
Preface

The Second Samos Meeting on Cosmology, Geometry and Relativity organised
by the Research Laboratory for Geometry, Dynamical Systems and Cosmology
(GEO.DY.SY.C.) of the Department of Mathematics, the University of the Ae-
gean, took place at the Doryssa Bay Hotel/Village at Pythagoreon, site of the
ancient capital, on the island of Samos from August 31st to September 4th, 1998.
The Meeting focused on mathematical and quantum aspects of relativity theory
and cosmology. The Scientific Programme Committee consisted of Professors D.
Christodoulou and G.W. Gibbons and Dr S. Cotsakis, and the Local Organi-
zing Committee comprised Professors G. Flessas and N. Hadjisavvas and Dr S.
Cotsakis. More than 70 participants from 18 countries attended.

The scientific programme included 9 plenary (one hour) talks, 3 ‘semi-plenary’
(30 minute) talks and more than 30 contributed (20 minute) talks. There were
no poster sessions. However, a feature of the meeting was an ‘open-issues’ session
towards the end whereat participants were given the opportunity to announce
and describe open problems in the field that they found interesting and im-
portant. The open-issues discussion was chaired by Professor Gibbons and we
include a slightly edited version of it in this volume.

This volume contains the contributions of most of the invited talks as well
as those of the semi-plenary talks. Unfortunately the manuscripts of the very
interesting talks by John Barrow about ‘Varying Constants’, Ted Jacobson on
‘Trans-Plankian Black Hole Models: Lattice and Superfluid’ and Tom Ilmanen’s
lecture on ‘The Inverse Mean Curvature Flow of the Einstein Evolution Equati-
ons Coupled to the Curvature’ could not be included in this volume.

The meeting was sponsored by the following organizations: the University of
the Aegean, the Ministry of Civilization, the Ministry of Education and Religion
and the Ministry of the Aegean, the National Research and Technology Secre-
tariat, EPEAEK (EU funded program), the Municipality of Pythagoreon, the
Union of Municipalities of Samos, and the Prefecture of Samos. All this support
is gratefully acknowledged.

We wish to thank all those individuals who helped to make this meeting
possible. In particular we are deeply indebted to Professor P.G.L. Leach (Natal)
who contributed a great deal in many aspects before, during and after the event.
The heavy duty of being Secretary to the Meeting was carried out with great
success by Ms Thea Vigli-Papadaki with help from Mrs Manto Katsiani.
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their enormous and expert help in shaping this volume and, more generally, for
the true interest they show in the series of these Samos meetings.

Karlovassi, Greece Spiros Cotsakis
Cambridge, UK Gary Gibbons
October 1999
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Global Wave Maps on Curved Space Times

Yvonne Choquet-Bruhat

Gravitation et Cosmologie Relativiste, t.22-12,
Université Paris VI, 75252 Paris, France

Introduction

Wave maps from a pseudoriemannian manifold of hyperbolic (lorentzian) sig-
nature (V, g) into a pseudoriemannian manifold are the generalisation of the
usual wave equations for scalar functions on (V, g). They are the counterpart
in hyperbolic signature of the harmonic mappings between properly rieman-
nian manifolds.

The wave map equations are an interesting model of geometric origin for
the mathematician, in local coordinates they look like a quasilinear quasidia-
gonal system of second order partial differential equations which satisfy the
Christodoulou [17] and Klainerman [18] null condition. They also appear in
various areas of physics (cf. Nutku 1974 [6], Misner 1978 [7]).

The first wave maps to be considered in physics were the σ-models, for
instance the mapping from the Minkowski spacetime into the three sphere
which models the classical dynamics of four meson fields linked by the rela-
tion:

4∑
a=1

| fa |2= 1 .

Wave maps play an important role in general relativity, in general integration
problem or in the construction of spacetimes with a spatial isometry group.
Indeed:

1. The harmonic coordinates, used for a long time in various problems,
express that the identity map from (U, g), U domain of a chart of the
spacetime, into an open set of a pseudoeuclidean space is a wave map.
Wave maps from a spacetime (V, g) into a pseudoriemannian manifold
(V, ê), with ê a given metric on V , gives a global harmonic gauge condition
on (V, g).

2. The Einstein, or Einstein-Maxwell, equations for metrics possessing a one
parameter spacelike isometry group can be written as a coupled system
of a wave map equation from a manifold of dimension three and an el-
liptic, time dependent, system of partial differential equations on a two
dimensional manifold, together with ordinary differential equations for
the Teichmuller parameters (Moncrief 1986 [12], YCB and Moncrief 1995
[20]).
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2 Yvonne Choquet-Bruhat

The natural problem for wave maps is the Cauchy problem. It is a nonli-
near problem, complicated by the fact that the unknown does not take their
values in a vector space, but in a manifold. Gu Chaohao 1980 [9] has pro-
ven global existence of smooth wave maps form the 2-dimensional Minkowski
spacetime into a complete riemannian manifold by using the Riemann me-
thod of characteristics. Ginibre and Velo 1982 [10] have proven a local in time
existence theorem for wave maps from a Minkowski spacetime of arbitrary di-
mensions into the compact riemannian manifolds O(N), CP (N), or GC(N, p)
by semigroup methods. They prove global existence on 2-dimensional Min-
kowski spacetime. These local and global results have been extended to ar-
bitrary regularly hyperbolic sources and complete riemannian targets in YCB
1987 [13], which proves also global existence for small data on n+1 dimensio-
nal Minkowski spacetime, n ≥ 3 and odd, due to the null condition property.
This last result has been proved to hold for n = 2 by YCB and Gu Chaohao
1989 [16], if the target is a symmetric space and for arbitrary n by YCB
1998c [24].

Global existence of weak solutions, without uniqueness, for large data in
the case of 2 + 1 dimensional Minkowski space has been proved by Muller
and Struwe 1996 [22]. Counter examples to global existence on 3 + 1 dimen-
sional Minkowski space have been given by Shatah 1988 [14] and Shatah and
Tahvildar-Zadeh 1995 [21].

This article is composed of two parts. In Part A we give a pedagogical
introduction to wave maps together with a new proof of the local existence
theorem. In Part B we prove a global existence theorem of wave maps in the
expanding direction of an expanding universe.

A. General Properties

1 Definitions

Let u be a mapping between two smooth finite dimensional manifolds V and
M :

u : V −→ M.

Let (xα), α = 0, 1, . . . , n, be local coordinates in an open set ω of the source
manifold V supposed to be of dimension n+ 1. Suppose ω sufficiently small
for the mapping u to take its value in a coordinate chart (yA), A = 1, . . . , d
of the target manifold M supposed to be of dimension d. The mapping u is
then represented in ω by d functions uA of the n+ 1 variables xα

(xα) �→ yA = uA (xα) .

The mapping u is said to be differentiable at x ∈ ω ⊂ V if the functions
uA are differentiable. The notion is coordinate independent if V and M are
differentiable.
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The gradient ∂u(x) of the mapping u at x is an element of the tensor
product of the cotangent space to V at x by the tangent space to M at u(x):

∂u(x) ∈ T ∗
xV ⊗ Tu(x)M.

The gradient itself, ∂u, is a section of the vector bundle E with base V and
fiber Ex ≡ T ∗

xV ⊗ Tu(x)M at x.
We now suppose that the manifolds V and M are endowed with pseudo-

riemannian metrics denoted respectively by g and h. We endow the vector
bundle E with a connexion whose coefficients acting in T ∗

xV are the coeffi-
cients of the riemannian connexion at x of the metric g while the coefficients
acting in Tu(x)M are the pull back by u of the connexion coefficients of the
riemannian connexion at u(x) of the metric h, we denote by ∇ the correspon-
ding covariant differential. If f is an arbitrary section of E represented in a
small enough open set ω of V by the (n+ 1)× d differentiable functions fAα
of the n+ 1 coordinates x, then its covariant differential is represented in ω
by the (n+ 1)2 × d functions

∇αfAβ (x) ≡ ∂αfAβ (x)− Γµ
αβ(x)f

A
µ (x) + ∂αuB(x)ΓA

BC(u(x))f
C
β (x),

where Γµ
αβ and ΓA

BC denote respectively the components of the riemannian
connections of g and h.

The covariant differential of a section f of E is a section of T∗V ⊗E, also
a vector bundle over V .

Analogous formulas using the Leibniz rule for the derivation of tensor
products give the covariant derivatives in local coordinates of sections of
bundles over V with fiber ⊗ pT ∗

xV⊗ qTu(x)M. In particular:

1. The covariant differential ∇g of the metric g, section of ⊗2T ∗V , is zero
by the definition of its riemannian connection. The field h(u) defined
by u and the metric h, section of the vector bundle over V with fiber
⊗2Tu(x) at x, has also a zero covariant derivative ∇h, pull back by u of
the riemannian covariant derivative of h.

2. Commutation of covariant derivatives gives the following useful generali-
sation of the Ricci identity

(∇α∇β − ∇β∇α)fAλ = R µ
αβλ (x)f

A
µ (x) + ∂αuC∂βu

BR A
CB DfDµ .

2 Wave Maps. Cauchy Problem

From now on we will suppose that the source (V, g) is lorentzian, i.e. that the
metric g is of hyperbolic signature, which we will take to be (−,+, ...,+).

The following definition generalizes to mappings into a pseudorieman-
nian manifold the classical definition of a scalar valued wave equation on a
lorentzian manifold.
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Definition. A mapping u: (V, g) → (M,h) is called a wave map if the trace
with respect to g of its second covariant derivative vanishes, i.e. if it satisfies
the following second order partial differential equation, taking its values in
TM :

g.∇2u = 0.

In local coordinates on V and M this equation is:

gαβ∇α∂βu
A ≡ gαβ(∂2αβu

A − Γλ
αβ∂λu

A + ΓA
BC(u)∂αuB∂βu

C = 0.

The wave map equation reads thus in local coordinates as a semilinear qua-
sidiagonal system of second order partial differential equations for d scalar
functions uA. The diagonal principal term is just the usual wave operator of
the metric g; the nonlinear terms are a quadratic form in ∂u, with coefficients
functions of u.

The wave map equation is invariant under isometries of (V, g) and (M,h):
let u be a wave map from (V, g) into (M,h), let f and F be diffeomorphisms
of V and M respectively, then F ◦ u ◦ f is a wave map from (f−1(V ), f∗g)
into (F (M), dFh).

Throughout this paper we stipulate that the manifold V is then of the
type S × R, with each submanifold St ≡ S × {t} space like. We denote by
(x, t) a point of V .
Remark. If the source (V, g) is globally hyperbolic, i.e. the set of timelike
paths joining two points is compact in the set of paths (Leray 1953 [1]), then
it is isometric to a product S×R with each submanifold St ≡ S×{t} spacelike
and a Cauchy surface, i.e. such that each timelike or null path without end
point cuts St once (Geroch 1970 [4]).

The first natural problem to solve for a wave map is the Cauchy problem,
i.e. the construction of a wave map taking together with its first derivative
given values on a spacelike submanifold of V for instance S0. The Cauchy
data are a mapping ϕ from S into M and a section ψ of the vector bundle
with base S and fiber Tϕ(x) over x, namely:

u(0, x) = ϕ(x) ∈ M, ∂tu(0, x) = ψ(x) ∈ Tϕ(x)M.

The results known for Leray hyperbolic systems cannot be used trivially
when the target M is not a vector space. However, the standard local in time
existence and uniqueness results known for scalar-valued systems can be used
to solve the local in time problem for wave maps by glueing local in space
results (cf CB 1998a [23]). This local in time existence can also be deduced
from those known from scalar valued systems by first embedding the target
(M,h) into a pseudoriemannian manifold (Q, q) with Q diffeomorphic to Rn.
We give here a variant of the obtention of a system of RN valued partial
differential equations equivalent, modulo hypothesis on the Cauchy data, to
the wave map equation.
Lemma 1. Let u: V → M and i: M → Q be arbitrary smooth maps between
pseudoriemannian manifolds (V, g), (M,h), (Q, q). Set U ≡ i ◦ u, map from
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(V, g) into (Q, q). Denote by ∇ the covariant derivative corresponding to the
map on which it acts,then the following identity holds:

∇∂U ≡ ∂i.∇∂u+∇∂i.(∂u ⊗ ∂u),

that is, if (xα), (xA) and (xa) are respectively local coordinates on V , M and
Q while ∇ is the covariant derivative either for the maps u: (V, g) → (M,h),
or i: (M,h) → (Q, q) or U : (V, g) → (Q, q),

∇α∂βU
a ≡ ∂Aia∇α∂βu

A + ∂αuA∂βu
B∇A∂Bia.

Proof. By the definition of the covariant derivative we have

∇α∂βU
a ≡ ∂2αβU

a − Γλ
αβ∂λU

a + Γ a
bc∂αU b∂βU

c,

where Γ a
bc are the coefficients of the riemannian connexion of (Q, q),

By the law of the derivation of a composition map we find

∂αUa ≡ ∂α(i ◦ u)a ≡ ∂Aia∂αuA,

∂2αβU
a ≡ ∂Aia∂2αβu

A + ∂2ABia∂αuA∂βu
B .

The given formula results from these expressions after adding and substrac-
ting the term ∂AiaΓA

BC∂αuB∂αuC (up to names of summation indices). We
obtain as announced:

∇α∂βU
a ≡ ∂Aia(∂2αβu

A − Γλ
αβ∂λu

A + ΓA
BC∂αuB∂βu

C)

+(∂2ABia − ΓC
AB∂CiA + Γ a

bc∂Aib∂Bic)∂αuA∂βu
B . (1)

Lemma 2. Suppose (M,h) is isometrically embedded in (Q, q), i.e. h ≡ i∗q,
then ∇∂i ∈ ⊗2T∗M ⊗ TQ is the pull back on M of the second fundamental
form K of i(M) as submanifold of Q, it takes its values at a point y ∈ i(M) in
the subspace of TyQ orthogonal to Tyi(M). We have in arbitrary coordinates
on M and Q:

∇A∂Bia ≡ ∂Aib∂BicKa
cb.

Proof. It is a classical result (cf. for instance [15, V 2, p 280]); it can be proved
and explained as follows in adapted local coordinates of M and Q. Let (yA),
A = 1, ..., d be local coordinates in the neighbourhood of a point y0 ∈ M .
We choose in a neighbourhood in Q of the point i(y0) local coordinates (za),
a = 1, ..., D, such that the embedding i is represented in this neighbourhood
by:

ia(y) = ya if a = 1, ..., d and ia(y) = 0 if a = d+ 1, ..., D.

We choose a moving frame with d axes such that θa = dya, a = 1, ..., d, while
the other D − d axes are orthogonal to these ones and between themselves.
In the neighbourhood considered the metric q of Q is then i:

q =
d∑

a,b=1

qabdy
adyb +

D∑
a=d+1

(θa)2,
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The gradient of the mapping i: (M,h) → (Q, q) in the chosen coordinates
and frame is:

∂Aia = δaA, A = 1, ..., d ; a = 1, ..., D.

Denote by Qa
bc the connection coefficients of the metric q in the considered

coframe, the covariant derivative of the gradient of a mapping i: (M,h) →
(Q, q) is:

∇B∂Aia ≡ ∂2BAia − ΓC
BA∂Cia +Qa

bc∂Bib∂Aic

which gives here:

∇B∂Aia = −Γ a
BA +Qa

BA, if a = 1, ..., d;
∇B∂Aia = Qa

BA if a = d+ 1, ..., D.

If i is an isometric embedding we have on M that qab = hab, a, b = 1, ..., d.
We have then on i(M) identified with M :

Γ a
bc = Qa

bc, a, b, c = 1, ..., d,

while Qa
BA, B,A = 1, ..., d; a = d + 1, ..., D are the components of the pull

back by i of the second fundamental form of i(M) as submanifold on M ,
equal in the chosen coordinates’ frame to the components Ka

bc of that form
in the chosen frame orthogonal to the tangent space to i(M).
Remark. Denote by ν(a), a = d+1, ..., D, the unit mutually orthogonal vectors
orthogonal to i(M). In the chosen coordinates and frame the components of
ν(a) are

ν(a)c = δac if a, c = d+ 1, . . . , D, ν(a)c = 0ifc = 1, ..., d.

We find therefore in this frame

∇bν
(a)
c = −Qa

bc, b, c = 1, . . . , d; a = d+ 1, . . . , D.

which gives the usual tensorial form for the components of the second fun-
damental form of i(M) as an element of ⊗2T∗i(M)⊗ TQ.
Lemma 3. If the mapping u: (V, g) → (M,h) is a wave map and if the
mapping i: (M,h) → (Q, q) is an isometric embedding then the mapping
U ≡ i ◦ u: (V, g) → (Q, q) satisfies in the considered local coordinates the
following semilinear second order equation:

gαβ{∇α∂βU
a − ∂αU c∂βU

bKa
bc(U)} = 0.

Proof. The proof results from lemmas 1 and 2 together with the fact that
∂αUa ≡ ∂Aia∂αuA.

Suppose that the manifold (M,h) is properly riemannian and has a non-
zero injectivity radius. Embed it isometrically in a riemannian space (Q, q)
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such that i(M) admits a tubular neighbourhood Ω in Q (geodesics orthogo-
nal to i(M) have a length bounded away from zero in this neighbourhood).
The subset Ω ⊂ Q can be covered by domains of local coordinates of the
previously considered type with K(U) depending smoothly on U in Ω.

The system satisfied by U : (V, g) → (Ω, q) is invariant by change of coor-
dinates on M and Ω ⊂ Q. We can write it intrinsically under the form, with
K(U) defined when U ∈ Ω:

{∇2U − K(U).(∂U ⊗ ∂U)} = 0,
where the first dot is a contraction in g and the second dot a contraction in
q.

Choose Q diffeomorphic to RN , as it is always possible (Whitney theo-
rem), then there exists global coordinates zI on Q. In these coordinates the
equation satisfied by the mapping U : (V, g) → (Q, q) reads as a system of
second order semilinear system of partial differential equations for a set of
scalar functions U I , defined if U ≡ {U I} ∈ Ω.

If (M,h) is properly riemannian it is always possible (Nash theorem) to
embed it isometrically in a euclidean space (RN , e). If M is compact then
i(M) always admit a tubular neighbourhood Ω.
Remark. If q is a flat metric, the operator g.∇2U reads as a linear operator,
the usual wave operator on (V, g) for a set of scalar functions, when the
coordinates zI are the cartesian ones, the nonlinearities are concentrated in
the term with coefficient K.

3 Local Existence Theorem. Global Problem

We will use the classical local existence theorem for Leray hyperbolic sy-
stem applied to the system we have obtained for U by embedding (M,h) for
instance in a euclidean space.

We first recall some definitions. We denote by greek letters spacetime
indices while tensors on S are indexed with latin letters. A metric g on
V ≡ S ×R is written in boldface, a t dependent metric on S is denoted gt or
(gij). We write as usual the spacetime metric g in a moving frame with time
axis at the point (x, t) orthogonal to St under the form:

g = −N2dt2 + gijθ
iθj , with θi ≡ dxi + βidt.

The function N , called lapse, is strictly positive; the vector β is called the
shift; the induced metric on each St, gt ≡ gijdx

idxj , is properly riemannian.
Definition 1. Let I ≡ [t0, L) be an interval of R. The hyperbolic metric g on
V ≡ S × I is said to be regularly hyperbolic if:

(i) There exist positive and continuous functions of t, B1 and B2, such that
for each t ∈ I it holds on S that

0 < B1 ≤ N ≤ B2.
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(ii) The metrics gt, t ∈ I, induced by g on St, are equivalent to a given
riemannian metric s on S,, that is, there exist positive and continuous
functions of t ∈ I, A1 and A2, such that for any vector field ξ on S and
t ∈ I it holds on S that

A1s(ξ, ξ) ≤ gt(ξ, ξ) ≤ A2s(ξ, ξ).

We suppose that the metric s has a non zero injectivity radius, hence is
complete. The same property is then enjoyed by each gt and the manifold
(V,g) is globally hyperbolic (CB 1967 [3]).

We now define functional spaces of tensor fields on S.
Definition 2. The Sobolev space W p

s of tensors of some given type on S is the
completion of the space of such tensors in C∞

0 (i.e. infinitely differentiable
with compact support on S) in the following norm:

‖ f ‖Wp
s
≡ {

p∑
k=0

∫
S

| Dkf |p µs}1/p,

where D denotes the covariant derivative, | | the pointwise norm and µe the
volume element in the metric e. We set W 2

s = Hs.
With the given definition of the spacesW p

s and the hypothesis that e has a
nonzero injectivity radius the usual imbedding and multiplication properties
of Sobolev spaces on Rn hold.

Our spaces W p
s coincide with spaces of tensor fields whose generalised

covariant derivatives in the metric e of order less or equal to p are in Lp(µs)
if in addition to previous hypothesis we suppose that the curvature of the
metric s is uniformly bounded as well as its derivatives of relevant order (cf.
Aubin 1982 [11]).

Remark. For the local existence theorem the hypothesis that s has a nonzero
injectivity radius can be replaced by its Sobolev regularity, i.e. by the hypo-
thesis that the Sobolev embedding and multiplication properties hold: it is
the case when (S, s) is a bounded open set of Rn enjoying the cone property
(cf. for instance C.B-D.M [15, V 2, p 379]).

We now define functional spaces for tensor fields on V , noting first that a
tensor of order P on V can be decomposed into a finite number of t-dependent
tensors of order ≤ P on S. We say that the restriction to some given t of a
tensor f on V belongs to a given functional space on S if it is so for each
tensor of the above decomposition.

For simplicity of writing we take in this section the initial submanifold to
be t0 = 0.

Definition 3. We denote by Ep
s (T ) the Banach space of tensor fields on VT ≡

S × [0, T ] defined by

Ep
s (T ) ≡ Ck([0, T ],W p

s−k), 0 ≤ k ≤ s.
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We denote by Ep
s a space of tensors on V which are in Ep

s (T ) for any
finite T . We set Es ≡ E2s

Embedding and multiplication properties of the spaces Ep
s (T ) are an im-

mediate consequence of these properties for the spaces W p
s .

Theorem. Let (V ≡ S×I,g) be a regularly hyperbolic manifold with [0, T ] ⊂
I. Let (M,h) be a smooth complete riemannian manifold embedded by i in
an euclidean space RN with cartesian coordinates zI . Suppose that Dg, ∂tg ∈
Es−1(T ).

Let ϕ, ψ be Cauchy data on S for a wave map (V,g) → (M,h). Suppose
that the corresponding set of functions ΦI = (i ◦ ϕ)I and Ψ I = ∂iIψ on S
are such that

ΦI ∈ HsandΨ I ∈ Hs−1

Then if s ≥ n
2 + 1 there exists < > 0 and a wave map u taking the given

data, and such that U I ≡ (i ◦ u)I ∈ Es(<) ∩ Ω.
The interval < of existence for any s is equal to the interval corresponding

to s = s0, smallest integer greater than n
2 + 1.

The solution is unique and depends continuously on the data. A solution
with U ∈ Es0(<), can be approximated by solutions with U in Es(<).

In the case n = 2 or 3 the result holds for s0 = 2.
Proof. The existence and properties of U ≡ (U I) is classical ( Leray theory,
as completed by Dionne 1962 [2], YCB 1971 [5], YCB-Christodoulou-Fran-
caviglia 1979 [8], one uses the fact that Es−1 is an algebra when s − 1 > n

2 .
The extension to s = 2 in the case n = 2 or 3 has been proved on Minkowski
spacetime by Klainerman and Machedon [18], on curved spacetimes by Sogge
1993 [19](Fourier method) and C-B 1998a [23](energy estimates).

To show that U defines a wave map u taking the given Cauchy data we
return to our adapted coordinates ya in Ω ⊂ Q ≡ RN . If there exists a
mapping u: V → M such that U = i ◦ u, i.e. if U takes its values in i(M),
then we have the identity

gαβ{∇α∂βU
a − ∂αuA∂βu

B∇A∂Bia} ≡ ∂Aiagαβ∇α∂βu
A.

The mapping U : V → i(M) ⊂ Ω ⊂ Q annuls the left hand side, the right
hand side is then also zero and u is a wave map taking the given Cauchy
data. We thus have only to prove that U takes its values in i(M), i.e. that
Ua = 0 for a = d+ 1, . . . , D. The equation satisfied by U reads:

gαβ{∂2αβUa − Γλ
αβ∂λU

a + ∂αU b∂βU
c(Qa

bc - Ka
bc)

with Ka
bc = Qa

bc if a = d + 1, . . . , D (note also that Ka
bc = 0 for a =

1, . . . , d), hence the D − d functions Ua, a = d + 1, . . . , D, satisfy a linear
homogeneous system, with zero Cauchy data by hypothesis. This system is
only local, as are the coordinates ya, however it is not difficult to deduce from
it that U takes its values in i(M) by using a partition of unity and the finite
propagation speed of solutions of the wave equation.
Corollary. The theorem can be extended to local spaces, i.e. by replacing
the spaces W p

s on S by spaces of functions which are in W p
s in each open
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relatively compact set ω(i) of some locally finite covering of S, with uniformly
bounded W p

s (ω(i)) norms (cf. C-B 1998a).
Remark. It is possible to prove an analogous theorem with variants on the
hypothesis on the metric g. For instance less time regularity or (and) repla-
cement of the spaces Hs on S by spaces W p

s . One obtains eventually less time
regularity of the solution.

The hypothesis made on the metric imply in all cases thatDg is uniformly
bounded on VT . They do not necessarily imply that it is lipshitzian: the
geodesics between two nearby points may not be unique.
Global existence lemma. Let (V ≡ S× [0,∞),g) be a regularly hyperbolic
manifold with Dg, ∂ tg ∈ Es, s ≥ s0. The wave map u with Cauchy data ϕ,
ψ such that (Φ,Ψ) ∈ Hs × Hs−1. Then u exists globally on V if the norms
‖ U(t, .) ‖Hs

and ‖ U(t, .) ‖Hs−1 do not blow up in a finite time, i.e. are
bounded by functions of t continuous on the interval I ≡ [0,∞).
Proof. It is a standard consequence of the local existence theorem, with the
continuous dependence of the interval of existence on the Hs0 × Hs0−1 norm
of the data.

In the next sections we will endeavour to estimate the involved Hs×Hs−1
norms

4 First Energy Estimate

To study global problems for wave maps one must use their special geometric
properties, as for other fundamental equations of physics.

The first quantity of physical significance is the energy of the map. In
contradistinction with the case, where the source is riemannian, the energy
of the map is not the spacetime Dirichlet integral (which is not a positive
quantity in the lorentzian case) but a space integral analogous to the energy
associated with a solution of the wave equation. We introduce it now.

The stress energy tensor of a mapping u: (V, g) → (M,h) is the covariant
2-tensor on V given by:

T(u) ≡ (h◦u)(∂u,∂u) - 12 g{g⊗(h◦u)}.{∂u⊗∂u}
that is

Tαβ = hAB(u)∂αuA∂βu
B − 1

2gαβg
λµhAB(u)∂λuA∂µu

B

which we will usually write:
Tαβ ≡ ∂αu.∂βu− 1

2gαβ∂λu.∂λu.
Indices are raised with g, a dot denotes the scalar product in the metric

h of the target space.
Lemma 1. The stress energy tensor T (u) of a wave map u has zero diver-
gence.
Proof. The metrics g and h have zero covariant derivative, therefore
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∇αTα
λ ≡ ∂λu.gαβ∇α∂βu ≡ hAB(u)∂λuAgαβ∇α∂βu

B = 0
if u is a wave map.

Corollary. The stress energy tensor of the mapping U ≡ i◦u: (V,g) → (RN , q),
i an isometric embedding of (M,h) into (RN , q) has zero divergence if u is a
wave map.
Proof. If (M,h) is isometrically embedded by i in (RN , q) then the stress
energy tensors of u and U ≡ i ◦ u are the same tensors on V , as can be seen
by elementary calculus.

The energy momentum vector of the mapping u, equivalently of U = i◦u,
with respect to a vector X on V is the vector P(X,u) on V given in local
coordinates by

Pα ≡ Tα
β Xβ

Lemma 2. If X is time like or null, then P(X,u) is time like or null, X and
P(X,u) have opposite time orientation.
Proof. Straightforward, cf. CB 1998a [23].
Lemma 3. The divergence of the energy momentum vector P(X,u) is given
by

∇αPα = 1
2T

αβ(LXg)αβ , (LXg)αβ ≡ ∇αXβ +∇βXα.

The energy momentum vector P has zero divergence if X is a Killing
vector of g.
Proof. Straightforward, using the fact that the stress energy tensor has zero
divergence. The symmetric 2-tensor π ≡ LXg is the Lie derivative of the
spacetime metric with respect to X.

The energy density of a mapping u at time t with respect to the past
oriented timelike or null vector X is the non negative number

ε(X, ν) ≡ P ανα

with P α the components of the energy momentum vector P(X,u) of u
with respect to X and να the components of the past oriented unit normal
ν to St.

The mappings u and U = i ◦ u have the same energy density if i is an
isometric embedding.

In the coframe θ α we have
νi = 0, ν0 = N

hence
Pανα = P0N.

If the space time metric g is stationary, i.e. admits a time like Killing
vector, it is appropiate to define the energy density with respect to this
vector. Otherwise the natural geometric choice is to take for X the past
oriented unit normal ν to St. The energy momentum vector is then P(ν,ν)
and one obtains the usual energy density of u (equivalently of U ≡ i ◦ u),
denoted ε(u), namely:
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P 0N ≡ ε(u) ≡ T 00N2 ≡ 1
2 (| N−1∂0u |2h + | Du |2g,h)

Also, if i is an isometric embedding in a euclidean space (RN , δ) and U
≡ i◦u,
ε(u) ≡ 1

2 (| N−1∂0U |2 + | DU |2g) ≡ 1
2δIJ{gij∂iU I∂jU

J +N−2∂0U I∂0U
J},

We have denoted by | | g,h (respectively | | g) the norm both in g and h
(respectively in g and δ).

The integral of the energy density of u on St is, by definition, the energy
e(t, u) of u at time t. We denote by µt the volume element of gt, we have:

e(t, u) ≡ ∫
St

P0Nµt.

We deduce from the hypothesis that g is uniformly equivalent to the given
metric e on S that |Du| 2g,h ≡ | DU | 2g is uniformly equivalent to | DU | 2e ≡
| DU |2. We see that e(t, u) is uniformly equivalent to a sum of norms defined
in Sect. 3: there exist positive numbers Cg and C ′

g depending only on the
bounds on g and N such that:

Cge(t, u) ≤‖ ∂0u(., t) ‖L2 + ‖ Du(., t) ‖L2≤ C ′
ge(t, u)

We denote by K the extrinsic curvature of S imbedded in (V,g). In local
coordinates (t, xi) we have

Kij = − 1
2N (∂tgij +∇iβj +∇jβi)

We will prove the following theorem.
Theorem 1. (energy equality). Let u be a solution of the wave map equation
on a manifold V = S×I with a C1 regularly hyperbolic metric g such that
DN and NK are uniformly bounded in g norm on each St. Suppose that u
∈ C2(T ) ∩ E1(T ). Then u satisfies for t ∈ I ≡ [0, T ] the fundamental energy
inequality:

e(t, u) = e(0, u) +
∫ t
0

∫
Sτ

N−1∂iN∂iu.∂0u+NKijTij}µτdτ
Proof. A straightforward computation shows that for X = ν we have:

(LXg)0i = −∂iN, (LXg)00 = 0, (LXg)ij = −2 ω 0
ijN = Kij

The integration of the divergence equation satisfied by P, the value of
Lνg and the density of C∞

0 (S) in H1 give the theorem.
In cosmological problems it is often convenient to take as time parameter

the mean extrinsic curvature of the submanifolds St, which characterises the
expansion (or contraction) of the universe. We set:

τ ≡ TrgK ≡ gijKij

We will deduce from the energy equality the following corollary.
Corollary. We set

Pij ≡ Kij − 1
ngijτ , with TrgP ≡ gijPij = 0.

Then
e(t, u) = e(0, u) +

∫ t
0

∫
Ss

N−1∂iN∂iu.∂0u+NP ij∂iu.∂ju}
+ Nτ{( 1n − 1

2 ){| Du |2g,h + 12 | N−1∂0u |2h}µsds.
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Proof. We have:
KijTij ≡ {P ij + 1

ngijτ}{∂iu.∂ju − gij

2 (−N−2∂0u.∂0u+ | Du |2g,h}
that is

KijTij ≡ P ij∂iu.∂ju+ τ{( 1n − 1
2 ){| Du |2g,h + 12 | N−1∂0u |2h}

Theorem 2. (General energy inequality). Under the hypothesis of Theorem
1 the energy of a wave map satisfies the following inequality:

e(t, u) ≤ e(0, u)exp{∫ t0 SupSτ
(| DN |g +C | NK |g)dτ.

with C a positive number depending only on n.
Proof. The integral equality of Theorem 1 together with the inequality sa-
tisfied by scalar products imply the following inequality, with C a positive
number depending only on n:

e(t, u) ≤ e(0, u) +
∫ t
0

∫
Sτ

{| DN |g| Du |g,h| N−1
∂0u |h +C | NK |

g(| Du |2g,h + | N−1∂0u |2h}µτdτ
hence

e(t, u) ≤ e(0, u) +
∫ t
0 SupSτ

(| DN |g +C | NK |g)eτ (u)dτ.
This inequality implies the theorem by the Gromwall lemma.

Remark 1. In the case where X is a Killing vector field of g and we use
it to define the energy density the energy inequality becomes an equality,
expressing the conservation of energy of the mapping u. We have chosen here
for X the unit normal to S. It is a Killing field if DN = 0 and K = 0 the
corresponding energy e(t, u) is then conserved .
Remark 2. The energy inequality gives only an estimate of ∂U . An estimate
of U , as a mapping in RN , can be obtained from its initial data by the formula

U I(., t) = U I(., 0) +
∫ t
0 ∂tU

I(., τ)dτ
which implies

‖ U(., t) ‖ L2 ≤‖ U(., 0) ‖L2 +t1/2 ‖ ∂tU ‖L2 .
We will return later to the exploitation of the corollary of Theorem 1.

5 Second Energy Estimate

The estimate of the L2 norm of Du and ∂0u on St is not sufficient to prove
the existence of strong solutions of the wave map eqation even for n = 1.

We will now obtain a local in time estimate of the H1 norms of these
quantities by a new method which will be better suited for the cosmological
problems. We suppose the shift to be zero, then ∂0 ≡ ∂/∂t. We denote by
∇̄ the covariant derivative for mappings between the riemannian manifolds
(S, g) → (M,h), acting on sections of vector bundles Ē(p,q) over S with fiber
⊗T ∗

x ⊗q Tu(x)M , for example:

∇̄i∂ju
A ≡ ∂2iju

A − Γh
ij∂hu

A + ΓA
BC(u)∂iu

B∂ju
C .

We set (suggestion due to V. Moncrief):
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e(1)(t, u) ≡ 1
2

∫
St

{∆̄u.∆̄u+ | ∇̄u′ |2g,h}µt, with u’ ≡ N−1∂0u.

where ∆̄ is the laplace operator for the metric g and the derivative ∇̄,
i.e.:

∆̄u ≡ gij∇̄i∂ju

We denote by Dt the covariant derivative of a mapping from R into time-
dependent sections of a vector bundle Ē, defined by:

Dt∂iu
A ≡ ∂0∂iu

A + ΓA
BC(u)∂0u

B∂iu
C .

Dt is a linear operator mapping the space of time-dependent sections of
Ē(p) into itself given by the law

Dt∇̄puA ≡ ∂0∇̄puA + ΓA
BC(u)∂0u

B∇̄puC .

The ∇̄ or Dt derivatives of the mappings from S or R into ⊗ 2TM by
x �→ h(u(x, t)) or t �→ h(u(., t) are both zero. The Dt derivative of the metric
gij is equal to ∂0gij = −2NKij . The following commutation relations can be
foreseen and checked by straightforward computation:

Dt∂iu = ∇̄i∂0u,

Dt∇̄i∂0u
A- ∇̄iDt∂0u

A = RA
CD E(u)∂0u

C∂iu
B∂0u

E ,
Dt∇̄i∂ju

A- ∇̄iDt∂ju
A = RA

CD E(u)∂0u
C∂iu

B∂ju
E - ∂hu

A∂0Γ
h
ij .

We recall the identities (zero shift)
∂0g

ij = 2NKij .
∂0Γ

h
ij ≡ ∇̄h(NKij)− ∇̄i(NKh

j )− ∇̄j(NKh
i ).

from which we deduce
Dt∇̄i∂iu = ∇̄iDt∂iu+RCD E∂0u

C∂iuD∂iu
E + 2NKij∇̄j∂iu

+{−∇̄h(Nτ) + 2∇̄i(NKih)}∂hu.
Before computing the time derivative of e(1) we set:

I0 = 1
2 | ∇̄u′ |2g,h, I1 ≡ 1

2∆̄u.∆̄u,

hence
e(1)(t, u) ≡ ∫

St
{I0 + I1}µt.

We have
∂µt

∂t = −Nτ

hence
de(1)

dt =
∫

St
{ ∂
∂t (I0 + I1)− Nτ(I0 + I1)}µt

We find, using the definition of Dt, the Leibnitz rule and the property
Dth = 0

∂0I1 ≡ DtI1 = Dt∇̄i∂iu.∇̄j∂ju,

We have
Dt∇̄i∂iu = gihDt∇̄h∂iu+ ∂0g

ih∇̄h∂iu

with
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∂0g
ih = 2NKih.

Using the commutation formulas and Stokes’ formula we obtain:∫
St

DtI1µt =
∫
St

{−Dt∂iu.∇̄i∇̄j∂ju + F.∇̄j∂ju}µt
with

F ≡ RCD E∂0u
C∂iuD∂iu

E + 2NKij∇̄j∂iu+ {−∇̄h(Nτ)+2∇̄i(NKih)}∂hu.
On the other hand

∂0I0 ≡ DtI0 = gijDt∇̄iu
′.∇̄ju

′ + 1
2∂0g

ij∇̄iu
′.∇̄ju

′.
therefore:∫

St
DtI0µt =

∫
St

{gijDt∇̄iu
′.∇̄ju

′ +NKij∇̄iu
′.∇̄ju

′}µt.
We compute the wave map equation N−2∇0∂0u

A − gij∇i∂ju
A = 0 with

our definitions. We have, with ωαβγ the connection coefficients of g
∇0∂0u

A ≡ ∂0∂0u
A − ωα00∂αuA + ΓA

BC∂0u
C∂0u

D

which gives:
∇0∂0u

A ≡ N∂0(N−1∂0uA)− N∂iN∂iu
A + ΓA

BC∂0u
C∂0u

D

≡N{Dt(N−1∂0uA − ∂iN∂iu
A}.

On the other hand
∇i∂ju = ∇̄i∂ju − ω0ij∂0u = ∇̄i∂ju+N−1Kij

The wave map equation reads therefore
Dt(N−1∂0uA) = ∇̄i(N∂iu

A) + τ∂0u
A.

The commutation relation written for ∂0u applies to u′ ≡ N−1∂0u, we
have

(Dt∇̄i − ∇̄iDt)(N−1∂0uA) = N−1RA
CD E(u)∂0u

C∂iu
B∂0u

E ,
We have therefore if u is a wave map

Dt∇̄i(N−1∂0uA) = ∇̄i{∇̄j(N∂ju
A) + τ∂0u

A}+N−1RA
CD E(u)∂0u

C∂iu
B∂0u

E .
Inserting this expression in DtI0 , adding DtI1 and integrating we find:∫

St
Dt(I0 + I1)µt =∫

St
{∇̄i(∇̄j(N∂ju) + τ∂0u) +N−1RA

CD E(u)∂0u
C∂iu

B∂0u
E

+ NKij∇̄ju′}.∇̄iu′µt +
∫
St

{−Dt∂iu.∇̄i∇̄j∂ju+ F.∇̄j∂ju}µt.
The derivatives of third order in u cancel if u is a wave map. Indeed a

straightforward computation (recall that u′ ≡ N−1∂0u and Dt∂iu = ∇̄i∂0u)
gives

∇̄i(∇̄j(N∂ju).∇̄iu
′ - ∇̄i∇̄j∂ju.∇̄i∂0u ≡ C

with, by elementary computation,
C ≡ - ∇̄i∆̄u∂iN.u′ + (∂iN∆̄u+ ∂jN∇̄i∂ju).∇̄iu′

Under integration on St this term is equivalent to the following one, de-
noted B:

B ≡ ∆̄N∆̄u.u′ + (2∂iN∆̄u+ ∂jN∇̄i∂ju).∇̄iu′
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We have found:
de(1)

dt =
∫

St
{∂0(I0 + I1)− Nτ(I0 + I1)}µt

=
∫
St

{ A1+ A0 +B − Nτ (I0 + I1)µt
with
A0 ≡ {∇̄i(Nτu′) +N−1RA

CD E(u)∂0u
C∂iu

B∂0u
E + NKij∇̄ju′}.∇̄iu′

Setting as in the previous section
Kij ≡ Pij + 1

ngijτ, with gijPij = 0

gives
A0 ≡ 2N(1 + 1

n )τ I0 +NPij∇̄iu′.∇̄ju′ +
{∂i(Nτ)u′ +N−1RA

CD E(u)∂0u
C∂iu

B∂0u
E }.∇̄iu′

while A1 ≡ F.∇̄j∂ju, given by
A1 ≡ {RCD E∂0u

C∂iuD∂iu
E + 2NKij∇̄j∂iu

+(−∇̄h(Nτ)+2∇̄i(NKih))∂hu}.∆̄u

can be written:
A1 ≡ Nτ 4nI1 + 2NP ij∇̄i∂ju.∆̄u+ {RCD E∂0u

C∂iuD∂iu
E

+[−∇̄h(Nτ)+2∇̄i(NKih)]∂hu}.∆̄u

We obtain the following theorem by summing and rearranging the various
terms that we have found.

Theorem. (second energy equality). If u is a wave map, its second energy
satisfies the following equality.

de(1)(t,u)
dt =

∫
St

{ I + II + III + IV} µt

with
I ≡ Nτ [(1 + 2

n ) I0 + ( 4n − 1)I1]
II ≡ (2∂iN∆̄u+ ∂jN∇̄i∂ju).∇̄iu′ +NPij [∇̄iu′.∇̄ju′ + 2∇̄i∂ju.∆̄u]
III ≡ ∂h(Nτ)u′.∇̄hu

′ + [(∇̄(Nτ) + 2∇̄i(NKih))∂hu+ ∆̄Nu′].∆̄u

IV ≡ N−1RA
CD E(u)∂0u

C∂iu
B∂0u

E .∇̄iu′ +RCD E∂0u
C∂iuD∂iu

E .∆̄u.

We note that the terms I and II are quadratic in the second derivatives
of u, with coefficient Nτ for I, up to numbers depending only on n. In the
case of II the coefficients belong to DN or NP . The term III is bilinear in
the first and the second derivatives of u with coefficients ∇̄(NK) and ∆̄N ,
while IV is linear in second derivatives of u with coefficients cubic in the first
derivatives of u and linear in the Riemann tensor of the target metric h.

We note also the following lemma.

Lemma. For an arbitrary map for which the following integrals make sense
the following equality holds:∫

St
∆̄u.∆̄uµt =

∫
St

| ∇̄∂u |2g,h µt +∫
St

{R̄ij∂iu.∂ju - R .
AB C∂iuA∂juB∂iu

C .∂ju}µt
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where R̄ij is the Ricci tensor of the space metric g.
Proof. Stokes’ formula gives∫

St
∇̄i∂iu.∇̄j∂juµt = − ∫

St
∇̄j∇̄i∂iu.∂juµt

The Ricci formula gives
∇̄j∇̄i∂iu ≡ ∇̄i∇̄j∂iu − R̄ih∂hu+R .

AB C∂juA∂iuB∂iu
C .

Another application of Stokes’ formula achieves the proof of the lemma.

6 Case of n ≤ 3

In the case where n ≤ 3 the Sobolev embedding theorem can be used to
estimate the second energy e(1)(t, u) in terms of the H1 norms of Du and u.

We enunciate and prove a general theorem.

Theorem. (second energy estimate). There exists a number T > 0 and a
function C(t) continuous in [0,T) such that if g satisfies the hypothesis and
Riemann(h) is uniformly bounded on the target M then the second energy
y(t) satisfies the inequality:

y(t) ≤ C(t) for 0 ≤ t < T

Proof. We first bound the absolute values of the various terms appearing in
the right hand side of the energy equality proved in the previous section. We
denote generically by C numbers depending only on the dimension n. We
denote by |.| g,h pointwise norms in the metrics g and h.

We have:
|I| ≤ CN | τ |(I0 + I1).

Rather than bounding the absolute value of II we will bound at once its
integral. We use the lemma of the previous section which implies∫

St
| ∇̄Du |2g,h µt ≤ ∫

St
{ | ∆̄u | 2g,h + | Ricci(g)|g| Du |2g,h

+ |Riemann(h)| h| DU | 4g,h}µt.
We use the general property of scalar products that | a.b | ≤ | a | | b | ≤

1
2 (| a | 2+ | b |2) to obtain∫

St
|II| µt ≤ ∫

St
| IIa | µt +

∫
St

|IIb | µt

with ∫
St

|IIa| µt ≤ C
∫
St

{ [| DN |g +N | P |g][I0 + I1]

+ | DN | g | Ricci(g) |g| Du |g,h I
1/2
0 + | NP |g| Ricci(g) |g| Du |g,h I

1/2
1 } µt.

while∫
St

| IIb | µt ≤ ∫
St

{[| DN | g + | NP | g] |Riemann(h)| h| Du | 4g,h}µt
The absolute value of III is bounded as follows:

|III| ≤ C | D(Nτ) |g| u′ |h I
1/2
0 ] + [(| D(Nτ) |g + | ∇̄(NK) |g) | Du |g,h+

| ∆̄N || u′ |h]I1/21 .
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Finally

|IV| ≤ CN | Riemann(h(u)) |h [| Du |2g,h| u′ |h I
1/2
1 + | Du |g,h| u′ |2h I

1/2
0 ]

The integrals of I, IIa, III can immediately be bounded, for any n, in terms
of the first and second energies of u through the use of the Cauchy-Schwarz
inequality, if we suppose that DN , NP , their gradients and the Ricci tensor
of g are uniformly bounded in g norm on St.

We denote by y the second energy, namely we set:

y ≡ e(1)(t, u) ≡ y0 + y1

with

y0(t) ≡ ∫
St

I0µt, y1(t) ≡ ∫
St

I1µt

Recall that the first energy was e(t, u) ≡ e0 + e1 with

e0(t) ≡ 1
2

∫
St

|u′| 2hµt, e1(t) ≡ 1
2

∫
St

| Du |2g,h µt,

We then obtain, omitting to write the explicit dependence on t to abbre-
viate notations and denoting by C constants depending only on n,∫

St
|I| µt ≤ C [SupSt

| Nτ |][ y0 + y1]∫
St

|IIa| µt ≤ C{[SupSt | DN |g] y1/20 y
1/2
1 + [ SupSt | NP |g][y0 + 2y1]

+ [SupSt | DN | g | Ricci(g) |g]e1/21 y
1/2
0 + [SupSt | NP |g| Ricci(g) |g]e1/21 y

1/2
1 .

Remark. One can use an Lp norm of Ricci(g) intead of the Sup norm, and
estimates of an Lq norms ofDu and u′. These norms themselves being estima-
ted in terms of the first and second energies, as we will do later in bounding
the integrals of IV and IIb.

We now estimate the integral of III. We find:∫
St

|III| µt ≤ C{[SupSt
| D(Nτ) |]e1/20 y

1/2
0

+ SupSt
[| D(Nτ |g + | ∇̄(NP ) |g]e1/21 y

1/2
1 + [SupSt

| ∆̄N |]e1/20 y
1/2
1 .

Since IV is cubic in ∂u some further estimates are needed to obtain its
bound in terms of e and y. We proceed as follows.

The Cauchy-Schwarz inequality implies:∫
St

|IV| µt ≤ C[SupSt
N | Riemann(h(u)) |h][‖| Du |2g,h| u′ |h‖L2(g) y

1/2
1

+ ‖| Du |g,h| u′ |2h‖L2(g) y
1/2
0 ]

By Hölder’s inequality we have for arbitrary functions F and G on S:

‖ F 2G ‖L2(g) ≤ ‖ F 2 ‖L3(g)‖ G ‖L6(g), because 1
2 =

1
3 +

1
6 .

This inequality together with ‖ F 2 ‖L3≡ ‖ F ‖2L6 gives the estimate∫
St

|IV| µt ≤ C SupSt | Riemann(h(u)) |h {‖| Du |g,h‖2L6(g)‖ |u′| h ‖ L6(g)y
1/2
1

+ ‖| Du |g,h‖L6(g)‖| u′ |h‖2L6(g) y
1/2
0 }.

Due to the hypothesis made on the metric g the norms in Lp(g) are
equivalent to the norms Lp in the Sobolev regular metric s on S. One can
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use the Sobolev embedding theorem on (S, e) to estimate the L6 norm of an
arbitrary function F on S in terms of its H1 norms if n ≤ 3

‖ F ‖L6≤ Cs ‖ F ‖H1 , with ‖ F ‖ 2
H1

≡‖ F ‖2L2 + ‖ DF ‖2L2

where DF is the gradient of the scalar function F . Set

F0 ≡ |u′| h ≡ {N−2hAB∂0u
A∂0u

B}1/2.
The gradient of F , a scalar function is independent of the metric of the

space, that is DF ≡ ∇̄F. Therefore we can use the Leibnitz rule for covariant
derivatives of mappings to obtain:

DF0 = ∇̄u′.u′
|u′|h which implies | DF0| g ≤ | ∇̄u′ |g,h,

and, with Cg a number depending only on the equivalence bounds between
the metrics g and e,

| DF0 |≤ Cg | ∇̄u′ |g,h, hence ‖ DF0 ‖L2≤ Cgy
1/2
0 .

An analogous reasoning applied to

F1 ≡| Du | g,h
gives

‖ DF1 ‖L2≤ Cgy
1/2
1 .

Using these inequalities we obtain a bound in terms of the first energy e
≡ e(t, u) and the second energy y ≡ e(1)(t, u), given by the following estimate
(we use the fact that if a and b are positive numbers then (a+b)3 ≤ 4(a3+b3))∫

St
|IV| µt ≤ CCgCh{e3/2y1/2 + y2}

with

Ch ≡ SupSt | Riemann(h(u)) |h
The bound of the integral of |IIb | is obtained similarly because∫

St
|IIb | µt ≤ ∫

St
| DN |g Ch | Du |4g,h µt

≤ SupSt [| DN |g + | NP |g]Ch ‖ Du ‖L2(g)‖ Du ‖ 3
L6(g).

Therefore ∫
St

|IIb| µ t ≤ C ′
gCh(e1/2y3/2 + e3/2y1/2)

By the first energy estimate we know that e ≡ e(t, u) is a continuous func-
tion of t ∈ [0,∞). The obtained inequality give therefore for y(t) a differential
inequality of the following type:

dy
dt ≤ C{ αy + βy1/2 + γy3/2 + δy2}

The theorem follows from the application of Gromwall’s lemma and the
fact that the differential equation satisfied by y corresponding to this diffe-
rential inequality has a continuous solution z on the interval [0, T ), for some
small enough T > 0 which takes the value z(0) = y(0) for t = 0.

The expressions for the functions α, β ,γ, δ can be read from the inequa-
lities written above.
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The coefficients γ and δ of the nonlinear terms are zero if Ch = 0, i.e. if
the target is flat. The nonflatness of the target is an obstruction to a global
in time estimate.

Remark. The term in C ′
g can be expressed differently, using an Lp norm of

Ricci(g) intead of the Sup norm, and estimates of an Lq norms of Du and u′,
estimated again in terms of the first and second energies.

7 Estimate of H1 Norms

We have seen that the L2 norms on St of DU and N−1∂0U are equal to
the energy elements e1(t, u) and e0(t, u) respectively. It is not true for the H1
norms of these quantities compared with the second energy which are defined
through covariant mapping derivatives.

For instance we have (cf. Sect. 2)
Di∂jU

a ≡ ∂AiaDi∂ju
A − Ka

bc∂iU
b∂jU

c.

We deduce from this identity and the multiplication properties of Sobolev
spaces again an estimate of the H1 norm of DU on St in terms of the first
and second energies of u, hence the following lemma.

Lemma. The Cauchy problem for the wave map equation on S× [ t0,∞)
has a global solution if its second energy does not blow up in a finite time.

8 Case n = 1

In this case the Gagliardo-Nirenberg interpolation inequalities as extended by
Aubin 1982 [11] to riemannian manifolds can be used to reduce the degree of
the terms in second derivatives appearing in the final estimate. This method
was used by Ginibre and Velo (1981) [10] to prove global existence of wave
maps on two-dimensional Minkowski space time. However, the interpolation
theorem on a compact manifold involves the mean value of the function one
wants to estimate, and this poses difficulties. Instead of this interpolation we
will use simply the Sobolev embedding theoren of L3 into W 1

1 when n = 1:
in this case the Sobolev embedding theorem that there exists a constant Cs,
depending only on S and the given metric s, such that

‖ F ‖L3≤ Cs ‖ F ‖W 1
1
, with ‖ F ‖ W 1

1
≡ ‖ F ‖L1 + ‖ DF ‖L1

, whereDF is the gradient of the scalar function F . Note that, if a function
is in L6, its square is in L3. Set

F0 ≡ |u′|2h≡ N−2hAB∂0u
A∂0u

B .

The gradient of F , a scalar function is independent of the metric of the
space, that is DF ≡ ∇̄F. Therefore we can use the Leibnitz rule for covariant
derivatives of mappings to obtain:

DF 0 =2∇̄u′.u′ which implies | DF 0| g ≤ | ∇̄u′ |g,h. |u′| h,
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and, with Cg a number depending only on the equivalence bounds between
g and δ,

| DF0 |≤ Cg | ∇̄u′ |g,h.| u′ |h, hence ‖ DF0 ‖L1≤ Cge
1/2
0 y

1/2
0 .

An analogous reasoning applied to
F1 ≡| Du | 2g,h

gives

‖ DF1 ‖L1≤ Cge
1/2
1 y

1/2
1 .

These inequalities lead to a linear inequality for the second energy y on
St which proves that it does not blow up. The method has been applied to
wave maps on Schwarzchild black holes (cf. C-B 1998a [23])

9 Case n = 2

The global existence (without uniqueness) of weak solutions of the wave map
equation on 2 + 1 dimensional Minkowski space time has been proved by
Muller and Struwe 1997 [22] in first energy space. One can hope to prove
global existence of strong, unique, solutions using again an interpolation in-
equality to reduce the differential inequality satisfied by the second energy
using the bound of the first.

We recall the general interpolation inequality on a riemannian manifold.
Lemma. (cf. Aubin [11, p 93] or C-B DeWitt [15, p 384]). Let (S, s) be Rn or
a compact manifold with or without boundary. Then there exists a constant
Cs depending only on (S, s) and n, m, j, q and r such that for all functions
f ∈ D(S), and satisfying:

f̄ ≡ ∫
S

fµ s = 0
in the case where S is compact without boundary, it holds

‖ Djf ‖Lp≤ Cs ‖ Dmf ‖aLr‖ f ‖1−aLq

where
1
p =

j
n + a{ 1r − m

n }+ (1− a) 1q ,
j
m ≤ a ≤ 1, p ≥ 1.

The inequality is not valid for a = 1 if r = n/(m − j) �= 1.
If we suppose that S is R2 the interpolation theorem can be used with

j = 0 and m = 2 to estimate the L6 norm of a function f ∈ D as follows:

‖ f ‖L6 ≤ Cs ‖ D2f ‖1/3L2 ‖ f ‖ 2/3
L2 .

We can apply such an inequality to the functions | Du | and |u′| to
estimate the cube of their L6 norms in terms of the first energy and linearly
in terms of D2 | Du | and D2 | u′ |. If these second derivatives could be
estimated with respect to | D2Du |2 or | D2u′ |, that is the third energy
of u, we could hope to obtain linear differential inequalities for the second
and third energies. Unfortunately these estimates are not simple in general.
It is possible that estimates of the second and third energies can be obtained
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though interpolation inequalities for special sources (Minkowski spacetime)
and targets (spaces of constant riemannian cuevature). We leave the study
to further work.

B. Expanding Universes

We will use refinements of our previous estimates to show that for small
data the second energy is bounded in the expanding direction of an expanding
universe of dimension n + 1 = 3. This energy does not blow up in a finite
time if n + 1 = 4.

We consider on a manifold S×R a spacetime metric of the form
g ≡ - N2dt2 + g, with g ≡ R2σ

The function R depends only on t and is increasing.
The function N and the metric σ satisfy the hypothesis made on N and g

in Part A. Moreover the metric σ is uniformly equivalent to the given Sobolev
regular metric s for t ≥ t0. We also suppose that the upper and lower bounds
ofN on each St are uniformly bounded when t tends to infinity. The behaviour
of N depends on the choice of the time parameter t: Ndt is the infinitesimal
proper time - cosmic time - on the time line, we choose t to be equivalent to
it.

The extrinsic curvature of a submanifold St is:
Kij ≡ − 1

2N ∂tgij ≡ −N−1{R∂tRσij + R2

2 ∂tσij}
The mean extrinsic curvature is:

τ ≡ gijKij ≡ −N−1{nR−1∂tR+ 1
2σ

ij∂tσij}
We suppose that:

∂tR > 0 for t > t0 > 0
and we say then that the universe (S × R,g) is expanding.

1 First Energy Estimate

We have obtained in Part A (corollary of Theorem 1) the equality satisfied
by the first energy of a wave map

d
dte(t, u) =

∫
St

Nτ{( 1n − 1
2 ){| Du |2g,h + 12 | N−1∂0u |2h}µt∫

St
N−1∂iN∂iu.∂0u+NP ij∂iu.∂ju}µt.

We replace Nτ by its value. Using the fact that R depends only on t we
have

d
dte(t, u) = - R−1∂tR

∫
St

{(1− n
2 ){| Du |2g,h +n

2 | N−1∂0u |2h}µt + R
with

R ≡ ∫
St

− 1
2ϕ{( 1n − 1

2 ) | Du |2g,h + 12 | N−1∂0u |2h}µt +∫
St

N−1∂iN∂iu.∂0u+NP ij∂iu.∂ju}µt.
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with
ϕ ≡ σij∂tσij .

Using the notations e0 and e1 of Part A we write the energy equality
under the form

d
dt (e0 + e1) = −R−1∂tR{(2− n)e1 + ne0}+R.

Set
f ≡ (e0 + e1)R2−n,

we have the equality:
d
dtf = −nR−1∂tRe0 + R2−nR.

Therefore, since we have supposed ∂tR ≥ 0:
d
dtf ≤ R2−n R ≤ R2−n | R |.

We now estimate | R |.
| R |≤ SupSt | ϕ | { n−2

2 e1 + 1
2e0}+ SupSt | DN |g e

1/2
0 e

1/2
1 +SupSt | NP |g e1.

The pointwise g and σ norms of the vector DN and the 2-tensor P are
linked by the relations:

| DN | g = R−1 | DN |σ, | P | g = R−2 | P |σ.
Since the trace free part P of the extrinsic curvature of St in the space

time is
Pij ≡ R2pij , with pij ≡ −∂tσij

2N .
we have

| P | g =| p |σ.
There exists therefore a constant C depending only on n such that

df
dt ≤ CR−1(Π + ν)f

with
Π ≡ R{ SupSt | ϕ | +SupSt

| Np |σ}.
ν ≡ SupSt | DN |σ .

We deduce from the differential inequality satisfied by f and Gromwall’s
lemma the following bound on f :

f(t) ≤ f(t0) exp
∫ t
t0

CR−1 (Π + ν)(τ)dτ .

We suppose that Π and ν are uniformly bounded on the interval [ t0,∞)
by some constant M , the bound on f is then

f(t) ≤ f(t0) exp 2CM
∫ t
t0

R−1(τ)dτ .
We have proved the following theorem.

Theorem. If on the interval [t0,∞) the functions Π and ν are uniformly bo-
unded and R−1 is integrable then the product f ≡ R2−n(e0+e1) is uniformly
bounded on this interval. Setting∫∞

t0
R−1(t)dt = ρ

it holds
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e(t, u) ≤ R(t)n−2< exp(2CMρ), with < ≡ e(0, u)R(0)2−n

Remark 1. If g is a Robertson-Walker metric, i.e. if N = 1 and the metric σ
is independent of t then the gradient of N and the trace free part P of the
extrinsic curvature are identically zero as well as the full extrinsic curvature
of (S, σ) in the spacetime metric −dt2 + σ. We have then M ≡ 0.
Remark 2.We introduce the following notations

E0 ≡ 1
2 ‖ u′ ‖2

L2 , u′ ≡ N−1∂tu, E1 ≡ 1
2 ‖ Du ‖2L2 ,

where the pointwise norms are taken in the metrics σ and h and the
volume element in the metric σ. Using the identities

| Du | g,h = R−1 | Du |σ,h, µt = Rnµσ

we find
E1 ≡ R2−ne1, E0 = R−ne0.

We see that if f ≡ R2−n(e0+e1) is uniformly bounded then E1 and R2E0
are uniformly bounded, i.e. E0 decays like R−2.

2 Second Energy Estimate

Using the same arguments than in the previous section we find that the
second energy e(1)(t, u) ≡ y ≡ y0 + y1 satisfies the equality:

dy
dt = - R−1∂tR{(n+ 2)y0 + (4− n)y1} + S

with
S ≡ ∫

St
{I + II + III + IV} µt,

where the notations are those of Part A except for I which reduces now
to

I ≡ - 12ϕ [(1 +
2
n ) I0 + ( 4n − 1)I1]

We set:
z ≡ R4−ny

then z satisfies the equality
dz
dt = R4−n{−R−1∂tR(2n − 2)y0 + S}.

and therefore, in an expanding universe, the inequality
dz
dt ≤ R4−nS.

We now bound the various terms of R4−nS. We find
R4−n

∫
St

| I| µt ≤ C SupSt | ϕ | z.
To write the following bounds we use the relation between the g and σ

norms of vectors and tensors noted before.
We also note that the covariant derivatives in the metrics g and σ are the

same and so
Ricci(g) = Ricci(σ), hence | Ricci(g) | g = R−2 | Ricci(σ) |σ

∆̄N ≡ R−2∆σN
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We find:
R4−n

∫
St

|IIa| µt ≤ C [ R−1 SupSt | DN |σ + [SupSt | Np |σ]z
+ [ R−1SupSt(| DN | σ | Ricci(σ) |σ)

+SupSt
| Np |σ| Ricci(σ) |σ]R−n/2e1/21 z1/2.

We now use the fact that D(Nτ) = Dϕ to obtain the bound∫
St

|III| µt ≤ C{[SupSt | Dϕ |σ]R1−(n/2)e1/20 z1/2

+ SupSt
[| D(Nτ |σ + | ∇̄(Np) |σ]R1−(n/2)e1/21 z1/2

+ [SupSt | ∆σN |]R−n/2e1/20 z1/2.

We now search for a bound of the integral of IV, using Sobolev estimates
relative to the fixed metric s which is uniformly equivalent to σ, but not to
g. We had: ∫

St
|IV| µt ≤ C Ch{‖| Du |g,h‖2L6(g)‖ |u′| h ‖ L6(g)y

1/2
1

+ ‖| Du |g,h‖L6(g)‖| u′ |h‖2L6(g) y
1/2
0 }.

with
Ch ≡ SupSt | Riemann(h(u)) |h

Denoting by |.| a pointwise norm in σ and h and ‖.‖ a norm in the volume
element of σ we have

| Du | g,h = R−1 | Du |, ‖| Du | g,h‖ Lp(g)= R−1+(n/p) ‖| Du |‖Lp .

| D2u |g,h= R−2 | D2u |, ‖| D2u |g,h‖Lp(g)= R−2+(n/p) ‖| D2u |‖Lp .

We recall the estimate resulting from the Sobolev embedding theorem,
the uniform equivalence of the metrics g and s and the fact that the norm of
the gradient is less than or equal to the gradient of the norm:

‖| Du |‖ L6 ≤ CgCs{‖| Du |‖L2 + ‖| D2u |‖L2

It implies
R1−(n/6) ‖| Du | g,h ‖L6(g) ≤

≤ CgCs{R1−(n/2) ‖| Du |g,h‖L2(g) +R2−(n/2) ‖| D2u |g,h‖L2(g)},
that is,

‖| Du | g,h ‖L6(g) ≤ CgCs{R−(n/3) ‖| Du |g,h‖L2(g) +R1−(n/3) ‖| D2u |g,h‖L2(g)}.
The Sobolev inequality applied to |u′| together with

|u′| h =| u′ |, ‖|u′| g,h‖ Lp(g)= Rn/p ‖| u′ |‖Lp .

| Du′ |g,h= R−1 | Du′ |, ‖| Du′ |‖Lp= R−1+(n/p) ‖| D2u |‖Lp

gives the same inequality for L6 norms when Du is replaced by u′.
We obtain the following bound for the integral of IV by using the definition

of the first energy e. We denote by Cg constants depending only on n, s and
the uniform bounds of g and N :∫

St
|IV| µt ≤ Cg Ch{R−ne3/2 + R3−ny3/2}y1/2.
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We now use the definitions of f ≡ R2−ne and z ≡ R4−ny, together with
the elementary fact holding for any pair of positive numbers (a + b)3 ≤ 4
(a3 + b3) to write

R4−n
∫
St

|IV| µt ≤ CCgCδ ChR
−1{f3/2z1/2 + z2}

The previously used inequalities give also
R4−n

∫
St

|IIb | µt ≤ SupSt [R
−1 | DN |σ + | Np |σ]Ch{ f3/2z1/2+ f1/2z3/2}.

Using again the definition of f and assembling previous results we obtain
the following theorem.

Theorem. When n = 2 or 3 the second energy e(1)(t, u) is such that its
product z by R4−n satisfies the differential inequality

dz
dt ≤ C{αz1/2 + βz + γz3/2 + δz2},

where α, β, γ, δ are the following positive functions of t

α ≡ { R−1[ R−1SupSt(| DN | σ | Ricci(σ) |σ)+SupSt(| Np |σ| Ricci(σ) |σ)]
+ SupSt [| Dϕ |σ + | ∇̄(Np) |σ] + R−1[SupSt

| ∆σN |]}f1/2 + CgChR
−1f3/2

β ≡ R−1 SupSt | DN |σ + SupSt [| Np |σ + | ϕ |]
+ SupSt [R

−1 | DN |σ + | Np |σ]Chf
3/2,

γ ≡ SupSt
[R−1 | DN |σ + | Np |σ]Ch f1/2

δ ≡ CgCh R−1.

3 Global Existence Theorem

It follows from the general theory that the wave map equation has global
solutions on S ×R, with S of dimension n ≤ 3, if its first and second energies
e and e(1) do not blow up in finite time. We have given conditions under
which the function f ≡ R2−ne remains finite when t tends to infinity.

It is possible to study the behaviour of e(1) by using the differential in-
equality satisfied by z ≡ R4−ne(1) and the previously found estimate of the
first energy as we have done (C-B 1998c [24]) in the case of a Robertson-
Walker spacetime. However, a better handling of the conditions to impose on
the initial data is obtained by estimating directly the sum of the weighted
energies, namely

w ≡ f + z.

We make the following hypothesis.

Hypothesis
H 1. The space time metric g on S × I, with I the interval [ t0,∞) and S a
smooth manifold of dimension 2 or 3 is

g = - N2dt2 +R2σ.

The lapse N is uniformly equivalent to a positive constant. Its space
gradient DN is uniformly bounded in σ norm. Its Laplacian in the metric σ
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is uniformly bounded. The product by R of the Ricci tensor of σ is uniformly
bounded in σ norm.

The product by R−1 of the extrinsic curvature of (S, σ) as submanifold
of (S × I,−N2dt2 + σ) is uniformly bounded in σ norm as well as its first
space derivative.

H2. The properly riemannian metric σ is uniformly equivalent to a given
riemannian metric s on S, Sobolev regular.

H3. The coefficient R is a C1 positive and nondecreasing function depending
only upon t. The function R−1 is integrable on I. We set∫∞

t0
R−1(t)dt = ρ.

H4. The target (M,h) is a smooth complete riemannian manifold with cur-
vature uniformly bounded in h norm.

We write a differential inequality for w ≡ f + z using the first energy
inequality

df
dt ≤ CR−1(Π + ν)f

and the second energy inequality obtained in the previous section together
with the obvious fact that f ≤ w and z ≤ w. We obtain an inequality of the
type

dw
dt ≤ R−1{Aw +Khw

2},
where the constant A depends only on the uniform bounds specified in

the hypothesis H1 that we made on N and the metric σ. The constant Kh is
a product by Ch, the bound of the h norm of the Riemann tensor of h, with
a constant depending only on the uniform bounds of the hypothesis H 1 and
H2 on N , σ and δ.

It results from Gromwall’s lemma that

w(t) ≤ W (t),

where W is the solution which takes for t= t0 the value

W (t0) ≡ W0 = w(t0) ≡ f(t0) + z(t0)

of the following differential equation:
dW
dt = R−1{AZ +KhZ

2}
F (W ) ≡ ∫W

W0

dξ
Aξ+Khξ2

=
∫ t
t0

dτ
R(τ) ≡ ρ(t).

This implicit equation for W as a function of ρ(t), i.e. of t, has a bounded
solution for all t ∈ I ≡ [t0,∞) if the curve Y = F (W ) drawn in the cartesian
plane is cut by the lines Y = ρ(t), t ∈ I. It is elementary to check that the
function Y = F (W ) is monotonously increasing and convex towards positive
Y s. When W tends to infinity, F (W ) tends to infinity if Kh = 0, i.e. if the
target is flat: in this case the line Y = ρ(t) cuts the curve Y = F (W ), in
one point W (t) and therefore the solution W (t) of the implicit equation for
W exists, bounded, for every t ∈ I. In the case where Kh �= 0 and W0 �= 0,
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F (W ) tends to a finite limit µ(W0) when W tends to infinity. The implicit
equation for W has a bounded solution for all t ∈ I if ρ is less than this limit.

Lemma. The limit µ(W0) is given by

µ(W0) ≡ ∫∞
W0

dξ
Aξ+Khξ2

= A−1log{ AK−1
h

W0

1+AK−1
h

W0
}, if A �= 0,

µ(W0) = 1
KhW0

if A = 0.

Theorem. Let the spacetime (S × I,g), I ≡ [t0,∞) and the target (M,h)
satisfy the hypothesis H. There is a neighbourhood ω of zero in H1 × H1
such that for all wave maps initial data (ϕ,ψ) with (DΦ,Ψ) ∈ ω the wave
map equation has a global solution on S × I.
Proof. We see on the value of µ(W0) that for any given number ρ there is a
number < > 0 such that W0 < < implies µ(W0) > ρ. For wave maps initial
values such that

w(t0) ≡ f(t0) + z(t0) ≡ R(t0)2−ne(t0) +R(t0)4−ne(1)(t0) < <.

We have seen in Sect. 6 of Part A that the above inequality is equivalent
to a bound of the H1 norms of DΦ and Ψ .
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9. Gu Chaohao On the Cauchy problem for harmonic maps on two dimensional

Minkowski space, Comm. Pure and App. Maths 33, 1980 727-737.
10. J. Ginibre and G. Velo The Cauchy problem for the O(N), CP(N-1) and

GC(N,p) models, Ann. of Phys. 142, n◦2, 1982 393-415.
11. T. Aubin Nonlinear analysis and Monge Ampere equations, Springer 1982.



Global Wave Maps on Curved Space Times 29

12. V. Moncrief Reduction of Einstein’s equations for vacuum spacetimes with
spacelike U(1) isometry groups, Ann. of Phys. 167 n◦1, 1986 118-142.

13. Y. Choquet-Bruhat Hyperbolic harmonic maps, Ann Inst. Poincaré 46 n◦1
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Abstract. We discuss several explicitly causal hyperbolic formulations of Ein-
stein’s dynamical 3 + 1 equations in a coherent way, emphasizing throughout the
fundamental role of the “slicing function,” α—the quantity that relates the lapse
N to the determinant of the spatial metric ḡ through N = ḡ1/2α. The slicing func-
tion allows us to demonstrate explicitly that every foliation of spacetime by spatial
time-slices can be used in conjunction with the causal hyperbolic forms of the dy-
namical Einstein equations. Specifically, the slicing function plays an essential role
(1) in a clearer form of the canonical action principle and Hamiltonian dynamics
for gravity and leads to a recasting (2) of the Bianchi identities ∇βGβ

α ≡ 0 as
a well-posed system for the evolution of the gravitational constraints in vacuum,
and also (3) of ∇βT β

α ≡ 0 as a well-posed system for evolution of the energy and
momentum components of the stress tensor in the presence of matter, (4) in an
explicit rendering of four hyperbolic formulations of Einstein’s equations with only
physical characteristics, and (5) in providing guidance to a new “conformal thin
sandwich” form of the initial value constraints.

1 Introduction

Einstein’s equations have, for much of the history of general relativity, been
explored very fruitfully in terms of their concise and elegant statements cha-
racterizing the geometry of four dimensional pseudo-riemannian geometries.
Such geometries depict possible physical spacetimes containing only “the gra-
vitational field itself.” The variety and properties of these “empty” spacetimes
is truly astonishing. Quasi-local geometric entities such as trapped surfaces
and event horizons have become familiar. It is now firmly established that
large-scale topological and geometrical features of spacetime are, indeed, sub-
jects of physical inquiry. The nature and distribution of “matter” at stellar
scales and upward has also brought particle physics and hydrodynamics to
the fore.

During these years, however, a steady development of the “space-plus-
time” or 3 + 1 view of spacetime geometry has also occured. Here one views
general relativity as “geometrodynamics” in the parlance of John Wheeler [1].
The emphasis, in the canonical or Hamiltonian explication of geometrodyna-
mics given by Arnowitt, Deser, and Misner (“ADM”) [2] and by Dirac [3,4],
is on the evolving intrinsic and extrinsic geometry of spacelike hypersurfaces
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which determine, by knowledge of the appropriate initial data and by classi-
cal causality, the spacetime “ahead” (and “behind”), if spacetime is globally
hyperbolic, an assumption we adopt throughout.

Underlying and preceding geometrodynamics and Hamiltonian methods,
however, was the basic realization that four of the ten Einstein vacuum equa-
tions are nonlinear constraints on the initial Cauchy data, which play such a
decisive role in defining the later canonical formalism [5]. The Cauchy pro-
blem, constraints plus evolution, was shown to be well-posed in the modern
sense of nonlinear partial differential equations [6,7,8,9]. This train of progress
was marked by early work of Darmois and Lichnerowicz [8], and brought to
definitive development by one of us [6,7].

At this writing, with accurate three-dimensional simulations using the full
Einstein equations, with and without the presence of stress-energy sources,
becoming essential for realistic studies of gravity waves, high energy astro-
physics, and early cosmology, studies of Einstein’s equations of evolution in
3 + 1 form have blossomed [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28] (an incomplete sample — see also [10]). Hyperbolic forms, especially
first-order symmetrizable forms possessing only physically causal directions
of propagation, have undergone very significant development in the past few
years.

Specifically, in this chapter we describe in detail several explicitly causal
hyperbolic formulations of Einstein’s dynamical 3+1 equations by following a
path that can be viewed as lighted by the “slicing function,” α— the quantity
that relates the lapse N to the determinant of the spatial metric ḡ through
N = ḡ1/2α. This representation of the lapse function was presented in [18].
The slicing function allows us to demonstrate explicitly that no foliation of
spacetime by spatial time-slices can be an obstacle to the causal hyperbolic
forms of the dynamical Einstein equations. The slicing function plays an es-
sential role (1) in a more precise form of the canonical action principle and
canonical dynamics for gravity, (2) leads to a recasting of the Bianchi identi-
ties ∇βG

β
α ≡ 0 as a well-posed system for the evolution of the gravitational

constraints in vacuum and also (3) of ∇βT
β
α ≡ 0 as a well-posed system for

evolution of the energy and momentum components of the stress tensor in
the presence of matter, (4) in an explicit display of four hyperbolic formula-
tions of Einstein’s equations with only physical characteristics, and (5) even
in providing guidance to a new elliptic “conformal thin sandwich” form of
the initial value constraints.

We recall that the proof of the existence of a causal evolution in local
Sobolev spaces of ḡ and its extrinsic curvature (second fundamental tensor)
K into an Einsteinian spacetime does not result directly from the equations
giving the time derivatives of ḡ and K in terms of space derivatives of these
quantities in a straightforward 3 + 1 decomposition of the Ricci tensor of
the spacetime metric, which contains also the lapse and shift characterizing
the time lines. These equations do not appear as a hyperbolic system for
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arbitrary lapse and shift, in spite of the fact that their characteristics are
only the light cone and the time axis [25].

We now turn to notational matters, conventions, and to the 3+1 decom-
position of the Riemann and Ricci tensors. We assume here and throughout
the sequel that the spacetime V = M × R is endowed with a metric g of
signature (−,+,+,+) and that the time slices are spacelike, that is, have
signature (+,+,+). These assumptions are not restrictive for globally hyper-
bolic (pseudo-riemannian) spacetimes.

We choose on V a moving coframe such that the dual vector frame has
a time axis orthogonal to the slices Mt while the space axes are tangent to
them. Specifically, we set

θ0 = dt ,

θi = dxi + βidt , (1)

with t ∈ R and xi, i = 1, 2, 3 local coordinates on M . The Pfaff or convective
derivatives ∂α with respect to θα are

∂0 ≡ ∂

∂t
− βi∂i

∂i ≡ ∂

∂xi
(2)

In this coframe, the metric g reads

ds2 = gαβθ
αθβ ≡ −N2(θ0)2 + gijθ

iθj . (3)

The t-dependent scalar N and space vector β are called the lapse function
and shift vector of the slicing. These quantities were explicitly identified in [7]
and play prominent roles in all subsequent 3+1 formulations. Any spacetime
tensor decomposes into sets of time dependent space tensors by projections
on the tangent space or the normal to Mt.

We define for any t-dependent space tensor T another such tensor of the
same type, ∂̄0T , by setting

∂̄0 ≡ ∂

∂t
− £β , (4)

where £β is the Lie derivative on Mt with respect to β.
Notice that in our foliation-adapted basis (1) and (2), that if g denotes

the spacetime metric and ḡ the space metric, then we have (g0i = g0i = 0 in
our frames):

gij = ḡij ; gij = ḡij . (5)

(Greek indices range {0, 1, 2, 3} while latin ones are purely spatial.) Hence, no
overbars will be used to denote components of the spatial metric. On the other
hand, for the determinants, we have (−det g) = N2(det ḡ). Therefore we shall
use overbars on spatial metric determinants; for example ḡ1/2 ≡ (det ḡ)1/2.
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Likewise, to distinguish the purely spatial components of the spacetime
Ricci tensor (say), we shall write Rij(g), while for the space Ricci tensor we
shall write Rij(ḡ). In general, of course, Rij(g) �= Rij(ḡ). The Levi-Civita
connection of g is denoted by ∇ and that of ḡ by ∇̄.

With the convention

∇ασβ ≡ ∂ασβ − σργ
ρ
βα , (6)

and the definitions

γαβγ = Γαβγ + gαδCε
δ(βgγ)ε − 1

2
Cα

βγ , (7)

dθα = −1
2
Cα

βγθ
β ∧ θγ , (8)

we have for the connection coefficients (Γ denotes an ordinary Christoffel
symbol)

γijk = Γ ijk(g) = Γ ijk(ḡ) (9)

γi0k = −NKi
k , γij0 = −NKi

k + ∂jβ
i , γ0ij = −N−1Kij (10)

γi00 = N∂iN , γ00i = γ0i0 = ∂i logN , γ000 = ∂0 logN . (11)

Observe that if α is a space scalar of weight −1, we have
∇̄iα = ∂iα+ αΓ kki(g) = ∂iα+ α∂i log ḡ1/2 , (12)
£βα = βi∇̄iα+ α∇̄iβ

i . (13)

The Riemann tensor is fixed by

(∇α∇β − ∇β∇α)V γ = V δRγδαβ (14)

while the Ricci tensor is Rδβ ≡ Rγδγβ .
The 3 + 1 decompositions of the Riemann and Ricci tensors are

Rijkl(g) = Rijkl(ḡ) + 2Ki[kKl]j , (15)
R0ijk(g) = 2N∇̄[jKk]i , (16)

R0i0j(g) = N
(
∂̄0Kij +NKikK

k
j + ∇̄i∂jN

)
. (17)

One can then obtain for the Ricci tensor

Rij(g) = Rij(ḡ)− N−1∂̄0Kij +KKij − 2KikK
k
j − N−1∇̄i∂jN , (18)

R0j(g) = N
(
∂jK − ∇̄hK

h
j

)
, (19)

R00(g) = N
(
∂0K − NKijK

ij +
ḡN
)
, (20)

where K ≡ Ki
i and 
ḡ ≡ gij∇̄i∇̄j . Finally, we note

G0
0 =

1
2
(
KijK

ij − K2 − R(ḡ)
)
. (21)
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2 Every Time Slicing Is “Harmonic”

The standard statement of the harmonic time-slicing condition is, that on a
t = const. time slice, ∂̄0[(−g)1/2g00] = 0. (This is equivalent, in a coordinate
basis, to ∂µ[(−g)1/2gµt] = 0.) Friedrich observed in [24] that the right hand
side of these equations could be a given function of (t, xi)1. (See also [19].)
Therefore, the standard harmonic condition expressed in 3 + 1 form, ∂̄0N +
N2K = 0, can be written as a generalized “harmonic” condition

∂̄0N +N2K = Nf , (22)

where f(t, x) is a known function. Specifically, introduce α(x, t) such that
∂̄0 logα = f , then (22) becomes

∂̄0N +N2K = N∂̄0 logα , (23)

from which the identity

∂̄0 log ḡ1/2 = −NK , (24)

allows us to see that
N = ḡ1/2α . (25)

We shall call α(x, t) the “slicing function;” it is a freely given scalar density
of weight −1.

It is clear that any N > 0 on a given time slice t = t0 can be written
in the form Nt0 = ḡ

1/2
t0 α(t0, x) for some α > 0 provided that gij(t0, x) is

a proper riemannian metric. Introducing “harmonic” time-slicing is thus a
simple matter. It is not, however, known at present how to construct a specific
long-time foliation from general rules telling how to specify α(t, x). However,
many foliations can be constructed in a “step-by step” fashion (numerical
time steps) provided certain obvious conditions are met. For example, an
elliptic condition on N can determine α(t) on a sequence of time slices if
the condition does not couple to variables that disturb the characteristic
directions of the hyperbolic equations. (The same is true for the shift vector
βi.) Alternatively, we can try educated guesses for α(t, x).

As it stands, (23) is clearly a speed zero (with respect to ∂0) hyperbolic
equation. However, this equation and Einstein’s equations lead to a second
order equation in space and time that propagates N along the light cone. This
result brings into sharp relief the congruence of (23) with the propagation on
the light cone of other variables.

The trace of Rij(g) gives an equation for ∂̄0K [19]

∂̄0K = −
ḡN +
[
R(ḡ) +K2 − Rkk(g)

]
N , (26)

1 Just as in electrodynamics, ∇µAµ = 0 → ∇µAµ
′ = �(t, x) �= 0 is perfectly

acceptable as a “Lorentz gauge” if � is known.
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where 
ḡ in (26) denotes the Laplacian gij∇̄i∇̄j . Taking the time derivative
of (23) and eliminating ∂̄0K with (26) shows that N obeys the non-linear
wave equation

✷̄gN +Rkk(g)N − R(ḡ)N − N∂̄0 logα+ (∂̄20 logα)N
−1 = 0 , (27)

where we wrote our wave operator or “d’Alembertian” as ✷̄g = −(N−1∂̄0)2+

ḡ. The characteristic cone of ✷̄g is clearly the physical light cone (c = 1).
The equation (27) per se will not be used explicitly in the sequel.

Substitutions of the form Nλ = ḡλ/2αλ (λ > 0) have also been consi-
dered [27]. However, after working out the wave equation analogous to (27)
that Nλ obeys, one finds that the local proper propagation speed of Nλ is√
λ. This behavior may or may not spoil the propagation of system variables

other than N , but if λ �= 1 and the system is hyperbolic, one will always
find that the characteristic directions of the system will not all be physical
ones. That is, in vacuum gravity, there will be some variables that propa-
gate neither on the light cone (speed = 1) nor along the axis parallel to ∂̄0
(speed = 0) which is orthogonal to t = const. The variables not propagating
in physical directions are gauge variables and one will not have physical cri-
teria for their boundary values on characteristic surfaces. On the other hand,
with λ = 1, one has fulfilled a necessary condition that physical and gauge
variables propagate together in the same directions.

In the following sections, whenever we consider hyperbolic systems, we
will focus on first-order symmetric (or symmetrizable) hyperbolic (“FOSH”)
equations possessing only physical characteristic directions. We understand
“FOSH” in this restricted physical sense only in this paper, and likewise for
other uses of the term “hyperbolic.”

3 Canonical Action and Equations of Motion

Choice of the slicing function α in (25) is arbitrary (α > 0). That α is freely
chosen while N must satisfy an equation of motion (23) suggests that it
should be regarded as the undetermined2 multiplier in the canonical action
principle of Arnowitt, Deser, and Misner (“ADM”) [2]. Here we follow [29].

To draw some lessons for the canonical formalism, let us first express the
3 + 1 evolution equations in their standard geometrical form (see: with zero
shift [8], arbitrary lapse and shift [7], spacetime perspective [30]):

ġij ≡ −2NKij , (28)

K̇ij ≡ N
(−Rij(g) +Rij(ḡ) +NKij − KikK

k
j − N−1∇̄i∂jN

)
, (29)

2 The multipliers associated with gauge freedom or, as here, with spacetime coor-
dinate freedom, can be freely chosen because they are not determined by physical
conditions. Hence, they are not true “Lagrange multipliers.”
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where ˙( ) ≡ ∂̄0( ).
A brief look at (29) shows that forming the combination Rij = Rij(g) −

gijR
k
k(g) leads to an equation of motion for the ADM canonical momentum

πij = ḡ1/2
(
Kgij − Kij

)
(30)

that contains no constraints. (In this section we choose units in which 16πG =
c = 1.) Indeed, using (28) and (29), we obtain the identity

π̇ij ≡ Nḡ1/2
(
R(ḡ)gij − Rij(ḡ)

)− Nḡ−1/2 (2πikπjk − ππij
)

+ḡ1/2
(∇̄i∇̄jN − gij∇̄k∇̄kN

)
+Nḡ1/2

[Rij
]
. (31)

From the identity ġij = −2NKij , we have

ġij ≡ Nḡ−1/2 (2πij − πgij) . (32)

We now come to a crucial observation. Were the canonical equation for
π̇ij to be dictated by vanishing of the spatial part of the Einstein tensor,
Gij(g) = 0, as it is in the conventional ADM analysis [2], then the identity

Gij(g) + gijG
0
0(g) ≡ Rij(g)− gijR

k
k(g) ≡ Rij (33)

shows that a Hamiltonian constraint term ∼ ḡ1/2G0
0 remains in the π̇ij

equation (31). This would mean that the validity of the π̇ij equation would
be restricted to the subspace on which the Hamiltonian constraint is satisfied
(i.e., vanishes).

Though the ADM derivation of the π̇ij equation, found by varying gij in
their canonical action (βi is the shift vector)

S [g, π;N, β) =
∫

d4x
(
πij ġij − NH) , (34)

with N(t, x) , βi(t, x) and πij held fixed, is of course perfectly correct, ano-
ther point of view is possible. [We are ignoring boundary terms, a subject
not of interest here, and we note that the momentum constraint term −βiHi

(Hi = g1/2Ci, Ci = 2NR0
i) is contained in πij ġij ( ˙( ) ≡ ∂̄0) upon integration

by parts.] (The slicing density α has also been used prominently in the action
by Teitelboim [31], who simply set α = 1 (N = ḡ1/2), and by Ashtekar [32,
33] for other purposes.)

We have explained that α can be regarded as a free undetermined multi-
plier while N is a dynamical variable (a conclusion also reached by Ashtekar
for other reasons [32,33]) that determines the proper time Nδt between slices
t = t′ and t = t′ + δt. N is determined from α(t, x) and ḡ1/2 found by solving
the initial value constraint equations. (See the treatment of the constraints
in the final section of this article and in [30,34,35,9].) Motivated by this vie-
wpoint, we alter the undetermined multiplier N in the ADM action principle
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to α, where the Hamiltonian density H̃ is (with H ≡ 2ḡ1/2G0
0(g) being the

ADM Hamiltonian density of weight +1)

H̃ ≡ ḡ1/2H = πijπ
ij − 1

2
π2 − ḡR(ḡ) , (35)

a scalar density of weight +2 and a rational function of the metric. The action
becomes

S [ḡ, π;α, β) =
∫

d4x
(
πij ġij − αH̃

)
. (36)

The modified action principle for the canonical equations that we propose
in (36) is to vary πij and gij , with α(t, x) and βi(t, x) as fixed undetermined
multipliers. From

δH̃ = (2πij − gijπ) δπij +
(
2πikπjk − ππij + ḡRij(ḡ)− ḡgijR(ḡ)

)
δgij

−ḡ
(∇̄i∇̄jδgij − gij∇̄k∇̄kδgij

)
, (37)

we obtain the canonical equations

ġij = α
δH̃
δπij

= α (2πij − πgij) ≡ −2NKij , (38)

π̇ij = −α
δH̃
δgij

= −αḡ
(
Rij(ḡ)− R(ḡ)gij

)− α
(
2πikπjk − ππij

)

+ḡ
(∇̄i∇̄jα − ḡij∇̄k∇̄kα

)
. (39)

Equation (39) for π̇ij is the identity (31) with Rij = 0, which is equivalent
to Rij(g) = 0. Thus, (39) is a “strong” equation unlike its ADM counterpart,
which requires in addition the imposition of a constraint: H = 0.

In the present formulation, the canonical equations of motion hold ever-
ywhere on phase space with any parameter time t, a necessary condition for
the issue of “constraint evolution” even to be discussed in the Hamiltonian
framework. (See below in Sect. 4.)

If we define the “smeared” Hamiltonian as the integral of the Hamiltonian
density,

H̃α =
∫

d3x′α(t, x′)H̃ , (40)

the equation of motion for a general functional F [ḡ, π; t, x) anywhere on the
phase space is

Ḟ [ḡ, π; t, x) = −
{

H̃α, F
}
+ ∂̃0F , (41)

where ˙( ) denotes our total time derivative and ∂̃0 is a “partial” derivative of
the form ∂t − £β acting only on explicit spacetime dependence. The Poisson
bracket is

{F,G} =
∫

d3x

(
δF

δgij(t, x)
δG

δπij(t, x)
− δG

δgij(t, x)
δF

δπij(t, x)

)
, (42)
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and one sees that time evolution is generated by the Hamiltonian vector field

XH̃α
=
∫

d3x

{
α(2πij − πgij)

δ

δgij
− [αḡ(Rij(ḡ)− R(ḡ)gij)

+ α(2πikπjk − ππij)− ḡ(∇̄i∇̄jα − gij∇̄k∇̄kα)]
δ

δπij

}
. (43)

Because it does not contain any explicit constraint dependence, (43) is a valid
time evolution operator on the entire phase space. It is clear that the ( ˙̄g, π̇)
equations come from (43) applied to the canonical variables. The harmonic
time slicing equation (23) results from application of (43) to N , and the wave
equation for N comes from a repeated application of (43) to (23).

Evolution equations for the “constraints” are computed to be

∂̄0H̃ = −
{

H̃α, H̃
}
= αḡgij∂iHj + 2ḡgijHi∇̄jα , (44)

∂̄0Hj = −
{

H̃α,Hj

}
= α∂jH̃ + 2H̃∂jα , (45)

where ∇̄jα = ∂jα + αḡ−1/2∂iḡ
1/2. These are well-posed evolution equations

for the constraints, and they are equivalent to the twice-contracted Bianchi
identities when Rij = 0 or Rij = 0 (see below).

These results shed new light on the Dirac “algebra” of constraints [36].
It is well known that the Dirac algebra is not the spacetime diffeomorphism
algebra. This can be seen from the fact that while the action (36) is invariant
under transformations generated by Hj and H̃, [37] the equations of motion
that follow from this action areRij(g) = 0 even when Hj and H̃ do not vanish.
These equations of motion are preserved by spatial diffeomorphisms and time
translations along their flow in phase space, whereas a general spacetime
diffeomorphism applied to Rij(g) = 0 would mix in the constraints.

A second important view of the Dirac algebra results from the direct
and beautiful dynamical meaning of its once-smeared form. Equations (44)
and (45) express consistency of the constraints as a well posed initial-value
problem. If the constraint functions vanish in some region on an intial time
slice, they continue to do so under evolution by the Hamiltonian vector field
into the domain of dependence of that initial region. This mechanism follows
from the dual role of H̃ as a constraint and as part of the generator of time
translations of functionals of the canonical variables anywhere on the phase
space.

Let us take note that the Hamiltonian constraint per se does not express
the dynamics of the theory; the equation of dynamics is (41). In its “altered”
role, the Hamiltonian constraint function simply vanishes as an initial value
condition , from which ḡ1/2 is determined as in the initial value problem. [30]
Then N can be constructed from α. The Hamiltonian constraint, once solved,
remains so according to the results embodied in (44) and (45).
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4 Contracted Bianchi Identities

The results on canonical dynamics that follow on using α as an undetermined
multiplier are also reflected in the manner in which the twice-contracted
Bianchi identities,

∇βG
β
α ≡ 0 , (46)

can be written as a first-order symmetrizable hyperbolic system [29]. (In the
absence of hyperbolic form, (46) is practically useless in providing physical
equations of motion for the constraints when they are not satisfied.) Likewise,
this system extends to matter (see below). (Frittelli obtained well-posedness
for (46) by other methods [38].)

We recall that the equations of motion of the canonical momenta in va-
cuum are

Rij ≡ Rij(g)− gijR
k
k(g) = 0 , (47)

while the weight zero Hamiltonian constraint is

C = 2G0
0(g) = KijK

ij − K2 − R(ḡ) = 0 , (48)

and the weight zero one-form momentum constraint is

Ci = 2NR0
i(g) = 2∇̄j(Kij − Kgij) = 0 . (49)

Recall the identity (33):

Gij(g) + gijG
0
0(g) ≡ Rij(g)− gijR

k
k(g) ≡ Rij . (50)

Combining (47), (48), (49), and (33) with (46) gives the twice-contracted
Bianchi identities as a FOSH system

Ċ − N∇̄jCj ≡ 2
(
Cj∇̄jN +NKC − NKij [Rij ]

)
, (51)

Ċj − N∇̄jC ≡ 2
(
C∇̄jN +

1
2
NKCj − ∇̄i(N [Rij ])

)
. (52)

Substituting Hi = ḡ1/2Ci, H̃ = ḡC, and setting the equations of motion
Rij = 0 in (51) and (52) yields the evolution equations of the unsmeared
constraints as in (44) and (45).

Similar considerations show how to put the “matter conservation” equa-
tions ∇βT

αβ = 0 into well-posed form. This was also carried out by one of
us (YCB) and Noutchegueme [39] but the results obtained here are more im-
mediately physical. Unlike [39], we use the energy density ε = −T 0

0 rather
than ρ00(ραβ ≡ Tαβ − 1

2δ
α
βT

µ
µ) to obtain this result. It is clear that such a

result is possible because

Hαβ ≡ κ−1Gαβ(g)− Tαβ (53)
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vanishes as Einstein’s equation and in any case satisfies ∇βH
β
α = 0. We

can treat Hαβ as we did Gαβ above. (κ = 8πG ; c = 1.) The result is
nevertheless of interest as it presents the continuity and relativistic Euler
equations of matter in a well-posed form.

Straightforwardly expanding ∇βT
β
0 = 0 and ∇βT

β
i = 0 gives the con-

tinuity and Euler equations (cf. [30], p. 89), with ε ≡ −T 0
0 and the matter

current one-form ji ≡ NT 0
i. The continuity equation is

∂̄0ε+N∇̄iji = N(KijT
ij +Kε − 2jiai) , (54)

where ai ≡ ∇̄i logN is the acceleration of observers at rest in a given time-
slice. Likewise, we find for Euler’s equation

∂̄0ji +N∇̄jT
j
i = N(Kj

i − T jiaj − εai) . (55)

The divergence term on the left side of (55) spoils the well-posed FOSH
form we seek. However, if we use the identity Gij(g) + gijG

0
0(g) ≡ Rij(g)−

gijR
k
k(g) and the Einstein equations κ−1Gαβ − Tαβ = 0, or κ−1Rαβ = ραβ ,

we obtain (ε = −T 0
0 , ji = NT 0

i)

T ji − δjiε = (ρji − δjiρ
k
k) ≡ Sji . (56)

Then (54) and (55) obtain well-posed form (if Sji is assumed known),

∂̄0ε+N∇̄iji = −2ji∇̄iN + 2NKε+NKijSij , (57)

∂̄0ji +N∇̄iε = −2ε∇̄iN +NKji − ∇̄j(NSij) . (58)

By combining (57) plus (49), and (58) plus (50), we obtain expressions of
gravity constraint evolution in the presence of matter,

∂̄0C
T − N∇̄iCT

i = 2
(
CT
j ∇̄jN +NKCT − NKij(κ−1Rij − Sij)

)
, (59)

∂̄0C
T
j − N∇̄jC

T = 2
[
CT ∇̄jN +

1
2
NKCT

j − ∇̄i
(
N(κ−1Rij − Sij)

)]
(60)

where CT ≡ C+2ε and CT
j = Cj−2jj . This is just the form we would antici-

pate on the basis of Hamiltonian dynamics and the form (49) and (50) of the
vacuum constraints. Thus, for gravity plus a matter field, we obtain results
analogous to (44) and (45) for the total system. If there are no violations of
constraints, then CT = 0 , CT

j = 0, while the dynamical gravity equation is
κ−1Rij − Sij = 0.

5 Wave Equation for Kij

Einstein’s equations, viewed mathematically as a system of second-order par-
tial differential equations for the metric, do not form a hyperbolic system
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without modification and are not manifestly well-posed, though, of course,
physical information does propagate at the speed of light. A well-posed hy-
perbolic system admits unique solutions depending continuously on the initial
data and seems to be required for robust, stable numerical integration and for
full treatment by the methods of modern analysis, for example, exploitation
of energy estimates. The well-known traditional approach achieves hyperbo-
licity through special coordinate choices.3 The formulation described here
permits coordinate gauge freedom. Because these exact nonlinear theories
incorporate the constraints, they are natural starting points for developing
gauge-invariant perturbation theory.

Consider a globally hyperbolic manifold V = Σ × R with the metric as
given in the introduction. To achieve hyperbolicity for the 3 + 1 equations,
we proceed as follows.

By taking a time derivative of Rij(g) and subtracting appropriate spatial
covariant derivatives of the momentum constraints, one of us (YCB) and
T. Ruggeri [18] (see also [19], where the shift is not set to zero) obtained an
equation with a wave operator acting on the extrinsic curvature. In vacuum,
one finds

∂̄0Rij(g)− ∇̄iR0j − ∇̄jR0i = N✷̄gKij + Jij + Sij = 0 , (61)

where ✷̄g = − (N−1∂̄0
)2 + ∇̄k∇̄k, Jij consists of terms at most first order

in derivatives of Kij , second order in derivatives of gij , and second order in
derivatives of N , and

Sij = −N−1∇̄i∇̄j(∂̄0N +N2K) . (62)

The term Sij is second order in derivatives of Kij and would spoil hyper-
bolicity of the wave operator ✷̄ acting on Kij . Hyperbolicity is achieved by
setting N = ḡ1/2α(t, x), or

∂̄0N +N2K = ḡ1/2∂̄0α(t, x) , (63)

as discussed in Sect. 2. The resulting equation combined with (28) forms
a quasi-diagonal hyperbolic system for the metric gij with principal opera-
tor ∂̄0✷̄. This system can also be put in first order symmetric hyperbolic
form [19,11], by the introduction of sufficient auxiliary variables and by use
of the equation for R00 (thus incorporating the Hamiltonian constraint ).
The Cauchy data for the system (in vacuum) [18,19] are (1) (ḡ, K) such that
the constraints R0i = 0, G0

0 = 0 hold on the initial slice; (2) ∂̄0Kij such
that Rij = 0 on the intial slice; and (3) N > 0 arbitrary on the initial slice.
Note that the shift βk(x, t) is arbitrary. Using the Bianchi identities, one
3 The classic second-order fully harmonic form was given in [6,7] and discussed,
for example, in [9]. It will not be discussed in this article. A FOSH form based
on these equations was given first by Fischer and Marsden in [23].
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can prove [18,19] that this system is fully equivalent to the Einstein equa-
tions. The point is that quasi-diagonal Leray [40] hyperbolic systems have
well posed Cauchy problems and therefore unique solutions for given initial
data. Because every solution of the Einstein equations also satisfies the ✷̄Kij

equation in particular and provides initial data for it, uniqueness implies,
conversely, that if the initial data for the ✷̄Kij equation are Einsteinian, all
solutions of Einstein’s equations, and only these, are captured. The restriction
on the initial value of ∂̄0Kij prevents the higher derivative from introducing
spurious unphysical solutions.

All variables propagate either with characteristic speed zero or the speed
of light. The only variables which propagate at the speed of light have the
dimensions of curvature, and one sees that this is a theory of propagating
curvature. However, a FOSH system that propagates curvature is more trans-
parent in the “Einstein-Bianchi” form (next section).

In the above formulation, the shift and α are arbitrary. This and our other
systems (except the Einstein-Christoffel system in Sect. 7) are manifestly
spatially covariant and all time slicings (using α) are allowed. Spacetime
covariance is therefore present, but not completely manifest.

By taking another time derivative and adding an appropriate derivative
of R00, one finds (in vacuum) [29]

∂̄0∂̄0Rij − ∂̄0∇̄iR0j + ∂̄0∇̄jR0i + ∇̄i∇̄jR00 = ∂̄0(N✷̄Kij) + Jij = 0 , (64)

where Jij consists of terms at most third order in derivatives of gij and
second order in derivatives of Kij . Together with ∂̄0gij , these form a system
for (ḡ, K) which is hyperbolic non-strict in the sense of Leray-Ohya. [41] Here,
the lapse itself, as well as the shift, is arbitrary (N > 0). The Cauchy data
of the previous form (in vacuum) must be supplemented by ∂̄0∂̄0Kij such
that ∂̄0Rij = 0 on the initial slice. This guarantees that the system is fully
equivalent to Einstein’s theory (except that its solutions are not in Sobolev
spaces [29]). This system does not have a first order symmetric hyperbolic
formulation, but has been used very effectively in perturbation theory [42]
and in other applications [43,44].

6 Einstein-Bianchi Hyperbolic System

To obtain a first order symmetric hyperbolic system, one can use the Rie-
mann tensor of the spacetime metric. It satisfies the Bianchi identities for the
spacetime geometry

∇αRβγλµ +∇βRγαλµ +∇γRαβλµ ≡ 0 . (65)

These identities imply by contraction and use of the symmetries of the Rie-
mann tensor

∇αR
α
µβγ +∇γRβµ +∇βRγµ ≡ 0 . (66)
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If the Ricci tensor Rαβ satisfies the Einstein equations (κ = c = 1)

Rαβ = ραβ , (67)

then the previous identities imply the equations

∇αR
α
µβγ = ∇βργµ − ∇γρβµ . (68)

The first equations with (αβγ) = (ijk) and the last one with µ = 0
do not contain derivatives of the Riemann tensor transverse to Mt. They
are considered as “constraints” and will be identically satisfied (initially) in
our method. They remain satisfied in an exact integration. All detail and
rigor concerning this elegant system is given in [22,51], to which the reader is
referred. It has 66 equations, just as do the Einstein-Ricci first order curvature
equations.

The system we are now developing [21] is similar to an analogous system
obtained by H. Friedrich [25] that is based on the Weyl tensor. The Weyl
tensor system is causal but with additional unphysical characteristics.

We wish first to show that the remaining equations are, for n = 3 in
the vacuum case, when g is given, a symmetric first order hyperbolic system
for the double two-form Rαβλµ. For this purpose, following Bel [52,53] we
introduce two pairs of “electric” and “magnetic” space tensors associated
with a spacetime double two-form A,

N2Eij(g) ≡ A0i0j (69)

Dij(g) ≡ 1
4
εihkεjlmAhklm (70)

NHij(g) ≡ 1
2
εihkA

hk
0j (71)

NBji(g) ≡ 1
2
A0j

hkεihk (72)

where εijk is the volume form of ḡ. It results from the symmetry of the
Riemann tensor R with respect to its first and second pairs of indices (R is a
“symmetric double two-form”) that if A ≡ R, then E and D are symmetric
while Hij = Bji. A useful identity for a symmetric double two-form like R,
with a tilde representing the spacetime double dual, is (“Lanczos identity”)

R̃αβλµ +Rαβλµ = Cαλ gβµ − Cαµ gβλ + Cβµ gαλ − Cβλ gαµ , (73)

where Cαβ = Rαβ − (1/4)gαβR. It follows that when Rαβ = λ gαβ , then
E = −D andH = B. In order to avoid introducing unphysical characteristics,
and to be able to extend the treatment to the non-vacuum case, we do not
use these properties in the evolution equations, but write them as a first order
system for an arbitrary double two-form A, as follows:

∇0Ahk0j +∇kA0h0j − ∇hA0k0j = 0 , (74)
∇0A

0
i0j +∇hA

h
i0j = ∇0 ρji − ∇j ρ0i , (75)
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and analogous equations with the pair (0 j) replaced by (l m). One obtains a
first order system for the unknowns E, H, D, and B by using the relations in-
verse to the definitions above. The principal parts of these equations, all with
one definite index fixed on E, H, D, and B, are identical to the correspon-
ding Maxwell equations. The characteristic matrix of this “Maxwell” part of
the system has determinant −N6(ξ0ξ0) (ξαξα)2. The system obtained has a
principal matrix consisting of 6 identical 6 by 6 blocks around the diagonal,
which are symmetrizable and hyperbolic. Hence, the system is symmetric
hyperbolic, when g is a given metric such that ḡ is properly riemannian and
N > 0.

To relate the Riemann tensor to the metric ḡ we use the definition

∂̄0gij = −2NKij (76)

and we use the 3 + 1 identities given in the Introduction. Note that in this
section all Γ ’s are spatial.

We next choose N = ḡ1/2α(t, x). We generalize somewhat the ideas used
by Friedrich (see [25]) for the Weyl tensor to write a symmetric hyperbolic
system for K and Γ , namely we obtain equations relating Γ and K, for a
given double two-form A, and by considering the definition of K and the
3 + 1 decomposition of the Riemann tensor, replacing in these identities the
Riemann tensor by A. To deduce from this system a symmetric hyperbolic
first order system, with the algebraic form of the harmonic gauge N = ḡ1/2α,
one uses the fact that in this gauge one has

Γhih = ∂i logN − ∂i logα . (77)

We obtain

∂̄0Γ
h
ij +N∇̄hKij = NKijg

hk (Γmmk + ∂k logα)
−2NKh

(i
(
Γmj)m + ∂j) logα

)
(78)

−N
(
εk(j

hBi)k +Hk(iε
k
j)
h
)
,

and

∂̄0Kij +N∂hΓ
k
ij = N

[
ΓmihΓ

h
jm − (Γhih + ∂i logα

) (
Γ kjk + ∂j logα

)]
−N

(
∂i∂j logα − Γ kij∂k logα

)
(79)

−N
[
D(ij) + E(ij) − Dk

kgij − KKij

]
.

The system obtained for K and Γ has a characteristic matrix composed of 6
blocks around the diagonal, each block a 4 by 4 matrix that is symmetrizable
hyperbolic, with characteristic polynomial −N4(ξ0ξ0) (ξαξα).

The whole system for A, K, Γ , ḡ is symmetrizable hyperbolic, with cha-
racteristics the light cone and the normal to Mt. It is somewhat involved to
prove that a solution of the constructed system satisfies the Einstein equa-
tions if the initial data satisfy the constraints, but we can argue as follows.
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We consider the vacuum case with initial data satisfying the Einstein con-
straints. These initial data determine the initial values of Γ , and also, if β
and N are known at t = 0, the initial values of Aijhm, Ajhi0, Ai0jh by using
the decomposition formulas. (We set A equal to the Riemann tensor on the
initial surface.) We use the Lanczos formula to determine Ai0j0 initially. We
know that our symmetrizable hyperbolic system has one and only one solu-
tion. Because a solution of Einstein’s equations with N = ḡ1/2α, proved to
exist in the section on ✷̄Kij , satisfies together with its Riemann tensor the
present system and takes the same initial values, that solution coincides with
the solution of the present system in their common domain of existence.

7 Einstein-Christoffel System

The first-order form of the wave equation for Kij , the Einstein-Ricci sy-
stem [19,11], to which we have alluded, has 66 equations, the correct number
for a curvature system as does the Einstein-Bianchi system of the previous
section. It is symmetric hyperbolic and therefore well-posed. But it is na-
tural to ask whether there is a simpler first-order system of fewer variables
that is perhaps closer in form to (28) and (29). Frittelli and Reula [26,27]
proposed such a system, but their system has unphysical characteristics and
is not written fully in terms of geometric variables. Here we deduce a diffe-
rent system having only physical characteristics and expressed in geometric
variables. We understand (private communication to JWY) that James Bar-
deen has likewise obtained a similar system improving that found in [16,17].
While our derivation [10] can proceed systematically by direct construction
of an energy norm and the characteristic speeds, a more heuristic derivation
is indicated here from the structure of the wave equation for Kij . Not that
in this section all Γ ’s are spatial.

In the dynamical spacetime Ricci tensor Rij(g), (29), one has a dynamical
equation for the extrinsic curvature Kij in terms of spatial derivatives of
the spatial Christoffel symbols. When the lapse N is replaced by the slicing
density through αḡ1/2, the differentiated Christoffel terms become

∂kΓ
k
ij − ∂jΓ

k
ik − ∂iΓ

k
jk . (80)

This may be read as the divergence of a linear combination of Christoffel
symbols, which puts theRij(ḡ) equation in a form reminiscent of the structure
of one of the first-order equations for a free wave, namely

∂0u+ ∂kvk = 0 . (81)

We would have a symmetric hyperbolic system if there were an analog of the
other equation for a wave,

∂0vk + ∂ku = 0 . (82)
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Some manipulation quickly leads to the conclusion that Kij and the Chri-
stoffel combination above are not paired in a symmetric hyperbolic system
like u and vk.

Recall however, that the free wave equation (∂0)2u−∂k∂ku = 0 is obtained
by taking a time derivative of (81) and subtracting the divergence of (82). In
obtaining the wave equation for Kij (61) we have taken a time derivative of
Rij and subtracted a (suitably symmetrized) divergence of the momentum
constraint R0i. This motivates the speculation that in gravity the “other”
equation should be related to the momentum constraint and its sole spatial
derivative should be ∂kKij .

Following this idea about the second equation leads one to consider an
equation of the form

gkiRj0 + gkjRi0 = −∂̄0fkij − ∂k(NKij) + l.o.kij (83)

where l.o.kij are lower order terms involving no derivatives of fkij or Kij .
One must choose fkij from a linear combination of spatial derivatives of the
metric. Introduce

Gkij = ∂kgij (84)

and use the identity
∂̄0(∂kgij) = −∂k(2NKij) (85)

to find that
fkij =

1
2
Gkij − gk(ig

rs
(G|rs|j) − Gj)rs

)
(86)

produces the correct coordinate derivatives occuring in the momentum con-
straints. The lower order terms are those terms necessary to complete (83)
into an identity and take the form

l.o.kij = 2NKk(ig
rs
(G|rs|j) − Gj)rs

)
+2gk(i

[
Kj)m∂mN − K∂j)N

+NKj)mgrsΓmrs(G) + 1
2
N
(Gj)rs − 2G|rs|j)

)
Krs

]
, (87)

where the spatial Christoffel symbols are constructed from Gijk,
Γkij(G) ≡ (1/2) (Gjki + Gikj − Gkij) . (88)

(It is clear that only one of the three-index symbols Gkij , Γkij , and fkij is
needed, say fkij . The necessary algebra will not be reproduced here.)

One then easily verifies that by expressing (88) in terms of derivatives of
the metric (assuming a metric compatible connection), we can manipulate it
to take the form of a divergence of fkij plus lower order terms. The dynamical
Ricci equation becomes

Rij = −N−1∂̄0Kij − ∂kfkij + l.o.ij , (89)
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where

l.o.ij = KKij − 2KikK
k
j − α−1 (∂i∂j − Γ kij(G)∂k

)
α

− (Γ kki(G) + α−1∂iα
) (

Γmmj(G) + α−1∂jα
)

(90)

+2Γ kmk(G)Γmij(G)− Γ kmj(G)Γmik (G)
+gkrgsm

[Gkrsfmij + Gkm(iGj)rs − GkrsG(ij)m
]
.

Together with (28), (83) and (89) constitute a symmetric hyperbolic system
for the evolution of gij , Kij and fkij .

Note that once fkij or, equivalently, Gkij are introduced as variables, the
relation (88) becomes an initial condition and does not a priori hold for all
time. Equation (83) can be related to metric compatibility by putting it in
the form

4gk(iRj)0 = ∂̄0Gkij + ∂k (2NKij) (91)

−4gk(iN∇̄m
(
Kj)m − gj)mK

)
.

Here, one sees that if the momentum constraint is satisfied for all time, then

Gkij = 2Γ(ij)k = ∂kgij (92)

and the connection is metric compatible. If the momentum constraint is vio-
lated, metric compatibility is sacrificed. This shows the price paid to achieve
a symmetric hyperbolic system that is close to the canonical equations: the
momentum constraints become dynamical, and metric compatibility is lost if
the latter are violated.

8 Conformal “Thin Sandwich” Data for the Initial
Value Problem

The standard approach to the initial value problem is the “conformal me-
thod,” the fundamental rudiments of which were introduced by Lichnero-
wicz [8]. The essentially complete form was developed by two of us (YCB and
JWY), see [34,9]. Basic theorems were obtained by us and by O’Murchadha
[45,35,46], and Isenberg and Moncrief [47]. The older approach concentrates
(in the vacuum case to which we restrict ourselves) on the construction of
the spatial metric gij = ψ4γij and the traceless part Aij = ψ−10λij of the ex-
trinsic curvature, where Kij = Aij + 1

3gijK. Here, γij is a proper riemannian
metric given freely, λij is constructed by a tensor decomposition method [34,
48], and K is given freely (not conformally transformed). Note that one may
as well assume det(γij) = 1 because only the conformal equivalence class of
the metric matters: the entire method is “conformally covariant.”
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N.B.: In Sect. 8, only spatial metrics will be used. Therefore, all overbars
are dropped in this final section.

Here, we discuss a new interpretation of the four Einstein vacuum initial-
value constraints. (The presence of matter would add nothing new to the
analysis.) Partly in the spirit of a “thin sandwich” viewpoint, this approach
is based on prescribing the conformal metric [1] on each of two nearby spa-
celike hypersurfaces (“time slices” t = t′ and t = t′ + δt) that make a “thin
sandwich” (TS). Essential use is made of the understanding of the slicing
function in general relativity. The new formulation could prove useful both
conceptually and in practice, as a way to construct initial data in which
one has a hold on the input data different from that in the currently ac-
cepted approach. The new approach allows us to derive from its dynamical
and metrical foundations the important scaling law Aij = ψ−10λij for the
traceless part of the extrinsic curvature. This rule is simply postulated in the
one-hypersurface approach.

The constraint equations on Σ are, in vacuum,

∇j(Kij − Kgij) = 0 , (93)

R(g)− KijK
ij +K2 = 0 (94)

where R(g) is the spatial scalar curvature of gij , ∇j is the Levi-Civita connec-
tion of gij ; and K is the trace of Kij , also called the “mean curvature” of the
slice.

The time derivative of the spatial metric gij is related to Kij , N , and the
shift vector βi by

∂tgij ≡ −2NKij + (∇iβj +∇jβi) , (95)

where βj = gjiβ
i. The fixed spatial coordinates x of a point on the “se-

cond” hypersurface, as evaluated on the “first” hypersurface, are displaced
by βi(x)δt with respect to those on the first hypersurface, with an orthogonal
link from the first to the second surface as a fiducial reference: βi = ∂

∂t ∗ ∂
∂xi ,

where ∗ is the physical spacetime inner product of the indicated natural basis
four-vectors. The essentially arbitrary direction of ∂

∂t is why N(x) and βi(x)
appear in the TS formulation. In contrast, the tensor Kij is always determi-
ned by the behavior of the unit normal on one slice and therefore does not
possess the kinematical freedom, i.e., the gauge variance, of ∂

∂t . Therefore, N
and βi do not appear in the one-hypersurface IVP for (Σ, g,K).

Turning now to the conformal metrics in the IVP, we recall that two
metrics gij and γij are conformally equivalent if and only if there is a scalar
ψ > 0 such that gij = ψ4γij . The conformally invariant representative of the
entire conformal equivalence class, in three dimensions, is the weight (−2/3)
unit-determinant “conformal metric” ĝij = g−1/3gij = γ−1/3γij with g =
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det(gij) and γ = det(γij). Note particularly that for any small perturbation,
gijδĝij = 0. We will use the important relation

gij∂tĝij = γij∂tĝij = ĝij∂tĝij = 0 . (96)

In the following, rather than use the mathematical apparatus associated
with conformally weighted objects such as ĝij , we find it simpler to use or-
dinary scalars and tensors to the same effect. Thus, let the role of ĝij on the
first surface be played by a given metric γij such that the physical metric
that satisfies the constraints is gij = ψ4γij for some scalar ψ > 0. (This
corresponds to “dressing” the initial unimodular conformal metric ĝij with
the correct determinant factor g1/3 = ψ4γ1/3. This process does not alter the
conformal equivalence class of the metric.) The role of the conformal metric
on the second surface is played by the metric γ′

ij = γij + uijδt, where, in
keeping with (96), the velocity tensor uij = ∂tγij is chosen such that

γijuij = γij∂tγij = 0 . (97)

Then, to first order in δt, γ′
ij and γij have equal determinants, as desired;

but γij and γ′
ij are not in the same conformal equivalence class in general.

We now examine the relation between the covariant derivative operators
Di of γij and ∇i of gij . The relation is determined by

Γ ijk(g) = Γ ijk(γ) + 2ψ−1 (2δi(j∂k)ψ − γilγjk∂lψ
)
, (98)

from which follows the scalar curvature relation first used in an initial-value
problem by Lichnerowicz [5],

R(g) = ψ−4R(γ)− 8ψ−5
γψ , (99)

where 
γ ≡ γklDkDlψ is the scalar Laplacian associated with γij .
Next, we solve (95) for its traceless part

∂tgij − 1
3
gijg

kl∂tgkl ≡ Vij = −2NAij + (Lgβ)ij (100)

with Aij ≡ Kij − (1/3)Kgij and

(Lgβ)ij ≡ ∇iβj +∇jβi − (2/3)gij∇kβk . (101)

Expression (101) vanishes, for non-vanishing βi, if and only if gij admits
a conformal Killing vector βi = ki. Clearly, ki would also be a conformal
Killing vector of γij , or of any metric conformally equivalent to gij , with no
scaling of ki. This teaches us that βi does not scale. That βi does not scale
also follows because, as generator of a spatial diffeomorphism, it is not a
dynamical variable. We take the latter “rule” as a matter of principle.
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It is clear in (100) that the left hand side uij satisfies uij = ψ4Vij because
the terms in ψ̇ cancel out. Furthermore, a straightforward calculation shows
that

(Lgβ)ij = ψ4 [Lγ(ψ−4β)
]
ij
; (Lgβ)ij = ψ4(Lγβ)ij , (102)

where ψ−4βj = γijβ
i. Next, we note that the lapse function N has essential

non-trivial conformal behavior. This is a new element in the IVP analysis.
The slicing function α(t, x) > 0 can replace the lapse function N ,

N = g1/2α . (103)

(The treatment here extends the one in [49] in a simple but interesting way.)
We have concluded that α is not a dynamical variable and therefore does not
scale. Furthermore, without loss of generality, we can set det(γij) = 1 and
thus g1/2 = ψ6. Then

N = ψ6α . (104)

Finally, we fix K and require that it does not scale, as in the standard tre-
atment of the IVP [50]. This step is absolutely essential for geometric consi-
stency, as we shall see.

Next we solve (98) for Aij , using the scaling rules established above, and
find

Aij = ψ−10
{

1
2α
[
(Lγβ)ij − uij

]}
. (105)

The momentum constraint becomes

Dj

[
1
2α

(Lγβ)ij
]
= Dj

[
1
2α

uij
]
+

2
3
ψ6γij∂jK , (106)

while the Hamiltonian constraint becomes [34]

8
γψ − R(γ)ψ + (γikγjl)AijAklψ−7 − (2/3)K2ψ5 = 0 . (107)

The unknowns (ψ, β) obey equations of the same form as do the conformal
scalar potential φ and the vector potential W i in the standard analysis [34,
9], but no tensor splittings are required. Further, (106) and (107) are coupled
in only one direction when K = const.

Now we note two interesting consequences of this approach. First we see
that from N = ψ6α, we have identically

N = g1/2α (108)

as a consequence of the method. Therefore, time slices t and t + δt have a
relation that is manifestly “harmonic:”

∂̄0N +N2K = N∂̄0 logα , (109)

a result that is fully consistent with our previous discussions and requiring
that K be a fixed, non-scaling, variable.



Einstein’s Equations and Equivalent Hyperbolic Dynamical Systems 51

Finally, we can establish the final relationships between the full rieman-
nian metrics gij(t) and g′

ij = gij(t + δt) on the two manifestly harmonically
related slices t and t+ δt. As in (95),

∂tgij = ∂t(ψ4γij) = gikgjl

[
−2N(Akl +

1
3
gklK) + (∇kβl +∇lβk)

]
. (110)

Working out (110) gives

∂tgij = ψ4 [uij + γij∂t(ψ logψ)]
= Vij + gij∂t(ψ logψ) , (111)

where

∂t(ψ logψ) =
2
3
(
Dkβ

k + 6βk∂k logψ − αKψ6)

= ∂t(g/γ)1/2 = ∂t(g)1/3 =
2
3
(∇kβ

k − NK
)
. (112)

Hence, ∂tψ and ∂tgij are fully determined and we note that the no-scaling
rules for βk and K were essential.
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nonstricts. Math Ann 170:167-205.

42. Anderson A., Abrahams A., Lea C. (1998) Curvature-based gauge-invariant
perturbation theory for gravity: a new paradigm. Phys Rev D5806:4015.

43. Choquet-Bruhat Y. (1997) High frequency oscillations of Einstein geometry. In:
Ibragimov N., Mahomed F. (Eds.) Modern Group Analysis. World Scientific,
Singapore, 17-34.

44. Choquet-Bruhat Y., Greco A. (1997) Interactions of gravitational and fluid
waves. Circ Mat di Palermo 38:112-121.

45. O’Murchada N., York J.W. (1973) Existence and uniqueness of solutions of
the Hamiltonian constraint of general relativity on compact manifolds. J Math
Phys 14:1551-1557.

46. O’Murchadha N., York J.W. (1974) Initial-value problem of general relativity.
II. Stability of solutions of the initial-value equations. Phys Rev D10:437-446.

47. Isenberg J., Moncrief V. (1994) Constraint equations with non-constant mean
curvature. In: Flato M., Kerner R., Lichnerowicz A. (Eds.) Physics on Mani-
folds. Kluwer, Dordrecht, The Netherlands, 295-301.



54 Arlen Anderson et al.

48. York J.W. (1974) Covariant decompositions of symmetric tensors in the theory
of gravitation. Ann Inst Henri Poincaré, Section A 21:319-332.
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Generalized Bowen–York Initial Data

R. Beig

Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5,
A–1090 Wien, Austria

Abstract. A class of vacuum initial-data sets is described which are based on
certain expressions for the extrinsic curvature first studied and employed by Bowen
and York. These expressions play a role for the momentum constraint of General
Relativity which is analogous to the role played by the Coulomb solution for the
Gauß-law constraint of electromagnetism.

1 Introduction

In this lecture I wish to study a specific class of solutions to the initial-value
constraints in vacuo, or, rather the ‘momentum’ part of these equations,
which are a generalization of ones first put forward by Bowen and York
([1],[2]). While these solutions are certainly special, they turn out to be very
useful. In particular, many of the initial-data sets currently used by numerical
relativists are Bowen–York initial data (BY initial data), in the sense that
they are based on the explicit extrinsic curvature expressions first written
down in ([1],[2]). Although we shall in this work mainly be concerned with the
momentum constraints, the solutions we shall study can only be understood
as ingredients to solutions to the full set of initial-value constraints.

We first recall the notion of an initial-data set (IDS). This consists of a
triple (Σ̄, h̄ij , K̄ij), where Σ̄ is a 3-manifold, h̄ij a positive-definite metric on
Σ̄ and K̄ij a symmetric tensor field on Σ̄. This IDS is called a vacuum IDS,
if the following system of equations is satisfied

D̄j(K̄ij − h̄ijK̄) = 0 (1)
R̄+ K̄2 − K̄ijK̄ij = 0, (2)

where D̄i is the Levi Civita covariant derivative associated with h̄ij , R̄ the
scalar curvature and K̄ := h̄ijK̄ij . Given a vacuum IDS, there is a spacetime
M with Ricci flat Lorentz metric gµν , in which Σ̄ is a Cauchy surface and
h̄ij (resp. K̄ij) are the intrinsic metric (resp. extrinsic curvature) induced on
Σ̄.

We now review the ‘conformal method’ for solving the vacuum initial-
value constraints. This yields solutions (h̄ij , K̄ij) of Equ.’s (1,2) for which
K̄ ≡ const. Then, if we write

K̄ij = κ̄ij +
1
3
h̄ijK̄, (3)

S. Cotsakis and G.W. Gibbons (Eds.): Proceedings 1998, LNP 537, pp. 55–69, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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it follows that
D̄j κ̄ij = 0 and κ̄ = κ̄ij h̄

ij = 0. (4)

Thus κ̄ij is a “transverse-tracefree” (TT-)tensor. The conformal method rests
on two identities.

Fact a): Let hij and h̄ij be two conformally related metrics, i.e.

h̄ij = φ4hij , φ > 0. (5)

Then, defining the conformal Laplacian Lh to be

Lh := −hijDiDj +
1
8
R[h] = −∆+

1
8
R (6)

we have that
Lh̄(φ

−1ψ) = φ−5Lhψ, φ > 0. (7)

Setting in (7) φ = ψ, it follows that

Lh̄1 =
1
8
R[h̄] = φ−5Lhφ. (8)

Fact b): Suppose Kij = K(ij) is trace-free. Then

D̄jK̄ij = φ−6DjKij , φ > 0, (9)

where K̄ij = φ−2Kij . Combining these facts we can make the following
observation: Suppose Kij is a TT-tensor with respect to the metric hij .
Then, for any φ > 0 and any constant K̄,

K̄ij = φ−2Kij +
K̄

3
φ2hij (10)

satisfies Equ. (1). Furthermore, if φ satisfies

Lhφ =
1
8
KijK

ijφ−7 − 1
12
K̄2φ5, (11)

then h̄ij = φ4hij satisfies Equ. (2). Thus, solving the constraints (1,2)
amounts to choosing a ‘background metric’ hij , finding a TT-tensor Kij

with respect to hij and solving Equ. (11) for given (hij ,Kij) and a choice
of constant K̄.

We will need global conditions in order for the above program to go
through. The two cases of greatest interest is, firstly, the case where Σ̄ is
compact (“cosmological case”), and here it is natural to take the background
fields (hij ,Kij) to be defined on Σ = Σ̄. Depending on the global conformal
nature of hij , the sign of K̄ and on whether κ̄ij is zero or non-zero, there is
an exhaustive list of possibilities [3] for which Equ. (11) can be solved.
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The other case is that where (Σ̄, h̄ij , K̄ij) is asymptotically flat. This
means that there is a compact subset K ⊂ Σ̄, so that Σ̄ \ K consists of a
finite number of asymptotic ends. An asymptotic end is a set diffeomorphic
to R3 \ B, where B is a closed ball. Furthermore, in the coordinate chart
given by this diffeomorphism, h̄ij should satisfy

h̄ij − δij = O

(
1
r̄

)
, r̄2 = x̄ix̄jδij , (12)

K̄ij = O

(
1
r̄2

)
(13)

and ∂h̄ij = o(1/r̄2), . . . , ∂K̄ij = O(1/r̄3), . . . for a few derivatives. Since we
require K̄ = const, it follows that K̄ = 0.

Now the problem of solving the constraints takes the following form: One
first picks an asymptotically flat 3-metric hij on Σ̄ and a TT-tensor Kij on
(Σ̄, hij). One then has to solve Equ. (11) with K̄ = 0 and the boundary
condition that φ → 1 at infinity.

A very convenient alternative is to take (hij ,Kij) to be defined on a
compact manifold Σ, the many-point compactification of Σ̄. The “infinities”
of Σ̄ are now replaced by a finite number of points Λα ∈ Σ, which we call
punctures. The Equ. (11) should then be replaced by

Lhφ =
1
8
KijK

ijφ−7 + 4π(c1δ1 + c2δ2 + . . .), (14)

where δα is the delta distribution supported at Λα and cα are positive con-
stants. Note that K̄ = 0. Let hij be a smooth metric on Σ and Kij be
smooth on Σ except, perhaps, at the points Σα, where it may blow up like
1/r4, where r2 = δijx

ixj with xj being Riemann normal coordinates centered
at Λα. Then a solution φ of Equ. (14) behaves like 1/r near Λα. If a positive
global solution of Equ. (14) exists, then h̄ij = φ4hij , K̄ij = φ−2Kij satisfy the
conditions of asymptotic flatness in the “inverted” coordinates x̄i = xi/r2.
For the conditions under which φ > 0 exists, see e.g. [4].

2 The Gauß law constraint of electromagnetism

Before turning to the methods for obtaining TT-tensors, it is very instructive
to use, by means of analogy, the equation

div E = DiEi = 0 (15)

on a Riemann 3-manifold (Σ, hij), that-is-to-say the Gauß constraint of elec-
trodynamics. This, like the TT-condition, is an underdetermined elliptic
system. This means that the “symbol map”, namely the linear map σ(k),
sending

ei ∈ R3 �→ kiei ∈ R (k ∈ R3, k 	= 0) (16)
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is onto. (The symbol map is essentially the Fourier transform of the highest-
derivative term of a partial differential operator.) Note, first of all, that, when
h̄ij = φ4hij (φ > 0), Ēi = φ−2Ei, we have that

D̄iĒi = φ−6DiEi. (17)

We will thus again take Σ to be compact, imagining that we are either in the
cosmological case or that Σ is the conformally compactified, asymptotically
flat 3-space Σ̄. Our first point is to show two different ways of solving (15).
To describe the first one, which is the analogue of the “York method” for
solving the momentum constraint, we observe that the gradient operator
grad, sending C∞-functions on Σ to Λ1(Σ), the 1-forms on Σ, is (minus)
the formal adjoint of div under the natural L2-inner product on (Σ, hij). It
is thus, on general grounds (see Appendix on Sobolev Spaces and Elliptic
Operators in [5]) true that there is a direct-sum decomposition of Λ1(Σ) as

Λ1(Σ) = grad (C∞(Σ))⊕ ker div, (18)

and this decomposition is orthogonal in the L2-sense. Furthermore the second
summand in (18) is infinite-dimensional. The relation (18) tells us how to
find the elements of ker div, i.e. the solutions of Equ. (15). Namely, pick an
arbitrary 1-form ωi and write

ωi = Diϕ+ Ei, (19)

where Ei ∈ ker div. Hence

Diωi = div grad ϕ = ∆ϕ. (20)

Since the left-hand side of (20) is a divergence, it is orthogonal to ker∆. Thus
∆−1 div ω exists. Consequently, Ei can be written as

E = [1 − grad (div grad)−1 div]ω, (21)

and this is the general solution of (15). The Equ. (21) is a special case of the
way to solve an underdetermined elliptic system. It has the feature that it is
non-local, since it involves the operation of taking the inverse of div grad.

There is another way of solving Equ. (15). Observe that any 1-form Ei of
the form (εijk is the volume element on Σ)

Ei = εi
jkDjµk, (22)

or
E = rot µ

solves Equ. (15). Is this the general solution? The answer is: yes, up to at most
a finite-dimensional space, namely the harmonic 1-forms, i.e. the elements
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of Λ1(Σ) which are annihilated by ∆H = (rot)2 − grad div. More specifically
we have

ker div = ker∆H ⊕ rot (Λ1(Σ)). (23)

Note that ker∆H = ker rot ∩ ker div. The relation (23) gives a refine-
ment of the decomposition (20). Stated in a more fancy way, the decom-
position (23) expresses the fact that the de Rham cohomology group H2 =
ker div/rot Λ1(Σ) is isomorphic to ker∆H . Let us for simplicity assume that
ker∆H is trivial. In Wheeler’s words [6] we assume that there is no “charge
without charge”. This will for example be the case when (Σ, hij) is the stan-
dard 3-sphere. More generally, this is the case when (Σ, hij) is of constant
positive curvature (Exercise: prove this). This implies the following: Let Ei
be an arbitrary solution of Equ. (15), and S ⊂ Σ be an arbitrary embedded
2-sphere. Then the integral

∫
S
EidS

i is zero, i.e.
∫
S

EidS
i = 0. (24)

Suppose now that Σ contains some punctures, at which we are willing to
allow DiEi to become singular. Then Equ. (24) will in general no longer be
valid, and E = rot µ will no longer be the general solution to Equ. (15).
Suppose for simplicity that Σ is diffeomorphic to the 3-sphere. If there is
just one puncture Λ1 (not to be confused with Λ1(Σ)!), then (24) is clearly
still valid, whether S endores Λ1 or it doesn’t. But suppose there are two
punctures, Λ1 and Λ2. Then, either S does not enclose either of them in
which case (24) is valid or it does, in which case (24) can not be expected to
hold in general. The value

Q =
∫
S

EidS
i, (25)

in the latter case, constitutes a 1-parameter class of obstructions to the exi-
stence of µi such that E = rot µ. (Of course, Q depends only on the ho-
mology class of S, not S itself.) It is thus desirable to split the general E
with div E = 0 as a sum of one of the form E = rot µ and a set of fields
parametrized by Q. Imagine this latter set of fields to be distributions which
are orthogonal to fields in the first summand. Thus these will be of the form
E = grad ϕ, and

div grad ϕ = ρ, (26)

where the distribution ρ is supported on Λ1 ∪ Λ2 and has to satisfy
∫
Σ

ρdV = 0. (27)

Thus we set
ρ = Q(δ1 − δ2), (28)
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where δ is the Dirac delta distribution. If ϕ is the solution (unique up to
addition of a constant) of Equ. (27), E = grad ϕ and the normal to S points
towards Λ2, then Equ. (25) is fulfilled.

Let us be more specific. When (Σ, hij) is the standard 3-sphere, it can
be imagined to be the 1-point conformal compactification (conformal com-
pactification by inverse stereographic projection from the origin, say) of flat
R3 = Σ̄ (which in turn can be viewed to be a standard t = const hyperplane
of the Minkowski spacetime of Special Relativity). Suppose the origin of Σ̄
corresponds to Λ1 and Λ2 is the antipode of Λ1 on S3. Thus Λ1 should be
viewed as a point where the field becomes singular and Λ2 as the point-at-
infinity. (In the gravity case, of course, singularities do not make good sense,
sp all punctures will play the role of points-at-infinity. That this is possi-
ble, is due to the fact that h̄ij on Σ̄ is not a fixed element of the theory,
but h̄ij = φ4hij , and φ satisfies Equ. (14).) We now undo the stereographic
projection and write

Ēi = φ−2Diϕ, (29)

where ϕ solves (26) and φ solves

Lhφ = 4πδ1. (30)

The resulting field Ēi is nothing but the Coulomb field on Σ̄ = R3 with
charge Q sitting at the origin.

The above situation can be slightly generalized. Let ρ be an arbitrary
distribution on Σ such that ∫

Σ

ρdV = 0. (31)

In particular ρ could be a smooth function. Then, if there are no harmonic
1-forms, the general solution of

DiEi = ρ (32)

is of the form
E = rot µ+ grad ϕ, (33)

where
div grad ϕ = ρ. (34)

The second term in Equ. (33) could be called the generalized Coulomb field
corresponding to the source ρ or, alternatively, the “longitudinal” solution of
Equ. (32).

3 The momentum constraint

We will now turn to the gravity case, i.e. the momentum constraints. The
solutions originally due to Bowen and York (resp. our generalization thereof)
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will turn out to be close analogues of the Coulomb field (resp. the generalized
Coulomb field), as described above. When (Σ, hij) is again taken to be stan-
dard S3 with antipodal punctures Λ1, Λ2 there will be a 10-parameter set of
sources for the TT-condition DjKij = 0, K = 0, so that, under stereographic
projection relative to Λ1, the TT-tensor on punctured R3 corresponding to
the longitudinal solution of the inhomogeneous TT-condition on Σ contain
exactly the ones written down by Bowen and York. How does the number 10
enter here? In the Maxwell case we had 1, which was the null space of grad,
which in turn is the adjoint of the operator div. In the gravity case 10 arises
as the null space of the adjoint to the operator div, acting on symmetric,
trace-free tensors, namely the conformal Killing operator. This null space, in
turn, is the space of conformal Killing vectors, which has at most 10 dimen-
sions on a 3-manifold Σ. We now have to explain these things in more detail.
We again take (Σ, hij) to be compact. The underdetermined elliptic system

(div K)i = DjKij = 0, K = 0 (35)

is, in complete analogy with the Maxwell case, solved by the “York decom-
position”

Qij = (LW )ij +Kij , (36)

where Qij is an arbitrary symmetric, trace-free tensor on (Σ, hij) and L is
the conformal Killing operator

(LW )ij := DiWj +DjWi − 1
3
hijD

�W�, (37)

(not to be confused with the conformal Laplacian Lh) which is (-1/2 times)
the adjoint of div. Hence, in order for Kij to be in the null space of div, we
have that

div ◦ LW = div Q. (38)

The operator on the left in Equ. (38) is elliptic with null space consisting of
conformal Killing vectors (Proof: Contract with a covector λ and integrate
by parts!). Thus, in complete analogy to Equ. (21) in the electromagnetic
case (15), the general solution Kij of the TT-condition, Equ. (35), is given
by

K = [1 − L(div ◦ L)−1div]Q, (39)

where Qij is an arbitrary symmetric, trace-free tensor. The above procedure
works for an arbitrary (Σ, hij) with Σ compact. It would also work if Σ was
asymptotically flat (see e.g. [7]). We now again ask the question as to whether
there is a more explicit method for finding TT-tensors where (35) is solved
“by differentiation” rather than “by integration”, as in Equ. (39). There is a
positive answer, but only in the case where (Σ, hij) is (locally) conformally
flat. Luckily, this comprises many of the IDS’s which are currently in use by
the numerical relativists, as we shall describe in Sect. 5. The necessary and
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sufficient condition [8] for hij to be conformally flat is that the Cotton–York
tensor Hij defined by

Hij = εk�(iD
kR�

j) (40)

be zero. Note that Hij is always symmetric, trace-free. Also, as a consequence
of the Bianchi identities, it is divergence-free. Thus Hij is a TT-tensor with
respect to hij . If hij is such that Hij vanishes, it follows that the operatorHij ,
obtained by linearization of Hij at hij , is a (third-order) partial differential
operator mapping symmetric tensors ,ij (we take them also to be trace-free)
into tensors which are TT with respect to hij . We refrain here from writing
down the operator Hij explicitly (see [9]). There now arises the question of
whether Kij given by Kij = Hij(,) is the general TT-tensor. The answer,
given in [9], is again “yes” up to a finite dimensional set of “harmonic TT-
tensors”, i.e. symmetric, trace-free tensors ,ij which satisfy both Dj,ij = 0
and Hij(,) = 0. What is the condition for the absence of such harmonic
TT-tensors? In allusion to Wheeler [6] we might describe this situation by
the absence of “momentum without momentum”. It is shown in [9], that
this condition is exactly that, for any 2-surface S embedded in Σ and any
conformal Killing vector (CKV) ξi on (Σ, hij) which is defined near S, there
holds ∫

S

Kijξ
idSj = 0 (41)

for all TT-tensors Kij . We now come to the inhomogeneous equation

D�Ki� = ji (42)

which is the analogue of the Maxwell equation (32). It would be nice to have
a very clear geometrical motivation for our expression for ji, but we have
to leave that for future work. The proposal is that ji depends on a “charge
density ρ” and a CKV ηi, as follows:

ji(η) = −D�(D[�ηi]ρ)+
2
3
(DiD�η

�)ρ+
2
3
DiD�(η�ρ)+

2
9
Di((D�η

�)ρ)+4Li�η�ρ,

(43)
where Lij = Rij − 1

4hijR. It is important that Equ. (42) behaves naturally
under conformal rescalings of the metric, i.e. h̄ij = φ4hij . This is the case
since one can show that

̄i(η) = ω−6ji(η). (44)

Thus, with K̄ij = ω−2Kij , K̄ij satisfies D̄�K̄i� = ̄i provided Kij solves Equ.
(42).

Suppose we have an open region Ω ⊂ Σ, bounded by S. Then it follows
from (43) that ∫

S

Kijλ
idSj =

∫
Ω

X(λ, η)ρdV, (45)
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where

X(λ, η) = D[iλj]D[iηj]+
2
3
[λiDiDjη

j+ηiDiDjλ
j ]−2

9
(Diλ

i)(Djη
j)+4Lijλiηj .

(46)
The bilinear form X has an important geometrical meaning. Recall that the
CKV’s span a vector space W of at most ten dimensions. (The dimension ten
is reached when Σ is simply connected, in which case the general CKV ηi can
be characterized by the values of ηi at some point p ∈ Σ, together with those
of D[iηj], Djη

j and DiDjη
j , the so-called “conformal Killing data” [10].) The

Lie commutator of vector fields on Σ induces a Lie algebra structure on W.
The form X(λ, η), for η and λ both CKV’s, is nothing but (1/3) times the
Killing metric (see App. B of [11]). One can check by explicit computation
that

X(λ, η) = constant on Σ, (47)

when λ and η are both CKV’s. Thus, from (45)
∫
S

Kijλ
idSj = X(λ, η)

∫
Ω

ρdV. (48)

So, similar to the Maxwell case, ρ can not in general be a distribution con-
centrated at a single point. Rather, when Ω = Σ it follows that

X(λ, η)
∫
Σ

ρdV = 0. (49)

Equ. (50) is the necessary and sufficient condition in order for Equ. (42), with
ji given by (43), to have solutions. Note that, when dim W is 10, the Killing
metric is non-degenerate. The solution of the equation

D�Ki� = ji(η) (50)

becomes unique when we require Kij to be longitudinal, i.e.

Kij = (LW )ij . (51)

It remains to solve the elliptic equation

div ◦ LW = j(η). (52)

The most important case is again where (Σ, hij) is the standard three-sphere
and

ρ = −2π(δ1 − δ2). (53)

To write down explicitly the 10-parameter set of solutions, it is convenient to
send Λ2 to infinity by a stereographic projection. Then we have again Equ.
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(49), but on (R3, δij), punctured at the origin. The CKV’s on R3 fall into
the following classes

1ηi(x) = Qi, Qi = const (54)
2ηi(x) = εijkS

jxk, Si = const (55)
3ηi(x) = Cxi, C = const (56)
4ηi(x) = (x, x)P i − 2(x, P )xi, P i = const. (57)

Here xi are cartesian coordinates. We find

1Kij(x) =
3
2r2

[Pinj + Pjni − (δij − ninj)(P, n)] (58)

2Kij(x) =
6
r3
εk�(iS

kn�nj) (59)

3Kij(x) =
C

r3
(3ninj − δij) (60)

4Kij(x) =
3
2r4

[−Qinj −Qjni − (δij − 5ninj)(Q,n)]. (61)

Here ni = xi/r. The constants Pi in (58) play the role of the linear ADM-
momentum at r = ∞ and the Si in (59) are the ADM angular momentum.
Thus Pi and Si are conserved under time evolution. If we had sent the point
Λ1 to infinity, or – what is the same – if we made an inversion of the form
x̄i = xi/a2r2 (“Kelvin transform”), the Qi would be a2 times the linear
momentum at r = 0, viewed as another infinity. Similarly (54) goes over into
(57) with P i = Qi under Kelvin transform. The role of the constant C is
less clear. It was used in [4], to construct IDS’s which have future-trapped
surfaces. The constant C does not correspond to a conserved quantity.

If Kij was a sum of the expression in (58) and that in (59) the physical
interpretation is that they characterize a single black hole with momentum
P i and spin Si.

We now come to the technical result of this section. Suppose (Σ, hij) is
of constant curvature, i.e.

Rijk� =
R
3
hk[ihj]�, R = const. (62)

Suppose, further, we know a function (distribution) G satisfying

∆G = ρ. (63)

In the case when Σ is compact, this will exist provided that
∫
Σ
ρdV = 0.

Then there is an explicit expression for Wi solving Equ. (52), namely

Wi =
1
2
ηjDjDiG+

3
2
(Diηj)DjG+ (Djη

j)DiG+
R
3
ηiG

= −Dj [(D[jηi])G]− 1
6
Di[(Djη

j)G] +
1
2
DiDj(ηjG). (64)
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For an outline of the proof, see [12]. It is easy to check that, when Σ is flat
R3, ρ = −2πδ(x) and ξi runs through (54–57), the Kij ’s given by (LW )ij
with Wi as in Equ. (64), reduce to (58–61).

4 Boosting a single black hole

In this section we present a simple perturbative calculation which should
serve as a check whether the “boost-type” extrinsic curvature (58) gives a
sensible result for the full IDS. We assume that (Σ, hij) is a standard three-
sphere and we try to solve the Lichnerowicz equation (14) with Λ1 and Λ2
being south and north pole, respectively. The Kij in (14) should be the one
turning into (58) after stereographic projection. When Kij vanishes and the
three-sphere has radius 1/m, the unique solution to (14) gives rise to the
Schwarzschild solution of mass m. After stereographic projection the three-
sphere punctured at Λ1 and Λ2 becomes flat R3, punctured at the origin.
The Lichnerowicz conformal factor φ such that h̄ij = φ4δij for Schwarzschild
is, as is well-known,

φ = 1 +
m

2r
. (65)

By the conformal invariance of the York procedure we can of course also start
from flat, punctured R3. We are thus trying to solve

∆φ = −1
8
KijK

ijφ−7, (66)

with Kij given by Equ. (58), and φ should go to one at infinity and have
a 1/r-singularity near r = 0 so that φ4δij becomes asymptotically flat both
near infinity and near r = 0. We have that

KijK
ij =

9
2r4

[PiP i + 2(Pini)2]. (67)

For φ we make the ansatz

φ = 1 +
m

2r
+ ψ, (68)

where ψ should vanish at r = ∞ and be regular near r = 0. We only keep
terms quadratic in Pi. It follows that

∆ψ = −9r3

16
P 2 + 2(P, n)2

(r +m/2)7
. (69)

Thus

ψ(x) =
9

4π · 16
∫
R3

r′3

|x− x′|
P 2 + 2(P, n′)2

(r′ +m/2)7
dx′. (70)

It is not difficult to find that

lim
x→0

ψ(x) =
P 2

8m2 (71)
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and

ψ(x) =
5P 2

16mr
+O

(
1
r2

)
, (72)

near r = ∞. While the constant m is only a formal parameter, the true
“observables” are the ADM-energies at the two infinities. The ADM energy
M at r = ∞ is given by

M = m+
5P 2

8m
. (73)

The ADM energy M̄ near r = 0 is obtained by noting that, near r = 0,

ds̄2 = h̄ijdx
idxj =

[
1 +

P 2

8m2 +
m

2r
+O(r)

]4
δijdx

idxj . (74)

After inversion x̄i = (m/2)2xi/r2, this results in

ds̄2 =
[
1 +

P 2

8m2 +
2r̄
m

+O

(
1
r̄

)]4 (m
2

)4 1
r̄4
δijdx̄

idx̄j

=
[
m

2r̄

(
1 +

P 2

8m2

)
+ 1 +O

(
1
r̄2

)]
δijdx̄

idx̄j . (75)

Consequently,

M̄ = m+
P 2

8m
+O(P 4). (76)

Thus,

m = M̄ − P 2

8M̄
+O(P 4). (77)

Inserting (77) into (73) we finally obtain

M = M̄ +
P 2

2M̄
+O(P 4) (78)

or
M2 − P 2 = M̄2 +O(P 4). (79)

Recall that with our ansatz for Kij an observer near r = ∞ “sees” a hole at
r = 0 with momentum P and one easily finds that an observer near r = 0 sees
a hole at r = ∞ at momentum zero. Thus Equ. (79) says that the rest-masses
at both asymptotic ends are equal. This equality expresses the “absence of
gravitational radiation” on the spacetime slice Σ. If there was more than
one hole, the analogue of Equ. (79) would contain for example potential
energy-contributions from the mutual gravitational interaction between those
holes, as in the famous calculation by Brill and Lindquist [13]. See [14] for
interaction energies of more general geometries. Had we used as our ansatz
for Kij a sum of the one in Equ. (58) and the one in (61) we would obtain

M +
P̄ 2

2M
+O(P̄ 4) = M̄ +

P 2

2M̄
+O(P 4), (80)
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where P̄ is the ADM 3-momentum of the r = 0-end of Σ, which is related to
Q by P̄ = 4Q/M2. I thank U.Kiermayr for performing this computation.

Does, for the present IDS, the relation

M2 − P 2 = M̄2 − P̄ 2 (81)

hold exactly? In this connection we should point out that the present data
is not the same as the one induced by the Schwarzschild spacetime of mass
M on a boosted maximal slice, since the metric on such slices can not be
conformally flat (see [15]).

5 More general initial-data sets with punctures

Let again (Σ, hij) be a compact, conformally flat manifold and ηi a CKV on
Σ. Then consider the equation (50), namely

D�Ki� = ji(η), (82)

with ji(η) given by Equ. (43). Although we assumed in our heuristic dis-
cussion that there are no “harmonic” TT-tensors on Σ, this is actually not
required for (81) to make sense. The simplest case is where Σ is a standard
three-sphere and ρ is a delta function concentrated at a finite number of
points Λα ∈ Σ (α = 1, . . . , N). We have to have

∫
Σ

ρdV = 0 (83)

so that N ≥ 2. The case N = 2 contains the situation discussed in the
previous section. The case of general N is for some choices of ηi leads to the
IDS’s studied by Brandt and Brügmann [16].

Another interesting case is that where (Σ, hij) is S2×S1(a), i.e. the unit-
two sphere times the circle of length a. This is conformally flat but not of
constant curvature. The equation

Lhφ = 4πδ1 (84)

has a unique positive solution φ (since R > 0, see [17]). The manifold (Σ̄ =
Σ \ Λ1, h̄ij) with h̄ij = φ4hij is nothing but the (time-symmetric) Misner
wormhole [18]. Taking two punctures Λ1 and Λ2 on Σ at the same location
in S2 and at opposite points in S1(a) and solving

Lhφ = 4π(c1δ1 + c2δ2), (85)

(which can be done by linearly superposing two solutions like that in (84)) we
get for (Σ̄, h̄ij) two asymptotically flat sheets joined by two Einstein–Rosen
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bridges [19]. These two time-symmetric IDS’s can be turned into generalized
Bowen–York ones by first solving

D�Ki� = ji(η) (86)

for some CKV ηi and then solving

Lhφ =
1
8
KijK

ijφ−7 + 4π
∑
α

cαδα. (87)

We just deal with Equ. (86) here. In the first case (1 puncture) we cannot have∫
ρ = 0, so that η has to be in the null space of X(ξ, η), where ξ runs through

all CKV’s on (Σ, hij). But, on this manifold, all conformal Killing vectors
are in fact Killing vectors. (This would be true for any compact Riemannian
manifold except standard S3, see [20] or also App. A of [21].) Hence the
CKV’s just comprise rotations in the S2-direction and a covariant constant
vector in the S1-direction. The latter, from Equ. (45), is allowed, but not
the rotations. Thus, within the method of this paper, it is possible to boost
a Misner wormhole into the direction connecting the two wormhole throats,
but it is impossible to spin up a Misner wormhole. In the Einstein–Rosen
case both options are available (see Bowen, York [22], Kulkarni et al. [23]
and Bowen et al. [24]). It is not clear to me whether the solutions of (81)
constructed by these authors, when viewed as ones on the handle manifold
S2 × S1(a), are longitudinal or not.
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Abstract. For the problem of the Hamiltonian reduction of Einstein’s equations on
a 3+1 vacuum spacetime that admits a foliation by constant mean curvature (CMC)
compact spacelike hypersurfaces M that satisfy certain topological restrictions, we
introduce a dimensionless non-local time-dependent reduced Hamiltonian system

Hreduced : R− × Preduced −→ R

where the reduced Hamiltonian is given by

Hreduced(τ, γ, pTT ) = −τ3
∫

M

ϕ6µγ = −τ3
∫

M

µg = −τ3vol(M, g) .

For compact connected oriented 3-manifolds of Yamabe type −1, we establish the
following properties for this reduced system:

1. Hreduced(τ, γ, pTT ) is a monotonically decreasing function of t unless pTT = 0
and γ = γ̃ is hyperbolic, at which point Hreduced(τ, γ̃, 0) is constant in time.

2. For τ ∈ R− fixed, Hreduced(τ, γ, pTT ) has a unique (up to isometry) critical
point at (γ̃, 0) which is a strict local minimum (in the non-isometric directions).

3. For τ ∈ R− fixed, the σ-constant of M is related to Hreduced by

σ(M) = − 2
3

(
inf

(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT )
)2/3

.

If M is a hyperbolic manifold, then we conjecture that (γ̃, 0) is a strict global
minimum of Hreduced(τ, γ, pTT ) which, as part of our work, is equivalent to the
conjecture that the σ-constant of M is realized by the unique hyperbolic geometry
on M . If M is not a hyperbolic manifold, then the σ-constant is never realized by
a metric on M but is only approached as a limit. In this case, the Einstein flow
seeks to attain the σ-constant asymptotically insofar as the reduced Hamiltonian
is monotonically seeking to decay to its infimum, although possible obstructions,
such as the formation of black holes, may prevent any particular solution from
approaching the σ-constant asymptotically. Further applications and developments
in higher dimensions are discussed.
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1 Introduction, Notation, and Background

One of the goals of general relativity is to write Einstein’s field equations
as an unconstrained Hamiltonian dynamical system in which the constraint
equations have been implicitly solved, the gauge variables have been specified,
and the remaining variables are freely specifiable dynamical variables of the
unconstrained system. This problem is known as the problem of Hamiltonian
reduction of Einstein’s equations.

In a recent series of papers, the authors ([13], [14], [15]) have resolved this
problem of reduction for the Einstein vacuum field equations in 3 + 1 dimen-
sions in the case that the vacuum spacetime admits a foliation by constant
mean curvature (CMC) compact spacelike hypersurfaces that satisfy certain
topological restrictions. This resolution is a two-step procedure. The first step
involves finding a suitable reduced phase space of unconstrained dynamical
degrees of freedom. The second step involves finding a reduced Hamiltonian
on this reduced phase space which is the true non-vanishing Hamiltonian of
the theory.

We find that for CMC spacetimes with spacelike hypersurfaces M that
satisfy certain conditions, 3+1 dimensional reduction can be completed much
as in the 2 + 1 dimensional case ([29], [30]). In both cases, one gets as the
reduced phase space the cotangent bundle T ∗TM of the Teichmüller space

TM =
M/P
D0

of conformal structures on M (see Sect. 2.1 for the definitions of the spaces
involved) and one gets reduction of the full classical Hamiltonian system with
constraints to a non-local time-dependent reduced Hamiltonian system without
constraints on the contact manifold R− × T ∗TM , where R− = (−∞, 0).

In [15] we introduced the reduced phase space Preduced, given by

Preduced = {(γ, pTT ) | γ ∈ M−1(Σp) and
pTT is transverse-traceless with respect to γ }

where M−1 is the space of Riemannian metrics with scalar curvature −1
and pTT is a 2-contravariant symmetric tensor density field on M transverse
(divergence-free) and traceless with respect to γ. Associated with Preduced is
the reduced contact manifold

R− × Preduced
with reduced contact variables (τ, γ, pTT ) ∈ R− × Preduced. In the case that
the underlying 3-manifold M is of Yamabe type −1, described in Sect. 2.2,
the cotangent bundle T ∗TM of the Teichmüller space TM can be represented
as

T ∗TM ≈ Preduced/D0 .
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We remark that, for clarity of exposition, in this paper we work on Preduced
rather than the fully reduced phase space Preduced/D0. However, with a mild
additional assumption, namely, that the degree of symmetry of the underlying
manifoldM is zero (i.e., thatM not support an effective SO(2)-action), then
the resulting fully reduced phase space is an infinite-dimensional manifold and
our results in this paper transfer to this manifold. Without this additional
assumption on M , our results still remain valid in a stratified sense.

For the reduced system, the time parameter τ = trgk is the trace of the ex-
trinsic curvature and is the parameter of a family of monotonically increasing
constant mean curvature compact spacelike hypersurfaces in a neighborhood
of the given initial one. In [15], we chose t = 4

3τ as a temporal coordinate con-
dition fixing t in terms of τ . In this gauge, the reduced Hamiltonian becomes
the spatial volume of the gravitational variables (g, π) on the τ = constant
hypersurfaces, expressed in terms of the reduced canonical contact variables
(τ, γ, pTT ) of these hypersurfaces, so that

Hold
reduced(τ, γ, p

TT ) =
∫

M

ϕ6µγ =
∫

M

µϕ4γ =
∫

M

µg = vol(M, g) . (1)

Thus, in the gauge t = 4
3τ , the reduced Hamiltonian is the volume functional

of the spatial hypersurfaces.
In the current paper we make a different choice of time function that

renormalizes the reduced Hamiltonian of [15] resulting in a renormalized Ha-
miltonian that is a dimensionless quantity. The advantages of such a renor-
malization are discussed below.

Thus, instead of taking the time function t to be proportional to the mean
curvature τ , here we take

t =
2
3τ2

(2)

as the temporal gauge condition. With this new time function, the new re-
duced Hamiltonian is given by

Hnew
reduced(τ, γ, p

TT ) = −τ3
∫

M

ϕ6µγ = −τ3
∫

M

µϕ4γ = −τ3
∫

M

µg = −τ3vol(M, g)

(3)
where the conformal factor ϕ = ϕ(τ, γ, pTT ) is the unique positive solution
of the Lichnerowicz equation (11) given below, and where τ ∈ R−, the con-
formal metric γ ∈ M−1 satisfies g = ϕ4γ, and pTT is a transverse-traceless
(with respect to γ) tensor density.

This new choice of time function is motivated by two factors. Firstly, with
this choice of time function, the reduced Hamiltonian is dimensionless, and
secondly, the range of the coordinate time t is recalibrated so that the big
bang occurs at t = 0 instead of at t = −∞.

That Hreduced is dimensionless follows at once from the fact that in physi-
cal units, τ has dimensions of (length)−1 and spatial volume has dimensions
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(length)3 (see the next paragraph for the distinction between physical and
mathematical units). The main advantage of having a dimensionless reduced
Hamiltonian is that only such a reduced Hamiltonian can have a topological
significance, and indeed, we will show that this renormalized reduced Hamil-
tonian is related to a topological invariant of M , namely, the σ-constant of
M . Indeed, one of our main results (see Sect. 3) is that the σ-constant ofM is
related to the dimensionless reduced Hamiltonian by the following equation

σ(M) = − 2
3

(
inf

(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT )

)2/3

. (4)

On the other hand, we note that the value of a dimensionless Hamiltonian
cannot be interpreted as an “energy”.

Throughout this paper we use mathematical units wherein the coordi-
nates, the metric coefficients, all curvatures, and volumes are dimensionless
quantities. Thus, by our assertion that our new reduced Hamiltonian is di-
mensionless, we mean that it is dimensionless even when the metric variables
are expressed in physical units, i.e., when the metric coefficients gij are taken
with the dimensions of (length)2 and the coordinates (xi) are taken as being
dimensionless. With these conventions, in physical units, the sectional curva-
ture K(g) and the scalar curvature R(g) have dimensions of (length)−2, the
Ricci tensor Ric(g) is dimensionless, and the volume vol(M, g) has dimensions
of (length)3. Thus the physical metric gphysical is related to the mathematical
metric gmathematical by

gphysical = �2 gmathematical (5)

where � is a fixed positive constant with the dimension of (length); see also
the remarks at the end of Sect. 2.4.

Regarding the range of the time coordinate t, we note that for manifolds
of Yamabe type −1 that we consider here, the expected maximal ranges of
the constant mean curvature τ is the interval (−∞, 0) for which τ → −∞
corresponds to a “crushing singular” big bang of vanishing spatial volume
and τ → 0 corresponds to the limit of infinite volume expansion. The old
time function t = 4

3τ then corresponds to the same limits. The new time
function t = 2

3
1
τ2 , however, ranges in the interval (0,∞), vanishes at the big

bang, and tends to positive infinity in the limit of infinite expansion.
We remark that to prove that a solution determined by Cauchy data

prescribed at some initial time t0 ∈ (0,∞) actually exhausts the range (0,∞)
and has the asymptotic volume properties suggested above is a difficult global
existence problem that we shall not deal with here except to mention below
some partial results that have been obtained elsewhere. Nevertheless, one of
our main motivations for this work is the hope that reduction will lead to
advances in the study of the global existence question for Einstein’s equations.

We also remark that the model universes under study here could not cease
expanding and begin to collapse since the onset of such a collapse would ne-
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cessitate a “maximal” hypersurface having τ = 0. But the Hamiltonian con-
straint H(g, π) = 0 (see (7a) and (9a) below) would then yield the inequality
R(g) = (π · π)µ−2

g ≥ 0 for the scalar curvature of the Riemannian spatial
metric g and this is impossible to satisfy on a manifold of Yamabe type −1
(see Sect. 2.2).

Our results regarding the reduced Hamiltonian are described in more de-
tail in Sect. 3. Here we briefly consider some additional background informa-
tion and notation regarding the process of reduction. Our starting point for
reduction is the Arnowitt-Deser-Misner (ADM) action for Einstein’s equati-
ons [6], which takes the form

IADM (g, π) =
∫
I

∫
M

(
π · ∂tg −NH(g, π)−X ·J (g, π)

)
dt (6)

where I = [t0, t1] ⊂ R is a closed interval, π = ((trgk)g − k)�µg is the
gravitational momentum, k is the second fundamental form, trgk is the g-
trace of k, µg is the volume element determined by g and the orientation of
M , N is the lapse function and X is the shift vector field, and where the
Hamiltonian density and momentum 1-form density are given by

H(g, π) =
(
π · π − 1

2 (trgπ)
2)µ−1

g −R(g)µg (7a)

J (g, π) = 2(δgπ)� . (7b)

In local coordinates, trgk = gijkij , πij = ((trgk)gij − kij)(det gkl)1/2, trgπ =
gijπ

ij , (µg)123 = (det gkl)1/2, (µ−1
g )123 = (det gij)−1/2, R(g) is the scalar cur-

vature of g, and center dot “ · ” denotes double metric contraction, so that
π ·∂gt = πij ∂gij

∂t and π ·π = gijgklπikπjl. For the momentum 1−form density
J (g, π), Ji(g, π) = 2((δgπ)�)i = −2gijπjk|k, where vertical bar denotes cova-
riant differentiation with respect to g, and where here center dot “ · ” refers
to the natural (i.e., non-metric contraction) of a vector and a 1-form density,
X · J (g, π) = XiJi(g, π).

The main idea of reduction is that the ADM formulation of Einstein’s
equations is in “already-parameterized form”, with a “super-Hamiltonian”

∫
M

(
NH(g, π) +X ·J (g, π)

)
(8)

with lapse function N and shift vector field X that act as Lagrange multi-
pliers. Consequently, the gravitational phase variables (g, π) must solve the
Hamiltonian and divergence constraint equations

H(g, π) = 0 (9a)
J (g, π) = 0 . (9b)

Thus one strives to find the true non-vanishing Hamiltonian of the theory
by eliminating the constraints and imposing coordinate conditions (see [24],
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p. 185, and [6], p. 231, for a discussion of the parametric form of the canonical
equations).

Now suppose that M is of Yamabe type −1 and let (τ, γ, pTT ) ∈
R− × Preduced be reduced contact variables. Using the Choquet-Bruhat-
Lichnerowicz-York [9] conformal method of solving the constraint equations,
there exists a unique pair of ADM gravitational phase space variables (g, π)
which have constant mean curvature and are related to the reduced variables
(τ, γ, pTT ) by

(g, π) =
(
ϕ4γ, ϕ−4pTT + 2

3τϕ
2γ−1µγ

)
(10)

where the conformal factor ϕ = ϕ(τ, γ, pTT ) is the unique positive solution
of the Lichnerowicz equation, which we here write for an arbitrary γ (not
necessarily for γ ∈ M−1)

∆γϕ+ 1
8R(γ)ϕ+

1
12τ

2ϕ5 − 1
8

(
pTT · pTT )µ−2

γ ϕ
−7 = 0 . (11)

Here ∆γ is the positive Laplacian −∇i∇i with respect to γ, pTT · pTT =
γikγjlp

TTijpTTkl and R(γ) is the scalar curvature of γ. Since the Choquet-
Bruhat-Lichnerowicz-York method is conformally invariant and since M is
of Yamabe type −1, each γ is pointwise conformally equivalent to a metric
in M−1 and so we can now normalize without loss of generality by setting
R(γ) = −1, thus assuring that the data (γ, pTT ) actually lies in Preduced.

The resulting gravitational phase variables (g, π) are then solutions to
the Hamiltonian and divergence constraint equations (9a) and (9b) and also
satisfy the CMC-condition

trgπ = 2τ µg . (12)

In terms of the reduced contact variables (τ, γ, pTT ) ∈ R− ×Preduced, the
kinetic term in the ADM action (6) reduces to

π · ∂tg = pTT · ∂tγ + 4
3∂t
(
τµϕ4γ

)− 4
3

(
dτ

dt

)
µϕ4γ .

Substituting this expression into the ADM action, using the fact that the
constraints are now satisfied identically and so drop out of the action, and
dropping a total time derivative, yields the reduced action in terms of the
reduced variables (τ, γ, pTT ),

Ireduced(τ, γ, pTT ) =
∫
I

∫
M

π · ∂tg dt

=
∫
I

∫
M

(pTT · ∂tγ) dt− 4
3

∫
I

∫
M

µϕ4γ
dτ

dt
dt . (13)

If in this expression we take t = 4
3τ as a temporal coordinate condition, then

the reduced Hamiltonian density is given in terms of the canonical contact
variables (τ, γ, pTT ), by

Hold
reduced(τ, γ, p

TT ) = ϕ6µγ = µϕ4γ = µg
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and the reduced Hamiltonian is given by

Hold
reduced(τ, γ, p

TT ) =
∫
M

Hold
reduced(τ, γ, p

TT ) =
∫
M

ϕ6µγ

=
∫
M

µϕ4γ =
∫
M

µg = vol(M, g) . (14)

The dependence of µg = ϕ6µγ on the variables (τ, γ, pTT ) is through the fun-
ction ϕ = ϕ(τ, γ, pTT ), which, being the solution of the elliptic Lichnerowicz
equation (11) is a non-local function of its arguments (τ, γ, pTT ).

In this paper we re-normalize our previous work in order to introduce a
dimensionless reduced Hamiltonian. Thus, instead of taking the time function
t to be proportional to the mean curvature τ , we let t = 2

3τ2 so that 4
3
dτ
dt =−τ3. The reduced Hamiltonian density is then given by

Hnew
reduced(τ, γ, p

TT ) = Hreduced(τ, γ, pTT ) = −τ3ϕ6µγ = −τ3µϕ4γ = −τ3µg
and the reduced Hamiltonian is given by

Hnew
reduced(τ, γ, p

TT ) = Hreduced(τ, γ, pTT ) = −τ3
∫

M

ϕ6µγ

= −τ3
∫

M

µϕ4γ = −τ3
∫

M

µg = −τ3vol(M, g) (15)

where again the conformal factor ϕ = ϕ(τ, γ, pTT ) is the unique positive so-
lution of the Lichnerowicz equation (11), and where from now on we suppress
the “new” superscript.

We remark that the fact that our Hamiltonian reduction process results
in a formulation of dynamics that involves a contact manifold, as opposed to
a simpler symplectic one, is forced upon us by the essential dependence of
the conformal factor ϕ = ϕ(τ, γ, pTT ) upon τ and seems to be unavoidable.
That the Hamiltonian depends essentially upon time, and not merely through
the overall factor of −τ3, results from the inevitable volume expansion (or
contraction in the time-reversed case) of our model universes. In fact, we
shall see in Sects. 3 and 4 that the decaying factor −τ3 precisely cancels the
increase in volume only for very special, and in fact flat, spacetimes which
arise if and only if M is hyperbolic.

In this paper we shall study some of the remarkable properties of Hreduced
relating to its dependence on time, its critical points, and its relation to the
σ-constant of the underlying manifold M .

2 Some Mathematical Background

In this section we briefly review some of the mathematical background ma-
terial that we will use regarding the reduced phase space and also regarding



The Reduced Hamiltonian of Relativity and the σ-Constant of Geometry 77

3-manifold topology. Our goal is to describe in a fairly specific manner the
3-manifold topologies for which our analysis applies. For details of the results
summarized here, see [13] and [14].

2.1 The Teichmüller Space of Conformal Structures
of a Manifold

Let M be a compact connected smooth (C∞) oriented n-manifold without
boundary, n ≥ 2. The main spaces that we shall consider are the following:

M = Riem(M) = the space of smooth (C∞) Riemannian metrics on M
D = Diff(M) = the group of smooth diffeomorphisms of M
D+ = Diff+(M) = the subgroup of orientation-preserving diffeomorphisms

of M
D0 = Diff0(M) = the connected component of the identity diffeomorphism

of M
P = Pos(M) = the space of smooth real-valued positive functions on M

Occasionally, when more than one manifold is being discussed, we will
include the underlying manifold in our notation, writing, e.g., M = M(M),
or D = D(M), for clarity.

For a Riemannian metric g ∈ M, we let

K(g) = the sectional curvature of g
Ric(g) = the Ricci curvature tensor of g
R(g) = the scalar curvature tensor of g
µg = the unique volume element on M determined

by g and the orientation of M

vol(M, g) =
∫
M

µg = the volume of (M, g) .

Our sign conventions on the curvature tensors are as in [23].
The group D acts on M by pullback and the group P acts on M by

pointwise multiplication. The resulting orbit space

S =
M
D

of Riemannian geometries is defined as superspace; the resulting orbit space

M
P

of pointwise conformal structures is defined as pointwise conformal super-
space; and the resulting orbit space

C =
M/P

D
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of conformal geometries is defined as conformal superspace. We are also inte-
rested in the D+-restricted counterparts of superspace and conformal super-
space; namely, D+-restricted superspace

S+ =
M
D+

and D+-restricted conformal superspace

C+ =
M/P
D+ ,

as well as in the D0-restricted counterparts of superspace and conformal
superspace; namely, D0-restricted superspace

S0 =
M
D0

and D0-restricted conformal superspace

C0 = M/P
D0

.

When n = 2, let M = Σp denote a compact connected oriented surface of
genus p ≥ 0, so that Σ0 = S2 = the 2-sphere, Σ1 = T 2 = the 2-torus, and
Σp, p ≥ 2, is a “higher genus surface”. When n = 2, D+-restricted confor-
mal superspace C+(Σp) is the Riemann moduli space Rp and D0-restricted
conformal superspace C0(Σp) is the Teichmüller space Tp of Σp (see [16]).

Thus, for n = 2, p ≥ 0, we have

Tp = T (Σp) = C0(Σp) and Rp = R(Σp) = C+(Σp) .

Analogously, for n ≥ 3, we shall refer to C+(M) as the Riemann moduli
space of conformal structures on M and C0(M) as the Teichmüller space of
conformal structures on M , and write

TM = T (M) = C0(M) and RM = R(M) = C+(M) .

To put this terminology into further focus, consider the space

M−1 = {g ∈ M | R(g) = −1} ⊂ M

of Riemannian metrics with constant scalar curvature −1. In [12] it is shown
that M−1 is a smooth submanifold of M.

If n = 2 and genus p ≥ 2, then the space of pointwise conformal structures
on Σp is smoothly diffeomorphic to M−1,

M(Σp)
P(Σp) ≈ M−1(Σp) . (16)
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Thus, the Riemann moduli space of Σp can be represented by

Rp = C+(Σp) =
M/P
D+ ≈ M−1

D+ (17)

and the Teichmüller space of Σp can be represented by

Tp = C0(Σp) = M/P
D0

≈ M−1

D0
. (18)

For n ≥ 3, we shall define the Yamabe type of a manifold below. In this
paper we shall require that M be of Yamabe type −1 and we shall see that
this requirement is analogous in the case that n = 2 to the requirement that
p ≥ 2. Indeed, if n ≥ 3 andM is of Yamabe type −1, then the representations
in (16), (17), and (18) all remain valid, so that

M
P ≈ M−1 , (19)

and thus the Riemann moduli space of M can be represented by

RM =
M/P
D+ ≈ M−1

D+ (20)

and the Teichmüller space of M can be represented by

TM =
M/P
D0

≈ M−1

D0
. (21)

2.2 The Yamabe Type of a Manifold

Recall that a space form is a complete connected Riemannian manifold (M, g)
of constant sectional curvature. The space form is spherical if the sectional
curvature of g is positive, Euclidean if the sectional curvature is zero, and
hyperbolic if the sectional curvature is negative.

A connected differentiable manifold M (with or without a Riemannian
structure) is spherical (respectively, Euclidean; respectively, hyperbolic) if M
is diffeomorphic to the underlying manifold of a spherical space form (res-
pectively, a Euclidean space form; respectively, a hyperbolic space form).

Thus, for example, a connected manifold M is hyperbolic if there exists
a hyperbolic Riemannian metric on M , whereas M is non-hyperbolic if no
Riemannian metric on M is hyperbolic.

Now let M be a compact connected n-manifold, n ≥ 3. We introduce the
following terminology.

1. M is of Yamabe-type −1, written Y (M) = −1, if M admits no metric
with R(g) = 0 ;

2. M is of Yamabe-type 0, written Y (M) = 0, if M admits a metric with
R(g) = 0, but no metric with R(g) = 1 ; and
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3. M is of Yamabe-type +1 (or 1), written Y (M) = 1, if M admits a metric
with R(g) = 1 .

The definition of Yamabe type partitions the class of compact connec-
ted n-manifolds, n ≥ 3, into three classes that are mutually exclusive and
exhaustive (see [13] for details).

We note in particular that spherical manifolds are a subset of manifolds
of Yamabe type 1, compact Euclidean manifolds are a subset of manifolds
of Yamabe type 0 since such manifolds cannot have a metric with constant
positive scalar curvature, and compact hyperbolic manifolds are a subset of
manifolds of Yamabe type −1 since such manifolds cannot have a metric with
zero scalar curvature (see [25], p. 306). However, we remark that compactness
is crucial in this characterization inasmuch as the manifold Rn supports both
a flat and a hyperbolic metric and thus is both a Euclidean and a hyperbolic
manifold.

2.3 Some 3-Manifold Topology

We now restrict our attention to 3-manifolds. Our goal is to relate the to-
pology of 3-manifolds to their Yamabe type. To simplify the discussion, we
assume that the following standard conjecture of 3-manifold topology is true:

Elliptization Conjecture: Every compact connected orientable 3-manifold
M with finite fundamental group is a spherical manifold (i.e., is diffeomorphic
to a spherical space form).

This conjecture is part of Thurston’s [41] geometrization program. The
elliptization conjecture is equivalent to the Poincaré conjecture and a con-
jecture asserting that the only free actions of finite groups on S3 are the
standard orthogonal actions (see also [40] for further information regarding
Thurston’s program).

Recall that a K(π, 1)-manifold is a manifold M whose first homotopy
group π1(M) = π and all of whose higher homotopy groups vanish (equiva-
lently, the universal covering space of M is contractible). Such a manifold is
also said to be aspherical.

Let M be a non-trivial (�≈ S3) compact connected orientable 3-manifold.
Assume that the elliptization conjecture is true. Then the Kneser-Milnor ([22],
[28]) prime decomposition theorem asserts thatM is diffeomorphic to a finite
connected sum of the following form,
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M ≈ S3/Γ 1 # . . .# S3/Γ k︸ ︷︷ ︸
spherical factors

# (S1 × S2)1# . . .# (S1 × S2)l︸ ︷︷ ︸
handles (or wormholes)

# K(π1, 1) # . . . #K(πm, 1)︸ ︷︷ ︸
aspherical factors

(22)

where

1. k, l, and m are non-negative integers (if any of the integers k, l, or m are
zero, then terms of that type do not appear);

2. if k ≥ 1, then for each i, 1 ≤ i ≤ k, Γ i ⊂ SO(4) is a finite non-trivial
subgroup of SO(4) acting freely and orthogonally on S3, so that each
resulting factor S3/Γ i is a spherical space form ;

3. if m ≥ 1, then for each j, 1 ≤ j ≤ m, each aspherical factor is a K(πj , 1)-
manifold with infinite fundamental group π1(K(πj , 1)) = πj ;

and where the summands in (22) are uniquely determined up to order and
diffeomorphism.

Assuming the elliptization conjecture, using the prime decomposition
theorem, and using results of Gromov-Lawson ([17], [18], [19]) and Schoen-
Yau ([36], [37], [38]), we can give a characterization of the structure of the
manifolds of the three Yamabe types (see [13] for details).

Let M be a compact connected orientable 3-manifold. Then,

1. Y (M) = −1 if and only if either M is a non-Euclidean K(π, 1)-manifold
(i.e., M is a “stand-alone” K(π, 1)-manifold that does not admit a flat
Riemannian metric), or M is a composite manifold such that in its
connected sum decomposition (22) there is at least one K(π, 1)-factor
(which may be Euclidean), i.e., M ≈M ′#K(π, 1), where M ′ �≈ S3;

2. Y (M) = 0 if and only M is Euclidean, and thus M is diffeomorphic to
one of six orientable Euclidean space forms (see [42] for a description of
these space forms);

3. Y (M) = 1 if and only M is diffeomorphic to a finite connected sum of
spherical space forms and handles, i.e.,

M ≈ S3/Γ 1 # . . .# S3/Γ k # (S1 × S2)1# . . .# (S1 × S2)l (23)

Our main interest in this paper is in compact connected orientable 3-
manifolds with Y (M) = −1. Thus, assuming that the elliptization conjecture
is true, the structure of these 3-manifolds is given by 1. above.

2.4 Conformal Geometry and the σ-Constant

We now discuss some results from conformal geometry that we shall need,
specialized to 3-manifolds of Yamabe type −1. We then discuss the σ-constant
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ofM , σ(M), a fundamental topological invariant forM . Further information
regarding this material is given in [2], [26], and [39].

Let M be a compact connected oriented n-manifold, n ≥ 3. The Yamabe
functional is defined by

Y : M −→ R , g �−→
∫
M
R(g)µg

(
∫
M
µg)(n−2)/n . (24)

If ψ ∈ P = Pos(M), then

Y
(
ψ4/(n−2)g

)
=

∫
M
(4(n−1

n−2 )‖dψ‖2g +R(g)ψ2)µg
(
∫
M
ψ2n/(n−2)µg)(n−2)/n . (25)

Specializing to the case n = 3,

Y (g) =

∫
M
R(g)µg

(
∫
M
µg)1/3

, (26)

and if ψ ∈ P = Pos(M), then

Y (ψ4g) =

∫
M
(8‖dψ‖2g +R(g)ψ2)µg

(
∫
M
ψ6µg)1/3

. (27)

Fixing g and letting ψ vary, by Hölder’s inequality this functional as a func-
tion of ψ is bounded below. One defines the Yamabe invariant y(g) of g (or
the Yamabe constant), by

y(g) = inf
g′∈〈g〉

Y (g′) = inf
ψ∈P

Y (ψ4g) = inf
ψ∈P

∫
M
(8‖dψ‖2g +R(g)ψ2)µg

(
∫
M
ψ6µg)1/3

(28)

where 〈g〉 = {ψ4g | ψ ∈ P} is the pointwise conformal class of g.
The Yamabe invariant is a conformal invariant of g, depending only on

the conformal class of g. Thus, if ψ ∈ P, then y(ψ4g) = y(g), so that y passes
to the orbit space of pointwise conformal structures (and indeed to conformal
structures)

w : M/P −→ R ; 〈g〉 �−→ w(〈g〉) = y(g′) , g′ ∈ 〈g〉 ,

which is the Yamabe invariant of the conformal class 〈g〉.
If (S3, g1) denotes the standard 3-sphere with unit radius, then the Ya-

mabe invariant satisfies the following bound ([7]),

y(g) = y(M, g) ≤ y(S3, g1) . (29)

The Yamabe invariant y(g) is an infimum within a fixed conformal class.
Using the bound given by (29), it is natural to consider the supremum of
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the Yamabe invariants over all conformal classes. Thus one defines the σ-
constant of M , σ(M), by taking the supremum of the Yamabe invariant over
all conformal classes of M ,

σ(M) = sup
〈g〉∈M/P

w
(
〈g〉
)
= sup

〈g〉∈M/P

(
inf

g′∈〈g〉
Y (g′)

)
(30)

where the supremum exists by (29). Thus the σ-constant is defined by a
minimax process (first infimum, then supremum) analogous to the minimax
process (first supremum, then infimum) used in Morse theory (see [31], [32],
and [33]).

Since y(g) = w(〈g〉) is conformally invariant, (30) reduces to

σ(M) = sup
〈g〉∈M/P

w
(
〈g〉
)
= sup
g∈M

y(g) = sup
g∈M

(
inf
ψ∈P

Y (ψ4g)
)
. (31)

The main idea behind the introduction and use of the σ-constant is to use
it as a tool to search for Einstein metrics on general compact manifolds ([2]).
The usual procedure is to seek critical points of the total scalar curvature
functional restricted to metrics with unit volume,

R1
T : M1 −→ R , g �−→

∫
M

R(g)µg , (32)

where
M1 = { g ∈ M | vol(M, g) =

∫
M

µg = 1 } , (33)

for such critical points are necessarily Einstein metrics.
This approach has two difficulties. Firstly, the functional R1

T is bounded
neither above nor below. Secondly, any critical point of R1

T has both infinite
index and co-index. Thus, the usual methods of obtaining the existence of
critical points cannot be applied.

Thus one introduces a minimax procedure in order to obtain the critical
values of R1

T , and then, hopefully, the critical points. The minimax procedure
to obtain σ(M) has two steps. First minimize the Yamabe functional in a fixed
conformal class and then maximize over all conformal classes. The first step
of this procedure, corresponding to the min part, is the Yamabe problem and
has been solved (see [34] and [39] and the references therein). Indeed, if the
Yamabe invariant y(g) is achieved by g′,

Y (g′) = y(g) = inf
ψ∈P

Y (ψ4g) , (34)

then g′ must necessarily have constant scalar curvature.
The second step of the minimax procedure, maximizing over the conformal

classes is considerably more difficult and has not been solved. However, it is
known that if the σ-constant of M is ≤ 0 and is achieved by g′,

Y (g′) = y(g′) = σ(M) , (35)
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then g′ is necessarily an Einstein metric and a fortiori has constant scalar
curvature. In the case that σ(M) > 0, it is conjectured that if g′ realizes
σ(M), then g′ is an Einstein metric, but this remains unknown.

In this regard we remark that a constant curvature metric (unique up to
isometry and homothety) on Sn achieves the σ-constant of Sn, and that any
flat metric on T n achieves the σ-constant of T n. However, it is still unknown,
but conjectured to be true, that the σ-constant of a hyperbolic manifoldM is
achieved by a hyperbolic metric onM (which by Mostow rigidity is unique up
to isometry and homothety). We shall see that this conjecture is equivalent
to a conjecture of ours that the local minimum of our reduced Hamiltonian
is a global minimum (see Sects. 5 and 6).

We also remark that (24) is defined for n = 2. In this case, by the Gauss-
Bonnet theorem, Y (g) = 4πχ(Σp) and so

σ(Σp) = y(g) = 4πχ(Σp) = 8π(1− p) . (36)

Thus in some sense one can think of the σ-constant for n ≥ 3 as a genera-
lization of the Euler characteristic for n = 2; see also Sect. 6.

Now we specialize to the case where Y (M) = −1. Since the Yamabe
invariant y(g) depends only upon the conformal class of g, we may replace g
by any metric conformal to g. Since Y (M) = −1, every metric g is pointwise
conformally equivalent to a metric γ ∈ M−1. Thus for g and γ, y(g) = y(γ).
In this case the infimum of (28) is actually achieved by a constant ψ = c > 0
and then the Yamabe invariant is given by

y(g) = y(γ) =
− ∫

M
c2µγ

(
∫
M
c6µγ)1/3

= −
(∫

M

µγ

)2/3

. (37)

Thus, if Y (M) = −1, every conformal class is uniquely represented by a
metric in M−1, so from (31) and (37), we have the following fundamental
equation for σ(M),

σ(M) = sup
g∈M

y(g) = sup
γ∈M−1

y(γ)

= sup
γ∈M−1

(
−
(∫

M

µγ

)2/3)
= − inf

γ∈M−1

(∫
M

µγ

)2/3

= −
(

inf
γ∈M−1

∫
M

µγ

)2/3
= −

(
inf

γ∈M−1
vol(M,γ)

)2/3

. (38)

Thus, if Y (M) = −1, the minimax process defining the σ-constant is replaced
by a simpler min (i.e., infimum) process since the first step of the process,
taking the infimum, is actually achieved by a metric γ ∈ M−1, and since the
second step of the process, taking the supremum, is converted to an infimum
since y(γ) = − (∫

M
µγ
)2/3

< 0.
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Thus, if M is a compact connected oriented 3-manifold with Y (M) = −1,
then σ(M) is expressed in terms of the infimum of the volume of Riemannian
metrics restricted to the submanifold M−1. Moreover, in Sect. 4, we shall
show that this infimum can be attained only if γ is a hyperbolic metric.

We shall return to these fundamental results in Sect. 5. Here we make two
further remarks. Firstly, if M is a compact connected oriented n-manifold,
n ≥ 3, with Y (M) = −1, then, more generally,

σ(M) = −
(

inf
γ∈M−1

vol(M,γ)

)2/n

. (39)

Secondly, regarding the units of the Yamabe functional Y (g) (see the di-
scussion of units in Sect. 1), n ≥ 3, we remark that in physical units Y (g) is
dimensionless. Indeed, letting � denote a fixed positive constant with dimen-
sion of (length), then

Physical Units

( ∫
M
R(g)µg

(
∫
M
µg)(n−2)/n

)
=
�−2 · vol
vol(n−2)/n

= �−2 · vol2/n = �−2 · (�n)2/n = �0 = 1 . (40)

Thus y(g), w(〈g〉), and σ(M) are all ipso facto dimensionless.
We note, however, that the reason that (39) (and (38)) appear to have

physical units �2 is that when we set R(g) = −1 in (37), the −1 that appears
is only numerically −1 but in physical units has dimensions �−2. Similarly, in
physical units the − = −1 that appears in (38) and (39) is numerically −1
but has dimensions �−2 and thus in physical units σ(M) is dimensionless.

3 Properties of the Reduced Hamiltonian

Throughout this section we assume that M is a smooth (C∞) compact
connected oriented 3-manifold without boundary such that M is of Yamabe
type −1.

As discussed in Sect. 2.2, a subclass of manifolds of Yamabe type −1 are
the hyperbolic manifolds. If M is hyperbolic, then, by Mostow rigidity, up to
isometry, there is a unique hyperbolic metric γ̃ onM with sectional curvature
K(γ̃) = − 1

6 and scalar curvature R(γ̃) = −1. Then, correspondingly, up to
isometry, there is a unique (γ̃, 0) ∈ Preduced.

Our aim in this paper is to establish the following properties of the dimen-
sionless reduced Hamiltonian Hreduced(τ, γ, pTT ) = −τ3 ∫

M
ϕ6µγ discussed in

Sect. 1.

1. IfM is a hyperbolic manifold, then Hreduced(τ, γ, pTT ) is a monotonically
decreasing function of t unless pTT = 0 and γ = γ̃ is hyperbolic (with
K(γ̃) = − 1

6 ). At (γ, p
TT ) = (γ̃, 0), Hreduced(τ, γ̃, 0) is constant in time.
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2. If M is a non-hyperbolic manifold (but of Yamabe type −1), then
Hreduced(τ, γ, pTT ) is globally monotonically decreasing in t.

3. If M is a hyperbolic manifold and τ ∈ (−∞, 0) is fixed, then
Hreduced(τ, γ, pTT ) has a critical point at (γ̃, 0), which is unique up to
isometry. Moreover, (γ̃, 0) is a strict local minima of Hreduced(τ, γ, pTT )
in the non-isometric directions.

4. If M is a non-hyperbolic manifold (but of Yamabe type −1) and τ ∈
(−∞, 0) is fixed, then Hreduced(τ, γ, pTT ) has no critical points.

5. IfM is of Yamabe type −1 and τ ∈ (−∞, 0) is fixed, then the σ-constant
of M is related to the reduced Hamiltonian as follows:

σ(M) = − 2
3

(
inf

(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT )

)2/3

(41)

or, alternately,

inf
(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT ) =
(

− 3
2σ(M)

)3/2
. (42)

Remarks:

1. If M is a hyperbolic manifold, then corresponding to the unique hyper-
bolic critical point (γ̃, 0) are the constant mean curvature ADM gravita-
tional variables (see (51))

(g, π) =
(
g, 2

3τg
−1µg

)
=
(
3
2τ

−2γ̃, − ( 23
)1/2

γ̃−1µγ̃

)
.

The corresponding solutions of Einstein’s equations are flat, admit a glo-
bal timelike homothetic vector field, and are isometric to quotients of
the interior of the future light cone of a point of Minkowski spacetime
by co-compact discrete subgroups of the proper orthochronous Lorentz
group which fixes that point (see (48)).

2. If M is a hyperbolic manifold, then (γ̃, 0) is a strict local minimum of
Hreduced(τ, γ, pTT ) andHreduced(τ, γ, pTT ) has no other critical points (up
to isometry). We conjecture that (γ̃, 0) is a strict global minimum which
is equivalent to the conjecture that the σ-constant ofM is realized by the
hyperbolic geometry on M . If M is not hyperbolic, then the σ-constant
is never realized by a metric on M but is only approached as a limit.

In other dimensions the most natural definition of the reduced Hamilto-
nian (for a CMC slicing) is Hreduced = |τ |n ∫

M
µg. For any dimension n �= 1

(which would be a degenerate case) this form of Hreduced follows from a choice
of time function t = constant

τn−1 . Moreover, in other dimensions, all of these pro-
perties of Hreduced have analogues in n+ 1 gravity.

For example, in 2 + 1 gravity where the role of the σ-constant of M is
played by the Euler characteristic χ(Σp) of a surface Σp, p ≥ 2, the conjecture
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that the critical points of Hreduced are in fact global minima is known to be
true (see also Sect. 6). In fact, there is already a global existence theorem for
vacuum 2 + 1 gravity on manifolds of the type R− × Σp which shows that
every solution, when extended to its maximal Cauchy development exhausts
the interval τ ∈ (−∞, 0) and has asymptotic properties for area(Σp, g) of the
type suggested above for vol(M, g), i.e., the area collapses to zero at the big
bang where τ → −∞ and expands to infinity as τ → 0 (see [5]). In vacuum
2 + 1 gravity all solutions are flat, but the special solutions with a global
timelike homothety which arise from the critical points ofHreduced in that case
are represented by the zero section of T ∗(M−1(Σp))/D0(Σp)) which, in turn,
is diffeomorphic to the Teichmüller space Tp = T (Σp) = M−1(Σp)/D0(Σp)
of Σp, where the points of Teichmüller space are represented by the D0(Σp)-
isometry classes of hyperbolic metrics on Σp (see Sect. 2.1). However, in 3+1
gravity, because of Mostow rigidity, when M is of hyperbolic type, then up
to isometry there is a unique and hence isolated hyperbolic critical point.

In n+ 1 dimensions with n ≥ 3, the condition that (γ, pTT ) be a critical
point of Hreduced is that pTT = 0 and that g be an Einstein metric (with
negative Einstein constant). For n = 3, this leads to the requirement that γ
be a hyperbolic metric, and hence by Mostow rigidity leads to the uniqueness
of the critical point.

For n ≥ 4, the criticality condition that γ be an Einstein metric is not
as rigid as in dimension n = 3, and indeed does not lead to a unique or
isolated critical point. When n = 2, although the critical condition does
imply constant curvature, there is still a Teichmüller space of deformations
possible. Thus only when n = 3 do we get a unique isolated critical point of
Hreduced (see also the remarks preceding (49)).

4 Proofs of the Properties of Hreduced

To show that Hreduced is monotonically decreasing we compute

d

dt
Hreduced =

d

dt

(
− τ3

∫
M

µg

)

= −3τ2 dτ
dt

∫
M

µg + τ3
∫
M

(
1
2N(trgπ)µ−1

g − divgX
)
µg

= 9
4τ

5
∫
M

µg + τ4
∫
M

Nµg (43)

where N is the lapse function, X is the shift vector field, and where we have
used the gauge condition t = 2

3
1
τ2 and the compactness ofM to eliminate the

term involving the divergence of X, divgX = Xi|i. To evaluate the integral
of N we need the elliptic equation which determines N for the chosen CMC
slicing

∂τ

∂t
= − 3

4τ
3 = ∆gN +

(
π · π − 1

4 (trgπ)
2
)
µ−2
g N
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= ∆gN +
(
(πTT · πTT )µ−2

g + 1
3τ

2
)
N (44)

where πTT = π − 1
3g

−1(trgπ) = π − 2
3τg

−1µg. Integrating (44) over M and
substituting the result into (43) yields

d

dt
Hreduced = −3τ2

∫
M

N
(
πTT · πTT )µ−1

g . (45)

We remark that this equation was shown to hold in arbitrary dimensions by
Alan Rendall (unpublished). A standard maximum principle argument ap-
plied to (44) shows that N > 0 and thus, since τ �= 0, we obtain d

dtHreduced ≤
0 with equality holding if and only if πTT = 0. Thus, if πTT �= 0, then
Hreduced is monotonically decreasing. We also remark that when πTT = 0,
then (44) has the unique solution N = − 9

4τ which is spatially constant.
We now show that even in the case that πTT = 0, then Hreduced is still

monotonically decreasing unless g is an Einstein metric (and hence hyperbo-
lic). Indeed, if πTT = 0, then d2

dt2Hreduced = 0, whereas the third derivative
is given by

d3

dt3
Hreduced = −6τ2

∫
M

N(∂tπTT · ∂tπTT )µ−1
g ≤ 0 (46)

with equality holding if and only if ∂tπTT = 0. Since πTT = 0, N = − 9
4τ is

spatially constant. Substituting this result together with πTT = 0 into the
ADM evolution equation for π one finds that ∂tπTT = 0 if and only if the
Ricci tensor Ric(g) of g satisfies

Ric(g) = − 2
9τ

2g (47)

with sectional curvature K(g) = − 1
9τ

2 and scalar curvature R(g) = − 2
3τ

2.
Since g is an Einstein space with negative Ricci curvature and since n = 3, g
must be hyperbolic.

On the other hand, it is straightforward to verify that for fixed τ ∈
(−∞, 0), the Cauchy data (g, π) = (g, 2

3τg
−1µg), where g satisfies (47), is

a solution of the Einstein constraint equations and thus provides Cauchy
data for a vacuum spacetime on R− ×M , where M is a hyperbolic manifold.
In fact, the resulting spacetime is expressible as

ds2 = −
(
3
τ2

)2

dτ2 +
3
2τ2
γ̃ijdx

idxj (48)

where γ̃ is a fixed, i.e. τ independent, hyperbolic metric satisfying R(γ̃) = −1
and where we have for convenience used τ instead of t = 2

3
1
τ2 as time coordi-

nate. Locally the metric (48) is identical to the k = −1 vacuum Robertson-
Walker solution which is well-known to be flat. Globally, these spacetimes,
one for each compactM of hyperbolic type, are obtainable as quotients of the
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interior of a future light cone in Minkowski by co-compact subgroups of the
proper orthochronous Lorentz group which fixes that point and are someti-
mes known as Löbell spacetimes ([27]; see also [21], p. 136, for other remarks
regarding these spacetimes). They each admit a global timelike homothety
inherited from the homothetic Killing field xµ ∂

∂xµ of Minkowski space which
is compatible with the quotients, but no other global Killing or conformal
Killing symmetries ([11]).

It is worth remarking here that the foregoing arguments work equally
well in lower (n = 2) and higher (n ≥ 4) spatial dimensions but that the
conclusions are somewhat less restrictive, although for different reasons. For
n = 2, there is for any higher genus surface Σp, p ≥ 2, an entire Teichmüller
space of solutions obtainable by the above construction, whereas for n ≥ 4,
condition (47) does not imply constancy of the sectional curvature of g. Thus
only for n = 3 is the solution to (47) necessarily unique on each hyperbolic
manifold M by virtue of Mostow rigidity. In any dimension, however, the
corresponding solutions, when they exist, are the only vacuum spacetimes
for which Hreduced = |τ |n ∫

M
µg is constant in time. Every other solution

of Einstein’s equations has Hreduced monotonically decreasing. In arbitrary
dimension (n ≥ 2) these special metrics, (n+1)g, can be written explicitly as

ds2 = −
( n
τ2

)2
dτ2 +

( n

n− 1

) 1
τ2
γ̃ijdx

idxj (49)

where γ̃ is a fixed, i.e., τ -independent, Einstein metric normalized by R(γ̃) =
−1. When n = 2 or 3, or when n ≥ 4 and γ̃ is hyperbolic, these metrics are
flat and in every case admit a global homothetic Killing vector field Y = τ ∂

∂τ

on the spacetime, with LY (n+1)g = −2 (n+1)g, where LY denotes the Lie
derivative with respect to Y .

Returning to the n = 3 case, we consider again the special Cauchy data
(g, π) = (g, 2

3τg
−1µg) discussed above. Note first that πTT = ϕ−4pTT , so

that πTT = 0 if and only if pTT = 0, in which case the unique positive
solution of Lichnerowicz’s equation is

ϕ =
( 3
2τ2

)1/4
. (50)

Thus the gravitational Cauchy data (g, π) corresponding to the special redu-
ced Cauchy data (τ, γ̃, 0) ∈ R− × Preduced is given by

(g, π) =
(
g, 2

3τg
−1µg

)
=
(
ϕ4γ̃, 2

3τ(ϕ
4γ̃)−1µϕ4γ̃

)

=
(
ϕ4γ̃, 2

3τϕ
2γ̃−1µγ̃

)
=
(
3
2τ

−2γ̃, − ( 23
)1/2

γ̃−1µγ̃

)
(51)

where γ̃ is hyperbolic with K(γ̃) = − 1
6 .

We now show that for fixed τ the special reduced Cauchy data (γ̃, 0) is,
up to isometry, the only critical point of Hreduced and, furthermore, is a strict
local minimum for Hreduced.
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We first consider variations of
∫
M
µg =

∫
M
ϕ6µγ with respect to the

variable pTT holding τ and γ fixed. Letting rTT denote the variation of pTT

we compute

D

(∫
M

ϕ6µγ

)
· rTT = 6

∫
M

ϕ5
(
Dϕ(rTT )

)
µγ . (52)

The variation δϕ = Dϕ · (rTT ) is determined by the corresponding variation
of the Lichnerowicz equation (11), which gives

−∆γ(δϕ) + 1
8 (δϕ) − 5

12τ
2ϕ4(δϕ)− 7

8 (p
TT · pTT )µ−2

γ ϕ
−8(δϕ)

+ 1
4 (p

TT · rTT )µ−2
γ ϕ

−7 = 0 (53)

where pTT ·rTT = (pTT )ij(rTT )ij . Multiplying this equation by ϕ, integrating
over M , and integrating by parts to arrange for the Laplacian to act on ϕ,
we use the Lichnerowicz equation for ϕ to re-express this term and obtain

1
3τ

2
∫
M

ϕ5(δϕ)µγ +
∫
M

(pTT · pTT )ϕ−7µ−1
γ (δϕ) = 1

4

∫
M

(pTT · rTT )µ−1
γ ϕ

−6 .

(54)
Clearly if pTT = 0, we get

∫
M
ϕ5(δϕ)µγ = 0 for all rTT . To show that pTT

must vanish at a critical point, take rTT = pTT and apply the maximum
principle to (53) to show that at a minimum (δϕ)min for δϕ we have

(
5
12τ

2ϕ4 − 1
8 +

7
8 (p

TT ·pTT )µ−2
γ ϕ

−8

)

min pt

δϕmin (55)

≥ 1
4

(
(pTT ·rTT )µ−2

γ ϕ
−7
)
min pt

= 1
4

(
(pTT ·pTT )µ−2

γ ϕ
−7
)
min pt

≥ 0 .

The same maximum principle argument applied to the Lichnerowicz equation
gives

1
12τ

2ϕ4min − 1
8 ≥ 1

8

(
(pTT · pTT )µ−2

γ

)
min pt

(ϕ−8
min) ≥ 0 (56)

and thus the quantity in parentheses on the left hand side of (55) is strictly
positive, since ϕ is bounded away from zero. Thus (55) gives (δϕ)min ≥ 0
when rTT = pTT and (54) implies that δϕ is not identically zero unless pTT

vanishes identically. Since ϕ > 0 everywhere it follows that
∫
M
ϕ5(δϕ)µγ > 0

unless pTT = 0 identically.
We conclude that D

(∫
M
ϕ6µγ

) · rTT vanishes for all rTT if and only if
pTT vanishes identically. In this case, the unique positive solution of Lich-

nerowicz’s equation ϕ =
(

3
2τ2

)1/4
is constant and thus independent of γ.

Thus variations of ϕ with respect to γ vanish identically when pTT = 0. Let
h represent the variation of γ. Then

D
(

− τ3
∫
ϕ6µγ

)
· h = ( 32 )

3/2
(
D

∫
M

µγ

)
· h . (57)
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Thus critical points of Hreduced are those points with pTT = 0 and γ a critical
point of volume among metrics satisfying R(γ) = −1.

Strictly speaking we should also restrict γ to lie in a slice for the D0
action on M−1 since the reduced configuration space is M−1/D0. However,
since the volume functional

∫
M
µγ is invariant with respect to the D0-action

(and indeed the full D-action), its derivative in the fiber direction vanishes
identically. For convenience therefore, we shall differentiate

∫
M
µγ subject

only to the condition that the variation h be tangent to M−1.
Variations preserving R(γ) = −1 must obeyDR(γ)·h = 0 or, equivalently,

for all σ ∈ C∞(M,R),
∫
M

σ
(
DR(γ) · h

)
µγ =

∫
M

h ·
(
DR(γ)∗ · σ

)
µγ = 0 , (58)

where DR(γ) is given by

DR(γ) · h = hij |i|j − γij(γklhkl)|i|j −Rijhij , (59)

and where, from an integration by parts, the L2-dual DR(γ)∗ is given by

(DR(γ)∗ · σ)ij = σ|i|j − (γklσ|k|l)γij − σRij . (60)

Since the range of DR(γ)∗ is closed, h ∈ kerDR(γ) if and only if h is L2-
orthogonal to range DR(γ)∗ (see [12] for details). The critical point condition
is thus

D
(∫

M

µγ

)
· h = 1

2

∫
M

(trγh)µγ = 1
2

∫
M

(γijhij)µγ = 0 (61)

for all h orthogonal to range DR(γ)∗. But this means that γ must be parallel
to range DR(γ)∗, i.e., that

γij = σ|i|j − γijσ|k|k − σRij (62)

for some σ. Taking the trace of this equation and using R(γ) = −1 gives

3 = −2σ|k|k + σ (63)

which has the unique solution σ = 3. From (62) it then follows that γ is an
Einstein metric,

Ric(γ) = − 1
3γ (64)

and since n = 3, γ must be hyperbolic, and thus by Mostow rigidity γ ∈ M−1
is unique up to isometry.

Thus we conclude that, firstly, γ ∈ M−1 is a critical point of vol restricted
to M−1 if and only if γ is hyperbolic (with K(γ) = − 1

6 ), and secondly,
(γ, pTT ) is a critical point of Hreduced if and only if pTT = 0 and γ is a
hyperbolic metric, in which case (γ, 0) is a unique (up to isometry) isolated
critical point of Hreduced.
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In (38), we have shown that if M is a compact connected oriented 3-
manifold with Y (M) = −1, then σ(M) is expressed in terms of the infimum
of the volume of Riemannian metrics restricted to the submanifold M−1.
Coupled with the result presented here, this infimum can only be attained if
γ is a hyperbolic metric. We shall return to this result in Sects. 5 and 6.

We remark that when n ≥ 4, the condition of being an Einstein metric
does not imply hyperbolicity. Thus in these higher dimension cases, the criti-
cal points may not be isolated, even though Mostow rigidity still applies (but
only to hyperbolic structures).

In the n = 3 case, we now show that when M is of hyperbolic type, then
the unique isolated critical point (γ̃, 0) is a strict local minimum. Here we
sketch the proof of this result; technical details will appear elsewhere. The
first step in the proof is accomplished by computing the Hessian of Hreduced
at (γ̃, 0) and verifying its positive definiteness there.

Let (h, rTT ) denote the variation of (γ, pTT ) about the critical point (γ̃, 0)
with DR(γ̃) ·h = 0 as above. We compute D2Hreduced · ((h, rTT ), (h, rTT )) =
D2Hreduced(τ, γ̃, 0) · ((h, rTT ), (h, rTT )), suppressing the base point (τ, γ̃, 0),

D2
(

− τ3
∫
M

ϕ6µγ̃

)
·
(
(h, rTT ), (h, rTT )

)

= −30τ3
∫
M

ϕ4
(
Dϕ · (h, rTT )

)2
µγ̃ − τ3

∫
M

6ϕ5D2ϕ
(
(h, rTT ), (h, rTT )

)
µγ̃

−τ3
∫
M

12ϕ5
(
Dϕ · (h, rTT )

)(
Dµγ̃ · h

)
− τ3

∫
M

ϕ6D2µγ̃ · (h, h) (65)

where Dµγ̃ ·h = Dµγ̃ · (h, rTT ) and D2µγ̃ · (h, h) = D2µγ̃ · ((h, rTT ), (h, rTT ))
since the volume functional µγ is a function of γ alone.

However, an arbitrary variation of (γ, pTT ) in the Lichnerowicz equa-
tion (11) simplifies greatly when pTT = 0 since in that case ϕ = ( 3

2τ2 )1/4 is
constant so that dϕ = 0, thereby yielding an equation for which the unique
solution is Dϕ · (h, rTT ) = 0. Thus the Hessian reduces to

D2Hreduced ·
(
(h, rTT ), (h, rTT )

)
(66)

= −6τ3
∫
M

ϕ5D2ϕ
(
(h, rTT ), (h, rTT )

)
µγ − τ3

∫
M

ϕ6D2µγ · (h, h)

and one can compute the second variation δ(2)ϕ = D2ϕ · ((h, rTT ), (h, rTT ))
by solving the second variation of the Lichnerowicz equation which, at a
critical point, reduces to

−∆γ(δ(2)ϕ) + 1
8 (δ

(2)ϕ)− 5
12τ

2ϕ4(δ(2)ϕ) + 1
4 (r

TT · rTT )µ−2
γ ϕ

−7 = 0 (67)

since the first variation δϕ vanishes identically there. Using ϕ4 = 3
2τ2 and

integrating (67) over M , we have

−6τ3
∫
M

ϕ5D2ϕ·
(
(h, rTT ), (h, rTT )

)
µγ = 61/2τ4

∫
M

(rTT · rTT )µ−1
γ . (68)
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Thus we now need to evaluate the second term −τ3 ∫
M
ϕ6D2µγ · (h, h)

in (66) for an arbitrary h which is tangent to the intersection of M−1 and the
affine slice defined in [15]. Let γ(λ) be a smooth curve lying in this intersection
such that γ(0) = γ̃, the critical metric, γ′(0) = h, and let γ′′(0) = �. Since by
assumption h is tangent to M−1, we have

DR(γ̃) · h = hij |i|j − γ̃ij(trγ̃h)|i|j − R̃ijhij = 0 (69a)

(δγ̃h)i = −γ̃jkhij|k = 0 (69b)

where (69a) is the condition that h be tangent to M−1, (69b) is the condition
that h be tangent to the affine slice, and where the divergence, covariant
derivative, and Ricci tensor are with respect to γ̃. Combining these equations
and using the fact that γ̃ is hyperbolic, one sees that trγ̃h = 0 and thus that
h is transverse-traceless with respect to γ̃. We thus write hTT for h in the
following.

Since we are at a critical point for volume in M−1 we can compute the
Hessian of volume by evaluating the second derivative of the volume along
the curve γ(λ) so that

− τ3
∫
M

ϕ6D2µγ · (hTT , hTT ) = ( 32 )
3/2
(
d2

dλ2

∫
M

µγ(λ)

)
∣∣

λ=0

(70)

= 1
2 (

3
2 )

3/2
∫
M

(−hTT · hTT + trγ̃�
)
µγ̃ .

Now � = γ′′(0) is restricted by the condition that γ(λ) lies in M−1 which
implies that

0 =
d2

dλ2
R(γ(λ))∣∣

λ=0
= DR(γ̃) · �+D2R(γ̃) · (hTT , hTT ) (71)

as well as a condition on � which ensures that γ(λ) remains in the slice
through second order. This latter condition is simply that δγ̃� = 0 which,
together with (69a), (69b), and (71), yields

1
3 trγ̃�− γ̃kl(trγ̃�)|k|l +D2R(γ̃) · (hTT , hTT ) = 0 . (72)

Integrating this equation over M gives the needed formula for
∫
M
(trγ̃�)µγ̃ in

terms of hTT , namely∫
M

(trγ̃�)µγ̃ = −3
∫
M

D2R(γ̃) · (hTT , hTT )µγ̃ (73)

which one can evaluate using standard second variation results for the scalar
curvature. The final result is

d2

dλ2

(∫
M

µγ(λ)

)
∣∣

λ=0

= 3
4

∫
M

(
∇γ̃h

TT ·∇γ̃h
TT − 1

3h
TT · hTT

)
µγ̃

= 3
4

∫
M

(
‖∇γ̃h

TT ‖2γ̃ − 1
3‖hTT ‖2γ̃

)
µγ̃ (74)
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(in local coordinates, the integrand is given by γ̃ij γ̃klγ̃mn(hTT )ik|m(hTT )jl|n−
1
3 γ̃

ij γ̃kl(hTT )ik(hTT )jl). From (74) we can conclude our calculation of the
Hessian (66) of Hreduced to give

D2Hreduced(τ, γ̃, 0) ·
(
(hTT , rTT ), (hTT , rTT )

)
(75)

= 61/2τ4
∫
M

(
rTT ·rTT )µ−1

γ̃ + 3
4 (

3
2 )

1/2
∫
M

(
‖∇γ̃h

TT ‖2γ̃ − 1
3‖hTT ‖2γ̃

)
µγ̃ .

To show that this is positive definite, in spite of the final negative term,
we need the following identity for arbitrary transverse-traceless tensors on a
compact hyperbolic 3-manifold (M, γ̃) with sectional curvature K(γ̃) = − 1

6 ,

1
2

∫
M

(
hTTjm|l − hTTlm|j

)(
(hTT )jm|l − (hTT )lm|j

)
µγ̃

=
∫
M

(
(hTT )jm|l(hTT )jm|l − 1

2 (h
TT )jm(hTT )jm

)
µγ̃

=
∫
M

(
‖∇γ̃h

TT ‖2γ̃ − 1
2‖hTT ‖2γ̃

)
µγ̃ (76)

which is obtained by integrating by parts with respect to the hyperbolic back-
ground metric γ̃. We thank Robert Beig for providing us with this identity
(see also [8]). Comparing (75) with (76) shows that the “potential” term (76)
is positive definite. With further technical details, we can then conclude that
(γ̃, 0) is a strict local minimum of Hreduced.

Thus, if M is a hyperbolic manifold and τ is fixed, the unique (up to
isometry) critical point (γ̃, 0) ∈ Preduced of Hreduced(τ, γ, pTT ) is a strict local
minimum (in the non-isometric direction).

5 The Infimum of Hreduced

and Its Relation to the σ-Constant of M

We have shown that if M is a hyperbolic manifold, then for each fixed τ ,
Hreduced has a a unique (up to isometry) critical point (γ̃, 0) ∈ Preduced which
is a strict local minimum of Hreduced. It is tempting to speculate that this
local minimum is in fact a strict global minimum.

To put this conjecture into a larger context let us return to an arbitrary
M of Yamabe type −1 and study the infimum of Hreduced(τ, γ, pTT ).

We first show that along each fiber above a fixed conformal metric γ,
Hreduced is minimized by setting the fiber variable pTT = 0. This will reduce
the study of the infimum ofHreduced to the study of the infimum of the volume
functional on M−1. But the volume of a metric lying in M−1 is directly
related to the Yamabe invariant of its associated conformal class. Taking the
supremum of the Yamabe invariant over all conformal classes parameterized
by M−1 corresponds to taking the infimum of volume on M−1 (see Sect. 2.4),
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thus leading to a relation between the σ-constant of M and the infimum of
Hreduced on the phase space Preduced.

To see how Hreduced depends upon the pTT variable one can investigate its
variation along a “ray” pTT (λ) = λpTT . Thus, fixing τ and γ, by a computa-
tion completely analogous to that which led to Eqn (55), one shows that the
first order variation δϕ = dϕ

dλ (τ, γ, λp
TT ) is strictly positive for λ > 0 unless

pTT is identically zero. Thus d
dλ (−τ3

∫
M
ϕ6µγ) ≥ 0 for λ > 0 with equality

holding only if pTT = 0. Conversely, it follows that we can scale Hreduced
to its minimum along each fiber by scaling the fiber variable to zero. Thus
Hreduced is minimized at fixed (τ, γ) by putting pTT = 0 for which ϕ becomes
( 3
2τ2 )1/4 and then

Hreduced(τ, γ, 0) = −τ3
∫
M

ϕ6µγ = ( 32 )
3/2
∫
M

µγ . (77)

Continuing to keep τ fixed but letting γ ∈ M−1 vary, we find

inf
(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT )) = inf
(γ,0)∈Preduced

Hreduced(τ, γ, 0)

= inf
γ∈M−1

Hreduced(τ, γ, 0)

= ( 32 )
3/2 inf

γ∈M−1

(∫
M

µγ

)

= ( 32 )
3/2 inf

γ∈M−1

(
vol(M,γ)

)
. (78)

Thus the infimum of Hreduced is ( 32 )
3/2 times the infimum of volume restricted

to M−1. In particular, if the infimum of Hreduced is achieved by a γ ∈ M−1,
then γ must be hyperbolic.

Thus, combining (38) and (78), we find that for fixed τ ∈ (−∞, 0) and
M of Yamabe type −1, then the σ-constant is related to the infimum of the
reduced Hamiltonian as follows:

σ(M) = − 2
3

(
inf

(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT )

)2/3

(79)

or, alternately,

inf
(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT ) =
(

− 3
2σ(M)

)3/2
. (80)

6 Concluding Remarks

For 3-manifolds of Yamabe type −1, we have seen in Sect. 4 that the σ-
constant can only be achieved, if at all, by a metric having constant curva-
ture and it has been conjectured that for a 3-manifold of hyperbolic type, the
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Yamabe invariant for the hyperbolic metric γ̃ with R(γ̃) = −1 in fact equals
the σ-constant for that manifold, y(γ̃) = σ(M). If so, then our foregoing ana-
lysis would show that on a manifold of hyperbolic type, the global minimum
of Hreduced is attained at (γ̃, 0). As discussed in Sect. 4, this is precisely the
Cauchy data for a certain canonical flat spacetime on R− ×M which admits
a global timelike homothety.

Such a result, if true, would be somewhat analogous to that which shows
for asymptotically flat spacetimes that the global minimum of the ADM-mass
functional is attained by the Cauchy data for flat Minkowski space. For now,
however, we only know that the hyperbolic data described above yields a
strict local minimum that may or may not be a strict global minimum.

The universal monotonic decay of Hreduced, together with the fact that
the infimum of Hreduced determines the σ-constant of M , suggests that if a
metric exists which realizes the σ-constant, then this metric is an attractor
for the Einstein flow.

On the other hand, if M is of non-hyperbolic type, then no metric can
realize σ(M). In this case the Einstein flow is nevertheless seeking to attain
the σ-constant asymptotically insofar as the reduced Hamiltonian is monoto-
nically seeking to decay to its infimum. There may well be obstructions, such
as the formation of black holes, which prevent any particular solution from
approaching the σ-constant asymptotically but it seems plausible that some
subset of solutions might nevertheless asymptote to this ideal attractor.

In the case that M is of hyperbolic type, some results of [3] show that
in certain cases solutions sufficiently near the canonical flat solution as gi-
ven by (48) do indeed asymptotically decay in the direction of expansion to
the hyperbolic geometry. These cases occur for those hyperbolic 3-manifolds
which do not admit non-trivial traceless Codazzi tensors, where a symmetric
2–tensor h is a called a Codazzi tensor if

hij|k − hik|j = 0 . (81)

Thus we note that a traceless Codazzi tensor is automatically transverse
(divergence-free).

If there do not exist non-trivial traceless Codazzi tensors, then there
is no non-trivial moduli space of flat spacetime perturbations and the 4-
dimensional geometries for these can be entirely controlled by the higher
order Bel-Robinson energies defined and studied in [3]. Thus the hyperbolic
metric on such manifolds is indeed an attractor for the Einstein flow, and if
the conjecture on σ(M) is true in these cases, then this flow actually attains
the σ-constant asymptotically.

Certain other hyperbolic 3-manifolds, namely, those which do admit non-
trivial traceless Codazzi tensors, are not rigid in this 4-dimensional sense and
admit a moduli space of flat perturbations of the canonical flat metric even
though Mostow rigidity prohibits a deformation of the hyperbolic structure
itself. For such flat perturbations the Bel-Robinson energies, based as they
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are entirely on curvature, cannot control the spacetime geometries and one
needs an additional tool for the proof of long-time existence and asymptotic
behavior. The reduced Hamiltonian may provide precisely the needed tool
since it has an isolated local minimum at the hyperbolic data and decays to-
wards this minimum in the direction of expansion. This Hamiltonian bounds
at best an H1 × L2 Sobolev norm of the Cauchy data (g, π) which is far too
weak to use for the desired long-time-existence theorem. But all we really
need is an additional bound on the finite dimensional space of modular pa-
rameters to complement the Bel-Robinson bounds on curvature and this, it
seems, Hreduced can provide. Thus a modest but useful potential application
of our results would be to use them to complete a proof of long-time-existence
and asymptotic behavior for the case of non-rigid hyperbolic M .

In this context, it is worth remarking that in their study of the non-linear
stability of Minkowski space, Christodoulou and Klainerman [10] never nee-
ded to appeal to the ADM-mass functional, which is roughly the analogue
of Hreduced here, but only used Bel-Robinson type energies. However, Minko-
wski space is known to be isolated as a flat solution of Einstein’s equations
for the case of asymptotically flat spacetimes and this is more analogous to
one of our rigid cases which also seem only to require curvature type energy
estimates for their analysis.

Perhaps the most interesting potential application of our results is to the
case of a manifold M of non-hyperbolic-type for which the σ-constant can
never be realized by an actual metric but only approached as a limit through
a sequence of metrics. Anderson ([1], [2]) has formulated a set of conjectures
about how a sequence of metrics degenerates when the σ-constant is appro-
ached which, if true, would imply the Thurston conjectures [41] and thus
complete the 3-manifold classification program. But if the Einstein flow is
seeking to attain σ(M) asymptotically for M of non-hyperbolic-type, then
presumably the curve of conformal geometries defined by any particular so-
lution for which Hreduced tends to its infimum is degenerating in precisely the
way outlined by Anderson’s conjectures.

If this is the case then perhaps the asymptotic behavior of large classes
of Einstein spacetimes can be characterized rather explicitly in terms of the
degenerations described in Anderson’s conjectures. Conversely, it is not in-
conceivable that the Einstein flow, much like the Ricci flow before it ([20]),
could be used in a positive way to try to establish some form of the geome-
trization conjectures for 3-manifolds.

A model for many of the above concepts is provided by 2+1 dimensional
gravity defined on manifolds of the form R− ×Σp, p ≥ 2. In the 2 + 1 case,
restricting to surfaces with p ≥ 2 is the analogue in the 3 + 1 case of our
restriction to manifolds of Yamabe type −1. In 2 + 1 gravity the role of the
σ-constant is played by the Euler characteristic χ(Σp) of the surface Σp.
In fact, identifying τ2

∫
Σp
µg with the reduced Hamiltonian, one derives an

expression for Hreduced by integrating the Hamiltonian constraint over Σp
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and appealing to the Gauss-Bonnet theorem to express the integral of the
scalar curvature of (Σp, g) in terms of χ(Σp). The result is then expressed in
terms of the reduced phase space variables (τ, γ, pTT ), as in [29], by setting

(g, π) = (e2λγ, e−2λpTT + 1
2τγ

−1µγ) (82)

where R(γ) = −1 and λ is the unique solution of the corresponding Lich-
nerowicz equation

∆γλ− 1
2 +

1
4τ

2e2λ − 1
2e

−2λ(pTT · pTT )µ−2
γ = 0 . (83)

One obtains

Hreduced(τ, γ, pTT ) = τ2
∫
Σp

e2λµγ = τ2
∫
Σp

µg

= 2
∫
Σp

(
(pTT · pTT )µ−1

g −R(g)µg
)

= 2
∫
Σp

(pTT · pTT )µ−1
g − 8πχ(Σp) . (84)

It follows at once that the infimum of Hreduced is attained by setting pTT =
0, a condition which is necessarily conserved by Einstein’s equations since
Hreduced can only decrease or remain constant at its minimum value which,
in this case, is −8πχ(Σ). Thus for τ fixed, p ≥ 2,

inf
(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT ) = −8πχ(Σp) = 16π(p− 1) > 0 (85)

where

Preduced = {(γ, pTT ) | γ ∈ M−1(Σp) and
pTT is transverse-traceless with respect to γ }

is the reduced phase space for Σp. This result may be thought of as the 2+1
analogue of (80)

inf
(γ,pT T )∈Preduced

Hreduced(τ, γ, pTT ) =
( 3
2

)3/2 (− σ(M)
)3/2

for 3 + 1 gravity, showing again how in some sense the σ-constant for n ≥ 3
acts as a generalization of the Euler characteristic for n = 2 (see Sect. 2.4).

An important difference between the cases of 2 + 1 versus 3 + 1 is that
in the 2 + 1 case, the particular solutions determined by setting pTT = 0 are
not isolated but are parameterized by the points of the Teichmüller space
T (Σp) of Σp which, in turn, can be represented by metrics of constant ne-
gative curvature on Σp. These special solutions each admit a global timelike
homothety as discussed above in Sect. 4 and it is known that they define an
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attractor for all the remaining solutions of vacuum 2 + 1 dimensional gra-
vity in the sense that every solution decays asymptotically to one of these
special families in the limit of infinite expansion; details of this will appear
elsewhere [4]. Unlike the case of hyperbolic 3-manifolds, where the attractor
is an isolated fixed point, the space of such attractors has positive dimension
= dim T (Σp) = 6p − 6, p ≥ 2, since for n = 2, Mostow rigidity does not
apply.

As we have mentioned, the case of n+1 dimensional gravity is potentially
interesting for n ≥ 4 since then the space of critical points of Hreduced is
expected to coincide with the moduli space of Einstein metrics on M . We
did not quite show this above but we did show that these are the only points
at which Hreduced remains constant. It would be interesting to investigate
whether such “critical points” are local, or conceivably global, minima of
Hreduced and to see what light this question sheds on the topology of M .
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22. Kneser, H (1929), Geschlossene Flächen in dreidimensionalen Mannigfaltigkei-
ten, Jahresbericht der Deutschen Mathematiker Vereinigung 38, 248–260.



The Reduced Hamiltonian of Relativity and the σ-Constant of Geometry 101

23. Kobayashi, S, and Nomizu, K (1963), Foundations of Differential Geometry,
vol 1, Interscience, Wiley, New York.

24. Lanczos, C (1966), The Variational Principles of Mechanics, third edition, Uni-
versity of Toronto Press, Toronto.

25. Lawson, Jr., H, and Michelsohn, M-L (1989), Spin Geometry, Princeton Uni-
versity Press, Princeton, New Jersey.

26. Lee, J, and Parker, T (1987), The Yamabe problem, Bull. Amer. Math. Soc. 17,
37–91.
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Anti-de-Sitter Spacetime and Its Uses
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Abstract. This is a pedagogical account of some of the global properties of Anti-
de-Sitter spacetime with a view to their application to the AdS/CFT correspon-
dence. Particular care is taken over the distinction between Anti-de-Sitter and its
covering space. It is argued that it is the former which is important.

1 Introduction

Because it is among the simplest of curved spacetimes, n-dimensional Anti-
de-Sitter spacetime (AdS) has been of continuing interest to relativists. It
has, since the earliest times of our subject, provided a test bed and a source
of simple examples on which to try out novel ideas and spacetime concepts,
both classical and quantum. It is a remarkable feature of the current search
for a reformulation of the entire basis of theoretical physics, often referred to
as M-theory, that of many of those older speculations find a natural home
in, and have relevance for, present day efforts. This point will be amply
illustrated in what follows.

Because it is homogeneous and has a large isometry group, SO(n− 1, 2),
AdSn is the natural arena for enquiring to what extent the (Wignerian)
group-theoretic ideas underlying relativistic quantum mechanics and quan-
tum field theory in Minkowski spacetime E

n−1,1, with isometry group the
Poincaré group E(n− 1, 1), extend to other spacetimes. Similar remarks ap-
ply to ideas about energy momentum and angular momentum conservation.
The definitions of the ADM mass in General Relativity and the question of its
positivity, which are closely linked, via Noether’s theorem, to the properties
of the isometry group [48], .

When quantising field theories we often seek a background or “ground
state” around which to perform a perturbation expansion and AdSn together
with de-Sitter spacetime, dSn with isometry group SO(n, 1), and Minkowski
spacetime exhaust the list of maximally symmetric ground states. While de-
Sitter spacetime arises naturally in studies of inflation, Anti-de-Sitter space-
time arises as the natural ground state of gauged supergravity theories.

We can regard flat space as a limit of the de-Sitter spacetimes as the cos-
mological constant goes to zero. In the process the isometry group undergoes
a Wigner-Inönü [2] contraction to the Poincaré group. It is interesting to note
therefore that a simple Lie-algebra cohomology argument gives a converse:
these are the only isometry groups that may be obtained in this way [3].
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A major topic of interest in quantum gravity is the extent to which the
global and topological properties of spacetime, such as the existence of clo-
sed timelike curves (CTCs), spatial compactness etc, feed into the quantum
theory. Indeed there is a more basic question: how do geometrical and spa-
cetime concepts themselves translate into quantum mechanical language? In
the case of de-Sitter and Anti-de-Sitter spacetimes, with space and time topo-
logy Sn−1 × R and R

n−1 ×S1 respectively, and because of the high degree of
symmetry, these questions may frequently be translated into group-theoretic
language which may then admit a simple group-theoretic answer. In this
connection it is essential to be aware of the many important differences bet-
ween the properties of the compact Lie groups with which particle physicists
are most often familar and those of the isometry groups of Lorentzian space-
times which are almost always noncompact1.

Currently a great deal of attention has been focussed on Anti-de-Sitter
spacetimes because (multiplied by a sphere) they arise as the near horizon
geometry of the extreme black holes and extreme p-branes which play such
an an essential role in our understanding of M-theory. This has led to Mal-
dacena’s AdS/CFT correspondence conjecture which places AdS and indeed
Euclidean quantum gravity at the centre stage. In an interesting parallel and
closely linked development, the mass and event horizon area properties of
topologically nontrivial black holes, which can only arise in Anti-de-Sitter
backgrounds have also attracted a great deal of interest recently.

In the notes which follow, I shall argue that it is fruitful if not essential
to view these recent problems, like the former ones, with the correct global
perspective and that if one does so one arrives at what at first may appear
to be some surprising and counter-intuitive conclusions. For that reason, and
in view of the audience’s interests, I shall be concentrating on the basic
geometrical and group theoretic descriptions rather on the more technical
details concerning supersymetry, supergravity and superstring theory. For
an earlier account with more emphasis on the supergravity applications the
reader is referred to [5]. One striking feature, which is especially appropriate
for this meeting, is that much of the discussion can be couched in the simple
geometrical terms which would have been accessible to scientific workers in
this city, and possibly on this very spot, two and a half millennia ago.

2 M-Theory

By way of motivation, recall that whatever it finally turns out to be, M-theory
is a theory about p-branes, that is extended objects with p spatial dimensions
moving in some higher dimensional spacetime, usually eleven dimensions.
Thus p = 0 are point particles, p = 1 are strings p = 2 are membranes etc.
The case p = −1 arises as “instantons”.
1 Lorentzian Taub-NUT spacetimes with isometry group SU(2) or SO(3) are an
interesting exception



104 G.W. Gibbons

2.1 Levels of Description

Currently we have various levels of description at various levels of approxi-
mation for dealing with branes in M-theory.

• As D-branes, that is as the end points of fundamental or F-strings subject
to Dirichlet boundary conditions. At this level it is believed that one may
use the techniques of two-dimensional conformal field theory (CFT) to
give a fully quantum mechanical treatment.

• As “soliton” solutions of classical supergravity theories. This is the
“heavy” brane approximation which takes into account their self-gravity
and is believed to be applicable in the semiclassical approximation when
a large number, N , of light branes sit on top of one another. The solu-
tions one starts with are typically static, have extreme Killing horizons
and are BPS, which means that they admit some Killing spinor fields of
the associated supergravity theory.

• As classical solutions of a Dirac-Born-Infeld Lagrangian describing a
“light” brane, thought of as a (p + 1)-dimensional timelike submanifold
Σp+1 moving in a fixed spacetime background M . The equations of mo-
tion are a generalisation of the standard equations for a minimal subma-
nifold because in addition to the embedding map x : Σp+1 → M (which
provides scalar fields on the world volume Σp+1) each D-brane carries
an abelian gauge field Aµ which may be viewed as U(1) connection on a
bundle over Σp+1. From the string theory standpoint, this vector field is
associated with a open string of almost vanishing length, beginning and
ending on the D-brane. Because the string has almost vanishing length it
has almost vanishing energy and gives rise to a “light state” associated
with the massless gauge field Aµ.

Strictly speaking the list given above does not exhaust all current brane
descriptions because it omits the M5-brane action. However the details of
the M5-brane action will not play an essential role in the future discussion.

2.2 Symmetry Enhancement

If one has N branes, one has N U(1) gauge fields. Now as the branes coalesce
one might have supposed one would get a description in which one has a
U(1)N gauge theory over the coalesced brane world volume Σ̄p+1. However,
from the string standpoint it is clear thatN(N−1) extra “light states” appear
associated with strings of almost vanishing length beginning on one of the N
strings and ending on another. This gives rise to a total of N2 massless gauge
fields on Σ̄p+1. Again one might have supposed that this would give rise to
a description in which one has a U(1)N

2
gauge theory on Σ̄p+1. However, in

a way which so far has only been understood in detail using conformal field
theory, a process of nonabelian symmetry enhancement is believed to occur
and the resultant gauge group becomes nonabelian, and in fact U(N). The
U(1) factor is associated to the centre of mass motion of the D-brane.
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2.3 Killing Spinors

A supersymmetric solution of a supergravity theory is a solution admitting
one or more spinor fields ε satisfying

∇ε+Nε = 0, (1)

where ∇ is the Levi-Civita connection and N is a Clifford algebra valued
one-form. The form of N depends on the details of the supergravity theory
concerned. If N = 0, then a Killing spinor must be covariantly constant. This
leads to the study of those holonomy groups which stabilise a spinor. The
examples best known to relativists are the pp-waves. In AdSn one has

Nα = ± 1
2R
γα (2)

with α = 0, 1 . . . , n− 1. One easily verifies that, for either choice of sign, one
has as many solutions as in flat space2. Because AdSn is conformally flat the
Killing spinors in fact satisfy the conformally invariant equation

∇αγβε+ ∇βγαε = 1
2n
gαβ∇σγσε. (3)

which forms much of the basis of “Twistor theory”. Conformal Killing spinors
of course arise naturally in conformal supergravity [16]. As a further illustra-
tion of historical antecedents, it is interesting to recall that the existence of
solutions to an equation of the form (2) was the basic assumption behind the
theory of “Wave Geometry” which was extensively developed in Hiroshima in
the thirties. The introduction to [38] describing the history of these ideas and
the fate of those working on them seems to me to be one the most poignant
in the physics literature.

2.4 Three-Branes and Cosmology

In what follows we shall mainly be interested in three-branes. This is partly
because they connect with results in four-dimensional quantum field theory.
However there is an old tradition of speculation which considers our universe
as a three-brane moving in some higher dimensional spacetime (see for ex-
ample [49]) . Recently this idea has been revived . Cosmologists reading this
are cautioned therefore against gratuitously assuming that p-branes have no
relevance for their real world.

2 Using the isometric embedding of AdS as an affine quadric that we shall be
describing in detail later, the solutions are easilly exhibited as the restriction to
the quadric of constant spinors in the flat embedding spacetime.
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3 The D-Three-Brane

Now ifN gets large the supergravity approximation should get better and bet-
ter. Consider the case of N three-branes, withN large. This has a supergravity
description as a classical BPS spacetime solution of the ten-dimensional Type
IIB supergravity theory admitting 16, i.e. half the maximum, Majorana-Weyl,
that is real, Killing spinors ε 3.

3.1 The Classical Solution

In isotropic coordinates, which are valid only outside the horizon, the solution
takes the form

ds2 = H− 1
2 (−dt2 + dx2) +H 1

2 dy2, (4)

where x ∈ E
3 is a three vector and y ∈ E

6 is a six vector. H(y) is a harmonic
function on E

6 and there is also a self-dual five-form

F5 = �F5 = dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ d( 1
H
) + �(ditto). (5)

The dilaton φ is constant
e2φ = gs. (6)

If Yang-Mills fields were present the Yang-Mills coupling constant gYM would
be given by

gs =
g2YM
4π

. (7)

For a solution representing N three-branes located at positions yi, i =
1, . . . , N , each carrying one unit of five-form magnetic flux one chooses

H = 1 +
∑ 4πgsα′

|y − yi|4 . (8)

3 The reader unfamilar with supersymmetry but willing to accept that eleven-
dimensional physics is behind everything may find it helpful to recall that there
are two inequivalent Clifford algebras Cliff(10, 1) each isomorphic to R(32), the
algebra of real 32 by 32 matrices, where one may pick the Clifford representative
of the volume form γ0γ1 . . . γ10 = ±1. Let us settle on the plus sign. The matrices
γ0, γ1, . . . , γ9 generate Cliff(9, 1) and one may split the 32 dimensional space S
of Majorana spinors into a direct sum S = S− ⊕ S+ of 16 dimensional positive
and negative eigenstates of the Clifford representive γ10 = γ0γ1 . . . γ9 of the
ten-dimensional volume form. Elements of the summands are called positive or
negative chirality Majorana-Weyl spinors. The student with an interest in global
matters is invited to reflect on the remarkable effectiveness of this simple piece
of mathematics, once one has made the choice of spacetime signature (10, 1), and
what it implies for spacetimes lacking space or time orientation and what further
things it might betoken for mankind. Guidance for the perplexed may be found
in [53].
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where α′ = l2s is the Regge slope parameter of string theory and is related to
the fundamental string length ls.

Now let the N branes coalesce. We get

H = 1 + (
R

r
)4, (9)

with
R = (g2YMN)

1
4 ls, (10)

and r = |y|.The classical solution is expected to be a good approximation in
the limit that N is large but with λ = g2YMN held fixed. This corresponds in
U(N) gauge theory to a limit the study of which was pioneered by t’Hooft.

3.2 Near Horizon Geometry

Isotropic coordinates break down near the horizon at r = 0. For small r the
metric tends to

(
r

R
)2(−dt2 + dx2) + R2dr2

r2
+R2dΩ2

5 , (11)

where dΩ2
5 is the standard round metric on S5 with unit radius.

Now set
z =

R

r
(12)

and recall that the standard AdSp+2 metric of unit radius in horospheric
coordinates (z, xµ)is given by

ds2 =
1
z2

(dz2 + ηµνdxµdxν), (13)

with µ = 0, 1, . . . , p and ηµν is the Minkowski metric. We deduce that the near
horizon geometry is that of AdS5 ×S5 with the two radii of curvature equal.
Taking out 1/z2 as an overall conformal factor of the limiting ten-dimensional
product metric also reveals that it is conformally flat. In fact one may easily
extend the argument to show that the metric product of AdSr×Ss with radii
R1 and R2 is conformally flat iff the the two radii of curvature are equal.

Clearly there are considerable advantages associated with horospheric co-
ordinates and we shall be exploiting them further shortly. Before doing so we
make a few comments about supersymmetry.

3.3 Supersymmetries

Because it admits a Killing spinor the solution also admits an everywhere
causal Killing vector field Kµ = ε̄γµε. In fact the solution has the symme-
tries expected of a three-brane. The isometry group is E(3, 1) × SO(6) with
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orbits E
3,1 ×S5 4. In particular it is locally static, but has degenerate Killing

horizons. Near infinity the solution tends to flat ten-dimensional Minkowski
spacetime E

9,1 which clearly admits the maximum possible, i.e. 32 Majorana-
Weyl Killing spinors. Near the horizon the spatial sections have an infinitely
long throat resembling that of the familiar extreme Reissner-Nordstrom solu-
tion. The solution tends, as we have seen, to the product metric on AdS5×S5,
with the two radii of curvature having equal magnitude. This solution also
admits 32 Majorana-Weyl Killing spinors and is thus a maximally supersym-
metic ground state of Type IIB supergravity theory. In fact it is the basis
of a “spontaneous compactification” in which one obtains an effective five-
dimensional supersymmetric maximally superysmmetric ground state which
is geometrically given by AdS5. Fluctuations around this solution are given,
at the supergravity level, by a five-dimensional gauged supergravity model
with gauge group SO(6). Such theories and the properties of such vacua were
intensively studied in the past, using just the extensions of Poincaré covari-
ant quantum field theory to the Anti-de-Sitter setting I alluded to above. In
the past, the case of AdS4, usually times S7 or some other compact seven-
dimensional Einstein manifold with positive scalar curvature was of greatest
physical interest. However, the lessons learnt then readily generalise.

Remarkably, however, quite unlike the extreme Reissner-Nordstrom solu-
tion, the three-brane solution is geodesically complete and everywhere non-
singular [33].

3.4 Vacuum Interpolation, Conformal Flatness
and Couch-Torrence Symmetry

This phenomenon is referred to as Vacuum Interpolation [17]. It is a feature
of many other examples. For example the M2-brane of eleven dimensions
spatially interpolates between E

10,1 and AdS4 times S7 and the M5-brane
of eleven dimensions spatially interpolates between E

10,1 and AdS7 times
S4. They both admit 16 Killing spinors, but only the latter is everywhere
singularity free. The former has singularities very similar to those of Extreme
Reissner-Nordstrom. However, neither has another very striking feature of
the D3-brane, which it shares with the extreme Reissner Nordstrom solution
(RN), in that, because in that case the radii of curvature of the two factors
4 During the sixties there was an intensive, purely group theoretic, discusssion of
the possibility of combining spacetime, E(3, 1), and internal Lie group symme-
tries in some unifying noncompact group G [6]. The upshot was various No-Go
Theorems such as those of McGlinn, O’Raifeartaigh and Coleman and Mandula
telling one essentially only to consider the direct product of the Poincaré group
and a compact semisimple group. This is of course typically what results from
Kaluza-Klein theory and other dimensional reduction schemes. It might be in-
teresting to revisit those old ideas in the M-Theory context to see if anything
more can be said, given some that the group G must act on a higher dimensional
spacetime as an isometry group.
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are equal, the metric is conformally flat and has vanishing Weyl tensor. For
the M2 and M5 brane, the radii are different and this is not so.

In fact both the D3 and the RN admit an involution which acts by confor-
mal isometries and interchanges the horizon and infinity. For the three-brane
the involution is given by

r → R2

r
(14)

under which

ds2 →
(
R

r

)2

ds2. (15)

I first became aware of this symmetry from a paper of Couch and Torrence
in the Reissner-Nordstrom case [4]. Hence the name I have given is its natural
generalisation. In Schwarzschild coordinates r in an RN solution of mass M
the involution is given by

r −M → M2

r −M . (16)

Of course the isotropic coordinate |y| = r −M in this case.
It remains unclear whether this symmetry will turn out to play a bigger

role in the theory. In other words how, if at all, does this symmetry manifest
itself in the quantum theory?

4 AdSp+2 and Its Horospheres

The standard definition of AdSp+2 is as the quadric M in E
p+1,2 with its

induced Lorentzian metric given by

(X0)2 + (Xp+2)2 − (X1)2 − (X2)2 − . . .− (Xp+1)2 = 1. (17)

Topologically AdSp+2 ≡ R
p+1×S1, and the isometry group is O(p+1, 2).

Later we shall describe the universal covering spacetime ÃdSp+1.
We remark here that AdSp+2 has a natural complexificationMC ≡ SO(p+

3;C)/SO(p+ 2;C) as a complex affine quadric

(A+ iB)2 = 1, (18)

with A + iB ∈ C
p+3 = R

p+3 + iRp+3 in which AdSp+2 sits as a real section
with B1 = Bp+3 = A1 = . . . Ap+1 = 0 and A1 = X0, Ap+3 = Xp+2,
B1 = X1, . . . , Bp+2 = Xp+1. Of course the complexification contains other
real sections. What is usually called the “Euclidean section of AdSp+2” is
another real section ofMC for which X0 is pure imaginary and the remaining
coordinates are real . This gives hyperbolic space Hp+2. For more details
about complexified spacetimes and real slices the reader is referred to [1].
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Considered as a real (2p + 4)-dimensional manifold MC ≡ TSp+2, the
tangent bundle of the (p+ 2)-sphere. This will be explained in detail later.

To return to AdSp+2, the Z2 centre of the isometry group is generated
from the antipodal map. This is the involution

J : X → −X. (19)

By definition J2 = id. Even though it admits CTCs and indeed closed timelike
geodesics (CTGs), nevertheless AdSp+2 is time orientable (by deeming that
anticlockwise motion in X0−Xp+3 is towards the future for example) and the
involution J preserves the time orientation. Anti-de-Sitter spacetime is also
space-orientable. If p is even, then J does not preserve space orientation, but,
if p is odd, then it does. Now, if p > 1, then O(p + 1, 2) has four connected
components. If p is odd, then the centre J lies in the component connected
to the identity. If p is even, then it does not. Thus in the odd case, unless one
has good reason, one might expect J to be a gauge symmetry of the theory
and one might expect to be able to or to be forced to quotient by J . This
is sometimes referred to as the Elliptic Interpretation. It would amount to
spacetime being the quotient AdSp+2/J . If p is even, then the quotient will
not be space orientable. If p is odd, then it will5. In any event the way that
the quantum representative of J

Ĵ : Hqm → Hqm (20)

acts on the quantum mechanical Hilbert space Hqm is clearly of considerable
interest.

Note that exactly parallel remarks apply to the so-called “R-symmetry”
group O(6). Total inversion lies in the identity component SO(6) and taking
the quotient gives the orientable five-manifold RP

5 = S5/± 1.
Horospheric coordinates (z, xµ) are defined by

X0 +Xp+1 =
1
z
, (21)

and
Xµ =

xµ

z
, (22)

with µ = 0, 1, . . . , p.
The horospheres are given by z = constant. Each one has the intrinsic

geometry of p+ 1 dimensional Minkowski spacetime, just like a flat p-brane.
In fact we have a a foliation of AdSp+2 by “test” p-branes each one of which is
the intersection of the quadric with a null hyperplane in E

p+1,2. By O(p+1, 2)
symmetry is is easy to see that each horosphere is totally umbilic. In fact,
if p = 3, one may check that each horosphere solves the equation of motion
5 In the case of dSp+2 the analogue J always reverses time orientation. Passage to
the quotient is then disastrous because one is forced to real quantum mechanics
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for a test or “probe” D3-brane in this supergravity background, including so-
called “Wess-Zumino” terms. Moreover the same is true for the the r = const
surfaces in the exact D3-brane metric.

This gives a rather graphic illustration of how one may think of the solu-
tions as being the result of the superposition of a very large number of light
three-branes.

Since
J : (z, xµ) → (−z, xµ), (23)

we need both positive and negative z patches to cover all of AdSp+2. The
patches are separated by a Killing horizon at z = ∞ which gives rise to a
coordinate singularity which is simply the intersection of the quadric with
a null hyperplane passing through the origin. Later we will provide a more
group theoretic description of horospheres.

4.1 Extension of the Full Three-Brane Metric

This is most simply done [33] by defining

z4 = H = 1 +
(
R

r

)4

. (24)

Thus
r

R
= (z4 − 1)−

1
4 . (25)

The metric becomes

ds2 =
R2

z2
(−dt2 + dx2) + R2(dz)2z6

(z4 − 1)
10
4
+

R2z2

(z4 − 1)
1
2
dΩ2

5 . (26)

This is clearly even in z and the horizon is at z = −∞, but now spatial infinity
corresponds to z = ±1. Using the embedding formula, one may push the exact
three-brane metric onto the Anti-de-Sitter metric to give an embedding of
the three-brane metric as the proper-subset of AdS5 × S5 given by z2 > 1.
One may check that z = 1 corresponds to a conformal boundary with two
connected components analogous to the “Scri” of an asymptotically flat black
hole. The entire setup is invariant under the action of the antipodal map J .
One may therefore, if one chooses, quotient by J to get a three-brane whose
outside and inside are the same!

5 Covering Spaces, the Eternal Return and Wrapping
in Time

Many physicists are unhappy with the CTCs in AdSp+2 and seek to assuage
their feelings of guilt by claiming to pass to the universal covering spacetime
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˜AdSp+2. In this way they feel that they have exorcised the demon of “acausa-
lity”. However therapeutic uttering these words may be, nothing is actually
gained in this way. Consider for example the behaviour of test particles. Every
timelike geodesic on AdSp+2 is a closed curve of the same durations equal to
2πR, which Heraclitus would have called the “Great Year”.

In fact all geodesics which depart from a particular event meet up again
at the same event after six Great Months. To see this we write the metric in
Friedman-Lemaitre-Robertson-Walker form. Geometricaly speaking this is a
geodesic normal coordinate system. If X0 = sin t and XA = TA cos t, where
T 0 = 0 is a timelike unit vector, TAηABTB = −1, the metric is

ds2 = −dt2 + sin2 tdΩ2
p+1,−1, (27)

where dΩ2
p+1,−1 is the standard metric on p-dimensional hyperbolic space

Hp. Each point on on Hp corresponds to a timelike geodesic. They all start
from one event at t = 0, reconverge again at t = π, pass through each other
and meet up again in at t = 2π and then continue to repeat this cycle for
ever. Of course, the metric breaks down at the events t = . . .− 2π, −π, 0,π,
2π,. . ., but that is because geodesic normal coordinates become singular.

Clearly any observable calculated using timelike geodesics will similarly
recur after one Great Year. As far as they are concerned, we are effectively
on the identified space. Of course we should look carefully at fluctuations
about the background and the boundary conditions to see whether we can
have any behaviour which does not recur after one great year. We will turn
to this point in detail later.

In the meantime we note that, if we pass to the universal covering space
D̃3, we may lift the antipodal map and call it J̃ . Now J̃ generates an action
of the integers taking one asymptotically flat region to infinitely many more.
We could, if we wished, identify after any number k of actions of J̃ . We shall
call this spacetime D3k and we call the act of identification “wrapping in
time”.

One situation in which wrapping in time may be advantageous is if we
want to identify the spatial coordinates of the three-brane, as would be na-
tural if it were wrapped over a nontrivial cycle in a topologically nontrivial
spacetime with a torus factor. The problem is that spatial translations do not
act freely. They have fixed points on the horizon. These fixed points would
give rise to orbifold singularities if one identified under their action. Because
J̃ acts freely, these singularities are eliminated if one composes with some
power of J̃ , in other words as long as one wraps in time as well as in space.

It is important to distingush between this type of wrapping in time and
that obtained by considering the world volume of the three-brane as a so-
called “ discrete spacetime” of the type considered in the elegant construction
of Schild [35,37]. In our terms he considers Σ4 = E

3,1/L where L is the unique
Lorentzian self-dual lattice in four dimensions. That model has many attrac-
tive features, including invariance under the cover of the discrete Lorentz
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group SL(2,G), where G are the Gaussian integers, but would, as should be
obvious from the discussion above, lead to orbifold singularities.

6 AdSp+2 as a Solvable Group Manifold

It is clear from horospheric coordinates that the Poincaré group E(p, 1) acts
on AdSp+2, but obviously not transitively. The largest orbits are the horo-
spheres which are the orbits of the R

p+1 group of translations. To get a
(p + 1)-dimensional orbit, one must add the R+ action referred to for good
reaons as the dilatations:

xµ → λxµ, (28)

z → λz, (29)

with λ ∈ R+. The dilatations act on the horospheres. In the embedding
space they consist of boosts in the X0 − Xp+1 two-plane which take the
family of parallel null hyperplanes planes into themselves, but leave invariant
the hyperplane passing through the origin which corresponds to the Killing
horizon z → ∞.

Clearly the p + 2 dimensional semidirect product Gp+2 = R+ � R
p+1

acts simply transitively on one half of AdSp+2 [15]. A convenient matrix
representation for g ∈ Gp+2 is given by thinking of xµ as a row matrix and
mapping

g →
(
z xµ

0 δµν

)
. (30)

From this a set of left-invariant Cartan-Maurer one forms is easily seen
to be given by

g−1dg =
(
z−1dz z−1dxµ

0 0

)
. (31)

The AdSp+2 metric is clearly left-invariant. Note that, since Gp+2 is not
semisimple, the Killing form ofGp+1 is singular and does not provide a metric.

Note that Gp+2 is a subgroup of the causality group R+ �E(p, 1) which,
by the Alexandrov-Zeeman theorem [7] [8], is the largest group leaving in-
variant the causal structure of Minkowski-spacetime E

p,1. It is contained in
the conformal group Conf(p, 1) ≡ O(p+ 1, 2)/J of conformally compactified
Minkowski spacetime, but contains only those elements of the latter which
leave its conformal boundary “Scri”, I, setwise invariant.

One could systematically develop the theory of AdSp+2 using the left-
invariant metric on it Gp+2, but it seems that this would only give the “ou-
tside story” since the orbit of Gp+2 in AdSp+1 contains less than half the
space. One can never reach the horizon by acting with the group. Moreover
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despite the homogeneity of the metric, the group Gp+2 is geodesically incom-
plete with respect to the left-invariant metric. In-falling timelike geodesics
will penetrate the horizon in finite proper time6.

This behaviour is rather reminiscent of ancient discussions of the Edge of
the Universe Problem and the No-Boundary Proposal by such cosmologists as
Archytas7 and later Nicholas of Cusa. They argued that the universe cannot
have a boundary since, if it did, one could always throw a spear towards it. If
it had a boundary, then the spear must penetrate, leading to a contradiction.
The present example seems to indicate some shortcomings in their logic since,
consistent with the homogeneity, the edge of the universe is not actually
located at a particular position in Gp+2. Nevertheless the spear reaches it in
finite proper time.

The moral for us today would seem to be that it is more reasonble to adopt
a formalism which covers the horizon. Note that restriction to an orbit ofGp+2
is definitely not the same as adopting the Elliptic Interpretation. AdSp+2/J ,
unlike Gp+2, is geodesically complete. I have never really understood what
the slogan “Black Hole Complementarity” means, but possibly this behaviour
is an an illustration of what is intended.

The corresponding phenomenon in the case of de-Sitter spacetime is of
course the well-known geodesic incompleteness to the past of the Steady State
Universe of Bondi, Lyttleton and Hoyle. This may also be thought of as the
group manifold Gp+1. The many attractive features of this model, its ability
to resolve age old philosophical puzzles [25] are due precisely to the group
property. The same properties also lead to the physical shortcomings of the
model.

6.1 The Iwasawa Decomposition

We are now in a position to view the horospheres in a more abstract light.
Consider, to begin with, a noncompact Riemmanian symmetric space X =
G/H, where H is the maximal compact subgroup of the simple but noncom-
pact group G. Then Iwasawa tells us that any element g ∈ G may be written
uniquely as

g = han, (32)

where h ∈ H, a ∈ A and n ∈ N where A is abelian and N is nilpotent.
The semi-direct product B = A � N is called the Borel subgroup, that is,
one may regard the symmetric space X as the group manifold of B equipped
with a left-invariant metric. The orbits of the nilpotent group N are called
horospheres. They are labelled uniquely by elements of A and are permuted
by elements of H.
6 This is yet another difference that Lorentzian metrics on noncompact group
manifolds can bring about compared with Riemannian metrics

7 I am grateful to John Barrow for the reference to this Pythagorean from the fifth
century BC.
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The basic example is n-dimensional hyperbolic space Hn ≡ SO(n, 1)/SO(n)
which may be regarded as a Wick rotation of AdSn by taking X0 to be pure
imaginary rather than real. The horospheric coordinate t is then pure ima-
ginary. This is the upper half space model of hyperbolic space since z > 0.
One has G = SO(n, 1), H = SO(n), A = R+, the dilatations, and N = R

p+1,
the translations. The Iwasawa coordinates are global: they cover all of hyper-
bolic space.

As we have seen, the case of AdSn = SO(n, 2)/SO(n.1) is similar, except
that the Iwasawa coordinates are not global: they do not cover all of AdSn.

6.2 Symmetric Space Duality, the Anti-Hopf Fibration
and the Goedel Viewpoint

The horosphere concept has a another interesting application to the geometry
for AdSn in the case that n,= 2m+ 1, is odd. It is illuminating to place the
construction in a general context, so we begin by recalling that to every
noncompact Riemannian symmetric space X = G/H there is associated a
compact symmetric space X̂ = Ĝ/H. If the Lie algebra of G is g = h ⊕ p
then the Lie algebra of Ĝ is ĝ = h ⊕ ip. Thus the noncompact generators
p of the noncompact group G have become the compact generators ip of
the compact group Ĝ. The Riemannian symmetric space X is topologically
trivial and carries an Einstein metric with negative scalar curvature. The
dual Riemannnian symmetric space is topologically nontrivial and carries an
Einstein metric with positive scalar curvature. For example Ĥn = Sn. We
can obviously define the inverse map so that for example Ŝn = Hn.

Now choose X̂ = SU(m+1)/U(m) ≡ CP
m which is the base manifold of

the Hopf fibration of S2m+1 by S1,

CP
m = S2m+1/U(1). (33)

Explicitly, S2m+1 ⊂ C
m+1 ≡ E

2m+2 is given by

|Z1|2 + . . .+ |Zm+1|2 = 1, (34)

where Za, a = 1, . . .m+1 are complex affine coordinates for C
m+1 ≡ E

2m+2.
The U(1) action is

Za → eiαZa. (35)

Now let us pass to the symmetric space dual of this construction. We
replace S2m+1 by AdS2m+1 ⊂ C

m+1 ≡ E
2m,2 which is given by

− |Z1|2 − . . .+ |Zm+1|2 = 1. (36)

Thus the U(1) action is as before, but now it has timelike circular orbits
in AdS2m+1, i.e. the orbits are CTCs and therefore the base space has a
Riemannian metric. In factX = SU(m, 1)/U(m) ≡ Hm

C
is the unit ball in C

m
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equippped with the Bergman metric, which is the dual of the Fubini-Study
metric on CP

m. Both are homogeneous Einstein-Kähler 4-metrics, and as such
examples of Gravitational Instantons. One has positive cosmological constant
and the other has negative cosmological constant. In fact the Bergman metric
is the infinite NUT charge limit of the Taub-NUT-Anti-de-Sitter metrics [12].

The metric is

ds2 = −(dt+Aidxi)2 + gijdxidxj , (37)

where i = 1, 2, . . . , 2m, gij is the Einstein-Kähler metric and dA is the Kähler
form.

In traditional relativist’s language, AdS2m+1 has been exhibited a statio-
nary metric with constant Newtonian potential U = 1

2 log(−g00). The Coriolis
or gravitomagnetic connection, governing frame-dragging effects, corresponds
precisely to the connection of the standard circle bundle over the Kähler base
space. The curvature is the Kähler form. In fact one may replace the Bergman
manifold with any other 2m dimensional Einstein-Kähler manifold with nega-
tive scalar curvature and obtain a (2m+ 1)-dimensional Lorentzian Einstein
manifolds admitting Killing spinors in this way.

The general metric is

ds2 = −(dt+Aidxi)2 + gijdxidxj , (38)

where i = 1, 2, . . . , 2m, gij is the Einstein-Kähler metric and dA is the Kähler
form. The timelike coordinate t is periodic with period 2π. It would seem that
there should be applications here to the study of rotation and the AdS/CFT
correpondence [30]. A point of interest is that Fourier analyzing the mode
QFT mode functions on the spacetime gives rise a to Geometric Quantization
problem on the Kähler base manifold. A related construction, not using a
Kähler base, providing higher dimensional analogues of the Lorentzian Taub-
NUT metric is given in [11].

The simplest case ism = 1 which is closely related to the Goedel Universe.
In this case the base space is the two-dimensional real hyperbolic space H2

and the Bergman metric is the standard Poincaré metric.
Geometricaly the Goedel universe has a product metric on R × ˜SL(2,R).

For our purposes it is more convenient to pass down to SL(2,R). Now equip-
ped with its biinvariant or Killing metric one has:

SL(2,R) ≡ AdS3 (39)

and
AdS3/J = SO(2, 1). (40)

In terms of a left invariant basis the biinvariant metric

ds2 =
1
4
(σ21 + σ

2
2 − σ20). (41)
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The anti-Hopf fibres have a time like tangent vector dual to the one-form σ0.
Goedel himself did not choose the biinvariant metric but rather a left

invariant metric on ˜SL(2,R) which is “locally rotationally symmetric”, that
is, invariant under the right action of U(1). This right action commutes with
a left action of a circle subgroup of SL(2,R). His metric is

ds2 =
1
4
(σ21 + σ

2
2 − λ2σ20), (42)

where λ is a constant appropriately chosen to solve the Einstein field equa-
tions for rigidly rotating dust. Note that σ21 + σ

2
2 is the standard metric on

H2.

6.3 Heisenberg Horospheres, Finite in All Directions

If we think of Hm
C

as the noncompact symmetric space SU(m, 1)/U(m), it
also admits a horospherical or Iwasawa decompostion. The abelian factor A
is again R+. The nilpotent factor N is now a Heisenberg group [12]. Thus
for example, in addition to the standard foliation, AdS5 ≡ U(2, 1)/U(2) also
admits a foliation by a one parameter family consisting of the time-like world
volumes of 3-branes. Now, because t is periodic, these rotating 3-branes have
a periodic time coordinate. They are “wrapped in time”.

What about “wrapping in space”? A related question is whether there is
a freely acting discrete subroup Γ ⊂ SO(n − 1, 2) acting properly disconti-
nuously on AdSn such that AdSn/Γ is compact. For reasons connected with
the Lorentzian Gauss-Bonnet Theorem, this is only possible if n = 2m + 1
is odd. In that case there are many suitable 2m + 1 dimensional lattices
L ⊂ U(m, 1) [20]. Thus indeed one may wrap branes in both space and time
in AdS5. Moreover, because of the holomorphic nature of the construction,
the wrapping should be compatible with superysmmetry.

The resultant nonsingular compact Lorentzian spacetimes have no bo-
undary and will certainly have CTCs, but may well prove interesting in the
context of string theory where compact flat spacetimes have already been
analysed [19]. moreover partially compactified AdS models have already been
used to investiagtae cosmological aspects of the AdS/CFT correspondence
[23].

Interestingly, it is an old result of Calabi and Markus that there are no
compact quotients of de-Sitter spacetimes without boundary in any dimen-
sion. The best one may do is to identify by the antipodal map to get a
de-Sitter spacetime with one, rather than the usual past and future bound-
aries. However, as mentioned earlier, this destroys the time orientation and
seems to be fatal quantum mechanically [31].
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6.4 Horospheric Brane-Waves

There is an analogue of the pp-wave metrics which represents gravitational
waves propagating in Anti-de-Sitter spacetime which I worked out with Ste-
phen Siklos several years ago (see [43] for details and references). The metrics
are conformal to pp-waves. They may be used to construct p-branes on which
propagate gravitational waves. Actually the following (p+2) dimensional me-
tric is slightly more general

ds2 =
1
z2
{−dudv +H(u, z, xa)du2 + dz2 + gab(xa)dxadxb

}
. (43)

This will satisfy the Einstein equations with cosmological constant as long as

Rab = 0 (44)

and

zp
(
∂

∂z

(
1
zp
∂H

∂z

))
+ ∇2

gH = 0, (45)

where a, b = i, 2, . . . , p − 1 and ∇2
g is the Laplacian with respect to the

metric gab. The dependence on u is arbitrary. If the metric gab is flat, i.e. if
gab = δab, then the metric is conformal to a pp-wave. It will then admit half
the maximum number of Killing spinors, i.e. those which satisfy

ε̄γµε
∂

∂xµ
=
∂

∂v
. (46)

The right hand side of (46 ) is a lightlike Killing vector field.

7 Conformal Compactifications
and the Boundary of AdSp+2

The basic observation behind the AdS/CFT correspondence is the statement
that the conformal boundary of AdSp+2 is a (twofold cover of) conformally
compactified Minkowski spacetime Ep,1, that is,

∂(AdSp+2) = Sp × S1, (47)

or lifting to the universal cover

∂( ˜AdSp+2) ≡ ESUp+1, (48)

where ESUp+1 ≡ Sp × E
0,1 is the Einstein static universe. Indeed ÃdSp+2 is

conformally flat and may be conformally embedded into one half of ESUp+2.
It is more or less obvious that the conformal boundary is a copy of ESUp+1.

The main idea of Maldacena is that, since the isometry group of a ma-
nifold, referred to in this context as the “bulk”, is the conformal isometry
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group of its conformal boundary, then Conformal Field Theory on the bo-
undary should, in the large N limit, be equivalent to Type IIB string theory
in the interior. The idea is obviously capable of further elaborations and
generalisations which I shall not enter into here.

We shall start by describing the compactification of Minkowski spacetime
and then that of Anti-de-Sitter spacetime.

7.1 Conformally Compactified Minkowski Spacetime

If we adjoin to the causality group of p+1 dimensional Minkowski spacetime
the special conformal transformations

xµ → xµ + cµx2

1 + 2cµxµ + c2x2
(49)

we obtain the full conformal group Conf(p, 1) ≡ SO(p + 1, 2)/Z2. This iso-
morphism is easily verified at the Lie algebra level but globally things are
more subtle. The conformal group acts not on Minkowski spacetime but its
conformal compactification Ep,1 ≡ (Sp×S1)/Z2. To see this, we identify Ep,1

with the space of null rays in E
p+1,2. We recover Minkowski spacetime by

intersecting with the “light cone” with the null hyperplane

X0 +Xp+1 =
1
z
. (50)

The stability group of the null hyperplane is just the Poincaré group E(p, 1).
The null hyperplane captures some but not all of the possible light rays. We
miss those parallel to the null hyperplane. These points on the conformal
boundary of Minkowski spacetime which is usually called “Scri”, standing
for script i, I. The entire set of light rays constitutes an (Sp × S1)/Z2.

The usual picture introduced by Penrose is slightly different. It is obtained
by regarding the conformal compactification {M̄, ḡ} of a manifold {M, g} as a
compact manifold with boundary ∂M̄ , conformally embedded in some larger
manifold {M̃ ĝ}. On M = M̄ \ ∂M̄ ⊂ M̂ one has ĝ = Ω2g, where Ω is a
smooth function on M̃ which vanishes on ∂M but such that dΩ �= 0 on ∂M .
Thus Ω vanishes as the distance from the boundary.

Thus Minkowski spacetime in spherical polars has the metric

ds2 = −dudv + r2dΩ2
p−1, (51)

where u = t− r and v = t+ r are retarded and advanced null coordinates. If
one sets u = tan(T−χ

2 ) and v = tan (T+χ
2 ), one gets

ds2 = Ω−2(dT 2 + dχ2 + sin2 dΩ2
p−1) (52)

with Ω = 2 cos(T−χ
2 ) cos(T+χ2 ). One sees that

dΩ2
p = dχ

2 + sin2 χdΩ2
p−1 (53)
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is the metric on the unit p-sphere with 0 ≤ χ ≤ π. Thus the universal
cover of the conformal compactification of Minkowski spacetime is the Ein-
stein Static universe ESUp+1 ≡ Sp × E

0,1. In fact according to a result of
Schmidt [63] ESUp+1 is maximal in the sense that it cannot be conformally
embedded into a a strictly larger manifold. Thus a an open conformally flat
(p + 1)-dimensional manifold, such as Hp × E

0,1 for example, may typically
be conformally embedded into ESUp+1 as a (possibly proper) subset. This is
a standard construction, due to Penrose, for Friedman-Lemaitre-Robertson-
Walker universes. We shall use it later when dealing with black holes with
exotic topologies.

The involution Ĵ acts as

Ĵ : (T, χ,n) → (T + π, π − χ,−n). (54)

Thus it consists of a time shift by six Great Months, i.e. half a Great Year,
composed with the antipodal map on the Sp factor. It therefore identifies
what is usually called I+ ≡ v = ∞ ≡ T + χ = π with I− ≡ u = −∞ ≡
T − χ = −π. A light ray passing through I+ should thus reappear passing
through I−.

Of course in the context of conventional macroscopic physics this is ridi-
culous and clearly does not happen. However, there may well be circum-
stances when considering the AdS/CFT correspondence, for example, in
which the compactified boundary conditions are appropriate.

Consider for example an experimental colleague in the laboratory inve-
stigating the steady state configuration of a physical system which is being
periodically excited, such as a resonance. The correct boundary conditions
for a theorist to use to describe the resonating system are those of the Eternal
Return with Great Year equal to to the inverse frequency of the resonance.
There is, in that case, no question that time “really is” periodic.

In the special case of four-dimensional Minkowski spacetime there is an
alternative and some times more useful description (see e.g. [39] for details
and references) which starts with thinking of the points x of Minkowski spa-
cetime as two by two Hermitian matrices, i.e x ∈ u(2) the Lie algebra of
U(2). The compactification corresponds to passing to the group by means of
the Cayley map

x → U = (1 + ix)(1 − ix)−1. (55)

Thus E3,1 ≡ U(2). The metric, which is just the obvious invariant metric
−TrU−1dUU−1dU is of course Lorentzian . The U(1) factor is timelike. Thus
the two fold cover is SU(2) × U(1) and the universal cover is SU(2) × R. A
similar construction will work for the reals and the quarternions in two and
six spacetime dimensions.

In other dimensions there is a related construction using Clifford algebras
x = γµxµ.
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7.2 The Conformal Compactification of AdSp+3

The embedding of AdSp+1 is given by

X0 =
√
1 + r2 sin t (56)

Xp+3 =
√
1 + r2 cos t, (57)

Xi = r sinχni, (58)

Xp+1 = r cosχ. (59)

This also gives a conformal embedding into ESUp+2 because the metric is

Ω−2{dt2 + dω2 + sin2 ω(dχ2 + sin2 ωdΩ2
p−1)} (60)

, where Ω2 = cosω and r = tanω. Since spatial infinity, r = ∞, corresponds
to ω = π

2 the conformal boundary of ÃdSp+2 is the timelike cylinder ESUp+1
as advertised. To get AdSp+2 we must identify t modulo 2π. From (54), it is
clear that its boundary is the twofold cover of the set of null rays, i.e. of Ep,1.
The latter is the boundary of AdSp+2/J .

Note that, if one adopts horospheric coordinates, one might have conclu-
ded that the conformal boundary of AdSp+2 is a copy of Minkowski spacetime
E
p,1 situated at z = 0+. However, this is clearly only part of the boundary.

Recalling that the other side of the horizon has z negative, one might then
try to add in another copy situated at x = 0−. However, this leads to over-
counting. One must identify points related by inversions

xµ → xµ

x2
. (61)

Roughly speaking, one has to attach to Minkowski spacetime the lightcone
of the origin. This corresponds to I. However, care must be taken with signs
and the upshot is that one lands up on Sp × Sp/Z2 again.

7.3 The Conformal Boundary of Hp+1

and the Doppelganger on the Other Sheet

Superficially, using the horospheric, or upper half space, representation of the
metric

ds2 =
1
z2

(dz2 + dx2p+1), (62)

one might have concluded that the conformal boundary of hyperbolic space
is E

p+1 situated at z = 0, but this leaves out a single point at z = ∞. The
boundary is actually Sp+1. This is most simply seen by thinking of the Hp+2

as the set of future directed timelike lines passing through the origin of E
p+1,1

. If one cuts this with a spacelike hyperplane at unit distance, the rays are
captured inside a ball of unit radius. The bounding p+1 sphere corresponds
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to the null rays through the origin. The detailed calculation is very similar
to the standard case of stereographic projection. In spherical coordinates the
hyperbolic metric is

ds2 = dω2 + sinh2 ωdΩ2
p+1. (63)

If r = tanh(ω2 ), this becomes

ds2 =
4

(1 − r2)2 (dr
2 + r2dΩ2

p+1). (64)

One therefore has Ω = 1
2 (1 − r2) which vanishes as the distance on the

boundary r = 1.
There is an analogue of the antipodal map for hyperbolic space, reflection

in the origin of Minkowski spacetime. However, it takes one from the upper
sheet of future directed timelike lines to the disconnected lower sheet of past
directed timelike lines. One might have thought therefore that the involution
plays no role in the “physical sheet”. However, this is not so. When con-
structing “Euclidean“ Green’s functions inside the unit ball one must choose
between Dirichlet or Neumann boundary conditions. Calculation reveals that
in order to incorporate this it is necessary to add an image source to the di-
rect contribution coming from a Doppelganger on the other sheet and whose
strength is equal in magnitude to that of the direct source and whose sign
determines whether one has Dirichlet or Neumann case.

To see this explicitly we first introduce the chordal distance σ(x, x′) of
two points on AdSp+2 or its complexification

XAηABX
B = −1. (65)

In terms of the embedding coordinates one has:

σ = −1
2
ηAB(XA −X ′A)(XB −X ′B). (66)

It follows that
σ = 1 +XAηABX ′B . (67)

Obviously σ = 0 if the points coincide and σ = 2 if they are antipodal,
i.e. XA = −X ′A.

In horospheric coordinates one has

σ =
(xµ − x′µ + (z − z′)2)2

2zz′ . (68)

For a scalar field of mass m one defines

a =
p+ 1
2

+

√
(
p+ 1
2

)2 +m2, (69)

b =
p+ 1
2

−
√
(
p+ 1
2

)2 +m2 (70)
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c =
p+ 1
2
. (71)

The free two-point correlation functions may be expressed in terms of
hypergeometric functions and, in the Dirichlet case, are proportional to

σ−aF (a, a+ 1 − c, a+ 1 − b; 2
σ
). (72)

One gets the Neumann case by interchanging the the roles of a and b,
i.e. taking the opposite sign for the square root in all formulæ. The square
roots remain positive even if m2 is negative, but not too negative. This is the
Breitenlohner-Freedman bound.

The hypergemetric function has poles at zero, one and infinity. The first
occurs when the points coincide, the second when they are antipodal. The
third when they they have infinite separation.

8 The Geodesic Flow on AdS
and the Future Tube of the Boundary

If one is interested in quantizing a relativistic particle moving in AdSn, one
approach is to look at the relativistic phase space T �AdSn, pass to the con-
strained space and then to “quantize”it. Because of the high symmetry, one
is able to give a rather explicit description of the relevant spaces in group-
theoretic terms. They turn out to have some striking properties.

Recall that, in general, the relativistic phase space of a spactimeM is the
cotangent bundle T �M with coordinates {xµ, pµ}, canonical one-form pµdx

µ

and symplectic form
ω = dpµ ∧ dxµ. (73)

The geodesic flow is generated by the covariant Hamiltonian

H =
1
2
gµνpµpν . (74)

The flow for a timelike geodesic, corresponding to a particle of mass m, lies
on the level sets, call them Γ , given by

H = −1
2
m2. (75)

Locally at least, one may pass to the reduced phase space P = Γ/G1, where
G1 is the one-parameter group generated by the covariant Hamiltonian, H, by
a “Marsden-Weinstein reduction”. Geometrically, the group G1 takes points
and their cotangent vectors along the world lines of the timelike geodesics.

The reduced (2n−2)-dimensional phase space P is naturally a symplectic
manifold and one may now attempt to implement the geometric quantization
programme by “quantizing ” P .
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In the general case it seems to be difficult to carry out this procedure
and compare it with the results of more conventional quantum field theory
approaches because one does not have a good understanding of the space of
timelike geodesics P . In the case of AdSn, however, the space may be descri-
bed rather explicitly. It turns out to be a Kähler manifold which is isomorphic
to the future tube T+

n−1 of (n− 1)-dimensional Minkowski spacetime.
In AdSn every timelike geodesic is equvalent to every other one under an

SO(n− 1, 2) transformation. They may all be obtained as the intersection of
some totally timelike 2-plane passing through the origin of of the embedding
space E

n−1,1 with the AdSn quadric. The space P of such two planes may
thus be identifed with the space of geodesics. It is a homogeneous space of the
isometry group. In fact it is the Grassmannian SO(n−1, 2)/(SO(2)×SO(n)).
Note that, as one expects, the dimension of P is 2n − 2. The denominator
of the coset is the maximal compact subgroup of SO(n − 1, 2). Two factors
correspond to timelike rotations in the timelike 2-plane and rotations of the
normal space respectively. The former may be identified with the one para-
meter group G1 generated by the covariant Hamiltonian H. Thus the level
sets Γ is the coset space SO(n− 1, 2)/SO(n).

Now the striking fact is that the reduced phase space P ≡ SO(n −
1, 2)/(SO(2) × SO(n)) coincides with one of the four series of irreducible
bounded symmetric domains, first classified by Cartan [57]. Our case is ΩIVn−1
which, as mentoned above, may also be identified with the Future Tube T+

n−1
of (n−1)-dimensional Minkwoski spacetime E

n−1,1. This space plays a central
role in quantum field theory in flat spacetime since Wightman functions and
Green’s functions are typically boundary values of holomorphic functions on
the future tube. The future tube is defined as those complex vectors z ∈ C

n−1

whose imaginary part lies in the future lightcone.
The space P caries a natural Einstein Kähler metric. The complex struc-

ture is given by the SO(2) action. One may regard the Kähler form as the
curvature of a circle bundle. This bundle is the constraint manifold Γ . Ac-
tually the entire cotangent bundle T �AdSn, which is a 2-plane bundle over
P , carries a Ricci-flat pseudo-Kähler metric. This this metric has signature
(2n − 2, 2). The timelike coordinates correspond to the time around circle
direction, and a coordinate labelling the levels sets 2H = −m2.

The existence of this Ricci-flat pseudo-Kähler metric may be obtained by
analytically continuing Stenzels’s positive definite Ricci-flat Kähler metric on
the cotangent bundle of the standard n-sphere, T �Sn [59]. The simplest case
is when n = 2. Stenzel’s metric is then the Eguchi-Hanson metric which may
be analtyically continued to give a “Kleinian” metric of signature (2, 1) on
T �AdS2.

As noted earlier, T �Sn may be identified with an affine quadric in C
n+1.

This may be seen as follows: T �Sn consist of a pair of real (n + 1) vectors
XA and PA such that

X1X1 +X2X2 + . . .+Xn+1Xn+1 = 1, (76)
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X1P 1 +X2P 2 + . . .+Xn+1Pn+1 = 0. (77)

If P =
√
P 1P 1 + P 2P 2 + . . .+ Pn+1Pn+1, one may map T �Sn into the affine

quadric
(Z1)2 + (Z2)2 + . . .+ (Zn+1)2 = 1 (78)

by setting

ZA = AA + iBA = cosh(P )XA + i
sinh(P )
P

PA. (79)

Stenzel then seeks a Kähler potential depending only on the restriction
to the quadric (18) of the function

τ = |Z1|2 + |Z2|2 + . . .+ |Zn+1|2. (80)

The Monge-Ampère equation now reduces to an ordinary differential equa-
tion.

In the case of AdSp+2 we may proceed as follows. The bundle of future
directed timelike vectors in AdSp+2, T+AdSp+2 consists of pairs of timelike
vectors XA, PA in E

p+1,2 such that

XAXBηAB = −1 (81)

and
XAPBηAB = 0, (82)

with PA future directed and ηAB = diag(−1,−1,+1, . . . ,+1) the metric. We
define P =

√
−PAPBηAB and

ZA = cosh(P )XA + i
sinh(P )
P

PA (83)

which maps T+AdSp+2 to the affine quadric

ZAZBηAB = −1. (84)

One then seeks a Kähler potential depending only on the restriction to
the quadric (18) of the function

τ = |Z0|2 + |Zp+2|2 − |Z1|2 − . . .− |Zp+1|2. (85)

The Monge-Ampère equation again reduces to an ordinary differential equa-
tion.

We return to the reduced phase space P . It may be realised as a bounded
domain D ⊂ C

n−1 and as such it has a (2n − 1)-dimensional topological
boundary ∂D. More interestingly, lying inside this topological boundary, ∂D
is its (n−1)-dimensional Shilov boundary S. If w ∈ C

n−1 is a complex (n−1)
column vector and w2 = wtw and |w|2 = w†w, then the domain D is defined
by [58]

1 − |w|2 ≥
√

|w|4 − |w2|2. (86)
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The topological boundary is given by the real equation:

1 − 2|w|2 + |w2|2 = 0. (87)

On the other hand, the Shilov boundary is determined by the property that
the maximum modulus of any holomorphic function on P is attained on S.
Consider, for example, the holomorphic function w. It atttains its maximum
modulus when w = exp(iθ)n, where n is a real unit (n − 1) vector. Thus S
is given by S1 × Sn−1/Z2.

It is no coincidence that S is topologicaly the same as the conformal
boundary of AdSn. To see why, following Hua, who refers to D as “Lie Sphere
Space” we can linearise the action of SO(n − 1, 2;R) by embedding D into
C
n+1. Let

W 0 − iWn+1 =
1
u
, (88)

W 0 + iWn+1 =
w22
u

(89)

and

W i =
wi

u
, (90)

where i = i, . . . , n−1 and the complex, horospheric type coordinate u should
be set to unity to recover D. The n coordinates (u,wi) thus parameterise the
complex lightcone, i.e. the real 2n dimensional submanifold W ⊂ C

n+1 given
by

(W 0)2 + (Wn+1)2 −W 2 = 0. (91)

The domain D consists of rays through the origin lying in W , that is, one
must identify rays WA and λWA, where λ ∈ C

� ≡ C \ 0. Thus D =W/C�.
Evidently SO(n − 1, 2;R) acting in the obvious way on C

n+1 leaves W
invariant and commutes with the C

� action. Thus the action of SO(n −
1, 2;R) descends to D. If we restrict the coordinatesWA to be real, we obtain
the standard construction of (n − 1)-dimensional compactified Minkowski
spacetime as light rays through the origin of E

n−2,2.
The case n = 4 is special since SO(4, 2) ≡ SU(2, 2)/Z2. This leads to the

equivalence of ΩI2,2 and Ω
IV
4 . As mentioned above, one may identify points in

real four-dimensional Minkowski spacetime E
3,1 with two by two Hermitian

matrices x = x0 + x · σ. The future tube T+
4 then corresponds to complex

matrices x = z0+z ·σ with imaginary part positive definite. The Cayley map

z → w = (z − i)(z + i)−1 (92)

maps this into the bounded holomorphic domain in C
4 consisting of the space

ΩI2,2 of two by two complex matrices w satisfying

1 − ww† > 0. (93)

For more details, the reader is directed to [60]. For this approach to the
compactification of Minkowski spacetime see also [61,62].
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9 The Anti-de-Sitter Algebra and Quantized Energies

If a Lie group G with structure constants Cabc acts on the left on a manifold
M , the Killing vector fields Ka have Lie brackets

[Ka,Kc] = −CabcKb. (94)

In quantum mechanics one often prefers to work with M̂a = −iKa acting
on spacetime scalar fields as a formally self-adjoint operator with respect to
the inner product obtained by integrating over spacetime. Clearly

[M̂a, M̂c] = iCabcM̂b. (95)

The AdSp+2 group SO(p+ 1, 2) corresponds to

KAB = XA∂B −XB∂A (96)

and therefore

[M̂AB , M̂CD] = iM̂ACηBD − iM̂BCηAD + iM̂ADηBC − iM̂BDηAC . (97)

Upper case Latin indices run from 0 to p+ 2 and ηAB = diag(−1,+1, . . . ,+1,−1).
Greek indices run from 0 to p. Lower case Latin indices run from 1 to p.

The maximal compact subgroup of SO(p + 1, 2) is SO(p) × SO(2) with
generators M̂ij and M̂0,p+2. The latter corresponds to rotations in the totally
time-like X0Xp+2 plane. The associated Killing vector field is the globally
static Killing field such that, in adapted coordinates, the metric is

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

p−1 (98)

with 0 ≤ t ≤ 2π.
In the case of dSp+2 and SO(p+ 2, 1), Xp+2 would be spacelike and the

maximal compact subgroup would be SO(p+ 2). It that case M0,p+2 would
be a noncompact generator corresponding to a boost. The associated Killing
vector is not globally static as is clear form the metric in adapted coordinates:

ds2 = −(1 − r2)dt2 + dr2

1 − r2 + r2dΩ2
p−1 (99)

with −∞ < t < ∞. There is a Killing horizon at r = 1. This difference is
crucial for our concept of energy at the classical and the quantum level.

In the de-Sitter case there is no useful global energy concept. As Wigner
first realised, there are no “positive energy” representions of SO(p + 2, 1)
[29]. The point is that one may easily find a diagonal element of the identity
component of SO(p+ 2, 1), call it g, such that under the adjoint action

M̂p+2 0 → gM̂p+2 0g
−1 = −M̂p+2 0. (100)
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The existence of g means that in any unitary representation Û(g) acts on an
energy eigenstate |E〉 with energy E to give a new state Û |E〉 with energy
−E. Acting on de-Sitter spacetime the element g takes one from one side
of the event horizon to the other. This observation is closely related to the
thermal emission from cosmological event horizons [36] which Hawking and
I disovered in complete ignorance of Wigner’s prescient observation.

Wigner’s observation is also related to the fact that de-Sitter backgrounds
break supersymmetry. Being conformally flat they certainly admit a full set
of solutions ε of the twistor equation (3). However, the causal vector fields
ε̄γµε cannot be Killing vector fields because, as we have seen, there are no
everywhere future directed timelike (or null) Killing vector fields on de-Sitter
spacetime. In fact the solutions of the twistor equation satisfy

∇µε = ± i
2
γµε. (101)

A simple calculation reveals, however, that this equation implies that the
causal vector fields Kµ are in fact conformal Killing vector fields.

The situation for Anti-de-Sitter spacetime is completely different. No such
element exists for SO(p + 1, 2) or its universal cover and one does indeed
have positive energy representations. One has energy raising and lowering
operators

[Ê, M̂±
i ] = ±M±

i , (102)

with M̂±
i = M̂0 i ± iM̂p+2,i, which increase the eigenvalues E by one unit.

Thus one finds at the Lie algebra level representations such that the Anti-
de-Sitter energy operator has integer spaced eigenvalues:

M̂p+2 0|E〉 = E|E〉 (103)

with
E = E0 + n, n = r, r + 1, 1 . . . (104)

with r a non negative integer. The fractional part E0 of the energy is constant
in each irreducible representation and labels “superselection sectors” [28]. If

E =
p

k
(105)

with p and k relatively prime, then we are in fact on the k-fold cover of
AdSp+2. If E0 is irrational, then we must be on the universal cover. Ac-
tually for bosonic fields derived from supergravity fields it turns out that E0
vanishes. Thus we are de facto on AdSp+2.

The Poincaré translations are generated by

P̂µ =
1
2
(M̂µ p+1 + M̂µ p+2). (106)
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The special conformal transformations are generated by

K̂µ =
1
2
(M̂µ p+1 − M̂µ p+2). (107)

The dilatation D corresponds to boosts and is thus given by

D̂ = M̂p+1 p+2. (108)

The quantized energy operator is given by

Ê = M̂p+2 0 = P̂ 0 + K̂0. (109)

Now Ê, D̂ and M̂0 p+1 span an sl(2;R) subalgebra. Thus energy and dila-
tations do not commute. Hence they cannot be simultaneously diagonalised.

The question of integrality, however, can be thrown onto the behaviour
under the operator ˆ̃J .

9.1 Non-commutative Coordinates

Of course the generators p̂µ = M̂p+1 µ may be thought of as p + 1 non-
commuting “translations” since

[p̂µ, p̂ν ] = iM̂µν . (110)

In view of the great current interest in noncommutative geometry it may be
worthwhile recalling a very early attempt to extract noncommutative coor-
dinates from the AdSp+2 algebra. The idea was to take x̂µ = M̂p+2 µ as the
“coordinates conjugate to the translations”. One has

[x̂µ, x̂ν ] = −iM̂µν (111)

and
[p̂µ, x̂ν ] = iηµνM̂p+1 p+2. (112)

In eigenstates of the operator D̂ = M̂p+1 p+2 we seem to be able to extract
a spacetime version of the Heisenberg algebra! However, we certainly do not
get a central extension in this way. In retrospect this victory looks a trifle
hollow, but it is clearly closely related at a formal algebraic level to the
Heisenberg Horospheres described earlier. It may indicate how to incorporate
these older speculative ideas into the M-theory framework. The reader is
referred to [34] for a recent and possibly related discussion.

10 CFT & ESU à la Lüscher and Mack

These authors [18] start with a conformal field theory on Minkowski space-
time E

p,1 and then Wick rotate with respect to a constant time hyperplane
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to Euclidean space E
p+1. Because the theory is conformally invariant it is as-

sumed to extend to the conformal one-point compactification Sp+1 on which
the conformal group Conf(p+ 1) ≡ SO(p+ 2, 1) acts.

We recall that the k-point compactification of a complete Riemannian
manfold {M, g} is a smooth compact Riemannian manifold M with metric g
such that M \ {xi}, where xi, i = 1, . . . , k are the infinity points, is diffeo-
morphic to M and on M , g = Ω2g and where Ω is a smooth function on M
which vanishes at the points xi as one over distance squared. Stereographic
projection (certainly known to Ptolemy and probably as far back as Hipp-
archus around 150 BC) provides the compactification in the present case. In
spherical coordinates the spherical metric is

ds2 = dω2 + sin2 ωdΩ2
p+1. (113)

If r = tan(ω/2), this becomes

ds2 = (1 + cosω)2(dr2 + r2dΩ2
p+1). (114)

One therefore has Ω = (1+cosω) which does indeed vanish like the distance
squared as one approaches the infinity point at ω = π. There is no Z2 factor
here because we may think of compactified conformally E

p+1 as the set of
future directed null rays through the origin of E

p+1,1. The Euclidean special
conformal transformations correspond to boots.

Lüscher and Mack assume that SO(p = 1, 1) will act nicely on any “Euc-
lidean” conformal field theory on Sp+1 and moreover that it will satisfy a
version of Osterwalder-Schrader positivity with respect to reflection in an
equatorial p-sphere. The round metric may be written as

sin2 χ(dτ2 + dΩ2
p), (115)

where

dτ =
dχ

sinχ
. (116)

The coordinate τ covers the two-point conformal decompactification of Sp+1,
the metric product Sp × E. The Osterwalder-Schrader reflection map θ is
given by

θ : τ → −τ (117)

and the associated semigroup mapping the upper hemisphere τ > 0 into itself
is given by

τ → τ + a, (118)

with a ∈ R+.
The net result is that one Wick rotates back to the Einstein Static Uni-

verse ESUp+1 by setting
T = iτ. (119)
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Using this data Lüscher and Mack are able to show that one may obtain a
Lorentzian CFT defined on the Einstein Static Universe, ESUp+1 ≡ E

0,1×S3.
There exists a quantum mechanical Hilbert space Hqm for such CFTs on
which the universal cover Õ(p + 1, 2) acts. As we have seen, ESUp+1 is the
universal cover of the conformal compactification of Minkowski spacetime.
The obvious question is whether the theory so defined will descend to the
conformal compactification Ep,1 ≡ ESUp+1/J̃ itself or a k-fold cover.

The answer given by Lüscher and Mack is that in general this is not pos-
sible. The existence of nonintegral dimensions, with fractional parts unequal,
means that the (̂̃J)k does not act projectively (i.e. up to a phase) on Hqm
and therefore one cannot project onto the space of invariant states.

Of course for very special CFTs it is not excluded that such projections are
possible, but this requires very special anomalous dimensions. It is perhaps
worth remarking here that the Euclidean approach to quantum field theory
on S4 adopted by Lüsher and Mack is almost identical to that used when one
considers quantum fluctuations around an Sp universe “born from nothing”
in quantum cosmology, cf.[12]. For an example in 2-dimensional CFT see
based on the Schottky double of a Riemann surface see [40].

10.1 Supersymmetric Boundary Conditions

These were first addressed by Breitenlohner and Freedman. They found, in
the absence of gravity, that one had two choices. Subsequently Hawking sho-
wed that demanding that the supergravity fields satisfy the boundary conditi-
ons necessary to permit the existence of asymptotic Killing spinors giving rise
to an asymptotic Anti-de-Sitter superalgebra fixed this ambiguity uniquely.
These boundary conditions are essential for the positive mass theorem to
work in asymptotically Anti-de-Sitter spacetimes. The boundary conditions
imply, however, that the boundary is invariant under SO(p+ 1, 2). In parti-
cular the boundary conditions will enforce periodicity with the Anti-de-Sitter
period.

Hawking’s original work was in four spacetime dimensions, but he has
recently generalised it to all relevant dimensions.

10.2 Singletons

One of the remarkable features of the representation theory of the Anti-
de-Sitter groups are the singleton and doubleton representations and their
supersymmetric extensions. Rather than being connected with quantum field
theory in the bulk, they are associated with a conformal field theory on the
boundary. The simplest example is a conformally invariant scalar field ψ.
This occurs as the lowest component of a superfield and has been interpreted
as giving the transverse oscillations of the p-brane [17,14].
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The equation of motion is

− ∇2ψ +
p− 1
4p

Rψ = 0, (120)

where R is the Ricci scalar of Sp × S1.
A simple calculation leads to modes of the form

Yl exp(i(l +
p− 1
2

)T ) (121)

where l is a nonnegative integer and Yl is a spherical harmonic on Sp which
behaves as (−1)l under the antipodal map on Sp.

Thus the transverse mode satisfies

ψ(J̃x) = ip−1ψ(x). (122)

Thus for the D3-brane p = 3 and the oscilations are invariant under J̃2, for
the M5-brane p = 5 so under J̃ and for the M2-brane p = 2 under J̃4. This
fits in remarkably well with the geometric picture based on the spacetime
geometry. It seems that, as far as branes are concerned, Heraclitus may have
been right after all!

11 Finite Temperatures
and Event Horizons with Exotic Topology

The idea of thermodynamic equilibrium presupposes the existence of a time-
like Killing field8, Hamiltonian or energy operator Ĥ and conjugate time
variable t. One aim is to compute the Gibb’s partition function

Z(β;H) = TrH exp(−βĤ), (123)

where β and Hqm is the quantum mechanical Hilbert space of the system one
is considering.

It follows from the Heisenberg equations of motion and the commuta-
tivity or anticommutativity of fields at spacelike separations that the trace
projects onto states which are periodic or antiperiodic in imaginary time
τ = it with period β. This implies that correlation functions are also periodic
or antiperiodic in imagainary time. An amusing example arises when one
considers globally static coordinates in AdSp+2. The finite temperature cor-
relation functions are then periodic in both real and imaginary time. In the
8 Strictly speaking, if only conformally invariant matter is considered, a timelike
conformal Killing field may suffice. One may then, modulo conformal anomalies,
pass to the conformally related stationary metric. This is important in cosmology,
since all Friedman-Lemaitre-Robertson-Walker metrics are conformally static.



Anti-de-Sitter Spacetime and Its Uses 133

case of massless fields, when only poles are present, they may be expressed
in terms of elliptic functions [52].

If additional mutually commuting conserved charges N̂ i are involved, one
introduces chemical potentials µi and considers

Z(β, µi : H) = TrH exp(−βĤ + βµiN̂ i). (124)

If the charges Ĥ and N̂ i generate the Lie algebra g of a Lie group G, then
Z(β, µi : H) is a sort of “character” in the representation of the semigroup
element exp(−βĤ + βµiN̂ i) acting on Euclidean fields. In the case of space-
times G is a maximally commuting subgroup of the isometry group and the
charges N̂ i are typically associated with angular momenta or Kaluza-Klein
momenta. The chemical potentials µi are then interpreted as angular velo-
cities or electrostatic potentials. The Wick rotation of the metric is slightly
different in that case. Typically one anaytically continues to a complex section
of the complexification MC.

11.1 Three Kinds of Static Metric

Depending upon which Killing field we take, we will get a different thermody-
namics. Assuming that we maintain SO(p)-invariance, there are three natural
(locally) static coordinate systems for AdSp+2. The associated time transla-
tion is a one dimensional subgroup G1 ⊂ SO(2, 1) ⊂ SO(p + 1, 2) acting
on the coordinates say X0, Xp+1, Xp+2 and leaving invariant the coordinates
Xi, i = 1, . . . , p. The surfaces of constant time orthogonal to the timelines,
i.e. to the orbits of G1 in AdSp+1, have the intrinsic geometry of hyperbolic
space and are the intersections with the quadric of a one parameter family
of hyperplanes passing through the origin acted upon by G1.

The three possibilities correspond to the three conjugacy classes of one
parameter subroups of SO(2, 1). They can be labelled by k = 1, 0 and are

• SO(2) rotations in the X0−Xp+2 two-plane. The hyperplanes X0/Xp+2

= constant are always timelike. The system is globally static. There are no
Killing horizons. Time translations correspond to Ê = M̂p+2 0 = 1

2 (P̂
0 +

K̂0). The metric is

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

p,1, (125)

where dΩ2
p,1 = dΩ

2
p is the metric on the unit p-sphere Sp.

• Null rotations. The hyperplanes X0/(Xp+2 + Xp+1) = constant are al-
ways timelike or null. The system is not globally static. There is an ex-
treme Killing horizon at r = 0. Time translations correspond to P̂ 0 =
M̂p+2 0 + M̂p+1 0. The metric is

ds2 = −r2dt2 + dr2

r2
+ r2dΩ2

p,0, (126)
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where dΩ2
p,0 is the flat metric on E

p.
• Boosts in the X0 −Xp+1 two-plane. The hyperplanes X0/Xp+1 = constant
may be spacelike or timelike: the system is not globally static because
there is a nondegenerate Killing horizon ar r = 1 with unit surface gra-
vity. Time translations correspond to M̂p+1 0 = 1

2 (P̂
0 + K̂0). The metric

is

ds2 = −(r2 − 1)dt2 +
dr2

r2 − 1
+ r2dΩ2

p,−1, (127)

where dΩ2
p,−1 is the metric on hyperbolic space Hp.

It is of course possible to make identifications. For example one may
convert E

p to a torus T p and Hp to a closed hyperbolic manifold. In this
way one obtains event horizons with exotic topologies. As stated above, this
will lead to orbifold singularities if k = 0, which corresponds to horospheric
coordinates with z = 1/r. Of course the relation of the coordinates (t, r) etc
to the embedding coordinates is diifferent in all three cases.

These three examples can be used to define three kinds of (possibly lo-
cally) asymptotically Anti-de-Sitter boundary conditions with an associated
concept of ADM mass. Taking out r2 as a conformal factor, one sees that the
conformal boundaries are the conformally flat manifolds:

• Sp × S1
• E

p,1

• Hp × E
0,1.

In the last two cases these boundaries are geodesically complete as Lorentzian
manifolds, but as conformal manifolds they are only subsets of the complete
conformal boundary.

The cases k = 1 and k = 0 have no natural temperature, so it is possible
to consider them at an arbitrary finite temperature T = β−1. If k = −1, one
must choose β = 2π. One may pass to imaginary time τ = it in the usual way
and one gets the metric on hyperbolic space Hp which, in the cases k = 1
and k = 0, has been identified under the action of the integers generated by
τ → τ + β.

11.2 Tachyonic Black Holes

There are in addition black hole solutions, generalisations of the usual Kottler
solution, of the form

ds2 = −(r2 + k +
2M
rp−1 )dt

2 +
dr2

r2 + k + 2M
rp−1

+ r2Ω2
p,k. (128)

The quantityM is proportional to the ADM mass. If k = 1, one finds that
if the metric is to be nonsingular, in the sense that the singularuty at r = 0
is shielded by an event horizon, then M must be nonnegative. By contrast,
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if k = −1, negative values of M are allowed, as long as they are not too
negative.

This fits in both with the AdS/CFT correspondence and with Wigner’s
observations. On the CFT side, in the case of three-branes, one finds that
the Higgs fields of the N = 4 SUSY Yang-Mills theory have a coupling of the
form:

− 1
12

TrRΦ2, (129)

where R is the Ricci scalar of the boundary. In the case of Hp × E
0,1, this

is negative and the coupling behaves like a tachyonic (i.e. negative mass
squared) term. On the the group theory side, it is easy to see that the adjoint
action of a rotation of π in the X0 −Xp+2, that is an advance of of six Great
Months, has the effect of reversing the sign of the relevant energy operator
M̂p+1 0.

These remarks also fit with some very old ideas about black holes in
p + 2 dimensions in theories without a cosmological constant [42]. If the
event horizon geometry is Sp rather than Hp, then the isometry group is
SO(p−1, 1)×R rather than SO(p)×R. The latter is what Wigner called the
little group, i.e. the stability group, of the timelike worldline of an ordinary
particle. The latter the little group of the spacelike world line of a tachyon.

11.3 The Horowitz-Myers Conjecture

By reversing the role of one of the time and one of the spatial coordinates
in the k = 0 case, Horowitz and Meyers find a black hole for which one
of the spatial coordinates must be identified with period β = 4π

p+1 (2M)
1

p+1 .
This defines another boundary condition for which the conformal boundary
is S1β × E

p−1 × E
0,1. One may also identify points on the E

p−1 factor to
get a torus T p−1. The solution is globally static: it does not have an event
horizon. The spatial sections have topology R × T p−1. Let us call this the
Horowitz-Meyer version of the Kasner-Kottler spacetime, HMp+2.

One might have thought that HMp+2 is an “excitation” of the identified
space AdSp+1/Z where the Z action is x1 → x1+β in horospheric coordinates.
However, working out the ADM Mass with respect to AdSp+1/Z using the
methods of [44] they find it to be negative!

Thus they lead to conjecture that it is HMp+2 which is the true ground
state with respect to these boundary conditions and that there is some ge-
neralisation of the positive mass theorem to this setting. This is especially
intriguing because HMp+2 admits no Killing spinors, ie. it is not BPS.

12 Concluding Observations

Having set the global scene, I shall make some observations about the the
origin of the AdS geometry.
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12.1 Nonlinear Realisations
and Spontaneous Symmetry Breaking

The group manifold viewpoint makes it in some sense almost obvious that in
any problem in which some sort of spontaneous breaking of translation and
dilatation invariance is involved one can expect to be working onAdSp+2. One
may identify the coordinates xµ as the Nambu-Goldstone bosons associated
with translation invariance and φ = ln z as that associated with dilatation
invariance.

To see how consider, to begin with, the the case of the breakdown of a
conventional global symmetry group G to an unbroken subgroup H. A low-
energy effective Lagrangian can be constructed from maps from the world-
volume of a p-brane to G/H. This requires a G-invariant metric on G/H.
One may then construct Noether currents and obtain “current algebras”.

For the p-brane one includes in G the group of translations transverse
to the brane, the other variables being interpreted as additional scalar fields.
The standard case of quantum field theory occurs when one has no transverse
coordinates. The low energy dynamics of a single soliton defined in E

d is a
another special case with p = 0 except that one typically now has a, possibly
curved, “moduli space” {M, g} of classical solutions the coordinates of which
include the positions of the soliton and perhaps some internal degrees of
freedom, such as phases or scales. The moduli space will certainly admit
the action of the Euclidean group E(d) and the position coordinates are
associated with the orbits in M of the translation subgroup. In the case of
BPS solitons, one also has multimoduli spaces Mk decribing the motion of
k solitons. They are not just the products M×k of the single soliton moduli
space but at large soliton separation often tend to a product, and thus include
a copy of the configuration space Ck(Rd) ≡ (Rd)k/Sk. As far as the low energy
dynamics are concerned the solitions move in a nonrelativistic Newton-Cartan
“spacetime” if the form Mk × E

0.
Now all this is very reminiscent of Helmhotz’s operational ideas about the

physical origin of the axioms of geometry. By geometry he of course meant
noneuclidean space geometry. Being a nineteenth century physicist he not
surprisingly based his ideas on the “free mobility of rigid bodies”. In effect
he regarded space as the coset of possible locations G/H, where G is a six-
dimensional Lie group containing H = SO(3) as the group of rotations of a
rigid body about a fixed point. The possiblities then reduce to to the triple
of symmetric Riemannian spaces with G = (SO(4), E(3), SO(3, 1)). The first
and last are of course related by symmetric space duality.

Had Helmholtz known about quantum mechanics he might have procee-
ded differently but arrived at the same result. He might have assumed the
existence of a set of operators or observables the commutation relations of
which generated the Lie Algebra g. He would then seek to realise them on
some Hilbert space Hrm. A simple way for him to do so would be to take
L2(G/H, µg), where µg is the Riemannian volume element with respect to
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the invariant metric on g. In this way noneuclidean geometry would arise
naturally from quantum mechanical principles as a consequence of assump-
tions about physical systems. Obviously extra degrees of freedom could have
been incorporated by passing to a bigger group Gunifying, the extra degrees
of freedom being interpreted as higher dimensions.

To make this picture compatible with relativity and fit the real world is
not easy because we have to incorporate a more sophisticated idea of time
into the picture. However, some elements are clear. The obvious analogue of
SO(3) is SO(3, 1) and SO(4), E(3) and SO(3, 1) are replaced by SO(4, 1),
E(3, 1) and SO(3, 2). We might begin by replacing quantum mechanics by
quantum field theory.

One obvious point of difference with the nineteenth century viewpoint is
that for many particles we have no simple analogue of multiparticle spaceti-
mes. This is usually taken care of by second quantization in which everything
is thought of as happening in the same spacetime. Of course one may always
think of k-point bosonic correlation functions as being defined on the k-th
symmetric power of spacetime, but the geometry is just given by the pro-
duct metric, unlike the case of the BPS monopole moduli spaces, where it
very definitely is not the product metric. Moreover to capture all the infor-
mation, because it is usually inconsistent to confine attention to a definite
number of particles, one would consider instead the disjoint union �kMk/Sk.
There do exist covariant multitime formulations of the classical mechanics of
k point particles interacting at a distance, but they have no single time, as
opposed to multitime, Hamiltonian formulation and they have as yet resisted
quantization.

12.2 Anti-de-Sitter Space as a Moduli Space

The idea of spacetimes as moduli spaces is in fact not new. Therefore, before
discussing the application of these ideas to string theory, it may prove illu-
minating to recall some rather old ideas about “Sphere Geometry” which go
go back to the nineteenth century in which de-Sitter spaces and their metrics
arise naturally.

Consider, to begin with, the more familar case of spheres Sd − 1 in Euc-
lidean space E

d. This arises physically in sphere packing problems [54,55].
Spheres have the the equation

Ux2 − 2x.a+ V = 0. (130)

The centre is at a
U and the radius R =

√
a2

U2 − V
U .

The (d+ 2)-tuple a = (a, U, V ) and the (d+ 2)-tuple λa = (λa, λU, λV ),
λ �= 0 give the same sphere. Moreover the radius will be real and nonvanishing
as long as

a2 − UV > 0. (131)
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Thus the set of d−1 spheres in E
d corresponds to a subset of RP

d+1. If we set
U = ap+2+ap+1 and V = ap+2−ap+1, we will recognize the subset as the set
of spacelike directions in E

d=1,2, i.e. with de-Sitter spacetime identified under
the antipodal map, DeSd+1/Z2. In fact more can be said. We may make use
of the freedom to rescale the coefficient U to set

R = U. (132)

This means that V = a2

R − R and hence a sphere a corresponds to the unit
spacelike (d+ 2)-vector

aA = (
a
R
,
1
R
,
a2

R
−R). (133)

Evidently the centre and radius (a, R) are horospheric coordinates for de-
Sitter spacetime.

Now, if two spheres a and a′ intersect, then the angle θ between them is
given by

cos θ =
1

2RR′
(
R2 +R′2 − (a− a′)2

)2
. (134)

Clearly

cos θ = aAa′BηAB =
1
2

(
2 − (aA − a′A)2

)
. (135)

Thus the angle between to spheres, i.e. the conformal structure on the space
of spheres, is encoded in the chordal distance, i.e. to the causal structure,
of de-Sitter spacetime and vice versa. Under this correspondence, inversion
in a sphere corresponds to reflection in the associated hyperplane. In this
way sphere packing problems are related to discrete subgroups of SO(p +
1, 1) generated by reflections [54,55]. Another application (if d = 2) is to
the probablity distribution of craters on the moon. The metric of De-Sitter
spacetime gives the “fractal”, i.e. dilatationand translation invariant measure

ddadR
Rd+1 . (136)

What about Anti-de-Sitter spacetime?. We have a similar picture but we
must take care with signs. Consider a spacelike hyperbola of two sheets in
Minkowski spacetime E

p,1. Its equation is

Ux2 − 2xµaµ + V = 0. (137)

The central spacetime event is at a
µ

U and we will get a two-sheeted hy-
perbola as long as

UV − aµaµ > 0. (138)

This corresponds to AdSp+2/Z2. The “radius” is given by
√

a2

U2 − V
U . In other

words the longest proper time between the two sheets is twice the “ radius”.



Anti-de-Sitter Spacetime and Its Uses 139

We may interpret the horospheric coordinates of Anti-de-Sitter spacetime
as the coordinates of the central event and the size of the hyperbola. If we
had chosen to consider the space of single sheeted hyperbolae in Minkowski-
spacetime, we would have considered spacelike directions in Ep, 1 and arrived
at a “spacetime” with two times.

12.3 Twistors and Line Geometry

The space of spheres or pseudospheres carries a natural conformal structure
in all dimensions. The case of lines, however, in general will not. Plücker and
Klein discovered that one may give a conformal structure to the space of lines
in RP

3. A line in RP
3 determines up to scale and a simple bivector ωΛ2(R).

Two lines ω and ω′ intersect if and only if ω ∧ ω′ = 0. This quadratic form
has signature (3, 3) and therefore the set of lines may be identified with the
set of null rays in E

3,3. This gives (S2 × S2)/Z2 with metric of signature
(2, 1)9. Group-theoretically the projective group PSL(3;R ≡ SO(3, 3). Thus
if one is prepared to complexify one has a conflation of line geometry and
and sphere geometry, that is of the projective geometry of three-dimensions
and the conformal geometry of four-dimensions. This is closely related to
Penrose’s Twistor programme. Any straight line in three dimensions may be
lifted to a null geodesic in four-dimensional Minkowski spacetime. Penrose
himself prefers to work over the complex, but one may restrict oneself to
some real section and obtain some special cases.

12.4 Strings in Four Dimensions

With this set of ideas in mind it is instructive to consider a string theory in
four spacetime dimensions. The Nambu-Goldstone modes include four spa-
cetime coordinates. However, if dilatation symmetry is broken one should
take the semidirect product G5 of spacetime translations with the dilations.
The extra Nambu-Goldstone mode is related to the Liouville mode of string
theory. This naturally brings us to consider strings moving in G5, i.e. one
half of AdS5. One might argue that the S5 factor has to do with the Gold-
stone mode for an SO(6) ”R” symmetry. This seems to be behind some of
Polyakov’s thinking about Wilson loops which played an important role in
suggesting the AdS/CFT correspondence.

The question the arises: from where do the extra generators come which
are needed to take us behind the horizon? One possible answer, suggested to
me by Tom Banks is as follows. It uses an old result from flat space CFT.
Suppose that one has invariance under the Causality Group. Then one should
have a canonical energy momentum tensor Tµ ν which is
9 Because Majorana spinors play such a central role in supersymmetry it may so-
metimes be useful to recall that the space of projective Majorana spinors for
four-dimensional Minkowski spacetime ( with signature (+ + +−) amy be iden-
tifed with RP

3 [56].
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• Conserved
∂µT

µ
ν = 0, (139)

• Symmetric
ηµσT

σ
ν = ηνσT σ µ (140)

and
• Trace-free

Tµ µ = 0. (141)

Then it follows that one has additional conserved currents coming from the
additional conformal Killing vectors, Kµ, associated with special conformal
transformations.

∂(Tµ νKν) = 0. (142)

If the boundary conditions permit, one may be able to integrate these
over a Cauchy surface to get the missing generators needed to extend the
Causality group to the full conformal group. This is essentially the question
which was addressed at a more rigorous level by Lüscher and Mack whose
work was described above.
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Black Holes and Wormholes
in 2+1 Dimensions
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Abstract. Vacuum Einstein theory in three spacetime dimensions is locally tri-
vial, but admits many solutions that are globally different, particularly if there is
a negative cosmological constant. The classical theory of such locally “anti-de Sit-
ter” spaces is treated in an elementary way, using visualizable models. Among the
objects discussed are black holes, spaces with multiple black holes, their horizon
structure, closed universes, and the topologies that are possible.

1 Introduction

On general grounds (2+1)-dimensional spacetime was long considered unli-
kely to support black holes, before such solutions were discovered [1]. Black
holes were commonly conceived as places where the effects of gravity are
large, surrounded by a region where these effects are asymptotically negli-
gible. Another possible reason is the idea that black holes are “frozen gravi-
tational waves” and therefore exist only in a context where the gravitational
field can have independent degrees of freedom. In 2+1 dimensional Einstein
theory — that is, Einstein’s equations in a 3-dimensional space-time of sig-
nature (−++) — the pure, sourceless gravitational field has no local degrees
of freedom, because in three dimensions the Riemann tensor is given alge-
braically by the Einstein tensor, which in turn is algebraically determined by
the Einstein field equations. If there is no matter source and no cosmological
constant, the Riemann tensor vanishes and space-time is flat; if there is no
matter but a cosmological constant Λ, the Riemann tensor is that of a space
of constant curvature Λ/3. Thus gravity does not vary from place to place
and it does not have any wave degrees of freedom. These were some of the
reasons why the possibility of black holes was discounted, and the discovery
of black hole solutions in 2+1 D spacetimes with a negative Λ came as such
a surprise.

The existence of (2+1)-dimensional black holes of course does not alter
the absence of gravitational waves in (2+1)-dimensional Einstein spaces, nor
the lack of variation of their curvature. The curvature of spacetimes satisfying
the sourceless Einstein equations with negative Λ is constant negative, and
the local geometry in the asymptotic region does not differ from that near the
black hole. Indeed, black hole solutions can be obtained from the standard,
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simply connected spacetime of constant negative curvature (anti-de Sitter
space, AdS space for short) by forming its quotient space with a suitable
group of isometries.1 One of the criteria on the isometries is that the quoti-
ent space should not have any objectionable singularities. For example, if the
group contains isometries of the rotation type, with a timelike set of fixed
points, then the quotient space will have singularities of the conical kind. Such
singularities can represent “point” particles, and the corresponding spacetime
can be interpreted as an interesting and physically meaningful description of
the dynamics of such particles [4]. However, we confine attention to solutions
of the sourceless Einstein equations with negative cosmological constant —
whether black holes or not — that are at least initially nonsingular. There-
fore we exclude such particle-like solutions. (Likewise, we will not consider
the interesting developments in lower-dimensional dilaton gravity, nor other
matter fields [5].)

On the other hand, the group used to construct our quotient space may
have isometries that are locally Lorentz boosts, with spacelike sets of fixed
points. The corresponding singularities are of the non-Hausdorff “Misner”
type [6]. If such a singularity does not occur on an initial spacelike surface, and
is hidden behind an event horizon, then the spacetime can be acceptable as a
representation of a black hole. Finally, the isometry may not have any fixed
points but still lead to regions in the quotient space that are to be considered
singular for physical reasons, and such regions may again be surrounded by
an event horizon, yielding other types of black holes.

Thus the proper criterion characterizing a black hole in this context is not
a region of large curvature or an infinite red shift (in typical representations
of AdS space itself, where there is no black hole, there is an infinite red
shift between the interior and the region near infinity), but existence of an
event horizon. This in turn requires the existence of a suitable I, whose
neighborhood is a region in which “distant observers” can survive for an
arbitrarily long time without hitting a singularity. That is, there have to
be causal curves (the worldlines of these observers) that can be continued
to infinite proper time. For example, Misner space itself — the quotient of
Minkowski space by a Lorentz boost — does not satisfy this criterion in any
dimension, because all timelike curves intersect the non-Hausdorff singularity
in a finite proper time. Thus the case Λ = 0 does not yield any black holes.
The same is true, for similar reason, in the case Λ > 0. However, for Λ < 0
there are worldlines along which asymptotic observers can survive forever
even when spacelike singularities are present. Our black holes will then not
be asymptotically flat [7], but asymptotically AdS. We will see (in Sect. 3)
that the usual definition of black holes can be applied to these spacetimes,
and even before we have come to this we will speak of them as black holes.

1 It appears that all locally AdS spacetimes can be obtained in this way [2]. This
is not so for positive curvature [3].
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We can understand the difference between the cases Λ ≥ 0 and Λ < 0 as as
a consequence of the positive “relative acceleration” of spacelike geodesics in
spaces of negative curvature. Spacelike geodesics reaching the asymptotically
AdS region will increase their separation without limit. The fixed points of
the identification that generates a black hole — that is, the “singularities”
— lie along a spacelike geodesic. Consider a set of observers located initially
further and further towards the asymptotic region and along another spacelike
geodesic, which does not intersect the geodesic of fixed points. The timelike
distance of an observer from the singularity will then eventually increase
without limit, so a sufficiently far-out observer can survive for an arbitrarily
long time.

We note in passing that timelike geodesics in spacetimes of constant nega-
tive curvature have the opposite property: they accelerate toward each other.
Thus Λ < 0 corresponds to a universal “attractive” gravity, and a black hole
in such a spacetime exerts this same attraction on test particles, as a black
hole should.

The quotient of the AdS universe with the group generated by a single
finite isometry that is without fixed points, at least on some initial spacelike
surface, yields a single black hole, called a BTZ spacetime (for its discoverers,
Bañados, Teitelboim and Zanelli [1]). As we will see, one can make further
identifications in a BTZ spacetime, obtaining more complicated black holes,
and this process can be repeated an arbitrary number of times. Although
the isometries used for the identification cannot be entirely arbitrary, the
variety of possibilities and of the resulting spacetimes is quite large. These
spacetimes cannot be described by their metric in one or in a few simple
coordinate systems, because many coordinate patches would be needed to
cover their possibly complicated topology. In principle such a spacetime is of
course defined, and all its physical properties are computable, once we know
the structure of the AdS isometries that generate it. But such a presentation
does not give an accessible and easily visualizable picture of the spacetime.
Therefore we prefer to describe the spacetimes combinatorially, by “gluing
together” pieces of AdS space. This view allows one to gain many important
geometrical insights directly, without much algebra or analysis (even if a few
of these geometrical constructions may resemble a tour de force).

In Sect. 2 we consider the simplest, time-symmetric case. Because the
extrinsic curvature of the surface of time-symmetry vanishes, this surface is
itself a smooth two-dimensional Riemannian space of constant negative cur-
vature. This class of spaces has been studied in considerable detail [8]. In
particular, almost all two-dimensional spacelike topologies occur already wit-
hin this class. Section 3 considers the time development of these spaces; we
find that all the non-compact initial states develop into black holes. The ho-
rizon can be found explicitly, although its behavior can be quite complicated.
Section 4 concerns spacetimes that are not time-symmetric but have angular
momentum.
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An important reason for studying the classical behavior of these space-
times is their relative simplicity while still preserving many of the features
of more realistic black hole spacetimes. They are therefore interesting mo-
dels for testing the formalism of quantum gravity. We do not go into these
developments but refer the reader to the recent book by S. Carlip [9].

2 Time-Symmetric Geometries

Three-dimensional AdS space has many totally geodesic (“time-symmetric”)
spacelike surfaces. Because the extrinsic curvature of such surfaces vanishes,
they have constant negative curvature Λ. Each such surface remains invariant
under a “little group” of AdS isometries, which are therefore isometries of
the spacelike surface, and conversely each isometry of the spacelike surface
can be extended to be an isometry of the whole AdS spacetime.2 Therefore
any identification obtained by isometries on the spacelike surface can likewise
be extended to the whole spacetime. (AdS space identified by this extension
coincides with the usual time development of the initial data via Einstein’s
equations where the latter is defined, but it even goes beyond any Cauchy
horizon). Thus to identify the possible time-symmetric geometries it suffices
to discuss the possible initial spacelike geometries — although this leaves the
time development still to be made explicit.

2.1 Coordinates

Although most physically and mathematically interesting facts about con-
stant negative curvature spaces can be phrased without reference to coordi-
nates, and even usefully so, it is convenient for the elucidation and proof of
these facts to have coordinates available. Because of the large number of sym-
metries of AdS spacetime, its geometry takes a simple form in a large number
of coordinate systems, which do not usually cover all of the spacetime, but
which exhibit explicitly one or several of these symmetries. The simplest co-
ordinates are the redundant set of four Xµ, µ = 1, . . . 4 in terms of which
AdS space is usually defined, namely as an embedding in four-dimensional
flat space with signature (−,−,+,+) and metric

ds2 = −dU2 − dV 2 + dX2 + dY 2 (1)

by the surface

− U2 − V 2 +X2 + Y 2 = −�2. (2)
2 Since AdS spacetime is an analytic continuation (both in signature and curvature)
of the familiar spherical geometry, such properties can be considered extensions
of the corresponding statements about spheres, mutatis mutandis for the diffe-
rence in group structure, SO(4) vs SO(2,2). Analogous statements are true about
surfaces of constant extrinsic curvature.
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This spacetime is periodic in the timelike direction with the topology S1×R2;
for example, for X2 + Y 2 < �2 the curves (X, Y ) = const, U2 + V 2 =
�2 −X2 −Y 2 are closed timelike circles. In the following we assume that this
periodicity has been removed by passing to the universal covering space with
topology R3, which we will call AdS space. If it is necessary to distinguish it
from the space of Eq (2) we will call the latter “periodic AdS space.” Either
spacetime is a solution of the vacuum Einstein equations with a negative
cosmological constant Λ = −1/�2.

Eq (2) shows that AdS space is a surface of constant distance from the
origin in the metric (1). It therefore inherits from the embedding space all
the isometries that leave the origin fixed, which form the SO(2,2) group. AdS
space can be described by coordinates analogous to the usual spherical polar
coordinates as in Eq (9), but of greater interest are coordinates related to
isometries that leave a plane fixed, and whose orbits lie in the orthogonal
plane. These have the nature of rotations if the plane is spacelike (or double-
timelike, such as the (U, V ) plane), and of Lorentz transformations if the
plane is timelike. Isometries corresponding to orthogonal planes commute,
and we can find coordinates that exhibit such pairs of isometries explicitly.
If the isometries are rotations, the coordinates cover all of AdS space; if they
are Lorentz transformations the corresponding coordinates are analogous to
Rindler coordinates of flat space, and need to be analytically extended in the
usual fashion to cover all of the spacetime.

For example, if we choose rotations by an angle θ in the (X, Y ) plane and
by an angle t/� in the (U, V ) plane, and specify the respective orbits on the
AdS surface by

U2 + V 2 = �2 cosh2 χ and X2 + Y 2 = �2 sinh2 χ

(so that, for example, U = −� coshχ cos t� , V = � coshχ sin t
� ) we obtain the

metric

ds2 = − cosh2 χdt2 + �2
(
dχ2 + sinh2 χdθ2

)
. (3)

In order to describe the universal covering space we have to allow t to range
−∞ < t < ∞, whereas θ has its usual range, 0 ≤ θ < 2π, and similarly
0 ≤ χ < ∞. Except for the usual polar coordinate singularity at χ = 0, these
coordinates cover all of AdS space by a sequence of identical (“static”) two-
dimensional spacelike surfaces t = const having a standard metric of spaces
of constant negative curvature −1/�2. Because U = 0 = V does not occur
on (2), shifts in the t coordinate are true translations, without fixed points.
These coordinates define timelike sections (θ = const) and spacelike sections
(t = const) of AdS space. Each of these can be represented in a conformal
diagram, shown in Fig. 1.

We can define a “radial” coordinate (which really measures the circumfe-
rence of circles) by

r = � sinhχ .
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t = 0 ✲✛

θ

✶

χ = 0 �
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❅
❅
❅
❅
❅
❅
❅

χ = ∞

χ = 0 χ = ∞

t = const

(a) (b)

�

Fig. 1. Conformal diagrams of the static (or sausage) coordinates of Eq (3) in
sections of AdS space. (a) The χ, t section, both sides of the origin. The right half
is, for example, θ = 0, and the left half, θ = π. (b) The section t = const is the 2D
space of constant negative curvature, conformally represented as a Poincaré disk
(see Sect. 2.2). The conformal factors are different in the two sections, so they do
not represent sections of one three-dimensional conformal diagram. (For the latter
see Fig. 4b)

The metric (3) then takes the form

ds2 = −
(
r2

�2
+ 1
)

dt2 +
(
r2

�2
+ 1
)−1

dr2 + r2dθ2 . (4)

By choosing a different radial coordinate, namely

ρ = � tanh
1
2
χ

to replace the χ of Eq (3), we can make the conformally flat nature of the
spacelike section explicit and keep the metric static:

ds2 = −
(
1 + (ρ/�)2

1 − (ρ/�)2

)2

dt2 +
4

(1 − (ρ/�)2)2
(
dρ2 + ρ2dθ2

)
. (5)

A picture like Fig. 1, with parts (a) and (b) put together into a 3-
dimensional cylinder, can be considered a plot of AdS space in the cylindrical
coordinates of Eq (5). Because of the cylindrical shape of this diagram these
coordinates are sometimes called sausage coordinates [10]. Like the static
coordinates of (3), these cover all of AdS space.
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If we follow an analogous construction but use the timelike (X, U) and
(Y, V ) planes with orbits (in terms of a new coordinate χ)

−V 2 +X2 = −�2 cosh2 χ and − U2 + Y 2 = �2 sinh2 χ,

and new hyperbolic coordinates φ and t/�, we obtain the metric

ds2 = − sinh2 χdt2 + �2
(
dχ2 + cosh2 χdφ2

)
. (6)

By defining
r = � coshχ

we can change this to the Schwarzschild-coordinate form

ds2 = −
(
r2

�2
− 1
)

dt2 +
(
r2

�2
− 1
)−1

dr2 + r2dφ2, (7)

which is usually derived from the “rotationally” symmetric ansatz — however,
in this description of AdS space, φ has to be given the full range, −∞ < φ <
∞ of a hyperbolic angle. The range of r for which the metric (7) is regular,
� < r < ∞, describes only a part of AdS space, as can be seen from the
explicit expression for the embedding in terms of these coordinates,



U =
(
r2 − �2

)1/2 sinh t
�

V = r coshφ
X = r sinhφ

Y =
(
r2 − �2

)1/2 cosh t
�

(8)

This regular region can be patched together in the usual way with the region
0 < r < � (Fig. 2), to describe a larger part of AdS space. But if it is
desired (for whatever bizarre reason) to describe all of AdS space by analytic
extensions of the coordinates (8), one needs also analytic extensions beyond
the null surfaces φ = ±∞ (or r = 0), which are quite analogous to the usual
Schwarzschild-type “horizon” null surfaces t = ±∞ (or r = �). One then
finds two disjoint regions of a third type (not shown in the figure because
they extend perpendicular to the plane of Fig. 2a) in which r2 is negative
and φ is the timelike coordinate.3

Another interesting coordinate system is closely related to ordinary polar
coordinates on the three-sphere:




U = � sin τ
�

V =
(
r2 − �2

)1/2 cos τ�
X = r cos τ� cosφ
Y = r cos τ� sinφ

(9)

3 Like all statements derived from embedding equations such as (8) this really
applies to periodic AdS space, and should be repeated an infinite number of times
for the covering AdS space itself. For example, there are an infinite number of
regions of the three types in AdS space.
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t = 0 ✲✛
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φ = −∞
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Fig. 2. Conformal diagrams of the “Schwarzschild” coordinates of Eq (8) in sections
of AdS space. (a) An r, t section, continued across the r = � coordinate singularity.
The outer vertical lines correspond to r = ∞. The dotted curves show a few of the
surfaces τ = const for the coordinates of Eq (10), with limits at τ = ±π�/2. (b) An
r, φ section (r > �) is a two dimensional space of constant negative curvature,
conformally represented as a Poincaré disk (see below). The approximately vertical
curves are lines of constant r; they are equidistant in the hyperbolic metric. The
approximately horizontal curves are lines of constant φ; they are geodesics in the
hyperbolic metric. The outer circle corresponds to r = ∞

with the metric

ds2 = −dτ2 + cos2
(τ
�

)[(r2

�2
− 1
)−1

dr2 + r2dφ2

]
. (10)

This is a time development of the same initial data as in (7) (at t = 0 resp.
τ = 0) but with unit lapse function N = 1. The surfaces τ = const have
constant extrinsic curvature, and they just cover the domain of dependence
of those initial values.

Finally one can introduce coordinates that correspond to the flat sections
of de Sitter space:




U + Y = r
U − Y = r

(
φ2 − t2

)
+ 1

r
X = rφ
V = rt

(11)
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The metric then takes the form

ds2 = −r2dt2 +
dr2

r2
+ r2dφ2. (12)

Here the r = const sections are manifestly flat.4 Fig. 3 shows the conformal
picture of these coordinates.

(a)

t = 0 ✲✛ φ = 0


φ

(b)

�
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�
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�
�
��

❅
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❅
❅
❅
❅❅

✚✙
✛✘

φ =const

r = const

t = const

✟✟
✟✟✯

✏✏✏✏✮

r=0

Fig. 3. Conformal diagram of the “extremal” Schwarzschild coordinates of Eq (11)
in sections of AdS space. (a) An r, t section. (b) An r, φ section. The lines r =
const are horocycles of the Poincaré disk.

The spacelike surfaces t = const are conformally flat as are all two-
dimensional surfaces, and as is manifest in Eq (5). Less trivially, the three-
dimensional AdS spacetime also has this property, so neighborhoods of AdS
space can be conformally mapped to flat space (one of the few cases where
a three-dimensional conformal diagram exists). Such a map is the “stereo-
graphic” projection, a projection by straight lines in the embedding space
from a point in the surface of Eq (2) onto a plane tangent to that surface at
the antipodal point, analogous to the familiar stereographic projection of a
sphere (Fig. 4a). By projection from the point (U, V, X, Y ) = (−�, 0, 0, 0)
to the plane U = � we obtain the coordinates (provided U > −�)

xµ =
2�Xµ

U + �
Xµ �= U (13)

4 These subspaces are the analog in the case of Lorentzian metrics of horospheres
of hyperbolic spaces (see, for example, [8]).
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with the metric (where X0 = V, x0 = t)

ds2 =
(

1
1 − r2c

)2 (−dt2 + dx2 + dy2
)

where r2c =
−t2 + x2 + y2

4�2
. (14)

This metric is time-symmetric about t = 0 but not static. It remains inva-
riant under the Lorentz group of the flat 2+1-dimensional Minkowski space
(t, x, y). In addition the origin may be shifted and the projection “cente-
red” about any point in AdS space (by projecting from the corresponding
antipodal point).

❅
❅❅

❅
❅❅

�✁✁
✁
✁
✁
✁
✁
✁✁
A��B

P2

1

(a) (b)

✻

�
✑
✑✑✸

y

x

t

Fig. 4. AdS space in stereographic projection. (a) The hyperboloid is 2-dimensional
AdS space embedded in 3-dimensional flat space as in Eq (2), restricted to Y = 0.
It is projected from point P onto the plane 1 (U = �). The image of point A in the
hyperboloid is point B in the plane. The part of the hyperboloid that lies below
plane 2 is not covered by the stereographic coordinates. (b) When plotted in the
stereographic coordinates (13), AdS space is the interior of a hyperboloid. The
boundary of the hyperboloid is (part of) the conformal boundary of AdS space.

Because of the condition U > −� the stereographic projection fails to cover
a part of AdS space, even in the periodically identified version (Fig. 4a). The
3-dimensional conformal diagram is the interior of the hyperboloid rc = 1,
where the conformal factor of the metric (14) is finite (Fig. 4b). On the surface
of time-symmetry, t = 0, the stereographic metric agrees with the sausage
metric (5).

Many similar coordinate systems, illustrating various symmetries of AdS
space, are possible; for examples see [11].
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2.2 Isometries and Geodesics

To discuss the identifications that lead to time-symmetric black holes and
other globally non-trivial 2+1-dimensional solutions we need a convenient
representation of isometries and other geometrical relations in a spacelike
initial surface of time-symmetry. Such a representation is the conformal map
of Figs 1 and 2, in which this spacelike surface is shown as a disk, known as
the Poincaré disk. This representation has been extensively studied (see, for
example, [8]), and we only mention the features that are most important for
our task.

�
�✠

hyperboloid

✛ plane
limit circle

� other sheet of hyperboloid
(not used in construction)

✲

❡
❡
❡❡❚

❚
❚❚

✻
U

�X

✑
✑✑✸ Y

�
✻

❄❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
�

�

�

A

B

P

Fig. 5. The two-dimensional space H2 of constant curvature 1/�2 is embedded in
flat Minkowski space as one sheet of the hyperboloid of Eq (15). Under a stereogra-
phic projection from point P to the plane, point A on the hyperboloid is mapped
to point B in the plane. Thus the hyperboloid (H2) is mapped onto the Poincaré
disk, the interior of the curve marked “limit circle”

All totally geodesic, time-symmetric surfaces H2 in AdS space are iso-
metric to the typical hyperboloid (Fig. 5) obtained by restricting Eq (2) to
V = 0,

X2 + Y 2 − U2 = −�2 (15)

This surface has zero extrinsic curvature and therefore constant negative
Gaussian curvature −1/�2. The Poincaré disk can be obtained as a map of
H2 by the stereographic projection of Fig. 5, which illustrates Eq (13) when
restricted to V = 0 similar to the way Fig. 4 illustrates it when restricted to
X = 0. In this way all of H2 is mapped into the interior of a disk of radius
2�, whose boundary, called the limit circle, represents points at (projective
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or conformal) infinity. Because the map is conformal, angles are faithfully
represented. Other geometrical objects in H2 appear distorted in the Euc-
lidean geometry of the disk, but by assigning new roles to these “distorted”
objects and manipulating those according to Euclidean geometry one can
perform constructions equivalent to those in the H2-geometry directly on
the Poincaré disk.

For example, on the surface H2 as described by Eq (15), all geodesics
are intersections of planes through the origin with the surface; that is, they
satisfy a linear relation between X, Y, U . From Eq (13) it follows directly
that Eq (15) becomes such a linear relation if x, y satisfy the equation of a
circle that has radius (a2 − 4�2) if it is centered at (x, y) = (ax, ay), hence
meets the limit circle at right angles. Because two such circles intersect in
at most one point in the interior of the Poincaré disk, it follows that two
geodesics in H2 meet at most in one point (as in Euclidean space).

An important difference occurs if two geodesics do not meet: in Euclidean
space they are then equidistant; whereas in the Poincaré disc the geodesic
between points on two disjoint geodesics (Euclidean circles perpendicular to
the limit circle) approaches a complete geodesic as the points approach the
limit circle. Since the conformal factor in the metric of Eq (14), restricted to
t = 0,

ds2 =
(
1 − x2 + y2

4�2

)−2 (
dx2 + dy2

)
(16)

increases without limit as x2 + y2 → 4�2,on H2 the geodesic distance bet-
ween two given disjoint geodesics typically increases without bound as we go
along the given geodesics in either direction. However, the geodesic distance
between points on two given disjoint geodesics of course has a lower bound. If
this is nonzero there is a unique geodesic segment of minimal length joining
the two given geodesics at right angles to either.

On the other hand, if we have a family of equidistant curves, at most
one of them can be a geodesic, and then the representation of the others on
the Poincaré disk are arcs of circles, not perpendicular to the limit circle,
but meeting the geodesic asymptotically at the limit circle. The curves r =
const of Fig. 2b are examples, with r = � the geodesic of the family. These
equidistant curves have constant acceleration (with respect to their arclength
parameter), and they also illustrate how the conformal factor in (16) distorts
the apparent (Euclidean) distances of the disk into the true distances of H2.

Because the surface (15) in Minkowski space has constant extrinsic cur-
vature, any isometry of the surface geometry can be extended to an isometry
of the embedding space. But we know all those isometries: they form the
homogeneous isochronous Lorentz group. Thus any Lorentz transformation
implies, by the projection of Fig. 5, a corresponding transformation of the
Poincaré disk that represents an isometry of H2, and all H2 isometries can
be obtained in this way. In the Euclidean metric of the disk such transforma-
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tions must be conformal transformations leaving the limit circle fixed, since
they are isometries of the conformal metric (16).

Knowing this we can now classify5 the isometries of H2. Proper Lorentz
transformations in 3D Minkowski space have an axis of fixed points that may
be a spacelike, null, or timelike straight line. If the axis is timelike, it intersects
the hyperboloid (15). If the axis is null, it intersects the hyperboloid asympto-
tically. If the axis is spacelike, it does not intersect the hyperboloid, but there
are two fixed null directions perpendicular to the axis. Correspondingly on
the Poincaré disk there is either one fixed point within the disk (“elliptic”),
or one fixed point on the limit circle (“parabolic”), or two fixed points on
the limit circle (“hyperbolic”) for these transformations. Fig. 1b illustrates
by the transformation θ → θ+const the case with one finite fixed point (the
origin). Figs. 2b and 3b illustrate by the transformation φ → φ+const the
case with two fixed points and one fixed point, respectively, on the limit circle
(φ = ±∞). In the case of two fixed points there is a unique geodesic (r = �
in Fig. 2b) left fixed by the isometry, and conversely the isometry, which we
will call “along” the geodesic, is uniquely defined by the invariant geodesic
and the distance by which a point moves along that geodesic.

Except for the rotation about the center of the disk as in Fig. 1b these are
not isometries of the disk’s flat, Euclidean metric, but they are of course con-
formal isometries of this metric. Such conformal transformations, mapping
the limit circle into itself, are conveniently described as Möbius transforma-
tions of the complex coordinate

z =
x+ iy

�
by z → z′ =

az + b

b̄z + ā
, (17)

where a, b are complex numbers with |a|2 − |b|2 = 1. When we consider an
isometry or identification abstractly, it can always be implemented concretely
by such a Möbius transformation. In particular, hyperbolic isometries are
described by Möbius transformations with real a.

As the examples of Figs. 1-3 show, each of these isometries is part of a fa-
mily depending on a continuous parameter (the constant in φ → φ+const, for
example). There is therefore an “infinitesimal” version of each isometry, de-
scribed by a Killing vector (∂/∂φ in the example). Conversely an (orientation-
preserving) isometry can be described as the exponential of its Killing vector.

2.3 Identifications

The hyperbolic transformations, which have no fixed points in H2, are suita-
ble for forming nonsingular quotient spaces that have the same local geometry
as AdS space, and hence satisfy the same Einstein equations. In the context
5 We confine attention to orientation-preserving transformations; they can be com-
bined with a reflection about a geodesic (with an infinite number of fixed points)
to obtain the rest.
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of Fig. 2b and Eq (7) the transformation that comes to mind is described
by φ → φ + 2π. The quotient space is the space in which points connected
by this transformation are regarded as identical, which is the same as the
space in which φ is a periodic coordinate with the usual period. Eq (7) with
this periodicity in φ already gives us the simplest BTZ metric for a single,
non-rotating 2+1-dimensional black hole. It is asymptotically AdS, as shown
by comparing Eqs (7) and (4).

The minimum distance between the two identified geodesics occurs at
r = � and is 2π�. This is the minimum distance around the black hole, and
plays the role of the horizon “area”. If we identify φ with a different period
2πa, we get a metric with a different horizon size. We can then redefine the
coordinates so that φ has its usual period,

φ → aφ, r → r/a t → at

and the metric takes this standard form, called the BTZ metric [1]:

ds2 = −
(
r2

�2
− m

)
dt2 +

(
r2

�2
− m

)−1

dr2 + r2dφ2, (18)

where m = 1/a2. Here the dimensionless quantity m is called the mass pa-
rameter. Although it can be measured in the asymptotic region, it is more
directly related to the horizon size, the length of the minimal geodesic at the
horizon, 2π�

√
m.

The metric (18) is a solution also for m = 0, as shown by Eq (12), but
that is not the AdS metric itself. The latter is also described by Eq (18), but
with m = −1, as shown by Eq (4). By contrast, the m = 0 initial state is
obtained by identifying the geodesics φ = 0 and φ = 2π in Fig. 3b.

To describe the identification more explicitly, we may say that we have cut
a strip from φ = 0 to φ = 2π out of Fig. 2b, and glued the edges together.
This strip is a “fundamental domain” for our identification, a region that
contains images of its own points under the group only on its boundary,
and that together with all its images covers the full AdS space. To obtain
a fundamental domain for the BTZ black hole we might have used as the
boundaries some other curve on the Poincaré disk and its image under the
transformation, provided only that the curve and its image do not intersect.
But since it is always possible to avoid apparent asymmetries by choosing
boundaries composed of geodesics that meet at right angles, we will generally
do so.

We can think of the identification in yet another way, by a process that
has been called “doubling”: cut a strip from φ = 0 to φ = π from Fig. 2b,
and cut another identical strip. Put one on top of the other and glue the
two edges together, obtaining again the black hole initial state. The gluing
makes the two strips reflections of each other with respect to either of the
original edges. Back on the Poincaré disk the composition of the two reflec-
tions is a translation in φ by 2π, that is, the isometry of the identification.
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Any (orientation-preserving) isometry of a hyperbolic space can be decom-
posed into two reflections [12]; hence any quotient space can be considered
the double of a suitable region (possibly in another quotient space), and a
fundamental domain is obtained from the region and one of its reflections.

The process of gluing together a constant negative curvature space from
a fundamental domain of the Poincaré disk can be reversed: we cut the space
by geodesics into its fundamental domain, make many copies of the domain,
and put these down on the disk so that boundaries coming from the same cut
touch, until the entire disk is covered. The resulting pattern is called a “tiling”
of the disk (although the “tiles” corresponding to the t = 0 section of the
BTZ black hole look more like strip flooring). Thus we have two equivalent
ways of describing our identified space: by giving a fundamental domain and
rules of gluing the boundaries, or by a tiling together with rules relating each
tile to its neighbors.
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Fig. 6. Two different ways of tiling the plane prove the theorem of Pythagoras in
(a) Euclidean space and (b) Minkowski space

Tiling and Pythagoras To fix ideas, consider an application of tiling found
among the numerous proofs of the theorem of Pythagoras (a local boy who
contributed to the early fame of Samos). This proof is based on the fact
that all fundamental domains of a given group of isometries have equal area.
In the Euclidean plane we consider the group generated by two translations
specified in direction and amounts by two adjacent sides of the square above
the hypotenuse of a right triangle, whose vertices are the three larger dots in
Fig. 6a. This square is a fundamental domain of the group, and part of the
tiling by this square is shown by the horizontal and vertical dotted lines. The
region drawn in heavy outline is an alternative fundamental domain of the
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same group of isometries, and that domain is made from the squares above
the sides of the same triangle. Part of its tiling of the plane is shown by
the lightly drawn lines of Fig. 6a. Either fundamental domain can be glued
together to form the same quotient space, a “square” torus, so the areas are
equal, c2 = a2 + b2 = area of torus.

In special relativity the theorem of Pythagoras is valid with a different
sign, c2 = a2 − b2 if we choose the hypotenuse and one of the sides to be
spacelike, and of course the right angles of the triangle and of squares are to
be drawn in accordance with the Minkowski metric. Fig. 6b shows the proof
by the tiling that derives from a Minkowski torus of area c2. (Here we use, at
least implicitly, the fact that the area of a two-dimensional figure is the same
in Euclidean and Minkowski spaces if their metrics differ only by a sign.)

Embeddings To visualize the geometry of our glued-together surface — the
t = 0 surface of a static BTZ black hole — it helps to embed this surface
in a three-dimensional space in which the gluing can be actually carried out.
This is analogous to the embedding of the t = 0 surface of the Schwarzschild
black hole, with one angle suppressed, in three-dimensional flat space (the
surface of rotation of the Flamm parabola [13]). For the BTZ initial surface
only a finite part can be so embedded. The embedding stops where the rate
of increase of circumference of the circle r = const with respect to the true
distance in the radial direction exceeds that rate in flat space. (The rema-
inder of the surface could then be embedded in Minkowski space, but the
switch between embeddings is an artifact and corresponds to no local int-
rinsic property.) However, the entire surface can be embedded in H3, the
Riemannian (positive definite metric) space of constant negative curvature.
By the obvious generalization of the Poincaré disk this space can be confor-
mally represented as a ball in three-dimensional flat space. Figure 7 shows
this embedding, where the surface for m > 0 is seen to have two asymptotic
sheets, similar to the corresponding Schwarzschild surface.

2.4 Multiple Black Holes

We saw that a single hyperbolic isometry (call it a) used as an identification
to obtain an AdS initial state always yields a (single) BTZ black hole state,
with horizon size and location depending on a. For other types of initial sta-
tes we therefore need to use more than one such isometry, for example a and
b. Assuring that there are no fixed points (which would lead to singularities
of the quotient space) would then seem to be much more difficult: If we know
that a has no fixed point, then the whole group consisting of powers an has
no fixed points (except the identity, n = 0); but for the group generated by
two isometries a, b we have to check that no “word” formed from these and
their inverses, such as ab−2a3b has fixed points. Although this may seem com-
plicated, it is easy if we have a fundamental domain such that the isometry
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m > 0 m = 0 −1 < m < 0 m = −1

Fig. 7. Three representations of the geometry of the t = 0 geometry of metric (18)
for different ranges of the mass parameter m: The BTZ black hole for m > 0; the
extremal BTZ black hole for m = 0; the point particle (conical singularity) for
m < 0; and AdS (“vacuum”) space itself for m = −1. Top row: shaded regions
of the Poincaré disk, to be identified in each figure along the left and right bo-
undaries, drawn in thicker lines. Second row: an embedding of the central part
(r ≤ �

√
1 − m) of these spaces as surfaces in three-dimensional flat Euclidean space.

The embedding cannot be continued beyond the outer edges of each figure. Bot-
tom row: the entire surface can be embedded in a 3D space of constant negative
curvature, shown as a Poincaré ball. (The figure is schematic only; for example,
the angle at the conical tips ought to be the same in the second and last row, to
represent the same surface)

a maps one of a pair of boundaries into the other, and the isometry b does
the same for a different pair of boundaries. Now tile the Poincaré disk with
copies of this fundamental domain (see Fig. 10 for an example). Once we fix
the original tile (associated with the identity isometry), there is a one-to-one
correspondence between tiles and words. Therefore every non-trivial word
moves all points in the original tile to some different tile, and there can be
no fixed points in the open disk.

How to obtain such a fundamental domain? A simple way is by doubling
a region bounded by any number k of non-intersecting geodesics [14]. Fig. 8a
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shows this for the case k = 3. In Fig. 8b we see the fundamental domain. Half
of it is the original (heavily outlined) region, shifted to the right so that the
center of the Poincaré disk lies on the geodesic boundary of the region rather
than at its center. The other half is the reflection of this original region across
that geodesic boundary. Thus 2k − 2 = 4 boundaries remain to be identified
in pairs, as indicated in the figure for the top pair. To construct the isometry
that moves one member of such a pair into the other we find the unique
common normal geodesic H2 (shown for the bottom pair), and its intersection
with the limit circle; these intersections are the fixed points of one of the
hyperbolic isometries that have this fundamental domain. For example, in
Fig. 8b the isometry associated with H2 moves one of the bottom boundaries
into the other. Similarly we find k−2 other isometries, each of them associated
with a common normal. After the identification are made these common
normals are smooth closed geodesics that separate an asymptotically AdS
region from the rest of the manifold. We call such curves horizons. In addition
to the k − 1 horizons found this way there is another one, so there is a
total of k horizons. The additional one can be found in the above way from
a different fundamental domain, obtained by reflecting the original region
about a different geodesic boundary, but it is more easily found from the
doubling picture, as shown by the H3 in Fig. 8a.
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✇
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✴

� H2

Fig. 8. Initial state for an AdS spacetime containing three black holes. (a) Repre-
sentation by doubling a region on the Poincaré disk. The top and bottom surfaces
are to be glued together along pairs of heavily drawn curves, such as the pair la-
beled “identify”. The resulting topology is that of a pair of pants, with the waist
and the legs flaring out to infinity at the limit circle. The heavier part of the curve
H3 becomes a closed geodesic at the narrowest part of a leg. (b) The fundamental
region, obtained from one of the regions of part (a) by adding its reflection about
the geodesic labeled “identify” in (a). In (b) only two boundaries remain to be
identified; the top pair are so labeled. For the bottom pair the minimal connecting
curve H2 is shown
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The topology of the resulting space may be easiest to see in the doubling
picture: there are k asymptotically AdS regions, which can be regarded as k
punctures (“pants’ legs”) on a 2-sphere. With each asymptotic region there
is associated a horizon, namely the geodesic normal to the corresponding
adjacent boundaries of the original region (because it is normal it will become
a smooth, circular, minimal geodesic after the doubling). On the outside of
each horizon the geometry is the same as that obtained from the isometry
corresponding to that horizon alone, so it is exactly the exterior of a BTZ
black hole geometry. Therefore the whole space contains k black holes, joined
together inside each hole’s horizon.

Parameters The time-symmetric (zero angular momentum) BTZ black hole
in AdS space of a given cosmological constant is described by a single pa-
rameter, the mass m. For an initial state of several black holes we have
analogously the several masses, and in addition the relative positions of the
black holes. These are however not all independent. Consider a k black hole
initial state obtained by doubling a simply-connected region bounded by k
non-intersecting geodesics. Find the k minimal geodesic segments σi between
adjacent geodesics.6 The parts si of the original geodesics between the end-
points of those segments, together with the segments σi themselves, form a
geodesic 2k-gon with right-angle corners. Clearly the σi are half the horizon
size and hence a measure of the masses, and the si may be considered a
measure of the distances between the black holes. If 2k − 3 of the sides of a
2k-gon are given, then the geodesics that will form the 2k − 2 side (orthogo-
nal at the end of the 2k − 3 side) and the 2k side (orthogonal at the end of
the first side) are well-defined. They have a unique common normal geodesic
that forms the 2k−1 side, hence the whole polygon is uniquely defined. Thus
only 2k−3 of the 2k numbers measuring the masses and the distances of this
type of multi-black-hole are independent. In the case k = 3 (corresponding
to a geodesic hexagon) one can show that alternating sides (either the three
masses or the three distances) can be arbitrarily chosen. Higher 2k-gons can
be divided by geodesics into hexagons, so at least all the masses (or all the
distances) can be chosen arbitrarily. (The remaining k − 3 parameters may
have to satisfy inequalities.)

Composing the 2k-gon out of geodesic hexagons means, for the doubled
surface, that the multi-black-hole geometry is made out of k − 2 three-black-
hole geometries with 2k − 6 of the asymptotic AdS regions removed and the
horizons glued together pairwise. In the five-black-hole example of Fig. 9 the
three-black-hole parts are labeled 1, 2, and 3. One asymptotic AdS regions
was removed from 1 and 3, and two such regions are missing from 2. The
geometries obtained by doubling this are however not the most general time-
6 Two geodesics of a set are adjacent if each has an end point (at infinity) such
that between those end points there is no end point of any other geodesic of the
set.



162 Dieter Brill

symmetric five-black-hole configuration. For example, in Fig. 9 the curve
separating regions 2 and 3 is a closed geodesic. If we cut and re-glue after
a hyperbolic isometry along this geodesic the geometry is still smooth; the
operation amounts to rotating the top and bottom part of Fig. 9b with respect
to each other, as indicated by the arrows. (In general we can make k−3 such
re-identifications.) That the result is in general different after this rotation is
shown, for example, by the change in angle between the boundary geodesic
and another closed geodesic which, before the rotation, is indicated by the
dotted line in Fig. 9a.
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Fig. 9. A five-black-hole time-symmetric initial state is obtained by doubling the
region on the Poincaré disk in (a). Part (b) shows a somewhat fanciful picture of
the result of the doubling, cut off at the flare-outs, which should extend to infinity.

The 2k − 3 distance parameters and the k − 3 rotation angles describe a
3k−6-dimensional space of k-black-hole geometries. Equivalently we may say
that a k-black-hole initial state is given by a fundamental domain bounded
by 2k−2 geodesics to be identified in pairs by k−1 Möbius transformations.
Since each Möbius transformation depends on 3 parameters, and the whole
fundamental domain can be moved by another Möbius transformation, the
number of free parameters is 3k − 6. Such a space of geometries is known
as a Teichmüller space, and the length and twist parameters are known as
Fenchel-Nielsen coordinates on this space [8].

Instead of cutting and re-gluing along closed geodesics as in Fig. 9 one
can do this operation on the identification geodesics used in the doubling
procedure. For example, in Fig. 8a on the pair of geodesics marked “identify”
one can identify each point on the bottom geodesic with one that is moved
by a constant distance along the top geodesic. For the fundamental region
this means the following: so far, whenever two identification geodesics on the
boundary of the fundamental domain were to be identified, it was done by the
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unique hyperbolic transformation along the minimal normal geodesic between
the identification geodesics. If we follow this transformation by a hyperbolic
isometry along one of the identification geodesics, the two geodesics will still
fit together, and the identified surface will be smooth but with a difference in
global structure (like that produced by the re-gluing in Fig. 9). Of course the
two transformations combine into one, and conversely any isometry that maps
one identification geodesic into another can be decomposed into a “move”
along the normal geodesic, and a “shift” along a identification geodesic. Since
each hyperbolic transformation is a Lorentz transformation in the embedding
picture (Fig. 5) the combination is again hyperbolic, so no finite fixed points
(singularities) occur in this more general identification process.

If we identify with a non-zero shift, there is of course still a minimal
geodesic between the two identified geodesics, but it is no longer orthogonal
to those geodesics. Nevertheless the identified geometry is that of a black
hole. To make the correspondence to the φ → φ+ 2π identification of Eq (7)
one would have to change the identification geodesics to be normal to the
minimal one (which can complicate the fundamental domain).

Fixed points It is useful to understand the fixed points at infinity (the
limiting circle of the Poincaré disk) of the identifications that glue a black
hole geometry out of a fundamental domain of AdS space. The fixed points are
directly related to the minimal geodesics associated with the identification,
and they can indicate whether we have a black hole or not: there must be
open sets free of fixed points if the initial data is to be asymptotically AdS.
We know that the identifications can have some fixed points at infinity, but if
the fixed points cover all of infinity, there is no place left for an asymptotically
AdS region, and the space is not a black hole space. Thus even in the relatively
simple time-symmetric case it is useful to understand the tiling and the fixed
points of the Möbius transformationsassociated with the identifications.

As an example, consider again the three-black-hole case. Let a and b be
the identifications of the top and the bottom pair of geodesics of a figure
like 8b. Then the free group generated by these, that is, any “word” formed
from a, b and their inverses A, B is also an identification. Since the identified
geometry is everywhere smooth, none of these can have a fixed point in the
finite part of the disk, so all fixed points must lie on the limit circle. The
pattern of fixed points is characteristic of the identifications and constitutes
a kind of hologram [15] of the multi-black-hole spacetime.

In Fig. 10 the initial fundamental domain is denoted by 1. The identi-
fications are given by hyperbolic Möbius transformations a, b, with inverses
A, B that connect the top and the bottom boundaries, respectively. Any
“word” made up of these four letters is, first, also an identification. Secondly
each word can be used to label a tile, because each tile is some image, a1,
A1, aB1,. . . of the initial domain 1, shown simply as a, A, aB, . . . in the fi-
gure. Finally, there is a closed minimal geodesic associated with each pair of
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Fig. 10. Part of the tiling
of the Poincaré disk obtai-
ned by “unwrapping” a three-
black-hole initial geometry as
in Fig. 8. A fundamental do-
main 1 is imaged by combi-
nations of identification maps
a and b and their inverses
A = a−1, B = b−1. Re-
peating n times a map such
as ab leads to a point (ab)n

on the limit circle, in the li-
mit n → ∞. Some geode-
sics (“horizons”) connecting
such a limit point and its in-
verse limit (such as a(ab)n

and a(ab)−n = a(BA)n) are
shown as heavy curves

identified boundaries, hence each word also corresponds to a geodesic.7 (For
example, Ba connects (Ab)n to (Ba)n.) Horizons are special geodesics that
bound asymptotically AdS regions. Some of these are shown by the heavy
curves. The ones that cut through the basic domain are labeled by the iso-
metries that leave them invariant, a, b, and AB = BA. The words for the
other horizons are obtained from these by conjugation, for example the hori-
zon connecting the points labeled a(ab)n and a(BA)n is “called” by the word
a(BA)A.

Every words is a hyperbolic isometry, hence has two fixed points on the
Poincaré limit circle. We can find the fixed points by applying the word (or
its inverse) many times to any finite region, because in the limit the images
will converge to a point on the limit circle (see, for example, the equidistant
curves in Fig. 2). Some of these fixed points are shown by open and by filled
circles in the figure, and labeled by an nth power, where the limit n → ∞
is understood. The two fixed points of a hyperbolic transformation define a
geodesic that ends at them, and that is the minimal geodesic along which the
transformation acts.

Because the infinity side of a horizon is isometric to the asymptotic region
of a single black hole, there are no fixed points on that side of the horizon.
(Cf. Fig. 2, where the only fixed points of the horizon isometry φ → φ+ const
are on the horizon r = �.) Between two different horizons (between open and
filled circles of the figure) there will however be further horizons, with fixed
points at their ends. Thus the set of fixed points for multi-black-holes has
the fractal structure of a Cantor set.

7 In this connection we regard a word, its inverse, and the permuted word as equal,
in order to have a unique correspondence to geodesics; see [16].
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By contrast, for some identifications the fixed points are everywhere dense
on the limit circle. This happens, for example, if we try to build, by analogy to
the multi-black-hole construction, a geometry containing three m = 0 black
holes. The tiles, analogs of those of Fig. 10, would be “ideal” quadrilaterals,
that is, each tile is a geodesic polygon whose four corners lie on the limit
circle. This space is smooth and contains three ends of the type shown in the
second column of Fig. 7 (instead of the “legs” in such pictures as Fig. 9); but
since there is then no fixed-point-free region on the limit circle, this space is
not asymptotically AdS and hence does not contain BTZ-type black holes.

2.5 Other Topologies

It is well known that time-symmetric AdS initial states, that is, spaces of con-
stant negative curvature, admit a large variety of topologies. In the context
of (orientable) black hole spaces one can construct all of these out of pieces of
the three-black-hole space as in Fig. 7. These pieces are: three BTZ-exteriors,
that is, the regions outside each of the three horizons; and one region interior
to the horizons. The interior piece is sometimes called the “convex core” or
“trousers.”8 Fig. 11 shows how other topologies can be constructed out of
these pieces.

The resulting geometry is smooth if we choose the freely specifiable mass
parameters of each exterior or core to match those of its neighbors at the
connection horizons9: the intrinsic geometries then match, and the extrin-
sic geometries match because the horizons are geodesics. Conversely we can
decompose a given k-black-hole initial geometry of genus g into asymptotic
regions and trousers by cutting it along minimal circles of different and non-
trivial homotopy types. We can choose 3g + 2k − 3 such circles that divide
the space into k exteriors E and 2g+ k − 2 trousers T . Fig. 11 illustrates the
construction for k = 1 and g = 1 (left) resp. g = 2 (right).

A fundamental region on the Poincaré disk, and hence the Möbius trans-
formations that implement the identifications, can be constructed for these
spaces in a similar way, by putting together geodesic, right-angle octagons
representing trousers and analogous asymptotic regions. For example, the
k = 1, g = 1 geometry can be represented by identifying two of the horizon
geodesics of a trousers octagon and adding an exterior to the third. The re-
sulting fundamental domain is bounded by geodesics, but it is not unique. We
can cut it into pieces and re-assemble it in a different way [17], or we can cut
the original space along some geodesics (not necessarily those of the trousers

8 Previously we have used the image of flared pants’ legs for the asymptotically
AdS regions, which need to be cut off to obtain the core, so it would be more
consistent to call the latter “cut-offs” or “shorts,” but we will use “trousers.”

9 The horizons along which the legs were cut off from the cores may no longer be
horizons of the space-time if the cores are re-assembled differently. Nonetheless,
in the present section we will still call them by that name.
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Fig. 11. Examples of the class of spaces considered here, constructed by sewing
together one or several trousers and one asymptotic region. The latter looks asym-
ptotically flat in this topological picture, but metrically it has constant negative
curvature everywhere, just like the trousers

decomposition) only until it becomes one simply connected piece. If we can
lay these geodesics so that they start and end at infinity and therefore do
not cross we obtain a simple fundamental region bounded only by complete
geodesics. Figure 12a shows the two geodesic cuts necessary for the case of
our example of Fig. 11a, and the fundamental domain so obtained is seen in
Fig. 12b. The pattern of tiling for this case is identical to that of Fig. 10, but
the labeling is different. For example, rather than three horizon words there
is only one, abAB, corresponding to the existence of only one horizon in the
identified manifold.

Out of an even number of trousers only one can construct locally AdS
initial data that contain no asymptotically AdS region at all. Such compact
spaces can be interpreted as closed universes, and for lack of other physical
content they can be considered to contain several black holes, associated
with the horizons that were glued together in the construction. (Of course
these horizons and black holes are only analogies, for example there are no
observers that see them as black, i.e. of infinite redshift.)

Our reasoning about the number of parameters that specify a k-black-hole
geometry can be generalized to the case that the internal geometry has genus
g. If we cut off two asymptotic AdS regions and identify the two horizons
that go with them, we decrease k by two and increase g by one. The number
of parameters does not change: we lose one mass parameter, since the masses
of the two horizons that will be identified have to be equal, but we gain one
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Fig. 12. Construction of a BTZ exterior with toroidal interior. Rather than cutting
the geometry shown in part (a) by minimal geodesics as in Fig. 11, the cuts, shown
by the heavy lines, are chosen to reach infinity and divide this into four regions.
Thus one obtains the fundamental domain shown in part (b). The identifications a
and b are shown as arrows. The lines of these arrows are also the minimal geodesics
between the lines that are to be identified. In the identified manifold these are
closed geodesics, as shown in part (a). The possible geometries are characterized
by the lengths of these two closed geodesics, and the angle between them (shown
here as 90◦)

rotation parameter which specifies with what shift the horizons are to be
identified. Thus from the formula in Sect. 2.4 we find that the (orientable)
time-symmetric initial states, of genus g and k asymptotic AdS regions, form
a (6g+3k−6)-dimensional Teichmüller space. If this number is non-positive,
no state of that type is possible. (However, the formula cannot be applied
to the time-symmetric BTZ initial state itself: it has one free parameter,
the mass m, but no integral value of k makes the formula valid; the BTZ
state is not a multi-black-hole geometry in the sense of this section.) For
example, if we want a single exterior region (k = 1) we need a genus of at
least g = 1 (Fig. 12). Here the number of parameters is 6g + 3k − 6 = 3,
for example the minimal distances (lengths of closed geodesics a and b) for
each of the two identifications, and the angle between these geodesics. It is
clear from the figure that these distances must be large enough, and the angle
close enough to a right angle, that an asymptotic region remains in Fig. 12b.
(If the geodesics crossed and formed a quadrilateral, there would be an angle
deficit at the crossing point, which could be interpreted as a toroidal universe
that is not empty, but contains one point particle.)

The formula for the number of free parameters tells us that there is no
time-symmetric torus (k = 0, g = 1) initial state. However, all topologies
of higher genus or with at least one asymptotic AdS region do occur; and
the spatial torus topology does occur among all locally AdS spacetimes, for



168 Dieter Brill

example as Eq (7) for r2 < �2 with φ and t periodically identified — the
analog of a closed Kantowski-Sachs universe.

3 Time Development

The identifications used on a time-symmetric surface of AdS space to gene-
rate black hole and other initial values have a unique extension to all of AdS
space, and thus define a unique time development (even beyond any Cauchy
horizon). A fundamental domain in 3-dimensional AdS space can be genera-
ted by extending normal timelike geodesics from the geodesic boundaries of
the two-dimensional fundamental domain on the initial surface. Due to the
negative curvature of AdS space such timelike geodesics accelerate towards
each other and will eventually cross. Such crossing of fundamental domain
boundaries is the space-time analog of a conical singularity. A prototype of
this is the “non-Hausdorff singularity” of Misner space [6]. Although not a
curvature singularity, these points are considered not to be part of the space-
time. This in turn provides an end of I and hence the possibility of a black
hole horizon.

A metric for the time development of the finite part of any multi-black-
hole or multiply-connected time-symmetric initial geometry is provided by
Eq (10) when we replace the expression in the bracket by the initial multi-
black-hole metric. The result is a metric adapted to free-fall observers, and it
shows that they all reach the singularity after the same proper time, τ = π�/2,
when the cos2 factor vanishes. (This can be seen geometrically from Fig. 4a,
where geodesics are intersections with planes through the origin, and the
collapse time is one quarter of the period around the hyperboloid.) But these
coordinates do not cover the time development of conformal infinity (cf. the
dotted curves in Fig. 2).

A more complete picture emerges from the continuation of the identi-
fication group to AdS spacetime, for example via the embedding of AdS
space according to Eq (2). In the embedding of the initial surface in the
3-dimensional Minkowski space V = 0, each identification corresponds to a
Lorentz “rotation” about some (spacelike) axis A. This is uniquely extended
to an SO(2,2) “rotation” of the four-dimensional embedding space by requi-
ring that the V -axis also remain invariant; that is, we rotate by the same
hyperbolic angle about the A, V plane. This plane intersects the AdS space
(2) in a spacelike geodesic of fixed points. All such geodesics from all the
identifications are to be considered singularities after the identifications are
made, so they are not points in the identified spacetime.

Three-dimensional pictures that include conformal infinity and all of the
singularities can be had in sausage and in stereographic coordinates, Eqs
(5) and (14). Because all timelike geodesics starting normally on a time-
symmetric initial surface collapse together to a point C, all the totally geode-
sic boundaries of the fundamental domain also meet at C, forming a tent-like
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structure with a tip at C. Their intersections may be timelike or spacelike. If
an intersection is timelike, the sides typically intersect there at a right angle
“corner,” and the intersection passes through the initial surface. If the initial
geometry is smooth, such intersections are innocuous.10 Spacelike intersec-
tions are called “folds” of the tent, and they are the geodesics of fixed points,
which likewise meet at C.11
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Fig. 13. The identification surfaces near the collapse point C in stereographic co-
ordinates. AdS spacetime is the interior of the lightly dotted hyperboloid. The
hyperboloid itself represents conformal infinity. The initial surface is a Minkowski
hyperboloid (like that of Fig. 5) and in that sense is shown in its true metric. The
triangular regions on the infinity hyperboloid, one of which is dotted, are the part
of I that can be shown in this coordinate neighborhood

The tent has a simple, pyramid shape in a stereographic mapping centered
at C. Since all geodesics through the center of the map are represented by
straight lines in such a map, the sides of the tent are timelike planes (that
is, linear spaces in stereographic coordinates), and the folds are spacelike
straight lines. Figure 13 shows a tent with no corners but four folds. This can
be the spacetime fundamental domain for the k = 3, g = 0 three-black-hole
of Fig. 10 or for the k = 1, g = 1 toroidal black hole of Fig. 12, depending
on the identification rule. In the three-black-hole case two of the folds, on
opposite sides, are fixed points of the identifications a and b of Fig. 10 that

10 We have not encountered such corners in our pictures, but they must appear
in spaces composed only of trousers, for example in the time development of a
k = 0, g = 2 surface that can be represented by a right-angled octagon on the
Poincaré disk, as in Fig. 3b of [17].

11 The reason that corners can be regular and but folds are not is that four corners
can be put together to make a line without angle deficit, but no finite number of
folds can eliminate the Misner-space singularity.
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generate the group. The other two folds are fixed points of ab and of ba. For
the toroidal black hole the fixed points of a and of b of Fig. 12 are not folds,
they would be horizontal lines through the tip of the tent. Instead the folds
are fixed points of aba−1b−1 and its three cyclic permutations. In each case
the folds are fixed points of transformations associated with a horizon. All
the other fixed points lie outside of the fundamental domain.

Because the stereographic picture is centered at a particular time, it can
be misleading in that it does not exhibit the time symmetry about the initial
surface, nor the early history before the time-symmetric moment. The time-
independent sausage coordinates are more suitable for the global view of a
black hole spacetime. Since the BTZ black hole (Fig. 14a) involves only one
identification, its fundamental domain has only one geodesic of fixed points
to the future of the initial surface, the r = 0 line in Fig. 2a. The sides of the
tent are the surfaces φ = 0 and φ = 2π. Fig. 14b is the sausage coordinate
version of Fig. 13.

(a)

✿P

t = 0

�
✲P ✛

✾

P

(b)

Fig. 14. Fundamental regions and their boundary “tents” in sausage coordinates,
for (a) the BTZ black hole and (b) a three-black-hole or toroidal black hole confi-
guration

Since folds are spacelike they extend to infinity, and therefore the initial
fundamental domain must also have asymptotic regions. Conversely, the tent
of an initial state without asymptotic regions has only corners and a tip but
no folds: any closed time-symmetric AdS universe always collapses to a point
in the finite time π�/2.

The holes in the tent are important for the black hole interpretation, for
they are the regions at infinity, I. The edges of the holes of course disappear
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once the identifications are made, and the only remaining boundaries of I ap-
pear as points such as those marked P in the figure. The backwards lightcone
from P is the boundary of the past of I, i.e. the horizon. It surrounds the
singularity whose end is P. It is now clear that all the initial configurations
that have a horizon in the sense of Sect. 2.4 do have spacetime horizons and
hence are black holes: a horizon word extended to spacetime is an identifica-
tion that has fixed points along some fold of the tent-shaped boundary of the
spacetime fundamental domain. The intersection of the fold with conformal
infinity is an endpoint of a I, and the backwards lightcone of that endpoint
is the spacetime horizon.

For a given fold we can consider a region in the fundamental domain
sufficiently near infinity (spatially) and the fold (temporally) so that the only
relevant identification is the one that has fixed points on that fold (because
the other identifications would move points out of the region). In that region
the spacetime is then indistinguishable from that of a BTZ black hole, and
the spacetime horizon behaves in the same way as a BTZ black hole horizon.
For example, the backward lightcone from P does intersect the initial surface
in the minimal horizon geodesic. As we follow the horizon further backward in
time it changes from the BTZ behavior only when it encounters other horizons
or another part of itself, coming from another copy of the point P in the
fundamental domain. For example, in the toroidal black hole interpretation
of Fig. 14, all four openings of the tent are parts of one I, and there is a single
spacetime horizon consisting of the four “quarter” backwards lightcones from
the four copies of the point P. As we go backwards in time below the initial
surface these lightcones eventually touch and merge and shown in Fig. 15.

PP

P P

da b c

Fig. 15. Slices of the sausage in Fig. 14 to show the time development of the
horizon. Part a is the latest and part d the earliest sausage time. The geometry of
each time slice is the constant curvature space represented by a Poincaré disk. The
geodesics shown by solid lines are to be identified as before for the toroidal black
hole. Where these geodesics intersect we have a fixed point of some identification,
a physical singularity. Slice a is at the sausage time of the end point P of I. As we
go backwards in time, the horizon (dotted arcs of circles) spreads out from those
points at infinity. Slice b is the moment of time-symmetry. The horizon remains
smooth until slice c, when its different parts meet each other at the identification
surfaces. Prior to that time the event horizon has four kinks
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3.1 Fixed Points at Infinity

As the above examples of multi-black-hole time developments show, any time-
symmetric initial state with an asymptotic region ending at a horizon is iso-
metric to a corresponding region of a BTZ black hole, so that each such
region will look like a black hole from infinity for at least a finite time. It is
maybe not so clear whether this is also true for the unlimited time necessary
for a true black hole, for example because other singularities (fixed points)
might intervene. By an interesting method due to Åminneborg, Bengtsson
and Holst [18] one can directly find all of the universal covering space of I
from a knowledge of spatial infinity on an initial surface. (The universal cover-
ing space gives information about horizons and is natural in many contexts,
for example topological censorship questions reduce to existence of certain
geodesics in AdS space [17].)

Since our black holes are quotient spaces of AdS space, the covering space
of their I will be a subset of conformal infinity of AdS space. To describe
this conformal infinity in a finite way we follow the usual Penrose procedure
and multiply the AdS metric by a factor so that the resulting metric is finite
in the asymptotic region. An obviously suitable conformal factor in Eq (5) is
(1 − (ρ/�)2)2, giving the metric at infinity, ρ = �,

ds2∞ = 4(dt2 + �2dθ2)

This is the flat metric of a cylinder of radius �.
Consider first the covering space of I of a single black hole in this descrip-

tion, and recall that the identification is a “Lorentz boost” in the embedding
space (2). As we apply this transformation n times to get the nth tile of the
covering space, we are boosting the fundamental domain to the limiting ve-
locity, and since the identification boundaries are timelike in our description,
they become two null surfaces in the limit n → ±∞. These null surfaces
(called “singularity surfaces” in [19]) are then of course invariant under the
identification transformation. Hence, if K = ∂/∂φ is the Killing vector corre-
sponding to the identification, these surfaces are described by K2 = 0. They
intersect where the vector K itself vanishes, that is at the fixed points at
infinity on the initial surface and at the singularity inside the black hole.

The intersection of these surfaces with conformal infinity of AdS space is
the boundary (n → ∞) of the covering space of I. To find it we only need to
draw null lines from the endpoints of the horizon at t = 0 toward each other
(Fig. 16a). Their future intersection is the nearest future fixed point to this
initial surface, it is the end of I, and the covering space of I is the diamond-
shaped region between the future and past null lines. Furthermore the future
null lines are also the intersection of the covering space of the horizon with
conformal infinity, since the horizon is the backward null cone from the end
of I. Thus a knowledge of the initial fixed points gives us the “holographic”
information about the exterior and the horizon of the black hole.
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Fig. 16. Universal covering spaces of conformal infinity I for (a) non-rotating,
(b) rotating black holes on the conformal infinity cylinder of AdS space. To show
the cylinder in this flat picture it has been cut along the vertical lines, which are to
be identified with each other in each part of the figure. The angle φ resp. ϕ runs from
−∞ to +∞, in the direction of the arrow, in each of the diamond-shaped regions.
The intersection of the fundamental domain with conformal infinity of AdS space
is shown by the heavier boundaries. These boundaries are at the values 0 and 2π
of φ resp. ϕ. A few of the tiles obtained by the isometries that change these angles
by 2πn are shown for positive multiples n. In the limit n → ±∞ the tiles converge
to the null boundaries of the two diamond-shaped regions. These null boundaries
intersect on the initial surface (t = 0 resp. τ = 0) at the n → ∞ limit at conformal
infinity of the initial surface, and they end in the future at the end of I

The situation for time-symmetric multi-black-holes is similar, except that
the construction yields an infinite number of copies of the covering space
of I. We saw in Fig. 10 that each horizon word has two fixed points at
spatial infinity. Each such pair yields a diamond-shaped region for which the
transformation of its horizon word looks like that of Fig. 16a, and which is
free of fixed points.

4 Angular Momentum

In the metric (18) for the static BTZ black hole, introduce new coordinates
T, ϕ, R,

t = T +
(

J

2m

)
ϕ

φ = ϕ+
(

J

2m�2

)
T (19)

R2 = r2
(
1 − J2

4m2�2

)
+

J2

4m

where J < 2m� is a constant with dimension of length, and define another
new constant

M = m+
J2

4m�2
. (20)
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In terms of these new quantities the metric (18) may be written as

ds2 = −N2dT 2 +N−2dR2 +R2
(
dϕ+

J

2R2 dT

)2

(21)

where

N2 =
(
R

�

)2

− M +
(

J

2R

)2

.

The metric (21) now looks like a (2+1)-dimensional analog of the metric
for a black hole that carries angular momentum. Although metric (21) was
obtained by a coordinate transformation from (18) and is therefore locally
isometric to the latter (as all of our spaces are locally isometric to AdS space),
it differs in its global structure: we have silently assumed that the new metric
(21) is periodic with period 2π in the new angular variable ϕ, rather than in
the old variable φ. This means, in coordinate-independent language, that we
have changed the identification group that creates this new spacetime from
AdS space. As for the non-rotating BTZ black hole, the new group for this
“single” rotating black hole is still generated by all the powers of a single
isometry of AdS space, but this isometry does not leave invariant a totally
geodesic spacelike surface of time symmetry. The surface T = const that is
obviously left invariant by a displacement of ϕ is twisted, as measured by its
extrinsic curvature, and this is one indication of the global difference from
the static metric.

When only the one new coordinate ϕ changes by 2π, the old coordinates
of (18) change by

t → t+
πJ

m
φ → φ+ 2π. (22)

A change in either t or φ is of course an isometry of the metric (18), and
because t and φ are coordinates, the two changes commute. The identification
for a rotating black hole involves the two isometries applied simultaneously.
Either one is a “boost” about an axis of fixed points; the change in φ has
fixed points in the future, at r = 0, and the change in t has fixed points
at r = �

√
m, the horizon of (18).12 The combination of the two does not

have any fixed points at all (either one moves points on the fixed axis of the
other in the direction of the axis): the length R2 of the corresponding Killing
vector ∂/∂ϕ vanishes where the vector is null but not zero, since its scalar
product with the finite ∂/∂T is the finite constant J . Earlier we argued that
a spacelike set of fixed points of the identification isometry becomes a kind of
singularity after the identification, and its removal from the spacetime gave
us the end of I and associated horizon. What happens when we do not have
this singularity?
12 Since these isometries are also isometries of the periodically identified embedding

(2), each axis of fixed points is really repeated an infinite number of times in AdS
space itself.
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4.1 Is It a Black Hole?

The geometry of metric (21) — more properly speaking, the geometry of its
analytic extension, or of AdS space identified according to the ϕ → ϕ + 2π
isometry exhibited by this metric — satisfies the definition of a black hole
if we are somewhat creative about the definition of “singularity.” We expect
the singularity to occur at R = 0, but because there are no fixed points,
the identified spacetime is regular there, and can be continued to negative
R2. But then the closed ϕ-direction becomes timelike, hence the spacetime
has a region of closed timelike lines. We shall follow the usual practice to
regard these as sufficiently unphysical that they should be eliminated from
the spacetime, like a singularity. So we confine attention to R > 0.

Our spacetime then ends at the singularity surfaces where the square of
the Killing vector ∂/∂ϕ vanishes, R2 = 0. The corresponding r2 of Eq (20)
is negative. We recall from Sect. 2.1 that this occurs on two timelike surfaces
in a region where φ is timelike, unlike the non-rotating black hole whose
singularity occurs on the spacelike line r = 0. Since there is a singularity-
free region between the two singularity surfaces, not all timelike lines that
“fall into the black hole” (cross the horizon) end at the singularity; they
can escape through the hole left open by the singularity surfaces, as is the
case in a three-dimensional Kerr black hole. However, at conformal infinity
the difference between R and r disappears, the two singularity surfaces come
together at the point where the spacelike line r = 0 meets conformal infinity.

Thus the covering space of I for the rotating black hole looks the same
as that of the non-rotating one that corresponds to it via Eq (20), only the
identification is different, as shown in Fig. 16b. We see that I has an endpoint,
there is a horizon, so the identified spacetime is a black hole.

We can recognize a (rotating) black hole in a spacetime by the presence
of a closed, non-contractible spacelike geodesic γ. If we have such a γ we
consider all spacelike geodesics that start normal to γ. We assume that these
can be divided into two types, which we might call right-starting and left-
starting (with respect to an arbitrarily chosen direction of γ). If all geodesics
of one type reach infinity, then they cover the outside of a black hole. In
this region the totally geodesic timelike surfaces normal to γ are surfaces of
constant φ. Within these surfaces one can introduce coordinates so that the
metric takes the form (21). (If the normals to those surfaces, not at γ, also
integrate to closed curves after one circuit of γ, we have J = 0.)

4.2 Does It Rotate?

The asymptotically measurable properties of (2+1)-dimensional black holes
can be defined in various way, for example: from the ADM form of the Einstein
action; as the conserved quantities that go with the Killing vectors ∂/∂t and
∂/∂ϕ; as the Noether charges associated with t- and ϕ-displacements; and so
on [20,1]. All of these yield M as the mass and J as the angular momentum.
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J can also be measured “quasi-locally” in the neighborhood of the horizon.
We find an extremal closed spacelike geodesic (corresponding to r = �) and
parallel transport an orthogonal vector around this geodesic. According to
Eq (22) the hyperbolic “holonomy” angle between the original and rotated
vectors is πJ/m�.

4.3 Multiple Black Holes with Angular Momentum

It is fairly straightforward to extend the methods of Sect. 2.4 to obtain me-
trics with several asymptotic regions, or with non-standard topologies, that
have angular momentum as measured in these asymptotic regions; the main
difference is that we will deal with spacetimes rather than initial values. Our
aim is only to show that rotating multi-black-holes are possible, and to indi-
cate what the free parameters are.

We begin with a three-black-hole spacetime, whose time development can
be described by the geometry of Fig. 13. We suppose that the front left and
right surfaces are identified, and similarly the back left and right surfaces.
The corresponding fixed points are the front and back edges of the pyramid.
As we have seen, there is then a third black hole associated with the left and
right edges (which are identified with each other). We cut this figure into
two halves by the plane S (a totally geodesic surface) spanned by these left
and right edges. This surface cuts the third black hole into two equal parts,
which we can think of, for example, as φ = 0 to φ = π and φ = π to φ = 2π,
respectively. Now we re-identify the two halves with a “boost” between them,
that is an isometry with fixed points along the normal to the plane S at the
center of the initial surface, as illustrated in Fig. 17.

The four planes stick out of the conformal infinity surface at the four
bottom corners, uncovering four parts of conformal infinity. As in Fig. 13,
the left and right infinity parts combine into one continuous region due to
the identifications. So this spacetime has three conformal infinities with ends,
and therefore represents three black holes.

The two black holes associated with the front and back edges, as seen from
their respective asymptotic regions, are unchanged by this re-identification:
by a “boost” isometry either of these edges and associated planes (but not
both together) can be moved back to their old position. Since the two planes
alone determine the asymptotic behavior of the black hole, either of these
holes has the same mass, and vanishing angular momentum, as before. But
the third black hole changes, because the left and right edges no longer lie
in the same plane. As we go once around this third black hole, we cross the
surface S twice, and its effects add (as a right-handed screw is right-handed
from either end). The black hole therefore acquires angular momentum. Un-
fortunately this is not directly described by Eqs (19-22), because the “boost”
in Eq (22) has fixed points at the horizon of the non-rotating black hole, whe-
reas the fixed points of the boost of Fig. 17 lie along a geodesic connecting
the asymptotic regions of the two other holes. However, for the third black
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Fig. 17. A three-black-hole geometry obtained by cutting Fig. 13 into two tetra-
hedra by the plane S of the paper (passing through C), and re-gluing after an
isometry with axis normal to that plane. The isometry moves the top of the front
tetrahedron from C to the left (and up), and the top of the back tetrahedron from
C to the right (and up). The dotted outlines show these two tops. The solid figure
approximates the convex region bounded by the four planes that are identified pair-
wise (but it is not the fundamental domain). The edges where the planes intersect
are drawn only to identify these planes; they are simplified as straight lines (but
ought to be hyperbolic arcs, representing geodesics). Unlike in Fig. 13 the edges are
not to be considered as singularities, except for the front and back edges, which are
fixed points of the two basic identifications that generate this spacetime. The other
“singularities” are the boundaries of the regions of closed timelike lines, not drawn
(and not easily identified) in this figure.

hole this difference is asymptotically negligible: as seen from its own infinity
it does have angular momentum. (Its standard form (21) would correspond
to identification surfaces different from any of those drawn in Fig. 17.)

By a similar re-identification any one of a k-black-hole time-symmetric
spacetime can be given angular momentum; further momentum parameters
will be needed to describe how the asymptotic regions fit to an interior. Gene-
rally we expect one momentum parameter for each configuration parameter of
the corresponding time-symmetric spacetime. For example, the toroidal black
hole constructed as in Fig. 12 should allow three independent momenta. Of
these the state in which there is angular momentum of the black hole as
seen from infinity has been constructed [18]. (Another state with momentum
can be obtained from Fig. 17 by identifying opposite rather than adjacent
planes.)



178 Dieter Brill

5 Conclusions

We have seen that a considerable variety of black hole and multiply-connected
spacetimes can be constructed by cutting a region out of anti-de Sitter space
and identifying the cuts in various ways. Many of the properties, such as
horizon structure and topological features of the time-symmetric spacetimes,
have been investigated in detail. Comparatively little beyond existence is
known about the spacetimes with angular momentum (but see [18]).
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Open Inflation

S.W. Hawking

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Silver Street, Cambridge, CB3 9EW

In February this year, Neil Turok and I proposed a new model for inflation.
The distinctive feature was that it produced an infinite, open universe, yet it
satisfied the no boundary condition and came from an instanton of finite size,
with a mass of the order of one gram. Our paper aroused a lot of interest, as
shown by 37 citations on HEP-TH, but it brought a lot of opposition. This
centered on three features of our model.

First, we were attacked for using the no boundary proposal. People like
Linde and Vilenkin, claimed that one should use the quantum tunneling wave
function instead.

Second, we were criticized because our instanton contained a singularity.
It was said this was contrary to the spirit of the no boundary proposal; that
the singularity would be naked and would make the universe non predictable.

Third, we invoked the anthropic principle, to avoid the model predicting a
totally empty universe. We were attacked both for using anthropic arguments,
and for the very low value for the density of the universe, that they seemed
to lead to.

In this talk, I will describe the open inflation model that Neil and I pro-
posed, and answer some of the objections that have been raised.

The original idea for inflation, was that in some way, the universe got
trapped in what was called, a false vacuum state. A false vacuum state cor-

Fig. 1. False vacuum po-
tential and general poten-
tial.
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responds to some scalar field being in a local minimum of the potential, that
has more energy than the true vacuum, which is taken to have zero energy
density.

Tµν = − 1
2gµνV (φ) (1)

False vacuum energy momentum tensor.

Because a false vacuum is Lorentz invariant, its energy momentum tensor
must be proportional to the metric. Since the false vacuum has positive energy
density, the coefficient of proportionality must be negative. The Einstein
equations then imply that the scale factor increases exponentially with time.

In such a universe, the integral of one over the scale factor, diverges as
one goes back in time. This means that different regions in the early universe
could have communicated with each other, and come to equilibrium at a
common state. So explaining why the microwaves, look the same in different
directions.

The original model of inflation, which came to be known as old inflation,
had various problems. How did the universe get into a false vacuum state
in the first place, and how did it get out again? Various modifications were
proposed, that went under the names of new inflation, or extended inflation.
I won’t describe them, because I have got into trouble in the past, about who
should have credit for what, and because I now consider them irrelevant.

As Linde first pointed out, it is not necessary for the universe to be in a
false vacuum, to get inflation. A scalar field with a potential V, will have the
energy momentum tensor shown below.

Tµν = φ,µφ,ν − 1
2gµν [φ,Λφ

,Λ + V (φ)] (2)
Energy momentum tensor.

If the field is nearly constant in a region, the gradient terms will be small,
and the energy momentum tensor, will be minus half V, times the metric.
This is just what one needs for inflation.

In the false vacuum case, the scalar field sits in a local minimum of the
potential, V. In that case, the field equation allows the scalar field, to remain
constant in space and time. If the scalar field is not at a local minimum, it can
not remain constant in time, even if it is initially constant in space. However,
Linde pointed out that if the potential is not too steep, the expansion of the
universe, will slow down the rate at which the field rolls down the potential,
to the minimum. The gradient terms in the energy momentum tensor, will
remain small, and the scale factor will increase almost exponentially. One
can get inflation with any reasonable potential V, even if it didn’t have local
minima, corresponding to false vacua. The work that Neil and I have done,
is a logical extension of Andrei’s idea. But I’m not sure if Andrei agrees with
it, though I think he’s coming round.
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Andrei’s idea removed the need to believe that the universe began in a
false vacuum. However, one still needed to explain, why the field should have
been nearly constant over a region, with a value that was not at the minimum
of the potential. To do this, one has to have a theory of the initial conditions
of the universe. There are three main candidates.

They are, the so called pre-big bang scenario, the tunneling hypothesis,
and the no boundary proposal. In my opinion, the pre-big bang scenario is
misguided, and without predictive power. And I feel the tunneling hypothesis,
is either not well defined, or gives the wrong answers. But then I’m biased, for
it was Jim Hartle and I, that were responsible for the no boundary proposal.

This says that the quantum state of the universe, is defined by a Euclidean
path integral over compact metrics, without boundary.

One can picture these metrics, as being like the surface of the Earth, with
degrees of latitude, playing the role of imaginary time. One starts at the
north pole, with the universe as a single point. As one goes south, the spatial
size of the universe, increases like the lengths of the circles of latitude. The
spatial size of the universe, reaches a maximum size at the equator, and then
shrinks again to a point at the south pole.

Of course, spacetime is four dimensional, not two dimensional, like the
surface of the Earth, but the idea is much the same. I shall go through it in
detail, because it is basic to the work I’m going to describe.

The simplest compact four dimensional metric that might represent the
universe, is the four sphere.

One can give its metric in terms of a coordinate, σ, that measures the
distance from the pole, and three coordinates, χ, θ and φ, on a three sphere,
that represents the spatial size of the universe. Again, one starts at the north
pole, σ =0, with a universe of zero spatial size, and expands up to a maxi-
mum size at the equator, σ = π, over 2H. But we live in a universe with a
Lorentzian metric, like Minkowski space, not a Euclidean, positive definite
metric. One therefore has to analytically continue, the Euclidean metrics used
in the path integral, for the no boundary proposal. There are several ways
one can analytically continue, the metric of the four sphere, to a Lorentzian
spacetime metric.

Fig. 2. The simplest compact four
dimensional metric that might repre-
sent the universe; the four sphere.
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Fig. 3.

The most obvious is to follow the Euclidean time variable, σ, from the
north pole to the equator, and then go in the imaginary σ direction, and call
that real Lorentzian time, t.

Instead of the size of the three spheres going as the sin(Hσ), they now go
as the cosh(Ht). This gives a closed universe, that expands exponentially with
real time. At late times, the expansion will change from being exponential,
to being slowed down by matter in the normal way. This departure of the
scale factor from a cosh behavior, will occur because the original Euclidean
four sphere, was not perfectly round. But the universe would still be closed,
however deformed the four sphere.

For nearly 15 years, I believed that the no boundary proposal, predicted
that the universe was spatially closed.

Ωmatter +ΩΛ = 1 + κ
3ṡ2 (3)

Einstein equations.

But the Einstein equations, relate the energy density in the universe, plus
lambda, to the rate of expansion, and the curvature, k, of the surfaces of
constant time. Define Ωmatter and ΩΛ, to be the density and Λ, divided by
the critical value. If the universe is closed, that is, k=+1, Ωmatter plus ΩΛ,
must be greater than one. Observations seemed to show that omega matter
at least, was significantly less than one. Still, Eddington once said, if your
theory doesn’t agree with the observations, don’t worry. The observations
are probably wrong. But if your theory doesn’t agree with the second law
of thermodynamics, forget it. I firmly believed in the no boundary proposal,
and I thought it implied that the universe had to be closed. Since a closed
universe, is not incompatible with the second law of thermodynamics, I was
sure the observers had missed something, and there really was enough matter
to close the universe. At that time, I didn’t take seriously the possibility of
a small cosmological constant.

You will hear from other people at this conference, about observations of
Ω. In my opinion, they do not yet show that the universe is definitely open,
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Fig. 4. Summary of observations.

or that Λ is non zero, but it is beginning to look like one or the other, if not
both. One can summarize the observations in this diagram.

The vertical strip, corresponds to measurements of gravitational cluste-
ring, which suggests that Ωmatter, is in the range of point 2, to point 4. The
yellow, red and green areas, represent the formal errors of the supernova ob-
servations, and the large pink area, other possible errors. Also shown in blue,
are the limits set by the position of a peak in the angular spectrum, of the
variations of the microwave background. As you can see, the observations
suggest that the universe is closed to the open close divide, but with a non
zero Λ.

Despite these indications of a low density Λ universe, I continued to be-
lieve that the cosmological constant was zero, and the no boundary proposal,
implied that the universe must be closed. Then in conversations with Neil Tu-
rok, I realized there was another way of looking at the no boundary universe,
that made it appear open.

One starts with the point that Andrei Linde made, that inflation doesn’t
need a false vacuum, a local minimum of the potential. But if the scalar field
is not at a stationary point of the potential, then it can not be constant on
an instanton, a Euclidean solution of the field equations. In turn, this implies
that the instanton can’t be a perfectly round four sphere. A perfectly round
four sphere, would have the symmetry group, O(5). But with a non constant
scalar field, the largest symmetry group that an instanton can have, is O(4).
In other words, the instanton is a deformed four sphere.

ds2 = dσ2 + b2(σ)(dχ2 + sin2 χdΩ2) (4)
O(4) Instanton.

One can write the metric of an O(4) instanton, in terms of a function,
b of σ. Here b is the radius of a three sphere of constant distance, σ, from
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the north pole of the instanton. If the instanton were a perfectly round four
sphere, b would be a sin function of σ. It would have one zero at the north
pole, and a second at the south pole, which would also be a regular point
of the geometry. However, if the scalar field at the north pole, is not at a
stationary point of the potential, it will be almost constant over most of the
four sphere, but will diverge near the south pole. This behavior is independent
of he precise shape of the potential. The non constant scalar field, will cause
the instanton not to be a perfectly round four sphere, and in fact there will
be a singularity at the south pole. But it will be a very mild singularity, and
the Euclidean action of the instanton will be finite.

This Euclidean instanton, has been described as the universe begining as
a pea. In fact, a pea is quite a good image for a deformed sphere. Its size of
a few thousand Planck lengths, makes it a very petty pwa. But the mass of
the matter it contains, is about half a gram, which is about right for a pea.

I actually discovered this pea instanton in 1983, but I thought it could
describe the birth of closed universes only.

ds2 = −dt2 + 1
H2 cosh2Ht(dχ2 + sin2 χdΩ2) (5)

Closed universe from the P-instanton.

To get a closed universe, one starts with σ = 0 at the north pole, and
proceeds to the equator, or rather the value of σ at which the radius, b, of
the three sphere is maximum. One then analytically continues sigma in the
imaginary direction, as Lorentzian time. As I described earlier, this gives a
closed universe with a scale factor that initially goes like cosh(t). The scalar
field, will have a small imaginary part, but that can be corrected by giving
the initial value of the scalar field at the north pole, a small imaginary part.

According to the no boundary proposal, the relative probability of such
a closed universe, is e to minus twice the action of the part of the pea in-
stanton, between the north pole, and the equator. Notice that as this part,
doesn’t contain the singularity at the south pole, there is no ambiguity about
the action of a singular metric. The action of this part of the instanton, is
negative, and is more negative, the bigger the pea. Thus the probability of
the pea, is bigger, the bigger the pea. The negative sign of the action, may
look counter intuitive, but it leads to physically reasonable consequences.

As I said, I thought the no boundary proposal, implied that the universe
had to be spatially closed, and finite in size. But Neil Turok and I, realized
his ideas on open inflation, could be fitted in with the no boundary proposal.
The universe would still be closed and finite, in one way of looking at it. But
in another, it would appear open and infinite.

ds2 = −dt2 + a2(dψ2 + sinh2 ψdΩ2) (6)
Open universe from the P-instanton.
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Let’s go back to the metric for the pea instanton, and analytically continue
it in a different way. As before, one analytically continues the Euclidean
latitude coordinate, in the imaginary direction, to become a Lorentzian time,
t. The difference is that one goes in the imaginary sigma direction at the
north pole, rather than the equator. One also continues the coordinate, χ, in
the imaginary direction, as a coordinate, ψ. This changes the three sphere,
into a hyperbolic space. One therefore gets an exponentially expanding open
universe.

One can think of this open universe, as a bubble in a closed, de Sitter like
universe. In this way, it is similar to the single bubble inflationary universes,
that have been proposed by a number of authors.

The difference is, the previous models all required carefully adjusted po-
tentials, with false vacuum local minima. But the pea instanton, will work
for any reasonable potential. The price one pays for a general potential, is a
singularity at the south pole. In the analytically continued Lorentzian space-
time, this singularity would be time like, and naked.

One might think that this naked singularity, would mean one couldn’t
evaluate the action of the instanton, or of perturbations about it. This would
mean that one couldn’t predict the quantum fluctuations, or what would
happen in the universe. However, the singularity at the south pole, the stalk
of the pea, is so mild, that the actions of the instanton, and of perturbations
around it, are well defined. At first, it seemed just a lucky accident, that
the singularity had these properties, but it now appears that there may be
a deep reason, that I will come on to later. This behavior of the singularity,
means one can determine the relative probabilities of the instanton, and of
perturbations around it. The action of the instanton itself, is negative, but

Fig. 5. The Titanic Instanton.
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the effect of perturbations around the instanton, is to increase the action,
that is, to make the action less negative.

Probability = e−2SE (7)
No boundary proposal (Hawking Hartle)

Probability = e+2SE (8)
Tunnelling hypothesis (Linde Vilenkin)

According to the no boundary proposal, the probability of a field confi-
guration, is e to minus its action. Thus perturbations around the instanton,
have a lower probability, than the unperturbed background. This means that
quantum fluctuation are suppressed, the bigger the fluctuation, as one would
hope. On the other hand, according to the tunneling hypothesis, favored by
Vilenkin and Lindeh, probabilities are proportional to e to the plus action.
This would mean that quantum fluctuation would be enhanced, the bigger
the fluctuation. There is no way this could lead to a sensible description of
the universe. Lindeh therefore proposes to take e to the plus action, for the
probability of the background universe, but e to the minus action, for the
perturbations. However, there is no invariant way, in which one can divide
the action, into a background part, and a part due to fluctuations. So Linde’s
proposal, does not seem well defined in general. By contrast, the no boundary
proposal, is well defined. Its predictions may be surprising, but they are not
obviously wrong.

So we see that a general potential, without false vacuums, or local minima,
leads to the P-instanton. This can be analytically continued, to either an
open, or a closed universe. The no boundary proposal, then allows one to
calculate the relative probabilities of different backgrounds, and the quantum
fluctuations about them.

There isn’t just a single P-instanton, but a whole family of them, labelled
by different values of the scalar field at the north pole. The higher the value
of the potential at the north pole, the smaller the instanton, and the less
negative the value of the action. Thus the no boundary proposal, predicts
that large instantons, are more probable than small ones. This is a problem,
because large instantons, will lead to a shorter period of exponential expan-
sion or inflation, than small ones. In the closed universe case, a short period
of inflation, would mean the universe would recollapse before it reached the
present size and density. On the other hand, an open universe with a short
period of inflation, would become almost empty early on.

Clearly, the universe we live in, didn’t collapse early on, or become al-
most empty. So we have to take account of the anthropic principle, that if
the universe hadn’t been suitable for our existence, we wouldn’t be asking
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why it is, the way it is. Many physicists don’t like the anthropic principle,
but I think some version of it is essential, in quantum cosmology. M theory,
or whatever the ultimate theory is, seems to allow a very large number of
possible solutions, and compactifications. One has to have some criterion, for
discarding most of them. Otherwise, why isn’t the universe, eleven dimensio-
nal Minkowski space. According to the no boundary proposal, there should
be an amplitude for any kind of spacetime, but most of them won’t be of
much interest, because they won’t contain life.

The approach Neil Turok and I took, was to invoke the weakest version
of the anthropic principle. We adopted Bayes statistics.

P (Ωmatter, ΩΛ|Galaxy) is proportional to P (Galaxy|Ωmatter, ΩΛ) (9)
×P (Ωmatter, ΩΛ)
Bayesian statistics

In this, one starts with an a-priori probability distribution, and then mo-
difies it in light of ones knowledge of the system. In this case, we took the
a-priori distribution, to be the e to the minus action, predicted by the no
boundary proposal. We then modified it, by the probability that the mo-
del contained galaxies, which are presumably a necessary condition, for the
existence of intelligent observers. An open universe, has an infinite spatial
volume. Thus the total number of galaxies in an open universe, would always
be infinite, no matter how low the probability of finding a galaxy, in a given
comoving volume. One therefore can not weight the a-priori probability, given
by the no boundary proposal, by the total number of galaxies in the universe.
Instead, we weighted by the comoving density of galaxies, predicted from the
growth of quantum fluctuations, about the pea instanton. This gives a mo-
dified probability distribution for omega, the present density, divided by the
critical density. For the open models, this probability distribution, is sharply
peaked at an omega of about zero point zero one. This is lower than is com-
patible with the observations, but it is not such a bad miss. As far as I’m
aware, this is the first attempt to predict a value of Ω for an open universe,
rather than fine tune a false vacuum potential, to obtain a value in the range
indicated by observation.

The reason we obtained such a low value for Ω, was that the a-priori
probability distribution, given by the no boundary proposal, depended so
steeply on omega. This meant that the modified probability distribution, was
sharply peaked at the minimum value of omega, that would allow a single
galaxy in our Hubble volume. Clearly this is not the universe we live in, which
is just as well, because we cosmologists would all be out of a job, if there were
no other no other galaxy visible. Refining the anthropic arguments, will not
solve this problem. We just don’t need all those other galaxies, for our own
existence. The only way I can see of explaining omega without fine tuning,
is if there is not a continuous family of instantons, with different values of
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omega, but only a discrete set. If the spacing in omega is large, there may be
only one value of omega in the allowed range. Other values of Ω might have
much higher a-priori probabilities, but they would correspond to uninhabited
universes.

It seems there may be a way of geting such a discrete set, from eleven
dimensional super gravity, which is the best candidate we have, for a theory
of everything. It has a three form potential, with a four form field strength.
When dimensionally reduced to four dimensions, this can act as a cosmologi-
cal constant. For a real four form in four dimensions, the contribution to the
cosmological constant is negative, which isn’t what we want. However, super
symmetry is broken, in the universe we live in.

Indeed, super symmetry breaking, is a necessary condition for life. Life
could not develop in a super symmetric universe, filled with mass less par-
ticles. The breaking of super symmetry, will give rise to a positive contribu-
tion to the cosmological constant. This has been seen as a great problem,
and there have been elaborate fine tuning schemes proposed, to get rid of it.
But maybe the positive contribution from symmetry breaking, is canceled by
the negative contribution from the four form. The fine tuning would be pro-
vided by the anthropic principle. Galaxies would not form, unless the total
cosmological constant, was almost zero.

But symmetry breaking and the four form, need not cancel each other
exactly. The anthropic requirement, can probably be satisfied by any omega
lambda between about minus one point five, and plus one point five. This is
consistent with the observations of omega lambda.

When I gave a talk on this in Santa Barbara, Joe Polchinski pointed out
that the four form was not continuously variable, but that the integral of
its dual over a seven cycle, was quantized. Unless the compact dimensions
were unacceptably large, the spacing of the contribution to the cosmological
constant, from different levels of the four form, was larger than the observa-
tional limit on lambda. Thus one could not adjust the four form, to cancel
symmetry breaking, to the accuracy required. At the time, I saw this as a
setback, but now I see it as a positive advantage. Coupled with another idea
I shall describe, it could mean that there is not a continuous variation in the
size of the instantons, with all the problems that causes with low omega, but
only a discrete set.

The other idea I mentioned, is due to Garriga. He took a regular higher
dimensional space, and dimensionally reduced it with respect to a U1 isome-
try group, that had a fixed point. He obtained a four dimensional geometry,
with a scalar field that was the log of the length of the U1 fibers. Near the
fixed point, the scalar field and four geometry behaved just like those in the
pea instanton, near the south pole. So the apparent singularity in the pea
instanton, may be resolved by going to higher dimensions. This could be the
deep reason, why the singularity is so mild, that the solution, and perturba-
tions around it, have well defined actions, so the quantum fluctuations, are
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well defined. Having a discrete set of non singular instantons, would be more
in keeping with the spirit of the no boundary proposal. As I said earlier,
it might also offer a way out of the problem of low omega. However, a lot
more work needs to be done, to get a concrete model. The aim is to find a
description of the origin of the universe, on the basis of fundamental theory.

Assuming that one can find a model that predicts a reasonable omega, how
can we test it by observation. The best way is by observing the spectrum of
fluctuations, in the microwave background. This is a very clean measurement
of the quantum fluctuations, about the initial instanton. However, there is
an important difference between our instanton, and previous proposals for
open inflation. They have all assumed false vacuum potentials, and have
used the Coleman De Lucia instanton, which is non singular. On the other
hand, our instanton has a singularity at the south pole. As I said, quantum
fluctuations around the instanton are well defined, despite the singularity.
Perturbations of the Euclidean instanton, have finite action if and only, they
obey a Dirichelet boundary condition at the singularity. Perturbation modes
that don’t obey this boundary condition, will have infinite action, and will be
suppressed. The Dirichelet boundary condition also arises, if the singularity
is resolved in higher dimensions.

When one analytically continues to Lorentzian spacetime, the Diriche-
let boundary condition, implies that perturbations reflect at the time like
singularity. This has an effect on the two point correlation function of the
perturbations, but it seems to be quite small. The present observations of
the microwave fluctuations, are certainly not sensitive enough to detect this
effect. But it may be possible with the new observations that will be coming
in, from the map satellite in two thousand and one, and the Planck satel-
lite in two thousand and six. Thus the no boundary proposal, and the pea
instanton, are real science. They can be falsified by observation.

I will finish on that note.
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Abstract. We consider three methods by which one can generate new cosmological
models. Two of these are based on the Lorentzian structure of spacetime. In a
Lorentzian manifold there can exist horizons that separate regions of spacetime
that can be interpreted as cosmological models from others that have the character
of “black holes.” A number of well known solutions of this type can be used to
generate both known cosmological models and others that do not seem to have
been recognized. Another method based on the Lorentzian character of spacetime
is to simply interchange some space variable with time and try to restructure the
metric to make a viable cosmology.

A more broad-ranging method is the use of modern solution-generating techni-
ques to construct new models. This method has been widely used to generate black
hole solutions, but seems not to have been so widely used in cosmology. We will
discuss examples of all three methods.

1 Introduction

The standard model of cosmology assumes that the universe today is homo-
geneous and isotropic, which means that there are six Killing vectors of the
manifold that give the isometries that realize these symmetries. However, in
earlier stages of the universe it is assumed that there might have been large
amounts of anisotropy and inhomogeneity that, by some physical process,
could have been reduced to the point where today we observe the standard
model (for a compendium of reasons for considering inhomogeneous models,
see Ref. [1]). Anisotropic and inhomogeneous metrics have fewer and fewer
Killing vectors, and we could, in principle, arrive at a completely general
solution of the Einstein equations as a cosmological model. At some point
it will become difficult to distinguish between a cosmological model and any
other general solution of the Einstein equations, except as a matter of in-
terpretation. In fact, even an inhomogeneous cosmology with two spacelike
Killing vectors is difficult to distinguish (locally) from gravitational waves
propagating in one space direction. One method that has been used to se-
parate cosmological models from pure wave solutions is the prescription of
their global topology. If we insist that cosmologies have compact t = constant
surfaces, then a number of gravitational wave solutions can be made into cos-
mologies by compactifying in certain directions of the system. We will give
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examples of this procedure below. If we allow open universes, whether we call
a solution a cosmological model or not is again a matter of interpretation.
With these caveats we can give a number of methods by means of which

one can transform known solutions of the Einstein equations into cosmological
models. These methods can be broken down into three broad classes:

1) Horizon methods
2) Causal structure methods
3) Mapping methods

The first of these methods has a long history, even though it never seems
to have been thought of as a “method.” Perhaps the oldest example is the
deSitter metric [2], although it is a somewhat degenerate example. Originally
deSitter proposed a solution to the Einstein equations with cosmological con-
stant Λ of the form [3]

ds2 = −
(
1− Λr2

3

)
dt2 +

dr2(
1− Λr2

3

) + r2(dθ2 + sin2 θdϕ2). (1)

This seems to be a static metric similar in form to the Schwarzschild metric,
and even has a “singularity” (which caused much comment at the time) at
r =

√
3/Λ. Of course, this singularity is just a horizon where the light cones

tip over sufficiently that for r >
√
3/Λ, ∂/∂r becomes timelike and ∂/∂t

spacelike. For large r, then, we can rename the coordinates (r → t̃, t → r̃),
and the new metric is

ds2 = − dt̃2

Λt̃2

3 − 1
+
(
Λt̃2

3
− 1
)
dr̃2 + t̃2(dθ2 + sin2 θdϕ2), (2)

which is an obvious cosmological model. It was “recognized” (the reason
for using the quotation marks will become obvious below) relatively quickly
that this was indeed a cosmological model by making use of the coordinate
transformation

t̃ = re
√
Λ/3T , r̃ = T − 1

2

√
3
Λ
ln

(
Λr2e2

√
Λ/3T

3
− 1
)

,

r sin θ cosϕ = X, r sin θ sinϕ = Y, r cos θ = Z , (3)

which makes the metric

ds2 = −dT 2 + e2
√
Λ/3T [dX2 + dY 2 + dZ2], (4)

which is a k = 0 Friedmann-Robertson-Walker metric.
Here we should study the Penrose diagram of this metric. In Figure 1

we give a Penrose diagram that will cover several cases that we will discuss
later. Because of this we will give only generic values in the figure, and each



Generating Cosmological Solutions 193

I

III
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II
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Fig. 1. A generic Penrose diagram which will be used for several metrics of the
article

case will correspond to different values of these parameters. In the deSitter
case, the lines aa and bb correspond to r =

√
3/Λ, and both ±I to r = 0.

In region I the spacelike Killing vector ∂/∂r generates spacelike surfaces that
are the t = constant surfaces of (1). In region II the same Killing vector
is now ∂/∂t̃ (timelike) and generates timelike hypersurfaces r̃ = constant.
The horizon splits the region comprised by both regions I and II in two.
Region I might be called a “black hole” region since the metric is reminiscent
of the Schwarzschild metric, and has the spacelike Killing vector ∂/∂r, while
region II is a “cosmological” region with metric (4). In the cosmological region
there seem to be “singularities” at T = ±∞, but we can see that [note that
T = r̃+ 1

2

√
3
Λ ln

(
Λt̃2

3 − 1
)
] the singularity at T = −∞ is just the horizon at

t̃ =
√
3/Λ, so it is nothing more than a null surface separating two parts of

the spacetime.
The problem here is that the deSitter metric has such a high degree of

symmetry (a space of constant curvature with 10 Killing vectors) that the
distinction between regions I and II is artificial. In fact, the coordinate trans-
formation (3) (with t̃ → r and r̃ → t and Λt̃2

3 − 1 → 1−Λr2
3 ) is equally valid

in region I, and, in fact, this was what was recognized by Lemaitre [4] and
Robertson [5] in transforming the deSitter metric into the form that was
eventually used in the steady-state model. Actually, even Minkowski space
(also a space of constant curvature with 10 Killing vectors) can be looked at
in the same way, as we will see in Sect. 2.
In Sect. 2 we will consider several metrics where horizon methods can be

used to construct cosmological models that do not have the disadvantages of
the deSitter metric, that is, there exists no coordinate transformation that is
valid for the static region which transforms it into a cosmological model. The
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fact that “singularities” in the new cosmological models may just be null sur-
faces where one passes from one coordinate patch to another, will, of course,
still be a feature, although true curvature singularities may also exist. One
point that should be mentioned is that most of the models generated by this
method that we will consider are vacuum models. There are some electrovac
models that can be thought of as being generated by horizon methods that we
will mention, but it seems not to be known which matter-filled cosmological
models can be generated by this method.
The second class of methods, causal structure methods, is similar to the

previous one, but there is no horizon to distinguish different regions of spa-
cetime. The paradigm of this method is the unpolarized Gowdy T 3 vacuum
spacetime [6] which will be discussed in more detail below. The idea behind
this method is to begin with a known solution and simply rename some spa-
celike variable as t, and the timelike variable as a spacelike variable (we can
call this t ↔ r), and then change the causal structure of the resulting metric
so that the a vector tangent to the “time” direction is truly timelike, and one
tangent to the new “space” direction is spacelike. There are a number of pro-
blems with this approach. The first is that determining the causal structure
change is not necessarily trivial. In a diagonal metric this difficulty can usually
be handled by simply changing the signs of two of the metric components,
but in a more general metric the procedure may be more complicated. The
most important difficulty, however, is that the new metric is not guaranteed
to be a solution to the Einstein equations. For matter filled models, where
physical quantities can be used to define spacelike and timelike surfaces, the
new metric will almost certainly not be a solution. For vacuum metrics it is
difficult to tell. As with horizon methods, the known solutions of this type
are vacuum wave solutions, and they have rather simple structures, and give
inhomogeneous cosmological models. Here, of course, one has the problem
of distinguishing between gravitational wave solutions and inhomogeneous
models.
A very simple example of this procedure is the plane wave [7]

ds2 = L2(u)(e2β(u)dx2 + e−2β(u)dy2) + dz2 − dt2, (5)

where u = t − z. If we make the coordinate change t → z̃, z → t̃ and change
the signs of dz2 and dt2, we find (ũ = t̃ − z̃)

ds2 = L2(−ũ)[e2β(−ũ)dx2 + e−2β(−ũ)dy2]− dt̃2 + dz̃2. (6)

Since L and β are arbitrary function of their arguments, we can remove the
minus signs in the arguments of L and β in (6) and obtain (5) again. Because
of the high symmetry of the problem, this procedure gives the same metric
and Einstein equations, and there is no question that any solution of the
Einstein equations for (5) gives a solution to (6). Here, of course, one runs
into the problem of defining a cosmological model. Is either of (5) or (6)
a gravitational wave or an inhomogeneous cosmological model? Either one
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is both, depending on how we interpret them. If, however, we insist that a
cosmological model have compact t = const. sections, then we can compactify
(6) in the space directions by just making 0 ≤ x, y, z ≤ 2π and identifying
the points at 0 and 2π, giving the manifold a T 3 topology. This changes
the boundary conditions on the functions L and β in that one must have
L(t, 0) = L(t, 2π) and β(t, 0) = β(t, 2π). Since the only Einstein equation is

L′′(ũ) + [β′(ũ)2]L = 0, (7)

′ = d/dũ, β is arbitrary except for the boundary conditions, and L obeys a
simple equation that has solutions that satisfy the boundary conditions. Here
one must be careful not to change coordinates back to the original metric,
since we will generate a spacetime with closed timelike lines, a problem with
cosmological models generated in this manner. We will discuss examples and
their topology in Sect. 2.
The third method consists of taking known solutions and mapping them

to new solutions. This technique is similar in spirit to conformal mapping.
Any analytic function of one complex variable, w = f(z) maps z = x + iy
to w = u(x, y) + iv(x, y), where, if ψ(x, y) is a solution to Laplace’s equa-
tion, Ψ [u(x, y), v(x, y)] is also a solution. This idea exploits the invariance of
Laplace’s equation in two dimensions under the two-dimensional conformal
group. If one can find groups under which the Einstein equations are invari-
ant (or under which some class of Einstein equations for special systems are
invariant), one can generate new solutions from old. This technique is of wide
applicability, and has been exploited heavily in general relativity to find new
exact solutions. It is by no means specific to cosmological models, but it can
be applied in cosmological situations, and has, perhaps, been underutilized
in this field and deserves more attention there.
In the specific case of stationary axisymmetric spacetimes, early genera-

ting methods such as the Kerr-Schild ansatz [8,9,10,11], the complex transfor-
mation method [12,13,14], and Hamilton-Jacobi separability [15] were used
to derive new solutions, but all of them are contained in the charged Kerr-
Taub-NUT [16] class (with cosmological constant). An important develop-
ment for the derivation of exact stationary axisymmetric solutions was made
by Ernst [17,18], who obtained a new representation of the corresponding
field equations which is independent of the coordinates chosen and, there-
fore, allows one to investigate the symmetries involved and find new soluti-
ons. Ernst also proposed two generating techniques that were later enlarged
and unified by Kinnersley [19,20]. Using the compact Ernst formulation of
the field equations it was also possible to obtain new solutions [21,22,23,24,
25] possessing a certain prescribed polynomial form of the Ernst potential.
Modern solution generating techniques involve Lie groups of transformations
or Bäcklund transformations. The first such group was found by Geroch [26,
27] and generalized by Cosgrove [28,29]. The Geroch group was investigated
very intensively and it was found that it possesses subgroups that preserve
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asymptotic flatness [19,30,31,32,33]. Today, there exist three main solution
generating techniques: HKX (Hoenselaers, Kinnersley, Xanthopoulos) trans-
formations [34,35], which are based upon special subgroups of the Geroch
group, Bäcklund transformations [36,37], which are applied directly to the
Ernst potential, and the inverse scattering method [38,39], which is based on
a reformulation of the nonlinear field equations as a linear eigenvalue pro-
blem. Later on it was shown [40,41] that all these techniques are related to
one another, and can be used to generate the same type of solutions (for an
introductory review of the solution generating techniques and the relations-
hips between them see [42]).
The mapping method is by no means specific to stationary axisymmetric

metrics, but it can be applied to any spacetime characterized by two or more
commuting Killing vector fields as in the case of the cosmological models
investigated in this work. We will give some examples in Sect. 3 and a guide
to possible new uses of the technique.
The paper is organized as follows. Section 2 will give examples of horizon

and causal structure methods and solutions obtained using them. Section 3
will give one example of mapping methods and discuss others. Finally, Sect.
4 will discuss possible new directions in the use of known solutions to find
new cosmologies.

2 Horizon and Causal Structure Methods

2.1 Horizon Methods

There are a large number of solutions of the Einstein equations that have
cosmological coordinate patches as well as “black hole” regions that are se-
parated by horizons. The major problem with the cosmologies generated in
this way is they are incomplete manifolds, and what have in the past been
interpreted in some of them as singularities are just the horizons that sepa-
rate one part of the complete manifold from the other. A second problem,
as we have seen, is that in certain cases the complete manifold is of such
high symmetry that is is impossible to distinguish between the cosmological
region and the “black hole” region. The most blatant example of the second
problem is just ordinary Minkowski space.
If we return to Figure 1, we can think of this diagram as a picture of

Minkowski space with the meeting point of lines aa and bb an arbitrarily
chosen origin O. The usual metric is

ds2 = −dT 2 + dx2 + dy2 + dz2. (8)

In region I the hyperbolic lines are just the usual orbits of a particle with
constant acceleration that form the basis of Rindler [43] space, and if the
lines are given by x =

√
2r − 1 cosh t and T =

√
2r − 1 sinh t, z = y = const.,

the metric becomes

ds2 = −(2r − 1)dt2 + dr2

2r − 1 + dy2 + dz2. (9)
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In this coordinate system the metric is very similar in form to the Schwarz-
schild metric, and there is a coordinate singularity at r = 1/2, which is a
horizon similar to that of the deSitter metric.
In Figure 1 the line bb is the surface r = 1/2, and for r < 1/2 we can

make the t ↔ r coordinate change and the metric becomes

ds2 = − 1
1− 2tdt

2 + (1− 2t)dr2 + dy2 + dz2, (10)

a cosmological model. If we change coordinates using t = 1
2 [1− τ2{cosh2 ρ−

sinh2 ρ sin2 θ cos2 ϕ}], r = tanh−1[tanh ρ sin θ cosϕ], y = τ sinh ρ sin θ sinϕ,
z = τ sinh ρ cos θ, the metric (10) becomes the Milne universe, a flat cosmo-
logical model with metric

ds2 = −dτ2 + τ2[dρ2 + sinh2 ρ(dθ2 + sin2 θdϕ2)], (11)

a k = −1 FRW metric. Of course, the manifold is nothing more than flat
space and the breaking up of the manifold into regions I-IV is an observer-
dependent phenomenon due to singling out the origin O as the position of a
special observer, while there is actually no physical reason that this point is
priveleged over any other point of the manifold, and there is no real difference
between any of the four regions. Basically, we can say that the same is true
of deSitter space, which is just a constant curvature space everywhere, and
the “cosmological” region has nothing to distinguish it from any other region
of the manifold.
There are a number of metrics which are not as degenerate as the Minkow-

ski and deSitter cases whose cosmological regions are physically distinguis-
hable from the “black hole” regions, and the resulting cosmological models
have long been known and are named. Perhaps the simplest of these is the
Kantowski-Sachs-Schwarzschild manifold. Here we can still use the generic
Figure 1 to represent the Penrose diagram of this metric, with region I re-
presenting the Schwarzschild coordinate patch where the hyperbolic lines are
r = const. lines and the lines bb is the horizon at r = 2m. In region II the hy-
perbolic lines are still r = const. lines, but they no longer represent spacelike
surfaces. For r > 2m the metric can be written as

ds2 = −
(
1− 2m

r

)
dt2 +

1
1− 2m

r

dr2 + r2(dθ2 + sin2 θdϕ2), (12)

but for r < 2m the Killing vector ∂/∂r is no longer spacelike, and we may
make the transformation r ↔ t mentioned in Sect. 1, and we find

ds2 = − 1
2m
t − 1dt

2 +
(
2m
t

− 1
)
dr2 + t2(dθ2 + sin2 θdϕ2), (13)

which is an obvious cosmological model, the vacuum Kantowski-Sachs mo-
del. The fact that at r = 0 (t = 0 in the new coordinate system) which is
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represented by the line at +F is a true curvature singularity distinguishes
region II from region I and makes it impossible to find a global coordinate
transformation that makes this cosmological model indistinguishable from
the “black hole” region. Of course, however, this cosmological model, and all
cosmological models generated by horizon methods, have the problem that
what has been regarded as singularities in these models may not be a curva-
ture singularity, but only a horizon where we pass from one coordinate patch
to another. In the case of the Kantowski-Sachs solution the t = 0 singula-
rity is one of the usual singularities of the model, and it is a true curvature
singularity. The other “singularity” at t = 2m is only a null surface.
While the Kantowski-Sachs solution, even though it was originally disco-

vered by means of studies of groups of motion that were not transitive on
three surfaces, and constituted a generalization of the Bianchi cosmological
models, and was immediately recognized as the Schwarzschild solution inside
the horizon, in the next model we will discuss the two regions on either side
of the horizon were studied separately. The “black hole” region was the NUT
space of Newman, Tamburino and Unti [9], and the cosmological region was
the Taub cosmology [44]. Misner [45] showed that these two solutions could
be seen to be part of a larger manifold (up to topological questions which will
be discussed below). In the black hole region one can write the NUT metric
as [46]

ds2 = −r2 − 2mr − l2

r2 + l2
(dt+ 2l cos θdϕ)2 +

r2 + l2

r2 − 2mr − l2
dr2

+(r2 + l2)(dθ2 + sin2 θdϕ2). (14)

For the region of this metric where 0 < r < m(1 +
√
1 + l2/m2), the r ↔ t

transformation gives

ds2 =
l2 + 2mt − t2

t2 + l2
(dr + 2l cos θdϕ)2 − t2 + l2

l2 + 2mt − t2
dt2

+(t2 + l2)(dθ2 + sin2 θdϕ2), (15)

which is an anisotropic cosmological model. The major problem with this
model is that in the cosmological sector we can rewrite the metric on t =
const. surfaces by making the coordinate transformation

y = θ − π/2 , (16a)
z = r/2l , (16b)
x = ϕ , (16c)

which gives the three-dimensional line element as

dσ2 =
4l2(l2 + 2mt − t2)

t2 + l2
(dz − sin ydx)2 + (t2 + l2)(dy2 + cos2 ydx2), (17)

which can be written as

dσ2 =
4l2(l2 + 2mt − t2)

t2 + l2
(ω3)2 + (t2 + l2)[(ω1)2 + (ω2)2], (18)
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where ω3 = dz − sin ydx, ω1 = cos y cos zdx − sin zdy, ω2 = cos y sin zdx +
cos zdy. These differential forms are the invariant one-forms of the Bianchi
type IX cosmological models, the invariant one-forms on S3. This means that
the “natural” topology of the three-surfaces given by (18) is that of S3, with
0 ≤ z ≤ 4π, 0 ≤ x ≤ 2π, 0 ≤ y ≤ π. If one maintains this topology on passing
through the horizon, the vector ∂/∂z becomes timelike, and the S3 topology
implies the possibility of closed timelike lines. This topological difficulty is
present in many cosmological models generated by horizon methods, as we
will see below.
The metrics we have discussed seem to be the only ones where the cosmo-

logical models have been noticed explicitly to be a part of a larger manifold
that has non-cosmological sectors. For example, it is only recently that the
Kerr metric inside its horizon has been considered as a cosmological model.
Of course, the metric in this part of the Kerr manifold has been studied [47],
but there seems to have been no attempt to identify it as a cosmological
model. In Boyer-Lindquist coordinates the Kerr metric has the form

ds2 = −r2 − 2Mr + a2

r2 + a2 cos2 θ
[dt − a sin2 θdφ]2 +

sin2 θ
r2 + a2 cos2 θ

[(r2 + a2)dφ − adt]2

+
r2 + a2 cos2 θ
r2 − 2Mr + a2

dr2 + (r2 + a2 cos2 θ)dθ2. (19)

This metric has two horizons, r± = M ± √
M2 − a2, and beyond the outer

horizon, r+, ∂/∂r is a spacelike vector, and the metric represents a spinning
black hole. At r+ the light cones tip over to the point where ∂/∂r becomes
timelike and we can make the transformation t ↔ r. Unfortunately, at the
inner horizon r− the light cones tip back to the point where ∂/∂r becomes
spacelike again. In the region r− < r < r+ the Kerr metric becomes a cos-
mological model,

ds2 =
2Mt − t2 − a2

t2 + a2 cos2 θ
[dr − a sin2 θdφ]2 +

sin2 θ
t2 + a2 cos2 θ

[(t2 + a2)dφ − adr]2

− t2 + a2 cos2 θ
2Mt − t2 − a2

dt2 + (t2 + a2 cos2 θ)dθ2. (20)

This metric, with the simple transformation [48],

t = α[
√
1− β2 cos(e−τ ) + 1], (21)

α =M , β = a/M (0 ≤ β ≤ 1) transforms (20) into

ds2 = e−λ/2eτ/2(−e−2τdτ2 + dθ2) + α
√
1− β2 sin(e−τ )[eP dδ2

+2ePQdδdφ+ (ePQ2 + e−P sin2 θ)dφ2], (22)

where
λ = τ − 2 ln(α2{[

√
1− β2 cos(e−τ ) + 1]2 + β2 cos2 θ}) , (23)
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P = ln[(1− β2) sin2(e−τ ) + β2 sin2 θ]− ln[α
√
1− β2 sin(e−τ )]

− ln([
√
1− β2 cos(e−τ ) + 1]2 + β2 cos2 θ), (24)

Q = −2αβ sin
2 θ[
√
1− β2 cos(e−τ ) + 1]

(1− β2) sin2(e−τ ) + β2 sin2 θ
. (25)

The metric (22) is a Gowdy cosmological model with S1 × S2 topology [6].
The solution given in Eqs. (23 -25) is a function of θ for 0 ≤ θ ≤ π and

is valid for values of τ that correspond to the part of the manifold between
r− and r+, that is, for − ln(π) ≤ τ ≤ +∞, (note that t takes the values
M ± √

M2 − a2 at the two limiting values of τ).
As an example, Figs. 2 and 3 give P−h (h = − ln[α

√
1− β2 sin(e−τ )]) and

Q as functions of θ for various values of τ for α = 1, β = 1/2. The evolution
of these two functions is that of a “spike” that at the limiting values of τ is
practically flat (except at θ = 0, π, where it drops off drastically), and which
becomes sharper for intermediate values of τ . It should be mentioned that
the Kerr metric is a special case of what is usually called the Kerr-Taub-
NUT metric, which is geven in Ref. [46]. This metric has three parameters,
a, m, l, the Kerr parameter, the mass, and the NUT parameter respectively.
For a = 0 we have the metric (14), and for l = 0 we have the Kerr metric.
This means that the Gowdy model we have given is also a special case of the
“Taub” region of Kerr-Taub-NUT. However, the Taub region of this manifold,
in spite of its name, never seems to have been considered as a cosmological
model.
As we have stated several times, the models studied so far are vacuum

models. While matter-filled models may, in principle, be generated by horizon
methods, in at least some cases the models with matter have very different
behavior from the vacuum case, and may preclude naive generalizations of
the method to the non-vacuum case. For instance, it is known that the Taub
model with fluid matter has true curvature singularities where the vacuum
case has null surfaces [49]. The same is true for the Kantowski-Sachs mo-
del [50]. However, the Brill model [51] is a Taub-NUT electrovac solution
which is non-singular in the same way as the Taub-NUT vacuum case. In
fact, the Reissner-Nordstrøm solution with electric charge large enough has
two horizons, and between the outer and inner horizons there is a region
that can be interpreted as an electrovac cosmology that has no curvature or
electromagnetic field singularity at the horizons.
Besides the solutions we have mentioned, there are numerous metrics that

represent gravitational fields outside some material body which in vacuum
have “black hole” sectors outside of some horizon. Of course, no hair theorems
[52] say that there are no true vacuum black holes that are not Kerr or
Schwarzschild. Solutions of the type mentioned above seem always to have
curvature singularities on or outside their horizons where they can be seen
by observers at infinity. While this fact makes them poor candidates for
black holes, it makes them interesting as cosmological models inside their
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Fig. 2. The evolution in τ of P − h as a function of θ from Eqs. (23-25) for α = 1,
β = 1/2. Fig. (a) corresponds to τ = − ln(π), (b) to τ = −1.144, (c) to τ = −1.1,
(d) to τ = −0.75, (e) to τ = +5, (f) to τ = +10

horizons. The “singularities” of the models with curvature singularities on
their horizons will be inhomogeneous, with part of the singularities being
simple horizons, but other regions will be true curvature singularities. These
structures might be of great interest in the study of cosmological singularities.
Perhaps the simplest of the metrics of this type might be the Tomimatsu-
Sato [21,22] models which do have inhomogenous horizons, but there are other
known solutions, for example, one with many multipoles and large curvature
singularity regions on the horizon [53].
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Fig. 3. The evolution of Q as a function of θ in τ . Fig. (a) corresponds to τ =
−1.1439, (b) to τ = −1.1, (c) to τ = − ln(π/2), (d) to τ = +5

2.2 Causal Structure Methods

This method seems to have been little used, and perhaps the most telling
reason for this is that there are very few examples where it works. The only
example that has wide currency is that of certain Gowdy models. If one begins
with the Einstein-Rosen waves [54], which have the metric

ds2 = e2γ−2ψ(dr2 − dt2) + r2e−2ψdφ2 + e2ψdz2, (26)

with γ and ψ functions of r and t, the Einstein equations for this metric are

ψ,rr +
1
r
ψ,r − ψ,tt = 0, (27)

γ,r = r(ψ2
,r + ψ2

,t), γ,t = 2rψ,rψ,t, (28)

where it is well known that the equations for γ can be integrated directly
once ψ is known, since the integrability condition for these two first-order
partial differential equations is just (27).
If we now simply make the coordinate change t ↔ r, we have

ds2 = e2γ−2ψ(dt2 − dr2) + t2e−2ψdφ2 + e2ψdz2. (29)
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Here the only obstacle to interpreting this metric as a cosmological model
is the wrong signs in the dr2 and dt2 terms if we want to interpret ∂/∂r
and ∂/∂t as spacelike and timelike vectors respectively. If we add a complex
constant to γ, γ = γ̃ + iπ, we change the signs of gtt and grr, and since
we have done nothing more than change the names of r and t, the Einstein
equations are unchanged (since they depend only on derivatives of γ), and
we have

− ψ,tt − 1
t
ψ,t + ψ,rr = 0, (30)

γ̃,t = t(ψ2
,t + ψ2

,r), γ̃,r = 2tψ,tψ,r (31)

These are the original equations for the unpolarized Gowdy T 3 cosmological
model [6].
Notice that in order to change the sign of the dt2 − dr2 term, it was

necessary to add −iπ to γ, and if the Einstein equations were to depend
on γ in any other way than through derivatives or eγ , they would become
complex and then would not necessarily have real solutions for γ and ψ. This
difficulty is a paradigm for the problems one would encounter in trying to
use a t ↔ r type of coordinate change. One would not expect this technique
to be successful in the great majority of cases, especially if there were matter
present. This seems to be reflected in the fact that there exist few examples
of this method. Note that the examples we have given, the plane wave of
the Introduction and the T 3 Gowdy model, are vacuum spacetimes, where
the temporal variable and one of the space variables appear in the form of
−dt2+dz2 (in the Gowdy model, multiplied by a conformal factor). While we
will not try to explore this kind of idea further here, perhaps theorems about
the existence of solutions found by means of the method could be based on
this fact.

2.3 Topological Questions

An interesting feature of cosmological models generated by means of hori-
zon and causal structure methods is that for philosophical reasons one often
wants these models to have compact t = const. sections, that is, they should
be closed cosmological models. This can be achieved for many of the solutions
given above by simply specifying the global topology without changing the
local geometry. This has caused some problems with these models, especially
the vacuum models generated by horizon methods, since they represent in-
complete manifolds, and when one passes through the horizon, the spacelike
direction in which the manifold would have to be closed becomes timelike,
leading to the possibility of closed timelike lines in the “black hole” sector.
Perhaps the simplest model where this occurs is the Kantowski-Sachs-

Schwarzschild manifold. If we use (13) for the Kantowski-Sachs model, notice
that the θϕ sector has a natural two-sphere topology, and there is no obstruc-
tion to compactifying in the r direction by simply assuming that 0 ≤ r ≤ 2π,



204 H. Quevedo and M. Ryan

with r = 0 and r = 2π identified, giving the manifold an S1 × S2 topology.
Of course, if we consider the other side of the horizon, the t ↔ r repara-
metrization means that the r-direction becomes the t-direction, and we have
0 ≤ t ≤ 2π and the possibility of closed timelike lines. In principle one could
have timelike lines which pass from the cosmological region to the black hole
region and remain trapped in that region in an eternal closed timelike curve.
In the case of the Kantowski- Sachs-Schwarzschild manifold it seems to be
impossible for this to happen. From Fig. 4 one can see that timelike geodesics

r = 0

π Fr = 2

t = 0

Fig. 4. A Kruskal diagram for geodesics in Kantowski-Sachs-Schwarzschild. For an
open topology the timelike geodesic F can leave the cosmological region, enter the
Schwarzschild region and return to the cosmological region. This behavior is similar
to that of some geodesics in Taub-NUT. For the closed topology, however, geodesics
wrap around between r = 0 and r = 2π (r being the new “radial” direction inside
the horizon), following the solid-dashed sawtooth path (here, as an example, for
a lightlike geodesic), which always stays inside the horizon except at the crossing
point of the past and future horizons

which begin inside the horizon will always stay within the horizon, simply
passing through the crossing point of the past and future horizons (a focus-
sing point for all geodesics) [55]. The choice of topology of this metric has a
long history. The original studies of this metric assumed that r ran from −∞
to +∞ and that the topology was R1 × S2. This topology was usually used
until Laflamme and Shellard introduced the S1×S2 topology [56]. Since that
time most authors have used it, but some still prefer the R1 × S2 topology
[57].
Probably the first solution where topological problems were noticed was

the Taub-NUT model, where the natural topology of t = const. slices in the
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Taub model is S3, which means that the same topology must apply to the
tθϕ sector of NUT space. Here it is possible for timelike geodesics to leave
the Taub region and pass into the NUT region, where they may be trapped
in trajectories that return to the same spacetime point [45,49,58].
For the other solutions generated by horizon methods mentioned so far,

it seems that we will have similar problems, but there has been no study of
the effect of topology changes on the causal properties of the solutions. Even
degenerate solutions such as the deSitter model and Minkowski space can
be given different topologies by means of this type of identifications. Thus,
for example, the Milne model, while it is locally flat, may be made into a
more acceptable cosmology by means of such a global topology change, but
it would suffer from the same problem as the other metrics of this type in
that the Rindler space sector would then have an unacceptable topology. The
Kerr-Gowdy solution has this same topological difficulty, since the interior is
supposed to have an S1×S2 topology, and outside the horizon this implies an
S1 topology in the timelike direction. The causal properties of this solution
with this topology seem never to have been studied.
For metrics generated by causal structure methods, there is, in principle

no obtruction to topology changes, since there is no “black hole” sector where
new topologies can lead to causality problem. The Gowdy T 3 model is a good
example of this. While we have not specified the ranges of r, φ and z in (29),
Gowdy, wishing to have a closed topology for the t = const. surfaces in his
model, assumed that 0 ≤ r, φ, z ≤ 2π with points at 0 and 2π identified,
which gives the model a three-torus topology. Since there is no “black hole”
sector for the new manifold, there is no reason not to choose this topology.
The only difference that this change introduces is in the boundary conditions
that ψ and γ must satisfy. If r, φ, and z run from −∞ to +∞ the solutions
of Eq. (30) are built up of eigenfunctions of continuous eigenvalues, while in
the Gowdy topology the eigenvalues are discrete.
Note that if we were to try to make the t ↔ r change for this topology, the

Einstein-Rosen wave thus generated would be closed in the time direction, but
the Gowdy manifold is complete, and there is no reason to concern ourselves
with this possibility.
As we mentioned in the Introduction, the somewhat artificial model we

gave there may be closed in the space directions without changing the local
metric.

3 Mapping Methods

As we mentioned in the Introduction, the solution generating techniques de-
veloped in the last few decades have not often been used in the context of
cosmological models. However, it is known that these techniques can be ap-
plied when the spacetime possesses at least two commuting Killing vector
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fields. This is exactly the case of the cosmological models under investigation
in this paper.
In the original works on solution generating techniques the central idea

was to project the spacetime on the two-dimensional hypersurface defined
by the Killing vector fields. This projection allows one to reformulate the
spacetime metric and the corresponding field equations in such a way that
the symmetries of the differential equations can be investigated in a straight-
forward manner. An alternative but related procedure is to derive the Ernst
representation of the field equations where it is possible to apply (with some
modifications) known techniques. In the present work we will use this second
alternative.

3.1 Ernst Representation of the T 3 Gowdy Models

In this section we will begin by considering the unpolarized T 3 Gowdy model.
We will use a slightly different parametrization of these models from that used
in (29) in order to make comparisons with Refs. [59]. The unpolarized model
has the metric

ds2 = e−λ/2eτ/2(−e−2τdτ2 + dθ2) + e−τ [eP (dσ +Qdδ)2 + e−P dδ2] , (32)

where the functions λ, P and Q depend on the coordinates τ and θ only, and
0 ≤ σ, δ, θ ≤ 2π. These spacetimes are characterized by the existence of two
commuting Killing vector fields η1 = ∂/∂σ and η2 = ∂/∂δ. In the special case
Q = 0, the fields η1 and η2 become hypersurface orthogonal to each other
and the metric (32) describes the polarized T 3 Gowdy models.
Einstein’s vacuum field equations for the T 3 models consist of a set of two

second order differential equations for P and Q

P,ττ − e−2τP,θθ − e2P (Q2
,τ − e−2τQ2

,θ) = 0 , (33)

Q,ττ − e−2τQ,θθ + 2(P,τQ,τ − e−2τP,θQ,θ) = 0 , (34)

and two first order differential equations for λ,

λ,τ = P 2
,τ + e−2τ + e2P (Q2

,τ + e−2τQ2
,θ) , (35)

λ,θ = 2(P,θP,τ + e2τQ,θQ,τ ) . (36)

The set of equations for λ is the equivalent of Eqs. (31) and can be solved by
quadratures once P and Q are known.
As we mentioned, the special case of the polarized T 3 model is obtained

from the metric (32) just by taking Q = 0. The resulting field equations are
easier to handle, and a general solution for the main function P can be found
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by separation of variables. In fact, let us consider P (τ, θ) = T (τ)Θ(θ); then,
Eq. (33) separates into

1
Θ

d2Θ

dθ2
= −n2 , and

d2T

dτ2
+ n2e−2τT = 0 , (37)

where n is the separation constant which in this case has to be an integer
in order for the condition Θ(θ + 2π) = Θ(θ) to be satisfied. With this as-
sumption, the general solution for P can be written as an infinite series of
the form

P =
∞∑
n=0

[An cos(nθ) +Bn sin(nθ)][CnJ0(ne−τ ) +DnN0(ne−τ )] , (38)

where An, Bn, Cn and Dn are arbitrary constants. If we want to avoid
singularities at τ = +∞, the constant Dn has to vanish.
The models described by the general (Q �= 0) metric (32) have been used

extensively for numerical investigations in classical as well as in minisuper-
space quantum gravity [59]. One of the reasons why these investigations have
used numerical methods is because it is usually believed that the set of main
field equations (33) and (34) is such a complicated system that analytic soluti-
ons would be difficult to find. We will show here that it is possible to generate
unpolarized solutions (Q �= 0) from a given polarized solution (Q = 0) by
using modern solution generating techniques. Of course, the new solutions
will be particular solutions, and the numerical investigations in Refs. [59]
were carried out with the aim of studying the general behavior of the models
near a singularity, information that no particular solution can give. Howe-
ver, families of particular solutions can give us clues about how to set up
numerical solutions.
We can apply the solution generating techniques by writing the field equa-

tions in such a way that the symmetries involved can be derived and under-
stood easily. To this end, we first introduce a new “time” coordinate t = e−τ

and a new function R = R(t, θ) by means of the equations

R,t = te2PQ,θ , R,θ = te2PQ,t . (39)

Then, the field equations (34) and (33) can be expressed as

t2
(
P,tt +

1
t
P,t − P,θθ

)
+ e−2P (R2

,t − R2
,θ) = 0 , (40)

teP
(
R,tt +

1
t
R,t − R,θθ

)
− 2[(teP ),tR,t − (teP ),θR,θ] = 0 . (41)

Furthermore, this last equation for R turns out to be identically satisfied if
the integrability condition R,tθ = R,θt is fulfilled.
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We can now introduce the complex Ernst potential ε and the complex
gradient operator D as

ε = teP + iR , and D =
(

∂

∂t
, i

∂

∂θ

)
, (42)

which allow us to write the main field equations in the Ernst-like represen-
tation

Re(ε)
(
D2ε+

1
t
DtDε

)
− (Dε)2 = 0 . (43)

It is easy to see that the field equations (40, 41) can be obtained as the real
and imaginary part of the Ernst equation (43), respectively.
The importance of this representation is that it also can be derived from a

Lagrangian by means of a variational principle. In turn, that Lagrangian may
be interpreted as a metric Lagrangian defined in a two dimensional Rieman-
nian space (the potential space), the coordinates of which are the real and
imaginary parts of the Ernst potential. Applying the variational principle in
the potential space on the metric Lagrangian, one obtains the corresponding
geodesic equations, which turn out to be equivalent to the Ernst equation
(43). Hence, to investigate the symmetries of the Ernst equation one can
study infinitesimal transformations which leave invariant the geodesic equa-
tions in the the potential space. In particular, the transformations associated
with the Killing vector fields of the metric in the potential space leave the
corresponding geodesic equations invariant. One could think of a solution of
the Ernst equation as a geodesic in the potential space, and the Killing vec-
tors of the metric as transformations that starting from a given geodesic lead
to a different geodesic, i.e., to a different solution of the Ernst equation. This
is the basic idea behind some of the known solution generating techniques.
We will now derive a simple but illustrative symmetry of the Ernst equa-

tions which allows to generate new solutions. To this end, we introduce a new
complex potential ξ = ξ(t, θ) by means of the relationship

ε =
1− ξ

1 + ξ
. (44)

Then, the Ernst equation (43) transforms into

(1− ξξ∗)
(
D2ξ +

1
t
DtDξ

)
+ 2ξ∗(Dξ)2 = 0 , (45)

where ξ∗ represents the complex conjugate potential. Furthermore, we intro-
duce new coordinates x and y by

t2 = c2(1− x2)(1− y2) , θ = cxy , (46)

where c is a real constant. In these coordinates, the main field equation (45)
can be written in the following form

(1− ξξ∗){[(1−x2)ξ,x],x− [(1− y2)ξ,y],y}+2ξ∗[(1−x2)ξ2,x− (1− y2)ξ2,y] = 0 ,
(47)
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which explicity shows the invariance with respect to the change of coordinates
x ↔ y, i.e., if ξ(x, y) is a solution of (47) then ξ(y, x) is also a solution. The
simplest solution of Eq. (47) is ξ−1 = x, so ξ−1 = y is also a solution. A
linear combination of these two solutions

ξ−1 = ax+ iby (48)

turns out to also be a solution if the condition a2 + b2 = 1 is satisfied. In
this way it is relatively easy to generate new solutions. Once the potential
ξ is known one can calculate the functions P and R algebraically by means
of Equations (44) and (42). Then, Eq. (39) may be integrated to yield Q.
Finally, the solution for the function λ may be calculated by quadratures.
It is interesting to note that one can derive some of the main properties of

the Gowdy model just by inspecting the explicit form of the Ernst potential.
If the Ernst potential ε is real, then the function R vanishes and, therefore,
the metric function Q is a constant which can be absorbed by means of a
suitable coordinate transformation. Thus, a real Ernst potential corresponds
to a polarized Gowdy model. In the case of complex Ernst potential with
nontrivial imaginary part (not proportional to its real part), it is guaran-
teed that the resulting metric corresponds to an unpolarized Gowdy model
(Q �= 0). For instance, even the simple solution (48) will lead to a nontrivial
unpolarized solution with Q �= 0.

3.2 Generation of New Solutions

In this section we will briefly describe the way new solutions can be generated
by using HKX transformations. Let us assume that a solution for the polarized
Gowdy model is given by P = P0(t, θ) and λ = λ0(t, θ). The corresponding
Ernst potential is real, and we denote it by ε0 = teP0 .
A HKX transformation acting on ε0 generates a new complex Ernst po-

tential ε which will correspond to an unpolarized Gowdy model only if its
imaginary part is not proportional to its real part. This will depend on the
explicit form of the initial Ernst potential ε0. However, if we apply two diffe-
rent HKX transformations it can be shown that the resulting Ernst potential
is nontrivial. For this reason, we present here the result of the action of two
HKX transformations on the real Ernst potential ε0. For the sake of simpli-
city, we use the coordinates x and y defined in Eq. (46) in which the new
Ernst potential can be written as [42]

ε = ε0
x(1− µ1µ2) + iy(µ1 + µ2) + (1 + µ1µ2) + i(µ1 − µ2)
x(1− µ1µ2) + iy(µ1 + µ2) + (1 + µ1µ2)− i(µ1 − µ2)

, (49)

where we have introduced new functions µ1 and µ2 defined by

µ1 = α1e
2β− and µ2 = α2e

2β+ . (50)
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Here α1 and α2 are real constants and β± are functions which satisfy a set
of two first order differential equations

(x ∓ y)(β±),x = (1∓ xy)
ε0,x
ε0

∓ (1− y2)
ε0,y
ε0

, (51)

(x ∓ y)(β±),y = (1∓ xy)
ε0,x
ε0

± (1− x2)
ε0,y
ε0

. (52)

Thus, the generation of new solutions reduces to the integration of the
differential equations for β±. The new constants α1 and α2 have been in-
troduced by the two HKX transformations. For vanishing α1 and α2, the
potential (49) reduces to the original Ernst potential of the polarized Gowdy
model.
Equations (51) and (52) allow us to generate new unpolarized solutions

starting from a given polarized Gowdy model. The derivation of explicit solu-
tions implies the integration of a set of two first order differential equations
for a function which determines the Ernst potential of the new solution. In
turn, from the Ernst potential one can obtain the new metric functions which
completely determine the spacetime of the new cosmological model. In order
to complete this procedure it is necessary to carry out lenghtly but straight-
forward calculations. We are attempting to calculate the unpolarized solution
corresponding to the general solution (38) of the polarized T 3 Gowdy model.

4 Conclusions and Suggestions for Further Research

We have given several examples of the three methods listed in the Introduc-
tion. It is obvious that these three approaches are far from exhausted, and
may give a number of interesting exact solutions to known types of cosmo-
logical models and suggest new types of models of interest. It is probable
that the horizon and mapping methods may be more productive than causal
structure methods.
It seems that horizon methods have barely touched the surface of possible

solutions. There are a large number of exact solutions of “black hole” type
given in Ref. [46] that are candidates for generating cosmological models
inside their horizons. We have looked at the Kantowski-Sachs-Schwarzschild,
Taub-NUT and Kerr manifolds in some detail. We have also mentioned as
possibilities the Tomimatsu-Sato and Quevedo class of solutions which should
lead to models with mixed singularities, part null surface and part curvature
singularity. There are large classes of vacuum type D solutions that might
give interesting cosmologies [46]. Even such well known solutions as Kerr-
Taub-NUT do not seem to have been investigated thoroughly as cosmological
models.
Models with matter seem hardly to have been touched. While fluid models

may be difficult to generate, the example of electrovac universes shows us that
there are many possible cosmologies of this type. Even the interior of the
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Reissner-Nordstrøm solution does not seem to have been investigated in this
context. It would also be interesting to investigate the possibility of obtaining
useful cosmological models from the most general type D electrovac solutions
with cosmological constant, found by Debever et al. [61], which contains 13
different parameters and includes the Kerr-Newman solution as a special case.
Even the Kerr-Newman solution [13] would generate an R1 × S2 (and even,
perhaps, an S1 × S2) Gowdy solution, equivalent to, or a generalization of,
the solutions of Carmeli, Charach and Malin [60] for T 3 models. Other types
of solutions, such as scalar field models do not seem to have been investigated
at all in this context.
If anything, mapping methods seem even more underutilized in cosmology.

The example we have seen is one of many that come to mind. For the Gowdy
models one could use these methods to investigate the S1 × S2 models and
perhaps generate unkown solutions. The corresponding Ernst potential of
the field equations present some technical difficulties related to the specific
topology of the model. This problem is currently under investigation. For
this case, it would also be interesting to generate new unpolarized solutions
starting from the general polarized solution, which in the case of S1 × S2

models, just as in the T 3 models, can also be represented as an infinite series
of eigenfunctions since the corresponding field equations reduce to separable
linear second order differential equations.
Solutions with with true curvature singularities on possible inner and

outer horizons might be especially interesting. An example of this idea was
given by Moncrief [62], who used the Geroch group to generate a solution
that had a curvature singularity in place of a horizon in the Kerr-Taub-NUT
case.
There will certainly be many opportunities to apply all three of the tech-

niques discussed in the article to the generation of new cosmologies.

Acknowledgments

We wish to thank T. Jacobson, V. Moncrief and O. Obregon for useful dis-
cussions. This work was supported in part by CONACyT grant 3567E, and
DGAPA-UNAM grants 121298 and IN106097.

References
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Abstract. Multidimensional model describing the cosmological evolution and/ or
spherically symmetric configuration with (n+1) Einstein spaces in the theory with
several scalar fields and forms is considered. When electro-magnetic composite p-
brane ansatz is adopted, n “internal” spaces are Ricci-flat, one space M0 has a non-
zero curvature, and all p-branes do not “live” in M0, a class of exact solutions is
obtained if certain block-orthogonality relations on p-brane vectors are imposed. A
subclass of spherically-symmetric solutions containing non-extremal p-brane black
holes is considered. Post-Newtonian parameters are calculated and some examples
are considered.
Keywords. P -branes, multidimensional cosmology, black holes.

1 Introduction

The necessity of studying multidimensional models of gravitation and cos-
mology [1,2] is motivated by several reasons. First, the main trend of modern
physics is the unification of all known fundamental physical interactions: elec-
tromagnetic, weak, strong and gravitational ones. During last decades there
was a significant progress in unifying weak and electromagnetic interactions,
some more modest achievements in GUT, supersymmetric, string and super-
string theories.

Now theories with membranes, p-branes and more vague M- and F-theories
[4,6,7,8] are being created and studied. Having no any definite successful
theory of unification now, it is desirable to study the common features of
these theories and their applications to solving basic problems of modern
gravity and cosmology. Moreover, if we really believe in unified theories, the
early stages of the Universe evolution, as a unique superhigh energy region,
is the most proper and natural arena for them.

Second, multidimensional gravitational models, as well as scalar-tensor
theories of gravity, are the theoretical framework for describing possible tem-
poral and range variations of fundamental physical constants [3]. These ideas
originated from earlier papers of P.Dirac (1937) on relations between pheno-
mena of micro and macro worlds and up till now they are under a thorough
study both theoretically and experimentally.
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At last, applying multidimensional gravitational models to basic problems
of modern cosmology and black hole physics we hope to find answers to such
long standing problems as singular or nonsingular initial states, creation of
the Universe, creation of matter and entropy in it, origin of inflation and
specific scalar fields which are necessary for its realization, isotropization and
graceful exit problems, stability and nature of fundamental constants [10],
possible number of extra dimensions, their stable compactification etc.

Bearing in mind that multidimensional gravitational models are certain
generalizations of general relativity which is tested reliably for weak fields
up to 0,001 (they may be viewed as some effective scalar-tensor theories in
simple variants in four dimensions) it is quite natural to inquire about their
possible observational or experimental windows. From what we already know,
among these windows are:

• possible deviations from the Newton and Coulomb laws,
• possible variations of the effective gravitational constant with a time rate

less than the Hubble one,
• possible existence of monopole modes in gravitational waves,
• different behaviour of strong field objects, such as multidimensional black

holes, wormholes and p-branes,
• standard cosmological tests etc.

As modern cosmology already became a unique laboratory for testing
standard unified models of physical interactions at energies that are far
beyond the level of existing and future man-made accelerators and other
installations on Earth, there exists a possibility of using cosmological and
astrophysical data for discriminating between future unified schemes.

As no accepted unified model exists, in our approach we adopt simple,
but general from the point of view of number of dimensions, models based
on multidimensional Einstein equations with or without sources of different
nature:

• cosmological constant,
• perfect and viscous fluids,
• scalar and electromagnetic fields,
• plus their interactions,
• fields of antisymmetric forms (related to p-branes) etc.

Our main objective was and is to obtain exact solutions (integrable mo-
dels) for these model self-consistent systems and then to analyze them in
cosmological, spherically and axially symmetric cases. In our view this is a
natural and most reliable way to study highly nonlinear systems. It is done
mainly within the Riemannian geometry. Some simple models in integrable
Weyle geometry and with torsion were studied also.
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1.1 Problem of Stability of G

Absolute G Measurements The value of the Newton’s gravitational con-
stant G as adopted by CODATA in 1986 is based on Luther and Towler
measurements of 1982.

Even at that time other existing on 100ppm level measurements deviated
from this value more than their uncertainties [12]. During last years the si-
tuation, after very precise measurements of G in Germany and New Zealand,
became much more vague. Their results deviate from the official CODATA
value from 600 ppm at minimal to 630 ppm at maximal values.

As it is seen from the most recent data announced in November 1998 at
the Cavendish conference in London the situation with terrestrail absolute G
measurements is not improving. The reported values for G (in units of 1011)
and their estimated error in ppm are as follows:

Fitzgerald and Armstrong 6.6742 90 ppm
6.6746 134

Nolting et al. (Zurich) 6.6749 210
Meyer et al. (Wuppethal) 6.6735 240
Karagioz et al. (Moscow) 6.6729 75
Richman et al. 6.683 1700
Schwarz et al. 6.6873 1400
CODATA (1986, Luther) 6.67259 128

This means that either the limit of terrestrial accuracies is reached or
we have some new physics entering the measurement procedure [13,14]. First
means that we should shift to space experiments to measure G [15] and second
means that more thorough study of theories generalizing Einstein’s general
relativity is necessary.

Data on Temporal Variations of G Dirac’s prediction based on his Large
Numbers Hypothesis is Ġ/G = (−5)10−11 year−1. Other hypotheses and
theories, in particular some scalar-tensor or multidimensional ones, predict
these variations on the level of 10−12 − 10−13 per year. As to experimental
or observational data, the results are rather nonconclusive. The most reliable
ones are based on Mars orbiters and landers (Hellings,1983) and on lunar
laser ranging (Muller et al., 1993; Williams et al., 1996). They are not better
than 10−12 per year [16]. Here once more we see that there is a need for
corresponding theoretical and experimental studies. Probably, future space
missions to other planets will be a decisive step in solving the problem of
temporal variations of G and defining the fates of different theories which
predict them as the larger is the time interval between successive measure-
ments and, of course, the more precise they are, the more stringent results
will be obtained.

Non-Newtonian Interactions (EP and ISL Tests) Nearly all modified
theories of gravity and unified theories predict also some deviations from the
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Newton law (ISL) or composite-dependant violation of the Equivalence Prin-
ciple (EP) due to an appearance of new possible massive particles (partners)
[11]. Experimental data exclude the existence of these particles nearly at all
ranges except less than millimeter and also at meters and hundreds of meters
ranges. The most recent result in the range of 20-500 m was obtained by
Achilli et al [17]. They found the positive result for the deviation from the
Newton law with the Yukawa potential strength alpha between 0,13 and 0,25.
Of course, these results need to be verified in other independent experiments,
probably in space ones.

1.2 Multidimensional Models

The history of multidimensional approach starts from the well-known papers
of T.K. Kaluza and O. Klein [18,19] on 5-dimensional theories which opened
an interest (see [20,21,22,23]) to investigations in multidimensional gravity.
These ideas were continued by P.Jordan [24] who suggested to consider the
more general case g55 �= const leading to the theory with an additional scalar
field. The papers [18,19,24] were in some sense a source of inspiration for C.
Brans and R.H. Dicke in their well-known work on the scalar-tensor gravi-
tational theory [25]. After their work a lot of investigations were done using
material or fundamental scalar fields, both conformal and nonconformal (see
details in [3]).

The revival of ideas of many dimensions started in 70th and continues
now. It is due completely to the development of unified theories. In the 70th
an interest to multidimensional gravitational models was stimulated mainly
by: i) the ideas of gauge theories leading to the non-Abelian generalization
of Kaluza-Klein approach and by ii) supergravitational theories [26,27]. In
the 80th the supergravitational theories were “replaced” by superstring mo-
dels [28]. Now it is heated by expectations connected with overall M-theory
or even some F-theory. In all these theories 4-dimensional gravitational mo-
dels with extra fields were obtained from some multidimensional model by a
dimensional reduction based on the decomposition of the manifold

M = M4 ×Mint,

where M4 is a 4-dimensional manifold and Mint is some internal manifold
(mostly considered as a compact one).

The earlier papers on multidimensional cosmology dealt with multidi-
mensional Einstein equations and with a block-diagonal cosmological metric
defined on the manifold M = IR×M0 × ...×Mn of the form

g = −dt⊗ dt+
n∑

r=0

a2r(t)gr

where (Mr, g
r) are Einstein spaces, r = 0, . . . , n [30]–[62]. In some of them a

cosmological constant and simple scalar fields were used also [104].
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In [40,41,45,50,51,57,69,70] the models with higher dimensional “perfect-
fluid” were considered. In these models pressures (for any component) are
proportional to the density

pr =
(

1− ur
dr

)
ρ,

r = 0, . . . , n, where dr is a dimension of Mr. Such models are reduced to
pseudo-Euclidean Toda-like systems with the Lagrangian

L =
1
2
Gij ẋ

iẋj −
m∑
k=1

Akeu
k
i x

i

and the zero-energy constraint E = 0. In a classical case exact solutions with
Ricci-flat (Mr, g

r) for 1-component case were considered by many authors
(see, for example, [38,39,50,51,69,70,97] and references therein). For the two
component perfect-fluid there were solutions with two curvatures, i.e. n =
2, when (d1, d2) = (2, 8), (3, 6), (5, 5) [106] and corresponding non-singular
solutions from [141]. Among the solutions [106] there exists a special class of
Milne-type solutions. Recently some interesting extensions of 2-component
solutions were obtained in [107].

It should be noted that the pseudo-Euclidean Toda-like systems are not
well-studied yet. There exists a special class of equations of state that gives
rise to the Euclidean Toda models. First such solution was considered in
[70] for the Lie algebra a2. Recently the case of an = sl(n + 1) Lie algebras
was considered and the solutions were expressed in terms of a new elegant
representation (obtained by Anderson) [105].

The cosmological solutions may have regimes with: i) spontaneous and
dynamical compactifications; ii) Kasner-like and billiard behavior near the
singularity; iii) inflation and izotropization for large times (see, for example,
[104,69]).

Near the singularity one can have an oscillating behavior like in the well-
known mixmaster (Bianchi-IX) model. Multidimensional generalizations of
this model were considered by many authors (see, for example, [29,76,77,78]).
In [79,80,81] the billiard representation for multidimensional cosmological
models near the singularity was considered and the criterion for the volume
of the billiard to be finite was established in terms of illumination of the unit
sphere by point-like sources. For perfect-fluid this was considered in detail in
[81]. Some interesting topics related to general (non-homogeneous) situation
were considered in [82].

Multidimensional cosmological models have a generalization to the case
when the bulk and shear viscosity of the “fluid” is taken into account [108].
Some classes of exact solutions were obtained, in particular nonsingular cos-
mological solutions, generation of mass and entropy in the Universe.

Multidimensional quantum cosmology based on the Wheeler-DeWitt
(WDW) equation

ĤΨ = 0,
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where Ψ is the so-called “wave function of the universe”, was treated first in
[52], (see also [64]). This equation was considered for the vacuum case in [52]
and integrated in a very special situation of 2-spaces. The WDW equation
for the cosmological constant and for the “perfect-fluid” was investigated in
[68,104] and [69] respectively.

Exact solutions in 1-component case were considered in detail in [97]
(for perfect fluid). In [60] the multidimensional quantum wormholes were
suggested, i.e. solutions with a special-type behavior of the wave function
(see [65]).

These solutions were generalized to account for cosmological constant in
[68,104] and to the perfect-fluid case in [69,97]. In [81] the “quantum billi-
ard” was obtained for multidimensional WDW solutions near the singularity.
It should be also noted that the “third-quantized” multidimensional cosmo-
logical models were considered in several papers [59,103,97]. One may point
out that in all cases when we had classical cosmological solutions in many
dimensions, the corresponding quantum cosmological solutions were found
also.

Cosmological solutions are closely related to solutions with the spherical
symmetry. Moreover, the scheme of obtaining them is very similar to the cos-
mological approach. The first multidimensional generalization of such type
was considered by D. Kramer [87] and rediscovered by A.I. Legkii [88], D.J.
Gross and M.J. Perry [89] ( and also by Davidson and Owen). In [91] the
Schwarzschild solution was generalized to the case of n internal Ricci-flat
spaces and it was shown that black hole configuration takes place when scale
factors of internal spaces are constants. In [92] an analogous generalization
of the Tangherlini solution [90] was obtained. These solutions were also ge-
neralized to the electrovacuum case [93,96,94]. In [95,94] multidimensional
dilatonic black holes were singled out. An interesting theorem was proved in
[94] that “cuts” all non-black-hole configurations as non-stable under even
monopole perturbations. In [98] the extremely-charged dilatonic black hole
solution was generalized to multicenter (Majumdar-Papapetrou) case when
the cosmological constant is non-zero.

We note that for D = 4 the pioneering Majumdar-Papapetrou solutions
with conformal scalar field and electromagnetic field were considered in [161].

At present there exists a special interest to the so-called M- and F-theories
etc. [4,6,7,8]. These theories are “supermembrane” analogues of superstring
models [28] in D = 11, 12 etc. The low-energy limit of these theories leads to
models governed by the Lagrangian

L = R[g]− hαβgMN∂Mϕ
α∂Nϕ

β −
∑
a∈∆

θa
na!

exp[2λa(ϕ)](F a)2,

where g is metric, F a = dAa are forms of rank F a = na, and ϕα are scalar
fields.
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In [143] it was shown that after dimensional reduction on the manifold
M0×M1× . . .×Mn and when the composite p-brane ansatz is considered the
problem is reduced to the gravitating self-interacting σ-model with certain
constraints imposed. For electric p-branes see also [141,142,144] (in [144] the
composite electric case was considered). This representation may be consi-
dered as a powerful tool for obtaining different solutions with intersecting p-
branes (analogs of membranes). In [143,168] the Majumdar-Papapetrou type
solutions were obtained (for non-composite electric case see [141,142] and for
composite electric case see [144]). These solutions correspond to Ricci-flat
(Mi, g

i), i = 1, . . . , n, and were generalized also to the case of Einstein inter-
nal spaces [143]. Earlier some special classes of these solutions were considered
in [126,127,128,146,147,148]. The obtained solutions take place, when certain
orthogonality relations (on couplings parameters, dimensions of “branes”,
total dimension) are imposed. In this situation a class of cosmological and
spherically-symmetric solutions was obtained [166]. Special cases were also
considered in [130,153,154,152]. The solutions with the horizon were conside-
red in details in [131,149,150,151,166]. In [151,167] some propositions related
to i) interconnection between the Hawking temperature and the singularity
behaviour, and ii) to multitemporal configurations were proved.

It should be noted that multidimensional and multitemporal generaliza-
tions of the Schwarzschild and Tangherlini solutions were considered in [96,
164], where the generalized Newton’s formulas in multitemporal case were
obtained.

We note also that there exists a large variety of Toda solutions (open or
closed) when certain intersection rules are satisfied [166].

In [166] (see also [158]) the Wheeler-DeWitt equation was integrated for
intersecting p-branes in orthogonal case and corresponding classical solutions
were obtained also. A slightly different approach was suggested in [155]. (For
non-composite case see also [154].)

In [159,169] exact solutions for multidimensional models with intersecting
p-branes in case of static internal spaces were obtained. They turned to be
de Sitter or anti- de Sitter type. Generation of the effective cosmological
constant and inflation via p-branes was demonstrated there. These solutions
may be considered as an interesting first step for a quantum description of
low-energy limits in different super-p-branes theories.

In this paper we continue our investigations of p-brane solutions (see for
example [112,113,148] and references therein) based on sigma-model approach
[143,142,144] . (For pure gravitational sector see [109,141].)

Here we consider a cosmological and/or spherically symmetric case , when
all functions depend upon one variable (time or radial variable). The model
under consideration contains several scalar fields and antisymmetric forms
and is governed by action (2.1).

The considered cosmological model contains some stringy cosmological
models (see for example [156]). It may be obtained (at classical level) from
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multidimensional cosmological model with perfect fluid [69,70] as a special
case.

Here we find a family of solutions depending on one variable describing
the (cosmological or spherically symmetric) “evolution” of (n + 1) Einstein
spaces in the theory with several scalar fields and forms. When an electro-
magnetic composite p-brane ansatz is adopted the field equations are reduced
to the equations for Toda-like system.

In the case when n “internal” spaces are Ricci-flat, one space M0 has a
non-zero curvature, and all p-branes do not “live” in M0, we find a family
of solutions (Section 4) to the equations of motion (equivalent to equations
for Toda-like Lagrangian with zero-energy constraint [166]) if certain block-
orthogonality relations on p-brane vectors Us are imposed. These solutions
generalize the solutions from [166] with orthogonal set of vectors Us. A special
class of “block-orthogonal” solutions (with coinciding parameters νs inside
blocks) was considered earlier in [167].

Here we consider a subclass of spherically-symmetric solutions (Sect. 5).
This subclass contains non-extremal p-brane black holes for zero values of
“Kasner-like” parameters. The relation for the Hawking temperature is pre-
sented (in the black hole case).

We also calculate Post-Newtonian parameters β and γ (Eddington para-
meters) for the spherically-symmetric solutions (Sect. 6). These parameters
may be useful for possible physical applications.

2 The Model

Here like in [143] we consider the model governed by the action

S =
1

2κ2

∫
M

dDz
√
|g|{R[g]− 2Λ− hαβ gMN∂Mϕ

α∂Nϕ
β (2.1)

−
∑
a∈∆

θa
na!

exp[2λa(ϕ)](F a)2g}+ SGH ,

where g = gMNdz
M ⊗ dzN is the metric (M,N = 1, . . . , D), ϕ = (ϕα) ∈ IRl

is a vector from dilatonic scalar fields, (hαβ) is a non-degenerate symmetric
l × l matrix (l ∈ IN), θa = ±1,

F a = dAa =
1
na!

F a
M1...Mna

dzM1 ∧ . . . ∧ dzMna (2.2)

is a na-form (na ≥ 1) on a D-dimensional manifold M , Λ is cosmological
constant and λa is a 1-form on IRl: λa(ϕ) = λaαϕ

α, a ∈ ∆, α = 1, . . . , l. In
(2.1) we denote |g| = |det(gMN )|,

(F a)2g = F a
M1...Mna

F a
N1...Nna

gM1N1 . . . gMnaNna , (2.3)
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a ∈ ∆, where ∆ is some finite set, and SGH is the standard Gibbons-Hawking
boundary term [163]. In the models with one time all θa = 1 when the
signature of the metric is (−1,+1, . . . ,+1).

The equations of motion corresponding to (2.1) have the following form

RMN − 1
2
gMNR = TMN − ΛgMN , (2.4)

�[g]ϕα −
∑
a∈∆

θa
λαa
na!

e2λa(ϕ)(F a)2g = 0, (2.5)

∇M1 [g](e2λa(ϕ)F a,M1...Mna ) = 0, (2.6)

a ∈ ∆; α = 1, . . . , l. In (2.5) λαa = hαβλaβ , where (hαβ) is matrix inverse to
(hαβ). In (2.4)

TMN = TMN [ϕ, g] +
∑
a∈∆

θae
2λa(ϕ)TMN [F a, g], (2.7)

where

TMN [ϕ, g] = hαβ

(
∂Mϕ

α∂Nϕ
β − 1

2
gMN∂Pϕ

α∂Pϕβ

)
, (2.8)

TMN [F a, g] =
1
na!

[
−1

2
gMN (F a)2g + naF

a
MM2...Mna

F
a,M2...Mna

N

]
. (2.9)

In (2.5), (2.6) �[g] and �[g] are Laplace-Beltrami and covariant derivative
operators respectively corresponding to g.

Let us consider the manifold

M = IR×M0 × . . .×Mn (2.10)

with the metric

g = we2γ(u)du⊗ du+
n∑

i=0

e2φ
i(u)gi, (2.11)

where w = ±1, u is a distinguished coordinate which, by convention, will be
called “time”; gi = gimini

(yi)dymi
i ⊗ dyni

i is a metric on Mi satisfying the
equation

Rmini
[gi] = ξig

i
mini

, (2.12)

mi, ni = 1, . . . , di; di = dimMi, ξi = const, i = 0, . . . , n; n ∈ IN. Thus,
(Mi, g

i) are Einstein spaces. The functions γ, φi: (u−, u+)→ IR are smooth.
Each manifold Mi is assumed to be oriented and connected, i = 0, . . . , n.

Then the volume di-form

τi =
√
|gi(yi)| dy1i ∧ . . . ∧ dydi

i , (2.13)

and the signature parameter

ε(i) = sign det(gimini
) = ±1 (2.14)
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are correctly defined for all i = 0, . . . , n.
Let

Ω0 = {∅, {0}, {1}, . . . , {n}, {0, 1}, . . . , {0, 1, . . . , n}} (2.15)

be a set of all subsets of
I0 ≡ {0, . . . , n}. (2.16)

Let I = {i1, . . . , ik} ∈ Ω0, i1 < . . . < ik. We define a form

τ(I) ≡ τi1 ∧ . . . ∧ τik , (2.17)

of rank
d(I) ≡

∑
i∈I

di, (2.18)

and a corresponding p-brane submanifold

MI ≡Mi1 × . . .×Mik , (2.19)

where p = d(I)− 1 (dimMI = d(I)). We also define ε-symbol

ε(I) ≡ ε(i1) . . . ε(ik). (2.20)

For I = ∅ we put τ(∅) = ε(∅) = 1, d(∅) = 0.
For fields of forms we adopt the following “composite electro-magnetic”

ansatz
F a =

∑
I∈Ωa,e

F (a,e,I) +
∑

J∈Ωa,m

F (a,m,J), (2.21)

where

F (a,e,I) = dΦ(a,e,I) ∧ τ(I), (2.22)

F (a,m,J) = e−2λa(ϕ) ∗
(
dΦ(a,m,J) ∧ τ(J)

)
, (2.23)

a ∈ ∆, I ∈ Ωa,e, J ∈ Ωa,m and

Ωa,e, Ωa,m ⊂ Ω0. (2.24)

(For empty Ωa,v = ∅, v = e,m, we put
∑
∅

= 0 in (2.21)). In (2.23) ∗ = ∗[g]

is the Hodge operator on (M, g).
For the potentials in (2.22), (2.23) we put

Φs = Φs(u), (2.25)

s ∈ S, where

S = Se � Sm, Sv ≡ �a∈∆{a} × {v} ×Ωa,v, (2.26)
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v = e,m. Here � means the union of non-intersecting sets. The set S consists
of elements s = (as, vs, Is), where as ∈ ∆, vs = e,m and Is ∈ Ωa,vs are
“color”, “electro-magnetic” and “brane” indices, respectively.

For dilatonic scalar fields we put

ϕα = ϕα(u), (2.27)

α = 1, . . . , l.
From (2.22) and (2.23) we obtain the relations between dimensions of

p-brane worldsheets and ranks of forms

d(I) = na − 1, I ∈ Ωa,e, (2.28)
d(J) = D − na − 1, J ∈ Ωa,m, (2.29)

in electric and magnetic cases respectively.

3 σ-Model Representation

Here, like in [166], we impose a restriction on p-brane configurations, or, equi-
valently, on Ωa,v. We assume that the energy momentum tensor (TMN ) has
a block-diagonal structure (as it takes place for (gMN )). Sufficient restric-
tions on Ωa,v that guarantee a block-diagonality of (TMN ) are presented in
Appendix 1.

It follows from [143] (see Proposition 2 in [143]) that the equations of
motion (2.4)–(2.6) and the Bianchi identities

dFs = 0, s ∈ S (3.1)

for the field configuration (2.11), (2.21)–(2.23), 2.25, (2.27) with the restric-
tions (8.2), (8.3) (from Appendix 1) imposed are equivalent to equations of
motion for σ-model with the action

Sσ =
µ∗
2

∫
duN

{
Gij φ̇

iφ̇j + hαβϕ̇
αϕ̇β (3.2)

+
∑
s∈S

εs exp[−2Us(φ, ϕ)](Φ̇s)2 − 2N−2V (φ)
}
,

where ẋ ≡ dx/du,

V = V (φ) = −wΛe2γ0(φ) +
w

2

n∑
i=0

ξidie−2φi+2γ0(φ) (3.3)

is the potential with

γ0(φ) ≡
n∑

i=0

diφ
i, (3.4)
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and
N = exp(γ0 − γ) > 0 (3.5)

is the lapse function,

Us = Us(φ, ϕ) = −χsλas
(ϕ) +

∑
i∈Is

diφ
i, (3.6)

εs = (−ε[g])(1−χs)/2ε(Is)θas (3.7)

for s = (as, vs, Is) ∈ S, ε[g] = sign det(gMN ), (more explicitly (3.7) reads
εs = ε(Is)θas for vs = e and εs = −ε[g]ε(Is)θas , for vs = m)

χs = +1, vs = e; (3.8)
χs = −1, vs = m, (3.9)

and
Gij = diδij − didj (3.10)

are components of the “pure cosmological” minisupermetric; i, j = 0, . . . , n
[52].

In the electric case (F (a,m,I) = 0) for finite internal space volumes Vi the
action (3.2) coincides with the action (2.1) if µ∗ = −w/κ20, κ2 = κ20V0 . . . Vn.

Action (3.2) may be also written in the form

Sσ =
µ∗
2

∫
duN

{
GÂB̂(X)ẊÂẊB̂ − 2N−2V (X)

}
, (3.11)

where X = (XÂ) = (φi, ϕα, Φs) ∈ RN , and minisupermetric

G = GÂB̂(X)dXÂ ⊗ dXB̂ (3.12)

on minisuperspace

M = IRN , N = n+ 1 + l + |S| (3.13)

(|S| is the number of elements in S) is defined by the relation

(GÂB̂(X)) =



Gij 0 0

0 hαβ 0

0 0 εse−2Us(X)δss′


 . (3.14)

The minisuperspace metric (3.12) may be also written in the form

G = Ḡ+
∑
s∈S

εse−2Us(x)dΦs ⊗ dΦs, (3.15)



226 V.D. Ivashchuk and V.N. Melnikov

where x = (xA) = (φi, ϕα),

Ḡ = ḠABdx
A ⊗ dxB = Gijdφ

i ⊗ dφj + hαβdϕ
α ⊗ dϕβ , (3.16)

(ḠAB) =
(
Gij 0
0 hαβ

)
, (3.17)

Us(x) = Us
Ax

A is defined in (3.6) and

(Us
A) = (diδiIs

,−χsλasα). (3.18)

Here

δiI ≡
∑
j∈I

δij =
1, i ∈ I
0, i /∈ I (3.19)

is an indicator of i belonging to I. The potential (3.3) reads

V = (−wΛ)e2U
Λ(x) +

n∑
j=0

w

2
ξjdje2U

j(x), (3.20)

where

U j(x) = U j
Ax

A = −φj + γ0(φ), (3.21)
UΛ(x) = UΛ

Ax
A = γ0(φ), (3.22)

(U j
A) = (−δji + di, 0), (3.23)

(UΛ
A) = (di, 0). (3.24)

The integrability of the Lagrange system (3.11) depends upon the scalar
products of co-vectors UΛ, U j , Us corresponding to Ḡ:

(U,U ′) = ḠABUAU
′
B , (3.25)

where

(ḠAB) =
(
Gij 0
0 hαβ

)
(3.26)

is matrix inverse to (3.17). Here (as in [52])

Gij =
δij

di
+

1
2−D, (3.27)

i, j = 0, . . . , n. These products have the following form

(U i, U j) =
δij
dj
− 1, (3.28)

(UΛ, UΛ) = −D − 1
D − 2

, (3.29)

(Us, Us′
) = q(Is, Is′) + χsχs′λas · λas′ , (3.30)

(Us, U i) = −δiIs
, (3.31)
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where s = (as, vs, Is), s′ = (as′ , vs′ , Is′) ∈ S,

q(I, J) ≡ d(I ∩ J) +
d(I)d(J)

2−D , (3.32)

λa · λb ≡ λaαλbβh
αβ . (3.33)

Relations (3.28)-(3.29) were found in [70] and (3.30) in [143].

4 Cosmological and Spherically Symmetric Solutions

Here we put the following restrictions on the parameters of the model

(i) Λ = 0, (4.1)

i.e. the cosmological constant is zero,

(ii) ξ0 �= 0, ξ1 = . . . = ξn = 0, (4.2)

i.e. one space is curved and others are Ricci-flat,

(iii) 0 /∈ Is, ∀s = (as, vs, Is) ∈ S, (4.3)

i.e. all “brane” manifolds MIs
(see (2.19)) do not contain M0.

We also impose a block-orthogonality restriction on the set of vectors
(Us, s ∈ S). Let

S = S1 � . . . � Sk, (4.4)

Si �= ∅, i = 1, . . . , k, and

(iv) (Us, Us′
) = d(Is ∩ Is′) +

d(Is)d(Is′)
2−D + χsχs′λasαλas′βh

αβ = 0, (4.5)

for all s = (as, vs, Is) ∈ Si, s′ = (as′ , vs′ , Is′) ∈ Sj , i �= j; i, j = 1, . . . , k.
Relation (4.4) means that the set S is a union of k non-intersecting (non-
empty) subsets S1, . . . , Sk. According to (4.5) the set of vectors (Us, s ∈ S)
has a block-orthogonal structure with respect to the scalar product (3.25),
i.e. it splits into k mutually orthogonal blocks (Us, s ∈ Si), i = 1, . . . , k.

From (i), (ii) we get for the potential (3.20)

V =
1
2
wξ0d0e2U

0(x), (4.6)

where
(U0, U0) =

1
d0
− 1 < 0 (4.7)

(see (3.28)).
From (iii) and (3.31) we get

(U0, Us) = 0 (4.8)
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for all s ∈ S. Thus, the set of co-vectors U0, Us, s ∈ S (belonging to dual space
(IRn+1+l)∗ � IRn+1+l) has also a block-orthogonal structure with respect to
the scalar product (3.25).

Here we fix the time gauge as follows

γ = γ0, N = 1, (4.9)

i.e the harmonic time gauge is used. Then we obtain the Lagrange system
with the Lagrangian

L =
µ∗
2
GÂB̂(X)ẊÂẊB̂ − µ∗V (4.10)

and the energy constraint

E =
µ∗
2
GÂB̂(X)ẊÂẊB̂ + µ∗V = 0. (4.11)

Here we will integrate the Lagrange equations corresponding to the La-
grangian (4.10) with the energy-constraint (4.11) and hence we will find clas-
sical exact solutions when the restrictions (8.2), (8.3) from Appendix 1 are
imposed.

The problem of integrability may be simplified if we integrate the Maxwell
equations (for s ∈ Se) and Bianchi identities (for s ∈ Sm):

d

du

(
exp(−2Us)Φ̇s

)
= 0⇐⇒ Φ̇s = Qs exp(2Us), (4.12)

where Qs are constants, s ∈ S.
Let

Qs �= 0, (4.13)

for all s ∈ S.
For fixed Q = (Qs, s ∈ S) the Lagrange equations for the Lagrangian

(4.10) corresponding to (xA) = (φi, ϕα), when equations (4.12) are substitu-
ted are equivalent to the Lagrange equations for the Lagrangian

LQ =
1
2
ḠABẋ

AẋB − VQ, (4.14)

where
VQ = V +

1
2

∑
s∈S

εsQ
2
s exp[2Us(x)], (4.15)

(ḠAB) and V are defined in (3.17) and (4.6) respectively. The zero-energy
constraint (4.11) reads

EQ =
1
2
ḠABẋ

AẋB + VQ = 0. (4.16)
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When the conditions (i)–(iv) are satisfied exact solutions to Lagrange
equations corresponding to (4.14) with the potential (4.15) and V from (4.6)
could be readily obtained using the relations from Appendix 2.

The solutions read:

xA(u) = − U0A

(U0, U0)
ln |f0(u)| −

∑
s∈S

ηsν
2
sU

sA ln |fs(u)|+ cAu+ c̄A. (4.17)

Functions f0 and fs in (4.17) are the following:

f0(u) = |ξ0(d0 − 1)|1/2 s(u− u0, wξ0, C0) = (4.18)∣∣∣∣ξ0(d0 − 1)
C0

∣∣∣∣
1/2

sh(
√
C0(u− u0)), C0 > 0, ξ0w > 0; (4.19)

∣∣∣∣ξ0(d0 − 1)
C0

∣∣∣∣
1/2

sin(
√
|C0|(u− u0)), C0 < 0, ξ0w > 0; (4.20)

∣∣∣∣ξ0(d0 − 1)
C0

∣∣∣∣
1/2

ch(
√
C0(u− u0)), C0 > 0, ξ0w < 0; (4.21)

|ξ0(d0 − 1)|1/2 (u− u0), C0 = 0, ξ0w > 0, (4.22)

and

fs(u) =
|Qs|
|νs| s(u− us,−ηsεs, Cs) = (4.23)

|Qs|
|νs||Cs|1/2 sh(

√
Cs(u− us)), Cs > 0, ηsεs < 0; (4.24)

|Qs|
|νs||Cs|1/2 sin(

√
|Cs|(u− us)), Cs < 0, ηsεs < 0; (4.25)

|Qs|
|νs||Cs|1/2 ch(

√
Cs(u− us)), Cs > 0, ηsεs > 0; (4.26)

|Qs|
|νs| (u− us), Cs = 0, ηsεs < 0, (4.27)

where C0, Cs, u0, us are constants, s ∈ S. The function s(u, ξ, C) is defined
in Appendix 2.

The parameters ηs = ±1, νs �= 0, s ∈ S, satisfy the relations
∑
s′∈S

(Us, Us′
)ηs′ν2s′ = 1, (4.28)

for all s ∈ S, with scalar products (Us, Us′
) defined in (3.30).

The constants Cs, us are coinciding inside blocks:

us = us′ , Cs = Cs′ , (4.29)
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s, s′ ∈ Si, i = 1, . . . , k (see relation (9.13) from Appendix 2). The ratios
εsQ

2
s/(ηsν

2
s ) are also coinsiding inside blocks, or, equivalently,

εsηs = εs′ηs′ (4.30)
Q2

s

ν2s
=
Q2

s′

ν2s′
, (4.31)

s, s′ ∈ Si, i = 1, . . . , k. Here we used the relations (4.7), (4.8).
The contravariant components UrA = ḠABUr

B are [166]

U0i = − δ
i
0

d0
, U0α = 0, (4.32)

Usi = GijUs
j = δiIs

− d(Is)
D − 2

, Usα = −χsλαas
. (4.33)

Using (4.17), (4.7), (4.33) and (4.32) we obtain

φi =
δi0

1− d0 ln |f0| −
∑
s∈S

ηsν
2
s

(
δiIs −

d(Is)
D − 2

)
ln |fs|+ ciu+ c̄i, (4.34)

and
ϕα =

∑
s∈S

ηsν
2
sχsλ

α
as

ln |fs|+ cαu+ c̄α, (4.35)

α = 1, . . . , l.
Vectors c = (cA) and c̄ = (c̄A) satisfy the linear constraint relations (see

(9.20) in Appendix 2)

U0(c) = U0
Ac

A = −c0 +
n∑

j=0

djc
j = 0, (4.36)

U0(c̄) = U0
Ac̄

A = −c̄0 +
n∑

j=0

dj c̄
j = 0, (4.37)

Us(c) = Us
Ac

A =
∑
i∈Is

dic
i − χsλasαc

α = 0, (4.38)

Us(c̄) = Us
Ac̄

A =
∑
i∈Is

dic̄
i − χsλasαc̄

α = 0, (4.39)

s ∈ S. The (3.4) reads

γ0(φ) =
d0

1− d0 ln |f0|+
∑
s∈S

d(Is)
D − 2

ηsν
2
s ln |fs|+ c0u+ c̄0. (4.40)

The zero-energy constraint reads (see Appendix 2)

E = E0 +
∑
s∈S

Es +
1
2
ḠABc

AcB = 0, (4.41)
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where E0 = C0(U0, U0)−1/2, Es = Cs(ηsν2s )/2. Using relations (3.10), (3.17),
(4.7) and (4.36) we rewrite (4.41) as

C0
d0

d0 − 1
=

∑
s∈S

Csν
2
sηs+hαβcαcβ+

n∑
i=1

di(ci)2+
1

d0 − 1

(
n∑

i=1

dic
i

)2

. (4.42)

From relation
exp(2Us) = f−2

s , (4.43)

following from (4.5), (4.8), (4.17), (4.38) and (4.39) we get for electric-type
forms (2.22)

Fs = Qsf
−2
s du ∧ τ(Is), (4.44)

s ∈ Se, and for magnetic-type forms (2.23)

Fs = e−2λa(ϕ) ∗ [Qsf
−2
s du ∧ τ(Is)

]
= Q̄sτ(Īs), (4.45)

s ∈ Sm, where Q̄s = Qsε(Is)µ(Is)w and µ(I) = ±1 is defined by the relation
µ(I)du∧τ(I0) = τ(Ī)∧du∧τ(I). The relation (4.45) follows from the formula
(5.26) from [143] (for γ = γ0).

Relations for the metric follows from (4.34) and (4.40)

g =
(∏
s∈S

[f2s (u)]ηsd(Is)ν2
s/(D−2)

){
[f20 (u)]d0/(1−d0)e2c

0u+2c̄0 (4.46)

×[wdu⊗ du+ f20 (u)g0] +
n∑

i=1

(∏
s∈S

[f2s (u)]−ηsν
2
sδiIs

)
e2c

iu+2c̄i

gi
}
.

Thus, here we obtained the “block-orthogonal” generalization of the
solution from [166]. This solution describes the evolution of n + 1 spaces
(M0, g0), . . . , (Mn, gn), where (M0, g0) is an Einstein space of non-zero
curvature, and (Mi, g

i) are “internal” Ricci-flat spaces, i = 1, . . . , n; in the
presence of several scalar fields and forms. The solution is presented by rela-
tions (4.35), (4.44)-(4.46) with the functions f0, fs defined in (4.18)–(4.27)
and the relations on the parameters of solutions cA, c̄A (A = i, α), C0,
Cs, us, Qs , ηs, νs (s ∈ S) imposed in (4.28)–(4.31), (4.36)–(4.39), (4.42),
respectively.

This solution describes a set of charged (by forms) overlapping p-branes
(ps = d(Is)− 1, s ∈ S) “living” on submanifolds (isomorphic to) MIs (2.19),
where the sets Is do not contain 0, i.e. all p-branes live in “internal” Ricci-flat
spaces.

The solution is valid if the dimensions of p-branes and dilatonic coupling
vector satisfy the relations (4.5). In “orthogonal” non-composite case these so-
lutions were considered in [154,153] (electric case) and [151] (electro-magnetic
case). For n = 1 see also [156,130]. In block-orthogonal (non-composite) case
a special class of solutions with ν2s coinciding inside blocks was considered
earlier in [167].
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5 Spherically Symmetric and Black Hole Solutions

Here we consider the spherically symmetric case

w = 1, M0 = Sd0 , g0 = dΩ2
d0
, (5.1)

where dΩ2
d0

is the canonical metric on a unit sphere Sd0 , d ≥ 2. We also
assume that

M1 = IR, g1 = −dt⊗ dt (5.2)

(here M1 is a time manifold) and

1 ∈ Is, ∀s ∈ S, (5.3)

i. e. all p-branes have a common time direction t.
For integration constants we put c̄A = 0,

cA = µ̄(b̄A − bA), (5.4)

b̄A = µ̄
∑
r∈S̄

ηrν
2
rU

rA − µ̄δA1 , (5.5)

C0 = µ̄2, (5.6)
Cs = µ̄2b2s, bs > 0, (5.7)

where µ̄ > 0, S̄ = {0} ∪ S and η0ν
2
0 = (U0, U0)−1.

The only essential restrictions imposed are the inequalities C0, Cs > 0
that cut a subclass in the class of solutions from Section 4. This subclass
contains non-extremal black hole solutions and its “Kasner-like” (non-black-
hole) deformations. For extremal black hole solutions one should consider
the special case C0 = Cs = 0. (For extremal black hole solutions and its
multicenter generalizations see [168].)

Due to (4.29) the parameters bs, s ∈ S, are coinciding inside blocks:

bs = bs′ , (5.8)

s, s′ ∈ Si, i = 1, . . . , k.
It may be verified that the restrictions (4.36) and (4.38) are satisfied

identically if and only if

U0(b) = U0
Ab

A = −b0 +
n∑

j=0

djb
j = 1, (5.9)

Us(b) = Us
Ab

A =
∑
i∈Is

dib
i − χsλasαb

α = 1, (5.10)

s ∈ S. This follows from identities U0(b̄) = 1 and Us(b̄) = 1, s ∈ S.
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Relation (4.42) reads

∑
s∈S

ηsν
2
s (b2s − 1) + hαβb

αbβ +
n∑

i=1

di(bi)2 +
1

d0 − 1

(
n∑

i=1

dib
i

)2

=
d0

d0 − 1
,(5.11)

where the relation (equivalent to (5.9) )

b0 =
1

1− d0


 n∑
j=1

djb
j − 1


 , (5.12)

is used.
Now we rewrite a solution (under restrictions imposed) in a so-called

“Kasner-like” form that is more suitable for analysing the behaviour at large
distances and for singling out the black hole solutions. For this reason we
introduce a new radial variable R = R(u) by relations

exp(−2µ̄u) = 1− 2µ
Rd̄

, µ = µ̄/d̄ > 0, d̄ = d0 − 1, (5.13)

u > 0, Rd̄ > 2µ. For the function

fs(u) =
|Qs|

2µ̄bs|νs| [exp(µ̄bs(u− us)) + ηsεs exp(−µ̄bs(u− us))] (5.14)

we put the restriction fs(0) = 1, or, equivalently,

exp(−µ̄bsus) + ηsεs exp(µ̄bsus) =
2µ̄bs|νs|
|Qs| . (5.15)

This restriction guarantees the asymptotical flatness of the (2+d0)-dimension-
al section of the metric in the limit R→ +∞ (or, when, u→ +0)). It follows
from (5.15) that us < 0 for ηsεs = −1. In any case fs(u) > 0 for u ≥ 0.

Then, solutions for the metric and scalar fields (see (4.35), (4.46)) may
be written as follows

g =
(∏
s∈S

H̄
2ηsd(Is)ν2

s/(D−2)
s

){
F b0−1dR⊗ dR +R2F b0dΩ2

d0
(5.16)

−
(∏
s∈S

H̄
−2ηsν

2
s

s

)
F b1dt⊗ dt+

n∑
i=2

(∏
s∈S

H̄
−2ηsν

2
sδiIs

s

)
F bi

gi
}
,

ϕα =
∑
s∈S

ηsν
2
sχsλ

α
as

ln H̄s +
1
2
bα lnF, (5.17)

where

F = 1− 2µ
Rd̄

, (5.18)

H̄s = ĤsF
(1−bs)/2, (5.19)

Ĥs = 1 + P̂s
(1− F bs)

2µbs
, (5.20)
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P̂s = −εsηsPs, (5.21)

Ps =
|Qs|
d̄|νs|

exp(µus) > 0, (5.22)

s ∈ S. Due to (4.29)-(4.31) parameters Ps and P̂s are coinciding inside blocks:

Ps = Ps′ , P̂s = P̂s′ , (5.23)

s, s′ ∈ Si, i = 1, . . . , k. Parameters bs are also coinciding inside blocks, see
(5.8). Parameters bs, bi, bα obey the relations (5.10)-(5.12).

The fields of forms are given by (2.22), (2.23) with

Φs =
νs
H ′

s

, (5.24)

H
′
s =

[
1− P ′

sĤ
−1
s

(1− F bs)
2µbs

]−1
, (5.25)

P
′
s = −Qs

νsd̄
. (5.26)

s ∈ S. It follows from (5.15), (5.20), (5.21) and (5.26) that

(P
′
s)2 = Ps(P̂s + 2bsµ) = −εsηsP̂s(P̂s + 2bsµ), (5.27)

s ∈ S. This relation is self-consistent, i.e. its left- and right-hand sides have
the same sign, since due to (5.15) and (5.22)

Ps < 2µbs (5.28)

for εsηs = +1 and hence
P̂s > −2bsµ, (5.29)

for all s ∈ S.

5.1 Black Hole Solutions

Here we show that the black hole solution from [168] may be obtained from
our spherically-symmetric solutions (5.16)-(5.27) when

b1 = bs = 1, bi = bα = 0, (5.30)

s ∈ S, i = 0, 2, . . . , n, α = 1, . . . , l.
Under relations (5.30) imposed the metric and scalar fields (5.16) and

(5.17) read

g =
(∏
s∈S

Ĥ
2ηsd(Is)ν2

s/(D−2)
s

){ dR⊗ dR
1− 2µ/Rd̄

+R2dΩ2
d0

(5.31)

−
(∏
s∈S

Ĥ
−2ηsν

2
s

s

)(
1− 2µ

Rd̄

)
dt⊗ dt+

n∑
i=2

(∏
s∈S

Ĥ
−2ηsν

2
sδiIs

s

)
gi
}
,

ϕα =
∑
s∈S

ηsν
2
sχsλ

α
as

ln Ĥs, (5.32)
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where µ > 0, Rd̄ > 2µ and

Ĥs = 1 +
P̂s

Rd̄
, P̂s > −2µ, (5.33)

P̂s �= 0, s ∈ S. Parameters P̂s are coinciding inside blocks (see (5.23)).
The fields of forms are given by (2.22), (2.23) with

Φs =
νs
H ′

s

, (5.34)

H
′
s =

(
1− P

′
s

ĤsRd̄

)−1
= 1 +

P
′
s

Rd̄ + P̂s − P ′
s

, (5.35)

s ∈ S. Here
(P

′
s)2 = −εsηsP̂s(P̂s + 2µ), (5.36)

and

εsηsP̂s < 0, (5.37)

s ∈ S. Parameters νs satisfy relations (4.28).
The solution obtained describes non-extremal charged p-brane black holes

with block-orthogonal intersection rules. The exteriour horizon corresponds
to Rd̄ → 2µ.

Let

εsηs = −1, (5.38)

s ∈ S. This restriction is satisfied in orthogonal case, when pseudo-Euclidean
p-branes in a space-time of pseudo-Euclidean signature are considered (in
this case all ε(Is) = −1, ε[g] = −1), all θs = +1 in the action (2.1) and
ηs = sign(Us, Us) = +1).

Under restrictions (5.38) imposed our solutions agree with the solutions
with orthogonal intersection rules from Refs. [131], [149], [150] (d1 = . . . =
dn = 1, ηs = +1), [151] (ηs = +1, non-composite case) and block-orthogonal
ones from [167] (for νs coinciding inside blocks).

Hawking Temperature. The Hawking temperature corresponding to the
solution is (see also [151,150])

TH(µ) =
d̄

4π(2µ)1/d̄
∏
s∈S

(
2µ

2µ+ P̂s

)ηsν
2
s

. (5.39)

For fixed P̂s > 0 (εsηs = −1) and µ → +0 we get TH(µ) → 0 for the
extremal black hole configurations [168] satisfying

ξ =
∑
s∈S

ηsν
2
s − d̄−1 > 0. (5.40)
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6 Post-Newtonian Approximation

Let d0 = 2. Here we consider the 4-dimensional section of the metric (5.16)

g(4) = U

{
F b0−1dR⊗ dR + F b0R2dΩ̂2

2 − U1F
b1dt⊗ dt

}
, (6.1)

where F = 1− (2µ/R), and

U =
∏
s∈S

H̄
2ηsd(Is)ν2

s/(D−2)
s , (6.2)

U1 =
∏
s∈S

H̄
−2ηsν

2
s

s , (6.3)

Ui =
∏
s∈S

H̄
−2ηsν

2
sδiIs

s , i > 1, (6.4)

R > 2µ.
We may suppose that some real astrophysical objects (e.g. stars) are de-

scribed by the 4-dimensional “physical” metric (6.1), i.e. they are “traces” of
extended multidimensional objects (charged p-branes).

Introducing a new radial variable ρ by the relation

R = ρ

(
1 +

µ

2ρ

)2

, (6.5)

(ρ > µ/2), we rewrite the metric (6.1) in a 3-dimensional conformally-flat
form

g(4) = U

{
−U1F

b1dt⊗ dt+ F b0
(

1 +
µ

2ρ

)4

δijdx
i ⊗ dxj

}
, (6.6)

F =
(

1− µ

2ρ

)2(
1 +

µ

2ρ

)−2

(6.7)

where ρ2 = |x|2 = δijx
ixj (i, j = 1, 2, 3).

For possible physical applications we should calculate the post-Newtonian
parameters β and γ (Eddington parameters) using the following relations
(see, for example, [170] and references therein)

g
(4)
00 = −(1− 2V + 2βV 2) +O(V 3), (6.8)

g
(4)
ij = δij(1 + 2γV ) +O(V 2), (6.9)

i, j = 1, 2, 3, where

V =
GM

ρ
(6.10)
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is the Newton’s potential, G is the gravitational constant, M is the gravita-
tional mass. From (6.6)-(6.10) we get

GM = µb1 +
∑
s∈S

ηsν
2
s [P̂s + (bs − 1)µ]

(
1− d(Is)

D − 2

)
(6.11)

and for GM �= 0

β − 1 =
1

2(GM)2
∑
s∈S

ηsν
2
s P̂s(P̂s + 2bsµ)

(
1− d(Is)

D − 2

)
(6.12)

γ − 1 = − 1
GM

[
µ(b0 + b1 − 1) +

∑
s∈S

ηsν
2
s [P̂s + (bs − 1)µ]

(
1− 2

d(Is)
D − 2

)]
.(6.13)

It follows from (5.27), (6.12) and the inequalities d(Is) < D − 2 (for all
s ∈ S) that the following inequalities take place

β > 1, if all εs = −1, (6.14)
β < 1, if all εs = +1. (6.15)

There exists a large variety of configurations with β = 1 when the relation
εs = const is broken.

There exist also non-trivial p-brane configurations with γ = 1.

Proposition. Let the set of p-branes consist of several pairs of electric and
magnetic branes. Let any such pair (s, s̄ ∈ S) correspond to the same colour
index, i.e. as = as̄, and P̂s = P̂s̄, bs = bs̄, ηsν2s = ηs̄ν

2
s̄ . Then for b0 + b1 = 1

we get

γ = 1. (6.16)

The Proposition can be readily proved using the relation d(Is) + d(Is̄) =
D − 2, following from (2.28) and (2.29).

Observational Restrictions. The observations in the solar system give the
tight constraints on the Eddington parameters [170]

γ = 1.000± 0.002 (6.17)
β = 0.9998± 0.0006. (6.18)

The first restriction is a result of the Viking time-delay experiment [171]. The
second restriction follows from (6.17) and the analysis of the laser ranging
data to the Moon. In this case a high precision test based on the calculation
of the combination (4β−γ−3) appearing in the Nordtvedt effect [173] is used
[172]. We note, that as it was pointed in [170] the “classic” tests of general
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relativity, i.e. the Mercury-perihelion and light deflection tests, are somewhat
outdated.

For small enough p̂s = P̂s/GM , bs−1, b1−1, bi (i > 1) of the same order
we get GM ∼ µ and hence

β − 1 ∼
∑
s∈S

ηsν
2
s p̂s

(
1− d(Is)

D − 2

)
(6.19)

γ − 1 ∼ −b0 − b1 + 1−
∑
s∈S

ηsν
2
s [p̂s + (bs − 1)]

(
1− 2

d(Is)
D − 2

)
, (6.20)

i.e. β − 1 and γ − 1 are of the same order. Thus for small enough p̂s, bs − 1,
b1−1, bi (i > 1) it is possible to fit the “solar system” restrictions (6.17) and
(6.18).

There exists also another possibility to satisfy these restrictions.

One Brane Case. Let us consider a special case of one p-brane. In this case
we have

ηsν
−2
s = d(Is)

(
1− d(Is)

D − 2

)
+ λ2. (6.21)

Relations (6.12), (6.13) and (6.21) imply that for large enough values of
(dilatonic coupling constant squared) λ2 and b0 + b1 = 1 it is possible to
perform the “fine tuning” the parameters (β, γ) near the point (1, 1) even if
the parameters P̂s are big.

7 Conclusions

In this paper we obtained exact solutions to Einstein equations for the multi-
dimensional cosmological model describing the evolution of n Ricci-flat spaces
and one Einstein space M0 of non-zero curvature in the presence of compo-
site electro-magnetic p-branes. The solutions were obtained in the block-
orthogonal case (4.5), when p-branes do not “live” in M0. We also considered
the spherically-symmetric solutions containing non-extremal p-brane black
holes [167,168]. The relations for post-Newtonian parameters β and γ are
obtained.
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Appendix 1: Restrictions on p-Brane Configurations

Restrictions on Ωa,v [166]. Let

w1 ≡ {i | i ∈ {0, . . . , n}, di = 1}. (8.1)

The set w1 describes all 1-dimensional manifolds among Mi (i ≥ 0). We
impose the following restrictions on the sets Ωa,v (2.24):

Wij(Ωa,v) = ∅, (8.2)

a ∈ ∆; v = e,m; i, j ∈ w1, i < j and

W
(1)
j (Ωa,m, Ωa,e) = ∅, (8.3)

a ∈ ∆; j ∈ w1. Here

Wij(Ω∗) ≡ {(I, J)|I, J ∈ Ω∗, I = {i} � (I ∩ J), J = {j} � (I ∩ J)}, (8.4)

i, j ∈ w1, i �= j, Ω∗ ⊂ Ω0 and

W
(1)
j (Ωa,m, Ωa,e) ≡ {(I, J) ∈ Ωa,m ×Ωa,e|Ī = {j} � J}, (8.5)

j ∈ w1. In (8.5)
Ī ≡ I0 \ I (8.6)

is “dual” set, (I0 = {0, 1, . . . , n}).
The restrictions (8.2) and (8.3) are trivially satisfied when n1 ≤ 1 and

n1 = 0 respectively, where n1 = |w1| is the number of 1-dimensional manifolds
among Mi. They are also satisfied in the non-composite case when all |Ωa,v| =
1. For n1 ≥ 2 and n1 ≥ 1, respectively, these restrictions forbid certain pairs
of two p-branes, corresponding to the same form F a, a ∈ ∆:

Appendix 2:
Solutions with Block-Orthogonal Set of Vectors

Let

L =
1
2
< ẋ, ẋ > −

∑
s∈S

As exp(2 < bs, x >) (9.1)

be a Lagrangian, defined on V × V , where V is a n-dimensional vector space
over IR, As �= 0, s ∈ S; S �= ∅, and < ·, · > is a non-degenerate real-valued
quadratic form on V . Let

S = S1 � . . . � Sk, (9.2)
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all Si �= ∅, and

< bs, bs′ >= 0, (9.3)

for all s ∈ Si, s′ ∈ Sj , i �= j; i, j = 1, . . . , k.
Let us suppose that there exists a set hs ∈ IR, hs �= 0, s ∈ S, such that

∑
s∈S

< bs, bs′ > hs′ = −1, (9.4)

for all s ∈ S, and

As

hs
=
As′

hs′
, (9.5)

s, s′ ∈ Si, i = 1, . . . , k, (the ratio As/hs is constant inside Si).
Then, the Euler-Lagrange equations for the Lagrangian (9.1)

ẍ+
∑
s∈S

2Asbs exp(2 < bs, x >) = 0, (9.6)

have the following special solutions

x(t) =
1
2

∑
s∈S

hsbs ln
[
y2s(t)

∣∣∣∣2As

hs

∣∣∣∣
]

+ αt+ β, (9.7)

where α, β ∈ V ,
< α, bs >=< β, bs >= 0, (9.8)

s ∈ S, and functions ys(t) �= 0 satisfy the equations

d

dt

(
y−1
s

dys
dt

)
= −ξsy−2

s , (9.9)

with

ξs = sign
(
As

hs

)
, (9.10)

s ∈ S, and coincide inside blocks:

ys(t) = ys′(t), (9.11)

s, s′ ∈ Si, i = 1, . . . , k. More explicitly

ys(t) = s(t− ts, ξs, Cs), (9.12)

where constants ts, Cs ∈ IR coincide inside blocks

ts = ts′ , Cs = Cs′ , (9.13)
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s, s′ ∈ Si, i = 1, . . . , k, and

s(t, ξ, C) ≡ 1√
C

sh(t
√
C), ξ = +1, C > 0; (9.14)

1√−C sin(t
√−C), ξ = +1, C < 0; (9.15)

t, ξ = +1, C = 0; (9.16)
1√
C

ch(t
√
C), ξ = −1, C > 0. (9.17)

For the energy

E =
1
2
< ẋ, ẋ > +

∑
s∈S

As exp(2 < bs, x >) (9.18)

corresponding to the solution (9.7) we have

E =
1
2

∑
s∈S

Cs(−hs) +
1
2
< α,α > . (9.19)

For dual vectors us ∈ V ∗ defined as us(x) =< bs, x >, ∀x ∈ V , we have
< us, ul >∗=< bs, bl >, where < ·, · >∗ is dual form on V ∗. The orthogonality
conditions (9.8) read

us(α) = us(β) = 0, (9.20)

s ∈ S.
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Open Issues

• A Anderson:
1. Question: Does there exist a variational formulation of hyperbolic

formulations of general relativity?
2. Question: Is the metric the right variable to quantise in quantum

gravity? If not, what is?
3. Question: Do there exist nontrivial strong field effects in black hole

collisions?
4. Question: Develop a perturbation theory for the intermediate stages

of binary collapse and connect the post-Newtonian regime with the
strong-field regime.
Construct realistic astrophysical data for numerical evolution.
Comment: J. York: Investigate sensitivity to initial conditions.

• J Barrow:
1. Question: Characterise parts of general classical cosmological so-

lutions (in vacuum or with a perfect fluid) as t → ±∞; consider
the constraints imposed by a nontrivial topology. In particular, does
there exist a nondecreasing functional like the area of event horizon?
Is there an infinite number of curvature oscillations?

2. Question: Define a black hole in a nonasymptotically flat universe.
Comment: T Jacobson: If there is no future singularity, take the
boundary of I−(γ).

3. Question: Prove that closed universes recollapse (with spherical
symmetry??) in vacuum or with a perfect fluid satisfying the strong
energy condition. Alternatively, provide necessary and sufficient con-
ditions under which recollapse always occurs.

4. Question: Find necessary and sufficient conditions for the compu-
tational equivalence problem for metrics to be Gödel undecidable.

• R Beig:
1. Question: Prove uniqueness of rotating black holes without unjusti-

fied analyticity assumptions.
• J G Cardoso:

1. Question: Find out whether one might develop a theory of wave
mappings in spacetimes with torsion. If so, give a physical interpre-
tation.

• Y Choquet-Bruhat:

S. Cotsakis and G.W. Gibbons (Eds.): Proceedings 1998, LNP 537, pp. 249–251, 2000.
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1. Question: Pass from Sobolev spaces to those admitting less regula-
rity. Prove existence and uniqueness theorems. (Include models with
lumps of matter.)
Comment: S W Hawking: Isn’t Nature C∞ or analytic? (Euc-
lidean quantum gravity works by analytic continuation.)
Reply: Y Choquet-Bruhat: It depends on the scale; it may be
true at micro scales, but at large scales it seems that discontinuities
occur.

2. Question: How does one pass between scales?
3. Question: Construct solutions of constraints with large variation of

TrKij .
Comment: It is easy to find them out with matter (e.g., expanding
and contracting universes). Can this be done in vacuo?

• T Christodoulakis:
1. Question: Does there exist a mathematical relation between classical

time reparameterisation and the hyperbolic nature of the Wheeler-
DeWitt equation? (Also with regard to the lack of L2 property.)
Comment: A Anderson: There exist classical solutions that do not
respect the Wheeler-DeWitt cone.

• G W Gibbons:
1. Examine the Dirichlet and Neumann problems for Euclidean Einstein

equations:
Question: Given a three-dimensional surface Σ3 and either a metric
gij (first fundamental form) or the extrinsic curvature Kij (second
fundamental form) on this surface, does there exist a four-dimensional
manifold M4 such that its boundary be precisely Σ3? If so, is it uni-
que?
Problem: In the case of the Dirichlet problem: how does the con-
vexity of the boundary affect the uniqueness?

2. Question: Extend and generalise uniqueness theorems for black ho-
les to higher dimensions and for p-branes.

• S W Hawking:
1. Question: What is the nature of gravitational entropy? Does it lead

to information loss?
2. Question: Does the Bekenstein boundary lead to UV cutoff making

the theory finite?
3. Question: Find a realistic M-theory cosmology.
4. Question: Understand the mechanism of SUSY breaking.
5. Question: What happens to somebody who falls into a large black

hole?
6. Question: How does one describe and calculate the final disappea-

rance of an evaporating black hole?
7. Question: How to distinguish TIPs inside the big crunch from those

which escape?
Comment: T Jacobson: Consider the case without big crunch.
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• T Ilmanen:
1. Question: Clarify the geometry and variational properties of mean

convex and marginally trapped closed 2-surfaces.
2. Question: Interrelate the mass proofs.
3. Question: Minimise adm mass by extending a fragment Ω of the

manifold.
4. Question: Construct vacuum examples of cosmic censorship viola-

tion; is it easier in higher dimensions?
• T Jacobson:

1. Question: Does there exist a Regge calculus (classical) resolution of
Schwarzschild singularities?
Comment: G W Gibbons: Find the Regge calculus analogue of
adm mass.

2. Question: Is the generalised second law true with higher derivatives?
3. Question: How general are the Penrose inequalities?

Comment: G W Gibbons: State and prove as many as you can.
• Z Perjes:

1. Question: Develop the current post-Newtonian formalisms up to a
point where one could treat binary star coalescence.

2. Question: Get a rotating star solution in the exact solutions book.
• I Racz:

1. Question: Give a clean mathematical formulation of the possible
final states of gravitational collapse and states which are attained (
cf. Christodoulou in the spherically symmetric collapse with a scalar
field.)

• G Savvidis:
1. Question: Given that geometry and metric fluctuate, why does Rip

van Winkle1 awake to find his friends still discussing quantum gra-
vity?

• S Cotsakis:
1. Question: Does there exist a description of black hole entropy in

terms of membranes near the horizon, for all types of black holes?
• J York:

1. Question: On behalf of K Kuchar: What is the nature of time in
quantum cosmology?
Addendum: J York: Is this the correct question?

2. Question: Will a satisfactory theory of quantum gravity allow us to
retain a useful concept of mass-energy?

3. Question: Will formulating quantum gravity teach us something
new about quantum mechanics?

4. Question: Can a black hole be described entirely in terms of quasi-
normal modes?

1 Recall the story of Rip van Winkle who slept from the Dutch period into the
days of George Washington, a period of some two hundred years.
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