Peierls-Nabarro potential. Due to this
effect, the predicted cycloidal oscillations (7.52) in the variance cannot be
observed.

3.3 Noise-induced transitions between opposite polarizations
As already mentioned above, a vortex in a thermal bath can suddenly
change its direction of motion on its outward spiral. A closer inspection
shows that this occurs because, opposite to the vorticity q, the polarization
p is not a constant of motion for a discrete system: The out-of-plane vortex
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FIGURE 10. Variance of the radial vortex coordinate averaged over 2000 real-
izations, for T = 0.003, ε = 0.002, and L = 24. The dashed vertical lines indicate
the times at which the vortex center moves over ridges of the Peierls-Nabarro
periodic potential.

structure can flip to the other side of the lattice plane due to the stochastic
forces acting on the core spins. Then the direction of the gyrovector (7.4) is
reversed and according to the Thiele equation (7.6) the direction of motion
is reversed as well (The same holds for the third-order equation (7.31)
because A ∼ G in Eq. (7.35)).

In a preprint [54] the cores of both planar and non-planar vortices are
described by a discrete Hamiltonian, similar to the one that was used for
the study of the instability at δ = δc [34, 11]. Using the stochastic Landau-
Lifshitz equation (7.42) the Fokker-Planck equation is derived. Its station-
ary solution exhibits two maxima for the two possible polarizations of the
non-planar vortex and a saddle point for the planar vortex, if the anisotropy
parameter δ lies in a certain temperature dependent range. The rate κ for
the transition from one polarization to the opposite one is calculated in
analogy to Langer’s instanton theory [55, 56], using the fact that for δ → δc

there is a soft mode among the normal modes which were obtained numer-
ically for a system with one vortex [35]. Taking into account only the four
innermost spins of the core, a very simple result is obtained

κ =
1
2π

√
(1 − δ)2 − (1 − δc)2 e− ∆E

kBT (7.55)

where ∆E is the energy difference between the planar and the non-planar
vortex. For δ = 0.1, the average transition times τ = κ−1 are 100440,
4837, and 1060 for T = 0.1, 0.15, and 0.2 respectively. Despite of the
crude model for the vortex core, these values agree rather well with the
transition times from Langevin dynamics simulations: τ = 92516, 4016,
and 825 for the above temperatures, with statistical errors of 22%, 6%, and
10%, respectively.
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4 Dynamics above the Kosterlitz-Thouless
transition

4.1 Vortex-gas approach
This is a phenomenological theory that is based on the following assump-
tions: Above TKT, the free vortices form a dilute gas and move either dif-
fusively [57, 58, 18] or ballistically [59]. In the former case, only spin auto-
correlation functions were calculated which lead to dynamic form factors
without wave vector dependence. Therefore we review only the latter case
[59]:

The density nv and the r. m. s. velocity v are the only free parameters.
According to Kosterlitz and Thouless [6]

nv ≈ 1
(2ξ)2

, (7.56)

where ξ is the static spin correlation length which diverges with an essential
singularity for T → TKT from above. Therefore the vortex gas is in fact
dilute if T is close enough to TKT.

The vortex density is homogeneous only on the average, locally the dis-
tribution is expected to be random. Therefore the net force is zero on
the average and the distribution around zero is Gaussian, which yields a
Maxwellian velocity distribution. This also holds for the non-planar vor-
tices because the velocity is proportional to the cross product of the net
force and the gyrovector, due to the Thiele equation (7.6).

However, the assumption of a ballistic vortex motion is problematic (sec-
tion 4.3). Under this assumption the dynamic spin-spin correlation func-
tions

Sαα(r, t) = 〈Sα(r, t)Sα(0, 0)〉 , α = x, y, z , (7.57)

and their space-time Fourier transforms, namely the dynamic form factors
Sαα(q, ω), can be calculated analytically [59].

There is an important difference between in-plane correlations (α = x, y)
and out-of-plane ones (α = z): As the in-plane vortex structure is not
localized (it has no spatial Fourier transform), Sxx = Syy are only globally
sensitive to the presence of the vortices and the characteristic length scale
is their average distance 2ξ. The dynamic form factor exhibits a “central
peak”, i. e. a peak around ω = 0, with the (squared) Lorentzian form

Sxx(q, ω) =
1

2π2

γ3ξ2

ω2 + γ2 [1 + (ξq)2]2
, (7.58)

where γ =
√

πv/(2ξ). Here the core structure did not enter the result,
because the theory was worked out on a length scale much larger than
the core radius rv. The integrated intensity Ix(q) of (7.58) is inversely
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proportional to the density nv, therefore the motion of the vortices actually
destroys correlations.

For the out-of-plane correlations Szz the situation is completely different:
The non-planar vortices have statically the localized Sz structure (7.16),
(7.17) which has a spatial Fourier transform, namely the static form factor
f(q). Therefore Szz is locally sensitive to the vortices, i. e., to their size and
shape. Consequently

Szz(q, ω) =
nv

4π5/2v

|f(q)|2
q

exp
[
− ω2

(vq)2

]
(7.59)

contains f(q) and is proportional to the density. This Gaussian central peak
simply reflects the Maxwellian velocity distribution.

For the planar vortices the situation is more complicated because they do
not have a static Sz structure but only a dynamic one, namely Eqs. (7.23),
(7.24). Therefore the form factor is velocity dependent which yields a
more complicated result for Szz [10], containing the same Gausssian as
in Eq. (7.59). However, the intensity of this peak is much smaller than
that of the peak (7.59), because the dynamic Sz components are about two
orders of magnitude smaller than the static ones [24].

4.2 Comparison with simulations and experiments
In combined Monte Carlo (MC) and Spin Dynamics (SD) simulations many
features of the predicted dynamic form factors (7.58) and (7.59) were con-
firmed:
(1) In-plane correlations: Both for the XY-model (δ = 1) [59] and for the
weakly anisotropic case (δ < δc) [60], the observed Sxx(q, ω) exhibits a cen-
tral peak for T > TKT (but not for T < TKT, as expected). The statistical
errors were too large to decide about the shape. However, the width Γx(q)
and the integrated intensity Ix(q) of the Lorentzian (7.58) can be fitted
to the data, in this way the free parameters ξ and v are determined. ξ(T )
agrees rather well with the static correlation length [6]. v(T ) increases with
T and then saturates; except of a factor of about 2, this agrees with a result
of Huber [58, 18] who assumed a diffusive vortex motion and calculated the
velocity autocorrelation function.

Central peaks were also observed in inelastic neutron scattering exper-
iments: For BaCo2(AsO4)2 [61] and Rb2CrCl4 [62] the measurement was
performed for only a few q-values. The reported widths of the peaks differ
from the predicted Γx(q) by factors of about 7 and 2.5, respectively. How-
ever, in this comparison one has to take into account that the theory has
neglected many features of the real quasi-2D materials: e. g., the lattice
structure, a pronounced in-plane anisotropy in the case of BaCo2(AsO4)2,
and quantum effects.

For CoCl2 graphite intercalation compounds the q-dependence of the
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central peak width was measured [2] and agrees qualitatively with Γx(q)
from the peak (7.58).

(2) Out-of-plane correlations: In MC-SD simulations, Szz(q, ω) exhibits a
central peak only together with a spin wave peak which sits on its shoulder
(in contrast to Sxx where the spin waves are strongly softened for small q).

For the XY-model (δ = 1), which bears planar vortices, the intensity
of the central peak is expected to be small (see end of section 4.1). Early
simulations with large statistical errors [10] had difficulties to substract the
spin wave peak and reported only upper bounds for the width Γz(q) and
the intensity Iz(q) of the central peak. Recent simulations with much better
statistics investigated the range δc < δ ≤ 1. Some papers did not find a
central peak [63, 53] others did [64].

However, for the weakly anisotropic case (δ < δc) with non-planar vor-
tices a central peak was indeed found [63]. Experimentally, Szz(q, ω) was
first not accessible because of intensity problems. Only the use of spin-
polarized neutron beams made it possible to observe a central peak in
Rb2CrCl4 and to distinguish it from the spin wave peak and from other
contributions [65]. The measured width is practically equal to the width of
the Gaussian (7.59). However, such a good agreement seems to be acciden-
tal because this material exhibits a breaking of the rotational symmetry in
the XY-plane which is described by a more complicated Hamiltonian [66].
For the same reason it is not clear whether this material actually belongs
to the case δ < δc.

4.3 Vortex motion in Monte Carlo simulations
The vortex gas approach assumes for single free vortices a diffusive [57, 58]
or ballistic [59] motion. Very recently this was tested in MC-simulations
by monitoring the position of each vortex in the system (free or bound
in a pair) as a function of time [67, 68, 69]. The surprising result is that
a single vortex very seldom moves freely over a larger distance. Normally
the vortex travels only one or a few lattice spacings until it annihilates
with the antivortex of a pair which meanwhile appeared spontaneously in
the neighborhood. Another possibility is that the single vortex docks on a
pair or a cluster of pairs and after a while one of the vortices leaves the
cluster. These results confirm suggestions that vortices cannot move freely
for more than a few lattice spacings, which were made by computing the
vortex density-density correlation function [70, 67].

However, the interpretation of these results is not clear at all. One pos-
sibility is that the vortex gas approach is not valid [67, 68], but then the
striking qualitative agreement with the central peaks in the simulations
and experiments is not understood. We favour another possibility: Proba-
bly only the effective vortex motion is important for the dynamic correla-
tion function Sxx(r, t) (7.57). This would mean that it does not matter if
a vortex is annihilated with the antivortex of a pair in the considered time
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interval [0, t], because the vortex of that pair continues the travel instead of
the original vortex. Only effective lifetimes are seriously affected. This pic-
ture is strongly supported by the mechanism [59] which yields the central
peak Sxx(q, ω) in Eq. (7.58): Looking at the orientation of one particular
spin in the XY-plane, one sees that its direction is reversed after the vortex
center has gone over this spin or its neighborhood. Thus Sx and Sy have
changed their signs after the vortex is gone, and therefore

Sxx(r, t) ∼ 〈(−1)N(r,t)〉 . (7.60)

Here N(r, t) is the number of vortices which pass an arbitrary noninter-
secting contour connecting (0, 0) and (r, t). Obviously, it does not matter
if those vortices are replaced by other vortices during their travel (except
maybe if the replacement happens just when the contour is passed). The
evaluation of Eq. (7.60) leads to the central peak (7.58) [59].

5 Conclusion

The vortex dynamics at zero temperature can be understood by a collective
variable theory: a generalized travelling wave ansatz that allows for defor-
mations of the vortex shape due to velocity, acceleration etc., leading to
equations of motion. In the case of non-planar vortices, the trajectories ex-
hibit a superposition of cycloids, which is fully confirmed by spin dynamics
simulations.

This collective variable theory can be generalized to finite temperatures,
yielding stochastic equations of motion. The vortex motion is diffusive and
agrees well with Langevin Dynamics simulations. Moreover, the rate of
noise-induced transitions between vortex states with opposite polarization
is calculated and agrees with the simulations.

Above the Kosterlitz-Thouless transition temperature, however, there is
so far no theory that can fully explain the central peaks that were ob-
served both in inelastic neutron scattering experiments and in combined
Monte Carlo and spin dynamics simulations. A qualitative agreement is
achieved by a phenomenological vortex gas theory, but one of its assump-
tions, namely ballistic vortex motion, is questionable. Probably, both the
diffusive character of the vortex motion and annihilation and creation pro-
cesses must be incorporated into a theory that can fully explain the above
facts. It is likely that the situation is similar for all Kosterlitz-Thouless
phase transitions, among many others.
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Spatial Optical Solitons
Yuri S. Kivshar

ABSTRACT A brief overview of the recent advances in the theoretical and
experimental study of self-focusing and self-trapping of light is given. Phys-
ical mechanisms of self-trapping and different types of self-trapped beams,
spatial optical solitons, and their stability are discussed including solitons
of non-Kerr media, self-trapped beams and their spiralling in photorefrac-
tive crystals, multi-hump solitons and solitonic gluons, discrete solitons in
wave guide arrays, etc. A brief summary of the earlier and more recent
experimental observations of spatial solitons, transverse instabilities, and
soliton interactions is included as well.

1 Introduction

Recent years have shown increased interest in the study of self-guided (or
self-trapped) optical beams that propagate in slab wave guides or bulk
nonlinear media without supporting wave guide structures. Such optical
beams are commonly referred to by physicists as spatial optical solitons.
Simple physics explains the existence of spatial solitons in a generalized
self-focusing nonlinear medium. First, we recall the physics of optical wave
guides. Optical beams have an innate tendency to spread (diffract) as they
propagate in a homogeneous medium. However, the beam’s diffraction can
be compensated for by beam refraction if the refractive index is increased
in the region of the beam. An optical wave guide is an important mean to
provide a balance between diffraction and refraction if the medium is uni-
form in the direction of propagation. The corresponding propagation of the
light is confined in the transverse direction of the wave guide, and it is de-
scribed by the so-called linear guided modes, spatially localized eigenmodes
of the electric field in the wave guide.

As was discovered long time ago [1], the similar effect, i.e. suppression of
diffraction through a local change of the refractive index, can be produced
solely by nonlinearity. As has been already established in many experi-
ments, some materials can display considerable optical nonlinearities when
their properties are modified by the light propagation. In particular, if the
nonlinearity leads to a change of the refractive index of the medium in such
a way that it generates an effective positive lens to the beam, the beam can

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 173−194, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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become self-trapped and propagates unchanged without any external waveg-
uiding structure [1]. Such stationary self-guided beams are called these days
spatial optical solitons, they exist with profiles of certain form allowing a
local compensation of the beam diffraction by the nonlinearity-induced
change in the material refractive index.

Until recently, the theory of spatial optical solitons has been based on
the nonlinear Schrödinger (NLS) equation with a cubic nonlinearity, which
is exactly integrable by means of the inverse scattering (IST) technique [2].
Generally speaking, the integrability means that any localized input beam
will be decomposed into stable solitary waves (or solitons) and radiation,
and also that interaction of solitons is elastic. From the physical point of
view, the integrable NLS equation describes (1+1)-dimensional (i.e. one
transverse and one longitudinal dimensions) beams in a Kerr nonlinear
medium in the framework of the so-called paraxial approximation. The cu-
bic NLS equation is known to be a good model for temporal optical solitons
propagating large distances along existing wave guides, optical fibers. In
application to spatial optical solitons, the cubic NLS equation is not an ad-
equate model. First, for spatial optical solitons much higher input powers
are required to compensate for diffraction, meaning that the refractive in-
dex experiences large deviations from a linear (Kerr) dependance. Second,
as was recognized long time ago (see, e.g., Ref. [3]), radially symmetric
stationary localized solutions of the (2+1)-dimensional NLS equation are
unstable and may display collapse [4]. To deal with realistic optical models,
saturation had been suggested as a way to stabilize such a catastrophic self-
focusing and produce stable solitary waves of higher dimensions. Account-
ing for this effect immediately leads to nonintegrable models of generalized
nonlinearities, not possessing the properties of integrability and not allow-
ing elastic soliton collisions. Another mechanism of non-Kerr nonlinearities
and enhanced nonlinear properties of optical materials is a resonant, phase-
matched interaction between the modes of different frequencies. In this lat-
ter case, multi-component solitary waves are created, and the mutual beam
coupling can modify drastically the properties of single beams, as it occurs
in the case of the so-called quadratic solitons of cascaded nonlinearities.

In spite of the fact that, generally speaking, there exist no universal
analytical tools for analyzing solitary waves and their interactions in non-
integrable models, recent advances of the theory suggest that many of the
properties of optical solitons in non-Kerr media are similar, and they can
be approached with the help of rather general physical concepts. Also, from
this perspective we understand that there is no simple mapping between
temporal and spatial optical solitons. Spatial solitons are a much richer and
more complicated phenomenon, and this has been already demonstrated by
a number of elegant experiments in this field.

In particular, it has been recently demonstrated experimentally, that self-
guided beams can be observed in materials with strong photorefractive and
photovoltaic effect [5], in vapours with a strong saturation of the intensity-
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dependent refractive index [6, 7], and also as a result of the mutual self-
focusing due to the phase-matched three-wave mixing in quadratic (or χ(2))
nonlinear crystals [8]. In all these cases, propagation of self-guided waves
is observed in non-Kerr materials which are described by the models more
general than the cubic NLS equation.

2 Spatial vs. temporal solitons

Because the phenomenon of the long-distance propagation of temporal op-
tical solitons in optical fibers is known to a much broader community of
researchers in optics and nonlinear physics, first we emphasize the difference
between spatial and temporal solitons. Indeed, stationary beam propaga-
tion in planar wave guides has been considered somewhat similar to the
pulse propagation in fibers. This is a direct manifestation of the so-called
spatio-temporal analogy in wave propagation [9], meaning that the prop-
agation coordinate z is treated as the evolution variable and the spatial
beam profile along the transverse direction, for the case of wave guides,
is similar to the temporal pulse profile, for the case of fibers. This anal-
ogy has been employed for many years, and it is based on a simple notion
that both beam evolution and pulse propagation can be described by the
cubic NLS equation. However, contrary to this widely accepted opinion,
we point out a crucial difference between these two phenomena. Indeed,
in the case of the nonstationary pulse propagation in fibers, the operation
wavelength is usually selected near the zero of the group-velocity disper-
sion. This means that the absolute value of the fiber dispersion is small
enough to be compensated by a weak nonlinearity such as that produced
by the (very weak) Kerr effect in optical fibers which leads to a relative
nonlinearity-induced change in the refractive index of the order of 10−10.
Therefore, nonlinearity in such systems is always weak and it should be
well modeled by the same form of the cubic NLS equation, which is known
to be integrable by means of the IST technique. However, for very short
(fs) pulses the cubic NLS equation describing the long-distance propaga-
tion of pulses should be corrected to include some additional effects such as
higher-order dispersion, Raman scattering, etc. All these corrections can be
taken into account by a perturbation theory [11]. Thus, in fibers nonlinear
effects are weak and they become important only when dispersion is small
(near the zero-dispersion point) affecting the pulse propagation over large
distances (of order of hundred of meters or even kilometers).

In contrary to pulse propagation in optical fibers, the physics underly-
ing stationary beam propagation in planar wave guides and bulk media is
different. In this case the nonlinear change in the refractive index should
compensate for the beam spreading caused by diffraction which is not a
small effect. That is why to observe spatial solitons, much larger nonlin-
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earities are usually required, and very often such nonlinearities are not of
the Kerr type (e.g. they saturate at higher intensities). This leads to the
models of generalized nonlinearities with the properties of solitary waves
different from those described by the integrable cubic NLS equation. For
example, unlike the solitons of the cubic NLS equation, solitary waves of
generalized nonlinearities may be unstable, they also show some interesting
features, such as fusion due to collision, inelastic interactions and spiralling
in a bulk, wobbling, amplitude oscillation, etc. Propagation distances usu-
ally involved in the phenomenon of beam self-focusing and spatial soliton
propagation are of the order of millimeters or centimeters. As a result, the
physics of spatial solitary waves is rich, and it should be understood in the
framework of the theory of nonintegrable nonlinear models.

3 Basic equations

To describe optical spatial solitons in the framework of the simplest scalar
model of nonresonant nonlinearities, we consider the propagation of a
monochromatic scalar electric field E in a bulk optical medium with an
intensity-dependent refractive index, n = n0 + nnl(I), where n0 is the lin-
ear refractive index, and nnl(I) describes the variation in the index due to
the field with the intensity I = |E|2. The function nnl(I) is assumed to
be dependent on the light intensity only, and it may be introduced phe-
nomenologically.

Solutions of the governing Maxwell’s equation can be presented in the
form

E(R⊥, Z; t) = E(R⊥, Z)eiβ0Z−iωt + c.c., (8.1)

where c.c. denotes complex conjugate, ω is the source frequency, and β0 =
k0n0 = 2πn0/λ is the plane-wave propagation constant for the uniform
background medium, in terms of the source wavelength λ = 2πc/ω, c being
the free-space speed of light. Usually, the spatial solitons are discussed for
two geometries. For the beam propagation in a bulk, we assume a (2+1)-
dimensional model, so that the Z-axis is parallel to the direction of propa-
gation, and the X- and Y -axis are two transverse directions. For the beam
propagation in a planar wave guide, the effective field is found by integrat-
ing Maxwell’s equations over the transverse structure defined by the wave
guide confinement, and therefore the model becomes (1+1) dimensional.

The function E(R⊥, Z) describes the wave envelope which in the absence
of nonlinear and diffraction effects E would be a constant. If we substitute
Eq. (8.1) into the two-dimensional, scalar wave equation, we obtain the
generalized nonlinear equation,

2ik0n0
∂E
∂Z

+
(

∂2E
∂X2 +

∂2E
∂Y 2

)
+ 2n0k

2
0nnl(I)E = 0. (8.2)
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In dimensionless variables, Eq. (8.2) becomes the well-known generalized
NLS equation, where local nonlinearity is introduced by the function nnl(I).

For the case of the Kerr (or cubic) nonlinearity we have nnl(I) = n2I,
n2 being the coefficient of the Kerr effect of an optical material. Now,
introducing the dimensionless variables, i.e. measuring the field amplitude
in the units of k0

√
n0|n2| and the propagation distance in the units of k0n0,

we obtain the (2+1)-dimensional NLS equation in the standard form,

i
∂Ψ
∂z

+
1
2

(
∂2Ψ
∂x2 +

∂2Ψ
∂y2

)
± |Ψ|2Ψ = 0, (8.3)

where the complex Ψ stands for a dimensionless envelope, and the sign (±)
is defined by the type on nonlinearity, self-defocusing (‘minus’, for n2 < 0)
or self-focusing (‘plus’, for n2 > 0).

For propagation in a slab wave guide, the field structure in one of the
directions, say Y , is defined by the linear guided mode of the wave guide.
Then, the solution of the governing Maxwell’s equation has the structure

E(R⊥, Z; t) = E(X,Z)An(Y )eiβ(0)
n z−iωt + . . . , (8.4)

where the function An(Y ) describes the corresponding fundamental mode
of the slab wave guide. Similarly, substituting this ansatz into Maxwell’s
equations and averaging over Y , we come again to the renormalized equa-
tion of the form (8.3) with the Y -derivative omitted, which in the dimen-
sionless form becomes the standard cubic NLS equation

i
∂Ψ
∂z

+
1
2
∂2Ψ
∂x2 ± |Ψ|2Ψ = 0. (8.5)

Equation (8.5) coincides formally with the equation for the pulse propaga-
tion in dispersive nonlinear optical fibers, and it is known to be integrable
by means of the inverse scattering transform (IST) technique [2].

For the case of nonlinearities more general then the cubic one, we should
consider the generalized NLS equation,

i
∂Ψ
∂z

+
∂2Ψ
∂x2 + f(|Ψ|2)Ψ = 0, (8.6)

where the function f(I) describes a nonlinearity-induced change of the
refractive index, usually f(I) ∝ I for small I.

The generalized NLS equation (8.2) [or Eq. (8.6)] has been considered
in many papers for analyzing the beam self-focusing and properties of spa-
tial bright and dark solitons. All types of non-Kerr nonlinearities in optics
can be divided, generally speaking, into three main classes: (i) competing
nonlinearities, e.g. focusing (defocusing) cubic and defocusing (focusing)
quintic nonlinearity, (ii) saturable nonlinearities, and (iii) transiting non-
linearities. Many references can be found in the recent review paper [12].
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Usually, the nonlinear refractive index of an optical material deviates
from the linear (Kerr) dependence for larger light intensities. Nonideality
of the nonlinear optical response is known for semiconductor (e.g., AlGaAs,
CdS, CdS1−xSex) wave guides and semiconductor-doped glasses. In the case
of small intensities, this effect can be modeled by competing, cubic-quintic
nonlinearities, nnl(I) = n2I + n3I

2. This model describes a competition
between self-focusing (n2 > 0), at smaller intensities, and self-defocusing
(n3 < 0), at larger intensities. Similar models are usually employed to
describe the stabilization of wave collapse in the (2+1)-dimensional NLS
equation.

Models with saturable nonlinearities are the most typical ones in nonlin-
ear optics. The effective generalized NLS equation with saturable nonlin-
earity is also the basic model to describe the recently discovered (1+1)-
dimensional photovoltaic spatial solitons in photovoltaic-photorefractive
materials such as LiNbO3. Unlike the phenomenological models usually
used to describe saturation of nonlinearity, for the case of photovoltaic
solitons this model can be justified rigorously.

There exist several different models for saturating nonlinearities. In par-
ticular, the phenomenological model nnl(I) = n∞[1−(1+I/Isat)−1] is used
more frequently, and it corresponds to the well-known expression derived
from the two-level model.

Finally, bistable solitons introduced by Kaplan [13] usually require a spe-
cial type of the intensity-dependent refractive index which changes from
one type to another one, e.g. it varies from one kind of the Kerr nonlin-
earity, for small intensities, to another kind with different value of n2, for
larger intensities. Unfortunately, examples of nonlinear optical materials
with such dependencies are not yet known, but the bistable solitons pos-
sess attractive properties useful for their possible futuristic applications in
all-optical logic and switching devices.

At last, we would like to mention the model of logarithmic nonlinearity,
n2(I) = n2

0+ε ln(I/I0), that allows close-form exact expressions not only for
stationary Gaussian beams (or Gaussons, as they were introduced in Ref.
[14]), but also for periodic and quasi-periodic regimes of the beam evolution
[15]. The main features of this model are the following: (i) the stationary
solutions do not depend on the maximum intensity (quasi-linearization) and
(ii) radiation from the periodic solitons is absent (the linearized problem has
purely discrete spectrum). Such exotic properties persist in any dimension.

4 Stability of solitary waves

Spatial optical solitons are of both fundamental and technological impor-
tance if they are stable under propagation. Existence of stationary solutions
of the different models of non-Kerr nonlinearities does not guarantee their
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stability. Therefore, stability is a key issue in the theory of self-guided op-
tical beams.

For temporal solitons in optical fibers, nonlinear effects are usually weak
and the model based on the cubic NLS equation and its deformations is
valid in most of the cases [10]. Therefore, being described by integrable
or nearly integrable models, solitons are always stable, or their dynamics
can be affected by (generally small) external perturbations which can be
treated in the framework of the soliton perturbation theory [11].

As has been discussed above, much higher powers are usually required
for spatial solitons in wave guides or a bulk, so that real optical materials
demonstrate essentially non-Kerr change of the nonlinear refractive index
with the increase of the light intensity. Generally speaking, the nonlinear
refractive index always deviates from Kerr for larger input powers, e.g.
it saturates. Therefore, models with a more general intensity-dependent
refractive index are employed to analyze spatial solitons and, as we discuss
below, solitary waves in such non-Kerr materials can become unstable.
Importantly, in many cases the stability criteria for solitary waves can be
formulated in a rather general form using the system invariants.

4.1 One-parameter solitary waves
Stability of bright solitons of the NLS equation with a generalized nonlin-
earity has been extensively investigated for many years, and the criterion
for the soliton stability has been derived by different methods (see, e.g.,
Refs. [16, 17, 18]). Stability of bright solitons in the generalized NLS equa-
tion of any dimension is given by the simple integral criterion [16]

dP

dβ
=

d

dβ

(∫
V

|E(r, z)|2dr
)

> 0, (8.7)

where P is the total beam power and β is the soliton propagation constant.
The validity of the Vakhitov-Kolokolov criterion (8.7) can be proven by
analysing the eigenvalue problem that appears after linearizing the NLS
equation (8.6) near the solitary wave solutions. The condition (8.7) is asso-
ciated with the existence of one only negative eigenvalue of that problem.
If this latter condition is not fulfilled, the stability criterion may be not
directly formulated in terms of the beam power P , as we have in the case
of nonlinear guided waves. Indeed, it has been already established that sta-
bility of self-guided waves in nonlinear wave guide structures can be given,
in some cases, by the same criterion (see, e.g., Refs. [19]) but, in general, it
is more complicated and depends on a particular mode structure and the
type of nonlinearity.

Criterion of the soliton stability (8.7) is usually valid for bright solitons
(and nonlinear guided waves) which constitute a one-parameter family of
spatially localized solutions, i.e. their shape is solely defined by the beam
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propagation constant β. The similar criterion is valid even in the case of
two-component solitons governed by the only power invariant. For example,
it has been shown that the similar criterion applies for two-wave solitons
in χ(2) materials [20].

Linear stability analysis does not allow one to predict the subsequent evo-
lution of unstable solitons. Recently, an asymptotic analytical method for
describing the dynamics of unstable solitons (e.g., their diffraction-induced
decay, collapse, or switching from unstable to a novel stable state) has been
developed [21, 22].

In contrast to bright solitons, the stability criterion for dark solitons of
the generalized NLS equation has not been understood until recently and,
even more, this issue created a lot of misunderstanding in the past. From
a historical point of view, the first effort to analyze the stability of dark
solitons was stimulated by numerical simulations done by Barashenkov and
Kholmurodov [23] who observed instability of the so-called ‘bubbles’, lo-
calized waves of rarefaction of the Bose gas condensate described by the
cubic-quintic NLS equation. Later, Bogdan et al. [24] explained this phe-
nomenon through the multivalued dependence of the bubble’s energy vs.
the renormalized momentum.

However, it was believed for a long time that kink-type dark solitons (in
particular, black solitons) are always stable. Instability of black solitons was
observed for the first time by Kivshar and Krolikowski [25] in numerical
simulations of the NLS equation with a saturable nonlinearity.

Stability criterion for dark solitons is defined through the renormalized
soliton momentum,

dMr

dv
=

d

dv

{
i

2

∫ +∞

−∞

(
u
∂u∗

∂x
− u∗ ∂u

∂x

) (
1 − u2

0

|u|2
)
dx

}
> 0, (8.8)

and this result was shown to be consistent with numerical simulations and
the variational principle. A rigorous proof of this stability criterion was
presented only recently by Barashenkov [26], with the help of the Lyapunov
function, and Pelinovsky et al. [22], by using the asymptotic expansion near
the instability threshold. The first approach does not allow one to describe
the instability itself but it is more general to prove the global stability if it
exists, whereas the second method is valid in the vicinity of the instability
threshold being also sufficient to determine the instability domains.

All basic models of optical nonlinearities, i.e. saturable, transiting, and
competing nonlinearities display instabilities of dark solitons in some regions
of the parameters. The instability of dark solitons is qualitatively different
from that of bright solitons, it is a drift instability [27].

4.2 Two-parameter solitary waves
The Vakhitov-Kolokolov criterion of the soliton stability can be generalised
to the case of solitary waves described by more than one parameter. This
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has been demonstrated for the first time for the case of nondegenerate
three-wave mixing in a diffractive medium [28]. The instability threshold
for two-parameter solitons (marginal stability condition) is given by the
following criterion

J (β1, β2) =
∂(F1,F2)
∂(β1, β2)

≡ ∂F1

∂β1

∂F2

∂β2
− ∂F1

∂β2

∂F2

∂β1
= 0, (8.9)

where Fj (j = 1, 2) are two invariants of the system (for the problem of
three-wave mixing, these are the total and complimentary powers) describ-
ing two-parameter solitary waves, and βj are two independent parameters
of the stationary localized solutions. The stability criterion itself, i.e. the
sign of the function J , depends on the model under consideration.

The result (8.9) has been first derived by the asymptotic expansion tech-
nique [28] and then verified by the analysis of the global structure of the
system invariants [29]. It is a direct consequence of the topology of the
invariant surface H(F1,F2), and it seems to be valid for different types of
vectorial and coupled solitons described by two independent parameters in-
troduced by two nontrivial invariants of the model. For example, in the case
of coupled bright-dark solitons, F1 is the power of the bright component P
and β1 is the propagation constant of the bright component, whereas F2 is
the total momentum M and β2 is the soliton velocity V . For incoherently
interacting bright solitons, the invariants Fj are two powers corresponding
to two scalar components. The same result holds for the stability of vector
solitons in the models with the absence of the Galilean invariance, such as
two-wave parametric solitons with the walk-off effect. In this latter case, the
second parameter is the soliton velocity V and the second invariant is the
soliton momentum M ; the same criterion has been recently demonstrated
for the so-called walking solitons [30].

In general, the marginal stability threshold (8.9) is valid provided the
conditions similar to those for the validity of the Vakhitov-Kolokolov cri-
terion (8.7) are satisfied, namely the instability is associated with a kind
of translational bifurcation of localized eigenmodes of an associated linear
eigenvalue problem when the value λ2, where λ is an eigenvalue, remains
real but it changes its sign passing zero. For more complicated models, the
invariant criterion may be not valid and other types of instabilities, e.g.
oscillatory instability, may occur, as has been recently demonstrated for
gap solitons in a nonintegrable deformation of the Thirring model [31]. An-
other example is given by a system where there exists, for the same values
of the system parameters, a number of different soliton families correspond-
ing to bifurcations of invariant surfaces. An example of this kind has been
recently found for the problem of nondegenerated four-wave mixing where
stable multi-color solitons correspond to the lowest invariant surface [32].
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5 Experiments on self-focusing

Theoretical predictions of self-focusing of light in an optical medium with
nonlinear refractive index [1, 33, 34] were followed by experimental evidence
of this phenomenon in different optical materials, e.g. glasses, Raman-active
liquids, gas vapors, etc. In particular, Pilipetskii and Rustamov [35] re-
ported the generation of one-, two-, and three filaments due to self-focusing
of a laser beam in different organic liquids. Later, Garmire et al. [36] re-
ported a direct observation of the evolution of beam trapping in CS2 in
the simplest cylindrical mode. They found that the threshold, trapping
length, nonlinearity-induced increase in the refractive index in the trapped
region, and beam profile are consistent with theoretical predictions, and
the steady-state input beam of circular symmetry asymptotically collapses
to a bright filament as small as 50 µm. As a matter of fact, this was one of
the first experimental observations of the phenomenon which we now call
spatial optical soliton.

Because ruby-laser beams used in the experiments have intensities far
above threshold for self-trapping in CS2 (25 ± 5kW), Garmire et al. [36]
also observed the formation of rings around the self-focused spots and the
development of many filaments from an apparently homogeneous beam
about 1 mm in diameter and considerably above the threshold power. The
former effect can be associated with the existence of a set of higher-order
circularly symmetric steady-state modes [37, 38], whereas the latter effect
is a direct manifestation of the transverse beam instability, the spatial
modulational instability of a broad beam.

Detailed studies of spatial break-up of broad optical beams due to self-
focusing was reported almost seven years later by Campillo et al. [39, 40]
(see also [41]) who used a 50-cm cell of CS2 to study self-focusing. In par-
ticular, Campillo et al. [39] observed that radially symmetric ring patterns
created by circular apertures break up into focal spots having azimuthal
symmetry and regular spacing. This kind of effect can be associated with
the transverse modulational instability of quasi-plane bright rings created
by the input beam, and the number of the bright spots and critical powers
are in a good qualitative agreement with the simple theory of transverse
instabilities, as was discussed later [40].

A number of similar experiments were performed later for different types
of nonlinear media, including artificial Kerr media made from liquid sus-
pensions of submicrometer particles (see, e.g., Ref. [42] where the smallest-
diameter self-trapped filaments (∼ 2µm) were observed.

More recent experiments on the beam self-focusing involved the so-called
vortex rings, i.e. bright rings with a nonzero angular momentum created by
passing the laser beam through a diffracting phase mask and then propagat-
ing it in a nonlinear medium (a 20-cm cell with rubidium vapor) [6, 7] and
also for a quadratically nonlinear medium (KTP crystal) [43]. An angular
momentum introduced in the input beam, strongly affects the dynamics of
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bright spots (in fact, spatial solitons) created via the transverse instability
of the rings, so that the solitons can attract and repel each other, or even
fuse together.

Formation of a variety of different patterns of spots (bright spatial soli-
tons) was investigated by Grantham et al. [44] in a sodium vapor. They
varied the input beam power from 30 mW to 460 mW and observed spatial
bifurcation sequences due to spatial instabilities seeded by intentionally in-
troduced aberrations. They used the structure of the instability gain curve
for an input-wavefront-encoding feedback to accelerate particular unstable
wave vectors, and observed complicated spatial bifurcations as a function
of intensity or detuning, with “... complexity and beauty rivaling that of a
kaleidoscope”.

The analysis of self-focusing based on the spatial (2+1) dimensional NLS
equation and associated with the spatial instabilities, bifurcations, and for-
mation of spatial solitons is valid for both cw beams and long pulses. In con-
trast, short pulses undergoing self-focusing do not collapse to wavelength
dimensions. A number of experimental results by Strickland and Corkum
[45] demonstrated the resistence of short pulses (∼ 50 fs) to self-focusing.
In spite of the fact that these process can be modelled by the hyperbolic
NLS equation with normal group-velocity dispersion, experimental results
indicate that spectral dispersion and other non-slowly-varying are also im-
portant to explain different behaviour of short pulses.

A detailed experimental investigation of the self-focusing dynamics of
a femtosecond pulse in a normally dispersive (glass) medium was recently
reported by Ranka et al. [46] who observed one of the main effects predicted
by the theory based on the hyperbolic NLS equation, i.e. the splitting of
a short pulse (85-90 fs) into two pulses for the power above the threshold
value, P > Pcr ≈ 3MW , and even additional splittings, for higher powers
(P ≈ 4.8MW ). More recently, Diddams et al. [47] reported the similar
effects for the propagation of intense fs pulses in fused silica. Frequency-
resolved optical gating was used to characterise the pulse splitting into sub-
pulses which were found to be not generally symmetric, in accordance with
the theoretical predictions based on the three-dimensional NLS equation
that includes the Raman effect, linear and nonlinear shock terms, and third-
order dispersion [48].

Theoretical prediction and a number of experimental observations of
beam self-trapping in photorefractive media allow to observe spatial soli-
tons in crystals at relatively low input powers. The first observation of
two-dimensional spatial solitons was reported by Shih et al. [49] (see also
Shih et al. [50]) who used an electric field of 5.8 kV/cm applied to a crys-
tal of strontium barium niobate (SBN) to create an effective self-focusing
nonlinearity and trap an optical beam into a filament as small as 9.6 µm
at micro-Watt power levels.

Experimental observation of break-up of a quasi-plane bright spatial soli-
ton into a sequence of higher dimensional solitons due to the transverse
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(‘neck’-type) instability was observed by Mamaev et al. [51].
Most of the experimental demonstrations of spatial and temporal dark

solitons have been recently discussed in the paper by Kivshar and Luther-
Davies [12]. For the case of spatial dark solitons, the experiments reported
the creation of dark soliton stripes in a (2+1)-dimensional geometry. As
discussed above, such stripes should be unstable due to transverse mod-
ulational instability which leads to stripe breakup and the eventual cre-
ation of optical vortex solitons. However, it turns out that this instability
was avoided in the early experiments by the use of finite-sized background
beams and weak nonlinearity. By increasing nonlinearity, the transverse
instability should be observed even with finite sized beams. The first ex-
periments to verify the existence of this transverse instability, and through
it the creation of optical vortex solitons, have been performed by Tikho-
nenko et al. [52] using a continuous wave, Ti:sapphire laser and a nonlinear
medium comprised of atomic rubidium vapour. Very similar observations,
with less evidence of the stripe decay into a sequence of vortex solitons,
were performed almost simultaneously by Mamaev et al. [53, 54] for spatial
dark solitons in a photorefractive medium.

6 Soliton spiralling

Analysis of the soliton interaction in a bulk medium is one of the impor-
tant issues for all-optical soliton-based nonlinear switching. In the wave
guide geometry, the interaction of (1+1)-dimensional solitons was stud-
ied extensively both theoretically and experimentally. For a bulk medium,
only recent experimental observations of stable (2+1)-dimensional solitons
in photorefractive materials [49] and quadratic nonlinear media [8] made it
possible to initiate an experimental study of fully 3D interactions of optical
solitons. In particular, one of the interesting regimes of nonplanar soliton
interactions is the soliton spiralling, first suggested for coherent soliton in-
teraction in Ref. [55]. That suggestion, based on a phenomenology of ray
optics, has been not confirmed by a detailed theoretical analysis of the
nonplanar coherent interaction and scattering of stable solitary waves, de-
veloped for the case of the soliton interactions in a bulk quadratic medium
[56] because the spiralling regime is unstable to small perturbations. Nev-
ertheless, already in 1997 an experimental group from Princeton reported
the observation of stable soliton spiralling in a bulk photorefractive medium
for two incoherently interactying optical beams [57]. These experimental re-
sults were in a sharp contrast with all theoretical works. For a long time
the stable soliton spiralling was believed to be impossible, and the exper-
imental results to be controversial. Just recently, the combined efforts of
two groups shed some light on the physical mechanism leading to a stable
soliton spiralling [58]. As was found in Ref. [58], the new physical effect –
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the so-called induced coherence– is a physical phenomenon that allows one
to understand if the soliton spiralling is possible at all as a stable dynamical
regime of the soliton interaction.

The main result of Ref. [58] can be understood from simple physics. In-
deed, when two identical beams are launched together with a very small sep-
aration between them, they create an effective optical coupler. Due to the
properties of an incoherent interaction in a photorefrcative optical medium,
the nonlinearity of the interacting beams depends only on the total beam
intensity. This means that two arms of the effective wave guide coupler
are identical, and the energy should oscillate periodically between the soli-
tons introducing an effective coherence into the initially incoherent soliton
interaction. Due to such an induced coherence, the soliton interaction en-
ergy consists of two parts, coherent and incoherent. The periodic energy
exchange between the solitons leads to rapid oscillations of the soliton pa-
rameters and effective suppression of the soliton phase-sensitive repulsion,
supporting stable soliton spiralling as shown in Fig. 1.

FIGURE 1. Stable soliton spiralling observed in numerical simulations: (a) 3D
view; (b) oscillations of the soliton relative distance R, (c) large-amplitude oscila-
tions of the relative power between the components characterized by the effective
angle θ− (see details in Ref. [58]).

The model used to obtain analytical results in Ref. [58] is isotropic. How-
ever, some nonlinear media are anisotropic, which means that the nonlinear-
ity is not the same in all directions in the plane transverse to the propaga-
tion direction. For (1+1)-dimensional solitons, the anisotropy is manifested



186 Yuri S. Kivshar

in the fact that solitons can exist in specific crystalline orientations only
and not in others. For example, (1+1)-dimensional quasi-steady-sate and
screening photorefractive solitons can form with their trapping direction
(i.e., their ”narrow” direction) parallel to the applied field direction, but
cannot form when their trapping direction is perpendicular to the applied
field [59]. For (2+1)-dimensional photorefractive solitons, the situation is
different: if the anisotropy is large, it can lead to solitons with non-circular
cross-section. For photorefractive screening solitons the anisotropy is very
small when the nonlinearity is saturated, so the resultant solitons are al-
most circular. However, far away from saturation (when the peak intensity
of the solitons is much smaller than the saturation intensity), the soli-
tons are elliptical. When the solitons are anisotropic, their interaction is
expected to exhibit anisotropic features as well. For example, it turns out
that (2+1)-dimenional incoherently-interacting photorefractive solitons ex-
hibit anomalous repulsion [60], which is absent if the medium was isotropic.
This happens only for an incoherent collision and when the colliding soli-
tons are in a particular plane. Similarly, a full 3D interaction-collision in
regimes where the anisotropy is large, leads to spiralling trajectories that
are even more complicated than those of the isotropic case, and in some
cases to fusion of the (otherwise spiraling indefinitely) solitons [61, 62]. In
particular, when the input solitons do not possess any angular momentum,
that is if the input beams have parallel trajectories (yet do not lie in the
same plane), the solitons initially orbit a little about each other. They then
settle down in a local minimum in the “induced potential” and, in many
cases, eventually fuse [62]. We emphasize that this effect is a net result
of the anisotropy, and does not exist for solitons in a nonlinear isotropic
medium, in which solitons with zero initial angular momentum can never
spiral. In other words, in isotropic nonlinear media the spiraling-orbiting
motion conserves angular momentum, so in absence of initial angular mo-
mentum spiraling cannot exist.

7 Multi-hump solitons and solitonic gluons

A simple mechanism of the beam self-focusing can be applied to the general
case when an optical beam consists of several components. In this case,
a stationary state in the form of a spatial soliton is composed of two (or
mode) modes, and its structure can be more complicated. We can view this
composite soliton as an effective wave guide created by light in a nonlinear
medium with one- (or more-) wave guide modes excited in it [63]. This
picture holds provided all guided modes are orthogonal to each other, and
the parametric processes such as four-wave mixing, do not occur. This
is possible also for a photorefractive medium where an optical response
is slow and the wave coupling is determined by the total beam intensity.
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Indeed, the first observation of such multi-mode optical solitons was indeed
reported for photorefractive crystals [64].

The most interesting feature of such multi-mode optical solitons is that
their self-trapped stationary structure can be quite complicated, and the
total soliton intensity profile may display several peaks. Such solitons are
usually referred to as multi-hump solitons. In the simplest case, also corre-
sponding to the nonlinearities of a photorefractive medium, spatial multi-
hump solitons can be generated by incoherent interaction of two optical
beams. The corresponding model was first introduced by Christodoulides
et al. [65], and it is described by a system of two coupled (dimensionless)
NLS equations

i
∂u

∂z
+

1
2
∂2u

∂x2 +
u(|u|2 + |w|2)

1 + s(|u|2 + |w|2) − u = 0,

i
∂w

∂z
+

1
2
∂2w

∂x2 +
w(|u|2 + |w|2)

1 + s(|u|2 + |w|2) − λw = 0,
(8.10)

where x and z are the transverse and propagation coordinates, respectively.
The parameter λ stands for a ratio of the nonlinear propagation constants,
and s is an effective saturation parameter. For s → 0, the system (8.10)
reduces to the integrable Manakov equations [66].

Stationary two-component solitons of the model (8.10) are described
by z−independent solutions u(x) and w(x) with vanishing asymptotics
as |x| → ∞, and they were first analysed in Refs. [67]. Two-component
solutions appear via bifurcations of one-component soliton u0(x), a solu-
tion of the first equation of the system (8.10) at w = 0, and they can be
characterised by the dependence of the total soliton power,

P (λ, s) =
∫ +∞

−∞
(|u|2 + |w|2)dx,

on the parameter λ. The saturation parameter s determines the total num-
ber of guided modes and the cut-off values for each mode, λn(s), i.e. the bi-
furcation points. Figure 2 shows the soliton bifurcation diagram for s = 0.8,
where the horizontal line stands for the fundamental one-component soli-
ton u0(x) that does not depend on s, and other curves show two families
of composite solitons. Inserts demonstrate how the soliton profiles modify,
with varying the soliton parameter λ, from one-hump to two- and three-
hump solutions.

The important issue is stability of such multi-hump solitons, and for
the model (8.10), the stability was analysed by Ostrovskaya et al. [68].
In contrast to what was believed before for other types of multi-hump
multi-component solitons, Ostrovskaya et al. found that solitons of both
the families of the composite solitons of the model (8.10) can be stable.
Moreover, the two-hump solitons (upper row of the insert in Fig. 2) can
also be stable, whereas the solitons of the second branch lose their stability
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FIGURE 2. Soliton bifurcation diagram for the model (8.10). Inserts show the
transverse profiles of the fields u(x) (thin) and w(x) (dashed), and the total
intensity (thick) for the marked profiles [68].

well before they develop the humps. This gives us the first example of
stable multi-hump solitons. Experimental results by Mitchell et al. [64]
reported the first observation of stationary structures resembling multi-
hump solitary waves that is in accord with the theory.

Existence of multi-hump solitons and their properties can be understood
from a completely different approach valid in the limit of well-separated
humps. Indeed, a multi-hump soliton can be considered as a soliton complex
where the total force balance between the individual solitons and their
components (as first-, second-, etc. guided modes) is satisfied. This idea
gives birth to an interesting concept of the so-called solitonic gluons, non-
soliton modes guided by solitons that allow to bind (or ‘glue’) solitons
together forming multi-soliton states provided some phase conditions are
satisfied (see an example in Fig. 3). The concept of solitonic gluons has
been developed for different types of multi-component solitons [67, 69, 70].
The first experimental observation of the effect of solitonic gluons has been
reported in Ref. [70] where the suppression of repulsion of a pair of dark
solitons has been observed in the case of the second (‘gluon’) component
added. All these results demonstrate a number of novel and important
features in the interaction of multi-component solitary waves.
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FIGURE 3. Two-soliton bound states in the model (8.10) with the solitonic gluons
in the form of the first (a) and second (b) guided modes. (c,d) Interaction of two
solitons from (a) for s = 0.8 and λ = 0.63, without and with the gluon component,
respectively [70].

8 Discrete spatial optical solitons

In application to optical wave guides, the concept of a discrete soliton was
first introduced by Christodoulides and Joseph [71] (see also [72] for an
array of defocusing wave guides), who extended the ideas of nonlinear lo-
calised modes in discrete molecular chains to the case of an infinite array
of identical, weakly coupled nonlinear wave guides. In such an array, when
low intensity light is injected into one or a few neighbouring wave guides,
it will couple to more and more wave guides and broaden its spatial dis-
tribution. For large intensities, the light distribution becomes self-trapped
with a fixed spatial profile, and it involves only a few neighbouring wave
guides; these are discrete spatial solitons. The theory of localised modes
in wave guide arrays has been elaborated in detail, and different types of
such modes, their steering and stability have been analysed [73]. The first
observation of discrete spatial solitons in an array of 41 wave guides has
been recently reported by Eisenberg, et al. [74].

The model for discrete spatial solitons can be introduced by considering
a partial electric field amplitude En in the n−th wave guide, that can be
also treated as an averaged electric field guided by the n′th core of the wave
guide array. Then, assuming the optical Kerr nonlinearity, we can write the
difference equation,

i
dEn

dz
+ βEn + C(En+1 + En−1) + γ|En|2En = 0, (8.11)

where β is the linear propagation constant, C is the coupling coefficient, γ =
ω0n2/cAeff , ω is the carrier wave frequency, n2 is the nonlinear refractive
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index, and Aeff is the effective area of the wave guide mode guided by
the individual core with the number n (all wave guides are assumed to be
identical).

Equation (8.11) is the well-known discrete NLS equation that occurs
in many different physical problems (see, e.g., the review papers [75, 76]
and references therein). At low input powers, we can neglect the nonlinear
term in Eq. (8.11) and then this equation describes a simple effect when
the light propagates from an initially excited n′th wave guide into the
two directions spreading the energy between the wave guide array. For
large input powers, the light can become localised around the excited wave
guide. For slowly varying distribution of the electric field in a wave guide
array, an approximate solution can be obtained from the continuum limit
approximation,

En(z) = E0 sech(αn) exp {i(2C + β)z} . (8.12)

In spite of the fact that the solution (8.12) looks similar to a spatial soliton
described by the continuous cubic NLS equation, the properties of such
a discrete soliton are different, and some specific features in the soliton
dynamics can be observed. For example, due to an inherent discreteness of
the array, the soliton (8.12) cannot move or be steered freely; its motion is
affected by the so-called Peierls-Nabarro periodic potential [77] that appears
as a result of the fact that the transverse invariance of the discrete system
is broken.
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FIGURE 4. Images of the output facet of the 41 wave guides for different powers.
(a) Peak power 70 W; linear regime. (b) Peak power 320 W; intermediate regime.
(c) Peak power 500 W; a discrete soliton is formed [74].
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In experiments, Eisenberg et al. [74] studied arrays of 41 ridge wave
guides etched onto an AlGaAs substrate. The wave guides of 4 µm wide
were etched on top of a slab wave guide. Samples with different separation
D, that affects the coupling coefficient C in Eq. (8.11), were used (D = 4, 5,
and 7µm). The light source was an optical parametric oscillator (pumped
by a Ti:sapphire laser) tuned to a wavelength of 1.53 µm, below the half-
bandgap of the AlGaAs material, to minimise nonlinear absorption. The
input beam was reshaped into an oval shape to match closely a guided
mode of a single wave guide of the array. Some results of the output images
from a 6 mm long wave guide array (D = 4µm) are presented in Fig. 4.
At low power, the light spreads among nearly all the 41 wave guides, see
Fig. 4(a). Increasing the power narrows the light distribution [see Fig. 4(b)]
until a discrete spatial soliton is formed [see Fig. 4(c)]. Similar results were
obtained for the wave guide separations of 5 and 7 µm.
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Nonlinear Fiber Optics
Govind P. Agrawal

1 Introduction

Nonlinear fiber optics concerns with the nonlinear optical phenomena oc-
curring inside optical fibers. Although the field of nonlinear optics traces
its beginning to 1961, when a ruby laser was first used to generate the
second-harmonic radiation inside a crystal [1], the use of optical fibers as
a nonlinear medium became feasible only after 1970 when fiber losses were
reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatter-
ings in single-mode fibers were studied as early as 1972 [3] and were soon
followed by the study of other nonlinear effects such as self- and cross-
phase modulation and four-wave mixing [4]. By 1989, the field of nonlinear
fiber optics has advanced enough that a whole book was devoted to it [5].
This book or its second edition has been translated into Chinese, Japanese,
and Russian languages, attesting to the worldwide activity in the field of
nonlinear fiber optics.

Nonlinear fiber optics has continued to grow during the decade of 1990s,
perhaps even more dramatically than anticipated. This growth is motivated
by several recent advances in lightwave technology, the most important be-
ing the advent of high-capacity fiber-optic communication systems [6]. In
such systems, the transmitted signal is amplified periodically by using op-
tical amplifiers to compensate for residual fiber losses. As a result, the
nonlinear effects accumulate over long distances, and the effective interac-
tion length can exceed thousands of kilometers! Among other fiber devices
in which nonlinear effects are becoming increasingly important are mode-
locked fiber lasers, distributed fiber amplifiers, and fiber Bragg gratings. It
is impossible to review the entire field of nonlinear fiber optics in a chapter
of this size. The focus therefore is on optical solitons and optical switch-
ing, the two topics that are driven by advances in the field of fiber-optic
communications and are likely to remain important as we enter the 21st
century.

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 195−211, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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2 Fiber characteristics

Before describing the nonlinear effects in optical fibers, it is worthwhile
to ponder why optical fibers are useful for nonlinear optics. This section
describes the properties of optical fibers that are unique to them and their
relevance to the study of nonlinear optical phenomena.

2.1 Single-mode fibers
An optical fiber looks like a thin strand of glass and consists of a central
core surrounded by a cladding whose refractive index is slightly lower than
that of the core. Both the core and the cladding are made of fused silica,
a glassy material with an ultra-low loss (about 0.2 dB/km) in the near-
infrared region near 1.5 µm. The refractive-index difference between the
core and the cladding is realized by the selective use of dopants during the
fabrication process. Dopants such as GeO2 and P2O5 increase the refractive
index of pure silica and are suitable for the core, while materials such as
boron and fluorine are used for the cladding because they decrease the
refractive index of silica. Even a relatively small refractive-index difference
between the core and the cladding (typically less than 1%) can guide the
light along the fiber length through the well-known phenomenon of total
internal reflection.

The guiding properties of an optical fiber are characterized by a dimen-
sionless parameter defined as

V = a(ω/c)(n2
1 − n2

2)
1/2, (9.1)

where a is the core radius, ω is the frequency of light, and n1 and n2 are the
refractive indices of the core and the cladding, respectively. The parameter
V determines the number of mode supported by the fiber. Optical fibers
with V < 2.405 support only a single mode and are called single-mode
fibers. Such fibers have a microscopic core (a < 5 µm) and are used almost
exclusively for a variety of applications including optical communications.

2.2 Fiber nonlinearities
The response of any dielectric to light becomes nonlinear for intense electro-
magnetic fields. In the transparent region of optical fibers, the lowest-order
nonlinear effects originate from the third-order susceptibility χ(3), which
is responsible for phenomena such as third-harmonic generation, four-wave
mixing (FWM), and nonlinear refraction. Among these, nonlinear refrac-
tion, a phenomenon referring to the intensity dependence of the refractive
index, plays the most important role. The effective refractive index of the
fiber mode has a general form

ñ(ω, I) = n(ω) + n2I, (9.2)
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where n(ω) is the linear part of the mode index at the frequency ω, I is
the optical intensity, and n2 is the nonlinear parameter related to χ(3).
Several physical mechanisms contribute to n2, the dominant contribution
coming from the anharmonic motion of valence electrons. Because of a fast
response of such electrons, the frequency dependence of n2 can often be
ignored.

The intensity dependence of the refractive index leads to a large number
of interesting nonlinear effects; the two most widely studied are self-phase
modulation (SPM) and cross-phase modulation (XPM). SPM refers to the
self-induced phase shift experienced by an optical field during its propaga-
tion inside optical fibers. Its magnitude can be obtained by noting that the
phase of an optical field changes during transmission through the fiber by

φ = (n + n2I)k0L, (9.3)

where k0 = ω/c = 2π/λ, λ is the wavelength, and L is the fiber length.
The nonlinear phase shift resulting from SPM is φNL = n2k0LI.

Silica glass is a relatively weak nonlinear medium with a measured value
of n2 ≈ 2.7 × 10−20 m2/W. For silica fibers this value can vary in the
range n2 = 2.2–3.0×10−20 m2/W depending on the density of dopants
and on whether the fiber preserves polarization of light [7]. However, even
though n2 is relatively small compared with most other nonlinear media,
the nonlinear phase shift φNL can become large since the intensity I is
enhanced in optical fibers by orders of magnitude because of a small mode
diameter (typically < 10 µm). At the same time, relatively low losses in
fibers can maintain this intensity over long lengths (∼ 10 km). If fiber losses
are compensated periodically by using optical amplifiers, the interaction
length L can exceed thousands of kilometers. It is this combination of a
high intensity and a long interaction length that makes optical fibers so
attractive for nonlinear optics.

2.3 Group-velocity dispersion
As seen in Eq. (9.2), the refractive index in fibers also depends on the
optical frequency ω. This chromatic dispersion plays an important role
in nonlinear fiber optics and leads to formation of optical solitons under
certain conditions. To understand its significance, consider a single-mode
fiber of length L. A specific spectral component at the frequency ω would
arrive at the output end of the fiber after a time delay T = L/vg, where
vg is the group velocity defined as vg = (dβ/dω)−1 and β = n(ω)ω/c is the
propagation constant.

The frequency dependence of the group velocity leads to pulse broadening
simply because different spectral components of the pulse do not arrive
simultaneously at the fiber output. If ∆ω is the spectral width of the pulse,
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the extent of pulse broadening is governed by

∆T =
dT

dω
∆ω =

d

dω

(
L

vg

)
∆ω = L

d2β

dω2 ∆ω ≡ Lβ2∆ω. (9.4)

This phenomenon is referred to as the group-velocity dispersion (GVD),
and the parameter β2 = d2β/dω2 is known as the GVD parameter.

In standard silica fibers, β2 changes sign from positive to negative as
wavelength of light increases beyond 1.3 µm. The region in which β2 is
negative is referred to as the anomalous-GVD regime. The magnitude of
β2 can be controlled by shifting the wavelength at which β2 changes sign.
Dispersion-shifted fibers used for optical communications are designed to
have β2 = 0 near 1.5 µm. It is possible to design fibers such that β2 is
relatively small over a wide wavelength range extending from 1.3 to 1.6 µm.
Such fibers are called dispersion-flattened fibers. Recently, attempts have
been made to produce fibers whose GVD decreases along the fiber length
through axial variations in the core radius. Such fibers are called dispersion-
decreasing fibers and are likely to become important in near future.

3 Pulse propagation in fibers

3.1 Nonlinear Schrödinger equation
Most nonlinear effects in optical fibers are observed by using short optical
pulses because the dispersive effects are enhanced for such pulses. Propa-
gation of optical pulses through fibers can be studied by solving Maxwell’s
equations. In the slowly varying envelope approximation, these equations
lead to the following nonlinear Schrödinger equation (NSE) [5]

∂A

∂z
+

i

2
β2

∂2A

∂t2
= iγ|A|2A − α

2
A, (9.5)

where A(z, t) is the slowly varying envelope associated with the optical
pulse, α accounts for fiber losses, β2 governs the GVD effects, and γ is the
nonlinear parameter defined as

γ = n2ω/(cAeff). (9.6)

Here Aeff is the effective core area of the fiber. This equation is appropriate
for pulses wider than 5 ps. For an accurate description of shorter pulses,
several higher-order dispersive and nonlinear terms must be added to the
NSE [5].

3.2 Modulation instability
The nonlinear phenomenon of modulation instability is perhaps the sim-
plest to understand since it follows readily from the NSE and emphasizes
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the role played by the GVD. Consider propagation of a continuous-wave
(CW) beam of input power P0 inside an optical fiber. If the fiber loss
is ignored by setting α = 0, Eq. (9.5) is easily solved to yield As(z) =√
P0 exp(iφNL), where φNL = γP0z is the SPM-induced nonlinear phase

shift. Equation (9.5) thus shows that a CW beam should propagate through
the fiber unchanged except for acquiring a power-dependent phase shift.

Before reaching this conclusion, however, one must ask whether the
steady-state solution As(z) is stable against small perturbations. To an-
swer this question, we perturb the steady state slightly such that A(z, t) =
[
√
P0 +a(z, t)] exp(iφNL) and linearize Eq. (9.5) in a(z, t) by assuming that

the perturbation is relatively small. The resulting equation,

∂a

∂z
+

i

2
β2

∂2a

∂t2
= iγP0(a + a∗), (9.7)

is readily solved by assuming a general solution of the form

a(z, t) = a1 cos(Kz − Ωt) + ia2 sin(Kz − Ωt), (9.8)

where Ω is the perturbation frequency and K is the wave number associated
with it. By using Eqs. (9.7) and (9.8), K is found to be given by [5]

K(Ω) = ±1
2
|β2|Ω|[Ω2 + (4γP0/β2)]1/2. (9.9)

The dispersion relation (9.9) shows that stability of the CW solution
depends critically on whether light experiences normal or anomalous GVD
inside the fiber. In the case of normal GVD (β2 > 0), the wave number K is
real for all Ω, and the CW beam is stable against small perturbations. By
contrast, in the case of anomalous GVD (β2 < 0), K becomes imaginary for
a range of frequencies, and the perturbation a(z, t) grows exponentially with
z. Thus, propagation of CW beams through fibers is inherently unstable
when β2 < 0. This instability is referred to as the modulation instability
since it leads to spontaneous modulation of the CW beam at a certain
frequency whose value depends on the beam power. Similar instabilities
occur in many other nonlinear systems and are often called self-pulsing
instabilities.

4 Optical solitons

The occurrence of modulation instability in the anomalous-GVD regime
of optical fibers is ultimately related to the solutions of the NSE known
as solitons. In this section we first discuss the bright and dark solitons
and then focus on the use of bright solitons for fiber-optic communication
systems.
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FIGURE 1. Evolution of a third-order soliton over one soliton period.

4.1 Bright solitons
The NSE belongs to a special class of nonlinear differential equations that
can be solved exactly by using a mathematical technique known as the
inverse scattering method [8]. It is useful to write Eq. (9.5) in a normalized
form by introducing the so-called soliton units as

τ = t/T0, ξ = z/LD, u =
√

γLD A, (9.10)

where LD = T 2
0 /|β2| is the dispersion length and T0 is related to the pulse

width. If we neglect fiber losses (α = 0), Eq. (9.5) takes its canonical form

i
∂u

∂ξ
± 1

2
∂2u

∂τ2 + |u|2u = 0, (9.11)

where + or − sign is chosen depending on whether the GVD is anomalous
or normal. The NSE supports solitons for both normal and anomalous
GVD, known as the dark and bright solitons, respectively.

Consider first this case of bright solitons by choosing the + sign in Eq.
(9.11). The analytical solutions of this equation can be summarized as
follows. When an input pulse having an initial amplitude

u(0, τ) = Nsech(τ) (9.12)

is launched into the fiber, its shape remains unchanged during propagation
when N = 1 but follows a periodic pattern for integer values of N >
1 such that the input shape is recovered at ξ = mπ/2, where m is an
integer. The optical pulse corresponding to N = 1 is called the fundamental
soliton. Pulses corresponding to other integer values of N are called higher-
order solitons. The parameter N represents the order of the soliton. As an
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FIGURE 2. Evolution of a Gaussian pulse with N = 1 over the range ξ = 0–10.

example, Fig. 1 shows evolution of a third-order soliton (N = 3) over
one soliton period (z0 = (π/2)LD). This soliton exhibits frequency chirp,
defined as the time derivative of the soliton phase. Only the fundamental
soliton remains chirp-free during propagation while maintaining its shape.
Indeed, the solution of the NLS for N = 1 can be written as

u(ξ, τ) = sech(τ) exp(iξ/2). (9.13)

It shows that the input pulse acquires a phase shift ξ/2 as it propagates
inside the fiber, but its amplitude remains unchanged. It is this property
of solitons that makes them an ideal candidate for optical communications.
In essence, the effects of fiber dispersion are exactly compensated by the
fiber nonlinearity when the input pulse has a “sech” shape and its width
and peak power are related such that N = 1.

An important property of optical solitons is that they are remarkably
stable against perturbations. Thus, even though the fundamental soliton
requires a specific shape and a certain peak power, it can be generated even
when the pulse shape and the peak power deviate from the ideal conditions.
Figure 2 shows evolution of a Gaussian input pulse for which N = 1 but
u(0, τ) = exp(−τ2/2). As seen there, the pulse adjusts its shape and width
to become a fundamental soliton and attains a “sech” profile for ξ 	 1. A
similar behavior is observed when N deviates from 1. In fact, a fundamental
soliton can be excited for values of N in the range 0.5–1.5.

4.2 Dark solitons
The NSE can be solved by the inverse scattering method even in the case of
normal dispersion. The intensity profile of the resulting solutions exhibits
a dip in a uniform background, and it is the dip that remains unchanged
during propagation inside the fiber. For this reason, such solutions of the
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NSE are called dark solitons. This section describes briefly the properties of
dark solitons [9]–[13]. We refer the reader to a 1998 review for details [13].

The NSE describing dark solitons is obtained from Eq. (9.11) by choosing
the − sign for the second term. Its general solution can be written as [10]

ud(ξ, τ) = (η tanhζ − iκ) exp(iu2
0ξ), (9.14)

where
ζ = η(τ − κξ), η = u0 cosφ, κ = u0 sinφ, (9.15)

u0 is the amplitude of the CW background, φ is an internal phase angle in
the range 0 < φ < π/2), and η and κ are the amplitude and velocity of the
dark soliton, respectively.

An important difference between the bright and dark solitons is that the
velocity κ of a dark soliton depends on its amplitude η through the internal
phase angle φ. For φ = 0, Eq. (9.14) reduces to |ud(ξ, τ)| = u0tanh(u0τ),
a form that shows that the soliton power drops to zero at the center of
the dip. Such a soliton is referred as the black soliton. When φ 
= 0, the
intensity does not drop to zero at the dip center; such solitons are called
gray solitons. Another interesting feature of dark solitons is related to their
phase. In contrast with bright solitons which have a constant phase, the
phase of a dark soliton changes across its width, i.e., dark solitons are
generally chirped.

Several techniques can be used to generate dark solitons, including elec-
tric modulation in one arm of a Mach–Zehnder interferometer [9], nonlinear
conversion of a beat signal in a dispersion-decreasing fiber [11], and conver-
sion of a nonreturn-to-zero (NRZ) signal into a return-to-zero (RZ) signal
and then into dark solitons by using a balanced Mach–Zehnder interferom-
eter [12]. In a 1995 experiment [12], a 10-Gb/s signal was transmitted over
1200 km by using dark solitons. Further improvements are likely to occur
with the development of sources capable of generating a dark-soliton bit
stream with little amplitude and width fluctuations.

4.3 Loss-managed solitons
As discussed earlier, solitons use fiber nonlinearity to maintain their width
in the presence of fiber dispersion. However, this property holds only if the
fiber loss is negligible. It is not difficult to see that a decrease in the soliton
energy because of fiber loss would lead to soliton broadening simply because
the reduced peak power weakens the SPM effect necessary to counteract
the GVD. To overcome the effect of fiber loss, solitons need to be amplified
periodically to recover their original width, peak power, and energy. A fiber
amplifier is commonly used for this purpose.

An important design parameter for long-haul communication systems is
the spacing LA between amplifiers. For non-soliton lightwave systems, LA

is typically in the range 60–100 km. For soliton communication systems, LA
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is restricted to smaller values. The reason is that optical amplifiers boost
the soliton energy over a relatively short distance (∼ 10 m). The ampli-
fied soliton adjusts its width dynamically in the fiber section following the
optical amplifier. However, it also sheds a part of its energy as dispersive
waves during this adjustment phase. The dispersive part can accumulate to
significant levels over a large number of amplification stages and must be
avoided. One way to reduce the dispersive part is to reduce the amplifier
spacing LA such that the soliton is not perturbed much over this length.
Numerical and analytical results show that this is the case when LA is a
small fraction of the dispersion length [14]. In such a system, solitons can
be amplified hundreds of time while preserving their shape. Since soliton
evolution is governed by the average soliton energy over one amplifier spac-
ing, this mode of operation is referred to as the average-soliton regime and
the corresponding solitons are called guiding-center solitons [14].

The periodic amplification of solitons can be accounted for by adding the
gain and loss terms to Eq. (9.11), resulting in

i
∂u

∂ξ
+

1
2

∂2u

∂τ2 + |u|2u = − i

2
Γu + i(

√
G − 1)

NA∑
m=1

δ(ξ − mξA)u, (9.16)

where NA is the total number of amplifiers, ξA = LA/LD, Γ = αLD, and
G = exp(αLA) is the amplifier gain needed to compensate for the fiber
loss. The delta function accounts for the lumped nature of amplification at
locations ξ = mξA. The factor

√
G− 1 represents the change in the soliton

amplitude during amplification. In the limit ξA � 1, this equation can be
reduced to the standard NSE for the guiding-center soliton whose evolution
is governed by Eq. (9.13) provided the input peak power is given by

Pin =
G lnG

G − 1
P0, (9.17)

where P0 is the peak power required when α = 0. As an example, G = 10
and Pin ≈ 2.56P0 for 50-km amplifier spacing and a fiber loss of 0.2 dB/km.
The enhanced input power balances the impact of fiber losses in an aver-
age sense. Figure 3 shows soliton evolution for this case over a distance
of 10,000 km. When soliton width corresponds to a dispersion length of
200 km, soliton is preserved quite well even after 200 amplification stages
since the condition ξA � 1 is reasonably well satisfied. However, if the
dispersion length is reduced to 25 km, the soliton is destroyed because it
no longer propagates in the average-soliton regime.

4.4 Dispersion-managed solitons
The dispersion-management technique consists of using multiple sections of
constant-dispersion fibers whose lengths and GVDs are judiciously chosen.
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FIGURE 3. Evolution of a loss-managed soliton over a distance of 10,000 km
with LA = 50 km for two cases of LD = 200 km (left) and LD = 25 km (right).
Soliton is destroyed when amplifier spacing exceeds the dispersion length.

This technique has attracted considerable attention since 1995 because of
several advantages offered by it. It is especially advantageous in the context
of wavelength-division multiplexing (WDM) where FWM can lead to con-
siderable interchannel crosstalk if the GVD is reduced by operating close
to zero-dispersion wavelength. Dispersion management solves this problem
since it can lower the average GVD of the entire link while keeping the
GVD of each section large enough that the FWM and higher-order disper-
sive effects remain negligible. Variants of this scheme are also referred to
as partial soliton communication [15] and dispersion allocation [16].

The propagation of solitons through dispersion-managed fiber links can
be studied by using Eq (9.11) after including fiber losses and variations of
GVD along the fiber length. The resulting equation becomes

i
∂u

∂ξ
+

1
2
p(ξ)

∂2u

∂τ2 + |u|2u = − i

2
Γu, (9.18)

where p(ξ) = |β2(ξ)/β2(0)| is the normalized GVD at ξ. The distance ξ is
normalized using the dispersion length LD = T 2

0 /|β2(0)|.
Because of the ξ dependence of the second term, Eq. (9.18) is no longer

a standard NSE. However, it can be transformed into a perturbed NSE by
using

v = p−1/2u, ξ′ =
∫ ξ

0
p(ξ) dξ. (9.19)

These transformations renormalize the soliton amplitude and the distance
scale to the local GVD. In terms of v and ξ′, Eq. (9.18) becomes

i
∂v

∂ξ′ +
1
2
∂2v

∂τ2 + |v|2v = −i

(
Γ
2p

+
1
2p

dp

dξ′

)
v. (9.20)

If the GVD profile is chosen such that dp/dξ′ = −Γ, or p(ξ) = exp(−Γξ),
the terms on the right side of Eq. (9.20) vanish, and the fiber loss has
no effect on soliton width or shape [17]. Thus, solitons can maintain the
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balance between GVD and SPM even in a lossy fiber if the GVD decreases
exponentially as |β2(z)| = |β2(0)| exp(−αz) along the fiber length. Such
fibers are called dispersion-decreasing fibers and have been used to verify
the above prediction in several recent experiments [18]–[20].

Since fibers with a continuously varying dispersion are not yet commer-
cially available, a practical approach consists of splicing together several
constant-dispersion fibers with different β2 values. A common dispersion
map alternates fiber segments with opposite GVD values in an attempt to
reduce the average dispersion along the communication link. The question
then arises whether solitons can survive rapid variations in β2. This issue
has been studied extensively since 1996 [21]–[27], and a new class of soli-
tons, referred to as dispersion-managed solitons, has been discovered. This
discovery has jolted the field of nonlinear fiber optics since it is forcing us
to modify some long-held notions about solitons.

Dispersion-managed solitons are not true solitons in the usual sense since
the underlying NSE, Eq. (9.20), is not integrable by the inverse scattering
method. Because of large variations in the local GVD, the dispersive and
nonlinear effects cannot be balance locally, resulting in large variations in
shape, width, and frequency chirp of the transmitted pulse. Nevertheless,
they can be balanced in a global sense since the optical pulse evolves in
a periodic manner and require considerably higher input powers [21]. It
was initially thought that such a periodic evolution can occur only if the
average GVD is anomalous [23]. However, it was discovered in 1997 that
dispersion-managed solitons can exist even when the average GVD over a
dispersion map is normal [24]. The research on dispersion-managed solitons
is continuing, and further advances are likely to occur in this field.

5 Nonlinear optical switching

Optical (or photonic) switching refers to a phenomenon in which transmis-
sion of an optical field through a device is switched among two or more
possible states by optical means. In the case of nonlinear optical switching
the device transmission is intensity dependent so that the optical beam
itself induces switching depending on its intensity. Both SPM and XPM
occurring in an optical fiber are well suited for this application and their
use results in an all-fiber device capable of switching on a femtosecond time
scale.

5.1 SPM-based optical switching
The SPM-based optical switching is realized in practice by using an in-
terferometer. Any interferometer can be used for this purpose including
Fabry–Perot, Michelson, and Mach–Zehnder interferometers. A Sagnac in-
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FIGURE 4. Transmitted power as a function of incident power for a nonlinear
fiber-loop mirror.

terferometer is commonly used since it can be constructed by using a fiber
coupler whose two output ports are connected to a fiber segment, forming
a loop. The input pulse enters from one port and is split into two coun-
terpropagating pulses at the fiber coupler, which interfere at the coupler
after acquiring a relative phase shift during one round trip through the
loop. The input pulse is transmitted through the other port or is reflected
back to the input port depending on the relative phase shift. Such a de-
vice acts as a perfect mirror at low powers (the linear regime) when the
fiber coupler splits the pulse equally (a 50:50 coupler) and is referred to
as a fiber-loop mirror. However, if the coupler splits the pulse unequally,
the same device acts as an all-optical switch because of the SPM-induced
nonlinear phase shift and is referred to as the nonlinear optical loop mirror
(NOLM) [28]. Such a device has attracted considerable attention and has
found applications not only for optical switching but also for mode locking
and wavelength demultiplexing.

Switching characteristics of a NOLM depend on the splitting ratio of the
fiber coupler. If a fraction f of the input power P0 travels in the clockwise
direction, then the transmissivity for a loop of length L is obtained by
calculating the phase shifts acquired during a round trip by the counter-
propagating optical waves, and then recombining them interferometrically
at the coupler. The result is [28]

Tm = 1 − 2f(1 − f){1 + cos[(1 − 2f)γP0L]}. (9.21)

For f = 0.5 the loop reflectivity is 100% for all powers. However, if the
splitting fraction f is different than 0.5, then the NOLM can act as a
switch.

Figure 4 shows the transmitted power as a function of P0 for two values
of f . At low powers, little light is transmitted if f is close to 0.5 since
Tm ≈ 1 − 4f(1 − f). At high powers, the nonlinear phase shift leads to
complete transmission whenever |1 − 2f |γP0L = (2m− 1)π, where m is an
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integer. As seen in Fig. 3, the NOLM switches from low to high transmission
periodically as input power increases. In practice, only the first transmission
peak (m = 1) is used for switching because it requires the least power.
In fact, switching power is rather high even for m = 1. For this reason,
experiments on nonlinear optical switching typically use ultrashort optical
pulses to obtain high peak powers. However, only the central part of the
pulse is generally intense enough to experience switching, leading to pulse
distortion. This problem can be solved by using optical solitons as input
pulses since solitons switch as a whole entity because of their particle-like
nature [29]–[31].

The switching threshold of an NOLM can be reduced considerably by
incorporating an optical amplifier within the loop [32]. If the amplifier is
located close to the fiber coupler, its presence introduces an asymmetry
such that even a 50:50 coupler (f = 0.5) can be employed. This feature
can be understood by noting that one wave is amplified at the entrance
to the loop while the counterpropagating wave experiences amplification
just before exiting the loop. Since the intensities of the two waves differ
by a large amount throughout the loop, the differential phase shift can be
quite large. In fact, assuming that the clockwise wave is amplified first by
a factor G, Eq. (9.21)) becomes

Tm = 1 − 2f(1 − f){1 + cos[(1 − f − Gf)γP0L]}. (9.22)

For f = 0.5 the switching power for m = 1 becomes P0 = 2π/[(G − 1)γL].
Since the amplification factor G is typically 30 dB, the switching power
is reduced by a factor of 1000. Such a device, referred to as the nonlinear
amplifying loop mirror [32], provides switching with gain and can switch at
power levels below 1 mW. Indeed, switching at a power of less than 250 µW
has been demonstrated for a 17-m fiber loop [33].

The NOLM has found many applications. It can be used for pulse shaping
because of its intensity-dependent transmission. For example, if a short
optical pulse contains a broad pedestal, the pedestal can be removed by
passing it through such a device. Its use for passive mode locking permits
generation of femtosecond pulses in figure-eight fiber lasers [34]. Another
important application of NOLM is for demultiplexing of individual channels
in a WDM lightwave system. Since demultiplexing requires injection of a
control pulse together with the signal, the XPM, rather than SPM, is the
main nonlinear effect behind the operation of such devices. We turn to it
in the next subsection.

5.2 XPM-based optical switching
The physics behind XPM-induced switching can be understood by con-
sidering a generic interferometer designed such that a weak signal pulse,
divided equally between its two arms, experiences identical phase shifts in
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FIGURE 5. Schematic illustration of intensity-dependent switching in a dual-core
fiber coupler.

each arm and is transmitted through constructive interference. If a pump
pulse at a different wavelength is injected into one of the arms of the inter-
ferometer, it would change the signal phase through XPM in that arm. If
the XPM-induced phase shift is large enough (close to π), the signal pulse
will not be transmitted because of the destructive interference occurring
at the output. Thus, an intense pump pulse can switch the signal pulse
through the XPM-induced phase shift.

XPM-induced optical switching by using a NOLM was demonstrated in
1990 [35]. A dichroic fiber coupler with 50:50 splitting ratio at 1.53 µm and
100:0 splitting ratio at 1.3 µm was used to allow for the dual-wavelength
operation. A 1.53-µm color-center laser provided low-power (∼ 5 mW)
CW signal. As discussed before, the counterpropagating signal beams ex-
perienced identical phase shifts, and the 500-m-long fiber loop acted as a
perfect mirror in the absence of a pump beam. When 130-ps pump pulses,
obtained from a 1.3-µm Nd:YAG laser, were injected in the clockwise di-
rection, the XPM interaction between the pump and the signal introduced
a phase difference between the counterpropagating signal beams. Most of
the signal power was transmitted when the peak power of the pump pulse
was large enough to introduce a π phase shift.

Several other devices utilize XPM for optical switching, the most studied
device perhaps being a nonlinear directional coupler [36]–[38]. Nonlinear
directional couplers are four-port devices in which an optical beam can
be switched from one port to another by changing the input power. Such
couplers can be made by using dual-core fibers whose two cores are close
enough that the evanescent-wave coupling between the optical modes as-
sociated with each core transfers power from one core to another. SPM
and XPM modify this coupling and affect the switching behavior. Figure 5
shows schematically how an optical pulse can be directed toward different
ports depending on its peak power. Ultrafast all-optical switching in dual-
core fibers was observed in 1987. Since then, considerable attention has
focused on the performance of fiber directional couplers. Since the use of
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solitons permits switching of the entire pulse, soliton switching in dual-core
fibers has attracted the most attention.

XPM-induced optical switching can also be realized by using birefringent
effects in single-core fibers. In fact, its use has led to the realization of all-
optical, cascadable, ultrafast, logic gates [39]. In this case, switching occurs
between the orthogonally polarized modes of the same fiber core. In fact,
optical switching is described mathematically in both cases by the same
set of coupled NSEs [5]

i
∂u

∂ξ
± 1

2
∂2u

∂τ2 + (|u|2 + B|v|2)u + κv = 0, (9.23)

i
∂v

∂ξ
± 1

2
∂2v

∂τ2 + (|v|2 + B|u|2)v + κu = 0, (9.24)

where B = 2 for a twin-core directional coupler but reduces to 2/3 in single-
core birefringent fibers. The above equations have been extensively stud-
ied [38] not only in the context of optical switching but also other nonlinear
effects such as XPM-induced modulation stability and pulse compression.
These equations also have solutions in the form of pairs of bright and dark
solitons supported mutually through the XPM interaction. We refer the
reader to recent books for further details on these topics [5], [38].

6 Concluding remarks

At the dawn of the 21st century, the field of nonlinear fiber optics is vi-
brant with a lot of research activity. This chapter has touched only the
tip of an iceberg by focusing on two themes related to solitons and op-
tical switching. Stimulated Raman scattering is attracting a lot of atten-
tion for making broadband optical amplifiers. Similarly, FWM has been
used for channel demultiplexing in a WDM lightwave system. FWM is also
harmful for WDM systems since it leads to interchannel crosstalk, and
the dispersion-management technique is often used to suppress it. Another
topic that is attractive considerable attention is the study of nonlinear ef-
fects in fiber gratings [40]. Fiber gratings exhibit modulation instability
and support a new type of solitons referred to as Bragg solitons. From the
wide range of nonlinear effects in optical fibers currently being studied, it
is expected that nonlinear fiber optics will remain a topic of interest well
into the 21st century.
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Self-Focusing and Collapse of Light
Beams in Nonlinear Dispersive Media
Luc Bergé
Jens Juul Rasmussen

ABSTRACT The collapse of self-focusing beams in nonlinear dispersive
media described by the nonlinear Schrödinger (NLS) equation is reviewed.
Conditions for blow-up of solutions to the NLS equation with a cubic non-
linearity and isotropic dispersion properties are recalled, together with the
self-similar analyses employed for modelling wave collapses. Emphasis is
then laid on the influence of anisotropic (negative) dispersion and on the
deviations from the spatio-temporal envelope approximations, which are
shown to strongly alter the blow-up dynamics.

1 Introduction

The self-focusing and collapse of wave-packets in nonlinear dispersive media
as, e.g., plasmas and nonlinear optical materials, is in general described
by the nonlinear Schrödinger (NLS) equation for a scalar wave envelope
E(x, y, z, t). In normalized form this equation reads

i
∂E

∂t
+ ∆⊥E + s

∂2E

∂z2 + |E|2E = 0. (10.1)

The different signs of the coefficient s allow for treating media with isotropic
dispersion (s > 0) as well as with anisotropic dispersion (s < 0). In
Eq.(10.1) we have used standard notations and normalized variables. In
the context of nonlinear optics, the variable t often refers to the longitu-
dinal length along the beam propagation axis, whereas z occurring in the
space derivatives of the envelope corresponds to a retarded time variable
t′ = t − z/ω′ (ω′ ≡ ∂ω/∂k). These derivatives then reflect the “temporal”
wave dispersion measured through the group velocity dispersion (GVD)
coefficient s, related to the dispersion factor ∂2k/∂ω2|ω0 . The coefficient
s can be either positive in the case of a so-called anomalous dispersion,
or negative in the opposite case of a so-called normal dispersion [1]. More
generally, equation (10.1) applies to the description of nonlinear wave prop-
agation in media with an anisotropic dispersion, i.e., with a dispersion law
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ω(�k) for which the second-order derivatives with respect to k⊥ and kz dif-
fer in sign. This is often the case for waves in magnetized plasmas, such
as lower-hybrid waves [2]. However, adopting the terminology used in non-
linear optics we henceforth refer to s = +1 and s = −1 as the anomalous
and normal dispersion regimes, respectively. Before proceeding, let us recall
that equation (10.1) conserves the Hamiltonian

H =
∫

{|�∇⊥E|2 + s|Ez|2 − 1
2
|E|4}d�r⊥dz ≡ I1 + sI2 − I3 (10.2)

and the total “mass” or “power” N ≡ ∫ |E|2d�r⊥dz. For s = 0 and when
disregarding the z axis, it describes the 2D self-focusing/collapse of wave-
packets at a finite time t = t0. A necessary condition for self-focusing is
N > Nc � 11.68, where the critical mass Nc is the mass calculated on
the stationary ground state of NLS [3]. This ground state is the positive,
radially-symmetric solution φ0 of

−λφ0 + ∆⊥φ0 + φ3
0 = 0, (10.3)

derived from (10.1) after setting E(x, y, z, t) = φ0(x, y)eiλt and computed
with λ = 1. A 2D self-focusing, leading to an ultimate collapse, is ensured
for H < 0.

In this contribution, we summarize standard results concerning wave
collapses in cubic media with anomalous GVD (s = +1), where we mainly
focus on the self-similar collapse dynamics. A detailed discussion of the
basic collapse phenomenology can be found in the recent reviews [4, 5, 6]
and in the contribution to this volume by Kuznetsov and Zakharov [7],
which contains a general account of collapse dynamics in different physical
systems. Here, we describe recent results on the collapse dynamics in the
normal GVD regime (s = −1), providing evidence for the absence of 3D
collapse together with the formation of splitting events preventing a 2D
transverse self-similar collapse. The influence of deviations to the envelope
approximations, which are usually applied for deriving Eq.(10.1), is also
discussed.

2 General properties of self-focusing with
anomalous group velocity dispersion

2.1 Basic properties
With anomalous GVD, the dispersion coefficient s can be set equal to unity,
so that we simply deal with the so-called scaled NLS model

i∂tE + �∇2E + |E|2E = 0 (10.4)
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involving the Laplacian �∇2 = ∆⊥ + ∂2
z . We first briefly recall basic defini-

tions concerning the local and global existence of time-dependent solutions
to Eq.(10.4), regarding its initial-value (Cauchy) problem. The initial wave
function E(�x, t = 0) ≡ E0(�x) is formulated in a Sobolev space usually se-
lected among the possible Hilbert spaces Hp = {v : (1−∆)p/2v ∈ L2(RD)},
where D denotes the total space dimension number D = D⊥ + 1 attached
to the vector �x = (�r⊥, z). By convention, the Sobolev space H1 is currently
chosen with norm

‖E‖H1 = (‖E‖2
2 + ‖�∇E‖2

2)1/2, (10.5)

where both E and �∇E belong to L2(RD). Here and in the sequel, the use
of the standard Lp norms

‖f‖p ≡ (
∫

|f |pd�r⊥dz)1/p (10.6)

will sometimes be made for notational convenience. For the NLS equation,
the L2 norm of the solution E(�x, t) is thus conserved with N ≡ ‖E‖2

2 =
‖E0‖2

2. Keeping this property in mind, we define a blow-up by the existence
of a finite time t0 < +∞, such that ‖E‖H1 → +∞ for t → t0, which implies
that the gradient norm ‖�∇E‖2 diverges as t → t0. From this, it can be
shown that max|E(�x, t)| also diverges as t → t0. To illustrate a blow-up
proof, we employ the arguments emphasized in [8, 9], which are based on
the vanishing of the so-called virial integral

I(t) ≡
∫

(r2
⊥ + z2)|E|2d�r⊥dz = ‖�xE‖2

2 → 0 as t → t∗0 < +∞. (10.7)

The evolution of I(t) is governed by

∂2
t I(t) = 4{2H + (1 − D

2
)
∫

|E|4d�r⊥dz} (10.8)

and the “virial” integral I(t) is a measure of the square-width of the wave-
packet. Valid for localized time-dependent solutions with a center of mass
located on the origin and possessing zero velocity, this relation enables us
to determine whether a given initial waveform will collapse into a point-
singularity in a finite time, such that the wave amplitude blows up at
this point. Let us assume a priori that I(t) vanishes exactly at t = t∗0.
By integrating the L2 norm of E by parts and using the Cauchy-Schwarz
inequality, we get

‖E‖2
2 ≤ 2

D
‖�∇E‖2‖�xE‖2. (10.9)

Considering non-trivial solutions with a finite norm ‖E0‖2 = 0, we then
deduce from Eqs.(10.7) and (10.9) that, as long as the solution exists for
all t < t∗0, the gradient norm ‖�∇E‖2 tends to infinity for t → t∗0 and blow-
up is demonstrated. Note that the instant t∗0 can differ from the moment
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t0 at which the solution diverges. Indeed, the blow-up time t0 has been
revealed to be smaller than the time t∗0 when I(t) strictly reaches zero,
because only a limited amount of mass is captured within the blowing-up
spike as t → t0. For the 2D NLS, this amount is just the critical mass
Nc ≡ ‖φ0‖2

2 defined by the ground state solution, whereas, for a given wave
having initially N >> Nc, the remaining part of the mass is evacuated
through radiations. Hence, t∗0 must be viewed as a maximum existence
time in case of blow-up. From Eq.(10.8), it is seen right away that H < 0
is a sufficient condition for collapse of 3D beams with anomalous GVD.
Also in the 3D case the stationary radially-symmetric ground state solution
plays an essential role in providing a sharper criterion for collapse [10].
This criterion is H < Hsol = N2

c /N , where Hsol refers to the Hamiltonian
integral computed on the soliton solution, that corresponds to a given initial
mass N . As before, Nc refers to the mass of the ground state solution to
Eq.(10.1), i.e., the solution of (10.3) for λ = 1, where ∆⊥ is replaced by
the 3D Laplacian.

2.2 Self-similar wave collapses
A current solution modelling the self-focusing part of a collapsing field is the
so-called “self-similar” solution. Written in its simplest form, the amplitude
evolves as

|E(�x, t)| =
1

J(t)
|Q(

�x

a(t)
)|, (10.10)

where the functions J(t) and a(t) both decrease to zero, as t goes to the sin-
gularity time t0. The amplitude function |Q| is called “self-similar”, because
it keeps the same spatial distribution at every time preceding t0. For the
sake of simplicity, we limit our investigation to radially-symmetric scalar
solutions E(r ≡ |�x|, t) to the NLS equation (10.4). Blowing-up solutions
for NLS can then be sought under the generic form

E(r, t) =
1

[g(τ)]α
Q(ξ, τ) exp (iλτ) (10.11)

where ξ ≡ r/a(t) ≡ r/g(τ) is the spatial coordinate rescaled with respect
to the radius a(t), which is re-expressed as a τ -dependent function g(τ).
The new time τ(t) ≡ ∫ t

0 du/a2(u) varies continuously with t. The param-
eter λ denotes the positive eigenvalue attached to the NLS equation [see
Eq.(10.3)], and it assures localized eigenstates Q vanishing at infinity. In
Eq.(10.11), the exponent α is positive, which allows us to describe the di-
vergence of the wave when a(t) → 0. By definition, the evolution of E(r, t)
is exactly self-similar, if, in the limit g(τ) → 0, the following requirement
holds

Q(ξ, τ) → Q0(ξ;λ) as t → t0 [or τ(t) → τ(t0) ≡ τ0]. (10.12)
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Q0(ξ;λ) is an exactly self-similar function in the sense that, apart from its
functional dependence on λ > 0, it does not explicitly depend on the new
time variable τ , but on the rescaled variable ξ only. Under this assumption,
we can express the invariants N and H associated with the NLS equation
in terms of Q [Eq.(10.11)]

N{E} = [g(τ)]D−2αN{Q}, N{Q} ≡ ‖Q‖2
2 = 2D−1π

∫ +∞

0
|Q|2ξD−1dξ,

(10.13)

H{E} = {‖∂ξQ‖2
2

[g(τ)]2
− 1

2
‖Q‖4

4

[g(τ)]2α
} × [g(τ)]D−2α. (10.14)

In accordance with the terminology introduced in Ref.[11], we use the term
“strong” self-similar solutions for the singular states (10.11) that blow up
with an exactly self-similar shape preserving the mass integral N{E} with
N{Q} = N{Q0}. In this case, the exponent α in the amplitude factor of
solution (10.11) is equal to α = D/2, and it particularly suits a critical
(D = 2) collapse for which this choice is compatible with both conserva-
tions of N and H. Strong solutions are expected to capture the mass N
around the origin ξ = 0 where the waveform diverges. On the contrary,
so-called “weak” solutions correspond to self-similar states which cannot
preserve these integrals of motion, in such a way that they cannot be valid
within the entire space in ξ. This concept applies to a supercritical (D > 2)
collapse for which the constancy of H near the collapse time t0 implies that
the exponent α in Eq.(10.11) must be equal to α = 1. For “weak” solutions,
the function Q cannot be exactly self-similar in the whole space domain,
since the integral N{Q} has to restore the mass conservation with a dom-
inant contribution located around some spatial bound ξmax(τ), such that
N{Q} � 2D−1π

∫ ξmax(τ)
0 |Q0|2ξD−1dξ ∼ [g(τ)]2−D diverges as τ → τ0.

These solutions describe so-called weak collapses, in the sense that the
mass is shifted to some points ∼ ξmax(τ) different from the origin, while
the singular waveform still collapses on the center ξ = 0 [11]. Formally,
the divergence of N{Q} occurring in the self-similar limit i∂τQ → 0 can
be demonstrated from the equation for Q. The functions Q are moreover
zero-energy states which preserve the invariance of H{E}.

Fixing henceforth α = 1, we describe the self-similarity of collapsing
solutions by means of a general analysis, which enables us to determine
their precise blow-up rates a(t). We introduce the substitution (10.11) into
Eq.(10.4) and use the additional transformation

Q(ξ, τ) = φ(ξ, τ) exp (−iβξ2/4), (10.15)

where β is a time-dependent function

β(t) ≡ −ȧa = ∂τ ln (
1

g(τ)
) (10.16)
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(dot notation means a differentiation with respect to the time variable t).
By doing so, we obtain the self-similarly transformed equation of NLS

i∂τφ + ∆ξφ + |φ|2φ + ε(τ)[ξ2 − ξ2
T (τ)]φ = 0, (10.17)

with ∆ξ ≡ ξ1−D∂ξξ
D−1∂ξ. Here, the quantities ε(τ) and ξ2

T (τ) are time-
dependent functions

ε(τ) ≡ −1
4
a3ä =

β2 + βτ

4
(10.18)

ξ2
T (τ) ≡ λ + iβ(D − 2)/2

ε
. (10.19)

According to the definition of self-similarity, the new function φ is said
to be exactly self-similar when it satisfies ∂τφ = 0 in the neighborhood
of the collapse moment t0, which means: ∂τφ → 0 as τ(t) → τ(t0) = τ0.
To determine the scaling law a(t), solutions to equation (10.17) must be
treated by means of a perturbation theory in the vicinity of the collapse
singularity t0. This perturbation theory assures that, as t → t0, the so-
lution φ tends to a self-similar state satisfying the limit ∂τφ → 0, while
the time-dependent functions ε and ξ2

T (ε) are expected to converge adia-
batically towards steady-state values. In this limit, by assuming a priori
τ(t) → τ0 = +∞, the time-dependent functions ε and β can be viewed as
adiabatic functions of time satisfying ε � β2/4 with |∂τβ| << β2. It is then
convenient to divide the solution φ into two distinct contributions, namely
a core φc and a tail φT

φ(ξ, τ) = φc(ξ, τ) + φT (ξ, τ), (10.20)

where the time dependence of φ is only brought by the adiabatic functions ε
and β provided that the limit ∂τφ → 0 holds. φc corresponds to the central
part of φ located at the origin, around which the localizing nonlinearities
in |φ|2φ are efficient, and it extends in the spatial domain: ξ < ξT . In
this region, φc is close to the exact self-similar state φ0(ξ;λ) and it can
be expressed perturbatively as a Taylor expansion in power series of, e.g.,
(ε − ε0) with ε → ε0 as τ → +∞

φc(ξ, ε) � φ0(ξ;λ) + (ε − ε0)
∂φ

∂ε
|ε0 + ... (10.21)

On the other hand, φT extends in the domain ξ > ξT associated with
the asymptotic regions of space, where the cubic nonlinearity can be dis-
regarded. φT is then a solution of a parabolic cylinder equation, which
must be matched to φc in the vicinity of the complex turning point ξ = ξT .
Around this point, the appropriate boundary conditions determine the right
functional dependences of φT

φT (ξ, ε) � C(ε)
ei

√
εξ2/2

ξD/2+iλ/(2
√

ε)
[

ξ

|ξT | ]
(D−2) β

4
√

ε (10.22)
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|C(ε)| ∝ ε−1/4eG(ε)/2 (10.23)

G(ε) = − πλ

2
√
ε

+
β

4
√
ε
(D − 2)(1 + 2 ln 2) − λ

2
√
ε
arctan[

β(D − 2)
2λ

]. (10.24)

Now we face another problem: due to the weak algebraic decay of φT

(10.22), the mass integral N{φ} exhibits spatial divergence. This is re-
moved by considering that self-similar solutions necessarily have a finite
spatial extension for all times preceding t0. The cut-off radius bounding
this extension domain has been determined in [12, 13] and reads

ξmax(τ) ≡ A|ξT |
g(τ)

, A = const >> 1. (10.25)

The final step of the analysis consists in identifying accurately the con-
traction rate g(τ) = a(t), by using the perturbed state (10.20). To this aim,
we use the mass continuity equation for the solution φ, namely∫ ξ

0
∂τ |φ(ξ′, τ)|2ξ′D−1

dξ′ = −2|φ(ξ, τ)|2ξD−1∂ξarg{φ(ξ, τ)} +

β(D − 2)
∫ ξ

0
|φ(ξ′, τ)|2ξ′D−1

dξ′,(10.26)

which follows from multiplying Eq.(10.17) by φ∗ and integrating the re-
sulting imaginary part from zero to ξ. Multiplied by the numerical factor
R = 2D−1π, Eq.(10.26) actually describes the mass exchanges between the
core and the tail contribution of φ by choosing ξ in the range ξ >> ξT . By
inserting the solution (10.20) into Eq.(10.26) and using the Taylor expan-
sion (10.21), we readily get

J ∂τ ε = −2ReG(ε)[
ξ

|ξT | ]
(D−2) β

2
√

ε

ξ→+∞ + β(D − 2)N{φ} (10.27)

ε � β2/4, J ≡ 2Re
∫

{φ∗
0
∂φ

∂ε
|ε0}d�ξ > 0. (10.28)

We now specify the right-hand side of Eq.(10.27) and determine the blow-
up scales of beams collapsing in isotropic media for space dimensions 2 and
3.

(i) At the critical dimension D = 2, equation (10.27) simplifies into

∂τ ε � −2R
J exp (− πλ

2
√
ε
), (10.29)

from which the approximated behavior: 2
√
ε � β = πλ/ ln (τ) follows. This

yields the contraction scale

a(t) = a0

√
2πλ(t0 − t)
ln (ln [ 1

t0−t ])
(10.30)
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after solving β(t) = −aȧ and employing τ(t) � ln [1/(t0 − t)]. This result
agrees with Fraiman [14] and Malkin [15] when λ = 1, and it was accurately
verified in direct numerical solutions of the NLS equation [16, 17]. Critical
collapses are strong collapses that capture a finite amount of mass N{E} =
N{φ}, relaxing ultimately to the mass of the ground state solution Nc on
the center. This has been confirmed by numerical solutions of the NLS
equation with a weak nonlinear dissipation term acting on the collapsing
spike [18, 19]. In this context, it was observed that the mass decreased in
steps of 0.2 − 0.3 × Nc during each collapse event.

(ii) At the supercritical dimension D > 2, Eq.(10.27) must be rewritten
by using ε → β2/4, N{E} = [g(τ)]D−2N{φ}, and by taking into account
that a self-similar solution cannot exceed the cut-off radius (10.25). This
leads to the relation

J ∂τ ε � [g(τ)]2−D[2
√
εN{E}(D − 2) − 2ReG(ε)], (10.31)

from which a stationary fixed point ε → ε0 > 0 arises, corresponding to an
exact self-similarity reached for ετ = 0. A self-similar state is then rapidly
attained and it is characterized by the limit ε → ε0 > 0 (β → β0 > 0),
which yields the contraction law

a(t) = a0
√
t0 − t. (10.32)

Weak collapses driven by the scaling law (10.32) were numerically observed
for a large class of initial data in Refs.[17, 18, 19, 20]. As a conclusion,
3D beams in cubic media with anomalous GVD achieve their self-focusing
evolution with a weak collapse, which is characterized by the contraction
scale (10.32) and by a mass integral N{E} = a(t)N{φ} becoming zero on
the center. In accordance with this it was observed in numerical solutions
of the 3D NLS with nonlinear dissipation that the total mass decreases
monotonically [18], in contrast to the step-wise decrease observed in strong
2D collapses. Further discussions on weak, strong and superstrong collapse
scenarios can be found in Ref. [7].

3 Self-focusing with normal group velocity
dispersion

For media with normal dispersion described by Eq.(10.1) with s = −1,
antecedent studies [21, 22, 23, 24, 25] indicate that the evolution of a wave
pulse is governed by the interplay between two main tendencies, namely
a 2D compression in the transverse plane and a stretching along the z
axis. This competition leads to the splitting of a single pulse into small-
scale bunches, accompanied by a simultaneous compression of the resulting
structures. The latter can, in turn, be broken up into smaller-scale cells [25].
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To describe this splitting phenomenon we suppose a priori that the solution
E exists at least locally in time. From Eq.(10.1) it is easy to construct the
longitudinal and transverse mean square radius of the pulse, associated
respectively with the virial-type equations

∂2
t Iz(t) ≡ ∂2

t ‖zE‖2
2 = 8‖∂zE‖2

2 + 2‖E‖4
4 = 8I2 + 4I3 (10.33)

∂2
t I⊥(t) ≡ ∂2

t ‖r⊥E‖2
2 = 8‖�∇⊥E‖2

2 − 4‖E‖4
4 = 8H + 8I2. (10.34)

After multiplying Eq.(10.33) by Iz(t) and applying Eq.(10.9) along z, we
derive the inequality

∂2
t I

2
z/2 ≥ Iz Ïz ≥ 2N2, (10.35)

which enables us to conclude that for any initial data, Iz(t) can never vanish
in finite time. Instead it globally increases as t → ∞, indicating thereby
an asymptotic stretching of the waveform along z. Also, Iz(t) appears to
be bounded from below: let us assume a compression regime along the z
axis and multiply both sides of the inequality (10.35) by İz < 0, we then
immediately get the following bound for the longitudinal wave extension

Iz(t) ≥ Imin
z = Iz(0) exp [− (İz(0))2

4N2 ] > 0. (10.36)

Regarding now the evolution of I⊥(t), we can show that a transverse col-
lapse defined by I⊥ → 0 is impossible in the total compression regime for
which both of the requirements İz < 0 and İ⊥ < 0 hold in the vicinity of
a given finite instant t∗0. Indeed, let us multiply Eqs.(10.33) and (10.34) by
İ⊥ < 0 and İz < 0, respectively, within the time interval [T0, t

∗
0[ where the

wave is assumed to self-contract. We then add the resulting equations to
obtain the estimate

d

dt
[İ⊥İz] = 8İz(H + ‖∂zE‖2

2) + 4İ⊥(−H + ‖�∇⊥E‖2
2 + ‖∂zE‖2

2) (10.37)

≤ d

dt
(−4HI⊥ + 8HIz + 2N2 ln Iz + 4N2 ln I⊥),

leading to

E(t) = İz İ⊥ + 4H(I⊥ − 2Iz) − 4N2 ln I⊥ − 2N2 ln Iz ≤ E(T0) < +∞.
(10.38)

Because Iz(t) is bounded as Imin
z ≤ Iz(t) ≤ Iz(T0), the inequality (10.38)

proves that I⊥(t) cannot vanish under the above assumptions. Thus, I⊥(t)
always remains bounded from below in this forced compression regime.
From a mathematical viewpoint, the non-vanishing of I⊥(t) is not a rigor-
ous proof for the absence of a blow-up-type singularity, since, for instance,
such singularities can occur before the complete vanishing of the virial in-
tegral as is the case for the NLS equations with s = +1. Nevertheless, the
impossibility for I⊥(t) to reach zero shows, from a physical point of view,
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that no local concentration of the peak intensity, in the usual NLS sense,
is possible. In this respect, it is amazing that even 2D self-focusing cannot
take place in the transverse plane with I⊥ → 0 under the conditions that
would be believed to favour it by forcing a compression of the wave radius
along every direction with ∂tIz < 0 and ∂tI⊥ < 0.

Therefore, the only possibility for a collapse to occur seems to be for the
case ∂tIz > 0 and ∂tI⊥ < 0, for which virial arguments have limited value
for excluding the possibility of collapse. Alternatively, the splitting process
that appears close to the self-focusing stage (i.e., in the limit t → t0) can be
described by employing a quasi-self-similar analysis [26, 27] analogous to
the one outlined in Sec. 2. This shows that a transverse collapse cannot take
place within the self-similar approximation. Here we give a brief account
of the main ingredients of this analysis. We consider the case where the
longitudinal scale size Z(t) is assumed to increase, while the transverse
scale size R(t) is still ensured to decrease in the vicinity of the instant t0
(Z and R have obvious connections with Iz and I⊥). The quasi-self-similar
analysis is based on the following solution

E(t, �r⊥, z) =
√
N

R(t)
√

Z(t)
φ̃(τ(t), ξ, ζ) exp

(
iλτ(t) + i

RtR

4
ξ2 − i

ZtZ

4
ζ2

)
(10.39)

with the rescaled variables

τ(t) ≡
∫ t

0

du

[R(u)]2
, ξ ≡ r⊥

R(t)
, ζ ≡ z

Z(t)
.

The positive parameter λ corresponds to the eigenvalue attached to Eq.(10.1),
and we assume a pulse self-focusing in the transverse plane with R(t →
t0) → 0, while Z(t) reaches a finite value Z(t0) > 0. Inserting Eq.(10.39)
into Eq.(10.1) with s = −1 leads to a self-similarly transformed equation
for φ̃, involving the time-dependent functions

εR = [a2
R + ∂τ (aR)]/4 = −R3Rtt/4 , and γεZ = −R2ZZtt/4, (10.40)

with aR ≡ −RtR and γ(t) ≡ R2(t)/Z2(t). As t → t0, it can be shown that
both of these functions tend towards values of comparable magnitude, |ε|,
in the self-similar limit ∂τ φ̃ → 0 reached as τ(t) → τ(t0) = +∞. After
simple rescalings and using γ(t) → 0, the eigenfunction φ̃ is found to obey
the quasi-2D equation

i∂τ φ̃ + ∂2
ξ φ̃ + (1/ξ)∂ξφ̃ + [ε(ξ2 + ζ2) − λ]φ̃ + |φ̃|2φ̃ = 0, (10.41)

where the variable ζ plays the role of a localizing parameter, in the sense
that in the self-similar limit ε → const > 0, the solution φ̃ can only be
localized along the ζ-axis for λ̃ ≡ λ − εζ2 > 0. Next, the mass continuity
relation associated with Eq.(10.41) describes the power exchanges in the
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transverse plane between the inner core of the solution defined in the range

ξ <
√

λ̃/ε and its tail extending for ξ >
√

λ̃/ε. This allows us to derive a
dynamical equation for ε

K∂τ ε = −2 exp[−π(λ − εζ2)/(2
√
ε)] (10.42)

with K =
∫ +∞
0 ξ3|φ̃(ξ, ε = 0)|2dξ. When the longitudinal effects are ig-

nored, i.e., for ζ = 0, Eq.(10.42) restores the contraction rate (10.30) of a
2D critical collapse. However, taking the longitudinal dimension into ac-
count (ζ > 0), we deduce from (10.42) that R(t) varies explicitly with ζ.
In the self-similar limit εR → a2

R/4 with ∂τ |aR| << a2
R, it is found that aR

is positive in the localizing domain ζ < ζ∗ ≡ √
λ/ε � 2

√
λ/|aR|, yielding

a contraction rate close to (10.30), but negative in the delocalizing domain
ζ > ζ∗ for which R(t) is dispersing. The pulse thus self-contracts until the
rescaled distance ζ∗ only and R(t) must reach a minimum value in the
vicinity of ζ ∼ ζ∗, where the beam intensity |E|2 = N |φ̃|2/(Z(t)R2(t)) at-
tains a maximum. Hence, if a transverse self-focusing promoted a collapse,
it would take place as ζ → ζ∗, i.e., displaced from the center of the pulse
ζ = 0. However, in this limit, Eq.(10.42) would lead to εR ∼ −2τ < 0 as
τ → +∞, forcing ultimately R(t) to disperse, not to vanish. We therefore
conclude that a self-similar transverse collapse should not be realized in
normally dispersive media.

As the pulse tends to form a maximum as t → t0 at the focus z →
z∗(t0) = Z(t0)ζ∗, two symmetric spikes of the field, located on z = ±z∗(t0)
respectively, must develop. This explains the occurrence of one splitting
event. For incident beams containing a transverse power exceeding widely
Nc, the beam may continue to split up. Multi-splitting then follows from
repeating the above analysis on each cell produced by an antecedent split-
ting event and located on the new “origin”, e.g., z = z∗. This process
stops when the resulting cells have a transverse power below the self-
focusing threshold Nc. Therefore, we can empirically estimate the num-
ber of cells produced near the point of maximal transverse compression by
N = 2N⊥(t0)/Nc � N/(NcZ(t0)), conjecturing that before splitting again,
a given cell first self-focuses with a transverse power at least above crit-
ical. For anisotropic beams for which Z(t0) remains of the order of Z(0)
this number can directly be approximated in terms of the initial data:
N = N/(NcZ(0)). Otherwise this latter estimate only provides an abso-
lute upper limit for the number of cells, since the longitudinal extension of
the beam, Z(t), increases with time. A somewhat better estimate is then
obtained by substituting Z(0) by Z(t0), which is the length of the pulse
at the time of maximum contraction [26]. Reasoning only in terms of the
initial data, the maximum number of cells before their final spreading is
evaluated by Nmax = 2N⊥/Nc � N/[NcZ(0)]. This estimate applied to
Zharova et al.’s simulation [25] with Nc � 11.7 fits the number of cells
(N � 8) they observed. It is also consistent with the number of split
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pulses revealed in the experiments performed with 90-fs laser pulses by
Ranka et al [28] and by Diddams et al [29]: in these experiments, the non-
linear media were served by a BK7 glass window and fused-silica fibers,
respectively. At least 4 cells were detected from pulses with peak power
P/Pc ∼ N⊥/Nc � 4.22 in [28] and 3-4 split pulses were observed from
Gaussian pulses with P/Pc ∼ N⊥/Nc � 2.3 in [29]. On the whole, these ex-
perimental data corroborate the above theoretical results. However, apart
from the preliminary numerical simulations presented in Refs.[25] and [27]
evidencing multi-splitting, very few numerical works have been performed
so far that clearly confirm the formation of multi-splitting events for beams
with a very high initial transverse power. Thus, numerical investigations in
this field still need to be improved.

Finally, we should mention that for the case of two spatial dimensions
with anisotropic dispersion, i.e., Eq.(10.1) with D⊥ = 1 and s = −1, it was
strictly proven from virial arguments that collapse cannot take place [30].

4 Discussion of the general properties, outlook

In the previous sections, we have thoroughly detailed the self-focusing so-
lutions of the NLS equation which classically proceeds from a combination
of the Maxwell equations in nonlinear optics. Deriving NLS requires to as-
sume certain simplifications. Here we shall briefly discuss the consequences
of some of these simplifications in relation to the collapse dynamics. Let us
for instance consider the scalar ansatz for modelling a wave envelope

E(�r, t) = Re[E(�r, t)ei(kz−ωt)] (10.43)

where E is the scalar electric field of an electromagnetic wave propagating
along z. This expression, once introduced in the combined Maxwell equa-
tions, gives a dispersion relation for which, in the presence of a nonlinear
frequency shift f(|E|2), changes in frequency and wave number are equiv-
alent to slow changes in the envelope of the wave with: ω → ω0 + i∂t,
k → k(ω0) − i∂z around the central carrier wave number k0 ≡ k(ω0). Ex-
panding this dispersion relation around k0 yields [31]

{−�∇2
⊥ − ∂2

z − 2ik0(∂z + ∂t/vg) + [(
∂k

∂ω
)2 + k0

∂2k

∂ω2 ]ω0∂
2
t − 2k0

∂k

∂f
|f0 · f(|E|2)

(10.44)

+
∂2(k2)
i∂ω∂f

|ω0,f0∂t · f(|E|2) +
∂2(k2)
i∂f∂ω

|f0,ω0f(|E|2)∂t · +...}E = 0

with vg = [∂k/∂ω|ω0 ]−1, and the leading balance in the paraxial approxi-
mation is then given by

k0∂zE ∼ �∇2
⊥E ∼ (k0/vg)∂tE ∼ 2k0

∂k

∂f
|f0 · f(|E|2)E (10.45)
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whence ∂2
zE << k0∂zE and (1/vg)2∂2

t E << k0∂zE. Keeping the dominant
first-order terms leads to the paraxial NLS equation for the wave field en-
velope expressed in the group velocity frame (η = z/vg − t, ξ = z), while
accounting for the group-velocity dispersion amounts to keeping the contri-
bution ∂2k/∂ω2|ω0 � s in the fourth term of Eq.(10.44). Up to the exchange
in the (z, t) variables, this results in the starting equation Eq.(10.1) when
considering a cubic nonlinearity f(|E|2) = |E|2. However, when nonlin-
ear waves self-focus, the variations of their envelope with the propagation
distance z and time t suddenly increase, so that the basic hypotheses of
slowly-varying envelope approximations in space (∂2

zE << k0∂zE) and in
time (∂2

t E << ω0∂tE) may no longer hold. In particular, the paraxial ap-
proximation, for which the second derivative of the envelope with respect
to z is supposed negligible, breaks down when the transversal spot size
becomes of the order of the beam wavelength λ0, i.e., when the transverse
wave number of the beam envelope, k⊥, increases such that k2

⊥/k2
0 → 1. By

investigating the influence of this second-order derivative on beam collapse,
it was discovered that a 2D self-focusing, characterized by such an increase
of k⊥, would be arrested before the beam diameter becomes comparable to
λ0 [32, 33]. In addition, numerical investigations [34, 35] also showed that
the catastrophic blow-up of high-power beams could be avoided near the
point of self-focus by deviations from standard paraxiality introduced by
the changes of the rapid phase contribution in Eq.(10.43) along the longi-
tudinal direction. The beam power, that is an invariant of motion for the
paraxial model, is no longer conserved, which finally allows the avoidance of
collapse near the point of self-focusing, where the beam suddenly diffracts.
This scenario can possibly be repeated along several focusing/defocusing
cycles.

However, retaining the second-order derivative alone, as the only devia-
tion to paraxiality, implies to deal with an ill-posed problem for which linear
solutions diverge in the limit of large k⊥ and generate explosive dispersion,
whatever the nonlinearity may be. This cannot constitute a correct refine-
ment of the paraxial approximation. To justify this statement we write the
equation governing the evolution of the wave envelope E in the form

(∂2
z + 2ik0∂z + �∇2

⊥)E = −2k0
∂k

∂f
|f0 · f(|E|2)E . (10.46)

To make sense, i.e., simply to admit solutions to a Cauchy problem, Eq.(10.46)
must be a well-posed problem for which all the solutions to the linear part
are regular functions, bounded for every transverse wave number k⊥. In
the opposite case, the linear solutions decompose over hyperbolic func-
tions diverging exponentially: they cannot be bounded within standard
spaces and yield non-integrable functions when iterating them along z. It
can easily be seen that linear states associated with Eq.(10.46) are given
by the Fourier multipliers exp [ik0z(±√

1 − k2
⊥/k2

0 − 1)], such that regular
solutions do not exist for solving this Cauchy problem. As a particular



226 Luc Bergé, Jens Juul Rasmussen

consequence, for any z arbitrarily close to zero, the linear states generate
short-wave instabilities for k⊥ > k0, leading to explosive dispersion [36].
Whereas the short-wave instability may be avoided in solutions to a lin-
ear wave equation by cancelling the range of large k⊥ a priori, it certainly
participates in nonlinear wave equations where the nonlinearity mixes all
the short/long modes. In that case, Eq.(10.46) cannot constitute a correct
refinement of the basic NLS model. Short-wave instability generating ex-
plosive dispersion develop on short transverse scales, which can explain the
violent balance between the self-focusing potential and the singular lon-
gitudinal diffraction observed in Refs. [32, 33], when k⊥ increases above
the carrier wave number k0. Such singular behaviors can be removed by
adding even small additional dissipative terms in the form of either a time
derivative accounting for the temporal dispersion of the waves or any other
damping effect, which can regularize the short-wave instability [36].

In the opposite case when the second-order derivative in the evolution
variable has an opposite sign to the Laplacian in Eq.(10.46), the Cauchy
problem is generally well-posed and all the linear solutions appear to be
regular, in the elementary sense that their Fourier transforms are bounded
functions of the Fourier variable (k⊥). This applies for instance when the
temporal envelope approximation is dropped, as studied in [37] in the con-
text of plasma turbulence.

In conclusion, we have reviewed the collapse properties of the NLS Eq.(10.1).
In particular, we have described the wave evolution for the case of normal
dispersion when s is negative in Eq.(10.1). We presented strong evidence
for the absence of collapse in that case and emphasized that, instead, the
wave pulse will split into two or more cells.

Acknowledgments: We thank Prs. D. Pesme, J. Ginibre, E.A. Kuznetsov,
G. Laval, G. Matthieussent and J.C. Saut for stimulating discussions.
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[13] L. Bergé and D. Pesme, “Non self-similar collapsing solutions of the nonlin-
ear Schrödinger equation at the critical dimension”, Phys. Rev. E 48 (1993)
R684.

[14] G.M. Fraiman, “Asymptotic stability of manifold of self-similar solutions
in self-focusing”, Zh. Eksp. Teor. Fiz. 88 (1985) 390 [Sov. Phys. JETP 61
(1985) 228].

[15] V.M. Malkin, “Dynamics of wave collapse in the critical case”, Phys. Lett.
A 151 (1990) 285.

[16] M.J. Landman, G.C. Papanicolaou, C. Sulem, and P.L. Sulem, “Rate of
blowup for solutions of the nonlinear Schrödinger equation at critical di-
mension”, Phys. Rev. A 38 (1988) 3837.

[17] G. Akrivis, V. Dougalis, O. Karakashian and W. McKinney, “Galerkin-
finite element methods for the nonlinear Schrödinger equation”, Advances
on computer mathematics and its applications, E. Lipitakis Ed., (World
Scientific, 1993) p. 85-106.

[18] S.N. Vlasov, L.V. Piskunova and V.I. Talanov, “Three-dimensional wave
collapse in the nonlinear Schrödinger equation model”, Zh. Eksp. Teor. Fiz.
95 (1989) 1945 [Sov. Phys. JETP 68 (1989) 1125].

[19] N.E. Kosmatov, V.F. Shvets and V.E. Zakharov, “Computer simulation of
wave collapses in the nonlinear Schrödinger equation”, Physica D 52 (1991)
16.

[20] M.J. Landman, G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang,
“Stability of isotropic singularities for the nonlinear Schrödinger equation”,
Physica D 47 (1991) 393.
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11
Coherent Structures in Dissipative
Nonlinear Optical Systems
J.V. Moloney

ABSTRACT Critical self-focusing can manifest itself in many different
ways in nonlinear optical systems. In transparent materials, a continuous
wave laser beam can collapse to a localized hot spot after propagating
some finite distance. Here the nonlinear optical interaction is local and as-
sumed to be instantaneous. In a wide aperture semiconductor laser, the
self-focusing nonlinearity is sluggish, responding to the relatively slow mo-
tion of the total carrier density within the lasing medium. In both situa-
tions, large scale coherent structures are generated. In this article, we will
review some novel manifestations of the self-focusing nonlinearity in which
dissipation plays a prominent role. Our first example will address the issue
of the propagation of an intense femtosecond-duration laser pulse which can
undergo critical collapse in a transparent bulk material. Here weak plasma
generation in the vicinity of the focal spot regularizes the collapse singu-
larity. In the second example, we will illustrate how dynamic filamentation
instabilities in wide aperture semiconductor lasers can be stabilized via an
all-optical spatial/spectral filtering delay feedback scheme.

1 Introduction

The critical self-focusing nonlinearity is well established in nonlinear op-
tics. Typically experimentalists go to great lengths to avoid this instability
as its consequences are often catastrophic. For an excellent review of the
early developments in the field, the reader should consult the articles by
Shen [21] and Marburger [16]. In a transparent bulk dielectric medium, a
continous wave (CW) laser beam or long laser pulse can undergo critical
self-focusing when its power exceeds some critical value. The high fields
generated at the focus lead to optical breakdown of the material. The op-
tical breakdown mechanism depends on the length of the laser pulse. For
CW down to microsecond duration laser pulses, the breakdown is domi-
nated by thermal processes. Nanosecond pulses typically drive hypersonic
acoustic waves via a nonlinear electrostriction mechanism and the material
damage is usually accompanied by a loud bang. In the picosecond regime,
the breakdown is typically due to plasma generation whereby seed elec-
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 Springer-Verlag Berlin Heidelberg 2000
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trons, existing due to impurities or generated by multiphoton ionization,
are accelerated by the light fields in a multiplicative cascade fashion to
form a relatively dense plasma in the focal region. The generated plasma
can both absorb and defocus the laser field. This plasma shielding mech-
anism is utilized extensively in opthamology as a means of protecting the
retina from damage during laser surgery. The story for femtosecond du-
ration pulses is less clear. As the pulse duration decreases, the energy in
the pulse (fluence) decreases. There is a definite correlation between energy
fluence and optical damage, at least for nanosecond pulses through to CW
beams. Shorter duration pulses display higher breakdown power thresholds
and energy fluence is no longer a useful measure. For pulses with durations
of the order of a few hundred femtoseconds or less, it becomes clear that
the avalanche (cascade) breakdown mechanism should be less significant
as the pulse is too short to provide photons on its trailing edge to sustain
the cascade. It appears that the only breakdown mechanism available at
this time scale is multiphoton ionization which is essentially instantaneous
down to the order of a femtosecond interaction timescale. In this article we
will provide evidence that the critical collapse singularity, which is so dam-
aging for longer laser pulse interactions, provides a robust mechanism for
forming and sustaining a novel dynamic nonlinear waveguide in air. This
problem should be a source of exciting new developements both in physics
and mathematics.
The self-focusing nonlinearity in wide aperture high power semiconduc-

tor lasers arises from an inertial response of the generated carriers to the
internal laser fields. Although, the collapse singularity is not present here
due to strong saturation of the nonlinear response, the self-focusing insta-
bility gives rise to focused hot spots, called intensity filaments, which can
lead to facet damage and consequently, irreversible damage to the laser.
This problem has plagued the laser engineering community for over two
decades and so far has not been resolved satisfactorily. Interaction of light
with a semiconductor material is an extremely complicated many-body
problem involving the coupling of light to a multi-component plasma [6].
Understanding these interactions is an active area of ongoing research, and
there remain many open questions. Significant progress has been made on
this problem by the group of Stephan Koch in Marburg and our group at
Arizona. For simplicity, we will ignore these complications in the present
article and instead present a complex order parameter equation description
which captures the essential experimentally observed features and offers the
advantage of allowing substantial analytic progress. Basically, these lasers
display complex dynamic filamentation instabilities from the moment of
turn-on and these persist at all operating levels. The dynamic filaments
are large scale spatial coherent structures which appear as intensity bursts
at random across the laser device. These weakly turbulent spatiotemporal
structures have an average period of the order of a few hundred picoseconds
and can only be resolved in detail using streak camera techniques [23]. Typ-
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ically laser experimentalists measure time-averaged outputs in the far-field
(spatial Fourier transform) and these appear as a significant broadening be-
yond the diffraction-limited spot size expected for an illuminated aperture
of the width of the laser. Basically, the laser output is randomly steering in
space over an angular range of about 20 degrees with an average period of
a few hundred picoseconds. This far-field broadening can be highly detri-
mental when such high power laser sources are envisioned as speed-of-light
space-based communications systems. In the present article we will propose
a control scheme which both stabilizes and steers the laser output.
Both problems are related mathematically as their description arises from

an envelope approximation to the original vector Maxwell equations with
an appropriate constitutive relation coupling the optical field to the ma-
terial oscillation. Critical collapse occurs in the 2D Nonlinear Schrödinger
equation,

i
∂ψ

∂z
= a∇2ψ + |ψ|2ψ, (11.1)

when the total power P =
∫ +∞

−∞ |ψ(r, t)|2dA exceeds a critical value. Here
dA is an element of cross-sectional area. The space variable z refers to a
moving reference frame and the critical collapse distance will be denoted
by zNL.
Here ψ is the complex envelope of the linearly polarized (scalar) electric

field, a is a measure of the linear diffractive spreading of the transverse
waist, ∇2 is the 2D Laplacian operator where we assume cylindrical sym-
metry. The third term in the equation is the optical Kerr self-focusing
nonlinearity. The “blow-up in finite time singularity” problem has been
studied in great detail in the literature [8], and it is known that the col-
lapsing filament assumes the following self-similar form,

ψ(τ, ζ, t) = g(τ)χ(ζ)e−i α
4 ζ2+iτ , (11.2)

where τ and ζ are scaled time-like and space-like variables and the pulse
is parameterized by the variable t [15]. This nonlinear mode will play a
prominent role in our later discussion.
The question that we will address here is what physical mechanism can

regularize the collapse singularity when we extend the model to describe
femtosecond laser pulse propagation in air. In essence, we add perturba-
tion terms describing weak group velocity dispersion (GVD) (a Hamilto-
nian perturbation) and coupling to a plasma via a simple Drüde model (a
dissipative perturbation). The moral of our story will be that the collapse
singularity of the underlying 2D NLS equation becomes the robust non-
linear mechanism which is responsible for forming and sustaining a novel
highly dynamic nonlinear waveguide in the atmosphere that may persist
for tens of kilometers. The collapse singularity, instead of being an on-
off explosive dynamical event, can recur a few times until the background
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reservoir of energy remaining in the laser pulse is insufficient to sustain
it. The perturbation terms essentially turn-on in some localized region of
space (physically of the order of 80 microns in diameter) where the sin-
gularity is developed. The remainder of the laser pulse is unaffected and
sees the 2D NLS as its governing equation. We remark here that the role
of normal group velocity dispersion in regularizing the collapse singularity
was first explained analytically in reference [15] and has subsequently been
discussed by several authors [3, 4, 5, 10]. These works were preceded by
some numerical simulations [7, 19] showing evidence that the pulse would
split due to the local defocusing induced by normal GVD. Figure 1 displays
a 3D surface rendering of the pulse after it has undergone a splitting. The
ripples at both extremities are a manifestation of dispersive regularization
of the shock waves formed due to the strong defocusing of the pulse in
the time dimension. Indeed the on-axis split section of the pulse is rem-
iniscent of the dark soliton solution to the 1D defocusing NLS equation.
A recent experiment has confirmed this pulse splitting [20] and moreover,
shown evidence for a finite cascade of splittings. Although we include the
normal GVD term in our model below, we will not discuss it further as
our results indicate that it is not the main player in the air propagation
problem. A systematic numerical study of the critical collapse singularity
and its regularization in the inert gas Argon has recently been carried out
[18]. This work has shown that there is a transition from normal GVD
dominated regularization to plasma dominated regularization as the gas
pressure is varied. Moreover, this work establishes that more careful an-
alytical and numerical studies are needed to resolve the extremely subtle
balances between the different physical mechanisms operative in the vicin-
ity of the critical focus. In the present article we confine our attention to
the plasma-dominated regime.
The rather complicated semiconductor laser model can be reduced to a

mathematically tractable form by making a few simplifying assumptions.
We will restrict our study to a short cavity laser which is constrained to run
in a single longitudinal mode. Transversely (in x and y) the laser is extended
and can undergo dynamic filamentation instabilities. This level of approxi-
mation is a reasonable description of existing wide aperture Vertical Cavity
Surface Emitting (VCSEL) lasers. In principle one can derive a complex
order parameter description of such a semiconductor laser by analyzing the
full physical laser model close to lasing threshold. This has been done in
some detail for two-level and Raman lasers in references [13, 14, 12]. Basi-
cally the underlying mathematical description of such lasers is the complex
Swift-Hohenberg (CSH) equation which has the generic form,

∂ψ

∂t
= (µ+ iν)ψ + ia∇2ψ + (α+ iβ)(Ω + ∇2)2ψ + (1 + iγ)|ψ|2ψ (11.3)

This is an extension of the real Swift-Hohenberg equation derived originally
to describe pattern formation in fluids. The present complex form is the
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FIGURE 1. 3D rendering of the pulse splitting due to normal GVD. The top
contour shows a modulated, strong spectral (k − ω) superbroadening.

generic description of pattern formation in a spatially extended system
undergoing a Hopf bifurcation at µ = µc = 0. Here µ is the linear growth
which is saturated by the real coefficient part of the nonlinear term. ν is
a frequency and the imaginary part of the nonlinear term is the nonlinear
modification to this term. The second term on the right hand side is the
standard diffraction operator. The real part of the third term is a purely
diffusive contribution which discriminates between transverse modes which
may grow beyond µ = µc. The imaginary part of this term is a higher order
correction to the diffraction operator. Obviously this equation contains the
2D NLS equation. A proper description of the semiconductor laser will
require that the above equation be coupled to a mean flow describing the
rather sluggish carrier density motion. An extended CSH model of this form
will be shown to display the same qualitative weakly turbulent behavior
as observed experimentally in broad area high power semiconductor lasers.
Figure 2a shows a schematic of the technique used to measure the far-field
output of a broad area semiconductor laser and, on the right, we show the
experimentally measured nonlinear dispersion of a 100µ wide by 500µ long
high power semiconductor laser undergoing strong dynamic filamentation
while simultaneously oscillating in many longitudinal modes. By shortening
the laser cavity from 500µ to about 20µ, we can limit the laser to running in
a single longitudinal mode while retaining the parabolic shaped dispersion
characteristic of transverse dynamic filamentation. We are interested in
designing a scheme that can stabilize the laser output. As an added bonus
of our control scheme, we obtain a means of steering the stabilized laser
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output also.

FIGURE 2. a) Left: schematic of a broad area semiconductor laser showing the
near- and far-field locations. The picture on the right is an experimentally mea-
sured nonlinear dispersion of a real semiconductor laser (courtesy of D. Bossert,
Air Force Research Laboratory). b) The proposed external feedback control. Plac-
ing an aperture in the far-field acts as a spatial filter.

2 Nonlinear waveguide channeling in air

Recent experiments using intense laser pulses with characteristic durations
of the order of a hundred femtoseconds, have displayed a novel self-induced
channeling phenomenon, accompanied by plasma generation [2, 24, 1].
There has been some debate in the literature as to the precise mecha-
nism by which such a nonlinear channel could be formed. One suggestion
is that there can be a perfect balance between the intrinsic self-focusing of
air and the weak self-defocusing due to the generated plasma, leading to a
passive stationary waveguide. Another suggestion is that the characteristic
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length of the channel should correlate to the predictions of the so-called
“moving focus model”. Here different transverse cross-sections of the pulse
undergo critical collapse at different distances due to the different powers
contained in each transverse slice. We proposed an alternative mechanism
based on numerical simulations which contains the moving focus picture
as an ingredient. Basically, this latter picture was used earlier to predict
analytically that normal GVD would arrest collapse [15]. Our model for the
propagation of femtosecond pulses in air requires augmentation of the basic
2D NLS equation by a plasma absorption and defocusing mechanism and
we include normal GVD for completeness. The extended envelope equation
becomes [9, 17],

∂ψ

∂z
=

i

2k

(
∂2

∂r2
+

1
r

∂

∂r

)
ψ − ik′′

2
∂2ψ

∂t2
− σ

2
(1 + iωτ)ρψ − β(K)

2
|ψ|2K−2ψ

+ ik0n2|ψ|2ψ (11.4)

∂ρ

∂t
=

1
n2

b

σ

Eg
ρ|ψ|2 + β(K)|ψ|2K

Kh̄ω
− aρ2 (11.5)

where the terms on the right-hand-side describe transverse diffraction,
group-velocity dispersion (GVD), absorption and defocusing due to the
electron plasma, multi-photon absorption (MPA), and nonlinear self-focusing
(SF), respectively. Here ω is the optical frequency, |ψ|2 the intensity, k =
nbk0 = nbω/c, k′′ = ∂2k/∂ω2 charaterizes the GVD, positive for normal
dispersion and negative for anomalous dispersion, ρ is the electron density,
σ the cross-section for inverse bremsstrahlung, τ is the electron collision
time, and β(K) is the K-photon absorption coefficient. The first term on
the right-hand-side of the density equation describes growth of the electron
plasma by cascade (avalanche) ionization, and the second term is the con-
tribution of multiphoton absorption (MPA) which generates free electrons.
The interaction with the light is so fast ( ≈ 2× 10−13 of a second), that we
can ignore plasma recombination (third term) and plasma transport.
The key idea now is that the additional terms introduced over and above

the basic 2D NLS terms are weak perturbations that take effect only in
localized regions of space about where the singularity develops. Their ef-
fect is not felt anywhere else in the interaction zone. We imagine a tightly
constrained laser pulse propagating in the z-direction with an initial criti-
cal power well exceeding that required for collapse. A wide laser pulse can
collapse into multiple transverse interacting filaments which would violate
the radial symmetry assumptions used here. A good estimate of the critical
collapse (self-focusing) power is given by the formula Pcrit = λ2

0/2πnbn2.
For propagation in air this critical power is of the order 1 to 2 GW . The
multiphoton ionization is a 7 photon process so K = 7 in the above equa-
tions. For the physical parameters for air, the normal GVD term is not a
player in arresting critical collapse, at least at normal atmospheric pres-
sure. The only physics that can stop the collapse is the generation of a
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plasma when the critical intensity for plasma generation in air is reached.
The optical breakdown intensity measured for air is IBr ≈ 1013W/cm2. We
assume an input laser pulse with a Gaussian spatial and temporal profile.

2.1 Dynamic spatial replenishment of femtosecond pulses
propagating in air

Laser pulses exceeding about a picosecond in duration are likely to undergo
optical breakdown by a mechanism that involves the generation of a plasma
via the avalanche photo-ionization mechanism [17]. The first term on the
right hand side of the Drüde model for the plasma density above captures
this avalanche process. Seed electrons are needed to get the process going
and these can exist due to impurities or may be produced by multiphoton
ionization (the second term on the RHS of the Drüde model above). In
any event, the initial electron density begins to grow dramatically as long
as there exists an optical field to drive the process. As the pulse duration
gets shorter, the relative importance of this plasma generation mechanism
decreases and the essentially instantaneous multiphoton mechanism takes
over. The plasma generated by a 20 picosecond duration laser pulse in
water, is sufficiently dense to defocus and absorb the laser light thereby
acting as a plasma shield [9]. The situation for a few hundred femtosecond
laser pulse propagating in air is quite different as we shall now see.
Figure 3 shows a sequence of graphs of the maximum (in time) of the

on-axis laser intensity and corresponding plasma density as a function of
propagation distance z. Each curve corresponds to a different initial peak
power in the pulse. The initial pulse waist was chosen to be 0.7mm, the
central pulse wavelength was 770nm giving a Rayleigh range (measure of
linear diffraction) of 2m. The rapid rise in the pulse intensity is simply the
onset of self-similar collapse of the 2D NLS equation. The collapse distance
zNL is about 0.5m. The subsequent flattening of the intensity is associ-
ated with the initial sharp spike in the plasma density. Thus weak plasma
generation acts to arrest the collapse singularity. The flattened intensity
profile begins to slowly decay (on-axis) and the plasma generation begins
to fall off. We note the appearance of a sharp kink in the intensity profile
at about 1.3m with an accompanying secondary plasma spike. Indeed this
occurs a third time at around 2m. We can conclude from this picture that
light appears to self-channel well beyond the initial collapse distance and
that plasma spiking is playing a central role.
Figure 4 presents a sequence of instantaneous images of the spatiotem-

poral evolution of the full pulse and accompanying plasma density at a set
of locations in z. At z = 0.43m we see the initial focusing of the laser pulse
with the accompanying growth of the plasma density in time. Just after
the arrest of the collapse singularity we observe at z = 0.65m, a focused
intensity spike on the leading edge of the pulse, followed by a deep furrow
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FIGURE 3. Maximum intensity (a) and plasma density (b) in z for their different
initial powers. P = 5.5Pcrit (dash-dot), P = 6.0Pcrit (dashed), P = 6.5Pcrit

(solid).

on-axis. This furrow arises primarily because of the defocusing action of the
generated plasma. The plasma is too weak to significantly absorb the pulse
energy. At z = 0.83m, the light behind the leading intensity spike is com-
pletely evacuated from the central region due to the defocusing action and
the plasma density begins to decrease (z = 1.16m). There appears to be
a single focused intensity spike remaining. As the plasma has disappeared,
we now have a situation where the defocused back region has sufficient
power in a transverse slice to attempt a secondary critical collapse. Here
the 2D NLS is essentially the operative mathematical prescription as the
perturbation terms (GVD and plasma density) are very small. We now ob-
serve a secondary intensity and plasma spike (z = 1.49m). Notice that the
leading pulse is decaying and the secondary pulse has taken over. The first
notch appearing in Figure 3 is indicative of the second spike taking over
from the first as the highest intensity on-axis point. This highly dynamic
explosive situation occurs once more before the pulse exhausts its energy
for a further collapse.
This scenario of recurring collapse events regularized by weak plasma

generation provides a beautiful illustration of the role of the self-similar
collapse mode as the robust nonlinear structure which causes and sustains
a highly dynamical waveguide in air. If one scales this problem up to an
initial waist of around 6cm the laser pulse could, in principal, propagate
over tens of kilometers. A recent experiment by a group at Jena in Ger-
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FIGURE 4. Sequence of snapshots from a movie showing 3D rendering of the
recurring collapse events.

many, has provided the first evidence that high power very intense 100
femtosecond duration laser pulses can propagate on the order of 12 kilome-
ters vertically into the upper atmosphere [22]. In this experiment the initial
pulse had around 1000 critical powers and was observed to break up trans-
versely into hundreds of interacting filaments. Accompanying the critical
collapse is the generation of a white-light continuum. Potential applica-
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tions for this remarkable phenomenon are lightning control [24], LIDAR
and remote sensing applications [22].

3 Control of optical turbulence in semiconductor
lasers

The weakly optically turbulent behavior exhibited by Figure 2 for a high
power broad-area edge emitting semiconductor laser has frustrated the at-
tempts by laser engineers to produce high-brightness compact light sources
for a wide range of important applications. One can reduce the complexity
of this system by making the laser short (at the expense of reduced output
power) and opening it up in its two transverse (x-y) dimensions (to recover
some of the power). In effect, we now have a surface-emitting rather than
an edge emitting laser. By shortening the cavity, we restrict the laser to
oscillate in a single longitudinal mode, while retaining the full complexity
of the transverse filamentation instability. The latter can be modelled by
a phenomenological complex Swift-Hohenberg equation coupled to a mean
flow. We will see that this model captures the filamentation observed in the
real device. The CSH model, which is a simple extension of that derived
for a 2-level system [13, 14], is given by

(σ + 1)
∂ψ

∂t
= σ(r(x) − 1)ψ + ia∇2ψ − iσΩψ

− σ

(1 + σ)2
(Ω + a∇2)2ψ − σ(1 + iα)nψ (11.6)

∂n

∂t
= −bn+ |ψ|2.

The complex order parameter ψ is the scaled envelope of the electric field
and n is a scaled relative carrier density. The latter acts as a mean-flow
and has a profound influence in destabilizing the system, leading to a very
complicated linear growth behavior of the traveling wave solutions. Here σ
is the scaled cavity loss coefficient, a is proportional to the inverse of the
Fresnel number of the laser and measures the characteristic length scale in
the transverse dimension relative to the wavelength of light, Ω is the dimen-
sionless detuning of the laser frequency from the gain peak, ∇2 is either a
one-dimensional or two-dimensional Laplacian and b is the dimensionless
ratio of the carrier recombination to polarization dephasing times in the
Semiconductor Bloch equations [6]. This equation differs from the 2-level
model by the presence of the constant α multiplying the nonlinear term in
the ψ-equation. This constant is called the Linewidth Enhancement or α
factor and it provides a strong amplitude-phase coupling which promotes
a strong phase instability growth [11].
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The dimensionless parameter r(x) is a scaled pumping and this is the
principal bifurcation parameter of the problem. When r > rc = 1, the laser
turns on. Figure 5 shows the results of a numerical simulation of the 1D
CSH equation starting from noisy initial data when r exceeds rc. In or-
der to mimic the operation of a true broad-area semiconductor laser, we
assume a finite pumping r(x) in the transverse x-dimension. Regions out-
side the pump are absorbing. We present the data in a manner where we
can compare it to the experimental data in Figure 2. The graph in Figure
5 is the numerical nonlinear dispersion of the CSH equation and is com-
puted by taking the spatial Fourier transform of ψ(x, t) and accumulating
the spectrum in time after all initial transients have died out. We see the
same parabolic shape as in the experiment - here however, only a single
longitudinal mode is oscillating. The dashed curve in Figure 5 is the an-
alytic dispersion curve of the CSH given below with γ equal to zero. The
weakly turbulent output corresponds to the fact that the output laser beam
is steering randomly while undergoing dynamic filamentation. Analysis of
the CSH equation for values of α corresponding to a real semiconductor
laser indicates that its traveling wave solutions, ψ = Aei(k·x−ωt), n = A2/b,
where A2 = b(r−1−(Ω−ak2

1+σ )2), are nowhere stable. In practice, the average
period of the beam steering is a few hundred picoseconds.

k

ω

FIGURE 5. Numerical computed nonlinear dispersion of the semiconductor CSH
equation. The dashed curve is the corresponding analytic dispersion curve given
in the text.

3.1 The control
One would like to devise a control scheme which would lock the solution
to a single point on the nonlinear dispersion curve. Optically, it is natural
to introduce spatial filtering of the far-field (k − ω) and temporal filter-
ing (a Fabry-Perot etalon) in an experimental setting. This is indicated
schematically in Figure 2b. Our control which is added to the RHS of the
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ψ-equation, above has the form,

εψ = −γ
[
ψ(x, t) − (1 −R)

∞∑
n=1

Rn−1ψ̃n(x, t− nτ)

]
(11.7)

This combined spatial/spectral optical feedback control acts as an added
loss term for all but the selected TW solution (a specific k and ω on the
dispersion curve). It compares the immediate output of the laser ψ(,x, t)
with a time delayed spatially and spectrally filtered feedback. The term ψ̃n

is constructed by taking the Fourier transform in space of ψ, multiplying it
by a filter function and inverting the Fourier transform. The multiple-pass
action of the Fabry etalon is represented by the summed term and the delay
time is determined by the frequency once the wavenumber k is specified on
the analytic dispersion curve. The strength of the feedback is measured by
the parameter γ.
The semiconductor CSH with the added feedback can be analyzed and

its traveling wave solutions explicitly found. The added delay introduces a
further infinity of solutions but most of these are not physically realizable.
The analytic dispersion relation for the full system is given by

(σ + 1)ω = −ak2
c − σΩ − σα

[
r − 1 −

(
Ω − ak2

c

1 + σ

)2

+
γ

σ

(
1 − (1 −R)

(
cos(ωτ) −R

1 +R2 − 2R cos(ωτ)

)) ]
(11.8)

+
γ(1 −R) sin(ωτ)

1 +R2 − 2R cos(ωτ)
.

Given a wavenumber k, this transcendental equation needs to be solved
graphically for ω and the only physically allowed solutions are those which
yield positive values for the intensity of the new TWs with feedback control
included,

A2 = b

[
r − 1 −

(
Ω − ak2

c

1 + σ

)2

+
γ

σ

(
1 − (1 −R)

(
cos(ωτ) −R

1 +R2 − 2R cos(ωτ)

)) ]
. (11.9)

Figure 6 shows such a graphical solution where the parameters used are
indicated in the caption. The open diamond corresponds to the TW so-
lution of the original isolated laser at the selected wavenumber k. If this
solution is achieved, the feedback control εψ would be identically zero. The
“+” and “*” symbols denote the additional solutions introduced by the
delay feedback term; the “+” ones are the only physical solutions for the
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reason stated above. The situation depicted here corresponds to a choice
of physical parameters such that there are 3 additional physically acce-
sible solutions at different frequencies for the selected k. These solutions
correspond to a finite amount of energy in the feedback loop.

Linear vs. Transcendental Part of Frequency Equation

-5 -4 -3 -2 -1 0 1
 ω

-6

-4

-2

0

2

Amplitude of Traveling Wave

-5 -4 -3 -2 -1 0 1
 ω

-10
-8
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-4

-2

0
2

FIGURE 6. Graphical solution of the transcendental equation (1:8). The symbols
are the computed values of A2 from (1:9). Parameters are: a = 0.01, b = 0.01,
Ω = 0.001, r = 2, σ = 0.1, α = −5, kc = 4, γ = 0.5, R = 0

Figure 7 shows a numerical simulation starting from noise (remote from
the the desired control state - the open diamond). The center of the trans-
verse 1D output (x = 0) is being tracked in time. After switch-on, the
system appears to settle initially into a dynamic state. However, the spec-
trally resolved output shows that this state corresponds to beating between
the two leftmost “+” symbols and is a metastable solution. As the latter are
known from the analysis, we can determine their stability. The latter are
weakly unstable and the system eventually switches to the desired control
solution ( open diamond).
We find that this scheme is remarkably robust and the control solution

was achieved for all conditions tested as long as the feedback strength
exceeds about 5%. In 2D there is the added flexibility to try and control
the system with more complex filters in order to stabilize more general
patterns. We have also demonstrated the control for a variety of situations
in 2D. Figure 8 shows a snapshot of the 2D weakly turbulent near- (top)
and far- (bottom) fields for a laser pumped over a finite square cross-section
i.e r(x, y) > 1 in the central square region. The far-field (kx, ky) spectrum
is extremely broad. After the control has acted for a while, the far-field
collapses down to a narrow spectral feature whose finite width is due to
the TW being a finite supported rather than infinitely extended object.
The corresponding real part of the near-field (upper right hand corner)
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FIGURE 7. Demonstration of the action of the control showing a plot of the
center (x = 0) of the transverse evolving pattern.

looks like parallel stripes corresponding to a uniform intensity illumination
at a finite off-axis angle.

4 Summary and conclusions

Two nonlinear optical phenomena where large scale coherent structures
play a prominent role have been discussed. Both topics are extremely rich
and are likely to pose major challenges in nonlinear science in the next
decades. The results presented here represent an initial attempt to under-
stand the underlying nonlinear phenomena. Much remains to be explained
and discovered. For example, we know that the high power femtosecond
atmospheric pulse propagation problem involves initial data with hundreds
to thousands of critical powers. Consequently, we expect a transverse mod-
ulational instability to give rise to a highly dynamic state involving simul-
taneous collapsing filaments. Can these form some type of weakly turbulent
cooperative state which is sufficiently robust to penetrate through a non-
homogeneous, pressure varying atmosphere? The severe space and time
compression accompanying these recurring collapses means that higher or-
der terms must be included in our physical model. In some instances it will
be necessary to discard the envelope approach and revert to a full 3D vector
Maxwell description. High power semiconductor lasers are extremely com-
plex nonlinear systems. We have made significant progress in being able to
compute the many-body microscopic semiconductor optical response from
a first principles base. This is only half of the battle. Designing schemes to
stabilize high-power lasers remains a major theoretical and computational
challenge. We know that very weak optical feedback can destabilize these
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damage. More recently, my student Michal Mlejnek, has been responsible
for bringing this problem to a new level and the atmospheric propagation
work highlighted here is his Ph.D. thesis work. Joceline Lega and Alan
Newell were the driving forces behind the laser patterns work. Joceline and
my student, David Hochheiser, were the key players in the control work
described here.
Of course, none of this research could be carried out without the con-

tinued generous support of the Air Force Office of Scientific Research
(AFOSR). The work described here was supported by the Air Force Office
of Scientific Research, Air Force Materiel Command, USAF under grant
numbers F49620-97-1-0002, F49620-94-1-0463, F49620-95-1-0454, F49620-
98-1-0227.
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Solitons in Optical Media with
Quadratic Nonlinearity
Boris A. Malomed

ABSTRACT A brief review of basic models describing second harmonic
generation (SHG) in dispersive and diffractive optical systems, and of fun-
damental soliton solutions to these models is given. Included are two- and
three-wave models, gap solitons, linearly coupled waveguides with an in-
trinsic quadratic nonlinearity, multidimensional “light bullets”, two-soliton
bound states (which are always unstable in the usual SHG models, but may
be stable in the SHG models that give rise to gap solitons), and modula-
tional instability of cw states. Both analytical results, obtained by means of
the variational approximation (VA), and numerical results are presented.
In practically all the cases, VA demonstrates a fairly good agreement with
direct simulations.

1 Introduction

Nowadays, optical solitons constitute a huge research area that has been
attracting a great deal of interest. Several fundamental monographs have
summarized the results of theoretical and experimental studies obtained,
chiefly, for the solitons propagating in glass fibers [1]. This type of solitons
is referred to as being in the temporal domain.
In generating optical solitons, the crucial role belongs to nonlinear prop-

erties of the medium. Usually, the optical nonlinearity (the Kerr effect)
is quite weak. In optical fibers, this can be compensated by choosing the
carrier wavelength of light close to the zero-dispersion point, where even a
weak nonlinearity can compete with the dispersion. However, the search for
physical mechanisms that are able to induce a stronger optical nonlinearity
is a very relevant problem.
An important result in this direction was obtained when it was experi-

mentally demonstrated that a classical nonlinear optical effect in the form
of the second harmonic generation (SHG) induced by a quadratic (χ(2)),
rather than cubic (χ(3)), nonlinearity of the medium, can be used to induce
a very strong effective χ(3) nonlinearity through the cascading mechanism
(see details and references to the original works in the review [2]). This
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 Springer-Verlag Berlin Heidelberg 2000
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means that a pump wave at the fundamental harmonic (FH), generates its
second harmonic (SH), i.e., a wave with the double frequency, and then,
because the SHG process is reversible, interaction of the remaining FH
with the generated SH induces the inverse down-conversion of SH into FH.
As a result, the incoming FH is transformed into itself, but with a large
phase shift generated by the SHG process and its inverse. The nonlinear
phase shift generated this way is the same as would be generated by a
very strong effective Kerr nonlinearity, provided that the phase-matching
conditions (see below) for FH and SH are met.
SHG was the first effect that gave rise to the development of nonlinear

optics forty years ago [3], but, until recently, SHG was studied without con-
sideration of its interplay with diffraction or temporal dispersion of light
in the material, therefore solitons could not be supported by this process.
On the other hand, the mathematical model of the SHG generation is ex-
actly integrable by means of the inverse scattering transform, in the case
when the model ignores the diffraction or dispersion, but takes into re-
gard a group-velocity difference between the harmonics [4]. Still earlier,
the first theoretical works had appeared which correctly predicted that the
interplay of SHG and dispersion gives rise to two-wave solitons, in which
a stable dynamical balance is maintained between the SHG process and
its inverse, as well as between the effective nonlinear self-phase modulation
of FH, through the cascading mechanism, and the chromatic dispersion
[5]. Another outstanding early work [6] has demonstrated that the χ(2)

nonlinearity does not lead to a wave collapse in any physical dimension,
hence stable multidimensional solitons with the mutually trapped harmon-
ics should be possible.
In the last years, the development of this field, both theoretical and

experimental, was extremely rapid. Recently studied cascading effects in
the quadratically nonlinear media were summarized in the review article
[2]. The most important physical results were the experimental observations
of the χ(2) solitons. Until very recently, no solitons of this type have been
observed in the temporal domain, while many experiments were reported
for the spatial solitons, viz., stationary self-trapped cylindrical light beams
in the three-dimensional (3D) bulk [7], or self-supporting light stripes in
a two-dimensional (2D) χ(2) waveguide [8]. However, an observation of
narrow temporal χ(2) solitons, with a width of 58 fs at the carrier wavelength
527 nm, has just been reported [9]. The medium in which this experiment
was done is a so-called BBO crystal.
Besides the great interest that the χ(2) solitons have as a fascinating

object for fundamental research, many hopes are also related to the po-
tential they have for applications. The most important applied problem is
all-optical switching in multichannel optical communication systems, when
one beam of light has to steer another one (in particular, the signal beam
must be able to switch the control one between different positions) [2].
An objective of this chapter is to give a concise review of the basic
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theoretical models that describe various types of the χ(2) systems, and of
the most important results obtained for solitons in those models (however,
dissipative effects are not included). The review is strongly biased to dis-
playing theoretical results, as the theory is going far ahead of experiments
in this area (note that 21 years had elapsed between the prediction of the
χ(2) solitons [5] and their experimental observation [7]). Nevertheless, there
is a strong hope that further development of the experimental techniques
will make it possible to observe the many interesting effects that recently
have been theoretically predicted.

2 The basic theoretical models

Mathematical models of SHG processes in diffractive and dispersive media
are derived from the Maxwell’s equations in a dielectric medium, supple-
mented by terms that describe a quadratically nonlinear response of the
medium to the applied field. As a result, one can derive rather simple mod-
els [2] . The simplest among them describes the SHG process in the 1D
medium, FH and SH being represented each by a single component (u and
v, respectively)

iuz +
1
2
uττ−u+ u∗v = 0, (12.1)

2ivz +
1
2
δvττ − αv +

1
2
u2 = 0. (12.2)

Here z is the coordinate along which the light propagates, and τ ≡ t−z/Vgr,
where t is the physical time, and Vgr is the mean group velocity of the
carrier wave. The coefficient α > 0 measures a mismatch between the
two harmonics (the cases α > 4 and α < 4 are referred to as positive
and negative mismatch, respectively), and the quadratic terms account
for the FH-SH conversion. The SHG process may be effective if one can
find a value of the FH frequency ω such that, according to the dispersion
relation of the material medium, k = k(ω), the SH wave number (also
called propagation constant), k(2ω), is close to 2k(ω). In the model (12.1,
12.2), it is assumed that, in the lowest approximation, k(2ω) = 2k(ω), and
a remaining mismatch in the wave numbers is proportional to α− 4, α = 4
corresponding to the exact-matching point.
The form in which Eqs. (12.1) and (12.2) are written assumes that they

govern the wave propagation in the temporal domain, e.g., propagation in
optical fibers. In the spatial domain, the same equations (12.1) and (12.2)
govern time-independent light distributions in planar waveguides with the
quadratic nonlinearity where τ is replaced by the transverse coordinate
x. In the temporal domain, Eq. (12.1) implies that FH has anomalous
dispersion, then δ is a relative dispersion coefficient at SH. In practically
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all the physically realistic cases, the dispersion coefficient (defined as in Eqs.
(12.1) and (12.2) has a tendency to decrease with decreasing wavelength,
therefore one always has δ < 1. Moreover, the optical media usually have a
zero-dispersion point (ZDP), beyond which the dispersion becomes normal.
If SH is located beyond ZDP, then δ < 0. Contrary to this, in the spatial
domain the second terms in Eqs. (12.1) and (12.2) represent diffraction
rather than dispersion. Because the diffraction coefficient is the same for
all the wavelengths, δ ≡ 1 in this case.
In the general case (δ < 1), the system of Eqs. (12.1) and (12.2) does not

have any nontrivial symmetry. However, in the special case δ = 1, corre-
sponding to the model in the spatial domain, the system is invariant with
respect to the Galilean transformations with an arbitrary real parameter c

u → u exp
(

−1
2
ic2z + icτ

)
, v → v exp

(−ic2z + 2icτ
)
, τ → τ − cz.

(12.3)
The purport of this invariance is that, given a particular stationary solution
u(τ), v(τ) to Eqs.(12.1) and (12.2), a whole family of moving solutions can
be generated by the transformation (12.3).
The next step is to introduce a three-wave (3W) model, which has two

different FH components, u1 and u2, physically corresponding to orthogo-
nal polarizations (the real SHG crystals are birefringent, one polarization
being ordinary and the other one extraordinary). This modified model im-
plies that two FH quanta with the orthogonal polarizations merge into one
SH quantum with a fixed polarization. This type of the SHG process is
called type-II interaction, while the simpler interaction corresponding to
the model (12.1), (12.2), when two identical FH quanta merge into a SH
one, is called type-I interaction. The 3W model is important because, in the
real experiment, it is much easier to achieve nearly ideal matching between
FH and SH, using the crystal’s birefringence to cancel the wave number
mismatch. A convenient form of the three-wave model is, in the simplest
case,

i(u1)z +
1
2
(u1)xx − βu1 + u∗

2v = 0, (12.4)

i(u2)z +
1
2
(u2)xx − 1

β
u2 + u∗

1v = 0, (12.5)

2ivz +
1
2
vxx − αv + u1u2 = 0, (12.6)

where the real coefficient β measures the birefringence [10] (see also [11]).
There are more general versions of the 3W model, which correspond to a
situation when the three waves have different frequencies ω1,2,3 and wave
numbers k1,2,3, subject to the resonant conditions ω1 + ω2 − ω3 = 0, k1 +
k2 − k3 = q, q being a small wave number mismatch. These general 3W
models were introduced in [12].
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As it was already mentioned above, the fundamental physical condition
providing for an effective SHG process is the wavenumber matching. A way
to achieve it is to use a system with a stronger temporal dispersion: in that
case, a small change of the FH frequency ω gives rise to a larger change in
the mismatch k(2ω)−2k(ω), helping one to find a point where the mismatch
nearly vanishes. It is well known that, if the intrinsic dispersion of a fiber or
waveguide is weak, it can be strongly enhanced by a linear coupling between
counterpropagating waves. Physically, this can be realized in terms of a
grating written on the fiber or waveguide, that gives rise to the resonant
(Bragg) scattering of light. A four-wave model combining SHG and the
Bragg scattering was put forward independently in [13] and [14]. Following
the notation adopted in [13], the model can be cast into the following form(

i
∂

∂t
+ i

∂

∂z
+ ω

)
u+ + u∗

+v+ = −u−, (12.7)(
i
∂

∂t
− i

∂

∂z
+ ω

)
u− + u∗

−v− = −u+, (12.8)(
ic

∂

∂t
+ i

∂

∂z
+ q + 2cω

)
v+ + u2

+ = −κv−, (12.9)(
ic

∂

∂t
− i

∂

∂z
+ q + 2cω

)
v− + u2

− = −κv+ , (12.10)

where the subscripts ± pertain to the amplitudes of the right- and left-
propagating waves, the reference frequency ω is introduced in order to ob-
tain a time-independent soliton solution later, q is the mismatch parameter,
and c is the SH group velocity relative to FH. The terms on the right-hand
side account for the linear coupling induced by the Bragg scattering, the
coefficient κ taking into regard the fact that the FH and SH coupling coef-
ficients are different. The intrinsic dispersion (or diffraction) is neglected as
the effective dispersion generated by the linear coupling is much stronger.
The spectrum of the linearized version of these equations contains a gap,
inside which solitons (the so-called gap solitons, GS’s) may exist, that is
why models of this type are frequently called GS models.
A simpler 3W model that combines the SHG, Bragg scattering, and

diffraction can also be formulated [15]

i(u1)z + i(u1)x + u∗
2v = −u2, (12.11)

i(u2)z − i(u2)x + u∗
1v = −u1, (12.12)

2ivz +Dvxx − qv + u1u2 = 0. (12.13)

This model is formulated in terms of the stationary distribution of light in
a planar waveguide, the walkoff terms ±(u1,2)x corresponding to different
propagation directions of the two FH waves. It is assumed that their wave
vectors make equal angles with the Bragg grating, while the SH carrier
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wave vector is parallel to the grating, therefore the SH wave does not feel
the grating, and the diffraction term with an effective coefficient D must
be kept for this harmonic.
Another interesting possibility is to consider a system consisting of two

parallel χ(2) waveguides. If the separation between them is small enough,
the light can couple (tunnel) between the two cores. In this case, the cou-
pling between the two subsystems is also linear, and the corresponding
four-wave model (also written in the spatial domain) is [16]

iu1z + iδu1x +
1
2
u1xx − u1 + u∗

1v1 = −Qu2, (12.14)

2iv1z + 2iδv1x +
1
2
v1xx − αv1 +

1
2
u2

1 = −Kv2, (12.15)

iu2z − iδu2x +
1
2
u2xx − u2 + u∗

2v2 = −Qu1, (12.16)

2iv2z − 2iδv2x +
1
2
v2xx − αv2 +

1
2
u2

2 = −Kv1, (12.17)

where α is the usual mismatch parameter (cf. Eqs. (12.1) and (12.2)), Q
and K are the FH and SH linear coupling coefficients, and the walkoff
parameter δ (that can be omitted in the simplest version of the model)
takes into regard a possible misalignment of the light beams in the two
waveguides.
2D and 3D models with the quadratic nonlinearity are of great interest

too, due to the above-mentioned fact that they are collapse-free [6]. The
most fundamental one is a straightforward multidimensional generalization
of the simplest 1D model (12.1), (12.2), which was proposed and studied
in detail in the recent works [29]

iuz +∇2
⊥u+ uττ − u+ vu∗ = 0 , (12.18)

2ivz +∇2
⊥v + δvττ − αv +

1
2
u2 = 0 , (12.19)

where the operator ∇2
⊥ acts on the transverse coordinate(s). A very inter-

esting peculiarity of the model is its spatiotemporal anisotropy : while one
can define a spatiotemporal Laplacian ∇2

⊥ + ∂2/∂τ2 in Eq. (12.18), and
the corresponding polar coordinates, these coordinates are not relevant for
Eq. (12.19), as, in any physically realistic case, δ < 1. Moreover, as it was
mentioned above, the relative dispersion coefficient δ may become negative,
in which case Eq. (12.19) will be of the hyperbolic type, while Eq. (12.18)
is elliptic.
Exact soliton solutions to the above models are very rare. Therefore,

most studies of solitons are based on direct numerical simulations. The
only general analytical approach relies on the variational approximation
(VA), see the next section. VA is based on a Lagrangian representation
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of the underlying equations. For instance, Eqs. (12.18) and (12.19) can be
derived from the Lagrangian

L =
∫
[i (u∗uz + 2v∗vz)− 1

2
(|uτ |2 + δ|vτ |2) − (|u|2 + α|v|2)

−1
2

(|∇⊥u|2 + |∇⊥v|2
)
+ u2v∗]dτdr⊥ + c.c. (12.20)

Another important global feature of the same model is its dynamical in-
variant (integral of motion),

E =
∫ (|u|2 + 4|v|2) dτdr⊥. (12.21)

This quantity has the physical meaning of the net number of quanta in a
given wave pulse. In nonlinear optics, it is usually called “energy” or (in
the context of the χ(2) models) also the Manley-Row invariant.
The next section will summarize basic results obtained for solitons in

the χ(2) models. Before proceeding to this, it is relevant to mention sim-
pler cw (continuous wave) solutions, e.g., u = A exp(ikz − iωτ) and v =
B exp(2ikz − 2iωτ) in the case of Eqs. (12.1) and (12.2). Here, the am-
plitude A and the frequency ω (for instance) can be chosen as arbitrary
parameters, then the remaining parameters B and k are to be found from
the equations. An important and relatively simple problem is analysis of
the modulational instability (MI) of the cw solutions, i.e., their instability
against perturbations that make |u| and |v| different from a constant. For
the simplest model (12.1), (12.2), the MI was investigated in [17]. The re-
sult is that all the cw solutions are unstable in the case δ > 0. In the case
δ < 0, when the FH and SH dispersions are opposite, stable cw solutions
are possible. Very recently, the MI was also studied in the multidimensional
model (12.18 ), (12.19) [18]. In this case, stable cw solutions are not possible
even in the case δ < 0.

3 The solitons

In the limit of a large mismatch, α � 1, the SH field can be eliminated: as it
follows from Eq. (12.2), v ≈ u2/2α, and substitution of this expression into
Eq. (12.1) transforms it into the nonlinear Schrödinger (NLS) equation,
iuz + (1/2)uττ − u+ (1/2α)|u|2u = 0, which has commonly known soliton
solutions. More consistently, in the case α � 1 a stationary soliton solution
to Eqs. (12.1) and (12.2) can be obtain in the form of an expansion in
powers of 1/α, starting from the NLS soliton (see, e.g., [20]; hereafter, the
case δ = 1 is considered)
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u = ±2√α
[
sech(

√
2τ) + 2α−1 sinh2(

√
2τ)sech3(

√
2τ) + ...

]
, (12.22)

v = 2sech2(
√
2τ)− 4α−1

[
5− 4 cosh2(

√
2τ)

]
sech4(

√
2τ) + ... . (12.23)

The first soliton solution to Eqs. (12.1), (12.2) was found in 1974 for the
particular case equivalent to α = δ > 0 [5]

u = ±3
√
δsech2

(
τ/

√
2
)
, v =

3
2
sech2

(
τ/

√
2
)
. (12.24)

This is, in fact, the single soliton solution to all the models described in
the previous section that can be found in an exact form. All the other
solutions should be sought for numerically. In particular, the model (12.1),
(12.2) has a family of stationary real solutions u(τ), v(τ) (α is a parameter
of the family) [19]. However, despite the lack of the exact solutions, quite
an effective analytical approximation was developed on the basis of VA in
[20]. The main ingredient of VA is to adopt an ansatz, i.e., a trial functional
form of the solution sought for. As is well known, the only tractable ansatz
that admits the two components of the soliton to have different widths,
which is an obvious property of the general solution, should be based on
Gaussians

u = A exp
(−2aτ2) , v = B exp

(−2bτ2) , (12.25)

where, A,B and a,b are indefinite parameters. The ansatz is to be in-
serted into the integral representation of the Lagrangian (the 1D version
of (12.20)), after which the integration over τ in the Lagrangian can be
performed explicitly, leading to an effective Lagrangian, which is a function
of the indefinite parameters. Finally, these parameters are determined by
the variational equations derived from the effective Lagrangian.
In the case of the underlying model (12.1), (12.2) and the ansatz (12.25),

these equations can be cast into the following form [20] (which is, in fact,
a generic example of what can be obtained by means of VA for the χ(2)

solitons)

A2 = (ab)−1/2(1 + a)(2a+ b)(b+ α),
B = (2a)−1/2(1 + a)

√
2a+ b,

b = 4a2(1− a)−1, (12.26)

while the remaining parameter a is determined by a cubic equation

20a3 + (4− 3α)a2 + 4αa − α = 0. (12.27)

Meaningful solutions must satisfy conditions A2 > 0 and a, b > 0. It then
follows from (12.26) that only the solutions to Eq. (12.27) with a < 1
should be kept.
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It is interesting to note that Eq. (12.27) has an exact solution a = 1/5
at α = 1, i.e., just in the case when the particular exact solution (12.24)
is available. According to Eqs. (12.26), in this case the amplitudes of the
FH and SH components of the soliton predicted by VA are A = 6

√
3/5 ≈

2.08, B = 3
√
6/5 ≈ 1.47, while the exact solution yields the amplitudes

u(0) = 3/
√
2 ≈ 2.12, v(0) = 1.5. Thus, the accuracy provided by VA is

quite acceptable, and this holds in the general case, as is illustrated by Fig.
1. Simultaneously, these figures display basic features of the general family
of the stationary soliton solutions to Eqs. (12.1), (12.2).

FIGURE 1. The stationary soliton solutions to Eqs. (12.1), (12.2): (a) Com-
parison between the shapes of the FH and SH components of the soliton, as
obtained numerically (solid curves) and produced by the variational approxima-
tion (dashed curves) at α = 10; (b) FH and SH amplitudes (peak values) vs. the
mismatch α, as found numerically (solid curves) and predicted by the variational
approximation (dashed curves).

The next fundamental problem is stability of these solitons. Numerical
simulations reported in many papers demonstrate that, in almost all the
cases, the solitons are indeed robust, and they can readily self-trap from
localized initial pulses in simulations of the full equations (12.1) and (12.2).
Detailed stability analysis of the solitons was presented in [21] , based on
direct consideration of the eigenmodes of infinitesimal perturbations around
the soliton. The final result is that, in the case δ = 1, the stationary solitons
are stable at α > α0 ≈ 0.212, and unstable in the opposite case, i.e., in
fact, they are unstable only at a large negative mismatch.
Note that there is a general Vakhitov-Kolokolov (VK) stability criterion

for solitons in a vast class of models of the NLS type [22]. If the soliton
has the form u(z, τ) = exp(ikz) U(τ) (or obviously modified in multicom-
ponent models, e.g., the χ(2) one), its propagation constant k is a function
of the energy E =

∫ +∞
−∞ |U(τ)|2dτ , or the properly redefined energy in the



256 Boris A. Malomed

multicomponent model (e.g., (12.21)). The VK criterion states that a nec-
essary condition for the stability of the soliton is dk/dE > 0. In the form
in which Eqs. (12.1) and (12.2) are written, the propagation constant of
the stationary soliton was transformed into the mismatch parameter α. It
is possible to reformulate the model so that the propagation constant will
appear explicitly. The eventual result is that the stability region of the
solitons predicted by the VK criterion exactly coincides with the above-
mentioned one (α > 0.212) produced by the direct analysis [21]. This fact
strongly suggests that the VK criterion, having a fairly simple form, may
be a very efficient tool for the analysis of stability of the χ(2) solitons.
Besides the simple single-humped solitons illustrated by Fig. 1, the model

(12.1), (12.2) and its generalizations also have more complicated double-
humped localized solutions, that can be interpreted as bound states of the
solitons [23]. However, it proves that, except for the GS models (see below),
the two-soliton states are always dynamically unstable. Another class of
solutions that were also studied but turn out to be unstable (because of
the modulational instability of the cw background, see above) are dark
solitons and their bound states [23].
In the case when the solitons are stable, it is interesting to consider

their internal vibrations. From the linearized version of Eqs. (12.1) and
(12.2), it follows that two branches of the dispersion relations for the small
perturbation ∼ exp(ikz − iωτ) are

k1 = −
(
1
2
ω2 + 1

)
, k2 = −1

2

(
1
2
ω2 + α

)
. (12.28)

If the soliton has a nontrivial eigenmode of internal vibrations, the corre-
sponding eigenvalue k̃ of the propagation constant must be separated from
the continuum spectra (12.28), otherwise the mode is subject to strong
damping through resonant emission of radiation. A detailed numerical anal-
ysis of the linearized problem developed in [24] has demonstrated that,
in the stable region α > 0.212, the soliton in the model (12.1), (12.2)
with δ = 1 always has exactly one nontrivial eigenmode. Moreover, the
loss of the stability of the soliton at the critical point α ≈ 0.212 can be
naturally explained by a bifurcation that happens to this eigenmode: its
squared eigenvalue k̃2 changes the sign at the critical point. Another note-
worthy result of [24] is that the same soliton also has a quasimode, which
is a mode whose propagation eigenvalue is inside the continuum spectrum
(12.28), but quite close a spectrum’s border. Although, theoretically, this
quasimode must quickly decay into radiation, in reality direct simulations
demonstrate that the decay is extremely slow, so that the quasimode is
practically stable. Moreover, the eigenvalue k̃ of the genuine eigenmode
also turns out to be close to the border of the continuum spectrum, ly-
ing on its other side, and, as a result, the simulations demonstrate very
long-lived beatings between the genuine mode and quasimode. A general
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inference concerning the internal vibrations of the stable soliton is that the
vibrations are amazingly robust, showing almost no radiative damping.
Above, only real z-independent stationary solutions to Eqs. (12.1), (12.2)

were considered, which form a one-parameter family with the parameter
α. A natural generalization is to extend it to a two-parametric family, the
second parameter being a soliton’s inverse velocity c in the case of the
temporal solitons, or a spatial walkoff in the case of the spatial solitons:

u(z, τ) = eikzU(τ − cz), v(z, τ) = e2ikzV (τ − cz).

As it was mentioned above, this generalization is trivial only in the par-
ticular case δ = 1, when Eqs. (12.1) and (12.2) have the invariance (12.3).
In the case δ �= 1 (corresponding, actually, to the temporal solitons), the
generalization was considered in detail in the works [25]. It was found that
these “walking” solitons exist in a broad region of parameters, and they
are stable almost everywhere, except for a narrow stripe.
Once moving solitons are available, it is natural to consider collisions

between them. This was done, in the work [26], only in the case δ = 1,
corresponding to the spatial solitons. The “moving” solitons were generated
by means of the Galilean transformation (12.3) which is valid in this case.
For the spatial solitons (optical beams), the collision problem is practically
important, as it is related to designing schemes for all-optical switching and
steering. A general conclusion obtained in [26] on the basis of simulations of
Eqs. (12.1) and (12.2) is that, if the relative velocity of the colliding solitons
exceeds a certain critical value, the collision is quasielastic, i.e., the solitons
reappear after the collision practically unscathed; below the critical value,
the collision is strongly inelastic, resulting in fusion of the solitons into a
single pulse with very strong internal vibrations, similar to the vibrating
soliton described above. This conclusion is typical for collisions of solitary
pulses in nonintegrable nonlinear-wave models [27].
Solitons in the 3W model (12.4) - (12.6) have also been studied in de-

tail, including the existence and stability problems, collisions between the
solitons, etc. [10, 11]. In particular, application of VA, using a Gaussian
ansatz similar to (12.25), to the 3W solitons yields, as well as in the case of
the model (12.1), (12.2), very accurate results as compared to numerically
generated shapes [10], and the VK stability criterion ([22]) can be properly
adapted to the 3W model [11]. In a limited range, a bistability of the 3W
solitons was discovered in [11].
The study of soliton solutions to the GS model (12.7)-(12.10) [13] re-

veals noteworthy features: the gaps where the solitons may exist turn out
to be only partly filled with the actual soliton solutions, and the simula-
tions demonstrate that two-humped solitons may be both unstable and
stable (while they are always unstable in the other χ(2) models), see Fig.
2. An analytical approach to this model is available in the limit when the
SH coupling coefficient κ in Eqs. (12.9), (12.10) is large, allowing one to
eliminate the SH fields, v± ≈ −κ−1u2

±. Substitution of this into the FH
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equations (12.7) and (12.8) leads to coupled equations with a cubic nonlin-
earity, which resemble the Thirring model. An analytical (single-humped)
soliton solution can be obtained in this approximation. The analytical ap-
proximation shares the above-mentioned feature of the numerical solutions,
according to which the gap available for the solitons is only partly filled by
the solutions.

FIGURE 2. The stationary soliton solutions to Eqs. (12.1), (12.2): (a) Examples
of stable (a) and unstable (b) two-humped solitons revealed by simulations of the
gap-soliton model (12.7)-(12.10).

The properties of the χ(2) gap solitons can be further clarified within the
framework of the 3W model (12.11)-(12.13) (see also [28]). In this model,
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a simple VA based on the ansatz

u1,2 = ±eikz
[
Ar sech (µx) ± iAisinh (µx) sech2 (µx)

]
,

v = V e2ikz sech (µx) (12.29)
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FIGURE 3. Typical examples of stable gap solitons in the three-wave model
(12.11)-(12.13): a single-humped soliton, the solid and dashed curves showing,
respectively, the results generated by the variational approximation and by direct
simulations (ur and ui are the real and imaginary parts of the FH component,
and u3 is the SH component of the soliton, see Eq. (12.29)). The values of the
parameters are: k = 0.3, D = 1, q = 55.

where Ar,i, B and µ are free real parameters, cf. Eqs. (12.25), while k is a
given propagation constant, yields predictions that compare fairly well with
the direct simulations, see Fig. 3 [15]. Note that the solitons of this type are
very different from those illustrated by Fig. 1a. The 3W gap solitons exist
in the wavenumber interval |k| < 1; as k → +1, they disappear developing
a singularity, i.e., via a collapse. In the same 3W model, direct simulations
yield a family of two-humped solitons, see Fig. 4. The single- and double-
humped solitons have their own (actually, quite close) stability borders:
they are stable if the mismatch is not too small. However, the stability
borders do not exist with k < 0, as all the single- and two-humped solitons
are stable in this case. At a very large mismatch, the two-humped solitons
disappear via a collapse.
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FIGURE 4. Typical examples of stable gap solitons in the three-wave model
(12.11)-(12.13): a double-humped soliton (a bound state of two single-humped
solitons), the solid and dotted curves being the real and imaginary parts of the FH
field, while the dot-dashed curve is the real SH field. The values of the parameters
are: k = 0.1, D = 0.5, q = 1.

4 Conclusion

Due to the length limitations, several important results are left aside, but
detailed expositions are available in the original works. In the model (12.4)-
(12.17) of the two linearly coupled χ(2) waveguides, an effect that has no
analog in the other χ(2) models is a bifurcation that makes obvious symmet-
ric solitons unstable and creates, instead, asymmetric solitons with u1 �= u2,
v1 �= v2. In particular, in the most important case, K = Q, it can be shown
that, at q = 1 (this is the case when Eqs. (12.1) and (12.2) have the ex-
act solution (12.24)), the asymmetric solitons exist exactly in the interval
−1 < Q < +5/13. In the other cases, the asymmetric solitons can be found
with a high accuracy by means of VA. In all the cases when the asymmetric
solitons exist, they are found to be stable. Further details are given in [16].
In the 2D and 3D models (12.18, (12.19), both VA and direct simula-

tions produce stable fully localized multidimensional solitons, or light bul-
lets, provided that δ ≥ 0 (including the case δ = 0). In particular, the
simple variational ansatz (cf. Eq. (12.25)) u = A exp

(−ar2
⊥ − ℵτ2

)
, v =

B exp(−br2
⊥ −βτ2), where r⊥ is the radial variable in the transverse plane,

yields very reasonable analytical results, if compared to the direct simula-
tions, and the VK stability criterion ([22]) proves also to be relevant. In the
case δ < 0, the light bullets do not exist, slowly decaying into radiation.
More details can be found in the works [29]. Very recently, the first experi-
mental observation of a light bullet was reported in [31]. In this experiment,
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the bullet was created in a bulk SHG sample of size 1 cm. The bullet was
localized in the longitudinal (i.e., temporal) and one transverse directions,
but delocalized in the other transverse direction. Thus, this spatiotemporal
soliton may be regarded as a quasi-two-dimensional light bullet. The work
aimed at generation of a fully localized three-dimensional light bullet in
the SHG material is now in progress [32].
Still another interesting modification of the theory is soliton-like states in

discrete lattices with the χ(2) nonlinearity, which represent a stack of paral-
lel waveguides, the field being cw inside each core. Many results, including
the so-called staggered and unstaggered solitons, motion and collisions of
the solitons in the lattices, etc., can be found in [30].
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Nonlinear Models for the Dynamics of
Topological Defects in Solids
Yuri S. Kivshar
Hartmut Benner
Oleg M. Braun

ABSTRACT We discuss several physical systems, where the nonlinear
dynamics of topological defects is described by quasi-one-dimensional kink
solutions of the generalized Frenkel-Kontorova model and its continuous ap-
proximations (the sine-Gordon equation). This includes dislocations, long
Josephson junctions, magnetic chains, adsorbed layers of atoms, hydrogen-
bonded chains, DNA-type chains, etc. We briefly review different properties
of kinks and describe experimental verifications of kink dynamics.

1 Introduction

Theoretical physics deals with physical models. One of the main require-
ments for a good physical model is simplicity. Universal models which can
be applied to describe a variety of effects of different physical origin are
rare and therefore of key importance. Such models attract special atten-
tion and can be employed to describe the basic physical concepts in the
simplest way. A classical example is the theory of linear oscillations based
on the model of a mathematical pendulum – this universal model serves as
a paradigm with basic features of many different physical systems.
In solids, which are described by many degrees of freedom, all micro-

scopic models are quite complicated. However, a very simple model, which
describes a chain of classical particles harmonically coupled to their near-
est neighbours and subjected to a periodic on-site potential, has become
one of the fundamental and universal models of low-dimensional nonlin-
ear physics. In spite of the fact that a link with the classical problem is
not often stated explicitly in various applications, many kinds of nonlin-
ear models involving the dynamics of discrete nonlinear chains are based
(directly or indirectly) on the classical formulation introduced six decades
ago by Frenkel and Kontorova (1938; 1939), who described the structure
and dynamics of a crystal lattice in the vicinity of a dislocation core. As
a matter of fact, this was the first example in solid-state physics when the
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dynamics of an extended two-dimensional defect in a bulk was described by
a simple one-dimensional model. Similar ideas were employed in many dif-
ferent models of low-dimensional solid-state physics, providing a link with
the theory of solitary waves developed much later.
The simplicity of the Frenkel-Kontorova (FK) model, due to the assump-

tions of linear inter-atomic forces and a sinusoidal on-site (substrate) po-
tential, as well as its surprising capability to describe a broad spectrum of
physically important nonlinear phenomena, such as propagation of charge-
density waves, the dynamics of absorbed layers of atoms on crystal surfaces,
commensurate-incommensurate phase transitions, domain walls in magnet-
ically ordered structures, etc., has attracted a great deal of attention from
physicists working in solid-state physics and nonlinear physics.
One of the important features that can explain why the FK model has

attracted much attention in different branches of solid state physics is the
fact that in the continuum-limit approximation the model reduces to the ex-
actly integrable sine-Gordon (SG) equation, which has a number of unique
properties and allows exact solutions for nonlinear waves and their inter-
action. In particular, the SG equation yields an example of a fundamental
nonlinear model for which we know almost everything about the dynamics
of nonlinear excitations. As is known, the SG system has three different
types of elementary excitations, namely phonons, kinks (topological soli-
tons), and breathers (dynamical solitons), whose dynamics determines the
general behaviour of the system as a whole. And, although the FK model
is inherently discrete and not exactly integrable, one may get deep physi-
cal insight and may markedly simplify the understanding of its nonlinear
dynamics using the language of SG quasi-particles as weakly interacting
nonlinear excitations.
In this Chapter we review several different nonlinear models of solids

from a rather general point of view, considering generalized (discrete and
continuous) versions of the FK model and its topological excitations –
kinks. We show how the FK model appears in the context of the theory of
dislocations, Josephson junctions, surface physics, and also as a simplified
model of hydrogen-bonded chains, ferro- and antiferromagnetic systems,
DNA-type chains, etc. We also describe the basic properties of kinks and
give some examples of experimental verifications of the kink dynamics.

2 The FK model and the SG equation

A simple model which describes the dynamics of a chain of particles (atoms)
interacting with their nearest neighbours and subjected to a periodic on-
site (substrate) potential was first mentioned, to the best of our knowledge,
by Dehlinger (1929) and then independently introduced by Frenkel and
Kontorova (Frenkel and Kontorova, 1938; 1939). It can schematically be
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presented as a chain of particles on a periodic substrate potential. The
dynamics of such a chain is described by the Hamiltonian

H =
∑
n

{
ma

2

(
dxn
dt

)2

+ Vint(xn+1 − xn) + Vsub(xn)

}
, (13.1)

where ma is the particle mass, and xn is the co-ordinate of the n-th parti-
cle. In the simplest case the interaction between neighbouring particles is
assumed to be harmonic, Vint(xn+1 − xn) = 1

2g(xn+1 − xn − a0)2, where
g = V ′′

int(a0) is the elastic constant, and a0 is the equilibrium distance of
the interatomic potential. Also the substrate potential is expanded into the
Fourier series Vsub(xn) = 1

2U0[1−cos(2πxn/as)], where U0 is the maximum
energy and as is the period.
After renormalization, the Hamiltonian (13.1) gives the equation of mo-

tion
d2xn
dt2

+ sinxn − g(xn+1 + xn−1 − 2xn) = 0, (13.2)

and we notice that this equation does not include the parameter a0 corre-
sponding to the equilibrium distance of the inter-atomic potential. In the
following we only consider the commensurate case a0 = as, where in the
ground state each minimum of the substrate potential is occupied by one
atom, so that we can introduce the variables xn = nas + un.
Linear excitations (e.g. phonons or magnons), un(t) ∝ exp[iω(k)t− ikn],

are characterized by the dispersion law

ω2(k) = ω2
min + 2g(1− cos k), (13.3)

where k is the wave number (|k| ≤ π) and ωmin = 1. The spectrum is
characterised by the cut-off frequency ωmax =

√
ω2
min + 4g. When the par-

ticle displacements are not small, the linear approximation is no longer
valid, and the model (13.2) can support nonlinear excitations, kinks and
breathers. To show this, let us first consider the continuum limit of the FK
model,

utt − uxx + sinu = 0, (13.4)

where the spatial variable x is measured in units of d = as
√
g.

As a matter of fact, Eq. (13.4) was the first partial differential equation
whose multi-soliton properties were recognized. Indeed, in a transformed
form Eq. (13.4) was originally considered by A. Enneper (Enneper, 1870) in
the differential geometry of surfaces of constant negative Gaussian curva-
ture. The study of Eq. (13.4) in the context of differential geometry revealed
very interesting properties, including the possibility to generate from one
known solution new (unknown) solutions by means of the Bäcklund trans-
formation (Bäcklund, 1882).
In physics, Eq. (13.4) has found its first application in dislocation mod-

els, and kinks and breathers of the SG equation have first been introduced
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by A. Seeger and co-workers more than forty years ago (Kochendörfer and
Seeger, 1950; Seeger and Kochendörfer, 1951; Seeger et al., 1953; see also
Seeger, 1980; Döttling et al., 1990). The original German names for the
kinks and breathers were “translatorische und oszillatorische Eigenbewe-
gungen”, and from a historical point of view it is interesting to note that
this preceded the discovery of solitonic properties of the Korteweg-de Vries
equation (Zabusky and Kruskal, 1965) by more than a decade. Perring and
Skyrme (1962) introduced the SG equation as a simple one-dimensional
model of the scalar field theory. Almost simultaneously, the SG equation
appeared in the theory of weak superconductivity to be the main nonlinear
equation describing the so-called long Josephson junctions (see e.g. Joseph-
son, 1965), where a kink describes a quantum of magnetic flux, a fluxon.
The two next important steps in the history of the SG equation were the
emphasis of its pedagogical importance in terms of a very simple chain of
coupled pendulums (the mechanical analog of the FK chain) introduced by
A. Scott (1969), and the solution of the related inverse scattering transform
problem obtained by M. Ablowitz et al. (1973). Later, the SG equation was
proved to be completely integrable, and its properties have been described
in many review papers and books (see e.g. Zakharov et al., 1980). Here we
only mention the main properties of Eq. (13.4) and its solutions.

Elementary excitations of SG systems are phonons, kinks, and breathers.
Phonons, or continuous waves in the linear limit, take the standard form
u(x, t) ∝ exp(iωt − ikx) and are characterised by the dispersion relation,
ω2(k) = 1 + k2, which is a long-wave expansion of Eq. (13.3).

Kinks, or topological solitons, appear due to a degeneracy of the system
ground state. Indeed, a kink can be understood as the solution connecting
two nearest identical minima of the periodic on-site potential,

uk(x, t) = 4 tan−1 exp[−σγ(v)(x − vt)], (13.5)

where σ = ±1 stands for the topological charge. The kink velocity v is
measured in units of the sound velocity c and determines the kink width,
γ(v) = 1/

√
1− v2. The latter result follows from the relativistic invariance

of the SG model and may be considered as a Lorentz contraction of the
kink width. It allows one to introduce the rest mass of the kink, which
in dimensionless units is written as m = 2/(π2√g), and its rest energy,
defined as εk = mc2 = 8

√
g.

A breather, or dynamical soliton, has the form

ubr(x, t) = 4 tan−1

{(√
1− Ω2

Ω

)
sin(Ωt)

cosh(x
√
1− Ω2)

}
, (13.6)

and describes a nonlinear state oscillating with the internal frequency Ω,
which is located within the gap of the linear spectrum, 0 < Ω < ωmin, with
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the amplitude umax = 4 tan−1(
√
1− Ω2/Ω), the oscillation being localised

to the spatial scale ∼ d/
√
1− Ω2. The breather energy is εbr = 2εk

√
1− Ω2,

so that 0 < εbr < 2εk. The solution for a moving breather is easily obtained
from Eq. (13.6) by means of the Lorentz transformation. In the limit of low
frequencies, Ω 	 1, the breather can qualitatively be treated as a kink-
antikink pair.
In the framework of the SG model kinks and breathers move freely along

the chain without dissipation losses. Moreover, the only effect of their col-
lision is a phase shift (see e.g. Zakharov et al., 1980). That is why kinks
and breathers can be treated as nonlinear quasi-particles of the SG model.
Such an approach is still valid for nearly integrable modifications of the SG
equation, when the model includes small perturbations, like those appear-
ing when the SG equation is derived from the primary FK model in the
quasi-continuum approximation, assuming discreteness effects to be small.

3 Physical models

The model described by Hamiltonian (13.1) appears in many problems of
solid state physics and has a simple physical meaning. A complex system
of interacting particles is treated as two coupled sub-systems; one is mod-
elled by a chain of moving particles, provided its dynamics is quasi-one-
dimensional, the other one is treated as a “frozen” substrate. The effective
particles of the chain can model the dynamics of real atoms (e.g. in the
theory of absorbed atoms on a crystal surface), spins (magnetic systems),
clusters of atoms (the so-called bases of the DNA-like chains), etc. Includ-
ing more degrees of freedom leads usually either to models describing a
system of coupled chains, or to two-dimensional models. Below we discuss
several examples where the SG equation and the FK model are the basic
models for describing the nonlinear dynamics.

3.1 Dislocations in solids
The first application of the FK model was in the theory of dislocations
in metals (Frenkel and Kontorova, 1938; 1939; Frank and van der Merwe,
1949a,b; Seeger and Kochendörfer, 1951; Atkinson and Cabrera, 1965). The
importance of this problem cannot be overestimated, since dislocations are
responsible for the mechanical properties of solids. The FK model was the
first model that explained the dynamics of a dislocation core on an atomistic
level and has resulted in simple formulas valid even quantitatively. (Note
that a large-scale first-principle simulation of dislocation dynamics is a
nontrivial problem even for modern parallel computers.)
In dislocation theory the FK model has a simple physical origin. Indeed,

let us consider an additional semi-infinite plane of atoms inserted into a
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perfect crystal lattice. After relaxation to the equilibrium state, the system
has one edge dislocation. Then the layer of atoms perpendicular to the
inserted plane divides the crystal into two different parts and plays the
role of an interface layer. The atoms at the interface layer are subjected to
an external potential resulting from the surrounding atoms of the lattice,
and the interaction with these other atoms can be modelled by an effective
periodic potential. This idea gave birth to the FK model.
First, the two-dimensional plane of atoms belonging to the interface layer

can approximately be treated in the framework of a one-dimensional model
as an atomic chain perpendicular to the edge dislocation line. In this model
the dislocation core is described as a kink of the FK chain, and this explains
the existence of activation barrier, the so-called Peierls-Nabarro (PN) bar-
rier, for the dislocation motion. This barrier is known as the primary PN
barrier.
The next step of modelling is to consider the dislocation line itself as an

(other) FK chain placed in the external periodic potential which is nothing
but the primary PN relief. The motion of the dislocation line is due to the
creation of kink-antikink pairs, when a section of the dislocation is shifted to
a neighbouring valley of the external (primary PN) potential. These kinks
move in the secondary PN relief until they reach the end of the dislocation
(the dislocation is a topological object and cannot be broken) or annihilate
with another kink of opposite topological charge.
The main advantage of this phenomenology is that it predicts correctly

the existence of the PN barrier which determines the dynamics of dislo-
cations. Besides, plastic deformations in metals may also result from local
defects known as crowdion (Paneth, 1950; Frenkel, 1972). The crowdion
corresponds to a configuration where one extra atom is inserted into a
closely packed row of atoms in a metal with ideal crystal lattice. In many
such cases the crystalline potential is organized in such a way that the
atoms can move only along the row direction, and the inserted atom (to-
gether with its neighbouring atoms) forms a one-dimensional configuration
which can be treated as a kink of the FK model. Usually the size of such
a configuration is about ten lattice units, so that the kink is characterised
by a very small PN barrier and moves along the row almost freely. There-
fore, the crowdions play an important role in plasticity of metals. Crowdion
problems were recently studied by Landau et al. (1993) and Kovalev et al.
(1993).

3.2 Magnetic chains
A kink in magnetic models describes a domain wall (DW), i.e. a localised re-
gion between two domains of magnetization (two equivalent ground states).
The simplest one-dimensional classical model of a magnetic chain is de-
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scribed by the following Hamiltonian (Mikeska and Steiner, 1991)

H = −J
∑
n

SnSn+1 − D
∑
n

(Sxn)
2
. (13.7)

The first term is the isotropic exchange energy and the second one the
single-ion anisotropy. If J and D are positive, the system has the x-axis
as the preferred direction in the spin space. For minimum energy all spins
should have maximum x-components. This leads to a degeneracy of the
ground state, and two equivalent ground states are connected by a static
domain wall. Its form represents a compromise between the counteract-
ing effects of exchange interaction J (⇒ wide DW) and anisotropy D
(⇒ narrow DW). In the classical approximation spins are treated as vec-
tors of length S, and one works in spherical co-ordinates given as Sn =
S(sinΘn cosΦn, sinΘn sinΦn, cosΘn). The continuum approximation leads
to continuous variables given as Θn → Θ(z) and Φn → Φ(z), so that a static
equation for Φ(x) defines the structure of the domain wall. In the case of a
strong planar anisotropy and a transverse magnetic field, the equation of
motion for the angle Φ results in the SG equation (Mikeska, 1978).
Considering a ferromagnetic (FM) chain with easy-plane anisotropy in

a transverse magnetic field H at sufficiently low temperature, there exists
one ground state where all spins are aligned in the H -direction. A soli-
ton represents a 2π-twist of the ordered spin chain which can freely move
along the chain without dispersion. In an antiferromagnetic (AFM) chain
the ground state corresponds to a spin-flop configuration, i.e. the two sub-
lattices, apart from a slight canting, are aligned antiparallel to each other
and perpendicular to H. Therefore, there exist two degenerate, but topolog-
ically inequivalent ground states which differ by the sign of spin orientation.
Thus, an AFM soliton represents a π-twist reversing both sublattices when
passing along the chain. The difference in topology results in different spa-
tial and temporal behaviour of the spin components and largely affects
the experimental evidence. While in the FM case spin fluctuations only
originate from the 2π-soliton itself, it is flipping of all spins between two
neighbouring π-solitons (the so-called “flipping mode”) which yields the
essential contribution in the AFM case. In either case, spin fluctuations in
the chain direction are largely suppressed by the strong planar anisotropy.
The SG model is valid provided the magnetisation vector rotates only in

the easy plane. However, for λ < 3, where λ = 2DS/µH, the SG soliton
is unstable against out-of-plane fluctuations. The system dynamics should
be described by two coupled equations for two angles Θ and Φ (Kosevich
et al., 1990).

3.3 Josephson junctions
Among many physical systems, one of the closest correspondence to the
SG equation has been found in the problem of fluxon dynamics in long
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Josephson junctions (JJs or Josephsons transmission lines). A SG kink in
this case is often called a “fluxon” since it carries a magnetic flux quan-
tum Φ0 = h/2e = 2.07 × 10−15 Wb moving between two superconducting
electrodes. Several comprehensive reviews on fluxon dynamics in JJs have
been published in the past (McLaughlin and Scott, 1978; Pedersen, 1986;
Parmentier, 1993) and some of the new topics have been addressed more
recently (Pedersen and Ustinov, 1995; Ustinov and Parmentier, 1996). This
is an active area of research, especially after the discovery of high-Tc su-
perconductors.
A fluxon in JJs carries a magnetic flux Φ0 generated by a circulating

supercurrent, often called Josephson vortex, which is located between two
superconducting films separated by a few nanometers thin layer of insula-
tor. As shown by McLaughlin and Scott (1978), the fluxon corresponds to a
2π-kink of the quantum phase difference ϕ between the two superconduct-
ing electrodes of the junction. The perturbed sine-Gordon equation which
describes the dynamics of the system reads in normalized form

ϕxx − ϕtt − sinϕ = αϕt − βϕxxt − γ. (13.8)

Time t is measured in units of ω−1
0 , where ω0 is the Josephson plasma

frequency, the spatial co-ordinate x is measured in units of the Josephson
penetration depth λJ , α is dissipative term due to quasi-particle tunnelling
(normally assumed ohmic), β is a dissipative term due to surface resistance
of the superconductors, and γ is a normalised bias current density. To ac-
count for the behaviour of a real system, Eq. (13.8) must be solved together
with appropriate boundary conditions which depend on the junction geom-
etry and take into account the magnetic field applied in the plane of the
junction.
A typical property of real JJs is that the parameters α, β and γ are

rather small. An important solution of Eq. (13.8) with zero r.h.s. is the kink
ϕ = 4 tan−1 eξ, where ξ = (x − vt)/

√
1− v2. The velocity v is determined

by the balance between losses and input force, v = 1/
√
1 + (4α/πγ)2.

The velocity saturates for large values of γ/α, and a fluxon behaves like a
relativistic particle with its velocity close to the velocity c of linear waves
in the junction, the Swihart velocity.
Fluxons in coupled JJs have recently become a subject of intensive

theoretical and experimental investigations. The discovery of the intrin-
sic Josephson effect in some high-temperature superconductors such as
Ba2Sr2CaCu2O8+y (BSCCO) convincingly showed that these materials
are essentially natural super-lattices of Josephson junctions formed on
atomic scale (Kleiner et al., 1992; Kleiner and Müller, 1994; Lee et al.,
1995). The spatial period of such a super-lattice is only 15 Å, so the
Josephson junctions are extremely densely packed. The superconducting
electrodes are formed by copper oxide bilayers as thin as 3 Å and are sep-
arated by the Josephson super-lattices with many active layers.
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For the first time, the fluxon dynamics in two inductively coupled long
JJs was considered theoretically by Mineev et al. (1981). The perturba-
tion approach for small coupling has been further explored by Kivshar and
Malomed (1988) and Grønbech-Jensen et al. (1990, 1993). A very impor-
tant step towards quantitative comparison with real experiments was made
by Sakai et al. (1993) who derived a model for arbitrary strong coupling
between the junctions.
Finally, discreteness appears in the case of a parallel biased array of small

JJs, which is described by a discrete SG equation,

dVn
dt

=
1
a2 (ϕn−1 − 2ϕn + ϕn+1)− sinϕ − αVn + γ;

dϕn
dt

= Vn, (13.9)

where 1 ≤ n ≤ N . These equations are just the Kirchhoff circuit-law equa-
tions for an array of N discrete JJ elements interconnected via a parallel
resistance/inductance combination. The phases at the virtual points n =
0 and n = N+1 are defined through boundary conditions depending on
the geometry of the array. This model has been analysed theoretically by
Ustinov et al. (1993) and their predictions have later been confirmed ex-
perimentally by van der Zant et al. (1995).

3.4 Hydrogen-bonded chains
One more important model that can be described by the Hamiltonian (13.1)
appears in the theory of proton conductivity of hydrogen-bonded chains.
Hydrogen-bonded networks are quasi-one-dimensional clusters of molecular
aggregates interacting with their first neighbours through hydrogen bonds.
Schematically, this can be presented in the form ...X-H...X-H...X-H...X-H...,
where the full line segments indicate covalent or ionic bonds, the dotted
ones hydrogen bonds, and X a negative ion. The important idea of a simple
physical model for such a nonlinear chain is based on the fact that protons
move in a double-well potential resulting from hydrogen bonds with the
heavy-ion lattice (oxygen lattice) which is assumed to be deformable (An-
tonchenko et al., 1983).
A local distortion of the oxygen lattice lowers the activation barrier for

protons and thus promotes their motion. In order to describe this phe-
nomenon, one- or two-component nonlinear models should include the pro-
ton sublattice which supports topological solitons (kinks), while the oxygen
sublattice can be modelled as another sublattice or as an effective exter-
nal potential for the proton motion. Several models of this kind have been
proposed (Antonchenko et al., 1983; Zolotaryuk et al., 1984; Zolotaryuk,
1986; Peyrard et al., 1987; Hochstrasser et al., 1988; Pnevmatikos, 1988),
and they give a simple and effective description of the proton mobility in
hydrogen-bonded chains.
In the lowest-order approximation, the oxygen atoms are assumed to

have fixed positions and to produce an effective substrate potential to the
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mobile hydrogen atoms, for which a double SG equation with the effective
on-site potential

V ′
sub(u) = V0

[
− sinu+ 2A sin

(u

2

)]
(13.10)

can be derived (see, e.g., Pnevmatikos, 1988). Then, the mechanism of
proton conductivity is explained by a migration transport of two types
of defects, ionic and bonding (or Bjerrum) defects, along the chains. The
defects are described by two types of kinks of the corresponding double
SG model. A similar kind of one-component model for hydrogen-bonded
systems is rather well investigated in the framework of the continuum ap-
proximation (see, e.g., Zolotaryuk and Pnevmatikos, 1990; Pnevmatikos et
al., 1991; and references therein). At the same time, recent ideas in the the-
ory of kink-induced proton conductivity involve more general properties of
the FK type models, e.g. the discreteness of the proton chains and thermal-
ized kink motion (Savin and Zolotaryuk, 1991), the effect of increased pro-
ton conductivity due to commensurate-incommensurate phase transitions
(Christophorov and Gaididei, 1992), a complex chain of zigzag structure
(Christiansen et al., 1997), a mass variation along the chain (Kalosakas et
al., 1997), etc.
More rigorously, the dynamics of systems like hydrogen-bonded chains

can properly be described by introducing two interacting sublattices for
proton and oxygen atoms, respectively. In such a case, we should consider
two-component generalisations of the FK model which describe two inter-
acting chains of particles, one of them subjected to a substrate potential
which is created by the other. Several models of this type have been intro-
duced and studied in the continuum approximation (see e.g. Antonchenko
et al., 1983; Zolotaryuk, 1984, 1986; Hochstrasser et al., 1988, Pnevmatikos,
1988). The dynamics of the two-component models has several new features
in comparison with standard one-component models. For example, a new
branch of the phonon spectrum appears in the band gap of linear excita-
tions of the standard FK chain, so that the motion of kinks is stable only for
small velocities which do not exceed the sound speed of acoustic phonons
of the oxygen sublattice (see e.g. Zolotaryuk et al., 1984). As a matter of
fact, the second phonon branch plays an important role in kink scattering
by local impurities (Kivshar, 1991).
Similar two-component FK models describe more realistically the dy-

namics of other physical objects such as dislocations, crowdions, ad-atomic
chains, chains of ions in superionic conductors, etc. In all such situations
the second (heavy atom) subsystem corresponds to substrate atoms, so
that the whole system may be treated again as a FK chain on a deformable
substrate. A similar situation occurs for the physical models of molecular
crystals and polymer chains as well as ferroelectric or ferroelastic chains
where rotational and vibrational degrees of freedom are coupled (see e.g.
Pouget and Maugin, 1984, 1985; Maugin and Miled, 1986, to cite a few).
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3.5 Surface physics and adsorbed atomic layers
A broad area of different applications of the FK model is in surface science.
The external substrate potential in the FK model is governed by the surface
atoms of a crystal, while the atoms adsorbed on the surface are treated as
those belonging to the chain. The adsorbed atoms are usually more mobile
than the atoms of the substrate since the substrate atoms are trapped and
vibrate near their equilibrium positions. Therefore, the approximation of
a rigid substrate is adequate for this class of problems. In some cases, e.g.
for the (112) plane of b.c.c. crystals, the surface atoms produce a furrowed
potential. Then, the ad-atoms are located inside the furrows and, therefore,
can be considered as one-dimensional chains. Another example are vicinal
semiconductor surfaces, where the ad-atoms are adsorbed closely to the
steps and, thus, are incorporated into the chains. In the latter case, the
distance between the chains may be different depending on the angle of the
vicinal surface chosen.
The models of adsorbed layers have several advantages when considered

in the approximation of a FK chain. First of all, the assumption of a rigid
substrate is a reasonable approximation. Then, the atomic concentration
can be varied in a wide range, from θ = 0 (adsorption of single atoms)
to θ = 1 and even more (when the “diameter” of the ad-atom is lower
than the period of the external potential as, e.g., for lithium ad-atoms
on transition metal surfaces). As a result, a large number of interesting
physical phenomena can be analysed in terms of the FK model, including
transitions between different commensurate structures and commensurate-
incommensurate transitions. The parameters of the FK model can be es-
timated (or even evaluated from first principles) with good accuracy (see
e.g. Braun and Medvedev, 1989). Also, these systems can often be studied
experimentally by direct methods such as scanning tunnel microscopy.
In addition, the same model may be employed to describe a clean surface,

if one treats the surface atoms as atoms of the effective FK chain, while the
atoms of the underlying layer are assumed to produce an effective substrate
potential. In particular, the FK model can be used to describe the surface
reconstruction (Harten et al. 1985; Mansfield and Heeds, 1990) and the
structure of vicinal semiconductor surfaces (Yang et al., 1991). Moreover,
the FK-type models can also be used to describe processes of crystal growth
(e.g. Franzosi et al., 1988).
In fact, one of the important restrictions of the standard FK model is the

one-dimensional nature of the chain dynamics. In many physical situations
the one-dimensional approximation is rather good. However, usually quasi-
one-dimensional chains of atoms are not completely independent, form-
ing a system of parallel chains. For example, the typical situation, when
atoms are absorbed on stepped or furrowed surfaces of a crystal, can be
described by a two-dimensional system of weakly coupled one-dimensional
FK chains. Considering kinks of the primary FK chains as quasi-particles
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subjected to a periodic PN potential, we may analyze collective excitations
of the two-dimensional lattice model as “secondary” kinks which again can
be described by a variant of the “secondary FK model”. A system of in-
teracting FK chains was analyzed, e.g. by Braun et al. (1988) and Braun
and Kivshar (1990), and there are many papers devoted to the statistical
mechanics of adsorbed layers.
One of the ways to make the FK model more realistic for describing a

broader class of physical applications is to include an additional degree
of freedom allowing the atoms to move in the direction perpendicular to
the chain. The corresponding FK model with a transverse degree of free-
dom was proposed by Braun and Kivshar (1991). Interesting physical ef-
fects are possible in this type of models due to the existence of nontriv-
ial zigzag-like excitations. More general models describing the dynamics
in two-dimensional systems correspond to a vector generalization of the
FK model, which is the most realistic model for two-dimensional arrays of
atoms adsorbed on crystal surfaces; each atom has two degrees of freedom
to move and is subjected to a two-dimensional external potential created
by atoms of the surface. In fact, a variety of such models is generated by
the symmetry properties of various substrate potentials (isotropic mod-
els with square, triangular, hexagonal lattices). We would like to mention
those introduced by van der Merwe (1970), Snyman and van der Merwe
(1974), Snyman and Snyman (1981), Abraham et al. (1984), Lomdahl and
Srolovitz (1986).

3.6 Models of the DNA dynamics
Similar models can also play an important role in the interpretation of
certain biological processes, such as DNA dynamics and denaturation (see
Yomosa, 1983; Homma and Takeno, 1984; Yakushevich; 1989; Peyrard and
Bishop, 1989; Dauxois et al., 1993; and also review papers by Zhou and
Zhang, 1991; Gaeta et al., 1994). Definitely, the structure of a DNA-type
double-helix chain is complex, but very general features can be modelled by
the Hamiltonian (13.1), provided we assume that all bases of the DNA chain
are identical. Then, the dynamics can again be described by the Hamilto-
nian (13.1), where ma is the mass or the moment of inertia of a base, and
x

(i)
n is the generalized co-ordinate describing the base at site n on the i-th
chain of the double helix. Usually, the DNA-type chain is described by two
coupled equations for two coupled chains (double helix). There exist two
types of models, planar and helicoidal ones. The planar model of torsional
dynamics (Yakushevich, 1989) has originally been developed to describe
travelling kinks, which are supposed to play a central role in the transcrip-
tion of DNA. The two chains of the DNA helix structure are assumed to
interact linearly, depending on the rotation of the end points of the bases
which are coupled by H-bonds. Then, positions of the neighbouring bases
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of different chains are described by the angles Θ1,Θ2 of rotation around
the N-C bond, and the model is reduced to two coupled equations for the
variables Ψ1,2 = 1

2 (Θ1 ±Θ2).
In the planar model of DNA vibrational dynamics (Peyrard and Bishop,

1989) the dynamics is associated with sugar puckering modes, and the co-
ordinate x(i)

n describes the position of the base with respect to its distance
from the axis of the double helix. For the variables Ψ = 1

2 [x
(1) + x(2)] and

χ = [x(1) − x(2)], the model can be reduced to two independent equations,

mψ̈n = β(ψn+1 + ψn−1 − 2ψn) + V ′(ψn) = 0,

mχ̈n = β(χn+1 + χn−1 − 2χn),
where the potential is

V (Ψn) =
1
2
D

∑
n

(e−αψn − 1)2.

The former equation is exactly the generalised FK model.
A modification of these models taking the helicoidal structure of DNA

into account has also been suggested (Gaeta et al., 1994). In a double he-
lix it happens that bases, which are one half-turn of the helix apart, end
up spatially close to each other. Introducing “helicoidal” terms to the pla-
nar models to account for this effect will add a harmonic potential to the
Hamiltonian (13.1) for the interaction between bases with numbers n and
n+ h. In the case of the model of vibrational dynamics, these higher-order
inter-base interactions modify the FK model for the common displacement
ψn = 1

2 (x1 + x2), making the dispersion of linear waves more complicated.
From the viewpoint of physics, the novel helicoidal terms produce extremal
points in the linear dispersion allowing standard breather modes, i.e. lo-
calised oscillations responsible for local openings of the double helix which
remain so.

4 Properties of kinks

4.1 On-site potential of general form
The standard model (13.1) assumes a sinusoidal potential Vsub(xn). How-
ever, for some physical applications, the shape of the substrate potential
deviates from the sinusoidal one. Indeed, the on-site substrate potential in
the FK model is an effective potential resulting from couplings of the atoms
in the chain with other degrees of freedom, e.g. with substrate atoms. Then,
only in the lowest order of the Fourier expansion and in the case of a sim-
ple lattice with one atom per elementary cell, a sinusoidal potential can
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be derived in a rigorous way. In all other physical situations, the periodic
potential Vsub(x) deviates from the sinusoidal form.
In the general case, kinks can be easily described in the continuum ap-

proximation which is valid provided the discreteness effects are negligible.
The equation of motion then becomes

utt − c2uxx + V ′
sub(u) = 0. (13.11)

Equation (13.11) is Lorentz invariant and, therefore, has always a stationary
solution u(x, t) = φ(y), y = γ[x − X(t)], γ = (1− v2/c2)−1/2, where the
kink co-ordinate is defined as X(t) = X0 + vt and its velocity, v = dX/dt
varies in the interval |v| < c. The equation for the function φ(y), d2φ/dy2 =
V ′
sub(φ), coincides with the equation of motion of an effective particle with
co-ordinate φ in the potential U [φ(y)] = −Vsub[φ(y)] which can be easily
integrated, and the shape of the kink can be expressed as

y = ∓
∫ φ(y)

xm

dφ√
2Vsub(φ)

. (13.12)

Here, the upper sign corresponds to a kink (it describes a local contraction
of the chain), the lower sign corresponds to an antikink, and the value xm is
the co-ordinate of the maximum of the substrate potential. Thus, the kink
(anti-kink) solution connects two nearest neighbouring minima of of the
substrate potential, say x0 and x0+2π. If the substrate potential has more
than two minima per period, one may expect to find more than one type
of kinks. One of the examples of the generalised potential is the so-called
double SG potential (see e.g. Condat et al., 1983) Vsub(x) ∝ −[cos(x) +
s cos(2x)]. We would like to mention also more general on-site potentials
proposed by Peyrard and Remoissenet (1982).
Unlike the SG kink, a kink in the chain with a non-sinusoidal on-site

potential may have an internal degree of freedom, the so-called kink shape
mode (see e.g. Segur, 1983; Campbell et al., 1983; Braun et al., 1997). To
explain the existence of such modes, one should linearise the equation of
motion around the kink shape, u(x) = uk(x)+Ψ(x)eiωt. The function Ψ(x)
satisfies the linear eigenvalue equation

−c2
d2Ψ
dx2 +W (x)Ψ(x) = ω2Ψ(x), W (x) =

d2Vsub(u)
du2 u=uk(x). (13.13)

This equation has always a continuum spectrum of plane-wave solutions
(i.e. phonons) with the frequencies ω > ωmin, and also the so-called Gold-
stone mode Ψ(x) = duk/dx with ω = 0 (in a discrete FK model the lat-
ter mode has a nonzero eigenvalue ωPN ). Besides these two modes, the
eigenvalue spectrum can include one or more eigenfunctions with discrete
eigenfrequencies within the gap (0, ωmin) or, depending on the shape of the
substrate potential, with frequencies ω > ωmax (see details in Braun et
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al., 1997a). Such modes are localized near the kink profile. They may be
considered as excited states giving rise to internal oscillations of the kink
shape. The shape modes can be excited during collisions between kinks,
or due to the interaction of kinks with impurities, so that they play an
important role in the kink dynamics.

4.2 Discreteness effects
The existence of kinks (and even their main properties) does not crucially
depend on the discreteness of the primary model, so that the SG model
considered above looks often as an acceptable approximation of the pri-
mary discrete chain, allowing to retain the basic properties of the system
dynamics. However, a very specific property of the discrete lattice is the
existence of the Peierls-Nabarro (PN) periodic potential VPN (X) for the
kink motion, where X is the co-ordinate of the kink centre. The PN po-
tential and its properties have originally been discussed in the context of
dislocation theory (Peierls, 1940; Nabarro, 1947; Indenbom, 1958). To un-
derstand its origin we first note that in the continuum approximation the
system is invariant with respect to any translation of the kink along the
chain. In contrast to that, in a discrete model this invariance is absent,
and only translations by the lattice spacing as and its integer multiples
are allowed. The smallest energy barrier the kink has to overcome when
moving through a lattice is known as the PN barrier, EPN . The value of
EPN is equal to the difference between the two values of potential kink
energy defined for two stationary configurations, a stable and an unstable
(saddle) one.
The amplitude EPN of the PN potential was calculated analytically for

the quasi-continuum limit and for the weak-bond limit, as well as numer-
ically (see references in Braun and Kivshar, 1998). One of the analytical
approximations yields

EPN = 32π2 g

sinh(π2√g)

(
1 +

1
2π2g

)
� 64π2ge−π2√

g, (13.14)

i.e. EPN vanishes when g � 1. A calculation based on the discrete SG
model, such as the Taylor-Chirikov map, yields the following result which
is asymptotically exact in the limit g � 1 (Lazutkin et al., 1989), EPN �
Age−π2√

g, where A � 712.26784..., which differs from the result above only
by a numerical factor of 1.13.
In a discrete lattice, the SG kink cannot move freely because of the PN

potential, provided its initial kinetic energy is less than the PN barrier.
In such a case, the kink gets trapped near a local minimum of the PN
potential and oscillates with a frequency ωPN ≈ EPN/2m.
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4.3 Kinks in external fields
In the presence of impurities or inhomogeneous stationary external fields
the kink velocity varies, and the kink can be trapped by an impurity. Many
features of soliton-impurity interactions have already been discussed by
Kivshar and Malomed (1989) and Gredeskul and Kivshar (1992) in the
framework of the SG model with local or extended inhomogeneities. For
the discrete FK model, two new features of soliton-impurity interactions
appear. First, in a discrete chain the kink moves in the presence of an
effective PN potential. Thus, the kink parameters vary periodically, and this
simple mechanism gives rise to the generation of phonons and a subsequent
pinning of the kink by lattice discreteness. As a result, the discreteness
effects may significantly modify the adiabatic scattering of kinks (see e.g.
Braun and Kivshar, 1991). Second, an important feature of kink scattering
by impurities in a discrete chain is the excitation of impurity modes during
the scattering process. In fact, such an effect is also possible for continuous
models provided one considers strong disorder (see below), but discreteness
modifies the frequency of the impurity mode making is excitation easier (see
Forinash et al., 1994).
To derive an effective equation of motion for a SG kink in a stationary

external potential, we consider the simplest case of an inhomogeneous SG
model,

utt − uxx + sinu = εf(x) sinu. (13.15)

Analyzing the kink dynamics in the framework of a collective co-ordinate
approach, we obtain in a simple way an effective equation of motion for the
kink co-ordinate (see e.g. Currie et al., 1977; McLaughlin and Scott, 1978).
To derive such an equation, we note that the unperturbed SG system has
an infinite number of conserved quantities (invariants) including the field
momentum P ≡ − ∫ ∞

−∞ dx utux. For the SG kink the momentum takes
the form of the well-known relativistic expression P = mv/

√
1− v2, where

v is the kink velocity. In the presence of perturbations the momentum
is no longer conserved; using Eq. (13.15) it is possible to show that it
varies according to dP/dt = ε

∫ ∞
−∞ dxf(x)(cosu)x, provided the boundary

conditions u → 0(2π) at x → ±∞ hold. The adiabatic approach is now
defined by the assumption that, for ε small enough, the kink shape is not
affected, and only the kink co-ordinate X becomes a slowly varying function
of time. Within this hypothesis it can be shown that in the non-relativistic
limit the kink centre obeys Newton’s equation of motion, md2X/dt2 =
U ′(X), where

U(X) ≡ −2ε
∫ ∞

−∞
dx

f(x)
cosh2(x − X)

. (13.16)

The following two cases arise naturally from Eq. (13.16). If f(x) varies
rapidly over distances of the order of the kink length, then ε has to be
small for our approximation to hold. For example, in the case f(x) = δ(x),
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we have U(X) = −2εsech2X (McLaughlin and Scott, 1978). On the other
hand, if f(x) is a slowly varying function, i.e. its characteristic length (say
L) is much larger than the kink width, it is not necessary for ε to be small,
because all the parameters of the perturbation theory are of the order of
L−1, and we are left with U(X) ≈ 4εf(X/L).
The adiabatic theory is not valid when a localised impurity supports

an impurity mode, i.e. an oscillating linear mode at the impurity site. In
this case the kink position and the impurity mode amplitude are two ef-
fective collective co-ordinates. Different kinds of resonant interactions of
solitons or kinks with impurities have recently been reviewed by Belova
and Kudryavtsev (1997).
In a discrete lattice, the kink motion is affected by the PN relief. One

of the ways to derive the effective equation of motion for the kink is based
on the projection-technique approach developed by the group of C. Willis.
Another approach is based on the Lagrangian formalism (see e.g. Braun
and Kivshar, 1991).

4.4 Compacton kinks
When all linear interactions between particles in the chain vanish, so that
their coupling becomes purely nonlinear, the kinks are localised on a fi-
nite interval and have no exponentially decaying tails. Such a kind of
solitary wave is known as compacton and has first been introduced for
the generalised Korteweg-de Vries equation with purely nonlinear disper-
sion (Rosenau and Hyman, 1993). Compacton kinks have been discussed
by Dusuel et al. (1998) for the Klein-Gordon model with purely nonlin-
ear dispersion. They found two types of the compaction kinks, a moving
(unstable) and a static (stable) one, described by the analytical solutions
uK(ξ) = ± sin{(2V0/3c

1/4
nl (ξ − ξ0)}, for |ξ − ξ0| < 1, and uK(ξ) = ±1 oth-

erwise. Here ξ = x − √
clt, V0 is the strength of the potential, cl and cnl

are the coefficients of linear and nonlinear dispersion, respectively. When
the linear dispersion vanishes, cl = 0, the compacton kink is stable. The
mechanical analog of such a model was observed in a chain of pendulums
with two degenerate ground states; see Dusuel et al. (1998).

5 Experimental verifications

5.1 Josephson junctions
A fluxon moving in a JJ of length L with velocity v = uc̄ generates the
dc voltage V = Φ0uc̄/L. In experiments with long JJs, the signatures of
fluxon motion are the so-called zero-filed steps (ZFSs) at voltages Vn =
nΦ0c̄/L which appear in the current-voltage characteristics (I-V curve) of
the junction. These steps were first observed by Fulton and Dynes in 1973
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(Fulton and Dynes, 1973) who suggested that the step index n is equal
to the number of fluxons oscillating in the junction. The ZFS is given by
the dependence of the average fluxon velocity (u ∝ V ) on the driving force
(γ ∝ I). The fluxon arriving at the junction boundary is reflected and,
as an anti-fluxon, then driven back into the junction by the bias current.
A discussion of this interesting shuttle-like process for different junction
geometries can be found in several review papers (e.g. Pedersen, 1986).
This is an indirect manifestation of the fluxon dynamics in experiments.
The influence of boundaries can be avoided in the special case of a ring-

shaped (annular) junction geometry. An annular junction serves as an ex-
cellent model for studying soliton dynamics. Due to the magnetic flux quan-
tization in a superconducting ring, the number of fluxons initially trapped
in the annular junction is conserved. A circular motion of the fluxons under
the influence of a current passing through the junction induces a dc voltage
proportional to their average velocity. The soliton dynamics can be studied
here under periodic boundary conditions. While the fabrication of annu-
lar junctions is rather easy, the trapping of fluxons inside them remains
a difficult problem. Using various trapping techniques, both single-soliton
(Davidson et al., 1985) and multi-soliton dynamics (Ustinov et al., 1992)
have been investigated in annular junctions.
A interesting theoretical idea about the kink as a source of radiation, the

so-called Cherenkov radiation, has been suggested by Kivshar and Malomed
(1988). Recently, first experimental evidences for Cherenkov radiation have
been reported. The experiments have been performed on two very different
systems, but the mechanism is rather general: Cherenkov radiation can be
generated if the kink velocity v = uc̄ is equal to the phase velocity ω/k of
linear electromagnetic waves. This condition can be satisfied if the kink ve-
locity exceeds the lowest phase velocity of linear waves in the junction. Very
clear evidence for Cherenkov radiation emitted by a moving kink has been
found by Goldobin et al. (1998) in a system of two stacked annular JJs.
As soon as the kink velocity exceeds the phase velocity, an oscillating wave
corresponding to Cherenkov radiation arises behind the moving kink, and
its image appears in the coupled junction and can be measured. When an
integer number of Cherenkov radiation wavelengths fits to the correspond-
ing eigenmodes of the junction, resonance occurs. The resonances result
from the interaction of the Cherenkov wave with the fluxon.
Hechtfischer et al. (1997) observed very unusual broadband non-Joseph-

son radiation which they attributed, due to the magnetic field dependence
of radiation power, to the emission of Cherenkov radiation by Josephson
vortices moving in a multi-layer JJ structure. For a stack with N junctions,
there are N different linear mode velocities. For strong coupling, the lowest
mode velocity is about c̄/

√
2. As soon as the fluxon velocity v rises above

c̄/
√
2, Cherenkov emission should appear. This idea has recently been con-

firmed by numerical simulations.
In contrast to the continuum model, for the discrete SG model the phase
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velocity vph = ω/k of the linear waves may coincide with the kink velocity v
already in the case of one junction. Considering the kink as a quasi-particle,
this radiation emission mechanism is equivalent to that of Cherenkov radi-
ation. In a discrete JJ resonance between the emitted Cherenkov waves and
the periodic chain of moving kinks (fluxons) can occur, if the wavelength
and the fluxon spacing are commensurate (Ustinov et al., 1993). A clear
example of this effect can be found for a fluxon rotating in the annular
discrete JJ ring. The corresponding resonance values of the voltage Vm are
given by the formula

Vm =
V0

m

√
Λ−2
J + 4 sin2

(πm

N

)
, (13.17)

where Λ2
J = LJ/LS , LJ and LS being the Josephson inductance and the

self-inductance, respectively, and V0 = Φ0/2π
√
LSC, where C is the junc-

tion capacitance. Experimentally, the discreteness-induced single-fluxon res-
onances for m1 �= 1 and m2 = 1 were observed by van der Zant et al. (1995)
using an 8–junction ring. In these experiments they observed that the I-V
curves are smooth only for high Λ2

J values; when Λ
2
J is decreased by lower-

ing the temperature, a fine structure became visible. Experiments show the
fine structure in the current-voltage characteristic of a single vortex trapped
in a ring for Λ2

J=2.2. In total, six resonant steps are present, corresponding
to local minima of the differential resistance dV/dI.
More recently, similar resonances were reported by Duwel et al. (1997)

for a spatially-periodic fluxon chain moving in a long JJ. Another type
of resonances with m1 = 1 and m2 �= 1 correspond to very high fluxon
oscillation frequencies. Such states were observed in experiments by Caputo
et al. (1997).

5.2 Magnetic systems
As has been mentioned above, a kink soliton in a magnetic system rep-
resents a microscopic structure which cannot be directly observed like a
solitary water wave but can only be probed by its influence on macro-
scopic properties. Magnetic solitons have a well-defined excitation energy,
so one might speculate about the possibility to excite them from outside,
like magnons, by resonant microwave absorption or inelastic neutron scat-
tering. Such attempts, however, fail for the lack of an appropriate local
excitation mechanism. On the other hand, to excite them externally by
microwave pulses or field gradients would require to apply magnetic fields
of some Teslas strength on a length scale of a few nanometers within a time
scale of nanoseconds, which is still far beyond technical feasibility.
Hence, there remains only the chance to probe solitons which are ther-

mally excited. To separate their contribution from coexisting thermal ex-
citations, an experimental proof first requires that soliton excitations are
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dominating within a certain range of field and temperature, and second that
they differ from others by characteristic properties. In this sense, dynamic
methods are generally more instructive than static ones.
Different standard techniques can be applied to study magnetic soli-

tons. The first and most common technique was inelastic neutron scatter-
ing (Kjems and Steiner, 1978; Regnault et al., 1982; Steiner et al., 1983),
which allows one to measure the soliton contribution to the dynamic struc-
ture factor, which is the spatial and temporal Fourier transform of the spin
correlation function (see e.g. Mikeska, 1978). Complementary information
can be obtained by nuclear magnetic resonance (NMR) (Boucher and Re-
nard, 1980; Boucher et al., 1982; Benner et al., 1984; Seitz and Benner,
1987), which probes the dynamic structure factor integrated over all wave-
numbers. Two other methods, Raman scattering (Cibert et al., 1981) and
electron spin resonance (ESR) (Benner et al., 1984; 1987) were applied
to probe the influence of solitons indirectly through the soliton-induced
broadening of the magnon linewidth.
As for the physical systems, the prototype of a FM chain described by

the SG equation is the well-known CsNiF3 (e.g. Kjems and Steiner, 1978),
whereas the prototype of an AFM chain is the compound (CH3)4NMnCl3
(TMMC) (Regnault et al, 1982). To give an example for the experimental
results on soliton properties in TMMC, we focus on NMR data on soliton
pairing .
As was theoretically shown (Ho[lyst and Sukiennicki, 1985), the phase

transition in weakly coupled AFM chains can be understood as being in-
duced by the pairing of kink solitons. This means that π-solitons on the
same chain, moving independently above the ordering temperature TN , are
bound into pairs below TN . The pairing is effected through weak inter-chain
interactions lifting the degeneracy of the ground-state and giving rise to
AFM long-range order. The weak dipolar couplings between neighbouring
chains tend to align facing spins parallel to each other. The occurrence of
two separate π-solitons (or antisolitons) on one of the chains would reverse
the AFM sublattices on a certain part of the chain and align the facing
spins of neighbouring chains in an unfavourable anti-parallel orientation.
The corresponding increase of energy can be minimized if both solitons
move towards each other up to a certain minimum distance, thus forming
a +2π (−2π) twist of the chain, since they cannot annihilate for topolog-
ical reasons. Describing the inter-chain interactions by a staggered mean
field as the simplest approach, Ho[lyst (1985; 1989) was able to map the
corresponding equation of motion to a double-SG equation,

Φzz − 1
c2
Φtt =

m2

2
sin 2Φ + η sinΦ, (13.18)

where c andm are defined by c = 4|J |S√
1− A/4|J | andm = gµBH/4|J |S,

while η describes the mean inter-chain coupling η = 6J ′/|J |. Analytical so-
lutions of this equation which, in fact, resemble two coupled π-kinks and the
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corresponding thermodynamics have been treated in the literature (Leung,
1982; Condat et al, 1983).
Two important effects are related with π-soliton pairing: First, a change

of the kink topology occurs, which drastically affects the dominating spin
fluctuation rate. This rate is inversely proportional to the soliton density
above TN , while it is directly proportional to it below TN . Second, there
occurs an increase of the activation energy by roughly a factor of 2,

E2π = 2Eπ

(√
1 + ξ + ξsinh−1

√
1/ξ

)
, ξ =

96J ′|J |S2

(gµBH)2
, (13.19)

approaching 2Eπ = 2απHkB for ξ → 0, i.e. in the limit of very weak inter-
chain coupling. The corresponding NMR spin-lattice relaxation times read
(Ho[lyst and Benner, 1989)

T1 ∼ He−Eπ/kBT , T > TN (1D) (13.20)

T1 ∼ T

H2 e
+E2π/kBT , T < TN (3D) (13.21)

for the case of unpaired and paired solitons, respectively.
Experimental evidence for soliton pairing in TMMC was obtained by

extending field and temperature dependent T1 measurements to the regime
of 3D order, i.e. to H > 40kOe and T < 2K. This was, in fact, proved by
the experimental data taken above TN , which yield a negative slope with
απ,exp � 0.28K/kOe. The 3D data taken below TN show the opposite
slope which reflects the expected change of topology. Since these data were
measured at four different fields, they are no longer universal as expected
from the different pre-factors in Eq. (13.21) and from the additional H
dependence of E2π in Eq. (13.19). However, the corresponding theoretical
curves are in very good agreement with these data, proving, in fact, the
expected doubling of activation energy (2απ,exp � 0.57K/kOe, see Benner
et al., 1991).

6 Concluding remarks

We have presented, from a rather general point of view, the basic concepts
and properties of low-dimensional nonlinear models for describing the dy-
namics of solids where topological excitations play an important role in the
system dynamics, modelling complex solid-state defects of different nature,
such as domain walls, magnetic vortices, dislocations, charged defects, etc.
We did not restrict ourselves to specific applications, but instead tried to
summarize the properties that are common for many models. Special at-
tention has been paid to magnetic systems and long Josephson junctions,
where experimental results on the kink dynamics are available.



286 Yuri S. Kivshar, Hartmut Benner, Oleg M. Braun

To conclude our brief presentation of the nonlinear dynamics of the FK
model and its physically important generalizations, it is appropriate to
mention some other examples of physical systems where the fundamental
concepts and results based on the FKmodel and the analysis of its nonlinear
excitations such as kinks and breathers are effectively applied.
In particular, a rather wide class of problems involves the continuum

limit of the FK model, i.e. the perturbed SG equation. The number of
novel physical phenomena, which appear in this model when external ac
or dc forces are applied, is indeed too large to be reviewed in such a short
paper. In particular, we mention the stabilization of breathers by direct or
parametric forces and more complex nonlinear dynamics including period-
doubling scenarios, spatio-temporal pattern formation, and chaos. Similar
effects can also be found for discrete chains, but they have not been inves-
tigated in detail yet.
The over-damped discrete FK chain driven by an ac force has recently

been investigated analytically and numerically (see e.g. a review paper by
Floria and Mazo, 1996, and references therein). Besides, in view of possible
applications of the FK model to the problems of tribology, a number of
recent papers has been devoted to the FK model with dissipation (as well
as its generalisation known as the FK-Tomlinson model) driven by a dc
force (e.g. Weiss and Elmer, 1996, 1997; Braun et al., 1997).
Last but not least, during recent years an exponentially growing activity

was directed towards understanding the properties of localised modes in
discrete lattices with on-site and inter-site potential. Numerous results,
including a rigorous proof of their existence and stability, have appeared
in the literature which, however, are beyond the scope of this Chapter.
We just mention the most recent review paper by Flach and Willis (1998)
where a summary of recent progress in the theory of nonlinear localised
modes (also called discrete breathers) is presented.
In conclusion, the understanding of the specific and unusual properties of

solids on the basis of simplified nonlinear models is an active and attractive
topic of research, which still offers many open problems. Since realistic
physical models of solids are rather complicated, it is extremely important
to develop the basic concepts by means of simple physical models.
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2-D Breathers and Applications
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J. C. Eilbeck
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ABSTRACT
In this chapter we show how a new type of nonlinear lattice excitation is
helping to understand the long-standing puzzle of unexplained dark lines in
crystals of muscovite mica. In fact, it was the conjecture that some kind of
quasi-one-dimensional lattice soliton was responsible for those lines which
led to the discovery of this new family of lattice excitations: mobile localized
breathers of longitudinal type.
We explore several properties of these moving breathers, both by numerical
methods and by experimenting with analogue models. The results suggest
a much broader application than just the mica problem.

1 Introduction

There has been a long standing problem of understanding track formation
in some mica minerals. Works by Russell and co-workers [25] had identified
mysterious dark lines in natural crystals of muscovite mica, such as shown
in Fig. 1. These are formed as a result of a local phase transition involving
the precipitation of meta-stable dilutions of Fe and other impurity atoms.
Track formation or recording processes of this type are normally thought
to be triggered by energetic, charged particles (cosmic rays, particles from
radioactive decay, etc.). However, most dark lines in mica cannot be ex-
plained in terms of charged particle tracks, although they closely resemble
them. This prompted the conjecture of lattice solitons (“quodons”) as the
mechanisms forming the lines [20, 21].
Recent studies give strong support to this conjecture. In [14] we showed

for the first time how localized excitations of longitudinal type can move
in a 2-D lattice. These lattice modes appear to be the mobile version of
intrinsic localized modes [24], more commonly known as discrete breathers.
They are highly anharmonic and localized on just a few sites, and they
propagate along lattice directions at sub-sonic speeds with a very small
energy degradation. They are robust with respect to changes in the model,
i.e., they appear in a wide range of lattices with different potentials. On
the other hand they are not exact solitons, since they seem to interact non-
elastically with other breathers. However, the loss of energy on collision
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 Springer-Verlag Berlin Heidelberg 2000
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FIGURE 1. Photograph of a sheet of muscovite showing a wealth of tracks, most
of them aligned along crystal directions.

frequently is small, so these pulses are reasonably robust.
We present here further studies of these moving breathers in systems with

realistic potentials, obtaining a more accurate model for the problem of
tracks in mica. It is now recognized that the phenomenon is highly generic,
and we point to two possible applications in the areas of condensed matter.

2 Deciphering the lines in mica

Natural crystals of muscovite mica often are doped with iron and other
trace elements such as Ca, Mn, Mg, and Ti. In a similar way to carbon
in metallic iron, the iron (Fe) in mica is held in solid solution at the high
temperature (about 800K) needed for crystal formation. Such crystals are
formed in solidifying magmas deep underground. As the crystals slowly
cool, the solubility of Fe in mica decreases and, depending on the initial
concentration, it may reach saturation. If this occurs then further slight
cooling results in a super-saturated state in which the crystal structure is
metastable. Given the opportunity via some type of localized lattice per-
turbation, the structure will revert to the lower-energy stable saturated
state, precipitating the excess Fe as an oxide. With further slow cooling,
this solid-state phase transition continues until much of the Fe is elimi-
nated from the mica lattice. During this later stage the precipitating Fe
oxide accretes at the initial precipitation sites leading to massive growth or
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“decoration” of those sites. The rate of this decoration process is limited
by the slow rate of release of Fe as the crystals cool slowly within the sur-
rounding rock. The Fe oxide precipitates in the form of magnetite, Fe3O4,
a moderate electrical conductor that absorbs light. This is why it appears
as black spots, plates or ribbons in the otherwise clear mica crystal. Al-
though the initial precipitation site is on the atomic scale, the decoration
process can magnify them sufficiently as to make such ribbons visible to
the unaided eye.
Although muscovite mica is a common mineral, it can form only under

conditions of high temperature and pressure such as exist in molten peg-
matite 5 km or more underground. With mountain building it erodes slowly
to the surface and can be mined. Large nearly perfect crystals grow very
slowly and it is not practical nor feasible to grow them in the laboratory for
study of the initial triggering of the precipitation process. Hence, studies
can be made only on samples of natural crystals in which the metastable
conditions cannot be controlled. So the study of decorated defects in doped
mica is a deductive science, like astronomy or cosmology. Nevertheless,
progress in understanding the defects has been made by studying a wide
variety of mica samples.
In the first studies of these tracks in mica, one of the authors (FMR,

[17]) identified long decorated ribbons in the (001) planes, but in random
directions. Many measurements of these tracks led to the conclusion that
they had been created by energetic charged particles, such as muons created
by cosmic rays, electron-positron showers created from these muons, and
from positron emission coming from the decay of isotope 40K nuclei [19, 18].
It was shown that the tracks from the 40K source were consistent with
paths expected of charged particles following Rutherford scattering. The
alternative explanation in terms of some type of crystal defect was highly
improbable, given that the geometry of such defects would have to mimic
the behavior of the charged particles paths.
But these were not the most interesting type of tracks observed in mica.

In fact, most of the decorated lines could not be attributed either to the
tracks of charged particles or to any other known type of crystal defect.
These unexplained lines lie along crystal directions of low Miller indexes
in the (001)-plane, although they show several features that resemble the
tracks of charged particles. They can be scattered to branch off and create
secondary and even tertiary tracks, and show decoration similar to that on
charged particle tracks. A study of possible correlations between these un-
explained lines and the tracks of charged particles showed that they did not
occur in conjunction with positron tracks from 40K nuclei, but could occur
in association with tracks of high-energy shower particles and also energetic
muons. This suggested a dependence on the momentum of the charged
particle, and led to the idea that they might result from atomic scattering
events in the mica involving significant motion of atomic nuclei [23]. It was
conjectured that energetic particles, if they possessed sufficient momen-
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tum, could create a new type of lattice excitation when scattered by one or
more atoms of the lattice. Then this excitation would propagate through
the crystal as a highly localized, particle-like entity. Atomic motions within
this localized entity would influence the weak energy barrier that inhibits
impurity precipitation, thereby triggering the recording process. The ob-
servations in mica showed that this entity had to possess a unique feature,
namely, a remarkable localization or stability against lateral spreading as
it propagated over great distances, even exceeding 500mm in length in rare
large crystals (see Fig. 1).
It was already known from the charged particle tracks that the track

recording process responds only to particles or disturbances moving in the
potassium mono-atomic planes in mica. From these facts and a study of
the mica crystal structure, it was concluded that the new kind of lattice ex-
citation is associated with quasi-one-dimensional behavior in the K (001)-
plane. To reflect this behavior the new entity or object was called a quodon.

3 Numerical and analogue studies

To investigate the properties of these hypotherical quodons and their be-
havior in the mica, lattice studies were made, using both numerical (molec-
ular dynamics) techniques and analogue models of coupled pendulums. Our
aim is to model the nonlinear behavior of lattice motions of the K atoms,
therefore it is important to understand the structure and the nature of the
bonds involved.
In Fig. 2 we can see the crystal structure of muscovite. This mineral

(chemical formula KAl2(AlSi3)O10(OH)2) belongs to the family of micas,
which in turn are a particular type of layer silicates. These are more com-
monly known as clays and clay-related minerals. The basic units forming
these silicates are sheets of tetrahedra and octahedra (O atoms being the
vertex and Si atoms being the centers of these). Fortunately, muscovite is
not a very complicated silicate. It is a 2:1 silicate, with dioctahedral oc-
cupancy and with interlayer cation potassium. This means that the layers
are composed of one sheet of octahedra sandwiched between two sheets of
tetrahedra, and the octahedral sheet has only two out of three octahedra
occupied with a cation (Si+4 or Al+3 in this case). The layer is negatively
charged as a whole, due to the substitution of all Si atoms in the tetra-
hedral sheet by Al. Then the layers stack and bond through electrostatic
forces, thanks to the presence of an interlayer cation sheet, composed of K+

ions. The crystal structure of muscovite has been studied experimentally
in detail [16], and recently it has been modeled accurately with molecular
mechanical methods [4].
We can see how the silicate layer forms a fairly rigid structure, with bonds

which are predominantly covalent. The K atoms, though held by Coulomb
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FIGURE 2. The structure of muscovite, emphasizing the potassium sheet.

forces in the direction perpendicular to the sheet, have easier motion on
the sheet plane (the (001)-plane), only restrained by short-range forces.
Therefore, a first approximation model consists of a 2D lattice of K atoms
subject to the action of an external “on-site” potential, constructed as to
mimic the presence of a totally rigid silicate layer above and below.
The molecular dynamic techniques available at the time could not easily

be used to study the behavior of the K lattice following a simulated impact
on an atom by a projectile. To explore this problem mechanical analogues
were made (by FMR) to simulate a one-dimensional chain of atoms subject
to both inter-particle and on-site forces. In particular, the nonlinearity
of the forces in the analogues was made similar to those found from the
molecular-mechanics studies. The analogue “atoms” were made from small
permanent magnets that simulated the inter-particle forces. These magnets
were suspended as rigid pendulums from fixed points and so used gravity
to simulate the on-site forces. The strength of the inter-particle force could
be varied by changing the spacing of the magnets along the chain. The
strength of the on-site force could be changed by tilting the analogue away
from a vertical position.
It was found that an impact on a particle in the chain quickly evolved

into a traveling disturbance that retained its envelope shape. Within this
envelope the particles executed anti-phase or optical-mode type oscillations,
with a phase velocity that exceeded the group velocity of the envelope. The
envelope was reflected if one particle in the chain was held fixed. Small
perturbations of the chain, such as increasing the mass of one particle or
the spacing between one pair, had little effect on the envelope. However, a
large perturbation caused the envelope to separate into two of lower energy,
one being reflected. By using a chain curved into a circle it was possible
to follow such envelopes over many circuits round the circle. In summary,
it was found that these localized excitations were remarkably robust and
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closely simulated the properties expected of the postulated quodon. The
results were confirmed and expanded in detail by a numerical model of the
analogue model itself [22]. Everything indicated that these solutions were
moving breathers, which have attracted a great deal of research among
the condensed matter and dynamical systems community (for a review,
see [9, 1]).
These one-dimensional models, however, could not account for the two-

dimensional nature of the problem. For instance, it was already known that
Toda-like solitons in a two-dimensional sheet spread rapidly sideways, fail-
ing to propagate more than about a hundred atomic spacings [15]. As for
discrete breathers, they had been found to be mobile in many 1D mod-
els [10, 5], but not in higher-dimensional cases [2] (the solutions in Ref. [26]
seem too extended to qualify as discrete breathers).
We then set out to study numerically a full-blown 2D model, in which the

K ions could move in the plane. The silicate layer is a complicated structure
of tetrahedra and octahedra, and both surfaces of this layer are formed by
the basal oxygens of the tetrahedra. These triangular bases are connected
with each other at the vertices, and form an hexagonal honeycomb struc-
ture. The interlayer, the K sheet, is therefore sandwiched between mirror
images of this structure, the atoms occupying the dimples left at the center
of such honeycomb cells. The result is that the K sheet forms a perfect
triangular lattice, with six-fold symmetry (see again Fig. 2). The on-site
potential created by the silicate layer preserves this symmetry: the pro-
jections of the basal oxygens on the K-plane fall right at the midpoints
between K-K bonds, and the Al ions in the center of these tetrahedra
project right on the center of the triangles formed by K ions1. In real mica
crystals, there are always distortions to this ideal structure, like tetrahe-
dral rotation. However, they normally preserve the six-fold symmetry for
the environment of the K ions [4].
We studied several molecular-dynamics models of hexagonal 2D sys-

tems with different hexagonal symmetry, and eventually found solutions
which perfectly fit with the quodon conjecture. More specifically, quasi-
one-dimensional behavior is taken to mean that the excitation remains
localized and moves along a favoured direction in the crystal, and that this
phenomenon is assumed to be due to a particular type of crystal symmetry.
This symmetry is such that if one of the atoms in the chain is disturbed
from its equilibrium position along this favoured direction, then the restor-
ing force is purely in the reverse direction to the displacement, i.e. there
are no shear forces present [21]. The numerical 2D systems we studied have
this property. The corresponding solitary waves that we found are moving

1Although the K atoms form a triangular lattice, we have used sometimes the
term “hexgonal” instead. We hope the reader does not mistake it for a honeycomb
structure, which is not the case.
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discrete breathers of longitudinal type, and we describe in greater detail
their properties in the next section.

4 Longitudinal moving breathers in 2D lattices

The numerical technique used in our models is purely classical molecular
dynamics, although it is important to note that only first nearest neighbors
are taken into account so far. The potentials used are those coming from
molecular-mechanics studies, and although they are empirical, they are
thought to be highly accurate for most modelling purposes.
However, for reasons to be shown shortly, it is not so important to get the

detailed structure of the on-site potential to great accuracy, or even per-
fectly fitted interatomic potentials. We have settled for now with a model
in which the K atoms interact through Lennard-Jones potentials,

WLJ(r) =
a2

72

((a

r

)12
− 2

(a

r

)6
)
; r ≡ |�d| (14.1)

where �d = �u − �u′ − �c is the actual separation vector between the (i, j) and
the (i′, j′)-th nearest neighbor sites. We used as coordinates the relative
displacements from the lattice equilibrium positions, �u, and �c are static
vectors connecting nearest-neighbor equilibrium sites. The particular scal-
ing of this potential, as well as that of all others, was chosen so as to have
a frequency for low-amplitude oscillations of ω = 1. The on-site potential
is produced for each K atom by placing fixed Lennard-Jones atoms at po-
sitions above the plane, at the sites occupied by basal oxygens. For each K
atom we took into account 12 oxygens: the 6 nearest neighbor ones (whose
projections lie at midpoints of the K-K bonds) and 6 next-nearest neigh-
bor ones (with projections at midpoints of bonds between neighboring K
atoms). Note that these fixed oxygens are really off the plane, so that the
distances to the K atoms are computed in full 3D Euclidean space (the
z-coordinate being constant). This is in contrast with our initial model
in [14], where we placed 6 fixed atoms in the plane, interacting through a
Morse potential.
Using the intuition gained about discrete breathers in 1D models, it was

judged that it was not the particular shape of the nonlinear potentials used
which was of main importance. Rather, it was the relative strength between
the inter-atomic and on-site potentials which was crucial for the existence
of these solutions. In the simpler case of stationary breathers, it had been
established rigorously how discrete breathers emerge from the limit of neg-
ligible inter-atomic potential (the so-called anti-continuum limit, see [11]).
The case of moving breathers is much less understood, but it has been
shown how one can tune the relative strengths of on-site and inter-particle
potentials and eventually find regions of easy breather mobility [5]. These
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regions appear to happen near bifurcations which connect the site-centered
and bond-centered stationary breathers (see Ref. [12]), and the subject is
being investigated in greater detail [6]. It is difficult to estimate how wide
these regions are, other than by means of numerical simulation.
With these heuristics we found moving longitudinal breathers in our sim-

ulations. Just as in 1D models, it was observed that a too strong on-site
potential hinders mobility, and favours the pinning of the excitations into
stationary breathers (intrinsic localized modes). A too weak on-site po-
tential usually destroys the breather by broadening and radiation into the
background, due to resonances with the phonon band [12]. In between these
extremes, there exists an ample region where it is easy to obtain moving
breathers, with a more or less wide range of energies and velocities. The
striking novelty here is that these breathers have a strong transversal fo-
cusing effect: the excitation is a sharply localized longitudinal wave, com-
prised of about 4–8 particles in the longitudinal direction, but practically
only one particle in the transverse direction. Note that the focusing effect
is clearly not an artifact of weak couplings: if one tries to create a moving
breather under a certain energy threshold, the excitation dies out radiating
in all crystal directions in a linear-like fashion. It all indicates that these
breathers are the realization of the quodon conjecture.
Fig. 3 shows the profile of the longitudinal displacements of the K atoms

along the breather path. These solutions travel very long distances along
lattice directions, with negligible loss of energy by radiation. As in the ana-
logue studies, the solutions are characterized by nearly out-of-phase motion
of the atoms involved, with a frequency which seems to be independent of
the envelope wave velocity. The internal vibration frequency is high (above
the linear phonon band, due to the effective hardening nonlinearity), while
the breather motion is slow, typically 20–60% of the sound velocity in the
lattice. This indicates that they are truly moving breathers, with two dy-
namical degrees of freedom. Other types of lattice solitons, where carrier
wave and soliton velocity go in unison, can be calculated with accurate
procedures, such as continuation methods [8]. In some special cases, such
as the discrete nonlinear Schrödinger equation, the same methods can be
applied to calculate breathers [7]. But in general, moving breathers are
much harder to obtain in such detail, and although some approaches have
proved useful for very slow ones [5], we do not have accurate methods for
most of the range of possible solutions observed in simulations.
As we mentioned above, our studies are based on heuristics and numerical

simulation. However, the way moving breathers are produced in the simu-
lation is very useful for the problem of mica. Instead of trying to isolate and
“purify” a moving breather, it was interesting to know how they could be
formed. It turned out that it is very easy to produce them, simply by giving
some atoms certain amounts of energy. In practice, it is more controllable
to give the particles an initial velocity impulse, as if an atomic collision
took place. It was surprising to observe that giving an impulse to just one
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FIGURE 3. Longitudinal displacements vs. time for the atoms on the breather
track. They have been scaled by a factor of five to make them more visible; actual
displacements reach about 15–20% of the interatomic distance.

atom is enough to create the moving breather. There is initially a burst
of radiation away from the disturbance, but once the breather emerges it
sheds very little radiation and may travel tens of thousands of sites without
appreciable degradation. Furthermore, there is robustness against deflec-
tions of this initial momentum: we found that deviations as great as 15◦

from the crystal axis would still produce a breather.
In summary, these longitudinal breathers are a very robust phenomenon

appearing in 2D lattices, in the sense that they do not need a special shape
for the potentials, or a very constrained range of parameters. We have found
them in several types of Lennard-Jones, Morse and other lattices, within
ample windows of parameter ranges. A common feature is the need for an
on-site potential, although some recent results suggest that it is possible to
reach the limit of null on-site terms in some particular models. After all,
the exact extent of the parameter ranges in which these breathers exist will
vary from one model to another, and the intrinsic nonlinear nature of the
problem makes it difficult to predict it a priori. For the problem of mica,
we are now trying to introduce the most realistic potentials we can find [4]
and check whether the combination of on-site and inter-atomic forces for
the K atoms allow for moving breathers. Our initial studies including only
short range forces suggest so [13]. It is now needed to study the effect of
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FIGURE 4. Head-on collision of two breathers with different energies and fre-
quencies, in an hexagonal lattice. In this case they emerge out of the collision
almost unaffected.

long-range Coulombic forces on these moving solutions, which is not well
known even for 1D models.

5 Breather collisions

We have experimented with a number of different configurations to study
breather-breather collisions. Two breathers can collide head-to-head in-
line, or head-to-head but on parallel tracks, or at angles of 60◦ or 120◦.
In the latter case the collision can also be “head-on” or staggered (i.e. one
breather just leaving a particular site as the other is arriving). The results
will also depend on the relative phases of the underlying carrier waves and
on the energies of each breather. The number of possible permutations are
clearly large and will be described in more details elsewhere. We give here
just one example, an in-line head-to-head collision between two breathers
of equal amplitude, as shown in Fig. 4, a–d.
In this case we see that the two breathers are reflected almost elastically

with very little radiation, either transverse or longitudinal. However this
result is very dependent on the relative phases of the breathers, with a
slightly different starting position (1 lattice spacing further apart), the two
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breathers coalesce into a stationary “super-breather”, two breathers bound
together but with a time-periodic small separation which decreases slowly
with time.
These results just confirm that discrete breathers are not exact solitons,

and therefore they might not always have the expected robustness with
respect to collisions. On the other hand, they have a different kind of ro-
bustness, that which is conferred by their high genericity. Exact solitons
appear in integrable models, but discrete breathers appear generically in
an extremely large class of lattices.

6 Conclusions and further applications

It does not pass unnoticed that such a generic phenomenon as these lattice
breathers should have applications to many other fields, and not just mica
structures. Here we sample some of our speculations with respect to the
ubiquity of these new solutions.

6.1 Application to sputtering
These successes in simulating the predicted quodons and their behavior
prompted application of the quodon concept, in particular, to sputtering
at a crystal surface and to other crystals with a layered structure. Sput-
tering, the ejection of atoms from a crystal surface that is bombarded by
energetic particles, has a long history and is of industrial importance. Pio-
neering work was done by Wehner in 1956 [27], who showed that sputter-
ing was intimately related to the speed of sound in a material. He found
also that sputtered atoms were ejected in atomic-chain directions and that
particles bombarding a surface at normal incidence gave a higher energy
threshold for sputtering than at oblique incidence. We believe that the
new found moving breathers could bring many new insights into this old
subject, which has never been given detailed atomistic treatment. Initial
experiments carried out with our analogue models are finding agreement
with the phenomenological theories of Wehner, and indicate the importance
of understanding the nonlinear dynamics of lattices.

6.2 Application to layered HTSC materials
The discovery of high temperature superconductivity (HTSC) in layered
cuprates raised the question of the possibility of quasi-one-dimensional
behavior in those layers. A similar molecular dynamic study to that of
the mica system was made of several known HTSC materials containing
cuprate layers to find out if any of the many different layers might be ca-
pable of allowing quasi-one-dimensional behavior. The materials examined
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were YBa2Cu3O7, Y2Ba4Cu6O13, and La2CuO4. It was found that in all
three materials movement of Cu and O atoms in chain directions in the non-
puckered (001)-planes was one-dimensional like in that no shear forces were
created in the surrounding lattice [21]. Some Y atoms also showed quasi-
one-dimensional behavior. These findings suggest that quodons might be
created and propagate in such materials.
The dominant mechanism of charge-pair coupling in HTSC is still not

known. However, it has been shown recently that in the HTSC materials
Bi2Sr2Cam−1CumOy, (m = 1 and 2) the Tc is independent of the separa-
tion distance between the cuprate layers [3] and is the same as that for a
single layer. This strongly suggests that the pairing mechanism operates in
a 2D layer. From study of the published structures of these two materials
it seems both may show quasi-one-dimensional properties in certain layers.
This needs to be examined in detail.
In order to investigate the possibilities of breathers mediating the cou-

pling effects on charges in HTSC in tetragonal lattices, we have carried out
a similar study to the present paper but using square 2D lattices instead of
hexagonal lattices. We find localized breather solutions for a wide range of
model parameters and initial disturbances. These results will be reported
elsewhere.
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ABSTRACT Three types of nonlinear Schrödinger models with multiple
length scales are considered. It is shown that the length-scale competition
universally gives rise to new localized stationary states. Multistability phe-
nomena with a controlled switching between stable states become possible.

1 Introduction

The basic dynamics of deep water and plasma waves, light pulses in nonlin-
ear optics and charge and energy transport in condensed matter and bio-
physics [3, 29, 32, 12] is described by the fundamental nonlinear Schrödinger
(NLS) equation

i
∂

∂ t
ψ + L2∂2

xψ + V |ψ|2ψ + f(x)ψ = 0 , (15.1)

where ψ(x, t) is the complex amplitude of quasi-monochromatic wave trains
or the wave function of the carriers. The second term represents the dis-
persion and L is the dispersion length (e.g. in the theory of charge (energy)
transfer L2 = h̄2/2m with m being an effective mass). The nonlinear term,
V |ψ|2ψ, describes a self-interaction of the quasiparticle caused either by
its interaction with low-frequency excitations (phonons, plasmons, etc.) [7]
or by the intensity dependent refractive index of the material (Kerr effect)
[23]. The function f(x) is a parametric perturbation which can be a local-
ized impurity potential, a disorder potential, a periodic refractive index, an
external electric field, etc. It is well known that as a result of competition
between dispersion and nonlinearity nonlinear waves with properties of par-
ticles, solitons, arise. One may also say that this competition leads to the
appearance of the new length-scale: the width of the soliton, ζ = L/

√
V .

The presence of the parametric perturbation f(x) introduces additional
interplays between nonlinearity, dispersion and perturbations. In the re-
cent paper by Bishop et al. [1] the concept of competing length-scales and
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time-scales was emphasized. In particular, Scharf and Bishop [26, 27] have
discussed the effects of a periodic potential (f(x) = ε cos(2πx/ζp)) on the
soliton of the NLS equation, and shown on the basis of an averaged NLS
equation that for ζp/ζ<∼1 or >∼1 that the periodic potential leads to a sim-
ple renormalization of the solitons and creates a ’dressing’ of the soliton.
But when ζp ∼ ζ there is a crucial length-scale competition which leads to
the destruction of the soliton. Another interesting example of the length-
scale competition was provided by Ref. [15] where the authors showed that
the propagation of intense soliton-like pulses in systems described by the
one-dimensional NLS equation may be left practically unaffected by the
disorder (when f(x) is a Gaussian δ-correlated process). This theoretical
prediction has recently been confirmed experimentally using nonlinear sur-
face waves on a superfluid helium film [13].

The goal of this paper is to extend the concept of the length-scale com-
petition to the essentially non-integrable systems nonlocal dispersion and
unstable stationary states.

2 Excitations in nonlinear Kronig-Penney models

Wave propagation in nonlinear photonic band-gap materials and in periodic
nonlinear dielectric superlattices [30, 31] consisting of alternating layers of
two dielectrics: nonlinear and linear, is governed by the NLS equation

i∂tψ(x, z, t) + ζ2 (∂2
x + ∂2

z )ψ(x, z, t)

+ w
∑

n

δ(x − xn)|ψ(x, z, t)|2ψ(x, z, t) = 0 , (15.2)

where xn = n � is the coordinate of the n-th nonlinear layer (� is the distance
between the adjacent nonlinear layers), and it is assumed that the width w
of the nonlinear layer is small compared to the soliton width ζ within the
layer. In this case the problem can be described by the nonlinear Kronig-
Penney model given by Eq. (15.2). It was shown in Ref. [9] that the field
ψ(x, z, t) can be expressed in terms of the complex amplitudes ψn(z, t) ≡
ψ(xn, z, t) at the nonlinear layers. The complex amplitudes ψn(z, t) can be
found from the set of pseudo-differential equations

ζ2κ̂

sinh �κ̂
(ψn+1 + ψn−1) − 2ζ2κ̂

tanh �κ̂
ψn + w|ψn|2 ψn = 0 (15.3)

with periodic boundary conditions ψn+N = ψn, where N is the number of
layers. In Eq. (15.3) the operator κ̂ is defined as κ̂ψ = ζ−1

√−i ∂t − ζ2 ∂2
zψ.

Eq. (15.2) has an integral of motion – the norm (in nonlinear optics this
quantity is often called the power) P =

∫ ∞
−∞ |ψ|2dxdz.
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For the excitation pattern where the complex amplitudes are the same
in all nonlinear layers, ψn(z, t) = Ψ(z, t), we get

√
−i∂t − ζ2 ∂2

z tanh
(

�

2ζ

√
−i∂t − ζ2 ∂2

z

)
Ψ − w

2ζ
|Ψ|2Ψ = 0 . (15.4)

Eq. (15.4) clearly shows the existence and competition of two characteristic
length-scales: the interlayer spacing � and the size of the soliton in the
nonlinear layer ζ. When � � ζ one can expand the hyperbolic tangent and
Eq. (15.4) takes the form of usual NLS equation

(
i∂t + ζ2 ∂2

z

)
Ψ +

w

�
|Ψ|2Ψ = 0 . (15.5)

In the opposite limit, when � � ζ and tanh
(

�
2ζ

√· · ·
)

	 1, Eq. (15.4) takes
the form √

−i∂t − ζ2 ∂2
zΨ − w

2ζ
|Ψ|2Ψ = 0 , (15.6)

which, for static distributions (∂tΨ = 0), reduces to the nonlinear Hilbert-
NLS equation recently introduced in Ref. [11]. It is noteworthy that in
contrast to usual NLS solitons, the localized solutions of the nonlinear
Hilbert-NLS equation have algebraic tails [11].

It is worth to note the close relation of the problem under consideration
to the theory of the long internal gravity waves in a stratified fluid with a
finite depth h (see e.g. [16]) which are described by the equation

∂tu +
1
h
∂xu + 2u∂xu + T∂2

xu = 0 , (15.7)

where T (·) is the singular integral operator given by

(Tf)(x) =
1

2h
p.v.

∞∫
−∞

coth
(
π(y − x)

2h

)
f(y)dy (15.8)

(p.v. means the principal value integral). In the shallow water limit (h → 0)
the dynamics is described by the Korteweg-de-Vries equation, ∂tu+ h

3∂
3
xu+

2u∂xu = 0, while the Benjamin-Ono equation, ∂tu + H∂2
xu + 2u∂xu = 0,

governs the water wave motion in the deep-water limit (h → ∞). Here

(Hf)(x) = 1
π p.v.

∞∫
−∞

dyf(y)/(y − x) is the Hilbert transform.

Stationary states of the system are of interest. Thus we consider solutions
of the form Ψ(z, t) = φ(z) exp(iΛt), where Λ is the nonlinear frequency
and φ(z) is the real shape function. Since Eq. (15.3) is Galilean invariant,
standing excitations can always be Galileo boosted to any velocity in z-
direction. For the shape function φ(z), we obtain a nonlinear eigenvalue
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FIGURE 1. Power P of the stationary state ψn(z, t) = eiΛtφ(z) vs the nonlinear
frequency Λ. Numerical results from Eq. (15.9) (dashed line), Padé approximation
(full line) and the asymptotic relation P ∼ Λ−1/2 as Λ→ ∞ (dotted line) [9].

problem in the form

√
Λ − ζ2 ∂2

z tanh
(

�

2ζ

√
Λ − ζ2 ∂2

z

)
φ − w

2ζ
φ3 = 0 . (15.9)

Simple scaling arguments show that in the low-frequency limit (Λ�2/ζ2 →
0) the norm behaves in the same way as in the case of usual NLS equa-
tion (15.5): P ∼ √

Λ. When Λ�2/ζ2 → ∞ the norm P is a monotonically
decreasing function: P ∼ 1/

√
Λ. From the analysis of Ref. [9], it follows

that the norm P (Λ) is a non-monotonic function with a local maximum at
Λm ≈ 1.25ζ/� (see Fig. 1). Thus, the stationary states exist only in a finite
interval, 0 ≤ P ≤ P (Λm), and for each value of norm in this interval there
are two stationary states. This is an intrinsic property of the nonlinear
Schrödinger superlattice system.

Discussing the stability of the stationary states satisfying Eq. (15.2),
there are two sources of instability to be considered: longitudinal and
transversal perturbations. The perturbations of the first type are of the
same symmetry with respect to transversal degrees of freedom as the sta-
tionary states of Eq. (15.9), while the second type of perturbations breaks
this symmetry. It was shown in [9] that stationary states which correspond
to the branch with dP/dΛ < 0 are unstable due to the longitudinal per-
turbations. The states with Λ > (4ζ2/3�2) sin2(π/N) are, in their turn,
unstable due to the transversal perturbations. Thus, one can expect stable
stationary solutions for nonlinear frequencies satisfying the condition

Λ <
ζ2

�2
min{4

3
sin2(

π

N
),Λm} . (15.10)
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In particular, this means that the stationary state ψn(z, t) = eiΛtφ(z) can
neither exist in the case of only one nonlinear layer (� → ∞) nor in the
quasi-continuum limit (N → ∞). But in the latter case the system supports
stationary states which are localized in both spatial directions (see Ref. [9]
for details).

3 Discrete NLS models with long-range dispersive
interactions

In the main part of the previous studies of the discrete NLS models the dis-
persive interaction was assumed to be short-ranged and a nearest-neighbor
approximation was used. However, there exist physical situations that def-
initely can not be described in the framework of this approximation. The
DNA molecule contains charged groups, with long-range Coulomb inter-
action (1/r) between them. The excitation transfer in molecular crystals
[6] and the vibron energy transport in biopolymers [28] are due to tran-
sition dipole-dipole interaction with 1/r3 dependence on the distance, r.
The nonlocal (long-range) dispersive interaction in these systems provides
the existence of additional length-scale: the radius of the dispersive interac-
tion. We will show that it leads to the bifurcative properties of the system
due to both the competition between nonlinearity and dispersion, and the
interplay of long-range interactions and lattice discreteness.

In some approximation the equation of motion is the nonlocal discrete
NLS equation of the form

i
d

dt
ψn +

∑
m�=n

Jn−m(ψm − ψn) + |ψn|2ψn = 0 , (15.11)

where the long-range dispersive coupling is taken to be either exponentially,
Jn = J e−β|n|, or algebraically, Jn = J |n|−s, decreasing with the distance
n between lattice sites. In both cases the constant J is normalized such that∞∑
n=1

Jn = 1 for all β or s. The parameters β and s are introduced to cover

different physical situations from the nearest-neighbor approximation (β →
∞, s → ∞) to the quadrupole-quadrupole (s = 5) and dipole-dipole (s =
3) interactions. The Hamiltonian H =

∑
n,m

Jn−m|ψn − ψm|2 − 1
2

∑
n

|ψn|4,

which corresponds to the set of Eqs. (15.11), and the number of excitations
N =

∑
n

|ψn|2 are conserved quantities.

We are interested in stationary solutions of Eq. (15.11) of the form
ψn(t) = φn exp(iΛt) with a real shape function φn and a frequency Λ.
This gives the governing equation for φn

Λφn =
∑
m�=n

Jn−m(φm − φn) + φ3
n , (15.12)
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FIGURE 2. Number of excitations, N , versus frequency, Λ, found numerically
from Eq. (15.12) for s =∞ (full), 4 (dotted), 3 (short-dashed), 2.5 (long-dashed),
2 (short-long-dashed), 1.9 (dashed-dotted) [11].

which is the Euler-Lagrange equation for the problem of minimizing H
under the constraint N = constant.

Figure 2 shows the dependence N(Λ) obtained from direct numerical
solution of Eq. (15.12) for algebraically decaying Jn−m. A monotonic func-
tion is obtained only for s > scr. For 2 < s < scr the dependence becomes
non-monotonic (of N -type) with a local maximum and a local minimum.
These extrema coalesce at s = scr 	 3.03. For s < 2 the local maximum dis-
appears. The dependence N(Λ) obtained analytically using the variational
approach is in a good qualitative agreement with the dependence obtained
numerically (see [11]). Thus the main features of all discrete NLS models
with dispersive interaction Jn−m decreasing faster than |n−m|−scr coincide
qualitatively with the features obtained in the nearest-neighbor approxima-
tion where only one stationary state exists for any number of excitations,
N . However in the case of long-range nonlocal NLS equation (15.11), i.e.
for 2 < s < scr, there exist for each N in the interval [Nl(s), Nu(s)] three
stationary states with frequencies Λ1(N) < Λ2(N) < Λ3(N). In particular,
this means that in the case of dipole-dipole interaction (s = 3) multiple
solutions exist. It is noteworthy that similar results are also obtained for
the dispersive interaction of the exponentially decaying form. In this case
the bistability occurs for β ≤ 1.67. According to a theorem which was
proven in [21], the necessary and sufficient stability criterion for the sta-
tionary states is dN/dΛ > 0. Therefore, we can conclude that in the interval
[Nl(s), Nu(s)] there are only two linearly stable stationary states: Λ1(N)
and Λ3(N). The intermediate state is unstable since dN/dΛ < 0 at Λ = Λ2.

At the end points (Λ(Nl) and Λ(Nu)) the stability condition is violated,
since (dN/dΛ)s vanishes. Constructing the locus of the end points we obtain
the curve that is presented in Fig. 3. This curve bounds the region of
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FIGURE 3. Shows endpoints of the bistability interval for N versus dispersion
parameter s. For s = scr the endpoints coalesce. Analytical dependence (full)
gives scr � 2.72. Numerical dependence (dashed) gives scr � 3.03 [11].

bistability. It is analogous to the critical curve in the van der Waals’ theory
of liquid-vapor phase transition [19]. Thus in the present case we have a
similar phase transition like behavior where two phases are the continuum
states and the intrinsically localized states, respectively. The analog of the
temperature is the dispersive parameter s(β).

The shapes of three stationary states in the interval of bistability differ
significantly (see Fig. 4). The low frequency states are wide and continuum-
like while the high frequency solutions represent intrinsically localized states
with a width of a few lattice spacings. It can be shown [11] that the inverse
widths of these two states are α1 ≈ (N/8J)1/(s−2)= (N/8J)ln ξ/(1−2 ln ξ),
α3 ≈ ln (N/J) with ξ = exp(1/s) being the characteristic length scale of
the dispersive interaction which is defined as the half maximum interaction
distance (expressed in lattice spacings). It is seen from these expressions
that the existence of two so different soliton states for the same value of
the excitation number, N , is due to the presence of two different length
scales in the system: the usual scale of the NLS model which is related to
the competition between nonlinearity and dispersion (expressed in terms
of the ratio N/J ) and the range of the dispersive interaction ξ.

Having established the existence of bistable stationary states in the non-
local discrete NLS system, a naturally arising question concerns the role of
these states in the full dynamics of the model. In particular, it is of interest
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FIGURE 4. Shapes of three stationary states for s = 2.5 and N = 3.1. The stable:
Λ = 0.21 (full), Λ = 0.74 (long-dashed). The unstable: Λ = 0.57 (short-dashed)
[11].

to investigate the possibility of switching between the stable states under
the influence of external perturbations, and to find out what type of per-
turbations can be used to control the switching. Switching of this type is
important for example in the description of nonlinear transport and stor-
age of energy in biomolecules like the DNA, since a mobile continuum-like
excitation can provide action at distance while the switching to a discrete,
pinned state can facilitate the structural changes of the DNA [8]. As it
was shown recently in [14], switching will occur if the system is perturbed
such that an internal, spatially localized and symmetrical mode (“breathing
mode”) of the stationary state is excited above a threshold value.

We will in the sequel mainly discuss the case when the matrix element of
excitation transfer, Jn−m, decreases exponentially with the distance |n−m|.
For β = 1 the multistability occurs in the interval 3.23 ≤ N ≤ 3.78. It
is worth noticing, however, that the scenario of switching described below
remains qualitatively unchanged for all values of β ≤ 1.67, and also for
the algebraically decaying dispersive coupling with 2 ≤ s ≤ 3.03.

An illustration of how the presence of an internal breathing mode can
affect the dynamics of a slightly perturbed stable stationary state is given
in Figs. 5 and 6. To excite the breathing mode, we apply a spatially sym-
metrical, localized perturbation, which we choose to conserve the number
of excitations in order not to change the effective nonlinearity of the sys-
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FIGURE 5. Switching from continuum-like to discrete state for β = 1. The initial
state φn has the frequency Λ � 0.31 and N = 3.6. The time evolution of |ψn0(t)|2
when a phase torsion is applied to the center site with θ = 0.261 (lower curve)
and θ = 0.262 (upper curve), respectively; inset shows time evolution of |ψn(t)|2
for θ = 0.262 [14].
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FIGURE 6. Switching from discrete to continuum-like state for β = 1. The ini-
tial state φn has the frequency Λ � 1.423 and N = 3.6. Same as Fig.5 with
θ = −0.490 (upper curve) and θ = −0.491 (lower curve), respectively; inset
shows time evolution of |ψn(t)|2 for θ = −0.491 (only a part of a larger system
is shown) [14].

tem. The simplest choice, which we have used in the simulations shown
here, is to kick the central site n0 of the system at t = 0 by adding a para-
metric force term of the form θδn,n0δ(t)ψn(t) to the left-hand-side of Eq.
(15.11). As can easily be shown, this perturbation affects only the site n0
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at t = 0, and results in a “twist” of the stationary state at this site with an
angle θ, i.e. ψn0(0) = φn0 e

iθ. The immediate consequence of this kick is,
as can been deduced from the form of Eq. (15.11), that d

(|ψn0 |2
)
/dt will

be positive (negative) when θ > 0 (θ < 0). Thus, we choose θ > 0 to ob-
tain switching from the continuum-like state to the discrete state, while we
choose θ < 0 when investigating switching in the opposite direction. We
find that in a large part of the multistability regime there is a well-defined
threshold value θth: when the initial phase torsion is smaller than θth, pe-
riodic, slowly decaying “breather” oscillations around the initial state will
occur, while for strong enough kicks (phase torsions larger than θth) the
state switches into the other stable stationary state.

It is worth remarking that the particular choice of perturbation is not
important for the qualitative features of the switching, as long as there is
a substantial overlap between the perturbation and the internal breathing
mode. We also believe that the mechanism for switching described here
applies for any multistable system where the instability is connected with
a breathing mode.

4 Stabilization of nonlinear excitations by disorder

In this section we discuss disorder effects in NLS models. Usually investi-
gations of disorder effects have been carried out on systems that are inte-
grable - soliton bearing - in the absence of disorder. A common argument
is that the equations, despite their exact integrability, provide a sufficient
description of the physical systems to display the essential behavior. How-
ever, the more common physical situation is that integrability, and thus the
exact soliton, is absent. A relevant example of such an equation is the two-
dimensional (or higher-dimensional) NLS equation. The two-dimensional
NLS equation is nonintegrable and possesses an unstable ground state so-
lution which, in the presence of perturbations, either collapses or disperses
(see e.g. [24, 25]).

We consider a quadratic two-dimensional lattice with the lattice spacing
equal to unity. The model is given by the Lagrangian

L =
i

2

∑
n,m

(
ψ∗

n,m

d

dt
ψn,m − c.c.

)
− H , (15.13)

where

H =
∑
n,m

(|ψn+1,m − ψn,m|2 + |ψn,m+1 − ψn,m|2

− 1
2
|ψn,m|4 − εn,m|ψn,m|2

)
(15.14)
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is the Hamiltonian of the system. In Eqs. (15.13) and (15.14) (n,m) is the
lattice vector (n and m are integers). The first two terms in Eq. (15.14) cor-
respond to the dispersive energy of the excitation, the third term describes
a self-interaction of the excitation and the fourth term represents diagonal
disorder in the lattice. Here the random functions εn,m are assumed to have
Gaussian distribution with the probability p(εn,m) = exp[−(εn,m/η)2]/η

√
π

with the autocorrelation function 〈εn,mεn′,m′〉 = η2δn n′δm m′ , where the
brackets 〈....〉 denote averaging over all realizations of the disorder. From
the Lagrangian (15.13) we obtain the equation of motion for the excitation
function in the form

i
d

dt
ψm,n + (ψm,n−1 + ψm,n+1 + ψm+1,n + ψm−1,n − 4ψm,n)

+ |ψm,n|2ψm,n + εm,nψm,n = 0 . (15.15)

Eq. (15.15) conserves the norm N =
∑
n,m

|ψn,m|2 and the Hamiltonian H.

We are interested in the stationary solutions of Eq. (15.15) of the form

ψn,m(t) = φn,m exp(iΛt) , (15.16)

with a real shape function φn,m and a nonlinear frequency Λ.
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FIGURE 7. The norm N versus nonlinear frequency Λ for various disorder
strengths η. Homogeneous case η = 0 (solid line), η = 0.04 (dotted line), η = 0.07
(dashed-dotted line) and η = 0.1 (dashed line) [10].

Eq. (15.15) together with Eq. (15.16) constitute a nonlinear eigenvalue
problem which can be solved numerically using the techniques described
in Ref. [5]. N versus Λ in the absence and in the presence of disorder is
shown in Fig. 7. It has previously been shown [22, 20, 21, 18] that the linear
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stability of the stationary states in the discrete case is determined by the
condition dN/dΛ > 0. Thus, in the case without disorder (solid curve in
Fig. 7) the low-frequency (0 ≤ Λ ≤ Λmin = 1.088) nonlinear excitations in
the discrete two-dimensional NLS model are unstable. It is important that
in the continuum limit (Λ → 0) the norm N(Λ) tends to the non-zero value
Nc 	 11.7.

The other curves in Fig. 7 show the dependence N on Λ for the stationary
solutions of Eq. (15.15) in the presence of disorder. The results have been
obtained as averages of 150 realizations of the disorder. Several new features
arise as a consequence of the disorder. In the continuum limit (Λ → 0) we
no longer have N = Nc with dN/dΛ = 0. Instead we have N → 0 with
dN/dΛ > 0 signifying that the disorder stabilizes the excitations in the
low-frequency limit. The disorder creates a stability window such that a
bistability phenomenon emerges. Consequently there is an interval of the
excitation norm in which two stable excitations with significantly different
widths have the same norm.

Furthermore, we see that the disorder creates a gap at small Λ in which
no localized excitations can exist, and that the size of this gap apparently is
increased as the variance of the disorder is increased. It is also clearly seen
that as Λ increases (decreasing width) the effect of the disorder vanishes
such that the very narrow excitations, in the average, are unaffected by the
disorder. It is important to stress that this is an average effect, because for
each realization of the disorder the narrow excitation will be affected. The
narrow excitation will experience a shift in the nonlinear frequency equal
to the amplitude of the disorder at the position of the excitation.
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FIGURE 8. Evolution of an initial excitation of the norm N = 10.4402 without
disorder (upper part) and with disorder strength η = 0.1 (lower part) [10].
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The bistability we observe in Fig. 7 occurs due to the competition be-
tween two different length scales of the system: one length scale being
defined by the relation between the nonlinearity and the dispersion, while
the other length scale being defined by the disorder. A similar effect was
observed in ref. [4] for the one-dimensional discrete NLS equation with a
quintic nonlinearity. The latter is quite natural because as it is well known
(see e.g. [2]) the properties of the two-dimensional NLS model with a cubic
nonlinearity are similar to the properties the one-dimensional NLS equation
with a quintic nonlinearity.

Having studied the stationary problem it is vital to compare the results
to full dynamical simulations. Therefore we carry out a numerical experi-
ment launching a pulse in a system governed by Eq. (15.15). Specifically,
stationary solutions (15.16) of Eq. (15.15) with Λ = 0.14 (after reducing
the amplitude of these solutions by 5%) were used as initial conditions of
the dynamical simulations. Examples of this experiment are shown in Fig.
8. We see that the pulse behavior in the absence of disorder differs drasti-
cally from the pulse behavior in the presence of disorder. (In the latter case
we present a realization corresponding to the disorder variance η = 0.1).
While the pulse rapidly disperses in the ideal system (the contour plot for
t = 250 is absent because the pulse width is of the system size), the pro-
cess is arrested in the disordered system. After some transient behavior the
excitation stabilizes and attains an approximately stationary width. The
dynamical simulations thus support the conclusion that otherwise unstable
excitations are stabilized by the presence of disorder in the low frequency
limit.

An analytical theory of soliton states in disordered NLS models based
on the collective coordinate approach and on the Rice’s theorem from the
theory of random processes [17] is presented in Refs. [4] and [10].

5 Summary

In summary we have shown that the presence of competing length scales
leads to multistability phenomena in nonlinear Schrödinger models. We
have analyzed three types of the NLS models.

The nonlinear Schrödinger-Kronig-Penney model presents an example
where two competing length scales exist: the width ζ of the soliton in the
nonlinear Schrödinger equation and the interlayer spacing �. Due to the
interplay between these two length scales the localized stationary states
exist only in a finite interval of the excitation power. Two branches of
stationary states exist but only the low-frequency branch is stable.

In discrete nonlinear Schrödinger models with long-range dispersive in-
teractions, there exist three types of length scales: the soliton width, the
lattice spacing and the radius of the dispersive interaction. Here the com-
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petition of the length scales provides the existence of three branches of
stationary states. Two of them: the low-frequency branch with continuum-
like excitations and the high-frequency branch with intrinsically localized
excitations, are stable. It is shown that a controlled switching between
narrow, pinned states and broad, mobile states is possible. The particular
choice of perturbation is not important for the qualitative features of the
switching, as long as there is a substantial overlap between the perturba-
tion and the internal breathing mode. The switching phenomenon could be
important for controlling energy storage and transport in DNA molecules.

Considering nonlinear excitations in two-dimensional discrete nonlinear
Schrödinger models with disorder, it was found that otherwise unstable
continuum-like excitations can be stabilized by the presence of the disorder.
For the very narrow excitations the disorder has no effect on the averaged
behavior. The bistability that was observed in this case is very similar to the
bistability that occurs in nonlocal NLS models. Here the bistability arises
on similar grounds because of competition between the solitonic length
scale and the length scale defined by the disorder.
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ABSTRACT We consider a mechanical lattice where the basic oscillat-
ing units experience a double-well on-site potential, and are linearly and
nonlinearly coupled. In the continuum limit the lattice equations can be
approximated by a nonlinear partial differential equation. With nonlinear
coupling only, this equation exhibits a static kink solution with a compact
shape or compacton. When both linear and nonlinear coupling exist, one
can obtain a dynamic compacton solution propagating at the character-
istic velocity of linear waves. Contrary to the static compacton solution,
which is stable, the dynamic compacton is unstable: it looses progressively
its compact shape as it propagates, and evolves into a kink waveform. A
nice feature is that mechanical analogs of this lattice can be constructed
that allow one to observe kinks. We constructed two mechanical lattices:
one with torsion and gravity pendulums and another one with flexion and
gravity oscillating units. Both experimental systems allow one to illustrate
and study qualitatively the dynamical properties of the propagating kinks.
In the strong nonlinear coupling limit static compactons can be created.
In the weak coupling limit, lattice effects and the observation of discrete
kinks are briefly considered.

1 Introduction

Localized waves with permanent profile, known as solitons, are widely ac-
cepted as a structural basis for viewing and understanding the dynamical
behavior of complex nonlinear systems, and they play a significant role
in different physical problems. Although historically solitary waves were
discovered experimentally the number of experimental investigations on
solitonic waves is rather small compared to the considerable body of litera-
ture devoted to the theoretical and numerical studies. Thus, it is necessary
to perform experiments on complex systems in the real world, but it is
also important to develop and construct simple experimental models [15]
or laboratory experiments that allow us to create, observe and manipu-
late localized waves. For example, electrical nonlinear transmission lines
are simple and versatile devices that enable to observe and study quan-
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titatively the propagation and properties of solitons and nonlinear lattice
modes, in real continuous and discrete systems. Water-tank experiments,
in shallow or deep water, allow one to study and illustrate the important
features of pulse or envelope solitons, and also kink-solitons [3]. Analog
mechanical systems, such as the mechanical transmission line first intro-
duced by Scott [17], play an important role in the study of kink-solitons
and their remarkable properties. Contrary to non-topological pulse solitons
and envelope solitons, where the system returns to its state after the pas-
sage of the wave, kink-solitons belong to a particular class of nonlinear
excitations called topological solitons because in some cases the structure
of the system is modified after the passage of the wave. Kink-solitons have
been used to describe various phenomena in one-dimensional systems, such
as ferromagnetic [1] or ferroelectric domain walls [9], dislocations [7], dy-
namics of base pairs in DNA molecules [11], polymer chain twistings [4] and
Josephson junctions [14]. The basic models are generalized Klein-Gordon
(KG) models where the particles may be considered as coupled to nearest
neighbors only, via an interaction potential U(θn+1 − θn) and subjected to
a nonlinear on-site or substrate potential V (θn), where θn(t) is the on-site
degree of freedom, which represents the influence of the surrounding lattice
atoms and external effects. The lattice Hamiltonian is

H =
∑

n

[
1
2
(
dθn

dt
)
2

+ U(θn+1 − θn) + V (θn)
]
. (16.1)

The corresponding equations of motion can be written in the standard
form

d2θn

dt2
− [U ′(θn+1 − θn) − U ′(θn − θn−1) + V ′(θn)] = 0. (16.2)

Depending on the shape of the on-site potential a nonlinear lattice with the
Hamiltonian (16.1) may sustain different kinds of nonlinear excitations. If
V (θn) has two degenerate minima (double-well shape like in the Φ -four
model) or multiple degenerate minima (periodic shape like in the Frenkel-
Kontorova model) topological kink excitations, which connect two equiva-
lent ground states, can exist. If interparticle interactions U ′ are linear the
kink solutions can be calculated exactly, in the continuum limit [9]. For
the discrete equations (16.2) the kink solutions can be obtained either by
perturbation approaches [5] or by numerical techniques. If U ′ also include
anharmonic interactions specific kink internal modes may be created [18].
The case where U ′ is nonlinear only, is interesting because of the presence
of nonlinear dispersion. Recently it was shown by Rosenau and Hyman [16]
that solitary-wave solutions may compactify under the influence of non-
linear dispersion which is capable of causing deep qualitative changes in
the nature of genuinely nonlinear phenomena. Such robust soliton-like so-
lutions, characterized by the absence of the infinite tail, have been called
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compactons [16]. They have been obtained for a special class of the Ko-
rteweg de Vries (KdV) type equations with nonlinear dispersion [10].
Part of the motivation of this work finds its origin in the possibility of ob-
serving kinks in “real systems” with a double-well potential. In this regard,
in Section 2 we show that compacton-like kinks, or compactons for short,
can exist for specific velocities in physical systems modeled by a nonlinear
Klein-Gordon equation with strong anharmonic coupling. Then, in Section
3 we present analog experiments: a nice feature is that mechanical chains
can be constructed allowing to observe kinks and compactons. The mechan-
ical chains are also useful to oberve discrete kinks as briefly considered in
section 4. Section 5 is devoted to concluding remarks.

2 Mechanical chains with double-well potential

2.1 Chain with torsion and gravity
In order to observe kinks we have constructed [2] a mechanical analog
which consists of a new experimental chain of identical pendulums. Each
basic unit is similar to the pendulum recently studied by Peters [12]: it
can oscillate with a motion whose character is determined by the forces of
torsion and gravity acting in opposition. Depending on the length d (con-
trol parameter) of each pendulum, the on-site potential V can present one
or two minima. For the configuration presently considered it possesses two
equilibrium positions (two wells). Each pendulum is connected to its neigh-
bors by springs, as sketched in Fig. 1. When the dissipation is neglected
and the difference between angular displacement of neighboring pendulums
are small enough, the equation of motion of the nth chain unit is given (see
Appendix) by

I
d2θn

dt2
= −Kθn +Mgd sin θn + C0,l(θn+1 + θn−1 − 2θn)

−C0,nl(θn − θn+1)3 − C0,nl(θn − θn−1)3, (16.3)

where the terms on right hand side represent the restoring torque owing
to the torsion, the gravitational torque and the restoring torque owing to
the coupling with the neighboring pendulums (see Appendix). θn(t) is the
angular displacement as a function of time t of the nth pendulum, I = Md2

is the moment of inertia of a single pendulum of mass M and length d, g
is the gravitation, K is the torsion constant: to a first approximation we
assume that K is independent of θn. C0,l and C0,nl are the linear and
nonlinear torque constant of a spring between two pendulums: they are
given by

C0,l = kd2(1 − l0
l1
), (16.4)
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θn+1

z
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s

FIGURE 1. Sketch of the mechanical chain. Here, only two pendulums, n and
n+1, coupled to each other by spring and attached to the steel ribbon s (parallel
to x axis), are represented with their respective angular displacements θn and
θn+1. The pendulums are at equilibrium in one of the two equivalent potential
wells. The motion can occur in a plane perpendicular to the chain (x axis). See
also Fig. 5.

C0,nl = kd2(
l0d

2

2l31
− C0,l

6
), (16.5)

where k is the spring stiffness, l0 the natural length of a spring at rest
and l1 the length of this spring when it is stretched between two adjacent
pendulums at equilibrium (bottom of one well). Note that the nonlinear
coupling term must be fully taken into account because the linear term
is especially small when l1 is not very different from l0. Moreover, when
l0 = l1 we have C0,l = 0 and C0,nl = kd4/2Kl21, as we will see in the
following. Setting

τ =
K

I
, Γ =

Mgd

K
, C1,l =

C0,l

K
, Cnl =

C0,nl

K
, (16.6)

we transform Eq. (16.3) into

d2θn

dτ2 = −θn + Γ sin θn + C1,l(θn+1 + θn−1 − 2θn)

−Cnl[(θn − θn+1)3 + (θn − θn−1)3]. (16.7)

In Eq. (16.7), the quantity (−θn + Γ sin θn) represents the “on-site” (zero
coupling limit) torque. In the continuum approximation one obtains

∂2θn

∂τ2 −
[
C1,l + 3Cnl(

∂θ

∂X
)2

]
∂2θ

∂X2 + θ − Γ sin θ = 0 (16.8)
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with X = x/a. The interaction and on-site potential corresponding to Eq.
(16.7) are

U(θn+1 − θn) =
C1,l

2
(θn+1 − θn)2 +

Cnl

4
(θn+1 − θn)4, (16.9)

and

V (θn) =
1
2
(θ2

n − θ2
m) + Γ(cos θn − cos θn). (16.10)

Here, the parameter Γ plays the role of a control parameter. For Γ > 1
it determines the depth and separation of the two wells [12] and θm corre-
spond to the two equilibrium positions. Equation (16.7) and its continuum
approximation (16.8) cannot be solved analytically. Nevertheless, in order
to get some approximate solution one can replace the potential V (θn) by
the standard Φ -four potential given by

V (Θn) =
V0

2
(1 − Θ2

n)
2, (16.11)

with Θn = θn/θm and V0 = −θ2
m+2Γ(1−cos θm). As depicted in Fig. 2 the

-1.5 -1 -0.5 0.5 1 1.5

0.02

0.04

0.06

V

Θ
n

0

FIGURE 2. Fitting of the double well potential (16.10): dotted line, by a Φ-four
potential of form (16.11): continuous line. For −1.5 < Θn = θn/θm < 1.5 the two
curves are practically superimposed and the approximation of potential (16.10)
of the real system by Φ-four potential is reasonable.

fitting is good for −1.5 < θn/θm < 1.5. Under these conditions eq (16.7)
reduces to

d2Θn

dT 2 − C1,l(Θn+1 +Θn−1 − 2Θn)

+Cnl[(Θn − Θn+1)3 + (Θn − Θn−1)3] − 2V ′
0(Θn − Θ3

n) = 0, (16.12)
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where Θn = θn/θm, T = θmτ , Cl = C1,l/θ
2
m and V ′

0 = 2V0/θ
4
m. In the

continuum limit, Eq. (16.12) is approximated by

∂2Θ
∂T 2 −

[
Cl + 3Cnl(

∂Θ
∂X

)2
]
∂2Θ
∂X2 − 2V ′

0(Θ − Θ3) = 0, (16.13)

where we have assumed that 3Cnl(∂2Θ/∂X2) � (Cl/12)(∂4Θ/∂X4), as it
will be the case in the following. Note that Cl represents the square of the
velocity of linear waves in the chain. For Cnl = 0, Eq. (16.13) reduces to
the standard continuous Φ-four model with linear coupling, which admits
tanh-shaped kink solutions. We then look for localized waves of permanent
profile of the form Θ(s) = Θ(X − uT ), such as Θ → ±1 and dΘ/ds → 0,
when s → ±∞, where s is a single independent variable depending on
u which is an arbitrary velocity of propagation. Integrating (16.13) and
taking account of these conditions we get

2(u2 − Cl)Θ2
s − 3CnlΘ4

s + 2V ′
0(1 − Θ2)2 = 0. (16.14)

For u2 − Cl �= 0 this equation cannot be integrated analytically, but nu-
merically, only. One gets a kink solution which connects the two equivalent
ground states (potential minima). For u2 −Cl = 0 that is, for the two par-
ticular cases: Cl = 0 (zero linear coupling: linear waves cannot exist) and
u=0, and u = ±√

Cl which correspond to kinks with a compact support or
compactons (see Appendix), Eq. (16.14) can be integrated. One obtains

Θc(X) = ± sin[(2V ′
0/3Cnl)1/4(X − X0)], (16.15)

when | X − X0 |< (π/2)(2V ′
0/3Cnl)1/4, and Θ = ±1 otherwise. As usual,

the constant of integration (X0) defines the position of the center of the
compacton. For the second case we have

Θ(X,T ) = ± sin[(2V ′
0/3Cnl)1/4(s − s0)], (16.16)

when | X − √
Clt − s0 |=| s − s0 |< (π/2)(2V ′

0/3Cnl)1/4 and Θ = ±1 oth-
erwise.
From (16.15) and (16.16) we can calculate the full width of the com-

pactons which in both cases is equal to: L = π(3Cnl/2V ′
0)

1/4. Conse-
quently, when there is no linear coupling one has a static compacton (anti-
compacton) solution and when both linear and nonlinear coupling are
present, a dynamic compacton (anti-compacton) solution traveling at par-
ticular velocity

√
Cl (or −√

Cl) may exist. The shape of the dynamic com-
pacton is identical to the shape of the static one, it is represented in Fig.
3 for s0 = 0. From the continuum approximation of (16.1), using (16.11)
and (16.9), one can calculate the total (kinetic plus potential) energy Etot

localized in the compacton traveling at velocity −√
Cl . One has

Etot =
∫ π/2γ

−π/2γ

[
1
2
(
∂Θ
∂T

)2 +
1
2
Cl(

∂Θ
∂X

)2 +
1
4
Cnl(

∂Θ
∂X

)4 +
1
2
(V0(1 − Θ2)2

]
dX.

(16.17)
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FIGURE 3. Compacton waveform as given by (16.16), with s0 = 0 (compacton
center) and 2V ′

0/3Cnl = 4.The S-shaped waveform (continuous line) corresponds
to the compact part which connects the two constant parts (Θ = ±1: horizontal
dotted lines) of the solution.

where Θ is given by (16.16), and we have set γ = (2V0/3Cnl)1/4. After
simple calculations we obtain

Etot = aγ
π

2

(
Cl +

V ′
0

2

)
. (16.18)

In the case u =
√
Cl = 0, one has

Estat
tot = aγV ′

0
π

4
, (16.19)

which represents the “mass” of a static compacton. Note that the energy is
strictly localized and contrary to a standard (tanh-shaped) kink which pos-
sesses (exponential) wings and can interact with an antikink, a compacton
and an anticompacton will not interact unless they come into contact in a
way similar to the contact between two hard spheres. Such a result should
be interesting for the modeling of static domain walls in condensed matter
physics.

2.2 Chain with flexion and gravity
Another mechanical chain can be constructed, where each basic oscillating
units is an Euler strut [13]. An Euler strut consists [8] of a light elastic
(metal) strip with its bottom edge attached to a support and two masses
on opposite sides of the strip (to maintain symmetry) at a distance d (con-
trol parameter) from the bottom. Like for the previous chain we consider
the configuration with two equilibrium positions and each unit is coupled
to its nearest neighbors by springs. To a first approximation we assume
that distance d (and consequently the moment of inertia I = Md2) does
not depend on θ. Second, we assume that the torque generated by the
strip about the bottom axis, when it is displaced by an angle θ, is simply
proportional to this angle: the restoring torque due to flexion is −Kθ. It
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acts in opposition with the torque due to gravity. Under these assumptions,
neglecting dissipation, we obtain an equation of motion similar to (16.3)
which can be reduced to (16.13) if the coupling between oscillators is large
enough compared to the potential barrier height.

2.3 Numerical simulations
In order to check the validity of our analytical results and stability of our
solutions, we have performed numerical simulations [2] of the equation of
motion (16.3)(or Eq. (16.12)) which, in the strong coupling (continuous)
limit, reduces to (16.8). It has been integrated with a fourth-order Runge-
Kutta scheme with a time step chosen to preserve the total energy of the
system to an accuracy better than 10−5 over a complete run.
For Cl = 0, we have first verified the validity of the static compacton
solution Θc given by Eq. (16.15). If this solution (with parameters: V0 = 2,
L = 32a and Cnl = 14500) is chosen as an initial condition of the system
and let to evolve in the presence of a weak additional dissipation, it relaxes
to: Θ = Θc+∆Θ, where ∆Θ are weak spatial sinusoidal deviations from the
exact solution with amplitude 4.10−4. Moreover, an arbitrary tanh-shaped
initial kink also relaxes toward the same profile Θ proving that Θc is a good
solution to order 10−4. This deviation ∆Θ from the exact solution can be
reduced if we choose a compacton with larger width L, which indicates that
the closer to the continuum limit we are, the better the solution is. Actually,
this result points out that the static compacton is an exact solution of the
continuous system.
For Cl �= 0, a dynamic compacton (with parameters: Cl = 208, V0 = 2,

L = 32a and Cnl = 14500) launched at initial velocity
√
Cl emits small

radiations. Consequently its velocity decreases and we no more have a
dynamic compacton as described by solution (16.16), but rather a kink
(whose waveform is unknown analytically). It turns out that as soon as
they are launched and propagate, dynamic compactons, as described by
solution (16.16), loose their compact shape, they cannot exist. Then, with
the same parameters as above, we have analyzed the head-on collision of
a compacton (initial velocity v1c = ±√

Cl) and an anticompacton (initial
velocity v2c = −v1c). Our results [2] show that the collision is inelastic: the
two kinks that emerge from the collision are deformed, they radiate oscil-
lations and propagate at velocities lower than v1. The collision between a
dynamic compacton (initial velocity v1c = ±√

Cl) and a kink (initial ve-
locity v1k = −0.3

√
Cl), was also investigated. Again, two deformed kinks

emerge from the collision. Thus the moving compacton solution is unstable.
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3 Experiments

3.1 Chain with torsion and gravity
The apparatus is a lattice of 20 pendulums attached vertically to the cen-
ter of a horizontal steel ribbon (2 m long, 6 mm wide and 0.1 mm thick)
supported by vertical metallic plates which are equidistant (a = 10 cm)
(see Figs. 1 and 4). A basic pendulum consists of a thin rod (diameter
3mm) along which a cylinder (mass M = 67 g) can be displaced and fixed.
Depending on the vertical position d of the mass along the rod, the system
can oscillate with a motion which depends on the potential shape and is
determined, as mentioned earlier, by the forces of gravity and torsion in
opposition. Here, with d = 87 mm and K = 0.03, the control parameter
is Γ = 1.9, thus the on-site potential is a symmetric double well potential.
Once its tension is adjusted, the ribbon is held tight on the top of each
plate. With this precaution, the torsion constant is the same for each pen-
dulum and the weak residual torsional coupling between pendulums can
be neglected. Each pendulum (cylinder) is attached to its neighbor with
a spring. Springs connecting pendulums that are at equilibrium, in one of
the bottom of a potential well, are horizontal (see Fig. 4). The stiffness
of the springs is large enough to ensure the validity of the continuum ap-
proximation. With the physical parameters: Cl = 0 (l1 = l0 = 68 mm,
see (16.4)), Cnl = 25 and k = 120, a static compacton can be observed
as represented in Fig. 4. The experimental shape fits approximatively (see
Fig. 5) the theoretical shape calculated from (16.15).
When Cl �= 0 and Cnl �= 0, solution (16.16) predicts a compacton moving

at velocity
√
Cl of the linear waves. In this case, we cannot conclude that

the moving S-shaped entity we observe has a compact shape for the fol-
lowing reasons. First, we cannot control with sufficient precision the initial
velocity of the kink. Second, even if we could launch a kink with exact ve-
locity

√
Cl it would gradually slow down owing to dissipative effects (that

are important compared to small radiation effects predicted by our numer-
ical simulations, see 2.3) ; thus, we can never observe a moving compacton.
Nevertheless, with this mechanical line we can easily observe the dynamical
properties of the kinks. For example, if one launches a moving kink (un-
known analytical shape) with arbitrary initial velocity at one end of the
line, after reflection at the opposite free end this kink becomes an anti-kink
moving freely in the opposite direction and so on. Depending on its ini-
tial velocity a kink can reflect three or four times before gradually slowing
down owing to dissipative effects which inevitably occur for a real mechan-
ical line. With the above physical parameters no radiation of waves due
to discreteness effects are observed. Thus, the continuum approximation
is valid. Nevertheless, lattice effects and also the pinning of kinks can be
observed by simply decreasing the stiffness of the springs, such experiments
will be briefly discussed in section 4.
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FIGURE 4. Picture showing a static compacton as observed on the experimen-
tal chain, with torsion and gravity, lying horizontally on a table.The X axis is
directed along the lengthy black support. The compacton connects pendulums
directed to the left of x axis, at equilibrium in one potential well(Θ = −1), to the
pendulums directed to the right of x axis, at equilibrium in the other potential
well (Θ = +1).

3.2 Chain with flexion and gravity
In this subsection we describe briefly the chain and qualitative observa-
tions. The chain is constructed with 40 Euler struts attached vertically to
a horizontal support. The lattice spacing is a=4 cm. A basic unit [8] con-
sists of a flexible metal strip (width =10 mm, thickness=0.1mm and d=97
mm for θm = 50) along which, two rectangular pieces (total mass, M=18.5
g) of metal are fixed. In the present case, the on-site potential determined
by the distance of the masses to the support is a double well potential.
Each unit is connected to its neighbors by springs.
As for the chain with torsion and gravity, moving and static kinks can be

created. For example, if the condition Cl = 0(l0 = l1) is satisfied, one can
observe a compacton (with spatial extension 12a) and an anti-compacton
as represented in Fig. 6. In this chain the moving kinks slow down rapidly
because the dissipation effects are more important than for the chain con-
sidered in section 3.1. It means that the dynamics of the system will be
correctly described by adding a dissipative term to (16.3) and consequently
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FIGURE 5. Comparison of the experimental compacton shape, observed in Fig.
4, to the theoretical shape calculated from (16.15). Here, Θ = θ/θm = π/3
and X = x/a (with a=10cm is dimensionless). The vertical lines represent the
experimental precision.

to (16.13).

4 Lattice effects

In section 3.1 we have considered a mechanical chain whose dynamics can be
described by (16.13) in the continuum approximation which is valid when
the coupling is strong (stiff springs). Nevertheless, lattice effects, which
play an important role in microscopic systems, may induce the pinning of
an initially moving kink (whose width is a few lattice spacings) [15]. This
effect, which we briefly discuss here, can be observed by simply decreasing
the stiffness of the springs for the chain with torsion and gravity. If the
pinning is important enough the kinks cannot propagate. For example,
in Fig. 7 one can observe (chain with torsion and gravity) an arbitrary
sequence of highly discrete kinks and antikinks, whose width is one lattice
spacing, that are completely pinned on the lattice and cannot propagate.
With such a simple mechanical chain, whose springs can be modified very
rapidly, one can do more. For example, one can observe nonlinear localized
modes (see in this book the chapter by Marin, Eilbeck, and Russell and
also the recent review [6]), such experiments will be discussed elsewhere.
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FIGURE 6. Photograph showing (with X axis directed along the black support)
a static compacton and anticompacton as observed on the experimental chain,
with flexion and gravity.

5 Conclusion

We have considered a chain of identical pendulums that experience a double-
well on-site potential and are nonlinearly coupled. In the continuum limit
this chain can be modeled by a nonlinear partial differential equation. With
nonlinear coupling only, this equation exhibits a static kink solution with
a compact shape or compacton. When both linear and nonlinear coupling
exist, one can obtain a dynamic compacton solution propagating at the
characteristic velocity of linear waves. Our numerical solutions point out
that, contrary to the static compacton solution, which is stable, the dy-
namic compacton is unstable: it looses progressively its compact shape as
it propagates, and evolves into a kink waveform which is unknown analyt-
ically.
In order to observe kinks and compactons we constructed two mechanical
chains. One chain with torsion and gravity pendulums and one chain with
flexion and gravity oscillating units. Both experimental systems allow us
to illustrate and study qualitatively the dynamical properties of the kinks
that can move back and forth. In the strong nonlinear coupling limit static
compactons can be created. Such strictly localized entities, that do not in-
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FIGURE 7. Photograph showing (with X axis directed along the black support)
highly discrete (respective widths: one lattice spacing) kinks and antikinks, when
the coupling between pendulums is weak (soft springs) compared to the potential
barrier. They cannot propagate, as observed on the experimental chain with
torsion and gravity.

teract unless they come into contact, should play a role in the modeling of
domain walls in real physical systems. In the weak coupling limit, highly
discrete kinks, pinned on the lattice, can be oberved.

Acknowledgments: Thanks go to S. Dusuel who performed some of this
research and P. Michaux who constructed the experimental systems. I also
acknowledge G. Pierre, V. Boudon and R. Chaux for technical assistance
and support.

6 Appendix

In this appendix we derive Eq. (16.3). The general equation of motion of
the nth pendulum of the chain sketched in Fig. 1 is

I
d2θn

dt2
= −Kθn +mgd sin θn +Mn−1,n − Mn,n+1, (16.20)
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where Mn−1,n and Mn,n+1are the torque exerted by pendulum n-1 on pen-
dulum n and pendulum n on pendulum n + 1, respectively. In terms of
the components yn = −d sin θn and zn = d cos θn of the displacement, the
elongation of the spring between pendulums n and n+ 1 is

∆l =
√
l1

2 + (yn+1 − yn)
2 + (zn+1 − zn)

2 − l0,

where l0 is the length of the spring at rest, and l1 the minimal length of
the stretched spring between two pendulums. Thus we have

Mn,n+1 =
k∆l

V
(yn+1zn − zn+1yn).

where
yn+1zn − zn+1yn = d2 sin(θn − θn+1)

and

V =

√
l1

2 + 4d2 sin2
(
θn − θn+1

2

)

One gets

Mn,n+1 = kd2


1 − l0

l1

1√
1 + 4d2

l21
sin2

(
θn−θn+1

2

)

 sin(θn − θn+1)

The torque Mn−1,n is obtained by replacing n by n−1 in the above expres-
sion. When the difference between the angular displacement of neighboring
pendulums is small enough (weak discrete limit), the torques can be re-
placed by their expansion in terms of these angular differences, and we
obtain Eq. (16.3.
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17
Quantum Lattice Solitons
Alwyn Scott

ABSTRACT
A brief introduction to the theory of quantum solitons on a lattice is pre-
sented through three examples: (i) local modes of vibration on a small
molecule, (ii) a quantum discrete nonlinear Schrödinger soliton on a one-
dimensional lattice, and (iii) local modes on a molecular crystal.

1 Introduction

The aim of this chapter is to introduce the theory of quantum lattice soli-
tons by sketching applications to some basic problems arising in the theory
of molecular vibrations. Two types of nonlinearity are considered: (i) in-
trinsic, which is caused by a readjustment of the electronic cloud as a
molecular bond is stretched, and (ii) extrinsic, arising from interactions of
a molecular vibration with the nearby structure of a lattice. The first of
these is of interest in the context of local modes in small molecules, and
the second arises in relation to the formation of local modes on molecular
crystals. Further details are available in reference [12].

2 Local modes in the dihalomethanes

Methane is a biologically interesting molecule with the formula CH4, cor-
responding to a structure of four hydrogens attached at equal angles to a
tetravalent carbon atom. In the dihalomethanes—CF2H2, CCl2H2, CBr2H2,
and CI2H2—two of these hydrogens are replaced by the halides: fluorine,
chlorine, bromine, or iodine. These molecules form little laboratories in
which interactions between the two CH oscillators can be investigated.

For dichloromethane, the picture is like this:

Cl
H←→C↔H

Cl

where the two CH stretching oscillations are each anharmonic (nonlinear),
and they can interact with each other through both mechanical and electro-

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 339−355, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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magnetic forces. For a sufficiently large value of the (intrinsic) anharmonic
parameter, it is possible for the energy to be concentrated on one or the
other of the CH bonds as is indicated in the above diagram.

2.1 Classical analysis
In a rotating wave approximation, the classical Hamiltonian (energy) that
governs our two interacting CH oscillators is

H = ω0(|A1|2 + |A2|2) − γ

2
(|A1|4 + |A2|4) − ε (A1A

∗
2 + A2A

∗
1) , (17.1)

implying the dynamic equations

i
dA1

dt
= ω0A1 − γ|A1|2A1 − εA2

i
dA2

dt
= ω0A2 − γ|A2|2A2 − εA1 . (17.2)

For notational convenience, it is here assumed that A1 and A2 are unitless,
while d/dt, ω0 (site frequency), γ (anharmonic parameter), and ε (disper-
sive parameter) are all expressed in units of cm−1.

With ε = 0, A1 and A2 are complex mode amplitudes of two uncoupled
anharmonic oscillators. The aim is to understand the relationship between
the classical and quantum behaviors of the system when ε �= 0.

Under the classical dynamics of Equations (17.2), the energy of Equation
(17.1) is conserved. It is easily verified that another conserved quantity is
the norm

N = |A1|2 + |A2|2 . (17.3)

Assume that the system of Equations (17.2) has a stationary solution of
the form A1 = φ1e

−iωt and A2 = φ2e
−iωt, where φ1 and φ2 are independent

of time. Then for a fixed value of N , three classes of solutions are readily
demonstrated [5].

There is a symmetric mode for which φ1 = φ2 =
√

N/2, and an antisym-
metric mode with φ1 = −φ2 =

√
N/2. Both of these modes are found in

the linear limit γ = 0. As a result of the nonlinearity, there is also a local
mode, for which the amplitude on one mode is larger than the other; thus

φ1 =

{
N

2

[
1 ±

(
1 − 4ε2

N2γ2

)1/2
]}1/2

φ2 =

{
N

2

[
1 ∓

(
1 − 4ε2

N2γ2

)1/2
]}1/2

,
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and one of the oscillator amplitudes goes to zero as γ becomes much greater
than ε.

The local mode requires that

γ ≥ 2ε
N

, (17.4)

and the concentration of vibrational energy on one of the CH bonds at
a sufficiently large value of the anharmonic parameter γ is an elementary
example of a lattice soliton. How is it represented by the linear structure
of quantum theory?

2.2 Quantum analysis
To quantize the problem we let the Hamiltonian and norm, defined in
Equations (17.1) and (17.3), become operators

N → N̂ and H → Ĥ ,

where

N̂ = b†
1b1 + b†

2b2

and

Ĥ = (ω0 − γ/2)N̂ − γ

2
[(b†

1b1)2 + (b†
2b2)2] − ε(b†

1b2 + b†
2b1) .

In constructing these operators, we have set A1 → b1, A2 → b2, A∗
1 → b†

1

and A∗
2 → b†

2, so b1 and b2 are bosonic lowering operators for the first and
second oscillators, respectively. Similarly, b†

1 and b†
2 are raising operators for

the two oscillators. In these expressions for N̂ and Ĥ, the constant terms
have been dropped; thus they measure number and energy with respect to
the lowest (ground state) eigenvalues.

If the two oscillators are uncoupled (ε = 0), Dirac’s expression for an
eigenfunction is |n1〉|n2〉, where n1 and n2 are the bosonic number levels
of the two oscillators. For convenience, this ket product is written as

|n1〉|n2〉 ≡ |n1, n2〉 ,
whereupon

b1 |n1, n2〉 =
√
n1 |n1 − 1, n2〉

b2 |n1, n2〉 =
√
n2 |n1, n2 − 1〉

b†
1 |n1, n2〉 =

√
n1 + 1 |n1 + 1, n2〉

b†
2 |n1, n2〉 =

√
n2 + 1 |n1, n2 + 1〉 .
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If ε �= 0, |n1, n2〉 is no longer an eigenfunction of the energy operator
because the two CH stretching modes interact through mechanical and
electromagnetic forces. Thus it seems reasonable to try a combination of
such expressions, but what combination?

To answer this question, note that the operators N̂ and Ĥ commute,
implying that a nondegenerate eigenfunction of Ĥ will also be an eigen-
function of N̂ . For a fixed value of

n = n1 + n2 ,

the most general eigenfunction of N̂ is

|ψn〉 = c1|n, 0〉 + c2|n − 1, 1〉 + · · · + cn|1, n − 1〉 + cn+1|0, n〉 , (17.5)

where it is evident that

N̂ |ψn〉 = n|ψn〉 .
In this expression for |ψn〉, the cj are n + 1 arbitrary complex constants

that can be determined by demanding that |ψn〉 be also an eigenfunction
of Ĥ. That is to say, the requirement

Ĥ|ψn〉 = E|ψn〉 (17.6)

fixes the values of the cj .
Thus Equation (17.6) can be viewed as n+1 equations for the coefficients

of ket products: |n1, n2〉. All such equations can be written in matrix form
as

Hc = Ec ,

where c is the column vector col(c1, c2, . . . , cn+1) and

H ≡ H0 − εV . (17.7)

The eigenvalues of the matrix H are the energy eigenvalues, and the cor-
responding eigenvectors—c—together with Equation (17.5) determine the
energy eigenfunctions. This approach to the solution of problems in quan-
tum soliton theory is called the number state method [6].

The matrix H can be described as follows.

• With ε = 0, H = H0, a diagonal matrix of the form

H0 = diag[α0, α1, α2, . . . , α2, α1, α0] ,

where

αj ≡ ω0n − γ

2
(n + n2 − 2nj + 2j2) .
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• With ε �= 0, off-diagonal elements are introduced into H through the
additional matrix −εV , where

V =




0
√
n 0 0 · 0√

n 0
√

2(n − 1) 0 · 0
0

√
2(n − 1) 0

√
3(n − 2) · 0

· · · · · ·
· · · · · ·
0 · √

3(n − 2) 0
√

2(n − 1) 0
0 · 0

√
2(n − 1) 0

√
n

0 · 0 0
√
n 0




.

Thus H = H0 − εV is an (n+ 1) × (n+ 1), real, nonsingular matrix with
symmetry about both diagonals. From a perturbation theory in small ε/γ,
Bernstein has shown that its lowest two eigenvalues differ by [1]

∆E =
2nε

(n − 1)!

(
ε

γ

)n−1

+ O(εn+1/γn) , (17.8)

corresponding to eigenfunctions of Ĥ of the form

|ψn〉± =
1√
2

(|n, 0〉 ± |0, n〉) + O(ε/γ) .

With a wave packet constructed as

|Ψn(t)〉 =
1√
2
|ψn〉+e−iE+t +

1√
2
|ψn〉−e−iE−t + O(ε/γ) ,

then

|Ψn(0)〉 = |n, 0〉 + O(ε/γ) ,

indicating that most of the energy is localized in oscillator #1 at time t = 0.
How long will it remain there? Until the two main components in the wave
packet |Ψn(t)〉 change their phase. This occurs in a tunneling time of order

τ ∼ πh̄

∆E
,

where ∆E ≡ |E+ − E−| is measured in joules.
From numerical computations of the eigenvalues of H, it is observed that

the O(εn+1/γn) correction in Equation (17.8) is always negative so

∆E <
2nεn

(n − 1)!γn−1 ,

and the tunneling time τ for the initially localized energy to move from one
oscillator to the other is
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τ >
πh̄(n − 1)!γn−1

2nεn
,

where γ is large compared with ε. As n → ∞ (the classical limit), the
tunneling time becomes arbitrarily long.

2.3 Comparison with experiments
In the previous subsection, we have derived several formulas; now the mo-
ment of truth is at hand. Does our quantum analysis bear any relation to
experimental reality? Fortunately, measurements on the dihalomethanes—
CCl2H2, CBr2H2, and CI2H2 —provide relevant data [10]. For each molecule,
15 transition energies between CH stretching vibrations have been mea-
sured, and our formulation contains only three parameters: ω0, γ, and ε.
A least squares fit of the eigenvalues of H to these spectral lines yields the
optimum values for the parameters (in cm−1) of the three molecules given
in the following table.

Molecule: CCl2H2 CBr2H2 CI2H2

ε 29.54 32.80 33.69
γ 127.44 125.45 124.25

ω0 − γ/2 3083.79 3089.53 3068.74
RMS errors 9.0 6.9 8.0

How good is the agreement? The last row of entries records the root mean
square (RMS) errors in matching the spectral transitions for each molecule.
By setting the three parameters ω0, γ, and ε to the values indicated, our
theory matches the 15 observed lines to better than 0.3%. It should be
noted, however, that this analysis does not yield intensities for overtone
lines, and it greatly underestimates the linewidths of the transitions.

3 A lattice nonlinear Schrödinger equation

Consider next a lattice nonlinear Schrödinger equation of the form(
i
d

dt
− ω0

)
Aj + ε(Aj+1 + Aj−1) + γ|Aj |2Aj = 0 ,

with j = 1, 2, 3, . . . , f and periodic boundary conditions so Aj+f = Aj . In
this equation, γ is a parameter of intrinsic anharmonicity and ε introduces
the dispersive effects of nearest neighbor interactions.

Introducing the transformation Aj = φj exp[−i(ω0 −γ)t], and quantizing
by letting φj → bj and φ∗

j → b†
j , leads to a quantum discrete nonlinear

Schrödinger (QDNLS) equation, which is related to the number operator
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N̂ =
f∑

j=1

b†
jb

and the energy operator

Ĥ = −
f∑

j=1

[ε(b†
jbj+1 + b†

jbj−1) +
γ

2
b†
jb

†
jbjbj ] .

Since Ĥ commutes with both N̂ and the translation operator T̂ , where

T̂ |n1, n2, . . . , nf 〉 = |n2, . . . , nf , n1〉 ,
a quantum analysis is begun by constructing a general eigenfunction of
both N̂ and T̂ . For n = 1

|ψ1,τ 〉 = c1

f∑
j=1

(T̂ /τ)j−1|100 · · · 00〉

so

E1 = −ε(τ + τ−1) = −2ε cos k .

Here τ = eik is the eigenvalue of T̂ that corresponds to the propagation
number k = 2πν/f , where for f odd, ν = 0,±1,±2, . . . ,±(f − 1)/2.

This expression for the energy eigenvalues can be written as

E1(k) = E1(0) +
k2

2m∗ + O(k4) ,

where m∗ ≡ 1/2ε is called the effective mass.
With f odd and n = 2, a general eigenfunction of both N̂ and T̂ is

|ψ2,τ 〉 = c1

f∑
j=1

(T̂ /τ)j−1|20 · · · 0〉 + c2

f∑
j=1

(T̂ /τ)j−1|110 · · · 0〉

+ · · · + c(f+1)/2

f∑
j=1

(T̂ /τ)j−1|10 · · · 010 · · · 00〉 . (17.9)

Requiring that

Ĥ|ψ2,τ 〉 = E|ψ2,τ 〉
and equating the coefficients of kets leads directly to the block-diagonalized
matrix
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H2 = diag[Q(2, τ1),Q(2, τ2), . . . ,Q(2, τf )] .

For a particular value of τ , energy eigenvalues are obtained from the matrix
equation

Q(2, τ)c = Ec ,

where c ≡ col(c1, c2, . . . , c(f+1)/2), Q(2, τ) is the [(f + 1)/2] × [(f + 1)/2]
tridiagonal matrix

Q(2, τ) = −




γ q∗√2 0 · · ·
q
√

2 0 q∗ 0 · 0
· q 0 q∗ · ·
· · · · · ·
· · · q 0 q∗

· · · · q p




,

and q ≡ 1 + τ and p ≡ τ (f+1)/2 + τ (f−1)/2.

FIGURE 1. Energy eigenvalues for the QDNLS equation calculated from Q(2τ)
with τ = exp(ik), γ = 3ε, and f = 125. The soliton band lies below a quasicon-
tinuum. (Courtesy of J.C. Eilbeck.)

In Figure 3, are displayed the energy eigenvalues of Q(2, τ) with ε = 1,
γ = 3, and f = 125, indicating the existence of a quasicontinuum and
a lower discrete band. Examination of the corresponding eigenfunctions
shows that for the lower band the coefficient c1 in Equation (17.9) is large
compared to the other coefficients; thus this band indicates that the system
prefers to be in a state where the two quanta sit on the same site.

Near k = 0, it is clear from Figure 3 that the energies of states in the
soliton band are given by an expression of the form
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E2(k) = E2(0) +
k2

2m∗ + O(k4) .

In the limit f → ∞, the soliton band has energy [14]

E2(k) = −
√

γ2 + 16ε2 cos2(k/2) .

Defining the soliton binding energy, Eb, as the difference between the energy
of the soliton band at k = 0 and the bottom of the continuum band implies
that Eb =

√
γ2 + 16ε2 − 4ε and m∗ =

√
γ2 + 16ε2/4ε2. Proceeding in

this manner, it is possible—in principle—to construct block-diagonalized
Hamiltonian matrices for any value of the quantum number n.

We are now in a position to consider the quantum description of a lattice
soliton. For each value of the principal quantum number n and propagation
number k, there is a lowest energy eigenvalue. These f lowest eigenvalues
lie on a band E = En(k), as is indicated in Figure 3. Each energy eigen-
value corresponds to a pure eigenstate, normalized as 〈ψn(k)|ψn(k)〉 = 1.
Wave packet solutions of the time dependent Schrödinger equation can
be constructed as sums over the principal quantum number (n) and the
propagation number (k); thus

|Ψ(t)〉 =
∞∑

n=1

an

∑
k

Gn(k)|ψn(k)〉exp (−iEn(k)t) , (17.10)

where k takes the f values between −π and π that are indicated in Figure
3.

The wave function of Equation (17.10) is a soliton wave packet, which
does not represent the most general wave function because it is constructed
only from eigenfunctions with eigenvalues on the soliton bands.Thus the
soliton wave packet is characterized by two interdependent properties: (i)
for given values of k and n, |Ψ(t)〉 has the lowest energy, and (ii) under the
same conditions, |Ψ(t)〉 has the highest probability of quanta being located
near each other.

For larger values of n, it is convenient to calculate the |ψn(k)〉 in a Hartree
approximation [16] and choose the an to correspond to a coherent state [7].
In the Hartree approximation, the binding energy is

Eb
.=

γ2

48ε
n(n − 1)2 ,

whereas the exact binding energy is

Eb =
γ2

48ε
n(n2 − 1) .
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4 Local modes in crystalline acetanilide

In the early 1970s, Careri attempted to circumvent some of the problems
arising in the study of natural protein by looking at hydrogen bonded
molecular crystals that can be regarded as ‘model proteins,’ such as crys-
talline acetanilide (CH3CONHC6H5) or ACN. The similarity of bond lengths
and angles for the peptide group (HNCO) suggested that the dynamic be-
havior of ACN might provide clues to the corresponding behavior of natural
protein. This comparison becomes more striking if one notes that both crys-
talline ACN and alpha-helix feature hydrogen bonded peptide chains with
the atomic structure

· · ·H – N – C = O · · ·H – N – C = O · · ·H – N – C = O · · · .
Careri’s intuition was rewarded by the discovery of the anomalous res-

onance peak at 1650 cm−1 in crystalline ACN (shown in Figure 4), but a
decade of effort established only that this peak was an Amide-I (CO stretch-
ing) resonance that could not be conventionally assigned. It was after all
possibilities for conventional assignment of the band had been exhausted
that dynamical self-trapping was considered [2].

The basic idea is that the 1650 cm−1 band is evidence of a self-trapped
Amide-I state (or local mode) arising through extrinsic interactions with
the lattice. This picture is related to—and it was inspired by—a soliton
theory previously proposed by Davydov for the alpha-helix structures of
natural protein [3, 11]. In both pictures the anharmonicity stems from lat-
tice interactions, but Davydov invoked acoustic mode interactions, whereas
Careri et al. considered optical mode interactions.

A theoretical model, therefore, is a one-dimensional lattice with a sin-
gle phonon degree of freedom (sometimes called an Einstein oscillator) of
frequency ω0, coupled to each Amide-I mode through a phonon coupling
parameter λ0. An energy operator is defined as

Ĥ = ĤCO + Ĥph + Ĥint ,

where

ĤCO =
f∑

j=1

[
E0B

†
jBj − J(B†

jBj+1 + B†
jBj−1)

]

Ĥph = h̄ω0

f∑
j=1

(
b†
jbj +

1
2

)

Ĥint = λ0

f∑
j=1

(bj + b†
j)B†

jBj ,

(17.11)

and j (= 1, 2, . . . , f) counts ACN molecules along the peptide chain. Thus
B†

j (Bj) are boson raising (lowering) operators for the Amide-I (CO stretch-
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FIGURE 2. An infrared absorption spectrum of crystalline ACN in the Amide-I
region. Notice both the anomalous peak at 1650 cm−1, indicating a self-trapped
(soliton) state, and the standard (unbound) peak at 1665 cm−1. (Courtesy of G.
Careri.)

ing) oscillators at site j, and b†
j (bj) are boson raising (lowering) operators

for the corresponding Einstein oscillators.
Let us assume a single Amide-I quantum (n = 1) and a temperature of

zero kelvin and, following Davydov, introduce a product approximation to
the solution.1 Thus

|ψ〉 = |Ψ〉|Φ〉 ,

where

1Although criticisms of the validity of this assumption have been advanced
[11], one should recall that it is equivalent to corresponding formulations of the
Born-Oppenheimer and Hartree approximations [12]. It is shown here that Davy-
dov’s approximation can be tested.
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|Ψ〉 =
f∑

j=1

aj(t)B†
j |0〉CO ,

and |Φ〉 is a sum of coherent states for the Einstein oscillators for which
〈Φ|bj |Φ〉 = βj . Treating 〈ψ|Ĥ|ψ〉 as a classical Hamiltonian implies the
dynamic equations

ih̄
daj

dt
=

[
E0 + W + λ0(βj + β∗

j )
]
aj − J(aj+1 + aj−1) ,

ih̄
dβj

dt
= h̄ω0βj + λ0|aj |2 ,

where W is the total energy of the Einstein oscillators. Assuming that
β̇j = 0 (the adiabatic assumption) and introducing the rotating transforma-
tion aj = φj exp[−it(E0 + W )/h̄] leads to the lattice nonlinear Schrödinger
equation

ih̄
dφj

dt
+

2λ2
0

h̄ω0
|φj |2φj + J(φj+1 + φj−1) = 0 , (17.12)

where it turns out that the anharmonic parameter (2λ2
0/h̄ω0) is about ten

times greater than the dispersive parameter (J).
To establish this inequality, note first that from detailed electromagnetic

calculations J = 4 cm−1 [4]. Second, if the inequality is satisfied, then it is
shown below that the binding energy of a self-trapped state (soliton) with
respect to an unbound Amide I mode (at k = 0) is

Eb
.=

λ2
0

h̄ω0
− 2J . (17.13)

Finally, in Figure 4, the 1650 cm−1 peak is assigned to a soliton and the
peak at 1665 cm−1 to an unbound mode. This implies that Eb = 15 cm−1

so (λ2
0/h̄ω0) = 23 cm−1, confirming the original assumption.

Because J is small compared with the extrinsic anharmonic parameter
(2λ2

0/h̄ω0), it is feasible to use a perturbation expansion in small J . This
approach has two advantages: (i) it provides quantitative estimates of the
accuracy of Davydov’s product assumption, and (ii) solutions are obtained
when the number of Amide-I quanta n is greater than unity. To this end,
it is convenient to write Ĥ in the form

Ĥ =
f∑

j=1

ĥj − JV̂ ,

where
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ĥj =
[
E0 + λ0(bj + b†

j)
]
B†

jBj + h̄ω0b
†
jbj

V̂ =
f∑

j=1

(B†
jBj+1 + B†

jBj−1) ,

and the ground state phonon energy is ignored.
The operator ĥj is the energy operator of a displaced harmonic oscillator

for which exact eigenfunctions are known [9]. Dropping the molecule index
j (= 1, 2, . . . , f), the eigenfunctions of

ĥ|u〉 = E|u〉
can be written as

|u〉 = |n〉|φ(n, ñ)〉 ,
where

|φ(n, ñ)〉 =
√
ñ! exp

[
−1

2

(
nλ0

h̄ω0

)2
]

×
∞∑

m=0

(−nλ0/h̄ω0)m−ñ

√
m!

Lm−ñ
ñ

[(
nλ0

h̄ω0

)2
]

|m〉 ,(17.14)

and

E = nE0 − n2 λ2
0

h̄ω0
.

In these equations, B†B|n〉 = n|n〉, b†b|m〉 = m|m〉, and Lm
n [ · ] is an

associated Laguerre polynomial.
Assuming periodic boundary conditions, a zero-order estimate (in powers

of J) of the wave function is

|ψ〉 =
1√
f

f∑
j=1

eikj |uj〉 , (17.15)

where k = 2πν/f and ν = 0,±1, . . . , f/2 (or ±(f − 1)/2) for f even (or
odd). This wave function is an eigenfunction of the translational symmetry
operator.

Next make two assumptions. The first is n = 1, implying that only a
single quantum of Amide-I oscillation is considered. The second is ñ = 0,
implying that the phonon system is in the ground state, as one expects at
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low temperatures. Neglecting terms of order (h̄ω0J/2λ2
0)2 ∼ 1%, the energy

is

E(k) .= E0 − λ2
0

h̄ω0
− 2J exp

[
−

(
λ0

h̄ω0

)2
]

cos k . (17.16)

Since the wavelength of infrared light is large compared with a lattice
spacing, only k = 0 unbound states will be observed experimentally. From
the first of Equations (17.11), the energy of such a state is

ECO(k = 0) = E0 − 2J.

If a wave packet of the energy eigenfunctions is constructed to localize
a quantum of Amide-I energy near a single molecule, then all values of k
must be equally represented, and from Equation (17.16) the average energy
of the wave packet will be

Esol = E0 − λ2
0

h̄ω0
.

Assigning ECO(k = 0) to the 1665 cm−1 peak in Figure 4 and Esol to the
1650 cm−1 peak implies that E0 − 2J = 1665 and E0 − λ2

0/h̄ω0 = 1650.
Since J = 4 cm−1, we find that λ2

0/h̄ω0 = 23 cm−1, in agreement with
our previous estimate of the anharmonic parameter, which was based upon
Davydov’s product assumption.

From Equation (17.16), the binding energy of a k = 0 soliton is

Eb = ECO(k = 0) − E(0) =
λ2

0

h̄ω0
− 2J

{
1 − exp

[
−

(
λ0

h̄ω0

)2
]}

,

which is larger than that of Equation (17.13). Also from Equation (17.16)
the effective mass of a k = 0 soliton is Msol = m∗ exp(λ0/h̄ω0)2, where
m∗ = h̄2/2a2J is the effective mass of an unbound mode. From numerical
analysis of Equation (17.12), on the other hand, it turns out that the soliton
is pinned to the lattice, implying that Msol = ∞. These results provide
quantitative estimates for errors arising from the product wave function.

In addition to the translational invariance of Equation (17.15), the exact
wave function has two additional properties that are not shared by the
product wave function:

(i) Higher levels of Amide-I excitation. One expects to observe an over-
tone series at the frequencies ν(n) = E(n) − E(0) ≈ 1673n − 23n2 cm−1,
where the coefficient of n has been chosen so ν(1) = 1650cm−1. Measured
overtone frequencies are as follows [15].
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n ν(n) measured predicted
1 1650.0 ± 0.5 1649.3
2 3250 ± 1 3249.2
3 4803 ± 3 4799.7
4 6304 ± 5 6300.8

If the coefficients are adjusted to ν(n) = 1674n − 24.7n2, the measured
values are predicted to an RMS error of 2.4 cm−1. Thus a slightly better
value for the extrinsic anharmonic parameter is

2λ2
0

h̄ω0
= 49.4 cm−1 .

(ii) Higher levels of phonon excitation. With n = 1 and ñ = 0, Equation
(17.14) shows that |φ(n, ñ)〉 reduces to a coherent state. What about ñ > 0?
For n = 0

|φ(0, ñ)〉 = |ñ〉 ,

a phonon number state with b†b|ñ〉 = ñ|ñ〉, which will be thermally popu-
lated when kT ≥ h̄ω0. Taking this into consideration leads to a quantitative
understanding of the temperature dependence of the 1650 cm−1 band that
is shown in Figure 4.

To calculate the temperature dependent intensity of the 1650 cm−1 band,
one must find the sum of all transitions from the ground states |ñ〉 to first
excited states |φ(1, ñ)〉 with m = ñ. Since the ground states are thermally
populated with probabilities

P (ñ) =
[
1 − exp

(
− h̄ω0

kT

)]
exp

(
−ñ

h̄ω0

kT

)
,

the temperature dependence of the 1650 cm−1 band is given by

W (T ) =
∞∑

ñ=0

P (ñ)|〈ñ|φ(1,m)〉|2.

Using identity number 9.976 from Gradshteyn and Ryzhik [8], this sum is
computed to be

W (T ) = exp

[
−

(
λ0

h̄ω0

)2

coth
(

h̄ω0

2kT

)]
I0

[(
λ0

h̄ω0

)2

csch
(

h̄ω0

2kT

)]
,

(17.17)
with I0[ · ] a modified Bessel function of the first kind.

Experimental values for W (T ) are as follows [13],
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Temperature (K) σ Relative intensity σ

21 4 1.000 0.016
21 4 0.996 0.016
53 4 0.892 0.019
53 4 0.895 0.019
100 10 0.710 0.022
100 10 0.726 0.022
149 6 0.496 0.025
149 6 0.507 0.025
227 12 0.356 0.028
227 12 0.346 0.028
305 8 0.170 0.032
305 8 0.169 0.032

where the σ are RMS errors.
Using the value λ2

0/h̄ω0 = 24.7 cm−1, the only free parameter in Equation
(17.17) is h̄ω0. Fitting to the experimental data requires the optical mode
frequency to be h̄ω0 ∼ 75 cm−1, a value that is in accord with the far
infrared lattice phonon spectrum of ACN [2].

5 Conclusions

Although this survey of quantum lattice solitons has skipped over many
details, we have managed to uncover a number of experimentally useful re-
sults. Since quantum effects appear primarily at the atomic level, emphasis
has been upon understanding the structures of states with few quanta, as
is expected in spectral observations of solitons on molecules and molecular
crystals.

In addition to such problems, we have considered soliton systems with
translational symmetry, a property that must be shared by the eigenfunc-
tions of the corresponding quantum system. Wave packets describing quan-
tum corrections to the classical behavior of a soliton are recognized as gen-
eralized Fourier transforms composed of extended eigenfunctions, and the
quantum uncertainty principle stems from the fact that components oscil-
lating at different frequencies will eventually get out of step. Thus the wave
packet describing the location of a nonlinear lattice solitary wave or soliton
disperses with time just as does that for an electron. From the perspective
of quantum theory, one is no more or less a ‘particle’ than the other.
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Noise in Molecular Systems
G. P. Tsironis

ABSTRACT Molecular and macromolecular systems in contact with fluc-
tuating environments close to equilibrium present several interesting trans-
port features. We will focus on simple systems constituted of particles in
periodic non-symmetric potentials under the influence of non-equilibrium
noise. The resulting ratchet or motor motion is manifested through non-
zero persistent particle currents. These model systems are not dissimilar to
motor proteins executing directed motion on cytoskeletal filaments.

1 Introduction

The simultaneous presence of nonlinearity and non-equilibrium noise in a
molecular system results many times in novel, interesting physical prop-
erties. The stochastic motion of a particle in a periodic not symmetric
potential and the resulting ratchet effect has been the focus of attention
recently [1, 2]. The original motivation of this effect was in fact biologi-
cal: When a microtubular associated protein (MAP) executes motion on
a microtubule, its diffusive dynamics has a specified direction. This direc-
tionality in the protein motion is associated with the non-symmetric form
of the periodic potential of the microtubule and is thought to be induced
by the correlated character of the ATP hydrolysis mechanism. Since the
original work on the correlated ratchet effect there has been an increased
interest in the phenomenon, both experimental and theoretical. On the
experimental front, optical, electrical and mechanical systems have been
shown to have the ratchet property. On the theoretical front, there have
been several extensions of the ratchet effect involving compound objects
[3, 4] and solitons [5].

The understanding of the exact mechanism of motor protein motion in
the cytoskeleton [6]-[18] has led physicists in the study of several stochastic
ratchet models the simplest of which involves one overdamped particle,
representing, for instance, the motor protein kinesin, in a periodic but
not symmetric force field, driven by different types of correlated noises.
The periodic forces are exerted by the 8nm long α-β partially asymmetric
tubulin dimers on kinesin while the noise terms represent the fluctuating
environment. This model leads to macroscopic particle current in a specific

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 357−370, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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direction determined by the potential asymmetry and the properties of
the noises. In the additive colored noise case, the finite correlation time
τ corresponds to ATP kinesin binding event time and subsequent energy
release through hydrolysis. The ATP hydrolysis rate is approximately 50s−1

and results on the average in one 8nm kinesin step per ATP cycle, i.e. to a
typical kinesin speed of 400nm/s [14, 15]. The single particle colored noise
model gives in the high correlation noise regime a natural interpretation
for the kinesin steps observed in experiments. In this regime the Brownian
particle simply waits in the potential minimum of a tubulin unit until the
right fluctuation arrives that making it “escape” to the next tubuline dimer
[19, 20]. The noisy environment is ambient liquid containing a variety of
molecules including ATP molecules at µM concentration levels. A large
number of unsuccessful binding attempts of ATP molecules contribute to
medium fluctuations while the successful critical noise fluctuation can be
interpreted as an ATP successful binding on kinesin. The critical binding
fluctuation determines the average exit time < T >, or average step time,
leading to a distance x after n steps, i.e. x ≈ n < T >.

2 Additive correlated ratchets

Consider the basic “engine” equations in the Langevin picture,

dx

dt
= f(x) + ξ(t)

dξ

dt
= −1

τ
ξ +

1
τ
η(t). (18.1)

Here x denotes the position of the Brownian particle in the overdamped
limit, and f(x) ≡ −V ′(x) where V (x) is a periodic non-symmetric po-
tential. Assuming a piece-wise linear potential with barrier height Q and
lengths d1, d2 (d1 < d2) we have in each periodic unit cell (α − β tubulin
units) of length d1 + d2 the positive force Q/d1 and the negative force
−Q/d2, where the latter is smaller in absolute value than the former.
The auxiliary variable ξ represents the coupling of the particle to the
environment; if the noise variable η(t) is Gaussian and delta-correlated,
< η(t)η(t′) >= Dδ(t− t′), then ξ(t) is an Ornstein-Uhlenbeck process, that
is, ξ(t) is Gaussian and exponentially correlated,

< ξ(t)ξ(t′) >=
D

2τ
e− |t−t′|

τ , (18.2)

with white noise strength D being proportional to the ambient tempera-
ture. When there are time-correlations in the noise the system is “open”
in the thermodynamic sense, and a non-zero current can arise due to the



18. Noise in Molecular Systems 359

asymmetry of the periodic potential. As a result, the particle can move
in a specified direction even when the driving fluctuations are completely
symmetric. The particle effectively acts as an engine that operates in the
Brownian regime. The engine consumes energy extracted from the nonequi-
librium fluctuations of the environment and transforms it into mechanical
work, manifested by its average net velocity in a given direction. The ef-
ficiency of this engine is determined mainly by two characteristics of the
system: the asymmetry of the ratchet potential, and the “environmental”
features such as the correlation properties of the non-equilibrium fluctua-
tions and the ambient temperature. The induced particle motion is a finite
temperature phenomenon that disappears at very high temperatures since
then the details of the asymmetric ratchet potential are washed out by the
noise. The presence of environmental correlations is included in the model
through additive colored noise.

When τ is exactly zero there is no current; in the limit D → 0 and for τ
very small the induced current also essentially vanishes. In the other limit,
that is, when τ � 1, we can evaluate an asymptotic expression for the
current using the following argument. Let us initially place the Brownian
particle at the bottom (minimum) of one of the cells of the potential. For
extremely correlated noise, i.e., when τ � 1, the effect of the white noise
η(t) in the evolution of ξ, given in Eq. (18.1), is negligible. Thus in this limit
we can set ξ̇ ≈ 0. The net force acting on the particle is the quasi-static
force f + ξ, i.e. the force ξ fluctuates but very slowly in the time-scale of
particle motion. The particle escapes to the next well, left or right, when
a fluctuation leads to a value of ξ of the appropriate size to cancel the
force due to the potential. The particle is thus brought to the “top of
the barrier.” The value of ξ must remain essentially constant for the time
that it takes the particle to reach this position. Once there, the particle
can immediately “roll down” to the next minimum in a time that is small
compared to the time it has waited for the appropriate fluctuation. In this
picture, the average time that the particle waits before passing from one
well to another is given by the mean first passage time for the noise ξ to
reach the appropriate critical value ξc to cancel the effects of the potential
[19, 20]. For the particle to escape to the right, the noise must reach the
critical value ξc

1 = Q/d2, and to escape to the left the critical value of
the noise is ξc

2 = −Q/d1. The mean first passage time for the Ornstein-
Uhlenbeck process ξ(t) to reach a value ξc

i is [21]

Ti(ξc
i ) =

√
2πDτ

|ξc
i|

exp
(
ξc

i
2τ

2D

)
. (18.3)

The color-induced current is proportional to the net rate R of escape from
a well. Inserting the appropriate critical values of ξ, this rate is then given
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by

R =
1
2

[
1

T1(ξc
1)

− 1
T2(ξc

2)

]
=

Q

2
√

2πDτ

[
1
d1

exp
(

− Q2τ

2Dd1
2

)
− 1

d2
exp

(
− Q2τ

2Dd2
2

)]
. (18.4)

The rate (18.4) exhibits a maximum at a finite value of τ (whose specific
value depends on the other parameters) even though it is an asymptotic
expression strictly valid only in the large-τ regime. The formula thus qual-
itatively correctly captures the finite-τ dynamics: it is known, mainly from
numerical simulations, that there is indeed a maximum in the current at
intermediate correlations [19] (Figure 1).

FIGURE 1. Color-induced rate R, proportional to the net current, as a function
of the correlation time τ . The parameter values are Q = 0.5, d1 = 2.5, d2 = 0.5,
and (a) D = 0.3, (b) D = 0.4, (c) D = 0.5.

In order to apply these ideas to true MAP’s we use for simplicity an
“upper bound” estimate for the mean first passage time from one tubu-
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FIGURE 2. Position-time traces for highly correlated, quasi-deterministic Brow-
nian engines showing the characteristic, step-like forward motion of molecular
motor proteins. The engine correlation time τ is the unique adjustable parame-
ter and relative large values of which denote a quasi-deterministic process. Protein
motor position in nanometers as a function of time in seconds for different cor-
relation times τ in nanoseconds. For the trajectories we used a potential barrier
Q = 10kBT and α-tubulin binding site dt = 2.4nm leading to forces of approx-
imately 16.6pN and −7.1pN . Higher correlation times lead to step-like protein
motion with long quiescent times while shorter correlation times result in biased
stochastic motion with completely different features.

lin dimer to the next. We assume that kinesin binds primarily to one of
the tubulin molecules leading to relatively asymmetric hypercell tubulin
potential ignoring thus exit times towards the high force direction as very
improbable. The mean exit time to the forward direction then (including
explicitly the damping coefficient γ) is

< T > =
√

2πDγτ

|ξc| exp
(
ξc

2τ

2Dγ

)
. (18.5)
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which is nothing but the Kramers time for the fluctuating force ξ to reach
for the first time the critical value ξc. The critical force ξc necessary for
canceling the tubulin force f(x) and rendering kinesin free to move to the
next tubulin hypercell is equal to ξc = Q/dt + γdt/τ . The first “dominant”
term is the total force need to be overcome and equal to the potential
maximum Q over the distance dt traveled while an additional “correction”
term (see ref. [20]) permits kinesin to move to the next cell before the
highly correlated force ξ acquires a new value and interrupts its exit flight.

The average upper bound residence time expression depends critically on
the correlation time τ as its only adjustable parameter and this dependence
is in the form < T >= A(τ)exp[S(τ)]. To find an estimate of this time we
consider a potential barrier is Q ≈ 8kBT while taking dt ≈ 5.3nm leads to
Q/dt ≈ 6pN . We also use D = kBT ≈ 4×10−21J at room temperature and
γ = 6 × 10−11kg/s and obtain ξc ≈ 6pN + 318pN/τ [ns] where τ [ns] is the
correlation time in nanosecond units. The final expression in “engineering
units” is [20]

< T > = 6.5 ns
√
τ [ns] e8+0.075τ [ns]+210τ (18.6)

We note the dramatic exponential dependence of the average step time on
the correlation time τ . For these numbers a correlation time of τ ≈ 100ns
leads to average exit time < T >≈ 2sec or a kinesin speed of 4nm/s which is
in general expected range but substantially smaller than the observed ones
due to the asymptotic character of the expression. Numerical simulations,
on the other hand, for the same range of parameters give smaller mean
exit times, leading to kinesin speeds one to two orders of magnitude larger,
results that are compatible with several experimental data. The simple
Brownian ratchet model for kinesin in the high correlation regime due to
its quasi-deterministic character (Figure 2), gives reduced position variance
compatible with the experiments. In the additive ratchet case, the variance
becomes substantially reduced with the increase of the correlation time
while backward slips are extremely improbable even for small potential
asymmetries.

From the compatibility of the simple correlated Brownian ratchet model
with the qualitative and quantitative features of kinesin motion a simplified
picture emerges for the movement of motor proteins on microtubles. We find
that the main features of this picture are the asymmetric periodic tubulin
potential and the coupling to a stochastic environment that is necessarily
highly correlated and quasi-deterministic. The single adjustable parameter
of the model is the noise correlation time that physically is related to the
event times for ATP binding at the active kinesin head as well as the
hydrolysis time. For reasonable kinesin parameters this time is of the order
of 100ns to 1µsec, a reasonable range for the phenomena involved. It is not
the aim of this simple Brownian model to account fully for the specifics
of the kinesin walk by taking into account higher dimensional features.
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It is however possible to extend it in this direction for a more complete
quantitative agreement with the data.

FIGURE 3. Simulation of the current as a function of the length of the rigid Brow-
nian dimer on the sawtooth ratchet. Parameter values are Q = 1.0, d1 = 0.55,
d2 = 0.45, τ = 0.1, and D = 0.5.

3 Current reversal

Current reversal on ratchet systems that arise as a consequence of a number
of modifications that can be made to the problem as stated above have
also been of interest. We mention in particular the current inversion found
when in place of a point particle the Brownian particle is an extended rod
(a rigid dimer). The dimer consists of a Brownian particle of length l that
experiences a net potential Ṽ (x) that is a superposition of the periodic
ratchet potential V (x) evaluated at x and at x + l, i.e., Ṽ (x) = V (x) +
V (x+ l) where V (x) is an asymmetric periodic potential. Current inversion
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has been calculated analytically and observed numerically for a dimer on
the ratchet when the driving noise is dichotomous [3]. The results shown in
Figure 3 confirm this behavior when the driving noise is Gaussian colored
noise. For very short rods (not unlike point particles) and for long rods
the current is to the right, but for rods of intermediate length there is a
regime where the ratchet current, driven by the same Gaussian noise, is
actually to the left. The simulations for the same rod lengths used in [3]
demonstrate that the current inversion range is approximately the same
as in the case of dichotomous noise [19]. An increase in the number of
simulations and/or of the lengths of the trajectories would again smooth
out the results and would more clearly display the fact that the current is
symmetric about a rod length of 0.5 for the potential parameters used in
the figure. The rigid rod or rigid dimer model can be used to describe very
simply in the context of the simple ratchet model the possibility of current
reversals, and as a result the differential motion of similar motor proteins
along the microtubule. Nevertheless, more involved models are necessary if
one wants to address additional problems, such as the dynamics of artificial
motor proteins.

4 Synthetic motor protein motion

The molecular motors kinesin and non-claret disjunctional (ncd) belong to
the same superfamily of motor proteins, and while they are almost identi-
cal they nevertheless move towards opposite ends of microtubules [6, 7, 11].
While the protein catalytic domain seems to be responsible for the pocessiv-
ity of the motor on the microtubule, the “neck” region adjacent to the motor
heads was found recently to control the directionality of movement [12, 13].
A simple Newtonian model of two motor head particles connected through
a neck coiled-coil spring (non-rigid dimer) whose rest length changes with
each ATP hydrolysis event captures the essential motor dynamics features.
In particular, the observed directionality reversal in synthetic “chimaeras”
with different coiled-coil regions results in the model from a change in the
stiffness of the spring coefficient. We find that motor speed is determined
by the average ATP absorption rate while the effect of ambient temper-
ature is small, leading to essentially non-Brownian, deterministic motor
motion [22].

In our synthetic motor protein model x1, x2 denote the positions of the
two dimer heads interacting with the microtubule surface through a one
dimensional periodic non-symmetric potential with a unit cell equal to 8nm
and with each-other through an internal harmonic potential Vs(x1, x2) =
1
2κ(|x1 − x2| − l(t))2 where l(t) is the time-dependent rest length of the
spring that takes two values corresponding to two different states of the
dimer. In state (a) l(t) = l1, the two heads are close to each other while
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after an ATP hydrolysis event a protein conformational change takes place
and the dimer transits to state (b) characterized by an opened α-helical
coiled-coiled with length l(t) = l2 . In the following we take l1 = 0 and
l2 = 8nm . Once ADP is released state (b) transits to state (a) and the con-
formational change cycle repeats with an ATP hydrolysis rate taken here to
be approximately 50s−1. We assume initially that l(t) varies periodically
in time with the dimer spending equal time at each state leading to a pe-
riod of the conformational change cycle tc = 0.02sec while ta = tb = tc/2
where ta, tb are the time the dimer stays at states (a) and (b) respectively.
This assumption for the specific time-dependence of l(t) can be easily re-
laxed. Each protein head is in contact with a heat bath at temperature
KBT simulated through a Gaussian white noise term. In the overdamped
limit the Langevin equations of motion that describe fully the motion of
each of the protein heads read

γẋ1 = fp(x1) + f1
s (x1) + ξ1(t)

γẋ2 = fp(x2) + f2
s (x2) + ξ2(t). (18.7)

The forces due to the head interaction with the microtubule are fp(x) =
−∂xVp where Vp(x) is the periodic non-symmetric microtubule potential
taken to be piecewise linear with period 8nm given explicitly over one
period through Vp(x) = Q x

d1
for 0 ≤ x ≤ d1 and Vp(x) = Q[1 + d1−x

d2
]

while d1 ≤ x ≤ d1 + d2. The coiled-coil spring force is f i
s(x) = −∂Vs/∂xi,

γ is a dissipation constant and ξi(t) is the Gaussian white noise where
< ξi(t1) ξj(t2) >= kBTγ δij δ(t1 − t2). For the calculations we take γ =
6 × 10−11kg/sec, Q ≈ 10kBT and consider the asymmetry in the binding
site within the α-β tubulin unit to be represented reasonably through the
selection d1 = 2nm, d2 = 6nm. Finally, we keep the coiled-coil spring
coefficient κ an unknown adjustable parameter that has different values
depending on the specific neck domain of different motor proteins. In order
to demonstrate the fundamentally deterministic aspect of the motion, we
will ignore at first the noise terms and show qualitatively that the motor
dimer moves due to spring conformational changes and that stiff springs
support motion to the left, while soft springs support motion to the right.
In this fully newtonian case, there are only two forces acting upon the
heads, the spring force fs and the microtubule potential force fp taking
the two values fr

p (steep potential side) and f l
p (less steep slope).

Let us first examine the case when the spring connecting the protein
heads is soft, as shown in the motion snapshots of Figure 4. Initially l(t) =
l1 = 0 and the two heads relax to the bottom of the lower microtubule
well. When ATP binds and the coiled-coil unwinds, the rest length of the
spring changes to l(t) = l2 while the spring tension tends to move the
two heads apart in order to relax the spring. For ultra soft springs with
fp >> fs, the spring tension cannot surmount the microtubule potential
force and both heads remain trapped in the bottom of the well. As the
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spring tension increases the head which is pushed by the spring upwards
(“lower head”) still cannot surmount the steep potential slope and remains
at the bottom of the well. On the contrary, the “upper” head is pushed up
towards the weaker force (f l

p ≤ fs), and the head moves upwards until the
spring relaxes. At that stage the distance between the two heads is exactly
l2, i.e. equal to the period of the potential and the spring is relaxed, while
at the same time each single head relaxes at the bottom of two adjoining
wells. Implicit in this analysis is the assumption that the spring remains
at its expanded state sufficiently long time for the right head to reach the
neighboring well. Subsequently the motor spring transits to the shrinked
state and thus the two heads tend to come closer to each other; they do this
using the easier path and thus the lower head moves forward completing
the one ATP-8nm step.

FIGURE 4. Quasi-deterministic protein motor motion on a microtubule, depicted
vertically as a saw-tooth potential. One ATP molecule is consumed per step of
the walk. The coiled-coil spring connecting the two motor heads is soft and the
motor moves forward towards the “easy” microtubule potential slope. Filled circle
designates the attached, lagging head. From left to right: a. Attached state. b.
ATP hydrolysis event and coiled-coil spring opening. c. Short-lived open spring
relaxed state. d. Motor steps forward through lagging head detachment. e. ADP
release and motor relaxation in attached state in the next tubilin unit ready for
repetition of the cycle.

We now consider the stiff spring case i.e. fs >> fr
p > f l

p (Figure 5).
The two heads are initially relaxed at the top well, i.e. l(t) = l1. When
the spring transits from state (a) to state (b), the spring tension pushes
the two heads apart. Since the potential force is negligible in comparison
to the spring tension the two heads move equidistantly apart and, due to
geometrical reasons, the lower (black) head moves “backwards”. When the
spring closes again the two heads move towards each other and for the same
reasons as previously they meet in the lower cell. Thus, in this case, after
one ATP cycle the motor protein movers one step “backwards”.

We found qualitatively that the specific value of the spring coefficient
connecting the two protein dimers plays a decisive role in directional-
ity selection. In order to connect this simple deterministic motor mech-
anism with the kinesin experimental data we perform numerical simu-
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FIGURE 5. Quasi-deterministic motor dimer walk when the coiled-coil spring is
hard and the motor moves forward towards the “difficult” microtubule potential
slope. The microtubule is depicted vertically. Filled circle designates the attached,
lagging head. From left to right: a. Attached state. b. ATP hydrolysis event and
coiled-coil spring opening. c. Short-lived open spring relaxed state. d. Motor
steps backward through lagging head detachment. e. ADP release and motor
relaxation in attached state in the next tubilin unit ready for repetition of the
cycle.

lations evaluating the protein velocities for different spring coefficient κ,
corresponding to different possible motor proteins and chimaeras. The re-
sults for the mechanical protein model are shown in Figure 5 where we
assumed that the process of opening and closing the coiled-coil spring is
stochastic. We observe directionality dependent on the actual calculation
of the spring coefficient κ, compatible with the synthetic protein exper-
iments. In addition to the spring dependent directionality reversal, the
model gives motor protein velocities in the expected experimentally range
for an ATP burning rate of 50s−1, or equivalently averaged residence times
< ta > + < tb >=< tc >= 0.02sec. These velocities increase linearly with
ATP concentration (or < ta >−1) until saturation, a feature obtained here
in the very fast switching regime. We note that exact residence portion the
dimer remains at its shrinked (< ta >) or strained (< tb >) state is not
important while min(< ta >,< tb >) >> ts where ts is the time the heads
need to move to the new ground state of the spring after some transition
from state (a) to (b) (or from (b) to (a)) and is typically of the order of hun-
dreds nanoseconds. The results do not depend critically on the asymmetric
potential details since for d1 = 1−3nm and d2 = 5−7nm, we obtain similar
qualitative results but with slightly modified κ-regions. Also, we could use
different values -within a certain region- of l1, and l2, without altering the
qualitative features of the dynamics of the system. For instance, numerical
simulations with l1 = 1 and l2 = 9 yield similar results. Finite temperature
Monte Carlo simulation results demonstrate that the basic features of the
zero-temperature model are preserved in the finite temperature case [22].
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FIGURE 6. Synthetic motor velocity as a function of the spring coefficient κ for
an averaged ATP absorption rate 50s−1. The direction of motion depends on the
protein neck spring.

5 Targeted energy transfer and nonequilibrium
fluctuations in bioenergetics

The simple mechanical and stochastic models used in order to understand
and analyze active transport within a cell have been so far phenomeno-
logical. In a more realistic physical model, one needs to worry about the
specifics of the energy transduction, viz. what are the mechanisms for the
energy transfer from the ATP binding site to relatively long distances (more
than one nanometer) and how the conformational changes occur that enable
motor motion. Additionally, one should investigate the role of the nonequi-
librium fluctuations in this process of energy transfer as well as the role
“landscapes” play in these processes [23]. Work in nonlinear lattice systems
demonstrates that intrinsic localized modes, or discrete breathers, might be
responsible for energy storage and transfer in nonlinear networks that re-
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semble somehow proteins [24]. In particular, we now know that breathers
induce multiple time-scales in nonlinear networks as well as are able to
transfer energy in discrete packages from site to site. What also seems to
be possible is that under some general conditions breathers can induce tar-
geted energy transfer in the lattice, that is both very efficient and very
site specific [24]. These latter features provide additional evidence that
breathers can provide a new paradigm for energy storage as well as trans-
fer in complex biological units. Even though specifics have to be worked
out in detail in the future, the already established properties of breathers,
viz. discreteness, stability, essentially lossless transport and robustness to
thermal fluctuations turn them into appealing agents for efficient energy
transduction in macromolecular systems. In the motor protein dynamics
case, for instance, one could invoke a targeted breather mechanism for the
transfer of energy from the ATP binding site to the neck region that con-
trols the motion. These an other related issues at the interface of physics
with biology will be certainly addressed in the near future.

Acknowledgments: I wish to thank S. Aubry, H. Frauenfelder and K. Lin-
denberg for very stimulating discussions on the topics addressed in this
chapter.
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Nonlinear Dynamics of DNA
L.V. Yakushevich

ABSTRACT The main features of nonlinear dynamics of DNA as a new
field of nonlinear science named nonlinear biomolecular dynamics are briefly
described

1 Introduction

Nonlinear dynamics of DNA is one of the branches of a new and rapidly de-
veloping field of nonlinear science named nonlinear biomolecular dynamics.
Only a few reviews on the theme can be pointed out, which were written by
Scott [1], Zhou and Zhang [2], Yakushevich [3], and Gaeta and co-authors
[4]. A collection of lectures made by participants of the International work-
shop in Les Houches (France, 1994) [5], selected paragraphs in the mono-
graph of Davydov [6] and the monographs of Yakushevich [7],[8] should be
also mentioned.
Nonlinear biomolecular dynamics can be determined as a part of the

general dynamics that deals with internal mobility of biomolecules. Theo-
reticians define it also as the next (anharmonic or nonlinear) approximation
after the first (harmonic or linear) one. In contrast to the linear approxi-
mation a nonlinear approximation is used when the amplitudes of internal
motions in biomolecules are large. Conformational transitions, denatura-
tion processes, formation of opening states in the processes of DNA-protein
recognition are some of the better known examples of the large-amplitude
motions.
Three events can be considered as having stimulated the appearance

and rapid development of the nonlinear DNA dynamics. The first was the
success of nonlinear mathematics and its applications to many physical
phenomena [9]-[11]. Second were the new results in studies of the dynamics
of biopolymers leading to understanding the important role of the dynamics
in the biological functioning of biopolymers [12]-[14]. The third event was
associated with the publishing of the series of works of Davydov, where for
the first time the achievements of nonlinear mathematics were applied to
biomolecules and the hypothesis of the occurrence of solitons in biopolymers
(namely, in alpha-helical proteins) were suggested [15].
The nonlinear dynamics of DNA was started in 1980 when the article

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 373−391, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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of five American authors: Englander, Kallenbach, Heeger, Krumhansl and
Litwin was published [16]. The article was titled “Nature of the open state
in long polynucleotide double helices: possibility of soliton excitations”, and
it was the first time that the nonlinear conformational excitations (or DNA
solitons) imitating the local opening of base pairs has been introduced. In
the article the first nonlinear Hamiltonian of DNA was presented, and this
gave a powerful impulse for theoretical investigations. A large group of au-
thors, including Yomosa [17]-[18], Takeno and Homma [19]- [20], Krumhansl
and co-authors [21]-[22], Fedyanin and co-authors [23]-[25], Yakushevich
[26]-[28], Zhang [29], Prohofsky [30], Muto and co-authors [31]-[33], van
Zandt [34], Peyrard [35]-[36], Dauxois [37], Gaeta [38]-[39], Salerno [40], Bo-
golubskaya and Bogolubsky [41], Hai [42], Gonzalez and Martin-Landrove
[43] made contributions to the development of this field by improving the
model Hamiltonian and its dynamical parameters, by investigating corre-
sponding nonlinear differential equations and their soliton-like solutions, by
consideration of DNA solitons and calculation of corresponding correlation
functions. The results obtained formed a theoretical basis of the nonlinear
DNA dynamics.
An experimental basis of nonlinear DNA dynamics was formed by the

results of experimental investigations on the DNA dynamics and inter-
pretations some of them in the frameworks of the nonlinear concept. The
most important results were obtained by Englander and co-authors [16]
on hydrogen-tritium exchange in DNA, by Webb and Booth [44], Swicord
and co-authors [45]-[47] on resonant microwave absorption (interpretations
were made by Muto and co-authors [31] and by Zhang [48]), and by Baver-
stock and Cundall [49] on neutron scattering by DNA. All these results,
however, admitted alternative interpretations (see the discussion in [3]),
and only after publication of the work of Selvin and co-authors [50], where
the torsional rigidity of positively and negatively supercoiled DNA was
measured, reliable experimental basis for theoretical predictions was given.
In this article we describe briefly the main features of nonlinear DNA

dynamics. We discuss the following questions:

• General description of DNA dynamics. Classification of the internal
motions.

• Mathematical modeling of DNA dynamics. Hierarchy of the models.

• Nonlinear mathematical models. Solved and unsolved problems.

• Nonlinear DNA models and experiment. Resonant microwave absorp-
tion.

• Nonlinear conception and mechanisms of DNA functioning.
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2 General description of DNA dynamics.
Classification of the internal motions

An important feature of the DNA structure having the form of double
helix [60]-[61] is that it is not rigid. On the contrary, the DNA molecule
has a rather moveable structure. The DNA molecule is usually immersed in
some thermal bath, and its structural elements such as individual atoms,
groups of atoms (bases, sugar rings, phosphates), fragments of the double
chain including several base pairs are in constant movement. The thermal
bath is not the only source of the DNA internal mobility. Collisions with
the molecules of the solution that surrounds DNA, local interactions with
proteins, drugs or with some other ligands also lead to internal mobility.
In this section we describe the main features of the DNA molecule as a
dynamical system.
Because of the structure of a DNA molecule is rather complex, one can

expect that the general picture of its internal mobility is also complex.
In the first approximation, however, it can be described by a few simple
characteristics: the time-scale, the amplitudes of the internal motions and
the energies or frequencies associated with these motions. So, we can state
that

i) the dynamical events in DNA occur on the time-scale ranging from
femtoseconds to at least seconds;

ii) the amplitudes of the internal motions can be both small (for exam-
ple, small vibrations of individual atoms or atomic groups near their
equilibrium positions) and large (for example, large amplitude mo-
tions of the fragments of polynucleotide chains associated with the
local unwinding or opening of the double helix);

iii) the frequencies associated with the internal motions are much lower
than the frequencies of more internal vibrations in isolated small
molecules.

To describe the picture of the internal DNA mobility in more detail, it
is convenient to classify DNA internal motions according to their forms
(types), energies, amplitudes and characteristic times. Some of the classi-
fications have been proposed in the works of Fritzsche [89], Keepers and
James [90], McClure [91], McCammon and Harvey [13], and Yakushevich
[3], [53]. For example, classifications proposed in [53] are based on the time
characteristics of internal DNA motions. The time-scale is divided there
into several ranges, and for each range, the main types of internal motions,
the main structural elements involved in these motions, the energies of
activation and the amplitudes of the motions are described.
Investigators who are interested only in the part of the general picture

that is assumed to be connected with the DNA functioning, usually re-
strict ourselves by consideration of the internal motions that belong to the
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nanosecond range and its neighborhood. This range includes beside oth-
ers the so-called solid-like motions of sugars, phosphates and bases, which
are very important in many biophysical phenomena: conformational transi-
tions, gene regulation, DNA-protein recognition, energy transmission, DNA
denaturation, among others.

3 Mathematical modeling of DNA dynamics.
Hierarchy of the models

3.1 Principles of modeling
Because of the complexity of the general picture of DNA internal dynamics,
mathematical modeling of the dynamics is also rather complex. It requires
detailed information about physical parameters such as coordinates, mass
and moments of inertia of structural elements, and about interactions be-
tween the elements. The problem, however, can be simplified if we construct
approximate models that imitate only the internal motions which make the
main contribution to biological processes. This approach is widely used in
studying DNA dynamics. Let us describe briefly the main principles of
constructing the models in this way.
To construct an approximate model, first of all it is necessary to sim-

plify the general picture of the DNA internal motion. This can be done
by selecting of a limited set of internal motions that are dominant. This
selection can be done in many ways, and this explains a large variety of the
models proposed. Secondly, we need to describe these motions by mathe-
matical equations. This can be done directly or through intermediate stage
consisting in finding some physical (very often mechanical) analog with the
same type of internal motions and interactions. Thirdly, we need to solve
the equations and to interpret their solutions in terms of the parameters of
the DNA internal dynamics.
If we do not plan to construct a new dynamical model and want only

to choose an appropriate model among those proposed earlier by some
other authors, it is convenient to use a special approach where each of the
models is considered as an element of a hierarchy. This approach automat-
ically gives us information about possible restrictions of the models used
and about the relations between the models. Let us describe briefly the
hierarchy of structural models of DNA, and discuss how it can be used to
construct the hierarchy of the dynamical models.

3.2 Structural hierarchy
To construct a hierarchy of structural models, it is convenient to arrange
all known structural models of DNA in order of increasing complexity. In
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this case the models look like the elements of a hierarchy. Let us describe
the main possible levels of the hierarchy.
The first level of the hierarchies formed by the simplest structural model

of DNA, which is prompted by microphotos of the molecule where the DNA
molecule looks like a thin elastic filament. So it can be suggested that a
uniform elastic rod with a circular section can be considered as the simplest
structural model of a fragment of DNA. The discrete analog of the rod-like
model consists of a chain of coupled discs, each disc imitating a very small
piece of the DNA molecule, which contains one base pair.
The second level of the hierarchy is formed by some more complex struc-

tural models of the DNA that take into account that the molecule consists
of two polynucleotide chains interacting with one another by hydrogen
bonds and being wound around each other to produce the double helix. In
this approximation, the internal structure of the chains is neglected, and
each of the chains is simulated by an elastic uniform rod (in the continuous
case) or by a chain of coupled discs (in the discrete case). So, the complete
model consists of two elastic rods (or two chains of coupled discs) weakly
interacting with one another and being wound around each other. In the
discrete case each of the discs imitates a very small peace of one of two
polynucleotide chains, which contains only one base. To reduce calcula-
tions, a more simple version of the models described above is widely used,
consisting of two straight uniform elastic rods weakly interacting with one
another. And the discrete analog of the model has the form of two straight
chains with discs connected with one another by longitudinal and trans-
verse springs.
The third level of the hierarchy is formed by a group of structural mod-

els that take into account additional details of the internal DNA structure.
Every polynucleotide chain is considered here as that consisting of mutu-
ally rigidly bound atomic subgroups: the bases, the sugar rings and the
phosphate-carbon pieces, with relatively weak, flexible bonds connecting
them with each other.
The fourth level of the hierarchy contains the so-called lattice mod-

els where a finite group of atoms (named nucleotide) forms a unit cell
quasiperiodically repeating along the DNA molecule.
The fifth level of the hierarchy comprises the most accurate structural

models taking into account the positions of every atoms of the molecule.

3.3 Dynamical hierarchy
The hierarchy of dynamical models can be easily constructed by the follow-
ing way. Let us assume that the structural models described in the previous
section are not static but dynamical. That is, all structural elements of the
models are movable. Because the models have been arranged already in the
order of increasing their complexity, we obtain automatically a hierarchy
of the dynamical models that is briefly described.
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The first level of the hierarchy is formed by the rod-like model (and by
its discrete analog) having three types of internal motions: longitudinal and
rotational motions of small elements of the rod bounded by adjacent cross
sections, and bending motions.
The second level is formed by the model consisting of two elastic rods (or

by their discrete analogs) weakly interacting with one another. The model
has six types of internal motions: longitudinal, transverse and rotational
motions in both rods.
The models of the third level take into account that each of the DNA

strands consists of three types of atomic groups: sugars, phosphates and
bases, and imitate their motions as solid like motions of the atomic groups
weakly interacting with each other. To calculate how many types of internal
motions are described in this model, we should take into account that in
the extreme case when the connecting bonds between the groups are absent
every group has six degrees of freedom, and that every chain has three
types of groups. Thus, we obtain 36 degrees of freedom (instead of three
for the first level models and six for the second level models). However, if
we consider the connecting bonds, the number of degrees of freedom will
be decreased.
The models of the fourth level describe internal motions in a lattice with

a unit cell formed by a finite group of atoms (nucleotide) that periodically
repeats along the DNA. In this approximation we consider all displace-
ments of the nucleotide atoms but restrict ourselves by consideration of
only homopolymer chains.
Finally, the fifth level is formed by the most accurate models of the DNA

molecule where all motions of all atoms are taken into account.
In conclusion, let us consider one example illustrating how the hierarchy

of the dynamical models can be applied. Assume, that we study the dy-
namical aspects of the process of local opening the double helix. Which of
the model should be chosen? We could begin with the simplest models of
the first level, but these models are not appropriate because they do not
take into account the DNA internal structure at all. The second level mod-
els are more appropriate, and they can be used as the first approximation.
The third level models are more accurate and their application permits one
to describe the process in more detail. Their application can be consider as
the second approximation, and so on.
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4 Nonlinear mathematical models. Solved and
unsolved problems

4.1 Ideal models
All internal motions mentioned above can be described by differential equa-
tions. If we do not restrict ourselves by consideration of only small ampli-
tude motions, these equations are nonlinear. So, in the continuum approx-
imation we can write three nonlinear coupled differential equations for the
models of the first level, six equations for the models of the second level
or more equations for the third or higher level models, the equations being
arranged in the order of increasing complexity, thus forming a hierarchy.
As an example, let us discuss in more detail mathematical models of the

second level. These models are very important because as was mentioned
above the models of the second level can be appropriate for describing
the formation and dynamics of open states in DNA. In thegeneral case
the Hamiltonian of the model of second level consists of six terms. Three
of them describe longitudinal, transverse and rotational subsystems and
the other three describe interactions between them. In other words in the
continuum approximation the model can be described by a system of six
coupled nonlinear differential equations. No one has yet tried to investigate
the system as a whole because of its complexity, but some particular cases
were studied intensively.
One of the most interesting and promising particular case has been pro-

posed by Peyrard and Bishop [35] . Their model takes into account only
the transverse internal motions; thus it consists of two (instead of six)
equations describing transverse displacements in two DNA strands. It was
shown that the model equations has soliton-like solutions which have been
successfully applied to explain the mechanism of DNA denaturation.
Another particular case has been considered in the works of Yomosa [17],

[18] and other authors [16], [19]-[20], [23]-[24], [27], [29]. Their model takes
into account rotational degrees of freedom. The model consists of two (in-
stead of six) equations describing rotational displacements in DNA strands.
It was shown that among solutions of the model equations there are soliton-
like solutions, which successfully have applied to explain the mechanisms
of long-range effects in DNA and to solve the problem of direction of the
process of transcription.
There are also a few particular cases where investigators tried to take

into account interactions between different types of motions. So, in the
work of Muto et al. [33] transverse and longitudinal internal motions and
their interactions were taken into account. In the work of Zhang [48] longi-
tudinal and rotational motions and interactions between them were taken
into account. We could add also to this list the works of Xiao et al. [51]
and Volkov [52].
Concerning the whole problem consisting of six nonlinear differential
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equations, it still remains unsolved. Moreover there are some difficulties
even in finding analytical form for the terms describing the interactions.
One of the approaches giving a possibility to construct these terms has been
proposed recently in our work [53], and it is based on the representation
of the model Hamiltonian in terms of vectors of displacements of the DNA
structural units.

4.2 Nonideal models
Till now we discussed ideal DNA models where the effects of environment
and inhomogeneity were not taken into account. These effects can be omit-
ted in the first approximation of the theory, but they become important
when we try to apply theoretical results to explain experimental data on
the dynamics and functioning.
In the general case the modeling of DNA-environment interaction is a

rather complex problem, but it can be reduced in the first approximation
to two effects: the effect of dissipation and the effect of an external field.
There are many approaches to modeling these two effects and some of them
were discussed in [26]. In most of the approaches, investigators assume that
the DNA-environment interaction leads to small perturbations of the solu-
tions of the ideal model dynamical equations and use a linear perturbation
technique to solve the equations.
Very similar approaches are used to solve the problem of nonlinear dy-

namics of inhomogeneous DNA. To receive inhomogeneous model equations
investigators usually suggest that the coefficients of nonlinear differential
equations are not constant but functions depending on a variable z, where
the z axis is parallel to the DNA axis. So, there is no problem in obtain-
ing inhomogeneous nonlinear equations, but there is a problem in solving
them. If we suggest, however, that perturbations due to inhomogeneities
are small, a linear perturbation technique to solve the equations can be
used [26]. In the other cases, only computer simulations of the dynamics of
the nonlinear inhomogeneous DNA system are possible [40].

4.3 Statistics of solitons in DNA
In the dynamical models discussed above it was assumed that only one
nonlinear excitation (soliton) was present, so the possibility of exciting two
or more nonlinear excitations, their collisions and interactions were not
considered. But DNA is a rather long molecule, so one can expect that
several nonlinear excitations can be excited simultaneously. In this case,
we should consider an ensemble of solitons and discuss their statistics. The
latter becomes very important when we try to interpret experimental data
on scattering (neutrons or light) by DNA or the data on DNA denaturation.
Different approaches to consideration of statistics of solitons in DNA are

possible. One of them was developed by Peyrard and co-authors [35], [54].
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It is based on the method of transfer operators suggested by Krumhansl
and Schrieffer [55]. This method gives a possibility to calculate classical
partition function, free energy, specific heat and other characteristics of the
nonlinear DNA system. The results of these calculations were successfully
applied to the problem of DNA denaturation.
Another method was proposed by Fedyanin and Yakushevich [7], [23],

which is based on the similarity between the dynamical properties of soli-
tons and the dynamical properties of ordinary classical particles. This sim-
ilarity has been demonstrated for many nonlinear systems, and in [7], [23]
it was shown for DNA. According to the results obtained there, we can
ascribe mass m, velocity v and energy E to DNA soliton, and consider
instead of ensemble of solitons an ensemble of ordinary classical particle
with the same dynamical characteristics. To simplify calculations it is of-
ten suggested that the number of solitons is not large and that ensemble
of particles can be described as an ideal gas. With these assumptions, it is
not difficult to calculate different macroscopic characteristics of the system
such as large statistical sum, thermodynamical potential, correlation par-
ticles, density of the particles an others. This approach has been applied
to calculations of the dynamical form-factor of slow neutron scattering by
DNA solitons [23]. Predictions made in this application can be checked
experimentally.

5 Nonlinear DNA models and experiment

Let us discuss now experimental methods of studying DNA dynamics and
the data that are interpreted in terms of nonlinear theory. To be impartial,
we present here both the arguments in favor of interpretation of experi-
mental data in the frameworks of nonlinear conception and the arguments
against. In addition, we describe new approaches in experimental studying
nonlinear DNA properties, which might be able to solve the contradiction
between these two positions.

5.1 Hydrogen-tritium (or hydrogen-deuterium) exchange
Method of hydrogen-tritium (or hydrogen-deuterium) exchange is widely
used to study internal DNA dynamics [56]-[58]. The method is especially
effective in studying the dynamics of open states.
Indeed, from the analysis of the data on hydrogen-tritium exchange,

Englander and co-authors [16] came to the conclusion that open states
with low energies and slow opening and closing rates, can be interpreted
as structural deformations formed by several adjacent unpaired base pairs.
They assumed a mobile character of the deformations, that is a capability
to diffuse along the double helix. It was suggested also that the movement
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of the deformations can be modeled mathematically as a propagation of
solitary waves which are the kink- and antikink-like solutions.
These suggestions were widely discussed and even criticized by some the-

oreticians and experimenters. The criticism of theoreticians was directed to
the oversimplicity of model. As a result of the discussion, many improve-
ments of the initial model have been proposed [17]-[27].
The criticism of experimenters, and especially, the arguments of Frank-

Kamenetskii [59]-[60], which were based on the statement that the value of
probability of base-pair opening that was taken from the data of Mandal
and co-authors [58] and used later by Englander and co-authors [16], are
not correct. We should state that the question remains open, and some
other additional experimental investigations are required to clarify it.

5.2 Resonant microwave absorption
One more useful tool in the research of the nonlinear properties of biomolecules
is the studies of interaction of the molecule with microwaves. The most
impressive example of application of the method is the history of investiga-
tions of resonant microwave absorption (in the range of several gigahertz)
by aqueous solutions containing DNA.
Experimental evidence of resonant microwave absorption in DNA was

received at first by Webb and Booth [44] and later by Swicord and co-
authors [45]- [46]. Although their results are still controversial [61]-[64], they
stimulated theoreticians to study the problem. As a result, many different
approaches has been proposed. Some of them were based on the linear
(harmonic) model [65]-[67]; others were based on the nonlinear conception
[31], [48], [68].
The first nonlinear mathematical model of interaction of DNA with the

external microwave field was proposed by Muto and co-authors [31], [68].
As the basis they used the ideal rod-like model of internal DNA dynam-
ics, which describes longitudinal displacements in DNA. To imitate con-
ditions of the microwave experiment, Muto et al. added two additional
terms imitating the effects of dissipation and the effects of interaction with
the external (microwave) field. The resulting equation had the form of the
Ostrovskii-Sutin equation. Using a special numerical procedure Muto et al.
[31] calculated the absorption spectrum and compared it with the spectrum
calculated earlier by Van Zandt [66] in the framework of the linear approx-
imation. The results obtained were in close agreement only for the fourth
peak (the third overtone). The most marked differences were observed for
the first (fundamental) peak, namely, in the nonlinear approximation, the
resonance peak exhibited a multicomponent character (fine structure) and
the linewidth of the peak was not simply related to the damping constant
as in the case of the linear approximation. The difference between the spec-
tra can be explained by the presence of the nonlinear term in the model
equation.
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The approach of Muto et al. was improved by Zhang [48]. He considered
a rod-like model of DNA (as Muto et al. did), but took into account both
longitudinal and torsional degrees of freedom. As a result, instead of one
model equation he obtained two coupled nonlinear equations. To consider
the microwave absorption by aqueous solutions containing DNA, Zhang
added four terms (two damping terms and two driving terms) and solved
the resulting system of two nonlinear coupled equations by the method of
perturbation. As a result, he obtained that i) the resonant absorption of mi-
crowave energy is possible for both longitudinal and torsional modes, ii) the
resonance frequencies are in the region of gigahertz and subterahertz, iii) for
both modes the so-called subharmonic resonances are possible. However,
these theoretical predictions have not been checked yet by experimenters.

5.3 Scattering of neutrons and light
There are a few attempts to explain the data on neutron scattering by
DNA in terms of solitons. We describe here two of them. One was made in
the works of Fedyanin and Yakushevich [3], [7], [23] and the other in the
works of Baverstock and Cundall [49], [69]-[70].
In the works of Fedyanin and Yakushevich [3],[7], [23] some results on

calculations of the dynamical form-factor of scattering thermal (slow) neu-
trons by DNA solitons were obtained. Calculations made by these authors
on the basis of simple sine-Gordon model predict the existence of the central
peak in the spectrum of scattering. The parameters of the peak (integral
intensity and width) depend on the temperature and the wave vector which
is a difference between the final and initial wave vectors of neutrons. The
behavior of the parameters of the central peak predicted by theory could
be checked experimentally.
We should note, however, that the results described above are changed

if instead of a simple sine-Gordon model we take the helical version of
the sine-Gordon model, proposed in [23]. The result of calculations of the
dynamical form-factor can be interpreted as the splitting of the central peak
into two components. This prediction could be checked experimentally.
Baverstock and Cundall [49], [69]-[70] used the soliton idea to interpret

the experimental data on scattering of fast neutrons by DNA. We should
note that interaction of fast (high energy) neutrons with DNA differs sub-
stantially from the interaction of the thermal (low energy and slow) neu-
trons described above. The main difference is that the fast neutron scat-
tering is accompanied by the formations of radical anions. The studying
of the yield of radicals is one of the powerful methods permitting one to
obtain information about DNA internal dynamics. In 1986 Arroyo and co-
authors [71] investigated the radical yield dependence on the direction of
irradiation of oriented fibers of DNA. Their results showed that the radical
anions of thymine were formed in roughly equal amounts to the guanine
anions when the neutron flux was perpendicular to the axis of the DNA
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molecules. When the flux was parallel to the DNA axes a protonated form
of a thymine anions dominated, and overall radical yields were lower by
a factor of three in the parallel sample. These results were interpreted by
Miller et al. [72], who assumed a large asymmetry in the thermal conductiv-
ity of oriented films. With the help of a track structure model for protons, it
was shown that irradiation by the protons parallel to the axes of the DNA
molecule results both in the formation of the thymine anion and, from the
same particle, further energy deposits of the vibrational excitations. Some
of these may migrate to the sites of thymine anions, resulting in sufficient
thermal stimulation of the thymine among donor interaction to promote
protonation. Where the proton direction is perpendicular to the axes of the
DNA molecules, such migration will be impeded by the low intra-molecular
thermal conductivity. This idea was developed by Baverstock and Cundal
[69]-[70]. Taking into account that the deposition of ionizing energy into
condensed media is a highly nonlinear process, they suggested that it can
give rise to soliton-like species that enables energy to be transferred with-
out loss over long distances. Presently, there is not a possibility to check
this interpretation experimentally.

5.4 Fluorescence depolarization
The method of fluorescence depolarization is widely used for measurements
of the torsional constants of biopolymers. In 1992, Selvin et al. [50] used this
method for measurements of the torsional rigidity of positively, relaxed and
negatively supercoiled DNA. For the purpose they used Time Correlated
Single Photon Counting (TCSPC) of intercalated Ethidium Bromide. The
measurements were made in the wide range of superhelical density with
a time-resolution of 75 picoseconds extending from 0.75 nanosecond, the
range in which DNA twisting motions dominate the fluorescence depolar-
ization signal.
The main result of the measurements was rather unusual: the torsional

rigidity of the DNA molecule was not a constant, as it had been suggested
before. Thus the DNA molecule cannot be considered as a linear system.
Selvin et al. suggested that a more accurate mathematical model of the in-
ternal DNA dynamics should consist of coupled nonlinear torsional springs.
According to their estimations, the anharmonic term in the model Hamil-
tonian should be approximately 15% for twist fluctuations at room tem-
perature. These results provide rather reliable evidence of the nonlinear
nature of the internal DNA dynamics.
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6 Nonlinear conception and mechanisms of DNA
functioning

An important and traditional problem of DNA science is to relate the DNA
functional properties with its structural and dynamical properties. We shall
describe here several examples where the mechanisms of conformational
transitions, of long-range effects, of regulation of transcription process and
of DNA denaturation are explained in terms of nonlinear dynamics.

6.1 Nonlinear mechanism of conformational transitions
An interesting application of the nonlinear theory is associated with the
interpretation of the mechanism of transitions between different conforma-
tional forms of a DNA molecule. For the first time the relation between
the phenomenon and the nonlinear theory was noticed and reported by
Krumhansl in 1982 at the workshop in Gysinge [73], after which this ap-
proach was developed by many other authors [21]-[22], [29], [74]-[78].
As an example, let us consider the transition between A- and B-forms of

the DNA molecule. The transition can occur due to the change of tempera-
ture, of pH, of hydration or of some other parameters. It is easily visualized
by X-ray diffraction studies of DNA fibers: if the fibers, for example, are al-
lowed to dry, they produce an A-type diffraction pattern, and if the fibers
remain hydrated, the pattern is a B-type. So, the process of transition
can be considered as a movement of the boundary between two (A and
B) ranges. This movement is very similar to the movement of a boundary
between two different phases in physical systems. It is well known, how-
ever, that in physics the transition processes are successfully described by
kink and antikink solutions of corresponding nonlinear dynamical equa-
tions; thus one can expect that the movement of the boundary between
two DNA regions are also described by soliton-like solutions of kink (or an-
tikink) type. This suggestion was confirmed by theoretical results obtained
in [76] where nonlinear equations describing A-B transitions were derived.
One of the exact solutions of the equations had the form of kink, and this
solution was interpreted as a moving boundary between two regions one of
them having the A-form and the other having the B-form.

6.2 Nonlinear conformational waves and long-range effects
During the 70’s and 80’s a great deal of experimental work was done on
long-range effects in DNA [79]-[83]. These effects can be described in the fol-
lowing way. Let us consider a system containing two protein molecules and
one DNA molecule having two sites: 1 and 2. It is assumed that these pro-
teins specifically interacts with the sites, namely, the first protein molecule
can bind to site 1 and the other protein molecule can bind with the other
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site: site 2. The effect is that the binding of the first protein with site 1
influences the binding of the second protein molecule with site 2 even when
the distance between the sites reaches hundreds or thousands of base pairs.
Among different explanations of the effect, there is one which is of most

interest. According to it, the effect of the binding of the first protein
molecule to site 1 is accompanied by a local distortion of the DNA confor-
mation, which can propagate along the double DNA chain. When reaching
site 2 it changes the conformational structure of the site, which in turn
changes the binding constants of the second protein with the site.
This mechanisms can be easily interpreted in terms of nonlinear dy-

namics. Indeed, formation of the local distortion can be interpreted as an
excitation of a nonlinear wave (or soliton) and propagation of the distor-
tion along the double helix as transmission of the nonlinear wave along
the DNA. To model the long-range effect more correctly we should know
many more details on the DNA-protein interaction and try to construct
mathematical models that take them into account.
This approach was developed in [84]-[85] to give an interpretation of

different stages of the transcription process. Moreover a more general as-
sumption was made, namely, the nonlinear solitary waves moving along the
DNA molecule could be a suitable model for the regulation and coordina-
tion of simultaneous transcription of many genes.

6.3 Direction of transcription process
From numerous biological experiments it is well known that the directions
of transcription processes are different not only for DNA molecules of dif-
ferent living organisms but also for different promoter regions of the same
DNA molecule. For some of the promoters the transcription process prefer-
ably develops in the up-stream direction, for some other promoters, in the
down-stream direction. There are also promoters that do not have a prefer-
able direction of transcription.
An explanation of these phenomena has been given by Salerno [40], [86]-

[88], who used a discrete variant of the nonlinear model of the second level
that took into account only rotational degrees of freedom. Corresponding
model equations were studied numerically, and a kink-like solution of the
continuum version of the equations was used as an initial condition. It
was found that an initially static soliton can (i) stay without moving or
(ii) oscillate or (iii) move along the DNA molecule in one of two possible
directions: up-stream or down-stream. In the case (iii) when soliton moves
the problem of the direction of the movement (or the problem of direction
of transcription) arises. Salerno suggested that the direction depends on
the sequence of bases near the starting point. To check the suggestion, he
took as an example the real sequence of bases corresponding to T7A1 DNA
promoter, and he found that in the case when initially soliton was placed
outside the promoter the soliton remained static. When the soliton was
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placed inside the promoter region, the solitary wave began to move to the
left end of the chain. This result is in a good agreement with known data
on the functional properties of T7A1 promoter. Moreover, this result shows
the existence of dynamically active region inside the promoter region.
Thus this example shows that the approach of Salerno gives us an ef-

fective tool for indication of dynamically active regions in DNA. Moreover
we could expect that these regions correspond to functionally active re-
gions. If this suggestion is confirmed, scientists will have another method
of analyzing and interpreting the DNA code.
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ABSTRACT The molecular dynamics simulations originally performed
by Fermi, Pasta, and Ulam for an isolated one-dimensional chain with
cubic anharmonicity had led afterwards to the discovery of stable coher-
ent structures called “solitons”. Any study of the stability of solitons on
such a one-dimensional lattice with respect to transverse motions of chain
atoms or molecules requires introduction of a secondary structure real-
ized for biological macromolecules in the form of a helix. In the simplest
case of intermolecular interactions with spherical symmetry, the straight-
forward generalization of the Fermi-Pasta-Ulam chain to higher dimensions
gives rise to the helical structure: zigzag in two dimensions and α-helix
in three dimensions. The planar zigzag structure is provided by the first-
and second-neighbor intermolecular bonds, whereas the helical structure
in three dimensions requires for its stabilization, at least, three types of
interactions. The coupled nonlinear field equations that describe longitu-
dinal and transverse displacements of molecules in the helix backbone are
studied. In particular, stable non-topological two- and three-component
soliton solutions in two and three dimensions, respectively, are shown to
exist. These solutions describe supersonic pulses of longitudinal compres-
sion propagating together with localized transverse thickening (“bulging”)
and torsional stretching (twisting). Other, more specific, types of solitons
are investigated in two dimensions for the zigzag backbone.

1 Introduction

One of the most widespread models used for studies of nonlinear dynamics
is a one-dimensional (1D) anharmonic lattice termed the Fermi-Pasta-Ulam
(FPU) chain [10], the original investigation of which gave rise to discovery
by Zabusky and Kruskal of a soliton [19]. Any intermolecular potential in
such a 1D lattice has a hard (“positive”) anharmonicity. This is a conven-
tional type of anharmonicity in nonlinear lattices and its physical meaning
is as follows. When nearest-neighbor atoms or molecules of the chain are
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displaced from their equilibrium positions, a repulsion force between them
becomes stronger than the harmonic approximation of this interaction. In
other words, a hard anharmonic force contributes to this repulsion with
the positive sign. As a result of the presence of such a positive anhar-
monicity, dynamically stable solitary waves can propagate along the chain
with supersonic velocities [19, 17]. These nonlinear collective excitations
are referred to as the lattice (or acoustic) solitons.
In applications to real biological macromolecules [2, 18], the standard 1D

FPU model should be generalized in order to include transverse motions
of chain molecules. However, as shown by numerical simulations [14, 13],
soliton excitations in anharmonic chains are extremely sensitive to their
transverse perturbations and therefore the problem of soliton propagation
in such 3D entities is far from fully understood. Consequently, the ques-
tion on the existence and stability of moving solitary waves along realistic
biomolecules, considered in three dimensions, is of great interest.
Here we deal with looking for “numerically exact” solitary wave solutions

for a helix backbone, the molecules of which are allowed to move in two or
three dimensions. All intermolecular interactions are assumed to be of the
point-point type with spherical symmetry. The backbone is considered as an
isolated object which is not subjected to any substrate potential. Since only
point-point intermolecular interactions are involved, the 3D helix backbone
will be stabilized only if, besides the nearest-neighbor interactions, at least,
two other types of intermolecular forces are involved. Particularly, for the α-
helix macromolecule, these interactions are assumed to take place between
the first, second, and third neighbors.
Finally, it should be emphasized that even if the molecules are assumed

to be coupled by harmonic forces, an effective anharmonicity appears due
to geometry of the backbone. However, this “geometric” anharmonicity
appears to have the opposite (“negative”) sign compared with intrinsic hard
anharmonicity of chemical bonds. For other purposes, namely breather-like
solutions, the effects of such a geometric nonlinearity have previously been
investigated by Cadet [1].

2 Helices in two and three dimensions

Let us consider molecules or groups of atoms (e.g., amino acids) in three
dimensions which are linked together in a periodic linear (valence-bonded)
sequence of a helical form, as shown in Fig. 1, by the first-, second-, and
νth-neighbor (when counted within this sequence) forces of spherical sym-
metry. The integer ν > 2 (in the case of three dimensions) is required
to satisfy the condition that a distance dν between the νth neighbors is
the shortest length among other intermolecular distances, except for d1
and d2, distances between the first and second neighbors. Then, ν deter-
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mines the number of “spines” within the helix backbone (e.g., ν = 3 for
the α-helix), periodic subsequences with the shortest lattice spacing dν .
Since all intermolecular forces in the chain are assumed to be of spherical
symmetry and the molecules are allowed to move in all the three dimen-
sions, the forces between the nearest neighbors (valence bonds) together
with the forces between the νth-neighbor molecules (e.g., hydrogen bonds
in the α-helix) only partially stabilize the helix backbone. At least, some
third type of intermolecular bonds must be involved for stabilizing the he-
lix structure. For instance, it can be the three-particle interaction fixing a
certain valence angle ψ, the angle between the nearest-neighbor (valence)
bonds. The simplest and most straightforward way of fully stabilizing the
3D helical structure is to add a second-neighbor coupling. In this respect,
such a helix will be the most simple generalization of the 1D FPU chain
to three dimensions. Similarly, for stabilizing a planar zigzag backbone, at
least, two types of intermolecular interactions (e.g., between the first and
second neighbors) must be present in the system.
The 3D geometry of a regular (undistorted) helix backbone, when its

molecules are found in equilibrium positions, can be uniquely given by a
set of three parameters. Let us locate the Cartesian system of coordinates
(X, Y, Z) with respect to the helix backbone as shown in Fig. 1. Then,
one of these sets can be {R0, φ, h} where R0 is the radius of the cylinder
which spans the helix backbone, φ is the angle in the XY plane formed
by each three successive chain molecules (this angle is the projection of
the angle ψ between the nearest valence bonds onto the XY plane), and
h = Z0/R0 with Z0 being the Z projection of the distance between the
nearest-neighbor molecules of the linear sequence. In what follows, we term
φ and ψ the torsional and valence angles, respectively. In terms of the
parameters described above, the radius-vector of each molecule of the helix
backbone can be represented as Rn = R0 (cos(nφ), sin(nφ), nh) with n =
0, ±1, . . . . When φ > 2π/ν or φ < 2π/ν, we refer to such a chain as a
right- or left-handed helix, respectively. Correspondingly, the screw-sense
of each spine is clockwise or counter-clockwise. As regards for the α-helix,
each amino acid is related to the next one by a translation of Z0 = 1.5 Å
along the helix axis and a clockwise rotation of φ = 100◦ that gives 3.6
amino acids per turn of the helix.
Alternatively, the helix can be described by other three parameters,

namely by the equilibrium distances between the first-, second-, and νth-
neighbor molecules, {d1, d2, dν}. The length of the vector

ajn = (Rn+j − Rn) /R0

= (cos[(n+ j)φ]− cos(nφ), sin[(n+ j)φ]− sin(nφ), jh) ,(20.1)
that connects the nth and (n+ j)th vertices of the regular helix backbone,
does not depend on the number of the chain site:

|ajn| =
√
2[1− cos(jφ)] + j2h2 ≡ aj = dj/R0 , j = 1, 2, ν. (20.2)
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Next, the third and fourth sets of parameters which also may be used
for description of the helical geometry are {d1, ψ, dν} and {R0, φ, ψ}.
Using Eqs. (20.2) as well as the relations for the angles φ and ψ: cosφ = 1−√
a2
1 − a2

2/4 and cosψ = 1−d2
2/2d

2
1, one finds immediately a set of equations

that establish one-to-one mappings between the four above-described sets of
geometric parameters: {R0, φ, h} ⇐⇒ {d1, d2, dν} ⇐⇒ {d1, ψ, dν} ⇐⇒
{R0, φ, ψ}. Moreover, one can find the relation [4]

a2
ν

2
= 1− cos(νφ)− ν2 (cosφ+ cosψ)(1− cosφ)

1 + cosψ
(20.3)

which gives the dependence of the distance aν on the integer ν for given an-
gles φ and ψ. The minimization of this distance with respect to all integers
ν ≥ 3 yields the required integer ν. Thus, for the α-helix macromolecule
φ = 100◦ and ψ = 110◦, and as a result, the minimal distance aν occurs
at ν = 3. Note that the inequality cosφ + cosψ < 0 is always valid and
therefore 2a1 > a2.
Consider now the “helical” structure in two dimensions. In this particular

case φ = π and ν = 2, and the helix is simply reduced to the zigzag
backbone shown in Fig. 2 (two spines). The only two types of bonds, namely
between the first- and second-neighbor molecules are sufficient to stabilize
secondary structure [20]. Note that in the other particular case φ = 2π and
ν = 1, the helical structure is reduced to the standard 1D FPU chain (one
spine) with the nearest-neighbor interactions.

3 Equations of motion for a helix backbone

Let M be the mass of chain molecules, K the characteristic stiffness of
intermolecular forces, xn, yn, and zn the local coordinates of an instant
displacement of the nth molecule from its equilibrium position given by
the radius-vector Rn. Then the total Hamiltonian of the helix backbone
with three types of interactions as described above, i.e., between the first-,
second-, and νth-neighbor molecules, can be written in the following di-
mensionless form (scaled by the factor by KR2

0):

H =
∑

n


1
2

(
dqn

dτ

)2

+
∑

j

Uj

(|qn+j − qn|)

 (20.4)

where τ = ω0t with ω0 =
√
K/M . Each of the three potential functions

Uj(rjn)’s describes a bond connecting the nearest-neighbor (j = 1), second-
neighbor (j = 2), or νth-neighbor (j = ν) molecules. These interactions
are supposed to have spherical symmetry, i.e., to depend only on the in-
termolecular distances rjn = |qn+j − qn| between the nth and (n + j)th
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molecules, where

qn = (q1n, q2n, q3n) = (cos(nφ) + xn/R0, sin(nφ) + yn/R0, nh+ zn/R0) .
(20.5)

The functions Uj(r), j = 1, 2, ν, are assumed to be of the standard form (like
the Lennard-Jones or Morse potential) with Uj(aj) = 0 and U ′

j(aj) = 0;
κj = U ′′

j (aj) is the dimensionless stiffness constant of the bond connecting
the nth and (n+ j)th molecules.
The equations of motion that correspond to the Hamiltonian (20.4) are

d2qn

dτ2 =
∑

j

[
Wj(rjn)

(
qn+j − qn

) −Wj(rj,n−j)
(
qn − qn−j

)]
(20.6)

withWj(rjn) = U ′
j(rjn)/rjn . The summation over j = 1, 2, ν also includes

the particular cases of the 1D chain and the planar zigzag: (one spine,
ν = 1) j = 1 and (two spines, ν = 2) j = 1, 2.

4 Small-amplitude limit

The linearized equations of motion (20.6) admit the plane wave solution of
the type exp[i(kn− Ωτ)] with the dispersion law∣∣∣∣∣∣

Ω2 − c11 −ic12 −ic13
ic12 Ω2 − c22 −c23
ic13 −c23 Ω2 − c33

∣∣∣∣∣∣ = 0 (20.7)

where the coefficients cij ’s are given by

c11 = 16
∑

j

κj

a2
j

sin4 jφ

2
cos2

jk

2
, c22 = 4

∑
j

κj

a2
j

sin2(jφ) sin2 jk

2
,

c12 = 4
∑

j

κj

a2
j

sin2 jφ

2
sin(jφ) sin(jk), c33 = 4h2

∑
j

j2κj

a2
j

sin2 jk

2
, (20.8)

c13 = 4h
∑

j

jκj

a2
j

sin2 jφ

2
sin(jk), c23 = 4h

∑
j

jκj

a2
j

sin(jφ) sin2 jk

2
.

In the 1D case (φ = 2π) with only nearest-neighbor interactions (j = 1
and a1 = h), we obtain immediately the well-known dispersion law for the
harmonic 1D chain: Ω =

√
c33 = 2

√
κ1 sin(k/2) that describes one acoustic

branch. However, in the 2D case for the planar zigzag (j = 1, 2), Eq. (20.8)
is reduced to (Ω2 − c11)(Ω2 − c33) − c213 = 0 that admits a two-branch
solution: one branch is of acoustic type and the other one of optical type.
In three dimensions, using the explicit form of Eqs. (20.7) and (20.8),

one can be convinced of the existence of two acoustic branches. These two
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FIGURE 3. Frequencies Ωt (curve 1), Ωl (curve 2), and Ωop (curve 3) against
wave number k, 0 ≤ k ≤ π, for the α-helix.

Ωl(k) and Ωt(k) (see Fig. 3) correspond to the longitudinal and torsional
oscillations of the chain molecules, respectively. The third root of Eq. (20.7)
gives an optical branch Ωop(k), corresponding to the transverse oscillations
of molecules in the radial direction of the helix backbone. Explicitly, at
k = 0 one finds Ω2

op(0) = c11 + c22 + c33 = 16
∑

j(κj/a
2
j ) sin

2(jφ/2).
The presence of two acoustic branches results in the existence of two

speeds of sound: longitudinal (vl) and torsional (vt). In dimensionless form,
they can be defined as the limits sl,t = vl,t/v0 = h limk→0 Ωl,t/k where
v0 = (K/M)1/2R0 is the characteristic velocity of small-amplitude waves
in the helix backbone.
For numerical computations we used the following values of the system

parameters:

ν = 3, φ = 100◦, h = 1, κ1 = 10, κ2 = 5, κ3 = 1 . (20.9)

In the parameter set (20.9), the values for the number ν and the angle
φ correspond to the α-helix protein molecule. The stiffness constants κ1,
κ2, and κ3 are related to each other approximately as elasticities of the
valence bond, valence angle, and hydrogen bond. The form of all the three
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dispersion curves for the parameter set (20.9) is shown in Fig. 3. At k = 0,
the frequencies are Ωl = Ωt = 0 and Ωop = 5.11. It follows from the ex-
plicit representation of the coefficients (20.8) that at a certain value of the
wave number k = k0, the free term in Eq. (20.7) becomes zero. This means
that at this value, softening torsional oscillations happens [Ωt(k0) = 0]. For
the parameter set (20.9) this value is k0 = 1.748. As follows from Fig. 3,
the frequency spectrum of torsional oscillations lies inside the frequency
spectrum of longitudinal oscillations. Moreover, the velocity of the longitu-
dinal sound sl = 3.39 significantly exceeds the speed of the torsional sound
st = 0.75.

5 Three-component soliton solutions

In this section we describe a numerical scheme for seeking solitary wave
solutions of stationary profile for the basic equations of motion (20.6). This
scheme can be applied if the profile of solutions appears to be sufficiently
smooth while varied from site to site along the chain [3, 4]. In order to study
discreteness effects, we should use more complicated numerical techniques
such as the pseudo-spectral method suggested by Eilbeck and Flesch [9]
and afterwards developed by Duncan et al [8]. When the soliton solutions
to the equations of motion have been found, they can be chosen as initial
conditions for numerical simulations of these equations. The final profile of
the vector lattice field qn(τ) obtained under the simulations at sufficiently
large times τ allows us to conclude whether or not the initial soliton profile
is a stable solution of Eqs. (20.6). The main point in such a numerical
approach is an appropriate choice of a discrete functional for minimization.
To accomplish the soliton analysis of the equations of motion (20.6), we

rewrite them, introducing the new variables q1n = (1 + ηn) cos(nφ + θn),
q2n = (1+ηn) sin(nφ+θn), and q3n = nh+βn where ηn describes the radial
displacement of the nth molecule from the cylinder surface that spans the
helix backbone when its molecules are situated at the equilibrium positions.
It is positive if the displacement is outside and a bulging of the helix occurs
in this region. If the displacement is directed inside the helix, then ηn is
negative. The second generalized coordinate θn describes the azimuthal
deviation of the nth molecule from its equilibrium position, and βn is the
Z coordinate of the displacement. The Lagrangian of the helix backbone
written in terms of these new variables takes the form

L =
∑

n


12

[(
dηn

dτ

)2

+ (1 + ηn)2
(
dθn

dτ

)2

+
(
dβn

dτ

)2
]

−
∑

j

Uj(rjn)




(20.10)
where the distance rjn is given by

r2jn = (1 + ηn)2 + (1 + ηn+j)2 − 2(1 + ηn)(1 + ηn+j)
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× cos(jφ+ θn+j − θn) + (jh+ βn+j − βn)2 . (20.11)

The corresponding equations of motion are

d2ηn

dτ2 = (1 + ηn)
(
dθn

dτ

)2

−
∑

j

Wj(rj,n−j) [1 + ηn − (1 + ηn−j) cos(jφ+ θn − θn−j)]

+
∑

j

Wj(rjn) [1 + ηn − (1 + ηn+j) cos(jφ+ θn+j − θn)] ,

(20.12)
d2θn

dτ2 =
1

1 + ηn

[
−2dηn

dτ

dθn

dτ

+
∑

j

Wj(rjn)(1 + ηn+j) sin(jφ+ θn+j − θn)

−
∑

j

Wj(rj,n−j)(1 + ηn−j) sin(jφ+ θn − θn−j)


 , (20.13)

d2βn

dτ2 =
∑

j

[Wj(rjn)(jh+ βn+j − βn)−Wj(rj,n−j)(jh+ βn − βn−j)] .

(20.14)

In the simplest case, ν = 1 and j = 1, Eq. (20.14) describes the 1D FPU
model with the nearest-neighbor interactions, while for j > 1 one obtains
the 1D generalization of this model including long-range intermolecular
interactions. For the particular case of the first- and second-neighbor inter-
actions, ν = 2 (j = 1, 2), this model has extensively been studied in Refs.
[12, 11].
We assume that the soliton solutions for the 3D backbone have moving

permanent profile, so that one can write ηn = η(nh− sτ), θn = θ(nh− sτ),
and βn = β(nh − sτ) where s = v/v0 with v0 being the characteristic
sound velocity defined in the previous section. There is no need to take
into account the dispersion of the optical mode [3], and therefore we can
approximate the first and second time derivatives of ηn by the simplest
spatial difference derivatives as follows

dηn/dτ = −sη′(nh− sτ) � −s(ηn+1 − ηn−1)/2h, (20.15)
d2ηn/dτ

2 = s2η′′(nh− sτ) � s2(ηn+1 − 2ηn + ηn−1)/h2. (20.16)

However, for the longitudinal and torsional displacements we need to take
into account the dispersion which arises from the discreteness of the chain
backbone. To this end, we represent the time derivatives of θn and βn by
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differences which additionally contain higher-order spatial difference deriva-
tives chosen in an appropriate way, namely:

dθn/dτ � s(ϕn+1 − 5ϕn − 2ϕn−1)/6h, (20.17)
d2θn/dτ

2 � −s2(ϕn+1 − 15ϕn + 15ϕn−1 − ϕn−2)/12h2, (20.18)
d2βn/dτ

2 � −s2(ρn+1 − 15ρn + 15ρn−1 + ρn−2)/12h2, (20.19)

where ϕn = θn+1 − θn and ρn = βn+1 − βn are the relative torsional and
longitudinal displacements, respectively. In the continuum limit, when ex-
panded up to the third [in the right-hand side of Eq. (20.17)] or fourth
[in the right-hand sides of Eqs. (20.18) and (20.19)] order, Eqs. (20.17)–
(20.19) become θτ � −sθx, θττ � s2θxx, and βττ � s2βxx with x = nh.
Replacing then the time derivatives in Eqs. (20.12)–(20.14) by the corre-
sponding discretized versions (20.15)–(20.19), we obtain discrete equations
for the displacements ηn, ϕn, and ρn. Having solved them, for instance,
by minimization techniques [4] for a given value of velocity s, one finds a
three-component soliton profile.

5.1 3D case: solitons of longitudinal compression
For the particular case of the α-helix macromolecule, the {ηn, ϕn, ρn} soli-
ton profile found by the discretization technique as described above is shown
in Fig. 4 by rhombus marks. Each of these components has zero asymp-
totics at the chain ends. The anharmonicity parameters which were chosen
for the studies of existence and stability of such three-component soliton
solutions in the α-helix backbone are given according to Eqs. (20.9). With
this choice, note that the nonlinear behavior of the chain molecules in the
first turn is caused by the anharmonicity of soft hydrogen bonds. Therefore
we took into account only the anharmonicity of the third-neighbor (ν = 3)
interactions, more precisely, we put γ1 = γ2 = 0 and γ3 > 0. Here the
dimensionless anharmonicity parameters γj , j = 1, 2, 3, are defined as
coefficients at the cubic term expansions of the Morse potentials Uj(r)’s.
The numerical solution of the corresponding discrete equations has shown
that at weak anharmonicity (e.g., γ3 = 0.1), there are no soliton solutions
at all, while for the value γ3 = 1, the soliton solutions exist only with
velocities in the segment 1 < s/sl < 1.065. In this interval of velocities,
the solutions have bell-shaped soliton profiles, smoothly depending on the
chain site n. As illustrated by Fig. 4, in the region of localization of the
soliton solution, a compression (ρn < 0) of the backbone along the helix
axis occurs accompanied by a localized transverse “bulging” (ηn > 0) and
a torsional stretching (twisting, ϕn > 0) of the helix. Thus, the soliton
solutions were shown to exist only in a narrow interval of supersonic ve-
locities. When s → sl, the soliton energy and amplitudes monotonically
tend to zero while the width increases to infinity. With the growth of the
velocity, the energy and absolute values of the amplitudes monotonically
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increase whereas the soliton width monotonically decreases. It is important
to emphasize that the soliton solutions exist only if the anharmonicity of
intermolecular interactions is sufficiently strong, enough to suppress the
“negative” anharmonicity caused by the geometry of helical structure (so-
called geometric anharmonicity [1]).
We have studied the soliton dynamics in the chain consisting of N = 100
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FIGURE 4. Three-component profile of the soliton in the α-helix with anhar-
monicities γ1 = γ2 = 0 and γ3 = 1 found numerically by solving the discrete
equations (rhombus marks) and at the final instant τ = 28062.45 when the soli-
ton has passed 100000 chain sites (solid lines). The initial velocity of the soliton
was s = 1.05sl.
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(a)

(b)

(c)

n

FIGURE 5. Three types of localized deformation of the planar zigzag (ν = 2,
γ1 = 0 and γ2 = 1): (a) solitons of longitudinal compression and transverse
“bulging”, solitons of longitudinal stretching and transverse slendering with (b)
two nodes (non-topological soliton) and (c) one node (“metastable topological
soliton”).

molecules with the parameters (20.9) when γ1 = γ2 = 0 and γ3 = 1.
When the initial speed was s = 1.05sl = 3.5645, then the soliton has
passed 100000 chain sites during the time τ = 28062.45. This propagation
corresponds to the velocity s = 100000/τ = 3.5635 = 1.0497sl and the
final three-component soliton profile is shown in Fig. 4 by solid lines. It
is remarkable that the soliton shape at the final instant of time perfectly
coincides with the initial profile. The simulations of the equations of mo-
tion have demonstrated that the above-described procedure of looking for
soliton solutions gives “numerically exact” soliton profiles and the solitons
themselves are dynamically stable.

5.2 2D case: other types of solutions
In the 2D case for the planar zigzag backbone, the solitons with longitu-
dinal compression and transverse bulging also exist [20]. These solutions
may be considered as a particular case of the three-component solitons de-
scribed above for the 3D helical structure if the ϕn-component is identically
zero. The two-component profile of the ηn and ρn displacements is shown
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FIGURE 6. Velocity of the metastable topological soliton against time τ , propa-
gating in the planar zigzag (ν = 2) with γ1 = 0 and γ2 = 1.

schematically in Fig 5(a). The shape of these components is the same as
that depicted in Fig. 4.
The geometric anharmonicity prevents the formation of solitons with lon-

gitudinal compression, but in turn, it can provide the existence of solitons
with longitudinal stretching, but transverse thickening. One of these soli-
tons has been shown, both analytically and numerically [20], to exist with
the two-component profile shown schematically in Fig. 5(b). For this soli-
ton, the zigzag transversely “overslenders” at the soliton center, so much
that two nodes for the profile of transverse displacements appear as illus-
trated by Fig. 5(b). The second type of soliton with longitudinal stretching
and transverse bulging has only one node in the transverse displacement
field as illustrated by Fig. 5(c), but in this case the boundary conditions
are kink-like, namely: ηn → 0 if n → −∞ and ηn → −1 if n → +∞,
whereas ρn → 0 if n → ±∞. The time dependence of the velocity of such a
“metastable topological soliton” is given by Fig. 6. At γ = 1, the minimal
emission is at s = 1.257sl. The further decrease of the velocity results in
increasing emission of small-amplitude waves.

6 Conclusions

It is an attractive point of view to study the transport of vibrational energy
in biopolymers such as protein on the basis of 1D nonlinear lattice mod-
els. The first attempt in this direction was formulated by Davydov and
Kislukha [7] (see the book [5] and review [16], and references therein) who
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suggested that the intramolecular vibrational Amide-I mode could be self-
trapped through its interaction with deformation in the protein structure.
Further, Davydov et al [6] and Scott [15] generalized this theory to the
α-helical structure, taking into account the dipole-dipole coupling between
the three spines. While Davydov and Scott considered the intramolecu-
lar mode Amide-I, Yomosa [18] modeled the energy transfer in protein,
essentially applying the 1D FPU model. Here we also focus only on the
large-amplitude supersonic lattice solitons and all intermolecular (or inter-
atomic) interactions are represented by pair central forces. We show that
the minimal number of intermolecular pair interactions (of spherical sym-
metry) in the linear sequence of molecules, which are necessary for stabi-
lizing a helix backbone, is two in the 2D case (zigzag) and three in the
3D case (helix). In other cases, when the intermolecular interactions are
non-spherically symmetric, a helix Hamiltonian becomes much more com-
plicated. Therefore the Hamiltonian (20.4) may be considered as the most
simple generalization of the standard 1D FPU chain to three dimensions
when each chain molecule has three degrees of freedom. The resulting ge-
ometric structure is a helix backbone with ν ≥ 3 spines. Three-component
non-topological solitons have been shown to exist and propagate with su-
personic velocities in the helix backbone with any number of spines. Simi-
larly to the 1D case, for the existence of the soliton solutions, the presence
of anharmonicity, at least, in the (hydrogen) bonds connecting each nth
and (n+ ν)th molecules, is necessary. However, compared to the 1D FPU
model, the existence of stable soliton solutions in the 3D helix backbone ap-
pears to be more limited. First, they exist only if the anharmonicity of the
ν-neighbor forces is sufficiently strong. Second, the segment of admissible
(supersonic) velocities of solitons is always finite. It is quite narrow and for
all velocities from this segment, the soliton propagation is uniform with re-
taining velocity and profile. However, when the solitons collide, their behav-
ior after collision depends on velocity. At the lower edge of the segment, the
soliton collision is elastic whereas for higher velocities, at the upper edge,
the solitons collide inelastically, with radiation of small-amplitude waves.
Summarizing, we conclude that in a 3D isolated helix backbone, three-
component solitons describing supersonic pulses of longitudinal backbone
compression, still exist as dynamically stable objects. However, the range
of their existence is more limited if compared to the 1D FPU lattice.
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Habitat
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ABSTRACT “Organisms alter their material environment, and their en-
vironment constrains and naturally selects organisms.” Lenton’s [17] state-
ment applies especially well to populations of swimming micro-organisms.
The mutual dynamic of themselves and their fluid habitat orders and con-
strains them, generates concentration-convection patterns [12], [15], en-
hances transport of metabolites and, at all scales, guides many of their
interactions. Our objective is to describe mathematical models sufficient
for reaching insights that can further guide theory and experiment. These
models necessarily include nonlinear and stochastic features. To illustrate
self-organization and the type of experimental statistical inputs available,
we present some rather astonishing data concerning the motile bacteria
Bacillus subtilis and hydrodynamics associated with their activity. The
inescapable interdependence of physics and biology emerges from the anal-
ysis.

1 Introduction

Swimming unicellular micro-organisms are important and ubiquitous. They
include varieties of protozoa, algae, and bacteria. They propel themselves
by waving, flexing, or rotating various organelles. Although our discussion
is organized around phenomena involving aerobic bacteria, much of it is
applicable to other organisms as well. A summary pertaining to algae at
low volume fractions and in “large” containers can be found in [22].
Swimming bacteria convert dissolved chemical potential energy into life

processes: growth, storage, metabolism, and the power to swim. Sensing
spatially and temporally varying significant conditions, and responding
by directional swimming, are biological processes. They are not entirely
deterministic. Even for the most uniform populations, swimming speed
and swimming direction can only be specified through probability den-
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sity functions P (�V ; {q}, t), where {q} represents a manifold of histories,
including chemical concentrations at the present time t, and encountered
earlier along specific trajectories. Not only the swimming vector, but other
active processes, such as sensing, are likely subject to probabilistic rules
[18]. Stochastic influences include intracellular thermal fluctuations, rota-
tional Brownian motion, time-delayed responses to particular trajectories
through chemical concentration space, and systematic (but unknowable)
variabilities such as position of an individual in the cell division cycle.
Capriciousness, or “free will”, may also contribute.
The subjectively judged geometry of bioconvection patterns is robust, for

particular cell varieties, conditions, culture age, fluid depths, initial condi-
tions, etc. Nevertheless, no two patterns are ever exactly alike nor is their
time evolution. The stochastic modulation of behavior of the living com-
ponent of these micro-bio-fluid dynamic systems complicates and enriches
the actuality, and the models that attempt to describe it [10], [3], [20].
This paper is organized around the idea that there are two regimes of

phenomena that require rather different approaches, both for mathemati-
cal modelling and for experiments. The “Continuum” Regime (I) concerns
bioconvection. It is characterized by large concentrations n of organisms
occupying small volume fractions φ ≡ nv, where v is the volume per organ-
ism. For bacteria, n = 108−109cm−3, v = 10−11−10−12cm3. The dynamics
of this regime take place in “large” volumes of water, e.g. for ≥ 10−1cm
depth and ≥ 1cm3 volume. The organisms interact indirectly only, via
(1) convective motions due to buoyancy effects that result from directional
swimming, and (2) variations in concentration of significant molecules, such
as oxygen, caused by consumption and directional supply. The governing
nonlinear coupled partial differential equations describe continua of molec-
ular and cell concentrations c(�x, t) and n(�x, t), and the fluid velocity field
�u(�x, t).
The other regime (II) considers bacteria constrained in fluid layers of

depth h ≥ d, where d is the diameter of one cell body, � 1µm. The cells
may be isolated, or included in populations that are almost close-packed.
The organisms interact directly through the fluid velocity fields that they
generate, by collisions, and perhaps via chemical signals. They interact not
only with each other but with the surfaces, free or rigid, that bound the fluid
in which they find themselves [23], [24]. This regime, the subject of current
and planned experiments, is not as well understood as (I). It is especially
exciting, since mean behavior appears to be affected by constraint: In very
shallow layers of fluid, cells swim quickly, and the probability distributions
alter. These constrained situations have practical significance, as in the
generation of biofilms.
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2 Bioconvection (I)

2.1 Observations
The geometry and time dependence of bioconvection patterns depend on
initial and boundary conditions, concentration, growth/death rate, geome-
try of the containers, depth of the suspension of organisms, and swimming
style. The figures shown here are intended to motivate modelling. They
illustrate generic patterns obtained with suspensions of Bacillus subtillis,
wild type 1085 (G. Ordal) in TB growth medium, n ≥ 108cm−3, con-
tained in plastic Petri dishes, 5.3cm internal diameter. Depths ranged from
< 1mm to � 5mm; the surface of the fluid rises at the periphery because
of capillarity. The photographic method was “dark field”. Thus, regions
containing many cells are bright, and conversely.
In Fig. 1, a shallow suspension (≤ 2mm at the center) exhibits a heavily

dislocated hexagonal pattern of plumes. At the edges, a pattern typical for
a greater depth emerges. The high bacterial concentration surrounding the
floating air bubbles are due to oxygen taxis: swimming up the O2 concen-
tration gradient that diffuses from the bubbles. In Fig. 2, the depth of the
suspension is greater than in Fig. 1, but less than Fig. 3. In spite of ap-
pearance, the images are not three dimensional. Viewed in “real time”, the
images appear steady. Using time lapse photography, one observes strong
movements and continual reorganization, especially of the transverse nar-
row dark bands that, as far as we know, appear only in aerobic bacterial
bioconvection. In Fig. 4, a very shallow layer of fluid exhibits capillary rise
on both sides of a solid, smooth stick, resulting in a linear pattern of defi-
nite wavelength. The shallow, flat regions of fluid cannot support a pattern.
Fig. 4 was obtained during ongoing investigations of boundary conditions.

FIGURE 1. Plan view of shallow bacterial bioconvection, with floating bubbles.
See text.
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FIGURE 2. Plan view of bacterial bioconvection. The layer of fluid is deeper than
in Fig. 1. See text.

FIGURE 3. Plan view of bacterial bioconvection. The layer of fluid is deeper than
in Fig. 2, approximately 5 mm. See text.

2.2 Continuum theory
The Navier-Stokes equations govern the fluid velocity field �u. They are
driven by a gravitational body force that results from nonuniform concen-
trations of n, caused by directional swimming. The mean density increase,
relative to the water in which the organisms swim and due to variations in
n, is

∆ρ = nv[ρ(organism) − ρ(water)]. (21.1)
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FIGURE 4. Plan view of shallow bacteria bioconvection. See text. Very shallow
layers of fluid cannot support a pattern. The capillary ascent of fluid up the side
of the flat black bounding surface and inside vertical surfaces of the Petri dish
provides the necessary depth.

Bacterial densities can be estimated at 10% greater than that of water;
algal densities are ∼ 2% greater. The total mean density of the fluid is

ρ = ρ(water) + ∆ρ ≈ ρ(water). (21.2)

Then

ρ
D�u

Dt
− µ∇2�u+ ∇p = �g∆ρ (21.3)

and
∇ · �u ≈ 0, (21.4)

where µ is the viscosity of water, p is pressure, and �g is the acceleration
of gravity. Even though organisms can be thought of as incompressible,
volume is not precisely conserved in the usual manner because some of it
swims relative to �u. For small volume fractions and V/u < 1, where V is
the swimming speed, Eq. (21.4) is nearly exact.
The fluid dynamics is driven by n, the cell concentration, which is subject

to conservation, including directional swimming, birth and death. These
factors depend on chemical concentration(s) c, local and time delayed. Con-
servation of c is given by

∂c

∂t
− D∇2c+ ∇ · (�uc) = −γ(c)n (21.5)

where D is the diffusivity of c and γ(c) is the rate at which organisms
consume (or, in some cases, emit) c. Gradients of c that skew the swimming
velocity probability density function (SVPDF) P (�V . . .) arise, for example,
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when c diffuses in from a bounding surface, as a result of consumptive
depletion in the bulk fluid. It is likely that

γ(c) ∼ γ0
c

(c1 + c)
(21.6)

so that at high c, γ ≈ γ0. When several molecules are important or limiting,
Eq. (21.5) must be replaced by a set of equations, one for each ci, and with
γi = γi(cj . . .). For example, there will not be much respiration after the
food runs out. Conversely, assimilation of substrate ceases when oxygen
levels are too low.
The nonlinear coupling term ∇ · (�uc) in Eq. (21.5) is due to advection,

i.e. the transport of c by the fluid velocity field �u, caused through Eq (21.3)
by directional accumulation of n in response to ∇c.
The case for photosynthetic organisms, such as motile algal cells, re-

quires equations for the n-dependent attenuation of illumination and for
illumination direction-oriented swimming of the cells [13].
The conservation of organisms is modelled by

∂n

∂t
+ ∇ · (�un) = −∇ ·�j +Bn (21.7)

where, as before, ∇ · (�un) represents the nonlinear advective coupling. The
birth/death rate is B, for organisms that multiply asexually. For “short”
observation times B can be ignored. Otherwise, B can be a complicated
function of various ci, including exudates emitted by the cell population.
Loss of mobility, when the cells are “like dead”, e.g. due to temporary lack
of oxygen, could also be modelled by a (negative) term Bn. When organ-
isms interconvert, e.g. normal cells to/from swarmers, several conservation
equations are required.
The most interesting and mathematically complex factor is the cell flux

�j = “n�V ” (21.8)

where �V is the swimming velocity vector and the quotes indicate complex-
ity. In the Keller-Segel model, “n�V ” was taken as a deterministic term
n〈�V 〉, plus diffusion −Dc∇n, where Dc is an effective diffusivity of cells
[21]. The distributions of swimming speeds and directions of a large popu-
lation of bacteria ought to be described by SVPDF’s that depend on many
factors, such as gradients and magnitudes of the oxygen concentration. We
have recently shown that the usually encountered distribution of bacterial
swimming speeds [14], [16] is made up of cohorts with various mean speeds
〈|V |〉, unlike the well known gas dynamic case where each component parti-
cle sweeps out the entire Maxwellian. Furthermore, each cell exhibits wide
fluctuations in speed (Figs. 9a, 9b) during a typical observation period of
∼ 5 seconds.
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The description of cell flux can be given by

�j(�x, t) = n(�x, t)
∫

�v

P (�V , {q}, t)�V d�V , (21.9)

where q includes �u(�x, t) via gyrotactic orientation [12], ∇f [c], and f ′[c].
The function f [c] is appropriate for chemo- or oxygen taxis and f ′[c] com-
prises the local concentrations of c and previous ones along the bundle of
trajectories that pass through (�x, t). Furthermore, {q} may include age de-
pendence of the population, concentration, and factors that model sensory
efficiency.
Since �j determines n, and n is coupled into the equations for �u, c, and

hence P (�V , . . .), it is evident that we have a set of nonlinear, stochastic,
coupled integro-partial differential equations. Simplification, sorting out
the most crucial features, and performing the measurements that these
processes suggest will take time - but then, the 21st Century is one hundred
years long!

3 Bacteria in constraining environments (II)

During the last two decades, experiments have generated much insight into
the locomotory apparatus of single bacterial cells. Relatively less attention
has been given to problems and phenomena of group dynamics, hydro-
dynamics, and the statistical variability of individual cell behaviors. We
present experimental results obtained with geometrically constrained pop-
ulations of Bacillus subtillis. Such will be required for inclusion into new
models of the dynamics of micro-organisms and their environment.
Bacteria swimming near a rigid plane, such as the surface of a microscope

slide or a plastic Petri dish, tend not to reenter the main volume of fluid.
Their trajectories remain approximately parallel to the plane. This effect
may be due to combinations of Van der Waals and electrostatic forces, at-
traction due to inward volume conserving flows that surround a swimming
cell, and a motion-generated torque that orients cells propelled from the
rear toward nearby surfaces. This torque arises because, at the distal side,
the drag on the moving body is less than at the side close to the rigid sur-
face, where the fluid’s velocity must vanish. It is convenient that one need
not account statistically for projective foreshortening of velocity vectors
when trajectories parallel bounding surfaces perpendicular to the axis of
observation.
In a very shallow layer of water, ranging from zero, at the air/water/glass

contact line, to a depth between air and glass of a few cell diameters,
the organisms’ trajectories are triply constrained. They interact with each
bounding surface and with each other. They may swim singly, but often
form platoon-like groups. In the shallowest regions, they often swim paral-
lel to the contact line. Neither the hydrodynamics nor the microbiological
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aspects of these phenomena have been modelled. We have measured rele-
vant distributions of speed and swimming direction (see Figs. 4-9). Such
SVPDF’s must be included in collective models of individual behavior and
hydrodynamics.
The fluid mechanics of micro-swimmers is characterized by Reynolds

numbers Re = V a/µ << 1 (see Appendix II for definitions and magni-
tudes). Nevertheless, linearity and reversibility need not be valid. When
swimming changes boundary conditions, and when flow, and/or proximity
of boundaries, affect swimming rate, style, and direction, neither linearity
or reversibility of the equations remain. Some observations recently made
in our laboratory [16], and others shown below, illustrate these remarkable
phenomena.
The mean speed of the bacteria Bacillus subtilis, that swim in water

whose depth h ranges from one to two bacterial body diameters d, is often
more than double the speed of the bacteria in “deep” water. This effect
may be explained by Ramia’s [23] calculations that indicate a 10% greater
propulsive efficiency per rotating flagellum, in the vicinity of a rigid surface.
B. subtilis cells contain many flagella (e.g. 5-10).

L Far 36 ± 10µm(Fig. 4) 16 ± 10µm
Speed 27.4 ± 0.3 35.8 ± 0.9 48.7 ± 1.1

Fastest Speed Segment 71.9 139 189
µms−1

TABLE 21.1. Speeds of cells swimming near a glass surface as a function of
distance L from the contact line. The depth of the water layer in which the cells
swim increases with L. Data of Figs. 3-5, Method (b), see Appendix I.

Table 1 shows the average speeds and the fastest speed segment in a thin,
wedge-shaped film of water. The film increases in thickness from “zero” at
the air/glass/water contact line. These data are a summary of the speed
averages in Figs. 5, 6, and 7, which show histograms of the speed of cells
obtained using statistical data analyses a, b, and c (see Appendix I). It is
noteworthy that mean speed and top speed both increase with decreasing
thickness of the layer of water.
In a shallow wedge, where h(x) decreases to zero and �x is in the plane

of one surface and perpendicular to the contact line, bacteria tend to swim
perpendicular to dh/dx, often in nearly close packed groups. This effect
implies that the directional uncertainty of P (�V . . .) can be quashed by
interactions. This remarkable self-organization of swimming directions is
illustrated in Fig. 8. Directional groups coalesce and disperse at various
time intervals, as also observed by [19], and much as do pedestrians in
corridors, as cited by Helbing [6].
The speed with which cells swim approximately parallel to the contact
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Swimming Direction Mean Speed [max,min] No. of Tracks
Parallel to 60◦ − 120◦ 51.2 ± 2.6 [151,15] 63
contact line 240◦ − 300◦ 52.5 ± 2.0 [115,21] 101
Swimming Away 120◦ − 240◦ 43.9 ± 2.0 [86,15] 51
Swimming Toward 300◦ − 60◦ 44.0 ± 1.9 [97,18] 61

TABLE 21.2. Anisotropy of bacterial swimming speed in a shallow wedge shaped
layer of water bounded on one side by the air/water/glass contact line. Speeds
are in µms−1 ± S.E.M . The frame-by-frame per track method (b) is used for
speed and angle measurements. The maximum and minimum speed encountered
somewhere along some track in an entire sample is given by [ , ].

line is greater than the speed of swimmers in the perpendicular direction.
This surprising phenomenon, summarized in Table 2, is probably connected
with the statistical preference for swimming in the parallel direction, shown
in Fig. 8.
For modelling purposes, one requires some knowledge of the primitive

behaviors that are summarized by the histograms. If, for example, the cell
population consists of cohorts, each with a definite, stable speed, the bio-
logical and computational situation is quite different from the “Maxwell-
Boltzmann” case, where, in due course, each swimmer acquires all possible
speeds. Figs. 9a and 9b show that the swimming speed of two randomly cho-
sen bacteria fluctuates within wide limits, and the average speeds are quite
different also. In the bioconvection situation, averaging over the SVPDF’s,
after the equations are solved for a particular �V , is inadmissible because of
the nonlinearity of the equations. Fast cohorts will swim ahead, changing
the environment for the slower cells. Solving the equations simultaneously
for many �V ′s determined by the distribution functions is possibly a starting
approach.

4 Possibilities for computer simulation

Digital techniques have been used to analyze various aspects of the ex-
periments, e.g. the histograms of cell swimming. Partial solutions of the
continuum pde’s, [22], but without inclusion of the experimentally deter-
mined SVPDF’s, have been computed. Results of computations for various
approximations are summarized in [22], [8], and [4]. Simulations have begun
that track individual model automata “swimming” up concentration gra-
dients that they cause. Calculations without fluid dynamical effects [10],
and calculational experiments that include fluid dynamics, but for 2 di-
mensional organisms [7], are a useful beginning. The latter work produces
self-organized plumes rather similar to those observed in experiments. The
continuation of this approach, using experimentally determined SVPDF’s
has much promise.
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FIGURE 5. Swimming speeds of bacteria near a glass surface, in deep water
far from the air/water/glass contact line. The three histograms pertain to one
sample. They refer to the three methods described in the appendix. Units for
mean speeds 〈V (i)〉± standard error of the mean (S.E.M.) are in µms−1. (a) Head
to tail, 〈V (a)〉 = 23.9±0.3. (b) Frame-by-frame per track, 〈V (b)〉 = 27.4±0.3. (c)
Collective frame-by-frame, 〈V (c)〉 = 26.1±0.1. This sample contained 217 tracks
comprised of 5299 frames. The fastest track segment in (c) was 71.9µms−1. The
distributions of swimming directions was approximately uniform.

The extraction of useful phenomenological data from bioconvection pat-
terns has proven to be a significant challenge. However, as digital capability
increases, we believe that better acquisition of statistical data from the pat-
terns (e.g. mean populated area per unit time) will enrich the understand-
ing of the global system through interactive computational correlation of
observation, control, and analysis.
One issue that must be dealt with in any computational model is that,

though there is similarity in the development of every pattern, the details
of the experimentally observed evolution are different every time. This
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FIGURE 6. Swimming speeds of bacteria near a glass surface. The depth of water
is ≥ 10µm. The location where this sample was measured was between 26 and
46 µm from the air/water/glass contact line. Units and statistical methods as
in Fig. 5. (a) Head to tail, 〈V (a)〉 = 20.9 ± 1.1. (b) Frame-by-frame per track,
〈V (b)〉 = 35.8 ± 0.9. (c) Collective frame-by-frame, 〈V (c)〉 = 35.4 ± 0.6. The
sample contained 76 tracks comprised of 1239 frames. The fastest track segment
was 139µms−1. The angular distribution was approximately uniform.

stochasticity, and its dependence on the experimental initial conditions,
represents both the physical and biological characteristics of the global
system. Random events, such as a fast swimmer suddenly veering off in a
new direction (the heretofore mentioned “free will”), drastically increase
the nonlinearity of the global system. They result in a change of details,
but not general morphology of the subsequent pattern. Inclusion of such
events into 3-D digital simulations will be a major step in reaching insights
by “recreating” the naturally occurring events with the computer.
An analysis of a population of the swimmers parallels analysis of the

evolution of 2-D foams which “break” (i.e. individual cell walls rupture)
when gently heated [1]. In that case, it was important to understand both
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FIGURE 7. Swimming speeds of bacteria near a glass surface. The depth of water
for this sample, located between 6 and 26 µm from the contact line, ranged from
∼ 1µm to 10µm. Units and statistical methods as in Fig. 5. (a) Head to tail,
〈V (a)〉 = 34.7 ± 1.1. (b) Frame-by-frame per track, 〈V (b)〉 = 48.7 ± 1.1. (c)
Collective frame-by-frame, 〈V (c)〉 = 44.8±0.5. This sample contained 276 tracks
comprised of 3143 frames. The fastest track segment was 189µms−1.

the physico-chemical and random, but constrained, geometric properties
of the foams at discrete times during the evolutionary process. By doing
so, it became possible to generate a digital model of both the global and
local behavior of the foam [5]. Once verified as being both physically and
phenomenologically correct, this computer model became an invaluable tool
with which to analyze the patterns created during foam evolution. The
foams are analogous to the swimmers in that the patterns generated in each
system appear quite similar, though their details differ for each dynamical
evolution. It is important to note that a) the physics within the foam
network does not change during the evolutionary process, and b) the foam
has no “live” component which will exhibit “free will”, as the bacterial
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FIGURE 8. Distribution of directions for the sample of swimming trajectories
whose speed analysis is shown in Fig. 6. Methods (a), (b), and (c) as before. The
angular position of the contact line is ±90◦. The cells tend to swim parallel to
it, in either direction.

groups do, but it is subject to external an internal random events.

5 Conclusion

Conventional microbiological research is concerned with the biochemistry,
subcellular dynamics, and behavior of individual organisms. The amazingly
complete insights that have been attained do not generally extend to fluid
dynamical and other interactions among swimming cells that live within
either convective or strongly constraining geometries. Yet, large interacting
populations are the norm in the natural environment. The behavior of
individuals determines, and is determined by, biological imperatives and
associated behaviors of neighbors, by chance events, or — in appropriate
settings — by vast segments of populations and their inadvertently created
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FIGURE 9. Swimming speeds of individual bacterial cells near a glass surface,
and near the contact line. These histograms are for two tracks from the sample of
Figs. 7 and 8, randomly chosen: (Top) from the group of tracks oriented within
±30◦ of the contact line, and (Bottom) within ±60◦ of the perpendicular to the
contact line. These track histograms illustrate the typical variability of speeds
along any given trajectory.

fields of fluid motion.
This paper brings into focus some of the physical, biological, and math-

ematical ideas needed for modelling these systems. The experimental data
presented are intended to demonstrate that some of the required underly-
ing information, at all scales, is novel, astonishing, and within reach. These
observations relate not only to biological dynamics and its mysteries, but
to fundamental issues in the physics of dynamical systems.
How ought one interpret and model convection that exhibits macroscopic
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chaos and reproducible categories of patterns, while the underlying driv-
ing mechanism, the directional swimming of cells, must be described by
probability density functions? At the scale of bacterial cells, interactions
among individuals, also between individuals and bounding surfaces, circum-
vent the usual assumptions of linearity and reversibility governing viscous
flow phenomena. New discoveries concerning flow at very small scales [9]
may relate. Can bacteria be used as micro-probes of physical phenomena?
How ought such effects be incorporated in the modelling equations? The
appearance of evanescent groups of fast swimming, directionally coherent
cells in shallow wedge-shaped layers of fluid is reminiscent of the “cybotac-
tic swarms” featured in the ancient literature concerning liquid crystals. Is
there a self-generated mean director field? Are van der Waals or immersion
forces [11] responsible for weak aligned bound states? The statistical data
suggest that neither the central limit theorem, nor ergodicity, apply. What
are the broader implications, for biology, and for local as well as convective
transport-related nonlinearities?
In the context of this volume, we conclude that the subject is exciting,

applicable, nonlinear, and sufficiently nontrivial to extend well into the next
millennium.
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6 Appendix I: Statistical methods

Video tapes of cells swimming in shallow layers of water were analyzed,
using a computer system supplied by the Motion Analysis Corporation
(Santa Rosa, CA). Speed and direction of a given trajectory, and statis-
tics of many trajectories, were analyzed by three methods. When a given
trajectory begins at (�x1, t1) and its recording is terminated at (�x2, t2), one
may take

|�x2 − �x1|
(t2 − t1)

(21.10)

as an estimate of the speed V , and the direction of �x2 − �x1 as a direction
of travel. This head-to-tail method “a” is performed on all tracks in the
sample.
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The speed and direction increments measured frame-by-frame along a
trajectory using

|�xi+1 − �xi|
(ti+1 − ti)

(21.11)

estimates the actual speed and direction in the time interval of one frame,
e.g. 1/30 sec. for standard (NTSC) video. The average of these measure-
ments 〈Vi〉 and 〈θi〉 is calculated for a particular track. When these data are
collected for all tracks and plotted as histograms, they constitute method
“b”, “frame-by-frame per track”. Method “c” generates histograms for all
frame-by-frame elements, for all tracks, without intermediate averaging.
This “collective frame-by-frame” method shows the overall distribution and
range of local velocities.
Methods (a) and (b) relate to statistics for individual tracks. The ratio

of means,

S ≡ 〈V (a)〉
〈V (b)〉 ≤ 1 (21.12)

is a measure or tortuosity, where S = 1 implies straight trajectories; Brow-
nian motion would produce S � 0.

7 Appendix II

Typical dimensions of Bacillus subtilis or Escherichia coli :

Bacterial body: Length 1-5 µm, diameter d ≈ 0.7µm.
Helical flagella: Length 1-10 µm, diameter ∼ 15nm. Helix pitch
2 − 3µm, helix diameter ∼ 0.5µm.

Swimming speeds:

Average V ≤ 20µms−1 in deep layers, far from surfaces
V ≤ 50µms−1 in shallow layers of water.
Spurts ≥ 100µms−1

Reynolds number = aV
ν = (dimension)×(speed)

kinematic viscosity

For bacteria:
Normal, average case: (3×10−4)×(3×10−3)

10−2 = 9 × 10−5 << 1

Choice of biggest parameters: (10×10−4)×(10×10−3)
10−2 = 10−3 << 1

(Units: cm, sec)

Rate of oxygen consumption ≈ 106 molecules per cell per second [2].

Diffusivity of oxygen = 2 × 10−5cm2s−1
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Kinematic viscosity of water ν ≡ µ
ρ ≈ 10−2cm2s−1, with ρ ≈ 1gmcm−3.

Kinetic theory based estimate for diffusivity of swimming cells:

For 10µm free path, speed of 30µms−1

Diffusivity of swimming cells:

D(cell) ≈ (10−3)×3×(10−3)
3 = 10−6cm2s−1.
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Nonlinearities in Biology: The Brain as
an Example
Hermann Haken

1 Introduction

The human brain is probably the most complex system we know. The
number of its individual parts, the neurons, is estimated to be one hundred
billions. A neuron can be connected with up to ten thousand other neurons.
Other characteristic features of neurons have long been studied, and this
field is still subject of intense investigations both experimental and theo-
retical [1], [3], [11], [30]. At any rate it is well-established that neurons are
highly nonlinear elements. At the same time it is evident from our daily
experience that these neurons must cooperate in a well coordinated fash-
ion, be it the steering of movements or processes of pattern recognition,
speech production, and so on. This high coordination becomes also macro-
scopically visible through MEG and EEG measurements of brain activity
under different circumstances [19].
In my article I wish to address two questions that seem to be quite

fundamental, namely how can we model the behavior of the individual
elements and their interaction among each other, and how is it that in spite
of the extremely complicated interactions, at a macroscopic level some kind
of coherent structures, be it in the form of the electric and magnetic fields
of the brain, be it in the form of perceived patterns and so on, emerge.

2 Some salient features of neurons

A neuron can be conceived as an element that receives inputs from other
neurons, processes them and then sends out outputs to other neurons. The
scheme is shown in Fig. 1.
The soma of a neuron receives its inputs through dendrites in the form

of electric currents. It then sums up over these inputs, which might be
excitatory or inhibitory, and once a certain threshold is reached it fires.
This means, it sends out short pulses along its axon, which then splits up
and connects with the dendrites of other neurons via synapses. Once the
electric signal carried by the pulse reaches a synapse, it causes vesicles to
open and to release neurotransmitters that diffuse across the synaptic cleft

P.L. Christiansen, M.P. Sørensen, and A.C. Scott (Eds.): LNP 542, pp. 427−445, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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inputs from
other neurons

synapses dendrites soma axon

synapses output to other neurons

FIGURE 1. Block diagram of neuronal connections and activities

and eventually cause currents in the dendrites of other neurons. Of this
conventional wisdom, two features are to be noted:
1. The messages sent out from a neuron via the axon are pulse-coded,

i.e. the signal is encoded by means of time intervals between the individual
pulses.
2. These time intervals may be rather noisy.
While this pulse code seems to be universal for all neurons, there may

be still individual differences, for instance in how the incoming signals are
transformed into the outgoing ones. Here we focus our attention on one
kind of neurons that are well studied experimentally with respect to the
visual cortex. These results are based on experiments with anesthetized
cats to which a bar with a specific orientation and direction of movement is
shown. Depending on these features, the neurons fire more or less rapidly.
Following related results by W. Freeman [10] on the olfactory bulb, an
important feature was discovered more recently [8], [13]. When two bars
move across the visual fields, two corresponding neurons (or ensembles of
them) fire in phase, i.e. phase-locking between nerve pulses occurs. Since
the locking occurs only for a certain time interval, the results are described
as spindles.
In the first part of this article I shall describe a model that I recently

developed and that takes into account these experimental facts. It thus
adopts a middle position between two well-known extreme models. The
one widely known model is that of McCulloch and Pitts [27], which as-
sumes that the neurons have only two states, one resting state and one
firing state. The firing state is reached when the sum of the inputs from
other neurons exceeds a certain level. Then the neuron fires, but in this
model only once. The other case is represented by modelling neurons by
means of the Hodgkin-Huxley model. This model was originally devised
to understand the properties of axonal pulses, but is now applied to the
generation of pulse trains by neurons [4]. For further references the reader
is referred to section 8.
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3 The noisy lighthouse model of a neural network

We first consider the generation of dendritic currents by means of axonal
pulses via the synapses. We formulate the corresponding equation for the
dendritic current ψ as follows:

ψ̇(t) = aP (t − τ) − γψ(t) + Fψ(t) (22.1)

Here and in the following a dot means the time-derivative, i.e. ψ̇ = dψ/dt. In
a first approximation we assume that a is a constant. P is the axonal pulse,
τ a time delay, γ is a decay constant and Fψ is a fluctuating force. As is
known from statistical physics, whenever there occurs damping, fluctuating
forces are present. As usual we shall assume that the fluctuating forces are
δ-correlated in time. A more general relationship between pulses and the
generation of dendritic currents is given by the equation

ψ̇(t) =

t∫
−∞

G(t, σ)P (σ)dσ − γψ(t) + Fψ(t). (22.2)

As is known, vesicles that release neurotransmitters and thus eventually
give rise to the dendritic current can spontaneously open. This will be
the main reason for the fluctuating force Fψ, but also other noise sources
may be considered here. When a pulse comes in, the opening of a vesicle
occurs with only some probability. Thus we have to admit that in a more
appropriate description a is a randomly fluctuating quantity. Similarly the
kernel G in (22.2) may contain such fluctuations. While Fψ in (22.1) and
(22.2) represent additive noise, a and G represent multiplicative noise. In
order to describe the pulses properly, we introduce a phase angle φ and
connect P with φ through a function f

P (t) = f(φ(t)). (22.3)

We require the following properties of f

a) f(0) = 0, (22.4)

b) f(φ+ φ0) = f(φ), periodic, (22.5)

c) sharply peaked. (22.6)

Finally we have to establish a relationship between the phase angle φ of
the pulse P produced by the neuron under consideration and the dendritic
currents. To this end, we write

φ̇(t) = S(X) + Fφ(t), (22.7)
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where the function S(X) has the following properties: S is equal to zero
for X smaller than a threshold Θ, then it increases in a quasi linear fashion
until it saturates. Using the dendritic currents of other neurons ψm, we
write S in the form

S(X) = S

(∑
m

cmψm(t − τ ′) + pext(t − τ ′′) − Θ

)
. (22.8)

Here, τ ′ and τ ′′ are delay times, and pext is an external signal that is
transferred to the neuron under consideration from sensory neurons. A
simple explicit representation of (22.8) obeying the properties just required
for S is given by

φ̇ =
∑
m

cmψm(t − τ ′) + pext(t − τ ′′) − Θ for S > 0

φ̇ = 0
φ = 0

}
otherwise. (22.9)

The interpretation of equation (22.7) is based on the functioning of a light-
house in which a light beam rotates. The rotation speed φ̇ depends on S
according to (22.7). The fluctuating forces Fφ lead to a shift of the phase
at random instances. The relationships (22.1) or (22.2), (22.3) and (22.8)
can be easily generalized to the equations of a whole network. The index m
or k refers to the location and to the property “excitatory” or “inhibitory”.
The generalizations are straight forward and read

ψ̇m(t) =
∑

k

amkPk(t − τ) − γψm(t) + Fψ,m(t), (22.10)

Pk(t) = f(φk(t)), (22.11)

φ̇k(t) = S

(∑
m

ckmψm(t − τ ′) + pext,k(t − τ ′′) − Θk

)
+ Fφ,k(t). (22.12)

4 The special case of two neurons

In order to elucidate the meaning of these equations, we consider the special
case of two neurons. In this case, equations (22.10) and (22.12) acquire the
form

ψ̇1 = af (φ2(t − τ)) − γψ1, (22.13)
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φ̇2 = S
(
ψ2(t − τ ′) + pext,2 − Θ

)
, (22.14)

ψ̇2 = af (φ1(t − τ)) − γψ2, (22.15)

φ̇1 = S
(
ψ1(t − τ ′) + pext,1 − Θ

)
. (22.16)

In these equations, we neglect fluctuations. If the relation

pext,1 = pext,2 (22.17)

holds, for symmetry reasons among the possible solutions, there is the
following:

ψ2 = ψ1, φ2 = φ1. (22.18)

(22.18) implies that the phase locked solution is a possible one. Using
(22.18), equations (22.13) - (22.16) simplify to

ψ̇1 = af (φ1(t − τ)) − γψ1 (22.19)

and

φ̇1 = S (ψ1(t − τ ′) + pext − Θ) . (22.20)

Now let us assume that both neurons operate in the linear regime according
to (22.9). Equation (22.20) then acquires the form

φ̇1 = b (ψ1(t − τ ′) + pext − Θ) , (22.21)

where b is a constant. Note that the equations (22.19) and (22.21) are still
highly nonlinear because of the function f . In order to make our reasoning
as transparent as possible, we put

a = b = 1. (22.22)

It is a simple matter to eliminate ψ from the equations (22.19) and (22.21),
which leads to

φ̈1 = f (φ1) − γφ̇1 + γpext − γΘ ≡ −∂V (φ1)
∂φ1

− γφ̇1. (22.23)

As is indicated by the last part of this equations, the first and the last two
terms in the middle part can be expressed as the derivative of a potential
function that consists of two parts. As a simple analysis reveals, the first
part f gives rise to a potential function that consists of decreasing steps
when considered as a function of φ, whereas the last two terms give rise
to a linearly decreasing function. The motion of the phase φ1 can thus be
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interpreted as the motion of a particle in this potential field, i.e. the particle
is sliding down at a constant speed on the average on which, however, jumps
are superimposed. The effect of noise can easily be considered, too, namely
it gives rise to a diffusion of the phase φ1.
Let us now consider the stability of phase locking. To this end we again

consider the linear regime of S in which case the equations (22.13) - (22.16)
can be simplified to

ψ̇2 = f (φ1) − γψ2, (22.24)

φ̇1 = ψ1 + pext − Θ, (22.25)

ψ̇1 = f (φ2) − γψ1, (22.26)

φ̇2 = ψ2 + pext − Θ. (22.27)

Again we can eliminate ψ1 and ψ2, which leads to

φ̈1 = f (φ2) − γφ̇1 + γpext − γΘ (22.28)

and

φ̈2 = f (φ1) − γφ̇2 + γpext − γΘ. (22.29)

In order to make our approach as simple as possible, we use the following
explicit form of f

f(φ) = aφ̇
∑

n

δ(φ − 2πn − ε), ε small. (22.30)

We further introduce the equation for the phase-locked state φ

φ̈ = f(φ) − γφ̇+ γpext − γΘ. (22.31)

Making the hypothesis

φj = φ+ ξj ; j = 1, 2, (22.32)

subtracting (22.31) from (22.29) and integrating over time yields

ξ̇2 + γξ2 = −a [φ − φ mod 2π − ((φ+ ξ1) − (φ+ ξ1) mod 2π)] . (22.33)

A somewhat lengthy but rather straightforward analysis reveals that for
small ξj ’s (22.33) can be transformed into

ξ̇2 + γξ2 = 2πaφ̇−1
∑

	

δ
(
t − t+	

)
ξ1, (22.34)
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where φ(t+	 ) = 2π . Similarly we obtain

ξ̇1 + γξ1 = 2πaφ̇−1
∑

	

δ
(
t − t+	

)
ξ2. (22.35)

Addition or subtraction of (22.34) and (22.35) leads to two uncoupled equa-
tions for ξ = ξ2 − ξ1 and

∑
= ξ1 + ξ2, e.g.

ξ̇(t) + γξ(t) = −2πaφ̇−1
∑

	

δ
(
t − t+	

)
ξ(t). (22.36)

In between the peaks of the δ-functions ξ shows an exponential decay that
is superimposed by jumps of ξ at the δ-peaks. Provided γ is large enough,
ξ (and

∑
) decay to zero in spite of the jumps so that in this case the

phase-locked state is stable.

5 Time-averages

When we write P (t) in the form

P (t) = p0

∑
j

δ (t − tj) , (22.37)

where tj are the times where the pulses occur, and p0 is the pulse strength,
then

1
Tp0

t+T/2∫
t−T/2

P (σ)dσ ≡ A(t) (22.38)

can be interpreted as the number of pulses of height p0 during the time T .
Such averages can be introduced in the equation for the dendritic currents
(22.1). The solution of that equation reads

ψ(t) = a

t∫
−∞

e−γ(t−σ)P (σ − τ)dσ + F̂ψ(t), (22.39)

where we may consider

1/γ = T (22.40)

as a time-window. By means of the definition (22.38) we may cast (22.39)
into the form

ψ(t) = ap0γT · A(t − τ) + F̂ψ(t). (22.41)
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In order to introduce averages into equation (22.7), we consider a quasi-
steady state, so that

tj = jt0, j = 0,±1, ... (22.42)

and we conclude from

φ̇ = C (22.43)

that

φ = Ct0 =̂ 1 pulse. (22.44)

The notation “=̂” means “corresponding to”. More generally we can cast
equation (22.7) with (22.8) into

1
T

t+T/2∫
t−T/2

φ̇dσ =
1
T

t+T/2∫
t−T/2

S

(∑
m

cmψm(σ − τ ′) + pext − Θ

)
dσ (22.45)

and using (22.38) further into

A(t) ≈ S


∑

m

cm
1
T

t+T/2∫
t−T/2

(ψm(σ − τ ′) + pext)dσ − Θ


 . (22.46)

When we add the corresponding indices, referring to the individual neurons,
we finally obtain well-known equations that we shall discuss in the next
section.

6 The averaged neural equations

In this section we resume the general approach of section 3 that resulted
in the equations (22.10) - (22.12). We now perform the time-average over
these equations according to section 5. In order to allow a description that
covers a number of special cases, we shall adopt a slightly different notation.
We denote the axonal pulse rates at time t by

Ajk(t), (22.47)

where the first index j refers to excitatory or inhibitory, and the second
index enumerates the neurons. Later we will adopt a continuous space
variable, and we shall then make the identifications
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j = e (excitatory), k = x

= i (inhibitory), k = x. (22.48)

The dendritic wave amplitudes will be denoted by

ψ	,m(t), (22.49)

where in analogy to (22.48) we can specify the indices  ,m according to

 = e (excitatory), m = x : ψe(x, t)
 = i (inhibitory), m = x : ψi(x, t). (22.50)

The conversion of the axonal pulse rates into dendritic current amplitudes
is described by

ψ	,m(t) =
∑

k

f	;m,ka	A	,k (t − t	,mk) + F	,m(t). (22.51)

f	;m,ka	 describes the synaptic strengths between neurons m and k, where
we assume that inhibitory (excitatory) neurons have only inhibitory (ex-
citatory) connections. t	,mk describes the time delay according to finite
propagation velocities ve, vi. The conversion from dendritic amplitudes to
axonal firing rates is described by the equations

Ajk(t) = Ŝj

( ∑
m

f̂j;k,m (ψe,m (t − te,km) − ψi,m (t − ti,km))

+pj,m (t − tkm)
)
+ F̂	,m(t), (22.52)

where the notation is similar to that of equation (22.51). pj,m is an external
signal of kind j at neuron m and F̂ are again fluctuating forces. We assume
that the conversion from dendritic currents to axonal pulse rates is local so
that with locally averaged ψs

Ajk(t) = Ŝj (ψe,k(t) − ψi,k(t) + pj,k(t)) + F̂j,m(t). (22.53)

Using the approximation (22.53), we can simply eliminate either A from
the equations (22.51) and (22.53) or the ψs. When we eliminate the ψs, we
obtain

Ajk(t) = Ŝj

( ∑
n

fe;k,naeAe,n (t − te,nk) −
∑

n

fi;k,naiAi,n (t − ti,nk)

+pj,k(t) + Fe,k(t) − Fi,k(t)
)
+ F̂j,k(t). (22.54)
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When we ignore the fluctuating forces and use an ensemble average that
allows us to introduce connectivities that are smooth functions of the space
variable, equations (22.54) are essentially the Wilson-Cowan [36], [37] equa-
tions provided the membrane decay time is short compared to the propaga-
tion times. We note that the Wilson-Cowan model has found applications
to the modelling of hallucinations as was done by Cowan and Ermentrout
[7], [9] and more recently in a very extensive study by Tass [33], [35].
The formulation (22.54) allows us immediately to make contact with

approaches in neural nets. We consider only one kind of neurons, namely
excitatory, and make the replacement

Aek(t) → qk(t), (22.55)

Aik → 0, (22.56)

and ignore the fluctuating forces, i.e. we put

F = F̂ = 0. (22.57)

Furthermore we put the delay times equal to a single time according to

te,nk = τ. (22.58)

Without loss of generality, we may put

ae = 1. (22.59)

With these assumptions, (22.54) is converted into

qk(t+ τ) = Ŝ

(∑
n

fknqn(t) + pk(t)

)
. (22.60)

Equation (22.60) is the conventional network model in the sense of McCul-
loch and Pitts [27]. (For a physicist the spin glass analogy by Hopfield [20]
is most appealing, but we shall not dwell on it here.) fkn serve as synaptic
strengths. When the sigmoid function is a step function, having the values
0 or 1, with a threshold h, (22.60) describes a discrete time process dur-
ing which the variables qk that may be interpreted as neuronal activity,
adopt the values 0 or 1. One may easily supplement equations (22.60) by
a damping term

−αq(t) (22.61)

on the right-hand side. The reader hardly need be reminded of the contents
of equation (22.60). The network consists of neurons that can occupy the
states
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qk = 0, 1. (22.62)

The inputs into neuron k coming from neurons n are summed up by means
of synaptic weights fkn. Depending on the size of the total sum, the neu-
ron with index k may change its state or remain in the former one. It is
important to note that in this model the geometrical form of the network
is entirely unimportant. What counts is the connections. Kohonen’s idea
of feature maps [25] brings equations (22.60) closer to specific spatial ar-
rangements. However, there is no link with the spatio-temporal patterns
found in EEG or MEG measurements.
To elucidate this case, we again start from equations (22.51) – (22.53)

and eliminate the axonal pulse rates so that we obtain equations for the
dendritic wave amplitudes. A simple calculation shows that these equations
have the form

ψ	,m(t) =
∑

k

a	f	;m,kŜ	(ψe,k (t − t	,mk)

−ψi,k (t − t	,mk) + p	,k (t − tm,k)), (22.63)

where we omit the fluctuating forces. As we shall see immediately, equa-
tions (22.63) are a good starting point for deriving field equations of brain
activity. In order to do so, we identify the indices m or k with the space
point x, which may be one-, two-, or three-dimensional. It may well be
that the synaptic strengths f	;m,k are extremely complicated functions of
the space coordinates m, k. In order to proceed further, we shall assume
that we average over ensembles of neurons so that the functions f become
smoothed.
In the following then we shall make simple assumptions on the form of

these smooth functions. We shall assume that the neuron at position x
receives inputs from dendrites X more strongly, if the distance is small, or,
in other words, we shall assume that f decreases with increasing distance.
In order to make the following approach as transparent as possible, we shall
assume that we may put ψi = 0, which actually is a good approximation
and its inclusion would lead only to some kind of changes of numerical
factors [23], [24]. Then equations (22.63) can be specified as equation

ψe(x, t) = ae

∫
dXfe(x,X)Ŝe

[
ψe

(
X, t − | x − X |

ve

)

+pe

(
X, t − | x − X |

ve

) ]
, (22.64)

where we replaced the sum over k by an integral over X, and we made the
replacement
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fe,m,k → fe(x,X) = β(x − X). (22.65)

Equation (22.64) had been derived previously [23], [24] in a way where con-
tinuous space variables were used from the very beginning and the explicit
form (22.31) of β was used. In its linearized form, this integral equation
corresponds to the model equation by Nunez [28] and is discussed in [30].
(Nunez included the equation for ψi!) Equation (22.64) is the starting point
for our further considerations (see also [23], [24]). It will be our goal to con-
vert the integral equation (22.64) into a local field equation. By use of the
δ-function

δ (t − T− | x − X | /ve) , (22.66)

we can write equation (22.64) in the form of equation

ψe(x, t) =
∫

dX

+∞∫
−∞

G(x − X, t − T )ρ(X,T )dT, (22.67)

where

G(x − X, t − T ) = δ

(
t − T − | xX |

ve

)
β(x − X) (22.68)

can be interpreted as a Green function, and

ρ(X,T ) = aeŜ [(ψe(X,T ) + p(X,T ))] (22.69)

as a density that occurs as an inhomogeneity in a wave or field equation.
In order to derive such an equation, we proceed in a conventional manner
by making Fourier transformations of the following form

ψe(x, t) =
1

(2π)2

+∞∫
−∞

+∞∫
−∞

eikx−iωtψe(k, ω)dkdω, (22.70)

ρ(x, t) ↔ ρ(k, ω), (22.71)

G(ξ, t0) =
1

(2π)2

+∞∫
−∞

+∞∫
−∞

eikξ−iωt0g(k, ω)dkdω (22.72)

with

ξ = x − X, t0 = t − T. (22.73)

Then we may write the Fourier transform of ψe as
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ψe(k, ω) = g(k, ω)ρ(k, ω). (22.74)

The explicit form of g(k, ω) depends on both the dimension and the specific
form of β in (22.68). To elucidate the general procedure, we proceed with
a simple example in which case we assume β in the form

fe(x,X) = β(x − X) =
1
2σe

e|x−Xe|. (22.75)

The Fourier transform g can be obtained by means of

g(k, ω) =

+∞∫
−∞

+∞∫
−∞

e−ikx+iωtG(x, t)dxdt. (22.76)

Using (22.68) and (22.75), we can easily evaluate the integral (22.76), which
leads to

g(k, ω) =
(
ω2

0 − iω0ω
) (

v2
ek

2 + (ω0 − iω)2
)−1

, (22.77)

where we use the abbreviation

ω0 =
ve

σe
. (22.78)

The form of (22.77) suggests to multiply both sides of the Fourier transform
of the equation (22.67) by

(
v2

ek
2 + (ω0 − iω)2

)
(22.79)

and to back transform. This leads immediately to the equation

ψ̈e +
(
ω2

0 − v2
e

d2

dx2

)
ψe + 2ω0ψ̇e =

(
ω2

0 + ω0
∂

∂t

)
ρ(x, t), (22.80)

where we used the abbreviation (22.78). Equation (22.80) is of the form of
a damped wave equation with an inhomogeneity that is defined by (22.69)
and was previously derived in [23], [24]. It must be stressed that these
evaluations were done in one dimension. As a more detailed analysis [17]
shows, the general form of (22.80) is rather insensitive to the special form
of (22.65) provided we are dealing with slow, long-wavelength solutions.
The whole procedure applies also to the two- and three-dimensional case,
though in the two-dimensional case the form of the l.h.s. of (22.80) is more
complicated.



440 Hermann Haken

7 How to make contact with experimental data?
Synergetics as a guide

In this section, I wish to briefly elucidate the way how the microscopic
field equations, that were derived in the previous sections, can be used to
make contact with experimental data, where we take as an example MEG
measurements by Kelso and his group [26]. Here a person was subjected to
a periodic acoustic signal and had to respond by the tapping of his or her
finger in between the acoustic signals. When the frequency of the acoustic
signals was increased beyond a critical value, the subject could no more fol-
low the task, but moved his or her finger in phase with the acoustic signal.
A nonequilibrium phase transition had occurred. During these tasks, the
MEG was measured by a squid array that contained about three dozens of
sensors of the magnetic field produced by the brain. From these data the
spatio-temporal pattern of the magnetic field across an area that covers
the sensory and motor cortex is reconstructed. To bridge the gap between
these macroscopic patterns and the microscopic approach, we invoke basic
results from synergetics [16], [18]. This interdisciplinary field studies the
behavior of complex systems, in particular close to their instability points.
According to the general results of that field, close to instability points, the
dynamic behavior even of complex systems is – in many cases – governed
by few order parameters that occur as the amplitudes of a corresponding
number of spatial modes (plus some small additional terms). Since exper-
imentally a nonequilibrium phase transition is observed, according to an
earlier suggestion [15], we expected for that MEG experiment only few or-
der parameters. As our data analysis showed [12], the brain area studied
indeed behaves as if it is (essentially) governed by two order parameters.
Furthermore it is possible to establish order parameter equations that are
in good agreement with experimentally observed time series [21], [22].
Now the gap has to be bridged between the microscopic field equations

and the phenomenologically derived order parameter equations. In the con-
text of the present article I wish to present only the first few steps, namely
how to incorporate the external signals p(x, t) in the field equations [23],
[24]. To this end, we decompose the external signals into a sum over indi-
vidual signals pj and use

ρ(x, t) = aeSe [ψe(x, t) + pa(x, t) + pms(x, t)] . (22.81)

We shall write the input of the acoustic signal in the form

pa(x, t) = βa(x) sinΩt, (22.82)

where βa describes its spatial distribution in the auditory cortex and the
sine-function contains the periodic input of frequency Ω. Furthermore, the
efferent and afferent nerve fibres generate a feedback loop, which involves
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the finger movement. To this end, we assume that the motor cortex gener-
ates a motor signal described by

ψm(t) =
∫

dxβm(x)ψe(x, t), (22.83)

where βm(x) describes the spatial distribution of the origin of the efferent
nerve fibres. It is assumed that the nerve signal (22.83) acts on the finger
as if it is a driving force at a delay time tf , because of the propagation of
the signal in the nerve fiber. We model the finger movement as a simple
harmonic oscillator and thus write

z̈ + γż + ω2
fz = cψm(t − tf ). (22.84)

Anticipating a result that can be derived only later, we write (22.83) in the
form

ψm(t) ≈ ψ0 cosΩt (22.85)

that allows us to solve (22.84) immediately. Under conditions where a phase
shift is negligible, we can write the solution z(t) in the form

δ ≈ 0 → z(t) = c0ψm(t), c0 =
c√

(ω2
f − Ω2)2 + (γΩ)2

. (22.86)

This allows us to write the sensory input that stems from the motor activity
in the form

psm(x, t) = βsm(x)ssm(t), (22.87)

where we put

ssm(t) = z(t − tf ). (22.88)

The basic field equation now reads

ψ̈e +
(
ω2

0 − v2∆
)
ψe + 2ω0ψ̇e = ae

(
ω2

0 + ω0
∂

∂t

)
·Se [ψe(x, t) + pa(x, t) + psm(x, t)] . (22.89)

When we insert (22.87) with (22.88) and (22.86) into (22.89), we obtain a
field equation in which all variables are expressed by ψe except for pa, which
is an external input signal. For the further analysis, the sigmoid function
S is approximated by a linear term in psm and a linear and cubic term in
ψe + pa, i.e.

Se(Q) ≈ aQ − bQ3. (22.90)
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Taking all these steps together, we, eventually, arrive at the following equa-
tion

ψ̈e +
(
ω2

0 − v2∆
)
ψe + γ0ψ̇e +A3

e +Bψ2
e ψ̇e +

4∑
j=1

Kj = 0. (22.91)

It is a nonlinear damped wave equation, in which the terms Kj are defined
as follows: The most important term is

K1 = ε
(
2Ω sin 2Ωtψe − cos 2Ωt

(
ψ̇e + ω0ψe

))
, (22.92)

which represents a parametric driving at double the frequency of the in-
coming signal. The term

K2 ∝ ψ2
e , ψeψ̇e (22.93)

contains quadratic expressions in ψe and their corresponding coefficients
contain the linear signal. K3 contains terms linear and cubic in the signal,
but no functions ψe or ψ̇e, i.e.

K3 ∝ cos(Ωt+ φ), cos(3Ωt+ φ′). (22.94)

Finally, K4 contains the feedback loop of the motor signal as it was ex-
plained above

K4 = γ1ψ̇m. (22.95)

The solutions of (22.91) are very sensitive to the choice of parameters and,
therefore, appropriate solutions of this equation can be found only in con-
nection with a detailed analysis of experimental results. As had been shown
elsewhere, an analysis [21], [22] of the Kelso experiments requires that the
field equations are parametrically driven by the signal, otherwise the tran-
sition from a syncopating to a synchronized motion would not be possible.
This implies that the term (22.92) is the most important one. The terms
(22.93) may still be there, but play a minor role, while the term (22.94)
must be very small or must vanish altogether. One may speculate that this
is brought about when an average over an ensemble of neurons is taken.
The term (22.95) must, of course, be included. In order to treat (22.91)
further [23], [24], a mode expansion

ψe(x, t) =
1∑

n=−1

ξn(t) exp(inkx) (22.96)

is performed, where

ξn(t) = ξ∗
−n(t). (22.97)
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We assume periodic boundary conditions of the neural sheet and take
only standing waves into account. The hypothesis (22.90) gives rise to equa-
tions for the mode amplitudes ξn. For these equations contact can be made
with previously phenomenologically derived equations [21], [22] so that the
gap between the microscopic and macroscopic treatments could be closed.
It should be stressed that the theoretical reconstruction of the experimental
data depends very sensitively on the proper choice of the constants in the
equations. This means, on the one hand, that the brain has learned to ma-
nipulate such operations in a highly delicate fashion. It further means that
it will be hardly possible to treat brain functioning in all details from first
principles, because many of the required constants are not known precisely
enough at the microscopic level. On the other hand, it is satisfying to see
that by proper choices of the constants the experimental data can, indeed,
be recovered. Quite evidently, there is still a lot of work to be done, because
experimentally also higher order modes, though of small amplitude, have
been observed and it might be interesting to penetrate more deeply into
the fine structure of the MEG patterns. At any rate we may state that at
least globally the dynamics of the brain states is governed by few order
parameters only. Of course, these results do not imply that the whole brain
activity is governed by few order parameters only. Rather when specific
tasks are to be fulfilled or during episodes, the brain is governed by few or-
der parameters, but these order parameters, in general, change all the time
so that in reality there is a huge set of order parameters available for the
brain. The above mentioned experiments show clearly that there are crit-
ical fluctuations in the transition region. Such fluctuations are well-known
from transitions in other synergetic systems [16], [18].

8 Concluding remarks and outlook

In my article I described the “noisy lighthouse model”, showing that it
can represent phase locking effects between neurons and leads, after the
performance of time-averages, to equations of a type that were formerly
introduced to model neural nets (see e.g. [2], [14]). Because of the inherent
nonlinearities, the solutions can show a rich repertoire of spatio-temporal
patterns. I took the analysis of MEG-patterns according to basic concepts
of synergetics as an example. Clearly, because of lack of space in my article,
only a small cross section of the highly modern and exciting endeavor of
modelling brain functions could be presented. Such research is going on at
all levels. For instance, at the level of neurons, the integrate- and fire model
deserves attention (for recent developments cf. [5], [6]) and its relationship
to other models, including the lighthouse model, must be studied. Axonal
pulse propagation can be studied in terms of solitary waves and a wide field
is opening here [31], [32]. At the macro-level refined methods of EEG and
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MEG analysis are being developed [34]. All in all it can be said that brain
research is an exciting field in which still many surprises are waiting for us.

Acknowledgments: I thank Peter Christiansen and Alwyn Scott for stimu-
lating discussion.
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