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Preface

Gravitational waves today represent a hot topic, which promises to play a central
role in astrophysics, cosmology and theoretical physics.

Technological developments have led us to the brink of their direct
observation, which could become a reality in the coming years.

The direct observation of gravitational waves will open an entirely new
field; gravitational wave astronomy. This is expected to bring a revolution in
our knowledge of the universe by allowing the observation of hitherto unseen
phenomena such as coalescence of compact objects (neutron stars and black
holes), fall of stars into supermassive black holes, stellar core collapses, big-bang
relics and the new and unexpected.

During Spring 1999, the SIGRAV—Societ`a Italiana di Relativit`a e
Gravitazione (Italian Society of Relativity and Gravitation) sponsored the
organization of a doctoral school on ‘Gravitational Waves in Astrophysics,
Cosmology and String Theory’, which took place at the Center for Scientific
Culture ‘Alessandro Volta’ located in the beautiful environment of Villa Olmo
in Como, Italy.

This book brings together the courses given at the school and provides
a comprehensive review of gravitational waves. It includes a wide range of
contributions by leading scientists in the field. Topics covered are: the basics
of GW with some recent advanced topics, GW detectors, the astrophysics of GW
sources, numerical applications and several recent theoretical developments. The
material is written at a level suitable for postgraduate students entering the field.

The main financial support for the School came from the University
of Insubria at Como-Varese. Other contributors were the Department of
Chemical, Physical and Mathematical Sciences of the same University, the
Physics Departments of the Universities of Milan and Turin, and the Institute
of Physics of Interplanetary Space—CNR, Frascati.

We are grateful to all the members of the scientific organizing committee
and to the scientific coordinator of Centro Volta, Professor G Casati, for their
invaluable help.

We also acknowledge the essential organizational support of the secretarial
conference staff of Centro Volta, in particular of Chiara Stefanetti.

I Ciufolini, V Gorini, U Moschella and P Fr é
Como

12 June 2000

xiii



Chapter 1

Gravitational waves, theory and experiment
(an overview)

Ignazio Ciufolini1 and Vittorio Gorini2
1 Dipartimento di Ingegneria dell’Innovazione, University of
Lecce, Italy
E-mail: ciufoli@nero.ing.uniroma1.it
2 Department of Chemical, Mathematical and Physical Sciences
University of Insubria at Como, Italy
E-mail: gorini@fis.unico.it

General relativity and electrodynamics display profound similarities and yet
fundamental differences [1, 2]. In this connection, it may be interesting to point
out some historical analogies between the two fields.

The enormous success of Maxwell’s equations did not rest only in the
fact that they incorporated, together with the Lorentz force equation, all the
laws of electricity and magnetism, but also that on their basis James Clerk
Maxwell (1831–1879) was able (in 1873) to predict the existence of a solution
consisting of electric and magnetic fields changing in time, carrying energy and
propagating with speedc in vacuum: the electromagnetic waves. Nevertheless,
some distinguished physicists, such as Lord Kelvin, had serious doubts about the
existence of such waves: ‘The so-called “electromagnetic theory of light” has not
helped us hitherto . . . it seems to me that it is rather a backward step . . . the one
thing about it that seems intelligible to me, I do not think is admissible . . . that
there should be an electric displacement perpendicular to the line of propagation’.
However, in 1887, eight years after Maxwell’s death, electromagnetic waves
were both generated and detected by Heinrich Hertz (1857–1894); then, in 1901,
Guglielmo Marconi transmitted and received signals across the Atlantic Ocean.

In the twentieth century the detection and study of electromagnetic waves,
other than visible light, opened a new era of dramatic changes in the knowledge of
our universe: cosmic radio waves, discovered in the 1930s, revealed in subsequent

1



2 Gravitational waves, theory and experiment (an overview)

decades colliding galaxies; quasars with dimensions of the order of the solar
system but having luminosities orders of magnitude larger than our galaxy;
enormous jets from galactic nuclei and quasars reaching lengths of hundreds of
thousands of light years, rapidly rotating pulsars with rotational periods of a few
milliseconds and, not least, the cosmic microwave background, a relic of the hot
big bang. X-rays revealed accretion disks about black holes and neutron stars.
Similarly, millimetre, infrared and ultraviolet radiation, and gamma rays opened
other dramatic windows of knowledge on our universe.

In the same way, in general relativity [1, 2], Einstein’s field equations
(1915) not only described the gravitational interaction via the spacetime curvature
generated by mass-energy, but also contained, through the Bianchi identities, the
equations of motion of matter and fields, and on their basis Albert Einstein,
in 1916, a few months after the formulation of the theory, predicted the
existence of curvature perturbations propagating with speedc on a flat and empty
spacetime; the gravitational waves [4]. Einstein’s gravitational-wave theory was a
linearized theory treating weak waves as weak perturbations of a flat background
[1, 3, 5]. Similarly to what happened when electromagnetic waves were first
predicted, some distinguished physicists had serious doubts about their existence.
Arthur Eddington thought that these weak-field solutions of the wave equation
obtained from Einstein’s field equations were just coordinate changes which were
‘propagating . . . with the speed of thought’ [6].

The linearized theory of gravitational waves had its limits because the linear
approximation is not valid for sources where gravitational self-energy is not
negligible. It was only in 1941 that Landau and Lifshitz [7] described the emission
of gravitational waves by a self-gravitating system of slowly moving bodies.
However, in the following years there were serious doubts about the reality of
gravitational waves and not until 1957 did a gedanken experiment by Hermann
Bondi show that gravitational waves do indeed carry energy [8].

This thought experiment was based on a system of two beads sliding on
a stick with only a slight friction opposing their motion. If a plane gravitational
wave impinges on this system, the beads move back and forth on the stick because
of the change in the proper distance between them due to the change of the
metric, i.e. to the gravitational-wave perturbation; this change is governed by the
geodesic deviation equation and the proper dispacement between the two beads
is a function of the gravitational-wave metric perturbation. Thus, the friction
between beads and stick heats the system and thus increases the temperature of
the stick. Therefore, since there is an energy transfer from gravitational waves
to the system in the form of increased temperature of the system, this thought
experiment showed that gravitational waves do indeed carry energy and are a real
physical entity [1,8].

It is interesting to note that in 1955 John Archibald Wheeler had devised
the conceivable existence of a body with no ‘mass’ built up by gravitational
or electromagnetic, radiation alone [9]. Indeed, an object can, in principle,
be constructed out of gravitational radiation or electromagnetic radiation, or
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a mixture of the two, and may hold itself together by its own gravitational
attraction. A collection of radiation held together in this way, is called a geon
(gravitational electromagnetic entity) and studied from a distance, such an object
would present the same kind of gravitational attraction as any other mass. Yet,
nowhere inside the geon is there a place where there is ‘mass’ in the conventional
sense of the term. In particular, for a geon made of pure gravitational radiation—
a gravitational geon—there is no local measure of energy, yet there is global
energy. The gravitational geon owes its existence to a dynamical localized—but
everywhere regular—curvature of spacetime, and to nothing more. Thus, a geon
is a collection of electromagnetic or gravitational-wave energy, or a mixture of
the two, held together by its own gravitational attraction, that was described by
Wheeler as ‘mass without mass’.

In the 1960s, Joseph Weber began the experimental work to detect
gravitational waves. He was essentially alone in this field of research [10]. Then,
the theoretical work of Wheeler, Bondi, Landau and Lifshitz, Isaacson, Thorne
and others and the experimental work of Weber, Braginski, Amaldi and others
opened a new era of research in this field. In 1972 Steven Weinberg wrote ‘. . .
gravitational radiation would be interesting even if there were no chance of ever
detecting any, for the theory of gravitational radiation provides a crucial link
between general relativity and the microscopic frontiers of physics’ [11].

Today gravitational waves, both theory and experiment, are one of the main
topics of research in general relativity and gravitation [3].

In the same way as electromagnetic waves other than visible light, that is
radio, millimetre, infrared, ultraviolet, x-ray and gamma-ray astronomy opened
new windows and brought radical changes in our knowledge of the universe,
gravitational-wave astronomy is expected to bring a revolution in our knowledge
of the universe by observing new exotic phenomena such as formation and
collision of black holes, fall of stars into supermassive black holes, primordial
gravitational waves emitted just after the big bang. . . . Nevertheless, today,
about 85 years after the prediction of gravitational waves by Einstein, the only
evidence for their actual existence is indirect and comes from the observation
of the energy loss from the binary pulsar system PSR 1913+16, discovered in
1974 by Hulse and Taylor [12]. Quite remarkably, though of no surprise, the
observed energy loss of the binary pulsar is in agreement with the theoretical
prediction by general relativity for the energy loss by gravitational radiation
emitted by a binary system, to within less than 0.3% error (in this respect, it
might be interesting to note here that, in regard to the field that in general
relativity is formally analogous to the magnetic field in electrodynamics, i.e. the
so-called gravitomagnetic field, predicted by Lense and Thirring in 1916, the
first evidence and measurement of the existence of such an effect on Earth’s
satellites, due to the Earth’s rotation, was published only in 1996, that is 80
years after the derivation of the effect [13]). Thus, today, together with the
enormous experimental efforts to detect gravitational waves, from bar detectors
to laser interferometers on Earth, GEO-600, LIGO, VIRGO,. . . , andfrom laser
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interferometers in space, LISA, to Doppler tracking of interplanetary spacecrafts,
there is, aimed at increasing the chances of future detections, a strongly related
theoretical and computational work to understand and predict the emission or
gravitational waves from astrophysical systems in strong field conditions [3]. In
this book contributions of leading experts in the field of gravitational waves, both
theoretical and experimental, are presented.

The basic contribution by Bernard Schutz and Franco Ricci deals with the
main features of gravitational waves, sources and detectors. The contribution
is divided into six chapters and some chapters are followed by a few exercises.
The first chapter describes the linearized theory and the fundamental properties
of weak gravitational waves, perturbations of a flat background, analysed in
the so-called transverse-traceless gauge. The second and third chapters deal
with detectors and astrophysical sources; in particular an overview is presented
of the most important detectors under construction (their physics, sensitivity
and opportunity for the future) and the main expected sources of gravitational
waves, such as binary systems, neutron stars, pulsars,γ -ray bursts, etc. The
fourth chapter deals with the mathematical theory of waves in general, stress-
energy tensor and energy carried by gravitational waves. The subsequent chapter
describes radiation generation in linearized theory: mass- and current-quadrupole
radiation, i.e. the quadrupole formulae for the outgoing flux of gravitational-wave
energy emitted by a system characterized by slow motion. Finally, the last chapter
describes some applications of radiation theory to some sources: binary systems
and especiallyr-modesof neutron stars.

The contribution by Guido Pizzella deals with bar detectors of gravitational
waves. A gravitational-wave resonant detector is usually a cylindrical bar
of length L. The small changeδL in the length of the whole bar at the
fundamental resonance angular frequency,ω0, can be described by the solution of
the equation of a harmonic oscillator, with resonance angular frequencyω 0 (with
a supplementary 4/π 2 factor obtained by solving the problem of a continuous
bar). In a gravitational-wave resonant detector the mechanical oscillations of
the bar induced by a gravitational wave are converted by an electromechanical
transducer into electric signals which are amplified with a low noise amplifier,
such as a dc SQUID. Then the data analysis is performed. Using a resonant
antenna one measures the Fourier component of the metric perturbation near
the antenna resonance frequencyω0. The typical damping time of the resonant
detector is 2Q/ω0, whereQ is the so-called quality factor of the resonant detector.
The ultimate sensitivity of bar antennae to a fractional change in dimension due
to a short burst of gravitational radiation has been estimated to be of the order
of 10−20 or 10−21. Bar detectors, usually 3 m long aluminum bars, work at a
typical frequency of about 103 Hz. Resonant antennae were first built by J Weber,
around 1960, at the University of Maryland. Subsequently, gravitational-wave
resonant detectors have been operated by the following universities: Beijing,
Guangzhou, Louisiana, Maryland, Moscow, Rome, Padua, Stanford, Tokyo and
Western Australia at Perth. The contribution of Pizzella deals with the bandwidth
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and the sensitivities of resonant detectors. It is shown that it might be possible to
reach a frequency bandwidth up to 50 Hz. The sensitivity of five cryogenic bar
detectors in operation, ALLEGRO, AURIGA, EXPLORER, NAUTILUS AND
NIOBE is then discussed.

The paper by Angela Di Virgilio treats laser interferometers on Earth
and in particular the Italian–French antenna VIRGO. Gravitational-wave laser-
interferometers on Earth will operate in the frequency range between 104 Hz and
a few tens of hertz. Various types of gravitational-wave laser interferometers have
been proposed, among which are the standard Michelson and Fabry–Perot types.
A Michelson-type gravitational-wave laser interferometer is essentially made of
three masses suspended with wires at the ends of two orthogonal arms of length
l . When a gravitational-wave with reduced wavelengthλGW � l is impinging,
for example, perpendicularly to this system, variations in the metric perturbation
h due to the gravitational wave will, in turn, produce oscillations in the difference
between the proper lengths of the two armsδl (t) and therefore oscillations in the
relative phase of the laser light at the beamsplitter; thus, they will finally produce
oscillations in the intensity of the laser light measured by the photodetector. If
the laser light will travel back and forth between the test masses 2N times (N =
number of round trips), then the variation of the difference between the proper
lengths of the two arms will be (assumingNl � λGW): �l = 2Nlh(t), and
therefore, the relative phase delay due to the variations inδl will be:

�φ = �l

λL̄
= 2Nl

λL̄
h(t),

whereλL̄ is the reduced wavelength of the laser light.
For most of the fundamental limiting factors of these Earth-based detectors,

such as seismic noise, photon shot noise, etc. . . , the displacement noise is
essentially independent from the arms lengthl . Therefore, by increasingl one
increases the sensitivity of the detectors.

Two antennae with 4 km arm lengths in the USA, the MIT and Caltech
LIGOs, should reach sensitivities to bursts of gravitational radiation of the order
of h ∼ 10−20–10−21 between 1000 and 100 Hz. GEO-600 is an underground
600 m laser interferometer built by the University of Glasgow and the Max-
Planck-Institutes for Quantum Optics and for Astrophysics at Garching. TAMA
is a 300 m antenna in Japan and ACIGA is a 3 km antenna planned in Australia.
The paper of Di Virgilio describes the 3 km laser interferometer VIRGO, built
by INFN of Pisa together with the University of Paris-Sud at Orsay, that should
reach frequencies of operation as low as a few tens of hertz, using special filters
to eliminate the seismic noise at these lower frequencies. The ultimate burst
sensitivity for all of the above large interferometers is currently estimated to be of
the order of 10−22 or 10−23 at frequencies near 100 Hz.

The paper of Peter Bender describes the space gravitational-wave detector
LISA (Laser Interferometer Space Antenna). Below about 10 Hz the sensitivity
of Earth-based gravitational-wave detectors is limited by gravity gradients
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variations. Even for perfect isolation of a detector from seismic and ground noise,
an Earth-detector would still be affected by the time changes in the gravity field
due to density variations in the Earth and its atmosphere. Due to this source of
noise the sensitivity has been calculated to worsen as roughly the inverse fourth
power of the frequency.

Therefore, to avoid this type of noise and to reduce noise from other sources,
one should use an interferometer far from Earth and with very long arms. Indeed,
to detect gravitational waves in the range of frequencies between about 10−4 and
1 Hz, Bender proposes to orbit in the solar system a space interferometer made of
three spacecraft at a typical distance from each other of 5000 000 km.

Although the phase measurement system and the thermal stability are
essential requirements, it is the main technological challenge of this experiment
to keep very small the spurious accelerations of the test masses. A drag
compensating system will be able to largely reduce these spurious accelerations.

Considering all the error sources, it has been calculated that, for periodic
gravitational waves, with an integration time of about one year, LISA should reach
a sensitivity able to detect amplitudes ofh ∼ 10−23, in the range of frequencies
between 10−3 and 10−2 Hz, amplitudes fromh ∼ 10−20 to about 10−23 between
10−4 and 10−3 Hz, and amplitudes fromh ∼ 10−22 to about 10−23 between 1
and 10−2 Hz.

Therefore, comparing the LISA sensitivity to the predicted theoretical
amplitudes of gravitational radiation at these frequencies, LISA should be able
to detect gravitational waves from galactic binaries, including ordinary main-
sequence binaries, contact binaries, cataclysmic variables, close white dwarf
binaries, neutron star and black hole binaries. The LISA sensitivity should also
allow detection of possible gravitational pulses from distant galaxies from the
inspiral of compact objects into supermassive black holes in Active Galactic
Nuclei and from collapse of very massive objects to form black holes. LISA
should also allow us to detect the stochastic background due to unresolved binary
systems.

The contribution by Francesco Fucito treats spherical shape antennae and
the detection of scalar gravitational waves. General relativity predicts only two
independent states of polarization of a weak gravitational wave, the so-called
‘×’ and ‘+’ ones. Nevertheless, metric theories of gravity alternative to general
relativity and non-metric theories of gravity predict different polarization states
(up to six components in metric theories [14]). For example, the Jordan–Brans–
Dicke theory predicts also an additional scalar component of a gravitational
wave and, as the author explains, string theory could also imply the existence
of other components. In this paper the possibility is described of placing limits
on, or detecting, these additional polarizations of a gravitational wave, thus
testing theories of gravity alternative to general relativity, by using spherical shape
detectors. Spheroidal detectors of gravitational waves of two types are discussed,
standard and hollow spherical ones.

The paper by Babusci, Foffa, Losurdo, Maggiore, Matone and Sturani
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treats stochastic gravitational waves. As the authors explain, the stochastic
gravitational-wave background (SGWB) is a random background of gravitational
waves without any specific sharp frequency component that might give
information about the very early stages of our universe. It is important to note that
relic cosmological gravitational waves emitted near the big bang might provide
unique information on our universe at a very early stage. Indeed, as regards the
cosmic microwave background radiation, electromagnetic waves decoupled a few
105 years after the big bang, whereas relic cosmological gravitational waves, the
authors explain, might come from times as early as a few 10−44 s. The authors
discuss that, in order to increase the chances of detecting a stochastic background
of gravitational waves, the correlation of the outputs between two, or more,
detectors would be convenient. Thus, after discussing three different detectors:
laser interferometers, cylindrical bars and spherical antennae, the authors present
various possibilities of correlation, between two laser interferometers (VIRGO,
LIGOs, GEO-600 and TAMA-300), and between a laser interferometer and a
cylindrical bar (AURIGA, NAUTILUS, EXPLORER) or a spherical antenna; they
also discuss correlation between more than two detectors.

In the second part of this paper they discuss sources of the background of
stochastic gravitational waves: topological defects in the form of points, lines
or surfaces, called monopoles, cosmic strings and domain walls. In particular,
they discuss cosmic strings and hybrid defects; inflationary cosmological models;
string cosmology; and first-order phase transitions which occurred in the early
stage of the expansion of the universe, for example in GUT-symmetry breaking
and electroweak-symmetry breaking. Finally, they discuss astrophysical sources
of stochastic gravitational waves. The conclusion is that the frequency domain
of cosmological and astrophysical sources of stochastic gravitational waves
might be very different and thus, the authors conclude, the astrophysical
backgrounds might not mask the detection of a relic cosmological gravitational-
wave background at the frequencies of the laser interferometers on Earth.

The contribution by Nicolai and Nagar deals with the symmetry properties
of Einstein’s vacuum field equations when the theory is reduced from four to two
dimensions, namely in the presence of two independent spacelike commuting
Killing vectors. Under these conditions, and using the vierbein formalism, the
authors show that one can use a Kaluza–Klein ansatz to rewrite the Einstein–
Hilbert Lagrangian in the form of two different two-dimensionally reduced
Lagrangians named the Ehlers and Matzner–Misner ones, respectively, after the
people who first introduced them. Each of these two Lagrangians represents
two-dimensional reduced gravity in the conformal gauge as given by a part of
pure two-dimensional gravity, characterized by a conformal factor and a dilaton
field plus a ‘matter part’ given by two suitable bosonic fields. In either case, the
matter part has a structure of a nonlinear sigma model with an SL(2,R)/SO(2)
symmetry. These two different nonlinear symmetries can be combined into a
unified infinite-dimensional symmetry group of the theory, called the Geroch
group, whose Lie algebra is an affine Kac–Moody algebra, and whose action on
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the matter fields is both nonlinear and non-local. The existence of such an infinite-
dimensional symmetry guarantees that the two-dimensionally reduced nonlinear
field equations are integrable. This can be shown in a standard way by exploiting
the symmetry to prove the equivalence of the theory to a system of linear
differential equations whose compatibility conditions yield just the nonlinear
equations that one wants to solve. As an example of the application of the
method to the construction of exact solutions of the two-dimensionally reduced
Einstein’s equations, the results are employed to derive the exact expression of
the metric which describe colliding plane gravitational waves with collinear and
non-collinear polarization.

Gasperini’s contribution deals with string cosmology and with the basic ideas
of the so-called pre-big bang scenario of string cosmology. Then it treats the
interesting problem of observable effects in different cosmological models, and
in particular the so-called background of relic gravitational waves, comparing it
with the expected sensitivities of the gravitational-wave detectors. The conclusion
is that the sensitivity of the future advanced detectors of gravitational waves may
be capable of detecting the background of gravitational waves predicted in the
pre-big bang scenario of string cosmology and thus these detectors might test
different cosmological models and also string theory models.

The paper by Bini and De Felice studies the problem of the behaviour
of a test gyroscope on which a plane gravitational wave is impinging. The
authors analyse whether there might be observable effects, i.e. a precession of
the gyroscope with respect to a suitably defined frame of reference that is not
Fermi–Walker transported.

The contribution by Luc Blanchet deals with the post-Newtonian
computation of binary inspiral waveforms. In general relativity, the orbital phase
of compact binaries, when gravitational radiation emitted is considered, is not
constant as it is in the Newtonian calculation, but is a complex, nonlinear function
of time, depending on small post-Newtonian corrections. For the data analysis
on detectors, a formula containing at least the 3PN (third-post-Newtonian) order
beyond the quadrupole formalism (see the contribution by Schutz and Ricci) is
needed, that is a formula including terms of the order of(v/c) 6 (wherev is
a typical velocity in the source andc is the speed of light). Blanchet’s paper
thus treats the derivation of the third-post-Newtonian formula for the emission of
gravitational radiation from a self-gravitating binary system.

The paper by Ed Seidel deals with numerical relativity. Among the
astrophysical sources of gravitational radiation that might be detected by laser
interferometers on Earth there is the spiralling coalescence of two black holes
or neutron stars. However, gravitational waves are so weak at the detectors on
Earth that, as Seidel explains in his paper, one needs to know the waveform in
order to reliably detect them, in other words gravitational-wave signals can be
interpreted and detected only by comparing the observational data with a set of
theoretically determined ‘waveform templates’. Unfortunately, we can solve the
Einstein’s field equations (coupled, nonlinear partial differential equations) only
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in especially simple cases. Thus, to find solutions of the Einstein’s equations,
for example in a system with emission of gravitational radiation, we need to find
numerical solutions of these field equations, i.e. we neednumerical relativity.
Nevertheless, even the numerical approach to the emission of gravitational waves
in strong field is extremely difficult and computer-time consuming. For example,
as Seidel explains, the computer simulation of the coalescence of a compact object
binary will require several years of super-computer time. However, special codes
to solve the complete set of Einstein’s equations have been designed that run very
efficiently on large-scale parallel computers, in particular, one of these codes, the
Cactus Computational Toolkit is presented in this paper. Then, after a description
of the numerical formulation of the theory of general relativity, constraint
equations and evolution equations, the numerical techniques for solving the
evolution equations are reported and finally some recent applications, including
gravitational waves and the evolution and collisions of black holes, are presented.
It is important to note that there have been and there are large collaborations in
numerical relativity, including: the NSF Black Hole Grand Challenge Project, the
NASA Neutron Star Grand Challenge Project, the NCSA/Potsdam/Washington
University numerical relativity collaboration and a EU European collaboration of
ten institutions.
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Synopsis

Gravitational waves and their detection are becoming increasingly important
both for the theoretical physicist and the astrophysicist. In fact, technological
developments have enabled the construction of such sensitive detectors (bars
and interferometers) that the detection of gravitational radiation could become
a reality during the next few years. In these lectures we give a brief overview of
this interesting and challenging field of modern physics.

The topics covered are divided into six lectures. We begin (chapter 2) by
describing gravitational waves in linearized general relativity, where one can
examine most of the basic properties of gravitational radiation itself; propagation,
gauge invariance and interactions with matter (and in particular with detectors).

The second lecture (chapter 3) deals with gravitational-wave detectors:
how they operate, what their most important sources of noise are, and what
mechanisms are used to overcome noise. We report here on the most important
detectors planned or under construction (both ground-based and space-based
ones), their likely sensitivity and their prospects for making detections. Other
speakers will go into much more detail on specific detectors, such as LISA.

The third lecture (chapter 4) deals with the astrophysics of likely sources
of gravitational waves: binary systems, neutron stars, pulsars, x-ray sources,
supernovae/hypernovae,γ -ray bursts and the big bang. We estimate the expected
wave amplitudeh and the suitability of specific detectors for seeing waves from
each source.

The fourth lecture (chapter 5) is much more theoretical. Here we develop
the mathematical theory of gravitational waves in general, their effective stress-
energy tensor, the energy carried by gravitational waves, and the energy in a
random wave field (gravitational background generated by the big bang).

The fifth lecture (chapter 6) takes the theory further and examines the
generation of gravitational radiation in linearized theory. We show in some
detail how both mass-quadrupole and current-quadrupole radiation is generated,
including how characteristics of the radiation such as its polarization are related
to the motion of the source. Current-quadrupole radiation has become important
very recently and may indeed be one of the first forms of gravitational radiation to
be detected. We attempt to give a physical description of the way it is generated.
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The final lecture (chapter 7) explores applications of the theory we have
developed to various sources. We calculate the quadrupole moment of a binary
system, the energy radiated in the Newtonian approximation and the back-reaction
on the orbit. We conclude with a brief introduction to the current-quadrupole-
driven instability in ther -modes of neutron stars.

Chapters 2 and 5 are followed by a few exercises to assist students.
We presume the reader has some background in general relativity and its
mathematical tools in differential geometry, at the level of the introductory
chapters of Schutz (1985). A list of references is presented at the end of these
lectures of sources suitable for further and background reading.



Chapter 2

Elements of gravitational waves

General relativity is a theory of gravity that is consistent with special relativity in
many respects, and in particular with the principle that nothing travels faster than
light. This means that changes in the gravitational field cannot be felt everywhere
instantaneously: they must propagate. In general relativity they propagate at
exactly the same speed as vacuum electromagnetic waves: the speed of light.
These propagating changes are called gravitational waves.

However, general relativity is a nonlinear theory and there is, in general, no
sharp distinction between the part of the metric that represents the waves and
the rest of the metric. Only in certain approximations can we clearly define
gravitational radiation. Three interesting approximations in which it is possible
to make this distinction are:

• linearized theory;
• small perturbations of a smooth, time-independent background metric;
• post-Newtonian theory.

The simplest starting point for our discussion is certainly linearized theory,
which is a weak-field approximation to general relativity, where the equations are
written and solved in a nearly flat spacetime. The static and wave parts of the
field cleanly separate. We idealize gravitational waves as a ‘ripple’ propagating
through a flat and empty universe.

This picture is a simple case of the more general ‘short-wave approximation’,
in which waves appear as small perturbations of a smooth background that is time
dependent and whose radius of curvature is much larger than the wavelength of the
waves. We will describe this in detail in chapter 5. This approximation describes
wave propagation well, but it is inadequate for wave generation. The most useful
approximation for sources is the post-Newtonian approximation, where waves
arise at a high order in corrections that carry general relativity away from its
Newtonian limit; we treat these in chapters 6 and 7.

For now we concentrate our attention on linearized theory. We follow
the notation and conventions of Misneret al (1973) and Schutz (1985). In
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particular we choose units in whichc = G = 1; Greek indices run from 0
to 3; Latin indices run from 1 to 3; repeated indices are summed; commas
in subscripts or superscripts denote partial derivatives; and semicolons denote
covariant derivatives. The metric has positive signature. These above two
textbooks and others referred to at the end of these chapters give more details
on the theory that we outline here. For an even simpler introduction, based on a
scalar analogy to general relativity, see [1].

2.1 Mathematics of linearized theory

Consider a perturbed flat spacetime. Its metric tensor can be written as

gαβ = ηαβ + hαβ, |hαβ | � 1, α, β = 0, . . . ,3 (2.1)

where ηαβ is the Minkowski metric(−1,1,1,1) and hαβ is a very small
perturbation of the flat spacetime metric. Linearized theory is an approximation
to general relativity that is correct to first order in the size of this perturbation.
Since the size of tensor components depends on coordinates, one must be careful
with such a definition. What we require for linearized theory to be valid is that
there should exist a coordinate system in which equation (2.1) holds in a suitably
large region of spacetime. Even thoughηαβ is not the true metric tensor, we are
free todefineraising and lowering indices of the perturbation withη αβ , as if it
were a tensor on flat spacetime. We write

hαβ := ηαγ ηβδhγ δ.
This leads to the following equation for the inverse metric, correct to first order
(all we want in linearized theory):

gαβ = ηαβ − hαβ. (2.2)

The mathematics is simpler if we define thetrace-reversedmetric
perturbation:

h̄αβ := hαβ − 1
2ηαβh, (2.3)

whereh := ηαβhαβ . There is considerable coordinate freedom in the components
hαβ , since we can wiggle and stretch the coordinate system with a comparable
amplitude and change the components. This coordinate freedom is calledgauge
freedom, by analogy with electromagnetism. We use this freedom to enforce the
Lorentz (or Hilbert)gauge:

h̄αβ,β = 0. (2.4)

In this gauge the Einstein field equations (neglecting the quadratic and higher
terms inhαβ ) are just a set of decoupled linear wave equations:(

− ∂
2

∂ t2 +∇2

)
h̄αβ = −16πTαβ . (2.5)
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To understand wave propagation we look for the easiest solution of the vacuum
gravitational field equations:

�h̄αβ ≡
(
− ∂

2

∂ t2
+∇2

)
h̄αβ = 0. (2.6)

Plane waveshave the form:

h̄αβ = Aeeeαβ exp(ikγ xγ ) (2.7)

where the amplitudeA, polarization tensoreeeαβ and wavevectorkγ are all
constants. (As usual one has to take the real part of this expression.)

The Einstein equations imply that the wavevector is ‘light-like’,k γ kγ = 0,
and the gauge condition implies that the amplitude and the wavevector are
orthogonal:eeeαβkβ = 0.

Linearized theory describes a classical gravitational field whose quantum
description would be a massless spin 2 field that propagates at the speed of
light. We expect from this that such a field will have only two independent
degrees of freedom (helicities in quantum language, polarizations in classical
terms). To show this classically we remember thathαβ is symmetric, so it has
ten independent components, and that the Lorentz gauge applies four independent
conditions to these, reducing the freedom to six. However, the Lorentz gauge does
not fully fix the coordinates. In fact if we perform another infinitesimal coordinate
transformation (xµ → xµ + ξµ with ξµ,ν = O(h)) and impose�ξµ = 0, we
remain in Lorentz gauge. We can use this freedom to demand:

eee0α = 0�⇒ eeei j k j = 0 (transverse wave), (2.8)

eeei
i = 0 (traceless wave). (2.9)

These conditions can only be applied outside a sphere surrounding the source.
Together they put the metric into thetransverse-traceless(TT) gauge. We will
explicitly construct this gauge in chapter 5.

2.2 Using the TT gauge to understand gravitational waves

The TT gauge leaves onlytwo independent polarizationsout of the original ten,
and it ensures thathαβ = hαβ . In order to understand the polarization degrees of
freedom, let us take the wave to move in thez-direction, so thatkz = ω, k0 = ω,
kx = 0, ky = 0; the TT gauge conditions in equations (2.8) and (2.9) lead to
eee0α = eeezα = 0 andeeexx = −eeeyy. This leaves only two independent components
of the polarization tensor, sayeeexx and eeexy (which we denote by the symbols
⊕,⊗).

A wave for whicheeexy = 0 (pure⊕ polarization) produces a metric of the
form:

ds2 = −dt2+ (1+ h+) dx2+ (1− h+) dy2+ dz2, (2.10)
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Figure 2.1. Illustration of two linear polarizations and the associatedwaveamplitude.

whereh+ = Aeeexx exp[−iω(t − z)]. Such a metric produces opposite effects on
proper distance at the two transverse axes, contracting one while expanding the
other.

If eeexx = 0 we have pure⊗ polarizationh× which can be obtained from the
previous case by a simple 45◦ rotation, as in figure 2.1. Since the wave equation
and TT conditions are linear, a general wave will be a linear combination of these
two polarization tensors. A circular polarization basis would be:

eeeR = 1√
2
(eee+ + ieee×), eeeL = 1√

2
(eee+ − ieee×), (2.11)

where eee+, eee× are the two linear polarization tensors andeeeR and eeeL
are polarizations that rotate in the right-handed and left-handed directions,
respectively. It is important to understand that, for circular polarization,
the polarization pattern rotates around the central position, but test particles
themselves rotate only in small circles relative to the central position.

Now we compute the effects of a wave in the TT gauge on a particle at rest in
the flat background metricηαβ before the passage of the gravitational wave. The
geodesic equation

d2xµ

dτ 2
+ �µαβ dxα

dτ

dxβ

dτ
= 0

implies in this case:

d2xi

dτ 2 = −�i
00 = −1

2
(2hi0,0 − h00,i ) = 0, (2.12)

so that the particledoes not move. The TT gauge, to first order inhαβ , represents
a coordinate system that is comoving with freely-falling particles. Because
h0α = 0, TT time is proper time on the clock of freely-falling particles at rest.

Tidal forces show the action of the wave independently of the coordinates.
Let us consider the equation of geodesic deviation, which governs the separation
of two neighbouring freely-falling test particles A and B. If the particles are



Interaction of gravitational waves with detectors 19

initially at rest, then as the wave passes it produces an oscillating curvature tensor,
and the separationξ of the two particles is:

d2ξ i

dt2
= Ri

0 j 0ξ
j . (2.13)

To calculate the componentRi
0 j 0 of the Riemann tensor in equation (2.13), we

can use the metric in the TT gauge, because the Riemann tensor is gauge-invariant
at linear order (see exercise (d) at the end of this chapter). Therefore, we can
replaceRi

0 j 0 by Ri
0 j 0 = 1

2hTTi
j ,00 and write:

d2ξ i

dt2
= 1

2
hTTi

j ,00ξ
j . (2.14)

This equation, with an initial conditionξ j
(0) = constant, describes the oscillations

of Bs location as measured in the proper reference frame of A. The validity of
equation (2.14) is the same as that of the geodesic deviation equation: geodesics
have to be close to one another, in a neighbourhood where the change in curvature
is small. In this approximation a gravitational wave is like an extra force, called
a tidal force, perturbing the proper distance between two test particles. If there
are other forces on the particles, so that they are not free, then as long as the
gravitational field is weak, one can just add the tidal forces to the other forces and
work as if the particle were in special relativity.

2.3 Interaction of gravitational waves with detectors

We have shown above that the TT gauge is a particular coordinate system in
which the polarization tensor of a plane gravitational wave assumes a very simple
form. This gauge is comoving for freely-falling particles and so it is not the
locally Minkowskian coordinate system that would be used by an experimenter
to analyse an experiment. In general relativity one must always be aware of how
one’s coordinate system is defined.

We shall analyse two typical situations:

• the detector is small compared to the wavelength of the gravitational waves
it is measuring; and

• the detector is comparable to or larger than that wavelength.

In the first case we can use the geodesic deviation equation above to represent
the wave as a simple extra force on the equipment. Bars detectors can always be
analysed in this way. Laser interferometers on the Earth can be treated this way
too. In these cases a gravitational wave simply produces a force to be measured.
There is no more to say from the relativity point of view. The rest of the detection
story is the physics of the detectors. Sadly, this is not as simple as gravitational
wave physics!
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In the second case, the geodesic deviation equation is not useful because
we have to abandon the ‘local mathematics’ of geodesic deviation and return to
the ‘global mathematics’ of the TT gauge and metric componentsh TT

αβ . Space-
based interferometers like LISA, accurate ranging to solar-system spacecraft and
pulsar timing are all in this class. Together with ground interferometers, these are
beam detectors: they use light (or radio waves) to register the waves.

To study these detectors, it is easiest to remain in the TT gauge and to
calculate the effect of the waves on the (coordinate) speed of light. Let us
consider, for example, the⊕ metric from equation (2.10) and examine a null
geodesic moving in thex-direction. The speed along this curve is:(

dx

dt

)2

= 1

1+ h+
. (2.15)

This is only acoordinate speed, not a contradiction to special relativity.
To analyse the way in which detectors work, suppose one arm of an

interferometer lies along thex-direction and the wave, for simplicity, is moving
in thez-direction with a⊕ polarization ofanywaveformh+(t) along this axis (it
is a plane wave, so its waveform does not depend onx). Then a photon emitted at
time t from the origin reaches the other end, at a fixed coordinate positionx = L,
at the coordinate time

tfar = t +
∫ L

0

√
1+ h+(t (x))dx, (2.16)

where the argumentt (x) denotes the fact that one must know the time to reach
positionx in order to calculate the wave field. This implicit equation can be solved
in linearized theory by using the fact thath+ is small, so we can use the first-order
solution of equation (2.15) to calculateh+(t) to sufficient accuracy.

To do this we expand the square root in powers ofh+, and consider as a
zero-order solution a photon travelling at the speed of light in thex-direction of a
flat spacetime. We can sett (x) = t + x. The result is:

tout = t + L + 1
2

∫ L

0
h+(t + x) dx. (2.17)

In an interferometer, the light is reflected back, so the return trip takes

treturn= t + L + 1
2

[ ∫ L

0
h+(t + x) dx +

∫ L

0
h+(t + x + L) dx

]
. (2.18)

What one monitors is changes in the time taken by a return trip as a function of
time at the origin. If there were no gravitational wavest return would be constant
becauseL is fixed, so changes indicate a gravitational wave.

The rate of variation of the return time as a function of the start timet is

dtreturn

dt
= 1+ 1

2
[h+(t + 2L)− h+(t)]. (2.19)
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This depends only on the wave amplitude when the beam leaves and when it
returns.

Let us consider now a more realistic geometry than the previous one, and
in particular suppose that the wave travels at an angleθ to thez-axis in thex–z
plane. If we redo this calculation, allowing the phase of the wave to depend on
x in an appropriate way, and taking into account the fact thath TT+ xx is reduced if
the wave is not moving in a direction perpendicular tox, we find (see exercise (a)
at the end of this chapter for the details of the calculation)

dtreturn

dt
= 1

2
{(1− sinθ)hxx+ (t + 2L)− (1+ sinθ)hxx+ (t)

+ 2 sinθhxx+ [t + L(1− sinθ)]}. (2.20)

This three-term relation is the starting point for analysing the response of all beam
detectors. This is directly what happens in radar ranging or in transponding
to spacecraft, where a beam in only one direction is used. In long-baseline
interferometry, one must analyse the second beam as well. We shall discuss these
cases in turn.

2.4 Analysis of beam detectors

2.4.1 Ranging to spacecraft

Both NASA and ESA perform experiments in which they monitor the return time
of communication signals with interplanetary spacecraft for the characteristic
effect of gravitational waves. For missions to Jupiter and Saturn, the return times
are of the order 2–4× 103 s. Any gravitational wave event shorter than this
will leave an imprint on the delay time three times: once when the wave passes
the Earth-based transmitter, once when it passes the spacecraft, and once when
it passes the Earth-based receiver. Searches use a form of pattern matching to
look for this characteristic imprint. There are two dominant sources of noise:
propagation-time irregularities caused by fluctuations in the solar wind plasma,
and timing noise in the clocks used to measure the signals. The plasma delays
depend on the radio-wave frequency, so by using two transmission frequencies
one can model and subtract the plasma noise. Then if one uses the most stable
atomic clocks, it is possible to achieve sensitivities forh of the order 10−13. In
the future, using higher radio frequencies, such experiments may reach 10−15.
No positive detections have yet been made, but the chances are not zero. For
example, if a small black hole fell into a massive black hole in the centre of
the Galaxy, it would produce a signal with a frequency of about 10 mHz and an
amplitude significantly bigger than 10−15. Rare as this might be, it would be a
dramatic event to observe.
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2.4.2 Pulsar timing

Many pulsars, in particular old millisecond pulsars, are extraordinarily regular
clocks, whose random timing irregularities are too small for even the best
atomic clocks to measure. Other pulsars have weak but observable irregularities.
Measurements of or even upper limits on any of these timing irregularities for
single pulsars can be used to setupper limitson any background gravitational
wave field with periods comparable to or shorter than the observing time. Here the
three-term formula is replaced by a simpler two-term expression (see exercise (b)
at the end of this chapter), because we only have a one-way transmission from
the pulsar to Earth. Moreover, the transit time of a signal to Earth from the pulsar
may be thousands of years, so we cannot look for correlations between the two
terms in a given signal. Instead, the delay time is a combination of the effects
of uncorrelated waves at the pulsar when the signal was emitted and at the Earth
when it is received.

If one simultaneously observes two or more pulsars, the Earth-based part of
the delay is correlated between them, and this offers a means of actually detecting
long-period gravitational waves. Observations require a timescale of several years
in order to achieve the long-period stability of pulse arrival times, so this method
is suited to looking for strong gravitational waves with periods of several years.

2.4.3 Interferometry

An interferometer essentially measures changes in the difference in the return
times along two different arms. It does this by looking for changes in the
interference pattern formed when the returning light beams are superimposed
on one another. The response of each arm will follow the three-term formula
in equation (2.20), but with a different value ofθ for each arm, depending in a
complicated way on the orientation of the arms relative to the direction of travel
and the polarization of the wave. Ground-based interferometers are small enough
to use the small-L formulae we derived earlier. However, LISA, the space-based
interferometer that is described by Bender in this book, is larger than a wavelength
of gravitational waves for frequencies above 10 mHz, so a detailed analysis of its
sensitivity requires the full three-term formula.

2.5 Exercises for chapter 2

Suggested solutions for these exercises are at the end of chapter 7.

(a) 1. Derive the full three-term return equation, reproduced here:

dtreturn

dt
= 1

2
{(1− sinθ)hxx+ (t + 2L)− (1+ sinθ)hxx+ (t)

+ 2 sinθhxx+ [t + L(1− sinθ)]}. (2.21)
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2. Show that, in the limit where L is small compared to the wavelength of
the gravitational wave, the derivative of the return time is the derivative
of the excess proper distanceδL = Lhxx+ (t) cos2 θ for small L. Make
sure you know how to interpret the factor ofcos2 θ .

3. Examine the limit of the three-term formula when the gravitational wave
is travelling along the x-axis too (θ = ± π

2 ): what happens to light going
parallel to a gravitational wave?

(b) Derive the two-term formula governing the delays induced by gravitational
waves on a signal transmitted only one-way, for example from a pulsar to
Earth.

(c) A frequently asked question is: if gravitational waves alter the speed of light,
as we seem to have used here, and if they move the ends of an interferometer
closer and further apart, might these effects not cancel, so that there would
be no measurable effects on light? Answer this question. You may want to
examine the calculation above: did we make use of the changing distance
between the ends, and why or why not?

(d) Show that the Riemann tensor is gauge-invariant in linearized theory.



Chapter 3

Gravitational-wave detectors

Gravitational radiation is a central prediction of general relativity and its detection
is a key test of the integrity of the theoretical structure of Einstein’s work.
However, in the long run, its importance as a tool for observational astronomy is
likely to be even more important. We have excellent observational evidence from
the Hulse–Taylor binary pulsar system (described in chapter 4) that the predictions
of general relativity concerning gravitational radiation are quantitatively correct.
However, we have incomplete information from astronomy today about the likely
sources of detectable radiation.

The gravitational wave spectrum is completely unexplored, and whenever a
new electromagnetic waveband has been opened to astronomy, astronomers have
discovered completely unexpected phenomena. This seems to me just as likely
to happen again with gravitational waves, especially because gravitational waves
carry some kinds of information that electromagnetic radiation cannot convey.
Gravitational waves are generated by bulk motions of masses, and they encode
the mass distributions and speeds. They are coherent and their low frequencies
reflect the dynamical timescales of their sources.

In contrast, electromagnetic waves come from individual electrons executing
complex and partly random motions inside their sources. They are incoherent, and
individual photons must be interpreted as samples of the large statistical ensemble
of photons being emitted. Their frequencies are determined by microphysics on
length scales much smaller than the structure of the astronomical system emitting
them. From electromagnetic observations we can make inferences about this
structure only through careful modelling of the source. Gravitational waves, by
contrast, carry information whose connection to the source structure and motion
is fairly direct.

A good example is that of massive black holes in galactic nuclei. From
observations that span the electromagnetic spectrum from radio waves to x-
rays, astrophysicists have inferred that black holes of masses up to 109M�
are responsible for quasar emissions and control the jets that power the giant
radio emission regions. The evidence for the black hole is very strong but

24
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indirect: no other known object can contain so much mass in such a small
volume. Gravitational wave observations will tell us about the dynamics of the
holes themselves, providing unique signatures from which they can be identified,
measuring their masses and spins directly from their vibrational frequencies.
The interplay of electromagnetic and gravitational observations will enrich many
branches of astronomy.

The history of gravitational-wave detection started in the 1960s with J Weber
at the University of Maryland. He built the firstbar detector: it was a massive
cylinder of aluminium (∼2 × 103 kg) operating at room temperature (300 K)
with a resonant frequency of about 1600 Hz. This early prototype had a modest
sensitivity, around 10−13 or 10−14.

Despite this poor sensitivity, in the late 1960s Weber announced the detection
of a population of coincident events between two similar bars at a rate far
higher than expected from instrumental noise. This news stimulated a number
of other groups (at Glasgow, Munich, Paris, Rome, Bell Laboratories, Stanford,
Rochester, LSU, MIT, Beijing, Tokyo) to build and develop bar detectors to
check Weber’s results. Unfortunately for Weber and for the idea that gravitational
waves were easy to detect, none of these other detectors found anything, even at
times when Weber continued to find coincidences. Weber’s observations remain
unexplained even today. However, the failure to confirm Weber was in a real
sense a confirmation of general relativity, because theoretical calculations had
never predicted that reasonable signals would be strong enough to be seen by
Weber’s bars.

Weber’s announcements have had a mixed effect on gravitational-wave
research. On the one hand, they have created a cloud under which the field
has laboured hard to re-establish its respectability in the eyes of many physicists.
Even today the legacy of this is an extreme cautiousness among the major projects,
a conservatism that will ensure that the next claim of a detection will be ironclad.
On the other hand, the stimulus that Weber gave to other groups to build detectors
has directly led to the present advanced state of detector development.

From 1980 to 1994 groups developed detectors in two different directions:

• Cryogenic bar detectors, developed primarily at Rome/Frascati, Stanford,
LSU and Perth (Australia). The best of these detectors reach below 10−19.
They are the only detectors operating continuously today and they have
performed a number of joint coincidence searches, leading to upper limits
but no detections.

• Interferometers, developed at MIT, Garching (where the Munich group
moved), Glasgow, Caltech and Tokyo. The typical sensitivity of these
prototypes was 10−18. The first long coincidence observation with
interferometers was the Glasgow/Garching 100 hr experiment in 1989 [2].

In fact, interferometers had apparently been considered by Weber, but at that
time the technology was not good enough for this kind of detector. Only 10–
15 years later, technology had progressed. Lasers, mirror coating and polishing
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techniques and materials science had advanced far enough to allow the first
practical interferometers, and it was clear that further progress would continue
unabated. Soon afterwards several major collaborations were formed to build
large-scale interferometric detectors:

• LIGO: Caltech and MIT (NSF) LIGO;
• VIRGO: France (CNRS) and Italy (INFN)
• GEO600: Germany (Max Planck) and UK (PPARC).

Later, other collaborations were formed in Australia (AIGO) and Japan (TAMA
and JGWO). At present there is still considerable effort in building successors to
Weber’s original resonant-mass detector: ultra-cryogenic bars are in operation in
Frascati and Padua, and they are expected to reach below 10−20. Further, there
are proposals for a new generation of spherical or icosahedral solid-mass detectors
from the USA (LSU), Brazil, the Netherlands and Italy. Arrays of smaller bars
have been proposed for observing the highest frequencies, where neutron star
normal modes lie.

However, the real goal for the near future is to break through the 10−21 level,
which is where theory predicts that it is not unreasonable to expect gravitational
waves of the order of once per year (see the discussion in chapter 4 later). The
first detectors to reach this level will be the large-scale interferometers that are
now under construction. They have very long arms: LIGO, Hanford (WA) and
Livingstone (LA), 4 km; VIRGO: Pisa, 3 km; GEO600: Hannover, 600 m;
TAMA300: Tokyo, 300 m.

The most spectacular detector in the near future is the space-based detector
LISA, which has been adopted by ESA (European Space Agency) as a
Cornerstone mission for the twenty-first century. The project is now gaining a
considerable amount of momentum in the USA, and a collaboration between ESA
and NASA seems likely. This mission could be launched around 2010.

3.1 Gravitational-wave observables

We have described earlier how different gravitational-wave observables are from
electromagnetic observables. Here are the things that we want to measure when
we detect gravitational waves:

• h+(t), h×(t), phase(t): the amplitude and polarization of the wave, and
the phase of polarization, as functions of time. These contain most of the
information about gravitational waves.

• θ , φ: the direction on the sky of the source (except for observations of a
stochastic background).

From this it is clear that gravitational-wave detection is not the same as
electromagnetic-radiation detection. In electromagnetic astronomy one almost
always rectifies the electromagnetic wave, while we can follow the oscillations of
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the gravitational wave. Essentially in electromagnetism one detects the power in
the radiation, while for gravitational radiation, as we have said before, one detects
the wave coherently.

Let us consider now what we can infer from a detection. If the gravitational
wave has a short duration, of the order of the sampling time of the signal stream,
then each detector will usually give just a single number, which is the amplitude
of the wave projected on the detector (a projection of the two polarizationsh+
andh×). If the wave lasts more than one sampling time, then this information is
a function of time.

If the signal lasts for a sufficiently long time, then both the amplitude and
the phase of the wave can be affected by the motion of the detector, which moves
and turns with the motion of the Earth. This produces an amplitude and phase
modulation which is not intrinsic to the signal. If the signal’s intrinsic form is
understood, then this modulation can be used to determine the location of the
source. We distinguish three distinct kinds of signals, from the point of view of
observations.

Burstshave a duration so short that modulation due to detector motion is not
observable. During the detection, the detector is effectively stationary. In this
case we need at least three, and preferably four, interferometers to triangulate the
positions of bursts on the sky and to find the two polarizationsh+ andh×. (See
discussions in Schutz 1989.) A network of detectors is essential to extract all the
information in this case.

Continuous wavesby definition last long enough for the motion of the
detector to induce amplitude and phase modulation. In this case, assuming a
simple model for the intrinsic signal, we can use the information imprinted on
the signal (the amplitude modulation and phase modulation) to infer the position
and polarization amplitude of the source on the sky. A single detector, effectively,
performs aperture synthesis, finding the position of the source and the amplitude
of the wave entirely by itself. However, in order to be sure that the signal is not an
artefact, it will be important that the signal is seen by a second or third detector.

Stochastic backgroundscan be detected just like noise in a single detector.
If the detector noise is well understood, this excess noise may be detected as
a stochastic background. This is closely analogous to the way the original
microwave background detection was discovered.

A more reliable method for detecting stochastic radiation is the cross-
correlation between two detectors, which experience the same cosmological noise
but have a different intrinsic noise. Coherent cross-correlation between two
detectors eliminates much detector noise and works best when detectors are closer
than a wavelength.

In general, detection of gravitational waves requires joint observing by a
network of detectors, both to increase the confidence of the detection and to
provide accurate information on other physical observables (direction, amplitude
and so on). Networks can be assembled from interferometers, bars, or both.
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3.2 The physics of interferometers

Interferometric gravitational-wave detectors are the most sensitive instruments,
and among the most complex, that have ever been constructed. They are
remarkable for the range of physics that is important for their construction.
Interferometer groups work at the forefront of the development in lasers, mirror
polishing and coating, quantum measurement, materials science, mechanical
isolation, optical system design and thermal science. In this section we shall
only be able to take a fairly superficial look at one of the most fascinating
instrumentation stories of our age. A good introduction to interferometer design
is Saulson (1994).

Interferometers use laser light to compare the lengths of two perpendicular
arms. The simplest design, originated by Michelson for his famous experiment
on the velocity of light, uses light that passes up and down each arm once, as
in the first panel in figure 3.1. Imagine such an instrument with identical arms
defined by mirrors that hang from supports, so they are free to move horizontally
in response to a gravitational wave. If there is no wave, the arms have the same
length, and the light from one arm returns exactly in phase with that from the
other. When the wave arrives, the two arms typically respond differently. The
arms are no longer the same length, and so the light that arrives back at the centre
from one arm will no longer be in phase with that arriving back from the other
arm. This will produce a shift in the interference fringes between the two beams.
This is the principle of detection.

Real detectors are designed to store the light in each arm for longer than
just one reflection (see figure 3.1(b)). It is optimum to store the light for half
of the period of the gravitational wave, so that on each reflection the light gains
an added phase shift. Michelson-typedelay-lineinterferometers store the light
by arranging multiple reflections.Fabry–Perotinterferometers store the light in
cavities in each arm, allowing only a small fraction to escape for the interference
measurement (figure 3.1(e)).

An advantage of interferometers as detectors is that the gravitational-wave-
induced phase shift of the light can be made larger simply by making the arm
length larger, since gravitational waves act by tidal forces. A detector with an arm
lengthl = 4 km responds to a gravitational wave with an amplitude of 10−21 with

δlgw ∼ 1
2hl ∼ 2× 10−18 m (3.1)

whereδlgw is the change in the length of one arm. If the orientation of the
interferometer is optimum, then the other arm will change by the same amount
in the opposite direction, so that the interference fringe will shift by twice this
length.

If the light path is folded or resonated, as in figure 3.1(b) and (d), then the
effective number of bounces can be traded off against overall length to achieve
a given desired total path length, or storage time. Shorter interferometers with
many bounces have a disadvantage, however: even though they can achieve the
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Figure 3.1. Five steps to a gravitational-wave interferometer. (a) The simple Michelson.
Notice that there are two return beams: one goes toward the photodetector and the other
toward the laser. (b) Delay line: a Michelson with multiple bounces in each arm to enhance
the signal. (c) Power recycling. The extra mirror recycles the light that goes towards the
laser, which would otherwise be wasted. (d) Signal recycling. The mirror in front of the
photodetector recycles only the signal sidebands, provided that in the absence of a signal
no light goes to the photodetector. (e) Fabry–Perot interferometer. The delay lines are
converted to cavities with partially silvered interior mirrors.

same response as a longer interferometer, the extra bounces introduce noise from
the mirrors, as discussed below. There is, therefore, a big advantage to long-arm
interferometers.
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There are three main sources of noise in interferometers: thermal, shot and
vibrational. To understand the way they are controlled, it is important to think
in frequency space. Observations with ground-based detectors will be made in a
range from perhaps 10 Hz up to 10 kHz, and initial detectors will have a much
smaller observing bandwidth within this. Disturbances by noise that occur at
frequencies outside the observation band can simply be filtered out. The goal of
noise control is to reduce disturbances in the observation band.

• Thermal noise. Interferometers work at room temperature, and vibrations of
the mirrors and of the suspending pendulum can mask gravitational waves.
To control this noise, scientists take advantage of the fact that thermal noise
has its maximum amplitude at the frequency of the vibrational mode, and
if the resonance of the mode is narrow (a high quality factor Q) then the
amplitude at other frequencies is small. Therefore, pendulum suspensions
are designed with the pendulum frequency at about 1 Hz, well below
the observing window, and mirror masses are designed to have principal
vibration modes above 1 kHz, well above the optimum observing frequency
for initial interferometers. These systems are constructed with high values of
Q (106 or more) to reduce the noise in the observing band. Even so, thermal
noise is typically a dominant noise below 100 or 200 Hz.

• Shot noise. This is the principal limitation to sensitivity at higher
frequencies, above 200–300 Hz. It arises from the quantization of photons.
When photons form interference fringes, they arrive at random times
and make random fluctuations in the light intensity that can look like a
gravitational wave signal; the more photons one uses, the smoother will be
the interference fringe. We can easily calculate this intrinsic noise. If N is
the number of photons emitted by the laser during our measurement, then
as a random process the fluctuation number δN is proportional to the square
root of N. If we are using light with a wavelength λ (for example infrared
light with λ ∼ 1 µm) one can expect to measure lengths to an accuracy of

δlshot ∼ λ

2π
√

N
.

To measure a gravitational wave at a frequency f , one has to make at least 2 f
measurements per second, so one can accumulate photons for a time 1/2 f .
If P is the light power, one has

N = P
hc
λ
· 1

2 f

.

It is easy to work out from this that, for δl shot to be equal to δl gw in
equation (3.1), one needs light power of about 600 kW. No continuous laser
could provide this much light to an interferometer.
The key to reaching such power levels inside the arms of a detector is
a technique called power recycling (see Saulson 1994) first proposed by
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Drever and independently by Schilling. Normally, interferometers work
on a ‘dark fringe’ , that is they are arranged so that the light reaching
the photodetector is zero if there is no gravitational wave. Then, as
shown in figure 3.1(a), the whole of the input light must emerge from the
interferometer travelling towards the laser. If one places another mirror,
correctly positioned, between the laser and the beam splitter (figure 3.1(c)),
it will reflect this wasted light back into the interferometer in such a way that
it adds coherently in phase with light emerging from the laser. In this way,
light can be recycled and the required power levels in the arms achieved.
Of course, there will be a maximum recycling gain, which is set by mirror
losses. Light power builds up until the laser merely re-supplies the losses at
the mirrors, due to scattering and absorption. The maximum power gain is

P = 1

1− R2

where 1 − R2 is the total loss summed over all the optical surfaces. For the
very high-quality mirrors used in these projects, 1−R2 ∼ 10−5. This reduces
the power requirement for the laser by the same factor, down to about 6 W.
This is attainable with modern laser technology.

• Ground vibrationand mechanical vibrationsare another source of noise
that must be screened out. Typical seismic vibration spectra fall sharply
with frequency, so this is a problem primarily below 100 Hz. Pendulum
suspensions are excellent mechanical filters above the pendulum frequency:
it is a familiar elementary-physics demonstration that one can wiggle the
suspension point of a pendulum vigorously at a high frequency and the
pendulum itself remains undisturbed. Suspension designs typically involve
multiple pendula, each with a frequency around 1 Hz. These provide very
fat roll-off of the noise above 1 Hz. Interferometer spectra normally show
a steep low-frequency noise ‘wall’ : this is the expected vibrational noise
amplitude.

In addition, there are noise sources that are not dominant in the present
interferometers but will become important as sensitivity increases.

• Quantum effects: uncertainty principle noise. Shot noise is a quantum noise,
but in addition there are other effects similar to those that bar detectors
face, as described below: zero-point vibrations of suspensions and mirror
surfaces, and back-action of light pressure fluctuations on the mirrors. These
are small compared to present operating limits of detectors, but they may
become important in five years or so. Practical schemes to reduce this noise
have already been demonstrated in principle, but they need to be improved
considerably. This is the subject of considerable theoretical work at the
moment.

• Gravity gradient noise. Gravitational-wave detectors respond to any changes
in the gradients (tidal forces) of the local gravitational field, not just
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those carried by waves. The environment always contains changes in the
Newtonian fields of nearby objects. Besides obvious ones, like people,
there are changes caused by density waves in ground vibrations, atmospheric
pressure changes, and many other disturbances. Below about 1 Hz,
these gravity gradient changes will be stronger than waves expected from
astronomical objects, and they make it impossible to do observing at low
frequencies from Earth. This is the reason that scientists have proposed the
LISA mission, discussed later. Above 1 Hz, this noise does not affect the
sensitivity of present detectors, but in ten years this could become a limiting
factor.

Besides these noise sources, which are predictable and therefore can be
controlled by detector design, it is possible that there will be unexpected or
unpredicted noise sources. Interferometers will be instrumented with many kinds
of environmental monitors, but there may occasionally be noise that is impossible
to identify. For this reason, short bursts of gravitational radiation must be
identified at two or more separated facilities. Even if detector noise is not at
all understood, it is relatively easy to estimate from the observed noise profile of
the individual detectors what the chances are of a coincident noise event between
two detectors.

3.2.1 New interferometers and their capabilities

Interferometers work over a broad bandwidth and they do not have any natural
resonance in their observing band. They are ideal for detecting bursts, since one
can perform pattern-matching over the whole bandwidth and detect such signals
optimally. They are also ideal for searching for unknown continuous signals, such
as surveying the sky for neutron stars. And in observations of stochastic signals
by cross-correlating two detectors, they can give information about the spectrum
of the signal.

If an interferometer wants to study a signal with a known frequency, such
as known pulsars, then there is another optical technique available to enhance its
sensitivity in a narrow bandwidth, at the expense of sensitivity outside that band.
This is called signal recycling[3]. In this technique, a further mirror is placed in
front of the photodetector, where the signal emerges from the interferometer (see
figure 3.1(d)). If the mirror is chosen correctly, it will build up the signal, but only
in a certain bandwidth. This modifies the shot noise in the detector, but not other
noise sources. Therefore, it can improve sensitivity only at the higher frequencies
where shot noise is the limiting factor.

Four major interferometer projects are now under construction, and they
could begin acquiring good data in the period between 2000–2003. They will all
operate initially with a sensitivity approaching 10−21 over a bandwidth between
50–1000 Hz. Early detections are by no means certain, but recent work has
made prospects look better for an early detection than when these detectors were
funded.
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Figure 3.2. TAMA300 sensitivity as a function of frequency. The vertical axis is the
1σ noise level, measured in strain per root Hz. To get a limit on the gravitational wave
amplitude h, one must multiply the height of the curve by the square root of the bandwidth
of the signal. This takes into account the fact that the noise power at different frequencies
is independent, so the power is proportional to bandwidth. The noise amplitude is therefore
proportional to the square root of the bandwidth.

TAMA300[4] (Japan) is located in Tokyo, and its arm length is 300 m.
It began taking data without power recycling in 1999, but its sensitivity is not
yet near 10−21. Following improvements, especially power recycling, it should
get to within a factor of ten of this goal. However, it is not planned as an
observing instrument: it is a prototype for a kilometre-scale interferometer in
Japan, currently called JGWO. By 2005 this may be operating, possibly with
cryogenically cooled mirrors.

GEO600[5] (Germany and Britain) is located near Hannover (Germany).
Its arm length is 600 m and the target date for first good data is now the end of
2001. Unlike TAMA, GEO600 is designed as a leading-edge-technologydetector,
where high-performance suspensions and optical tricks like signal recycling can
be developed and applied. Although it has a short baseline, it will have a similar
sensitivity to the larger LIGO and VIRGO detectors at first. At a later stage, LIGO
and VIRGO will incorporate the advanced methods developed in GEO, and at that
point they will advance in sensitivity, leaving GEO behind.

As we can see from figure 3.3 the sensitivity of GEO600 depends on its
bandwidth, which in its turn depends on the signal recycling factor. GEO600 can
change its observing bandwidth in response to observing goals. By choosing low
or high reflectivity for the signal recycling mirror, scientists can make GEO600
wide-band or narrow-band, respectively. The centre frequency of the observing
band (in the right-hand panel of figure 3.3 it is ∼600 Hz) can be tuned to any
desired frequency by shifting the position of the signal recycling mirror, thus
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Figure 3.3. GEO600 noise curves. As for the TAMA curve, these are calibrated in strain
per root Hz. The figure on the left-hand side shows GEO’s wideband configuration; that
on the right-hand side shows a possible narrowband operating mode.

changing the resonance frequency of the signal recycling cavity. This feature
could be useful when interferometers work with bars or when performing wide-
band surveys.

LIGO [6] (USA) is building two detectors of arm length 4 km. One is
located in Hanford WA and the other in Livingstone LA. The target date for
observing is mid-2002. The two detectors are placed so that their antenna patterns
overlap as much as possible and yet they are far enough apart that there will be a
measurable time delay in most coincident bursts of gravitational radiation. This
delay will give some directional information. The Hanford detector also contains
a half-length interferometer to assist in coincidence searches. The two LIGO
detectors are the best placed for doing cross-correlation for a random background
of gravitational waves. LIGO’s expected initial noise curve is shown in figure 3.4.
These detectors have been constructed to have a long lifetime. With such long
arms they can benefit from upgrades in laser power and mirror quality. LIGO has
defined an upgrade goal called LIGO II, which it hopes to reach by 2007, which
will observe at 10−22 or better over a bandwidth from 10 Hz up to 1 kHz.

VIRGO [7] (Italy and France) is building a 3 km detector near Pisa. Its
target date for good data is 2003. Its expected initial noise curve is shown in
figure 3.4. Like LIGO, it can eventually be pushed to much higher sensitivities
with more powerful lasers and other optical enhancements. VIRGO specializes
in sophisticated suspensions, and the control of vibrational noise. Its goal is to
observe at the lowest possible frequencies from the ground, at least partly to be
able to examine as many pulsars and other neutron stars as possible.

3.3 The physics of resonant mass detectors

The principle of operation of bar detectors is to use the gravitational tidal force
of the wave to stretch a massive cylinder along its axis, and then to measure the
elastic vibrations of the cylinder.
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Figure 3.4. Noise curves of the initial LIGO (left) and VIRGO (right) detectors. The
VIRGO curve is in strain per root Hz, as the GEO curves earlier. The LIGO curve is
calibrated in metres per root Hz, so to convert to a limit on h one multiplies by the square
root of the bandwidth and divides by the length of the detector arm, 4000 m.

Let us suppose we have a typical bar with length L ∼ 1 m. (In the future,
spheres may go up to 3 m.) Depending on the length of the bar and its material,
the resonant frequency will be f ∼ 500 Hz to 1.5 kHz and mass M ∼ 1000 kg.
A short burst gravitational wave h will make the bar vibrate with an amplitude

δlgw ∼ hl ∼ 10−21 m.

Unlike the interferometers, whose response is simply given by this equation,
the bars respond in a complicated way depending on all their internal forces.
However, if the duration of the wave is short, the amplitude will be of the same
order as that given here. If the wave has long duration and is near the bars resonant
frequency, then the signal can build up to much larger amplitudes. Normally, bar
detector searches have been targeted at short-duration signals.

The main sources of noise that compete with this very small amplitude are:

• Thermal noise. This is the most serious source of noise. Interferometers can
live with room-temperature thermal noise because their larger size makes
their response to a gravitational wave larger, and because they observe at
frequencies far from the resonant frequency, where the noise amplitude is
largest. However, bars observe at the resonant frequency and have a very
short length, so they must reduce thermal noise by going to low temperatures.
The best ultra-cryogenic bars today operate at about T = 100 mK, where
the rms amplitude of vibration is found by setting the kinetic energy of the
normal mode, M(δ l̇)2/2, equal to kT/2, the equipartition thermal energy of
a single degree of freedom. This gives then

〈δl2〉
1
2
th =

(
kT

4π2M f 2

)1
2 ∼ 6× 10−18 m.
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This is far larger than the gravitational wave amplitude. In order to detect
gravitational waves against this noise, bars are constructed to have a very
high Q, of order 106 or better.
The reason that bars need a high Q is different from the reason that
interferometers also strive for high-Q systems. To see how Q helps bars,
we recall that Q is defined as Q = f · τ where f is the resonant frequency
of the mode and τ is the decay time of the oscillations. If Q is large, then
the decay time is long. If the decay time is long, then the amplitude of
oscillation changes very slowly in thermal equilibrium. Essentially, the bar’s
mode of vibration changes its amplitude by a random walk with very small
steps, taking time Q/ f ∼ 1000 s to change by the full amount. On the other
hand, a gravitational wave burst will cause an amplitude change in time of
the order 1 ms, during which the thermal noise will have random walked to

an expected amplitude change that is Q
1
2 = ( 1000 s

1 ms )
1
2 times smaller. In this

case

〈δl2〉
1
2
th: 1 ms =

(
kT

4π2 M f 2 Q

)1
2 ∼ 6× 10−21 m.

Thus, thermal noise only affects a measurement to the extent that it changes
the amplitude of vibration during the time of the gravitational-wave burst.
This change is similar to that produced by a gravitational wave of amplitude
6 × 10−21. It follows that, if thermal noise were the only noise source,
bars would be operating at around 10−20 today. Bar groups expect in fact to
reach this level during the next few years, as they reduce the other competing
sources of noise. Notice that the effect of thermal noise has nothing to
do with the frequency of the disturbance, so it is not the reason that bars
observe near their resonant frequency. In fact, both thermal impulses and
gravitational-wave forces are mechanical forces on the bar, and the ratio of
their induced vibrations is the same at all frequencies for a given applied
impulsive force.

• Sensor noise. Because the oscillations of the bar are very small, bars require
a transducer to convert the mechanical energy of vibration into electrical
energy, and an amplifier that increases the electrical signal to a level where
it can be recorded. If the amplifier were perfect, then the detector would
in fact be broadband: it would amplify the smaller off-resonant responses
just as well as the on-resonance ones. Conversely, real bars are narrow-band
because of sensor noise, not because of their mechanical resonance.
Unfortunately sensing is not perfect: amplifiers introduce noise and this
makes small amplitudes harder to measure. The amplitudes of vibration are
largest in the resonance band near the resonant frequency f 0, so amplifier
noise limits the detector sensitivity to frequencies near f 0. Now, the signal
(a typical gravitational-wave burst) has a duration time τw ∼ 1 ms, so the
amplifier’s bandwidth should be at least 1�τw in order for it to be able to
record a signal every τw. In other words, bars require amplifiers with very
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small noise in a large bandwidth (∼1000 Hz) near f 0 (note that this band is
much larger than f�Q). Today typical bandwidths of realizable amplifiers
are 1 Hz, but in the very near future it is hoped to extend these to 10 Hz, and
eventually to 100 Hz.

• Quantum limit. According to the Heisenberg uncertainty principle, the zero-
point vibrations of a bar with a frequency of 1 kHz have rms amplitude

〈δl2〉
1
2
quant =

(
}

2πM f

)1
2 ∼ 4× 10−21 m.

This is bigger than the expected signal, and comparable to the thermal limit
over 1 ms. It represents the accuracy with which one can measure the
amplitude of vibration of the bar. So as soon as current detectors improve
their thermal limits, they will run into the quantum limit, which must be
overcome before a signal at 10−21 can be seen with such a detector. One
way to overcome this limit is by increasing the size of the detector and even
by making it spherical. This increases its mass dramatically, pushing the
quantum limit down below 10−21.
Another way around the quantum limit is to avoid measuring δl, but instead
to measure other observables. After all, the goal is to infer the gravitational-
wave amplitude, not to measure the state of vibration of the bar. It is possible
to define a pair of conjugate observables that have the property that one of
them can be measured arbitrarily accurately repeatedly, so that the resulting
inaccuracy of knowing the conjugate variable’s value does not disturb the
first variable’s value. Then, if the first variable responds to the gravitational
wave, the gravitational wave may be measured accurately, even though the
full state of the bar is poorly known. This method is called ‘back reaction
evasion’ . The theory was developed in a classic paper by Caves et al [8].
However, no viable schemes to do this have been demonstrated for bar
detectors so far.

3.3.1 New bar detectors and their capabilities

Resonant-mass detectors are limited by properties of materials and, as we have
just explained, they have their best sensitivity in a narrow band around their
resonant frequency. However, they can usefully explore higher frequencies (above
500 Hz), where the interferometer noise curves are rising (see earlier figures).

From the beginning, bars were designed to detect bursts. If the burst
radiation carries significant energy in the bar’s bandwidth, then the bar can do
well. Standard assumptions about gravitational collapse suggest a signal with a
broad spectrum to 1 kHz or more, so that most of the sensitive bars today would
be suited to observe such a signal. Binary coalescence has a spectrum that peaks
at low frequencies, so bars are not partiularly well suited for such signals. On
the other hand, neutron-star and stellar-mass black-hole normal modes range in



38 Gravitational-wave detectors

frequency from about 1 kHz up to 10 kHz, so suitably designed bars could, in
principle, go after these interesting signals.

A bar gets all of its sensitivity in a relatively narrow bandwidth, so if a bar
and an interferometer can both barely detect a burst of amplitude 10−20, then
the bar has much greater sensitivity than the interferometer in its narrow band,
and much worse at other frequencies. This has led recently to interest in bars as
detectors of continuous signals. If the signal frequency is in the observing band of
the bar, it can do very well compared to interferometers. Signals from millisecond
pulsars and possible signals from x-ray binaries are suitable if they have the right
frequency. However, most known pulsars will radiate at frequencies rather low
compared to the operating frequencies of present-day bars.

The excellent sensitivity of bars in their narrow bandwidth also suits them
to detecting stochastic signals. Cross-correlations of two bars or of bars with
interferometers can be better than searches with first-generation interferometers
[9]. One gets no spectral information, of course, and in the long run expected
improvements in interferometers will overtake bars in this regard.

Today’s best bar detectors are orders of magnitude more sensitive than the
original Weber bar. Two ultra-cryogenic bars have been built and are operating
at thermodynamic temperatures below 100 mK: NAUTILUS [10] at Frascati, near
Rome, and [11] in Legnaro. With a mass of several tons, these may be the coldest
massive objects ever seen anywhere in the universe. These are expected soon to
reach a sensitivity of 10−20 near 1 kHz. Already they are performing coincidence
experiments with bars at around 4 K at Perth, Australia, and at LSU.

Proposals exist in the Netherlands, Brazil, Italy, and the USA for spherical
or icosahedral detectors (see links from [10]). These detectors have more
mass, so they could reach 10−21 near 1 kHz. Because of their shape, they
have omnidirectional antenna patterns; if they are instrumented so that all five
independent fundamental quadrupolar modes of vibration can be monitored, they
can do all-sky observing and determine directions as well as verify detections
using coincidences between modes of the same antenna.

3.4 A detector in space

As we have noted earlier, gravitational waves from astronomical objects at
frequencies below 1 Hz are obscured by Earth-based gravity-gradient noise.
Detectors must go into space to observe in this very interesting frequency range.

The LISA [12] mission is likely to be the first such mission to fly. LISA
will be a triangular array of spacecraft, with arm lengths of 5× 10 6 km, orbiting
the Sun in the Earth’s orbit, about 20◦ behind the Earth. The spacecraft will be
in a plane inclined to the ecliptic by 60◦. The three arms can be combined in
different ways to form two independent interferometers. During the mission the
configuration of spacecraft rotates in its plane, and the plane rotates as well, so
that LISA’s antenna pattern sweeps the sky.
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LISA has been named a cornerstone mission of the European Space Agency
(ESA), and NASA has recently formed its own team to study the same mission,
with a view toward a collaboration with ESA. LISA will be sensitive in a range
from 0.3 mHz to about 0.1 Hz, and it will be able to detect known binary
star systems in the Galaxy and binary coalescences of supermassive black holes
anywhere they occur in the universe. A joint ESA–NASA project looks very
likely, aiming at a launch around 2010. A technology demonstration mission
might be launched in 2005 or 2006.

LISA’s technology is fascinating. We can only allude to the most interesting
parts of the mission here. A full description can be found in the pre-Phase A study
document [13]. The most innovative aspect of the mission is drag-free control. In
order to guarantee that the interferometry is not disturbed by external forces, such
as fluctuations in solar radiation pressure, the mirror that is the reference point
for the interferometry is on a free mass inside the spacecraft. The spacecraft acts
as an active shield, sensing the position of the free mass, firing jets to counteract
external forces on itself and ensure that it does not disturb the free mass. The
jets themselves are remarkable, in that they must be very weak compared to most
spacecraft’s control jets, and they must be capable of very precise control. They
will work by expelling streams of ions, accelerated and controlled by a high-
voltage electric field. Fuel for these jets is not a problem: 1 g will be enough for
a mission lifetime of ten years!

LISA interferometry is not done with reflection from mirrors. When a laser
beam reaches one spacecraft from the other, it is too weak to reflect: the sending
spacecraft would only get the occasional photon! Instead, the incoming light
is sensed, and an on-board laser is slaved to it, returning an amplified beam
with the same phase and frequency as the incoming one. No space mission has
yet implemented this kind of laser-transponding. The LISA team had to ensure
that there was enough information in all the signals to compensate for inevitable
frequency fluctuations among all six on-board lasers.

A further serious problem that the LISA team had to solve was how
to compensate for the relative motions of the spacecraft. The laser signals
converging on a single spacecraft from the other two corners will be Doppler
shifted so that their fringes change at MHz frequencies. This has to be sensed on
board and removed from the signal that is sent back to Earth, which can only be
sampled a few tens of times per second.

When LISA flies it will, on a technical as well as a scientific level, be a
worthy counterpart to its Earth-based interferometer cousins!

3.4.1 LISA’s capabilities

In the low-frequency LISA window, most sources will be relatively long lived,
at least a few months. During an observation, LISA will rotate and change its
velocity by a significant amount. This will induce Doppler shifts into the signals,
and modulate their amplitudes, so that LISA should be able to infer the position,
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Figure 3.5. LISA sensitivity to binary systems in the Galaxy (top) and to massive black
hole coalescences (bottom). The top figure is calibrated in the intrinsic amplitude of the
signal, and the noise curve shows the detection threshold (5σ ) for a one-year observation.
It also shows the confusion limit due to unresolved binary systems. The bottom panel
shows the effective amplitude of signals from coalescences of massive black holes. Since
some such events last less than one year, what is shown is the expected signal-to-noise ratio
of the observation.

polarization and amplitude of sources entirely from its own observations. Below
about 1 mHz, this information weakens, because the wavelength of the radiation
becomes comparable to or greater than the radius of LISA’s orbit. The amplitude
modulation is the only directional information in this frequency range.
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3.5 Gravitational and electromagnetic waves compared and
contrasted

To conclude this lecture it is useful to discuss the most important differences and
similarities between gravitational waves and electromagnetic ones. We do this in
the form of a table.

Table 3.1.

Electromagnetism General relativity
Two signs of charges—large bodies
usually neutral—waves usually emitted
by single particles, often incoherently—
waves carry ‘ local’ information.

One sign of mass—gravity
accumulates—waves emitted more
strongly by larger body—waves carry
‘global’ information.

A genuine physical force, acting differ-
ently on different bodies. Detected by
measuring accelerations.

Equivalence principle: gravity affects
all bodies in the same way. Represented
as a spacetime curvature rather than a
force. Detected only by tidal forces—
differential accelerations.

Maxwell’s equations are linear. Physi-
cal field is Fµν (EEE and BBB). Gauge field
is vector potential A.

Einstein’s equations are nonlinear.
Physical field is Riemann curvature ten-
sor Rµναβ . Gauge fields are metric gµν
and connection �αµν . Gauge transfor-
mations are coordinate transformations.

Source is charge-current density Jµ.
Charge creates electric field, current
magnetic field.

Source is stress-energy tensor Tµν .
Mass creates a Newtonian-like field,
momentum as gravito-magnetic effects.
Stress creates field too.

Moderately strong force on the atomic

scale: e2/4πε0
Gm2

p
= 1039.

Weaker than ‘weak’ interaction.

Wave generation for Aµ: ∂β∂β Aµ =
4πε0 Jµ in a convenient gauge (Lorentz
gauge).

Wave generation for hµν = gµν − ηµν :

∂β∂β(hµν − 1
2ηµνhαα) = 8πTµν in a

convenient gauge.

Propagate at the speed of light, ampli-
tude falls as 1/r .

Propagate at the speed of light, ampli-
tude falls as 1/r .

Conservation of charge ⇒ radiation by
low-velocity charges is dominated by
dipole component.

Conservation of mass and momentum
⇒ radiation by low-velocity masses is
dominated by quadrupole component.
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Table 3.1. (Continued)

Electromagnetism General relativity
Simple detector: oscillating charge.
Action is along a line, transverse to the
directions of propagation. Spin s = 1
and two states of linear polarization that
are inclined to each other at an angle of
90◦.

Simple detector: distorted ring of
masses. Action is elliptic in a
plane transverse to the direction of
propagation. Spin s = 2 and two
states of linear polarization that are
inclined to each other at an angle of 45◦.
Equivalence principle⇒ action depends
only on hµν , which is dimensionless.

Strength of force ⇒ waves scatter and
refract easily.

Weakness of gravity ⇒ waves propa-
gate almost undisturbed and transfer en-
ergy very weakly. Dimensionless ampli-
tude h is small.

Local energy and flux well defined:
Poynting vector etc.

Equivalence principle ⇒ local energy
density cannot be defined exactly. Only
global energy balance is exact.

Multipole expansion in slow-motion
limit is straightforward, radiation reac-
tion well defined.

Multipole expansion different if fields
are weak or strong. For quasi-
Newtonian case fields are weak, and the
resulting post-Newtonian expansion is
delicate. Radiation reaction is still not
fully understood.

Exact solutions, containing waves, are
available and can guide the construction
of approximation methods for more
complicated situations.

Fully realistic exact solutions for dy-
namical situations of physical interest
are not available. Extensive reliance on
approximation methods.



Chapter 4

Astrophysics of gravitational-wave sources

There are a large number of possible gravitational-wave sources in the observable
waveband, which spans eight orders of magnitude in frequency: from 10 −4 Hz
(lower bound of current space-based detector designs) to 10 4 Hz (frequency limit
of likely ground-based detectors). Some of these sources are highly relativistic
and not too massive, especially above 10 Hz: a black hole of mass 1000M�
has a characteristic frequency of 10 Hz, and larger holes have lower frequencies
in inverse proportion to the mass. Neutron stars have even higher characteristic
frequencies. Other systems are well described by Newtonian dynamics, such as
binary orbits.

For nearly-Newtonian sources the post-Newtonian approximation (see
chapter 6) provides a good framework for calculating gravitational waves. More
relativistic systems, and unusual sources like the early universe, require more
sophisticated approaches (see chapter 7).

4.1 Sources detectable from ground and from space

4.1.1 Supernovae and gravitational collapse

The longest expected and still probably the least understood source, gravitational
collapse is one of the most violent events known to astronomy. Yet, because we
have little direct information about the deep interior, we cannot make reliable
predictions about the gravitational radiation from it.

Supernovae are triggered by the gravitational collapse of the interior
degenerate core of an evolved star. According to current theory the result should
be a neutron star or black hole. The collapse releases an enormous amount
of energy, about 0.15M�c2, most of which is carried away by neutrinos; an
uncertain fraction is converted into gravitational waves. One mechanism for
producing this radiation could be dynamical instabilities in the rapidly rotating
core before it becomes a neutron star. Another likely source of radiation is the r -
mode instability (see chapter 7). This could release ∼0.1M�c2 in radiation every
time a neutron star is formed.

43
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However, both kinds of mechanisms are difficult to model. The problem with
gravitational collapse is that perfectly spherical motions do not emit gravitational
waves, and it is still not possible to estimate in a reliable way the amount
of asymmetry in gravitational collapse. Even modern computers are not able
to perform realistic simulations of gravitational collapse in three dimensions,
including all the important nuclear reactions and neutrino- and photon-transport.
Similarly, it is hard to model the r -mode instability because its evolution depends
on nonlinear hydrodynamics and on poorly known physics, such as the cooling
and viscosity of neutron stars.

An alternative approach is to use general energy considerations. If, for
example, we assume that 1% of the available energy is converted into gravitational
radiation, then, from formulae we will derive in the next chapter, the amplitude h
would be large enough to be detected by the first ground-based interferometers
(LIGO/GEO600/VIRGO) at the distance of Virgo Cluster (18 Mpc) if the
emission centres at 300 Hz. Moreover, bar and spherical-mass detectors with
an effective sensitivity of 10−21 and the right resonant frequency could see these
signals as well.

The uncertainties in our predictions have a positive aspect: it is clear that if
we can detect radiation from supernovae, we will learn much that we do not know
about the end stages of stellar evolution and about neutron-star physics.

4.1.2 Binary stars

Binary systems have given us our best proof of the reliability of general relativity
for gravitational waves. The most famous example of such systems is the
binary pulsar PSR1916+16, discovered by Hulse and Taylor in 1974; they were
awarded the Nobel Prize for this discovery in 1993. From the observations of
the modulation of the pulse period as the stars move in their orbits, one knows
many important parameters of this system (orbital period, eccentricity, masses of
the two stars, etc), and the data also show directly the decrease of the orbital
period due to the emission of gravitational radiation. The observed value is
2.4× 10−12 s/s. Post-Newtonian theory allows one to predict this from the other
measured parameters of the system, without any free parameters (see chapter 7);
the prediction is 2.38× 10−12, in agreement within the measurement errors.

Unfortunately the radiation from the Hulse–Taylor system will be too weak
and of too low a frequency to be detectable by LISA.

4.1.3 Chirping binary systems

If a binary gives off enough energy for its orbit to shrink by an observable amount
during an observation, it is said to chirp: as the orbit shrinks, the frequency and
amplitude go up. LISA will see a few chirping binaries. If a binary system
is compact enough to radiate above 10−3 Hz, it will always chirp within one
year, provided its components have a mass above about 1M�. If they are above
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Table 4.1. The range for detecting a 2× 1.4M� NS binary coalescence. The threshold for
detection is taken to be 5σ . The binary and detector orientations are assumed optimum.
The average S/N ratio for randomly oriented systems is reduced from the optimum by
1/
√

5.

Detector: TAMA300 GEO600 LIGO I VIRGO LIGO II

Range (S/N = 5) 3 Mpc 14 Mpc 30 Mpc 36 Mpc 500 Mpc

about 103M�, the binary will go all the way to coalescence within the one-year
observation.

Chirping binary systems are more easily detectable than gravitational
collapse events because one can model with great accuracy the gravitational
waveform during the inspiral phase. There will be radiation, possibly with
considerable energy, during the poorly understood plunge phase (when the objects
reach the last stable orbit and fall rapidly towards one another) and during the
merger event, but the detectability of such systems rests on tracking their orbital
emissions.

The major uncertainty about this kind of source is the event rate. Current
pulsar observations suggest that there will be∼1 coalescence per year of a Hulse-
Taylor binary out to about 200 Mpc. This is a lower limit on the event rate, since it
comes from systems we actually observe. It is possible that there are other kinds
of binaries that we have no direct knowledge of, which will boost the event rate.

Theoretical modelling of binary populations gives a wide spectrum of
mutually inconsistent predictions. Some authors [14] suggest that there may be
a large population that escapes pulsar surveys but brings the nearest neutron star
coalescence in one year as far as 30 Mpc, only slightly farther than the Virgo
cluster; but other models [15] put the rate near to the observational limit.

The most exciting motivation for detecting coalescing binaries is that they
could be associated with gamma-ray bursts. The event rates are consistent,
and neutron stars are able to provide the required energy. If gamma-bursts
are associated with neutron-star coalescence, then observations of coalescence
radiation should be followed within a second or so by a strong gamma-ray burst.

LISA will see a few chirping binaries in the Galaxy, but the sensitivity of
the first generation of ground-based detectors is likely to be too poor to see many
such events (see table 4.1).

A certain fraction of such systems could contain black holes instead of
neutron stars. In fact black holes should be overrepresented in binary systems
(relative to their birth rate) because their formation is much less likely to disrupt
a binary system (there is much less mass lost) than the formation of a neutron
star would be. Pulsar observations have not yet turned up a black-hole/neutron-
star system, and of course one does not expect to see binary black holes



46 Astrophysics of gravitational-wave sources

Table 4.2. The range for detecting a 10M� black-hole binary. Conventions as in table 4.1.

Detector: GEO600 LIGO I VIRGO LIGO II

Range (S/N = 5) 75 Mpc 160 Mpc 190 Mpc 2.6 Gpc

electromagnetically. So we can only make theoretical estimates, and there are
big uncertainties.

Some evolution calculations [14] suggest that the coalescence rate of BH–
BH systems may be of the same order as the NS–NS rate. Other models [15]
suggest it could even be zero, because stellar-wind mass loss (significant in very
massive stars) could drive the stars far apart before the second BH forms, leading
to coalescence times longer than the age of the universe. A recent proposal
identifies globular clusters as ‘ factories’ for binary black holes, forming binaries
by three-body collisions and then expelling them [16]. Gamma-ray bursts may
also come from black-hole/neutron-star coalescences. If the more optimistic event
rates are correct, then black-hole coalescences may be among the first sources
detected by ground-based detectors (table 4.2).

4.1.4 Pulsars and other spinning neutron stars

There are a number of ways in which a spinning neutron star may give off a
continuous stream of gravitational waves. They will be weak, so they will require
long continuous observation times, up to many months. Here are some possible
emission mechanisms for neutron stars.

The r-modes. Neutron stars are born hot and probably rapidly rotating.
Before they cool (during their first year) they have a family of unstable normal
modes, the r-modes. These modes are excited to instability by the emission
of gravitational radiation, as predicted originally by Andersson [17]. They are
particularly interesting theoretically because the radiation is gravitomagnetic,
generated by mass currents rather than mass asymmetries. We will study the
theory of this radiation in chapter 6. In chapter 7 we will discuss how the emission
of this radiation excites the instability (the CFS instability mechanism).

Being unstable, young neutron stars will presumably radiate away enough
angular momentum to reduce their spin and become stable. This could lower the
spin of a neutron star to ∼100 Hz within one year after its formation [18]. The
energy emitted in this way should be a good fraction of the star’s binding energy,
so in principle this radiation could be detected from the Virgo Cluster by LIGO
II, provided matched filtering can be used effectively.

We discuss a possible stochastic background of gravitational waves from the
r -modes below.

Accreting neutron stars (figure 4.1) are the central objects of most of the



Sources detectable from ground and from space 47

Figure 4.1. Accreting neutron star in a low-mass x-ray binary system.

binary x-ray sources in the Galaxy. Astronomers divide them into two distinct
groups: the low-mass and high-mass binaries, according to the mass of the
companion star. In these systems mass is pulled from the low- or high-mass giant
by the tidal forces exerted by its neutron star companion. In low-mass x-ray
binaries (LMXBs) the accretion lasts long enough to spin the neutron star up to
the rotation rates of millisecond pulsars. Astronomers have therefore supposed
for some time that the neutron stars in LMXBs would have a range of spins, from
near zero (young systems) to near 500 or 600 Hz (at the end of the accretion
phase). Until the launch of the Rossi X-ray Timing Explorer (RXTE), there was
no observational evidence for the neutron star spins. However, in the last two
years there has been an accumulation of evidence that most, if not all, of these
stars have angular velocities in a narrow range around 300 Hz [19]. It is not known
yet what mechanism regulates this spin, but a strong candidate is the emission of
gravitational radiation.

A novel proposal by Bildsten [20] suggests that the temperature gradient
across a neutron star that is accreting preferentially at its magnetic poles should
lead to a composition and hence a density gradient in the deep crust. Spinning at
300 Hz, such a star could radiate as much as it accretes. It would then be a steady
source for as long as accretion lasts, which could be millions of years.

In this model the gravitational-wave energy flux is proportional to the
observed x-ray energy flux. The strongest source in this model is Sco X-1,
which could be detected by GEO600 in a two-year-long narrow-band mode if
the appropriate matched filtering can be done. LIGO II would have no difficulty
in detecting this source.

Older stars may also be lumpy. For known pulsars, this is constrained by the
rate of spindown: the energy radiated in gravitational waves cannot exceed the
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total energy loss. In most cases, this limit is rather weak, and stars would have to
sustain strains in their crust of order 10−3 or more. It is unlikely that crusts could
sustain this kind of strain, so the observational limits are probably significant
overestimates for most pulsars. However, millisecond pulsars have much slower
spindown rates, and it would be easier to account for the strain in their crusts,
for example as a remnant Bildsten asymmetry. Such stars could, in principle, be
radiating more energy in gravitational waves than electromagnetically.

Observations of individual neutron stars would be rich with information
about astrophysics and fundamental nuclear physics. So little is known about
the physics of these complex objects that the incentive to observe their radiation
is great.

However, making such observations presents challenges for data analysis,
since the motion of the Earth puts a strong phase modulation on the signal, which
means that even if its rest-frame frequency is constant it cannot be found by
simple Fourier analysis. More sophisticated pattern-matching (matched-filtering)
techniques are needed, which track and match the signal’s phase to within one
cycle over the entire period of measurement. This is not difficult if the source’s
location and frequency are known, but the problem of doing a wide-area search for
unknown objects is very challenging [21]. Moreover, if the physics of the source
is poorly known, such as for LMXBs or r -mode spindown, the job of building an
accurate family of templates is a difficult one. These questions are the subject of
much research today, but they will need much more in the future.

4.1.5 Random backgrounds

The big bang was the most violent event of all, and it may have created a
significant amount of gravitational radiation. Other events in the early universe
may also have created radiation, and there may be backgrounds from more
recent epochs. We have seen earlier, for example, that compact binary systems
in the Galaxy will merge into a confusion-limited noise background in LISA
observations below about 1 mHz.

Let us consider the r -modes as another important example. This process may
have occurred in a good fraction of all neutron stars formed since the beginning
of star formation. The sum of all of their r -mode radiation will be a stochastic
background, with a spectrum that extends from a lower cut-off of about 200 Hz in
the rest frame of the emitter to an upper limit that depends on the initial angular
velocity of stars. If significant star formation started at, say, a redshift of five,
then this background should extend down to about 25 Hz. If 10 −3 of the mass of
the Galaxy is in neutron stars, and each of them radiates 10% of its mass in this
radiation, then the gravitational-wave background should have a density equal to
10−4 of the mean cosmological density of visible stars. Expressed as a fraction
�gw of the closure density of the universe, per logarithmic frequency interval, this
converts to

�r-modes
gw (25–1000 Hz) ≈ 10−8–10−7.
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This background would be easily detectable by LIGO II.
There may also be a cosmological background from either topological

defects (e.g. cosmic strings) or from inflation (which amplifies initial quantum
gravitational fluctuations as it does the scalar ones that lead to galaxy formation).
Limits from COBE observations suggest that standard inflation could not produce
a background stronger than � inflation

gw ∼ 10−14 today. This is too weak for any
of the planned detectors to reach, but it remains an important long-range goal
for the field. However, there could also be a component of background radiation
that depends on what happened before inflation: string cosmological models, for
example, predict spectra growing with frequency [22].

First-generation interferometers are not likely to detect these backgrounds:
they may not be able to go below the upper limit set by the requirement
that gravitational waves should not disturb cosmological nucleosynthesis, which
is �gw = 10−5. (This limit does not apply to backgrounds generated after
nucleosynthesis, like the r -mode background.) Bar detectors may do as well or
better than the first generation of interferometers for a broad-spectrum primordial
background: as we have noted earlier, their noise levels within their resonance
bands are very low. However, their frequencies are not right for the r -mode
background.

Second-generation interferometers may be able to reach to 10−11 of closure
or even lower, by cross-correlation of the output of the two detectors. However,
they are unlikely to get to the inflation target of 10−14. LISA may be able to go as
low as 10−10 (if we have a confident understanding of the instrumental noise), but
it is likely to detect only the confusion background of binaries, which is expected
to be much stronger than a cosmological background in the LISA band.

4.1.6 The unexpected

At some level, we are bound to see things we did not expect. LISA, with its
high signal-to-noise ratios for predicted sources, is particularly well placed to do
this. Most of the universe is composed of dark matter whose existence we can
infer only from its gravitational effects. It would not be particularly surprising if
a component of this dark matter produced gravitational radiation in unexpected
ways, such as from binaries of small exotic compact objects of stellar mass. We
will have to wait to see!
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Waves and energy

Here we discuss wave-like perturbations hµν of a general background metric gµν .
The mathematics is similar to that of linearized theory: hµν is a tensor with respect
to background coordinate transformations (as it was for Lorentz transformations
in linearized theory) and it undergoes a gauge transformation when one makes an
infinitesimal coordinate transformation. As in linearized theory, we will assume
that the amplitude of the waves is small. Moreover, the waves must have a
wavelength that is short compared to the radius of curvature of the background
metric. These two assumptions allow us to visualize the waves as small ripples
running through a curved and slowly changing spacetime.

5.1 Variational principle for general relativity

We start our analysis of the small perturbation hµν by introducing the standard
Hilbert variational principle for Einstein’s equations. The field equations of
general relativity can be derived from an action principle using the Ricci scalar
curvature as the Lagrangian density. The Ricci scalar (second contraction of the
Riemann tensor) is an invariant quantity which contains in addition to gµν and its
first derivatives also the second derivatives of gµν , so our action can be written
symbolically as:

I [gµν] = 1

16π

∫
R(gµν, gµν,α, gµν,αβ)

√−g d4x (5.1)

where
√−g is the square root of the determinant of the metric tensor. As usual in

variational principles, the metric tensor components are varied gµν → gµν+hµν ,
and one demands that the resulting change in the action should vanish to first
order in any small variation hµν of compact support:

δ I = I [gµµ + hµν]− I [gµν]

= 1

16π

∫
δ(R

√−g)

δgµν
hµν d4x + O(2) (5.2)
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= − 1

16π

∫
Gµνhµν

√−g d4x + O(2) (5.3)

where ‘ O(2)’ denotes terms quadratic and higher in h µν . All the divergences
obtained in the intermediate steps of this calculation integrate to zero since h µν
is of compact support. This variational principle therefore yields the vacuum
Einstein equations: Gµν = 0.

Let us consider how this changes if we include matter. This will help us
to see how we can treat gravitational waves as a new kind of ‘matter’ fi eld on
spacetime.

Suppose we have a matter field, described by a variable � (which may
represent a vector, a tensor or a set of tensors). It will have a Lagrangian density
Lm = Lm(�,�,α, . . . , gµν) that depends on the field and also on the metric.
Normally derivatives of the metric tensor do not appear in L m, since by the
equivalence principle, matter fields should behave locally as if they were in flat
spacetime, where of course there are no metric derivatives. Variations of L m with
respect to � will produce the field equation(s) for the matter system, but here we
are more interested in variations with respect to gµν , which is how we will find
the matter field contribution to the gravitational field equations. The total action
has the form:

I =
∫
(R + 16πLm)

√−g d4x, (5.4)

whose variation is

δ I =
∫
δ(R

√−g)

δgµν
hµν d4x +

∫
16π

∂(Lm
√−g)

∂gµν
hµν d4x . (5.5)

This variation must yield full Einstein equations, so we must have the following
result for the stress-energy tensor of matter:

Tµν
√−g = 2

∂Lm
√−g

∂gµν
, (5.6)

leading to
Gµν = 8πT µν . (5.7)

This way of deriving the stress-energy tensor of the matter field has deep
connections to the conservation laws of general relativity, to the way of
constructing conserved quantities when the metric has symmetries and to the so-
called pseudotensorial definitions of gravitational wave energy (see Landau and
Lifshitz 1962) [23]. We shall use it in the latter sense.

5.2 Variational principles and the energy in gravitational
waves

Before we introduce the mathematics of gravitational waves, it is important to
understand which geometries we are going to examine. We have said that these
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geometries consist of a slowly and smoothly changing background metric which
is altered by perturbations of small amplitude and high frequency. If L and λ are
the characteristic lengths over which the background and ‘ ripple’ metrics change
significantly, we assume that the ratio λ/L will be very much smaller than unity
and that |hµν | is of the same order of smallness as λ/L. In this way the total
metric remains slowly changing on a macroscopic scale, while the high-frequency
wave, when averaged over several wavelengths, will be the principal source of the
curvature of the background metric. This is the ‘short-wave’ approximation [24].
Obviously this is a direct generalization of the treatment in chapter 2.

5.2.1 Gauge transformation and invariance

Consider an infinitesimal coordinate transformation generated by a vector field
ξα ,

xα → xα + ξα. (5.8)

In the new coordinate system, neglecting quadratic and higher terms in h αβ , it is
not hard to show that the general gauge transformation of the metric is

hµν → hµν − ξµ;ν − ξν;µ, (5.9)

where a semicolon denotes the covariant derivative. We assume that the
derivatives of the coordinate displacement field are of the same order as the metric
perturbation: |ξ α,β | ∼ |hαβ |.

Isaacson [24] showed that the gauge transformation of the Ricci and
Riemann curvature tensors has the property

R̄(1)µν − R(1)µν ≈
(
λ

L

)2

(5.10)

R̄(1)αµβν − R(1)αµβν ≈
(
λ

L

)2

where R(1)µν and R(1)αµβν are the first order of Ricci and Riemann tensors (in
powers of perturbation hµν) and an overbar denotes their values after the gauge
transformation. In our high-frequency limit, therefore, these tensors are gauge-
invariant to linear order, just as in linearized theory.

5.2.2 Gravitational-wave action

Let us suppose that we are in vacuum so we have only the metric, no matter fields,
but we work in the high-frequency approximation. The full metric is g µν (smooth
background metric) +hµν (high-frequency perturbation). Our purpose is to show
that the wave field can be treated as a ‘matter’ fi eld, with a Lagrangian and its
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own stress-energy tensor. To do this we have to expand the action out to second
order in the metric perturbation,

I [gµµ + hµν] =
∫

R(gµν + hµν, gµν,α + hµν,α, . . .)
√−g[gµν + hµν] d4x

=
∫

R(gµν, . . .)
√−g d4x +

∫
δ(R

√−g)

δgµν
hµν d4x

+ 1

2

∫ (
∂2(R

√−g)

∂gµν∂gαβ
hµνhαβ + 2

∂2(R
√−g)

∂gµν∂gαβ,γ
hµνhαβ,γ

+ ∂2(R
√−g)

∂gµν,τ ∂gαβ,γ
hµν,τhαβ,γ + 2

∂2(R
√−g)

∂gµν∂gαβ,γ τ
hµνhαβ,γ τ

)
d4x

+ O(3).

The first term is the action for the background metric gµν . The second term
vanishes (see equation (5.2)), since we assume that the background metric is a
solution of the Einstein vacuum equation itself, at least to lowest order.

If we compare the above equation with equation (5.4), we can see that the
third term, complicated as it seems, is an effective ‘matter’ Lagrangian for the
gravitational field. Indeed, if one varies it with respect to h µν holding gµν
fixed (as we would do for a physical matter field on the background), then the
complicated coefficients are fixed and one can straightforwardly show that one
gets exactly the linear perturbation of the Einstein tensor itself. Its vanishing is
the equation for the gravitational-wave perturbation h µν . In this way we have
shown that, for a small amplitude perturbation, the gravitational wave can be
treated as a ‘matter’ fi eld with its own Lagrangian and field equations.

Given this Lagrangian, we should be able to calculate the effective stress-
energy tensor of the wave field by taking the variations of the effective Lagrangian
with respect to gµν , holding the ‘matter’ fi eld hµν fixed:

T (GW)αβ√−g = 2
∂L(GW)[gµν, hµν]

√−g

∂gαβ
(5.11)

with

L(GW)√−g = 1

32π

(
∂2(R

√−g)

∂gµν∂gαβ
hµνhαβ + 2

∂2(R
√−g)

∂gµν∂gαβ,γ
hµνhαβ,γ

+ ∂2(R
√−g)

∂gµν,τ ∂gαβ,γ
hµν,τ hαβ,γ + 2

∂2(R
√−g)

∂gµν∂gαβ,γ τ
hµνhαβ,γ τ

)
.

(5.12)

This quantity is quadratic in the wave amplitude hµν . It could be simplified
further by integrations by parts, such as by taking a derivative off h αβ,γ τ . This
would change the coefficients of the other terms. We will not need to worry about
finding the ‘best’ form for the expression (4.12), as we now show.
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As in linearized theory, so also in the general case, the quantity h µν behaves
like a tensor with respect to background coordinate transformations, and so does
T (GW)
µν . However, it is not gauge-invariant and so it is not physically observable.

Since the integral of the action is independent of coordinate transformations that
have compact support, so too is the integral of the effective stress-energy tensor.
In practical terms, this makes it possible to localize the energy of a wave to within
a region of about one wavelength in size where the background curvature does
not change significantly. In fact, if we restrict our gauge transformations to have
a length scale of a wavelength, and if we average (integrate) the stress-energy
tensor of the waves over such a region, then any gauge changes will be small
surface terms.

By evaluating the effective stress-energy tensor on a smooth background
metric in a Lorentz gauge, and performing the averaging (denoted by symbol
〈· · ·〉), one arrives at the Isaacson tensor:

T (GW)
αβ = 1

32π
〈hµν;αhµν ;β〉. (5.13)

This is a convenient and compact form for the gravitational stress-energy
tensor. It localizes energy in short-wavelength gravitational waves to regions of
the order of a wavelength. It is interesting to remind ourselves that our only
experimental evidence of gravitational waves today is the observation of the effect
on a binary orbit of the loss of energy to the gravitational waves emitted by the
system. So this energy formula, or equivalent ones, is central to our understanding
of gravitational waves.

5.3 Practical applications of the Isaacson energy

If we are far from a source of gravitational waves, we can treat the waves by
linearized theory. Then if we adopt the TT gauge and specialize the stress-energy
tensor of the radiation to a flat background, we get

T (GW)
αβ = 1

32π
〈hTT

i j,αhTTi j
,β 〉. (5.14)

Since there are only two components, a wave travelling with frequency f
(wavenumber k = 2π f ) and with a typical amplitude h in both polarizations
carries an energy Fgw equal to (see exercise (f) at the end of this lecture)

Fgw = π4 f 2h2. (5.15)

Putting in the factors of c and G and scaling to reasonable values gives

Fgw = 3 mW m−2
[

h

1× 10−22

]2 [
f

1 kHz

]2

, (5.16)
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which is a very large energy flux even for this weak a wave. It is twice the energy
flux of a full moon! Integrating over a sphere of radius r , assuming a total duration
of the event τ , and solving for h, again with appropriate normalizations, gives

h = 10−21
[

Egw

0.01M�c2

] 1
2
[

r

20 Mpc

]−1 [
f

1 kHz

]−1 [ τ

1 ms

]− 1
2
. (5.17)

This is the formula for the ‘burst energy’ , normalized to numbers appropriate to a
gravitational collapse occurring in the Virgo cluster. It explains why physicists
and astronomers regard the 10−21 threshold as so important. However, this
formula could also be applied to a binary system radiating away its orbital
gravitational binding energy over a long period of time τ , for example.

5.3.1 Curvature produced by waves

We have assumed that the background metric satisfies the vacuum Einstein
equations to linear order, but now it is possible to view the full action principle
as a principle for the background with a wave field h µν on it, and to let the wave
energy affect the background curvature [24]. This means that the background will
actually solve, in a self-consistent way, the equation

Gαβ [gµν] = 8πT GW
αβ [gµν + hµν ]. (5.18)

This does not contradict the vanishing of the first variation of the action, which we
needed to use above, because now we have an Einstein tensor that is of quadratic
order in hµν , contributing a term of cubic order to the first-variation of the action,
which is of the same order as other terms we have neglected.

5.3.2 Cosmological background of radiation

This self-consistent picture allows us to talk about, for example, a cosmological
gravitational wave background that contributes to the curvature of the universe.
Since the energy density is the same as the flux (when c = 1), we have

�gw = π
4

f 2h2, (5.19)

but now we must interpret h in a statistical way. This will be treated in the
contribution by Babusci et al, but basically it is done by replacing h 2 by a
statistical mean square amplitude per unit frequency (Fourier transform power),
so that the energy density per unit frequency is proportional to f 2|h̃|2. It is then
conventional to talk about the energy density per unit logarithm of frequency,
which means multiplying by f . The result, after being careful about averaging
over all directions of the waves and all independent polarization components, is

d�gw

d ln f
= 4π2 f 3|h̄( f )|2. (5.20)
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Finally, what is of the most interest is the energy density as a fraction of the
closure or critical cosmological density, given by the Hubble constant H 0 as
�c = 3H 2

0 /8π . The resulting ratio is the symbol �gw( f ) that we met in the
previous lecture:

�gw( f ) = 32π3

3H 2
0

f 3|h̄( f )|2. (5.21)

5.3.3 Other approaches

We finish this lecture by observing that there is no unique approach to defining
energy for gravitational radiation or indeed for any solution of Einstein’s
equations. Historically this has been one of the most difficult areas for physicists
to get to grips with. In the textbooks you will find discussions of pseudotensors, of
energy measured at null infinity and at spacelike infinity, of Noether theorems and
formulae for energy, and so on. None of these are worse than we have presented
here, and in fact all of them are now known to be consistent with one another, if
one does not ask them to do too much. In particular, if one wants only to localize
the energy of a gravitational wave to a region of the size of a wavelength, and
if the waves have short wavelength compared to the background curvature scale,
then pseudotensors will give the same energy as the one we have defined here.
Similarly, if one takes the energy flux defined here and evaluates it at null infinity,
one gets the so-called Bondi flux, which was derived by H Bondi in one of the
pioneering steps in the understanding of gravitational radiation. Many of these
issues are discussed in the Schutz–Sorkin paper referred to earlier [23].

5.4 Exercises for chapter 5

(e) In the notes above we give the general gauge transformation

hµν → hµν − ξµ;ν − ξν;µ.
Use the formula for the derivation of Einstein’s equations from an action
principle,

δ I = 1

16π

∫
δ(R

√−g)

δgµν
hµν d4x

with
δ(R

√−g)

δgµν
= −Gµν

√−g,

but insert a pure gauge hµν . Argue that since this is merely a coordinate
transformation, the action should be invariant. Integrate the variation of the
action to prove the contacted Bianchi identity

Gµν,ν = 0.
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This shows that the divergence-free property of Gµν is closely related to the
coordinate invariance of Einstein’s theory.

(f) Suppose a plane wave, travelling in the z-direction in linearized theory, has
both polarization components h+ and h×. Show that its energy flux in the
z-direction, T (GW)0z , is

〈T (GW)0z〉 = k2

32π
(A2+ + A2×),

where the angle brackets denote an average over one period of the wave.



Chapter 6

Mass- and current-quadrupole radiation

In this lecture we focus on the wave amplitude itself, and how it and the
polarization depend on the motions in the source. Consider an isolated source
with a stress-energy tensor T αβ . As in chapter 2, the Einstein equation is(

− ∂
2

∂ t2
+∇2

)
h
αβ = −16πT αβ (6.1)

(h
αβ = hαβ− 1

2η
αβh and h

αβ
,β = 0). Its general solution is the following retarded

integral for the field at a position x i and time t in terms of the source at a position
yi and the retarded time t − R:

h
αβ
(xi , t) = 4

∫
1

R
T αβ(t − R, yi ) d3y, (6.2)

where we define
R2 = (xi − yi )(xi − yi ). (6.3)

6.1 Expansion for the far field of a slow-motion source

Let us suppose that the origin of coordinates is in or near the source, and the field
point x i is far away. Then we define r 2 = xi xi and we have r 2 � yi yi . We
can, therefore, expand the term R in the dominator in terms of y i . The lowest
order is r , and all higher-order terms are smaller than this by powers of r −1.
Therefore, they contribute terms to the field that fall off faster than r −1, and they
are negligible in the far zone. Therefore, we can simply replace R by r in the
dominator, and take it out of the integral.

The R inside the time-argument of the source term is not so simple. If we
suppose that T αβ does not change very fast we can substitute t − R by t − r (the
retarded time to the origin of coordinates) and expand

t − R = t − r + ni yi + O

(
1

r

)
, with ni = xi

r
, ni ni = 1. (6.4)
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The two conditions r � y i yi and the slow-motion source, can be expressed
quantitatively as:

r � λ̄

R � λ̄

where λ̄ is the reduced wavelength λ̄ = λ/2π and R is the size of source.
The terms of order r−1 are negligible for the same reason as above, but the

first term in this expansion must be taken into account. It depends on the direction
to the field point, given by the unit vector n i . We use this by making a Taylor
expansion in time on the time-argument of the source. The combined effect of
these approximations is

h
αβ = 4

r

∫
[T αβ(t ′, yi )+ T αβ ,0(t

′, yi )n j y j + 1
2 T αβ,00(t

′, yi )n j nk y j yk

+ 1
6 T αβ,000(t

′, yi )n j nknl y j yk yl + · · ·] d3y. (6.5)

We will need all the terms of this Taylor expansion out to this order.
The integrals in expression (5.5) contain moments of the components of the

stress-energy. It is useful to give these names. Use M for moments of the density
T 00, P for moments of the momentum T 0i and S for the moments of the stress
T ij . Here is our notation:

M(t ′) =
∫

T 00(t ′, yi ) d3y, M j (t ′) =
∫

T 00(t ′, yi )y j d3y,

M jk(t ′) =
∫

T 00(t ′, yi )y j yk d3 y, M jkl(t ′) =
∫

T 00(t ′, yi )y j yk yl d3 y,

Pl(t ′) =
∫

T 0l(t ′, yi ) d3y, Plj (t ′) =
∫

T 0l(t ′, yi )y j d3 y,

Pljk (t ′) =
∫

T 0l(t ′, yi )y j yk d3y,

Slm (t ′) =
∫

T lm(t ′, yi ) d3y, Slmj (t ′) =
∫

T lm(t ′, yi )y j d3 y.

These are the moments we will need.
Among these moments there are some identities that follow from the

conservation law in linearized theory, T αβ,β = 0, which we use to replace time
derivatives of components of T by divergences of other components and then
integrate by parts. The identities we will need are

Ṁ = 0, Ṁk = Pk , Ṁ jk = P jk + Pkj , Ṁ jkl = P jkl + Pkl j + Pljk ,

(6.6)

Ṗ j = 0, Ṗ jk = S jk , Ṗ jkl = S jkl + S jlk . (6.7)
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These can be applied recursively to show, for example, two further very useful
relations

d2M jk

dt2 = 2S jk,
d3M jkl

dt3 = 6Ṡ
( jkl)

(6.8)

where the round brackets on indices indicate full symmetrization.
Using these relations and notations it is not hard to show that

h
00
(t, xi ) = 4

r
M + 4

r
P j n j + 4

r
S jk(t ′)n j nk + 4

r
Ṡ jkl(t ′)n j nknl + · · · (6.9)

h
0 j
(t, xi ) = 4

r
P j + 4

r
S jk(t ′)nk + 4

r
Ṡ jkl(t ′)nknl + · · · (6.10)

h
jk
(t, xi ) = 4

r
S jk(t ′)+ 4

r
Ṡ jkl(t ′)nl + · · · . (6.11)

In these three formulae there are different orders of time-derivatives, but in fact
they are evaluated to the same final order in the slow-motion approximation. One

can see that from the gauge condition h
aβ
,β = 0, which relates time-derivatives

of some components to space-derivatives of others.
In these expressions, one must remember that the moments are evaluated

at the retarded time t ′ = t − r (except for those moments that are constant in
time), and they are multiplied by components of the unit vector to the field point
n j = x j/r .

6.2 Application of the TT gauge to the mass quadrupole field

In the expression for the amplitude that we derived so far, the final terms are
those that represent the current-quadrupole and mass-octupole radiation. The
terms before them represent the static parts of the field and the mass-quadrupole
radiation. In this section we treat just these terms, placing them into the TT gauge.
This will be simpler than treating it all at once, and the procedure for the next
terms will be a straightforward generalization.

6.2.1 The TT gauge transformations

We are already in Lorentz gauge, and this can be checked by taking derivatives
of the expressions for the field that we have derived above. However, we are
manifestly not in the TT gauge. Making a gauge transformation consists of
choosing a vector field ξ α and modifying the metric by

hαβ → hαβ − ξα,β − ξβ,α. (6.12)

The corresponding expression for the potential h
αβ

is

h
αβ → h

αβ + ξα,β + ξα,β − ηαβξµ,µ. (6.13)
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For the different components this implies changes

δh
00 = ξ0,0 + ξ j

, j (6.14)

δh
0 j = ξ0, j + ξ j,0 (6.15)

δh
jk = ξ j,k + ξ k, j − δ j kξµ,µ (6.16)

where δ j k is the Kronecker delta (unit matrix). In practice, when taking
derivatives, the algebra is vastly simplified by the fact that we are keeping only
r−1 terms in the potentials. This means that spatial derivatives do not act on
1/r but only on t ′ = t − r . It follows that ∂ t ′/∂x j = −n j , and ∂h(t ′)/∂x j =
−ḣ(t ′)n j .

It is not hard to show that the following vector field puts the metric into the
TT gauge to the order we are working:

ξ0 = 1

r
Pk

k + 1

r
P jkn j nk + 1

r
Sl

lk nk + 1

r
Si jk ni n j nk, (6.17)

ξ i = 4

r
Mi + 4

r
Pij n j − 1

r
Pk

kni − 1

r
P jkn j nkni + 4

r
Si jk n j nk

− 1

r
Sl

lk nkni − 1

r
S jlkn j nlnkni . (6.18)

6.2.2 Quadrupole field in the TT gauge

The result of applying this gauge transformation to the original amplitudes is

h
TT00 = 4M

r
, (6.19)

h
TT0i = 0, (6.20)

h
TTi j = 4

r

[
⊥ik⊥ j l Slk + 1

2
⊥i j (Skl n

knl − Sk
k)

]
. (6.21)

Remember that here we are not including Ṡ jkl , because it is a third-order effect.
The notation ⊥ik represents the projection operator perpendicular to the

direction ni to the field point.

⊥ j k= δ j k − n j nk . (6.22)

It can be verified that this tensor is transverse to the direction n i and is a
projection, in the sense that it projects to itself

⊥ j k nk = 0, ⊥ j k⊥k
l = ⊥ j l . (6.23)

The spherical component of the field is not totally eliminated in this gauge
transformation: the time–time component of the metric must contain the constant
Newtonian field of the source. (In fact we have succeeded in eliminating the
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dipole, or momentum part of the field, which is also part of the non-wave solution.
Our gauge transformation has incorporated a Lorentz transformation that has put
us into the rest frame of the source.) The time-dependent part of the field is now
purely spatial, transverse (because everything is multiplied by ⊥), and traceless
(as can be verified by explicit calculation).

The expression for the spatial part of the field actually does not depend on
the trace of S jk , as can be seen by constructing the trace-free part of the tensor,
defined as:

S̃ jk = S jk − 1
3δ

j k Sl
l . (6.24)

In fact, it is more conventional to use the mass moment here instead of the stress,
so we also define

M̃ jk = M jk − 1

3
δ j k Ml

l , S̃ jk = 1

2

d2M̃ jk

dt2
. (6.25)

In terms of M̃ the far field is

h̄TTi j = 2

r

(
⊥ik⊥ j l ¨̃Mkl + 1

2
⊥i j ¨̃Mkl n

lnk
)
. (6.26)

This is the usual formula for the mass-quadrupole field. In textbooks the notation
is somewhat different than we have adopted here. In particular, our tensor M̃
is what is called I– in Misner et al (1973) and Schutz (1985). It is the basis of
most gravitational-wave source estimates. We have derived it only in the context
of linearized theory, but remarkably its form is identical if we go to the post-
Newtonian approximation, where the gravitational waves are a perturbation of
the Newtonian spacetime rather than of flat spacetime.

Given this powerful formula, it is important to try to interpret it and
understand it as fully as possible. One obvious conclusion is that the dominant
source of radiation, at least in the slow-motion limit, is the second time-
derivative of the second moment of the mass density T 00 (the mass-quadrupole
moment). This is a very important difference between gravitational waves
and electromagnetism, in which the most important source is the electric-
dipole. In our case the mass-dipole term is not able to radiate because it is
constant, reflecting conservation of the linear momentum of the source. In
electromagnetism, however, if the dipole term is absent for some reason (all
charges positive, for example) then the quadrupole term dominates and it looks
very similar to equation (6.26).

6.2.3 Radiation patterns related to the motion of sources

The projection operators in equation (6.26) show that the radiative field is
transverse, as we expect. However, the form of equation (6.26) hides two equally
important messages:
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• the only motions that produce the radiation are the ones transverse to the line
of sight; and

• the induced motions in a detector mirror the motions of the source projected
onto the plane of the sky.

To see why these are true, we define the transverse traceless quadrupole tensor

MTT
i j =⊥k

i ⊥l
j Mkl − 1

2 ⊥i j⊥kl Mkl . (6.27)

(Notice that some of our definitions of tracelessness involve subtracting 1
3 of the

trace, as in equation (6.24), and sometimes 1
2 of the trace, as in equation (6.27).

The appropriate factor is determined by the effective dimensionality (rank) of
the tensor. Although we have three spatial dimensions, the projection tensor ⊥
projects the mass-quadrupole tensor onto a two-dimensional plane, where the
trace involves only two components, not three.)

Now, if in equation (6.26) we replace M̃i j by its definition in terms of Mij ,
and then collect terms appropriately, it is not hard to show that the equation
simplifies to its most natural form:

h̄TTi j = 2

r
M̈TTi j . (6.28)

This could of course have been derived directly by applying the TT operation to
equations (6.9)–(6.11). Since this equation involves only the TT part of M , our
first assertion above is proved. According to this equation, in order to calculate
the quadrupole radiation that a particular observer will receive, one need only
compute the mass-quadrupole tensor’s second time-derivative, project it onto the
plane of the sky as seen by the observer looking toward the source, take away its
trace, and rescale it by a factor 2/r . In particular, the TT tensor that describes the
action of the wave (as in the polarization diagram in figure 2.1) is a copy of the
TT tensor of the mass distribution. This proves our second assertion above.

Looking again at figure 2.1 we imagine a detector consisting of two free
masses whose separation is being monitored. If the wave causes them to oscillate
relative to one another along the x-axis (the ⊕ polarization), this means that the
source motion contained a component that did the same thing. If the source is a
binary, then the binary orbit projected onto the sky must involve motion of the
stars back and forth along either the x- or the y-axis.

It is possible from this to understand many aspects of quadrupole radiation
in a simple way. Consider a binary star system with a circular orbit. Seen by a
distant observer in the orbital plane, the projected source motion is linear, back
and forth. The received polarization will be linear, the polarization ellipse aligned
with the orbit. Seen by a distant observer along the axis of the orbit of the
binary, the projected motion is circular, which is a superposition of two linear
motions separated in phase by 90◦. The received radiation will also have circular
polarization. Because both linear polarizations are present, the amplitude of the
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wave emitted up the axis is twice that emitted in the plane. In this way we can
completely determine the radiation pattern of a binary system.

Notice that, when viewed at an arbitrary angle to the axis, the radiation
will be elliptically polarized, and the degree of ellipticity will directly measure
the inclination of the orbital plane to the line of sight. This is a very special
kind of information, which one cannot normally obtain from electromagnetic
observations of binaries. It illustrates the complementarity of the two kinds of
observing.

6.3 Application of the TT gauge to the current-quadrupole
field

Now we turn to the problem of placing next-order terms of the wave field, the
current quadrupole and mass octupole, into the TT gauge. Our interest here is to
understand current-quadrupole radiation in the same physical way as we have just
done for mass-quadrupole radiation. So we shall put the field into the TT gauge
and then see how to separate the current-quadrupole part from the mass-octupole,
which we will discard from the present discussion.

6.3.1 The field at third order in slow-motion

The next order terms in the non-TT metric bear a simple relationship to the mass-
quadrupole terms (see equations (6.9)–(6.11)). In each of the metric components,
just replace S jk by Ṡ jklnl to go from one order to the next.

This means that we can just skip to the end of the application of the gauge
transformations in equations (6.17) and (6.18) and write the next order of the final
field, only using S again, not M :

h̄TTi j = 4

r

[
⊥ik⊥ j l Ṡlkm nm + 1

2
⊥i j (Ṡklm nknlnm − Ṡk

kl n
l)

]
, (6.29)

or more compactly

h̄TTi j = 4

r

(
⊥ik⊥ j l ˙̃Sklmnm + 1

2
⊥i j ˙̃Sklm nlnknm

)
. (6.30)

The tilde on S represents a trace-free operation on the first two indices.

˙̃Sklm = Ṡlkm − 1
3δkl Ṡi

im .

These are the indices that come from the indices of T jk , so the tensor is symmetric
on these. By analogy with the quadrupole calculation, we can also define the TT
part of Sijk by doing the TT projection on the first two indices,

STT
i jm =⊥k

i ⊥l
j Sklm − 1

2 ⊥i j⊥kl Sklm . (6.31)
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The TT projection of the equation for the metric is

hTTi j = 4

r
ṠTTi j k nk . (6.32)

6.3.2 Separating the current quadrupole from the mass octupole

The last equation is compact, but it does not have the ready interpretation that
we have at quadrupole order. This is because the moment of the stress, S ijk ,
does not have such a clear physical interpretation. We see from equations (6.6)–
(6.8) that Sijk is a complicated mixture of moments of momentum and density.
To gain more physical insight into radiation at this order, we need to separate
these different contributions. It is straightforward algebra to see that the following
identity follows from the earlier ones:

Ṡi j k = 1
6

...

M ijk + 2
3 P̈[ j k]i + 2

3 P̈[ik] j , (6.33)

where square brackets around indices mean antisymmetrization:

A[ik] := 1
2 (A

ik − Aki ).

This is a complete separation of the mass terms (in M) from the momentum terms
(in P) because the only identities relating the momentum moments to the mass
moments involve the symmetric part of P ijk on its first two indices, and this is
absent from equation (6.33).

The first term in equation (6.33) is the third moment of the density, and this
is the source of the mass-octupole field. It produces radiation through the third
time-derivative. Since we are in a slow-motion approximation, this is smaller than
the mass-quadrupole radiation by typically a factor v/c. Unless there were some
very special symmetry conditions, one would not expect the mass octupole to be
anything more than a small correction to the mass quadrupole. For this reason we
will not treat it here.

The second and third terms in equation (6.33) involve the second moment
of the momentum, and together they are the source of the current-quadrupole
field. It involves two time-derivatives, just as the mass quadrupole does, but these
are time-derivatives of the momentum moment, not the mass moment, so these
terms produce a field that is also v/c smaller than the typical mass-quadrupole
field. However, it requires less of an accident for the mass quadrupole to be
absent and the current quadrupole present. It just requires motions that leave the
density unchanged to lowest order. This happens in the r -modes. Therefore, the
current quadrupole deserves more attention, and we will work exclusively with
these terms from now on.

The terms in equation (6.33) that we need are the ones involving P̈i jk .
These are antisymmetrized on the first two indices, which involves effectively
a vector product between the momentum density (first index) and one of the
moment indices. This is essentially the angular momentum density. To make
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the angular momentum explicit and to simplify the expression, we introduce the
angular momentum and the first moment of the angular momentum density

J i := εi j k Pjk, (6.34)

J il := εi j k Pjk
l , (6.35)

where ε i j k is the fully antisymmetric (Levi-Civita) symbol in three dimensions. It
follows from this that

P[ j k]l = 1
2ε

j ki Ji
l .

These terms enter the TT projection of the field (6.32) with the last index
of S always contracted with the direction n i to the observer from the source.
According to equation (6.33), this contraction always occurs on one of the
antisymmetrized indices, or if we use the form in the previous equation then we
will always have a contraction of ni with εi j k . This is a simple object, which we
call

⊥ε j k := niε
i j k . (6.36)

This is just the two-dimensional Levi-Civita object in the plane perpendicular to
ni , which is the plane of the sky as seen by the observer. These quantities will be
used in the current-quadrupole field, which contains projections on all the indices.
Therefore, the only components of J jk that enter are those projected onto the sky,
and so it will simplify formulae to define the sky-projected moment of the angular
momentum ⊥ J

⊥ J i j := ⊥i
l ⊥ j

m J lm . (6.37)

Using this assembled notation, the current-quadrupole field is

hTTi j = 4

3r
(⊥εik ⊥ J̈k

j + ⊥ε j k ⊥ J̈k
i + ⊥i j ⊥εkm ⊥ J̈km). (6.38)

This is similar in form and complexity to the mass-quadrupole field
expression. The interpretation of the contributions is direct. Only components
of the angular momentum in the plane of the sky contribute to the field. Similarly
only moments of this angular momentum transverse to the line of sight contribute.
If one wants, say, the xx component of the field, then the ⊥ε factor tells us it is
determined by the y-component of momentum, i.e. the component perpendicular
to the x-direction in the sky. In fact, it is much simpler just to write out the
actual components, assuming that the wave travels toward the observer along the
z-direction. Then we have

hTTx x = 4

3r
( J̈ xy + J̈ yx), (6.39)

hTTxy = 4

3r
( J̈ yy − J̈ x x), (6.40)

and the remaining components can be found from the usual symmetries of the
TT-metric. I have dropped the prefix ⊥ on J because in this coordinate system the
given components are already transverse.
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Figure 6.1. A simple current-quadrupole radiator. The left-hand panel shows how the two
wheels are connected with blade springs to a central axis. The wheels turn in opposite
directions, each oscillating back and forth about its rest position. The right-hand panel
shows the side view of the system, and the arrows indicate the motion of the near side of
the wheels at the time of viewing. The + signs indicate where the momentum of the mass
of the wheel is toward the viewer and the− signs indicate where it is away from the viewer.

The simplicity of these expressions is striking. There are two basic cases
where one gets current-quadrupole radiation.

• If there is an oscillating angular momentum distribution with a dipole
moment along the angular momentum axis, as projected onto the sky, then
in an appropriate coordinate system J̈ x x will be nonzero and we will have⊗
radiation. To have a non-vanishing dipole moment, the angular momentum
density could, for example, be symmetrical under reflection through the
origin along its axis, so that it points in opposite directions on opposite sides.

• If there is an oscillating angular momentum distribution with a dipole
moment along an axis perpendicular to the angular momentum axis, as
projected onto the sky, then in an appropriate coordiate system J̈ xy will be
nonzero and we will have ⊕ radiation.

6.3.3 A model system radiating current-quadrupole radiation

To see that the first of these two leads to physically sensible results, let us consider
a simple model system that actually bears a close resemblance to the r -mode
system. Imagine, as in the left panel of figure 6.1, two wheels connected by an
axis, and the wheels are sprung on the axis in such a way that if a wheel is turned
by some angle and then released, it will oscillate back and forth about the axis.
Set the two wheels into oscillation with opposite phases, so that when one wheel
rotates clockwise, the other rotates anticlockwise, as seen along the axis.

Then when viewed along the axis, the angular momentum has no component
transverse to the line of sight, so there is no radiation along the axis. This
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is sensible, because when projected onto the plane of the sky the two wheels
are performing exactly opposite motions, so the net effect is that there is zero
projected momentum density.

When viewed from a direction perpendicular to the axis, with the axis along
the x-direction, then the angular momentum is transverse, and it has opposite
direction for the two wheels. There is therefore an x-moment of the x-component
of angular momentum, and the radiation field will have the ⊗ orientation.

To see that this has a physically sensible interpretation, look back again at the
polarization diagram, figure 2.1, and look at the bottom row of figures illustrating
the ⊗ polarization. See what the particles on the x-axis are doing. They are
moving up and down in the y-direction. What motions in the source could be
producing this?

At first one might guess that it is the up-and-down motion of the mass in the
wheels as they oscillate, because in fact the near side of each wheel does exactly
what the test particles at the observer are doing. However, this cannot be the
explanation, because the far side of each wheel is doing the opposite, and when
they both project onto the sky they cancel. What in fact gives the effect is that at
the top of the wheel the momentum density is first positive (towards the observer)
and then negative, while at the bottom of the wheel it is first negative and then
positive. On the other wheel, the signs are reversed.

Current-quadrupole radiation is produced, at least in simple situations like
the one we illustrate here, by (the second time-derivative derivative of) the
component of source momentum along the line of sight. If this is positive in the
sense that it is towards the observer, then the momentum density acts as a positive
gravitational ‘charge’ . If negative, then it is a negative ‘charge’ . The wheels
have an array of positive and negative spots that oscillates with time, and the
test particles in the polarization diagram are drawn toward the positive ones and
pushed away from the negative ones. Interestingly, in electromagnetism, magnetic
dipole and magnetic quadrupole radiation are also generated by the component of
the electric current along the line of sight.

This is a rather simple physical interpretation of some rather more complex
equations. It is possible to re-write equation (6.38) to show explicitly the
contribution of the line-of-sight momentum, but the expressions become even
more complicated. Instead of dwelling on this, I will turn to the question of
calculating the total energy radiated by the source.

6.4 Energy radiated in gravitational waves

We have calculated the energy flux in equation (5.14), and we now have the TT
wave amplitudes. We need only integrate the flux over a distant sphere to get
the total luminosity. We do this for the mass and current quadrupoles in separate
sections.
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6.4.1 Mass-quadrupole radiation

The mass-quadrupole radiation field in equation (6.26) must be put into the energy
flux formula, and the dependence on the direction n i can then be integrated over
a sphere. It is not a difficult calculation, but it does require some angular integrals
over multiple products of the vector n i , which depends on the angular direction
on the sphere. By symmetry, integrals of odd numbers of factors of n i vanish. For
even numbers of factors, the result is essentially determined by the requirement
that after integration the result must be fully symmetric under interchange of any
two indices and it cannot have any special directions (so it must depend only on
the Kronecker delta δ i

j ). The identities we need are∫
ni n j d� = 4π

3
δi j , (6.41)∫

ni n j nknl d� = 4π

15
(δi j δkl + δikδ j l + δilδ j k). (6.42)

Using these, one gets the following simple formula for the total luminosity of
mass-quadrupole radiation

Lmass
gw = 1

5 〈
...

M̃ jk
...

M̃ jk〉 . (6.43)

Here we still preserve the angle brackets of equation (5.14), because this formula
only makes sense in general if we average in time over one cycle of the radiation.

6.4.2 Current-quadrupole radiation

The energy radiated in the current quadrupole is nearly as simple to obtain as the
mass-quadrupole formula. The extra factor of n i in the radiation field makes the
angular integrals longer, and requires two further identities:∫

ni n j nknln pnq d� = 4π

7
δ(i j δklδ pq), (6.44)

εi j kεi ′ j ′k′ = δii ′δ j j ′δkk′ + δi j ′δ j k′δki ′ + δik′δ j i ′δkj ′

− δii ′δ j k′δkj ′ − δi j ′δ j i ′δkk′ − δik′δ j j ′δki ′ , (6.45)

where the round brackets indicate full symmetrization on all indices. The
expression is simplest if we define

J̃ j k := ε j lm P̃lm
k + εklm P̃lm

j ,

where
P̃ki j := Pki j − 1

3δ
i j Pkl

l .

The result of the integration of the flux formula over a distant sphere is
[18, 25], in our notation,

Lcurrent
gw = 4

5 〈
...

J̃ j k
...

J̃ j k〉. (6.46)
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6.5 Radiation in the Newtonian limit

The calculation so far has been within the assumptions of linearized theory. Real
sources are likely to have significant self-gravity. This means, in particular,
that there will be a significant component of the source energy in gravitational
potential energy, and this must be taken into account.

In fact a more realistic equation than equation (6.1) would be

�h̄αβ = −16π(T αβ + tαβ,) (6.47)

where tαβ is the stress-energy pseudotensor of gravitational waves. This is hard
to work with: equation (6.47) is an implicit equation because t αβ depends on h̄αβ .

Fortunately, the formulae that we have derived are more robust than they
seem. It turns out that the leading order radiation field from a Newtonian source
has the same formula as in linearized theory. By leading order we mean the
dominant radiation. If there is mass-quadrupole radiation, then the mass-octupole
radiation from a Newtonian source will not be given by the formulae of the
linearized theory. On the other hand, current-quadrupole and mass-quadrupole
radiation can coexist, because they have different symmetries, so the work we
have done here is generally applicable.

More details on how one calculates radiation to higher order in the
Newtonian limit will be given in Blanchet’s contribution in this book. This is
particularly important for computing the radiation to be expected from coalescing
binary systems, whose orbits become highly relativistic just before coalescence
and which are, therefore, not well described by linearized theory.



Chapter 7

Source calculations

Now that we have the formulae for the radiation from a system, we can use them
for some simple examples.

7.1 Radiation from a binary system

The most numerous sources of gravitational waves are binary stars systems. In
just half an orbital period, the non-spherical part of the mass distribution returns
to its original configuration, so the angular frequency of the emitted gravitational
waves is twice the orbital angular frequency.

We shall calculate here the mass-quadrupole moment for two stars of masses
m1 and m2, orbiting in the x–y plane in a circular orbit with angular velocity �,
governed by Newtonian dynamics. We take their total separation to be R, which
means that the orbital radius of mass m 1 is m2 R/(m1 + m2) while that of mass
m2 is m1 R/(m1 + m2). We place the origin of coordinates at the centre of mass
of the system. Then, for example, the xx-component of M ij is

Mx x = m1

(
m2 R cos(�t)

m1 + m2

)2

+ m2

(
m1 R cos(�t)

m1 + m2

)2

= µR2 cos2(�t), (7.1)

where µ := m1m2/(m1 + m2) is the reduced mass. By using a trigonometric
identity and throwing away the part that does not depend on time (since we will
use only time-derivatives of this expression) we have

Mx x = 1
2µR2 cos(2�t). (7.2)

By the same methods, the other nonzero components are

Myy = − 1
2µR2 cos(2�t), Mxy = 1

2µR2 sin(2�t).

This shows that the radiation will come out at twice the orbital frequency.

71
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In this case the trace-free moment M̃i j differs from M ij only by a constant,
so we can use these values for M ij to calculate the field and luminosity.

As an example of calculating the field, let us compute h̄TTx x as seen by an
observer at a distance r from the system along the y-axis, i.e. lying in the plane
of the orbit. We first need the TT part of the mass-quadrupole moment, from
equation (6.27):

MTTx x = Mx x − 1
2 (M

x x + Mzz).

However, since M zz = 0, this is just M x x/2. Then from equation (6.28) we find

h̄TTx x = −2
µ

r
(R�)2 cos[2�(t − r)]. (7.3)

Similarly, the result for the luminosity is

Lgw = 32
5 µ

2 R4�6. (7.4)

The various factors in these two equations are not independent, because the
angular velocity is determined by the masses and separations of the stars. When
observing such a system, we cannot usually measure R directly, but we can infer
� from the observed gravitational-wave frequency, and we may often be able to
make a guess at the masses (we will see below that we can actually measure an
important quantity about the masses). So we eliminate R using the Newtonian
orbit equation

R3 = m1 + m2

�2
. (7.5)

If in addition we use the gravitational-wave frequency� gw = 2�, we get

h̄TTx x = − 21/3M
5/3�

2/3
gw

r
cos[�gw(t − r)], (7.6)

Lgw = 4

5× 21/3
(M�gw)

10
3 , (7.7)

where we have introduced the symbol for the chirp mass of the binary system:

M := µ3/5(m1 + m2)
2/5.

Notice that both the field and the luminosity depend only on M, not on the
individual masses in any other combination.

The power represented by L gw must be supplied by the orbital energy,
E = −m1m2/2R. By eliminating R as before we find the equation

E = − 1

25/3
M5/3�

2/3
gw .

This is remarkable because it too involves only the chirp mass M. By setting the
rate of change of E equal to the (negative of the) luminosity, we find an equation
for the rate of change of the gravitational-wave frequency

�̇gw = 12× 21/3

5
M5/3�

11/3
gw . (7.8)
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As we mentioned in chapter 4, since the frequency increases, the signal is said to
‘chirp’ .

These results show that the chirp mass is the only mass associated with the
binary that can be deduced from observations of its gravitational radiation, at least
if only the Newtonian orbit is important. Moreover, if one can measure the field
amplitude (e.g. hTTx x ) plus �gw and �̇gw, one can deduce from these the value
of M and the distance r to the system! A chirping binary with a circular orbit,
observed in gravitational waves, is a standard candle: one can infer its distance
purely from the gravitational-wave observations. To do this one needs the full
amplitude, not just its projection on a single detector, so one generally needs a
network of detectors or a long-duration observation with a single detector to get
enough information.

It is very unusual in astronomy to have standard candles, and they are highly
prized. For example, one can, in principle, use this information to measure
Hubble’s constant [26].

7.1.1 Corrections

In the calculation above we made several simplifying assumptions. For example,
how good is the assumption that the orbit is circular? The Hulse–Taylor binary
is in a highly eccentric orbit, and this turns out to enhance its gravitational-wave
luminosity by more than a factor of ten, since the elliptical orbit brings the two
stars much nearer to one another for a period of time than a circular orbit with the
same period would do. So there are big corrections for this system.

However, systems emitting at frequencies observable from ground-based
interferometers are probably well approximated by circular orbits, because they
have arrived at their very close separation by gravitational-wave-driven in-spiral.
This process removes eccentricity from the orbit faster than it shrinks the orbital
radius, so by the time they are observed they have insignificant eccentricity.

Another assumption is that the orbit is well described by Newtonian
theory. This is not a good assumption in most cases. Post-Newtonian orbit
corrections will be very important in observations. This is not because the
stars eventually approach each other closely. It is because they spend a long
time at wide separations where the small post-Newtonian corrections accumulate
systematically, eventually changing the phase of the orbit by an observable
amount. So it is very important for observations that we match signals with
a template containing high-order post-Newtonian corrections, as described in
Blanchet’s contribution. But even so, the information contained in the Newtonian
part of the radiation is still there, so all our conclusions above remain important.

7.2 The rrr-modes

We consider rotating stars in Newtonian gravity and look at the effect that the
emission of gravitational radiation has on their oscillations. One might expect
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that the loss of energy to gravitational waves would damp out any perturbations,
and indeed this is normally the case. However, it was a remarkable discovery of
Chandrasekhar [27] that the opposite sometimes happens.

A rotating star is idealized as an axially symmetric perfect-fluid system.
In the Newtonian theory the pulsations of a perturbed fluid can be described
by normal modes which are the solutions of perturbed Euler and gravitational
field equations. If the star is stable, the eigenfrequencies σ of the normal modes
are real; if the star is unstable, there is at least one pair of complex-conjugate
frequencies, one of which represents an exponentially growing mode and the other
a decaying mode. (We take the convention that the time-dependence of a mode is
exp(iσ t).)

In general relativity, the situation is, in principle, the same, except that there
is a boundary condition on the perturbation equations that insists that gravitational
waves far away be outgoing, i.e. that the star loses energy to gravitational waves.
This condition forces all eigenfrequencies to be complex. The sign of the
imaginary part of the frequency determines stability or instability.

The loss of energy to gravitional radiation can destabilize a star that would
otherwise (i.e. in Newtonian theory) be stable. This is because it opens a pathway
to lower-energy configurations that might not be accessible to the Newtonian
star. This normally happens because gravitational radiation also carries away
angular momentum, a quantity that is conserved in the Newtonian evolution of
a perturbation.

The sign of the angular momentum lost by the star is a critical diagnostic
for the instability. A wave that moves in the positive angular direction around a
star will radiate positive angular momentum to infinity. A wave that moves in the
opposite direction, as seen by an observer at rest far away, will radiate negative
angular momentum. In a spherical star, both actions result in the damping of
the perturbation because, for example, the positive-going wave has intrinsically
positive angular momentum, so when it radiates its angular momentum decreases
and so its amplitude decreases. Similarly, the negative-going wave has negative
angular momentum, so when it radiates negative angular momentum its amplitude
decreases.

The situation can be different in a rotating star, as first pointed out by
Friedman and Schutz [28]. The angular momentum carried by a wave depends
on its pattern angular velocity relative to the star’s angular velocity, not relative
to an observer far away. If a wave pattern travels backwards relative to the star,
it represents a small effective slowing down of the star and therefore carries
negative angular momentum. This can lead to an anomalous situation: if a wave
travels backwards relative to the star, but forwards relative to an inertial observer
(because its angular velocity relative to the star is smaller than the star’s angular
velocity), then it will have negative angular momentum but it will radiate positive
angular momentum. The result will be that its intrinsic angular momentum will
get more negative, and its amplitude will grow.

This is the mechanism of the Chandrasekar–Friedman–Schutz (CFS)
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instability. In an ideal star, it is always possible to find pressure-driven waves
of short enough wavelength around the axis of symmetry (high enough angular
eigenvalue m) that satisfy this condition. However, it turns out that even a small
amount of viscosity can damp out the instability in such waves , so it is not clear
that pressure-driven waves will ever be significantly unstable in realistic stars.

However, in 1997 Andersson [17] pointed out that there was a class of modes
called r -modes (Rossby modes) that no-one had previously investigated, and
that were formally unstable in all rotating stars. Rossby waves are well known
in oceanography, where they play an important role in energy transport around
the Earth’s oceans. They are hard to detect, having long wavelengths and very
low-density perturbations. They are mainly velocity perturbations of the oceans,
whose restoring force is the Coriolis effect, and that is their character in neutron
stars too. Because they have very small density perturbation, the gravitational
radiation they emit is dominated by the current-quadrupole radiation.

For a slowly-rotating, nearly-spherical Newtonian star, the following
velocity perturbation is characteristic of r -modes:

δva = ς(r)εabc∇br∇cYlm , (7.9)

where ς(r) is some function of r determined by the mode equations. This velocity
is a curl, so it is divergence-free; since it has no radial component, it does not
change the density. If the star is perfectly spherical, these perturbations are simply
a small rotation of some of the fluid, and it continues to rotate. They have no
oscillation, and have zero frequency.

If we consider a star with a small rotational angular velocity �, then the
frequency σ is no longer exactly zero and a Newtonian calculation to first order
in � shows that there is a mode with pattern speed ωp = −σ/m equal to

ωp = �
[

1− 2

l (l + 1)

]
. (7.10)

These modes are now oscillating currents that move (approximately) along the
equipotential surfaces of the rotating star.

For l > 2, ωp is positive but slower than the speed of the star, so by the CFS
mechanism these modes are unstable to the emission of gravitational radiation for
an arbitrarily slowly rotating star.

The velocity pattern given in equation (7.9) for (l = 2, m = 2) is closely
related to the wheel model we described for current-quadrupole radiation in
figure 6.1. Take two such wheels and orient their axes along the x- and y-axes,
with the star rotating about the z-axis. Choose the sense of rotation so that the
wheels at positive-x and positive-y are spinning in the opposite sense at any time,
i.e. so that their adjacent edges are always moving in the same direction. Then
this relationship will be reproduced for all other adjacent pairs of wheels: adjacent
edges move together.

When seen from above the equatorial plane, the line-of-sight momenta of
the wheels reinforce each other, and we get the same kind of pattern that we saw
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when looking at one wheel from the side. However, in this case the pattern rotates
with the angular velocity 2�/3 of equation (7.10). Since the pattern of line-of-
sight momenta repeats itself every half rotation period, the gravitational waves
are circularly polarized with frequency 4�/3. Seen along the x-axis, the wheel
along the x-axis contributes nothing, but the other wheel contributes fully, so the
radiation amplitude in this direction is half that going out the rotation axis. Seen
along a line at 45◦ to the x-axis, the line-of-sight momenta of the wheels on the
front part of the star cancel those at the back, so there is no radiation. Thus,
along the equator there is a characteristic series of maxima and zeros, leading
to a standard m = 2 radiation pattern. This pattern also rotates around the star,
but the radiation in the equator remains linearly polarized because there is only
the ⊗ component, not the ⊕. Again, the radiation frequency is twice the pattern
speed because the radiation goes through a complete cycle in half a wave rotation
period.

This discussion cannot go into the depth required to understand the r -modes
fully. There are many issues of principle: what happens beyond linear order in
�; what happens if the star is described in relativity and not Newtonian gravity;
what is the relation between r -modes and the so-called g-modes that can have
similar frequencies; what happens when the amplitude grows large enough that
the evolution is nonlinear; what is the effect of magnetic fields on the evolution of
the instability? The literature on r -modes is developing rapidly. We have included
references where some of the most basic issues are discussed [17, 18, 29–31], but
the interested student should consult the current literature carefully.

7.2.1 Linear growth of the rrr -modes

We have seen how the r -mode becomes unstable when coupled to gravitational
radiation, and now we turn to the practical question: is it important? This will
depend on the balance between the growth rate of the mode due to relativistic
effects and the damping due to viscosity.

When coupled to gravitational radiation and viscosity, the mode has a
complex frequency. If we define "(σ ) := 1/τ , then τ is the characteristic
damping time. When radiation and viscosity are treated as small effects, their
contributions to the eigenfrequencies add, so we have that the total damping is
given by

1

τ (�)
= 1

τGR
+ 1

τv
,

1

τv
= 1

τs
+ 1

τb
, (7.11)

where 1/τGR, 1/τv are the contributions due to gravitational radiation emission
and viscosity, and where the latter has been further divided between shear
viscosity ( 1

τs
) and bulk viscosity ( 1

τb
).

If we consider a ‘ typical’ neutron star with a polytropic equation of state
p = kρ2 (for which k has been chosen so that a 1.5M� model has a radius
R = 12.47 km), and if we express the angular velocity in terms of the scale for
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Table 7.1. Gravitational radiation and viscous timescales, in seconds. Negative values
indicate instability, i.e. a growing rather than damping mode.

l m τgw (s) pgw τbv (s) pbv τsv (s)

2 2 −20.83 5.93 9.3× 1010 1.77 2.25× 108

3 3 −316.1 7.98 1.89× 1010 1.83 3.53× 107

the approximate maximum speed
√
πGρ̄ and the temperature in terms of 109 K,

then it can be shown that [30]

1

τ
= 1

τgw

(
1 ms

P

)pgw + 1
τbv

(
1 ms

P

)pbv

(
109 K

T

)6

+ 1

τsv

(
T

109 K

)2

, (7.12)

where the scaling parameters τ̃sv, τ̃bv, τ̃gw and the exponents pgw and pbv have
to be calculated numerically. Some representative values relevant to the r -modes
with 2 6 l 6 6 are in table 7.1 [30].

The physics of the viscosity is interesting. It is clear from equation (7.12) that
gravitational radiation becomes a stronger and stronger destabilizing influence
as the angular velocity of a star increases, but the viscosity is much more
complicated. There are two contributions: shear and bulk. Shear viscosity comes
mainly from electrons scattering off protons and other electrons. This effect falls
with increasing temperature, just as does viscosity of everyday materials. So a
cold, slowly rotating star will not have the instability, where a hotter star might.
However, at high temperatures, bulk viscosity becomes dominant. This effect
arises in neutron stars from nuclear physics. Neutron-star matter always contains
some protons and electrons. When it is compressed, some of these react to form
neutrons, emitting a neutrino. When it is expanded, some of the neutrons beta-
decay to protons and electrons, again emitting a neutrino. The emitted neutrino
is not trapped in the star; within a short time, of the order of a second or less, it
escapes. This irreversible loss of energy each time the star is compressed creates
a bulk viscosity. Now, bulk viscosity acts only due to the density perturbation,
which is small in r -modes. So the effect of bulk viscosity only dominates at very
high temperatures.

The balance of the viscous and gravitational effects is illustrated in figure 7.1
[30]. This is indicative, but not definitive: much more work is needed on the
physics of viscosity and the structure of the modes at large values of� (small P).

7.2.2 Nonlinear evolution of the star

Our description so far is only a linear approximation. To understand the full
evolution of the r -modes we have to treat the nonlinear hydrodynamical effects
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Figure 7.1. The balance of viscous and gravitational radiation effects in the r -modes is
illustrated in a diagram of rotation speed, showing the ratio of the maximum period Pk
to the rotation period P versus the temperature of the star. The solid curve indicates the
boundary between viscosity-dominated and radiation-dominated behaviour: stars above
the line are unstable. The dashed curves illustrate possible nonlinear evolution histories as
a young neutron star cools.

that become important as the modes grow. This could only be done with a
numerical simulation, which some groups are now working on. However, it is
possible to make simple estimates analytically.

We characterize the initial configuration with just two paramters: the uniform
angular velocity �, and the amplitude α of the r -modes perturbation. The star is
assumed to cool at the accepted cooling rate for neutron stars, independently of
whether it is affected by the r -mode instability or not. The star is assumed to
lose angular momentum to gravitational radiation at a rate given by the linear
radiation field, with its large amplitude α. This loss is taken to drive the star
through a sequence of equilibrium states of lower and lower angular momentum.
Details of this approximation are in [31], here we report only the results. The
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evolution turns out to have three phases.

(a) Initially the angular velocity � of the hot rapidly rotating neutron star is
nearly constant, evolving on the viscous timescale 1/τv, while the amplitude
α grows exponentially on the gravitational radiation timescale 1/τGR.

(b) After a short time nonlinear effects become important and stop the growth of
the amplitude α. Most of the initial angular momentum of the star is radiated
away by gravitational radiation. The star spins down and evolves to a point
where the angular velocity� and the temperature is sufficiently low that the
r -mode is stable.

(c) Finally gravitational radiation and viscosity damp out the r -mode and drive
the star into its final equilibrium configuration.

This may take about a year, a timescale governed by the cooling time of the
star. During this year, the star would radiate away most of its angular momentum
and rotational kinetic energy. This could be a substantial fraction of a solar mass
in energy.

7.2.3 Detection of rrr -mode radiation

The large amount of energy radiated into the r -modes makes them attractive for
detection, but detection will not be trivial. The r -mode event occurs at the rate
of supernovae: some fraction (hopefully large) of all supernovae leave behind a
rapidly spinning neutron star that spins down over a one-year period. This means
we should have sufficient sensitivity to reach the Virgo Cluster (20 Mpc distance).
Estimates [31] suggest that a neutron star in the Virgo Cluster could be detected
by second generation of LIGO and VIRGO gravitational-wave detectors with an
amplitude signal-to-noise of about eight, provided one can use matched filtering
(exact template matching).

It will not be easy to use matched filtering, since one must follow all cycles
of the signal as the star spins down, and we will not know this well because of
many uncertainties: initial temperature, initial spin distribution, detailed physics
of viscosity, and so on. However, it would be helpful to have a parametrized
model to take account of the uncertainties, so that we could look for a significant
fit to one or more of the parameters.

In addition, it is likely that, if a significant proportion of all neutron stars
went through the r -mode instability, then the universe has been filled by their
radiation. There should be a background with an energy density � gw that is a
good fraction of the closure density. Its lower frequency limit should be around
200 Hz in the rest frame of the star. When we see radiation cosmologically, its
lower frquency limit will indicate the epoch at which star formation began.

It is clear that the discovery of this new source of gravitational waves will
open several prospects for astronomy. Observations could be used as supernovae
detectors, revealing supernovae hidden in clouds of dust, identifying them about a
year after they are formed. The existence of the radiation raises several prospects
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and questions about the physics of neutron stars, not least the interaction of
magnetic fields with the instability.

7.3 Conclusion

These lectures (chapters 2 to 7) have taken us through the basic theory of
gravitational radiation and its applications in astrophysics, so far as we can
understand and predict them now. In a few years, perhaps as little as two, perhaps
as many as eight, we will start to make observations of gravitational radiation from
astrophysical sources. If gravitational-wave astronomy follows other branches of
observational astronomy, it will not be long before completely unexpected signals
are seen, or unexpected features in long-predicted signals. To interpret these will
require joining a physical understanding of the relationship between gravitational
radiation and its source to a wide knowledge of astronomical phenomena. We
encourage the students who have attended these lectures, and others who may
study them, to get themselves ready to contribute to this activity. It will be an
exciting time!
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Solutions to exercises

Chapter 2

Exercise (a)

1. Let us take the form of the wave to be

hTT j k = eee jk
⊕ h+(t − n̂nn · x̂xx)

where eee jk
⊕ is the polarization tensor for the ⊕ polarization, and where n̂nn is the

unit vector in the direction of travel of the wave. We will let h+ be an arbitrary
function of its phase argument.

If the wave travels in the x–z plane at an angle θ to the z-direction, then the
unit vector in our coordinates is

n̂nni = (sin θ, 0, cos θ).

We need to calculate the polarization tensor’s components in x, y, z coordinates.
We do this by rotating the ⊕ polarization tensor from its TT form in coordinates
parallel to the wavefront to its form in our coordinates. This requires a simple
rotation around the y-axis. The transformation matrix is:

 j ′
k =

( cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

)
.

The polarization tensor in our coordinates (primed indices) becomes:

eee j ′k′ =  j ′
l 

k′
meeelm

=
( cos2 θ 0 − sin θ cos θ

0 −1 0
− sin θ cos θ 0 sin2 θ

)
.

Notice that the new polarization tensor is again traceless.
The gravitational wave will be, at an arbitrary time t and position (x, z) in

our (x, z)-plane,

hTT j ′k′ = eee j ′k′h+(t − x sin θ − z cos θ).
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For this problem we need the xx-component because the photon is propagating
along this direction, and we will always stay at z = 0, so we have

hTTx x = cos2 θh+(t − x sin θ).

We see that for this geometry the wave amplitude is reduced by a factor of cos 2 θ .
Generalizing the argument in the text, the relation between time and position

for the photon on its trip outwards along the x-direction is t = t 0 + x , where
t0 is the starting time. The analogous relation after the photon is reflected is
t = t0 + L + (L − x), since in this case x decreases in time from L to 0. If we
put these into the equation for the linearized corrections to the return time, we get

treturn = t0 + 2L + 1
2 cos2 θ

{∫ L

0
h+[t0 + (1− sin θ)x] dx

×
∫ L

0
h+[t0 + 2L − (1+ sin θ)x] dx

}
.

This expression must be differentiated with respect to t0 to find the variation
of the return time as a function of the start time. The key point is how to
handle differentiation within the integrals. Consider, for example, the function
h+[t0 + (1− sin θ)x]. It is a function of a single argument,

ξ := t0 + (1− sin θ)x

so derivatives with respect to t0 can be converted to derivatives with respect to x
as follows

dh+
dt0

= dh+
dξ

dξ

dt0
= dh+

dξ
;

dh+
dx

= dh+
dξ

dξ

dx
= (1− sin θ)

dh+
dξ
.

It follows that
dh+
dt0

= dh+
dx
/(1− sin θ).

On the return trip the factor will be −(1 + sin θ). So when we differentiate we
can convert the derivatives with respect to t0 inside the integrals into derivatives
with respect to x . Taking account of the factor cos2 θ = (1− sin θ)(1+ sin θ) in
front of the integrals, the result is

dtreturn

dt0
= 1+ 1

2
(1+ sin θ)

∫ L

0

dh+
dx

[t0 + (1− sin θ)x] dx

+ 1

2
(1− sin θ)

∫ L

0

dh+
dx

[t0 + 2L − (1+ sin θ)x] dx .
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The integrals can now be done, since they simply invert the differentiation by x .
Evaluating the integrands at the end points of the integrals gives equation (2.20):

dtreturn

dt0
= 1− 1

2 (1+ sin θ)h+(t0)+ sin θh+[t0 + (1− sin θ)L]

+ 1
2 (1− sin θ)h+(t0 + 2L).

2. If we Taylor-expand this equation in powers of L about L = 0, the leading
term vanishes, and the first-order term is:

dtreturn

dt0
= L sin θ(1− sin θ)ḣ+(t0)+ L(1− sin θ)ḣ+(t0),

= L cos2 θ ḣ+(t0).

This is just what was required. The factor of cos2 θ comes, as we saw above, from
the projection of the TT field on the x-coordinate direction.

3. All the terms cancel and there is no effect on the return time.

Exercise (b)

This is part of the calculation in the previous example. All we need is the segment
where the light travels from the distant end to the centre:

tout = t0 + 1
2 cos2 θ

∫ L

0
h+[t0 + L − (1+ sin θ)x] dx

and so dtout/dt0 is:

dtout

dt0
= 1+ 1

2 (1− sin θ)[h+(t0 − sin θL)− h+(t0 + L)].

Exercise (c)

This question is frequently asked, but not by people who have done the
calculation. The answer is that the two effects occur in different gauges, not
in the same one. So they cannot cancel. The apparent speed of light changes in
the TT gauge, but then the positions of the ends remain fixed, so that the effect is
all in the coordinate speed. In a local Lorentz frame tied to one mass, the ends do
move back and forth, but then the speed of light is invariant.

Exercise (d)

To first order we have

Rµαβν = �µαν,β − �µαβ,ν,
�
µ
αβ,ν = 1

2η
µσ (hσβ,αν + hσα,βν − hαβ,σν), (i) (7.13)

�
µ
αν,β = 1

2η
µσ (hσν,αβ + hασ,νβ − hαν,σβ). (ii) (7.14)
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The gauge transformation for a perturbation in linearized theory is

h′αβ = hαβ − ξα,β − ξβ,α. (iii) (7.15)

Substituting (iii) into (i) and (ii), we obtain

(i) = 1
2η
µσ (h′σβ,αν + ξσ,βαν + h′σα,βν + ξσ,αβν − h′αβ,σν)

(ii) = 1
2η
µσ (h′σν,αβ + ξσ,ναβ + h′σα,βν + ξσ,αβν − h′αν,σβ).

If we find the difference between the two formulae above we get

Rµαβν = (ii)− (i) = �′µαν,β − �′µαβ,ν = R′µαβν.

Chapter 5

Exercise (e)

The action principle is:

δ I =
∫
δ(R

√−g)

δgµν
hµν d4x = −

∫
Gµν

√−ghµν d4x = 0. (i) (7.16)

If we perform an infinitesimal coordinate transformation x µ→ xµ + ξµ without
otherwise varying the metric, then the action I must not change:

0 = δ I =
∫

Gµν(ξµ;ν + ξν;µ)√−g d4x

= 2
∫

Gµνξµ;ν d4x .

This can be transformed in the following way:

δ I =
∫
(Gµνξµ);ν

√−g d4x −
∫
(Gµν ;νξµ)

√−g d4x = 0.

The first integral is a divergence and vanishes. The second, because of the
arbitrariness of ξµ, gives the Bianchi’s identities:

Gµν ;ν = 0.

Exercise (f)

The two polarization components are h x x+ = −hyy
+ = A+e−ik(t−z) and hxy

× =
A×e−ik(t−z). The energy flux is the negative of

〈T (GW)
0z 〉 = 1

32π
〈hij

,0hij,z 〉 = − k2

16π
(A2+ + A2×)〈sin2 k(t − z)〉

= − k2

32π
(A2+ + A2×).
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Resonant detectors for gravitational waves
and their bandwidth

G Pizzella
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The sensitivity of the resonant detectors for gravitational waves (GW) is
discussed. It is shown that with a very low-noise electronic amplifier it is
possible to obtain a frequency bandwidth up to 50 Hz. Five resonant detectors
are presently in operation, with a spectral amplitude sensitivity of the order of
h̃ = 3 × 10−22(1/

√
Hz). Initial results are presented, including the first search

for coincidences and a measurement of the GW stochastic background.

8.1 Sensitivity and bandwidth of resonant detectors

The detectors of GW now operating [1–5] use resonant transducers (and therefore
there are two resonance modes coupled to the gravitational field) in order to obtain
high coupling and high-Q.

However, for a discussion on the detectors’ sensitivity and frequency
bandwidth it is sufficient to consider the simplest resonant antenna, a cylinder
of high-Q material, strongly coupled to a non-resonant transducer followed by a
very low-noise electronic amplifier. The equation for the end bar displacement ξ
is

ξ̈ + 2β1ξ̇ + ω2
0ξ =

f

m
(8.1)

where f is the applied force, m the oscillator reduced mass (for a cylinder
m = M/2) and β1 = ω0/2Q is the inverse of the decay time of an oscillation
due to a delta excitation.

We consider here only the noise which can be easily modelled, the sum of
two terms: the thermal (Brownian) noise and the electronic noise. The power
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spectrum due to the thermal noise is

S f = 2ω0

Q
mkTe (8.2)

where Te is the equivalent temperature which includes the effect of the backaction
from the electronic amplifier.

By referring the noise to the displacement of the bar ends, we obtain the
power spectrum of the displacement due to Brownian noise:

SB
ξ =

S f

m2

1

(ω2 − ω2
0)

2 + ω2ω2
0

Q2

. (8.3)

From this we can calculate the mean square displacement

ξ̄2 = kTe

mω2
0

(8.4)

that can also be obtained, as is well known, from the equipartition of the energy.
To this noise we must add the wide-band noise due to the electronic amplifier

(the contribution to the narrow-band noise due to the amplifier has already been
included in Te).

For the sake of simplicity we consider an electromechanical transducer that
converts the displacement of the detector in a voltage signal

V = αξ (8.5)

with the transducer constant α (typically of the order of 10 7 V m−1). Thus, the
electronic wide-band power spectrum, S0, is expressed in units of V2 Hz−1 and
the overall noise power spectrum referred to the bar end is given by

Sn
ξ =

2kTeω0

m Q

1

(ω2 − ω2
0)

2 + ω2ω2
0

Q2

+ S0

α2
. (8.6)

We now calculate the signal due to a gravitational wave with amplitude h and
with optimum polarization impinging perpendicularly to the bar axis. The bar
displacement corresponds [6] to the action of a force

f = 2

π2
mLḧ. (8.7)

The bar end spectral displacement due to a flat spectrum of GW (as for a delta-
excitation) is similar to that due to the action of the Brownian force. Therefore, if
only the Brownian noise were present, we would have a nearly infinite bandwidth,
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in terms of the signal-to-noise ratio (SNR). For a GW excitation with power
spectrum Sh(ω), the spectrum of the corresponding bar end displacement is

Sξ = 4L2ω4Sh

π4

1

(ω2 − ω2
0)

2 + ω2ω2
0

Q2

. (8.8)

We can then write the SNR as

SNR = Sξ
Sn
ξ

= 4L2ω4Sh

π4 S f

m2

1

1+ �(Q2(1− ω2

ω2
0
)2 + ω2

ω2
0
)

(8.9)

where the quantity � is defined by [7]

� = S0β1

α2ξ̄2
∼ Tn

βQTe
(8.10)

Tn is the noise temperature of the electronic amplifier and β indicates the fraction
of energy which is transferred from the bar to the transducer. It can readily be
seen that � � 1.

The GW spectrum that can be detected with SNR = 1 is:

Sh(ω) = π2 kTe

M Qv2

ω3
0

ω3

1

ω


1+ �


Q2

(
1− ω

2

ω2
0

)2

+ ω
2

ω2
0





 (8.11)

where v is the sound velocity in the bar material (v = 5400 m s−1 in aluminum).
For ω = ω0 we obtain the highest sensitivity

Sh(ω0) = π2 kTe

M Qv2

1

ω0
(8.12)

having considered � � 1.
Another useful quantity often used is the spectral amplitude

h̃ = √
Sh . (8.13)

We remark that the best spectral sensitivity, obtained at the resonance
frequency of the detector, only depends, according to equation (8.12), on the
temperature T , on mass M and on the quality factor Q of the detector, provided
T = Te. Note that this condition is rather different from that required for optimum
pulse sensitivity (see later). The bandwidth of the detector is found by imposing
that Sh(ω) is equal to twice the value of Sh(ω0). We obtain, in terms of the
frequency f = ω/2π , that

$ f = f0

Q

1√
�
. (8.14)
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Figure 8.1. Spectral amplitudes h̃ present and planned (see equations (8.13) and (8.11))
using the parameters given in table 8.1 versus frequency (Hz). The presently operating
detectors have bandwidth ∼1 Hz. The bandwidth will be much larger in the near future
with improved transducers.

Table 8.1. Bandwith and sensitivity for presently operating detectors and for future
detectors with improved transducers.

T $ f h̃min

(K) � Q (Hz)
(

1√
Hz

)
0.1 10−6 8.5× 105 1.1 5.3× 10−22

0.1 10−11 4.2× 106 70 2.3× 10−22

The present detector bandwidths are of the order of 0.5 Hz, but it is expected that
the bandwidths will become of the order of 50 Hz, by improving the amplifier
noise temperature Tn, the coupling parameter β and the quality factor Q.

In figure 8.1 we show the spectral amplitude h̃ for the present aluminium
resonant detectors with mass M = 2270 kg operating at temperature T = 0.1 K
and the target h̃ planned to be reached with improved transducers. The parameters
used for calculating the spectral amplitudes are given in table 8.1.
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8.2 Sensitivity for various GW signals

Let us consider a signal s(t) in the presence of noise n(t) [8]. The available
information is the sum

x(t) = s(t) + n(t) (8.15)

where x(t) is the measurement at the output of the low-noise amplifier and n(t) is
a random process with known properties. Let us start by applying to x(t) a linear
filter which must be such to maximize the SNR at a given time t0 (we emphasize
the fact that we search the signal at a given time t0).

Indicating the impulse response of the filter as w(t) (to be determined) and
with ys(t) = s(t) ∗ w(t) and yn(t) = n(t) ∗ w(t), respectively, the convolutions
of the signal and of the noise, we have

SNR = |ys(t0)|2
E[|yn(t0)|2]

. (8.16)

The expectation of the noise after the filter, indicating with N(ω) the power
spectrum of the noise n(t), is

E[|yn(t0)|2] = 1

2π

∫ ∞

−∞
N(ω)|W (ω)|2 dω (8.17)

where W (ω) is the Fourier transform of the unknownw(t).
At t = t0 the output due to s(t) with Fourier transform S(ω) is given by

ys(t0) = 1

2π

∫ ∞

−∞
S(ω)W (ω)e jωt0 dω. (8.18)

We now apply [8] the Schwartz’ inequality to the integral (8.18) and using
the identity

S(ω)W (ω) = S(ω)√
N(ω)

W (ω)
√

N(ω) (8.19)

we obtain

SNR ≤ 1

2π

∫ ∞

−∞
|S(ω)|2
N(ω)

d f. (8.20)

It can be shown [8] that the equals sign holds if and only if

W (ω) = constant
S(ω)∗

N(ω)
e− jωt0 . (8.21)

Applying this optimum filter to the data we obtain the maximum SNR

SNR = 1

2π

∫ ∞

−∞
|S(ω)|2
N(ω)

dω (8.22)
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where S(ω) and N(ω) as already specified are, respectively, the Fourier transform
of the signal and the power spectrum of the noise at the end of the electronic chain
where the measurement x(t) is taken.

Let us apply the above result to the case of measurements x(t) done at the
end of a chain of two filters with transfer functions Wa (representing the bar) and
We (representing the electronics).

Let Suu be the white spectrum of the Brownian noise entering the bar and
See the white spectrum of the electronics noise. The total noise power spectrum
is

N(ω) = Suu |Wa|2|We|2 + See|We|2. (8.23)

The Fourier transform of the signal is

S(ω) = Sg(ω)WaWe. (8.24)

where Sg is the Fourier transform of the GW signal at the bar entrance.
The optimum filter will have, applying equation (8.21), the transfer function

W (ω) = S∗g e− jωt0

Suu

1

WaWe

1

1+ �

|Wa|2
(8.25)

where

� = See

Suu
. (8.26)

Using equations (8.23) and (8.24), from equation (8.22) we obtain

SNR = 1

2πSuu

∫ ∞

−∞
|Sg(ω)|2 dω

1+ �

|Wa|2
. (8.27)

We now apply the above result to a delta GW with Fourier transform Sg
independent of ω. The remaining integral of equation (8.27) can be easily solved
if we make use of a lock-in device which translates the frequency, bringing the
resonant frequency ω0 to zero. Then the total noise becomes [7]

N(ω)⇒ N(ω − ω0)+ N(ω + ω0) (8.28)

with the bar transfer function given by

Wa = β1

β1 + iω
. (8.29)

We now estimate the signal and noise just after the first transfer function, before
the electronic wide-band noise. For the signal due to a delta excitation we have

V (t) = 1

2π

∫ ∞

−∞
β1

β1 + iω
Sg dω = Sgβ1e−β1t = Vse−β1t (8.30)
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where Vs is the maximum signal. For the thermal noise we have

V 2
nb =

1

2π

∫ ∞

−∞
β2

1

β2
1 + ω2

Suu dω = Suuβ1

2
(8.31)

where V 2
nb = α2kTe

mω2
0

is the mean square narrow-band noise (see equations (8.4) and

(8.5)) .
Introducing the signal energy E s = 1

2 mω2
0(

Vs
α
)2 we calculate (using the

variable y = ω
β1

)

SNR = 1

2

S2
gβ1

2πSuu

∫ ∞

−∞
dy

1+ �(1+ y2)
= V 2

s

8V 2
nb

√
�
= Es

4kTe
√
�
. (8.32)

The factor of 1
2 has been introduced because we have supposed the signal to be

all at a given phase, while we add to the noise in phase the noise in quadrature,
thus reducing the SNR by a factor of two. The effective noise temperature is [9]

Teff = 4Te
√
�. (8.33)

For a continuous source we can directly apply equation (8.22). With a total
measuring time tm the continuous source with amplitude h 0 and angular frequency
ω0 appears as a wavepacket with its Fourier transform at ω0

S(ω0) =
(

h0tm
2

)2

(8.34)

and with bandwidth

δ f = 2

tm
(8.35)

which is very small for long observation times. Indicating with N(ω 0) the power
spectrum of the measured noise at the resonance, we obtain the amplitude of the
wave that can be observed with SNR = 1:

h0 =
√

2N(ω0)

tm
. (8.36)

A similar result has been obtained in the past [10] using a different procedure.
In practical cases it is often not possible to calculate the Fourier spectrum

N(ω0) from experimental data over the entire period of measurement t m, either
because the number of steps in the spectrum would be too large for a computer
or because the physical conditions change as, for instance, a change in frequency
due to the Doppler effect. It is then necessary to divide the period t m in n sub-
periods of length$t = tm

n . In the search for a monochromatic wave we then have
to consider two cases: (a) The wave frequency is exactly known. In this case we
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can combine n Fourier spectra in one unique spectrum taking into consideration
also the phase of the signal. The final spectrum has the same characteristics of
the spectrum over the entire period tm and equation (8.36) still applies. (b) The
exact frequency is unknown. In this case when we combine the n spectra we lose
information on the phase. The result is that the final combined spectrum over the
entire period has a larger variance and the left part of equation (8.36) has to be
changed to

h =
√

2N(ω0)√
tm$t

. (8.37)

We come now to the measurement of the GW stochastic background [11,12,
16]. Using one detector, the measurement of the noise spectrum corresponding to
equation (8.11) only provides an upper limit for the GW stochastic background
spectrum, since the noise is not so well known that we can subtract it. The
estimation of the GW stochastic background spectrum can be considerably
improved by employing two (or more) antennae, whose output signals are cross
correlated. Let us consider two antennae, that may in general be different, with
transfer functions T1 and T2, and displacements ξ1 and ξ2: the displacement cross-
correlation function

Rξ1ξ2(τ ) =
∫
ξ1(t + τ )ξ2(t) dt (8.38)

only depends on the common excitation of the detectors, due to the GW stochastic
background spectrum Sgw acting on both of them, and is not affected by the noises
acting independently on the two detectors.

The Fourier transform of equation (8.38) is the displacement cross spectrum.
This spectrum, multiplied by T1T2(4L2/π4), is an estimate of the gravitational
background Sgw. The estimate, obtained over a finite observation time tm , has a
statistical error. It can be shown [11] that

δSgw(ω) = Sgw(ω) =
√

Nh1(ω)Nh2(ω)√
tmδ f

(8.39)

where tm is the total measuring time and δ f is the frequency step in the power
spectrum. From equation (8.11) we have the obvious result that, for resonant
detectors, the error is smaller at the resonances. If the resonances of the two
detectors coincide the error is even smaller. In practice, it is better to have two
detectors with the same resonance and bandwidth. If one bandwidth is smaller, the
minimum error occurs in a frequency region overlapping the smallest bandwidth.

From the measured Sgw one can calculate the value of the energy density of
the stochastic GW referred to as the critical density (the energy density needed
for a closed universe). We have

� = 4π2

3

f 2

H 2
Sgw( f ) (8.40)

where H is the Hubble constant.
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Table 8.2. Sensitivity of the resonant detectors in operation.

Resonance h̃ = √Sh Frequency Minimum h Minimum h
frequency at resonance bandwidth for 1 ms for continuous Minimum

(Hz)
(

1√
Hz

)
δ f (Hz) bursts waves �

900–700 3–20 × 10−22 0.5–1 4× 10−19 2× 10−25 0.1

Table 8.3. Target sensitivity for Auriga and Nautilus.

h̃ = √Sh Frequency Minimum h Minimum h
at resonance bandwidth for 1 ms for continuous Minimum(

1√
Hz

)
δ f (Hz) bursts waves �

2× 10−22 50 3× 10−21 2× 10−26 10−4

8.3 Recent results obtained with the resonant detectors

The present five cryogenic bars in operation [1–5] (Allegro, Auriga, Explorer,
Nautilus and Niobe) have roughly the same experimental sensitivity as given in
table 8.2.

Niobe, made with niobium, has a resonance frequency of 700 Hz, the other
ones with aluminium, have resonance frequencies near 900 Hz. These minimum
values for monochromatic waves and for the quantity � have been estimated by
considering one year of integration time (for � we suppose to use the cross-
correlation of two identical antennae).

The burst sensitivity for all bars can be increased by improving the transducer
and associated electronics. It has been estimated that these improvements can
increase the frequency bandwidth up to 50 Hz.

In addition to increasing the bandwidth, Auriga and Nautilus can improve
(see table 8.3) their spectral sensitivity by making full use of their capability
to go down in temperature to T = 0.10 K. At present the major difficulty is
due to excess noise, sometimes of unknown origin, and work is in progress for
eliminating this noise.

The search for signals due to GW bursts is done after the raw data have
been filtered with optimum filter algorithms [13, 14]. These algorithms may have
various expressions but they all have in common an optimum integration time
that is roughly the inverse of the detector bandwidth and all give approximately
the same value of Teff (all algorithms being optimal filters for short bursts).

The data recorded by the various detectors are now being analysed,
searching, in particular, for coincidences above the background. The coincidence
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Table 8.4. Results of a coincidence search between data from Explorer and Nautilus. See
the text for an explanation.

Number of Number of Number of ppoisson pexp
days Explorer events Nautilus events 〈n〉 nc (%) (%)

29.2 8527 5679 11.0 19 1.5 1.44

technique is a powerful mean for reducing the noise. As an example we show
in table 8.4 some results obtained recently [15] by searching for coincidences
between Explorer and Nautilus during 1995 and 1996.

In the first column we give the number of days when both antennae were
operating. The small number of useful days shows that it is difficult to keep a GW
antenna in operation continuously with good behaviour. In future it should be
possible to increase the useful time to 70% of the total time, considering that some
time is always lost for cryogenic maintenance. In the second and third column
we show the number of candidate events. The candidate events are obtained by
introducing a proper threshold on the data filtered with an optimum filter for short
burst detection. We notice the large number of candidate events that make it
practically impossible, using one detector alone, to search for a particular signal
due to a GW. A big improvement is obtained by the comparison of at least two
detectors.

In the fourth column we give the expected number of accidental coincidences
measured by means of 10 000 shifts of the event times of one detector with respect
to the other and using a coincidence window of w = ±0.29 s (one sampling
time for EXPLORER and NAUTILUS). This number of accidentals is small
enough to start considering the possibility of searching for a coincidence excess
(though, according to astrophysical expectations, this excess should be much
smaller than the observed accidentals). In this case the number of coincidences n c,
reported in column five, turns out to be slightly larger than the expected number
of accidentals.

Finally, in column six we report the probability calculated with the Poisson
formula and in column seven the experimental probability, obtained by counting
how many times we had a number of accidental coincidences equal or larger
than nc and dividing this number by the number of trials, 10 000. The
agreement between theoretical values and experimental values is good, indicating
a poissonian statistical behaviour of the data.

A new and interesting result has recently been obtained by cross-correlating
the data recorded with EXPLORER and NAUTILUS [17]. The measured spectral
amplitudes of Explorer and Nautilus, shown in figure 8.2, were correlated. The
result of such cross-correlation at a resonance of 907.2 Hz (the same for the two
detectors) has been the determination of an upper limit for � that measures the



Discussion and conclusions 101

Figure 8.2. Spectral amplitude h̃ of EXPLORER and NAUTILUS versus frequency (Hz).

closure of the universe. It has been found, using equation (8.40), that � ≥ 60,
where a factor of six has been also included for taking into consideration the fact
that EXPLORER and NAUTILUS are separated by about 600 km. The value of
� we have obtained is much larger than the expected value, but we remark that
it is the first measurement of this type made with two cryogenic resonant GW
detectors.

Finally, we would like to mention that recently, making use of the detector
NAUTILUS, we have been able to observe the passage of cosmic rays 1. The
observed events in the bar have amplitude and frequency of occurrence in
agreement with the prediction (event energy of the order of 1 mK), showing that
NAUTILUS is properly working. In particular, the efficiency of the filter aimed
at detecting a small signal embedded into noise is well proven.

8.4 Discussion and conclusions

In previous literature the sensitivity for resonant detectors of gravitational waves
has usually been expressed in terms of Teff, the minimum energy delivered by
a GW burst that can be detected by the apparatus. However, what the resonant
detectors really measure is essentially the Fourier transform (over a certain
frequency band) of the GW adimensional amplitude.

For studying the operation of a resonant antenna as a GW detector of
stochastic GW we had to deal with noise spectrums. This has made us reconsider

1 This result has been presented at the School by Dr Evan Mauceli.
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the sensitivity to bursts and other types of GW in a somewhat different manner,
which improved our understanding of the role played by the electromechanical
transducer and its associated electronics. The noise spectrum of the apparatus is
expressed by equation (8.11), which also directly gives the sensitivity for the GW
background.

We notice that the optimum sensitivity (at the resonance) depends essentially
on the ratio Te/M Q and is independent of the transducer. In practice, the
transducer and electronics determine only the bandwidth of the apparatus,
expressed by equation (8.14).

For the measurement of the GW stochastic background, that should not
change drastically in a frequency band of a few hertz, it might therefore be
sufficient to make use of a very simple transducer and even small bandwidth
electronics. This makes the resonant detectors, in particular, well suited for
measuring the GW stochastic background.

The use of a sophisticated transducer, with larger bandwidth, improves the
sensitivity to GW bursts. As far as the search for monochromatic waves a larger
bandwidth is better, in the sense that it allows a larger frequency region in which
to search.
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Chapter 9

The Earth-based large interferometer Virgo
and the Low Frequency Facility

Angela Di Virgilio
INFN Sezione di Pisa, via Vecchia Livornese 1265,
56010 S. Piero a Grado (Pisa), Italy
E-mail: angela.divirgilio@pi.infn.it

The principle of the Earth-based interferometer and the parameters of Virgo, the
CNRS-INFN antenna under construction in Cascina near Pisa, are presented. The
Super-Attenuator (SA), the suspension ad hoc designed for Virgo, and the Low
Frequency Facility, the project devoted to study the SA with a sensitivity close to
the Virgo one, are shortly described.

9.1 Introduction

The detection of gravitational waves (GW), produced in astrophysical processes,
is one of the most challenging fields of modern physics, aimed at finding
gravitational-wave astronomy. Lectures about GW production and expected
sources can be found in this book, but let me very briefly remind you of
the essentials. General relativity predicts that accelerated matter produces
gravitational waves, ripples of spacetime travelling with the speed of light. GW
can be defined as a perturbation of the metric, h αβ , and the observational effect of
its passage through the Earth is a change among the relative distance of massive
bodies. If A and B are the space-state locations of the two testmasses and if we
set AB = (xα), the vector (xα) obeys the equation of geodesic deviation in weak
field:

d2xα

dt2
= 1

2

∂2hTT
αβ

∂ t2
xβ (9.1)
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where TT denotes the transverse-traceless gauge. The maximum change in the
distance AB is then:

δL = h

2
L (9.2)

where h is the dimensionless gravitational-wave amplitude and L is the distance
AB at rest. One of the most important gravitational-wave sources is the
SuperNovae explosion. In order to detect several SuperNovae events per year, it is
necessary to have a sensitivity of h close to 10−21 for a millisecond signal; in fact
this is the expected amplitude for gravitational waves from SuperNovae coming
from the closest cluster of galaxies: Virgo, distant 10–20 Mpc. The idea of using
an interferometer to detect gravitational waves has been proposed independently,
about 30 years ago, by Weber and two Russian physicists, Gerstenstein and
Pustovoit [1] and a lot of work has been done to develop the optical design of
the large interferometers presently under construction [2, 3]. Let me mention
(see, for example, [4]) the work done in Garching, Glasgow, Caltech and MIT,
where interferometers of 30–40 m arms have been developed and are still running
with displacement sensitivity equal to the shot noise limit. The power spectrum
of the displacement sensitivity obtained so far is of the order of 10−19 m/

√
Hz.

Following the above equation it is straightforward to see that a few kilometre
armlength is necessary in order to reach the sensitivity of h = 10−21 for the
millisecond signal. Several antennae are under construction [5]: two antennae
4 km arms in the USA (LIGO), one 0.6 km in Germany (GEO600), one in
Japan 0.3 km (TAMA), in Italy 3 km (Virgo) and one is planned with 3 km
arms in Australia (ACIGA). Most of them (TAMA, LIGO and GEO) have been
constructed and are making working together parts of the interferometer. TAMA
is already operational, and work is concentrated in order to reach the planned
sensitivity; moreover Japan already plans to build a longer one. The above
interferometers, all Earth based, will cover the 10–10 000 Hz window, where
events from SuperNovae explosions, coalescing binaries and pulsars events are
expected. Using the signals of the resonant bars, and the other kind of detectors
already operational, in the near future gravitational-wave astronomy is expected
to become a reality. Furthermore, a big space antenna is planned to be launched
in this decade, it is called LISA [5], and will cover the frequency spectrum 10−4–
10−1 Hz. In the following the essential characteristics of the Virgo antenna [6,7],
the Virgo SuperAttenuator suspension, the Low Frequency Facility [9] and the R
and D experiment of the Virgo project, are described.

9.1.1 Interferometer principles and Virgo parameters

Figure 9.1 shows a simple Michelson interferometer: the passage of a
gravitational wave changes the phase shift between the two outgoing beams
interfering on the beam splitter. For the sake of simplicity it is assumed that
the wave is optimally polarized and travels perpendicularly to the interferometer
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Figure 9.1. The simple Michelson.

plane, moreover the Michelson is assumed ideal [10, 11] (contrast C = 1):

δφ = π + α +�gw. (9.3)

Here α is the offset between the two interferometer arms and �gw is the effect of
the gravitational wave. The transmitted outgoing power Pout has a simple relation
with the input power Pin.

Pout = Pin sin2 α +�gw

2
(9.4)

for �gw � 1

Pout ) Pin

[
sin2 α

2
+ 1

2
sinα�gw

]
. (9.5)

Equation (9.5) clearly states that Pout is proportional to �gw, the gravitational-
wave signal, and the fundamental limit of the measurement comes from the
fluctuation of the incoming power, i.e. the fluctuation of the number of photons.
For a coherent state of light, the number of photons fluctuates with Poissonian
statistics, and it can be shown that the signal-to-noise ratio (SNR), when C = 1,
is:

SNR =
√

Pin�t

h̄ω
cos a�gw (9.6)

where ω is the circular frequency of the laser light,�t is the time of the measure
and h̄ is the Planck constant. The SNR is maximum when α = 0 and the inter-
ferometer is tuned to a dark fringe. The minimum phase shift detectable, per unit
time, is evaluated assuming SNR = 1

�min
gw =

√
h̄ω

Pin
(9.7)
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Figure 9.2. The interferometer with Fabry–Perot cavity and power recycling.

and it is called the shot noise limit. The contrast C < 1 does not change this
result. The large interferometer design has been optimized in order to enhance the
sensitivity: inside the arm there is a resonant Fabry–Perot cavity; this is equivalent
to increasing the interferometer armlength, by a coefficient proportional to the
finesse of the Fabry–Perot cavity. Moreover, as shown in equation (9.5), the SNR
increases with the square root of the power and, since the output is at the dark
fringe, the unused light, reflected back from the interferometer, is re-injected with
a technique called recycling. Figure 9.2 shows the basic scheme of most of the
interferometers under construction [3].

The other fundamental noise of the interferometer is the so called ‘ thermal
noise’ [11, 12]. The Virgo test masses are in thermal equilibrium with the
environment. An average energy of kT , where k is the Boltzmann constant
and T is the temperature, is associated with each degree of freedom, giving
origin, through the ‘fl uctuation dissipation theorem’ , to position fluctuations of
the macroscopic coordinates. Using the equation of motion and the fluctuation-
dissipation theorem, the displacement noise is estimated. There are two main
dissipation mechanisms: the structural and the viscous damping. It is assumed
that mechanisms of viscous damping are pretty much reduced, and only the
structural one survives. Internal friction in materials is described by adding an
imaginary term to the elastic constant, and the equation of motion for a spring
becomes:

mẍ + K (1+ i�)x = 0 (9.8)

where x is the coordinate of interest, m is the mass associated with the oscillator,
K is the elastic constant and � takes care of the dissipation and is related to the
usual Q of the oscillator.

As most of the interferometers under construction, Virgo [6, 7] will be a
recycled interferometer, with resonant Fabry–Perot cavity in each arm. The
arm length is 3 km, the recycling factor 40 and the finesse of the cavity 40;
the light source is a 25 W Nd:YAG laser (λ = 1.06 µm). The Virgo Project
is under construction in Italy at Cascina, near Pisa, by CNRS (France) and
INFN (Italy). The participating laboratories are: ESPCI-Paris, Nice, LAL-
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Figure 9.3. Virgo sensitivity curves.

Orsay, LAPP-Annecy, INPN-Lyon for CNRS and Firenze, Frascati, Napoli,
Perugia, Pisa, Roma for INFN. The aim is to reach, in a useful detection
bandwidth between a few hertz up to a few kilohertz, a sensitivity which allows
us to detect gravitational waves emitted by coalescing binary stars, gravitational
collapses, spinning neutron stars or constituting the stochastic background of the
gravitational radiation. The Virgo sensitivity curve is shown in figure 9.3, as
a function of frequency; the vertical scale shows the linear spectral density of
the minimum detectable dimensionless gravitational amplitude: at low frequency
there is the pendulum thermal noise, then the mirror substrate thermal noise and
at high frequency the shot noise of the laser light, the interferometer sensitivity
decreases at high frequency for the high storage time of the 3 km Fabry–Perot
cavity. Figure 9.3 shows the thermal and shot noise and the other important noise
of the Virgo antenna.

The laser has to be frequency stabilized at the level of 10−1 Hz/
√
(Hz) in

the frequency band of interest [8], the mirror losses have to be below 1 ppm
in order to obtain the required recycling factor and cavity finesse; moreover,
power stabilization is required, and a mode cleaner 144 m long, with finesse
1000, is necessary in order to have a good quality T M 00 mode injected into the
interferometer, and to contribute to the amplitude stability, since such a long mode
cleaner has a pole at 10 Hz. All the optical components will be suspended in
vacuum by anti-seismic suspensions called Super Attenuators (SA); the optical
path will be completely under vacuum. The vacuum system will consist of: two
orthogonal vacuum tubes, 3 km long, 1.2 m in diameter, containing the arm optical
paths; one vacuum tube, 144 m long, 0.3 m in diameter for the mode cleaner
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Figure 9.4. Scheme of the Virgo interferometer.

cavity; ten vertical vacuum towers, up to 11 m high, 2 m in diameter, containing
the different SAs. Figure 9.4 shows the Virgo scheme. The construction of Virgo
is planned in two main steps: the realization of the central interferometer by late
2000, and the realization of the 3 km arm full interferometer by late 2002.

9.2 The SA suspension and requirements on the control

Roughly speaking, above a few hertz, the seismic noise is a function of the
frequency ν and goes as ν−2. In our site the measured spectrum is about 10−6–
10−7/ν2 m/

√
Hz, in all degrees of freedom; this implies a factor of at least

1010 of the noise reduction at 10 Hz. An harmonic oscillator, with resonant
frequency ν0 acts as a low pass filter if N oscillators are connected in cascade,
and for frequencies above the resonant frequencies, the displacement noise of the
attachment point is transmitted to the test-mass with a transfer function going as
∼1/ν2N . Each SA is a multistage pendulum [13], acting as a multipendulum in
all six degrees of freedom. The basic tool is a piece called a mechanical filter. It
is essentially a rigid steel cylinder (70 cm in diameter, 18 cm in height and with a
mass of about 130 kg), with a thin steel wire. In this way the horizontal oscillator
in two degrees of freedom and the torsion spring are made. The attachment points
of the two wires are connected close to the centre of mass of the filter: in this way
the pitch spring is formed. The vertical string is a mechanical one, a triangular
curled piece of a special steel (MARAGING). The SA blades are designed to
hold about 50 kg, at rest they are bent and when loaded act as a spring and
become flat. Each filter of the SA is equipped with a number of blades from
12–4, in function of the load. Each filter of the SA is composed of two main
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Figure 9.5. The filter.

parts: the vessel, roughly speaking a cylinder with a hole in the centre and a
movable part, composed of a piece called ‘cross’ attached to a tube called ‘central
column’ , rigidly connected together. The ‘central column’ is free to move along
the vertical inside the vessel, for about a centimetre. The upper wire is attached
to the vessel, while the lower is attached to the column. The two pieces are
constrained to move along the vertical by means of centring wires. The base
of each blade is rigidly attached to the outer diameter of the vessel, while the tips
are connected to the central column. When the filter is loaded the blades act as a
spring, and are free to move for several millimetres, with a resonant frequency
above 1 Hz. In order to decrease the vertical resonant frequency a magnetic
antispring acts between the vessel and the ‘cross’ , in parallel with the blades.
It is composed of an array of permanent magnets attached to the ‘cross’ , placed
in front of an equal array of magnets attached to the vessel; the two array are
ad hoc built in order to make repulsive force, proportional to the vertical offset,
for a few millimetres. The effective elastic constant is the difference between the
blade spring and the magnetic antispring, and each filter is tuned to oscillate at
∼400 mHz. In figure 9.3 with the other noise sources, the seismic motion of the
Virgo test masses is shown [14], it is possible to see that it dominates below 2 Hz,
and the resonance peaks of the SA are visible.

Ground motion can be of the order of hundreds of micrometres, due to tidal
deformation of the Earth’s crust and thermal effects on the surface. In order to
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Figure 9.6. The complete SA suspension, some details of the last stage control are shown.

keep the interferometer running and compensate such a large drift, the SA is
equipped with a special stage called an inverted pendulum (IP). It is composed
of three aluminium legs, about 6 m tall. When it is loaded with the 1.2 ton of the
SA, it becomes a very soft spring, with about 30 mHz frequency. With magnets
on top of the IP and coils attached to the ground, forces are produced, and it is
possible to displace to SA by a few centimetres. It is necessary not to introduce
seismic noise through the forces to be applied to the test mirror in order to keep
the interferometer in its working position. This is an important task of the SA,
and all the control forces are done by means of coils and magnets acting between
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different stages of the SA. The last part of the SA is composed of steering filters,
which support four coils, the marionetta, a cross shaped piece of steel, which
supports four magnets, positioned in the form of four coils, see figure 9.6. In this
way the mirror can translate along the beam direction and along the vertical, rotate
around the vertical axis and around the horizontal axis perpendicular to the beam.
The test-mass (the interferometer mirror) and the reference mass are attached as
pendulums to the marionetta [15]. Magnets and coils produce forces between the
reference mass and the mirror.

The control has two main parts: the damping and the mirror control. The
damping is a local control, which reduces the large motion of the SA, due to the
resonance frequencies below 1 Hz: on top of the inverted pendulum feedbacks
are produced using accelerometer signals and electromagnetic actuators [16]. The
other control uses the interferometer signal itself and it is aimed to keep aligned
the whole Virgo interferometer in its working point. The actuators, couples of
magnet-coil, are divided per frequency band: below 100 mHz the feedback goes
to the IP actuators, in the intermediate band to the marionetta, and above to the
reference mass. This kind of control, called hierarchical is necessary for the huge
displacement range required and the necessity not to induce electronic noise at
the mirror level.

9.3 A few words about the Low Frequency Facility

Much work is being done around interferometers at the moment, but the planned
sensitivity is not enough to guarantee the detection of events. A large community
[17] is working hard to improve the sensitivity of the antennae. LIGO plans
to make an upgrade in five years from now. The effort is mainly concentrated
on improving the suspension and keeping as low as possible the thermal noise
of pendulum and mirror substrate. With the aim of reducing thermal noise,
several methods have been proposed, like cryogenic cooling, choice of low loss
material for the test mass, as zaffire or silicon, and novel cancellation techniques.
Figure 9.3 shows that, below 600 Hz, Virgo is entirely dominated by the thermal
noise of the suspension. The improvement below 600 Hz implies changes in
the suspension. In order to demonstrate that a new choice, once applied to the
antenna, makes a real improvement in the sensitivity of the whole antenna it is
necessary to make tests in conditions as close as possible to the real one. The
Low Frequency Facility (LFF) [9, 19], has been conceived in order to measure
the noise of test masses attached to the SA, with a sensitivity at 10 Hz close to
the Virgo one: 10−18 m/

√
Hz. The goal is to take a measurement of the thermal

noise of the Virgo suspension, while the system is under active control of the low-
frequency motion. In this way, it will be possible to characterize the suspension
in an environment close to the real one.

The use of a Fabry–Perot cavity as a displacement transducer relies on the
excellent frequency stabilization of the laser beam. A frequency stabilization, for
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a Nd-YAG, of the order of 10−1–10−2 Hz/
√

Hz at 10 Hz has been obtained, for
example by the Nice-Virgo team [8]. A copy of this circuit provides the frequency
stabilization for the LFF. It is already operational and has obtained a closed loop
behaviour similar to the Virgo prestabilization circuit. The technique to reduce
the influence of power fluctuation is to extract signals from the Fabry–Perot with
the well known Pound–Drever–Hall, where the injected light is phase modulated
at high frequency (usually around 10 MHz, where the laser is shot noise limited).
The signal is extracted in reflection, the noise is due to the shot noise, and the
SNR for the cavity detuning δν is:

SNR = Pin8J0(m)J1(m)F(1− Aloss F
π
) 2L

c δν

2
√
ηPDChν0

. (9.9)

where Pin represents the incident power on the cavity, A loss the total loss in the
cavity during one round trip, PDC is the DC term of the power reflected from
the cavity,

√
2ηPDChν is the shot noise expression with η the quantum efficiency

of the photodiode, h is the Planck constant, ν0 is the laser frequency, L is the
cavity length, F is the finesse, c is the speed of light and J0 and J1 are Bessel
functions, functions of the modulation depth m. The LFF cavity parameters are:
Finesse 3000, P0 = 30 mW, cavity length L = 1 cm. With these parameters,
the sensitivity at 10 Hz is limited by the frequency fluctuation, and a power
spectrum density of 10−1 Hz/

√
Hz is necessary in order to reach the displacement

sensitivity of 10−18 m/
√

Hz at 10 Hz. A prototype of the SA, called R and
D SA, has been assembled in Pisa, and has tested the assembly procedure and
developed the control loop. LFF will suspend to the R and D SA two mirrors,
in a way to create a very high finesse Fabry–Perot; of whose element, one is the
standard Virgo mirror, with a mass above 20 kg, while the other [18], usually
called (AX), will be different. In the early phase of the experiment the auxiliary
mirror will be a standard small mirror; the auxiliary mirror will be loaded with
an extra mass, in order to reduce the displacement noise due to low-frequency
radiation pressure. The Fabry–Perot cavity will act as a displacement transducer
and allow the measurement of the combined thermal noise of the two mirrors, and
related suspension. Figure 9.7 shows the experimental apparatus: the R and D SA
holding the two mirrors of the cavity and the table with the optical circuit, which
will inject light into the cavity.

9.4 Conclusion

Several gravitational-wave interferometers will be operational in a few years,
and a lot of effort is being concentrated in building and making them work.
Expectations are great around such experiments, since they can give essential
information on general relativity, fundamental physics and astrophysics. The
Virgo antenna will be operational in 2–3 years from now. A large study is going
on around the SA suspension. A special prototype called R and D SA is under
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Figure 9.7. The R and D SA and the injection table of the LFF, inside vacuum tanks; the
enlarged picture shows the two mirrors forming a Fabry–Perot cavity.
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test in Pisa. The R and D SA is part of the LFF experiment, aimed to measure
thermal noise of the test mass suspended to the R and D SA, and to become a test
area for future improved antenna suspensions.
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Chapter 10

LISA: A proposed joint ESA–NASA
gravitational-wave mission

Peter L Bender, on behalf of the LISA Study and Mission
Definition Teams
JILA, National Institute of Standards and Technology and
University of Colorado, Boulder, Colorado 80309-0440, USA

10.1 Description of the LISA mission

10.1.1 Introduction

The evidence for supermassive black holes at the centres of quasars and active
galactic nuclei (AGNs) has been strong but not conclusive for several decades.
Recently, the evidence for massive black holes in one particular AGN, in our own
Galaxy, and in the Local Group Galaxy M32 has become extremely convincing.
Thus, questions concerning gravitational waves generated by the interaction of
massive black holes with smaller compact objects and with each other have
become of strong interest. Signals from such sources also are likely to provide
the strongest possible tests of general relativity.

Plans are being developed in both Europe and the USA for flying a
dedicated gravitational wave mission called the Laser Interferometer Space
Antenna (LISA). The antenna will measure gravitational waves in the frequency
range from roughly 1 µHz to 1 Hz, and thus will strongly complement the results
expected from ground-based detectors. The primary objectives are to obtain
unique new information about massive black holes throughout the universe, and
to map the metric around massive black holes (MBHs) with much higher accuracy
than otherwise would be possible. Other important objectives include studies of
resolved signals from thousands of compact binary star systems in our Galaxy,
and looking for a possible gravitational-wave cosmic background at millihertz
frequencies.

115
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The possibility of making sensitive gravitational-wave measurements at low
frequencies by laser interferometry between freely floating test masses in widely
separated spacecraft appears to have been first suggested in print about 1972 [1,2].
More extensive discussions started in 1974. An initial proposal similar to that
for the LISA mission was presented at the Second International Conference on
Precision Measurement and Fundamental Constants in 1981 [3], and at the ESA
Colloquium on Kilometric Optical Arrays in Space in 1984 [4]. Work on the
concept was supported initially by the National Bureau of Standards, and later in
the USA by NASA. However, the concept became much better defined and widely
known in the 1993–1994 period, when more extensive studies were carried out in
Europe under ESA support. Since then, further studies have been carried out by
both ESA and NASA of a proposed joint ESA–NASA mission, that could fly as
early as 2010 if all goes well.

The currently proposed mission is described in section 1 of this chapter. This
includes the overall antenna and spacecraft design, the optics and interferometry
system, the free mass sensors, the required micronewton thrusters for the
spacecraft, and the mission scenario. The emphasis will be on aspects of the
antenna that are quite different from those for ground-based detectors. Section 2
describes the main scientific results that seem likely to be obtained by LISA.
This includes unique new information on three major astrophysical questions
concerning MBHs and a nearly ideal test of general relativity, as well as the
detection of thousands of compact binaries in our Galaxy. In addition, some
speculations will be given on possible future prospects for gravitational-wave
observations in space after the LISA mission.

Much more information on most of the above subjects can be found in ‘Laser
Interferometer Space Antenna’ , the Proceedings of the Second International
LISA Symposium [5], in the LISA Pre-Phase A Study [6], and in a special issue
of Classical and Quantum Gravity [7], which is the Proceedings of the First
International LISA Symposium. More recent information from the 1999–2000
ESA Industrial Study of the LISA mission is being provided in the report of that
study and in several papers in the Proceedings of the Third International LISA
Symposium (Albert Einstein Institute, Potsdam, 11–14 July 2000).

10.1.2 Overall antenna and spacecraft design

The basic geometry is shown schematically in figure 10.1. Three spacecraft form
an equilateral triangle 5000 000 km on a side, and laser beams are sent both ways
along each side of the triangle. A Y-shaped thermal shield inside each spacecraft
contains the sensitive parts of the scientific payload, consisting of two separate
optical assemblies mounted in the two top arms of the Y, so that they are aimed
along the two adjacent sides of the triangle. The spacecraft instrumentation and a
cover over the sunward side of the spacecraft are not shown.

Each spacecraft is in a one year period solar orbit with an eccentricity e of
about 0.01 and an orbit inclination to the ecliptic of 3 0.5 × e [8]. By choosing
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Figure 10.1. Basic geometry of the LISA antenna. The sides of the triangle are
5000 000 km long.

the phasing and the orientations of the orbits properly, the three spacecraft will
form the desired nearly equilateral triangle, which is tipped at 60 ◦ to the ecliptic
(figure 10.2). The plane of the triangle will precess around the pole of the ecliptic
once per year, and the triangle will rotate in that plane at the same rate. The
centre of the triangle is chosen to be about 50 000 000 km (20 ◦) behind the Earth.
The arm lengths for the triangle will stay constant to about 1% for a number of
years. Locating the triangle 60◦ from the Earth would keep the arm lengths more
constant, but at the expense of more propulsion required to reach the desired orbits
and more telemetry capability to send the data back.

The layout of one of the two optical assemblies in each spacecraft is shown
in figure 10.3 (see [9]). Each optical assembly contains an optical bench,
a transmit/receive telescope, and a low-power electronics package. Each of
these three subassemblies is mounted by low-thermal-conductivity struts from a
stiffened support cylinder that forms the outside of the optical assembly. Because
the distances between the spacecraft will change by up to 1% during the year,
the angles between the sides will also change by roughly one degree. Thus, it is
necessary to provide some adjustment for the angle between the axes of the two
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Figure 10.2. Location of the LISA antenna, 50 000 000 km behind the Earth in orbit around
the Sun. The plane of the antenna is tipped at 60◦ to the ecliptic.

Figure 10.3. Layout of one of the two optical assemblies in each spacecraft. The main
components are the optical bench at the centre and the transmit/receive telescope at one
end.

optical assemblies in each spacecraft. This is accomplished by supporting the
lower part of each optical assembly by a flexure from a common block near the
base of the Y-shaped shield, and the upper part by two adjustable displacement
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Figure 10.4. Mounting of optical assemblies inside main thermal shield. Each optical
assembly must rotate slowly and smoothly during the year over about a one degree range.

Figure 10.5. Optical bench for one optical assembly. Light from the laser is mainly sent
out to the telescope, with a little going to the photodiode. Received light from the other end
of the arm passes through the beamsplitter to the test mass, and then goes to the photodiode.
Changes in the phase of the beat signal determine the changes in the arm length.

mechanisms from an arm of the Y, as shown in figure 10.4 (see [10]). The
mechanisms provide a very smooth one degree change in the angle between the
arms with mainly a one year period.

At the centre of each optical bench, shown in figure 10.5 (see [9]), is a
freely floating test mass that is protected as much as possible from sources of
spurious accelerations. The basic measurements made by the LISA antenna
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are the changes with time in the distances between test masses in the different
spacecraft. Capacitive sensors on the inside of a housing surrounding each test
mass sense the position of the spacecraft with respect to the test mass. This
position information is fed via a proportional control servosystem to micronewton
thrusters that keep the spacecraft essentially fixed with respect to the test mass.
Each test mass plus the housing around it and the associated electronics will
be referred to as a ‘ free mass sensor’ . The names ‘ inertial sensor’ , ‘drag-free
sensor’ , and ‘disturbance reduction sensor’ also have been used frequently, but
each choice has some drawbacks. ‘ Inertial sensor’ causes confusion with the
gyroscopic sensors used in inertial navigation systems. ‘Drag-free sensor’ or
‘disturbance reduction sensor’ emphasizes the role of the sensor in permitting
external forces on the spacecraft to be accurately compensated for, but do not
indicate the importance of keeping the spurious accelerations of the test mass far
below the residual accelerations of the spacecraft.

At frequencies below roughly 3 mHz, the threshold sensitivity of the LISA
antenna will be determined mainly by the spurious accelerations of the test
masses, despite the care that is taken to minimize such disturbances. However,
at higher frequencies the main limitation will come from how well the relative
changes in the 5000 000 km distances between the test masses can be measured.
The optical interferometry system for measuring these distances will be described
in the next section. The free mass sensors and the way they are used will be
discussed in detail in a later section.

In describing the operation of the gravitational-wave antenna, it is useful to
distinguish between the ‘main spacecraft’ and the ‘ instrument package’ . Here the
instrument package will mean the Y-shaped thermal shield and everything inside
it. In addition, it will include the lasers and a thermal radiation plate they are
located on that is attached to the bottom of the Y. With this arrangement, the
heat generated by the lasers can be radiated by the radiation plate out through a
large hole in the bottom of the spacecraft to space. Everything else, including the
spacecraft structure and all the other equipment mounted on it, will be referred to
as the main spacecraft.

Probably the most important factor in the design of the LISA mission, after
minimizing spurious forces on the test masses, is the need to keep the temperature
distribution throughout each main spacecraft and instrument package as constant
as possible. This is essential for two main reasons. One is that mass displacements
due to local temperature changes within the desired measurement band, roughly
10−6 Hz to 1 Hz, will change the gravitational force on the test mass and look like
a real signal [10, 11]. The other is that a variation in the temperature difference
between the two sides of the housing in a free mass sensor will cause a difference
in the thermal radiation pressure force on the two sides of the test mass, and thus
give a spurious acceleration.

The thermal design of the LISA spacecraft can be understood on the basis
of the following rough model. The main spacecraft will have some thermal time
constant for responding to changes in the incident solar flux or in the electrical
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power dissipated in its equipment. The Y-shaped thermal shield is mounted
from the main spacecraft by low-thermal-conductivity flexural strips or stressed
fibreglass bands, and forms a second passive thermal isolation stage. The third
stage is the support cylinder around each optical assembly and the fourth stage
is the optical bench that contains the free mass sensor. Since low-thermal-
conductivity supports are used between each successive stage, and with low
infrared emissivity coatings on as much of the surfaces as possible, quite long
thermal time constants can be achieved for each stage.

With the above type of multistage passive thermal isolation approach, quite
low levels of temperature fluctuations can be achieved at frequencies of 0.1 mHz
and higher. But there are practical limits to how long the various thermal time
constants can be made. To achieve high thermal stability at lower frequencies,
some active thermal control will be needed. Even a fairly crude servosystem for
the temperature of the Y-shaped thermal shield would help considerably, and some
active control of the temperature of the main spacecraft probably will be desirable
also. Such active temperature control systems may be added to the baseline
mission design later to meet a goal of improved antenna sensitivity at frequencies
below 0.1 mHz, but are not included in the present mission requirements.

A fundamental feature of the mission design is the high stability of the solar
energy dissipation in the spacecraft. In an ecliptic-based reference frame that
rotates once per year about the pole of the ecliptic, the three spacecraft form
a nearly equilateral triangle in a plane that is tipped at 60◦ to the ecliptic, as
discussed earlier. Thus, the direction to the Sun makes a nearly constant 30 ◦
angle with the normal to the sunward side of each spacecraft, where the solar
cells providing power for the spacecraft are located. Because of the stable solar
illumination geometry, only fluctuations in the intrinsic solar intensity and in
the electrical power dissipation in the various parts of the spacecraft produce
significant temperature variations. Measures such as keeping the microwave
transmitters operating at the same power level whether data is being transmitted
or not are taken to reduce thermal changes. Also, the power needed in the optical
assemblies and particularly on the optical benches is kept as low as possible, and
is highly regulated.

10.1.3 Optics and interferometry system

The present parameters assumed for the LISA optical system are the use of 1 W
of output power from cw NdYAG lasers operating at 1.064 µm wavelength, and
of 30 cm diameter telescopes to transmit and receive the laser beams between
different spacecraft. Perhaps the most impressive thing about the mission is that
these fairly modest parameter values lead to roughly 2× 10 8 photoelectrons s−1

being detected at the far end of a 5000 000 km arm, which would correspond
to 2 × 10−21 precision in measuring changes in the arm length in one second if
there were no other sources of error. Since almost all expected types of LISA
gravitational-wave sources can be observed for a year or more, the potential
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measurement accuracy clearly is extremely high.
Each optical assembly has two lasers for redundancy, and a switching

mechanism for switching between them. Each laser is capable of 2 W output
over a mean lifetime of several years, but is operated at 1 W to extend the lifetime
by a substantial factor. A schematic drawing of the optical bench for one optical
assembly was shown earlier in figure 10.5. Light from the active laser is taken
by a single mode fibre onto the optical bench, and then formed into a beam of
roughly 5 mm diameter. A few per cent of the beam is split off for other purposes,
and then a beamsplitter sends almost all of the power out to the telescope, where
it is transmitted to the matching optical assembly on the other end of the arm. The
return beam from the laser in the distant optical assembly is sent by the telescope
to the test mass, where it is reflected from the face of the test mass, and then beat
against a small amount of power from the local laser.

The beat signals detected in the six optical assemblies are the main data used
to make the gravitational-wave measurements. In the present baseline scheme,
one laser in spacecraft SC-1 is considered the master laser and locked to a stable
reference cavity on its optical bench. The other laser in SC-1 is phase locked
to the first with a small offset frequency of perhaps a couple of kilohertz. The
two laser beams are transmitted along the adjacent arms of the triangle to SC-2
and SC-3, where they are reflected from the test masses in the receiving optical
assemblies. The local lasers are then phase locked to the received beams, also
with small frequency offsets, and their beams are sent back to SC-1. Finally, the
second lasers in SC-2 and SC-3 are offset locked to the first lasers, their beams are
sent over the third arm of the triangle, and the beats between them are recorded
on both ends of the side, after reflection from the test masses.

The frequencies of the beat signals can range from well under 1 MHz to
roughly 15 MHz, depending on the exact orbits of the spacecraft, or rather the
orbits of the freely floating test masses in them. In one possible measurement
scheme, the signals are beat down to a convenient frequency range for precise
phase measurements, such as perhaps 10 kHz, using outputs from frequency
synthesizers. The drive frequencies for the synthesizers come from ultra-stable
crystal oscillators (USOs) on each spacecraft. In a second measurement scheme,
the signals are first sampled at a high rate such as 40 MHz, and the results are
analysed in the software. In this case, the sampling times are controlled by the
USOs.

If only the signals from the two arms adjacent to SC-1 are considered,
the antenna is like a single groundbased detector, with changes in the arm
length difference being the quantity of interest. However, it does not appear
practical to keep the difference in arm length nearly constant, since this would
require applying quite large forces to the test masses to overcome the changing
gravitational forces on them due to the Sun and to the planets. If such large forces
were applied, it would be very difficult to avoid noise in those forces within
the frequency band of interest from giving undesired changes that could not be
distinguished from real signals. To avoid this problem, the test masses are left
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nearly free, except for small differential applied forces on the two test masses in
a given spacecraft that are necessary to compensate for the difference in spurious
forces on them at dc and at frequencies below the useful measurement band.

Because of the up to 1% difference in arm lengths expected, the phase
noise in the master laser has to be corrected for too high accuracy. The original
suggestion that this was possible was made by Faller in the abstract for a 1981
conference [3]. The basic idea is to use the apparent changes in the sum of
the lengths of the two arms to estimate the laser phase noise, and then to apply
the corresponding correction to the measured difference in the arm lengths.
Approximate algorithms for doing this were published by Giampieri et al in
1996 [12]. More recently, Armstrong, Tinto and Estabrook [13, 14] have given
what are believed to be rigorously correct algorithims, and it is planned to use
these during the LISA mission.

So far, only the use of the signals from the two detectors on SC-1 has been
discussed. In addition, the signal from one of the detectors on each of SC-2 and
SC-3 is used to phase lock a laser to the received laser beam from SC-1. So the
signals measured on SC-2 and SC-3 from the beams sent between them can be
combined to give the changes in length of the third arm. As discussed by Cutler
[15], the length of the third arm minus the average of the lengths of the other
two is an observable that gives the other polarization from the one determined by
the difference in lengths of the first two. Thus, having the measurements over
the third arm gives a valuable addition to the scientific information that can be
obtained from a mission like LISA.

In the recent papers of Armstrong, Tinto and Estabrook [13,14], the analysis
is done in a way that assumes all the lasers are running independently, presumably
stabilized by locking to their own stable reference cavities, but not locked to
each other. This appears to put some additional requirements on the mission
measurement system, but they point out that there is additional information in
the resulting signals at the shorter gravitational wavelengths that is not available
with the current baseline measurement system. It appears that this may be
equivalent to the information that would be obtained from running LISA as a
Sagnac interferometer, but this possibility has not yet been considered in detail.

In addition to providing the second polarization if all is going well, having
the capability of making measurements over the third arm has another very
important benefit for the LISA mission. With two fully functional optical
assemblies on each of the three spacecraft, if something in one of the six were not
operating properly, the antenna would still provide two-arm gravitational-wave
data with the full planned sensitivity. Even if a second optical assembly were out
of operation, provided the two were not on the same spacecraft, the two-arm data
could still be obtained. Thus, the third arm capability provides an essential level
of redundancy for the mission.

In addition to the shot noise in the photocurrents from the received laser
beams, other noise sources in measuring changes in the arm length differences
also have to be considered. One such source is fluctuations in the attitude of
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each spacecraft. If the transmitted beam gave a perfectly spherical wavefront in
the far field, attitude changes for the transmitting spacecraft would not give phase
changes in the received signal at the distant spacecraft. However, the combination
of diffraction due to the finite size transmitting aperture plus imperfections in
the optical system cause the wavefronts at the distant spacecraft to be somewhat
distorted. Thus, the attitude of the spacecraft and any other sources of jitter in the
pointing of the transmitted beam have to be controlled quite closely.

There are two methods under consideration for measuring jitter in the
spacecraft attitude. In one, perhaps 10% of the received light from the distant
spacecraft is picked off and focused on a CCD array or quadrant diode via a fairly
long effective focal length optical system. Changes in attitude then give changes
in the position of the focal spot on the detector, which are used in a servo system
to control the spacecraft attitude, along with the similar signals from the second
optical assembly on the spacecraft. In the second approach, all of the light goes
to the main detector for measuring changes in the arm length, but the detector
is replaced by a quadrant device. If the spacecraft tips slightly with respect to
the received wavefronts, the differences in phase of the four detected signals will
change, and these changes are used as the inputs to the attitude control system.

Even if the attitude jitter is made small, there still is a need to set the
mean beam pointing direction carefully. Diffraction plus a defocus of the
transmitted beam would result in the phase of the received wavefront varying
only quadratically with the angular offset from the optical axis of the transmitting
system. However, non-axisymmetric defects in the transmitted wavefronts can
make the change in the received phase vary linearly with the attitude change,
even on what otherwise would have been the optical axis. To avoid this increased
sensitivity to beam pointing, the pointing along each axis of each optical assembly
is modulated at a known frequency, and the resulting apparent changes in the arm
length differences at the modulation frequencies and their second harmonics are
detected. This information permits the outputs at the modulation frequencies to
be minimized by small offsets in the dc pointing directions, which corresponds to
having just the quadratic variations in the received phase due to attitude jitter.

As a measure of the remaining requirement on pointing jitter, a convenient
test case is to assume only astigmatic error in the transmitted wavefronts with
an error of a tenth of a wavelength rms. For this example, if the distance error
due to pointing is allowed to be equal to that from shot noise, the errors in the
dc pointing offset and in the pointing jitter can be as large as 10 milliarcsec and
4 milliarcsec/rtHz, respectively. (Here and later, /rtHz stands for ‘per square root
Hz’ , and the given error or noise is the spectral amplitude of the error, which is
the square root of the power spectral density.) These error allocations are each
about three times larger than those given in section 3.1.8 of [6], since the error
allocation in that case was assumed to be only 10% of the error due to shot noise.

Further information on the optical path error allocation budget for LISA
is given in sections 4.2.1 and 4.2.2 of [6]. The total error allocation for the
measurement of the difference in the round-trip path lengths for two arms of
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the antenna is 40 nm/rtHz. With only shot noise considered, the corresponding
value would be 22 nm/rtHz, and with beam pointing jitter included also, the
value becomes 30 nm/rtHz. Other error sources considered explicitly are as
follows: residual laser phase noise after the correction procedure discussed earlier
is applied; noise in the ultra-stable oscillators after a similar correction procedure;
noise in the laser phase measurements and phase locks; and scattered light effects.
The 40 nm/rtHz total error allocation for the difference in round-trip paths for two
arms corresponds to 20 nm/rtHz for determining the difference in lengths for the
two arms.

10.1.4 Free mass sensors

Historically, the first free mass sensor was developed jointly by the Johns Hopkins
University Applied Physics Laboratory and by Stanford University, and was flown
on the TRIAD satellite in 1972 [16]. A spherical test mass was contained in a
spherical cavity with three opposing pairs of capacitive electrodes on the inside
of the housing for sensing the relative position of the test mass. Whenever the
atmospheric drag caused the housing to move a few millimetres with respect to
the test mass, pulsed thrusters on the satellite fired to keep it centred on average
on the test mass. Care was taken to keep forces on the test mass other than those
due to external gravitational fields as small as possible. Thus, the orbit of the
satellite was nearly drag-free, and was much more predictable than normal. The
theory of such drag-free systems had been given earlier in 1964 by Lange [17].

There is a close connection between free mass sensors and the high-
performance force-rebalance accelerometers developed over the last three decades
by the Office National d’Etudes et de Recherches Aerospatiales (ONERA) in Paris
for flight on various missions. The basic approach in the accelerometers is to
measure the position of a free or nearly free test mass inside a housing by means
of capacitive electrodes on the inside of the housing. Forces are then applied to
the test mass by means of voltages on the electrodes to keep the test mass centred
in the housing. The required voltages are measures of the accelerations along the
three perpendicular axes.

The first such accelerometer designed and built by ONERA was flown from
1975 to 1979 on the French CASTOR-D5B satellite. It had a spherical test mass.
However, later ONERA-designed accelerometers have used test masses in the
form of rectangular parallelepipeds. The first such design, called the GRADIO
accelerometer, was for possible use in a proposed gravity gradiometer mission
(ARISTOTLES) to map the Earth’s gravity field, and has been the basis for a
number of later designs.

The test mass for the GRADIO accelerometer is 4 cm by 4 cm by 1 cm in
dimensions. The material used for the test mass is a Pt–Rh alloy with a density
of about 20 g cm−3. The housing is made of ultra-low expansion glass (ULE),
with a gold coating on the inside that is carefully patterned to form the capacitive
plate electrodes. The gaps between the plates are recessed and kept very small
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to reduce the charge buildup on the underlying material. The position sensing is
done with 100 kHz transformer bridge circuits. Extra pairs of plates are included
to permit relative rotation of the test mass with respect to the housing to be sensed
and controlled.

The gaps between the capacitive plates and the test mass is 30 µm for the
large square faces and 300 µm for the smaller rectangular ones. With the test
mass horizontal, the factor four smaller vertical dimension and the 30 µm gap
permit the test mass to be electrostatically suspended for laboratory tests. The
entire accelerometer is contained in a vacuum enclosure. Extensive tests have
been carried out at ONERA with two GRADIO accelerometers mounted on a
single pendular support platform in a special sub-basement room to reduce the
effects of tilts in the floor. The results for the differential horizontal accelerations
have been very encouraging, but are still several orders of magnitude worse than
the theoretical sensitivity of roughly 10−12 m s−2/rtHz from a few millihertz to
1 Hz in a quiet and constant temperature zero-g environment.

A later but lower sensitivity version of the GRADIO accelerometer has been
flown a few times on the space shuttle, and other versions will fly soon on other
missions. These include the German–French CHAMP mission scheduled for
launch in 2000, a USA–German mission called GRACE scheduled for a 2001
launch, and a later ESA mission called GOCE. GRACE is a satellite-to-satellite
tracking mission that will map time variations in the Earth’s gravity field over a
five-year period with high accuracy, and an accelerometer on each satellite will
monitor drag and other non-gravitational forces on the satellites. GOCE is a
gravity gradiometer mission to map very short wavelength spatial structure in the
gravity field, using the differential accelerations between pairs of accelerometers
in the same spacecraft.

For the free mass sensors for the LISA mission, the requirements are quite
different from those for accelerometers. The purpose of the accelerometers is
to measure the non-gravitational accelerations of the spacecraft to which they
are attached, and thus the readout sensitivity has to be high. For the GRADIO
accelerometer, with 300 µm gaps along the two most sensitive axes, the position
measurement sensitivity is 6 × 10−12 m/rtHz at frequencies above 5 mHz.
However, the small gaps lead to increases in some of the time-varying spurious
accelerations of the test mass, as discussed later. For LISA, it turns out that
the necessary sensitivity of the capacitive position measurements is only about
10−9 m/rtHz, so gaps of 2 mm or larger and different values of some of the other
measurement parameters can be used to reduce the spurious accelerations.

An initial ONERA study of a proposed free mass sensor for LISA, called
CAESAR, was published by Touboul, Rodrigues and Le Clerc in 1996 [18]. The
test mass is a cube 4 cm on a side, made of a 10% Pt–90% Au alloy to achieve low
magnetic susceptibility and a density of 20 g cm−3 (see figures 10.6 and 10.7).
The gaps assumed were 4 mm along the most sensitive axis and 1 mm for the
other two axes. An error budget for the sensor was developed, based on the high
thermal stability expected for the optical bench during the LISA mission.
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Figure 10.6. Early ONERA design of LISA free mass sensor called CAESAR. Up to four
capacitor plates on each face of the housing around the test mass allow the relative position
and angular orientation to be measured accurately. Electrical forces also can be applied, if
desired.

After completion of the initial CAESAR design, additional studies of free
mass sensor designs and of the LISA requirements have been carried out,
influenced strongly by the CAESAR design. A number of the factors influencing
the design were discussed by Speake [19] and by Vitale and Speake [20]. A design
with a considerably different geometry for the capacitor plates was investigated by
Josselin, Rodrigues and Touboul [21], and has since been constructed and tested
in the laboratory and the LISA free mass sensor requirements were simplified and
somewhat relaxed [6].

One current version of the error allocation budget for the free mass sensor
is described in section 4.2.3 of [6]. The total acceleration error allowed for
one sensor is 3 × 10−15 m s−2/rtHz over the frequency range 0.1–30 mHz.
The six largest allocations to individual error sources are as follows: thermal
distortion of the main spacecraft; temperature difference variations across the
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Figure 10.7. Ultra-low expansion glass housing for the proof (test) mass in the early
CAESAR design.

test mass housing; electrical force on the charge on the test mass; Lorentz
force on the charged test mass from the fluctuating interplanetary magnetic field;
residual gas impacts on the test mass; and fluctuating forces due to electrical field
dissipation in the test mass housing. These sources are each allocated an error of
1× 10−15 m s−2/rtHz.

In view of the performance level desired for the LISA free mass sensors, it is
planned to have a technology demonstration flight for them at the earliest possible
date. Efforts to arrange for such a flight currently are under way both in Europe
and the USA. Two sensors would be flown on a thermally isolated optical bench
on a small spacecraft, with an interferometer to measure changes in the separation
of the two test masses. To keep the rate of charging of the test masses comparable
with what it would be well away from the Earth, and to reduce the effect of the
Earth’s gravity gradient, a perigee altitude of 10 000 km or higher is desired. To
reduce the cost, a tentative goal of demonstrating only 3 × 10−14 m s−2/rtHz
performance from 1–10 mHz currently is assumed. It is believed that cautious
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engineering extrapolation from tests at this level plus some in-flight tests with
intentionally increased disturbances will provide a sound basis for proceeding
with the LISA mission.

10.1.5 Micronewton thrusters

The main non-gravitational force on a LISA spacecraft is expected to be from
the solar radiation pressure and to have a magnitude of about 20 µN. If not
compensated for, it would cause an acceleration of the spacecraft of roughly
10−7 m s−2. Since the test masses are shielded from this source of acceleration, it
is necessary to apply force to the spacecraft to keep it from moving with respect
to them. The spectral amplitude of the fractional fluctuations in the solar pressure
force [22] over the 0.1–10 mHz frequency range is approximately

1.3× 10−3 ( f/1 mHz)−1/3.

Comparable fluctuations in force but with a more reddened spectrum and a
much lower dc level will be present from the solar wind.

The type of thrusters that are planned for use on the LISA mission are field
emission electric propulsion (FEEP) thrusters. They operate by accelerating ions
through a potential drop of 5–10 kV and ejecting them to provide thrust. The
ejection velocity is roughly 60–100 km s−1, corresponding to a specific impulse
of 6000 to 10 000 s. In view of this high specific impulse and the low thrust level
needed, the fuel required per thruster for a ten year extended mission lifetime is
only a few grams.

Historically, most of the development of FEEP thrusters has been based
on the use of Cs ions. This work has been done mainly at the European
Space Research and Technology Centre in Noordwijk, The Netherlands and at
Centrospazio in Pisa, Italy (see section 7.3 of [6]).

A schematic drawing of a thruster is shown in figure 10.8. In each thruster,
liquid Cs metal at a temperature somewhat above the melting point of 29 ◦C
is contained in a small reservoir. It is drawn by capillary forces through a
narrow channel between two polished metal plates spaced 1 or 2 µm apart. The
accelerating voltage is applied by a plate with a slot in it, located at the outer edge
of the channel.

The high field at the surface of the Cs metal causes an instability, and Taylor
cones roughly a micrometre in diameter and a few micrometres apart form on the
surface. The tips of these cones are very sharp, and the high field around the tips
causes Cs ions to be drawn out by field emission and accelerated away in a beam
perhaps 30◦ wide. The one substantial drawback to the use of Cs ions is that
any water vapour that is present will react with the Cs to form CsOH. Thus, the
thrusters are kept in vacuum containers roughly 5 cm in dimensions until in space
and ready for use. A spring-loaded cover with an O-ring seal is then released.

An alternative to Cs is the use of In. Field emission of In ions for the
neutralization of positive charge on spacecraft has been pioneered by the Austrian
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Figure 10.8. Schematic drawing of cesium Field Emission Electric Propulsion (FEEP)
thruster. The thrust can be controlled by changing the accelerator voltage smoothly. A set
of six or more thrusters is used to control the spacecraft position and attitude.

Research Centre Seibersdorf, and such devices have been flown on several
missions. The geometry used consists of a sharpened tungsten needle with a tip
a few micrometres in diameter mounted in the centre of a heated In reservoir.
Capillary forces bring the In to the tip, and again an accelerator plate applies a
high voltage. A single Taylor cone is formed, and the In ions are produced by
field emission from the sharp tip of the cone.

If such devices are used as thrusters, there is a limit to the thrust achievable
per tungsten needle. If too much current is drawn, small droplets form and
give much less thrust per unit mass than the ions do. However, it has been
demonstrated that a number of needles can be operated in parallel to meet the
quite low thrust requirements of the LISA mission during its operational phase.
The results of research on such thrusters have been reported by the Seibersdorf
group [23]. The possibility of using In instead of Cs with the channel capillary
flow approach is now being investigated by Centrospazio, but no decision has
been made on the overall merits of the two materials with this approach.

The advantages of FEEP thrusters, in addition to their high specific impulse,
is that they can run continuously and be controlled easily by small changes
in the acceleration voltage. Work on their further development and testing is
being supported by ESA because of their potential for use on a number of future
missions. If In ions are used, the thrusters have to run hotter because of the 156 ◦C
melting temperature for In. However, the power required is still low, and does
not appear to be a problem. To control both attitude and translation and allow
sufficient redundancy, probably between 12 and 24 individual thrusters pointing
in different directions will be included per spacecraft.
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10.1.6 Mission scenario

A single launch with the Delta II launch vehicle is assumed in current studies
of the LISA mission [7]. Each of the three spacecraft has a thin cylindrical
propulsion module attached to it. The three composite vehicles are stacked on top
of each other for launch, and then separate from the launch vehicle and from each
other a short time later. Since the spacecraft will be separated by 5000 000 km
and have different orbit planes in their final configuration, they travel separately
and each has its own onboard guidance system.

It is currently planned to use solar electric propulsion for the propulsion
modules. The top area of the main spacecraft is covered with solar cells, and
enough power is generated to provide 15 or 20 mN of thrust with either Hall effect
or another type of Xe ion thruster. The time necessary for the three spacecraft to
reach their proper locations and velocities about 20 ◦ behind the Earth in orbit
about the Sun is 14 or 15 months.

After the nominal orbits have been achieved, the spacecraft will be tracked
for a week or two with NASA’s Deep Space Tracking Network. Then, any desired
minor corrections to the orbits can be made. The next step is separation of the
propulsion modules from the final spacecraft. After that, the orbits will be almost
completely gravitational, with each spacecraft servocontrolled to follow either the
average of the two test masses inside it or just one of the two. The difference of
the spurious accelerations of the two test masses will be roughly 10−10 m s−2 or
less, and can be corrected for by applying weak and stable electrical forces to the
test masses at frequencies below the measurement range via the capacitor plates.

The next step is for each spacecraft to acquire the other two optically. Star
trackers aboard each spacecraft give the attitude to a few arcseconds, and the
transmitted laser beams are defocused by roughly a factor ten so that they can be
detected on the other end of an arm even with relatively poor beam pointing. The
received laser beam normally is bright enough to look like about a magnitude-3
star, so there will be a substantial brightness level even with some defocusing. If
necessary, an angular scan pattern on the transmitted beam could be used to find
the beam, since the stability of the star tracker will be considerably better than its
absolute accuracy.

As soon as a receiving spacecraft finds the beam, the output from the CCD
array or quadrant diode in its angle tracker can be used to lock the attitude to the
direction to the distant spacecraft, and the defocus in the transmitted beam can
be removed to give a high S/N ratio. The local laser then is turned on, and its
frequency adjusted to give a fairly low beat frequency with the received beam.
The resulting heterodyne signal back at the original transmitting end provides a
higher S/N ratio, and makes detecting the defocused return beam easier. After the
beam pointing signals are locked in and the focus is corrected on both ends of
each arm, the system is ready for operation.

Even with careful phase locking of the master laser to a stable cavity, or
possibly the locking of more lasers, the phase noise will still be significant up to
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frequencies of a few hundred hertz to 1 kHz. Also, the amplitude of the phase
noise at frequencies near 1 Hz and below will be large. To avoid aliasing the
higher frequency noise into the band of interest, below perhaps 3 Hz, it may be
desirable to make the phase measurements at a rate approaching a kilohertz, and
then filter the data in software. For low-frequency noise, it is planned to combine
all the signals at a single spacecraft and perform the algorithm for correcting for
laser phase noise there. The resulting signals then can be compressed before being
sent to the ground.

The number and amplitude of mechanical motions aboard the spacecraft are
kept as small as possible to reduce gravitational attraction changes and excitation
of vibrations. Roughly 30 cm diameter X-band antennae probably will be used to
send data down to 34 m Deep Space Network antennae on the ground, and will
have to be repointed about once a week. Step changes in the angle between the
axes of the two optical assemblies probably will be made at the same time with
coarse adjustment mechanisms, but smooth adjustments over roughly a range of
5 arcmin are required between the steps. It is expected that offsets in the position,
velocity, and dc acceleration of the test masses will have to be solved for at the
times of the steps.

The nominal mission lifetime after the antenna geometry is established
probably will be three years. However, there are no expendables required except
for the In or Cs fuel for the micronewton thrusters, and that will be made adequate
for a ten year or longer lifetime. Thus, a rolling three year approval period
hopefully can be established, provided that the antenna continues to operate
properly.

10.2 Expected gravitational-wave results from LISA

10.2.1 LISA sensitivity and galactic sources

The two types of noise sources for the LISA antenna have been discussed
earlier. The one that dominates at frequencies below about 3 mHz is spurious
accelerations of the test masses, and the level of error allocated for frequencies
f between 0.1 and 30 mHz is 3 × 10−15 m s−2/rtHz for each free mass sensor.
Considering only two arms of the antenna for simplicity, and adding the errors
from the four sensors quadratically, the resulting noise level for the difference in
(one-way) length of the two arms is

�(L2− L1) = 1.520× 10−16 (1 Hz/ f )2 m/rtHz.

This should be combined quadratically with the error allocation of 2 ×
10−11 m/rtHz for measuring the difference in the distances between the test
masses along the two arms.

For low frequencies, where the wavelength is long compared with the arm
length, the response of the antenna to a gravitational wave [24] can be given
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Figure 10.9. LISA sensitivity and galactic sources. The instrumental and binary confusion
threshold sensitivity curves are shown for one year of observations and an S/N ratio of 5.
Estimated signal strengths and frequencies for galactic binaries are indicated also.

simply for the optimum direction of propagation and polarization of the wave.
The change in L2 − L1 is just the amplitude h of the wave times the cosine
of the angle between the two arms. Averaging over the direction of propagation
and the polarization gives a factor 50.5 lower signal amplitude. However, at higher
frequencies, the signal is reduced by a factor that depends in a complicated way on
the direction of propagation and the polarization. The transfer function giving the
rms value of this reduction factor, and including the cosine of the angle between
the two arms, has been given by Schilling [25]. It was used in calculating the LISA
threshold sensitivity, as shown in figure 10.9 and discussed below. Essentially the
same curve has been calculated independently by Armstrong, Tinto and Estabrook
[13], but for a slightly different choice of arm length.

For almost all of the gravitational-wave signals LISA will see, the frequency,
amplitude and polarization of the wave will be very stable, and will not change
substantially over a few years of observation. Thus, it is desirable to plot the
LISA threshold sensitivity as a curve such that there is a good chance of seeing
a source in a reasonable observing time if its rms amplitude lies above the curve.
To accomplish this, the threshold sensitivity curves in figures 10.9 and 10.11 are
plotted as the rms amplitude of a stable signal needed in order to have a S/N
ratio of five for one year of observation, when averaged over source direction
and polarization. The S/N ratio of five is chosen because almost all the sources
will be unknown from optical observations, and roughly this S/N ratio is needed
to determine the reality of sources with unknown frequencies and with only
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statistical information on their directions in the sky. When averaged over a year,
the LISA antenna response is remarkably independent of the source direction in
the sky [26], so no allowance for the ecliptic latitude or longitude of the source is
needed in using the LISA threshold sensitivity curve.

The dominant type of signal LISA will see is gravitational waves from binary
stars systems in our galaxy. Mironowskii [27] pointed out in 1966 that there
would be roughly 108 W UMa type binaries in the galaxy giving substantial
signals. These binaries consist of two main sequence stars so close together that
their Roche lobes are in contact, and material can flow between them. Their
frequencies lie in a fairly narrow band near 0.1 mHz. With so many sources at
low frequencies, it is clear that even many years of observations would not permit
individual signals to be resolved, except for a few that happen to be close to the
Sun and thus have high signal strengths. There are even larger numbers of non-
contact binaries composed of normal stars at lower frequencies.

In 1984 Iben [28] pointed out the expected existence of a very large number
of close white dwarf binaries (CWDBs) in our galaxy, and the strength of signals
expected from them. Because of their radii being only about 10 000 km, they can
give gravitational-wave signals at frequencies up to roughly 30 mHz. However,
they had not been observed directly until the last few years, and their space density
in the galaxy is only poorly known. On the other hand, since the orbits of the
interesting CWDBs evolve mainly by gravitational radiation, the number per hertz
will decrease as the 11/3 power of the frequency, and thus the frequency above
which most of them can be resolved is only fairly weakly dependent on the space
density.

Recent observations by Marsh and collaborators [29–32] have found a
number of examples of CWDBs, so their abundance must be moderately close
to the astrophysical estimates. However, the criteria used in selecting their targets
of observation make it difficult to derive a space density. Based on the best
astrophysical studies available at present [33,34], it is expected that most CWDBs
will be resolved at frequencies above roughly 3 mHz, even for those near the
galactic centre. The signals are strong enough so that the frequencies of and
directions to a few thousand such sources will be determined by LISA.

The mean strength of signals from CWDBs at the galactic center as a
function of frequency is shown in figure 10.9 as a solid curve. It hooks
sharply upward at about 15 mHz because the majority of the CWDBs below that
frequency contain either one or two He white dwarfs, and coalesce just above
15 mHz. This leaves only binaries containing mainly white dwarfs composed
almost completely of carbon and/or oxygen, which are called CO white dwarfs.
The CO white dwarfs are roughly a factor two more massive and are smaller in
radius, so they can reach somewhat higher frequencies before coalescing.

Above and below the curve for the galactic centre are dot-dashed curves
labelled 5% and 95%. The 5% curve shows the mean strength of the signals from
CWDBs at a distance from the Earth such that 5% of all the ones in the galaxy
are closer, and the definition for the 95% curve is similar. Thus roughly 90%
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of the CWDBs in the galaxy will give signal strengths in the region between the
two curves. Since this region is substantially above the LISA threshold sensitivity
curve for S/N = 5, most of these sources will have S/N ratios of 10–50.

Several other types of binaries also can contribute signals above the
instrumental sensitivity level for LISA [35–43]. When all of these types are
considered together, there is some frequency at which the expected number of
galactic sources per frequency bin for one year of observations drops below a
value of very roughly 1/3. Below that frequency, very little information can
be obtained about the scientifically very important extragalactic sources, unless
they are stronger than the sum of signals from the galactic binaries. Above
that frequency, some information is lost because of having to fit out the galactic
signals, but some survives [44–46]. The effective binary noise level then drops by
a factor of about 3–10, at which point it is coming from all the binaries in other
galaxies throughout most of the universe.

A simple calculation shows that the extragalactic contribution from each
shell around our galaxy of a given thickness will give the same average
contribution out until redshifts comparable with one, provided the effects of
galaxy evolution are not too large [47]. A recent estimate of the effective noise
level introduced by all of the galactic and extragalactic binary star systems, but
not allowing for evolution [46], is shown in figure 10.9. It has been adjusted to
correspond to S/N = 5. This confusion noise curve lies above the instrumental
sensitivity curve for frequencies from about 0.1–3 mHz, and has a major effect on
determining whether LISA can reliably detect particular sources from one year of
observations. This affects some galactic sources, as well as extragalactic ones.

A few individual known sources also are shown on figure 10.9. Since the
frequencies, as well as directions in the sky, are known for most of these sources,
the S/N ratio needed to detect them is only about two. Thus, the ones somewhat
below the threshold sensitivity or confusion noise curves probably are detectable
from one to two years of observations. i Boo is a non-contact binary composed
of normal stars, and WZ Sge is a very short period dwarf nova binary. The four
Am CVn binaries shown are each believed to consist of an extremely low mass
helium dwarf losing mass to a CO dwarf primary [39]. They also are called helium
cataclysmics, and effects due to such binaries and their possible progenitors have
been included in the recent confusion noise estimates [46]. The final known
binary shown is 4U 1820-30, an x-ray binary believed to contain a neutron star or
stellar mass black hole.

Before discussing the important questions about massive black holes and
about relativity that LISA hopefully will contribute unique new information on,
it is useful to say something about how the data will be analysed [48]. First,
any large and easily recognizable signals will be fitted and removed from the
data. Next, a convenient data set such as a one year data record will be analysed
carefully to determine as many as possible of the galactic binary signals. This
search will be easy for frequencies above perhaps 10 mHz, where the signals
are quite well separated. However, the sidebands on the signals due to rotation
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and motion of the antenna will overlap strongly as the frequency decreases to
near 3 mHz, and a simultaneous fit of all the signals in each roughly 100 or
200 cycle/year band is likely to be necessary in order to fit the signals well. At
still lower frequencies, only the strongest sources whose signals rise substantially
above the large number from near the galactic center will be detectable. All of
the identified sources will then be removed from the data record, before looking
for the swept frequency signals expected from extragalactic sources involving
massive black holes.

10.2.2 Origin of massive black holes

An important astrophysical question is how the seed black holes that later grew
to be the massive and supermassive black holes observed today were formed. To
aid in identifying different mass ranges for black holes, we will refer to those
from roughly 1.5 to 30 solar mass (M�) that are thought to be capable of being
formed by the evolution of very massive stars as stellar mass black holes, larger
ones up to about 3× 107M� as massive black holes (MBHs), and still larger ones
as supermassive black holes.

As is well known, supermassive black holes were invoked first to provide
the energy source necessary to explain quasars. However, more recent optical
and other observations have provided strong evidence for the existence of MBHs
in AGNs much closer to the Earth [49]. In one case, the evidence is from
observations of OH masers in Keplarian orbits around the MBH, and is essentially
conclusive [50, 51].

For some normal galaxies, the evidence also is very strong. One case comes
from extremely high-resolution infrared observations of stars moving around a
2.6 ± 0.2 × 106M� object at the centre of our galaxy, that really can only be a
MBH [52, 53]. Two other cases come from optical observations of the motions
of stars or gas around the centres of the M31 (Andromeda) and M32 galaxies in
the Local Group at distances of about 0.6 Mparsec. The evidence for stellar mass
black holes comes from observations of x-ray binaries.

For MBH masses of 106M� or less, the only fairly convincing observations
so far are two OH maser observations indicating about 10 6M� central objects.
Except for a few more observations of this kind, it is not apparent whether
electromagnetic observations are likely to tell us much about the fraction of
normal galaxies containing MBHs that are this low in mass. Because of this,
the information potentially available from gravitational wave observations with
LISA concerning the existence and masses of MBHs in other normal galaxies and
how they formed is likely to be quite valuable.

There are two main types of theories concerning how seed black holes were
formed. In one, collisions of stellar mass objects in dense galactic nuclei led to the
formation of higher mass objects, and these sank down toward the centre (mass
segregation), where their collision rates were enhanced. If the mass got to be a
few hundred times the solar mass and an object was not already a black hole, it
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would evolve quickly to form one. When the largest objects got to be roughly a
thousand solar mass in size, they would then be able to continue growing fairly
rapidly by absorption of gas in the galactic nucleus and by tidal disruption of stars.
At some point, the largest black hole would grow enough faster than the others
that it would swallow up the ones of comparable size and become the seed for
growth of a perhaps 105M� or larger MBH.

The alternate type of theory involves the evolution of a dense cloud of gas
and dust to the point where it becomes optically thick, and radiation pressure
plus magnetic fields can prevent further fragmentation of the cloud to form stars.
At that point, if energy and angular momentum can be dissipated fairly rapidly,
there are two options. In one, a supermassive star possibly 10 5–106M� in size
is formed, and quickly evolves to the point of relativistic collapse and forms a
MBH. In the other option, the cloud can become dense enough to reach the point
of relativistic instability and collapse directly to a MBH without going through the
supermassive star stage. There also is the possibility of a relativistic star cluster
becoming unstable and collapsing to a MBH.

For the collisional growth scenario, quite detailed calculations starting from
1M� stars were carried out by Quinlan and Shapiro [54] (see this 1990 paper for
earlier references). They found that roughly 100M� objects could form in a few
times 108 years, starting from plausible conditions in a dense galactic nucleus,
and including the effects of mass segregation. However, it was not possible at that
time to follow the process further.

In an alternate approach, Lee [55] started from assuming that 1% of the mass
in a dense galactic nucleus was in the form of 7M� black holes that resulted from
evolution of stars at the high end of the initial mass function (i.e. initial mass
distribution). The rest of the material was in the form of 0.7M� normal stars.
Dynamical friction led to segregation of the black holes to the core, and core
collapse among the black holes occurred on a time scale much shorter than for
a single component cluster. For rms stellar velocities above 100 km s−1 and for
plausible densities in the nucleus, it was shown that many black hole binaries
formed and merged to produce 14M� black holes within about two billion years.
The process was not followed further, but it seems likely that most of the black
holes would have merged rapidly to form a substantial sized seed MBH.

The main objection raised to the collisional growth scenario is that it seems
difficult to produce the seed black holes and have them grow much further to
the supermassive black hole size before the appearance of quasars as early as
a redshift of four [56–58]. Instead, it was suggested that the inefficiency of
star formation would leave most of the material in a dense cloud in the form
of gas and dust. The cloud would cool and condense toward the centre until
angular momentum support became important. Gravitational instabilities and
other effects would help to remove energy and angular momentum and permit
the density to become high enough for collapse to a supermassive star or directly
to a MBH perhaps 105M� or larger in size. A related argument made is that a
self-gravitating gaseous object of more than 10 8M� does not appear to have any
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stationary non-relativistic equilibrium state that can be supported for very long.
Under the cloud collapse scenario, an important question is whether signals

are likely to be produced that LISA could see. For example, if a supermassive
star forms and then evolves to the relativistic instability, the final collapse to a
MBH could be slow enough that most of the gravitational-wave radiation would
be at such low frequencies that LISA would have poor sensitivity. Also, if
the collapse were nearly spherically symmetric, the radiative efficiency would
be poor. However, recent fully relativistic calculations by Baumgarte and
Shapiro [59] of the evolution of a rotating supermassive star up to the onset of
collapse provide some basis for a more optimistic view. The later evolution can
be determined reliably only by a numerical, three-dimensional hydrodynamics
simulation in general relativity. However, estimates of what will happen indicate
that most of the mass will go into a MBH, and that a bar instability which radiates
efficiently at frequencies observable by LISA may form.

Even if the supermassive black holes in quasars at high redshifts are formed
initially by cloud collapse, it still seems quite possible that the collisional growth
scenario may contribute substantially to the formation of seed black holes for
more modest sized MBHs, like the one in our galaxy. Under the collisional
growth scenario, if a number of 500M� seed black holes are formed before
runaway growth occurs and the largest has already swallowed the others, then
the coalescence of two of these seeds could be seen by LISA even at a substantial
redshift. For such a coalescence at z = 5, it can be shown that the signal strength
as a function of frequency during the last year before coalescence, for a circular
orbit, would stay just about at the LISA threshold sensitivity curve level, so the
event would be detectable with S/N = 5.

A remaining question, even if many intermediate sized MBHs are produced
by the collisional growth of seeds, is whether the time of runaway growth of
the largest seed black hole would be delayed to high enough mass for LISA to
observe the coalescences. As pointed out by Lee [60], the calculations of Quinlan
and Shapiro are based on the Fokker–Planck approach, and that approach does
not allow for the proper statistical treatment of a runaway instability. This is true
for the calculations of Lee [55] also. In considering this issue, it should be noted
that only the chirp mass for the binary is important for determining the signal
strength and frequency as a function of time. Thus the coalescence of a 100M�
black hole with a 4000M� one would be as observable as for two 500M� black
holes. Further work on the runaway growth question, as well as on the overall
collisional growth and cloud collapse scenarios, certainly would be valuable.

10.2.3 Massive black holes in normal galaxies

Another important astrophysical question concerns the abundance of intermediate
size MBHs of roughly 105–106M�. From observations based almost entirely on
galaxies containing larger MBHs and SMBHs, various authors have estimated
that the mass of the central object is about 500 times smaller than the mass of the
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spheroid (central bulge) of the galaxy. An even tighter relationship to the velocity
dispersion in the spheroid has been reported recently [61]. However, the reasons
for these relationships are not yet known [56, 62–64]. It appears likely that LISA
data can address whether a relation something like this extends to galaxies with
smaller spheroids, which constitute the majority of all galaxies.

MBHs in galactic centres are expected to usually have an increased density
of stars around them in the region where the potential of the MBH dominates that
of the galaxy. This density cusp is usually taken to be a power law cusp, with a
−7/4 power dependence on radius if the distribution of stellar motions is relaxed
and a −3/2 power for some unrelaxed cusps. It is generally expected that there
will be large numbers of compact stars, i.e. white dwarfs and neutron stars, in the
cusp. Occasionally, one of them that is on a nearly radial orbit and passes close
to the MBH may be deflected enough by the other stars so that it comes within
five or so gravitational radii of the MBH and loses significant amounts of energy
and angular momentum by gravitational radiation. If so, and if further deflections
by the other stars are not important, the compact star orbit will continue to shrink
gradually until coalescence with the MBH occurs.

Unfortunately, in almost all cases for white dwarfs and neutron stars, the
above gradual approach scenario is interferred with by interactions with other
stars. Hils and Bender [65] have simulated what happens for a particular model
which assumes 1M� for both the compact stars and the normal stars in the cusp.
After the first pass near the MBH, the orbit of the compact star is modified by
interactions with the other stars more rapidly than by the gravitational radiation,
unless the compact star is bound very tightly to the MBH initially. Thus the
compact star usually will plunge rapidly into the MBH, or its point of closest
approach will wander far enough away to not give appreciable interaction. A rapid
plunge will not provide enough integration time for detection. In the remaining
favourable cases, the signal typically will be observable by LISA from a one year
data record starting up to roughly 100 years before coalescence.

Despite a loss of several orders of magnitude in the event rate due to
plunging, the study by Hils and Bender [65] gave some hope of LISA seeing such
signals. However, studies by Sigurdsson and Rees [66] and by Sigurdsson [67],
plus an unpublished extension of the above study by Hils and Bender, indicated
that the prospects were considerably better for observing gradual approaches to
coalescence with galactic centre MBHs for roughly 5 or 10M� black holes. The
effect of mass segregation was included. Such events would be detectable at a
redshift of z = 1 during the last year before coalescence for MBH masses from
5× 104 to 2× 106M�.

Estimates of the event rate are certainly model dependent, but still offer
encouragment that multiple signals of this kind will be observed. As an example,
results obtained by Hils and Bender for one particular model are shown in
figure 10.10. About 1% of the mass in the cusp was assumed to be in 7M�
black holes, and mass segregation was included. For each factor two range in
the mass of the central MBH about a nominal value M , and for each factor two
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Figure 10.10. Expected signals from BH–MBH binaries. The instrumental and confusion
noise thresholds are shown for one year of observations, but for a S/N ratio of 10. The
different symbols correspond to different MBH masses. For a given mass, the individual
points correspond to factor of two different values of the redshift z.

range in the redshift z, the signal strength and frequency of the strongest expected
signal was calculated. The different symbols correspond to the different MBH
masses, ranging from 5 × 105 to 4 × 106M�, and the highest and lowest values
of z for each M are labelled. It should be noted that, only in this figure, the
threshold S/N ratio is taken to be ten rather than five. This is because the orbits
in this case generally will be quite complex because of relativistic effects, as
discussed later, and thus require a higher S/N ratio for detection. With improved
understanding of the conditions in the cusps, the distribution of MBH masses
for such events may give information that cannot be obtained in other ways on
the demographics of intermediate mass black holes in galactic centres throughout
much of the universe.

A recent paper by Miralda-Escuda and Gould [68] looks specifically at the
stellar mass black holes in the cusp around the MBH in the centre of our galaxy.
With assumed masses of 0.7M� for stars in the cusp and 7M� for the black holes,
and with 1% of the mass in the black holes, they show that the black holes will
rapidly sink down closer to the center. With this model, they estimate that about
24 000 black holes would be concentrated within 0.7 parsec of the MBH, and
calculate a lifetime for loss of the black holes to the MBH of about 3×10 10 years.
If a substantial fraction of the black holes approach coalescence gradually, and
with many galaxies like ours in the universe, the possible LISA event rate from
this study also may be considerable. On the other hand, the authors suggest that
most of the stars in the inner few parsecs of the cusp would be forced out to larger
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distances by interaction with the black holes. If so, the estimated observable event
rate for white dwarfs and neutron stars from [65] could be drastically reduced.

10.2.4 Structure formation and massive black hole coalescence

The third of the important astrophysical questions that LISA has a good chance of
giving new information on concerns the development of structure in the universe.
It is currently believed that objects considerably smaller than galaxies formed
first, and that continuing sequences of interactions and mergers led to the present
distribution of galaxy types and sizes, and to galaxy clusters and superclusters. If
MBHs were already present in pre-galactic structures that merged, this could lead
to the MBHs sinking down to the centre of the new structure by dynamical friction
and getting close enough together to coalesce due to gravitational radiation before
the next merger [58, 69].

The above scenario is quite attractive, and could give a high event rate for
LISA. If so, valuable new constraints on the merger process and on the conditions
after mergers would be obtained. However, there are a number of issues that affect
the event rate that have to be considered.

One question is how effective dynamical friction will be in bringing MBHs
of a given size to the centre of the new structure in less than the time between
mergers. For galaxies like ours, the time required is less than the Hubble time for
MBHs of roughly 3×106M� or larger (see, e.g., Zhu and Ostriker [70]). However,
the stars in the cusp around a MBH before merger will stay with it for some time,
and will affect the dynamics. Thus, whether the mergers of pre-galactic structures
in galaxies like ours with fairly modest spheroid and MBH masses are likely to
have produced coalescences of perhaps 10 5 or 106M� MBHs appears to be an
open one.

There also is a question about whether the MBHs will modify the star
distribution near the centre of the new structure enough so that the dynamical
friction will be decreased considerably. Calculations indicate that this may occur
when the MBHs are fairly close together, but not yet close enough to coalesce by
gravitational radiation in less than a Hubble time (see, e.g., Makino [71]. On the
other hand, conditions such as Brownian motion of the MBH and tri-axiality in the
structure may affect the results, and there also may be complex enough motions
going on soon after a merger to change the conclusions. Thus the effectiveness of
this ‘hang-up’ in the coalescence process is not known.

Another question arises if another merger occurs before the MBHs from an
earlier merger have coalesced. In principle, one, two or all three of the MBHs
could be thrown out of the new structure by the slingshot effect. However, the
new merger could even have a beneficial effect, if the resulting disturbances in
the central star density overcame the possible hang-up for the earlier two MBHs
and allowed them to coalesce.

The signals arising from MBH coalescences after mergers of galaxies or of
pre-galactic structures would be very large. Figure 10.11 shows several cases
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Figure 10.11. Strain amplitudes during the last year before MBH–MBH coalescence. The
curves are for MBH–MBH binaries at z = 1 with circular orbits, and for one year of
observations with S/N = 5. For a given mass combination, the first five points from the left
are for 1.0, 0.8, 0.6, 0.4, and 0.2 months before coalescence. The last two points are for
0.5 week before and for very roughly the last stable orbit for Schwarzschild MBHs.

of the signal strength as a function of frequency during the last year before
coalescence for events at a redshift of z = 1 and for circular orbits. The square
symbols show the time at 0.2 year intervals, so the first is one year before, the
second is 0.8 year before, etc. The last symbol is shifted slightly to be 0.5 week
before coalescence, instead of at that time. The cases shown are for equal MBH
masses, and only the spiral-in part of the event before the last stable orbit is
reached is considered. However, it should be remembered that the detectability of
the signal for the spiral-in phase depends mainly on the chirp mass, so the curves
given can be used to estimate conditions under which unequal mass coalescences
would be observable also. The case of possible coalescence of 500M� seed black
holes during the early growth of MBHs that was discussed earlier is shown for
z = 1 for comparison.

Since the LISA threshold sensitivity curve and the confusion noise estimate
are defined on the assumption that the frequency and signal strength are fixed for
the one year period of the observation, and the MBH–MBH coalescence signals
change dramatically during the year, it is necessary to integrate the square of the
amplitude S/N ratio during the year and then take the square root to obtain the
effective S/N ratio. The way in which the effective S/N ratio builds up during
the year, with the LISA instrumental noise and the confusion noise combined
quadratically, is shown in figure 10.12. What is shown for each of the cases from
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Figure 10.12. Cumulative weekly S/N ratios during the last year before MBH–MBH
coalescence at z = 1. Both the instrumental noise and the estimated binary confusion
noise are included.

figure 10.11 is the accumulated S/N ratio after the first week, the second week,
etc, up until the end of the year. The large jump in the last week or so, in all but
the 500M� case, is due to the frequency of the signal having swept up to where
the LISA sensitivity is much higher.

It is clear by extrapolating roughly from figures 10.11 and 10.12 that MBH–
MBH coalescences resulting from structure mergers could be seen clearly even at
redshifts of 10 for 107M� MBHs and 20 or more for less massive ones. Thus,
any such events at any plausible occurrence time will be observable. Particularly
because of the large uncertainties concerning what happens for roughly 10 6M�
or smaller MBHs after mergers of structures, the event rate for LISA apparently
could range from less than one per decade to quite a large value.

10.2.5 Fundamental physics tests with LISA

Of similar importance to the astrophysical questions about MBHs discussed in
the last three sections is the fundamental physics question of whether Einstein’s
general relativity theory is correct. Very strong tests of the theory can be provided
either by MBH–MBH coalescences with high S/N ratio, if they are observed,
or by highly unequal mass coalescences of 5 or 10M� black holes with MBHs
in galactic centres. Only the latter case will be discussed here, since the much
larger number of orbital periods observable and the substantial orbit eccentricity
expected are likely to be more important for testing relativity than a higher S/N
ratio.
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It has been emphasized by Cutler et al [72] that the strongest test of a theory
is likely to come from the observed phase of the signal, rather than the amplitude.
This is because the cross-correlation of a theoretical template with the observed
signal will be reduced substantially if the two get out of phase by even half a cycle
or less during the entire data record. For our case of a perhaps 10M� black hole
orbiting around a 105 or 106M� MBH during the last year before coalescence,
there will be roughly 105 cycles. Even a very small error in the metric will lead to
a continuously increasing error in the orbit, and thus in the phase of the calculated
signal. While some type of metric error could, in principle, affect the orbit in
the same way as slightly different values of parameters in the problem, such as
the spin and mass of the MBH, it seems unlikely that a conceptual breakdown in
the theory would be nearly equivalent to just having different parameter values.
Thus, correctly predicting the signal phase over 10 5 cycles would be an extremely
strong test of the theory.

For this case, it is important that the orbit started out being nearly radial.
The later evolution of the eccentricity from its initial value very close to unity
can be calculated from the rates of loss of energy and angular momentum due to
gravitational radiation. The results obtained by Tanaka et al for a Schwarzschild
MBH [73] show for a typical case that the orbit never becomes circular, but
instead remains substantially eccentric (0.5 ?) up until the final plunge begins.
However, rigorous calculations will be required in order to fit the data well [74].

During the last year, the periapsis distance changes only very slowly, but the
apoapsis distance decreases substantially. At periapsis, the speed is about half
that of light, so the dynamics are highly non-Newtonian. In fact, the precession
of periapsis during one radial motion period can be about a whole cycle. With
relativistic beaming of the gravitational radiation and variation of the strength
of the radiation with time during a radial period, the amplitude observed in a
given direction can vary in a quite complex way. For an orbit plane that is not
perpendicular to the spin axis for a rapidly rotating MBH, rapid Lense–Thirring
precession also will be present. In view of the complexity of the relativistic
motion and the large number of cycles over which the phase of the signal can
be followed, such a signal would give a nearly ideal test of the predictions of
general relativity.

It is of course necessary to be able to detect the signal in order to test the
theory. It was mentioned earlier that a S/N ratio of about ten would be needed
in order to detect such a complex signal. But there also is the question of how
difficult the search for such a signal would be. A very crude estimate of the
number of templates needed for a brute force search with one year of data gives,
within a couple of orders of magnitude, something like 10 18. Even with rapid
advances in computing power, such a search probably would not be possible.
Some improvement could be made by a hierarchical search strategy, but it is not
clear that this approach would be sufficient. On the other hand, more powerful
search algorithms such as ‘genetic algorithms’ and ‘stimulated annealing’ have
been developed and demonstrated for substantially more challenging search
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problems. Consideration of such algorithms for use with LISA data is just
starting, but it currently appears unlikely that the difficulty of the search problem
will be a real limitation in the use of the LISA data, even for the case of highly
unequal mass binaries. For all other expected types of LISA sources, the search
problem is much easier than for ground-based detectors because of the roughly
104 times lower number of data points that have to be handled for a year of
observations.

The other important question is whether the ability to calculate theoretical
templates will have improved enough by the time LISA data is available to carry
out a thorough test of general relativity. For comparable mass MBHs, there is a
very long way to go to accomplish this. However, for the highly unequal mass
case, the chances for fairly rapid progress seem much better. It is hoped that
numerical methods can be developed that start from the test mass approximation,
and converge moderately well. Still, since small changes in the initial conditions
can lead to very large changes in the motion a year later, it is important that
this problem as well as the search problem for the highly unequal mass case be
pursued vigorously in the next few years.

For either detailed tests of general relativity with LISA or for studies of
astrophysical questions concerning MBHs, the first requirement is that some
signals involving MBHs be seen. While it seems likely that several of the types of
MBH sources discussed earlier will be observed, this certainly is not guaranteed.
Thus, the situation is somewhat like that for ground-based observations, where
the detection of signals within the next decade seems quite likely, but is not
certain. Still, a reasonable prediction is that both ground-based detectors in the
next decade and LISA not too much later will detect the desired types of signals,
and extremely strong tests of general relativity will be among the most important
scientific results.

Another fundamental physics test that LISA may contribute to concerns
the possible existence of a primordial gravitational-wave background [75, 76].
Standard inflation theory predicts a nearly scale-invariant spectrum, in which the
spectral amplitude for the gravitational waves falls off at about the −1.5 power
of the frequency. However, the observed COBE microwave background spectrum
is believed to be determined mainly by the large-scale density fluctuations at the
time of decoupling, and with a scale invariant spectrum would predict a very low
amplitude in the frequency range of LISA and of ground-based detectors.

There are theories that could give a non-scale-invariant spectrum and
detectable amplitudes for a cosmic background at LISA or ground-based
frequencies. LISA could detect an isotropic cosmic background near 10 mHz if its
energy density were roughly 10−11 of the closure density. A candidate for giving a
detectable background is a phase transition at about the electro-weak energy scale,
but it would have to be strongly first order in order to give enough amplitude. But
this is not currently thought to be likely. Another possibility is associated with
suggested effects of extra dimensions, which may have become very small at a
time which would produce a peak in the gravitational-wave spectrum near the



146 LISA: A proposed joint ESA–NASA gravitational-wave mission

LISA frequency band. In any case, LISA will improve the limits on a possible
cosmic background in its frequency band, but the chances of seeing anything
appear to be very uncertain.

10.2.6 Future prospects

Provided that signals involving massive black holes are indeed seen by LISA,
it is likely that there will be an opportunity for a later advanced gravitational-
wave mission. Depending on what is seen, there are several directions in which
major instrumental improvements could be made. If improvements in sensitivity
at frequencies above 3 mHz are of most interest, this can be achieved by increasing
the telescope size and the laser power, provided that comparable reductions in
other noise sources such as beam pointing jitter and phase measurement errors
also can be made. Shortening the antenna arm length also would be desirable. If
improvements below about 0.1 mHz are the main objective, then improved free
mass sensors and longer arm lengths would be needed.

As an example of a mission to achieve strongly increased high-frequency
sensitivity, a goal of using 10 W lasers and 1 m diameter telescopes might be
chosen, along with a reduction in the antenna arm length to 50 000 km. The
resulting factor of about 107 increase in the received power would reduce the shot
noise contribution to measuring changes in the arm length difference from about
1 × 10−11 m/rtHz to 3 × 10−15 m/rtHz, but the signal strength for frequencies
below about 1 Hz would be reduced also because of the reduced arm lengths. If
other errors such as from beam pointing jitter and from the phase measurements
only double the distance measurement error, the level of the LISA threshold
sensitivity curve can be reduced by a factor ranging from about 20 at 10 mHz
to 3000 at 1 Hz, and then retaining that value at higher frequencies. However,
with the same assumptions about the confusion noise level due to extragalactic
CWDBs as used for figures 10.8–10.11, and plausible estimates for extragalactic
neutron star and black hole binaries, the overall sensitivity will be limited more
by the confusion noise than the instrumental noise up to at least 100 mHz.

One strategy that is not planned for LISA but probably would be used in a
later high-frequency mission with shorter arm lengths is to apply enough force
to each test mass to keep the rates of change of the arm lengths constant. This
is because the force required is about a factor 6000 less for 50 000 km arms, or
roughly 4 × 10−10 m s−2. Also, the main emphasis is on the noise level above
3 mHz, where keeping fluctuations in the applied voltages low is easier than at
lower frequencies. This would make the phase measurements very much simpler
than they would be with substantial Doppler shifts.

Quite a few types of measurements could be improved considerably with
the above sensitivity. For example, gradual coalescences of 10M� black holes
with MBHs with masses down to 103M� could be observed virtually anywhere
in the universe, if they occur. And tests of general relativity for coalescences
with highly unequal masses would have considerably higher S/N ratios, as well
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as large numbers of cycles. In addition, sensitivity to events involved in the initial
formation of intermediate mass black holes would be improved.

For improved measurements at low frequencies, below about 0.1 mHz, the
most important goals are reduced noise levels from the free mass sensors and
longer arm lengths. Moderate goals might be a factor ten reduction in the free
mass sensor noise level plus a factor three increase in the arm length. Basically the
same geometry could be used as for LISA, but the antenna probably would have to
be considerably farther from the Earth to keep the arm length changes from being
too large. This antenna would make it possible to observe MBH–MBH binaries
with both masses above about 105M� much longer before coalescence, and thus
increase the number of such events observed by a large factor.

A much more challenging goal would be to try for roughly 1 AU arm lengths
and a factor 100 reduction in the free mass sensor noise. This would permit
improved measurements mainly at frequencies below about 0.02 mHz, assuming
that the confusion noise level is nearly constant below this frequency, as given in
Hils, Bender and Webbink [39]. This would further push back the time before
coalescence when MBH–MBH binaries could be observed, and probably tell us
considerably more about such coalescences after mergers during the process of
galaxy formation.

One possible geometry would be to locate spacecraft near the L4 and L5
points of the Earth–Sun system, 60◦ in front of and behind the Earth, and near
either the L1 or L2 point, within about 1500 000 km of the Earth. In this case
the third arm would be about 30.5 times the length of the other two. Because the
L1 and L2 points are unstable, putting the third spacecraft near the L3 point on
the opposite side of the Sun from the Earth and various other possibilities would
be considered. One disadvantage of such geometries is that the antenna is in the
ecliptic plane, and the sensitivity to the ecliptic latitude of sources at low latitudes
is reduced. However, the extra impulse required to go considerably out of the
ecliptic is large.

It is interesting to note that the requirement on the accuracy of distance
measurements between the test masses for frequencies below 0.1 mHz are much
less severe than those for LISA, even for roughly 1 AU arm lengths. The distance
measurement error would have to be about 1×10−8 m/rtHz to equal the limitation
due to the confusion noise at 0.1 mHz, and more than a factor (0.1 mHz/ f ) 2

larger at a lower frequency f . Thus the required combination of laser power and
telescope size will be affected more by considerations such as staying sufficiently
above possible noise in the scattered light level rather than by the desire to keep
the shot noise level low. In any case, 10 W of laser power and 1 m diameter
telescopes would at least be adequate, since it would give the same received power
as for LISA.

Achieving a factor 100 lower free mass sensor noise than for LISA would
be a major challenge. It might be desirable, for example, to consider having
each free mass sensor in a small separate slave spacecraft containing as little
other equipment as possible in order to minimize disturbances. Several such slave
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spacecraft could be included if they could be made much smaller than the main
spacecraft. With the increased tolerance on the distance measurement uncertainty
below 0.1 mHz, a small local diode laser system could track changes in the
internal geometry of each combination of a spacecraft plus its slaves. However,
this approach would help only if the main noise sources in each free mass sensor
were independent. This would not be the case if common fluctuations in the solar
intensity contributed substantially to the noise.

In view of the apparent advantages of improving the sensitivity at both high
and low frequencies after the LISA mission, it may be desirable to consider flying
two separate antennae, with one at least somewhat like the high frequency antenna
discussed earlier and the other like the moderately improved low frequency
antenna. However, questions such as this can be addressed much more easily
after some data from LISA have been received.
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Chapter 11

Detection of scalar gravitational waves

Francesco Fucito
INFN, sez. di Roma 2, Via della Ricerca Scientifica, 00133 Rome,
Italy
E-mail: Fucito@roma2.infn.it

In this talk I review recent progress in the detection of scalar gravitational waves.
Furthermore, in the framework of the Jordan–Brans–Dicke theory, I compute the
signal-to-noise ratio for a resonant mass detector of spherical shape and for binary
sources and collapsing stars. Finally, I compare these results with those obtained
from laser interferometers and from Einsteinian gravity.

11.1 Introduction

The efforts aimed at the detection of gravitational waves (GW) started more than
a quarter of a century ago and have been, so far, unsuccessful [1,2]. Resonant bars
have proved their reliability, being capable of continous data gathering for long
periods of time [3, 4]. Their energy sensitivity has improved by more than four
orders of magnitude since Weber’s pioneering experiment. However, a further
improvement is still necessary to achieve successful detection. While further
developments of bar detectors are underway, two new generations of Earth-based
experiments have been proposed: detectors based on large laser interferometers
are already under construction [5] and resonant detectors of spherical shape are
under study [2].

In this lecture I report on a series of papers [6] in which the opportunity of
introducing resonant mass detectors of spherical shape was studied. As a general
motivation for their study, spherical detectors have the advantage over bar-shaped
detectors of a larger degree of symmetry. This translates into the possibility of
building detectors of greater mass and consequently of higher cross section.

Besides this obvious observation, the higher degree of symmetry enjoyed by
the spherical shape puts such a detector in the unique position of being able to

152
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detect GWs with a spin content different from two. This is a means of testing
non-Einsteinian theories of gravity.

I would now like to remind the reader of the very special position of
Einstein’s general relativity (GR) among the possible gravitational theories.
Theories of gravitation, in fact, can be divided into two families: metric and
non-metric theories [7]. The former can be defined to be all theories obeying
the following three postulates:

• spacetime is endowed with a metric;
• the world lines of test particles are geodesic of the above-mentioned metric;
• in local free-falling frames, the non-gravitational laws of physics are those

of special relativity.

It is an obvious consequence of these postulates that a metric theory obeys the
principle of equivalence. More succinctly a theory is said to be metric if the action
of gravitation on the matter sector is due exclusively to the metric tensor. GR is
the most famous example of a metric theory. Kaluza–Klein-type theories, also
belong to this class along with the Brans–Dicke theory. Different representatives
of this class differ by their equations of motion which in turn can be deduced
from a Lagrangian principle. Since there seems to be no compelling experimental
or theoretical reasons to introduce non-Einsteinian or non-metric theories, they
are sometimes considered a curiosity. This point should perhaps be reconsidered.
String theories are, in fact, the most serious candidate for a theory of quantum
gravity, the standard cosmological model has been emended with the introduction
of inflation and even the introduction of a cosmological constant (which seems to
be needed to explain recent cosmological data) could imply the existence of other
gravitationally coupled fields. In all of the above cited cases we are forced to
introduce fields which are non-metrically coupled in the sense explained above.

In the first section of this lecture we will explain that a spherical detector is
able to detect any spin component of an impinging GW. Moreover, its vibrational
eigenvalues can be divided into two sets called spheroidal and toroidal. Only
the first set couples to the metric. This leads to the opportunity of using such a
detector as a veto for non-Einsteinian theories. In the second section we take as
a model the Jordan–Brans–Dicke (JBD), in which along with the metric we also
have a scalar field which is metrically coupled. We are then able to study the
signal-to-noise ratio for sources such as binary systems and collapsing stars and
compare the strength of the scalar signal with respect to the tensor one. Finally,
in the third and last section we repeat this computation in the case of the hollow
sphere which seems to be the detector which is most likely to be built.
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11.2 Testing theories of gravity

11.2.1 Free vibrations of an elastic sphere

Before discussing the interaction with an external GW field, let us consider
the basic equations governing the free vibrations of a perfectly homogeneous,
isotropic sphere of radius R, made of a material having density ρ and Lamé
coefficients λ and µ [8].

Following the notation of [9], let x i , i = 1, 2, 3 be the equilibrium position of
the element of the elastic sphere and x ′i be the deformed position, then u i = x ′i−xi

is the displacement vector. Such vector is assumed small, so that the linear theory
of elasticity is applicable. The strain tensor is defined as u ij = (1/2)(ui, j + u j,i )

and is related to the stress tensor by σi j = δi jλull + 2µuij . The equations of
motion of the free vibrating sphere are thus [8]

ρ
∂2ui

∂ t2 = ∂

∂x j
(δi jλull + 2µuij ) (11.1)

with the boundary condition:
n jσi j = 0 (11.2)

at r = R where ni ≡ xi/r is the unit normal. These conditions simply
state that the surface of the sphere is free to vibrate. The displacement u i is a
time-dependent vector, whose time dependence can be factorized as u i (*x, t) =
ui (*x) exp(iωt), where ω is the frequency. The equations of motion then become:

µ∇2ui + (λ+ µ)∇i (∇ j u j ) = −ω2ρui . (11.3)

Their solutions can be expressed as a sum of a longitudinal and two transverse
vectors [10]:

*u(*x) = C0 *∇φ(*x)+ C1 *Lχ(*x)+ C2 *∇ × *Lχ(*x) (11.4)

where C0,C1,C2 are dimensioned constants and *L ≡ *x × *∇ is the angular
momentum operator. Regularity at r = 0 restricts the scalar functions φ and χ to
be expressed as φ(r, θ, ϕ) ≡ jl(qr)Ylm(θ, ϕ) and χ(r, θ, ϕ) ≡ jl(kr)Ylm(θ, ϕ).
Ylm(θ, ϕ) are the spherical harmonics and jl the spherical Bessel functions [11]:

jl(x) =
(

1

x

d

dx

)l ( sin x

x

)
(11.5)

q2 ≡ ρω2/(λ + 2µ) and k2 ≡ ρω2/µ are the longitudinal and transverse
wavevectors, respectively.

Imposing the boundary conditions (11.2) at r = R yields two families of
solutions:
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• Toroidal modes: these are obtained by setting C0 = C2 = 0, and C1 += 0. In
this case the displacements in (11.4) can be written in terms of the basis:

*ψT
nlm (r, θ, ϕ) = Tnl(r) *LYlm (θ, ϕ) (11.6)

with Tnl (r) proportional to jl(knlr). The eigenfrequencies are determined by
the boundary conditions (11.2) which read [10]

f1(k R) = 0 (11.7)

where

f1(z) ≡ d

dz

[
jl(z)

z

]
. (11.8)

• Spheroidal modes: these are obtained by setting C 1 = 0, C0 += 0 and
C2 += 0. The displacements of (11.4) can be expanded in the basis

*ψ S
nlm (*x) = Anl(r)Ylm(θ, ϕ)*n − Bnl(r)*n × *LYlm (θ, ϕ) (11.9)

where Anl(r) and Bnl(r) are dimensionless radial eigenfunctions [9], which
can be expressed in terms of the spherical Bessel functions and their
derivatives. The eigenfrequencies are determined by the boundary conditions
(11.2) which read [9]

det

(
f2(q R)− λ

2µq2 R2 f0(q R) l(l + 1) f1(k R)

f1(q R) 1
2 f2(k R)+ [ l(l+1)

2 − 1] f0(k R)

)
= 0

(11.10)
where

f0(z) ≡ jl(z)

z2
, f2(z) ≡ d2

dz2
jl(z). (11.11)

The eigenfrequencies can be determined numerically for both toroidal and
spheroidal vibrations. Each mode of order l is (2l + 1)-fold degenerate. The
eigenfrequency values can be obtained from

ωnl =
√
µ

ρ

(k R)nl

R
. (11.12)

11.2.2 Interaction of a metric GW with the sphere vibrational modes

The detector is assumed to be non-relativistic (with sound velocity v s � c and
radius R � λ the GW wavelength) and endowed with a high quality factor
(Qnl = ωnlτnl � 1, where τnl is the decay time of the mode nl). The
displacement *u of a point in the detector can be decomposed in normal modes
as:

*u(*x, t) =
∑

N

AN (t) *ψN (*x) (11.13)
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where N collectively denotes the set of quantum numbers identifying the mode.
The basic equation governing the response of the detector is [12]

ÄN (t)+ τ−1
N ȦN (t)+ ω2

N AN (t) = fN (t). (11.14)

We assume that the gravitational interaction obeys the principle of equivalence
which has been experimentally supported to high accuracy. In terms of the so-
called electric components of the Riemann tensor E ij ≡ R0i0 j , the driving force
fN (t) is then given by [13]

fN (t) = −M−1 Eij (t)
∫
ψ i∗

N (*x)x jρ d3x (11.15)

where M is the sphere mass and we consider the density ρ as a constant. In any
metric theory of gravity Eij is a (3×3) symmetric tensor, which depends on time,
but not on spatial coordinates.

Let us now investigate which sphere eigenmodes can be excited by a metric
GW, i.e. which sets of quantum numbers N give a non-zero driving force.

(a) Toroidal modes

The eigenmode vector, ψ T
nlm can be expressed as in equation (11.6). Up to an

adimensional normalization constant C , the driving force is

f (T)N (t) = − e−iωN t 3C

4πR3

∫ R

0
dr r3 jl(k

(T)
nl r)

∫ π

0
dθ sin θ

×
∫ 2π

0
dφ

{
Eyy − Ex x

2

(
sin θ sin 2φ

∂Y ∗lm
∂θ

+ cos θ cos 2φ
∂Y ∗lm
∂φ

)

+ Exy

(
sin θ cos 2φ

∂Y ∗lm
∂θ

− cos θ sin 2φ
∂Y ∗lm
∂φ

)

+ Exz

[
− sinφ cos θ

∂Y ∗lm
∂θ

+ (sin θ cosφ − cos2 θ

sin θ
cosφ)

∂Y ∗lm
∂φ

]

+ Eyz

[
cosφ cos θ

∂Y ∗lm
∂θ

+ (sin θ sinφ − cos2 θ

sin θ
sinφ)

∂Y ∗lm
∂φ

]

+
(

Ezz − Ex x + Eyy

2

)
cos θ

∂Y ∗lm
∂φ

}
. (11.16)

Using the equations

∂Y ∗lm
∂θ

= (−)m
[

2l + 1

4π

(l − m)!

(l + m)!

] 1
2 ∂Pm

l (cos θ)

∂θ
e−imφ (11.17)

and
∂Y ∗lm
∂φ

= −im(−)m
[

2l + 1

4π

(l − m)!

(l + m)!

] 1
2

Pm
l (cos θ)e−imφ (11.18)
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the integration over φ can be performed. Equation (11.16) then contains integrals
over θ of the form:∫ π

0

[
(sin2 θ − cos2 θ)P±1

l (cos θ)− sin θ cos θ
∂P±1

l (cos θ)

∂θ

]
dθ (11.19)

and ∫ π

0

[
2 sin θ cos θ P±2

l (cos θ)+ sin2 θ
∂P±2

l (cos θ)

∂θ

]
dθ. (11.20)

After integration by parts, the derivative terms in equations (11.19) and (11.20)
exactly cancel the non-derivative ones. The remaining boundary terms vanish too,
thanks to the periodicity of the trigonometric functions and to the regularity of the
associated Legendre polynomials. The vanishing of these integrals has a profound
physical consequence. It means that in any metric theory of gravity the toroidal
modes of the sphere cannot be excited by GW and can thus be used as a veto in
the detection.

(b) Spheroidal modes

The forcing term is given by:

f (S)N (t) = − M−1 Eij (t)
∫

x j
(

xi

r
AN (r)Ylm(θ, ϕ)

− BN (r)e
ink xn

r
LkYlm(θ, ϕ)

)
ρ d3x . (11.21)

One is thus led to compute integrals of the following types∫
x j x i Ylm (θ, ϕ) d3x (11.22)

and ∫
x j x i LkYlm(θ, ϕ) d3x (11.23)

Since the product x i x j can be expressed in terms of the spherical harmonics with
l = 0, 2 and the angular momentum operator does not change the value of l,
one immediately concludes that in any metric theory of gravity only the l = 0, 2
spheroidal modes of the sphere can be excited. At the lowest level there are a total
of five plus one independent spheroidal modes that can be used for GW detection
and study.

11.2.3 Measurements of the sphere vibrations and wave polarization states

From the analysis of the spheroidal modes active for metric GW, we now want to
infer the field content of the theory. For this purpose it is convenient to express
the Riemann tensor in a null (Newman–Penrose) tetrad basis [7].
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To lowest non-trivial order in the perturbation the six independent ‘electric’
components of the Riemann tensor may be expressed in terms of the Newman–
Penrose (NP) parameters as

Eij =
(−Re%4 −�22 Im%4 −2

√
2 Re%3

Im%4 Re%4 −�22 2
√

2 Im%3
−2
√

2 Re%3 2
√

2 Im%3 −6%2

)
. (11.24)

The NP parameters allow the identification of the spin content of the metric
theory responsible for the generation of the wave [7]. The classification can be
summarized in order of increasing complexity as follows:

• General relativity (spin 2): %4 += 0 while %2 = %3 = �22 = 0.
• Tensor–scalar theories (spin 2 and 0): %4 += 0, %3 = 0, %2 += 0 and/or

�22 += 0 (e.g. Brans–Dicke theory with %4 += 0, %2 = 0, %3 = 0 and
�22 += 0).

• Tensor–vector theories (spin 2 and 1): %4 += 0, %3 += 0, �22 = %2 = 0.
• Most general metric theory (spin 2, 1 and 0): %4 += 0, %2 += 0, %3 += 0 and

�22 += 0, (e.g. Kaluza–Klein theories with %4 += 0, %3 += 0, �22 += 0 while
%2 = 0).

In equation (11.24), we have assumed that the wave comes from a localized
source with wavevector *k parallel to the z-axis of the detector frame. In this
case the NP parameters (and thus the wave polarization states) can be uniquely
determined by monitoring the six lowest spheroidal modes. If the direction of the
incoming wave is not known two more unknowns appear in the problem, i.e. the
two angles of rotation of the detector frame needed to align *k along the z-axis. In
order to dispose of this problem one can envisage the possibility of combining the
pieces of information from an array of detectors [14]. We restrict our attention to
the simplest case in which the source direction is known.

In order to infer the value of the NP parameters from the measurements
of the excited vibrational modes of the sphere, we decompose E ij in terms of
spherical harmonics. In fact, the experimental measurements give the vibrational
amplitudes of the sphere modes which are also naturally expanded in the above
basis. The use of the same basis makes the connection between the NP parameters
and the measured amplitudes straightforward. In formulae

Eij (t) =
∑
l,m

cl,m(t)S
(l,m)
i j (11.25)

where S(0,0)i j ≡ δi j /
√

4π (with δi j the Kronecker symbol) and S (2,m)i j (m =
−2, . . . , 2) are five linearly independent symmetric and traceless matrices such
as

S(l,m)i j ni n j = Ylm , l = 0, 2. (11.26)

The vector ni in equations (11.26) has been defined after equation (11.2).
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Taking the scalar product we find

c0,0(t) = 4π

3
S0,0

i j Ei j (t)

c2,m(t) = 8π

15
S2,m

ij Ei j (t) (11.27)

and then for the NP parameters

�22 =
√

5

16π
c2,0(t)−

√
1

4π
c0,0(t), %2 = − 1

12

√
5

π
c2,0(t)− 1

12

√
1

π
c0,0(t)

Re%4 = −
√

15

32π
[c2,2 + c2,−2], Im%4 = −i

√
15

32π
[c2,2 − c2,−2]

Re%3 = 1

16

√
15

π
[c2,1 − c2,−1], Im%3 = i

16

√
15

π
[c2,1 + c2,−1]. (11.28)

Equations (11.28) relate the measurable quantities cl,m with the GW polarization
states, described by the NP parameters. Equations (11.28) can be put in
correspondence with the output of experimental measurements if c l,m are
substituted with their Fourier components at the quadrupole and monopole
resonant frequencies which, for the sake of simplicity, we collectively denote by
ω0. cl,m(ω0) can be determined in the following way: once the Fourier amplitudes
AN (ω0) are measured, by Fourier transforming (11.14) and (11.15) we get the
Riemann amplitudes Eij (ω0) which, using (11.27), yield the desired result.

In order to determine the A N (ω0) amplitudes from a given GW signal the
following two conditions must be fulfilled:

• the vibrational states of the five-fold degenerate quadrupole and monopole
modes must be determined. The quadrupole modes can be studied by
properly combining the outputs of a set of at least five motion sensors
placed in independent positions on the sphere surface. Explicit formulas for
practical and elegant configurations of the motion sensors have been reported
by various authors [15, 16]. The vibrational state of the monopole mode
is provided directly by the output of any of the above-mentioned motion
sensors. If resonant motion sensors are used, since the quadrupole and
monopole states resonate at different frequencies, a sixth sensor is needed.

• The spectrum of the GW signal must be sufficiently broadband to overlap
with the antenna quadrupole and monopole frequencies.

11.3 Gravitational wave radiation in the JBD theory

In this section we analyse the signal emitted by a compact binary system in
the JBD theory. We compute the scalar and tensor components of the power
radiated by the source and study the scalar waveform. Eventually we consider
the detectability of the scalar component of the radiation by interferometers and
resonant-mass detectors.
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11.3.1 Scalar and Tensor GWs in the JBD Theory

In the Jordan–Fierz frame, in which the scalar field mixes with the metric but
decouples from matter, the action reads [17]

S = Sgrav[φ, gµν]+ Sm[ψm, gµν]

= c3

16π

∫
d4x

√−g

[
φR − ωBD

φ
gµν∂µφ∂νφ

]
+ 1

c

∫
d4x Lm[ψm, gµν]

(11.29)

where ωBD is a dimensionless constant, whose lower bound is fixed to be ωBD ≈
600 by experimental data [18], gµν is the metric tensor, φ is a scalar field and ψm
collectively denotes the matter fields of the theory.

As a preliminary analysis, we perform a weak-field approximation around
the background given by a Minkowskian metric and a constant expectation value
for the scalar field

gµν = ηµν + hµν
ϕ = ϕ0 + ξ. (11.30)

The standard parametrization ϕ0 = 2(ωBD+2)/G(2ωBD+3), with G the Newton
constant, reproduces GR in the limit ωBD → ∞, which implies ϕ0 → 1/G.
Defining the new field

θµν = hµν − 1

2
ηµνh − ηµν ξ

ϕ0
(11.31)

where h is the trace of the fluctuation hµν , and choosing the gauge

∂µθ
µν = 0 (11.32)

one can write the field equations in the following form

∂α∂
αθµν = − 16π

ϕ0
τµν (11.33)

∂α∂
αξ = 8π

2ωBD + 3
S (11.34)

where

τµν = 1

ϕ0
(Tµν + tµν) (11.35)

S = − T

2(2ωBD + 3)

(
1− 1

2
θ − 2

ξ

ϕ0

)
− 1

16π

[
1

2
∂α(θ∂

αξ)+ 2

ϕ0
∂a(ξ∂

αξ)

]
.

(11.36)
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In equation (11.35), Tµν is the matter stress–energy tensor and tµν is the
gravitational stress–energy pseudotensor, that is a function of quadratic order in
the weak gravitational fields θµν and ξ . The reason why we have written the field
equations at the quadratic order in θµν and ξ is that in this way, as we will see
later, the expressions for θµν and ξ include all the terms of order (v/c)2, where v
is the typical velocity of the source (Newtonian approximation).

Let us now compute τ 00 and S at the order (v/c)2. Introducing the
Newtonian potential U produced by the rest-mass density ρ

U(*x, t) =
∫
ρ(*x ′, t)
|*x − *x ′| d3x ′ (11.37)

the total pressure p and the specific energy density & (that is the ratio of energy
density to rest-mass density) we get (for a more detailed derivation, see [7]):

τ 00 = 1

ϕ0
ρ, (11.38)

S ) − T

2(2ωBD + 3)

(
1− 1

2
θ − 2

ξ

ϕ0

)

= ρ

2(2ωBD + 3

(
1+&− 3

p

ρ
+ 2ωBD + 1

ωBD + 2
U

)
. (11.39)

Far from the source, equations (11.33) and (11.34) admit wave-like solutions,
which are superpositions of terms of the form

θµν(x) = Aµν(*x, ω) exp(ikαxα)+ c.c. (11.40)

ξ(x) = B(*x, ω) exp(ikαxα)+ c.c. (11.41)

Without affecting the gauge condition (11.32), one can impose h = −2ξ/ϕ 0 (so
that θµν = hµν). Gauging away the superflous components, one can write the
amplitude Aµν in terms of the three degrees of freedom corresponding to states
with helicities ±2 and 0 [19]. For a wave travelling in the z-direction, one thus
obtains

Aµν =



0 0 0 0
0 e11 − b e12 0
0 e12 −e11 − b 0
0 0 0 0


 , (11.42)

where b = B/ϕ0.

11.3.2 Power emitted in GWs

The power emitted by a source in GWs depends on the stress–energy pseudotensor
tµν according to the following expression

PGW = r2
∫
� d� = r 2

∫
〈t0k〉x̂k d� (11.43)



162 Detection of scalar gravitational waves

where r is the radius of a sphere which contains the source, � is the solid angle,
� is the energy flux and the symbol 〈· · ·〉 implies an average over a region of size
much larger than the wavelength of the GW. At the quadratic order in the weak
fields we find

〈t0z〉 = −ẑ
ϕ0c4

32π

[
4(ωBD + 1)

ϕ2
0

〈(∂0ξ)(∂0ξ)〉 + 〈(∂0hαβ)(∂0hαβ)〉
]
. (11.44)

Substituting (11.40) and (11.41) into (11.44), one gets

〈t0z〉 = −ẑ
ϕ0c4ω2

16π

[
2(2ωBD + 3)

ϕ2
0

|B|2 + Aαβ∗Aαβ − 1

2
|Aαα|2

]
, (11.45)

and using (11.42)

〈t0z〉 = −ẑ
ϕ0c4ω2

8π

[
|e11|2 + |e12|2 + (2ωBD + 3)|b|2

]
. (11.46)

From (11.46) we see that the purely scalar contribution, associated with b and the
traceless tensorial contribution, associated with eµν , are completely decoupled
and can thus be treated independently.

11.3.3 Power emitted in scalar GWs

We now rewrite the scalar wave solution (11.41) in the following way

ξ(*x, t) = ξ(*x, ω)e−iωt + c.c. (11.47)

In vacuo, the spatial part of the previous solution (11.47) satisfies the Helmholtz
equation

(∇2 + ω2)ξ(*x, ω) = 0. (11.48)

The solution of (11.48) can be written as

ξ(*x, ω) =
∑
jm

X jmh(1)j (ωr)Y jm(θ, ϕ) (11.49)

where h(1)j (x) are the spherical Hankel functions of the first kind, r is the distance
of the source from the observer, Y jm(θ, ϕ) are the scalar spherical harmonics
and the coefficients X jm give the amplitudes of the various multipoles which
are present in the scalar radiation field. Solving the inhomogeneous wave
equation (11.34), we find

X jm = 16π iω
∫

V
jl(ωr ′)Y ∗lm(θ, ϕ)S(*x, ω) dV (11.50)

where jl(x) are the spherical Bessel functions and r ′ is a radial coordinate which
assumes its values in the volume V occupied by the source.
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Substituting (11.44) in (11.43), considering the expressions (11.47) and
(11.49) and averaging over time, one finally obtains

Pscal = (2ωBD + 3)c4

8πϕ0

∑
jm

|X jm|2. (11.51)

To compute the power radiated in scalar GWs, one has to determine the
coefficients X jm , defined in (11.50). The detailed calculations can be found
in appendix A of the third reference in [6], while here we only give the final
results. Introducing the reduced mass of the binary system µ = m 1m2/m and the
gravitational self-energy for the body a (with a = 1, 2)

�a = −1

2

∫
Va

ρ(*x)ρ(*x ′)
|*x − *x ′| d3x d3x ′ (11.52)

one can write the Fourier components with frequency nω 0 in the Newtonian
approximation

(X00)n = − 16
√

2π

3

iω0ϕ0

ωBD + 2

mµ

a
n Jn(ne) (11.53)

(X1±1)n = −
√

2π

3

2iω0
2ϕ0

ωBD + 2

(
�2

m2
− �1

m1

)
µa

×
[
±J ′n(ne)− 1

e
(1− e2)1/2 Jn(ne)

]
(11.54)

(X20)n = 2

3

√
π

5

iω0
3ϕ0

ωBD + 2
µa2n Jn(ne) (11.55)

(X2±2)n = ∓ 2

√
π

30

iω0
3ϕ0

ωBD + 2
µa2

× 1

n
{(e2 − 2)Jn(ne)/(ne2)+ 2(1− e2)J ′n(ne)/e

∓ 2(1− e2)1/2[(1− e2)Jn(ne)/e2 − J ′n(ne)/(ne)]}. (11.56)

Substituting these expressions in (11.51), leads to the power radiated in scalar
GWs in the nth harmonic

(Pscal)n = P j=0
n + P j=1

n + P j=2
n (11.57)

where the monopole, dipole and quadrupole terms are, respectively,

P j=0
n = 64

9(ωBD + 2)

m3µ2G4

a5c5
n2 J 2

n (ne)

= 64

9(ωBD + 2)

m3µ2G4

a5c5
m(n; e) (11.58)
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P j=1
n = 4

3(ωBD + 2)

m2µ2G3

a4c3

(
�2

m2
− �1

m1

)2

× n2
[

J ′2n (ne)+ 1

e2 (1− e2)J 2
n (ne)

]

= 4

3(ωBD + 2)

m2µ2G3

a4c3

(
�2

m2
− �1

m1

)2

d(n; e) (11.59)

P j=2
n = 8

15(ωBD + 2)

m3µ2G4

a5c5
g(n; e). (11.60)

The total power radiated in scalar GWs by a binary system is the sum of
three terms

Pscal = P j=0 + P j=1 + P j=2 (11.61)

where

P j=0 = 16

9(ωBD + 2)

G4

c5

m2
1m2

2m

a5

e2

(1− e2)7/2

(
1+ e2

4

)
(11.62)

P j=1 = 2

ωBD + 2

(
�2

m2
− �1

m1

)2 G3

c3

m2
1m2

2

a4

1

(1− e2)5/2

(
1+ e2

2

)
(11.63)

P j=2 = 8

15(ωBD + 2)

G4

c5

m2
1m2

2m

a5

1

(1− e2)7/2

(
1+ 73

24
e2 + 37

96
e4

)
. (11.64)

Note that P j=0, P j=1, P j=2 all go to zero in the limit ωBD →∞.

11.3.4 Scalar GWs

We now give the explicit form of the scalar GWs radiated by a binary system. To
this end, note that the major semi-axis, a, is related to the total energy, E , of the
system through the following equation

a = −Gm1m2

2E
. (11.65)

Let us consider the case of a circular orbit, remembering that in the last phase
of evolution of a binary system this condition is usually satisfied. Furthermore
we will also assume m1 = m2. With these positions only the quadrupole term,
(11.60), of the gravitational radiation is different from zero. The total power
radiated in GWs, averaged over time, is then given by (11.62)–(11.64)

P = 8

15(ωBD + 2)

G4

c5

m2
1m2

2m

d5 [6(2ωBD + 3)+ 1] (11.66)

where d is the relative distance between the two stars. The time variation of d in
one orbital period is

ḋ = −Gm1m2

2E2 P (11.67)
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Finally, substituting (11.65), (11.66) in (11.67) and integrating over time, one
obtains

d = 2

(
2

15

12ωBD + 19

ωBD + 2

G3m1m2m

c5

)1/4

τ 4 (11.68)

where we have defined τ = tc − t , tc being the time of the collapse between the
two bodies.

From (11.49), (11.53)–(11.56) one can deduce the form of the scalar field
(see appendix B of the third reference in [6] for details) which, for equal masses,
is

ξ(t) = − 2µ

r(2ωBD + 3)

[
v2 + m

d
− (n̂ · *v)2 + m

d3
(n̂ · *d)

]
(11.69)

where r is the distance of the source from the observer, and n̂ is the versor of the
line of sight from the observer to the binary system centre of mass. Indicating
with γ the inclination angle, that is the angle between the orbital plane and the
reference plane (defined to be a plane perpendicular to the line of sight), and with
ψ the true anomaly, that is the angle between d and the x-axis in the orbital plane
x–y, yields n̂ · *d = d sin γ sinψ . Then, from (11.69) one obtains

ξ(t) = 2Gµm

(2ωBD + 3)c4dr
sin2 γ cos(2ψ(t)) (11.70)

which can also be written as

ξ(τ ) = ξ0(τ ) sin(χ(τ )+ χ̄) (11.71)

where χ̄ is an arbitrary phase and the amplitude ξ0(τ ) is given by

ξ0(τ ) = 2Gµm

(2ωBD + 3)c4dr
sin2 γ

= 1

2(2ωBD + 3)r

(
ωBD + 2

12ωBD + 19

)1/4 (
15G

2c11

)1/4 Mc
5/4

τ 1/4 sin2 γ. (11.72)

In the last expression, we have introduced the definition of the chirp mass
Mc = (m1m2)

3/5/m1/5.

11.3.5 Detectability of the scalar GWs

Let us now study the interaction of the scalar GWs, a spherical GW detector.
As usual, we characterize the sensitivity of the detector by the spectral

density of strain Sh( f ) [Hz]−1. The optimum performance of a detector is
obtained by filtering the output with a filter matched to the signal. The energy
signal-to-noise ratio (SNR) of the filter output is given by the well known formula:

SNR =
∫ +∞

−∞
|H ( f )|2

Sh( f )
d f (11.73)
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where H ( f ) is the Fourier transform of the scalar gravitational waveform h s(t) =
Gξ0(t).

We must now take into account the astrophysical restrictions on the validity
of the waveform (11.71) which is obtained in the Newtonian approximation for
point-like masses. In the following, we will take the point of view that this
approximation breaks down when there are five cycles remaining to collapse
[20, 21].

The five-cycles limit will be used to restrict the range of Mc over which our
analysis will be performed. From (11.68), one can obtain

ωg(τ ) = 2ω0 = 2

√
Gm

d3

= 2

(
15c5

64G5/3

)3/8 (
ωBD + 2

12ωBD + 19

)3/8 1

Mc
5/8
τ 3/8. (11.74)

Integrating (11.74) yields the amount of phase until coalescence

χ(τ) = 16

5

(
15c5

64G5/3

)3/8 (
ωBD + 2

12ωBD + 19

)3/8 (
τ

Mc

)5/8

. (11.75)

Setting (11.75) equal to the limit period, T5 cycles = 5(2π), solving for τ and
using (11.74) leads to

ω5 cycles = 2π(6870 Hz)

(
ωBD + 2

12ωBD + 19

)3/5 M�
Mc
. (11.76)

Taking ωBD = 600, the previous limit reads

ω5 cycles = 2π(1547 Hz)
M�
Mc
. (11.77)

A GW excites those vibrational modes of a resonant body having the proper
symmetry. In the framework of JBD theory the spheroidal modes with l = 2 and
l = 0 are sensitive to the incoming GW. Thanks to its multimode nature, a single
sphere is capable of detecting GWs from all directions and polarizations. We now
evaluate the SNR of a resonant-mass detector of spherical shape for its quadrupole
mode with m = 0 and its monopole mode. In a resonant-mass detector, S h( f ) is
a resonant curve and can be characterized by its value at resonance S h( fn) and by
its half height width [22]. Sh( fn) can thus be written as

Sh( fn) = G

c3

4kT

σn Qn fn
. (11.78)

Here, σn is the cross section associated with the nth resonant mode, T is the
thermodynamic temperature of the detector and Q n is the quality factor of the
mode.
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The half height width of Sh( f ) gives the bandwidth of the resonant mode

� fn = fn

Qn
�
−1/2
n . (11.79)

Here, �n is the ratio of the wideband noise in the nth resonance bandwidth
to the narrowband noise.

From the resonant-mass detector viewpoint, the chirp signal can be treated
as a transient GW, depositing energy in a timescale short with respect to the
detector damping time. We can then consider constant the Fourier transform of
the waveform within the band of the detector and write [22]

SNR = 2π� fn |H ( fn)|2
Sh( fn)

. (11.80)

The cross sections associated with the vibrational modes with l = 0 and
l = 2, m = 0 are respectively [6]

σ(n0) = Hn
GMvs

2

c3(ωBD + 2)
(11.81)

σ(n2) = Fn

6

GMvs
2

c3(ωBD + 2)
. (11.82)

All parameters entering the previous equation refer to the detector, M is its mass,
vs the sound velocity and the constants Hn and Fn are given in [6]. The signal-to
noise ratio can be calculated analytically by approximating the waveform with a
truncated Taylor expansion around t = 0, where ω g(t = 0) = ωnl [20, 23]

hs(t) ≈ Gξ0(t = 0) sin

[
ωnl t + 1

2

(
dω

dt

)
t=0

t2
]
. (11.83)

Using quantum limited readout systems, one finally obtains

(SNRn)l=0 = 5× 21/3 HnG5/3

32(ωBD + 2)(12ωBD + 19)h̄c3

Mc
5/3Mvs

2

r2ωn0
4/3

sin4 γ (11.84)

(SNRn)l=2 = 5× 21/3Fn G5/3

192(ωBD + 2)(12ωBD + 19)h̄c3

Mc
5/3Mvs

2

r2ωn0
4/3 sin4 γ (11.85)

which are, respectively, the SNR for the modes with l = 0 and l = 2, m = 0 of a
spherical detector.

It has been proposed to realize spherical detectors with 3 m diameter, made
of copper alloys, with mass of the order of 100 tons [24]. This proposed detector
has resonant frequencies ofω12 = 2π×807 rad s−1 andω10 = 2π×1655 rad s−1.
In the case of optimally oriented orbits (inclination angle γ = π/2) and ωBD =
600, the inspiralling of two compact objects of 1.4 solar masses each will then
be detected with SNR = 1 up to a source distance r(ω10) ) 30 kpc and
r(ω12) ) 30 kpc.
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11.4 The hollow sphere

An appealing variant of the massive sphere is a hollow sphere [25]. The latter
has the remarkable property that it enables the detector to monitor GW signals in
a significantly lower frequency range—down to about 200 Hz—than its massive
counterpart for comparable sphere masses. This can be considered a positive
advantage for a future worldwide network of GW detectors, as the sensitivity
range of such antenna overlaps with that of the large-scale interferometers, now in
a rather advanced state of construction [6,7]. In this section we study the response
of such a detector to the GW energy emitted by a binary system constituted of stars
of masses of the order of the solar mass. A hollow sphere obviously has the same
symmetry of the massive one, so the general structure of its normal modes of
vibration is very similar [25] to that of the solid sphere. In particular, the hollow
sphere is very well adapted to sense and monitors the presence of scalar modes in
the incoming GW signal. The extension of the analysis of the previous sections
to a hollow sphere is quite straightforward and in the following we will only give
the main results. Due to the different geometry, the vibrational modes of a hollow
sphere differ from those studied in section 11.2. In the case of a hollow sphere,
we have two boundaries given by the outer and the inner surfaces of the solid
itself. We use the notation a for the inner radius and R for the outer radius. The
boundary conditions are thus expressed by

σi j n j = 0 at r = R and at r = a (R ≥ a ≥ 0), (11.86)

(11.3) must now be solved subject to these boundary conditions. The solution
that leads to spheroidal modes is still (11.9) where the radial functions A nl(r) and
Bnl(r) have rather complicated expressions:

Anl(r) = Cnl

[
1

qS
nl

d

dr
jl(q

S
nlr)− l(l + 1)Knl

jl(kS
nlr)

kS
nlr

+ Dnl
1

qS
nl

d

dr
yl(q

S
nlr)− l(l + 1)D̃nl

yl(kS
nlr)

kS
nlr

]
(11.87)

Bnl(r) = Cnl

[
jl(qS

nlr)

qS
nlr

− Knl
1

kS
nlr

d

dr
{r jl(k

S
nlr)}

+ Dnl
yl(qS

nlr)

qS
nlr

− D̃nl
1

kS
nlr

d

dr
{ryl(k

S
nlr)}

]
. (11.88)

Here kS
nl R and qS

nl R are dimensionless eigenvalues, and they are the solution
to a rather complicated algebraic equation for the frequencies ω = ω nl —see [25]
for details. In (11.87) and (11.88) we have set

Knl ≡ CtqS
nl

ClkS
nl

, Dnl ≡ qS
nl

kS
nl

E, D̃nl ≡ Ct FqS
nl

ClkS
nl

(11.89)
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and introduced the normalization constant C nl , which is fixed by the orthogonality
properties ∫

V
(uuuS

n′l′m′)
∗ · (uuuS

nlm )�0 d3x = Mδnn′δll′δmm′ (11.90)

where M is the mass of the hollow sphere:

M = 4π

3
�0 R3(1− ς3), ς ≡ a

R
≤ 1. (11.91)

Equation (11.90) fixes the value of C nl through the radial integral∫ R

ςR
[A2

nl(r)+ l(l + 1)B2
nl(r)]r

2 dr = 4π

3
�0(1− ς3)R3 (11.92)

as can be easily verified by using well known properties of angular momentum
operators and spherical harmonics. We shall later specify the values of the
different parameters appearing in the above expressions as required in each
particular case which will in due course be considered. As seen in [9], a
scalar–tensor theory of GWs such as JBD predicts the excitation of the sphere’s
monopole modes as well as the m = 0 quadrupole modes. In order to calculate
the energy absorbed by the detector according to that theory it is necessary to
calculate the energy deposited by the wave in those modes, and this in turn
requires that we solve the elasticity equation with the GW driving term included in
its right-hand side. The result of such a calculation was presented in full generality
in [9], and is directly applicable here because the structure of the oscillation
eigenmodes of a hollow sphere is equal to that of the massive sphere—only the
explicit form of the wavefunctions needs to be changed. We thus have

Eosc(ωnl ) = 1

2
Mb2

nl

l∑
m=−l

|G(lm)(ωnl)|2 (11.93)

where G(lm)(ωnl ) is the Fourier amplitude of the corresponding incoming GW
mode, and

bn0 = − �0

M

∫ R

a
An0(r)r

3 dr (11.94)

bn2 = − �0

M

∫ R

a
[An2(r)+ 3Bn2(r)]r3 dr (11.95)

for monopole and quadrupole modes, respectively, and A nl(r) and Bnl(r) are
given by (11.87). Explicit calculation yields

bn0

R
= 3

4π

Cn0

1− ς3
[ (R)− ς3 (a)] (11.96)

bn2

R
= 3

4π

Cn2

1− ς3 ['(R)− ς3'(a)] (11.97)
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with

 (z) ≡ j2(qn0z)

qn0 R
+ Dn0

y2(qn0z)

qn0 R
(11.98)

'(z) ≡ j2(qn2z)

qn2 R
− 3Kn2

j2(kn2z)

kn2 R
+ Dn2

y2(qn2z)

qn2 R
− 3D̃n2

y2(kn2z)

kn2 R
. (11.99)

The absorption cross section, defined as the ratio of the absorbed energy
to the incoming flux, can be calculated thanks to an optical theorem, as proved,
for example, by Weinberg [26]. According to that theorem, the absorption cross
section for a signal of frequency ω close to ωN , say, the frequency of the detector
mode excited by the incoming GW, is given by the expression

σ(ω) = 10πηc2

ω2

�2/4

(ω − ωN )2 + �2/4
(11.100)

where � is the linewidth of the mode—which can be arbitrarily small, as assumed
in the previous section—and η is the dimensionless ratio

η = �grav

�
= 1

�

PGW

Eosc
(11.101)

where PGW is the energy re-emitted by the detector in the form of GWs as a
consequence of it being set to oscillate by the incoming signal. In the following
we will only consider the case PGW = Pscalar−tensor with [6, 9]

Pscalar−tensor = 2Gω6

5c5(2ωBD + 3)

[
|Qkk(ω)|2 + 1

3
Q∗i j (ω)Qij (ω)

]
(11.102)

where Qij (ω) is the quadrupole moment of the hollow sphere:

Qij (ω) =
∫

Antenna
xi x j�(xxx, ω) d3x (11.103)

and ωBD is Brans–Dicke’s parameter.

11.5 Scalar–tensor cross sections

Explicit calculation shows that Pscalar−tensor is made up of two contributions:

Pscalar−tensor = P00 + P20 (11.104)

where P00 is the scalar, or monopole contribution to the emitted power, while P20
comes from the central quadrupole mode which, as discussed in [6] and [9], is
excited together with monopole in JBD theory. One must, however, recall that
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monopole and quadrupole modes of the sphere happen at different frequencies, so
that cross sections for them only make sense if defined separately. More precisely,

σn0(ω) = 10πηn0c2

ω2

�2
n0/4

(ω − ωn0)2 + �2
n0/4

(11.105)

σn2(ω) = 10πηn2c2

ω2

�2
n2/4

(ω − ωn2)2 + �2
n2/4

(11.106)

where ηn0 and ηn2 are defined as in (11.101), with all terms referring to the
corresponding modes. After some algebra one finds that

σn0(ω) = Hn
GMv2

S

(ωBD + 2)c3

�2
n0/4

(ω − ωn0)2 + �2
n0/4

(11.107)

σn2(ω) = Fn
GMv2

S

(ωBD + 2)c3

�2
n2/4

(ω − ωn2)2 + �2
n2/4

. (11.108)

Here, we have defined the dimensionless quantities

Hn = 4π2

9(1+ σP)
(kn0bn0)

2 (11.109)

Fn = 8π2

15(1+ σP)
(kn2bn2)

2 (11.110)

where σP represents the sphere material’s Poisson ratio (most often very close to
a value of 1/3), and bnl are defined in (11.96); vS is the speed of sound in the
material of the sphere.

In tables 11.1 and 11.2 we give a few numerical values of the above cross
section coefficients.

As already stressed in [25], one of the main advantages of a hollow sphere
is that it enables us to reach good sensitivities at lower frequencies than in a solid
sphere. For example, a hollow sphere of the same material and mass as a solid
one (ς = 0) has eigenfrequencies which are smaller by

ωnl (ς) = ωnl(ς = 0)(1− ς 3)1/3 (11.111)

for any mode indices n and l. We now consider the detectability of JBD GW
coming from several interesting sources with a hollow sphere.

The values of the coefficients Fn and Hn, together with the expressions
(11.105) for the cross sections of the hollow sphere, can be used to estimate
the maximum distances at which a coalescing compact binary system and a
gravitational collapse event can be seen with such detector. We consider these
in turn.

By taking as a source of GWs a binary system formed by two neutron
stars, each of them with a mass of m 1 = m2 = 1.4M�. The chirp mass
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Table 11.1. Eigenvalues kS
n0 R, relative weights Dn0 and Hn coefficients for a hollow

sphere with Poisson ratio σP = 1/3. Values are given for a few different thickness
parameters ς .

ς n kS
n0 R Dn0 Hn

0.01 1 5.487 38 −0.000 143 328 0.909 29
1 12.233 2 −0.001 596 36 0.141 94
2 18.632 1 −0.005 589 61 0.059 26
4 24.969 3 −0.001 279 0.032 67

0.10 1 5.454 10 −0.014 218 0.895 30
1 11.924 1 −0.151 377 0.150 48
2 17.727 7 −0.479 543 0.049 22
4 23.541 6 −0.859 885 0.043 11

0.15 1 5.377 09 −0.045 574 0.860 76
2 11.387 9 −0.434 591 0.176 46
3 17.105 −0.939 629 0.056 74
4 23.605 −0.806 574 0.053 96

0.25 1 5.048 42 −0.179 999 0.737 27
2 10.651 5 −0.960 417 0.305 32
3 17.819 3 −0.425 087 0.042 75
4 25.806 3 0.440 100 0.063 47

0.50 1 3.969 14 −0.631 169 0.494 29
2 13.236 9 0.531 684 0.581 40
3 25.453 1 0.245 321 0.017 28
4 37.912 9 0.161 117 0.071 92

0.75 1 3.265 24 −0.901 244 0.430 70
2 25.346 8 0.188 845 0.662 84
3 50.371 8 0.093 173 0.003 41
4 75.469 0.061 981 0.074 80

0.90 1 2.981 41 −0.963 552 0.420 43
2 62.902 7 0.067 342 0.676 89
3 125.699 0.033 573 0.000 47
4 188.519 0.022 334 0.075 38

corresponding to this system is Mc ≡ (m1m2)
3/5(m1 + m2)

−1/5 = 1.22M�, and
ν[5 cycles] = 1270 Hz. Repeating the analysis carried on in section 11.3 we find
a formula for the minimum distance at which a measurement can be performed
given a certain SNR, for a quantum limited detector

r(ωn0) =
[

5× 21/3

32

1

(�BD + 2)(12�BD + 19)

G5/3M5/3
c

c3

Mv2
S

h̄ω4/3
n0 SNR

Hn

]1/2

(11.112)
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Table 11.2. Eigenvalues kS
n2 R, relative weights Kn2, Dn2, D̃n2 and Fn coefficients for a

hollow sphere with Poisson ratio σP = 1/3. Values are given for a few different thickness
parameters ς .

ς n kS
n2 R Kn2 Dn2 D̃n2 Fn

0.10 1 2.638 36 0.855 799 0.000 395 −0.003 142 2.946 02
2 5.073 58 0.751 837 0.002 351 −0.018 451 1.169 34
3 10.960 90 0.476 073 0.009 821 −0.071 685 0.022 07

0.15 1 2.611 61 0.796 019 0.001 174 −0.009 288 2.869 13
2 5.028 15 0.723 984 0.007 028 −0.053 849 1.241 53
3 8.258 09 −2.010 150 −0.094 986 0.672 786 0.081 13

0.25 1 2.491 22 0.606 536 0.003 210 −0.024 94 2.552 18
2 4.912 23 0.647 204 0.019 483 −0.138 67 1.550 22
3 8.242 82 −1.984 426 −0.126 671 0.675 06 0.053 25
4 10.977 25 0.432 548 −0.012 194 0.022 36 0.035 03

0.50 1 1.943 40 0.300 212 0.003 041 −0.022 68 1.619 78
2 5.064 53 0.745 258 0.005 133 −0.028 89 2.295 72
3 10.111 89 1.795 862 −1.697 480 2.982 76 0.197 07
4 15.919 70 −1.632 550 −1.965 780 −0.309 53 0.171 08

0.75 1 1.449 65 0.225 040 0.001 376 −0.010 17 1.152 91
2 5.215 99 0.910 998 −0.197 532 0.409 44 1.822 76
3 13.932 90 0.243 382 0.748 219 −3.201 30 1.089 52
4 23.763 19 0.550 278 −0.230 203 −0.817 67 0.081 14

0.90 1 1.265 65 0.213 082 0.001 019 −0.007 55 1.038 64
2 4.977 03 0.939 420 −0.323 067 0.522 79 1.541 06
3 31.864 29 6.012 680 −0.259 533 4.052 74 1.464 86
4 61.299 48 0.205 362 −0.673 148 −1.043 69 0.134 70

r(ωn2) =
[

5× 21/3

192

1

(�BD + 2)(12�BD + 19)

G5/3M5/3
c

c3

Mv2
S

h̄ω4/3
n2 SNR

Fn

]1/2

(11.113)

For a CuAl sphere, the speed of sound is vS = 4700 m s−1. We report
in table 11.3 the maximum distances at which a JBD binary can be seen with a
100 ton hollow spherical detector, including the size of the sphere (diameter and
thickness factor) for SNR = 1. The Brans–Dicke parameter�BD has been given
a value of 600. This high value has as a consequence that only relatively nearby
binaries can be scrutinized by means of their scalar radiation of GWs. A slight
improvement in sensitivity is appreciated as the diameter increases in a fixed mass
detector. Vacancies in the tables mean the corresponding frequencies are higher
than ν[5 cycles].

The signal associated with a gravitational collapse can be modelled, within
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Table 11.3. Eigenfrequencies, sizes and distances at which coalescing binaries can be seen
by monitoring of their emitted JBD GWs. Figures correspond to a 100 ton CuAl hollow
sphere.

ς � (m) ν10 (Hz) ν12 (Hz) r(ν10) (kpc) r(ν12) (kpc)

0.00 2.94 1655 807 − 29.8
0.25 2.96 1562 771 − 30.3
0.50 3.08 1180 578 55 31.1
0.75 3.5 845 375 64 33
0.90 4.5 600 254 80 40

JBD theory, as a short pulse of amplitude b, whose value can be estimated as [27]

b ) 10−23
(

500

�BD

)(
M∗
M�

)(
10 Mpc

r

)
(11.114)

where M∗ is the collapsing mass.
The minimum value of the Fourier transform of the amplitude of the scalar

wave, for a quantum limited detector at unit SNR, is given by

|b(ωnl)|min =
(

4h̄

Mv2
Sωnl Kn

)1/2

(11.115)

where Kn = 2Hn for the mode with l = 0 and K n = Fn/3 for the mode with
l = 2, m = 0.

The duration of the impulse, τ ≈ 1/ f c, is much shorter than the decay time
of the nl mode, so that the relationship between b and b(ω nl) is

b ≈ |b(ωnl)| fc at frequency ωnl = 2π fc (11.116)

so that the minimum scalar wave amplitude detectable is

|b|min ≈
(

4h̄ωnl

π2 Mv2
S Kn

)1/2

. (11.117)

Let us now consider a hollow sphere made of molybdenum, for which the
speed of sound is as high as vS = 5600 m s−1. For a given detector mass
and diameter, equation (11.117) tells us which is the minimum signal detectable
with such a detector. For example, a solid sphere of M = 31 tons and 1.8 m in
diameter, is sensitive down to bmin = 1.5 × 10−22. Equation (11.114) can then
be inverted to find which is the maximum distance at which the source can be
identified by the scalar waves it emits. Taking a reasonable value of �BD = 600,
one finds that r(ν10) ≈ 0.6 Mpc.
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Table 11.4. Eigenfrequencies, sizes and distances at which coalescing binaries can be seen
by monitoring of their emitted JBD GWs. Figures correspond to a 3 m external diameter
CuAl hollow sphere.

ς M (ton) ν10 (Hz) ν12 (Hz) r(ν10) (kpc) r(ν12) (kpc)

0.00 105 1653 804 — 33
0.25 103.4 1541 760 — 31
0.50 92 1212 593 52 27.6
0.75 60.7 997 442 44.8 23
0.90 28.4 910 386 32 16.3

Table 11.5. Eigenfrequencies, maximum sensitivities and distances at which a
gravitational collapse can be seen by monitoring the scalar GWs it emits. Figures
correspond to a 31 ton Mb hollow sphere.

ς φ (m) ν10 (Hz) |b|min (10−22) r(ν10) (Mpc)

0.00 1.80 3338 1.5 0.6
0.25 1.82 3027 1.65 0.5
0.50 1.88 2304 1.79 0.46
0.75 2.16 1650 1.63 0.51
0.90 2.78 1170 1.39 0.6

Table 11.6. Eigenfrequencies, maximum sensitivities and distances at which a
gravitational collapse can be seen by monitoring the scalar GWs it emits. Figures
correspond to a 1.8 m outer diameter Mb hollow sphere.

ς M (ton) ν10 (Hz) |b|min (10−22) r(ν10) (Mpc)

0.00 31.0 3338 1.5 0.6
0.25 30.52 3062 1.71 0.48
0.50 27.12 2407 1.95 0.42
0.75 17.92 1980 2.34 0.36
0.90 8.4 1808 3.31 0.24

Like before, we report, in tables 11.4–11.6, the sensitivities of the detector
and consequent maximum distance at which the source appears visible to the
device for various values of the thickness parameter ς . In table 11.5 a detector of
mass of 31 tons has been assumed for all thicknesses, and in tables 11.4 and 11.6
a constant outer diameter of 3 and 1.8 m has been assumed in all cases.
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Chapter 12

Generalities on the stochastic GW
background

12.1 Introduction

The stochastic gravitational-wave background (SGWB) is a random noise of
gravity waves with no evidence of any sharp specific characters in either the time
or frequency domain. The important fact to note is that with the exception of a
component associated with the random superposition of many weak signals from
binary-star systems, the SGWB could be the result of processes that took place
during the early stages of the evolution of the universe.

This potential cosmological origin clearly emerges from the calculation of
the time at which the graviton decouples from the evolution of the rest of the
universe. For a given particle species the decoupling time t dec is defined as the
time when its interaction rate � equals the expansion rate of the universe, as
measured by the Hubble parameter H . In fact, it can be shown [1] that, under
assumptions usually met, the number of interactions that the particle species suffer
from tdec onward is less than one. This implies that the spectrum of a particle
species produced after the decoupling retains memory of the state of the universe
at that time. The only change in the character of these particles is a redshift of the
magnitude of their three-momentum due to the expansion of the universe.

On purely dimensional grounds, at a given temperature T the interaction rate
for particles that interact only gravitationally is [1]:

� ∼ G2
N T 5 = T 5

M4
Pl

where G is the Newton constant and MPl = 1/
√

G = 1.22 × 1019 GeV is the
Planck mass (we always use units h̄ = c = kB = 1). Because in the radiation-
dominated era (before the time teq of equal matter and radiation energy density)
H ∼ T 2/MPl, one has:

Tdec ∼ MPl.

181
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Hence, the gravitons are decoupled below the Planck scale. (At the Planck
scale the above estimate of the interaction rate is not valid and nothing can
be said without a quantum theory of gravity). Just like the cosmic microwave
background (CMB), the gravity-wave background is a randomly polarized relic
of the Early universe. The important difference is that the electromagnetic (em)
waves decoupled about 4 × 105 years after the big bang, while the gravitational
background could come from times as early as the Planck epoch at t Pl )
5 × 10−44 s. This means that the relic gravitational waves give information on
the state of the very early universe and, therefore, on physics at correspondingly
high energies, which cannot be accessed experimentally in any other way.

Let us consider the standard Friedmann–Robertson–Walker (FRW)
cosmological model, consisting of a radiation-dominated (RD) phase followed
by the present matter-dominated (MD) phase, and let us call a(t) the FRW scale
factor. The RD phase goes backward in time until some new regime sets in. This
could be an inflationary epoch, for example, at the grand unification scale, or the
RD phase could go back in time until Planckian energies are reached and quantum
gravity sets in (t ∼ tPl). If the correct theory of quantum gravity is provided by
string theory, the characteristic mass scale is the string mass which is somewhat
smaller than the Planck mass and is presumably in the 1017–1018 GeV region, and
the corresponding characteristic time is therefore one or two orders of magnitude
larger than tPl. The transition between the RD and MD phases takes place at
t = teq, when the temperature of the universe is of the order of only a few eV,
so we are interested in graviton production which takes place well within the RD
phase, or possibly at Planckian energies.

A graviton produced with a frequency f ∗ at a time t = t∗1, within the
RD phase has today (t = t0) a red-shifted frequency f0 = f∗a∗/a0. To
compute the ratio a∗/a0 one uses the fact that during the standard RD and MD
phases the universe expands adiabatically: the entropy per unit comoving volume
S = gS(T )a3(t)T 3 is constant, where gS(T ) counts the effective number of
species [1]. From this one has [2]

f0 = f∗
(

gS(T0)

gS(T∗)

)1/3 T0

T∗
) 8.0× 10−14 f∗

(
100

gS(T∗)

)1/3 (
1 GeV

T∗

)
, (12.1)

where we used the fact that T0 = 2.728 ± 0.002 K [3] and according to the
standard model gS(T0) ) 3.91 [1].

The frequency f∗ of the graviton produced when the temperature was T∗ is
determined by the Hubble constant H∗, i.e. the size of the horizon, at the time t∗ of
production. The horizon size, physically, is the length scale beyond which causal
microphysics cannot operate (see chapter 8.4 of [1]), and therefore, for causality
reasons, we expect that the production of gravitons or any other particles, at
time t∗, with a wavelength longer than H −1∗ , will be exponentially suppressed.
Therefore, we let λ∗ = εH−1∗ , with ε ≤ 1. During RD, H 2∗ = (8π/3)Gρrad. The
1 Hereafter, the subscript α denotes the value assumed by a generic quantity at t = tα .
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contribution to the energy density from a single species of relativistic particle
with gi internal states (helicity, colour, etc) is gi(π

2/30)T 4 for a boson and
(7/8)gi(π

2/30)T 4 for a fermion. Taking into account that the i th species has
in general a temperature Ti += T if it already dropped out of equilibrium, we can
define a function g(T ) from ρrad = (π2/30)g(T )T 4. Then [1]

g(T ) =
∑

i=bosons

gi

(
Ti

T

)4

+ 7

8

∑
i=fermions

gi

(
Ti

T

)4

(12.2)

where the sum runs over relativistic species. This holds if a species is in thermal
equilibrium at temperature Ti . If instead it does not have a thermal spectrum
(which in general is the case for gravitons) we can still use the above equation,
where for this species Ti does not represent a temperature but is defined (for
bosons) from ρi = gi(π

2/30)T 4
i , where ρi is the energy density of this species.

The quantity gS(T ) used before for the entropy is given by the same expression
as g(T ), with (Ti/T )4 replaced by (Ti/T )3. We see that both g(T ) and gS(T )
give a measure of the effective number of species. For most of the early history
of the universe, g(T ) = gS(T ), and in the standard model at T & 300 GeV they
have the common value g∗ = 106.75, while today g0 = 3.36 [1]. Therefore

H 2∗ =
4π3g∗T 4∗

45M2
Pl

, (12.3)

and, using f∗ ≡ H∗/ε, equation (12.1) can be written as [2]

f0 ) 1.65× 10−7 1

ε

(
T∗

1 GeV

)( g∗
100

)1/6
Hz. (12.4)

This simple equation allows us to understand a number of important points
concerning the energy scales that can be probed in GW experiments. The simplest
estimate of f∗ corresponds to taking ε = 1 in equation (12.4) [4]. In this case,
we would find that a graviton observed today at the frequency f 0 = 100 Hz, the
scale relevant for VIRGO, was produced when the universe had a temperature
T∗ ∼ 6× 108 GeV. Since in the RD phase one has [1]

t = 1

2H
=

(
45

16π3g(T )

)1/2 MPl

T 2
) 2.42

g1/2

(
MeV

T

)2

s, (12.5)

this temperature corresponds to a production time t∗ ∼ 7× 10−25 s. At this time
the graviton had an energy E ∗ ∼ 3 GeV.

However, the fact that it makes sense to consider gravitons production only
for wavelengths with λ∗ . H−1∗ does not necessarily mean, in general, that at
t = t∗ the typical wavelength of GWs produced will be at λ∗ ∼ H−1∗ (ε ∼ 1) even
as an order of magnitude estimate. In [5] this point is illustrated with two specific
examples, one in which the assumption λ∗ ∼ H−1∗ turns out to be basically
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correct, and one in which it can fail by several orders of magnitudes. Both
examples will, in general, illustrate the fact that the argument does not involve
only kinematics, but also the dynamics of the production mechanism.

From equation (12.4) we see that the temperatures of the early universe
explored detecting today relic GWs at a frequency f 0 are, for constant g∗, smaller
by a factor approximately equal to ε, compared to those estimates with ε = 1.
Equivalently, a signal produced at a given temperature T∗ could in principle show
up today in the VIRGO/LIGO frequency band when a naive estimate with ε = 1
suggests that it falls at lower frequencies.

There is, however, another effect, which instead gives hopes of exploring
the universe at much higher temperatures than naively expected, using GW
experiments. In fact, the characteristic frequency that we have discussed is the
value of the cut-off frequency in the graviton spectrum. Above this frequency, the
spectrum decreases exponentially [6], and no signal can be detected. Below this
frequency, however, the form of the spectrum is not fixed by general arguments.
Thermal spectra have a low-frequency behaviour dρ/d f ∼ f 2, but, since the
gravitons below the Planck scale interact too weakly to thermalize, there is no
a priori reason for a ∼ f 2 dependence. The gravitons will retain the form of
the spectrum that they had at the time of production, and this is a very model-
dependent feature. However, as shown in [5], from a number of explicit examples
and general arguments we learn that spectra flat or almost flat over a large range
of frequencies seem to be not at all unconceivable.

This fact has potentially important consequences. It means that, even if a
spectrum of gravitons produced during the Planck era has a cut-off at frequencies
much larger than the VIRGO/LIGO frequency band, we can still hope to observe
in the 10 Hz–1 kHz region the long low-frequency tails of these spectra.

12.2 Definitions

12.2.1 ���gwgwgw((( fff ))) and the optimal SNR

The intensity of a stochastic background of gravitational waves (GWs) can be
characterized by the dimensionless quantity

�gw( f ) = 1

ρc

dρgw

d ln f
, (12.6)

where ρgw is the energy density of the stochastic background of gravitational
waves, f is the frequency and ρc is the present value of the critical energy density
for closing the universe. In terms of the present value of the Hubble constant H 0,
the critical density is given by

ρc = 3H 2
0

8πG
. (12.7)
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The value of H0 is usually written as H0 = h0 × 100 km s−1 Mpc−1, where h0
parametrizes the existing experimental uncertainty. A conservative estimate for
this parameter is in the range 0.50 < h 0 < 0.65 (see [5] and references quoted
therein).

It is not very convenient to normalize ρgw to a quantity, ρc, which is
uncertain: this uncertainty would appear in all the subsequent formulae, although
it has nothing to do with the uncertainties on the GW background. Therefore, we
rather characterize the stochastic GW background with the quantity h 2

0�gw( f ),
which is independent of h 0. All theoretical computations of a relic GW spectrum
are actually computations of dρgw/d ln f and are independent of the uncertainty
on H0. Therefore, the result of these computations is expressed in terms of h 2

0�gw,
rather than of �gw

2. Under the assumption that the stochastic background of
gravitational radiation is isotropic, unpolarized, stationary and Gaussian (see [4,7]
for details), it is completely specified by its spectrum�gw( f ).

To detect a stochastic GW background the optimal strategy consists in
performing a correlation between two (or more) detectors, since, as we will
discuss below, the signal will be far too low to exceed the noise level in any
existing or planned single detector (with the exception of the space interferometer
LISA). The strategy has been discussed in [8–10], and is clearly reviewed in [4,7].
Let us recall the main points of the analysis.

The cross-correlation between the outputs s1(t) and s2(t) of two detectors is
defined as

S =
∫ T/2

−T/2
dt

∫ T/2

−T/2
dt ′ s1(t)s2(t

′)Q(t, t ′), (12.8)

where T is the total integration time (e.g. one year) and Q is a filter function.
The output of a single detector characterized by an intrinsic noise n(t) and on
which acts a gravitational strain h(t) is of the form s(t) = n(t) + h(t). The
gravitational strain can be expressed in terms of the amplitudes h+,× of the wave
in the following way [11]

h(t) = F+h+(t)+ F×h×(t), (12.9)

where the detector pattern functions F+,× are introduced, which depend on the
location, orientation and geometry of the detector and the direction of arrival
of the GW and its polarization (see section 12.3). These functions have values
in the range 0 ≤ |F+,×| ≤ 1. The noise intrinsic to the detector is assumed
stationary, Gaussian and statistically independent on the gravitational strain. As a
consequence of the assumed stationariety of both the stochastic GW background
and noise, the filter function turns out to be Q(t, t ′) = Q(t− t ′). Furthermore, the
noises in the two detectors are assumed uncorrelated, i.e. the ensemble average of

2 This simple point has occasionally been missed in the literature, where one can find the statement
that, for small values of H0, �gw is larger and therefore easier to detect. Of course, it is larger only
because it has been normalized using a smaller quantity.
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their Fourier components satisfies

〈ñ∗i ( f )ñ j ( f ′)〉 = δ( f − f ′)δi j
1
2 S(i)n (| f |), (12.10)

where the function Sn(| f |), with dimensions Hz−1, is known as the noise power
spectrum3. The factor 1

2 is conventionally inserted in the definition so that the total
noise power is obtained integrating Sn( f ) over the physical range 0 ≤ f < ∞,
rather than from−∞ to∞.

As discussed in [4, 7–10], for any given form of the signal, i.e. for any given
functional form of h 2

0�gw( f ), it is possible to find explicitly the filter function
Q(t) which maximizes the signal-to-noise ratio (SNR). It can be shown [7] that
under the above-mentioned assumptions, the Fourier transform of this optimal
filter and the corresponding value of the optimal SNR turn out to be, respectively:

Q( f ) = λ γ (| f |)�gw(| f |)
| f |3S(1)n (| f |)S(2)n (| f |)

, (12.11)

SNR =
[(

9H 4
0

8π4

)
F2T

∫ ∞

0
d f

γ 2(| f |)�2
gw(| f |)

f 6S(1)n (| f |)S(2)n (| f |)

]1/4

, (12.12)

where F is a normalization factor less than one depending only upon the geometry
of the detectors, and λ is a real overall normalization constant that, assuming for
the spectrum a power-law �gw( f ) = �β f β (with �β = constant), is fixed by
the condition 〈S〉 = �βT . The function γ ( f ) appearing in both formulae is
the overlap reduction function introduced in [10], which takes into account the
difference in location and orientation of the two detectors. At this stage let us
only remark that γ ( f ) is maximum and equal to one in the case of two detectors
with the same location and orientation. The detailed expression for F and γ ( f )
will be discussed in section 12.3. Finally, let us note that in equation (12.12) we
have taken into account the fact that what has been called S in equation (12.8)
is quadratic in the signals and, with usual definitions, it contributes to the SNR
squared. This differs from the convention used in [4, 7].

In principle the expression for the SNR, equation (12.12), is all that we
need in order to discuss the possibility of detection of a given GW background.
However, it is useful, for order of magnitude estimates and for intuitive
understanding, to express the SNR in terms of a characteristic amplitude of the
stochastic GW-background and of a characteristic noise level, although, as we
will see, the latter is a quantity that describes the noise only approximately, in
contrast to equation (12.12) which is exact. We will introduce these quantities in
the next two subsections.

3 Unfortunately there is not much agreement about notations in the literature. The noise power
spectrum, that we denote by Sn( f ) following, for example, [10], is called P( f ) in [4]. Other authors
use the notation Sh( f ), which we instead reserve for the power spectrum of the signal. To make things
worse, Sn is sometimes defined with or without the factor 1

2 in equation (12.10).
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12.2.2 The characteristic amplitude

In a transverse-traceless (TT) gauge, the perturbation to the Minkowski metric of
spacetime introduced by the GW background can be written in terms of a plane
wave expansion as [4]

hij (t, *r) =
∑

A=+,×

∫ ∞

−∞
d f

∫
S2

d�̂
∫ 2π

0
dψ h A( f, �̂, ψ)ei2π f (t−�̂·*r)εA

i j (�̂, ψ),

(12.13)
where, since hij is real, the Fourier amplitudes are complex arbitrary functions
that satisfy the condition hA(− f, �̂, ψ) = h∗A( f, �̂, ψ). The unit vector �̂ is
along the propagation direction of the wave, and, in terms of the standard polar
(θ ) and azimuthal (φ) angles on the 2-sphere, is:

�̂ ≡ (cosφ sin θ, sinφ sin θ, cos θ), (12.14)

with d�̂ = d cos θ dφ. The angle ψ describes the polarization of the wave.
By introducing the following pair of orthogonal unit vectors lying in the plane
perpendicular to �̂

m̂(�̂) ≡ (cosφ cos θ, sinφ cos θ,− sin θ), n̂(�̂) ≡ (sinφ,− cosφ, 0),
(12.15)

ψ is the angle of which is rotated the intrinsic frame of the wave (where, in a
TT gauge, hx ′y′ = −hy′x ′) respect to the frame (m̂, n̂) (see [11], p 367). The
polarization tensors can be written as

ε+(�̂, ψ) = e+(�̂) cos 2ψ − e×(�̂) sin 2ψ

ε×(�̂, ψ) = e+(�̂) sin 2ψ + e×(�̂) cos 2ψ, (12.16)

where

e+(�̂) = m̂(�̂)⊗m̂(�̂)−n̂(�̂)⊗n̂(�̂), e×(�̂) = m̂(�̂)⊗n̂(�̂)+n̂(�̂)⊗m̂(�̂)
(12.17)

with the normalization

Tr{eA(�̂)eA′(�̂)} = 2δAA′.

In the case of a stochastic background, we treat the complex Fourier
amplitude hA as a random variable with zero mean value. If this background
is isotropic, unpolarized and stationary, the ensemble average of the product of
two Fourier amplitudes satisfies:

〈h∗A( f, �̂, ψ)hA′ ( f ′, �̂′, ψ ′)〉 = δAA′δ( f − f ′) δ
2(�̂, �̂′)

4π

δ(ψ − ψ ′)
2π

1

2
Sh( f ),

(12.18)
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where δ2(�̂, �̂′) = δ(φ−φ′)δ(cos θ−cos θ ′). The function Sh( f ) defined by the
above equation has dimensions Hz−1 and satisfies Sh( f ) = Sh(− f ). With this
normalization, Sh( f ) is the quantity to be compared with the noise level Sn( f )
defined in equation (12.10). Using equations (12.13) and (12.18) we get

〈hij (t, *r)hij (t, *r)〉 = 2
∫ ∞

−∞
d f Sh( f ) = 4

∫ ∞

0
d f Sh( f )

= 4
∫ f=∞

f=0
d(ln f ) f Sh( f ). (12.19)

We now define the characteristic amplitude h c( f ) from

〈hij (t, *r)hij (t, *r)〉 = 2
∫ f=∞

f=0
d(ln f ) h2

c( f ). (12.20)

Note that hc( f ) is dimensionless, and represents a characteristic value of the
amplitude, per unit logarithmic interval of frequency. The origin of the factor
of two on the right-hand side of equation (12.20) is carefully explained in [5].

Comparing equations (12.19) and (12.20), we get

h2
c( f ) = 2 f Sh( f ). (12.21)

We now wish to relate hc( f ) and h2
0�gw( f ). The starting point is the expression

for the energy density of gravitational waves, given by the 00-component of the
energy-momentum tensor. The energy-momentum tensor of a GW cannot be
localized inside a single wavelength (see, e.g., sections 20.4 and 35.7 in [12] for
a careful discussion) but it can be defined with a spatial averaging over several
wavelengths:

ρgw = 1

32πG
〈ḣi j ḣi j 〉. (12.22)

For a stochastic background, the spatial average over a few wavelengths is the
same as a time average at a given point, which, in Fourier space, is the ensemble
average performed using equation (12.18). By inserting equation (12.13) into
equation (12.22) and using equation (12.18) one has

ρgw = 4

32πG

∫ f=∞

f=0
d(ln f ) f (2π f )2Sh( f ), (12.23)

and, thus
dρgw

d ln f
= π

2G
f 3Sh( f ). (12.24)

Comparing equations (12.24) and (12.21) we get the important relation

dρgw

d ln f
= π

4G
f 2h2

c( f ), (12.25)
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or, dividing by the critical density ρc,

�gw( f ) = 2π2

3H 2
0

f 2h2
c( f ). (12.26)

Inserting the numerical value of H0, we find ( [11], equation (65))

hc( f ) ) 1.26× 10−18
(

1 Hz

f

)√
h2

0�gw( f ). (12.27)

From equations (12.21) and (12.26) one has

�gw( f ) = 4π2

3H 2
0

f 3Sh( f ), (12.28)

and defining Sn( f ) = (S(1)n ( f )S(2)n ( f ))1/2, equation (12.12) can be written in the
following more transparent form:

SNR =
[

2F2T
∫ ∞

0
d f γ 2( f )

S2
h ( f )

S2
n ( f )

]1/4

. (12.29)

The factor of two in front of the integral can be understood from
∫∞
−∞ d f =

2
∫∞

0 d f .
Finally, we mention another useful formula which expresses h 2

0�gw( f ) in
terms of the number of gravitons per cell of the phase space, n(*x, *k). For an
isotropic stochastic background n(*x, *k) = n f depends only on the frequency f =
|*k|/(2π) and ρgw = ∫

n f 2π f d3k/(2π)3 = 8π2
∫∞

0 d(ln f )n f f 4. Therefore
dρgw/d ln f = 8π 2n f f 4, and

h2
0�gw( f ) ) 1.8

( n f

1037

)(
f

1 kHz

)4

. (12.30)

As we will discuss below, to be observable at the VIRGO/LIGO interferometers,
we should have h2

0�gw ∼ 10−6 between 1 Hz and 1 kHz, corresponding to n f

of order 1031 at 1 kHz and n f ∼ 1043 at 1 Hz. A detectable stochastic GW
background is therefore exceedingly classical, n k � 1.

12.2.3 The characteristic noise level

We have seen in the previous section that there is a very natural definition of
the characteristic amplitude of the signal, given by h c( f ), which contains all the
information on the physical effects, and is independent of the apparatus. We
can, therefore, associate with h c( f ) a corresponding noise amplitude h n( f ), that
embodies all the informations on the apparatus, defining h c( f )/hn( f ) in terms
of the optimal SNR.



190 Generalities on the stochastic GW background

If, in the integral giving the optimal SNR, equation (12.12) or
equation (12.29), we consider only a range of frequencies � f such that the
integrand is approximately constant, we can write

SNR )
[

2F2T� f
γ 2( f )S2

h ( f )

S2
n ( f )

]1/4

=
[

F2T� f γ 2( f )h4
c( f )

2 f 2S2
n ( f )

]1/4

. (12.31)

The right-hand side of equation (12.31) is proportional to h c( f ), and we can
therefore define hn( f ) equating the right-hand side of equation (12.31) to
hc( f )/hn( f ), so that

hn( f ) = 1

( 1
2 T� f )1/4

[
f Sn( f )

F|γ ( f )|
]1/2

. (12.32)

From the derivation of equation (12.32) we can understand the limitations
implicit in the use of hn( f ). It gives a measure of the noise level only
under the approximation that leads from equation (12.29), which is exact, to
equation (12.31). This means that � f must be small compared to the scale
on which the integrand in equation (12.29) changes, so that γ ( f )S h( f )/Sn( f )
must be approximately constant. In a large bandwidth this is non-trivial, and
of course depends also on the form of the signal; for instance, if h 2

0�gw is flat,
then Sh( f ) ∼ 1/ f 3. For accurate estimates of the SNR there is no substitute
for a numerical integration of equation (12.12) or equation (12.29), unless the
frequency range� f in which we are interested is sufficiently small. However, for
order of magnitude estimates, equation (12.27) for h c( f ) and equation (12.32) for
hn( f ) are simpler to use, and they have the advantage of clearly separating the
physical effect, which is described by h c( f ), from the properties of the detectors,
that enter only in hn( f ).

Equation (12.32) also shows very clearly the advantage of correlating two
detectors compared with the use of a single detector. With a single detector, the
minimum observable signal, at SNR = 1, is given by the condition S h( f ) ≥
Sn( f ). This means, from equation (12.21), a minimum detectable value for h c( f )
given by

h1d
min( f ) = (2 f Sn( f ))1/2, (12.33)

where the superscript 1d reminds us that this quantity refers to a single detector.
From equation (12.32), by indicating with h̄1d

min the minimum detectable signal
for a detector which noise level equals the geometric average of the noise levels
of two detectors in coincidence, the minimum detectable signal for this detector
pair is:

h2d
min( f ) = 1

(2T� f )1/4
h̄1d

min( f )

[F|γ ( f )|]1/2

) 1.1× 10−2
(

1 Hz

� f

)1/4 (
1 year

T

)1/4 h̄1d
min( f )

[F|γ ( f )|]1/2
. (12.34)
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Of course, the reduction factor in the noise level is larger if the integration time
is larger, and if we increase the bandwidth � f over which a useful coincidence
is possible. Note that h2

0�gw is quadratic in hc( f ), so that an improvement in
sensitivity by two orders of magnitudes in h c means four orders of magnitude in
h2

0�gw.

12.3 The overlap reduction function

When we consider the correlation between the signals of two GW detectors we
have a reduction in sensitivity due to the fact that, in general, these detectors
will not be either coincident or coaligned. This effect is quantified by the
overlap reduction function γ ( f ) appearing in the expression of the SNR (see
equation (12.12)). This is a dimensionless function of frequency f which takes
into account the relative positions and orientations of the two detectors and for an
isotropic and unpolarized background is defined as [10]

γ ( f ) = 1

F

∑
A

〈ei2π f �̂·�*r F A
1 (r̂1, �̂, ψ)F

A
2 (r̂2, �̂, ψ)〉�̂,ψ ∼

�( f )

F
(12.35)

where �*r = *r1 − *r2 is the separation vector between the two detector sites, F A
i

is the pattern function characterizing the response of the i th detector (i = 1, 2) to
the A = +,× polarization, and the following notation

〈· · ·〉
�̂,ψ

=
∫

S2

d�̂

4π

∫ 2π

0

dψ

2π
(· · ·) (12.36)

has been introduced to indicate the average over the propagation direction (θ, φ)
and the polarization angle ψ of the GW. The normalization factor F is given by:

F =
∑

A

〈F A
1 (r̂1, �̂, ψ)F

A
2 (r̂2, �̂, ψ)〉�̂,ψ |1≡2, (12.37)

where the notation 1 ≡ 2 is a compact way to indicate that the detectors are
coincident and coaligned and, if at least one of them is an interferometer, the
angle between its arms is equal to π /2 (L-shaped geometry). In this situation, by
definition, γ ( f ) = 1. When the detectors are shifted apart (so there is a phase
shift between the signals in the two detectors), or rotated out of coalignment (so
the detectors have different sensitivity to the same polarization) it turns out that:
|γ ( f )| < 1.

The pattern functions (or orientation factors) of a GW detector can be written
in the following form

F A(r̂ , �̂, ψ) = Tr{D(r̂ )εA(�̂, ψ)} (12.38)
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where the symmetric, traceless tensor D(r̂ ) describes the orientation and
geometry of the detector located at *r . In terms of this tensor the gravitational-
wave strain sensed by this detector (see equation (12.9)) is given by [10]

h(t, *r) = Dij (r̂)hij (t, *r). (12.39)

For an interferometer, indicating with û and v̂ the unit vectors in the directions of
its arms, one has:

D(r̂ ) = 1
2 {û(r̂)⊗ û(r̂)− v̂(r̂)⊗ v̂(r̂)}. (12.40)

For the lowest longitudinal mode of a cylindrical GW antenna with axis in the
direction individued by the unit vector l̂, one has [13]

D(r̂ ) = l̂(r̂)⊗ l̂(r̂)− 1
3 I, (12.41)

where I is the unit matrix. Finally, for the lowest five degenerate quadrupole
modes (m = −2, . . . ,+2) of a spherical detector, the corresponding tensors are

D(0)(r̂) = 1

2
√

3
{e+(r̂)+ 2g+(r̂)} ∼ 1

2
√

3
{2 f +(r̂)− e+(r̂)}

D(+1)(r̂) = − 1
2 g×(r̂), D(−1)(r̂) = − 1

2 f ×(r̂) (12.42)

D(+2)(r̂) = 1
2 e+(r̂), D(−2)(r̂) = − 1

2 e×(r̂)

where

f +(r̂) = m̂(r̂)⊗ m̂(r̂)− r̂ ⊗ r̂ , f ×(r̂) = m̂(r̂)⊗ r̂ + r̂ ⊗ m̂(r̂)

g+(r̂) = n̂(r̂)⊗ n̂(r̂)− r̂ ⊗ r̂ , g×(r̂) = n̂(r̂)⊗ r̂ + r̂ ⊗ n̂(r̂),

and e+,×(r̂) are the tensors of equation (12.17) written in terms of the unit vectors
m̂(r̂) and n̂(r̂) lying on the plane perpendicular to r̂ . From these expressions for
the tensors Dij and interpreting each of the five modes of a sphere as a single
detector, it is possible to show that in the case of coincident detectors one has:

〈F A
1 (r̂ , �̂, ψ)F

B
2 (r̂ , �̂, ψ)〉�̂,ψ ∼ c12δ

AB , (A, B = +,×) (12.43)

where c12 depends only on the geometry and the relative orientations of the
two detectors. The corresponding values of F (see equation (12.37)) for the
three different geometries considered (interferometer, cylindrical bar, sphere) are
summarized in table 12.1.

By introducing the following notation

�*r = dŝ, η = 2π f d,

where ŝ is the unit vector along the direction connecting the two detectors and
d is the distance between them, it can be shown [10] that the overlap reduction
function assumes the following form (Dk ≡ D(r̂k)):

γ ( f ) = ρ0(η)D
ij
1 D2i j + ρ1(η)D

ij
1 Dk

2i s j sk + ρ2(η)D
ij
1 Dkl

2 si s j sksl (12.44)
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Table 12.1. The normalization factor F for three different geometries of the detectors:
interferometer (ITF), cylindrical bar (BAR) and sphere (SPH). A ) denotes entries that can
be obtained from the symmetry of the table.

SPH

ITF BAR m = 0 m = ±1 m = ±2

ITF 2/5 ) ) ) )

BAR 2/5 8/15 ) ) )

m = 0 0 2
√

3/15 2/5 ) )

SPH m = ±1 0 0 0 2/5 )

m = ±2 2/5 2/5 0 0 2/5

where [
ρ0
ρ1
ρ2

]
(η) = 1

Fη2

[ 2η2 −4η 2
−4η2 16η −20
η2 −10η 35

][ j0
j1
j2

]
(η), (12.45)

with jk(η) the standard spherical Bessel functions:

j0(η) = sin η

η
, j1(η) = j0(η)− cos η

η
, j2(η) = 3

j1(η)

η
− j0(η).

In the following, this formalism will be applied to treat the case in which
the first detector is an interferometer and the other is, in turn, an interferometer, a
cylindrical bar and a sphere.

12.3.1 Two interferometers

Following equation (12.40), the detector tensor of the interferometer located at a
given point *rk can be written as

Dk = 1
4 {(cos 2ξk − cos 2ζk)e

+(r̂k)− (sin 2ξk − sin 2ζk)e
×(r̂k)} (k = 1, 2)

(12.46)
where ξk and ζk are the orientations of the kth interferometer arms measured
anticlockwise from the true north. The value of these angles, together with
the location of the central (corner) station on the Earth’s surface, for different
interferometers are reported in table 12.2. By inserting this expression in
equation (12.44) it is possible to compute the overlap reduction function for a
generic pair of interferometers. The results of this calculation in the case in which
one of the interferometers is VIRGO are shown in figure 12.1.

Some important conclusions can be drawn from the inspection of this figure.
First of all, owing to the oscillating behaviour with η ∝ f d of the spherical Bessel



194 Generalities on the stochastic GW background

Table 12.2. Site and orientation of Earth-based interferometric gravitational-wave
detectors. The latitude is measured in degrees north from the equator, and the longitude
in degrees east of Greenwich, England. In the last column is reported the distance with
respect to VIRGO.

Corner location
Distance

Project Latitude N (deg) Longitude E (deg) ξ (deg) ζ (deg) (km)

VIRGO 43.63 10.50 71.5 341.5 —
LIGO-LA 30.56 −90.77 108.0 198.0 7905.9
LIGO-WA 46.45 −119.41 36.8 126.8 8158.2
GEO-600 52.25 9.82 25.94 291.61 958.2
TAMA-300 35.68 139.54 90.0 180.0 8864.1

Figure 12.1. The overlap reduction function in the case of correlation between VIRGO
and the other major interferometers.
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Figure 12.2. The overlap reduction function for the correlation of VIRGO with a coaligned
interferometer whose central (corner) station is located at: (A) (43.2◦ N, 10.9◦ E),
d = 58.0 km (Italy); (B) (43.6◦ N, 4.5◦ E), d = 482.7 km (France); (C) the GEO-600
(see table 12.2).

function intervening in expression (12.45) of ρ k , there are always frequencies for
which γ ( f ) vanishes. Second, in all the considered cases |γ ( f )| is well below one
on the whole frequency range, and practically zero for f > 100 Hz. In the case
of correlation with the two LIGOs and TAMA-300, |γ ( f )| becomes its maximum
value ()0.2) before the first zero or immediately after it, that is in the frequency
region of 10–20 Hz, just where the sensitivity of the interferometric detectors is
lower because of the thermal noise. The case is different where the correlation
is between VIRGO and GEO-600. In this case, in fact, as a consequence of the
relatively small distance between the two detectors, |γ ( f )|, even if low () 0.1),
remains constant up to ∼ 100 Hz. This implies that from the point of view of
the frequency-averaged value of |γ ( f )|, this correlation is more efficient than the
others. Let us note that in terms of �gw the minimum detectable signal by a pair
of detectors is proportional to |γ ( f )|−1 (see equations (12.26) and (12.34)) and,
therefore, the low values shown in figure 12.1 lead to a substantial (even one order
of magnitude) reduction of the sensitivity of the correlation.

As an example, figure 12.2 shows the overlap reduction function for the
correlation of VIRGO with three coaligned interferometers located at about 50 km
(probably the minimum distance sufficient to decorrelate local seismic and em
noises) (curve A), 480 km (curve B) and 960 km (curve C), respectively, from
the VIRGO site. The frequency location of the first zero of γ ( f ) turns out to be
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Table 12.3. Site and orientation of the resonant bars nearest to VIRGO. In the last column
is reported the distance with respect to VIRGO.

Location

Project Latitude N (deg) Longitude E (deg) λ (deg) Distance (km)

AURIGA 45.35 11.95 39.3 222.84
NAUTILUS 41.80 12.67 39.3 270.12
EXPLORER 46.25 6.25 39.3 443.14

with good approximation inversely proportional to the distance between the two
detectors.

12.3.2 Interferometer—bar

The detector tensor of a resonant bar located at a given point *r turns out to be (see
equation (12.41))

D(r̂ ) = 1
2 {cos 2λe+(r̂)− sin 2λe×(r̂)+ b(r̂)− 2

3 I } (12.47)

where the tensor
b(r̂) = m̂(r̂)⊗ m̂(r̂)+ n̂(r̂)⊗ n̂(r̂)

has been introduced, and we have indicated with λ the orientation of the bar axis
measured anticlockwise from the true North. The orientation and location of the
resonant bars nearest to VIRGO are reported in table 12.3.

The behaviour of the overlap reduction function for the correlation of these
detectors with VIRGO is shown in figure 12.3, where, since the resonant detectors
can be easily rotated, we considered the case in which the bars are oriented
along the direction of the first arm of VIRGO. The frequency dependence of
the overlap reduction function is meaningless for narrow-band detectors like bars
(and spheres). Therefore, the results shown in figure 12.3 have been calculated by
assuming to vary the resonance frequency by varying the length of the bar.

12.3.3 Interferometer—sphere

The same calculation can be repeated by replacing bars with spheres of variable
size. The overlap reduction function for the correlation of VIRGO with each of
the five modes of a sphere (see equation (12.42)) is shown in figure 12.4. Notice
that, since the normalization factors vanish (see table 12.1) for the m = 0,±1
modes, the quantity reported in figure 12.4 for these modes is the �( f ) function
defined in equation (12.35). It is also worthwhile to notice that the result for the
m = 2 case coincides exactly with that obtained with two interferometers, in
complete accordance with the quadrupole nature of the GW excitation.
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Figure 12.3. The overlap reduction function for the correlation of VIRGO with
NAUTILUS (full curve), AURIGA (broken curve), and EXPLORER (dotted curve) in the
case in which the angles λ, having the values reported in table 12.3, coincide with the angle
ξ of VIRGO.

12.4 Achievable sensitivities to the SGWB

In the following we apply the results of the preceding sections to estimate
the expected sensitivities of the correlation among the various detectors to the
stochastic background.

12.4.1 Single detectors

To better appreciate the importance of correlating two detectors, it is instructive to
consider first the sensitivity that can be obtained using only one detector. In this
case a hypothetical signal would manifest itself as an excess noise, and should
therefore satisfy Sh( f ) & Sn( f ). By imposing this condition to equation (12.28)
and introducing the notation h̃2

f = Sn( f ), for the minimum detectable value of

h2
0�gw one has

h2
0�

min
gw ( f ) ) 1.3× 10−2

(
f

100 Hz

)3
(

h̃ f

10−22 Hz−1/2

)2

. (12.48)

This function in the case of VIRGO is plotted in figure 12.5, where the
following analytical approximation for the noise power spectrum has been used



198 Generalities on the stochastic GW background

Figure 12.4. The overlap reduction function for the correlation of VIRGO with the five
modes of a sphere located at (43.2◦ N, 10.9◦ E) (d = 58.0 km).

[14]:

Sn( f ) = S1

(
f0

f

)5

+ S2

(
f0

f

)
+ S3

[
1+

(
f

f0

)2
]

(12.49)

where S1 = 3.46 × 10−50 Hz−1, S2 = 6.60 × 10−46 Hz−1, S3 = 3.24 ×
10−46 Hz−1 and f0 = 500 Hz. Figure 12.5 shows also the minimum detectable
value of h2

0�gw for the NAUTILUS detector (target sensitivity h̃ f = 8.6 ×
10−23 Hz−1/2 at f = 907 Hz) [15], and for a hollow sphere, made of Al 5056,
with a mass of 200 ton, an outer radius of 3 m, and an inner radius of 2.1 m (target
sensitivity h̃ f = 4.3 × 10−24 Hz−1/2 at 273 Hz; h̃ f = 3.4 × 10−24 Hz−1/2 at
935 Hz) [16].

Unfortunately, all these sensitivity levels are not interesting. As we shall find
in section 2, an interesting sensitivity level for h 2

0�gw is at least of order 10−7–
10−6. To reach such a level with a single interferometer we need, for example,
h̃ f < (3–10) × 10−25 Hz−1/2 at f = 100 Hz, or h̃ f < (1–3) × 10−26 Hz−1/2
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Figure 12.5. The minimum (SNR = 1) detectable value of h2
0�gw by a single detector.

at f = 1 kHz. These values for h̃ f are very far from the sensitivity of
first generation interferometers, and are in fact even well below the limitation
due to quantum noise. A very interesting sensitivity, possibly even of order
h2

0�gw ∼ 10−13, could instead be reached with a single detector, with the planned
space interferometer LISA [17], at f ∼ 10−3 Hz.

Note also that, while correlating two detectors the SNR improves with
integration time (see equation (12.12)) this is not so with a single detector. So,
independently of the low sensitivity, with a single detector it is conceptually
impossible to tell whether an excess noise is due to a physical signal or is a noise
of the apparatus that has not been properly accounted for. This might not be a
great problem if the SNR is very large, but certainly with a single detector we
cannot make a reliable detection at SNR of order one, so that the above estimates
(which have been obtained setting SNR = 1) are really overestimates.

12.4.2 Two detectors

The statistical treatment of the problem of the extraction of information from the
correlation between two detectors has been extensively discussed in [7] in the
frame of the so-called ‘decision theory’ [18]. According to the results of [7],
fixed a false alarm rate α (1− α is the fraction of experimental outcomes that the
decision rule correctly identifies the absence of a signal) and a minimum detection
rate δ (the fraction of experimental outcomes that the decision rule correctly
identifies the presence of a signal with fixed mean value > 0), the theoretical
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Table 12.4. Minimum values of h2
0�gw for cross-correlation measurements between

VIRGO and the major interferometers for one year of observation, and different values
of the pair (δ, α).

Correlation (0.95, 0.05) (0.95, 0.10) (0.90, 0.10)

VIRGO ) LIGO-LA 5.3× 10−6 4.7× 10−6 4.2× 10−6

VIRGO ) LIGO-WA 6.4× 10−6 5.7× 10−6 5.0× 10−6

VIRGO ) GEO-600 7.2× 10−6 6.4× 10−6 5.6× 10−6

VIRGO ) TAMA-300 1.2× 10−4 1.1× 10−4 9.5× 10−5

SNR verifies the following bound

SNR2 ≥ √2[erfc−1(2α)− erfc−1(2δ)]

where the complementary error function

erfc(x) ∼ 2√
π

∫ ∞

x
dz e−z2

has been introduced. Therefore, in the case of a stochastic GW background having
a constant frequency spectrum�gw( f ) = �gw, from equation (12.12) one has:

�gw ≥ 4π2

3H 2
0

1

F
√

T

[ ∫ ∞

0
d f

γ 2( f )

f 6S(1)n ( f )S(2)n ( f )

]−1/2

[erfc−1(2α)− erfc−1(2δ)].

(12.50)

Two interferometers

The minimum values of h 2
0�gw for cross-correlation measurements between

different interferometer pairs (F = 2/5 in equation (12.50)) in the case T = 10 7 s
(4 months), α = 0.05, and δ = 0.95, are summarized in table II of [7]. In
table 12.4 we report the minimum values of h 2

0�gw for the correlation of VIRGO
with the major interferometers for one year of observation and different values of
the detection and false alarm rates4.

We now consider the sensitivity that could be obtained at VIRGO if the
planned interferometer were correlated with a second identical interferometer
located at a few tens of kilometres from the first, and with the same orientation
(the case A at the end of section 12.3.1).

A rough estimate of the sensitivity can be given using the same line of
reasoning developed in section 12.2.3. From equation (12.49) we see that we

4 Let us note that α and δ need not sum to one.
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can take, for our estimate, h̃ f ∼ 10−22 Hz−1/2 over a bandwidth � f ∼ 1 kHz.
Moreover, as clearly shown in figure 12.2, the overlap reduction function is
approximately equal to one up to f ∼ 1 kHz. Therefore, from equation (12.31)
and (12.27) one has

h2
0�

min
gw ( f ) ∼ 1.3× 10−7 SNR2

(
1 year

T

)1/2 (
f

100 Hz

)3
(

h̃ f

10−22 Hz−1/2

)2

.

(12.51)
which shows that correlating two VIRGO interferometers for 1 year we can detect
a relic spectrum with h2

0�gw(100 Hz) ∼ 3 × 10−7 at SNR = 1.65, or 10−7

at SNR = 1. Compared to the case of a single interferometer with SNR = 1,
equation (12.48), we gain five orders of magnitude. As already discussed, to
obtain a precise numerical value one must however consider equation (12.12).
This involves an integral over all frequencies, (that replaces the somewhat
arbitrary choice of � f made above) and depends on the functional form of
h2

0�gw( f ). For h2
0�gw( f ) independent of the frequency, using the analytical

approximation of equation (12.49) for S (i)n ( f ) (i = 1, 2) and equation (12.44) for
γ ( f ), we get5

h2
0�

min
gw ) 7× 10−8 SNR2

(
1 year

T

)1/2

, (h2
0�gw( f ) = constant). (12.52)

It is interesting to note that the main contribution to the integral comes from
the region f < 100 Hz. In fact, neglecting the contribution of the region
f > 100 Hz, the result for h2

0�
min
gw changes only by approximately 4%. Also,

the lower part of the accessible frequency range is not crucial. For instance,
restricting the numerical integration to the regions 20 Hz ≤ f ≤ 200 Hz
and 30 Hz ≤ f ≤ 100 Hz the sensitivity on h 2

0�gw degrades by 1% and
10%, respectively. This means that the most important source of noise for the
measurement of a flat stochastic background is the thermal noise 6. In particular,
the sensitivity is limited by the mirror thermal noise, which dominates in the
region 40 Hz . f . 200 Hz, while the pendulum thermal noise dominates below

5 The integral has been evaluated numerically in the frequency interval 2 Hz–10 kHz. The analytical
fit of equation (12.49) underestimates the noise power spectrum in the region f < 2 Hz and, in any
case, this frequency region gives no appreciable contribution to the integral. Above 10 kHz the overlap
reduction function is negligible (see figure 12.2).
6 Note also that it is not very meaningful to give more decimal figures in the minimum detectable
value of h2

0�
min
gw . Apart from the various uncertainties which enter the computation of the sensitivity

curve, a trivial source of uncertainty is the fact that the computation of the thermal noises are
performed using a temperature of 300 K. A 5% variation, corresponding to an equally plausible value
of the temperature, gives a 5% difference in h2

0�
min
gw . Quoting more figures is especially meaningless

when the minimum detectable h2
0�gw is estimated using the approximate quantities hc( f ), hn( f ),

i.e. approximating the integrand of equation (12.12) with a constant over a bandwidth � f . For
a broadband detector these estimates typically give results which agree with the exact numerical
integration of equation (12.12) at best within a factor of two.
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Table 12.5. Minimum values of h2
0�gw for the correlation VIRGO–VIRGO for one year

of observation and different values of the pair (δ, α) (different values of SNR), for the three
possible locations of the second VIRGO considered in section 12.3.1.

Correlation (0.95, 0.05) (0.95, 0.10) (0.90, 0.10)

A 2.4× 10−7 2.1× 10−7 1.8× 10−7

B 2.5× 10−7 2.2× 10−7 1.9× 10−7

C 2.8× 10−7 2.5× 10−7 2.2× 10−7

Table 12.6. Minimum values of h2
0�gw(100 Hz) for the correlation VIRGO–VIRGO

(T = 1 year, SNR = 1), for different values of the exponent β in equation (12.53). The rows
refer to the three different locations of the second VIRGO considered in section 12.3.1.

Correlation β = 0 β = 1 β = −1 β = 3

A 7.2× 10−8 1.1× 10−7 3.0× 10−8 2.0× 10−8

B 7.6× 10−8 1.3× 10−7 3.1× 10−8 9.7× 10−8

C 8.5× 10−8 1.6× 10−7 3.2× 10−8 2.5× 10−7

approximately 40 Hz. This calculation has been performed also for the other
two geographical locations of the second VIRGO interferometer considered in
section 12.3.1. Although the range of frequency where γ ( f ) has a sensible value
is very different in the three cases (see figure 12.2), it is evident from table 12.5
that, for fixed values of (δ, α), the corresponding sensitivities to a frequency-
independent background are practically the same, and approximately one order of
magnitude better than the ones achievable with the two LIGO detectors [7].

Let us now consider the case of a frequency-dependent stochastic
background, that in the VIRGO frequency band can be parametrized in the
following way

�gw( f ) = �gw(100 Hz)

(
f

100 Hz

)β
. (12.53)

The same procedure applied to obtain equation (12.52) gives, in the cases β =
±1, 3, the minimum detectable values for h 2

0�gw(100 Hz) reported in table 12.6
(T = 1 year, SNR = 1). For the sake of comparison, we also reported the
analogous quantities in the case of a frequency-independent background (β = 0).

Some comments about this table are necessary. First, to compare the
sensitivities of a correlation to backgrounds with different frequency behaviour,
we have to take into account that in the case β += 0 the spectrum will exhibit a
peak within the VIRGO band: at low frequency for β < 0; at high frequency for
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Table 12.7. Minimum values of h2
0�gw for cross-correlation measurements between two

bars and between one bar and VIRGO for one year of observation and SNR = 1.

AURIGA ) NAUTILUS 2.0× 10−4

AURIGA ) VIRGO 1.6× 10−4

NAUTILUS ) VIRGO 2.8× 10−4

β > 0. For example, in the case of the correlation A, according to table 12.6 and
from equation (12.53), we find that a spectrum with β = 1 will be detected, at
SNR = 1, if h2

0�gw(1 kHz) = 1.1 × 10−6, while a spectrum with β = −1 will
be detected if h2

0�gw(2 Hz) = 1.5× 10−6. So, both for increasing or decreasing
spectra, to be detectable in one year at SNR = 1, h 2

0�gw must have a peak value,
within the VIRGO band, of the order of a few 10−6 in the case β = ±1. Under
the same conditions, a frequency-dependent spectrum can be detected at the level
7 × 10−8 (see the first column of table 12.6). Clearly, for detecting increasing
(decreasing) spectra, the upper (lower) part of the frequency band becomes more
important, and this is the reason why the sensitivity degrades compared to flat
spectra, since for increasing or decreasing spectra the maximum of the signal is at
the edges of the accessible frequency band, where the interferometer sensitivity
is worse. Second, for each β the sensitivity on h 2

0�gw( f ) always degrades going
from A to C. Relatively to A, the size of this decay for B and C increases with β,
and for β = 3 the correlation C show a sensitivity one order of magnitude lower
than the sensitivity of A. This means that in order to have the same sensitivity, the
product S(1)n S(2)n in case C has to be two orders of magnitude lower than in case A
(see equation (12.50)). The case β = 3 is particularly important, because this is
the frequency dependence of the spectrum predicted by the string cosmology.

Resonant masses and resonant mass-interferometer

Resonant mass detectors includes bars like NAUTILUS, EXPLORER and
AURIGA (see, e.g., [15, 21] for reviews). Spherical [16, 22] and truncated
icosahedron (TIGA) [23] resonant masses are also being developed or studied.
The correlation between two resonant bars and between a bar and an
interferometer has been extensively considered in [19, 24–26]. The results
obtained in [19] for the minimum values of h 2

0�gw in the case of a background
having constant frequency spectrum, for one year of integration and SNR = 1, are
summarized in table 12.7.

Using resonant optical techniques, it is possible to improve the sensitivity
of interferometers at special values of the frequency, at the expense of their
broadband sensitivity. Since bars have a narrow band anyway, narrow-banding
the interferometer improves the sensitivity of a bar-interferometer correlation by
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about one order of magnitude [20].
While resonant bars have been taking data for years, spherical detectors are

at the moment still at the stage of theoretical studies (although prototypes might
be built in the near future), but could reach extremely interesting sensitivities. In
particular, the correlation between VIRGO and one sphere with a diameter of 3 m,
made of Al 5056 (M = 38 ton), gives sensitivities that are, respectively, h 2

0�gw ∼
2× 10−5, if the sphere is located in the AURIGA site, and h 2

0�gw ∼ 4× 10−5 if
the sphere is at the NAUTILUS site [19]. Instead, the correlation of two spheres of
this type but located at the same site could reach a sensitivity h 2

0�gw ∼ 4× 10−7

[19]. All these figures improve using a denser material or increasing the sphere
diameter, but it might be difficult to build a heavier sphere. Another very
promising possibility is given by hollow spheres [16]. The theoretical studies
of [16] suggest for the correlation of two 40-ton colocated hollow spheres, made
of Al 5056, a sensitivity of h2

0�gw ∼ 6 × 10−8 at f = 218 Hz (one year of
observation and SNR = 1).

12.4.3 More than two detectors

When the outputs of M > 2 detectors are available, the information about
the magnitude of the stochastic GW background can be extracted in two ways:
combining the measurements from each detector pair or directly correlating the
outputs of the detectors. Both these techniques have been extensively treated
in [7], and here we shall only review the key results obtained in this analysis.

Multiple detector pairs

We indicate with

S(i j)
1 , S(i j)

2 , . . . , S(i j)
ni j , (i, j = 1, . . . ,M)

the nij different measurements, each of length T , of the optimally-filtered cross-
correlation signal S(i j) between the i th and j th detectors (see equation (12.8)).
Under the following hypothesis:

• T � the light travel time between any pair of detectors;
• the optimal filter functions (see equation (12.8)) for each detector pair are

normalized in a way that

〈S(i j)〉 = 1

nij

ni j∑
k=1

S(i j)
k = �βT, ∀(i, j)

for a stochastic background having a power-law spectrum� gw( f ) = �β f β ;
• the noise is large, i.e. the covariance matrix built from the cross-correlation

signals taken during the same time interval T is approximately diagonal

C(i j)(kl) = 〈S(i j)S(kl)〉 − 〈S(i j)〉〈S(kl)〉 ) δikδkl (σ (i j))2
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Table 12.8. Minimum values of h2
0�gw for one year of observation, for

(δ, α) = (0.95, 0.05), for the optimal combination of cross-correlation measurements
between multiple detector pairs, taken from all possible triples of interferometers
containing VIRGO.

VIRGO ) LIGO-WA ) LIGO-LA 2.6× 10−6

VIRGO ) LIGO-LA ) GEO-600 4.2× 10−6

VIRGO ) LIGO-WA ) GEO-600 4.8× 10−6

VIRGO ) LIGO-LA ) TAMA-300 5.4× 10−6

VIRGO ) LIGO-WA ) TAMA-300 6.6× 10−6

VIRGO ) GEO-600 ) TAMA-300 7.3× 10−6

Table 12.9. The same as table 12.8 for the case of quadruples.

VIRGO ) LIGO-WA ) LIGO-LA ) GEO-600 2.4× 10−6

VIRGO ) LIGO-WA ) LIGO-LA ) TAMA-300 2.6× 10−6

VIRGO ) LIGO-LA ) GEO-600 ) TAMA-300 4.2× 10−6

VIRGO ) LIGO-WA ) GEO-600 ) TAMA-300 4.8× 10−6

and, therefore, all the measurements can be considered uncorrelated;

the authors of [7] show that the optimal SNR turns out to be 7

SNR4 =
M∑

i=1

M∑
j>i

ni j (SNR(i j))4 (12.54)

where SNR(i j) is given in equation (12.12). Thus, in the case of a frequency-
independent spectrum �gw( f ) = �gw, the minimum value of �gw for given
detection (δ) and false alarm (α) rates turns out to be:

(
1

�gw(δ, α)

)2

=
M∑

i=1

M∑
j>i

(
1

�
(i j)
gw (δ, α)

)2

. (12.55)

where �(i j)
gw (δ, α) are the analogous quantities for the i j detector pairs (see

equation (12.50)). In the case (δ, α) = (0.95, 0.05), the minimum values of
h2

0�gw obtained considering all triples and quadruples of interferometers having
in common VIRGO, are reported in tables 12.8 and 12.9, respectively.

7 Remember that we defined the SNR as the square root of the SNR defined in [7].
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Many-detector correlation

The M-detector correlation signal S is the obvious generalization of
equation (12.8) for a two-detector:

S =
∫ T/2

−T/2
dt1 . . .

∫ T/2

−T/2
dtM s1(t1)s2(t2) . . . sM (tM )Q(t1, . . . , tM ).

Let us remark that, as a consequence of the fact that each detector output signal
is assumed to be a random Gaussian variable having zero mean value, 〈S〉 is
different from zero only for an even number of detectors (M = 2N).

Under the same hypothesis assumed in section 12.2.1 for the treament of the
two-detector case, the authors of [7] show that the SNR for the optimally-filtered
2N-detector correlation is given by

SNR4 ≈
∑
{...}
(SNR(12)SNR(34) . . .SNR(2N,2N−1))4 (12.56)

where the sum run over all the possible permutations of the sequence
{(i j), (kl), . . . , (pq)} with (i < j, k < l, . . . , p < q). In the case of a
frequency-independent background, with fixed detection and false alarm rates,
the minimum detectable value of �gw from data obtained via a 2N-detector
correlation experiment, is given by

(
1

�gw(δ, α)

)2

=
[

C(δ, α)
∑
{...}

(
1

�
(12)
gw (δ, α)�

(34)
gw (δ, α) . . .�

(2N−1,2N)
gw (δ, α)

)2]1/N

(12.57)

with
C(δ, α) = {√2[erfc−1(2α)− erfc−1(2δ)]}2(N−1)/N .

In table 12.10 are reported the minimum values of h 2
0�gw obtained from

equation (12.57) for the four-interferometer correlations. It is important to note
that, as clearly shown from the comparison with tables 12.8 and 12.9, these
minimum values are always greater than those for optimal combination of data
from multiple detector pairs.

By summarizing the results of this section we can say that the improvement
in sensitivity obtained using more detectors is not large compared to the case of
a single pair correlation (see table 12.4). This is due to the fact that correlating
2, 4, . . . , 2N detectors or combining in a optimal way data from multiple detector
pairs, one does not change the general dependence that

�gw ∼ T−1/2
tot
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Table 12.10. Minimum values of h2
0�gw for one year of observation, for

(δ, α) = (0.95, 0.05), for optimally-filtered four-detector correlations.

VIRGO ) LIGO-WA ) LIGO-LA ) GEO-600 3.7× 10−6

VIRGO ) LIGO-WA ) LIGO-LA ) TAMA-300 1.4× 10−5

VIRGO ) LIGO-LA ) GEO-600 ) TAMA-300 2.2× 10−5

VIRGO ) LIGO-WA ) GEO-600 ) TAMA-300 2.7× 10−5

of the minimum detectable value on the total observation time: what changes from
one case to another is only the numerical factors multiplying T −1/2

tot . Although the
improvement in sensitivity is limited the availability of the signals from various
detectors would be important in ruling out spurious effects.

12.5 Observational bounds

We close this section discussing what is actually known from the observational
side about the stochastic background. At present, there are strict limits on this
background in only a couple of frequency ranges, but other than that, only one
very general constraint. In the following we will only discuss the general one, the
nucleosynthesis bound, because it is the only relevant one for the frequency region
1 Hz < f < 1 kHz covered by the ground based detectors. The other bounds are
inferred from the timing irregularities in the arrival times of the pulses emitted by
some millisecond pulsars and the anisotropies on large angular scales of the CMB.
They, respectively, constrain �gw in the frequency regions f ∼ 10−8 Hz and
10−18 Hz . f . 10−16 Hz, which are far below any frequency band accessible
for the present-day ground- or space-based experiments. A complete discussion
of these bounds can be found in [4].

Nucleosynthesis successfully predicts the primordial abundances of
deuterium, 3He, 4He and 7Li in terms of one cosmological parameter η, the
baryon to photon ratio. In the prediction parameters of the underlying particle
theory also enter, which are therefore constrained in order not to spoil the
agreement. In particular, the prediction is sensitive to the effective number of
species at the time of nucleosynthesis, g∗ = g(T ) 1 MeV). With some
simplifications, the dependence on g∗ can be understood as follows. A crucial
parameter in the computations of nucleosynthesis is the ratio of the number
density of neutrons, nn, to the number density of protons, n p. As long as thermal
equilibrium is maintained we have (for non-relativistic nucleons, as appropriate
at T ∼ 1 MeV) nn/np = exp(−Q/T ) where Q = mn − mp ) 1.3 MeV.
Equilibrium is maintained by the process pe ↔ nν, with width � pe→nν , as long
as this width is greater than H . When the rate drops below the Hubble constant
H , the process cannot compete anymore with the expansion of the universe and,
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apart from occasional weak processes, is dominated by the decay of free neutrons,
the ratio nn/np remains frozen at the value exp(−Q/Tf), where Tf is the value of
the temperature at the time of freeze-out. This number, therefore, determines
the density of neutrons available for nucleosynthesis, and since practically all
neutrons available will eventually form 4He, the final primordial abundance of
this nucleus is very sensitive to the freeze-out temperature Tf. If we assume
for simplicity �pe→nν ) G2

FT 5 (which is really appropriate only in the limit
T � Q), where GF is the Fermi constant, from equation (12.3) turns out that T f
is determined by the condition

G2
FT 5

f )
(

4π3g∗
45

)1/2
T 2

f

MPl
. (12.58)

This shows that Tf ∼ g1/6∗ , at least with the approximation that we used for
�pe→nν . A large energy density in relic gravitons gives a large contribution to the
total density ρ and therefore to g∗. This results in a larger freeze-out temperature,
more available neutrons and then in overproduction of 4He. This is the idea behind
the nucleosynthesis bound [28]. More precisely, since the density of 4He increases
also with the baryon to photon ratio η, we could compensate an increase in g ∗ with
a decrease in η, and therefore we also need a lower limit on η, which is provided
by the comparison with the abundance of deuterium and 3He.

Rather than g∗, Nν is often used as an ‘effective number of neutrino species’
and is defined as follows. In the standard model, at T ∼ a few MeV, the active
degrees of freedom are the photon, e±, neutrinos and antineutrinos, and they have
the same temperature, Ti = T . Then, for Nν families of light neutrinos, one has

g∗(Nν ) = 2+ 7
8 (4+ 2Nν ), (12.59)

where the factor of two comes from the two elicity states of the photon, four
from e± in the two elicity states, and 2Nν counts the Nν neutrinos and the Nν
antineutrinos, each with their single elicity state. According to the standard
model, Nν = 3 and therefore g∗ = 43/4. Therefore, we can define an ‘effective
number of neutrino species’ Nν from

g∗(Nν ) ∼ 43

4
+

∑
i=extra bosons

gi

(
Ti

T

)4

+ 7

8

∑
i=extra fermions

gi

(
Ti

T

)4

. (12.60)

One extra species of light neutrino, at the same temperature as the photons, would
contribute one unit to Nν , but all species, weighted with their energy density,
contribute to Nν , which, of course, in general is not an integer. For i = gravitons,
we have gi = 2 and (Ti/T )4 = ρgw/ργ , where ργ = 2(π2/30)T 4 is the photon
energy density. If gravitational waves give the only extra contribution to N ν ,
compared to the standard model with Nν = 3, using equation (12.59), the above
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equation gives immediately (
ρgw

ργ

)
NS
= 7

8
(Nν − 3), (12.61)

where the subscript NS reminds us that this equality holds at the time of
nucleosynthesis. If more extra species, not included in the standard model,
contribute to g∗(Nν ), then the equals sign in the above equation is replaced by
less than or equal. The same happens if there is a contribution from any other
form of energy present at the time of nucleosynthesis and not included in the
energy density of radiation, like, for example, primordial black holes.

To obtain a bound on the energy density at the present time, we note
that from the time of nucleosynthesis to the present time ρgw scaled as 1/a4,
while, as a consequence of the assumed adiabatic expansion of the universe (see
section 12.1), ργ ∼ T 4 ∼ 1/(a4g4/3

S ). Therefore, one has

(
ρgw

ργ

)
0
=

(
ρgw

ργ

)
NS

(
gS(T0)

gS(1 MeV)

)4/3

=
(
ρgw

ργ

)
NS

(
3.91

10.75

)4/3

. (12.62)

Therefore we get the nucleosynthesis bound at the present time,(
ρgw

ργ

)
0
≤ 0.227(Nν − 3). (12.63)

Of course this bound holds only for GWs that were already produced at the
time of nucleosynthesis (T ∼ 1 MeV, t ∼ 1 s). It does not apply to
any stochastic background produced later, like backgrounds of astrophysical
origin (see section 13.5). Note that this is a bound on the total energy
density in gravitational waves, integrated over all frequencies. Writing ρ gw =∫

d(ln f ) dρgw/d ln f , multiplying both ρgw and ργ in equation (12.63) by h 2
0/ρc,

and inserting the numerical value h 2
0ργ /ρc ) 2.474× 10−5 [29], we get

∫ f=∞

f=0
d(ln f ) h2

0�gw( f ) ≤ 5.6× 10−6(Nν − 3). (12.64)

The bound on Nν from nucleosynthesis is subject to various systematic errors
in the analysis, which have to do mainly with the issues of how much of the
observed 4He abundance is of primordial origin, and of the nuclear processing of
3He in stars, and as a consequence over the last five years have been quoted limits
on Nν ranging from 3.04 to around 5. The situation has been recently reviewed
in [30]. The conclusion of [30] is that, until current astrophysical uncertainties
are clarified, Nν < 4 is a conservative limit. Using extreme assumptions, a
meaningful limit Nν < 5 still exists, showing the robustness of the argument.
Correspondingly, the right-hand side of equation (12.64) is, conservatively, of
order 5× 10−6 and anyway cannot exceed 10−5.
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If the integral cannot exceed these values, also its positive definite integrand
h2

0�gw( f ) cannot exceed it over an appreciable interval of frequencies,� ln f ∼
1. One might still have, in principle, a very narrow peak in h 2

0�gw( f ) at some
frequency f , with a peak value larger than say 10−5, while still its contribution
to the integral could be small enough. However, apart from the fact that
such behaviour seems rather implausible, or at least is not suggested by any
cosmological mechanism, it would also be probably of little help in the detection
at broadband detectors like VIRGO, because even if we gain in the height of the
signal we lose because of the reduction of the useful frequency band � f , see
equation (12.12).

These numbers, therefore, give a first idea of what can be considered an
interesting detection level for h 2

0�gw( f ), which should be at least a few times
10−6, especially considering that the bound (12.64) refers not only to gravitational
waves, but to all possible sources of energy which have not been included, like
particles beyond the standard model, primordial black holes, etc.

As a final remark, we note that a very weak bound in the region f ∼
1 kHz has been obtained from the analysis of correlation between bar detectors.
Preliminary results on a NAUTILUS–EXPLORER correlation, using 12 hours of
data, have been reported in [27], and give h 2

0�gw( f = 920 Hz) ∼ 120.



Chapter 13

Sources of SGWB

Here we review the present knowledge about the potential processes, both of
cosmological and astrophysical origin, from which a stochastic GW background
might arise. We examine in some detail the mechanisms at work in each case and
the features of the corresponding spectrum of GW radiation.

13.1 Topological defects

The concept of the spontaneous symmetry breaking, the idea that there are
underlying symmetries of Nature that are not manifest in the structure of the
vacuum, play a crucial role in the modern description of the particle interactions.
Of particular interest for cosmology is the theoretical expectation that at high
temperatures, symmetries that are spontaneously broken today were restored
[31]. In the context of the hot big bang cosmology this implies a sequence of
phase transitions in the early universe, with critical temperatures related to the
corresponding symmetry breaking scales.

To illustrate the phenomenon of the high-temperature symmetry restoration
we consider a complex scalar field with a ‘Mexican-hat’ potential

V (φ) = 1
2λ(φ

†φ − η2)2 (λ > 0). (13.1)

The Lagrangian is invariant under the group U(1) of the global phase
transformations, φ → eiαφ. The minima of the potential are at nonzero values
φ, and so the symmetry is spontaneously broken and φ acquires a vacuum
expectation value (VEV)

〈φ〉 = ηeiθ (13.2)

where the phase θ is arbitrary. We thus have a manifoldM of degenerate vacuum
states corresponding to different choices of θ , that, in this case, is the circle
|φ| = η in the complex φ plane.

211
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Figure 13.1. The effective potential.

At finite temperature the effective potential for φ acquires additional,
temperature-dependent terms. In the high-temperature limit, one has:

VT(φ) = AT 2φ†φ + V (φ) (13.3)

where the dimensionless constant A depend on the self-coupling λ and is assumed
to be positive. From equations (13.1) and (13.3) we see that the effective mass of
the field φ at temperature T is:

m2(T ) = 2A(T 2 − T 2
c ) where Tc =

(
λ

A

)1/2

η.

From this expression we see that for T > Tc, m2(T ) is positive, the minimum
of VT(φ) is at φ = 0 and so the symmetry is restored (see figure 13.1).
The temperature Tc is the critical temperature of the phase transition from the
symmetric (〈φ〉 = 0) to the broken-symmetry (〈φ〉 += 0) phase. Unless λ is very
small, Tc ∼ η. In this example the transition is second order: the symmetric phase
corresponds to a maximum for VT at T < Tc and the transition occurs smoothly.
More complicated models can lead to first-order transitions, where the symmetric
phase remains a local minimum at T < Tc separated by a barrier from the minima
at φ += 0. In this case the transition occurs through the bubble nucleation.

In a cosmological context, as the universe cools through the critical
temperature the Higgs field φ develop an expectation value 〈φ〉 corresponding
to some point in the manifoldM. Since all points of this manifold are equivalent,
the choice depends on random fluctuations and is different in different regions
of space. Therefore, associated to the phase transition there is a length scale ξ
representing the maximum distance over which the Higgs field can be correlated.
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This correlation length depends upon the details of the phase transition and is
temperature dependent. In any case, since correlations cannot be established at
speed greater than the speed of light, ξ cannot exceed the causal horizon d H, the
distance travelled by light during the lifetime of the universe. In the standard
cosmology dH ∼ t and, thus, one has

ξ ≤ tc

where tc is the time at which the phase transition is completed. The actual
magnitude of ξ at the phase transition and afterwards is determined by
complicated dynamical processes and can be much smaller than this causality
upper bound.

Since the field must be continous, on the boundaries between different
correlation regions φ leaves the vacuum manifold M and assume values
corresponding to a high potential energy. For topological reasons, these regions
of false vacuum are stable and survive to further evolution of the universe frozen
in the form of topological defects.

The cosmological production mechanism described above is known as the
Kibble mechanism [32] and is very much akin to the mechanism for production
of various defects in solid state and condensed matter systems. Crystal defects, for
example, form when the water freezes or when a metal crystallizes. The analogies
between defects in particle physics and condensed matter physics are quite deep.
Defects form for the same reason: the vacuum manifold is topologically non-
trivial. However, the defect dynamics is different. The motion of defects in
condensed matter are friction-dominated, whereas the defect in cosmology obey
relativistic equations, second order in time derivatives, since they come from a
relativistic field theory.

Depending on the topology of the manifold M the defects can occur in
the form of points, lines or surfaces. They are called monopoles, strings and
domain walls, respectively [32]. Hybrid defects can be formed in a sequence of
phase transitions, for example, the first transition produces monopoles, which get
connected by strings at the second phase transition. The main conclusions of the
studies about these defects can be summarized as follows.

• Domain walls and monopoles are disastrous for cosmological models and
their presence should be avoided.

• Strings cause no harm, but can lead to very interesting cosmological
consequences. In particular, they can generate density fluctuations sufficient
to explain galaxy formation and can produce a number of distinctive and
unique observational effects (anisotropies in the CMB temperature, double
images of objects behind them and a stochastic GW background).

• Hybrid defects are transient and eventually decay into relativistic particles.
If this happens at a sufficiently early time, the decay products thermalize and
we can see no trace of the defects, except perhaps in the form of gravitational
waves.
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13.1.1 Strings

To illustrate the (cosmic) strings let us come back to the simple model considered
at the beginning of the preceding section (see equations (13.1) and (13.2)). Since
〈φ〉 is single valued, the total change of the phase θ around any closed path in
space must be an integer multiple of 2π . Let us now consider a closed path with
�θ = 2π . If no singularity is encountered, as the path shrunk to a point, �θ
cannot change continuously from 2π to zero, and, thus, we must encounter at
least one point where θ is undefined, i.e. 〈φ〉 = 0. This means that at least one
tube of false vacuum should be caught inside any path with �θ += 0. Such tubes
of false vacuum, called strings, must either be close or infinite in length, otherwise
it would be possible to contract the path to a point without crossing the string.

The simplest strings are produced in the phase transition associated to the
spontaneous breaking of a local U(1) symmetry. In this case the Lagrangian
contains a gauge field Aµ and a complex Higgs field φ which carries U(1) charge
g and with self-interaction of the form (13.1):

L = (Dµφ)†(Dµφ)− 1
4 Fµν Fµν − V (φ) (13.4)

where
Dµ = ∂µ − ig Aµ, Fµν = ∂µAν − ∂ν Aµ.

In this case the string solution has a well-defined core outside of which φ contains
no energy density in spite of non-vanishing gradients ∇φ: the gauge field A µ can
absorb the gradient, i.e. Dµφ = 0 when ∂µφ += 0. The radius δ of the string core
is determined by the Compton wavelengths of the Higgs and vector bosons. For
mφ � m A, which is usually the case, one has:

δ ∼ m−1
φ = λ−1/2η−1

and the energy of the string per unit length within this width is finite and given
by:

µ ∼ λη4δ2 = η2

(independent of the coupling λ). The value of µ (or equivalently η) is the only
free parameter of the string. For a phase transition at the grand unification (GUT)
energy scale, η = 1016 GeV and

δ ∼ 10−30 cm, µ ∼ 1022 g cm−1. (13.5)

Strings of cosmological interest have sizes much greater than their width. In
this case the internal structure of the string is unimportant and physical quantities
of interest, such as the energy-momentum tensor, can be averaged over the cross
section. For a long, thin, straight string lying along the z-axis we define

T̃ νµ = δ(x)δ(y)
∫

dx dy T νµ .
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It can be shown [33] that, as a consequence of the invariance of the string under
Lorentz boost along z and the conservation law T νµ,ν one has:

T̃ νµ = µδ(x)δ(y) diag(1, 0, 0, 1). (13.6)

This expression shows a remarkable property of the strings: the pressure is
negative, i.e. is a string tension, and this tension is equal to the mass per unit
length µ. One recalls from classical mechanics that small transverse waves in a
string with tension T move at speed (T/µ)1/2, so it is apparent that waves move
along a string at the velocity of light.

Applied to strings, the Kibble mechanism implies that at the time of phase
transition a network of strings with typical length ξ(tc) will form. According to
numerical simulations at formation about one fifth of the initial energy is in small
closed loops and the remaining in ‘ infinite’ long strings. The evolution of this
network for t > tc is complicated. The key processes are:

(i) The intercommutation of intersecting string segments, in which the two
segments swap partners, rather than passing through one another (see figure
below). Based upon numerical simulations it appears that the probability for

this to occur is nearly unity. This process leads to the continual chopping of
long strings into smaller segments and/or loops.

(ii) The decay of small loops through the emission of gravitational radiation.
The strings oscillate relativistically under their own tension and, thus, a loop
of characteristic radius R will radiate gravitational waves at a characteristic
frequency ω ∼ R−1 due to its time-varying quadrupole moment, Q ∼ µR 3.
For an order of magnitude estimate the power radiated in gravitational waves
can be calculated using the quadrupole formula (G is Newton’s constant)

P ∼ G〈 ˙̈Q ˙̈Q〉 ∼ Gµ2. (13.7)

Because this power is constant, independent of the loop size, the mass-energy
of the loop decreases linearly with time. In a characteristic time

τ ∼ R

Gµ

the loop shrinks to a point and vanishes. From equation (13.5), in the case of
a GUT phase transition, one has Gµ ∼ 10−6.
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These two processes combine to create a mechanism by which the infinite
string network loses energy (and length as measured in comoving coordinates),
preventing the network from dominating the universe. Indeed, based upon
computer simulations and analytical arguments, there is strong evidence that the
cosmological evolution of the network becomes self-similar, approaching what is
called a ‘scaling’ solution. In the simplest scale-invariant model, the correlation
length ξ of the network is proportional to its causality bound:

ξ(t) ∼ t ∼ dH(t)

and, thus, the statistical properties of the network are time independent if all the
distances are scaled to the causal horizon.

This scaling property can be used to obtain qualitative relations. For
example, the energy density of long strings is given by:

ρ∞ = A
µ

d2
H(t)

∼ A
µ

t2

where A is a dimensionless constant representing the number of long strings
present per horizon sized volume. Numerical simulations suggest the value
A = 52 in the radiation-dominated era, and A = 31 in the matter-dominated
one. True scale invariance implies that the size of a newly formed loop produced
by the network is a fixed fraction of the horizon

l(t) = αdH(t) ∼ αt .

Although the loops are observed to form with relativistic peculiar velocities v i (the
loop centre of mass is moving with respect to the rest frame of the cosmological
fluid), these are rapidly redshifted to zero by the expansion of the universe, leaving
a generic loop with only a fraction f r = (1 − v2

i )
1/2 of its initial energy. This

redshifting of peculiar velocities does not affect the loop production rate, but it
does change the loop size immediately after its formation to:

l(t) = frαdH(t). (13.8)

Hence, only a fraction f r of the total loop energy is converted into GWs. By
numerical simulations this fraction turns out to be 0.71.

This scale-invariant model is implemented by the assumption that the
universe is described by a spatially flat (� = 1) FRW cosmology. A full treatment
of this model is developed in [34]. In particular, the effect of the string network
on the expansion of the universe and the rate of loop formation are calculated.

The spectrum of GWs produced by a network of string loops can be
obtained implementing the scale-invariant model described above with a model
of the emission of gravitational radiation by string loops. This model has been
developed in [34] and is composed of the following three elements:
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(i) A loop radiates with power

P = �Gµ2 (13.9)

where � is a dimensionless radiation efficiency that does not depend on the
loop size, but only on its shape. Recent studies of realistic loop configuration
indicate that the distribution of the values of this parameter has mean value
〈�〉 ≈ 60. From equations (13.8) and (13.9), it follows that a loop formed at
time tb at a time t > tb has length

l(t, tb) = frαdH(t)− �Gµ(t − tb).

The loop disappears when this length reaches zero, at a time

td =
(

1+ frαdH(tb)

�Gµtb

)
tb = βtb

(β is not function of tb because dH(tb) ∼ tb).
(ii) The frequency of GWs emitted at time t by a loop formed at time t b is given

by

fn(t, tb) = 2n

l(t, tb)
(n = 1, 2, 3, . . .). (13.10)

(iii) The fraction of the total power emitted in the nth oscillation mode at
frequency fn is given by the coefficient Pn , where

� =
∞∑

n=1

Pn. (13.11)

Analytic and numerical studies suggest that the radiation efficiency
coefficients behave as Pn ∝ n−q .

This model has several shortcomings. First, the spectral index q has not been
well determined. Numerical simulations suggest q = 4/3 while from analytic
calculations q = 2 is obtained. The simulations have limited resolution of the
important small-scale features of the long strings and loops and, therefore, the
analytic prediction may be more realistic. Second, the effect of the back reaction
on the motion of the strings has been ignored. The authors of [35] have argued
that this effect result in an effective high-frequency cut off in the oscillation mode
number n. Thus, the loop radiates only in a finite range of frequencies and
equation (13.11) is replaced by

� =
n∗∑

n=1

Pn. (13.12)

By comparing the back-reaction length scale to the loop size these authors
estimate that the cut off should be no larger than∼(�Gµ)−1.
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Figure 13.2. The spectrum of gravitational radiation produced by a string network for a
given set of dimensionless parameters.

We are now in a position to construct the differential equation describing
the rate of change of the energy in loops present in a volume V (t) at time t .
The numerical integration of this equation and the method applied to calculate
the power spectrum of gravitational radiation are discussed in detail in [34].
The results of this calculation are shown in figure 13.2. In this paper analytic
expressions for the latter have also been derived. Even though simplified for
convenience, these analytic expressions offer the opportunity to examine the
various dependences of the spectrum on string and cosmological parameters.

The spectrum of gravitational radiation produced by a network of strings has
two main features:

• A nearly equal gravitational radiation energy density per logarithmic
frequency interval in the range (10−8, 1010) Hz. This portion (‘ red noise’ )
of the spectrum corresponds to GWs emitted during the radiation-dominated
era and does not show a significant dependence by the spectral index q and
the cut-off n∗ [35].
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• A peak near f ∼ 10−12 Hz. The shape of this portion depends critically
on the model for the emission by a loop. The overall height of the spectrum
depends linearly on Gµ, while the frequency at which the peaked spectrum
merges to the red noise portion depends inversely on α. The important result
is that for values n∗ < 102 and q ≥ 4/3 the spectrum drops off as 1/ f for
any value.

Because the frequency band is accessible to VIRGO, in the following we
shall concentrate on the ‘ red noise’ portion of the spectrum, referring to [34, 35]
for details about the region of the peak.

An analytic expression for the ‘ red noise’ portion of the GW spectrum is
given as follows:

�gw( f ) = 8π

9

A�G2µ2

α
(1− 〈v2〉)β

3/2 − 1

1+ zeq
. (13.13)

Let us remark that the above expression for the spectrum does not account
for the reduction in the number of relativistic degrees of freedom that occurs every
time the temperature falls through a particle mass threshold. This has the effect
of modifying equation (13.13) by a factor

N =
(

g∗a

g∗b

)1/3

where g∗a (g∗b) is the number of relativistic degrees of freedom at a temperature
above (below) the particle mass threshold. Within the standard model SU(3)C ⊗
SU(2)L ⊗U(1)Y , one has:

N =




1, f ∈ (10−8, 10−10α−1) Hz(
3.36

10.75

)1/3

= 0.68, f ∈ (10−10α−1, 10−4α−1) Hz(
3.36

106.75

)1/3

= 0.32, f ∈ (10−4α−1, 108) Hz

(13.14)

where we take α ∼ �Gµ in evaluating the above frequency range. Hence, the
thermal history of the cosmological fluid reflects on the red noise spectrum by
a series of steps down in amplitude with increasing frequency. The detection of
such a shift would provide unique insight into the particle content of the early
universe (at times much earlier than the electroweak phase transition).

There is a substantial body of astronomical evidence which suggests that
the cosmological density parameter �0 is less than one, i.e. the universe is open.
The evolution of strings in an open universe will differ from that in the flat case
only after the time at which the expansion of the universe becomes curvature-
dominated: after this time the linear regime no longer exists. This is important
for consideration of GWs created with low frequencies during the matter era, but,
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apart from a shift in the frequency corresponding to equal matter-radiation has
a negligible effect on the red noise spectrum, which is produced in the radiation
era [35].

The values of the dimensionless parameters appearing in equation (13.13)
are not completely known. Numerical simulations provide a reasonable estimate
for A and 〈v2〉 in the radiation-dominated era: A = 52 ± 10, 〈v 2〉 = 0.43 ±
0.02. Comparing detailed calculations of large angular scale CMB temperature
anisotropies induced by strings [36] with observations, the string mass per unit
length has been normalized to

Gµ = 1.05+0.35
−0.20 × 10−6.

This value is below the upper bound obtained from the pulsar timing
and nucleosynthesis constraints on the gravitational radiation spectrum [35].
However, the value of α (the size of the loop at formation) is still unknowm. The
high-resolution numerical simulations show that α < 10−2. This surprisingly
small relative size is a result of the small-scale structure on the long strings and,
since this is cut off by gravitational back-reaction, we may reasonably expect
that α > �Gµ ≈ 6 × 10−5 [33]. This uncertanty in the value of α leads to
a wide uncertainty in β that, because this parameter governs the lifetime of the
loop, has a large effect on the spectrum. However, it is easy to verify that the
spectral density �gw( f ) reach a minimum value when α → 0. Therefore, in the
radiation-dominated era (dH = 2t):

�gw( f ) ≥ 8π

3
A fr Gµ

1− 〈v2〉
1+ zeq

N, f ∈ (10−8, 1010) Hz. (13.15)

Since 1+ zeq = 2.32× 104�0h2
0, in the case �0 = 1 one has:

h2
0�gw ≥ 5.0× 10−9 N .

In the case of the standard model thermal scenario, the value of N to be inserted in
this expression is 0.32 (see equation (13.14)). But, as anticipated in section 12.1,
the evolution of N with the temperature is known only up to T ∼ 10 3, i.e. up
to frequencies f ∼ 10−3α−1 ∼ 10 Hz. If the particle physics model has more
degrees of freedom beyond this temperature ( f & 10 Hz) there could be other
steps in the function N(T ) associated with other phase transitions. However,
the dependence of the spectral density on the number of degrees of freedom is
reasonably weak and, thus, we can conservatively estimate

h2
0�gw ≥ 1.6× 10−9 (13.16)

in the frequency range explored by VIRGO.
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13.1.2 Hybrid defects

If the symmetry breaking responsible for the formation of the strings occur as a
part of a much more complicated breaking scheme, it is likely that hybrid systems
composed by topological defects of different dimensionality may form. In the
case when the hybrid system does not annihilate immediately this may lead to a
stochastic background in a similar way to that for the strings [38]. The interesting
feature of these objects is that they evade the constraints from the CMB and pulsar
timing allowing for larger values of Gµ and hence larger contributions to the
SGWB in the detectable range of frequencies.

Walls bounded by strings

Domain walls are formed when a discrete symmetry is broken. The simplest
model of this sort is that of real scalar field with a potential

V (φ) = 1
2λ(φ

2 − η2
w)

2.

The reflection symmetry group Z 2 of the Lagrangian (invariance under φ→ −φ)
is spontaneously broken when φ takes on the VEV 〈φ〉 = ±η, and so the manifold
M consists of only two points. As we go from a region with 〈φ〉 = η to a region
with 〈φ〉 = −η, we should necessarily pass through 〈φ〉 = 0 and, thus, the two
regions must be separated by a wall of false vacuum. Therefore, the simplest
sequence of phase transitions that results in walls bounded by strings is

G → H ⊗ Z2 → H

where at first transition (T ∼ ηs) strings form and at the second (T ∼ ηw) each
string gets attached to a domain wall.

Before the formation of walls the evolution of strings is as in the standard
scenario described above. After a period of overdamped motion, the strings
start moving relativistically at time ts and approach a scaling regime where the
characteristic scale of the network is comparable to the horizon. After the time
tw at which the domain walls form the evolution of the network depends on the
ratio between the string tension µ ∼ η2

s and wall surface tension σ ∼ η3
w. The

walls become dynamically important at t ∼ µ/σ , when they pull the strings
towards one another, and the network breaks into pieces of wall bounded by string.
Alternatively, if tw > µ/σ the breakup of the network occurs immediately after
the wall formation. By indicating with t∗ = max{µ/σ, tw}, the typical size of the
pieces is expected to be ∼αt∗.

Gravitational waves emitted by oscillating loop of strings during the period
t ∈ (ts, t∗) form a SGWB with a nearly flat spectrum extending over the
frequency range f ∈ [2/α(t∗teq)

1/2, 2/α(tsteq)
1/2]. For this frequency range

to overlap with the one covered by VIRGO the strings must decay before the
decoupling, and, thus, the only constraint on this background comes from big
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bang nucleosynthesis. It can be shown [38] that:

�gw( f ) ∼ 6× 10−3Gµh−2
0 with Gµ .

8× 10−4

ln(t∗/ts)
. (13.17)

Although ts and t∗ are model-dependent (ts through the assumed cosmological
scenario; t∗ throughµ and σ ), they do not have to be separated by many orders of
magnitude. Following [38] if we assume ln(t∗/ts) . 1 equation (13.17) gives:

h2
0�gw . 5× 10−6. (13.18)

At t > t∗ these string loops spanned by domain walls will collapse into
gravitational radiation (and other decay products) in about a Hubble time. This
process takes place over a relatively short frequency range and may lead to a sharp
peak in the spectrum. However, since the exact nature of this contribution display
a strong dependence on model phenomenology, it is not possible at present to
predict whether or where such a peak should occur [37].

Strings connected by monopoles

Monopoles are point defects which form when the manifold M of equivalent
vacua contains unshrinkable surfaces. A simple model that illustrates the
monopole solution is that of an SO(3) gauge theory spontaneously broken down
to U(1) by a Higgs triplet φa with a potential

V (φ) = 1
2λ(φ

aφa − η2
m)

2, (a = 1, 2, 3).

The magnitude of 〈φa〉 is fixed by the minimization of the potential to |φ| = ηm,
but its direction in group space is not and the manifold M is a sphere in this
space. If we choose φ(*r ) = (0, 0, ηm) the SO(3) symmetry is broken down to
U(1) because φ is invariant under rotations about the ê3-axis. Another, less trivial,
choice is represented by

φi (*r) = ηmr̂i

where r̂i is a unit vector in coordinate space. For this configuration of the field
there must be a point in space where φ = 0 and the energy density is non-
vanishing. This point of false vacuum is a monopole.

Therefore, the prototypical sequence of symmetry breakings resulting in
monopoles connected by strings is

G → H ⊗U(1)→ H

where monopoles formed at first transition (T ∼ ηm) and strings get connected
by monopole/antimonopole (M M̄) pairs at the second (T ∼ ηs). If the monopole-
forming transition occurs after any period of inflation which can have taken
place, then the average separation of the monopoles is always smaller than the
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Hubble radius and when the M M̄ pairs get connected by strings the hybrid system
collapse in less than one Hubble time by dissipating energy into friction with the
cosmological fluid.

For our purposes, the most interesting scenario is when the monopoles are
formed during the inflation but are not completely inflated away. The strings are
formed later with a length scale ξ that is much smaller than the average monopole
separation d. In the course of the evolution ξ grows like t and eventually becomes
comparable to d, so that at some time tm we are left with M M̄ pairs connected by
strings. If the strings are formed during inflation, soon after the monopoles, they
do not go through a period of relativistic evolution and no gravitational radiation is
produced prior to tm. In contrast, if the strings are formed in the post-inflationary
epoch, they can have a period of relativistic evolution and a nearly flat stochastic
background identical to that for walls bounded by strings is produced before t m.

At t > tm, the M M̄ pairs oscillate and gradually convert their energy in
gravitational radiation. This process has been studied in detail in [38] for the
simplest case of a straight string connecting the monopoles. It was found that the
spectral density of the radiation emitted by this simple configuration verify the
bound

h2
0�gw . 2× 10−8 (13.19)

in the frequency range of VIRGO.

13.2 Inflation

It is well known that many of the shortcomings of the standard cosmological
model (such as isotropy of the CMBR, structure formation, flatness and monopole
problems) can be successfully faced in the framework of the so-called inflationary
models (see [39, 40] for a review).

The basic idea shared by almost all the various models [41–44] of inflation
is that in early times the universe was dominated by the vacuum energy of
some scalar field, which provided an exponential growth of the scale factor
of the universe; then, as a result of a phase transition (maybe associated with
a spontaneous symmetry breaking), the scalar field was captured by the true
minimum of its potential, made some oscillations and finally settled down in it.
The energy previously stored in the false vacuum was converted into the decay
products of the scalar field, produced mainly during the oscillatory stage: this
process is responsible for the reheating of the universe, thus providing the usual
‘hot’ initial conditions for the beginning of the radiation-dominated era.

Despite the fact that a complete and satisfying model of inflation is not yet at
hand, the ‘ inflationary paradigm’ , i.e. the idea of a primordial stage of accelerated
expansion, is widely accepted and considered as a necessary ingredient of every
cosmological model. Moreover, an inflationary stage provides a very interesting
mechanism of amplification of perturbations (see [47]) that, as well as being
important for what concerns the problem of the structures formation, generates
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also a stochastic background of gravitational waves. The basic concept is quite
simple: zero point quantum fluctuations of every sufficiently light field can be
amplified when the size of the perturbation becomes larger than the event horizon.
This is the classical interpretation of the well-known fact that a time-dependent
gravitational field produces particles even if the initial state contains no quanta
(see [45] for details).

13.2.1 Classical picture

Since the final number of quanta created is typically very large, it comes out that
a classical analysis of the phenomenon is appropriate and gives the right answer.
So, let us show how this amplification works by studying the classical equation of
motion for gravitational perturbations; we will return to the quantum description
later.

The starting point is to separate the metric into a ‘background’ 1 and a
‘propagating’ part:

gµν ∼ R2(η)(−dη2 + d*x2)+ hµν,

where R is the scale factor of the universe, depending only on the conformal time
η (in terms of the usual cosmic time dη = dt/R(η)). The equation of motion for
hµν in the FRW background is obtained by taking the first-order variation of the
Einstein equations. One can define

hµν ∼
1

R(η)
εµν (
*k)ψ(η)ei*k·*x , (13.20)

where εµν (*k) is the polarization tensor. It comes out that, with a suitable gauge
choice, ψ obeys the following equation:

ψ ′′(η)+
(

k2 − R′′(η)
R(η)

)
ψ ∼ 0, (13.21)

where ‘ ′ ’ denotes the derivative with respect to the conformal time. This is a
Schrödinger-like equation with the potential given by V = R ′′/R. For k � V (η)
we have for ψ the obvious plane wave solution ψ ∼ e−ikη , so that |hµν | ∼ 1/R;
if, instead, k � V (η), we get the two following solutions:

ψ1 ∼ R(η), ψ2 ∼ R(η)
∫

dη

R2(η)
.

As will be seen later, in the case of our interest ψ1 is the dominant solution, so, in
this case, |hµν | ∼ 1. This means that a solution characterized by a long wavelength
(k � V (η)) is amplified with respect to a short wavelength one by a factor R(η);

1 For the sake of simplicity we consider a spatially flat universe.
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as a first approximation we can assume that this amplification takes place as long
as k < V (η). The last inequality, apart from irrelevant numerical factors due to
our approximation, turns out to have the same analytical form of the condition:

k

R
<

R′

R2
≡ H (η),

that relates the physical momentum of the perturbation to the Hubble parameter
H , whose inverse corresponds to the horizon size: this is just the condition
anticipated above, i.e. that a perturbation is amplified when its wavelength
becomes larger than the event horizon.

13.2.2 Calculation of the spectrum

To calculate the spectrum of perturbations we need to find particular solutions
of the Schrödinger-like equation previously introduced. Let us, then, specify our
model: the form of the potential V is determined by the evolution of R(η); for
our purposes it is sufficient to consider a three-stage model in which, as shown
in figure 13.3, a de Sitter phase (characterized by a constant Hubble parameter
Hds) is followed by a radiation-dominated (RD) and, then, by a matter-dominated
(MD) era:

R(η) ∼




− 1

Hdsη
, η < η1 < 0 de Sitter

η − 2η1

Hdsη
2
1

, η1 < η < η2 radiation

(η + η2 − 4η1)
2

4Hdsη
2
1(η2 − 2η1)

, 0 < η2 < η < η0 matter.

(13.22)

The form of this expression is chosen in order to make R and R ′ continuous at
the transition points η1 and η2 (while we have indicated present conformal time
by η0). Now we have to find a solution of equation (13.21) that reduces to a
pure positive frequency mode at early times, and see what is the coefficient of the
corresponding negative frequency mode at late times. Hence, our solution has the
following form:

ψ(η) ∼


ψ+i , η < η1
αkψ

+
r + βkψ

−
r , η1 < η < η2

γkψ
+
m + δkψ−m , η2 < η

(13.23)

with

ψ+i = e−ikη
(

1− i

kη

)
ψ±r = e∓ikη (13.24)

ψ±m = e∓ikη
(

1− i

2k(η+ η2 − 4η1)

)
.



226 Sources of SGWB

1 2 3 4 5
η (arbitrary units)

10
0

R
(η

) 
(a

rb
itr

ar
y 

un
its

)

η1 η2 η0

R1

R2

de Sitter

RD

MD

Figure 13.3. The scale factor as a function of the conformal time. The universe undergoes
a transition from a de Sitter- to a radiation-dominated phase at the time η1, and from a
radiation to a matter dominated phase at the time η2. The present epoch corresponds to η0.

At first sight, the first and the third modes written in equation (13.24), seem
not to be pure plane waves solutions. This comes from the fact that we are in
curved spacetime: it can be easily verified that in the limit k →∞, i.e. when the
wavelength is so short that the particle does not ‘ feel’ the curvature of spacetime,
all the modes in equation (13.24) reduce to the standard plane-wave form. The
fact that ψ±r is already in the standard form is due to the conformal invariance of
the radiation-dominated spacetime.

The coefficients α, β, γ and δ in equation (13.23) are calculated by requiring
the overall solution ψ(η) to be continuous with its first derivative at transition
times η1,2. Equation (13.21) says that this problem is similar to the well-
known quantum mechanics problem of tunnelling through a potential barrier
V (η). Therefore, α, β, γ and δ can be considered as the transmission/reflection
coefficients and one can show that the number of created gravitons with comoving
frequency k is

Nk ∼ |δk |2 =
(

3H 3
dsR(η1)

4

8R(η2)

)2
1

k6
. (13.25)

This expression should be taken with care, because the simple model
described by equation (13.22) does not take into account two important physical
effects that force equation (13.25) to hold only in a limited range of frequencies.
First of all, the perturbations whose physical wavelength is greater than the
present Hubble length (R(η0)/k > 1/H0) do not contribute to the energy density;
so k0 = R′0/R0, corresponding to a physical frequency f 0 ∼ 10−19 Hz, provides
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the lower bound to the extension of the spectrum. To find the upper bound
one must note that in our model the transition between the different regimes
takes place instantaneously; in a more realistic situation such transitions have
a typical duration time�t , and consequently there is a cut-off physical frequency
of order 1/�t . In our case the typical time of the transitions is of the order of
the Hubble parameters at the transition points (H (η1), H (η2)). This means that
for k > k2 = R′2/R2, i.e. for f ≥ 10−16 Hz, equation (13.25) is not the correct
expression for Nk ; above this frequency the radiation-matter transition does not
affect the spectrum, but the inflation-radiation one is still important. Hence,
the number of gravitons created is given by the corresponding equation, with δ
replaced by β

Nk = |βk |2 =
(

H 2
dsR(η1)

2

2k2

)2

. (13.26)

In turn, equation (13.26) has a high frequency cut-off given by k 1 = R′1/R1 =
−1/η1; η1, and consequently the corresponding value of the physical cut-off
frequency f1, is an almost free parameter of the model and depends on the
reheating temperature. A typical value for f 1 is the one reported in [46] ( f1 ∼
1010 Hz), but other (also much lower) values are possible, depending on the
model; in general one has f1 > 1 kHz. Beyond f1 there is no amplification
mechanism at all and the spectrum goes rapidly to zero.

Once obtained the result for Nk , it is straightforward to obtain its contribution
to ρgw, and consequently to �gw

dρgw( f ) = 2 · 2π f · Nk( f ) · 4π f 2 d f,

where the factor of two is due to polarization, and f = k/2πR 0 is the physical
frequency. The final result for �gw in terms of the physical frequency is then

�gw( f ) = 8

3πH 2
0 M2

Pl




(
3H 3

ds

16π

)2 (
R1

R2

)2 (
R1

R0

)6 1

f 2
, k0 < 2π f < k2

H 4
ds

4

(
R1

R0

)4

, k2 < 2π f < k1

0, 2π f > k1
(13.27)

where MPl is the Planck mass and H0 is the present value of the Hubble parameter.
Because of the flatness of�gw( f ) the strongest constraint turns out to be the

one related to the observed anisotropy in CMBR. This constrains the spectrum as
follows

h2
0�gw ≤ 7× 10−11

(
H0

f

)2

for f ∈ (10−19, 10−16) Hz, (13.28)

which in turn implies

Hds ≤ 1039 Hz ) 5× 1014 Gev ) 5× 10−5MPl.
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Figure 13.4. h2
0�gw against the physical frequency f (logarithmic scales). Here

f1 = 100 kHz.

Given the shape of the spectrum (see figure 13.4) one obtains in the
frequency region of interest for VIRGO the following bound:

h2
0�gw < 8× 10−14, (13.29)

many orders of magnitude below the sensitivity limit of the planned detectors.

Finally we remark that the result reported in equation (13.27) is valid if
the Hubble parameter during inflation is strictly constant; the calculation can be
done also for other, more realistic models, but the final result is not significantly
different from the one reported above. For instance, in the so-called ‘slow-
roll’ inflation the Hubble parameter is slightly decreasing during the inflationary
stage and makes the spectrum slightly tilted, instead of constant, in the radiation-
dominated region. Anyway the tilt is so small that the value of � gw at interesting
frequencies is different from the one of equation (13.29) only for an order of
magnitude (in addition this correction has the ‘wrong’ sign, i.e. it lowers the
bound!).
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13.3 String cosmology

The basic mechanism of generation of relic gravitational waves in cosmology has
been discussed in the preceding section about inflation where the main concepts
have been exposed. The crucial point of the outcome was the flatness of the
spectrum which, combined with the COBE bound at very low frequency, gives
a very strong constraint on the spectrum even at high frequency. To satisfy the
COBE bound and still have a chance of being observable at VIRGO or LIGO the
spectrum must grow with frequency. A spectrum of this kind has been found in a
cosmological model suggested by string theory [48].

In string theory the fundamental objects are one-dimensional extended
entities, i.e. strings. Their fundamental excitation of given energy and angular
momentum are particles of given mass and spin. String theory has one only
fundamental (dimensionful) constant: the string tension T which can be traded
for a fundamental length λs ≡ √h̄c/T . The mass scale of the excitation of the
string is therefore

√
T which, as string theory includes gravity, should be near the

Planck mass2. The gauge couplings are not constant (neither at classical level)
but depend on the expectation value of a scalar field, the dilaton. For example,
Newton’s gravitational constant G is given by

G ∼ λs2

8π
eφ,

while all the gauge couplings are proportional to eφ/2. In the regime where all
couplings and derivatives are small string physics can be suitably described by a
field theory action which describes the dynamics of the light (massless) fields of
the string (the graviton gµν and the dilaton φ), which is

S = − 1

2λ2
s

∫
d4x

√−g[e−φ(R+ ∂µφ∂µφ)+ higher derivatives]

+ [higher order in eφ]. (13.30)

where g = det ‖gµν‖, and R is the Ricci scalar. Higher derivative terms
are relevant whenever spacetime derivatives become of the order of one (in λ s
units), whereas the higher orders in eφ acquire importance when eφ ∼ 1, thus
signalling the beginning of a full stringy-quantum regime. The first terms without
corrections reproduce Einsteinian gravity for constant dilaton.

To analyse a situation of cosmological interest it suffices to study spatially
homogeneous fields, i.e. φ = φ(t) and the metric is chosen so that the line element
ds2 can be written as

ds2 = dt2 − R2(t) d*x2, (13.31)

2 This is not a compelling argument as models have been presented in which
√

T can be consistently
put some orders of magnitude below the Planck mass (see, e.g., [49]), but we will not treat these
models.
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which is a suitable ansatz for the metric describing an evolving homogeneous
isotropic universe. The cosmological field equations derived from the low-energy
part of (13.30) have the symmetry (in four dimensions)

R(t)→ 1

R(−t)
, φ(t)→ φ(−t)− 6 ln[R(−t)]

which relates ordinary FRW cosmology characterized by H ≡ Ṙ/R > 0, Ḣ < 0,
constant φ (where a dot means a derivative with respect to t) at t > 0, with an
inflationary one with H > 0, Ḣ > 0 and φ̇ > 0 at t < 0. This symmetry
may suggest that the universe started its evolution from the state of perturbative
vacuum, i.e. empty, cold, flat and decoupled with increasing Hubble parameter
and eventually emerged in the standard cosmology at t > 0 with decreasing H and
‘ frozen’ dilaton. The dual cosmology is called pre-big bang (PBB) phase and it
does not need a beginning time as H → 0 and φ→ −∞ for t →−∞. However,
the low-energy equations of motion do not smoothly interpolate between these
two phases. Instead they lead to singularities, in the past for the FRW phase
(as ordinary cosmology) and in the future for the PBB phase; in both cases at
t = 0 where big bang should be placed. However, the approximations on which
the validity of equation (13.30) relies, break down whenever H ∼ O(λ s−1)
or φ ∼ 0. The corrections indicated in equation (13.30) may prevent reaching
the singularity, allowing a smooth transition to standard hot big bang and FRW
cosmology. Actually there are indications (see, e.g., [50–54]) that a regularization
mechanism can be really provided by taking into account of quantum and stringy
effects on the evolution of the system. The big bang should then be identified with
the epoch of maximum but not infinite curvature which should be followed by a
post-big bang evolution, by which we mean a standard evolution with � = 1, as
it has been achieved by the long period of PBB inflation. The above described
scenario is displayed in figure 13.5.

Nevertheless in the strong coupling regime physics is really new and the
perturbative approach proposed by equation (13.30) is no more valid. One should
resort to a new picture, with an effective action written in terms of the new
light modes appropriate to the strong coupling regime [55]. Anyway, admitting
that a regularization is still possible makes this picture noteworthy from both
the theoretical and the phenomenological point of view. From the theoretical
side it addresses issues left open by standard inflationary models such as the
initial singularity and the theoretical origin of the field driving inflation; from
the phenomenological side in the next subsection the production of gravitational
waves (studied in [56, 57]) will be analysed.

13.3.1 The model

The solution of the equations of motion derived from equation (13.30) which
presents the initial conditions typical of PBB phase are (for time-dependent only
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Figure 13.5. Qualitative behaviour of H in the suggested cosmological model. Broken
curves indicate the lowest order solution singular at t = 0. At around t = 0 a regular
evolution interpolating between the two phases is displayed.

fields):

R(η) = − 1

Hsηs

(
η − (1− α)ηs

αηs

)−α
, (13.32)

and

φ(η) = φs − γ ln
η − (1− α)ηs

ηs
,

where η is the conformal time (see section 13.2) ranging between−∞ and η s < 0,
α = (√3− 1)/2, and γ = √3.

At a value η = ηs the curvature becomes of order of the string scale and the
lowest order effective action does not give any more a good description of physics:
we enter a ‘ full stringy’ regime. One expects that higher order corrections to the
effective action tame the growth of the curvature, and both H and dφ/dt stay
approximatively constant. In terms of conformal time this means

R(η) = − 1

Hsη
, φ(η) = φs − 2β ln

η

ηs
, (13.33)

where β is a free parameter which measures the growth of the dilaton in this
phase, which lasts for ηs < η < η1 < 0. It is conceivable that at this stage
other effects become important triggering a graceful exit to a standard radiation
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dominated phase characterized by

R(η) = 1

Hsη
2
1

(η − 2η1), φ = φ0. (13.34)

The time-dependent component of a metric perturbation h νµ can be expressed as
in equation (13.20), where ψ obeys the Schrödinger-like equation (13.21) with
potential given, in this case, by:

V (η) = eφ/2

R

d2

dη2
(Re−φ/2).

Taking into account equations (13.32) and (13.34) one finds

V (η) =




1

4

4ν2 − 1

[η− (1− α)ηs)]2 , −∞ < η < ηs

1

4

4µ2 − 1

η2
, ηs < η < η1

0, η1 < η < ηr

(13.35)

where 2µ = |2β − 3|, 2ν = |2α − γ + 1|. We consider the solutions of
equation (13.21) which reduce for k → ∞ to usual positive (ψ +) and negative
(ψ−) frequency mode. Let ψ+PBB be the positive frequency mode corresponding
to the PBB phase. Matching the solutions (and their first derivatives) between the
PBB and the ‘ full stringy’ (FS) phase one imposes:

ψ+PBB = αkψ
+
FS + βkψ

−
FS

(ψ+PBB)
′ = αk(ψ

+
FS)

′ + βk(ψ
−
FS)

′

and subsequently between the ‘ full stringy’ and the radiation dominated (RD)
phase

αkψ
+
FS + βkψ

−
FS = γkψ

+
RD + δkψ−RD,

αk(ψ
+
FS)

′ + βk(ψ
−
FS)

′ = γk(ψ
+
RD)

′ + δk(ψ−RD)
′.

As previously stated (see section 13.2), the mean occupation number N k per unit
phase-space cell of gravitons with wavevector k in the radiation dominated phase
is given by3

Nk ∼ |δk|2.
The analytical expression can be computed explicitly [57], and it turns out to be
a rather complicated formula whose main features can be understood as follows.
The parameters of the spectrum are: µ, which is completely free and is determined
3 We neglect the effect on the spectrum of the radiation to matter dominated phase transition, as it
only affects the very low-frequency part of the spectrum ( f . 10−16 Hz), where string cosmology
predicts a negligible value of �gw.
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Figure 13.6. h2
0�gw( f ) as a function of f per fs = 100 Hz,

Hs = 0.15MPl, f1 = 4.3 × 107 kHz, µ = 1.4 compared with the low- and
high-frequency limits (from [57]).

by the growth of the dilaton during the string phase; H s, the constant value of the
Hubble parameter during the string phase, which we expect to be of the order of
λs−1, ηs and η1. It is convenient to trade ηs and η1 with the associated frequencies
fs = 1/(2πR0|ηs|), being R0 the present value of the scale factor of the universe,
and f1 defined analogously; f1 can be estimated to be f1 ∼ 10 GHz and it
corresponds to the maximum amplified frequency, whereas the only constraint
on fs is fs < f1. As shown in figure 13.6, the spectrum presents an f 3 raise for
f < fs (and fs � f1) and a series of oscillations around the line of slope 3− 2µ
for fs < f < f1, while for frequency higher than f 1 the spectrum is exponentially
suppressed, as it corresponds to the maximum of the potential in equation (13.35).
In the most favourable case (µ = 1.5 and f s less than the smaller frequency in the
VIRGO frequency range), the maximum value of the spectrum is reached as long
as f > fs [57]

h2
0�

max
gw ) 3.0× 10−7

(
Hs

0.15MPl

)(
t1
λs

)2

,

being t1 the time of transition to the post-big bang phase.
This is just an example of possible cosmological dynamics driven by string

theory, as it stands it cannot be identified as the prediction of string cosmology.
Nevertheless the low-frequency behaviour, i.e. the power-law raise, is a quite
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general feature which belongs to any PBB-dictated spectrum of gravitational
waves.

13.3.2 Observational bounds to the spectrum

Because of the power raise of the spectrum for low frequency the COBE bound
is easily evaded (see figure 13.7) and the same statement holds for the constraint
derived from pulsar timing observation as long as f s < 10−7 Hz. The most
stringent bound is then the nucleosynthesis one given in section 12.5. In the most
favourable case (a flat spectrum �gw( f ) = �max

gw for fs < f < f1, which means
µ = 1.5) that bound translates into

h2
0�

max
gw ln

f1

fs
< 6.3× 10−6.

In order to have experimentally interesting values, the spectrum must have already
reached the maximum value � max

gw in the VIRGO frequency range. Under this
assumption, a favourable choice of f s is 100 Hz, that leads to

h2
0�

max
gw < 3.2× 10−7. (13.36)

The effect of the observational bound on the parameters of the model is displayed
in figure 13.8, where the independent parameters are chosen to be η s/η1 = f1/ fs
and β (see equation (13.33)).

Figure 13.7. h2
0�gw( f ) as a function of f per fs = 10 Hz, f1 = 4.3× 107 kHz, µ = 1.5

compared with observational bounds (from [57]).



First-order phase transitions 235

0.00 0.05 0.10 0.15 0.20
β

10

20

30

40

50

60

70

80

ln
(η

s/η
1)

Ω=10

Ω=10
−7

−8

Ω=10−9

Figure 13.8. The forbidden region in the parameter space is the shaded area. Along the
chain line � ≡ h2

0�gw(1 kHz) = 10−7, along the dotted line � = 10−8 and along the

dashed line � = 10−9 (from [58]).

The maximum value obtained for�gw is still below the experimental planned
sensibility of VIRGO and LIGO, but hopefully within the planned sensitivity of
the advanced projects.

13.4 First-order phase transitions

First-order phase transitions are thought to have occurred in the early stage of the
expansion of the universe, each time its temperature dropped sufficiently below
the critical temperature Tc of a transition. Candidates for such a phase transition
include GUT-symmetry breaking (Tc = 1015±1 GeV), electroweak-symmetry
breaking (Tc ∼ 200 GeV), and phase transitions yet to be discussed.

In a first-order phase transition, the universe starts in a metastable (high-
energy-density) false-vacuum state. If the energy barrier separating this state
to the (low-energy-density) true-vacuum state is sufficiently large, significant
supercooling occurs and the transition between these two states proceeds via
nucleation [59] of bubbles of true vacuum within the false vacuum phase [60].
Once nucleated, each bubble larger than a critical size begins to expand, being
driven by the energy difference (latent heat) between its true-vacuum interior
and the false-vacuum exterior. This energy difference is converted into kinetic
energy of the bubble wall, which become thinner and more energetic as the
bubble expands, and rapidly approaches a velocity near the speed of light. As
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a consequence of the high velocities and energy densities involved, when, within
a Hubble expansion time, these bubbles collide a large fraction of the energy that
was in the bubble walls is converted in gravitational radiation.

Unlike the case of a network of cosmic strings, where �gw( f ) is flat as a
consequence of the existence of a ‘scaling’ solution, the spectrum of the GWs
produced by this bubble collision process is strongly peaked at a frequency
characteristic of the particular cosmological time at which the phase transition
and bubble collisions took place. Under the assumption that the expansion of the
universe has been adiabatic since the phase transition, for the present value of this
characteristic frequency one has [61]:

fmax ≈ 5.2× 10−8
(
β

H∗

)(
T∗

1 GeV

)( g∗
100

)1/6
(13.37)

where, assuming an exponential bubble nucleation rate, β −1 is, roughly, the
duration of the phase transition (see section 12.1 for the meaning of the other
quantities). In general, for the temperatures of interest (say, 1–10 16 GeV), it turns
out to be [62]:

β

H∗
∼ 4 ln

(
MPl

T∗

)
∼ 100, (13.38)

and, because g∗ is also of order 100 in typical GUT models, from equation (13.37)
we find that the most ‘promising’ cosmological phase transition, from the
point of view of the VIRGO sensitivity band, would be one that occurred at
a temperature comprised between 107 and 108 GeV (for which we have no
compelling candidate).

The amplitude of the spectrum depends mostly upon the difference in the free
energy between the inside and the outside of the bubble, driving the expansion of
the bubble. By indicating with v the propagation velocity of the bubble walls, and
with α the ratio of vacuum energy to the thermal energy in the symmetric phase
(the high-temperature phase before the transition), the amplitude at the frequency
fmax is approximately [61]:

h2
0�gw( fmax) ≈ 1.1× 10−6κ2

(
H∗
β

)2 (
α

1+ α
)2

(
v3

0.24+ v3

)(
100

g∗

)1/3

,

(13.39)
where k is an increasing function of α quantifying the fraction of the available
vacuum energy that goes into kinetic (rather than thermal) energy of the fluid.
The parameter α characterizes the strength of the phase transition, and the limits
α → 0, α → ∞ correspond to very weak and very strong first-order phase
transitions, respectively. For α ranging between these two extremes, typically,
0.01 < κ < 1. For strongly first-order phase transitions it turns out to be
also v → 1, and, thus, for a transition at T ∼ 2 × 107 GeV, according to
equations (13.37) and (13.39), one finds:

h2
0�gw( f ∼ 100 Hz) ≈ 10−10 (13.40)
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which is three orders of magnitude too small to be observed by any of the ground-
based interferometers presently under construction.

13.5 Astrophysical sources

To the stochastic background of gravitational radiation that should pervade
our universe, the GWs associated with unresolved astrophysical sources also
contribute. Since the generation of these waves dates back to more recent epochs,
when galaxies and stars started to form and evolve, their contribution to � gw is
not subject to the nucleosynthesis bound. Therefore, our first concern is whether
this component of the stochastic background can give a contribution to h 2

0�gw( f )
larger than the bound (12.64), or anyway larger than the expected relic signal,
thereby masking the background of cosmological origin.

A first observation is that there is a maximum frequency at which
astrophysical sources can radiate. This comes from the fact that a source of mass
M , even if very compact, will be at least as large as its gravitational radius 2GM ,
the bound being saturated by black holes. Even if its surface were rotating at the
speed of light, its rotation period would be at least 4πGM , and the source cannot
emit waves with a period much shorter than that. Therefore, we have a maximum
frequency [63],

f .
1

4πGM
∼ 104 M�

M
Hz. (13.41)

To emit near this maximum frequency an object must presumably have a mass
of the order of the Chandrasekhar limit ∼1.2M�, which gives a maximum
frequency of the order of 10 kHz [63], and this limit can be saturated only
by very compact objects (see [64] for a recent review of GWs emitted in the
gravitational collapse to black holes, with typical frequencies f . 5 kHz). The
same numbers, apart from factors of order one, can be obtained using the fact that
for a self-gravitating Newtonian system with density ρ, radius R, there is a natural
dynamical frequency [65]

fdyn = 1

2π
(πGρ)1/2 =

(
3GM

16π2 R3

)1/2

. (13.42)

With R ≥ 2GM we recover the same order of magnitude estimate apart from a
factor (3/8)1/2 ) 0.6. This is already an encouraging result, because it shows
that the natural frequency domains of cosmological and astrophysical sources can
be very different. We have seen in section 12.1 that the natural frequency scale for
Planckian physics is the GHz, while no astrophysical objects can emit above, say,
(6–10) kHz. Therefore, a stochastic background detected above these frequencies
would be unambiguously of cosmological origin.

However, ground-based interferometers have their maximum sensitivity
around 100 Hz, where astrophysical sources hopefully produce interesting
radiation (since these sources were the original motivation for the construction
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of interferometers). The radiation from a single source is not a problem, since
it is easily distinguished from a stochastic background. The problem arises if
there are many unresolved sources. (Of course this is a problem from the point
of view of the cosmological background, but the observation of the astrophysical
background would be very interesting in itself; techniques for the detection of this
background with a single interferometer using the fact that it is not isotropic and
exploiting the sideral modulation of the signal have been discussed in [66].)

The stochastic background from rotating neutron stars has been discussed
in [67] and references therein. The main uncertainty comes from the estimate
of the typical ellipticity ε of the neutron star, which measures its deviation from
sphericity. An upper bound on ε can be obtained assuming that the observed
slowing down of the period of known pulsars is entirely due to the emission of
gravitational radiation. This is almost certainly a gross overestimate, since most
of the spin down is probably due to electromagnetic losses, at least for Crab-like
pulsars. With realistic estimates for ε, [67] gives a value of h 2

0�gw(100 Hz) ∼
10−15. This is very far from the sensitivity of even the advanced experiments. An
absolute upper bound can be obtained assuming that the spin down is due only to
gravitational losses, and this gives h2

0�gw(100 Hz) ∼ 10−7, but again this value
is probably a gross overestimate. Very recently the gravitational background has
also been estimated [68] produced by a cosmological population of hot, young
and rapidly rotating neutron stars. Within a reasonable range of values of the
main parameters which characterize the energy spectrum of a single source, the
authors of [68] find that h 2

0�gw( f ) show a long plateau extending from≈300 Hz
up to ≈1.7 kHz, with an amplitude of ≈(2.2–3.3)× 10−8.

In [69] the stochastic background has been considered emitted by a
cosmological population of core-collapse supernovae for a range of progenitor
masses leading to a black hole. The expected frequencies in this case are of
the order of kHz or lower, depending on the redshift when these objects are
produced. Using the observational data on the star formation rate, it turns
out that the duty cycle, i.e. the ratio between the duration of a typical burst
and the typical time interval between successive bursts is low, of order 0.01.
Therefore, this background is not stochastic, but rather like a ‘pop noise’ , and
can be distinguished from a really stochastic background. The value of h 2

0�gw
for the background from supernovae have been computed in [69] assuming
axially symmetric collapse, and assuming that all sources have the same value
of a = J/(GM2), where J is the angular momentum. The results depend on
the value of a, and on h 0. Assuming h0 = 0.5 and typical values of a, one
finds that �gw( f ) has a maximum amplitude ranging between 10−11–10−10 in
the frequency interval (1.5–2.5) kHz.

These results suggest that astrophysical backgrounds might not be a problem
for the detection of a relic background at VIRGO/LIGO frequencies. The
situation is different in the LISA frequency band [63, 65, 67, 70, 71]. LISA can
reach a sensitivity of order h 2

0�gw ∼ a few×10−13 at f ∼ 10−3 Hz (see figure 1.3



References 239

of [71]). However, for frequencies below a few mHz, one expects a stochastic
background due to a large number of galactic white dwarf binaries. The estimate
of this background depends on the rate of white dwarf mergers, which is uncertain.
With rates of order 4×10−3 per year (which should be a secure upper limit [67]),
the background can be as large as h 2

0�gw ∼ 10−8 at f = 10−3 Hz. This number is
actually quite uncertain, and in [71], it is used another plausible rate, which gives
for instance h2

0�gw ∼ 10−11–10−10 at f = 10−3 Hz. Above a frequency of the
order of a few times 10−2 Hz, most signals from galactic binaries can be resolved
individually and no continuous background of galactic origin is presently known
at the level of sensitivity of LISA.

It should be observed that, even if an astrophysical background is present,
and masks a relic background, not all hopes are lost. If we understand well
enough the astrophysical background, we can subtract it, and the relic background
would still be observable if it is much larger than the uncertainty that we have
on the astrophysical background. In fact, LISA should be able to subtract the
background due to white dwarf binaries, since there is a large number of binaries
close enough to be individually resolvable [71]. This should allow us to predict
with some accuracy the space density of white dwarf binaries in other parts of the
Galaxy, and therefore to compute the stochastic background that they produce.
Furthermore, any background of galactic origin is likely to be concentrated near
the galactic plane, and this is another handle for its identification and subtraction.
The situation is more uncertain for the contribution of extragalactic binaries,
which again can be relevant at LISA frequencies. The uncertainty in the merging
rate is such that it cannot be predicted reliably, but it is believed to be lower than
the galactic background [67]. In this case the only handle for the subtraction
would be the form of the spectrum. In fact, even if the strength is quite uncertain,
the form of the spectrum may be quite well known [71].
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14.1 Einstein theory

14.1.1 Introduction

In these lectures we review the symmetry properties of Einstein’s theory when
it is reduced from four to two dimensions. We explain how, in this reduction,
the theory acquires an infinite-dimensional symmetry group, the Geroch group,
whose associated Lie algebra is the affine extension of SL(2, RRR). The action
of the Geroch group, which is nonlinear and non-local, can be linearized, thereby
permitting the explicit construction of many solutions of Einstein’s equations with
two commuting Killing vectors ∂2 and ∂3. A non-trivial example of this method
for a colliding plane wave metric is given.

The lectures review some well-known material at a pedagogical level.
Therefore, rather than including references in the text, we have chosen to collect
some basic references at the end, which readers are invited to use as a guide to the
vast literature on the subject of exact solutions, on the integrability of Einstein’s
equations in the reduction to two dimensions, and finally on the generalization of
these structures to other theories, including supergravity.

14.1.2 Mathematical conventions

Our main interest is in studying the structural properties of Einstein’s theory and
its generalizations. We will first formulate it in D dimensions, with coordinates

245
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x M = (x0, . . . , x D−1). The metric can be expressed in terms of the vielbein as

gM N = E A
M E B

NηAB (14.1)

with the flat metric ηAB ≡ (+,−, . . . ,−). For the following it will be important
that the vielbein can be viewed as an element of a coset space according to

E A
M ∈ GL(D, RRR)/SO(1, D − 1). (14.2)

The metric must be covariantly conserved

DN (�)gM P = 0 (14.3)

where � is the Christoffel symbol of the metric g M N . We next introduce a spin
connection one-form, with coefficients ωM A

B . The vielbein postulate, that is the
covariant constancy of the vielbein, which agrees exactly with Cartan’s structure
equation for the torsion two-form, is

DM (ω, �)EN
A = 0. (14.4)

Writing out this equation, we have

∂[M EN]
A + ωM

A
B EN

B = �[M N]
P E P

A. (14.5)

We assume there is no torsion, so the Christoffel symbols are symmetric in
spacetime indices, hence

∂[M EN]
A + ω[M

A
N] = 0. (14.6)

The coefficients of the anholonomy are

�AB
C = 2E[A

M EB]
N ∂M EN

C . (14.7)

Using the torsion-free condition for the spin connection and permuting the indices
of the coefficients of the anholonomy we obtain the following equations

�ABC + ωAC B − ωBC A = 0

−�BC A − ωB AC + ωC AB = 0 (14.8)

�C AB + ωC B A − ωABC = 0.

Employing then the property of the spin-connection ω ABC = −ωAC B , due to
the fact that the generators of the algebra of the D-Lorentz Group are totally
antisymmetric matrices, we have the expression of the spin connection as a
function of�ABC

ωABC = 1
2 (�ABC −�BC A +�C AB). (14.9)
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The Riemann tensor (the curvature two-form) can be defined by

[DM (ω), DN (ω)]V A = RM N
A

B V B . (14.10)

The explicit expression in terms of the spin connection is

RM N A
B = 2∂[MωN]A

B + 2ω[M A
CωN]C

B . (14.11)

From the Riemann tensor the Ricci tensor and the curvature scalar are obtained in
the usual way: RM N := RM P N

P and R := gM N RM N . The metric determinant is

E = det EM
A = √−g. (14.12)

14.1.3 The Einstein–Hilbert action

Now we have all the elements to define Einstein theory. The Einstein–Hilbert
action is

S =
∫

d4x L (14.13)

and the Lagrangian L can be expressed in function of the spin connection

L = − 1
4 E R = − 1

4 E E A
M EB

N RM N
AB

= − 1
2 E E A

M EB
N ∂MωN

AB − 1
4 EωA

ACωBC
B + 1

4ωB ACω
AC B . (14.14)

Substituting now the expression ω = ω
(
�
)
, integrating by parts and dropping

total derivatives, we arrive at

− 1
4 E R = 1

16 E(�ABC�
ABC − 2�ABC�BC A − 4�AC

C�A
D

D). (14.15)

This is the expression best suited for dimensional reduction of Einstein’s theory.
In the remainder, we will now set D = 4, i.e. work in four spacetime dimensions.

14.1.4 Dimensional reduction DDD === 444 →→→ DDD === 333

‘Dimensional reduction’ is equivalent to searching for solutions of Einstein’s
equations with one Killing vector, which we take to be ξ M∂M ≡ ∂3. For this
purpose, we proceed from the ‘Kaluza–Klein ansatz’ for the vierbein.

EM
A =

(
�−1/2em

a �1/2 Bm

0 �1/2

)
, E A

M =
(
�1/2ea

m −ea
n Bn�

1/2

0 �−1/2

)
.

(14.16)

The matrix em
a is the three-bein; Bm is called the Kaluza–Klein vector and� the

Kaluza–Klein scalar. The ansatz fixes a part of the SO(1, 3) Lorentz symmetry.
The residual symmetry group preserving the gauge condition E 3

a = 0 is the
gauge group SO(1, 2).
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After some algebra, we find

�abc = � 1
2 (�

(3)
abc − e[a

mηb]c�
−1∂m�) (14.17)

�ab
3 = �3/2ea

meb
n Bmn (14.18)

�3b
3 = − 1

2 eb
m�−1/2∂m� (14.19)

�3b
c = 0. (14.20)

Substituting the ansatz for the vierbein in the field action and making use of the
above decomposition of the Einstein action, after some calculations we arrive at
the following result

− 1
4 E R(E) = − 1

4 eR(3)(e)− 1
16 e�2 Bmn Bmn + 1

8 egmn�−2∂m�∂n� (14.21)

where Bmn = ∂m Bn − ∂n Bm .

Duality transformation

The very special feature of three dimensions is that the Kaluza–Klein vector field
can be dualized to a scalar. This is achieved by adding to the Einstein–Hilbert
Lagrangian the expression

L′ = 1
8 eε̃mnp Bmn∂p B (14.22)

where B is a Lagrange multiplier and ε̃mnp the Levi-Civita totally antisymmetric
symbol. The dualization makes the Lagrangian depend only on B. So, adding L ′
to L and varying Bn leads to

e�2 Bmn = εmnp∂p B (14.23)

modulo a numerical constant. Here we have set εmnp = eε̃mnp . When
we substitute this expression in the three-dimensional reduced Einstein–Hilbert
Lagrangian, we get a new one with two scalar fields

L = − 1
4 eR(3)(e)+ 1

8 egmn�−2(∂m�∂n�+ ∂m B∂n B). (14.24)

This is consistent with the equation of motion ∂m(e�2 Bmn) = 0. In fact, the term
we add to the Lagrangian, which is now three dimensional, can be dropped by an
integration by parts and the use of the three-dimensional Bianchi identities for the
tensor Bmn .

14.1.5 Dimensional reduction DDD === 333 →→→ DDD === 222

Then we perform a dimensional reduction from three to two, i.e. we have two
Killing commuting vectors (∂3 and ∂2) and there is no dependence on x 2 at all.

xm = (xµ, x2). (14.25)
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Repeating the same steps as before, the two-bein now takes the form

em
a =

(
eµα ρAµ

0 ρ

)
, ea

m =
(

eαµ −eσα Aσ
0 ρ−1

)
. (14.26)

Detailed calculation shows that

− 1
4 e(3)R(3) = − 1

4ρeR(2) − 1
16ρ

3eAµν Aµν (14.27)

with
eR(2) = −2∂µ(eeαµ�αβ

β) (14.28)

where e is the determinant of the two-bein. At this point we can write the
equations of motion for the theory. The equation of motion for the Kaluza–Klein
vector is given by

∂µ(ρ
3eAµν) = 0. (14.29)

In two dimensions, a Maxwell field does not propagate, as there are no
transverse degrees of freedom. Neglecting topological effects (i.e. non-vanishing
holonomies) we can, therefore, set Aµ = 0.

For the remaining equations of motion, we can fix the gauge, and then
calculate them in a particular gauge, called the conformal gauge. The term
eR(2)(e) is Weyl-invariant. To see why this is so, let us consider the term

− 1
4ρR(2) = 1

2ρ∂ν(eeα
ν�αγ γ ). (14.30)

An integration by parts gives

− 1
4ρR(2)=̇ − 1

2 e�αγ γ eα
µ∂µρ. (14.31)

Then, using the definition of the anholonomy, we get

= − 1
2 e(eα

νeγ
τ ∂νeτ

γ − eγ
νeα

τ ∂νeτ
γ )eαµ∂µρ (14.32)

= − 1
2 egµνeγ

τ ∂νeτ
γ ∂µρ − 1

2 e∂νeα
νeαµ∂µρ (14.33)

where another integration by parts and the definition of the two-bein have been
used.

Now we can set the gauge, i.e. the 2D diffeomorphisms, by a condition on
the two-bein. So we write

eµ
α = λẽµ

α (14.34)

with det ẽµα = 1 and λ = λ(x); hence, we are not considering the whole group
GL(2, RRR))) but only its restriction to unimodular matrices SL(2, RRR).

As we said before, we can set a particular gauge, the conformal gauge, by
imposing the following condition on the two-bein. It is given by

ẽµ
α = δαµ. (14.35)
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Then, after an integration by parts, we get

− 1
4ρR(2)=̇ − g̃µνλ−1∂νλ∂µρ + 1

2 ẽα
ν∂ν(ẽ

αµ∂µρ). (14.36)

In this gauge it is obviously

g̃µν = ẽα
µẽνα = λ2gµν. (14.37)

So we have three fields: the dilaton ρ, the λ and the unimodular two-bein ẽµα.
We can calculate the equations of motion varying the Lagrangian with respect to
all these fields. Varying it with respect to λ we get

∂µ(g̃
µν∂νρ) ≡ �ρ = 0 (14.38)

because in conformal gauge g̃µν = ηµν . The solution of this equation is

ρ(x) = ρ+(x+)+ ρ−(x−) (14.39)

with x± = x0 ± x1.
The dilaton can be dualized: in two dimensions, the dual of a scalar field is

again a scalar field. We will refer to the dual of the dilaton field as the ‘axion’ ; it
is defined by

∂µρ + εµν∂νρ̃ = 0 (14.40)

where ρ̃ is just the axion. In the conformal gauge this field is

ρ̃(x) = ρ+(x+)− ρ−(x−). (14.41)

The equation obtained by varying ρ is

∂µ(g̃
µνλ−1∂νλ) = matter contribution. (14.42)

Note that with matter contribution we refer to the fields� and B coming out from
dimensional reduction. The terminology matter part will be clear in the following
section, where we will be able to identify this fields with the fields of a bosonic
nonlinear σ -model Lagrangian.

Before writing the complete Lagrangian of the two-dimensional reduced
gravity we must still consider the equation that is obtained from (14.36) by
variation with respect to the unimodular two-bein. The corresponding equations
must be interpreted as constraint equations (in standard conformal field theory,
they would just correspond to the Virasoro constraints). We have

−δẽαµẽανλ−1∂(µλ∂ν)ρ + 1
2δẽα

µ∂µ(ẽ
αν∂νρ)− 1

2∂µẽα
µδẽαν∂νρ +matter = 0.

(14.43)
In conformal gauge, ẽαµ = δµα , this expression becomes

− 1
2δg̃

µνλ−1∂µλ∂νρ + 1
4δg̃

µν∂µ∂νρ = matter (14.44)
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where δg̃µν = 2δẽαµẽαν has been used. The metric is diagonal in this gauge, so
the equations for the conformal factors become

(traceless part of){− 1
2λ
−1∂µλ∂νρ + 1

4∂µ∂νρ} = matter. (14.45)

We have not explicitly written the matter sector yet. This will be done in the next
section.

The pure gravity action written in two dimensions in the conformal gauge
reads

− 1
4 e(3)R(3) = − 1

2λ
−1∂µλ∂

µρ (14.46)

where the equation �ρ = 0 has been used to make the second term of (14.36)
vanish. The whole Lagrangian is then

LE = − 1
2λ
−1∂µλ∂

µρ + 1
8ρ�

−2(∂µ�∂
µ�+ ∂µB∂µB) (14.47)

where the second term with the Kaluza–Klein scalar and the dual of the Kaluza–
Klein vector has been obtained considering only the two-dimensional part of the
action. The subscript E stands for Ehlers, who did this analysis for the first time
in the 1950s.

Here we have treated one possible way of performing dimensional reduction:
we have seen it consists of many steps. One first reduces from four to three; then,
dualizes the vector field and performs the reduction to two dimensions. However,
this is not the whole story: actually, it is possible also to get the two-dimensional
Lagrangian directly from the three-dimensional one, without dualization.

The procedure for doing the calculation is as follows: first we express the
Kaluza–Klein vector in the form

Bm = (Bµ, B2 ≡ B̃) (14.48)

and then we perform directly the dimensional reduction in conformal gauge by
using the previous choice of the three-bein in triangular form. Proceeding in
this way, we meet two electromagnetic fields in two dimensions, Aµ and Bµ,
which can be set to zero because they do not propagate (we have already used this
argument before) and there is no cosmological constant.

Let us note now the various steps of the calculation. The new
writing for the Kaluza–Klein vector and the considerations on two-dimensional
electromagnetism imply

Bµ = 0 → Bµν = 0. (14.49)

So the only non-vanishing terms of the three-dimensional Lagrangian before the
reduction are

L = − 1
4 e(3)R(3)(e)− 1

8 e(3)�2 Bµ2 Bµ2 + 1
8 e(3)gmn�−2∂m�∂n�. (14.50)

Then we reduce the dimensions as before (we set Aµ = 0) and choose the
conformal gauge. Keeping in mind that

gµν = λ2ηµν, g22 = −ρ2 (14.51)
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we get a new 2D Lagrangian

LMM = − 1
2λ
−1∂µλ∂

µρ + 1
8ρ�

−2∂µ�∂
µ�+ 1

8ρ
−1�2∂µ B̃∂µ B̃ (14.52)

for the fields B̃ and�.
The subscript MM stands for Matzner–Misner, who performed this analysis

at the end of the 1960s. It is worth noting that the link between the fields B and
B̃ is given by three-dimensional duality. To see why it is so, let us consider the
duality relation

e�2 Bmn = εmnp∂p B (14.53)

and then reduce the dimensionality using the properties of the Kaluza–Klein
vector Bm . The duality relation becomes then

ρ−1�2∂µ B̃ = εµν∂νB. (14.54)

The deep relation between these two distinct reducted Lagrangians will be
explained in the next section, treating nonlinear σ -models. In the language of the
nonlinear sigma models, these two reducted actions correspond to two distinct
SL(2, RRR)/SO(2) models.

14.2 Nonlinear σσσ -models

In this section, we introduce nonlinear σ -models and discover that the reduced
gravity is a certain nonlinear σ -model, connected to a certain symmetry group.
The expression of the Lagrangian of the model depends on this symmetry group.

Let us start from a non-compact Lie group G and consider the maximal
compact Lie subgroup H of G. The Lie algebra decomposition is

GGG = HHH ⊕ KKK (14.55)

with the following commutation rules

[HHH, HHH ] ⊂ HHH , [KKK , KKK ] ⊂ HHH , [HHH , KKK ] ⊂ KKK . (14.56)

This decomposition is invariant under the symmetric space automorphism

τ (HHH) = HHH , τ (KKK ) = −KKK (14.57)

which can alternatively be formulated in terms of Lie group elements g directly
through

τ (g) = η−1(gT)−1η (14.58)

where the matrix η depends on the group G (e.g. η = 1 for G = SL(n, RRR)).
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Example: G = SL(2, RRR), H = SO(2)

The generators of the group are

Y 1 =
(

1 0
0 −1

)
, Y 2 =

(
0 1
1 0

)
, Y 3 =

(
0 1
−1 0

)
. (14.59)

We have
Tr(Y 1)2 = Tr(Y 2)2 = −Tr(Y 3)2 = 2 (14.60)

so Y 1 and Y 2 are the non-compact generators, while Y 3 generates the SO(2)
subgroup.

The group can be decomposed on its generators, as

HHH = RRRY 3, KKK = RRRY 1 ⊕ RRRY 2. (14.61)

Let us introduce now an element of the group v(x) ∈ G with the property

v(x)→ v′(x) = g−1v(x)h(x) (14.62)

where g is a rigid G transformation and h(x) a local H transformation. This type
of transformation is needed for the necessity of preserving gauge choice. In fact,
you can fix the gauge choosing a particular element of the group v. Then, when
you act on v by an arbitrary g, that gauge choice will be lost. To restore the gauge
you have to introduce the local transformation h(x) so that the rotation g can be
compensed. It follows that h does not depend only on the coordinates x , but also
on the vector v and the rotation g.

Therefore, equation (14.62) is called a nonlinear realization of symmetries,
because h depends nonlinearly on v.

This is important for the following calculation, because we can fix a gauge,
called triangular gauge, such that

v(x) = expϕ(x), ϕ(x) ∈ K → v ∈ G/H. (14.63)

The next step is the construction of a Lagrangian with the required symmetry. To
this aim, let us consider the Lie algebra valued expression

v−1∂mv = Qm + Pm, Qm ∈ HHH , Pm ∈ KKK (14.64)

or equivalently
v−1 Dmv = v−1(∂mv − vQm ) = Pm (14.65)

which defines the H -covariant derivative Dm . It is straightforward to verify that
Qm transforms like a gauge field with respect to the local group H , namely
Q′m = h−1 Qmh + h−1∂mh and that P ′m = h−1 Pmh. The formula (14.62) implies
the integrability relations

∂m Qm − ∂n Qm + [Qm, Qn ] = − [Pm, Pn ]

Dm Pn − Dn Pm = 0.
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The Lagrangian is given by

L = 1
4 egmn Tr Pm Pn (14.66)

and then the field equations for Pm read

Dm(
√

ggmn Pn) = 0. (14.67)

In the following section we will show how it is possible to reproduce the
Lagrangians obtained by dimensional reduction from this general construction
of nonlinear σ -models.

14.2.1 Ehlers Lagrangian as a nonlinear σσσ -model

To link these arguments to the previous discussion, let us consider the groups

G = SL(2, RRR), H = SO(2). (14.68)

The quotient space has only two degrees of freedom. We enforce the triangular
gauge choosing for v the following expression

v =
(
�1/2 B�−1/2

0 �−1/2

)
(14.69)

and then

v−1∂mv =
( 1

2�
−1∂m� �−1∂m B
0 − 1

2�
−1∂m�

)

= P1
mY 1 + P2

mY 2 + QmY 3 (14.70)

where the coefficients of the generators of the algebra are given by

P1
m = 1

2�
−1∂m�, P2

m = Qm = 1
2�

−1∂m B. (14.71)

The evaluation of the Lagrangian is straightforward, and we get

L = 1
4 egmn Tr Pm Pn = 1

8 egmn�−2(∂m�∂n�+ ∂m B∂n B). (14.72)

This result matches exactly with the matter part of the Einstein–Hilbert
Lagrangian found in the previous section. We have found that this expression can
be directly reduced to two dimensions, and then, coupled to gravity, it becomes
simply the Ehlers Lagrangian LE seen before.

The Ehlers Lagrangian after dimensional reduction is

LE = gravity+ 1
4ρe(2)gµν Tr(PµPν)

= − 1
2λ
−1∂µλ∂

µρ + 1
8ρe(2)�−2gµν(∂µ�∂ν�+ ∂µB∂νB). (14.73)

We saw in the previous section that, by another type of dimensional reduction, we
got a different reduced Lagrangian, the Matzner–Misner one.

This one can be constructed as a nonlinear σ -model too: we need only a
different gauge choice, as we will see in the next section; before this, let us look
at the equations of motion derived from the Ehlers Lagrangian.
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14.2.2 The Ernst equation

The equations of motion for the fields� and B from the Lagrangian L E are

�∂µ(ρ∂
µ�) = ρ(∂µ�∂µ�− ∂µB∂µB) (14.74)

�∂µ(ρ∂
µB) = 2ρ∂µ�∂µB. (14.75)

Defining a complex function E = � + iB called the Ernst potential, these
equations can be combined into a single one, called the ‘Ernst equation’ :

�∂µ(ρ∂
µE) = ρ∂µE∂µE . (14.76)

This equation figures prominently in studies of exact solutions of Einstein’s
equations.

Here we have got the Ernst equation from the fields equations for � and B.
Actually equation (14.67) is the Ernst equation, in the sense that it reduces to it
choosing the Ehlers triangular form for v in the conformal gauge.

14.2.3 The Matzner–Misner Lagrangian as a nonlinear σσσ -model

Recalling the shape of the Matzner–Misner Lagrangian as written before in the
conformal gauge

LMM = − 1
2λ
−1∂µλ∂

µρ + 1
8ρ�

−2∂µ�∂
µ�+ 1

8ρ
−1�2∂µB2∂

µB2. (14.77)

This can be thought of as a nonlinear σ -model, too. We suppose our Lagrangian
to be composed by a term of pure gravity, but reduced to two dimensions, and a
term coming from a two-dimensional nonlinear σ -model. We are in conformal
gauge, namely eµα = λδµα and g̃µν = ηµν . The Lagrangian is

L = − 1
2 λ̃
−1∂µλ̃∂µρ + 1

4ρη
µν Tr P̃µ P̃ν . (14.78)

We have to choose a proper gauge, namely an expression for v, such that the two
Lagrangians match together.

We refer now to the generators of SL(2, RRR) introduced at the beginning of
this section. Let us choose for ṽ the following triangular form

ṽ =
(
(ρ/�)1/2 B2(�/ρ)

1/2

0 (�/ρ)1/2

)
, ṽ−1 =

(
(�/ρ)1/2 −B2(�/ρ)

1/2

0 (ρ/�)1/2

)
.

Evaluating now the matrix product ṽ−1∂µṽ and decomposing it on the algebra
generators. Following the standard procedure seen before, the Lagrangian is built
using only the non-compact elements of this decomposition. After calculation,
we have

ṽ−1∂µṽ = P̃1
µ + P̃2

µ + Q̃µ = 1

2
(ρ−1∂µρ −�−1∂µ�)

(
1 0
0 −1

)

+ 1

2

(
�

ρ

)
∂µB2

(
0 1
1 0

)
+ 1

2

(
�

ρ

)
∂µB2

(
0 1
−1 0

)
. (14.79)
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Then, the trace is

1
4 Tr P̃µ P̃µ = 1

4 (P̃
1
µ P̃µ1 + P̃2

µ P̃µ2) = 1
8ρ
−1∂µρ(ρ

−1∂µρ − 2�−1∂µ�)

+ 1

8
�−2∂µ�∂

µ�+ 1

8

(
�

ρ

)2

∂µB2∂
µB2. (14.80)

Now, the two Lagrangians coincide if λ̃ satisfies the condition

− 1
2 λ̃
−1∂µλ̃∂µρ + 1

8ρ
−2∂µρ(ρ

−1∂µρ − 2�−1∂µ�) = − 1
2λ
−1∂µλ∂µρ (14.81)

namely if
λ̃ ≡ λρ1/4�−1/2. (14.82)

Therefore, the two-dimensional reduced gravity in conformal gauge is given by a
part of pure two-dimensional gravity, characterized by the conformal factor λ and
the dilaton ρ, and a matter part given by the bosonic fields � and B, or B̃: this
one has the structure of a nonlinear G/H sigma model.

Following the first section of this paper, the complete Lagrangian reduced to
two dimensions in conformal gauge, for any G/H σ -model is

L = − 1
2λ
−1∂µλ∂µρ + 1

4ρ Tr(PµPµ) (14.83)

and we can recover, as before, the field equation for the conformal factor λ, this
time with the general σ -model matter part. It is given by the traceless part of

λ−1∂µλ∂νρ = 1
2 Tr(PµPν )+ 1

2∂µ∂νρ. (14.84)

This will be useful in the foregoing sections when recovering the colliding plane
wave solutions of Einstein’s theory.

The Kramer–Neugebauer transformation

Note now that the two models, that of Ehlers and that of Matzner–Misner, are
related by the Kramer–Neugebauer transformation, defined by

�↔ ρ

�
, B ↔ B2

It is worth remembering that the fields B and B2 are related by duality too, namely

εµν∂
νB = �

2

ρ
∂µB2. (14.85)

To sum up: in this section we have seen that the dimensional reduction of Einstein
theory from D = 4 to D = 2 can be done in two ways, leading to two different
SL(2, RRR)/SO(2) σ -models.

We discover two different isometry groups, that of Ehlers and that of Matzer–
Misner

SL(2, RRR)E, SL(2, RRR)MM. (14.86)

Combining these two groups, one gets the (infinite-dimensional) Geroch group.
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14.3 Symmetries of nonlinear σσσ -models

We have seen that for preserving the gauge choice, in particular the triangular
gauge, the symmetry

v→ v′ = g−1v, g ∈ G (14.87)

must be realized in a nonlinear way, namely

v→ v′(x) = g−1v(x)h(x), g ∈ G, h ∈ H. (14.88)

Now consider the infinitesimal form of (14.88). The infinitesimal variation of v is

δv(x) = −δg−1v(x)+ v(x)δh(x) (14.89)

applying now this linearized transformation to the two σ -models seen before.
Considering in particular the Chevalley–Serre generators for the SL(2, RRR)

Lie algebra

e ≡ T+ =
(

0 1
0 0

)
, f ≡ T− =

(
0 0
1 0

)
, h ≡ T 3 =

(
1 0
0 −1

)
(14.90)

endowed with the following commutation rules

[h, e] = 2e, [h, f ] = −2 f, [e, f ] = h (14.91)

one can check that this nonlinear transformation has been introduced to preserve
the gauge. Let us now analyse the action of the Ehlers and Matzner–Misner
groups in turn.

14.3.1 Nonlinear realization of SSSLLL(((222,,, RRR)))EEE

We use the Chevalley–Serre generators for the algebra. Considering the triangular
gauge

v =
(
�1/2 B�−1/2

0 �−1/2

)
(14.92)

we now linearize the transformation (14.87). The variation of v is only due to the
algebra element a:

δv = v′ − v = −av. (14.93)

Then, given the triangular form of v, it follows also

δv =
( 1

2�
−1/2δ� − 1

2�
−3/2 Bδ�+�−1/2δB

0 − 1
2�

−3/2δ�

)
. (14.94)

In the following we will refer to the variation δ� by, for example, the generator e
with the compact notation e(�) or e(B) for B. Now, we realize the transformation
using the Chevalley–Serre algebra generators, e, h and f . For e we have

e1 : −
(

0 1
0 0

)(
�1/2 B�−1/2

0 �−1/2

)
=

(
0 −�−1/2

0 0

)
(14.95)
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where the subscript 1 refers to the Ehlers group. From (14.94), one deduces

e1(�) = 0, e1(B) = −1 (14.96)

and the triangular gauge is preserved. The calculation is analogous for the
generator h

h1 : −
(

1 0
0 −1

)(
�1/2 B�−1/2

0 �−1/2

)
=

(−�1/2 −B�−1/2

0 �−1/2

)
(14.97)

with h1(�) = −2� and h1(B) = −2B. The triangular gauge is still preserved.
This is not so for the third generator, f . Repeating the above steps we find

f1 : −
(

0 0
1 0

)(
�1/2 B�−1/2

0 �−1/2

)
=

(
0 0

−�1/2 −B�−1/2

)
(14.98)

namely the triangular gauge is not preserved. Therefore, we have to introduce a
compensating term, i.e. we need the transformation rule (14.89). We introduce
a local H transformation parametrized by a function ω, which is determined in
such a way as to preserve the gauge. Remember that the H generator is Y 3:

f1 : − f1v + v(−ωY 3) =
(

0 0
−�1/2 −B�−1/2

)
+ ω

(
B�−1/2 −�1/2

�−1/2 0

)
.

(14.99)
The triangular gauge is defined by the condition

−√�+ ω√
�
= 0 → ω = � (14.100)

and so the transformation reads

f1 : δv =
(

B�1/2 −�3/2

0 −B�−1/2

)
. (14.101)

Hence the variations of the fields � and B are

f1(�) = 2�B, f1(B) = B2 −�2 (14.102)

clearly not linear in the fields.
Note that the SL(2, RRR) transformations leave the fields ρ and λ unchanged,

i.e.
δλ = 0, δρ = 0.

14.3.2 Nonlinear realization of SSSLLL(((222,,, RRR)))MMMMMM

On the other side, identical calculations can be done to evaluate the action of
SL(2, RRR)MM on the fields (�, B2). Also in this case the symmetry is realized in
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a nonlinear way. We have (with the suffix 0 for Matzner–Misner)

e0(�) = 0, e0(B2) = −1 (14.103)

h0(�) = 2�, h0(B2) = −2B2 (14.104)

f0(�) = −2�B2, f0(B2) = B2
2 −

( ρ
�

)2
. (14.105)

Again, the generator f0 acts nonlinearly.

14.4 The Geroch group

The aim of this section is to combine the two groups, SL(2, RRR)E with fields
(�, B) and SL(2, RRR)MM, with (�, B2), into a unified group, the infinite-
dimensional Geroch group. The associated Lie algebra is an affine Kac–Moody
algebra.

We return first to duality relation

ρ−1�2∂µB2 = εµν∂νB (14.106)

which is invariant under the Kramer–Neugebauer transformation. We need this
equation because we now have to evaluate the action of SL(2)E on B2 and of
SL(2)MM on B.

14.4.1 Action of SSSLLL(((222,,, RRR)))EEE on λ̃λλ, BBB222

Keeping in mind that δρ = 0, we have

B → B + δB ⇒ εµν∂
ν(δB) = δ(�2ρ−1∂µB2) (14.107)

after the functional differentiation and the usage of duality

∂µ(δB2) = ρεµν(∂νδB − 2�−3δ�). (14.108)

Consequently, from the change of B calculated before, we have the variation of
B2 due to the SL(2)E generators.

e1 : 0 = ∂µ(δB2)⇒ e1(B2) = c1(= constant) (14.109)

h1 : ∂µ(δB2) = 2ρ�−2εµν∂
νB ⇒ h1(B2) = 2B2 (14.110)

f1 : εµν∂ν(δB2) = 2ρ(�−2 B∂νB +�−1∂ν�)⇒ f1(B2) = 2φ1. (14.111)

Here a dual potential φ1 has been introduced, which is defined such that

ρ−1εµν∂
νφ1 = �−2(B∂µB +�∂µ�). (14.112)

Careful inspection of these relations now shows the following. The contributions
due to e1 and h1 are linear in the fields and local; the difference is in the
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transformation generated by f 1, which is clearly nonlinear and non-local, because
one has to perform an integration to calculate explicitly the dual potential.

We then evaluate also the action on λ̃. From the definition of (14.82), and
observing that δλ = 0, it follows that

λ̃−1δλ̃ = − 1
2�

−1δ� (14.113)

14.4.2 Action of SSSLLL(((222,,, RRR)))MMMMMM on λλλ, BBB

Exactly the same analysis has to be done for the other group, with generators
(e0, h0, f0)

e0 :⇒ e0(B) = c0 (14.114)

h0 :⇒ h0(B) = 2B (14.115)

f0 :⇒ f0(B) = 2φ0 (14.116)

with
ρεµν∂

νφ0 = −�2 B2∂µB2 + ρ�∂µ
( ρ
�

)
. (14.117)

14.4.3 The affine Kac–Moody SSSLLL(((222,,, RRR))) algebra

The transformations we have just derived are to be identified with an affine
SL(2, RRR) Kac–Moody algebra. The latter is characterized by the Cartan matrix

Aij =
(

2 −2
−2 2

)
(14.118)

and the standard Chevalley–Serre presentation defining the algebra which can be
read off from the Cartan matrix:

[hi , h j ] = 0

[hi , e j ] = Aij e j

[hi , f j ] = −Aij f j

[ei , f j ] = δi j h j

[ei [ei [ei , e j ]]] = 0

[ fi [ fi [ fi , f j ]]] = 0.

Here i = j = 0, 1; note that there is no summation on repeated indices and
that the first relation defines the Cartan subalgebra. To see the relation with the
SL(2, RRR) transformations dealt with before, we make the identifications

e1 = T+0 , f1 = T−0 , h1 = T 3
0 (14.119)

e0 = T−1 , f0 = T+− , h0 = c − T 3
0 . (14.120)
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Using the known commutation rules of the Chevalley–Serre generators of
SL(2, RRR) it is possible to directly check the algebra.

For example, it is straightforward to see that

[h1, e0] = [T 3
0 , T−1 ] = −2T−1 = −2e0 (14.121)

or that
[e1, e0] = [T+0 , T−1 ] = 2T 3

1

[e1, [e1, e0]] = −4T+1 ⇒ [e1[e1[e1, e0]]] = 0
(14.122)

and so on for the other commutators.
The full current algebra is now built by taking multiple commutators in all

possible ways. The Lie algebra element c = h 0 + h1 is the central charge. It has
a trivial action on the fields �, B, B2, λ̃, λ.

14.5 The linear system

The aim of this section is to linearize and localize the action of the Geroch group
seen in the previous section.

Let us start from the Lagrangian for arbitrary G/H in three dimensions and
then reduce to two

L = − 1
4ρeR(e)+ 1

4ρegmn Tr Pm Pn . (14.123)

We pick now the conformal gauge for the three-bein, as before

ea
m =

(
λδαµ 0

0 ρ

)
(14.124)

where we have dropped the two-dimensional Kaluza–Klein vector because it
carries no physical degrees of freedom any more. It is well known that the choice
eαµ = λeαµ is preserved under conformal diffeomorphisms

δx+ = ξ−(x+), δx− = ξ+(x−) (14.125)

with the light cone coordinates x± ≡ 1√
2
(x0 ± x1). This residual coordinate

freedom can be gauged away, for example, by employing the dilaton and the
axion fields. One can fix the residual conformal diffeomorphisms by identifying
the field ρ or ρ̃ with one of the coordinates.

14.5.1 Solving Einstein’s equations

Let us now focus our attention on the way of solving Einstein’s equation. First
note that by substituting the gauge (14.124) into the scalar equation (14.67), we
arrive at

ρ−1 Dµ(ρPµ) = 0. (14.126)
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The dependence of this equation on ρ is all that remains of three-dimensional
gravity. Equation (14.126) reduces to the Ernst equation for G = SL(2, RRR), but
we will return to this later. For the moment, note only that this equation works for
the σ -model degrees of freedom, namely on�.

The remaining equations, which follow from higher dimensions, are the
equations for the dilaton ρ and for the conformal factor λ. ρ is a free field in
two dimensions which can be solved for in terms of two arbitrary functions (left-
movers and right-movers)

�ρ = 0 ⇒ ρ(x) = ρ+(x+)+ ρ−(x−). (14.127)

The equations of motion for the conformal factor in light-cone coordinates

ρ−1∂±ρλ−1∂±λ = 1
2 Tr(P±P±)+ 1

2ρ
−1∂2±ρ (14.128)

can be written as
∂±ρ∂±σ̂ = 1

2ρ Tr P±P± (14.129)

where the second term on the right-hand side of (14.128) has been reabsorbed into

the Liouville scalar σ̂ = λ(∂+ρ)− 1
2 (∂−ρ)−

1
2 . Note that this equation determines

λ only up to a constant factor. Observe also that this equation has no analogue
in flat space theories, and this, together with the presence of ρ, makes a great
difference. For instance, we cannot simply put ρ = constant, for this would
imply the vanishing of the right-hand side of (14.129), which by the positivity of
the Killing metric on the subalgebra KKK would imply P± = 0 and leave us only
with the trivial solution v = constant (modulo H gauge transformations).

Now specializing to general relativity, i.e. G/H = SL(2, RRR)/SO(2) coset
space. As anticipated before, we start from the equation of motion (14.126),
employ the triangular gauge in the Ehlers form, so to have explicit expressions
for Pµ and Qν . After a little algebra we have again the Ernst equation

�∂µ(ρ∂
µE) = ρ∂µE∂µE (14.130)

in terms of the complex potential E = � + iB. Solving Einstein’s equations
is now simply a matter of choosing the appropriate ρ(x), finding a solution of
the nonlinear partial differential equation (14.130) and finally determining the
conformal factor λ by integration of (14.129). For the colliding plane wave
solutions, that will be recovered in the next sections, one distinguishes waves with
collinear polarization, where B = 0 and waves with non-collinear polarization.
For collinearly polarized waves, the nonlinear Ernst equation can be reduced to a
linear partial differential equation through the replacement� = expψ .

So, for collinearly polarized waves, with B = 0, the four-bein is

EM
A =



λ�−1/2 0 0 0

0 λ�−1/2 0 0
0 0 ρ�−1/2 0
0 0 0 �1/2


 (14.131)
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and then the four dimensional line element is

ds2 = 2�−1λ2 dx+ dx− −�−1ρ2(dx2)2 −�(dx3)2 (14.132)

where�, ρ and λ depend only on x + and x−.

14.5.2 The linear system

The integrability of the nonlinear equation of motion (14.126) is reflected in the
existence of a linear system. This means that there is a set of linear differential
equations, whose compatibility conditions yield just the nonlinear equations that
one tries to solve.

To formulate the linear system one must introduce a so-called spectral
parameter t as an extra variable and replace v(x) by a matrix v̂(x) which also
depends on t .

v(x0, x1)→ v̂(x0, x1; t). (14.133)

We postulate

v̂−1∂µv̂ = Qµ + 1+ t2

1− t2 Pµ + 2t

1− t2 εµν Pν . (14.134)

This is a generalization of v−1∂µv = Qµ + Pµ, which is obtained from (14.134)
in the case t = 0. (14.134) is equivalent to

v̂∂±v̂ = Q± + 1∓ t

1± t
P±. (14.135)

Here we have an integrability condition, written as

∂+(v̂−1∂−v̂)− ∂−(v̂−1∂+v̂)+ [v̂−1∂+v̂, v̂−1∂−v̂] = 0 (14.136)

which using (14.135) can be directly checked by calculation, making use of the
integrability condition seen before and of the equation of motion for ρ. We define
explicitly

A = ∂+(v̂−1∂−v̂)− ∂−(v̂−1∂+v̂) (14.137)

B = [v̂−1∂+v̂, v̂−1∂−v̂]. (14.138)

Employing (14.135) these relations become

A = ∂+Q− − ∂−Q+ + 1+ t

1− t
∂+P− − 1− t

1+ t
∂−P+

+ ∂+
(

1+ t

1− t

)
P− − ∂−

(
1− t

1+ t

)
P+ (14.139)

B = [Q+, Q−]+ [P+, P−]+ 1+ t

1− t
[Q+, P−]− 1− t

1+ t
[Q−, P+]. (14.140)
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The sum now reads

A+ B = 1+ t

1− t
D+P− − 1− t

1+ t
D−P+

+ 2t

(1− t)2
t−1∂+t P− + 2t

(1+ t)2
t−1∂−t P+ (14.141)

where the integrability relation seen in section 14.2 has been used. Now let us
postulate

t−1∂±t = 1∓ t

1± t
ρ−1∂±ρ (14.142)

so it follows

A+ B = 1+ t2

1− t2 (D+P− − D−P+)+ 2t

1− t2 (D+P− + D−P+)

+ 2t

1− t2
(ρ−1∂+ρP− + ρ−1∂−ρP+). (14.143)

Now the first term is null for the integrability relation D+P− = D−P+ and
the second for the equation (14.126). Therefore, the integrability condition is
checked.

Let us now focus on equation (14.142): it is integrable once one has a
solution of �ρ = 0. This can be explicitly verified, as it follows. First, let us
multiply (14.142) by (1− t 2); after a little algebra this equation reduces to

∂±
[
ρ

(
t + 1

t

)
− 2ρ̃

]
= 0 (14.144)

where the axion ρ̃ has been introduced. So one must have

1

2
ρ

(
t + 1

t

)
− ρ̃ = w (14.145)

wherew is an integration constant. When we substitute in this relation the explicit
expression of the dilaton and the axion as functions of incoming and outgoing
fields, we get

t (x;w) =
√
w + ρ+(x+)−

√
w − ρ−(x−)√

w + ρ+(x+)+
√
w − ρ−(x−)

. (14.146)

For fixed x , the function t (x;w) lives on a two-sheeted Riemann surface over the
complex w-plane, with an x-dependent cut extending from ρ−(x−) to ρ+(x+).
The integration constant w can be regarded as an alternative spectral parameter.

The inverse of the spectral parameter is also important

y ≡ 1

w
= 2t

ρ(1+ t2)− 2t ρ̃
=




2t

ρ
+ · · · , t ∼ 0

2

ρt
+ · · · , t ∼ ∞

(14.147)
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where we consider the expansion around zero and infinity. What is the
significance of the replacement (14.133)? A spectral parameter is required if one
wants to enlarge the finite Lie group to its affine extension, and the appearance of
t in (14.133) fits nicely with this expectation. There is now an infinite hierarchy
of fields, as one can see by expanding v̂ in t . For convenience let us pick a
generalized triangular gauge, defined by the requirement that v̂ should be regular
at t = 0, or

v̂(x; t) = exp
∞∑

n=0

tnϕn(x). (14.148)

Another important feature of the linear system is the invariance under a
generalization of the symmetric space automorphism. Let us define it for η = 1

τ∞v̂(t) = (v̂T)−1
(

1

t

)
. (14.149)

In terms of the Lie algebra, the action of τ∞ reads

Qµ → Qµ, Pµ → −Pµ. (14.150)

It is straightforward to verify that

τ∞(v̂−1∂µv̂) = v̂−1∂µv̂. (14.151)

We can say that it is v̂∂µv̂ ∈ HHH∞, which is the subalgebra of the Geroch group
G∞t which is t∞-invariant, as happens for finite-dimensional symmetric spaces.
It is worth noticing that this property does not hold for v−1∂µv if we replace τ∞
with the transformation τ defined in section two.

14.5.3 Derivation of the colliding plane metric by factorization

At this point we can convince ourselves that the results obtained so far can be
used to construct exact solutions of Einstein’s equations. Of central importance
for this task is the monodromy matrix, which is defined as follows

M = v̂(x; t)v̂T
(

x; 1

t

)
. (14.152)

A short calculation reveals that

∂µM = v̂(v̂−1∂µv̂ − τ∞(v̂−1∂µv̂))τ
∞v̂−1 = 0 (14.153)

where the relation (14.151) was used. Consequently, M can only depend on w.
The solutions generating procedure now consists in choosing a matrixM(w) and
finding a factorization as in (14.152).
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The simplest non-trivial example, that will be considered here, permits us to
recover the Ferrari–Ibanez colliding plane wave metric. Let us consider for this
aim the monodromy matrix

M(w) =
( w0−w
w0+w 0

0 w0+w
w0−w

)
∈ SL(2,CCC) (14.154)

and use

w −w0 = − ρ

4t0
(t − t0)

(
1

t
− t0

)
(14.155)

with the special value w0 = 1
2 and t0 ≡ t (x;w0).

We use light cone coordinates, with the following notation to facilitate the
comparison with the standard literature

u ≡ x+, v ≡ x− (14.156)

then the remaining conformal invariance is entirely fixed by choosing the
coordinates in such a way that

ρ+(u) = 1
2 (1−2u2), ρ−(v) = 1

2 (1−2v2)⇒ ρ(u, v) = 1−u2−v2 (14.157)

where ρ(u, v) > 0 because the interaction region, where the waves collide, is
u2 + v2 < 1. Substituting (14.155) into (14.154) and defining two particular
solutions (14.146) in our gauge as

t1(u, v) ≡ t

(
u, v;w = 1

2

)
=
√

1− u2 − v√
1− u2 + v > 0 (14.158)

t1(u, v) ≡ t

(
u, v;w = −1

2

)
= −

√
1− v2 + u√
1− v2 − u

< 0 (14.159)

where the inequalities hold in the interaction region, we obtain in a
straightforward way the desired factorization form for the monodromy matrix.
Then it follows that

v̂(u, v; t) =
(√

− t2
t1

t−t1
t−t2

0

0
√
− t1

t2
t−t2
t−t1

)
. (14.160)

Putting t = 0 we recover v(u, v) in the triangular gauge, and then read directly
the result for� by virtue of (14.69). We get

� = − t1
t2
= 1− ξ

1+ ξ , B = 0 (14.161)

where the oblate spherical coordinates have been introduced

ξ ≡ u
√

1− v2 + v
√

1− u2 (14.162)

η ≡ u
√

1− v2 − v
√

1− v2. (14.163)
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From (14.161) we have P 2± = Q± = 0, with P1± = 1
2�

−1∂±�. Putting
equation (14.161) into this second relation, we gain

1
2�

−1∂±� = 1
2 t−1

1 ∂±t1 − 1
2 t−1

2 ∂±t2 (14.164)

which using the formulae

t−1∂+t = ρ−1∂+ρ
1− t

1+ t
, t−1∂−t = ρ−1∂−ρ

1+ t

1− t
(14.165)

becomes

P1± =
1

2
ρ−1∂±ρ

(
1∓ t1
1± t1

− 1∓ t2
1± t2

)
. (14.166)

Now we use the expression given here for P 1+ to integrate the equation for the
conformal factor. Some further calculations show that

λ2 = 8uv
(1− t1t2)2

(1− t2
1 )(1− t2

2 )
(14.167)

where the undetermined overall factor has been chosen for convenience. Then,
this result yields the four-dimensional metric

ds2 = (1+ξ)2
(

dξ2

1− ξ2
− dη2

1− η2

)
−ρ2 1− ξ

1+ ξ (dx2)2− 1+ ξ
1− ξ (dx3)2. (14.168)

This is (a special case of) the so-called Ferrari–Ibanez colliding plane wave
solution.
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Chapter 15

Gyroscopes and gravitational waves

Donato Bini1 and Fernando de Felice2

1 Istituto per Applicazioni della Matematica, CNR, I-80131
Napoli, Italy and International Center for Relativistic
Astrophysics, University of Rome, I-00185 Roma, Italy
2 Dipartimento di Fisica ‘G. Galilei’ , Università degli Studi di
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The behaviour of a gyroscope in geodesic motion is studied in the field of
a plane gravitational wave. We find that, with respect to a special set of
frames, the compass of inertia undergoes a precession which, to first order in the
dimensionless amplitude h of the wave, is dominated by the cross-polarization
alone. This suggests that a gyro might act as a filter of the polarization state of
the wave.

15.1 Introduction

The (direct) detection of gravitational waves is still an open question, although
indirect evidence for their existence has been obtained from the observation
of the binary pulsar system PSR 1913+16 [1]. Besides the well-known bar
antennae, there is a growing interest in laser interferometry detectors, like LIGO
and VIRGO, which are sensitive to the low frequency (∼10 Hz) gravitational
waves which are emitted by sources like coalescing binaries.

The purpose of this paper is to study the behaviour of a test gyroscope
which is acted upon by a plane gravitational wave with the purpose to see
whether this interaction leads to observable effects. It is well known that in
the absence of significant coupling between the background curvature and the
multipole moments of the energy–momentum tensor of an extended body, the
spin vector is Fermi–Walker transported along the body’s own trajectory (see [2]
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and references therein). The effects of a gravitational wave on a frame which is
not Fermi–Walker transported, are best appreciated by studying the precession of
a gyro at rest in that frame. Clearly it is essential to identify a class of frames
which optimize the corresponding precession effect.

In section 15.2 we give a short review of the observer dependent spacetime
splitting which enables one to describe in physical terms the motion of a test
particle as well as that of a test gyroscope. In section 15.3 we discuss the
spacetime of a plane gravitational wave and confine our attention to the family of
static observers; we give an example of a tetrad frame adapted to these observers
with respect to which the precession of a gyroscope is induced by the cross-
polarization only. In section 15.4 we discuss the non-trivial problem of how to
fix, in an operational and non-ambiguous way, a frame of reference which is not
Fermi–Walker transported in the spacetime of a plane gravitational wave. Finally,
in section 15.5 we calculate the precession of a gyroscope, in a general geodesic
motion, with respect to the above frame.

In what follows, Greek indices run from 0–3, latin indices from 1–3.

15.2 Splitting formalism and test particle motion: a short
review

A given family of test observers, namely a congruence of timelike lines with unit
tangent vector field u (i.e. u · u = −1) induces a splitting of the spacetime into
space plus time through the orthogonal decomposition of the tangent space at each
point into the local time direction along u and the local rest space LRS u .

Projection of spacetime tensor fields onto LRSu is accomplished using the
projection operator

P(u) = I + u ⊗ u (15.1)

and yields a family of spatial tensors (belonging to LRSu ⊗ · · · ⊗ LRSu , i.e.
for which any contraction with u vanishes). The collection of all the spatially
projected tensor fields, associated to a given spacetime tensor field, will be
referred to as the ‘measure’ of the spacetime tensor itself. For instance, the
measure of the unit volume four-form ηαβµν , gives only one non-trivial spatial
field: ε(u)αβγ = uδηδαβγ which can be used in turn to define the spatial cross
product×u in LRSu .

One can also spatially project the various derivative operators so that the
result of the derivative of any tensor field is itself a spatial tensor; examples
are: the spatial Lie derivative, £(u)X = P(u)£X for any vector field X , the

spatial covariant derivative ∇(u)α = P(u)P(u)
β
α∇β , the Lie temporal derivative,

∇(lie,u) = P(u)£u , the Fermi–Walker temporal derivative, ∇(fw,u) = P(u)∇u and
several other natural derivatives for which a detailed discussion can be found
in [2].

The measure of the covariant derivative of the four-velocity of the observers,
gives rise to the kinematical coefficients of the observer congruence, namely the
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acceleration, vorticity expansion

aα(u) = ∇(fw,u)uα,
ω(u)αβ = P(u)

γ
αP(u)

δ
β∇[γ uδ],

θ(u)αβ = P(u)
γ
αP(u)

δ
β∇(γ uδ), (15.2)

and the spatial dual of the vorticity field

ω(u)
α = 1

2ε(u)
αβγ ω(u)βγ . (15.3)

When dealing with different families of test observers, say u and U , the
mixed projection map P(U,u) = P(u)P(U) from LRSU to LRSu (and the analogous
compositions of two or more projectors) will be useful. Let -U be the world line
of a nonzero rest mass test particle with U as its unit timelike tangent vector. The
orthogonal decomposition of U relative to the family of test observers u, identifies
its relative velocity ν(U,u) = νν̂(U,u) where ν = ‖ν(U,u)‖ = ‖ν(u,U)‖ and ν̂(U,u) is
the unit spatial vector, so that

U = γ [u + νν̂(U,u)]. (15.4)

Here γ = (1− ν2)−1/2 is the local relative Lorentz factor. If the four acceleration
of the particle

a(U) = ∇U U = D

dτU
U

is non-vanishing, then its projection onto LRSu , leads to the acceleration-equals-
force equation:

P(U,u)a(U) ≡ γ F(U,u)

where F(U,u) is the spatial force acting on the particle as seen by the observer u.
In a similar way, one defines a spatial gravitoinertial force

F (G)(fw,U,u) = − γ−1 P(u)
Du

dτU

= − P(u)
Du

dτ(U,u)

= γ [g(u) + ν( 1
2 ν̂(U,u) ×u H(u) − θ(u)Lν̂(U,u))], (15.5)

where τU is a proper time parametrization for U and τ(U,u) =
∫
-U
γ dτU is the

corresponding Cattaneo relative standard time parametrization; g (u) = −a(u) and
H(u) = 2ω(u) are, respectively, the electric- and magnetic-like components of
the gravitoinertial force. This terminology is justified by the Lorentz form of the
gravitoinertial force which appears in the last of equations (15.5).

If we define p(U,u) = γ ν(U,u), E(U,u) = γ and

D(fw,U,u)
dτ(U,u)

= γ−1 P(u)
D

dτU
= ∇(fw,u) + να(U,u)∇(u)α (15.6)
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the latter being the measure of the (rescaled) absolute derivative along U , the
(3+1) version of the equation of motion of the particle and of the energy theorem,
acquires the Newtonian form

D(fw,U,u)
dτ(U,u)

p(U,u) = F(U,u) + F (G)(fw,U,u),

dE(U,u)
dτ(U,u)

= [F(U,u) + F (G)(fw,U,u)] ·u ν(U,u). (15.7)

Let us now consider the motion of a test gyroscope. As it is well known,
the spin vector S(U) of a gyroscope carried by an observer U , is Fermi–Walker
transported along his worldline (i.e. S(U) does not precess with respect to spatial
axes which are Fermi–Walker dragged along U ), namely:

D(fw,U)
dτU

S(U) = P(U)
D

dτU
S(U) = 0. (15.8)

Suppose that we have chosen a spatial triad ē(U) â which is adapted to the observer
U and is not a Fermi–Walker frame. The observer U will then see the spin S(U)
of the gyroscope to precess with respect to these axes according to the law:[

dSâ
(U)

dτU
− εâ

b̂ĉζ
b̂
(fw,U,ē(U)â)

Sĉ
(U)

]
ē(U)â = 0 (15.9)

where
ζ â
(fw,U,ē(U)â)

≡ εâb̂ĉ ē(U)b̂ · ∇(fw,U)ē(U)ĉ (15.10)

is the precession rate vector.
However, we may want the gyroscope to be analysed by a different observer,

u say, who is not comoving with the gyro’s centre of mass. In this case we need
a smooth family of these observers, each one intersecting the gyro’s worldline at
any of its spacetime points where he measures the instantaneous precession of
the spin vector relative to a suitably defined frame, adapted to u. Of course, we
require that the observer’s u are synchronized so that their measurements can be
compared. The results of these measurements are described by a smooth and at
least once differentiable function of the proper-time of u.

Let {e(u)â} be a field of spatial triads adapted to u; then the restriction of
{e(u)â} to the worldline -U of the gyroscope, allows one to define on -U a field
of tetrad frames, adapted to U , given by {(U, ē(U) â}, where:

ē(U)â = B(lrs,u,U)e(u)â, (15.11)

B(lrs,u,U) = P(U)B(u,U)P(u) : LRSu → LRSU being the boost map between the
rest spaces of the observers U and u; this map has been studied extensively in
[2–4]. Since the boost is an isometry, the precession of S (U) with respect to the
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axes ē(U)â is the same as the precession, with respect to the axes e(u) â , of the
boosted spinvector s(u), which reads:

s(u) = B(lrs,U,u)S(U) =
[

P(u) − γ

γ + 1
ν(U,u) ⊗ ν(U,u)

]
P(U,u)S(U). (15.12)

Hence, from (15.9) and (15.11) and the acceleration-equals-force equation
for U ; we find:[

dsâ
(u)

dτU
− γ εâ

b̂ĉ[ζ(fw,U,u) + ζ(sc,fw,U,u)]
b̂sĉ
(u)

]
e(u)â = 0 (15.13)

where1

ζ(fw,U,u) = 1

γ + 1
ν(U,u) ×u [F (G)(fw,U,u) − γ F(U,u)]

ζ(sc,fw,U,u) = 1

2
δâb̂ D(fw,U,u)

dτ(U,u)
e(u)â ×u e(u)b̂ (15.14)

so that
ζ(fw,U,ē(U)â) = γ B(lrs,u,U)[ζ(fw,U,u) + ζ(sc,fw,U,u)]. (15.15)

Finally, by rescaling equation (15.13) to the proper-time of u, one has

ds(u)â

dτ(U,u)
− εâ

b̂ĉ[ζ(fw,U,u) + ζ(sc,fw,U,u)]
b̂s(u)

ĉ = 0 (15.16)

where

ζ(fw,U,u) + ζ(sc,fw,U,u) ≡ ζ̃(fw,u,e(u)â) = γ−1 B(lrs,U,u)ζ(fw,U,ē(U)â) (15.17)

is the angular velocity precession of the gyroscope as measured by the observer u
with respect to the axes e(u)â .

It is worth mentioning here that while the observer U , who is comoving
with the gyro’s centre of mass, measures the precession (15.10) along his own
worldline, the observer’s u can only compare the instantaneous measurements
of ζ̃(fw,u,e(u)â) in (15.17), made by each of them along the gyro’s worldline.
Evidently either type of measurements requires the tetrad frames to be
operationally well defined. This will be discussed in the following section.

15.3 The spacetime metric

The metric of a plane monochromatic gravitational wave, elliptically polarized
and propagating along a direction which we fix as the coordinate x direction, can
be written in the ‘TT’ gauge as [5]:

ds2 = −dt2 + dx2 + (1− h22) dy2 + (1+ h22) dz2 − 2h23 dy dz (15.18)
1 This notation for the Fermi–Walker relative angular velocity ζ(fw,U,u) and the Fermi–Walker space-
curvature relative angular velocity ζ(sc,fw,U,u) has been introduced in [2].
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with h AB = h AB (t − x), (A, B = 2, 3). Let u denote the tangent vector field of
a family of geodesic, non-rotating and expanding observers defined by

u. = −dt, u = ∂t . (15.19)

One can adapt to these observers an infinite number of spatial frames, by rotating
any given one arbitrarily. For example, consider the following u-frame {e α̂} =
{e0̂ = u, eâ = e(u)â} with its dual {ωα̂} = {ω0̂ = −u., ωâ = ω(u)â}

u = ∂t

e(u)1̂ = ∂x

e(u)2̂ = (1− h22)
−1/2∂y ) (1+ 1

2 h22)∂y

e(u)3̂ = (1− h2
22 − h2

23)
−1/2[(1− h22)

−1/2h23∂y + (1− h22)
1/2∂z]

) h23∂y + (1− 1
2 h22)∂z (15.20)

−u. = dt

ω(u)1̂ = dx

ω(u)2̂ = (1− h22)
1/2

[
dy − h23

1− h22
dz

]
)

(
1− 1

2
h22

)
dy − h23 dz

ω(u)3̂ =
(

1− h2
22 − h2

23

1− h22

)1/2

dz )
(

1+ 1

2
h22

)
dz,

where ) denotes the corresponding weak-field limit. Any other spatial frame
{ẽ(u)â}, adapted to the observers (15.19), can be obtained from this one by a
spatial rotation R

ẽ(u)â = e(u)b̂ Rb̂
â . (15.21)

Among all the possible frames, there exists only one with respect to which the
local compass of inertia experiences no precession. This frame is Fermi–Walker
transported along u, namely it satisfies the condition

P(u)
D

dτu
ẽ(u)â ≡ ∇(fw,u)ẽ(u)â = 0. (15.22)

A Fermi–Walker frame is the most natural of the u-frames; its spatial
directions, in fact, are fixed by three mutually orthogonal axes of small size
comoving gyroscopes. However, if a metric perturbation causes a dragging of
the local compass of inertia, the only way to detect and measure it, is to select a
frame which is not Fermi–Walker transported. In this frame, in fact, a gyroscope
would be seen to precess and indeed its precession contains all the informations
about gravitational dragging. Nonetheless, it is quite non-trivial to identify, in
an operational way, a frame which is not Fermi–Walker transported along the
observer’s worldline when it is acted upon by a gravitational wave.
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Frame (15.20) is clearly Fermi–Walker transported in the absence of
gravitational waves (h22 and h23 being time independent), but it is not so when
they are present. The Fermi rotation of the frame, in this case, is described by the
(antisymmetric) angular velocity spatial tensor [6]:

C
(u)b̂â = e(u)b̂ ·u ∇(fw,u)e(u)â, (15.23)

hence, a gyroscope carried by the observer u will precess with respect to frame
(15.20) with an angular velocity tensor which has only one independent nonzero
component, namely:

C
(u)3̂2̂ = −

[h23,t (1− h22)+ h22,t h23]

2(1− h22)

√
1− h2

22 − h2
23

) −1

2
h23,t . (15.24)

However, frame e(u)â cannot be operationally defined, so result (15.24) is of little
physical significance although it shows the existence of frames which respond to
one state of polarization only, at least to first order in h AB . We are, therefore,
motivated to search for ‘ frames’ that can be fixed from a viable experimental set
up.

15.4 Searching for an operational frame

Let us consider the timelike geodesics of the metric (15.18). These are well known
[7]; the four-velocity of a general such geodesic can be written as

Ug = 1

2E
[(1+ f + E2)∂t + (1+ f − E2)∂x ]

+ 1

1− h2
22 − h2

23

{[α(1+ h22)+ βh23]∂y + [β(1− h22)+ αh23]∂z},
(15.25)

where α, β and E are Killing constants and f = g ABU AU B is equal to

f = 1

1− h2
22 − h2

23

[α2(1+ h22)+ β2(1− h22)+ 2αβh23]

) α2(1+ h22)+ β2(1− h22)+ 2αβh23. (15.26)

If u = ∂t is the family of observers who make the mesurements and {e(u) â}
is an adapted spatial frame, then the relative velocity ν(Ug,u)

â of Ug with respect
to u is defined by the relation

Ug = γ(Ug,u)[u + ν(Ug,u)
âe(u)â], (15.27)
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where

γ(Ug,u) =
1+ f + E2

2E

) 1

2E
[1+ E2 + α2(1+ h22)+ β2(1− h22)+ 2αβh23] (15.28)

and the relative velocity components can be obtained by comparison of (15.28)
and (15.25).

Hereafter, we restrict ourselves to the weak field approximation (first order in
h AB ) and assume, without loss of generality that, in the absence of a gravitational
wave, the spatial velocity ν(Ug,u), was only in the y coordinate direction. This
corresponds to the requirement that

β = 0, E =
√

1+ α2. (15.29)

In this case we find

ν(U,u)
1̂ = α2

2(1+ α2)
h22,

ν(U,u)
2̂ = α√

1+ α2

[
1+ h22

2(1+ α2)

]
, (15.30)

ν(U,u)
3̂ = α√

1+ α2
h23.

We now require that the four-velocity of a test gyroscope is U = U g as given
by (15.25) with conditions (15.29). The assumption of geodesicity is justified if
we consider the limit of zero size gyroscopes. In this case, in fact, not only can we
neglect the multipole moments of the gyro’s stress tensor higher than the dipole,
but also ignore the tidal term which enters the Papapetrou–Dixon equations and
arises from the coupling of the gyro’s spin with the background curvature. This
term is of the order of the ratio of the average size of the gyroscope and the
gravitational-wave wavelength.

Let us consider the restriction of the vector field u = ∂ t of stationary
observers, to the gyroscope’s worldline and require that these observers monitor
the behaviour of the spin of the moving gyro, measuring the (instantaneous)
precession vector ζ̃ given by equation (15.17). As already mentioned, the spatial
frame e(u)â given by (15.20) is not operationally well defined, so we have to find
one which is so.

To find a spatial frame which is suitable for actual experiments, note that the
observer’s u can unambiguously determine in their rest-frame, a spatial direction
given by that of the relative velocity ν of the gyroscope. Suppose they fix, by
guessing if necessary, a direction of propagation of the gravitational wave and
term this as the x-axis with unit vector e(u) 1̂. Then from these two directions,
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namely that of the relative velocity of the gyro and of the wave propagation, it is
possible to construct a spatial triad as follows

λ(u)1̂ = e(u)1̂ = ∂x

λ(u)2̂ = ν̂(U,u) × ue(u)1̂
λ(u)3̂ = λ(u)1̂ × uλ(u)2̂. (15.31)

This frame can be operationally constructed apart from guessing the
direction of propagation of the wave. Indeed such a guess is also required to fit
data from bar antenna detectors, for example. Obviously this frame is not unique:
any other spatial triad obtained from it after a rotation which depends at most on
the (known) modulus of the relative velocity (or is constant) is equally useful.

The spatial triads e(u)â in (15.20) and λ(u) â in (15.31), differ by a rotation

λ(u)â = Rb̂
âe(u)b̂.

In the weak field limit, the only non-trivial components ofR b̂
â , are

R1̂
1̂ = −R2̂

3̂ = R3̂
2̂ = 1, R2̂

2̂ = R3̂
3̂ = h23

so that

λ(u)1̂ = ∂x

λ(u)2̂ ) h23e(u)2̂ − e(u)3̂ ) −(1− 1
2 h22)∂z

λ(u)3̂ ) e(u)2̂ + h23e(u)3̂ ) (1+ 1
2 h22)∂y + h23∂z . (15.32)

15.5 Precession of a gyroscope in geodesic motion

The precession of the gyro which is measured by the observer’s u all along its
worldline, is the image of the precession measured by the comoving observer U ,
under the boost B(U, u) as shown in (15.17). In order to study the spin precession
seen by the observer comoving with the gyro, we must first decide with respect
to what axes (non-Fermi–Walker transported but operationally well defined) the
precession will be measured, as explained in section 15.2.

Since the observer’s u intersect the worldline of the observer U carrying the
gyro, the u-frames {λ(u) â} in (15.31) form a smooth field of frames on it, so the
observer U can identify spatial directions in his rest space simply by boosting the
directions λ(u)â .

At each event along his worldline in fact he will see the axes λ(u) â defined
in (15.31) to be in relative motion, therefore the boost of these axes, namely

λ̄(U)â = B(lrs,u,U)λ(u)â = λ(u)â + γ

γ + 1
[ν(U,u) · λ(u)â](u +U), (15.33)
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from (15.11), will be seen by U as the corresponding axes with the same
orientation which are ‘momentarily at rest’ . The orientation of the spin vector
S with respect to the axes λ̄(U)â is also the orientation of S with respect to the
moving axes λ(u)â .

The velocity of spin precession then corresponds to the spatial dual of
the Fermi–Walker structure functions of λ̄(U)â , namely C(fw)(U, λ̄(U)â)b̂â ,
according to relation (15.23).

Confining our attention to the weak-field approximation, the components of
the precession velocity with respect to the triad λ̄(U)â are

ζ(fw,U,λ̄(U)â)
1̂ ) − 1

2 h23,t

ζ(fw,U,λ̄(U)â)
2̂ ) α/2h22,t

ζ(fw,U,λ̄(U)â)
3̂ ) α/2h23,t . (15.34)

We observe that in the limit of small linear momentum, α � 1, the
dominant precession is in the direction of wave propagation e(u) 1̂ (to zeroth
order, λ̄(U)1̂ ) e(u)1̂) and is induced by the cross-polarization only. (Note that
the precession in the direction of propagation of the wave does not depend on
α.) In this case we can conclude that the gyro can act as a polarization filter for
gravitational waves.

In the opposite limit of large linear momentum, α � 1, the precession vector
lies mainly in the plane orthogonal to the propagation direction and is contributed
likewise by both polarizations. Indeed the measurement of the precession induced
by a plane gravitational wave, of a gyroscope set in relativistic motion, would
enable one to identify the local direction of propagation of the wave. A similar
situation will be encountered in the rest frame of u, where from (15.17), (15.28)
and (15.29) we have:

ζ̃ 1̂
(fw,u,λ(u)â)

= γ−1
(U,u)B(lrs,U,u)ζ(fw,U,λ̄(U)â)

1̂ ) − 1

2

1√
1+ α2

h23,t

ζ̃ 2̂
(fw,u,λ(u)â)

= γ−1
(U,u)B(lrs,U,u)ζ(fw,U,λ̄(U)â)

2̂ ) 1

2

α√
1+ α2

h22,t

ζ̃ 3̂
(fw,u,λ(u)â)

= γ−1
(U,u)B(lrs,U,u)ζ(fw,U,λ̄(U)â)

3̂ ) 1

2

α√
1+ α2

h23,t . (15.35)

Finally, let us note that results (15.35) are only slightly modified after
rotating the frame (15.31) by a constant angle φ around the propagation direction
of the wave. In fact, in this case, the new spatial u-frame becomes

f (u)1̂ = λ(u)1̂
f (u)2̂ = cosφλ(u)2̂ + sinφλ(u)3̂
f (u)3̂ = − sinφλ(u)2̂ + cosφλ(u)3̂; (15.36)
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when φ = 0 it reduces to (15.31). Once the boosted frame f̄ (U)â =
B(lrs,U,u) f (u)â in LRSU is obtained, the components of the precession velocity
turn out to be

ζ(fw,U, f̄ (U)â)
1̂ ) − 1

2 h23,t

ζ(fw,U, f̄ (U)â)
2̂ ) α/2[cosφh22,t − sinφh23,t ]

ζ(fw,U, f̄ (U)â)
3̂ ) α/2[− sinφh22,t + cosφh23,t ], (15.37)

again showing that, in the limit of small linear momentum α, the precession
mainly occurs about the direction of propagation of the wave.

15.6 Conclusions

We have operationally defined a tetrad frame adapted to a family of static
observers in the background of a plane gravitational wave. Then we have used
this family to study the precession angular velocity of a gyroscope moving along
a spacetime geodesic. The results show that, to first order in h and in the
case of non-relativistic motion (α � 1), the observed gyroscopic precession is
mainly induced by the cross-polarization only so a gyro appears to behave as a
polarization filter.

Assuming the form h23 = h× sin( 2πc
λGW
(t − x/c) + ψ) for the cross-

polarization, with an obvious meaning for the symbols, the precession frequency
(in conventional units) would be

�(gyro)(t) ) −πch×
λGW

cos

(
2πc

λGW
(t − x/c)+ ψ

)
. (15.38)

The values of the precession frequency are very small, as expected. With a typical
amplitude of 10−21 at the Earth and a frequency of 103 Hz, we could hope for a
maximum precession of the order of 10−18 s−1.

Clearly the precession effect is larger with high-frequency gravitational
waves or when the gyroscope is close enough to the wave source to allow for
a higher value of h×. This situation is encountered by a spinning neutron star,
say, in a compact binary system.

The type of analysis we have considered, is most suitable to describe the
interaction of a moving gyroscope with a continuous flow of plane gravitational
waves with metric form as in (15.18). These are expected to be emitted by
sources like compact binaries. If we have an impulsive source, like a supernova,
then one expects a burst of gravitational radiation which is better described by a
gravitational sandwich. This latter case is now under investigation.
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Chapter 16

Elementary introduction to pre-big bang
cosmology and to the relic graviton
background

Maurizio Gasperini
Dipartimento di Fisica, Università di Bari, Via G. Amendola 173,
70126 Bari, Italy and Istituto Nazionale di Fisica Nucleare,
Sezione di Bari, Bari, Italy

This is a contracted version of a series of lectures for graduate and undergraduate
students given at the ‘VI Seminario Nazionale di Fisica Teorica’ (Parma,
September 1997), at the Second International Conference ‘Around VIRGO’ (Pisa,
September 1998), and at the Second SIGRAV School on ‘Gravitational Waves
in Astrophysics, Cosmology and String Theory’ (Center ‘A. Volta’ , Como, April
1999). The aim is to provide an elementary, self-contained introduction to
string cosmology and, in particular, to the background of relic cosmic gravitons
predicted in the context of the so-called ‘pre-big bang’ scenario. No special
preparation is required besides a basic knowledge of general relativity and of
standard (inflationary) cosmology. All the essential computations are reported
in full details either in the main text or in the appendices. For a deeper and more
complete approach to the pre-big bang scenario the interested reader is referred to
the updated collection of papers available at http://www.to.infn.it/∼gasperin/.

16.1 Introduction

The purpose of these lectures is to provide an introduction to the background of
relic gravitational waves expected in a string cosmology context, and to discuss
its main properties. To this purpose, it seems to be appropriate to include a short
presentation of string cosmology, in order to explain the basic ideas underlying

280
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the so-called pre-big bang scenario, which is one of the most promising scenarios
for the production of a detectable graviton background of cosmological origin.

After a short, qualitative presentation of the pre-big bang models, we will
concentrate on the details of the cosmic graviton spectrum: we will discuss the
theoretical predictions for different models, and will compare the predictions
with existing phenomenological constraints, and with the expected sensitivities
of the present gravity-wave detectors. A consistent part of these lectures will
thus be devoted to introducing the basic notions of cosmological perturbation
theory, which are required to compute the graviton spectrum and to understand
why the amplification of tensor metric perturbations, at high frequency, is more
efficient in string cosmology than in the standard inflationary context. Let me start
by noting that a qualitative, but effective representation of the main difference
between string cosmology and standard, inflationary cosmology can be obtained
by plotting the curvature scale of the Universe versus time, as illustrated in
figure 16.1.

According to the cosmological solutions of the so-called ‘standard’ scenario
[1], the spacetime curvature decreases in time. As we go back in time the
curvature grows monotonically, and blows up at the initial ‘big bang’ singularity,
as illustrated in the top part of figure 16.1 (a similar plot, in the standard scenario,
also describes the behaviour of the temperature and of the energy density of the
gravitational sources).

According to the standard inflationary scenario [2], in contrast, the Universe
in the past is expected to enter a de Sitter, or ‘almost’ de Sitter phase, during which
the curvature tends to stay frozen at a nearly constant value. From a classical
point of view, however, this scenario has a problem, since a phase of expansion
at constant curvature cannot be extended back in time for ever [3], for reasons of
geodesic completeness. This point was clearly stressed also in Alan Guth’s recent
survey of inflationary cosmology [4]:

. . . Nevertheless, since inflation appears to be eternal only into the
future, but not to the past, an important question remains open. How
did it all start? Although eternal inflation pushes this question far into
the past, and well beyond the range of observational tests, the question
does not disappear.

A possible anwer to this question, in a quantum cosmology context, is
that the universe emerges in a de Sitter state ‘ from nothing’ [5] (or from some
unspecified ‘vacuum’ ), through a process of quantum tunnelling. We will
not discuss the quantum approach in these lectures, but let us note that the
computation of the transition probability requires an appropriate choice of the
boundary conditions [6], which in the context of standard inflation are imposed ad
hoc when the universe is in an unknown state, deeply inside the non-perturbative,
quantum gravity regime. In a string cosmology context, in contrast, the initial
conditions are referrred asymptotically to a low-energy, classical state which is
known, and well controlled by the low-energy string effective action [7].
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Figure 16.1. Time evolution of the curvature scale in the standard cosmological scenario,
in the conventional inflationary scenario, and in the string cosmology scenario.

From a classical point of view, however, the answer to the above question—
what happens to the universe before the phase of constant curvature, which cannot
last for ever—is very simple, as we are left with only two possibilities. Either the
curvature starts growing again, at some point in the past (but in this case the
singularity problems remain, it is simply shifted back in time), or the curvature
starts decreasing.

In this second case we are just led to the string cosmology scenario,
illustrated in the bottom part of figure 16.1. String theory suggests indeed for
the curvature a specular behaviour (or better a ‘dual’ behaviour, as we shall see
in a moment) around the time axis. As we go back in time the curvature grows,
reaches a maximum controlled by the string scale, and then decreases towards
a state which is asymptotically flat and with negligible interactions (vanishing
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coupling constants), the so-called ‘string perturbative vacuum’ . In this scenario
the phase of high, but finite (nearly Planckian) curvature is what replaces the big
bang singularity of the standard scenario. It thus comes naturally, in a string
cosmology context, to call ‘pre-big bang’ [8] the initial phase with growing
curvature, in contrast to the subsequent, standard, ‘post-big bang’ phase with
decreasing curvature.

At this point, a number of questions may arise naturally. In particular:

• Motivations: why such a cosmological scenario, characterized by a ‘bell-
like’ shape of the curvature, seems to emerge in a string cosmology context
and not, for instance, in the context of standard cosmology based on the
Einstein equations?

• Kinematics: in spite of the differences, is the kinematic of the pre-big bang
phase still appropriate to solve the well-known problems (horizon, flatness
. . . ) of the standard scenario? After all, we do not want to lose the main
achievements of the conventional inflationary models.

• Phenomenology: are there phenomenological consequences that can
discriminate between string cosmology models and other inflationary
models? Are such effects observable, at least in principle?

In the following sections we will present a quick discussion of the three
points listed above.

16.2 Motivations: duality symmetry

There are various motivations, in the context of string theory, suggesting a
cosmological scenario like that illustrated in figure 16.1. All the motivations are
however related, more or less directly, to an important property of string theory,
the duality symmetry of the effective action.

To illustrate this point, let us start by recalling that in general relativity the
solutions of the standard Einstein action,

S = − 1

2λd−1
p

∫
dd+1x

√|g|R (16.1)

(d is the number of spatial dimensions, and λp = M−1
p is the Planck length

scale), are invariant under ‘ time-reversal’ transformations. Consider, for instance,
a homogeneous and isotropic solution of the cosmological equations, represented
by a scale factor a(t):

ds2 = dt2 − a2(t) dx2
i . (16.2)

If a(t) is a solution, then also a(−t) is a solution. On the other hand, when t goes
into −t , the Hubble parameter H = ȧ/a changes sign,

a(t)→ a(−t), H = ȧ/a →−H. (16.3)
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To any standard cosmological solution H (t), describing decelerated expansion
and decreasing curvature (H > 0, Ḣ < 0), is thus associated with a ‘ reflected’
solution, H (−t), describing a contracting universe because H is negative.

This is the situation in general relativity. In string theory the action, in
addition to the metric, contains at least another fundamental field, the scalar
dilaton φ. At the tree-level, namely to lowest order in the string coupling
and in the higher-derivatives (α ′) string corrections, the effective action which
guarantees the absence of conformal anomalies for the motion of strings in curved
backgrounds (see apppendix A) can be written as:

S = − 1

2λd−1
s

∫
dd+1x

√|g|e−φ[R + (∂µφ)2] (16.4)

(λs = M−1
s is the fundamental string length scale; see appendix B for notations

and sign conventions). In addition to the invariance under time-reversal, the above
action is also invariant under the ‘dual’ inversion of the scale factor, accompanied
by an appropriate transformation of the dilaton (see [9] and the first paper of [8]).
More precisely, if a(t) is a solution for the cosmological background (16.2) , then
a−1(t) is also a solution, provided the dilaton transforms as:

a → ã = a−1, φ→ φ̃ = φ − 2d ln a (16.5)

(this transformation implements a particular case of T -duality symmetry, usually
called ‘scale factor duality’ , see appendix B).

When a goes into a−1, the Hubble parameter H again goes into −H so
that, to each one of the two solutions related by time reversal, H (t) and H (−t),
is associated a dual solution, H̃(t) and H̃(−t), respectively (see figure 16.2).
The space of solutions is thus reached in a string cosmology context. Indeed,
because of the combined invariance under the transformations (16.3) and (16.5),
a cosmological solution has in general four branches: two branches describe
expansion (positive H ), two branches describe contraction (negative H ). Also,
as illustrated in figure 16.2, for two branches the curvature scale (∼ H 2) grows
in time, with a typical ‘pre-big bang’ behaviour, while for the other two branches
the curvature scale decreases, with a typical ‘post-big bang’ behaviour.

It follows, in this context, that to any given decelerated expanding
solution, H (t) > 0, with decreasing curvature, Ḣ (t) < 0 (typical of the
standard cosmological scenario), is always associated a ‘dual partner’ describing

accelerated expansion, H̃ (−t) > 0, and growing curvature, ˙̃H (−t) > 0. This
doubling of solutions has no analogue in the context of Einstein cosmology, where
there is no dilaton, and the duality symmetry cannot be implemented.

It should be stressed, before proceeding further, that the duality symmetry is
not restricted to the case of homogeneous and isotropic backgrounds like (16.2),
but is expected to be a general property of the solutions of the string effective
action (possibly valid at all orders [10], with the appropriate generalizations).
The inversion of the scale factor, in particular, and the associated transformation
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Figure 16.2. The four branches of a low-energy string cosmology background.

(16.5), is only a special case of a more general, O(d, d) symmetry of the string
effective action, which is manifest already at the lowest order. In fact, the tree-
level action in general contains, besides the metric and the dilaton, also a second
rank antisymmetric tensor Bµν , the so-called Kalb–Ramond ‘universal’ axion:

S = − 1

2λd−1
s

∫
dd+1x

√|g|e−φ [
R + (∂µφ)2 − 1

12
(∂[µBνα])

2
]
. (16.6)

Given a background, even anisotropic, but with d Abelian isometries, this action
is invariant under a global, pseudo-orthogonal group of O(d, d) transformations
which mix in a non-trivial way the components of the metric and of the
antisymmetric tensor, leaving invariant the so-called ‘shifted’ dilaton φ:

φ = φ − ln
√| det gij |. (16.7)

In the particular, ‘cosmological’ case in which we are interested, the d
isometries correspond to spatial translations (namely, we are in the case of a
homogeneous, Bianchi I type metric background). For this background, the action
(16.6) can be rewritten in terms of the (2d× 2d) symmetric matrix M , defined by
the spatial components of the metric, gij , and of the axion, Bij , as:

B ≡ Bij , G ≡ gij , M =
(

G−1 −G−1 B
BG−1 G − BG−1 B

)
. (16.8)

In the cosmic time gauge, the action takes the form (see appendix B)

S = −λs

2

∫
dt e−φ

[
(φ̇)2 + 1

8
Tr Ṁ(M−1)˙

]
, (16.9)
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and is manifestly invariant under the set of global transformations [11]:

φ→ φ, M →  T M ,  Tη = η, η =
(

0 I
I 0

)
, (16.10)

where I is the d-dimensional unit matrix, and η is the O(d, d) metric in off-
diagonal form. The transformation (16.5), representing scale factor duality, is
now reproduced as a particular case of (16.10) with the trivial O(d, d) matrix
 = η, and for an isotropic background with Bµν = 0.

This O(d, d) symmetry holds even in the presence of matter sources,
provided they transform according to the string equations of motion in the given
background [12]. In the perfect fluid approximation, for instance, the inversion
of the scale factor corresponds to a reflection of the equation of state, which
preserves however the ‘shifted’ energy ρ = ρ| det g ij |1/2:

a → ã = a−1, φ→ φ, p/ρ →−p/ρ, ρ → ρ. (16.11)

A detailed discussion of the duality symmetry is outside the purpose of
these lectures. What is important, in our context, is the simultaneous presence
of duality and time-reversal symmetry: by combining these two symmetries, in
fact, it is possible in principle to obtain cosmological solutions of the ‘self-dual’
type, characterized by the conditions

a(t) = a−1(−t), φ(t) = φ(−t). (16.12)

They are important, as they connect in a smooth way the phase of growing
and decreasing curvature, and also describe a smooth evolution from the string
perturbative vacuum (i.e. the asymptotic no-interaction state in which φ → −∞
and the string coupling is vanishing, g s = exp(φ/2) → 0), to the present
cosmological phase in which the dilaton is frozen, with an expectation value [13]
〈gs〉 = Ms/Mp ∼ 0.3–0.03 (see figure 16.3).

tt

H gS = exp (

Figure 16.3. Time evolution of the curvature scale H and of the string coupling
gs = exp(φ/2) ) Ms/Mp, for a typical self-dual solution of the string cosmology
equations.
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The explicit occurrence of self-dual solutions and, more generally, of
solutions describing a complete and smooth transition between the phase of pre-
and post-big bang evolution, seems to require in general the presence of higher
order (higher loop and/or higher derivative) corrections to the string effective
action [14] (see, however, [15, 16]). So, in order to give only a simple example
of combined {duality

⊕
time-reversal} transformation, let us consider here the

low-energy, asymptotic regimes, which are well described by the lowest order
effective action.

By adding matter sources, in the perfect fluid form, to the action (16.4), the
string cosmology equations for a d = 3, homogeneous, isotropic and conformally
flat background can be written as (see appendix C, equations (16.200), (16.202),
(16.199), respectively):

φ̇2 − 6H φ̇ + 6H 2 = eφρ,

Ḣ − H φ̇ + 3H 2 = 1
2 eφ p,

2φ̈ + 6H φ̇ − φ̇2 − 6Ḣ − 12H 2 = 0. (16.13)

For p = ρ/3, in particular, they are exactly solved by the standard solution with
constant dilaton (see equations (16.216) and (16.217)),

a ∼ t1/2, ρ = 3p ∼ a−4, φ = constant, t →+∞, (16.14)

describing decelerated expansion and decreasing curvature scale:

ȧ > 0, ä < 0, Ḣ < 0. (16.15)

This is exactly the radiation-dominated solution of the standard cosmological
scenario, based on the Einstein equations. In string cosmology, however, to this
solution is associated a ‘dual complement’ , i.e. an additional solution which can
be obtained by applying on the background (16.14) a time-reversal transformation
t →−t , and the duality transformation (16.11):

a ∼ (−t)−1/2, φ ∼ −3 ln(−t), ρ = −3p ∼ a−2, t →−∞. (16.16)

This is still an exact solution of equations (16.13) (see appendix C), describing
however accelerated (i.e. inflationary) expansion, with growing dilaton and
growing curvature scale:

ȧ > 0, ä > 0, Ḣ > 0. (16.17)

We note, for future reference, that accelerated expansion with growing curvature
is usually called ‘superinflation’ [17], or ‘pole-inflation’ , to distinguish it from the
more conventional power-inflation, with decreasing curvature.

The two solutions (16.14) and (16.16) provide a particular, explicit
representation of the scenario illustrated in figure 16.3, in the two asympotic
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Table 16.1. Analogy between supersymmetry and duality.

Supersymmetry Duality + Time-reversal

Pair of partners {bosons, fermions} {growing curvature, decreasing curvature}
Known states photons, gravitons, . . . decelerated, standard post-big bang
Predicted photinos, gravitinos, . . . accelerated, inflationary pre-big bang

regimes of t large and positive, and t large and negative, respectively. The duality
symmetry seems thus to provide an important motivation for the pre-big bang
scenario, as it leads naturally to introduce a phase of growing curvature, and is a
crucial ingredient for the ‘bell-like’ scenario of figure 16.3.

It should be noted that pure scale factor duality, by itself, is not enough to
convert a phase of decreasing into growing curvature (see for instance figure 16.2,
where it is clearly shown that H and H̃ , in the same temporal range, lead to
the same evolution of the curvature scale, H 2 ∼ H̃ 2). Time reflection is thus
necessarily required, if we want to invert the curvature behaviour. From this point
of view, time-reversal symmetry is more important than duality.

In a thermodynamic context, however, duality by itself is able to suggest
the existence of a primordial cosmological phase with ‘specular’ properties with
respect to the present, standard cosmological phase [18]. It must be stressed, in
addition, that it is typically in the cosmology of extended objects that the phase
of growing curvature may describe accelerated expansion instead of contraction,
and that the growth of the curvature may be regularized, instead of blowing
up to a singularity. For instance, it is with the string dilaton [8], or with a
network of strings self-consistently coupled to the background [19], that we are
naturally lead to superinflation. Also, in quantum theories of extended objects,
it is the minimal, fundamental length scale of the theory that is expected to
bound the curvature, and to drive superinflation to a phase of constant, limiting
curvature [20] asymptotically approaching de Sitter, as explicitly checked in a
string theory context [21]. Duality symmetries, on the other hand, are typical of
extended objects (and of strings, in particular), so that it is certainly justified to
think of duality as of a fundamental motivation and ingredient of the pre-big bang
scenario.

Duality is an important symmetry of modern theoretical physics, and to
conclude this section we would like to present an analogy with another very
important symmetry, namely supersymmetry (see table 16.1).

According to supersymmetry, to any bosonic state is associated a fermionic
partner, and vice versa. From the existence of bosons that we know to be
present in nature, if we believe in supersymmetry, we can predict the existence
of fermions not yet observed, like the photino, the gravitino, and so on.

In the same way, according to duality and time-reversal, to any geometrical
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state with decreasing curvature is associated a dual partner with growing
curvature. On the other hand, our universe, at present, is in the standard post-
big bang phase, with decreasing curvature. If we believe that duality has to be
implemented, even approximately, in the course of the cosmological evolution,
we can then predict the existence of a phase, in the past, characterized by growing
curvature and by a typical pre-big bang evolution.

16.3 Kinematics: shrinking horizons

If we accept, at least as a working hypothesis, the possibility that our universe had
in the past a ‘dual’ complement, with growing curvature, we are led to the second
of the three questions listed in section 16.1: is the kinematics of the pre-big bang
phase still appropriate to solve the problems of the standard inflationary scenario?
The answer is positive, but in a non-trivial way.

Consider, for instance, the present cosmological phase. Today the dilaton is
expected to be constant, and the universe should be appropriately described by
Einstein equations. The gravitational part of such equations contains two types of
terms: terms controlling the geometric curvature of a space-like section, evolving
in time like a−2, and terms controlling the gravitational kinetic energy, i.e. the
spacetime curvature scale, evolving like H 2. According to present observations
the spatial curvature term is non-dominant, i.e.

r = a−2

H 2
∼ spatial curvature

spacetime curvature
. 1. (16.18)

According to the standard cosmological solutions, on the other hand, the
above ratio must grow in time. In fact, by putting a ∼ t β ,

r ∼ ȧ−2 ∼ t2(1−β), (16.19)

so that r keeps growing both in the matter-dominated (β = 2/3) and in the
radiation-dominated (β = 1/2) era. Thus, as we go back in time, r becomes
smaller and smaller, and when we set initial conditions (for instance, at the Planck
scale) we have to impose an enormous fine tuning of the spatial curvature term,
with respect to the other terms of the cosmological equations. This is the so-called
flatness problem.

The problem can be solved if we introduce in the past a phase (usually called
inflation), during which the value of r was decreasing, for a time long enough to
compensate the subsequent growth during the phase of standard evolution. It is
important to stress that this requirement, in general, can be implemented by two
physically different classes of backgrounds.

Consider for simplicity a power-law evolution of the scale factor in cosmic
time, with a power β, so that the time-dependence of r is the one given in
equation (16.19). The two possible classes of backgrounds corresponding to a
decreasing r are then the following:
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• Class I: a ∼ tβ , β > 1, t → +∞. This class of backgrounds corresponds
to what is conventionally called ‘power inflation’ , describing a phase of
accelerated expansion and decreasing curvature scale, ȧ > 0, ä > 0,
Ḣ < 0. This class contains, as a limiting case, the standard de Sitter
inflation, β → ∞, a ∼ eHt , Ḣ = 0, i.e. accelerated exponential expansion
at constant curvature.

• Class II: a ∼ (−t)β , β < 1, t → 0−. This is the class of backgrounds
corresponding to the string cosmology scenario. There are two possible
subclasses:

IIa: β < 0, describing superinflation, i.e. accelerated expansion with
growing curvature scale, ȧ > 0, ä > 0, Ḣ > 0;

IIb: 0 < β < 1, describing accelerated contraction and growing curvature
scale, ȧ < 0, ä < 0, Ḣ < 0.

A phase of growing curvature, if accelerated like in the pre-big bang
scenario, can thus provide an unconventional, but acceptable, inflationary solution
of the flatness problem (the same is true for the other standard kinematical
problems, see [8]). It is important to stress, in particular, that the two subclasses
IIa, IIb, do not correspond to different models, as they are simply different
kinematical representations of the same scenario in two different frames, the string
frame (S-frame), in which the effective action takes the form (16.4),

S(g, φ) = −
∫

dd+1x
√|g| e−φ[R + gµν∂µφ∂νφ], (16.20)

and the Einstein frame (E-frame), in which the dilaton is minimally coupled to
the metric, and has a canonical kinetic term:

S(g̃, φ̃) = −
∫

dd+1x
√|g̃|[ R̃ − 1

2 g̃µν∂µφ̃∂νφ̃]. (16.21)

In order to illustrate this point, we shall proceed in two steps. First, we will
show that, through a field redefinition g = g(g̃, φ̃), φ = φ(g̃, φ̃), it is always
possible to move from the S-frame to the E-frame; second, we will show that, by
applying such a redefinition, a superinflationary solution obtained in the S-frame
becomes an accelerated contraction in the E-frame, and vice versa.

We shall consider, for simplicity, an isotropic, spatially flat background with
d spatial dimensions, and we set:

gµν = diag(N2,−a2δi j ), φ = φ(t), (16.22)

where g00 = N2 is to be fixed by an arbitrary choice of gauge. For this
background we get:

�0i
j = H δ j

i , �i j
0 = aȧ

N2 δi j , �0
00 =

Ṅ

N
= F

R = 1

N2
[2d F H − 2d Ḣ − d(d + 1)H 2], (16.23)
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and the S-frame action (16.20) becomes

S(g, φ) = −
∫

dd+1x
ade−φ

N
[2d F H − 2d Ḣ − d(d + 1)H 2 + φ̇2]. (16.24)

Modulo a total derivative, we can eliminate the first two terms, and the action
takes the quadratic form

S(g, φ) = −
∫

dd+1x
ade−φ

N
[φ̇2 − 2d H φ̇ + d(d − 1)H 2]. (16.25)

where, as expected, N plays the role of a Lagrange multiplier (no kinetic term in
the action).

In the E-frame the variables are Ñ , ã, φ̃, and the action (16.21), after
integration by parts, takes the canonical form

S(g̃, φ̃) = −
∫

dd+1x
ãd

Ñ

[
−1

2
˙̃
φ

2 + d(d − 1)H 2
]
. (16.26)

A quick comparison with equation (16.25) finally leads to the field redefinition
(no coordinate transformation!) connecting the Einstein and string frame:

ã = ae−φ/(d−1), Ñ = Ne−φ/(d−1), φ̃ = φ
√

2

d − 1
. (16.27)

In fact, the above transformation gives

H̃ = H − φ̇

d − 1
(16.28)

and, when inserted into equation (16.26), exactly reproduces the S-frame action
(16.25).

Consider now a superinflationary, pre-big bang solution obtained in the S-
frame, for instance the isotropic, d-dimensional vacuum solution

a = (−t)−1/
√

d , eφ = (−t)−(
√

d+1), t < 0, t → 0− (16.29)

(see appendix B, equations (16.160) and (16.161)), and look for the corresponding
E-frame solution. The above solution is valid in the synchronous gauge, N = 1,
and if we choose, for instance, the synchronous gauge also in the E-frame, we can
fix Ñ by the condition:

Ñ dt ≡ Ne−φ/(d−1) dt = dt̃, (16.30)

which defines the E-frame cosmic time, t̃ , as:

dt̃ = e−φ/(d−1) dt . (16.31)
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After integration

t ∼ t̃
d−1

d+√d , (16.32)

and the transformed solution takes the form:

ã = (−t̃)1/d, eφ̃ = (−t̃)−
√

2(d−1)
d , t̃ < 0, t̃ → 0−. (16.33)

One can easily check that this solution describes accelerated contraction with
growing dilaton and growing curvature scale:

dã

dt̃
< 0,

d2ã

dt̃2
< 0,

dH̃

dt̃
< 0,

dφ̃

dt̃
> 0. (16.34)

The same result applies if we transform other isotropic solutions from the string
to the Einstein frame, for instance the perfect fluid solution of appendix C,
equation (16.216). We leave this simple exercise to the interested reader.

Having discussed the ‘dynamical’ equivalence (in spite of the kinematical
differences) of the two classes of string cosmology metrics, IIa and IIb, it seems
appropriate at this point to stress the main dynamical difference between standard
inflation, class I metrics, and pre-big bang inflation, class II metrics. Such a
difference can be conveniently illustrated in terms of the proper size of the event
horizon, relative to a given comoving observer.

Consider in fact the proper distance, de(t), between the surface of the event
horizon and a comoving observer, at rest at the origin of an isotropic, conformally
flat background [22]:

de(t) = a(t)
∫ tM

t
dt ′ a−1(t ′). (16.35)

Here tM is the maximal allowed extension, towards the future, of the cosmic time
coordinate for the given background manifold. The above integral converges for
all the above classes of accelerated (expanding or contracting) scale factors. In
the case of class I metrics we have, in particular,

de(t) = tβ
∫ ∞

t
dt ′ t ′−β = t

β − 1
∼ H−1(t) (16.36)

for power-law inflation (β > 1, t > 0), and

de(t) = eHt
∫ ∞

t
dt ′ e−Ht ′ = H−1 (16.37)

for de Sitter inflation. For class II metrics (β < 1, t < 0) we have instead

de(t) = (−t)β
∫ 0

t
dt ′ (−t ′)−β = (−t)

1− β ∼ H−1(t). (16.38)
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Figure 16.4. Qualitative evolution of the Hubble horizon (broken curve) and of the scale
factor (full curve) in the standard inflationary scenario.

In all cases the proper size de(t) evolves in time like the so-called Hubble horizon
(i.e. the inverse of the Hubble parameter), and then like the inverse of the curvature
scale. The size of the horizon is thus constant or growing in standard inflation
(class I), decreasing in pre-big bang inflation (class II), both in the S-frame and
in the E-frame.

Such an important difference is clearly illustrated in figures 16.4 and 16.5,
where the broken curves represent the evolution of the horizon, the full curves the
evolution of the scale factor. The shaded area at time t0 represents the portion of
universe inside our present Hubble radius. As we go back in time, according to
the standard scenario, the horizon shrinks linearly, (H −1 ∼ t), but the decrease
of the scale factor is slower so that, at the beginning of the phase of standard
evolution (t = t1), we end up with a causal horizon much smaller than the portion
of universe that we presently observe. This is the well-known ‘horizon problem’
of the standard scenario.

In figure 16.4 the phase of standard evolution is preceded in time by a phase
of standard de Sitter inflation. Going back in time, for t < t 1, the scale factor
keeps shrinking, and our portion of universe ‘ re-enters’ inside the Hubble radius
during a phase of constant (or slightly growing in time) horizon.

In figure 16.5 the standard evolution is preceded in time by a phase of pre-
big bang inflation, with growing curvature. The universe ‘ re-enters’ the Hubble
radius during a phase of shrinking horizon. To emphasize the difference, we have
plotted the evolution of the scale factor both in the expanding S-frame, a(t), and
in the contracting E-frame, ã(t). Unlike in standard inflation, the proper size of
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Figure 16.5. Qualitative evolution of the Hubble horizon (broken curve) and of the scale
factor (full curve) in the pre-big bang inflationary scenario, in the S-frame, a(t), and in the
E-frame, ã(t).

the initial portion of the universe may be very large in strings (or Planck) units,
but not larger than the initial horizon itself [23], as emphasized in the picture.
The initial horizon is large because the initial curvature scale is small, in string
units, Hi � 1/λs.

This is a basic consequence of the choice of the initial state which, in the
pre-big bang scenario, approaches the flat, cold and empty string perturbative
vacuum [8], and which is to be contrasted to the extremely curved, hot and
dense initial state of the standard scenario, characterizing a universe which starts
inflating at the Planck scale, Hi ∼ 1/λp.

16.4 Open problems and phenomenological consequences

In order to give an honest presentation of the pre-big bang scenario, it is fair
to say that the string cosmology models are not free from various (more or less
important) difficulties, and that many aspects of the scenario are still unclear. A
detailed discussion of such aspects is outside the purpose of this paper, but we
would like to mention here at least three important open problems. Presented
in ‘ time-ordered’ form (from the beginning to the end of inflation) they are the
following.

• The first concerns the initial conditions, and in particular the decay of the
string perturbative vacuum. The question is whether or not the ‘switching on’
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of a long inflationary phase requires fine tuning. Originally raised in [24],
this problem was recently reproposed as a fundamental difficulty of the pre-
big bang scenario [25] (see [23, 26–28]).

• The second concerns the transition from the pre- to the post-big bang phase,
which is expected to occur in the high curvature and strong coupling regime.
There is a quantum cosmology approach, based on the scattering of the
Wheeler–De Witt wavefunction in minisuperspace [7], but the problem
seems to require, in general, the introduction of higher derivative (α ′) and
quantum loop corrections [21,29] in the string effective action (see [15,16]).

• The third problem concerns the final matching to the standard Friedman–
Robertson–Walker phase, with a transition from the dilaton-dominated to
the radiation-dominated regime, and all the associated problems of dilaton
oscillations, reheating, preheating, particle production, entropy production
[30], and so on.

All these problems are under active investigation, and further work is
certainly needed for a final answer. However, even assuming that all the problems
will be solved in a satisfactory way, we are left eventually with a further question,
the third one listed in the introduction, which is the basic question (in our
opinion). Are there phenomenological consequences that can discriminate string
cosmology from the other inflationary scenarios? and, in particular, are such
consequences observable (at least in principle)?

The answer is positive. There are many phenomenological differences, even
if all the differences seem to have the same ‘common denominator’ , i.e. the fact
that the quantum fluctuations of the background fields are amplified in different
models with different spectra. The spectrum, in particular, tends to follow the
behaviour of the curvature scale during the phase of inflation. In the standard
scenario the curvature is constant or decreasing, so that the spectrum tends to be
flat, or decreasing with frequency. In string cosmology the curvature is growing,
and the spectrum tends to grow with frequency.

In the following sections we will discuss in detail this effect for the
case of tensor metric perturbations. Here we would like to note that the
phenomenological consequences of the pre-big bang scenario can be classified
into three different types, depending on the possibility of their observation: type
I effects, referring to observations to be performed in a not so far future (20–
30 years?); type II effects, referring to observations to be performed in a near
future (a few years); type III effects, referring to observations already (in part)
performed. To conclude this very quick presentation of the pre-big bang scenario,
let me give one example for each type of phenomenological effect.

• Type I: the production of a relic graviton background that, in the frequency
range of conventional detectors (∼102–103 Hz), is much higher (by 8–9
orders of magnitude) than the background expected in conventional inflation
[8, 31–33]. The sensitivity of the presently operating gravitational antennae
is not enough to detect it, however, and we have to wait for the advanced,
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second generation interferometric detectors (LIGO [34], VIRGO [35]), or
for interferometers in space (LISA [36]).

• Type II: the large-scale CMB anisotropy ‘seeded’ by the inhomogeneous
fluctuations of a massless [37] or massive [38] axion background. Metric
fluctuations are indeed too small, on the horizon scale, to be responsible for
the temperature anisotropies detected by COBE [39]; the axion spectrum,
in contrast, can be sufficiently flat [40] for that purpose. Such a different
origin of the anisotropy may lead to non-Gaussianity, or to differences (with
respect to the standard inflationary scenario) in the height and position of
the first Doppler peak of the spectrum [41]. Such differences could be soon
confirmed, or disproved, by the planned satellite observations (MAP [42],
PLANCK [43], . . . ).

• Type III: the production of primordial magnetic fields strong enough to
‘seed’ the galactic dynamo, and to explain the origin of the cosmic magnetic
fields observed on a large (galactic, intergalactic) scale [44]. In the standard
inflationary scenario, in fact, the amplification of the vacuum fluctuations
of the electromagnetic field is not efficient enough [45], because of the
conformal invariance of the Maxwell equations. In string cosmology, in
contrast, the electromagnetic field is also coupled to the dilaton, and the
fluctuations are amplified by the accelerated growth of the dilaton during the
phase of pre-big bang evolution.

Finally, we wish to mention a further important phenomenogical effect,
typical of string cosmology (and that we do not know how to classify within
the tree types defined above, however): dilaton production, i.e. the amplification
of the dilatonic fluctuations of the vacuum, and the formation of a cosmic
background of relic dilatons [46].

The possibility of detecting such a background is strongly dependent on
the value of the dilaton mass, that we do not know, at present. If dilatons are
massless [47], then the amplitude and the spectrum of the relic background should
be very similar to those of the graviton background, and the relic dilatons could
be possibly detected, in the future, by gravitational antennae able to respond to
scalar modes, unless their coupling to bulk matter is too small [47], of course.

If dilatons are massive, the mass has to be large enough to be compatible with
existing tests of the equivalence principle and of macroscopic gravitational forces.
In addition, there is a rich phenomenology of cosmological bounds, which leaves
open only two possible mass windows [46]. Interestingly enough, however, in the
allowed light mass sector the dilaton lifetime is longer than the present age of the
universe, and the dilaton fraction of critical energy density ranges from 0.01–1: in
this context, the dilaton becomes a new, interesting dark matter candidate (see [48]
for a detailed discussion of the allowed mass windows, and of the possibility
that light but non-relativistic dilatons could represent today a significant fraction
of dark matter on a cosmological scale). We have no idea, however, of how to
detect directly such a massive dilaton background, because the mass is light, but
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it is heavy enough (&10−4 eV) to be far outside the sensitivity range of resonant
gravitational detectors.

The rest of this lecture will be devoted to discussing various theoretical
and phenomenological aspects of graviton production, in a general cosmological
context and, in particular, in the context of the pre-big bang scenario. Let us start
by recalling some basic notions of cosmological perturbation theory, which are
required for the computation of the graviton spectrum.

16.5 Cosmological perturbation theory

The standard approach to cosmological perturbation theory is to start with a set
of non-perturbed equations, for instance the Einstein or the string cosmology
equations,

Gµν = Tµν, (16.39)

to expand the metric and the matter fields around a given background solution,

gµν → g(0)µν + δ(1)gµν, Tµν → T (0)µν + δ(1)Tµν, G(0)µν = T (0)µν , (16.40)

and to obtain, to first order, a linearized set of equations describing the classical
evolution of perturbations,

δ(1)Gµν = δ(1)Tµν. (16.41)

In principle, the procedure is simple and straightforward. In practice, however,
we have to go through a series of formal steps, that we list here in ‘chronological’
order:

• choice of the ‘ frame’ ;
• choice of the ‘gauge’ ;
• normalization of the amplitude;
• computation of the spectrum.

16.5.1 Choice of the frame

The choice of the frame is that of the basic set of fields (metric included) used
to parametrize the action. The action, in general, can be expressed in terms of
different fields. In string cosmology, for instance, there is a preferred frame, the
S-frame, in which the lowest order gravidilaton action takes the form of (16.20).
It is preferred because the metric appearing in the action is the same as the σ -
model metric to which test strings are minimally coupled (see appendix A): with
respect to this metric, the motion of free strings is then geodesics. It is always
possible, however, through the field redefinition

g̃µν = gµνe
−2φ/(d−1), φ̃ =

√
2

d − 1
φ, (16.42)
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to introduce the more conventional E-frame (16.21) in which the dilaton is
minimally coupled to the metric, with a canonical kinetic term.

In the two frames the field equations are different, and the perturbation
equations are also different. This seems to raise a potential problem: which frame
is to be used to evaluate the physical effects of the cosmological perturbations?

The problem is only apparent, however, because physical observables (like
the perturbation spectrum) are the same in both frames. The reason is that there
is a compensation between the different perturbation equations and the different
background solution around which we expand. A general proof of this result can
be given by using the notion of canonical variable (see subsection 16.5.3). Here
I will give only an explicit example for tensor perturbations in a d = 3, isotropic
and spatially flat background.

Let us start in the E-frame, with the background equations:

Rµν = 1
2∂µφ∂νφ, (16.43)

referring to the ‘ tilded’ variables of (16.42) (we will omit the ‘ tilde’ , for
simplicity, and will explicitly reinsert it at the end of the computation).
Considering the transverse-traceless part of metric perturbations:

δ(1)φ = 0, δ(1)gµν = hµν, δ(1)gµν = −hµν, ∇νhµν = 0 = hµ
ν (16.44)

(∇µ denotes covariant differentiation with respect to the unperturbed metric g,
and the indices of h are also raised and lowered with g). The perturbation of the
background equations gives:

δ(1)Rµ
ν = 0. (16.45)

We can then work in the synchronous gauge, where

g00 = 1, g0i = 0, gij = −a2δi j ,

h00 = 0, h0i = 0, gij hi j = 0, ∂ j hi
j = 0. (16.46)

To first order in h we get

δ(1)�0i
j = 1

2 ḣi
j , δ(1)�i j

0 = − 1
2 ḣi j ,

δ(1)�i j
k = 1

2 (∂i h j
k + ∂ j hi

k − ∂khi j ). (16.47)

The (0, 0) component of equation (16.45) is trivially satisfied (as well as the
perturbation of the scalar field equation); the (i, j) components, by using the
identities (see for instance [54])

g jkḣik = ḣi
j + 2H hi

j ,

g jkḧik = ḧi
j + 2Ḣhi

j + 4H ḣi
j + 4H 2hi

j , (16.48)

give

δ(1)Ri
j = −1

2

(
ḧi

j + 3H ḣi
j − ∇

2

a2 hi
j

)
≡ −1

2
�hi

j = 0. (16.49)
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In terms of the conformal time coordinate, dη = dt/a, this wave equation can be
finally rewritten, for each polarization mode, as

h̃′′ + 2
ã′

ã
h̃′ − ∇2h̃ = 0, (16.50)

(where we have explicitly reinserted the tilde, and where a prime denotes
differentiation with respect to the conformal time, which is the same in the
Einstein and in the string frame, according to equations (16.27) and (16.31)).

Let us now repeat the computation in the S-frame, where the background
equations for the metric (equation (16.196) with no contribution from
Hµνα, Tµν, V and σ ) can be written explicitly as

Rµ
ν + gνα(∂µ∂αφ − �µαρ∂ρφ) = 0. (16.51)

Perturbing to first order,

δ(1)Rµ
ν − (δ(1)gνα�µα0 + gναδ(1)�µα

0)φ̇ = 0. (16.52)

The (0, 0) component, as well as the perturbation of the dilaton equation, are
trivially satisfied. The (i, j) components, using again the identities (16.48), lead
to [31]:

�hi
j − φ̇ḣi

j = 0. (16.53)

In conformal time, and for each polarization component,

h′′ +
(

2
a′

a
− φ′

)
h′ − ∇2h = 0. (16.54)

This last equation seems to be different from the E-frame equation (16.50).
Recalling, however, the relation (16.27) between a and ã, we have

2
ã′

ã
= 2

a′

a
− φ′, (16.55)

so that we have the same equation for h and h̃, the same solution, and the same
spectrum when the solution is expanded in Fourier modes. The perturbation
analysis is thus frame-independent, and we can safely choose the more convenient
frame to compute the spectrum.

16.5.2 Choice of the gauge

The second step is the choice of the gauge, i.e. the choice of the coordinate system
within a given frame. The perturbation spectrum is, of course, gauge-independent,
but the the perturbative analysis is not, in general. It is possible, in fact, that the
validity of the linear approximation is broken in a given gauge, but still valid in a
different, more appropriate gauge.
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Since this effect is particularly important, let me give, in short, an explicit
example for the scalar perturbations of the metric tensor in a d = 3, isotropic
and conformally flat background, in the E-frame (we will omit the tilde, for
simplicity). The perturbed metric, in the so-called longitudinal gauge, depends
on the two Bardeen potentials � and % as [49]:

ds2 = a2[(1+ 2�) dη2 − (1− 2%) dx 2
i ]. (16.56)

By perturbing the Einstein equations (16.43), the dilaton equation, and combining
the results for the various components, one obtains to first order that � = % , and
that the metric fluctuations satisfy the equation:

�′′ + 6
a′

a
�′ − ∇2� = 0. (16.57)

We now consider the particular, exact solution of the vacuum string cosmology
equations in the E-frame,

a(η) = |η|1/2, φ(η) = −√3 ln |η|, η→ 0−, (16.58)

corresponding to a phase of accelerated contraction and growing dilaton (i.e. the
pre-big bang solution (16.33), written in conformal time, for d = 3). For this
background, the perturbation equation (16.57) becomes a Bessel equation for the
Fourier modes �k ,

�′′k +
3

η
�′k + k2�k = 0, ∇2�k = −k2�k, (16.59)

and the asymptotic solution, for modes well outside the horizon (|kη| � 1),

ϕk = Ak ln |kη| + Bk |kη|−2 (16.60)

contains a growing part which blows up (∼ η−2) as the background approaches
the high curvature regime (η → 0−). In this limit the linear approximation
breaks down, so that the longitudinal gauge is not, in general, consistent with
the perturbative expansion around a homogeneous, inflationary pre-big bang
background, as scalar inhomogeneities may become too large.

In the same background (16.58) the problem is absent, however, for tensor
perturbations, since their growth outside the horizon is only logarithmic. From
equation (16.50) we have in fact the asymptotic solution

hk = Ak + Bk ln |kη|, |kη| � 1. (16.61)

This may suggest that the breakdown of the linear approximation, for scalar
perturbations, is an artefact of the longitudinal gauge. This is indeed confirmed by
the fact that, in a more appropriate off-diagonal (also called ‘uniform curvature’
[50]) gauge,

ds2 = a2[(1+ 2ϕ) dη2 − dx2
i − 2∂i B dx i dη], (16.62)
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Table 16.2. The four classes of accelerated backgrounds.

α < −1 Power-inflation ȧ > 0, ä > 0, Ḣ < 0
α = −1 de Sitter ȧ > 0, ä > 0, Ḣ = 0
−1 < α < 0 Super-inflation ȧ > 0, ä > 0, Ḣ > 0
α > 0 Accelerated contraction ȧ < 0, ä < 0, Ḣ < 0

the growing mode is ‘gauged down’ , i.e. it is suppressed enough to restore the
validity of the linear approximation [51] (the off-diagonal part of the metric
fluctuations remains growing, but the growth is suppressed in such a way that
the amplitude, normalized to the vacuum fluctuations, keeps smaller than one for
all scales k, provided the curvature is smaller than one in string units). This result
is also confirmed by a covariant and gauge invariant computation of the spectrum,
according to the formalism developed by Bruni and Ellis [52].

It should be stressed, however, that the presence of a growing mode, and the
need for choosing an appropriate gauge, is a problem typical of the pre-big bang
scenario. In fact, let us come back to tensor perturbations, in the E-frame: for a
generic accelerated background the scale factor can be parametrized in conformal
time with a power α, as follows:

a = (−η)α, η→ 0−, (16.63)

and the perturbation equation (16.50) gives, for each Fourier mode, the Bessel
equation

h′′k +
2α

η
h′k + k2hk = 0, (16.64)

with asymptotic solution, outside the horizon (|kη| � 1):

hk = Ak + Bk

∫ η dη′

a2(η′)
= Ak + Bk |η|1−2α. (16.65)

The solution tends to be constant for α < 1/2, while it tends to grow for α > 1/2.
It is now an easy exercise to re-express the scale factor (16.63) in cosmic time,

dt = adη, a(t) ∼ |t|α/(1+α), (16.66)

and to check that, by varying α, we can parametrize all types of accelerated
backgrounds introduced in section 16.3: accelerated expansion (with decreasing,
constant and growing curvature), and accelerated contraction, with growing
curvature (see table 16.2).

In the standard, inflationary scenario the metric is expanding, α < 0, so that
the amplitude hk is frozen outside the horizon. In the pre-big bang scenario, in
contrast, the metric is contracting in the E-frame, so that h k may grow if the
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contraction is fast enough, i.e. α > 1/2 (in fact, the growing mode problem
was first pointed out in the context of Kaluza–Klein inflation and dynamical
dimensional reduction [53], where the internal dimensions are contracting). For
the low-energy string cosmology background (16.58) we have α = 1/2, the
growth is simply logarithmic (see (16.61)), and the linear approximation can
be applied consistently, provided the curvature remains bounded by the string
scale [51]. However, for α > 1/2 the growth of the amplitude may require a
different gauge for a consistent linearized description.

16.5.3 Normalization of the amplitude

The linearized equations describing the classical evolution of perturbations can
be obtained in two ways:

• by perturbing directly the background equations of motion;
• by perturbing the metric and the matter fields to first order, by expanding the

action up to terms quadratic in the first order fluctuations,

g → g + δ(1)g, δ(2)S ≡ S[(δ(1)g)2], (16.67)

and then by varying the action with respect to the fluctuations.

The advantage of the second method is to define the so-called ‘normal modes’
for the oscillation of the system {gravity + matter sources}, namely the variables
which diagonalize the kinetic terms in the perturbed action, and satisfy canonical
commutation relations when the fluctuations are quantized. Such canonical
variables are required, in particular, to normalize perturbations to a spectrum
of quantum, zero-point fluctuations, and to study their amplification from the
vacuum state up to the present state of the universe.

Let us apply such a procedure to tensor perturbations, in the S-frame, for a
d = 3 isotropic background. In the syncronous gauge, the transverse-traceless,
first-order metric perturbations hµν = δ(1)gµν satisfy equation (16.46). We
expand all terms of the low-energy gravidilaton action (16.20) up to order h 2:

δ(1)gµν = −hµν, δ(2)gµν = hµαhα
ν,

δ(1)
√−g = 0, δ(2)

√−g = − 1
4

√−ghµνh
µν, (16.68)

and so on for δ(1)Rµν , δ(2)Rµν (see, for instance, [54]). By using the background
equations, and integrating by part, we finally arrive at the quadratic action

δ(2)S = 1

4

∫
d4x a3e−φ

(
ḣ j

i ḣi
j + h j

i
∇
a2

hi
j

)
. (16.69)

By separating the two physical polarization modes, i.e. the standard ‘cross’ and
‘plus’ gravity wave components,

h j
i hi

j = 2(h2+ + h2×), (16.70)
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we get, for each mode (now generically denoted with h), the effective scalar action

δ(2)S = 1

2

∫
d4x a3e−φ

(
ḣ2 + h

∇
a2

h

)
, (16.71)

which can be rewritten, using conformal time, as

δ(2)S = 1
2

∫
d3x dη a2e−φ(h′2 + h∇h). (16.72)

The variation with respect to h gives finally equation (16.54), i.e. the same
equation obtained by perturbing directly the background equations in the S-frame.

The above action describes a scalar field h, non-minimally coupled to a time-
dependent external field, a 2e−φ (also called ‘pump field’ ). In order to impose the
correct quantum normalization to vacuum fluctuations, we introduce now the so-
called ‘canonical variable’ ψ , defined in terms of the pump field as

ψ = zh, z = ae−φ/2. (16.73)

With such a definition the kinetic term for ψ appears in the standard canonical
form: for each mode k, in fact, we get the action

δ(2)Sk = 1

2

∫
dη

(
ψ ′2k − k2ψ2

k +
z′′

z
ψ2

k

)
, (16.74)

and the corresponding canonical evolution equation:

ψ ′′k + [k2 − V (η)]ψk = 0, V (η) = z′′

z
, (16.75)

which has the form of a Schrodinger-like equation, with an effective potential
depending on the external pump field. This form of the canonical equation, by
the way, is the same for all types of perturbations (with different potentials, of
course). What is important, in our context, is that for an accelerated inflationary
background V (z) → 0 as η → −∞. This means that, asymptotically, the
canonical variable satisfies the free-field oscillating equation

η→−∞, ψ ′′k + k2ψk = 0, (16.76)

and can be normalized to an initial vacuum fluctuation spectrum,

η→−∞, ψk = 1√
2k

e−ikη, (16.77)

in such a way as to satisfy the free field canonical commutation relations,
[ψk, ψ

∗′
j ] = iδkj . The normalization of ψk then fixes the normalization of the

metric variable hk = ψk/z.
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It is important to stress that there is no need to introduce the canonical
variable to study the classical evolution of perturbations, but that such variable
is needed for the initial normalization to a vacuum fluctuation spectrum. We
can also normalize perturbation in a different way, of course but in that case we
are studying the amplification not of the vacuum fluctuations, but of a different
spectrum [55].

At this point, two remarks are in order. The first concerns the frame-
independence of the spectrum. The above procedure can also be applied in the
E-frame, to define a canonical variable ψ̃ : one then obatins for ψ̃k the canonical
equation (16.75), with a pump field that depends only on the metric, z̃ = ã.
However, by using the conformal transformation connecting the two frames, it
turns out that the two pump fields are the same, z̃ = ã = ae−φ/2 = z, so that
for ψ and ψ̃ we have the same potential, the same evolution equation, the same
solution, and thus the same spectrum.

The second remark is that the canonical procedure can be applied to any
action, and in particular to the string effective action including higher curvature
corrections of order α ′, which can be written as [21]:

S =
∫

d4x
√−ge−φ

{
−R − ∂µφ∂µφ + α

′

4
[R2

GB − (∂µφ∂µφ)2]

}
(16.78)

where R2
GB ≡ R2

µναβ − 4R2
µν + R2 is the Gauss–Bonnet invariant (we have

chosen a convenient field redefinition that removes terms with higher-than-second
derivatives from the equations of motion, see appendix A). From the quadratic
perturbed action we obtain α ′ corrections to the pump fields. The canonical
equation turns out to be the same as before, but with a k-dependent effective
potential [54], and such an equation can be used to estimate the effects of the
higher curvature corrections on the amplification of tensor perturbations. A
numerical integration [54], in which the metric fluctuations are expanded around
the high-curvature background solution of [21], leads in particular to the results
illustrated in figure 16.6.

The qualitative behaviour is similar, both with and without α ′ corrections
in the perturbed equations: the fluctuations are oscillating inside the horizon and
frozen outside the horizon, as usual. However, the final amplitude is enhanced
when α′ corrections are included, and this suggests that the energy spectrum of
the gravitational radiation, computed with the low-energy perturbation equation,
may represent a sort of lower bound on the total amount of produced gravitons.

16.5.4 Computation of the spectrum

The final, amplified perturbation spectrum is to be obtained from the solutions
of the canonical equation (16.75). In order to solve such an equation we
need explicitly the effective potential V [z(η)] which, in general, vanishes
asymptotically at large positive and negative values of the conformal time.
Consider, for instance, the tensor perturbation equation in the E-frame, so that
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Figure 16.6. Amplification of tensor fluctuations, with and without the higher-curvature
corrections included in the canonical perturbation equation.

the pump field is simply the scale factor. The typical cosmological background in
which we are interested in should describe a transition fom an initial accelerated,
inflationary evolution,

η→ −∞, a ∼ |η|α, V ∼ η−2, (16.79)

to a final standard, radiation-dominated phase,

η→+∞, a ∼ η, V = 0. (16.80)

In this context, the evolution of fluctuations, initially normalized as in
equation (16.77), can be described as a scattering of the canonical variable
by an effective potential, according to the Schrödinger-like perturbation
equation (16.75) (see figure 16.7).

However, the differential variable in equation (16.75) is (conformal) time,
not space. As a consequence, the eigenfrequencies represent (comoving) energies,
not momenta. Thus, even normalizing the initial state to a positive frequency
mode, as in equation (16.77), the final state is, in general, a mixture of positive
and negative frequency modes, i.e. of positive and negative energy states,

η→+∞, ψout ∼ c+e−ikη + c−e+ikη. (16.81)

In a quantum field theory context, such a mixing represents a process of pair
production from the vacuum. The coefficients c± are the so-called Bogoliubov
coefficients, parametrizing a unitary transformation between |in〉 and |out〉 states.
In matrix form, they connect the set of |in〉 annihilation and creation operators,
{ψin, bk, b

†
k} to the out ones {ψout, ak, a

†
k }, as follows:

ak = c+bk + c∗−b†
−k, a†

−k = c−bk + c∗+b†
−k . (16.82)
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Figure 16.7. Scattering and amplification of the canonical variable.

Thus, even starting from the vacuum,

nin = 〈0|b†b|0〉 = 0, (16.83)

we end up with a final number of produced pairs which is nonzero, in general,
and is controlled by the Bogoliubov coefficient c− as

nout = 〈0|a†a|0〉 = |c−|2 += 0. (16.84)

In a second quantization approach, the amplification of perturbations can
thus be seen as a process of pair production from the vacuum (or from any
otherwise specified initial state), under the action of a time-dependent external
field (the gravidilaton background, in the string cosmology case). Equivalently,
the process can be described as a ‘squeezing’ of the initial state [56] (this
description is useful to evaluate the associated entropy production [57]), or, in a
semiclassical language, as a ‘parametric amplification’ [58] of the wavefunction
ψk , which is scattered by an effective potential barrier through an ‘antitunnelling’
process [59]. Quite independently of the adopted language, the differential energy
density of the produced radiation, for each mode k, depends on the number of
produced pairs, and can be written as

dρk = 2knk
d3k

(2π)3
, nk = |c−(k)|2. (16.85)

The computation of the so-called energy spectrum, defined as the spectral energy
density per logarithmic interval of frequency,

dρk

d ln k
≡ k

dρk

dk
= k4

π2
|c−(k)|2, (16.86)

thus requires the computation of c−(k), and then the knowledge of the asymptotic
solution of the canonical pertubation equation at large positive times.
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To give an explicit example we shall consider here a very simple model
consisting of two cosmological phases, an initial accelerated evolution up to the
time η1, and a subsequent radiation-dominated evolution for η > η 1:

a ∼ (−η)α, η < η1,

a ∼ η, η > η1. (16.87)

The effective potential for tensor perturbations in the E-frame, |a ′′/a|, starts from
zero at −∞, grows like η−2, reaches a maximum ∼ η−2

1 , and vanishes in the
radiation phase. We must solve the canonical perturbation equation for η < η 1
and η > η1. In the first phase the equation reduces to a Bessel equation:

ψ ′′k +
[

k2 − α(α − 1)

η2

]
ψk = 0, (16.88)

with general solution [60]

ψk = |η|1/2[AH (2)
ν (|kη|)+ B H (1)

ν (|kη|)], ν = |α − 1/2|, (16.89)

where H (1,2)
ν are the first- and second-kind Hankel functions, of argument kη and

index ν = |α − 1/2| determined by the kinematics of the background. By using
the large argument limit of the Hankel functions for η→−∞,

H (2)
ν (kη) ∼

1√
kη

e−ikη, H (1)
ν (kη) ∼

1√
kη

e+ikη, (16.90)

we choose initially a positive frequency mode, normalizing the solution to a
vacuum fluctuation spectrum,

A = 1/2, B = 0. (16.91)

In the second phase V = 0, and we have the free oscillating solution:

ψk = 1√
k
(c+e−ikη + c−e+ikη). (16.92)

The matching of ψ and ψ ′ at η = η1 gives now the coefficients c± (more
precisely, the matching would require the continuity of the perturbed metric
projected on a spacelike hypersurface containing η 1, and the continuity of the
extrinsic curvature of that hypersurface [61]; but in many cases these conditions
are equivalent to the continuity of the canonical variable ψ , and of its first time
derivative).

For an approximate determination of the spectrum, which is often sufficient
for practical purposes, it is convenient to distinguish two regimes, in which
the comoving frequency k is much higher or much lower than the frequency
associated to the top of the effective potential barrier, |V (η1)|1/2 ) η−1

1 . In the
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first case, k � 1/|η1| ≡ k1, we can approximate the Hankel functions with their
large argument limit, and we find that there is no particle production,

|c+| ) 1, |c−| ) 0. (16.93)

In practice, c− is not exactly zero, but is exponentially suppressed as a function
of the frequency, just like the quantum reflection probability for a wave with a
frequency well above the top of a potential step. We will neglect such an effect
here, as we are mainly interested in a qualitative estimate of the perturbation
spectrum.

In the second case, k � 1/|η1| ≡ k1, we can use the small argument limit of
the Hankel functions,

H (2)
ν ∼ a(kη1)

ν − ib(kη1)
−ν, H (1)

ν ∼ a(kη1)
ν + ib(kη1)

−ν, (16.94)

and we find
|c+| ) |c−| ) |kη1|−ν−1/2, (16.95)

corresponding to a power-law spectrum:

dρk

d ln k
= k4

π2 |c−(k)|2 )
k4

1

π2

(
k

k1

)3−2ν

, k < k1, (16.96)

with a cut-off frequency k1 = η−1
1 controlled by the height of the effective

potential.
For a comparison with present observations, it is finally convenient to

express the spectrum in terms of the proper frequency, ω(t) = k/a(t), and in
units of critical energy density, ρc(t) = 3M2

p H 2(t)/8π . We then obtain the
dimensionless spectral distribution,

�(ω, t) = ω

ρc(t)

dρ(ω)

dω
) 8

3π

ω4
1

M2
p H 2

(
ω

ω1

)3−2ν

) g2
1�γ (t)

(
ω

ω1

)3−2ν

, ω < ω1, (16.97)

where

ω1 = k1

a
= 1

aη1
) H1a1

a
(16.98)

is the maximal amplified proper frequency, g1 = H1/Mp, and

�γ (t) = ργ
ρc
=

(
H1

H

)2 (a1

a

)4
(16.99)

is the energy density (in critical units) of the radiation that becomes dominant at
t = t1, rescaled down at a generic time t (today,�γ (t0) ∼ 10−4).
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Table 16.3. Slope of the graviton spectrum.

Scale factor Bessel index Spectrum

de Sitter, constant curvature α = −1 3− 2ν = 0 flat
Power-inflation, decreasing curvature α < −1 3− 2ν < 0 decreasing
Pre-big bang inflation, growing curvature α > −1 3− 2ν > 0 increasing

It is important to stress that the amplitude of the spectrum is controlled
by g1 = H1/Mp, i.e. by the curvature scale in Planck units at the time of the
transition t1 (a fundamental parameter of the given inflationary model). The slope
of the spectrum, 3−2ν, is instead controlled by the kinematics of the background.
In fact, it depends on the Bessel index ν which, in its turn, depends on α, the power
of the scale factor (equation (16.89). The behaviour in frequency of the graviton
spectrum, in particular, tends to follow the behaviour of the curvature scale during
the epoch of accelerated evolution, see table 16.3.

The standard inflationary scenario is thus characterized by a flat or
decreasing graviton spectrum; in string cosmology, instead, we must expect a
growing spectrum. This has important phenomenological implications, that will
be discussed in the following section.

16.6 The relic graviton background

As discussed in the previous section, one of the most firm predictions of all
inflationary models is the amplification of the traceless-transverse part of the
quantum fluctuations of the metric tensor, and the formation of a primordial,
stochastic background of relic gravitational waves, distributed over a quite large
range of frequencies (see [62] for a discussion of the stochastic properties of such
a background, and [63] for a possible detection of the associated ‘squeezing’
[64]).

In a string cosmology context, the expected graviton background has been
already discussed in a number of detailed review papers [59,65,66]. Here we will
summarize the main properties of the background predicted in the context of the
pre-big bang scenario.

For a phenomelogical discussion of the spetrum, it is convenient to consider
the plane {�G, ω}. In this plane there are three main phenomenological
constraints:

• A first constraint comes from the large scale isotropy of the CMB radiation.
The degree of anisotropy measured by COBE imposes a bound on the energy
density of the graviton background at the scale of the present Hubble radius
[67],

�G(ω0) . 10−10, ω0 ∼ 10−18 Hz. (16.100)
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• A second constraint comes from the absence of distortion of the pulsar
timing-data [68], and gives the bound

�G(ωp) . 10−8, ωp ∼ 10−8 Hz. (16.101)

• A third constraint comes from nucleosynthesis [69], which implies that the
total graviton energy density, integrated over all modes, cannot exceed the
energy density of one massless degree of freedom in thermal equilibrium,
evaluated at the nucleosynthesis epoch. This gives a bound for the peak
value of the spectrum [33],

h100

∫
d lnω�G(ω, t0) . 0.5× 10−5,

h100 = H0/(100 km s−1 Mpc−1), (16.102)

which applies to all scales.

A further bound can be obtained by considering the production of primordial
black holes [70]. The production of gravitons, in fact, could be associated
with the formation of black holes, whose possible evaporation, at the present
epoch, is constrained by a number of astrophysical observations. The absence
of evaporation imposes an indirect upper limit on the graviton background. In
a string cosmology context, however, and in the frequency range of interest for
observations, this upper limit is roughly of the same order as the nucleosynthesis
bound [70].

For flat or decreasing spectra it is now evident that the more constraining
bound is the low-frequency one, obtained from the COBE data. In the standard
inflationary scenario, characterized by flat or decreasing spectra (see table 16.3),
the maximal allowed graviton background can thus be plotted as in figure 16.8.
The flat spectrum corresponds to de Sitter inflation, the decreasing spectra to
power inflation. The breakdown in the spectrum, around ω eq ∼ 10−16 Hz, is
due to the transition from the radiation-dominated to the matter-dominated phase,
which only affects the low-frequency part of the spectrum, namely those modes
re-entering the horizon in the matter-dominated era. For such modes there is an
additional potential barrier in the canonical perturbation equation, which induces
an additional amplification ∼(ωeq/ω)2 > 1, with respect to the flat de Sitter
spectrum.

However, this break of the spectrum is not important for our purposes.
What is important is the fact that the observed anisotropy constrains the maximal
amplitude of the spectrum. But the amplitude depends on the inflation scale, as
stressed in the previous section. From the COBE bound (16.100), imposed on the
modified de Sitter spectrum at the Hubble scale,

�G(ω0, t0) = g2
1�γ (t)(ωeq/ω)2 . 10−10, (16.103)

we thus obtain a direct constraint on the inflation scale:

H1/Mp . 10−5 (16.104)
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Figure 16.8. Graviton spectra in the standard inflationary scenario.

Figure 16.9. A minimal model of the pre-big bang background.

(for power-inflation the bound is even stronger [31]).
This bound applies to all models characterized by a flat or decreasing

spectrum. The bound can be evaded, however, if the spectrum is growing, like in
the string cosmology context. To illustrate this point, let us consider the simplest
class of the so-called ‘minimal’ pre-big bang models, characterized by three
main kinematic phases [32, 44]: an initial low-energy, dilaton-driven phase, an
intermediate high-energy ‘string’ phase, in which α ′ and loop corrections become
important, and a final standard, radiation-dominated phase (see figure 16.9). The
timescale ηs marks the transition to the high-curvature phase, and the timescale
η1, characterized by a final curvature of order one in string units, marks the
transition to the radiation-dominated cosmology.
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Figure 16.10. Graviton spectra in minimal pre-big bang models.

By computing graviton production in this background [32] we find that the
spectrum is characterized by two branches: a high-frequency branch, for modes
crossing the horizon (or ‘hitting’ the barrier) in the string phase, ω > ω s =
(aηs)

−1; and a low-frequency branch, for modes crossing the horizon in the initial
dilaton phase, ω < ωs. The slope is cubic at low frequency, and flatter at high
frequency, and the spectrum can be parametrized as follows:

�G(ω, t0) ) g2
1�γ (t0)

(
ω

ω1

)3−2ν

, ωs < ω < ω1,

) g2
1�γ (t0)

(
ω1

ωs

)2ν (
ω

ω1

)3

, ω < ωs (16.105)

(modulo logarithmic corrections). There are two main parameters: the transition
frequencyωs, and the Bessel index ν, for the high-frequency part of the spectrum.
These parameters represent our present ignorance about the duration and the
kinematic details of the high curvature phase.

In spite of this uncertainty, however, there is a rather precise prediction for
the height and the position of the peak of the spectrum, which turns out to be fixed
in terms of the fundamental ratio Ms/Mp as:

�G(ω1) ∼ 10−4(Ms/Mp)
2, ω1 ∼ 1011(Ms/Mp)

1/2 Hz. (16.106)

The behaviour of the spectrum, in this class of models, is illustrated in
figure 16.10. A precise computation [33] shows that, given the maximal expected
value of the string scale [13] (Ms/Mp ) 0.1), the peak value is automatically
compatible with the nucleosynthesis bound, as well as with bounds from the
production of primordial black holes.
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Figure 16.11. Peak and end point of the spectrum in minimal and non-minimal models.

In the minimal models the position of the peak is fixed. Actually, what
is really fixed, in string cosmology, is the maximal height of the peak, but not
necessarily the position in frequency, and it is not impossible, in more complicated
non-minimal models, to shift the peak at lower frequencies.

In minimal models, in fact, the beginning of the radiation phase coincides
with the end of the string phase. We may also consider models, however, in which
the dilaton coupling g2

s = exp(φ) is still small at the end of the high curvature
phase, and the radiation era begins much later, when g 2

s ∼ 1, after an intermediate
dilaton-dominated regime. The main difference between the two cases is that in
the second case the effective potential which amplifies tensor perturbations is non-
monotonic [59], so that there are high-frequency modes re-entering the horizon
before the radiation era. As a consequence, the perturbation spectrum is also non-
monotonic, and the peak does not coincide any longer, in general, with the end
point of the spectrum (see also [71]), as illustrated in figure 16.11.

For minimal models the peak is around 100 GHz, for non-minimal models
it could be at lower frequencies. These are good news from an experimental
point of view, of course, but non-minimal models seem to be less natural, at
least from a theoretical point of view. The boxes around the peak, appearing
in figure 16.11, represent the uncertainty in the position of the peak due to our
present ignorance about the precise value of the ratio M s/Mp (for the illustrative
purpose of figure 16.11, the ratio is assumed to vary in the range 0.1–0.01). The
wavy line, in the high frequency branch of the spectrum, represents the fact that
the spectrum associated with the string phase could be monotonic on average,
but locally oscillating [72]. Finally, the lower strip, labelled by δs = 99%,
represents the fact that even the height of the peak could be lower than expected,
if the produced gravitons have been diluted by some additional reheating phase,
occurring well below the string scale, during the standard evolution.
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Figure 16.12. Allowed region for the spectrum of vacuum fluctuations in string cosmology
and in standard inflation, compared with other relic spectra of primordial origin.

This last effect can be parametrized in terms of δs, which is the fraction of
present entropy density in radiation, due to such additional, low-scale reheating.
The position of the peak then depends on δs as [33]:

ω1(t0) ) T0

(
Ms

Mp

)1/2

(1− δs)1/3,

�G(ω1, t0) ) 7× 10−5h−2
100

(
Ms

Mp

)2

(1− δs)4/3, (16.107)

where T0 = 2.7 K ) 3.6×1011 Hz. Such a dependence is not dramatic, however,
because even for δs = 99% the peak keeps well above the standard inflationary
prediction, represented by the line labelled ‘de Sitter’ in figure 16.11.

Given the various theoretical uncertainties, the best we can do, at present, is
to define the maximal allowed region for the expected graviton background, i.e.
the region spanned by the spectrum when all its parameters are varied. Such a
region is illustrated in figure 16.12, for the phenomenologically interesting high-
frequency range. The figure emphasizes the possible, large enhancement (of about
eight orders of magnitude) of the intensity of the background in string cosmology,
with respect to the standard inflationary scenario.

It may be useful to stress again the reason of such enhancement. In
the standard inflationary scenario the graviton spectrum is decreasing, the
normalization is imposed at low frequency, and the peak value is controlled by
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the anisotropy of the CMB radiation, δT/T . 10−5. Thus, at low frequency,

�G(t0) . �γ (t0)

(
�T

T

)2

COBE
∼ 10−14. (16.108)

In string cosmology the spectrum is growing, the normalization is imposed
at high frequency, and the peak value is controlled by the fundamental ratio
Ms/Mp . 0.1. Thus

�G(t0) . �γ (t0)

(
Ms

Mp

)2

. 10−6. (16.109)

The graviton background obtained from the amplification of the vacuum
fluctuations, in string cosmology and in standard inflation, is compared in
figure 16.12 with other, more unconventional graviton spectra. In particular,
the graviton spectrum obtained from cosmic strings and topological defects [73],
from bubble collision at the end of a first order phase transition [74], and from
a phase of parametric resonance of the inflaton oscillations [75]. Also shown in
figure 16.12 is the spectrum from models of quintessential inflation [76], and a
thermal black body spectrum for a temperature of about one kelvin. All these
cosmological backgrounds are higher than the background expected from the
vacuum fluctuations in standard inflation, but not in a string cosmology context.

It may be interesting, at this point, to recall the expected sensitivities of
the present, and near future, gravitational antennae, referred to the plots of
figure 16.12.

At present, the best direct, experimental upper bound on the energy of a
stochastic graviton background comes from the cross-correlation of the data of
the two resonant bars NAUTILUS and EXPLORER [77]:

�Gh100 . 60, ν ) 907 Hz (16.110)

(similar sensitivities are also reached by AURIGA [78]). Unfortunately, the bound
is too high to be significant for the plots of figure 16.12. However, a much better
sensitivity,�G ∼ 10−4 around ν ∼ 103 Hz, is expected from the present resonant
bar detectors, if the integration time of the data is extended to about one year. A
similar, or slightly better sensitivity, �G ∼ 10−5 around ν ∼ 102 Hz, is expected
from the first operating version of the interferometric detectors, such as LIGO
and VIRGO. At high frequency, from the kilohertz to the megahertz range, a
promising possibility seems to be the use of resonant electromagnetic cavities as
gravity-wave detectors [79]. Work is in progress [80] to attempt to improve their
sensitivity.

The present, and near future, available sensitivities of resonant bars and
interferometers, therefore, are still outside the allowed region of figure 16.12,
determined by the border line

�Gh100 ) 10−6. (16.111)
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Such sensitivities are not so far from the border, after all, but to get really inside
we have to wait for the cross-correlation of two spherical resonant-mass detectors
[81], expected to reach �G ∼ 10−7 in the kilohertz range, or for the advanced
interferometers, expected to reach �G ∼ 10−10 in the range of 102 Hz. At lower
frequencies, around 10−2–10−3 Hz, the space interferometer LISA [36] seems to
be able to reach very high sensitivities, up to �G ∼ 10−11. Work is in progress,
however, for a more precise computation of their sensitivity to a cosmic stochastic
background [82].

Detectors able to reach, and to cross the limiting sensitivity (16.111), could
explore for the first time the parameter space of string cosmology and of Planck
scale physics. The detection of a signal from a pre-big bang background,
extrapolated to the gigahertz range, could give a first experimental indication on
the value of the fundamental ratio Ms/Mp. Even the absence of a signal, inside
the allowed region, would be significant, as we could exclude some portion of
parameter space of the string cosmology models, obtaining in such a way direct
experimental information about processes occuring at (or very near to) the string
scale.

16.7 Conclusion

The conclusion of these lectures is very short and simple.

There is a rich structure of stochastic, gravitational-wave backgrounds, of
cosmological origin, in the frequency range of present (or planned for the future)
gravity-wave detectors.

Among such backgrounds, the stronger one seems to be the background
possibly predicted in the context of the pre-big bang scenario, in a string
cosmology context, originating at (or very near to) the fundamental string scale.
Also, the maximal predicted intensity of the background seems to be accessible
to the sensitivity of the future advanced detectors.

If this is the case, the future gravity wave detectors will be able to test string
theory models, or perhaps models referring to some more fundamental unified
theory, such as D-brane theory, M-theory, and so on. In any case, such detectors
will give direct experimental information on Planck scale physics.
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Appendix A. The string effective action

The motion of a point particle in an external gravitational field, gµν , is governed
by the action

S = −m

2

∫
dτ ẋµ ẋνgµν(x), (16.112)

where xµ(τ) are the spacetime coordinates of the particle, and τ is an affine
parameter along the particle worldline.

The time evolution of a one-dimensional object like a string describes a
world-surface, or ‘world-sheet’ , instead of a worldline, and the action governing
its motion is given by the surface integral

S = −M2
s

2

∫
dτ dσ

√−γ γ i j ∂i xµ∂ j xνgµν(x), (16.113)

where ∂i ≡ ∂/∂ξ i and ξ i = (τ, σ ) are, respectively, the timelike and spacelike
coordinates on the string world-sheet (i, j = 1, 2). The coordinates x µ(τ, σ )
are the fields governing the embedding of the string world-sheet in the external
(also called ‘ target’ ) space. The parameter M 2

s defines (in units h/2π = 1 = c)
the so-called string tension (the mass per unit length), and its inverse defines the
fundamental length scale of the theory (often called, for historical reasons, the α ′
parameter):

M2
s ≡

1

λ2
s
≡ 1

2πα′
. (16.114)

In a curved metric background gµν depends on xµ, and the nonlinear action
(16.113) represents what is called a ‘σ -model’ defined on the string world sheet.

For the point particle action (16.112) the variation with respect to x µ leads
to the well known geodesic equations of motion,

ẍµ + �αβµ ẋα ẋβ = 0. (16.115)

The string equations of motion are similarly obtained by varying with respect to
xµ the action (16.113): we get then the Euler–Lagrange equations

∂i
∂L

∂(∂i xµ)
= ∂L

∂xµ
, L = √−γ γ i j ∂i x

µ∂ j xνgµν, (16.116)

which can be written explicitly as

�xµ + γ i j ∂i x
α∂ j xβ�αβ

µ = 0, � ≡ 1√−γ ∂i
√−γ γ i j ∂ j . (16.117)

These equations describe the geodesic evolution of a test string in a given external
metric. The variation with respect to γ ik imposes the so-called ‘constraints’ , i.e.
the vanishing of the world sheet stress tensor Tik ,

Tij = 2√−γ
δS

δγ i j
= ∂i xµ∂ j xνgµν − 1

2
γi j ∂k xµ∂k xµ = 0. (16.118)
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It is important to note, at this point, that for a classical string it is always
possible to impose the so-called ‘conformal gauge’ in which the world sheet
metric is flat, γi j = ηi j . In fact, in an appropriate basis, the two-dimensional
metric tensor can always be set in a diagonal form, γ i j = diag(a, b), and then,
by using reparametrization invariance on the world sheet, b 2 dσ 2 = a2 dσ

′2, the
metric can be set in a conformally flat form, γ i j = a2ηi j . Since the action (16.113)
is invariant under the conformal (or Weyl) transformation γ i j → �2(ξk)γi j ,

√−γ γ i j →
√
�4 �−2√−γ γ i j , (16.119)

we can always eliminate the conformal factor a 2 in front of the Minkowski metric,
by choosing � = a−1. In the conformal gauge the equations of motion (16.117)
reduce to

ẍµ − x ′′µ + �αβµ(ẋα + x ′α)(ẋβ − x ′β) = 0, (16.120)

where ẋ = dx/dτ , x ′ = dx/dσ , and the constraints (16.118) become

gµν(ẋ
µ ẋν + x ′µx ′ν) = 0, gµν ẋµx ′ν = 0. (16.121)

We now come to the crucial observation which leads to the effective action
governing the motion of the background fields. The conformal transformation
(16.119) is an invariance of classical theory. Let us require that there are no
‘anomalies’ , i.e. no quantum violations of this classical symmetry. By imposing
such a constraint, we will obtain a set of differential equations to be satisfied
by the background fields coupled to the string. Thus, unlike a point particle
which does not impose any constraint on the external geometry in which it is
moving, the consistent quantization of a string gives constraints for the external
fields. The background geometry cannot be chosen arbitrarily, but must satisfy the
set of equations (also called β-function equations) which guarantee the absence
of conformal anomalies. The string effective action used in this paper is the
action which reproduces such a set of equations for the background fields, and
in particular for the metric.

The derivation of the background equations of motion and of the effective
action, from the σ -model action (16.113), can be performed order by order by
using a perturbative expansion in powers of α ′ (indeed, in the limit α ′ → 0
the action becomes very large in natural units, so that the quantum corrections
are expected to become smaller and smaller). Such a procedure, however, is in
general long and complicated, even to lowest order, and a detailed derivation of
the background equations is outside the scope of these lectures. Let us sketch here
the procedure for the simplest case in which the only external field coupled to the
string is the metric tensor gµν .

In the conformal gauge, the action (16.113) becomes:

S = − 1

4πα′

∫
d2ξ ∂i x

µ∂ i xνgµν. (16.122)
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Let us formally assume a deformation of the number of world sheet dimensions,
from 2 to 2 + ε, and perform the conformal transformation: η i j → ηi j exp(ρ).
Expanding we get, for small ε,

− 1

4πα′

∫
d2+εξ eρε/2∂i xµ∂ i xνgµν

= − 1

4πα′

∫
d2+εξ ∂i x

µ∂ i xνgµν
(

1+ ε
2
ρ + · · ·

)
. (16.123)

For ε → 0 the ρ dependence disappears and the classical action is
conformally invariant. In order to preserve this invariance also for the quantum
theory, at the one-loop level, let us treat the σ -model as a quantum field theory
for xµ(σ, τ ), and let us consider the quantum fluctuations x̂ µ around a given
expectation value xµ0 . For the general reparametrization invariance of the theory
we can always choose for x0 a locally inertial frame, such that gµν(x0) = ηµν .
By expanding the metric around x 0, the leading corrections are of second order
in the fluctuations, because in a locally inertial frame the first derivatives of the
metric (and then the Cristoffel connection) can always be set to zero (but not the
curvature). With an appropriate choice of coordinates, called Riemann normal
coordinates, the metric can thus be expanded as:

gµν(x) = ηµν − 1
3 Rµναβ(x0)x̂

α x̂β + · · · (16.124)

and the action for the quantum fluctuations becomes, to lowest order in the
curvature,

S = − 1

4πα′

∫
d2+εξ

[
∂i x̂

µ∂ i x̂µ
(

1+ ε
2
ρ
)

− 1

3
∂i x̂

µ∂ i x̂ν Rµναβ(x0)x̂
α x̂β

(
1+ ε

2
ρ
)
+ · · ·

]
. (16.125)

It must be noted that, at the quantum level, the dependence of ρ does not
disappear in general from the action in the limit ε → 0, since there are one-
loop terms that diverge like ε−1, just to cancel the ε dependence and to give a
contribution proportional to ρ to the effective action. By evaluating, for instance,
the two-point function for the quantum operator x̂ α x̂β , in the coincidence limit
σ → σ ′ (the tadpole graph), one obtains [83]

〈x̂α(σ )x̂β(σ ′)〉σ→σ ′ ∼ ηαβ lim
σ→σ ′

∫
d2+εk

eik·(σ−σ ′)

k2 ∼ ηαβε−1, (16.126)

which gives the one-loop contribution to the action

�S ∼
∫

d2+εξ ∂i x̂µ∂ i x̂νRµνρ. (16.127)



320 Elementary introduction to pre-big bang cosmology

This term violates, at one loop, the conformal invariance, unless we restrict to a
background geometry satisfying the condition

Rµν = 0, (16.128)

which are just the usual Einstein equations in vacuum.
A similar procedure can be applied if the string moves in a richer external

background (not only pure gravity). Indeed, pure gravity is not enough, as a
consistent quantum theory for closed bosonic strings, for instance, must contain
at least three massless states (besides the unphysical tachyon, removed by
supersymmetry) in the lowest energy level: the graviton, the scalar dilaton and
the pseudoscalar Kalb–Ramond axion. The σ -model describing the propagation
of a string in such a background must thus contain the coupling to the metric, to
the dilaton φ, and to the two-form Bµν = −Bνµ:

S = − 1

4πα′

∫
d2ξ ∂i x

µ∂ j xν(
√−γγ i j gµν + εi j Bµν)

− 1

4π

∫
d2ξ

√−γ φ
2

R(2)(γ ), (16.129)

where ε i j is the two-dimensional Levi-Civita tensor density, ε12 = −ε21 = 1, and
R(2)(γ ) is the two-dimensional scalar curvature for the world sheet metric γ . The
condition of conformal invariance, at the one-loop level, leads to the equations

Rµν +∇µ∇ν − 1
4 HµαβHν

αβ = 0, Hµνα = ∂µBνα + ∂νBαµ + ∂αBµν,

R + 2∇2φ − (∇φ)2 − 1
12 H 2

µνα = 0,

∇µ(e−φHµνα) = 0, (16.130)

which can be obtained by extremizing the effective action

S = − 1

2λd−1
s

∫
dd+1x

√|g|e−φ [
R + (∇φ)2 − 1

12
H 2
µνα

]
(16.131)

(see appendix C).
It should be noted that the inclusion of the dilaton in the condition of

conformal invariance cannot be avoided, since the dilaton coupling in the action
(16.129) breaks conformal invariance already at the classical level (

√−γ R(2) is
not invariant under a Weyl rescaling of γ ). However, the dilaton term is of order
α′ with respect to the other terms of the action (for dimensional reasons), so that
it is correct to sum up the classical dilaton contribution to the quantum, one-loop
effects, as they are all of the same order in α ′. Without the dilaton, however, the
world sheet curvature density

√−γ R(2) does not contribute to the string equations
of motion, as it is a pure Eulero two-form in two dimensions (just like the Gauss–
Bonnet term in four dimensions).
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Let me note, finally, that the expansion around x 0 can be continued to higher
orders,

g(x) = η + Rx̂ x̂ + ∂Rx̂ x̂ x̂ + R2 x̂ x̂ x̂ x̂ + · · · , (16.132)

thus introducing higher curvature terms, and higher powers of α ′, in the effective
action:

S = − 1

2λd−1
s

∫
dd+1x

√|g|e−φ [
R + (∇φ)2 − α

′

4
R2
µναβ + · · ·

]
. (16.133)

At any given order, unfortunately, there is an intrinsic ambiguity in the action due
to the fact that, with an appropriate field redefinition of order α ′,

gµν → gµν + α′(Rµν + ∂µφ∂νφ + · · ·)
φ→ φ + α′(R +∇2φ + · · ·), (16.134)

we obtain a number of different actions, again of the same order in α ′ (see, for
instance, [84]). This ambiguity cannot be eliminated until we limit to an effective
action truncated to a given finite order.

The higher curvature (or higher derivative) expansion of the effective action
is typical of string theory: it is controlled by the fundamental, minimal length
parameter λs = (2πα′)1/2, in such a way that the higher order corrections
disappear in the point-particle limit λs → 0. At any given order in α ′, however,
there is also the more conventional expansion in power of the coupling constant
gs (i.e. the loop expansion of quantum field theory: tree-level ∼ g −2, one-loop
∼g0, two-loop ∼g2, . . .). The important observation is that, in a string theory
context, the effective coupling constant is controlled by the dilaton. Consider,
for instance, a process of graviton scattering, in four dimensions. Comparing the
action of (16.4) with the standard, gravitational Einstein action (16.1), it follows
that the effective coupling constant, to lowest order, is

√
8πG = λp = λseφ/2 (16.135)

(G is the usual Newton constant). Each loop adds an integer power of the square
of the dimensionless coupling constant, which is controlled by the dilaton as

g2
s = (λp/λs)

2 = (Ms/Mp)
2 = eφ. (16.136)

We may thus expect, for the loop expansion of the action, the following general
scheme:

S = −
∫

e−φ
√−g(R +∇φ2 + α′R2 + · · ·) tree level

−
∫ √−g(R + ∇φ2 + α′R2 + · · ·) one-loop

−
∫

e+φ
√−g(R +∇φ2 + α′R2 + · · ·) two-loop

.... (16.137)



322 Elementary introduction to pre-big bang cosmology

Unfortunately, each term in the action, at each loop order, is multiplied by
a dilaton ‘ form factor’ which is different in general for different fields and
for different orders. This difference can lead to an effective violation of the
universality of the gravitational interactions [85] in the low-energy, macroscopic
regime, and this violation can be reconciled with the present tests of the
equivalence principle only if the dilaton is massive enough, to make short enough
the range of the non-universal dilatonic interactions.

The tree-level relation (16.136) is valid also for a higher-dimensional
effective action, provided eφ represents the shifted four-dimensional dilaton
which includes the volume of the extra-dimensional, compact internal space, and
which controls the grand-unification gauge coupling, αGUT, as [13]

αGUT = exp〈φ〉 = (Ms/Mp)
2 ∼ 0.1–0.001. (16.138)

However, the relation (16.136) is no longer valid, in general, if the gauge
interactions are confined in four dimensions and only gravity propagates in the
extra dimensions. In that case the relation depends on the volume of the extra
dimensions, whose size may be allowed to be large in Planck units [86]. For
internal dimensions of volume Vn the relation becomes, in particular,

M2
p = M2+n

s Vne−�, (16.139)

where � is the dilaton in d = 3 + n dimensions. In this case, the string mass
parameter could be much smaller than the value expected from equation (16.138),
provided the internal volume is correspondingly larger.

Appendix B. Duality symmetry

Notations and conventions

In this paper we use the metric signature (+−−−), and we define the Riemann
and Ricci tensor as follows:

Rµνα
β = ∂µ�ναβ + �µρβ�ναρ − (µ↔ ν),

Rνα = Rµνα
µ.

Consider the gravidilaton effective action, in the S-frame, to lowest order in
α′ and in the quantum loop expansion:

S = − 1

2λd−1
s

∫
dd+1x

√|g|e−φ[R + (∇φ)2]. (16.140)

For a homogeneous, but anisotropic, Bianchi I type metric background:

φ = φ(t), g00 = N2(t), gij = −a2
i (t)δi j , (16.141)
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we have (Hi = ȧi/ai ):

(∇φ)2 = φ̇2

N2 ,
√−g = N

d∏
i=1

ai ,

�00
0 = Ṅ

N
≡ F, �0i

j = Hiδ
j
i , �i j

0 = ai ȧi

N2 δi j ,

R = 1

N2

[
2F

∑
i

Hi − 2
∑

i

Ḣi −
∑

i

H 2
i −

(∑
i

Hi

)2]
. (16.142)

By noting that

d

dt

[
2

e−φ

N

( d∏
k=1

ak

)(∑
i

Hi

)]

= e−φ

N

( d∏
k=1

ak

)[
2
∑

i

Ḣi − 2F
∑

i

Hi − 2φ̇
∑

i

Hi + 2

(∑
i

Hi

)2]
,

(16.143)

the action (16.140), modulo a total derivative, can be rewritten as:

S = − 1

2λd−1
s

∫
dd x dt

d∏
i=1

ai
e−φ

N

[
φ̇2 −

∑
i

H 2
i +

(∑
i

Hi

)2

− 2φ̇
∑

i

Hi

]
.

(16.144)
We now introduce the so-called shifted dilaton φ, defined by

e−φ =
∫

dd x

λd
s

d∏
i=1

ai e−φ, (16.145)

from which
φ = φ +

∑
i

ln ai , φ̇ = φ̇ +
∑

i

Hi (16.146)

(by assuming spatial sections of finite volume, (
∫

dd x
√|g|)t=constant < ∞,

we have absorbed into φ the constant shift − ln(λ−d
s

∫
dd x), required to secure

the scalar behaviour of φ under coordinate reparametrizations preserving the
comoving gauge). The action becomes:

S = −λs

2

∫
dt

e−φ

N

(
φ̇

2 −
∑

i

H 2
i

)
. (16.147)

By inverting one of the d scale factors the corresponding Hubble parameter
changes sign,

ai → ãi = a−1
i , Hi → H̃i =

˙̃ai

ãi
= ai

da−1
i

dt
= −Hi , (16.148)
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so that the quadratic action (16.147) is clearly invariant under the inversion of any
scale factor preserving the shifted dilaton,

ai → ãi = a−1
i , φ→ φ (16.149)

(for ‘scale factor duality’ , see [9] and the first paper of [8]).
In order to derive the field equations, it is convenient to use the variables

βi = ln ai , so that Hi = β̇i , Ḣi = β̈i , and the action (16.147) is cyclic in β i .
By varying with respect to N, βi and φ, and subsequently fixing the cosmic time
gauge N = 1, we obtain, respectively,

φ̇
2 −

∑
i

H 2
i = 0, (16.150)

Ḣi − Hi φ̇ = 0, (16.151)

2φ̈ − φ̇2 −
∑

i

H 2
i = 0. (16.152)

This is a system of (d + 2) equations for the (d + 1) variables {ai , φ}. However,
only (d+ 1) equations are independent (see, for instance, [21]: equation (16.150)
represents a constraint on the set of initial data).

The above equations are invariant under a time reversal transformation

t →−t, H →−H, φ̇→−φ̇, (16.153)

and also under the duality transformation (16.149). If we invert k ≤ d scale

factors, ã1 = a−1
1 , . . . , ãk = a−1

k , the shifted dilaton is preserved, φ = φ̃,
provided

φ = φ −
d∑

i=1

ln ai = φ̃ −
k∑

i=1

ln ãi −
d∑

i=k+1

ln ai , (16.154)

from which:

φ̃ = φ − 2
k∑

i=1

ln ai . (16.155)

Given an exact solution, represented by the set of variables

{a1, . . . , ad , φ}, (16.156)

the inversion of k ≤ d scale factors defines then a new exact solution, represented
by the set of variables

{a−1
1 , . . . , a−1

k , ak+1, . . . , ad , φ − 2 ln a1, . . . ,−2 ln ak}. (16.157)
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By inverting all the scale factors we obtain the transformation

{ai , φ} → {a−1
i , φ − 2

d∑
i=1

ln ai } (16.158)

which, in the isotropic case, corresponds in particular to the duality transformation
(16.5).

As a simple example, we consider here the particular isotropic solution

a = t1/
√

d , φ = − ln t, (16.159)

which satisfies identically the set of equations (16.150)–(16.152). By applying
a duality and a time-reversal transformation we obtain the four different exact
solutions

{a±(t) = t±1/
√

d , φ(t) = − ln t},
{a±(−t) = (−t)±1/

√
d , φ(−t) = − ln(−t)}, (16.160)

corresponding to the four branches illustrated in figure 16.2, and describing
decelerated expansion, a+(t), decelerated contraction, a−(t), accelerated
contraction, a+(−t), accelerated expansion, a−(−t). The solution describes
expansion or contraction if the sign of ȧ is positive or negative, repectively, and
the solution is accelerated or decelerated if ȧ and ä have the same or the opposite
sign, respectively.

It is important to consider also the dilaton behaviour. According to
equation (16.146):

φ±(±t) = φ(±t)+ d ln a±(±t) = (±√d − 1) ln(±t). (16.161)

It follows that, in a phase of growing curvature (t < 0, t → 0−), the dilaton is
growing only for an expanding metric, a−(−t). This means that, in the isotropic
case, there are only expanding pre-big bang solutions, i.e. solutions evolving from
the string perturbative vacuum (H → 0, φ → −∞), and then characterized by a
growing string coupling, ġs = (expφ/2)˙> 0.

In the more general, anisotropic case, and in the presence of contracting
dimensions, a growing curvature solution is associated to a growing dilaton only
for a large enough number of contracting dimensions. To make this point more
precisely, consider the particular, exact solution of equations (16.150)–(16.152)
with d expanding and n contracting dimensions, and scale factors a(t) and b(t),
respectively:

a = (−t)−1/
√

d+n, b = (−t)1/
√

d+n, φ = − ln(−t), t → 0−. (16.162)

This gives, for the dilaton,

φ = φ + d ln a + n ln b = n − d −√d + n√
d + n

ln(−t), (16.163)
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so that the dilaton is growing if

d +√d + n > n. (16.164)

For n = 6, in particular, this condition requires d > 3. This could represent a
potential difficulty for the pre-big bang scenario, which might be solved, however,
by quantum cosmology effects [87].

The scale factor duality of the action (16.147) is, in general, broken by the
addition of a non-trivial dilaton potential (unless the potential depends on the
dilaton through φ, of course). When the antisymmetric tensor Bµν is included
in the action, however, the scale factor duality can be lifted to a larger group of
global symmetry transformations. To illustrate this important aspect of the string
cosmology equations, we will consider here a set of cosmological background
fields {φ, gµν, Bµν}, for which a synchronous frame exists where g00 = 1,
g0i = 0, B0µ = 0, and all the components φ, gij , Bij do not depend on the
spatial coordinates.

Let us write the action

S = − 1

2λd−1
s

∫
dd+1x

√|g|e−φ [
R + (∇φ)2 − 1

12
H 2
µνα

]
(16.165)

directly in the synchronous gauge, as we are not interested in the field equations,
but only in the symmetries of the action. We set gij = −γi j and we find, in this
gauge,

�i j
0 = 1

2 γ̇i j , �0i
j = 1

2 g jk ġik = 1
2 (g

−1ġ)i
j = (γ−1γ̇ )i

j

R0
0 = − 1

4 Tr(γ−1γ̇ )2 − 1
2 Tr(γ−1γ̈ )− 1

2 Tr(γ̇−1γ̇ ),

Ri
j = − 1

2 (γ
−1γ̈ )i

j − 1
4 (γ

−1γ̇ )i
j Tr(γ−1γ̇ )+ 1

2 (γ
−1γ̇ γ−1γ̇ )i

j , (16.166)

where
Tr(γ−1γ̇ ) = (γ−1)i j γ̇ j i = gij ġ j i, (16.167)

and so on (note also that γ̇ −1 means (γ−1)˙). Similarly we find, for the
antisymmetric tensor,

H0i j = Ḃi j , H 0i j = gik g jl Ḃkl = (γ−1 Ḃγ−1)i j ,

HµναHµνα = 3H0i j H 0i j = −3 Tr(γ−1 Ḃ)2. (16.168)

Let us introduce the shifted dilaton, by absorbing into φ the spatial volume, as
before: √| det gij |e−φ = e−φ, (16.169)

from which

φ̇ = φ̇ − 1

2

d

dt
ln(det γ ) = φ̇ − 1

2
Tr(γ−1γ̇ ). (16.170)
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By collecting the various contributions from φ, R and H 2, the action (16.165) can
be rewritten as:

S = − λs

2

∫
dt e−φ[φ̇

2 + 1
4 Tr(γ−1γ̇ )2 − Tr(γ−1γ̈ )

− 1
2 Tr(γ̇−1γ̇ )+ φ̇ Tr(γ−1γ̇ )+ 1

4 Tr(γ−1 Ḃ)2]. (16.171)

We can now eliminate the second derivatives, and the mixed term (∼ φ̇γ̇ ), by
noting that

d

dt
[e−φ Tr(γ−1γ̇ )] = e−φ[Tr(γ−1γ̈ )+ Tr(γ̇−1γ̇ )− φ̇ Tr(γ−1γ̇ )]. (16.172)

Finally, by using the identity,

(γ−1)˙ = −γ−1γ̇ γ−1 (16.173)

(following from g−1g = γ−1γ = I ), we can rewrite the action in quadratic form,
modulo a total derivative, as

S = −λs

2

∫
dt e−φ

[
φ̇

2 − 1

4
Tr(γ−1γ̇ )2 + 1

4
Tr(γ−1 Ḃ)2

]
. (16.174)

This action can be set into a more compact form by using the (2d × 2d)
matrix M , defined in terms of the spatial components of the metric and of the
antisymmetric tensor,

M =
(

G−1 −G−1 B
BG−1 G − BG−1 B

)
,

G = gij ≡ −γi j , G−1 ≡ gij , B ≡ Bij , (16.175)

and using also the matrix η, representing the invariant metric of the O(d, d) group
in the off-diagonal representation,

η =
(

0 I
I 0

)
(16.176)

(I is the unit d-dimensional matrix). By computing Mη, Ṁη and (Ṁη)2 we find,
in fact,

Tr(Ṁη)2 = 2 Tr[γ̇ −1γ̇ + (γ−1 Ḃ)2] = 2 Tr[−(γ −1γ̇ )2 + (γ−1 Ḃ)2], (16.177)

and the action becomes

S = −λs

2

∫
dt e−φ

[
φ̇

2 + 1

8
Tr(Ṁη)2

]
. (16.178)
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We may note, at this point, that M is a symmetric matrix of the pseudo-
orthogonal O(d, d) group. In fact,

MTηM = η, M = MT (16.179)

for any B and G. Therefore,

Mη = ηM−1, (Ṁη)2 = η(M−1)˙Mη, (16.180)

and the action can be finally rewritten as

S = −λs

2

∫
dt e−φ

[
φ̇

2 + 1

8
Tr Ṁ(M−1)˙

]
. (16.181)

This form is explicitly invariant under the global O(d, d) transformations (16.10),
preserving the shifted dilaton:

φ→ φ, M →  T M ,  Tη = η. (16.182)

In fact

Tr ˙̃M(M̃−1)˙ = Tr[ TṀ  −1(M−1) (̇ T)−1] = Tr Ṁ(M−1) .̇ (16.183)

In the absence of the antisymmetric tensor M is diagonal, and the special O(d, d)
transformation with  = η corresponds to an inversion of the metric tensor:

M = diag(G−1,G),

M̃ =  T M = ηMη = diag(G,G−1) �⇒ G̃ = G−1. (16.184)

For a diagonal metric G = a2 I , and the invariance under the scale factor duality
transformation (16.5) is recovered as a particular case of the global O(d, d)
symmetry of the low-energy effective action.

Appendix C. The string cosmology equations

In order to derive the cosmological equations let us include in the action, for
completeness, the antisymmetric tensor Bµν , a dilaton potential V (φ), and also
the possible contribution of other matter sources represented by a Lagrangian
density Lm:

S = − 1

2λd−1
s

∫
dd+1x

√|g|e−φ [
R + (∇φ)2 − 1

12
H 2
µνα + V (φ)

]

+
∫

dd+1x
√|g|Lm. (16.185)

In a scalar–tensor model of gravity, especially in the presence of higher
derivative interactions, it is often convenient to write the action in the language of
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exterior differential forms, as this may simplify the variational procedure (see, for
instance, [88]). Here, we will follow however the more traditional approach, by
varying the action with respect to gµν, φ and Bµν . We shall take into account the
dynamical stress tensor Tµν of the matter sources (defined in the usual way), as
well as the scalar source σ representing a possible direct coupling of the dilaton
to the matter fields:

δg(
√−gLm) = 1

2

√−gTµνδg
µν, δφ(

√−gLm) = √−gσδφ. (16.186)

We start performing the variation with respect to the metric, using the
standard, general relativistic results:

δ
√−g = − 1

2

√−ggµνδg
µν,

δ(
√−gR) = √−g(Gµνδg

µν + gµν∇2δgµν −∇µ∇νδgµν), (16.187)

where Gµν is the usual Einstein tensor. It must be noted, however, that the second
covariant derivatives of δgµν , when integrated by parts, are no longer equivalent
to a divergence (and then to a surface integral), because of the dilaton factor
exp(−φ) in front of the Einstein action, which adds dilatonic gradients to the
full variation. By performing a first integration by part, and using the metricity
condition ∇αgµν = 0, we get in fact:

δg S = 1

2

∫
dd+1x

√|g|Tµνδgµν − 1

2λd−1
s

∫
dd+1x

√|g|e−φ
× [Gµν +∇αφgµν∇α −∇µφ∇ν +∇µφ∇νφ − 1

2 gµν(∇φ)2
− 1

2 gµνV (φ)+ 1
2 gµν

1
12 H 2

αβγ − 3
12 HµαβHν

αβ ]δgµν

− 1

2λd−1
s

∫
dd+1x

√|g|∇α[e−φgµν∇αδgµν − e−φ∇νδgνα] = 0.

(16.188)

A second integration by parts of ∇δgµν cancels the bilinear term ∇µφ∇νφ, and
leads to the field equations:

Gµν +∇µ∇νφ + 1
2 gµν[(∇φ)2 − 2∇2φ − V (φ)+ 1

12 H 2
αβγ ]− 1

4 HµαβHν
αβ

= 1
2 eφTµν. (16.189)

We have chosen units such that 2λd−1
s = 1, so that eφ represents the (d+ 1)-

dimensional gravitational constant (see appendix A). Also, we have implicitly
added to the action the boundary term

1

2λd−1
s

∫
∂�

√|g|e−φK α d'α, (16.190)
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whose variation with respect to g exactly cancels the contribution of the total
divergence appearing in the last integral of equation (16.188):

δg

∫ √|g|e−φK α d'α =
∫ √|g|e−φ(gµν∇αδgµν −∇νδgνα) d'α. (16.191)

Here K α is a geometric term representing the so-called extrinsic curvature on the
d-dimensional closed hypersurface, of infinitesimal area d'α , bounding the total
spacetime volume over which we are varying the action. Note that the integral
(16.190) differs from the usual boundary term, used in general relativity [89]
to derive the Einstein equations, only by the presence of the tree-level dilaton
coupling e−φ to the extrinsic curvature.

Let us now perform the variation with respect to the dilaton, again in units
2λd−1

s = 1. We get the Euler–Lagrange equations:

∂µ[−2
√−ge−φ∂µφ] = e−φ

√−g[R + (∇φ)2 − 1
12 H 2 + V ]

− e−φ
√−gV ′ + √−gσ (16.192)

(where V ′ = ∂V/∂φ), from which

R + 2∇2φ − (∇φ)2 + V − V ′ − 1
12 H 2 + eφσ = 0. (16.193)

The variation with respect to Bµν ,

δB

∫
dd+1x

√|g|e−φ(∂µBνα)H
µνα = 0, (16.194)

gives finally
∂µ(

√|g|e−φHµνα) = 0 = ∇µ(e−φHµνα). (16.195)

Equations (16.189), (16.193) and (16.195) are the equations governing
the evolution of the string cosmology background, at low energy. Note that
equation (16.189) can also be given in a simplified form: if we eliminate
the scalar curvature present inside the Einstein tensor, by using the dilaton
equation (16.193), we obtain:

Rµ
ν +∇µ∇νφ − 1

2δ
ν
µV ′ − 1

4 HµαβH ναβ = 1
2 eφ(Tµ

ν − δνµσ). (16.196)

For the purpose of these lectures, it will be enough to derive some simple
solution of the string cosmology equations in the absence of the potential (V = 0),
of the antisymmetric tensor (B = 0), and with a perfect fluid, minimally coupled
to the dilaton (σ = 0), as the matter sources. Assuming for the background a
Bianchi I type metric, we can work in the synchronous gauge, by setting

gµν = diag(1,−a2
i δi j ), ai = ai (t), φ = φ(t),

Tµ
ν = diag(ρ,−p2

i δ
j
i ), pi/ρ = γi = constant, ρ = ρ(t). (16.197)
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For this background:

�0i
j = Hiδ

j
i , �i j

0 = ai ȧiδi j , R0
0 = −

∑
i

(Ḣi + H 2
i ),

Ri
j = −Ḣiδ

j
i − Hiδ

j
i

∑
k

Hk, R = −
∑

i

(2Ḣi + H 2
i )−

(∑
i

Hi

)2

,

(∇φ)2 = φ̇2, ∇2φ = φ̈ +
∑

i

Hi φ̇, ∇0∇0φ = φ̈,

∇i∇ jφ = Hi φ̇δ
j
i . (16.198)

The dilaton equation (16.193) gives then

2φ̈ + 2φ̇
∑

i

Hi − φ̇2 −
∑

i

(2Ḣi + H 2
i )−

(∑
i

Hi

)2

= 0. (16.199)

The (00) component of the equation (16.189) gives

φ̇2 − 2φ̇
∑

i

Hi −
∑

i

H 2
i +

(∑
i

Hi

)2

= eφρ. (16.200)

The diagonal, spatial components (i, i) of equation (16.189) (the off-diagonal
components are trivially satisfied) give

Ḣi + Hi

∑
k

Hk − Hi φ̇ − 1
2

∑
i

(2Ḣi + H 2
i )

− 1
2

(∑
i

Hi

)2

− 1
2 φ̇

2 + φ̈ + φ̇
∑

i

Hi = 1
2 eφ pi . (16.201)

The last five terms on the left-hand side add to zero because of the dilaton equation
(16.199), and the spatial equations reduce to

Ḣi − Hi

(
φ̇ −

∑
k

Hk

)
= 1

2 eφ pi . (16.202)

The above equations are clearly invariant under time-reversal, t → −t . In
order to make explicit also their duality invariance, let us introduce again the
shifted dilaton (see equation (16.146)), such that

eφ = eφ/
√−g, φ̇ = φ̇ −

∑
i

Hi , (16.203)

and define

ρ = ρ√−g = ρ
∏

i

ai , p = p
√−g = p

∏
i

ai . (16.204)
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In terms of these variables, the time and space equations (16.200) and (16.202),
and the dilaton equation (16.199), become, respectively:

φ̇
2 −

∑
i

H 2
i = eφρ, (16.205)

Ḣi − Hi φ̇ = 1
2 eφ pi , (16.206)

2φ̈ − φ̇2 −
∑

i

H 2
i = 0. (16.207)

They are explicitly invariant under the scale-factor duality transformation:

ai → a−1
i , φ→ φ, ρ → ρ, p → −p (16.208)

which implies, for a perfect fluid source, a ‘ reflection’ of the equation of state,
γ = p/ρ = p/ρ → −p/ρ = −γ (see the first paper in [8]). A general
O(d, d) transformation changes, however, the equation of state in a more drastic
way (see [12]), introducing also shear and bulk viscosity.

The above (d + 2) equations are a system of independent equations for
the (d + 2) variables {ai , φ, ρ}. Their combination implies the usual covariant
conservation of the energy density. By differentiating equation (16.205), and

using (16.206) and (16.207) to eliminate Ḣi , φ̇, respectively, we get in fact

ρ̇ +
∑

i

Hi pi = 0, (16.209)

which, using the definitions (16.204), is equivalent to

ρ̇ +
∑

i

Hi(ρ + pi) = 0. (16.210)

In order to obtain exact solutions, it is convenient to include this energy
conservation equation in the full system of independent equations.

In these lectures we will present only a particular example of the matter-
dominated solution by considering a d-dimensional, isotropic background
characterized by a power-law evolution,

a ∼ tα, φ ∼ −β ln t, p = γρ. (16.211)

We use (16.205), (16.207) and (16.209) as independent equations. The integration
of equation (16.209) gives immediately

ρ = ρ0a−dγ ; (16.212)

equation (16.205) is then satisfied provided

dγα + β = 2. (16.213)
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Finally, equation (16.207) provides the constraint

2β − β2 − dα2 = 0. (16.214)

We then have a system of two equations for the two parameters α, β (note that,
if α is a solution for a given γ , then also −α is a solution, associated to −γ ).
We have, in general, two solutions. The trivial flat space solution β = 2, α = 0,
corresponds to dust matter (γ = 0) according to equation (16.206). For γ += 0
we obtain instead

α = 2γ

1+ dγ 2
, β = 2

1+ dγ 2
, (16.215)

which fixes the time evolution of a and φ:

a ∼ t
2γ

1+dγ 2 , φ = − 2

1+ dγ 2
ln t, (16.216)

and also of the more conventional variables ρ, φ:

ρ = ρa−d = ρ0a−d(1+γ ), φ = φ + d ln a = 2(dγ − 1)

1+ dγ 2 ln t . (16.217)

This particular solution reproduces the small curvature limit of the general
solution with perfect fluid sources (see the last two papers of [8]), sufficiently
far from the singularity. As in the vacuum solution (16.159) there are four
branches, related by time-reversal and by the duality transformation (16.208), and
characterized by the scale factors

a±(±t) ∼ (±t)±2γ /(1+dγ 2). (16.218)

The duality transformation that preserves φ and ρ, and inverts the scale factor,
in this case is simply represented by the transformation γ → −γ . Consider
for instance the standard radiation-dominated solution, corresponding to d = 3,
γ = 1/3, and t > 0, and associated to a constant dilaton, according to
equation (16.217). A duality transformation gives a new solution with γ = −1/3,
namely (from (16.216) and (16.217)):

a ∼ t−1/2, ρ ∼ a−2, φ ∼ −3 ln t . (16.219)

By performing an additional time reflection we then obtain the pre-big bang
solution ‘dual to radiation’ , already reported in eq. (16.16).
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Chapter 17

Post-Newtonian computation of binary
inspiral waveforms

Luc Blanchet
Département d’Astrophysique Relativiste et de Cosmologie,
Centre National de la Recherche Scientifique (UMR 8629),
Observatoire de Paris, 92195 Meudon Cedex, France

17.1 Introduction

Astrophysical systems known as inspiralling compact binaries are among the
most interesting sources to hunt for gravitational radiation in the future network
of laser-interferometric detectors, composed of the large-scale interferometers
VIRGO and LIGO, and the medium-scale ones GEO and TAMA (see the books
[1–3] for reviews, and the contribution of B Schutz in this volume). These
systems are composed of two compact objects, i.e. gravitationally-condensed
neutron stars or black holes, whose orbit follows an inward spiral, with decreasing
orbital radius r and increasing orbital frequency ω. The inspiral is driven by
the loss of energy associated with the gravitational-wave emission. Because the
dynamics of a binary is essentially aspherical, inspiralling compact binaries are
strong emitters of gravitational radiation. Tidal interactions between the compact
objects are expected to play a little role during most of the inspiral phase; the
mass transfer (in the case of neutron stars) does not occur until very late, near
the final coalescence. Inspiralling compact binaries are very clean systems,
essentially dominated by gravitational forces. Therefore, the relevant model for
describing the inspiral phase consists of two point-masses moving under their
mutual gravitational attraction. As a simplification for the theoretical analysis,
the orbit of inspiralling binaries can be considered to be circular, apart from the
gradual inspiral, with a good approximation. At some point in the evolution, there
will be a transition from the adiabatic inspiral to the plunge of the two objects
followed by the collision and final merger. Evidently the model of point-masses

338



Introduction 339

breaks down at this point, and is to be replaced by a fully relativistic numerical
computation of the plunge and merger (see the contribution of E Seidel in this
volume).

Currently the theoretical prediction from general relativity for the
gravitational waves emitted during the inspiral phase is determined using the
post-Newtonian approximation (see [4, 5] for reviews). This is possible because
the dynamics of inspiralling compact binaries, though very relativistic, is not
fully relativistic: the orbital velocity v is always less than one third of c (say).
However, because 1/3 is far from negligible as compared to 1, the gravitational-
radiation waveform should be predicted up to a high post-Newtonian order. In
particular, the radiation reaction onto the orbit, which triggers the inspiral, is to be
determined with the maximal precision, corresponding to at least the second and
maybe the third post-Newtonian (3PN, or 1/c 6) order [6,7]. Notice that the zeroth
order in this post-Newtonian counting corresponds to the dominant radiation
reaction force (already of the order of 2.5PN relative to the Newtonian force),
which is due to the change in the quadrupole moment of the source. Actually, the
method is not to compute directly the radiation reaction force but to determine
the inspiral rate from the energy balance equation relating the mechanical loss of
energy in the binary’s centre of mass to the total emitted flux at infinity.

The implemented strategy is to develop a formalism for the emission and
propagation of gravitational waves from a general isolated system, and only then,
once some general formulae valid to some prescribed post-Newtonian order are
in our hands, to apply the formalism to compact binaries. Hence, we consider in
this paper a particular formalism applicable to a general description of matter,
under the tenet of validity of the post-Newtonian expansion, namely that the
matter should be slowly moving, weakly stressed and self-gravitating. Within this
formalism we compute the retarded far field of the source by means of a formal
post-Minkowskian expansion, valid in the exterior of the source, and parametrized
by some appropriately defined multipole moments describing the source. From
the post-Minkowskian expansion we obtain a relation (correct up to the prescribed
post-Newtonian order) between the radiative multipole moments parametrizing
the metric field at infinity, and the source multipole moments. On the other hand,
the source multipole moments are obtained as some specific integrals extending
over the distribution of matter fields in the source and the contribution of the
gravitational field itself. The source moments are computed separately up to
the same post-Newtonian order. The latter formalism has been developed by
Blanchet, Damour and Iyer [8–14]. More recently, a different formalism has
been proposed and implemented by Will and Wiseman [15] (see also [16, 17]).
The two formalisms are equivalent at the most general level, but the details of the
computations are quite far apart. In the second stage, one applies the formalism
to a system of point-particles (modelling compact objects) by substituting for the
matter stress–energy tensor that expression, involving delta-functions, which is
appropriate for point-particles. This entails some divergencies due to the infinite
self-field of point-particles. Our present method is to cure them systematically
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by means of a variant of the Hadamard regularization (based on the concept of
‘partie finie’ ) [18, 19].

In this paper, we first analyse the binary inspiral gravitational waveform at
the simplest Newtonian approximation. Notably, we spend some time describing
the relative orientation of the binary with respect to the detector. Then we
compute, still at the ‘Newtonian order’ (corresponding, in fact, to the quadrupole
approximation), the evolution in the course of time of the orbital phase of the
binary, which is a crucial quantity to predict. Next, we review the main steps of
our general wave-generation formalism, with emphasis on the definition of the
various types of multipole moments which are involved. At last, we present the
result for the binary inspiral waveform whose current post-Newtonian precision is
2PN in the wave amplitude and 2.5PN in the orbital phase (that is 1/c 5 beyond the
quadrupole radiation reaction). However, since our ultimate aim is to construct
accurate templates to be used in the data analysis of detectors, it is appropriate to
warm up with a short review of the optimal filtering technique which will be used
for hunting the inspiral binary waveform (see [20] for an extended review).

17.2 Summary of optimal signal filtering

Let o(t) be the raw output of the detector, which is made of the superposition of
the useful gravitational-wave signal h(t) and of noise n(t):

o(t) = h(t) + n(t). (17.1)

The noise is assumed to be a stationary Gaussian random variable, with zero
expectation value,

n(t) = 0, (17.2)

and with (supposedly known) frequency-dependent power spectral density S n(ω)

satisfying
ñ(ω)ñ∗(ω′) = 2πδ(ω − ω′)Sn(ω), (17.3)

where ñ(ω) is the Fourier transform of n(t). In (17.2) and (17.3), we denote by
an upper bar the average over many realizations of noise in a large ensemble of
detectors. From (17.3), we have Sn(ω) = S∗n (ω) = Sn(−ω) > 0.

Looking for the signal h(t) in the output of the detector o(t), the
experimenters construct the correlation c(t) between o(t) and a filter q(t), i.e.

c(t) =
∫ +∞

−∞
dt ′ o(t ′)q(t + t ′), (17.4)

and divide c(t) by the square root of its variance (or correlation noise). Thus, the
experimenters consider the ratio

σ [q](t) = c(t)

(c2(t)− c(t)
2
)1/2

=
∫ +∞
−∞

dω
2π õ(ω)q̃∗(ω)eiωt( ∫ +∞

−∞
dω
2π Sn(ω)|q̃(ω)|2

)1/2 , (17.5)
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where õ(ω) and q̃(ω) are the Fourier transforms of o(t) and q(t). The expectation
value (or ensemble average) of this ratio defines the filtered signal-to-noise ratio

ρ[q](t) = σ [q](t) =
∫ +∞
−∞

dω
2π h̃(ω)q̃∗(ω)eiωt( ∫ +∞

−∞
dω
2π Sn(ω)|q̃(ω)|2

)1/2 . (17.6)

The optimal filter (or Wiener filter) which maximizes the signal-to-noise (17.6) at
a particular instant t = 0 (say), is given by the matched filtering theorem as

q̃(ω) = γ h̃(ω)

Sn(ω)
, (17.7)

where γ is an arbitrary real constant. The optimal filter (17.7) is matched on the
expected signal h̃(ω) itself, and weighted by the inverse of the power spectral
density of the noise. The maximum signal to noise, corresponding to the optimal
filter (17.7), is given by

ρ =
(∫ +∞

−∞
dω

2π

|h̃(ω)|2
Sn(ω)

)1/2

= 〈h, h〉1/2. (17.8)

This is the best achievable signal-to-noise ratio with a linear filter. In (17.8), we
have used, for any two real functions f (t) and g(t), the notation

〈 f, g〉 =
∫ +∞

−∞
dω

2π

f̃ (ω)g̃∗(ω)
Sn(ω)

(17.9)

for an inner scalar product satisfying 〈 f, g〉 = 〈 f, g〉∗ = 〈g, f 〉.
In practice, the signal h(t) or h̃(ω) is of known form (given, for instance,

by (17.27)–(17.32) later) but depends on an unknown set of parameters which
describe the source of radiation, and are to be measured. The experimenters must
therefore use a whole family of filters analogous to (17.7) but in which the signal
is parametrized by a whole family of ‘ test’ parameters which are a priori different
from the actual source parameters. Thus, one will have to define and use a lattice
of filters in the parameter space. The set of parameters maximizing the signal
to noise (17.6) is equal, by the matched filtering theorem, to the set of source
parameters. However, in a single detector, the experimenters maximize the ratio
(17.5) rather than the signal to noise (17.6), and therefore make errors on the
determination of the parameters, depending on a particular realization of noise in
the detector. If the signal-to-noise ratio is high enough, the measured values of the
parameters are Gaussian distributed around the source parameters, with variances
and correlation coefficients given by the covariance matrix, the computation of
which we now recall. Since the optimal filter (17.7) is defined up to an arbitrary
multiplicative constant, it is convenient to treat separately a constant amplitude
parameter in front of the signal (involving, in general, the distance of the source).
We shall thus write the signal in the form

h̃(ω; A, λa) = A k̃(ω; λa), (17.10)
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where A denotes some amplitude parameter. The function k̃ depends only on
the other parameters, collectively denoted by λa where the label a ranges on the
values 1, . . . , N . The family of matched filters (or ‘ templates’ ) we consider is
defined by

q̃(ω; tλa) = γ ′ k̃(ω; tλa)

Sn(ω)
, (17.11)

where tλa is a set of test parameters, assumed to be all independent, and γ ′ is
arbitrary. By substituting (17.11) into (17.5) and choosing t = 0, we get, with the
notation of (17.9),

σ(tλ) = 〈o, k(tλ)〉
〈k(tλ), k(tλ)〉1/2 . (17.12)

(Note that σ is in fact a function of both the parameters λa and tλa .) Now
the experimenters choose as their best estimate of the source parameters
λa the measured parameters mλa which among all the test parameters tλa

(independently) maximize (17.12), i.e. which satisfy

∂σ

∂ tλa
(mλ) = 0, a = 1, . . . , N . (17.13)

Assuming that the signal to noise is high enough, we can work out (17.13) up
to the first order in the difference between the actual source parameters and the
measured ones,

δλa = λa − mλa . (17.14)

As a result, we obtain

δλa = Cab

{
−〈n, ∂h

∂λb
〉 + 〈n, h〉〈h, h〉 〈h,

∂h

∂λb
〉
}
, (17.15)

where a summation is understood on the dummy label b, and where the matrix
Cab (with a, b = 1, . . . , N) is the inverse of the Fisher information matrix

Dab =
〈
∂h

∂λa
,
∂h

∂λb

〉
− 1

〈h, h〉
〈
h,
∂h

∂λa

〉 〈
h,
∂h

∂λb

〉
(17.16)

(we have CabDbc = δac). On the right-hand sides of (17.15) and (17.16), the
signal is equally (with this approximation) parametrized by the measured or actual
parameters. Since the noise is Gaussian, so are, by (17.15), the variables δλ a

(indeed, δλa result from a linear operation on the noise variable). The expectation
value and quadratic moments of the distribution of these variables are readily
obtained from the facts that 〈n, f 〉 = 0 and 〈n, f 〉〈n, g〉 = 〈 f, g〉 for any
deterministic functions f and g (see (17.2) and (17.3)). We then obtain

δλa = 0,

δλaδλb = Cab. (17.17)
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Thus, the matrix Cab (the inverse of (17.16)) is the matrix of variances and
correlation coefficients, or covariance matrix, of the variables δλ a . The
probability distribution of δλa reads as

P(δλa) = 1√
(2π)N+1 detC

exp

{
−1

2
Dabδλaδλb

}
, (17.18)

where detC is the determinant of Cab. A similar analysis can be done for the
measurement of the amplitude parameter A of the signal.

17.3 Newtonian binary polarization waveforms

The source of gravitational waves is a binary system made of two point-masses
moving on a circular orbit. We assume that the masses do not possess any intrinsic
spins, so that the motion of the binary takes place in a plane. To simplify the
presentation we suppose that the centre of mass of the binary is at rest with respect
to the detector. The detector is a large-scale laser-interferometric detector like
VIRGO or LIGO, with two perpendicular arms (with length 3 km in the case
of VIRGO). The two laser beams inside the arms are separated by the beam-
splitter which defines the central point of the interferometer. We introduce an
orthonormal right-handed triad (XXX,YYY , ZZZ) linked with the detector, with XXX and
YYY pointing along the two arms of the interferometer, and ZZZ pointing toward the
zenithal direction. We denote by nnn the direction of the detector as seen from the
source, that is, −nnn is defined as the unit vector pointing from the centre of the
interferometer to the binary’s centre of mass. We introduce some spherical angles
α and β such that

−nnn = XXX sinα cosβ + YYY sinα sinβ + ZZZ cosα. (17.19)

Thus, the plane β = constant defines the plane which is vertical, as seen from
the detector, and which contains the source. Next, we introduce an orthonormal
right-handed triad (xxx, yyy, zzz) which is linked to the binary’s orbit, with xxx and yyy
located in the orbital plane, and zzz along the normal to the orbital plane. The
vector xxx is chosen to be perpendicular to nnn; thus, nnn is within the plane formed
by yyy and zzz. The orientation of this triad is ‘ right-hand’ with respect to the sense
of motion. We denote by i the inclination angle, namely the angle between the
direction of the source or line-of-sight nnn and the normal zzz to the orbital plane.
Since zzz is right-handed with respect to the sense of motion we have 0 ≤ i ≤ π .
Furthermore, we define two unit vectors ppp and qqq, called the polarization vectors,
in the plane orthogonal to nnn (or plane of the sky). We choose ppp = xxx and define qqq
in such a way that the triad (nnn, ppp, qqq) is right-handed; thus

nnn = yyy sin i + zzz cos i, (17.20)

ppp = xxx, (17.21)

qqq = yyy cos i − zzz sin i. (17.22)
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Notice that the direction ppp ≡ xxx is one of the ‘ascending node’ N of the binary,
namely the point at which the bodies cross the plane of the sky moving toward
the detector. Thus, the polarization vectors ppp and qqq lie, respectively, along the
major and minor axis of the projection onto the plane of the sky of the (circular)
orbit, with ppp pointing toward N using the standard practice of celestial mechanics.
Finally, let us denote by ξ the polarization angle between ppp and the vertical plane
β = constant; that is, ξ is the angle between the vertical and the direction of the
node N . We have

nnn = − XXX sinα cosβ − YYY sinα sinβ − ZZZ cosα, (17.23)

ppp = XXX(cos ξ cosα cosβ + sin ξ sinβ)

+ YYY (cos ξ cosα sinβ − sin ξ cosβ)− ZZZ cos ξ sinα, (17.24)

qqq = XXX(− sin ξ cosα cosβ + cos ξ sinβ)

+ YYY (− sin ξ cosα sinβ − cos ξ cosβ)+ ZZZ sin ξ sinα. (17.25)

Defining all these angles, the relative orientation of the binary with respect to the
interferometric detector is entirely determined. Indeed using (17.22) and (17.25)
one relates the triad (xxx, yyy, zzz) associated with the source to the triad (XXX,YYY , ZZZ)
linked with the detector.

The gravitational wave as it propagates through the detector in the wave
zone of the source is described by the so-called transverse and traceless (TT)
asymptotic waveform hTT

i j = (gij −δi j )
TT, where gij denotes the spatial covariant

metric in a coordinate system adapted to the wave zone, and δ i j is the Kronecker
metric. Neglecting terms dying out like 1/R 2 in the distance to the source, the
two polarization states of the wave, customarily denoted h+ and h×, are given by

h+ = 1
2 (pi p j − qi q j )h

TT
i j , (17.26)

h× = 1
2 (piq j + p j qi )h

TT
i j , (17.27)

where pi and qi are the components of the polarization vectors. The detector is
directly sensitive to a linear combination of the polarization waveforms h + and
h× given by

h(t) = F+h+(t)+ F×h×(t), (17.28)

where F+ and F× are the so-called beam-pattern functions of the detector, which
are some given functions (for a given type of detector) of the direction of the
source α, β and of the polarization angle ξ . This h(t) is the gravitational-wave
signal looked for in the data analysis of section 17.2, and used to construct the
optimal filter (17.10). In the case of the laser-interferometric detector we have

F+ = 1
2 (1+ cos2 α) cos 2β cos 2ξ + cosα sin 2β sin 2ξ, (17.29)

F× = − 1
2 (1+ cos2 α) cos 2β sin 2ξ + cosα sin 2β cos 2ξ. (17.30)

The orbital plane and the direction of the node N are fixed so the polarization
angle ξ is constant (in the case of spinning particles, the orbital plane precesses
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around the direction of the total angular momentum, and angle ξ varies). Thus,
the gravitational wave h(t) depends on time only through the two polarization
waveforms h+(t) and h×(t). In turn, these waveforms depend on time through
the binary’s orbital phase φ(t) and the orbital frequency ω(t) = dφ(t)/dt . The
orbital phase is defined as the angle, oriented in the sense of motion, between the
ascending node N and the direction of one of the particles, conventionally particle
1 (thus φ = 0 modulo 2π when the two particles lie along ppp, with particle 1 at the
ascending node). In the absence of any radiation reaction, the orbital frequency
would be constant, and so the phase would evolve linearly with time. Because
of the radiation reaction forces, the actual variation of φ(t) is nonlinear, and the
orbit spirals in and shrinks to zero-size to account, via the Kepler third law, for
the gravitational-radiation energy loss. The main problem of the construction
of accurate templates for the detection of inspiralling compact binaries is the
prediction of the time variation of the phase φ(t). Indeed, because of the
accumulation of cycles, most of the accessible information allowing accurate
measurements of the binary’s intrinsic parameters (such as the two masses) is
contained within the phase, and rather less accurate information is available in the
wave amplitude itself. For instance, the relative precision in the determination of
the distance R to the source, which affects the wave amplitude, is less than for
the masses, which strongly affect the phase evolution [6, 7]. Hence, we can often
neglect the higher-order contributions to the amplitude, which means retaining
only the dominant harmonics in the waveform, which corresponds to a frequency
at twice the orbital frequency.

Once the functions φ(t) and ω(t) are known they must be inserted into the
polarization waveforms computed by means of some wave-generation formalism.
For instance, using the quadrupole formalism, which neglects all the harmonics
but the dominant one, we find

h+ = − 2Gµ

c2 R

(
Gmω

c3

)2/3

(1+ cos2 i) cos 2φ, (17.31)

h× = − 2Gµ

c2 R

(
Gmω

c3

)2/3

(2 cos i) sin 2φ (17.32)

where R denotes the absolute luminosity distance of the binary’s centre of mass;
the mass parameters are given by

m = m1 + m2; µ = m1m2

m
; ν = µ

m
. (17.33)

This last parameter ν, introduced for later convenience, is the ratio between the
reduced mass and the total mass, and is such that 0 < ν ≤ 1/4 with ν → 0 in the
test-mass limit and ν = 1/4 in the case of two equal masses.
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17.4 Newtonian orbital phase evolution

Let yyy1(t) and yyy2(t) be the two trajectories of the masses m1 and m2, and
yyy = yyy1 − yyy2 be their relative position, and denote r = |yyy|. The velocities are
vvv1(t) = dyyy1/dt , vvv2(t) = dyyy2/dt and vvv(t) = dyyy/dt . The Newtonian equations of
motion read as

dvvv1

dt
= −Gm2

r3 yyy; dvvv2

dt
= Gm1

r3 yyy. (17.34)

The difference between these two equations yields the relative acceleration,

dvvv

dt
= −Gm

r3
yyy. (17.35)

We place ourselves into the Newtonian centre-of-mass frame defined by

m1 yyy1 + m2 yyy2 = 000, (17.36)

in which frame the individual trajectories yyy1 and yyy2 are related to the relative one
yyy by

yyy1 =
m2

m
yyy; yyy2 = −

m1

m
yyy. (17.37)

The velocities are given similarly by

vvv1 = m2

m
vvv; vvv2 = −m1

m
vvv. (17.38)

In principle, the binary’s phase evolution φ(t) should be determined from
a knowledge of the radiation reaction forces acting locally on the orbit. At
the Newtonian order, this means considering the ‘Newtonian’ radiation reaction
force, which is known to contribute to the total acceleration only at the 2.5PN
level, i.e. 1/c5 smaller than the Newtonian acceleration (where 5 = 2s + 1, with
s = 2 the helicity of the graviton). A simpler computation of the phase is to
deduce it from the energy balance equation between the loss of centre-of-mass
energy and the total flux emitted at infinity in the form of waves. In the case of
circular orbits one needs only to find the decrease of the orbital separation r and
for that purpose the balance of energy is sufficient. Relying on an energy balance
equation is the method we follow for computing the phase of inspiralling binaries
in higher post-Newtonian approximations (see section 17.6). Thus, we write

dE

dt
= −L, (17.39)

where E is the centre-of-mass energy, given at the Newtonian order by

E = −Gm1m2

2r
, (17.40)
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and where L denotes the total energy flux (or gravitational ‘ luminosity’ ), deduced
to the Newtonian order from the quadrupole formula of Einstein:

L = G

5c5

d3 Qij

dt3

d3 Qij

dt3 . (17.41)

The quadrupole moment is merely the Newtonian (trace-free) quadrupole of the
source, which reads in the case of the point-particle binary as

Qij = m1(y
i
1y j

1 − 1
3δ

i j yyy2
1)+ 1 ↔ 2. (17.42)

In the mass-centred frame (17.36) we get

Qij = µ(yi y j − 1
3δ

i j r2). (17.43)

The third time derivative of Q ij needed in the quadrupole formula (17.41) is
easily obtained. When an acceleration is generated we replace it by the Newtonian
equation of motion (17.35). In the case of a circular orbit we get

d3 Qij

dt3 = −4
Gmµ

r3 (yiv j + y jvi ) (17.44)

(this is automatically trace-free because yyy ·vvv = 0). Replacing (17.44) into (17.41)
leads to the ‘Newtonian’ fl ux

L = 32

5

G3m2µ2

c5r4
vvv2. (17.45)

A better way to express the flux is in terms of some dimensionless quantities,
namely the mass ratio ν given in (17.33), and a very convenient post-Newtonian
parameter defined from the orbital frequency ω by

x =
(

Gmω

c3

)2/3

. (17.46)

Notice that x is of formal order O(1/c2) in the post-Newtonian expansion.
Thanks to the Kepler law Gm = r 3ω2 we transform (17.45) and arrive at

L = 32

5

c5

G
ν2x5. (17.47)

In this form the only factor having a dimension is

c5

G
≈ 3.63× 1052 W, (17.48)

which is the Planck unit of a power, which turns out to be independent of the
Planck constant. (Notice that instead of c5/G the inverse ratio G/c5 appears as
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a factor in the quadrupole formula (17.41).) On the other hand, we find that E
reads simply

E = − 1
2µc2x . (17.49)

Next we replace (17.47) and (17.49) into the balance equation (17.39), and find
in this way an ordinary differential equation which is easily integrated for the
unknown x . We introduce for later convenience the dimensionless time variable

τ = c3ν

5Gm
(tc − t), (17.50)

where tc is a constant of integration. Then the solution reads

x(t) = 1
4τ
−1/4. (17.51)

It is clear that tc represents the instant of coalescence, at which (by definition)
the orbital frequency diverges to infinity. Then a further integration yields
φ = ∫

ω dt = − 5
ν

∫
x2/3 dτ , and we get the looked for result

φc − φ(t) = 1

ν
τ 5/8, (17.52)

where φc denotes the constant phase at the instant of coalescence. It is often
useful to consider the numberN of gravitational-wave cycles which are left until
the final coalescence starting from some frequency ω:

N = φc − φ
π

= 1

32πν
x−5/2. (17.53)

As we see the post-Newtonian order of magnitude ofN is c+5, that is the inverse
of the order c−5 of radiation reaction effects. As a matter of fact, N is a large
number, approximately equal to 1.6×10 4 in the case of two neutron stars between
10 and 1000 Hz (roughly the frequency bandwidth of the detector VIRGO). Data
analysts of detectors have estimated that, in order not to suffer a too severe
reduction of signal to noise, one should monitor the phase evolution with an
accuracy comparable to one gravitational-wave cycle (i.e. δN ∼ 1) or better.
Now it is clear, from a post-Newtonian point of view, that since the ‘Newtonian’
number of cycles given by (17.53) is formally of order c +5, any post-Newtonian
correction therein which is larger than order c−5 is expected to contribute to the
phase evolution more than that allowed by the previous estimate. Therefore, one
expects that in order to construct accurate templates it will be necessary to include
into the phase the post-Newtonian corrections up to at least the 2.5PN or 1/c 5

order. This expectation has been confirmed by various studies [21–24] which
showed that in advanced detectors the 2.5PN or, better, the 3PN approximation is
required in the case of inspiralling neutron star binaries. Notice that 3PN here
means 3PN in the centre-of-mass energy E , which is deduced from the 3PN
equations of motion, as well as in the total flux L, which is computed from a 3PN
wave-generation formalism. For the moment the phase has been completed to the
2.5PN order [15, 25–27]; the 3PN order is still incomplete (but, see [13, 28, 29]).
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17.5 Post-Newtonian wave generation

17.5.1 Field equations

We consider a general compact-support stress–energy tensor T µν describing the
isolated source, and we look for the solutions, in the form of a (formal) post-
Newtonian expansion, of the Einstein field equations,

Rµν − 1

2
gµν R = 8πG

c4 Tµν, (17.54)

and thus also of their consequence, the equations of motion ∇ νTµν = 0 of the
source. We impose the condition of harmonic coordinates, i.e. the gauge condition

∂νh
µν = 0; hµν = √−ggµν − ηµν, (17.55)

where g and gµν denote the determinant and inverse of the covariant metric gµν ,
and where ηµν is a Minkowski metric: ηµν = diag(−1, 1, 1, 1). Then the Einstein
field equations (17.54) can be replaced by the so-called relaxed equations, which
take the form of simple wave equations,

�hµν = 16πG

c4 τµν, (17.56)

where the box operator is the flat d’Alembertian � = ηµν∂µ∂ν , and where the
source term τ µν can be viewed as the stress–energy pseudotensor of the matter
and gravitational fields in harmonic coordinates. It is given by

τµν = |g|Tµν + c4

16πG
 µν. (17.57)

τµν is not a generally-covariant tensor, but only a Lorentz tensor relative to the
Minkowski metric ηµν . As a consequence of the gauge condition (17.55), τ µν is
conserved in the usual sense,

∂ντ
µν = 0 (17.58)

(this is equivalent to ∇νTµν = 0). The gravitational source term  µν is a quite
complicated, highly nonlinear (quadratic at least) functional of h µν and its first-
and second-spacetime derivatives.

We supplement the resolution of the field equations (17.55) and (17.56) by
the requirement that the source does not receive any radiation from other sources
located very far away. Such a requirement of ‘no-incoming radiation’ is to be
imposed at Minkowskian past null infinity (taking advantage of the presence of
the Minkowski metric ηµν); this corresponds to the limit r = |xxx| → +∞ with
t + r/c = constant. (Please do not confuse this r with the same r denoting the
separation between the two bodies in section 17.4.) The precise formulation of
the no-incoming radiation condition is

lim
r→+∞

t+ r
c=constant

[
∂

∂r
(rhµν)+ ∂

c∂ t
(rhµν)

]
(xxx, t) = 0. (17.59)
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In addition, r∂λhµν should be bounded in the same limit. Actually we often adopt,
for technical reasons, the more restrictive condition that the field is stationary
before some finite instant −T in the past (refer to [8] for details). With the
no-incoming radiation condition (17.58) or (17.59) we transform the differential
Einstein equation (17.56) into the equivalent integro-differential system

hµν = 16πG

c4
�−1

R τ
µν, (17.60)

where �−1
R denotes the standard retarded inverse d’Alembertian given by

(�−1
R τ )(xxx, t) = −

1

4π

∫
d3xxx ′

|xxx − xxx ′|τ (xxx
′, t − |xxx − xxx ′|/c). (17.61)

17.5.2 Source moments

In this section we shall solve the field equations (17.55) and (17.56) in the exterior
of the isolated source by means of a multipole expansion, parametrized by some
appropriate source multipole moments. The particularity of the moments we shall
obtain, is that they are defined from the formal post-Newtonian expansion of the
pseudotensor τ µν , supposing that the latter expansion can be iterated to any order.
Therefore, these source multipole moments are physically valid only in the case
of a slowly-moving source (slow internal velocities; weak stresses). The general
structure of the post-Newtonian expansion involves besides the usual powers of
1/c some arbitrary powers of the logarithm of c, say

τµν(t, xxx, c) =
∑
p,q

(ln c)q

c p
τµνpq (t, xxx), (17.62)

where the overbar denotes the formal post-Newtonian expansion, and where
τ
µν
pq are the functional coefficients of the expansion (p, q are integers, including

zero). Now, the general multipole expansion of the metric field h µν , denoted
by M(hµν), is found by requiring that when re-developed into the near-zone,
i.e. in the limit where r/c → 0 (this is equivalent with the formal re-expansion
when c → ∞), it matches with the multipole expansion of the post-Newtonian
expansion h

µν
(whose structure is similar to (17.62)) in the sense of the

mathematical technics of matched asymptotic expansions. We find [11, 14] that
the multipole expansionM(hµν) satisfying the matching is uniquely determined,
and is composed of the sum of two terms,

M(hµν) = finite part�−1
R [M( µν)]− 4G

c4

+∞∑
l=0

(−)l
l!
∂L

{
1

r
F
µν
L (t − r/c)

}
.

(17.63)
The first term, in which �−1

R is the flat retarded operator (17.61), is a particular
solution of the Einstein field equations in vacuum (outside the source), i.e. it
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satisfies �hµνpart = M( µν). The second term is a retarded solution of the
source-free homogeneous wave equation, i.e. �h µνhom = 0. We denote ∂L =
∂i1 . . . ∂il where L = i1 . . . il is a multi-index composed of l indices; the l
summations over the indices i1 . . . il are not indicated in (17.63). The ‘multipole
moments’parametrizing this homogeneous solution are given explicitly by (with
u = t − r/c)

F
µν
L (u) = finite part

∫
d3xxx x̂L

∫ 1

−1
dz δl(z)τ

µν(xxx, u + z|xxx|/c), (17.64)

where the integrand contains the post-Newtonian expansion of the pseudostress–
energy tensor τ µν , whose structure reads like (17.62). In (17.64), we denote the
symmetric-trace-free (STF) projection of the product of l vectors x i with a hat,
so that x̂L = STF(x L), with x L = xi1 . . . xil and L = i1 . . . il ; for instance,
x̂i j = xi x j − 1

3δi j xxx2. The function δl(z) is given by

δl(z) = (2l + 1)!!

2l+1l!
(1− z2)l , (17.65)

and satisfies the properties

∫ 1

−1
dzδl(z) = 1; lim

l→+∞ δl(z) = δ(z) (17.66)

(where δ(z) is the Dirac measure). Both terms in (17.63) involve an operation
of taking a finite part. This finite part can be defined precisely by means of an
analytic continuation (see [14] for details), but it is in fact basically equivalent to
taking the finite part of a divergent integral in the sense of Hadamard [18]. Notice,
in particular, that the finite part in the expression of the multipole moments (17.64)
deals with the behaviour of the integral at infinity: r →∞ (without the finite part
the integral would be divergent because of the factor x L = r lnL in the integrand
and the fact that the pseudotensor τ µν is not of compact support).

The result (17.63)–(17.64) permits us to define a very convenient notion of
the source multipole moments (by opposition to the radiative moments defined
below). Quite naturally, the source moments are constructed from the ten
components of the tensorial function F µνL (u). Among these components four
can be eliminated using the harmonic gauge condition (17.55), so in the end
we find only six independent source multipole moments. Furthermore, it can be
shown that by changing the harmonic gauge in the exterior zone one can further
reduce the number of independent moments to only two. Here we shall report the
result for the ‘main’ multipole moments of the source, which are the mass-type
moment IL and current-type JL (the other moments play a small role starting only
at highorder in the post-Newtonian expansion). We have [14]
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IL(u) = finite part
∫

d3xxx
∫ 1

−1
dz

{
δl x̂L' − 4(2l + 1)

c2(l + 1)(2l + 3)
δl+1 x̂i L∂t'i

+ 2(2l + 1)

c4(l + 1)(l + 2)(2l + 5)
δl+2 x̂i j L∂

2
t 'i j

}
, (17.67)

JL(u) = finite part
∫

d3xxx
∫ 1

−1
dz εab<il

{
δl x̂L−1>a'b

− 2l + 1

c2(l + 2)(2l + 3)
δl+1 x̂L−1>ac∂t'bc

}
. (17.68)

Here the integrand is evaluated at the instant u + z|xxx|/c, εabc is the Levi-Civita
symbol, 〈L〉 is the STF projection, and we employ the notation

' = τ
00 + τ ii

c2
; 'i = τ

0i

c
; 'i j = τ i j (17.69)

(with τ ii = δi j τ
i j ). The multipole moments IL , JL are valid formally up to any

post-Newtonian order, and constitute a generalization in the nonlinear theory of
the usual mass and current Newtonian moments (see, [14] for details). It can be
checked that, when considered at the 1PN order, these moments agree with the
different expressions obtained in [9] (case of mass moments) and in [10] (current
moments).

17.5.3 Radiative moments

In linearized theory, where we can neglect the gravitational source term  µν in
(17.57), as well as the first term in (17.63), the source multipole moments coincide
with the so-called radiative multipole moments, defined as the coefficients of the
multipole expansion of the 1/r term in the distance to the source at retarded times
t − r/c = constant. However, in full nonlinear theory, the first term in (17.63)
will bring another contribution to the 1/r term at future null infinity. Therefore,
the source multipole moments are not the ‘measured’ ones at infinity, and so
they must be related to the real observables of the field at infinity which are
constituted by the radiative moments. It has been known for a long time that
the harmonic coordinates do not belong to the class of Bondi coordinate systems
at infinity, because the expansion of the harmonic metric when r → ∞ with
t − r/c = constant involves, in addition to the normal powers of 1/r , some
powers of the logarithm of r . Let us change the coordinates from harmonic to
some Bondi-type or ‘ radiative’ coordinates (XXX, T ) such that the metric admits a
power-like expansion without logarithms when R →∞with T−R/c = constant
and R = |XXX | (it can be shown that the condition to be satisfied by the radiative
coordinate system is that the retarded time T − R/c becomes asymptotically null
at infinity). For the purpose of deriving the formula (17.73) below it is sufficient
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to transform the coordinates according to

T − R

c
= t − r

c
− 2GM

c3
ln

(
r

r0

)
, (17.70)

where M denotes the ADM mass of the source and r0 is a gauge constant. In
radiative coordinates it is easy to decompose the 1/R term of the metric into
multipoles and to define in that way the radiative multipole moments U L (mass-
type; where L = i1 . . . il with l ≥ 2) and VL (current-type; with l ≥ 2).
(Actually, it is often simpler to bypass the need for transforming the coordinates
from harmonic to radiative by considering directly the TT projection of the spatial
components of the harmonic metric at infinity.) The formula for the definition of
the radiative moments is

hTT
i j = − 4G

c2 R
Pi jab(NNN )

+∞∑
l=2

1

cll!

{
NL−2UabL−2(T − R/c)

− 2l

c(l + 1)
NcL−2εcd(aVb)d L−2(T − R/c)

}
+ O

(
1

R2

)
(17.71)

where NNN is the vector Ni = Ni = Xi/R (for instance NL−2 = Ni1 . . . Nil−2 ), and
Pi jab denotes the TT projector

Pi jab = (δia − Ni Na)(δ jb − N j Nb)− 1
2 (δi j − Ni N j )(δab − Na Nb). (17.72)

In the limit of linearized gravity the radiative multipole moments U L , VL agree
with the lth time derivatives of the source moments I L , JL . Let us give, without
proof, the result for the expression of the radiative mass-quadrupole moment U ij

including relativistic corrections up to the 3PN or 1/c 6 order inclusively [12, 13].
The calculation involves implementing explicitly a post-Minkowskian algorithm
defined in [8] for the computation of the nonlinearities due to the first term of
(17.63). We find (U ≡ T − R/c)

Uij (U) = M(2)
i j (U)+ 2

GM

c3

∫ +∞

0
dv M (4)

i j (U − v)
[

ln

(
cv

2r0

)
+ 11

12

]

+ G

c5

{
−2

7

∫ +∞

0
dv [M (3)

a<i M(3)
j>a](U − v)− 2

7
M(3)

a<i M(2)
j>a(U)

− 5

7
M(4)

a<i M(1)
j>a(U)+

1

7
M(5)

a<i M j>a(U)+ 1

3
εab<i M(4)

j>a Jb(U)

}

+ 2

(
GM

c3

)2 ∫ +∞

0
dv M (5)

i j (U − v)

×
[

ln2
(

cv

2r0

)
+ 57

70
ln

(
cv

2r0

)
+ 124 627

44 100

]

+ O

(
1

c7

)
. (17.73)
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The superscript (n) denotes n time derivations. The quadrupole moment M ij

entering this formula is closely related to the source quadrupole I i j ,

Mij = Ii j + 2G

3c5
{K (3) Ii j − K (2) I (1)i j } + O

(
1

c7

)
, (17.74)

where K is the Newtonian moment of inertia (see equation (4.24) in [27]; we
are using here a mass-centred frame so that the mass-dipole moment I i is zero).
The Newtonian term in (17.73) corresponds to the quadrupole formalism. Next,
there is a quadratic nonlinear correction term with multipole interaction M ×M ij

which represents the effect of tails of gravitational waves (scattering of linear
waves off the spacetime curvature generated by the mass M). This correction is
of order 1/c3 or 1.5PN and takes the form of a non-local integral with logarithmic
kernel [30]. It is responsible notably for the term proportional to πτ 1/4 in the
formula for the phase (17.87) below. The next correction, of order 1/c 5 or
2.5PN, is constituted by quadratic interactions between two mass-quadrupoles,
and between a mass-quadrupole and the constant current dipole [12]. This term
contains also a non-local integral, which is due to the radiation of gravitational
waves by the distribution of the stress–energy of linear waves [12,30–32]. Finally,
at the 3PN order in (17.73) the first cubic nonlinear interaction appears, which is
of the type (M × M × Mij ) and corresponds to the tails generated by the tails
themselves [13].

17.6 Inspiral binary waveform

To conclude, let us give (without proof) the result for the two polarization
waveforms h+(t) and h×(t) of the inspiralling compact binary developed to 2PN
order in the amplitude and to 2.5PN order in the phase. The calculation was
done by Blanchet, Damour, Iyer, Will and Wiseman [15, 25–27, 33], based on the
formalism reviewed in section 17.5 and, independently, on that defined in [15].
Following [33] we present the polarization waveforms in a form which is ready for
use in the data analysis of binary inspirals in the detectors VIRGO and LIGO (the
analysis will be based on the optimal filtering technique reviewed in section 17.2).
We find, extending the Newtonian formulae in section 17.3,

h+,× = 2Gµ

c2 R

(
Gmω

c3

)2/3

× {H (0)
+,× + x1/2H (1/2)

+,× + x H (1)
+,× + x3/2H (3/2)

+,× + x2 H (2)
+,×}, (17.75)

where the various post-Newtonian terms, ordered by x , are given for the plus
polarization by

H (0)
+ = − (1+ c2

i ) cos 2ψ, (17.76)

H (1/2)
+ = − si

8

δm

m
[(5+ c2

i ) cosψ − 9(1+ c2
i ) cos 3ψ], (17.77)
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H (1)
+ = 1

6 [(19+ 9c2
i − 2c4

i )− ν(19− 11c2
i − 6c4

i )] cos 2ψ

− 4
3 s2

i (1+ c2
i )(1− 3ν) cos 4ψ, (17.78)

H (3/2)
+ = si

192

δm

m
{[(57+ 60c2

i − c4
i )− 2ν(49− 12c2

i − c4
i )] cosψ

− 27
2 [(73+ 40c2

i − 9c4
i )− 2ν(25− 8c2

i − 9c4
i )] cos 3ψ

+ 625
2 (1− 2ν)s2

i (1+ c2
i ) cos 5ψ} − 2π(1+ c2

i ) cos 2ψ, (17.79)

H (2)
+ = 1

120 [(22+ 396c2
i + 145c4

i − 5c6
i )+ 5

3ν(706− 216c2
i − 251c4

i + 15c6
i )

− 5ν2(98− 108c2
i + 7c4

i + 5c6
i )] cos 2ψ

+ 2
15 s2

i [(59+ 35c2
i − 8c4

i )− 5
3ν(131+ 59c2

i − 24c4
i )

+ 5ν2(21− 3c2
i − 8c4

i )] cos 4ψ

− 81
40 (1− 5ν + 5ν2)s4

i (1+ c2
i ) cos 6ψ

+ si

40

δm

m
{[11+ 7c2

i + 10(5+ c2
i ) ln 2] sinψ − 5π(5+ c2

i ) cosψ

− 27[7− 10 ln(3/2)](1+ c2
i ) sin 3ψ + 135π(1+ c2

i ) cos 3ψ},
(17.80)

and for the cross-polarization by

H (0)
× = − 2ci sin 2ψ, (17.81)

H (1/2)
× = − 3

4
si ci

δm

m
[sinψ − 3 sin 3ψ], (17.82)

H (1)
× = ci

3
[(17− 4c2

i )− ν(13− 12c2
i )] sin 2ψ − 8

3 (1− 3ν)cis
2
i sin 4ψ,

(17.83)

H (3/2)
× = si ci

96

δm

m
{[(63− 5c2

i )− 2ν(23− 5c2
i )] sinψ

− 27
2 [(67− 15c2

i )− 2ν(19− 15c2
i )] sin 3ψ

+ 625
2 (1− 2ν)s2

i sin 5ψ} − 4πci sin 2ψ, (17.84)

H (2)
× = ci

60
[(68+ 226c2

i − 15c4
i )+ 5

3ν(572− 490c2
i + 45c4

i )

− 5ν2(56− 70c2
i + 15c4

i )] sin 2ψ

+ 4
15 ci s

2
i [(55− 12c2

i )− 5
3ν(119− 36c2

i )+ 5ν2(17− 12c2
i )] sin 4ψ

− 81
20 (1− 5ν + 5ν2)ci s

4
i sin 6ψ

− 3

20
si ci

δm

m
{[3+ 10 ln 2] cosψ + 5π sinψ

− 9[7− 10 ln(3/2)] cos 3ψ − 45π sin 3ψ}. (17.85)

The notation is consistent with sections 17.3 and 17.4. In particular, the post-
Newtonian parameter x is defined by (17.46). We use the shorthands c i = cos i
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and si = sin i where i is the inclination angle. The basic phase variableψ entering
the waveforms is defined by

ψ = φ − 2Gmω

c3 ln

(
ω

ω0

)
, (17.86)

where φ is the actual orbital phase of the binary, and where ω 0 can be chosen as
the seismic cut-off of the detector (see [33] for details). As for the phase evolution
φ(t), it is given up to 2.5PN order, generalizing the Newtonian formula (17.52),
by

φ(t) = φ0 − 1

ν

{
τ 5/8 +

(
3715

8064
+ 55

96
ν

)
τ 3/8 − 3

4
πτ 1/4

+
(

9 275 495

14 450 688
+ 284 875

258 048
ν + 1855

2048
ν2

)
τ 1/8

+
(
− 38 645

172 032
− 15

2048
ν

)
π ln τ

}
, (17.87)

where φ0 is a constant and where we recall that the dimensionless time variable
τ was given by (17.50). The frequency is equal to the time derivative of (17.87),
hence

ω(t) = c3

8Gm

{
τ−3/8 +

(
743

2688
+ 11

32
ν

)
τ−5/8 − 3

10
πτ−3/4

+
(

1 855 099

14 450 688
+ 56 975

258 048
ν + 371

2048
ν2

)
τ−7/8

+
(
− 7729

21 504
− 3

256
ν

)
πτ−1

}
. (17.88)

We have checked that both waveforms (17.76)–(17.81) and phase/frequency
(17.87)–(17.88) agree in the test mass limit ν → 0 with the results of linear
black hole perturbations as given by Tagoshi and Sasaki [34].
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Chapter 18

Numerical relativity

General relativity is the fundamental theory of gravity, which is governed
by an extremely complex set of coupled, nonlinear, hyperbolic-elliptic partial
differential equations. General solutions to these equations, needed to fully
understand their implications as a fundamental theory of physics, are elusive.
Additionally, the astrophysics of compact objects, which requires Einstein’s
theory of general relativity for understanding phenomena such as black holes
and neutron stars, is attracting increasing attention. The largest parallel
supercomputers are finally approaching the speed and memory required to solve
the complete set of Einstein’s equations for the first time since they were written
over 80 years ago, allowing one to attempt full 3D simulations of such exciting
events as colliding black holes and neutron stars. In this paper we review the
computational effort in this direction, and discuss a new 3D multipurpose parallel
code called ‘Cactus’ for general relativistic astrophysics. Directions for further
work are indicated where appropriate.

18.1 Overview

This article is intended to provide an introduction and overview to numerical
relativity, following a set of lectures given at the Como SIGRAV School on
gravitational waves in Spring, 1999. We have based them heavily on several
previous articles, especially [1, 2], but we have tried to extend and update them
where significant new work has been done.

The Einstein equations for the structure of spacetime have remained
essentially unchanged since their discovery nearly a century ago, providing the
underpinnings of modern theories of gravity, astrophysics and cosmology. The
theory is essential in describing phenomena such as black holes, compact objects,
supernovae, and the formation of structure in the universe. Unfortunately, the
equations are a set of highly complex, coupled, nonlinear partial differential
equations involving ten functions of four independent variables. They are among
the most complicated equations in mathematical physics. For this reason, in
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spite of more than 80 years of intense study, the solution space to the full set of
equations is essentially unknown. Most of what we know about this fundamental
theory of physics has been gleaned from linearized solutions, highly idealized
solutions possessing a high degree of symmetry (e.g., static, or spherically or
axially symmetric), or from perturbations of these solutions.

Over the last several decades a growing research area, called numerical
relativity, has developed, where computers are employed to construct numerical
solutions to these equations. Although much has been learned through this
approach, progress has been slow due to the complexity of the equations and
inadequate computer power. For example, an important astrophysical application
is the 3D spiralling coalescence of two black holes (BH) or neutron stars
(NS), which will generate strong sources of gravitational waves. As has been
emphasized by Flanagan and Hughes, one of the best candidates for early
detection by the laser interferometer network is increasingly considered to be BH
mergers [3, 4]. The imminent arrival of data from the long awaited gravitational-
wave interferometers (see, e.g., [3] and references therein) has provided a sense
of urgency in understanding these strong sources of gravitational waves. Such
understanding can be obtained only through large-scale computer simulations
using the full machinery of numerical relativity.

Furthermore, the gravitational-wave signals are likely to be so weak by the
time they reach the detectors that reliable detection may be difficult without prior
knowledge of the merger waveform. These signals can be properly interpreted, or
perhaps even detected, only with a detailed comparison between the observational
data and a set of theoretically determined ‘waveform templates’ . In most cases,
these waveform templates needed for gravitational-wave data analysis have to
be generated by large-scale computer simulations, adding to the urgency of
developing numerical relativity. However, a realistic 3D simulation based on the
full Einstein equations is a highly non-trivial task—one can estimate the time
required for a reasonably accurate 3D simulation of, say, the coalescence of a
compact object binary, to be at least 100 000 Cray Y-MP hours!

However, there is good reason for optimism that such problems can be solved
within the next decade. Scalable parallel computers, and efficient algorithms that
exploit them, are quickly revolutionizing computational science, and numerical
relativity is a great beneficiary of these developments. Over the last years the
community has developed 3D codes designed to solve the complete set of Einstein
equations that run very efficiently on large-scale parallel computers. We will
describe below one such code, called ‘Cactus’ , that has achieved 142 GFlops on
a 1024 node Cray T3E-1200, which is more than 2000 times faster than 2D codes
of a few years ago running on a Cray Y-MP (which also had only about 0.5%
the memory capacity of the large T3E). Such machines are expected to scale
up rapidly as faster processors are connected together in even higher numbers,
achieving Teraflop performance on real applications in a few years.

Numerical relativity requires not only large computers and efficient codes,
but also a wide variety of numerical algorithms for evolving and analysing
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the solution. Because of this richness and complexity of the equations,
and the interesting applications to problems such as black holes and neutron
stars, natural collaborations have developed between applied mathematicians,
physicists, astrophysicists and computational scientists in the development of a
single code to attack these problems. There are various large-scale collaborative
efforts in recent years in this direction, including the NSF Black Hole Grand
Challenge Project (recently concluded), the NASA Neutron Star Grand Challenge
Project, the NCSA/Potsdam/Wash U numerical relativity collaboration, and most
recently a large European collaboration of ten institutions funded by the EU [5].

We will describe the Cactus Computational Toolkit, along with some of
its algorithms and capabilities of this code, and a number of its applications to
problems of black holes, gravitational waves, and neutron stars. In the next
sections we will first give a brief description of the numerical formulation of
the theory of general relativity, and discuss particular difficulties associated with
numerical relativity. The discussion will necessarily be brief. Examples are
mostly drawn from work carried out by the NCSA/Potsdam/Wash U numerical
relativity collaboration. We also provide URL addresses for web pages containing
graphics and movies of some of our results.

To conclude this brief introduction, a statement of where we stand in terms
of simulating general relativistic compact objects is in order. The NSF black hole
grand challenge project and related work achieved long term stable evolution of
single black hole spacetimes under certain conditions [6–8], but there is still a
long way to go before the spiralling coalescence can be computed. The presently
on-going NASA neutron star grand challenge project recently succeeded in
evolving grazing collision of two neutron stars using the full Einstein-relativistic
hydrodynamic system of equations, with a simple equation of state, and the
Japanese groups also report preliminary success in evolving several orbits with
a fully relativistic GR-hydro code [9]. The recently funded EU Network [5] will
continue on the momentum of these projects. However, the final goal of a full
solution of the problem including radiation transport and magnetohydrodynamics
for comparison between numerical simulations and observations in gravitational-
wave astronomy (waveform templates) and high-energy astronomy (γ -ray bursts)
will take many more years, hopefully building on the effort described in this
paper. So although much work has been done, much more remains, and new
community tools, including Cactus, are being made available to all groups. We
are very optimistic about the future, and hope to see more involvement in this
effort across the relativity and astrophysics communities.

18.2 Einstein equations for relativity

The generality and complexity of the Einstein equations make them an excellent
and fertile testing ground for a variety of broadly significant computing issues.
They form a system of dozens of coupled, nonlinear equations, with thousands of
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terms, of mixed hyperbolic-elliptic type, and even undefined types, depending on
coordinate conditions. This rich and general structure of the equations implies that
the techniques developed to solve our problems will be immediately applicable to
a large family of diverse scientific applications.

The system of equations breaks up naturally into a set of constraint
equations, which are elliptic in nature, evolution equations, which are
‘hyperbolic’ in nature (more on this below), and gauge equations, which can
be chosen arbitrarily (often leading to more elliptic equations). The evolution
equations guarantee (mathematically) that the elliptic constraints are satisfied at
all times provided the initial data satisfied them. This implies that the initial
data are not freely specifiable. Moreover, although the constraints are satisfied
mathematically during evolution, it will not be so numerically. These problems
are discussed in turn below. First, however, we point out that a much simpler
theory, familiar to many, has all of these same features. Maxwell’s equations
describing electromagnetic radiation have: (a) elliptic constraint equations,
demanding that in vacuum the divergence of the electric and magnetic fields
vanish at all times; (b) evolution equations, determining the time development of
these fields, given suitable initial data satisfying the elliptic constraint equations;
and (c) gauge conditions that can be applied freely to certain variables in the
theory, such as some components of the vector potential. Some choices of vector
potential lead to hyperbolic evolution equations for the system, and some do not.
We will find all of these features present in the much more complicated Einstein
equations, so it is useful to keep Maxwell’s equations in mind when reading the
next sections.

In the standard 3 + 1 ADM approach to general relativity [10], the basic
building block of the theory—the spacetime metric—is written in the form

ds2 = −(α2 − βaβa) dt2 + 2βa dxa dt + γab dxa dxb, (18.1)

using geometrized units such that the gravitational constant G and the speed of
light c are both equal to unity. Throughout this paper, we use Latin indices to
label spatial coordinates, running from 1 to 3. The ten functions (α, β a, γab)

are functions of the spatial coordinates x a and time t . Indices are raised and
lowered by the ‘spatial 3-metric’ γab. Notice that the geometry on a 3D spacelike
hypersurface of constant time (i.e. dt = 0) is determined by γ ab. As we will see
below, the Einstein equations control the evolution in time of this 3D geometry
described by γab, given appropriate initial conditions. The lapse function α
and the shift vector β a determine how the slices are threaded by the spatial
coordinates. Together, α and β a represent the coordinate degrees of freedom
inherent in the covariant formulation of Einstein’s equations, and can therefore be
chosen, in some sense, ‘ freely’ , as discussed below.

This formulation of the equations assumes that one begins with an
everywhere spacelike slice of spacetime, that should be evolved forward in time.
Due to limited space, we will not discuss promising alternate treatments, based
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on either characteristic, or null foliations of spacetime [11], or on asymptotically
null slices of spacetime [12–15].

18.2.1 Constraint equations

The constraints can be considered as the relativistic generalization of the Poisson
equation of Newtonian gravity, but instead of a single linear elliptic equation
there are now four, coupled, highly nonlinear elliptic equations, known as the
Hamiltonian and momentum constraints. Under certain conditions, the equations
decouple and can be solved independently and more easily, and this is how they
have usually been treated. Recently, techniques have been developed that allow
one to solve the constraints in a more general setting, without making restrictive
assumptions that lead to decoupling [16–19]. In such a system the four constraint
equations are solved simultaneously. This may prove useful in generating new
classes of initial data. However, at present there is no satisfactory algorithm for
controlling the physics content of the data generated. The major remaining work
in this direction is to develop a scheme that is capable of constructing the initial
data that describe a given physical system. That is, although we have schemes
available to solve many variations on the initial value problem, it is difficult to
specify in advance, for example, what are the precise spins and momenta of two
black holes in orbit, or even if the holes are in orbit. This can generally only be
determined after the equations have been solved and analysed.

The elliptic operators for these equations are usually symmetric, but they are
otherwise the most general type, with all first and mixed second derivative terms
present. The boundary conditions, which can break the symmetry, are usually
linear conditions that involve derivatives of the fields being solved. In any case,
once the initial value equations have been solved, initial data for the evolution
problem result.

We illustrate the central idea of constructing initial data with vacuum
spacetimes for simplicity. The application of the algorithm presented here to a
general spacetime with matter source is currently routine in numerical relativity.
The full 4D Einstein equations can be decomposed into six evolution equations
and four constraint equations. The constraints may be subdivided, in turn, into
one Hamiltonian (or energy) constraint equation,

R + (tr K )2 − K ab Kab = 0, (18.2)

and three momentum constraint equations (or one vector equation),

Db(K
ab − γ ab tr K ) = 0. (18.3)

In these equations Kab is the extrinsic curvature of the slice, related to the time
derivative of γab by

Kab = − 1

2α
(∂tγab − Daβb − Dbβa). (18.4)
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Here we have introduced the 3D spatial covariant derivative operator D a

associated with the 3-metric γab (i.e. Daγbc = 0), and the 3D scalar curvature
R computed from γab. These four constraint equations can be used to determine
initial data for γab and Kab, which are to be evolved with the evolution equations
discussed below. These equations (18.2) and (18.3) are referred to as constraints
because, as in the case of electrodynamics, they contain no time derivatives of the
fundamental fields γab and Kab, and hence do not propagate the solution in time.

Next, we will sketch the standard method for obtaining a solution to these
constraint equations. We follow York and coworkers (e.g., [20]) by writing the
3-metric and extrinsic curvature in ‘conformal form’ , and also make use of the
simplifying assumption tr K = 0 which causes the Hamiltonian and momentum
constraints to completely decouple (note that actually the equations decoupled
with tr K = constant but we will discuss only the simplest case here). We write

γab = %4γ̂ab, Kab = %−2 K̂ab, (18.5)

where γ̂ab and the transverse-tracefree part of K̂ab is regarded as given, i.e. chosen
to represent the physical system that we want to study. Under the conformal
transformation, with tr K = 0 we find that the momentum constraint becomes

D̂b K̂ ab = 0, (18.6)

where D̂a is the 3D covariant derivative associated with γ̂ab (i.e. D̂a γ̂ab = 0).
In vacuum, black hole spacetimes K̂ab can often be solved analytically. For
more details on how to solve the momentum constraints in complicated situations,
see [10, 21, 22].

The remaining unknown function % , must satisfy the Hamiltonian
constraint. The conformal transformation of the scalar curvature is

R = %−4 R̂ − 8%−5�̂%, (18.7)

where �̂ = γ̂ ab D̂a D̂b and R̂ is the scalar curvature of the known metric γ̂ab.
Plugging this back into the Hamiltonian constraint and dividing through by
−8%−5, we obtain

�̂% − 1
8% R̂ + 1

8%
−7(K̂ab K̂ ab) = 0, (18.8)

an elliptic equation for the conformal factor % .
To summarize, one first specifies γ̂ab and the transverse-tracefree part of

K̂ab ‘at will’ , choosing them to be something ‘closest’ to the spacetime one
wants to study. Then one solves (18.6) for the conformal extrinsic curvature
K̂ab. Finally, (18.8) is solved for the conformal factor % , so the full solution γ ab

and Kab can be reconstructed. In this process the elliptic equations are solved
by standard techniques, for example, the conjugate gradient [23] or multigrid
methods [24]. In situations where there is a black hole singularity, there could
be added complications in solving the elliptic equations, and special treatments
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would have to be introduced, for example, the ‘puncture’ treatment of [25], or
employing an ‘ isometry’ operation to provide boundary conditions on black hole
throats, ensuring identical spatial geometries inside and outside the throat (see,
e.g., [21, 26], or [27] for more details).

While this is a well-established process for generating an initial data set
for numerical study, there is a fundamental difficulty in using this approach to
generate initial data corresponding to a physical system one wants to evolve, for
example, a coalescing binary system. It is not clear how to choose the ‘closest’
γ̂ab, and the corresponding free components in K̂ab, so that the resulting γab and
Kab represent the inspiralling system at its late stage of inspiral. This late stage is
the so-called ‘ intermediate challenge problem’ of binary black holes [28], an area
of much current interest.

18.2.2 Evolution equations

18.2.2.1 The standard evolution system

With the initial data γab and Kab specified, we now consider their evolution in
time. There are six evolution equations for the 3-metric γ ab that are second
order in time, resulting from projections of the full 4D Einstein equations onto
the 3D spacelike slice [10]. These are most often written as a first-order in-time
system of twelve evolution equations, usually referred to as the ‘ADM’ evolution
system [10, 29]:

∂tγab = − 2αKab + Daβb + Dbβa (18.9)

∂t Kab = − Da Dbα + α[Rab + (tr K )Kab − 2Kac K c
b]

+ βc Dc Kab + Kac Dbβ
c + Kcb Daβ

c. (18.10)

Here Rab is the Ricci tensor of the 3D spacelike slice labelled by a constant value
of t . Note that these are quantities defined only on a t = constant hypersurface,
and require only the 3-metric γab in their construction. Do not confuse them with
the conventional 4D objects! The complete set of Einstein equations are contained
in constraint equations (18.2), (18.3) and the evolution equations (18.10), (18.9).
Note that (18.9) is simply the definition of the extrinsic curvature K ab (18.4).
These equations are analogous to the evolution equations for the electric and
magnetic fields of electrodynamics. Given the ‘ lapse’ α and ‘shift’ β a , discussed
below, they allow one to advance the system forward in time.

18.2.2.2 Hyperbolic evolution systems

The evolution equations (18.10) and (18.9) have been presented in the ‘standard
ADM form’ , which has served numerical relativity well over the last few
decades. However, the equations are enormously complicated; the complication
is hidden in the definition of the curvature tensor R ab and the covariant
differentiation operator Da . In particular, although they describe physical
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information propagating with a finite speed, the system does not form a hyperbolic
system, and is not necessarily the best for numerical evolution. Other fields
of physics, in particular hydrodynamics, have developed very mature numerical
methods that are specially designed to treat the well studied flux conservative,
hyperbolic system of balance laws having the form

∂t uuu + ∂k Fk−uuu = S−uuu (18.11)

where the vector uuu displays the set of variables and both ‘fl uxes’ F k and ‘sources’
S are vector valued functions. In hydrodynamic systems, it often turns out that
the characteristic matrix ∂F/∂uuu projected into any spacelike direction can often
be diagonalized, so that fields with definite propagation speeds can be identified
(the eigenvectors and the eigenvalues of the projected characteristic matrix). One
important point is that in (18.11) all spatial derivatives are contained in the flux
terms, with the source terms in the equations containing no derivatives of the
eigenfields. All of these features can be exploited in numerical finite difference
schemes that treat each term in an appropriate way to preserve important physical
characteristics of the solution.

Amazingly, the complete set of Einstein equations can also be put in
this ‘simple’ form (the source terms still contain thousands of terms however).
Building on earlier work by Choquet-Bruhat and Ruggeri [30], Bona and Massó
began to study this problem in the late 1980s, and by 1992 they had developed
a hyperbolic system for the Einstein equations with a certain specific gauge
choice [31] (see below). Here by hyperbolic, we mean simply that the projected
characteristic matrix has a complete set of eigenfields with real eigenvalues.
This work was generalized recently to apply to a large family of gauge choices
[32, 33]. The Bona–Massó system of equations is available in the 3D ‘Cactus’
code [34,35], as is the standard ADM system, where both are tested and compared
on a number of spacetimes.

The Bona–Massó system is now one among many hyperbolic systems,
as other independent hyperbolic formulations of Einstein’s equations were
developed [36–41] at about the same time as [42]. Among these other
formulations only the one originally devised in [38] has been applied to
spacetimes containing black holes [43], although still only in the spherically
symmetry 1D case (a 3D version is under development [44].) Hence, of the
many hyperbolic variants, only the Bona–Massó family and the formulations
of York and co-workers have been tested in any detail in 3D numerical codes.
Notably among the differences in the formulations, the Bona–Massó and Frittelli
families contain terms equivalent to second time derivatives of the three metric
γab, while many other formulations go to a higher time derivative to achieve
hyperbolicity. Another comment worth making is that for harmonic slicing, both
the Bona–Massó and York families have characteristic speeds of either zero, or
light speed. For maximal slicing, they both reduce to a coupled elliptic-hyperbolic
system. The Bona–Massó system (at least) also allows for an additional family
of explicit algebraic slicings, with the lapse proportional to an explicit function
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of the determinant of the 3-metric, and in those cases one can also identify gauge
speeds which can be different from light speed (harmonic slicing is one example
of this family where the gauge speed corresponds to light speed). Some of
these slicings, such as ‘1 + log’ [45], have been found to be very useful in 3D
numerical evolutions. This information about the speed of gauge and physical
propagation can be very helpful in understanding the system, and can also be
useful in developing numerical methods. Only extensive numerical studies will
tell if the various hyperbolic formulations live up to their promise.

Reula has recently reviewed, from the mathematical point of view, most of
the recent hyperbolic formulations of the Einstein equations [46] (This article, in
the online journal Living Reviews in Relativity, will be periodically updated). It
is important to realize that the mathematical relativity field has been interested
in hyperbolic formulations of the Einstein equations for many years and some
systems that could have been suitable for numerical relativity were already
published in the 1980s [30, 47]. However, these developments were generally
not recognized by the numerical relativity community until recently.

18.3 Still newer formulations: towards a stable evolution
system

Somewhere in between the standard ADM formulation and hyperbolic
formulations are a class of formulations that have been getting significant
attention lately, and which seem to be very promising and very stable.

As discussed above, the 3D evolution of Einstein’s equations has proved very
difficult, with instabilities developing on rather short timescales, even in cases of
weakly gravitating, vacuum systems, such as low amplitude gravitational waves,
as summarized in an important paper by Baumgarte and Shapiro [48]. In this
work, it was shown how one can achieve highly improved stability by making a
few key changes to the formulation of the ADM equations, most notably through
a conformal decomposition and by rewriting certain terms in the 3D Ricci tensor
to eliminate terms that spoil its elliptic nature. In fact, essentially these same
tricks were already noticed a few years earlier by Shibata and Nakamura [49].
Hence, we refer to these formulations collectively as ‘BSSN’ after the four
authors. These subtle changes to the standard ADM formalism have a very
powerful stabilizing effect on the evolutions. Evolutions of weak waves that
would develop instabilities and crash with the standard ADM formulation run
much longer with the new system, and as shown in Alcubierre et al [50], the new
system and variations allow for the first time the successful evolution of highly
nonlinear gravitational waves to form a black hole in 3D while the standard ADM
treatment would fail well in advance of black hole formation. Further work by the
Palma group, showed the deep connection between the BSSN formulations and
the Bona–Massó family of formulations [51], leading to the possibility of a fully
hyperbolic, very stable formulation that shares advantages from many sides.
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The Palma, Potsdam and Wash U groups also showed that these new
formulations lead to much more stable black hole evolutions as well. While
standard ADM formulations can evolve black holes very accurately for a short
period of time, as described above, large peaks in metric functions caused by so-
called ‘grid-stretching’ develop instabilities, which cause the codes to crash far
too soon to study orbits of black holes. The new formulations can significantly
extend the evolution times (by factors of two or much more) that can be achieved.
In all cases, the evolutions are convergent, but seem to have larger error than the
standard ADM or Bona–Massó system. These effects were recently analysed in a
paper by Alcubierre et al [52]. We are now in the process of applying these new
formulations to a series of interesting spacetimes, including pure gravitational
waves, black holes, and neutron stars, some results of which are reported below.

In this and a companion paper [52] we focus on an alternative approach based
on a conformal decomposition of the metric and the trace-free components of
the extrinsic curvature. The conformal-tracefree (CT) approach was first devised
by Nakamura in the 1980s in 3D calculations [22, 53], and then modified and
applied to work on gravitational waves [49], and on neutron stars [9, 54]. This
approach was not taken up by others in the community until a recent paper by
Baumgarte and Shapiro [48], where a similar formulation was compared with the
standard ADM approach and shown to be superior, in terms of both accuracy and
stability, on tests involving weak gravitational waves, with geodesic and harmonic
slicing. In a follow-up paper, Baumgarte, Hughes, and Shapiro [55] applied the
same formulation to systems with given (analytically prescribed) matter sources,
and found similar stability properties. More recently fully hydrodynamical
simulations employing the CT approach have been reported in [56–58] in the
context of collapse of rapidly-rotating (isolated) neutron stars and coalescence
and merge of binary neutron stars.

In the companion paper [52] we perform an analytic investigation of the
stability properties of the ADM and the CT evolution equations. Using a
linearized plane wave analysis, we identify features of the equations that we
believe are responsible for the difference in their stability properties.

18.3.0.1 Numerical techniques for the evolution equations

Most of what has been attempted in numerical relativity evolution schemes is built
on explicit finite difference schemes. Implicit and iterative evolution schemes
have been occasionally attempted, but the extra cost associated has made them
less popular. We now describe the basic approach that has been tried for both
the standard ADM formulation and more recent hyperbolic formulations of the
equations.
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ADM evolutions

The ADM system of evolution equations is often solved using some variation
of the leapfrog method, similar to that described in [59]. The most extensively
tested is the ‘staggered leapfrog’ , detailed in axisymmetric cases in [59] and in 3D
in [45], but other successful versions include full leapfrog implementations used
in 3D by [60] and [34]. For the ADM system, the basic strategy is to use centred
spatial differences everywhere, march forward according to some explicit time
scheme, and hope for the best! Generally, this technique has worked surprisingly
well until large gradients are encountered, at which time the methods often break
down. The problem is that the equations in this ADM form are difficult to analyse,
and hence ad hoc numerical schemes are often tried without detailed knowledge
of how to treat specific terms in the equations, or how to treat instabilities when
they arise. A recent development is that of the ‘deloused’ leapfrog, which amounts
to filtering the solution [61].

Also recently, the iterative Crank–Nicholson (ICN) scheme has been found
effective in suppressing some instabilities that occur [62–64]. ICN is an iterative,
explicit version of the standard implicit Crank–Nicholson (CN) scheme [61, 65].
The idea behind this method is to solve the implicit equations by an iterative
procedure, where each iteration is an explicit operation depending only on
previously computed data. Normally, this process is stopped after a certain
number of iterations, or until some tolerance is achieved. For a linear equation
(and, in particular, in one dimension), the iterative procedure can easily be much
more computationally expensive than the matrix inversion required to solve the
original implicit scheme. For a nonlinear system, however, solving the implicit
scheme directly can prove to be extremely difficult.

The stability properties of the ICN scheme have been studied, with these
important results.

• In order to obtain a stable scheme one must do at least three iterations, and
not just the two one would normally expect (two iterations are enough to
achieve second-order accuracy, but they are unstable!).

• The iterative scheme itself is only convergent if the standard Courant–
Friedrichs–Lewy (CFL) stability condition is satisfied, otherwise the
iterations diverge.

These two results taken together imply that there is no reason (at least from
the point of view of stability) to ever do more that three ICN iterations. Three
iterations are already second-order accurate, and provide us with a (conditionally)
stable scheme. Increasing the number of iterations will not improve the stability
properties of the scheme any further. In particular, we will never achieve the
unconditional stability properties of the full implicit CN scheme, since if we
violate the CFL condition the iterations will diverge.
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Hyperbolic evolutions

The hyperbolic formulations are on a much firmer footing numerically than the
ADM formulation, as the equations are in a much simpler form that has been
studied for many years in computational fluid dynamics. However, the application
of such methods to relativity is quite new, and hence the experience with such
methods in this community is relatively limited. Furthermore, the treatment of the
highly nonlinear source terms that arise in relativity is very much unexplored, and
the source terms in Einstein’s equations are much more complicated than those in
hydrodynamics. Here we will just discuss the basic ideas in such schemes.

A standard technique for equations having flux conservative form is to split
equation (18.11) into two separate processes. The transport part is given by the
flux terms

∂t uuu + ∂k Fk−uuu = 0. (18.12)

The source contribution is given by the following system of ordinary differential
equations

∂t uuu = S−uuu. (18.13)

Numerically, this splitting is performed by a combination of both flux and source
operators. Denoting by E(�t) the numerical evolution operator for system
(18.11) in a single timestep, we implement the following combination sequence
of subevolution steps:

E(�t) = S(�t/2)T (�t)S(�t/2) (18.14)

where T , S are the numerical evolution operators for systems (18.12) and (18.13),
respectively. This is known as ‘Strang splitting’ [66]. As long as both operators
T and S are second-order accurate in �t , the overall step of operator E is also
second-order accurate in time.

This choice of splitting allows easy implementation of different numerical
treatments of the principal part of the system without having to worry about
the sources of the equations. Additionally, there are numerous computational
advantages to this technique, as discussed in [67].

The sources can be updated using a variety of ODE integrators, and in
‘Cactus’ the usual technique involves second-order predictor-corrector methods.
Higher order methods for source integration can be easily implemented, but this
will not improve the overall order of accuracy. However, in special cases where
the evolution is largely source driven [68], it may be important to use higher order
source operators, and this method allows such generalizations. The details can be
found in [34].

The implementation of numerical methods for the flux operator is much
more involved, and there are many possibilities, ranging from standard choices
to advanced shock capturing methods [33, 69, 70]. Among standard methods, the
MacCormack method, which has proven to be very robust in the computational
fluid dynamics field (see, e.g., [71] and references therein), and a directionally



Still newer formulations: towards a stable evolution system 373

split Lax-Wendroff method have been implemented and tested extensively in
‘Cactus’ . These schemes are fully second order in space and time. Shock
capturing methods have been shown to work extremely well in 1D problems
in numerical relativity [32, 70], but their application in 3D is an active research
area full of promise, but as yet, unfulfilled. The details of these methods, as
they are applied to the Bona–Massó formulation of the equations, can be found
in [34, 70].

18.3.0.2 The role of constraints

If the constraints are satisfied on the initial hypersurface, the evolution equations
then guarantee that they remain satisfied on all subsequent hypersurfaces. Thus,
once the initial value problem has been solved, one may advance the solution
forward in time by using only the evolution equations. This is the same situation
encountered in electrodynamics as discussed before. However, in a numerical
solution, the constraints will be violated at some level due to numerical error.
They hence provide useful indicators for the accuracy of the numerical spacetimes
generated. Traditional alternatives to this approach, which is often referred to
as ‘ free evolution’ , involve solving some or all of the constraint equations on
each slice for certain metric and extrinsic curvature components, and then simply
monitoring the ‘ left over’ evolution equations. This issue is discussed further by
Choptuik in [72], and in detail for the Schwarzschild spacetime in [73]. New
approaches to this problem of constraint versus evolution equations are currently
being pursued by Lee [74], among others [75]. This approach is to advance
the system forward using the evolution equations, and then adjust the variables
slightly so that the constraints are satisfied (to some tolerance), i.e. the solution
is projected onto the constraint surface. Because there are many variables that
go into the constraints, there is not a unique way to decide which ones to adjust
and by how much. However, one can compute the ‘minimum’ perturbation to
the system, which corresponds to projecting to the closest point on the constraint
surface. Other approaches, similar in spirit to each other, have been suggested
by Detweiler [76] and Brodbeck et al [77]. The Detweiler approach restricts the
numerical evolution to the constraint surface by adding terms to the evolution
equations (18.9) and (18.10) terms which are proportional to the constraints.
Numerical tests of the scheme using gravitational wave spacetimes have recently
been carried out, showing promising results [78].

18.3.0.3 Gauge conditions

Kinematic conditions for the lapse function α and shift vector β i have to be
specified for the evolution equations (18.9) and (18.10). With γ ab and Kab

satisfying the constraint on the initial slice, the lapse and shift can be chosen
arbitrarily on the initial slice and thereafter. These are referred to as gauge
choices, analogous to the choice of the gauge function  in electrodynamics.
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Einstein did not specify these quantities; they are up to the numerical relativist to
choose at will!

Lapse

The choice of lapse corresponds to how one chooses 3D spacelike hypersurfaces
in 4D spacetime. The ‘ lapse’ of proper time along the normal vector of one slice
to the next is given by α dt , where dt is the coordinate time interval between
slices. As α(x, y, z) can be chosen at will on a given slice, some regions of
spacetime can be made to evolve farther into the future than others.

There are many motivations for particular choices of lapse. A primary
concern is to ensure that it leads to a stable long-term evolution. It is easy to
see that a naive choice of the lapse, for example, α = 1, the so-called geodesic
slicing, suffers from a strong tendency to produce coordinate singularities [79,80].
A related concern is that one would like to cover the region of interest in an
evolution, say, where gravitational waves generated by some process could be
detected, while avoiding troublesome regions, say, inside black holes where
singularities lurk (the so-called ‘singularity avoiding’ time slicings). Another
important motivation is that some choices of α allow one to write the evolution
equations in forms that are especially suited to numerical evolution. Finally,
computational considerations also play an important role in the choice of the
lapse; one prefers a condition for α that does not involve great computational
expense, while also providing smooth, stable evolution.

Some ‘ traditional’ choices of the lapse used in the numerical construction
of spacetimes are [81]: (1) Lagrangian slicing, in which the coordinates are
following the flow of the matter in the simulation. This choice simplifies the
matter evolution equations, but it is not always applicable, for example, in a
vacuum spacetime or when the fluid flow pattern becomes complicated. (2)
Maximal slicing, [79, 80] in which the trace of the extrinsic curvature is required
to be zero always, i.e, K (t = 0) = 0 = ∂t K . The evolution equations of the
extrinsic curvature then lead to an elliptic equation for the lapse

Da Daα − α(R + K 2) = 0. (18.15)

The maximal slicing has the nice property of causing the lapse to ‘collapse’ to
a small value at regions of strong gravity, hence avoiding the region where a
curvature singularity is forming. It is one of the so-called ‘singularity avoiding
slicing conditions’ . Maximal slicing is easily the most studied slicing condition
in numerical relativity. (3) Constant mean curvature, where we let K = constant
differ from zero, a choice often used in constructing cosmological solutions.
(4) Algebraic slicing, where the lapse is given as an algebraic function of the
determinant of the 3-metric. Algebraic slicing can also be singularity avoiding
[82]. As there is no need to solve an elliptic equation as in the case of maximal
slicing, algebraic slicing is computationally efficient. Some algebraic slicings
(e.g., the harmonic slicing in which α is set proportional to the square root of
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the determinant of the 3-metric gab) also make the mathematical structure of the
evolution equations simpler. However, the local nature of the choice of the lapse
could lead to noise in the lapse [45] and the formation of ‘shock’ -like features in
numerical evolutions [83, 84]. The former problem can be dealt with by turning
the algebraic slicing equation to an evolution equation with a diffusion term [45],
but the latter problem does not seem to have a simple solution.

In addition to these most widely used ‘ traditional’ choices of the lapse,
there are also some newly developed slicing conditions whose use in numerical
relativity though promising remain largely unexplored [85]: (5) K-driver. This is
a generalization of the maximal slicing in which the extrinsic curvature, instead
of being set to zero, is required to satisfy the condition

∂t K = −cK , (18.16)

where c is some positive constant. This was first brought up by Eppley [86] and
recently investigated in [87]. In this way the trace of the extrinsic curvature, when
numerical inaccuracy causes it to drift away from zero, is ‘driven’ back to zero
exponentially. When combined with the evolution equations, (18.16) again leads
to an elliptic equation for the lapse. This choice of the lapse is shown in [87] to
lead to a much more stable numerical evolution in cases where one wants to avoid
large values of the extrinsic curvature. The optimal choice of the constant c as
well as a number of variations on this ‘driver’ scheme are presently being studied.
(6) γ -driver. This is another use of the ‘driver’ idea. In this case, the time rate
of change of the determinant of the three metric det(g ab) is driven to zero [87].
In the absence of a shift vector or if the shift has zero divergence, this reduces
to the K-driver. This choice of the lapse, which has the unique property of being
able to respond to the choice of the shift, demands extensive investigations and
evaluations.

Shift

The shift vector describes the ‘shifting’ of the coordinates from the normal vector
as one moves from one slice to the next. If the shift vanishes, the coordinate point
(x, y, z) will move normal to a given 3D time slice to the next slice in the future.
(Refer to York [10] or Cook [88], for details and diagrams.) The choice of shift
is perhaps less well developed than the choice of lapse in numerical relativity,
and many choices need to be explored, particularly in 3D. The main purpose of
the shift is to ensure that the coordinate description of the spacetime remains
well behaved throughout the evolution. With an inappropriate or poorly chosen
shift, coordinate lines may move toward each other, or become very stretched
or sheared, leading to pathological behaviour of the metric functions that may be
difficult to handle numerically. It may even cause the code to crash if, for example,
two coordinate lines ‘ touch’ each other creating a ‘coordinate singularity’ (i.e.
the metric becomes singular as the distance ds between two coordinate lines
goes to zero). Two important considerations for appropriate shift conditions
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are the ability to prevent large shearing or drifting of coordinates during an
evolution, and the ability to control the coordinate location of a physical object,
for example, the horizon of a black hole. These considerations are discussed
below. The development of appropriate shift conditions for full 3D evolution,
for systems without symmetries, is an important research area that needs much
attention. Geometrical shift conditions that can be formulated without reference
to specific coordinate systems or symmetries seem to be desirable. The basic idea
is to develop a condition that minimizes the stretching, shearing, and drifting
of coordinates in a general way. A few examples have been devised which
partially meet these goals, such as ‘minimal distortion’ , ‘minimal strain’ and
variations [10], but much more investigations are needed. New gauge conditions,
based on these earlier proposals, have recently been proposed but not yet tested
in numerical simulations [28].

It is important to emphasize that the lapse and shift only change the way
in which the slices are chosen through a spacetime and where coordinates are
laid down on every slice, and do not, in principle, affect any physical results
whatsoever. They will affect the value of the metric quantities, but not the physics
derived from them. In this respect the freedom of choice in the lapse and shift is
analogous to the freedom of gauge in electromagnetic systems.

On the other hand, it is also important to emphasize that proper choices of
lapse and shift are crucial for the numerical construction of a spacetime in the
Einstein theory of general relativity, in particular in a general 3D setting. In a
general 3D simulation without symmetry assumption, there is no preferred choice
of the form of the metric (e.g., a diagonal 3-metric, or g θθ = r2 as in spherical
symmetry), hence forcing us to deal with the gauge degree of freedom in relativity
in full. This, when coupled with the inevitable lower resolution in 3D simulations,
often leads to development of coordinate singularities, when evolved without a
sophisticated choice of lapse and shift. Indeed the success of the ‘driver’ idea
suggested [87] that in order to obtain a stable evolution over a long timescale, it
is important to ensure that the coordinate conditions used are not only suitable
for the geometry of the spacetime being evolved, but also that the conditions
themselves are stable. That is, when the condition is perturbed, for example,
by numerical inaccuracy, there is no long-term secular drifting. We regard the
construction of an algorithm for choosing a suitable lapse and shift for a general
3D numerical simulation to be one of the most important issues facing numerical
relativity at present.

18.3.1 General relativistic hydrodynamics

In order to make numerical relativity a tool for computational general relativistic
astrophysics, it is important to combine numerical relativity with traditional tools
of computational astrophysics, and, in particular, relativistic hydrodynamics.
While a large amount of 3D studies in numerical relativity have been devoted
to the vacuum Einstein equations, the spacetime dynamics with a non-vanishing
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source term remains a large uncharted territory. As astrophysics of compact
objects that needs general relativity for its understanding is attracting increasing
attention, general relativistic hydrodynamics will become an increasingly
important subject as astrophysicists begin to study more relativistic systems,
as relativists become more involved in studies of astrophysical sources. This
promises to be one of the most exciting and important areas of research in
relativistic astrophysics in the coming years.

Previously, most work in relativistic hydrodynamics has been done on fixed
metric backgrounds. In this approximation the fluid is allowed to move in a
relativistic manner in strong gravitational fields, say around a black hole, but its
effect on the spacetime is not considered. Over the last years very sophisticated
methods for general relativistic hydrodynamics have been developed by the
Valencia group led by José M Ibáñez [89–92]. These methods are based on
a hyperbolic formulation of the hydrodynamic equations, and are shown to be
superior to traditional artificial viscosity methods for highly relativistic flows and
strong shocks.

However, just fixed background approximation is inadequate in describing
a large class of problems which are of most interest to gravitational-wave
astronomy, namely those with substantial matter motion generating gravitational
radiation, like the coalescences of neutron star binaries. We are constructing
a multipurpose 3D code for the NASA Neutron Star Grand Challenge Project
[93] that contains the full Einstein equations coupled to general relativistic
hydrodynamics. The hydrodynamic part consists of both an artificial viscosity
module, [94] and a module based on modern shock capturing schemes [95],
containing three hydroevolution methods [95]: a flux split method, Roe’s
approximate Riemann solver [96] and Marquina’s approximate Riemann solver
[92, 97]. All are based on finite-difference schemes employing approximate
Riemann solvers to account explicitly for the characteristic information of the
equations. These schemes are particularly suitable for astrophysics simulations
that involve matter in (ultra)relativistic speeds and strong shock waves.

In the flux split method, the flux is decomposed into the part contributing
to the eigenfields with positive eigenvalues (fields moving to the right) and the
part with negative eigenvalues (fields moving to the left). These fluxes are then
discretized with one sided derivatives (which side depends on the sign of the
eigenvalue). The flux split method presupposes that the equation of state of the
fluid has the form P = P(ρ, ε) = ρ f (ε), which includes, for example, the
adiabatic equation of state. The second scheme, Roe’s approximate Riemann
solver [96] is by now a ‘ traditional’ method for the integration of nonlinear
hyperbolic systems of conservation laws [90, 91, 98]. This method makes no
assumption on the equation of state, and, is more flexible than the flux split
methods. The third method, the Marquina’s method, is a promising new scheme
[97]. It is based on a flux formula which is an extension of Shu and Osher’s
entropy-satisfying numerical flux [99] to systems of hyperbolic conservation
laws. In this scheme there are no artificial intermediate states constructed at
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each cell interface. This implies that there are no Riemann solutions involved
(either exact or approximate); moreover, the scheme has been proved to alleviate
several numerical pathologies associated to the introduction of an averaged state
(as Roe’s method does) in the local diagonalization procedure (see [92, 97]).
For a detailed comparison of the three schemes and their coupling to dynamical
evolution of spacetimes, see [95].

The availability of the hyperbolic hydrotreatment and its coupling to the
spacetime evolution code is particularly noteworthy. With the development of
a hyperbolic formulation of the Einstein equations described above, the entire
system can be treated as a single system of hyperbolic equations, rather than
artificially separating the spacetime part from the fluid part.

18.3.2 Boundary conditions

Appropriate conditions for the outer boundary have yet to be derived for 3D
numerical relativity. In 1D and 2D relativity codes, the outer boundary is
generally placed far enough away that the spacetime is nearly flat there, and static
or flat (i.e. copying data from the next-to-last zone to the outer edge) boundary
conditions can usually be specified for the evolved functions. However, due to
the constraints placed on us by limited computer memory, this is not currently
possible in 3D. Adaptive mesh refinement will be of great use in this regard, but
will not substitute for proper physical treatment. Most results to date have been
computed with the evolved functions kept static at the outer boundary, even if the
boundaries are too close for comfort in 3D!

There are several other approaches under development that promise to
improve this situation greatly that we will not have room to explore in detail here,
but should be mentioned. Generally, one has in mind using Cauchy evolution in
the strong field, interior region where, say, black holes are colliding. The outer
part of this region will be matched to some exterior treatment designed to handle
what is primarily expected to be outgoing radiation.

Two major approaches have been developed by the NSF Black Hole Grand
Challenge Alliance, a large USA collaboration working to solve the black hole
coalescence problem, and other groups. First, by using perturbation theory, it is
possible to identify quantities in the numerically evolved metric functions that
obey the Regge–Wheeler and Zerilli wave equations that describe gravitational
waves propagating on a black hole background. These can be used to provide
boundary conditions on the metric and extrinsic curvature functions in an actual
evolution, as described in a recent paper [100]. This is an excellent step
forward in outer boundary treatments that should work to minimize reflections
of the outgoing wave signals from the outer boundary. In tests with weak
waves, a full 3D Cauchy evolution code has been successfully matched to the
perturbative treatment at the boundary, permitting waves to escape from the
interior region with very little reflection. Alternatively, ‘Cauchy-characteristic
matching’ attempts to match spacelike slices in the Cauchy region to null slices
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at some finite radius, and the null slices can be carried out to null infinity. 3D
characteristic evolution codes have progressed dramatically in recent years, and
although the full 3D matching remains to be completed, tests of the scheme
in specialized settings show promise [11]. One can also use the hyperbolic
formulations of the Einstein equations to find eigenfields, for which outgoing
conditions can in principle be applied [32] in 1D. In 3D this technique is still
under development, but it shows promise for future work. Less sophisticated
approaches that seem nonetheless rather successful are discussed in [63]. Finally,
there is another hyperbolic approach which uses conformal rescaling to move
the boundary to infinity [12–15]. These methods have different strengths and
weaknesses, but all promise to improve boundary treatments significantly, helping
to enable longer evolutions than are presently possible.

18.3.3 Special difficulties with black holes

The techniques described so far are generic in their application in numerical
relativity. However, in this section we describe a few problems that are
characteristic of black holes, and special algorithms under development to handle
them. Black hole spacetimes all have in common one problem: singularities lurk
within them, which must be handled numerically. Developing suitable techniques
for doing so is one of the major research priorities of the community at present.
If one attempts to evolve directly into the singularity, infinite curvature will be
encountered, causing any numerical code to break down.

Traditionally, the singularity region is avoided by the use of ‘singularity
avoiding’ time slices, that wrap up around the singularity. Consider the evolution
shown in figure 18.1. A star is collapsing, a singularity is forming, and time slices
are shown which avoid the interior while still covering a large fraction of the
spacetime where waves will be seen by a distant observer. However, these slicing
conditions by themselves do not solve the problem; they merely serve to delay the
onset of instabilities. As shown in figure 18.1, in the vicinity of the singularity
these slicings inevitably contain a region of abrupt change near the horizon, and a
region in which the constant time slices dip back deep into the past in some sense.
This behaviour typically manifests itself in the form of sharply peaked profiles
in the spatial metric functions [80], ‘grid stretching’ [101] or large coordinate
shift [73] on the BH throat, etc. Numerical simulations will eventually crash due
to these pathological properties of the slicing.

18.3.3.1 Apparent horizon boundary conditions (AHBC)

Cosmic censorship suggests that in physical situations, singularities are hidden
inside BH horizons. Because the region of spacetime inside the horizon is causally
disconnected from the region of interest outside the horizon, one is tempted
numerically to cut away the interior region containing the singularity, and evolve
only the singularity-free region outside, as originally suggested by Unruh [102].
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Figure 18.1. A spacetime diagram showing the formation of a BH, and time slices
traditionally used to foliate the spacetime in traditional numerical relativity with singularity
avoiding time slices. As the evolution proceeds, pathologically warped hypersurfaces
develop, leading to unresolvable gradients that cause numerical codes to crash.

This has the consequence that there will be a region inside the horizon that simply
has no numerical data. To an outside observer no information will be lost since
the regions cut away are unobservable. Because the time slices will not need
such sharp bends to the past, this procedure will drastically reduce the dynamic
range, making it easier to maintain accuracy and stability. Since the singularity
is removed from the numerical spacetime, there is in principle no physical reason
why BH codes cannot be made to run indefinitely without crashing.

We spoke innocently about the BH horizon, but did not distinguish between
the apparent and event horizon. These are very different concepts! While
the event horizon, which is roughly a null surface that never reaches infinity
and never hits the singularity, may hide singularities from the outside world in
many situations, there is no guarantee that the apparent horizon, which is the
(outermost) surface that has instantaneously zero expansion everywhere, even
exists on a given slice! (By ‘zero expansion’ we mean that the surface area of
outgoing bundles of photons normal to the surface is constant. Hence, the surface
is ‘ trapped’ .) Methods for finding event horizons in numerical spacetimes are now
known, and will be discussed below. However, event horizons can only be found
after examining the history of an evolution that has been already been carried
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out to sufficiently late times [103, 104]. Hence they are useless in providing
boundaries as one integrates forward in time. On the other hand the apparent
horizon, if it exists, can be found on any given slice by searching for closed
two-surfaces with zero expansion. Although one should worry that in a generic
BH collision, one may evolve into situations where no apparent horizon actually
exists, let us cross that bridge if we come to it! Methods for finding apparent
horizons will also be discussed below, but for now we assume that such a method
exists.

Given these considerations, there are two basic ideas behind the
implementation of the apparent horizon boundary condition (AHBC), also known
as black hole excision:

(a) It is important to use a finite-differencing scheme which respects the
causal structure of the spacetime. Since the horizon is a one-way membrane,
quantities on the horizon can be affected only by quantities outside but not inside
the horizon: all quantities on the horizon can in principle be updated solely in
terms of known quantities residing on or outside the horizon. There are various
technical details and variations on this idea, which is called ‘causal differencing’
[105] or ‘causal reconnection’ [106], but here we focus primarily on the basic
ideas and results obtained to date.

(b) A shift is used to control the motion of the horizon, and the behaviour of
the grid points outside the BH, as they tend to fall into the horizon if uncontrolled.

An additional advantage to using causal differencing is that it allows one
to follow the information flow to create grid points with proper data on them,
as needed inside the horizon, even if they did not exist previously. (Remember
above that we have cut away a region inside the horizon, so in fact we have no data
there.) One example is to let a BH move across the computational grid. If a BH
is moving physically, it may also be desirable to have it move through coordinate
space. Otherwise, all physical movement will be represented by the ‘motion’ of
the grid points. For a single BH moving in a straight line, this may be possible
(though complicated), but for spiralling coalescence this will lead to hopelessly
contorted grids. The immediate consequence of this is that as a BH moves across
the grid, regions in the wake of the hole, now in its exterior, must have previously
been inside it where no data exist! However, with AHBC and causal differencing
this need not be a problem.

Does the AHBC idea work? Preliminary indications are very promising. In
spherical symmetry (1D), numerous studies show that one can locate horizons, cut
away the interior, and evolve for essentially unlimited times (t ∝ 10 3−4M , where
M is the black hole mass). The growth of metric functions can be completely
controlled, errors are reduced to a very low level, and the results can be obtained
with a large variety of shift and slicing conditions, and with matter falling in the
BH to allow for true dynamics even in spherical symmetry [105, 107–109].

In 3D, the basic ideas are similar but the implementation is much more
difficult. The first successful test of these ideas to a Schwarzschild BH in 3D used
horizon excision and a shift provided from similar simulations carried out with a
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1D code [45]. The errors were found to be greatly reduced when compared even to
the 1D evolution with singularity avoiding slicings. Another 3D implementation
of the basic technique was provided by Brügmann [60].

This was a proof of principle, but more general treatments are following.
Daues extended this work to a full range of shift conditions [6], including the full
3D minimal distortion shift [10]. He also applied these techniques to dynamic
BHs, and collapse of a star to form a BH, at which point the horizon is detected,
the region interior to the horizon excised, and the evolution continued with
AHBC. The focus of this work has been on developing general gauge conditions
for single BHs without movement through a grid. Under these conditions, BHs
have been accurately evolved well beyond t = 100M . The NSF Black Hole
Grand Challenge Alliance has been focused on the development of 3D AHBC
techniques for moving Schwarzschild BHs [7]. In this work, analytic gauge
conditions are provided, which are chosen to make the evolution static, although
the numerical evolution is allowed to proceed freely. This moving hole is the
first successful 3D test of populating grid points with data as they emerge in the
BH wake. The recent, as yet unpublished, work of Huq et al has successfully
evolved full 3D grazing collisions through about t = 10M ADM, including the
topology change from two excision regions to a single one, while Alcubierre et al
have recently evolved Schwarzschild black holes in 3D, with rather general gauge
conditions, for well over t = 4000MADM with less than a few per cent error!

These new results are significant achievements, and show that the basic
techniques outlined above are not only sound, but are also practically realizable
in a 3D numerical code. However, there is still a significant amount of work to be
done! The techniques have yet to be applied carefully to distorted BHs, with tests
of the waveforms emitted. There are still clearly many steps to be taken before
the techniques will be successfully applied to the general BH merger problem.

18.4 Tools for analysing the numerical spacetimes

We now turn to the description of several important tools that have been developed
to analyse the results of a numerical evolution, carried out by some numerical
evolution scheme. The evolution will generally provide metric functions on
a grid, but as described above these functions are highly dependent on both
the coordinate system and gauge in which the system is evolved. Determining
physical information, such as whether a black hole exists in the data, or what
gravitational waveforms have been emitted, are the subjects of this section.

18.4.1 Horizon finders

As described earlier, black holes are defined by the existence of an event horizon
(EH), the surface of no return from which nothing, not even light, can escape.
The event horizon is the boundary that separates those null geodesics that reach
infinity from those that do not. The global character of such a definition implies
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that the position of an EH can only be found if the whole history of the spacetime
is known. For numerical simulations of black hole spacetimes in particular, this
implies that in order to locate an EH one needs to evolve sufficiently far into the
future, up to a time where the spacetime has basically settled down to a stationary
solution. Recently, methods have been developed to locate and analyse black
hole horizons in numerically generated spacetimes, with a number of interesting
results obtained [103, 104, 110–113].

In contrast, an apparent horizon (AH) is defined locally in time as the outer-
most marginally trapped surface [114], i.e. a surface on which the expansion of
out-going null geodesics is everywhere zero. An AH can therefore be defined on
a given spatial hypersurface. A well-known result [114] guarantees that if an AH
is found, an EH must exist somewhere outside of it and hence a black hole has
formed.

18.4.2 Locating the apparent horizons

The expansion / of a congruence of null rays moving in the outward normal
direction to a closed surface can be shown to be [20]

/ = ∇i s
i + Kij si s j − tr K , (18.17)

where ∇i is the covariant derivative associated with the 3-metric γ i j , si is the
normal vector to the surface, K ij is the extrinsic curvature of the time slice, and
tr K is its trace. An AH is then the outermost surface such that

/ = 0. (18.18)

This equation is not affected by the presence of matter, since it is purely geometric
in nature. We can use the same horizon finders without modification for vacuum
as well as non-vacuum spacetimes. The key is to find a closed surface with normal
vector si satisfying this equation.

18.4.2.1 Minimization algorithms

As apparent horizons are defined by the vanishing of the expansion on a surface,
a fairly obvious algorithm to find such a surface involves minimizing a suitable
norm of the expansion below some tolerance while adjusting test surfaces.
Minimization algorithms for finding apparent horizons were among the first
methods developed [115, 116]. More recently, a 3D minimization algorithm
was developed and implemented by the Potsdam/NCSA/Wash U group, applied
to a variety of black hole initial data and 3D numerically evolved black hole
spacetimes [117–121]. Essentially the same algorithm was also implemented
independently by Baumgarte et al [122].

The basic idea behind a minimization algorithm is to assume the surface can
be represented by a function F(x i ) = 0, expand it in terms of some set of basis
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functions, and then minimize the integral of the square of the expansion/ 2 over
the surface. For example, one can parameterize a surface as

F(r, θ, φ) = r − h(θ, φ). (18.19)

The surface under consideration will be taken to correspond to the zero level of
F . The function h(θ, φ) is then expanded in terms of spherical harmonics:

h(θ, φ) =
lmax∑
l=0

l∑
m=−l

almYlm(θ, φ). (18.20)

Similar techniques were developed by [123].
At an AH the expansion integral over the surface should vanish, and we will

have a global minimum. Of course, since numerically we will never find a surface
for which the integral vanishes exactly, one must set a given tolerance level below
which a horizon is assumed to have been found.

Minimization algorithms for finding AHs have a few drawbacks: First, the
algorithm can easily settle down on a local minimum for which the expansion is
not zero, so a good initial guess is often required. Moreover, when more than
one marginally trapped surface is present, as is often the case, it is very difficult
to predict which of these surfaces will be found by the algorithm. The algorithm
can often settle on an inner horizon instead of the true AH. Again, a good initial
guess can help point the finder towards the correct horizon. Finally, minimization
algorithms tend to be very slow when compared with ‘fl ow’ algorithms of the type
described in the next section. Typically, if N is the total number of terms in the
spectral decomposition, a minimization algorithm requires of the order of a few
times N2 evaluations of the surface integrals (where in our experience ‘a few’ can
sometimes be as high as ten).

This algorithm has been implemented in the ‘Cactus’ code for 3D numerical
relativity [34]. For more details of the application of this algorithm, see
[117–119, 122].

18.4.2.2 3D fast flow algorithm

A second method that has been implemented in the ‘Cactus’ code is the ‘ fast flow’
method proposed by Gundlach [124]. Starting from an initial guess for the a lm , it
approaches the apparent horizon through the iteration

a(n+1)
lm = a(n)lm − A

1+ Bl(l + 1)
(ρ/)

(n)
lm (18.21)

where (n) labels the iteration step, ρ is some positive definite function (‘a
weight’ ), and (ρ/)lm are the harmonic components of the function (ρ/). Various
choices for the weight ρ and the coefficients A and B parametrize a family of such
methods. The fast flow algorithm in Cactus uses

ρ = 2r 2|∇F|[(gij − si s j )(ḡi j −∇i r∇ j r)]−1, (18.22)
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where ḡi j is the flat background metric associated with the coordinates (r, θ, φ),
and

A = α

lmax(lmax + 1)
+ β, B = β

α
(18.23)

with α = c and β = c/2. Here c is a variable step size, with a typical value
of c ∼ 1. lmax is the maximum value of l one chooses to use in describing
the surface. The iteration procedure is a finite-difference approximation to a
parabolic flow, and the adaptive step size is chosen to keep the finite-difference
approximation roughly close to the flow limit to prevent overshooting of the true
apparent horizon. The adaptive step size is determined by a standard method used
in ODE integrators: we take one full step and two half steps and compare the
resulting alm . If the two results differ too much one from another, the step size is
reduced.

Other methods for finding apparent horizons, based directly on computing
the Jacobian of the finite differenced horizon equation, have been developed
[125, 126] and successfully used in 3D. For details, see these references.

18.4.3 Locating the event horizons

The AH is defined locally in time and hence is much easier to locate than the
event horizon (EH) in numerical relativity. The EH is a global object in time;
it is traced out by the path of outgoing light rays that never propagate to future
null infinity, and never hit the singularity. (It is the boundary of the causal past
of future null infinity J̇ −(I+).) In principle, one needs to know the entire time
evolution of a spacetime in order to know the precise location of the EH. However,
in spite of the global properties of the EH, hope is not lost for finding it very
accurately, even in a numerical simulation of finite duration. Here we discuss
a method to find the EH, given a numerically constructed black hole spacetime
that eventually settles down to an approximately stationary state at late times. In
principle, as the EH is a null surface, it can be found by tracing the path of null
rays through time. Outward going light rays emitted just outside the EH will
diverge away from it, escaping to infinity, and those emitted just inside the EH
will fall away from it, towards the singularity. In a numerical integration it is
difficult to follow accurately the evolution of a horizon generator forward in time,
as small numerical errors cause the ray to drift and diverge rapidly from the true
EH. It is a physically unstable process. However, we can actually use this property
to our advantage by considering the time-reversed problem. In a global sense in
time, any outward going photon that begins near the EH will be attracted to the
horizon if integrated backward in time [103, 117]. In integrating backwards in
time, it turns out that it suffices to start the photons within a fairly broad region
where the EH is expected to reside. Such a horizon-containing region, as we call
it, is often easy to determine after the spacetime has settled down to approximate
stationarity. The crucial point is that when integrated backward in time along null
geodesics, this horizon-containing region shrinks rapidly in ‘ thickness’ , leading
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to a very accurate determination of the location of the EH at earlier times. Note
that it is the earlier time when the black hole is under highly dynamical evolution
that we are really interested in.

Although one can integrate individual null geodesics backwards in time,
we find that there are various advantages to integrating the entire null surface
backwards in time. A null surface, if defined by f (t, x i ) = 0 satisfies the
condition

gµν∂µ f ∂ν f = 0. (18.24)

Hence the evolution of the surface can be obtained by a simple integration,

∂t f =
−gti∂i f +

√
(gti∂i f )2 − gtt gi j ∂i f ∂ j f

gtt
. (18.25)

The inner and outer boundary of the horizon containing region when integrated
backwards in time, will rapidly converge to practically a single surface to within
the resolution of the numerically constructed spacetime, i.e. a small fraction of
a grid point. An accurate location of the event horizon is hence obtained. We
henceforth shall represent the horizon surface as the function f H(t, xi ). Aside
from the simplicity of this method, there are a number of technical advantages
as discussed in [103]. One particularly noteworthy point is that this method is
capable of giving the caustic structure of the event horizon if there is any; for
details see [103].

The function fH(t, xi ) provides the complete coordinate location of the
EH through the spacetime (or a very good approximation of it, as shown in
[104]). This function by itself directly gives us the topology and location of the
EH. When combined with the induced metric function on the surface, which is
recorded throughout the evolution, it gives the intrinsic geometry of the EH. When
further combined with the spacetime metric, all properties of the EH including its
embedding can be obtained. Moreover, as the normal of f H(t, xi ) = 0 gives
the null generators of the horizon, it is an easy further step to determine the null
generators, and hence the complete dynamics of the horizon in this formulation.

As described in a series of papers, the event horizon, once found with such a
method, can be analysed to provide important information about the dynamics of
black holes in a numerically generated spacetime [103, 104, 110–113].

18.4.4 Wave extraction

The gravitational radiation emitted is one of the most important quantities of
interest in many astrophysical processes. The radiation is generated in regions
of strong and dynamic gravitational fields, and then propagated to regions far
away where it will someday be detected. We take the approach of computing the
generation and evolution of the fields in a fully nonlinear way, while analysing the
radiation with a perturbation formulation in the regions where it can be so treated.
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The theory of black hole perturbations is well developed. One identifies
certain perturbed metric quantities that evolve according to wave equations
on the black hole background. These perturbed metric functions are also
dependent of the gauge in which they are computed. We use a gauge-invariant
prescription for isolating wave modes on black hole background, developed first
by Moncrief [127]. The basic idea is that although the perturbed metric functions
transform under coordinate transformations (gauge transformations), one can
identify certain linear combinations of these functions that are invariant to first
order of the perturbation. These gauge-invariant functions are the quantities that
carry true physics, which does not depend on coordinate systems. They obey the
wave equations describing waves propagating on the fixed black hole background.
There are two independent wave modes, even- and odd-parity, corresponding to
the two degrees of freedom, or polarization modes, of the waves.

A waveform extraction procedure has been developed that allows one
to process the metric and to identify the wave modes. The gravitational
wavefunction (often called the ‘Zerilli function’ for even-parity or the ‘Regge–
Wheeler function’ for odd-parity) can be computed by writing the metric as the
sum of a background black hole part and a perturbation:

gαβ =
o
gαβ +hαβ(Y-,m), (18.26)

where the perturbation hαβ is expanded in spherical harmonics and their

tensor generalizations and the background part
o
gαβ is spherically symmetric.

To compute the elements of hαβ in a numerical simulation, one integrates
the numerically evolved metric components gαβ against appropriate spherical
harmonics over a coordinate 2-sphere surrounding the black hole, making
use of the orthogonality properties of the tensor harmonics. This process is
performed for each -,m mode for which waveforms are desired. The resulting
functions hαβ(Y-,m) can then be combined in a gauge-invariant way, following
the prescription given by Moncrief [127]. For each -,m mode, this gauge-
invariant gravitational waveform can be extracted when the wave passes through
‘detectors’ at some fixed radius in the computational grid. This procedure has
been described in detail in [128–130], and more generally in [121, 131, 132]. It
works amazingly well, allowing extraction of waves that carry very small energies
(of order 10−7M or less, with M being the mass of the source) away from the
source. The procedure should apply to any isolated source of waves, such as
colliding black holes, neutron stars, etc. The spherical perturbation theory (with
a few minor modifications) has also been applied to distorted rotating black holes
with satisfactory results [128–130].
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18.5 Computational science, numerical relativity, and the
‘Cactus’ code

18.5.1 The computational challenges of numerical relativity

Before we describe our computational methods in the following subsections, we
summarize the computational challenges of numerical relativity discussed above.
It is in response to these challenges that we have devised the computational
methods.

• Computational challenges due to the complexity of the physics involved.
The Einstein equations are probably the most complex partial differential
equations in all physics, forming a system of dozens of coupled, nonlinear
equations, with thousands of terms, of mixed hyperbolic, elliptic, and even
undefined types in a general coordinate system. The evolution has elliptic
constraints that should be satisfied at all times. In simulations without
symmetry, as would be the case for realistic astrophysical processes, codes
can involve hundreds of 3D arrays, and ten of thousands of operations
per grid point per update. Moreover, for simulations of astrophysical
processes, we will ultimately need to integrate numerical relativity with
traditional tools of computational astrophysics, including hydrodynamics,
nuclear astrophysics, radiation transport and magnetohydrodynamics, which
govern the evolution of the source terms (i.e. the right-hand side) of the
Einstein equations. This complexity requires us to push the frontiers of
massively parallel computation.

• Challenge in collaborative technology. The integration of numerical rela-
tivity into computational astrophysics is a multidisciplinary development,
partly due to the complexity of the Einstein equations, and partly due to the
physical systems of interest. Solving the Einstein equations on massively
parallel computers involves gravitational physics, computational science, nu-
merical algorithm and applied mathematics. Furthermore, for the numeri-
cal simulations of realistic astrophysical systems; many physics disciplines,
including relativity, astrophysics, nuclear physics, and hydrodynamics are
involved. It is therefore essential to have the numerical code software engi-
neered to allow codevelopment by different research groups and groups with
different expertise.

• The multiscale problem. Astrophysics of strongly gravitating systems
inherently involves many length and timescales. The microphysics of the
shortest scale (the nuclear force), controls macroscopic dynamics on the
stellar scale, such as the formation and collapse of neutron stars (NSs). On
the other hand, the stellar scale is at least ten times less than the wavelength
of the gravitational waves emitted, and many orders of magnitude less than
the astronomical scales of their accretion disk and jets; these larger scales
provide the directly observed signals. Numerical studies of these systems,
aiming at direct comparison with observations, fundamentally require the
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capability of handling a wide range of dynamical time and length scales.
• Challenge in interactive computational science. In spite of the incredible

advances in computational science, most simulations are still done in a very
old-fashioned way. Jobs are submitted in batch mode, data are output,
results are studied, and the process starts over again. This is a very time
consuming and cumbersome process. In order to really take advantage of
large-scale simulation as a tool for computational scientists, it is necessary
to develop new techniques that allow one to conveniently make use of their
computational resources, wherever they may be, to interactively monitor the
simulations with advanced visualization tools, perhaps in conjunction with
their colleagues in different parts of the world, and to interactively adjust the
simulation based on the observed results.

All of these issues lead to important research questions in computational
science. Here we give an overview of some of our effort in these directions,
focusing on performance and coding issues on parallel machines, and on the
development of a community code that incorporates all the mathematical and
computational techniques described above (and many more), in a collaborative
infrastructure for numerical relativity.

18.6 Cactus computational toolkit

The computational and collaborative needs of numerical relativity are clearly
immense. To develop a basic 3D code with all the different modules, including
parallel layers, adaptive mesh refinement, elliptic solvers, initial value solvers,
gauge conditions, black hole excision modules, analysis tools, wave extraction,
hydrodynamics modules, visualization tools, etc, require dozens of person years
of effort from many different disciplines (in fact, such a feat has still not been
done by the entire community!). Different groups often needlessly repeat each
other’s effort, further slowing the progress of the field. The NSF Black Hole
Grand Challenge was a first attempt to address this problem, and an outgrowth
of that effort led to the development of the ‘Cactus’ Computational Toolkit
(CCTK), developed by the Potsdam group, in collaboration first with NCSA
and Washington University, and now with a growing number of international
collaborators in various disciplines. Originally designed to solve Einstein’s
equations, the CCTK has grown into a general purpose parallel environment for
solving complex PDEs [133–135] that is being picked up by various communities
in computational science. Here we focus on its application to Einstein’s equations.

Cactus is designed to minimize barriers to the community development
and use of the code, including the complexity associated with both the code
itself and the networked supercomputer environments in which simulations and
data analysis are performed. This complexity is particularly noticeable in large
multidisciplinary simulations such as ours, because of the range of disciplines that
must contribute to code development (relativity, hydrodynamics, astrophysics,
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numerics and computer science) and because of the geographical distribution of
the people and computer resources involved in simulation and data analysis.

The name Cactus comes from the design of a central core (or flesh) which
connects to application modules (or thorns) through an extensible interface.
Thorns can implement custom developed scientific or engineering applications,
such as the Einstein solvers, or other applications such as computational fluid
dynamics. Other thorns from a standard computational toolkit provide a range of
capabilities, such as parallel I/O, data distribution, or checkpointing.

Cactus runs on many architectures. Applications, developed on standard
workstations or laptops, can be seamlessly run on clusters or supercomputers.
Parallelism and portability are achieved by hiding the driver layer and features
such as the I/O system and calling interface under a simple abstraction API. The
Cactus API supports C/C++ and F77/F90 programming languages for the thorns.
Thus, thorn programmers can work in the language they find most convenient,
and are not required to master the latest and greatest computing paradigms. This
makes it easier for scientists to turn existing codes into thorns which can then
make use of the complete Cactus infrastructure, and in turn be used by other
thorns within Cactus.

Cactus provides easy access to many cutting edge software technologies be-
ing developed in the academic research community, such as the Globus Metacom-
puting Toolkit, HDF5 parallel file I/O, the PETSc scientific computing library,
adaptive mesh refinement, web interfaces, and advanced visualization tools.

So, how does a user use the code? A detailed user guide is available with
the code (see http://www.cactuscode.org), but in a nutshell, one specifies which
physics modules, and which computational/parallelism modules, are desired in a
configuration file, and makes the code on the desired architecture, which can be
any one of a number of machines from SGI/Cray Origin or T3E, Dec Alpha, Linux
workstations or clusters, NT clusters, and others. The make system automatically
detects the architecture and configures the code appropriately. Control of run
parameters is then provided through an input file. Additional modules can be
selected from a large community-developed library, or new modules may be
written and used in conjunction with the pre-developed modules.

Our experiences with Cactus up to now suggest that these techniques are
effective. It allows a code of many tens of thousands of lines, but with a
compact flesh that is possible to maintain despite the large number of people
contributing to it. The common code base has enhanced the collaborative
process, having important and beneficial effects on the flow of ideas between
remote groups. This flexible, open code architecture allows, for example, a
relativity expert to contribute to the code without knowing the details of, say,
the computational layers (e.g., message passing or AMR libraries) or other
components (e.g., hydrodynamics). We encourage users from throughout the
relativity and astrophysics communities to make use of this freely downloadable
code infrastructure and physics modules, either for their own use, or as a
collaborative tool to work with other groups in the community.
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18.6.1 Adaptive mesh refinement

3D simulations of Einstein’s equations are very demanding computationally. In
this section we outline the computational needs, and techniques designed to
reduce them. We will need to resolve waves with wavelengths of order 5M or less,
where M is the mass of the BH or the neutron star. Although for Schwarzschild
black holes, the fundamental - = 2 quasinormal mode wavelength is 16.8M ,
higher modes, such as - = 4 and above, have wavelengths of 8M and below. The
BH itself has a radius of 2M . More importantly, for very rapidly rotating Kerr
BHs, which are expected to be formed in realistic astrophysical BH coalescence,
the modes are shifted down to significantly shorter wavelengths [3, 4]. As we
need at least 20 grid zone]TJ
-i9rchvitself has
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initial distribution may not even see the final BH. Further, as pulses of radiation
propagate back out from the origin, they too may have to be resolved in regions
where there was previously a coarse grid. Choptuik’s AMR system, built on early
work of Berger and Oliger [138], was able to track dynamically features that
develop, enabling him to discover and accurately measure BH critical phenomena
that have now become so widely studied [139].

Based on this success and others, and on the general considerations discussed
above, full 3D AMR systems are under development to handle the much greater
needs of solving the full set of 3D Einstein equations. A large collaboration,
begun by the NSF Black Hole Grand Challenge Alliance, has been developing a
system for distributing computing on large parallel machines, called Distributed
Adapted Grid Hierarchies, or DAGH. DAGH was developed to provide MPI-
based parallelism for the kinds of computations needed for many PDE solvers,
and it also provides a framework for parallel AMR. It is one of the major
computational science accomplishments to come out of the Alliance. Developed
by Manish Parashar and Jim Browne, in collaboration with many subgroups
within and without the Alliance, it is now being applied to many problems
in science and engineering. One can find information about DAGH online at
http://www.cs.utexas.edu/users/dagh/.

At least two other 3D software environments for AMR have been developed
for relativity: one is called HLL, or Hierarchical Linked Lists, developed by
Wild and Schutz [140]; another, called BAM, was the first AMR application in
3D relativity developed by Brügmann [60]. The HLL system has recently been
applied to the test problem of the Zerilli equation (discussed above) describing
perturbations of black holes [141]. This nearly 30 year old linear equation is still
providing a powerful model for studying BH collisions, and it is also being used
as a model problem for 3D AMR. In this work, the 1D Zerilli equation is recast
as a 3D equation in Cartesian coordinates, and evolved within the AMR system
provided by HLL. Even though the 3D Zerilli equation is a single linear equation,
it is quite demanding in terms of resolution requirements, and without AMR it is
extremely difficult to resolve both the initial pulse of radiation, the blue shifting
of waves as they approach the horizon, and the scattering of radiation, including
the normal modes, far from the hole.

18.7 Recent applications and progress

18.7.1 Evolving pure gravitational waves

With the new formulations of the Einstein equations discussed above, we are now
able to study the nonlinear dynamics of pure gravitational waves with much more
stability than ever before. This allows us to use numerical relativity to probe
general relativity in highly nonlinear regime. Can one form a black hole in
full 3D from pure gravitational waves? Does one see critical phenomena in full
3D? These inherently nonlinear phenomena have been investigated in 1D and 2D
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studies, but little is known about generic 3D behaviour.
In our investigations, we take as initial data a pure Brill-type gravitational

wave [142], later studied by Eppley [86, 116] and others [143]. The metric takes
the form

ds2 = %4[e2q(dρ2 + dz2)+ ρ2 dφ2] = %4d̂s2, (18.27)

where q is a free function subject to certain boundary conditions. Following
[120, 132, 144], we choose q of the form

q = aρ2e−r2

[
1+ c

ρ2

(1+ ρ2)
cos2(nφ)

]
, (18.28)

where a, c are constants, r 2 = ρ2 + z2 and n is an integer. For c = 0, these
data sets reduce to the Holz [143] axisymmetric form, recently studied in full 3D
Cartesian coordinates [145]. Taking this form for q, we impose the condition of
time-symmetry, and solve the Hamiltonian constraint numerically in Cartesian
coordinates. An initial data set is thus characterized only by the parameters
(a, c, n). For the case (a, 0, 0), we found in [145] that no AH exists in initial
data for a < 11.8, and we also studied the appearance of an AH for other values
of c and n.

We have surveyed a large range of this parameter space, but here we discuss
two cases of interest: (a) a subcritical (but highly nonlinear) case where after a
violent collapse of the self-gravitating waves, there is a subsequent rebound and
after a few oscillations the waves all disperse; and (b) a supercritical case where
the waves collapse in on themselves and immediately form a black hole.

The subcritical case studied in [50] has parameters (a = 4, c = 0, n = 0)
in the notation above. It is a rather strong axisymmetric Brill wave (BW). The
evolution of this data set shows that part of the wave propagates outward while
part implodes, re-expanding after passing through the origin. However, due to
the nonlinear self-gravity, not all of it immediately disperses out to infinity; again
part re-collapses and bounces again. After a few collapses and bounces the wave
completely disperses out to infinity. This behaviour is shown in figure 18.2(a),
where the evolution of the central value of the lapse is given for simulations
with three different grid sizes: �x = �y = �z = 0.16 (low resolution), 0.08
(medium resolution) and 0.04 (high resolution), using 32 3, 643 and 1283 grid
points respectively. At late times, the lapse returns to 1 (the log returns to 0).
Figure 18.2(b) shows the evolution of the log of the central value of the Riemann
invariant J for the same resolutions. At late times J settles on a constant value
that converges rapidly to zero as we refine the grid. With these results, and direct
verification that the metric functions become stationary at late times, we conclude
that spacetime returns to flat (in non-trivial spatial coordinates; the metric is
decidedly non-flat in appearance!).

The same simulation carried out with the standard ADM systems crashes
far earlier than in the present case with the BSSN systems, which essentially run
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Figure 18.2. (a) Evolution of the log of the lapse α at r = 0 for the axisymmetric
data (4, 0, 0). The dashed/dotted/full curves represent simulations at low/medium/high
resolution. (b) Evolution of the Riemann invariant J at r = 0. The wave disperses after
dynamic evolution, leaving flat space behind.

forever. With this experience, we next try the case of an even stronger amplitude
wave, which in this case will actually collapse on itself and form a black hole.
In figure 18.3, we study the development of the data set (a = 6, c = 0.2,
n = 1), a full 3D data set, and watch it collapse to form a black hole (the first
such 3D simulation). The figure also compares this black hole formation to results
obtained with an axisymmetric data set. The system clearly collapses on itself and
rapidly forms a black hole. The waveform extraction shows that the newly formed
hole then rings at its quasinormal mode frequency. High quality images and
movies of these simulations can be found at http://jean-luc.aei-potsdam.mpg.de.

These results are exciting examples of how numerical relativity can act
as a laboratory to probe the nonlinear aspects of Einstein’s equations. Pure
gravitational waves are clearly a rich and exciting research area that allows one
to study Einstein’s equations as a nonlinear theory of physics. With these new
capabilities of accurate 3D evolution that can follow the implosion of waves
to a black hole, there is much more physics to study, including the structure
of horizons, full 3D studies of critical phenomena, and much more. Further,
this study of pure vacuum waves has helped us to understand the importance of
developing and testing new formulations of Einstein’s equations for numerical
purposes. Without the new formulations, these results simply could not be
obtained. Further, we have run literally hundreds of simulations like these in order
to determine which variation on the ‘BSSN’ families of formulations perform
best. With this new knowledge, we turn to the problem of 3D black holes.

18.7.2 Black holes

Having tested these new formulations of Einstein’s equations on the problem of
pure gravitational waves, we now apply what we have learned to the considerably
more complex problem of black hole evolutions. We first applied these new
formulations to black hole spacetimes that have been very carefully tested in
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Figure 18.3. (a) The full (dotted) curve is the AH for the full 3D data set (6, 0.2, 1)
((6, 0, 0)) at t = 9 in the x–z plane. (b) The {l = 2,m = 0} waveform for the 3D
(6, 0.2, 1) case at r = 4 (full curve) is compared to the axisymmetric (6, 0, 0) case (dotted
curve). The chain curve shows the fit of the 3D case to the two lowest lying QNMs for
a BH of mass 0.99. (c) Same comparison for the {l = 4,m = 0} waveform. (d) Same
comparison for the non-axisymmetric {l = 2,m = 2} waveform.

axisymmetry and with 3D nonlinear numerical codes, but with standard 3 + 1
formulations, as well as with perturbative methods. In summary, these new
formulations are able to extend the evolutions by a considerable amount, since
instabilities that develop during grid stretching caused by singularity avoiding
slicings are highly suppressed. 3D black hole evolutions that crashed previously
by t = 20–30M now routinely extend several times longer. However, by such
late times the pathological peaks in metric functions associated with singularity
avoiding slicings cannot be resolved, and then of course evolutions become very
inaccurate. This is actually a major improvement! Previously, with traditional
formulations, instabilities would develop as large gradients were created near the
black hole, causing the codes to crash prematurely. As discussed above and shown
in many papers [121,131,132,146], the evolutions can actually be very accurate—
allowing the extraction of very delicate waveforms from a large spectrum of
modes—and remain so until the code crashes. With the new formulations, we
find that we can break far through the former crash barrier, but as features become
under-resolved the results naturally become less accurate. For a fuller discussion



396 Numerical relativity

of these results, and mathematical analysis giving insight into the improved
behaviour of the new formulations, see [52].

As an example of what we are now able to do with these new formulations,
we now turn to an advanced application of a fully 3D ‘grazing collision’ of two
black holes.

18.7.2.1 True 3D grazing black hole collision

In the previous sections we have shown that using the standard ADM formulations
of Einstein’s equations in 3D Cartesian coordinates, it is possible to perform very
accurate evolutions of gravitational-wave and black hole spacetimes. However,
with these formulations, there are instabilities that appear when large gradients
develop, leading to premature crashing of the code. On the other hand, the new
‘BSSN’ family of formulations are much more robust. Having allowed us to break
through the barriers seen in evolving pure nonlinear gravitational waves, we now
apply these formulations to full 3D grazing collisions of black holes of the type
originally considered by Brügmann a few years ago.

The initial data sets we use here for binary BH systems were developed
originally by Brandt and Brügmann [25]. They are very convenient, since no
isometry is needed and hence the elliptic solver can be applied on a standard
Cartesian grid without the need to apply boundary conditions on strangely shaped
(e.g., non-planar!) surfaces.

A few of these data sets were first evolved by Brügmann [147] using the
standard ADM formulation. This was a first pioneering attempt to go beyond
the highly symmetric black hole collisions that had been studied previously,
combining for the first time unequal mass, spinning black holes with linear and
orbital angular momentum. Brügmann was able to use nested grids to provide
reasonable resolution near the holes, while putting the boundary reasonably far
away. The result was that for selected data sets he was able to carry out the
evolution far enough to observe a merger of the two apparent horizons. However,
the difficulties of the ADM formulation, discussed above, coupled with poor
resolution achievable at that time limited these evolutions to about t = 7M , and it
was not possible to extract detailed physics, such as horizon masses, waveforms,
energies, spins, etc.

Now we apply all we have learned in the last few years, together with the
advanced computational infrastructure developed in Cactus and the accessibility
of much larger computers, and revisit this same problem. This work is still in
progress, and calculations are presently underway to refine the waveforms and
the energy accounting, but we can report the following preliminary results.

For initial data of the type described in [147], we follow Brügmann and
choose individual mass parameters M1 = 1.5, and M2 = 1.0, and linear and spin
momenta on each hole such that the overall mass and angular momentum of the
initial slice are measured from asymptotic properties to be

MADM = 3.1 (18.29)



Recent applications and progress 397

J = 6.7 so that a/m = J/M 2
ADM = 0.70. (18.30)

On a 256 processor Origin 2000 machine at NCSA we are able to run
simulations of 3873, which take roughly 100 Gb of memory. Still, with sufficient
resolution to carry out long-term evolutions, the boundaries are still rather close,
at roughly x = 12M . We use the ‘BSSN’ formulations to carry out the evolutions,
coupled with vanishing shift and either maximal or algebraic slicings (of the
‘1 + log’ family [45]) and with a three-step Crank–Nicholson method. Further
details are in preparation for publication. Under these conditions, we find that we
are able to evolve the black hole merger far beyond the time at which the horizons
merge, beyond t = 30M , at which time the simulations become fairly inaccurate.
(We must point out that we have to date only studied the apparent horizons. The
event horizons can also be located by techniques developed in [103]. At present
it is not known whether a single event horizon is present on the initial slice in this
data set.) Depending on computational parameters, the simulations can be carried
out far beyond this time without crashing, in stark contrast to earlier attempts
which were doomed to crash far earlier.

Of course, the ‘ time to crash’ is not a measure of success of a code! What
we are really interested in is whether we are able to extract meaningful physics
from such simulations. We are in the process of analysing such simulations in
great detail, and the results are very encouraging. First, for the example discussed
above, we begin with qualitative measurements of the physics we extract. In
figure 18.4 we show a sequence of visualizations of simulations near the time just
before, during, and after the merger of the two holes. The coordinate locations
of the apparent horizons (AH) are shown as coloured surfaces. The colourmap
represents the local Gaussian curvature of the surface, computed from the induced
2-metric on the horizon. As the holes approach each other and merge, a global AH
develops. Meanwhile, a burst of gravitational waves, indicated by the coloured
wisps emanating from the BH system develops and propagates away. The
Newman–Penrose quantity%4, computed fully nonlinearly, is used to indicate the
gravitational waves. As this system has no symmetries, and includes rotation, all
-–m-modes and both even- and odd-parity polarizations of the waves are present,
leading to a much more complex structure in the wave patterns than one is used to
seeing in such simulations. However, this is now moving much closer to what one
expects to see in nature, and it, too, will be rather complicated! A full multipolar
analysis of the waves is in progress, and it is clear that quasinormal mode ringing
of the final BH is present, as expected.

These results are preliminary, but indicate that for the first time we are indeed
now able to simulate the late merger stages of two black holes colliding, with
rather general spin, mass and momenta, and that we can now begin to study
the fine details of the physics. A quantitative analysis of the horizon evolution,
mass of the final black hole, the energy emitted, the total angular momentum,
etc, are underway, and preliminary results indicate that much detailed physics
can be accurately extracted from these simulations. Without more advanced
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Figure 18.4. We show a sequence of visualizations of the merger of two black holes
with unequal mass and spin. The apparent horizons are shown as the surfaces at the
centre of the image, and the colours represent the Gaussian curvature. The waves, shown
emanating from the merger, are visualizations of the real part of the Newman–Penrose
quantity %4. The top left-hand panel shows the system just before the merger, while the
bottom right-hand panel shows the system much later.

techniques, such as black hole excision, these simulations will be limited to the
final merger phase of black hole coalescence. Hence, it is important that the
community continue to focus on this long term solution. However, while that is
under development, we can take advantage of our capabilities and explore this
phase of the inspiral now. Our goal is several fold: (a) to explore new black hole
physics of the ‘fi nal plunge’ phase of the binary BH merger; (b) to try to determine
some useful information relevant for gravitational-wave astronomy; and (c) to
provide a strong foundation of knowledge for this process that will be useful when
more advanced techniques, such a black hole excision, are fully developed. When
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these techniques are used to extend the ability of the community to handle the
earlier orbital phase, it will be important to have an understanding of details of
this most violent phase in advance, both as a testbed to ensure that results are
correct, and because the understanding we gain may be useful in devising the
appropriate techniques for longer-term evolution.

18.8 Summary

In this article we have attempted to review the essential mathematical and
computational elements needed for a full-scale numerical relativity code that
can treat a variety of problems in relativistic astrophysics and gravitation.
Various formulations of the Einstein equations for evolving spacelike time slices,
techniques for providing initial data, the basic ideas of gauge conditions, several
important analysis tools for discovering the physics contained in a simulation,
and the numerical algorithms for each of these items have been reviewed.
Unfortunately, we have only been able to cover the basics of such a program,
and in addition many promising alternative approaches have necessarily been left
out.

As one can see, the solution to a single problem in numerical relativity
requires a huge range of computational and mathematical techniques. It is truly
a large-scale effort, involving experts in computer and computational science,
mathematical relativity, astrophysics, and so on. For these reasons, aided by
collaborations such as the NSF Black Hole Grand Challenge Alliance and the
NCSA/Potsdam/Wash U collaboration, there has been a great focusing of effort
over the last years.

A natural byproduct of this focusing has been the development of codes
that are used and extended by large groups. A code must have a large arsenal
of modules at its disposal: different initial data sets, gauge conditions, horizon
finders, slicing conditions, waveform extraction, elliptic equation solvers, AMR
systems, boundary modules, different evolution modules, etc. Furthermore,
these codes must run efficiently on the most advanced supercomputers available.
Clearly, the development of such a sophisticated code is beyond any single person
or group. In fact, it is beyond the capability of a single community! Different
research communities, from computer science, physics and astrophysics, must
work together to develop such a code.

As an example of such a project, the ‘Cactus’ code has been developed
by a large international collaboration [133, 134]. This code is an outgrowth
of the last decade of 3D numerical relativity development primarily at
NCSA/Potsdam/Wash U, and builds heavily on the experience gained in
developing previous generation codes [34, 45, 148]. Cactus has a very
modular structure, allowing different physics, analysis, and computational science
modules to be plugged in. In fact, versions of essentially all the modules listed
above are already developed for the code. For example, several formulations
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of Einstein’s equations, including the ADM formalism and the Bona–Massó
hyperbolic formulation, can be chosen as input parameters, as can different
gauge conditions, horizon finders, hydrodynamics evolvers, etc. Cactus was also
designed as a community code. After first developing and testing it within our
rather large community of collaborators, it is available with full documentation.
By having an entire research community using and contributing to such a code,
we hope to accelerate the maturation of numerical relativity. Information about
the code is available online, and can be accessed at http://www.cactuscode.org
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18.9 Further reading

Here are some references that we think will help fill in the details of many issues
we can only gloss over. These references are clearly not complete; it was just
easier for us to heavily bias this list towards work coming out of our own group,
or closely associated groups! Our apologies to many others who have written fine
papers on these subjects, but we have tried to give references that are current and
relevant to the most important topics in numerical relativity, if incomplete and
biased.

18.9.1 Overviews/formalisms of numerical relativity

For basic 3 + 1 formalism, see [10] and the PhD thesis of Cook [88]. This
provides the basics in a very clear, readable way. A somewhat more recent York
article describes many ‘miscellaneous’ topics, such as more modern initial data
and apparent horizon conditions, etc [20]. However, there are no details on more
recent reformulations of Einstein’s equations for numerical relativity, which are
becoming very important. This is a breaking research area, with new papers every
month, but some that stand out for hyperbolicity are [32–34, 46, 52, 63, 70, 149,
150, and references therein]. Even these are being overtaken by some recent
developments! Every month there is new excitement in some variations on all
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the above that seem to have very good stability properties: [48,51] are among the
more recent ones.

For the most recent overviews of numerical relativity especially related to
black holes, see the review articles by the author and Wai-Mo Suen: [1, 27, 151–
154].

18.9.2 Numerical techniques

An old but still very useful primer on numerical techniques for numerical
relativity can be found in a little article by Smarr in [155]. More modern
treatments for solving PDEs are available in Numerical Recipes [66]. For
hyperbolic systems, the one we learned everything from is [69].

18.9.3 Gauge conditions

For gauge conditions, we recommend the classics: York [10] and Smarr and York
[79, 80] for standard maximal slicing and variational principle shift conditions
(minimal distortion, etc). For more modern views on how to actually implement
such conditions more effectively, including the ‘driver’ ideas, see [87] and the
very recent paper [51]. For work on so-called algebraic slicing conditions, see
[33, 45], and for problems that can develop with such conditions, see [83, 84].
For the most recent ideas on shift conditions, see [156]. There is still a lot
of work to do here, especially on shift conditions: please publish some ideas
yourselves! This is a crucial area of needed research in numerical relativity that
has not received much attention, especially in 3D.

18.9.4 Black hole initial data

There are by now many black hole initial data sets. There are early references by
Misner [157,158], and Brill and Lindquist [115] and then Bowen and York [159],
but more recent ones cover the same older material sufficiently. Take a look
at [21,26] and references therein for the classic work. [160] looks at some physics
of initial data sets. For the very large family of distorted black hole plus Brill wave
data sets, check out [161], or including rotation [128]. These were extended to 3D
and discussed briefly in [132]. More recently, important new ways of determining
initial data were developed by Brandt and Brug̈mann [25]; see also [18, 162].
There are many others!

18.9.5 Black hole evolution

18.9.5.1 Spherical and distorted (axisymmetric) black holes

There have been extensive studies of numerical evolution of distorted black holes.
For that we would check out [73] for 1D (spherical, undistorted), [59, 163, 164]
for 2D, and finally [128, 129] for 2D rotating black holes.
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18.9.5.2 Colliding black holes

For colliding Misner black holes, the original work of Smarr and others is
remarkable: see [165–167]. For a more advanced attempt see [168, 169]. For
boosted black holes, see [170], and for unequal mass black hole collisions see
[171]. For an alternative type of black hole collision, with particles forming black
holes, see [110] and references therein.

18.9.5.3 3D black holes

In 3D, so far little has been published. 3D Schwarzschild was evolved numerically
by [45, 60]. Distorted 3D black holes were studied numerically, and compared to
perturbation theory for the first time, in [131, 132].

Colliding black holes in 3D were studied in [172], and the first full 3D
collisions were performed in [2, 147].

For a completely alternative approach to that considered here, characteristic
evolution techniques have been used very successfully to evolve black holes in [8].

18.9.6 Black hole excision

For black hole excision, see [105] for an early 1D success (but the idea was
floating around long before). Then [173] followed up with a more advanced
treatment. Other successful 1D work includes [43, 109, 174]. [6, 7, 45, 60] give
the first successful, and increasingly complex, 3D attempts.

18.9.7 Perturbation theory and waveform extraction

For work on the perturbative/numerical synergy approach, there are many papers.
The original that really started it all, for Misner data, was [175], followed by
[176], and with boosted holes, [170]. An extraordinary paper that carries the
Misner problem to second order is [177]. [178] gives a review. For the move
towards the Teukolsky formalism for rotating black holes, see [179–181], among
others.

For the first attempts to use perturbation theory for 3D distorted black holes,
showing the incredible accuracy one can achieve in waveforms, see [132].

18.9.8 Event and apparent horizons

For a nice description of the apparent and event horizons, see [182]. Techniques
to find apparent horizons abound; the most recent variations can be found in
[124, 125, 145, 183, 184].

Two different event horizon finding methods are described in [103,110]; the
latter method is used now by all groups we are aware of. More details of the
method can be found in [104].
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Physics that can be extracted by studying numerically generated horizons
has been detailed in [110, 111, 113, 164, 185, 186].

18.9.9 Pure gravitational waves

We have focused almost exclusively on black holes in these lectures, but we also
touched on recent and very exciting work in pure gravitational wave evolutions.
For the original classic (a ‘must read paper’ ), see [142]. Many followers of the
‘Brill wave’ school are [86, 116, 143, 187], and most recently, for the first true,
long-term 3D evolutions, see [50].

18.9.10 Numerical codes

For Cactus, see [34, 133–135, 188]. Cactus, a full 3D numerical relativity code,
is available as a community code this year. Please feel free to test it out and
contribute to it!
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[67] Clune T, Massó J, Miller M and Walker P Technical Report National Center for
Supercomputing Applications, unpublished, in preparation
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