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P R E F A C E

This book is written for theoretical and mathematical physicists and mathe-

maticians interested in recent developments in complex general relativity and their

application to classical and quantum gravity. Calculations are presented by paying

attention to those details normally omitted in research papers, for pedagogical rea-

sons. Familiarity with fibre-bundle theory is certainly helpful, but in many cases I

only rely on two-spinor calculus and conformally invariant concepts in gravitational

physics. The key concepts the book is devoted to are complex manifolds, spinor

techniques, conformal gravity, α-planes, α-surfaces, Penrose transform, complex

space-time models with non-vanishing torsion, spin-   fields and spin-   potentials.

Problems have been inserted at the end, to help the reader to check his under-

standing of these topics.

Thus, I can find at least four reasons for writing yet another book on spinor

and twistor methods in general relativity: (i) to write a textbook useful to be-

ginning graduate students and research workers, where two-component spinor cal-

culus is the unifying mathematical language. This enables one to use elegant

and powerful techniques, while avoiding a part of mathematics that would put off

physics-oriented readers; (ii) to make it possible to a wide audience to understand

the key concepts about complex space-time, twistor space and Penrose transform

for gravitation; (iii) to present a self-consistent mathematical theory of complex

space-times with non-vanishing torsion; (iv) to present the first application to

boundary-value problems in cosmology of the Penrose formalism for spin-   po-

tentials. The self-contained form and the length have been chosen to make the

monograph especially suitable for a series of graduate lectures.

Section 7.2 is based on work in collaboration with Hugo A. Morales-Técotl and

Giuseppe Pollifrone. It has been a pleasure and a privilege, for me, to work with

both of them. Sections 8.2-8.9 are based on work in collaboration with Giuseppe

Pollifrone and, more recently, with Gabriele Gionti, Alexander Kamenshchik and
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PART I:

S P I N O R  F O R M  O F  G E N E R A L  R E L A T I V I T Y



CHAPTER ONE

I N T R O D U C T I O N  T O  C O M P L E X  S P A C E - T I M E

Abstract. This chapter begins by describing the physical and mathematical mo-

tivations for studying complex space-times or real Riemannian four-manifolds in

gravitational physics. They originate from algebraic geometry, Euclidean quan-

tum field theory, the path-integral approach to quantum gravity, and the theory of

conformal gravity. The theory of complex manifolds is then briefly outlined. Here,

one deals with paracompact Hausdorff spaces where local coordinates transform by

complex-analytic transformations. Examples are given such as complex projective

space Pm , non-singular sub-manifolds of Pm , and orientable surfaces. The plan of

the whole monograph is finally presented, with emphasis on two-component spinor

calculus, Penrose transform and Penrose formalism for spin- potentials.3
2 
–

2



1. Introduction to Complex Space- Time

1.1 From Lorentzian Space-Time to Complex Space-Time

Although Lorentzian geometry is the mathematical framework of classical

general relativity and can be seen as a good model of the world we live in (Hawking

and Ellis 1973, Esposito 1992, Esposito 1994), the theoretical-physics community

has developed instead many models based on a complex space-time picture. We

postpone until section 3.3 the discussion of real, complexified or complex manifolds,

and we here limit ourselves to say that the main motivations for studying these

ideas are as follows.

(1) When one tries to make sense of quantum field theory in flat space-time,

one finds it very convenient to study the Wick-rotated version of Green functions,

since this leads to well-defined mathematical calculations and elliptic boundary-

value problems. At the end, quantities of physical interest are evaluated by analytic

continuation back to real time in Minkowski space-time.

(2) The singularity at r = 0 of the Lorentzian Schwarzschild solution disap-

pears on the real Riemannian section of the corresponding complex space-time,

since   = 0 no longer belongs to this manifold (Esposito 1994). Hence there arer

real Riemannian four-manifolds which are singularity-free, and it remains to be

seen whether they are the most fundamental in modern theoretical physics.

(3) Gravitational instantons shed some light on possible boundary conditions

relevant for path-integral quantum gravity and quantum cosmology (Gibbons and

Hawking 1993, Esposito 1994).

(4) Unprimed and primed spin-spaces are not anti-isomorphic if Lorentzian

space-time is replaced by a complex or real Riemannian manifold. Thus, for ex-

ample, the Maxwell field strength is represented by two independent symmetric

spinor fields, and the Weyl curvature is also represented by two independent sym-

metric spinor fields (see (2.1.35)-(2.1.36)). Since such spinor fields are no longer

related by complex conjugation (i.e. the anti-isomorphism between the two spin-

spaces), one of them may vanish without the other one having to vanish as well.

3



1. Introduction to Complex Space- Time

This property gives rise to the so-called self-dual or anti-self-dual gauge fields, as

well as to self-dual or anti-self-dual space-times (section 4.2).

(5) The geometrical study of this special class of space-time models has made

substantial progress by using. twistor-theory techniques. The underlying idea (Pen-

rose 1967, Penrose 1968, Penrose and MacCallum 1973, Penrose 1975, Penrose

1977, Penrose 1980, Penrose and Ward 1980, Ward 1980a-b, Penrose 1981, Ward

1981a-b, Huggett and Tod 1985, Woodhouse 1985, Penrose 1986, Penrose 1987,

Yasskin 1987, Manin 1988, Bailey and Baston 1990, Mason and Hughston 1990,

Ward and Wells 1990) is that conformally invariant concepts such as null lines and

null surfaces are the basic building blocks of the world we live in, whereas space-

time points should only appear as a derived concept. By using complex-manifolds

theory, twistor theory provides an appropriate mathematical description of this

key idea.

A possible mathematical motivation for twistors can be described as follows

(papers 99 and 100 in Atiyah 1988). In two real dimensions, many interesting

problems are best tackled by using complex-variable methods. In four real di-

mensions, however, the introduction of two complex coordinates is not, by itself,

sufficient, since no preferred choice exists. In other words, if we define the complex

variables

(1.1.1)

(1.1.2)

we rely too much on this particular coordinate system, and a permutation of the

four real coordinates x 1 , x2 , x 3 , x 4 would lead to new complex variables not well

related to the first choice. One is thus led to introduce three complex variables

: the first variable u tells us which complex structure to use, and the

next two are the complex coordinates themselves. In geometrical language, we

3( C ) (see section 1.2) with complexstart with the complex projective three-space P

homogeneous coordinates (x,  y,  u,  v), and we remove the complex projective line

4



1. Introduction to Complex Space- Time

given by u = v = 0. Any line in is thus given by a pair of

equations

(1.1.3)

(1.1.4)

In particular, we are interested in those lines for which The

determinant ∆ of (1.1.3)-(1.1.4) is thus given by

(1.1.5)

which implies that the line (1.1.3)-(1.1.4) never intersects the line x = y = 0 ,

with the obvious exception of the case when they coincide. Moreover, no two

lines intersect, and they fill out the whole of . This leads to the

fibration by assigning to each point of

the four coordinates Restriction of this fibration to

a plane of the form

(1.1.6)

yields an isomorphism C 2 ≅ R 4 , which depends on the ratio (α β ) ∈ P1 (C ). This

is why the picture embodies the idea of introducing complex coordinates.

Such a fibration depends on the conformal structure of R 4. Hence, it can be

extended to the one-point compactification S 4 of R 4, so that we get a fibration

P3(C ) →  S 4 where the line u = v = 0, previously excluded, sits over the point at

∞ of S 4 = R 4 ∪ {∞} . This fibration is naturally obtained if we use the quaternions

H to identify C 4 with H 2 and the four-sphere S 4 with P1( H ), the quaternion

projective line. We should now recall that the quaternions H are obtained from

the vector space R of real numbers by adjoining three symbols  i, j , k  such that

(1.1.7)

(1.1.8)

5



1. Introduction to Complex Space-Time

Thus, a general quaternion ∈ H is defined by

(1.1.9)

where ∈ R 4 , whereas the conjugate quaternion is given by

(1.1.10)

Note that conjugation obeys the identities

(1.1.11)

(1.1.12)

If a quaternion does not vanish, it has a unique inverse given by

(1.1.13)

Interestingly, if we identify i with we may view the complex numbers C as

contained in H taking x3 = x 4 = 0. Moreover, every quaternion x as in (1.1.9)

has a unique decomposition

(1.1.14)

where by virtue of (1.1.8). This property enables one

to identify H with C ², and finally H ² with C 4, as we said following (1.1.6).

The map σ : P3 (C ) → P3 (C ) defined by

(1.1.15)

preserves the fibration because c = and induces the antipodal map

on each fibre. We can now lift problems from S 4 or R 4 to P3 (C ) and try to use

complex methods.

6



1. Introduction to Complex Space- Time

1.2 Complex Manifolds

Following Chern 1979, we now describe some basic ideas and properties of

complex-manifold theory. The reader should thus find it easier (or, at least, less

difficult) to understand the holomorphic ideas used in the rest of the book.

We know that a manifold is a space which is locally similar to Euclidean space

in that it can be covered by coordinate patches. More precisely (Hawking and Ellis

1973), we say that a real C r n -dimensional manifold M is a set M together with a

i.e. a collection of charts (Uα ,  φα) , where the U α are subsetsC r a t l a s  { Uα ,φα},

of M and the φα are one-one maps of the corresponding Uα to open sets in R n

such that

(i) M is covered by the Uα , i.e. M = ∪ Uα α

(ii) if Uα ∩ Uβ is non-empty, the map

is a C r map of an open subset of R n to an open subset of Rn . In general relativity, it

is of considerable importance to require that the Hausdorff separation axiom should

hold. This states that if p, q are any two distinct points in M , there exist disjoint

open sets U, V in M such that p ∈ U, q ∈ V. The space-time manifold (M , g)

is therefore taken to be a connected, four-dimensional, Hausdorff C ∞ manifold

M with a Lorentz metric g on M, i.e. the assignment of a symmetric, non-

degenerate bilinear form g|p  : Tp M × T pM → R with diagonal form (–, +, +, +)

to each tangent space. Moreover, a time orientation is given by a globally defined,

timelike vector field X : M → TM. This enables one to say that a timelike or

null tangent vector v ∈ Tp M is future-directed if g(X (p),v) < 0, or past-directed

if g (X(p),v) > 0 (Esposito 1992, Esposito 1994).

By a complex manifold we mean a paracompact Hausdorff space covered by

neighbourhoods each homeomorphic to an open set in C m , such that where two

neighbourhoods overlap, the local coordinates transform by a complex-analytic

7



1. Introduction to Complex Space-Time

transformation. Thus, if z1 , ..., z m are local coordinates in one such neighbour-

hood, and if w1 , ..., w m are local coordinates in another neighbourhood, where

they are both defined one has ,  where each w i is a holomor-

phic function of the z’s, and the determinant does

not vanish. Various examples can be given as follows (Chern 1979).

E1. The space C m whose points are the m-tuples of complex numbers

In particular, C ¹ is the so-called Gaussian plane.

E2. Complex projective space Pm , also denoted by Pm (C ) or C P m . Denoting

by {0} the origin (0, ..., 0), this is the quotient space obtained by identifying the

points in C m+1 – {0} which differ from each other by a factor.

The covering of Pm is given by m + 1 open sets Ui defined respectively by z i ≠ 0 ,

0 ≤ i ≤ m . In Ui we have the local coordinates In

Ui ∩ U j , transition of local coordinates is given by

which are holomorphic functions. A particular case is the Riemann sphere P 1 .

E3. Non-singular sub-manifolds of Pm , in particular, the non-singular hyper-

quadric

(1.2.1)

A theorem of Chow states that every compact sub-manifold embedded in Pm

is the locus defined by a finite number of homogeneous polynomial equations.

Compact sub-manifolds of C m are not very important, since a connected compact

sub-manifold of C m is a point.

E4. Let Γ be the discontinuous group generated by 2m translations of C m , which

are linearly independent over the reals. The quotient space C m /Γ is then called the

complex torus. Moreover, let ∆ be the discontinuous group generated by z k → 2 z k ,

1 ≤ k ≤ m. The quotient manifold is the so-called Hopf manifold,

8



1. Introduction to Complex Space- Time

and is homeomorphic to S¹ × S 2m –1. Last but not least, we consider the group

M3 of all matrices

(1.2.2)

and let D be the discrete group consisting of those matrices for which z1 , z 2, z 3

are Gaussian integers. This means that zk = mk  + in k , 1 ≤ k ≤ 3, where m k , n k

are rational integers. An Iwasawa manifold is then defined as the quotient space

M 3 /D.

E5. Orientable surfaces are particular complex manifolds. The surfaces are taken

to be C ∞ , and we define on them a positive-definite Riemannian metric. The

Korn-Lichtenstein theorem ensures that local parameters x, y exist such that the

metric locally takes the form

(1.2.3)

or

(1.2.4)

If w is another local coordinate, we have

(1.2.5)

since g is globally defined. Hence dw is a multiple of  dz or . In particular, if the

complex coordinates z and w define the same orientation, then dw is proportional

to dz. Thus, w is a holomorphic function of z, and the surface becomes a complex

manifold. Riemann surfaces are, by definition, one-dimensional complex manifolds.

Let us denote by V an m -dimensional real vector space. We say that V has

a complex structure if there exists a linear endomorphism J : V → V such that

J ² = –1, where 1 is the identity endomorphism. An eigenvalue of J is a complex

number λ such that the equation Jx = λx has a non-vanishing solution x ∈ V.

Applying J to both sides of this equation, one finds –x = λ ² x. Hence λ  = ±i .

9



1. Introduction to Complex Space-Time

Since the complex eigenvalues occur in conjugate pairs, V is of even dimension

n = 2m. Let us now denote by V * the dual space of V, i.e. the space of all

real-valued linear functions over V. The pairing of V and V* is < x, y * >, x ∈ V,

y * ∈ V *, so that this function is R -linear in each of the arguments. Following

Chern 1979, we also consider V* ⊗ C, i.e. the space of all complex-valued R-linear

functions over V. By construction, V* ⊗ C is an n-complex-dimensional complex

vector space. Elements ƒ ∈ V* ⊗ C are of type (1,0) if ƒ(Jx) = if (x), and of type

(0,l) if ƒ (Jx) = –if (x), x ∈  V .

If V has a complex structure J, an Hermitian structure in V is a complex-

valued function H acting on x, y ∈ V such that

(1.2.6)

(1.2.7)

(1.2.8)

By using the split of H(x, y) into its real and imaginary parts

(1.2.9)

conditions (1.2.7)-( 1.2.8) may be re-expressed as

(1.2.10)

(1.2.11)

If M is a C ∞ manifold of dimension n, and if Tx and Tx
* are tangent and

cotangent spaces respectively at x ∈ M, an almost complex structure on M is a

C ∞ field of endomorphisms Jx  : T x  → T x such that J ²
x
 = – 1 x , where 1x  is the

identity endomorphism in Tx . A manifold with an almost complex structure is

called almost complex. If a manifold is almost complex, it is even-dimensional and

orientable. However, this is only a necessary condition. Examples can be found

10



1. Introduction to Complex Space-Time

(e.g. the four-sphere S 4) of even-dimensional, orientable manifolds which cannot

be given an almost complex structure.

1.3 An Outline of This Work

Since this book is devoted to the geometry of complex space-time in spinor

form, chapter two presents the basic ideas, methods and results of two-component

spinor calculus. Such a calculus is described in terms of spin-space formalism, i.e.

a complex vector space endowed with a symplectic form and some fundamental

isomorphisms and anti-isomorphisms. These mathematical properties enable one

to raise and lower indices, define the conjugation of spinor fields in Lorentzian or

Riemannian four-geometries, translate tensor fields into spinor fields (or the other

way around). The standard two-spinor form of the Riemann curvature tensor is

then obtained by relying on the (more) familiar tensor properties of the curva-

ture. The introductory analysis ends with the Petrov classification of space-times,

expressed in terms of the Weyl spinor of conformal gravity.

Since the whole of twistor theory may be viewed as a holomorphic description

of space-time geometry in a conformally invariant framework, chapter three studies

the key results of conformal gravity, i.e. C-spaces, Einstein spaces and complex

Einstein spaces. Hence a necessary and sufficient condition for a space-time to

be conformal to a complex Einstein space is obtained, following Kozameh et al.

1985. Such a condition involves the Bach and Eastwood-Dighton spinors, and

their occurrence is derived in detail. The difference between Lorentzian space-

times, Riemannian four-spaces, complexified space-times and complex space-times

is also analyzed.

Chapter four is a pedagogical introduction to twistor spaces, from the point

of view of mathematical physics and relativity theory. This is obtained by defining

twistors as α -planes in complexified compactified Minkowski space-time, and as

α-surfaces in curved space-time. In the former case, one deals with totally null

11



1. Introduction to Complex Space-Time

two-surfaces, in that the complexified Minkowski metric vanishes on any pair of

null tangent vectors to the surface. Hence such null tangent vectors have the form

λA πA', where λA is varying and π A’ is covariantly constant. This definition can be

generalized to complex or real Riemannian four-manifolds, providing the Weyl cur-

vature is anti-self-dual. An alternative definition of twistors in Minkowski space-

time is instead based on the vector space of solutions of a differential equation,

which involves the symmetrized covariant derivative of an unprimed spinor field.

Interestingly, a deep correspondence exists between flat space-time and twistor

space. Hence complex space-time points correspond to spheres in the so-called

projective twistor space, and this concept is made precise. Sheaf cohomology is

then presented as the mathematical tool necessary to describe a conformally in-

variant isomorphism between the complex vector space of holomorphic solutions

of the wave equation on the forward tube of flat space-time, and the complex

vector space of complex-analytic functions of three variables. These are arbitrary,

in that they are not subject to any differential equation. In the end, Ward’s

one-to-one correspondence between complex space-times with non-vanishing cos-

mological constant, and sufficiently small deformations of flat projective twistor

space, is presented.

An example of explicit construction of anti-self-dual space-time is given in

chapter five, following Ward 1978. This generalization of Penrose’s non-linear

graviton (Penrose 1976a-b) combines two-spinor techniques and twistor theory in

a way very instructive for beginning graduate students. However, it appears neces-

sary to go beyond anti-self-dual space-times, since they are only a particular class

of (complex) space-times, and they do not enable one to recover the full physical

content of (complex) general relativity. This implies going beyond the original

twistor theory, since the three-complex-dimensional space of α-surfaces only exists

in anti-self-dual space-times. After a brief review of alternative ideas, attention is

focused on the recent attempt by Roger Penrose to define twistors as charges for

massless spin- 3– fields. Such an approach has been considered since a vanishing
2

Ricci tensor provides the consistency condition for the existence and propagation of

12



1. Introduction to Complex Space-Time

massless helicity- 3
2 
– fields in curved space-time. Moreover, in Minkowski space-time

the space of charges for such fields is naturally identified with the corresponding

twistor space. The resulting geometrical scheme in the presence of curvature is

as follows. First, define a twistor for Ricci-flat space-time. Second, characterize

the resulting twistor space. Third, reconstruct the original Ricci-flat space-time

out of such a twistor space. One of the main technical difficulties of the program

proposed by Penrose is to obtain a global description of the space of potentials for

massless spin - fields. The corresponding local theory is instead used, for other

purposes, in our chapter eight (see below).

The two-spinor description of complex space-times with torsion is given in

chapter six. These space-times are studied since torsion is a naturally occurring

geometric property of relativistic theories of gravitation, the gauge theory of the

Poincaré group leads to its presence and the occurrence of cosmological singular-

ities can be less generic than in general relativity (Esposito 1994 and references

therein). It turns out that, before studying the complex theory, many differences

already arise, since the Riemann tensor has 36 independent real components at

each point (Penrose 1983), rather than 20 as in general relativity. This happens

since the connection is no longer symmetric. Hence the Ricci tensor acquires an

anti-symmetric part, and the reality conditions for the trace-free part of Ricci and

for the scalar curvature no longer hold. Hence, on taking a complex space-time

with non-vanishing torsion, all components of the Riemann curvature are given by

independent spinor fields and scalar fields, not related by any conjugation. Torsion

is, itself, described by two independent spinor fields. The corresponding integra-

bility condition for α-surfaces is shown to involve the self-dual Weyl spinor, the

torsion spinor with three primed indices and one unprimed index (in a non-linear

way), and covariant derivatives of such a torsion spinor. The key identities of

two-spinor calculus within this framework, including in particular the spinor Ricci

identities, are derived in a self-consistent way for pedagogical reasons.
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1. Introduction to Complex Space-Time

The last chapters of our monograph are devoted to the application of two-

spinor techniques to problems motivated by supersymmetry and quantum cosmol-

ogy. For this purpose, chapter seven studies spin- 1
2
– fields in real Riemannian four-

geometries. After deriving the Dirac and Weyl equations in two-component spinor

form in Riemannian backgrounds, we focus on boundary conditions for massless

fermionic fields motivated by local supersymmetry. These involve the normal to

the boundary and a pair of independent spinor fields ΨA and
A'

. In the case of

flat Euclidean four-space bounded by a three-sphere, they imply that the classical

modes of the massless spin- field multiplying harmonics having positive eigen-

values for the intrinsic three-dimensional Dirac operator on S ³ should vanish on

S ³. Remarkably, this coincides with the property of the classical boundary-value

problem when global boundary conditions are imposed on the three-sphere in the

massless case. The boundary term in the action functional is also derived. Our

analysis makes it necessary to use part of the analysis in section 5.8 of Espos-

ito 1994, to prove that the Dirac operator subject to supersymmetric boundary

conditions on the three-sphere admits self-adjoint extensions. The proof relies on

the Euclidean conjugation and on a result originally proved by von Neumann for

complex scalar fields. Chapter seven ends with a mathematical introduction to the

global theory of the total Dirac operator in Riemannian four-geometries, described

as a first-order elliptic operator mapping smooth sections (i.e. the spinor fields) of

a complex vector bundle to smooth sections of the same bundle. Its action on the

sections is obtained by composition of Clifford multiplication with covariant differ-

entiation, and provides an intrinsic formulation of the spinor covariant derivative

frequently used in our monograph.

The local theory of potentials for massless spin-  fields is applied to the classi-

cal boundary-value problems relevant for quantum cosmology in chapter eight (cf.

chapter five). For this purpose, we first study local boundary conditions involving

field strengths and the normal to the boundary, originally considered in anti-de

Sitter space-time, and recently applied in one-loop quantum cosmology. First, fol-

lowing Esposito 1994 and Esposito and Pollifrone 1994, we derive the conditions
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1. Introduction to Complex Space-Time

under which spin-lowering and spin-raising operators preserve these local boundary

conditions on a three-sphere for fields of spin 0, , 1,  and 2. Second, the two-

component spinor analysis of the four Dirac potentials of the totally symmetric

and independent field strengths for spin is applied to the case of a three-sphere

boundary. It is found that such boundary conditions can only be imposed in a

flat Euclidean background, for which the gauge freedom in the choice of the po-

tentials remains. Third, we study the alternative, Rarita-Schwinger form of the

spin-  potentials. They are no longer symmetric in the pair of unprimed or primed

spinor indices, and their gauge freedom involves a spinor field which is no longer

a solution of the Weyl equation. By requiring that also the gauge-related poten-

tials should obey the same differential equations (Aichelburg and Urbantke 1981),

one finds a set of compatibility equations, finally expressed as a first-order system

of spinor equations. On studying boundary conditions for the Rarita-Schwinger

potentials compatible with Becchi-Rouet-Stora-Tyutin invariance and local super-

symmetry, one finds equations and boundary conditions for the admissible back-

ground four-geometries. Interestingly, it is now possible to use perturbation theory

about Einstein backgrounds, i.e. such that their Ricci tensor is proportional to

the four-metric. The Rarita-Schwinger potentials may be supplemented by sec-

ondary potentials recently introduced by Penrose in Ricci-flat space-times. The

Penrose construction is here generalized to curved four-dimensional Riemannian

backgrounds with boundary. Remarkably, the traces of the secondary potentials

are proportional to the spinor fields corresponding to the Majorana field of the

Lorentzian version of the theory, while the symmetric parts of such potentials de-

pend on the conformal curvature, the trace-free part of the Ricci spinor, and the

cosmological constant.

The mathematical foundations of twistor theory are re-analyzed in chapter

nine. After a review of various definitions of twistors in curved space-time, we

present the Penrose transform and the ambitwistor correspondence in terms of

the double-fibration picture. The Radon transform in complex geometry is also

defined, and the Ward construction of massless fields as bundles is given. The
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1. Introduction to Complex Space-Time

latter concept has motivated the recent work by Penrose and by the author and

his collaborators on secondary potentials which supplement the Rarita-Schwinger

potentials in curved space-time. Recent progress on quantum field theories in

the presence of boundaries is finally described, since the boundary conditions of

chapters seven and eight are relevant for the analysis of mixed boundary conditions

in quantum field theory and quantum gravity.

16



CHAPTER TWO

T W O - C O M P O N E N T  S P I N O R  C A L C U L U S

Abstract. Spinor calculus is presented by relying on spin-space formalism. Given

the existence of unprimed and primed spin-space, one has the isomorphism be-

tween such vector spaces and their duals, realized by a symplectic form. More-

over, for Lorentzian metrics, complex conjugation is the anti-isomorphism between

unprimed and primed spin-space. Finally, for any space-time point, its tangent

space is isomorphic to the tensor product of unprimed and primed spin-spaces via

the Infeld-van der Waerden symbols. Hence the correspondence between tensor

fields and spinor fields. Euclidean conjugation in Riemannian geometries is also

discussed in detail. The Maxwell field strength is written in this language, and

many useful identities are given. The curvature spinors of general relativity are

then constructed explicitly, and the Petrov classification of space-times is obtained

in terms of the Weyl spinor for conformal gravity.

17



2. Two-Component Spinor Calculus

2.1 Two-Component Spinor Calculus

Two-component spinor calculus is a powerful tool for studying classical field

theories in four-dimensional space-time models. Within this framework, the basic

object is spin-space, a two-dimensional complex vector space S with a symplectic

form ∈ , i.e. an antisymmetric complex bilinear form. Unprimed spinor indices

A, B, ... take the values 0, 1 whereas primed spinor indices A', B', ... take the val-

ues 0', 1' since there are actually two such spaces: unprimed spin-space ( S , ∈ )

and primed spin-space (S', ∈ '). The whole two-spinor calculus in Lorentzian four-

manifolds relies on three fundamental properties (Penrose and Rindler 1984, Ward

and Wells 1990, Esposito 1992, Esposito 1994):

(i) The isomorphism between (S, ∈ A B ) and its dual (S*, ∈ AB). This is pro-

vided by the symplectic form ∈ , which raises and lowers indices according to the

rules

∈ A B ϕ A
B = ϕ ∈ S ,

Bϕ ∈ BA = ϕ A ∈ S* .

Thus, since

(2.1.1)

(2.1.2)

(2.1.3)

one finds in components ϕ 0 = ϕ
1

, ϕ1 –ϕ 0 .

Similarly, one has the isomorphism (S', ∈ A'B' ) ≅ ((S')*, ∈ A'B' ), which implies

A'B' A'∈ ϕ B ' = ϕ ∈ S' (2.1.4),

B 'ϕ ∈ B'A' = ϕ A' ∈ ( S') * (2.1.5),

where

(2.1.6)

18



2. Two-Component Spinor Calculus

(ii) The anti-isomorphism between S, ∈
A B

) and (S', ∈
A'B'

), called complex

conjugation, and denoted by an overbar. According to a standard convention, one

has

(2.1.7)

(2.1.8)

Thus, complex conjugation maps elements of a spin-space to elements of the com-

plementary spin-space. Hence we say it is an anti-isomorphism. In components, if

wA is thought as w A = ( αβ ) , the action of (2.1.7) leads to

whereas, if zA'= ( γ ), then (2.1.8) leads to

(2.1.9)

δ

(2.1.10)

With our notation, denotes complex conjugation of the function α , and so on.

Note that the symplectic structure is preserved by complex conjugation, since

(iii) The isomorphism between the tangent space T at a point of space-time

and the tensor product of the unprimed spin-space (S, ∈ A B) and the primed spin-

space (S’, ∈A ’ B ’) :

T ≅ (S, ∈ AB ) ⊗  S',∈ A ' B ') . (2.1.11)

The Infeld-van der Waerden symbols σa
A A ' and σa

A A ' express this isomorphism,

and the correspondence between a vector v a and a spinor v A A ' is given by

AA'v AA'≡ av σ (2.1.12)a ,
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2. Two-Component Spinor Calculus

v a AA'≡ v aσ AA' . (2.1.13)

These mixed spinor-tensor symbols obey the identities

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

Similarly, a one-form ωa has a spinor equivalent

ωAA' ≡ ω aσ AA' (2.1.18)a ,

whereas the spinor equivalent of the metric is

η a bσ AA' σ B B '  ≡ ∈ AB ∈ A ' B ' . (2.1.19)a b

In particular, in Minkowski space-time Eqs. (2.1.12) and (2.1.17) enable one to

write down a coordinate system in 2 × 2 matrix form

(2.1.20)

In the Lorentzian-signature case, the Maxwell two-form F ≡ F
a b

dxa  ∧ dxb c a n

be written spinorially (Ward and Wells 1990) as

(2.1.21)

where

(2.1.22)

(2.1.23)
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2. Two-Component Spinor Calculus

These formulae are obtained by applying the identity

T AB – TBA = ∈ A B TC
C (2.1.24)

– –to express ( F A A ' B B ' – F A B ' B A ') and ( F A B ' B A '  – FB B ' A A '). Note also that1

round brackets (AB) denote (as usual) symmetrization over the spinor indices

A and B, and that the antisymmetric part of ϕ AB vanishes by virtue of the

antisymmetry of F 1
a b , since (Ward and Wells 1990) ϕ ∈ C C '

A B FCC' =

= 0. Last but not least, in the Lorentzian case

2 2
1

[A B] = 4
–

1
2 ∈ A B η cd Fcd–

(2.1.25)

The symmetric spinor fields  ϕ A B and ϕ A'B' are the anti-self-dual and self-dual

parts of the curvature two-form, respectively.

Similarly, the Weyl curvature C a
bcd , i.e. the part of the Riemann curvature

tensor invariant under conformal rescalings of the metric, may be expressed spino-

rially, omitting soldering forms (see below) for simplicity of notation, as

(2.1.26)

In canonical gravity (Ashtekar 1988, Esposito 1994) two-component spinors

lead to a considerable simplification of calculations. Denoting by nµ the future-

pointing unit timelike normal to a spacelike three-surface, its spinor version obeys

the relations

n AA' e AA'
i = 0 , (2.1.27)

n AA’ n AA' = 1 , (2.1.28)

where eAA' ≡ e a AA'σ is the two-spinor version of the tetrad, often referred toµ µ a

in the literature as soldering form (Ashtekar 1988). Denoting by h the induced

metric on the three-surface, other useful relations are (Esposito 1994)

h = – ei j AA’i e AA’
j , (2.1.29)
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2. Two-Component Spinor Calculus

AA' AA' AA'e = N n0 + N i e i , (2.1.30)

(2.1.31)

(2.1.32)

(2.1.33)

(2.1.34)

In Eq. (2.1.30), N and N i are the lapse and shift functions respectively (Esposito

1994).

To obtain the space-time curvature, we first need to define the spinor covariant

derivative  ∇ AA' . If θ, φ, ψ are spinor fields,  ∇ AA' is a map such that (Penrose and

Rindler 1984, Stewart 1991)

AA'(θ + φ) = ∇ θ + ∇ AA' φ (i.e. linearity).(1) ∇ AA'

(2) ∇ ( θψ ) =( ∇ AA' θ)ψ + θ( ∇ ψ) (i.e. Leibniz rule).AA' AA'

(3) ψ = ∇ AA' θ implies = ∇ (i.e. reality condition).AA'

(4)  ∇ AA’ ∈ B C = ∇ AA’ ∈ B C = 0, i.e. the symplectic form may be used to raise

or lower indices within spinor expressions acted upon by  ∇ AA' , in addition to

the usual metricity condition  ∇ g = 0, which involves instead the product of two

∈ -symbols (see also section 6.3).

(5)  ∇ AA' commutes with any index substitution not involving A,A’.

(6) For any function ƒ, one finds ( ∇ ∇ b – ∇ ∇ ) ƒ = 2 S c ∇ ƒ , where Sa b a a b c a b
c is

the torsion tensor.

(7) For any derivation D acting on spinor fields, a spinor field ξAA’ exists such

that D ψ = ξ AA' ∇ AA'ψ, ∀ψ.
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2. Two-Component Spinor Calculus

As proved in Penrose and Rindler 1984, such a spinor covariant derivative exists

and is unique.

If Lorentzian space-time is replaced by a complex or real Riemannian four-

manifold, an important modification should be made, since the anti-isomorphism

between unprimed and primed spin-space no longer exists. This means that primed

spinors can no longer be regarded as complex conjugates of unprimed spinors, or

viceversa, as in (2.1.7)-(2.1.8). In particular, Eqs. (2.1.21) and (2.1.26) should be

re-written as

(2.1.35)

(2.1.36)

With our notation, ϕ A'B' , as well as ψ A B C D , A'B'C'D' are completely inde-A B ,

pendent symmetric spinor fields, not related by any conjugation.

Indeed, a conjugation can still be defined in the real Riemannian case, but it

no longer relates (S, ∈ AB ) to (S', ∈ A'B') . It is instead an anti-involutory operation

which maps elements of a spin-space (either unprimed or primed) to elements of the

same spin-space. By anti-involutory we mean that, when applied twice to a spinor

with an odd number of indices, it yields the same spinor with the opposite sign,

i.e. its square is minus the identity, whereas the square of complex conjugation

as defined in (2.1.9)-(2.1.10) equals the identity. Following Woodhouse 1985 and

Esposito 1994, Euclidean conjugation, denoted by a dagger, is defined as follows:

(2.1.37)

(2.1.38)

This means that, in flat Euclidean four-space, a unit 2 × 2 matrix  δBA' exists such

that

(2.1.39)
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2. Two-Component Spinor Calculus

We are here using the freedom to regard w A either as an SL(2, C) spinor for which

complex conjugation can be defined, or as an SU(2) spinor for which Euclidean

conjugation is instead available. The soldering forms for SU(2) spinors only involve

spinor indices of the same spin-space, i.e. A B and A'B' (cf. Ashtekar 1991).

More precisely, denoting by E i a real triad, where i = 1,2,3, and by τ a
A

B thea

three Pauli matrices obeying the identity

τ a B D
A τ b

B = i ∈ abc τcA
D + δa b δ D

A , (2.1.40)

the SU(2) soldering forms are defined by

(2.1.41)

Note that our conventions differ from the ones in Ashtekar 1991, i.e. we use

instead of σ, and a, b for Pauli-matrix indices, i, j for tangent-space indices on

a three-manifold  ∑ , to agree with our previous notation. The soldering form in

(2.1.41) provides an isomorphism between the three-real-dimensional tangent space

at each point of  ∑ , and the three-real-dimensional vector space of 2 × 2 trace-free

Hermitian matrices. The Riemannian three-metric on ∑ is then given by

(2.1.42)

2.2 Curvature in General Relativity

In this section, following Penrose and Rindler 1984, we want to derive the

spinorial form of the Riemann curvature tensor in a Lorentzian space-time with

vanishing torsion, starting from the well-known symmetries of Riemann. In agree-

ment with the abstract-index translation of tensors into spinors, soldering forms

will be omitted in the resulting equations (cf. Ashtekar 1991).
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2. Two-Component Spinor Calculus

Since Ra b c d = – R bacd we may write

Rabcd = R A A ' B B ' C C ' D D '

Moreover, defining

(2.2.1)

(2.2.2)

(2.2.3)

the anti-symmetry in cd leads to

(2.2.4)

According to a standard terminology, the spinors (2.2.2)-(2.2.3) are called the

curvature spinors. In the light of the (anti-)symmetries of R abcd , they have the

following properties:

X A B C D = X ( A B) (C D) , (2.2.5)

Φ A B C ' D ' = Φ( A B) (C ' D ' ) , (2.2.6)

XA B C D = X C D A B , (2.2.7)

(2.2.8)

Remarkably, Eqs. (2.2.6) and (2.2.8) imply that Φ AA'BB' corresponds to a trace-

free and real tensor:

Moreover, from Eqs. (2.2.5) and (2.2.7) one obtains

(2.2.9)

(2.2.10)AX A( B C ) = 0 .
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2. Two-Component Spinor Calculus

Three duals of Rabcd exist which are very useful and are defined as follows:

(2.2.11)

(2.2.12)

(2.2.13)

For example, in terms of the dual (2.2.11), the familiar equation R a [ bcd] = 0 reads

R * bc
a b = 0 . (2.2.14)

Thus, to derive the spinor form of the cyclic identity, one can apply (2.2.14) to

the equation

(2.2.15)

By virtue of (2.2.6) and (2.2.8) one thus finds

(2.2.16)

which implies, on defining

(2.2.17)

the reality condition

(2.2.18)

Eq. (2.2.1) enables one to write down the Ricci tensor Rab ≡ R a c b
c in spinor

form as

R (2.2.19)a b = 6 Λ ∈ A B ∈ A'B' – 2Φ A B A ' B ' .

Thus, the resulting scalar curvature, trace-free part of Ricci and Einstein tensor

are

R = 24 Λ , (2.2.20)
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2. Two-Component Spinor Calculus

X A B C D = ψ A B C D + Λ(∈ AC ∈ B D + ∈ AD ∈ B C) ,

(2.2.21)

(2.2.22)

respectively.

We have still to obtain a more suitable form of the Riemann curvature. For

this purpose, following again Penrose and Rindler 1984, we point out that the

curvature spinor X A B C D can be written as

(2.2.23)

Since X A F C
F = 3Λ ∈ A F , Eq. (2.2.23) leads to

(2.2.24)

where ψ A B C D is the Weyl spinor.

Since Λ = from (2.2.18), the insertion of (2.2.24) into (2.2.4), jointly with

the identity

∈ A'B' ∈ C ' D ' + ∈ A'D' ∈ B ' C ' – ∈ A'C' ∈ B ' D ' = 0 (2.2.25),

yields the desired decomposition of the Riemann curvature as

(2.2.26)

With this standard notation, the conformally invariant part of the curvature takes

the form C a b c d = – Cabcd + + Ca b c d, where

– C abcd ≡ ψA B C D ∈ A'B' ∈ C ' D ' , (2.2.27)
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2. Two-Component Spinor Calculus

are the anti-self-dual and self-dual Weyl tensors respectively.

(2.2.28)

2 .3 Petrov Classification

Since the Weyl spinor is totally symmetric, we may use a well-known result

of two-spinor calculus, according to which, if ΩA B. . .L is totally symmetric, then

there exist univalent spinors α A, β B , ..., γL such that (Stewart 1991)

Ω A B. . .L = α( A βB . . .γL ) , (2.3.1)

where α , . . . ,γ are called the principal spinors of Ω, and the corresponding real null

vectors are called the principal null directions of Ω. In the case of the Weyl spinor,

such a theorem implies that

ψA B C D = α( A  β B γC δD ) . (2.3.2)

The corresponding space-times can be classified as follows (Stewart 1991).

(1) Type I. Four distinct principal null directions. Hence the name algebraically

general.

(2) Type II. Two directions coincide. Hence the name algebraically special.

(3) Type D. Two different pairs of repeated principal null directions exist.

(4) Type III, i.e. three principal null directions coincide.

(5) Type N, i.e. all four principal null directions coincide.

Such a classification is the Petrov classification, and it provides a relevant example

of the superiority of the two-spinor formalism in four space-time dimensions, since

the alternative ways to obtain it are far more complicated.
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2. Two- Component Spinor Calculus

Within this framework (as well as in chapter three) we need to know that

ψA B C D has two scalar invariants:

(2.3.3)

(2.3.4)

Type-II space-times are such that I 3 = 6 J 2 , while in type-III space-times I = J =

0. Moreover, type-D space-times are characterized by the condition

(2.3.5)

while in type-N space-times

(2.3.6)

These results, despite their simplicity, are not well-known to many physicists and

mathematicians. Hence they have been included also in this monograph, to prepare

the ground for the more advanced topics of the following chapters.
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CHAPTER THREE

C O N F O R M A L  G R A V I TY

Abstract. Since twistor theory enables one to reconstruct the space-time geom-

etry out of conformally invariant geometrical objects, it is important to know the

basic tools for studying conformal gravity within the framework of general rela-

tivity. This is achieved by defining and using the Bach and Eastwood-Dighton

tensors, here presented in two-spinor form (relying on previous work by Kozameh,

Newman and Tod). After defining C-spaces and Einstein spaces, it is shown that

a space-time is conformal to an Einstein space if and only if some equations in-

volving the Weyl spinor, its covariant derivatives, and the trace-free part of Ricci

are satisfied. Such a result is then extended to complex Einstein spaces. The

conformal structure of infinity of Minkowski space-time is introduced in the end.
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3.1 C -Spaces

Twistor theory may be viewed as the attempt to describe fundamental physics

in terms of conformally invariant geometrical objects within a holomorphic frame-

work. Space-time points are no longer of primary importance, since they only

appear as derived concepts out of such a scheme. To understand the following

chapters, almost entirely devoted to twistor theory and its applications, it is there-

fore necessary to study the main results of the theory of conformal gravity. They

can be understood by focusing on C-spaces, Einstein spaces, complex space-times

and complex Einstein spaces, as we do from now on in this chapter.

To study C-spaces in a self-consistent way, we begin by recalling some basic

properties of conformal rescalings. By definition, a conformal rescaling of the

space-time metric g yields the metric as

(3.1.1)

where ω is a smooth scalar. Correspondingly, any tensor field T of type (r , s ) is

conformally weighted if

(3.1.2)

for some integer k. In particular, conformal invariance of T is achieved if k = 0.

It is useful to know the transformation rules for covariant derivatives and

Riemann curvature under the rescaling (3.1.1). For this purpose, defining

(3.1.3)

one finds

(3.1.4)

where a denotes covariant differentiation with respect to the metric . Hence the

Weyl tensor Cabc
d , the Ricci tensor R ab ≡ Rc a b

c and the Ricci scalar transform as

(3.1.5)
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(3.1.6)

(3.1.7)

With our notation, ωc ≡ ∇ c ω = ω,c .

We are here interested in space-times which are conformal to C-spaces. The

latter are a class of space-times such that

(3.1.8)

By virtue of (3.1.3)-(3.1.4) one can see that the conformal transform of Eq. (3.1.8)

is

(3.1.9)

This is the necessary and sufficient condition for a space-time to be conformal to

a C -space. Its two-spinor form is

(3.1.10)

However, note that only a real solution ωF A'  of (3.1.10) satisfies (3.1.9). Hence,

whenever we use (3.1.10), we are also imposing a reality condition (Kozameh et

al. 1985).

On using the invariants defined in (2.3.3)-(2.3.4), one finds the useful identities

(3.1.11)

(3.1.12)

The idea is now to act with ψ A B C D on the left-hand side of (3.1.10) and then use

(3.1.11) when I ≠ 0. This leads to

(3.1.13)
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By contrast, when I = 0 but J ≠ 0, we multiply twice Eq. (3.1.10) by the Weyl

spinor and use (3.1.12). Hence one finds

(3.1.14)

Thus, by virtue of (3.1.13), the reality condition ωAA´ = implies

(3.1.15)

We have thus shown that a space-time is conformally related to a C-space if and

only if Eq. (3.1.10) holds for some vector ωD D' = K DD' , and Eq. (3.1.15) holds

as well.

3.2 Einstein Spaces

By definition, Einstein spaces are such that their Ricci tensor is proportional

to the metric: R a b = λ gab . A space-time is conformal to an Einstein space if and

only if a function ω exists (see (3.1.1)) such that (cf. (3.1.6))

(3.2.1)

where

(3.2.2)

Of course, Eq. (3.2.1)  leads to restrictions on the metric. These are obtained by

deriving the corresponding integrability conditions. For this purpose, on taking

the curl of Eq. (3.2.1) and using the Bianchi identities, one finds
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which coincides with Eq. (3.1.9). Moreover, acting with ∇ a on Eq. (3.1.9), apply-

ing the Leibniz rule, and using again (3.1.9) to re-express ∇ ƒ C a b c ƒ as – ωƒ Ca b c ƒ ,

one obtains

We now re-express ∇ a ωd from (3.2.1) as

Hence Eqs. (3.2.3)-(3.2.4) lead to

(3.2.3)

(3.2.4)

(3.2.5)

This calculation only proves that the vanishing of the Bach tensor, defined as

(3.2.6)

is a necessary condition for a space-time to be conformal to an Einstein space

(jointly with (3.1.9)). To prove sufficiency of the condition, we first need the

following Lemma (Kozameh et al. 1985):

Lemma 3.2 .1 Let H a b be a trace-free symmetric tensor. Then, providing the

scalar invariant J defined in (2.3.4) does not vanish, the only solution of the

equations

(3.2.7)

C *a b c d Ha d = 0 ,

C abcd H a d = 0 ,

(3.2.8)

is H a d = 0. As shown in Kozameh et al. 1985, such a Lemma is best proved by

using two-spinor methods. Hence Ha b corresponds to the spinor field

(3.2.9)
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and Eqs. (3.2.7)-(3.2.8) imply that

(3.2.10)ψA B C D φC D
A'B' = 0 .

Note that the extra primed spinor indices A'B' are irrelevant. Hence we can focus

on the simpler eigenvalue equation

ψA B C D ϕ C D = λ ϕ AB .

The corresponding characteristic equation for λ is

(3.2.11)

(3.2.12)

by virtue of (2.3.3). Moreover, the Cayley-Hamilton theorem enables one to re-

write (3.2.12) as

and contraction of AB with CD yields

(3.2.13)

(3.2.14)

Thus, the only solution of (3.2.10) is the trivial one unless J = 0 (Kozameh et al.

1985).

We are now in a position to prove sufficiency of the conditions (cf. (3.1.9)

and (3.2.5))

∇ ƒ Ca b c ƒ + K ƒ C abcƒ = 0 , (3.2.15)

Bbc = 0 . (3.2.16)

Indeed, Eq. (3.2.15) ensures that (3.1.9) is satisfied with ωƒ = ∇
ƒ

ω for some ω.

Hence Eq. (3.2.3) holds. If one now subtracts Eq. (3.2.3) from Eq. (3.2.16) one

finds

(3.2.17)
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Remarkably, this is Eq. (3.2.7) of Lemma 3.2.1. To obtain Eq. (3.2.8), we act

with ∇ a on the dual of Eq. (3.1.9). This leads to

(3.2.18)

Following Kozameh et al. 1985, the gradient of the contracted Bianchi identity

and Ricci identity is then used to derive the additional equation

Subtraction of (3.2.19) from (3.2.18) now yields

(3.2.19)

(3.2.20)

which is the desired form of Eq. (3.2.8).

We have thus completed the proof that (3.2.15)-(3.2.16) are necessary and

sufficient conditions for a space-time to be conformal to an Einstein space. In

two-spinor language, when Einstein’s equations are imposed, after a conformal

rescaling the equation for the trace-free part of Ricci becomes (see section 2.2)

(3.2.21)

Similarly  to the tensorial analysis performed so far, the spinorial analysis shows

that the integrability condition for Eq. (3.2.21) is

(3.2.22)

The fundamental theorem of conformal gravity states therefore that a space-time

is conformal to an Einstein space if and only if (Kozameh et al. 1985)

(3.2.23)

(3.2.24)
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(3.2.25)

Note that reality of Eq. (3.2.25) for the Bach spinor is ensured by the Bianchi

identities.

3 .3 Complex Space-Times

Since this book is devoted to complex general relativity and its applications,

it is necessary to extend the theorem expressed by (3.2.23)-(3.2.25) to complex

space-times. For this purpose, we find it appropriate to define and discuss such

spaces in more detail in this section. In this respect, we should say that four dis-

tinct geometrical objects are necessary to study real general relativity and complex

general relativity, here defined in four-dimensions (Penrose and Rindler 1986, Es-

posito 1994).

(1) Lorentzian space-time (M, gL ). This is a Hausdorff four-manifold M jointly

with a symmetric, non-degenerate bilinear form gL to each tangent space with

signature (+, –, –, –) (or (–, +, +, +)). The latter is then called a Lorentzian

four-metric g L .

(2) Riemannian four-space (M, gR ), where gR is a smooth and positive-definite sec-

tion of the bundle of symmetric bilinear two-forms on M. Hence g R has signature

(+, +, +, +).

(3) Complexified space-time. This manifold originates from a real-analytic space-

time with real-analytic coordinates xa and real-analytic Lorentzian metric gL by

allowing the coordinates to become complex, and by an holomorphic extension of

the metric coefficients into the complex domain. In such manifolds the operation

of complex conjugation, taking any point with complexified coordinates za into

the point with coordinates , still exists. Note that, however, it is not possible
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to define reality of tensors at complex points, since the conjugate tensor lies at the

complex conjugate point, rather than at the original point.

(4) Complex space-time. This is a four-complex-dimensional complex-Riemannian

manifold, and no four-real-dimensional subspace has been singled out to give it a

reality structure (Penrose and Rindler 1986). In complex space-times no complex

conjugation exists, since such a map is not invariant under holomorphic coordinate

transformations.

Thus, the complex-conjugate spinors λA.. .M and
A'...M'

of a Lorentzian space-

time are replaced by independent spinors λA.. .M and A'. . .M' . This means that

unprimed and primed spin-spaces become unrelated to one another. Moreover,

the complex scalars φ and are replaced by the pair of independent complex

scalars φ and . On the other hand, quantities X that are originally real yield

no new quantities, since the reality condition X = becomes X = . For

example, the covariant derivative operator ∇ a of Lorentzian space-time yields no

new operator a , since it is originally real. One should instead regard ∇ a a s

a complex-holomorphic operator. The spinors ψA B C D , Φ A B C ' D ' and the scalar Λ

appearing in the Riemann curvature (see (2.2.26)) have as counterparts the spinors

A ' B ' C ' D ' , A B C ' D ' and the scalar . However, by virtue of the original reality

conditions in Lorentzian space-time, one has (Penrose and Rindler 1986)

(3.3.1)

(3.3.2)

while the Weyl spinors ψ A B C D and A'B'C'D' remain independent of each other.

Hence one Weyl spinor may vanish without the other Weyl spinor having to van-

ish as well. Correspondingly, a complex space-time such that A'B'C'D' = 0 is

called right conformally flat or conformally anti-self-dual, whereas if ψ A B C D = 0,

one deals with a left conformally flat or conformally self-dual complex space-time.

Moreover, if the remaining part of the Riemann curvature vanishes as well, i.e.
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ΦA B C ' D ' = 0 and Λ = 0, the word conformally should be omitted in the terminol-

ogy described above (cf. chapter four). Interestingly, in a complex space-time the

principal null directions (cf. section 2.3) of the Weyl spinors ψA B C D and A'B'C'D'

are independent of each other, and one has two independent classification schemes

at each point.

3.4 Complex Einstein Spaces

In the light of the previous discussion, the fundamental theorem of conformal

gravity in complex space-times can be stated as follows (cf. Baston and Mason

1987).

Theorem 3.4.1A complex space-time is conformal to a complex Einstein space

if and only if

(3.4.1)

(3.4.2)

(3.4.3)

where I is the complex scalar invariant defined in (2.3.3), whereas is the inde-

pendent invariant defined as

(3.4.4)

The left-hand side of Eq. (3.4.2) is called the Eastwood-Dighton spinor.
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3 .5 Conformal Infinity

To complete our introduction to conformal gravity, we find it helpful for the

reader to outline the construction of conformal infinity for Minkowski space-time

(see also an application in section 9.5). Starting from polar local coordinates in

Minkowski, we first introduce (in c = 1 units) the retarded coordinate w ≡ t – r

and the advanced coordinate v ≡ t + r. To eliminate the resulting cross term in

the local form of the metric, new coordinates p  and q  are defined implicitly as

(Esposito 1994)

tan p ≡ v  , tan q ≡ w , p – q ≥ 0 . (3.5.1)

Hence one finds that a conformal-rescaling factor ω ≡ (cos p)(cos q) exists such

that, locally, the metric of Minkowski space-time can be written as ω–2 , where

(3.5.2)

where t’ ≡ ,r' ≡ , and Ω2 is the metric on a unit two-sphere. Although

(3.5.2) is locally identical to the metric of the Einstein static universe, it is nec-

essary to go beyond a local analysis. This may be achieved by analytic extension

to the whole of the Einstein static universe. The original Minkowski space-time is

then found to be conformal to the following region of the Einstein static universe:

(t’ + r ’) ∈ ] – π, π[ , (t’ – r’) ∈ ] – π, π[ , r' ≥ 0 . (3.5.3)

By definition, the boundary of the region in (3.5.3) represents the conformal struc-

ture of infinity of Minkowski space-time. It consists of two null surfaces and three

points, i.e. (Esposito 1994)

(i) The null surface SCRI– ≡ { t’ – r' = q = – }, i.e. the future light cone of the

point r’ = 0, t’ = – .

40



3. Conformal Gravity

(ii) The null surface SCRI + ≡ { t' + r' = p = }, i.e. the past light cone of the

point r' = 0, t' = .

(iii) Past timelike infinity, i.e. the point

(iv) Future timelike infinity, defined as

(v) Spacelike infinity, i.e. the point

The extension of the SCRI formalism to curved space-times is an open research

problem, but we limit ourselves to the previous definitions in this section.
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CHAPTER FOUR

T W I S T O R  S P A C E S

Abstract . In twistor theory, α-planes are the building blocks of classical field

theory in complexified compactified Minkowski space-time. α-Planes are totally

null two-surfaces S in that, if p is any point on S, and if v and w are any two

null tangent vectors at p ∈ S, the complexified Minkowski metric η satisfies the

identity η(v, w) = v a w a = 0. By definition, their null tangent vectors have the

two-component spinor form λ Aπ A' , where λ A is varying and π A' is fixed. There-

fore, the induced metric vanishes identically since η(v,w) = =

0 = η (v, v) = . One thus obtains a conformally invariant char-

acterization of flat space-times. This definition can be generalized to complex

or real Riemannian space-times with non-vanishing curvature, provided the Weyl

curvature is anti-self-dual. One then finds that the curved metric g is such that

g(v,w) = 0 on S, and the spinor field πA' is covariantly constant on S. The

corresponding holomorphic two-surfaces are called α-surfaces, and they form a

three-complex-dimensional family. Twistor space is the space of all α-surfaces

and depends only on the conformal structure of complex space-time.

Projective twistor space PT is isomorphic to complex projective space CP ³ .

The correspondence between flat space-time and twistor space shows that complex

α-planes correspond to points in PT, and real null geodesics to points in PN, i.e.

the space of null twistors. Moreover, a complex space-time point corresponds to

a sphere in PT, and a real space-time point to a sphere in PN. Remarkably, the

points x and y are null-separated if and only if the corresponding spheres in PT

intersect. This is the twistor description of the light-cone structure of Minkowski

space-time.
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A conformally invariant isomorphism exists between the complex vector space

of holomorphic solutions of �φ = 0 on the forward tube of flat space-time, and

the complex vector space of arbitrary complex-analytic functions of three vari-

ables, not subject to any differential equation. Moreover, when curvature is non-

vanishing, there is a one-to-one correspondence between complex space-times with

anti-self-dual Weyl curvature and scalar curvature R = 24Λ, and sufficiently small

deformations of flat projective twistor space PT which preserve a one-form τ homo-

geneous of degree 2 and a three-form ρ homogeneous of degree 4, with τ∧ dτ = 2Λρ.

Thus, to solve the anti-self-dual Einstein equations, one has to study a geometrical

problem, i.e. finding the holomorphic curves in deformed projective twistor space.
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4 . 1  α -Planes in Minkowski Space-Time

α-Planes provide a geometrical definition of twistors in Minkowski space-time.

For this purpose, we first complexify flat space-time, so that real coordinates

are replaced by complex coordinates , and we obtain

a four-dimensional complex vector space equipped with a non-degenerate complex-

bilinear form (Ward and Wells 1990)

(4.1.1)

The resulting matrix z AA',, which, by construction, corresponds to the position

vector za = , is no longer Hermitian as in the real case. Moreover,

we compactify such a space by identifying future null infinity with past null infinity

(Penrose 1974, Penrose and Rindler 1986, Esposito 1994). The resulting manifold

is here denoted by CM # , following Penrose and Rindler 1986. ,

In C M # with metric η , we consider two-surfaces S whose tangent vectors

have the two-component spinor form

(4.1.2)

where λ A is varying and πA ' is fixed. This implies that these tangent vectors

are null, since η(v ,v) = v av a = = 0. Moreover, the induced

metric on S vanishes identically since any two null tangent vectors v a = λ A πA '

and wa = µ AπA' at p ∈ S are orthogonal:

(4.1.3)

where we have used the property = 0. By virtue of (4.1.3),

the resulting α-plane is said to be totally null. A twistor is then an α -plane with
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constant π
A'

associated to it. Note that two disjoint families of totally null two-

surfaces exist in CM# , since one might choose null tangent vectors of the form

(4.1.4)

where v A is fixed and πA' is varying. The resulting two-surfaces are called β-planes

(Penrose 1986).

Theoretical physicists are sometimes more familiar with a definition involving

the vector space of solutions of the differential equation

(4.1.5)

where D is the flat connection, and DAA' the corresponding spinor covariant deriva-

tive. The general solution of Eq. (4.1.5) in C M# takes the form (Penrose and

Rindler 1986, Esposito 1994)

(4.1.6)

(4.1.7)

where ω°
A

and π°A' are arbitrary constant spinors, and xAA' is the spinor version

of the position vector with respect to some origin. A twistor is then represented

by the pair of spinor fields (Penrose 1975). The twistor equation

(4.1.5) is conformally invariant. This is proved bearing in mind the spinor form of

the flat four-metric

and making the conformal rescaling

(4.1.8)

(4.1.9)

which implies

(4.1.10)
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Thus, defining Ta ≡ D a ( log Ω) and choosing , one finds (Penrose and

Rindler 1986, Esposito 1994)

which implies

Note that the solutions of (4.1.5) are completely determined by the four complex

components at O of ωA and πA ' in a spin-frame at O. They are a four-dimensional

vector space over the complex numbers, called twistor space (Penrose and Rindler

1986, Esposito 1994).

Requiring that v A be constant over the β-planes implies that v AπA' D AA'vB =

0, for each πA ’ , i.e. v A D AA' vB = 0. Moreover, a scalar product can be defined

between the ωA field and the vA -scaled β-plane: ωAv A. Its constancy over the

β-plane implies that (Penrose 1986)

for each π A', which leads to

for each β - plane and hence for each vA. Thus, Eq. (4.1.14) becomes the twistor

equation (4.1.5). In other words, it is the twistor concept associated with a β-plane

which is dual to that associated with a solution of the twistor equation (Penrose

1986).

Flat projective twistor space PT can be thought of as three-dimensional com-

plex projective space CP ³ (cf. example E2 in section 1.2). This means that

we take the space C 4 of complex numbers and factor out by the

proportionality relation , with λ ∈ C – {0}. The ho-

mogeneous coordinates are, in the case of PT ≅ C P ³, as follows:

(4.1.11)

(4.1.12)

(4.1.13)

(4.1.14)
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.  The α-planes defined in this section can be ob-

tained from the equation (cf. (4.1.6))

(4.1.15)

where is regarded as fixed, with πA' ≠ 0. This means that Eq. (4.1.15),

considered as an equation for x AA' , has as its solution a complex two-plane in

C M # , whose tangent vectors take the form in Eq. (4.1.2), i.e. we have found an

α-plane. The α-planes are self-dual in that, if v and u are any two null tangent

vectors to an α-plane, then F ≡ v ⊗ u – u ⊗ v is a self-dual bivector since

(4.1.16)

where φ( A'B' ) = σπA' πB' , with σ ∈ C – {0} (Ward 1981b). Note also that α -planes

remain unchanged if we replace by with λ ∈ C – {0}, and

that all α -planes arise as solutions of Eq. (4.1.15). If real solutions of (4.1.15)

exist, this implies that x AA' = . This leads to

(4.1.17)

where overbars denote complex conjugation in two-spinor language, defined ac-

cording to the rules described in section 2.1. If (4.1.17) holds and πA ' ≠ 0, the

solution space of (4.1.15) in real Minkowski space-time is a null geodesic, and

all null geodesics arise in this way (Ward 1981b). Moreover, if πA ' vanishes, the

point can be regarded as an α-plane at infinity in compact-

ified Minkowski space-time. Interestingly, Eq. (4.1.15) is the two-spinor form of

the equation expressing the incidence property of a point (t, x, y, z) in Minkowski

space-time with the twistor Z α , i.e. (Penrose 1981)

(4.1.18)
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The left-hand side of Eq. (4.1.17) may be then re-interpreted as the twistor pseudo-

norm (Penrose 1981)

(4.1.19)

by virtue of the property . Such a pseudo-

norm makes it possible to define the top half PT+ of PT by the condition

0, and the bottom half PT– of PT by the condition

So far, we have seen that an α -plane corresponds to a point in PT, and null

geodesics to points in P N , the space of null twistors. However, we may also

interpret (4.1.15) as an equation where x AA' is fixed, and solve for

Within this approach, πA' remains arbitrary, and ωA is thus given by ix AA'π A’.

This yields a complex two-plane, and factorization by the proportionality relation

leads to a complex projective one-space CP ¹, with two-

sphere topology. Thus, the fixed space-time point x determines a Riemann sphere

L x ≅ C P ¹ in PT. In particular, if x is real, then L x lies entirely within PN,

given by those twistors whose homogeneous coordinates satisfy (4.1.17). To sum

up, a complex space-time point corresponds to a sphere in PT, whereas a real

space-time point corresponds to a sphere in PN (Penrose 1981, Ward 1981b).

In Minkowski space-time, two points p and q are null-separated if and only

if there is a null geodesic connecting them. In projective twistor space PT, this

implies that the corresponding lines Lp and Lq intersect, since the intersection

point represents the connecting null geodesic. To conclude this section it may be

now instructive, following Huggett and Tod 1985, to study the relation between

null twistors and null geodesics. Indeed, given the null twistors Xα , Y α defined by

(4.1.20)

(4.1.21)
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the corresponding null geodesics are

If these intersect at some point, say x2, one finds

where λ, µ ∈ R. Hence

(4.1.22)

(4.1.23)

(4.1.24)

(4.1.25)

by virtue of the identities Eq. (4.1.25) leads to

(4.1.26)

Suppose instead we are given Eq. (4.1.26). This implies that some real λ and µ

exist such that

(4.1.27)

where signs on the right-hand side of (4.1.27) have been suggested by (4.1.24).

Note that (4.1.27) only holds if X A'Y A' ≠ 0, i.e. if γX and γ Y are not parallel.

However, the whole argument can be generalized to this case as well (our problem

4.2, Huggett and Tod 1985), and one finds that in all cases the null geodesics γX

and γY intersect if and only if vanishes.

4.2 α -Surfaces and Twistor Geometry

The α -planes defined in section 4.1 can be generalized to a suitable class

of curved complex space-times. By a complex space-time (M, g) we mean a four-

dimensional Hausdorff manifold M with holomorphic metric g. Thus, with respect
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, and its determinant is nowhere-vanishing (Ward 1980b, Ward and Wells 1990).

, and a holomorphic

becomes complex-valued,

may be split into independent holomorphic tensors, i.e.

its self-dual and anti-self-dual parts respectively. With our two-spinor notation,

(4.2.1)

A B C D = ψ ( A B C D ) A ' B ' C ' D ' = ( A ' B ' C ' D ' ) are the,

anti-self-dual and self-dual Weyl spinors respectively. Following Penrose 1976a-b,

(4.2.2)

are called right-flat or anti-self-dual, whereas complex vacuum space-times such

that

to a holomorphic coordinate basis x a , g is a 4 × 4 matrix of holomorphic functions of

x a

Remarkably, g determines a unique holomorphic connection ∇

curvature tensor Ra
bcd . Moreover, the Ricci tensor Ra b

and the Weyl tensor C a
bcd

one has (see (2.1.36))

where ψ . The spinors ψ and

Ward and Wells 1990, complex vacuum space-times such that

ψA B C D = 0 R = 0 (4.2.3), ab ,

are called left-flat or self-dual. Note that this definition only makes sense if space-

time is complex (or real Riemannian), since in this case no complex conjugation

relates primed to unprimed spinors (i.e. the corresponding spin-spaces are no

longer anti-isomorphic). Hence, for example, the self-dual Weyl spinor A'B'C'D'

may vanish without its anti-self-dual counterpart ψ A B C D having to vanish as well,

as in Eq. (4.2.2), or the converse may hold, as in Eq. (4.2.3) (see section 1.1 and

problem 2.3).

By definition, α -surfaces are complex two-surfaces S in a complex space-time

( M, g ) whose tangent vectors v have the two-spinor form (4.1.2), where λA is

varying, and πA' is a fixed primed spinor field on S. From this definition, the

following properties can be derived (cf. section 4.1).

( i ) tangent vectors to α-surfaces are null;
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4. Twistor Spaces

(ii) any two null tangent vectors v and u to an α -surface are orthogonal to

one another;

(iii) the holomorphic metric g vanishes on S in that g ( v, u ) = g(v, v ) = 0, ∀ v, u

(cf. (4.1.3)), so that α -surfaces are totally null;

(iv) α-surfaces are self-dual, in that F ≡ v ⊗ u – u ⊗ v takes the two-spinor

form (4.1.16);

(v) α-surfaces exist in ( M,g ) if and only if the self-dual Weyl spinor vanishes,

so that (M, g) is anti-self-dual.

Note that properties (i)-(iv), here written in a redundant form for pedagogical

reasons, are the same as in the flat-space-time case, provided we replace the flat

metric η with the curved metric g. Condition (v), however, is a peculiarity of

curved space-times. The reader may find a detailed proof of the necessity of this

condition as a particular case of the calculations appearing in chapter six, where we

study a holomorphic metric-compatible connection ∇ with non-vanishing torsion.

To avoid repeating ourselves, we focus instead on the sufficiency of the condition,

following Ward and Wells 1990.

We want to prove that, if (M,g ) is anti-self-dual, it admits a three-complex-

parameter family of self-dual α-surfaces. Indeed, given any point p ∈ M and a

spinor µA' at p, one can find a spinor field πA ’ on M, satisfying the equation (cf.

Eq. (6.2.10))

(4.2.4)

and such that

πA' (p) = µ A'(p ) . (4.2.5)

Hence πA ' defines a holomorphic two-dimensional distribution, spanned by the

vector fields of the form λ AπA’
, which is integrable by virtue of (4.2.4). Thus, in

particular, there exists a self-dual α-surface through p, with tangent vectors of the

form λ A µ A' at p. Since p is arbitrary, this argument may be repeated ∀ p ∈ M .

The space P of all self-dual α-surfaces in (M,g ) is three-complex-dimensional, and

is called twistor space of ( M,g).
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4 . 3 Geometrical Theory of Partial Differential Equations

One of the main results of twistor theory has been a deeper understanding of

the solutions of partial differential equations of classical field theory. Remarkably,

a problem in analysis becomes a purely geometrical problem (Ward 1981b, Ward

and Wells 1990). For example, in Bateman 1904 it was shown that the general

real-analytic solution of the wave equation � φ = 0 in Minkowski space-time is

(4.3.1)

where F is an arbitrary function of three variables, complex-analytic in the first

two. Indeed, twistor theory tells us that F is a function on PT. More precisely, let

ƒ be a complex-analytic function, homogeneous of degree –2, i.e. such

that

(4.3.2)

and possibly having singularities (Ward 1981b). We now define a field φ(x a ) by

(4.3.3)

where the integral is taken over any closed one-dimensional contour that avoids

the singularities of f. Such a field satisfies the wave equation, and every solution

of � φ = 0 can be obtained in this way. The function f has been taken to have

homogeneity –2 since the corresponding one-form f πC ' dπC' has homogeneity zero

and hence is a one-form on projective twistor space PT, or on some subregion of

PT, since it may have singularities. The homogeneity is related to the property

of f of being a free function of three variables. Since f is not defined on the whole

of PT, and φ does not determine f uniquely, because we can replace f by f +

where is any function such that

(4.3.4)
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we conclude that f is an element of the sheaf-cohomology group H ¹(P T+ , O( – 2 )),

i.e. the complex vector space of arbitrary complex-analytic functions of three

variables, not subject to any differential equations (Penrose 1980, Ward 1981b,

Ward and Wells 1990). Remarkably, a conformally invariant isomorphism exists

between the complex vector space of holomorphic solutions of � φ = 0 on the

forward tube CM + (i.e. the domain of definition of positive-frequency fields), and

the sheaf-cohomology group H ¹ (PT + , O( – 2 )).

It is now instructive to summarize some basic ideas of sheaf-cohomology the-

ory and its use in twistor theory, following Penrose 1980. For this purpose, let

us begin by recalling how Cech cohomology is obtained. We consider a Hausdorff

paracompact topological space X, covered with a locally finite system of open sets

Ui . With respect to this covering, we define a cochain with coefficients in an addi-

tive Abelian group G (e.g. Z, R or C ) in terms of elements fi , ƒi j , ƒi j k... ∈ G. These

elements are assigned to the open sets Ui of the covering, and to their non-empty

intersections, as follows: ƒi to Ui , ƒi j to Ui ∩ Uj , ƒ i j k to U i ∩ Uj ∩ U k and so on.

The elements assigned to non-empty intersections are completely antisymmetric,

so that ƒ i. . .p = ƒ[ i . . .p ] . One is thus led to define

(4.3.5)

(4.3.6)

(4.3.7)

and the coboundary operator δ :

(4.3.8)

(4.3.9)

By virtue of (4.3.8)-(4.3.9), one finds δ 2α = δ
2
β = ... = 0. Cocycles γ are cochains

such that δγ = 0. Coboundaries are a particular set of cocycles, i.e. such that
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4. Twistor Spaces

γ = δβ for some cochain β . Of course, all coboundaries are cocycles, whereas the

converse does not hold. This enables one to define the pth cohomology group as

the quotient space

(4.3.10)

where G p
C C is the additive group of p-cocycles, and Gp

C B is the additive group of

p-coboundaries. To avoid having a definition which depends on the covering {Ui},

one should then take finer and finer coverings of X and settle on a sufficiently fine

*covering { U } ∩i

. . . U k , G) vanish ∀ p > 0. One then defines

. Following Penrose 1980, by this we mean that all the H (Ui
p

∩

(4.3.11)

We always assume such a covering exists, is countable and locally finite. Note that,

rather than thinking of fi as an element of G assigned to Ui, of f i j as assigned to

Ui j and so on, we can think of fi as a function defined on Ui and taking a constant

value ∈ G. Similarly, we can think of f i j as a G-valued constant function defined

on Ui ∩ U j , and this implies it is not strictly necessary to assume that Ui ∩ Uj i s

non-empty.

The generalization to sheaf cohomology is obtained if we do not require the

functions f i, f i j , f i j k ... to be constant (there are also cases when the additive group

G is allowed to vary from point to point in X). The assumption of main interest is

the holomorphic nature of the f’s. A sheaf is so defined that the Cech cohomology

previously defined works as well as before (Penrose 1980). In other words, a sheaf

S defines an additive group G u for each open set U ⊂ X. Relevant examples are

as follows.

(i) The sheaf O of germs of holomorphic functions on a complex manifold X

is obtained if G u is taken to be the additive group of all holomorphic functions on

U.
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4. Twistor Spaces

(ii) Twisted holomorphic functions, i.e. functions whose values are not com-

plex numbers, but are taken in some complex line bundle over X.

(iii) A particular class of twisted functions is obtained if X is projective twistor

space PT (or P T + , or P T – ), and the functions studied are holomorphic and

homogeneous of some degree n in the twistor variable, i.e.

If G u consists of all such twisted functions on U ⊂ X, the resulting sheaf, denoted

by O(n), is the sheaf of germs of holomorphic functions twisted by n on X.

(iv) We can also consider vector-bundle-valued functions, where the vector

bundle B is over X, and G u consists of the cross-sections of the portion of B lying

above U.

Defining cochains and coboundary operator as before, with f i ∈ G Ui and so on,

we obtain the pth cohomology group of X, with coefficients in the sheaf S, as the

quotient space

H p( X, S ) ≡ G p ( S )/ G p ( S ) (4.3.13)C B ,

where G p (S ) is the group of p-cochains with coefficients in S, and G p
C B( S ) is the

group of p-coboundaries with coefficients in S. Again, we take finer and finer

coverings { U } of X, and we settle on a sufficiently fine covering. To understandi

this concept, we recall the following definitions (Penrose 1980).

Definition 4.3.1A coherent analytic sheaf is locally defined by n holomorphic

functions factored out by a set of s holomorphic relations.

Definition 4.3.2A Stein manifold is a holomorphically convex open subset of

C n .

Thus, we can say that, provided S is a coherent analytic sheaf, sufficiently fine

means that each of Ui , U Uj , U i U j Uk… is a Stein manifold. If X is Stein

and S is coherent analytic, then H p( X, S) = 0, ∀ p > 0.

(4.3.12)

i ∩ ∩ ∩
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We can now come back to the remarks following Eq. (4.3.4), i.e. the interpre-

tation of twistor functions as elements of H 1(P T + , O ( – 2 )). Let X be a part of

P T , e.g. the neighbourhood of a line in PT , or the top half PT + , or the closure

P T + of the top half. We assume X can be covered with two open sets U1 , U2

such that every projective line L in X meets U 1 U 2 in an annular region. For

us, U1 U2 corresponds to the domain of definition of a twistor function ƒ( Z α ) ,

homogeneous of degree n in the twistor Z α (see (4.3.12)). Then ƒ ≡ ƒ 12 ≡  ƒ2  – ƒ1

is a twisted function on U1 U2 , and defines a one-cochain ∈ , with coefficients in

O( n ), for X. By construction δ∈ = 0, hence ∈ is a cocycle. For this covering, the

one-coboundaries are functions of the form l2 – l 1 , where l2 is holomorphic on U2

and l1 on U 1 . The equivalence between twistor functions is just the cohomological

equivalence between one-cochains ∈ , ∈ ’ that their difference should be a cobound-

ary: ∈ ´ – ∈ =  δα , with α =(l1 , l2) .  This is why we view twistor functions as defining

elements of H ¹ (X , O( n )). Indeed, if we try to get finer coverings, we realize it is

often impossible to make U1 and U2 into Stein manifolds. However, if X = PT + ,

the covering {U1 , U 2 } by two sets is sufficient for any analytic, positive-frequency

field (Penrose 1980).

The most striking application of twistor theory to partial differential equa-

tions is perhaps the geometric characterization of anti-self-dual space-times with

a cosmological constant. For these space-times, the Weyl tensor takes the form

(4.3.14)

and the Ricci tensor reads

(4.3.15)

With our notation, e AB and e A ’ B ’ are the curved-space version of the ∈ -symbols

(denoted again by ∈ A B and ∈ A'B' in Eqs. (2.1.36) and (4.2.1)), Φ a b is the trace-

free part of Ricci, 24Λ is the trace R = R a
a of Ricci (Ward 1980b). The local
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structure in projective twistor space which gives information about the metric is a

pair of differential forms: a one-form τ homogeneous of degree 2 and a three-form

ρ homogeneous of degree 4. Basically, τ contains relevant information about eA'B'

and ρ tells us about e A B , hence their knowledge determines g a b = e A B e A'B' .

The result proved in Ward 1980b states that a one-to-one correspondence exists

between sufficiently local anti-self-dual solutions with scalar curvature R = 24Λ

and sufficiently small deformations of flat projective twistor space which preserve

the one-form τ and the three-form ρ, where τ Λ d τ = 2Λρ. We now describe

how to define the forms τ and ρ, whereas the explicit construction of a class of

anti-self-dual space-times is given in chapter five.

The geometrical framework is twistor space  P defined at the end of section 4.2,

i.e. the space of all α -surfaces in ( M , g ). We take M to be sufficiently small and

convex to ensure that P is  a complex manifold with topology R 4 × S ² , since every

point in an anti-self-dual space-time has such a neighbourhood (Ward 1980b). If

Q, represented by the pair (α A
, βA´), is any vector in P , then τ is defined by

(4.3.16)

Let v be a vector field on the α -surface Z such that ∈ v a joins Z to the neigh-

bouring α -surface Y. Since ∈ va acts as a connecting vector, the Lie bracket of v a

and λ B π B' vanishes for all λ B , i.e.

To make sure τ is well-defined, one has to check that the right-hand side of (4.3.16)

remains covariantly constant over α-surfaces, i.e. is annihilated by the first-order

operator λAπA' ∇ AA' , since otherwise τ does not correspond to a differential form

on P. It turns out that τ is well-defined provided the trace-free part of Ricci

vanishes. This is proved using spinor Ricci identities and the equations of local

twistor transport as follows (Ward 1980b).

Thus, defining
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one finds

(4.3.19)

If one now applies the torsion-free spinor Ricci identities (see Eqs. (6.3.17)-( 6.3.18)

setting = = X = Σ = 0 therein), one finds that the spinor field βA´ (x ) on Z

satisfies the equation

(4.3.20)

where P = Φ – Λ g and α A = i v AC'
a b a b ab πC' . Moreover, Eq. (4.3.19) and the

Leibniz rule imply that

(4.3.21)

since πB´ ∇ BB´ πC´ = 0. Eqs. (4.3.20)-(4.3.21) are indeed the equations of local

twistor transport, and Eq. (4.3.20) leads to

(4.3.22)

since πA´ πB´ e A´B´ = 0. Hence, as we said before, τ is well-defined provided the

trace-free part of Ricci vanishes. Note that, strictly, τ is a twisted form rather

than a form on P, since it is homogeneous of degree 2, one from πA' and one from

β B' . By contrast, a one-form would be independent of the scaling of πA' and β B'

(Ward 1980b).

We are now in a position to define the three-form ρ, homogeneous of degree 4.

For this purpose, let us denote by Q h , h = 1, 2, 3 three vectors in P , represented

by the pairs (α A
h , β hA´) . The corresponding ρ(Q1 , Q2 , Q3 ) is obtained by taking

(4.3.23)
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and then anti-symmetrizing ρ123 over 1, 2, 3. This yields

(4.3.24)

The reader can check that, by virtue of Eqs. (4.3.20)-(4.3.21), ρ is well-defined,

since it is covariantly constant over α -surfaces:

(4.3.25)

60



CHAPTER FIVE

PENROSE TRANSFORM FOR GRAVITATION

Abstract. Deformation theory of complex manifolds is applied to construct a

class of anti-self-dual solutions of Einstein’s vacuum equations, following the work

of Penrose and Ward. The hard part of the analysis is to find the holomorphic

cross-sections of a deformed complex manifold, and the corresponding conformal

structure of an anti-self-dual space-time. This calculation is repeated in detail,

using complex analysis and two-component spinor techniques.

If no assumption about anti-self-duality is made, twistor theory is by itself in-

sufficient to characterize geometrically a solution of the full Einstein equations. Af-

ter a brief review of alternative ideas based on the space of complex null geodesics

of complex space-time, and Einstein-bundle constructions, attention is focused on

the recent attempt by Penrose to define twistors as charges for massless spin-

3
2 
– fields. This alternative definition is considered since a vanishing Ricci tensor

provides the consistency condition for the existence and propagation of massless

spin- 3
2
– fields in curved space-time, whereas in Minkowski space-time the space of

charges for such fields is naturally identified with the corresponding twistor space.

The two-spinor analysis of the Dirac form of such fields in Minkowski space-

time is carried out in detail by studying their two potentials with corresponding

gauge freedoms. The Rarita-Schwinger form is also introduced, and self-dual vac-

uum Maxwell fields are obtained from massless spin-3
2
– fields by spin-lowering. In

curved space-time, however, the local expression of spin-3
2
– field strengths in terms

of the second of these potentials is no longer possible, unless one studies the self-

dual Ricci-flat case. Thus, much more work is needed to characterize geometrically

a Ricci-flat (complex) space-time by using this alternative concept of twistors.
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5. Penrose Transform for Gravitation

5 .1 Anti-Self-Dual Space-Times

Following Ward 1978, we now use twistor-space techniques to construct a

family of anti-self-dual solutions of Einstein’s vacuum equations. Bearing in mind

the space-time twistor-space correspondence in Minkowskian geometry described

in section 4.1, we take a region R of CM # , whose corresponding region in PT is

Moreover, N is the non-projective version of , which implies N ⊂ T ⊂ C 4 . In

other words, as coordinates on N we may use . The geometrically-

oriented reader may like it to know that three important structures are associated

with N :

(i) the fibration π A' ,which implies that N becomes a bundle

over C 2 – { 0 } ;

(ii) the two-form on each fibre;

(iii) the projective structure

Deformations of N which preserve this projective structure correspond to right-

flat metrics (see section 4.2) in R. To obtain such deformations, cover N with

two patches Q and . Coordinates on Q and on are and

respectively. We may now glue Q and together according to

(5.1.1)

(5.1.2)

where ƒ A is homogeneous of degree 1, holomorphic on , and satisfies

(5.1.3)

Such a patching process yields a complex manifold N D which is a deformation of

N . The corresponding right-flat space-time is such that its points correspond
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5. Penrose Transform for Gravitation

to the holomorphic cross-sections of N D . The hard part of the analysis is indeed

to find these cross-sections, but this can be done explicitly for a particular class

of patching functions. For this purpose, we first choose a constant spinor field

P
AA'B' = P

A(A'B') and a homogeneous holomorphic function g( γ, πA' ) of three

complex variables:

(5.1.4)

This enables one to define the spinor field

(5.1.5)

and the patching function

(5.1.6)

and the function

(5.1.7)

Under suitable assumptions on the singularities of g, F may turn out to be holo-

morphic if x a ∈ R and if the ratio It is also possible to express F

as the difference of two contour integrals after defining the differential form

(5.1.8)

In other words, if T and are closed contours on the projective ρA' -sphere defined

by respectively, we may define the function

(5.1.9)

holomorphic for < 2, and the function

(5.1.10)
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holomorphic for > 1. Thus, by virtue of Cauchy’s integral formula, one finds

(cf. Ward 1978)

5. Penrose Transform for Gravitation

(5.1.11)

The basic concepts of sheaf-cohomology presented in section 4.3 are now useful

to understand the deep meaning of these formulae. For any fixed x a ,,  F(x a πA' )

determines an element of the sheaf-cohomology group H 1( P1(C ), O(–1)), where

P1( C ) is the Riemann sphere of projective πA’ spinors and O (–1) is the sheaf

of germs of holomorphic functions of πA’ , homogeneous of degree –1. Since H 1

vanishes, F is actually a coboundary. Hence it can be split according to (5.1.11).

In the subsequent calculations, it will be useful to write a solution of the Weyl

equation in the form

(5.1.12)

Moreover, following again Ward 1978, we note that a spinor field can be

defined by

and that the following identities hold:

(5.1.13)

(5.1.14)

(5.1.15)

We may now get back to our deformed twistor space N D , written in the form

(cf. (5.1.1)-(5.1.2))

(5.1.16a )

(5.1.16 b )

In the light of the splitting (5.1.11), holomorphic sections of N D are given by

(5.1.17)
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(5.1.18)

where xb are complex coordinates on . The conformal structure of can be

computed as follows. A vector U = U B B ' ∇ B B ' at x a ∈ may be represented in

N D by the displacement

(5.1.19a )

By virtue of (5.1.17), Eq. (5.1.19a) becomes

The vector U is null, by definition, if and only if

(5.1.19b )

(5.1.20)

for some spinor field πB’. To prove that the solution of (5.1.20) exists, one defines

(see (5.1.14))

(5.1.21)

(5.1.22)

We are now aiming to show that the desired solution of Eq. (5.1.20) is given by

Indeed, by virtue of (5.1.21)-(5.1.23) one finds

Thus, since πB 'πB' = 0, the calculation of (5.1.19b) yields

(5.1.23)

(5.1.24)

(5.1.25)
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Note that (5.1.12) may be used to re-express the second line of (5.1.25). This leads

t o

(5.1.26)

where

(5.1.27)

in the light of (5.1.5) and (5.1.14). Hence the solution of (5.1.20) is given by

(5.1.23).

Such null vectors determine the conformal metric of . For this purpose, one

defines (Ward 1978)

(5.1.28)

(5.1.29)

(5.1.30)

Interestingly, Σ b
c is the inverse of Ω b

a , since

(5.1.31)

(5.1.32)

(5.1.33)

Indeed, defining

a detailed calculation shows that

(5.1.34)
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One can now check that the right-hand side of (5.1.34) vanishes (see problem

5.1). Hence (5.1.31) holds. For our anti-self-dual space-time , the metric g =  

ga bdx a ⊗  dx b is such that

(5.1.35)

Two null vectors U and V at x ∈ have, by definition, the form

(5.1.36)

(5.1.37)

for some spinors λB,  X
B , , α B' βB' . In the deformed space ND , U and V correspond

to two displacements δ1ωA and δ2ωA respectively, as in Eq. (5.1.19b). If one

defines the corresponding skew-symmetric form

(5.1.38)

the metric is given by

(5.1.39)

However, in the light of (5.1.31), (5.1.35)-(5.1.37) one finds

(5.1.40)

By comparison with (5.1.39) this leads to

(5.1.41)

If we now evaluate (5.1.41) with β A ' =  α A ', comparison with the definition

and use of (5.1.12)-(5.1.13), (5.1.19b) and (5.1.36) yield

(5.1.38)

Ξ = Λ . (5.1.42)
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The anti-self-dual solution of Einstein’s equations is thus given by (5.1.30), (5.1.35)

and (5.1.42).

The construction of an anti-self-dual space-time described in this section is

a particular example of the so-called non-linear graviton (Penrose 1976a-b). In

mathematical language, if M is a complex three-manifold, B is the bundle of

holomorphic three-forms on M and H is the standard positive line bundle on P1 ,

a non-linear graviton is the following set of data (Hitchin 1979):

(i) M, the total space of a holomorphic fibration π : M → P1 ;

(ii) a four-parameter family of sections, each having H ⊕ H as normal bundle

(see e.g. Huggett and Tod 1985 for the definition of normal bundle);

(iii) a non-vanishing holomorphic section s of B ⊗ π * H 4 , where H 4  = H ⊗

H ⊗ H ⊗ H, and π*H 4 denotes the pull-back of H 4  by π;

(iv) a real structure on M such that π and s are real. M is then fibred from    

the real sections of the family.

The limit of the analysis performed in section 5.1 is that it deals with a class

of solutions of (complex) Einstein equations which is not sufficiently general. In

Yasskin and Isenberg 1982 and Yasskin 1987 the authors have examined in detail

the limits of the anti-self-dual analysis. The two main criticisms are as follows:

(a) a right-flat space-time (cf. Law 1985) does not represent a real Lorentzian

space-time manifold. Hence it cannot be applied directly to classical gravity (Ward

1980b);

(b) there are reasons fo expecting that the equations of a quantum theory of

gravity are much more complicated, and thus are not solved by right-flat space-

times.

However, an alternative approach due to Le Brun has become available in recent

years (Le Brun 1985). Le Brun’s approach focuses on the space G of complex null

5.2 Beyond Anti-Self-Duality
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geodesics of complex space-time (M, g), called ambitwistor space. Thus, one deals

with a standard rank-2 holomorphic vector bundle E → G , and in the conformal

class determined by the complex structure of G, a one-to-one correspondence exists

between non-vanishing holomorphic sections of E and Einstein metrics on (M, g)

(Le Brun 1985). The bundle E is called Einstein bundle, and has also been studied

in Eastwood 1987. The work by Eastwood adds evidence in favour of the Einstein

bundle being the correct generalization of the non-linear-graviton construction to

the non-right-flat case (cf. Law 1985, Park 1990, Le Brun 1991, Park 1991, our

section 9.6). Indeed, the theorems discussed so far provide a characterization of

the vacuum Einstein equations. However, there is not yet an independent way of

recognizing the Einstein bundle. Thus, this is not yet a substantial progress in

solving the vacuum equations. Other relevant work on holomorphic ideas appears

in Le Brun 1986, where the author proves that, in the case of four-manifolds

with self-dual Weyl curvature, solutions of the Yang-Mills equations correspond

to holomorphic bundles on an associated analytic space (cf. Ward 1977, Witten

1978, Ward 1981a).

5.3 Twistors as Spin-3–2 Charges

In this section, we describe a recent proposal by Penrose to regard twistors for

Ricci-flat space-times as (conserved) charges for massless helicity-3–
2

fields (Penrose

1990, Penrose 1991a-b-c). The new approach proposed by Penrose is based on the

following mathematical results (Penrose 1991b):

(i) A vanishing Ricci tensor provides the consistency condition for the exis-

tence and propagation of massless helicity- 3–
2

fields in curved space-time (Buchdahl

1958, Deser and Zumino 1976);

(ii) In Minkowski space-time, the space of charges for such fields is naturally

identified with the corresponding twistor space.
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Thus, Penrose points out that if one could find the appropriate definition of charge

for massless helicity - 3 fields in a Ricci-flat space-time, this should provide the
2

concept of twistor appropriate for vacuum Einstein equations. The corresponding

geometrical program may be summarized as follows:

(1) Define a twistor for Ricci-flat space-time (M,g )R F ;

(2) Characterize the resulting twistor space F;

(3) Reconstruct (M,g )RF from F .

We now describe, following Penrose 1990, Penrose 1991a-b-c, properties and prob-

lems of this approach to twistor theory in flat and in curved space-times.

5.3.1 Massless Spin-32 Equations in Minkowski Space-Time

Let (M,η) be Minkowski space-time with flat connection D. In (M,η) the

gauge-invariant field strength for spin 3
2

is represented by a totally symmetric

spinor field

(5.3.1)

obeying a massless free-field equation

(5.3.2)

With the conventions of Penrose, ψA'B'C' describes spin-
3
2 particles of helicity

equal to 3
2 (rather than - 3

2 ). The Dirac form of this field strength is obtained by

expressing locally ψA'B'C' in terms of two potentials subject to gauge freedoms

involving a primed and an unprimed spinor field. The first potential is a spinor

field symmetric in its primed indices

(5.3.3)

subject to the differential equation
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and such that

5. Penrose Transform for Gravitation

The second potential is a spinor field symmetric in its unprimed indices

subject to the equation

(5.3.5)

(5.3.6)

(5.3.7)

(5.3.8)

and it yields the γ A
B ' C ' potential by means of

If we introduce the spinor fields v C' and x B obeying the equations

(5.3.9)

(5.3.10)

the gauge freedoms for the two potentials enable one to replace them by the

potentials

(5.3.11)

(5.3.12)

without affecting the theory. Note that the right-hand side of (5.3.12) does not

contain antisymmetric parts since, despite the explicit occurrence of the antisym-

metric ∈ A B , one finds

by virtue of (5.3.10). Hence (5.3.13) leads to

(5.3.13)

(5.3.14)
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5. Penrose Transform for Gravitation

The gauge freedoms are indeed given by Eqs. (5.3.11)-(5.3.12) since in our flat

space-time one finds

(5.3.15)

by virtue of (5.3.4) and (5.3.9), and

(5.3.16a )

which implies

(5.3.16b)

The result (5.3.16b) is a particular case of the application of spinor Ricci identities

to flat space-time (cf. sections 6.3 and 8.4).

We are now in a position to show that twistors can be regarded as charges

for helicity- 3
2

massless fields in Minkowski space-time. For this purpose, following

Penrose 1991a,c let us suppose that the field ψ satisfying (5.3.1)-(5.3.2) exists in

a region R of (M,η ), surrounding a world-tube which contains the sources for ψ.

Moreover, we consider a two-sphere S within R surrounding the world-tube. To

achieve this we begin by taking a dual twistor, i.e. the pair of spinor fields

(5.3.17)

obeying the differential equations

(5.3.18)

(5.3.19)

Hence µ B' is a solution of the complex-conjugate twistor equation

(5.3.20)

Thus, defining

(5.3.21)
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5. Penrose Transform for Gravitation

one finds, by virtue of (5.3.1)-(5.3.2) and (5.3.20), that ϕ A´B´ is a solution of the

self-dual vacuum Maxwell equations

(5.3.22)

Note that (5.3.21) is a particular case of the spin-lowering procedure (Huggett and

Tod 1985, Penrose and Rindler 1986). Moreover, ϕ A´B´ enables one to define the

self-dual two-form

For some twistor

which leads to the following charge assigned to the world-tube:

(5.3.23)

(5.3.24)

(5.3.25)

the charge Q depends on the dual twistor Wα as (see problem 5.3)

(5.3.26)

These equations describe the strength of the charge, for the field ψ, that should

be assigned to the world-tube. Thus, a twistor Z α arises naturally in Minkowski

space-time as the charge for a helicity + 3
2 massless field, whereas a dual twistor

W α is the charge for a helicity – 3
2 massless field (Penrose 1991c).

Interestingly, the potentials γ C
A´B´ and ρB C

A´ can be used to obtain a potential

for the self-dual Maxwell field strength, since, after defining

(5.3.27)

one finds

(5.3.28)
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5. Penrose Transform for Gravitation

(5.3.29)

Eq. (5.3.28) has been obtained by using (5.3.5), (5.3.8) and (5.3.18)-(5.3.19),

whereas (5.3.29) holds by virtue of (5.3.3)-(5.3.4), (5.3.7), (5.3.18)-(5.3.19). The

one-form corresponding to θC
A´ is defined by

(5.3.30)

which leads to

F = 2 d A , (5.3.31)

by using (5.3.23) and (5.3.28).

The Rarita-Schwinger form of the field strength does not require the symmetry

(5.3.3) in B´C´ as we have done so far, and the γ A
B´C´

potential is instead subject

to the equations (Penrose 1991a-b-c) [cf. (8.6.3)-(8.6.4)]

(5.3.32)

(5.3.33)

Moreover, the spinor field vC ´ in (5.3.11) is no longer taken to be a solution of the

Weyl equation (5.3.9).

The potentials γ and ρ may or may not be global over S. If γ is global but ρ

is not, one obtains a two-dimensional complex vector space parametrized by the

spinor field πA´ . The corresponding subspace where π A
A´ = 0, parametrized by ω ,

is called ω-space. Thus, following Penrose 1991c, we regard π-space and ω-space

as quotient spaces defined as follows:

π - space ≡ space of global ψ ´s/space of global γ´s , (5.3.34)

ω – space ≡ space of global γ´s/space of global ρ´s . (5.3.35)
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5.3.2 Massless Spin-32 Field Strengths in Curved Space-Time

The conditions for the local existence of the ρA'
B C potential in curved space-

time are derived by requiring that, after the gauge transformation (5.3.12) (or,

equivalently, (5.3.14)), also the potential should obey the equation

(5.3.36)

where ∇ is the curved connection. By virtue of the spinor Ricci identity (Ward

and Wells 1990)

which imply we deal with a vacuum self-dual (or left-flat) space-time, since the

anti-self-dual Weyl spinor has to vanish (Penrose 1991c).

Moreover, in a complex anti-self-dual vacuum space-time one finds (Penrose

1991c) that spin- 3
2 field strengths ψ A'B'C' can be defined according to (cf. (5.3.5))

(5.3.37)

the insertion of (5.3.14) into (5.3.36) yields, assuming for simplicity that vC ' = 0

in (5.3.10), the following conditions (see (8.4.28)):

(5.3.38)

(5.3.39)

are gauge-invariant, totally symmetric, and satisfy the massless free-field equations

(cf. (5.3.2))

(5.3.40)

In this case there is no obstruction to defining global ψ-fields with non-vanishing

π-charge, and a global π-space can be defined as in (5.3.34). It remains to be

seen whether the twistor space defined by α-surfaces may then be reconstructed

(section 4.2, Penrose 1976a-b, Ward and Wells 1990, Penrose 1991c).
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Interestingly, in Penrose 1991b it has been proposed to interpret the primary

potential γ as providing a bundle connection. In other words, one takes the fibre

coordinates to be given by a spinor η A´ and a scalar µ. For a given small ε, one

extends the ordinary Levi-Civita connection ∇ on M to bundle-valued quantities

according to (Penrose 1991b)

(5.3.41)

with gauge transformations given by

(5.3.42)

Note that terms of order ε2 have been neglected in writing (5.3.42). However,

such gauge transformations do not close under commutation, and to obtain a

theory valid to all orders in ε one has to generalize to SL (3, C ) matrices before

the commutators close. Writing (A) for the three-dimensional indices, so that η (A )

denotes , one has a connection defined by

with gauge transformation

(5.3.44)

(5.3.43)

With this notation, the v(A )
( B ) are SL(3,C )-valued fields on M, and hence

(5.3.45)

where ε (P ) (Q ) (R ) are generalized Levi-Civita symbols. The SL (3, C ) definition of

the primary potentials takes the form (Penrose 1991b)

(5.3.46)
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5. Penrose Transform for Gravitation

while the curvature is

(5.3.47)

Penrose has proposed this as a generalizarion of the Rarita-Schwinger structure in

Ricci-flat space-times, and he has even speculated that a non-linear generalization

of the Rarita-Schwinger equations (5.3.32)-(5.3.33) might be

(5.3.48)

(5.3.49)

where ( – ) K and ( + ) K are the anti-self-dual and self-dual parts of the curvature

respectively, i.e.

(5.3.50)

Following Penrose 1991b, one has

(5.3.51)

(5.3.52)

the  e (P )
P’ and eQ'

(Q ) relating the bundle directions with tangent directions in M.
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PART III:

T O R S I O N  A N D  S U P E R S Y M M E T R Y



CHAPTER SIX

C O M P L E X  S P A C E - T I M E S  W I T H  T O R S I O N

Abstract. Theories of gravity with torsion are relevant since torsion is a natu-

rally occurring geometric property of relativistic theories of gravitation, the gauge

theory of the Poincaré group leads to its presence, the constraints are second-class

and the occurrence of cosmological singularities can be less generic than in general

relativity. In a space-time manifold with non-vanishing torsion, the Riemann ten-

sor has 36 independent real components at each point, rather than 20 as in general

relativity. The information of these 36 components is encoded in three spinor fields

and in a scalar function, having 5,9,3 and 1 complex components respectively. If

space-time is complex, this means that, with respect to a holomorphic coordinate

basis x a , the metric is a 4 × 4 matrix of holomorphic functions of x a, and its deter-

minant is nowhere-vanishing. Hence the connection and Riemann are holomorphic

as well, and the Ricci tensor becomes complex-valued.

After a two-component spinor analysis of the curvature and of spinor Ricci

identities, the necessary condition for the existence of α-surfaces in complex space-

time manifolds with non-vanishing torsion is derived. For these manifolds, Lie

brackets of vector fields and spinor Ricci identities contain explicitly the effects

of torsion. This leads to an integrability condition for α -surfaces which does not

involve just the self-dual Weyl spinor, as in complex general relativity, but also the

torsion spinor, in a non-linear way, and its covariant derivative. A similar result

also holds for four-dimensional, smooth real manifolds with a positive-definite

metric. Interestingly, a particular solution of the integrability condition is given

by right conformally flat and right-torsion-free space-times.
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6. Complex Space-Times with Torsion

6.1 Introduction

As we know from Part I, over the past 27 years, several efforts have been

produced to understand many properties of classical and quantum field theories

using twistor theory. Penrose’s original idea was that the space-time picture might

be inappropriate at the Planck length, whereas a more correct framework for

fundamental physics should be a particular complex manifold called twistor space.

In other words, concepts such as null lines and null surfaces are more fundamental

than space-time concepts, and twistor space provides the precise mathematical

description of this idea.

In the course of studying Minkowski space-time, twistors can be defined ei-

ther via the four-complex-dimensional vector space of solutions to the differential

equation (cf. (4.1.5))

(6.1.1)

or via null two-surfaces in complexified compactified Minkowski space CM#, called

a -planes. The α-planes (section 4.1) are such that the space-time metric vanishes

over them, and their null tangent vectors have the two-component spinor form

λ A πA' , where λ A is varying and πA' is fixed (i.e. fixed by a well-known differential

equation). The latter definition can be generalized to complex or real Riemannian

space-times provided the Weyl curvature is anti-self-dual. This leads in turn to

a powerful geometric picture, where the study of the Euclidean-time version of

the partial differential equations of Einstein’s theory is replaced by the problem

of finding the holomorphic curves in a complex manifold called deformed (projec-

tive) twistor space. This finally enables one to reconstruct the space-time metric

(chapter five). From the point of view of gravitational physics, this is the most

relevant application of Penrose-transform theory, which is by now a major tool for

studying the differential equations of classical field theory (Ward and Wells 1990).

Note that, while in differential geometry the basic ideas of connection and

curvature are local, in complex-analytic geometry there is no local information.
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6. Complex Space-Times with Torsion

(3) From the point of view of constrained Hamiltonian systems, theories with

torsion are of great interest, since they are theories of gravity with second-class

constraints (cf. Esposito 1994 and references therein).

Any complex manifold looks locally like C n, with no special features, and any

holomorphic fibre bundle is locally an analytic product (cf. Atiyah 1988 on page

524 for a more detailed treatment of this non-trivial point). It is worth bear-

ing in mind this difference since the Penrose transform converts problems from

differential geometry into problems of complex-analytic geometry. We thus deal

with a non-local transform, so that local curvature information is coded into global

holomorphic information. More precisely, Penrose theory does not hold for both

anti-self-dual and self-dual space-times, so that one only obtains a non-local treat-

ment of complex space-times with anti-self-dual Weyl curvature. However, these

investigations are incomplete for at least two reasons:

(a) anti-self-dual (or self-dual) space-times appear a very restricted (although

quite important) class of models, and it is not clear how to generalize twistor-space

definitions to general vacuum space-times;

(b) the fundamental theory of gravity at the Planck length is presumably

different from Einstein’s general relativity (Hawking 1979, Esposito 1994).

In this chapter we have thus tried to extend the original analysis appearing

in the literature to a larger class of theories of gravity, i.e. space-time models

( M , g ) with torsion (we are, however, not concerned with supersymmetry). In our

opinion, the main motivations for studying these space-time models are as follows.

(1) Torsion is a peculiarity of relativistic theories of gravitation, since the

bundle L( M ) of linear frames is soldered to the base B = M, whereas for gauge

theories other than gravitation the bundle L (M ) is loosely connected to M. The

torsion two-form T is then defined as T ≡ dθ + ω Λ θ, where θ is the soldering form

and ω is a connection one-form on L( M ). If L ( M ) is reduced to the bundle O ( M )

of orthonormal frames, ω is called spin-connection.

(2) The gauge theory of the Poincaré group naturally leads to theories with

torsion.
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6. Complex Space-Times with Torsion

(4) In space-time models with torsion, the occurrence of cosmological sin-

gularities can be less generic than in general relativity (Esposito 1992, Esposito

1994).

In the original work by Penrose and Ward, the first (simple) problem is to

characterize curved space-time models possessing a-surfaces. As we were saying

following Eq. (5.1.1), the necessary and sufficient condition is that space-time be

complex, or real Riemannian (i.e. its metric is positive-definite ), with anti-self-dual

Weyl curvature. This is proved by using Frobenius’ theorem, the spinor form of

the Riemann curvature tensor, and spinor Ricci identities. Our chapter is thus

organized as follows.

Section 6.2 describes Frobenius’ theorem and its application to curved com-

plex space-time models with non-vanishing torsion. In particular, if a-surfaces are

required to exist, one finds this is equivalent to a differential equation involving

two spinor fields  ξ A and ωA B ' , which are completely determined by certain alge-

braic relations: Section 6.3 describes the spinor form of Riemann and spinor Ricci

identities for theories with torsion. Section 6.4 applies the formulae of section 6.3

to obtain the integrability condition for the differential equation derived at the end

of section 6.2. The integrability condition for α-surfaces is then shown to involve

the self-dual Weyl spinor, the torsion spinor and covariant derivatives of torsion.

Concluding remarks are presented in section 6.5.

6.2 Frobenius’ Theorem for Theories with Torsion

Frobenius’ theorem is one of the main tools for studying calculus on manifolds.

Following Abraham et al. 1983, the geometrical framework and the theorem can

be described as follows. Given a manifold M, let E ⊂ TM be a sub-bundle of

its tangent bundle. By definition, E is involutive if for any two E -valued vector

fields X and Y defined on M, their Lie bracket is E -valued as well. Moreover,

E is integrable if ∀ m 0 ∈ M there is a local submanifold N ⊂ M through m 0 ,

82



6. Complex Space-Times with Torsion

called a local integral manifold of E at m 0 , whose tangent bundle coincides with

E restricted to N. Frobenius’ theorem ensures that a sub-bundle E of TM is

involutive if and only if it is integrable.

Given a complex torsion-free space-time (M,g), it is possible to pick out in

M a family of holomorphic two-surfaces, called α-surfaces, which generalize the

α-planes of Minkowski space-time described in section 4.1, provided the self-dual

Weyl spinor vanishes. In the course of deriving the condition on the curvature

enforced by the existence of α -surfaces, one begins by taking a totally null two-

surface in M. By definition, is a two-dimensional complex submanifold of M

such that, ∀ p ∈ , if x and y are any two tangent vectors at p, then g (x , x) =

g (y,y ) = g (x ,y ) = 0. Denoting by X = X a e a and Y = Y a e a two vector fields

tangent to , where X a and Y a have the two-component spinor form X a = λ AπA'

and Y a = µ A πA', Frobenius’ theorem may be used to require that the Lie bracket

of X and Y be a linear combination of X and Y, so that we write

(6.2.1)

where ϕ and ρ are scalar functions. Frobenius’ theorem is indeed originally for-

mulated for real manifolds. If the integral submanifolds of complex space-time are

holomorphic, there are additional conditions which are not described here. Note

also that Eq. (6.2.1) does not depend on additional structures on M (torsion,

metric, etc. ...). In the torsion-free case, it turns out that the Lie bracket [X,Y ]

can also be written as ∇ X Y – ∇ Y X , and this finally leads to a condition which

implies the vanishing of the self-dual part of the Weyl curvature, after using the

spinorial formula for Riemann and spinor Ricci identities.

However, for the reasons described in section 6.1, we are here interested

in models where torsion does not vanish. Even though Frobenius’ theorem (cf.

(6.2.1)) does not involve torsion, the Lie bracket [X,Y ] can be also expressed

using the definition of the torsion tensor S (see comment following (6.3.3)) :

(6.2.2)
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By comparison, Eqs. (6.2.1)-(6.2.2) lead to

(6.2.3)

Now, the antisymmetry Sa b
c = – S ba

c of the torsion tensor can be expressed spino-

rially as

(6.2.4)

where the spinors x and are symmetric in AB and A'B' respectively, and from

now on we use two-component spinor notation (we do not write Infeld-van der

Waerden symbols for simplicity of notation). Thus, writing X a = λ A πA' and

Y a = µ A πA', one finds, using a technique similar to the one in section 9.1 of Ward

and Wells 1990, that (6.2.3) is equivalent to

(6.2.5)

for some spinor fields ξ A and ωA B´ , provided the following conditions are imposed:

(6.2.6)

(6.2.7)

(6.2.8)

Note that, since our calculation involves two vector fields X and Y tangent to

, its validity is only local unless the surface is parallelizable (i.e. the bundle

L ( ) admits a cross-section). Moreover, since is holomorphic by hypothesis, this

implies also ϕ and ρ are holomorphic (cf. (6.2.1)), and this affects the unprimed

spinor part of the null tangent vectors to α -surfaces in the light of (6.2.6)-(6.2.7).

By virtue of Eq. (6.2.8), one finds

which implies (Esposito 1993)

(6.2.9)

(6.2.10)
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Note that, if torsion is set to zero, Eq. (6.2.10) agrees with Eq. (9.1.2) appearing

in section 9.1 of Ward and Wells 1990, where complex general relativity is studied.

This is the desired necessary condition for the field πA' to define an α-surface in

the presence of torsion (and it may be also shown to be sufficient, as in section

4.2). Our next task is to derive the integrability condition for Eq. (6.2.10). For

this purpose, following Ward and Wells 1990, we operate with πB'πC ' ∇ A
C' on

both sides of (6.2.10). This leads to

(6.2.11)

Using the Leibniz rule, (6.2.10) and the well-known property πA ´πA´ = ξ A ξA = 0,

the two terms on the right-hand side of (6.2.11) are found to be

(6.2.12)

(6.2.13)

where round brackets denote symmetrization over A' and D’ on the second line of

(6.2.13).

It now remains to compute the left-hand side of (6.2.11). This is given by

(6.2.14)

where we have defined as in section 8.4. Using (6.2.10), the

first term on the right-hand side of (6.2.14) is easily found to be

(6.2.15)
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The second term on the right-hand side of (6.2.14) can only be computed after

using some fundamental identities of spinor calculus for theories with torsion,

hereafter referred to as U4 -theories, as in Esposito 1992, Esposito 1994.

6 . 3 Spinor Ricci Identities for Complex U 4 Theory

Since the results we here describe play a key role in obtaining the integrability

condition for α -surfaces (cf. section 6.4), we have chosen to summarize the main

formulae in this separate section, following Penrose 1983, Penrose and Rindler

1984.

Using abstract-index notation, the symmetric Lorentzian metric g of real

Lorentzian U 4 space-times is still expressed by

(6.3.1)

Moreover, the full connection still obeys the metricity condition ∇ g = 0, and

the corresponding spinor covariant derivative is assumed to satisfy the additional

relations

(6.3.2)

and is a linear, real operator which satisfies the Leibniz rule. However, since torsion

does not vanish, the difference applied to a function ƒ is equal(∇ ∇ b ∇  b ∇ a)a –

to 2Sa b
c Torsion also appears explicitly in the relation defining the

Riemann tensor

∇ c ƒ ≠ 0 .

(6.3.3)

and leads to a non-symmetric Ricci tensor R a b ≠ R ba , where Ra b ≡ Ra c b
c . Note

that in (6.3.3) the factor 2 multiplies Sa b
c since we are using definition (6.2.2),

whereas in Penrose and Rindler 1984 a definition is used where the torsion tensor is

T ≡ 2S. The tensor  R abcd has now 36 independent real components at each point,
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rather than 20 as in general relativity. The information of these 36 components is

encoded in the spinor fields

and in the scalar function , having 5,9,3, and 1 complex components respectively,

and such that

(6.3.4)

(6.3.5a )

(6.3.5b )

(6.3.6a )

(6.3.6 b)

(6.3.7)

In (6.3.4)-(6.3.6), round (square) brackets denote, as usual, symmetrization (anti-

symmetrization), and overbars denote complex conjugation of spinors or scalars.

The spinor ∑ A B and the left-hand sides of (6.3.5b) and (6.3.7) are determined

directly by torsion and its covariant derivative. The relations (6.3.5b), (6.3.6b)

and (6.3.7) express a substantial difference with respect to general relativity, and

hold in any real Lorentzian U4 space-time.

We are, however, interested in the case of complex U4 space-times (or real

Riemannian, where the metric is positive-definite), in order to compare the neces-

sary condition for the existence of α-surfaces with what holds for complex general

relativity. In that case, it is well-known that the spinor covariant derivative still

obeys (6.3.2) but is now a linear, complex-holomorphic operator satisfying the Leib-

niz rule. Moreover, barred spinors are replaced by independent twiddled spinors

(e.g. A'B' ) which are no longer complex conjugates of unbarred (or untwiddled)

spinors, since complex conjugation is no longer available. This also holds for real
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Riemannian U4 space-times, not to be confused with real Lorentzian U4 space-

times, but of course, in the positive-definite case the spinor covariant derivative is

a real, rather than complex-holomorphic operator.

For the sake of clarity, we hereafter write CU4 , RU4, L U4 to denote complex,

real Riemannian or real Lorentzian U4-theory respectively. In light of the previous

discussion, the spinorial form of Riemann for CU4 and RU4 theories is

(6.3.8)

The spinors ψ A B C D and A'B'C'D' appearing in (6.3.8) are called anti-self-dual and

self-dual Weyl spinors respectively as in general relativity, and they represent the

part of Riemann invariant under conformal rescalings of the metric. This property

is proved at the end of section 4 of Penrose 1983, following Eq. (49) therein. Note

that in Penrose 1983 a class of conformal rescalings is studied such that

(where Ω is a smooth, nowhere-vanishing, complex-valued function), and leading

to the presence of torsion. We are, however, not interested in this method for

generating torsion, and we only study models where torsion already exists before

any conformal rescaling of the metric.

We are now in a position to compute �C' A'π B' appearing in (6.2.14). For

this purpose, following the method in section 4.9 of Penrose and Rindler 1984, we

define the operator

(6.3.9)

and the self-dual null bivector

(6.3.10)
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The Ricci identity for U4 theories

(6.3.11)

then yields

(6.3.12)

This is why, using (6.3.8) and the identity

(6.3.13)

a lengthy calculation of the 16 terms occurring in (6.3.12) yields

(6.3.14)

We now write explicitly the symmetrizations over C and D occurring in (6.3.14).

Thus, using (6.2.4) and comparing left- and right-hand side of (6.3.14), one finds

the equations

(6.3.15)

(6.3.16)

Eqs. (6.3.15)-(6.3.16) are two of the four spinor Ricci identities for CU4 or RU 4

theories. The remaining spinor Ricci identities are

(6.3.17)
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(6.3.18)

6 . 4 Integrability Condition for αα -Surfaces

Since πA´ πA´ = 0, insertion of (6.3.17) into (6.2.14) and careful use of (6.2.10)

yield

(6.4.1)

In the light of (6.2.11)-(6.2.15) and (6.4.1), one thus finds the following integrability

condition for Eq. (6.2.10) in the case of CU4 or RU4 theories (Esposito 1993):

(6.4.2)

Note that contributions involving ξA add up to zero.

6 . 5 Concluding Remarks

We have studied complex or real Riemannian space-times with non-vanishing

torsion. By analogy with complex general relativity, α-surfaces have been defined

as totally null two-surfaces whose null tangent vectors have the two-component

spinor form λ Aπ A´ , with λ A varying and π A´ fixed (cf. section 6.1, Ward and

Wells 1990). Using Frobenius’ theorem, this leads to Eq. (6.2.10), which differs

from the equation corresponding to general relativity by the term involving the

torsion spinor. The integrability condition for Eq. (6.2.10) is then given by Eq.

(6.4.2), which involves the self-dual Weyl spinor (as in complex general relativity),

90



6. Complex Space-Times with Torsion

terms quadratic in the torsion spinor, and the covariant derivative of the torsion

spinor. Our results (6.2.10) and (6.4.2) are quite generic, in that they do not make

use of any field equations. We only assumed we were not studying supersymmetric

theories of gravity.

A naturally occurring question is whether an alternative way exists to derive

our results (6.2.10) and (6.4.2). This is indeed possible, since in terms of the

Levi-Civita connection the necessary and sufficient condition for the existence of

α -surfaces is the vanishing of the self-dual torsion-free Weyl spinor; one has then

to translate this condition into a property of the Weyl spinor and torsion of the

full U4 -connection. One then finds that the integrability condition for α-surfaces,

at first expressed using the self-dual Weyl spinor of the Levi-Civita connection,

coincides with Eq. (6.4.2).

We believe, however, that the more fundamental geometrical object is the full

U4-connection with torsion. This point of view is especially relevant when one

studies the Hamiltonian form of these theories, and is along the lines of previous

work by the author, where other properties of U4 -theories have been studied work-

ing with the complete U 4-connection (Esposito 1992, Esposito 1994). It was thus

our aim to derive Eq. (6.4.2) in a way independent of the use of formulae relating

curvature spinors of the Levi-Civita connection to torsion and curvature spinors of

the U4 -connection. We hope our chapter shows this program can be consistently

developed.

Interestingly, a particular solution of Eq. (6.4.2) is given by

(6.5.1)

(6.5.2)

This means that the surviving part of torsion is XA B
C C ´ εA´B´ (cf. (6.2.4)), which

does not affect the integrability condition for α-surfaces, and that the U4 Weyl cur-

vature is anti-self-dual. Note that this is only possible for CU4 and RU 4 models of

gravity, since only for these theories Eqs. (6.5.1)-(6.5.2) do not imply the vanishing
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of XA C B A ´ and ψA B C D (cf. section 6.3). By analogy with complex general relativ-

ity, those particular CU4 and RU4 space-times satisfying Eqs. (6.5.1)-(6.5.2) are

here called right conformally flat (in the light of (6.5.1)) and right-torsion-free (in

the light of (6.5.2)). Note that our definition does not involve the Ricci tensor,

and is therefore different from Eq. (6.2.1) of Ward and Wells 1990 (see (4.2.2)).

P.S. This chapter relies in part on the work appearing in Esposito 1993. I am

very grateful to two anonymous referees of the journal General Relativity and

Gravitation for correcting numerous mistakes in the original version of that paper.
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CHAPTER SEVEN

SPIN-1–
2

FIELDS IN RIEMANNIAN GEOMETRIES

Abstract. Local supersymmetry leads to boundary conditions for fermionic fields

in one-loop quantum cosmology involving the Euclidean normal e n A
A' to the

boundary and a pair of independent spinor fields ψA and A' . This chapter studies

the corresponding classical properties, i.e. the classical boundary-value problem

and boundary terms in the variational problem. If e n A
A' ψ A A' ≡ Φ A' is

set to zero on a three-sphere bounding flat Euclidean four-space, the modes of the

massless spin- 1–
2

field multiplying harmonics having positive eigenvalues for the in-

trinsic three-dimensional Dirac operator on S 3 should vanish on S 3. Remarkably,

this coincides with the property of the classical boundary-value problem when

spectral. boundary conditions are imposed on S 3 in the massless case. Moreover,

the boundary term in the action functional is proportional to the integral on the

boundary of Φ A'
e n AA' ψ A. The existence of self-adjoint extensions of the Dirac

operator subject to supersymmetric boundary conditions is then proved. The

global theory of the Dirac operator in compact Riemannian manifolds is finally

described.
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7.1 Dirac and Weyl Equations in Two-Component Spinor Form

Dirac’s theory of massive and massless spin- 1–
2 particles is still a key element

of modern particle physics and field theory. From the point of view of theoretical

physics, the description of such particles motivates indeed the whole theory of

Dirac operators. We are here concerned with a two-component spinor analysis of

the corresponding  spin- 1
2
– fields in Riemannian four-geometries (M,g ) with bound-

ary. A massive spin- –1
2

Dirac field is then described by the four independent spinor

fields and the action functional takes the form

(7.1.1)

where

and I B is a suitable boundary term, necessary to obtain a well-posed variational

problem. Its form is determined once one knows which spinor fields are fixed on

the boundary (e.g. section 7.2). With our notation, the occurrence of i depends

on conventions for Infeld-van der Waerden symbols (see section 7.2). One thus

finds the field equations

(7.1.2)

(7.1.3)

(7.1.4)

(7.1.5)
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(7.1.6)

Note that this is a coupled system of first-order differential equations, obtained

after applying differentiation rules for anti-commuting spinor fields. This means

the spinor field acted upon by the ∇ AA' operator should be always brought to

the left, hence leading to a minus sign if such a field was not already on the

left. Integration by parts and careful use of boundary terms are also necessary.

The equations (7.1.3)-(7.1.6) reproduce the familiar form of the Dirac equation

expressed in terms of γ-matrices. In particular, for massless fermionic fields one

obtains the independent Weyl equations

(7.1.7)

(7.1.8)

not related by any conjugation.

7 .2 Boundary Terms for Massless Fermionic Fields

Locally supersymmetric boundary conditions have been recently studied in

quantum cosmology to understand its one-loop properties. They involve the nor-

mal to the boundary and the field for spin 1
2
– , the normal to the boundary and

the spin- 3
2
– potential for gravitinos, Dirichlet conditions for real scalar fields, mag-

netic or electric field for electromagnetism, mixed boundary conditions for the

four-metric of the gravitational field (and in particular Dirichlet conditions on the

perturbed three-metric). The aim of this section is to describe the corresponding

classical properties in the case of massless spin-1–
2 fields.

For this purpose, we consider flat Euclidean four-space bounded by a three-

sphere of radius a. The alternative possibility a more involved boundary-value

problem, where flat Euclidean four-space is bounded by two concentric three-

spheres of radii r1 and r2 . The spin- 1–
2 field, represented by a pair of independent
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spinor fields ψ A and A' , is expanded on a family of three-spheres centred on the

origin as (D’Eath and Halliwell 1987, D’Eath and Esposito 1991a, Esposito 1994)

(7.2.1)

(7.2.2)

With our notation, τ is the Euclidean-time coordinate, the are block-diagonalα pq
n

matrices with blocks ( 1 1
1 – 1), the ρ– and σ -harmonics obey the identities de-

scribed in D’Eath and Halliwell 1987, Esposito 1994. Last but not least, the modes

m np and rn p are regular at τ = 0, whereas the modes n p and n p are singular

a t τ = 0 if the spin- 1–
2 field is massless. Bearing in mind that the harmonics ρn q A

σn q A'and have positive eigenvalues 1–
2

–
2 for the three-dimensional Dirac op-(n + 3)

erator on the bounding S 3 (Esposito 1994), the decomposition (7.2.1)-(7.2.2) can

be re-expressed as

(7.2.3)

(7.2.4)

In (7.2.3)-(7.2.4), the (+) parts correspond to the modes mnp and rn p , whereas

the (–) parts correspond to the singular modes n p and np , which multiply

harmonics having negative eigenvalues – 1–
2 (n + 3–

2)
operator on S 3. If one wants to find a classical solution of the Weyl equation

which is regular ∀τ ∈  [0, a], one is thus forced to set to zero the modes n p and

n p ∀ τ ∈ [0, a] (D’Eath and Halliwell 1987). This is why, if one requires the local

boundary conditions (Esposito 1994)

for the three-dimensional Dirac

(7.2.5)
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such a condition can be expressed as

(7.2.6)

(7.2.7)

where Φ  
A'

1 and Φ  
A'

2 are the parts of the spinor field Φ 
A' related to the - and

σ-harmonics respectively. In particular, if φA'
1 = φ A'

2 = 0 on S 3 , one finds

(7.2.8)

(7.2.9)

where a is the three-sphere radius. Since the harmonics appearing in (7.2.8)-

(7.2.9) are linearly independent, these relations lead to mnp (a ) = r np (a ) = 0

∀ n,p. Remarkably, this simple calculation shows that the classical boundary-value

problems for regular solutions of the Weyl equation subject to local or spectral

conditions on S 3 share the same property provided Φ A' is set to zero in (7.2.5):

the regular modes m n p and r n p should vanish on the bounding S 3.

To study the corresponding variational problem for a massless fermionic field,

we should now bear in mind that the spin- 1
2
– action functional in a Riemannian

four-geometry takes the form (D’Eath and Esposito 1991a, Esposito 1994)

(7.2.10)

This action is real, and the factor i occurs by virtue of the convention for Infeld-

van der Waerden symbols used in D’Eath and Esposito 1991a, Esposito 1994. In

(7.2.10) B is a suitable boundary term, to be added to ensure that IE is stationary

under the boundary conditions chosen at the various components of the boundary

(e.g. initial and final surfaces, as in D’Eath and Halliwell 1987). Of course, the
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variation δI E of I E is linear in the variations δψ A and δ A' . Defining k ≡ 2–
i

and

k  B ≡ I B , variational rules for anticommuting spinor fields lead to

(7.2.11)

where I B should be chosen in such a way that its variation δI B combines with the

sum of the two terms on the second line of (7.2.11) so as to specify what is fixed

on the boundary (see below). Indeed, setting ∈ ≡ ±1 and using the boundary

conditions (7.2.5) one finds

(7.2.12)

Thus, anticommutation rules for spinor fields (D’Eath and Halliwell 1987) show

that the second line of Eq. (7.2.11) reads

Now it is clear that setting

enables one to specify ΦA' on the boundary, since

(7.2.13)

(7.2.14)

(7.2.15)
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Hence the action integral (7.2.10) appropriate for our boundary-value problem is

(Esposito et al. 1994)

Note that, by virtue of (7.2.5), Eq. (7.2.13) may also be cast in the form

which implies that an equivalent form of IB is

(7.2.16)

(7.2.17)

(7.2.18)

The local boundary conditions studied at the classical level in this section,

have been applied to one-loop quantum cosmology in D’Eath and Esposito 1991a,

Kamenshchik and Mishakov 1993, Esposito 1994. Interestingly, our work seems

to add evidence in favour of quantum amplitudes having to respect the properties

of the classical boundary-value problem. In other words, if fermionic fields are

massless, their one-loop properties in the presence of boundaries coincide in the

case of spectral (D’Eath and Halliwell 1987, D’Eath and Esposito 1991b, Esposito

1994) or local boundary conditions (D’Eath and Esposito 1991a, Kamenshchik and

Mishakov 1993, Esposito 1994), while we find that classical modes for a regular

solution of the Weyl equation obey the same conditions on a three-sphere boundary

with spectral or local boundary conditions, provided the spinor field ΦA'  of (7.2.5)

is set to zero on S 3. We also hope that the analysis presented in Eqs. (7.2.10)-

(7.2.18) may clarify the spin-1
2
– variational problem in the case of local boundary

conditions on a three-sphere (cf. the analysis in Charap and Nelson 1983, York

1986, Hayward 1993 for pure gravity).
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7.3 Self-Adjointness of the Boundary-Value Problem

So far we have seen that the framework for the formulation of local boundary

conditions involving normals and field strengths or fields is the Euclidean regime,

where one deals with Riemannian metrics. Thus, we will pay special attention

to the conjugation of SU (2) spinors in Euclidean four-space. In fact such a con-

jugation will play a key role in proving self-adjointness. For this purpose, it can

be useful to recall at first some basic results about SU(2) spinors on an abstract

Riemannian three-manifold (Σ, h ). In that case, one considers a bundle over the

three-manifold, each fibre of which is isomorphic to a two-dimensional complex

vector space W . It is then possible to define a nowhere vanishing antisymmetric

∈ A B  (the usual one of section 2.1) so as to raise and lower internal indices, and a

positive-definite Hermitian inner product on each fibre: (ψ , φ) =
A'

 G  A' A φA. The

requirements of Hermiticity and positivity imply respectively that A'A = G A'A ,
A'

G A' A ψ A > 0, ∀ ψ A  ≠ 0. This G A' A converts primed indices to unprimed

ones, and it is given by i n AA' . Given the space H of all objects α A
B such

that  α A
A = 0 and  (α†) A

B
 = —α A

B , one finds there always exists a SU(2) sol-

dering form  σ a
A

B  (i.e. a global isomorphism) between H and the tangent space

on ( Σ ,  h ) such that h ab =  — σa AB σb
 BA . Therefore one also finds σ a A

A = 0 and

( σ a
A

B )
†
 = –σ a

A
B . One then defines ψ A an S U(2) spinor on ( Σ, h ). A basic

remark is that S U (2) transformations are those SL(2, C ) transformations which

preserve n AA'  = n a σa
AA’, where n a = (1,0,0,0) is the normal to Σ. The Eu-

clidean conjugation used here (not to be confused with complex conjugation in

Minkowski space-time) is such that (see now section 2.1)

(7.3.1)

(7.3.2)

(7.3.3)
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In (7.3.1) and in the following pages, the symbol * denotes complex conjugation

of scalars. How to generalize this picture to the Euclidean four-space ? For this

purpose, let us now focus our attention on states that are pairs of spinor fields,

defining

(7.3.4)

on the ball of radius a in Euclidean four-space, subject always to the boundary

conditions (7.2.5). w and z are subject also to suitable differentiability conditions,

to be specified later. Let us also define the operator C

(7.3.5)

and the dagger operation

(7.3.6)

The consideration of C is suggested of course by the action (7.2.10). In (7.3.6),

δBA'  is an identity matrix playing the same role of G AA' for SU(2) spinors on

(Σ , h ), so that δ B A '  is preserved by SU (2) transformations. Moreover, the bar

symbol denotes the usual complex conjugation of SL (2, C ) spinors.

Hence one finds

(7.3.7)

in view of the definition of ∈ A B . Thus, the dagger operation defined in (7.3.6) is

anti-involutory, because, when applied twice to ψ A, it yields – ψA .

From now on we study commuting spinors, for simplicity of exposition of the

self-adjointness. It is easy to check that the dagger, also called in the literature

Euclidean conjugation (section 2.1), satisfies all properties (7.3.1)-(7.3.3). We can

now define the scalar product

(7.3.8)
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This is indeed a scalar product, because it satisfies all following properties for all

vectors u, v, w and ∀ λ ∈  C :

We are now aiming to check that C or iC is a symmetric operator, i.e. that

(C z, w) = (z, Cw) or (iCz ,w ) = (z, iCw), ∀ z, w . This will be used in the course

of proving further that the symmetric operator has self-adjoint extensions. In order

to prove this result it is clear, in view of (7.3.8), we need to know the properties

of the spinor covariant derivative acting on SU(2) spinors. In the case of SL(2, C)

spinors it is known this derivative is a linear, torsion-free map ∇ A A ' which satisfies

the Leibniz rule, annihilates ∈ A B  and is real (i.e. 

Moreover, we know that

In Euclidean four-space, we use both (7.3.13) and the relation

where δµv has signature (+,+,+,+). This implies that

Σ i  are the Pauli matrices. Now, in view of (7.3.5) and (7.3.8)

(7.3.15)

(7.3.9)

(7.3.10)

(7.3.11)

(7.3.12)

(7.3.13)

(7.3.14)

∀ i = 1,2,3, where

one finds

whereas, using the Leibniz rule to evaluate
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and

and integrating by parts, one finds

Now we use (7.3.6), section 2.1, the identity

and the boundary conditions on S ³ :

In so doing, the sum of the boundary terms in (7.3.16) is found to vanish. This

implies in turn that equality of the volume integrands is sufficient to show that

(C z , w) and (z , C w ) are equal. For example, one finds in flat space, using also

(7.3.6): , whereas:

In other words, we are led to study the condition

∀ a = 0,1,2,3. Now, using the relations

(7.3.16)

(7.3.17)

(7.3.18)

(7.3.19)

(7.3.20)
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(7.3.21)

one finds that the complex conjugate of σA
A'

a  is always equal to σ A
A'a , which is

not in agreement with the choice of the (–) sign on the right-hand side of (7.3.18).

This implies in turn that the symmetric operator we are looking for is iC, where

C has been defined in (7.3.5). The generalization to a curved four-dimensional

Riemannian space is obtained via the relation

Now, it is known that every symmetric operator has a closure, and the opera-

tor and its closure have the same closed extensions. Moreover, a closed symmetric

operator on a Hilbert space is self-adjoint if and only if its spectrum is a subset of

the real axis. To prove self-adjointness for our boundary-value problem, we may

recall an important result due to von Neumann (Reed and Simon 1975). This

theorem states that, given a symmetric operator A with domain D (A), if a map

F : D (A) → D (A) exists such that

(7.3.22)

(7.3.23)

(7.3.24)

FA = A F  , (7.3.25)

then A has self-adjoint extensions. In our case, denoting by D the operator (cf.

(7.3.6))

(7.3.26)

let us focus our attention on the operators F ≡ iD and A ≡ iC. The operator F

maps indeed D(A) to D (A). In fact, bearing in mind the definitions

(7.3.27)

(7.3.28)
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one finds that F maps such that

(7.3.29)

where γ = ∈ * . The boundary condition (7.3.29) is clearly of the type which occurs

in (7.3.28) provided ∈ is real, and the differentiability of is not affected

by the action of F (cf. (7.3.26)). In deriving (7.3.29), we have used the result for

obtained in (7.3.17). It is worth emphasizing that the requirement

of self-adjointness enforces the choice of a real function ∈ , which is a constant in

our case. Moreover, in view of (7.3.7), one immediately sees that (7.3.22) and

(7.3.24) hold when F = iD, provided we write (7.3.24) as F² = –I. This is indeed

a crucial point which deserves special attention. Condition (7.3.24) is written in

Reed and Simon 1975 as F² = I , and examples are later given (see page 144

therein) where F is complex conjugation. But we are formulating our problem in

the Euclidean regime, where we have seen that the only possible conjugation is

the dagger operation, which is anti-involutory on spinors with an odd number of

indices. Thus, we are here generalizing von Neumann’s theorem in the following

way. If F is a map D (A) → D (A) which satisfies (7.3.22)-(7.3.25), then the same

is clearly true of Hence

(7.3.30)

(7.3.31)

Acting with F on both sides of (7.3.30), one finds

(7.3.32)

using the property F² = –I. But then the relations (7.3.31)-(7.3.32) imply that

F D (A) = D (A), so that F takes D (A) onto D (A) also in the case of the anti-

involutory Euclidean conjugation that we called dagger. Comparison with the

proof presented at the beginning of page 144 in Reed and Simon 1975 shows that
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this is all what we need so as to generalize von Neumann’s theorem to the Dirac

operator acting on SU(2) spinors in Euclidean four-space (one later uses properties

(7.3.25), (7.3.22) and (7.3.23) as well in completing the proof).

It remains to verify conditions (7.3.23) and (7.3.25). First, note that

where we have used (7.3.7)-(7.3.8) and the commutation property of our spinors.

Second, one finds

the eigenvalues of iC are real, and the eigenvalues λn

order operator.

7.4 Global Theory of the Dirac Operator

= (w, w) , (7.3.33)

(7.3.34)

(7.3.35)

which in turn implies that also (7.3.25) holds in view of what we found just before

(7.3.18) and after (7.3.21). To sum up, we have proved that the operator iC arising

in our boundary-value problem is symmetric and has self-adjoint extensions. Hence

of C are purely imaginary.

This is what we mean by self-adjointness of our boundary-value problem, although

it remains to be seen whether there is a unique self-adjoint extension of our first-

In this chapter and in other sections of our monograph there are many appli-

cations of the Dirac operator relying on two-component spinor formalism. Hence
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it appears necessary to describe some general properties of such an operator, fre-

quently studied in theoretical and mathematical physics.

In Riemannian four-geometries, the total Dirac operator may be defined as a

first-order elliptic operator mapping smooth sections of a complex vector bundle

to smooth sections of the same bundle. Its action on the sections (i.e. the spinor

fields) is given by composition of Clifford multiplication (see appendix A) with

covariant differentiation. To understand these statements, we first summarize the

properties of connections on complex vector bundles, and we then introduce the

basic properties of spin-structures which enable one to understand how to construct

the vector bundle relevant for the theory of the Dirac operator.

A complex vector bundle (Chern 1979) is a bundle whose fibres are isomorphic

to complex vector spaces. Denoting by E the total space, by M the base space,

one has the projection map π : E → M and the sections s : M → E such that the

composition of π with s yields the identity on the base space: π · s = idM . The

sections s represent the physical fields in our applications. Moreover, denoting by

T and T * the tangent and cotangent bundles of M respectively, a connection ∇

is a map from the space Γ(E ) of smooth sections of E to the space of smooth

sections of the tensor-product bundle Γ (T* ⊗ E ):

such that the following properties hold:

(7.4.1)

(7.4.2)

where s 1, s2 , s ∈ Γ ( E ) and ƒ is any C ∞ function. The action of the connection ∇

is expressed in terms of the connection matrix θ as

(7.4.3)

If one takes a section s' related to s by

s ' = g s  , (7.4.4)

107



–7. Spin-1
2

Fields in Riemannian Geometries

in the light of (7.4.2)-(7.4.4) one finds by comparison that

Moreover, the transformation law of the curvature matrix

is found to be

We can now introduce spin-structures and the corresponding complex vector

bundle acted upon by the total Dirac operator. Let X be a compact oriented

differentiable n-dimensional manifold (without boundary) on which a Riemannian

metric is introduced. Let Q be the principal tangential S O(n)-bundle of X . A

spin-structure of X is a principal Spin(n)-bundle P over X together with a covering

map : P → Q such that the following commutative structure exists (see figure

7.4.1). Given the Cartesian product P × Spin(n), one first reaches P by the right

action of Spin(n) on P, and one finally arrives at Q by the projection map  .

This is equivalent to first reaching the Cartesian product Q × SO(n) by the map

× ρ, and finally arriving at Q by the right action of S O(n) on Q . Of course,

by ρ we denote the double covering Spin(n) → S O(n). In other words, P and Q

as above are principal fibre bundles over X, and one has a commutative diagram

with P × Spin(n) and P on the top, and Q × S O ( n) and Q on the bottom. The

projection map from P × Spin(n) to Q × S O (n) is × ρ, and the projection map

from P to Q is . Horizontal arrows should be drawn to denote the right action

of Spin(n) on P on the top, and of S O(n) on Q on the bottom.

The group Spin(n) has a complex representation space ∑ of dimension 2n

called the spin-representation. If g ∈ Spin(n), x ∈ R n , u ∈ ∑, one has therefore

where ρ : Spin(n) → S O(n) is the covering map as we said before. If X is even-

dimensional, i.e. n = 2l, the representation is the direct sum of two irreducible

(7.4.5)

(7.4.6)

(7.4.7)

(7.4.8)
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–

representations ∑± of dimension 2n – 1 . If X is a Spin(2l ) manifold with principal

bundle P , we can form the associated complex vector bundles

(7.4.9a )

(7.4.9b )

(7.4.10)

Sections of these vector bundles are spinor fields on X.

The total Dirac operator is a first-order elliptic differential operator D :

Γ (E ) → Γ(E) defined as follows. Recall first that the Riemannian metric defines a

natural SO(2l) connection, and this may be used to give a connection for P. One

may therefore consider the connection ∇ at the beginning of this section, i.e. a

linear map from Γ (E ) to Γ (T* ⊗ E ). On the other hand, the tangent and cotan-

gent bundles of X are isomorphic, and one has the map from Γ (T ⊗ E ) → Γ(E)

induced by Clifford multiplication (see Ward and Wells 1990 and our appendix A

on Clifford algebras and Clifford multiplication). The total Dirac operator D is

defined to be the composition of these two maps. Thus, in terms of an orthonormal

base e i of T, one has locally

(7.4.11)

where ∇ i s is the covariant derivative of s ∈ Γ (E) in the direction ei , and e i ( )

denotes Clifford multiplication (cf. (7.3.13)). Moreover, the total Dirac operator

D induces two operators

(7.4.12)

(7.4.13)

each of which is elliptic. It should be emphasized that ellipticity of the total

and partial Dirac operators only holds in Riemannian manifolds, whereas it does

not apply to the Lorentzian manifolds of general relativity and of the original

–Dirac’s theory of spin- 1
2 particles. This description of the Dirac operator should

be compared with the mathematical structures presented in section 2.1.
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CHAPTER EIGHT

S P I N- 3
2 POTENTIALS

Abstract. Local boundary conditions involving field strengths and the normal to

the boundary, originally studied in anti-de Sitter space-time, have been recently

considered in one-loop quantum cosmology. This chapter derives the conditions

under which spin-lowering and spin-raising operators preserve these local boundary

conditions on a three-sphere for fields of spin 0, 1
2 , 1, 3

2 and 2. Moreover, the two-

component spinor analysis of the four potentials of the totally symmetric and

independent field strengths for spin 3
2

is applied to the case of a three-sphere

boundary. It is shown that such boundary conditions can only be imposed in

a flat Euclidean background, for which the gauge freedom in the choice of the

potentials remains.

studied in an arbitrary four-real-dimensional Riemannian background with bound-

ary. Gauge transformations on the potentials are shown to be compatible with the

field equations providing a set of second-order partial differential equations hold.

An equivalent, first-order form of the compatibility conditions is also obtained.

The boundary conditions do not restrict severely the choice of background four-

geometries, as it happens in the case of Dirac’s potentials with reflective boundary

conditions on field strengths. The recent construction by Penrose of secondary po-

tentials which supplement the Rarita-Schwinger potentials is then extended from

Ricci-flat space-times to arbitrary curved backgrounds. Remarkably, the traces

of such secondary potentials are linearly related to the independent spinor fields

appearing in the Rarita-Schwinger equations. The resulting set of equations for

these secondary potentials is hence ontained.

The second part of this chapter studies the two-spinor form of the Rarita-

Schwinger potentials subject to local boundary conditions compatible with BRST

invariance and local supersymmetry. The Rarita-Schwinger field equations are
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8 .1 Introduction

Recent work in the literature has studied the quantization of gauge theories

and supersymmetric field theories in the presence of boundaries, with application

to one-loop quantum cosmology (Moss and Poletti 1990, Poletti 1990, D’Eath and

Esposito 1991a-b, Barvinsky et al. 1992a-b, Kamenshchik and Mishakov 1992-

93-94, Esposito 1994). In particular, in the work described in Esposito 1994, two

possible sets of local boundary conditions were studied. One of these, first proposed

in anti-de Sitter space-time (Breitenlohner and Freedman 1982, Hawking 1983),

involves the normal to the boundary and Dirichlet or Neumann conditions for

spin 0, the normal and the field for massless spin- 1
2 fermions, and the normal and

totally symmetric field strengths for spins 1, 3 and 2. Although more attention has2

been paid to alternative local boundary conditions motivated by supersymmetry

(as in Poletti 1990, D’Eath and Esposito 1991a, Kamenshchik and Mishakov 1993-

94, Esposito 1994), and studied in our sections 8.5-8.8, the analysis of the former

boundary conditions remains of mathematical and physical interest by virtue of

its links with twistor theory. The aim of the first part of this chapter is to derive

the mathematical properties of the corresponding boundary-value problems, since

these are relevant for quantum cosmology and twistor theory.

For this purpose, sections 8.2-8.3 derive the conditions under which spin-

lowering and spin-raising operators preserve local boundary conditions involving

field strengths and normals. Section 8.4 applies the two-spinor form of Dirac

spin- 3 potentials to Riemannian four-geometries with a three-sphere boundary.
2

Boundary conditions on spinor-valued one-forms describing gravitino fields are

studied in sections 8.5-8.9. Concluding remarks and open problems are presented

in section 8.10.
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8.2 Spin-Lowering Operators in Cosmology

In section 5.7 of Esposito 1994, a flat Euclidean background bounded by a

three-sphere was studied. On the bounding S ³, the following boundary conditions

for a spin-s field were required:

(8.2.1)

With our notation, e nAA' is the Euclidean normal to S ³ (D’Eath and Halliwell

1987, Esposito 1994), φA...L = φ(A...L ) and A'...L'  = (A'.. .L' ) are totally symmet-

ric and independent (i.e. not related by any conjugation) field strengths, which

reduce to the massless spin- 1
2 field for s = 1

2 . Moreover, the complex scalar field φ

is such that its real part obeys Dirichlet conditions on S ³ and its imaginary part

obeys Neumann conditions on S ³, or the other way around, according to the value

of the parameter e ≡ ± 1 occurring in (8.2.1).

In flat Euclidean four-space, we write the solutions of the twistor equations

(8.2.2)

(8.2.3)

(8.2.4)

(8.2.5)

as (cf. section 4.1)

Note that, since unprimed and primed spin-spaces are no longer anti-isomorphic

in the case of Riemannian four-metrics, Eq. (8.2.3) is not obtained by complex

conjugation of Eq. (8.2.2). Hence the spinor field B' is independent of ωB . This

leads to distinct solutions (8.2.4)-(8.2.5), where the spinor fields

are covariantly constant with respect to the flat connection D, whose corresponding

spinor covariant derivative is here denoted by DAB’ . The following theorem can

be now proved:
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Theorem 8.2.1 Let ωD be a solution of the twistor equation (8.2.2) in flat Eu-

clidean space with a three-sphere boundary, and let D' be the solution of the

independent equation (8.2.3) in the same four-geometry with boundary. Then

a form exists of the spin-lowering operator which preserves the local boundary

conditions on S ³ :

(8.2.6)

(8.2.7)

Of course, the independent field strengths appearing in (8.2.6)-(8.2.7) are assumed

to satisfy the corresponding massless free-field equations.

Proof. Multiplying both sides of (8.2.6) by e n F D ' one gets

(8.2.8)

Taking into account the total symmetry of the field strengths, putting F = D and

multiplying both sides of (8.2.8) by ωD one finally gets

(8.2.9)

(8.2.10)

where (8.2.10) is obtained by inserting into (8.2.7) the definition of the spin-

lowering operator. The comparison of (8.2.9) and (8.2.10) yields the preservation

condition

(8.2.11)

In the light of (8.2.4)-(8.2.5), equation (8.2.11) is found to imply

(8.2.12)

Requiring that (8.2.12) should be identically satisfied, and using the identity

on a three-sphere of radius r, one finds

(8.2.13)
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(8.2.14)

Multiplying both sides of (8.2.14) by e n B A ’ , and then acting with e BA on both

sides of the resulting relation, one gets

(8.2.15)

The equations (8.2.11), (8.2.13) and (8.2.15) completely solve the problem of

finding a spin-lowering operator which preserves the boundary conditions (8.2.6)-

(8.2.7) on S ³. Q.E.D.

If one requires local boundary conditions on S ³ involving field strengths and

normals also for lower spins (i.e. spin 3
2

vs  spin 1, spin 1 vs spin 1
2

1
2, spin vs spin

0), then by using the same technique of the theorem just proved, one finds that

the preservation condition obeyed by the spin-lowering operator is still expressed

by (8.2.13) and (8.2.15).

8.3 Spin-Raising Operators in Cosmology

To derive the corresponding preservation condition for spin-raising operators,

we begin by studying the relation between spin- 1
2 and spin-1 fields. In this case,

the independent spin-l field strengths take the form (Penrose and Rindler 1986)

(8.3.1)

(8.3.2)

where the independent spinor fields represent a massless spin- 1
2 field

obeying the Weyl equations on flat Euclidean four-space and subject to the bound-

ary conditions

(8.3.3)
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on a three-sphere of radius r. Thus, by requiring that (8.3.1) and (8.3.2) should

obey (8.2.1) on S ³ with s = 1, and bearing in mind (8.3.3), one finds

(8.3.4)

on the bounding S ³. It is now clear how to carry out the calculation for higher

spins. Denoting by s the spin obtained by spin-raising, and defining n ≡ 2s, one

finds

(8.3.5)

on the three-sphere boundary. In the comparison spin-0 vs spin- 1
2 , the preservation

condition is not obviously obtained from (8.3.5). The desired result is here found

by applying the spin-raising operators to the independent scalar fields φ and

(see below) and bearing in mind (8.2.4)-(8.2.5) and the boundary conditions

(8.3.6)

(8.3.7)

This leads to the following condition on S ³ (cf. equation (5.7.23) of Esposito 1994):

(8.3.8)

Note that, while the preservation conditions (8.2.13) and (8.2.15) for spin-lowering

operators are purely algebraic, the preservation conditions (8.3.5) and (8.3.8) for

spin-raising operators are more complicated, since they also involve the value at

the boundary of four-dimensional covariant derivatives of spinor fields or scalar
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fields. Two independent scalar fields have been introduced, since the spinor fields

obtained by applying the spin-raising operators to φ and respectively are inde-

pendent as well in our case.

8.4 Dirac’s Spin-32 Potentials in Cosmology

In this section we focus on the totally symmetric field strengths φA B C and

A'B'C' for spin- 3
2 fields, and we express them in terms of their potentials, rather

than using spin-raising (or spin-lowering) operators. The corresponding theory

in Minkowski space-time (and curved space-time) is described in Penrose 1990,

Penrose 1991a-b-c, and adapted here to the case of flat Euclidean four-space with

flat connection D. It turns out that A'B'C' can then be obtained locally from two

potentials defined as follows. The first potential satisfies the properties (section

5.3, Penrose 1990, Penrose 1991a-b-c, Esposito and Pollifrone 1994)

(8.4.1)

(8.4.2)

(8.4.3)

with the gauge freedom of replacing it by

(8.4.4)

where A' satisfies the positive-helicity Weyl equation

(8.4.5)

The second potential is defined by the conditions

(8.4.6)
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with the gauge freedom of being replaced by

(8.4.7)

(8.4.8)

(8.4.9)

where χB satisfies the negative-helicity Weyl equation

(8.4.10)

Moreover, in flat Euclidean four-space the field strength φA B C is expressed locally

in terms of the potential independent of as

(8.4.11)

with gauge freedom

(8.4.12)

Thus, if we insert (8.4.3) and (8.4.11) into the boundary conditions (8.2.1) with

s = 3
2

, and require that also the gauge-equivalent potentials (8.4.4) and (8.4.12)

should obey such boundary conditions on S³, we find that

(8.4.13)

on the three-sphere. Note that, from now on (as already done in (8.3.5) and

(8.3.8)), covariant derivatives appearing in boundary conditions are first taken on

the background and then evaluated on S ³. In the case of our flat background,

(8.4.13) is identically satisfied since and vanish

by virtue of spinor Ricci identities. In a curved background, however, denot-

ing by ∇ its curved connection, and defining

since the spinor Ricci identities we need are (Ward and Wells 1990)

(8.4.14)
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(8.4.15)

one finds that the corresponding boundary conditions

(8.4.16)

are identically satisfied if and only if one of the following conditions holds: (i)

v A = A' = 0; (ii) the Weyl spinors A B C D , A'B'C'D' and the scalars van-

ish everywhere. However, since in a curved space-time with vanishing the

potentials with the gauge freedoms (8.4.4) and (8.4.12) only exist provided D is

replaced by ∇ and the trace-free part a b of the Ricci tensor vanishes as well

(Buchdahl 1958), the background four-geometry is actually flat Euclidean four-

space. Note that we require that (8.4.16) should be identically satisfied to avoid,

after a gauge transformation, obtaining more boundary conditions than the ones

originally imposed. The curvature of the background should not, itself, be subject

to a boundary condition.

The same result can be derived by using the potential and its independent

counterpart This spinor field yields the potential by means of

(8.4.17)

and has the gauge freedom

(8.4.18)

where B' satisfies the positive-helicity Weyl equation

(8.4.19)

Thus, if also the gauge-equivalent potentials (8.4.9) and (8.4.18) have to satisfy

the boundary conditions (8.2.1) on S³, one finds

(8.4.20)

119



8. Spin-3
2 Potentials

on the three-sphere. In our flat background, covariant derivatives commute, hence

(8.4.20) is identically satisfied by virtue of (8.4.10) and (8.4.19). However, in the

curved case the boundary conditions (8.4.20) are replaced by

(8.4.21)

on S 3 , if the local expressions of A B C andφ A'B'C' in terms of potentials still

hold (Penrose 1990, Penrose 1991a-b-c). By virtue of (8.4.14)-(8.4.15), where vC

is replaced by χC and C’ is replaced by C' , this means that the Weyl spinors

ψA B C D , A‘B’C’D’ and the scalars Λ, should vanish, since one should find

(8.4.22)

If we assume that ∇ BF'
F ' = 0 and ∇ MB' χ M = 0, we have to show that (8.4.21)

differs from (8.4.20) by terms involving a part of the curvature that is vanishing

everywhere. This is proved by using the basic rules of two-spinor calculus and

spinor Ricci identities. Thus, bearing in mind that

(8.4.23)

one finds

(8.4.24)

(8.4.25)

Thus, if A ' B ' L C vanishes, also the left-hand side of (8.4.25) has to vanish since

this leads to the equation  Hence (8.4.25) is

identically satisfied. Similarly, the left-hand side of (8.4.21) can be made to vanish

identically provided the additional condition Φ C D F ' M ' = 0 holds. The conditions

(8.4.26)
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when combined with the conditions

(8.4.27)

arising from (8.4.22) for the local existence of ρB C
A' and Λ B'C' potentials, implyA

that the whole Riemann curvature should vanish. Hence, in the boundary-value

problems we are interested in, the only admissible background four-geometry (of

the Einstein type (Besse 1987)) is flat Euclidean four-space.

Note that (8.4.25) is not an identity, since we have already set Λ to zero by

requiring that

(8.4.28)

should vanish. In general, for any solution χB of the Weyl equation, by virtue of

the corresponding identity χB = – 6Λ χ B (see problem 2.7), one finds

(8.4.29)

As the reader may check, the action of the ≡ ∇ C A ' ∇ CA' operator on χ B is

obtained by acting with the spinor covariant derivative ∇ AA' on the Weyl equation

∇ B
A'

X
B  = 0.

8.5 Boundary Conditions in Supergravity

The boundary conditions studied in the previous sections are not appropriate

if one studies supergravity multiplets and supersymmetry transformations at the

boundary (Esposito 1994). By contrast, it turns out one has to impose another set

of locally supersymmetric boundary conditions, first proposed in Luckock and Moss

1989. These are in general mixed, and involve in particular Dirichlet conditions

for the transverse modes of the vector potential of electromagnetism, a mixture of

Dirichlet and Neumann conditions for scalar fields, and local boundary conditions

121



8. Spin-3
2

Potentials

for the spin- 1
2

field and the spin- 3
2 potential. Using two-component spinor notation

for supergravity (D’Eath 1984), the spin- 3
2 boundary conditions take the form

are the independent (i.e. not related by any conjugation) spatial components

With our notation, ∈ ≡ ±1, e n
A

A’ is the Euclidean normal to S 3 , and 

(hence i = 1, 2, 3) of the spinor-valued one-forms appearing in the action functional

of Euclidean supergravity (D’Eath 1984, Esposito 1994).

It appears necessary to understand whether the analysis in the previous sec-

tion and in Esposito and Pollifrone 1994 can be used to derive restrictions on the

classical boundary-value problem corresponding to (8.5.1). For this purpose, we

study a Riemannian background four-geometry, and we use the decompositions of

the spinor-valued one-forms in such a background, i.e.

where h is the determinant of the three-metric on S ³ , and e B B ' i is the spatial com-

ponent of the tetrad, written in two-spinor language. If we now reduce the classical

theory of simple supergravity to its physical degrees of freedom by imposing the

gauge conditions (Esposito 1994)

we find that the expansions of (8.5.2)-(8.5.3) on a family of three-spheres centred

on the origin take the forms (Esposito 1994)

(8.5.1)

(8.5.2)

(8.5.3)

(8.5.4)

(8.5.5)

(8.5.6)
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With our notation, αp q
n are block-diagonal matrices with blocks

the β- and µ-harmonics on S ³ are given by (Esposito 1994)

and

(8.5.7)

(8.5.8)

(8.5.9)

In the light of (8.5.6)-(8.5.9), one gets the following physical-degrees-of-freedom

form of the spinor-valued one-forms of supergravity (cf. D’Eath 1984):

(8.5.10)

(8.5.11)

where φ( A B C ) and (A'B'C' ) are totally symmetric and independent spinor fields.

Within this framework, a sufficient condition for the validity of the boundary

conditions (8.5.1) on S 3 is

(8.5.12)

However, our construction does not prove that such φ(A B C ) and (A'B'C ) are

solutions of massless free-field equations, and hence it is unclear whether one can

try to express them in terms of four potentials as in Esposito and Pollifrone 1994.

It should be emphasized that our analysis, although motivated by quantum

cosmology, is entirely classical. Hence we have not discussed ghost modes. The

theory has been reduced to its physical degrees of freedom to make a compari-

son with the results in Esposito and Pollifrone 1994, but totally symmetric field

strengths do not enable one to recover the full physical content of simple super-

gravity. Hence the four-sphere background studied in Poletti 1990 is not ruled out

by the work in this section, and a more careful analysis is in order.
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8.6 Rarita-Schwinger Potentials and Their Gauge Transformations

For the reasons described in section 8.5, we are here interested in the inde-

pendent spatial components of the  gravitino field in Riemannian back-

grounds. In terms of the spatial components eA B ' i of the tetrad, and of spinor

fields, they can be expressed as

(8.6.1)

(8.6.2)

A first important difference with respect to the problem studied in Esposito and

Pollifrone 1994 is that the spinor fields Γ C '
A B and γC

A'B' are no longer symmetric

in the second and third index. From now on, they will be referred to as spin- 3
2

po-

tentials. They obey the differential equations (see appendix B and cf. Aichelburg

and Urbantke 1981, Penrose 1991a-b-c)

(8.6.3)

(8.6.4)

(8.6.5)

(8.6.6)

where ∇ A B ' is the spinor covariant derivative corresponding to the curved con-

nection ∇ of the background, and α A , A' are a pair of independent spinor fields,

corresponding to the Majorana field of the Lorentzian regime. Moreover, the po-

tentials are subject to the gauge transformations (cf. Penrose 1991b-c)

(8.6.7)

(8.6.8)

124



8. Spin- 3
2 Potentials

A second important difference with respect to the analysis in Esposito and Pol-

lifrone 1994 is that the spinor fields vB and λ B’ are no longer taken to be solutions

of the Weyl equation.

8.7 Compatibility Conditions

Our task is now to derive compatibility conditions, by requiring that equa-

tions (8.6.3)-(8.6.6) should also be satisfied by the gauge-transformed potentials

appearing on the left-hand side of equations (8.6.7)-(8.6.8). For this purpose, after

defining the operators

(8.7.1)

(8.7.2)

we need the standard identity

and the spinor Ricci identities (section 8.4)

(8.7.3)

(8.7.4)

(8.7.5)

(8.7.6)

(8.7.7)

Thus, on using the equations (8.6.3)-(8.6.8) and (8.7.1)-(8.7.7), the basic

rules of two-spinor calculus lead to the compatibility equations (hereafter ≡

∇ C F ' ∇ C F ' )

(8.7.8)
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(8.7.9)

(8.7.10)

(8.7.11)

on the background four-geometry. Moreover, we have to require that the gauge

transformations (8.6.7)-(8.6.8) should not lead to boundary conditions on the cur-

vature of the background (cf. Esposito and Pollifrone 1994). The boundary con-

ditions on S ³ resulting from (8.6.7)-(8.6.8) are

(8.7.12)

8.8 Admissible Background Four-Geometries

The system of equations (8.7.8)-(8.7.11), despite its elegance, is very com-

plicated. One can, however, obtain an equivalent system which only involves

first-order covariant derivatives. For this purpose, we point out that, since λ A' is

not a solution of the Weyl equation, a (sufficiently smooth) non-vanishing spinor

fiel d φA exists such that

(8.8.1)

By virtue of (8.7.5), (8.7.8) and of the reality condition one thus findsΛ =

(8.8.2)

Moreover, after writing down explicitly the four terms on the left-hand side of

(8.7.9), the application of (8.7.6), (8.8.1) and of the identity

(8.8.3)
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enables one to write (8.7.9) as

(8.8.4)

After solving for φB this first-order equation, the spinor field appearing in the

gauge freedom of the Rarita-Schwinger potential is then obtained from equation

(8.8.2) as

(8.8.5)

Note that, to avoid having a spinor field λ B' solving the Weyl equation in a vacuum

space-time with vanishing cosmological constant, and to avoid finding singular

solutions of (8.8.4), the parameter Λ = R should never vanish. Thus, so far,24

our analysis of the gauge freedom for Rarita-Schwinger potentials applies to any

Riemannian four-manifold with non-vanishing cosmological constant. Moreover,

on setting

(8.8.6)

a similar analysis yields

(8.8.7)

(8.8.8)

We now consider the boundary conditions (8.7.12). With our notation, after

defining

(8.8.9)

a sufficient condition for their validity is

(8.8.10)

Remarkably, this boundary condition does not lead to restrictions on the curvature

of the background. Hence the gauge freedom for Rarita-Schwinger potentials only
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leads to well-posed boundary-value problems for the spinor fields vB and λ B' (see

section 8.10).

8.9 Secondary Potentials in Curved Riemannian Backgrounds

As shown in Penrose 1994, in a Ricci-flat space-time the Rarita-Schwinger

potentials may be supplemented by secondary potentials. Here we prove that such

a construction can be generalized to the curved backgrounds of section 8.8. For

this purpose, we introduce secondary potentials for the γ -potentials by requiring

that locally

(8.9.1)

Of course, special attention should be payed to the index ordering in (8.9.1),

since the primary and secondary potentials are not symmetric as in section 8.4.

On inserting (8.9.1) into (8.6.3), a repeated use of symmetrizations and anti-

symmetrizations leads to the equation

(8.9.2)

where, following Penrose 1994, we have defined

Thus, if the following equations hold (cf. Penrose 1994):

equation (8.9.2) may be cast in the form

(8.9.3)

(8.9.4)

(8.9.5)

(8.9.6)
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A very useful identity resulting from equation (4.9.13) of Penrose and Rindler 1984

enables one to show that

(8.9.7)

Hence equation (8.9.6) may be written as

(8.9.8)

since Λ = in our real background (Penrose and Rindler 1986). Moreover, we

have to insert (8.9.1) into the field equation (8.6.4) for γ -potentials. By virtue of

(8.8.3), (8.9.4) and of the identities   (cf. Penrose and Rindler 1986)

(8.9.9)

 (8.9.10)

this leads to the equation

(8.9.11)

Note that we have used in (8.9.11) the reality condition for the scalar curvature

and for the trace-free part of the Ricci spinor (Penrose and Rindler 1986).

Moreover, secondary potentials supplementing Γ -potentials may also be con-

structed locally. On defining

(8.9.12)

(8.9.13)

and requiring that (Penrose 1994)
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a similar calculation yields the equations

(8.9.15)

(8.9.16)

(8.9.17)

It should be emphasized that (8.9.4)-(8.9.5), (8.9.8), (8.9.11) and (8.9.14)-(8.9.17)

are a complicated set of equations for secondary potentials which may or may not

have a solution for a given choice of background. In the particular and relevant

case of Einstein backgrounds, where the trace-free part of the Ricci spinor vanishes,

equations (8.9.8), (8.9.11) and (8.9.16)-(8.9.17) reduce to

(8.9.18)

(8.9.19)

(8.9.20)

(8.9.21)

8.10 Results and Open Problems

Following Esposito 1994 and Esposito and Pollifrone 1994, we have derived

the conditions (8.2.13), (8.2.15), (8.3.5), and (8.3.8) under which spin-lowering and

spin-raising operators preserve the local boundary conditions studied in Breiten-

lohner and Freedman 1982, Hawking 1983, Esposito 1994. Note that, for spin 0, we

have introduced a pair of independent scalar fields on the real Riemannian section
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of a complex space-time, following Hawking 1979, rather than a single scalar field,

as done in Esposito 1994. Setting φ ≡ φ1 + i φ , ≡ φ3 + i φ4 , this choice leads to

the boundary conditions

(8.10.1)

and it deserves further study.

—We have then focused on the Dirac potentials for spin- 3  field strengths in

flat or curved Riemannian four-space bounded by a three-sphere. Remarkably,

it turns out that local boundary conditions involving field strengths and normals

can only be imposed in a flat Euclidean background, for which the gauge freedom

in the choice of the potentials remains. In Penrose 1991c it was found that ρ

potentials exist locally only in the self-dual Ricci-flat case, whereas γ potentials

may be introduced in the anti-self-dual case. Our result may be interpreted as

a further restriction provided by (quantum) cosmology. What happens is that

the boundary conditions (8.2.1) fix at the boundary a spinor field involving both

the field strength φ ABC  and the field strength A'B'C' . The local existence of

potentials for the field strength φ A B C , jointly with the occurrence of a boundary,

forces half of the Riemann curvature of the background to vanish. Similarly, the

remaining half of such Riemann curvature has to vanish on considering the field

strength A'B'C' . Hence the background four-geometry can only be flat Euclidean

space. This is different from the analysis in Penrose 1990, Penrose 1991a-b, since

in that case one is not dealing with boundary conditions forcing us to consider

both φ A B C and A'B'C' .

A naturally occurring question is whether the potentials studied in this chap-

ter can be used to perform one-loop calculations for spin- 3 field strengths subject2

to (8.2.1) on S ³. This problem may provide another example (cf. Esposito 1994)

of the fertile interplay between twistor theory and quantum cosmology, and its

(8.10.2)

(8.10.3)

(8.10.4)

—

2
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solution might shed new light on one-loop quantum cosmology and on the quanti-

zation program for gauge theories in the presence of boundaries. For this purpose,

as shown in recent papers (Kamenshchik and Mishakov 1994), it is necessary to

study Riemannian background four-geometries bounded by two concentric three-

spheres (cf. sections 8.2-8.5). Moreover, the consideration of non-physical degrees

of freedom of gauge fields, set to zero in our classical analysis, is necessary to

achieve a covariant quantization scheme.

Sections 8.6-8.9 have studied Rarita-Schwinger potentials in four-dimensional

Riemannian backgrounds with boundary, to complement the analysis of Dirac’s

potentials appearing in section 8.4. Our results are as follows.

(1) The gauge transformations (8.6.7)-(8.6.8) are compatible with the Rarita-

Schwinger equations (8.6.3)-(8.6.6)  providing the second-order equations (8.7.8)-

(8.7.11) hold. In the light of the definitions (8.8.1) and (8.8.6), an equivalent

form of such a system takes the first-order form (8.8.4)-(8.8.5) jointly with (8.8.7)-

(8.8.8).

(2) The boundary conditions (8.5.1) do not restrict severely the class of admissible

background four-geometries. A sufficient condition for their validity is given by

(8.8.10).

(3) The Penrose construction of secondary potentials for Ricci-flat space-times

may be extended to arbitrary curved backgrounds providing the equations (8.9.2),

(8.9.4)-(8.9.5), (8.9.8), (8.9.11) and (8.9.14)-(8.9.17) hold. Remarkably, equations

(8.9.8) and (8.9.16) tell us that, on taking traces of such secondary potentials,

one obtains spinor fields proportional to the spinor fields corresponding to the

Majorana field in the Lorentzian version of (8.6.3)-(8.6.6). Moreover, equations

(8.9.19) and (8.9.21)  show that, in Einstein backgrounds, the symmetric parts

of the secondary potentials are related to the conformal curvature and to the

cosmological constant. Hence the secondary potentials supplementing the Rarita-

Schwinger potentials have a very clear physical meaning.
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It therefore appears that the consideration of background four-geometries

belonging to the class of Einstein spaces, where equations (8.9.18)-(8.9.21) hold,

may be put on very solid mathematical grounds. Thus, despite the very restrictive

results obtained in section 8.4 for Dirac potentials, it is legitimate to study the

mode-by-mode form of semi-classical quantum amplitudes for Rarita-Schwinger

fields about curved backgrounds. Remarkably, a formalism originally motivated

by twistor theory (Frauendiener 1994, Mason and Penrose 1994, Penrose 1994)

has been generalized within the framework of classical boundary-value problems

relevant for one-loop quantum cosmology.

We also think the following property should be emphasixed once again. In the

case of reflective boundary conditions (8.2.1) on field strengths expressed locally

in terms of Dirac’s potentials, a gauge transformation on such potentials leads to

additional conditions at the boundary involving the curvature of the background

(section 8.4). To avoid having such extra boundary conditions, one has then to

set to zero everywhere a part of the curvature of the background. In the second

part of our chapter, however, since the boundary conditions (8.5.1) involve the

potentials (rather than field strengths), the gauge transformations (8.6.7)-(8.6.8)

lead instead to the additional boundary conditions (8.7.12). These involve only

first-order covariant derivatives of the spinor fields occurring in the gauge freedom

of the problem, and hence can be satisfied without having to set to zero everywhere

a part of the curvature of the background.

Last, but not least, many interesting problems have not yet been studied, i.e.

(i) To obtain the explicit solution of equations (8.8.4) and (8.8.7) subject to

the conditions (8.8.10) at the boundary, for a given choice of background four-

geometry.

(ii) To derive necessary conditions for the validity of (8.7.12).

(iii) To solve for α A  and A’ after inserting Eq. (B.4) into the supergravity field

equations in a background with non-vanishing cosmological constant. This would
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lead in turn to the determination of the secondary potentials, on using Eqs. (8.9.8),

(8.9.11), (8.9.16)-(8.9.17).

(iv) To determine the effect of gauge transformations for secondary potentials on

the analysis of our elliptic boundary-value problem (cf. Penrose 1994).

(v) Is there an underlying global theory ? What parts of the curvature are the

obstructions to defining a global theory ?

(vi) What are the key features of the global theory (if it exists) ?

(vii) Can one define twistors as charges for spin 3
2

in our backgrounds with non-–

vanishing cosmological constant ?

(viii) Can one reconstruct the Riemannian four-world from the twistor space, or

from whatever is going to replace twistor space ?

To help the reader, we conclude this chapter with tables 8.10.1 and 8.10.2,

where the Dirac and Rarita-Schwinger forms of primary and secondary potentials

are described.

134



8. Spin-3
2 Potentials–

TABLE 8.10.1

Dirac Potentials Gauge Freedom

Primary

Primary

Secondary

Secondary

TABLE 8.10.2

Rarita-Schwinger Potentials Gauge Freedom

Primary

Primary

Secondary

Secondary
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CHAPTER NINE

U N D E R L Y I N G  M A T H E M A T I C A L  S T R U C T U R E S

Abstract . This chapter begins with a review of four definitions of twistors in

curved space-time proposed by Penrose in the seventies, i.e. local twistors, global

null twistors, hypersurface twistors and asymptotic twistors. The Penrose trans-

form for gravitation is then re-analyzed, with emphasis on the double-fibration

picture. Double fibrations are also used to introduce the ambitwistor correspon-

dence, and the Radon transform in complex analysis is mentioned. Attention is

then focused on the Ward picture of massless fields as bundles, which has moti-

vated the recent analysis by Penrose of secondary potentials which supplement the

Rarita-Schwinger potentials in curved space-time (see chapter eight). The bound-

ary conditions studied in chapters seven and eight have been recently applied in

the quantization program of field theories. Hence the chapter ends with a review of

progress made in studying bosonic fields subject to boundary conditions respect-

ing BRST invariance and local supersymmetry. Interestingly, it remains to be

seen whether the Atiyah-Patodi-Singer theory of Riemannian four-manifolds can

be applied to obtain an explicit proof of gauge invariance of quantum amplitudes.
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9.1 Introduction

This review chapter is written for those readers who are more interested in

the mathematical foundations of twistor theory (see appendices C and D). In

Minkowski space-time, twistors are defined as the elements of the vector space of

solutions of the differential equation (4.1.5), or as α-planes. The latter concept,

more geometrical, has been extended to curved space-time through the totally null

surfaces called α-surfaces, whose integrability condition (in the absence of torsion)

is the vanishing of the self-dual Weyl spinor. To avoid having to set to zero half of

the conformal curvature of complex space-time, yet another definition of twistors,

i.e. charges for massless spin-–3 fields in Ricci-flat space-times, has been proposed
2

by Penrose.

The first part of this chapter supplements these efforts by describing various

definitions of twistors in curved space-time. Each of these ideas has its merits

and its drawbacks. To compare local twistors at different points of space-time one

is led to introduce local twistor transport (cf. section 4.3) along a curve, which

moves the point with respect to which the twistor is defined, but not the twistor

itself.

On studying the space of null twistors, a closed two-form and a one-form are

naturally obtained, but their definition cannot be extended to non-null twistors

unless one studies Minkowski space-time. In other words, one deals with a sym-

plectic structure which remains invariant, since a non-rotating congruence of null

geodesics remains non-rotating in the presence of curvature. However, the attempt

to obtain an invariant complex structure fails, since a shear-free congruence of null

geodesics acquires shear in the presence of conformal curvature.

If an analytic space-time with analytic hypersurface S in it are given, one can,

however, construct an hypersurface twistor space relative to S. The differential

equations describing the geometry of hypersurface twistors encode, by construc-

tion, the information on the complex structure, which here retains a key role. The

138



9. Underlying Mathematical Structures

differential forms introduced in the theory of global null twistors, can also be ex-

pressed in the language of hypersurface twistors. However, the whole construction

relies on the choice of some analytic (spacelike) hypersurface in curved space-time.

To overcome this difficulty, asymptotic twistors are introduced in asymptot-

ically flat space-times. One is thus led to combine the geometry of future and

past null infinity, which are null hypersurfaces, with the differential equations of

hypersurface twistors and with the local twistor description. Unfortunately, it is

unclear how to achieve such a synthesis in a generic space-time.

The second part of this chapter begins by focusing on the geometry of con-

formally invariant operators, and on the description of the Penrose transform in

a more abstract mathematical language, i.e. in terms of a double fibration of the

projective primed spin-bundle over twistor space and space-time respectively. The

ambitwistor correspondence of Le Brun is then introduced, in terms of a holo-

morphic double fibration, and a mention is made of the Radon transform, i.e. an

integral transform which associates to a real-valued function on R2 its integral

along a straight line in R2 . Such a mathematical object is very relevant for mod-

ern twistor theory, by virtue of its links with the abstract theory of the Penrose

transform.

Ward’s construction of twisted photons and massless fields as bundles is de-

scribed in section 9.9, since it enables one to understand the geometrical structures

underlying the theory of spin- 3–
2 potentials used in section 8.9. In particular, Eq.

(8.9.4) is related to a class of integrability conditions arising from the generaliza-

tion of Ward’s construction, as recently shown in Penrose 1994. Remarkably, this

sheds new light on the differential equations describing the local theory of primary

and secondary potentials (cf. section 8.9).

Since the boundary conditions of chapters seven and eight are relevant for

the elliptic boundary-value problems occurring in modern attempts to obtain a

mathematically consistent formulation of quantum field theories in the presence

of boundaries, recent progress on these problems is summarized in section 9.10.

While the conformal anomalies for gauge fields in Riemannian manifolds with
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boundaries have been correctly evaluated after many years of dedicated work by

several authors, it remains to be seen whether the explicit (i.e. not formal) proof of

gauge invariance of quantum amplitudes can be obtained. It appears exciting that

gauge invariance of quantum amplitudes might be related to the invariance under

homotopy of the residue of a meromorphic function, obtained from the eigenvalues

of the elliptic operators of the problem.

9.2 Local Twistors

A local twistor Z α at P ∈ M is represented by a pair of spinors ωA , πA' at P :

(9.2.1)

with respect to the metric g on M. After a conformal rescaling ≡ Ω2 g of the

metric, the representation of Z α changes according to the rule

(9.2.2)

where TAA' ≡ ∇ AA' log( Ω). The comparison of local twistors at different points

of M makes it necessary to introduce the local twistor transport along a curve τ

in M with tangent vector t. This does not lead to a displacement of the twistor

along τ , but moves the point with respect to which the twistor is defined. On

defining the spinor

the equations of local twistor transport are (cf. (4.3.20)-(4.3.21))
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A more general concept is the one of covariant derivative in the t-direction of

a local twistor field on M according to the rule

(9.2.6)

After a conformal rescaling of the metric, both Z α and its covariant derivative

change according to (9.2.2). In particular, this implies that local twistor transport

is conformally invariant.

The presence of conformal curvature is responsible for a local twistor not

returning to its original state after being carried around a small loop by local

twistor transport. In fact, as shown in Penrose 1975, denoting by [t, u] the Lie

bracket of t and u , one finds

(9.2.7)

(9.2.8)

(9.2.9)

where

Eq. (9.2.7) implies that, for these twistors to be defined globally on space-time,

our ( M , g ) should be conformally flat.

In a Lorentzian space-time ( M , g) L , one can define local twistor transport

of dual twistors W α by complex conjugation of Eqs. (9.2.4)-(9.2.5). On re-

interpreting the complex conjugate of ωA (resp. πA' ) as some spinor πA' (resp.

ωA ), this leads to

(9.2.10)

(9.2.11)

1 4 1



9. Underlying Mathematical Structures

Moreover, in ( M , g )L the covariant derivative in the t-direction of a local dual

twistor field is also obtained by complex conjugation of (9.2.6), and leads to

(9.2.12)

One thus finds

(9.2.13)

where the left-hand side denotes the ordinary derivative of the scalar Z α Wα along

τ . This implies that, if local twistor transport of Z α and W α is preserved along τ ,

their scalar product is covariantly constant along τ.

9 .3 Global Null Twistors

To define global null twistors one is led to consider null geodesics Z in curved

space-time, and the πA' spinor parallelly propagated along Z . The corresponding

momentum vector p AA' = A πA' is then tangent to Z . Of course, we want the

resulting space N of null twistors to be physically meaningful. Following Penrose

1975, the space-time ( M , g ) is  taken to be globally hyperbolic to ensure that N is

a Hausdorff manifold (see section 1.2). Since the space of unscaled null geodesics is

five-dimensional, and the freedom for πA’ is just a complex multiplying factor, the

space of null twistors turns out to be seven-dimensional. Global hyperbolicity of M

is indeed the strongest causality assumption, and it ensures that Cauchy surfaces

exist in M (Hawking and Ellis 1973, Esposito 1994, and references therein).

On N a closed two-form ω exists, i.e.

(9.3.1)
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Although ω is initially defined on the cotangent bundle T * M , it actually yields a

two-form on N if it is taken to be constant under the rescaling

(9.3.2)

with real parameter θ. Such a two-form may be viewed as the rotation of a

congruence, since it can be written as

(9.3.3)

where ∇ [b p c ] yields the rotation of the field p on M , for a congruence of geodesics.

Our two-form ω may be obtained by exterior differentiation of the one-form

(9.3.4)

i.e.

(9.3.5)

Note that φ is defined on the space of null twistors and is constant under the

rescaling (9.3.2). Penrose has proposed an interpretation of φ as measuring the

time-delay in a family of scaled null geodesics (Penrose 1975).

The main problem is how to extend these definitions to non-null twistors.

Indeed, this is possible in Minkowski space-time, where

(9.3.6)

(9.3.7)

It is clear that Eqs. (9.3.6)-(9.3.7), if regarded as definitions, do not depend on

the twistor Z α being null (in Minkowski). Alternative choices for φ are

(9.3.8)

(9.3.9)
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The invariant structure of (flat) twistor space is then given by the one-form φ,

the two-form ω, and the scalar s ≡ 1
2 Z α

α . Although one might be tempted

to consider only φ and s as basic structures, since exterior differentiation yields

ω as in (9.3.5), the two-form ω is very important since it provides a symplectic

structure for flat twistor space. However, if one restricts ω to the space of null

twistors, one first has to factor out the phase circles

(9.3.10)

θ being real, to obtain again a symplectic structure. On restriction to N, the triple

(ω, φ, s ) has an invariant meaning also in curved space-time, hence its name.

Suppose now that there are two regions M1 and M 2 of Minkowski space-time

separated by a region of curved space-time (Penrose 1975). In each flat region,

one can define ω and φ on twistor space according to (9.3.6)-(9.3.7), and then

re-express them as in (9.3.1), (9.3.4) on the space N of null twistors in curved

space-time. If there are regions of N where both definitions are valid, the flat-

twistor-space definitions should agree with the curved ones in these regions of N.

However, it is unclear how to carry a non-null twistor from M1 to M 2 , if in between

them there is a region of curved space-time.

It should be emphasized that, although one has a good definition of invariant

structure on the space N of null twistors in curved space-time, with the corre-

sponding symplectic structure, such a construction of global null twistors does not

enable one to introduce a complex structure. The underlying reason is that a non-

rotating congruence of null geodesics remains non-rotating on passing through a

region of curved space-time. By contrast, a shear-free congruence of null geodesics

acquires shear on passing through a region of conformal curvature. This is why

the symplectic structure is invariant, while the complex structure is not invariant

and is actually affected by the conformal curvature.

Since twistor theory relies instead on holomorphic ideas and complex struc-

tures in a conformally invariant framework, it is necessary to introduce yet another
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definition of twistors in curved space-time, where the complex structure retains its

key role. This problem is studied in the following section.

9.4 Hypersurface Twistors

Given some hypersurface S in space-time, we are going to construct a twistor

space T (S ), relative to S , with an associated complex structure. On going from

S to a different hypersurface S ’, the corresponding twistor space T (S ’) turns out

to be a complex manifold different from T (S ). For any T (S ), its elements are

the hypersurface twistors. To construct these mathematical structures, we follow

again Penrose 1975 and we focus on an analytic space-time M , with analytic

hypersurface S in M. These assumptions enable one to consider the corresponding

complexifications CM and CS. We know from chapter four that any twistor Zα in

M defines a totally null plane CZ and a spinor πA' such that the tangent vector to

CZ takes the form ξ A πA' . Since πA ' is constant on CZ , it is also constant along

the complex curve γ giving the intersection CZ ∩ CS. The geometrical objects

we are interested in are the normal n to CS and the tangent t to γ. Since, by

construction, t has to be orthogonal to n :

(9.4.1)

it can be written in the form

(9.4.2)

which clearly satisfies (9.4.1) by virtue of the identity πB' πB' = 0. Thus, for πA '

to be constant along γ, the following equation should hold:

(9.4.3)

Note that (9.4.3) also provides a differential equation for γ(i.e., for a given normal,

the direction of γ is fixed by (9.4.2)), and the solutions of (9.4.3) on CS are the
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elements of the hypersurface twistor space T (S ). Remarkably, since no complex

conjugation is involved in deriving Eq. (9.4.3), the resulting T (S ) is a complex

manifold (see section 3.3).

It is now helpful to introduce some notation. We write Z (h ) for any element

of T (S ), and we remark that if Z ( h ) ∈ T ( S ) corresponds to πA ' along γ satisfying

(9.4.3), then ρZ ( h ) ∈ T ( S ) corresponds to ρπA ’ along the same curve γ, ∀ρ ∈ C

(Penrose 1975). This means one may consider the space PT ( S ) of equivalence

classes of proportional hypersurface twistors, and regard it as the space of curves

γ defined above. The zero-element 0( h ) ∈ T ( S ), however, does not correspond to

any element of PT (S ). For each Z ( h ) ∈ T (S ), 0Z (h ) is defined as 0 ( h ) ∈ T (S ).

If the curve γ contains a real point of S, the corresponding hypersurface twistor

Z ( h ) ∈ T (S ) is said to be null. Of course, one may well ask how many real points of

S can be found on γ. It turns out that, if the complexification CS of S is suitably

chosen, only one real point of S can lie on each of the curves γ. The set P N (S )

of such curves is five-real-dimensional, and the corresponding set N ( S ), i.e. the

γ -curves with πA' spinor, is seven-real-dimensional. Moreover, the hypersurface

twistor space is four-complex-dimensional, and the space PT (S ) of equivalence

classes defined above is three-complex-dimensional.

The space N ( S ) of null hypersurface twistors has two remarkable properties:

(i) N (S ) may be identified with the space N of global null twistors defined in

section 9.3. To prove this one points out that the spinor πA ' at the real point of

γ (for Z (h ) ∈ N ( S )) defines a null geodesic in M. Such a null geodesic passes

through that point in the real null direction given by v AA' ≡ A πA . Parallel

propagation of πA ’ along this null geodesic yields a unique element of N. On the

other hand, each global null twistor in N defines a null geodesic and a πA '. Such

a null geodesic intersects S at a unique point. A unique γ-curve in CS exists,

passing through this point x and defined uniquely by πA ' at x.
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(ii) The hypersurface S enables one to supplement the elements of N (S ) by some

non-null twistors, giving rise to the four-complex-dimensional manifold T (S ). Un-

fortunately, the whole construction depends on the particular choice of (spacelike

Cauchy) hypersurface in (M ,g ).

The holomorphic operation

enables one to introduce homogeneous holomorphic functions on T (S ). Setting to

zero these functions gives rise to regions of CT (S ) corresponding to congruences

of  γ-curves on S. A congruence of null geodesics in M is defined by γ-curves on

S having real points. Consider now πA’ as a spinor field on C (S ), subject to the

scaling πA' → ρ π A' . On making this scaling, the new field βA' ≡ ρ π A' no longer

solves Eq. (9.4.3), since the following term survives on the left-hand side:

(9.4.4)

This suggests to consider the weaker condition

(9.4.5)

since πC ’ has a vanishing contraction with EC ' . Eq. (9.4.5) should be regarded as

an equation for the spinor field πA’ restricted to S. Following Penrose 1975, round

brackets have been used to emphasize the role of the spinor field

whose vanishing leads to a shear-free congruence of null geodesics with tangent

vector v AA' ≡ πA' .

A careful consideration of extensions and restrictions of spinor fields enables

one to write an equivalent form of Eq. (9.4.5). In other words, if we extend πA' to

a spinor field on the whole of M , Eq. (9.4.5) holds if we replace nAB' πB ' by A.
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This implies that the same equation holds on S if we omit n AB' πB' . Hence one

eventually deals with the equation

(9.4.6)

Since it is well-known in general relativity that conformal curvature is responsible

for a shear-free congruence of null geodesics to acquire shear, the previous analysis

proves that the complex structure of hypersurface twistor space is affected by the

particular choice of S unless the space-time is conformally flat.

The dual hypersurface twistor space T*( S ) may be defined by interchanging

primed and unprimed indices in (9.4.3), i.e.

(9.4.7)

In agreement with the notation used in our monograph and proposed by Penrose,

the tilde symbol denotes spinor fields not obtained by complex conjugation of the

spinor fields living in the complementary spin-space, since, in a complex manifold,

complex conjugation is not invariant under holomorphic coordinate transforma-

tions. Hence the complex nature of T (S ) and T *(S) is responsible for the spinor

fields in (9.4.3) and (9.4.7) being totally independent. Eq. (9.4.7) defines a unique

complex curve in CS through each point of CS. The geometrical interpretation

of n B A ' is in terms of the tangent direction to the curve for any choice of

A.The curve and the spinor field A  solving Eq. (9.4.7) define a dual hypersur-

face twistor (h ) ∈ T * (S ). Indeed, the complex conjugate (h ) of the hypersurface

twistor Z (h) ∈ T (S ) may also be defined if the following conditions hold:

(9.4.8)

The incidence between Z ( h ) ∈ T (S ) and (h ) ∈ T*(S ) is instead defined by the

condition

(9.4.9)

148



9. Underlying Mathematical Structures

where (h ) is not an index, but a label to denote hypersurface twistors (instead of

the dot used in Penrose 1975). Eq. (9.4.9) means that γ and have a point of

CS in common. Null hypersurface twistors are then defined by the condition

(9.4.10)

However, it is hard to make sense of the (scalar) product Z (h )
(h ) for arbitrary

elements of T (S ) and T *(S ) respectively.

We are now interested in holomorphic maps

(9.4.11)

Since T (S) and T* (S ) are both four-complex-dimensional, the space T* (S ) × T (S )

is eight-complex-dimensional. A seven-complex dimensional subspace (S ) can

be singled out in T *( S ) × T (S ), on considering those pairs such that

Eq. (9.4.9). holds. One may want to study these holomorphic maps in the course of

writing contour-integral formulae for solutions of the massless free-field equations,

where the integrand involves a homogeneous function F acting on twistors and

dual twistors. Omitting the details (see Penrose 1975), we only say that, when the

space-time point y under consideration does not lie on CS, one has to reinterpret

F as a function of U (h ) ∈ T * (S’), X (h) ∈ T ( S ’), where the hypersurface S’, or

CS’, is chosen to pass through the point y.

A naturally occurring question is how to deal with the one-form φ and the

two-form ω introduced in section 9.3. Indeed, if the space-time is analytic, such

forms φ and ω can be complexified. On making a complexification, two one-forms

φ and are obtained, which take the same values on CN, but whose functional

forms are different. For Z ( h ) ∈ T( S ), W (h ) ∈ T* ( S ), X ( h ) ∈ T ( S’), U ( h) ∈ T * (S’) ,

S and S’ being two different hypersurfaces in M , one has (cf. Penrose 1975)

(9.4.12)

(9.4.13)
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(9.4.14)

Hence one is led to ask wether the passage from a W( h ) , Z ( h ) description on S

to a U( h ) , X ( h) description on S’ can be regarded as a canonical transformation.

This is achieved on introducing the equivalence relations (Penrose 1975)

(9.4.15)

(9.4.16)

which yield a six-complex-dimensional space S6 (see problem 9.2).

9.5 Asymptotic Twistors

Although in the theory of hypersurface twistors the complex structure plays

a key role, their definition depends on an arbitrary hypersurface S , and the at-

tempt to define the scalar product Z (h) W (h ) faces great difficulties. The concept

of asymptotic twistor tries to overcome these limitations by focusing on asymptot-

ically flat space-times. Hence the emphasis is on null hypersurfaces, i.e. SCRI +

and SCRI– (cf. section 3.5), rather than on spacelike hypersurfaces. Since the

construction of hypersurface twistors is independent of conformal rescalings of the

metric, while future and past null infinity have well-known properties (Hawking

and Ellis 1973), the theory of asymptotic twistors appears well-defined. Its key

features are as follows.

First, one complexifies future null infinity I + to get C I + . Hence its com-

plexified metric is described by complexified coordinates η, ,u , where η and

are totally independent (cf. section 3.5). The corresponding planes η = constant,

= constant, are totally null planes (in that the complexified metric of CI+

vanishes over them) with a topological twist (Penrose 1975).
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Second, note that for any null hypersurface, its normal has the spinor form

(9.5.1)

Thus, if B' πB' ≠ 0, the insertion of (9.5.1) into (9.4.3) yields

(9.5.2)

Similarly, if ι B
B ≠ 0, the insertion of (9.5.1) into the Eq. (9.4.7) for dual

hypersurface twistors leads to

(9.5.3)

These equations tell us that the γ-curves are null geodesics on CI + , lying entirely

in the = constant planes, while the curves are null geodesics lying in the

η = constant planes.

By definition, an asymptotic twistor is an element Z ( a ) ∈ T (I + ), and cor-

responds to a null geodesic γ in CI + with tangent vector ι A πA ', where πA'

undergoes parallel propagation along γ. By contrast, a dual asymptotic twistor

is an element ( a ) ∈ T *( I+ ), and corresponds to a null geodesic in CI + with

tangent vector , where A undergoes parallel propagation along .

It now remains to be seen how to define the scalar product Z( a )
(a ) . For

this purpose, denoting by λ the intersection of the = constant plane containing

γ with the η = constant plane containing , we assume for simplicity that λ

intersects CI + in such a way that a continuous path β exists in γ ∪ λ ∪ , unique

up to homotopy, connecting Q ∈ γ to ∈ . One then gives a local twistor

description of Z ( a ) as 0, πA' at Q , and one carries this along β by local twistor

transport (section 9.2) to . At the point , the local twistor obtained in this

way has the usual scalar product with the local twistor description A , 0 at

of ( a ) . By virtue of Eqs. (9.2.4)-(9.2.5) and (9.2.13), such a definition of scalar

product is independent of the choice made to locate Q and , and it also applies

on going from to Q. Thus, the theory of asymptotic twistors combines in an

151



9. Underlying Mathematical Structures

essential way the asymptotic structure of space-time with the properties of local

twistors and hypersurface twistors. Note also that Z ( a )
(a ) has been defined

as a holomorphic function on some open subset of T (I + ) x T *( I + ) containing

C N ( I + ). Hence one can take derivatives with respect to Z ( a ) and ( a ) so as to

obtain the differential forms in (9.4.12)-(9.4.14). If

one can write

(9.5.4)

(9.5.5)

(9.5.6)

The asymptotic twistor space at future null infinity is also very useful in that its

global complex structure enables one to study the outgoing radiation field arising

from gravitation (Penrose 1975).

9.6 Penrose Transform

As we know from chapter four, on studying the massless free-field equations in

Minkowski space-time, the Penrose transform provides the homomorphism (East-

wood 1990)

(9.6.1)

With the notation in (9.6.1), U is an open subset of compactified complexified

Minkowski space-time, V is the corresponding open subset of projective twistor

space, O (– n – 2) is the sheaf of germs (appendix D) of holomorphic functions

homogeneous of degree –n – 2, Zn is the sheaf of germs of holomorphic solutions

of the massless free-field equations of helicity n
2 . Although the Penrose transform

may be viewed as a geometric way of studying the partial differential equations

of mathematical physics, the main problem is to go beyond flat space-time and
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reconstruct a generic curved space-time out of its twistor space or out of some

more general structures. Here, following Eastwood 1990, we study a four-complex-

dimensional conformal manifold M, which is assumed to be geodesically convex.

For a given choice of spin-structure on M, let F be the projective primed spin-

bundle over M with local coordinates x a , πA'. After choosing a metric in the

conformal class, the corresponding metric connection is lifted horizontally to a

differential operator ∇ AL' on spinor fields on F.

Denoting by φB a spinor field on M of conformal weight w, a conformal

rescaling = Ω2 g of the metric leads to a change of the operator according to the

rule

(9.6.2)

where YAL' ≡ Ω- 1 ∇ AL´ Ω. In particular, on functions of weight w one finds

(9.6.3)

Thus, if the conformal weight vanishes, acting with πA' on both sides of (9.6.3)

and defining

(9.6.4)

one obtains
( 9 . 6 . 5 )

This means that ∇ A  is a conformally invariant operator on ordinary functions and

hence may be regarded as an invariant distribution on the projective spin-bundle

F (Eastwood 1990). From chapters four and six we know that such a distribution

is integrable if and only if the self-dual Weyl spinor A'B'C'D' vanishes. One

can then integrate the distribution on F to give a new space P as the space of

leaves. This leads to the double fibration familiar to the mathematicians working

on twistor theory:

(9.6.6)
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In (9.6.6) P is the twistor space of M, and the submanifolds v (µ – 1( z )) of M, for

z ∈ P, are the α -surfaces in M (cf. chapter four). Each point x ∈ M is known to

give rise to a line Lx  ≡ µ (v – 1( x )) in P, whose points correspond to the α -surfaces

through x as described in chapter four. The conformally anti-self-dual complex

space-time M with its conformal structure is then recovered from its twistor space

P, and an explicit construction has been given in section 5.1.

To get a deeper understanding of this non-linear-graviton construction, we

now introduce the Einstein bundle E. For this purpose, let us consider a function

φ of conformal weight 1. Eq. (9.6.3) implies that, under a conformal rescaling of

the metric, ∇ A φ rescales as

(9.6.7)

Thus, the transformation rule for ∇ A ∇ B φ is

(9.6.8)

Although ∇ A ∇ B φ is not conformally invariant, Eq. (9.6.8) suggests how to modify

our operator to make it into a conformally invariant operator. For this purpose,

denoting by ΦA B A ´ B ´ the trace-free part of the Ricci spinor, and defining

(9.6.9)

we point out that, under a conformal rescaling, Φ A B transforms as

Eqs. (9.6.8) and (9.6.10) imply that the conformally invariant operator we are

looking for is (Eastwood 1990)

(9.6.10)

(9.6.11)

acting on functions of weight 1. In geometrical language, ∇ A and DA B act along

the fibres of µ. A vector bundle E over P is then obtained by considering the vector
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space of functions defined on µ– 1 Z such that D A B φ = 0 and having conformal

weight 1. Such a space is indeed three-dimensional, since α-surfaces inherit from

the conformal structure on M a flat projective structure and D AB in (9.6.11) is

a projectively invariant differential operator (Eastwood 1990, and earlier analysis

by Bailey cited therein).

Remarkably, the Penrose transform establishes an isomorphism between the

space of smooth sections Γ ( P,E ) (E being our Einstein bundle on P ) and the

space of functions φ of conformal weight 1 on M such that

(9.6.12)

The proof is obtained by first pointing out that, in the light of the definition of

E, Γ (P , E) is isomorphic to the space of functions φ of conformal weight 1 on the

spin-bundle F such that

(9.6.13)

The next step is the remark that the fibres of v : F → M are Riemann spheres

and hence are compact, which implies that φ( x a , πA ') is a function of x a  only. The

resulting equation on the spin-bundle F is

(9.6.14)

At this stage, the contribution of πA' π B' has been factorized, which implies we are

left with Eq. (9.6.12). Conformal invariance of the equation on M is guaranteed

by the use of the conformally invariant operator D AB .

From the point of view of gravitational physics, what is remarkable is the re-

sulting isomorphism between nowhere vanishing sections of E over P and Einstein

metrics in the conformal class on M. Of course, the Einstein condition means

that the Ricci tensor is proportional to the metric, and hence the trace-free part

of Ricci vanishes: Φ a b = 0. To prove this basic property one points out that,

since φ may be chosen to be nowhere vanishing, can be set to 1, so that (9.6.13)
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implies a b = 0, which is indeed the Einstein condition. The converse also holds

(Eastwood 1990).

Moreover, a pairing between solutions of differential equations can be estab-

lished. To achieve this, note first that the tangent bundle of P corresponds to

solutions of the differential equation (Eastwood 1990)

(9.6.15)

where ωB is homogeneous of degree 1 in πA' and has conformal weight 1. Now the

desired pairing is between solutions of (9.6.15) where ωB ∈ B (–1)[1] as above,

and solutions of

(9.6.16)

Following again Eastwood 1990, we now consider a function ƒ which is conformally

invariant, and constant along the fibres of µ : F → P. Since ƒ is defined as

(9.6.17)

its conformal invariance is proved by inserting (9.6.7) into the transformation rule

(9.6.18)

The constancy of ƒ along the fibres of µ is proved in two steps. First, the Leibniz

rule, Eq. (8.7.3) and Eq. (9.6.15) imply that

(9.6.19)

Second, using an identity for ∇ B ∇ A ω A and then applying again (9.6.15) one finds

(Eastwood 1990)

which implies
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Thus, Eqs. (9.6.16), (9.6.19) and (9.6.21) lead to

(9.6.22)

Q.E.D.

The results presented so far may be combined to show that an Einstein metric

in the given conformal class on M corresponds to a nowhere vanishing one-form

τ on twistor space P, homogeneous of degree two (cf. chapter four). One then

considers τΛd τ, which can be written as 2Λρ for some function Λ . This Λ is indeed

the cosmological constant, since the holomorphic functions in P are necessarily

constant.

9.7 Ambitwistor Correspondence

In this section we consider again a complex space-time (M,g ), where M

is a four-complex-dimensional complex manifold, and g is a holomorphic non-

degenerate symmetric two-tensor on M (i.e. a complex-Riemannian metric). A

family of null geodesics can be associated to (M,g) by considering those inex-

tendible, connected, one-dimensional complex submanifolds γ ⊂ M such that any

tangent vector field v ∈ Γ (γ, O (Tγ)) satisfies (Le Brun 1990)

(9.7.1)

(9.7.2)

where σ is a proportionality parameter and ∇ is the Levi-Civita connection of g.

These curves determine completely the conformal class of the complex metric g,

since a vector is null if and only if it is tangent to some null geodesic γ. Conversely,

the conformal class determines the set of null geodesics (Le Brun 1990). We now
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denote by N the set of null geodesics of (M,g), and by Q the hypersurface of null

covectors defined by

(9.7.3)

A quotient map q : Q → N can be given as the map assigning, to each point of Q ,

the leaf through it. If N is equipped with the quotient topology, and if (M , g ) is

geodesically convex, N is then Hausdorff and has a unique complex structure mak-

ing q a holomorphic map of maximal rank. The corresponding complex manifold

N is, by definition, the ambitwistor space of (M,g).

Denoting by p: Q → M the restriction to Q of the canonical projection

π: PT*M → M , one has a holomorphic double fibration

(9.7.4)

the ambitwistor correspondence, which relates complex space-time to its space of

null geodesics. For example, in the case of the four-quadric Q4 ⊂ P5 , obtained by

conformal compactification of

the corresponding ambitwistor space is (Le Brun 1990)

(9.7.5)

Ambitwistor space has been used as an attempt to go beyond the space of α−

surfaces, i.e. twistor space (chapter four). However, we prefer to limit ourselves

to a description of the main ideas, to avoid becoming too technical. Hence the

reader is referred to Le Brun's original papers appearing in the bibliography for a

thorough analysis of ambitwistor geometry.
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9.8 Radon Transform

In the mathematical literature, the analysis of the Penrose transform is fre-

quently supplemented by the study of the Radon transform, and the former is

sometimes referred to as the Radon-Penrose transform. Indeed, the transform in-

troduced in Radon 1917 associates to a real-valued function ƒ on R² the following

integral:

(9.8.1)

where L is a straight line in R ².  On inverting the Radon and Penrose transforms,

however, one appreciates there is a substantial difference between them (Bailey

et al. 1994).   In other words, (9.8.1) is invertible in that the value of the original

function at a particular point may be recovered from its integrals along all cy-

cles passing near that point. By contrast, in the Penrose transform, the original

data in a neighbourhood of a particular cycle can be recovered from the transform

restricted to that neighbourhood. Hence the Radon transform is globally invert-

ible, while the Penrose transform may be inverted locally. [I am grateful to Mike

Eastwood for making it possible for me to study the unfinished work appearing in

Bailey et al. 1994. No original result obtained in Bailey et al. 1994 has been even

mentioned in this section]

9.9 Massless Fields as Bundles

In the second part of chapter eight, motivated by our early work on one-loop

quantum cosmology, we have studied secondary potentials for gravitino fields in

curved Riemannian backgrounds with non-vanishing cosmological constant. Our

analysis is a direct generalization of the work in Penrose 1994, where the author

studies the Ricci-flat case and relies on the analysis of twisted photons appearing in
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Ward 1979. Thus, we here review the mathematical foundations of these potentials

in the simpler case of Maxwell theory.

With the notation in Ward 1979, B is the primed spin-bundle over space-time,

and are coordinates on B. Of course, x a are space-time coordinates and

πA' are coordinates on primed spin-space. Moreover, we introduce the Euler vector

field on B :

(9.9.1)

A function f on B such that Tf = 0 is homogeneous of degree zero in πA' and

hence is defined on the projective spin-bundle. We are now interested in the two-

dimensional distribution spanned by the two vector fields The integral

surfaces of such a distribution are the elements of non-projective twistor space T.

To deform T without changing PT, Ward replaced

and ψ1 being two functions on B. By virtue of Frobenius’ theorem (cf. section 6.2),

the necessary and sufficient condition for the integrability of the new distribution

is the validity of the equation

(9.9.2)

for all values of πA' . In geometrical language, if (9.9.2) holds a four-

dimensional space T' of integral surfaces exists, and T' is a holomorphic bundle

over projective twistor space PT. One can also say that T' is a deformation of flat

twistor space T. If ψA takes the form

then Eq. (9.9.2) becomes

Thus, the spinor field is a potential for a massless free field

(9.9.3)

(9.9.4)

(9.9.5)
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since the massless free-field equations

result from Eq. (9.9.4).

In the particular case of Maxwell theory, suppose that

(9.9.7)

(9.9.6)

(9.9.8)

with (cf. (8.9.4))

Note that here the space T' of integral surfaces is a principal fibre bundle over PT

with group the non-vanishing complex numbers. Following Ward 1979, here PT

is just the neighbourhood of a line in CP ³, but not the whole of CP ³.

For the mathematically-oriented reader, we should say that, in the language

of sheaf cohomology, one has the exact sequence

(9.9.9)

If P T has R 4 × S 2 topology (see chapter four), H 1(PT , Z ) = 0. Moreover,

H 1( P T ,O ) is isomorphic to the space of left-handed Maxwell fields φ AB satis-

fying the massless free-field equations

(9.9.10)

H ¹(PT, O *) is the space of line bundles over PT , and H ²(PT, Z ) ≅ Z is the space

of possible Chern classes of such bundles. Thus, the space of left-handed Maxwell

fields is isomorphic to the space of deformed line bundles T' . To realize this

correspondence, we should bear in mind that a twistor determines an α-surface,

jointly with a primed spinor field πA' propagated over the a-surface (chapter four).

The usual propagation is parallel transport:

(9.9.11)
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However, in the deformed case, the propagation equation is taken to be

(9.9.12)

Remarkably, the integrability condition for Eq. (9.9.12) is Eq. (9.9.8) (Ward 1979

and our problem 9.4). This property suggests that also Eq. (8.9.4) may be viewed

as an integrability condition. In Penrose 1994, this geometrical interpretation

has been investigated for spin- 3
2 fields. It appears striking that the equations of

the local theory of primary and secondary potentials lead naturally to equations

which can be related to integrability conditions. Conversely, out of some suitable

integrability conditions, one may hope of constructing a local theory of primary

and secondary potentials for gauge fields. The interplay between these two points

of view deserves further thinking.

9.10 Quantization of Field Theories

The boundary conditions studied in chapters seven and eight are a part of

the boundary conditions which should be imposed on multiplets of bosonic and

fermionic fields to respect BRST invariance and local supersymmetry. In this

chapter devoted to mathematical foundations we describe some recent progress on

these issues, but we do not repeat our early analysis appearing in Esposito 1994.

The way in which quantum fields respond to the presence of boundaries is

responsible for many interesting physical effects such as, for example, the Casimir

effect, and the quantization program of spinor fields, gauge fields and gravitation

in the presence of boundaries is currently leading to a better understanding of

modern quantum field theories. The motivations for this investigation come from

at least three areas of physics and mathematics, i.e.

(i) Cosmology. One wants to understand what is the quantum state of the universe,

and how to formulate boundary conditions for the universe (Esposito 1994 and

references therein).
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(ii) FieId Theory. It appears necessary to get a deeper understanding of different

quantization techniques in field theory, i.e. the reduction to physical degrees of

freedom before quantization, or the Faddeev-Popov Lagrangian method, or the

Batalin-Fradkin-Vilkovisky extended phase space. Moreover, perturbative prop-

erties of supergravity theories and conformal anomalies in field theory deserve

further thinking, especially within the framework of semiclassical evaluation of

path integrals in field theory via zeta-function regularization.

(iii) Mathematics. A (pure) mathematician may regard quantum cosmology as

a problem in cobordism theory (i.e. when a compact manifold may be regarded

as the boundary of another compact manifold), and one-loop quantum cosmology

as a relevant application of the theory of eigenvalues in Riemannian geometry, of

self-adjointness theory, and of the analysis of asymptotic heat kernels for manifolds

with boundary.

On using zeta-function regularization (Esposito 1994), the ζ(0) value yields

the scaling of quantum amplitudes and the one-loop divergences of physical theo-

ries. The choices to be made concern the quantization technique, the background

four-geometry, the boundary three-geometry, the boundary conditions respecting

Becchi-Rouet-Stora-Tyutin invariance and local supersymmetry, the gauge condi-

tion, the regularization algorithm. We are here interested in the mode-by-mode

analysis of BRST-covariant Faddeev-Popov amplitudes for Euclidean Maxwell the-

ory, which relies on the expansion of the electromagnetic potential in harmonics

on the boundary three-geometry. In the case of three-sphere boundaries, one has

(Esposito 1994)

(9.10.2)

(9.10.1)

where and are scalar, transverse and longitudinal vector

harmonics on S³ respectively.
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Magnetic conditions set to zero at the boundary the gauge-averaging function,

the tangential components of the potential, and the ghost field, i.e.

(9.10.3)

Alternatively, electric conditions set to zero at the boundary the normal component

of the potential, the normal derivative of the ghost field, and the partial derivative

with respect to τ of the tangential components of the potential, i.e.

(9.10.4)

One may check that these boundary conditions are compatible with BRST trans-

formations, and do not give rise to additional boundary conditions after a gauge

transformation.

By using zeta-function regularization and flat Euclidean backgrounds, the

effects of relativistic gauges are as follows (Esposito and Kamenshchik 1994, and

references therein).

(i) In the Lorentz gauge, the mode-by-mode analysis of one-loop amplitudes agrees

with the results of the Schwinger-DeWitt technique, both in the one-boundary case

(i.e. the disk) and in the two-boundary case (i.e. the ring).

(ii) In the presence of boundaries, the effects of gauge modes and ghost modes do

not cancel each other.

(iii) When combined with the contribution of physical degrees of freedom, i.e. the

transverse part of the potential, this lack of cancellation is exactly what one needs

to achieve agreement with the results of the Schwinger-DeWitt technique.

(iv) Thus, physical degrees of freedom are, by themselves, insufficient to recover

the full information about one-loop amplitudes.

invariant amplitudes only in the two-boundary case.

(v) Moreover, even on taking into account physical, non-physical and ghost modes,

the analysis of relativistic gauges different from the Lorentz gauge yields gauge-
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original operator matrix.

(vi) Gauge modes obey a coupled set of second-order eigenvalue equations. For

some particular choices of gauge conditions it is possible to decouple such a set of

differential equations, by means of two functional matrices which diagonalize the

1976), the zeta-function, and the BKKM function (Barvinsky et al. 1992b):

(vii) For arbitrary choices of relativistic gauges, gauge modes remain coupled. The

explicit proof of gauge invariance of quantum amplitudes becomes a problem in

homotopy theory. Hence there seems to be a deep relation between the Atiyah-

Patodi-Singer theory of Riemannian four-manifolds with boundary (Atiyah et al.

(9.10.5)

In (9.10.5), d(n  is the degeneracy of the eigenvalues parametrized by the)

integer n, and fn (M ²) is the function occurring in the equation obeyed by the

eigenvalues by virtue of boundary conditions, after taking out fake roots. The

analytic continuation of (9.10.5) to the whole complex-s plane is given by

(9.10.6)

and enables one to evaluate ζ(0) as

(9.10.7)

I log being the coefficient of log (M ) appearing in I R as M → ∞ .

A detailed mode-by-mode study of perturbative quantum gravity about a flat

Euclidean background bounded by two concentric three-spheres, including non-

physical degrees of freedom and ghost modes, leads to one-loop amplitudes in

agreement with the covariant Schwinger-DeWitt method (Esposito, Kamenshchik

et al. 1994). This calculation provides the generalization of the previous analysis

of fermionic fields and electromagnetic fields (Esposito 1994). The basic idea is

to expand the metric perturbations h 00 , h 0i and h i j on a family of three-spheres
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centred on the origin, and then use the de Donder gauge-averaging function in the

Faddeev-Popov Euclidean action. The resulting eigenvalue equation for metric

perturbations about a flat Euclidean background:

(9.10.8)

gives rise to seven coupled eigenvalue equations for metric perturbations. On con-

sidering also the ghost one-form ϕ µ , and imposing the mixed boundary conditions

for gauge-invariant amplitudes

(9.10.9)

(9.10.10)

(9.10.11)

the analysis in Esposito, Kamenshchik et al. 1994 has shown that the full ζ(0)

vanishes in the two-boundary problem, while the contributions of ghost modes

and gauge modes do not cancel each other, as it already happens for Euclidean

Maxwell theory.

The main open problem seems to be the explicit proof of gauge invariance

of one-loop amplitudes for relativistic gauges, in the case of flat Euclidean space

bounded by two concentric three-spheres. For this purpose, one may have to show

that, for coupled gauge modes, Ilog and the difference Ipole(∞) – Ipole(0) are not

affected by a change in the gauge parameters. Three steps are in order:

(i) To relate the regularization at large x used in Esposito 1994 to the BKKM

regularization relying on (9.10.5).

(ii) To evaluate Ilog from an asymptotic analysis of coupled eigenvalue equations.

(iii) To evaluate Ipole ( ∞)  – Ipole (0) by relating the analytic continuation to the

whole complex-s plane of the difference I (∞ , s ) – I (0, s), to the analytic continu-

ation of the zeta-function.
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The last step may involve a non-local, integral transform relating the BKKM

function to the zeta-function, and a non-trivial application of the Atiyah-Patodi-

Singer theory of Riemannian four-manifolds with boundary (Atiyah et al. 1976).

In other words, one might have to prove that, in the two-boundary problem only,

I pole ( ∞ )  – Ipole (0) resulting from coupled gauge modes is the residue of a mero-

morphic function, invariant under a smooth variation in the gauge parameters of

the matrix of elliptic self-adjoint operators appearing in the system

where one has

(9.10.12)

(9.10.13)

(9.10.14)

(9.10.15)

(9.10.16)

(9.10.17)

With our notation, γ1 , γ2 and γ3 are dimensionless parameters which enable one

to study the most general gauge-averaging function. This may be written in the

form (the boundary being given by three-spheres)

(9.10.18)

where K is the extrinsic-curvature tensor of the boundary.

Other relevant research problems are the mode-by-mode analysis of one-loop

amplitudes for gravitinos, including gauge modes and ghost modes studied within

the Faddeev-Popov formalism. Last, but not least, the mode-by-mode analysis of

linearized gravity in the de Donder gauge in the one-boundary case, the unitary

gauge for linearized gravity, and the mode-by-mode analysis of one-loop amplitudes
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in the case of curved backgrounds, appear to be necessary to complete the picture

outlined so far. The recent progress on problems with boundaries, however, seems

to strengthen the evidence in favour of new perspectives being in sight in quantum

field theory.
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P R O B L E MS FOR T H E R E A D ER

Problem 1.1 Prove the complex-manifold structure of C m , complex projective

space Pm (C ),complex torus, orientable surfaces. What is the physical relevance

of P 2 (C ) and P3 (C ) ?

Problem 2.1 Write down the Infeld-van der Waerden symbols for Lorentzian and

for real Riemannian four-manifolds.

Problem 2.2 What is the relation between SL (2, C ) and SU (2) soldering forms

(cf. Ashtekar 1988) ?

Problem 2.3 Prove that unprimed and primed spin-spaces are no longer anti-

isomorphic if a Lorentzian four-dimensional space-time is replaced by a complex

or real Riemannian four-manifold.

Problem 2.4 Using the Euclidean conjugation defined in section 2.1, prove that

there are no Majorana spinors in real Riemannian four-manifolds.

Problem 2.5 Define a spinor conjugation in a pseudo-Riemannian four-manifold

with a metric of signature (–, –, +, +). Can one find Majorana spinors in this

manifold ?

Problem 2.6 Give a two-spinor description of the Riemann curvature tensor in a

pseudo-Riemannian four-manifold endowed with a metric of signature (–, –, +, +).

Describe in detail the differences with respect to the Lorentzian or Riemannian

formalisms.

Problem 2.7 Denoting by the operator ∇ CA' ∇ C A ', prove that its action on

solutions of the massless free-field equations is given by

(P .1)

(P.2)
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Problems for the Reader

(P .3)

(P .4)

Problem 3.1 Prove Eqs. (3.2.12)-(3.2.13).

Problem 4.1 Write the twistor equation (4.1.5) in terms of γ-matrices (Penrose

1975).

Problem 4.2 To study the relation between null twistors and null geodesics, find

the equation which replaces Eq. (4.1.27) if the geodesics γX and γY are parallel.

Problem 4.3 What is the integrability condition for β -surfaces in a complex

vacuum space-time ?

Problem 4.4 Prove that, by virtue of the equations of local twistor transport,

Eq. (4.3.25) holds.

Problem 5.1 One wants to evaluate explicitly the conformal structure of an anti-

self-dual space-time. For this purpose, following section 5.1, prove that the right-

hand side of Eq. (5.1.34) vanishes and complete the derivation of Eq. (5.1.42)

therein.

Problem 5.2 Can you construct explicitly a self-dual space-time, by comparison

with the work in section 5.1 on anti-self-dual space-times ?

Problem 5.3 Prove that the charge Q in Eq. (5.3.26) is such that D BB' Q = 0.

What is the relation between Eqs. (5.3.24) and (5.3.26) ?

Problem 5.4 Write a dissertation on (anti)-self-duality in Riemannian geometry,

twistor theory and gauge theory.

Problem 6.1 Try to derive Eq. (6.4.2) by using the formulae relating curvature

spinors of the Levi-Civita connection to torsion and curvature spinors of the U 4 -

connection.
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Problems for the Reader

Problem 6.2 Can you say how the integrability condition (6.4.2) for α -surfaces

in complex space-times with non-vanishing torsion is modified if the torsion tensor

is completely antisymmetric ?

Problem 7.1 If the spinor field φA solves the Weyl equation ∇ AA' φA = 0, what

can we say about ∇ B
C ' φA ?

Problem 8.1 Prove that spin-raising and spin-lowering operators yield solutions

of the massless free-field equations.

Problem 8.2 Check Eqs. (8.4.28)-(8.4.29).

Problem 8.3 Prove that Eq. (8.9.5) results from Eq. (8.9.4).

Problem 9.1 Following Penrose 1975 and chapter nine, write an essay on the

various definitions of twistors in curved space-time.

Problem 9.2 Prove that, on the six-complex-dimensional space S6 at the end

of section 9.4, ω is a non-degenerate, closed two-form which defines a symplectic

structure (Penrose 1975).

Problem 9.3 Following Penrose 1975, differentiate Z ( a )
( a ) in section 9.5 once

( a )independently with respect to Z , ( a ) , and then set ( a ) = (a ) Prove that

this defines a Hermitian metric tensor for the asymptotic twistor space at future

null infinity. Moreover, prove that this construction makes T ( +) into a Kähler

manifold.

Problem 9.4 Prove that the integrability condition for Eq. (9.9.12) is indeed Eq.

(9.9.8). Is it necessary to make assumptions on the conformal curvature ?

Problem 9.5 Is it possible to view Eq. (8.9.4) within the framework of integra-

bility conditions relevant for twistor theory in Einstein backgrounds ?
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APPENDIX A: Clifford Algebras

In section 7.4 we have defined the total Dirac operator in Riemannian ge-

ometries as the first-order elliptic operator whose action on the sections is given

by composition of Clifford multiplication with covariant differentiation. Follow-

ing Ward and Wells 1990, this appendix presents a self-contained description of

Clifford algebras and Clifford multiplication.

Let V be a real vector space equipped with an inner product < , >, defined by

a non-degenerate quadratic form of signature (p,q ). Let T (V ) be the tensor algebra

of V and consider the ideal I in T (V ) generated by x ⊗ x + Q (x ). By definition,

I consists of sums of terms of the kind a ⊗ {x ⊗ x + Q ( x ) } ⊗ b, x ∈ V, a,  b ∈  T(V ) .

The quotient space

( A .1)

is the Clifford algebra of the vector space V equipped with the quadratic form

Q. The product induced by the tensor product in T (V ) is known as Clifford

multiplication or the Clifford product and is denoted by x · y, for x, y ∈  Cl (V ).

The dimension of Cl (V )  is 2n if dim(V ) = n. A basis for Cl(V ) is given by the

scalar 1 and the products

where { e 1 ,..., e n } is an orthonormal basis for V. Moreover, the products satisfy

(A.2)

(A.3)

As a vector space, Cl(V ) is isomorphic to Λ*(V ), the Grassmann algebra, with
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There are two natural involutions on Cl(V). The first, denoted by α : Cl(V ) →

Cl(V ), is induced by the involution x → –x defined on V, which extends to an

automorphism of Cl(V ). The eigenspace of α with eigenvalue +1 consists of the

even elements of Cl(V ), and the eigenspace of α of eigenvalue –1 consists of the

odd elements of Cl(V ).

The second involution is a mapping x → x t, induced on generators by

where ei are basis elements of V. Moreover, we define x→ , a third involution

of C l(V ), by ≡ α (x ).t

One then defines Cl*(V) to be the group of invertible elements of Cl (V), and

the Clifford group Γ (V ) is the subgroup of Cl *(V ) defined by

( A.4)

One can show that the mapping ρ (x) : V →V given by ρ(x )y = α(x)yx – 1 is an

isometry of V with respect to the quadratic form Q. The mapping x→  x ≡ x

is the square-norm mapping, and enables one to define a remarkable subgroup of

the Clifford group, i.e.

( A.5)
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APPENDIX B: Rarita-Schwinger Equations

Following Aichelburg and Urbantke 1981, one can express the Γ-potentials of

(8.6.1) as (cf. (8.9.12))

( B .1)

Thus, acting with ∇ CC' on both sides of (B.1), symmetrizing over C'B' and using

the spinor Ricci identity (8.7.7), one finds

( B . 2 )

Moreover, acting with ∇ C
C' on both sides of (B.1), putting B' = C' (with con-

traction over this index), and using the spinor Ricci identity (8.7.4) leads to

(B .3)

Equations (B.1)-(B.3) rely on the conventions in Aichelburg and Urbantke 1981.

However, to achieve agreement with the conventions in Penrose 1994 and in our

book, the equations (8.6.3)-(8.6.6) are obtained by defining (cf. (B.1))

and similarly for the γ-potentials of (8.6.2) (for the effect of torsion terms, see

comments following equation (21) in Aichelburg and Urbantke 1981).
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A P P E N D I X  C :Fibre Bundles

The basic idea in fibre-bundle theory is to deal with topological spaces which

are locally, but not necessarily globally, a product of two spaces. This appendix

begins with the definition of fibre bundles and the reconstruction theorem for

bundles, jointly with a number of examples, following Nash and Sen 1983. A more

formal presentation of some related topics is then given, for completeness.

A fibre bundle may be defined as the collection of the following five mathe-

matical objects:

(1) A topological space E called the total space.

(2) A topological space X, i.e. the base space, and a projection π : E → X of E

onto X.

(3) A third topological space F, i.e. the fibre.

(4) A group G of homeomorphisms of F, called the structure group.

(5) A set {Uα } of open coordinate neighbourhoods which cover X. These reflect

the local product structure of E. Thus, a homeomorphism φα is given

(C .1)

such that the composition of the projection map π with the inverse of φα yields

points of Uα , i.e.

(C.2)

To see how this abstract definition works, let us focus on the Möbius strip,

which can be obtained by twisting ends of a rectangular strip before joining them.

In this case, the base space X is the circle S¹, while the fibre F is a line segment.

For any x ∈ X, the action of π– 1 on x yields the fibre over x. The structure group

G appears on going from local coordinates (Uα , φα ) to local coordinates (Uβ , φβ).
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If Uα and U β have a non-empty intersection, then φα o φ– 1
β is a continuous invertible

map

(C .3)

For fixed x ∈ Uα ∩ U β , such a map becomes a map h αβ from F to F. This is,

by definition, the transition function, and yields a homeomorphism of the fibre F.

The structure group G of E is then defined as the set of all these maps hαβ for

all choices of local coordinates (Uα , φα). Here, it consists of just two elements

{e, h }. This is best seen on considering the covering {Uα } which is given by two

open arcs of S¹ denoted by U1 and U2 . Their intersection consists of two disjoint

open arcs A and B, and hence the transition functions hα β are found to be

(C .4)

(C .5)

(C .6)

To detect the group G = {e, h } it is enough to move the fibre once round the

Möbius strip. By virtue of this operation, F is reflected in its midpoint, which

implies that the group element h is responsible for such a reflection. Moreover, on

squaring up the reflection one obtains the identity e, and hence G has indeed just

two elements.

So far, our definition of a bundle involves the total space, the base space, the

fibre, the structure group and the set of open coordinate neighbourhoods covering

the base space. However, the essential information about a fibre bundle can be

obtained from a smaller set of mathematical objects, i.e. the base space, the fibre,

the structure group and the transition functions hαβ . Following again Nash and

Sen 1983 we now prove the reconstruction theorem for bundles, which tells us how

to obtain the total space E, the projection map π and the homeomorphisms φα

out of
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(C.7)

First, E is obtained out of an equivalence relation, as follows. One considers

the set defined as the union of all products of the form U α × F, i.e.

these elements are equivalent,

One here writes (x, f ) for an element of , where x ∈ U α . An equivalence relation

~ is then introduced by requiring that, given (x, f ) ∈ U α × F and (x', f ') ∈ U β × F,

(C.8)

if

(C.9)

This means that the transition functions enable one to pass from f to f ', while

the points x and x' coincide. The desired total space E is hence given as

(C.10)

i.e. E is the set of all equivalence classes under ~.

Second, denoting by [(x,f )] the euivalence class containing the element (x, f )

of Uα × F, the projection π : E  → X is defined as the map

(C .11)

In other words, π maps the equivalence class [(x, f )] to x ∈  Uα .

Third, the function φα is defined (indirectly) by giving its inverse

(C.12)

Note that, by construction, φα
– 1 satisfies the condition

(C.13)

and this is what we actually need, despite one might be tempted to think in terms

of φα rather than its inverse.
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The readers who are not familiar with fibre-bundle theory may find it helpful

to see an application of this reconstruction theorem. For this purpose, we focus

again on the Möbius strip. Thus, our data are the base X = S ¹, a line segment

representing the fibre, the structure group { e, h }, where h is responsible for F

being reflected in its midpoint, and the transition functions hαβ in (C.4)-(C.6).

Following the definition (C.8)-(C.9) of equivalence relation, and bearing in mind

that h 12 = h, one finds

ƒ = ƒ' if x ∈ A , (C.14)

hƒ = ƒ' if x ∈ B , (C.15)

where A and B are the two open arcs whose disjoint union gives the intersection

of the covering arcs U1 and U2 . In the light of (C.14)-(C.15), if x ∈ A then the

equivalence class [(x, ƒ)] consists of (x, ƒ) only, whereas, if x ∈ B, [(x,ƒ )] consists

of two elements, i.e. (x,ƒ ) and (x, hƒ). Hence it should be clear how to construct

the total space E by using equivalence classes, according to (C.10). What happens

can be divided into three steps (Nash and Sen 1983):

(i) The base space splits into two, and one has the covering arcs U 1 , U2 and the

intersection regions A and B.

(ii) The space defined in (C.7) splits into two. The regions A ∩ F are glued

together without a twist, since the equivalence class [(x,ƒ)] has only the element

(x, ƒ) if x ∈ A. By contrast, a twist is necessary to glue together the regions B ∩ F,

since [(x, ƒ)] consists of two elements if x ∈ B. The identification of ( x, ƒ) and

( x, hƒ) under the action of ~, makes it necessary to glue with twist the regions

B ∩ F.

(iii) The bundle E ≡ / ~ has been obtained. Shaded regions may be drawn,

which are isomorphic to A ∩ F and B ∩ F respectively.

If we now come back to the general theory of fibre bundles, we should mention

some important properties of the transition functions hαβ . They obey a set of
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compatibility conditions, where repeated indices are not summed over, i.e.

(C.16)

(C.17)

(C.18)

A simple calculation can be now made which shows that any bundle can be ac-

tually seen as an equivalence class of bundles. The underlying argument is as

follows. Suppose two bundles E and E' are given, with the same base space, fibre,

and group. Moreover, let {φα ,Uα } and {ψα , U α } be the sets of coordinates and

coverings for E and E’ respectively. The map

is now required to be a homeomorphism of F belonging to the structure group G.

Thus, if one combines the definitions

(C.19)

(C .20)

(C.21)

one finds

(C.22)

Thus, since λα  belongs to the structure group G by hypothesis, as the transition

function h αβ varies, both λα
– 1 h α β λ β  and h' α β generate all elements of G. The

only difference between the bundles E and E' lies in the assignment of coordinates,

and the equivalence of such bundles is expressed by (C.22). The careful reader

may have noticed that in our argument the coverings of the base space for E and

E' have been taken to coincide. However, this restriction is unnecessary. One

may instead consider coordinates and coverings given by {φα , Uα } for E, and by
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{ψα , V } for E’. The equivalence of E and E’ is then defined by requiring thatα

the homeomorphismφα o ψβ
– 1 (x) should coincide with an element of the structure

group G for x ∈ Uα ∩ Vβ (Nash and Sen 1983).

Besides the Möbius strip, the naturally occurring examples of bundles are the

tangent and cotangent bundles and the frame bundle. The tangent bundle T (M )

is defined as the collection of all tangent spaces Tp (M ), for all points p in the

manifold M, i.e.

(C.23)

By construction, the base space is M itself, and the fibre at p ∈ M is the tangent

space Tp (M ). Moreover, the projection map π : T (M ) → M associates to any

tangent vector ∈ Tp (M) the point p ∈ M. Note that, if M is n -dimensional, the

fibre at p is an n -dimensional vector space isomorphic to Rn. The local product

structure of T (M) becomes evident if one can construct a homeomorphism φα :

π– 1 (Uα ) → U α × R n . Thus, we are expressing T (M ) in terms of points of M and

tangent vectors at such points. This is indeed the case since, for a tangent vector

V at p, its expression in local coordinates is

(C.24)

Hence the desired φα has to map V to the pair Moreover, the structure

group is the general linear group GL( n,R), whose action on elements of the fibre

should be viewed as the action of a matrix on a vector.

The frame bundle of M requires taking a total space B (M ) as the set of

all frames at all points in M. Such (linear) frames b at x ∈ M are, of course,

an ordered set of basis vectors for the tangent space Tx (M ). The

projection π : B (M) → M acts by mapping a base b into the point of M to which

b is attached. Denoting by u an element of G L(n, R), the G L(n, R ) action on

B(M ) is defined by

(C.25)
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The coordinates for a differentiable structure on B(M ) are , where

x ¹ , . . . ,x n are coordinate functions in a coordinate neighbourhood V ⊂ M, while

u j
i

appear in the representation of the map

γ : V × G L(n, R ) → p – 1(V) , ( C.26)

by means of the rule (Isham 1989)

To complete our introduction to fibre bundles, we now define cross-sections,

sub-bundles, vector bundles, and connections on principal bundles, following Isham

1989.

(i) Cross-sections are very important from the point of view of physical applica-

tions, since in classical field theory the physical fields may be viewed as sections of

a suitable class of bundles. The idea is to deal with functions defined on the base

space and taking values in the fibre of the bundle. Thus, given a bundle ( E, π, M ),

a cross-section is a map s : M → E such that the image of each point x ∈ M lies

in the fibre π – 1 (x) over x :

π o s = id M . (C.27)

In other words, one has the projection map from E to M, and the cross-section

from M to E, and their composition yields the identity on the base space. In

the particular case of a product bundle, a cross-section defines a unique function

: M → F given by

(C.28)

(ii) The advantage of introducing the sub-bundle E’ of a given bundle E lies in the

possibility to refer to a mathematical structure less complicated than the original

E’. Let (E, π, M ) be a fibre bundle with fibre F. A sub-bundle of (E, π, M ) is

a sub-space of E with the extra property that it always contains complete fibres
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of E, and hence is itself a fibre bundle. The formal definition demands that the

following conditions on (E', π', M') should hold:

E ⊂ E ,'

M' ⊂ M  ,

(C.29)

(C.30)

π’ = π|E
. (C.31)

In particular, if T ≡ ( E, π , M ) is a sub-bundle of the product bundle (M ×

F, pr1 , M ), then cross-sections of T have the form s(x ) = (x, ( x ) ), where  :

M → F is a function such that, ∀ x  ∈ M, (x ,  (x)) ∈ E. For example, the tangent

bundle TSnof the n -sphere Sn may be viewed as the sub-bundle of S n × R n + 1

(Isham 1989)

(C .32)

Cross-sections of TS n are vector fields on the n -sphere. It is also instructive to

introduce the normal bundle v(S n) of Sn , i.e. the set of all vectors in Rn + 1 which

are normal to points on Sn (Isham 1989):

(C.33)

(iii) In the case of vector bundles, the fibres are isomorphic to a vector space, and

the space of cross-sections has the structure of a vector space. Vector bundles are

relevant for theoretical physics, since gauge theory may be formulated in terms

of vector bundles (Ward and Wells 1990), and the space of cross-sections can re-

place the space of functions on a manifold (although, in this respect, the opposite

point of view may be taken). By definition, a n-dimensional real (resp. complex)

vector bundle (E, π, M ) is a fibre bundle in which each fibre is isomorphic to a

n-dimensional real (resp. complex) vector space. Moreover, ∀ x ∈ M, a neighbour-

hood U ⊂ M of x exists, jointly with a local trivialization ρ : U ×  R n →  π–1 (U )

such that, ∀ y ∈ U, ρ : { y } × R n → π—1 ( y ) is a linear map.
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The simplest examples are the product space M × Rn , and the tangent and

cotangent bundles of a manifold M. A less trivial example is given by the normal

bundle (cf. (C.33)). If M is a m -dimensional sub-manifold of Rn , its normal

bundle is a (n – m )-dimensional vector bundle v(M) over M, with total space

(Isham 1989)

and projection map π : E (v(M)) → M defined by π(x,v) ≡ x. Last, but not least,

we should mention the canonical real line bundle γn over the real projective space

RPn, with total space

where [x] denotes the line passing through x ∈ Rn +1 . The projection map π :

E (γn ) → R P n is defined by the condition

Its inverse is therefore the line in R n + 1 passing through x. Note that γn  is a

one-dimensional vector bundle.

(iv) In Nash and Sen 1983, principal bundles are defined by requiring that the

fibre F should be (isomorphic to) the structure group. However, a more precise

definition, such as the one given in Isham 1989, relies on the theory of Lie groups.

Since it is impossible to describe such a theory in a short appendix, we refer the

reader to Isham 1989 and references therein for the theory of Lie groups, and we

limit ourselves to the following definitions.

A bundle (E, π, M ) is a G -bundle if E is a right G -space and if (E, π, M )

is isomorphic to the bundle (E, σ , E/G ), where E/G is the orbit space of the G - 

action on E, and σ is the usual projection map. Moreover, if G acts freely on E,

then (E, π, M ) is said to be a principal G-bundle, and G is the structure group of

the bundle. Since G acts freely on E by hypothesis, each orbit is homeomorphic

to G, and hence one has a fibre bundle with fibre G (see earlier remarks).

π([x], v )  ≡ [x ]  .

(C.34)

(C.35)

(C.36)
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To define connections in a principal bundle, with the associated covariant

differentiation, one has to look for vector fields on the bundle space P that point

from one fibre to another. The first basic remark is that the tangent space Tp ( P )

at a point p ∈ P admits a natural direct-sum decomposition into two sub-spaces

Vp (P) and Hp (P), and the connection enables one to obtain such a split of Tp ( P) .

Hence the elements of Tp (P) are uniquely decomposed into a sum of components

lying in Vp (P) and Hp (P) by virtue of the connection. The first sub-space, Vp ( P ) ,

is defined as

(C .37)

where π : P → M is the projection map from the total space to the base space. The

elements of Vp (P) are, by construction, vertical vectors in that they point along

the fibre. The desired vectors, which point away from the fibres, lie instead in

the horizontal sub-space Hp (P). By definition, a connection in a principal bundle

P → M with group G is a smooth assignment, to each p ∈ P, of a horizontal

sub-space Hp (P) of T p (P) such that

(C .38)

By virtue of (C.38), a connection is also called, within this framework, a distribu-

tion. Moreover, the decomposition (C.38) is required to be compatible with the

right action of G on P.

The constructions outlined in this appendix are the first step towards a geo-

metrical and intrinsic formulation of gauge theories, and they are frequently ap-

plied also in twistor theory (sections 5.1-5.3, 9.6-9.7). Thus, despite the incom-

pleteness, we hope that the reader will find them useful.
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APPENDIX D:  Sheaf Theory

In chapter four we have given an elementary introduction to sheaf cohomol-

ogy. However, to understand the language of section 9.6, it may be helpful to

supplement our early treatment by some more precise definitions. This is here

achieved by relying on Chern 1979.

The definition of a sheaf of Abelian groups involves two topological spaces S

and M, jointly with a map π : S → M. The sheaf of Abelian groups is then the

pair (S, π) such that:

(i) π is a local homeomorphism;

(ii) ∀ x ∈ M, the set π –1(x), i.e. the stalk over x, is an Abelian group;

Denoting by U an open set of M, a section of the sheaf S over U is a continuous

(iii) the group operations are continuous in the topology of S.

map f : U → S such that its composition with π yields the identity (cf. appendix

C). The set Γ (U, S) of all (smooth) sections over U is an Abelian group, since if

f , g  ∈  Γ (U, S), one can define f–g by the condition (f–g)(x) ≡ f (x)–g(x), x ∈ U.

The zero of Γ (U, S) is the zero section assigning the zero of the stalk π– 1(x) to

every x ∈ U.

The following step is the definition of presheaf of Abelian groups over M.

This is obtained on considering the homomorphism between sections over U and

sections over V, for V an open subset of U. More precisely, by a presheaf of

Abelian groups over M we mean (Chern 1979):

(i) a basis for the open sets of M;

(ii) an Abelian group SU  assigned to each open set U of the basis;

(iii) a homomorphism ρV U : S U → SV associated to each inclusion V ⊂ U, such

that

ρWV ρ VU = ρ W U whenever W ⊂ V ⊂ U .
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The sheaf is then obtained from the presheaf by a limiting procedure (cf. chapter

four).

For a given complex manifold M, the following sheaves play a very important

role (cf. section 9.6):

(i) The sheaf Ap q of germs of complex-valued C ∞ forms of type (p, q). In partic-

ular, the sheaf of germs of complex-valued C ∞ functions is denoted by A0 0 .

(ii) The sheaf Cp q of germs of complex-valued C∞ forms of type (p, q), closed under

the operator . The sheaf of germs of holomorphic functions (i.e. zero-forms) is

denoted by   = C00 . This is the most important sheaf in twistor theory (as well

as in the theory of complex manifolds, cf. Chern 1979).

(iii) The sheaf * of germs of nowhere-vanishing holomorphic functions. The

group operation is the multiplication of germs of holomorphic functions.

Following again Chern 1979, we complete this brief review by introducing fine

sheaves. They are fine in that they admit a partition of unity subordinate to any

locally finite open covering, and play a fundamental role in cohomology, since the

corresponding cohomology groups Hq (M, S) vanish ∀ q ≥ 1. Partitions of unity of

a sheaf of Abelian groups, subordinate to the locally finite open covering U of M,

are a collection of sheaf homomorphisms ηi : S → S such that:

(i) η i  is the zero map in an open neighbourhood of M – Ui ;

(ii) Σ i ηi equals the identity map of the sheaf (S, π).

The sheaf of germs of complex-valued C ∞ forms is indeed fine, while C pq and

the constant sheaf are not fine.
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